Ruan 
  
Professeur Su 
  
Professeur Ruan Su 
  
Dr Oscar Acosta Tamayo 
  
Dr Neil Burdett 
  
Dr Shekhar Chandra 
  
Tim Coles 
  
Dr Dave Conlan 
  
Dr Vincent Doré 
  
Dr Jason Dowling 
  
Dr Nicholas Dowson 
  
Cédric Dumas 
  
Dr Josh Passenger 
  
Dr Parnesh Raniga 
  
Dr Hans De Visser 
  
Di Xiao 
  
Dr Luping 
  
Dr Sébastien Ourselin 
  
Dr Kelvin K Leung 
  
Gaël Chételat 
  
Alexandre Bilger 
  
Erik Bonner 
  
Juan Carlos 
  
Borda Carulla 
  
Daan Broekhuizen 
  
Josh Butler 
  
Mario Cheng 
  
Dr Jérémy Coatelen 
  
Olivier Comas 
  
Zoé Dubois 
  
Dit Laroy 
  
Quentin Duché 
  
Amir Fazlollahi 
  
Jean-Baptiste Fiot 
  
Florence Gris 
  
Aleš Neubert 
  
Anthony Paproki 
  
David Raffelt 
  
William Alberto 
  
Romero Ramirez 
  
Andrea Rueda-Olarte 
  
Christoph Russ 
  
Aznul Qalid 
  
Md Sabri 
  
Pierre Schmitt 
  
Ying Xia I Thank 
  
Luca Giancardo 
  
Keywords: Medical Imaging, Image Analysis, Image Segmentation, multiatlas based segmentation, Shape Analysis, Statistical Shape Model, Hippocampus, Alzheimer's Disease

xvii 5.6 The accuracy of the disease classification using bagged support vector machines (SVMs) with varying thresholds in the landmark selection on a separated testing set. . . . . . . . . . . . . . . . . . . . 5.7 The out-of-bag (OOB) estimates of sensitivity of the disease classification using bagged support vector machines (SVMs) with varying thresholds in the landmark selection. . . . . . . . . . . . . . . . . . 5.8 The sensitivity of the disease classification using bagged support vector machines (SVMs) with varying thresholds in the landmark selection on a separated testing set. . . . . . . . . . . . . . . . . . . 5.9 The out-of-bag (OOB) estimates of specificity of the disease classification using bagged support vector machines (SVMs) with varying thresholds in the landmark selection. . . . . . . . . . . . . . . . . . 5.10 The specificity of the disease classification using bagged support vector machines (SVMs) with varying thresholds in the landmark selection on a separated testing set. . . . . . . . . . . . . . . . . . . 5.11 Bar plots of Spearman's ρ of the correlation between the memory indices and the principal components from each model. . . . . . . . 5.12 Variation modes captured by Principal Component Analysis (PCA) on hippocampal subregions best correlated to memory indices (logical memory, AVLT, ADAS memory), color-coded map showing the magnitude of variation described by the mode. . . . . . . . . . . .

Résumé

L'objectif de cette thèse est l'étude des changements de la forme de l'hippocampe due à l'atrophie causée par la maladie d'Alzheimer. Pour ce faire, des algorithmes et des méthodes ont été développés pour segmenter l'hippocampe à partir d'imagerie structurelle par résonance magnétique (IRM) et pour modéliser les variations dans sa forme.

Nous avons utilisé une méthode de segmentation par propagation de multiple atlas pour la segmentation de l'hippocampe, méthode qui a été démontrée comme étant robuste dans la segmentation des structures cérébrales. Nous avons développé une méthode supervisée pour construire une base de données d'atlas spécifique à la population d'intérêt en propageant les parcellations d'une base de données génériques d'atlas. Les images correctement segmentées sont inspectées et ajoutées à la base de données d'atlas, de manière à améliorer sa capacité à segmenter de nouvelles images. Ces atlas sont évalués en termes de leur accord lors de la segmentation de nouvelles images. Comparé aux atlas génériques, les atlas spécifiques à la population d'intérêt obtiennent une plus grande concordance lors de la segmentation des des images provenant de cette population.

La sélection d'atlas est utilisée pour améliorer la précision de la segmentation. La méthode classique de sélection basée sur la similarité des images est ici étendue pour prendre en compte la pertinence marginale maximale (MMR) et la régression des moindres angles (LAR). En prenant en considération la redondance parmi les atlas, des critères de diversité se montrent être plus efficace dans la sélection des atlas dans le cas où seul un nombre limité d'atlas peut-être fusionné.

A partir des hippocampes segmentés, des modèles statistiques de la forme (SSM) sont construits afin de modéliser les variations de la forme de l'hippocampe dans la population. La correspondance entre les hippocampes est établie par une optimisation d'ensemble des surfaces paramétriques. Les paramétrages sphériques des surfaces sont aplatis pour faciliter la reparamétrisation et l'interpolation. Le reparamétrage est régularisé par une contrainte de type fluide visqueux, qui est effectué à l'aide d'une implémentation basée sur la transformées en sinus discrète. Afin d'utiliser le SSM pour décrire la forme d'une nouvelle surface hippocampique, nous avons développé un estimateur des paramètres du model de la forme basée sur l'espérance-maximisation de l'algorithme du plus proche voisin itéré (EM-ICP). Un terme de symétrie est inclus pour forcer une consistance entre la transformée directe et inverse entre le modèle et la forme, ce qui permet une reconstruction plus précise de la forme à partir du modèle. La connaissance a priori sur la forme modélisé par le SSM est utilisée dans l'estimation du maximum a posteriori des paramètres de forme. Cette méthode permet de forcer la continuité spatiale et éviter l'effet de sur-apprentissage. Dans l'étude de l'hippocampe dans la maladie d'Alzheimer, nous utilisons le SSM pour modéliser le changement de forme de l'hippocampe entre les sujets sains et des patients souffrant d'Alzheimer. Nous identifions les régions touchées par l'atrophie dans la maladie d'Alzheimer en évaluant la différence entre les groupes de contrôle et ceux d'Alzheimer sur chaque point correspondant sur la surface. L'analyse des changements de la forme est restreinte aux régions présentant des différences significatives entre les groupes, ce qui a pour effet d'améliorer la discrimination basée sur l'analyse en composantes principales (ACP) du SSM. Les composantes principales décrivant la variabilité de la forme à l'intérieur des régions discriminantes ont une corrélation plus fortes avec le déclin des scores de mémoire épisodique liée à la pathologie de l'hippocampe dans la maladie d'Alzheimer.

Mots clés : imagerie médicale, analyse d'images, segmentation d'image, segmentation basée sur multiple atlas, analyse de forme, modèle de forme statistique, hippocampe, maladie d'Alzheimer vii

Abstract

The aim of this thesis is to investigate the shape change in hippocampus due to the atrophy in Alzheimer's disease (AD). To this end, specific algorithms and methodologies were developed to segment the hippocampus from structural magnetic resonance (MR) images and model variations in its shape.

We use a multi-atlas based segmentation propagation approach for the segmentation of hippocampus which has been shown to obtain accurate parcellation of brain structures. We developed a supervised method to build a population specific atlas database, by propagating the parcellations from a smaller generic atlas database. Well segmented images are inspected and added to the set of atlases, such that the segmentation capability of the atlas set may be enhanced. The population specific atlases are evaluated in terms of the agreement among the propagated labels when segmenting new cases. Compared with using generic atlases, the population specific atlases obtain a higher agreement when dealing with images from the target population.

Atlas selection is used to improve segmentation accuracy. In addition to the conventional selection by image similarity ranking, atlas selection based on maximum marginal relevance (MMR) re-ranking and least angle regression (LAR) sequence are developed for atlas selection. By taking the redundancy among atlases into consideration, diversity criteria are shown to be more efficient in atlas selection which is applicable in the situation where the number of atlases to be fused is limited by the computational resources.

Given the segmented hippocampal volumes, statistical shape models (SSMs) of hippocampi are built on the samples to model the shape variation among the population. The correspondence across the training samples of hippocampi is established by a groupwise optimization of the parameterized shape surfaces. The spherical parameterization of the hippocampal surfaces are flatten to facilitate the reparameterization and interpolation. The reparameterization is regularized by viscous fluid, which is solved by a fast implementation based on discrete sine transform.

In order to use the hippocampal SSM to describe the shape of an unseen hippocampal surface, we developed a shape parameter estimator based on the expectationmaximization iterative closest points (EM-ICP) algorithm. A symmetric data term is included to achieve the inverse consistency of the transformation between the model and the shape, which gives more accurate reconstruction of the shape from the model. The shape prior modeled by the SSM is used in the maximum a posteriori estimation of the shape parameters, which is shown to enforce the smoothness and avoid the effect of over-fitting.

In the study of the hippocampus in AD, we use the SSM to model the hippocampal shape change between the healthy control subjects and patients diagnosed viii with AD. We identify the regions affected by the atrophy in AD by assessing the spatial difference between the control and AD groups at each corresponding landmark. Localized shape analysis is performed on the regions exhibiting significant inter-group difference, which is shown to improve the discrimination ability of the principal component analysis (PCA) based SSM. The principal components describing the localized shape variability among the population are also shown to display stronger correlation with the decline of episodic memory scores linked to the pathology of hippocampus in AD. Chapter 1
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Introduction

Advancements in biomedical sciences and engineering tremendously expanded the field of view of the researchers in health care and medicine. The advent of biomedical imaging provided a unique approach to human anatomy and physiology, which would otherwise have remained under the cover. The development of neuroimaging methods in particular has abundantly enriched the knowledge about the structure, organization and function of the nervous system. In the studies into the neurological and psychiatric disorders, imaging now becomes an indispensable tool for the assessment of diseases, especially in the investigations into Alzheimer's disease (AD), which is an area where imaging techniques have been successfully applied.

Structural magnetic resonance (MR) imaging technology has been widely equipped in clinical settings. It has played an increasingly important role in the diagnosis of AD, and the early detection of the structural changes linked to the onset of the disease. Hippocampus is one of the neuroanatomical structures which suffers from the effect of the disease at an early stage, thus becomes the target of special interest in the current research. Image based measurement of hippocampal atrophy is one promising indicator for the progression of the disease. The hippocampal volume reduction, and shape changes can both be assessed from the structural MR brain images. The aim of the thesis is to develop the methodology and techniques for MR image analysis from the segmentation of MR images to the shape analysis of hippocampus which leads to better understanding of AD.

The research in this thesis is undertaken mainly with the Biomedical Imaging Group at the Australian e-Health Research Centre, CSIRO ICT Centre, Australia, in collaboration with the LE2I CNRS UMR 5158, Université de Bourgogne, France.

In the following sections of the introduction, we first introduce the background of the image analysis in AD studies, and then set forth the outline for the thesis.

Background

The image analysis methodologies developed and discussed in the scope of this thesis are mainly applied in the study of hippocampus in AD. We outline briefly the background of AD and the role of hippocampus in the disease in this section.

The current developments in the neuroimaging investigations into the disease are also introduced.

Alzheimer's disease

Alzheimer's disease is a progressive neurodegenerative disorder, characterized by the loss of memory, cognitive deterioration, impairment of independent living ability, and other psychosocial and behavior symptoms. The term was first introduced in Emil Kraepelin's psychiatry textbook (1910), originally limited to the presenile dementia. Now this distinction is no longer recommended, since the majority of senile dementia is found to be caused by similar, or identical pathological changes in the presenile condition [START_REF] Roth | Correlation between scores for dementia and counts of 'senile plaques' in cerebral grey matter of elderly subjects[END_REF][START_REF] Blessed | The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects[END_REF][START_REF] Tomlinson | Observations on the brains of non-demented old people[END_REF][START_REF] Tomlinson | Observations on the brains of demented old people[END_REF][START_REF] Hachinski | Multi-infarct dementia: A cause of mental deterioration in the elderly[END_REF]. Approximately 60 to 80% of cases of dementia among the elderly population are caused by AD (Alzheimer's Association, 2011), which is to be differentiated from other forms of dementia, such as vascular dementia, Lewy body dementia, frontotemporal dementia, dementia caused by Parkinson's disease among others.

With aging being the main risk factor of the disease, the probability of being The knowledge about the disease has been greatly advanced since Dr. Aloïs Alzheimer (1864-1915) first described his eponymous condition in 1906 [START_REF] Alzheimer | 1.1.1 Alzheimer's Association (2011). 2011 Alzheimer's disease facts and figures[END_REF].

The patient, Auguste D, with dementia symptoms, was 51 years old when admitted by Alzheimer (For an account of the case see [START_REF] Maurer | Auguste D and Alzheimer's disease[END_REF]. The necropsy revealed neuritic plaques, neurofibrillary tangles, which are now recognized as the hallmarks of the AD. The main component of the plaque has been .

. [START_REF] Goedert | A century of Alzheimer's disease[END_REF].

identified to be amyloid-β (Aβ), and the tangle is made of tau. The current amyloid cascade hypothesis suggests the disease is caused by excessive deposition of Aβ which will be briefly summarized as follows (for an up-to-date review of the current development in the pathogenesis and related issues of Alzheimer's disease, see [START_REF] Blennow | Alzheimer's disease[END_REF][START_REF] Goedert | A century of Alzheimer's disease[END_REF]; Murphy and LeVine, 2010; [START_REF] Ballard | Alzheimer's disease[END_REF].

Amyloid-β is the secreted peptide of 40 or 42 amino acids from larger transmembrane amyloid precursor protein (APP), with the physiological function still unknown. During the amyloidogenic cleavage, APP is processed by β-and γ-secretase subsequently, releasing Aβ peptide. In the alternative pathway, APP is cleaved by α-secretase within the Aβ domain first, which is therefore non-amyloidogenic.

The Aβ product is degraded and cleared in normal metabolism. Observing in the familial Alzheimer's disease that the mutations in the APP gene causes preference of β-secretase, and that the mutations in presenilin genes associated with the secretase enzymes increase the production of Aβ 42 , being more ready to aggregate to plaque, the current amyloid cascade hypothesis suggests that synaptic dysfunction and neuronal death are triggered by the Aβ deposition and oligomers aggregated from Aβ. In sporadic AD, the ε4 allele of apolipoprotein E (APOE-ε4) associated with the failure of Aβ clearance has been identified as the main genetic factor that increases the risk of AD 3.8 times (Alzgene database, see [START_REF] Bertram | Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database[END_REF].

The intracellular neurofibrillary tangle is composed of the hyperphosphorylated tau. Tau is a microtubule-associated protein, which promotes tubulin assembly and microtubule stability. The abnormal hyperphosphorylation of tau leads to the disassembly of microtubules inhibiting and disrupting the axonal transport. The aggregation of tau into paired helical filaments forms the neurofibrillary tangles.

As the consequence, neuronal and synaptic function is impaired with neurotransmitter deficit, and the growth of tangles results in the neuron death. According to the amyloid cascade hypothesis, the alternation in tau and the tangle formation result from the Aβ deposition, though the link between Aβ and tau is still not fully understood.

The load of plaque and tangles starts to accumulate before the clinical onset of the AD. Non-demented patients in the transitional stage with memory complaints are usually diagnosed with mild cognitive impairment (MCI), which is a heterogeneous entity including memory decline due to normal aging, or prodrome of other forms of dementia and disorders. Approximately 10-15% of the MCI cases convert into AD every year, while the rate is 1-2% in general population [START_REF] Petersen | Mild cognitive impairment: Clinical characterization and outcome[END_REF].

In 

Hippocampus and its role in AD

Hippocampus has been the subject of particular interests to physiologists and neuroscientists due to its role in the memory, as well as its involvement in the neurological disorders such as AD and epilepsy. Information concerning its function and anatomy maybe found in texts and reference works on neurology and neuroanatomy of the subject [START_REF] Duvernoy | The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections with MRI[END_REF][START_REF] Andersen | The Hippocampus Book[END_REF][START_REF] Taupin | The Hippocampus: Neurotransmission and Plasticity in the Nervous System[END_REF].

Hippocampal formation, including hippocampus proper (also known as cornu Ammonis 2007). The CA4 subfield originally described by Lorente de Nó is the polymorphic layer of the dentate gyrus, consisting of interneurons.

1 Latin for 'Ammon's horn', after the Egyptian deity imn 'Ammon'. The dentate gyrus consists of a superficial molecular, the granular in the middle, and the polymorphic being the deepest. The subiculum is connected to the three layers of the hippocampus proper, while develops into a six-layered structure to the end close to the parahippocampal neocortex.

Hippocampus is accessed by the association areas of cortex through the entorhinal cortex, which provides the major input to the hippocampal formation. Other afferents to the hippocampus include indusium griseum, cingulate gyrus, spetal nuclei, and parahippocampal gyrus. The efferent fibers carrying the principal output from hippocampus follow the fiber through the alveus, fimbria and fornix.

The two contralateral hippocampi on each hemisphere are interconnected by fornix commissure. A full description of the synaptic organization of the hippocampus is provided by [START_REF] Johnston | Hippocampus[END_REF]. The polysynaptic (trisynaptic) circuit [START_REF] Andersen | Lamellar organization of hippocampal excitatory pathways[END_REF]) describes the intrinsic connection of the hippocampal formation. The axons from entorhinal cortex perforates to the molecular layer of the dentate gyrus via the perforant pathway.

An alternative alvear pathway reaches CA1 from entorhinal cortex via alveus. The dendrites of the granule cells in the dentate gyrus synapse with the afferent fibers, and their axons (mossy fibers) extend to CA3, where the pyramidal cells emit the Schaffer collaterals projecting to CA1. The circuit completes as the axons from CA1 reaches subiculum, which projects to the entorhinal cortex.

The intrinsic circuitry is involved in the important role of of hippocampus in forming and consolidating long-term memory. The perforant pathway demonstrates the long-term potentiation (LTP), a form of neuroplastisity, which enhances the synaptic efficacy after rhythmic stimulation and persists after a long period of time. It is now thought to be the mechanism underlying the memory process [START_REF] Lynch | Long-term potentiation and memory[END_REF]. 

In

MRI in AD studies

The advancement in modern imaging technologies provides an approach to the internal structures and functioning in the studies of the anatomy, physiology and In current clinical practices, structural MRI and PET are most commonly deployed. In this thesis, the data dealt with are mainly the structural MR brain images, therefore we will only introduce the brief background of structural MRI and its application in the AD studies.

MRI

The physical principle underlying the MRI is nuclear magnetic resonance, which describes the dynamics and manipulates the behavior of nuclear spins or other magnetic systems possessing angular momentum in an external magnetic field (for the physical background of the nuclear resonance, see [START_REF] Slichter | Principles of Magnetic Resonance[END_REF][START_REF] Levitt | Spin Dynamics: Basics of Nuclear Magnetic Resonance[END_REF].

In MRI, the predominant effect giving rises to the MR signal comes from the proton of hydrogen atom with 1 2 spin. The spin moments aligned either in parallel or antiparallel to the external field B 0 split into two distinct energy levels, conforming to the Boltzmann distribution at thermal equilibrium, with more spinors in the same direction of B 0 . The net effect of the spin excess is the magnetization that can be detected.

The phenomenon of Larmor precession in classical electromagnetism is retained in quantum mechanics. By applying an additional oscillating radiofrequency (rf) magnetic field tuned to the Larmor frequency of the proton, the magnetization vector can be tipped away from its original longitudinal direction parallel to B 0 by π 2 , such that the magnetization rotates in the transverse plane perpendicular to The suppression caused by field inhomogeneities can be avoided by an additional flip of spins by π using rf pulses, creating an 'echo' of the signal. By tuning the interval T R over which the recovered longitudinal magnetization is periodically tipped to the transverse plane by the rf pulse, and the echo time T E when the echo is detected, the result images displays different forms of contrast. A T 1 weighted image acquired with T R ≤ T 1 , and T E relatively short to T 2 highlights the differences in T 1 within the sample, while the T 2 weighted image produced by a setting of relatively long T 1 and T E T 2 enhances the contrasts between materials with different T 2 . With relatively long T R and short T E , the spin density or proton density weighted image displays only the density of spin without contrast in T 1 or

T 2 .
In imaging experiments, a spatial gradient in the magnetic field is used to encode the spins in the sample with varying frequency and phase at different location.

The signal acquired is thus in the k-space of wave vector, which is a Fourier transform of the spatial information. An inverse Fourier transform can be applied [START_REF] Whitwell | MRI correlates of neurofibrillary tangle pathology at autopsy[END_REF][START_REF] Vemuri | Antemortem MRI based STructural abnormality iNDex (STAND)-scores correlate with postmortem braak neurofibrillary tangle stage[END_REF][START_REF] Vemuri | MRI and CSF biomarkers in normal, MCI, and AD subjects[END_REF], and neuronal counts [START_REF] Bobinski | The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease[END_REF][START_REF] Gosche | Hippocampal volume as an index of Alzheimer neuropathology: Findings from the nun study[END_REF][START_REF] Jack | Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia[END_REF]. In terms of neuropsychological measurements, the degree of atrophy is also found linked to the memory decline [START_REF] Thompson | Mapping hippocampal and ventricular change in Alzheimer disease[END_REF][START_REF] Morra | Automated 3D mapping of hippocampal atrophy and its clinical correlates in 400 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls[END_REF][START_REF] Kovacevic | High-throughput, fully automated volumetry for prediction of MMSE and CDR decline in mild cognitive impairment[END_REF][START_REF] Walhovd | Multi-modal imaging predicts memory performance in normal aging and cognitive decline[END_REF].

In high resolution MR images, visible changes of atrophies are observed. Visual rating on T 1 -weighted MR image is one way to assess the hippocampal lobe atrophy [START_REF] Scheltens | Atrophy of medial temporal lobes on MRI in "probable" Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates[END_REF][START_REF] Korf | Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment[END_REF][START_REF] Decarli | Qualitative estimates of medial temporal atrophy as a predictor of progression from mild cognitive impairment to dementia[END_REF][START_REF] Duara | Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease[END_REF]. Quantitative measurements on MR images with manual tracing or automated segmentation show a reduction of hippocampal volume by 15-30% in AD in contrast to 10-15% in MCI (van der [START_REF] Van Der Flier | Medial temporal lobe atrophy and white matter hyperintensities are associated with mild cognitive deficits in non-disabled elderly people: the LADIS study[END_REF][START_REF] Shi | Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: Metaanalyses of MRI studies[END_REF]. Longitudinally, the rates of hippocampal atrophy measured in AD are 4.66% (95% confidence interval 3.92, 5.40) and 1.41% (0.52, 2.30) for MCI subjects (Barnes et al., 2009a).

Apart from hippocampus, whole brain atrophy [START_REF] Fox | Correlation between rates of brain atrophy and cognitive decline in AD[END_REF][START_REF] Josephs | β-amyloid burden is not associated with rates of brain atrophy[END_REF][START_REF] Schott | Neuropsychological correlates of whole brain atrophy in Alzheimer's disease[END_REF][START_REF] Sluimer | Whole-Brain atrophy rate and cognitive decline: Longitudinal MR study of memory clinic patients1[END_REF][START_REF] Sluimer | Whole-brain atrophy rate and CSF biomarker levels in MCI and AD: a longitudinal study[END_REF]) and ventricular enlargement [START_REF] Jack | MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD[END_REF][START_REF] Thompson | Mapping hippocampal and ventricular change in Alzheimer disease[END_REF][START_REF] Jack | Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD[END_REF][START_REF] Ridha | Volumetric MRI and cognitive measures in Alzheimer disease[END_REF] also indicate the progression of the neurodegeneration. Higher rate of atrophy and faster expansion of ventricle are present in advance of the onset of dementia. Based on the structural MR imaging markers of medial temporal lobe and hippocampal atrophy, the prediction of MCI patients converting into AD gives on average 81% sensitivity and 73% specificity (see meta-analysis by [START_REF] Yuan | Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: A meta-analysis[END_REF]).

However, it has been pointed out that other markers, such as CSF biomarkers, have to be take into consideration for the diagnosis due to the lack of specificity in predicting AD at MCI stage solely on the ground of medial temporal lobe atrophy.

Hippocampal atrophy, as well as whole brain atrophy and ventricular enlargement, is not specific to AD, and may well occur in the natural process of normal aging.

Patterns of atrophy in hippocampal subfields and cortical areas may provide specificity to the disease. Because of the non-linearity in the progress of the atrophy, the rate of atrophy accelerates in the transition stage from MCI to AD, and slows down in moderate AD [START_REF] Frisoni | In vivo mapping of incremental cortical atrophy from incipient to overt Alzheimer's disease[END_REF]. The structural markers are more sensitive to the change from MCI to dementia in AD.

Plan of the thesis

In the following chapters, this thesis will discuss the topics on MR image segmentation, shape modeling of biological objects, the shape analysis of hippocampus, and the detection of the hippocampal shape changes in AD.

In Chapter 2, the relevant literature on the segmentation of hippocampus, especially the development of atlas-based methods, the statistical modeling of shapes, and the statistical analysis of hippocampal volume and shape in AD studies are reviewed.

In Chapter 3, we will introduce the hippocampal segmentation method on MR images using multiple atlases. A supervised method to build a population specific atlas set is developed. The issue of atlas selection in multi-atlas based segmentation is discussed. Two alternative criteria for atlas selection are proposed and evaluated.

In Chapter 4, we detailed the construction of the statistical shape models (SSMs)

for hippocampus and the establishment of correspondence by groupwise optimization. We also developed the extrapolation of the SSM to the unseen point set and the shape parameter estimation based on expectation-maximization algorithm.

In Chapter 5, we used the SSMs to perform the shape analysis on the hippocampus and to detect the hippocampal shape changes in AD. We used statistical test to select hippocampal landmarks exhibiting significant difference between the control and the AD groups. We then developed shape analysis method to model the shape variability on the subregions identified by the statistical tests, in order to improve the discrimination ability of the shape analysis using SSM, and correlation of the hippocampal shape description with decline of episodic memory in AD.

The thesis concludes in Chapter 6, which summarizes the work presented in the preparation of this thesis, and outlines the possible future works.

Chapter 2

Literature Review

In this chapter, a brief survey of the state-of-the-art in the field of hippocampal segmentation and measurements of hippocampal atrophy in terms of its volume and shape are presented. We first briefly review the methods used in the literature for the segmentation of hippocampus on magnetic resonance (MR) images, with emphasis on the atlas based methods. Then the development of shape analysis and methods in shape modeling are surveyed. Thirdly, the measurement of hippocampal atrophy by volumetry and the application of shape analysis are discussed.

Finally, we propose the approach we adopt in this thesis.

Segmentation of hippocampus in MR images

In medical imaging, the goal of segmentation is to assign meaningful labels to the voxels in the image, such that the regions of different structural or functional units are classified and may provide interpretable results. It is a crucial step in the medical image analysis pipeline. The quality of segmentation directly affects the effect of visualization, the accuracy in the subsequent analysis, and the planning of Computerized automatic and semi-automatic methods are introduced to reduce the subjectivity in the manual segmentation, and to increase the efficiency and reproducibility. Semi-automatic segmentation still requires manual operations to introduce prior knowledge, provide guidance to the process, or correct the segmentation results. The correction of boundaries sometimes can take as long as manual segmentation. In fully automatic methods, the segmentation protocol is translated into the algorithms, and its demand of interaction with the user/operator is minimal. Both semi-automatic and fully automatic segmentations introduce bias arising from the setting of algorithms which tends to segment the image with consistent systematic error. Automatic methods may also be less robust against the presence of unseen pathologies and artefacts, if these influences are not explicitly compensated by the algorithm.

Hippocampal atlases and segmentation protocols

Atlases in medical image analysis are labeled images that are validated to define the boundary or the area of anatomical or functional structures on the image. One atlas defining the brain anatomical regions widely used in neuroimaging studies was published by [START_REF] Talairach | Co-Planar Stereotaxic Atlas of the Human Brain: 3-D Proportional System: An Approach to Cerebral Imaging[END_REF], in which a dissected brain was photographed with the labeling of Brodmann's area (see for example Figure 2.1).

Later, Montreal Neurological Institute (MNI) defined a new standard brain by averaging series of brain MR scans of normal controls. Based on 305 linearly registered MR scans, the MNI305 brain was created by averaging the intensity of all the images [START_REF] Evans | 3D statistical neuroanatomical models from 305 MRI volumes[END_REF][START_REF] Collins | 3D Model-based segmentation of individual brain structures from magnetic resonance imaging data[END_REF]. The ICBM152 template was created by averaging 152 affinely registered brain scans [START_REF] Mazziotta | A probabilistic atlas and reference system for the human brain: International consortium for brain mapping (ICBM)[END_REF].

Due to the neuroanatomical variability beyond linear transformation, and the Besides the standard labelings of AAL, the Internet Brain Segmentation Repository (IBSR)1 also provides the segmented data of 18 subjects, which are labeled by trained experts into 43 individual regions including subcortical structures such as caudate, hippocampus, pallindum, putamen, thalamus, amygdala, etc. The hippocampal segmentations in IBSR are to be used as atlases in the preparation of this thesis. The segmentations are manually traced using intensity contour line with manual editing [START_REF] Makris | General Brain Segmentation: Method and Utilization[END_REF]. The hippocampus-amygdala border is traced in the sagittal view by drawing a sulci line in the middle of the inferior ventricle. The inferior medial border includes the subiculum, most of the presubiculum, and approximately a quarter of the parasubiculum. The fimbria posterior to the commissure is excluded. The lateral ventricle is used as the external landmark where the hippocampal tail terminates.

Other protocols translating the anatomical definition and description into the image domain are developed to make the manual tracing of the hippocampus individual MR images operable. Although hippocampus is a complex structure convoluted inside the medial limbic lobe, its boundary is recognizable under high resolution MR where it borders with adjacent white matter and CSF. While its boundary with amygdala is more difficult to distinguish. The manual delineation of the hippocampi is usually performed on both the left and the right side of the image, while sometimes the image is flipped such that both hippocampi traced on the same side to avoid the laterality bias [START_REF] Schott | Assessing the onset of structural change in familial alzheimer's disease[END_REF][START_REF] Scahill | A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging[END_REF]. • inclusion/exclusion of the white matter such as alveus and fimbria;

• the anterior hippocampus-amygdala border;

• the posterior border to which the hippocampal tail extends;

• the inferior medial border;

• and the use of arbitrary lines.

One of the most widely adopted protocol (15% of the studies reviewed by Geuze 

Region growing and deformable models

Region growing and deformable model methods usually start from a initial set of seed points, which deforms or grows to match the structure to be segmented. In [START_REF] Ashton | A novel volumetric feature extraction technique with applications to MR images[END_REF], the region starts from a line of seeds along the long axis of the hippocampus, and deforms elastically constrained by the surface tension, deviation from expected surface normal and the force from surrounding tissues.

Driven by gray level gradient and internal forces from surface curvature, an initial stack of polygons localizing the hippocampus on parallel slices was used by [START_REF] Besag | Towards bayesian image analysis[END_REF]. With the automatic definition of the seed point, the fast marching for automated segmentation of the hippocampus (FMASH) by [START_REF] Bishop | Novel fast marching for automated segmentation of the hippocampus (FMASH): method and validation on clinical data[END_REF] propagates the region along the path with smallest resistance defined by a potential function of image intensity using the 3D fast marching method [START_REF] Sethian | A fast marching level set method for monotonically advancing fronts[END_REF][START_REF] Deschamps | Minimal paths in 3D images and application to virtual endoscopy[END_REF].

Shape and appearance based methods

Active shape models (ASM, [START_REF] Cootes | Active shape Models-Their training and application[END_REF] are used in medical image segmentation by fitting a parametric shape model to automatically detected image features or manually defined landmarks [START_REF] Shen | Measuring size and shape of the hippocampus in MR images using a deformable shape model[END_REF]. Using shape information, the elastic deformation of the model to match the intensity profile can be restricted to a prior shape subspace learned from the training set [START_REF] Kelemen | Elastic model-based segmentation of 3-D neuroradiological data sets[END_REF]. Knowledge of relative position and distance between anatomical structures, and texture descriptors have also been added to the ASM segmentation of hippocampus [START_REF] Pitiot | Expert knowledge-guided segmentation system for brain MRI[END_REF]. A shape-intensity joint prior model for both hippocampus and amygdala (Yang and Duncan, 2004) has been developed with neighbor constraints and the level set formulation of shape (Yang et al., 2004).

The active appearance model (AAM, [START_REF] Cootes | Active appearance models[END_REF]) is a generative model that accounts for the image intensity and texture, i.e. the 'appearance,' in addition to the shape structure of the landmarks. Using the image intensity profile along the normal of the structure boundary, the profile appearance model [START_REF] Babalola | Automatic segmentation of the caudate nuclei using active appearance models[END_REF][START_REF] Babalola | Comparison and evaluation of segmentation techniques for subcortical structures in brain MRI[END_REF][START_REF] Babalola | An evaluation of four automatic methods of segmenting the subcortical structures in the brain[END_REF] produces the segmentation by matching the model to the image minimizing the square of residual differences. A Bayesian approach for AAM method models the conditional distribution of intensity given shape, and the segmentation is obtained by the MAP estimation of the shape given image The state-of-the-art segmentation method publicly available in the FreeSurfer package [START_REF] Dale | Cortical Surface-Based analysis: I. segmentation and surface reconstruction[END_REF][START_REF] Fischl | Cortical Surface-Based analysis: II: inflation, flattening, and a Surface-Based coordinate system[END_REF]) labels 37 areas for the whole brain, including 18 subcortical structures. Based on the nonstationary anisotropic MRF modeling of the segmentation, it uses the spatial information from a template in the Talairach space, and a nonlinear transform to account for the inter-subject anatomical variability [START_REF] Fischl | Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain[END_REF]. Forward models of the imaging process are embedded in the segmentation method to achieve the sequence independence [START_REF] Fischl | Sequence-independent segmentation of magnetic resonance images[END_REF]).

Atlas based methods

Atlas based segmentation methods are widely employed in medical image analysis.

Using manually delineated atlas as gold standard, this method transform the label map of the atlas to the query image by the registration algorithms from the atlas to the query. Registration methods such as elastic [START_REF] Miller | Mathematical textbook of deformable neuroanatomies[END_REF] The inter-subject variability may exceed the transformation space searched by the NRR algorithms, such that the error of mismatch between the image and the atlas may be propagated to the segmentation result. Registration failure will lead to the mislabeling. The errors in the result of multi-atlas segmentation thus arise either from the atlases used, or due to the misregistration. In practice, the accuracy of the method depends on the following design choices

• the initial atlas set

• the registration algorithms

• the atlas selection strategy after the registration

• and the label fusion method.

A representative but unbiased set of atlases is usually chosen to target the population of interest. Cohort atlases from the population are found to perform better than using a single standard atlas [START_REF] Carmichael | Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment[END_REF]. Though it is not always readily available, a larger atlas set to cope with the variability in a diverse population [START_REF] Wolz | LEAP: learning embeddings for atlas propagation[END_REF] or a specific sub-population [START_REF] Shen | Supervised method to build an atlas database for multi-atlas segmentation-propagation[END_REF]. It can be obtained by propagation from a smaller set of manually segmented atlases.

In the registration step, commonly used NRR framework based on maximization of context-free image similarity measure does not ensure correct correspondences between the image-pair [START_REF] Crum | Zen and the art of medical image registration: correspondence, homology, and quality[END_REF]. The mismatch of features is propagated into the result, leading to segmentation errors. In the comparison by [START_REF] Carmichael | Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment[END_REF], NRR methods [START_REF] Friston | Spatial registration and normalization of images[END_REF][START_REF] Woods | Automated image registration: I. general methods and intrasubject, intramodality validation[END_REF]Chen, 1999) fit better to the complex shape of hippocampus than using only affine transformations (Friston et The overlap between the segmentation result and the ground truth in multi-atlas segmentation, measured by DSC, reaches its peak when approximately 10 to 20 similarity ranked atlases are selected, and combined by a vote rule [START_REF] Aljabar | Classifier selection strategies for label fusion using large atlas databases[END_REF], as opposed to the convergence of the DSC, as the number of the atlases randomly selected increases. When less similar atlases are fused to the segmentation result, the information relevant to the segmentation is outweighed by the misalignment propagated to the result.

With regard to the label fusion, the basic method is to combine the transformed label maps by voxel-wise majority voting, and the final labeling of the voxel is determined by consensus of the voting [START_REF] Heckemann | Automatic anatomical brain MRI segmentation combining label propagation and decision fusion[END_REF]. A more sophisticated approach is to weight the votes from each atlas based on their performance, such as in simultaneous truth and performance level estimation (STAPLE, The multi-atlas segmentation has also been developed in combination with approaches. In the work of van der Lijn et al. ( 2008), the multi-atlas method is used to generate the probability map as the spatial prior, which is then combined with the intensity model and neighborhood model to formulate the energy function.

The structures are segmented by minimizing the energy function using a graph cut algorithm [START_REF] Kolmogorov | What energy functions can be minimized via graph cuts[END_REF]). The intensity model is refined by [START_REF] Wolz | Segmentation of subcortical structures and the hippocampus in brain MRI using graph-cuts and subject-specific a-priori information[END_REF] and an EM approach is proposed to optimize the energy function [START_REF] Lötjönen | Fast and robust multi-atlas segmentation of brain magnetic resonance images[END_REF].

Evaluation of segmentation

The segmentation algorithms are usually evaluated in terms of their accuracy, volume,

The accuracy of the segmentation can be measured by the overlap between the segmentation result and the ground truth. The Dice similarity coefficient (DSC, [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF], also known as the Kappa coefficient in some literature, indicates the percentage of the overlap between two segmentations

DSC = 2|D S ∩ D R | |D S | + |D R | , ( 2.1) 
where D S is the segmented region, and D R is the reference region (e.g. manually segmented by experts, ground truth). Similar to DSC, the Jaccard index is also a measurement of the overlap, which is defined as

JI = |D S ∩ D R | |D S ∪ D R | . (2.2)
If the voxels in the reference D R are regarded as the actual positives, we can define the sensitivity

sensitivity = |D S ∩ D R | |D R | , ( 2.3) 
and the specificity

specificity = |D C S ∩ D C R | |D C R | , ( 2.4) 
where D C R corresponds to the voxels outside D R , i.e. the actual negative, and D C S corresponds to the voxels not labeled in D S .

In the applications that are interested in measuring the volume of a given anatomical structure, the normalized volume difference

∆V = |D S | -|D R | |D R | , ( 2.5) 
is also an important index assessing the accuracy of the segmentation.

Hausdorff distance measures the distance between the boundaries of two regions

d H = max ( sup y∈∂D S inf x∈∂D R d(x, y), sup x∈∂D R inf y∈∂D S d(x, y) ) (2.6)
where ∂D S and ∂D R are the boundaries of the D S and D R respectively, and

d(•, •)
is the Euclidean distance between the voxels.

Quantitative analysis of shapes

The quantitative study into the shape of biological objects may date back to the publication of On Growth and Form (1917,1942) by Sir D'Arcy Wentworth

Thompson, mathematician, zoologist and classicist, which laid the mathematical ground for zoology and morphology, in a unified account of 'the science of Form and Number.' Subjects such as the magnitude and surface/volume ratio, the forms of cells, tissues and skeletons, shapes of horns and teeth, and their mechanical aspects are investigated. One of the long withstanding contribution of the book is the description of deformation and homologies among species using a Cartesian grid or coordinates in the radial system, as well as the mathematical theory of transformations, which inspired later researchers over the following decades.

Multivariate morphometrics [START_REF] Reyment | Multivariate morphometrics[END_REF] is one traditional way in shape analysis, which performs multivariate analysis on the measurements such as the angles, distances between the landmarks, and the ratio between measurements.

The principal component analysis (PCA) is applied to measured covariables, with the first principal component usually the size variation confounded with shape changes [START_REF] Jolicoeur | Size and shape variation in the painted turtle. a principal component analysis[END_REF]. Allometric study [START_REF] Huxley | Problems of Relative Growth[END_REF][START_REF] Mosimann | Size allometry: Size and shape variables with characterizations of the lognormal and generalized gamma distributions[END_REF]) is another approach to shape analysis that assesses the shape variations associated with the size and growth via the power-law relation.

Recent advancement in mathematical shape theory arises from the seminal work by [START_REF] Kendall | The diffusion of shape[END_REF] on the Brownian motion in the complex projective spaces, which is later developed in more details [START_REF] Kendall | Shape manifolds, procrustean metrics, and complex projective spaces[END_REF][START_REF] Kendall | A survey of the statistical theory of shape[END_REF], and the algorithmic development of Thompson's grid method and the statistics of deformation by [START_REF] Bookstein | The measurement of biological shape and shape change[END_REF][START_REF] Bookstein | Size and shape spaces for landmark data in two dimensions[END_REF]. Up-to-date introduction on this subject may be found in the monographs by [START_REF] Bookstein | Morphometric tools for landmark data : geometry and biology[END_REF], [START_REF] Small | The statistical theory of shape[END_REF], Dryden and Mardia (1998), and [START_REF] Kendall | Shape and shape theory[END_REF].

We follow the notions and definitions of shape spaces used by Dryden and Mardia (1998) and [START_REF] Kendall | Shape and shape theory[END_REF] in this thesis. A configuration X of k landmarks in the m-dimension Euclidean space can be represented by its k × m Cartesian coordinates. The configuration space comprises of all nondegenerate k-ads, which is identified with R k×m \ {0}. Centering the configuration at its gravity centre filters out the translation, such that the centered landmarks in X C do not depend on the choice of the origin for the coordinate systems. The centered pre-shape Z C is defined by normalizing X C of its centroid size S(X C ). The pre-shape space S k m is equivalent to the unit sphere S (k-1)m-1 in the (k -1)m-space. The size-and-shape

[X] S , also known as the form, is the orbit of the centered landmarks under the rotation group SO(m)

[X] S = {Γ(X C ) : Γ ∈ SO(m)}, (2.7) 
with the size-and-shape space SΣ k m defined as the quotient space R (k-1)m /SO(m). The shape [X] is defined as the remaining geometrical information when both scale S(X) and the rotation are filtered

[X] = {Γ(Z C ) : Γ ∈ SO(m)}, (2.8) 
and the shape space

Σ k m ≡ S (k-1)m-1 /SO(m)
is the orbit of configurations under the action of Euclidean similarity transformations. The hierarchy of different shape spaces are shown in Figure 2.4. Due to the scope of this thesis and the application in biomedical imaging, the dimension m will be limited to 3 here.

Representation of shapes

In biomedical imaging applications, statistical shape analysis is usually carried out on the surface and on landmarks extracted from volume data. Marching cubes algorithm is most commonly used to convert the segmented image volume into surface mesh [START_REF] Lorensen | Marching cubes: A high resolution 3D surface construction algorithm[END_REF]; for a survey of the methods, see [START_REF] Newman | A survey of the marching cubes algorithm[END_REF]. For a set X of k landmarks in the 3D Euclidean space, it can be represented by a concatenation of the coordinates of its k landmarks as a 3k-vector

X = ( x 1 , y 1 , z 1 , x 2 , y 2 , z 2 , • • • , x k , y k , z k ) T ∈ R 3k .
(2.9)

The triangulation of these landmarks forms a surface mesh of the anatomical object of interest. In general, the shape modeling by SSMs is based on this representation.

In the context where the topology of the mesh is less relevant, shape information is adequately described by the landmark representation, giving rise to the name 'Point Distribution Model' (PDM, [START_REF] Cootes | Training models of shape from sets of examples[END_REF], which covers the majority of current shape models (for survey, see [START_REF] Heimann | Statistical shape models for 3D medical image segmentation: A review[END_REF]. 

Alignment of point sets

For a given configuration of landmarks, its shape, or the size-and-shape, forms an equivalence class associated with a Euclidean similarity, or rigid transformation group respectively. Without loss of generality, the shape or size-and-shape of the landmarks can be represented by one representative from its respective equivalence class. It may be translated to the origin and aligned to a specified orientation to preserve its size-and-shape, and scaled to a particular size for the analysis of its shape. Procrustes analysis and iterative closest point (ICP) are two major approaches to align the configuration point sets in shape analysis.

Procrustes analysis (for review, see [START_REF] Gower | Procrustes Problems[END_REF][START_REF] Gower | Procrustes methods[END_REF] is used to solve the alignment problem of corresponding points [START_REF] Goodall | Procrustes methods in the statistical analysis of shape[END_REF].

The ordinary Procrustes analysis refers to the least square estimation of alignment between two configurations. While the translation can be estimated by difference between the two gravity centres, the rotation matrix can be solved by a singular value decomposition (SVD), and the scale can be calculated by the centroid size of two configurations. In the Generalized Procrustes Analysis (GPA, [START_REF] Gower | Generalized Procrustes analysis[END_REF], a group of configurations are aligned collectively to minimize the sum of squared distances between pairwise configurations. The GPA starts with an arbitrary configuration in the collection as the initial mean, and iteratively aligns all the configurations to the current estimate of the mean, which is updated at each iteration until convergence. The configurations can be aligned via similarity transformations, or rigid transformations depending on the application. Alternative criteria of L 1 -and L ∞ -norms have been proposed for an alignment more resistant to noises [START_REF] Larsen | Q-MAF shape decomposition[END_REF].

In 

Establishment of correspondence

In order to build a shape model for the landmark data, the correspondence across the data set has to be established first. A detailed review of the issue of shape correspondence in building the shape model has been discussed in the review by In parameterization based methods, the shape landmarks are mapped to the parameter space bijectively, which establishes a correspondence between each landmark point and a parameter. Depending on the topology of the object, the underlying domain of parameters is usually chosen to be a simpler space homeomorphic to the representation of the shape. The correspondence between different shapes is then defined by associating the landmark points with the same parameter. Most common genus 0 surfaces (i.e. homeomorphic to the sphere S 2 ) are usually parameterized by spherical coordinates mapping the landmarks to the points on the unit sphere. Commonly used parameterization algorithms are angle-preserving conformal mapping [START_REF] Haker | Conformal surface parameterization for texture mapping[END_REF][START_REF] Gu | Global conformal surface parameterization[END_REF][START_REF] Gu | Genus zero surface conformal mapping and its application to brain surface mapping[END_REF], and area-preserving mapping [START_REF] Brechbühler | Parametrization of closed surfaces for 3-D shape description[END_REF]. Based on the spherical parameterization, the correspondence can be determined by aligning the first order ellipsoid of the SPHARM shape decomposition [START_REF] Kelemen | Elastic model-based segmentation of 3-D neuroradiological data sets[END_REF]. Since the parameterization of each shape is independent, there is no guarantee of 'optimal' correspondence between two parameterizations. Reparameterization, i.e. transformation in the parameterization space, is needed to improve the correspondence.

For a shape model with given correspondence, the determinant of the covariance matrix is used by Kotcheff and Taylor (1998) as an objective function for the optimization the model correspondence and compactness. The minimum description length (MDL, [START_REF] Davies | A minimum description length approach to statistical shape modeling[END_REF] based on information theoretic principles is used as the cost function in search for optimal correspondence, which is to be solved by genetic algorithm [START_REF] Davies | A minimum description length approach to statistical shape modeling[END_REF] or Nelder-Mead simplex [START_REF] Davies | Shape discrimination in the hippocampus using an MDL model[END_REF]. A simplified MDL by [START_REF] Thodberg | Minimum description length shape and appearance models[END_REF] gives comparable performance as the original, with analytic form that can be minimized more efficiently using the steepest gradient [START_REF] Ericsson | Minimizing the description length using steepest descent[END_REF][START_REF] Hladůvka | MDL spline models: Gradient and polynomial reparameterisations[END_REF]. To reduce the computational complexity of reparameterization on the sphere, the 'shape image' technique is developed by embedding the sphere to a rectangular region, such that the interpolation can be carried out on a 2D grid [START_REF] Davies | Groupwise surface correspondence by optimization: Representation and regularization[END_REF]. Full details of the SSM optimization has been published as a monograph (Davies et al., 2008a).

Dimension reduction

In statistical modeling using SSM, PCA is usually used to determine a lower dimensional subspace that accounts for most of the variance observed in a training set [START_REF] Cootes | Training models of shape from sets of examples[END_REF]. High dimensional representation of shape data eq. (2.9) is projected to the subspace, and reconstructed as the approximation of the original shape in the valid space of the shapes of interest. To use PCA for shape analysis requires the corresponding point being aligned to remove the false variation. The principal shape components can be computed by an eigenanalysis on the covariance matrix or an SVD on the data matrix. In practice, the first principal components explaining approximately 90-98% of the total variance span a subspace in which every valid shape can be approximated [START_REF] Heimann | Statistical shape models for 3D medical image segmentation: A review[END_REF].

Apart from PCA, independent component analysis (ICA, for review, see Hyvärinen et al., 2001) using joint approximated diagonalization of eigenmatrices [START_REF] Cardoso | High-order contrasts for independent component analysis[END_REF] has been used in shape modeling, which permits more localized variations [START_REF] Üzümcü | ICA vs. PCA active appearance models: Application to cardiac MR segmentation[END_REF][START_REF] Suinesiaputra | Detecting regional abnormal cardiac contraction in Short-Axis MR images using independent component analysis[END_REF]. Nonlinear modeling using kernel PCA [START_REF] Schölkopf | Nonlinear component analysis as a kernel eigenvalue problem[END_REF] has also been applied in the shape analysis (Twining and Taylor, 2001).

Measuring the hippocampal atrophy

The MRI studies into AD are interested in the atrophy of hippocampus in particular. Assessment of hippocampal atrophy on the MR images can be carried out at a single time point by comparing the hippocampal volume with the average of the population, or longitudinally tracking the progression of the disease and its effect on the hippocampus. The volume reduction and shape change associated with the atrophy are observable and can be quantified on high-resolution MR images.

Volume measurement

Usual methods to assess hippocampal atrophy are based on the manual or auto- Boundary shift integral (BSI, [START_REF] Barnes | Differentiating AD from aging using semiautomated measurement of hippocampal atrophy rates[END_REF][START_REF] Barnes | Automatic calculation of hippocampal atrophy rates using a hippocampal template and the boundary shift integral[END_REF] is another method that compares the baseline and the follow-up images and measures the shift in the hippocampal boundary.

Shape analysis

Volume alone provides significant discrimination ability, but is inadequate to fully describe the effect of the disease on the morphology of hippocampus. In addition to volumetry, hippocampal shape analysis also contributed to the understanding of the development of the disease. Regional differences between hippocampal subfields have been found in the neurodegenerative process of AD, with more pronounced neuron loss reported in CA1 and subiculum subfields (West et 

Approach adopted in this thesis

In this thesis, we will use the multiple atlas-based methods to segment the hippocampal volume, which has been demonstrated to have good performance in this specific task. We will develop methodologies in various aspects of this approach including the atlas construction and atlas selection. Based on the segmented hippocampal volumes, the groupwise optimization of MDL is used to establish the correspondence across the data set of hippocampal shapes, which is used to build the hippocampal SSMs. We propose an EM-ICP based method to extrapolate the SSM to unseen data and estimate the shape parameters. Then we use the built SSM to analyze hippocampal shape changes in AD. We propose to restrict the shape analysis to the hippocampal subregions where significant difference between the healty controls and AD patients, which is shown in improve the discrimination ability of the PCA-based hippocampal SSM, and better correlated with the episodic memory decline in AD. 

Basic version of multi-atlas based segmentation propagation

In image analysis, the 3D image I acquired by structural MR scans is modeled by a real function defined on a rectangular region Ω ⊂ R 3

I : Ω → R, (3.1) 
such that the intensity of each voxel x ∈ Ω is given by I(x). The aim of image segmentation is to create a label map

L : Ω → L , ( 3.2) 
for image I such that each voxel x is identified with a label L(x) in the label set L .

In multi-atlas based segmentation, we use an atlas set

{(I k , L k ) : k = 1, 2, • • • , n} (3.3)
in which each atlas image 

I k : Ω k ⊂ R 3 → R is labeled with known segmentation L k : Ω k → L ,
{L k • T k : k = 1, 2, • • • , n}. (3.5)
The mis-alignment in the transformed atlases due to the registration error is propagated to the segmentation result, which can be reduced by selecting the atlases according to the registration accuracy measured by image similarity. In the similarity based atlas selection, the atlases are ranked by the image similarity between the target image I and the registration result

I k •T k . The subset A ⊂ {1, 2, • • • , n}
of total n atlases best registered to the target is selected and combined in the fusion step. Given the selected atlases, the labeling of the query image is determined by the consensus of transformed segmentations. Vote rule is a simple but robust method to produce the consensus segmentation, in which the label for each voxel L(x) is estimated as the label that accounts for the majority in

{L k (x) : k ∈ A }.
This process of segmentation propagation using multiple atlases is illustrated in 

Atlas registration

The transformation T between the source I S and the target I T are estimated in two steps. Firstly, the transform T is restricted to the space of affine transformations, and the two images are matched by rigid and/or affine registration algorithms.

Then, after solving the affine component T A of the transform T , NRR algorithms are used to register the image I S • T A to I T . The final transform T between I S and I T is the composition

T = T A • T N , (3.6)
in which T N is the non-rigid deformation found by the NNR algorithm. 

Affine registration

The affine registration is performed using a robust block matching approach [START_REF] Ourselin | Reconstructing a 3D structure from serial histological sections[END_REF]). In the block matching step, the image blocks in the source are matched to the target maximizing the image similarity metric. The optimal transformation is then estimated by a least square regression matching the displacement between the blocks in the source and the target. A multi-resolution implementation varying the sampling rate from coarse to fine is used. In practice, the registration is initially performed with a rigid transformation of 6 degrees of freedom (SO(3) R 3 ): 3D translation and 3D rotation. Based on the rigid initialization, an affine registration is used to estimate the affine transformation T A of 12 degrees of freedom (GL(3, R) R 3 ): 3D translation, 3D rotation, 3D anisotropic scaling, and 3D skew.

Non-rigid registration

In the comparison by [START_REF] Yassa | A quantitative evaluation of crossparticipant registration techniques for MRI studies of the medial temporal lobe[END_REF], pairwise cross-participant registrations were performed over 20 MR images of healthy subjects using the state-ofthe-art registration algorithms. The manual delineations of subcortical structures including hippocampus, entorhinal cortex, perirhinal cortex, temporopolar cortex and parahippocampal cortex of each subject were warped to the rest 19 images.

Methods such as Talairach alignment and 3dWarpDrive in AFNI [START_REF] Cox | AFNI: software for analysis and visualization of functional magnetic resonance neuroimages[END_REF], 

normalization

Similarity based atlas selection

In multi-atlas based segmentation, the warped atlases are selected according to their registration accuracy such that the errors in the less well aligned atlases 

Image mutual information

Image mutual information is a widely used similarity metric in image registration (for review, see [START_REF] Pluim | Mutual-informationbased registration of medical images: a survey[END_REF]. It is able to measure the alignment between two images acquired from different modalities, or in MRI, images of different characteristics depending on the acquisition protocols. It is based on the information theoretic definition of the entropy 

H(I) = -

Correlation coefficient

Correlation coefficient is another image similarity metric, which is defined as

C(I, J) = 1 |Ω| • σ I σ J ∑ x∈Ω ( I(x) - Ī) ( J(x) - J) , ( 3.11) 
where Ī and σ I , J and σ J are the mean and the standard deviation of the gray level in image I and J respectively.

Label fusion

The most simple method of label fusion in multi-atlas based segmentation is majority vote rule, in which the labeling of each voxel is determined by the consensus

L(x) = arg max l∈L |{k ∈ A : L k • T k (x) = l}| . (3.12)
More sophisticated approach is to use weighted votes

L(x) = arg max l∈L ∑ k∈A and L k •T k (x)=l w k (x). (3.13)
In the local weighted voting (LWV, [START_REF] Artaechevarria | Combination strategies in Multi-Atlas image segmentation: Application to brain MR data[END_REF], the weights are calculated by a similarity metric on the neighbourhood N x of the voxel x. Using the mean squared difference (MSD)

w k (x) = MSD(I k • T k (N x ), I(N x )) p (3.14)
provides the best performance on the subcortical structures, where p is a negative integer.

The formulation of MSD permits an efficient implementation to calculate the weight w k (•). We define the MSD M I,J (•) image between image I and J as

M I,J (x) ≡ MSD(I(N x ), J(N x )) = 1 |N x | ∑ y∈Nx (I(y) -J(y)) 2 , (3.15)
which is equivalent of applying a mean filter (over the same neighborhood definition as N (•) ) to the squared difference image (I -J) 2 . The algorithm for the computation of the local weight w k (•) is listed in Algorithm 1.

Algorithm 1 Computation of the weight w k (•)

1: Compute the squared difference image SD k ← (I k • T k -I) 2 2: Compute the MSD image M k ← SD k K mean ,
where K mean is the kernel of mean filter 3: Compute the weight w k ← (M k ) p by applying power function to M k

Supervised construction of population-specific atlas

To achieve a good performance over a large population with significant intersubject variability, a large atlas database is required in which the anatomical structures of interest are reliably labeled. For instance, two recent studies [START_REF] Aljabar | Classifier selection strategies for label fusion using large atlas databases[END_REF][START_REF] Aljabar | Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy[END_REF]) involved a repository of atlases consisting of more than 270 brain MR images with manual delineation of various structures. Often due to extremely demanding time and cost of expert's labeling, multi-atlas based method, as a successful approach, becomes less practical when the manual segmentation over a dataset of such size is unavailable.

To overcome this limitation, we developed a method of building a set of atlases using the labeled images publicly available from the Internet the Internet Brain Segmentation Repository (IBSR, see §2.1.1). Starting with the 18 atlases available in IBSR, the aim of this method is to construct population specific atlases, for the purpose of multi-atlas based segmentation. Instead of labeling manually defined by experts, the database of atlas can be built up in a supervised manner iteratively. We apply this method to an elderly population of healthy control (NC) and Alzheimer's disease (AD) patients, producing an elderly specific atlas set.

Construction of atlas set

The atlas database is a set of images well segmented, which can be used in multiatlas based approach to segment unseen query images. Though a large database of manual segmentations may not be readily available, the set of atlases can be constructed by a supervised method. For a MR image dataset from a given population, the process to construct a population specific atlas database is listed below:

The diagram of iterative process is illustrated in Figure 3. Using multi-atlas segmentation propagation method, segment the image dataset with the current atlas database 4:

Visually inspect the segmentation results

5:

Well segmented images with high consistency between the image and labeling over structures of interest are qualified and added to the atlas database 6: end while coefficient (DSC) score between the segmentation and the ground truth reaches the highest value when approximately 10 image similarity ranked atlases are fused.

Considering the fact that there 8 subjects in the IBSR set are under 18 years old, and to avoid tie votes, 9 atlases were selected in experiment for classifier fusion. The selection was based on image similarity measured by NMI between the unlabeled target image and the registered atlases. The segmentation results were visually inspected, with attention paid especially to the lateral ventricle and deep gray matter structures, such as hippocampus, thalamus, caudate, and putamen.

Segmentations qualified in terms of their visual consistency between the image and the corresponding segmentation were added to the atlas database. As the size of atlas database grows, this step can be repeated so that more segmented MR images may be added to the atlas database, enhancing its capability in the multi-atlas based approach.

In this study, the atlas set was initialized with the IBSR data, in which anatomical structures are manually delineated by experts [START_REF] Makris | General Brain Segmentation: Method and Utilization[END_REF] 

Evaluation of atlas set

In the multi-atlas based segmentation method, the errors in the labeling of atlases may be propagated to the segmentation results. It is therefore necessary to evaluate the quality of atlas produced by the proposed method. Due to the lack of delineation of anatomical structures by experts, it is impossible to assess the accuracy of segmentation of these atlases quantitatively against the manual segmentation as ground truth. Measurements of segmentation's overlap with ground truth such as DSC score, and the boundary difference such as Hausdorff distance are thus not applicable.

In order to evaluate the atlases produced and selected as described in the previous section, the agreement among their propagated labels is taken into account. The underlying assumption is that the performance of classifier fusion may be affected A probability image can be created for each structure when fusing the label maps propagated from n atlases. For a given label l ∈ L , each pixel in the probability image counts the number of votes it receives, and is normalized by the total number of atlases

P l (x) = |{k : L k • T k (x) = l}| n (3.16)
The entropy of this probability image, and the partial moment of its histogram are used to measure the performance of the atlases.

Entropy of probability image

The entropy of image is a statistical measure of its randomness. As far as the probability image is concerned, it can be defined as

H P (P l ) = n ∑ i=1 -p i log p i , ( 3.17) 
where

p i = 1 |Ω| { x ∈ Ω : P l (x) = 1 n } (3.18)
is the probability mass function (pmf) of voxels which have i votes on the given label l. The difference between the definition of H P and H in (3.7) is that in H P we only use the positive part of the histogram, thus excluding the background with zero vote (i = 0). In the ideal case when all the atlases agree unanimously, the entropy H P = 0.

Partial moment of histogram

In addition to the entropy, the second order partial moments of histogram with respect to the reference point 1 is used. It measures the overall deviation of the distribution of the votes from unanimous agreement. It can be defined as follows,

µ 2 = n ∑ i=1 p i • ( 1 - i n ) 2 . ( 3.19) 
In the ideal case of unanimous agreement, µ 2 = 0.

Atlas selection by re-ranking

When using the locally based methods, the segmentation accuracy on the ranked atlases does not converge as quickly as the simple majority voting on the ranked atlases, and keeps increasing as long as new atlases are added (see, e.g. [START_REF] Sdika | Combining atlas based segmentation and intensity classification with nearest neighbor transform and accuracy weighted vote[END_REF]. Since locally based methods requires both the image and the label map of the atlases in the fusion step, it is computationally expensive in terms of both the computation time and the memory footprint, if we increase the number of atlases until the segmentation accuracy converges. In the context of locally based label fusion, we propose the atlas selection strategies other than the similarity ranking.

Using the LWV for the label fusion, we re-rank the atlases by maximal marginal relevance (MMR), and use least angle regression (LAR, [START_REF] Efron | Least angle regression[END_REF] to search for a solution path to an efficient combination of the registration results in addition to the similarity criteria.

MMR re-ranking

MMR criterion was introduced in the field of information retrieval to reduce the redundancy in document summarization by taking diversity into consideration, while still maintaining the relevance to the query [START_REF] Carbonell | The use of MMR, diversity-based reranking for reordering documents and producing summaries[END_REF].

Since MMR uses only the similarity measurement in re-ranking, it can be easily translated into the context of atlas ranking and selection in multi-atlas based segmentation. In MMR re-ranking, not only the image similarity between the query and the transformed atlas is measured, the similarity between the atlas set is also taken into account. We first define the atlas similarity, which is a symmetric modification of the basic image similarity introduced in 3.1.2, and then describe the MMR algorithm as it is applied to the atlas selection problem.

Atlas similarity and image similarity

The similarity between an atlas and the target image can be defined with transformed atlas image after the registration, using NMI (3.10) as the similarity metric

Sim A NMI (A k , I) = NMI(I k • T k , I). (3.20)
Respectively, when correlation coefficients (3.11) are used as the similarity metric, we can define the measurement as

Sim A C (A k , I) = C(I k • T k , I). (3.21)
This definition of Sim A (•) is asymmetric (hence the superscript), since only the atlas image is registered to the target. By performing mutual registration between the atlases in the cross-validation of the atlas set, we obtain the transformation T ij and T ji between every pair of two atlases, A i and A j . This enables us to symmetrize the similarity measurement between two atlases

Sim NMI (A i , A j ) = 1 2 ( Sim A NMI (A i , I j ) + Sim A NMI (A j , I i ) ) (3.22) Sim C (A i , A j ) = 1 2 ( Sim A C (A i , I j ) + Sim A C (A j , I i )
)

.

(3.23)

Atlas selection by MMR algorithm

We initialize the set of selected atlases A to be empty and select one atlas each iteration. At each iteration, the atlas k is selected according to MMR, such that The algorithm of atlas selection using MMR is listed in Algorithm 3. The matrix of atlas similarity

k = arg max k / ∈A ( λSim A (•) (A k , I) -(1 -λ) max j∈A Sim (•) (A j , A k ) ) , ( 3 
( Sim (•) (A i , A j ) ) i,j=1,••• ,n
can be pre-computed and stored.

Algorithm 3 Atlas re-ranking by MMR

1: k ← arg max k Sim A (•) (A k , I) 2: A ← { k} 3: while |A | ≤ the number of atlases to be selected do 4: k ← arg max k / ∈A ( λSim A (•) (A k , I) -(1 -λ) max j∈A Sim (•) (A j , A k ) ) 5:
A ← A ∪ { k} 6: end while

Least angle regression

LAR is a variable selection method in regression, which is closely related to other model selection methods such as Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF] and stagewise forward selection. The conceptual connections between them have been exploited, and made it possible to implement all these methods within the same algorithm framework.

We re-formulate the atlas selection in the atlas-based segmentation approach as a variable selection problem in which we estimate the image I from the transformed atlases {I k • T k } as covariates. Assuming the linear independence of the atlas set, for the coefficients { βk } of each atlas, the estimated image Î is calculated from the linear model

Î = Îb + n ∑ k=1 βk • I k • T k , (3.26)
where Îb is the intercept.

Let A ⊂ {1, 2, • • • , n} denote the active subset of atlases that is selected by the LAR procedure, and

ÎA = Îb + ∑ k∈A βk • I k • T k , (3.27)
is the estimate from the current selection A . We can compute the correlation ĉk between the current residual I -ÎA and the transformed atlas

I k • T k ĉk = C(I k • T k , I -ÎA ) (3.28)
and the sign s k of ĉk

s k =                  1 if ĉk > 0, 0 if ĉk = 0, -1 if ĉk < 0. (3.29)
LAR based atlas selection starts with A = {k 1 } such that the atlas The coefficient βk 1 is increased until a second atlas image I k 2 has the same correlation ĉk 2 with the current residual as ĉk 1 . We use γ1 to denote the value of coefficient βk 1 at this point. Thus

I k 1 • T k 1 is most correlated with the image I k 1 = arg max k C(I k • T k , I) (3.30) . . Î0 . Î{k 1 ,k 2 } . I k 1 • T k 1 . I k 2 • T k 2 . Î{k 1 } . I k 2 • T k 2 . U {k 1 ,k 2 } Figure 3.3: Least angle regression (LAR) with the first 2 cavariates/altases. Î{k 1 ,k 2 } is the projection of I into span(I k 1 , I k 2 ). The initial residual Î{k 1 ,k 2 } -Î0 has greater correlation with I k 1 • T k 1 than I k 2 • T k 2 ; the next LAR estimate is Î{k 1 } = Î0 + γ1 I k 1 • T k 1 , where γ1 is chosen such that Î{k 1 ,k 2 } -Î{k 1 } bisects the angle between I k 1 • T k 1 and I k 2 • T k 2 . Then Î{k 1 ,k 2 } = Î{k 1 } + γ2 U 2 ,
Î{k 1 } = I b + γ1 I k 1 • T k 1 (3.31)
and k 2 is selected and added to A . The LAR then proceeds in along the direction

U 2 equiangular to both I k 1 • T k 1 and I k 2 • T k 2 ÎA = Î{k 1 } + γ 2 U 2 . ( 3 

.32)

A third covariate/atlas is added when it has the strongest correlation with the residual equaling the correlation with the two selected variables. The algorithm continues in the direction of the least angle to all the selected variables, and so on.

When more than two atlases are selected, the data matrix of the selected atlases X A can be defined as

X A = (• • • , s j • I j • T j (Ω), • • • ), j ∈ A (3.33)
such that each of its column for all k, update the correlation ĉk ← C(I k • T k , I -ÎA )

s j • I j • T j (Ω)
3: Ĉ ← max k {ĉ k } 4:
for all k do 5:

s k ← sign(ĉ k ) 6:
end for 7:

X A ← (s k • I k • T k ) , k ∈ A 8: G A ← X T A X A 9: A A ← ( 1 T A G -1 A 1 A ) -1 2
, where 1 A is a one-vector of length |A | 10:

compute the least-angle image

U A such that C(I k • T k , U A ) = C(I k • T k , U A ), ∀k, k ∈ A 11:
for all k do 12:

a k ← C(I k • T k , U A ) 13:
end for 14:

γ ← min + k / ∈A { Ĉ-ĉ k A A -a k , Ĉ+ĉ k A A +a k }
, where min + indicates the minimum takes only positive components 15:

select the atlas k ← arg min + k / ∈A { Ĉ-ĉ k A A -a k , Ĉ+ĉ k A A +a k } 16: A ← A ∪ { k} 17:
update ÎA ← ÎA + γU A 18: end while Analysis of computational complexity shows that LAR is efficient. When n < |Ω|, the computational complexity of entire LAR sequence will be O(n 3 +|Ω|•n 2 ) which is linear to the number of voxels |Ω| [START_REF] Efron | Least angle regression[END_REF].

Results and discussion

In the experiments, we constructed an population specific set of atlases from the elderly population enrolled in the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) study, using our proposed supervised method, initialized with the generic IBSR atlases. In total 40 atlases of elderly subjects are produced and evaluated in terms of their agreement propagated on the larger elderly population. The MR imaging was performed at 2 sites using a Siemens 3T Trio (∼60%) and a Siemens 1.5T Magnetom Avanto (∼40%). The imaging protocol was defined to follow guideline of Alzheimer's Disease Neuroimaging Initiative (ADNI), with the exception that a single T1W MPRage was acquired for each subject at each timepoint (compared to 2 T1W MPRage scans in the standard ADNI protocol) and no phantoms were acquired. From the population enrolled in the AIBL study, 210 brain MR images of 170 NC and 40 AD subjects, were segmented using the multiatlas based segmentation method with the IBSR images used as the initial set of atlases. Among the segmentation results using IBSR atlases, 16 segmentations were qualified and added to the database of atlases after the first iteration. Another images was built on a population of elderly subjects. The demographics of the selected atlases are shown in Table 3.1, all of which are NC subjects. 

Results

The labels in the 18 IBSR atlases and 40 population specific atlases were propagated to the 210 AIBL images. The atlases were selected based on NMI similarity.

For each query, 9 atlases were selected from IBSR atlases and atlases of elderly subjects respectively. The labels from the selected atlases were fused by majority voting. Two examples of probability image of hippocampus produced from IBSR atlases and atlases selected from elderly population are shown in Figure 3.4.

The probability images fused by IBSR atlases and atlases of elderly population are evaluated quantitatively in terms of their entropy H P and the second order partial moment µ 2 of their histograms. For the IBSR and the population specific atlases, the results fusing 9 atlases selected according to image similarity are presented in Tables 3.2 and 3.3.

Discussion

The results show that, the agreement among the elderly population specific atlases is in general higher than that from IBSR, when being propagated to query images in the dataset of elderly subjects. For both NC and AD cases, the entropy is higher when probability images are fused with atlases of the IBSR than that of atlases selected from elderly population, indicating a higher randomness in the probability images produced using IBSR atlases. In terms of the second order in more dissidence than using the atlases selected.

The partial moment µ 2 of the histogram of probability images produced using similarity selected atlases are lower than those randomly selected, indicating more voxels are labeled with fewer votes when fusing a random set of atlases. A similar trend is observed in the results of probability image entropy using population specific atlases. Another observation made on the effect of atlas selection is that this effect is more significant when dealing with AD cases (Table . 3.3).

Considering the size of the population specific atlas set, selecting based on image similarity from a larger pool of atlases produces the label map with a higher degree of agreement. In terms of probability image entropy H P , the label maps of hippocampus, thalamus and lateral ventricle are produced with less randomness when selecting atlases from 40 atlases, with the exception of caudate and putamen. While in terms of the partial moment µ 2 , the distributions of the votes using 40 atlases are consistently closer to the unanimous agreement.

All the 40 atlases visually inspected and selected are from NC subjects. Since IBSR atlases are from NC subjects, the well segmented images using IBSR set are more likely to come from NC population. This effect is reflected in the measurement of agreement. The NC atlases are more easily to agree upon NC cases compared to AD ones. The trend is consistently present as measure by the partial moment µ 2 , while it is not very clearly shown in terms of entropy H P . individuals to be followed for 3 years, 400 people with MCI to be followed for 3 years, and 200 people with early AD to be followed for 2 years.

Atlas selection strategies

In 

Experimental results

We perform a leave-one-out cross-validation on each atlas set. Each NC atlas was registered to all other cases in NC set, and each AD atlas was registered to all the others in the AD set. The registrations were performed by affine transformation using a robust block matching approach [START_REF] Ourselin | Reconstructing a 3D structure from serial histological sections[END_REF] with 12 degrees of freedom, which is followed by non-rigid registration using non-parametric diffeomorphic Demons algorithm [START_REF] Vercauteren | Non-parametric diffeomorphic image registration with the demons algorithm[END_REF], transforming the atlases by diffeomorphic displacement fields. In total 138 × 137 + 99 × 98 = 28 608 NRRs were performed, in which 235 failed.

For a given atlas, the labels from other atlases were selected and combined using LWV. NMI and correlation coefficients were used as similarity metrics in the atlas selection. The similarity metrics were evaluated on a region of interest (ROI)

containing the hippocampus to be segmented. The ROI is defined by the labeling of the atlas closest to the target with padding of 15-voxel width.

We varied the power p of the MSD in the atlas weight (eq. 3.14) in order to choose the optimal value of p to be used in the LWV. The results of LWV on the NC atlas set with varying values of the power in the atlas weight is plotted in Figure 3.6, which shows that p = -3 gave the best performance. In the atlas selection by MMR re-ranking, the parameter λ (eq. 3.24) was adjusted.

The effects of varying values of λ were plotted in Figure 3.7. The best performance is produced with parameter λ = 0.7.

The leave-one-out cross validation was performed on the NC atlas set and the AD atlas set. We compared the performance of the image similarity based atlas selection, MMR re-ranking and LAR atlas selection. The results of average DSC of left and right hippocampi with increasing number of atlases selected according to different criteria are shown in Figure 3.8.

Discussion

The results show that the MMR re-ranked atlases with λ = 0.7 outperforms other methods on the NC atlas set. One example of fusing 31 atlases is shown in Fig- The parameter λ varies from 0.1 to 0.9. The case of λ = 1 is equivalent to the selection by NMI ranking.

atlases selected according to the image similarity ranking. Combining the atlases selected by MMR reaches accuracy that required more atlases based on similarity selection. MMR is therefore a more efficient strategy when the number of atlases is restricted by the limitations of computation time, memory usage or the availability of atlases.

The effect of using MMR is less significant on the AD atlas set. It may be due to more variability within the AD atlases introducing more noise into the penalty term of MMR. The LAR criterion achieved better performance when there were 20-40 atlases were selected and fused on the AD atlases.

As a parametric method, MMR is dependent upon the parameter weighting the inter-atlas similarity. In terms of computation complexity, the LAR algorithm is more efficient since it does not require the step to pre-compute the inter-atlas similarity matrix as in MMR based method. 

Summary

We used a supervised approach to produce a set of population specific atlases from elderly subjects using multi-atlas based segmentation-propagation. Starting with 18 IBSR atlases, 16 images from elderly population well segmented were added to the atlas set. More images were added in the second iteration. The result 40 population specific atlases were evaluated in terms of their agreement when propagated and fused to target images. Comparing to the 18 images in the IBSR atlases, the population specific atlas set built from the elderly population reaches a higher level of consensus generic IBSR atlases. The result segmentations are produced by a majority vote rule with higher certainty. Although as a supervised approach our method requires visual inspection, it is still less time consuming and costs less than manually segment images.

LWV label fusion gives better accuracy by utilizing the local image similarity information, which makes it possible to improve the segmentation quality by increasing the number of atlases. It is necessary to select the registration results when the number of atlas to be fused is limited. As a combination optimization problem, selection by exhaustive search is not tractable. Conventional heuristics such as similarity ranking selects the atlases most close to the query image while does not consider the inter-atlas redundancy. Selecting atlases re-ranked according to MMR and LAR re-ranking is more efficient compared to image similarity selection when labels are fused by LWV. They provide more accurate results when the same number of atlases are selected and fused. These methods are advantageous when the number the atlases to be fused is limited by the computation time, memory constraint and/or the size of atlas set. In the future work, it will be of interest to search for the selection of atlases based on the combination of current methods in order to optimize the performance of the label fusion over varying sizes of the atlas set.

Chapter 4

Statistical shape model of Hippocampus

In nova fert animus mutatas dicere formas corpora Ovid, Metamorphoses, 1.1.

The study of hippocampal shape using statistical shape model (SSM) models the distribution of its shape among the population. It provides not only a characterization of the hippocampal shape variance, which is of interest in the investigations into the morphological changes induced upon the hippocampus by neurodegenerative diseases, but also the prior information which can be used to direct the automatic segmentation of hippocampus in medical images. SSMs are built from In this chapter, the construction of SSMs from hippocampal surfaces by the optimization of minimum description length (MDL) and the evaluation of the constructed SSMs are described. We also presented a symmetric consistent method to extrapolate the SSM to the unseen data and estimate the shape parameters.

The results of the SSM building have been used in "Increasing power to predict 

Building the shape model

The SSM is built on a training set of hippocampal surfaces

{X i : i = 1, • • • , n}
in which each surface X i is represented as a triangulated mesh. The triangulated meshes are usually produced from binary images of segmented label maps by marching cube algorithm [START_REF] Lorensen | Marching cubes: A high resolution 3D surface construction algorithm[END_REF], and smoothed to remove aliasing and terracing artifacts.

For each surface X i , the first step is to find a parameterization

f i : U × V → X i ⊂ R 3 , i = 1, • • • , n (4.1)
which gives the position of the point on the 2D surface of the shape given the parameter (u, v) in the parameter space U × V . In order to build the shape model, we expect that the point f i (u 0 , v 0 ) on the shape surface i, and the point f j (u 0 , v 0 )

on the shape surface j with the same parameter (u 0 , v 0 ), would correspond to the same landmark.

For instance, we have two parameterized surfaces of hippocampi f i and f j . For a landmark on hippocampus, say the head of hippocampus,

f i (u h i , v h i ) and f j (u h j , v h j ) their parameters (u h i , v h i ) = (u h j , v h j ) = (u h , v h
) should be the same. This can be achieved by reparameterization of {f i }

U × V f i -X i . . . U × V γ i - . . . . . . U × V f j - γ j - X j correspondence ? 6
γ i : U × V → U × V, i = 1, • • • , n (4.2) 
on the parameter space, such that

γ i (u h i , v h i ) = γ j (u h j , v h j ) = (u h , v h ), (4.3) 
and the result collection of parameterizations {f i •γ i } establish the correspondence across the training data {X i }.

Since the hippocampal segmentation are simply connected regions on MR images, the closed surfaces extracted from the segmentations are homeomorphic to the S 2 sphere. The reparameterizations are thus homeomorphisms on S 2

γ i : S 2 → S 2 , i = 1, • • • , n, (4.4) 
in which a rotation component Γ can be separated

γ i = Γ i • γi (4.5)
We introduce the calculation of the parameterization f in §4.1.1. To establish correspondence by reparameterization, we first consider the rotation degree of freedom of the reparameterization ( §4.1.2), and then solve the reparameterizations {γ i } by an optimization approach minimizing the Minimum Description Length (MDL) of the shape model ( §4.1.3).

Parameterization of the shape surfaces

A natural choice of coordinate system on S 2 is to use spherical polar coordinates (1995) which is used to map the hippocampal surfaces to the unit sphere. Since the topology of the surface is used in the parameterization algorithm, the mesh representation of the input surface X is used to preserve both geometrical and topological information. For a given mesh representation for the input X, the parameterization algorithm computes the latitude θ(v) and the longitude φ(v) for each vertex v by solving the Laplacian equations

(θ, φ) ∈ [0, π] × [-π,
∇ 2 θ = 0, (4.6) 
∇ 2 φ = 0 (4.7)

diffusing the coordinates (θ, φ) over the mesh X. The diffusion boundary condition is set by initializing a north pole and a south pole on the mesh to be parameterized. The assignment of latitude and longitude is then optimized by minimizing the distortion in the parameterization. Thus the parameterization f (θ, φ) of the surface X is defined such that

f (θ(v), φ(v)) = p v ∈ X (4.8)
gives the spatial position p v for all the vertex v.

In order to calculate the position f (θ, φ) for an arbitrary pair parameters (θ, φ),

we first locate the parameters on the unit sphere, where r(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ) T , (4.9) is contained inside the triangle with vertices

r 1 = (sin θ(v i 1 ) cos φ(v i 1 ), sin θ(v i 1 ) sin φ(v i 1 ), cos θ(v i 1 )) T , r 2 = (sin θ(v i 2 ) cos φ(v i 2 ), sin θ(v i 2 ) sin φ(v i 2 ), cos θ(v i 2 )) T , r 3 = (sin θ(v i 3 ) cos φ(v i 3 ), sin θ(v i 3 ) sin φ(v i 3 ), cos θ(v i 3 )) T .
(4.10)

The barycentric coordinate

(w 1 , w 2 , w 3 ), ∀i = 1, 2, 3 : 0 ≤ w i ≤ 1 (4.11)
for r can be calculated, such that

w 1 r 1 + w 2 r 2 + w 3 r 3 = r. (4.
12)

The corresponding position for (θ, φ) can be obtained by a linear interpolation

f (θ, φ) = w 1 p v i 1 + w 2 p v i 2 + w 3 p v i 3 (4.13)

Initial parameterization by diffusion

Given the mesh representation for the input X of k vertices, two of the vertices v north , v south are selected as the north pole and the south pole A ii ← number of direct neighbors of v i

θ(v north ) = 0, ( 4 

4:

for all v j which is direct neighbor of v i do 5:

A ij ← -1 6:
end for 7: end for 8: {Setting up the vector b} 9:

for all i = 1, • • • , k do 10: b i ← 0 11: if v i is direct neighbor of v south then 12: b i ← π 13:

end if 14: end for

To compute the diffusion of the longitude, a date line connecting the north and south pole is chosen as the path with steepest latitude ascent. Analogous to the International Date Line on the globe, there is a 2π-discontinuity in φ across the date line, which is used as the boundary condition for φ. Since the longitude is undefined for the poles, the neighbors of both poles are disconnected to the pole in the computation of the longitudes. The Laplacian matrix A for solving the

φ = (φ(v 1 ), φ(v 2 ), • • • , φ(v k ))
T is thus modified. The algorithm modifying A and setting b is listed in Algorithm 6.

Distortion minimization

The initial assignment of parameters (θ(v), φ(v)) is optimized to reduce the distortion. The optimization is carried out under the constraint of area preserving, i.e. the area of each facet on X must map to a region of proportional area in parameter space S 2 . The optimization process aims to minimize the distortion Algorithm 6 Linear system for the initial diffusion of φ, adapted from Brechbühler et al. (1995) 1: {Modification of the matrix A} 2: for all direct neighbors v i of the north or the south pole do 3: for all v j which is direct neighbor of v i , clockwise between p previous and p next do 

A ii ← A ii -

Reparameterization by rotation

Since the parameterization is performed on each surface X i individually, the correspondence across the training set {X i : i = 1, • • • , n} is not guaranteed. In the implementation by [START_REF] Styner | Framework for the statistical shape analysis of brain structures using SPHARM-PDM[END_REF], the first degree of SPHARM coefficients for each shape is computed, and the first order ellipsoid is oriented to fit the shape surface. The parameterizations are rotated to coincide both poles of the parameterization to that of the first order ellipsoid. In our implementation, the parameterizations are rotated to minimize the shape difference between surfaces up to similarity transformations based on the parameterization correspondence.

The L 2 distance between parameterizations can be defined based on the standard Lebesgue measure on S 2

f i -f j 2 = ∫ S 2 f i (θ, φ) -f j (θ, φ)) 2 dΩ (4.16)
where dΩ = sin θdθdφ is the surface element on S 2 . The condition of isometry is satisfied for rotation Γ

f i • Γ -f j • Γ 2 = ∫ S 2 f i (Γ(θ, φ)) -f j (Γ(θ, φ)) 2 dΩ = ∫ S 2 f i (Γ(θ, φ)) -f j (Γ(θ, φ)) 2 J -1 (Γ(θ, φ))dΩ(Γ(θ, φ)) = ∫ S 2 f i (Γ(θ, φ)) -f j (Γ(θ, φ)) 2 dΩ(Γ(θ, φ)) = f i -f j 2 (4.17)
since the Jacobian J for rotation is 1 on S 2 . Assuming the shape surfaces {X i } are aligned (e.g. by ICP algorithm) via similarity transforms to a common template, the rotation Γ i can be found by minimizing the pairwise distance

Γ i = arg min Γ∈SO(3) f i • Γ -f 1 2 , (4.18)
where f 1 is an arbitrarily selected parameterization as the template. Multiple runs with different choices of template may be performed in order to avoid bias towards the choice of template.

In implementation, the L 2 distance may be evaluated by sampling on S 2 A multi-resolution scheme can be easily implemented by subdividing the initial sampling (Figure 4.3). The multi-resolution algorithm for rotational reparameterization is listed in Algorithm 7. for all f i = f j do 9:

f i -f j 2 4π k k ∑ s=1 f i (θ s , φ s ) -f j (θ s , φ s ) 2 , ( 4 
initialize the optimizer with current Γ i 10: 

update Γ i ← arg min Γ∈SO(3) ∑ k s=1 f i (Γ(θ s , φ s )) -f j (Γ j (θ s , φ s ))

Image representation and manipulation of shapes

In previous steps, the shape surfaces are parameterized by spherical coordinates on S 2 . By sampling on S 2 by a subdivided octahedron, shape surface X i is sampled as Due to cutting of the surface, some nodes in the octahedron are duplicated when unfolded on the plane. Subdivided octahedron of k = 4N 2 + 2 nodes is unfolded to a (2N + 1) × (2N + 1) grid. Each node (ı, ) ∈ N 2 on the grid is associated with a node s(ı, ) on the subdivided octahedron. The mapping

f i • Γ i (θ s , φ s ), s = 1, • • • , k (4.
g : D = [0, 1] × [0, 1] ⊂ R 2 → S 2 (4.21)
from a image domain D to the parameter space S 2 , which can be interpolated from the values of the grid nodes where each node (ı, ) is identified with a pixel

g(x ı, ) = (θ s(ı,) , φ s(ı,) ) (4.22)
x ı, ∈ [0, 1] × [0, 1]. A vector image S can be defined on D S = f • Γ • g : D → R 3 (4.23)
such that the homeomorphic reparameterization γ on S 2 is equivalent to a deformation ψ of the image domain

S • ψ = f • Γ • γ • g (4.24)
where

ψ = g -1 • γ • g : D → D (4.25)
is a 2D deformation field.

In the discussions of kinetics of continuous media and the modeling of deformation in image registration, physical quantities such as the displacement and the velocity field are more efficiently studied under Eulerian reference frame, in which the frame of reference is fixed with respect to the laboratory system, in contrast to the Lagrangian frame which follows the motion of the particles. Under Eulerian reference frame, the deformation ψ is described by the displacement u(x, t) of the particles passing through x at time t, originated from xu(x, t) at t = 0. Given the displacement field u, the shape image can be reparameterized with the deformation

S (x) = S(x -u(x)) (4.26) (a) reparameterization γ (b) reparameterization ψ = g -1 • γ • g
ψ(x) = x -u(x). (4.27)

MDL cost function and its gradient

The original MDL cost function for optimizing correspondences was proposed by [START_REF] Davies | A minimum description length approach to statistical shape modeling[END_REF][START_REF] Davies | Shape discrimination in the hippocampus using an MDL model[END_REF], which was simplified by [START_REF] Thodberg | Minimum description length shape and appearance models[END_REF]. With each shape surface in the collection {X i , i = 1, • • • , n} sampled by octahedron and mapped to 2D images, the mean S and the covariance matrix Σ for the shape sample can be computed

S(x) = 1 n n ∑ i=1 S i (x), (4.28) 
Σ ij = 1 (2N + 1) 2 2N +1 ∑ ı=1 2N +1 ∑ =1 ( S i (x ı, ) -S(x ı, ) ) • ( S j (x ı, ) -S(x ı, ) ) .
(4.29)

The MDL cost function is defined as

L MDL = ∑ λm≥λc ( 1 + log λ m λ c ) + ∑ λm<λc λ m λ c , (4.30)
where λ m are the eigenvalues of the covariance matrix Σ, and λ c is the cut-off value. The variation of the MDL cost function L MDL with respect to the the position in the landmark S i (x) has been derived by [START_REF] Ericsson | Minimizing the description length using steepest descent[END_REF] based on the SVD decomposition of the data matrix, and by [START_REF] Hladůvka | MDL spline models: Gradient and polynomial reparameterisations[END_REF] on the eigen-decomposition of the covariance matrix Σ.

The variation based on eigen-decomposition is used in the implementation. The variation of the cost function with respect to the displacement u i at pixel (ı, ) in i-th shape image can be calculated by applying the chain rule

δL MDL δu i (x ı ) = ∂L MDL ∂λ m • ∂λ m ∂Σ jl • δΣ jl δS i (x ı ) • δS i (x ı ) δu i (x ı ) , (4.31)
where Einstein summation convention applies to the repeated subscripts m, j, l.

The partial derivative of the cost function with respect to the eigenvalues is

∂L MDL ∂λ m =        1 λm if λ m ≥ λ c , 1 λc if λ m < λ c . (4.32)
The partial derivative of the eigenvalue with respect to the element of covariance matrix Σ jl is calculated from the eigen-decomposition

Σ = WΛW T , (4.33)
where Λ is the diagonal matrix of eigenvalues, and W is the matrix of eigenvectors, which gives the derivative

∂λ m ∂Σ jl = W jm W lm , (4.34)
where W lm , W jm are elements of W. The variation of the covariance matrix with respect to the position of the point S i (x ı ) is derived from (4.29)

δΣ jl δS i (x ı ) = 1 (2N + 1) 2 [( δ ij - 1 n ) S l (x ı ) + ( δ il - 1 n ) S j (x ı ) ] ∈ R 1×3 . (4.35)
The variation of the point S i (x ı ) with respect to the displacement u

[ δS i (x ı ) δu i (x ı ) ] ∈ R 3×2 (4.36)
can be calculated on the image S i by interpolation.

Fluid regularization

Since the groupwise optimization of L MDL is generally ill-posed, regularization of the solution is required. Modeling the deformation as viscous fluid, fluid registration method [START_REF] Christensen | Deformable templates using large deformation kinematics[END_REF] has been used by [START_REF] Davies | Groupwise surface correspondence by optimization: Representation and regularization[END_REF] in solving the deformation u. The external force is calculated from the variation of the object function 

F i (x ı ) = - δL MDL δu i (x ı ) . ( 4 
L † = -µ∇ 2 -(µ + λ)    ∂ 2 ∂y 2 -∂ 2 ∂x∂y -∂ 2 ∂x∂y ∂ 2 ∂x 2    (4.40)
is multiplied to both side of the equation (4.38)

L † L[v] = det(L)[v] = L † [F] (4.41)
where the matrix determinant of L has the form 

det(L) = µ(2µ + λ)∇ 2 ∇ 2 . ( 4 

Optimization process

Once the velocity v is solved, the update of u follows the Eulerian derivative

u(x, τ ) = v(x, τ ) -(v • ∇)u(x, τ ), (4.44)
which gives the increment of u in each time step τ 

τ (v i -(v i • ∇)u i ). ( 4 

Validation and evaluation of shape models

For reparameterized shape surfaces

{f i • γ i , i = 1, • • • , n} or image representation {S i • ψ i , i = 1, • • • , n}
, each shape surface is sampled and represented in SSM by a vector concatenating the coordinates of sampled points

X i = ( x 1 i , y 1 i , z 1 i , x 2 i , y 2 i , z 2 i , • • • x k i , y k i , z k i ) T ∈ R 3k , (4.47) . . (a) 
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. Compute F i given u i (eq. 4.37) Update u i : 

(f)
← u i + τ (v i -(v i • ∇)u i ) (
u i ← 0, v i ← 0 12:
end for update S i 19:

u i ← 0, v i ← 0 20:
end for 21:

end if 22: end while where

(x s i , y s i , z s i ) T = f i • γ i (θ s , φ s ) = S i • ψ i (ı s ,  s ), s = 1, 2, • • • , k (4.48)
are the sampled points. For sampling on subdivided octahedron k = 4N 2 + 2. The mean

X = 1 n n ∑ i=1 X i , (4.49)
gives the data matrix

X = (X 1 -X, X 2 -X, • • • , X n -X). ( 4 

.50)

A PCA is performed such that each shape can be approximated by a subspace spanned by the eigenvectors of the larger covariance matrix

X = X + Wb, (4.51)
where W is the matrix which consists of all eigenvectors of XX T , and b is the vector describing the shape of X.

The SSM built upon the optimized correspondence is evaluated in terms of its compactness, generalization ability and specificity [START_REF] Davies | Shape discrimination in the hippocampus using an MDL model[END_REF].

Compactness

The compactness of the SSM is measured by the cumulative variance of the first M variation modes modes of model

Compactness(M ) = ∑ M m=1 λ m ∑ n-1 m=1 λ m , (4.52)
where λ m , m = 1, • • • , n -1 are the descendingly sorted eigenvalues of the covariance matrix Σ, with λ 1 the largest eigenvalue.

Generalization ability

The generalization ability of the SSM measures the ability of the model to represent an unseen shape. It is measured by a leave-one-out scheme

Generalisability(M ) = 1 n n ∑ i=1 X i (M ) -X i 2 , (4.53)
where X i (M ) is the reconstruction of the shape X i by the model based on the training set excluding X i with the first M modes, • is the L 2 -norm defined on the vector space.

Specificity

The specificity is the expected distance between the shapes generated by model and the shapes in the training set. It is evaluated by the generation shapes by the SSM according to the variance in the shape space

Specificity(M ) = 1 N N ∑ j=1 min i X * j (M ) -X i 2 , (4.54)
where X * j (M ), j = 1, • • • , N are the samples generated by the model using the first M modes.

Extrapolation of testing cases

The estimation of parameters of an unseen shape requires a dense correspondence between the shape surface and the SSM in order to register the model, and map the shape to the legitimate subspace modeled by the SSM. The estimation result and the quality of the model reconstruction thus depend upon the accuracy of the correspondence between shape surfaces. In point set registration problems, the popular ICP algorithm estimates the transformation by minimizing the distance between two point sets based on the nearest neighbor correspondence. This method is sensitive to incorrect correspondences, and outliers need to be rejected in order to avoid local minima.

Instead of deterministic matching between two point sets, a Gaussian mixture model (GMM, Chui and Rangarajan, 2000; Jian and Vemuri, 2010) can be used to interpret the correspondence probabilistically as hidden random variables, and the maximum likelihood (ML) estimation of the transformation can be solved by Expectation-Maximization (EM) algorithm [START_REF] Granger | Multi-scale EM-ICP: a fast and robust approach for surface registration[END_REF]. A symmetric formulation of the energy function has been proposed to achieve inverse consistency of the transformation [START_REF] Combès | An efficient EM-ICP algorithm for symmetric consistent non-linear registration of point sets[END_REF]. Previous work [START_REF] Hufnagel | Computation of a probabilistic statistical shape model in a maximum-a-posteriori framework[END_REF] using EM-ICP has been developed for SSMs to estimate the model parameters with latent correspondences probabilities, and to build the shape model.

The EM-ICP framework is extended here to the estimation the shape parameters in PCA-based SSMs, and to improve the estimation by imposing symmetric consistency and regularization on the estimator. Since PCA provides a linear parameterization of the variation and non-rigid deformation in the shape space, the formulation of symmetric data terms for consistent estimation has a closed form least square solution. The deformation of the shape model under the guidance of shape components also reduces significantly the dimension of the linear system.

The shape parameters are associated with a priori distribution due to the statistical nature of SSM, which facilitates the extension of ML estimator to maximum a posteriori (MAP) by adding a Tikhonov regularization term.

Gaussian mixture model and EM algorithm

The point set registration problem is to transform the point set {p s

X , s = 1, • • • , k} of the model X (the mean of the SSM in this case) to a target scene Y consisting of k Y landmarks {p t Y , t = 1, • • • , k Y }.
The Gaussian mixture model for point set registration models the transformed points T ( X) as samples from a mixture of Gaussian distribution with mean at target points

{p t Y } p(T ( X), A|Y ) = ∏ s,t ( π st • p ( T (p s ) p t Y )) Ast , ( 4.55) 
where p( • |p t Y ) is the density of the Gaussian distribution in 3D, and A = (A st ) is the binary matching matrix of which each entry A st = 1 if point p t Y corresponds to ps on the model with a priori probability

P (A st = 1) = π st , ∑ t π st = 1, s = 1, • • • , k. (4.56)
By applying Bayes' rule, the distribution density of the matching matrix A given the transformation T

p(A|T ( X), Y ) = ∏ s,t ( π st • p(T (p s X )|p k Y ) ∑ l π sl • p(T (p s X )|p l Y ) ) Ast (4.57)
gives the conditional expectation

E(A st |T ) = π st • p(T (p s X )|p k Y ) ∑ l π sl • p(T (p s X )|p l Y ) (4.58)
Viewing the correspondence matching matrix A as hidden variable, EM algorithm can be used to minimize the free energy

F (A, T ) = -E A (log p(T (x), A|y)) + E A (log p(A)). (4.59)
In implementation, isotropic Gaussian noise with covariance σ 2 I is assumed

p(p |p) = 1 (2π) 3 2 σ 3 exp ( - 1 2σ 2 p -p 2 ) (4.60) 
where pp is the Euclidean distance between the point p and p . The prior distribution is set to be uniform

π st = 1 k Y , ∀s, t. (4.61) 
The EM algorithm estimates the latent match A and the transformation T alternatively. In the Expectation-step (E-step), the algorithm estimates the expectation of the match matrix A based on the current estimate of T

A * st = E(A st |T ) = e -T (p s X )-p t Y 2 /2σ 2 ∑ l e -T (p s X )-p l Y 2 /2σ 2 , ( 4.62) 
In the Maximization-step (M-step), the transformation T is estimated by minimizing the energy

T * = arg min T 1 kσ 2 ∑ s,t A * st T (p s X ) -p t Y 2 , ( 4.63) 
where the transformation T = (T A , b) is composed of an affine transformation T A , and the deformation of the SSM along the vector b (eq. 4.51)

T ( X) = T A ( X + Wb) and T (p s X ) = T A (p s X + (Wb) s ) , (4.64) 
with (Wb) s ∈ R 3 indicating the displacement of the s-th model point given the vector b.

Noting that A is row-stochastic, i.e. 

T A ∑ s T A (p s X + (Wb * ) s ) -p s Yc 2 . ( 4.68) 
The algorithm for deforming the SSM to fit the scene Y is listed in Algorithm 10.

Estimation with symmetrical consistency and shape priors

The energy function (4.63) to be minimized in M.1 is asymmetric since it is the mean square distance from each point in T ( X) to Y c . Symmetrically, a mean square data term 

1 k Y σ 2 ∑ s,t B * ts T (p s X ) -p t Y 2 ( 
Y c ← A * Y (eq. 4.66) 10: M.1 b ← W T (T -1 A (Y c ) -X) 11: M.2 T A ← arg min T A T A ( X + Wb) -Y c 2 (eq. 4.68) 12:
end for 13: end while from each point in Y to T ( X) can be added to the energy, where B = (B ts ) is the row-stochastic match matrix, which is updated in the E-step

B * = E(B|T ) and B * ts = E(B ts |T ) = e -T (p s X )-p t Y 2 /2σ 2 ∑ l e -T (p l X )-p t Y 2 /2σ 2 . ( 4.70) 
The formulation of SSM allows the shape priors based on the distribution of b parameters b m ∼ N (0, λ m ), where λ m is the mth eigenvalue of the covariance matrix. To include a priori information of parameters, a Tikhonov regularization term is added to the energy function, which penalizes the coefficients of the lesser components. Hence the cost function for symmetric consistent estimation with regularization

E = 1 2σ 2 1 k ∑ s,t A * st T (p s X ) -p t Y 2 + 1 2σ 2 α k Y ∑ s,t B * ts T (p s X ) -p t Y 2 + β 2 ∑ m b 2 m λ m , ( 4.71) 
where α and β control the amount of symmetric consistency and regularization.

Fixing the affine part T A in T , and noting that all rows in A and B sum to 1, the cost function can be rewritten as

E = T A 2kσ 2 X + Wb -T -1 A (Y c ) 2 + α T A 2k Y σ 2 X c -T -1 A (Y ) + BWb 2 + β 2 b T Λ -1 b, (4.72) 
where T A is norm of the linear part of the affine transformation T A , which is the scaling factor of T A ,

X c = B * X, (4.73) 
and Λ is the diagonal matrix of eigenvalues {λ m } of SSM. As opposed to B ∈

R ky×k , B ∈ R 3k Y ×3k is left multiplied to Wb ∈ R 3k , which is modified from B * B =           B * 11 I 3×3 B * 12 I 3×3 • • • B * 1k I 3×3 B * 21 I 3×3 B * 22 I 3×3 • • • B * 2k I 3×3 . . . . . . . . . . . . B * k Y 1 I 3×3 B * k Y 2 I 3×3 • • • B * k Y k I 3×3           (4.74) 
The minimum of the energy function is reached with the derivative

∂E ∂b = 0, (4.75) 
which is the solution to the linear system 

( 1 k I + α k Y W T B T BW + σ 2 β T A Λ -1 ) b = 1 k W T (T -1 A (Y c ) -X) + α k Y W T B T (T -1 A (Y ) -X c ).

Experimental results

In the experiments, we first built SSMs for hippocampus based on the semiautomated segmentations from the ADNI database. The compactness, specificity and generalization ability of the result shape models were evaluated. Then we tested the performance of the EM-ICP based model extrapolation method we proposed. We compared the performance of the symmetric and asymmetric estimation both with and without regularization. The reconstruction error and the accuracy of the parameter estimation are evaluated.

SSM Building

The hippocampal volumes used to build the SSMs were segmented semi-automatically by SNT provided by ADNI (see §3. In the process of optimization, the information theoretic MDL is the object function to be minimized. As the MDL of the model decreases, the specificity and the generalization ability of the model improves as shown in Figures 4.9 and 4.10. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0 20 40 60 80 100 120 0.4 0.6 0.8 1.0
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SSM parameter estimation

We used the SSM of left hippocampus built previously in the experiments of model extrapolation and parameter estimation. We evaluate the effect of the symmetric consistency and regularization on the performance of the estimation by measuring the accuracy of the estimated shape parameters b compared to the phantom ground truth, and the precision of the estimated shape surfaces. Two experiments were carried out, and in each of the experiments, we performed both the symmetric and asymmetric shape parameter estimation, with and without regularization.

In the first experiment, we aim to evaluate the accuracy of the estimated parameters by generating phantom samples from the SSM. The phantom shapes were generated by a random vector b in which each component b m ∼ N (0, λ m ). Gaussian random noises (0.05 b ) were added to the coordinates of surface points, and regularized by smoothing with a windowed sinc function [START_REF] Taubin | Optimal surface smoothing as filter design[END_REF].

These surfaces were further decimated [START_REF] Garland | Surface simplification using quadric error metrics[END_REF], reducing 60% to 80% of triangles, to create missing correspondences between the phantom and the SSM, and match the density of marching cube meshes produced from hippocampal segmentations. The error of the estimation b were measured by normalized mean squared error (MSE)

E( b -b 2 / b 2 ) = E ( ∑ m (b m -b m ) 2 / ∑ i b 2 m ) , (4.77) 
with respect to b as the ground truth.

In the second experiment, we evaluated the precision of the estimated shapes by testing our method to represent smoothed marching cube surfaces obtained from an unseen testing set of hippocampal volumes (20 NC and 20 AD from ADNI). We deformed the SSM to fit the surfaces and measure the root mean square (RMS) error and the Hausdorff distance between SSM-reconstructed surface and the testing surface. 

Results and discussion

The The closeness of reconstruction to the data based on un-regularized estimation may also be due to the effect of overfitting. It results in the foldings on the reconstructed surface, which can be seen for instance in Figure 4.14(a). This effect of folding and overfitting is eliminated by regularization, which takes the shape priors modeled by the SSM into account. With the presence of noise and occlusion of correspondence, the MAP (regularized) estimator provides more accurate estimates of shape parameters, while ML is more sensitive to the noise. q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.1 0.2 0.3 0.4 0.5 β RMS (mm) q q q q q q q q q q q q q q q q q q q q (a) RMS error q q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 1.0
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Summary

In this chapter, we described the building of SSMs from the training shape data.

The shape surfaces are first parameterized on a unit sphere by area-preserving mapping. The spherical parameterization of surfaces are then flattend to the shape image representation, which are re-parameterized to eliminate the spurious correspondences by groupwise optimization. The re-parameterization on the shape image is analogous to the non-rigid deformation in image registration, which is computed with fluid regularization. A fast algorithm solving fluid velocity using discrete sine transform is applied to regularize the shape reparameterization. The result SSM based on the correspondence in the parameter space is evaluated in terms of its compactness, generalization ability and specificity.

Once the SSM is built, it is used to estimate the shape parameters of unseen surfaces or point sets. An EM algorithm is used to estimate the transformation and the deformation of the model to fit the data with correspondence as the hidden variable. The data term to be optimized is symmetric between the model and the surface data in order to impose the consistency of the estimation. The SSM also provide the shape prior for the MAP estimator which includes a regularization term. The consistent symmetric estimation is shown to improve the details and the precision of the reconstruction of the shape surface from the model, and the shape prior regularization is necessary to avoid the problem of overfitting. With the presence of noises, mismatches, and disappearance of the correspondence, the regularized MAP gives more accurate estimation of shape parameters.

Chapter 5

Quantitative shape analysis of hippocampus in AD 

Overview of the method

We aim to extract hippocampal shape descriptors capturing both global and local shape changes linked to the AD pathology by SSM, so as to improve the performance of disease classification using additional shape information. We try to model the localized disease-related shape changes by performing the shape analysis upon the regions that are found to be affected by AD. We first identify the hippocampal surface subregions that are significantly different between the AD group and the controls via Hotelling's T 2 test. Then we model the variations on these subregions using SSMs. Compared to the shape analysis of hippocampi via LoCA [START_REF] Xie | Spatially localized hippocampal shape analysis in late-life cognitive decline[END_REF]) which localizes the shape components while not specifically targeting the area related to the disease, we focus our shape analysis only on the regions that we marked as different, extracting the principal shape components on these regions. With the use of machine learning techniques, classifiers are able to learn the difference between AD and NC from the shape information as quantified by shape models. Extra information concerning AD pathology can be obtained by adding hippocampal shape descriptors in addition to the volumetry. We use the morphological variation on these regions as variables to describe the AD pathology as they improve the discrimination between the classes and are correlated with the measures of memory decline associated with the disease.

We model the morphology of hippocampus by SSMs, and use the shape descriptors derived from the SSM to detect the effect of AD on the hippocampal size and its shape. Descriptors produced by different models serve as features for machine learning algorithms and are evaluated in terms of their prediction performance in distinguishing AD from NC.

The method used to extract relevant shape information from SSMs can be divided into two steps: 1) the localization step, and 2) the shape modeling step. The processing pipeline is shown in Figure 5.1. In the localization step, we build up the correspondence on hippocampal surface over a training set of both NC and AD subjects. Once the correspondence problem is solved, all the landmarks on the hippocampal surfaces are aligned by Procrustes analysis [START_REF] Gower | Generalized Procrustes analysis[END_REF]. A statistical test can be performed on each landmark to evaluate the significance of the difference between the distributions of aligned points of the NC group and the AD group.

The resulting significance map produced by the statistical tests in the localization step can be thresholded to obtain a surface mask of landmarks. In the shape modeling step, we apply these masks to the hippocampal surface to select a subset of hippocampal landmarks separating the subpopulations at a given statistical significance. The selected subregional landmarks are again aligned by Procrustes analysis and a PCA is performed on the aligned subregional landmarks. The coefficient of principal components describing local shape of hippocampus can thus be calculated.

In both the localization step and the shape modeling step, the shapes or selected shape patches are aligned by Procrustes analysis, which can be performed either through rigid-body transformations or through similarity transformations. In our experiments, both alignments are performed at each step and their performances are evaluated and compared. We evaluate the subregional shape models based on their discrimination ability against the control group and the correlation with measures of cognition. The coefficients of modes describing the shape variations are used as features for disease classification, and the evaluation of the subregional models are based on the performance of the classifiers. test is performed on each landmark of the aligned surfaces to obtain a significance mask, which is used to threshold the previously centered shape surfaces. The selected landmarks are aligned by Procrustes alignment II, and a Principal Component Analysis (PCA) is performed to extract the shape descriptors.

Shape analysis using SSM

The SSM for hippocampus is built upon a training set of hippocampal surfaces, in which the k landmarks on the surface of hippocampus are reparameterized to avoid the false variation induced by incorrect correspondences. This correspondence problem can be solved by a groupwise optimization and fluid regularization on the shape image [START_REF] Davies | Groupwise surface correspondence by optimization: Representation and regularization[END_REF] as described in the §4.1.

Once the correspondence is established, the surfaces can be aligned by using Procrustes analysis, either through rigid-body or similarity transformations. The volume information is preserved after rigid body transformations. Procrustes analysis aligns the training data via rigid-body transformations to the size-and-shape space SΣ k 3 in which the variation among the data would be driven by the change in both the size and the shape of hippocampus. If the training samples are aligned via isotropic similarity transformations, the surfaces will be rescaled to normalize the hippocampal volume. Thus we have the training set in the shape space Σ k 3 . As shape is defined as the remaining information 'when the differences which can be attributed to translations, rotations, and dilations have been quotiented out' [START_REF] Kendall | Shape manifolds, procrustean metrics, and complex projective spaces[END_REF], the normalization of the volume by similarity transform enables the SSM to be more specific to the change in shape rather than incorporating variations in the sizes of hippocampi. The SSMs used are built on both rigid-body and similarity aligned surfaces.

For a set of hippocampal landmarks {X 1 , X 2 , • • • , X n } consisting of n samples with established correspondence, each sample is represented by the coordinates of its k landmarks concatenated as a 3k-vector

X i = ( x 1 i , y 1 i , z 1 i , x 2 i , y 2 i , z 2 i , • • • , x k i , y k i , z k i ) T ∈ R 3k , ( 5.1) 
where p s i = (x s i , y s i , z s i ) T ∈ X i is the position of the s-th sampled landmark point on the X i . If the surfaces in {X i , i = 1, • • • , n} are aligned using Procrustes analysis, either rigidly or via isotropic similarity transformations, a PCA can be performed on the data matrix (X 1 , X 2 , • • • , X n ), and the shape data can be expressed as

X i = X + Wb i (5.2)
where X is the mean of {X i }, W is the matrix consisting of the eigenvectors of the covariance matrix of the training data, and the elements in vector b i are the parameters characterizing the i-th shape.

Localization step

In the localization step, we identify the regions affected by atrophy by analyzing 

p s (L) = P ( T 2 > n NC • n AD n NC + n AD (p s NC -ps AD ) T s-1 (p s NC -ps AD ) ) , ( 5.3) 
where ps NC and ps AD are the mean location of the s-th sampled landmark in each group, and

s = 1 n NC + n AD -2   ∑ i∈NC (p s i -ps NC ) (p s i -ps NC ) T + ∑ i∈AD (p s i -ps AD ) (p s i -ps AD ) T   .
(5.4)

By thresholding the p-map p s (L), s = 1, • • • , k, we select only the subset of landmarks showing significant difference between NC and AD groups. This can be viewed as a projection P of the shape surface to the regions more relevant to the pathology

P(•; L) : R 3k → R 3k X → (x s 1 , ỹs 1 , zs 1 , xs 2 , ỹs 2 , zs 2 , • • • , xs k , ỹs k , zs k ) T , (5.5) 
which consists of k (< k) landmarks

(x s l , ỹs l , zs l ) T ∈ { (x s , y s , z s ) T ∈ X : p s (L) < α } (5.6)
found to separate the NC from the disease group at significance level α.

Here the distribution of the surface landmarks depends on how the shapes in the SSM are aligned, and the variation between the subgroups will differ as rigid-body or similarity transformations can be chosen to align the shapes.

Shape modeling step

In the shape modeling step, instead of performing a PCA on the data consisting of all k landmarks of the surface, only the subset of landmarks identified as different between subpopulations in the localization step are used. We mask the Helmertized landmarks in X C and re-align the masked landmarks {P(X i ; L) :

X i ∈ X C }
by Procrustes analysis to form the training set

M = { Xi : Xi is Procrustes aligned P(X i ; L), X i ∈ X C } (5.7)
for the subregional SSM. A PCA is performed on

M Xi = XM + W b i (5.8)
where XM is the mean of samples in M, W is the matrix of eigenvectors describing the variation modes from significantly different landmarks, and b i is the vector of coefficients of each mode.

Disease classification based on localized shape analysis

The shape descriptors from SSM are evaluated in terms of their performance when being used as features in classification algorithms. Support vector machines (SVMs, [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF] are widely used in solving general classification problems, and have been applied to AD diagnosis (e.g. Vemuri et al., 2008a;[START_REF] Kloppel | Automatic classification of MR scans in Alzheimer's disease[END_REF], for review see [START_REF] Cuingnet | Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database[END_REF]. SVMs typically find the optimal hyperplane with the largest margin separating the classes. The computation of the optimal solution requires only the inner product of feature vectors which can be exploited by the substitution of a kernel for the inner product mapping the feature space to higher dimension [START_REF] Schölkopf | Learning with kernels: support vector machines, regularization, optimization, and beyond[END_REF]. We use the SVM classifier to test the discrimination ability of the features. We choose the radial basis function (RBF) as the kernel in SVM. The feature vector of each shape X for classification consists of the coefficient variation modes, as extracted from eq. ( 5.2) or (5.8).

In order to avoid modeling noise, less significant components produced by PCA are excluded from the feature set based on the assumption that these components tend to account more for noise than for meaningful shape information. Feature selection is usually required in classification tasks using SVM to reduce variance by eliminating the less relevant or noisier features, and to improve the classifier performance with fewer but more discriminative inputs. Commonly used wrapper methods for feature selection have the potential risk of overfitting the training data [START_REF] Reunanen | Overfitting in making comparisons between variable selection methods[END_REF][START_REF] Loughrey | Overfitting in wrapper-based feature subset selection: The harder you try the worse it gets[END_REF]. The heuristic strategies searching for an optimal subset of features may select a combination not generalizing well on a separate test set. Since the aim of this study is to evaluate the prediction performance of different categories of shape descriptors, the performance of the classifier on a selected subset of features (not guaranteed to be optimal either on the training or the test set) does not represent the overall discriminant ability of the features derived from different shape models. It is therefore preferable to adopt a methodology that takes into account all features in order to assess the respective model that produces these features.

Bootstrap aggregation, or bagging (Breiman, 1996a), is another approach to reduce the variance in the learning algorithm. It is based on the repeating bootstraps of the training set, and trains the classifier using the resampled data. Multiple classifiers learned from the resampled data are often combined by a majority voting.

When bagging is used, better performance is usually achieved with larger feature set without discarding weakly informative features [START_REF] Munson | On feature selection, Bias-Variance, and bagging[END_REF].

We thus can train bagged classifier on the whole set of features to be evaluated and use the prediction performance of the bagged classifier as a measurement of the discriminant ability of the feature set.

In addition to the shape variations, the hippocampal volume normalized by the total intracranial volume (TIV) are used as independent feature. To compare the discrimination ability of the volume and the shape of the hippocampus, we evaluate the classification performance of shape descriptors both with and without the normalized volume feature. The TIV is calculated by summing the volume of white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF). For each subject, the T1-and T2-weighted MR images were classified into WM, GM and CSF using an implementation of the expectation maximization segmentation algorithm [START_REF] Acosta | Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps[END_REF]. In brief, this algorithm models the image intensity histogram using a mixture of Gaussian distribution. The parameters of the Gaussian mixture are iteratively updated using an expectation maximization approach.

For this study, 6 Gaussian distributions were used: 1 for each of the main tissue types, namely WM, GM, and CSF, and 3 for non-brain tissues. To provide initialization and spatial consistency to the expectation maximization algorithm, a template and associated probability maps of GM, WM, and CSF were spatially normalized to each individual scan, first through an affine registration using a robust block matching approach [START_REF] Ourselin | Reconstructing a 3D structure from serial histological sections[END_REF] with 12 degrees of freedom, and then using a diffeomorphic demons nonrigid registration [START_REF] Vercauteren | Diffeomorphic demons: Efficient non-parametric image registration[END_REF]. The expectation maximization algorithm computed probability maps for each tissue type, which were discretized by assigning each voxel to its most likely tissue type. 

Correlating the shape variation with memory performance

Hippocampus plays a critical role in memory formation, and its atrophy is associated with memory decline in AD [START_REF] Heun | Amygdala-hippocampal atrophy and memory performance in dementia of Alzheimer type[END_REF][START_REF] Petersen | Memory and MRI-based hippocampal volumes in aging and AD[END_REF].

We assessed our global and local hippocampal SSMs in terms of their relevance to memory decline by the correlation analysis between the shape descriptors derived from these models and the scores from memory tests. were corrected for age in the experiments. For comparison, we also project the shape samples onto the direction of mean difference XNC -XAD , and perform the correlation analysis between the memory scores and the shape component along the mean difference direction.

Experimental Results

Materials

The hippocampal volumes used in the experiments are segmented semi-automatically by SNT provided by ADNI (see §3.4.2.1). The hippocampal volumes were divided into a training set and a testing set. The demographic information is listed in Table 5.1.

SSM

Based on the choice of the transformations aligning the surfaces in the localization step and in the shape modeling step, we can derive the variation modes of the 

M R M S Procrustes alignment I L R 1 2 in localization L S 3 4 
1. In the localization step, the significance maps are produced from rigidly aligned size-and-shape set L R , and in the shape modeling step the subregional SSM is built on rigidly aligned the size-and-shape set M R ;

2. in the localization step, the significance maps are produced from rigidly aligned size-and-shape set L R , and in the shape modeling step the subregional SSM is built on similarity aligned the shape set M S ;

3. in the localization step, the significance maps are produced from similarity aligned shape set L S , and in the shape modeling step the subregional SSM is built on rigidly aligned the size-and-shape set M R ;

4. in the localization step, the significance maps are produced from similarity aligned shape set L S , and in the shape modeling step the subregional SSM is built on similarity aligned the shape set M S .

In the experiments, the hippocampi on both the right and the left hand sides of We vary the thresholds of the significance level when selecting the landmarks at α = 0.0001, 0.0002, 5.4. For the purpose of comparison, conventional PCA on all the landmarks was also performed, using models M R and M S .

Disease classification of AD using regional SSM
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Correlation of hippocampal SSM descriptors with memory scores

The results of the correlation between the memory scores and the hippocampal shape variation over all landmarks, landmarks selected with threshold α = 0.1, and threshold α = 0.01 are shown in Figure 5.11. The component in each SSM with the strongest correlation with the memory scores are plotted. The principal variations in the model on the selected subregions are shown to be better correlated with memory scores. Stronger correlations were found by the models built on L S identified regions. The highest correlation between the memory score and the hippocampal shape was captured by similarity aligned SSM (M S ) on the hippocampal subregions masked using L S with threshold at α = 0.01, in which the first principal component was the most correlated component with AVLT, Logical Memory scores (both immediate and delayed recall), and memory subscores of ADAS for q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1e-04 1e-03 1e-02 1e-01 1e+00 0.84 0.85 0.86 0.87 Threshold α Accuracy q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q (a) Testing set accuracy, L R , M R q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1e-04 1e-03 1e-02 1e-01 1e+00 0.70 0.74 0.78 0.82 Threshold α Accuracy q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q (b) Testing set accuracy, L R , M S q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1e-04 1e-03 1e-02 1e-01 1e+00 0.70 0.75 0.80 0.85 Threshold α Accuracy q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q (c) Testing set accuracy, L S , M R q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1e-04 1e-03 1e-02 1e-01 1e+00 0.70 0.75 0.80 0.85 Threshold α Accuracy q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q (d) Testing set accuracy, L S , M S both right and left hippocampus (visualization in Figure 5.12). The shape components extracted from subregions with significant shape differences indicate a better representation of the effect of the disease on the shape of the hippocampus.

The mean difference between the NC and AD groups in the training set is shown in Figs. 5.14 and 5.15.

Discussion

Shape model and correspondences
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Identification of atrophy affected subregions
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It should be pointed out that the hippocampal subregions affected by AD were identified by comparing the AD subpopulation with NC, which did not take into account the association of AD and its cognitive outcome with other factors such as age and level of education. Hippocampal atrophy has been shown to develop during the course of normal aging [START_REF] Jack | The rate of medial temporal lobe atrophy in typical aging and Alzheimer's disease[END_REF][START_REF] Malykhin | Aging hippocampus and amygdala[END_REF][START_REF] Chételat | Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry[END_REF][START_REF] Joie | Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence[END_REF]. The shape changes and variations reflect the combined effect of aging and AD, which may limit the discrimination ability of the shape analysis. In the future work it will be of interest to explicitly control the effects of normal aging on the hippocampus and other variables such as years q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1e-04 1e-03 1e-02 1e-01 1e+00 0.805 0.815 0.825 0.835 Threshold α Specificity q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q (a) OOB specificity, L R , M R q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1e-04 1e-03 1e-02 1e-01 1e+00 0.70 0.72 0.74 0.76 0.78 Threshold α Specificity q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q (b) OOB specificity, L R , M S q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1e-04 1e-03 1e-02 1e-01 1e+00 0.74 0.78 0.82 0.86 Threshold α Specificity q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q (c) OOB specificity, L S , M R q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1e-04 1e-03 1e-02 1e-01 1e+00 0.72 0.76 0.80 0.84 Threshold α Specificity q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q (d) OOB specificity, L S , M S Figure 5.9: The out-of-bag (OOB) estimates of specificity of the disease classification using bagged support vector machines (SVMs) with varying thresholds in the landmark selection. Black circles: shape features from the Statistical Shape Model (SSM) only; red circles: shape features with additional volume features.

of education, in order to isolate the disease from these effects.

Disease classification using SSM

Using the SSM descriptors combining both size and shape information provided better discrimination than using only hippocampal volume to classify AD from NC. In general the descriptors of size-and-shape from M R outperformed features produced by M S , because volume alone is a good discriminant. Since the changes modeled by M S were driven by both size and shape, adding volume to the features extracted using M R and M S increased both of their accuracy, but to a much less extent for M R compared to M S . Using shape information therefore provides additional discrimination power to volumetry. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1e-04 1e-03 1e-02 1e-01 1e+00 0.84 0.86 0.88 0.90 Threshold α Sensitivity q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q (a) Testing set specificity, L R , M R q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1e-04 1e-03 1e-02 1e-01 1e+00 0.65 0.70 0.75 0.80 Threshold α Sensitivity q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q (b) Testing set specificity, L R , M S q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1e-04 1e-03 1e-02 1e-01 1e+00 0.80 0.85 0.90 Threshold α Sensitivity q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q (c) Testing set specificity, L S , M R q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1e-04 1e-03 1e-02 1e-01 1e+00 0.65 0.75 0.85 Threshold α Sensitivity q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q (d) Testing set specificity, L S , M S Restricting the analysis to the subregions affected by the disease increased the discrimination ability of the SSM approach by capturing localized differences between the subpopulations. Whole surface SSMs are able to describe the global shape or size-and-shape of the biological object, but are not sensitive to the deformations limited to specific areas on the object surface. Localizing the PCA to subregions with significant shape difference (L S ) on the surface produced overall better discrimination between NC and AD than using all the points. When TIV normalized volume was added as additional features to the shape features, the best classification results were obtained using the SSM built using M R on the hippocampal subregions selected by L S .

In particular, using L S in the localization step gave more informative surface masks than L R when describing the atrophy pattern in the disease classification. Subregional masks derived from rigid-body aligned localization model L R tended to be predominantly representing changes in global scale due to the volume reduction. . . L R , p < 0.01; filtered out in M S . This may explain the better performance local size-and-shape variations (L S + M R ) than the shape models (L S + M S ) on the local scale, in addition to the discriminant ability of the size factor present in M R .

In our experiments, the higher training error than the testing error might be due to the difference in the demographics between the training and the testing set.

The average age of the AD subjects in the testing set is slightly older than in the training set, which may explain the lower testing error in the disease classification.

The higher training error is also present when using only the volume as the feature for classification (77.6% OOB vs 83.5% on testing set). The current results demonstrate the potentiality in improving discrimination ability of SSM by localizing the model to hippocampal subregions. The optimal threshold selecting the landmarks on the training set does not give the optimal classification performance on the testing set, which calls for more targeted localization of the atrophy than simple thresholding. In addition to the statistical difference in the landmark position, histological and anatomical knowledge of hippocampus may be incorporated into the identification of regions in order capture the shape variation that is more closely linked to the AD pathology.

Correlation analysis

Since the accuracy of classification could possibly be the results of overfitting of the given data, the correlation analysis connects the link between shape components explaining most shape variations on the selected subregions and the memory decline in the disease, confirming that the subregional shape components displaying higher discrimination ability are related to the development of the disease.

The correlation between subregional shape components and the memory scores are comparable to the between mean difference. The variation modes extracted on the hippocampal subregions (Figure 5.12) are also consistent with the pattern along the mean difference direction in Figure 5.14.

In the correlation analysis, the M S models were able to identify the shape components with the maximum correlation higher than other shape or size-and-shape models, despite of the superiority of M R to M S in the disease classification. It is because more principal components from M R models are found to correlate with the memory decline, while to a less degree comparing to the fewer but higher correlations of M S components. Therefore using the features from M R though less correlated with the memory decline may contribute to the higher classification accuracy. The mean difference direction in the M S models are also more correlated with the memory scores than rigidly aligned models.

The correlation analysis was not designed to specify the involvement of one particular subfield in episodic memory processes, for instance in encoding and retrieval processes that are thought to preferentially engage different hippocampal subfields [START_REF] Henson | A mini-review of fMRI studies of human medial temporal lobe activity associated with recognition memory[END_REF][START_REF] Eldridge | A dissociation of encoding and retrieval processes in the human hippocampus[END_REF]. Our findings however confirm the preferential implication of both CA1 and subiculum changes in episodic memory deficits in AD. The regions with variation of most significant correlation with the episodic memory index also mainly matches to the CA1 and subiculum subfields.

Summary

The shape of the hippocampus can provide valuable information for the diagnosis of AD. The principal components of the hippocampus among the population as modeled by the SSM can be used to classify AD against NC. The conventional PCA in SSM is performed on all the landmark points on the surface, which represents the original shape data in a lower dimensional subspace, but may be not discriminative between two groups. The whole-surface description of variation incorporating both hippocampal shape among the population may be not sensitive to the changes induced by the disease. By applying a statistical test on the landmark points in the SSM, we can identify the regions on the hippocampal surface which display more significant effect of the disease on the morphology and thus are more discriminative between AD and NC groups. The PCA performed on this subset produced variation modes which were used as features for the classification between these two groups. The principal variation modes on these regions were more sensitive to the shape change from NC to AD, and better correlated with the measurements of memory decline. Chapter 6

Conclusions

Topics in medical image analysis including image segmentation and shape analysis are explored in this thesis, with special applications to hippocampus in the context of Alzheimer's disease (AD). As the conclusion of the thesis, we first summarize the contributions presented in the previous chapters, and then possible future developments based on the current state-of-the-art and the continuation of the current work are outlined.

Contributions of this thesis

The main contributions presented in this thesis lie in the segmentation and shape analysis of human hippocampi, especially those of AD patients, which is becoming of growing interest in the investigations into the neurodegenerative disease. We presented the work in the segmentation of hippocampus using multiple atlases, the construction of statistical shape models (SSMs), the establishment of correspondence across the shape data, and the detection shape changes of hippocampus in AD.

Multi-atlas based segmentation

We used the mult-atlas based segmentation propagation to segment the hippocampi from the brain MR images. We developed a supervised method to build a population specific atlas set by propagation from a smaller generic atlas set. The IBSR atlases of a general population were propagated to an elderly population to obtain atlas set of normal elderly subjects and AD patients. An atlas set of 40 well segmented images were built on the target elderly population using this method.

A higher agreement of atlases is reached when propagating the population specific atlases to the target population than using the generic IBSR atlases.

We also investigated the issue of atlas selection in the multi-atlas based segmentation, when the locally weighted voting was used to combine the labelings of multiple atlases. In addition to the selection of atlases based on image similarity ranking, we took the redundancy into consideration of atlas selection, and introduced the diversity terms to re-rank the atlases according to the maximal marginal relevance (MMR) criterion. We also formulated the atlas selection problem as a variable selection problem in linear regression, and adopted the least angle regression (LAR) sequence for atlas selection. Alternative atlas selection strategies such as MMR and LAR provide more efficient ways for atlas selection, especially when the number of atlases to be fused in the subsequent step is limited by computational resources or out of cost-effectiveness concerns.

Statistical shape models

We built the SSMs of hippocampi from the shape data with correspondence by minimum description length (MDL) optimization. The optimization is carried out on the parameterization mapping of the shape surface to a shape image, which is 

Shape analysis of hippocampus in Alzheimer's disease

We used the SSM to model the shape variance of hippocampi among the elderly population consisting of both normal control subjects and patients diagnosed with AD. We used Hotelling's T 2 test on the aligned corresponding hippocampal landmarks between the normal and AD subpopulations to identify the regions affected by the atrophy due to the disease. The shape analysis was then localized to the regions exhibiting significant difference between the controls and AD, which was shown to improve the discrimination ability of the principal component analysis (PCA) based SSM. The principal components describing the localized shape variability among the population were also shown to display stronger correlation with the decline of episodic memory scores in the neurodegenerative process of AD.

Future works

In the future work, new methodologies and algorithms for brain image segmentation, shape modeling and analysis of neuroanatomical structures may be developed to extend the current work presented in this thesis.

Non-local approach to the atlas based image segmentation

Non-local approach has been developed to select patches of atlases similar to the target image. One advantage of this approach is its computational efficiency, since non-rigid registrations of the atlases images are no longer necessary in this approach. The label for each voxel is searched over the atlases, which provides a larger selection pool of candidate labeling. The current strategies for atlas selection and fusion may be extended to the patch selection and fusion in the non-local approach. In addition to the propagation of the anatomical labeling, demographic and diagnostic information of each atlas may also be propagated to the target image, thus localizing the effects of the pathology as well as normal physiology on a voxelwise basis.

Groupwise shape correspondence by optimization

The method for shape correspondence by optimization adopted and developed in this thesis applies a fluid regularization to the deformation, which is similar to the techniques widely used image registration. The current state-of-the-art in the field of image registration provides some important insight to the solution of the correspondence problem by optimization. A general algorithmic framework accommodating a wide range of registration techniques including fluid registration, elastic registration and Demons method may be implemented.

Shape analysis of biological objects

The localization of shape analysis shows promising results in detecting the effects 
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  affected doubles every 5 years after the age of 65. It becomes a major public health problem as the population ages, and the cost of caring increases. The World Alzheimer Report 2010 (Wimo and Prince, 2010) estimated the global prevalence of 35.6 million people affected by the Alzheimer's disease and other forms of dementia in 2010, and predicted the number to double every twenty years, to 65.7 million by 2030 and 115.4 million by 2050. In France, the prevalence of dementia is estimated to be 754 000 people in 2010, and would rise to 1.8 million in 2050 (Mura et al., 2010).
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 11 Figure 1.1: Cortical atrophy in Alzheimer's brain (right), as compared with the normal brain (left). Image source: Pathology Education Instructional Resource (PEIR) Digital Library (Pathology image database). © Dr. Peter Anderson, University of Alabama at Birmingham, Department of Pathology.

  research and clinical practices, the diagnosis of the disease commonly follows the criteria of 'probable' AD developed by National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA, McKhann et al., 1984), and that of Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV, American Psychiatric Association, 1994; Text Revision, DSM-IV-TR, American Psychiatric Association and Task Force on DSM-IV, 2000). The definitive diagnosis requires post mortem histopathological examination. Revisions of the NINCDS-ADRDA have been proposed to keep it update with new findings in the biomarkers, and the growth of knowledge about the disease since its first publication, especially the advancement in the neuroimaging with structural MRI, molecular imaging with PET, and cerebrospinal fluid analysis of Aβ and tau (Dubois et al., 2007).
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 13 Figure 1.3: Limbic system, location of hippocampus (red), medial view. Image source: Martini et al. (2002).

Figure 1 . 4 :

 14 Figure 1.4: Coronal section of the hippocampal body after intravascular India ink injection. Bar= 1.5mm. 1-4, CA1-CA4 (fields of the cornu Ammonis). Sublayers of CA1: 5, alveus; 6, stratum pyramidale; 7, strata radiatum and lacunosum; 8, stratum moleculare. Gyrus dentatus: 9, stratum moleculare; 10, vestigial hippocampal sulcus; 11, subiculum; 12, margo denticulatus; 13, superficial hippocampal sulcus; 14, fimbriodentate sulcus; 15, fimbria; 16, choroid plexuses; 17, tail of caudate nucleus; 18, temporal (inferior) horn of the lateral ventricle. Source: Duvernoy (2005).

  Alzheimer's disease, hippocampus and entorhinal cortex are affected at an early stage. Amyloid deposit is present in CA1 and subiculum in Braak stage B (Braak and Braak, 1991). Deficits in LTP and memory have been found following injection of Aβ in region of hippocampus and the aggregation of amyloid (Stéphan et al., 2001; Walsh and Selkoe, 2004) The tau pathology first develops in the transentorhinal region (Braak stage I), and soon spread to hippocampus (Braak stage II). As result of the damage caused by the tangles, the hippocampal formation experiences significant loss of neurons, especially in the CA1 and subiculum, as the severity of disease progresses.

  pathology. A variety of modalities have been developed, and become important tool in clinical diagnosis. The computational and algorithmic development facilitating the signal processing, quantitative analysis, and visualization also prove to be valuable in the biomedical studies. Various forms of structural and functional imaging modalities have been employed in the AD studies and diagnosis (Villemagne et al., 2005; Ebmeier et al., 2005; Vitali et al., 2008; Tartaglia et al., 2011; Barkhof et al., 2011). Among the structural imaging methods, although CT is widely used in clinical practice, patients are screened by CT mainly to exclude other dementia of treatable causes such as tumor and haematoma. Structural MRI is the more common choice due to its higher resolution and better contrast in soft tissues. The structural MRI based atrophy measures are established as valid marker for AD. Functional neuroimaging usually adds diagnostic value when structural imaging result is equivocal. MR based measurements such as perfusion imaging, MR spectroscopy, diffusion weighted imaging (DWI), and functional MRI (fMRI), are more sensitive to the functional decline preceding the structural changes, and show potential for markers for early diagnosis. Molecular imaging using emission tomographies such as positron emission tomography (SPECT) and single-photon emission computed tomography (SPECT) are also used to assess the biology underlying the neurodegeneration process.

B 0 .

 0 The rotation of the transverse magnetization induces voltage in the receiving coil which turns into electric signal.Because of the spin-lattice interaction, the rf signal decays as the magnetization tend to re-align to the direction of the static field B 0 . The decay is characterized by the spin-lattice relaxation time T 1 . The interacting nuclei of different spin state lead to the spin-spin relaxation, in which the individual spins fan out, or dephase, and the net transverse component of magnetization decreases at a rate controlled by the spin-spin relaxation time T 2 . In practice the magnetization undergoes T 2 relaxation due to the inhomogeneities in the external magnetic field. The overallT *2 decay is combined effect of T 2 and T 2 . The values of T 1 and T 2 depend on the physical property of the material, which varies among the population according to the tissue type and condition.

  to reconstruct the spatial content from the reciprocal domain of k-space, forming the image of the sample. A thourough treatment of the subject from its physical background to sequence design is found in the classical introduction by Haacke et al. (1999). 1.1.3.2 Structural MR in AD Clinical and research of structural MRI imaging marker in AD are recently reviewed by Frisoni et al. (2010) and McEvoy and Brewer (2010). The identification of medial temporal lobe atrophy and especially hippocampal atrophy of particular interest in MR studies into AD, which are well established markers of the neurodegeneration process in Alzheimer's disease. Pathologically, the development of hippocampal atrophy is correlated with the deposition of neurofibrillary tangles
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 15 Figure 1.5: A theoretical model of natural progression of cognitive and biological markers of Alzheimer disease and the sensitivity of markers to disease state. Amyloid markers (cerebrospinal fluid amyloid-β 42 and PET amyloid tracer uptake) represent the earliest detectable changes in the Alzheimer disease course but have already plateaued by the MCI stage Functional and metabolic markers detected by task-dependent activation on functional MRI and 18 F-fluorodeoxyglucose PET are abnormal by the MCI stage and continue to change well into the dementia stage. Structural changes come later, following a temporal pattern mirroring tau pathology deposition. Source: Frisoni et al. (2010).
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 16 Figure 1.6: Coronal section of Alzheimer's brain with mild ventricular dilatation, and hippocampal atrophy (arrow). Image modified from Barkhof et al. (2011).
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 21 Figure 2.1: Samples of labelings from Talairach and Tournoux (1988). From left to right: axial, coronal, sagittal section.

Figure 2 . 2 :

 22 Figure 2.2: AAL labeling overlayed on collins27. From left to right: axial, coronal, sagittal section.
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 23 Figure 2.3: Delineation of hippocampus in the labelings from the Internet Brain Segmentation Repository (IBSR). Image source: Makris et al. (2004).

Different anatomical guidelines used

  by various volumetric studies defining the hippocampus on the MR image contributes to the variance among the results reported, which have been reviewed by Geuze et al. (2004). An up-to-date review by Konrad et al. (2009) surveyed 71 published protocols in neuroimaging literature, which identified five main areas where the protocols differ:

  [START_REF] Warfield | Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation[END_REF] which estimates the performance level of the atlases using an expectation-maximization (EM) algorithm. In contrast to STAPLE, in which the weights are globally evaluated on the atlas, locally weighted fusion[START_REF] Commowick | Using Frankenstein's creature paradigm to build a patient specific atlas[END_REF] van Rikxoort et al., 2010; Coupé et al., 2010) were developed to reduce the error in the lower ranked atlases by selecting the regions or voxels locally more similar to the target image. Utilizing the intensity information of the target and the atlas images in the fusion step, the local weighted voting (Artaechevarria et al., 2009) method weights each atlas in the voting based on their local similarity to the target. Both global and local weighting are special cases under a generative probabilistic framework developed by Sabuncu et al. (2010). In general, local weighting achieves higher accuracy than global weighting. Applying MRF smoothing to the STAPLE results may improve the performance of the fusion (Leung et al., 2010). Statistical learning based methods are introduced in the multi-atlas based segmentation to infer the performance of each atlas and to weight the atlases. The segmentation accuracy map (Sdika, 2010) estimates the average accuracy of each voxel in the atlas on the training set, and this estimation is used as the weight in the label fusion. In the fusion by supervised learning and dynamic information (SuperDyn, Khan et al., 2011), the accuracy weights are learned by a linear regression of segmentation accuracy with Tikhonov regularization, which is combined with local estimates of registration accuracy most similar to that of Artaechevarria et al. (2009).
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 24 Figure 2.4: Hierarchy of shape spaces. Adapted from Dryden and Mardia (1998).

  Apart from the representation by a set of landmarks, other approaches have been proposed in the literature of image registration, segmentation, and shape analysis. By taking advantage of the fact that most biological objects are homeomorphic to a sphere, one popular method for shape representation is the decomposition of the landmark coordinates into spherical harmonics (SPHARM, Brechbühler et al., 1995; Matheny and Goldgof, 1995), which are the eigen-functions for the angular part of the Laplacian operator. Wavelet technique on contour (Davatzikos et al., 2003) and sphere (Laga et al., 2006; Nain et al., 2007) has also been suggested for shape description. Medial representation (M-rep, Pizer et al., 1999, 2003; Yushkevich et al., 2003b) models geometry of the object by the skeleton of its medial locus with spokes normal to surface representing the boundary. Other representations include spline based methods (Tsagaan et al., 2001, 2002), level set (Tsai et al., 2003; Pohl et al., 2006).

  contrast to Procrustes analysis, the ICP algorithm aligns two point sets without the assumption of given correspondence between them. The basic version of ICP was originally proposed by Chen and Medioni (1992),[START_REF] Besl | A method for registration of 3-D shapes[END_REF], and[START_REF] Zhang | Iterative point matching for registration of free-form curves and surfaces[END_REF], and became widely used and adapted by the imaging and computer vision community due to its simplicity. It establishes the correspondence between two point sets by searching for the closest point of each point from another set, and computes the transformation between the two sets minimizing the distances between the corresponding points. This process is iterative. The search for correspondence and the computation of the transformation are repeated until convergence. The correspondence by closest point may lead to the algorithm in the suboptimal local minimum. Instead of matching the whole point sets, subset matching has been developed by[START_REF] Zhang | Iterative point matching for registration of free-form curves and surfaces[END_REF] in order to make the algorithm more robust against outliers, disappearance, and occlusion. Multitude of variants have been proposed for ICP[START_REF] Rusinkiewicz | Efficient variants of the ICP algorithm[END_REF], along with improvements in robustness and efficiency (e.g.[START_REF] Simon | Techniques for fast and accurate intrasurgical registration[END_REF][START_REF] Jost | A multi-resolution ICP with heuristic closest point search for fast and robust 3D registration of range images[END_REF][START_REF] Sharp | ICP registration using invariant features[END_REF][START_REF] Granger | Multi-scale EM-ICP: a fast and robust approach for surface registration[END_REF][START_REF] Fitzgibbon | Robust registration of 2D and 3D point sets[END_REF].

  Heimann and Meinzer (2009), under the categories of mesh-to-mesh registration, mesh-to-volume registration, volume-to-volume registration, parameterization-toparameterization registration, and population-based optimization. The former three are registration-based methods without explicitly parameterizing the shape data, while the latter two are parameterization-based. The determination of transformation in registration or alignment, and the correspondence problem are closely interrelated. The reciprocity between them is manifest in the development and the presentation of the ICP algorithm. The search for correspondence is expressed or implied in most registration algorithms. Pairwise point set registration methods, such as ICP-like closest points (Brett and Taylor, 2000; Vos et al., 2004) and non-rigid registration (Subsol et al., 1998; Fleute and Lavallée, 1998; Shelton, 2000; Paulsen and Hilger, 2003) are used to generate the correspondence. The model construction method by Hufnagel et al. (2009) is based on the EM algorithm, which views the probabilistic assignments correspondence as hidden variables. Self-organizing network is used by Ferrarini et al. (2007) to solve the point correspondence problem in the shape modeling and analysis.The deformation field produced by volumetric registration between images are also used to define the landmark correspondences[START_REF] Frangi | Automatic 3D ASM construction via Atlas-Based landmarking and volumetric elastic registration[END_REF][START_REF] Frangi | Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling[END_REF]. The landmarks are defined by an atlas to which the training images are registered, and the landmarks are propagated back to the image via the inverse of the deformation from each image to the atlas, resulting in a set of corresponding landmarks.Instead of defining and propagating the landmarks, the Statistical Deformation Model (SDM,[START_REF] Rueckert | Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration[END_REF] performs the statistical analysis directly on the deformation field from the volumetric registration.

  matic segmentation (e.g.[START_REF] Hsu | Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia[END_REF][START_REF] Chupin | Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI[END_REF] of the hippocampal volume. The volume of hippocampus can be measured by the count of voxels directly on the segmentation. Due to the difference in the head size which correlates with the hippocampal volume[START_REF] Free | Methods for normalization of hippocampal volumes measured with MR[END_REF], the hippocampal volumes are often normalized by the total intracranial volume (TIV, e.g.[START_REF] Yavuz | Hippocampal atrophy correlates with the severity of cognitive decline[END_REF] or the intracranial coronal area (ICA, e.g.[START_REF] Järvenpää | Hippocampal MRI volumetry in cognitively discordant monozygotic twin pairs[END_REF]. Decreased volume in hippocampus and asymmetry in the volume reduction has been reported (for review, see[START_REF] Barnes | Clinical application of measurement of hippocampal atrophy in degenerative dementias[END_REF][START_REF] Shi | Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: Metaanalyses of MRI studies[END_REF].
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 25 Figure 2.5: Tracing hippocampal volume. The region of interest (ROI, green) includes the hippocampal proper, subiculum, dentate gyrus and part of the alveus. Image source: Barkhof et al. (2011).

Chapter 3 Hippocampal

 3 segmentation using multiple atlases ָקוּ תּ ִי ֲצ יוֹע ֹב ְר וּב סוֹד ֵי ְא בּ בוֹת ֲשׁ ַח מ ֵר ָפ ה Proverbs, 15:22.The segmentation of hippocampus poses a challenge to the accurate and precise assessment of hippocampal atrophy in AD. Multi-atlas based segmentation is one successful approach to the automatic segmentation of hippocampus in structural MR images. In this chapter, we first introduce the basic framework of multi-atlas segmentation approach. Then, we develop a supervised method to construct a population specific atlas set for the atlas-based segmentation. The problem of atlas selection problem will also be discussed, to which we proposed two alternative atlas selection strategy in addition to the commonly used selection by image similarity ranking.The results of population specific atlas construction have been published in "Supervised method to build an atlas database for multi-atlas segmentation-propagation," in SPIE Medical Imaging 2010: Computer-Aided Diagnosis. The results of the alternative atlas selection strategies have been partially published in "Atlas selection strategy in multi-atlas segmentation propagation with locally weighted voting using diversity-based MMR re-ranking," in SPIE Medical Imaging 2011: Image Processing, and "Atlas selection strategy using least angle regression in multi-atlas segmentation propagation," in 2011 IEEE International Symposium on Biomedical Imaging.

  to segment the query I. Each atlas image is first registered to I, producing the transformation T k : Ω → Ω k (3.4) mapping the atlas I k to the transformed image I k • T k : Ω → R in the same space of the target I. The same transformation can be applied to L k such that the transformed label map L k • T k gives one labeling for the image I. Using multiple atlases, the result segmentation L for the image I can be obtained by combining the transformed label maps
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 3 Figure 3.1.
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 31 Figure 3.1: Diagram demonstrating the process segmentation using multiple atlases.

  in SPM[START_REF] Ashburner | A fast diffeomorphic image registration algorithm[END_REF] Friston, 1999, 2005), LDDMM[START_REF] Beg | Computing large deformation metric mappings via geodesic flows of diffeomorphisms[END_REF][START_REF] Miller | Increasing the power of functional maps of the medial temporal lobe by using large deformation diffeomorphic metric mapping[END_REF], DARTEL[START_REF] Ashburner | A fast diffeomorphic image registration algorithm[END_REF], and Demons[START_REF] Thirion | Image matching as a diffusion process: an analogy with maxwell's demons[END_REF][START_REF] Vercauteren | Diffeomorphic demons: Efficient non-parametric image registration[END_REF] were used for registration, and evaluated by the overlap between the warped and the manual segmentation. The results showed that the Demons algorithm aligns the hippocampus and other subcortical structures with the highest overlap.The Demons algorithm[START_REF] Thirion | Non-rigid matching using demons[END_REF][START_REF] Thirion | Image matching as a diffusion process: an analogy with maxwell's demons[END_REF]) is based on the notion of Maxwell's demons, which are fictitious agents on a semi-permeable membrane directing the diffusion process toward the decrease of the total entropy, thus contradicting the second law of thermodynamics.1 In Demons algorithm, the transformation between the source and the target images is modeled by diffusion processes with the control of demons driven by the force of optical flow[START_REF] Horn | Determining optical flow[END_REF][START_REF] Barron | Performance of optical flow techniques[END_REF]. The diffeomorphic Demons is developed by[START_REF] Vercauteren | Non-parametric diffeomorphic image registration with the demons algorithm[END_REF][START_REF] Vercauteren | Diffeomorphic demons: Efficient non-parametric image registration[END_REF] in which the unconstrained update of displacement is projected back to the Lie group of diffeomorphisms through the exponential map[START_REF] Mahony | The geometry of the newton method on non-compact lie groups[END_REF][START_REF] Malis | Improving vision-based control using efficient second-order minimization techniques[END_REF].

  are not propagated to the segmentation result. The atlases to be fused into the segmentation result are selected by their similarity to the query. Three similarity criteria were discussed by[START_REF] Aljabar | Classifier selection strategies for label fusion using large atlas databases[END_REF][START_REF] Aljabar | Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy[END_REF], namely segmentation similarity between the warped label map L k •T k and the manual segmentation of the query, which is not realistic in the application since it prejudges the outcome of the segmentation, and assumes the availability of the ground truth, image similarity between the warped atlas I k • T k and the query image I, which is usually used to evaluate the quality and accuracy of the registration, demographic information between the atlas subject k and the query subject, which is independent of the image, and registration results. Among the three similarity criteria, the selection by image similarity is the most popular in applications. The warped atlases {I k •T k } are compared with the target image I, and ranked according to the similarity. The atlases most similar to the target image I are selected. Due to the longer computation time of NRR than the rigid-affine registration, sometimes the atlases are selected based on the rigid-affine results {I k • T A k }, and only selected atlases in A are registered non-rigidly to I, and combined to produce the segmentation result subsequently. Commonly used image similarity metrics include sum of squared differences (SSD), correlation coefficient, mutual information (Collignon et al., 1995; Viola and Wells, 1995), normalized mutual information (NMI, Studholme et al., 1996), etc. The NMI and correlation coefficient are found to provide better estimates for the accuracy of the warped atlases (Aljabar et al., 2007, 2009).

2 p

 2 ∫ R p I (s) log p I (s)ds (3.7) where p I (•) is the probability density of the image intensity estimated from the histogram of image I. The joint entropy of two images I and J H(I, J) = -∫ R I,J (s, t) log p I,J (s, t)dsdt (3.8) is defined by the joint density p I,J (•, •) of the two images. The mutual information is defined as MI(I, J) = H(I) + H(J) -H(I, J) (3.9) measuring the dependency between two images, and the NMI (Studholme et al., 1996) NMI(I, J) = 1 + MI(I, J) H(I, J) = H(I) + H(J) H(I, J) . (3.10) When image I and J are independent, the mutual information MI(I, J) = 0 and NMI(I, J) = 1. When the two images are identical, the mutual information is maximized and NMI(I, J) = 2.

2 .

 2 The simple majority voting is used to determine the label from the propagated atlas labels. It has been shown[START_REF] Aljabar | Classifier selection strategies for label fusion using large atlas databases[END_REF][START_REF] Aljabar | Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy[END_REF]) that the Dice similarity Algorithm 2 Supervised construction of atlas set 1: Initialize the atlas database with 18 segmented images in IBSR 2: while size of atlas database below a predetermined threshold do 3:

  . The age of subjects in IBSR dataset ranges from juvenile to 71, including 4 juvenile subjects and another 4 under 18 years old. In the age-based atlas selection (Aljabar et al., 2007), selecting atlases of subjects with similar age to the query provides a good estimation. The demographic information of atlases fused is relevant to the performance of multi-atlas based segmentation. Atlases of younger subjects in IBSR are likely to fail when being propagated to the brain images of a subject in elderly population. By adding to the atlas set well segmented brain images of subjects from elderly population, it may improve the performance in segmenting the images of elderly subjects.
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 32 Figure 3.2: Diagram demonstrating the process building a set of population specific atlases.

  by the disagreement among propagated segmentations. The agreement among the fused atlases more likely result from the reduction of random error, even though the accuracy of the propagated labels is intrinsically limited by the registration algorithm. It is preferable to deal with individual segmentations agreeing with each other in the fusion of labels. A higher agreement among the atlases means more overlap between the segmentation results, i.e. the consensus region with majority votes, and each individual segmentation propagation. It becomes a measurement of accuracy when the segmentation result is back-propagated to the atlas, and overlap is transformed into the atlas space.

  .24) until the selected atlas set A reaches a preset threshold. The similarity Sim A (•) and Sim (•) are to be substituted in practice by the metrics described previously. The parameter λ ∈ (0, 1] controls the similarity measurement Sim A (•) (•, •). In addition to similarity, diversity is introduced by penalizing the redundancy max j∈A Sim (•) (A j , A k ) (3.25) within the selected set A . When λ = 1, MMR is equivalent to the similarity ranking using Sim A (•) (•, •).

For

  the test of atlas selection strategies, we used a larger atlas set provided by Alzheimer's Disease Neuroimaging Initiative (ADNI). A leave-one-out crossvalidation is performed on two set of atlases. One consists of NC subjects (n = 138), and the other consists of AD patients (n = 99). The performance of different atlas selection criteria on large atlas sets (n ∼ 100) is tested.
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 34 Figure 3.4: Probability images P l of hippocampus of an NC subject in AIBL data, with the white colour indicating unanimous agreement. Top: T1-weighted MR images of hippocampus; middle: the probability images fusing 9 propagated atlases from IBSR, selected according to image similarity; bottom: the probability images fusing 9 atlases propagated from population specific atlases, selected according to image similarity.
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 35 Figure 3.5: Comparison of result hippocampal segmentation of one example NC case by fusing 31 atlases selected according to different criteria. (a) SNT segmentation; (b) correlation (DSC=0.861); (c) NMI (DSC=0.865); (d) LAR (DSC=0.871).
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 421 Data used in the experiments were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-private partnership. The primary goal of ADNI has been to test whether serial MRI, positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of MCI and early AD. Determination of sensitive and specific markers of very early AD progression is intended to aid researchers and clinicians to develop new treatments and monitor their effectiveness, as well as lessen the time and cost of clinical trials. The initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research -approximately 200 cognitively normal older
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 36 Figure 3.6: The average Dice similarity coefficient (DSC) of left and right hippocampi using locally weighted voting (LWV) on the normal control (NC) atlas set with varying power p of the MSD function in the atlas weight. The atlases are selected by normalized mutual information (NMI) ranking.
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 3537 Figure 3.7: The average Dice similarity coefficient (DSC) of left and right hippocampi using locally weighted voting (LWV) on the normal control (NC) atlas set. The atlases selected by maximal marginal relevance (MMR) re-ranking.The parameter λ varies from 0.1 to 0.9. The case of λ = 1 is equivalent to the selection by NMI ranking.

  λ=0.7 MMR-Correlation λ=0.7 (a) Performance of atlas selection strategies on NC atlases. λ=0.7 MMR-Correlation λ=0.7 (b) Performance of atlas selection strategies on AD atlases.
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 38 Figure 3.8: The average Dice similarity coefficient (DSC) of left and right hippocampi using locally weighted voting (LWV) on the normal control (NC) atlas set. The atlases are selected according to image similarity ranking, maximal marginal relevance (MMR) re-ranking and least angle regression sequence.

  corresponding shape surface representations, to model the variability in the distribution of each landmark. Manually locating the anatomical landmarks used in earlier studies (e.g. gorilla skulls by O'Higgins and Dryden, 1993, midsagittal brain MR scans of normal and schizophrenic subjects by Bookstein, 1996) becomes tedious and cumbersome when the shape analysis is carried out on large data set of 3D image volumes, with more densely populated landmarks on the surface of the objects of interest. Automated methods have been developed to reduce spurious correspondences and identify the corresponding landmarks.

  mild cognitive impairment conversion to Alzheimer's disease using hippocampal atrophy rate and statistical shape models," in Medical Imaging Compution and Computer-Aided Intervention -MICCAI 2010, LNCS, vol. 6362. The work of consistent estimation of shape parameters in SSM has been submitted to SPIE Medical Imaging 2012.
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 41 Figure 4.1: Parameterizations {f i } and reparameterizations {γ i } of the shape surfaces {X i } and correspondences.

  π) for the parameterization. A numerical solution to the spherical parameterization of genus 0 surfaces is developed by Brechbühler et al.

5 . 5 1 :

 551 .14) θ(v south ) = π (4.15) which is used as Dirichlet condition of the Lapacian equation ∇ 2 θ = 0. The PDE is approximated on the mesh X by a linear system Aθ = b, where A is the Laplacian matrix for the mesh X, and the vector b is set by the boundary conditions, and θ = (θ(v 1 ), θ(v 2 ), • • • , θ(v k )) T is the vector of the values for all the vertex θ(v). The algorithm setting up the matrix A, and the vector b is listed in Algorithm Algorithm Linear system for the initial diffusion of θ, adapted from Brechbühler et al. (1995) {Setting up the matrix A} 2: for all vertex v i , i = 1, • • • , k do 3:

4 i=1

 4 Figure 4.2). The cosine of the arc can be computed as the dot product of two vectors from the centre of the sphere (origin) to the two vertices. The constrained optimization algorithm is solved by a Newton-Lagrange algorithm. An alternative implementation is proposed by Weistrand (2005) which computes the distortion on triangles instead of on quadrilaterals.

Figure 4 . 2 :

 42 Figure 4.2: Parameterization of quadrilateral. The square face (bold) on the physical surface (left) is mapped to the parameter space of unit sphere (right). The length of each edge e i in the quadrilateral equals to the corresponding center angle. Image adapted from Brechbühler et al. (1995).

  .19) where (θ s , φ s ), s = 1, • • • k are uniformly sampled on S 2 by Platonic solids such as octahedron, dodecahedron or icosahedron. By parameterizing the rotation Γ using Rodrigues parameters or quaternions, the optimization problem in (4.18) thus becomes a least-square problem with closed form solution, which can be solved by Nelder-Mead simplex or other standard optimizers.

Figure 4 . 3 :

 43 Figure 4.3: Multi-resolution subsampling by icosahedron subdivision. Left to right: icosahedron, subdivisions by factor 2, 4 and 6. Image credit: Styner et al. (2006). Algorithm 7 Multi-resolution reparameterization by rotation. 1: for i = 1, • • • , n do 2:Γ i ← Id 3: end for 4: for each trial do 5:

2

 2 
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 3 Groupwise optimization on shape imagesGiven the rotationally reparameterized surfaces {f i • Γ i , i = 1, • • • , n}, the remaining component of the homeomorphisms {γ i } are to be computed by the optimization of the MDL of the collection{f i • Γ i • γi , i = 1, • • • , n}. Insteadof reparameterizing on S 2 , which involves intersection and interpolation on the sphere, Davies et al. (2008b) re-map the parameterization to an image in R 2 to facilitate the manipulation of the shape representation. The reparameterization on the image representation of shapes is turned to a problem similar to the non-rigid registration. Groupwise optimization is used to reparameterize each individual shape, and fluid regularization is applied. . .

Figure 4 . 4 :

 44 Figure 4.4: Cutting the octahedron and unfold to a plane. The edges cut are color coded. Left: octahedron, right: unfolded octahedron. Adapted from Praun and Hoppe (2003).

  20) where (θ s , φ s ), s = 1, • • • , k are sampled parameters on S 2 by the octahedron. The octahedron can be mapped to a 2D grid bijectively by cutting the edges of the octahedron, and unfolding it to the plane (see Figure 4.4, Praun and Hoppe, 2003).

Figure 4 . 5 :

 45 Figure 4.5: The construction of a shape image, from shape to sphere to embedded octahedron to final shape image. The colour code denotes corresponding regions. From left to right: physical surface (bunny), spherical parameterization, octahedron embedding, shape image. Image credit: Praun and Hoppe (2003); see also Davies et al. (2008b).
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 46 Figure 4.6: Reparameterization on the spherical parameterization and on the shape image. Left: the reparameterization γ on the sphere; right: the reparameterization ψ = g -1 • γ • g on the shape image, which is equivalent to a deformation on a 2D image. Image credit: Davies et al. (2008a).

  .37) which drives the velocity field v described by the Navier-Lamé equation for the steady state defined by the Navier-Lamé operator LL[v] ≡ -µ∇ 2 v -(µ + λ)∇(∇ • v) = F.(4.38)where µ and λ are the Lamé coefficients, which are set to be equal in our application. The Navier-Lamé equation (4.38) is solved using an LU decomposition by Davies et al. (2008b). The solvability of the boundary value problems for the system has been discussed by Dahlberg et al. (1988). A fast solution to the viscous fluid PDE using discrete Fourier transform has been proposed by Bro-Nielsen and Gramkow (1996) to solve the equation under the sliding boundary condition, i.e. the normal components of v on the boundary ∂D vanishes, while the tangential components are undetermined.Since the boundaries of the shape image are cut from the original parameterization (sphere or octahedron), we expect the boundary to be fixed in the reparameterization. To solve the reparameterization on the shape image, the Navier-Lamé system (4.38) is to be considered in conjunction with zero Dirichlet boundary condition, also know as the 'no-slip' condition v| ∂D = 0. (4.39) A fast solver to the boundary value problem of Navier-Lamé system under Dirichlet boundary condition based on discrete sine transform (Martucci, 1994) has developed by Cahill et al. (2007). The adjoint of the operator in matrix form

Algorithm 8

 8 .42) The sinusoidal waves on D ω a,b (x) = sin aπx sin bπy, x = (x, y) ∈ D, and a, b ∈ N, (4.43) are the eigen-functions of det(L) under the 'no-slip' condition (4.39), which motivates the fast solution of the boundary value problem via discrete sine transform listed in Algorithm 8. Solving the velocity field with fluid regularization on shape image. Adapted from Cahill et al. (2007).
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 1322 Compute L † [F](x ı, ), ∀ı,  = 1, 2, • • • , 2N +1 by direct convolution of F with linear differential filter 2: Compute the discrete sine transform F(a, b) of L † [F] Compute Compute the velocity v(x ı, ) from the inverse discrete sine transform of v(a, b).

  .45)In the process of optimization, re-gridding is performed to avoid folding[START_REF] Christensen | Deformable templates using large deformation kinematics[END_REF]. The Jacobian in folded deformation is negative, thus the condition of performing re-gridding is determined by checking the Jacobian of the deformation. If the deformation of any shape image leads to the local Jacobian below a positive threshold, the regrid is performed by reparameterizing all the shape images based on the current uS i (x) = S i (x -u i (x)) (4.46)and the displacement u is reset. In order to avoid the bias due to the choice of the orientation of the octahedron in cutting and unfolding, the octahedron parameterization is periodically reoriented and unfolded to the plane. The 6 possible orientations (∼ 6 vertices of the octahedron) and the unfolding are shown in Figure 4.7. The algorithm of groupwise optimization for shape images is listed in Algorithm 9.

Figure 4 . 7 :Algorithm 9 1 : 2 : while u not converging do 3 :

 479123 Figure 4.7: Six possible choices of reorientation and unfolding of the octahedron. The octahedron is cut in the manner of Figure 4.4. Left column: 6 re-orientations; right column: the unfolding. The faces unfolded are color coded.
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 112241122 it can be transformed into a least square estimation T * = arg min T ∑ s (x s ) -p s Yc of model points X in the scene Y weighted by the conditional expectation of A. The optimization of T in the M-step can be divided further into: The least square estimation of deformation b b * = arg min b A (p s X + (Wb) s ) -p s Yc 2 , (4.67) which has the least square solution b * = W T (T -1 A (Y c ) -X), where T -1 A is the inverse of the affine component in the current estimation; The least square estimation of the pose T A T * A = arg min

1 : 3 :

 13 4.69) Algorithm 10 EM-ICP estimation of the deformation and the pose of the SSM. Estimate the pose T A by ICP 2: b ← 0 Initialization T 0 ← (T 0 A , b) 4: while T not converged do

(4. 76 )

 76 To facilitate the computation of the term W T B T BW, sparsity on B can be imposed by restricting the search of correspondence in (4.70) within a neighborhood of radius ρ.

  4.2.1). The SSMs for right and left hippocampi were built on a training subset consisting of 60 AD subjects with average age 75.2(6.7) years old and 60 NC subjects with average age 77.0(4.8) years old. The correspondences of 4098 sampled landmarks in the SSMs were established by groupwise optimization described in the §4.1. Examples of first 3 principal components of shape variation in left hippocampus is shown in Figure 4.11. The results of optimized SSMs are evaluated in terms of their compactness, specificity, and generalization ability. The compactness of the optimized SSM and the initial model is compared in Figure 4.8. For the left hippocampus, the 90% of the total variance is explained by the first 12 modes, 95% by the first 20 modes, and 98% by the first 36 modes in the optimized model. For the right hippocampus, the 90% of the total variance is explained by the first 13 modes, 95% by the first 20 modes, and 98% by the first 37 modes in the optimized model.

Figure 4 . 8 :

 48 Figure 4.8: The compactness of the Statistical Shape Model (SSM). The proportion of the total variance explained by the first principal components of the shape model. Red: optimized SSM, black: initial SSM.

Figure 4 .

 4 Figure 4.9: The behavior of the Specificity(M ) in the groupwise optimization of the Statistical Shape Model (SSM), using the first M = 15 principal components, the number of trials in the simulation N = 1000.

Figure 4 . 10 :

 410 Figure 4.10: The descendance of Generalisability(M ) in the groupwise optimization of the Statistical Shape Model (SSM), using the first M = 15 principal components.

Figure 4 . 11 :

 411 Figure 4.11: The shape variation in the first 3 modes of the left hippocampal shape model (±2 √ λ m , i.e. ±2 standard deviations). Top row: the first mode; middle: the second mode; bottom row: the third mode. From left to right: variation mode with coefficient -2 √ λ m , mean, variation mode with 2 √ λ m

  results parameter estimation accuracy of first experiment are listed in Table. 4.1. The results of reconstruction precision in the second experiment are plotted in Figure 4.12. One example of reconstruction is shown in Figure 4.13 with the effect of regularization shown in Figure 4.14. The formulation of shape parameter estimation as a least square problem results in the explicit optimization for the RMS error. Thus the lowest RMS error from the reconstruction based on asymmetric estimation without regularization is unsurprising. A closer look at one example (Figure 4.13(b)) reveals mismatch and inconsistent geometry in the regions with high-frequency of change and high-curvature details. The mismatch was corrected by the symmetric estimation, which ensures a mutually consistent match, and thus the Hausdorff distance between the reconstruction and the target was significantly reduced.

Figure 4 . 12 :

 412 Figure 4.12: The precision of the model reconstruction with the estimated shape parameter. The errors were measured on the average of 40 unseen cases in the testing set. Black: Asymmetric estimator; red: symmetric estimator.

  α = 0, β = 0 (c) α = 0, β = 0.2 (d) α = 1, β = 0.2

Figure 4 . 13 :

 413 Figure 4.13: An example of reconstruction from estimated shape parameters. Blue: target shape surface; red: SSM generated reconstruction. (a) Mean shape with only similarity pose estimation. (b) RMS 0.173mm, Hausdorff distance 1.48mm. (c) RMS 0.211mm, Hausdorff distance 1.56mm. (d) RMS 0.188mm, Hausdorff distance 0.970mm.

  (a) β = 0 (b) β = 0.2 (c) β = 0.5 (d) β = 1

Figure 4 . 14 :

 414 Figure 4.14: An example of regularization on symmetric shape parameter estimation. (a) RMS 0.188mm, Hausdorff distance 0.970mm (b) β = 0.2, RMS 0.186mm, Hausdorff distance 0.963mm. (c) RMS 0.220mm, Hausdorff distance 1.16mm. (d) RMS 0.253mm, Hausdorff distance 1.30mm.

  The hippocampus is affected at an early stage in the development of Alzheimer's disease (AD). With the use of structural Magnetic Resonance (MR) imaging, we can investigate the effect of AD on the morphology of the hippocampus. The hippocampal shape variations among a population can be usually described using statistical shape models (SSMs). Conventional SSMs model the modes of variations among the population via principal component analysis (PCA). Although these modes are representative of variations within the training data, they are not necessarily discriminative on labeled data or relevant to the differences between the subpopulations. We use the shape descriptors from SSM as features to classify AD from normal control (NC) cases. A Hotelling's T 2 test is performed to select a subset of landmarks which are used in PCA. The resulting variation modes are used as predictors of AD from NC. The discrimination ability of these predictors is evaluated in terms of their classification performances with bagged support vector machines (SVMs). Restricting the model to landmarks with better separation between AD and NC increases the discrimination power of SSM. The predictors extracted on the subregions also showed stronger correlation with the memory-related measurements such as Logical Memory, Auditory Verbal Learning Test (AVLT) and the memory subscores of Alzheimer Disease Assessment Scale (ADAS).The results of the localization of the SSM improving the discrimination of shape analysis have been previously partially published in "Increasing the discrimination power of shape analysis in Alzheimer's disease detection by localized statistical shape model," in Alzheimer's Association International Conference on Alzheimer's Disease (ICAD), 2011, and "Detecting hippocampal shape changes in Alzheimer's disease using statistical shape models," in Medical Imaging 2011: Image Processing. Full results have been submitted to the journal NeuroImage for publication.
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 51 Figure 5.1: The pipeline of local shape descriptor extraction. The shape surfaces are first centered and aligned via Procrustes alignment I. A Hotelling's T 2test is performed on each landmark of the aligned surfaces to obtain a significance mask, which is used to threshold the previously centered shape surfaces. The selected landmarks are aligned by Procrustes alignment II, and a Principal Component Analysis (PCA) is performed to extract the shape descriptors.

  the spatial distribution of each landmark across the training examples and the deformation between the two subpopulations. We begin with the set X C in which the correspondence over the training set is given and the landmarks are only Helmertized/centered without further alignment. We use Procrustes analysis to obtain an aligned ensemble L of surfaces. For the kth landmark in L, a Hotelling's T 2 test (Styner et al., 2007) can be used to assess the statistical significance of the landmark separating the NC from the AD group

  The data set used to train the classifier was resampled with replacement for 25 times, and the ensemble of classifiers consisted of SVMs with RBF kernel each of which were trained on the resampled data. The cost parameter C and the scale parameter of the kernel γ are not explicit parameters for the ensemble classifier, but parameters of individual SVMs in the ensemble. For each individual SVM, both C and gamma are tuned by a grid search over the range C = 2 -7 , 2 -6 , . . . , 2 2 , 2 3 and γ = 2 -2 , 2 -1 , . . . , 2 7 , 2 8 using the resampled training set with 10-fold cross validation. The parameters giving the best performance on the resampled training data are chosen for the SVM. Each SVM in the ensemble may have different values of C and gamma parameters. The predictions of 25 SVMs were combined by a voting rule to produce the final output. The validation on the training set with varying the threshold α, and experiments using separated training and testing sets were performed. We use the out-of-bag estimation (OOB, Breiman, 1996b) to evaluate the performance of the bagging classifier on the training set. For each resample of the training data with replacement, there are approximately one-third of the training data left out of the bootstrap resampling. A classification of each left-out (i.e. 'out-of-bag') case can be obtained from the SVM trained using the selected (i.e. 'in-bag') sample. The classification of each case in the training set can be determined by a voting rule after multiple runs of resampling. The OOB estimation can be obtained from average accuracy on the left-out data. In our experiment, the OOB estimates are carried out by 70 resamplings, which result in each training case being left out and classified for approximately 25 times on average. In order to compare with the disease classification result reported by Cuingnet et al. (2010) using hippocampal shape information (Gerardin et al., 2009), experiments using the linear C-SVM on SSM features were also carried out. The cost parameter C was chosen by searching over the range 10 -5 , 10 -4.5 , . . . , 10 2.5 , 10 3 and leave-one-out cross validation on the training set, in the same manner as in Cuingnet et al. (2010).

  60 NC and 60 AD subjects from ADNI data were used as a training set to build the SSM. Hotelling's T 2 test was performed on each SSM between the AD and NC groups, with the resulting significance maps shown in Figure 5.2. The results after the thresholding are shown in Figure 5.3.

Figure 5 . 2 :

 52 Figure 5.2: The significance map of local difference on hippocampal surface by Hotelling's T 2 test. For each landmark in the training set, a Hotelling's T 2 test is carried out between the normal control (NC) group, and the Alzheimer's disease (AD) group, resulting the map of p-values. Top: superior view; bottom: inferior view.

  p < 0.01; . . 0.01 ≤ p < 0.05; . . 0.05 ≤ p < 0.1; . . p ≥ 0.1.

Figure 5 . 3 :

 53 Figure 5.3: Thresholded significance map, by thresholding p-values in the significance map Figure 5.2.

Figure 5 . 4 :

 54 Figure 5.4: The percentage of landmarks selected, with varying thresholds in the landmark selection on the significance map of Hotelling's T 2 test.

Figure 5 . 5 :

 55 Figure 5.5: The training accuracy of the disease classification using bagged support vector machines (SVMs) with varying thresholds in the landmark selection. The out-of-bag (OOB) estimates is used for the measure of the training error. Black circles: shape features from the Statistical Shape Model (SSM) only; red circles: shape features with additional volume features.

Figure 5 . 6 :

 56 Figure 5.6: The accuracy of the disease classification using bagged support vector machines (SVMs) with varying thresholds in the landmark selection on a separated testing set. Black circles: shape features from the Statistical Shape Model (SSM) only; red circles: shape features with additional volume features.

Figure 5 . 7 :

 57 Figure 5.7: The out-of-bag (OOB) estimates of sensitivity of the disease classification using bagged support vector machines (SVMs) with varying thresholds in the landmark selection. Black circles: shape features from the Statistical Shape Model (SSM) only; red circles: shape features with additional volume features.

  were compared to the maps showing the location of the different hippocampal subfields (La Joie et al., 2010, see Figure 5.13). Regions of significant differences between AD and NC were found mainly located in the CA1 and subiculum subfields (Figure 5.2(a)), which is consistent with previous studies (Chételat et al., 2008; Apostolova et al., 2010; Mueller et al., 2010). When the effect of volume change was removed in SSM by similarity alignment (Figure 5.2(b)

Figure 5 .

 5 Figure 5.10: The specificity of the disease classification using bagged support vector machines (SVMs) with varying thresholds in the landmark selection on a separated testing set. Black circles: shape features from the Statistical Shape Model (SSM) only; red circles: shape features with additional volume features.

  All landmarks; . . L R , p < 0.1; . . L S , p < 0.1;. . L S , p < 00.1; . . Mean difference.

Figure 5 . 11 :

 511 Figure 5.11: Bar plots of Spearman's ρ of the correlation between the memory indices and the principal components from each model. The correlation analysis is performed on the modes extracted from all landmarks, landmarks selected with thresholds at α = 0.1, and landmarks thresholded at α = 0.01. The component with strongest correlation with the memory score is plotted. The correlation of the shape component along the mean difference direction is also plotted.

Figure 5 . 12 :

 512 Figure 5.12: Variation modes captured by Principal Component Analysis (PCA) on hippocampal subregions best correlated to memory indices (logical memory, AVLT, ADAS memory), color-coded map showing the magnitude of variation described by the mode. L S , α = 0.01, M S , mode 1. (From left to right: superior, medial, inferior, lateral)

Figure 5 . 13 :

 513 Figure 5.13: Three-dimensional representation of hippocampal subfields by La Joie et al. (2010): CA1 (blue), subiculum (green) and other (pink) subfields obtained by manual delineation of the three hippocampal subfields onto the DARTEL whole-brain group template, using landmarks adapted from Harding et al. (1998).

Figure 5 . 14 :

 514 Figure 5.14: The variation along the direction of mean difference XNC -XAD between the normal control (NC) group and the Alzheimer's disease (AD) group, color-coded map showing the magnitude of variation on the rigidly aligned model (M R ). From left to right: superior, medial, inferior, lateral.

Figure 5 . 15 :

 515 Figure 5.15: The variation along the direction of mean difference XNC -XAD between the normal control (NC) group and the Alzheimer's disease (AD) group, color-coded map showing the magnitude of variation on the similarity aligned model (M S ). From left to right: superior, medial, inferior, lateral.

a

  rectangular grid on the 2D plane, to facilitate the interpolation and reparameterization. The repramaterization of the shape surface is thus turned into the deformation of the shape image in conjunction with Dirichlet boundary condition, which is solved by a fast fluid registration algorithm.Given the correspondence established on the hippocampal shape data in the SSM, we proposed a new method to extrapolate the SSM to unseen data, and propagate the correspondence over the SSM to the shape surface of the unseen case. An expectation-maximization iterative closest points (EM-ICP) algorithm is used to model the probabilistic correspondence between the model and the surface. The SSM parameters describing the shape surface is estimated given the expected correspondence. The symmetry between the model and the surface in the estimation is imposed by adding the consistent data term. The extension of maximum likelihood (ML) estimator to maximum a posteriori estimator by adding a Tikhonov regularization term is facilitated with the a priori shape distribution modeled by the SSM. The symmetric consistency improves the precision of the estimation in terms of a reconstruction of the shape from the model better fitting the point set data. The MAP estimator with regularization is shown to give more accurate estimation of shape parameters avoiding the effect of overfitting to the noisy data and foldings in the reconstruction.

  of local and global changes in hippocampal shapes due to AD. The current work of hippocampal shape analysis identifies the subregions on the hippocampal surface affected by atrophy in the disease using a statistical test. More sophisticated approach incorporating anatomical labeling of hippocampal subfields given the development of higher resolution MR images may yield anatomically more meaningful results. In addition to the group information of diagnosis, other biomarkers associated to the pathological development of the disease may provide extra information in more accurate localization targeting the alternations in the hippocampal morphology linked to the disease progression.

  1 , CA), subiculum, and dentate gyrus, is located in the limbic lobe on the medial aspect of the hemisected brain. It belongs to the most primitive archicor-

tex of the cerebral cortex. In the description by Santiago Ramón y Cajal

(1911; 

for English translations, see Ramón y Cajal, 1995, also Ramón y Cajal, 1968), the hippocampal proper is stratified into alveus, stratum oriens, stratum pyramidale, stratum radium, stratum lacunosum, and stratum modeluare, which are usually grouped into three archicortical layers, viz. molecular (stratum radium, stratum lacunosum and stratum modeluare), pyramidal (stratum pyramidale), and polymorphic layers (stratum oriens), from deep to superficial, with ventricular surface covered by the alveus.

Based on the cell morphology, Lorente de Nó (1934) divided the hippocampus proper into 4 subfields, namely CA1-4 (see Figure

1

.4). CA1, extending from subiculum, is the largest subfield, characterized by pyramidal cells with triangular cell body, in contrast to larger and ovoid cell bodies in CA2 and CA3. CA1 is also known as the 'vulnerable sector' or Sommer's sector, because of its inordinate sensitivity to ischemia and hypoxia, while CA3 as the 'resistant sector' or Spielmeyer sector. CA2 is a narrow region between CA1 and CA3, of which the characterization and the distinct existence have been subject to discussion, while now can be distinguished by molecular and genetic criteria

[START_REF] Lein | Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3-dimensional reconstruction[END_REF][START_REF] Mercer | Characterization of neurons in the CA2 subfield of the adult rat hippocampus[END_REF] 

2.1.2 Survey of segmentation algorithms

  

	does not include alveus and fimbria, and the volume is 10% less than the volume
	measured on the manual segmentation.
	et al., 2004) was developed by Watson et al. (1992), with high inter-rater reliability
	reported (di Sclafani et al., 1998; Du et al., 2001). It defines the hippocampus com-Earlier developments in image segmentation are usually solely based on image
	prising the hippocampus proper, subicular complex, dentate gyrus, and including features, such as thresholding of image intensity, textual analysis, region grow-
	the white matter structures of alveus and fimbria. According to this protocol, the ing etc. Artificial neural network (ANN) has been used by Pérez de Alejo et al.
	hippocampus is traced on the coronal plane. The head of hippocampus is sepa-(2003) for hippocampal segmentation, in which an tissue classification is obtained
	rated from amygdala by the inferior horn of the lateral ventricle (mainly CSF), by an ANN-based vector quantization, and subsequently a supervised multi-layer
	which extends to the deep part of the uncus forming the uncal recess. If the perceptron on a selected ROI is used to segment the anatomical structure of hip-
	inferior horn is not visible in the image, the following three alternatives may be pocampus. Methodologies incorporating anatomical templates and atlases model-
	used to outline the hippocampus-amygdala boundary: the alveus, an arbitrary ing the shape and appearance of anatomical structures are later developed to deal
	line from the inferior horn of lateral ventricle to the sulcus at the inferior margin with objects such as hippocampus. Apart from the segmentation per se, a meta-
	of the semilunar gyrus, or from straight horizontal line connecting the plane of the segmentation method using AdaBoost classifiers (Freund and Schapire, 1995) has
	inferior horn of the lateral ventricle with the surface of the uncus. The posterior been developed by (Wang et al., 2011) to detect and correct systematic error in
	border is defined by the section with the crus of fornix separating the hippocampus the segmentation based on the spatial, contextual and intensity patterns of the
	from the fimbria. The inferior border is drawn to include the subicular complex error.
	and uncal cleft, separating from the parahippocampal gyrus by the angle between
	the most medial extent of subiculum and parahippocampal gyrus. This protocol
	is estimated to include 90-95% of the total volume of hippocampal formation.
	The protocol set forth by Watson et al. (1992) has been used to validate the au-
	tomatic segmentations provided by Alzheimer's Disease Neuroimaging Initiative
	(ADNI) 2 . The automatic segmentation uses the high-dimensional brain mapping
	tool SNT (Surgical Navigation Technologies), which is commercially available from
	Medtronic Surgical Navigation Technologies (Louisville, Colorado, USA). The val-
	idation was been performed on the normal aging, MCI and AD subjects (Hsu et al.,
	2002). The hippocampal volumes from ADNI used in the preparation of this thesis
	are segmented using the SNT tool, with corrections by qualified reviewers. Com-
	pared to the manual segmentation protocol, the automated SNT segmentation

  exploited in the detection of AD and to predict the onset of the dementia Csernansky et al. (2005).

	Shape surface represented by SPHARM has been employed to model the hip-
	pocampus (Gerig et al., 2001) and to detect the shape changes caused by AD (Li
	et al., 2007; Gutman et al., 2009; Gerardin et al., 2009; Zhou et al., 2009; Cuingnet
	et al., 2010). SPHARM description of shape boundary has been combined with
	medial representation (Styner and Gerig, 2001; Bouix et al., 2005) to obtain more
	localized shape features (Styner et al., 2004). In order to exploit the localized pat-
	tern of hippocampal atrophy, feature selection methodology has been employed to
	al.,
	1994; Bobinski et al., 1998; Rössler et al., 2002; Mueller and Weiner, 2009; for
	review see Scher et al., 2007). With the development of brain mapping techniques
	such as radial atrophy mapping (Thompson et al., 2004; Frisoni et al., 2008), and
	high-dimensional brain mapping (Csernansky et al., 2000; Wang et al., 2003, 2006),
	findings from neuroimaging studies into AD and MCI have also corroborated the

locality of shape changes in CA1 and subiculum subfields along with global tissue reduction

[START_REF] Csernansky | Preclinical detection of Alzheimer's disease: hippocampal shape and volume predict dementia onset in the elderly[END_REF][START_REF] Apostolova | 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer's disease[END_REF][START_REF] Scher | Hippocampal shape analysis in Alzheimer's disease: A populationbased study[END_REF][START_REF] Chételat | Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry[END_REF][START_REF] Qiu | Regional shape abnormalities in mild cognitive impairment and Alzheimer's disease[END_REF]

. Both shape and volume of hippocampus have been select patches on hippocampal surface thus improving the performance of shape features in diagnosing schizophrenia

(Yushkevich et al., 2003a) 

and AD

[START_REF] Zhou | Hippocampal shape classification using redundancy constrained feature selection[END_REF]

. Features characterizing local hippocampal surface deformation with respect to the mean shape have also been used to classify AD

[START_REF] Li | Hippocampal shape analysis of Alzheimer disease based on machine learning methods[END_REF]

.

SSMs have been applied in modeling the variability in the hippocampal shapes among the population

[START_REF] Davies | Learning shape: optimal models for analysing natural variability[END_REF]

;

[START_REF] Davies | Shape discrimination in the hippocampus using an MDL model[END_REF]

. However, the principal components spanning the subspace for valid shape samples are not necessarily discriminative between the subpopulations of interest. As global shape descriptor, each component models the variation of the whole hippocampal shape which may not be sensitive to local differences. Constraints upon isotropic lesser principal components restricting to the region of interest has been presented to give more meaningful reconstruction

[START_REF] Vermaak | Constrained subspace modeling[END_REF]

. In localized components analysis (LoCA,

[START_REF] Alcantara | Localized components analysis[END_REF]

), spatial locality in the shape variation is explicitly optimized, which has been applied to hippocampus shape analysis and shown to produce local shape components strongly correlated with cognitive measurement

[START_REF] Xie | Spatially localized hippocampal shape analysis in late-life cognitive decline[END_REF]

.

  where U 2 is the unit bisector. Adapted from[START_REF] Efron | Least angle regression[END_REF].

  is a |Ω| dimensional vector representing the signed atlas image s k • I k • T k of |Ω| voxels. With |A | ≥ 2, the LAR algorithm for atlas selection is listed in Algorithm 4.

	Algorithm 4 Atlas selection by LAR (Efron et al., 2004)

1: while |A | ≤ the number of atlases to be selected do 2:

Table 3 . 1 :

 31 Demographics of selected atlases

		IBSR	Iter. 1	Iter. 2
	No. of atlases	18	16	24
	Male/Female	14/4	6/10	10/14
			mean: 74.54 mean: 75.73
	Age	min: Juv. min: 63.68	min: 62.35
		max: 71	max: 86.10 max: 88.26
	MMSE	N/A	27.81	28.88

Table 3 . 2 :

 32 Entropy H P of probability images, the bold indicates the best case in NC and AD respectively, for each structure.

			H P Entropy of probability image	
			NC			AD	
		IBSR Iter. 1 Iter. 1+2 IBSR Iter. 1 + Iter. 1+2
	Hippocampus	3.01	2.82	2.79	3.00	2.82	2.81
	Thalamus	2.71	2.61	2.53	2.73	2.56	2.54
	Caudate	2.97	2.87	2.89	2.92	2.84	2.89
	Putamen	2.99	2.90	2.92	3.02	2.94	2.97
	Lateral Ventricle 2.96	2.73	2.55	2.92	2.73	2.49

Table 3 . 3 :

 33 Partial moment µ 2 of probability image histogram, the bold indicates the best case in NC and AD respectively, for each structure.

			µ 2 Histogram moment of probability image
			NC			AD	
		IBSR Iter. 1 Iter. 1+2 IBSR Iter. 1 + Iter. 1+2
	Hippocampus	0.61	0.60	0.54	0.63	0.61	0.55
	Thalamus	0.52	0.56	0.49	0.53	0.61	0.50
	Caudate	0.60	0.60	0.56	0.63	0.63	0.58
	Putamen	0.55	0.54	0.52	0.57	0.56	0.54
	Lateral Ventricle 0.51	0.52	0.54	0.48	0.52	0.43
	partial moment of histograms, segmentation propagation with IBSR atlases results

5 :

 5 Compute v i given F i (eq. 4.41,[START_REF] Cahill | Fast fluid registration with Drichlet boundary conditions: A transform-based approach[END_REF] 

6:

Table 4 . 1 :

 41 Accuracy of shape parameter estimation. Normalized MSE of b, average of 40 randomly generated phantoms.

		60% decimation	80% decimation
		Asymmetric Symmetric Asymmetric Symmetric
	w/o regularization	1.30	0.115	1.14	0.498
	β = 0.2	0.117	0.078	0.117	0.103

Table 5 . 1 :

 51 Demographic information of subjects used in the study.

		Diagnosis Number (M/F)	Age	Yeas of education
	Training set	NC AD	34/26 31/29	77.0(4.8) 75.2(6.7)	16.3(2.7) 14.7(3.0)
	Testing set	NC AD	35/43 20/19	76.3(5.2) 77.8(7.3)	15.4(3.1) 14.4(3.7)
	Total	NC AD	69/69 51/48	76.6(5.0) 76.2(7.0)	15.8(2.9) 14.6(3.3)
	hippocampal shapes in different ways. The combinations of alignment in the
	SSMs are listed in Table 5.2.			

Table 5 . 2 :

 52 Choices of alignment in SSMs

	Procrustes alignment II
	in shape modeling

Available at http://www.cma.mgh.harvard.edu/ibsr/.

Available at www.loni.ucla.edu/ADNI. For a description of the data provided by ADNI, see §3.4.2.1.

Relevant literature on Maxwell's demons is summarized by[START_REF] Leff | Resource letter MD-1: Maxwell's demon[END_REF], and more recent review of the paradox and the solutions by[START_REF] Maruyama | Colloquium: The physics of Maxwell's demon and information[END_REF].
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