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Introduction

The development of the classical theory of electromagnetism at the end of the 19th

century by, among others, James C. Maxwell, Heinrich R. Hertz and Oliver Heaviside has

marked a turning point in the history of mankind. So, the availability of a physical model

describing the propagation of electromagnetic waves and their interaction with matter has

paved the way to applications that have positively changed the daily life of billions of people.

Wired and wireless telecommunications, medical imaging and healing techniques, radio and

television, G.P.S.: these are but a few of them.

Although usually not addressed to such a wide public, a number of striking applications

is founded on the following observation: in presence of an obstacle, the characteristics of a

propagating electromagnetic wave are altered (e.g. its wavefront shape is modified). Since

the nature of this alteration depends on the properties of the obstacle, it can in principle

be possible to retrieve at least some of them from the observation of the “modified” wave.

The definition of the so-called inverse problem can then be drawn: the characterization of

one or more scatterers (the obstacles) from the knowledge of the total field (the “modified”

wave) generated by the interaction of the incident field (the illuminating wave) with the

scatterers. In case both the total and the incident field can be measured, their difference,

called the scattered field, constitutes the data to be inversed. Non-destructive testing of

building materials, again medical imaging, geophysical prospection, anti-personal landmine

detection, and to some extent also RADAR are examples of such applications.

As it is formulated, the inverse problem is a non-linear and ill-posed problem: there

is no guarantee that a solution exists, is unique, and is continuous when noise affects

the data [1]. Two different approaches arise then to tackle the problem. When only the

detection and localization of the scatterers is of interest, a qualitative inversion is carried

out. In a way, the sought quantity is now the distribution of the induced currents over the

support of the scatterer, and it can be shown that their relation with the data is linear. On

the other hand, when a quantitative characterization is needed (shape, composition), more

complicated mathematical tools are deployed to transform the problem into a well-posed

one. Yet, the non-linear character remains and the existence of multiple local solutions may

lead to untrustworthy results.

Among the qualitative approaches, the potentialities of Time Reversal techniques have

been clear since the first reports at the end of the ’80s [2]. These methods, based on the time

reversal invariance of the propagation equation, allow in effect to build waves selectively

1



2 INTRODUCTION

focusing onto different scatterers by a simple and “blind” manipulation of the data. An

effective detector is thus built by observing the distribution of the backpropagated field

over space. Namely, the DORT method [3] as well as the re-interpretation of the MUSIC

algorithm in the frame of deterministic scattering [4, 5], have led to impressive results

especially in cluttered and multi-target scenarii.

Concerning quantitative inverse scattering, gradient-based methods have proven to be

effective in retrieving the properties of the scatterers. Maxwell’s equations are here directly

used to measure the misfit, in the sense of a given norm, between the scattered field data and

an estimation obtained from a guessed profile of the scatterer. This misfit is then minimized

through a conjugate gradient algorithm interpreted in a variety of ways [6–8]. Nonetheless,

due to the ill-posedness of the initial problem, these methods are extremely sensitive to noise

and clutter, and give meaningful results only when the amount of information contained in

the data is sufficiently large with respect to the parameters to be reconstructed. Taking into

account, within the inversion process, any a priori known information about the scatterer

(shape, minimum allowable permittivity value, etc.) helps then in regularizing the problem,

increasing the confidence level of the results.

This work aims at giving an experimental proof of the effectiveness of the aforemen-

tioned techniques under realistic operational conditions. The data are gathered through a

prototype made of a small linear array of linearly-polarized ultrawideband antennas of the

exponentially tapered slot type (ETSA), whose realization covers by itself an important

portion of the PhD duration. The accent is put on the experimental behavior of these

methods when only a small aperture angle is available. Subsurface sensing and, in general,

applications where only a partial access to the sounded medium is possible are therefore tar-

geted. To somehow counteract such limitations, a large frequency band (from 2 to 4 GHz)

is used. This is also motivated by the overwhelming progress in nanoelectronics and by

the innovative antenna design solutions making such bandwidths easily available in mod-

ern systems. Concerning in particular quantitative inverse problems, only few attempts to

experimentally image extended targets with small arrays and/or with non-standard anten-

nas (ı.e. horn or wire antennas) have yet been reported in literature [9–11]. Hence the

originality of the thesis.

Furthermore, an attempt is made to build a bridge between qualitative and quantitative

inversion methods. In case of cluttered media, namely, the latter are known to be poorly

effective due to the small Signal-to-Clutter Ratio of the scattered field. Using the incident

field issued from the DORT method, which focuses onto the targets of interest, might then

be a good solution to increase the robustness of the inversion algorithms. A quantitative

inverse scheme replacing the “raw” incident and scattered fields with the respective DORT

fields is thus proposed.

The manuscript is articulated as follows. The first chapter is dedicated to the description

of the prototype that will be operated throughout the manuscript. The hardware architec-
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ture comprises two antenna arrays, one of which is equipped with a beamforming network.

It is therefore possible to perform complete Time Reversal experiments, as shown in the

second chapter. The signal processing steps necessary to exploit the system and to improve

its performances are also presented. They include the antenna modeling strategy and a

drift correction algorithm aimed at compensating mainly the thermal drift affecting the

data during their acquisition.

The exploitation begins with the following chapter, focused on qualitative inversion.

Particular attention is cast into the theoretical background of the DORT method, validated

through a number of experimental setups. The performances are systematically compared

with those obtained through the classical Kirchhoff migration method, and with the results

of another Time Reversal-based method known as Time Reversal-MUSIC. Different ways

of exploiting frequency diversity, as well as different geometric configurations, are also

investigated. In addition, the experimental results from a measurement campaign targeting

Through-The-Wall imaging are shown.

The quantitative inversion framework is presented in the third chapter. An effort is

first made to understand the origin of the ill-posedness of the inverse problem from a

theoretical point of view. Follows an explanation of the concept of available information

associated to the data, extremely important in applications with small arrays and a limited

number of views. Then, the selected inversion algorithm, the so-called Modified2 Gradient

Algorithm introduced by Belkebir and Tijhuis in [12], is detailed. In order to apply it to

the experimental data, the adaptation to the 2.5D configuration, including an accurate

calibration step, must be performed. Finally, for a number of configurations and targets,

the experimental inversion results are presented.

In the last chapter, the DORT concept is applied to the quantitative inversion frame, thus

somehow merging the benefits of the methods developed in the two previous chapters. The

inversion scheme modified accordingly is tested on a linear array configuration where the

target of interest is embedded in a cluttered medium. The same applications are targeted,

namely medical imaging or subsurface sensing. Synthetic data-only are used to inquire on

the effectiveness of the approach.

Publications

A number of publications witnesses the work carried out during these three years. Their

list follows:

Book chapters

• L. Bellomo, M. Saillard, S. Pioch, F. Barbaresco, and M. Lesturgie, “Waveform

design based on Phase Conjugation and Time Reversal”, in Waveform Design

and Diversity for Advanced RADAR Systems, IET, 2012, to be published
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• L. Bellomo, S. Pioch, M. Saillard, and E. Spano, “Time Reversal Experiments

in the Microwave Range: Description of the RADAR and results”, Progress In

Electromagnetic Research, vol. 104, 427-448, 2010

Invited conferences

• L. Bellomo, K. Belkebir, M. Saillard, S. Pioch, and P. Chaumet, “Inverse Scat-

tering Using a Time Reversal RADAR”, 2010 URSI International Symposium on

Electromagnetic Theory (EMTS), 381-384, Berlin, 2010

• K. Belkebir, L. Bellomo, S. Pioch, M. Saillard, and P. Chaumet, “Microwave

imaging using a time-reversal radar system”, 2009 International Conference on

Electromagnetics in Advanced Applications (ICEAA), Torino, 2009

Conference proceedings

• R. Dubroca, N. Fortino, J-Y. Dauvignac, L. Bellomo, S. Pioch, M. Saillard, T.

Lepetit, J. de Rosny, C. Prada, P.Millot, N.Maaref, and B.Boudamouz, “Time

Reversal-Based Processing for Human Targets Detection in Realistic Through-

The-Wall Scenarios”, 2011 European Microwave Week (EuMW-EuRAD), Manch-

ester, 2011

• L. Bellomo, M. Saillard, S. Pioch, K. Belkebir, and P. Chaumet, “Microwave

imaging in cluttered media with an Ultrawideband Time Reversal-based pro-

totype”, 2011 Symposium on Progress in Electromagnetic Research (PIERS),

Marrakech, 2011

• L. Bellomo, S. Pioch, M. Saillard, and E. Spano, “An S-band Ultrawideband

Time Reversal-based RADAR for Imaging in Cluttered Media”, 2010 IEEE In-

ternational Symposium on Phased Array Systems and Technology, Boston, 2010

• L. Bellomo, S. Pioch, M. Saillard, and E. Spano, “Microwave-range Imagery with

an Ultrawideband Time Reversal-based RADAR”, 2010 European Microwave

Week (EuMW-EuRAD), Paris, 2010

• L. Bellomo, M. Saillard, S. Pioch, K. Belkebir, and P. Chaumet, “An Ultrawide-

band Time Reversal-based RADAR for Microwave-range Imaging in Cluttered

Media”, 13th International Conference on Ground Penetrating Radar (GPR),

Lecce, 2010



Notation

i imaginary unit

e+iωt time dependency convention

~r vector notation

v one-dimensional array (vector) notation

V two or more-dimensional array notation

1k vector with all zeros except 1 in the kth position

sinc(x) sin(x)/x

‖·‖ Euclidean norm (norm-2), if not indicated with an index

(I)FT, (I)FFT (Inverse) Fourier Transform, (Inverse) Fast Fourier Transform

(·)∗ conjugate operator

(·)T transpose operator

(·)H conjugate transpose operator
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6 NOTATION



Chapter 1

Microwave imaging prototype

Building a Time Reversal-based RADAR was an already kicked-off project at LSEET

when the PhD started [13]. Although some remarkable results existed in acoustics [14–16]

and the foundations of a theoretical frame had been established in electromagnetics [17–23],

only a few experiments had been reported in the latter domain [24–30]. Joining my PhD

supervisor’s savoir-faire [6,7,31] to this background had led to the idea of exploiting Time

Reversal for improving the quantitative reconstruction of objects located in cluttered or

random media [32].

All this had converged to the choice of building a microwave prototype with the following

characteristics:

1. linear antenna array with transmit/receive capability;

2. ultrawideband working frequency range;

3. easeness of acquisition of multi-view multi-static data;

4. possibility of experimentally retransmit the waveforms issued from Time Reversal-

based methods.

The linear array choice follows directly from the established LSEET’s expertise in current-

measuring RADAR’s [33, 34] also working with linear arrays; more particularly, it targets

buried objects and ground penetrating RADAR applications [35]. From the inverse scatter-

ing point of view, the ultrawideband is required as a countermeasure to the limited aperture

of a small linear array in order not to limit too much the accessible portion of the spectral

support of the electromagnetic contrast (cfr. §3.4). Specification 3. arises from the will of

studying subspace methods such as DORT [3,20], Time Reversal-MUSIC [5, 36], or Linear

Sampling Method [37–39] which all need the knowledge of the multi-static data matrix of

the array. The latter requirement is finally interesting in order to be able to observe and

analyze the super-resolution phenomena associated to Time Reversal [40, 41].

7
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In this chapter, an overview of the state of the art of the existing wideband prototypes

is first given. Then, the retained solution is described in detail. Further on, the general yet

fundamental signal processing operations performed on the measured data are presented,

finally followed by the description of the procedure used for the experimental retransmission.

1.1 State of the art

Let us briefly recall and describe here the hardware solutions employed in some of

the most representative electromagnetic Time Reversal-based prototypes recently reported.

Due to the particular interest in wideband solutions, this review deliberately discards nar-

rowband applications (that is, purely Phase Conjugation ones), particularly explored since

a long time in the RADAR community since the seminal Van Atta patent [42] (which

describes a wideband approach, though) up to nowadays [26, 43–48].

As the Time Reversal-Phase Conjugation duality [44, 49] holds, at least for propagative

waves [50], two different instrumental approaches can be distinguished. In the first one,

experiments are achieved directly in the time domain with an Arbitrary Waveform Gener-

ator (AWG) at transmission and a Digital Sampling Oscilloscope (DSO) at reception. The

second approach is the stepped-frequency one with systems based on the use of a Vector

Network Analyzer (VNA) both as signal source and receiver.

1.1.1 Time domain implementation

Concerning the time domain approach, some of the first publications come from Mathias

Fink’s group [24, 25] in 2004 and 2006. Here, working at the central frequency 2.45 GHz,

bandwidths of 2 MHz and 150 MHz, respectively, are reported. They are achieved with

an AWG, a DSO and thanks to commercially-available general purpose IQ transceivers

performing the baseband-RF (Tx) and RF-baseband (Rx) conversions. Later articles [27,30]

report larger bandwidths (more than 2 GHz at around 1.5 GHz central frequency) made

possible by the availability of more rapid AWG’s and DSO’s thus making obsolete the use

of external transceivers. Another remarkable experiment concerns an HF over-the-horizon

RADAR based on a double-pass Time Reversal strategy, where the much lower frequencies

(bandwidth approximately going from 3 MHz, due to the antennas used, to 20 MHz) easily

allow the use of the AWG/DSO architecture [51].

Finally, a common characteristic of these experiments is the use of one single active

antenna as Time Reversal Mirror (TRM). Nevertheless, a virtual array can be built in virtue

of Maxwell’s equations linearity by switching ON/OFF or displacing the active antenna [25].

1.1.2 Stepped-frequency implementation

The first report of a frequency domain Time Reversal system is most probably [52].

The architecture used is very similar to the one presented in this chapter, with an antenna
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array and a vector modulator per channel to experimentally steer the array and create the

waveform to be retransmitted. Nevertheless, a very narrowband is used (2 MHz) and the

phase conjugation law is the one of the central frequency 2.45 GHz. In other papers, a

stepped-frequency acquisition over a given frequency band and pulse synthesis are rather

performed, while retransmission is only done numerically. The bandwidths are instead very

wide, e.g. 10 GHz in [28] and 6.5 GHz in [29].

Dually with respect to the time-domain approach, the time coherency is here retrieved

by recombining all the frequencies via a Fourier Transform.

1.1.3 Time Reversal through dispersive optical fibers

Yet another, completely different approach exists. In 1999, Coppinger et al. [53] reported

the experimental demonstration of broadband TR by employing dispersive optical fibers.

The idea consists in generating an optical pulse with a laser and first letting it run through

a fiber with negative dispersion module D1 and length L1: the effect is a delayed pulse

with more delay corresponding to the higher wavelengths. At its output, an electro-optical

modulator modulates the amplitude of the resulting pulse with the RF signal that has to

be time reversed. Then, the signal propagates through another fiber of length L2, with

positive dispersion index D2 this time, which will delay more and more lower wavelengths

until they will lead in time with respect to the higher ones (which were the leading ones at

the fiber input). As a result, when D2L2 = −2D1L1, the initial optical pulse as well as the

RF signal have been reversed in time; after a final fiber, whose role is to stretch in time the

RF signal, a complete TR can be observed. Similar results and the possible implementation

of an antenna array based on this technology have also been published in [54].

There are mainly two drawbacks to this solution. First, very long fibers (some kilome-

ters!) are needed to time reverse wideband RF signals. Second, it only works with TR:

in other words, it is impossible to process the received data to “arbitrarily” beamform the

following transmitted wave. Since we want to use antenna arrays to investigate techniques

such as DORT, based on a Singular Value Decomposition (SVD) of the multi-static matrix,

the latter drawback prevents us from adopting this implementation.

1.2 Prototype description

Excluding the optical solution, it might seem that the approaches in §1.1.1 and §1.1.2 are

rather equivalent, given today’s technology, for what concerns bandwidth availability and

easeness of implementation of experimental beamforming. Nevetheless, for a comparable

frequency band, both cost and dynamic range still seem more favorable in the former case.

Given this, and also in order to provide the LSEET with an instrument that other teams

might be interested in using1, the stepped frequency implementation has been chosen, with

1Namely, the team developing the current-measuring RADAR, which works at VHF.
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Figure 1.1: Prototype architecture. (a) Additional antenna (A9) present in the initial architec-

ture later replaced by (b) a second antenna array. In both architectures, the antenna

array-1 acts as TRM.
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Figure 1.2: Photograph of the prototype in the TRM array + additional antenna version

(Fig. 1.1(a)).

a frequency band going from 2 to 4 GHz.

1.2.1 RF section

The initial architecture of the prototype is presented in Fig. 1.1(a), and a photograph is

shown in Fig. 1.2. The system is built around the VNA, a two-port Rohde & Schwarz ZVB8
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able to work from 300 kHz to 8 GHz and acting both as RF signal source and receiver. The

TRM is made of an array of 8 antennas, each of them connected to the VNA via two possible

paths selected through a single-pole double-throw (SPDT) electromechanical switch. The

first path, called MUX path, is a simple connection through a single-pole 8-throw (SP8T)

50 Ω-terminated switch (Multiposition switch in Fig. 1.1); the MUX path provides small

losses (≈4 dB at 3 GHz) and allows to select the active antenna. The other path, the A/Φ

path, is responsible of the beamforming implementation via a pair of numerically-controlled

attenuator (A) and phase shifter (Φ) followed by an 8-channel power splitter. Note that

since all the components are passive and reciprocal, both TX and RX beamforming can be

realized. On the other hand, the array-2 only presents an SP7T switch to select the active

antenna, giving an overall path loss (including cables) of ≈6.25 dB at 3 GHz.

In order to perform experiments in transmission configurations and to measure focusing

spots, one additional antenna, directly connected to the VNA, was present in the initial

architecture (Fig. 1.1(a)). It has later been replaced by a second 7-antenna array without

beamforming capabilities but equipped with a Multiposition switch2 (Fig. 1.1(b)).

A summary of the electric characteristics of the RF components is given in Tab. 1.1.

Attenuators come from Waveline; they have an attenuation range of 32 dB and 8 control

bits, giving a rather linear-in-dB resolution of 0.125 dB/LSB. Phase shifters, also from

Waveline, assure a phase shifting range of more than 360 deg with 10 control bits, giving

a linear resolution of 0.35 deg/LSB (see Tab. 1.2). The insertion losses are 2.75 dB for the

former (at minimum attenuation) and 6 dB for the latter; including power splitter (9 dB

nominally plus 0.8 dB insertion losses), switches and cables, the losses of the whole A/Φ

path amount to ≈21 dB at 3 GHz.

The antennas are antipodal symmetric Exponentially Tapered Slot (ETS) antennas,

printed on a Duroid substrate of permittivity εr = 2.2 and dimensions 8 cm × 9 cm

(length × height). They show very good input impedance matching (SWR < 2) in the

[2–18] GHz frequency band and radiate a vertically-polarized (perpendicular to the plane

of Fig. 1.1(a)) electric field [55]. Antennas based on the same design have also been employed

in [29,56]. As shown in Fig. 1.1, when used within an array, they have usually been spaced

of ∆x = 5 cm, equivalent to λ0/2 at 3 GHz. This allows a good compromise between

antenna coupling, which has more impact for a smaller ∆x, and grating lobes, which are

more of an issue for larger ∆x values. In particular, at the worst case frequency 4 GHz,

grating lobes are present at end-fire for a pointing angle of 30 deg, rather hard to obtain in

our “long-and-narrow” anechoic chamber (see §1.2.3).

Finally, the systems operates in the [2-4] GHz band. The lower limit was imposed by

the adaptation of the antennas, which were available before the whole project began; the

upper limit results from a trade-off between performances and cost of all the other RF

components.

2There were originally 8 antennas in the second array, too. Unfortunately, one channel of the SP8T

switch has broken, leaving us with seven usable channels only.
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SPDT

switch

SP8T

switch

Power

splitter
A Φ Antennas

Frequency operating

range (GHz)
[0-4] [0-4] [2-4] [2-8] [2-4] [2-18]

Insertion loss/Gain

@ 3 GHz (dB)
-0.1 -0.1 -0.8 -2.75 -6 +3

Table 1.1: Main electrical characteristics of the RF components.

A Φ

Attenuation/phase shift range 32 dB 360 deg

Number of bits 8 10

Resolution 0.125 dB/LSB 0.35 deg/LSB

Table 1.2: More electrical characteristics of attenuators and phase shifters.

Concerning the VNA frequency step, it must be chosen in such a way that the alias-

free distance range be at least equal to the total electric length of the “longest” prototype

path. Indeed, with reference to Fig. 1.1, the longest path is the array-2 one, comprising

one 5 m and one 2 m cables (the SP8T siwth electrical length is negligible). Adding to

this the length of the chamber (almost 2 m, see §1.2.3), multiplying by two to handle the

retrodiffusion measurement case, and keeping into account the dielectric constant of our

cables (approximately 1.9 and 1.4 for the 2 m and 5 m cables, respectively), the maximum

length is:

2
(

2
√
1.9 + 5

√
1.4 + 2

)

m ≈ 21.5 m . (1.1)

This value must be compared with the alias-free range associated to a given frequency step,

∆f . This gives:
1

2

(
c0
∆f

)

≤ 25 m ⇒ ∆f ≤ 7.1 MHz , (1.2)

where c0 = 30 cm/ns is the speed of light in vacuum and the 1/2 factor comes from the

alias-free requirement. Being a little conservative, we have finally chosen ∆f = 5 MHz (401

points between 2 GHz and 4 GHz).

1.2.2 Drive and control electronics

The entire system can be controlled from a PC. For this purpose, a Matlab-based Graphi-

cal User Interface (GUI) has been developed. It can autonomously perform a complete data

acquisition or a Phase Conjugation/DORT retransmission.

There are three connections handled by Matlab’s Instrument Control Toolbox, one to

the VNA (Ethernet) and two to the PIC microcontrollers (one USB cable per PIC) driving

the RF components of each of the arrays (see Fig. 1.1(b)). The way these connections are

set and handled in Matlab is described in §A.
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Figure 1.3: (a) Simplified schematization of the way the PC controls the RF components through

the PIC microcontroller. (b) State machine implemented in the PIC microcon-

troller.

The VNA is remote-controlled in order to set the features of a frequency sweep (n. of

frequencies, IF filter bandwidth, n. of averages), to trigger it and to read the measurement

into the PC.

With reference to the PIC driving the TRM array, in Fig. 1.3(a) one can schematically

see the PIC connections to the switches (SPDT’s and SP8T’s) and to attenuators and phase

shifters. They were designed, together with the electronic board layout, by Marc Bianchieri-

Astier during its Master 2 internship [13]. The switches are connected to the PIC through a

simple buffer (not shown in the figure). In order to implement the wanted attenuation/phase

shift, the channel is addressed through three bits (1 to 8) and A/Φ couples controlled with

the I2C protocol through two wires: one carries a clock signal, the other the data sent bit

after bit (a first byte representing the address of either the attenuator or the phase shifter,

followed by two bytes containing the code giving the wanted attenuation/phase shift as

described in §1.8).

A communication protocol between PIC, PC and RF components has been established.

It has a “server” side in Matlab and a “client” side running in the PIC (coded in a special

PIC-adapted C language, cfr. §A). The PIC state machine is depicted in Fig. 1.3(b). After

initialization the PIC is in the wait state; when a reset character (arbitrarily chosen and

known to both Matlab and the PIC) is read, a counter i is initialized and the evaluation

state is reached. Two bytes are now read, decoded (a binary to decimal conversion is

needed), and sent back to the PC in the transmit to PC state for verification. This loop

is repeated 17 times, 1 for the switches and 2×8 times for all the attenuators and phase
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(a) (b)

Figure 1.4: Photographs of the anechoic chambers built at LSEET with (a) flat and (b) pyra-

midal absorbing panels.

shifters. Once this is done, the PIC finally goes to the I2C state: the PIC drives its outputs

connected to the switches and uses the I2C protocol to communicate with attenuators and

phase shifters one after the other. Notice that during the I2C communication, after writing

the attenuation/phase shift code into the component, the PIC reads back the code for

verification. The whole cycle approximately takes 2 seconds.

1.2.3 The anechoic chamber

A first anechoic chamber was built with flat absorbing panels (Fig. 1.4(a)) with dimen-

sions 1.8×0.6×0.6 m3 (length×width×height). It was used for the initial validation of the

prototype. Nevertheless, as soon as the first quantitative inverse scattering experiments

were realized, the need for pyramidal panels, much more effective in absorbing electromag-

netic waves under grazing angle incidences, became impellent in order to recreate free-space

conditions. A second chamber with pyramidal panels has then been built (Fig. 1.4(b)),

whose internal (exploitable) dimensions are 1.4×0.8×0.8 m3. This chamber is provided of

a door and of a removable panel on the TRM side, and it is completely rigidified by a 3 cm-

thick wood shell. Furthermore, two plexiglas supports (one of them is visible in Fig. 1.4(b))

have been realized in order to achieve a precise positioning of the array antennas. The

second anechoic chamber was financed by the Institut Fresnel in Marseille; the plexiglas

support was realized by the Laboratoire d’Électronique, Antennes et Télécommunications

(LEAT) in Nice-Sophia Antipolis.

1.3 Measurement configurations

For a given configuration, a 2-port VNA measures 4 S-parameters defined, with reference

to Fig. 1.5, as
[

b1

b2

]

=

[

S11 S12

S21 S22

][

a1

a2

]

, (1.3)
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where (ai, bi)|i=1,2 are the so-called power waves [57], and conventionally the 1st index stands

for the receiving port and the 2nd for the transmitting one.
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Figure 1.5: Definition of the S-parameters for a 2-port network.

In practice, if the signal received by antenna Aj when antenna Ak transmits has to be

measured, the VNA port 1 must be connected to Ak and the port 2 to Aj . As a result,

using the formalism in (1.3), the following quantities are obtained:
[

Skk Sjk

Skj Sjj

]

, (1.4)

among which the desired Sjk appears. This notation is used throughout the manuscript.

With respect to the architecture in Fig. 1.1, the system can be used in one of the following

configurations.

1.3.1 Reflection

In this configuration, the TRM antennas act both as sources and receivers, array-2 is not

active. The following 8× 8 inter-element matrix Kreflec can be measured at each frequency:

Kreflec =









S11 S12 · · · S18

S21 S22 S28

...
. . .

...

S81 S82 · · · S88









(1.5)

The path losses, Lpath, associated to the reflection configuration can be evaluated. For

retrodiffusion measurements, i.e., for the diagonal elements of Kreflec, the signal runs twice

through the TRM MUX path; hence, Lpath ≈ 8 dB at 3 GHz. For all the other terms,

there is a MUX path followed by an A/Φ path, giving Lpath ≈ 25 dB at 3 GHz (Tab. 1.3).

Notice that since all the prototype RF components are passive and reciprocal, if the wave

propagation medium is reciprocal (in the sense of Lorentz), then Kreflec is symmetric.

1.3.2 Transmission

The TRM antennas act in this case as sources and array-2 antennas as receivers (or vice

versa), giving the following 7× 8 Ktransm matrix:

Ktransm =









S91 S92 · · · S98

S101 S102 S108

...
. . .

...

S151 S152 · · · S158









(1.6)
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MUX

path

A/Φ

path

array-2

path

Reflection Transmission Full

Sjj Sjk Sjl Sll

Lpath @ 3 GHz (dB) 4 21 6.25 8 25 10.25 12.5

Table 1.3: Path loss, Lpath, for the different paths and measurement configurations. j and k

indices cover the TRM array (j, k = 1, 8), l is for the array-2 antennas (l = 9, 15).

Concerning path losses, for any element of Ktransm the signal runs through the MUX path

of the TRM and through the array-2 path. The result is Lpath ≈ 10.25 dB at 3 GHz.

With the same assumptions made for the reflection configuration, Ktransm is theoretically a

symmetric matrix.

1.3.3 Full

It is in principle possible to merge the reflection and transmission configurations above,

giving a 15×15 Kfull matrix. Nevertheless, the architecture in Fig. 1.1(b) does not allow to

record the array-2 inter-element responses, except for the retrodiffusion coefficients Sll|l=9,15.

Indeed, it could have been possible to build a second TRM equipped with A/Φ pairs instead

of the “simple” array-2 of Fig. 1.1(b). The full matrix could have then be measured, but

at the price of a reduced dynamic range due to the additional components. The choice has

been therefore made to have only one TRM while optimizing the dynamic range, extremely

important for imaging low-scattering objects. Finally, the global measurable matrix Kfull

is

Kfull =



















S11 S12 · · · S18 S19 S110 · · · S115

S21 S22 S28 S29 S210 S215

...
. . .

...
...

. . .
...

S81 S82 · · · S88 S89 S810 · · · S815

S91 S92 · · · S98 S99 ◦ · · · ◦
S101 S102 S108 ◦ S1010 ◦

...
. . .

...
...

. . .
...

S151 S152 · · · S158 ◦ ◦ · · · S1515



















, (1.7)

where the symbol ‘◦’ stands for an unavailable measurement. The retrodiffusion terms

belonging to array-2 (Sll|l=9,15) have Lpath = 12.5 dB at 3 GHz.

1.4 Dynamic range

For scattering experiments, where very low-level signals must often be sensed, it is essen-

tial to configure the VNA to have a dynamic range as wide as possible. Indeed, the signal

power level to observe might be very low for small and/or far targets. At the same time a

good measurement precision is needed, especially in the framework of quantitative inverse

scattering (see §3).
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1.4.1 VNA output power

To optimize the dynamic range, defined as the ratio between the measurement power

available at the test port and the noise floor of the receiver, the first VNA parameter to set

is the output power level, Pout. Despite one would tend to use the maximum VNA power

level not to waste any of the available dynamic range, a too high value would produce

non-linearity errors affecting the measurement precision. To understand why these errors

come into play, consider a VNA calibration procedure (TOSM calibration, for instance) run

with a power level beyond the receiver linear range. Since harmonics and spurious tones

are created by the non-linearity, at each frequency the calibration coefficients will correct

for them, too. Nonetheless, when real measurements are performed with passive devices

as ours, which by definition attenuate the signal, the power level at the receiver is lower

than the one seen during calibration. As a result, despite there is no non-linearity in the

receiver now, the calibration coefficients tend to correct for it, i.e., a wrong calibration is

applied. In practice, the VNA should be operated at a power level below the 0.1 dB receiver

compression point to have negligible non-linearity errors [58].

To verify up to what Pout value the VNA can be used, the receiver compression level

must be evaluated. This is done by measuring, with the uncalibrated VNA, the S21 (trans-

mission configuration) and the S11 (reflection configuration) with an open circuit and a

thru connector, respectively, directly connected to the VNA test port, at three different

Pout levels: -20 dBm (10 µW), +13 dBm (20 mW), and +14 dBm (25 mW). At -20 dBm

the receiver is considered in its linear range, as stated in the VNA datasheet and which

we have verified with a power sweep; +13 dBm is the maximum nominal output power re-

ported in the datasheet. To sense the compression level, the ratio between the linear-range

measurement (-20 dBm) and the non-linear ones must be observed:

Sj1|−20 dBm

Sj1|+13 dBm
and

Sj1|−20 dBm

Sj1|+14 dBm
, j = 1, 2 . (1.8)

The results for the transmission and reflection configurations are in Fig. 1.6 (a) and (b),

respectively. At +13 dBm the receiver is below the 0.1 dB compression point throughout

the entire [2-4] GHz band, except for two small sub-bands in the reflection case centered at

3.725 and 3.905 GHz, where an excess ≤ 0.015 dB is measured. At +14 dBm the receiver

is more often, and more deeply, beyond the 0.1 dB compression point. According to these

results, the VNA has been operated at Pout = +13 dBm, although it would have been

enough to further back-off of as few as 0.5 dB to always stay beyond 0.1 dB compression.

1.4.2 VNA Noise floor

Concerning the noise floor (NF), the ZVB8 datasheet reports a value ≤ −110 dBm,

obtained with an IF filter bandwidth of 10 Hz. For a trade-off between measurement

speed and dynamic range, the IF filter bandwidth has been set to 200 Hz, giving a LIF =

10 log10(200/10) = 20 dB dynamic range reduction.
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(a) transmission configuration, S21 (b) reflection configuration, S11

Figure 1.6: Measurement of the compression of the VNA receiver port in the cases (a) of trans-

mission (S21) and (b) of reflection (S11) measurements.

For experiments involving only active sources, e.g., Time Reversal of the field radiated

by an active antenna (see §2.2), the dynamic range DR can therefore be evaluated, which

gives, at 3 GHz,

DR = Pout − (NF + LIF + Lpath)

= +13 dBm− (−110 dBm + 20 dB + 10.25 dB) = 92.75 dB ,
(1.9)

where Lpath is necessarily related to the transmission configuration (see Tab. 1.3).

1.4.3 Thermal drift

For scattering experiments, an additional element must be taken into account to evaluate

the available dynamic range. As detailed later in §1.6, two measurements must be performed

in order to retrieve an exploitable scattered field term, Es , Ss
jk: the incident field, Ei ,

S i
jk, measured without the target, and the total field, E , Sjk, measured with the target

present in the scene. This is referred to as differential measurement technique, since the

difference E − Ei gives the scattered field one works with [10, 11, 29]. Nonetheless, despite

a long (at least an hour) VNA warm up time, a temperature drift has systematically

been experienced. Such drift is responsible of an altered precision between two identical

measurements performed at different times. And a certain amount of time is indeed needed,

for instance to fill the incident field Ki matrix before measuring the total field one, K.

Inspired by [59], it is possible to model the effect of such a drift as follows:
{

Ei = Ẽi + w1

E = Ẽi + Ẽs +∆E + w2

⇒ Es = Ẽs + ∆E
︸︷︷︸

drift

+w2 − w1
︸ ︷︷ ︸

noise

, (1.10)

where the quantities topped with ‘∼’ represent the ideal quantities in the absence of drift,

and wj|j=1,2 are the VNA noise realizations related to its NF. Two effects can therefore be

distinguished:
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• the necessity of performing differential measurements results in a 3 dB dynamic range

loss due to the term w2 − w1;

• temperature drift causes an additional “noise” term, ∆E, that affects the dynamic

range as well. This can be further split into two contributions. Indeed, since the drift

physically acts on the incident field, ∆E is the sum of an incident field drift term,

∆Ei, and of another term representing its effect onto the scattered field:

∆E = ∆Ei + S(∆Ei) , (1.11)

where S is the linear scattering operator relying incident and scattered fields (Ẽs =

S(Ẽi)).

Overall, the temperature drift term may or not be larger than the “classical” w2 − w1

term. This of course depends dramatically on the time between the total and incident field

measurements. On this purpose, it has rather paradoxically been found that not doing any

average in the VNA gives a cleaner scattered field after difference, and this is because a

lesser amount of time has flown between the two measurements. Nevertheless, for a common

8×8 K matrix recorded with an IF filter bandwidth of 200 Hz, it appears that the thermal

drift noise is higher than the VNA noise floor, hence imposing the final dynamic range as

shown in Fig. 1.7.
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Figure 1.7: Schematization of the dynamic range for scattering experiments. According to ex-

perimental evidence for typical measurements, the thermal drift is higher than the

“augmented” NF. Notice also that since the drift is signal-dependent, the dynamic

range finally depends on the amplitude of the incident field.

In order to further understand the drift phenomenon, the following experiment has been

performed. For a single antenna couple, e.g. S46, the incident field in absence of scatterers

has first been recorded twice in very rapid succession (about 5 s). Then, during a whole

night, N = 50 total field measurements, with a time step δt = 15 min, have been recorded

as well. The scatterer is a small metallic cylinder (radius equal to 3.1 mm) placed at around

75 cm from the couple of antennas. Finally, this results in Ei
1 ≈ Ei

2 , Ei and En|n=1,50,
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giving the scattered fields Es
n = En − Ei. The assumption is that, due to their rapid

succession, the incident field measurements are practically indetical, i.e., the thermal drift

amount is lower than the VNA NF, whereas a sensible drift-induced difference is observable

in the total, hence scattered, fields.

Before presenting the results, let us adapt the model in (1.10)-(1.11) in the case of the

present experiment. It is assumed that the drift effect is linear with respect to the time

δt between two measurements. Then, for the N consecutive measurements with the same

time interval, one obtains

∆Ei = nδEi ⇒ Es
n = Ẽs + n

[
δEi + S(δEi)

]
, (1.12)

where δEi is the variation of the incident field during the δt. VNA noise has been neglected

for conciseness.

In Fig. 1.8(a) the time-domain complex envelopes (or analytical signals) in dB of some

of the measured signals are shown. In particular, it can be clearly seen how, with respect

to the Ei
1 − Ei

2 difference (black curve), the bunch of scattered fields Es
n (from dark to

bright green corresponding to a growing n) is stronger even at the very first time instants

(t < 4 ns) where the target echo is not yet arrived. The hypothesis that the thermal drift

cumulated in a δt = 15 min overrules the VNA NF is then validated (cf. Fig. 1.7).

Fig. 1.8(b) shows the amplitude of the largest normalized Es
n sample, that is, maxt(E

s
n/E

s
1)

within two separate time windows depicted in Fig. 1.8(a): the direct antenna coupling win-

dow (bottom subfigure) and the target echo window (top subfigure). In the former window,

there is not any scattered field yet - the target echo only arrives later. The observed signal

is then nδEi in (1.12), whose rather linear behavior confirms the drift-linearity assumption

made in (1.12). On the other end, the curve pertaining to the target echo contains the

three contributions in (1.12). Since it is practically constant - barely a 20 % variation in

more than Nδt ≈ 12 hours -, it can be assumed that Ẽs ≫ n
[
δEi + S(δEi)

]
, which basi-

cally means that for these target and configuration there is still sufficient dynamic range to

observe the scattered field even after 12 hours.

Another interesting result is presented in Fig. 1.9. Here, two consecutive scattering (or

total) field measurements have been subtracted, giving the green curves Es
n −Es

n−1. Since,

as just observed, the drift effect is practically linear in time, the mean of such signals can be

computed at any t. The result is the red thick curve, which with respect to (1.12) is nothing

but δEi + S(δEi). It is interesting to observe that this curve is partially correlated to the

incident field one (blue line), e.g. within the antenna direct coupling window (t < 4 ns),

whereas there is no correlation with the scattered field curve (black line). Indeed, since the

scatterer is small and relatively far from the antenna, its scattered field is rather isotropic

and very small, giving S(δEi) ≈ S0E
i ≪ Ei, where S0 is the isotropic scattering matrix

coefficient.
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(a) (b)

Figure 1.8: (a) Time-domain complex envelopes in dB of Ei (blue line), E1 (magenta), Ei
1 −

Ei
2 (black) representing a sort of noise floor, and Es

n (from dark to bright green

corresponding to a growing n). (b) Linear amplitude of the largest Es
n sample

within the target echo (red line, top) and the direct antenna coupling (blue line,

bottom) “windows”. Comparing the amplitude scales, a rather linear behavior can

be appreciated in the latter, well corresponding to the model in (1.12), whereas the

target echo “window” exhibits a rather constant value.

Figure 1.9: Time-domain complex envelopes in dB of Ei (blue line), Es
1 (black), Es

n − Es
n−1

(from dark to bright green corresponding to a growing n), and their mean value at

each time instant.

1.5 VNA Calibration

The VNA calibration is an essential task for obtaining precise measurements. Since any

configuration (see §1.3) necessitates both retrodiffusion and transmission measurements,

the TOSM calibration type has always been used. This method, employing a Short (S),

Open (O), Match (M), and Thru (T) connector set (also called standards) applied to both

ports of the VNA, is one of the most complete and accurate existing calibration methods.

Concerning the interface at which the calibration must be performed, a fundamental
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choice has to be made. In effect, calibrating the VNA means setting its phase origin at the

connector where the standards are applied. Hence, especially for scattering measurements,

it seems natural to calibrate the VNA at the connectors of the array antennas, since, by

doing so, the data measured by the VNA would directly represent the wave propagation

from the transmitting to the receiving antenna. Nonetheless, two major problems arise:

• taking for instance the reflection configuration in §1.3, assuming reciprocity, and

considering that the retrodiffusion parameters Sjj|j=1,...,8 are obtained “for free” when

measuring any (j, k)th, j 6= k antenna pair, there are C2
8 = 8!/2!(8− 2)! = 28 different

antenna couples to be tested to fill the 8×8 K matrix. This means 28 different TOSM

calibrations, each of them lasting ≈ 3 minutes, which apart from the obvious “manual

effort” cover a long time with respect to the VNA thermal drift issue previously

mentioned.

• as shown in Tab. 1.3, up to 25 dB path loss exist for a tranmission measurement

involving the TRM array. Such a loss must be subtracted from the VNA dynamic

range during calibration and greatly affects the precision of the calibration factors

calculated. The result is then an imprecise calibration giving imprecise measurements.

Due to the last item, then, not even an 8-port VNA would solve the issue, despite

its capability of calibrating all 8 ports simultaneously. The solution found consists in

calibrating the VNA at its own test ports, and in retrieving the wave propagation part of

the measurement by using the transfer matrix formalism as explained next.

1.5.1 Extraction of the propagating medium through the use of

the transfer matrices

Among the configurations in §1.3, the example of a reflection configuration involving

the TRM array, i.e., Sjk (j 6= k, j, k ≤ 8), is used here. Fig. 1.10 shows that the VNA

actually measures the cascade of three 2-port networks, the kth MUX path, the propagating

medium, and the jth A/Φ path. The overall measurement is the S-parameters matrix S,

whereas the sub-network matrices are, respectively, SMUX
k , Sair, and S

A/Φ
j .
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Figure 1.10: Cascade of 2-port networks for a reflection measurement configuration (Sjk) in-

volving the TRM array.

Nevertheless, the only sought contribution is the one of the propagation medium, Sair.

In order to extract it, the following procedure is used.
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1. Each prototype path is characterized by direct measurement, resulting in a full

database composed of SMUX
k |k=1,...,8, S

A/Φ
j |j=1,...,8, and Sarr2

l |l=1,...,7 (the latter, repre-

senting the array-2 path for the antenna Al, is needed for transmission configurations

involving array-2).

2. Each of these matrices, and the overall S matrix, are transformed into the respective

transfer matrices T (T-matrices) [60], according to the relationships

[

a1

b1

]

= T

[

b2

a2

]

⇒







[

T11 T12

T21 T22

]

=








1

S21
−S22

S21

S11

S21
−det(S)

S21








[

S11 S12

S21 S22

]

=








T21
T11

det(T)

T11

1

T11
−T12
T11








. (1.13)

3. Thanks to T-matrices, since sub-networks can be easily cascaded through a simple

multiplication, the T-matrix containing the propagation medium contribution, Tair,

is obtained as

T = TMUX
k Tair T

A/Φ
j ⇒ Tair =

[
TMUX
k

]−1
T
[

T
A/Φ
j

]−1

. (1.14)

4. Finally, Tair is recast back into the respective S-matrix by using (1.13).

Two remarks concerning the use of T-matrices must be done:

• using T-matrices for cascading 2-port networks is an exact technique, i.e., one does not

introduce any error due, for instance, to disadaptation between consecutive networks

(T-parameters, like S-parameters, do not depend on the characteristic impedance

value and keep into account the actual impedance seen at the port of a component);

• T-matrices, like S-matrices, are a rigorous tool only if all the considered networks are

linear with respect to input power. Such is the case for our components when using

the VNA at Pout = +13 dBm.

An example of the effectiveness of this technique is given in Fig. 1.11 for an S11 measure-

ment without targets (incident field). Since this is a retrodiffusion measurement, the signal

runs twice through the same path, the MUX path, shown in Fig. 1.11(a) (cf. Fig. 1.1). In

the raw signal acquired by the VNA, whose time-domain complex-envelop in dB is plotted

in Fig. 1.11(b), it is possible to individuate all the reflections due to the desadaptation

between consecutive components, whose arrival times well correspond with their electri-

cal path lengths (taken twice because of the retrodiffusion configuration). The resulting

time-domain signal after applying the transmission matrix technique is in Fig. 1.11(c): the
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(c)

Figure 1.11: Example of the effectiveness of the transmission matrix technique. For the S11

incident field measurement corresponding to the path in (a), the raw time-domain

signal is in (b). After applying the chain matrix technique, the propagating

medium portion of the signal is extracted, giving (c) with its new phase (time)

origin. Notice that the switches in (a) have a negligible electrical length.

new phase origin (t=0 ns) corresponds to the antenna connector interface (t≈43 ns in

Fig. 1.11(b)), while all the desadaptation reflections have been time-shifted accordingly.

As a conclusion, by employing the transfer matrix formalism, only one calibration, not

depending on the given measurement configuration, is required. This dramatically simplifies

the utilization of the prototype. There is a price to pay, though, and it is the introduction of

an error due to the VNA thermal drift described in §1.4.3. This happens because while the

path database is measured once, at a given temperature, humidity, etc., it is systematically
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used for retrieving the propagation part of the signal measured at - in principle different

- ambient conditions. Nevertheless, it has been found that such an error is tolerable with

respect to the precision given by the VNA and required by our algorithms. From now

on, unless otherwise specified, any time-domain scattered signal will be plotted after the

application of the technique just described.

1.6 Signal processing for scattering measurements

This paragraph is intended to cover all the signal processing that is systematically applied

to the raw measured scattering data before utilizing it for any of the methods described in

the following chapters (DORT, inverse scattering, etc.).

1.6.1 Differential measurements for antenna direct coupling reduc-

tion

As already mentioned in §1.4.3, for scattering measurements a differential mode is chosen.

This means that for a given scattering experiment, two measurements are performed, the

total field, E, with the targets in place and the incident field, Ei, without them. Then,

their difference, Es , E − Ei, called scattered field, is used [11, 29]. Indeed, although it is

the scattered signal that is of interest, the incident field is in practice most often so high to

“shadow” the scattered one, which e.g. for electrically small diffracting objects can be very

small.

Although this can be easily understood for a transmission configuration (the emitting

antenna directly illuminates the receiving one), it also true in reflection due to the antenna

direct coupling. Such contribution can be identified as any signal transmitted by the emit-

ting antenna and “sensed” at the receiving one beside the diffraction process. A special

case is the reflection, due to imperfect adaptation, at the antenna connector in the case of

a retrodiffusion measurement. In the time-domain, this contribution typically precedes the

arrival of the scattered field echo and can therefore be filtered out. Nevertheless, due to all

the imperfect adaptations in the prototype paths (see Fig. 1.11), the direct coupling signal

enters the receiving channel and reverberates; at each connector reflection it loses power

and finally vanishes below the VNA noise floor after some ns.

Let us observe both phenomena for each of the three possible signal types (cf. §1.3),

namely a) retrodiffusion, Sjj|j=1...8 and Sll|l=9...15, b) TRM array reflection, Sjk|j,k=1...8, and

c) transmission, Sjl|j=1...8;l=9...15. The time-domain complex envelope in the case of the

scattering of a metallic cylinder is shown in Fig. 1.12. In a) and b), the direct antenna cou-

pling is immediately visible during the initial 2-3 ns, whereas at ≈4 ns (corresponding to

2×60 cm=120 cm round-trip distance) the target echo appears, followed by the reverbera-

tion in the respective prototype channels. Notice how the differential measurement reduces

by ≈40 dB the initial coupling contribution, letting the scattering signature emerge. On
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(a) retrodiffusion configuration, S11
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(b) reflection configuration, S53
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(c) transmission configuration, S29

Figure 1.12: Measured time-domain complex envelope of a (a) retrodiffusion, (b) reflection,

and (c) transmission signals, in the case of the scattering of a metallic cylinder.

the other hand, for the transmission configuration (Fig. 1.12(c)), nothing is received by A2

until the direct signal (incident field) emitted by A9 and the scattering contribution both

arrive almost at the same time. Here again, using the E −Es difference helps in retrieving

the target echo.

1.6.2 FFT window and time-gating

There is a simple signal processing routine, common to any of these configurations, that

is applied to the raw signals measured by the VNA. It can be described as follows for a
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generic couple of total/incident field measurements, E(ω) and Ei(ω):

1. apply the transfer matrix technique in §1.5.1 to retrieve the “air” part of each mea-

surement,
{

E(ω)→ Eair(ω)

Ei(ω)→ Ei;air(ω)
; (1.15)

2. evaluate the scattered field by taking the difference

Es;air(ω) = Eair(ω)−Ei;air(ω) ; (1.16)

3. through an FFT frequency-domain window, Wω(ω), go to time domain:

Es;air(ω)Wω(ω) −→ es;air(t) ∗ wω(t) ; (1.17)

4. apply a time-gate, wt(t), to remove the initial and final parts of the signal, contain-

ing direct antenna coupling and parasite reverberations in the prototype channels,

respectively:
[
es;air(t) ∗ wω(t)

]
wt(t) ; (1.18)

5. go back to the frequency domain (no additional FFT window is needed since wt(t)

already acts as such):

[
es;air(t) ∗ wω(t)

]
wt(t) −→

[
Es;air(ω)Wω(ω)

]
∗Wt(ω) . (1.19)

Some details on the choice of Wω(ω) and wt(t) are presented next. Concerning the

former, the choice must be done by observing its time-domain transform, wω(t), and its

impact on the scattered signal through the time-convolution in (1.17). The classical trade-

off between main lobe width vs. side lobe attenuation drives the choice. The first controls

the achievable time - hence space - resolution; the second the impact, in the time domain,

of strong echoes “polluting” small ones. With reference to Fig. 1.12, the required side lobe

attenuation is driven by the ratio between antenna direct coupling residual after difference

and minimum detectable target echo. The worst case is the retrodiffusion case, where the

amplitude of the antenna coupling signal is the highest. In Fig. 1.12(a), for instance, it is

around -60 dB, whereas the noise floor appears at around -100 dB. This gives a 40 dB ratio

at a minimum time distance of 2 ns (corresponding to a target at a distance of 30 cm).

Fig. 1.13 shows two windows satisfying this requirement: the hann and the lanczos (or sinc)

windows, the latter being the one used for plotting Fig. 1.13. On the other hand, their main

lobes reach an attenuation of 3 dB (half power) at, respectively, 0.5 and 0.42 ns, giving

a space resolution of 10.5 and 9 cm, respectively3. Unless otherwise stated, the lanczos

3This distance must of course be compared to the measurement configuration. For instance, given a

retrodiffusion measurement and two identical targets placed on the same antenna-target line, the actual

resolution is halved.
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(a) (b)

Figure 1.13: FFT of two frequency-domain windows Wω(ω) (hann and lanczos windows) sat-

isfying (a) the side lobe attenuation requirement of 40 dB at t = 2 ns. In (b), the

space resolution can be derived from the main lobe attenuation at 3 dB.

(a) (b)

Figure 1.14: Tukey (tapered-cosine) window chosen as time-gate window in (a) time domain

and (b) its FT.

window has been adopted, which writes as

Wω(ω) =







0 , 0 ≤ ω < ωm

sinc

(
2 (ω − ωm)
ωM − ωm

− 1

)

, ωm ≤ ω ≤ ωM
, (1.20)

where ωm = 2π 2 ·109 rad/s and ωM = 2π 4 ·109 rad/s, corresponding to the lower and

higher frequencies used, respectively.

As for the time-gating window, wt(t), it has no particular requirement. A good choice

seems to be the tukey (or tapered-cosine) window, which has the advantage of having a flat

“plateau” surrounded by cosine-shaped rise and fall parts. As a consequence, outside of the

rise/fall part, the signal integrity is preserved. An example is given in Fig. 1.14, both in

time and frequency domain. The start and stop time instants, tstart and tstop, resepectively,

within which the signal is gated must be chosen. With respect to the former, the goal is to
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cut off the direct antenna coupling signal present in the first time instants. In the worst case

(S18), this effect has a duration equal to twice the antenna array length (2×35 cm) divided

by c0, i.e., approximately 2.3 ns. Assuming that coupling from the farthest antennas is

already sufficiently low, and exploiting the attenuation of the rise part of wt(t), we have set

tstart = 2 ns. This ultimately sets a blind detection range of 30 cm in reflection and 60 cm

in transmission. Instead of directly setting tstop, it is preferable to deal with the mid-height

length twndw in Fig. 1.14(a). It must be large enough to contain all the scattering signature

and small enough to cut out all the signal queue containing reverberation in the prototype

channels. Generally, a good enough value is around 9 ns (equivalent to 135 cm antenna-

target distance in reflection and twice in transmission). Finally, the tapering parameter α,

defined as the ratio between the lengths of the tapered (both rise and fall) and the constant

portions of the window, is fixed as a function of the signal bandwidth fbw (2 GHz):

α =
2 trise

twndw − trise
, where trise = 3/fbw , (1.21)

where the factor ‘3’ has been chosen to impose a rise/fall speed (or slew-rate) slightly lower

than the one belonging to a pulse with bandwidth fbw and already “slowed up” by the

application of Wω(ω).

(a) (b)

Figure 1.15: Effect of signal processing in the (a) time and (b) frequency domain for the retrod-

iffusion S11 measurement shown in Fig. 1.12(a).

In Fig. 1.15 an example of the effect of the signal processing routine is presented. The

measurement configuration is the one in Fig. 1.12(a). The total, incident, and scattered

fields are shown, and the effect of the time-gating is also visible (red dashed trace). Notice

that the signals are plotted after the application of the FFT frequency-domain window,

Wω(ω), which explains why in Fig. 1.15(b) the low and high frequency ends are dumped.

1.6.3 Drift correction

As described in §1.4.3, for scattering measurements the VNA thermal drift overules the

theoretically available dynamic range, thus imposing the minimum detectable signal level.
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Figure 1.16: Reflection setup used as reference for the drift correction algorithm.

To mitigate this problem, a drift correction algorithm has recently been reported which has

proven to be effective for the almost circular setup of Institut Fresnel [59, 61] and even for

a measurement line [62].

The correction algorithm is based on the work by Bucci and co-workers in [63], whose

underlying hypotheses are:

• the target is sufficiently far from the antennas (at least λ0/2);

• antennas are considered isotropic;

• the center (xc, yc) and the radius ac of the smallest circle (sphere for 3D scatterers)

encircling the target support are known (see Fig. 1.16)4. This of course implies clean-

enough data to be able to retrieve such parameters by any of the methods presented

in §2 or even in §3.

The authors have shown that, for a given source and at a given frequency, the scattered

field measured at different locations has a limited spatial bandwidth, provided the field

used for the bandwidth computation is the so-called reduced field [64]. This is defined by

extracting from the raw data an analytically computed phase function ψ. In free-space,

with an eiωt time-dependency, and for a measurement line along the x-axis [64], the reduced

field associated to the source Ak is given by

Ẽk(ω; xj) , Ek(ω; xj)e
iψ(xj), where ψ(xj) = k0

√

r2j − a2c − k0accos−1

(
ac
rj

)

, (1.22)

xj and rj are the x-coordinate and the target distance belonging to the receiver Aj (Fig. 1.16),

and k0 = 2π/λ0 is the wavenumber in vacuum.

4If multiple targets are present, the position and the radius must be evaluated with respect to the

smallest circle encircling all the targets.
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Given this definition, the correction is applied for each transmitting antenna Ak and at

each frequency ω. With reference to the drift model developed and analyzed in (1.10)-(1.12),

it simply writes as

Ẽs;corr
k (ω; xj) = Ẽk(ω; xj)− beiφẼi

k(ω; xj) , (1.23)

where for notation simplicity (b, φ) is used instead of (bk(ω), φk(ω)). The value of this

complex coefficient is determined by minimizing the spatial bandwidth of the corrected

scattered field, Bk(ω), that can be obtained by [65, 66]

B2
k(ω; b, φ) =

∫∞

−∞
κ2x|Ês;corr

k (ω; κx)|2dκx
∫∞

−∞
|Ês;corr

k (ω; κx)|2dκx
, (1.24)

where Ês;corr
k (ω; κx) is the spatial Fourier Transform along xj of Ẽs;corr

k (ω; xj) defined as

Ês;corr
k (ω; κx) =

∫ ∞

−∞

Ẽs;corr
k (ω; xj)e

iκxxjdxj . (1.25)

1.6.3.1 Implementation of the algorithm

To the best of our knowledge, the drift correction algorithm just described was only

applied in [59] and [62]. In both cases, a bistatic setup with a single pair of Tx/Rx antennas

is used, so that a virtual array is obtained by displacing each of them. A circular array

with an aperture angle θ ≈ 260 deg and N = 261 receiving antenna positions is built in

the first case, a linear one with θ ≈ 70 deg and N = 41 in the second. With respect to this

configurations, the present setup presents two additional difficulties:

• antennas are directive enough to require taking into account their radiation pattern;

• very small aperture angle and number of receiving antennas are available, θ varying

from 50 to 20 deg according to the target-array distance, and N = 8.

The first item invalidates the isotropicity hypothesis under which the bandwidth limitedness

result is obtained. Thus, since anisotropicity alters the scattered field measured by the

receiving antennas, the field should be brought back to the one measured by hypothetical

isotropic antennas. On top of this, since a real antenna array is used here, antennas do

couple each other, resulting in an altered radiation pattern that should be compensated as

well. The second point, on the other hand, might be very limiting since with a small array

as the one utilized here, one has access only to a very poor spatial frequency resolution

(∆κx = 2π/L, L being the array length - see Fig. 1.16).

The sequence of operations performed to implement the drift correction while dealing

with the aforementioned issues is presented next. Every step is performed for each transmit-

ting antenna Ak and at each frequency ω, by considering all the receiving antennas at once.

The index k and the receiving antenna dependency xj have been removed for simplicity.

1. starting from the quantities in (1.15) and removing for conciseness the subscript “air”,

the total and incident reduced fields, Ẽ(ω) and Ẽi(ω), are calculated according to

(1.22);
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2. assuming an antenna radiation pattern RP (ω) , RP (ω;~rj) taking into account the

coupling effects is experimentally retrieved (the way this is done is described in de-

tail in §1.7.2), an antenna pattern correction is applied so to recreate the needed

isotropicity requirement on the receiving antennas

Ẽ(ω)

RP (ω)
and

Ẽi(ω)

RP (ω)
; (1.26)

3. using (1.25), the spatial spectra Ê(ω) and Êi(ω) are obtained;

4. “half” of the time-gating detailed in (1.17),(1.18), and (1.19) is performed. By “half”,

we mean that
√

wt(t) is used, since - similarly to the root raised cosine filtering used in

telecommunication systems - the other “half” will be applied after the drift correction.

Notice that this step implies an IFFT, the actual application of
√

wt(t), and a final

FFT back to the frequency domain;

5. apply the correction by minimizing the bandwidth in (1.24); the minimization is

performed through a Polak-Ribière Conjugate Gradient algorithm whose step search

is simply dealt with Matlab’s min function, and the final corrected scattered field is

Ês;corr(ω);

6. through an inverse spatial FFT the corrected reduced scattered field, Ẽs;corr(ω), is

retrieved;

7. the antenna radiation pattern is applied back

Ẽs;corr(ω)RP (ω) ; (1.27)

8. the reduced field phase factor in (1.22) is removed, giving Es;corr(ω);

9. the other “half” of the time-gating is performed (implying other frequency → time→
frequency FFTs).

Notice that the FFT frequency-domain window Wω(ω) in (1.20) can only be applied at

step 4., whereas at step 9. a rectangular window (equivalent to no window) can be used.

Indeed, it is necessary to use an FFT window with low temporal sidelobes before the time-

gating of step 4., whereas at step 9. the strong antenna direct coupling signal has already

been gated out and a rectangular FFT window is sufficient. Finally, the need for the “half”

time-gating can be justified as follows. It is important, in step 4., to use a time-gate before

the actual correction. In effect, the correction being run at each frequency, all the time

instants contribute to the final minimizing (b, ψ) value. It is therefore necessary to cut

out those initial and final parts of the signal containing residual antenna direct coupling

and reverberation through the prototype channels, which would otherwise influence the

correction. Nevertheless, steps 7. and 8. act separately on each frequency component, thus
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Figure 1.17: Reflection measurement setup used to test the drift correction algorithm.

partially “polluting” (when observing Es;corr in the time domain) the time-gating of step 4.

The result is an imperfect gating at the initial and final time instants, that must be cleaned

out by applying the other “half” of the time-gate.

Experimental results

In order to validate the algorithm, we have used the measurement setup in Fig. 1.17,

consisting of a reflection configuration where the scattering object is a wooden cylinder

with radius rc = 4.5 mm, relative permittivity εr ≈ 2, and placed at a distance 1.16 m from

the measurement line. Let us first study the characteristics of the discrete spatial spectrum

Ês;corr(ω) in (1.25). The resolution ∆κx and the maximum accessible frequency Kx can be

written as

∆κx =
2π

(N − 1)∆x
=

2π

(N − 1)λ0/2
=

2

N − 1
k0 , (1.28a)

and

Kx =

⌈
N

2
− 1

⌉

∆κx ≈ k0 , (1.28b)

where ∆x is the spacing between the antennas considered equal to λ0/2 at 3 GHz (see

Fig. 1.1). Notice how small is the resolution ∆κx given the few available antennas (N = 8).

In Fig. 1.18, some results are presented. In (a) and (b), for A4 as transmitting antenna

and A8 as receiving one (S84), the time- and frequency-domain signals before and after

the correction are shown, respectively. The gain in dynamic range, especially visible in

the time-domain plot, reaches up to 10 dB; as a result, the corrected frequency-domain

scattered field (green full line) is considerably smoother than the time-gated uncorrected

signal (red dashed line), testifying a lesser amount of noise in the signal. Fig. 1.18(c) shows

the effect of the correction on the spatial spectrum at 3 GHz, again for A4 as transmitting

antenna. While a reduction of the sidelobes can indeed be observed for all indices but one,
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(a) (b)

(c) (d) (e)

Figure 1.18: Impact of the drift correction algorithm for the setup in Fig. 1.17. (a) and (b)

are the time- and frequency-domain S84 signals before and after the correction.

In (c) the spatial spectrum bandwidth reduction at 3 GHz can be appreciated. In

all these cases, A4 is the transmitting antenna. (d) and (e) finally show the

DORT eigenvalues distribution as a function of frequency without and with the

drift correction, respectively.

it can be noticed how poor is the κx resolution due to the very small array aperture; indeed,

the actual reduced scattered bandwidth Bκx is most probably smaller than 0.25k0.

Finally, Fig. 1.18(d) and (e) show the eight DORT eigenvalues (see §2.3.3) as a function

of frequency for the uncorrected and corrected case, respectively. The correction impact

is again on the smoothing of the largest eigenvalue, but also in the increase of the ratio

among the two largest ones. Indeed, the first being associated to a sort of target RADAR

cross section and the others mainly to the noise power (the antisymmetric relative to this

configuration is theoretically much lower), this can be seen as yet another sign of dynamic

range improvement.

1.7 Experimental characterization of the antennas

The characterization of the ETS antennas is a necessary step before performing any

experiment. In particular, if one wants to numerically simulate the field radiated by the

antennas, a mathematical model must be available. By characterization and modeling of
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Figure 1.19: Axes and angles convention used for defining the radiation pattern of ETS anten-

nas.

the antennas it is meant here the knowledge of a) their radiation pattern and b) their

time-domain behavior, the latter especially important because of the wide frequency band

used.

1.7.1 Far-field, uncoupled antenna

As a first step, one ETS antenna has been characterized at the anechoic chamber of

LEAT (much bigger than ours), in Sophia Antipolis. Measurements have been realized

in far-field conditions with one single ETS antenna (no coupling effects). The axes and

angles convention used here are those in Fig. 1.19. Hence, the antennas being vertically

polarized, Eθ , E · θ̂ is the main (or co-) polarization component of the electric field,

whereas Eϕ , E · ϕ̂ is the cross-polarization. Furthermore, since the experiments are all

performed at elevation angle θ = 90 deg (no elevation) and only 2D targets are employed

(theoretically infinite along the z-axis), the only pertinent quantity is the electric field in

the H-plane, that is, the xOz plane describing the azimuthal behavior of the antennas at

θ = 90 deg. With respect to the measured radiation patterns between 2 and 4 GHz shown

in Fig. 1.20, some observations can be drawn:

1. concerning Eθ, the antennas are rather isotropic in the vicinity of the broadside di-

rection, namely 60 deg ≤ ϕ ≤ 120 deg, with amplitude variations equal at most to

3 dB;

2. the cross-polarization rejection, defined as Eθ/Eϕ, is almost always beyond 20 dB in

the same azimuth range;

3. despite the results in Fig. 1.19 are drawn from far-field measurements, the pattern

values at ϕ = 0, 180 deg (end-fire direction), give some insights on the behavior of

the antennas once they are arranged into an array. For instance, for frequencies up to

2.8 GHz at least, the antennas are prone to couple each other rather strongly, since

the co-polarization amplitude at end-fire is around 3 dB, whereas for the highest

frequencies much less coupling can be expected.

Finally, the gain curve is shown in Fig. 1.21(a). Although a “strange” negative-gain region

can be observed around 2.2 GHz, it can be explained by the “hole” in directivity visible at
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(a) 2 GHz (b) 2.4 GHz (c) 2.8 GHz

(d) 3.2 GHz (e) 3.6 GHz (f) 4 GHz

Figure 1.20: H-plane far-field radiation patterns of the ETS antennas measured at LEAT in

Sophia Antipolis.

broadside in Fig. 1.21(b). Elsewhere in the band, a gain between 7 and 2 dB is measured.

(a) (b)

Figure 1.21: (a) Gain of the ETS antennas and (b) H-plane far-field radiation pattern at

2.2 GHz measured at LEAT in Sophia Antipolis.

1.7.2 Arrayed antennas

When the antennas are placed into an array their characteristics are altered because

of coupling. This has to be taken account in the modeling procedure, and is especially
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Figure 1.22: Measurement setup for the characterization of the antennas.

important for quantitative inverse scattering, where a quantitative description of the field

radiated by the antennas as well as their radiation pattern at reception is required. It is

therefore mandatory to model the antennas starting from data acquired in the very same

array configuration used for any of the measurements.

The antenna characterization measurement setup is shown in Fig. 1.22. It is a transmis-

sion setup with two arrays made of seven antennas each. Dummy antennas have also been

used at the edges of each array, in order to somehow “equalize” the coupling impact on A1

and A7 to that on Aj |j=2,6 (and analogously for array-2). Two antenna spacings have been

tested to further study the impact of coupling: ∆x = {5.3, 6.55} cm.

The first goal is to find a mathematical expression for each measured parameter, Scal
jl

(e.g., Scal
3 10 in Fig. 1.22), in terms of transmitted (Tx) and received (Rx) electric fields. For

this purpose, the antenna effective length ~le(θ, ϕ) is introduced. It is defined as “the ratio of

the magnitude of the open-circuit voltage developed at the terminals of the antenna to the

magnitude of the electric field strength in the direction of the antenna polarization [67]”,

and is thus a vector with 3 components associated with the spherical coordinate system. For

a generic field vector ~E(θ, ϕ) impinging on a receiving antenna with azimuth and elevation

angles θ and ϕ, respectively, we have then

Voc = ~E(θ, ϕ) ·~l Rx
e (θ, ϕ) , (1.29)

where Voc is indeed the open-circuit voltage at the antenna terminals and ~l Rx
e is the receiving

antenna effective length.

Because of reciprocity, the effective length can be used for the Tx radiation pattern as

well. Solving the Helmholtz equation and including in the effective length any angular

dependency, the radiated field ~E(θ, ϕ) at a distance r may then be written as

~E(θ, ϕ) = −iωµ0
e−ikr

4πr
Iin~l

Tx
e (θ, ϕ) , (1.30)
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where Iin is the current injected into the emitting antenna. By merging (1.29) and (1.30),

we obtain

Voc = −iωµ0
e−ik0r

4πr
Iin~l

Tx
e (θ, ϕ) ·~l Rx

e (θ, ϕ) . (1.31)

For the present setup, the previous equation can be simplified in virtue of the following

remarks:

• since the antennas are vertically polarized, that is, the cross-polarization component of

the field can be neglected, both ~l Rx
e and ~l Tx

e can be approximated by scalar quantities;

• neglecting mismatch between antennas due to the fabrication process, it is assumed

that lTx
e = lRx

e , le;

• only the azimuthal dependency ϕ needs to be considered, since, as already stated, the

experiments are always performed with the antennas at elevation angle θ = 90 deg

and with 2D targets.

In the end, for the measured Scal
jl parameter, (1.31) becomes

Voc = −iωµ0
e−ik0rjl

4πrjl
Iinl

2
e(ϕjl) . (1.32)
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Figure 1.23: Circuit equivalents of transmitting and receiving antennas.

Now, the S-parameter measured by the VNA is a current (or voltage) ratio. Voc must

then be related to the current Iout actually read by the VNA. With respect to the discrete-

parameters circuit model in Fig. 1.23, where ZVNA is the input/output impedance of the

VNA, assumed to be equal to 50 Ω, and ZA is the input/output impedance of the antenna

including the actual radiation impedance (the one responsible of the radiated/received field)

and the ohmic lossy part, it follows that

Iout =
Voc

ZA + ZVNA
, η

Voc
50

, (1.33)

where η plays the role of an efficiency factor independent of ϕ that takes into account,

through ZA, the desadaptation of the antennas.

Before carrying on, notice that although the effective length is defined in literature as a

far-field quantity, which is confirmed from the modelization in (1.30), the Scal
jl are not nec-

essarily measured under far-field conditions. To cope with this, it is sufficient to interprent

le as a generic quantity describing the discrepancy between the field measured at far-field
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by an isotropic antenna, represented by the e−ik0r/r term, and the one actually measured

under whatsoever condition. It is then convenient to explicitly add an rjl dependency to

le, which, putting all the results together, gives

Scal
jl =

Iout
Iin

= −iηωµ0

50

e−ik0rjl

4πrjl
l2e(rjl, ϕjl) = Aω

e−ik0rjl

rjl
l2e(rjl, ϕjl) , (1.34)

where A regroups all the constant quantities.

With respect to Fig. 1.22, 49 (7×7) measurements are available, and they can be recast

through (1.34) into a set of 49 le values. Nevertheless, the sought quantity is the field

radiated by an antenna at “any” point in space, that is, a continuous description of the co-

polarization component of the field, Eθ(r, θ, ϕ). Under free-space conditions, this quantity

verifies the Helmholtz equation outside the volume of the antenna,

∇2Eθ(r, θ, ϕ) + k20Eθ(r, θ, ϕ) = 0 , (1.35)

where k0 is the wavenumber of the propagation medium, considered homogeneous. The

solution of this equation can be found through the methof of separation of variables. It

can then be written as the product of two functions, one with a radial dependency only, r,

and another function of the angular variables, (θ, ϕ). Applying the Sommerfeld condition

(or causality condition if expressed in the time-domain) to the result and assuming an eiωt

time-dependency, the result is

Eθ(r, θ, ϕ) =
∞∑

m=0

m∑

n=−m

γm,nh
−
m(k0r)Ym,n(θ, ϕ) , (1.36)

where h−m is the spherical Hankel function of order m and second kind (h−m = H−
m+1/2),

Ym,n is the (m,n)th spherical harmonic, and {γm,n} are the set of coefficients whose values

depend on the boundary conditions of the problem [68]. The Hankel functions bear the

e−ik0r/r radial dependency, the spherical harmonics describe the multipolar behavior of the

field with respect to θ and ϕ.

To find the coefficients γm,n, the retrieved le values need to be related to (1.36). This is

done by simply equating (1.36) and (1.30). Then, taking into account the fact that every

measurement is made at θ = π/2, one can write for each (j, l)th measurement

ω
e−ik0rjl

rjl
le(rjl, ϕjl) =

∞∑

m=0

m∑

n=−m

γm,nh
−
m(k0rjl)Ym,n(π/2, ϕjl) , (1.37a)

where the constants in (1.30) do not explictly appear and will therefore be contained in the

γm,n. Eq. (1.37a) can be recast into the linear system

le = Hγ , (1.37b)

where le is the 49-element vector made of the left-side member of (1.37a), H is a matrix

containing the Hankel function-spherical harmonic product, and γ is the vector of the

unknowns.
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(a) (b)

Figure 1.24: (a) Normalized amplitude of the inverse of the singular values λi of the H matrix

in (1.37b), and (b) amplitude of the coefficients γm,n for M = 1, 2, 3 at 3 GHz.

The setup is the one in Fig. 1.22 with ∆x = 6.5 cm and dummy antennas.

Of course, the development must be truncated at a finite M , max(m), giving (M +1)2

coefficients γ to be retrieved5. If this number is smaller than the measurements (here 49),

the final linear system is over-determined. It can then be solved in the least squares sense,

that is, by minimizing the misfit

F(γ) = ‖le −HΛ‖22 , (1.38)

where the subscript 2 indicates the norm-2 operator. The solution can, for instance, be

found through the linear Conjugate Gradient method, or by using the Singular Value De-

composition (SVD) of the H matrix. This writes as

H = UΛVH , (1.39)

where the columns of the square matrices U and V are the left and right singular vectors,

respectively, and Λ is, in the general case, a rectangular matrix with diagonal elements λi,

known as singular values and arranged in descending order with respect to their amplitudes,

and elements equal to 0 elsewhere. After defining the pseudo-inverse [69] of H as

H+ = VΛ+UH , (1.40)

where Λ+ has diagonal elements equal to 1/λi and all the others equal to 0, the solution of

(1.37b) is finally

γ = H+le . (1.41)

The role played by the value of M results can be understood with both mathematical and

physical considerations. It can first be noticed that for a large M H is an ill-conditioned

operator, that is, the ratio between the largest and the smallest singular values is very big.

As an example, for the setup in Fig. 1.22 with ∆x = 6.5 cm and dummy antennas, the

5In fact, since Yl,m(π/2, ϕ) = 0 if l+m is unpair, the number of unknowns reduces to (M2+3M+2)/2.
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(a) M = 1 (b) M = 1

(c) M = 2 (d) M = 2

Figure 1.25: (a,c) Coefficients γm,n, and (b,d) reconstructed radiation pattern at 2.2 GHz.

Notice that γm,n = 0 for n+m unpair since Ym,n(π/2, ϕjl) = 0 in (1.37a).

quantity |λ1/λi| is plotted in Fig. 1.24(a) with a logarithmic scale for M = 1, 2, 3. The

ratio increases exponentially, and it is as high as 105 for M = 2. The result is that Λ+

has very large elements and, since these are multiplied by the measurements vector le in

(1.41), the unavoidable presence of noise makes the γ elements “explode”, corresponding to

a non-converging series (1.37a). The values of the γm,n corresponding to Fig. 1.24(a) are

given in Fig. 1.24(b): indeed, due to the logarithmic scale, the values increase by a factor

102 when increasing M by one.

For a given Signal-to-Noise Ratio (SNR), the series should then be truncated [70] at a

value of M as small as possible, which is analogous to the Truncated-SVD approach often

used in literature to solve linear inverse problems [71] as the present one. Nonetheless, a

too small value, that is, the use of only a few spherical harmonics (small m value in (1.36)),

corresponds physically to reconstruct a field with slow spatial variations, i.e. low spatial

frequencies. The result is therefore a too “flat” radiation pattern. To demonstrate such

a trade-off, the aforementioned modelization procedure is applied at 2.2 GHz, where the

uncoupled, or “ideal”, radiation pattern in Fig. 1.21(b) has a hole at broadside. The chosen

dataset is the same of Fig. 1.24. The retrieved radiation pattern and the cofficients γm,n
are shown in Fig. 1.25 for M = 1 and M = 2. Concerning the radiation pattern, the
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(a) Raw data (b) Multipolar model (1.37a)

Figure 1.26: (a) Raw measurements performed at LEAT (equivalent to Eθ in Fig. 1.20) and

(b) radiation pattern retrieved by applying the multipolar model (1.37a) on such

raw data. There is no antenna coupling in these data.

azimuth range is limited to the largest ϕjl available in the measurement setup, approxi-

mately ±20 deg. In the case M = 1 (Fig. 1.25(b)), the shape of the radiation pattern (blue

line) corresponds well to the uncoupled pattern (dashed red line). On the other hand, the

amplitude varies much less than in the ideal case, since with M = 1 such a rapid varia-

tion cannot be recreated by the basis functions of the expansion. On the other hand, for

M = 2, the coefficients seem to “explode”, their values being all larger by a factor 20 at

least with respect to those for M = 1. As a consequence, the shape of the radiation pattern

(Fig. 1.25(d)) does not follow at all the ideal one. This behavior is systematically confirmed

at any frequence and for any dataset. From this result and from the “explosion” of the

γm,n in Fig. 1.24, the conclusion is that, with arrays made of 7 antennas and separated by a

distance of the order of 1 m (cf. Fig. 1.22), the antenna spacing/array aperture compromise

does not allow to go beyond M = 1: this will then be the value used from now on.

Fig. 1.26(a) shows Eθ, extracted from Fig. 1.20, as a function of both frequency and

azimuth angle. Applying the multipolar model to this raw set of data, but limiting the

azimuth angle ϕ from roughly 70 to 110 deg, gives the “extrapolated” radiation pattern in

Fig. 1.26(b). Although a good matching is obtained, rapid azimuthal variations of the field

cannot be tracked with M = 1. This result has to be compared with those in in Fig. 1.27,

showing the experimental radiation patterns obtained with the same model for the setup

in Fig. 1.22 with ∆x = {6.5, 5.2} cm with or without dummy antennas. Concerning the

case ∆x = 5.2 cm, since the maximum available azimuth angle is reduced with respect to

the setup with ∆x = 6.5 cm, a smaller ϕ range is plotted. The four figures are different

from each other. Consider first the effect of dummy antennas, which for instance allow in

Fig. 1.27(b,d) to retrieve the 2.2 GHz directivity hole that is not visible without dummy

antennas. Again, especially in the curves with dummy antennas, the increased directivity

of the antennas at the high end of the frequency band is confirmed. Overall, a larger

antenna spacing ∆x in addition to the use of dummy antennas produces a radiation pattern
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(a) ∆x = 6.5 cm, w/o dummies (b) ∆x = 6.5 cm, w/ dummies

(c) ∆x = 5.2 cm, w/o dummies (d) ∆x = 5.2 cm, w/ dummies

Figure 1.27: Experimentally retrieved radiation patterns for the setup in Fig. 1.22.

closer to the uncoupled one in Fig. 1.26. Nonetheless, Fig. 1.27(b) and Fig. 1.26(b) still

differ sensibly, which confirms that antenna coupling is responsible of an alteration of the

radiation mechanism that must be taken into account when inversing scattering data.

It is finally worth to be noted that outside the measured ϕ range, the radiation patterns

retrieved through (1.36) rapidly give aberrant values. Indeed, the extrapolation we implic-

itly ask to the model makes the series divergent at such unmeasured angles. One must

therefore be aware of such limitation and coherently use the methodology developed in this

section.

1.7.2.1 Time-domain characterization

The model in (1.36) is applied at all the frequencies between 2 and 4 GHz. This gives

an important insight on the UWB (hence time-domain) behavior of the antennas. Before

employing it, two ETS antennas, A1 and A2, have been placed one in front of each other

(ϕ21 = 0 deg) at a distance r ≈ 1 m (10λ0 at 3 GHz), and the transmission and retrodiffusion

coefficients, S21 and Sjj|j=1,2, respectively, have been measured. Their time-domain complex

envelopes in dB are shown in Fig. 1.28. For the S21 case, the square marker indicating the

arrival time is shifted by around 0.33 ns after the free-space arrival time r/c0, giving a
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(a) (b)

Figure 1.28: (a) Transmission and (b) retrodiffusion measurements for the setup with two an-

tennas facing each other at a distance of approximatevely 1 m.

distance of twice 4.98 cm. Also, with respect to the retrodiffusion measurements, the peak

of the reflection is not at t = 0 ns, corresponding to the antenna connector, but rather

between 0.375 and 0.5 ns (the antennas are a bit mismatched), giving a distance between

twice 5.6 and 6.5 cm.

These differences with respect to the behavior of a simple dipole antenna are generated

by the nature itself of the ETS antennas. They work on the principle of traveling waves,

meaning that the radiation does not take place in a single point in space, but all along

the antenna length/height. In addition, the substrate is made of duroid, a material with

εr ≈ 2.2. Assuming that the wave speed along the substrate is c0/
√
εr (TEM or pseudo-

TEM mode), the 4.98 cm correspond to a physical length of 3.36 cm, basically half the

length of the metallization of the antenna (cf. Fig. 1.19).

It must now be verified that such behavior, at least the one in transmission (the reflection

coefficient of the antennas is not modeled), can be retrieved through the model developed

so far. Whether antenna coupling influences the time-domain behavior is also to be verified.

Figure 1.29: Pulse sent by an antenna described by the model in (1.36) at a distance of ap-

proximatevely 1 m.
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With respect to the same setup in Fig. 1.22 from which the development coefficients γ are

determined, Fig. 1.29 shows the pulse received by an ideal antenna (infinitesimal dipole)

placed at the same distance r ≈ 1 m and at ϕ = 90 deg, for the cases with dummy antennas

and ∆x = {6.5, 5.2} cm. Such pulse is built performing the IFT from 2 GHz to 4 GHz

of the experimentally retrieved electric field, and applying the lanczos (or sinc) window

(1.20). The arrival times (here they must not be divided by 2) are slightly different, and

their difference with respect to the free-space arrival time correspond to the distances of

6.2 and 5.45 cm. These values must be compared to the 4.98 cm found for the uncoupled

case. The conclusion is that, put aside the limitations of the model, the additional length

corresponding to a propagation delay in the substrate of the antennas is well reconstructed

through the model in (1.36). In addition, coupling also seems to affect the time-behavior

of the antennas, since the two curves in Fig. 1.29 present some differences in the sidelobes

after 4 ns.

1.8 Experimental beamforming

As stated in §1.2, the prototype is equipped with a beamforming hardware based on one

numerically-controlled A/Φ pair per RF channel. Given a complex steering law (ã, φ̃) at a

given frequency, then, the question of how to implement it in the system arises. Namely,

the set of codes (ÑA, ÑΦ) to download into the A/Φ pairs corresponding to (ã, φ̃) need to

be found.

The A/Φ transmission characteristics are shown in Fig. 1.30. Despite the fact that both

attenuators and phase shifters have rather linear attenuation-in-dB and phase shift curves,

respectively, as a function of their input code (Fig. 1.30(a,c)), they also have non-constant

phase shift and attenuation laws, respectively (Fig. 1.30(b,d)), which can be seen as defects

that must be kept into account.

Let aA and φA be the attenuation-in-dB and phase shift laws - either in rad or s - of the

attenuators, and aΦ and φΦ those of the phase shifters. For the jth channel (the index j is

omitted for conciseness), in order to obtain the complex coefficient (ã, φ̃), the input codes

NA and NΦ must fulfill
{

ã = aA(NA) + aΦ(NΦ)

φ̃ = φA(NA) + φΦ(NΦ)
. (1.42)

Since the discrete system is perfectly determined, its solution is found iteratively. The

initial estimate can be written as
{

N0
A = a−1

A (ã− āΦ)
N0

Φ = φ−1
Φ (φ̃− φ̄A)

, (1.43)

where āΦ (φ̄A) is the mean value of the attenuation of the phase shifter (phase shift of the

attenuator), and a−1
A (·) and φ−1

Φ (·) are the inverse discrete laws. The iterative rule at the
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(a) aA(NA) (b) φA(NA)

(c) aΦ(NΦ) (d) φΦ(NΦ)

Figure 1.30: Amplitude and phase at 3 GHz of attenuators (A) and phase shifters (Φ) as a

function of their input code. Each curve stands for a different RF channel.

ith iteration is then {

N i+1
A = a−1

A [ã− aΦ(N i
Φ)]

N i+1
Φ = φ−1

Φ [φ̃− φA(N
i
A)]

, (1.44)

which has to be applied until convergence:

{

N i+1
A = N i

A , ÑA

N i+1
Φ = N i

Φ , ÑΦ

. (1.45)

The feasibility of a given (ã, φ̃) set must be guaranteed. The first issue comes from the

ratio max ã/min ã, that has to be smaller than the dynamic range of the attenuators. This

is defined as the maximum output amplitude variation with respect to the input code, e.g.

approximately 30 dB in Fig. 1.30(a). Since the prototype cannot provide any amplification,

the first step consists in normalizing the whole set of coefficients with respect to the one

with the largest amplitude:

ã← ã−max ã . (1.46)

The phase, on the other hand, is not an issue since it can be wrapped and since up to

4 GHz the phase shifters have a dynamic range of more than 360 deg.
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Then, one has to deal with the fact that, as visible in Fig. 1.30, A/Φ couples are rather

mismatched from channel to channel. The sought set of coefficients can then be written as






ã← ã+min [aA(0)] + minmin
NΦ

[aΦ(NΦ)]

φ̃← φ̃+max [φΦ(0)] + maxmax
NA

[φA(NA)]
, (1.47)

where even in the worst mismatch case convergence is assured (this is why min and max

values for the attenuation and phase, respectively, are considered).

The drawback of this solution is the loss in attenuation dynamic range resulting from

the necessity of covering even the worst mismatch case. For instance, according to (1.47)

the smallest attenuation, instead of the 0 dB resulting from (1.46), would be 8.5 dB

(min [aA(0)] + minminNΦ
[aΦ(NΦ)] in Fig. 1.30(a,c)), giving 8.5 dB dynamic range loss.

Furthermore, the same quantity must be subtracted from the prototype dynamic range

(see §1.4)!

To tackle the issue, once a first set of codes (ÑA, ÑΦ) is found with (1.47), a new

incremented set of values (ã + 0.5 dB, φ̃) is sought, and so on until mismatch actually

prevents the algorithm from convergence. At the end, the mismatch will impact the dynamic

range by the minimum possible amount, whereas using only (1.47) would result in the most

conservative loss.
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Chapter 2

Detection/localization with Time

Reversal-based methods

In wave imaging, the first difficulty consits in detecting the presence of “interesting”

objects in the inspected medium, then in localizing them. Time Reversal, through the

methods inspired from - or related to - it, has proven to be an effective tool to achieve

these tasks. This chapter, after presenting the physics beneath TR, presents some of these

methods as applied to experimental data collected through the prototype described in §1.

Results from a measurement campaign targeting Through-The-Wall (TTW) imaging are

also presented [72]. Particular attention is cast into a smart use of the frequency diversity

(or degrees of freedom) given by the available UWB.

2.1 Time Reversal theoretical background

The principle of Phase Conjugation (of which Time Reversal is the time-domain coun-

terpart) is employed in electromagnetism since the late 1950’s [42] and in optics since the

1980’s [73]. The idea consists in illuminating a scatterer with an incident time-harmonic -

or narrowband - wave, recording the scattered field, and finally back-propagating its phase

conjugated version. The result is a new wave focusing onto the scatterer despite the ar-

bitrariness of the propagation medium (some hypotheses do exist, though, as mentionned

later).

In 1989 [2], M. Fink generalized the “old” concept to wideband signals, using a so-called

Time Reversal Mirror (TRM) in acoustics. At the time, the availability of electronic compo-

nents (amplifiers, A/D and D/A converters, memories) rapid enough to deal with wideband

signals at ultrasonic frequencies (from hundreds of kHz to some MHz) easily allowed to work

directly in the time domain; this was of course impossible in electromagnetics and in op-

tics, given carrier frequencies going from hundreds of MHz to hundreds of THz. From then

on, accompanied by the overwhelming progress in solid-state electronics, both theoretical

studies [23,74,75] and experimental results [24,28,76–78] have flourished, motivated either

49
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by the quest for focusing beyond the diffraction limit -the so-called super-resolution [41]

-, or by promising applications in telecommunications [27, 30, 79–83], RADAR [26, 45, 84],

biomedicine [85], or geophyisics [86, 87].

Despite a vectorial theory of TR in electromagnetism exists [22, 23], a scalar 2D for-

mulation is preferred here for simplicity. This is motivated by the fact that all the tar-

gets used in the experiments performed with the microwave prototype are considered in-

finite along the polarization direction of the antennas (E// or TM configuration). With

reference to Fig. 1.19, the antennas are linearly polarized along the z-axis, resulting in

~e(x, y, z; t) ≈ ez(x, y; t)ẑ, where ~e(x, y, z; t) is the electric field in the time domain. With

~r = (x, y), the propagation of ez(x, y; t) is ruled by the d’Alembert equation

∇2ez(~r; t)−
1

c2(~r)

∂2ez(~r; t)

∂t2
= 0 , (2.1)

where c(~r) is the wave speed in the medium, supposed inhomogeneous but non-dispersive.

Two operators are therefore applied to the field, a spatial (∇2) and a temporal one (∂2/∂t2).

Since the latter only contains even-order derivatives, both ez(~r; t) and ez(~r;−t) are solutions

of (2.1), which is known as the time reversal invariance property of the field. Dually, in the

frequency domain, with Ez(~r;ω) = FT [ez(~r; t)] (ω), phase conjugation invariance results

from the Helmholtz equation

∇2Ez(~r;ω) + k2(~r)Ez(~r;ω) = 0 , (2.2)

where k2(~r) is the real wavenumber at each point of the propagation medium. Indeed, both

Ez(~r;ω) and E∗
z (~r;ω) are solutions of (2.2).

Back in the time domain, the consequence of time reversal invariance is that, if ez(~r, t) is

recorded everywhere on a closed surface Γ surrounding the source of the wave (acquisition

step), and ez(~r,−t) is transmitted back into the same medium (back-propagation step), then

the new wave, solution of the same equation, will retrace the life of the initial one in the

inverse sense of time, thus converging onto the initial source. Rigorously, the conditions

regarding the propagation medium needed by Time Reversal are 1) losslessness (conduc-

tivity σ(~r) = 0), 2) linearity and isotropy, and 3) stationarity between the acquisition and

back-propagation phases. Notice that the hypotheses 2) are the same hypotheses needed

for Lorentz’s reciprocity.

It is interesting to further study the behavior of the back-propagated wave. Consider a

line-source (point-source in 3D) placed in ~rS, and a TRM located at the surface Γ supposed

in the far-field of both the source and the medium inhomogenities (if any). In the frequency

domain, it has been shown [22] that the back-propagated field ETR(~r;ω) is proportional to

the imaginary part of the Green function of the medium, G(ω;~r, ~rS),

ETR(~r;ω) ∝ ℑ [G(ω;~r, ~rS)] . (2.3)
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In free-space, where G(ω;~r, ~rS) = −i/4 H−
0 (k0|~r − ~rS|), this result confirms the classical

λ0/2.6 (λ0/2 in 3D) resolution limit. On the other hand, for an heterogeneous medium with

wavenumber fluctuations in proximity of the source, ℑ [G(ω;~r, ~rS)] can vary much more

rapidly, giving a resolution spot beyond the classical limit as in [41], even with an open

measurement line instead of a closed surface surrounding the target. Notice that several

other explanations can be given to justify the super-resolution results lately reported, using

either evanescent waves (containing higher spatial frequencies) [41], multi-path (which is

used constructively creating a sort of virtual array with a larger aperture) [27, 28], or

plasmonic modes [88].

Finally, it is important to mention the fundamental difference between Phase Conjuga-

tion and Time Reversal in chaotic media [49]. It must be firsts understood that spatial

focusing is generated by space diversity at emission. This is why a Phase Conjugation Mir-

ror (PCM) can achieve focusing, since the space diversity comes from the different locations

of the array antennas. For the same reason, it is impossible to obtain focusing in free-space

with a PCM or TRM made of a single antenna. Nevertheless, in a disordered medium, a

one-antenna TRM can produce focusing if a sufficiently large bandwidth is available, which

cannot be the case with a PCM. The explanation lies in the correlation bandwidth δω of

the medium, that is, in the separation of two frequencies at which the medium response

is sufficiently decorrelated. When a single antenna excites the medium with a bandwidth

∆ω > δω, Time Reversal is capable of recasting the ∆ω/δω degrees of freedom into space

diversity. In other words, the frequency diversity of the medium is “transformed” into space

diversity thanks to TR [15,89]. In this sense, the advent of Time Reversal as “improvement”

of Phase Conjugation may lead to very interesting experiments and applications.

2.2 Active source case

Time Reversal can be favorably employed in applications where one wants to focus

energy onto an active source, e.g., an antenna that sends data and needs to be adressed

back in return. One of the first spectacular examples was given in 1998 in underwater

acoustics [16]: two vessels several kilometers spaced were able to communicate through a

TRM attached to one of them despite the complicated marine waveguide characteristics.

Indeed, the telecommunications domain appear as a most receptive one with respect to the

use of Time Reversal.

2.2.1 Time Reversal experiments

The effectiveness of Time Reversal for this class of applications is demonstrated here

through the microwave prototype. The impact of antenna coupling, due to the arrayed

configuration, and of “disorder” added to the propagation medium, is also studied.
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2.2.1.1 Details of measurements

The setups of the experiments are shown in Figs. 2.1-2.4. The distance between the

antennas is ∆x = 5.3 cm. In any case, since the prototype works in the frequency domain,

the experiment consists of phase-conjugating the field radiated by one array-2 element, A12,

over the entire bandwidth. Two steps can be distinguished:

(a) acquisition step. The TRM antennas receive the wave radiated from A12, giving an

8-element vector, Sda , {Sj12}j=1,8, at each frequency in the [2-4] GHz band.

(b) back-propagation step. The TRM plays the role of emitter and the array-2 elements

that of receivers. The normalized PC steering vector,
(
Sda
)∗
/‖Sda‖, is implemented in

the A/Φ pairs as described in §1.8. The backpropagated signal received by Al|l=9,...,15

is called SPC. To reduce the time needed to cover the whole 2 GHz-wide band, a

frequency step of 100 MHz (Nω = 21 points) is used.

Notice that, differently with respect to what described in §1.6, no signal processing what-

soever is applied to the raw measured data (no time-gating, no drift correction). Signals

contain therefore all the ringing through the cables and components of the prototype, and

they are time-reversed as well. The only operation performed before step (b) comes from

the following consideration. Watching carefully at subfigures (a) and (b) in Figs. 2.1-2.4, it

can be noticed that the RF signal does not follow the same path when the TRM acts (a) as

a receiver or (b) as a transmitter. In effect, in the acquisition step it is preferable that the

received signal pass through the multiposition switch rather than through the A/Φ chan-

nels; since the latter is much more lossy than the former (see Tab. 1.3), the measurement

would otherwise suffer from a reduced precision. In order to re-establish the stationarity

needed between steps (a) and (b), the chain matrix technique described in §1.5.1 is em-

ployed to recast Sda into a new vector containing the field that would have been measured

if the signal passed through the A/Φ pairs.
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(b) Back-propagation

Figure 2.1: Time Reversal experiment setup. One single antenna array-2, A12, is present dur-

ing both the acquisition (a) and back-propagation (b) steps; during the latter, A12

is displaced to study the spatial focusing provided by Time Reversal.
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(b) Back-propagation

Figure 2.2: Time Reversal experiment setup. Array-2 has one single antenna during the ac-

quisition step (a), whereas in the backpropagation step (b) the entire array-2 is

present.
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(b) Back-propagation

Figure 2.3: Time Reversal experiment setup. The entire array-2 is present during both the

acquisition (a) and back-propagation (b) steps.
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(b) Back-propagation (c)

Figure 2.4: Time Reversal experiment setup. With respect to Fig. 2.3 three metallic cylinders

are placed in front of the array-2.

The three first setups allow to study the impact of antenna coupling in the array-2. While

in Fig. 2.1, both in the acquisition and back-propagation steps, only A12 is present (it is

displaced in step (b) to observe the spatial focusing of the returned field), in Fig. 2.2 the

entire array-2 is present during step (b), so that antenna coupling is supposed to alter the
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returned signal invalidating the stationarity hypothesis. In Fig. 2.3, on the other hand, the

entire array-2 is present in both steps; it can therefore be expected that the coupling present

in step (a) be favorably exploited by Time Reversal in step (b). Finally, in Fig. 2.4 three

4 cm-diameter metallic cylinders are placed in front of the array-2 at a distance of 22 cm1,

so to heavily perturbate the signal transmitted by A12. Time Reversal is again expected to

take benefit of the disorder introduced in the medium to achieve a better resolution than

without the cylinders (Fig. 2.3).

2.2.1.2 Experimental results and discussion

The backpropagated signal measured by Al can be written as

SPC
l =

(
Sda
)H

‖Sda‖ Sbp , (2.4)

where Sbp = {Slj}j=1,8; l=9,15 accounts for the propagation between the TRM array element

j to Al. Two cases can be distinguished:
{

SPC
l = ‖Sda‖ ∈ R Al = A12

SPC
l ∈ C Al 6= A12

. (2.5)

In the first case, the time-reversed signal is measured at the initial position of the array-2

source. The result holds in virtue of reciprocity, which assures that Sda = Sbp. Physically,

the waves emitted by the TRM array elements interfere constructively at Al. On the

other hand, when Al 6= A12, reciprocity does not hold anymore and destructive interference

occurs. Notice also that for the setup in Fig. 2.1, although in step (b) the same antenna

A12 is displaced, each position is still abusively denoted by l = 9, . . . , 15.

Quality of the experimental back-propagation

In order to validate the experimental back-propagation procedure described in §1.8, the

first setup (Fig. 2.1) is chosen. For the case l = 12, the measured SPC
l is compared against

the theoretical quantity ‖Sda‖, which can indeed be computed with the acquisition step

data only. In the frequency domain, the theoretical phase must be equal to zero; the

measurements in Fig. 2.5(a) show a good agreement, with a mean error µ = −3.9 deg

and standard deviation σ = 4 deg. A comparison can also be done in the time domain,

by taking the inverse FFT of the measured and theoretical signals without using any FFT

window. In Fig. 2.5(b) the two curves match very well. In particular, a quantification of the

experimental error can be found in the ratio between the two signals at the time t = 0 ns;

indeed, naming sPCl (t) any of the two time-domain signals,

sPCl (0) =

Nω∑

i=1

SPC
l (ωi) , (2.6)

1Distances are measured from the antenna connector. Considering the extremity of the ETSA substrate

and the cylinder extremity, the distance reduces to 12 cm.
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(a) Frequency domain (b) Time domain

Figure 2.5: Time Reversal experiment for the setup in Fig. 2.1. For l = 12 (reciprocity between

acquisition and back-propagation steps), ideal (dashed blue line) and measured (full

magenta line) signals are compared: (a) in the frequency domain through their

phases, and (b) in the time domain.

that is, a coherent sum of all the frequency components is done. The ratio is as small as

0.92, and its departure from the ideal value 1 is due to the resolution of attenuators and

phase shifters (cf. Tab. 1.2), and to the VNA precision impacted by its dynamic range (cf.

§1.4).

Similar results are obtained for the stationary configurations in Fig. 2.1 and Figs. 2.3-

2.4. Different considerations hold for the setup in Fig. 2.2, where antenna coupling, present

in step (b) but not in step (a), invalidates the time reversal invariance. For l = 12, the

returned phase curve in the frequency domain (Fig. 2.6(a)) has a mean value µ = 6 deg,

more sensibly offset with respect to the ideal 0 deg value than in Fig. 2.5(a). As for the

standard deviation, though, its value σ = 5 deg has hardly changed. The effect of coupling

on the SPC
l (ω) seems then to be a rather constant phase offset of about 10 deg. The time

domain result in Fig. 2.6(b) is somehow surprising, since the error at t = 0 ns is even slightly

smaller with respect to Fig. 2.5(b)! In the end, coupling seems to have a limited effect in

this configuration.

Spatiotemporal focusing

The quality of space-time focusing determined by wave interference is analyzed through

the B-scan showing {sPCl (t)}l=9,...,15, and extracting a sort of directivity pattern of the TR

array by picking max
t

[
sPCl (t)

]
for each position l. The results are given in Fig. 2.7 for

the configurations in Fig. 2.1 and Figs. 2.3-2.4. The result related to the non-reciprocal

configuration in Fig. 2.2, not presented, is very similar to the one in Fig. 2.1 with slightly

worse - which is to be expected - focusing resolution.

In both the free-space uncoupled and coupled cases of Fig. 2.1 and Fig. 2.3, respecitvely,
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(a) Frequency domain (b) Time domain

Figure 2.6: Same as Fig. 2.5 for the setup in Fig. 2.2.

the hyperbola constituing the wave front is clearly visible in the B-scan, with very small

differences due to antenna coupling. The returned pulse is clean at A12 whereas it is damped

for all the other positions. The resolution spot size at 3 dB is approximately 18 cm, quite

in line with the classical resolution spot formula for a linear array in free-space2, λ0F/D,

where D is the TRM aperture (37.1 cm) and F the distance from the source (90 cm), that

gives a value between 36.4 cm (2 GHz) and 18.2 cm (4 GHz).

The result when the cylinders are introduced is presented in Fig. 2.7(c). Notice that the

array-2, during back-propagation, in addition to the regular measurement, has also been

displaced by ∆x/2 in order to sample more densely the time reversed field, giving a total of

14 positions. The result is quite impressive, since the resolution spot size at 3 dB is 7.5 cm,

a factor 2.4 smaller than without cylinders, going therefore far beyond the classical limit.

As mentioned, such improvement can be explained with the imaginary-part-of-the-Green-

function-theory (see (2.3)), which indeed varies rapidly in proximity of the array-2 due

to the presence of the cylinders, or invoking multi-path and the constructive/destructive

interference mechanisms already mentioned.

As for temporal resolution, although a widening, or temporal stretching, of the signals

away from A12 might be expected due to the imperfectly compensated multiple scattering,

this can hardly be noticed in any of the results in Fig. 2.7. It can then be concluded that

neither the antenna coupling nor the metallic cylinders constitute a “sufficient” degree of

disorder to observe such behavior.

2Rigorously, this formula gives the distance between the maximum energy point and the first zero of the

directivity pattern. Nevertheless, for a sinc-like function, it is almost equivalent to - it slightly overestimates

- the 3 dB focusing spot size.
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������

(a) W/o antenna coupling (Fig. 2.1)

������

(b) W/ antenna coupling (Fig. 2.3)

�������

(c) W/ antenna coupling and “disorder” (Fig. 2.4)

Figure 2.7

2.3 Scattering case

Scatterers can be assimilated to active sources once they are illuminated by an incident

wave. The resulting scattered field can indeed be processed through Time Reversal similarly
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(d)

Figure 2.7: (a-c) B-scans and respective directivity patterns. In (d) the directivity patterns of

the configurations without antenna coupling (Fig. 2.1, dashed-dotted blue line),

with antenna coupling (Fig. 2.3, dashed magenta line), and with antenna coupling

and “disorder” (Fig. 2.4, full black line) are compared.

to what described until now. In addition, disposing of an array of antennas allows one to

record, at each frequency, the so-called inter-element matrix (or multi-static) K(ω), whose

Kij(ω) element corresponds to the response of the medium to a unitary excitation from

antenna j measured at antenna i. Working with this matrix, and in particular exploiting

its SVD, opens the way to a class of subspace-based methods that can somehow be related

to Time Reversal.

An overview of some of these methods is presented next, completed by their application

to both numerical and experimental data. In any case, one or two lines of measurements

are considered, hence only treating the limited-view case. For synthetic data, generated

through the rigourous integral formalism presented in §3.1, a simple line-source model is

assumed for the antennas, implying isotropy and absence of coupling. Concerning exper-

imental results, the basic signal processing is the one described in §1.6. In particular,

differential measurements are performed, thus retrieving a scattered field inter-element ma-

trix K(ω) , Ks(ω). FFT windowing and time-gating are also applied, whereas the drift

correction is implemented when applicable. Finally, the antennas are either modeled as

infinitesimal dipoles or, if the experimental characterization data is available, using the

multipolar model developed in §1.7.

2.3.1 Kirchhoff migration

Kirchhoff migration [90] is a well-established (especially in geophysical prospection) and

maybe one of the simplest methods for imaging with antenna arrays. It is based on the

concept of arrival time and requires the knowledge of the wave speed in the propagation

medium - it applies then in a particularly straightforward manner in free-space. Although
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it is not related to Time Reversal, it is presented here as a sort of reference method due to

its efficient use of both space (antenna array) and frequency diversity (UWB).

Consider the time-domain version of the inter-element matrix, K̃(t). Either the complex

envelope or the real signal can be used, the former being preferred here. An image of the

scatterer(s) within an investigation domain Ω is sought, ~r being the position within Ω. Due

to the 2D configuration, only the section of the scatterer(s) in the plane z = 0 is sought.

The Kirchhoff migration image IKM(~r) is built by evaluating K̃(t) at the round-trip time

tdjk(~r) associated to the emitting antenna k and the receiving antenna j for the position ~r:

IKM(~r) =

∫ δt

−δt

∣
∣
∣
∣
∣

∑

j,k

K̃jk

[
tdjk(~r) + τ

]

∣
∣
∣
∣
∣

2

dτ . (2.7)

The integration over a 2δt interval is needed to take into account the finite pulse length,

equal to the inverse of the bandwidth (in our case, 1/2 GHz = 0.5 ns). In free-space, the

round-trip time writes as

tdjk(~r) , tj + tk =
dj(~r)

c0
+
dk(~r)

c0
, (2.8)

with dj (dk) being the distance between antenna j (k) and the position ~r. The idea behind

(2.7) consists then in matching the position-dependent arrival time tdjk(~r) to the target

arrival time contained in K̃jk(t), which can be written as

tdjk(~rtgt) , τj + τk =
dj(~rtgt)

c0
+
dk(~rtgt)

c0
. (2.9)

Equivalently, Kirchhoff migration can be seen as an algorithm performing time-domain

beamforming3 both at emission and at reception for each investigation domain point ~r.

The points with maximum energy after the beamforming procedure form the image of the

target.

Notice also that keeping only the diagonal elements of the K̃ matrix in (2.7), that is,

imposing j = k in the sum, corresponds to the processing usually employed in Synthetic

Aperture RADARs (SARs), where a single antenna is displaced and the retrodiffused signal

measured [91].

Under far-field conditions (F ≫ D and F ≫ λmax), the resolution4 performances given

by Kirchhoff migration, analytically derived in §B.1, can be summarized as follows.

Down-range The resolution RKM
dn only depends on the bandwidth of the signal, ωbw, and

equals half the corresponding wavelength, λbw = 2πc0/ωbw, as in matched-filter pro-

cessing commonly used in RADAR [92]:

RKM
dn ≈

λbw
2

. (2.10)

3While in frequency domain beamforming consists of steering an antenna array with a complex am-

plitude per channel, in time-domain beamforming is equivalent to using different time delays for each

channel.
4Given an infinitely long wire (a point in 3D) scatterer in far-field and an image I(~r) of it, the resolution

is defined as the distance between the highest-energy spot and the nearest zero.
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The array aperture has in practice a negligible impact on RKM
dn .

Cross-range On the other hand, RKM
x depends also on the central frequency, ωc, and on F

and D similarly to Phase Conjugation. When ωbw < ωc, though, the influence of the

bandwidth becomes negligible. For the parameters of our system (2 GHz bandwidth

and 3 GHz central frequency), only the central frequency determines the cross-range

resolution, giving

RKM
x ≈ λcF

D
. (2.11)

For the configurations used in this chapter, with ωbw = 2π3 GHz, antenna spacing

∆x = 5.3 cm, and N = 8 antennas, (2.11) gives RKM
x ≈ 0.27F .

Notice that, in general, the resolution spot size at 3 dB can be approximated by the values

just mentioned.

Experimental results

The results obtained with the Kirchhoff migration method change considerably under

the reflection or transmission configurations. They are therefore presented separately.

Reflection configuration

First, some results pertaining to the reflection configuration, that is, one single array

transmitting and receiving (see §1.3), are presented. The simple case of a metallic scat-

terer with circular section and diameter 4 cm is treated in Fig. 2.8. With synthetic data

(Fig. 2.8(b)), one can appreciate a resolution spot with a maximum placed at the point of

the cylinder support nearest to the antenna array. The primary reason is that the wave does

not penetrate into the object. Furthermore, given the small dimensions of the object and

the small array aperture, only a reduced portion of the scattering support is visible to the

array, so that the scattering phenomenon appears as concentrated into a point. The width

of a half of the resolution spot in down-range is approximately equal to λbw/2 = 7.5 cm, in

good accordance with the theoretical RKM
dn value. Concerning the cross-range, a half of the

spot size is approximately equal to 11 cm, also in good agreement with the 13 cm found

in §B.1. Notice that these values are also affected by the FFT lanczos window Wω(ω) in-

troduced in §1.6.2, which unavoidably lowers the effective bandwidth and therefore mainly

RKM
dn .

When using experimental data (Fig. 2.8(c)), while the shape of the resolution spot is

barely changed, the highest-energy spot is shifted by about 10 cm away from the antenna

array. This is due to the time delay introduced by the ETS antennas because of the traveling

wave propagation through the duroid substrate. In §1.7.2.1, such delay has been estimated

to approximately 5 cm in free-space, giving the observed 10 cm due to both the emitting

and receiving antennas.

An alternative strategy to correct for this artefact consists in directly using the experi-

mental antenna radiation pattern to build the migration chart. Once the characterization
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(a) Setup (b) Synthetic data

(c) Experimental data (d) Experimental data with

antenna pattern correction

Figure 2.8: Kirchhoff migration applied to the reflection setup in (a). In (d), the shaded region

identifies the pixels whose azimuth angles with respect to all of the array antennas

are within the range measured during the antenna characterization procedure de-

scribed in §1.7.2. For experimental data, the drift correction is always applied. In

all the images, the white circle represents the target support, and the black cross

the hottest spot found.

coefficients have been retrieved as described in §1.7.2, the scattering of a target placed in ~r

for the (j, k)th pair of receiving and emitting antennas, respectively, can be calculated (cf.

Fig. 1.29). The peak of the retrieved pulse is then the tdjk(~r) to be used in (2.7). The result

is the chart in Fig. 2.8(d), where indeed the “hot” spot is again at the front face of the cylin-

der. Nevertheless, the result appears globally more perturbated. The reason is that, during

the antenna characterization step, the available aperture angle ∆ϕ ≈ 40 deg; beyond this

value the radiation pattern extrapolation is untrustable. Hence, the region where all the

antennas are within such range is shaded in Fig. 2.8(d), showing that almost everywhere in

the chart an extrapolation is done for at least one antenna, which unavoidably alters the

result.

Experimental results pertaining to different targets are shown in Fig. 2.9. Two dielectric

(wooden, εr ≈ 2) targets, one with 1.5 cm-diameter circular section and the other with

10.5×7 cm2 rectangular section, are first imaged separately; then, a configuration with the
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(a) 3 cm-diameter wooden

target (εr ≈ 2) with circu-

lar section

(b) 10.5×7 cm2 wooden target

(εr ≈ 2) with rectangular sec-

tion

(c) 4 cm diameter metallic

target with circular section

and 10.5×7 cm2 wooden tar-

get (εr ≈ 2) with rectangular

section

Figure 2.9: Kirchhoff migration applied to several configurations. In all cases, the drift correc-

tion is applied whereas the experimental antenna radiation pattern is not used.

rectangular one and the metallic target of Fig. 2.8 together is studied. The drift correction

is applied, whereas the experimental characterization of the antennas is deliberately not

used - hence all the spots should be shifted by roughly 10 cm towards the antenna array.

With dielectric targets, Kirchhoff migration behaves slightly differently, due to their

penetrability. For instance, comparing Fig. 2.9(a) and Fig. 2.8(c) the dielectric target,

although smaller than the metallic one, looks bigger. Nevertheless, in Figs. 2.9(a)-2.9(b)

some indications on the shape of the target can rouglhy be deduced. Finally, even with two

targets (Fig. 2.9(c)) a fair image is obtained. Indeed, the center of the targets are 12.5 cm

spaced, slightly more than RKM
x ≈ 12.5 cm here. Notice also that the metallic target is

“hotter” as compared to the wooden one due to its stronger scattering power.

A last result under the reflection configuration aims at tackling the case of a partially

unknown propagation medium. In Fig. 2.10, the Kirchhoff migration is applied to two

identical two-target configurations, except that in one of them a tile wall and a metallic

plate are added laterally with respect to the down-range direction in order to perturbate

the propagating medium. Using then the free-space Green function to fetch the arrival

times necessary to build IKM(~r) is erroneous in the sense that the echoes coming from the

reflections on the walls are thus ignored. The result is a degradation in the images when

comparing Fig. 2.10(c) and Fig. 2.10(d), although the targets can still be detected and

localized.

Transmission configuration

Kirchhoff migration behaves differently when used in a limited-aspect transmission con-

figuration as those in Figs. 2.11(a)-2.12(a). Either with synthetic or experimental data

and regardless of the conducting or dielectric nature of the target, the image is elongated
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(b)

(c) (d)

Figure 2.10: Kirchhoff migration applied to the configurations in (a) and (b).

along the down-range. This is to be expected, since for a given couple (Ak,Aj) of emit-

ting/receiving antennas belonging each to a different array, the arrival time tdjk(~r) in (2.8)

is identical for all the points ~r along the line going from Aj to Ak, and only slightly changes

when the point moves away from such line. As a demonstration, elliptical patterns are

clearly visible in Fig. 2.11(c).

2.3.1.1 Conclusions

In reflection configurations, Kirchhoff migration behaves very well under free-space as-

sumptions. Care must be taken when imaging dielectric targets, since their penetrability

alters the dimensions given by the the Kirchhoff image. In transmission configurations,

when the arrays have a limited aperture D, the down-range resolution is on the contrary

very rough.

In any case, Kirchhoff migration is deeply affected by a wrong description of the Green

function of the medium. In other words, if strong multiple scattering or clutter are present

in the medium, the estimation (2.8) of the arrival times becomes wrong and very noisy

images must be expected (cf. Fig. 2.10(d)).
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(a) Setup (b) Synthetic data (c) Experimental data

Figure 2.11: Kirchhoff migration applied to the transmission setup in (a). Metallic target.
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(a) Setup (b) Synthetic data (c) Experimental data

Figure 2.12: Kirchhoff migration applied to the transmission setup in (a). Purely dielectric

target.

2.3.2 Time Reversal

With respect to the active source case described previously in §2.2, it is relatively straight-

forward to adapt the TR method to the scattering case5. The emitting array must illu-

minate the scene with an incident wave, and the scattered vector - whose components are

the scattered signals received by each receiving antenna - must be back-propagated after

phase-conjugating each frequency component. The result is a new incident wave focusing

onto the scatterer(s) populating the medium. The main difference with the active source

case, is that now there is a new scattered wave, which can again be phase-conjugated and

back-propagated. An iterative TR procedure [93] can then built up, which, in case of mul-

5In acoustics, this configuration is known as pulse-echo mode.



2.3. SCATTERING CASE 65

(a) (b) (c) (d)

Figure 2.13: Schematization of the iterative TR process. (a) Two targets are illuminated by an

incident wave (here a wave emitted by a single array antenna); (b) their scattered

field is recorded into a memory by the array antennas; (c) the array antennas

retransmit the time-reversed signals, giving a wavefront focusing onto the targets.

The process continues iteratively, until (d) the array wavefront focuses only onto

the brightest target.

tiple scatterers, converges to a “final” incident wave focusing onto the brightest scatterer

(see Fig. 2.13).

Time Reversal has two main drawbacks:

1. in configurations with a relatively high amount of noise (additive noise on the receiver,

clutter in the propagation medium, etc.), the number of iterations needed to reach a

sufficient Signal-to-Noise Ratio (SNR) might be sufficiently high to prevent focusing

onto targets moving too fast or, rather equivalently, too distant from the array;

2. in presence of multiple targets, TR allows in principle to focus only onto the brightest

one. Although it is possible to focus onto the others as well by re-starting the iterative

process with an incident wave having a null in the direction of the previously detected

target(s), the procedure takes even more time and further limits the maximum speed

of detectable targets.

Both limitations are elegantly solved by the DORT method, as described next.

2.3.3 DORT

The DORT method, from the french acronym Décomposition de l’Opérateur de Retourne-

ment Temporel, was first introduced in 1994 by Prada et al. [3]. It is issued from the

matrix-based analysis of the iterative TR process, and works with monochromatic data

just as Phase Conjugation. Although, in order to derive it, the ω depency is removed for

conciseness, all the quantities have to be meant as time-harmonic.

Consider two antenna arrays with N1 and N2 antennas, that might, but need not, be the

same (reflection configuration). At the beginning of the TR iterative process, a steering

vector s
(0)
Tx is transmitted into the medium by the first array - this might correspond to a
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beamformed wave or simply to a wave emitted by a single antenna. The scattered vector

measured at the other array is then

s
(0)
Rx = Ks

(0)
Tx , (2.12)

whereas its phase-conjugated version is back-propagated into the medium:

s
(1)
Tx = K∗

[

s
(0)
Tx

]∗

. (2.13)

After p iterations of TR, the vector to be back-propagated by the first array is

s
(p)
Tx =

(
KHK

)p/2
s
(0)
Tx , (2.14)

which in practical implementations should be normalized to the wished emitting power

level. The eigenvalue decomposition of KHK = VΛ2VH, called Time Reversal Operator

(TRO), allows to simplify (2.14). In practice, the same result is more easily obtained using

the SVD of K = UΛVH , where Λ is a diagonal matrix whose elements are the real singular

values λl arranged in descending order, and U and V are unitary matrices6 whose columns

are the left and right singular vectors ul and vl, respectively. Eq. (2.14) becomes then

s
(p)
Tx =

min(N1,N2)∑

l=1

λpl

[

vHl s
(0)
Tx

]

vl . (2.15)

Unless s
(0)
Tx is orthogonal to the first singular vector v1, it is easy to see that as p → ∞,

(2.15) reduces to

s
(p)
Tx ≈ λp1

[

vH1 s
(0)
Tx

]

v1 . (2.16)

This result shows that, apart from the scalar terms λp1 and vH1 s
(0)
Tx, the iterative TR process

converges to a steering vector equal to the first right singular vector of K, v1. In practical

terms, then, there is no need to perform the iterations: provided the K matrix has been

measured, it is sufficient to steer the array with v1 to obtain the same result.

Imaging through the DORT method consits then in building the field chart associated

to the back-propagation of vl:

IDORT
ω (~r;vl) = |iω vTl Ĝ(~r)|2 , (2.17)

which physically corresponds to an iterative TR process triggered with a vector s(0)Tx orthog-

onal to the l − 1 first singular vectors vl. Ĝ(~r) is the unit-norm Green function vector

whose components are the normalized Green functions between the image pixel ~r and the

antennas Aj , j = 1, N1:

Ĝ(~r) ,
G(~r)

‖G(~r)‖ , with G(~r) = [G(~r, ~r1) G(~r, ~r2) · · ·G(~r, ~rN)]T . (2.18)

6A unitary matrix A is a matrix such that A
H
A = AA

H = I.



2.3. SCATTERING CASE 67

The normalization term 1/‖G(~r)‖ helps in nulling the amplitude decrease due to the 1/
√

|~r|
(1/|~r| in 3D) dependency of the Green function, thus considerably improving the down-

range resolution for targets placed far from the array. Also, the iω factor comes from the

fact that the field chart corresponds to an electric field distribution whereas the antennas

are fed in current (see §C for more details).

The field chart can also be built as the back-propagation of the left singular vector ul

using the second antenna array (Aj , j = 1, N2), giving

IDORT
ω (~r;ul) = |iω uHl Ĝ(~r)|2 , (2.19)

which corresponds to an iterative TR process triggered by the second array. Of course,

since in a reflection configuration K is symmetric in virtue of reciprocity, u∗
l and vl are

co-linear, and (2.17) and (2.19) give the same result. On the other hand, in a configuration

with two separate arrays, e.g. in a transmission configuration, the result is not the same.

Notice also that (2.17) and (2.19) assume ideal dipolar antennas in far-field; on this

purpose, a rigorous derivation of the field chart formula is given in §C. Alternatively, the

experimentally retrieved antenna radiation pattern, arranged into the unit-norm vector

R̂P(~r), can be utilized in spite of Ĝ(~r).

Concerning the resolution given by the DORT method when vl focuses onto a target,

with reference to §B.2 (although the results are obtained for the time-domain extension of

DORT to be studied next), the following results hold.

Down-range For a very small array aperture, DORT gives an infinitely large down-range

resolution, since it is here considered as a monochromatic method which is then unable

to exploit the arrival time, or range, information:

RDORT
dn ≈ ∞ . (2.20)

With a finite array aperture D with respect to the target distance F (see Fig. 2.14),

the resolution becomes finite yet very large.

Cross-range As Kirchhoff migration, DORT performs beamforming, even though at a

single frequency and at emission (or reception) only. The same resolution is then

obtained, that is,

RDORT
x ≈ λF

D
, (2.21)

where λ is the wavelength relative to the permittivity of the propagation medium.

2.3.3.1 Extended target in near-field

An analytical study of the DORT method was for the first time carried out in [18] for the

complete configuration case (antennas surrounding the propagating medium), and in [20]

for the limited-aspect configuration case (measurement line in reflection). The present work

is mainly focused on the latter setup. Under this frame, it has been shown through the
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Figure 2.14: Configuration for deriving the properties of the DORT method.

multipolar expansion of the field scattered by a target, that DORT basically isolates, or

extracts, the projection of the multipolar components onto the measurement line [20].

To explain this, with reference to Fig. 2.14 and considering ideal 2D sources/receivers,

Kjk can be expressed through the use of the Graf’s formula [94] and the scattering matrix

formalism [95]. The result is

Kjk =
∑

m,n

Sm,nH
−
n (krk)e

inϕkH−
m(krj)e

−imϕj , (2.22)

where Sm,n is the (m,n)th element of the scattering matrix and H−
n is the Hankel function

of nth order and second kind7.

With respect to the dimensions of the target as compared to the wavelength of the

background λ, two regimes can be distinguished:

Low-frequency regime

When the dimensions of the target equal at most a fraction of λ, and for targets with

a rather regular support, (2.22) is well approximated by considering the scattering

matrix as a diagonal matrix8 with only three non-negligible terms, S−1,−1, S0,0, and

S1,1 = S−1,−1. Therefore, using the fact that H−
1 = −H−

−1,

Kjk ≈ S0,0H
−
0 (krk)H

−
0 (krj) + 2S1,1H

−
1 (krk)H

−
1 (krj) cos(ϕk − ϕj) . (2.23)

Adding the hypothesis that the target is at least λ/2 far from the array, Micolau and

Saillard [20] have shown that

• one singular space of K is given by an anti-symmetric singular vector vasym,

whose jth component is

vasymj = H+
1 (krj) cos(ϕj) , (2.24)

7The reason why H−

n is used in spite of H+
n is the time dependency convention, here e+iωt.

8This is rigorously true for circular-section targets.
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and a singular value λasym whose amplitude increases with χ2, where χ ∝ ϕN−ϕ1

basically represents the angular aperture of the array;

• two other singular vectors are linear combinations of two symmetric vectors

described by
{

H+
0 (krj)

H+
1 (krj) sin(ϕj)

, (2.25)

whereas for the singular values, λsym,1 ∝ χ0 and λsym,2 ∝ χ2. In addition, for

χ→ 0, that is, for a small aperture, vsym,1j ≈ H+
0 (krj).

As long as χ is relatively small, λsym,1 is the largest singular value, followed by λasym

and λsym,2. The anti-symmetric one, λasym, tends to become larger than λsym,1 when

increasing the array aperture and at higher frequencies.

Resonance regime

When removing the low-frequency regime assumption, that is, when the dimensions

of the target are comparable to λ, interestingly enough, DORT is still able to separate

symmetric and anti-symmetric components of the scattered field, only the amplitude

hierarchy of the singular values changes and the largest one is not necessarily that

associated with a symmetric field. Also, other anti-symmetric singular vectors with

more than one π phase jumps become significant.

Experimental results

By means of an example based on experimental data, it is useful to give an insight

into the physical meaning of “symmetric” and “anti-symmetric” vectors. The configuration

is shown in Fig. 2.15(a): a 2 cm-radius metallic cylinder is imaged in reflection. The

target dimensions do not really fulfill the low-frequency regime hypotheses, especially at

the high end of the frequency band. This, in addition to the relatively high aperture

angle (around 50 deg), result in Fig. 2.15(d) in an anti-symmetric singular value, λ2, “only”

20 dB lower than the symmetric one, λ1. As for the other singular values, they have an

irregular, oscillating aspect since they are associated to noise. Although “pure” noise should

present a flat behavior - apart from the amplitude damping at the band edges due to the

FFT window Wω(ω) - corresponding to the noise floor of the VNA, two factors alter their

frequency dependency: 1) the RF signal ringing due to unperfect adaptation of cables and

connectors of the prototype, and 2) the thermal drift that pollutes the total/incident field

difference and generates a sort of correlated noise (cf. §1.4.3).

The complex laws of the singular vectors and the monochromatic field charts at 3 GHz

associated to λ1 and λ2 are shown in Fig. 2.15(b-c) and Fig. 2.15(e-f), respectively. v1 is the

symmetric singular vector since it corresponds to the isotropic, or monopolar, component

of the scattered field: its phase keeps the same sign over the vector elements and the

associated field chart focuses in the direction of the target. On the other hand, v2 is an
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(a) (b) v1 (c) v2

(d) (e) IDORT
ω (~r;v1) (f) IDORT

ω (~r;v2)

Figure 2.15: DORT method applied to the reflection setup in (a). (d) K matrix singular values

as a function of frequency. (b-c) and (e-f) v1 and v2 complex laws and corre-

sponding monochromatic field charts at 3 GHz, respectively.

anti-symmetric singular vector. Its phase has a π jump corresponding to the first order of

anistropy, or multipolarity, of the scattered field. As a consequence, it generates a wave

with a null at the position of the target. This behavior can somehow be interpreted as

well as a focusing property, in the sense that it might favorably exploited in localizing the

target, as described for the subspace methods introduced later. As for the other frequencies

within the [2-4] GHz band, the respective field charts fully confirm the behavior observed

in Fig. 2.15(e-f).

2.3.3.2 Time-domain extension

As opposed to TR, DORT is instrinsicly a time-harmonic method. Extending it to the

time-domain is particularly important when using an array with a small aperture angle in

reflection. In effect, although this configuration is favorable for well separating symmetric

and anti-symmetric singular values/vectors as explained in the previous paragraph, DORT

images are very poorly resolved in down-range (cf. Fig. 2.15(e)). An efficient exploitation

of the available bandwidth can then greatly improve the down-range resolution, as seen for

instance with the Kirchhoff migration method (c.f. Figs. 2.8-2.9).

As a starting point, the SVD of K(ω) separately at each frequency within the operating

band must be performed. For imaging purposes, all the monochromatic field charts in
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(2.17) can be either summed incoherently, giving

IDORT
ωω (~r;vl) =

ωM∑

ω=ωm

∣
∣
∣iω vTl (ω)Ĝ(ω;~r)

∣
∣
∣

2

, (2.26)

or recomposed coherently,

IDORT
t (~r;vl) = IFT

[

iω vTl (ω)Ĝ(ω;~r)
]

(t) . (2.27)

Physically speaking, (2.27) describes the propagation in time of the electric field produced

by an array steered with the time-domain singular vector ṽl(t) , IFT [vl(ω)] (t).

Of course, thanks to coherency in frequency, (2.27) allows to greatly improve the down-

range resolution performances, very poor in the monochromatic case (2.17) as well as in

(2.26). Unfortunately, the singular vectors are mathematically determined up to a complex

constant, that is, if vl(ω) is a singular vector, then also a(ω)vl(ω) is one, with a(ω) ∈ C,

meaning that an infinity of them rigorously exist. Therefore, it is in principle incorrect

to directly perform the IFT of the singular vectors, since the coherency in frequency is

lost due to the indetermination of the constant a(ω), and more importantly of its phase

φa(ω) = arg[a(ω)].

Some solutions to the construction of coherent temporal singular vectors are reviewed

next in §2.3.3.3. Here, it must be stressed that one of the consequences of such phase

indetermination is that the time instant at which the back-propagated wave (2.27) focuses

onto the target, tfoc, is unknown, whereas according to the time-inversion principle of TR

it should be equal to 0 s. To form a single image of the scatterer, it is then necessary to

“extract” from the “movie” in (2.27) one single frame. Such frame corresponds in principle to

tfoc, since it is at the target location and at the focusing instant that constructive interference

takes place. Two approaches can then be used to fetch the “best” image.

• Choose tfoc as the instant where the maximum of (2.27) is reached.

• Choose tfoc as the instant where the entropy H(t) of the image is minimized [96].

This is motivated by the fact that, at the focusing instant, the back-propagated wave

almost corresponds to the wave initially scattered by the target when hit by the field

impinging on it. Thus, it should be a “well-ordered” [96] wave, hence its entropy - a

measure of the disorder of an image - should be the smallest among all the frames.

The resolution obtained with (2.27) has been analytically studied in §B.2.

Down-range IDORT
t is based on time-domain beamforming either at emission with vl or at

reception with ul. Assuming the focusing instant tfoc is well chosen, the down-range

resolution is then equal to λbw, twice the value found for Kirchhoff migration which

performes beamforming both at emission and at reception:

RDORT
dn ≈ λbw . (2.28)
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Cross-range Assuming ωbw/ωc < 1, the cross-range resolution is basically given by the

central frequency monochromatic result, that is,

RDORT
x ≈ λcF

D
. (2.29)

2.3.3.3 Time-domain singular vectors

Back to (2.27), it has already been mentioned that the phase indetermination brought

by the SVD of the K matrix prevents from building coherent time-domain singular vectors.

A hint on how to solve this problem might come from the description of the iterative TR

process. In effect, it is easy to see that (2.16) actually preserves the frequency coherence,

since the e−iφa(ω) factor appears both in v1 and, conjugated, in vH1 .

In this sense, TR and time-domain DORT are strictly equivalent (apart from the absence

of iterations and the selective focusing capability given by DORT). But the question to be

asked is whether the same spatiotemporal focusing obtained with TR in the active source

case can be obtained by DORT with a passive target. Some possible answers have recently

appeared in literature.

Free-space propagation

In free-space, the optimal spatiotemporal focusing is simply obtained by triggering

the iterative TR procedure with the emission of a single array antenna, say the jth

one. This corresponds to substituting s
(0)
Tx(ω) = 1j in (2.16)9, which gives, in the case

of a single target located at ~rtgt, the new steering vector v̂1(ω)

v̂1(ω) = λ1(ω)
[
vH1 (ω)1j

]
v1(ω)

= λ1(ω)v1(ω)e
−i arg[v1,j(ω)] .

(2.30)

Recalling now §2.3.3.1, in the low-frequency regime and neglecting any amplitude

normalization factor, the singular vector given by any SVD routine is of the kind

v1(ω) = Ĝ∗(ω;~rtgt)e
iφa(ω), since in free-space G(ω;~rj, ~rtgt) = −iH−

0 (k|~rtgt − ~rj |)/4.
Thus, as

arg [v1,j(ω)] = k|~rtgt − ~rj |+ φa(ω) , (2.31)

(2.30) becomes

v̂1(ω) = λ1(ω)Ĝ
∗(ω;~rtgt)e

−ik|~rtgt−~rj | . (2.32)

Back-propagating v̂1(ω) at the target location ~rtgt results in

v̂T1 (ω)Ĝ(ω;~rtgt) = λ1(ω)e
−ik|~rtgt−~rj | , (2.33)

that is, the frequency components of the back-propagated field hit the target with a

linear phase dependency with respect to ω. Then, as compared to the “ideal” case

9Of course, if a particular pulse shape p̃(t) is to be emitted, then 1j needs to be multiplied by its IFT

p(ω).
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v1(ω) = Ĝ∗(ω;~rtgt) that would give the same zero-phase at ~rtgt at any frequency, this

strategy only produces a simple delay equal to tfoc = |~rtgt − ~rj|/c, not altering the

focusing quality at all. Indeed, (2.27) evaluated at ~r = ~rtgt gives

IDORT
t (~rtgt; v̂1) = IFT

[

iω v̂T1 (ω)Ĝ(ω;~rtgt)
]

(t) =
∂λ̃1

(
t− tfoc

)

∂t
, (2.34)

where λ̃1(t) = IFT [λ1(ω)] (t).

With this method, there is no need to know a priori the target position and if, in

case of multiple targets, their separation is assured by DORT, there is no degradation

whatsoever of the selective focusing quality. The present analysis is also meaningful

to explain experimental results such as those reported in [29] for free-space configura-

tions, since no mathematical justification is given for the very good focusing achieved.

SVP technique

Since in the active source case all the monochromatic back-propagated vectors hit the

initial source with the same phase (namely 0 deg, cf. Fig. 2.5(a)), it is natural to build

a new singular vector v̂l(ω) = vl(ω)e
iφcorr(ω), whose correction phase φcorr(ω) has to be

determined by imposing that, given the target position ~rtgt, the back-propagated field

v̂Tl (ω)Ĝ(ω;~rtgt) has the same phase at each frequency ω. The method, introduced by

Philippe et al. [97], has been named SVP from the french acronym Synchronisation

des Vecteurs Propres (eigenvectors synchronization).

Despite its “elegant” simplicity, this method relies on the a priori knowledge of ~rtgt.

Although this information can be retrieved through another method (monochromatic

DORT, Kirchhoff migration, etc.), the precision of the estimation is resolution-limited.

Furthermore, it is not clear where exactly ~rtgt should be placed in case of an extended

target in the resonance regime. Lastly, in complex propagating media whose Green

function is not fully known, the estimation of ~rtgt might even be too erroneous to be

used for the correction.

Space-frequency DORT

A totally different approach is followed in [98] by Yavuz et al.. It consists in performing

the SVD of one big space-frequency matrix (or N smaller ones for each emitter)

containing all the measured data: its columns are spanned by the frequency ω and

its lines by the emitters/receivers positions. By doing so, there is no more loss of

coherency, since one single SVD must be performed to process all the data.

Although a scheme describing how to use the new right and left singular vectors

in conjunction with the singular values is proposed, and although some interesting

results have been reported, there is no mathematical or physical evidence on why

the method should work and be robust to clutter. Also, due to the same lack of

mathematical/physical derivation, it is not clear how to choose the number of left

and right singular vectors when building the time-domain vectors.
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Arrival time estimation

Yet another approach is used by Borcea et al. in [99]. As a first step, k = 1, N

modified versions of the singular vector vl(ω) are built by projecting onto it the

columns of the K matrix, K[k], giving
[

v
[k]
l (ω)

]∗

=
[
vTl (ω)K

[k](ω)
]
v∗
l (ω) . (2.35)

The quantity in (2.35) is coherent in frequency, since both vl and its conjugate appear.

An IFT can then safely be done. Physically, the kth among the N resulting time-

domain signals corresponds to the limit of an iterative TR procedure triggered by the

vector K[k](ω) (cf. (2.16)). It is then easy to see that the target echo arrival times in

the elements of (2.35) are τ̃k + τ̃j|j=1,N , the former inherited from K[k] and the latter

from the elements of v∗
l .

Then, the N modified singular vectors (2.35) must be reorganized into the matrix

K̂(ω) =

[ [

v
[1]
l (ω)

]∗ [

v
[2]
l (ω)

]∗

· · ·
[

v
[N ]
l (ω)

]∗
]

, (2.36)

which resembles to the orginal K matrix but is cleaner in the sense that the contri-

bution from the lth target is in principle isolated. By extracting the arrival time from

each element of K̂(ω) (through a simple peak detection algorithm), an equivalent ma-

trix of arrival times T̃ such that T̃jk = τ̃j+ τ̃k is built. From this, for instance through

the least squares method, the single arrival times t̃ , [τ̃1 τ̃2 · · · τ̃N ]T are evaluated10.

Finally, the time-domain singular vector is built by averaging the singular vectors

(2.35) after synchronizing them with the respective τ̃k:

˜̂vl(t) , IFT [v̂l(ω)] (t) = IFT

[

1

N

N∑

k=1

v
[k]
l (ω)e−iωτ̃k

]

(t) =
1

N

N∑

k=1

ṽ
[k]
l (t− τ̃k) , (2.37)

where ṽl(t) , IFT [vl(ω)] (t). When back-propagating the new singular vector, since

the arrival times of the elements of ˜̂vl(t) are −τ̃j |j=1,N , focusing produces at tfoc = 0 s,

that is, the normal behavior of TR is reestablished. Also, a new and cleaner estimation

of the arrival times τ̃j |j=1,N can be done on ˜̂vl(t), since, as explained below, the

averaging is expected to reduce the effect of noise.

10To apply the least squares method, the matrix T̃ must first be unfolded column-wise into a vector a
T̃

.

Then, each of its elements must be linked to the unknown vectors through a coefficients matrix C:

a
T̃
= Ct̃ .

Finally, the single arrival times are obtained by minimizing the squared error with respect to a
T̃

, which is

mathematically obtained through the pseudoinverse C
+ of C:

t̃ = C
+
a
T̃

.

The pseudoinverse C
+ can be calculated by means of the SVD of C [69].
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This solution, necessitating no a priori information, can be particularly effective in

random propagation media. In effect, provided the single arrival times vector t̃ is

properly estimated, averaging the N modified singular vectors in (2.37) results in

smoothing the effect of disorder in the medium while constructively summing the

contribution of the target, in principle identical on each ṽ
[k]
l (t− τ̃k). In other words,

if the medium response, excluding the target, is well decorrelated when sounding it

with different antennas - corresponding to the N versions of ṽ[k]
l (t− τ̃k) -, then (2.37)

sort of averages N realizations of disorder.

It must be noticed that the given method is also rather robust with respect to the

coupling of singular vectors in case of multiple targets (see §2.3.3.5). Again, for l = 1,

the averaging in (2.37) reduces the contribution of the other targets, which are not

synchronized among the N vectors ṽ[k]
1 (t− τ̃ 1k ), where τ̃ 1k is the estimated arrival time

relative to the first target. The same happens for l = 2, Ntgt, of course. Nonetheless,

a necessary condition is that the singular values λl(ω) are each associated to the same

target at all the frequencies explored [99]. If this is not true, that is, if the singular

values cross each other at different frequencies, the coherency in (2.35) is lost, resulting

in wrong estimates of the arrival times and in the failure of the synchronization (2.37).

Experimental results

The first experimental configuration is shown in Fig. 2.16(a). The wooden target (εr ≈ 2)

is small and relatively far from the array: the low-frequency approximation conditions hold.

Synthetic data for this setup predict a λ1/λ2 ratio (symmetric over anti-symmetric singular

values) equal to 60 dB. The largest singular value in Fig. 2.16(b) corresponds in effect to

λ1: it is rather smooth over the frequency band, which corresponds well to the theoretical

shape of the symmetric singular value of a non-resonant target. Nonetheless, due to the low

scattering strength of the target and in spite of the drift correction, the experimental setup

has not enough dynamic range to observe λ2. So, the other singular values in Fig. 2.16(b)

are related to noise.

The time-domain images, or frames, built according to (2.27) and using the free-space

solution (2.30) are presented in Fig. 2.16(c-l). The experimentally retrieved antenna pattern

is used11. During the first frames a focusing wave builds up; its amplitude grows, thanks to

neater constructive interference among each emitted wave, until it reaches the scatterer at

t = 4.25 ns. Afterwards, the wave diverges and the resolution spot widens. The focusing

instant tfoc corresponds to the delay that appears in (2.34). Namely, since the N th antenna

has been used as triggering antenna, tfoc = |~r ltgt − ~rN |/c = 4.15 ns. This is very well in line

11Notice that using the experimental antenna radiation pattern does not blur the field charts as it was the

case for Kirchhoff migration in Fig. 2.8(d). Indeed, although only a small region of each chart corresponds

to azimuth angles available during the characterization step (cf. the grayed area in Fig. 2.8(d)), destructive

interference outside this region makes the field sufficiently small despite the erroneous extrapolated antenna

pattern.
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(a) (b)

(c) t = 1.625 ns (d) t = 2 ns (e) t = 2.375 ns (f) t = 2.75 ns (g) t = 3.125 ns

(h) t = 3.5 ns (i) t = 3.875 ns (j) t = 4.25 ns (k) t = 4.625 ns (l) t = 5 ns

Figure 2.16: DORT method applied to the reflection setup in (a). (b) K matrix singular values.

(c-l) Different frames of the time-domain field charts IDORT
t (~r;v1). In (j), the

back-propagated wave focuses onto the target. Drift and experimental antenna

radiation pattern corrections are used.

with the 4.25 ns experimentally found, with an error of 0.10 ns (3 cm), smaller than the

time (space) sampling of the field charts given by π/ωM = 0.125 ns (3.75 cm).

Concerning the way of “automatically” choosing the focusing instant tfoc, the maximum

of the field charts and their entropy as a function of time are plotted in Fig. 2.17 (a) and

(b), respectively. With either method the chosen value does not match tfoc = 4.25 ns of
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(a) max
~r

IDORT
t (~r;v1) (b) minH(t)

Figure 2.17: Time-domain DORT method applied to the reflection setup in Fig. 2.16(a). Evo-

lution of the field chart (a) maximum value, and (b) entropy as a function of

time.

Fig. 2.16(j), although especially for the former method the error is as small as 0.125 ns.

In fact, the entropy-based method systematically anticipates the focusing instant when

the target is far from the array, even with synthetic data, since for larger distances F

the focusing spot widens as λcF/D, and the entropy value starts to grow. On the other

hand, the maximum-based strategy seems more robust (the Green function normalization

is mandatory here); in this case, for instance, the error corresponds to the time resolution,

it is then minimum.

Another example is given in Fig. 2.18. A large PVC cylinder filled with tap water

is imaged in reflection in the anechoic chamber first (Fig. 2.18), then in a reverberating

medium (Fig. 2.19). While two singular values clearly emerge from noise in Fig. 2.18(b) -

symmetric and anti-symmetric - reverberation alters them and seemingly adds new singular

values in Fig. 2.19(b), probably associated to the scattering from the metallic plate and/or

the tiled wall. The time-domain field charts IDORT
t (~r;v1) are built either with the free space

method (2.27) (Fig. 2.18(c) and Fig. 2.19(c)) coupled with the maximum-based approach

for picking the right tfoc, or with the arrival time estimation-based method (2.35)-(2.37)

(Fig. 2.18(d) and Fig. 2.19(d)). In the anechoic case, both approaches give a very clean

image at the instant of focusing. As for the choise of tfoc in Fig. 2.18(c), the entropy-based

method (not shown) is again in advance by 0.125 ns with respect to the maximum-based

criterion, but both give a focusing instant preceeding the one found in Fig. 2.18(d).

The reverberating case is more intriguing. Applying the free-space method gives a noisy

field chart, regardless of the choice of tfoc (both maximum- and entropy-based approaches

give here the same tfoc value). Indeed, a second focusing wave temporally following the

stronger one plus some “warm” spots all around appear. The reason for this lies in the

mismatch between time-domain Green functions of the medium and of free-space. The

former comprises the effect of the reflecting surfaces, similarly to what observed when
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(a) (b)

(c) (d) (e)

Figure 2.18: DORT method applied to the reflection setup (a) in the anechoic chamber. (b)

Singular values distribution over frequency. (c,d) Time-domain DORT field charts

IDORT
t (~r;v1). In (c), the focusing instant tfoc is retrieved through the maximum-

based approach; in (d), the arrival times estimation method (2.35)-(2.37) is used,

so that tfoc = 0 s.

applying DORT in waveguides [100, 101]; the latter is the one intrinsically used during

back-propagation. On the other hand, the arrival time estimation-based method results

in a great improvement, so that almost the same chart Fig. 2.18(d) found in free space is

retrieved here. As explained, it is the averaging of the synchronized singular vectors (2.37)

that reduces the effect of reverberation, which behaves on each version of the singular

vectors (2.35) as a different stochastic realization of the medium.

2.3.3.4 Different Tx and Rx arrays

An issue somehow similar to the one of building time-domain singular vectors appears

when dealing with a configuration with two separate arrays, e.g. the transmission config-

uration. In effect, since two different field charts can be obtained at a given frequency by

using the right and left singular vectors vl and ul, respectively (see (2.17) and (2.19)), it

seems natural to recombine them coherently, that is, summing them, in order to improve

the resolution of the images. Hence, the similarity with the time-domain DORT method
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(a) (b)

(c) (d) (e)

Figure 2.19: DORT method applied to the reflection setup (a) in a reverberating medium. (b)

Singular values distribution over frequency. (c,d) Time-domain DORT field charts

IDORT
t (~r;v1). In (c), the focusing instant tfoc is retrieved through the maximum-

based approach; in (d), the arrival times estimation method (2.35)-(2.37) is used,

so that tfoc = 0 s.

consisting of coherently recombining all the monochromatic field charts.

Unfortunately, exactly the same phase indetermination issue forbids the coherent recom-

bination, since from the SVD of K(ω) it can be seen that

{

vl ∝ eiφb

ul ∝ eiφb
, (2.38)

where φb is the undetermined phase, and the two field charts are built using vl and u∗
l .

Some of the methods developed for the time-domain approach can therefore be applied

to remove this indetermination. Namely, a sort of SVP technique setting the phase of both

field charts to a same value at the target location would be effective in recombining them,

although under the same constraints mentioned in §2.3.3.2 [102]. Alternatively, the arrival

times estimation method (2.35)-(2.37) can be applied to estimate the first and second array

arrival times, τ̃ 1j |j=1,N1 and τ̃ 2k |k=1,N2, respectively12. Then, the separate synchronization

12For a two-arrays configuration, the method described in §2.3.3.2 must be slighlty modified. Given an
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(2.37) of right and left singular vectors assures that both field charts focus at tfoc = 0 s,

thus allowing their coherent recombination.

Experimental results

The test case is the configuration already used with Kirchhoff migration in Fig. 2.11(a). A

metallic target is imaged in transmission by two separate arrays. In Fig. 2.20(a), the arrival

times retrieved with the singular vector-based method in (2.35)-(2.37) are first shown.

They correspond well to the distances of the respective antennas, and they are used to

build, in Fig. 2.20(b,c), the time-domain DORT field charts IDORT
t (~r;v1) and IDORT

t (~r;u1),

respectively. Such charts show how focusing is first obtained separately by each array at

tfoc = 0 s. Then, the two charts are summed coherently thanks to the synchronization

(2.37): the plotted frames in Fig. 2.20(d-h) depict the formation of both focusing waves

at t < 0 s, then the focusing instant t = tfoc = 0 s at which they both converge onto the

target, and finally their respective departure from the focusing position at t > 0 s.

Notice that for a transmission configuration, the only improvement given by the coherent

use of right and left singular vectors consists in an enhanced temporal focusing, that is, the

amplitude of the focusing waves decreases more rapidly at t 6= 0 s with respect to either

IDORT
t (~r;v1) or IDORT

t (~r;u1). For an improved spatial resolution, different configurations

are needed, for instance two interleaved or side-by-side arrays.

2.3.3.5 Multiple targets case

The second drawback of TR, the impossibility of separately imaging two targets, can

under certain conditions also be overcome with DORT. As initial assumptions, the targets,

located at ~r 1
tgt and ~r 2

tgt, must be in the low-frequency regime and their cross-range distance

must be larger than the resolution limit λF/D.

Using synthetic data, in Fig. 2.21 two identical small metallic targets placed at 60 cm

and 70 cm from the array are imaged. Fig. 2.21(b) compares the two largest singular values

of K, λ1 and λ2, to the largest singular values obtained when either one or the other target

are present, λ̄11 and λ̄21. It appears that the new singular values “oscillate” around the single-

target ones, hence the mutual presence of the targets alters the result. First Tortel et al.

in 1999 [18], and later Minonzio et al. in 2006 [103] who added multiple scattering to the

mathematical derivation, have indeed shown that:

N2 ×N1 K matrix, the k = 1, N1 versions of the left singular vector are

u
[k]
l (ω) =

[

u
H
l (ω)K[k](ω)

]

ul(ω) ,

where K
[k] is now the kth line of K. Then, the N2 × N1 arrival times matrix T̃ is built identically.

Nonetheless, since T̃jk = τ̃1k + τ̃2j , where τ̃1 and τ̃2 are the estimated arrival times pertaining to the first

and second arrays, respectively, the extraction of the single arrival times t̃
1 and t̃

2 must be modified

accordingly.
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(a) (b) IDORT
t (~r;v1) (c) IDORT

t (~r;u1)

(d) t = −1 ns (e) t = −0.5 ns (f) t = 0 ns (g) t = 0.5 ns (h) t = 1 ns

Figure 2.20: Time domain DORT method applied to the transmission setup in Fig. 2.11(a).

The arrival times estimation method (2.35)-(2.37) is applied. (a) Arrival times for

each array. (b,c) Time domain DORT field charts for the right and left singular

vectors v1 and u1, respectively. (d-h) Different frames of the movie resulting from

the coherent back-propagation of both v1 and u1.
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(a) (b)

Figure 2.21: Synthetic data with two small metallic targets. (a) Setup and (b) DORT singular

values as a function of frequency (blue and red curves) compared to the largest

singular values obtained with one single target in place for each of the targets

(black dashed and dotted-dashed curves).

• The quadratic nature of the SVD operator, even without multiple scattering between

targets, is responsible of such behavior. The key factor is the scalar product (v̄1
1)
H
v̄2
1
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(a) IDORT
ω (~r;v1) (b) IDORT

ω (~r;v1) (c) IDORT
ω (~r;v1) (d) IDORT

ω (~r;v1) (e) IDORT
ω (~r;v1)

(f) IDORT
ω (~r;v2) (g) IDORT

ω (~r;v2) (h) IDORT
ω (~r;v2) (i) IDORT

ω (~r;v2) (j) IDORT
ω (~r;v2)

2 GHz 2.5 GHz 3 GHz 3.5 GHz 4 GHz

Figure 2.22: DORT images from 2 GHz to 4 GHz associated to the (a-e) first and (f-j) second

singular values of the K matrix relative to the configuration in Fig. 2.21.

between the unperturbated singular vectors

(
v̄1
1

)H
v̄2
1 ≈

∑

j

H−
0 (k|~rj − ~r 1

tgt|)H+
0 (k|~rj − ~r 2

tgt|) , (2.39)

that strongly affects λ1 and λ2. Although it can been shown, for example through the

use of the Graf’s formula for each Hankel function, that in the complete configuration

(v̄1
1)
H
v̄2
1 ∝ J0(k|~r 2

tgt − ~r 1
tgt|) = ℑ

[
G(ω;~r 1

tgt, ~r
2
tgt)
]

[18], in the case of a measurement

line no such simple result holds. Nevertheless, an oscillating behavior can be expected,

exactly as in Fig. 2.21(b), where the period of the oscillations of λ1 and λ2 around λ̄11
and λ̄21 is in a range between 600 MHz and 800 MHz, close to c/|~r 2

tgt−~r 1
tgt| ≈ 800 MHz.

• In presence of multiple scattering, yet another term oscillating with k|~r 2
tgt − ~r 1

tgt|
appears [103].

• As for the singular vectors v1 and v2, they are linear combinations of v̄1
1 and v̄2

1,

and this again regardless of multiple scattering. This generates a coupling that is

responsible of parasite focusing in the direction of the “wrong” target.

The effect of the presence of two targets onto the singular vectors is clearly shown in

Fig. 2.22, where the field charts corresponding to v1 and v2 between 2 GHz and 4 GHz are

plotted with a step of 500 MHz. At those frequencies where, in Fig. 2.21(b), the singular

values are unmodified, e.g. 3 GHz and 4 GHz, the field charts show clean focusing beams

in the directions of either target. On the other hand, when the singular values are altered,

e.g. at 2 GHz and 3.5 GHz, the beams couple, although more energy is always sent in the

direction of the “right” target.
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It must be noticed that the nice selective focusing achieved in Fig. 2.22 is not always

ensured. In [103], for the case of two identical targets placed symmetrically with respect to

the array axis, it is shown that v1 and v2 are proportional to v̄1
1 ± v̄2

1, which implies that

both of them focus onto both of the targets, although with different phases. On the other

hand, if the targets have different scattering power and/or are placed at different distances

with respect to the array, some degree of selective focusing can be obtained as in Fig. 2.22.

In the general case, there exists no solution to the best of our knowledge to the problem

of retrieving v̄1
1 and v̄2

1 given the coupled v1 and v2. Nonetheless, the availability of a large

bandwidth is somehow helpful in this sense. In effect, if fbw > 2c/|~r 2
tgt − ~r 1

tgt|, according to

(2.39), there is at least one frequency where (v̄1
1)
H
v̄2
1 nulls, that is, a minimum amount of

coupling affects the singular vectors and true selective focusing is obtained. Furthermore,

using all the monochromatic charts, one for each frequency, as previously explained in

§2.3.3.2, helps in increasing the quality of target separation with respect to the single-

frequency case.

Experimental results

The experimental result proposed here is relative to a transmission configuration. As

described in §1.3, the transmission configuration is experimentally particularly interesting

because of a far larger dynamic range than in the reflection configuration. In the frame

of DORT, the same behavior observed in reflection must be expected. In effect, (2.3.3.1)

is formally unchanged, so that all the subsequent derivations hold as well provided the

geometric hypotheses (low-frequency regime and so-on) are verified for both the antenna

arrays.

In Fig. 2.23 the results of a two-target setup are presented. The imaged objects are

placed at the same distance from the array, rather symmetrically with respect to its axis,

but they have different scattering strengths, the first being metallic and the second wooden

(εr ≈ 2) and slightly smaller. Thanks to the large dynamic range, at least four singular

values emerge neatly from noise. As shown by the time-domain field charts associated to

the three largest singular values, a symmetric component per target and an anti-symmetric

one - a sort of “common” anti-symmetric for both targets - are extracted. The arrival times

estimation method (2.35)-(2.37) has been applied to plot the field charts, so that tfoc = 0 s13.

Coupling between v1 and v2 is at the origin of the parasite focusing onto the wooden target,

13For a two-arrays configuration, the method described in §2.3.3.2 must be slighlty modified. Given an

N2 ×N1 K matrix, the k = 1, N1 versions of the left singular vector are

u
[k]
l (ω) =

[

u
H
l (ω)K[k](ω)

]

ul(ω) ,

where K
[k] is now the kth line of K. Then, the N2 × N1 arrival times matrix T̃ is built identically.

Nonetheless, since T̃jk = τ̃1k + τ̃2j , where τ̃1 and τ̃2 are the estimated arrival times pertaining to the first

and second arrays, respectively, the extraction of the single arrival times t̃
1 and t̃

2 must be modified

accordingly.
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(a) (b)

(c) IDORT
t (~r;v1) (d) IDORT

t (~r;v2) (e) IDORT
t (~r;v3)

Figure 2.23: DORT method applied to the transmission setup in (a). (b) K matrix singular

values as a function of frequency. (b-d) Time-domain field charts associated to

the right singular vectors vl|l=1,2,3 built using the arrival times estimation method

(2.35)-(2.37). The experimentally retrieved antenna pattern is used.

normally associated to v2, when plotting IDORT
t (~r;v1), and vice versa. Nonetheless, using a

temporal approach over a so large bandwidth helps in improving the rejection of the wrong

target: with respect to those frequencies where coupling is considerably higher (e.g. only

3-5 dB rejection, cf. Fig. 2.22), the rejection is increased, without any frequency selection

procedure, up to around 8-10 dB. Notice also that the field charts are built using the

experimentally retrieved antenna pattern. Indeed, the maximum point (black cross) of the

focusing charts well corresponds to the target position, and in particular for the metallic

case to the side nearest to the emitting array.

2.3.3.6 Acquisition of the K matrix

The advantages given by the DORT method, namely the immediate availability of the

focusing vector (without TR iterations) and the selective focusing capability, necessitate

the knowledge of the inter-element matrix K. Given an array of N antennas, the most

straightforward way of recording K consists in illuminating the medium with the first
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antenna and measuring the response over the entire array, then switching to the second,

and so on until the N th. The steering vectors are then s1 = 1T1 , s2 = 1T2 , up to sN = 1TN ,

and the corresponding measurements are the columns of K. As compared to TR, which

necessitates the acquisition of only one column of K, this procedure takes at least N times

more time, ultimately limiting the detection range or, equivalently, the target speed or

“degree of unstationarity” of the medium under which detection is still ensured. This is the

price to pay when using DORT in practical applications.

Nevertheless, at least two alternative strategies aimed at reducing the acquisition time

can be considered.

• In [104], the authors propose to sound the medium withN orthogonal vectors {sl}l=1,N

each involving all the antennas and not simply “turning on” one single antenna per

emission. The idea consists in improving the SNR in the received signals, since each

emitted beam is now more energetic whereas the receiver noise is unchanged. Build-

ing a matrix S = [s1 s2 · · · sN ], the measured matrix is simply KS. Naming λ̂l and v̂l

the new lth singular value and vector, respectively, it is easy to see that λ̂l = λl and

v̂l = SHvl, where λl and vl are the lth singular value and vector of K. The latter,

which is the actual sought steering vector, can finally be retrieved as Sv̂l.

Folégot et al. have proposed in [105] to reduce to M < N the number of orthogonal

sounding vectors, which indeed reduces by a factor N/M the acquisition time. Al-

though the measured matrix KS is now a [N ×M ] matrix, if M is sufficiently larger

than the number of targets (especially if in the low-frequency regime), the SVD of

the new matrix gives exactly the same informations obtainable with K.

• A different approach, requiring wideband signals, consists in sounding the medium

again with all the antennas transmitting at the same time, but each sending a pulse

belonging to an orthognal set. At reception, through deconvolution at each receiver,

the orthogonality in the time domain is recast into the space domain, allowing to

retrieve the impulse response of the medium to each emitting antenna. After IFT,

one element of the K(ω) matrix is thus measured. Of course ideal codes having

both impulsive auto-correlation and zero cross-correlation do not exist (unless infinite

sequences, or emission time, are considered!). Hence, the K matrix measured through

this technique suffers from a reduced SNR, ultimately limiting the precision of the

DORT method (or any other method based on the use of K). In [106], a study on

how to build efficient codes for a given application is carried out.

2.3.3.7 Conclusions

The DORT method can be favorably exploited in an experimental multi-static, multi-

frequency setup. Detection and localization work well in free-space. For a single-target in

reflection, though, the down-range resolution is poorer than with Kirchhoff migration, as

visible for instance when comparing Fig. 2.8(c) and Fig. 2.16(j). As for cross-range, the
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resolutions are comparable.

In transmission, on the other hand, while Kirchhoff migration suffers from the limited

array aperture and is extremely sensitive to the estimation of the arrival times, DORT

achieves the same good results observed in reflection. This happens because DORT does

not rely on a round-trip estimation as Kirchhoff migration, it rather extracts the feeding

vectors of each array separately throught the SVD of the K matrix.

One very interesting feature offered by the DORT method concerns selective focusing.

Indeed, apart from the selective imaging capability (cf. Fig. 2.23), it is possible to naturally

retrieve, via the SVD of the multi-static matrix, the focusing law that, as for TR, can be used

to experimentally transmit a focusing wave. Although coupling between singular vectors,

present even in absence of multiple scattering, prevents from perfect selective focusing,

more than 10 dB “wrong” target rejection is observed for targets in far-field and sufficiently

separated.

The time-domain extension of DORT, leading to coherent temporal singular vectors, is

feasible especially through the arrival times-based method (2.35)-(2.37). This technique

does not necessitate any a priori information and seems rather robust with respect to

clutter. The only requirement is that the pertinent singular value be always associated

to the same target within the frequency band employed. Indeed, in configurations with

very small or even negative-in-dB SNR, it might be impossible or very hard to track over

frequency the singular values associated to the targets of interest, resulting in wrong arrival

times estimations and singular vectors synchronization. An example of such a delicate case

is given in §2.3.5 for an experimental through-the-wall configuration.

Finally, a “side-effect” of the SVD at the heart of the DORT method is the possibility of

classifying the singular values as belonging to the signal or noise subspaces. This distinction

casts the basis of a category of localization methods, among which the TR- (or DORT-)

MUSIC is probably the most representative and is therefore presented next.

2.3.4 TR-MUSIC

TR-MUSIC as a method for detecting targets with a multi-static system was proposed

in 2000 by Lev-Ari and Devaney [4] and formalized in 2003 by Prada and Thomas [5] by

merging the non-linear MUSIC estimator principle [107, 108] with the Time Reversal and,

more explicitly, DORT methods. The idea consists in borrowing the statistical concepts of

signal and noise subspaces and in applying them to the deterministic frame of DORT, and

namely to the SVD of the multi-static matrix K. These subspaces are the (λm;um,vm)

singular spaces into which K is decomposed: the signal subspace contains those associ-

ated to the target(s) - for instance symmetric and anti-symmetric spaces in the case of a

measurement line; the noise subspace all the others. The assumption that the m = 1,M

first singular spaces form the signal subspace is usually done for defining the TR-MUSIC

method.
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Now, due to the orthogonality of the singular vectors, it can be expected that those

belonging to the noise subspace do not focus onto the target(s), whereas the signal subspace

ones do. Therefore, inspired by the “classical” MUSIC method, the measure of the distance

between the signal subspace {vm}m=1,M and the normalized Green function vector Ĝ(~r)

gives an indication on whether the point ~r belongs or not to the focusing region of the

target. For instance, since for a point target located at ~rtgt DORT gives v1 = eiφaĜ∗(~rtgt),

the aforementioned distance, 1 −
∣
∣
∣vT1 Ĝ(~r)

∣
∣
∣

2

equals 0 at ~r = ~rtgt, that is, it is minimized.

Finally then, the TR-MUSIC image can be obtained as

ITR−MUSIC
ω (~r;M) =

[

1−
M∑

m=1

∣
∣
∣v

T
mĜ(~r)

∣
∣
∣

2
]−1

=





min(N1,N2)∑

m=M+1

∣
∣
∣v

T
mĜ(~r)

∣
∣
∣

2





−1

, (2.40)

which is supposed to be maximum at the target location.

Concerning the achievable resolution, it must be noticed that in absence of noise, since as

just stated the signal subspace-Green function distance is null for ~r = ~rtgt, (2.40) diverges.

Therefore, the image reduces to a point and the resolution is infinitely small! The presence

of noise brings back the resolution to a finite value that depends on the SNR. As an example,

the case of a measurement line with a large number of antennas imaging two very close

point targets (distance d < λ/2) has been analytically studied by Davy in [109] assuming

gaussian noise decorrelated over the antennas.

Of course, the main difficulty in (2.40) consists in choosing the correct signal subspace

dimension M . On this purpose, thresholding mechanisms as those employed in RADAR

signal processing to achieve a constant false-alarm rate (CFAR) [92] in conjunction with

the use of random matrix theory to estimate the distribution of noise singular values [110]

might be useful.

What is interesting here, is the role of the anti-symmetric singular vectors in the case

of extended targets. Indeed, although they rigourously belong to the signal subspace -

they cannot exist in absence of targets - the field charts associated to them have a null in

the direction of the target (cf. Fig. 2.15(f)). Thus, it seems advisable to rather classify

them as part of the noise subspace, which is supposed to further improve the quality of

the TR-MUSIC image. In Fig. 2.24, a numerical example based on the setup in Fig. 2.18

is presented. For the PVC cylinder filled with tap water εr = 80 has been chosen for the

numerical resolution. The results show that setting M = 1 indeed gives almost a single point

with infinite resolution, which is limited here only by the pixel dimensions in the field chart.

Notice that the position of this point does not correspond to the center of the circle mainly

because the array aperture angle ∆ϕ is not infinitely small (c.f. §2.3.3.1). Adding also the

first anti-symmetric singular space to the signal subspace (M = 2) brings the resolution

to a finite, although very small, value. This can be explained since the symmetric singular

value corresponds to an isotropic field and hence to a point target, which is indeed retrieved

in Fig. 2.24(b). On the other hand, adding anti-symmetric singular values means imaging

an extended target, justifying the finite-dimension spot in Fig. 2.24(c). This is also why
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further increasing M gives results very similar to the M = 2 case.

(a) (b) ITR−MUSIC
ω (~r; 1) (c) ITR−MUSIC

ω (~r; 2)

Figure 2.24: Synthetica data relative to the configuration in Fig. 2.18. (a) Singular values dis-

tribution, and (b-c) TR-MUSIC images at 3 GHz with signal subspace dimension

M = 1 and M = 2, respectively.

Experimental results

The absorbing and reverberating configurations presented in Fig. 2.18(a) and Fig. 2.19(a),

respectively, are tested in Fig. 2.25. Concerning the former (top row), for which the symmet-

ric and anti-symmetric singular values were clearly distinguished from noise in Fig. 2.18(b),

the down-range resolution is severely impacted with respect to the synthetic results just

studied. Switching to M = 2 degrades even more the cross-range resolution.

The results related to the reverberating configuration (bottom row) globally show re-

duced resolution and image contrast, or rejection, in cross-range, especially in the case

M = 1. This is due to the perturbation of the propagating medium with respect to free-

space, which alters the complex amplitude laws of the singular vectors. It is interesting to

notice how using M = 2, 3 adds additional spots in the direction of the metallic plate (on

the left of the array) and of the tiled wall, whereas the cross-range rejection is improved.

The additional spots are due to the fact that vm|m=2,3 generate themselves additional beams

in their directions. The improved cross-range rejection, on the other hand, comes from the

coupling between vm|m=2,3 and v1 due to their small amplitude separation in Fig. 2.19(b).

In other words, vm|m=2,3 contain a part of the signal scattering contribution as well and it

makes thus sense to include them within the signal subspace.

2.3.4.1 Time-domain extension

As DORT or Phase Conjugation, TR-MUSIC deals with time-harmonic signals. Never-

theless, as already discussed in the case of DORT, extending the method to time-domain

can be advantageous under several aspects.

As done for DORT in (2.26), summing all the frequencies already improves the result.
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(a) ITR−MUSIC
ω (~r; 1) (b) ITR−MUSIC

ω (~r; 2)

(c) ITR−MUSIC
ω (~r; 1) (d) ITR−MUSIC

ω (~r; 2) (e) ITR−MUSIC
ω (~r; 3)

Figure 2.25: TR-MUSIC at 3 GHz applied to the configurations (a,b) in the absorbing chamber

of Fig. 2.18(a), and (c-e) in the reverberating medium of Fig. 2.19(a).

Two possible ways of doing so exist:

ITR−MUSIC
ωω (~r;M) =











ωM∑

ωm

min(N1,N2)∑

m=M+1

∣
∣
∣v

T
m(ω)Ĝ(ω;~r)

∣
∣
∣

2





−1

type 1

ωM∑

ωm





min(N1,N2)∑

m=M+1

∣
∣
∣v

T
m(ω)Ĝ(ω;~r)

∣
∣
∣

2





−1

type 2

. (2.41)

Nonetheless, either solution does not exploit frequency coherency.

In [99], Borcea et al. have proposed an interesting frequency-coherent approach. As a

first step, the following time-domain vector must be built:

A(t;~r;M) = IFT







min(N1,N2)∑

m=M+1

[

vTm(ω)Ĝ(ω;~r)
]

v∗
m(ω)






(t) . (2.42)

It represents a sort of time-domain back-propagated noise subspace not suffering from the

phase indetermination issue due to the SVD (thanks to the presence of both vm and v∗
m).

The image is finally obtained by recombining the components of the vector A(t;~r;M) after

evaluating them at the antenna-investigation point arrival time tdj (~r):

ITR−MUSIC
t (~r;M) =







∫ δt

−δt

∣
∣
∣
∣
∣

N1∑

j=1

Aj
[
tdj (~r) + τ ;~r;M

]

∣
∣
∣
∣
∣

2

dτ







−1

, (2.43)
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where the integration over a 2δt interval is needed to take into account the finite probing

pulse length. The arrival time is simply

tdj (~r) , tj =
dj(~r)

c0
. (2.44)

Notice that this solution could in principle be applied to the signal subspace of the K

matrix, with no need for the (·)−1 in (2.43). A coherent time-domain DORT image would

then be obtained. Nonetheless, it would suffer from reduced resolution performances with

respect to TR-MUSIC, both in cross- and in down-range.

As already described in the case of DORT (see §2.3.3.4), the coherent recombination of

the images built with the right and left singular vectors is possible with TR-MUSIC. But,

while for DORT a sort of synchronization of the two charts were needed by extracting the

arrival times from the target to each antenna, (2.42) assures coherency between right and

left singular vectors just as it does in time. Therefore, two time-domain vectors can be

defined:

A1(t;~r;M) = IFT







min(N1,N2)∑

m=M+1

[

vTm(ω)Ĝ1(ω;~r)
]

v∗
m(ω)






(t) (2.45a)

and

A2(t;~r;M) = IFT







min(N1,N2)∑

m=M+1

[

uHm(ω)Ĝ2(ω;~r)
]

um(ω)






(t) , (2.45b)

where Ĝ1 and Ĝ2 are the normalized Green function vectors pertaining to the first and

second arrays, respectively. Finally, the TR-MUSIC image can be built as

ITR−MUSIC
t (~r;M) =

{∫ δt

−δt

∣
∣
∣
∣
∣

N1∑

j=1

A1; j

[
td1; j(~r) + τ ;~r;M

]
+

+

N2∑

k=1

A2; k

[
td2; k(~r) + τ ;~r;M

]

∣
∣
∣
∣
∣

2

dτ







−1

, (2.46)

where the arrival times td1; j(~r) and td2; k(~r) have to be calculated with respect to the position

of the antennas of the first and second arrays, respectively. It is easy to see in (2.45) that by

evaluating the elements of A1 and A2 at the corresponding arrival times, the contributions

of the two arrays sum up constructively and, depending on the geometry of the setup, an

improvement in the DORT image can be obtained.

Experimental results

As a first step, the same reflection configurations studied in Fig. 2.25 are tested here.

Fig. 2.26 corresponds to the absorbing chamber setup. With respect to the monochromatic

result in Fig. 2.25(a,b), using ITR−MUSIC
ωω gives an overall cleaner image than in Fig. 2.25(a),



2.3. SCATTERING CASE 91

in the sense that eventual side lobes are averaged out by the incoherent frequency sum.

Apart from this, the cross-range rejection is barely changed. As for the difference between

the two solutions in (2.41), almost none can be appreciated. On the other hand, the

coherent time-domain approach ITR−MUSIC
t in (2.42)-(2.43) drastically improves cross-range

resolution and rejection.

(a) ITR−MUSIC
ωω (~r; 1), type 1 (b) ITR−MUSIC

ωω (~r; 1), type 2 (c) ITR−MUSIC
t (~r; 1)

Figure 2.26: Time-domain extensions of TR-MUSIC applied to the reflection configuration in

the absorbing chamber of Fig. 2.18(a).

(a) ITR−MUSIC
t (~r; 1) (b) ITR−MUSIC

t (~r; 2) (c) ITR−MUSIC
t (~r; 3)

Figure 2.27: Time-domain extension of TR-MUSIC applied to the reflection configuration in

the reverberating medium of Fig. 2.19(a).

As for the reverberating case in Fig. 2.27, only ITR−MUSIC
t has been used by varying M

from 1 to 3. The monochromatic results are confirmed: using M = 2 and M = 3 improves

the quality of the image in cross-range. In addition, with respect to Fig. 2.27, the frequency

coherency of this method helps in reducing the energy of the “lobes” directed towards the

sides of the chamber.

A final example concerns the transmission setup already shown in Fig. 2.23(a) with two

targets, a metallic and a wooden cylinder 15 cm spaced (from center to center). Given

the singular values distribution in Fig. 2.23(b), and since λm|m=1,2 are each associated to a

target, M is set to 2. The results in Fig. 2.28 again show the better cross-range rejection

given by the coherent time-domain approach and, remarkably, the improved quality of the

image obtained when coherently merging the charts of the two arrays (Eq. (2.46)).
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(a) ITR−MUSIC
ωω (~r; 3) (b) ITR−MUSIC

t (~r; 3) - (2.43) (c) ITR−MUSIC
t (~r; 3) - (2.46)

Figure 2.28: Time-domain extensions of TR-MUSIC applied to the transmission configuration

in Fig. 2.23(a). The experimentally retrieved antenna pattern is used.

2.3.4.2 Arrival time regularization

From the experimental results just presented it is clear that while TR-MUSIC has a very

good cross-range resolution because of its non-linear nature, its performances in down-range

are rather poor. In §B.2, under the frame of DORT, that is, using the signal subspace instead

of the noise one in (2.42)-(2.43), it is shown that the theoretical down-range resolution is

indeed infinitely large, becoming finite but yet very poor if considering the effect of the

array aperture. This happens because in (2.42)-(2.43) the image is formed by trying to null

the discrepancy between the following differences

[
tdk(~r)− tdj (~r)

]
− (τk − τj) , (2.47)

where, with reference to (2.42)-(2.43), the antenna-target arrival times τj−τk are contained

in v∗
m and vm, respectively, and the pixel-dependent arrival times tdj (~r)− tdk(~r) are brought

by the Green function and by the evaluation of (2.42) at tdj (~r). Indeed, under the paraxial

approximation, that is, for F ≫ D, it is easy to see that when moving in down-range

the two differences are approximately equal, resulting in a lack of down-range resolution.

Although employing the noise singular vectors provides some more down-range resolving

power, almost the same behavior has to be expected with TR-MUSIC.

The key for obtaining a satisfying down-range resolution lies in a proper estimation of

the antenna-target arrival times τ̃j |j=1,N . A possible way of retrieving them based on the

synchronization of the singular vectors (2.35)-(2.37) has already been discussed in §2.3.3.2.

Once they are known, again inspired by [99] and considering the case of a single array for

simplicity, it is possible to include them for imaging as a regularizing term,

ITR−MUSIC−AT
t (~r;M) =







∫ δt

−δt

∣
∣
∣
∣
∣

N∑

j=1

Aj
[
tdj (~r) + τ ;~r;M

] ∣
∣tdj (~r)− τ̃j + τ

∣
∣

∣
∣
∣
∣
∣

2

dτ







−1

. (2.48)

Here, the regularizing term is based on the difference between single arrival times, the

antenna-pixel arrival time, tdj (~r), and the estimated antenna-target one, τ̃j . With respect
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to (2.47) where the difference between differential arrival times appears, the image is now

much better resolved in down-range.

In case of multiple targets, say Ntgt, it easy to adapt (2.48) as

ITR−MUSIC−AT
t (~r; {Mn}n=1,Ntgt) =

Ntgt∑

n=1







∫ δt

−δt

∣
∣
∣
∣
∣

N∑

j=1

Aj
[
tdj (~r) + τ ;~r;Mn

] ∣
∣tdj (~r)− τ̃nj + τ

∣
∣

∣
∣
∣
∣
∣

2

dτ







−1

, (2.49)

where Mn and τ̃nj are the signal subspace dimension and the estimated arrival time per-

taining to the nth target, respectively.

Experimental results

The arrival time regularization has been tested against the experimental configurations

already studied in §2.3.4.1. For both the anechoic and reverberating configurations in

Fig. 2.26 and Fig. 2.27, the arrival times extracted from the raw K matrix or through the

singular vector-based method (2.35)-(2.37) are also shown in Fig. 2.29(a,d). While in the

anechoic case both methods give roughly the same values, a significant difference is observed

in the reverberating configuration. Again, through the use of the singular vectors and their

averaging, the reduction of the effect of reverberation produces a significant improvement in

the estimates, since the K matrix-based values differ from 0.25 ns to 0.5 ns, corresponding to

a down-range error of 7.5 cm to 15 cm. As expected, a great improvement in the down-range

resolution is obtained in Fig. 2.29(c) and Fig. 2.29(f), which merge the TR-MUSIC results

of Fig. 2.26(c) and Fig. 2.27(c) with the arrival time regularizations shown in Fig. 2.29(b)

and Fig. 2.29(e), respectively.

A similar improvement is also observed in Fig. 2.30 for the transmission two-target

configuration already studied in Fig. 2.28, where the multiple target approach (2.49) has

been used in addition to the conjoint use of both arrays (2.46).

2.3.4.3 Conclusions

The importance of TR-MUSIC lies mainly in the improved - theoretically infinitely

small - cross-range resolution with respect to linear methods such as DORT or Kirchhoff

migration. This is confirmed even with realistic values of SNR. Its extension to time-domain

further enhances the achievable resolution, and proves to be rather effective in cluttered

media to reduce the blurring of the images.

The drawback of TR-MUSIC is clearly its poor down-range resolution in the case of a

small measurement line. Nonetheless, an image regularization based on the estimation of

the antenna-target arrival times can considerably improve the results. Here, it has been

validated through experimental results.

The main difficulty, as for DORT, is hidden in the classification of the singular spaces

issued from the SVD of the K matrix. A clarifying example is given in the next paragraph,
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(a) (b) (c) ITR−MUSIC−AT
t (~r; 1)

(d) (e) (f) ITR−MUSIC−AT
t (~r; 3)

Figure 2.29: Arrival time regularization applied to TR-MUSIC for the anechoic (top) and rever-

berating (bottom) configurations in Fig. 2.26(c) and Fig. 2.27(c), respectively.

(a,d) Extracted arrival times - from the raw K matrix or through the singular

vector-based method (2.35)-(2.37). (b,e) Chart of the regularization term only

based on the arrival times. (c,f) Regularized TR-MUSIC chart.

Figure 2.30: Arrival time regularization applied to TR-MUSIC, ITR−MUSIC−AT
t (~r; 2, 2), for the

transmission configuration in Fig. 2.28(c).

where a low SNR makes it hard to separate signal an noise subspaces. An additional

degree of difficulty comes from the necessity of tracking the singular spaces over frequency,

since it is mandatory - especially for the estimation of the arrival times - that a signal

subspace be associated to the (same) target at all the frequencies within the band. In this

sense, Kirchhoff migration appears as a more robust method for imaging purposes, since

no classification whatsoever is required. If high resolving power is needed and a low SNR
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(a) (b)

Figure 2.31: (a) Schematization of the room sounded with the antennas shown in (b) and placed

behind the wall.

is available, though, algorithms capable of classifying and tracking the singular spaces are

required for TR-MUSIC to work properly.

2.3.5 An experimental case study: the Through-The-Wall mea-

surement campaign

During the PhD period, the LSEET participated to a national project financed by the

French Ministry of Defence (REI / 2008 34 0022). It consisted in exploring the potentialities

of Time Reversal-based processing for detection of human targets in a room sounded from

behind a wall. This kind of topic is known in literature as Through-The-Wall (TTW)

imaging. Other partners of the project were the Laboratoire d’Électronique, Antennes et

Télécommunications (LEAT) in Nice-Sophia Antipolis, responsible for the experimental

workpackages, the Institut Langevin in Paris, exploiting the data just as the LSEET, and

the Office National d’Études et Recherches Aérospatiales (ONERA) as coordinating entity.

Two measurement campaigns, resulting into two experimental databases, were held in

november 2009 and july 2010, respectively, in an old fort located at La Turbie, France14.

Some of the details concerning the configuration explored here are listed next:

• the room where the targets are placed has a surface of 4 × 5.5 m2, and is separated

from the antennas by a 1 m-deep wall built with limestone rocks (see Fig. 2.31(a));

• the wall thickness and permittivity, dw and εwr respectively, are experimentally esti-

mated to dw = 1 m and εwr ≈ 11.8;

• the room is furnished, and the target is a human being located at one of the positions

in Fig. 2.32;

14LSEET also participated to the first campaign in support of the leading group from LEAT
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(a)

(b) P11 (c) P12 (d) P17 (e) P18

Figure 2.32: (a) Measurement positions of a human target moving in the furnished room of

Fig. 2.31(a). The antennas are behind the wall (not shown) at the bottom of the

figure. (b-e) Pictures of the positions 11, 12, 17, and 18, which are used later as

test cases.

• an array made of 8 ETS antennas15 separated by ∆x = 30 cm is used in a multi-static

configuration;

• the K matrices, with and without targets, are measured with an 8-port VNA in a

frequency band going from 0.45 to 5 GHz with a step of 5 MHz and 100 Hz IF filter

bandwidth; the K matrix acquisition time is approximately 75 s;

• the antennas are placed right against the wall (see Fig. 2.31(b)), since it has exper-

imentally been found that this assures a better dynamic range than a configuration

with the antennas away from the wall. Also, the antennas are surrounded (in the

back) by absorbing panels that avoid the propagation of the signal reflected from the

wall in the room where the antennas are placed.

Some of the results have been published in [72].

Concerning the signal processing adapted for this kind of experiments, most of the meth-

ods developed in §1.6 are used here. For instance, as shown in Fig. 2.33(a), each element

of the K matrix is time-gated in the time domain in order to extract only the contribution

of the targets within the room. Particular attention must be cast into the choice of the

FFT window, Wω(ω). For any retrodiffusion element Kjj, it must indeed be avoided that

the echo of the front side of the wall, stronger than the antenna reflection coefficient (see

15Although based on the same design, these ETS antennas are larger than those used at LSEET, resulting

in a bandwidth shifted towards the low frequencies.
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(a) (b)

Figure 2.33: (a) Time domain retrodiffusion measurement (incident, total, and scattered S11).

(b) Singular values distribution as a function of frequency for the position P12 in

Fig. 2.32.

Fig. 2.33(a)), does not alias upon the target echo after windowing. Although the differential

approach reduces here by more than 70 dB this contribution, and although the target echo

is rather “far” in time due to the long propagation of the signal through the wall, still a

window other than the rectangular function must be employed. The choice has fallen onto

a tukey window (cf. §1.6.2) with a tapering of 100 MHz at both edges of the frequency

band.

Propagation through the wall must properly be taken into account when plotting field

charts or evaluating arrival times. Although a formal, exact derivation (at least in the

case of a wall infinitely large in the cross-range with respect to the antenna array) is

feasible, the approximation in [111] is simply employed here. It consists in describing the

signal propagation as a single path from one side to the other of the wall, hence neglecting

the multiple reflections within its width. With respect to the rigorous expression, it is

computationally extremely faster, while the results are hardly affected due to the relatively

high conductivity value of the wall, σw, which determines a rapid attenuation of the signal

rebounding within its width. The parameters of such a model are dw and εwr . As for the

lateral and rear walls of the room in Fig. 2.31(a), they are not taken into account at all.

The singular values of the K matrix as a function of frequency for the configuration P11

in Fig. 2.32 are plotted in Fig. 2.33(b). As a first remark, the amplitude of the largest one

decreases rapidly as the frequency grows. Up to 3.5 GHz, the decrease is rather linear in

dB, that is, exponential in natural units, which corresponds to the attenuation within the

wall due to the non-zero σw value. For larger frequencies, it is possible to state that any

signal is completely overruled by noise. In practice, for any method utilizing the SVD of

K, only the frequency band [0.45-1.5] GHz is exploited.

The results presented next aim at comparing the performances of the Kirchhoff migration

method (§2.3.1) against those relative to the time-domain TR-MUSIC method combined
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with the arrival time regularization (§2.3.4.2). In Fig. 2.34, this is done for the four positions

shown in Fig. 2.32 and using the differential K matrix calculated, as usual, as the difference

between the matrices relative to the room with and without target(s). On the other hand,

Fig. 2.35 gives the results when the K matrices related to two configurations are subtracted,

namely P12-P11 in Fig. 2.35(a-c) and P18-P17 in Fig. 2.35(d-f). Doing so, there is no need

for the measurement of the empty room, which might be problematic in real applications.

As for the resulting signals, they are equivalent to those that would be measured if two

targets were present in the room, apart from the multiple scattering between them that

cannot be recreated. Notice that the color scale in both figures has been set to 0 to -10 dB,

that is, a 10 dB-smaller range than for all the other results of the chapter. Although purely

for visual inspection of the results, this is needed in order to counteract the effect of a much

lower SNR - due to the reduced dynamic range induced by the attenuation of the wall - in

the present TTW setup.

Both methods give globally satisfactory results. For the positions farther from the array

side of the room, namely P11 and P12, the proximity of the wall alters the images: for

instance, with Kirchhoff migration two hot spots appear, whereas TR-MUSIC gives a single,

worse-resolved region in-between such spots for P11. As for the multiple targets results, in

the P18-P17 case TR-MUSIC fails in detecting both of them.

The general conclusion is that Kirchhoff migration is a very robust method. If dw and εwr
are properly estimated, there is no choice whatsoever to be made when building the image

of the targets. Due to its fine down-range resolution, the effect of a wall in the room placed

in the down-range direction creates sort of replicas of the target image, probably due to the

reflection of the wall and its interference with the direct echo from the target.

On the other hand, while these artefacts are apparently reduced because of a lower

obtainable down-range resolution, TR-MUSIC is very sensitive to the repartition of the K

matrix singular spaces. Indeed, for the choice of the signal subspace dimension M , it is

necessary that the singular value(s) associated to the target(s) do not cross in frequency

with noise-related ones. This happens clearly in Fig. 2.34(a) at 660 MHz, 1.025 GHz, and

1.375 GHz, in Fig. 2.34(d) at 720 MHz, to mention only a few. Hence, only configurations

with a large SNR can really beneficiate from these SVD-based methods.

Nonetheless, in multiple targets scenarii, even if a high SNR is available, it may happen

that the singular values associated to the targets cross. The effects are then similar to those

just mentioned for crossings with nose-related singular values, becoming especially critical

if the arrival times estimation based on the singular vector averaging (2.35)-(2.37) is used.

It finally seems that only when additional algorithms capable of tracking the nature of

the singular spaces will be available it will be possible to fully - and safely - rely on any of

these subspace-based methods.
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Figure 2.34: (left) Four largest singular values as a function of frequency. (center) and (right)

Kirchhoff migration and TR-MUSIC with arrival time regularization methods,

respectively. From top to bottom, the tested positions are P11, P12, P17, and P18

in Fig. 2.32.
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Figure 2.35: As Fig. 2.34, but the tested configurations are P12-P11 and P18-P17 in

Fig. 2.32.



Chapter 3

Quantitative inverse scattering

Depending on the applications, detection/localization of targets is not sufficient. Infor-

mations on the shape and/or on the nature of a scatterer are for instance mandatory in

medical applications, or in geophysical prospection, just to mention a few. In addition,

non-destructive or non-invasive techniques are often needed to retrieve them. In this sense,

electromagnetic inverse scattering appears as a good candidate for solving the problem. In

effect, it consists of measuring the electromagnetic field scattered from a medium - which is

a non-desctructive process as long as the power emitted to sound the medium is relatively

low - and to retrieve a full, quantitative description of the scatterers.

From the mathematical point of view, the general problem is a very difficult one. Al-

though it can, in some cases, be simplified if a priori informations about the scatterers are

available (e.g. its shape or its nature - dielectric or purely metallic), this chapter concen-

trates on the unsimplified problem.

The rigourous physical description of the scattering process is contained in the Maxwell’s

equation. The problem of solving, or inverting, these equations is first mathematically

formulated and studied. Then, a short and unexaustive overview of the existing inversion

methods is given, with emphasis on the algorithm chosen for the present work, the Modified2

Gradient Method [12]. Finally, the adaptation of such algorithm to the experimental setup

presented in §1 is described, completed by a collection of experimental results.

3.1 Problem formulation

The section in the xOy plane of the general setup is shown in Fig. 3.1. Time-harmonic

fields with a eiωt dependency are considered in the following. An emitting antenna generates

a so-called incident wave associated to the incident field ~Ei(ω;~r). The interaction of the

wave with an object, whose support is D, generates the total field, ~E(ω;~r), which is mea-

sured by a receiving antenna. The difference between the two aforementioned quantities is

introduced under the name of scattered field, ~Es(ω;~r) , ~E(ω;~r)− ~Ei(ω;~r). The propaga-

tion medium is free-space (ε0), whereas the permittivity and conductivity of the scatterer

101
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Figure 3.1: General setup for the inverse problem.

are εr(~r) and σ(~r), respectively, both real quantities. Both the propagation medium and the

scatterer are considered as non-magnetic (µ(~r) = µ0); the former is in addition supposed

stationary, linear, isotropic and charge-free.

As already stated, Maxwell’s equation describe the whole process. Omitting the ω de-

pendency for conciseness, they can be re-arranged to obtain the propagation equation for

the complex amplitude

~∇× ~∇× ~E(~r)− k20 ~E(~r) = k20χ(~r)
~E(~r)− iωµ0

~J0(~r) , (3.1)

where χ(~r) is the contrast function defined as

χ(~r) = ǫr(~r)− i
σ

ωǫ0
− 1 , (3.2)

and ~J0(~r) is the current distribution within the source antenna, whose surface is indicated

with Σ in Fig. 3.1. All the properties of the scatterer (position, shape, nature) are contained

in χ(~r), which constitutes then the unknown of the inverse problem.

For the experiments performed within this manuscript, (3.1) can be restricted to a scalar

field. This is possible since 1) in virtue of the good cross-polarization rejection of the

antennas, a single polarization oriented in the z-direction can be considered for the electic

field, and 2) the scatterers are ideally infinite along z. The propagation equation becomes

then

∇2E(~r) + k20E(~r) = −k20χ(~r)E(~r) + iωµ0J0(~r) . (3.3)

Invoking the Green function

G(~r, ~r′) = − i
4
H−

0 (k0|~r − ~r′|) , (3.4)

solution of

∇2G(~r, ~r′) + k20G(~r, ~r
′) = −δ(~r − ~r′) (3.5)
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combined with Sommerfeld’s radiation condition [68], the solution of (3.3) becomes

E(~r) = G(~r, ~r′) ∗
[
k20χ(~r)E(~r)− iωµ0J0(~r)

]

= k20

∫

D

G(~r, ~r′)χ(~r′)E(~r′)d~r′ + Ei(~r) ,
(3.6)

with

Ei(~r) , −iωµ0

∫

Σ

G(~r, ~r′)J0(~r′)d~r′ . (3.7)

Hence, at any given location ~r, the total field is the sum of two contributions: the incident

field Ei, that is, the field generated by the primary sources with support Σ that would be

measured in absence of scatterers, and the scattered field generated by the induced sources

χE with support D. The product χE is also known as contrast-source since it plays the

role of an induced current, hence a source, within D.

The inverse problem consists in retrieving χ(~r) within a pre-determined investigation

region Ω, given the knowledge of the total field E|Γ on the measurement line Γ (see

Fig. 3.1). In many cases, it is also possible to measure the incident field Ei|Γ in absence

of scatterers. Then, the data of the problem are rather the scattered field measurements,

Es|Γ , E|Γ − Ei|Γ, which fits well the differential measurement approach adopted in this

work and described in the previous chapters. The equation relating them to the unknown

χ(~r), known as data equation, is derived from (3.6) when the evaluation position ~r ∈ Γ:

Es(~r) = k20

∫

Ω

G(~r, ~r′)χ(~r′)E(~r′)d~r′ , ~r ∈ Γ , (3.8)

where the integral is now performed over the entire investigation region Ω since χ(~r) = 0 if

~r ∈ Ω−D. In order to invert (3.8), though, the total field E|Ω over the region Ω is needed.

This can be obtained from (3.6) evaluated at ~r ∈ Ω, resulting in the state equation

E(~r) = Ei(~r) + k20

∫

Ω

G(~r, ~r′)χ(~r′)E(~r′)d~r′ , ~r ∈ Ω . (3.9)

3.1.1 Non-linearity and ill-posedness

The data and state equations can be re-written in the following concise way:

Es = GΓ(χE) (3.10)

E = Ei + GΩ(χE) . (3.11)

GΓ and GΩ are two linear integral operators both mapping the contrast-source χE to a

scattered field. Nonetheless, it is important to stress the fact that GΓ has values in Γ, and

is therefore sometimes called the far-field radiation operator (although Γ is not necessarily

in far-field with respect to Ω), whereas GΩ has values in Ω itself, hence its name of near-field

radiation operator:
GΓ : Ω→ Γ

GΩ : Ω→ Ω .
(3.12)
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In a slightly abusive manner, (3.11) can be solved for E, which, substituted in (3.10),

produces a unique equation. In formulae:

E =
(
I − GΩχ

)−1
Ei ⇒ Es = GΓ

[

χ
(
I − GΩχ

)−1
Ei
]

, (3.13)

where I is the identity operator. These results are particularly meaningful. From the left

equation, it can be observed that the relation between total and incident fields is linear.

On the other hand, the data of the problem, Es, depend non-linearly on the unknown χ:

the inverse problem is therefore a non-linear problem.

Furthermore, since it can be shown that the operator GΓ has an analytical kernel1,

it is a compact operator. Mathematically, the inverse of a compact operator cannot be

continuous [112]. The conclusion is that, since GΓ needs to be inverted in (3.13) in order to

find χ, its lack of continuity can make the solution diverge if the data are affected by noise

- which is unavoidable in practice. Hence, according to Hadamard’s definition, the problem

is ill-posed [1].

These two properties (non-linearity and ill-posedness) make particularly hard the resolu-

tion of the inverse problem. They are at the origin of a wide litterature of algorithms, meth-

ods, regularization schemes that alleviate these issues trading-off execution speed and/or

precision of the solution. Some of them are briefly presented next.

3.2 Overview of inversion methods

From a mathematical point of view, the solution of the inverse problem consisting in

finding the contrast χ(~r) given the scattered field Es|Γ is recast into an optimization problem

which, in most cases, is solved in the least-squares (or norm L2) sense. Under this frame,

two errors can be defined: one with respect to the data equation,

eΓ , ‖Es;meas − GΓ(χE)‖2Γ , (3.14)

where Es;meas are the measured scattered field data, and one to the state equation,

eΩ , ‖E − Ei − GΩ(χE)‖2Ω . (3.15)

The ‖ · ‖ symbol stands for L2 norm, and the indexes Γ and Ω indicate their domain of

validity. Then, a cost, or misfit, function that evaluates the overall error can be built:

F(χ) = wΓeΓ + wΩeΩ , (3.16)

where wΓ and wΩ are two weights to be set (although the only relevant tuning parameter

is their ratio). Notice that the true data estimation misfit is given by the first term of

1The kernel of an operator L is the set of all operands v such that L(v) = 0. From a physical point

of view, it is well known that there exist values of χE, the so-called non-radiating sources, such that

GΓ(χE) = 0, hence the kernel of GΓ is not empty. Finally, a kernel is said analytic if it can be expressed in

an analytic form, which is the case for GΓ.
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(3.16); the second one, related to the state, or auxiliary, variable E, plays the role of a

regularization in a constrained optimization problem.

Starting from this formulation, a first distinction among the approaches to solve the

inverse problem is between global and local optimization schemes. In the first case, the

global minimum χ̄ of the cost function is searched exhaustively, for instance using the

concept of neural network [113–115]. It is easy to see the drawback of this approach: when

the number of unknowns increases (e.g. for large investigation domains Ω and/or in 3D

problems), the computational burden becomes too heavy. For this reason, they are not

considered in this manuscript and are not detailed further. Local optimization schemes,

on the other hand, try to find a local minimum χ̂ of (3.16) in an iterative fashion starting

from an initial estimation. The computation burden is obviously reduced, at the price of

the risk of converging to a local minimum of F(χ).
Among the local optimization methods, further categories can be distinguished. A first

one concerns the role of the state equation. In many cases, it is indeed preferred to remove

it from the minimization procedure by considering a simplified cost function with only the

state equation term. Then, given the estimate χn at the nth iteration, Ẽn is found by directly

solving the state equation (3.9) (which is linear in E), and a new estimate χn+1 is retrieved

from the minimization of the cost function. This way, an unconstrained minimization

of the data equation is realized, and the problem is as a matter of fact linearized. The

minimization of the cost function can at least be done in two ways: 1) through Newton-

based approaches, as in the well-known Newton-Kantorovich Method [116–119] or in the

equivalent [120] Distorted Wave Born Method [121, 122], or 2) through the use of the

standard Polak-Ribière conjugate gradient (CG) procedure, as in the Born Method [123]

or in the Modified Born Method (MBM) [124].

On the other hand, the auxiliary unknown E can be sought conjunctly with χ by min-

imizing the whole cost function (3.16). The problem is again non-linear. In this case, the

CG minimization is always preferred to Newton-based methods, since the latter require a

higher complexity that must be added to the already increased complexity of the problem.

The resulting approach is called Modified Gradient Method (MGM) [118,125–127]. To this

category also belong two other methods based on a different yet equivalent mathematical

formulation of the problem aimed at decreasing its degree of non-linearity. They are the

Contrast Source Inversion (CSI) method [128], where both sides of the state equation are

multipled by χ so that the contrast-source χE replaces E as state variable, and the Con-

trast Source-Extended Born (CS-EB) Method [129–131]. Today, the first is probably the

most employed inversion method for electromagnetic problems [11, 132–135].

As opposed to these deterministic inversion techniques, the Bayesian framework has

recently been adopted to solve the inverse scattering problem [136–140]. While a rigorous

mathematical formulation is still adopted to describe the problem, it is here a functional

based on an a posteriori probability density function that is maximized (as opposed to the

cost function minimization carried out in the deterministic approaches). Since this work
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focuses on the experimental approach and not on an investigation about optimal inversion

methods, such stochastic approaches are not dealt with in this manuscript.

3.3 M2GM inversion algorithm

The category of inversion methods selected for this thesis is the MGM. Its mathematical

formulation is the following. The investigation domain Ω is discretized through an equis-

paced grid along x and y, with a pixel area of ∆x∆y , d2pix and a total of NxNy , Npix

points. Both the unknown χ and the state variable E are defined, at nth iteration of the

minimization algorithm, through the piecewise bilinear expansions

χn =

Npix∑

i=1

χn,iψi (3.17)

En =

Npix∑

i=1

En,iψi , (3.18)

whose basis functions are [141]

ψi = Λ(x− xi)Λ(y − yi) , (3.19)

with (xi, yi) being the coordinates of the ith pixel, and Λ(τ) the triangular function

Λ(τ) =

{

1− |τ |/h if |τ | < h

0 otherwise
. (3.20)

Thus, at each iteration, the values of the expansions coefficients χn,i and En,i become the

actual sought quantities, represented through the vectors χn and En.

The Method of Moments (MoM) is used to discretize the equations. To stress this, the

far- and near-field operators are from now on indicated through the matricial notations GΓ

and GΩ, respectively, so that the cost function can be written as

F(χ;E) = wΓ‖Es;meas −GΓχE‖2Γ + wΩ‖E − Ei −GΩχE‖2Ω . (3.21)

The weights are set to “physical” values meant to equilibrate the impact of each of the two

terms on the minimization procedure, namely

wΓ = ‖Es;meas‖−2
Γ (3.22)

wΩ = ‖Ei‖−2
Ω . (3.23)

As it can be seen, their values only depend on the data of the problem, hence they do not

change during the iterations. This choice differs from that employed, for instance, in the

CSI scheme [128], where wΩ is a function of χ and thus evolves at each iteration. Although

there is no evidence that the values used here are optimal in any mathematical sense, they
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have proven to lead to senseful results and they indeed have a physical meaning. Very

interesting remarks on the choice of the weights can be found in [135].

The constrast is actually split into two unknowns, its real and imaginary parts. Further-

more, a positivity constraint, or a priori information, is added through the use of squared

variables. The result is

χn = 1 + ξ2
n − εr;b − i

η2
n − σb
ωǫ0

, (3.24)

where εr;b and σb are the (known) background permittivity and conductivity, respectively.

In all the experiments performed herein εr;b = 1 and σb = 0, that is, free-space propagation

conditions are considered. This justifies completely the positivity assumption. The update

rules are

ξn+1 = ξn + βξnd
ξ
n+1 (3.25)

ηn+1 = ηn + βηnd
η
n+1 , (3.26)

where βξn, β
η
n ∈ R are the steps minimizing Fn+1, and d

ξ
n+1,d

η
n+1 are the standard Polak-

Ribière CG descent directions. These are defined as

d
ξ
n+1 = −gξn+1 + ζξn+1d

ξ
n (3.27)

d
η
n+1 = −gηn+1 + ζηn+1d

η
n , (3.28)

where g
ξ
n+1, g

η
n+1 are the gradients of Fn with respect to ξn and ηn, respectively, and

ζξn+1 =

(

g
ξ
n+1 − gξn

)T

gξn

‖gξn‖2
(3.29)

ζηn+1 =

(
g
η
n+1 − gηn

)T
gηn

‖gηn‖2
. (3.30)

Notice that descent directions, gradients, and ζξn+1, ζ
η
n+1 are all real quantities. As for the

expressions of the gradients, they are given later in §3.3.1 for the more generic case of a

multi-view multi-frequency inversion scheme.

For the electric field, a similar approach is followed. Nonetheless, the choice of employing

a modified version of the MGM is done here, consisting in the update rule

En+1 = En + αnd
E
n+1 + γn

(

Ẽn − En

)

, (3.31)

where Ẽn is the solution of the state equation (3.9) given χn. The last term in (3.31),

representing the modification to the standard MGM, can be called Born term since in

the MBM this is the only term used for updating the total field (that is, αn is set to 0).

The modified MGM resulting from this new term has been introduced by Belkebir et al.

in [12,31] and has been named Modified2 Gradient Method (M2GM). As it will be detailed

later, it can be seen as a “hybrid” method blending the benefits of solving the forward
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problem for E at each iteration to the frame of the MGM. As for the CG descent direction,

it writes as

dEn+1 = −gEn+1 + ζEn+1d
E
n , (3.32)

where gEn+1 is the gradient of Fn with respect to E∗
n, and

ζEn+1 =
ℜ
{(

gEn+1 − gEn
)H

gEn

}

‖gEn ‖2
. (3.33)

Notice that here, since the total field is a complex quantity, the gradient and the descent

direction are complex quantities, whereas the Polak-Ribière factor ζEn+1 must be real.

Some comments are now in order. As just stated, the only difference with a standard

MGM method lies in the update rule (3.31) for the total field, where, in addition to the

standard conjugate-gradient term, the solution Ẽn of the state equation is taken into ac-

count. The first benefit of this correction comes from a considerably decreased number of

iterations necessary to reach convergency (given a required precision value) with respect to

the classic MGM (or CSI) [12]. Unfortunately, this does not necessarily imply a reduced

execution time, since the price to pay at each iteration is the resolution of the state equation

for E, which is not required in the MGM. Nevertheless, a considerable reduction is effec-

tively reached thanks to the very powerful direct solver used. This has two main features:

first, it solves the state equation through a linear CG method relying on an FFT (CG-

FFT) to compute the spatial convolution GΩ(χE). Then, it employs a so-called “marching

on in frequency and source” strategy to generate the initial estimate for the CG based on

the solutions found for previous sources and at previous frequencies, reducing in turn the

number of linear CG iterations needed to reach convergency [141]. See also [142] for further

implementation details on the CG-FFT method.

In addition, the degree of non-linearity of the problem is reduced. This can be understood

by acknowledging that, without the Ẽn correction, the value of En might be far from the

Ẽn solution of the state equation. Mathematically, such a discrepancy can be produced by

the convergency of the algorithm into a local minimum of the cost function; physically, by

the influence of the so-called non-radiating sources [143, 144], that is χE values such that

GΓ(χE) = 0 whereas GΩ(χE) 6= 0. Motivated by the same reasoning, a different way of

taking into account Ẽn had already been introduced by Lambert et al. in [127], who once

every I iterations used, instead of the MGM update rule, simply En+1 = Ẽn. Nevertheless,

this approach caused a jump in the value of Fn+1 and needed an empirical value for I,

whereas here a rather proper minimization is carried on.

It is also worth mentioning that the implementation (3.24) of the positivity constraint

on χ, if recast into (3.13), undoubtedly increases the non-linearity of the problem. Yet, as

compared to a harsh thresholding of the χn values, it seems to be a safer solution from a

numerical point of view.

Finally, notice that playing with the values of αn and γn in (3.31) some of the previously

mentioned methods can be obtained (see Tab. 3.1).
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Born Modified Born Modified Gradient

αn 0 0 ×
γn 1 × 0

Table 3.1: Values of αn and γn parameters transforming the M2GM into a Born, Modified Born,

or Modified Gradient method. The symbol ’×’ means that the parameter is left to be

optimized.

3.3.1 Multi-view multi-frequency inversion

The M2GM described so far applies to single-view single-frequency data. When many

sources and/or many frequencies are available, they increase the information content, or

available information, of the data. Thus, it is of crucial importance to add them to the

inversion machinery. Concerning frequencies (but the same approach could in principle be

applied for sources), the so-called frequency-hopping approach has been succesfully applied

in many cases [141, 145–147]. It consists in starting from inverting monochromatic data

at the lower frequency, that is, where the problem is less non-linear, then in using the

result as initial estimate for the successive frequency, and so on. Nonetheless, it is has been

shown [147] that incorporating all the data into a unique cost function results into a scheme

more robust to noise. This cost function can be written as

F(χp;Ej,p) = wΓ
P∑

p=1

J∑

j=1

‖Es;meas
j,p −GΓ

pχpEj,p‖2Γ+

wΩ
P∑

p=1

J∑

j=1

‖Ej,p − Ei
j,p −GΩ

p χpEj,p‖2Ω ,

(3.34)

whose weights are

wΓ =

(
P∑

p=1

J∑

j=1

‖Es;meas
j,p ‖2Γ

)−1

and wΩ =

(
P∑

p=1

J∑

j=1

‖Ei
j,p‖2Ω

)−1

. (3.35)

The j index stands for the sources and p for the frequencies.

Notice that as the number of unknowns describing the contrast, namely ξn and ηn is

unchanged, the number of auxiliary variables En;j,p is multiplied by JP . Indeed, there is

now one total field per source and per frequency. As a consequence, there are also JP steps
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αn and γn. Finally, keeping this into account, the expressions of the gradients are

gξ , ∇ξF = −4ξ
{

wΓ
∑

j,p

ℜ
[(
GΓ
pEj,p

)H
eΓj,p

]

+ wΩ
∑

j,p

ℜ
[(
GΩ
pEj,p

)H
eΩj,p

]
}

(3.36)

gη , ∇ηF = 4
η

ε0

{

wΓ
∑

j,p

ℑ
[(

1

ω
GΓ
pEj,p

)H

eΓj,p

]

+

+wΩ
∑

j,p

ℑ
[(

1

ω
GΩ
pEj,p

)H

eΩj,p

]} (3.37)

gEj,p , ∇E∗

j,p
F = −wΓ

(
GΓ
pχp
)H

eΓj,p + wΩ
(
I −GΩ

p χp
)H

eΩj,p , (3.38)

where the iteration dependency has been omitted for conciseness of the notations. Concern-

ing the latter, the definition of gradient of a complex variable has been adopted [148, 149].

This consists in evaluating the partial derivative of F with respect to E∗ while considering

E and E∗ as independent variables.

The role played by the terms of F at different frequencies deserves more consideration.

As anticipated, as the frequency grows the non-linearity of the inverse problem increases.

Inversely, the obtainable resolution is better at higher frequencies. Therefore, it is advised

to penalize higher frequencies with respect to the lower ones, but not too much in order

not to waste the fine resolution given by them [122]. Dubois et al. have shown [146] that

dividing each term of each sum in (3.34) by 1/ω2 is an effective strategy to improve the

results. In practice, this is accomplished by symply modifying the incident and measured

scattered fields, before the iterative procedure starts, as follows:

Ei
j,p ← Ei

j,p/ω

Es;meas
j,p ← Es;meas

j,p /ω .
(3.39)

3.3.2 Line search and stop criterion

At each iteration n of the CG scheme just described, the following (2JP + 2)-element

vector comprising all the steps can be constructed:

sn ,
[
βξn βηn αn;1,1 . . . αn;1,P . . . αn;J,P γn;1,1 . . . γn;1,P . . . γn;J,P

]T
. (3.40)

The value of sn that minimizes Fn+1 must then be determined. This minimization procedure

is called line search. Differently from classical CG schemes, the line search is here multi-

dimensional, since 2JP + 2 steps are actually sought instead of a single one.

In order to recast this problem into a classical scalar line search problem, a nested CG

is applied on the steps vector. The update rule for the steps is then

sn;k+1 = sn;k + λkd
s
k+1 , (3.41)

where k indicates the iterations of such nested CG routine, and dsk+1 is the Polak-Ribiére

CG descent direction with respect to s. The resulting scalar line search consisting in
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finding the λk that minimizes F(sn;k+1) is implemented through the derivative-based Brent’s

method [150].

stopped at the simultaneous fulfillment of Wolfe’s conditions [151] (see §D for a descrip-

tion of these conditions).

As for the line search stop conditions, the nested CG uses Wolfe’s conditions [151] (see

§D for a description). For the main CG, multi-dimensional Wolfe’s conditions should be

derived given the fact that different steps - the elements of sn - for the different variables

of the problem - ξn, ηn, and En - exist. Nevertheless, as underlined in §D, this would

require the computation of additional gradients of F with respect to each variable. It is

then preferred to use a user-defined precision-based stop condition2, since, because of the

additional computation, no appreciable gain in execution time would be obtained by using

Wolfe’s conditions.

The flow of the minimization procedure might be schematized as follows.

◮ Method: CG1

• Update rules:







ξn+1 = ξn + βξnd
ξ
n+1

ηn+1 = ηn + βηnd
η
n+1

En+1;j,p = En;j,p

+ αn;j,pd
E
n+1;j,p

+ γn;j,p

(

Ẽn;j,p − En;j,p

) j = 1 . . . J, p = 1 . . . P

• Line search (multi-dimensional)

– Step: sn ,
[
βξn β

η
n {αn;j,p} {γn;j,p}

]T

– Stop condition: user-defined precision

– Method: CG2

∗ Update rule: sn;k+1 = sn;k + λkd
s
k+1

∗ Line search (scalar)

· Step: λk
· Stop condition: Wolfe’s conditions

· Method: derivative-based Brent’s

This implementation strategy differs profoundly from the one commonly used for CSI

(see for instance [132]). In effect, while in CSI alternate CG iterations are performed on

the auxiliary variables (χE) first, and on the unknowns (χ) then, a unique CG on both

the auxiliary variables and unknowns is applied here. As a consequence, while scalar line

2The condition is the following:
|Fn+1 −Fn|

|Fn+1|+ |Fn|+ ε
≤ tol ,

where tol is a precision set be the user. Empirically, it has been found that the value tol= 10−4 gives a

good trade-off between precision of the solution and execution time.
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searches are needed in CSI at each alternate iteration, a nested CG is needed here. For

interesting comments on the minimization procedure, see [152].

3.3.3 Initial estimate

In any iterative method used to solve an inverse problem (whether it be linear or not),

an initial estimate of the unknown(s) is needed to trigger the inversion procedure. In the

case of the inverse scattering problem, the quantity χ0 is sought.

Back-propagation is a method very often used in the inverse scattering community to

rapidly provide a “good-enough” initial estimate [12, 126, 128, 153]. The basic idea consists

in inverting the data equation for the contrast-source χE using the adjoint operator of GΓ.

Physically, this is equivalent to back-propagating Es;meas within Ω. The whole algorithm

can be resumed as follows.

1. For each frequency and source antenna, retrieve the contrast-source as

Φj,p , χpEj,p = κj,p
(
GΓ
p

)H
Es;meas
j,p ∀j, p , (3.42)

where κj,p is the minimizer of the error

‖Es;meas
j,p −GΓ

pΦj,p‖2Γ , (3.43)

which gives

κj,p =
‖
(
GΓ
p

)H
Es;meas
j,p ‖2Ω

‖GΓ
p

(
GΓ
p

)H
Es;meas
j,p ‖2Γ

. (3.44)

Notice that in the original formulation [126], one coefficient κj per frequency is re-

trieved by minimizing the data equation error (3.43) summed over all the sources. It

is not clear which between this solution and the one adopted here gives better results.

At any rate, they give definitely comparable results for all the configurations studied

in this manuscript.

2. Find the total field from the state equation

Ej,p = Ei
j,p + k20G

Ω
pΦj,p . (3.45)

3. Since, using (3.24), it holds that







WR
j,p , ℜ

(
Φj,pE

∗
j,p

)
=
(
1 + ξ2 − εr;b

)
|Ej,p|2

W I
j,p , ℑ

(
Φj,pE

∗
j,p

)
= −η

2 − σb
ωpε0

|Ej,p|2
, (3.46)
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the unknowns ξ0 and η0 can be found by minimizing the following cost functions






Fξ =
∑

j,p

[

WR
j,p − (1 + ξ2 − εr;b) |Ej,p|2
√

1 + ξ2 − εr;b |Ej,p|

]2

Fη =
∑

j,p









W I
j,p +

η2 − σb
ωpε0

|Ej,p|2
√

η2 − σb
ωpε0

|Ej,p|









2

, (3.47)

which can be done analytically and gives






ξ20 =

√
√
√
√
√
√
√

∑

j,p

(WR
j,p)

2

|Ej,p|2
∑

j,p

|Ej,p|2
− 1 + εr;b

η20 =

√
√
√
√
√
√
√
√

∑

j,p

ωpε0(W
I
j,p)

2

|Ej,p|2
∑

j,p

|Ej,p|2
ωpε0

+ σb

. (3.48)

Notice the expression of the denominator of the cost functions in (3.47). In fact, at

least two other choices are possible: no denominator at all, or the square of the one

used in (3.47) (giving dimensionless Fξ and Fη). In both cases, though, the ξ20 and η20
values found after minimization can take negative values, whereas this is not the case

in (3.48) due to the presence of squared-only quantities under the square root sign

(and retaining the positive solution of the square root). So, to cope with the positivity

constraint of the contrast χ, the only acceptable solution is the one in (3.47).

The approach in (3.42) reminds of the Phase Conjugation/Time Reversal methods de-

scribed in §2.3, since by back-propagation it is meant here the propagation of Es;meas back

in space through the use of the phase-conjugated far-field Green function. This is exactly

the conjugated of a Phase Conjugation or DORT time-harmonic field chart (cf. for in-

stance Fig. 2.15(e) or Fig. 2.22(c))! Based on this, some features of the back-propagation

method can be foreseen. In particular, in the case of a small line, all the energy scattered

by the target is, when backpropagated, smeared over a large region, very poorly resolved

in down-range and 2λ0F/D wide in cross-range (D is the array width and f the array-

target distance). Then, while the integral of all this energy equals the one received by the

array, that actually covering the support of the target is very small, hence low Φ values

within Ω when applying (3.42) are to be expected. As a consequence, the small-scattering

assumption of the Born approximation holds, so that E ≈ Ei in (3.45), and, as a further

consequence, εr and σ take low values typical of the Born approximation. This will be often

shown in the experimental results section (§3.6.4), and differs considerably from the very
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nice initial estimates retrieved in the case of complete or almost-complete configurations

( [6, 7, 126] just to mention a few).

As a final note, it is worth mentioning that other linear methods exist for inverting the

data equation and rapidly obtaining an initial estimate for the iterative inversion algorithm.

For instance, recalling the compactness of the far-field operator, its truncated SVD could

be employed for evaluating its pseudo-inverse
(
GΓ
)+

, so that

Φj,p =
(
GΓ
p

)+
Es;meas
j,p . (3.49)

This approach is for instance at the heart of the so-called Subspace-based Optimization

Method (SOM) [154–156], where, as for any truncated SVD-based procedure, the choice

of the best truncation order is difficult yet of crucial importance. Nonetheless, despite

its increased complexity with respect to back-propagation, the results obtained with the

truncated-SVD are impressively similar to those issued from the back-propagation method,

at least for the configurations tested in this manuscript.

3.4 Available information and Ewald’s circle

A fundamental question concerning inverse scattering problems is related to the maxi-

mum amount of information that is contained in the data and that it is therefore possible

to extract. Then, whether this information is actually extracted or not, depends on the

choice of the inversion algorithm and is not of concern in this section.

Bucci and co-authors have long worked on this subject. Some of the conclusions are

profoundly related to the principle of band-limitedness of the scattered field that is behind

the drift correction algorithm described in detail in §1.6.3. First of all, it has been mentioned

that the far-field operator GΓ is a compact operator, that is, it has M non-null singular

values and the remaining ones equal to 0. The value ofM is linked to the effective bandwidth

of the reduced scattered field (see §1.6.3), k0ac, where ac is the radius of the smallest circle

containing the support of the scatterer [63]. In practice, M ≈ 2k0ac for 2D problems

((k0ac)2 in 3D) [1]. Consequently [112],

Es;meas = GΓ(χE) ≈
M∑

n=1

λnunv
∗
n(χE) , (3.50)

where un and vn are the left and right singular functions, respectively, and the operatorial

notation v∗n(χE) means

v∗n(χE) =

∫

Ω

v∗n(~r
′)χ(~r′)E(~r′)d~r′ . (3.51)

Exploiting the orthogonality of left (un) and right (vn) singular functions, this equation can

be inverted, giving

χE ≈
M∑

n=1

λ−1
n vnu

∗
n(E

s;meas) ,
M∑

n=1

(χE)n , (3.52)
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where

u∗n(E
s;meas) =

∫

Γ

u∗n(~r)E
s;meas(~r)d~r . (3.53)

This result shows that the contrast-source, and so the contrast, can be represented, within

any specified accuracy, through the linear combination of M sub-components (χE)n. In

this sense, a representation of the unknowns as the one in (3.17) matches well with the

limited-amount-of-retrievable-information point of view. In fact, it represents an implicit

regularization of the inverse problem. Notice, though, that the same concepts do not hold

for the auxiliary variables, since they are physically determined by a different equation - the

state equation - whose operator, GΩ, is not compact. Notice also that the present derivation

has been carried on in a single-view case. Adding views and frequencies helps in increasing

the number M of retrievable parameters, as long as the corresponding scattered fields are

sufficiently decorrelated from each other.

A totally different approach to have a grasp of the concept of retrievable information is

given by the so-called Ewald’s circle (sphere in 3D) theory. The framework is the diffraction

tomography one, where the plane wave approximation is used for the incident field, that is,

Ei ≈ e−i
~ki·~r , (3.54)

and the Born approximation is applied, that is, the total field within the support D of the

scatterer is well approximated by the incident field:

E(~r) ≈ Ei(~r) ∀~r ∈ D . (3.55)

Under these approximations, it is easy to see that the spatial Fourier Transform of the state

equation gives

Ês(~ks) ≈ k20 ĜΓ(~ks) χ̂(~ks − ~ki) , (3.56)

where ~ks is the wavenumber associated to the scattered wave, and theˆ symbol indicates

the spatial Fourier transform. Eq. (3.56) states that among all the wavenumbers, or spatial

frequencies, that describe the contrast, only those equal to ~ks − ~ki are available in the

measured scattered field and can therefore be retrieved.

A graphic schematization is given in Fig. 3.2. In Fig. 3.2(a), for a reflection configuration

with a theoretical receiving array aperture angle of 90 deg, the measured wavenumbers lie

in the outer half of a circle in the ~k = ~ks − ~ki plane. Although not shown, for the case of

a transmission configuration with the same incident field it is rather the inner half of the

circle to be sampled. The meaning of this is that the reflection configuration gives access

to higher spatial frequencies (outer half-circle) in the down-range direction y, that is, finer

details of the target can be retrieved. As a conterpart, the convergence of the inversion

algorithm to the appropriate minimum of the cost function might be more difficult, since

as already stated higher frequencies - both spatial and temporal - enhance the non-linearity

of the inverse problem.



116 CHAPTER 3. QUANTITATIVE INVERSE SCATTERING

�� � �� �
������

�

�

�

�

�����

�����

���

��

(a) Reflection configuration

��
� ��

�
� �
�
� �
�
�

�� � �� �
���

�

�

�

�

�

��

��

���������

���������

(b) Transmission configuration + multi-frequency
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(c) Complete configuration

Figure 3.2: Ewald’s circle representation. (left) Measurement setups and (right) corresponding

sampled wavenumbers in the spatial Fourier domain.

In Fig. 3.2(b), for a transmission configuration, the effect of a different direction of the

incident wave results in a rotation around the origin of the center of the half-circle. Further-

more, exploiting multiple frequencies leads to multiple half-circles, each with a displaced

center and different radius. This shows why the available information increases when using

multi-frequency data. Finally, for a monochromatic wave, the sampling of the Fourier plane
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(a) Complete configuration

(single-view)

(b) Infinite line (reflection or

transmission)

(c) Small line (reflection or

transmission)

(d) Small line, multi-frequency

(reflection or transmission)

Figure 3.3: Resolution patterns issued from the Ewald’s circle formalism. All the configurations

are single view, and the amplitude scale is linear. x and y axes are normalized with

respect to the wavelength (in (d) it is the one corresponding to the central frequency,

λc).

in a multi-view multi-static configuration is shown in Fig. 3.2(c). A dense sampling of the

plane can be appreciated, resulting in a large quantity of available information.

The same analysis casts light on the theoretical achievable resolution of an inverse scat-

tering system. In line with the definition of resolution, consider a point target placed at

the origin of a coordinate system. Then, χ(~r) = δ(~r) and χ̂(~k) = 1, that is, the spatial

support of the scatterer is infinite over the ~k plane. Nonetheless, only those frequencies

satisfying ~k = ~ks − ~ki can be measured according to (3.56), that is, the measured χ̂ is

χ̂meas = δ[~k − (~ks − ~ki)]. Its IFT, F−1[χ̂meas](~r), gives then the image of the target as it

is “seen” by the system, that is, it gives the resolution pattern shown in Fig. 3.3 for four

different geometric configurations (the amplitude scale is linear).

Fig. 3.3(a) The first subfigure is for the single-view complete configuration, which cor-

responds in the Fourier plane to only one circle among those in Fig. 3.2(c). The

resolution along x and y is the same, and the half-width (along either axis) of the

resolution spot is λ/2.6, where 2.6 is the first zero of J0(x) divided by 2π (for a 3D

configuration the spot size would have been λ/2).
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Fig. 3.3(b) If an infinitely long line is considered with a single incidence (as in Fig. 3.2(a))

either in reflection or in transmission, the resolution pattern becomes asymetric.

While the cross-range (y) resolution is barely changed, the down-range profile (x)

is strongly degraded.

Fig. 3.3(c) The array aperture angle is reduced to ±30 deg, a small line is thus considered.

The loss in resolution is dramatic in down-range.

Fig. 3.3(d) For the same small array, a frequency bandwdith of an octave is considered

(cf. Fig. 3.2(b)). As expected, the down-range resolution is improved, and it indeed

equals the theoretical value c0/2fbw (in this case it was fbw = 2 GHz as in all the

experiments of this manuscript).

As mentioned, the achievable resolution patterns shown in Fig. 3.3 hold under the Born

and incident wave approximations. The first one is particularly important. In fact, it is a

single-scattering approximation, so that it holds for small and/or low-valued-χ scatterers.

If this is not the case, multiple scattering taking place either within the scatterer itself

- expressed mathematically by the convolution product in the state equation - or among

separated scatterers allows in principle to retrieve finer details than those in Fig. 3.3. This is

why a rigourous method such as the M2GM has been chosen instead of one of the linearized

methods: despite its complexity, it can in principle retrieve such finer details of the imaged

scatterers.

3.5 Experimental inversion: the calibration issue

From the state equation (3.9), the incident field Ei|Ω, that is, inside the investigation

domain Ω, is considered as a known quantity within the inverse problem. In fact, it is

an absolute incident field that is required, not a normalized one as for detection methods,

which are indeed qualitative methods and do not try to match an absolute scattered field

to the result of a model. Hence, since it is impossible to measure Ei everywhere within Ω,

at least in a non-destructive way, it must be extrapolated from a model and, if available,

from suitable experimental data. In this sense, the procedure consisting in matching the

true Ei with the one issued from a model is known in the inverse scattering community as

incident field calibration.

An analytical model for the incident field was already developed in §1.7.2. The co-

polarization component of the electric field was modeled through a multipolar expansion

whose coefficients were retrieved from measurements performed in addition to the scattering

experiment. Nevertheless, while the sources (antennas) radiate a 3D, or spherical, field

(1/r dependency instead of the 1/
√
r dependency of a wire antenna), the targets may

be considered as two-dimensional since their direction of invariance is parallel to the co-

polarization axis of the antennas. Hence, the scattered field has a cylindrical front, that

is, it has a 2D nature. According to the definition often encountered in literature, this is

known as a 2.5D configuration.
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Figure 3.4: Configuration for the incident field and Green function modeling.

Of course, because of the requirement on the absolute knowledge of Ei|Ω, this has to be

properly accounted for in the inversion process. Two possible solutions exist: developing a

2.5D code, which would include the dependency of the electric field on the vertical (z) axis,

or adapting the incident field model to a 2D frame. Since a 2D code was available, and the

development of a 2.5D one would have been (at least!) time-consuming, the second option

has been retained. A similar choice has been made, for instance, in [10].

3.5.1 2D incident field and Green function models

The modeling procedure is applied separately at each frequency within the used band.

For conciseness, the ω dependency is omitted here. Considering the kth antenna as source,

the 2D incident field is modeled as

Ei
k =

M∑

m=−M

γtxmH
−
n (k0|~r − ~rk|)e−im(ϕ−ϕk) , (3.57)

where the geometric quantities are shown in Fig. 3.4, H−
n is the Hankel function of second

kind and nth order, and {γtxm}m=−M...M are the coefficients to be determined.

Similarly, the far-field Green function GΓ has to somehow model the radiation pattern

of the receiving antennas. Then, for the jth receiving antenna,

GΓj =

M∑

m=−M

γrxmH
−
n (k0|~r − ~rj |)e−im(ϕ−ϕj) , (3.58)

where different coefficients {γrxm}m=−M...M need to be determined as explained next.
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As in §1.7.2, the measurements from where the model coefficients must be extracted are

the incident fields recorded from the array-1 antennas when either one or all the array-2

antennas transmit. The generic measurement is indicated by Scal
jl (see Fig. 3.4), and it is

worth recalling its expression from §1.7.2:

Scal
jl = Aω

e−ik0rjl

rjl
l2e(rjl, ϕjl) , (3.59)

where A is a constant. Here, ωe−ik0rjlle(rjl, ϕjl)/rjl represents the incident field radiated by

Al and impinging on Aj. The latter, in turn, applies its receiving pattern modeled by its

effective length le(rjl, ϕjl) and measures Scal
jl . From (3.59), then, one value of le(rjl, ϕjl) per

measurement can be retrieved3.

Now, these effective lengths must be related to the unknwown model coefficients γtxm and

γrxm . Different procedures are followed for the incident field and the Green function.

Incident field

It must be first noticed that although (3.57) is a 2D model that suits a 2D inversion

code, it is erroneous in the sense that the 1/
√
r dependency of the Hankel functions

does not match the experimental 1/r dependency of the field. This is the consequence

for having chosen a 2D code despite the 2.5D experimental configuration, and cannot

be avoided. On the other hand, for relatively small investigation regions Ω, this

amplitude error should be small enough to hardly impact the inversion results.

Nevertheless, it can be imposed that at the center of Ω, that is, at ~r = ~0, the measured

and modeled incident fields are perfectly matched. To do so, the γtxm are retrieved

through the hybrid relation (cf. (1.37a))

ω
e−ik0rjl

rjl
le(rjl, ϕjl) =

M∑

m=−M

γtxmH
−
n (k0rjl)e

−inϕjl , (3.60)

which results in γtxm ∝ 1/
√
rjl. Then, a set of coefficients per transmitting antenna Ak

are evaluated through

γk;txm , γtxm

√
r̄jl
rk

, (3.61)

where r̄jl is the mean among all the rjl distances in the incident field calibration

setup. These coefficients replace the γtxm in (3.57). As a result, γk;txm ∝ 1/
√
rk which,

combined with the 1/
√

|~r − ~rk| dependency of H−
n in (3.57), gives the sought 1/rk

dependency at ~r = ~0.

3When taking the square root to obtain le particular attention must be paid to the correct definition

of its phase. Indeed, since any complex number is defined up to a ein2π factor, then the le for different

(j, l) pairs and/or at different frequencies may have nπ jumps between them resulting in wrong values. To

avoid this, an unwrap (that is, a modulo 2π reduction) must be applied to the l2e over (j, l) pairs and over

frequencies before taking the square root.
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Far-field Green function

The receiver coefficients are more simply given by

H−
0 (k0rjl)le(rjl, ϕjl) =

M∑

m=−M

γrxmH
−
n (k0rjl)e

−inϕjl , (3.62)

since as already stated the scattered field measured at the receivers truly is (at least

as long as the scatterers can be considered infinitely long along z) a 2D field.

Finally, to retrieve the model coefficients from (3.60) and (3.62), the same approach

detailed in §1.7.2 can be followed. Eq. (3.60) and (3.62) are first written in the matricial

form

le = Hγ , (3.63)

where le is the vector containing the left hand-side terms in (3.60) and (3.62) for all the

measured (j, l) pairs, H is the matrix filled with the values of the expansion basis functions

H−
n (k0rjl)e

−inϕjl , and γ is the vector of the unknowns (γtxm or γrxm ). Then, H is inverted

through a truncated-SVD, so that the final result is

γ = H+le , (3.64)

where H+ is the pseudo-inverse of H. The maximum expansion order is set to M = 1 as

explained in §1.7.2.

A final word about the originality of this approach is dued. In most experimental con-

tributions, it is the monopolar approach that is preferred, leading to the determination of

one single coefficient. This is sufficient when rather isotropic antennas are available [10], or

in circular-scanner configurations where the azimuth angle ϕ varies of only a few degrees

around the broadside direction [7, 11].

Less frequent is the adoption of a multipolar expansion of the fields. Yet, modeling

the receiving antenna pattern in addition to the transmitting one has - at the best of our

knowledge - never been reported in the inverse scattering community. In [70], for instance,

a similar multipolar expansion is used to model the incident field, but GΓ is not modified at

all. Furthermore, the γtxm are retrieved directly from the Scal
jl in (3.59) without any square

root. They are thus proportional to the square of le, and both the directivities of TX and

RX antennas are modeled at the emission side through (3.57). As shown next in §3.6.2, this

can generate important errors in the matching between measured and simulated scattered

fields, with important repercussions on the inversion results. Finally, remark that the model

is also valid in near-field conditions, since no far-field simplification has been applied.

3.5.1.1 Phase center correction

The model developed so far does not take into account the localization of the phase

center of the antennas, which is defined as the center of the circle (sphere in 3D) that best
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Figure 3.5: Illustration of the definition of phase center in the case of an ETS antenna.

approximates the main lobe of the antenna radiation pattern (see Fig. 3.5). Although its

position can vary with frequency and/or polarization, the concept of phase center is in any

case associated to cylindrical (spherical in 3D) wavefronts, which are exactly those modeled

through the Hankel functions in (3.57) and (3.58). Hence, these expressions implicitly

assume that the position ~rk of the kth antenna is taken with respect to its phase center,

and not with respect to the antenna connector as assumed until now. The correction that

must be applied and that is described next, then, is meant to achieve a better matching

between actual and modeled antenna patterns.

It is relatively easy to retrieve the exact position of the phase center by simulation. This

is for instance very useful to improve the design of an antenna, since in the case of an

UWB antenna it is expected that the position of the phase center doest not vary much

over frequency. On the other hand, how to directly measure the exact position of the

phase center is a sort of open problem in literature. Yet, as for the radiation patterns, it

is mandatory to characterize the phase center while the antennas are in their operational

environment rather than in an anechoic chamber. Namely, the effect of coupling - in the

case of an antenna array - might influence the phase center position.

Following this reasoning, two main assumptions on the location of the phase center are

made:

• it is stable over the [2-4] GHz frequency band, which can be justified in virtue of the

UWB behavior of the ETS antennas (SWR < 2 in the [2-18] GHz band);

• it is related to the traveling wave behavior of the ETS antennas propagation, and

more specifically to the propagation of the RF signal within the duroid substrate.

According to this, it is guessed that the phase center is located, independently of the

frequency, at the distance dpc corresponding to the additional delay τ measured in §1.7.2.1

when two ETS antennas are put one in front of the other. Such distance, keeping into

account the slower propagation through the duroid substrate, had been estimated to dpc =

3.36 cm. Stated differently, since the time delay exists and is due to the propagation within

the duroid substrate, one may assume that the signal has practically not started to radiate

until having reached the distance corresponding to τ . Hence, the wavefronts will appear as
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if they were centered at this “delayed” point, leading to identify dpc = τc0/
√
2.2, where 2.2

is the permittivity of duroid. To validate this guess, an experimental verification is given

in §3.6.2.

Whatever its value, to keep into account dpc within the model, it is sufficient to proceed

as if the antennas were shifted, with respect to the position of their connector, by dpc along

their axis. Then, with reference to Fig. 3.4,

{

~rk ← ~rk − dpcŷ if Ak ∈ array-1

~rk ← ~rk + dpcŷ if Ak ∈ array-2
, (3.65)

where ŷ is the unitary vector oriented along the y direction.

In order to show that this correction does not undermine the correctness of the model

developed in the previous paragraph, consider (3.59). The measured Scal
jl can better be

written as

Scal
jl = A′ω

e−ik0rjl

rjl
b2(dpc)e

−2ikdrddpc , (3.66)

where A′ is a constant also containing the directivity value at ϕjl, and rjl must be cal-

culated after the correction (3.65). This equation models the effect of the phase center

position through an amplitude term, b(dpc), and a phase term, e−ikdrddpc, where kdrd is the

wavenumber associated to the duroid substrate, that is, k0
√
2.2. Both terms are squared

to keep into account the effect of both transmitting and receiving antennas. If the same

equation (3.59) is used to retrieve the effective lengths, it is easy to see that

le(rjl, ϕjl) ∝ b(dpc)e
−ikdrddpc , (3.67)

which substituted in both (3.60) and (3.62) gives

γtxm , γ
rx
m ∝ b(dpc)e

−ikdrddpc . (3.68)

Finally, according to (3.57) and (3.58), Ei and GΓ also end up being proportional to the

b(dpc)e
−ikdrddpc factor, which represents the correct correction. In addition, the retrieved

radiation patterns are improved thanks to the proper handling of the phase center position.

3.5.1.2 Elevation radiation pattern correction

Utilizing a 2D code in spite of a 2.5D one leads to another systematic modeling error.

In 2D, no dependency whatsoever on the elevation angle θ, or on the vertical direction z, is

ever considered. As a consequence, the antennas are implicitly considered isotropic along

θ, whereas they are not in reality - at least in the case of the ETS antennas.

To cope with this problem, a workaround has been implemented. Given the maximum

height zM of the targets4, the idea consists in correcting both the TX and RX radiation

patterns by a simple, scalar, factor given by the ratio of the integrals between ±zM of the

4Basically, the height of the anechoic chamber.
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Figure 3.6: Illustration of the elevation radiation pattern correction.

fields radiated by an isotropic and an ETS antenna. In detail, with respect to Fig. 3.6, the

following quantities are introduced:

∆θ = tan−1
(zM
r

)

⇒
(
θM
θm

)

=
π

2

(
+

−

)

∆θ,

where ~r describes the position over the xOy plane.

The procedure, which must be repeated at each frequency, is:

1. for each pixel in Ω, evaluate the integral of the isotropic field:

Êiso(~r) =

∫ θM

θm

Eiso(~r, θ)dθ =
1√
r
2∆θ . (3.69)

2. for each pixel in Ω, evaluate the integral of the directive field pertaining to the ETS

antennas. For this purpose, the elevation radiation patterns characterized in the

anechoic chamber of LEAT in Nice-Sophia Antipolis are used. Such radiation patterns

are interpolated by anN -degree polynomial pN (θ) in order to have the following closed

form for the integration

Êdir(~r) =

∫ θM

θm

Edir(~r, θ)dθ =
1√
r

∫ θM

θm

p(θ)dθ =
1√
r

N∑

n=0

an
n+ 1

(θn+1
M − θn+1

m ) , (3.70)

where {an}n=0,...,N are the coefficients of pN(θ).

3. for each pixel in Ω, the ratio of the two quantites gives the sought factor

fdir(~r) ,
Êdir(~r)

Êiso(~r)
. (3.71)

4. for each pixel in Ω and for each trasnmitting antenna, correct the incident field

Ei(~r)← Ei(~r)fdir(~r) . (3.72)
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5. for each pixel in Ω and for each receiving antenna, correct the far-field Green function

GΓ(~r)← GΓ(~r)fdir(~r) . (3.73)

3.6 Experimental results

3.6.1 Data preparation

In this section, the experimental scattered field data, Es;meas|Γ, are systematically com-

pared against synthetic data. In virtue of the calibration procedure described previously,

the former are simply given by the S parameters measured by the VNA (see §1.3). As

for the synthetic data, they are obtained through the so-called direct problem consisting in

solving for Es|Γ the system made of data and state equations given χ and Ei|Ω. As already

discussed, the incident field Ei|Ω relies on a given antenna model, so that for synthetic data

a further distinction can be made:

• the antenna model is the simplest one: isotropic wire antennas. The resulting data,

called Ẽs|Γ, are used in §3.6.4 as an ideal reference against which the experimental

results are compared.

• the antenna model is the one used for the experimental data and described in §3.5.1.

The resulting data are indicated by Es|Γ and are used in §3.6.2 to validate the cali-

bration procedure.

In order to perform “fair” comparisons, the same signal processing operations must be

applied to both experimental and synthetic data sets. Namely, the former undergo the

signal processing operations described in §1.6: data is frequency windowed - or weighted

- with a Wω(ω) function, then time-gated with a wt(t) signal. Frequency windowing is

especially important. In §1.6, the choice of the lanczos window had been made to cope

with the sidelobe attenuation needed to avoid the aliasing of the very first time instants of

the signal onto the portion containing the scattered field.

When using the incident field data needed for calibration reasons (the Scal
jl in (3.59)), the

latter must as well be windowed with the same Wω(ω). By doing so, the weight “propagates”

as in the following:

Scal
jl Wω ⇒ γtxm , γ

rx
m ∝

√

Wω ⇒ Ei,GΓ ∝
√

Wω ⇒ E ∝
√

Wω ⇒ Es ∝Wω ,

which in the end allows to compare the results from both Ẽs|Γ and Es|Γ against the measured

ones.

3.6.2 Direct problem: validation of the calibration procedure

In order to validate the antenna modeling procedure developed so far, the test case

in Fig. 3.7 is studied. The scattered field Es;meas is measured in reflection for all the
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Figure 3.7: Incident field modeling procedure. Setup of the experiment.

sources and receivers. In addition, the Scal
j9 |j=1,...,8 are measured in order to retrieve the

effective lengths and the calibration coefficients γk;txm and γrxm . The calibration antenna

A9 is placed almost at the same location as the target (the target is of course removed

during the calibration measurements). This is definitely favorable in terms of aperture

angle ∆ϕ, since the ∆ϕ of the calibration measurements almost corresponds to the one of

the scattering experiment. As a result, there is no need for extrapolating the experimentally

retrieved antenna patterns beyond the calibration aperture angle ∆ϕ. Nonetheless, it must

not be forgotten that placing the calibration antenna at the same location of the target

is impossible in many applications, e.g. in non-destructive testing. In these cases, A9 can

only be placed farther from the array, resulting in a smaller ∆ϕ and in the need for an

extrapolation.

The measured scattered fields Es;meas|Γ are now compared to those retrieved by the

solution of the direct problem, Es|Γ. They differ because of the following contributions:

• Es;meas|Γ contains measurement noise, n, mainly related to the VNA (noise floor,

thermal drift) and to the parasite reflections in the cables of the prototype;

• being extrapolated from noisy measurements - the Scal
jl -, Es|Γ contains itself a noise

contribution, ncal;

• the modeling procedure introduces an error into Es|Γ, ǫmodel, namely because of the

necessary truncation in the multipolar expansions (3.57) and (3.58);

• the antennas are in practice mismatched; yet, there is not any mismatch in Es|Γ, whose

impact can be indicated with m and must not be considered as a noise contribution.

Thus: {

Es;meas|Γ = Ẽs|Γ+n
Es|Γ = Ẽs|Γ+ǫmodel + ncal +m

, (3.74)

where Ẽs|Γ is the ideal scattered field in absence of noise and including antenna mismatch.

A first comparison is carried out in Fig. 3.8 for the complete model described in §3.5.1:

both the incident field and far-field green functions are modeled through the multipolar
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(a) Measurement (b) Model (with calibration) (c) Error

Figure 3.8: Comparison of (a) the measured data Es;meas|Γ against (b) the synthetic data Es|Γ
including the incident field and green function calibration model. The transmitting

antenna is A1. In (c), the errors defined in (3.75) are also shown (top, ǫAj,p|Γ;
bottom, ǫPj,p|Γ). The overall error in (3.76) is ǫ = 23.7 %

expansion with M = 1, and both the phase center (dpc = 3.36 cm) and elevation corrections

are applied. One antenna, A1, is used as emitter, and the amplitude and phase of the

scattered field is observed as a function of both receiving antenna and frequency. The

measurement is shown in Fig. 3.8(a), whereas the simulation result is in Fig. 3.8(b). To

quantify their difference, the following quantities are defined






ǫAj,p|Γ =

∣
∣
∣
∣

Es;meas
j,p |Γ − Es

j,p|Γ
Es;meas
j,p |Γ

∣
∣
∣
∣
=

∣
∣
∣
∣
1−

Es
j,p|Γ

Es;meas
j,p |Γ

∣
∣
∣
∣

ǫPj,p|Γ = arg

(
Es
j,p|Γ

Es;meas
j,p |Γ

)

= arg
(
Es
j,p|Γ

)
− arg

(
Es;meas
j,p |Γ

)
, (3.75)

where the first one is an overall indicator for each receiver, transmitter, and frequency,

whereas the second one only observes the phase. They are both plotted in Fig. 3.8(c).

In addition, an overall indicator comprising all sources, receivers, and frequencies can be

classically defined as

ǫ =

√∑

j,p‖E
s;meas
j,p −Es

j,p‖2Γ
∑

j,p‖E
s;meas
j,p ‖2Γ

. (3.76)

Noitce that these quantities, in virtue of (3.74), do not quantify only the error introduced

by the antenna modeling strategy, but also include the contribution of experimental noise

and antenna mismatch.

For Fig. 3.8(c), the matching between measurements and simulation is globally good.

The phase error ǫP1,p|Γ is for most receivers and frequencies between ±10 deg, whereas the

overall error ǫA1,p|Γ stays below 20 %. It is on the edges of the frequency band and for

Aj |j=1,2,3 that higher values are reached (e.g. ǫP1,4 GHz|j=2,3 ≈ −50 deg and ǫA1,4 GHz|j=1,2,3 ≈
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(a) TX antenna: A1 (b) TX antenna: A5

Figure 3.9: Comparison of the amplitude of the measured data against the result of the direct

problem for three different models at 3 GHz and for two different emitting antennas.

80 %). The overall error (including all the sources) is ǫ = 23.7 %. Notice also how the

amplitude decrease at the frequency band edges due to the lanczos window is properly

retrieved in the simulated field.

In order to investigate the effect of each “ingredient” of the model, two emitting anten-

nas, A1 and A5, are first selected, and the frequency 3 GHz is selected. In Fig. 3.9 the

corresponding amplitude patterns are shown in the case of: 1) measurement, 2) full model,

3) incident field model but no modification of GΓ, and 4) as in 3) but with the expansion

order M = 0. Notice that 3) corresponds to the method proposed in [70], where the re-

ceiving antenna pattern is not modeled, whereas 4) results in an isotropic model, as the

one used for instance in [146] where, due to the geometric configuration of the experiment

(a circular vitual array), the antennas always worked practically at broadside. From this

comparison the benefit of using a full model, including both the radiation and receiving

antenna patterns through a multipolar expansion, is clear. Indeed, it is only with the full

model that the dynamics of the amplitude (1.5 dB for A1 and 2 dB for A5) approaches that

of the measurement, whereas for 3) and 4) the variation hardly reaches 0.5 dB. Confirming

this, the overall errors are ǫ = 23.7 %, 25.1 %, and 28.2 % for 2), 3), and 4), respectively.

Back to the full model, the 1 to 2 dB amplitude underestimation observed in Fig. 3.8(b)

with respect to Fig. 3.8(a) (and also visible in Fig. 3.9) can be attributed to the systematic

error due to directivity of the antennas in the elevation direction. The workaround described

in §3.5.1.2 can indeed only partially recover such error, whereas only a full 2.5D code could

eliminate it. In order to quantify the impact of the correction term fdir in (3.71), its

value is plotted in Fig. 3.10 for A5 and at the target center. The variations are due to

the frequency-dependency of the antenna directivity. In Fig. 3.9(b), the value at 3 GHz,

fdir ≈ −1.5 dB is applied to the red, full-line curve. Without the correction, the latter

would be shifted by around +3 dB (twice the fdir value), giving now an overestimation by 1

to 2 dB ! While at other frequencies and for other antennas the correction actually improves
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Figure 3.10: Value of fdir as a function of frequency for the antenna A5 and at the target

center.

the measurement/reconstruction matching, this example proves the systematic nature of

the error and the impossibility to rigourously solve it.

Another interesting parameter of the model is the phase center offset with respect to the

connector of the antennas, dpc. Under the hypothesis that dpc does not vary with frequency,

different values have been tested within the full model framework. For each of them, ǫ has

been computed according to (3.76), and the results are plotted in Fig. 3.11(a). The blue,

circle-marker curve shows surprisingly that the value giving the smallest ǫ is dpc = −1 cm!

To further understand the effect of the phase center correction, the error for two emitting

antennas, A1 and A5, is also plotted. The results are again surprising, since for A1 the

smallest ǫ is found for dpc = 2.5 cm, whereas for A5 and practically all the other antennas

(not shown) dpc tends to be even smaller than -1 cm. Finally, since as a matter of fact

dpc = −1.5 cm gives the smallest error, it will be used for all the inverse problems in the

following.

Two possible explanations of the negative value found in Fig. 3.11(a) can be given.

First, it must not seem awkward that dpc is negative: the phase center being a rather

(a) (b)

Figure 3.11: (a) Overall error ǫ and errors for A1 and A5 as emitters as a function of dpc.

(b) Reconstructed amplitude radiation pattern at 3 GHz for A5 as emitter and for

different values of dpc.
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arbitrary parameter, it simply means that the radiation of the ETS antennas appears as

centered in a point that lies before the antenna connector, which might in fact be the case

depending on the particular antenna design. The results in Fig. 3.11(b) tend to confirm

this explanation. It is shown the retrieved scattered field amplitude pattern at 3 GHz

in the case of A5 as source and as a function of receiving antenna. Different dpc values

are tested; for smaller ones, the reconstructed directivity increases, in the sense that the

excursion of the amplitude is wider. This is to be expected, since a smaller dpc means that

the same measured amplitude pattern, |Scal
jl |, is associated to smaller azimuth angles ϕjl

and to a reduced aperture angle ∆ϕ. Summarizing, two contrasting behaviors appear when

reducing dpc: on the one side, an improved directivity, better matching the measured one, is

obtained; on the other side, for dpc values smaller than the hypothetical 3.36 cm, the fitting

of the theoretical cylindrical wavefronts is probably worse. Indeed, the two tendencies seem

to overall balance themselves for dpc = −1 cm.

3.6.3 SNR definition

As for any experimental study, defining a Signal-to-Noise-Ratio (SNR) is an important

step to properly analyze the results. Es|Γ, the synthetic field built through the calibration

procedure just described and validated, is the only signal that can help in quantifying the

noise contribution. Yet, several other contributions affect it as shown in the discussion

preceding (3.74).

Therefore, although the classical SNR expression

SNR ,

∑

j,p

∥
∥Es

j,p

∥
∥
2

Γ
∑

j,p

∥
∥Es;meas

j,p − Es
j,p

∥
∥
2

Γ

, (3.77)

where all the norms are L2-norms, can be evaluated, antenna mismatch and modeling

limitations are also included.

3.6.4 Inverse problem

The analysis of the inversion results involves a large number of parameters: number

of frequencies and bandwidth, number of sources/receivers, geometric configuration of the

setup, type of the initial estimate, just to number a few. First of all, a main distinction

is applied in the following over the different types of geometric configurations, that is,

reflection, transmission, and full setups (see §1.3). In all cases, relatively small arrays are

considered in order to investigate the effect of a small aperture on the inverstion results.

Whether using a large bandwidth might compensate such a limited view is also investigated.

Unless otherwise specified, the inversion algorithm is run with the parameters in Tab. 3.2.

The top table concerns the actual inversion parameters, which apply then to both experi-

mental and synthetic data sets. The bottom one, dealing with the incident field and far-field

Green function calibration, only applies to the experimental case. As for the number of
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inversion

algorithm

frequency

bandwidth

nb. of

frequencies

frequency

weighting
pixel size

M2GM [2-4] GHz Np = 21 1/ω2 ≤ λ0/10 @ 3 GHz

multipolar development phase center correction elevation correction

M = 1 dpc = −1 cm active

Table 3.2: Main characteristics and parameters of the inversion algorithm (above) and of the

incident field and far-field green function calibration (below).

frequencies, although a step ∆f = 5 MHz (Np = 401) is available, the value ∆f = 100 MHz

(Np = 21) has been chosen since for a smaller step hardly any improvement in the results

can be observed whereas the execution time is of course considerably reduced. The size

∆x = ∆y , dpix of the pixels discretizing the investigation domain Ω is always set to a value

smaller or equal to λ0/10 @ 3 GHz, that is, 1 cm. When synthetica data are generated

for a comparison between experimental/theoretical results, care is taken not fall into the

inverse crime [157] consisting of choosing a step for the inversion equal to (or smaller than)

the one used for the generation of the data.

3.6.4.1 Frequency weighting

As explained in §3.3.1, the terms of the cost function at different frequencies are mul-

tiplied by a 1/ω2 weight whose role is to better condition the data in order to trade-off

between convergency and resolution. Due to the use of the FFT lanczos window Wω(ω)

necessary to reduce the aliasing of time domain echos (see §1.6), an additional weight affects

the data. This happens because, neglecting the effect of the time-domain gate wt(t) (which

gives a convolution in the frequency domain and sort of mixes all the frequencies), the cost

function can be written as

F(χp;Ej,p) ≈
P∑

p=1

W 2
ω(ωp)

J∑

j=1

(
wΓeΓj,p + wΩeΩj,p

)
, (3.78)

Figure 3.12: Amplitude of the lanczos window Wω(ω) as a function of the frequency.
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where eΓj,p and eΩj,p are the errors on the data and state equations, respectively, for the jth

source and at the pth frequency. Given then the shape of the lanczos window in Fig. 3.12, the

weight of the lower and higher frequencies in the [2-4] GHz band is considerably reduced with

respect to the one of the central frequencies. As a consequence, the inversion result will only

partially be influenced by the additional information provided by them. Such information

must therefore be efficiently included back, especially because the lower frequencies improve

convergency and robustness of the algorithm while the higher ones allow to reconstruct finer

details of the scatterers.

One could first think of replacing the lanczos window by a different window, possibly

asymmetric in order to enhance the weight of the lower frequencies and reducing that of the

higher ones. Such a window is nonetheless hard to find in our case, where the requirements

on the sidelobe suppression are very strict (cf. §1.6).

The easiest, and probably safest, way to solve this problem consists instead in multiplying

both the incident and the measured scattered fields, Ei and E;meas, respectively, by 1/Wω(ω)

at each frequency, so to compensate exactly (apart again from the effect of the time-gating)

the profile of the lanczos window.

Notice also that applying the inverse of the window does not invalidate the anti-aliasing

role originally played by Wω(ω). In fact, while the first application of the window is a

coherent one, in the sense that it is necessary to retrieve a clean-enough time-domain signal

to be time-gated, here the processing is incoherent with respect to the available frequencies.

As a matter of fact, the cost function is made of a sum of norms, and for the gradients in

§3.3.1 the frequency components are summed through either their real or imaginary part.

Unless otherwise stated, the frequency window compensation is always applied to the

data. An example of the impressive improvement given by this strategy is given in Fig. 3.18.
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(b) Scattering

Figure 3.13: Inversion setup. Metallic cylinder in reflection.
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3.6.4.2 Reflection configuration

Metallic targets

The setup of the first example is the one in Fig. 3.13, already used in §3.6.2 for the

calibration methodology validation. A metallic cylinder with 2 cm radius is imaged with 8

antennas. Although it is empty, the metallic width is much larger than the skin depth at

2 GHz (lowest frequency), so that the hypothesis of perfect conductor is fully verified. The

target-line distance is 50 cm, and the aperture angle is ∆ϕ ≈ 40 deg. The investigation

region is square with a side of 20 cm (2λ0 @ 3 GHz). The SNR evaluated through (3.77) is

equal to 17.7 dB.

In Fig. 3.14 the initial estimates obtained with the back-propagation method for both

synthetic (Ẽs) and experimental (Es;meas) data are presented. The results, showing from

left to right the real part of the permittivity, εr, the conductivity σ, and the modulus of

the contrast χ at 3 GHz, hardly present any difference between synthetic and experimental

data. As a first remark, it appears that while |χ| shows a hot spot at the visible face of the

metallic cylinder (the one facing the antenna array), εr and σ are rather complementary. In

other words, the back-propagation algorithm fails in distinguishing the purely conductive

features of the object. Nonetheless a good localization is obtained. The very low values of

εr and σ confirm what was claimed at the end of §3.3.3.

The final results are shown in Fig. 3.15. They are final in the sense that the iterative

(a) synth. εr;0 (b) synth. σ0 (c) synth. |χ0| @ 3 GHz

(d) exp. εr;0 (e) exp. σ0 (f) exp. |χ0| @ 3 GHz

Figure 3.14: Inversion of the configuration in Fig. 3.13. Initial estimate. Comparison between

(above) synthetic data and (below) experimental results.
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(a) synth. εr;∞ (b) synth. σ∞ (c) synth. dpix/δ∞ @ 3 GHz

(d) exp. εr;∞ (e) exp. σ∞ (f) exp. dpix/δ∞ @ 3 GHz

Figure 3.15: Inversion of the configuration in Fig. 3.13. Final results. Comparison between

(above) synthetic data and (below) experimental results.

algorithm does not manage to further refine the reconstructed profiles with additional CG

iterations. Again the difference between experimental and synthetic results is hardly visible,

proving that the SNR for this experiment is high enough (indeed, the cylinder has a high

scattering power due to its dimensions and metallic nature).

In Fig. 3.15(c,f) the ratio of pixel size dpix and skin depth δ at 3 GHz, instead of |χ|, is

plotted. The skin depth is defined as

δ , {x | e−ikx = e−1} ⇔ δ = − 1

ℑ{k} , k = k0
√

1 + χ , (3.79)

and it will systematically be shown when perfect conductors will be imaged. The reason

comes from their impenetrability coupled with the use of an inversion algorithm based on

an integral formalism. In effect, what such an algorithm reconstructs is a total field E

equal to 0 within the support of purely metallic targets, which is practically the case if

δ(σ) ≤ dpix. Values of δ(σ) below this limit only hardly alter E, already almost zero, and

will therefore not be retrieved from the algorithm. The maximum values around 0.4 in

Fig. 3.15(c,f) are therefore a bit low to trustfully affirm that the target is a conductor, but

they at least let it suppose. As a demonstration, the amplitude of the total field E (at

3 GHz and for A5 as emitter) over Ω is presented in Fig. 3.16: within the support of the

target E has indeed a small value with respect to those in front of it. As for the two hot

“stains” in the εr profiles, they are artifacts of the algorithm. The one nearer to the array is

an error, since there is no dielectric target in that region. The other one can be neglected
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Figure 3.16: Inversion of the configuration in Fig. 3.13. Amplitude of the total field E at

3 GHz and for A5 as emitter at the convergence of the algorithm with experimental

data.

(a) synth. (b) exp.

Figure 3.17: Inversion of the configuration in Fig. 3.13. Cost functions as a function of the

CG iteration number. Comparison between (a) synthetic and (b) experimental

data.

since placed behind the reconstructed portion of the target perimeter, where E is as just

explained very small. The information available in the data combined with the M2GM as

inversion algorithm is therefore not sufficient yet for clearly distinguishing a dielectric from

a metallic target, although these results appear as very encouraging.

Finally, the evolution of the cost function F as a function of the CG iteration number is

shown in Fig. 3.17. The full line with circle markers represents the whole F , wheareas the

two other lines stand for the state and data equation terms, FΩ , wΩeΩ and FΓ , wΓeΓ

in (3.16). In the synthetica data case, the absence of noise allows the algorithm to run for

many more iterations before reaching the precision of the stop condition as compared to

the experimental case (see §3.3.2). Notice indeed how the final value of F is much lower in

the former case, meaning that although the additional iterations reduce considerably the

value of F the δ/dpix profile is barely improved. Notice also that the larger contribution in

the overall F is given by FΓ.

In order to prove the effectiveness of the frequency weighting strategy presented in

§3.6.4.1, the same data set has also been inversed without applying the lanczos window
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(a) dpix/δ∞ @ 3 GHz.

No Wω(ω) compensation

(b) |F [σ∞](~k)| @ 3 GHz.

No Wω(ω) compensation

(c) dpix/δ∞ @ 3 GHz.

Wω(ω) compensation.

(d) |F [σ∞](~k)| @ 3 GHz.

Wω(ω) compensation.

Figure 3.18: Inversion of the configuration in Fig. 3.13. Experimental data. Final results (top

row) without and (bottom row) with the lanczos window compensation. For the

spatial spectra (right column), the amplitude of the 0-frequency bin has been set

to 0 in order to better appreciate the dynamics of the other components.

compensation but leaving the 1/ω2 ponderation. The results are presented in Fig. 3.18,

where, besides the normalized skin depth δ∞ at the end of the iterative process, the ampli-

tude of the spatial Fourier Transform of the retrieved conductivity σ∞ at 3 GHz is shown.

From the skin depth profile in Fig. 3.18(a), it is immediately clear how without the com-

pensation the inversion result is affected by periodic patterns at a period approximately

equal to λ0/2 at 3 GHz, giving an almost discrete spectrum in Fig. 3.18(b) with spots at

nk0/2, n = 1, 2, . . .. In other words, the spatial content of the retrieved image is discretly

linked to λ0/2. This is then essentialy due to the frequency weighting, which almost acts

as if time-harmonic data at 3 GHz where available instead of a rather continuous spectrum

between 2 and 4 GHz. The proof is that, when the spectrum-equalizing compensation is

applied, the spatial frequency content is much smoother, with no particular frequency being

privileged.

A different test consists in applying the MBM and the MGM to the data set. In fact,

as alrady observed in literature (see e.g. Fig. 9 in [146]), the former is known to retrieve

higher σ - hence δ - values in the case of perfect conducting targets. This is indeed verified

in Fig. 3.19, where the MBM is employed and the δ/dpix ratio grows up to more than
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(a) exp. F (b) exp. σ∞ (c) exp. dpix/δ∞ @ 3 GHz

Figure 3.19: Inversion of the configuration in Fig. 3.13. Final results. The MBM is used

instead of the M2GM (see §3.3).

(a) exp. F (b) exp. σ∞ (c) exp. dpix/δ∞ @ 3 GHz

Figure 3.20: Inversion of the configuration in Fig. 3.13. Final results. The Modified Gradient

Method (MGM) is used instead of the M2GM (see §3.3).

0.5. The price to pay is a much larger number of iterations. Indeed, in Fig. 3.19(a) 200

CG iterations have been performed and convergency is not even reached, resulting in a

proportionally larger execution time. Also, it can be seen that F is not a monotonically

decreasing function anymore, since the update of the total field is now done exclusively

with a value issued from the resolution of a direct problem (the so-called Born term) and

not with a classical conjugate gradient direction.

Inversely, if the Born term is removed from the total field update rule, that is, if the

MGM is used, the inversion results in Fig. 3.20 appear dramatically degraded with respect

to both the M2GM and the MBM. The regularizing effect of using a direct solver is thus

confirmed. Notice also how the equilibrium of the components of F are altered, since now

FΓ and FΩ have rather similar values (the latter is even larger now).

Back to the M2GM method, it is instructive to observe the evolution of the gradients

of F during the CG iterations. With reference to the notations in §3.3, and given the fact

that all the gradients are vectors (one component per point ~r ∈ Ω), the following quantities
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(a) g(εr), g(σ) (b) g(E), gBorn(E)

Figure 3.21: Inversion of the configuration in Fig. 3.13. Evolution of the norm of the gradients

in (3.80) as a function of the CG iteration number.

are observed:






εr → g(εr) , ‖gξ‖2Ω
σ → g(σ) , ‖gη‖2Ω

}

χ− gradients

E → g(E) ,
∑

j,p

‖gEj,p‖2Ω

Born term→ gBorn(E) ,
∑

j,p

‖Ẽj,p − Ej,p‖2Ω







E − gradients

. (3.80)

The results from the experimental inversion are presented in Fig. 3.21. The χ-gradients

have a nicely decreasing shape with a dynamics of about 45 dB. Hence, a true minimization

over χ of the cost function is performed, and convergency is reached when the gradients

reach a plateau. The behavior is not as effective for the E-gradients in Fig. 3.21(b). As

for g(E), it basically oscillates with a larger excursion in the first 4 iterations (5 dB) and a

smaller then (1 dB) without really being minimized. The first conclusion is that the much

smaller excursion with respect to the χ-gradients means that F is much less sensitive to the

E profile than to the χ one. In addition, while the update of E made in the first iterations

alters its norm, the minimization “work” achieved in the following ones basically concerns

only χ. As a further proof, gBorn(E) almost stabilizes after iteration 5, demonstrating that

the following χ refinements almost do not affect both En and Ẽn.

The conclutions issued from this testcase are mainly two. First of all, the experimental

data are fairly suitable for a quantitative inverse scattering problem, at least in the case

of a rather big perfect conductor. The experimental results are indeed very similar to the

synthetic ones, showing that the inversion algorithm is robust with respect to noise, at

least down to the SNR value of 12.7 dB estimated for this configuration. Concerning the

available information and the effectiveness in extracting it, it appears that in the case of

a perfect conductor and of a small Tx/Rx line in reflection only the image of the front

side of the scatterer support can be retrieved5. Despite the frequency diversity available,

5This is actually true only in the E// polarization case treated here. Inversely, if H// polarized waves
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though, the value of the conductivity is slightly underestimated, even when using synthetic

data. Additional information, hence data, is needed for an unambiguous and quantitatively

trustful inversion.

Dielectric targets

Dealing with dielectric targets leads to very different results. The configuration under

test is equivalent to the one in Fig. 3.13, only a dielectric cylinder with circular section

is used instead of the metallic one. Only synthetic data are used to test the inversion

algorithm.

First, for a given relatively low permittivity value, e.g. εr = 2, the radius of the object has

been shrinked from λ0/5 to λ0/20 at 3 GHz. Fig. 3.22 shows the corresponding retrieved

εr profiles (except for Fig. 3.22(a), whose |χ| at 3 GHz is shown in Fig. 3.23(d), σ is

(a) radius = λ0/5 (b) radius = λ0/6.7 (c) radius = λ0/10

(d) radius = λ0/20

Figure 3.22: Synthetic data inversion of a dielectric cylinder with εr = 2 and four different

radii. Only the εr profile is shown. The configuration is equivalent to the one in

Fig. 3.13. In (d), two inversions have been run with two different Ω sizes (hence

different pixel sizes) to prove that the low εr values found with a large Ω (left) are

not due to the large pixel size-target dimensions ratio.

are used, the creeping waves propagating along the perimeter of the scatterer support re-radiate back in

the direction of the array after one or more complete tours, thus carrying informations also on the “dark

side” of the support.
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(a) εr;∞; εr = 2 (b) εr;∞; εr = 1.5 (c) εr;∞; εr = 1.1

(d) |χ∞| at 3 GHz; εr = 2 (e) |χ∞| at 3 GHz; εr = 1.5 (f) |χ∞| at 3 GHz; εr = 1.1

Figure 3.23: Synthetic data inversion of a dielectric cylinder with radius = λ0/5 and three dif-

ferent permittivity values. The configuration is equivalent to the one in Fig. 3.13.

(above) εr profiles, and (below) |χ| at 3 GHz.

not shown because it takes very small values). A finding common to all the figures is

the systematic underestimation of the value of εr. Nonetheless, quite different behaviors

appear in the large and small target cases. In Fig. 3.22(a), a sort of “focusing effect” takes

place, so that instead of imaging all the target support just a spot is found at its rear side.

Actually, as shown in Fig. 3.23(d), there is a similar focusing on the σ profile, which is not

negligible with respect to εr. This “focusing” phenomenon was already shown in [147] (see

e.g. Fig. 4(b)), where two spots where found on two sides of the support due to the fact

that a complete configuration was used, leading to conclude that this effect is typical of

multi-frequency inversions, since a rather different shape was found in [147] when using a

frequency hopping approach. As the dimensions lower, the hot spot coincides more with

the center of the target. The εr value increases up to 1.8 in Fig. 3.22(c), but decreases to

1.4 for the smallest target in Fig. 3.22(d). Two conclusions can be drawn:

• when the dimensions of the target decrease, a better estimation has to be expected,

both in terms of shape and permittivity value;

• nonetheless, for very small targets with respect to the frequencies used, the resolution

given by the geometry of the configuration systematically leads to an underestimation

of εr, since the actual value is smeared over a larger region whose size depends indeed

on the available resolution.

On the other hand, fixing the radius of the target to 2 cm and testing εr values from 2
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(b) Scattering

Figure 3.24: Inversion setup. Wooden bar in reflection.

to 1.1 gives the results in Fig. 3.23. Both the εr and |χ| at 3 GHz profiles are shown, since

as anticipated the conductivity values are not negligible. In fact, not even when εr = 1.1,

corresponding to an electrically very small target, the permittivity profile is clean; σ is

somehow complementary and systematically brings a focusing onto the rear face of the

object.

From the comparison of Figs. 3.22-3.23 it can finally be concluded that although the

RADAR cross section of a dielectric target depends, at least under the Born approximation,

on the r2ǫr product, which might lead to state that dividing by
√
2 the radius r gives the

same result as dividing by 2 the permittivity, quite different behaviors appear when changing

r or εr, mainly due to the resolution limit attained by the algorithm.

Despite the previous results show that for targets electrically (very) large it is impossible

to obtain accurate reconstructions, it is nonetheless very interesting to investigate the be-

havior of the inverse problem in such cases. In the experimental setup in Fig. 3.24 a wooden

rectangular-section bar whose sides are of the order of λ0 at 3 GHz is imaged. Based on

experimental informations found in literature, the value of εr should be between 2 and 3.

The resonance pattern found in Fig. 3.25(b) at about 2.4 GHz seems indeed to be matched

by the one given by a wooden bar with εr = 3 whose scattered field for A4 as transmitting

antenna is shown in Fig. 3.24(a). The corresponding SNR is 3.2 dB.

The inversion of the experimental data gives the results in Fig. 3.26. Concerning the

εr profile, two spots corresponding to the faces of the bar parallel to the array are clearly

found. The permittivity value is, as expected, underestimated. Within the bar, εr ≈ 0. As

for the σ profile, one spot appears within the support of the bar. As a result, the contrast

at 3 GHz (Fig. 3.26(f)) fills the support better than εr or σ alone, although the conductivity

profile is dominant. Replacing the back-propagation initial estimate by a flat profile (i.e.
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(a) Measurement (b) Model (with calibration), εr = 3

Figure 3.25: (a) Measured and (b) modeled scattered fields for A4 as transmitting antenna and

as a function of receiving antenna and frequency.

(a) εr;0 (b) σ0 (c) |χ0| @ 3 GHz

(d) εr;∞ (e) σ∞ (f) |χ∞| @ 3 GHz

Figure 3.26: Inversion of the configuration in Fig. 3.24. Experimental results. (top) Back-

propagation, (bottom) final results.

εr;0 = 1.01 and σ0 = 0.01 ∀~r ∈ Ω) can in some cases be advantageous. Here (not shown), it

only slightly improves the results, namely the εr values rise to 1.4 and becomes dominant

over the imaginary part.
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Figure 3.27: Same as Fig. 3.26, but the target is forced to be purely dielectric. Final result

(εr;∞).

The conclusion is then that the inversion scheme seems to possess not enough information

to distinguish between a conducting and a dielectric object. This is why it is interesting to

force the algorithm to search for a purely dielectric target6, that is, exploiting the a priori

information that the target is a purely dielectric one. The resulting εr profile is in Fig. 3.27,

much cleaner and quantitatively less underestimated than the one in Fig. 3.26. As for the

results with synthetic data, not shown, they are very similar to the experimental ones and

do not present any sensible improvement.

It is also instructive to observe the behavior of the cost function and of the norms of

(a) F (b) g(εr), g(σ) (c) g(E), gBorn(E)

(d) forced dielectric, F (e) forced dielectric, g(εr) (f) forced dielectric, g(E), gBorn(E)

Figure 3.28: Inversion of the configuration in Fig. 3.24. Experimental results. Evolution of

the gradients as a function of the CG iteration number.

6Within the algorithm, this is simply done by switching off the minimization of F with respect to η

setting βη
n = 0 in (3.26), and by imposing a σ profile equal to 0 everywhere within Ω.
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(b) Scattering

Figure 3.29: Inversion setup. Metllic cylinder and wooden bar in reflection.

the gradients as a function of the iterations of the algorithm. From the results in Fig. 3.28,

showing also the pure dielectric case just mentioned, it appears that the components of

the cost function FΓ and FΩ are even more unbalanced here than in the example of the

metallic target (cf. Fig. 3.17(b)). In addition, in Fig. 3.28(c,f), the gradient g(E) grows

instead of decreasing, meaning that E is less and less a minimizer of F .

Metallic and dielectric targets

As a final test case, the setup in Fig. 3.29 has been tested. Both the metallic cylinder

and the wooden bar are present, with an edge-to-edge distance of 7.5 cm (3/4λ0 at 3 GHz).

The results are presented in Fig. 3.30. The first remark is that, despite the smaller area,

the metallic target has a much higher scattering power, resulting in an initial estimate which

has barely any trace of the wooden bar (see e.g. the difference in the values of χ0 at the

location of the targets in Fig. 3.30(c)). The algorithm is nonetheless capable of reducing

this imbalance, at least up to the conducting/dielectric resolving power already pointed out

for the two targets alone. Indeed, the final result for the metallic cylinder strongly resembles

the one observed in Fig. 3.15: a hot σ spot at the front side with respect to the array, and

two εr parasite regions in front and inside of it. It might nevertheless be pointed out that

the σ spot is now split into two parts; the right one is in fact absent in Fig. 3.15, which

might lead to the conclusion that its presence is caused by the proximity of the dielectric

target, which is partially imaged too: a first demonstration that multiple scattering is taken

into account in the inversion process could possibly show here. As for the wooden bar, as

just said the image is not clear; still, some of the elongated spots observed in Fig. 3.26 are

retrieved.
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(a) εr;0 (b) σ0 (c) |χ0| @ 3 GHz

(d) εr;∞ (e) σ∞ (f) dpix/δ∞ @ 3 GHz

Figure 3.30: Inversion of the configuration in Fig. 3.29. Experimental results.

3.6.4.3 Transmission configuration

Two configurations have been tested in the case of a transmission setup. Both the

antenna arrays are used giving a 7 × 8 scattered field matrix with only transmission data

(Sjl|j=1,...,8; 9,...,15). The first test case (Fig. 3.31(b)) deals with a metallic cylinder, the

second (Fig. 3.31(c)) with a wooden one (εr ≈ 2), their radii being equal to λ0/5 and
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(c) Scattering (dielectric)

Figure 3.31: Inversion setup. (a) Metllic and (b) dielectric cylinder in transmission.
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(a) εr;0 (b) σ0

(c) F (d) εr;∞ (e) σ∞

Figure 3.32: Inversion of the transmission configuration in Fig. 3.31(b). Experimental results.

(a) εr;0 (b) σ0

(c) F (d) εr;∞ (e) σ∞

Figure 3.33: Inversion of the transmission configuration in Fig. 3.31(c). Experimental results.

λ0/6.7, respectively, at 3 GHz.

For both the metallic and dielectric target cases, the results in Fig. 3.32 and Fig. 3.33,
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respectively, show that using only transmission data with a small array aperture is insuf-

ficient for properly localizing the scatterer in down-range. This phenomenon was already

observed with the Kirchhoff migration method in Figs. 2.11-2.12, where the same configu-

rations where actually used. Indeed, not even the coherent time-domain approach intrinsic

to the Kirchhoff migration - supposedly more efficient for down-range localization than the

multi-frequency incoherent approach of the inverse problem - led to a proper localization

of the targets.

The results do not even change when a flat initial profile is used for the contrast, meaning

that the lack of localization is not just in the initial estimate but rather in the information

content of the transmission data. Nevertheless, as demonstrated in the next paragraph, the

information available in the transmission data considerably enhances the inversion results

when combined with the one in reflection.

3.6.4.4 Full configuration

While the two array-configuration, such as the one in Fig. 3.31, is still used here, the mea-

surements to be inverted comprise all the retrodiffusion coefficients Sjj|j=1,8 and Sll|l=9,...,15

in addition to the transmission data Sjl. In matrix form, this becomes

Kfull =



















S11 ◦ · · · ◦ S19 S1 10 · · · S1 15

◦ S22
. . . S29 S2 10 S2 15

...
. . .

...
...

. . .
...

◦ · · · ◦ S88 S89 S8 10 · · · S8 15

S91 S92 · · · S98 S99 ◦ · · · ◦
S10 1 S10 2 S10 8 ◦ S10 10 ◦

...
. . .

...
...

. . .
...

S15 1 S15 2 · · · S15 8 ◦ ◦ · · · S15 15



















. (3.81)

Although additional data, namely the Sjk|j,k=1,...,8 can also be measured, they are not

included here. This is due, on the one side, to their small added value in terms of information

content with respect to the retrodiffusion data, and on the other to the fact that measuring

them requires a different experimental configuration (the reflection one - see §1.3).

Metallic targets

The first configuration is the one already presented in Fig. 3.31(b). First, all the retrodif-

fusion coefficients are used for the inversion (that is, the diagonal elements of the matrix in

(3.81)), ignoring the transmission data. The results in Fig. 3.34 show that two sides of the

cylinder support are retrieved, those facing the arrays. Nonetheless, they appear elongated

in the direction parallel to the arrays, while a strong εr spot is found within the support.

This basically confirms the results found with the reflection configuration (cf. Fig. 3.15),

although two main differences hold in this case: 1) here two arrays, each in reflection, illu-
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(a) εr;0 (b) σ0 (c) |χ0| @ 3 GHz

(d) εr;∞ (e) σ∞ (f) dpix/δ∞ @ 3 GHz

Figure 3.34: Inversion of the configuration in Fig. 3.31(b). Retrodiffusion data only. Experi-

mental results.

(a) εr;0 (b) σ0 (c) |χ0| @ 3 GHz

(d) εr;∞ (e) σ∞ (f) dpix/δ∞ @ 3 GHz

Figure 3.35: Inversion of the configuration in Fig. 3.31(b). Full data. Experimental results.

minate the target, and 2) the data used here are only the retrodiffusion coefficients and not
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(a) Retrodif. config. (b) Full config., iteration 12 (c) Full config., final result

Figure 3.36: Inversion results with synthetic data. dpix/δ∞ @ 3 GHz.

the whole reflection matrix (Sjk|j,k=1,...,8). The result with synthetic data in Fig. 3.36(a),

very similar to the experimental one, confirms this remark.

A drastic improvement is obtained when the full data matrix (3.81) is used. The real part

of the contrast is now practically zero, whereas σ has three hot spots, two at the front sides

with respect to the arrays - much hotter than in Fig. 3.34(f) - and one laterally as well. Two

more spots appear above and below the target, although much less strong. This is again

confirmed with synthetic data in Fig. 3.36(b-c): after 12 iterations - approximately the

same number of iterations needed in the experimental case to reach convergency - the skin

depth profile (Fig. 3.36(b)) resembles very much the experimental one. Only, the absence of

noise allows the algorithm to iterate much longer (more than 50 iterations) and to sharpen

(a) Retrodif. config., F (b) Retrodif. config., g(εr), g(σ) (c) Retrodif. config., g(E), gBorn(E)

(d) Full config., F (e) Full config., g(εr), g(σ) (f) Full config., g(E), gBorn(E)

Figure 3.37: Inversion of the configuration in Fig. 3.31(b). Experimental results.
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(b) Scattering

Figure 3.38: Inversion setup. Two metllic cylinders in full configuration.

the three hot spots up to the result in Fig. 3.36(c). Although not under the scope of this

work, notice that these spots would probably be avoided including in the cost function a

regularization term that would limit the spatial gradient of the retrieved contrast (see for

instance [132]), resulting in a smoother final profile.

As for the cost function and the gradients, shown in Fig. 3.37 for both the retrodiffusion

and full configurations, it can first be remarked that FΓ and FΩ are more unbalanced

in the full case. Nonetheless, as seen before, the result is much better in this case, and

the decrease of the gradients g(εr) and g(σ) overcomes by more than 10 dB the one in

the retrodiffusion case. The behavior of g(E) is somehow strange. For the retrodiffusion

configuration, it undergoes a big +15 dB jump after the initial iteration, then it decreases

by 4 dB at iteration 3, and finally slowly grows until convergency of the algorithm. On

the other hand, for the full configuration g(E) decreases by more than 5 dB after the first

iteration and then rises by 10 dB approximatively until convergency. It is hard to explain

why the latter behavior gives better results than the former. For the full configuration

case, it might be that F(E) points to a local minimum after the first iteration, but then

makes it to change direction toward another local minimum such that g(E2) > g(E1), E2

and E1 being the values of E for the initial and final local minima, respectively. That is,

the algorithm is smart enough to deviate from the initial minimum and point to another

one which, although “less minimum” for E, better minimizes the whole F(χ,E).
Similar results are found with the two-target configuration in Fig. 3.38. In Fig. 3.39, the

scatterers are very well separated with three hot spots each, while F and g(E) show the

same behavior just commented.

Dielectric targets

The configuration presented in Fig. 3.31(c) is used here to test the retrodiffusion and full
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(a) F (b) g(E), gBorn(E) (c) dpix/δ∞ @ 3 GHz

Figure 3.39: Inversion of the configuration in Fig. 3.38. Experimental results.

configurations in the case of a purely dielectric target. With retrodiffusion data only, the

inversion results are given in Fig. 3.40. The presence of two opposite arrays prevents the

“focusing effect” observed in Figs. 3.22-3.23 to occur. Nonetheless, two hot spots appear up

and down the target location, and there is still ambiguity between real and imaginary parts

of χ. Also, the shape of the target is not really retrieved.

Using full data improves the results, as shown in Fig. 3.41. The profiles are globally

cleaner, and the shape of the target is better imaged; yet, parasite spots appear at a

distance of 6-7 cm, probably linked (through a λ0/2 relation) to a “dominant” frequency

component between 2 and 2.5 GHz. A behavior similar to the one observed in the metallic

(a) εr;0 (b) σ0 (c) |χ0| @ 3 GHz

(d) εr;∞ (e) σ∞ (f) |χ| @ 3 GHz

Figure 3.40: Inversion of the configuration in Fig. 3.31(c). Retrodiffusion data only. Experi-

mental results.
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(a) εr;0 (b) σ0 (c) |χ0| @ 3 GHz

(d) εr;∞ (e) σ∞ (f) |χ| @ 3 GHz

Figure 3.41: Inversion of the configuration in Fig. 3.31(c). Full data. Experimental results.

(a) εr;∞ (b) σ∞ (c) |χ∞| @ 3 GHz

Figure 3.42: Inversion of the configuration in Fig. 3.31(c). Full data. Synthetic results (εr=2).

target case appears here: with synthetic data (Fig. 3.42), the absence of noise allows the

algorithm to continue iterating and minimizing F , leading to a reduction of the paraisite

spots and to a cleaner image with a better estimate of the permittivity value. On the

other hand, when noise is present, that is, in the experimental case, the algorithm reaches

convergency before this refinement can take place.

Metallic and dielectric targets

Inverting a configuration with both a metallic and a dielectric target is a more difficult

task. Whether the inversion procedure has enough resolution to resolve both, and whether

the SNR is large enough for the same purpose, are the questions to be answered here.
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(c) Scattering

(down-range configuration)

Figure 3.43: Inversion setup. Metllic and dielectric cylinders in full configuration.

(a) εr;0 (b) σ0 (c) |χ0| @ 3 GHz

(d) εr;∞ (e) σ∞ (f) dpix/δ∞ @ 3 GHz

Figure 3.44: Inversion of the configuration in Fig. 3.43(b). Full data. Experimental results.

The first configuration, shown in Fig. 3.43(b), has two targets spaced by 13.75 cm and

placed roughly at mid-distance from the arrays. The experimental results are in Fig. 3.44.

Since the back-propagation initial estimate, a hint on the nature of the targets seems to

appear: although in Fig. 3.44(a) the metallic target position is “hotter” than the one of the

wooden cylinder, due to the larger scattering power of the latter, the σ profile very well

rejects the dielectric. As the iterations go, even the ǫr profile starts rejecting the metal,
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(a) εr;∞ (b) σ∞ (c) dpix/δ∞ @ 3 GHz

Figure 3.45: Inversion of the configuration in Fig. 3.43(b). Full data. Synthetic results (εr = 2

for the wooden cylinder).

and finally both the targets are well imaged, at least coherently with the results of the

single-target configurations just presented (Fig. 3.35 and Fig. 3.41). As for the synthetic

data results in Fig. 3.45, they are of course much cleaner, because - as usual - the absence of

noise allows the algorithm to perform additional iterations that refine further the retrieved

profiles.

When the distance separating the targets is reduced, the results are still very good. As

an example, in Fig. 3.46, the edge-to-edge distance is only 1 cm; still the targets are well

separated (partially even from the very back-propagation) and their nature discriminated.

(a) εr;0 (b) σ0 (c) |χ0| @ 3 GHz

(d) εr;∞ (e) σ∞ (f) dpix/δ∞ @ 3 GHz

Figure 3.46: Inversion of the configuration in Fig. 3.43(b) but with an edge-to-edge target

distance of 1 cm. Full data. Experimental results.
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(a) εr;0 (b) σ0 (c) |χ0| @ 3 GHz

(d) εr;∞ (e) σ∞ (f) dpix/δ∞ @ 3 GHz

Figure 3.47: Inversion of the configuration in Fig. 3.43(c). Full data. Experimental results.

(a) εr;∞ (b) σ∞ (c) dpix/δ∞ @ 3 GHz

Figure 3.48: Inversion of the configuration in Fig. 3.43(c). Full data. Synthetic results (εr = 2

for the wooden cylinder).

Similar results are also obtained if the distance is shrinked to 0 cm. When synthetic data are

used (not shown), the results are in line with the previous ones, namely more iterations are

performed before convergency and the retrieved profiles are cleaner than the experimental

ones.

A different configuration is given in Fig. 3.43(c). The same targets are now placed along

the down-range direction at a distance of 9.5 cm. Both the experimental results in Fig. 3.47

and the synthetic ones in Fig. 3.48 are not as good anymore. In fact, the targets shadow

each other, due to the small array aperture, and the inversion works almost as if the wooden

cylinder were only imaged by the upper array (array-1) and the metallic cylinder only by
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the lower one (array-2).

In the down-range case, making the targets closer does not help the reconstruction. Still,

the targets shadow each other and the dielectric one, in particular, is never imaged, not

even with synthetic data.

Impact of the frequency bandwidth

Until now, the full available frequency band, namely [2-4] GHz, has been exploited for the

inversion. Nonetheless, it must be understood how its width affects the results. Here, two

among the previous test cases are considered. The metallic cylinder in reflection, whose

configuration is in Fig. 3.13, and the metallic plus dielectric cylinders down-range setup

with full data shown in Fig. 3.43(b). For both of them, the inversion has been run first at

a single frequency, namely 2 GHz, then with 3 frequencies from 2 to 2.2 GHz, and finally

with 11 frequency from 2 to 3 GHz, the frequency step being 10 MHz as for all the other

results of the chapter.

The results, shown in Figs. 3.49-3.50, attest the usefulness of an as-large-as-possible

bandwidth. Indeed, especially for the full setup, the algorithm hardly performs any “sig-

nificant” iteration when frequencies up to 2.2 GHz are employed. This is very different

from the literature results obtaining satisfying reconstructions from singe-frequency data in

circular configurations: here the small array configuration makes it mandatory to possess -

and exploit - frequency diversity.

3.6.5 Conclusions

Several conclusions can be drawn from the results of this chapter. First of all, the

incident field and far-field green function calibration seems very well suited to the line of

measurement experimental setup. Its importance lies in the fact that the coefficients of

the expansions are retrieved through experimental data measured in the same setup of

the scattering experiment. Hence, antenna coupling and “interferences” of the medium are

taken into account. The importance of modeling the receiving directivity of the antenna via

a multipolar expansion of GΓ is new and adds an important contribution to the calibration

procedure, especially in the case of rather directive antennas as the ETS used here.

The inversion results based on this calibration have been classified according to the

geometrical configuration of the array. It first appears that the reflection configuration,

given a small measurement line with aperture angles around 40 deg, does not allow to

retrieve enough information on the scatterers to reconstruct them properly. This can be

expected for metallic targets, which because of their impenetrability are only partially

retrieved. Nonetheless, dielectric targets are not properly imaged either, especially when

their dimensions become comparable to λ0.

Using transmission data only leads to completely wrong results. The data, again because

of the small aperture, do not contain enough information for localizing the targets. Yet,
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(a) 2 GHz, F (b) 2 GHz, εr;∞ (c) 2 GHz, dpix/δ∞ at 3 GHz

(d) [2-2.2] GHz, F (e) [2-2.2] GHz, εr;∞ (f) [2-2.2] GHz, dpix/δ∞ at 3 GHz

(g) [2-3] GHz, F (h) [2-3] GHz, εr;∞ (i) [2-3] GHz, dpix/δ∞ at 3 GHz

(j) [2-4] GHz, F (k) [2-4] GHz, εr;∞ (l) [2-4] GHz, dpix/δ∞ at 3 GHz

Figure 3.49: Inversion of the configuration in Fig. 3.13. Experimental results for four different

frequency bands. Reflection data.

when transmission data are added to the reflection, or retrodiffusion, ones, the results are

satisfying. The algorithm can now image both dielectric and metallic targets, although
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(a) 2 GHz, F (b) 2 GHz, εr;∞ (c) 2 GHz, dpix/δ∞ at 3 GHz

(d) [2-2.2] GHz, F (e) [2-2.2] GHz, εr;∞ (f) [2-2.2] GHz, dpix/δ∞ at 3 GHz

(g) [2-3] GHz, F (h) [2-3] GHz, εr;∞ (i) [2-3] GHz, dpix/δ∞ at 3 GHz

(j) [2-4] GHz, F (k) [2-4] GHz, εr;∞ (l) [2-4] GHz, dpix/δ∞ at 3 GHz

Figure 3.50: Inversion of the configuration in Fig. 3.43(b) but with an edge-to-edge target

distance of 1 cm. Experimental results for four different frequency bands. Full

data.

for the latter a better SNR would help in retrieving the exact shape and in killing some
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smaller, yet existing, parasite spots. Also, the resolution power is enough for distinguishing

the nature of the scatterers in the case both metals and dielectrics are to be imaged. Yet,

this all does not work when targets are placed in down-range, since they practically shadow

each other due - again! - to the small array aperture.

A final comment on the effect of the bandwidth is of importance. Given the very small

array aperture, frequency diversity plays an incontrovertible role in converging to a perti-

nent solution. This is not the case when complete data retrieved in a setup with antennas

encircling the scatterers are used, since the availability of additional frequencies basically

allows to retrieve finer details (making it possible, for instance, to adopt the frequency hop-

ping approach) but does not radically change the convergency properties of the algorithm.

Yet, it is not possible to conclude that frequency diversity supplies to the lack of aperture of

the array. The Ewald’s circle from a theoretical point of view (§3.4) and the experimental

results show indeed that the missing spatial information is not equivalent to and is not

brought back by additional frequencies.



160 CHAPTER 3. QUANTITATIVE INVERSE SCATTERING



Chapter 4

Inversion in cluttered media exploiting

the DORT method

In the previous chapter it has been experimentally demonstrated that quantitative in-

version methods are an effective tool for retrieving the properties of one or more scatterers.

This is true as long as the quantity of retrieveable information in the available data is

sufficient and as long as the SNR is high enough. As a consequence, when the scatterers to

be imaged are in cluttered media, the signal scattered by clutter acts as noise on the data,

seriously endagering the efficacity of non-linear inversion algorithms. In such cases, the

most straightforward approach for the inversion consists in assuming free-space conditions

or, in some cases, in modeling the propagating medium as a homogeneous one with a known

background permittivity εr;b 6= 11. Yet, if the mismatch between this simplistic model and

the real one, including multiple scattering between the target(s) of interest and the sur-

rounding clutter, becomes too important, erroneous results are produced. Equivalently, it

is the very low SNR - in this case Signal-to-Clutter Ratio (SCR) - that produces failure.

A classical approach to inversion in clutter consists in filtering the data to remove as

much multiple-scattering as possible, enhancing in turn the SCR. The filtered data can then

be inverted through a free-space model, leading in some cases to clean reconstructions. A

remarkable example is e.g. given in the work by Aubry and Derode [158] that focuses on

qualitative reconstructions. These filters, nevertheless, are based on statistical properties

of clutter and their impact is more and more effective when the quantity of independent

available data increases, e.g. in the case of a large array with many TX/RX antennas.

The approach that motivates this chapter relies on a purely deterministic frame. It is

mainly based on the fact that the response to a wave focusing onto the target of interest

contains less multiple-scattering, and has therefore a better SCR, than the response to a

rather isotropic wave illuminating both the clutter and the target itself. As a consequence,

inverting such a wave within a free-space model might lead to improved reconstructions of

the scatterer onto which focusing occurs. As for the way of generating focusing waves, the

1In practice, this is simply done by modifying the Green function operators GΓ and GΩ.

161
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effectiveness of Time Reversal-based methods has been validated in §2. The DORT method,

in particular, is a good candidate for its time-harmonic nature - consistent with the multi-

frequency inversion method - and for its ability to generate waves focusing selectively on

different targets.

The starting point for this work are the results provided by Dubois et al. in [32],

where the DORT method is used to regularize the inversion procedure. The geometrical

configuration of interest, as done in [32], is here the measurement line (e.g. for subsurface

sensing applications). Within this frame, the way a DORT-based cost function FDORT is

built and, if needed, is used to regularize the “regular” one is first exposed. Then, several

parametric analyses are carried on, each one validated using synthetic data. These include

different usages of FDORT and the impact of the measurement line size.

4.1 The DORT cost function FDORT

4.1.1 TX beamforming

Consider an antenna array with J antennas in reflection. In the case of one scatterer in

a cluttered medium, it has been shown in §2.3.3 that the DORT method allows to retrieve,

through the SVD of the inter-element matrix K, a singular vector that, if back-propagated

into the same medium, focuses onto the scatterer. Such vector, v1, is associated to the

largest singular value, λ1. While to each array antenna corresponds a vector of “regular”

incident fields

Ei(~r) =
[
Ei

1(~r) E
i
2(~r) . . . E

i
J (~r)

]
, (4.1)

a unique DORT incident field can be defined as

Ei; DORT(~r) ,

J∑

j=1

v1;jE
i
j(~r) = vT1 E

i(~r) ~r ∈ Ω . (4.2)

The scattered fields associated to Ei; DORT(~r) are then the components of the vector

Es;DORT|Γ =
[
Es;DORT(~r Γ

1 ) E
s;DORT(~r Γ

2 ) . . . E
s;DORT(~r Γ

J )
]T

, Kv1 = λ1u1 , (4.3)

where K is the measured inter-element matrix. A new cost function FDORT can therefore be

built by replacing the “regular” incident field E i
j,p and the measured scattered fields Es;meas

j,p

in (3.34) by the new DORT ones just defined.

From an implementation point of view, the DORT incident field must be evaluated

through (4.2) before the iterative minimization starts; then, the whole algorithm is un-

changed except that the number of views is now

J ← JDORT = 1 . (4.4)
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4.1.2 RX beamforming

A slightly different approach also exists. Since DORT is essentially a beamforming

method, it is possible to perform such beamforming at reception, rather than at transmis-

sion. Thus, for each incident field Ei
j(~r)|j=1,...,J , the received scattered fields Es

j(~r
Γ
k )|k=1,...,K

(K = J in a reflection configuration) can be recombined by

Es; DORT
j ,

K∑

k=1

u∗1;kE
s
j(~r

Γ
k ) , (4.5)

forming the DORT scattered field row-vector

Es;DORT|Γ , uH1 K = λ1v
H
1 . (4.6)

Notice that due to reciprocity and linearity of the electric field, the scattered fields in (4.6)

and (4.3) are identical.

From the implementation point of view, only the Green function operator GΓ must be

modified according to

Es;DORT
j =

K∑

k=1

u∗1;kE
s
j(~r

Γ
k ) =

K∑

k=1

u∗1;kGΓk (χEj) = GΓ;DORT (χEj) , (4.7)

where, in virtue of the linearity of GΓ, the new DORT far-field Green operator is defined as

GΓ;DORT ,

K∑

k=1

u∗1;kGΓk . (4.8)

While the number of views is still J , the number of receptions are now

K ← KDORT = 1 . (4.9)

4.1.3 About the computational burden

Although TX and RX beamforming may seem equivalent as applied to the inversion

frame, they are definitely not in terms of computational burden. Indeed, at least in the most

common implementations of inverse algorithms, the number of operations to be performed

increases much more rapidly with the number of sources than with the number of receivers.

To show this, let us focus on the convolution products between the Green function operators,

GΓ and GΩ, and the contrast χE. Such products are evaluated for the computation of the

gradients and during the line search (cf. §3.3). Their number is

GΓ(χE) : one per source and per receiver

GΩ(χE) : one per source
(4.10)

where it should also be remarked that the latter computation is heavier since GΩ has a

singularity requiring a “special” treatment (see e.g. [142]). With J = K TX/RX antennas,
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then, the standard inversion procedure requires JK + J convolution products, whereas RX

beamforming needs 2J and TX beamforming only K + 1. The gain in terms of operations

reaches (1 +K)/2 and J for RX and TX beamforming, respectively.

In addition to this, TX beamforming is even more appealing when the M2GM algorithm

is used. The reason lies in the fact that at each CG iteration one state equation per source

is solved, which despite the rapidity of the solver adds a non-negligeable burden.

4.2 Regularized cost function

As just discussed, running an inversion using FDORT is very appealing both from the

computational and the theoretical point of view. Despite this, since the number of data

is reduced by a factor J (at least if only one DORT singular space is used), it might be

argued that the available information contained in the data undergoes the same scaling (cf.

§3.4). Hence, a trade-off appears between the gain in SNR and the available information

contained in the data. In order not to renounce to have the whole available information

and an improved SCR, it might be a good idea to regularize the cost function F through

the DORT one, FDORT, as reported in [32].

The new cost function can then be written in one of two ways,

F reg = F + κFDORT (4.11)

F reg = F
(
FDORT

)κ
(4.12)

corresponding respectively to an additive and a multiplicative regularization approach with

0 < κ <∞. The gradients must of course be adapted to the new expression, as well as the

line search procedure.

Concerning the choice of κ, the usual debate can be led. Nonetheless, it must be stressed

out that although in the multiplicative approach κ is in most cases set to 1 “automatically”

(see e.g. [132,159]), it does play a role in the minimization and an optimal value should be

sought. It could also be possible to have an iteration-dependent κ value, for instance by

setting

κn = κ
′ F
FDORT

, (4.13)

but still an optimal value for κ
′

shoud be identified.

Finally, notice that either the TX or the RX FDORT can be used in (4.11) and (4.12).

The latter being advantageous from a computational point of view as just explained, and

the data being the same in either case, the TX approach is the most suitable one.

4.3 Numerical experiments

The numerical experiments performed to validate the use of FDORT are relative to the

measurement line setup in Fig. 4.1. An antenna array working in reflection images a
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Figure 4.1: Measurement line setup used for the numerical experiments. The noise profile is

described by (4.14); the scatterer permittivity is εr = 2.

decentrated and slanted elliptic scatterer with εr = 2 placed at slightly less than 30 cm

down-range. The target is placed into a cluttered medium Ωn whose dimensions are 45 ×
45 cm2. The inversion region Ω, where the object is sought, is much smaller than Ωn and

its size has been set to 15× 15 cm2 (1/9th the area of Ωn).

Clutter is generated as follows. The conductivity is set to 0, whereas the real part of the

permittivity is

εr;n(~r) = n + ha (~r) ~r ∈ Ωn −D , (4.14)

where n is the mean value of the profile, h its standard deviation, and a a random number

with a centered gaussian distribution with standard deviation equal to 1. The spatial FFT

of a(~r), hence of εr;n, has a gaussian shape ruled by the correlation length lc, whose value

determines the characteristic spatial scale of the profile. This choice for the noise profile

is meant to mimick scenarii typical of medical imaging (e.g. breast imaging for cancer

detection) or of subsurface imaging (e.g. geophysical prospection). An example of profile

and distribution of εr;n values for a given clutter realization is shown in Fig. 4.2(a) and

Fig. 4.2(b), respectively. As for the parameters of the clutter realizations used in the chapter

and summarized in Tab. 4.1, the chosen lc values correspond to a clutter distribution in the

resonance regime (large lc, noise3), in the homogenization domain (small lc, noise2), and

in an intermediate regime between the two (noise1).

n h lc λ0/lc at 2 GHz

noise1 1 0.08 2.5 cm 6

noise2 1 0.12 0.8 cm ≈ 19

noise3 1 0.15 7.5 cm 2

Table 4.1: Parameters, with respect to (4.14), of the clutter realizations used in the following.

The background relative permittivity outside the clutter domain is εr;b = 1 and, as

in [32], it is assumed that the mean permittivity value of clutter is known. Hence, to

be able to compare the results with those in [32] - where a subsurface configuration with
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�

(a) (b)

Figure 4.2: (a) Profile of the clutter realization noise1 and (b) histogram of the εr;n values.

εr;b = n > 1 is used - n is set to 1. Although this choice leads to physically unrealistic

εr;n < 1 values, the behavior of the inversion algorithm is not altered from a numerical

point of view.

As for the inversion algorithm, the multi-frequency formulation defined in §3.3.1 and

applied throughout the previous chapter is used here. The positivity constraint, in partic-

ular, is imposed as done in [32] with respect to the εr;b value. Finally, due to the dielectric

nature of the target and to the partial complementarity between real and imaginary parts

of χ already observed in §3.6.4, the problem is regularized by restraining the inversion to

purely dielectric scatterers. Although this choice does constitute a simplification, it does

not result in a loss of generality when one keeps in mind the goal of this study, a comparison

between DORT and standard inversion approaches.

4.3.1 Noiseless inversion: TX vs. RX beamforming

Regardless of the computational considerations discussed in §4.1.3, it is important to

investigate which - if any - between the TX and RX beamforming approaches leads to

better inversion results. Indeed, despite the DORT scattered field vectors (4.6) and (4.3)

are identical, it might be that placing the diversity at reception (TX beamforming) be more

advantageous than placing it at emission (RX beamforming), or vice versa (due e.g. to a

different handling of sources and receivers within the inversion algorithm).

The geometric configuration is the one shown in Fig. 4.1. The array is made of 25

antennas and the aperture angle is as large as 127 deg, while the cross-range resolution

limit, λ0F/D, goes from 3.75 cm at 2 GHz to 1.88 cm at 4 GHz. The major and minor

axes of the ellipse are 7.2 and 3 cm long, respectively. With an appropriate scaling due to

the different frequency bands, this setup is comparable to the one in [32].

First, noiseless data are inverted through the standard cost function F (Fig. 4.3), and

through FDORT with TX (Fig. 4.5) and RX beamforming (Fig. 4.6). The symmetric sin-

gular value is used for both DORT-based approaches, easily trackable in Fig. 4.4 despite

the crossing at around 3.6 GHz thanks to the symmetric/anti-symmetric features of the
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(a) F (b) εr;0 (c) εr;∞

Figure 4.3: Noiseless data. Inversion results with the standard cost function F .

respective singular vectors and field charts detailed in §2.3.3.1 (see e.g. Fig. 2.15).

In all cases, the retrieved profile matches rather well the real one, although, as already

remarked in §3, adding to the cost function a regularization term based on the gradient of

the retrieved profile would probably help in smooth the εr chart. Yet, the results are not

exactly the same; it seems in particular that the reconstructed support is resolved more

finely in the standard case, leading to the conclusion that using FDORT with the symmetric

singular space reduces the available information in the ~k plane.

Figure 4.4: Noiseless data. Singular values distribution versus frequency.

Comparing Fig. 4.5 and Fig. 4.6, it appears immediately that RX beamforming has a

much better initial guess (almost the same obtained throught the standard F). This last

point comes from the fact that in the back-propagation method described in §3.3.3 the

received field is propagated back in the medium for each view. The more the available

views, then, the more resolved in space the resulting image. Therefore, since with TX

beamforming only one view exists, the initial guess in Fig. 4.5(b) is poorly resolved both

in down- and cross-range, whereas the one obtained with RX beamforming in Fig. 4.6(b)

is almost identical to the nice one obtained without beamforming in Fig. 4.3(b).

The analyses run with noisy data, whose results are not shown here for conciseness,

confirm these findings while showing that none of the beamforming techniques appears

more robust than the other. All these arguments suggests the following inversion strategy:

use of TX beamforming, which executes much faster, starting from the initial estimation

obtained with RX beamforming. This approach will be applied from now on.



168 CHAPTER 4. INVERSION IN CLUTTER: DORT

(a) F (b) εr;0 (c) εr;∞

Figure 4.5: Noiseless data. Inversion results with FDORT and TX beamforming.

(a) F (b) εr;0 (c) εr;∞

Figure 4.6: Noiseless data. Inversion results with FDORT and RX beamforming.

4.3.2 Influence of the spatial scale of clutter

In analogy with (3.77), it is possible to define a Signal-to-Clutter Ratio (SCR) as

SCR ,

∑

j,p

∥
∥
∥Ẽs

j,p

∥
∥
∥

2

Γ

∑

j,p

∥
∥
∥Es

j,p − Ẽs
j,p

∥
∥
∥

2

Γ

, (4.15)

where Ẽs is the clean scattered field and Es the one relative to the simulation with clutter2.

Similarly, a SCRDORT can also be defined by replacing Ẽs
j,p and Es

j,p in (4.15) by Ẽs;DORT
j,p

and Es;DORT
j,p defined in (4.3), respectively.

The first clutter setting to be inverted is noise1, shown in Fig. 4.2. The characteristic

dimension of clutter, of the order of lc, is comparable to the one of the target. The same

geometry used in §4.3.1 is considered in the whole paragraph. The singular values distri-

bution versus frequency, given in Fig. 4.7(a), must be compared to the one, obtained with

noiseless data, in Fig. 4.4. While the symmetric singular value (full blue line) is rather

unchanged, the anti-symmetric one (dashed red line) is significantly altered. This can be

2According to this expression,
√
SCR is exactly the inverse of the error err defined in [32], eq. (28):

err = 100% corresponds to SCR = 0 dB, and an increase of 3 dB of the latter gives an error reduction by

a factor
√
2.
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(a) (b) (c)

Figure 4.7: noise1 dataset. (a) Singular values distribution as a function of frequency, (b)

incoherent sum of DORT field charts from 2 to 4 GHz built with (λ1,v1), and (c)

SCR as a function of frequency for the raw and DORT scattered fields.

explained by admitting that the scattering contribution associated to clutter has a sym-

metric and anti-symmetric components. Therefore, while the former is rather negligeable

with respect to the stronger one associated to the target, the anti-symmetric component

even dominates at the lower frequencies. Indeed, the crossing frequency is now shifted

backwards to 3.4 GHz. Also, a tangle of clutter-related singular values grow up to 10 to

3 dB from the symmetric one. By incoherently adding the DORT field charts from 2 to

4 GHz (IDORT
ωω in (2.26)), it can be appreciated that the symmetric singular vector focuses

(a) F (b) εr;∞ (c) g(E), gBorn(E)

(d) DORT, F (e) DORT, εr;∞ (f) DORT, g(E), gBorn(E)

Figure 4.8: noise1 dataset. Inversion results with (top) the standard cost function F and

(bottom) FDORT.
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well onto the target (Fig. 4.7(b)). The resulting SCR and SCRDORT are plotted in full and

dashed line, respectively, in Fig. 4.7(c). Apart from the crossing region at around 3.4 GHz,

where symmetric and anti-symmetric contributions mix up, the improvement goes from 2

to 6 dB.

The inversion results are shown in Fig. 4.8. In both cases, the ellipse is reconstructed

with acceptable permittivity values, while as mentioned before the support displays finer

details when the standard approach is used. On the other hand, in Fig. 4.8(c,f) the gradients

g(E) and gBorn(E) defined in (3.80) are more regularly and more deeply minimized through

the DORT approach. Similarly, the cost function decreases more when using FDORT, by a

factor 3 versus the 1.5 factor of F . Finally, the permittivity profiles, outside the support

of the ellipse, are much less noisy with FDORT. This all testifies of an increased robustness

to clutter.

�

(a) (b) (c)

Figure 4.9: noise2 dataset. (a) Singular values distribution as a function of frequency and (b)

SCR as a function of frequency for the raw and DORT scattered fields.

(a) εr;∞ (b) DORT, εr;∞ (c) g(E), gBorn(E)

Figure 4.10: noise2 dataset. Inversion results with F and FDORT.

Similar conclusions can be drawn from the noise2 dataset, where the small lc value with

respect to the wavelengths (0.8 cm or approximately λ0/19 at 2 GHz) makes the clutter

profile in Fig. 4.9(a) behave almost as a homogeneous one. From Fig. 4.10 it can indeed be

noticed that while the target support is more finely and quantitatively better reconstructed

when using F , the DORT profiles have less artefacts (see e.g. at the bottom right corner

of the charts). Again, the total field gradients are minimized more with FDORT.
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(a) (b) (c)

Figure 4.11: noise3 dataset. (a) Singular values distribution as a function of frequency and

(c) SCR as a function of frequency for the raw and DORT scattered fields.

In the last dataset, noise3, whose profile is shown in Fig. 4.11(a), the correlation length

is of the order of λ0/2 @ 2 GHz (7.5 cm). We are in the resonance domain and the impact

of multiple-scattering is expected to be higher. With both approaches, the effect of such

profile is a slightly wrong localization of the target in Fig. 4.10, found nearer to the array

because of the εr,n(~r) < εr,b values between the array and the object. Apart from such

localization offset, the DORT inversion still seems more robust to clutter for the same

reasons observed and discussed above.

From all these results, obtained for a geometric configuration comparable to the one used

by Dubois et al. in [32], some tentative conclusions can then be drawn:

• using only FDORT seems to alter the information content of the data, resulting in

particular in a decrease of the highest reconstructible spatial frequencies. For the

configuration used in this section, though, such reduction is fairly acceptable;

• on the other hand, the DORT-based approach seems to be slightly more robust to

clutter;

• for a comparable quality of the results, inverting FDORT is considerably faster than

inverting F . The gain in computation and speed is of the order of J/Ntgt, where J is

the number of sources (cf. §4.1.3) and Ntgt is the number of targets, since one DORT

(a) εr;∞ (b) DORT, εr;∞ (c) g(E), gBorn(E)

Figure 4.12: noise3 dataset. Inversion results with F and FDORT.
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incidence per target should be considered in order to image all of them;

• if the amount of clutter increases, namely for a larger h value, the standard inversion

might lead to erroneous results; on the other hand, the symmetric DORT singular

value is most probably hidden in the tangle of clutter-related singular values, making

it impossible to use FDORT. Therefore, although for different reasons, both approaches

fail in case of strong clutter;

• although no result has been provided here for conciseness, the regularization approach

discussed in §4.2 does not really improve the reconstructions (regardless of the addi-

tive/multiplicative regularization choice and regardless of the κ value). Even if in [32]

it is claimed that it is the DORT regularization that considerably improves the results,

it should also be mentioned that the profiles retrieved with the standard approach and

the positivity constraint are not shown in the paper. Therefore, assuming that such

missing result is comparable to the one obtained with the DORT regularization, it

might even be argued that the main regularization effect is brought by the positivity

and not by the DORT fields.

4.3.3 Influence of the line size

Coherently with the experimental setup studied throughout this manuscript, it is inter-

esting to observe the behavior of FDORT when a small measurement line is available. For

this purpose, the number of antennas is reduced to 7 (the central ones with reference to

Fig. 4.1), resulting in an aperture angle of 53 deg. The inversion results as well as the

singular values distribution versus frequency are shown in Fig. 4.13 for noiseless data. The

standard and the DORT-based approach give comparable results, both fair although much

less clean than those obtained with the large-aperture setup in Figs. 4.3-4.5. This is of

course due to the reduced aperture angle, leading to a reduced available information in the

data according to the Ewald’s circle theory developed in §3.4.

(a) (b) εr;∞ (c) DORT, εr;∞

Figure 4.13: Noiseless data. (a) Singular values distribution as a function of frequency and

(b,c) inversion results with F and FDORT.

When clutter is introduced, namely through the noise1 setup, the inversion results are

dramatically affected. In Fig. 4.14(c), it must first be noticed that apart from the [2.5-3] GHz



4.3. NUMERICAL EXPERIMENTS 173

(a) (b) (c)

Figure 4.14: noise1 dataset. (a) Singular values distribution as a function of frequency, (b)

incoherent sum of DORT field charts from 2 to 4 GHz built with (λ1,v1), and (c)

SCR as a function of frequency for the raw and DORT scattered fields.

frequency band, there is hardly an improvement in SCR (it actually gets 6 dB worse with

DORT from 3.6 to 4 GHz, due to the crossing-coupling of the two largest singular values in

Fig. 4.14(a)). This is due essentially to the fact that with a small line the resolution (both

cross- and down-range) is generally poor - in this case it is equal to λ0(ω) -, so that the

focusing incident field cannot avoid illuminating also the clutter near the target. In effect,

comparing Fig. 4.14(b) and Fig. 4.7(b), it is easy to see that while with the big line the

hot spot of the DORT incident field is exactly over the target support, it is now located

between the target and the array, where clutter is present. In addition, the cross-range hot

region is now much larger.

The inversion results in Fig. 4.15 show first of all that the standard approach is more sen-

sitive to clutter when the line is small, since the degradation from Fig. 4.13(b) to Fig. 4.15(b)

is much worse than the one, relative to the large line setup, from Fig. 4.3(c) to Fig. 4.8(c).

As for the DORT-based inversion, since the SCR is not really improved, the retrieved profile

is not better than the one obtained by simply inverting F .

To prove that the regularization approach described in §4.2 does not allow to improve

the reconstructions of F and FDORT, the result of the multiplicative regularization scheme

with κ = 1 (cost function FFDORT) is shown in Fig. 4.16. The profile is not better than

(a) εr;∞ (b) DORT, εr;∞

Figure 4.15: noise1 dataset. Inversion results with F and FDORT.
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Figure 4.16: noise1 dataset. Inversion result (εr;∞) with the regularized FFDORT cost func-

tion.

any of the unregularized ones in Fig. 4.15. Also, there is hardly any improvement when

changing the value of κ and/or employing the additive scheme.

For all these reasons, it can be concluded that the small line configuration is not well

suited for the use of the DORT approach. The reason lies essentially in the poor resolution

obtained with the DORT incident field, which does not really result in an improvement in

SCR that could trade-off the reduced number of data. As a consequence, the regularization

approach cannot improve the results either. Finally, since only a small line is experimentally

available, this explains why no inversion from experimental data has been performed.



Conclusion and perspectives

The idea behind this work consisted, at the time I joined LSEET, in the realization

of a microwave imaging prototype suited to experimentally test inversion methods. The

hardware and software development necessary to have a running instrument, by themselves,

have covered a large amount of time. The goal has been achieved and the laboratory now

possesses a beamforming-capable system that can be used to characterize scatterers in the

[2-4] GHz frequency band. In addition, a small anechoic chamber has been built.

The first approaches that have been implemented fall under the category of qualitative

methods. The interest has been particularly put in studying the performances of Time

Reversal as applied to electromagnetic waves. Indeed, in order both to test the beamforming

performances of the prototype and to validate the improvement in resolution achieved with

Time Reversal in disordered media [41], the following experiment has been realized. The

field emitted by one antenna has been backpropagated by an array of antennas under

two different propagation conditions: in free-space and in a medium with three metallic

cylinders heavily perturbating the field radiated by the source antenna. In the latter case,

an improvement in resolution of a factor 2.4 has been observed in the direction parallel to

the array.

Then, detection and localization of passive targets have been tackled. With either one

array in reflection, or with two arrays facing each other in transmission, Time Reversal-

based methods such as DORT and Time Reversal-MUSIC (TR-MUSIC) have been applied

to the experimental data. The effectiveness of these methods in selectively imaging well-

separated targets has been confirmed for both configurations. In particular, it has been

shown that whilst a classical method such as Kirchhoff migration fails in the transmission

case, both DORT and TR-MUSIC don’t. Their behavior is in fact the same in reflection

and in transmission. The exploitation of the frequency bandwidth is not straightforward

for any of these methods. An effective solution inspired by [99] has been succesfully applied

to the DORT case. It is based on an arrival time estimation computed using the singular

vectors, and leads to an improved rejection of clutter and parasite multiple-scattering. A

solution also based on the arrival time estimation has been used for TR-MUSIC.

The prototype has then been employed in the quantitative inverse scattering frame.

Namely, the Modified2 Gradient Method [12] has been run with the multi-view multi-
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static multi-frequency experimental data. The role played by the antenna modeling step,

necessary to describe the incident field in the region under test, is here fundamental. A

calibration procedure extracting the radiation pattern of the antennas from the same ex-

perimental data used for the inversion has thus been developed. This choice has the main

advantage of taking into account the actual radiation patterns, hence including the effect

of the proximity with the other array antennas. The calibration is based on a multipolar

expansion of the field, and is applied to both the incident field (TX antennas) and the Green

function linking the region under test and the receivers (RX antennas). To our knowledge,

this might be spotted as an original contribution in the inverse scattering community.

The results show that the reflection configuration, as long as the array aperture is of the

order of 40 deg, is not well suited for imaging, especially in the case of dielectric targets,

whose profiles are systematically underestimated and their shape even badly reconstructed.

As for metallic scatterers, due to their impenetrability, only the visible side is properly

imaged. On the other hand, when two arrays are used and both the transmission and

reflection data are considered, the results are satisfactory. The algorithm images well both

metallic and sufficiently small dielectric targets (d
√
εr of the order, at most, of λ0/3, d

being the largest dimension of the target, εr its permittivity, and λ0 the wavelength at the

smallest frequency) and is even capable of selectively resolve them.

In the final chapter, quantitative inversions using the incident and scattered fields issued

from the DORT method have been run. The goal is to improve the robustness of the

algorithm to clutter by exploiting the improved Signal-to-Clutter Ratio (SCR) of the DORT

data. A new cost function, FDORT, has thus been built and inverted. Two conclusions can

be drawn from the results, obtained with synthetic data and for the reflection configuration.

The first is that, as long as the target is sufficiently small, running an inversion with J “raw”

incident fields gives a result almost identical to that obtained by using FDORT. Only, the

latter approach has only one incidence per target - the one associated with the symmetric

DORT singular value -, hence it runs at least J/Ntgt times faster, Ntgt being the number

of targets. Deceivingly, only a marginal improvement in clutter rejection can be observed.

The second conclusion concerns the domain of applicability of this solution. The whole idea

is based on the assumption that the DORT incident field focuses onto the target of interest.

Nonetheless, in the case of a small aperture angle, the focusing spot is poorly resolved and

not even centered upon the target location. Under these circumstances, typical of a small

line configuration, there is therefore no improvement wahtsoever in SCR, and the use of

FDORT is actually not advised.

A few general conclusions are due. First, the effectiveness of Time Reversal-based meth-

ods such as DORT and TR-MUSIC has been proved experimentally in the case of a small

measurement line. The coherent exploitation of the frequency bandwidth is a crucial point

at this purpose, and the arrival time estimation method proposed in §2.3.3.3 seems a very

good candidate to achieve the task. The main issue with DORT and, in general, with
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subspace-based methods, is still the classification of the singular spaces. How to auto-

matically identify the symmetric singular value? How to automatically detect a crossing

between singular values? Related to this problem, is the issue of de-correlating singular

spaces that couple each other, typically in multi-target configurations. Effective answers to

these problems would definitely cast DORT among the most effective localization methods,

and I personally believe that further research in this direction is worth the effort.

As for the quantitative inversion experiments, they have shown that if a meticulous

calibration procedure is implemented, it is possible to reconstruct small scatterers even

with a small line, at least when reflection and transmission data are combined together.

It would now be interesting to pursue the investigation in a 3D frame, adding namely the

polarization diversity to the data.

Finally, the DORT-based inversion has given intriguing results. It should be proven

through a more important number of test cases up to what extent it is possible to replace

the classical multi-view inversion approach with a single-DORT-view one. The gain in

execution time being remarkable, this might help in approaching the real-time paradigm.

Concerning clutter rejection, the effectiveness of the DORT-based method seems related

to the resolution and neatness of the focusing spot of the incident field. In virtue of its

full aperture angle, the circular scanner configuration seems therefore a good candidate to

evaluate the limits of the idea.
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Appendix A

Driving VNA and PIC from Matlab

Using the Instrument Control Toolbox, Matlab drives both the VNA and the PIC.

A.1 VNA

The chosen physical interface is the Ethernet cable. The following software tools must

be installed in a Windows OS environment in order to set up and use the connection:
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Figure A.1: Simplified schematization of the way the PC communicates with the VNA.

• National Instruments (NI) Virtual Instrument Software Architecture (VISA). It is

an application programming interface (API) between instruments and development

environments that supports interfaces such as GPIB, RS-232, USB (from version 3.0).

It was created to be able to drive different vendor’s instruments, independently from

the physical interface and from the operating system, by using a common set of low-

level I/O commands.

• Rohde & Schwarz RSIB passport. To use an Ethernet connection Rohde & Schwarz

has its own protocol, based on TCP/IP, called RSIB; installing the passport allows

VISA to recognize and communicate with Rohde & Schwarz RSIB instruments.
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• VXIplug&play driver. This is a standardized driver, which mainly merges the low-

level I/O commands available in NI-VISA to higher-level commands, thus further

simplifying the control of instruments. Matlab’s Instrument Control Toolobox sup-

ports this driver and the communication is based upon it.

• Matlab Instrument Control Toolobox rszv.mdd or rohdeschwarz_zv.mdd. These

files, made available in the Matlab Central database, implement a yet higher-level

VXIplug&play-based driver specific to Rohde & Schwarz ZV Network Analyzers. Us-

ing this driver, allows one to issue extremely simple commands within Matlab.

The whole scheme is sketched in Fig. A.1.

A.2 PIC microcontroller

The microcontroller is the PIC18F4550 from Microchip. It has been chosen because it

is available with a development card, the PICDEM FS USB board, which greatly eases the

development of applications based on a USB interface. In fact, Microchip also delivers a set

of firmware code that can be used as a basis to develop the firmware for its own application.

This firmware is written in a special version of C language enriched with the possibility

of typing directly assembly lines, useful for instance to directly address physical memory

locations. To develop and use its own firmware application, one needs to install:

• PICDEM FS USB board software. It is the software delivered with the board; it

includes the graphical interface to download the firmware into the PIC and a demo

application interface.

• MPLAB Integrated Development Environment (IDE). It is the PIC programming

environment where one can write the firmware code, compile it, debug it, etc.

• Microchip C18 (MCC18) compiler. It is the C compiler specific to PIC’s microcon-

trollers of the 18F family.

At the time the board was installed and developed, Microchip proposed firmwares for

three USB classes: Communications Device Class (CDC), Human Interface Device (HID)

and Mass Storage. In addition, a “raw” firmware was available, not belonging to any USB

class. Two solutions were then available: either developing a USB Test and Measurement

Control (TMC)-compliant firmware starting from the “raw” code, or using the available

CDC firmware emulating a serial COM device. The first possibility is motivated by the

fact that Matlab recognizes the TMC USB class (and only that) using the VISA standard;

nevertheless, developing such a firmware would have been quite time-consuming since a deep

knowledge (and implementation) of the USB standard would have been needed. On the

other hand, using the serial emulator allows one to completely bypass the USB connection

behavior: the board is recognized as a COM device and Matlab natively supports COM

devices! The latter has thus been the simplest choice.
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A.3 About the chosen OS

Finally, apart from the obvious choice of using the Windows OS to drive the instru-

ments (obvious in the sense that all the softwares/drivers are delivered only for Windows),

adopting Linux and namely the Ubuntu distribution was a tempting idea as well. The

reasons why it was abandoned were mainly related to the control of the VNA, since very

little information on the drivers were available at the time. I had even contacted Rohde &

Schwarz for a Linux version of the RSIB passport, but they only supported Red Hat and

Suse distributions (not Debian-based as Ubuntu). Concerning the PIC, MPLAB was not

available at the time (I see today it is), nor was the PICDEM FS USB board software.

Nevertheless some informations are today available on the Internet on how to use native

Linux libraries and unofficial packages to make it to use the evaluation board (but I never

tried it).
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Appendix B

Resolution analysis

The resolution analysis for some of the methods described in §2 are carried out, with

reference to the 3D setup in Fig. B.1, under the following hypotheses:

1. emitting and receiving antennas are infinitesimal dipoles (point sources/receivers);

2. the target is a point, located at ~r ∗ = (0, F ), so that its scattering is described by a

single constant coefficient S0(ω) = S0;

3. the target is in far-field with respect to the array, that is, F ≫ D and F ≫ λmax,

where λmax is the largest wavelength within the bandwidth used;

4. the target and the antennas lie in the same plane at z = 0.

Furthermore, a reflection configuration with N antennas is chosen and the frequency band

is [ωm ωM]; hence, central frequency and bandwidth are, respectively, ωc =
1
2
(ωm+ωM) and

ωbw = ωM − ωm.
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Figure B.1: Configuration for the resolution analysis.

In this frame, as usually done in literature, two distinct approximations concerning the

antenna-investigation point and antenna-target distances di(~r) and di(~r
∗) (see Fig. B.1),
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respectively, are made. For all delay and phase terms, it holds that, for i = 1, N ,

di(~r) =
√

(xi − x)2 + y2 = y

√

1 +

(
xi − x
y

)2

≈ y

[

1 +
1

2

(
xi − x
y

)2
]

, (B.1a)

and, similarly,

di(~r
∗) =

√

x2i + F 2 ≈ F

[

1 +
1

2

(xi
F

)2
]

, (B.1b)

whereas for amplitude factors the simpler approximation

di(~r
∗) ≈ di(~r

∗) ≈ F (B.2)

is used.

B.1 Kirchhoff migration

The continuous approximation of the Kirchhoff migration image given in (2.7) is

IKM(~r) ≈

∣
∣
∣
∣
∣
∣
∣

D/2∫∫

−D/2

K̃jk

[
tdjk(~r)

]
dxjdxk

∣
∣
∣
∣
∣
∣
∣

2

, (B.3)

where the integration over the emitted pulse duration 2δt is removed for simplicity. At any

rate, if the pulse length 2δt c is smaller than the resolution lengths found later on, its only

effect is to smooth the image (B.3). The arrival time tdjk(~r) is expressed as the sum of the

arrival times relative to each investigation point,

tdjk(~r) , tj + tk =
dj(~r)

c
+
dk(~r)

c
. (B.4)

Now, the (j, k)th element of the inter-element matrix K(ω), Kjk(ω), can be written as

Kjk(ω) = S0
e−ikdj(~r

∗)

dj(~r ∗)

e−ikdk(~r
∗)

dk(~r ∗)
. (B.5)

The complex envelope of its Fourier transform is then

K̃jk(t) =

∫ ∞

−∞

Kjk(ω) Π

(
ω − ωc

ωbw

)

eiωtdω

=
S0ωbw

dj(~r ∗)dk(~r ∗)
δ
[
t− tdjk(~r ∗)

]
∗
[

sinc

(
1

2
ωbwt

)

eiωct

]

=
S0ωbw

F 2
sinc

{
1

2
ωbw

[
t− tdjk(~r ∗)

]
}

eiωc[t−tdjk(~r ∗)] ,

(B.6)

where, by analogy with (B.4), the arrival time tdjk(~r
∗) is defined as the sum of the antenna-

target arrival times,

tdjk(~r
∗) , τj + τk =

dj(~r
∗)

c
+
dk(~r

∗)

c
. (B.7)
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Finally, substituting (B.6) in (B.3), and applying the amplitude approximation (B.2), gives

the final formula for the image:

IKM(~r) ∝

∣
∣
∣
∣
∣
∣
∣

D/2∫∫

−D/2

sinc

{
1

2
ωbw

[
tdjk(~r)− tdjk(~r ∗)

]
}

eiωc[tdjk(~r)−tdjk(~r ∗)]dxjdxk

∣
∣
∣
∣
∣
∣
∣

2

, (B.8)

where the amplitude factor |S0ωbw/F
2|2 has been removed for conciseness.

It is now interesting to study separately the resolution in down- and cross-range.

B.1.1 Down-range resolution

In down-range, the investigation domain reduces to a line along y at x = 0. The impor-

tant quantity is the arrival times difference in (B.8), which, after tedious manipulations,

becomes

tdjk(~r)− tdjk(~r ∗) ≈
(

2− 1

2

x2j + x2k
Fy

)
y − F
c

. (B.9)

Eq. (B.8) with (B.9) cannot be solved explicitly unless the far-field hypothesis F ≫ D is

“pushed to the limit” by observing that for any (j, k)th term

2≫ 1

2

x2j + x2k
Fy

, (B.10)

that is, the array aperture has practically no impact on the down-range resolution. This

leads to

IKM(y) ∝

∣
∣
∣
∣
∣
∣
∣

D/2∫∫

−D/2

sinc [kbw(y − F )] dxjdxk

∣
∣
∣
∣
∣
∣
∣

2

= D4sinc2 [kbw(y − F )] , (B.11)

where kbw and kc represent the wavenumbers associated to ωbw and ωc, respectively. Notice

that, apart from the D4 term, (B.11) gives indeed the same result obtainable with a single

measurement instead of with an N × N matrix. Finally, the image in down-range has a

|sinc|2 profile, and the resolution RKM
dn , that is, the distance between the maximum and the

first zero of (B.11), is

RKM
dn ≈

λbw
2

. (B.12)

B.1.2 Cross-range resolution

An image along x with y = F must now be constructed. Again after some calculations,

tdjk(~r)− tdjk(~r ∗) ≈ x− xj − xk
F

x

c
, (B.13)
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and the result is

IKM(x) ∝

∣
∣
∣
∣
∣
∣
∣

D/2∫∫

−D/2

sinc

[
1

2
kbw

x(x− xj − xk)
F

]

eikc
x(x−xj−xk)

F dxjdxk

∣
∣
∣
∣
∣
∣
∣

2

. (B.14)

In a general frame, this expression cannot be simplified anymore, since the role of the

array aperture D is here fundamental. The cross-range resolution RKM
x is then a function

of D, F , and both kbw and kc.

Nevertheless, if ωbw < ωc, it is possible to neglect the ‘sinc’ term in (B.14), since it

oscillates with a frequency proportional to 1/2ωbw whereas the ‘exp’ term oscillates at ωc

(in addition the ‘sinc’ function decreases slowlier than a simple ‘sin’ function for small

arguments). Under this approximation, the following closed-form result is reached:

IKM(x) ≈

∣
∣
∣
∣
∣
∣
∣

D/2∫∫

−D/2

eikc
x(x−xj−xk)

F dxjdxk

∣
∣
∣
∣
∣
∣
∣

2

= D4sinc4
(

kc
xD

2F

)

, (B.15)

giving the approximated down-range resolution

RKM
x ≈ λcF

D ωbw<ωc

. (B.16)

Figure B.2: Cross-range resolution for the configuration parameters in (B.17).

This result is well confirmed for a typical experimental configuration among those used

in this manuscript. For instance, the one used in Fig. 2.8(a) has the following parameters:






N = 8

D = 37.1 cm

F = 50 cm

ωbw = 2 GHz

ωc = 3 GHz

(B.17)
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The resolution profile is plotted in Fig. B.2, where the results for the ‘sinc’ and the ‘exp’

components separately are also presented. Indeed, the overall profile is dominated by the

latter contribution, so that the resolution (at least at -30 dB) mainly depends on ωc and

equals about 13 cm (≈ λcF/D). A larger bandwidth increases the impact of the ‘sinc’

contribution, until for the limit case ωbw = 2ωc, it almost becomes the dominant one.

B.2 Time reversal or time-domain DORT

In Time Reversal, the array back-propagates the phase-conjugate of the received sig-

nal coherently at all the frequencies within the used bandwidth. For a point target, this

corresponds to the time-domain DORT field chart (2.27), where the first singular vector

v1(ω) = Ĝ∗(ω;~r ∗) is used.

Two possible imaging approaches based on DORT are studied here. The first (2.27)

consists in the back-propagation of the time-domain singular vector associated to the target.

A second strategy is inspired from the frequency-coherent TR-MUSIC method (2.42)-(2.43),

where the focusing singular space must be used in spite of the noise subspace. It is presented

here because interesting indications on the behavior of TR-MUSIC can be extracted from

its analysis. In both cases, to proceed, the normalization of the Green function vectors as

well as the iω term are neglected. For the latter, the assumption of a not too large ωbw/ωc

ratio (exactly as in §B.3) is implicitly made.

1. As just stated, the first solution (2.27) consists in steering the array with F−1 [v1(ω)] (t)

and, from the resulting “movie” describing the propagation of the back-propagated

wave, extracting the frame corresponding to the focusing instant tfoc. The choice

of tfoc is linked in §2.3.3.2 to the SVD phase indetermination issue, which makes it

impossible to predict the exact focusing instant. For simplicity, such issue is here as-

sumed as solved, giving tfoc = 0, which is by the way the principle of Time Reversal.

Then, the continuous version of (2.27) becomes

IDORT(~r) ≈
∣
∣
∣
∣
∣

∫ D/2

−D/2

D1(t
foc = 0;~r)dxj

∣
∣
∣
∣
∣

2

, (B.18)

with

D1(t;~r) =

∫ ∞

−∞

|S0|2G∗(ω;~r ∗, ~rj)G(ω;~r, ~rj) Π

(
ω − ωc

ωbw

)

eiωtdω

= |S0|2
∫ ∞

−∞

eikdj(~r
∗)

dj(~r ∗)

e−ikdj(~r)

dj(~r)
Π

(
ω − ωc

ωbw

)

eiωtdω

=
|S0|2ωbw

dj(~r ∗)dj(~r)
δ
[
t− tdj (~r, ~r ∗)

]
∗
[

sinc

(
1

2
ωbwt

)

eiωct

]

≈ |S0|2ωbw

F 2
sinc

{
1

2
ωbw

[
t− tdj (~r, ~r ∗)

]
}

eiωc[t−tdj (~r,~r ∗)] ,

(B.19)
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and where

tdj (~r, ~r
∗) , tj − τj =

dj(~r)

c
− dj(~r

∗)

c
. (B.20)

As for Kirchhoff migration, the integration over the pulse duration has been removed

for simplicity. Finally, substituting (B.19) in (B.18) gives

IDORT(~r) ∝
∣
∣
∣
∣
∣

∫ D/2

−D/2

sinc

[
1

2
ωbwt

d
j (~r, ~r

AT ∗)

]

e−iωctdj (~r,~r
∗)dxj

∣
∣
∣
∣
∣

2

. (B.21)

2. The second solution (2.42)-(2.43), which has the advantage of naturally solving the

SVD phase indetermination issue, is based on the concept of arrival time, similarly

to Kirchhoff migration:

IDORT−AT(~r) ≈

∣
∣
∣
∣
∣
∣
∣

D/2∫∫

−D/2

D2

[
tdk(~r);~r

]
dxjdxk

∣
∣
∣
∣
∣
∣
∣

2

, (B.22)

where the kth antenna arrival time is

tdk(~r) , tk =
dk(~r)

c
. (B.23)

The integrand of (B.22) writes as

D2(t;~r) =

∫ ∞

−∞

|S0|2G∗(ω;~r ∗, ~rj)G(ω;~r, ~rj)G(ω;~r
∗, ~rk) Π

(
ω − ωc

ωbw

)

eiωtdω

= |S0|2
∫ ∞

−∞

eikdj(~r
∗)

dj(~r ∗)

e−ikdj(~r)

dj(~r)

e−ikdk(~r
∗)

dj(~r ∗)
Π

(
ω − ωc

ωbw

)

eiωtdω

=
|S0|2ωbw

dj(~r ∗)dj(~r)dk(~r ∗)
δ
[
t− tdjjk(~r, ~r ∗)

]
∗
[

sinc

(
1

2
ωbwt

)

eiωct

]

=
|S0|2ωbw

dj(~r ∗)dj(~r)dk(~r ∗)
sinc

{
1

2
ωbw

[
t− tdjjk(~r, ~r ∗)

]
}

eiωc[t−tdjjk(~r,~r ∗)] ,

(B.24)

where now

tdjjk(~r, ~r
∗) , tj − (τj − τk) =

dj(~r)

c
−
[
dj(~r

∗)

c
− dk(~r

∗)

c

]

. (B.25)

The final image is then

IDORT−AT(~r) ∝

∣
∣
∣
∣
∣
∣
∣

D/2∫∫

−D/2

sinc

{
1

2
ωbw

[
tdk(~r)− tdjjk(~r, ~r ∗)

]
}

eiωc[tdk(~r)−tdjjk(~r,~r ∗)]dxjdxk

∣
∣
∣
∣
∣

2

. (B.26)
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B.2.1 Down-range resolution

For the down-range resolution analysis, ~r = (0, y) and the approximations (B.1) must

be applied. A separate derivation for each solution is proposed in the following.

1. Eq. (B.20) becomes

tdj (~r, ~r
∗) ≈

(

1− 1

2

x2j
Fy

)
y − F
c

. (B.27)

As for Kirchhoff migration, (B.21) cannot be solved further without completely ne-

glecting the effect of the array aperture. Since indeed

1≫ 1

2

x2j
Fy

, (B.28)

(B.21) simply gives

IDORT(y) ∝ D2sinc2
[
1

2
kbw (y − F )

]

, (B.29)

which, again as for Kirchhoff migration, only depends on the frequency bandwidth.

The resolution is then

RDORT
dn ≈ λbw , (B.30)

that is, twice the resolution obtained with the Kirchhoff migration method.

This can be explained since, while DORT consists of beamforming the array either

at emission with the right singular vectors vl, or at reception with the left ones, ul,

Kirchhoff migration is based on beamforming both at emission and reception, which

indeed halves the resolution. Mathematically, while with DORT focusing occurs when

the single arrival times difference (B.20) is minimized, for Kirchhoff migration it is

the round-trip arrival times (B.4) and (B.7) that tend to match at the target location.

2. Although the difference between (B.23) and (B.25) becomes

tdk(~r)− tdjjk(~r, ~r ∗) ≈
(

1 +
1

2

x2k
y2

)
y

c
−
[(

1 +
1

2

x2j
y2

)
y

c
− 1

2

x2j − x2k
Fc

]

=
1

2

x2k − x2j
Fy

F − y
c

,

(B.31)

it is again impossible to solve (B.26) when substituting (B.31). Nevertheless, neglect-

ing the array aperture leads now to tdk(~r)− tdjjk(~r, ~r ∗) ≈ 0, which leads to an infinitely

large resolution in down-range:

RDORT−AT
dn ≈ ∞ . (B.32)

Notice also that re-introducing the effect of the array aperture brings RDORT−AT
dn to a

finite, yet very large, value.
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Such a poor resolution can easily be explained by the fact that for IDORT−AT it is a

difference of arrival times that is matched at the target location. Indeed,

tdk(~r)− tdjjk(~r, ~r ∗) = tk − tj − (τk − τj) , (B.33)

which is clearly near to zero along y since for any (j, k)th pair the difference is very

small.

B.2.2 Cross-range resolution

Again, the two strategies are handled separately imposing y = F .

1. The arrival time Eq. (B.20) becomes

tdj (~r, ~r
∗) ≈ 1

2

x− 2xj
F

x

c
, (B.34)

giving

IDORT(x) =

∣
∣
∣
∣
∣

∫ D/2

−D/2

sinc

[
1

4
kbw

x(x− 2xj)

F

]

e−i
1
2
kc

x(x−2xj)

F dxj

∣
∣
∣
∣
∣

2

. (B.35)

The behavior of (B.35) is very similar to the one found for Kirchhoff migration in

§B.1.2. The cross-range resolution is in general a function of kbw, kc, D, and F .

Nonetheless, if the ratio ωbw/ωc is relatively small, then, especially for small argu-

ments, the ‘sinc’ function can be neglected as compared to the ‘exp’ one. Then,

IDORT(x) ≈
∣
∣
∣
∣
∣

∫ D/2

−D/2

e−i
1
2
kc

x(x−2xj)

F dxj

∣
∣
∣
∣
∣

2

= D2sinc2
(

kc
xD

2F

)

, (B.36)

which gives the well-known cross-range resolution formula

RDORT
x ≈ λcF

D ωbw<ωc

, (B.37)

exactly as for Kirchhoff migration.

2. A similar result holds for IDORT−AT. In effect, Eq. (B.25) gives

tdk(~r)− tdjjk(~r, ~r ∗) ≈ xj − xk
F

x

c
, (B.38)

so that the final formula becomes

IDORT−AT(x) =

∣
∣
∣
∣
∣
∣
∣

D/2∫∫

−D/2

sinc

[
1

2
kbw

x(xj − xk)
F

]

e−ikc
x(xj−xk)

F dxjdxk

∣
∣
∣
∣
∣
∣
∣

2

. (B.39)



B.3. 3D VS. 2D RESOLUTION 207

Again, the ‘sinc’ contribution can be neglected, resulting in

IDORT−AT(x) ≈

∣
∣
∣
∣
∣
∣
∣

D/2∫∫

−D/2

e−ikc
x(xj−xk)

F dxjdxk

∣
∣
∣
∣
∣
∣
∣

2

= D4sinc4
(

kc
xD

2F

)

, (B.40)

whose resolution is slightly better with respect to IDORT(x) due to the 4th versus the

2nd ‘sinc’ power. Nonetheless, the distance from the maximum to the first zero of

(B.40) is unchanged,

RDORT
x ≈ λcF

D ωbw<ωc

. (B.41)

B.3 3D vs. 2D resolution

The analysis carried out in this appendix covers the single-polarization 3D case. Under

the 2D frame - wire sources/receivers and cylindrical target - the results are supposed to

change. Indeed, the Green function is now the 0th-order Hankel function of the second kind,

which, with respect to the 3D case, introduces a 1/
√
k dependency. Thus, (B.5) as well as

(B.19) and (B.24) are modified by a 1/k or 1/k1.5 factor.

This factor alters the resolution of the Inverse Fourier Transform (IFT) in (B.6) and

(B.19)-(B.24), since their results should be convoluted to F−1[1/k](t) or F−1[1/k1.5](t).

Although these convolution products do not have closed-form solutions, it is possible to

state that, if the operating bandwidth ωbw is sufficiently small, e.g. one octave as in the

experimental configurations studied in this manuscript, the result is very similar to the 3D

one.
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Appendix C

Construction of a field chart

Phase Conjugation, DORT or some of the other methods discussed in §2 produce a so-

called field chart, i.e., the distribution of the electric field ~E(ω;~r) over a given region when

the antenna array is steered with a vector v(ω). With reference to an experimental setup,

such as the one described in §1, whose raw measurements are S-parameters, that is, voltage-

or current-waves ratios, it is clear that feeding the jth antenna with vj(ω) actually means

setting its feeding current Iant(ω) to that value.

To build a field chart, it must be therefore possible to express the electric field ~E(ω;~r)

given a current distribution ~Jant(ω;~r), ~r being the position within the antenna support.

Such current distribution is then the result, hence a function, of the current Iant(ω) applied

to the antenna. For simplicity, with a time dependency eiωt, consider an electric dipole

whose constitutive equations are
{
~Jant(ω;~r) = iω ~Pant(ω;~r)

ρant(ω;~r) = −~∇ · ~Pant(ω;~r)
, (C.1)

where ρant is the fictitious charge distribution [95] induced within the antenna support,

and ~Pant the electric moment (or polarization vector) of the dipole. In a 3D frame, the

hypotheses used in this manuscript when dealing with synthetic data are

1. infinitesimal dipole, that is, infinitesimally small dipole located at ~r = ~r0 = (x0, y0, 0);

2. dipole oriented along the z-axis;

3. electric field sought at z = 0.

In formulae, since the electric moment can be written as

~Pant(ω;~r) = Pant(ω) δ(~r− ~r0)ẑ , (C.2)

the current distribution at the antenna becomes

~Jant(ω;~r) = Iant(ω)δ(~r − ~r0)ẑ . (C.3)

and finally

Iant(ω) = iωPant(ω) . (C.4)
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In a homogeneous, non-magnetic, propagation medium with (possibly complex) relative

permittivity εr, solving the Maxwell’s equations including the source terms in (C.1) for
~E(ω;~r) leads to

~E(ω;~r) =
1

ε0εr

[
∂2

∂x∂z
x̂+

∂2

∂y∂z
ŷ +

(
∂2

∂z2
+ k2

)

ẑ

]

G(ω;~r− ~r0)Pant(ω) , (C.5)

where G(ω;~r) is the Green function of the same medium defined in (3.5). The field has

therefore three components oriented along the three axes. Nevertheless, since

∂G(ω;~r)

∂z
=
∂G(ω;~r)

∂r

∂r

∂z
= −G(ω;~r)

(
ik

r
+

1

r2

)

z , (C.6)

where r = |~r|, the first two terms of (C.5) become null on the plan z = 0. Concerning the

third term, it holds that

∂2G(ω;~r)

∂z2
= G(ω;~r)

[(

−k2 + 3ik

r
+

3

r2

)
z2

r2
−
(
ik

r
+

1

r2

)]

, (C.7)

hence once again the first part of the sum equals zero at z = 0.

Recalling (C.4), the final complete expression for the electric field at z = 0 is then

~E(ω;~r)|z=0 = −iωµ0

(

1− i

k|~r − ~r0|
− 1

k2|~r − ~r0|2
)

G(ω;~r− ~r0)Iant(ω)ẑ . (C.8)

The second and third terms within the (·) are the near-field contributions to the field,

which indeed come from the ∂2/∂z2 term in (C.5), whereas the first one is the “far-field”

component, the former becoming negligeable as soon as |~r − ~r0| ≫ λ/2π.

In a 2D frame, the infinitesimal dipole must be replaced by an infinitely long wire. The

same reasoning holds, except the 3D Green function expression must be replaced by its 2D

counterpart based on the 0th-order Hankel function. Since in 2D any ∂/∂z term is null, the

final expression is simply

~E2D(ω;~r)|z=0 = −iωµ0G2D(ω;~r − ~r0)Iant(ω)ẑ , (C.9)

where the near-field contributions are “included” in the behavior of the Hankel function for

k|~r − ~r0| ≪ λ/2π.



Appendix D

Line search and Wolfe’s conditions

At each iteration of an iterative function minimizing algorithm (e.g. Steepest Descent or

Conjugate Gradient), a line search must be performed in order to produce a new estimate

of the unknowns. Given a function F(x) to be minimized, calling xn the vector of the

variables at iteration n and dxn the vector of the descent directions with respect to each

element of xn, the update rule writes

xn+1 = xn + λnd
x
n+1 . (D.1)

The line search, then, consists in finding the value λn that minimizes F(xn+1). Many

iterative methods exist for efficiently performing the line search. For any of them, instead of

reaching the precision of the machine between two consecutive λn, it can be demonstrated

that F will converge onto the same minimum if Wolfe’s conditions are used to stop the

search. Hence, less iterations are necessary for the line search and the whole minimization

is more rapid without any degradation of the result. For the present case, Wolfe’s condition

write

F(xn+1) ≤ F(xn) + c1λn
(
dxn+1

)T
gxn (D.2a)

∣
∣
∣

(
dxn+1

)T
gxn+1

∣
∣
∣ ≤ c2

∣
∣
∣

(
dxn+1

)T
gxn

∣
∣
∣ , (D.2b)

where c1 and c2 are two empirical parameters set to 10−4 and 10−1 in [151] for a non-

linear CG scheme as those presented in this manuscript in the frame of quantitative inverse

scattering. The first condition, also known as Armijo rule, guarantees that the minimum

necessary amount of reduction in F is obtained (remark that
(
dxn+1

)T
gxn is by definition

a negative quantity). The second condition, also known as curvature condition or strong

Wolfe condition, imposes that the slope of F , which writes
(
dxn+1

)T
gxn+1, should be small

enough to guarantee the convergency of the descent algorithm.

Notice that, while the Armijo rule does not require the computation of any other quantity,

the curvature condition requires the evaluation of gxn+1 each time a new λn value is tested

(gxn is considered as known since the descent direction dxn+1 is usually a function of it).
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