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Abstract / Résumé

The quality of communication in a wireless network is primarily determined by the wireless link

signal quality expressed in term of signal-to-interference-plus-noise ratio. The fact that better

signal quality enhances the communication quality incites to look for states where each receiver

connects to a transmitter providing it with the best signal quality. Using stochastic geometry

and then extreme value theory, we obtain the distribution of the best signal quality, of the

interference, and of the maximum signal strength in both bounded and unbounded path loss

conditions. We then investigate temporal variations of wireless links, which are also essential to

wireless networking, in terms of level crossings of a stationary process X(t). We prove that the

length of an excursion of X(t) above a level γ → −∞ has an exponential distribution, and obtain

results associated with the crossings of several levels. These results are then applied to mobility

management in cellular networks. We focus on the handover measurement function, which

differs from the handover decision-execution by identifying the best neighbouring cell to which

a connection switching is to be decided and executed. This function has an important influence

on the user’s experience, though its operation has been questionable due to the complexity of

combining control mechanisms. We firstly address this topic with an analytical approach for

emerging macro cell and small cell networks, and then with a self-optimisation approach for

neighbour cell lists used in today’s cellular networks.

La qualité de communication dans un réseau sans fil est déterminée par la qualité du signal, et

plus précisément par le rapport signal à interférence et bruit. Cela pousse chaque récepteur à se

connecter à l’émetteur qui lui donne la meilleure qualité du signal. Nous utilisons la géométrie

stochastique et la théorie des extrêmes pour obtenir la distribution de la meilleure qualité du

signal, ainsi que celles de l’interférence et du maximum des puissances reçues. Nous mettons en

évidence comment la singularité de la fonction d’affaiblissement modifie leurs comportements.

Nous nous intéressons ensuite au comportement temporel des signaux radios en étudiant le

franchissement de seuils par un processus stationnaire X(t). Nous démontrons que l’intervalle

de temps que X(t) passe au-dessus d’un seuil γ → −∞ suit une distribution exponentielle,

et obtenons également des résultats caractérisant des franchissements par X(t) de plusieurs

seuils adjacents. Ces résultats sont ensuite appliqués à la gestion de mobilité dans les réseaux

cellulaires. Notre travail se concentre sur la fonction de ‘handover measurement’. Nous identifions

la meilleure cellule voisine lors d’un handover. Cette fonction joue un rôle central sur l’expérience

perçue par l’utilisateur. Mais elle demande une coopération entre divers mécanismes de contrôle

et reste une question difficile. Nous traitons ce problème en proposant des approches analytiques

pour les réseaux émergents de types macro et pico cellulaires, ainsi qu’une approche d’auto-

optimisation pour les listes de voisinage utilisées dans les réseaux cellulaires actuels.

Keywords: max sinr, interference, max signal, shot noise, extreme values, level crossing, self-

optimisation, mobility management, handover measurement, neighbour cell list
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Chapter 1

Introduction

A wireless link between a transmitter and a receiver is subject to variations in frequency, time,

and space. The received signal power is traditionally characterised by a superposition of three

components called path loss, shadowing, and fading. The path loss describes the power atten-

uation due to the radio propagation in free space. It is commonly expressed by a deterministic

function of the transmission distance. The shadowing describes variations of the signal power due

to obstacles during the transmission. And the fading characterises rapid fluctuations which are

generated by the relative motion of the receiver and by the multi-path reception of the original

signal. The shadowing and fading are conventionally characterised by probabilistic laws [7, 8].

In a wireless network composed of communicating nodes, interference occurs when multiple nodes

transmit simultaneously on a common frequency. The quality of communication is primarily

determined by the signal quality expressed in term of the ratio of the received signal power

over that of the interference caused by other nodes plus the thermal noise power, namely signal-

to-interference-plus-noise ratio. This incites to look for states where each receiver connects to

the transmitter from which it obtains the best signal quality. The best signal quality is thus a

fundamental information to assess many quantities of interest as well as to the network design

and optimisation.

The first contribution of the thesis is the wireless link modelling with

results centred on the distribution of the best signal quality.

On the way of establishing these results, we obtain a variety of interesting results and observations

of wireless links 1, particularly on the interference and the maximum signal strength received

from multiple nodes. The results are presented in Part II of the thesis. To better present our

approach and results, let us consider a concrete setting. Assume that there are n transmitters

from which a receiver receives signal powers (P1, P2, . . . , Pn). The interference power with respect

to the signal of a transmitter i is Ii = P1 + · · ·+ Pi−1 + Pi+1 + · · ·+ Pn. And the signal quality

of transmitter i is Qi = Pi/(N0 + Ii) where N0 refers to the thermal noise power. The best

signal quality between these n transmitters is given as Yn = max(Q1, . . . , Qn). Since the random

variables (Q1, Q2, . . . , Qn) depend one another due to the terms (Ii, i = 1, . . . , n), obtaining

the distribution of Yn is not so straightforward. By denoting I = P1 + · · · + Pn, it is clear

that Ii = I − Pi, leading to Qi = Pi/(N0 + I − Pi). With a simple observation, we can see

1“Remember that happiness is a way of travel - not a destination.” Roy M. Goodman.

1
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that Yn = Mn/(N0 + I −Mn) where we denote by Mn the maximum signal strength received

between the n transmitters, i.e. Mn = max(P1, . . . , Pn). This means that the transmitter which

provides the maximum signal power will provide the best signal quality. More importantly, it

suggests that we can derive the distribution of the best signal quality Yn by means of the joint

distribution of the maximum signal strength Mn and the total interference I. That is the guiding

idea throughout our work.

To support our above idea, we firstly need information about the spatial distribution of nodes. In

the literature, there have been two common approaches to obtain this information: either using

a deterministic model, or using a stochastic model. A deterministic model requires complete

information on the network structure or needs to be constrained to a regular topology such

as grid or hexagonal structures. It results in expenses in obtaining precise information of the

network, and difficulties in mathematical generalisations [9, 10]. Too idealised models based on

regular structure are also inconvenient. The spatial distribution of nodes is therefore often treated

as random according to some point process. Although a stochastic model is not able to describe

the locations of nodes precisely, it can provide some degree in mathematical generalisation and

is especially suitable for the system-level analysis. In particular, Poisson point processes offer

computational convenience [11]; they have been intensively used to model the spatial distribution

of nodes in a wireless network, see §6.2. And in this thesis, we will do so. Using this setting, our

results are as follows.

• In Chapter 7, we obtain the exact formulations of the joint density of the maximum

signal strength received from a disk-shaped network area B and the total interference, and

the distribution of the best signal quality. Some highlighted observations are that under

an unbounded typical path loss model, the maximum signal strength received from the

whole network follows a Fréchet distribution, and the total interference is a skewed α-

stable distribution, independently of the type of fading. And under favourable conditions,

their joint density exists everywhere of the two-dimensional Euclidean plane, except at the

origin if B is bounded. (This work was realised in collaboration with François Baccelli,

and was published in the proceedings of WiOPT 2010 conference.)

• In Chapter 8, we show that the singularity of the path loss function decides the heavy-

tailed behaviour of wireless links. In case of unbounded power-law path loss, the signal

strength is regularly varying, leading to very heavy-tailed interference and maximum sig-

nal strength. This is explained by the dominant component created by the singularity of

path loss function. This common dominant component in addition strengthens the depen-

dence between the interference and the maximum signal strength. By contrast, in case

of bounded path loss, the tail behaviour of the signal strength is mainly imposed by the

type of fading. Especially, under lognormal shadowing, the signal strength lies on both the

domains of attraction of a Gumbel distribution and a Gaussian distribution, leading to the

asymptotic independence of the maximum signal strength and the interference when the

number of observed nodes tends to infinity. This allows us to obtain an approximation of

the distribution of the best signal quality which is analytically more tractable than its ex-

act formulation. (This work was done with François Baccelli, Laurent Thomas, and Chung

Shue Chen, and was published in the EURASIP JWCN 2010.)

Now, we are interested in temporal variations of wireless links. In the time domain, wireless

signal often crosses a given threshold due to its variations over the time. From the point of view
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of wireless networking, some mechanisms are needed to control the network operation when the

signal quality of a link is too low or very high. For example, when the signal quality is too low,

meaning that the signal quality stays below a low level, the communication becomes unreliable,

requiring for a switching of the communication to another transmitter. Understanding properties

associated with the crossings of wireless links has been an important topic. It is known under

level crossing theory which has been investigated since the middle of the last century with

first milestones credited by Rice [12, 13], and Kac and Slepian [14]. For a stationary normal

process, they contributed fundamental results on the mean number of crossings of one level, and

the asymptotic trajectory of excursions of above a very large level. The application of these

results to mobile radio communications has received increasing attention, especially since the

paper of Mandayam et al. [15] appearing in 1996, and republished in 1998 in [16]. However, the

introduction of new control mechanisms in emerging cellular systems gives rise to the need of

more theoretical investigation of this problem.

The second contribution of the thesis is an investigation of some

properties of level crossings of a stationary process.

Consider a normal stationary process; we investigate its excursions above a very small level, and

its crossings of several adjacent levels.

• In Chapter 9, we show that the length of an up-excursion above a very small level has

an exponential distribution of rate equal to the mean crossing rate of this level. This

complements the well known result saying that the length of an up-excursion above a very

large level has a Rayleigh distribution (see §5.3). We then obtain the mean number of

crossings, and the distribution of the length of an up-excursion, above successive large

levels. (This work was realised during the completion of the thesis dissertation, and is

subject to a future publication.)

The above results should have diverse implications. Here, we are interested in their applications

to mobility management in cellular networks. Let us briefly describe the cellular concept and the

need for mobility management. Basically, to guarantee a level of quality of communications, it is

necessary to keep the signal quality of wireless links above an acceptable level. That requires a

low level of interference, meaning that only a few nodes are allowed to transmit simultaneously.

This can be satisfied in a broadcasting situation where there is only one-way communication

from a transmitter to a population of receivers, such as radio television systems, or a lecture

note given by a professor to a large number of students in a big room. But the problem arises

when many people need to talk. To see the problem, let us take an example of a brainstorming

exercise between students guided by a professor. Each student is motivated to present his/her

idea to the group, and the professor may give comments and animates the group activity. If

the group has too many students, the chance for a student to present his/her idea becomes very

low. The idea here is to divide the class into a number of groups, each group is assigned a

professor and works in a separated room. This gives chance to each student to show his/her

idea, of course at the cost of increasing the number of professors. This is also the logic behind

the cellular network concept which uses a number of base stations spatially separated to provide

communication services to a large region. The geographic area where the signal quality of a base

station is better than that of any other base station and is better than a required level is called

a (radio) cell. A mobile station in a cell is guaranteed communications with the base station of

this cell. But the situation here is more complicated than the above example of brainstorming
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exercise. A mobile user may move across cells during a communication (e.g. a phone call). One

needs a mechanism to switch the call automatically from one cell to another seamlessly and

transparently to the user. This is realised by a procedure called mobility management, or also

handover. It consists in two subfunctions: (i) determining a base station with the best signal

quality, and then (ii) switching the connection to the best base station, called handover target.

The first function requires a measurement of the signal quality of neighbouring base stations and

is called handover measurement, and the second function is called handover decision-execution.

These two functions have a strong influence on the quality of service in terms of call drops

and throughput degradation: the handover measurement decides the quality of the handover

target and the quality of service during the measurement, while the handover decision-execution

is responsible for reliable and efficient connection switching. The handover decision-execution

has been intensively studied with a rich literature including handover parameter optimisation

(optimising parameters used for controlling the handover procedure), handover optimal control

(deciding whether or not to switch the connection), and handover execution protocol design

(performing fast and reliable connection switchings). Meanwhile, the handover measurement

has received less attention. Even nowadays one often implicitly means the handover decision-

execution when talking about handover, while forgetting the handover measurement function.

Most prior works on this topic were based on simulations and only investigated a certain specific

aspect (see §4.3). There lacks a unified framework for this function.

The third contribution of the thesis is the analysis and optimisation of

handover measurement function of cellular networks.

Basically, the more cells are measured, the more chance to find a good handover target. That

is so obvious as the situation where the more candidates we examine for a job position, the

more chance we can find an appropriate employee. But the time spent for the measurement

(or for interviews) matters. A longer measurement time introduces more overhead, and more

importantly it can cause call dropping with the serving cell when its own signal deteriorates.

Knowing when to perform a handover measurement, and how to perform it optimally is critical.

We use the results developed in the previous chapters to investigate this handover measurement

function.

• In Chapter 10, we develop a general analytical framework for the handover measurement

with a characterisation of key probabilistic events under the interference-limited condition

in a multicell system. The overall operation of handover measurement involving all control

parameters is described by a state diagram, which allows for determining different quan-

tities of interest of the handover measurement. An application of this framework to the

current specification of LTE networks indicates the necessity for an improvement in the

terminal’s measurement capability of this cellular standard. (This work was realised with

Chung Shue Chen and Laurent Thomas, and with the advising of François Baccelli; a part

of this work will be presented in the ICC 2011 conference.)

• In Chapter 11, we propose an effective implementation of the standardised mobility

management, namely autonomous cell scanning, for data dense small cell networks. This

solution helps to cope with one of the most challenging issues of the small cell networking.

The results suggest that in a typical setting, the mobile should perform autonomous scan-

ning with 30 cells to achieve effective performance. (This work was done with François

Baccelli, Laurent Thomas, and Chung Shue Chen, and was published in the EURASIP

JWCN 2010.)
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• In Chapter 12, we focus on a problematic element of the handover measurement in today’s

commercial cellular networks. That is the neighbour cell list. To describe this element, let

us take again the above example of competition for job position. Instead of interviewing

every candidate, we may firstly filter out only those who are eligible and of potential

interest to our job, and then interview each of them for more details. This allows to save

time, and it provides an equivalent result if the short list is appropriately selected. The

neighbour cell list used in cellular networks is similar to this short list of job candidates.

The mobile performs the handover measurement by measuring cells comprised in the list

of pre-selected neighbouring cells of its serving cell. The performance of the handover

measurement consequently depends closely on the configuration of neighbour cell list. The

problem is that a good configuration of neighbour cell list is a real everyday concern, and

generates expenses to the network operator. In this chapter, we propose a measurement-

based self-optimisation of neighbour cell lists. Primary advantages of the proposed solution

are that it frees out all mathematical abstractions 2 and operator’s manual operations,

while generating optimised neighbour cell lists without introducing network overheads.

Simulation results with a real network deployment confirms its efficiency. (This work was

done with Holger Claussen, and was published in the proceedings of PIMRC 2010.)

The above results are of diverse nature and their development requires different mathematical

tools. Part I is reserved for background notions. Chapter 2 describes basic properties of wireless

links, including a literature review of the field. Chapter 3 describes the cellular network concept,

from its history, to a brief technical description, and its current evolution. These two chapters can

be skipped for a reader who is already familiar with these elementary information. Chapter 4

describes in more details different aspects of mobility management, including its state-of-the-

art. Reader is recommended to take at least a quick scan of §4.1 and §4.2 before going into

Part III. Chapter 5 briefly describes three mathematical theories: §5.1 describes extreme value

theory and is required for Chapter 8, §5.2 describes stochastic geometry and is required for

Chapter 7, and §5.3 describes level crossing theory and is required for Chapter 9. Chapter 6

summarises assumptions which are used throughout the thesis; reading this chapter is thus highly

recommended before going to any subsequent chapter, except Chapter 12. Part II is focused on

wireless link modelling and level crossings, the results of this part are used for Part III. But those

interested in mobility management optimisation without dealing with too many mathematical

developments can start Part III considering that mathematical results used therein are already

proved.
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Chapter 2

Basics of Wireless Link Modelling

A wireless communication network is composed of a set of nodes which communicate with one

another over wireless links. A wireless link between a transmitter-receiver pair is constrained

by impairments due to other transmissions and the environment. Wireless link modelling is

essential to wireless networking. It consists in characterising macroscopic properties such as

the received signal power, signal quality, and interference. This chapter is aimed at describing

physical properties of wireless links such as path loss, fading, and interference.

2.1 Radio Propagation Modelling

The radio propagation is subject to variations in frequency, time, and space; understanding

its characteristics is essential for the wireless network design. A radio channel is traditionally

characterised by a superposition of three components with large-, medium-, and small-scale

propagation effects [7, 8].

Path Loss. The large-scale effect is due to the spatial separation between the transmitter and

the receiver. The transmitted signal power decays along with the propagation path, and the

so-called path loss is defined as the ratio of the transmitted power at x, Ptx(x), over the received

power at y, Prx(y), and is given as follows, [8, 17]:

l(d)
def
= Ptx(x)/Prx(y), (2.1.1)

where d = |y − x| which is the Euclidean distance between y and x. Theoretically the path

loss is completely described by Maxwell’s equations. This however often results in complex

mathematical equations which are not very practical to system engineering. Therefore, the path

loss is practically characterised by prediction models.

Prediction models proposed so far can be roughly classified into three types: theoretical, site-

specific, and empirical models [18]. Theoretical models are derived from an analytical formulation

of the physical environment and are often constrained to simplification assumptions such as

those used by Walfisch and Bertoni [19]. Site-specific models are based on simulations such

as ray tracing technique, e.g., [20, 21], and are able to provide a high degree of precision. It

9
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however requires complete information of the physical environment including the precise location

of obstacles [22], and is thus not feasible for some complex environments. Empirical models are

based on statistical analysis over a large number of experimental measures. They provide quite

simple equations which are analytically and numerically tractable, and do not require precise

information of the environment. A classic example of empirical models is that formulated by

Hata [23] from the field measurements provided by Okumura et al. [24]. Some more sophisticated

empirical models are proposed in COST-231 project [25] where both experimental measurements

and analytical formulations are used to provide fine adjustments to path loss prediction models.

Providing these advantages, empirical models are used by cellular technology standardisation

bodies for network simulation and performance evaluation purposes [26, 27]. Since empirical

models are only accurate for environments which have similar propagation conditions as those

where the experimental measurements were made, one specific model is recommended for each

deployment environment (e.g., urban, suburban, and rural), or for a range of cell sizes (e.g., macro

cells, micro cells, and small cells). For example, COST 321-Hata model which is an extension of

the Hata model was proposed for macro cells at 2 GHz, and COST 231-Walfish-Ikegami model

extending the Walfish-Ikegami model [19] was proposed for micro and small cells.

Besides, it is necessary to note that the radio propagation has different characteristics between

near-field and far-field. The far-field, or Fraunhofer region, of a transmitting antenna is defined

as the region beyond the Fraunhofer distance dF, which is related to the largest linear dimension

of the transmitter antenna aperture, D, and the carrier frequency, f , as follows [8]:

dF =
2

c
· f ·D2, (2.1.2)

where c is the speed of light in vacuum. In practice, the base station antenna dimension is less

than 1 meter, and personal communication wireless networks are operating on frequency bands

ranging from one to four GHz. This roughly results in dF about less than 1 to few meters. It

means that personal wireless communications are in far-field.

In the far-field, i.e., d � dF, the path loss defined in (2.1.1) is commonly expressed in decibel

scale by empirical models as:

ldB(d) = L0,dB + 10β log10(d), (2.1.3)

where β is the path loss exponent, which practically takes values between 2 and 4, and L0,dB is

the fixed-term path loss which depends on system parameters such as operating frequency band,

heights of base station antenna and of mobile station antenna.

Shadowing. Unlike the large-scale effect which depends on the transmitter-receiver spatial

separation and the propagation medium, the medium- and small-scale effects are due to the rela-

tive motion of the receiver, obstacles along with the propagation path, and multi-path reception

of the signal which are all subject to a high degree of randomness. Medium- and small-scale are

thus often characterised by statistical models.

The medium-scale variation of the signal power is essentially due to obstacles such as buildings,

vehicles, and trees which may absorb, reflect, and diffract the arriving signal. This effect is

so-called shadowing or slow fading. The variation of the signal power due to the shadowing is

at a scale of multiple of seconds or minutes [22]. This random phenomenon has been so far

described by some statistical laws such as log-normal [7, 8, 28], Gamma [29–31], Weibull and
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Nakagami [32, 33] distributions. Between these, log-normal distribution has been supported by

experimental measurements [34, 35] and by a physical basis [36]. It has been the most popular

model of the shadowing and commonly accepted by cellular standardisation bodies [37].

It follows that the variation of the signal power due the shadowing in decibel scale is described

by a normal distribution of mean µS,dB = 0 and standard deviation σS,dB. The value of σS,dB

depends closely on the deployment environment; experimental measurements showed that it

ranges from 4 to 13 dB [38–41] with a typical value of 10 dB for macro and micro cell deployments

[26, 27]. This is related to a representation in linear scale by a log-normal distribution of

parameters (µS, σS) which has the following probability density function

fS(x) =
1

x
√

2πσS

exp

(
− (log x− µS)2

2σ2
S

)
1(x > 0), (2.1.4)

where 1(·) is the indicator function, µS = 0, and

σS =
log 10

10
σS,dB. (2.1.5)

Fading. The relative motion of the receiver (i.e., mobile station) and dynamics of surrounding

structures in the propagation environment cause rapid fluctuations of the signal power over small

travel distance or short period of time. The small-scale effect, so-called fast fading or simply

fading, is used to describe this phenomenon.

The presence of reflecting and scattering objects in the propagation medium creates multiple

versions of the transmitted signal which arrive at the receiver antenna at slightly different times

and amplitudes. The relative motion of the receiver compared to the transmitter and that of

surrounding objects also result in random frequency modulation of the multipath components

due to the Doppler effect. The signal received at the mobile station antenna is composed of a

large number of plane waves having randomly distributed amplitudes, phases, and frequencies.

These multipath components combine at the receiver antenna and cause fluctuations of the

resulting signal power.

Statistical modelling of the fading effect was proposed by Clarke [42]. Under the assumption

that amplitudes and phases of multipath components are mutually independent and that there is

no dominant summand (i.e., non-line-of-sight propagation channel, NLOS), by the central limit

theorem the amplitude and phase of the received signal are distributed according to Gaussian

distributions [37]. As a result, the envelope of the received signal which is given by the square

root of the sum of two quadrature Gaussian components obeys a Rayleigh distribution, which

has the following probability density function

fR(x) =
x

σ2
exp

(
− x2

2σ2

)
1(x ≥ 0), (2.1.6)

where 2σ2 is the average power of the received signal [8].

When there is a dominant multipath component such as line-of-sight (LOS) propagation path,

random multipath components are superimposed on the quasi-stationary dominant signal. The

envelope of the received signal is distributed according to a Rician distribution which has the
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Figure 3.3 Propagation characteristics in a mobile environment

The frequency characteristics of propagation depend on the delay spread of propagation.
The longer the delay spread, the larger the impact on the frequency characteristics. Therefore,
fading related to frequency characteristics can be classified as frequency-flat fading and
frequency-selective fading.

• A frequency-flat fading channel is composed of long-term and short-term variations.

• A frequency-selective fading channel is composed of multipath channels with different
time delay spread, each of which is a frequency-flat fading channel.

Theoretical and experimental results of propagation show that a narrowband channel is
a frequency-flat fading channel and a wideband channel is a frequency-selective fading
channel (Kinoshita 2001). As the channel bandwidth becomes wider, the effect of averaging
the total receiving power in the bandwidth gets more significant, and thus the fluctuation of
receiving power due to instantaneous variation gets flatter (Kozono 1994). Figure 3.4 shows
examples of fluctuation of receiving power in the 1.25-MHz channel for IS-95 and in the
5-MHz channel for W-CDMA.

As indicated in Figure 3.2, there is a time difference among multipath propagations
because of the difference in distance among paths. In a narrowband mobile system, this
phenomenon brings about intersymbol interference (ISI), because the mixed signal waves
caused by multipath propagation cannot be decomposed. However, in a wideband channel,
it is possible to decompose these paths by using, for example, a Rake receiver in a CDMA
system (Viterbi 1995).

3.2.2 Basic Multiple Access Schemes in Cellular Systems

A cellular system generally consists of base stations (BS) provided by operators and a
number of mobile stations (MS) that transmit and receive radio signals to and from a BS.

Figure 2.1: Propagation characteristics of wireless signal. Source: [1]

following density function [12]

fR(x) =
x

σ2
exp

(
−x

2 + V 2

2σ2

)
J0

(
xV

σ2

)
1(x ≥ 0), (2.1.7)

where V denotes the peak amplitude of the dominant signal, and J0 is the modified Bessel

function of the first kind and zero-order, see [43, Chap. 9]. Rician distribution reduces to

Rayleigh distribution when V = 0, i.e., NLOS.

Using the Rayleigh and Rician distributions in modelling of the fading is well supported by

analytical formulation of the physical properties of the channel as described above. Though, it

was not totally confirmed by all experimental measurements. The Nakagami distribution was

proposed as a more general distribution which can be adjusted to fit a variety of empirical data

[37].

The fluctuation of the received signal envelope due to the fading depends on the relative speed of

the receiver antenna, but typically it is at order of some milliseconds in time or half of wavelength

in space. This effect therefore has influence on the bit-level but not on the link budget, and it

is compensated by techniques like interleaving, diversity reception [8, 44], and frequency hopping

(in GSM [45]). In particular, this variation scale of the fading is much faster than the best

interruption time of hard handover (see Chapter 4) of today’s cellular technologies. For example,

the Mobile WiMAX standard with the frame duration of 5 ms is subjected to a minimum

handover interruption of 50 ms, WiMAX Forum [46]. Between advanced technologies which

are under specification and are targeted to the IMT-Advanced family (see §3.1), LTE-Advanced

targets to a handover interruption greater than 20 ms for the best case, 3GPP TS 36.133 [47],

and IEEE 802.16m targets the best handover interruption delay of 30 ms for intra-frequency

handover and 100ms for inter-frequency handover, IEEE 802.16m [48]. Therefore, analytical

models of handover often consider that the fading is averaged out.

Received Signal Strength. To this end we have described three factors which characterise

a radio propagation channel. These can be depicted in Figure 2.1 where long-term variation

represents the large-scale path loss due to the spatial receiver-transmitter separation, short-term

variation describes the shadowing, and instantaneous variation reflects the multi-path fading.

By combining all these three components, the signal strength received by a receiver at y from a
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transmitter i at xi can be commonly described in linear scale as follows

Pi(y) =
AXi

l(|y − xi|)
, (2.1.8)

where A is a constant which is related to the transmission power Ptx,dB and the fixed-term path

loss L0,dB which are expressed in decibel scale as follows

10 log10A = Ptx,dB − L0,dB. (2.1.9)

The random variables (Xi, i = 1, 2, . . .) refer to either the shadowing, or fading, or combining

shadowing-fading effect. And the typical far-field model of l is given by (2.1.3) as

l(|y − x|) = |y − x|β . (2.1.10)

In the literature we can also find the following notation

pi := AXi, (2.1.11)

which is sometime called “virtual transmission power” [49] for merits that this is independent of

the transmitter-receiver spatial separation, and that the effects of shadowing and/or fading can

be taken into account by considering random transmission powers. It follows that, the received

signal strength given by (2.1.8) can be slightly generalised as follows

Pi(y) =
pi

l(|y − xi|)
. (2.1.12)

2.2 Interference and Noise

A communication network is normally composed of a large number of communicating nodes.

Such a situation introduces interference which is generated when multiple nodes are transmitting

on the same frequency. Theoretically, the interference may increase or decrease the power of the

useful signal as a result of a superposition of multiple waves having the same frequency. However,

in most of the cases it is a noisy source to the useful signal.

The interference also occurs when nodes transmit on adjacent frequency bands, and it is so-

called adjacent-channel interference to distinguish with the co-channel interference or simply

interference which is described above. The adjacent-channel interference is basically due to im-

perfection in the reception devices, and it can be minimised by keeping the frequency separation

between channels as large as possible [50]. Practically, the adjacent-channel interference is almost

negligible compared to the co-channel interference.

The interference power is thus the sum of the signal powers received from all transmitters which

share the same frequency with the transmitter of interest, and excluding the signal power of the

latter.

The thermal noise is due to the intrinsic thermal generation property of electronic devices and

ambient temperature. It is usually modelled as Additive White Gaussian Noise (AWGN) and

is characterised by average noise power N0. The thermal generation of the reception device is
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characterised by noise figure, NF, [51] which is about 9 dB for the mobile handset [26, 27, 52].

The average thermal noise power is given by [8, Appd. B]:

N0 = kBT0 ×W ×NF, (2.2.1)

where W is the equivalent bandwidth of the device, kB is Boltzmann’s constant given by 1.38×
10−23 Joules/Kelvin, and T0 is the ambient temperature which is typically taken as 290 Kelvins.

In wireless network specifications, we find back this value of the factor kBT0 which is referred

to as thermal noise density taken as −174 dBm/Hz [27, 52]. This allows to consider that the

average thermal noise power is constant.

2.3 Signal Quality

Since the radio propagation is of broadcasting nature, the quality of the wireless communication

channel in a wireless network composed of many nodes is strongly constrained by the inter-

ference and the background thermal noise of the receiver antenna. To take these impairments

into account, the signal-to-interference-plus-noise ratio (SINR) is used as a basic metric for the

description of the signal quality. As its name indicates, SINR is the ratio of the received sig-

nal power over that of the interference caused by other nodes plus the thermal noise power. In

wireless networks, especially in cellular networks, the information about the SINR of the commu-

nication link between a mobile station and its serving base station is the basis of many important

network control mechanisms such as cell selection, handover decision making, and scheduling.

Let Ωk be the set of all nodes sharing a common frequency band k. The signal quality Qi

expressed in term of the SINR received at y from node i ∈ Ωk is thus given by

Qi(y) =
Pi(y)

N0 +
∑
j∈Ωk,j 6=i Pj(y)

, for i ∈ Ωk. (2.3.1)

For notational simplicity, consider

A := A/N0. (2.3.2)

Then

Qi(y) =
Pi(y)

1 +
∑
j 6=i,j∈Ω Pj(y)

, for i ∈ Ωk. (2.3.3)

2.4 Literature Review

The literature on wireless link modelling has mainly focused on network interference modelling.

The modelling of the network interference plays an important role in numerous problems of

network analysis and design such as capacity and outage analysis, modulation adaptation, and

the design of interference mitigation techniques. It has been so far one of the biggest concerns of

wireless networking with very rich prior arts. It can be summarised in some major approaches.

By considering the interference as a sum of a large number of random signal strengths, the first

approach uses the central limit theorem to model the interference by a Gaussian distribution.

Viterbi [53], Habbab et al. [54], Cheng and Beaulieu [55], Beaulieu and Abu-Dayya [56] are some

examples of this approach. The second approach including Jones and Skellern [57], Santucci et al.
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[58], Cho and Hong [59], Tsai [60] consider lognormal shadowing and deterministic distances to

interfering nodes. The interference as a sum of lognormal random variables is approximated

by a lognormal distribution by using different approximation methods, see e.g. Fenton [61],

Schwartz and Yeh [62], Beaulieu and Xie [63], Wu et al. [64]. The third approach proposed

mathematical models for the impulsive interference including the Gaussian-mixture model such

as in Trunk and George [65], Trunk [66], Ilow et al. [67], and the stable model such as in Shao

and Nikias [68], Nikias and Shao [69], Ilow and Hatzinakos [70], Yang and Petropulu [71]. A

recent major approach models the interference from the perspective of a shot noise and develops

exact mathematical results for it. This includes Baccelli and Blaszczyszyn [49, 72], Haenggi and

Ganti [73], Win et al. [9], Fontana [74], Salbaroli and Zanella [75], Inaltekin et al. [76].

Unlike the interference, according to our bibliography research there has been no work investing

the mathematical modelling of the best signal quality in a wireless network despite its important

implication in many applications and network design.

2.5 Summary

The macroscopic variation of the radio signal amplitude is described by three multiplicative

components including path loss, shadowing, and fading. The path loss is commonly formulated

as a decaying power-law of the spatial separation between the receiver and transmitter. The

shadowing introduces medium-scale variations of the signal power and is often described by a

lognormal distribution. The fading characterises the multipath reception of the transmitted

signal, it causes fluctuations of the received signal power at a scale of order of some milliseconds.

The signal degradation due co-channel transmissions is described by the interference, while the

variation due to intrinsic thermal noise at the electronic device is described as a Additive White

Gaussian Noise of constant spectral density. Finally, the signal quality is expressed in term of

the signal-to-interference-plus-noise ratio (SINR).

The literature on wireless link modelling has mainly focused on network interference. Whereas,

there has been no investigation on the best signal quality.





Chapter 3

Cellular Networks

3.1 Historical Background

First deployments of wireless networks on the world dates back to the 1920s. These systems used

one big base station operating on the whole allocated spectrum to provide the service coverage

for a city-wide area. Due to the interference constraint, the network was only able to handle a

small number of simultaneous calls over a wide geographic region. As a result, the wireless phone

call was a really luxury service. In addition, the long distance between a user to the base station

was also a constraint. It required high transmission power of the user’s device, and resulted in

quick drain of the device battery.

The cellular network architecture was invented and efficiently solved the above limitations. As

we know, the distance-dependent pathloss is the dominant factor in the power attenuation of

the transmitted signal, see Chapter 2. The interference can be reduced if two co-channel base

stations are spatially separated enough. That is the logic behind cellular system concept invented

in 1947 by Douglas H. Ring, an engineer of Bell Labs. In his memoranda [77], he suggested that

the wireless network deployment should use a number of smaller base stations instead of only

one big base station in order to provide a wide range mobile service. As such, each base station

transmits with lower power and provides sufficient service coverage in a radio cell. To reduce the

interference, the allocated frequency spectrum should be reused among cells but not in adjacent

cells as it is illustrated in Figure 3.1.

The promise behind the cellular network design is thus the frequency reuse between spatially

separated base stations. But on the other hand, as it splits the coverage area into radio cells, it

requires a system to handover the call automatically without interruption when the user moves

across cells during a conversation. Until the early 1970s, Amos E. Joel Jr, a Bell Labs engineer,

invented a concept for automatic call handover in mobile cellular networks [78]. The cellular

concept and automatic call handover, as well as some other technical developments invented

during this time formed the mobile cellular system as we know today.

The First Generation (1G) of mobile cellular systems was successfully deployed mostly in the

1980s. The first commercial automated 1G cellular network was launched in Japan by Nippon

Telegraph and Telephone (NTT) in 1979. After that, the next cellular network to be deployed

was the Nordic Mobile Telephone (NMT) system in Denmark, Finland, Norway and Sweden in

17
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Figure 3.1: Cellular concept.

1981. In the United States, AT&T commercially launched its Advanced Mobile Phone System

(AMPS) in 1983. Later, in the United Kingdom, the first mobile call was realised by Vodafone

in January 1st 1985 [79]. In continental Europe, C-Netz was officially launched in Germany in

1985 while Radiocom2000 was deployed in France in 1986. All the 1G cellular networks used

analog transmission for traffic channels while some of them such as Radiocom2000 used digital

signaling transmission.

In the early 1990s, we observed the emergence of the Second Generation (2G). It differed from

the 1G by using the digital transmission and by broader standardisation processes. There are

four main standards of 2G on the world including European Global System for Mobile (GSM)

communications and its derivatives, Digital AMPS (D-AMPS) in the United States which is a

digital version of the 1G analog AMPS, Interim Standard 95 (IS-95) which was developed by

Qualcomm and was later branded as cdmaOne, and Personal Digital Cellular (PDC) in Japan

[80]. Between 2G standards, GSM was widely adopted almost over the world, its first deployment

was in Finland in 1991 and has been so far the most successful 2G system. It is known that the

open standardisation was responsible for its initial success. This has enabled GSM to be further

enhanced and developed without becoming incompatible with existing products [81].

Although the 2G systems was more broadly standardised with the participation of more countries

than 1G systems, there was a lack of a global consensus between standards. As a results, different

standards use different technologies for physical layer, and operate on different spectrums. This

led to the incompatibility problem between systems and the international roaming was not

always possible in 2G. In term of services, the 2G systems provide essentially voice call with

transmission throughput as low as tens of kilo bits per second. Other low data rate services were

also supported such as Short Message Service (SMS).

The 2G standards then followed different paths to gradually evolve in order to support higher

data rates such as email, Internet access, and multimedia messaging (MMS). The evolved 2G

systems for higher data rates were collectively referred to 2.5G as a transitional generation to

later 3G. Between these, GSM was evolved to General Packet Radio Services (GPRS), and

then to Enhanced Data Rates for GSM Evolution (EDGE). By using Adaptive Modulation and

Coding (AMC) and eight-phase shift keying (8PSK) coding scheme, EDGE is able to provide
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maximum data rates theoretically as high as 384 Kbps. The cdmaOne was upgraded to 2.5G

with CDMA2000 1xRTT which can also provide theoretically 384 Kbps data rate [80]. The

Japanese Personal Digital Cellular (PDC) has also evolved to packet data network (PDC-P) to

provide faster data connections. NTT DoCoMo developed a data service called i-mode which

provides a good platform for wireless e-mail service.

The cellular systems continued to evolve to the Third Generation standards which provide bet-

ter data services by using packet-switched mode co-existing with the circuit-switched mode of

previous generations. The evolution to 3G was apparently more bustling with a worldwide reg-

ulation level. It was initiated with the standardisation work for the next-generation system by

the European Telecommunications Standards Institute (ETSI) in the same year that GSM was

commercially launched [81]. This new system is called the Universal Mobile Telecommunications

System (UMTS). It composes of Universal Terrestrial Radio Access (UTRA) radio interface, and

core network evolved from GSM/GPRS core Mobile Application Part (MAP). After the initia-

tive of the ETSI, numerous 3G programs were also launched in the United States, Japan, and

Korea to evolve their systems to 3G.

Taking into account the interoperability issue of 2G standards, the initial objective assigned

to 3G standardisation process was to define only one truly global 3G standard. This goal

was finally far from reality due to multiple technical, local regulation, and political reasons.

There were many concurrent proposals for 3G system; and the International Telecommunication

Union (ITU) indeed specified a set of requirements for a 3G family. This is called International

Mobile Telecommunications-2000 (IMT-2000) in which the number 2000 refers to year 2000.

The requirements are specified for the entire end-to-end functionality of a member of IMT-2000

family, i.e. including those for terminal, radio interface, radio access network, core network, and

inter-networking aspects. It is given in ITU-T Recommendation Q.1701 [82]. Some highlighted

requirements for IMT-2000 terrestrial mobile systems are summarised below:

• Services: support both circuit-switched and packet-switched modes for enhanced voice

service and various packet services.

• Data rate: at least 144 Kbps everywhere to 2048 Mbps in indoor office radio environment.

• Handover: support intra-system handover with high user’s speed.

• Interoperability: compatible and roaming among systems of IMT-2000 family using a

single subscription.

• Support and use capabilities and services of existing 2G systems, and be open for further

enhancements.

After the requirements were defined, there were as many as 15 proposals worldwide of which

about ten were for terrestrial mobile systems and the other five were for satellite communication

[81]. Proposals were evaluated by the ITU. The selected candidates were classified into first five

categories given in Table 3.1. In 2007, the radio interface which is based on the IEEE 802.16e

standard was added to IMT-2000 [83]. It is officially known under the name OFDMA TDD

WMAN as part of ITU-R M.1457 Recommendation [84]. However, WiMAX was not branded as

3G but it has been intended and has evolved to become a 4G system.

Core networks (CN) also followed the same evaluation path as radio standards did. At the

beginning, two (end-to-end) systems were adopted for IMT-2000 family, those are UMTS and

CDMA2000 [85]. And after OFDMA TDD WMAN radio interface was added to IMT-2000,
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Table 3.1: Terrestrial Radio Standards of IMT-2000 Family

Full Name Common Names

Direct Spread (DS) CDMA WCDMA (UTRA FDD)

Multi-Carrier (MC) CDMA
CDMA2000 1x and 3x
CDMA2000 1x EV-DO
CDMA2000 1xEV-DV

TDD CDMA (TD-SCDMA)
UTRA TDD 3.84 Mcps
UTRA TDD 1.28 Mcps

Single-Carrier (SC) TDMA UWC-136 (EDGE)

FDMA/TDMA (freq-time) DECT

OFDMA TDD WMAN WiMAX

Table 3.2: Terrestrial Mobile Systems of IMT-2000 Family

System Radio Core Spec

UMTS
DS CDMA

GSM evolved UMTS CN 3GPPTDD CDMA
SC TDMA

CDMA2000 MC CDMA ANSI-41 evolved CN 3GPP2

WiMAX OFDMA WMAN WiMAX CN WiMAX Forum

WiMAX became a third member of 3G system. Based on the requirements defined by the ITU,

the 3rd Generation Partnership Project (3GPP) has taken over the standardisation for the UMTS

system. The CDMA2000 system is an evolution of cdmaOne standard, and its standardisation

has been developed by the 3rd Generation Partnership Project 2 (3GPP2). The WiMAX Forum

has been developing the end-to-end WiMAX system, see Table 3.2.

The first commercial 3G system was launched by NTT DoCoMo in Japan in 2001. That was

the WCDMA technology branded FOMA. The second network to be commercially launched was

the 1xEV-DO technology by SK Telecom in South Korea in 2002.

All the IMT-2000 compliant system standards have been evolved to provide even higher perfor-

mance, more services, and better spectrum efficiency. The radio access network of UMTS has

been evolved to Evolved UTRAN (EUTRAN) which is branded as Long Term Evolution (LTE).

In parallel, the UMTS core network has been evolved to System Architecture Evolution (SAE)

at the beginning, and it was later changed to Evolved Packet Core (EPC). EUTRAN as the

radio interface and EPC as the core network formed a new all-IP system called Evolved Packet

System (EPS) of UMTS.

Standardisation bodies and service providers initially considered LTE and WiMAX as 4th Gen-

eration (4G) radio standards. But first releases of these two candidates (i.e. 3GPP LTE Release

8 and WiMAX based on IEEE 802.16e radio interface) did not fulfill the ITU 4G requirements.

They are classified as pre-4G or 3.9G radio standards. Similar to the standardisation process for

3G, the ITU set up IMT-Advanced family as technical requirements and evaluation processes

for 4G. Some highlighted requirements of IMT-Advanced specified in ITU-R Recommendation

M.2134 [86] include:
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• All-IP architecture and Provide ubiquitous access.

• Higher spectral efficiencies: peak 15 bit/s/Hz in the downlink, and 6.75 bit/s/Hz in

the uplink.

• High peak data rates: peak downlink speed at 100 Mbps for high mobility communica-

tion and 1 Gbps for low mobility communication.

• Scalable channel bandwidth: between 5 and 20 MHz, optionally up to 40 MHz.

• Lower latencies to enable new delay-sensitive applications (interruption time of intra-

frequency handover is 27.5 ms, and of inter-band handover is 60 ms).

• High mobility support: support high speed vehicular up to 350 km/h. Provide opti-

mized system performance for low mobility environments. Provide global roaming capa-

bilities.

• Improved cell-edge performance and support for larger cell sizes.

• Low-cost and low-complexity terminals for worldwide use.

By the ITU submission deadline on October 7th 2009, two candidates submitted to IMT-

Advanced were 3GPP LTE-Advanced and IEEE WirelessMAN-Advanced which are both actually

under development. LTE-Advanced is being standarised by 3GPP as a major improvement of

LTE under Release 10. It is targeted to reach and surpass the IMT-Advanced requirements. Its

key performance features include peak spectrum efficiency of 30 bit/s/Hz in downlink and 15

bit/s/Hz in uplink, peak data rates of 1 Gbps in downlink and 500 Mbps in uplink. WirelessMAN-

Advanced is an evolution of Mobile WiMAX by the IEEE 602.18m standard for radio interface.

3.2 Technical Description

Like any communication network, the ultimate objective of the cellular network is to provide

the end-user with reliable communication services. It is designed to have an abstract end-to-end

architecture composed of a radio access network (RAN) and a core network as given in Figure 3.2.

The core network provides all services to the end-users including connection to other networks,

while the radio access network relays the communication channels between the end-user and the

core network over the radio interface. RAN is implemented with the cellular concept that we

have seen in §3.1. It is basically made up of base stations, and eventually other network elements

depending on technology. The radio access network deals with all the characteristics of wireless

communication while the core network is a wired-line network.

InternetInternet

Radio interface Radio access network Core network

Figure 3.2: Cellular network
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Within the scope of the thesis, we restrict our interest here is to basic technical aspects of the

radio access network. In what follows, we begin with a description on how the radio resource is

shared within the network, and how the cellular network is practically deployed, then we explain

the protocol stack of the radio access network which ensures the reliable radio communication

in coping with the dynamics of a mobile radio environment.

3.2.1 Radio resource sharing

The constraint that the interference occurs when a common radio resource is concurrently used by

multiple transmitters leads to the need for radio resource sharing in cellular networks. It follows

that each group having concurrent transmissions requires an appropriate sharing rule. We have

therefore frequency reuse among cells, duplexing between downlink and uplink transmissions,

and multiple access between mobile stations.

Frequency reuse. The cellular network reallocates a spectrum bandwidth among cells in order

to increase the network capacity. However, this introduces co-channel interference between cells.

The frequency plannification is required to find a tradeoff of these two factors. It follows that,

the entire allocated spectrum is split into N channels. The N channels are then allocated to each

cluster of K contiguous cells such that no channel is allocated to more than one cell in one cluster.

The entire allocated spectrum of N channels is reused over clusters of cells to cover the whole

deployed area. This frequency planification is characterised by two parameters: reuse distance,

and reuse factor. The reuse distance is the distance between two base stations which belong to

two adjacent clusters and are allocated the same frequency channels. Using the homogeneous

hexagonal topology of cellular deployment, the reuse distance is given as

D = R
√

3K

with R denoting cell radius [3]. The reuse factor is the rate at which the same frequency is

reused in the network, and so equal to 1/K (some book defines as K).

Using small cluster size increases the frequency reuse factor, and hence increases the network

capacity in term of number of simultaneous calls which can be handled by the network (i.e.

Erlang traffic offer). However, this decreases D and so increases the co-channel interference,

which results in poorer call quality. In GSM, the reuse factor is typically taken at 1/3, 1/4, 1/7,

1/9 and 1/12. In other radio standards which are able to better avoid co-channel interference

such as CDMA and OFDMA (see later), the network can be deployed with a reuse factor equal

to 1.

Duplexing. The two-way communication between the mobile station and the base station

also requires transmission coordination to avoid the interference. This is called duplexing. Two

common duplexing techniques are time-division duplex (TDD) and frequency-division duplex

(FDD). In TDD, the downlink and the uplink transmissions occur interlacedly in time and on

the same frequency band. In FDD, both downlink and uplink transmissions use the whole time

axis but they are allocated to separated frequency bands. Some system allows dynamic allocation

of the resource between downlink and uplink (i.e. portion of transmission time in TDD, and

portion of frequency band in FDD) to adapt to the asymmetric traffic between them.
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Multiple access. Above we talked about the concepts used to avoid interference between cells,

and between downlink and uplink transmissions. But note that the interference can also occur

between mobile stations when they simultaneously communicate with the same base station.

The transmission medium must be shared between mobile stations in such a way that there

is no collision among transmission channels. This is done by using multiple access techniques.

Multiple access techniques are hence fundamental of radio access technologies.

Two basic multiple access techniques are Time-Division Multiple Access (TDMA), and Frequency-

Division Multiple Access (FDMA). In FDMA, the frequency bandwidth allocated to a cell is

divided into a number of non-overlapping frequency carriers. Transmission channels between

different mobile stations with the base station are assigned to different frequency carriers. In

TDMA, each constant period of time is divided into a number of non-overlapping time slots.

Mobile station-base station transmission channels are assigned to different time slots. For exam-

ple, GSM standard uses FDMA × TDMA as multiple access. In this scheme, the total allocated

spectrum is divided in frequency carriers of bandwidth 200 kHz. Then for each frequency carrier,

each time period of 4.6152 milliseconds is divided into eight time slots of 0.5769 milliseconds.

The minimum resource allocation in GSM is then 200 kHz times one slot [45].

A more advanced multiple access technique is Code-Division Multiple Access (CDMA). In this

multiple access technique, the transmission channel between a mobile station and the base station

is spread with a code. To briefly describe, the spreading code is composed of Nc pulses (also

called chips). For spreading purpose, the pulse duration of a chip Tc is smaller than that of

a data bit Tb. The original data stream is then affected a XOR operation with the spreading

code to produce a higher rate stream of chips. The ratio Tb/Tc > 1 is called spreadings factor.

Roughly speaking, to transmit an original data stream of Nb bits, the system now needs to

transmit a spread stream containing Nc = Nb× (Tb/Tc) > Nb chips. The orthogonality between

transmission channels are ensured by the orthogonality between spreading codes. The same

technique is also used to distinguish among cells such that each cell is assigned a spreading code

which is orthogonal to the codes used for adjacent cells. Therefore, CDMA-based radio interface

allow maximum frequency reuse factor equal to 1, i.e. each cell is allocated the total available

spectrum. However, note that the transmission efficiency is not 100% due to the spreading effect

which is determined by the spreading factor.

Another sophisticated multiple access scheme is Orthogonal Frequency-Division Multiple Access

(OFDMA). It is a based on the Orthogonal Frequency-Division Multiplexing (OFDM). In OFDM,

the total frequency band is divided into a number N narrow subcarriers with constant subcarrier

frequency spacing. The serial stream of bits is mapped to N parallel sub-streams of lower data

rate, i.e. equal to 1/N of the original bit rate. After that, a Discrete Fourier Transform (DFT)

of size N will map the nth parallel sub-stream on nth subcarrier, for n = 1, . . . , N . The DFT

provides necessary condition so that the signals transmitted on subcarriers are orthogonal. In

practical implementation, Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform

(IFFT) are used as algorithms for the computation of DFT and inverse DFT. In practice, N

is a power of 2 and often takes large values, e.g. 512, 1024, or 2048, to increase the symbol

time which better protects against channel delay spread. To implement OFDMA using OFDM,

subcarriers are grouped into a number of subchannels, for example 48 channels in WiMAX [87,

§8.4]. The transmission resource is represented as a grid of subchannels and time symbols. Then

the multiple access is done by allocating resource units of this grid to users.
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Concepts of Femtocells 3

femtocell standardization and deployment worldwide. As of December 2008, the forum
includes over 100 telecom hardware and software vendors, mobile operators, content
providers and start-ups. In 2008. Home NodeB (HNB) and Home eNodeB (HeNB) were
first introduced in 3rd Generation Partnership Project (3GPP) Release 8 , signalling that it
had become a mainstream wireless access technology. Large scale femtocell deployment
is expected in 2010. It is likely that the roll-out of Long Term Evolution (LTE) networks
will include both outdoor macrocells and indoor femtocells from the early stage of network
deployment. Femtocells are also very promising for enterprise applications.

1.2.3 What is Included in a Femtocell Access Point?

The femtocell unit incorporates the functionality of a typical base station (Node-B in
UMTS). A femtocell unit looks like a WiFi access point, see Figure 1.1. However, it also
contains RNC (Radio Network Controller; in the case of GSM, BSC) and all the core
network elements. Thus, it does not require a cellular core network, requiring only a data
connection to the DSL or cable to the Internet, through which it is then connected to the
mobile operator’s core network, see Figure 1.1. In this book, we use femtocell access point
(FAP) to stand for the femtocell unit that contains base station and core network function-
alities, and use femtocell to refer to the service area covered by the FAP. A FAP looks
like a WiFi access point (WAP). However, inside, they are fundamentally different. WAP
implements WiFi technologies such as IEEE 802.11b, 802.11g, and 802.11n. FAP imple-
ments cellular technologies such as GSM/GPRS/EDGE, UMTS/HSPA/LTE and mobile
WiMAX (IEEE 802.16e). A comprehensive comparison of WiFi and cellular technologies
is beyond the scope of this chapter.

1.2.4 FAP Technologies

The technologies behind femtocell are cellular technologies. As the key driver of femtocell
is the demand for higher and higher data rates indoors, UMTS/HSPA FAPs are the current
main focus. However, FAPs can also be based on GSM/GPRS/EDGE. 2G/3G based
femtocells have been developed by various vendors. The development of WiMAX and
LTE based femtocells is also under way.

Internet Core Network

macrocell

femtofemtofemto

Figure 1.1 Typical femtocell and macrocell scenario
Figure 3.3: Typical deployment scenario of femtocell. Source [2, Fig 1.1]

3.2.2 Cellular deployment

In addition to the cluster size K, the cell size R is also a parameter which can be tuned to adjust

the spectrum efficiency. If assume that with N frequency channels the network can handle M

calls simultaneously per cluster. The network capacity is then proportional to M/(K×R2) taken

unit in number of calls per square kilometre. As a result, reducing the cell size R will increase

the spatial reuse of the spectrum and increases the network capacity. However, this decreases

the frequency reuse distance D leading to an increase in co-channel interference. And thus

the network capacity in term of Shannon’s capacity per square kilometre is reduced. Another

important factor to be considered is the handover. The smaller cell size is, the more frequent

mobile users move across cells, leading to short cell residence time and more handover executions.

This requires fast handover protocol which is a big challenge to cellular technologies.

Therefore, there have been different network deployments using different cell sizes to the best

adapt to the traffic demand. For regions with sparse population like rural areas, the traffic

demand per square kilometre is low. Large cell sizes should be used in order to reduce the

interference as well as to reduce the network infrastructure cost. Cellular networks with large

cell size are called macro cell network (or macro-cellular network). With the same logic, there

are micro cell networks and pico cell networks (also called small cell networks). Micro cell

networks are often deployed in more dense traffic areas like suburban or urban areas, while pico

cell networks are deployed in city centers or in commercial centres where there is high traffic

demand. Terms “macro”, “micro”, and “pico” are employed to intuitively describe the order of

cell sizes. The radius of macro cells is of order of kilometres, micro cell is of several hundred

metres, while the radius of pico cells is about one hundred metres.

Indoor coverage is also a big concern of cellular deployment. Indoor environment is characterised

by high power penetration due to buildings and walls. Using outdoor base stations to cover

indoor is not efficient, and it drains the terminal’s battery more quickly since the latter needs

to transmits with high power to compensate the penetration loss. For this reason, the femtocell

concept was first studied by Bell Labs in 1999 [2]. Femtocell, also known as “home base station”,

is a very small version of base station to be installed in house and in office. Femtocell access

point can be installed by end-user and it is connected to the operator network via residential

Internet link, e.g. DSL or optical fibre. Typical deployment of femtocell is given in Figure 3.3.
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Indoor Base Stations 33

Finally, picocells are also used in vehicular applications where the backhaul connection
is ensured by satellite for example. Thus picocells can be used to provide phones for
passengers in aircrafts or cruising ships.

Proposition of Small Picocells

With the success of picocells for multi-user indoor environments, in 2002 a group of
engineers at Motorola started to develop the smallest UMTS base station. The main idea
was to propose a WiFi-like solution but for mobile phone networks to deploy in the home
environment. A few years later, the concept of a residential base station appeared, which
aimed at a low power indoor solution for the home market. As represented in Figure 2.12,
the idea of such small picocells is to cover only one house, which is why the low power
should be adapted so that the cell size is between 20 and 30 metres maximum. This figure
illustrates well how the cell sizes evolved over time, by reducing the size of the cells to
fulfill the networks requirements, which are always more and more capacity demanding.

Such very small cells were called femtocells and will be presented below.

2.6.2 Femtocells

To extend the idea of picocells to home networks only, with an approach more similar
to WiFi access points, femtocell base stations have been proposed. The femtocell is a
simplified picocell directly installed by the customer in their home. It combines, in the
same device, all the functionalities of a picocell and a BSC. Thus, instead of being
connected to the operator’s BSC (like a picocell), the femtocell is connected directly
to the Internet as represented in Figure 2.13. With femtocells, all the communications
go to the operator’s network through the Internet, and there is no need for BSC/MSC
infrastructure. Femtocells, because they typically cover a smaller area and have fewer
users than picocells, and because they have to be cheap, are limited in output power
and capacity (between 10 and 20 dBm, between four and six users). Within femtocell
networks, outdoor users connect to the macrocells and when they enter their home they

Femtocell

Picocell Microcell Macrocell

<30 m >1 km~100 m ~500 m

Figure 2.12 Comparison of cell sizes for different technologies
Figure 3.4: Cell size of different network deployments. Source [2, Fig 2.12]
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SECTOR 2

Overlap region

SECTOR 3

SECTOR 1

Cell site

Figure 1.10: Antenna patterns for a cell site having three 120� sectors.

Figure 1.11: Up-link: three-cell cluster with three sectors per cell. The two most significant sectors
are shown shaded.

Figure 3.5: Cell sectorisation using three 120◦-spread antennas. Source [3, Fig 1.10]

With coverage range of about ten metres, femtocell provides better indoor mobile services to the

end-users. Cell sizes of different deployment scenarios are summarised in Figure 3.4.

Another cellular deployment is distributed antenna systems (DAS). Instead of using a big macro

antenna with high transmission power, DAS uses a number of small antennas with low transmis-

sion power and spatially distributed in multi-floor or large buildings. Distributed antennas are

connected to the same base station via coaxial cables or optical fibres, and they serve as extended

relays of the base station in different places of the building. Therefore, the difference between

DAS and a femtocell deployment is that a femtocell access point has all control functions of a

normal base station, while a distributed antenna of DAS is just a relay of the base station’s

antenna. In DAS, no handover is required when a mobile moves among the coverage areas of

antennas belonging to the same base station. Similar to femtocell, DAS can improve the indoor

coverage. Besides, the signal quality near to the border of a macro cell is often very poor due to

far propagation distance and other cell interference. This is referred to cell edge problem. This

can be efficiency improved by using DAS.

The network capacity and spatial frequency reuse can be even improved by using cell sectorisation
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Figure 3.6: Protocol stack of radio access network

or using multi-antenna systems. In cell sectorisation, one cell is further divided into several

sectors to increase the spatial reuse of spectrum. Cell sectorisation uses sectoral antennas with

angle spread less than 360◦. The network capacity is increased with the number of sectors.

The principle of cell sectorisation is thus similar to that of DAS except that sectorial antennas

are installed on the base station’s tower but not remote. Practical deployment often uses three

120◦-sectors, see Figure 3.5.

Adaptive Antenna Systems (AAS) are a dynamic and advanced version of cell sectorisation. In

AAS, an antenna can dynamically reorient its main beam to focus on the user. This increases

the spatial spectrum reuse and greatly enhance the communication quality. Another important

multi-antenna system is multi-input multi-output (MIMO). It uses m transmitting antennas and

n reception antennas to increase the capacity as well as to leverage the multi-path effect [22].

3.2.3 Protocol stack

It is obvious that the final objective of the network is to provide the end-user with communication

services such as phone call, file up/down loading, web browsing. Whereas, due to the dynamics

of the system which are reflected by a lot of random events such as the user’s mobility, call arrival

time, call duration, and amount of data down loaded, many control mechanisms are required to

successfully support the user’s services.

The data of user’s services and of control mechanisms can be successfully relayed over the radio

interface thanks to the fact that the base station and the mobile station agree on a common

protocol for their mutual communication. Although each cellular standard has its own imple-

mentation of the communication protocol, they follow the same design philosophy which relies

on a protocol stack as depicted in Figure 3.6. It is built up on layers according to the ISO

(International Organization for Standardization) model. On top of this stack, the user plane is

responsible for reliable communication of user’s services, while the control plane is responsible for

control mechanisms. These two planes are supported by the two layers at the bottom: physical

(PHY) layer, and layer 2 which is divided into medium access control (MAC) and radio link

control (RLC) sub-layers.

The physical layer is responsible for all the tasks which are related to the data transmission over

the radio medium. The design for physical layer basically consists in defining how the radio

resource is shared in the network, and how the data is physically transmitted (i.e. modulation
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and coding). Duplexing techniques and Multiple access schemes described in §3.2.1 are in the

scope of PHY layer.

The MAC sub-layer is responsible for coordinating access to physical medium. It handles data

to be transmitted in queues, allocates available physical resource and schedules which data

to be the next transmitted. Scheduling algorithms are implemented in MAC sub-layer. The

MAC sub-layer also supports error correction with Hybrid Automatic Repeat Request (H-ARQ)

mechanism which is a combination of Forward Error Correction (FEC) and Automatic Repeat

Request (ARQ). In an ARQ scheme, the receiver uses an error-detecting code to check if the

received packet contains error bits. It notifies the transmitter by ACK (if no error) and NACK

(if error) messages. The transmitter will retransmit the packet if receiving a NACK. Practical

implementation most often uses CRC (Cyclic Redundancy Check) for error detection, and uses

Turbo code for error correction.

The RLC sub-layer is responsible for segmenting and concatenation of PDUs (Packet Data Units)

received from its upper layer’s. It uses ARQ mechanism to protect data transmission from errors.

As mentioned at the beginning of §3.2 that the core network provides all services to the end-

user, the radio access network is completely opaque to the user plane, it just relays the user

data between the mobile station and the core network. On the contrary, most of the control

mechanisms are provided by the radio access network which is delegated by the base station

from the viewpoint of the mobile station. The control plane contains Radio Resource Control

(RRC) layer which corresponds to networking layer (layer 3) of the ISO referential protocol

stack. This layer is responsible for efficient co-operation between multiple mobile stations and

base stations to maximise the overall network performance. It includes all important control

mechanisms and algorithms such as power control, cell association, and mobility management

which aim at reducing the interference (between cells and between mobiles), minimising call drop

due to user’s mobility, and efficiently managing the mobile location (including location update

and paging procedures [88]) for successful call delivery, etc.

Each standardisation body has its own implementation of the protocol stack, which results in

different levels of network performance. However, by observation over generations of cellular

networks, it can be seen that advances in physical layer, in particular multiple access technology

with modulation and coding schemes, play a prominent role in the cellular technology evolution.

In the next section, we provide a brief description of Long Term Evolution (LTE), which is one

of the most recent and advanced cellular technologies with physical layer based on OFDMA

technology.

3.3 Long Term Evolution (LTE) of UMTS

Long Term Evolution (LTE) is used under the Evolved UMTS Terrestrial Radio Access Network

(EUTRAN) which is supported by an IP core network known as Evolved Packet Core (EPC). The

entire architecture is named Evolved Packet System (EPS), previously called System Architecture

Evolution (SAE). The standardisation process for LTE was started in 2004, its specification

standards are summarised in Table 3.3. Currently, trial networks are being deployed by many

major network operators all over the world.
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Table 3.3: 3GPP Specification Standards for LTE

Specification Contents

TS 36.300 Overall description
TS 36.1xy Equipment requirements: UE, eNB, Repeater
TS 36.2xy Physical layer
TS 36.3xy Layers 2 and 3: MAC, RLC, and RRC
TS 36.4xy System and architecture aspects
TS 36.5xy Conformance testing

LTE was initially intended to be a 4G cellular radio access network. It provides an aggressive

set of performance requirements while uses all-IP flatter architecture with MIMO and smart

antennas as well as supports integrated femtocell deployment. It is designed to operate in

wideband condition up to 20 MHz to provide high peak data throughput with 100 Mbps in

downlink and 50 Mbps in uplink. LTE uses OFDMA technology for downlink to increase the

spectrum efficiency and to facilitate complex system implementation, while uses SC-FDMA

(Single Carrier Frequency-Division Multiple Access) for uplink to reduce the required terminal

transmission power [89]. The network capacity is expected greater than 200 users per cell when

operating on the common bandwidth of 5 MHz. The system is able to support a wide range of

spectrum options from 1.25 MHz to 20 MHz in order to maximally leverage available spectrum

gaps. Flat architecture with less network nodes provides reduced latencies, and supports full

mobility up to 500 km/h without interruption to voice and real-time services.

Within the scope of the thesis, we aim at providing a comprehensive brief description of the

system. For this purpose, we adopt a top-down approach by starting to talk about the system

architecture and reference protocol models. We then describe control procedures while limiting

our attention to those which are important to the thesis.

3.3.1 System Architecture

System architecture aspects are captured in 3GPP TS 36.300 [90] for EUTRAN, and in 3GPP TS 23.401

[91] and 3GPP TS 23.402 [92] for entire system architecture and functional splits. The architec-

ture of the entire Evolved Packet System synthesised from these specification series is illustrated

in Figure 3.7. It comprises Evolved UMTS Terrestrial Radio Access Networks (EUTRAN) and

Evolved Packet Core (EPC). The main components of EPC include Mobility Management En-

tities (MME), Serving Gateways (S-GW) and Packet Data Network Gateways (PDN Gateway,

also called P-GW).

The MME takes the main control function of EPC. It only operates in the control plane while

is not involved in the user plane. Complete list of the functions provided by MME is specified

in 3GPP TS 36.300 [90] and 3GPP TS 23.401 [91] series. Main functions of MME include:

• Mobility management: The MME is responsible for the mobility management of UEs for

both active mode and idle mode. When a UE is first attached to the network, MME creates

a record for this UE and sends the UE’s location to the Home Subscriber Service (HSS) in

the UE’s home network via S6a interface. For UEs in active mode, the MME participates

in control signalling of handover within EUTRAN and between EUTRAN and other 3GPP

access networks (via S3 interface). For idle UEs, the MME keeps tracks of UE’s Tracking
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Figure 3.7: Evolved Packet System (EPS) architecture.

Area, and controls the Paging function when there is incoming data for idle UEs. MME

also participates in the roaming function in interaction with home HSS.

• Managing bearer establishment: The MME retrieves UE’s subscription profile from UE’s

home HHS to set up default bearer which gives the UE the IP connection. And during the

UE activity, the MME is involved in the signalling control of setting up and releasing of

dedicated bearer upon the request either from UE or from S-GW.

• Authentication, Authorisation, and Security: The MME initiates the authentication of a

UE who registers to the network for the first time. MME compares the authentication

response received from the UE with the information retrieved from the HHS in order

to confirm/not confirm the authentication for the UE. The MME is also responsible for

allocating each UE a temporary identity standing for the UE permanent identity.

The Serving Gateway (S-GW) mainly operates on the user plane and has very minor role in

the control plane. It provides buffering, routing, and forwarding services of user data packets.

There is no communication between S-GWs. At a given time, each UE is connected to only

one S-GW through S1-U interface. The S-GW receives instructions from the MME through

S11 interface and performs connection creation or deletion. When there is coming data for a

UE in idle mode, the S-GW buffers the incoming data and notifies the MME so that the MME

initiates a paging instruction to eNBs which belong to the last registered Tracking Area of the

UE. During handover execution of a UE in active mode, the S-GW serves as an anchor point of

data switching. S-GW connects to P-GW through S5 interface, and handles encryption of data

packets as well as IP header compression. In case of inter-RAT handovers, the S-GW notifies the

P-GW to change the data path to the target S-GW. S-GW also performs accounting function

for inter-operator charging. More functions of S-GW are described in 3GPP TS 23.401 [91], and

in 3GPP TS 23.402 [92] (for functions supporting connection with non-3GPP access networks).

Packet Data Network Gateway connects EPC to the operator’s packet data network through

SGi interface. It also acts as the edge router between EPC and other IP access networks. It

allocates IP address to UE and performs traffic gating and filtering functions as required by

the service. The P-GW sets up bearer upon request from S-GW or from Policy and Charging
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Resource Function (PCRF). It will need to retrieve policy control information from PCRF to

set up bearer when the request is from S-GW. Similar to S-GW, P-GW performs accounting

function for inter-operator charging.

The EUTRAN solely comprises Evolved Nodes B (eNB) which connects to the EPC core network

through S1 interface, and connect between them through X2 interface to form a mesh network,

see Figure 3.8. EUTRAN uses a flat architecture in which eNB is the only network entity which

provides mobile services to UE through LTE-UE interface. In particular, the function of UTRAN

RNC (Radio Network Controller) in 3G 3GPP access networks are merged in to eNB. All the

functions of radio access network are handled by eNB.

3.3.2 Protocol Architecture

We briefly describe the protocol architecture involving the radio interface. The control plane

protocol stack is given in Fig 5.1.1.3-1 of 3GPP TS 23.401 [91], and it is shown in Figure 3.9.

The Non-Access Stratum (NAS) protocol on the top of the control plane transports control

signalling of MME to UEs. It is not visible to the eNodeB. The Radio Resource Control (RRC)

provides the main controlling functions at the radio access interface (LTE-Uu). In addition, the

Packet Data Convergence Protocol (PDCP) provides IP header compression (UP), encryption,

and integrity protection (only for control plane) functions. The function of lower layers PHY,

MAC, and RLC is as described in the reference model given in §3.2.3.
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The user plane is shown in Figure 3.10 taken from Fig 5.1.2.1-1 in 3GPP TS 23.401 [91]. It reuses

the same transport level of the control plane for the radio interface. The similarity between the

user plane and control plane highlights the fact that the whole system is designed as a flat all-IP

architecture (see, Holma and Toskala [89]). The user plane provides the user services through an

IP tunnel established between UE and P-GW. Intermediate tunnels are established between relay

nodes in the core network using a 3GPP-specific tunnelling protocol called the GPRS Tunnelling

Protocol (GTP).

3.3.3 Downlink Physical Layer

Evolved system design provides high quality seamless mobility in LTE. Beside of flat network

architecture, using only hard handover allows to reduce the system complexity. In LTE, the

information used for handover decision is mainly provided by the UE in question. The UE follows

physical layer procedures to measure necessary information which will be used by the eNodeB

for handover decision making. While a more extensive description of the mobility management

is provided in Chapter 4, in the sequel we describe physical layer procedures which support the

mobility management function in LTE.

Frame Structure. The most basic element of any advanced development of a cellular technol-

ogy is the physical layer. The OFDMA/SC-FDMA physical layer provides transmission resources

available in time-frequency dimensions. This time-frequency resource is presented as a grid il-

lustrated in Figure 3.11. In the time domain, both downlink and uplink transmissions use radio

frames of 10 ms duration. Each radio frame consists of 10 subframes of 1 ms, and each subframe

is divided into 2 slots of 0.5 ms. The 20 slots in a frame is numbered from 0 to 19. Further, each

slot of 0.5 ms comprises seven or six OFDM symbols depending on whether normal cyclic prefix

or extended cyclic prefix is configured in the cell. Longer prefix is desired to combat longer fading

which can occur in large cell size or in multicell broadcast service [50]. In the frequency domain,

one subcarrier has bandwidth of 15 kHz. Subcarriers are grouped in units of 12 subcarriers. The

resource unit correponding to one unit of 12 subcarriers lasting for one slot is called Resource

Block (RB). And one subcarrier lasting for one OFDM symbol is termed one Resource Element

(RE) which is the smallest resource unit.

For Frequency Division Duplexing (FDD), the frame structure shown in Figure 3.11 is used

for both downlink transmission and uplink transmission which are separated in paired radio

spectrum, see Figure 3.12. This is termed frame structure of Type 1. In half-duplex FDD
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Figure 3.12: LTE FDD Frame Structure (Type 1)

operation, the UE is not allowed to transmit and receive at the same time while there are no

such restrictions in full-duplex FDD.

For Time Division Duplexing (TDD) mode, the basic frame structure and Resource Grid remain

the same, but one frame of 10 ms is organised as composing of two half-frames of 5 ms, see

Figure 3.13. This allows for two downlink-uplink switching periods of 5 ms and 10 ms. This is

classified as Type 2 frame structure. Only a subset of subframes is available for downlink trans-

mission, the remaining subframes are used for uplink transmission and for special subframes.

The special subframe allows for switching between downlink and uplink transmissions, and it

is composed of three fields: DwPTS reserved for downlink transmission, UpPTS reserved for
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uplink transmission, and central Guard Period (GP) which allows for the Time Advance func-

tion. Configurations available for the allocation of subframes between downlink and uplink are

provided in Table 4.2-2 in 3GPP TS 36.211 [4].

Cell Search. The first step that a UE must carry out to access to the network is the cell

search. This consists in undertaking a series of synchronisations to correctly align in time and in

frequency with the cell frame structure. This allows the UE to read necessary system information

parameters transmitted in the downlink, also to transmit in the uplink.

The synchronisation procedure includes three major steps. The first is symbol timing acquisition

by which the UE determines the starting point of a symbol in frame structure. The second is

frequency synchronisation by which the UE aligns it local oscillator with the frequency carrier

structure. And third is sampling clock synchronisation.

The UE performs this three-stage synchronisation procedure either for initial cell attachment

or for new cell identification. The initial cell attachment (initial synchronisation) is performed

when the UE tries to access to the network (network attachment) or when it is powered on.

Thereby, the UE detects a suitable cell and decodes system information required for authen-

tication, authorisation, and registration. System information parameters are sent on physical

broadcast channel (PBCH). The new cell identification is performed when the UE is already

connected to a cell and in the process of detecting a neighbour cell (e.g. for handover purpose).

In this case, the UE does not need to decode the basic system information, but it reads cell

specific parameters and measures cell signal quality on the cell Reference signals.

Two physical signals are specially designed for the synchronisation in both scenarios. Those are

the Primary Synchronization Signal (PSS), and the Secondary Synchronization Signal (SSS).

The detection of these two signals allows for time and frequency synchronisation, as well as

enables the UE to acquire the physical layer identity of the cell and the duplexing mode used in

the cell. The cell search procedure with information acquisition at each synchronisation stage is

summarised in Figure 3.14.

These two synchronisation signals are transmitted periodically at twice per 10 ms radio frame.

The generation of sequences used for these synchronisation signals as well as their mapping to

physical resource structure are described in §6.11 of [4]. The PSS is located in the last OFDM

symbol of the 1st and 11th slots of each radio frame when FDD is used, and it is located in the

3rd symbol of the 3rd and 13th slots when TDD is used. Thus, acquisition of PSS allows UE first
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Figure 3.14: Cell search procedure. Source: inspired from Fig 7.1, Sesia et al. [5]

to determine the slot timing boundary. Whereas, the SSS is located in the symbol immediately

preceding the PSS in FDD mode, and is located three symbols earlier in TDD mode. Thus, at

the end of SSS detection, the UE is able to deduce the frame timing, the Cyclic Prefix length,

and determine the duplexing mode used by the cell as well as MIMO antenna configuration. For

the frequency synchonisation, the PSS and SSS are mapped to the central six Resource Blocks.

This enables the UE to obtain the frequency synchronisation without any a priori knowledge of

the allocated bandwidth.

In LTE, each cell is assigned two identifiers. The first is Cell Global Identifier (CGI) by which

the cell is uniquely identified in the whole network. The second is Physical Cell Identifier (PCI)

which is reused in the network. There are 504 PCIs in LTE which are grouped into 168 groups

of three identifiers. Three PSS sequences are used to indicate the cell identity within the group,

and 168 SSS sequences are used to indicate the identity of the group. Thus, at the end of SSS

detection, the UE is able to determine the PCI of the cell.

Reference Signal. Once the UE identifies a cell issue from the cell search procedure, it begins

to perform measurements as well as channel estimation for that cell. The downlink physical layer

of LTE is designed to provide necessary physical signals for this purpose. Precisely, a number of

Reference Signals are inserted in the transmitted signal of downlink from which the UE performs

measurements and channel estimation of the cell (Reference signals are also available on uplink

for eNodeB). In the LTE downlink, the physical OFDM which provides available resource under

a two-dimensional time-frequency grid facilitates the multiplexing of Reference signals. It follows

that, Reference Signals are mapped to specific Resource Elements of each slot.

There are five types of downlink reference signals specified in 3GPP TS 36.211 [4]:
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• Cell-specific reference signals: This is available to all UEs in the cell, and is also called

Common Reference Signals (CRS). Its typical usage is for cell signal quality estimation in

the handover measurement.

• UE-specific reference signals: This is only embedded to sent to specific UEs. A typical

usage of the UE-specific RSs is to enable beamforming of the data transmissions [5].

• Positioning reference signals,

• MBSFN (Multimedia Broadcast multicast service Single Frequency Network) reference

signals,

• CSI (Channel-State Information) reference signals.

We restrict our attention here to Cell-specific RSs. LTE maps Reference Signals in each slot (of

0.5 ms) to enable the estimation of the signal quality of neighbouring cell with low latency. More

specifically, to support full mobility to high user’s speeds, the mapping of cell-specific RSs to

resource grid in case of normal CP length for one antenna port is shown in Figure 3.15. In the

frequency domain, one RS is present every six subcarriers on a symbol which includes reference

signals. On the next symbol which includes reference signals, the latter is mapped so that

within each Resource Block there is one reference symbol every three subcarriers. Interpolation

techniques are used for subcarriers which do not transport reference signals.

3.3.4 Radio Resource Control

The Radio Resource Control (RRC) layer is responsible for most of important functions related to

the radio resource usage in the network, see §3.2.3. It involves System information broadcasting,

Security activation, RRC connection control, Dedicated Radio Bearer control, and Mobility

management. The RRC protocol is specified in 3GPP TS 36.331 [93] series.

The RRC connection control covers all aspects related to the (re-)establishment, modification,

and release of RRC connection, including related aspects such as radio link failure detection.
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As so, it is involved in the mobility management procedure which needs to establish new RRC

connection in the target cell while releasing current RRC connections in the serving cell.

RRC Connection Establishment and Release. The RRC connection establishment must

be carried out before the UE can obtain services with the network (through EPS bearers). The

UE can only proceed the RRC connection establishment with a cell that it has identified through

cell search procedure. The purpose of RRC connection establishment is to establish signalling

connections which transport control information between the network and UE, and then to

establish Dedicated Radio Bearers (DRBs) for the UE. In more details:

• The first stage of RRC connection establishment occurs at the radio interface within EU-

TRAN. This establishes the Signalling Radio Bearer 1 (SRB1) between the eNodeB and the

UE to transport RRC messages. Once SRB1 is established, the EUTRAN may eventually

configure the UE to perform measurement reporting (see later).

• After that, S1 connection will be established between EUTRAN and EPC which allows

EUTRAN to receive UE’s context information from the EPC for security activation pur-

pose. Note that the UE participates in the connection establishment procedure by sending

required security information as well as response on the uplink.

• After the security activation procedure, EUTRAN initiates the establishment of Signalling

Radio Bearer 2 (SRB2) which transports Non-Access Stratum (NAS) control messages

between MME and UE on Dedicated Control Channels (DCCH). And then Data Radio

Bearers (DRBs) are established.

When the UE terminates services and does not need dedicated data channels, or when there needs

to switch the UE to another frequency or another cell, the RRC Connection release procedure

is performed to release current control channels (SRB1, SRB2) and DRBs of the UE.

RRC state. For efficient RRC control, LTE defines two RRC states depending on the UE’s

activity: RRC CONNECTED (also called active state) when there is active RRC connection for

the UE, and RRC IDLE (also called idle state) when the UE does not have RRC connection. In

idle state, the UE performs cell selection and reselection for the Tracking Area update purpose,

and it listens to paging messages which are sent by the network when there is incoming traffic to

the UE. In the active state, the UE may perform handover procedure to select the best suitable

serving cell. For the handover purpose, a number of functions are required. Those include

neighbour cell measurement and measurement reporting performed by UE, and include on the

other hand the configuration of reporting triggering conditions and handover decision performed

by the network including the serving eNodeB.

Radio Link Failure. RRC connection may fail when the signal quality of the radio link is not

sustainable due to radio impairments. A radio link failure incurs quality degradation or service

loss. Since one of the main responsibility of Mobility management (precisely, handover) is to

switch the UE to a new cell before a radio link failure occurs in the serving cell, it is important

to know how a radio link failure occurs for the study and optimisation of handover in LTE.

A radio link failure occurs as described in Figure 3.16. LTE implements procedures enabling the

detection, and recovery of a radio link failure. For the detection, the UE monitors the quality
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Figure 3.16: Radio Link Failure. Source: Figure 10.1.6-1, 3GPP TS 36.300 [6]

of its RRC connections. It is specified in [47, §7.6] that when the downlink radio link quality

estimated over the last 200 ms period becomes worse than a threshold Qout, Layer 1 of the UE

shall send an out-of-sync indication to higher layers. Upon receiving N310 consecutive “out-of-

sync” indications from lower layers while neither timers T300, T301, T304, nor T311 is running

(here we do not go into details of these indicators), the UE initiates timer T310. If upon either

T310 expiry, or MAC random access problem, or RLC maximum number of retransmissions

reached there has been no successful radio link recovery, then a radio link failure is considered

to be detected, see 3GPP TS 36.331 [94].

Once a radio link failure is detected, a number of attempts are made to recover the radio link

before T2 expiry. The second phase recovery (i.e. in the 2nd phase in Figure 3.16) consists in

link re-establishment procedure with explicit signalling between the UE and eNodeB, (see Table

10.1.6-1 in 3GPP TS 36.331 [94]).

3.3.5 Handover

The handover procedure is used to switch UE from the serving cell to a target cell in UE’s

RRC CONNECTED state. LTE only uses hard handover which allows the UE connecting to

only one cell at a given time. There are handover within EUTRAN, and between EUTRAN and

another radio access technology (RAT). Intra-EUTRAN handover has intra-frequency handover

and inter-frequency handover. The intra-frequency handover corresponds to the case where the

target cell and the serving cell operate on the same frequency, otherwise it is inter-frequency

handover.

The EUTRAN decides to which cell a UE should hand over to. It provides UE with frequency

list or cell list on which the UE should measure the radio signal quality. It also specifies how the

UE performs measurements as well as reporting rules. We sequentially describe these functions

in the sequel.

Measurement. The measurement is specified in §5.5 of 3GPP TS 36.331 [94] series. It can be

summarised as illustrated in Figure 3.17. In this framework, the EUTRAN provides the mea-

surement configuration applicable for a UE in RRC CONNECTED state by means of dedicated

signalling message RRCConnectionReconfiguration. The measurement configuration is thus

specific to each UE, and the UE fully relies on this configuration to perform measurements.
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The measurement configuration includes a list of Measurement Identities, given in measIdList

parameter, of which each measurement identity links one Measurement Object to one Reporting

Configuration. A measurement object can be a single EUTRA carrier frequency, or an explicit

cell. A Reporting Configuration consists of a Reporting Criterion and a Reporting Format. The

reporting criterion decides when the UE must send a measurement report, it can be periodic

or event triggered. The reporting format indicates the quantities that the UE includes in the

measurement report and associated information. The EUTRAN may specify measurement gaps

in the measurement configuration to allow UE measuring cells of other frequency of other RAT.

The UE measures the signal quality of a cell on cell’s Common Reference Signals (CRS). The

UE first needs to perform the cell search procedure corresponding to the new cell identification

scenario described before. Thanks to the specially designed procedures for Cell Search and

Reference Signals, EUTRAN may only specify frequencies from which UE can identify cells and

measure without need of more precise cell information.

From time to time, the EUTRAN may update the measurement configuration by sending parame-

ters such as measIdToRemoveList, or measIdToAddModList to remove or add measure identities.

The UE shall modify the current measurement configuration upon reception of this information.

The measurement configuration may have impacts on the mobility robustness. For instance, a

lack of some measurement object may cause handover failure due to no suitable target cell found.

It also needs to take into account the load balancing issue such that highly loaded cells should

be removed from the measIdList or should be included in the black list. However, as the LTE

network is assumed to operate with high frequency reuses, e.g., reuse 1, and UEs are assumed

to be able to measure all intra-frequency cells, the optimisation of measIdList should be less

critical than that for other cellular networks like GSM, WiMAX.

Seven trigger events are specified in 3GPP TS 36.331 [94] and are summarised in Table 3.4. Five

events A1 to A5 are used for intra-EUTRA measurement, and two events B1 and B2 are used

for inter-RAT measurement.

Layer 3 filtering model is applied for time averaging of measurements, it is defined by the following

formula:

Rn = (1− a)Rn−1 + amn,
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Table 3.4: Trigger Events for Measurement Reporting in LTE

Event Description

Event A1 Serving becomes better than threshold
Event A2 Serving becomes worse than threshold
Event A3 Neighbour becomes offset better than serving
Event A4 Neighbour becomes better than threshold
Event A5 Serving becomes worse than threshold1 and neighbour be-

comes better than threshold2

Event B1 Inter-RAT neighbour becomes better than threshold
Event B2 Serving becomes worse than threshold1 and inter-RAT

neighbour becomes better than threshold2

where Rn is the resulting filtered measurement in the current measurement moment n, Rn−1

is the previous filtered measurement, mn is the current measurement provided by the physical

layer, and a = 2−
k
4 where k is the filter coefficient taking integer values specified by the network,

k = 0 as default value. The UE must apply this time averaging filter before evaluating reporting

criteria.

Automatic Neighbour Relation (ANR). As we described above, the UE can obtain the

Physical Cell Identifier (PCI) and measure all the cells of the same frequency by using the Cell

Search procedure. In the measurement report sent to the eNodeB, measurement results are

associated with PCIs. Since there are only 504 PCIs used in the network, there are many cells

using the same PCI. The eNodeB has to map each reported PCI to a Cell Global Identifier

(CGI) in order to identify the exact cell. To facilitate the task, eNodeB is configured with an

Automatic Neighbour Relation table which provides a mapping of local PCIs to unique CGIs.

The network configuration needs to avoid any PCI conflict such that two cells having the same

PCI must be separated far enough. LTE standard defines self-optimisation algorithms to avoid

PCI conflict in ANR tables (see 3GPP TR 36.902 [95]).

Handover Signalling Sequence. For Intra-EUTRAN handover, the serving and target eN-

odeB are both in the same EUTRAN. The HO procedure does not involve the EPC, i.e.

preparation messages are directly exchanged between the eNodeBs. Figure 3.18 depicts the

signalling sequence of basic handover scenario where the source and target eNodeB belong to

the same MME/S-GW. From the measurement result reported by the UE, the source eNodeB

takes a handover decision and requests the target eNodeB. Upon the handover acknowledgement

from the target eNodeB, the source eNodeB notifies the UE for handover action by forward-

ing the RRCConnectionReconfiguration message which was prepared by the target eNodeB.

This RRC configuration message includes the mobilityControlInformation providing infor-

mation required for handover. The UE will then detach from the source eNodeB and perform

random access procedure with the target eNodeB, meanwhile the source eNodeB buffers UE’s

data and forwards it to the target eNodeB. Upon successful random access, the UE sends a

RRCConnectionReconfigurationComplete to confirm the successful handover. Once the data

connection is successfully established via the target eNodeB, the source eNodeB releases resources

used for UE upon reception of the notification from the target eNodeB.
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Figure 3.18: Intra-MME/SGW Handover

3.3.6 Evolution to LTE-Advanced

Upon the ITU’s call for Radio Interface Technologies candidate for IMT-Advanced family, 3GPP

took a decision by which LTE-Advanced will be an evolution of LTE, and its requirements will

meet or event exceed IMT-Advanced requirements [96]. Requirements for LTE-Advanced was

officially gathered in the technical report 3GPP TR 36.913 [97] titled “Requirements for Further

Advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced)”.

These requirements are susceptible to further extensions, some of them currently obtain common

agreements.

• Peak data rates of 1 Gbps for downlink and 500 Mbps for uplink.

• Peak spectral efficiency up to 30 bps/Hz for downlink and 15 bps/Hz for uplink with

maximum MIMO configuration of 8× 8 in DL and 4× 4 in UL.

• The latency in control-plane is less than 10 ms for an active UE to get synchronised, and

less than 50 ms for an idle UE to enter active mode.

• In an urban scenario with 500-metre inter-site distance and pedestrian users, the average

spectral efficiency in DL must be 2.4 bps/Hz/cell, 2.6 bps/Hz/cell, and 3.7 bps/Hz/cell
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with MIMO configurations 2× 2, 4× 2, and 4× 4 respectively. And in the UL, it must be

1.2 bps/Hz/cell, and 2.0 bps/Hz/cell with SIMO 1× 2, and MIMO 2× 2 respectively.

• The mobility and coverage requirements are identical to LTE (i.e. Release 8) with addi-

tional requirements for indoor deployments.

• High spectrum flexibility and spectrum aggregation with transmission bandwidths up to

100 MHz in DL and UL.

• Backward compatibility and interworking with LTE and with other 3GPP legacy systems.

To fulfill these requirements, the 3GPP RAN1 working group working on the physical layer is

currently evaluating techniques to enhance the LTE performance. Some important techniques

are

• Wider Bandwidth and Spectrum Aggregation. One of the key enablers for high peak data

rates is the use of wider bandwidth. LTE-Advanced uses transmission bandwidths up to 100

MHz. This large bandwidth mostly corresponds to noncontiguous spectrum deployments,

and LTE-Advanced needs to support spectrum aggregation and flexible spectrum usage.

• Coordinated Multiple Point Transmission and Reception (CoMP). This technique consists

in coordinating the transmission and reception between one UE and several eNodeBs. It is

one of the most promising techniques helping to enhance data rates. Three potential im-

pacts on specification include: measurement and feedback from UE, preprocessing schemes,

and Reference Signal design [96].

• Relaying functionality to improve coverage, cell edge, and reduce deployment cost.

• Extended MIMO transmission. It consists in increasing the number of downlink trans-

mission antennas to eight, and the number of uplink antennas to four to increase data

rates.

3.4 Summary

The cellular concept is a deployment method of wireless networks. It uses a number of small

base stations with low transmission power to provide mobile services to the deployment area. It

greatly increases the network capacity thanks to the spatial reuse of the spectrum, and provides

scalable network deployment and capacity enhancement thanks to a simple modification of cell

sizes.

The cellular concept is used for radio access network deployment which must be supported by a

(wired) core network to build up an entire end-to-end system.

The cellular concept introduces special technical challenges, especially mobility management,

and efficient control of radio resource for optimal network performance. Advances in solving

these technical challenges have driven mobile cellular communication evolution through genera-

tions. The first generation was deployed during late 1970s to the 1980s and is characterised by

analog transmission. The second generation with digital transmission deployed since the early

1990s has successfully brought mobile services to the main stream market with a fast growth

rate. It is though limited in interoperability between different 2G standards. The third gener-

ation started in 1999 has gradually evolved from existing 2G systems and provides more data
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services. Its standardisation process received a worldwide coordination taken by the Interna-

tional Telecommunications Union, and is categorised as IMT-2000 family. The fourth generation

known under ITU’s IMT-Advanced family is currently being standardised. It is characterised by

advanced physical layer using OFDMA and variants, smart antenna technologies, and flat all-IP

architecture. It is set with promising performance capabilities for high data rate, high spectrum

efficiency, high mobility support, and low latency.

Long Term Evolution is the brand name of the 3GPP’s evolved 3G standards. It is technically

the Evolved UMTS Terrestrial Radio Access Network (EUTRAN). This is supported by an all-IP

core network termed Evolved Packet Core (EPC), and the entire system is called Evolved Packet

System (EPC). Advanced technologies used for physical layer and the specially designed flat

network architecture facilitate network control and enable aggressive network performance. LTE

supports full mobility with high user speed while avoiding complicated handover configuration by

using hard handover, and 504 Physical Cell Identifiers for the cell identification and measurement

in the radio interface.
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Mobility Management in Cellular

Networks

The cellular concept has been a very successful wireless networking architecture which benefits

to the network capacity by the frequency reuse. However, in cellular network, it is inevitable

that the user moves across multiple cells during an active call. A mechanism is therefore needed

to switch the user’s connection from one cell to another in a transparent way to the user. This

so-called mobility management mechanism is realised thanks to a procedure called handover or

handoff. Handover is an indispensable and critical function of any mobile cellular system [98];

its performance is extremely important in maintaining the desired quality of service (QoS) [50].

The mobility support together with the network capacity are two key performance requirements

when describing a cellular generation.

In principle, a handover procedure involves two functions which are handover measurement and

handover decision-execution. The first function is responsible for determining a best candidate

cell to which the mobile will be transferred. This consists in measuring some parameters which

are used as criteria for assessing candidate cells. The second function decides and realises the

connection switching from the source cell to the selected target cell. This execution phase coor-

dinates the multi-part handshake between the mobile, the source cell, and the target cell. While

the execution phase needs to minimise the service degradation due to the connection switching,

the measurement phase is required to identify the best candidate cell. The performance of the

handover procedure hence depends on that of the measurement and the execution phases.

The criteria for assessing candidate cells could be based on several parameters such as those

related to the radio condition, user move direction, and the cell load. These parameters could be

measured by the mobile station or by base stations. For example, the mobile station can measure

the radio link quality of neighbouring cells, then the best candidate cell could be the one with

the best received radio signal quality. Or alternatively, by considering the reciprocity of the

radio condition between downlink and uplink transmissions, base stations can be instructed to

measure the radio signal quality received from a mobile, and then the base station which received

the best radio signal quality from the mobile could be elected as the best handover candidate.

As a result, there could be two handover measurement paradigms which are mobile-assisted mea-

surements and network-assisted measurements. The former has the mobile measure parameters

of neighbouring cells through the downlink, while the later requires base stations to monitor the

43
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uplink signal quality received from the mobile. Since the mobile-assisted measurement helps,

among others, to reduce the network control load generated by the mobility management by

sharing the task between a large number of mobiles, it has been so far preferred by all of today’s

cellular standards.

The handover execution phase can be carried out by two modes: make-before-break and break-

before-make. The make-before-break handover, also called soft handover, corresponds to the

connection switching mechanism in which the mobile is connected simultaneously to several cells,

and the current connection with the source cell is released after a new connection is established

in the target cell. By contrast, the break-before-make handover, also called hard handover, refers

to the mechanism in which no simultaneous connection is required. The current connection with

the source cell is released before a new connection is established in the target cell.

There are some varieties of soft handover. For example, the soft handover used in 3GPP 3G

networks allows the mobile to connect simultaneously to two cells which are the source and the

target cells. In Mobile WiMAX, there are Macro-Diversity Handover (MDHO) and Fast Base

Station Switching (FBSS) [87]. In these modes, the mobile and the serving base station maintain

a set of base stations called diversity set. Both the mobile and serving base station can notify the

counterpart for an update of diversity set. The mobile will add a new neighbouring cell to the

diversity set if the signal quality of this cell is higher than a threshold. By the same principle, a

cell will be removed from the diversity set if its signal quality is lower than a threshold. When

operating in MDHO, the mobile station communicates simultaneously with all the base stations

of the diversity set for both downlink and uplink control and data traffics. When operating

in FBSS mode, an anchor base station is elected among the diversity set and the mobile only

communicates with this anchor base station. So, this anchor base station serves as the serving

base station of the mobile. The transition from an anchor base station to another is performed

by the mobile without invocation of explicit handover signaling message. Both MDHO and

FBSS have been standardised by IEEE 802.16 specification group, but they have never been

implemented since the WiMAX Forum only recommended the hard handover scheme for Mobile

WiMAX networks [99].

Soft handover benefits from diversity by combining the signals received from many cells. How-

ever, it requires simultaneous connection with multiple cells. In practice, mobile devices are

equipped with one reception antenna for hardware cost and power consumption reasons, and

therefore the soft handover is only possible when cells operate on a common frequency band.

Besides, the macro-diversity in soft handover needs transmission synchronisation and coordi-

nation between base stations which complicate the control protocol and thus require a lot of

engineering efforts. For these reasons, soft handover is not available in all cellular technologies,

and particularly it is not used by LTE and LTE-Advanced. By contrast, hard handover does not

require simultaneous connection with multiple cells, it can operate in all technologies regardless

of whether cells are operating on the same frequency band or not. Hard handover is mandatory

by all of today’s cellular standards.

In addition, there have been more and more wireless technologies coexisting, network conver-

gence is required to allow mobile users moving from one technology to another without loss of

connection. A handover between different technologies is referred to as vertical or inter-system

handover, for example handover between GSM and UMTS. This distinguishes from the horizontal

handover (or handover for short) within one technology.
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The handover execution mechanisms explained above can be controlled by the mobile station

or by the serving base station. Consequently, there are so-called mobile-controlled handover

and network-controlled handover. Between these, the network-controlled handover has been

more preferred, particularly, for hard handover since the serving base station can communicate

with all the involved parts including the mobile station, the target base station, and the core

network, and thus allows to reduce the interruption time during the hard handover execution.

Though, notice that in principle one could combine one handover measurement paradigm with

one handover execution mechanism to result in one handover mode. For example, the mobile

can perform both the neighbour measurement and the connection switching coordination; or the

mobile performs the neighbour measurement and reports the result to the base station, and then

the base station coordinates the connection transfer to the target cell. This later is referred to

as mobile-assisted network-controlled handover. As explained above, mobile-assisted network-

controlled handover consists in mobile-assisted measurement and network-controlled handover,

it is the most widely used in today’s cellular technologies [3, 5, 45, 87, 98, 100, 101]. From the

perspective of this handover mode, in the subsequent sections we will describe in more details the

mobile-assisted measurement as well as techniques employed today to enhance its performance.

4.1 Mobile-Assisted Handover Measurement

In the mobile-assisted handover, the mobile measures the radio condition and reads specific

control parameters of neighbouring cells, such as cell signal quality, signal strength [102, 103], and

Cell Individual Offset which provides the mobility management policy applied to that cell. This

measurement procedure is referred to as neighbour (cell) measurement by the 3GPP terminology,

or also (neighbour cell) scanning by the WiMAX terminology. The mobile proceeds the neighbour

cell measurement with two phases: cell identification (or synchronisation) and cell radio condition

measurement. To avoid any ambiguity due to terminologies, in the following (cell) scanning will

be used to refer to the whole process which includes both the cell identification and cell radio

condition measurement.

Since base stations can be asynchronous and can operate on different frequency bands, the

mobile first needs to have frequency and time synchronisation with each neighbouring cell in

order to read cell specific information as well as to measure cell radio condition. This consists

in adjusting the mobile frequency reception window to the cell frequency band, and according

the mobile time clock with the frame timing of the cell [104]. This synchronisation is very

important since it is required for the mobility management purpose as well as for the network

entry when the device is just powered on and gets access to the network. For this reason, cellular

standards define synchronisation channels which have simple structure, use robust coding, and

are periodically broadcasted in every cell in order to accelerate the synchronisation, for example

SCH (Synchronisation CHannel) of GSM, 3G, and LTE networks.

Besides, due to the broadcasting nature of wireless communication, the signal received by the

mobile is a superimposition of multiple signals from different cells. There needs a technique

by which the mobile is able to separate this combining signal to synchronise with and measure

each neighbouring cell. Cellular technologies realise this by associating each cell with a cell

synchronisation identity (CSID) which helps to identify the cell in the radio interface. For

instance, a GSM base station is attributed a Base Station Identity Code (BSIC) which when

combined with a frequency carrier identifies one cell in a geographic area [45]. 3G networks can
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use 512 scrambling codes [104], OFDMA-physical layer WiMAX network uses 114 pseudo-noise

(PN) sequences [87, §8.4], while LTE uses in total 504 physical cell identities (PCI) for the cell

identification (c.f. §3.3 in Chapter 3).

After the cell identification, the mobile reads specific information and measures the radio condi-

tion of that cell from downlink pilot channel, for instance BCCH (Broadcast Control CHannel)

in GSM and CPICH (Common Pilot CHannel) in WCDMA networks. The mobile just needs to

follow standardized procedure of the underlying technology to read cell specific information. By

contrast, the estimation of the cell radio condition is much less straightforward since the radio

signal is subject to variations due to impairments especially the fading effects. A basic require-

ment is that the target cell would provide the mobile with the best radio condition after the

handover. But in fact it may happen that a cell currently provides good radio signal will become

bad after some short time. Therefore, to increase the accuracy in prediction of the future radio

condition, the mobile has to take several measurements of each cell and sometimes may apply

some averaging technique such as the Layer-3 (L3) filtering of 3GPP LTE, 3GPP TS 36.331 [101,

§5.5]:

Rn = (1− 2−
k
4 )Rn−1 + 2−

k
4mn, (4.1.1)

where Rn is the resulting filtered measurement in the current measurement instant n, Rn−1 is the

previous filtered measurement, mn is the current measurement provided by the physical layer,

and k is the filter coefficient taking an integer value which is specified by the network. Obviously,

the measurement cycle which is the time spacing between two consecutive measurements mn−1

and mn also has impacts on the prediction accuracy.

The time required for cell identification and measurement depends on the technology used for

physical layer as well as the radio resource control (RRC) protocols of the underlying cellular

technology. In GSM which employs TDMA (Time Division Multiple Access) for the physical

layer, the mobile can measure a neighbouring cell belonging to the neighbour cell list during idle

slots which occur every 26 TDMA frames (a GSM TDMA frame is composed of eight consecutive

time-slots and lasts for 4.6152 ms), see Lagrange et al. [45, §8.6]. Unlike GSM, wideband systems

such as 3G and 4G networks can allow adjacent cells operating on the same frequency band (i.e.,

high frequency reuse). And thus there are notions intra-frequency cell and inter-frequency cell

which are used to refer to cells operating on a common frequency band with the serving cell, and

on another frequency band, respectively. The mobile may not need to conduct the frequency

synchronisation with an intra-frequency cell. As a result, scanning an intra-frequency cell is often

faster than an inter-frequency cell. For instance, in WCDMA FDD the mobile is required to be

able to identify an intra-frequency cell within 800 ms if that cell belongs to the mobile’s monitored

set, and within 30 seconds if not, see 3GPP TS 25.133 [105, §8.1.2.2]. Once cells are identified, the

mobile is required to be able to measure eight identified intra-frequency cells within 200 ms, or

six identified inter-frequency cells within 480 ms, see 3GPP TS 25.133 [105, §8] and [106]. 3GPP

specifies similar requirements for the intra-frequency cell scanning in both LTE FDD and LTE

TDD. When the signal quality of the synchronisation channel is good enough and some other

conditions specified in 3GPP TS 36.133 [47, §9] are met, the mobile is required to identify a new

intra-frequency cell within 800 ms, and after that it can measure eight identified intra-frequency

cells within 200 ms. For the inter-frequency cell scanning, the mandatory performance is that

the mobile is able to measure an inter-frequency cell within 480 ms. If the mobile is monitoring

Nfreq EUTRA carriers, the measurement period is hence 480 × Nfreq ms, see 3GPP TS 36.133

[47, §8] and [89].
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Figure 4.1: Neighbour cell scanning Without and With measurement gaps

It is often necessary to scan many cells in order to find a good target cell, and in that case the

mobile will have to spend more time for the neighbour cell scanning. In parallel, the mobile

also needs to conduct the data transmission with the serving cell for the on-going service. In

the case that neighbouring cells to be scanned are operating on the same frequency band with

the serving cell, the mobile can receive downlink channel of these intra-frequency cells and of

the serving cell simultaneously. Thereby, the mobile may be able to scan neighbouring cells in

parallel with having data transmission with the serving cell, see Figure 4.1(a). This simultaneous

scanning-transmission mechanism is used in WCDMA and LTE networks for the intra-frequency

cell scanning, and it is referred to as scanning without measurement gap.

However, when neighbouring cells to be scanned are on different frequency bands, the above

simultaneous scanning-transmission is not possible, and some control mechanism is required to

harmonise the on-going service and the neighbour cell scanning. The mobile will scan neighbour-

ing cells during a certain scanning interval while the data transmission with the serving cell is

temporarily suspended. After that, it resumes the data transmission with the serving cell during

a certain listening interval, and so forth. In other words, the mobile activity switches between

scanning and transmission which occur alternatively during scanning intervals interleaved with

listening intervals, see Figure 4.1(b). The network instructs the mobile station on the schedul-

ing of measurement gaps as well as the position of these gaps. For example, this information

is sent in MOB SCN-RSP (Scanning Response) message in WiMAX networks. This scanning

mechanism was first defined by 3GPP for 3G networks and it is referred to as compressed mode

[104, 106, 107]. The name “compressed mode” comes from the fact that a WCDMA network

takes the information which would be normally sent and compresses the time it takes to send it.

This mode continues to be used for the inter-frequency and inter-system handover measurement

in LTE and is referred to as scanning with measurement gaps [6, 101]. Measurement gaps intro-

duces capacity degradation. In addition, sending a larger volume of data during a compressed

duration of time leads to increased transmission power, and so increases the interference and

degrades neighbouring cells coverage.

As we have seen above, the neighbour cell scanning generates overheads such as control load,

terminal power consumption, and especially capacity and coverage degradation when the com-

pressed mode is required. As a result, algorithms which decide when to perform scanning are

important to guarantee reliable handovers while maintaining low scanning overheads [106]. In

GSM networks, TDMA is used for the multiple access; transmission and reception between a
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mobile and its serving base station is performed in a time-slotted manner. By nature, the mobile

can measure neighbouring cells between time-slots which are scheduled for the call emission or

reception without need of explicit compressed mode. Therefore, in GSM networks the mobile

performs the neighbour cell measurement all the time during an active call. In WCDMA and

LTE networks, the mobile also continuously measures intra-frequency neighbouring cells when in

connected-mode, i.e., when having active connections. For the inter-frequency and inter-system

handover measurement and especially for the neighbour cell scanning in WiMAX networks, the

mobile only performs a scanning when the specified conditions are met. A common condition

is that the mobile starts scanning when the signal quality of the serving cell is worse than a

minimum threshold, and it stops scanning when the signal quality of the serving cell is higher

than a suitable threshold.

The network-controlled handover needs the mobile to report the measurement result. This also

generates overheads due to reporting messages. Hence, the mobile only reports the measurement

result when specified reporting criteria are fulfilled. Specific reporting events are specified in

3GPP TS 25.331 [108, §14] for 3GPP 3G networks, in 3GPP TS 36.331 [101, §5] for LTE (see

Table 3.4 in Chapter 3), and in IEEE 802.16 [87], WiMAX Forum [109] for WiMAX networks.

These reporting triggers can be summarised in three conditions:

(a) A suitable target cell is found. This is commonly expressed by the condition that the

signal quality of a neighbout cell is better than a threshold, or offset better than that of

the serving cell. In this case, the serving base station may initiate a handover to switch

the mobile’s connection to that cell.

(b) The signal quality of the serving cell is too bad. This is expressed by the signal quality

of the serving cell worse than a minimum requirement. The mobile needs to report the

measurement result so that the serving base station should initiate a handover to switch

the mobile’s connection to a better cell.

(c) The signal quality of the serving cell appears good enough again. This corresponds to

the serving cell’s signal quality better than a threshold. The mobile can stop the current

neighbour cell scanning to reduce overheads.

4.2 Neighbour Cell List

The neighbour cell scanning should help to identify a suitable target cell as quickly as possible,

at least before the signal quality of the serving cell becomes unsustainable. As we have seen

in §4.1, the mobile needs to synchronise with a neighbouring cell before being able to measure

that cell. The cell synchronisation may take quite long time and introduce significant latency

in the handover measurement. Meanwhile, measuring cell radio condition may even take longer

time especially when an averaging of several measured epochs is required to average out the

fast fading effect. Nevertheless, the cell synchronisation can be considerably shortened if the

mobile is provided information which describes the cell synchronisation and pilot channels such

as frequency band, frame timing, and cell identity. In addition, it should be more easier to

find a good handover target from a small number of good candidates than from all the possible

cells. In light of that, cellular standards use a neighbour cell list (NCL) to assist mobiles in

neighbour cell scanning. This list contains the information about the synchronisation and pilot

channels of a number of cells which are preselected as “good” neighbours of the serving cell. Each
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cell broadcasts its neighbour cell list periodically to all mobiles connected to itself, for example

on the BCCH message in GSM and 3GPP networks, or on the MOB NBR-ADV (Neighbour

Advertisement) message in WiMAX. Mobiles only need to scan cells belonging to this list during

a handover measurement.

Since the neighbour cell list serves as a list of recommended candidates, it has direct influence on

the mobility management performance. It must contain a sufficiently large number of potential

neighbouring cells to ensure that any mobile in the serving cell can find at least one handover

target when its own signal deteriorates. But when the mobile’s measurement capability is limited,

a long list can result in delays in finding a suitable handover target. These delays may cause call

drops when the user is moving at high speed or just staying during a short period in the serving

cell. Therefore, proper determination of both the size and the content of the neighbour cell list

is very important.

Many cellular standards specify a maximum allowable size of the neighbour cell list. In the

GSM network, the TDMA × FDMA physical layer requires the mobile long time to complete

a measurement of a number of neighbouring cells. For instance, the synchronisation with a

neighbouring cell takes up to 500 ms under favorable conditions. The neighbour cell list is

limited to 32 cells. In WCDMA networks, a neighbour cell list is defined for each cell, and is

referred to as neighbour set. It is composed of up to 32 intra-frequency cells, 32 inter-frequency

cells, and 32 cells from other Radio Access Technologies (e.g. GSM) [105]. However, when the

union of the different neighbour sets contains more than 32 cells, some of the neighbours will not

be measured. In WiMAX networks, although no maximum size is specified for the neighbour cell

list, the mobile is assumed to measure at maximum first NMS max neighbours neighbouring cells of

the neighbour cell list, see §6.3.21.1 in IEEE 802.16 [87]. And this parameter is set to 32 cells

by WiMAX Forum [99].

Nevertheless, the accuracy of neighbour cell list computation remains a big day-to-day operators’

concern, and it becomes a requirement of the Next Generation Mobile Networks (NGMN) alliance

[110]. When in active mode in the GSM network, the mobile monitors cells comprised in the

neighbour cell list periodically such that it takes a filtered measurement of each cell at about

every 5 seconds (this averaging duration is configurable by the network operator). Using these

periodic measurements the mobile determines a short list of the best six neighbouring cells which

provides refined candidates for a handover target. Since the mobile station needs five seconds to

read the broadcast channel of all these six neighbouring cells [45, p.273], it may happen that the

mobile loses the connection before a suitable handover target is identified, especially when the

user is moving relatively fast compared to the radio field variation like in tunnels exits or at big

building sharp corners. In WCDMA networks, since the mobile is not assumed to monitor more

than 32 cells, it may happen that the mobile detects some strong intra-frequency cells but can

not add these cells in its active set due to the lack of space (active set is composed of neighbouring

cells which the mobile can select for the soft handover). As a result, the mobile will continue to

transmit a high power level when it already enters into this cell’s coverage area. This generates

high interference to other users which may degrade the quality and the network capacity. A

proper configuration of the neighbour cell list is therefore very critical in order to avoid this

situation [98]. Moreover, in the context of multi-standard cellular networks which combine

legacy cellular access technologies such as LTE, WiMAX, and WiFi into a universal user service,

seamless mobility needs to rely on the neighbour cell list concept for the cell scanning over all

technologies, for example Media Independent Handover Services specified by IEEE 802.21 [111],

and Access Network Discovery and Selection Function (ANDSF) specified by 3GPP TS 24.312
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[112]. Hence, the definition of good inter-system neighbour cell lists is essential for reliable inter-

system handover performance. A missing of important neighbouring cells is a common reason of

handover failure. But if the neighbour lists are too long then the measurement time increases,

and some important neighbours may be removed from the intra-system neighbour list [107].

The LTE technology intends to tackle this major operator concern. The current standard spec-

ifies the concept of automatic neighbour relation (ANR) table, c.f. §3.3 in Chapter 3. The

ANR today is limited to the automatic configuration of the eNodeB internal data to translate

a Physical Cell Identity reported by the mobile into a unique Cell Global Identity (CGI). The

LTE ANR does not address the above neighbour cell list definition for the cell scanning purpose.

It follows that the LTE mobile is assumed to measure autonomously the 504 existing PCIs for

intra-frequency handover. However, as we have seen in §4.1 that the mobile is assumed to be

able to measure eight identified intra-frequency cells during 200 ms, it will need a built-in algo-

rithm to choose the PCIs to scan in each frame. The LTE assumption for inter-frequency and

inter-system handovers is to rely on the classical pre-computed neighbour cell list.

4.3 Literature Review

4.3.1 Handover Optimisation

It is clear that handover is an important topic, it has received a lot of investigations since the

early time of mobile cellular networking. The prior art on the handover analysis and algorithm

design can be classified into handover control policy design, handover parameters optimisation,

and automatic optimisation.

Optimal control. This problem consists in designing optimal control policy which answers the

question: under which conditions a handover needs to be performed so that the overall system

performance is maximised? A Dynamic Program approach for this problem was firstly proposed

by Rezaiifar, Makowski, and Kumar [113], which has been then supported and extended by

many studies. Different papers investigating this approach are known for the following common

points. A system composing of one mobile station moving between two base stations and discrete

time model are considered. The interference and fast fading are usually ignored, while the

shadow fading admits Gudmundson’s autocorrelation function [41]. Considering a deterministic

trajectory such as a strength line connecting the two base stations, analytical model is developed

to predict the future signal powers received on the next moment k + 1. Handover control is

designed as a decision rule that decides at each time moment whether or not to execute a

handover in order to minimize a defined cost function.

Precisely, the above common setting with lognormal fading is considered in Rezaiifar et al. [113].

Basing on short range and short term assumption stating that the signal strength received and

moment k + 1 only depends on the signal strength received at the last moment k and on the

mobile position at moment k + 1, Rezaiifar et al. [113] proved that the signal strength received

at the next moment k + 1 is conditional Gaussian given signal strength at k and the mobile

location at k + 1 (c.f. §IV, equations (20) and (27) in [113]). The optimization objective was to

find an optimal control policy which trades off between the signaling cost, if handover, and the

service degradation, if not to handover. The call quality degradation cost is assumed proportional
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to the difference of two received signal strengths. The call duration is modeled by a hang-up

probability which is assumed Geometry distribution. The objective function is a discounted

dynamic programming problem.

The key element of the solution finding is the value function of the formulated discounted dy-

namic programming. The structure of the value function was provided by equation (52) of [113].

This structure led to the conclusion that the optimal policy is a hysteresis-type handover control

algorithm. It means that a handover should be performed when the signal strength of a neigh-

bouring cell is better than that of the serving cell by a targeted margin. Note that it was called

threshold-type handover in [113], but in fact the variable τ as used therein is a hysteresis margin.

The proposed handover control solution was then assessed by two metrics: average number of

handovers and average call quality. This paper developed a first complete analytical solution

based on dynamic programming. It though can be pointed out some limitations which are related

to assumptions on short term, short range, and in particular the assumption on the complete

knowledge of the user’s move trajectory. These assumptions may limit the agreement of the

work with a realistic scenario. For these reasons, one can use [113] for a benchmarking purpose.

It was realised that the hysteresis-based handover control has a drawback of creating unnecessary

handovers in zones where both the serving cell and neighbouring cells have good signal quality. As

a sequel, a combining absolute threshold and hysteresis-threshold handover policy was proposed

by Zhang and Holtzman [114]. A handover is triggered only if the signal quality of the serving

cell is below an absolute threshold and if the signal quality of neighbouring cell is better than that

of the serving cell by a hysteresis margin. Simulation result therein confirmed the effectiveness

of this combining handover policy. This result motivated Veeravalli and Kelly [115] in using the

absolute threshold control policy for their handover optimisation framework. Instead of finding

an optimal absolute threshold, they argued that the absolute threshold ∆ should be selected

as the required signal level for a satisfactory service, for instance ∆ is set to the minimum

tolerable level below which the service interrupt occurs. It was therefore assumed known. The

optimisation problem was then to decide at each discrete-time moment k whether a handover

needs to be performed or not in order to trade off two factors: the average number of handovers

and the average number of service failures (i.e., call drops) during a given trajectory. They

studied this optimisation problem under a setting with discrete time, lognormal shadow fading

admitting Gudmundson’s autocorrelation function, no interference, one mobile with two base

stations, and deterministic call duration (i.e., hangup probability as introduced in [113] was not

taken into account). The only stochastic factor of this model is the fading. The optimal handover

control was formulated as a Bayes problem:

φ∗(c) = arg min
φ

(cE{Nφ
ho}+ E{Nφ

serv. fail}) (4.3.1)

where E{Nφ
ho} is the average number of handovers, and E{Nφ

serv. fail} is the average number of

service failures of the handover policy φ. Here, a service failure is defined as the signal strength

received from the serving cell falling below the required threshold ∆, and c is a tradeoff parameter.

The latter is considered as the relative cost between handover signalling cost if handover and

service degradation if not to handover.

An exact solution was first derived using the Dynamic programming. The optimal policy was

established by using recursive method as given by equations (8) and (9) of [115]. Their consid-

eration is that DP solution is impractical since it is complex, nonstationary, requires knowledge
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on the mobile trajectory, and the globally optimal solution at a particular location depends on

the future trajectory. To cope with this, they restricted the handover decision to only two local

points instead of the entire the trajectory: the present time k, and the next time k + 1, leading

to a locally optimal decision which has the following structure:

P(X
(Bk)
k+1 < ∆ | Ik) + c

not ho

≷
ho

P(X
(Bk)
k+1 < ∆ | Ik), (4.3.2)

where Ik is the information available at moment k; Bk and Bk are respectively the serving BS

and the neighbouring BS at moment k.

A key point for solving (4.3.2) is that the authors assumed that under the lognormal shadow

fading the conditional distribution of Xk+1 given Xk is Gaussian. In fact, this was proved by

Rezaiifar et al. [113], given in Proposition IV.1 therein, under the following form:

(X
(i)
k+1 |X

(i)
k , Sk, Sk+1) ∼ N (·, ·), (4.3.3)

where Sk and Sk+1 are the mobile locations at moments k and k+ 1. By the above assumption,

Veeravalli and Kelly just needed to find the means and variances of the conditional Gaussian

distributions. These are given by equations (11) and (12) of [115]. A conclusion from their

equation (11) is that the conditional means require the knowledge of the distances from the

mobile to the two base stations at moments k and k + 1. Since this information is practically

considered unavailable, they used an estimate for the conditional means, denoted X̂
(i)
k+1. Thereby,

the decision structure (4.3.2) is now given by the following policy:

Φ

(
∆− X̂Bk

k+1

σ
√

1− a2

)
+ c

not ho

≷
ho

Φ

(
∆− X̂Bk

k+1

σ
√

1− a2

)
,

where Φ(·) is the normal Gaussian distribution function. In their numerical evaluation, the

conditional means X̂
(i)
k+1 is assumed equal to the current signal strength, i.e., X̂

(i)
k+1 = X

(i)
k .

As a summary, this paper considered absolute threshold handover, the optimal handover was

designed to find a tradeoff between the number of handover and the number of call drops. The

studied model assumed deterministic call duration, signal strength-based decision (no interfer-

ence), and used a prediction of the near future signal strength. A a locally optimal solution was

obtained for two local time samples (current time and the next time).

Motivated by the conjecture of Veeravalli and Kelly [115] that the locally optimal algorithm

can easily be made to adapt to changes in system parameters, say S, Prakash and Veeravalli

[116] extended their previous work to hysteresis-threshold approximation using locally optimal

solution. The hysteresis-threshold handover control was defined therein as:

Uk =

1 (handover) if {X̂Bk
k+1 > t1}& {X̂Bk

k+1 < t2}& {X̂Bk
k+1 > X̂Bk

k+1 + h}

0 (no handover) otherwise
. (4.3.4)

The objective is to find an approximation of thresholds t1, t2, and hysteresis margin h as a

function of the required signal level ∆ which was used in the locally optimal (LO) algorithm

by Veeravalli and Kelly [115]. For this purpose, the handover region determined by the LO

algorithm as given in Fig. 2(b) of [115] is approximated by the region determined by three lines

corresponding to three thresholds t1, t2, and h. The optimized parameters were finally obtained
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with equations (19)-(21) of [116] as follows:

t1 = ∆− σ′/Φ(c),

t2 = ∆ + σ′/Φ(c),

h = −σ′/Φ(1/2 + c),

where σ′ = σ̂
√

1− (âS)2, where (âS)2 is an estimation of the autocorrelation factor of the shadow

fading from system parameter set S. No validation of the proposed solution was discussed.

Akar and Mitra [117] supported and extended the Bayes formulation and locally optimal solution

structure proposed by Veeravalli and Kelly [115]. They incorporated a signal averaging filter into

the discrete-time model. In addition, assuming a system with one mobile moving on the straight

line connecting two base stations, the authors introduced the handover delay issue. The latter

was formulated simply as the distance between the mobile location and the halfway point between

the two BSs.

Itoh et al. [118] proposed a combining absolute distance and relative signal strength control policy

which is a variant of the combining absolute and relative signal signal strength policy studied by

Zhang and Holtzman [114]. Authors showed that this policy performs well in a lognormal fading

condition when the distance estimator can be modelled as a wide-sense stationary additive white

Gaussian noise.

Unlike the above studies, Lee et al. [119] approached the problem from the protocol design

perspective. They proposed a semi-soft handover scheme. This relies on the principle of hard

handover such that it interrupts data connections from the source cell before switch them to

the target cell. On the other hand, it relies on the principle of the soft handover to establish

parallel control connections with both the source and target cells during the handover execution.

Authors believed that this hybrid handover scheme is able to overcome drawbacks of hard and

soft handover schemes by reducing handover latency and outage probability in hard handover,

while reducing the interference and resource consumption in soft handover.

Handover parameter optimisation. This problem deals with optimal parameter setting for

a given handover policy and scheme. First approach for this problem is related to the analytical

cell-assignment model. Basically, this approach considers a system composing of two cells i and

j. The assignment of the mobile to one of the two cells is characterised by a point on the plane

R2 whose x-axis represents cell i, and y-axis represents cell j. It segments the R2 plane into

three regions I, J , and H such that X[k] , (Xi[k], Xj [k]) ∈ I if the mobile is assigned to cell i,

X[k] ∈ J if the mobile is assigned to cell j, and X[k] ∈ H if the difference of two received signal

strengths is less than a hysteresis threshold. Using this assignment, a handover is considered as

a jump of a point X[k] from one region to the other one between I and J , and thereby handover

probability and related metrics were formulated.

This approach was first proposed by Vijayan and Holtzman [120, 121] using continuous-time

model, later Zhang and Holtzman [114] and Leu and Mark [122] supported this approach with a

discrete-time model. All of these works were based on the level crossing analysis of the relative

signal strength in order to to derive relevant properties. Zhang and Holtzman [114], Vijayan

and Holtzman [120, 121] used asymptotic regime in which level crossing events form a Poisson

process, while Leu and Mark [122] avoided this asymptotic assumption.
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Automatic optimisation approach has also received practical attention, especially, from oper-

ators. It uses incremental tuning and control loops with field measurements to automatically

optimise handover parameters. For handover in WCDMA networks, Vanghi and Chevallier [123]

used field measurements of a commercial network, and showed some analysis results on the im-

pact of handover measurement control parameters, such as parameters defining measurement

reporting events and measurement coefficient factor. Also for WCDMA, Werner et al. [124] pro-

posed an automatic optimisation of handover parameters using Fuzzy Controlling. They aimed

at optimising the cell individual offset parameter taking into account the downlink cell load, soft

handover overhead, the data throughput as well as the speed of the dominant user type in the

cell.

Schröder et al. [125] expressed the motivation for automatic tuning of handover parameters for

LTE. Authors provided some thoughts about a trial-and-error optimisation loop which automat-

ically optimises handover parameters such that only one parameter is considered in each step.

The optimisation is done by measuring the system performance and then increase or decrease a

parameter p by a step value δ, or keep p unchanged. They realised simulation to show the impact

of the hysteresis margin on the handover performance in LTE. Simulation results showed that

the number of incoming HOs and number of HO attempts decrease as the handover hysteresis

margin increases. By contrast, the call drop ratio increases with the hysteresis margin.

4.3.2 Handover Measurement

The handover measurement in WiMAX networks (either with IEEE 802.16e or with IEEE

802.16m radio interface) is performed by the mobile station through a Scanning procedure. IEEE

802.16 standards specify that the mobile station may perform an Association procedure with

each scanned neighbouring base station. This association procedure serves as a pre-registration

of the mobile station to the neighbouring base station, leading to faster handover execution.

This however increases the scanning time, leading to scanning overheads due to measurement

gaps in WiMAX. This requires appropriate scanning timing as well as scanning strategy which

decides whether or not to perform association during the scanning. Within this context, Rouil

and Golmie [126] proposed an adaptive scanning algorithm which allocates scanning intervals

between multiple mobil stations in order to maximise data throughput while satisfying the re-

quired quality of service. Ulvan and Bestak [127] taken an analysis of different possible options

combining scanning and association. They then proposed to use the option so-called single base

station scanning scheme. In this scheme, the mobile station performs association procedure only

with the neighbouring base station which provides the best signal quality, which is potentially

the target base station.

For 3GPP technologies, Hiltunen et al. [128] provided a comparison between periodic and event-

triggered intra-frequency handover measurement reporting in WCDMA by using simulations.

They observed that periodic measurement reporting performs better than event-triggered mode,

but at the expense of increased signalling cost for reporting messages. Kim and Kim [129]

investigated simulations to see the impact of Hysteresis, Time-To-Trigger, and user’s speed

according to 3GPP Layer-3 filter measurement model to the handover measurement performance.

Racz et al. [130] also used simulations to analyse the impact of intra-frequency handover protocol

on the user perceived performance in term of TCP throughput in LTE. They observed that

moving the handover control function to eNodeB does not impact the service quality.
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Anas et al. [131] aimed at evaluating the handover performance in LTE taking into account stan-

dardised handover measurement parameters such as measurement bandwidth, Time-To-Trigger,

handover margin, as well as user’s speed. Anas et al. [132] investigated the effect of Layer-3

filtering on the handover measurement in LTE when linear filtering or dB filtering is used. The

filter is said in linear scale (in dB scale, resp.) if the averaging formula affects on linear unit (on

dB unit, resp.). Their conclusion from simulations was that both filtering scales provide similar

performance.

Kurjenniemi and Henttonen [133] investigated the impact of the measurement bandwidth on the

inter-frequency measurements of Reference Signal Received Power (RSRP) in LTE. In Chapter 3,

we have seen that the Reference Signals are allocated to the six central physical resource blocks so

that the synchronisation and cell measurement do not depend on the variable system bandwidth.

In this study, Kurjenniemi and Henttonen concluded from simulations that larger bandwidth for

Reference Signals does not improve the measurement accuracy significantly.

It can be seen that almost studies in the literature investigated the handover measurement issue

with simulations. Each study provided insights into the impact of a specific parameter to the

system performance. There has been not work which could provide an analytical understanding

of the unified effect of parameters on the handover measurement performance.

4.3.3 Neighbour Cell List Self-Optimisation

The general concept of dynamic neighbour cell list planning due to Olofsson et al. [134], Mag-

nusson and Olofsson [135] is one of the first attempts in the area of neighbour cell list self-

optimisation. In this concept, a neighbouring cell is dynamically added to the neighbour cell

list if the percentage of handovers from the serving cell to this neighbouring cell is above a pre-

defined threshold. Now and then, some test frequencies are added to the neighbour frequency

list to allow mobiles measuring cells which are not currently in the current NCL. This aims at

discovering potential good neighbouring cells.

Following the motivation introduced in [134, 135], Guerzoni et al. [136] proposed an automatic

optimisation algorithm. This algorithm mainly consists in identifying and ranking missing neigh-

bours. Neighbouring cells are identified analytically, and then ranked based on the base station

coordinates and the antenna direction. In parallel, the cells currently in the NCL are assessed

using key indicators such as handover success rate and received signal quality. A cell currently

comprised in the neighbour cell list is considered as “bad” if the handover success rate from the

serving cell to that cell is below a certain threshold, or if its average received signal quality is

worse than a predefined level. After that, good cells from the pool of missing cells are added to

the neighbour cell list while bad cells in the current NCL are removed.

Realizing that the method proposed in [136] may produce a very large pool of potential missing

neighbouring cells, and that the statistical confidence on the parameters used for ranking cells

may not be optimal, Soldani and Ore [137] proposed an enhanced procedure for UTRA FDD

networks. Basically, CDMA-based physical layer of 3G networks allows for high frequency reuses.

As a result, a mobile station (i.e. 3G UE) often detects an important number of intra-frequency

cells which are currently not comprised in the neighbour cell list. 3GPP 3G standards specify

that a UE reports those detected cells under a Detected Set report to its serving Node B. Soldani

and Ore exploited these reported Detected Sets to identify missing neighbouring cells. Then,
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thresholds are used as a coach filter to limit the pool list. The objective here is to efficiently

identify and filter missing cells, but not to compute an optimal neighbour cell list.

Further work by Parodi et al. [138] focused on automatically creating a neighbour cell list for

newly deployed cells. Slightly similar to Soldani and Ore [137], neighbouring base stations located

in a given range from the new base station are filtered out as potential neighbours. Then, using

pathloss prediction models and antenna pattern, each cell in the pool is checked for overlap with

the new cell. A number of the best neighbouring cells are finally selected for the neighbour cell

list. In addition, a signalling implementation for LTE networks is proposed to allow a newly

installed cell to detect its neighbours.

Three self-configuration methods for WiMAX networks are proposed in Li and Jantti [139] and

are very similar to those discussed in [138].

The concept proposed by Amirijoo et al. [140, 141] used statistics collected from the network to

optimise the neighbour relation table and to detect physical cell identifier (PCI) conflict in LTE.

The above studies contributed valuable concepts for the self-optimisation of neighbour cell lists.

They showed that it is conceptually feasible to self-configure and to self-optimise neighbour

cell lists for enhanced mobility management and reduced network operation expense. All these

studies however still present a common drawback in the realisation of the proposed concepts. As

we know, the main motivation behind the self-optimisation algorithm design is to maximise the

mobility management performance and operation efficiency by using live network measurements.

Meanwhile, the proposed concepts was mostly realised with static configuration parameters and

thresholds, as well as with cell coverage prediction models. This limits the performance and the

ability to adapt to dynamic changes in the radio environment. It can be also observed that there

has been no analytical investigation which provides insights into the impacts of neighbour cell

lists on the quality of mobility management.

4.4 Summary

Handover is an important feature of mobile cellular networking. Its function is split into han-

dover execution and handover measurement functions. The handover execution is responsible for

coordinating the connection switching while the handover measurement helps to find a suitable

handover target cell. The handover with mobile station performing measurements and base sta-

tion executing the connection switching is the most preferable scheme. It is called mobile-assisted

network-controlled handover.

The handover measurement, also called scanning, has an important influence on the mobility

management performance. It not only decides the quality of the target cell, but also impacts the

radio resource usage and the quality of service. The neighbour cell list is used to assist mobile

stations in the handover measurement. Proper configuration of the neighbour cell list as well as

optimal design of parameters controlling handover measurement are of primary importance to

the handover optimisation.

The handover control problem has received a lot of attention since the beginning of mobile

cellular networking. It consists in designing rules which decide when to perform a handover.

The handover measurement issue has been only investigated with simulations, and there is a

lack of analytical understanding of this function. The self-optimisation of the neighbour cell list
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has been studied in the literature with interesting concepts. However, they were not successfully

realised as seen from the self-optimisation perspective.





Chapter 5

Mathematical Background

5.1 Modelling of Extreme Events

One of the main purposes of this thesis is to model essential stochastic characteristics of wireless

links in large random networks, especially the best signal quality which is a maximum of random

variables. Furthermore, as it will be shown later, the best signal quality can be represented as

a function of the maximum signal strengths and of the interference, which are in turn maxima

and sums of signal strengths behaving as random variables. For this reason, we shall describe

some basic mathematical results firstly on the fluctuation of sums and maxima of independently

and identically distributed (i.i.d.) random variables, and then on their joint behaviour.

5.1.1 Heavy-Tailed Distribution and Regular Variation

For a non-degenerate distribution function F with support on R, the function defined as F (x) =

1 − F (x) is called the tail of the distribution function F , or tail distribution for short. It

is clear that F is a non-increasing function, and F (x) → 0 as x → ∞. The speed of the

convergence F → 0 is a very important information when studying extreme events generated by

this distribution. Roughly speaking, the “heavier” F is, the more probable it is that X takes

large values.

In this subsection, we go through some basic notions about heavy-tails and regular variation of

distribution functions. We begin with the following definition of heavy-tailed distributions.

Definition 5.1.1 (Heavy-tailed distribution). A distribution function F is said to be heavy-

tailed if ∫
R
eεxF (dx) =∞, for all ε > 0. (5.1.1)

This definition is equivalent to the statement that F is heavy-tailed if and only if

lim
x→∞

eεxF (x) =∞, for all ε > 0,

see e.g. Theorem 2.6 in Foss et al. [142]. So, a distribution is heavy-tailed if its tail decays more

slowly than any exponential e−εx with ε > 0.

59
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Some examples of heavy-tailed distributions include Pareto distributions, Cauchy distributions,

and lognormal distributions. The class of the heavy-tailed distributions is a ‘large’ family in the

sense that these distributions can have different tail behaviours in a neighbourhood near to their

right endpoint. In order to have more insights into the tail behaviour of distribution functions,

the regular variation property is introduced and it is specified in the following.

Definition 5.1.2 (Regular variation). For a positive, Lebesgue measurable function h on (0,∞),

(a) h is called regularly varying at ∞ of index α ∈ R if

lim
x→∞

h(tx)

h(x)
= tα, t > 0.

(b) h is called slowly varying at ∞ if it is regularly varying with index 0, i.e.

lim
x→∞

h(tx)

h(x)
= 1, t > 0.

(c) h is called rapidly varying at ∞ if it is regularly varying with index −∞, i.e.

lim
x→∞

h(tx)

h(x)
=

0 if t > 1,

∞ if 0 < t < 1.

We denote by Rα the class of the regularly varying functions, and denote by R0, R−∞ the class

of the slowly varying functions, the class of the rapidly varying functions, respectively.

From above definitions, it is easy to observe that if h is a regularly varying function at infinity

with index α, then it can be represented as h(x) = xαL(x) for some slowly varying function L.

The class of regularly varying functions plays an important role in the characterisation of domains

of attraction of extreme events. In particular, we will use the following important representation

theorem for regularly varying functions. It is given in [143], Theorem A3.3 and Theorem A3.12:

Theorem 5.1.3. If h ∈ Rα for some α ∈ R, then

h(x) = c(x) exp

(∫ x

z

δ(u)

u
du

)
, x ≥ z, (5.1.2)

for some z > 0 where c and δ are measurable functions, c(x)→ c0 ∈ (0,∞), δ(x)→ α as x→∞.

The reverse implication also hold.

Note that the class Rα defined above includes α = −∞. In this case we have δ(x) → −∞ as

x→∞, and the representation (5.1.2) can be rewritten as

h(x) = c(x) exp

(
−
∫ x

z

du

a(u)

)
, x ≥ z, (5.1.3)

where a has a density a′ satisfying a′(x)→ 0 as x→∞ [143, p. 571].

By Theorem 5.1.3, we can immediately observe that if h ∈ Rα for some α 6= 0. Then h(x)→∞
if α > 0, and h(x) → 0 if α < 0, as x → ∞, see Corollary A3.4 in [143]. Therefore, if a

distribution function F is regularly varying with index α, then we can only have α ≤ 0. This
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remark is important and throughout this section we will be only interested in the class R−α for

α ≥ 0. In this case, we have a connection between the regularity and heavy-tailed beaviour. It

is shown in [143, §1.4] that if a function h is regularly varying with non-positive index −α ≤ 0,

i.e. h ∈ R−α, then h is heavy-tailed.

For a non-negative random variable X with distribution function F such that F (x) < 1 for all

x ≥ 0, if F ∈ R−α for some α > 0, then moments of order δ are finite if δ < α and infinite if

δ > α, [143, Prop. A3.8]. As a sequel, regularly varying distribution functions are referred to

as “very heavy-tailed” distributions. On the contrary, if F ∈ R−∞ then all moments of F are

finite. In order words, R−∞ contains ‘moderately’ heavy-tailed and light-tailed distributions.

5.1.2 Limit Laws of Sums

The characterisation of limit laws of sums of random variables is fundamental to statistical

theory with rich research contributions and a wide range of applications. Given a sequence of

i.i.d. random variables X1, X2, . . ., let

Sn = X1 + · · ·+Xn, n ∈ N.

The central limit theory is concerned with the question what are possible limit laws of the sums

Sn when appropriately centered and normalised. This question is linked to the notation of stable

distributions. A distribution function F is said stable if for i.i.d. random variables X, X1, and

X2 with common distribution F we have the following identity in law:

c1X1 + c2X2
d
= bX + a

for all non-negative constants c1, c2, and appropriate real numbers b > 0 and a. A random

variable with a stable distribution function is also called stable. An example of stable distribution

is the Gaussian distributions.

A key element of the answer is that the class of the possible limit laws of normalised and centered

sums coincides with the class of the stable distributions, see e.g. Theorem 2.2.2 in [143]. For

this reason the class of the stable distributions takes a central position in probability theory and

mathematical statistics. The most common way to charaterise stable distributions is to describe

their characteristic functions.

Theorem 5.1.4. A stable distribution has for characteristic function

φα(t) = E{exp(jXt)} = exp(jγt− c|t|α(1− jδ sign(t)z(t, α))), t ∈ R, (5.1.4)

where γ is a real constant, c > 0, α ∈ (0, 2], δ ∈ [−1, 1], and

z(t, α) =

tan
(
πα
2

)
if α 6= 1

− 2
π log(|t|) if α = 1

.

The most important parameter of this representation is α. It determines basic properties of this

class of distributions such as tail behaviour, limiting behaviour of sums. It is called characteristic

exponent, and the corresponding distribution is called α-stable. Especially, when α = 2 we obtain

Gaussian distributions.
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So, the limiting distribution of the sum of i.i.d. random variables when it exists can only be

an α-stable distribution. This leads to the following definition taken from Definition 2.2.7 in

Embrechts et al. [143].

Definition 5.1.5 (Domain of Attraction of the Sum). The random variable X (the df F ) is

said to belong to the domain of attraction of an α-stable distribution Gα if there exists constants

an > 0, bn ∈ R such that

a−1
n (Sn − bn)

d→ Gα, as n→∞. (5.1.5)

We write X ∈ D(Gα) (F ∈ D(Gα)). If we are interested only in the fact that X (or F ) is

attracted by some α-stable law whose concrete form is not of interest, we simply write X ∈ D(α)

(F ∈ D(α)).

The question is which α-stable law defines the domain of attraction of a given distribution

function F . This is characterised by the following result, given by Theorem 2.2.8 in [143]:

Theorem 5.1.6 (Characterisation of Domain of Attraction). Let F be some distribution func-

tion.

(a) F ∈ D(2) if and only if
∫
|y|≤x y

2F (dy) is slowly varying.

(b) F ∈ D(α) for some α < 2 if and only if

F (−x) =
c1 + o(1)

xα
L(x), F (x) =

c2 + o(1)

xα
L(x), as x→∞,

where L is slowly varying and c1, c2 are nonnegative constants such that c1 + c2 > 0.

We can see that ∫
|y|≤x

y2F (dy)→ EX2, as x→∞.

Hence, if EX2 < ∞ then
∫
|y|≤x y

2F (dy) is slowly varying at infinity, and so F belongs to the

domain of attraction of normal distribution. A complete characterisation of this is given by

Corollary 2.2.9 in [143]:

Corollary 5.1.7 (Domain of Attraction of a normal distribution). A random variable X is in

the domain of attraction of a normal law if and only if one of the following conditions holds:

(a) EX2 <∞.

(b) EX2 =∞, and P(|X| > x) = o
(
x−2

∫
|y|≤x y

2F (dy)
)

as x→∞.

Given that a distribution function belongs to the domain of attraction of an α-stable law, an

important question is to determine normalising and centering parameters an and bn in (5.1.5)

appropriately. The answer is given by the central limit theorem, taken from Proposition 2.2.13,

Proposition 2.2.14, and Theorem 2.2.15 in [143].

Proposition 5.1.8 (Normalising constant). The normalising constant an in (5.1.5) can be cho-

sen as the unique solution of the equation

P(|X| > an) + a−2
n

∫ an

−an
y2F (dy) = n−1, n ≥ 1. (5.1.6)
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In particular, if σ2 = var(X) <∞ and EX = 0 then

an ∼ n1/2σ, n→∞.

If α < 2 we can alternatively choose an such that

an = inf{y : P(|X| > y) < n−1}, n ≥ 1.

Proposition 5.1.9 (Centering constant). The centering constant bn in (5.1.5) can be chosen as

bn = n

∫ an

−an
yF (dy), (5.1.7)

where an is given in Proposition 5.1.8. In particular, we can take bn = nb̃ where

b̃ =


µ if α ∈ (1, 2],

0 if α ∈ (0, 1),

0 if α = 1 and F is sysmetric.

(5.1.8)

With the above ingredients, we now have the central limit theorem (CLT):

Theorem 5.1.10 (General CLT). Suppose that F ∈ D(α) for some α ∈ (0, 2].

(a) If EX2 <∞ then

(σn1/2)−1(Sn − nµ)
d→ Φ

for the standard normal distribution Φ with zero mean and unit variance.

(b) If EX2 =∞ and α = 2, or if α < 2 then

(n1/αL(n))−1(Sn − bn)
d→ Gα

for an α-stable distribution Gα, an appropriate slowly varying functions L, and centering

constant bn as in (5.1.7). In particular, we can take bn = nb̃ with b̃ given in (5.1.8).

5.1.3 Limit Laws of Maxima

For some sequence of i.i.d. random variables X1, X2, . . ., with common distribution F , let

Mn = max(X1, . . . , Xn), n ∈ N. (5.1.9)

Immediately we can write down the distribution of Mn without any difficulty:

P(Mn ≤ x) = P(X1 ≤ x, . . . ,Xn ≤ x) = Fn(x), n ∈ N. (5.1.10)

Denote by xF the right endpoint of F , i.e.,

xF = sup{x ∈ R : F (x) < 1}. (5.1.11)
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Then we see that Fn(x) is decreasing in n for all x < xF , especially

P(Mn ≤ x) = Fn(x)→ 0, as n→∞,

while for x ≥ xF
P(Mn ≤ x) = Fn(x) = 1.

This shows that Mn will concentrate on the right endpoint of F as n → ∞. This in fact does

not provide useful information. In the preceding section, we have seen that, when appropriately

centered and normalised, a sum of i.i.d. random variables admits an α-stable distribution as

limiting distribution. Here we have a similar question for maxima: whether we can obtain more

insight into maxima by appropriately centering and normalising them. This question is one of

the main topics of the extreme value theory which was addressed in the first time in Fréchet

1927 [144]. Therein, Fréchet showed that the limiting distribution of maximum of i.i.d. random

variables when existing can have one of two known forms, called Fréchet distribution and Weibull

distribution. Later, Fisher and Tippett 1928 [145] completed the work of Fréchet in determining

the third limiting distribution which is double exponential distribution. This has received great

attention in probability theory and mathematical statistics research with early works due to

Gumbel 1934 [146], von Mises 1936 [147], and Gnedenko 1943 [148]. Results have been developed

for different settings including extremes of i.i.d. observations, extremes of stationary sequences

and processes, see c.f. [149], and multivariate extremes [150, 151]. Textbooks of Leadbetter et

al. [149] and of Resnick [150] are of the best references for fundamental technical aspects, while

the textbook of Embrechts et al. [143] provides a very intuitive description of the theory, and in

particular shows its recent applications in finance and insurance.

Given the volume of the literature on the extreme value theory, we restrict our attention here to

results which are pertinent to our later developments. More precisely, in this subsection we shall

deal with results related to limiting laws of maxima of a sequence of i.i.d. random variables, and

present in the next subsection results on the asymptotic joint distribution of the maximum and

the sum.

Fundamentally, Fisher and Tippett [145] proved that under appropriate normalisation, if the

normalised maximum tends in distribution to a non-degenerate distribution H, this latter must

have one of the three known forms, which are commonly called extreme value distributions. It

is stated in the following, taken from Theorem 3.2.3 in [143].

Theorem 5.1.11 (Fisher-Tippett Theorem). If there exists normalizing constants cn > 0, dn ∈
R and some non-degenerate distribution function H such that

c−1
n (Mn − dn)

d→ H, as n→∞. (5.1.12)

Then H belongs to the type of one of the following three distribution functions:

Fréchet: Υθ(x) =

0, x ≤ 0

exp(−x−θ), x > 0
, θ > 0.

Weibull: Ψθ(x) =

exp(−(−x)θ), x ≤ 0

1, x > 0
, θ > 0.

Gumbel: Λ(x) = exp(−e−x), x ∈ R.
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Definition 5.1.12. We say that the distribution F (random variable X) belongs to the maximum

domain of attraction of the extreme value distribution H if (5.1.12) holds for some constants

cn > 0 and dn ∈ R. We write F ∈ MDA(H) (X ∈ MDA(H)).

The limiting distribution of the maximum of i.i.d. random variables when it exists can only have

one of the above three types of extreme value distributions. A first question is how to determine

the maximum domain of attraction of a given distribution function. In other words, how to

characterise the three maximum domains of attractions. This question was at first treated by

Gnedenko [148]. Then Haan [152] improved the characterisation for the maximum domain of

attraction of the Gumbel distribution so that it could be easier for applications. Before going to

the characterisation of the maximum domains of attraction, we are interested in the following

two results.

Definition 5.1.13. Two distribution functions F and G are called tail-equivalent if they have

the same right endpoint, i.e. xF = xG, and

lim
x↑xF

F (x)/G(x) = c (5.1.13)

for some constant 0 < c <∞.

Theorem 5.1.14 (Thm 2.1, Resnick [153]). For two tail-equivalent distribution functions F and

G such that (5.1.13) holds for some constant 0 < c < ∞, if F belongs to the maximum domain

of attraction of the extreme value distribution H with constants cn > 0 and dn ∈ R, i.e.,

Fn(cnx+ dn)→ H(x), as n→∞,

then

Gn(cnx+ dn)→ H
1
c (x), as n→∞. (5.1.14)

It can be easily shown that for c > 0 [153, p.140]:

Υc
θ(x) = Υθ

(
c−

1
θ x
)
,

Ψc
θ(x) = Ψθ

(
c

1
θ x
)
,

Λc(x) = Λ(x− log c).

(5.1.15)

It means that a power with positive coefficient of an extreme value distribution will result in the

an extreme value distribution of the same type. Thus, two tail-equivalent distributions belong

the same maximum domain of attraction. The reverse is given in the following.

Theorem 5.1.15 (Thm 2.3, Resnick [153]). Let F and G be distribution functions, and let H be

an extreme value distribution. Suppose F ∈ MDA(H) and that Fn(cnx+dn)→ H(x) as n→∞
for constants cn > 0 and dn ∈ R. Then Gn(cnx+dn)→ H̃(x) as n→∞ with H̃ non-degenerate

if and only if for some a > 0, b ∈ R:

H̃(x) = H(ax+ b), (5.1.16)

F and G are tail-equivalent,

and if
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(i) H(x) = Υθ(x), then b = 0 and limx→∞ F (x)/G(x) = aθ;

(ii) H(x) = Ψθ(x), then b = 0 and limx↑xF F (x)/G(x) = a−θ;

(iii) H(x) = Λ(x), then a = 0 and limx↑xF F (x)/G(x) = eb.

By the above two theorems, we only need to determine the maximum domain of attraction of

some ‘well-known’ distribution functions. And then, in order to determine the maximum domain

of attraction of a given distribution function, we just determine its tail-equivalent distribution

whose attraction domain is already known.

We shall describe in the following the main properties of the three maximum domains of at-

traction. Although not all of the following results will be used in our later developments, they

are described here for seek of completeness and also for the great interest of the results. The

following definition will be used in the subsequent results.

Definition 5.1.16 (Generalised inverse of a monotone function, Defn 3.3.4 [143]). Suppose that

h is a non-decreasing function on R. The generalised inverse of h is defined as

h←(t) = inf{x ∈ R : h(x) ≥ t},

with the convention that inf{∅} = +∞.

For a distribution function F , its generalised inverse function of is called quantile function. We

begin with a characterisation of the maximum domain of attraction of Fréchet distributions which

was given by Theorem 4 in Gnedenko [148] and was restated in Theorem 3.3.7 in Embrechts et al.

[143].

Theorem 5.1.17 (Characterisation of MDA(Υθ)). The distribution function F belongs to the

maximum domain of attraction of Υθ, θ > 0, if and only if F (x) = x−θL(x) for some slowly

varying function L. If F ∈ MDA(Υθ), then

c−1
n Mn

d→ Υθ, (5.1.17)

where the constant cn can be chosen as cn = (1/F )←(n).

It follows that F ∈ MDA(Υθ) iff F ∈ R−θ with −θ < 0 which is the class of regularly varying

functions. And thus the maximum domain of attraction of the Fréchet distribution contains “very

heavy-tailed distributions” in the sense that E{(X+)δ} =∞ for δ > θ where X+ = max{0, X},
see §5.1.1. Some examples include Pareto-like distributions, which are very heavy-tail such as

Pareto, Cauchy, and α-stable distributions with α < 2.

Now we characterise the maximum domain of attraction of Weibull distribution Ψθ. It can be

shown that [143, §3.2]:

Ψθ(−x−1) = Υθ(x), x > 0.

Therefore the maximum domain of attraction of Ψθ can be obtained from that of Υθ. The

following result was given by Theorem 5 in Gnedenko [148], and was summarised in Theorem

3.3.12 in Embrechts et al. [143].
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Theorem 5.1.18 (Characterisation of MDA(Ψθ)). The distribution function F belongs to the

maximum domain of attraction of Ψθ, θ > 0, if and only if xF <∞ and F (xF −x−1) = x−θL(x)

for some slowly varying function L. If F ∈ MDA(Ψθ), then

c−1
n (Mn − xF )

d→ Ψθ, (5.1.18)

where the constant cn can be chosen as cn = xF − F←(1− n−1).

Thus, MDA(Ψθ) contains distribution functions with bounded support (to the right), and having

very heavy-tailed behaviours.

Finally, we characterise the maximum domain of attraction of the Gumbel distribution Λ. Char-

acterising MDA(Λ) requires more efforts than those for the above two domains of attraction. It

was firstly addressed by Gnedenko [148], but he remarked that the characterisation of MDA(Λ)

should not be regarded as completed and easy enough for applications. De Han [152] addressed

this question and developed a complete characterisation which was later improved by Balkema

and De Haan [154]. The following two main charaterisations were summarised in [150] and in

[143, p.142-143] using vocabulary of the regular variation.

Theorem 5.1.19 (Characterisation I of MDA(Λ), Thm 3.3.26 [143]). The distribution function

F with xF ≤ ∞ belongs to the maximum domain of attraction of Λ if and only if there exists

some z < xF such that:

F (x) = c(x) exp

(
−
∫ x

z

g(t)

a(t)
dt

)
, for z < x < xF , (5.1.19)

where c and g are measurable functions satisfying c(x) → c > 0, g(x) → 1 as x ↑ xF , and a(x)

is a positive, absolutely continuous functions with density a′(t) having limx↑xF a
′(x) = 0. For F

with representation (5.1.19) we can choose normalising constants as

dn = F←(1− n−1) and cn = a(dn). (5.1.20)

A possible choice for the function a is

a(x) =

∫ xF

x

F (t)

F (x)
dt, x < xF . (5.1.21)

It follows that the maximum domain of attraction of the Gumbel distribution contains distri-

bution functions which can have right-bounded or right-unbounded support, i.e. both cases

xF <∞ and xF =∞ are possible. This differs from MDA(Ψθ) which contains only distribution

functions with right-bounded support. Further, it is observed that the representation (5.1.19) is

not unique [143, p.143] as we can have some tradeoff between functions c and g. An alternative

representation can be obtained as follows [150]:

F (x) = c(x) exp

(
−
∫ x

z

1

a(t)
dt

)
, for z < x < xF , (5.1.22)

for functions c and a satisfying conditions as in Theorem 5.1.19. As a sequel of (5.1.3), F ∈ R−∞,

i.e. F is rapidly varying at xF . In other words, MDA(Λ) contains distribution functions belonging

to R−∞. This differs MDA(Λ) from MDA(Υθ) by the fact that this latter is characterised by

class R−θ with 0 < θ <∞; see the remark after Theorem 5.1.17.
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The second characterisation of MDA(Λ) is given in the following.

Theorem 5.1.20 (Characterisation II of MDA(Λ), Thm 3.3.27 [143]). The distribution function

F belongs to the maximum domain of attraction of Λ if and only if there exists some positive

functions ã such that the condition

lim
x↑xF

F (x+ tã(x))

F (x)
= e−t, t ∈ R, (5.1.23)

holds. A possible choice of ã is the function a as given in (5.1.21).

Note that the function a in (5.1.21) is called auxiliary function for F . It is nothing but the mean

excess function [143]:

a(x) = E{X − x |X > x}, x < xF .

The above two Theorems 5.1.19 and 5.1.20 provide the main characterisations of the maximum

domain of attraction of the Gumbel distribution with insight into how to choose normalising

constants. However, one of the inconveniences is that this is not very simple to do because

one will need to solve for equations as given in (5.1.20) which are usually complicated. For our

later developments, we are interested in the following two properties. The first property is the

monotone transformation described in [143, p.147]. It is stated in the following.

Proposition 5.1.21 (Embrechts et al. [143]). Let Zi be i.i.d. random variables having distri-

bution F , and Mn = maxni=1Xi. Let g be an increasing real function, denote X̃i = g(Xi), and

M̃n = maxni=1 X̃i. If F ∈ MDA(Λ) with normalizing constant cn and dn, then

lim
n→∞

P
(
M̃n ≤ g(cnz + dn)

)
= Λ(z), z ∈ R.

The second property that we shall describe below is due to Takahashi [155]. It provides necessary

conditions for a distribution function to belong to MDA(Λ), and also proposes how to choose

normalising constants.

Theorem 5.1.22 (Takahashi [155]). Let F be a distribution function. Suppose that there exists

constants ω > 0, l > 0, η > 0 and r ∈ R such that

lim
x→∞

(
1− F (x)

)
/
(
lxre−ηx

ω)
= 1. (5.1.24)

For µ ∈ R and σ > 0, let F∗ = F ((x− µ)/σ). Then, F∗ ∈ MDA(Λ) with normalizing constants

c∗n = σcn and d∗n = σdn + µ, where

cn =
(log n/η)

1
ω−1

ωη
, and

dn =
( log n

η

)1/ω
+
η1/ω

ω2

r(log log n− log η) + ω log l

(log n)1− 1
ω

.

Remark 5.1.23. In the paper [155] of Takahashi, the last term in the numerator of the expression

of dn is ω logω. After some verifications of his above result with several known distributions

including normal and lognormal distributions, we found that this term must be ω log l as it

is stated above. In fact notations used in his paper are a for ω, and α for l. As a and α

are apparently similar, we would guess that these two variables were probably confused during

typing.
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5.1.4 Limiting Joint Behaviour of Sum and Maximum

In addition to the limiting distributions of sums and maxima, the properties associated with

the joint behaviour between the maximum and the sum has been also an important topic of the

extreme value theory.

Darling 1952 [156] showed that if F is slowly varying, E{Sn/Mn} → 1 as n → ∞. Extending

the earlier result of [156], Maller and Resnick 1984 [157] showed:

Theorem 5.1.24 ([157]). Mn/Sn
p→ 1 as n→∞ if and only if F ∈ R0.

It means that if F is slowly varying (and so F does not have finite moments for any order ε > 0),

the extreme term is of the same order as the sum. In that case the extreme term dominantly

contributes to the sum while the remaining is asymptotically negligible.

In case that F is regularly varying with some index −α < 0, i.e. F has finite moments of some

fractional order ε > 0, Bingham and Teugels 1981 [158] showed that the extreme term only

contributes a proportion to the sum.

Theorem 5.1.25 ([158]). The following assertions are equivalent:

(i) F ∈ R−α for some α ∈ (0, 1),

(ii) Mn/Sn
d→ R as n→∞, where R has a non-degenerate distribution,

(iii) E{Sn/Mn} → (1− α)−1 as n→∞ for some α ∈ (0, 1).

And for the case of α ∈ (1, 2):

Theorem 5.1.26 ([158]). Let µ = EX1. The following assertions are equivalent:

(i) F ∈ R−α for some α ∈ (1, 2),

(ii) (Sn − (n− 1)µ)/Mn
d→ D as n→∞, where D has a non-degenerate distribution,

(iii) E{(Sn − (n− 1)µ)/Mn} → c as n→∞ for some constant c.

Complementing to the above result of [158], Downey and Wright 1994 [159] showed

Theorem 5.1.27. If either one of the following two conditions:

(a) F ∈ R−α for some α > 1, or

(b) F has finite second moment

holds. Then

E

{
Mn

Sn

}
=

EMn

ESn

(
1 + o(1)

)
, as n→∞.
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It follows that under suitable conditions, the expected ratio of the extreme term to the sum is

asymptotically equal to the ratio of the expectations.

The above results and some related works provide information about the influence of the extreme

term in the entire sum. In parallel to this view, the joint behaviour of the maximum and the

sum has been studied in term of the limiting joint distribution. One of the first results of this

topic was due to Chow and Teugels 1978 [160] for the case of i.i.d. random variables. Their

conclusion is that under suitable conditions the maximum and the sum behave asymptotically

independently as n→∞. It is given in the following.

Theorem 5.1.28 (Chow and Teugels [160]). Let an > 0, cn > 0, bn, dn ∈ R, write

(M̃n, S̃n) ≡
(
Mn − dn

cn
,
Sn − bn
an

)
.

Then (
Mn − dn

cn
,
Sn − bn
an

)
d→ (U, V ),

where neither U nor V is degenerate if and only if F belongs to both the domains of attraction

of an extreme value distribution H and an α-stable law, i.e., F ∈ MDA(H)∩D(α). The random

variables U and V are independent unless 0 < α < 2, δ > −1, and H = Υα. In the latter case,

for t ∈ R, v > 0:

E{exp(jtS̃n), M̃n ≤ v} = φα(t) · exp

(∫ ∞
v

ejtkudu−α
)

where φα(t) is the characteristic function of the α-stable distribution as given in (5.1.4) with

γ = 0, and k =
(
const · 1+δ

2
2−α
α

)1/α
.

It follows from Chow and Teugels [160] that if F has finite second moment, i.e. F ∈ D(2), and

if F belongs to the maximum domain of attraction of either Gumbel distribution Λ, or Fréchet

distribution Υα with α ≥ 2, then the sum and the maximum are asymptotically independent as

n→∞.

Anderson and Turkman [161] extended the above result of Chow and Teugels [160] to the case

of stationary sequences with certain dependency conditions. Under suitable conditions of weak

dependence, they showed that the asymptotic independence between the sum and the maximum

is also obtained. Further, in their later work [162] appearing in 1995, they extended the above

results and showed that under suitable conditions the asymptotic independence also holds for

stationary sequences with distribution function which belongs to the domain of attraction (for

sums) of an α-stable law of index α < 2.

5.1.5 Application to Wireless Network Modelling

In previous sections, we obtained asymptotic behaviour of extreme events observed from n i.i.d.

random variables as n → ∞. But how should these results be applied to a wireless network?

We can see that a scenario to which these results would be applied should fulfill two necessary

conditions. First, it has to provide the i.i.d. condition among quantities to be observed. And

second, the amount of quantities to be observed must be infinitely large standing for n → ∞
condition.
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In the wireless network modelling context, we can show here an example by considering a wireless

network where more and more nodes are additionally deployed on a given geographical area in

order to satisfy the need for capacity or coverage, such as hot-spot networks deployed for growing

traffic demands, and ad-hoc / sensor wireless networks. This kind of network deployment is

practically known as the network densification under which the total number of nodes N in the

network may take very large values. Let MN = maxi=1,...,N Pi be the global maximum, and

IN =
∑
i=1,...,N Pi be the total interference. By taking appropriate assumptions so that received

signal powers {Pi, i = 1, . . . , N} are i.i.d., and using the fact of network densification by which

N → ∞, one can apply above results to study the asymptotic behaviour of MN , IN , as well as

of their joint distribution.

5.2 Stochastic Geometry

A wireless network is made up of communicating nodes which are spatially distributed in a plane

or in higher dimensions. As we have seen in Chapter 2 the location of nodes is essential to the

network modelling, especially for the analytical description of the signal strength, signal quality,

and the interference which all depend on the relative spatial separation between nodes. For

this reason, the modelling of the node spatial distribution is one of the main topics of wireless

networking. Among different approaches, the spatial point process (p.p.) has received a lot of

attention with many results and applications. Our attention in this section is focused on theo-

retical results of the field which are relevant to our purpose. We will provide a basic background

on the spatial point processes with a focus on Poisson point processes which are required for an

understanding of the Shot Noise field. Basic mathematical modelling of interference in wireless

networks using Shot Noise field will be then presented. After that we will review some important

results on the application of this mathematical tool to wireless networks.

5.2.1 Point Processes

Intuitively speaking, a spatial point process Φ is a random collection of “points” without accu-

mulation in some metric space S [49]. Let δx be the Dirac measure at x ∈ S, for A ⊂ S:

δx(A) =

1 if x ∈ A,

0 if x 6∈ A.

The point process Φ can be represented as a point measure on S given as

Φ =
∑
i

δxi . (5.2.1)

Here xi is a random variable taking value in S, i.e. a point, and the random collection {xi}
represents the points of Φ. Then, Φ is a counting measure for which Φ(A) counts the number of

points of Φ in set A. And a point process Φ is associated with an intensity measure Ξ defined

as Ξ(A) = EΦ(A) for A ⊂ S [11].

A spatial point process thus allows one to describe the location of nodes, seen as “points”, which

are randomly located in a wireless network according to some distribution. It is worth noting

that the application of point processes is far beyond wireless networks. It is a well studied
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branch in probability theory and especially is a powerful tool in statistics for modelling and

analysing spatial data, for example in materials science, geography, and astronomy. An example

showing the interest of point processes is the case where S = R. In this case, point processes

model random events arriving at random times, such as user arrivals in queuing systems. In the

remaining of this section we will consider S = Rd with d ≥ 1.

Similar to the fact that the distribution function of a random variable is completely charaterised

by its characteristic function, a point process is characterised by its Laplace functional whose

definition taken from Definition 1.2.1 in Baccelli and Blaszczyszyn [49] is given in the following.

Definition 5.2.1 (Laplace functional of point process). The Laplace functional L of a point

process Φ is

LΦ(f) = E

{
exp

(
−
∫
Rd
f(x)Φ(dx)

)}
,

where f runs over the set of all non-negative functions on Rd.

A special and useful case of point process is the Poisson point process. A point process Φ is Pois-

son if (i) for all bounded, disjoint sets A1, . . . , Ak of Rd, the random variables Φ(A1), . . . ,Φ(Ak)

are independent, and (ii) for all set A ⊂ Rd the random variable Φ(A) is Poisson. Below, Ξ is a

locally finite measure 1 on Rd.

Definition 5.2.2 (Poisson p.p.). A Poisson point process Φ of intensity measure Ξ is defined

by its finite-dimensional distributions

P(Φ(A1) = n1, . . . ,Φ(Ak) = nk) =

k∏
i=1

(
Ξ(Ai)

ni

ni!
exp(−Ξ(Ai))

)
. (5.2.2)

If Ξ(dx) = λdx for λ a positive constant, we call Φ a homogeneous Poisson point process, and

call λ its intensity parameter.

An interesting property of Poisson p.p. is that conditionally on the fact that there are n points

located in a set A, i.e. Φ(A) = n, then these n points are independently (and uniformly if Φ is

homogeneous) distributed in A [11]. This property leads to many interesting results; especially

it allows one to obtain the Laplace functional of a Poisson p.p. Φ given by Proposition 1.2.2 in

[49]) as follows

Proposition 5.2.3. The Laplace functional of a Poisson p.p. of intensity measure Ξ is

LΦ(f) = exp

(
−
∫
Rd

(1− e−f(x))Ξ(dx)

)
. (5.2.3)

Offering computational convenience, Poisson point processes form the most widely used class of

point processes, especially for the modelling of different network quantities of interest. In the

following, we will describe some operations which preserve the Poisson law. We refer to Baccelli

and Blaszczyszyn [49] for technical details and proofs.

Definition 5.2.4 (Superposition of point processes). The superposition of point processes {Φk}
is defined as the sum Φ =

∑
k Φk.

1A measure µ is called locally finite if for every point x of the space there exists a neighbourhood Nx which
is finite under µ, µ(Nx) < ∞. For example, any probability measure is locally finite since it assigns the unit
measure to the whole probability space.
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Proposition 5.2.5 (Prop 1.3.3 [49]). The superposition of independent Poisson point processes

with intensities Ξk is a Poisson p.p. with intensity measure Ξ =
∑
k Ξk if and only if the latter

is a locally finite measure.

Unlike the superposition operation, the following operation preserves the Poisson law but “par-

titions” a point process. Consider a function p : Rd 7→ [0, 1] and a p.p. Φ, we define:

Definition 5.2.6 (Thinning). The thinning of Φ with the retention function p is a p.p. given

by

Φp =
∑
k

εkδxk , (5.2.4)

where the random variables {εk} take values {0, 1}, are independent given Φ, and

P(εk = 1 |Φ) = 1−P(εk = 0 |Φ) = p(xk). (5.2.5)

Proposition 5.2.7 (Prop 1.3.5 [49]). The thinning of the Poisson p.p. of intensity measure Ξ

with the retention probability p yields a Poisson p.p. of intensity measure pΞ with (pΞ)(A) =∫
A
p(x)Ξ(dx).

In particular, we can easily see that if p is a constant function, i.e. p(x) = ρ for some constant

ρ ∈ [0, 1], and if the Poisson p.p. is homogeneous with intensity parameter λ, then the resulting

Poisson p.p. is homogeneous with intensity parameter ρλ. The above two operations seem

straightforward but provide useful tools especially when one needs to study a heterogeneous

network which is composed of some homogenous network layers such as co-existing macro-and-

small cell networks. Even in the case of a homogenous network, algorithms used in cellular

network such as those for node association or for neighbour cell selection require one to distinguish

between the collection of candidate nodes from the remaining. In this case, one may consider

the collection of the candidate nodes as a thinning of the whole network. We will talk about this

again and again in many upcoming chapters.

5.2.2 Shot Noise Field

Point processes allow one to describe the location of nodes or points in the space. It is often

the case that each node is associated with some information, for example the energies carried

by particles in certain system, or the transmission powers of nodes in a wireless network. To

describe this, the notion of marked point processes has been introduced. For a point process Φ

defined on a space Rd with d ≥ 1, consider that every point xi of Φ is attached a random mark

mi which takes value in another space Rl with l ≥ 1. The the collection of random pairs (xi,mi}
is called a marked point process, denoted by Φ̃. Similar to the representation (5.2.1) of the point

process, the marked point process can be represented as the sum of Dirac measures

Φ̃ =
∑
i

δxi,mi , (5.2.6)

where δx,m is the Dirac measure on the Cartesian product Rd × Rl, see Chapter 2 in [49].

Remark 5.2.8. It is observed in [49, p.23] that the representation (5.2.6) shows that the marked

point process Φ̃ is a point process on the space Rd×Rl. So, it has all properties of a point process,

and this observation will be very useful in developing formulas for marked point processes.
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The following definition, taken from Definition 2.1.1 in [49], specifies an important special case

of marked point processes.

Definition 5.2.9. A marked point process Φ̃ is said to be independently marked if:

• The marks {mi} are mutually independent given the location of the points {xi},

• And the conditional distribution of the mark m attached to point x ∈ Φ only depends on

the location of this point x. We denote by Fx the distribution of the mark associated to x.

Referring to Remark 5.2.8 where we say that a marked point process can be seen as a point

process on the combining space, the following is an interesting result of the independently marked

Poisson point process case, given by Corollary 2.1.2 in [49].

Proposition 5.2.10. An independently marked Poisson point process Φ̃ with intensity measure

Ξ on Rd and marks with distributions Fx on Rl is a Poisson point process on Rd × Rl with

intensity measure Ξ̃ given by

Ξ̃(A×K) =

∫
A

∫
K

Fx(dm)Ξ(dx) (5.2.7)

for A ⊂ Rd and K ⊂ Rl.

Given a marked point process Φ̃, a shot noise generated by Φ̃ is a non-negative vector random

field IΦ̃(y) in Rk+ with k ≥ 1 defined for all y in space Rd′ with d′ ≥ 1, and is a functional of Φ̃.

Its definition involves the following ingredients [49, §2.2.1]:

• The shot noise field is defined on Rd′ , i.e. for all y ∈ Rd′ ,

• The vector field takes values in Rk+, i.e. IΦ̃(y) ∈ Rk+,

• It is generated by the marked point process Φ̃ on Rd with marks in Rl,

• It is associated with a non-negative response function L = (L1, . . . , Lk) : Rd′ ×Rd ×Rl 7→
Rk+.

The shot noise field is then the result of a mapping of the marked point process Φ̃ to the

“observing space” Rd′ by the transfer function L; and the structure of the resulting shot noise

field depends on this transfer function. Note that while the points of the point process Φ are

mostly considered as “discrete” atoms in the space, the shot noise field is defined for the whole

continuous space Rd′ .

On the shot noise field one may define different quantities, in the following we are interested in

two quantities which are closely related to our later developments. These are the additive shot

noise and the extremal shot noise.

Additive Shot Noise. With the above ingredients, we take the Definition 2.2.1 in [49] to

define the additive shot noise.

Definition 5.2.11 (Additive Shot Noise). Under the setting described above, the additive shot

noise associated with the marked point process Φ̃ and the response function L is defined by

IΦ̃(y) = (I1(y), . . . , Ik(y)) =

∫
Rd

∫
Rl
L(y,x,m)Φ̃(d(x,m)) =

∑
(xi,mi)∈Φ̃

L(y,xi,mi), (5.2.8)
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for y ∈ Rd′ , where the integral and the sum are evaluated component-wise for the vector response

function L.

Roughly speaking, the additive shot noise IΦ̃(y) at the observation point y ∈ Rd′ collects all

the marks of the marked point process Φ̃ on space Rd through the “observation method” L, and

then takes the total sum over the collected marks.

The additive shot noise IΦ̃(y) is nothing but a k-dimensional random variable. Therefore as

usual we would like to determine its Laplace transform. By definition (5.2.8) we have

LIΦ̃(y)(t1, . . . , tk) = E
{

exp
(
−

k∑
i=1

tiIi(y)
)}

= E
{

exp
(
−
∫
Rd

∫
Rl

k∑
i=1

tiLi(y,x,m)Φ̃(d(x,m))
)}
. (5.2.9)

By the Remark 5.2.8, it turns out that the above Laplace transform of IΦ̃(y) is the Laplace func-

tional of the point process Φ̃ on the space Rd×Rl at the input function f(x,m) =
∑k
i=1 tiLi(y,x,m),

see Definition 5.2.1. Now if we consider that the point process Φ̃ is Poisson, then its intensity

measure Ξ̃ will be given by Proposition 5.2.10. Thus, using the formula for the Laplace functional

of a Poisson point process as given by Proposition 5.2.3, we obtain

LIΦ̃(y)(t1, . . . , tk) = exp

(
−
∫
Rd×Rl

(1− e−f(x,m))Ξ̃(dx,dm)

)
= exp

(
−
∫
Rd

∫
Rl

(
1− e−

∑k
i=1 tiLi(y,x,m)

)
Fx(dm)Ξ(dx)

)
. (5.2.10)

This result forms the Proposition 2.2.4 in [49], and is stated below.

Theorem 5.2.12 (Laplace transform of additive shot noise). Suppose that Φ̃ is an independently

marked Poisson point process with intensity measure Ξ and mark distribution Fx. Consider the

additive shot noise IΦ̃(y) with response function L = (L1, . . . , Lk). Then the Laplace transform

of IΦ̃(y) is given by (5.2.10).

This is an important result whose applications to the modelling of the interference in a wireless

network will be discussed in the next subsection §5.2.3.

Extremal Shot Noise. Now we would like to determine the extremal term of the shot noise

field. We define the extremal shot noise as follows, Definition 2.4.1 in [49].

Definition 5.2.13 (Extremal Shot Noise). For the setting as described above, the extremal shot

noise associated with the marked point process Φ̃ and the response function L is defined by

MΦ̃(y) = (M1(y), . . . ,Mk(y)) = max
(xi,mi)∈Φ̃

L(y,xi,mi), y ∈ Rd
′
. (5.2.11)
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Similar to IΦ̃(y), MΦ̃(y) is a k-dimensional random variable. But more interestingly it is shown

in [49, p.40] that the distribution function of MΦ̃(y) can be given explicitly. We have

P(Mj(y) ≤ tj ,∀j = 1..k) = P(Lj(y,xi,mi) ≤ tj ,∀j = 1..k, (xi,mi) ∈ Φ̃)

= E
{ ∏

(xi,mi)∈Φ̃

k∏
j=1

1(Lj(y,xi,mi) ≤ tj)
}

= E
{

exp
( ∑

(xi,mi)∈Φ̃

log
( k∏
j=1

1(Lj(y,xi,mi) ≤ tj)
))}

= E
{

exp
(∫

Rd×Rl
log
( k∏
j=1

1(Lj(y,x,m) ≤ tj)
)
Fx(dm)Ξ(dx)

)}
.

Again this is the Laplace functional of Φ̃ at the input function

f(x,m) = − log
( k∏
j=1

1(Lj(y,x,m) ≤ tj)
)
.

If consider that Φ̃ is independently marked Poisson point process, then by Proposition 5.2.3, we

obtain [49, Prop.2.4.2]:

Proposition 5.2.14. Suppose that Φ̃ is an independently marked Poisson point process with

intensity measure Ξ and mark distribution Fx. Consider the extremal shot noise MΦ̃(y) as

defined in (5.2.11). Then

P(M1(y) ≤ t1, . . . ,Mk(y) ≤ tk)

= exp
(
−
∫
Rd×Rl

(
1−

k∏
j=1

1(Lj(y,x,m) ≤ tj)
)
Fx(dm)Ξ(dx)

)
. (5.2.12)

In particular, for k = 1,

P(M(y) ≤ t) = exp

(
−
∫
Rd×Rl

1(L(y,x,m) > t)Fx(dm)Ξ(dx)

)
. (5.2.13)

5.2.3 Application to Wireless Link Modelling

Point processes provide a mathematical tool to model the spatial aspect of a system, and by

parameterising it with marks we are able to quantify more quantities of the interest via a shot

noise field generated by a marked point process. As we agree that the above framework and

results are general, the spatial distribution of nodes in a wireless network is a particular case

which can be suitably studied with this mathematical tool. Our attention in the sequel is reserved

for applications of the field to settings which correspond to common characteristics of wireless

networks.

In Chapter 2 we see that the signal power received at a location y ∈ R2 from a transmitting

node located at xi of the two-dimensional Euclidean plane is given by (2.1.12) as:

Pi(y) =
pi

l(|y − xi|)
,



5.2. Stochastic Geometry 77

where pi is the virtual transmission power associated with node xi and only depending on this lat-

ter, while the path loss function l takes values in R+ and only depends on the transmitter-receiver

spatial separation |y − xi|, see §2.1. The interference field within such a context corresponds

completely to a shot noise which is defined with the following ingredients:

• The shot noise field is defined on R2, i.e. d′ = 2, and takes values in R+, i.e. k = 1,

• It is generated by the independently marked Poisson point process Φ̃ = {(xi, pi)} where

the points {xi} are on R2 and marks {pi} take values in R+,

• It is associated with a scalar non-negative response function defined as L(x,y, p) = p/l(|x−
y|), for x, y ∈ R2, and p ∈ R+.

In particular, often l is a power law of the distance expressible as l(|y − xi|) = l(|y − xi|)β for

some path loss exponent β ≥ 2, see §2.1.

Within this setting, the total interference power received at location y is given as

I(y) =
∑
i

Pi(y) =
∑
i

pi
l(|xi − y|)

.

This turns out to be the additive shot noise IΦ̃(y) generated by Φ̃ and associated to the response

function L. Applying Theorem 5.2.12 for the the above setting, we obtain immediately the

Laplace transform of I(y) = IΦ̃(y) as follows.

Corollary 5.2.15. The Laplace transform of the received interference I(y) is

LI(t) = exp

(
−2πλ

∫ ∞
0

r

(
1− Lp

(
t

l(r)

))
dr

)
, (5.2.14)

where Lp(t) = E{e−tp} is the Laplace transform of the transmission power (i.e. marks pi).

Here we observe that the Laplace transform of the interference is independent of the receiver’s

location y. We can simply obtain its characteristic function. Write

φI(w) = E{exp(jwI)}, w ∈ R,

then

φI(w) = LI(−jw) = exp

(
−2πλ

∫ ∞
0

r

(
1− Lp(

−jw
l(r)

)

)
dr

)
. (5.2.15)

Now, if we consider that the path loss function l is a power law of the distance with exponent

β, the characteristic function of I will be equal to

φI(w) = exp
(
− 2πλ

∫ ∞
0

r
(

1−E
{

exp(
jwp

rβ
)
})

dr
)
,

where the expectation is taken over p. Using the change of variable t = |w|r−β for the integral

and let α = 2/β, we obtain∫ ∞
0

(
1−E

{
exp

(
jwp

rβ

)})
rdr =

α|w|α

2

∫ ∞
0

1−E{ejsign(w)tp}
tα+1

dt, (5.2.16)
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which, by special integral formula, is reduced to∫ ∞
0

1−E{ejsign(w)tp}
tα+1

dt = −E{pα}Γ(−α)e−jsign(w)πα2 ,

where Γ(·) denotes the Gamma function. And thereby:

φI(w) = exp
(
− δ|w|α

(
1− jsign(w) tan(

πα

2
)
))
, (5.2.17)

where δ = πλE{pα}Γ(1 − α) cos(πα2 ). As a result, (5.2.17) shows that the total interference I

is an α-stable distribution with index α = 2/β, see Theorem 5.1.4. This forms a main result

of Win et al. [9]. It follows that, under the assumption of unbounded power-law path loss,

the interference is Gaussian only if β = 2 while most of the case is β > 2 and consequently I is

heavier-tailed than it was often assumed, see §2.4. The heavy-tailed behaviour of the interference

under the ubbounded power law path loss model was also confirmed by Inaltekin et al. [76].

5.3 Level Crossings of Stochastic Processes

In radio communications, the communication quality depends closely on the received signal

quality of the radio link. Especially, the service may be interrupted when the signal quality is

worse than some critical level so that received information is not correctly decoded. As we have

seen in Chapter 2, radio transmissions are sensitive to the propagation condition and is subject

to random variations. This makes the signal quality behave as a stochastic process. The question

is thus to understand and to characterise its properties, in particular, in terms of the fluctuation

of its amplitude with respect to some threshold level.

It turns out that the above question is in the domain of extreme properties of random processes,

especially the so-called level crossing theory of stationary processes. This study domain is con-

cerned with random variables associated with crossings of a stochastic process of some level.

Its first milestone dates back to the middle of the last century with fundamental works of Rice

[12, 13], and of Kac and Slepian [14]. It has been further investigated and its results were quite

fully summarised in Cramér and Leadbetter 1967 [163] and in Leadbetter 1983 [149].

This section by no means provides a whole picture of the level crossing theory and its appli-

cations, but it is aimed at first summarising some theoretical foundations and then showing

some applications to mobile radio communication which will be used to develop our results in

subsequent chapters.

5.3.1 Level Crossings of Stationary Gaussian Processes

In this subsection, we shall describe some fundamental results of the level crossing theory. Herein,

we consider X(t) a real-valued stationary normal process of continuous parameter t (‘time’) of

zero mean and unit variance. We assume that X(t) is not identically equal to any fixed level

γ during any interval of t. Write RX(τ) the autocorrelation function of X(t). We restrict our

attention here to some random variables associated with crossings of X(t) of the level γ.

Let us begin with basic notation which can be found in Cramèr and Leadbetter [163]. For a given

level γ, let f(t) be some real-valued continuous function of t such that f(t) is not identically
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equal to γ in any subinterval. We say that f has an upcrossing of the level γ at t0 if there exists

ε > 0 such that f(t) ≤ γ for t ∈ (t0 − ε, t0), and f(t) ≥ γ for t ∈ (t0, t0 + ε). A downcrossing

of f is similarly defined by reserving inequalities in the above definition of an uncrossing to

f(t) ≥ γ and f(t) ≤ γ. Intuitively, since f(t) is continuous and is not identically equal to γ

in any subinterval, an upcrossing (a downcrossing, respectively) of the level γ at t0 is described

by the fact that f(t)− γ changes sign from non-positive to non-negative (from non-negative to

non-positive, respectively) when t goes from a left to a right neighbourhood of t0, and f(t0) = γ.

And we say that f(t) has a crossing of the level γ at t0 if f(t0) = γ and that there exist t1 and

t2 in a neighbourhood of t0 with t1 < t0 < t2 such that (f(t1)− γ)(f(t2)− γ) < 0.

The first question of interest is the mean number of crossings of X(t) of the level γ. Write Cγ the

number of crossings of X(t) of the level γ during a unit time interval. ECγ is clearly the mean

number of crossing and is so-called level crossing rate. The following result was firstly obtained

by the fundamental work of Rice 1958 [13], and its technical conditions have been weakened by,

among others, Ivanov 1960 [164] and Ylvisaker 1965 [165]. It is summarised in [163, § 10.3] as

follows:

Theorem 5.3.1 (Cramér and Leadbetter [163], p.194). With the notation developed and X(t)

defined as above:

ECγ =
1

π

√
λ2

λ0
exp

(
− γ2

2λ0

)
, (5.3.1)

with

λ0 = RX(0), and λ2 = −R′′X(τ)|τ=0.

ECγ < +∞ if and only if λ2 < +∞.

The above last condition is equivalently stated that the level crossing rate is finite if and only if

the autocorrelation function RX(τ) of X(t) has finite second derivative at the origin. According

to Leadbetter et al. [149], this condition is satisfied if RX admits the following form:

RX(τ) = 1− λ2τ
2

2
+ o(τ2), as τ → 0, (5.3.2)

with finite λ2.

Now let Uγ and Dγ be the number of upcrossings and downcrossings of X(t) of the level γ during

a unit time period. According to [163, §10.4], they are given as follows

Proposition 5.3.2 (Cramér and Leadbetter [163], p.197). With the same assumptions for the

process X(t), if λ2 < +∞:

EUγ = EDγ =
ECγ

2
. (5.3.3)

It means that when λ2 < +∞, the level crossing rate is equally shared between the up-level

crossing rate and the down-level crossing rate.

We are now interested in another result related to crossings of the process X(t) of a large

level γ → ∞ or of a small level −γ → −∞. In the following we provide results related to an

upcrossing of a large level, the corresponding results of downcrossings of a small level will be

directly obtainable by the evident relation X(t) ≥ γ ⇔ −X(t) ≤ −γ. The result that we shall

show in the following gives the asymptotic trajectory of an up-excursion of X(t) above a large

level γ →∞. It was investigated in Rice [13], Kac and Slepian [14], Leadbetter et al. [149], and

then was summarised in [16, 121, 166].



80 Chapter 5 Mathematical Background

Theorem 5.3.3 (Leadbetter et al. [149], Thm. 10.4.2). With the process X(t) described above.

If its autocorrelation function RX(τ) satisfies

R′′X(τ) = λ2 +O(| log |τ ||−a) as τ → 0 (5.3.4)

with finite λ2 for some a > 1, and

RX(τ)→ 0 as τ → +∞, (5.3.5)

then, as γ → +∞, excursions of X(t) above γ behave asymptotically as

X(t) ∼ γ + ξt− γ λ2t
2

2
, (5.3.6)

where ξ is a Rayleigh random variable of parameter
√
λ2, i.e. the cdf of ξ is equal to

Fξ(x) = 1− exp

(
− x2

2λ2

)
. (5.3.7)

Intuitively, trajectories of X(t) above a large level γ behave asymptotically as parabolas with

Rayleigh distributed parameter ξ. In [16], it was shown that the asymptotic behaviour has quite

good agreement with the exact behaviour for γ/
√
λ0 > 2.

We obtained above the asymptotic distribution of the interval between an upcrossing and the

next downcrossing. In the following we investigate the interval between an upcrossing and the

kth subsequent upcrossing for k = 1, 2, . . .. For this purpose, we consider the above stationary

normal process X(t) such that its autocorrelation function RX(τ) satisfies the following two

extra assumptions (Cramèr and Leadbetter [163, §12.1]):

RX(τ) = 1− λ2

2!
τ2 +

λ4

4!
τ4 + o(τ4) (5.3.8)

with finite λ2 and λ4, as τ → 0, and

RX(τ) = O(τ−a) (5.3.9)

for some a > 0, as τ → +∞. The condition (5.3.8) implies that X(t) has, with probability one,

a continuous sample function derivative, and the condition (5.3.9) implies that the spectrum of

X(t) is everywhere continuous so that X(t) is ergodic, see Cramèr and Leadbetter [163, §12.1].

Let F2k(t) be the distribution function of the interval t between an upcrossing and the kth

subsequent upcrossing, and denote µ = EUγ which is the up-level crossing rate of X(t) of the

level γ.

Theorem 5.3.4 (Cramèr and Leadbetter [163],§12.4). With the assumptions and notation de-

scribed above:

lim
γ→∞

F2k

(
t

µ

)
= 1−

(
k∑

n=1

tn−1

(n− 1)!

)
e−t, k = 1, 2, . . . . (5.3.10)

The probability density function of this limiting distribution is

tk−1

(k − 1)!
e−t
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with the mean k.

In particular, for k = 1 we obtain distribution of the time between two consecutive upcrossings:

lim
γ→∞

F2

(
t

µ

)
= 1− e−t. (5.3.11)

Another interesting property is related to the asymptotic Poisson character of the stream of

upcrossings.

Theorem 5.3.5 (Cramèr and Leadbetter [163],p.258). Assume the conditions (5.3.8) and (5.3.9).

Let (a1, b1), . . . , (aj , bj) be disjoint time intervals depending on γ in such a way that

bi − ai =
τi
µ
, (τi > 0),

j and τ1, . . . , τj being independent of γ. Let k1, . . . , kj be nonnegative integers independent of

γ. Denote by U(ai, bi) the number of upcrossings of X(t) of the level γ during interval (ai, bi).

Then

lim
γ→∞

P(U(ai, bi) = ki for i = 1, . . . , j) =

j∏
i=1

τkii
ki!

e−τi . (5.3.12)

Hence, the stream of upcrossings behaves asymptotically as a Poisson process when γ tends to

infinity.

5.3.2 Application to Mobile Radio Communication

Radio link outage refers to the situation where the communication link between a receiver and

a transmitter is not reliable due to unsustainable quality of the radio link. Particularly, in

digital radio communication, bit errors occur when the received signal quality is low. Some

techniques such as redundancy coding or interleaving are often used to combat bit errors. Since

the principle of these techniques is to correct erroneous bits by using redundancy bits correctly

received, they are only effective when the bit error rate is still low. When the received signal

quality is worse than a tolerable level for relatively long time, successive bits are erroneous and

those error-fighting techniques do not help much. This could result in a link outage or service

failure.

Outage is one of the main concerns of radio communication. It needs to be analytically charac-

terised in order to develop appropriate system engineering solutions, for example for handover

control, access point association, macro-diversity reception. By the random noise nature of the

signal quality, it turns out that the level crossing theory is a suitable theoretical tool to study

the link outage. In this subsection we shall focus on some applications of this theory to mobile

radio communication with a particular interest in results which are related to our study of the

mobility management.

To the best of our knowledge, one of the first applications of level crossing theory to mobile radio

communication is due to Vijayan and Holtzman 1993 [121] for handover analysis. In particular,

the minimum-duration outage concept was first mentioned and studied by Mandayam et al.

[15, 16]. This concept incorporated a minimum duration in defining an outage event so that

it is more appropriate and also general than instantaneous outage. This concept has received
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increasing attention in the literature for the outage, capacity, and macro diversity analysis, see

e.g. [166–169].

Let P (t) be the signal strength received from the serving base station, I(t) be the interference,

and N0(t) be the thermal noise; all are received at time t. The signal quality Q expressed in term

of the signal-to-interference-plus-noise ratio is a time-varying function given as (see Chapter 2):

Q(t) =
P (t)

N0(t) + I(t)
.

An outage event is defined as the signal quality goes below a minimum required threshold u and

stays below at least τmin:

outage , {Q(t) < u,∀t ∈ [t1, t2], and t2 − t1 ≥ τmin}.

This is called minimum-duration outage which was introduced by Mandayam et al. [16]. The

outage probability is defined as the fraction of time that the link is in outage given as:

Pout = lim
T→+∞

Total outage time in [0, T ]

T
,

provided that the limit exists. To derive this outage probability, Mandayam et al. [16] also

introduced the frequency of outage fout which is defined as the rate of outage events:

fout = lim
T→+∞

Number of outage events during [0, T ]

T
,

provided that the limit exists. So far, all studies in the literature investigating this problem have

taken a simplification that N0(t) and I(t) are constant over t. In dB scale, the signal quality

is expressible as QdB(t) = PdB(t) − [N0(t) + I(t)]dB. For notational simplicity, in this section

we ignore index dB, so write Q(t), P (t), and [N0 + I] for the signal quality, signal strength, and

noise plus interference expressed in dB scale.

The event that Q(t) goes below u can be rewritten as

Q(t) < u

⇔ E{P (t)} − P (t) > E{P (t)− [N0 + I]} − u,

Considering the effect of lognormal shadowing (see Chapter 2), and ignoring the variation of the

distance from the mobile to the base station over a shot time, it was assumed that P (t) (in dB

scale) is a stationary Gaussian process. Then the process

X(t) := E{P (t)} − P (t)

is a zero mean stationary Gaussian process. And

γ := E{P (t)− [N0 + I]} − u

is a constant. As a sequel, it turns out that level crossings of Q(t) of the level u are described

by those of stationary Gaussian process X(t) of the level γ. In order to apply properties of

level crossings of a normal process described in §5.3, X(t) is assumed to admit the following
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autocorrelation function

RX(τ) = σ2
X exp

(
− 1

2

(vτ
dc

)2)
,

where v is the user’s velocity and dc is the decorrelation distance of the shadowing. This model

was first proposed by Mandayam et al. [15] and was then supported by many later works including

Graziosi and Santucci [166], Jiang and Davis [169]. It is close to the standard Gudmundson’s

model proposed by Gudmundson [41] in modelling the correlated shadowing, and satisfies all the

conditions required for asymptotic properties presented in §5.3.

Denote by τexcur the time duration that X(t) continuously stays above γ, it will be determined

by using Theorem 5.3.3 as follows. By (5.3.6), solve for equation X(t) = γ and obtain two

solutions, say t1 and t2. Then τexcur is given by |t2 − t1| which is equal to:

τexcur =
2

γλ2
ξ, (5.3.13)

where ξ is a Rayleigh distributed random variable of parameter
√
λ2. So the tail distribution of

τexcur is given by that of ξ as follows

P(τexcur > τ) = F ξ

(
γλ2

2
τ

)
= exp

(
−γ

2λ2

8
τ2

)
. (5.3.14)

The outage duration, say τout, is a random variable related to τexcur as

τout = (τexcur|τexcur ≥ τmin).

We can directly obtain the average outage duration as follows

Eτout = E{τexcur|τexcur ≥ τmin} =

∫ +∞

0

F τexcur|τexcur≥τmin
(τ)dτ

= τmin +

∫ +∞

τmin

P(τexcur > τ)

P(τexcur > τmin)
dτ

= τmin +

√
π

V

Q(
√

2V τmin)

P(τexcur > τmin)
, (5.3.15)

where V = γ2λ2

8 , and Q(·) is the Q-function: Q(x) = 1√
2π

∫∞
x

exp(−x
2

2 )dx.

Now we derive the outage frequency. It is clear that the number of outages is equal to the number

of up excursions which stay above the level γ at least τmin. By the stationarity of process X(t),

the frequency of outage can be given as

fout = EUγ ×P(τexcur ≥ τmin). (5.3.16)

where EUγ is given according to Proposition 5.3.2.

Finally, by the stationarity of X(t), the outage probability will be given as

Pout = fout ×Eτout, (5.3.17)

which, by equations (5.3.16), (5.3.15), and (5.3.14), is equal to

Pout = EUγ ×
(
τmin exp(−V τ2

min) +

√
π

V
Q(
√

2V τmin)

)
. (5.3.18)
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5.4 Summary

Throughout this chapter we have described three mathematical tools with a restriction to results

which are pertinent to our later development.

The results obtained with extreme value modelling provide insights in to asymptotic behaviours

of extreme events. In particular, this framework can be applied to study the maximum and

interference received from a number of nodes in a wireless network under appropriate scenarios.

Stochastic Geometry provides detailed insights into the spatial structure of a wireless network.

With a focus on Poisson point process and associated shot noise field, we have a handy mathe-

matical tool for the computation of different quantities of interest, while obtain an exact math-

ematical representation of the distribution of the interference. These results will be intensively

used in Part II for mathematical development, which will be then applied to Part III.

With the level crossing theory, we are interested in time-varying properties of quantities, precisely

of the signal quality. We obtained asymptotic properties and showed their application in deriving

analytical expressions of the minimum-duration outage in a mobile wireless network. These

results will be used in Chapter 10.



Chapter 6

System Model and Conventions

This chapter factorises common assumptions and conventions which will be used throughout the

remaining of this document, except Chapter 12.

6.1 Stochastic Wireless Link

Transmitting nodes are assumed to be equipped with omnidirectional antennas and transmit at

power Ptx. The thermal noise average power N0 is assumed constant, and it can be evaluated

using (2.2.1).

The signal strength (also called signal power) received from node i is generally described by

(2.1.12):

Pi(y) =
pi

l(|y − xi|)
,

with pi denoting the virtual transmission power as given by (2.1.11):

pi := AXi,

where, regarding the notational simplification given in (2.3.2), throughout this document the

variable A is given such that

10 log10A = Ptx,dB − L0,dB −N0,dB, (6.1.1)

where N0,dB is the noise average power and L0,dB is the fixed-term path loss, both are expressed

in decibel scale. Random variables (Xi, i = 1, 2, . . .) refer to shadowing, fading, or composite

shadowing-fading, and are assumed independently and identically distributed, except where oth-

erwise explicitly stated. Denote by FX the distribution function of random variable X = X1.

In the time domain, we consider that Xi(t) is wide-sense stationary and has auto-correlation

function RX(τ) with a finite second derivative at the origin for mathematical convenience.

Random variables (pi, i = 1, 2, . . .) as given above are thus assumed i.i.d. Denote by Fp the

distribution function of random variable p = p1. For some results, it will be assumed that Fp

admits a density function fp.
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In some particular context, the path loss function l is assumed to have the typical decaying power

law as given by (2.1.10):

l(|y − x|) = |y − x|β ,

with β > 2. In such a case, the signal strength is given as

Pi(y) = pi/(|y − x|)β .

6.2 Spatial Distribution of Nodes

As shown from preceding chapters, the information about the spatial separation between receivers

and transmitters is required to model the received signal power which is in turn a basic input of

the interference and signal quality computation.

Traditionally, the spatial location of nodes is modelled by deterministic structures. A determin-

istic model requires complete information on the network structure or needs to be constrained to

regular structures. A typical example is the well-known bee-hive structure of base station loca-

tions used in traditional cellular networks. One of the inconveniences is that it is expensive and

time consuming to obtain precise information on the network, while it is not realistic enough to

use a regular structure. It is even impossible when different systems including those with ad-hoc

nature such as femtocell network are incorporated to provide ubiquitous services. Besides, in the

mobile communication context, the location of a receiver such as a mobile user is often unknown

to the network operator so that the relative spatial location of nodes compared to this user can

not be deterministically known.

Often the spatial distribution of nodes is modelled as completely random according to some

known distribution. The stochastic modelling of nodes by spatial distributions overcomes the

aforementioned difficulties of a deterministic model. In the literature, Poisson point processes

(see §5.2) have been intensively used for the mathematical description of nodes spatial distribu-

tion, such as [9, 70, 71, 74–76, 170] investigating the network interference, [171–175] investigating

wireless connectivity and network coverage, [176–180] analysing packet throughput, and [181–

184] addressing wireless link capacity.

It should be noted that, from the information-theoretic viewpoint, the homogeneous Poisson

point process has maximum entropy among all homogeneous point processes with a given inten-

sity [185]. It means that nodes are the least regular under the assumption that they are spatially

distributed according to a homogeneous Poisson point process. Therefore, a Poisson point pro-

cess and a regular grid structure of nodes are two extremes of reality where the location of nodes

is decided through a network planning process to reduce co-channel interference and coverage

holes. Fortunately, Andrews et al. [10] showed that a Poisson point process model of the nodes

spatial distribution provides a reliable lower bound to reality whereas the grid model provides

an upper bound that is equally loose. It means that modelling the spatial location of nodes as a

Poisson point process can provide not only mathematical tractability but also accurate results.

With the above evidences, the spatial distribution of nodes will be modelled by a homogeneous

Poisson point process with intensity λ in a two-dimensional Euclidean plane R2. The interference

field within such a context corresponds completely to a shot noise which is defined with the

following ingredients:
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• The shot noise field is defined on R2, and takes values in R+.

• It is generated by the independently marked Poisson point process Φ̃ = {(xi, pi)} where

the points {xi} are on R2 and marks {pi} take values in R+,

• It is associated with a scalar non-negative response function defined as L(x,y, p) = p/l(|x−
y|), for x, y ∈ R2, and p ∈ R+.

Results described in §5.2 thus can be directly applied.

6.3 Extremes of Wireless Links

Let Ω be the set of all the nodes in the network. Given a set of nodes S ⊂ Ω, the best signal

quality received from S at y, denoted by YS(y), is defined as

YS(y)
def
= max

i∈S
Qi(y). (6.3.1)

Alternatively and naturally, we can also define the best signal quality of n nodes as

Yn(y)
def
=

n
max
i=1

Qi(y). (6.3.2)

With regard to (2.3.3), the signal quality depends on the frequency reuse pattern, and so does

the best signal quality. In the following, we have some observations on how the distribution of

YS can be obtained.

Let us first consider a single-frequency network, i.e., all the nodes are allocated to the same

frequency band, and denote

I(y) =
∑
i∈Ω

Pi(y) (6.3.3)

which is the total signal power received at y. By (2.3.3) and (6.3.1) we simply have

YS(y) = max
i∈S

(
Pi(y)

1 + I(y)− Pi(y)

)
, (6.3.4)

where for all node i ∈ Ω we have Pi(y) < I(y), and I(y) is the same for any j 6= i. Hence, by

the fact that x/(a− x) with a constant is an increasing function of x < a, (6.3.4) can be written

as

YS(y) =
MS(y)

1 + I(y)−MS(y)
, (6.3.5)

where

MS(y)
def
= max

i∈S
Pi(y) (6.3.6)

is the maximum signal strength received at y from the set S. Equation (6.3.5) implies that in

a single-frequency network, the distribution of the best signal quality YS can be determined by

means of the joint distribution of MS and I.

Let us now consider the case of a K-frequency network with K > 1, and assume that adjacent-

channel interference is negligible compared to co-channel interference. It follows that nodes of

different frequency bands do not interfere one another. Thus, for a given network topology G,

the SINRs received from nodes of different frequency bands are independent. In the context of
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a random distribution of nodes, the SINRs received from nodes of different frequency bands are

therefore conditionally independent given G. Write cell set S as

S =

K⋃
k=1

{Sk : Sk ⊂ Ωk},

with Sk denoting the subset of S allocated to frequency k. Let

YSk(y) = max
i∈Sk

Qi(y)

be the best signal quality received at y from nodes which belong to Sk. The random variables

{YSk(y), k = 1, ...,K} are conditionally independent given G. As a result,

P(YS(y) ≤ γ | G) =

K∏
k=1

P(YSk(y) ≤ γ | G).

This means that the distribution of YS in the case of a multiple-frequency network can be

obtained from that of a single-frequency network.

In light of that, our results will only deal with single-frequency networks (i.e. frequency reuse 1,

see §3.2). In this context, the total interference is given by (6.3.3). For various uses latter, we

define

IS(y)
def
=
∑
i∈S

Pi(y), and In(y)
def
=

n∑
i=1

Pi(y) (6.3.7)

which are respectively the interference received from set S, and from n nodes. In addition, we

define

Mn(y)
def
=

n
max
i=1

Pi(y) (6.3.8)

to be the maximum signal strength received from n nodes. For notational simplicity, the location

variable y appearing in YS(y), MS(y), IS(y), I(y) and in their alternative definitions will be

omitted in case of no ambiguity.

6.4 Set of Observed Nodes

We now consider the set of nodes S from which extremes of wireless link are measured. In

the subsequent chapters, we define S as a thinning with retention probability 0 ≤ ρ ≤ 1 of

some network area B ⊂ R2. To see the motivation behind this consideration, let us consider an

example.

Example 6.4.1. In cellular networks, the mobile station is provided with a neighbour cell list

from which it searches for a handover target cell. The neighbour cell list is practically composed of

N cell identifiers corresponding to N cells in the network. The mobile station picks k, 1 ≤ k ≤ N ,

cell identifiers from the neighbour cell list and measures their signal quality, cf. Chapter 4. Under

the assumptions that base stations are spatially distributed according to a homogeneous Poisson

point process of intensity λ, consider B the geographic area which has in average N cells. The

thinning of B with retention probability k/N has in average k cells, which can be seen as the set

of cells picked out from the neighbour cell list.
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This example shows one of the practical applications, particularly of the mobility management,

for which we come up with the situation of selecting a set of nodes from a network area. On the

other hand, the above consideration for S is also motivated by the fact that the case where best

signal quality is defined on network area B is just a particular case with ρ = 1.

Further, since the received signal strength depends closely on the distance from the observation

location to transmitting node, the shape of B from which nodes are observed has a primary

influence on the extremes of wireless links. As previously described, the broadcasting nature

and distance-dependent path loss of wireless transmission lead to a disk-shaped interfering area

around an observation point in a large-scale network. It is thus not uncommon that the observed

network area B is assumed to be a disk centered at the observation location. In the remaining

of the thesis, except some results developed for an arbitrary network area B, we assume that B

is a disk-shaped network area.

6.5 Summary

The following assumptions will be considered in the remaining of the thesis, except in Chapter 12.

We consider a wireless network composed of a number of nodes. Nodes are assumed distributed

on the two dimensional Euclidean plane according to a homogeneous Poisson point process of

intensity λ. Denote by xi the location of node i.

Nodes are equipped with omnidirectional antennas and transmit at power Ptx. The path loss

function only depends on the spatial separation between receiver and transmitter, and is denoted

by l(·). For some results, the typical far-field path loss function will be used. In this case, the

path loss exponent is assumed equal to β > 2. For different uses, denote α = 2/β.

The variables (Xi, i = 1, 2, . . .) refer to shadowing, fading, or combining shadowing-fading effect.

They are assumed independently and identically distributed according to a common distribution

function FX , except where otherwise explicitly stated. In the time domain, it is assumed that

Xi(t) is wide-sense stationary and that it has an auto-correlation function RX(τ) with a finite

second derivative at the origin.

Denote pi := AXi random variable which is sometimes referred to as virtual transmission power.

Denote by Fp its distribution function, and for some results it will be assumed that Fp admits a

density function fp.

The interference field is modelled as a shot noise defined on R2, taking value in R+, generated

by an independently marked Poisson point process Φ̃ = {(xi, pi)}, and associated with a non-

negative response function L(x,y, p) = p/l(|x− y|) for x, y ∈ R2, and p ∈ R+.

We consider a single-frequency network, results for a multiple-frequency network can be directly

obtained. The extremes of wireless links including the best signal quality YS , maximum signal

strength MS , and interference IS are observed from a set of nodes S which is a thinning of a

network area B with retention probability ρ ∈ [0, 1]. And B is assumed to be a disk-shaped

network area, except where otherwise explicitly stated.





Part II

Wireless Link Modelling
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Chapter 7

Stochastic Geometry Modelling

of Wireless Links

7.1 Introduction

This chapter deals with the mathematical modelling of wireless links with a final purpose of de-

riving the distribution of the best signal quality. Under the assumptions described in Chapter 6,

we treat this question from the perspective of using Stochastic Geometry.

Keeping in mind equation (6.3.5) which represents the best signal quality as a function of the

interference and the maximum signal strength, we develop a framework in which the joint distri-

bution of the interference and the maximum signal strength will be firstly studied, and thereby

the distribution of the best signal quality is then derived. Besides, we obtain marginal distribu-

tions of the interference and of the maximum signal strength, and see that this framework allows

to find back well-known results on the Poisson field interference and on the extremal shot noise.

In what follows, we develop in §7.2 the main lemma of the framework which provides the joint

distribution of the interference I and the maximum signal strength MS under a hybrid form,

where S is a thinning with retention probability ρ of certain arbitrary network area B. Using

this main lemma, we derive in §7.3 the joint distribution of I and MS for more precise setting

where B is a disk-shaped network area. We study therein necessary conditions for the existence

of their joint density function. After presenting in §7.4 direct results and implication of the

framework, we derive the distribution of the best signal quality in §7.5. Concluding remarks are

provided in §7.6.

7.2 Main Lemma

Lemma 7.2.1. Given B ⊂ R2, let S be a thinning of B with retention probability ρ ∈ [0, 1]. For

u ≥ 0 and z ∈ C with a non-negative real part, define:

L(I,MS≤u)(z)
def
= E{1(MS ≤ u) exp(−zI)}. (7.2.1)
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Under the assumption of shot noise interference previously described:

L(I,MS≤u)(z) = exp

(
− λ

∫
R2

(
1− Lp(

z

l(|y − x|)
)
)

dx

− ρλ
∫
B

E

{
1
( p

l(|y − x|)
> u

)
exp

( −zp
l(|y − x|)

)}
dx

)
, (7.2.2)

where Lp(z)
def
= E{exp(−zp)} which is the Laplace transform of the random variable p = p1.

Proof. Under the provided assumptions, the nodes of set S are distributed in B according to a

Poisson point process of intensity ρλ according to Proposition 5.2.7. Similarly, the nodes located

in B but not retained in S are distributed B according to an independent Poisson point process

of intensity (1− ρ)λ. Thus, we can decompose the marked Poisson point process defined on R2

into three independent marked Poisson point processes such that

• The first Φ̃1 is defined on B and has intensity ρλ,

• The second Φ̃2 is defined on B and has intensity (1− ρ)λ,

• And the third Φ̃3 is defined on B = R2 \B and has intensity λ.

Note that for a node i : i 6∈ S, then (xi, pi) ∈ Φ̃2 ∪ Φ̃3.

We have:

E{1(MS ≤ u) exp(−zI)} = E
{

1(MS ≤ u) exp(−z
∑
i∈Ω

Pi(y))
}

= E
{

exp
(∑
i∈S

(
log 1(Pi(y) ≤ u)− zPi(y)

)
− z

∑
i 6∈S

Pi(y)
)}

= E
{

exp
( ∑

(xi,pi)∈Φ̃1

(
log 1(Pi(y) ≤ u)− zPi(y)

)
− z

∑
(xi,pi)∈Φ̃2

Pi(y)− z
∑

(xi,pi)∈Φ̃3

Pi(y)
)}
. (7.2.3)

Since Φ̃1, Φ̃2, and Φ̃3 are independent as discussed above, apply Theorem 5.2.12 to each expec-

tation on the right-hand side of (7.2.3) we obtain

E
{

exp
( ∑

(xi,pi)∈Φ̃1

log 1(Pi(y) ≤ u)− zPi(y)
)}

= exp

(
−ρλ

∫
B

(
1−E

{
1
( p

l(|y − x|)
≤ u

)
e
−zp

l(|y−x|)

})
dx

)
= exp

(
−ρλ

∫
B

(
1−E

{(
1− 1

( p

l(|y − x|)
> u

))
e
−zp

l(|y−x|)

})
dx

)
.

= exp

(
−ρλ

∫
B

(
1−E

{
e
−zp

l(|y−x|)

})
dx− ρλ

∫
B

E

{
1
( p

l(|y − x|)
> u

)
e
−zp

l(|y−x|)

}
dx

)
.

(7.2.4)
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And

E
{

exp
(
− z

∑
(xi,pi)∈Φ̃2

Pi(y)
)}

= exp

(
−(1− ρ)λ

∫
B

(
1−E

{
e
−zp

l(|y−x|)

})
dx

)
. (7.2.5)

E
{

exp
(
− z

∑
(xi,pi)∈Φ̃3

Pi(y)
)}

= exp

(
−λ
∫
B

(
1−E

{
e
−zp

l(|y−x|)

})
dx

)
. (7.2.6)

Substitute Equations (7.2.4), (7.2.5), and (7.2.6) into (7.2.3), we have

E{1(MS ≤ u) exp(−zI)} = exp

(
− ρλ

∫
B

(
1−E

{
e
−zp

l(|y−x|)

})
dx

− (1− ρ)λ

∫
B

(
1−E

{
e
−zp

l(|y−x|)

})
dx

− λ
∫
B

(
1−E

{
e
−zp

l(|y−x|)

})
dx

− ρλ
∫
B

E

{
1
( p

l(|y − x|)
> u

)
e
−zp

l(|y−x|)

}
dx

)
. (7.2.7)

Note that E
{

exp
(
−zp

l(|y−x|)

)}
= Lp

(
z

l(|y−x|)

)
, we obtain:

E{1(MS ≤ u) exp(−zI)} = exp

(
− λ

∫
R2

(
1− Lp(

z

l(|y − x|)
)
)

dx

− ρλ
∫
B

E
{

1
( p

l(|y − x|)
> u

)
e
−zp

l(|y−x|)

}
dx

)
.

We use Lemma 7.2.1 to develop further results in the subsequent sections.

7.3 Joint Distribution of Interference and Maximum Sig-

nal Strength

Lemma 7.2.1 provides a hybrid form of the joint distribution of I and MS in the case where S

is a thinning of an arbitrary network area B. In this section we study the joint distribution of I

and MS with the setting where B is a disk-shaped network area as described in Chapter 6.

7.3.1 Joint Distribution

The joint distribution of I and MS for the case of a disk can be obtained from Lemma 7.2.1 as

follows.

Proposition 7.3.1. For u ≥ 0 define:

φ(I,MS≤u)(w)
def
= E {1(MS ≤ u) exp(jwI)} , for w ∈ R. (7.3.1)

Assume the same conditions of Lemma 7.2.1, and that B is a disk of radius RB, l(r) = rβ for

r ∈ R+ and β > 2. Let MS and I be the maximum signal strength and the interference received
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at the center of B. Then

φ(I,MS≤u)(w) = exp
(
− δ|w|α

(
1− jsign(w) tan(

πα

2
)
)

− ρπλα|w|αE
{∫ +∞

|w|u
p

1(p ≤ uRβB)ejsign(w)tp

tα+1
dt
}

− ρπλα|w|αE
{∫ +∞

|w|
R
β
B

1(p > uRβB)ejsign(w)tp

tα+1
dt
})
, (7.3.2)

where

δ = cαΓ(1− α) cos(
πα

2
), (7.3.3)

with

cα = πλE{pα}. (7.3.4)

Proof. By definition we have:

φ(I,MS≤u)(w) = L(I,MS≤u)(−jw).

Substitute l(r) = rβ and dx = rdrdθ into (7.2.2) of Lemma 7.2.1, we get

φ(I,MS≤u)(w) = exp

(
− 2πλ

∫ +∞

0

(
1−E

{
exp(

jwp

rβ
)

})
rdr

− 2πρλ

∫ RB

0

E

{
1(p > urβ) exp(

jwp

rβ
)

}
rdr

)
. (7.3.5)

Using the change of variable t = |w|r−β and α = 2/β:∫ +∞

0

(
1−E

{
exp

(
jwp

rβ

)})
rdr =

α|w|α

2

∫ +∞

0

1−E{ejsign(w)tp}
tα+1

dt. (7.3.6)

Similarly,

∫ RB

0

E

{
1(p > urβ) exp(

jwp

rβ
)

}
rdr =

α|w|α

2

∫ +∞

|w|
R
β
B

E{1(t > u|w|
p )ejsign(w)tp}
tα+1

dt. (7.3.7)

In the following we simplify (7.3.6) and (7.3.7). For (7.3.6), for 0 < α < 1 we have:∫ +∞

0

1− ejsign(w)tp

tα+1
dt = −Γ(−α)pαe−jsign(w)πα2 . (7.3.8)

Taking expectations on both sides of (7.3.8), we get∫ +∞

0

1−E{ejsign(w)tp}
tα+1

dt = −E{pα}Γ(−α)e−jsign(w)πα2 .

Substitute this back into (7.3.6), we obtain

2πλ

∫ +∞

0

(1−E{exp(
jwp

rβ
)})rdr = πλE{pα}Γ(1− α)(−jw)α. (7.3.9)
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Now we simplify (7.3.7). We simply have

∫ +∞

|w|
R
β
B

E{1(t > u|w|
p )ejsign(w)tp}
tα+1

dt =E
{∫ +∞

|w|
R
β
B

1(p > uRβB)ejsign(w)tp

tα+1
dt
}

+ E
{∫ +∞

|w|u
p

1(p ≤ uRβB)ejsign(w)tp

tα+1
dt
}
. (7.3.10)

Substitute this and (7.3.9) into (7.3.5), we obtain (7.3.2).

In many practical scenarios, the case where RB is large may be of interest. For example, macro

cellular networks are often deployed for scattered traffic areas and have a low density of base

stations. Considering BN as a disk with radius RN =
√
N/(πλ), which has in average N base

stations; its radius increases as N increases. And so, one can consider that RN ≈ ∞ for some

moderate or large value of N . Hence, it is worth considering the case where B = R2. It is

directly obtained from Proposition 7.3.1 as follows.

Corollary 7.3.2. Under the assumptions of Proposition 7.3.1, if B = R2 then:

φ(I,MS≤u)(w) = exp
(
− C1|w|α

(
1− jsign(w) tan(

πα

2
)
)
− C2(w, u) + jC3(w, u)

)
, (7.3.11)

where C1 = (1− ρ)δ, and

C2(w, u) = ρ cα
1F2(−α2 ; 1

2 , 1−
α
2 ;−u

2w2

4 )

uα
, (7.3.12)

C3(w, u) = ρ cα
αw

1− α
1F2( 1−α

2 ; 3
2 ,

3−α
2 ;−u

2w2

4 )

uα−1
, (7.3.13)

where δ and cα are respectively given by (7.3.3) and (7.3.4), and 1F2 denotes the hypergeometric

function,

1F2(a1; b1, b2; z) :=

∞∑
n=0

(a1)n
(b1)n(b2)n

zn

n!
, for z ∈ C, (7.3.14)

in which (a)n represents the Pochhammer symbol:

(a)n := a(a+ 1)(a+ 2) . . . (a− n+ 1), and (a)0 = 1. (7.3.15)

Proof. Condition B = R2 induces RB =∞. Take this into account for (7.3.2), we have:

E
{∫ +∞

|w|
R
β
B

1(p > uRβB)ejsign(w)tp

tα+1
dt
}

= 0, (7.3.16)

And

E
{∫ +∞

|w|u
p

1(p ≤ uRβB)ejsign(w)tp

tα+1
dt
}

= E
{∫ +∞

|w|u
p

ejsign(w)tp

tα+1
dt
}
.
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For 0 < α < 1, the integral on the right hand-side of this can be evaluated with help of a symbolic

calculation software like Mathematica:∫ +∞

|w|u
p

ejsign(w)tp

tα+1
dt =pαΓ(−α)e−jsign(w)πα2

+
1

α

( p

|w|u
)α

1F2(−α
2

;
1

2
, 1− α

2
;−u

2w2

4
)

− j wu

1− α
( p

|w|u
)α

1F2(
1− α

2
;

3

2
,

3− α
2

;−u
2w2

4
).

Taking expectations on both sides, we obtain

E
{∫ +∞

|w|u
p

ejsign(w)tp

tα+1
dt
}

=E{pα}Γ(−α)e−jsign(w)πα2 (7.3.17)

+ E{pα} 1F2(−α2 ; 1
2 , 1−

α
2 ;−u

2w2

4 )

α|w|αuα

− jE{pα} w

1− α
1F2( 1−α

2 ; 3
2 ,

3−α
2 ;−u

2w2

4 )

|w|αuα−1
. (7.3.18)

Substituting (7.3.18) and (7.3.16) back to (7.3.2), we get (7.3.11).

7.3.2 Joint Density

We have identified the joint distribution of MS and I in terms of hybrid Laplace transform,

see Lemma 7.2.1, and hybrid characteristic function, see Proposition 7.3.1. In the following, we

investigate their joint density function.

First of all, we would like to known under what condition (I,MS) admits a joint density. We

have the following theorem.

Theorem 7.3.3. Assume that the conditions of Lemma 7.2.1 hold and that l(r) = rβ for r ∈ R+,

β > 2, and 0 < E{pαi } <∞. Then:

(i) |φ(I,MS≤u)(w)|q ∈ L with respect to (w.r.t.) w for all q = 1, 2, . . ., ∀u > 0.

(ii) If Fp admits a continuous density fp, then ∂
∂uφ(I,MS≤u)(w) exists,

and | ∂∂uφ(I,MS≤u)(w)|q ∈ L w.r.t. w for all q = 1, 2, . . ., ∀u > 0.

where L denotes the space of absolutely integrable functions.

Proof. We begin with the proof of (i). Use (7.2.2) of Lemma 7.2.1:

φ(I,MS≤u)(w) = L(I,MS≤u)(−jw)

= exp
(
− 2πλ

∫
R+

(
1−E

{
exp(

jwp

l(r)
)

})
rdr

− ρλ
∫
B

E

{
1(p > ul(|y − x|)) exp(

jwp

l(|y − x|)
)

}
dx
)
. (7.3.19)
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It follows that

|φ(I,MS≤u)(w)|q = exp
(
− 2qπλ

∫
R+

(
1−E

{
cos(

wp

l(r)
)

})
rdr

− qρλ
∫
B

E

{
1(p > ul(|y − x|)) cos(

wp

l(|y − x|)
)

}
dx
)
. (7.3.20)

For the first term in the exponential, substituting l(r) = rβ and noting that∫
R+

(
1−E

{
cos(

wp

rβ
)
})

rdr = <
{∫

R+

(
1−E

{
exp(

jwp

rβ
)

})
rdr
}
,

we get from (7.3.9) that:

− 2qπλ

∫
R+

(
1−E

{
cos(

wp

rβ
)
})

rdr = −qπλΓ(1− α) cos(
πα

2
)E{pα}|w|α. (7.3.21)

For the second integral of (7.3.20), we have:

−
∫
B

E
{

1(p >ul(|y − x|)) cos(
wp

l(|y − x|)
)
}

dx

= −
∫
B

∫ ∞
ul(|y−x|)

cos(
wt

l(|y − x|)
)Fp(dt)dx

= −
∫
B

∫ ∞
ul(|y−x|)

(
1− 1 + cos(

wt

l(|y − x|)
)

)
Fp(dt)dx

=

∫
B

∫ ∞
ul(|y−x|)

Fp(dt)dx−
∫
B

∫ ∞
ul(|y−x|)

(
1 + cos(

wt

l(|y − x|)
)

)
Fp(dt)dx,

where, since 1 + cos(·) ≥ 0, we have:

−
∫
B

E{1(p > ul(|y − x|)) cos(
wp

l(|y − x|)
)}dx ≤

∫
B

∫ ∞
ul(|y−x|)

Fp(dt)dx

≤
∫
R2

∫ ∞
ul(|y−x|)

Fp(dt)dx

= 2π

∫
R+

(
1− Fp(urβ)

)
rdr. (7.3.22)

Using an integration by parts with 1− Fp(urβ) and 2rdr:

2

∫
R+

(
1− Fp(urβ)

)
rdr =

∫ ∞
0

r2dFp(ur
β) =

∫ ∞
0

(
t

u
)αFp(dt) =

E{pα}
uα

.

Taking this into account in (7.3.22), and then substituting (7.3.22) and (7.3.21) into (7.3.20), we

get: ∣∣φ(I,MS≤u)(w)
∣∣q ≤ exp

(
qπλρu−αE{pα}

)
× exp

(
− qπλΓ(1− α) cos(

πα

2
)E{pα}|w|α

)
. (7.3.23)

Under the condition that β > 2, we have 0 < α < 1 and so cos(πα2 ) > 0 and Γ(1 − α) > 0.

Hence, provided that 0 < E{pα} < ∞, the right hand-side of (7.3.23) is integrable w.r.t. w,

∀q = 1, 2, . . ., and u > 0. This proves claim (i).
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We now prove (ii). We first show that ∂
∂uφ(I,MS≤u)(w) exists for all u > 0. From (7.3.19), we

can have that the differentiability of φ(I,MS≤u)(w) w.r.t. u is implied by that of the second term

in the exponential of (7.3.19) and that when the latter holds,

∂

∂u
φ(I,MS≤u)(w)

= −ρλφ(I,MS≤u)(w)
∂

∂u

∫
B

E

{
1(p > ul(|y − x|)) exp(

jwp

l(|y − x|)
)

}
dx, (7.3.24)

where∫
B

E

{
1(p > ul(|y − x|)) exp(

jwp

l(|y − x|)
)

}
dx =

∫
B

∫ ∞
ul(|y−x|)

e
jwt

l(|y−x|)Fp(dt)dx. (7.3.25)

Under the condition that Fp admits a continuous density fp:

∂

∂u

∫ ∞
ul(|y−x|)

e
jwt

l(|y−x|)Fp(dt) =
∂

∂u

∫ ∞
ul(|y−x|)

e
jwt

l(|y−x|) fp(t)dt

= −ejwul(|y − x|)fp(ul(|y − x|)),

and the last expression is continuous w.r.t. u. Taking this into account in (7.3.25), we have:

∂

∂u

∫
B

E

{
1(p > ul(|y − x|)) exp(

jwp

l(|y − x|)
)

}
dx =

∫
B

∂

∂u

∫ ∞
ul(|y−x|)

e
jwt

l(|y−x|) fp(t)dtdx

= −
∫
B

ejwul(|y − x|)fp(ul(|y − x|))dx.

Thus under the above assumptions, ∂
∂uφ(I,MS≤u)(w) exists and

| ∂
∂u
φ(I,MS≤u)(w)|q = |ρλφ(I,MS≤u)(w)|q ×

(∫
B

l(|y − x|)fp(ul(|y − x|))dx
)q
. (7.3.26)

Moreover, we have:∫
B

l(|y − x|)fp(ul(|y − x|))dx ≤
∫
R2

l(|y − x|)fp(ul(|y − x|))dx

= 2π

∫
R+

rβfp(ur
β)rdr

= παu−α−1

∫
R+

tαfp(t)dt

= παu−α−1E{pα} <∞, provided that E{pα} <∞.

We complete the proof of (ii) when taking this into account in (7.3.26) and using (i).

Corollary 7.3.4. Assume that the conditions of Theorem 7.3.3 hold and that Fp admits a

continuous density fp. Then (I,MS) admits a joint density f(I,MS)(v, u) on (R∗+)2 and the

function v → f(I,MS)(v, u) is bounded, continuous, square-integrable. In addition, for all u > 0,

f(I,MS)(v, u) =

∫ +∞

−∞

e−jwv

2π

∂

∂u
φ(I,MS≤u)(w)dw. (7.3.27)
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Proof. By definition,
∂
∂uφ(I,MS≤u)(w)
∂
∂uφ(I,MS≤u)(0)

(7.3.28)

is the characteristic function of I conditional on MS = u. From (ii) of Theorem 7.3.3, for all

u > 0, w → | ∂∂uφ(I,MS≤u)(w)| ∈ L. So by Theorem 3 in [186, p.509], for all u > 0, the law of I

conditional on MS = u admits a density and (I,MS) hence admits a joint density f(I,MS)(v, u)

at v which is bounded and continuous w.r.t. v, and which is given by (7.3.27). Secondly, since

| ∂∂uφ(I,MS≤u)(w)|2 ∈ L as shown by (ii) of Theorem 7.3.3, f(I,MS)(v, u) is square-integrable w.r.t.

v (see Remark A.1.5).

The existence of the joint density requires the existence and integrability of ∂
∂uφ(I,MS≤u)(w),

which only hold for u > 0 according to Theorem 7.3.3. Note that u is a value of MS and v is a

value of I; since MS < I, u > 0 implies v > 0. This leads to the joint density only existing on

(R∗+)2. Here we may ask why the integrability as stated in Theorem 7.3.3 only holds for u > 0.

We have an answer for this question in Remark 7.4.1 in the next section.

7.4 Corollaries

In the following we show that the results developed above allow to directly obtain interesting

results on the extremal shot noise MS and on the total interference I.

7.4.1 Distribution of the Maximum Signal Strength

Using the fact that P(MS ≤ u) = L(I,MS≤u)(0), (see (7.2.1)), from (7.2.2) we get the cumulative

distribution function of MS :

FMS
(u) = exp

(
−ρλ

∫
B

(
1− Fp(l(|y − x|)u)

)
dx

)
. (7.4.1)

We find back the well known result on the distribution of the max shot noise as given by

Proposition 5.2.14 in Chapter 5.

Remark 7.4.1. When assuming that Fp(0) < 1 (Fp(0) = 1 corresponds to the case where the

node’s transmission power is 0 since the fading Xi satisfies FX(0) < 1) and that ρλ > 0, which

will be done here and below, we get that∫
B

(
1− Fp(l(|y − x|)u)

)
dx|(u=0) =∞ iff B = R2.

Therefore, from (7.4.1) FMS
(0) = 0 if and only if (iff) B = R2. Otherwise, FMS

(0) > 0, which

means that there is a mass of MS at the origin, which is

FMS
(0) = exp (−ρλ(1− Fp(0))|B|) , (7.4.2)

with |B| the Lebesgue measure of B. Due to this mass, the integrability in Theorem 7.3.3 only

holds for u > 0.

Another interesting special case is when B is a disk of radius RB and the path loss function is

l(r) = rβ . In this case, FMS
is given in closed-form as follows:
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Corollary 7.4.2. Under the conditions of Lemma 7.2.1, denote by MS the maximum signal

strength received at the center of a disk B of radius RB. If the path loss function is l(r) = rβ

for r ∈ R+, then:

FMS
(u) = exp

(
−πρλR2

B

(
1− Fp(uRβB)

)
− πρλE{1(p ≤ uRβB)pα}u−α

)
, (7.4.3)

where α = 2/β. In particular, if B = R2 then:

FMS
(u) = exp

(
−πρλE{pα}u−α

)
. (7.4.4)

Remark 7.4.3. The distribution of FMS
as given by (7.4.4) is a Fréchet distribution with shape

parameter α and scale parameter (πρλE{pα})1/α, see §5.1 in Chapter 5. Note that (7.4.4)

is precisely the limit of (7.4.3) as RB → +∞. So we can interpret this result as follows.

Consider B = R2 as the limit of a sequence of disk-shaped network areas (Bn, n = 1, 2, . . .) with

increasing radii Rn tending to +∞ as n→ +∞. Then the above result is intuitively stated as the

maximum signal strength received at center of Bn tends in distribution to a Fréchet distribution

as n→ +∞. As a sequel, by abuse of vocabulary we say that the signal strength received at the

centered of a disk-shaped network area belongs to the maximum domain of attraction of Fréchet

distribution. In §5.1 of Chapter 5 we see that the Fréchet domain of attraction contains the most

heavies-tail distributions among the three maximum domains of attraction. This implies that the

signal strength received at the center of a disk is very heavy-tailed. How could we explain this

phenomenon? For the moment, we observe that this is due to the unbounded power-law path

loss d−β which creates very large values as the d→ 0, which happens when the disk includes the

inner pole. For more insights, we refer to Chapter 8 where the inner pole of the disk is excluded.

Proof of Corollary 7.4.2. Substitute l(r) = rβ , dx = rdrdθ into (7.4.1):∫
B

(
1− Fp(l(|y − x|)u)

)
dx = 2π

∫ RB

0

(
1− Fp(urβ)

)
rdr. (7.4.5)

An integration by parts with 1− Fp(urβ) and 2rdr yields

2

∫ RB

0

(
1− Fp(urβ)

)
rdr = R2

B

(
1− Fp(uRβB)

)
+

∫ RB

0

r2dFp(ur
β). (7.4.6)

where using the change of variable t = urβ , we have:

∫ RB

0

r2dFp(ur
β) =

∫ uRβB

0

(
t

u
)2/βFp(dt) =

E{1(p ≤ uRβB)pα}
uα

. (7.4.7)

Take (7.4.7) into account for Equations (7.4.6) and (7.4.5), we get (7.4.3). The proof for the case

of B = R2 is straightforward.

Here, note that for some constant a > 0:

• If p follows a Rayleigh distribution of parameter σ > 0:

E{1(p ≤ a)pα} = 2
α
2 σα

(
Γ(1 +

α

2
)− Γ(1 +

α

2
,
a2

2σ2
)
)
,
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where Γ(z) ,
∫∞

0
tz−1e−tdt for <(z) > 0 is the gamma function, and Γ(z, x) ,

∫∞
x
tz−1e−tdt

is the upper incomplete gamma function.

• If p follows a gamma distribution of shape parameter k > 0 and scale parameter θ > 0:

E{1(p ≤ a)pα} = θα
Γ(k + α)− Γ(k + α, a/θ)

Γ(k)
.

• If p follows a lognormal distribution of parameter (µ, σ > 0):

E{1(p ≤ a)pα} =
1

2
exp

(
αµ+

α2σ2

2

)
erfc

(
µ+ ασ2 − log(a)√

2σ

)
.

7.4.2 Distribution of the Interference

The modelling of the network interference plays an important role in numerous problems of the

network analysis and design such as capacity and outage analysis, modulation adaptation, and

the design of interference mitigation techniques. It has been so far intensively investigated with

very rich state-of-the-art, see §2.4 in Chapter 2. In the following we show that our framework

allows to directly obtain the characteristic function of the interference.

Denote by

φI(w) = E{exp(jwI)}, for w ∈ R (7.4.8)

the characteristic function of I. By the definition given in (7.3.1), we see that φI(w) =

φ(I,MS≤+∞)(w). So using Proposition 7.3.1:

Corollary 7.4.4. The characteristic function of the total interference generated by the shot

noise field as described above is given by

φI(w) = exp
(
− δ|w|α

(
1− jsign(w) tan(

πα

2
)
))
. (7.4.9)

This is the characteristic function of a skewed α-stable random variable (see §5.1), and here we

find back the same result recently developed by Win et al. [9], Inaltekin et al. [76] and summarised

in §5.2.3 of Chapter 5.

7.5 Distribution of the Best Signal Quality

Using the results developed in §7.3 we derive in this section the distribution of the best signal

quality. The following theorem gives its tail distribution function FYS .

Theorem 7.5.1. Assume that the conditions of Theorem 7.3.3 hold and that Fp admits a con-

tinuous density fp. Then for all γ > 0

FYS (γ) =
1

2π

∫ +∞

u=γ

∫ +∞

−∞
φ(I,MS≤u)(w)g(w, u)dwdu, (7.5.1)

where

g(w, u) = e−jwu − (1 + γ−1)ejw(1−1+γ
γ u) (7.5.2)
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and

FYS (0) = 1− exp (−ρλ(1− Fp(0))|B|) .

Proof. The mass in 0 was evaluated in (7.4.2). Now let us consider γ > 0. Using (6.3.5), we

have:

FYS (γ) = P
{ MS

1 + I −MS
> γ

)
= P

{
MS >

γ

1 + γ
(1 + I)

)
=

∫ ∞
v=γ

∫ v

u=
γ(1+v)

1+γ

f(I,MS)(v, u)dudv,

=

∫ ∞
v=γ

∫ v

u=0

f(I,MS)(v, u)dudv −
∫ ∞
v=γ

∫ γ(1+v)
1+γ

u=0

f(I,MS)(v, u)dudv. (7.5.3)

where f(I,MS) is the joint density function of I and MS , which exists at all points (i,m) with

m > 0 according to Corollary 7.3.4.

For u > 0 let

h(v, u) :=

∫ u

0

f(I,MS)(v, t)dt+ gI(v)P(MS = 0), (7.5.4)

where gI(v) is the density of I at v given that MS = 0. Intuitively, h is the density of

(1(MS ≤ u)I). The characteristic function of v → h(v, u) is φ(I,MS≤u)(w). From Theorem 7.3.3,

we have φ(I,MS≤u)(w) ∈ L w.r.t. w for u > 0. So by the Fourier inversion theorem (Theo-

rem A.1.4), we have:

h(v, u) =
1

2π

∫ ∞
−∞

e−jwvφ(I,MS≤u)(w)dw.

Therefore

h(v, v) =
1

2π

∫ ∞
−∞

e−jwvφ(I,MS≤v)(w)dw.

And so: ∫ ∞
γ

h(v, v)dv =
1

2π

∫ ∞
γ

∫ ∞
−∞

e−jwvφ(I,MS≤v)(w)dwdv. (7.5.5)

Similarly, we have:

h

(
v,
γ(1 + v)

1 + γ

)
=

1

2π

∫ ∞
−∞

e−jwvφ
(I,MS≤ γ(1+v)

1+γ )
(w)dw.

Hence ∫ ∞
γ

h

(
v,
γ(1 + v)

1 + γ

)
dv =

1

2π

∫ ∞
γ

∫ ∞
−∞

e−jwvφ
(I,MS≤ γ(1+v)

1+γ )
(w)dwdv.

Conducting the change of variable x = γ(1+v)
1+γ , we get:

∫ ∞
γ

h

(
v,
γ(1 + v)

1 + γ

)
dv =

1

2π

1 + γ

γ

∫ ∞
γ

∫ ∞
−∞

e−jw( 1+γ
γ x−1)φ(I,MS≤x)(w)dwdx. (7.5.6)
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Moreover, by (7.5.4) we have:

∫ ∞
γ

∫ v

0

f(I,MS)(v, u)dudv −
∫ ∞
γ

∫ γ(1+v)
1+γ

0

f(I,MS)(v, u)dudv

=

∫ ∞
γ

h(v, v)dv −
∫ ∞
γ

h

(
v,
γ(1 + v)

1 + γ

)
dv.

Substituting (7.5.5) and (7.5.6) into this, then by (7.5.3) we get:

FYS (γ) =
1

2π

∫ +∞

γ

∫ +∞

−∞
φ(I,MS≤x)(w)g(w, x)dwdx.

where

g(w, x) = exp(−jwx)− 1 + γ

γ
exp

(
−jw

(
1 + γ

γ
x− 1

))
.

Corollary 7.5.2. Under the assumptions of Theorem 7.3.3, if B = R2, then FYS (0) = 1, and

FYS (γ) =

∫ +∞

u=γ

∫ +∞

w=0

1

π
exp (−(C1w

α + C2(w, u)))

×
(
−1 + γ

γ
cos
(
C1w

α tan(
πα

2
) + C3(w, u) + C4(w, u)

)
+ cos

(
C1w

α tan(
πα

2
) + C3(w, u)− wu

))
dwdu, (7.5.7)

for γ > 0 where C1, C2, and C3 are given in Corollary 7.3.2, and C4(w, u) = w(1− 1+γ
γ u).

Proof. From Theorem 7.5.1, FYS is given by (7.5.1). For this, we have

∫ +∞

−∞
φ(I,MS≤u)(w)g(w, u)dw

=

∫ +∞

0

(
φ(I,MS≤u)(w)g(w, u) + φ(I,MS≤u)(−w, u)g(−w, u)

)
dw, (7.5.8)

where φ(I,MS≤u) is given by Corollary 7.3.2 and g is given by (7.5.2). Thus, we have for w ∈
[0,+∞):

φ(I,MS≤u)(w, u)g(w, u) = exp (−(C1w
α + C2(w, u)))

×

(
exp

(
j
(
C1w

α tan(
πα

2
) + C3(w, u)− wu

))
− 1 + γ

γ
exp

(
j
(
C1w

α tan(
πα

2
) + C3(w, u) + C4(w, u)

)))
,
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where C4(w, u) = w(1− 1+γ
γ u). Similarly, for w ∈ [0,+∞):

φ(I,MS≤u)(−w, u)g(−w, u) = exp (−(C1w
α + C2(w, u)))

×

(
exp

(
−j
(
C1w

α tan(
πα

2
) + C3(w, u)− wu

))
− 1 + γ

γ
exp

(
−j
(
C1w

α tan(
πα

2
) + C3(w, u) + C4(w, u)

)))
.

These result in

φ(I,MS≤u)(w, u)g(w, u) + φ(I,MS≤u)(−w, u)g(−w, u)

= 2 exp (−(C1w
α + C2(w, u)))×

(
cos
(
C1w

α tan(
πα

2
) + C3(w, u)− wu

)
− 1 + γ

γ
cos
(
C1w

α tan(
πα

2
) + C3(w, u) + C4(w, u)

))
.

Substitute this into (7.5.8), then by (7.5.1) we obtain (7.5.7).

7.6 Conclusion

In this chapter we have developed a framework for the distribution of the best signal quality in

a wireless network.

Using an interference shot noise model, we first derived a hybrid Laplace transform of the joint

distribution of the interference and the maximum signal strength by using prior results on the

Laplace transform of an additive shot noise (Theorem 5.2.12 in Chapter 5).

This result was then used to develop results in the case where the observation network area

is a disk centered at the observation point. We determined necessary conditions under which

the joint density of the interference and the maximum signal strength exists, and derived their

joint density. We observed that under the unbounded power-law path loss model, the inner pole

around the observation point introduces a mass of the maximum signal strength at the origin,

leading to the nonexistence of the discussed joint density at the origin.

Using the results developed for the joint distribution of the interference and the maximum signal

strength, we derived the distribution of the best signal quality.

Besides, this framework allowed us to directly obtain marginal distributions of the interference

and of the maximum signal strength. We showed that the network interference has a skewed

α-stable distribution with α = 2/β where β is the path loss exponent. We also proved that the

maximum signal strength received at the center of a disk-shaped network area belongs to the

maximum domain of attraction of a Fréchet distribution independently of the type of fading.

These results are expected to enable various studies related to the stochastic modeling of wire-

less communication networks. In particular, an application of these results will be provided in

Chapter 10.



Chapter 8

Heavy-Tail Asymptotics of

Wireless Links

8.1 Introduction

Many quantities of interest of wireless link modelling are made up of a common and essential

ingredient which is the received signal strength. Beside of the evident example that the interfer-

ence is a sum of signal strengths, the extremal signal strength is given as max of signal strengths,

and the best signal quality is expressed in term of the received signal strength by means of the

interference and maximum signal strength as given in §6.3. The signal strength in its turn is

composed of path loss and fading in which path loss is the dominant component, see Chapter 2.

In Chapter 2 we see that the path loss is typically modelled as a decaying power law d−β

with positive path loss exponent β. The particularity of this model is that it has a singularity

at the origin. This singularity sometimes introduces surprising effects, notably the physical

impossibility which is the received power higher that the transmitted power, occurring when

the distance d is close to zero. As proved in Chapter 7, it results in the interference behaving

as an α-stable law with α < 2 and the global maximum signal strength behaving as a Fréchet

distribution, both are very heavy-tailed as discussed in §5.1. This gives rise to a curious question:

How does the path loss singularity impact the heavy-tailed asymptotics

of wireless links?

The interference and the maximum signal strength are precisely extremes of random signal

strengths (Pi, i = 1, 2, . . .). Inspiring the mathematical modelling of extreme events as presented

in §5.1, we are motivated in

Investigating the above question by using extreme value theory.

Precisely, basing on the set of assumptions described in Chapter 6, we introduces the following

enhancements:

107
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(a) The typical power-law path loss will be used under two models: unbounded and bounded.

Let Rmin be a real-valued constant, the typical distance-dependent model describes the

path loss as 1/l(d) = (max{d,Rmin})−β for d ∈ R+ and where:

Rmin = 0, under unbounded path loss model,

Rmin > 0, under bounded path loss model.

(b) The disk-shaped network area B is bounded by setting its outer radius RB <∞.

(c) Random variables (Xi, i = 1, 2, . . .) as described in Chapter 6 are assumed distributed

according to a lognormal distribution of parameters (0, σX) with 0 < σX <∞.

Within this context, the signal strength received at the center of B from a node i in B is

Pi = AXi (max{di, Rmin})−β ,

where constant A is previously specified in Chapter 6, and di is the distance from the center

of B to node i. Here we observe that studying the above two path loss models is equivalent

to studying the unbounded model d−β , for d ∈ R+, with disk B including and excluding the

inner pole of radius Rmin. In other words, assume that the distance from the center of B to the

closest node in B is Rmin, i.e. di ≥ Rmin for all nodes i, then we can study the bounded model

by using the unbounded model and excluding the inner pole of radius Rmin > 0, and study the

unbounded model by taking Rmin = 0.

For convenience when dealing with extreme value theory, we will use alternative notation of

extremes of wireless link as introduced in §6.3, so denote:

Mn =
n

max
i=1,xi∈B

Pi, In =

n∑
i=1,xi∈B

Pi, Yn =
n

max
i=1,xi∈B

Qi,

to be respectively the maximum of signal strengths, the interference, and the best signal qual-

ity received at the center of B from n nodes which are randomly selected from B with equal

probability.

In §8.2 we study the heavy-tailed behaviour of the signal strength Pi under both conditions

with Rmin = 0 and Rmin > 0. We show that its tail distribution FP is regularly varying with

index −α < 0 with α = 2/β under the unbounded path loss, while FP is less heavy-tailed than a

lognormal distribution under the bounded path loss. Theorem 8.3.2 in §8.3 and Proposition 8.4.1

in §8.4 show that Pi lies on both the domains of attraction of an extreme value distribution H

and an α-stable law Gα, where H is a Fréchet distribution and Gα has parameter α < 2 under

unbounded path loss, while H is a Gumbel distribution and Gα is a Gaussian distribution under

bounded path loss. Section 8.5 states that the asymptotic independence between Mn and In is

obtained when the bounded path loss model is used. Its consequence is that the joint density of

Mn and In can be approximated by the product of their marginal density function. Finally, §8.6

provides an approximation of the distribution of the best signal quality under bounded path loss

condition.
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8.2 Tail-equivalent Distribution of Signal Strength

We begin with the exact distribution of the signal strength.

Proposition 8.2.1. Consider the setting described above, and let FP be the cumulative distri-

bution function of the signal strength Pi.

(a) If Rmin = 0, then

FP (x) = K1(x)− a
2
β eνx−

2
βK3(x), (8.2.1)

(b) If Rmin > 0, then

FP (x) = c
(
a−

2
βK1(x)− b−

2
βK2(x)− eνx−

2
βK3(x) + eνx−

2
βK4(x)

)
, (8.2.2)

where a = AR−βB , b = AR−βmin, c = A
2
β (R2

B −R2
min)−1, ν = 2σ2

X/β
2, and Kj, j = 1, . . . , 4, refers

to the cdf of a lognormal distribution of parameters (µj , σX), in which

µ1 = log a, µ2 = log b, µ3 = µ1 + 2σ2
X/β, µ4 = µ2 + 2σ2

X/β.

Proof. The distribution of the distance di is given as follows:

FD(d) = P(di ≤ d) =

+∞∑
n=0

P(di ≤ d |NB = n)P(NB = n), (8.2.3)

where P(NB = n) is the probability that there are NB nodes in B. Under the assumption that

nodes are spatially distributed according to a homogeneous Poisson point process with intensity

λ, the number of nodes located in B is distributed according to a Poisson distribution with

intensity λ|B| and is given according to Definition 5.2.2:

P(NB = n) = e−λ|B|
(λ|B|)n

n!
. (8.2.4)

In addition, as described in §5.2.1, under the assumption of homogeneous Poisson point process,

conditionally on the fact that NB = n these n nodes are uniformly distributed in B. Thus

P(di ≤ d |NB = n) =
πd2 − πR2

min

πR2
B − πR2

min

.

As a sequel of this, we obtain

FD(d) =

+∞∑
n=0

πd2 − πR2
min

πR2
B − πR2

min

e−λ|B|
(λ|B|)n

n!
=

d2 −R2
min

R2
B −R2

min

. (8.2.5)

Let Ui = Ad−βi , for β > 0, its distribution is equal to:

FU (u) = −c
(
u−

2
β − a−

2
β
)
, for u ∈ [a, b],

where c = A
2
β (R2

B −R2
min)−1, a = AR−βB , and b = AR−βmin. The density of Ui is

fU (u) = (2c/β)u−1−2/β .
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Thus, the distribution FP of the power Pi is equal to:

FP (x) =

∫ b

u=a

FX

(x
u

)
fU (u)du. (8.2.6)

Substituting FX as the lognormal distribution of parameters (0, σX) and fU given above into

(8.2.6), after changing the variable such that t = log(xu ), we have:

FP (x) =
c

β
x−

2
β

(∫ log ( xa )

log ( xb )

e
2t
β dt+

∫ log ( xa )

log ( xb )

e
2t
β erf

( t√
2σX

)
dt

)

where the first integral is straightforward. By doing an integration by parts of erf
(

t√
2σX

)
and

e
2t
β dt for the second integral, we get:

FP (x) =
c

β
x−

2
β
β

2

[
e

2t
β + e

2t
β erf

( t√
2σX

)
− e

2σ2
X
β2 erf

( t√
2σX

−
√

2σX
β

)]∣∣∣log ( xa )

t=log ( xb )
.

After some elementary simplifications, we can obtain:

FP (x) = c

(
a−

2
β

(1

2
+

1

2
erf(

log x− µ1√
2σX

)
)
− b−

2
β

(1

2
+

1

2
erf(

log x− µ2√
2σX

)
)

+ eνx−
2
β

[
− 1

2
− 1

2
erf(

log x− µ3√
2σX

) +
1

2
+

1

2
erf(

log x− µ4√
2σX

)
])
, (8.2.7)

where ν =
2σ2
X

β2 , µ1 = log a, µ3 = µ1 + 2σ2
X/β, µ2 = log b, and µ4 = µ2 + 2σ2

X/β.

Denote by Kj , j = 1, ..., 4, the lognormal distribution of parameters (µj , σX), j = 1, ..., 4. For

Rmin = 0, we have c = A
2
βR−2 = a

2
β , b = ∞, and µ2 = µ4 = ∞. And so (8.2.7) is reduced to

(8.2.1).

And for Rmin > 0, FP as given in (8.2.7) can be rewritten as (8.2.2).

Denote Kj(x) = 1−Kj(x). For case of Rmin = 0, we have from (8.2.1) that:

FP (x) = 1−K1(x) + a
2
β eνx−

2
βK3(x)

= K1(x)− a
2
β eνx−

2
βK3(x) + a

2
β eνx−

2
β . (8.2.8)

Here we see that FP (x) is a combination of lognormal distributions and a decaying power-law

term.

Similarly, for Rmin > 0, observe that c(a−
2
β − b−

2
β ) = 1, so from (8.2.2):

FP (x) = c
(
a−

2
β [1−K1(x)]− b−

2
β [1−K2(x)]− eνx−

2
β [1−K3(x)] + eνx−

2
β [1−K4(x)]

)
= 1− c

(
a−

2
βK1(x)− b−

2
βK2(x)− eνx−

2
βK3(x) + eνx−

2
βK4(x)

)
.

This yields the tail distribution FP = 1− FP :

FP (x) = c
(
a−

2
βK1(x)− b−

2
βK2(x)− eνx−

2
βK3(x) + eνx−

2
βK4(x)

)
. (8.2.9)
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The tail distribution of Pi is now a combination (but not linear) of those of lognormal distribu-

tions. The behaviour of FP at large x for the both cases is given in the following.

Theorem 8.2.2. The signal strength Pi has the following tail equivalent distribution:

(a) If Rmin = 0, denoting α = 2/β, then

FP (x) ∼ aαeνx−α, as x→∞. (8.2.10)

(b) If Rmin > 0, then

FP (x) ∼ κ
exp

(
− (log x− µ2)2/(2σ2

X)
)

(log x− µ2)2/(2σ2
X)

(8.2.11a)

∼ κ
2
√

2πσXK2(x)

log x− µ2
, as x→∞, (8.2.11b)

where K2(x) = 1−K2(x), and κ = σX√
2πβ

R2
min

R2
B−R2

min
.

When Rmin = 0, we see from (8.2.10) that FP is regularly varying with index −α < 0. According

to what discussed in §5.1.1 of Chapter 5, FP in this case has very heavy-tailed behaviour. By

contrast, in case Rmin > 0, the tail distribution of the signal strength Pi is close to that of K2

and it decays more rapidly, as given by (8.2.11b). Since K2 is a lognormal distribution which

belongs to the family of rapidly varying functions, FP can only be of rapidly varying type. This

difference between two cases implies that the singularity of the path loss model has decisive

influence on the tail behaviour of the received signal strength. We also see that the decaying

power-law path loss is the dominant component by the fact that even when the inner pole is

excluded from the disk, the tail of FP is still determined by that of the signal strength received

from the most inner ring which is K2 as given by (8.2.11b). Theorem 8.2.2 as so provides us

useful insights into the heavy-tailed asymptotics of FP with respect to the singularity of the

path loss model. And again it confirms the discussion in Remark 7.4.3 of Chapter 7. In the next

section, we investigate more asymptotic properties using this theorem.

Proof of Theorem 8.2.2. The tail distribution of lognormal distribution is given as

Kj(x) =
1

2
erfc

(
log x− µj√

2σX

)
.

An asymptotic expansion of erfc(x) for large x [43, 7.1.23] gives us:

Kj(x) ∼ σX√
2π(log x− µj)

exp

(
− (log x− µj)2

2σ2
X

)
, as x→∞, (8.2.12)

for j = 1, . . . , 4. In the following we use this asymptotic expansion for the proof.

We begin now with the proof of (a). It can be easily seen that for β > 0:

exp
(
− (log x−µ1)2

2σ2
X

)
(log x− µ1)

= o(x−
2
β ), as x→∞,
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which leads to K1(x) = o(x−
2
β ). And

exp
(
− (log x−µ3)2

2σ2
X

)
(log x− µ3)

= o(1), as x→∞,

leading to x−
2
βK3(x) = o(x−

2
β ). As a result, by (8.2.8) we get (8.2.10).

Now we prove (b). Using (8.2.12):

K3(x) ∼ σX√
2π(log x− µ3)

exp

(
− (log x− µ3)2

2σ2
X

)
, as x→∞, (8.2.13)

in which the first term is simplified as follows

1

log x− µ3
=

1(
log x− µ1 −

2σ2
X

β

) =
1

log x− µ1

1

1− 2σ2
X

β(log x−µ1)

,

which, after a Taylor expansion of the last term on the right-hand side, is reduced to

1

log x− µ3
∼ 1

log x− µ1

(
1 +

2σ2
X

β

1

(log x− µ1)

)
, as x→∞. (8.2.14)

And the second term of (8.2.13) is simplified as follows

exp

(
− (log x− µ3)2

2σ2
X

)
= exp

(
−

(log x− µ1 − 2σ2
X

β )2

2σ2
X

)
= exp

(
−2σ2

X

β2

)
exp

(
2

β
(log x− µ1)

)
exp

(
− (log x− µ1)2

2σ2
X

)
= e−νa−

2
β x

2
β exp

(
− (log x− µ1)2

2σ2
X

)
. (8.2.15)

Substitute (8.2.14) and (8.2.15) into (8.2.13) we obtain

K3(x) ∼ σXa
− 2
β e−νx

2
β

√
2π(log x− µ1)

(
1 +

2σ2
X

β

1

(log x− µ1)

)
exp

(
− (log x− µ1)2

2σ2
X

)

=
a−

2
β

eνx−
2
β

 σX√
2π

exp
(
− (log x−µ1)2

2σ2
X

)
(log x− µ1)

+

√
2

π

σ3
X

β

exp
(
− (log x−µ1)2

2σ2
X

)
(log x− µ1)2

 , (8.2.16)

in which, using (8.2.12):

σX√
2π

exp
(
− (log x−µ1)2

2σ2
X

)
(log x− µ1)

∼ K1(x), as x→∞.

Take this into account for (8.2.16), we get

eνx−
2
βK3(x) ∼ a−

2
β

K1(x) +

√
2

π

σ3
X

β

exp
(
− (log x−µ1)2

2σ2
X

)
(log x− µ1)2

 , as x→∞.
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This leads to

a−
2
βK1(x)− eνx−

2
βK3(x) ∼ −

√
2

π

a−
2
β σ3

X

β

exp
(
− (log x−µ1)2

2σ2
X

)
(log x− µ1)2

, as x→∞. (8.2.17)

In the same manner, we have

b−
2
βK2(x)− eνx−

2
βK4(x) ∼ −

√
2

π

b−
2
β σ3

X

β

exp
(
− (log x−µ2)2

2σ2
X

)
(log x− µ2)2

, as x→∞. (8.2.18)

A substitution of (8.2.17) and (8.2.18) into (8.2.9) results in

FP (x) ∼
√

2

π

cσ3
X

β

(
b−

2
β

exp
(
− (log x− µ2)2/(2σ2

X)
)

(log x− µ2)2

− a−
2
β

exp
(
− (log x− µ1)2/(2σ2

X)
)

(log x− µ1)2

)
. (8.2.19)

Moreover, b > a yields µ2 − µ1 = log(b/a) > 0. Then, we have the following result for large x:

exp
(
− (log x−µ1)2

2σ2
X

)
/(log x− µ1)2

exp
(
− (log x−µ2)2

2σ2
X

)
/(log x− µ2)2

=
( log x− µ2

log x− µ1

)2

e
µ2

2−µ
2
1

2σ2
X x

−µ2−µ1
σ2
X → 0, as x→∞.

Taking this into account in (8.2.19), finally we have:

FP (x) ∼ κ
exp

(
− (log x− µ2)2/(2σ2

X)
)(

(log x− µ2)/(
√

2σX)
)2 ∼ 2

√
2πσXκ

K2(x)

log x− µ2
, as x→∞, (8.2.20)

where κ := σX√
2πβ

R2
min

R2
B−R2

min
.

8.3 Asymptotic Distribution of Maximum Signal Strength

Under the studied system model, (Pi, i = 1, 2, . . .) are i.i.d., and so the cumulative distribution

function (cdf) FMn
and probability density function (pdf) fMn

of Mn are easily obtained as

follows.

Corollary 8.3.1. The cdf and the pdf of Mn, for n ≥ 1, are given respectively by:

FMn(x) = FnP (x), (8.3.1)

fMn(x) = nfP (x)Fn−1
P (x), (8.3.2)

where FP (x) is given by Proposition 8.2.1, and fP is the pdf of Pi, fP (x) = dFP (x)/dx.

Nonetheless, in §5.1 of Chapter 5 we see that the asymptotic distribution of a normalised max-

imum of i.i.d. random variables when exists must have one of the three known distributions:

Fréchet, Weibull, or Gumbel distribution. More importantly, the heavy-tail behaviour of the
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underlying distribution decides the type of its maximum domain of attraction. With the infor-

mation provided by Theorem 8.2.2, we are interested in asymptotic properties of Mn by using

extreme value theory.

Theorem 8.3.2. Under the setting described above,

(a) If Rmin = 0, then

c−1
n (Mn − dn)

d→ Υα(x), as n→∞, (8.3.3)

where Υα is the standard Fréchet distribution of parameter α = 2/β, and normalising

constants can be chosen such that

FP (cn) = 1/n, dn = 0, (8.3.4)

where FP is given by (8.2.8).

(b) If Rmin > 0, then

c−1
n (Mn − dn)

d→ Λ, as n→∞, (8.3.5)

where Λ is the standard Gumbel distribution, and a possible choice of cn and dn is:

cn = σX(2 log n)−
1
2 dn,

dn = exp

(
µ2 + σX

(√
2 log n+

− log log n+ log κ√
2 log n

))
,

(8.3.6)

with κ given by Theorem 8.2.2.

Proof. The proof of (a) is simple. By (a) of Theorem 8.2.2, FP is regularly varying with index

−α < 0. The proof then follows Theorem 5.1.17.

Now is the proof of (b). Let g(t) = e
√

2σXt+µ2 be a real function defined on R, g is increasing

with t. Let P̃i be the random variable such that Pi = g(P̃i). By (8.2.11a) of Theorem 8.2.2, the

tail distribution F P̃ is given by:

F P̃i(x) = P(g(P̃ ) ≤ g(x)) = FP
(
e
√

2σXx+µ2
)
∼ κx−2e−x

2

, as x→∞. (8.3.7)

By (8.3.7), FP̃ satisfies Theorem 5.1.22 with constants l = κ, r = −2, η = 1, and ω = 2. So,

FP̃ ∈ MDA(Λ) with the following normalising constants:

c∗n =
(log n/η)

1
ω−1

ωη
=

1

2
(log n)−

1
2 ,

d∗n =
( log n

η

)1/ω
+
η1/ω

ω2

r(log log n− log η) + ω log l

(log n)1− 1
ω

= (log n)
1
2 +

1

2

(− log log n+ log κ)

(log n)
1
2

.

(8.3.8)

Then, by Proposition 5.1.21, we have

lim
n→∞

P (Mn ≤ g(c∗nx+ d∗n)) = Λ(x), x ∈ R.
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By a Taylor expansion of exp(
√

2σXc
∗
nx), we have:

lim
n→∞

P
(
e−(
√

2σXd
∗
n+µ2)Mn ≤ 1 +

√
2σXc

∗
nx+ o(c∗n)

)
= Λ(x).

Since c∗n → 0 when n→∞, we have

Mn − e
√

2σXd
∗
n+µ2

√
2σXc∗ne

√
2σXd∗n+µ2

d→ Λ, as n→∞. (8.3.9)

Substituting c∗n and d∗n from (8.3.8) into (8.3.9), we obtain cn and dn for (8.3.6). The conditions

RB < ∞, Rmin > 0 and σX > 0 provide κ > 0. This leads to dn > 0, and consequently,

cn > 0.

To this end, Theorem 8.3.2 concludes our previous discussions about the asymptotic behaviour

of FP . According to (a) of Theorem 8.3.2, in case of disk with inner pole, or equivalently of

unbounded path loss, FP belongs to the maximum domain of attraction of Fréchet distribution.

Note that here the network domain B is bounded, i.e. RB < +∞, and that the distribution

of Mn is asymptotically of Fréchet type as the number of nodes measured from this bounded

area tends to infinity, i.e. n → ∞. The fact that the number of nodes increases freely within

a bounded network area refers to a network densification scenario. This result therefore com-

plements Corollary 7.4.2 in Chapter 7 according to which FP belongs to the maximum domain

of attraction of the Fréchet distribution under a network extension scenario. Precisely, Corol-

lary 7.4.2 states that the maximum of signal strength is a Fréchet distribution as the outer radius

of the measured network domain tending to infinity, i.e. RB → +∞. The fact of increasing the

radius of the network domain corresponds to a network extension scenario. So, under the un-

bounded decaying power-law path loss condition, FP ∈ MDA(Υα) for both scenarios: network

densification, and network extension.

On the other hand, in case of a disk excluding the inner pole, or equivalently of bounded path

loss, FP belongs to the maximum domain of attraction of Gumbel distribution. This is dom-

inantly imposed by the heavy-tailed behaviour of the lognormal distribution Xi as given by

Theorem 8.2.2. And this property holds for a network densification scenario, i.e. n → ∞ in a

bounded domain B.

Theorem 8.3.2 provides asymptotic properties when n → ∞. In practical applications, n is

the number of nodes, and so it should only take moderate values. It is thus useful to evaluate

the convergence speed of asymptotic limits. In the following we will evaluate the convergence

speed of c−1
n (Mn− dn)

d→ Λ, and do this by using simulations. We will measure the discrepancy

using a symmetrised version of the Kullback-Leibler divergence (the so-called Jensen-Shannon

divergence (JSdiv)), see Appendix A.2 for more information.

Denote M̃n ≡ c−1
n (Mn − dn) with constants given by (8.3.6). Let us start with some numeri-

cal evaluations of the convergence of M̃n to its limiting distribution. Figure 8.1(a) shows F
M̃n

for different n and compares to empirical simulation results. As expected the analytical dis-

tributions obtained by (8.3.1) of Corollary 8.3.1 match with the empirical distributions for all

n. Figure 8.1(b) plots the analytical distribution and its limiting distribution, i.e. the Gumbel

distribution Λ. There is a discrepancy in the negative regime (see the circled region in Fig-

ure 8.1(b)). It is worth pointing out that as a maximum of signal strengths, Mn ≥ 0 and thus

M̃n ≥ −dn/cn = −
√

2 log n/σX since M̃n = (Mn − dn)/cn. This means that F
M̃n

(x) = 0,
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Figure 8.1: CDF of M̃n under different n: σdB = 8, β = 3.
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(b) Under different β: σdB = 8

Figure 8.2: Jensen-Shannon divergence between M̃n and Λ.

∀x ≤ −
√

2 log n/σX , whereas Λ(x) > 0, ∀x > −∞. This explains the gap observed for n small.

This dissimilarity should have limited impact as long as we only deal with positive values of Mn

(respectively, M̃n ≥ −
√

2 log n/σX).

We now study the symmetrised divergence between the analytical and limiting distributions of

M̃n for some moderate values of n and under different σdB and β. The convergence is best for

σdB around 10 dB and β around two to four. For practical systems, σdB is approx. 8 dB and

2 < β ≤ 4. We compute the Jensen-Shannon divergence for β = 3 and σdB = 8 and plot the

results in Figure 8.2(a) and (b), respectively. For these (and other) values (within the range

given above) of σdB and β, M̃n and Λ have low divergence.

8.4 Asymptotic Distribution of the Interference

The interference In is nothing but sum of i.i.d. random variables (Pi, i = 1, . . . , n). Similar to

the maximum of signal strengths Mn, the fluctuation of In is determined by the tail behaviour



8.4. Asymptotic Distribution of the Interference 117

of FP . Using Theorem 8.2.2 and theoretical support provided in §5.1.2, we obtain the following

asymptotic distribution of In.

Proposition 8.4.1. Under the setting described above

(a) If Rmin = 0 and β > 1, then FP ∈ D(α) with α = 2/β, i.e.,

a−1
n (In − bn)

d→ Gα, as n→∞, (8.4.1)

where Gα is an α-stable law, and normalising constants can be chosen such that

FP (an) = 1/n, bn = n

(
anFP (an)−

∫ an

0

FP (x)dx

)
, (8.4.2)

with FP and FP respectively given by (8.2.8) and (8.2.1). In particular, we can choose

bn = 0 if β > 2.

(b) If Rmin > 0, then FP ∈ D(2), i.e.,

a−1
n (In − bn)

d→ Φ, as n→∞, (8.4.3)

where Φ is the standard Gaussian distribution, and

an =
√
n var(Pi), bn = nEPi. (8.4.4)

Proof. By (a) of Theorem 8.2.2, FP is regularly varying with index −α. Thus, the proof of

(a) follows (b) of Theorem 5.1.6. In addition, the normalising constants in (8.4.1) are given

according to Proposition 5.1.8 and Proposition 5.1.9.

For (b), under the considered setting, we have di ≥ Rmin > 0. So

EPi = E{Ad−βi Xi} ≤
(
AR−βmin

)
EXi,

var(Pi) = var(Ad−βi Xi) ≤
(
AR−βmin

)2

var(Xi),

where note that for Xi distributed according to a lognormal distribution of parameters (0, σX),

EXi = exp(σ2
X/2) and var(Xi) = (eσ

2
X − 1)eσ

2
X which are finite under the assumption that

σX <∞. As a result, EPi <∞, var(Pi) <∞, and so

E{P 2
i } = E{Pi}2 + var(Xi)

2 <∞.

Thus Pi belongs to the domain of attraction of the Gaussian distribution according to (a) of

Corollary 5.1.7. Finally, constants an and bn are given by the general central limit theorem,

Theorem 5.1.10.

Proposition 8.4.1 tells us that to obtain Gaussian interference, we have to use bounded path loss

model or to exclude the inner pole around the observation point. Otherwise, it is asymptotically

an α-stable law with α = 2/β < 2 which is heavier-tailed. This is explained by the fact that

when Rmin = 0, i.e. including the inner pole or using unbounded path loss, there is a dominant

component at the origin in the sum which violates the condition for a convergence to the Gaussian

distribution. This result is in light with Corollary 7.4.4 in Chapter 7.
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Above we determined the asymptotic distribution of the partial interference In. For complete-

ness, we have the following result of the total interference I.

Proposition 8.4.2. Relax the condition of lognormal Xi from the setting described above, denote

by I the total interference. For Rmin ≥ 0:

(a) The characteristic function φI of I is equal to

φI(w) = exp

(
−πλα(A|w|)α

∫ A|w|
R
β
min

0

1− φX(sign(w)t)

tα+1
dt

)
, (8.4.5)

where α = 2/β, and φX is the characteristic function of Xi.

(b) |φI(w)|q ∈ L for all q = 1, 2, . . ., where L is the space of absolutely integrable functions.

(c) If Rmin > 0 and if AR−βmin is large, then φI admits the following approximation

φI(w) ≈ exp
(
−δ|w|α

(
1− jsign(w) tan

(πα
2

)))
, (8.4.6)

where δ is as given by (7.3.3):

δ = cαΓ(1− α) cos(πα/2),

with cα given by (7.3.4):

cα = πλAαE{Xα
i },

and with Γ(·) denoting the gamma function.

Proof. Under the assumptions of the theorem, the interference field can be modeled as a shot

noise defined on R2 excluding the inner disk of radius Rmin. Hence, using Theorem 5.2.12, the

Laplace transform of I is given by:

LI(z) = exp

(
−2πλ

∫ ∞
Rmin

(
1−E{e−

zAXi
rβ }

)
rdr

)
. (8.4.7)

Noting that

φI(w) = LI(−jw), w ∈ R,

we have from (8.4.7) that:

φI(w) = exp

(
−2πλ

∫ ∞
Rmin

(1−E{e
jwAXi
rβ })rdr

)
. (8.4.8)

Using the change of variable t = |w|Ar−β , we obtain

∫ +∞

Rmin

(
1−E

{
exp

(
jwAXi

rβ

)})
rdr =

(A|w|)2/β

β

∫ A|w|
R
β
min

0

1−E{ejsign(w)tXi}
t2/β+1

dt, (8.4.9)

where E {exp(jsign(w)tXi)} = φX(sign(w)t). So, substituting this into (8.4.8), we get the first

part of the Proposition 8.4.2.
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From (8.4.5), for all q = 1, 2, . . ., we have:

|φI(w)|q = exp

(
−qπλα(A|w|)αE

{∫ A|w|
R
β
min

0

1− cos(tXi)

tα+1
dt

})
. (8.4.10)

Since 1− cos(tXi) ≥ 0, ∀t ∈ R, we have

E

{∫ A|w|
R
β
min

0

1− cos(tXi)

tα+1
dt

}
≥ 0. (8.4.11)

Therefore

|φI(w)|q ≤ exp(−const× |w|α), (8.4.12)

where const is some positive constant, and hence the right hand-side of this is an absolutely

integrable function. This proves the second assertion of Proposition 8.4.2.

Under the assumption that AR−βmin ≈ ∞, φI can be approximated by:

φI(w) ≈ exp

(
−πλα(A|w|)α

∫ ∞
0

1− φX(sign(w)t)

tα+1
dt

)
. (8.4.13)

For 0 < α < 1, we have∫ ∞
0

1− ejsign(w)tXi

tα+1
dt = −Γ(−α)Xα

i e
−jsign(w)πα2 (8.4.14)

Taking expectations on both sides, we get∫ +∞

0

1−E{ejsign(w)tXi}
tα+1

dt = −E{Xα
i }Γ(−α)e−jsign(w)πα2

= E{Xα
i }

Γ(1− α)

α
cos
(πα

2

)(
1− jsign(w) tan

(πα
2

))
.

Substituting this into (8.4.13), we obtain (8.4.6). Alternatively, we can prove the assertion (c)

by noting that the condition AR−βmin ≈ +∞ implies that Rmin ≈ 0. And so the total interference

in this case is approximately equal to the total interference received from the whole plane R2

whose characteristic function is given by Corollary 7.4.4 in Chapter 7.

8.5 Asymptotic Joint Distribution of Interference and Max-

imum Signal Strength

Theorem 8.3.2 and Proposition 8.4.1 conclude that FP lies on both the domains of attraction of

an extreme value distribution H and an α-stable law Gα. In particular, if Rmin > 0, then H = Λ

and Gα = Φ. Hence, by Theorem 5.1.28 we have the following result:

Corollary 8.5.1. Assume the setting described above, and that Rmin > 0. Denote:

Ĩn ≡
In − bn
an

, and M̃n ≡
Mn − dn

cn
, (8.5.1)
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Figure 8.3: Example of joint densities of M̃n and Ĩn: n = 50, σdB = 8, β = 3. Here,
norm. Mn refers to M̃n, while norm. In refers to Ĩn.

0 5 10 15
0

0.1

0.2

0.3

0.4

σ [dB]

JS
D

IV

 

 

n=25
n=50
n=75
n=100

(a) Under different σdB: β = 3

1 1.5 2 2.5 3 3.5 4

−0.5

0.5

β

JS
D

IV

 

 

n=25
n=50
n=75
n=100

(b) Under different β: σdB = 8

Figure 8.4: Jensen-Shannon divergence between f(M̃n,Ĩn)
and fM̃n

× fĨn .

with an and bn given by (8.4.4), and cn and dn given by (8.3.6). Then(
M̃n, Ĩn

) d→
(
Λ,Φ

)
, as n→∞, (8.5.2)

and where the coordinates Λ and Φ are independent. �

In case Rmin = 0, by (a) of Theorem 8.3.2 and (a) of Proposition 8.4.1) FP ∈ MDA(Υα) ∩D(α)

with α < 2. Thus, according to Theorem 5.1.28, we cannot have the asymptotic independence

between Mn and In.

The total interference I can be written as I = In + Ic
n where Ic

n denotes the complement of

In in I. Under the consider setting, In and Ic
n are independent. The asymptotic independence

between Mn and In induces the asymptotic independence between Mn and I. This observation

is stated in the following corollary.

Corollary 8.5.2. Under the conditions of Corollary 8.5.1, Mn and I are asymptotically inde-

pendent as n→∞. �
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For practical applications, we follows the same treatment of §8.3 to evaluate the convergence

speed of the asymptotic independence. We do this by measuring the (dis)similarity between

the empirical joint distribution, P(M̃n ≤ u, Ĩn ≤ v), and the product of the empirical marginal

distributions, P(M̃n ≤ u) × P(̃In ≤ v). Figure 8.3 shows an example with n = 50, β = 3 and

σdB = 8. We see that these two density functions are very similar. Figure 8.4 compares these

two density functions for different values of σdB and β. Within the range defined above, the

divergence between the two distributions is again small. Comparing Figure 8.2 and Figure 8.4,

one can conclude that even if the convergence of M̃n
d→ Λ remains slow, M̃n and Ĩn quickly

become uncorrelated. Thus, the independence between Mn and In holds for moderate values of

n. So:

Corollary 8.5.3. Under the conditions of Corollary 8.5.1, (Mn, In), and (Mn, I) admit the

following approximations for moderate or large n:

f(Mn,In)(u, v) ≈ fMn(u)× fIn(v), (8.5.3)

f(Mn,I)(u, v) ≈ fMn(u)× fI(v), (8.5.4)

where fMn
, fIn , and fI are respectively the pdf of Mn, In, and I.

The asymptotic independence facilitates a wide range of studies involving the total interference

and the maximum signal strength. This result will be used in the coming sub-section to derive

the distribution of the best signal quality.

8.6 Distribution of the Best Signal Quality

Using the asymptotic properties developed above, we can derive the distribution of the best

signal quality. It is given as follows.

Theorem 8.6.1. Under the the setting described above, assume that Rmin > 0 and AR−βmin is

large. Then the tail distribution of Yn admits the following approximation:

FYn(γ) ≈
∫ ∞
γ

{
fMn(u)

∫ ∞
0

2

πw
e−δw

α

sin
(
w
u− γ

2γ

)
× cos

(
wu+ w

u− γ
2γ

− δwα tan
πα

2

)
dw
}

du. (8.6.1)

Proof. Similar to the proof of Theorem 7.5.1, using (6.3.5) in §6.3, we have:

P(Yn > γ) = P (Mn/(1 + I −Mn) > γ)

= P

(
I <

1 + γ

γ
Mn − 1

)
=

∫ ∞
0

∫ 1+γ
γ u−1

u

f(I,Mn)(v, u)dvdu. (8.6.2)

Under the conditions of Theorem 8.6.1, Mn and I are asymptotically independent and their joint

density admits an approximation given according to Corollary 8.5.3. So, substitute (8.5.4) into

(8.6.2), we have:

P(Yn ≥ γ) ≈
∫ ∞

0

fMn(u)

∫ ∞
0

h(v, u)fI(v)dvdu, (8.6.3)
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where

h(v, u) = 1

(
v ≤ (1 + γ)u

γ
− 1

)
1(v ≥ u) =

1 if v ∈ [u, 1+γ
γ u− 1] and u > γ

0 otherwise
. (8.6.4)

It is easily seen that h(v, u) is square-integrable with respect to v, and its Fourier transform

w.r.t. v is given by:

ĥ(
w

2π
, u) =

0 if u ≤ γ∫ 1+γ
γ u−1

u
e−jwvdv if u > γ

(8.6.5)

which yields:

ĥ(
w

2π
, u) =

0 if u ≤ γ
1
jw

(
e−jwu − ejw

(
1−1+γ

γ u
))

if u > γ
. (8.6.6)

Besides, according to Proposition 8.4.2 we have that φI ∈ L and φI ∈ L2, where L2 is the

space of square integrable functions. And so, by Theorem 3 in [186, Chap. 15], fI is bounded

continuous and square integrable. Hence, applying the Plancherel-Parseval theorem to the inner

integral of (8.6.3), we have∫ ∞
0

h(v, u)fI(v)dv =

∫ ∞
−∞

ĥ(−w, u)f̂I(w)dw, (8.6.7)

where f̂I(w) is the Fourier transform of fI(v). Take (8.6.6) into account for (8.6.7) and (8.6.3),

we have:

FYn(γ) =

∫ ∞
γ

{
fMn

(u)

∫ ∞
−∞̂

h(−w, u)f̂I(w)dw
}

du, (8.6.8)

where we further have∫ ∞
−∞̂

h(−w, u)f̂I(w)dw =
1

2π

∫ +∞

−∞
ĥ(− w

2π
, u)f̂I(

w

2π
)dw

=
1

2π

∫ +∞

0

(
ĥ(
w

2π
, u)f̂I(

−w
2π

) + ĥ(
−w
2π

, u)f̂I(
w

2π
)
)

dw. (8.6.9)

Note that

f̂I(
w

2π
) = φI(−w). (8.6.10)

And under the assumption that AR−βmin ≈ ∞, φI is approximated by (8.4.6). Thus, by (8.4.6)

and (8.6.6), we have for w ∈ [0,+∞):

ĥ(
w

2π
, u)f̂I(−

w

2π
) ≈ e−δw

α

jw

(
exp

(
j
(
−wu+ δwα tan

πα

2

))
− exp

(
−j
(
−w + w

1 + γ

γ
u− δwα tan

πα

2

)))
, (8.6.11)

and

ĥ(− w

2π
, u)f̂I(

w

2π
) ≈ e−δw

α

jw

(
− exp

(
−j
(
−wu+ δwα tan

πα

2

))
+ exp

(
j

(
−w + w

1 + γ

γ
u− δwα tan

πα

2

)))
. (8.6.12)
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By (8.6.11) and (8.6.12), we get

1

2π

(
ĥ(
w

2π
, u)f̂I(

−w
2π

) + ĥ(
−w
2π

, u)f̂I(
w

2π
)

)
(8.6.13)

≈ e−δw
α

πw

(
sin(−wu+ δwα tan

πα

2
) + sin(−w + w

1 + γ

γ
u− δwα tan

πα

2
)

)
=

2e−δw
α

πw
sin

(
w
u− γ

2γ

)
× cos

(
wu+ w

u− γ
2γ

− δwα tan
πα

2

)
. (8.6.14)

Substitute the above (8.6.14) into (8.6.9) and then into (8.6.8), we have (8.6.1).

The approximation of FYn as given by Theorem 8.6.1 takes effect on two approximations:

(i) The asymptotic density function of (Mn, I) as given in Corollary 8.5.3,

(ii) And the approximation of φI as given by Proposition 8.4.2.

This approximation of FYn will be validated by simulation and used in Chapter 11.

8.7 Conclusion

We investigated the heavy-tail asymptotics of wireless links under both unbounded and bounded

path loss models. The singularity of the decaying power-law path loss model results in different

asymptotic behaviours of wireless links.

In case of unbounded path loss, the signal strength is regularly varying, leading to very heavy-

tailed interference and maximum signal strength. Moreover, due the common dominant com-

ponent corresponding to the singularity of the path loss, interference and maximum of signal

strengths behave dependently even after undergoing appropriate normalisation.

By contrast, in case of bounded path loss, the signal strength is rapidly varying and its tail

behaviour is rather determined by that of the underlying lognormal shadowing. Thereby, it

lies on the domains of attraction of the Gumbel distribution and Gaussian distribution. More

importantly we obtain in this case the asymptotic independence of the interference and maximum

of signal strengths. This allows for an approximation of the distribution of the best signal quality

which is analytically less complex than its exact form previously developed in Chapter 7.

Finally, we observe that the above asymptotic properties of extremes of wireless links are obtained

as the number of measured nodes increases freely within a bounded network area. This scenario

corresponds to a network densification context. The results should be consequently suitable for

such a network densification scenario. This observation opens applications to dense small cell

networks as the one presented in Chapter 11.





Chapter 9

Some Properties of Level

Crossings of a Stationary Process

9.1 Introduction

The contribution of many authors has established a fundamental of level crossings of station-

ary processes with important results such as those summarised in §5.3. They have important

applications to the mobile communication networking such as the one shown in §5.3.2. In par-

ticular, celebrated results firstly provided by Rice [12, 13], Kac and Slepian [14] give us the

exact formulation of the mean level crossing rate (Theorem 5.3.1), the asymptotic trajectory of

excursions above a large level (Theorem 5.3.3), as well as the Poisson process of up-crossings

(Theorem 5.3.5). However, different applications give rise to new questions, and they require for

more investigations of this theoretical topic. In particular, in wireless communications, fluctu-

ations of wireless link signal with respect to a low level or with respect to a high level are all

critical to the communication quality and to network designs. While the asymptotic property of

up-excursions above a very large level was investigated and formulated in Theorem 5.3.3,

How do up-excursions behave above a very small level?

is still an open question. In addition, since results as we have seen in §5.3 concern with properties

of level crossings of one level, another important question remains:

What are properties of level crossings of several adjacent levels?

This chapter is aimed at investigating these two questions by considering a stationary normal

process X(t). With appropriate conditions specified for the autocorrelation function RX(τ) of

X(t), we show in §9.2 that the length of up-excursions above a small level −γ is asymptotically

an exponential distribution with rate equal to EU−γ as −γ → −∞.

For the above second question, we develop in §9.3 some properties associated with crossings of

X(t) of two adjacent large levels γ1 and γ2 ≥ γ1. We obtain the mean number of crossings of

X(t) of level γ2, and the distribution of the length of up-excursions above γ2, given that X(t)

125
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has an up-excursion above γ1 as γ1 → +∞. An application with the probability of successive

excursions of X(t) during some given time window is then derived in §9.3.3 to show the interest

of the developed results.

9.2 Excursions Above a Small Level

Given a very small level −γ → −∞, we are interested in the time τu of an up-excursion of the

process X(t) above the level −γ. We investigate its limiting distribution by assuming that the

stationary normal process X(t) admits an autocorrelation function RX(τ) satisfying condition

(5.3.8)

RX(τ) = 1− λ2

2!
τ2 +

λ4

4!
τ4 + o(τ4) (9.2.1)

with finite λ2 and λ4, as τ → 0, and satisfying condition (5.3.9)

RX(τ) = O(τ−a) (9.2.2)

for some a > 0, as τ →∞.

Let t2 be the time between a downcrossing to the next downcrossing of level −γ. With the con-

ditions stated above, its limiting distribution as −γ → −∞ is given according to Theorem 5.3.4

in §5.3 for k = 1:

F2(t) = 1− e−µt, as − γ → −∞ (9.2.3)

with µ = ED−γ which is the mean downcrossing rate of level −γ. By Proposition 5.3.2 we can

write µ = EU−γ .

Let τd be the time between a downcrossing and the next upcrossing of the level −γ. Then the

time τu of the up-excursion above −γ is precisely the interval from the upcrossing to the next

downcrossing of X(t) of the level −γ. It is clear that τu is a random variable given as

τu = (t2 − τd | t2 ≥ τd).

But t2 as given by (9.2.3) is an exponential distribution with rate µ. By the memorylessness

property of the exponential distributions, τu is an exponential distribution with rate µ. This is

stated in the following.

Theorem 9.2.1. With the process X(t) described above, under the conditions (9.2.1) and (9.2.2),

the time τu of an up-excursion of X(t) above a very small level −γ < 0 is asymptotically an

exponential distribution of rate µ = EU−γ , i.e.

P(τu ≤ τ) = 1− e−µτ , as − γ → −∞.

By Proposition 5.3.2 and Theorem 5.3.1 we have that

µ = EU−γ =
1

2π

√
λ2

λ0
exp

(
− γ2

2λ0

)
,

which tends to zero. As a sequel, P(τu ≤ τ) is approximatively equal to zero as −γ → −∞ for

all τ less than infinity as −γ → −∞. It means that the process X(t) stays most of the time
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above a very low level. Whereas, by Theorem 5.3.3, the length of an up-excursion above a very

large level γ behaves asymptotically as a Rayleigh distribution of parameter

2

γ
√
λ2

(see (5.3.13)) which tends to zero as γ →∞. Thus, P(τu ≤ τ) is approximatively equal to zero

as γ → ∞ for all τ higher than zero. This means that X(t) stays above a very large level for a

very short interval.

The above difference leads to another distinctness between up-excursions of high level γ and

of small level −γ. In the case of up-excursions above γ → +∞, the length of up-excursions is

very small and their trajectory is approximated by parabolas according to Theorem 5.3.3. By

contrast, we do not have any information about the trajectory of up-excursions above a level

−γ → −∞ except their length given according to Theorem 9.2.1. In fact, the condition (9.2.2)

suggests that it is not possible to ‘predict’ X(t0 +T ) from X(t0) when T →∞. Since the length

of up-excursions above −γ is very long as discussed above, (9.2.2) does not allow us to have

enough information about the trajectory of X(t) above a very small level −γ.

9.3 Crossings of Adjacent High Levels

Till now we have concerned with crossings of a stationary normal process X(t) of one level. In

this section we investigate some properties associated with crossings of X(t) of several adjacent

high levels. In the sequel, we assume that the autocorrelation function RX(τ) of X(t) satisfies

condition (9.2.2), and condition (5.3.4) which is

R′′X(τ) = λ2 +O(| log |τ ||−a) as τ → 0 (9.3.1)

with finite λ2 for some a > 1. Note that here we relax the assumption in (9.2.1) used in §9.2

that RX(τ) has a finite fourth derivative at the origin.

9.3.1 Mean Number of Crossings of Successive Levels

Given that X(t) has an up-excursion above a high level γ1 with length T1 ≥ τ1 for some τ1, we

investigate the mean number of crossings of X(t) of a level γ2 ≥ γ1, in particular we study this

quantity as γ1 → +∞.

Under the conditions (9.2.2) and (9.3.1), by Theorem 5.3.3 an up-excursion of X(t) above the

level γ1 behaves asymptotically as

X(t) ∼ γ1 + ξt− γ1
λ2t

2

2
, as γ1 → +∞,

where ξ is a Rayleigh random variable of parameter
√
λ2. This suggests that X(t) stays above

γ1 during time interval [0, T1] with

T1 =
2

γ1λ2
ξ, (9.3.2)



128 Chapter 9 Some Properties of Level Crossings of a Stationary Process

and behaves as a downwards parabola. During this time interval [0, T1], X(t) will have one

up-crossing of level γ2 if

γ1 + ξt− γ1
λ2t

2

2
> γ2, (9.3.3)

and will have zero up-crossing of level γ2 otherwise. Here, X(t) will have a tangency with the

level γ2 if ∆ = 0, and this tangency is not considered as an up-crossing. Solving for the quadratic

inequality

−γ1
λ2t

2

2
+ ξt− (γ2 − γ1) > 0

with discriminant

∆ = ξ2 − 2γ1λ2(γ2 − γ1), (9.3.4)

we obtain

(# up-crossings of X(t) of γ2 |X(t) ≥ γ1) =

1 if ∆ > 0

0 if ∆ ≤ 0
.

Hence, the mean number of up-crossings of X(t) of level γ2 ≥ γ1 during [0, T1] given that X(t)

has an up-excursion above γ1 with length T1 ≥ τ1 is

E{# up-crossings of X(t) of γ2 |X(t) ≥ γ1 with T1 ≥ τ1} = P(∆ > 0 |T1 ≥ τ1)

= P(ξ2 > 2γ1λ2(γ2 − γ1) | ξ ≥ γ1λ2

2
τ1)

=
P
(
ξ2 > max

(
2γ1λ2(γ2 − γ1), (γ1λ2

2 τ1)2
))

P
(
ξ ≥ γ1λ2

2 τ1

) ,

as γ1 → +∞. With ξ a Rayleigh distribution of parameter
√
λ2, ξ2 is an exponential distribution

of intensity 1/(2λ2):

P(ξ2 ≤ x) = 1− exp

(
− x

2λ2

)
.

Hence,

P
(
ξ2 > max{2γ1λ2(γ2 − γ1), (

γ1λ2

2
τ1)2}

)
= exp

(
−max{γ1(γ2 − γ1),

γ2
1λ2

8
τ2
1 }
)

= exp(−V max{(τ∗1 )2, τ2
1 })

where

V :=
γ2

1λ2

8
, (9.3.5)

and

τ∗1 :=

√
γ1(γ2 − γ1)

V
=

√
8(γ2 − γ1)

γ1λ2
, (9.3.6)

We have the following conclusion

Theorem 9.3.1. With the process X(t) described above, assume that RX(t) satisfies conditions

(9.3.1) and (9.2.2). Then, for γ2 ≥ γ1

E{# up-crossings of X(t) of γ2 |X(t) ≥ γ1 with T1 ≥ τ1} =
exp

(
−V max{(τ∗1 )2, τ2

1 }
)

exp (−V τ2
1 )

,

as γ1 → +∞ with V given in (9.3.5) and τ∗1 given in (9.3.6).
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In particular, if the up-excursion of X(t) above γ1 is long enough so that τ1 > τ∗1 , then there

will be one up-crossing of X(t) of the level γ2 with probability one. Motivated by this, we call

τ∗1 the ‘critical length’ of an up-excursion above γ1.

An interesting application of the above result is for the case of τ1 = 0. Denote by Uγ2|γ1
the

number of up-crossings of X(t) of level γ2 given that X(t) is above γ1. Then Uγ2|γ1
is equal to

E{# up-crossings of X(t) of γ2 |X(t) ≥ γ1 with T1 ≥ τ1} for τ1 = 0. So:

Corollary 9.3.2. With the notation described above and hypothesis of Theorem 9.3.1:

EUγ2|γ1
= exp(−γ1(γ2 − γ1)) as γ1 → +∞. (9.3.7)

During the up-excursion of X(t) above γ1, if X(t) has an up-crossing of γ2, then X(t) will have

a down-crossing of γ2 by the parabola property of X(t) as γ1 → +∞. Hence, denoting Dγ2|γ1

to be the number of down-crossings of X(t) of the level γ2 given that X(t) has an up-excursion

above γ1, it is obvious that

EDγ2|γ1
= EUγ2|γ1

,

and the mean number of crossings is

ECγ2|γ1
= 2 EUγ2|γ1

,

as γ1 → +∞.

Above we obtained the mean number of a up-crossings (and down-crossings, crossings) of an

adjacent level γ2 given an up-excursion above a lower level γ1 → +∞. Using these results, we

can also obtain the mean up-crossing rate (and also mean down-crossing rate, mean crossing

rate) of (X(t)|X(t) ≥ γ1 with T1 ≥ τ1) of the level γ2 ≥ γ1 as γ1 → +∞ by noting that the

up-crossing rate is given as the ratio of number of up-crossings divided by the time duration T1.

Taking the expectation of this ratio for T1 from τ1 to infinity, we obtain the mean up-crossing

rate without any difficulty. Nevertheless, we prefer to not provide it here. The reason is that such

a mean up-crossing rate does not provide meaningful information, and it may even introduce

ambiguity. In fact, a mean crossing rate should give the mean number of crossings when it is

multiplied by a time duration, whereas in our case we know that (X(t)|X(t) ≥ γ1) can have at

most only one up-crossing of γ2 for all time durations T1.

9.3.2 Length of Excursions Above Successive Levels

Using the notation described above, we devote to this subsection the distribution of the length,

say T2, of an up-excursion of X(t) above the level γ2 ≥ γ1 given that X(t) has an up-excursion

above γ1 with length T1 ≥ τ1, as γ1 → +∞. The conditional length T2 is the length of the time

interval during with the inequality (9.3.3) holds:

(T2 |X(t) ≥ γ1 with T1 ≥ τ1) =

 2
√

∆
γ1λ2

if ∆ > 0 |T1 ≥ τ1
0 if ∆ ≤ 0 |T1 ≥ τ1

,
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with ∆ given in (9.3.4). Hence,

P(T2 = 0 |X(t) ≥ γ1 with T1 ≥ τ1) = P(∆ ≤ 0 |T1 ≥ τ1)

= P
(
ξ2 ≤ 2γ1λ2(γ2 − γ1)

∣∣∣ ξ ≥ γ1λ2

2
τ1

)
=

P((γ1λ2

2 τ1)2 ≤ ξ2 ≤ 2γ1λ2(γ2 − γ1))

P(ξ ≥ γ1λ2

2 τ1)
,

which, by the Rayleigh distribution of ξ, reduces to

P(T2 = 0 |X(t) ≥ γ1 with T1 ≥ τ1) = 1 (τ1 ≤ τ∗1 )

(
1− e−V (τ∗1 )2

e−V τ
2
1

)
(9.3.8)

with V given in Theorem 9.3.1, and τ∗1 is the critical length given in (9.3.6). Similarly, for all

τ ≥ 0

P(T2 > τ |X(t) ≥ γ1 with T1 ≥ τ1) = P
(2
√

∆

γ1λ2
> τ

∣∣∣T1 ≥ τ1
)

= P
(
ξ2 > (

γ1λ2

2
τ)2 + 2γ1λ2(γ2 − γ1)

∣∣∣ ξ ≥ γ1λ2

2
τ1

)
=

P(ξ2 > max{(γ1λ2

2 τ)2 + 2γ1λ2(γ2 − γ1), (γ1λ2

2 τ1)2})
P(ξ ≥ γ1λ2

2 τ1)
,

which is finally equal to

P(T2 > τ |X(t) ≥ γ1 with T1 ≥ τ1) =
exp

(
−V max{τ2 + (τ∗1 )2, τ2

1 }
)

exp(−V τ2
1 )

. (9.3.9)

We conclude the above results in the following

Proposition 9.3.3. With the notation described above and the conditions of Theorem 9.3.1,

the distribution of the length T2 of an up-excursion of X(t) above γ2 given that X(t) has an

up-excursion above γ1 ≤ γ2 with length T1 ≥ τ1 is determined jointly by (9.3.8) and (9.3.9) as

γ1 → +∞.

9.3.3 Applications

The following application shows the interest of the results developed above. Using the notation

and conditions described within §9.3, for two fixed levels γ1 and γ2 ≥ γ1, we are interested

in successive up-excursions of X(t) above γ1 and above γ2 during some time window [0, T ].

Specifically, we determine the following probability

P := P(X(t) ≥ γ1 with T1 ≥ τ1 and X(t) ≥ γ2 with T2 ≥ τ2 for t ∈ [0, T ]).

This is precisely given by

P =
E{total time of X(t) ≥ γ1 with T1 ≥ τ1 and X(t) ≥ γ2 with T2 ≥ τ2, t ∈ [0, T ]}

T
,
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by the stationarity of X(t). Of course, the main concern here is due to the numerator. Putting

T ∗2 = (T2 |X(t) ≥ γ1 with T1 ≥ τ1),

where, according to the notation described above, T2 is the length of an up-excursion of X(t)

above γ2. We have

E{total time of X(t) ≥ γ1 with T1 ≥ τ1 and X(t) ≥ γ2 with T2 ≥ τ2, t ∈ [0, T ]}

=E{# excursions above γ1 with T1 ≥ τ1 for t ∈ [0, T ]}

×E{# excursions above γ2 with T2 ≥ τ2 |X(t) ≥ γ1 with T1 ≥ τ1}

×E{T ∗2 |T ∗2 ≥ τ2}. (9.3.10)

We shall determine the three terms on the right hand side of this equation in the following.

Firstly we have

E{# excursions above γ1 with T1 ≥ τ1 for t ∈ [0, T ]}

= E{# up-crossings of γ1 during [0, T ]} ×P(T1 ≥ τ1)

= T ·EUγ1 · exp(−V τ2
1 ), as γ1 → +∞, (9.3.11)

which is obtainable with T1 given in (9.3.2), where EUγ1
is the mean up-crossing rate of level γ1

given according to Proposition 5.3.2.

For the second term on the right-hand side of (9.3.10),

E{# excursions above γ2 with T2 ≥ τ2 |X(t) ≥ γ1 with T1 ≥ τ1}

=E{# up-crossings of γ2 |X(t) ≥ γ1 with T1 ≥ τ1}

×P(T2 ≥ τ2 |X(t) ≥ γ1 with T1 ≥ τ1),

in which the first term on the right hand side is the mean number of up-crossings of X(t) of level

γ2 given that X(t) has an up-excursion above γ1 with length T1 ≥ τ1, it is given according to

Theorem 9.3.1; and the second term on the right-hand side is given as

P(T2 ≥ τ2 |X(t) ≥ γ1 with T1 ≥ τ1)

= P(T2 > τ2 |X(t) ≥ γ1 with T1 ≥ τ1) + P(T2 = τ2 |X(t) ≥ γ1 with T1 ≥ τ1)

=
e−V max{τ2

2 +(τ∗1 )2,τ2
1 }

e−V τ
2
1

+ 1(τ2 = 0)1(τ1 ≤ τ∗1 )
(

1− e−V (τ∗1 )2

e−V τ
2
1

)
(9.3.12)

which is obtainable by Proposition 9.3.3. So

E{# excursions above γ2 with T2 ≥ τ2 |X(t) ≥ γ1 with T1 ≥ τ1}

=
e−V max{(τ∗1 )2,τ2

1 }

e−V τ
2
1

(
e−V max{τ2

2 +(τ∗1 )2,τ2
1 }

e−V τ
2
1

+ 1(τ2 = 0)1(τ1 ≤ τ∗1 )
(

1− e−V (τ∗1 )2

e−V τ
2
1

))
(9.3.13)

Finally we derive the last term on the right-hand side of (9.3.10).

E{T ∗2 |T ∗2 ≥ τ2} = τ2 +

∫ ∞
τ2

P(T ∗2 > τ)

P(T ∗2 ≥ τ2)
dτ (9.3.14)
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where by (9.3.9) we have∫ ∞
τ2

P(T ∗2 > τ)dτ =

∫ ∞
τ2

e−V max{τ2+(τ∗1 )2,τ2
1 }

e−V τ
2
1

dτ.

For this we distinguish between two cases with τ1 ≤ τ∗1 and τ1 > τ∗1 . (i) For the case with

τ1 ≤ τ∗1 , ∫ ∞
τ2

P(T ∗2 > τ)dτ =

∫ ∞
τ2

e−V (τ2+(τ∗1 )2)

e−V τ
2
1

dτ =
e−V (τ∗1 )2

e−V τ
2
1

√
π

4V
erfc(
√
V τ2). (9.3.15)

And (ii) for the case with τ1 > τ∗1 , let us denote by τ∗2 the solution of

τ2 + (τ∗1 )2 = τ2
1 ,

it means that

τ∗2 =
√
τ2
1 − (τ∗1 )2. (9.3.16)

Then ∫ ∞
τ2

P(T ∗2 > τ)dτ = 1(τ2 < τ∗2 )

∫ τ∗2

τ2

dτ +

∫ ∞
max{τ∗2 ,τ2}

e−V (τ2+(τ∗1 )2)

e−V τ
2
1

dτ

= 1(τ2 < τ∗2 )(τ∗2 − τ2) +
e−V (τ∗1 )2

e−V τ
2
1

√
π

4V
erfc(
√
V max{τ∗2 , τ2}). (9.3.17)

So, E{T ∗2 |T ∗2 ≥ τ2} is given according to (9.3.14) with P(T ∗2 ≥ τ2) given by (9.3.12), and∫∞
τ2

P(T ∗2 > τ)dτ given by (9.3.15) in case τ1 ≤ τ∗1 , and given by (9.3.17) in case in case τ1 > τ∗1 .

By substituting (9.3.11), (9.3.13), and (9.3.14) into (9.3.10), we obtain the probability of the

question. For ease of illustration, we present the final result for different possibilities of τ1 and

τ2

• For τ1 ≤ τ∗1 and τ2 = 0:

P = E{Uγ1}e−V (τ∗1 )2

√
π

4V
. (9.3.18)

• For τ1 ≤ τ∗1 , and τ2 > 0:

P = E{Uγ1
}e−2V (τ∗1 )2 e−V τ

2
2

e−V τ
2
1

(
τ2 +

√
π

4V

erfc(
√
V τ2)

e−V τ
2
2

)
. (9.3.19)

• For τ1 > τ∗1 and τ2 ≥ τ∗2 . We have τ2
1 ≤ τ2

2 + (τ∗1 )2. Then

P = E{Uγ1
}e−V (τ∗1 )2

e−V τ
2
2

(
τ2 +

√
π

4V

erfc(
√
V τ2)

e−V τ
2
2

)
. (9.3.20)

• For τ1 > τ∗1 and τ2 < τ∗2 . We have τ2
1 > τ2

2 + (τ∗1 )2. Then

P = E{Uγ1
}e−V τ

2
1

(
τ∗2 +

e−V (τ∗1 )2

e−V τ
2
1

√
π

4V

erfc(
√
V τ2)

e−V (τ∗2 )2

)
. (9.3.21)
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9.4 Conclusion

In this chapter we investigated some properties of level crossings of a stationary normal process.

We showed that the length of up-excursions above a very small level −γ is asymptotically an

exponential distribution as −γ → −∞. Besides the analytical simple expression provided by

the exponential distributions, this result clarifies the difference between up-excursions above a

small level and above a large level in that a stationary normal process stays most of the time

above a very small level, while it stays during every short intervals above a very large level.

The mean number of crossings as well as the length of up-excursions above adjacent high level

were also obtained. These results allow us to derive the probability of successive excursions

above adjacent levels during a time window, which will be used in Chapter 10 for the analysis

of handover measurement.
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Chapter 10

Handover Measurement: Analysis

and Applications to LTE

10.1 Introduction

In mobile cellular networks, a user may travel across different cells during a service. Handover

which switches the user’s connection from one cell to another is an essential function. Technology

advancement is expected to minimise service interruption and to provide seamless handover. As

we have seen in Chapter 4, a handover procedure includes two functions which are handover mea-

surement and handover decision-execution. The measurement function is responsible for finding

the a suitable neighbouring cell for handover. Handover decision-execution is made upon the

measurement function. It decides whether or not to execute a handover to the candidate neigh-

bouring cell provided by the measurement function, and in that case it coordinates multi-party

handshaking between the user and cell sites to have handover execution fast and transparent. In

mobile-assisted network-controlled handover, which is recommended by all cellular standards for

its operational scalability and effectiveness, the mobile is in charge of the handover measurement

function. It measures the signal quality of neighbouring cells, and reports the measurement

result to the network to make a handover decision.

It is clear that the quality of the handover target cell is directly determined by handover mea-

surement. Moreover, the handover measurement is performed during the active state (also called

connected-mode) of the mobile, its impact on the on-going service is inevitable. Advanced wire-

less broadband systems such as 3G and 4G allow adjacent cells operating in a common frequency

band, and thereby enable the measurement of several neighbouring cells simultaneously. This

results in enhanced handover measurement. Its efficiency is primarily determined by the number

of cells that the mobile is able to measure simultaneously during a measurement period, which

is called mobile’s measurement capability, namely k. For example, a LTE-compliant terminal is

required be able to measure eight cells in each period, see §4.1.

Handover is an important topic and has received a lot of investigations. But our literature review

summarised in §4.3 shows that most of prior arts addressed the handover control problem of the

handover decision function. The handover measurement function has received less attention and

most investigations and analysis are given by simulations. While a handover control problem

137



138 Chapter 10 Handover Measurement: Analysis and Applications to LTE

can be studied conventionally in a simplified model of two cells in which a handover decision

is made by assigning the mobile to one of them, the handover measurement problem involves

a more complex system in which the signal quality of best cell among a large number of cells

needs to be determined. This often incurs modeling and analysis difficulty especially when

stochastic parameters are introduced to better describe a wireless network. Moreover, cellular

standards introduce many parameters to control the handover measurement operation trying to

reduce the impact of this function on the system performance, for example 3GPP specifies a

dozen of measurement reporting events for 3G networks, and many for LTE as summarised in

Table 3.4. This makes the analysis of handover measurement more complex. Therefore, some

basic questions remain to be answered. Most importantly,

What are unified impacts of handover measurement controlling parameters on the system

performance?

In particular, how optimal is the current suggestion that k = 8 of LTE standard considering that

the handover measurement in LTE is no longer supported by a neighbour cell list? There lacks

a unified model and analytical study of the handover measurement which is essential to network

design and optimisation. With this observation,

This chapter establishes a generalised framework for the system analysis and probabilistic

aspects of handover measurement.

Using the results of the best signal quality developed in Chapters 7 and 8, and those of level

crossings developed in Chapter 9, this chapter will bring the following main contributions:

• A generalised model is developed to characterise the handover measurement and to facili-

tate network analysis and performance evaluation.

• The probability of the key events is derived under interference-limited condition in a mul-

ticell system: suitable target found, service failure, scanning triggering, and scanning with-

drawal taking into account the nature of digital communication. Analytical results of the

above are known fundamental but challenging.

• Using the above results, we investigate the handover measurement in LTE with respect to

its requirements on measurement capability and system setting.

Section 10.2 describes the system model. Section 10.3 formulates the key probabilistic events

of a handover measurement process. Section 10.4 is devoted to developing analytical results

of the formulated key events. Section 10.5 describes state diagrams developed for handover

measurement, and Section 10.6 defines performance metrics using the proposed state diagram.

Section 10.7 applies the proposed framework to study the handover measurement in LTE and

presents its results. Finally, Section 10.8 provides some concluding remarks.

10.2 System Description

The system is assumed to be entirely described by the assumptions presented in Chapter 6 with

the following precision.
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Wireless Link Model. The random variables {Xi, i = 1, 2, . . .} refer to shadowing, and are

assumed lognormal expressible as

Xi = 10Zi/10, (10.2.1)

where the random variables {Zi, i = 1, 2, . . .} are independently and identically distributed

according to a Gaussian distribution with zero mean and standard deviation 0 < σZ < ∞.

Within this context, fast fading is averaged out as it usually varies much faster than that of

handover decision process. Handover algorithms are hard to respond to short-term fading as the

delay involved in BS switching is often much larger than the time scale of short-term fading, cf

§2.1.

The typical distance-dependent path loss is considered and is expressible as (cf. Chapter 8):

l(d) = (max(d,Rmin))β , for d ∈ R+,

where Rmin is some non-negative constant, and β is the path loss exponent.

The signal quality expressed in signal-to-interference-plus-noise ratio is given according to (2.3.3):

Qi = Pi/(1 + Ii), (10.2.2)

where Pi is the signal strength of cell i, and Ii =
∑
j 6=i Pj is the interference created by other

cells to the signal of cell i.

In the time domain, we consider that Zi(t) is stationary with auto-correlation function RZ(τ)

satisfying condition (5.3.9)

RZ(τ) = O(τ−a)

for some a > 0, as τ →∞, and condition (5.3.4) which is

R′′Z(τ) = λ2 +O(| log |τ ||−a) as τ → 0

with finite λ2 for some a > 1. For different uses later, for some time-varying process W (t), we

denote

DW (γ, τ, [ta, tb]) , {W (t) < γ, ∀ t ∈ [t0, t0 + ∆t] with ∆t ≥ τ and t0 + τ ∈ [ta, tb]} .

to be an excursion of W below level γ with minimum-duration τ , considering time window [ta, tb].

Similarly, denote

UW (γ, τ, [ta, tb]) , {W (t) > γ, ∀ t ∈ [t0, t0 + ∆t] with ∆t ≥ τ and t0 + τ ∈ [ta, tb]} .

to be an excursionW above level γ with minimum-duration τ , considering time window [ta, tb]. In

the above definitions, the starting time t0 of the crossing event does not necessarily belong to the

time window [ta, tb]. Besides, the strictly inequalities < and > can be replaced by inequalities ≤
and ≥, respectively, without change of results. We refer to §5.3 for more details on level crossing

properties of a time-varying process.

Handover Measurement Procedure. The handover measurement, also called (neighbour

cell) scanning, as described in §4.1 is generalised in Figure 10.1. The mobile starts scanning

neighbouring cells as soon as the triggering condition is satisfied. Later on, it needs a certain time



140 Chapter 10 Handover Measurement: Analysis and Applications to LTE

Service Failure

Withdrawal

Target Found

Signal quality of serving cell

is too bad or becomes good?

Scan neighbour cells and Monitor 

the signal quality of serving cell
Too 

bad
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target cell is found?

No

Yes
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No

Scanning is triggered

Continue

Scanning

Yes

Figure 10.1: Procedure of handover measurement

duration to successfully measure the signal quality of a neighbouring cell. This time duration

is so-called measurement period denoted by Tmeas. During each measurement period [(m −
1)Tmeas,mTmeas], for m = 1, 2, . . . where m = 1 corresponds to the first measurement after the

scanning is triggered, the mobile measures the signal quality of k neighbouring cells where k is the

mobile’s measurement capacity. And it obtains the signal quality of neighbouring cells at discrete

times m× Tmeas. For notational simplicity, in case of no ambiguity, we will use m and mTmeas

interchangeably, and use [m− 1,m] to refer to the measurement period [(m− 1)Tmeas,mTmeas].

During the measurement of neighbouring cells, the on-going service continuously undergoes the

fluctuations of the serving cell’s signal quality, leading to different possible outcomes. In fact, the

signal quality of the serving cell affects the on-going user’s service in a time scale as short as one

time slot which is usually much smaller than Tmeas. During each measurement period [m−1,m],

if the signal quality of the serving cell becomes good enough, the mobile may withdraw the

scanning to reduce the scanning overheads. If the signal quality of the serving cell is too bad,

the scanning ends in failure as a call drop or service interrupt occurs. In this case, the mobile

will perform a link reestablishment procedure for the service recovery purpose, see e.g. §3.3 for

the Radio Link Reestablishment in LTE. If the scanning identifies a suitable handover target, the

scanning ends in success. Otherwise, the mobile will continue the scanning and keep monitoring

the signal quality received from the serving cell.

10.3 Basic Formulation

10.3.1 Suitable Handover Target Found

A suitable handover target is a candidate neighbouring cell to which the serving base station

decides whether or not to handover the mobile. The suitable handover target becomes the final

handover target in the case that a handover execution is to be done.

A suitable handover target needs to satisfy necessary conditions of a handover target. The

necessary condition considered here is that the signal quality of the suitable handover target

must be better than a required threshold γreq. The handover decision process may consider

more criteria to refine the selection depending on the control algorithm used by the base station,
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for example the current load of the candidate handover target, or the relative signal quality

between the candidate handover target and the serving cell. Here we deal with the handover

measurement function whose role is to find a suitable handover target and prevent service failure,

criteria for handover decision process are thus not of our interest here.

Since in each measurement period a mobile scans k cells and the cell with best signal quality is

preferable, the event of having a suitable handover target found at moment m can be defined

by:

findtargetm(k) , {Yk ≥ γreq} , (10.3.1)

where

Yk , max
i=1,··· ,k

Qi (10.3.2)

denotes the best signal quality received from the k cells scanned.

10.3.2 Service Failure

In wireless communications, the signal usually undergoes time-varying fading and other impair-

ments like interference such that its instantaneous amplitude fluctuates. This results in bit and

burst errors when the signal quality is low. Techniques such as redundancy coding, automatic

repeat request (ARQ) and hybrid-ARQ (see §3.2) are often used to maintain the communication

reliability. These techniques are however effective to recover data only when the bit error rate is

relatively low. When the SINR stays below a minimum allowable level, say γmin, for long time,

successive bits and successive bursts are erroneous, those error-fighting techniques do not help

any more, leading to a service failure. For instance, LTE considers that a radio link failure is

to be detected if a maximum number of retransmissions (under ARQ or H-ARQ mechanism) is

reached, see §3.3. Therefore, it is more appropriate and also general to incorporate a minimum

duration τmin when characterising the event, see §5.3.2. A service failure during [m − 1, m] is

thus defined by an excursion of the serving cell’s signal quality below the minimum tolerable

level γmin with minimum-duration τmin:

failm , DQ0
(γmin, τmin, [m− 1,m]), (10.3.3)

where Q0(t) denotes the SINR received from the serving cell at time t. In Figure 10.2, the serving

cell’s signal quality is below γmin during duration τmin and a service failure occurs at D. Note

that when τmin = 0, the definition in (10.3.3) corresponds to an instantaneous SINR outage.

10.3.3 Scanning Trigger

Handover measurement introduces overheads such as gaps in data transmission or mobile’s re-

source consumption (see §4.1). It is thus helpful to only perform a handover measurement when

the signal quality of the serving cell is really bad. It is possible that the SINR may cross and

stay below or above a threshold only for a very short duration. Thus, to predict with high

probability the future signal quality of the serving cell, the handover measurement should be

triggered only if the serving cell’s signal quality is worse than threshold γt for a certain period

τt. But note that if these two parameters are not appropriately configured, it may happen that

a service failure occurs before the handover measurement initiation; and in this case the mobile

is not be able to perform a handover measurement but it has to conduct a link reestablishment
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Figure 10.2: Level crossing events

procedure. Therefore, the handover measurement is triggered during period [m − 1, m] if the

serving cell’s signal quality is worse than threshold γt during at least τt and if no service failure

occurs during this period:

trigm , DQ0
(γt, τt, [m− 1,m]) ∧ ¬failm, (10.3.4)

where ∧ and ¬ stand for logical AND and logical NEGATION, respectively. It is thus obvious

that γt must be set higher than γmin.

In Figure 10.2, the handover measurement is triggered at A. After that, the serving cell’s signal

quality appears bad again which triggers another scanning process at C.

10.3.4 Scanning Withdrawal

Similarly, the handover measurement should be withdrawn when the signal quality of serving

cell becomes back good. Precisely, it should be withdrawn if the serving cell’s signal quality is

better than a threshold γw for a certain period τw. So, the event of scanning withdrawal during

period [m− 1, m] is expressible as:

wdrawm , UQ0
(γw, τw, [m− 1,m]). (10.3.5)

In Figure 10.2 where we consider γw = γt, and τw = τt, Q0(t) crosses over γt and stays above

during a duration longer than τt, the scanning process is canceled at B.

10.4 Analytical Development

This section is reserved to the development of the probability of events which are formulated in

§10.3, including: (Yk ≥ γreq), failm, trigm, and wdrawm. We determine these event probabilities

in the following structure. First, we derive P(Yk ≥ γ) for some constant γ by using theoretical
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results developed in Chapter 7 and Chapter 8. Next, we deal with P(failm) in §10.4.2. Then,

the analogy between down-crossing events trigm and failm will allow us to obtain P(trigm) in

§10.4.3. Finally, we determine P(wdrawm) in §10.4.4.

10.4.1 Probability of Finding a Suitable Cell

To determine the probability of P(Yk ≥ γ), one needs to define the set of candidate cells from

which k cells are taken. By today’s cellular standards, there are two different cases: limited

candidate set and unlimited candidate set. In the former, a mobile only scans neighbouring cells

belonging to a pre-defined set which includes a limited number of potential candidates, say Ncell

cells. This set in practice corresponds to the neighbour cell list as used in GSM, WCDMA, and

WiMAX with Ncell = 32, see §4.2. In the unlimited candidate set, the mobile is allowed to scan

any cell in the network. However, a network may have a very large number of cells, scanning

without restriction would introduce unsupportable overheads. Therefore, new broadband cellular

systems use a set of, say NCSID, cell synchronisation identities (CSID) which allow a mobile to

identify and measure cells more easily. This set of NCSID CSIDs are shared among all the cells

such that two cells having the same CSID need to be spatially separated enough to avoid any

confusion. When required to scan k cells, the mobile just picks k out of the total NCSID CSIDs

and conduct standardised cell synchronisation and measurement. An example system using this

mechanism is LTE that defines 504 physical cell identifiers (PCI) which serve as CSIDs. The

mobile performs the cell measurement autonomously without need of a pre-configured cell set like

the neighbour cell list used in predecessor systems, see §3.3 and Chapter 4 for more information.

Denote by B the network area of the candidate set. Then B is a bounded area in the case of

limited candidate set, whereas B = R2 in the case of unlimited candidate set. By the results of

Chapter 7 and Chapter 8, we determine P(Yk ≥ γ) for both cases.

Case B = R2. The set of neighbouring cells which are scanned through a selection of k out of

the total NCSID CSIDs is precisely a thinning Sk of B = R2 with retention probability equal to

ρk = k/NCSID. (10.4.1)

Note that the set Sk may have more than k cells, and this efficiently describes the real situation

where the mobile may detect several cells which have the same CSID. For this reason, LTE defines

the automatic neighbour relation (ANR) table to convert a reported physical cell identifier to a

unique cell global identifier (see §3.3).

Hence, (10.3.2) is equivalent to

Yk ≡ max
i∈Sk

Qi. (10.4.2)

and as a result

P(Yk > γ) = FYk(γ), (10.4.3)

where FYk(·) is the tail distribution function of Yk. Here, Yk is the best signal quality received

from a thinning of the whole network B = R2 with retention probability ρk. Consider the

unbounded distance-dependent path loss function l(d) = dβ , i.e. Rmin = 0, the tail distribution
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of Yk is precisely given by Corollary 7.5.2 in Chapter 7, and is depicted in the following:

P(Yk > γ) =

∫ +∞

γ

∫ +∞

0

exp (−C1w
α − C2(w, u))

π

[
− 1 + γ

γ

× cos
(
C1w

α tan(
πα

2
) + C3(w, u) + C4(w, u)

)
+ cos

(
C1w

α tan(
πα

2
) + C3(w, u)− wu

)]
dwdu, (10.4.4)

where constants as given therein are applied here for Xi as a lognormal random variable, so:

α = 2/β, and

C1 = (1− ρk)δ,

C2(w, u) = ρkcα
1F2(−α2 ; 1

2 , 1−
α
2 ;−u

2w2

4 )

uα
,

C3(w, u) = ρkcα
αw

1− α
1F2( 1−α

2 ; 3
2 ,

3−α
2 ;−u

2w2

4 )

uα−1
,

C4(w, u) = w(1− u(1 + γ)/γ),

in which Γ(·) denotes the gamma function, 1F2 denotes the hypergeometric function (see Chap-

ter 7), and constant δ is as given by (7.3.3):

δ = cαΓ(1− α) cos(πα/2),

where cα is as given by (7.3.4):

cα := πλE{pα} = πλE{(AXi)
α} = πλAα exp

(
α2σ2

X/2
)
,

with σX = σZ
log 10

10 . Simulation results in §10.7 show its accuracy.

Case B ( R2. We consider two different possibilities: scattered networks like rural macro

cellular networks where inter-site distance is large such that the intensity λ is small, and dense

networks like urban small cell networks where a large number of cells are deployed to support

dense traffic such that λ is large. Consider B̂ a disk-shaped network area with radius

RB̂ =
√
Ncell/(πλ). (10.4.5)

Under the Poisson point process assumption of the base station spatial distribution, B̂ has on

average Ncell BSs. In light of that, we can approximate the region of the Ncell neighbouring cells

by B̂.

For small λ and Ncell is relatively large, we can have RB̂ ≈ ∞, i.e., B̂ can be approximated by

R2. Similarly, let Sk be a thinning on B̂ with retention probability

ρk = k/Ncell (10.4.6)

such that Sk has on average k cells. The probability of finding a target cell can be well approx-

imated by (10.4.4).
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For large λ (and so the approximation RB̂ ≈ ∞ may be not applicable), it turns out that the

results developed in Chapter 8 for dense networks are applicable. Assume the bounded distance-

dependent path loss model by considering Rmin > 0, and assume that AR−βmin is large. Then

Theorem 8.6.1 in Chapter 8 is applicable and gives us:

P(Yk > γ) ≈
∫ ∞
γ

{
fMk

(u)

∫ ∞
0

2

πw
e−δw

α

sin
(
w
u− γ

2γ

)
× cos

(
wu+ w

u− γ
2γ

− δwα tan
πα

2

)
dw
}

du, (10.4.7)

where δ is given under (10.4.4), and fMk
is the probability density function of the maximum

signal strength Mk = maxki=1 Pi and is given by Corollary 8.3.1:

fMk
(x) = k · fP (x) · F k−1

P (x), for k ≥ 1, (10.4.8)

with FP denoting the cumulative density function of the signal strength received from a cell in

B̂ for the case of bounded path loss model, its exact expression is given by (8.2.2) of Proposi-

tion 8.2.1:

FP (x) = c
(
a−

2
βK1(x)− b−

2
βK2(x)− eλ2x−

2
βK3(x) + eλ2x−

2
βK4(x)

)
,

where a = AR−β
B̂

, b = AR−βmin, c = A
2
β (R2

B̂
−R2

min)−1, λ2 = 2σ2
Z/β

2, and Kj , j = 1, . . . , 4, refers

to the cdf of a lognormal distribution of parameters (µj , σX), in which

µ1 = log a, µ2 = log b, µ3 = µ1 + 2σ2
X/β, µ4 = µ2 + 2σ2

X/β.

and fP (x) = dFP (x)/dx. It is observed in §11.5 of Chapter 11 that (10.4.7) is a good approxi-

mation. This completes the discussion.

10.4.2 Probability of Service Failure P(failm)

In the definition (10.3.3), by noting that Pi = AXi/l(d), Q0(t) < γmin is re-written as Z(t) <

γ̂min(t) where

γ̂min(t) = 10 log10

(
γmin

l(d(t))

A
(1 + I(t))

)
is a time-varying level. As a sequel, the excursions of non-stationary process Q0(t) below the

fixed level γmin can be represented by the excursions of the stationary normal process Z(t) below

the time-varying level γ̂min(t). Let Tmin be the length of an excursion of Z(t) below level γ̂min(t),

failm is thus expressible as an excursion of Z(t) below the level γ̂min(t) with Tmin longer than

τmin, i.e.,

failm ≡ {excursion of Z(t) below γ̂min(t) with Tmin ≥ τmin,

for t ∈ [(m− 1)Tmeas − τmin, mTmeas]}, (10.4.9)

where the considered time window is [(m − 1)Tmeas − τmin, mTmeas] since the failure will occur

at a moment t0 + τmin anterior to (m − 1)Tmeas if the excursion starts at a moment t0 <

(m−1)Tmeas−τmin. In practice, τmin and Tmeas are typically about a few hundreds of milliseconds

(see, §4.1). The interval Tmeas + τmin is very short so that we consider that wherein the distance
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between the mobile and its serving BS is constant, i.e.

d(t) ≈ dm, (10.4.10)

for t ∈ [(m− 1)Tmeas − τmin, mTmeas]. In addition, if consider that the interference is constant,

say I, we have that γ̂min(t) ≈ γ̂min which is a constant and is equal to

γ̂min := 10 log10

(
γmin

l(dm)

A
(1 + I)

)
, (10.4.11)

for t ∈ [(m − 1)Tmeas − τmin, mTmeas]. Thus, by the stationarity of Z(t), for constant γ̂min and

all intervals [t1, t2], we have:

P(excursions of Z(t) below γ̂min with Tmin ≥ τmin, for t ∈ [t1, t2])

= P(excursions of Z(t) below γ̂min with Tmin ≥ τmin).

With the conditions previously described for RZ(τ), the probability of excursions of Zt(t) below

γ̂min with length T ≥ τmin is given by (5.3.18). Hence

P(failm | I(t) = x,d(t) = dm) = P(excursions of Z(t) below γ̂min with Tmin ≥ τmin)

= E{Dγ̂min
}
(
τmine

−Vminτ
2
min +

√
π

Vmin
Q(
√

2Vminτmin)

)
, (10.4.12)

where Q(x) =
∫∞
x

exp(−t2/2)√
2π

dt is the Q-function, EDγ̂min
is the average down-level crossing rate

of Z(t) of the level γ̂min and is given by Proposition 5.3.2:

E{Dγ̂min
} =

√
λ2

2πσZ
exp

(
− γ̂

2
min

2σ2
Z

)
,

and where Vmin =
γ̂2

minλ2

8 . Note that the interference behaves as a random variable, and under

the system model described in Section 10.2, it can be modeled as a shot noise and has the

characteristic function given by Corollary 7.4.4 in case Rmin = 0, and by Proposition 8.4.2 in

case Rmin > 0. So:

φI(w) = exp
(
− δ|w|α[1− jsign(w) tan(

πα

2
)]
)
,

where δ is given by (7.3.3) and is depicted under (10.4.4). Consider that β > 2, we have 0 < α < 1

such that φI(w) is absolutely integrable. By Feller [186, Thm.3, p.509], the pdf of I is thus given

by:

fI(x) =
1

2π

∫ +∞

−∞
e−jwxφI(w)dw =

1

π

∫ ∞
0

e−δw
α

cos
(
δ tan(

πα

2
)wα − xw

)
dw.

Hence, a more general expression of the service failure probability with random interference I(t)

than that of (10.4.12) is obtainable:

P(failm | d(t) = dm) =

∫ ∞
0

P(failm | I(t) = x, d(t) = dm)fI(x)dx

=

∫ ∞
0

∫ ∞
0

E{Dγ̂min
}
(
τmine

−Vminτ
2
min +

√
π

Vmin
Q(
√

2Vminτmin)

)
× e−δw

α

π
cos
(
δ tan(

πα

2
)wα − xw

)
dwdx. (10.4.13)
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Under the approximation (10.4.10) that d(t) is approximately constant in time interval Tmeas +

τmin, we have P(failm) given by (10.4.13).

Remark 10.4.1. If one may consider users moving at very high speeds such that d(t) changes

significantly during a time interval Tmeas + τmin, P(failm) is then given by:∫ m·Tmeas

(m−1)·Tmeas−τmin

∫ ∞
0

P(failm | I(t) = x, d(t))fI(x)dx · fd(t)dt

which requires the pdf of d(t), denoted by fd(t). This needs for an appropriate mobility model

which is omitted here for simplification.

10.4.3 Probability of Scanning Trigger P(trigm)

By the definition of the scanning trigger event trigm given in (10.3.4), we have:

P(trigm) =P(DQ0
(γt, τt, [m− 1,m]) ∧ ¬failm)

=P(DQ0
(γt, τt, [m− 1,m]))−P (DQ0

(γt, τt, [m− 1,m]) ∧ failm) , (10.4.14)

in which, by the analogy between DQ0(γt, τt, [m − 1,m]) and DQ0(γmin, τmin, [m − 1,m]), the

first term on the right-hand side can be directly obtained from the result of §10.4.2 considering

requirements γt and τt. Precisely, denote

γ̂t(t) = 10 log10

(
γt
l(d(t))

A
(1 + I(t))

)
.

Then, the excursions of non-stationary process Q0(t) below the fixed level γt is represented by

the excursions of the stationary normal process Z(t) below the time-varying level γ̂t(t). Let Tt

be the length of an excursion of Z(t) below level γ̂t(t), we have

DQ0
(γt, τt, [m− 1,m]) ≡ {excursion of Z(t) below γ̂t(t) with Tt ≥ τt,

for t ∈ [(m− 1)Tmeas − τt, mTmeas]}. (10.4.15)

Since the interval τt + Tmeas is small, assume that the condition (10.4.10) holds for t ∈ [(m −
1)Tmeas − τt, mTmeas]. So, similarly to (10.4.13), we obtain:

P(DQ0
(γt, τt, [m− 1,m]) | d(t) = dm) =

∫ ∞
0

∫ ∞
0

E{Dγ̂t
}
(
τte
−Vtτ

2
t +

√
π

Vt
Q(
√

2Vtτt)

)
× e−δw

α

π
cos
(
δ tan(

πα

2
)wα − xw

)
dwdx, (10.4.16)

where E{Dγ̂t
} is the average down-crossing rate of Z(t) of the level γ̂t given according to Propo-

sition 5.3.2, Vt =
γ̂2

t λ2

8 , and

γ̂t := γ̂t(d(t) = dm) = 10 log10

(
γt
l(dm)

A
(1 + I)

)
. (10.4.17)
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Now, we derive the second term on the right hand-side of (10.4.14). Using (10.4.9) and (10.4.15),

we get

P
(
DQ0

(γt, τt, [m− 1,m]) ∧ failm | I(t) = x, d(t) = dm
)

= P
(
Z(t) ≤ γ̂min with Tmin ≥ τmin, and Z(t) < γ̂t with Tt ≥ τt,

for t ∈ [(m− 1)Tmeas − τt, mTmeas]
)
.

This turns out to be the probability of successive excursions of two adjacent levels which is

developed in §9.3.3. Precisely, represent the down-excursions by the up-excursions thanks to an

inversion of signs and obtain

P
(
DQ0

(γt, τt, [m− 1,m]) ∧ failm | I(t) = x, d(t) = dm
)

= P
(
− Z(t) ≥ −γ̂min with Tmin ≥ τmin, and − Z(t) > −γ̂t with Tt ≥ τt,

for t ∈ [(m− 1)Tmeas − τt, mTmeas]
)
,

where −Z(t) is still a stationary normal process; and where, using (10.4.11), (10.4.17), and

that γt ≥ γmin, we have −γ̂t ≤ −γ̂min. Depending on requirements made for τmin and τt,

P
(
DQ0(γt, τt, [m − 1,m]) ∧ failm | I(t) = x, d(t) = dm

)
is given by either (9.3.18), (9.3.19),

(9.3.20), or (9.3.21). Finally, considering the random interference, similarly to (10.4.16) we get

P
(
DQ0

(γt, τt, [m− 1,m]) ∧ failm | d(t) = dm
)

=

∫ ∞
0

P
(
DQ0

(γt, τt, [m− 1,m]) ∧ failm | I(t) = x, d(t) = dm
)
fI(x)dx. (10.4.18)

Substitute this and (10.4.16) into (10.4.14), we obtain the probability of the scanning trigger

P(trigm) under the assumption that (10.4.10) holds for t ∈ [(m− 1)Tmeas − τt, mTmeas].

10.4.4 Probability of Scanning Withdrawal P(wdrawm)

The probability of wdrawm defined in (10.3.5) can be obtained by following the same technique

used in §10.4.2. Note that Q0(t) ≥ γw is equivalently represented as Z(t) ≥ γ̂w(t) with

γ̂w(t) = 10 log10

(
γw

l(d(t))

A
(1 + I(t))

)
.

The scanning withdrawal wdrawm is then expressible as an up-excursion of Z(t) above the level

γ̂w(t) with length Tw ≥ τw. By stationarity of Z(t)

P(wdrawm | I(t) = x, d(t) = dm) = P(excursions of Z(t) above γ̂w with Tw ≥ τw),

with γ̂w := 10 log10(γwl(dm)(1 + I)/A). Under the conditions specified for RZ(τ), we have from

(5.3.18) in §5.3.2 that

P(wdrawm|I(t) = x0, d(t) = dm) = E{Uγ̂w
}
(
τwe
−Vwτ

2
w +

√
π

Vw
Q(
√

2Vwτw)

)
where EUγ̂w

is the average up-crossing rate of Z(t) of the level γ̂w given according to Proposi-

tion 5.3.2, and Vw =
γ̂2

wλ2

8 . Similarly to (10.4.13), using the pdf of the interference I provided in
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§10.4.2 we obtain a more general expression:

P(wdrawm | d(t) = dm) =

∫ ∞
0

∫ ∞
0

E{Uγ̂w
}
(
τwe
−Vwτ

2
w +

√
π

Vw
Q(
√

2Vwτw)

)
× e−δw

α

π
cos
(
δ tan(

πα

2
)wα − xw

)
dwdx. (10.4.19)

Assume that the condition (10.4.10) holds for t ∈ [(m−1)Tmeas−τw, mTmeas], P(wdrawm) given

by (10.4.19).

10.5 State Diagram

The mobile performs the handover measurement function during its connected-mode (i.e. the

mobile has an active connection). In the connected-mode, the mobile’s activities related to the

mobility management are described by four states which are involved in a diagram as shown in

Figure 10.3. Essentially, two states Scan and NoScan describe whether the mobile is scanning

neighbouring cells or not. And two states Fail and CellSwitch describe whether the mobile

is encountering a service failure or whether it is being switched to another cell. For ease of

analytical development, we number the four states from one to four as illustrated in Figure 10.3.

In this diagram, the transition from state i, for i = 1, . . . , 4, at moment m − 1 to state j, for

j = 1, . . . , 4, at moment m is described by its probability denoted as πm(i, j).

From state NoScan at moment m − 1, in the next moment m the mobile will start a handover

measurement procedure and enter into state Scan if the specified triggering condition holds; or

the mobile will enter into state Fail if it encounters a service failure during period [m− 1, m].

Otherwise, it will remain in state NoScan. Note that the mobile does not scan neighbouring cells

when being in state NoScan, leading to no handover target to be identified. As a consequence,

excluding the case that the network forces the mobile to connect to an another cell, there is

no transition between NoScan and CellSwitch. This says that reducing scanning overheads

by increasing the state probability of NoScan will increase the risk of service failures due to

no-target-found problem. The transition probabilities πm(1, j), for j = 1, . . . , 4, are given as

follows:

πm(1, 2) = P(trigm),

πm(1, 3) = 0,

πm(1, 4) = P(failm),

πm(1, 1) = 1− πm(1, 2)− πm(1, 4).

(10.5.1)

In state Scan, the mobile performs the handover measurement function as previously described in

§10.2. Hence, according to the procedure described in Figure 10.1, the probability of transitions

from state Scan to the other states can be obtained in the following:

πm(2, 1) = P(wdrawm),

πm(2, 4) = P(failm),

πm(2, 3) = (1− πm(2, 1)− πm(2, 4))×P(Yk ≥ γreq),

πm(2, 2) = (1− πm(2, 1)− πm(2, 4))×P(Yk < γreq),

(10.5.2)
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Figure 10.3: State diagram of the mobile in connected-mode

where P(Yk ≥ γreq) is the probability of finding a suitable handover target with Yk referring to

the the signal quality of neighbouring cells scanned during one measurement period, cf §10.3.

In state CellSwitch, the mobile is switched to the identified target cell. If the signal quality of

the new serving cell is too bad, or if the connection switching procedure (i.e. handover execution)

is not successful, the mobile may encounter a service failure during period [m − 1, m]. In this

case, the mobile enters into state Fail. Also depending on the signal quality of the new serving

cell, if the triggering condition holds the mobile will enter into state Scan and scan neighbouring

cells, otherwise the mobile will enter into state NoScan. Thus, the transition probabilities from

state CellSwitch are given as

πm(3, 2) = P(trig∗m),

πm(3, 4) = P(fail∗m),

πm(3, 1) = 1− πm(3, 2)− πm(3, 4),

(10.5.3)

where the events trig∗m and fail∗m refer to scanning triggering and service failure considering the

signal quality of the new serving cell, namely Q∗0.

In state Fail, the mobile conducts a network entry or a link reestablishment procedure to recover

the on-going service from interruption. The mobile scans all possible neighbouring cells. And in

the case that a suitable cell is found, the process will continue by entering into state CellSwitch

in which the mobile connects to the identified cell. Obviously, the signal quality of the suitable

cell is required to be better than the minimum tolerable level γmin. Otherwise, the mobile

continues to scan for a suitable cell, and during which the service is still in failure status. So:

πm(4, 3) = P(Yk ≥ γmin),

πm(4, 4) = 1− πm(4, 3).
(10.5.4)
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Figure 10.4: State diagram of the mobile in connected mode with different transitions

Obviously, the above state diagram is associated with its transition matrix which is given by

Nm =


πm(1, 1) πm(1, 2) 0 πm(1, 4)

πm(2, 1) πm(2, 2) πm(2, 3) πm(2, 4)

πm(3, 1) πm(3, 2) 0 πm(3, 4)

0 0 πm(4, 3) πm(4, 4)

 . (10.5.5)

Let Nm = N1×N2× · · · ×Nm. It is clear that Nm(i, j) is the transition probability from state

i at moment 0 to state j at moment m.

Above we have the state diagram of the mobile in connected-mode. Our final purpose is the state

diagram of the handover measurement. Note that the mobile is connected to the current serving

cell when being in one of two states NoScan and Scan. By contrast, it is not the case when the

mobile is in two CellSwitch and Fail. As a sequel, as seen from the above description, the

transitions from states NoScan and Scan, πm(1, j) and πm(2, j), depend on the signal quality

of the (current) serving cell, whereas transitions from states CellSwitch and Fail, πm(3, j)

and πm(4, j), do not since they occur after the connection with the (current) serving cell was

interrupted (in case of service failure) or was released (in case of cell switching). Therefore, it is

useful to distinguish between two types of states as shown in Figure 10.4 where CellSwitch and

Fail are grey-coloured. And it is also convenient to distinguish between two types of transitions

which are shown as solid-line and dash-line connections. The solid-line connections are used for

transitions which are a result of the signal quality of the current serving cell, while the dash-line

connections are used for transitions which are not decided by the signal quality of the current

serving cell.

As described above, the mobile only performs the handover measurement function when it is

in state Scan. Two states CellSwitch and Fail are outcomes of the handover measurement.

Moreover, the handover measurement is performed within one cell, i.e. within the current serving

cell. It does not involve transitions which occur out of the current serving cell. As a result,

CellSwitch and Fail are absorbing states, and the state diagram of the handover measurement

is obtained from Figure 10.4 by excluding dash-line transitions as given in Figure 10.5. Thereby,
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Figure 10.5: State diagram of the mobile in handover measurement

the transition matrix of the handover measurement is given by

Mm =


πm(1, 1) πm(1, 2) 0 πm(1, 4)

πm(2, 1) πm(2, 2) πm(2, 3) πm(2, 4)

0 0 1 0

0 0 0 1

 . (10.5.6)

Let Mm = M1 ×M2 × · · · ×Mm. Mm(i, j) is the transition probability of the handover

measurement from state i at moment 0 to state j at moment m.

10.6 Performance Metrics of HO Measurement

By the above discussion, a handover measurement can have two outcomes which are failure if a

service failure occurs during the handover measurement, and success if a suitable handover target

found. Let D be the time duration during which a mobile has an active connection with one

cell. Let L = dD/Tmease, where dxe gives the smallest integer greater than real number x. The

variable L is the number of measurement periods that a mobile carries out during its connected

mode within one cell. Hence, the probability of handover measurement failure, denoted by F , is

given as

F = ML(2, 4),

and the probability of handover measurement success, denoted by S is

S = ML(2, 3),

It is clear that F and S are functions of all parameters including the terminal’s measurement

capability k, system specification Tmeas, control parameters γt, τt, γw, and τw, as well as require-

ments γreq, γmin, and τmin. Note that the duration D can be studied as a deterministic constant

or as a random variable. In the latter case, the above metrics should be given accordingly as

F =

∫ ∞
0

Mdt/Tmease(2, 4)FD(dt),
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S =

∫ ∞
0

Mdt/Tmease(2, 3)FD(dt),

where FD is the distribution of D which is often assumed an exponential distribution. Intuitively,

F represents the probability that a service failure occurs before a suitable cell is identified, and

S indicates the probability that the system enters into the handover decision-execution phase.

It is desirable to minimise F and to maximise S. In particular, one can enhance S by increasing

the transition probability πm(2, 3), which is in turn achievable by setting low handover target

required level γreq. However, this results in handover targets with low signal quality. Therefore,

it is necessary to assess the target cell quality when the handover measurement is in success.

Since a suitable target cell is given by the best cell among k cells scanned and provided that its

signal quality is better than γreq, the expectation of the resulting signal quality is thus given as

E{Yk|Yk ≥ γreq} = γreq +

∫ ∞
γreq

FYk(y)dy

FYk(γreq)
,

with tail distribution FYk of Yk. Hence, the performance of the handover measurement is also

measurable by the target cell quality defined as

Q = S ×E{Yk|Yk ≥ γreq}.

10.7 Application to LTE Handover Measurement

Using the above framework, we investigate the handover measurement in LTE, in particular

we study the impact of the mobile’s measurement capability k on the system performance. As

described in Chapter 4, a User Equipment (UE) in a LTE network measures neighbouring cells as

soon as it enters in connected-mode. This setting corresponds to triggering level and withdrawal

level set to infinity, γt = +∞, and γw = +∞, so that P{wdrawm} = 0 according to the scanning

withdrawal formulated in (10.3.5), and that

P(trigm) = 1−P(failm)

according to (10.4.14) for all m. This leads to πm(1, 1) = 0 according to (10.5.1). The transition

matrix of the LTE handover measurement thus reduces to

Mm =


0 πm(1, 2) 0 πm(1, 4)

0 πm(2, 2) πm(2, 3) πm(2, 4)

0 0 1 0

0 0 0 1

 .

Hence, for an integer L ≥ 1, we can easily obtain

F = ML(2, 4) =

L∑
m=1

(
πm(2, 4)

m−1∏
i=1

πi(2, 2)
)
.

S = ML(2, 3) =

L∑
m=1

(
πm(2, 3)

m−1∏
i=1

πi(2, 2)
)
.
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Table 10.1: Evaluation parameters

Parameter Assumption

Scenario
Environment Urban macro cell
Path loss (d in m) L(d) = 15.3 + 37.6 log10 d
User’s velocity v = 10 m/s

BS
Transmission power PBS = 43 dBm
Antenna pattern Omnidirectional
Cell radius R = 700 m

Shadowing
Standard deviation σZ = 10 dB
Decorr. distance dc = 50 m

Noise
Noise density = −174 dBm/Hz
UE noise figure NF = 9 dB

Service
Min outage duration τmin = 200 ms
Min allowable level γmin = −20 to −5 dB

Measurement

Measurement period Tmeas = 200 ms
Handover margin ∆HO = 2 dB
Required threshold γreq = γmin + ∆HO

Triggering level γt = +∞
Withdrawal level γw = +∞

Since the LTE standard assumes that UEs perform the handover measurement autonomously

using 504 physical cell identifiers (PCIs) without need of a neighbour cell list, see §3.3, the

probability of finding a suitable handover target P(findtargetm(k)) is given by (10.4.4) with

retention probability ρk = k/NCSID where NCSID = 504.

10.7.1 Evaluation Scenario

System parameters are summarised in Table 10.1 following 3GPP recommendations provided in

3GPP TR 36.942 [26], 3GPP TS 36.133 [47] for an urban macro cellular deployment of LTE

networks. The network density λ is set for simulation corresponding to hexagonal cellular layout

of 3GPP’s standard scenario so that λ = 2/(3
√

3R2) BS/m2. In lognormal shadowing, the

autocorrelation proposed in the literature as described in §5.3.2 is used

RZ(τ) = σ2
Z exp

(
− 1

2

(vτ
dc

)2)
,

where v is the user’s velocity, and dc is the decorrelation distance. This model satisfies conditions

required in §10.2. Its second spectral λ2 is given by

λ2 = −R′′Z(τ)|(τ=0) = (σZv/dc)
2.

The minimum allowable level γmin and minimum-outage duration τmin were set according to

the condition of a radio link failure specified by LTE standard. As described in “Radio Link

Failure” in §3.3, when the downlink radio link quality estimated over the last 200 ms period

becomes worse than a threshold Qout, Layer 1 of the UE shall send an out-of-sync indication

to higher layers. Upon receiving N310 consecutive out-of-sync indications from Layer 1, the UE
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will start timer T310. And upon the expiry of this timer, the UE considers radio link failure

to be detected. It can be consequently concluded that a radio link failure occurs if the signal

quality of the serving cell is worse than γmin = Qout during at least

τmin = 200[ms] ·N310 + T310.

Following parameters specified in 3GPP TS 36.133 [47, §A.6 ], N310 = 1 and T310 = 0. This

yields τmin = 200 ms. The threshold Qout is defined in 3GPP TS 36.133 [47, §7.6.1] as the level

at which the downlink radio link cannot be reliably received and corresponds to 10% block error

rate of Physical Downlink Control CHannel (PDCCH). From 3GPP TR 36.942 [26, §A.2], Qout

is as small as −10 dB. In simulation, some more settings of γmin were evaluated as summarised

in Table 10.1.

LTE uses two policies with relative and absolute requirements to control the handover measure-

ment as specified in 3GPP TS 36.331 [101] and summarised in Table 3.4. These two policies

were investigated in our numerical evaluation. In the former, γreq is required to be higher than

the minimum tolerable level γmin by a handover margin ∆HO such that γreq = γmin + ∆HO. In

the latter, γreq is on a fixed absolute level.

Regarding user’s mobility, we considered 100 mobile users in the serving cell and each of them

moves away from the serving BS at velocity v in a random direction generated according to a uni-

form distribution on (−π, π]. This scenario has been considered as the most critical circumstance

3GPP TR 36.942 [26] and WiMAX Forum [27].

10.7.2 Result

A computer simulation was built with the above parameter setting in order to check the accuracy

of the models developed in §10.4. The interference field was generated according to a Poisson

point process with intensity λ in a 100 km2 region, and the serving base station is located at the

center of this region. The auto-correlated shadowing was generated as the output of an infinite

impulse response filter with input Gaussian noise of standard deviation σZ .
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Figure 10.8: Handover measurement failure probability F

First, Figure 10.6 verifies our analytical model against computer simulation. Figure 10.6(a) plots

the tail distribution of the best signal quality FYk of (10.4.4), which corresponds to common

LTE setting described above, and Figure 10.6(b) plots the probability of suitable target found

P(findtargetm(k)) obtained from the corresponding tail distribution FYk . The agreement of the

proposed analytical results with simulation illustrates the accuracy of modelling the best signal

quality Yk defined in (10.3.2) by the maximum of SINRs received from the thinning Sk proposed

in (10.4.2).

Figure 10.7 checks the analytical framework based on level crossing analysis which was used to

derive the probabilities of service failure, scanning triggering, and scanning withdrawal. Results

show that both the analytical model and the simulation provide agreed results of the probability

of service failure P(failm) in both settings.

With the accuracy provided by the proposed analytical framework, we investigate numerical re-

sults of the defined performance metrics. Figure 10.8 indicates that high measurement capability

k reduces the handover measurement failure probability F . It also indicates the dependence of

F on the minimum tolerable level γmin and on the handover target required level γreq, respec-

tively. Comparing Figure 10.8(b) and Figure 10.8(a), absolute requirement policy shows better

robustness than relative requirement policy to different system configurations. This is explained
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Figure 10.9: Handover measurement success probability S
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by a fixed lower minimum tolerable level γmin used in the absolute requirement policy than that

used in the relative requirement policy. Figure 10.8(b) shows that increasing the measurement

capability k to the order of 102 improves the performance very marginally. Besides, we can see

that the current LTE requirement of the UE’s measurement capability with k = 8 is insufficient

for reliable handover measurement performance (here LTE does not use a pre-defined neighbour

cell list).

Low handover target required level γreq reduces the handover measurement failure F , c.f. Fig-

ure 10.8, and improves the handover measurement success S, c.f. Figure 10.9. However, lower

γreq reduces the resulting signal quality of the target cell E{Yk|Yk ≥ γreq} as shown by Fig-

ure 10.10. Figure 10.11 presents the combining results of these two effects on the target cell

signal quality Q. In Figure 10.11(a) which plots the target cell quality Q under the relative

requirement scheme, lower minimum tolerable level γmin (and so lower γreq) always results in

higher target cell quality Q. On the other hand, Figure 10.11(b) shows a crossing point between

the curves when the measurement capability k is in-between 10 and 16 under the absolute re-

quirement scheme, in which given large k, the target cell quality Q can be generally enhanced

by higher handover target required level γreq. However, for small measurement capability k, it

is better to maintain low γreq. Figure 10.11 helps the network operator appropriately setting



158 Chapter 10 Handover Measurement: Analysis and Applications to LTE

10
0

10
1

10
2

5

10

15

20

25

k

Q
 in

 d
B

Handover margin ∆
HO

 = 2 dB

 

 

γ
min

 = −20 dB

γ
min

 = −15 dB

γ
min

 = −10 dB

γ
min

 = −7.5 dB

γ
min

 = −5 dB

(a) Under relative threshold

10
0

10
1

10
2

10

15

20

25

k

Q
 in

 d
B

γ
min

 = − 20 dB

 

 

γ
req

 = −18 dB

γ
req

 = −13 dB

γ
req

 = −8 dB

γ
req

 = −5.5 dB

γ
req

 = −3 dB

(b) Under absolute threshold

Figure 10.11: Asymptotic target cell quality Q

the handover target required level γreq according to the UE’s measurement capability so as to

obtain the best performance.

10.8 Concluding Remarks

We investigated the handover measurement in a mobile cellular network with fundamental estab-

lishment in the probabilistic aspects and system modelling. A handover measurement is basically

characterised by four key probabilistic events including (i) suitable handover target found, (ii)

service failure, (iii) scanning triggering, and (iv) scanning withdrawal. Using the mathematical

results developed in previous chapters, we were able to derive the probability of these key events

in a multicell system. In particular, (ii)-(iv) were formulated as minimum-duration outage of

the SINR, and were derived under interference-limited condition which are in fact more general

and realistic and can cover the commonly used instantaneous SINR outage as special case.

The operation of handover measurement can be modelled by a state diagram which is able to

describe the temporal evolution of the handover measurement as well as the system dynamics

in terms of user’s mobility and autocorrelated shadowing. This generalised framework provides

analytical insights into the unified influence of the control parameters to the system performance

in terms of service failure, handover measurement success (equivalent to handover probability),

as well as the quality of handover target.

We also investigated an application of the above framework to the handover measurement in LTE.

Results indicated that the LTE’s current requirement for UE measurement capability with k = 8

seems insufficient for reliable handover measurement performance without using a neighbour cell

list. More applications of the frameworks to other systems such as WiMAX are reserved for a

future work.



Chapter 11

Autonomous Cell Scanning For

Data Small Cell Networks

11.1 Introduction

Motivation of data small cell networks. By the early 1990’s, the second generation of

cellular networks which uses digital communications greatly enhanced the network capacity and

reduced the power consumption of the mobile handset, see Chapter 3. This substantially reduced

the communication cost and more importantly made the mobile telephone service explosively

accessible to the main-stream mobile market all over the world. Nonetheless, in parallel with the

success of the second cellular network generation in providing high quality mobile voice service,

the Internet with wireline broadband access has shown its great advantage compared to mobile

communication in bringing the end users very enriching information communication services

including rich Web, data transfers, and multimedia services. This has introduced the mobile

communication networking a big challenge of significantly increasing the network capacity to

provide the end users with wireline broadband-equivalent services over the mobile communica-

tion. Moreover, the strong competition of the telecommunications industry has lead to declining

average revenue per user (ARPU) of voice service overtime [187, 188], as well as it has required

network operators to enable more and more data applications. These all have created an endless

operator-push user-pull game where the operators need to continually introduce new broadband

wireless services to satisfy the users who continue to express higher demands.

Besides, the tremendous growth of the Internet with business models basing on it have introduced

more and more applications which are mostly throughput-greedy and need frequent updates from

the end user such as online multimedia services, YouTube, eBay, and Facebook. Paradoxically,

the (wireline broadband) Internet is not able to satisfy this high frequent update requirement

due to its nature of wired connection. As a result, there has been high demand from the end

users for anytime and anywhere available mobile coverage service.

Today’s macro cellular systems have become saturated in capacity, though installing a new macro

base station is more and more difficult due to various problems from installation agreement

acquisition, regulation, to technical reasons. Also due to the difficulty in installing a new macro

base station, today mobile cellular networks is not yet able to provide 100%-coverage, and this

159
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generally results in potential coverage holes and dead zones. Therefore, a new network design

/ architecture is critically required for the mobile networking so as to be able to provide high

capacity as well as ubiquitous mobile service.

To enhance network capacity and satisfy user demand of broadband services, it is known that

[189–193]

Reducing cell size is one of the most effective approaches to improve the

network capacity and coverage.

On the other hand, a small cell only needs lightweight antennas. It helps to replace bulky roof

top base stations by small boxes set on building facade, on public furniture or indoor. Small

cells can even be installed by end users (e.g. femtocells, see §3.2). This greatly facilitates the

network deployment. The small cell network architecture is therefore truly promising to enhance

the network capacity as well as to effectively cope with coverage holes [193, 194].

Pervasive small cell networks have shown a great potential. For example, Willcom has deployed

small cell systems in Japan [195], and Vodafone has recently launched home 3G femtocell net-

works in the UK in 2009 [196]. The proven business opportunity of small cell networking has at-

tracted the attention of industry, research community, as well as standardisation bodies. For this

reason, the standardisation of small cell networks is being supported by 3GPP from the basis of

its advancement in Home NodeB (for WCDMA) and Home eNodeB (for LTE) specification [197],

some specification series include 3GPP TS 36.300 [6], 3GPP TR 32.821 [198], 3GPP TS 25.467

[199], 3GPP TS 22.220 [200].

Challenges of small cell networking. It can be immediately observed that reducing cell

size to increase the spatial reuse for supporting dense traffic will induce a large number of cells

in the same geographical area. Secondly, end users can set up small cells by their own means

[2, 188]. This makes small cell locations and coverage areas more random and unpredictable

than traditional mobile cellular networks. Therefore,

High-density and randomness are the two basic characteristics of small cell networks.

The above characteristics have introduced technical challenges that require new studies beyond

those for macro and micro cellular networks. The main issues concern spectrum sharing and

interference mitigation, capacity analysis, network self-organisation, and mobility management

[2, 192, 193]. Among those technical concerns, it is realised that [2, Chapter 7]

Mobility management is one of the most challenging issues of small cell networking.

Following existing cellular network standards, it is expected that small cell networking will

also use mobile-assisted handover without need of specific mobility management mechanism.

However, due to the aforementioned characteristics of high-density and randomness, the real

implementation will involve many questions since current assumptions made for macro cell net-

works should be not valid. In particular, the configuration of neighbour cell list will not scale

anymore to support a large number of small cells which are potentially neighbouring to a cell

[201] and even more whose location is quite dynamic. In addition, it is believed that small cells

may be added / removed or powered on / off frequently [192] for the network capacity and power
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saving purposes. This requires quick adaptation of the neighbour cell list which will generate

much expenses. Therefore, using neighbor cell list is not an effective solution for the mobility

management in small cell networks.

Proposed solution. As we have seen in Chapter 4, wideband technologies such as WCDMA,

WiMAX, and LTE use a set of cell synchronisation identities (CSID) which help a mobile iden-

tify cells in the air interface so as to measure the cell’s radio condition. There are 512 primary

scrambling codes (PSC) in WCDMA, 114 pseudo-noise (PN) sequences in WiMAX, and 504

physical cell identities (PCI) in LTE. By using a predefined set of codes, these wideband tech-

nologies can support more autonomous cell measurement conducted by the mobile, for example

in WCDMA and LTE networks the mobile performs intra-frequency cell measurement without

explicit control from the network. Besides, in a small cell network where a large number of cells

are deployed in a geographical area, it is highly probable that the mobile receives strong pilot

signal from many cells such that it can identify and measure those cells. These capabilities are

enabling factors by which

We propose and study autonomous cell scanning for the mobility

management in dense small cell networks.

Under this scheme, the mobile simply conducts a scanning of a number of cells whose CSIDs

are randomly selected with equal probability from the whole CSID set of the underlying cellular

standard. The cell which has the best signal quality among those scanned is then selected at the

handover target. This autonomous scanning scheme is able to simplify the network configuration

and operation by avoiding the configuration of the conventional neighbor cell list.

Further, we show that the autonomous scanning is subject to an optimisation problem in which

the number of cells to be scanned is a necessary tradeoff parameter to maximise the user’s data

throughput. Using the theoretical result developed in Chapter 8 for the distribution of the best

signal quality in a dense network, we investigate this optimisation problem. Evaluation results

show that under a common scenario of small cell networks, performing autonomous scanning

with 30 cells is effective.

11.2 Autonomous Cell Scanning

In §11.1 we have seen that broadband cellular systems and high-density characteristic of small

cell networks are an enabler for autonomous cell scanning. In fact, the mobile is able to identify

and then measure a neighbour cell if it is provided a priori the cell synchronisation identity

(CSID), and if the cell pilot signal is strong enough, see Chapter 4. In the current cellular

standards, there are only 512 CSIDs (i.e. primary scrambling codes) in WCDMA, 504 CSIDs

(i.e. physical cell identities) in LTE, and 114 CSIDs (i.e. pseudo noise sequences) in WiMAX

shared within the network. Since there is a large number of cells within a limited area, it is

very likely that a mobile will be able to scan a neighbour cell regardless of which CSID has been

selected out from the whole set. As a result, the proposed autonomous cell scanning is as follows:

(1) When a mobile gets admitted to the network, the first serving cell provides the mobile the

whole set of CSIDs used in the network. The mobile then keeps this information in its

memory.
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(2) To find a handover target, the mobile randomly selects a set of n CSIDs from its memory

and conducts the standardised scanning procedure of the underlying cellular system.

(3) The mobile finally selects the cell with the best received signal quality as the handover

target.

To perform this simple scanning scheme, the mobile needs to be specified how many cells it

should scan. In the next sections, we will analyze how the number of cells to be scanned n

impacts the user’s quality of service so as to determine an optimal number of cells to be scanned.

11.3 Network Assumption

The randomness of small cell locations should be suitably modelled by a Poisson point process,

see §6.2 in Chapter 2. On the other hand, regarding the concluding remarks of Chapter 8, the

asymptotic properties of the wireless link signal quality developed therein should be effective

for dense systems like small cell networks. In light of that, we follow the network assumptions

and use theoretical tools developed in Chapter 8 to study the autonomous cell scanning with

the following precisions. Firstly, it is assumed that the mobile is able to synchronise and scan

any cell located in a disk-shaped network area B centered at the user with radius RB such that

0 < RB < ∞. The attenuation of the radio signal strength is due to lognormal shadowing

and bounded distance-dependent path loss as given in Chapter 8 such that the signal strength

received from a cell i is:

Pi = AXi (max{di, Rmin})−β ,

where Rmin is a strictly positive constant, Rmin > 0, and Xi = 10Zi/10 with Zi being a normal

random variable of zero mean and standard deviation σZ . The random variable

Yn =
n

max
i=1,xi∈B

Qi

as defined in Chapter 8 will be used to refer to the best signal quality received from n cells

located in the network area B.

It is assumed that the mobile may follow a scanning procedure either with or without measure-

ment gap depending on the underlying cellular standard, see Figure 4.1 in §4.1. Denote by s the

time duration needed to scan one neighbour cell. For the case where the underlying technology

allows the mobile scanning k cells in parallel during a certain measurement period Tmeas, see

§4.1, we will prefer to use the equivalent scanning time such that s = Tmeas/k for the merit that

the impact of the number of cells to be scanned n will be better observed.

11.4 Optimisation Problem

The optimisation problem has to take into account the two contrary effects due to the number

of cells to be scanned. On one hand, the more number of cells to be scanned, the better is the

signal quality of the best cell, and hence the better the data throughput obtained by the mobile

user. On the other hand, scanning can have a linear cost in the number of scanned cells, which

is detrimental to the throughput obtained by the mobile. Let us quantify these two effects using

the notation and tools previously developed in Chapter 8. Let W be the average cell bandwidth
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available per mobile and assume that it is a constant. Under the assumption of additive white

Gaussian noise channel, the maximum capacity Cn that the mobile can achieve by selecting the

best among n randomly scanned cells is

Cn = W log(1 + Yn). (11.4.1)

Hence

ECn = WE{log(1 + Yn)} = W

∫ ∞
γ=0

log(1 + γ)fYn(γ)dγ,

where fYn is the density of Yn. Using a simple integration by parts of log(1 +γ) and fYn(γ)dγ =

−dFYn(γ), this reduces to

ECn = W

∫ ∞
γ=0

FYn(γ)

1 + γ
dγ,

where the tail distribution function FYn of Yn. Under the above network assumption, FYn is

given by Theorem 8.6.1 in Chapter 8.

Note that ECn is the expected throughput from the best cell. Since Yn is the maximum signal

quality of the n cells, Yn increases with n and so does Cn. Hence, the mobile should scan as many

cells as possible. However, on the other hand, if scanning many cells, the mobile will consume

much time in scanning and thus have less time for data transmission with the serving cell. A

typical situation is that where the scanning time increases proportionally with the number of

cells scanned and where the data transmission is suspended. This for instance happens if the

underlying cellular technology uses a scanning with measurement gap mechanism as described in

§4.1 of Chapter 4. Another scenario is that of scanning without measurement gap which is also

described in Chapter 4: here scanning can be performed in parallel to data transmission so that

no transmission gap occurs.

Let Tdata be the average time during which the mobile stays in the tagged cell and receives data

from it. Let Tgap(n) be the duration of the suspension of data transmission due to the gap

introduced by scanning n cells, referring to Figure 4.1 we have

Tgap(n) =

s× n if scanning with measurement gap,

0 if scanning without measurement gap.
(11.4.2)

Finally, let EC0 be the average throughput received from the serving cell when no scanning at

all is performed (this would be the case if the mobile would pick as serving cell one of the cells

at random). The gain of scanning n cells can be quantified by the following metric, that we will

call the acceleration:

ρn ,
Tdata ·ECn

Tdata ·EC0 + Tgap(n) ·EC0

=
Tdata

Tdata + Tgap(n)
× ECn

EC0
. (11.4.3)

In this definition, Tdata ·ECn (resp. Tdata ·EC0 +Tgap(n) ·EC0)) is the expected amount of data

transmitted when scanning n cells (resp. doing no scanning at all). We aim at finding the value

of n that maximises the acceleration ρn.

It is clear that Tdata/(Tdata + Tgap(n)) = 1 when (i) Tdata → ∞, i.e., the mobile stays in and

receives data from the tagged cell forever, or (ii) Tgap(n) = 0, i.e., scanning without measurement
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gap. In these cases, ρn increases with n and the mobile “should” scan as many cells as possible.

However, ρn is often concave and the reward of scanning then decreases. To characterise this,

we introduce a growth factor g defined as follows:

gn ,
ρn
ρn−1

=
Tdata + Tgap(n− 1)

Tdata + Tgap(n)
× ECn

E{Cn−1}
. (11.4.4)

Special cases as those considered above can be cast within a general framework which consists in

finding the value of n that maximises ρn under the constraint that gn ≥ 1 + ∆g, where ∆g > 0

is a threshold.

11.5 Result

In the following, we show how to apply the above results to find the optimal n. We adopt system

parameters of WCDMA standard for the evaluation purpose. Parameters are summarised in

Table 11.1. One hundred omni-directional small cell base stations are deployed in a square

domain of 1 km× 1 km. The network density is thus equal to:

λ = 10−4 small base stations/m2.

It is assumed that any cell synchronisation identifier can be found in a radius RB = 1 km. We

take Rmin equal to 2 metres. The propagation path loss is based on by the picocell path loss

model recommended by ETSI TR 101.112 [202]:

l[dB](d) = 37 + 30 log10(max{d, Rmin}) + 18.3f ( f+2
f+1−0.46),

where d is the distance from the base station in metres, f the number of penetrated floors in the

propagation path. For indoor office environments, f = 4 is the default value [27]; however, here,

the small cell network is assumed to be deployed in a general domain including outdoor urban

areas where there are less penetrated walls and floors. So, we use f = 3 in our numerical study.

So, the fixed-term path loss is:

L0,dB = 37 + 18.3f ( f+2
f+1−0.46).

It is assumed that the total transmission power including the antenna gain of each small cell

base station is Ptx,dB = 2 dB. So, the path loss exponent β and parameter A are respectively

given by according to (2.1.10) and (6.1.1) as follows:

β = 3, and AdB = Ptx,dB − L0,dB −N0,dB,

where the received noise power N0 at the mobile reception antenna is computed with the effective

bandwidth W = 3.84× 106 Hz, ambiance temperature T0 = 290 K which results in noise density

of -174 dBm/Hz, and noise figure at the terminal NF,dB = 7 dB.

Finally, shadowing is modelled as a random variable with lognormal distribution with an under-

lying Gaussian distribution of zero mean and 8 dB standard deviation. And it is assumed that

the mobile is capable of scanning eight identified cells within 200 ms [105]. So, the average time

needed to scan one cell is given by s = 25 ms.
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Table 11.1: Evaluation parameters

Parameter Assumption

Environment Urban pico cell
Antenna pattern Omnidirectional
Path loss Outdoor pico pathloss
BS tx power Ptx = 2 dB
Bounding distance Rmin = 2 metres

Network density λ = 100/km2

Shadowing std. dev. σZ = 8 dB
Bandwidth W = 3.84 MHz
UE noise figure NF = 7 dB
Noise density −174 dBm/Hz

Measurement scheme with and without gaps
Measurement capability 8 cells / 200 ms
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Figure 11.1: Numerical results in the random cell scanning optimisation.

In order to check the accuracy of the approximations used in Chapter 8 for the tail distribution

function FYn of Yn, a simulation was built with the above parameter setting. The interference

field was generated according to a Poisson point process of intensity λ in a region of raidus

R∞ = 100 km. For a number n, the maximum of SINR received from n base stations which are

randomly selected from the disk B of radius RB was computed. After that, the expectation of
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the maximal capacity ECn received from the n selected BSs was evaluated.

In Figure 11.1(a), the expectation of the maximal throughput ECn for different n is plotted,

as obtained through the analytical model and simulation. The agreement between model and

simulation is quite evident. As shown in Figure 11.1(a), ECn increases with n, though the

increasing rate is slow down as n increases. Note that in Figure 11.1(a), ECn is plotted after

normalisation by E{C250}.

Figure 11.1(b) gives an example of acceleration ρn for Tdata = 0.5 second and Tgap(n) = n×25 ms.

In the plot, ρn is normalised by its maximum. Here, an agreement between model and simulation

is also obtained. We see that ρn first increases rapidly with n, attains its maximum at n = 42

by simulation and n = 43 by model, and then decays.

Next, using the model we compute the optimal number of cells to be scanned and the growth

factor gn for different Tdata. Note that in (11.4.3), the factor Tdata/(Tdata + Tgap(n)) can be

re-written as:

Tdata

Tdata + Tgap(n)
=

1

1 + n× s/Tdata
for

Tdata <∞,

Tgap(n) = n× s
.

It is clear that this factor also depends on the ratio Tdata/s. Figure 11.1(c) plots the optimal

n for different values of Tdata/s. Larger Tdata/s will drive the optimal n towards larger values.

Since Tdata can be roughly estimated as the mobile residence time in a cell, which is proportional

to the cell diameter divided by the user speed, this can be rephrased by stating that the faster

the mobile, the smaller Tdata and thus the fewer cells the mobile should scan.

Finally, Figure 11.1(d) plots the growth factor gn with different Tdata. In Figure 11.1(d), the

“limiting case” corresponds to the case when Tdata →∞ or Tgap(n) = 0. We see that gn is quite

stable with respect to the variation of Tdata. Besides, gn flattens out at about 30 cells for a wide

range of Tdata. Therefore, in practice this value can be taken as a recommended number of cells

to be scanned in the system.

11.6 Concluding Remarks

The randomness and high-density characteristics of small cell networks require for new logic in

implementation of the standardised mobility management mechanism. In this chapter, we pro-

pose Autonomous Cell Scanning which is preferable for underlying broadband cellular systems.

This solution is desirable as firstly it avoids the conventional neighbour cell list which is known

ineffective for dense small cell networks. And on the other hand this scheme is supported by

our theoretical basis for an optimal network performance in term of the user’s throughput. By

numerical study with a common WCDMA system setting, it is suggested that a mobile should

perform autonomous scanning with 30 cells to achieve effective performance. Additionally, simu-

lation results demonstrate that the asymptotic properties developed in Chapter 8 provide a good

degree of accuracy. We expect that this confirmation would encourage its future applications.



Chapter 12

Neighbour Cell List

Self-Optimisation

12.1 Introduction

As we have seen from previous chapters, most of cellular standards use mobile-assisted network-

controlled handover in which the mobile measures the pilot channel signal quality of neighbouring

cells and reports the measurement result to the network. The network bases on the reported

measurement result to initiate a handover to that cell (see, Chapter 4). To measure neighbouring

cells, the mobile needs to be provided with information on the pilot channels of potential neigh-

bouring cells (e.g., cell synchronisation information, pilot channel frequency). If this information

is not provided by the network, the mobiles have to spend longer time to acquire it via scanning

through all possibilities. Therefore, in today’s commercial cellular networks (i.e. except LTE

networks), a list of neighbouring cells as handover candidates is configured for each cell. This

list contains information of the selected handover candidates and is sent to all mobiles connected

to the cell. The mobiles then only need to monitor the pilot signal quality of the cells comprised

in the neighbour cell list of the serving cell, see §4.2 in Chapter 4.

Therefore, the neighbour cell list has an important influence on the performance of the mobility

management. It needs to contain a sufficiently large number of potential neighbouring cells to

ensure that any mobile in the serving cell can find at least one handover target when its own

signal deteriorates. However, as the mobile measurement capability is often limited, the mobile

needs to cycle through neighbouring cells of the neighbour cell list. A long list thus firstly results

in delays in finding a suitable handover target, resulting in call drops especially when the user

moves at high speed as shown in Chapter 10. More importantly, when an averaging of several

measurement epochs is required to filter out estimation errors and achieve higher estimation

precision such as Layer 3 filtering (4.1.1) described in Chapter 4, cycling neighbouring cells of a

long neighbour cell list results in long time separation between two successive measurements of

the same neghbouring cell. This leads to less correlation between measurements, paradoxically

resulting in low measurement accuracy [134]. This measurement error may cause call drops in

the new serving cell immediately after the handover execution due bad prediction of its signal

quality (This is described in Chapter 10 by transition πm(3, 4) from state CellSwitch to state

Fail of Figure 10.3).

167
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Figure 12.1: Example of cell coverage in Lyon city obtained by propagation simulation on
actual 3D map.

While it might appear easy to configure a neighbour cell list by simply looking at the cell topology

and selecting all cells overlapping with the cell of interest, it is not as straightforward in reality.

This is mainly due to the fact that the real radio coverage is unknown, it depends strongly on

the environment which can only be modelled to some degree in radio simulations. Although

analytical models are able to obtain some mathematical generalisation of the radio environment

by modelling propagation effects by probability laws, such as the modelling of shadowing by

a lognormal distribution, they are hard to provide any certain information about the presence

of buildings, trees, and moving objects, etc. in a precise area. And within a precise context,

these unpredicted objects have strong effects on the coverage and may create coverage holes

which results in high call dropping rate. Figure 12.1 gives an example of cell coverage in Lyon

city, France, obtained from a best server map. In this example, cells are mapped to different

colours, and we observe that cell layouts are far from hexagonal and that the overlap between

cells creates numerous small coverage islands. Changes in the environment due to for example

newly constructed buildings cannot easily be taken into account. Thus, an accurate prediction

of the cell coverage is hard and also might not be valid anymore after some time.

Nowadays, the neighbour cell list is still manually configured at the beginning of the network

deployment by means of planning tools, and is manually updated when new cells are installed.

During this manual configuration the cell coverage and the neighbour relation are predicted

using static information such base station locations, antenna patterns, and received signal maps

(obtained through driver-tests). Due to the sensibility and the dynamic of the radio propagation

condition, these static predictions of the cell coverage are more or less inaccurate [134], and

cannot take into account changes in the radio conditions and indoor coverage. Therefore,

The manual configuration and optimisation of neighbour cell lists is a

big every-day operator’s concern

which requires a lot of efforts for the network operator, resulting in considerable operational

expenses. Conceptually, a self-optimisation solution uses direct measurements of the actual radio
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environment and network event statistics, it is thus capable of providing real cell coverage without

generating operation expenses while being able to follow changes in the radio environment.

Besides, using updated real cell coverage and event statistics allows a self-optimisation algorithm

to generate effective neighbour cell lists which are short enough to enhance the measurement

accuracy while remove unfavorable neighbouring cells [134]. A self-optimisation approach is

hence able to overcome drawbacks and difficulties of the manual configuration. In light of that,

the Next Generation Mobile Network (NGMN) alliance recently specified neighbour cell list self-

optimisation as a required use-case [110], and described its benefits to the network operator

[203].

The automatic configuration and dynamic optimisation of neighbour cell lists have therefore

received a lot of attention of operators as well as industrial research centers. Prior works in

this field as summarised in §4.3.3 contributed several valuable concepts, mostly the one for

automatically configuring and optimising neighbour cell lists with field measurements despite

some limitations in realising the concept which will be discussed here-below. Besides, the concept

of using test frequencies to discover cells not currently comprised in the neighbour cell list is also

helpful to the design of a self-optimisation solution. This concept will be used in our solution

for the same purpose of cell discovery. Nevertheless, some important drawbacks in prior works

did not allow for a true self-optimisation solution. It is clear that an effective formulation of

the optimal neighbour cell list should be important in order to design appropriate optimisation

solutions and algorithms. However, it was only addressed by Parodi et al. [138], whereas their

definition of the optimal neighbour cell list would be not effective in reality. Therein, the best

neighbour list is the one that comprises all and only all the actual neighbours which really

overlap with the serving cell. It often happens in reality that there may be a large number of

cells overlapping with the serving cell (as it was also realised by Soldani and Ore [137] which is

summarised in §4.3.3). Thus, adding all the overlapping cells will create a very long list which can

generate call droppings due to long scanning time and reduce the measurement accuracy [134].

Second, when realising the proposed concepts, the prior works mostly based on cell coverage

prediction models and used static thresholds which limit the performance and the ability to

adapt to dynamic changes in the radio environment.

A key element of the neighbour cell list configuration is reliable information on the cell coverage.

In a real network, the best way to obtain accurate coverage information is to continuously perform

measurements of the radio signals. The most efficient way to achieve this is to let the network

entities such as mobile stations and base stations perform measurements during operation. In

light of that,

We propose a measurement-based self-optimisation solution

which uses live measurements to self-configure the initial neighbour cell list, and to continuously

self-optimise the neighbour cell list of a cell during operation. This chapter brings the following

contributions:

• A complete optimisation procedure which self-configures an initial neighbour cell list and

continuously self-optimises the neighbour cell list.

• An efficient method which does not generate additional overheads by using cell statis-

tics measured by the base station for the initial self-configuration, and using the mobile-

reported measurement, which is available by the standard requirement, for the self-optimisation.
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• An efficient self-optimisation algorithm avoiding static constraints and computing the

neighbour cell list from live measurements. It frees the operator from a manual collection

of the network information (e.g. drive-tests), and allows the neighbour cell list adapting

to dynamic changes in the network and its environment.

These contributions will be detailed in the following structure. Section 12.2 describes the concept

of the proposed method consisting of a self-configuration phase for initialisation of the neighbour

cell list followed by an ongoing self-optimisation process. The self-configuration method used

for initialisation is described in §12.3. Therein, neighbours are identified and measured at the

serving base station by using the existing antenna gain of the serving base station. Then, a

predefined number of neighbours with the best received pilot signal quality are selected as the

initial neighbour cell list. The ongoing self-optimisation process is described in §12.4. During

the network operation, connected mobiles measure neighbours pilot signal and report results

to the serving base station. Then the neighbour cell list is optimised such that it maximises

the probability of finding a handover target. Section 12.5 presents the performance evaluation

using simulations based on a real network deployment scenario. The simulation results show

that the proposed solution achieves a high success rate of handover target scanning, and the

self-optimisation algorithm converges quickly. Concluding remarks are given in §12.6.

12.2 Concept

The concept of the proposed neighbour cell list self-optimisation method is conceived on the

basis of the following questions:

• What is the definition of an optimal neighbour cell list?

• What measurement statistics are needed and how can they be obtained?

• How can potential neighbours be discovered that are not currently included in the neigh-

bour cell list?

The objective of the neighbour cell list is to assist mobile stations in finding a suitable handover

target. As discussed in §10.3 of Chapter 10, a neighbouring cell is considered as a suitable

handover target for a mobile if its pilot signal quality received by the mobile is higher than a

minimum requirement Pmin, for example Pmin,Ec/I0 = −20 dB in WCDMA [105]. In addition, the

information obtained by measurements of the pilot signals of neighbouring cells must be of good

statistical confidence. The shorter the neighbour cell list is, the more frequent the neighbouring

cells can be measured, which results in a higher confidence in the measurements. In reality, the

maximum size of the neighbour cell list is limited by the standard, such as to 32 cells as specified

by 3GPP, see §4.2 in Chapter 4. From the above considerations, the optimal neighbour cell list

is defined as the one that has the least cells within the standardised allowable number (e.g., 32),

and maximises the probability of finding a handover target. Here the probability of finding a

handover target is defined as the probability that at any location in the serving cell the mobile

finds at least one suitable handover target from the neighbour cell list.

The measurement statistics needed are the indicators that are used for the handover target selec-

tion such as signal-to-interference-plus-noise ratio SINR in GSM, and chip-energy-to-interference

ratio Ec/I0 in WCDMA. Since this information is only available when the network is operational
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but not in the planning phase, the proposed optimisation method is composed of two phases:

self-configuration for the network initialisation, and ongoing self-optimisation during the network

operation, c.f., Figure 12.2.

When the network is newly deployed, neighbours are identified and measured by each base

station on the downlink band. The neighbour cell list of each cell is then initialised using a

self-configuration algorithm based on the collected measurements. This phase is also applied to

self-configure an initial neighbour cell list of a new cell that is installed when the network is

already operating.

During the network operation, connected mobiles are instructed to perform measurements using

standardised scanning procedures, and report results to the serving base station. This phase

of collecting measurement statistics also deals with the cell discovery. In broadband systems

such as WCDMA, and LTE, mobiles are capable of detecting and reporting cells even when

they are not comprised in the current neighbour cell list [105, 204]. Note that this capability of

measuring new cells does not weaken the importance of the neighbour cell list since, as mentioned

in the Introduction and in Chapter 4, the mobiles need longer time to measure an unidentified

neighbouring cell. Measuring new cells is not mandatory but can occur when a measurement

opportunity appears to the mobile. For multi-carriers networks like GSM, the cell discovery

can be done by using the test-frequency concept proposed by Magnusson and Olofsson [135] as

previously described. It follows that some of all the frequency carriers in the system are added

to a frequency list so that mobiles perform the discovery and measurement of cells allocated to

those test frequency carriers. This should be performed now and then in an iterative manner so

as to allow mobiles discovering cells over all frequency carriers.

The collected measurement statistics are then used by a self-optimisation algorithm implemented

in the base station to continuously refine the neighbour cell list. The update of the current

neighbour cell list with the self-configured or self-optimised neighbour cell list can be totally

automatic, or with the intervention of the operator to allow the introduction of additional specific

policies (for example to remove prohibitive cells is not performed fully autonomously).

Perform measurement of neighbouring cells 

at the base station

Initialize NCL using self-configuration algorithm 

based on available information

Instruct connected MSs to detect and measure 

neighbour cells. Store measurement reports

Calculate new NCL using self-optimisation 

algorithm, and update NCL

Sufficient statistics collected?

No

Ongoing self-optimisation process

Yes

Figure 12.2: Principle of neighbour cell list self-organisation
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12.3 Neighbour Cell List Self-Configuration

Just after the network planning phase, no measurement from mobiles are available, neighbouring

cells are identified based on measurements performed by each base station. This is done by using

the existing sectorised antenna of the serving base station to scan the downlink band and measure

identified cells as illustrated in Figure 12.3. Then a predefined number of neighbours with the

best received pilot quality are included in the neighbour cell list.

The serving base station’s antenna gain supports the measurements of neighbouring cells in the

direction of the sector coverage, and thereby helps to detect neighbouring cells which overlap

with the sectorised serving cell.

This approach does not require the operator to provision information on neighbouring cells,

and thereby reduces the deployment costs. However, its disadvantage is that the neighbours

pilot signal quality can not be measured in the whole serving cell coverage area. This is why

further measurements by the mobiles are required. These measurements become available during

operation and are used in the ongoing self-optimisation process described next.

12.4 Neighbour Cell List Self-Optimisation

12.4.1 Neighbours Statistics Retrieval

During the scanning procedure, the connected mobiles measure the pilot signal of neighbours

currently in the neighbour cell list. In parallel, potential neighbours are detected and measured

by the mobiles according to the principle explained in §12.2. This means that the mobiles

perform measurements of neighbours that are either detected during the scanning procedure, or

are identified during scanning of test frequencies. The mobiles then send measurement reports

to their serving base station as illustrated in Figure 12.4.

The serving base station stores a measurement statistics table whose structure is given in Ta-

ble 12.1. The table columns are neighbouring cells identifiers, and the table rows are measurement

reports sent by mobiles. The value at row i and column j represents the pilot signal quality of

cell jth received by a mobile reporting the measurement ith.
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Figure 12.4: Neighbours statistics retrieval for self-optimisation

Whenever a measurement report is received, the statistics table S is updated according Algo-

rithm 12.1. It follows that a new row will be added to the current statistics table. If this

measurement report contains cells that are not currently present in the table columns, one new

column is added for each new reported cell. After that, for the recently added row, columns

corresponding to the reported cells are filled with the corresponding reported values.

Table 12.1: Structure of statistics table S

CellID 1st · · · CellID jth · · · CellID nth ← Row 0th
Report 1st → · · · · · · · · · · · · · · ·

Report ith → · · · · · · S[i, j] · · · · · · ← Row ith

Each row of the statistics table reflects the coverage of neighbouring cells at the reported mea-

sured location. Any mobile may send several measurement reports during a scanning procedure,

and these may correspond to different measured locations in the serving cell (due to user’s mo-

bility). Therefore, only the measurement reports are relevant while the identifier of the mobiles

performing the measurements is not stored. Besides, old measurements may be not valid any-

more due to potential changes in the radio environment. Thus, at some point, older rows can be

removed from the statistics table.

12.4.2 Self-Optimisation Algorithm

The proposed self-optimisation algorithm is presented in Algorithm 12.2. The objective of the

algorithm is to select neighbouring cells such that the resulting neighbour cell list maximises the

number of locations at which there is at least one suitable target cell from the neighbour cell list

available.

The input includes the statistics table, the minimum requirement of the pilot signal quality Pmin,

and the maximum allowable size Nmax. The “for” loop in lines 4-9 cycles through the number

of locations (i.e., number of table rows), mj , at which neighbouring cell j is a suitable handover

target.
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Algorithm 12.1: Add measurement report to statistics table

1Input: MeasReport = [(CellIDj , Qj), j = 1, 2, . . .];
statistics table S;

2initialisation
3m← number of rows in S;
4n← number of columns in S;
5CurrentCellIDs← S[0, ∗];
6ReportCellIDs← [CellIDj , j = 1, 2, . . .];

7end
8add row (m+ 1)th to S;
9S[m+ 1, ∗]← −∞;

10foreach CellIDj of ReportCellIDs do
11if CellIDj ∈ CurrentCellIDs then
12j∗ = find index of CellIDj in CurrentCellIDs;
13S[m+ 1, j∗]← Qj ;

14else
15add column (n+ 1)th to S;
16S[0, n+ 1]← CellIDj ;
17S[1 . . .m, n+ 1]← −∞;
18S[m+ 1, n+ 1]← Qj ;
19add CellIDj to CurrentCellIDs;
20n← n+ 1;

21end

22end

Between the remaining neighbouring cells in table S, the cell corresponding to column j∗ (line

11) is the best one that maximises the number of locations covered by the neighbour cell list,

and thus is added to the neighbour cell list (line 12). The case of maxj(mj) = 0 (“else” in

line 17) means that all the remaining neighbouring cells in table S do not cover any location of

the serving cell with acceptable signal quality. Adding any of these cells will not improve the

neighbour cell list. In this case, the resulted neighbour cell list is the best one that maximises

the probability of finding handover target, and so the algorithm terminates (lines 18 and 21).

When the neighbouring cell identified by column j∗ is included in the neighbour cell list (line

12), this column j∗ and the corresponding rows can be removed (by line 16, and 14, resp.). The

cell identified by column j∗ ensures that the mobiles will find at least one suitable handover

target at the locations (i.e., rows) that satisfy the “if” condition in line 14. As the objective

is to find the shortest neighbour cell list that covers a maximum number of locations, only the

locations that are still not covered by the current neighbour cell list are considered in the next

rounds.

12.5 Simulation

A cellular network deployment in Phoenix in the United States was used for the simulation, from

which cell locations and antenna orientations were extracted. The size of the simulated scenario

is 16 km × 16 km and includes 120 macrocell sectors. We adopt system parameters of WCDMA

standard for the evaluation purpose, from which parameters are summarised in Table 12.2. The
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Algorithm 12.2: Self-optimisation algorithm

1Input: statistics table, Pmin, Nmax;
2initialisation: S = statistics table; NCL = ∅;
3while Nmax > size of NCL do
4foreach column j of S do
5mj = 0;
6foreach row i of S do
7if S[i, j] ≥ Pmin then mj ← mj + 1;
8end

9end
10if maxj(mj) > 0 then
11j∗ = arg max(mj);
12add cell identified by column j∗ to the NCL;
13foreach row i of S do
14if S[i, j∗] ≥ Pmin then remove row i from S;
15end
16remove column j∗ from S;

17else
18to (21);
19end

20end
21return NCL

Table 12.2: Evaluation parameters

Parameter Assumption

Scenario Macrocell in Phoenix, US
Antenna pattern Tri-sector directional
Path loss (d in m) l(d) = 28 + 35 log10(d)
BS tx power Ptx = 20 W (43 dBm)
Bounding distance Rmin = 5 metres

Shadowing std. dev. σZ = 8 dB
Inter-cell correlation 0.5
Effective bandwidth W = 3.84 MHz
UE noise figure NF = 7 dB
Noise density −174 dBm/Hz

Handover hysteresis ∆HO = 2 dB
Minimum level CPICH Ec/I0 ≥ −20 dB
Measurement capability 8 cells / 200 ms
User’s speed v = 5→ 50 m/s

propagation path loss for a typical macrocell deployment in urban environment is modelled as

l[dB](d) = 28 + 35 log10 d, (12.5.1)

where d is the distance from the base station in metres. Shadow fading in dB scale is modelled

as random variable Z with normal distribution with 8 dB standard deviation and a correlation

of 0.5 between different sites.

It is assumed that the total transmit power for each base station is Ptx = 20 W per sector,
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(a) Received CPICH Ec/I0 in dB (b) Cell coverage with shadowing

Figure 12.5: Simulation scenario.

where 10% of this power is allocated to a pilot channel Ptx,pilot. Each macrocell transmits via a

sectorised antenna with a gain pattern as recommended by 3GPP TR 25.942 [52]:

G[dB](θ) = Gmax −min

(
12

(
θ

θ∗

)2

, Gs

)
, −π < θ ≤ π, (12.5.2)

where θ∗ = 70π/180 is the angle where the gain pattern is 3 dB down from peak, the maximum

gain is Gmax = 16 dB, and Gs = 20 dB.

For any location in the considered scenario the received power from a base station j can be

calculated based on (12.5.1) as

Prx[dBm] = Ptx[dBm] +G[dB](θ)− l[dB](d) + Z. (12.5.3)

The received noise power N0 at the mobile reception antenna is given by (2.2.1) in Chapter 2

with the noise figure at the terminal NF,dB = 7 dB, the effective bandwidth W = 3.84× 106 Hz,

and ambiance temperature T0 = 290 K which results in noise density of -174 dBm/Hz.

For each location in the scenario, an Ec/I0 can be calculated. The pilot Ec/I0 is defined in 3GPP

as the ratio of the received energy per pseudo-noise chip for the CPICH to the total received

power spectral density at the UE antenna connector. It can be calculated for a UE connected

to the mth cell as

CPICH Ec/I0i =
Prx,pilot,i

N0 +
∑
j Prx,j

, (12.5.4)

where Prx,pilot,i denotes the pilot power received from cell i, Prx,j is the total received power of cell

j including data and pilot. The pilot minimum requirement for the UE is CPICH Ec/I0 ≥ −20 dB

[105]. In the scenario considered, this requirement results in a nearly 100% coverage of the area.

Figure 12.5(a) shows an example of the highest received pilot Ec/I0, and Figure 12.5(b) shows the

corresponding coverage regions based on received pilot Ec/I0 for the sectors within the simulated

area. It is assumed that the UE is capable of measuring CPICH of 8 identified cells (i.e., cells in

the neighbour cell list) within 200 ms [105].
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Figure 12.6: Procedure of handover measurement.

For the neighbour cell list performance evaluation, mobiles are randomly placed in the simulated

area, and move in the network. Each mobile moves at a given speed and changes its direction

after each simulated time step (see, e.g., [205, 206]). User’s speeds between 5 m/s and 50 m/s

are considered. If the signal quality received from the serving cell falls below the scanning trigger

threshold, the mobile starts scanning cells comprised in the neighbour cell list. The scanning

with handover target selection process is similar to that discussed in Chapter 10 and is shown

in Figure 12.6. The handover hysteresis margin was set to 2 dB.

The quality of the neighbour cell list is assessed by the success rate of handover target scanning

defined as ratio of the number of mobiles finding a suitable handover target to the total number

of mobiles finding a suitable handover target plus the number of mobiles which did not find a

suitable handover target (resulting in a call drop):

success rate =
number of TargetFounds

number of TargetFounds + Failures
. (12.5.5)

Note that after finding a handover target, the mobile enters into the handover decision-execution

phase whose outcome depends on the handover algorithm but is not impacted by the neighbour

cell list. Therefore, only the handover target scanning phase is used to assess the neighbour cell

list quality, the handover execution phase is not taken into the neighbour cell list performance

evaluation.

12.5.1 Performance

An example of neighbour cell list optimisation and handover target scanning is shown in Fig-

ure 12.7 for the serving cell 3. Figure 12.7(a) shows the results directly after initialisation with

a neighbour cell list computed by the self-configuration algorithm, and Figure 12.7(b) shows the

results with the neighbour cell list that is computed by the self-optimisation algorithm. The

optimised neighbour cell list has 21 cells. For comparison, a cell list size of 21 was also used for

the self-configuration algorithm. In Figure 12.7, cells comprised in the NCLs are blue-coloured.

Comparing Figure 12.7(a) and 12.7(b), the self-optimisation method can improve the success rate

of 85% from the self-configuration to 97.3%. It is shown that three cells 7, 96 and 98 make the

difference between the two NCLs. By using mobile-reported measurements, the self-optimisation
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(a) succ rate = 85% with self-configured NCL
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(b) succ rate = 97.3% with self-optimised NCL

Figure 12.7: Examples of scanning with computed NCLs. User’s speed v = 20 m/s
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Figure 12.8: Performance evaluation. Simulation with 20 serving cells.

algorithm included these three cells, and thereby eliminates call drops close to these neighbouring

cells.

For more general results, the handover target scanning with NCLs to be evaluated is simulated

in 20 serving cells, and the average success rate of each simulated neighbour cell list is computed.

The self-configuration method is compared to two other methods. The first one is a distance-

based method that configures a neighbour cell list by selecting a number of the closest neighbour-

ing cell sites. And the second one is similar to the proposed self-configuration method except

that the measurements are performed using a separate antenna with uniform gain pattern. These

benchmarking methods are marked in Figure 12.8(a) & 12.8(b) as “distance-based” and “uni-

form antenna gain”, respectively. Note that, as discussed in §12.1 and §4.3.3, self-optimisation

concepts in the literature are not realised with live measurements like the proposed approach,

but with static configuration information. Therefore, no directly comparable benchmark is avail-

able. Instead, the self-optimisation method is compared with the best self-configuration method

for its performance.
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Figure 12.8(a) shows the performance with different user’s speeds v. It is shown that with a

measurement speed of 8 cells/200ms as in WCDMA, the user’s speed does not have much impact

on the success rate. It is also shown that the proposed self-configuration method is better than

two benchmarking methods, and the self-optimisation method performs best.

Figure 12.8(b) shows the performance with different list sizes. We see that all the NCLs give

better performance for longer lists within the maximum allowed size, Nmax = 32. This is thanks

to the relatively high measurement speed in WCDMA. In some case where measurement speed

is low, if the neighbour cell list is too long the connection between the mobile and the serving

may be lost before finding a suitable handover target. It is also clear from Figure 12.8(b)

that the proposed self-configuration method is better than two benchmarking methods, and the

self-optimisation again performs best. It is shown that the success rates flatten out at about

10 neighbours. From this point on, the performance of the self-optimised neighbour cell list

approaches a success rate close to 100%, while the configured NCLs have lower flat performance

and are not further improved because having limited knowledge about the neighbouring cells

coverage prevents the configuration methods from adding useful neighbouring cells.

12.5.2 Convergence Speed of the Self-Optimisation Method

A further important aspect that was evaluated is the convergence speed of the self-optimisation

method. This provides information on from which point the self-optimisation method provides

reliable performances that outperform the self-configuration method used for initialisation. Fig-

ure 12.9 shows the achievable performance for different numbers of reported measurements. It

is shown that the more measurements are available, the better the quality of the self-optimised

neighbour cell list is, since more reliable information about the neighbouring cell coverage is

available.

At about 3000 measurements, the self-optimisation algorithm provides a success rate about 95%.

And at 6000 available measurements, the success rate attains 99%. Since the self-configuration

achieves an average performance of approximately 95% when the neighbour cell list size is suffi-

cient large as shown in Figure 12.8(b), it makes sense to switch to the neighbour cell list obtained

from the self-optimisation algorithm once more than approximately 3000 measurement are avail-

able. From this point on, the self-optimised neighbour cell list provides improved performance.

12.6 Conclusion

A method for automatically optimising a neighbour cell list was presented. The proposed ap-

proach consists of a self-configuration phase for initialisation, followed by a switch to a self-

optimisation phase once sufficient measurements are reported by connected mobile stations. For

initialisation, the measurements-based self-configuration method achieved the best performance

of approximately 95% in success rate of handover target scanning with 10 or more neighbouring

cells. The success rate is further improved by switching to a neighbour cell list obtained by the

proposed self-optimisation method. It was shown that a switch to a self-optimised neighbour

cell list can improve the performance once more than approximately 3000 measurements reports

are collected, and a near maximum performance of around 99% success rate is achieved after

more than around 6000 measurements reports are available. The proposed solutions are simple
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Figure 12.9: Convergence speed. User speed v = 20 m/s

but efficient by using true measurement-based self-optimisation algorithms. These suggest that

the optimisation of NCLs can be automated, which will help to reduce operational expenses in

future cellular networks.
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Appendix A

Probability

A.1 Characteristic Function and Uniqueness Property

The following definition and properties are taken from Chapter 15 in Feller [186].

Definition A.1.1. Let X be a random variable with probability distribution F . The character-

istic function of F (or of X) is the function φ defined for real w by

φ(w) =

∫ +∞

−∞
ejxwF (dx).

Theorem A.1.2 (Uniqueness). Distinct probability distributions have distinct characteristic

functions.

Theorem A.1.3 (Continuity theorem). In order that a sequence {Fn} of probability distributions

converges to a probability distribution F , it is necessary and sufficient that the sequence {φn} of

their characteristic functions converges pointwise to a limit φ, and that φ is continuous at the

origin. In this case, φ is the characteristic function of F . (Hence φ is continuous everywhere

and the convergence φn → φ is uniform in every finite interval.)

Theorem A.1.4 (Fourier inversion). Let φ be the characteristic function of the distribution

function F and suppose that φ ∈ L (i.e. φ is absolutely integrable). Then F has a bounded

continuous density f given by

f(x) =
1

2π

∫ +∞

−∞
e−jxwφ(w)dw.

Remark A.1.5 (Plancherel identity). Let the distribution F have a density f and characteristic

function φ. Then |φ|2 ∈ L iff f2 ∈ L, and in this case∫ +∞

−∞
f2(x)dx =

1

2π

∫ +∞

−∞
|φ(w)|2dw.
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A.2 Kullback-Leibler and Jensen-Shannon Divergences

For some distributions F and G on the same probability space S, the Kullback-Leibler divergence

[207, 208] of G from F , denoted by and KLdiv(F,G), is defined as follows:

KLdiv(F,G) =

∫
S

dF log
dF

dG
. (A.2.1)

For example if F and G are continuous distributions on R and admit densities f and g, respec-

tively, then:

KLdiv(F,G) =

∫ ∞
−∞

f(x) log
f(x)

g(x)
dx.

Jensen-Shannon divergence [209], denoted by JSdiv(F,G), is a symmetrized version of the

Kullback-Leibler divergence. It is defined as follows:

JSdiv(F,G) =
1

2
KLdiv(F,M) +

1

2
KLdiv(G,M), (A.2.2)

where

M =
1

2
(F +G).
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Wireless Link Quality Modelling and Mobility

Management for Cellular Networks

Dissertation of Doctor of Philosophy by Van Minh Nguyen

The quality of communication in a wireless network is primarily determined by the wireless link

signal quality expressed in term of signal-to-interference-plus-noise ratio. The fact that better

signal quality enhances the communication quality incites to look for states where each receiver

connects to a transmitter providing it with the best signal quality. Using stochastic geometry

and then extreme value theory, we obtain the distribution of the best signal quality, of the

interference, and of the maximum signal strength in both bounded and unbounded path loss

conditions. We then investigate temporal variations of wireless links, which are also essential to

wireless networking, in terms of level crossings of a stationary process X(t). We prove that the

length of an excursion of X(t) above a level γ → −∞ has an exponential distribution, and obtain

results associated with the crossings of several levels. These results are then applied to mobility

management in cellular networks. We focus on the handover measurement function, which

differs from the handover decision-execution by identifying the best neighbouring cell to which

a connection switching is to be decided and executed. This function has an important influence

on the user’s experience, though its operation has been questionable due to the complexity of

combining control mechanisms. We firstly address this topic with an analytical approach for

emerging macro cell and small cell networks, and then with a self-optimisation approach for

neighbour cell lists used in today’s cellular networks.

La qualité de communication dans un réseau sans fil est déterminée par la qualité du signal, et

plus précisément par le rapport signal à interférence et bruit. Cela pousse chaque récepteur à se

connecter à l’émetteur qui lui donne la meilleure qualité du signal. Nous utilisons la géométrie

stochastique et la théorie des extrêmes pour obtenir la distribution de la meilleure qualité du

signal, ainsi que celles de l’interférence et du maximum des puissances reçues. Nous mettons en

évidence comment la singularité de la fonction d’affaiblissement modifie leurs comportements.

Nous nous intéressons ensuite au comportement temporel des signaux radios en étudiant le

franchissement de seuils par un processus stationnaire X(t). Nous démontrons que l’intervalle

de temps que X(t) passe au-dessus d’un seuil γ → −∞ suit une distribution exponentielle,

et obtenons également des résultats caractérisant des franchissements par X(t) de plusieurs

seuils adjacents. Ces résultats sont ensuite appliqués à la gestion de mobilité dans les réseaux

cellulaires. Notre travail se concentre sur la fonction de ‘handover measurement’. Nous identifions

la meilleure cellule voisine lors d’un handover. Cette fonction joue un rôle central sur l’expérience

perçue par l’utilisateur. Mais elle demande une coopération entre divers mécanismes de contrôle

et reste une question difficile. Nous traitons ce problème en proposant des approches analytiques

pour les réseaux émergents de types macro et pico cellulaires, ainsi qu’une approche d’auto-

optimisation pour les listes de voisinage utilisées dans les réseaux cellulaires actuels.

Keywords: max sinr, interference, max signal, shot noise, extreme values, level crossing, self-

optimisation, mobility management, handover measurement, neighbour cell list
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