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Abstract

In this work we establish and test the technique of parallel adiabatic passage (PLAP) that

optimizes the adiabatic passage in the sense that it selects speci�c paths that allow a fast

adiabatic dynamics while preserving the standard robustness of adiabatic techniques. The

intuition of PLAP is based on the fact that the use of eigenvalues that are parallel for all

times is expected to lead to a small nonadiabatic transition probability from Landau-Zener

analysis for two-state approximations. In this work we test the robustness of this technique

and show its superiority to the traditional linearly chirped dynamics with Gaussian pulses. We

show its extension for two-photon and three-photon transitions on multilevel quantum systems,

where the Stark shift plays an important role in a strong �eld regime. We have determined an

optimal pulse shaping in which the static and dynamic energy level shifts are simultaneously

compensated by a programmed phase of a laser �eld. Next the local parallel adiabatic passage

technique is presented. This corresponds to a dynamics where the eigenvalue of the populated

state is parallel to the closest one at all times.

We extend the idea of population transfer by adiabatic passage from the ground state to

a superposition of states. The transfer is executed with spectrally shaped femtosecond laser

pulses. The excited states are dynamically shifted in energy due to the presence of nonresonant

components of di�erent channels. We show that this Stark shift can be compensated by another

�eld or by shaping appropriately the pulses.
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Introduction



Programming the spectral phase and amplitude of ultrafast laser �elds from simple transform-

limited pulses [1] has enabled the development of many nonlinear light-matter interactions. By

changing appropriately the pulse parameters, one can in principle coherently control an atomic

or molecular process by steering it through a desirable quantum path or through multiple quan-

tum paths without additional control of their interferences [2,3]. Ultrafast coherent control has

been applied for example to the optimization of nonlinear processes, such as multi-photon ab-

sorption, second- and third-harmonic generation, etc [4�9]. In particular, ultrafast coherent

control in multi-photon absorption has been studied widely in the weak-�eld regime where the

energy level structure of the matter can be considered as unchanged and population transfers

are small [10�13]. There, the main goal is the laser spectral shaping to induce quantum in-

terference among many near-degenerate quantum pathways for the given absorption process.

However, although a short laser pulse of high peak intensity enhances nonlinear process in

general, it can sometimes fail to optimize such absorption process. This is due to light-induced

energy level modi�cations, such as the power broadening and the dynamical Stark shift.

Even before the advent of ultrafast lasers, there were experiments performed with a two-

photon absorption in atomic vapors in a strong-�eld regime, such as the coherent pulse breakup

into subpulses [14]. In recent years, there have been many studies towards strong-�eld coherent

control [15�21]. It is now well known that, in general, a control scheme devised in weak-�eld

regime cannot be directly applied to strong �eld coherent control, although the partial informa-

tion of the weak-�eld solution can be still useful [15]. More generally, intuitive interpretations

taken from the frequency domain, generally valid in perturbative regime fail in strong �eld.

Only the interpretation of the Schrödinger equation in the time domain allows one to take

into account the strong �eld e�ects (such as Stark shifts). There have been many approaches

developed for strong-�eld coherent controls: the selective population of dressed states [16], the

strong-�eld atomic phase matching [17], the phenomenological study of the symmetry break-

ing in spectro-temporal two-dimensional maps [18], the piecewise adiabatic passage [19] and

the adiabatic Floquet theory [20]. Also, an analytical control approach has been developed in

which the strong-�eld interaction is probed by laser pulses prepared in a polynomial sum of

spectral phase terms [21]. Manipulating the state of a quantum system by external �elds is an

important issue in a wide variety of problems [22�25]. Modern applications, such as quantum

information processing, necessitate a �ne control corresponding typically to an admissible error

of at most 10−4 [25]. Such control should also feature robustness with respect to variations

or a non-perfect knowledge of the experimental parameters. Finally, fast processes that are

not subject to dissipation, nor to decoherence, are desirable. Tools for designing the time de-

pendent laser parameters are required in order to drive the dynamics from an initial state to

a given target state. The technique of optimal control theory has been developped for this

purpose. However, due to the requirement of reaching strictly the target state, combined with

conditions of optimality (shortest time or pulse area), the resulting laser parameters are of very

complicated forms that are di�cult to implement in practice, in particular in ultrafast regimes.
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The purpose of this thesis is to develop alternative tools in the adiabatic regime aiming at

designing the pulse parameters to reach a certain state or superposition of states. Usually

adiabatic techniques are applied in simple e�ective systems (with a few states), where the path

to reach the target is easily identi�ed, with an energy (or pulse area) su�ciently large to reach

the target according to the adiabatic theorem.

In this work, we establish and test the technique of parallel adiabatic passage (PLAP) that opti-

mizes the adiabatic passage in the sense that it selects speci�c paths that allow a fast adiabatic

dynamics while preserving the standard robustness of adiabatic techniques. The intuition of

PLAP is based on the fact that the use of eigenvalues that are parallel for all times is expected

to lead to small nonadiabatic transition probability from Landau-Zener analysis. This has been

shown rigorously using the Davis-Dykhne-Pechukas (DDP) formula in a two-state model [26].

In this work we test the robustness of this technique and show its superiority to the traditional

linearly chirped dynamics with Gaussian pulses.

We show its extension for a two-photon transition, where the Stark shift plays an important

role in a strong �eld regime. The PAP technique allows a dynamics where the Stark shift

is perfectly compensated in an e�ective two-state system for a multilevel system (i.e. with

more then two states). When more then two states are involved in the dynamics (through

resonances), it is in practice di�cult to force all the states to evolve in a parallel way (see

however an extension of the STIRAP for a three-state system [27]).

We have tested in this thesis the alternative technique of local parallel adiabatic passage. This

corresponds to a dynamics where the eigenvalue, corresponding to the eigenvector carrying the

dynamics in the adiabatic limit, is parallel to the closest one at all times. This technique is

numerically shown to be e�cient as it allows a selective population transfer in a multilevel

system in a ultrafast way.

We have �nally considered the production of a superposition of states in a three state system

with two excited states, forming two channels from the ground state. Population transfer

from one energy state to a coherent superposition of states is an important tool in atomic

and molecular physics and chemistry. Preparation of such superpositions with well de�ned

amplitudes and phases of the constituent eigenstates is the starting point for many techniques.

In many situations it is desirable to make the population transfer complete, that is to move

the entire ensemble of atoms or molecules to the target superposition state. We have shown

that the combination of two �elds, each resonant for each channel, with an additional �eld that

compensates the Stark shift resulting from the crosstalk of the channels allows the generation

of any superposition of the two excited states with. We can indeed ultimately use the PLAP

technique in this system since we can recover an e�ective two state system when the Stark shift

is compensated.

In chapter I we discuss two-state two-photon transitions, some approximation methods to solve

the time dependent Schrödinger equation and the general idea of the pulse shaping technique.

Chapter II is dedicated to the theoretical analysis of a two state transition in Cs atoms. The
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goal is here to �nd an optimal pulse shaping in which the static and dynamic energy level shifts

are simultaneously compensated by a programmed phase of a laser �eld.

In chapter III we investigate the technique of optimization which is based on the DDP formula:

The population transfer by adiabatic passage is here de�ned as optimal when it occurs for the

smallest coupling area for which the DDP formula gives a complete population transfer. Despite

the mathematical need of an adiabatic limit T → ∞, where T corresponds to the duration of

the interaction with the �eld, which corresponds to an in�nite pulse area, the DDP formula is

known to be already very accurate for a �nite and relatively small area (see for instance [28]).

In practice, it is an important issue to determine the needed value of this area to get an e�cient

population transfer (that has to be quantitatively de�ned depending on the problem that is

studied), while preserving the robustness of the process. We remark that the DDP formula

does not give any direct information about robustness of the process, which is expected to be

better for a more adiabatic process. We analyze it through numerical simulations for a concrete

model.

In this work we focus more speci�cally on dynamics where the Stark shift plays an important

role. In the strong-�eld regime where the structure of the energy levels is strongly altered by

Stark shifts during the pulse interaction, a more complicated ultrafast pulse design is required.

One obvious strategy is to shape the laser pulse both in time and frequency, in such a way

that the absorption condition is maintained during the interaction, i.e. the laser frequency

has to follow the energy di�erence of the concerned dressed states. It is the case for two-

photon transitions or when two resonant channels, acting on close transitions, can not be taken

independently. We show in these two cases how one can design an ultrafast �eld to compensate

it. We �rst consider a moderate �eld intensity regime where an experiment has been set up by

J. Ahn group in Korea with who we have ongoing collaboration, that con�rm our predictions

(chapter II). We next consider a high �eld intensity regime and in particular adiabatic passage

technique.

In chapter IV and chapter V we extend the technique of PAP for Cs and Na atoms in the gas

phase to two-photon and three-photon transitions respectively. We show that following the

energy di�erences gives e�cient solutions and allows one to get selective population transfer

between di�erent atomic levels. We also present a linear chirp technique combined with a

static detuning from the resonance (refered to as a shift linear chirp technique) which is also an

e�cient way to get complete transfer of population. We numerivally determine for these two

techniques the programmable �eld shapings.

In chapter VI we present population transfer by adiabatic passage from the ground state to the

superposition of states in K atom. The transfer is executed with spectrally shaped femtosecond

laser pulses. The excited states are dynamically shifted in energy due to the presence of

nonresonant components of the two di�erent channels of the K atom. We show that a third

�eld or an appropriate shaping of the initial �elds can compensate this Stark shift.

The present thesis is organized as follows:
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� Chapter I Two-state system and multiphoton processes.

� Chapter II Optimization of two-photon transition by phase shaping: Application to Cesium.

� Chapter III Adiabatic evolution of a quantum system. Optimal adiabatic passage by shaped

pulses: E�ciency and robustness.

� Chapter IV Multiphoton parallel adiabatic passage by shaped pulses: Application to Cesium.

� Chapter V Selective transfer of population in multi-level system by parallel adiabatic passage:

Application to Sodium.

� Chapter VI Superposition of states by controlled Stark shift adiabatic passage: Application

to Potassium.



First part

Two-state systems, approximations to

solve the time-dependent Schrödinger

equation, and optimization of two-photon

transitions



Chapter 1

Two-state approximations and two-photon

processes

In this chapter some basic concepts of the description of a two level atom interacting with a

monochromatic laser �eld are presented.

1.1 Two-state system

We shall consider two-level atom, with a ground state |g⟩ and excited state |e⟩, which are

the eigenstates of the two-level Hamiltonian H0

H0|g⟩ = Eg|g⟩, H0|e⟩ = Ee|e⟩, (1.1)

where Eg and Ee are the eigenvalues of H0. The eigenvectors |g⟩ and |e⟩ serve as a basis of the

Hilbert space where the state vector Ψ(t) can be expressed as

|ψ(t)⟩ = Cg(t)|g⟩+ Ce(t)|e⟩, (1.2)

where Cn(t)(n = g, e) is a probability amplitude, whose absolute square is the probability Pn(t)

that the atom will be found in the state |n⟩ at time t

Pn(t) = |Cn(t)|2 n = g, e. (1.3)

We shall consider the interaction between a two level atom with a monochromatic laser �eld

(Fig. 1.1)

E(t) = E0(t)e cos(ωLt+ ϕ). (1.4)

Here E0(t) is a slowly varying envelope, e is a unit vector, de�ning the direction of the laser

�eld (polarization direction), ωL is a laser frequency, and ωLt + ϕ is the laser phase. In the

dipole approximation the interaction energy is given

V (t) = −µE(t), (1.5)

20
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Fig. 1.1 - A two-level atom with ground state |g⟩ and excited state |e⟩. Ω(t) is the Rabi frequency,

which parameterizes the strength of the atom-laser interaction and ∆(t) is a laser detuning.

where µ is an electric dipole of an atom.

A state vector |ψ(t)⟩ evolution is governed by the time-dependent Schrödinger equation

i~
d

dt
|ψ(t)⟩ = (H0 + V (t))|ψ(t)⟩. (1.6)

Substituting |ψ(t)⟩ in the Schrödinger equation (1.6) by Eq. (1.2), one obtains a set of two

coupled ordinary di�erential equations for the probability amplitudes

i~
d

dt
Cg(t) = Vge(t)Ce(t), (1.7)

i~
d

dt
Ce(t) = ~ω0Ce(t) + VegCg(t), (1.8)

where we take Eg = 0, ω0 = Ee/~ (transition frequency), and Vge(t) = ⟨g|V (t)|e⟩ = V ∗
eg(t). By

the transformation C̃e(t) = Ce(t)e
iωLt, Eqs. (1.7) and (1.8) become

i~
d

dt
Cg(t) = Vge(t)C̃e(t)e

−iωLt, (1.9)

i~
d

dt
C̃e(t) = Veg(t)Cg(t)e

iωLt + ~(ω0 − ωL)Ce(t). (1.10)

This transformation corresponds to a �eld dressing by minus one photon of the excited state.

It can be rewritten as

R =

[
1 0

0 e−iωLt

]
,

[
C̃g

C̃e

]
= R−1

[
Cg

Ce

]
(1.11)

with the corresponding Hamiltonian

R†HR− iR†∂R

∂t
=

[
0 Vge(t)e

−iωLt

Veg(t)e
iωLt ~(ω0 − ωL)

]
. (1.12)
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The matrix elements of the coupling (1.5) can be written as

Veg(t) = ~Ω(t) cos(ωLt+ ϕ), (1.13)

Vge(t) = ~Ω∗(t) cos(ωLt+ ϕ), (1.14)

where

Ω(t) = −E0(t)⟨e|eµ|g⟩
~

(1.15)

is the Rabi frequency characterizing the strength of the laser-atom interaction. We assume that

the laser frequency ωL is equal or very close to the transition frequency ω0, then the term with

frequency ωL + ω0 oscillates rapidly at nearly twice the transition frequency, while the term

with atom-laser detuning ∆ = ω0 − ωL oscillates slowly. Unless the laser pulse is very short

(e.g. a femtosecond pulse) or very intense, the rapidly oscillating term can be neglected. This

is called rotating wave approximation (RWA). Under this approximation Eqs. (1.9) and (1.10)

become

i~
d

dt
Cg(t) = C̃e(t)

~Ω∗(t)

2
eiϕ, (1.16)

i~
d

dt
C̃e(t) = Cg(t)

~Ω(t)

2
e−iϕ + Ce(t)~∆. (1.17)

The transformationR(t) (1.11) can be incorporated in this basis that then writes as {|g; 0⟩, |e;−1⟩}
with the second label standing for the relative number of photons.

1.2 Approximations to solve the time-dependent Schrödinger

equation

In order to solve approximately the time dependent Schrödinger equation

i
d

dt
ψ(t) = H(t)ψ(t), (1.18)

where we use units such that ~ = 1, one can rewrite it as

ψ(t) = ψ(ti)− i

∫ t

ti

dsH(s)ψ(s), (1.19)

where ti is the starting time of the process.

Time-dependent perturbation theory. One can replace the solution ψ(s) in the integral

by the right hand side of Eq. (1.19):

ψ(t) =
[
1− i

∫ t

ti

dt′H(t′)
]
ψ(ti)−

∫ t

ti

dt′H(t′)

∫ t′

ti

dt′′H(t′′)ψ(t′′), (1.20)
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and iterate

ψ(t) =
[
1− i

∫ t

ti

dt′H(t′)
]
ψ(ti)−

∫ t

ti

dt′H(t′)

∫ t′

ti

dt′′H(t′′)
[
1− i

∫ t′

ti

dt′′′H(t′′′)
]
ψ(ti)

+

∫ t

ti

dt′H(t′)

∫ t′

ti

dt(2)H(t(2))

∫ t(2)

ti

dt(3)H(t(3))

∫ t(3)

ti

dt(4)H(t(4))ψ(t(4))

... (1.21)

In a representation (for instance in the interaction representation), where the Hamiltonian has

only o�-diagonal elements Hi ̸=j. If the partial area of these o�-diagonal components are of

order ϵ:
∫ t

ti
dtHi ̸=j(t) ≡ ϵAi ̸=j with Ai ̸=j of order 1, then one can approximate the solution by

the �rst order

ψ(t) =
[
1− i

∫ t

ti

dt′H(t′)
]
ψ(ti) +O(ϵ2), (1.22)

or from Eq. (1.21) by the second order

ψ(t) =
[
1− i

∫ t

ti

dt′H(t′)
]
ψ(ti)−

∫ t

ti

dt′H(t′)

∫ t′

ti

dt′′H(t′′)ψ(ti) +O(ϵ3), (1.23)

where

f(ϵ) = O(g(ϵ)) means

∣∣∣∣
f(ϵ)

g(ϵ)

∣∣∣∣ ≤ const. for ϵ→ 0. (1.24)

1.2.1 Application to a two-state problem

For a two-state problem, the general Hamiltonian in the two-state basis {|g⟩, |e⟩} can be

written as:

Ĥ(t) =

[
0 1

2
Ω∗(t)eiφ(t)

1
2
Ω(t)e−iφ(t) ∆+ S(t)

]
. (1.25)

This Hamiltonian (1.25) results, in particular for a two-photon transition, from Eqs. (1.16)

and (1.17) to which a stark shift S(t) has been added (see section 1.4 for details). But this

Hamiltonian describes more general processes as long as only two states are signi�cantly popu-

lated during the dynamics. We consider the initial condition ψ(ti) =

[
1

0

]
. In the interaction

representation, corresponding to a transformation ψ(t) = T †Ψ(t) with

T (t) =

[
1 0

0 e
−i[∆t+

∫ t

ti
S(u)du]

]
, (1.26)

leading to

i~
d

dt
Ψ(t) = Ĥ(t)Ψ(t) (1.27)

with

H(t) = T †(t)Ĥ(t)T (t)− iT †(t)
∂T

∂t
(t) = ~

[
0 1

2
Ω∗(t)e

i[φ(t)−∆t−
∫ t

ti
S(u)du]

∗ 0

]
, (1.28)
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Fig. 1.2 - Two-photon transition between ground |g⟩ and excited |e⟩ states in a two-level atom.

hω is the energy of the photon and ∆(t) is the laser detuning. Intermediate states that allow

the two-photon transition in the dipole approximation have not been displayed.

we get at the �rst order [Eq. (1.22)] for the excited state:

⟨e|ψ⟩(t) = −i1
2

∫ t

ti

dt′Ω(t′)e
−i[φ(t′)−∆t′−

∫ t′

ti
S(u)du]

+O(ϵ2). (1.29)

The error of order O(ϵ2) is here with respect to the area of the Rabi frequency: ϵ(t) ≡
∫ t

ti
dt′Ω(t′)

(this de�nition of ϵ is just to follow the order of the expansion and the errors that are made.)

Inspecting the second order [Eq. (1.23)], we obtain

⟨e|
∫ t

ti

dt′H(t′)

∫ t′

ti

dt′′H(t′′)|ψ(ti)⟩ = 0, (1.30)

which means that Eq.(1.29) is in fact valid until the second order:

⟨e|ψ⟩(t) = −i1
2

∫ t

ti

dt′Ω(t′)e
−i[φ(t′)−∆t′−

∫ t′

ti
S(u)du]

+O(ϵ3). (1.31)

1.2.2 Application to a two-photon transition

In a two-photon transition the atom is excited from the ground state to an excited state

by absorbing two photons (Fig. 1.2). In a problem corresponding to a two-photon transition

between the states |g⟩ and |e⟩ (of respective energy ~ωg and ~ωe),

∆ = ωe − ωg − 2ω0 (1.32)

is a (static) two-photon detuning (with respect to the mean frequency ω0 of the laser), S(t) is

a relative (dynamical) Stark shift, and the total �eld E(t) of amplitude E(t) > 0 is de�ned as
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(in the complex representation):

E(t) = E(t)e−i(ω0t+ϕ(t)), ϕ(t) = 2φ(t). (1.33)

The Rabi frequency and the Stark shift are respectively connected to the �eld through

Ω(t) = αgeE2(t), S(t) = (αee − αgg)E2(t) (1.34)

where αij is a component i, j of the polarizability tensor. This model results from stationary

perturbation theory applied on an initially more complicated system including many other

intermediate states {|m⟩} that are assumed to be coupled by one-photon processes from the

ground and excited states through the Rabi frequencies Ωjm, j = g, e (see section 1.4 for a more

precise statement).

E�ect of Stark shifts

Below we show, that in such a two-photon transition problem, Stark shift plays a signi�cant

role for a su�ciently large pulse area. Writing the Stark shift in the form S(t) = rΩ(t), one

can make the expansion:

e
i[
∫ t′

ti
S(u)du]

= eirϵ(t
′) = 1 + irϵ(t′) +O(ϵ2). (1.35)

Solution at the �rst order. If one �rstly considers the lowest (i.e. �rst) order of the

perturbation theory Eq. (1.29) and inserting the latter result in Eq. (1.29), one obtains

⟨e|ψ⟩(t) = −i1
2

∫ t

ti

dt′Ω(t′)e−i[φ(t′)−∆t′] +O(ϵ2), (1.36)

i.e. the Stark shift is of the order of the error if one considers the lowest order of the perturbation

expansion, and, thus, can be neglected at this order.

This expression can be rewritten as a function of the Fourier transform of the �eld including

its time-dependent phase (here we used a convention opposite to the standard one):

Ã(ω) = Fω[A(t)] =
1√
2π

∫ +∞

−∞
A(t)eiωtdt (1.37)

with

A(t) = E(t)e−iϕ(t). (1.38)

We can decompose Ã(ω) into an amplitude and an angle:

Ã(ω) = |Ã(ω)|e−iα(ω). (1.39)
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We obtain (for ti = −∞, at time t = +∞, and up to the correction of third order)

⟨e|ψ⟩ = −i1
2
αge

∫ +∞

−∞
dt′[E(t′)e−iϕ(t)]2ei∆t (1.40a)

= −i
√
π

2
αgeF∆[A2(t)] (1.40b)

= −i
√
π

2
αgeÃ(∆) ∗ Ã(∆) (1.40c)

= −i
√
π

2
αge

∫ +∞

−∞
Ã(u)Ã(∆− u)du, (1.40d)

which �nally gives (de�ning ω = u−∆/2)

⟨e|ψ⟩ = −i
√
π

2
αge

∫ +∞

−∞
Ã(∆/2 + ω)Ã(∆/2− ω)dω. (1.41)

If one assumes that the mean laser frequency matches the transition:∆ = 0, the two-photon

transition amplitude can be rewritten as

⟨e|ψ⟩ = −i
√
π

2
αge

∫ +∞

−∞
Ẽ(ω0 + ω)Ẽ(ω0 − ω)dω. (1.42)

This result can be interpreted as follows: in the perturbative regime, the two-photon process is a

combination of two single photons of respective frequencies ω0−ω and ω0+ω. It is in fact a sum

of these combinations for all possible ω. The frequencies ω0 − ω and ω0 + ω should correspond

to non-negligible components of the Fourier transform of the �eld, as shown schematically in

the Fig. 1.3. Hence, all frequency components of a single pulse contribute to the two-photon

transition probability, which can be controlled by tailoring the spectral phases of the pulse.

This is studied in detail and experimentally tested as described in the next chapter.

Fig. 1.3 - Schematic diagram of the energy levels of the two-photon transitions.
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Solution at the second order. One can use the fact that, in fact, our expansion (1.31) is

valid until the second order: the Stark shift is then expected to play a role at this second order,

i.e. for a large enough pulse area. This can be seen considering the further expansion

e
i[
∫ t′

ti
S(u)du]

= eirϵ(t
′) = 1 + irϵ(t′)− r2

2
ϵ2(t′) +O(ϵ3) (1.43)

to �nally obtain

⟨e|ψ⟩(t) = −i1
2

∫ t

ti

dt′Ω(t′)e−i[φ(t′)−∆t′]

[
1 + i

∫ t′

ti

duS(u)

]
+O(ϵ3).

Compensation of the Stark shifts

To maximize the resonance e�ects, one can compensate the Stark shift from (1.31) by

imposing at each time

φ̇(t) = S(t). (1.44)

For a Stark shift of the form S(t) = S0e
−t2/τ2 , it can be a good strategy to compensate it near

its maximum, i.e. around t = 0.

The compensation of the Stark shift based on this expansion is the subject of the next

chapter for a concrete system (Cs) at moderate �eld intensities.

1.3 Approximations for numerical calculations

For strong �eld regimes, where the population of the initial state is signifanctly transfered

to excited state, the preceding approximations are not valid and one has to solve numerically

the Schrödinger equation. Below we show the numerical algorithm to be used speci�cally when

the transformation is time-dependent. We assume that only a few states are essential, i.e. are

non-negligibly populated during the dynamics, such that they can form the complete basis on

which we expand the solution.

One divides the total time T of integration in N intervals of constant duration ∆t = T/N :

t ∈ [ti = t0, tf = tN = ti + T ] such that tn = t0 + n∆t, n = 0, · · · , N . Various approximations

can be obtained depending on how one approximates the integral in Eq. (1.19). In the following,

we denote ψn ≡ ψ(tn), Hn ≡ H(tn), and ϵ ≡ ∆t (Note here that ϵ is di�erent from the one

used in the preceding section).

Explicit �rst order scheme. Using the simplest approximation with rectangles, of error

O(ϵ2): ∫ tn+1

tn

dsH(s)ψ(s) = ϵHnψn +O(ϵ2), (1.45)

leads to

ψn+1 = [1− iϵHn]ψn +O(ϵ2). (1.46)
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Iterating, we obtain:

ψ1 = [1− iϵH0]ψ0 +O(ϵ2) (1.47a)

ψ2 =
[
1− iϵ

1∑

n=0

Hn

]
ψ(t0) + 2×O(ϵ2) (1.47b)

· · ·

ψN =
[
1− iϵ

N−1∑

n=0

Hn

]
ψ0 +N ×O(ϵ2) (1.47c)

The notation �2× O(ϵ2)� means that a same type of error of order O(ϵ2) has been committed

twice. Since N = T/ϵ, we �nally get an approximation with error O(ϵ), known as the �rst

order explicit scheme:

ψN =
[
1− iϵ

N−1∑

n=0

Hn

]
ψ0 +O(ϵ). (1.48)

Using ϵ
∑N−1

n=0 Hn =
∫ tf
ti
H(s)ds+O(ϵ) implies

ψ(tf ) =
[
1− i

∫ tf

ti

H(s)ds
]
ψ(ti) +O(ϵ), (1.49)

which would give an accurate approximation for a small enough ϵ. However the explicit scheme

(1.47) is known to be unstable for large time. This means that the multiplicative coe�cient

of the error O(ϵ) diverges for large time. This can be easily seen if one takes, for instance, a

Hamiltonian with terms proportional to time t (known as secular or resonant terms). In that

case, the solution (1.49) grows linearly with time. This scheme is thus not unitary since it does

not preserve the norm of the state-solution. One can, however, interpret this result (1.49) as

an approximation for small enough times. This is indeed what we get for the �rst order time

dependent perturbation theory (1.22).

Explicit exponential scheme. One can improve the error approximating the integral in

Eq. (1.19) by trapezoids:

∫ tn+1

tn

dsH(s)ψ(s) = ϵH(tn+ 1
2
)ψ(tn+ 1

2
) +O(ϵ3). (1.50)

We next make the following expansion and use the Schrödinger equation (1.18):

ψn+ 1
2

= ψn +
ϵ

2

dψ

dt
(tn) +O(ϵ2) (1.51a)

= ψn − i
ϵ

2
Hnψn +O(ϵ2) (1.51b)

We obtain, also using Hn = Hn+ 1
2
+O(ϵ):

∫ tn+1

tn

dsH(s)ψ(s) = ϵψn

[
Hn+ 1

2
− i

ϵ

2
H2

n+ 1
2

]
+O

(
ϵ3
)
. (1.52)
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This implies for Eq. (1.19):

ψn+1 =ψn − i

∫ tn+1

tn

dsH(s)ψ(s) (1.53a)

=
{
1− iϵHn+ 1

2
+

1

2

[
iϵHn+ 1

2

]2}
ψ(tn) +O

(
ϵ3
)

(1.53b)

= e
−iϵH

n+1
2ψn +O

(
ϵ3
)

(1.53c)

leading to an error of N × O(ϵ3) = O(ϵ2) for the full integration. This scheme is stable and

unitary (due to the exponential form) and is thus often used for numerical integration of the

Schrödinger equation with a time-dependent Hamiltonian.

1.4 The two-state approximation for a two-photon transi-

tion

De�nition Consider the two-photon interaction of an ultrashort pulse with a �eld E(t) with

a two-level atom. The e�ective Hamiltonian for a two-photon transition between two states of

respective energies ωg and ωe by a laser of phase ϕ(t), corresponding to the instantaneous laser

frequency ωL(t) ≡ ϕ̇(t), reads in the resonant approximation

H2(t) = ~

[
ωg + Sg(t)

1
2
Ω∗(t)e2iϕ(t)

1
2
Ω(t)e−2iϕ(t) ωe + Se(t)− i1

2
Γe(t)

]
. (1.54)

The Stark shifts Sg(t) and Se(t), respectively of the ground and excited states, are due to their

coupling to the intermediate states m and the continuum channels ℓ (corresponding for instance

to s, p, d, · · · continua for atoms):

Sj(t) = −E2(t)

2~2

[
∑

m ̸=j

|µjm|2
ωmj

ω2
mj − ω2

L(t)
+ P

∫
dE

~

∑

ℓ

|µj;E,ℓ|2
ωEj

ω2
Ej − ω2

L(t)

]
, j = e, g

(1.55)

with µjm (resp. µj;E,ℓ) the transition dipole moments between the state j, of energy ~ωj, and

the intermediate state (resp. the continuum state of the channel ℓ and of energy E), and

ωmj = ωm − ωj, ωEj = E/~ − ωj. P indicates the principal part of the integral when it is

inde�nite (if ωj + ωL reaches the continuum). The two-photon Rabi frequency between the

ground and the excited state is

Ω(t) = −E2(t)

2~2

[
∑

m ̸=e,g

µgmµme

ωm − ωg − ωL(t)
+

∫
dE

~

∑

ℓ

µg;E,ℓµE,ℓ;e

E/~− ωg − ωL(t)

]
. (1.56)

The �eld intensity I(t) is related to the �eld amplitude E(t) through the relation

I(t) =
1

2
ϵ0cE2(t), I[W/cm2] ≈ 3.50945× 1016 (E [u.a.])2 . (1.57)
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It is usually a good approximation to consider the mean (or central) frequency of the laser ω0

instead of the instantaneous one ωL(t) to calculate the Stark shifts and the Rabi frequency.

This is generally the case when the frequency of the laser is chirped on an interval ∆ωL ≪ ω0.

In that case, one has a �xed ratio

r = (Se(t)− Sg(t))/Ω(t). (1.58)

In Eq.(1.54) we considered that the excited state is lossy through ionization by the laser. This

is taken into account by summing the partial rates to the continuum channel ℓ:

Γe(t) =
∑

ℓ

Γ(ℓ)
e , Γ(ℓ)

e =
π

2~
E2(t)|µe;E=~ωe+~ωL,ℓ|2. (1.59)

The partial rates have been written here for the case of a one photon resonance in the continuum

from the excited state.

Condition of validity. This resonant two-state approximation is valid when, for all m ̸= g, e

and j = g, e,

|Ωjm| ≪ |∆jm|, (1.60a)

|Ωjm|, |ωe − ωg − 2ωL| ≪ ωL (resonant approximation) (1.60b)

with the one-photon detunings

∆gm = ωm − ωg − ωL, ∆em = −ωm + ωe − ωL (1.61)

corresponding to the one-photon Rabi frequencies

Ωjm =
E
~
µjm. (1.62)

Dynamics and dressed e�ective Hamiltonian. The dynamics is given by the Schrödinger

equation

i~
∂

∂t
ψ(t) = H2(t)ψ(t). (1.63)

One can alternatively consider a transformed state ψ̃(t) = T †(t)ψ(t) which leads to the Schrödinger

equation

i
∂

∂t
ψ̃(t) = H̃2(t)ψ̃(t) (1.64)

with the Hamiltonian

H̃2(t) = T †(t)H2(t)T (t)− iT †(t)
∂T

∂t
(t). (1.65)

We consider the phase transformation

T (t) =

[
1 0

0 e−2iϕ(t)

]
, (1.66)
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which has as physical interpretation the dressing of the upper state by minus two photons of

frequency ϕ̇. We remark that this transformation leaves the population of the states unchanged.

This leads to

H̃2(t) = ~

[
ωg + Sg(t)

1
2
Ω∗(t)

1
2
Ω(t) ωe + Se(t)− i1

2
Γe(t)− 2ϕ̇(t)

]

= ~[ωg + Sg(t)]

[
1 0

0 1

]
+

~

2

[
0 Ω∗(t)

Ω(t) 2∆(t)− iΓe(t)

]
(1.67)

with

∆(t) = S(t) + δ(t), S(t) = Se(t)− Sg(t), (1.68)

and the time dependent two-photon detuning

δ(t) = ωe − ωg − 2ωL(t). (1.69)

This gives the relation between the instantaneous phase of the laser and the two-photon detun-

ing:

ϕ(t) =
ωe − ωg

2
t− 1

2

∫ t

ds δ(s). (1.70)

We often omit from Eq. (1.67) the diagonal matrix proportional to the identity since it leads

to a global phase of the state, and we can thus consider the generic Hamiltonian

H(t) =
~

2

[
0 Ω(t)

Ω(t) 2∆(t)− iΓe(t)

]
, (1.71)

where we have assumed for simplicity that Ω is real.

1.5 Beyond the two-state approximation

If one intermediate state n is such that |Ωjn| ∼ |∆jn| (j = g or j = e), it induces in the

system one-photon processes. This should be included explicitly in the Hamiltonian leading to

a resonant three-state approximation:

H3(t) = ~




ωg + Sg(t)
1
2
Ωgn(t)e

iϕ(t) 1
2
Ωge(t)e

2iϕ(t)

1
2
Ω∗

gn(t)e
−iϕ(t) ωn + Sn(t)

1
2
Ω∗

en(t)e
iϕ(t)

Ω∗
ge(t)e

−2iϕ(t) 1
2
Ωen(t)e

−iϕ(t) ωe + Se(t)− i1
2
Γe(t)


 (1.72)

with

Sj(t) = −E2(t)

4~2

[
∑

m ̸=j,n

|µjm|2
~2

ωmj

ω2
mj − ω2

L(t)
+ P

∫
dE

~

∑

ℓ

|µj;E,ℓ|2
~2

ωEj

ω2
Ej − ω2

L(t)

]
, (1.73a)

Sn(t) = −E2(t)

4~2

[
∑

m ̸=g,e,n

|µnm|2
~2

ωmn

ω2
mn − ω2

L(t)
+ P

∫
dE

~

∑

ℓ

|µn;E,ℓ|2
~2

ωEn

ω2
En − ω2

L(t)

]
(1.73b)

Ωge(t) = −E2(t)

2~2

[
∑

m ̸=e,g,n

µgmµme

ωm − ωg − ωL(t)
+

∫
dE

~

∑

ℓ

µg;E,ℓµE,ℓ;e

E/~− ωg − ωL(t)

]
. (1.73c)
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Using the phase transformation (corresponding to a dressing of the intermediate state n with

minus one photon and of the excited state e with minus two photons)

T (t) =




1 0 0

0 e−iϕ(t) 0

0 0 e−2iϕ(t)


 , (1.74)

we get (omitting the global phase)

H̃3(t) = ~




Sg(t)
1
2
Ωgn(t)

1
2
Ωge(t)

1
2
Ω∗

gn(t) ∆gn(t) + Sn(t)
1
2
Ω∗

en(t)

Ω∗
ge(t)

1
2
Ωen(t) δ(t) + Se(t)− i1

2
Γe(t)


 (1.75)

with the one photon detuning

∆gn(t) = ωn − ωg − ϕ̇(t) = ωn −
ωg + ωe

2
+

1

2
δ(t). (1.76)

Keeping the leading order in the �eld amplitude, this can be approximated by

H̃3(t) ≈
~

2




0 Ωgn(t) 0

Ω∗
gn(t) 2∆gn(t) Ω∗

en(t)

0 Ωen(t) 2δ(t)− iΓe(t)


 . (1.77)

This can be directly generalized for more than one resonant intermediate state. It is however

better to use the e�ective Hamiltonian (1.75) in a strong �eld regime, especially when δ ≪ ∆gm.

It is in practice useful to decompose the phase of the laser as ω0t + ϕ(t) with ω0 the mean

frequency of the laser (before its shaping, see next section) and ϕ(t) a relative phase.

1.6 Pulse-Shaping Techniques for Femtosecond Pulses

Femtosecond pulses are used in many �elds due to their speci�cities of extreme short du-

ration, ultra-high peak power or large spectral bandwidth. Reliable generation of pulses below

100fs occurred the �rst time in 1981 with the invention of the colliding pulse modelocked (CPM)

ring dye laser [29]. Despite relative low energy per pulses, the ultrashort pulse duration leads

to peak power large enough for non-linear pulse compression culminating in pulses as short as 6

fs in the visible. Recent advances in laser technology as the use of solid-state gain media, laser

diode pumping, �ber laser, have led to simple, reliable, turn key ultrashort laser oscillators with

pulse duration ranging from few ps down to 5 fs.

Application of these ultrashort pulses requires to control their temporal shape. The dispersion

of materials and optical devices has been used to compress, stretch or replicate the pulses.

Limitations on the ability to control the temporal shape of the pulse by classical optical devices

have lead to the development of pulse shapers. These devices are linear �lters enabling the
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independent control of the spectral amplitude and phase giving a complete control of the tem-

poral shape and phase of the pulse. Due to the extreme short duration of the pulses, the control

cannot be achieved directly by temporal modulators. The control has to be done in the spec-

tral domain. Two technologies of pulse shapers are widely used: spatial amplitude and phase

modulators implemented in a zero-dispersion line or 4-f line, and acousto-optic programmable

dispersive �lters. Experimental implementations of these pulse shaping examples will then be

presented.

1.6.1 De�nitions

Ultrashort pulses characteristics

The �eld can be determined either by the temporal phase and amplitude or by the spectral

phase and amplitude. The extreme shortness of ultrashort pulses implies a large spectral

bandwidth. This �eld can be expressed in an experimental representation as:

E(t) = E0Λ(t)ei(ω0t+ϕ(t)), (1.78)

where ω0 is the central angular frequency, Λ(t) is the envelope with 0 ≤ Λ(t) ≤ 1 and E0 is

the peak amplitude, and ω0t+ ϕ(t) its temporal phase. The spectrum Ĩ(ω), or spectral power

density, is the square modulus of the spectral amplitude: Ĩ = A(ω)2. Its temporal counterpart

I(t) equals the square modulus of the temporal amplitude A(t): I(t) = (E0Λ(t))2. We de�ne

the normalization of the �eld as

1

N

∫ +∞

−∞
|Ẽ(ω)|2dω

2π
=

1

N

∫ +∞

−∞
|E(t)|2dt = 1. (1.79)

The pulse center is then de�ned by

t0 =
1

N

∫ +∞

−∞
t|E(t)|2dt, (1.80)

and the central frequency by

ω0 =
1

N

∫ +∞

−∞
ω|Ẽ(ω)|2dω

2π
. (1.81)

To analyse the di�erent e�ects of the spectral phase, it is useful to expand the spectral phase

into a Taylor series:

ϕ̃(ω) = ϕ̃(ω0) + ϕ̃(1)(ω0)(ω − ω0) +
ϕ̃(2)(ω0)

2!
(ω − ω0)

2 +
ϕ̃(3)(ω0)

3!
(ω − ω0)

3... (1.82)

The �rst order spectral phase term corresponds to a time delay, the second order spreads

linearly in time the frequency and so stretches the pulse. The third order introduces pre-pulses

or post-pulses around the main pulse. The temporal intensity can be modi�ed by changing

the spectral phase only, but its complete control requires shaping both the spectral phase and

amplitude.
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Fig. 1.4 - Basic layout for Fourier transform femtosecond pulse shaping.

Femtosecond pulse shaping using spatial light modulators

The dispersion-free apparatus in Fig. 1.4 is subsequently adopted for manipulating pulses on

the 100 fs time scale, with the use of �xed masks initially, and later with programmable Spatial

Light Modulators (SLM). The apparatus of Fig. 1.4 (without the mask) can also be used to

introduce dispersion for pulse stretching or compression by changing the grating-lens spacing.

This idea is extensively used for high-power femtosecond chirped pulse ampli�er. The waveform

synthesis is achieved by spatial masking of the spatially dispersed optical frequency spectrum.

Figure 1.4 shows the basic pulse shaping apparatus, which consists of a pair of di�raction

gratings and lenses, arranged in a con�guration known as a "zero dispersion pulse compressor",

and a pulse shaping mask. The individual frequency components contained within the incident

ultrashort pulse are angularly dispersed by the �rst di�raction grating, and then focused to

small di�raction limited spots at the back focal plane of the �rst lens, where the frequency

components are spatially separated along one dimension. Essentially the �rst lens performs a

Fourier transform which converts the angular dispersion from the grating to a spatial separation

at the back focal plane. Spatially patterned amplitude and phase masks (or a SLM) are placed

in this plane in order to manipulate the spatially dispersed optical Fourier components. After,

a second lens and grating recombine all the frequencies into a single collimated beam, a shaped

output pulse is obtained, with the output pulse shape given by the Fourier transform of the

pattern transferred by the masks onto the spectrum.

1.6.2 Example for an input Gaussian pulse and linear chirping

We assume an input �eld of Gaussian shape with the mean frequency ω0 and the full width

at half maximum (for the corresponding intensity) Tin,FWHM = Tin
√
2 ln 2 :

Ein(t) = E0inΛTin
(t)eiω0t, ΛTin

(t) = e−(t/Tin)
2

(1.83)
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We de�ne the transparency coe�cients 0 ≤ T (ω) ≤ 1 and phase φ(ω) as follows:

Ẽ(ω) = T (ω)eiφ(ω)Ẽin(ω). (1.84)

When the frequency of the input �eld matches the transition frequency: ω0 = ωe − ωg, a linear

chirping results from a single modulator with a quadratic spectral phase:

T (ω) = 1, φ(ω) = γ(ω − ω0)
2. (1.85)

This leads to the output �eld which is of maximum amplitude when it is exactly resonant:

E(t) = E0in
√
Tin

T
e−(t/T )2ei(ω0t+ϕ(t)−θ) (1.86)

with the instantaneous frequency

ω(t) ≡ ω0 + ϕ̇(t) = ω0 −
8γ

T 4
in + 16γ2

t (1.87a)

≃ ω0 −
1

2γ
t, for γ & T 2

in, (1.87b)

the phase

θ = arg
√
T 2
in − 4iγ, (1.88)

and the duration

T =
4γ

Tin

√

1 +

(
T 2
in

4γ

)2

(1.89a)

≃ 4γ

T 2
in

Tin, for γ & T 2
in. (1.89b)

The width of the chirp that can be characterized by |ϕ̇(T/2) − ϕ̇(−T/2)| = |ϕ̇(T )| is thus in

practice limited by the spectrum of the laser:

ϕ̇(T ) .
2

Tin

, (1.90)

reaching its asymptotic value 4/Tin for γ & T 2
in, corresponding to the duration T & 4Tin.

If there is a mismatch between the mean laser frequency ω0 and the transition frequency

ω1 := ωe − ωg, and if one wants an e�ective frequency that is resonant (i.e. ∆ = 0) when the

output �eld is maximum in the time domain, we have to shape the spectral amplitude as

T (ω) = e
1
4
[(ω−ω0)2T 2

in
−(ω−ω1)2T 2

a ], φ(ω) = γ(ω − ω1)
2 (1.91)

with the requirement that the shaping operates well within the bandwidth:

|ω0 − ω1| .
(

1

Tin

− 1

Ta

)√
2 ln 2, Ta > Tin. (1.92)
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This leads to the output �eld which is of maximum amplitude when it is exactly resonant:

E(t) = E0in
√
Ta
T
e−(t/T )2ei[ω1t+ϕ(t)−θ] (1.93)

with the instantaneous frequency

ω(t) ≡ ω1 + ϕ̇(t) = ω1 −
8γ

T 4
a + 16γ2

t (1.94a)

≃ ω0 −
1

2γ
t, for γ & T 2

a , (1.94b)

the phase

θ = arg
√
T 2
a − 4iγ, (1.95)

and the duration

T =
4γ

Ta

√

1 +

(
T 2
a

4γ

)2

(1.96a)

≃ 4γ

Ta
, for γ & T 2

a . (1.96b)

1.6.3 Spectrogram for two-photon processes

To provide an intuitive picture of the time evolution of the spectrum of the laser, time-

frequency spectrograms such as the Wigner function have been proposed (see for instance

[30,31]). The Wigner function of an electric �eld E(t) can be written as [30]

W (ω, t) =

∫
E∗(ω + ω′/2)E(ω − ω′/2)eiω

′tdω′. (1.97)

For a two-photon process, we prefer to use a second harmonic Wigner function de�ned as

W2(ω, t) =

∫
W (ω′, t)W (ω − ω′, t)dω′. (1.98)

The absolute value of this second harmonic Wigner function de�nes the two-photon spectrogram

used in Figs. 2.3 and 2.4 of the next chapter.



Chapter 2

Optimization of two-photon transition by

phase shaping

In this chapter we show that for moderate intensities, in order to optimize the two-photon

absorption in atomic Cesium in the ground states, the frequency of the laser pulse can be swept

following the temporal change of the absorption energy gap. By moderate intensities we mean

that we consider the perturbation expansion up to the second order (1.31) for which the Stark

shifts are non negligible and the population transfer is of order 10 − 15% (i.e. small but non

negligible) (see section 2.3.2 for a more precise statement) In the case of a Gaussian pulse, it

is shown that a temporal cubic phase is su�cient to retain the resonance condition during the

interaction since it allows one to recover very accurately the population transfer that would

occur without Stark shifts. This result has been demonstrated in the group of J. Ahn (Korea)

as described below [71]. We also extend theoretically this study for strong �elds for which the

population transfer is large.

In the next Section, we describe the model and the pulse shaping scheme. Section 2.2 is

devoted to the description of the experiments performed by our collaborators S. Lee et al. In

Section 2.3, we present the results and their interpretation before concluding in Section 2.4.

2.1 Theoretical consideration

The model and the general phase matching condition. From the preceding chapter

[see Eq. (1.54) from which a global phase has been omitted], a two-photon transition in a

two-state system, the e�ective Hamiltonian in the resonant approximation can be written in

the dressed state basis |g; 0⟩, |e;−2⟩ as

H(t) = ~

[
0 1

2
Ω(t)e2iϕ(t)

1
2
Ω(t)e−2iϕ(t) ∆+ S(t)

]
, (2.1)

where Ω(t) (chosen real) is the two-photon Rabi frequency and ϕ(t) is the phase of the laser

�eld, relative to central frequency ω0. We have decomposed the detuning as the static two-

photon detuning ∆ = ωe − ωg − 2ω0, and S(t) the relative dynamical Stark shift. We have

37
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omitted irrelevant global phases. For a �eld amplitude of shape
√
Λ(t), the Rabi frequency

is of the form Ω(t) = Ω0Λ(t) with Ω0 proportional to the peak �eld intensity Ipeak, and the

Stark shift has the same time dependence: S(t) = S0Λ(t) with S0 also proportional to Ipeak:

S0 = rΩ0. We consider Gaussian pulse shape Λ(t) = exp[−(t/τ)2].

The Hamiltonian can be rewritten as Ĥ = T̂ †HT̂ − i~T̂ †dT̂ /dt:

Ĥ(t) = ~

[
0 1

2
Ω(t)

1
2
Ω(t) ∆ + S(t)− 2ϕ̇(t)

]
(2.2)

in a representation Ψ(t) = T̂ †ψ(t) of the original state ψ(t) associated to the diagonal transfor-

mation (which leaves the population unchanged)

T̂ (t) =

[
1 0

0 e−i2ϕ(t)

]
. (2.3)

It is known (see for instance [32] for a proof using the geometric control theory and [17] for an

experimental demonstration through a learning algorithm) that, for such two-state Hamiltoni-

ans (2.2), the minimum pulse area of the Rabi frequency to achieve the complete transfer is∫
dtΩ(t) = π and that it is achieved when the exact resonance is satis�ed at each time:

2ϕ̇(t) = ∆ + S(t). (2.4)

This phase matching condition can be interpreted as a compensation of the dynamical Stark

shifts by the shaping of the pulse to maximize the resonance e�ects. Additional chirping of

the �eld can not decrease the π-pulse area. This result (2.4) can be also derived within the

second order of the perturbation theory [33] [see Eq. (1.31)] which yields for the probability of

population transfer to the excited state:

Pe(t) ≈
1

4

∣∣∣∣
∫ t

ti

dt′Ω(t′)e−i[2ϕ(t′)−∆t′−
∫ t′ S(u)du]

∣∣∣∣
2

, (2.5)

where the error is of order O(ϵ3) with respect to half of the partial area of the Rabi frequency:

ϵ(t) ≡
∫ t

ti
dt′Ω(t′)/2. Here, ti indicates the initial time of the interaction. The phase matching

condition (2.4) is however valid beyond the perturbation theory as long as the validity of two-

state model (2.2) is preserved.

It is of interest to determine general analytic pulse shaping programming to satisfy this phase

matching condition [21]. Below we derive and test approximate conditions with simple pulse

shapes, compensating the dynamical Stark shifts, in order to produce more e�cient population

transfer at moderate �eld intensities.

Optimal phase matching condition near the peak value of the Stark shift. We

make a series expansion of the dynamical Stark shift and of the phase in the time domain to

satisfy the phase matching condition near its maximum in absolute value, i.e. around t = 0.
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Fig. 2.1 - (a) Strong-�eld two-photon excitation probability, Pe(η, ξ) (arbitrary units), calculated

as a function of dimensionless parameters: the frequency detuning η and the spectral curvature

ξ. (b) Two-photon spectrogram (as shaded contour plot, see the de�nition in section 1.7) of the

unshaped pulse at the point O(S0τ/3,−∆τ − S0τ), where ∆ and δ0 denote the static and peak

dynamic level shifts, respectively. The (negative) dynamic level shift is drawn as a full line. (c)

Control of the detuning along OA. (d) Spectral curvature control along AB. (e) Two-photon

spectrogram of the optimally shaped pulse at the point Op(0,0).
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Truncating the series keeping the cubic terms, we get a transfer probability proportional to the

peak intensity of the �eld:

Pe(η, θ, ξ) ∝
∣∣∣∣
∫ ∞

−∞
e−X2+iηX+iθX2+iξX3

dX

∣∣∣∣
2

, (2.6)

where the dimensionless control parameters are de�ned as η = 2ϕ̇(0)τ − (S0+∆)τ , θ = ϕ̈(0)τ 2,

and ξ = [
...
ϕ (0)τ 3 + S0τ ]/3. We determine the optimal pulse shape from the maximum value of

(2.6), which corresponds to η = θ = ξ = 0. This leads to nonzero linear and cubic phase terms

and a zero quadratic phase:

2ϕ(t) = (∆ + S0)t−
1

3

S0

τ 2
t3. (2.7)

Figure 2.1(a) shows the probability of strong-�eld two-photon excitation from Eq. (2.6). The

point O in Fig. 2.1(a) corresponds to the unshaped transform-limited pulse, and Op the optimal

pulse shape (η = ξ = 0). The spectro-temporal shape at Op is illustrated as in Fig. 2.1(e).

The control parameters ϕ̇(0) in η and
...
ϕ (0) in ξ denote the frequency o�set (detuning) and the

frequency curvature in a spectrogram, respectively. Therefore, the change of η along the path

OA in Fig. 2.1(a) is the frequency detuning as illustrated in Fig. 2.1(c). Also, the change of ξ

along AB is the frequency curvature control as shown in Fig. 2.1(d).

2.2 Description of the experiments

For the experiment performed by S. Lee et al., sub-picosecond infrared pulses were used [71]

with a pulse energy of up to 100 µJ produced from a Ti:Sapphire laser ampli�er system operating

at a repetition rate of 1 kHz. The pulses were shaped by an acousto-optic programmable

dispersive �lter (DAZZLER) and illuminated on Cesium atoms (133Cs) of a gas density of

2.2× 1016 m−3 in an optical cell at room temperature. The laser frequency was tuned to make

the two-photon resonant condition for the 6S1/2−8S1/2 transition at the low laser intensity limit

implying S ≈ 0, i.e. ∆ = 0. The laser peak intensity (at the focus) was varied in the range of

0 .. 0.2I0 (I0 = 1011 W/cm2). We remark that intensities above this range start producing a

signi�cant ionization from the upper state (see Appendix A for details of the model including

the ionization rate from the upper state). Then, the atoms in the excited 8S1/2 state decay �rst

to the 7P1/2 state and then down to the 6S1/2 ground state. The 7P1/2−6S1/2 �uorescence signal

collected by a photo-multiplier tube (PMT) was used to estimate the excitation probability of

the 6S1/2 − 8S1/2 transition. The collision coherent time and the transit time (average escape

time of atoms passing the beam diameter) are 66 ns and 390 ns, and the lifetime of 8S1/2 is

90 ns [34].

The �eld before its spectral shaping is of Gaussian shape with mean frequency ω0: Ein(t) =

E0ine−(t/τin)
2
eiω0t. The programming target pulse E(t) is chosen to be also of Gaussian shape:

E(t) = E0e−(t/τ)2ei(ω0t+ϕ(t)). (2.8)



Chapter 2. Optimization of two-photon transition by phase shaping 41

The shaping in the frequency domain is such that

Ẽ(ω) = T (ω)eiϕ̃(ω)Ẽin(ω), (2.9)

where 0 ≤ T (ω) ≤ 1 is the transparency coe�cient of the shaping device, ϕ̃(ω) is the spectral

phase, and F̃ (ω) = 1
2
√
π

∫ +∞
−∞ F (t)e−iωtdt denotes the Fourier transform.

The laser beam focused on to the atoms has a spatial intensity pro�le

I(r, z) = I0
w2

0

w2(z)
e−r2/w2(z), (2.10)

where w(z) is the beam waist. As a result, we have determined numerically that the averaged

�eld intensity and consequently the averaged dynamic Stark shift is approximately reduced by

a factor 2 with respect to an uniform intensity pro�le. The calculated averaged dynamic of

Stark shift is roughly −10× 1012 rad/s (or −10 Trad/s) at 20 GW/cm2 (see Appendix A for a

more detailed discussion about the modelling of the driven Cesium atoms).

2.3 Results and Discussion

2.3.1 Veri�cation of the optimal pulse shaping.

The veri�cation of the optimal pulse shaping scheme discussed in Section II is carried out

by measuring the 7P1/2−6S1/2 �uorescence as a function of the phase ϕ(t) de�ned in Eq. (2.8).

The result is shown in Fig. 2.4, where ϕ(t) is programmed as a function of the coe�cient a1

and a2 de�ning the variations of the cubic phase:

ϕ(t) = a1t+ a2t
3. (2.11)

In the experiment peak intensities were used such that Ipeak . 0.2I0 and �elds of duration

τ = 90 fs (corresponding to an intensity time-pro�le of full width at half maximum 150 fs). A

�eld of peak intensity Ipeak = 0.47I0 = 47 GW/cm2 leads to a complete population transfer

(at the focus). We have checked from numerics that one can use Eq. (2.5) to determine the

line shapes (and contour lines) in a rather good approximation. Moreover, the use of Eq.

(2.6) instead of Eq. (2.5) to �t our experiments does not show a signi�cant di�erence. The

experiment does not allow us to determine very accurately the optimal value of a2.

Along the vertical lines in Fig. 2.1(a), the frequency detuning experiments are shown in

Fig. 2.3, compared with the numerical calculations. Figure 2.3(a) shows the line shapes of

the signal, measured at the three di�erent laser peak intensities, as functions of the frequency

o�set a1 at zero cubic phase, i.e. a2 = 0. The maximum of the signal is found at a larger

frequency o�set for a larger Ipeak. A more careful analysis shows that a1 is proportional to Ipeak

as predicted in Section 2.1 [see Eq. (2.7)].

Also, the signal is measured as a function of the frequency curvature a2τ
2 at zero linear

phase, i.e. a1 = 0. As shown in Fig. 2.3(b), the signal is measured with zero detuning, i.e.
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Fig. 2.2 - Fluorescence 2D maps measured at laser peak intensities, Ipeak/I0 = 0.06, 0.14, 0.17

and 0.21, as a function of a1 and a2τ
2 parameters. Contour lines are calculated using Eq. (2.6).
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Fig. 2.3 - Strong-�eld two-photon excitation of Cesium studied at three di�erent laser inten-

sities, Ipeak/I0 = 0.21, 0.14, 0.10. The theoretical lines from Eq. (2.6) are compared with the

7P1/2 − 6S1/2 �uorescence signal measured (a) as a function of the frequency o�set a1, de�ned

in Eq. (2.11), at zero frequency curvature a2 = 0; and (b) as a function of the frequency curva-

ture a2τ
2 at zero frequency o�set a1 = 0. The upper inserts show the two-photon spectrograms

(shaded contour plots) overlapped with the corresponding dynamically shifted energy levels (solid

lines). The dotted lines represent the center frequency ω0 of the shaped pulse.
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a1 = 0, as a function of the frequency curvature a2τ
2. The line shape is symmetric at a low

intensity (the lowest red line) but becomes gradually asymmetric at higher intensities (the

upper black and blue lines). As the peak intensity increases, the overlap between the shifted

energy level and the laser spectral distribution gradually decreases. As a result, the two-photon

excitation in Cesium at zero frequency o�set is better achieved by a negative cubic phase term.

This seems counterintuitive because the curvature of the laser spectral distribution is opposite

to that of the shifted energy level. However, as illustrated in the top panel of Fig. 2.3(b), the

pulse at E' with a negative cubic phase makes a better overlap with the detuned energy level

than the pulse at E with a positive cubic phase. Therefore, the two-photon excitation rate in

Cesium at zero frequency o�set is higher with a negative quadratic frequency chirp.

Figure 2.4 shows the pulse-shape dependence of the two-photon excitation in Cesium. For

a simple detuning experiment (a2=0), shown in the black line in Fig. 2.4(a), the excitation

maximum is found at a negative a1 since S0 < 0. We note that the optimal point for the

intensity Ipeak = 1.7×1010 W/cm2 is located at a1 = −4.25 Trad/s and a2τ
2 = 1.4 Trad/s from

the analysis of Section II. The curvature control experiments shown in Fig. 2.4(b) are along

the horizontal lines in Fig. 2.1(a). The measured signals are of more complex line shapes: Near

the optimal detuning at a1 = 0 (black line), as the curvature a2 increases, the signal gradually

grows and rapidly increases near a2 = 0 (near Op). For a more (less) detuned case with the

positive (negative) a1 in the blue (red) line, the signal rapidly decreases (increases) near a2 = 0.

Finally, from Eq. (2.6), the intensity invariant forms of excitation probability can be calcu-

lated as a function of each single parameter η and ξ, respectively:

Pe(η, 0, 0) =
√
πe−η2/2, (2.12)

Pe(0, 0, ξ) =
∞∑

k=0

(−1)kξ2k
Γ(3k + 1/2)

(2k)!
. (2.13)

They are drawn in Fig. 2.5 overlaid with the measured data points from Fig. 2.2. We note that

the overall probabilities of strong-�eld two-photon transition, Pe/I
2τ 2, follow the theoretically

obtained intensity invariant forms from Eq. (2.6).

2.3.2 Further optimization of the phase matching condition

One can further improve the approximate condition (2.7) by determining conditions that

allow one to recover the population transfer that would be obtained without Stark shifts beyond

the perturbative regime. To that end, we determine the population transfer to the excited state

at the end of the process, from the numerical integration of the Schrödinger equation, for various

(strong or not) peak �eld amplitudes and Stark shifts using a phase of the form (2.11). We

do not consider here the spatial averaging. We �rst make the analysis using the two-state

model (2.2). This is extended in the next subsection to a more accurate model of Cesium for

strong �elds. Figure 2.6 shows two typical contour plots of the deviation from the population
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Fig. 2.6 - Contour plot (in logarithmic scale to the base 10) at the end of the pulse of the devi-

ation from the population transfer in absence of Stark shifts as a function of the dimensionless

quantities 2a1/S0 and 2a2τ
2/S0 for ∆ = 0, S0 = Ω0, and (a) τΩ0 =

√
π and (b) τΩ0 =

√
π/2.

They correspond respectively to complete and half population transfers in absence of Stark shifts.

transfer to the excited state achieved without Stark shifts, with a pulse area of (a) π and (b)

π/2, corresponding to a population transfer without Stark shifts respectively of 1 and 0.5. We

obtain (taking ∆ = 0) the approximate optimal function that allows one to recover accurately

the population transfer without Stark shifts:

2ϕ(t) = S0

(
0.89t− 0.12

t3

τ 2

)
. (2.14)

This has been obtained for a �eld intensity not larger than the one leading to a complete

population transfer in absence of Stark shifts.

The demonstration of the exact optimal values of the linear and cubic terms in Eq. (2.14) is

found to be beyond the scope of the accuracy of the experiments described previously. However,

it is remarkable that this optimized function is a simple linear function of the peak Stark

shift and thus of the peak �eld amplitude, as anticipated in the preceding analysis. The

value obtained for the linear term is close to the one determined with the truncated expansion

(2.7). We have checked that the perturbation theory (2.5) gives a good approximation for

the population transfer until transfer of approximately 0.15 (error of 5%), that corresponds to

a pulse area approximately of 0.25π (consistent with the estimated error of the perturbative

expansion). Despite this limitation, we have obtained the interesting result that the line shapes

can be approximately well described, up to a scaling factor (which depends on the intensity

and the Stark shifts and that has to be determined with the numerical simulation), by the

perturbation theory even for stronger �eld intensities.
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2.3.3 Optimized phase matching beyond the two-state model for Ce-

sium

For the population transfer in Cesium atoms between the states 6S1/2 − 8S1/2, a two-state

approximation is in principle valid for intensities not larger than approximately 10 GW/cm2

(see Appendix A for a precise statement). Using the four-state Hamiltonian (7.3) derived

in Appendix A, we numerically derive conditions of cubic phase matching to get the best

population transfer at the lowest possible �eld intensity. The lowest �eld intensity has been

found to be I = 47 GW/cm2 with the cubic phase

2ϕ(t) = S0

(
0.75t− 0.10

t3

τ 2

)
. (2.15)

We get a population transfer of 99%, and the rest is ionized. We remark that the use of only

a linear phase allows already a good transfer (98%). We notice that, for increasing intensities,

deviating from the two-state model, the optimal cubic phase moves to smallest values in absolute

values for the linear and cubic terms. We have obtained numerically that the coe�cients after

the spatial averaging saturates to a1 ≈ −4.5 Trad/s and a2τ
2 ≈ 0.5 Trad/s for �elds intensities

beyond 20 GW/cm2 in consistency with the experimental results.

2.3.4 Strong-�eld two-photon excitation in other alkali atoms

The two-photon excitation (TPE) in Cesium is characterized as non-resonant for a su�-

ciently low �eld intensity, meaning that no-intermediate states are directly involved (see Ap-

pendix A for the precise conditions of this statement). The dynamic Stark shifts of the 6S1/2

state is mainly determined by its coupling with the 6P1/2 and 6P3/2 states. The other couplings

lead to a much smaller shift [35]. The 6S1/2 state is up-shifted by the dynamic Stark e�ect

due to its repulsion with the two dressed states |6P1/2,−1⟩ and |6P3/2,−1⟩. The shift of the

8S1/2 is due to its coupling mainly with the P states and weakly with the continuum. The net

dynamic shift between 6S1/2 − 8S1/2 is negative (see Appendix A).

On the other hand, TPE in Rubidium or in Sodium features an additional single-photon

resonance. A typical femtosecond laser pulse of the center wavelength at 778 nm, that allows

in principle TPE in Rubidium between the states 5S1/2 and 5D3/2,5/2, indeed strongly induces

population into the intermediate nearly resonant state 5P3/2 [58]. Thus, the TPE in Rubidium

should be described by a three-level model 5S1/2 − 5P3/2 − 5D3/2,5/2 even for moderate �eld

intensities. Note that the 5P1/2 can also be populated for strong �elds. In Sodium, a laser pulse

of center wavelength 777 nm induces the 3S1/2 − 4S1/2 TPE process, but also a 4S1/2 − 7P1/2

single-photon process [33]. Therefore, TPE in Sodium should be modelled by a three-level

system, similar to the case of Rubidium. In both cases, the detuning corresponding to the

one-photon resonance is one order of magnitude smaller than the one in Cesium from 6S1/2 and

6P3/2.
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Chapter 3

High �delity and robust adiabatic passage

in two-state systems

The time evolution of non-dissipative quantum systems is governed by the Schrödinger equation

that depends on the charachteristic time T , e.g. the duration of a pulse. When T is large the

analysis of the dynamics can be simpli�ed using the adiabatic approximation.

In a two-state system, the fastest process to achieve a complete population transfer corresponds

to a pulse with area π for the Rabi frequency for any time dependence of the (diagonal)

detuning [32]. This process is however non-robust with respect to variations of the area that

are often di�cult to avoid in practice. In nuclear magnetic resonance (NMR), a series a π-

pulses with well-de�ned static phases, known as composites pulses, have been proposed to

compensate unknown errors in the parameters [43]. This technique is being investigated in

quantum optics [44].

On the other hand, adiabatic passage and its variations [20, 46] allow robustness of the

transfer as one increases the pulse area. But it leads in principle to an incomplete transfer

reaching one only asymptotically in the adiabatic limit, i.e. T → ∞. One can estimate the

e�ciency of the transfer for a concrete model using a complex time method leading to the

Davis-Dykhne-Pechukas (DDP) formula [47�50].

Modern technologies allow the shaping of the �eld amplitude and phase even in the ultrafast

femtosecond regime. In this case, the �eld is shaped in the frequency domain through the spatial

separation and manipulation of the spectral components [1,51]. Finding an optimal shape that

o�ers the best compromise between the fastness of the process, i.e. featuring an area as close

as possible to π, and its robustness is thus important for applications.

Such an optimization has been proposed on the basis of the DDP formula resulting in the

parallel adiabatic passage (PLAP) technique in which the �elds produce eigenenergies which

are parallel to each other [26�28]. The use of an additional �eld that cancels the nonadiabatic

coupling has also been proposed [54, 55]. We remark however that this technique is expected

to have in practice a limited advantage regarding robustness since it requires to have explicit

knowledge of the (small) non-adiabatic coupling. In particular, in the present work use of this

technique does not give better results than the PLAP with respect to an imperfect knowledge

48
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of the �eld area (section VI). This chapter is organized as follows: We �rst recall the adiabatic

theorem, adiabatic passage and the Davis-Dykne-Pechkas formula. Next we de�ne the parallel

adiabatic passage PLAP and the adiabatic passage complemented by destructive interference

DIAP techniques on a concrete example with a Gaussian pulse which allows one to deduce two

types of optimal shaping. Their implementation in the frequency domain is shown in Section

3.2.3. Their respective robustness is analyzed in Section 3.2.4. We conclude in Section 3.2.5.

3.1 Generalities on adiabatic passage

3.1.1 Adiabatic theorem

Let's consider a quantum system with Hamiltonian H = Ĥ(t/T ) wich evolves slowly and

continously in time. The evolution is adiabatic when T goes to in�nity. Let's denote by

E1(t), E2(t), ..., En(t), ... the eigenvalues of the instantaneous Hamiltonian, by |Ψα
n(t)⟩α=0,...dn

the

associated eigenvectors, with respective degeneracies d1, d2, ..., dn, ...,, and by P1(t), P2(t), ...Pn(t)...

the projectors on its subspaces:

H|Ψα
n(t)⟩ = En(t)|Ψα

n(t)⟩, (3.1)

⟨Ψα
m(t)|Ψβ

n(t)⟩ = δmnδαβ (3.2)

Pn(t) =
dn∑

α=0

|Ψα
n(t)⟩⟨Ψα

n(t)|. (3.3)

The evolution operator or propagator, of the system U(t, ti) connects the state of the system

|Ψ(t)⟩ at time t with the initial one |Ψ(ti)⟩ by the relation

|Ψ(t)⟩ = U(t, ti)|Ψ(ti)⟩. (3.4)

The adiabatic theorem can be stated in the following way [45]: If the instantaneous eigenvalues

do not cross each other, i.e. |En(t)−Em(t)| > δ0 ∀t, in the limit T → 0, the evolution within

the instantaneous eigenspaces of the system is independent from each other:

lim
T→∞

Pn(t)U(t, ti) = lim
T→∞

U(t, ti)Pn(t, ti). (3.5)

3.1.2 Adiabatic basis and adiabatic approximation for driven two-

level systems

The theoretical discussion of time-dependent quantum systems is greatly facilitated by in-

troducing instantaneous eigenstates of the time-dependent Hamiltonian

H(t)|φ±(t)⟩ = ε±|φ±(t)⟩ (3.6)
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For the Hamiltonian of the form (in the basis |ψ1⟩, |ψ2⟩)

H(t) =
1

2

[
0 Ω

Ω 2∆

]
, Ω ≥ 0 (3.7)

the eigenvalues are

ε±(t) =
∆

2
± 1

2

√
Ω2 +∆2 (3.8)

and their di�erence

ε(t) = ε+(t)− ε−(t) =
√
Ω2 +∆2, ϵ > 0, (3.9)

which de�nes the energy splitting. We can write the instantaneous eigenvectors expressed as

superpositions of the bare states |ψ1⟩ and |ψ2⟩ :

|φ+(t)⟩ = cos θ(t)|ψ1⟩+ sin θ(t)|ψ2⟩, (3.10)

|φ−(t)⟩ = − sin θ(t)|ψ1⟩+ cos θ(t)|ψ2⟩ (3.11)

leading to transformation

R(θ(t)) =

[
cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)

]
(3.12)

corresponding to [
φ+(t)

φ−(t)

]
= R−1(θ(t))

[
|ψ1⟩
|ψ2⟩

]
(3.13)

with

R−1 ≡ R† = RT (3.14)

and to

R−1(θ(t))H(t)R(θ(t)) =

[
ε+ 0

0 ε−

]
, (3.15)

where the mixing angle θ(t) is de�ned as follows

tan 2θ(t) = −Ω(t)

∆(t)
, 0 ≤ θ ≤ π/2. (3.16)

We express the state vector |Ψ(t)⟩ as a superposition of the adiabatic states

|Ψ(t)⟩ = a−(t)|φ−(t)⟩+ a+(t)|φ+(t)⟩ (3.17)

with coe�cients a−(t) and a+(t). The connection between the superposition coe�cients for

the diabatic basis (C1(t), C2(t)) and the adiabatic basis (a−(t), a+(t)) is expressed in terms of

R(θ(t)):

[
C1(t)

C2(t)

]
=

[
cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)

][
a+(t)

a−(t)

]
(3.18)
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The Schrödinger equation in the adiabatic basis is:

i
d

dt
[R(θ(t)a(t)] = H(t)[R(θ(t)a(t)] (3.19)

After taking the time derivative, the result for the Schrodinger equation is

i
d

dt
a(t) = [R−1(θ(t))H(t)R(θ(t))︸ ︷︷ ︸

diagonal part

− iR−1(θ(t))Ṙ(θ(t))]a(t)︸ ︷︷ ︸
non-diagonal part

, (3.20)

or written in matrix form

i
d

dt

[
a−(t)

a+(t)

]
=

[
ε− −iθ̇
iθ̇ ε+

][
a−(t)

a+(t)

]
. (3.21)

The adiabatic states can serve as a moving coordinate system in which the state vector |Ψ(t)⟩
can be expanded as it changes under the in�uence of the coherent radiation pulse. Such

coordinates are most useful when the elements of the Hamiltonian - the Rabi frequency and the

detuning - change su�ciently slowly (i.e. adiabatically); then the state vector remains �xed in

the adiabatic coordinate space. Mathematically, adiabatic evolution requires the o�-diagonal

elements of the Hamiltonian (3.21) to be negligible compared to the diagonal ones, i.e.

|θ̇| ≪ ε(t), (3.22)

which expresses the adiabatic condition. According to this condition, adiabatic evolution re-

quires a smooth pulse, long interaction time, and large Rabi frequency and/or large detuning.

When the adiabatic condition holds, there are no transitions between the adiabatic states and

their populations are conserved. That is, the state vector remains �xed in the time-varying

coordinate system of adiabatic states, as the latter move with respect to the �xed basis states

|ψ1⟩ and |ψ2⟩. In particular, if the state vector |Ψ(t)⟩ coincides with a single adiabatic state at

some time t, then it will remain in that adiabatic state as long as the evolution is abiabatic;

the state vector |Ψ(t)⟩ will adiabatically follow the state |ϕ(t)⟩.
There are two distinct types of adiabatic population changes depending on the behavior of

the diabatic energies of the Hamiltonians. The no-crossing case, for which there is no change

of sign of the detuning, is depicted in Fig. 3.1 in the particular case of a constant positive

detuning (leading to π/4 ≤ θ ≤ π/2 with θ = π/2 where Ω = 0); the diabatic energies are

parallel to each other. In the absence of interaction, the adiabatic energies coincide with the

diabatic ones, but the (pulsed) interaction Ω(t) pushes them away from each other. As (3.10)

and (3.11) show, at early and late times each adiabatic state is identi�ed with the same diabatic

state:

|φ−(t→ ±∞)⟩ = −|ψ1⟩, (3.23)

|φ+(t→ ±∞)⟩ = |ψ2⟩, (3.24)
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whereas at intermediate times it is a superposition of diabatic states. Consequently, starting

from the ground state |ψ1⟩, the population makes a partial excursion into the excited state |ψ2⟩
at intermediate times and eventually returns to |ψ1⟩ in the end (bottom left frame of Fig. 3.1).

Hence, in the no-crossing case, adiabatic evolution leads to a complete population return.

A rather di�erent situation occurs when the detuning ∆(t) changes its signe during time. For

instance Fig. 3.1 (top right frame) shows a situation where ∆(t) sweeps slowly from some large

negative value to some large positive value (irrespective of whether the laser frequency or the

transition frequency is changed). Thus such an adiabatic change (chirp) of ∆(t) will produce

complete population transfer from the initially populated state |ψ1⟩ to the initially unpopulated

state |ψ2⟩ as shown in Fig. 3.1 (bottom right frame). The process is known as rapid adiabatic

passage (RAP) [22].

Fig. 3.1 - Time evolution of the energies (upper frames) and the populations (lower frames) in a

two-state system. In the upper plots, the dashed lines show the unperturbed (diabatic) energies,

and the solid curves show the adiabatic energies. The left-hand frames are for the no-crossing

case, and the right-hand frames are for the level-crossing case.
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3.2 Optimal adiabatic passage by shaped pulses: E�ciency

and robustness

3.2.1 The DDP formula

We study the population transfer between an initially populated ground state |g⟩ and an

excited state |e⟩ (of respective energies ~ωg and ~ωe) that can be modeled in the resonant

approximation (and up to terms proportional to the identity) by a two-state e�ective dressed

Hamiltonian of the type [22] (in the dressed-state basis {|g; 1⟩, |e; 0⟩}, where the second label

stands for a relative number of photons):

H
[Ω,∆] =

~

2

[
0 Ω

Ω 2∆

]
(3.25)

with the two time dependent parameters Ω ≡ Ω(t) (the e�ective Rabi frequency) and ∆ ≡ ∆(t)

(the detuning), that can be a priori varied as wished. Here the e�ective Rabi frequency (assumed

real and positive for simplicity) reads Ω = −µE/~ with µ the dipole coupling and E(t) the �eld
amplitude of instantaneous frequency ω(t) = ω0 + ϕ̇(t) (with ω0t+ ϕ(t) the phase of the �eld)

such that ∆(t) = ωe − ωg − ω(t).

Adiabatic passage means that, in the adiabatic limit, the dynamics projects at all times,

up to a phase, on the instantaneous eigenvector of H(t) that is continuously connected to

the initial state. It leads to a population transfer when this eigenvector �nally connects to

the target excited state. This typically occurs in the so-called crossing models, corresponding

to pulsed interactions whose instantaneous frequency crosses the resonance,i.e. for a detuning

changing its sign during the interaction. For a �nite time of interaction (characterized by T ), the

preceding statement becomes only approximative and deviations from it are generally referred

to as non-adiabatic losses that lead to some population being brought back to the initial state

at the end of the interaction. The DDP formalism allows one to determine the e�ciency of the

population transfer at the end of the interaction. For a crossing model, the DDP formula gives

more precisely the probability Pg of return to the initial ground state. The population transfer

to the excited state is thus Pe = 1 − Pg. In the adiabatic limit, the probability of return is

given by a coherent sum:

Pg =

∣∣∣∣∣

N∑

k=1

Γke
iD(tk)

∣∣∣∣∣

2

(3.26)

where Γk are phase factors Γk = ±1 for a real Ω, and

D(t) =

∫ t

0

λ(z)dz, λ(t) =
√
Ω2(t) + ∆2(t). (3.27)

This takes into account all the (complex) N transition points tk, k = 0, · · · , N − 1, de�ned as

the complex zeros of the eigenenergy splitting:

λ(tk) = 0, (3.28)
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lying on the Stokes line γ in the upper complex plane, de�ned as

ℑ[D(γ)] = const. = ℑ[D(t0)] = · · · = ℑ[D(tN−1)], (3.29)

and closest to the real axis.

The conditions of validity of the DDP formula are: (i) λ(t) ̸= 0 for all real t (non-degeneracy

condition), (ii) λ(z) is analytic and single-valued in a complex domain that includes the Stokes

line closest to the real axis and the real axis.

The DDP formula had been initially established for the generic case with a single transition

point [47�49]. It was then formulated [48] and proved [50] for multiple transition points, which

is the situation often encountered in practice, in particular when one considers symmetric (i.e.

odd or even) pulses and detunings.

The DDP formula (3.26) shows that the complete population transfer (in the adiabatic

limit) occurs when Pg = 0, which is in principle exactly satis�ed from Eq. (3.26) either when

(i) the transition points go to in�nity, i.e. when the eigenvalues are parallel at all times [26]

(PLAP), or when (ii) the coherent sum interferes destructively (DIAP). The latter situation

requires technically two transition points in the complex-time plane. Since it is based on speci�c

conditions of interference, it is expected to have a limited robustness. We will compare in this

section the robustness of these two techniques and we show that it is superior for PLAP in a

concrete model of interest.

We remark that the Allen-Eberly model [52] with Ω = Ω0 sech(t/T ) and ∆ = ∆0 tanh(t/T )

possesses singularities in the complex plane which prevent the transition points to go to in�nity

when we force the eigenvalues to be parallel: the �rst transition points merge instead to the

�rst singularity in this case [26]. Thus, this model is not expected to show a better e�ciency

for the situation of parallel eigenvalues.

Below we brie�y recall the technique of parallel adiabatic passage. We next show that the

single-parameter linear chirp allows the complete population transfer by DIAP. The robustness

of the two techniques are compared in the Section 3.2.3.

3.2.2 Parallel adiabatic passage

De�nition. PLAP is satis�ed when the dynamics follows a trajectory in the parameter space

(Ω,∆) given by

Ω2 +∆2 = Ω2
0. (3.30)

Assuming a given pulse shape 0 ≤ ΛT (t) ≤ 1 for the coupling

Ω(t) = Ω0ΛT (t), (3.31)

one can easily extract ∆ for PLAP as a function of this shape:

∆±(t) = ±Ω0

√
1− Λ2

T (t). (3.32)
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Assuming that the �eld is maximum at t = 0, i.e. ΛT (0) = 1, we can choose for convenience

∆(t) = ∆+(t) for t > 0 and ∆(t) = ∆−(t) for t < 0, which leads to

∆(t) = Ω0g(t), g(t) = sign(t)
√
1− Λ2

T (t). (3.33)

We consider here a Gaussian shape ΛT (t) = e−(t/T )2 . The upper frame of Fig. 3.2 shows the

transfer e�ciency after the interaction, by numerical solution of the Schrödinger equation, as

functions of Ω0T and ∆0T with such a Gaussian shape and a detuning of the form ∆(t) =

∆0g(t). The transfer e�ciency is better for a darker zone.

The left frame of Fig. 3.2 shows for ∆0 = 0 the Rabi oscillations where the transfer is

complete when the Rabi frequency has an area equal to an odd multiple of π. They extend

as roughly vertical lines of highly e�cient transfer which merge approximately (and better for

larger area) to a zone surrounding the PLAP line (∆0 = Ω0). An important feature is that the

width of the region of e�cient population transfer around the PLAP line becomes larger for

larger pulse areas. On the other hand, the widths of the vertical lines located below the PLAP

line are much smaller. From these observations, one can anticipate the high robustness with

respect to the pulse area of the PLAP technique. This is analyzed in Section 3.2.4.

The e�ciency of the PLAP technique is already very good from Ω0T = 2.15, which corre-

sponds to an area of 3.8 ≈ 1.2π (to be compared to the area π that is the minimal one that

leads to a complete population transfer). For this value, the error is less than 1%. One can get

an ultrahigh e�ciency, with an error less than 10−4, from Ω0T = 2.53, which corresponds to an

area of 4.5 ≈ 1.45π.

Transitionless parallel adiabatic passage. As con�rmed in the upper frame of Fig. 3.2,

despite the remarkably large region of e�cient transfer surrounding the PLAP line, the transfer

is in general not strictly complete on the PLAP line (but is close to it). One can improve it

by suppressing the non-adiabatic losses as originally suggested in [54] for three-state systems

and reformulated in [55] as a transitionless quantum driving technique. We thus construct the

transitionless parallel adiabatic passage (T-PLAP) which transforms the PLAP line to a line

of strictly complete population transfer.

One proposed version of the technique is based on adding to the original Hamiltonian a

corrector driving Hamiltonian Hc(t) in order to compensate at each time the non-adiabatic

coupling which would induce unwanted transitions. This leads to the new Hamiltonian

Ĥ(t) = H
[Ω,∆] +Hc(t) (3.34)

with the corrector Hamiltonian

Hc(t) =
~

2

(
0 −iΩc(t)

iΩc(t) 0

)
, Ωc(t) =

Ω∆̇− Ω̇∆

Ω2 +∆2
. (3.35)
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Fig. 3.2 - Contour plot (in decimal logarithmic scale) of the probability of return to the ground

state at the end of the interaction for a coupling of Gaussian shape Ω(t) = Ω0ΛT (t), ΛT (t) =

e−(t/T )2, as a function of Ω0T and (i) ∆0T with ∆(t) = ∆0g(t) (left frame), (ii) βT 2 with a

linear chirp ∆(t) = βt (right frame). The dashed blue line ∆0 = Ω0 [ (3.46)] of the left (right)

frame corresponds to PLAP (DIAP with the minimum Rabi frequency area). The full line (right

frame) is the transition line (3.39) between the zones of single and double transition points.

The initially real Rabi frequency becomes complex: Ω(t) → Ω(t)− iΩc(t). This corresponds to

a �eld decomposed into two parts of equal polarization but with one part in quadrature phase

with respect to the other one. We can apply the technique on the PLAP in order to force it

to lead to an exact population transfer for any pulse area of the original Rabi frequency. This

leads to a correcting Rabi frequency independent of Ω0:

Ωc(t) = −sign(t)
Λ̇T (t)√
1− Λ2

T (t)
. (3.36)

One remarks that the area of this correcting Rabi frequency is, as expected, π, such that when

Ω0 = ∆0 = 0, it ensures the complete transfer.

We will show more precisely in Section 3.2.4 on a concrete example with an average over

various pulse areas that the transitionless parallel adiabatic passage does not improve PLAP.

3.2.3 Adiabatic passage complemented by destructive interference:

The case of Gaussian pulse with linear chirping

The simplest �eld shaping that features DIAP is the one that leads to a linearly time

dependent detuning, a so-called linear chirping:

∆(t) = βt. (3.37)
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This model and its DDP analysis have been studied in detail in Ref. [41]. Following this

reference, we determine below the value of β that leads to the DIAP as a function of the peak

Rabi frequency Ω0 considering its smallest value (since for a given β there are several values of

Ω0 producing the DIAP).

We introduce the variable s = t/T . The transition points sk, solutions of Eq. (3.28), read

sk =

√
1

2
W (−α), α =

2Ω2
0

(βT )2
, (3.38)

where W (x) is known as the Lambert W -function, de�ned as the inverse function of f(W ) =

WeW . W (x) is real for x ≥ −1/e, and W (x) ≤ 0 for −1/e < x ≤ 0. We have W (−1/e) = −1.

One can identify a single transition point s0 lying on the Stokes line closest to the real axis,

and of smallest imaginary part, when its real part is zero, which arises when W (−α) in (3.38)

is real and negative, i.e. for α < 1/e. There are two transition points (on the Stokes line closest

to the real axis), denoted s±, when W (−α) in (3.38) is not real, i.e. for α > 1/e. Thus, the

branch

βT =
√
2eΩ0 (3.39)

corresponding to α = 1/e, for which we denote the transition point as s0,0 = i/
√
2, separates in

the plane (Ω0, βT ) the zones of single and double transition points. The two transition points

have opposite real parts: ℜ(s−) = −ℜ(s+) and identical imaginary parts: ℑ(s−) = ℑ(s+). This
implies ℑ[D̃(s−)] = ℑ[D̃(s+)] and ℜ[D̃(s−)] = −ℜ[D̃(s+)], where we have denoted D̃(s) = D(t).

The probability of population return reads in the case of two transition points (in the adiabatic

limit)

Pg = 4e−2ℑ[D(t+)] cos2 ℜ[D(t+)] (3.40)

where we have also used Γ− = Γ+ = 1 (since we consider an even coupling and an odd detuning).

The smallest peak coupling Ω0, for a given β, that leads to DIAP is thus solution of

ℜ[D̃(s+)] =
π

2
. (3.41)

One cannot solve this equation exactly but only approximately. We achieve this remarking that

the corresponding transition point s+ = t+/T is located close to s0,0 = i/
√
2 corresponding

to the branch (3.39). Using a series expansion of W (x), for x := −α . −1/e, denoting

ϵ = −1/e−x > 0, we obtain with a very good accuracy (with an error less than 2 % as checked

numerically)

s+ ≃ s0,0 +
1

2

√
eϵ

(
1− 5

36
eϵ

)
− i

1√
2

e

12
ϵ. (3.42)

Next we decompose the integral (3.27) as follows:

D̃(s+) = βT 2

(∫ s0,0

0

+

∫ s+

s0,0

)√
z2 +

α

2
e−2z2 dz. (3.43)
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The �rst integral leads to an imaginary value, hence:

ℜ[D̃(s+)] =βT
2

∫ s+

s0,0

√
z2 +

α

2
e−2z2 dz (3.44)

At the lowest order of ϵ, for large β and Ω0, we �nd for the solution of (3.41):

βT ∼
√
2eΩ0, β → ∞, (3.45)

which gives a line parallel to (and below) the branch (3.39) separating the zones of single and

double transition points.

A numerical analysis of the integral (3.44) allows one to determine an approximate equation

of this line for �nite values of β:

βT ≈
√
2e (Ω0 − 1.25/T ). (3.46)

This line is shown in the right frame of Fig. 3.2, where the error of the transfer probability

to the excited state is numerically determined as a function of Ω0T and βT 2. It �ts very well

the zone of e�cient population transfer of smallest area (for a given β), and is parallel to the

transition line (3.39) between the zones of single and double transition points.

For respectively ∆0 = 0 and β = 0, the two frames of Fig. 3.2 show the same Rabi

oscillations. A salient feature is that the zones of complete transfer can be extended for both

frames: They all merge to the PLAP line in the left frame, while only the one of smallest Ω0

(i.e of smallest pulse area) approximately coincides (and better for larger Ω0T ) to the DIAP

line. The extensions of the other zones of complete transfer are approximately parallel to the

DIAP line. One notices that, in both cases, these extensions are surrounded by larger zones of

e�cient transfer for larger Ω0T , which clearly indicates an expected better robustness for larger

Ω0T . However the size of this zone of e�cient transfer is shown to be much larger around the

PLAP line. We thus anticipate a better robustness of the PLAP technique with respect to the

DIAP technique. This is analyzed in detail in Section 3.2.4.

3.2.4 Implementations by spectral shaping

The implementation of adiabatic techniques with chirped �elds can be achieved in the

femtosecond regime by a spectral shaping [1, 51].

The DIAP with a Gaussian pulse and a linear chirping (3.37) analyzed in the preceding

section can be simply implemented in practice since, when the mean frequency of the initial

�eld matches the transition frequency, it requires a device which shapes only the spectral

phase, which can be achieved using a grating [58] or a single spatial light modulator [59](see

section 1.6.2). On the other hand, the PLAP requires a shaping of both the spectral phase and

amplitude as shown below. This can be produced for instance with a double-layer liquid-crystal

spatial light modulator such as the one used in [42].
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The output pulse E(t) that subsequently interacts with the system is chosen to be of Gaus-

sian shape:

E(t) = E0ΛT (t)e
i(ω0t+ϕ(t)−θ), ΛTin

(t) = e−(t/T )2 (3.47)

with a phase θ to be de�ned and the instantaneous frequency ω(t) = ω0 + ϕ̇(t) giving the

relation between the phase ϕ(t) and the one-photon detuning of our initial problem:

ϕ(t) = (ωe − ωg − ω0) t−
∫ t

∆(s)ds. (3.48)

This choice for the output pulse to be Gaussian is arbitrary; it is here chosen for its simplicity.

The spectral shaping allows the transformation in the frequency domain of the input �eld into

the output �eld through a transparency coe�cient 0 ≤ T (ω) ≤ 1 and a phase φ(ω) as follows:

Ẽ(ω) = T (ω)eiφ(ω)Ẽin(ω) (3.49)

with Ẽ(ω) denoting the Fourier transform of E(t) and Ein(t) = E0inΛTin
(t)eiω0t, ΛTin

(t) =

e−(t/Tin)
2
. Two masks are generally used: one operates on the transparency while the other one

on the phase. The duration T of the output Gaussian pulse has to be carefully chosen such

that there exists a solution for the transparency T (ω) and the phase φ(ω) of (4.8) that leads

to the desired output �eld (4.6), and, more precisely, that this solution works well within the

input Gaussian spectrum. A smooth solution that is easily implementable is also be desirable.

From Eqs. (1.87) and (1.89) we can determine a relation between the slope β of the chirp

(3.37) and the coe�cient γ of the quadratic phase (1.85) as:

βT 2 = 8
γ

T 2
in

, (3.50a)

≃ 2
T

Tin

, for γ & T 2
in. (3.50b)

This means that any value βT 2 can be obtained by adjusting appropriately γ, which amounts

to choosing T [from Eq. (1.89)]. Since one can also produce any value Ω0T by choosing the

peak intensity of the �eld, any region of the lower part of Fig. 3.2 can be in principle obtained

from a concrete implementation with a pulse of limited bandwidth. A practical limitation will

be a limited �eld intensity to avoid unwanted destructive e�ects such a ionization.

PLAP The achievement of PLAP by a spectral shaping necessitates a shaping both in phase

and amplitude even when the mean frequency of the input �eld matches with the transition

frequency, ω0 = ωe − ωg (that is the situation we consider here for simplicity). One cannot

determine in a closed form the transparency and the phase shaping of (4.8), but they can be

obtained numerically by applying the Fourier transform of a given output pulse:

T (ω) = |Ẽ(ω)/Ẽin(ω)|, φ(ω) = arg[Ẽ(ω)/Ẽin(ω)]. (3.51)
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The �nite spectrum of the input �eld imposes for the amplitude of the chirp ∆0 = Ω0:

Ω0 . 2/Tin, (3.52)

such that the maximum of the transparency is well located within the spectrum.

In practice, we choose the amplitude of the chirp ∆0 = Ω0 and the duration T > Tin of the

output �eld of the form

E(t) = E0in κe−(t/T )2ei(ω0t+ϕ(t)) (3.53)

with the phase

ϕ(t) = −Ω0

∫ t

sign(s)
√

1− Λ2
T (s) ds. (3.54)

The additional factor κ in the amplitude of the �eld (3.53) has to be �xed such that T (ω) ≤ 1.

Figure 3.3 shows an example of the resulting shaping. The transparency and the phase of

the shaping are shown to be smooth functions that are expected to be easily implemented from

a practical point of view.
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Fig. 3.3 - Spectral shaping corresponding to a parallel adiabatic passage as a function of the

angular frequency (in units of 1/Tin)for Gaussian input (4.5) and output (3.53) �elds with

∆0 = Ω0 = 1.5/Tin, and T = 3Tin. Upper frame: Transparency T (ω); middle frame: Fourier

transform of the input and output �eld shapes : Λ̃Tin(ω) (dashed line) and T (ω)Λ̃Tin(ω) (full

line). Lower frame: Phase φ(ω). Here the coe�cient κ of (3.53) is found to be κ ≈ 0.53.
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3.2.5 Comparative study of robustness

In this section we analyse and compare the robustness of DIAP and PLAP with respect to

�uctuations of the instantaneous amplitude and detuning, and also with respect to �uctuations

of the pulse area.

The robustness with respect to instantaneous �uctuations of PLAP and DIAP is a priori

questionable since these techniques are based on the use of the Davis-Dykhne-Pechukas formula

in the time complex plane requiring analytic functions as the pulse parameters.
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Fig. 3.4 - In�delity (in decimal logarithmic scale) for the PLAP (lower full line) and DIAP

(upper full line) techniques for Ω0T = 5 (corresponding to a pulse area
∫
Ω(t)dt = 5

√
π), and

for the π-pulse (upper dashed line) with respect to an imperfect knowledge of the pulse area.

The transitionless PLAP (T-PLAP) technique is shown as dotted and lower dashed lines for∫
Ω(t)dt = 5

√
π (larger area for T-PLAP) and

∫
|Ω(t)− iΩc(t)|dt = 5

√
π (same area for PLAP

and T-PLAP), respectively.

3.2.6 Pulse area �uctuation

The robustness of the process with respect to an imperfect knowledge of the pulse areas is

shown in Fig. 3.4 through ensemble averaging. We have determined the �nal populations by

averaging over many realizations of an ensemble of systems with di�erent peak Rabi frequencies

uniformly distributed over the range Ω0 ± Γ/2. Their peak Rabi frequency Ω0,j is chosen as

Ω0,j = Ω0(1 + rjΓ/Ω0), (3.55)
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where −0.5 ≤ rj < 0.5 is a uniformly distributed random number, Ω0 is the average Rabi

frequency, and Γ is the width of the probability distribution.

Such an averaging gives for the π-pulse population return:

P̄ (π)
g =

1

2

(
1− 2

Γ
√
π
sin

Γ
√
π

2

)
. (3.56)

Figure 3.4 shows that the robustness of DIAP and PLAP is much improved with respect to the

π-pulse technique. It also proves that PLAP is in general much superior (except for very small

area �uctuations), despite the fact that DIAP leads, for the considered situation, to a better

population transfer in absence of �uctuation. In particular, we can see the remarkable result

that the in�delity is smaller or equal to the benchmark 10−4 for Γ/Ω0 as large as 0.2 for PLAP.

For this rate, the �delity of PLAP is better by more than one order of magnitude than the one

of DIAP.

We have also tested the transitionless PLAP (T-PLAP), i.e. with the use of an additional

�eld that cancels out the non-adiabatic coupling. The robustness with respect to an imperfect

knowledge of the pulse area is displayed in Fig. 3.4 as dotted and lower dashed lines corre-

sponding to a correcting Rabi frequency giving an additional area with respect to the simple

PLAP, and to the same total area in absolute value for PLAP and T-PLAP, respectively. This

shows that T-PLAP does not improve PLAP overall (even when T-PLAP uses an additional

area), but is on the contrary deteriorated on a large range of width Γ when the same area is

taken.

3.2.7 Amplitude �uctuations

We model the instantaneous �uctuations of the �eld envelope with a Gaussian white noise

considering a relative deviation ξ(t) as a stochastic variable of average and correlation

⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = 2Γδ(t− t′), (3.57)

where the brackets ⟨·⟩ denote an ensemble average and δ(t) is the Dirac delta function. Each

sequence {ξ(ti)} of the ensemble is generated at discrete times ti separated by the step ∆t

according to

ξ(ti) =

√
2Γ

∆t
randn, (3.58)

where randn generates a normally distributed random number. We have determined the in-

stantaneous populations by averaging over many realizations of time histories.

For a sequence j of the ensemble, the Rabi frequency is more precisely de�ned at a discrete

time ti as

Ωj(ti) = Ω0Λ(ti)(1 + ξ(ti)) (3.59)
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Fig. 3.5 - In�delity (in decimal logarithmic scale) for the PLAP (lower full line) and DIAP

(upper full line) techniques for Ω0T = 5, and for the π-pulse technique (corresponding to Ω0T =√
π and ∆ = 0) (dashed line) for an ensemble average over a white noise �uctuating �eld

amplitude of rate Γ versus Γ/Ω0 (with Ω0 taken as the respective one).

with Ω0Λ(ti) the ensemble average of the Rabi frequency at time ti (that is without �uctuations).

Figure 3.5 shows the in�delity of the transfer as a function of Γ normalized by Ω0: The

PLAP technique is slightly better. The in�delity is smaller than 10−4 for Γ . 10−4Ω0. We

make the remarkable observation that the in�delity is nearly the same for PLAP and the π-pulse

technique (except for very low noise rate).

Figure 3.6 displays a dynamics of PLAP for a single realization of the �uctuating Rabi frequency

(3.59). Despite the relative smallness of Γ/Ω0, one can notice the relatively large �uctuations

of the Rabi frequency due to the small time step.

3.2.8 Phase �uctuations

Gaussian white noise

We can model the instantaneous �uctuations of the detunings as above with a Gaussian

white noise but considering now an instantaneous frequency o�set for the stochastic variable

ξ(t) (3.57). This corresponds to a Wiener-Levy process for the corresponding phase [60]. This
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Fig. 3.6 - Dynamical in�delity (upper frame) for a realization of a PLAP dynamics for Ω0T = 5

and a white noise �uctuating �eld amplitude (corresponding to the instantaneous Rabi frequency

shown in the lower frame) of rate Γ = 10−4Ω0. The detuning (shown in the middle frame) is

assumed without �uctuation.

procedure is known to be equivalent to the use of the density matrix equation for the time

evolution with the stochastic variables replaced by the constant dephasing rate Γ [61].

Figure 3.7 displays the in�delity for such a case. One can make the following observations:

The three techniques rapidly fail even for relatively small dephasing rate (with respect to Ω0)

and the π-pulse technique is better than DIAP and PLAP techniques. This latter result can be

easily interpreted in terms of the dephasing rate: The dephasing corresponds to a destruction

of the coherence of the superposition of state necessarily occurring during the dynamics leading

to the population inversion. Its e�ect is thus smaller for a shorter duration of interaction which

is the case for the π-pulse (for the same given Ω0). We can conclude that a dephasing process

is more detrimental for adiabatic passage of longer duration.

If the dephasing rate is known, one can improve the e�ciency of PLAP by modifying

the dynamics such that it alternatively follows an ellipse in the parameter space (Ω,∆) to

accelerate it when the superposition is created, as shown in [62]. However, (i) this improvement

is signi�cant only for relatively large dephasing rates, and (ii) it does not allow to reach the

benchmark 10−4 for the in�delity even for moderate dephasing. For small dephasing rates as
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Fig. 3.7 - Same as Fig. 3.5 but for an ensemble average over a white noise �uctuating detuning

of rate Γ.

the one considered in Fig. 3.7, the improvement is not signi�cant.

A transfer of high e�ciency even for appreciable dephasing rates can be recovered with the

use of optimal control theory as analyzed in Ref. [63]. Its adiabatic counterpart is an open

question.

Gaussian exponentially correlated noise

The preceding Gaussian white noise is less destructive for adiabatic passage if one con-

siders correlations. A typical model is the Ornstein-Uhlenbeck process with a zero-mean and

exponentially correlated noise for the stochastic variable (see for instance [64]):

⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = DΓ exp(−Γ|t− t′|). (3.60)

For large values of Γ ≫ D, one recovers the Gaussian white noise (3.57). The opposite extreme

case Γ ≪ D corresponds to an ensemble of �elds with constant frequencies that obey Gaussian

statistics with variance DΓ.

Figure 3.8 shows that, when the correlation is of larger width, i.e. for a smaller ΓT and

a given product DΓT 2, the DIAP technique is more e�cient than the π-pulse technique, and

that the PLAP technique becomes well superior to the two other techniques.
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Chapter 4

Multiphoton parallel adiabatic passage by

shaped pulses

In this chapter we apply the technique of adiabatic passage in the case of multiphoton transi-

tions, in the strong-�eld ultrafast regime, for dynamically Stark shifted quantum systems. The

requirement for a direct application is that the e�ective Hamiltonian should be a two-state

system. This is tested in particular for a two-photon transition. We show the advantage of this

technique with respect to simple linear chirping.

We propose a way to compensate the dynamical Stark shift and to obtain a complete popula-

tion transfer by using linear chirping which is shifted towards the two-photon resonance. We

then compare the robustness of these techniques with respect to the �uctuations of the pulse

parameters.

We theoretically demonstrate the possibility of high e�ciency population transfer on atomic

Cesium by these techniques. We present the shapes of amplitude and phase in the frequency

domain of the required �elds.

The chapter is organized as follows: In Sec. 4.1, we describe the general technique with the

model and the pulse-shaping scheme. Section 4.2 is devoted to the two-photon process and we

present the static compensation of the Stark shift. In Sec. 4.3, we apply the technique for a

concrete model of the Cs atom. In Sec. 5 we present some conclusions.

4.1 Optimal adiabatic passage for a Stark-shifted two-state

system

4.1.1 The model

We study a multiphoton process between an initially populated ground state |g⟩ and an

excited state |e⟩ (of respective energies ~ωg and ~ωe). Considering a n-photon process, one can

construct an e�ective Hamiltonian (the dressed Hamiltonian) in the dressed basis {|g; 0⟩, |e;−n⟩},
where the second label stands for the relative number of photons. This means that the excited

67
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state dressed with −n photons is nearly degenerate with the ground state. In the resonant ap-

proximation (and up to terms proportional to the identity) the two-state e�ective Hamiltonian

reads [22]:

H
[Ω,δ] =

~

2

[
0 Ω

Ω 2δ + 2S

]
(4.1)

with the two time dependent parameters Ω ≡ Ω(t) (the e�ective Rabi frequency) and δ ≡ δ(t)

(the n-photon detuning), that can be a priori varied as wished, and the dynamical Stark shift

S ≡ S(t). Here the e�ective Rabi frequency Ω(t), assumed real and positive for simplicity, is

proportional to En(t) with E(t) the �eld amplitude of instantaneous frequency ω(t) = ω0+ ϕ̇(t)

(with ω0t + ϕ(t) the phase of the laser) and n the number of photons needed to reach the

resonance: ωg + nω(t) + δ(t) = ωe. The relative Stark shift between state |g⟩, of Stark shift

Sg(t), and state |e⟩, of Stark shift Se(t), is denoted S(t) = Se(t) − Sg(t). In general the Stark

shift is order E2. It is a priori a function of Ω and δ. Since, in practice, δ varies only slightly

with respect to the mean frequency of the �eld, it is in general a good approximation to neglect

the variation of S upon δ. We have here assumed for simplicity stable states.

4.1.2 Parallel adiabatic passage

The strategy to optimally populate the excited state from the initial ground state by adi-

abatic passage is to follow a level line in the diagram of the di�erence of the instantaneous

eigenenergies as studied in the preceding chapter and refered to as parallel adiabatic passage

(PLAP).

Applying the result stated in the preceding chapter to this model (4.1) leads to PLAP for

the dynamics satisfying in the parameter space (Ω, δ) the trajectory given by

Ω2 + (δ + S)2 = Ω2
0. (4.2)

Since S is a priori a function of Ω and δ, this leads to a complicated trajectory. As remarked

previously, it is often a good approximation to consider S independent of δ. In this case, one

can easily extract δ as a function of Ω and S:

δ±(t) = ±Ω0

√
1− Λ2

T (t)− S(t), Ω(t) = Ω0ΛT (t), (4.3)

where 0 ≤ ΛT (t) ≤ 1 is the pulse shape. Assuming that the �eld is maximum at t = 0, i.e.

ΛT (0) = 1, we can choose δ(t) = δ+(t) for t > 0 and δ(t) = δ−(t) for t < 0, which leads to

δ(t) = sign(t)Ω0

√
1− Λ2

T (t)− S(t). (4.4)

Note that this choice of sign is arbitrary. The opposite sign (ie. δ(t) = δ+(t) for t < 0 and

δ(t) = δ−(t) for t > 0, ) gives exactly the same �nal result.
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4.1.3 Shaping the spectral phase and amplitude

The implementation of adiabatic techniques with chirped �elds can be achieved in the

femtosecond regime by a spectral shaping as presented in the preceding chapters [1,51]. PLAP

requires a shaping of both the spectral phase and the amplitude. We assume an input �eld of

Gaussian shape with mean frequency ω0 and the width at half maximum (for the corresponding

intensity) Tin,FWHM = Tin
√
2 ln 2 :

Ein(t) = E0inΛTin
(t)eiω0t, ΛTin

(t) = e−(t/Tin)
2

. (4.5)

The output pulse E(t) that is designed to interact with the system is chosen to be also of

Gaussian shape:

E(t) = E0e−(t/T )2ei(ω0t+ϕ(t)) (4.6)

with the instantaneous frequency ω(t) = ω0 + ϕ̇(t) giving for a n-photon resonance

ϕ(t) =

(
ωe − ωg

n
− ω0

)
t− 1

n

∫ t

δ(s)ds. (4.7)

The spectral shaping is de�ned as

Ẽ(ω) = T (ω)eiφ(ω)Ẽin(ω) (4.8)

with Ẽ(ω) denoting the Fourier transform of E(t). Here 0 ≤ T (ω) ≤ 1 is the transparency

coe�cient of the shaping device, and φ(ω) is the spectral phase. Two masks are generally

used: one operates on the transparency while the other one on the phase. The duration T of

the output Gaussian pulse has to be carefully chosen such that there exists a solution for the

transparency T (ω) and the phase φ(ω) of (4.8) that leads to the desired output �eld (4.6), and,

more precisely, that this solution works well within the input Gaussian spectrum. A smooth

solution that is easily implementable is also be desirable.

4.2 The two-photon process

4.2.1 PLAP

We study as the simplest example with a non negligible Stark shift the two-photon process.

The procedure described below can be easily generalized to multiphoton processes of higher

order.

For the two-photon process, the Rabi frequency and the Stark shift read respectively [22]

Ω(t) = αgeE2(t), S(t) = (αee − αgg)E2(t) (4.9)

with αij the component i, j of the polarizability tensor (see chapter I).
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Fig. 4.1 - Contour plot corresponding to the di�erence of the eigenenergies for the two level

model (4.1) with r = 1.85. The thick line corresponds to a speci�c path (4.4) with Ω0T = 5.

Condition (4.4) reads in this case

δ(t) = sign(t)Ω0

√
1− Λ2(t)− rΩ0Λ(t), Ω(t) = Ω0Λ(t), (4.10)

where r is the coe�cient of proportionality between the relative Stark shift and the Rabi

frequency: S(t) = rΩ(t).

Figures 4.1, 4.2, 4.3, 4.4 show an example with r = 1.85 (corresponding to the two-photon

process in Cesium as studied in section 4.3, but in a two-state approximation). Figure 4.1

shows the contour plot of the level lines corresponding to the di�erences of the eigenenergies

for a two-state approximation. In Fig. 4.2 we show the dynamics corresponding to the speci�c

path taken from Fig. 4.1. The pulse shapes correponding to this dynamics is presented in Figs.

4.3 and 4.4. In Fig. 4.3 we show the shaped amplitude and phase in the frequency domain.

Figure 4.4 shows the unshaped amplitude in the frequency domain and the shaped (modulated)

amplitude required for the dynamics. A more realistic model for Cs is tested in section 4.3.

4.2.2 Chirped and static compensation of the Stark shift: The shifted

linear chirp.

Here we present an alternative way to get a high e�ciency transfer of population by linear

chirp de�ned as

ϕ̇ = at+ b, (4.11)

where b is a static parameter that shifts the chirp: we refer this technique to as the shifted

linear chirp. The parameters a and b are numerically adjusted to increase the e�ciency. In Fig.
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Fig. 4.2 - Dynamics of the population Pj, j = 1, 2 corresponding to the path (4.4) shown in Fig.

4.1 with the initial condition P1 = 1.
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Fig. 4.3 - Upper frame: Shaped spectral amplitude as a function of the angular frequency; Lower

frame: Shaped spectral phase corresponding to the two-level model (4.1) by parallel adiabatic

passage with r = 1.85 and Ω0T = 5.
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Fig. 4.4 - Unshaped spectral amplitude (dashed line) and shaped spectral amplitude (blue line)

as a function of the angular frequency corresponding to the two-level model (4.1) by parallel

adiabatic passage with r = 1.85 and Ω0T = 5.

4.5 we show the two-photon transfer of population for two level model depending on the two

chirp parameters. One can see that the coe�cient b shifts the spectrum towards the resonance,

compensating the Stark e�ect on the system. Without the static part b the maximum transfer

of the population for the two level model (4.1) with parameters r = 1.85 and Ω0T = 5 is

only 65%. The dynamics of the energy levels as a function of time corresponding to the black

point in the contour plot Fig. 4.5 is shown in Fig. 4.6. Figures 4.7 and 4.8 show the spectral

shaping according to (4.8) for the two-level dynamics shown in Fig. 4.6. We can notice for

Fig. 4.5 that the result is symmetrically identical with respect to the sign of the chirp as it

is for PLAP. The main observation that can be made when comparing the shaping resulting

from PLAP (Fig. 4.4) and the one from numerical tests with a static compensation (Fig. 4.7)

is that the main peak in amplitude of the two techniques is located approximately at the same

frequency. The additional structures obtained from PLAP (Fig. 4.4) allow the �ner dynamics

required for the parallel passage. In both cases, the frequencies corresponding to a negative

detuning are prefered, in consistency with the sign of the Stark shift. The other frequencies

are removed, as they are detrimental for the full achievement of the transfer. We also remark

that the curvature of the parabolic shaping of the phase in Fig. 4.8 is opposite to the global

curvature of the shaping phase in Fig. 4.3. This is due to the choice for the phase shown in

Fig. 4.5 with a positive a. The symmetrically opposite choice with a negative a would give an

opposite curveture for the shaping phase in Fig. 4.8.
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Fig. 4.6 - Dynamics of the population Pj, j = 1, 2 corresponding to the contour plot shown in

Fig. 4.5 with the initial condition P1 = 1.
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Fig. 4.7 - Unshaped spectral amplitude (dashed line) and shaped spectral ampltude (blue line) as

a function of the angular frequency corresponding to the two-level dynamics by the linear chirp

shown in Fig. 4.6 with r = 1.85 and Ω0T = 5.
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Fig. 4.8 - Upper frame: Shaped spectral amplitude as a function of the angular frequency. Lower

frame: Shaped spectral phase corresponding to the two-level dynamics by linear chirp shown in

Fig. 4.6 with r = 1.85 and Ω0T = 5.
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4.3 Application to Cesium

The two-photon 6S1/2-8S1/2 transition in Cesium by parallel adiabatic passage

We here consider the two-photon transition in Cesium between the state g ≡ 6S1/2 and e ≡
8S1/2 taking into account a more realistic model at the considered intensities than the simple

two-state approximation. The mean frequency ω0 of the laser (corresponding to the laser

frequency of the Fourier transform limited pulse, i.e. before its shaping) is exactly two-photon

resonant: ω0 = (ωg − ωe)/2. The relevant parameters for the considered transition are given

in Table 7.1 of Appendix A. We have determined the parameters involving the dipole moment

couplings with Eqs. (7.4), (7.4) and (7.4) using Ref. [37] for the bound-bound couplings and the

Fues model potential [38,39] for the bound-free couplings (see also [40] for a general discussion

of model potential methods).

Figure 4.9 shows the level lines corresponding to the four-state approximation of Cs. The

speci�c path depicted by a solid line is taken to produce the dynamics in Fig. 4.10. As one can

see the intermediate state 6P3/2 is populated during the dynamics, because it has an energy

close to one photon resonance. The �eld shapes corresponding to this dynamics are given

in Fig. 4.11 and 4.12. Figure 4.11 displays the shaped spectral amplitude and phase in the

frequency domain. The �eld is taken with 70 fs at FWHM corresponding to facilities in the

group of J.Ahn from KAIST (Korea) with whom we have an ongoing collaboration. Figure

4.12 shows the comparison of the spectral unshaped and shaped amplitudes. The frequency 2ϕ̇

is represented in Fig. 4.9 instead of detuning δ in Fig. 4.1. One notices an overall change of

sign in the frequency compensation comparing Fig. 4.1 and Fig. 4.9. This is due to the fact

that Ω0, as de�ned in section 4.1, is negative for the Cesium atom, and a positive Ω0 has been

considered in Fig. 4.1.

The two-photon 6S1/2-8S1/2 transition in Cesium by shifted linear chirp

Figure 4.13 shows the contour plot of the population of the 8S1/2 level of the Cs atom

depending on the two chirp parameters de�ned by

ϕ̇ = at+ b. (4.12)

The parameter b is a constant part of the phase which stands for the shift of the spectrum.

Figure 4.14 displays the dynamics of the population and the time dependence of the parameters

of the �eld. Here one can also see that the intermediate level 6P3/2 is populated during the

dynamics. The respective spectral shaping determined from Eq. (4.8) corresponding to this

dynamics are presented in Fig. 4.15 and Fig. 4.16. Figure 4.15 shows the shaped amplitude

and phase in the frequency domain. Here again, the amplitude has a Gaussian form, but it is

shifted and includes only some frequency components of the initial one similarly to the spec-

trum obtained from the two-state system (Fig. 4.8). However, one can remark that the sign of

the chirp is here crucial, unlike for the two-state model where the transfer was symmetrically
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the phase) corresponding to the 6S1/2-8S1/2 transition of the Cs atom. The thick line corresponds

to a speci�c path corresponding to the dynamics shown in Fig. 4.10.
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Fig. 4.10 - Upper frame: Dynamics of the population of the energy levels of Cs as a function

of time. Lower frame: Laser pulse parameters: intensity (left) and derivative of the phase as a

function of time.
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Fig. 4.11 - Upper frame: Shaped spectral amplitude as a function of the angular frequency.

Lower frame: Shaped spectral phase as a function of the angular frequency corresponding to

6S1/2-8S1/2 transition of the Cs atom by PLAP techniques.
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Fig. 4.12 - Unshaped spectral amplitude (dashed line) and shaped spectral amplitude (blue line)

as a function of the angular frequency corresponding to the 6S1/2-8S1/2 transition of the Cs

atom by PLAP techniques.
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Fig. 4.13 - Contour plot of the population of the 8S1/2 level of the Cs atom depending on the

two chirp parameters. The black square corresponds to 98% of population.

identical with respect to this sign. One can explain this result by the presence of the interme-

diate states which breaks more the validity of the two-state approximation when the detuning

from the resonance with them is smaller.

4.4 Comparative study of robustness

In this section we analyse and compare the robustness of the linear chirping, shifted linear

chirping and PAP techniques with respect to �uctuations of the pulse area for the two-state

problem in the (4.1) in the case of a two photon transition with Ω0T = 5 and r = 1.85 .

We have determined the �nal populations by averaging over many realizations of an ensemble

of systems with di�erent peak Rabi frequencies uniformly distributed over the range Ω0 ± β/2.

Their peak Rabi frequency Ω0,j is chosen as

Ω0,j = Ω0(1 + rjβ/Ω0), (4.13)

where −0.5 ≤ rj < 0.5 is a uniformly distributed random number, Ω0 is the average Rabi

frequency, and β is the width of the probability distribution.

In Fig. 4.17 and 4.18 we compare the robustness of the three techniques, linear chirp, shifted

linear chirp and parallel adiabatic passage, with respect to the pulse area �uctuations. One can

see that the PLAP technique gives the most e�cient and robust solutions with respect to pulse

area �uctuations. The e�ciency of the linear chirping even without �uctuations is only 65%,

while the shifted linear chirping allows a complete population transfer also in a quite robust

way.
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Fig. 4.14 - Upper frame: Dynamics of the population of the energy levels of Cs as a function of

time. Lower frame: Laser pulse parameters: the intensity (left) and the derivative of the phase

(right).
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Fig. 4.15 - Upper frame: Shaped spectral amplitude as a function of the angular frequency.

Lower frame: Shaped spectral phase as a function of the angular frequency corresponding to the

6S1/2-8S1/2 transition of the Cs atom by linear chirp techniques.
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Fig. 4.16 - Unshaped spectral amplitude (dashed line) and shaped spectral amplitude (full line)

as a function of the angular frequency corresponding to the 6S1/2-8S1/2 transition of the Cs

atom by linear chirp techniques.

Fig. 4.17 - In�delity (in decimal logarithmic scale) of the PLAP (lower line) and shifted linear

chirp (upper line) techniques with respect to variations of the pulse area for two-level system

(4.1) on a two-photon transition with Ω0T = 5 and r = 1.85.
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Fig. 4.18 - In�delity of the PLAP (upper line), shifted linear chirp (middle line) and linear

chirp (lower line) techniques in the same conditions as Fig. 4.17 (but with a linear scale).



Chapter 5

Selective population transfer in multi-level

system by parallel adiabatic passage

In this chapter we show the selective population transfer of atomic states by making the dy-

namics follow parallel eigenvalues at all time, driven by appropriately shaped �elds. We remark

that with two parameters for the �eld (the amplitude and the phase) one can not force the

system to feature all the parallel eigenvalues since the system here is too complicated. We

have however shown that it is possible for Λ-system with two �elds that can be chirped and

delayed [27]. We thus use a weaker condition forcing the eigenvalue which is populated in

dynamics to be parallel to the closest one. This is refered to as local parallel adiabatic passage.

We perform calculations on the qualitative �ve level model of the sodium atom including 3s,

4s, 5p, 6p, 7p states in a process featuring 2 + 1 photon and 3 photon resonance (2 + 1 photon

resonance means a 3 photon process with an intermediate state which is two photon nearly

resonant). We choose an adiabatic path (this is achieved from a geometric picture showing the

di�erence of eigenenergies as functions of the �eld parameters) to selectively populate the 6p

and 7p states. We also analyse the dynamics on a model of the sodium atom including more

levels that are relevant for the considered dynamics: 3s1/2, 3p1/2, 3p3/2, 4s1/2, 5p1/2,

5p3/2, 6p1/2, 6p3/2, 7p1/2, 7p3/2, 3d3/2, 3d5/2, 5f5/2, 5f7/2, 6f5/2, 6f7/2.

We also show the possibility of high e�ciency transfer of population by linear chirp including

a static detuning from exact resonance. The �eld shapes in the frequency domain for both

techniques are determined.

5.1 The Model

Figure 5.1 shows the excitation scheme of the sodium atom by intense 795nm, 30fs FWHM

(Full Width at Half Maximum) laser pulses corresponding to the laser facilities in the Institute

of Physics of University of Kassel (Germany), where experiments on this system have been

carried out. The predominant pathways are indicated by red arrows. For the theoretical model

we consider that excitation arises through the channel wich involves the �ve states 3s, 4s, 5p, 6p,

82
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7p. The energy levels and transition dipole couplings are taken from the NIST database [70].

The state 3p here is adiabatically eliminated, but it has strong in�uence on the population

dynamics as it induces dynamical Stark shift on the energy levels of the 3s and the 4s states.

The quantum dynamics is governed by the time-dependent Schrödinger equation (TDSE)

i~
d

dt
Ψ(t) = H(t)Ψ(t), (5.1)

where the e�ective Hamiltonian of the system in the RWA is given by [46]

H(t) = ~




∆1 + S1
1
2
Ω12 0 0 0

1
2
Ω12 ∆2 + S2

1
2
Ω23

1
2
Ω24

1
2
Ω25

0 1
2
Ω23 ∆3 0 0

0 1
2
Ω24 0 ∆4 0

0 1
2
Ω25 0 0 ∆5



. (5.2)

Here ∆n = ωn − knωL(t) are the atom-laser detunings, where ωn are the atomic state energies

with n = 1, 2, 3, 4, 5 respectively for the states 3s, 4s, 5p, 6p, 7p, kn is the order of the transition

and ωL(t) = ω0+ ϕ̇ is the instantaneous laser frequency composed by the central laser frequency

ω0 and the derivative of the instantaneous relative phase ϕ̇. We consider ω1 = 0 (reference

energy). We have k1 = 0 (i.e. ∆1 = 0), k2 = 2, k3 = 3, k4 = 4, k5 = 5. The Stark shifts S1 and

S2, respectively of the 3s and 4s states, are due to their coupling to the intermidiate state 3p:

S1 = −
Ω2

3s3p

4∆3p

, S2 = −
Ω2

3p4s

4∆3p

, (5.3)

where ∆3p = ω3p − ωL. The two-photon Rabi frequency Ω12 between the states 3s and 4s is

Fig. 5.1 - Energy level structure of the Na atom. The red and green arrows show the two possible

channels.

given by

Ω12(t) = −E2(t)

2~2

∑

m ̸=1,2

µ1mµm2

ωm − ω1 − ωL(t)
, (5.4)
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with µ1m, µ2m the transition dipole moments respectively between the states 3s-3p and 3p-4s

and the �eld envelope E(t) = E0e−(t/T )2 taken as a Gaussian . The one-photon couplings are

de�ned as Ω2n = −Eµ2n/~, where µ2n are the transition dipole moments between states 2 and

n (n = 3, 4, 5).

5.1.1 Adiabatic passage by following parallel eigenvalues: the local

parallel adiabatic passage

The strategy of optimal population transfer by adiabatic passage is based on the idea of

following a level line in the diagram of the di�erence of the instantaneous eigenenergies [26]

corresponding to the eigenstate which is populated in the adiabatic limit and the closest one.

This is refered to as a local parallel adiabatic passage. The three-photon transition between the

states 3s→ 6p and 3s→ 7p for the �ve level model can be e�cient by following the level lines

in parameter space (I,∆). Figures 5.2 and 5.3 show level lines of constant di�erences between

the eigenvalues involving these two transitions respectively. Figures 5.4 and 5.5 present the

population of the energy levels following the parameters taken from the level lines for the �ve

level model. Here the population 6p corresponds to the sum of the populations of 6p1/2 and

6p3/2, and 7p is the sum of 7p1/2 and 7p3/2. One can see that there are intermediate states that

can be populated during the dynamics. Figures 5.6 and 5.7 show the resulting dynamics with

the previous parameters applied on the complete model with 16 levels, which includs levels

which have very close energies with the target states. As one can see, the �ve level model

describes the system well and the speci�c path taken from Figs. 5.2 and 5.3 allows to be

selective even between very close energies. Figures 5.8 and 5.9 show the shapes of the �elds

used respectively for Figs. 5.6 and 5.7. Figures 5.8 and 5.9 show the shaped amplitudes in

the frequency domain. They display some oscillations that occur when there is a large Stark

shift in the system. In Figs. 5.10 and 5.11 the Stark shift is smaller and thus the oscillations

in amplitude are reduced. In Figs. 5.8 and 5.10 we show the comparison of the unshaped and

shaped pulse amplitudes. There are spectral components that have to be removed in order to

achieve e�ciently the complete population transfer.

5.1.2 Static compensation of the Stark shift

In this section we present a way to get a high e�ciency population transfer by a linear chirp

de�ned as

ϕ̇ = at+ b, (5.5)

where b is a static shift, which can be adjusted numerically, as well as a, to increase the e�ciency.

In Figs. 5.12 and 5.14 we show the three photon population transfer between the levels 3s→
6p and 3s→ 7p respectively, depending on the two chirp parameters. One can see that in the

case of zero shift (b=0) the population of the excited levels are not very high. The calculations
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are done with the complete model (with 16 levels) and a peak intensity 1.5 × 1012 W/cm2.

The dynamics corresponding to these contour plots are shown in Figs. 5.13 and 5.15. There

are many levels that are populated during the dynamics, but this technique also allows one

to be selective and e�cient between very close energy levels. It permits as well to be very

fast. Figures 5.16 and 5.17 present the pulse shaping corresponding to Figs. 5.13 and 5.15

respectively: The shaped amplitudes have Gaussian forms, but they include only some part of

the initial spectrum. The other components are removed from the initial spectrum. One can

interpret this by the fact that they can produce additional Stark shifts leading to incomplete

population transfer. The shapes of the spectral phases are parabolas, corresponding to a linear

chirping.
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Fig. 5.2 - Contour plot of the di�erence of eigenenergies as a function of the laser parameters

corresponding to the 3s1/2 → 6p three photon transition of the Na atom. The thick red line

correponds to a speci�c path chosen for the dynamics shown in Fig. 5.4 and Fig. 5.6.
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Fig. 5.3 - Same as Fig.5.2 but for the 3s1/2 → 7p three photon transition. The thick line

correponds to a speci�c path chosen for the dynamics shown in Fig. 5.5 and Fig. 5.7.

−400 −300 −200 −100 0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Time [fs]

P
op

ul
at

io
n

6p
3s1/2

−400 −200 0 200 400
0

500

1000

1500

Time [fs]

I [
G

W
/c

m
2 ]

−400 −200 0 200 400
−0.1

−0.05

0

0.05

0.1

0.15

Time [fs]

2
φ̇

[r
a
d
/
fs

]

Fig. 5.4 - Population transfer from 3s1/2 to 6p. Upper frame: Dynamics of the populations cor-

responding to the �ve-level model (5.2) for the time dependent parameters determined from Fig.

5.2 (where the �eld amplitude is taken as Gaussian); Lower frames: Laser pulse parameters:

intensity (left) and the derivative of the phase (right).
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Fig. 5.5 - Same as Fig. 5.4, but for the population transfer to 7p, and the parameters determined

from Fig. 5.3.
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Fig. 5.6 - Same as Fig. 5.4, but for the 16-level model.
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Fig. 5.7 - Same as Fig. 5.5, but for the 16-level model.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 A
m

pl
itu

de
 [a

rb
. u

ni
ts

]

ω−ω
0
 [fs−1]

Fig. 5.8 - Unshaped spectral amplitude (dashed line) and shaped spectral amplitude (full line)

as a function of the angular frequency corresponding to the 3s1/2 → 6p three photon transition

corresponding to the path shown in Fig. 5.2 and leading to the dynamics of Figs 5.4. 5.6.
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Fig. 5.9 - Shaped spectral amplitude (upper frame) and shaped spectral phase (lower frame) in

the same conditions as in Fig. 5.8.
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Fig. 5.10 - Same as Fig. 5.8 but for the transition to 7p (path shown in Fig. 5.3 and dynamics

in Figs. 5.5 and 5.7).
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Fig. 5.11 - Same as Fig. 5.9 but for the transition 7p

Fig. 5.12 - Contour plot of the population of the 6p level of the 16-level model of the Na atom

depending on the two chirp parameters. The black square corresponds to 99.9% of population

transfer.
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Fig. 5.13 - Upper frame: Dynamics of the population of the energy levels of the Na atom as

a function of time corresponding to the black square in Fig. 5.12. Lower frames: Laser pulse

parameters: intensity (left) and the derivative of the phase (right).

Fig. 5.14 - Contour plot of the population of the 7p level of the 16 level model of the Na atom

depending on the two chirp parameters. The black square corresponds to 99.9% of population

transfer.
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Fig. 5.15 - Upper frame: Dynamics of the energy levels of the Na atom as a function of time

corresponding to the black point in Fig .5.14. Lower frames: laser pulse parameters: intensity

(left) and the derivative of the phase (right).

0

0.2

0.4

0.6

0.8

1

 A
m

pl
itu

de
 [a

rb
. u

ni
ts

]

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

5

10

15

S
ha

pi
ng

 p
ha

se
 (

un
it 

of
 π

)

ω−ω
0
 [fs−1]

Fig. 5.16 - Upper frame: Unshaped spectral amplitude (red line) and shaped spectral amplitude

(blue line) as a function of the angular frequency. Lower frame: Shaped spectral phase as a

function of the angular frequency corresponding to the dynamics shown in Fig. 5.13.
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Chapter 6

Superposition of states by controlled

Stark shift adiabatic passage in a

Potassium atom

In this chapter we extend the preceding technique to achieve a transfer of population from a

single quantum state into a coherent superposition of excited states, by bichromatic adiabatic

passage on a K atom. The transfer is executed with spectrally shaped femtosecond laser pulses.

The excited states are dynamically shifted in energy due to the presence of nonresonant com-

ponents of the two di�erent channels of the K atom. This results in an incomplete population

transfer to the target superposition. We show that a third �eld can compensate this Stark shift

and that it allows a robust and complete population transfer for approprietly shaped �elds.

6.1 The model

We consider a three-state system where the two upper states are near degenerate and do

not couple each other by dipole interaction. Our aim is to transfer by adiabatic passage the

population from the ground state |0⟩ to a superposition of the two upper states |1⟩ and |2⟩
(of respective energy ω1 and ω2 = ω1 + δ, in units such that ~ = 1) which reads, up to an

uncontrolled global phase

|ψ⟩ = c1e
−iω1t|1⟩+ c2e

iφe−iω2t|2⟩, (6.1)

with c1 and c2 real and positive (without loss of generality). We require a robust control of

the amplitudes c1 and c2 and the relative phase of the superposition φ. Denoting by µj the

dipole moment of the transition |0⟩ ↔ |j⟩, which we assume real and positive, we label the

state following the convention µ2 > µ1. We have then δ > 0 (δ < 0) if the upper (lower) state

corresponds a larger dipole moment.

For that purpose, we use a chirped polychromatic pulse of the form

E(t) = E1 cos(ω1t+ ϕ1) + ES cos(ωSt+ ϕS) + E2 cos(ω2t+ ϕ2) (6.2)

94
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Fig. 6.1 - The energy levels diagram of K atom.

with Ej ≡ Ej(t), and ϕj ≡ ϕj(t), j = 1, 2, S. One chooses this �eld following the intuition that

the �eld labeled 1 (labeled 2) controls the transition |0⟩ ↔ |1⟩ (|0⟩ ↔ |2⟩) through the chirp

ϕ̇1 (ϕ̇2). However, these two interaction channels cannot be treated strictly independently

in practice when the �eld is strong and dynamic cross-talks between simultaneously driven

transitions have to be taken into account through dynamical Stark shifts. The Stark shift

causes (i) a shift of the resonance, which is expected to be overcome by the adiabatic process

and (ii) a relative detrimental dynamical phase in the superposition. The role of the third �eld

labeled S, while also producing itself a Stark shift, is to give an additional control over the

total Stark shift and to cancel its detrimental e�ects.

In the resonant approximation (RWA), in the basis

{|0⟩, e−iω1t|1⟩, e−iω2t|2⟩}, (6.3)

the Hamiltonian is of the form

Ĥ(t) =
1

2
(6.4)

×




0 Ω1e
iϕ1 + Ω2

µ1

µ2
ei(δt+ϕ2) + ΩSe

i[(ωS−ω1)t+ϕS ] Ω2e
iϕ2 + Ω1

µ2

µ1
e−i(δt−ϕ1) + µ2

µ1
ΩSe

i[(ωS−ω2)t+ϕS ]

∗ 0 0

∗ 0 0


 ,

where the symbols ∗ ensure that the Hamiltonian is self-adjoint. We assume without loss of

generality that the Rabi frequencies are de�ned as

Ωj = µjEj, j = 1, 2, ΩS = µ1ES. (6.5)

The RWA Hamiltonian (6.4) is valid for Ωj, |δ| ≪ ωj.



Chapter 6. Superposition of states by controlled Stark shift adiabatic passage in a Potassium atom96

We can apply the phase transformation

T =




1 0 0

0 e−iϕ1 0

0 0 e−iϕ2


 (6.6)

to get

T †Ĥ(t)T − iT †dT

dt
= (6.7)

1

2




0 Ω1 + Ω2
µ1

µ2
ei(δt+ϕ2,1) + ΩSe

i[(∆+δ)t+ϕS,1] Ω2 + Ω1
µ2

µ1
e−i(δt+ϕ2,1) + µ2

µ1
ΩSe

i(∆t+ϕS,2)

∗ −ϕ̇1 0

∗ 0 −ϕ̇2




with

ϕi,j = ϕi − ϕj, ∆ = ωS − ω2, (6.8)

in the basis

{|0⟩, e−i(ω1t−ϕ1)|1⟩, e−i(ω2t−ϕ2)|2⟩}. (6.9)

We next treat the non-resonant channels as Stark shifts under the conditions

Ω1,Ω2 ≪ |δ|, ΩS ≪ |∆|, |δ| (6.10)

leading to the e�ective Hamiltonian

H(t) =
1

2




0 Ω1 Ω2

Ω1 2(S1 − ϕ̇1) S12

Ω2 S∗
12 2(S2 − ϕ̇2)


 . (6.11)

The (diagonal) Stark shifts read

S1 = S1,2 + S1,S +
1

2
(S2,1 + S2,S) , (6.12a)

S2 = S2,1 + S2,S +
1

2
(S1,2 + S1,S) (6.12b)

with the dominant terms

S1,2 = −1

2

(
µ1

µ2

)2
Ω2

2

ϕ̇2 + δ
, (6.13a)

S2,1 = −1

2

(
µ2

µ1

)2
Ω2

1

ϕ̇1 − δ
, (6.13b)

S1,S = −1

2

Ω2
S

ϕ̇S +∆+ δ
, (6.13c)

S2,S = −1

2

(
µ2

µ1

)2
Ω2

S

ϕ̇S +∆
. (6.13d)
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We have also kept the non-diagonal term

S12 = −Ω2ΩS

4

(
1

ϕ̇S +∆
+

1

ϕ̇+ δ

)
ei[(∆−δ)t+ϕS−ϕ]

− µ2

µ1

Ω1ΩS

4

(
1

ϕ̇S +∆+ δ
+

1

ϕ̇− δ

)
e−i[(∆+2δ)t+ϕS−ϕ], (6.14)

which is relevant when S1 − ϕ̇1 = S2 − ϕ̇2 corresponding to a dynamical degenerate subspace

spanned by the upper states [if one takes into account only the dominant terms (6.13)], as it

will be considered in the next section. This term S12, which is in general oscillatory, cancels

out by averaging when
∣∣∣∣
Ω2ΩS

4

(
1

ϕ̇S +∆
+

1

ϕ̇+ δ

)∣∣∣∣ ≪ |∆− δ|, (6.15a)

∣∣∣∣
µ2

µ1

Ω1ΩS

4

(
1

ϕ̇S +∆+ δ
+

1

ϕ̇− δ

)∣∣∣∣ ≪ |∆+ 2δ|. (6.15b)

The �rst (second) term of S12 is real and non-oscillatory, and thus preserved, for ∆ = δ

(∆ = −2δ) and ϕS = ϕ.

6.2 Strategy

The wished relative phase φ is obtained when one chooses at all times

ϕ2(t) = ϕ1(t) + φ, (6.16)

leading to

ϕ̇2 = ϕ̇1 ≡ ϕ̇. (6.17)

The coe�cients of the superposition

c1 = cos θ =
Ω1

Ω0

, c2 = sin θ =
Ω2

Ω0

, Ω0 ≡
√
Ω2

1 + Ω2
2 (6.18)

are revealed by the time-independent Morris-Shore transformation:

M =




1 0 0

0 cos θ − sin θ

0 sin θ cos θ


 , tan θ =

Ω2

Ω1

(6.19)

It requires the respective amplitudes of the two �elds 1 and 2 to have a common shape. It gives

indeed

M †HM = (6.20)




0 Ω0/2 0

Ω0/2 S1 cos
2 θ + S2 sin

2 θ + (S12 + S∗
12) cos θ sin θ − φ̇ (S2 − S1) cos θ sin θ + S12 cos

2 θ − S∗
12 sin

2 θ

0 (S2 − S1) cos θ sin θ + S∗
12 cos

2 θ − S12 sin
2 θ S2 cos

2 θ + S1 sin
2 θ − (S12 + S∗

12) cos θ sin θ − φ̇
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which corresponds to an e�ective two-state system connected to the initial ground state

H2 =
1

2

[
0 Ω0

Ω0 2(S − ϕ̇)

]
(6.21)

in the basis

{|0⟩, eiϕ1 |ψ⟩} (6.22)

if (i) the Stark shifts are equal

S2 = S1 ≡ S, (6.23)

which is satis�ed for

ΩS = Ω1

√√√√√√

(
µ1

µ2

)2
tan2 θ
ϕ̇+δ

−
(

µ2

µ1

)2
1

ϕ̇−δ(
µ2

µ1

)2
1

ϕ̇S+∆
− 1

ϕ̇S+∆+δ

. (6.24)

and (ii)

S12 cos
2 θ − S∗

12 sin
2 θ = 0. (6.25)

The latter is satis�ed either (a) when the term S12 cancels out by averaging requiring ∆ e�-

ciently di�erent from δ and from −2δ, or (b) when ∆ = δ (or ∆ = −2δ), ϕS = ϕ and θ = π/4

(equal superposition). Equation (6.24) shows that the Stark shift compensation is possible in

general under the conditions

for δ > 0 : ∆ > 0 or
δ

q2 − 1
< ∆ < −δ (6.26a)

for δ < 0 : ∆ < 0 or − δ < ∆ <
δ

q2 − 1
. (6.26b)

The compensation is more e�cient, i.e. it requires a smaller Stark pulse amplitude, for ∆ closer

to 0 or ∆ closer to −δ. However the latter situation is ine�cient in practice if q2, which satis�es

by de�nition q2 ≤ 1, is well di�erent from 1, since then ∆ is not so di�erent from the value
δ

q2−1
which corresponds to a Stark �eld of in�nite amplitude. Situation (a) is anticipated to be

e�cient for the choice ∆ = 0.5δ (or ∆ = −1.5δ only if q2 is close to 1) as it gives a compromise

of an e�cient Stark compensation and of satisfying condition (6.15) for the averaging of the

o�-diagonal elements. Equation (6.24) should give a Stark Rabi frequency ΩS that has to be

furthermore not too large, that is not much larger than Ω0: ΩS . Ω0. This is roughly satis�ed

for

|∆| . |δ| for δ and ∆ of the same sign, (6.27a)

|∆| . 2|δ| for δ and ∆ of opposite sign and q ∼ 1. (6.27b)

In brief, the coe�cients c1 and c2 of the superposition are chosen through the ratio of Ω2

and Ω1 [see Eqs. (6.18) and (6.19)]. Its relative phase φ is �xed by the relative phase of the

�elds 1 and 2 [see Eq. (6.16)]. We can choose ∆ and ϕS as follows:
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(i) If tan θ = 1,

(a) ∆ = δ and ϕS = ϕ, or

(b) if q2 ∼ 1, ∆ = −2δ and ϕS = ϕ;

(ii) in general,

(a) ∆ = 0.5δ and ϕS ∼ 0, or

(b) if q2 ∼ 1, ∆ = −1.5δ and ϕS ∼ 0.

The superposition is reached in a robust way through the complete population transfer by

adiabatic passage from the ground state to the upper e�ective state of Hamiltonian (6.21).

This can be achieved by a simple linear chirp or more e�ciently by a parallel adiabatic passage

which allows in principle the dynamical compensation of the Stark shift of Hamiltonian (6.21).

The �rst strategy allows one to set Ω0 and ϕ̇ (the choice must satisfy adiabatic passage and is

not unique.) The compensating �eld Rabi frequency ΩS is then uniquely determined by (6.24).

The strategy of parallel adiabatic passage is more complicated. For a given pulse shape

Ω0 ≡ Ω0(t), it imposes for the phase

ϕ̇ = S + sign(t)
√
∆2

0 − Ω2
0, (6.28)

where ∆0 = maxt Ω0(t), with the Stark shift S = S1 = S2 given by (6.12) and ΩS by (6.24).

This gives a complicated equation in ϕ̇ that has to be solved numerically at each time.

For the example of the 50% superposition, i.e. θ = π/4 and Ω1 = Ω2, with φ = 0, and

assuming for simplicity µ1 = µ2, we have

ΩS = Ω1

√
−2(ϕ̇S +∆)(ϕ̇S +∆+ δ)

ϕ̇2 − δ2
. (6.29)

If one chooses for instance

∆ = δ, ϕS = ϕ, (6.30)

we obtain

ΩS = Ω1

√
−2(ϕ̇+ δ)(ϕ̇+ 2δ)

ϕ̇2 − δ2
. (6.31)

If one considers ϕ̇≪ δ, this simpli�es to

ΩS = 2Ω1. (6.32)

6.3 Numerics and the pulse shaping

Here we show the numerical results on the K atom. Fig. 6.3 displays the dynamics of the

energy levels of K atom as a function of time with ΩS Stark shift compensating �eld, where for

the transition dipole coupling elements are used following values µ1 = 1.67 a.u. and µ2 = 2.37

a.u.. The components of the �eld are linearly chirped in the same manner:

ϕ̇1 = ϕ̇2 = ϕ̇S = at. (6.33)



Chapter 6. Superposition of states by controlled Stark shift adiabatic passage in a Potassium atom100

In Fig. 6.2 we show a typical dynamics without the compensating �eld ΩS. The population is

distributed between 4P3/2 and 4P1/2 by 60% and 40% respectively. One can see that the ΩS

component brings the system to the complete superposition as shown inFig. 6.3. Figure 6.3

shows the pulse shaping for the K atom by an intense 765 nm, 90 fs FWHM (Full Width at

Half Maximum) laser pulse. The pulse shaping is determined as described in chapter I for the

intensity corresponding to 108 W/cm2. The three spectral amplitude components have the

same spectral phases.
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Fig. 6.2 - Dynamics of the energy levels of the K atom as a function of time without the Ωs

�eld (6.24), with duration of the pulse T = 10ps, chirp rate aT 2 = 4, Ω0T = 6 and area of the

pulsed Rabi frequency A = 5π.
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Fig. 6.3 - Dynamics of the energy levels of the K atom as a function of time in the same

conditions as in Fig. 6.2 but with the Ωs �eld (6.24).
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Chapter 7

Conclusions

In the �rst part of this thesis which constitutes chapter I and chapter II we presented general

two-state systems, approximations to solve the time-dependent Schrödinger equation and op-

timization of two-photon transition by phase shaping. In chapter II we theoretically analyzed

the optimization scheme for two-photon two-level systems in moderate and strong �eld regimes.

This scheme was implemented experimentally by analyzing the optimal pulse shaping for the

given two-photon excitation using an e�ective two-state model in a moderate �eld regime.

We have analytically obtained the optimal solution, in maintaining the two-photon resonance

condition. This is achieved e�ciently by linear and cubic temporal phase terms.

In the second part we introduced the adiabatic passage and parallel adiabatic passage tech-

niques. In chapter III we have investigated and compared two ways to reach population transfer

of high �delity by adiabatic passage, namely the PLAP and DIAP techniques. Both techniques

are based on the DDP analysis. The PLAP is such that the eigenvalues are dynamically parallel,

while the DIAP corresponds to an adiabatic passage which is complemented by a destructive

interference of the non-adiabatic transitions. One can remark that the DIAP can be seen as

an extension to a chirped interaction of the Rabi π-pulse transition since the latter can be

interpreted as an interference (which is destructive for the probability of population return) of

the two components, from the initial state split onto the two eigenstates, having acquired a

dynamical phase [65,66].

In femtosecond regimes, these techniques can be implemented by a spectral shaping. The

DIAP with a Gaussian pulse and a linear chirping, when the mean frequency of the initial �eld

matches the transition frequency, requires a device which shapes only the spectral phase. On

the other hand, the PLAP is more complicated to produce since it requires in general a shaping

of both the spectral phase and the amplitude .

We have analyzed the sensitivity of the techniques to various types of �uctuations. We have

considered instantaneous �uctuations of the amplitudes and phases, and also an averaging upon

randomly distributed Rabi frequency areas. We expect the latter to be the most critical issue

in practical implementation due to an imperfect knowledge of the interaction details (through

the area of the pulse itself, the position or the volume of the considered quantum system, ...).

We have shown that PLAP is much more robust than DIAP (with a �delity of more than one

104
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order of magnitude for rates of �uctuation that lead to an in�delity of order 10−4, see Fig. 3)

with respect to the lack of knowledge of the Rabi frequency area. We have shown that one

cannot improve the robustness of PLAP with respect to pulse areas if one complements it with

a �eld that cancels the non-adiabatic coupling.

On the other hand, uncorrelated instantaneous �uctuations, even if they are expected to be

relatively well controlled in practice, have been shown to be in general very detrimental for any

coherent techniques. We have shown this for amplitude (Fig. 3.5) and phase (Fig. 3.7) white-

noise �uctuations. The phase white-noise �uctuations has been shown to be more detrimental

for adiabatic processes that always need more time to operate than the π-pulse technique (for

a given �eld amplitude peak), since this noise corresponds to a dephasing decoherence that

destroys the transient superpositions. If we introduce su�cient correlations in the noise, we

have shown that we recover the superiority of the PLAP technique (Fig. 3.8).

Extending the results of this chapter to systems with more than two levels necessitates,

in principle, the derivation of a DDP formula for multilevel systems. Even for three-state

systems, this has been shown to be complicated and not generically solvable due to numerous

crossings in the complex plane [48]. Only speci�c symmetries in the Hamiltonian allow this

extension. In the simplest case, the result can be interpreted as a local Landau-Zener analysis

of the consecutive avoided crossings between pairs of levels assumed separated and that do

not involve interfering paths, such that the �nal probability is the product of the probabilities

corresponding to the consecutive avoided crossings [56,57]. Extending DIAP would thus require

a model beyond this simple result.

For an N state with N > 3, �nding parameters that would allow N parallel eigenstates

is expected to be a di�cult problem involving the design of many parameters. This could be

solvable numerically for speci�c cases. The quite general choice that has been adopted in this

work is a much weaker constraint, supported by a local Landau-Zener analysis, corresponding

to the driving the dynamics such that the eigenstate adiabatically transporting the population

corresponds to an eigenvalue parallel to the closest one. This idea has been investigated to

guide the adiabatic path in a two-parameter space in the context of state selectivity in chapter

V.

In chapter IV we theoretically investigated and presented the experimentally realizable two-

photon optimal schemes for population transfer in two-level and four-level Stark shifted systems

in strong �eld regime. By using PLAP techniques we have numerically shown that one can

achieve e�ciently complete population transfer also for four-level quantum system. In chapter V

we presented the local PLAP technique, which allows state selectivity for multilevel system. We

presented the experimentally realizable three-photon schemes for selective population transfer

in multilevel Stark shifted systems in strong �eld regime. By using PLAP techniques we have

numerically shown that one can achieve high selectivity of population transfer for such multilevel

quantum systems.

With the advances in producing ultrashort pulses of uv-xuv frequency, one could also con-
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sider the extension of such techniques with interacting pulses of a few cycles. In such an inter-

action, the rotating-wave approximation is itself questionable and PLAP should be investigated

within the more general adiabatic Floquet theory [20].

On the other hand in chapters IV and V we demonstrated an e�cient way of population

transfer by using a linear chirp with additional static detuning. We have compared the robust-

ness of these techniques.

In chapter VI we have developed a method for executing robust and selective transfer of

population from a single energy eigenstate to a preselected superposition of energy eigenstates.

Viewed in the frequency domain, the method constitutes simultaneous transfer of population to

all the energy eigenstates which make up the superposition state by a set of adiabatic passages.

We have tested the method numerically by simulating transitions between a single eigenstate

and a superposition of energy eigenstates. The method allows complete population transfer and

o�ers control of both the phase and amplitudes of the state composing the target superposition

state.

Topics to be investigated further include the transfer dynamics in multilevel systems, such

as the ones studied in chapter IV, V and VI, with phase and pulse area �uctuations, in order

to test the robustness of the techniques. The e�ects of propogation in a medium will also be

analysed, with a particular study of the robustness of the PLAP technique.
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Appendixes



APPENDIX A E�ective Hamiltonian for

the two-photon 6S1/2-8S1/2 transition in

Cesium atoms

We consider the two-photon transition in Cesium between the state g ≡ 6S1/2 and e ≡ 8S1/2. We

decompose the derivative of the phase of the laser as a mean frequency ω0 (corresponding to the

laser frequency of the Fourier transform pulse, i.e. before its shaping and a relative frequency

ϕ(t)). We assume that the mean frequency is exactly two-photon resonant: ω0 = (ωe − ωg)/2,

i.e. ∆ = 0. The relevant parameters for the considered transition are given in Table 7.1. We

have determined the parameters involving the dipole moment couplings with Eqs. (7.4), (7.4)

and (7.4) using Ref. [37] for the bound-bound couplings and the Fues model potential [38, 39]

for the bound-free couplings (see also [40] for a general discussion of model potential methods).

A single photon allows the ionization of the atom from the excited state, however, through

the small ratio |Γe/Ω| = 6.5× 10−3, where Γe is the ionization rate.

Tab. 7.1 - Parameters for the transition in Cesium 6S1/2-8S1/2

r ωe − ωg(rad/s) ω0(rad/s)

1.85 4.58× 1015 2.29× 1015

Two intermediate states (1 ≡ 6P1/2 and 2 ≡ 6P3/2, of respective energies ω1 and ω2) are

close to a single-photon resonance and lead to strong Stark shifts in the e�ective two-state

model [71]. Here we derive the conditions of validity of this two-state model. The static

one-photon detunings are

∆g1 ≡ ω1 − ωg − ω0 = −4.47× 10−3 a.u., (7.1)

∆g2 ≡ ω2 − ωg − ω0 = −1.94× 10−3 a.u. (7.2)

For a laser intensity I = 60 GW/cm2, we get for the peak single-photon Rabi frequencies (in

a.u.) Ωg1 = 2.4 × 10−3 ∼ |∆g1| and Ωg2 = 3.4 × 10−3 > |∆g2|, which prevents the use of a
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two-state approximation. In that case, we thus use a four-level approximation:

H4(t) = ~




Sg(t)
1
2
Ωg1(t)

1
2
Ωg2(t)

1
2
Ωge(t)

1
2
Ωg1(t) ∆g1 − ϕ̇(t) + S1(t) 0 1

2
Ωe1(t)

1
2
Ωg2(t) 0 ∆g2 − ϕ̇(t) + S2(t)

1
2
Ωe2(t)

Ωge(t)
1
2
Ωe1(t)

1
2
Ωe2(t) −2ϕ̇(t) + Se(t)− i1

2
Γe(t)


 .

(7.3)

The Stark shifts Sg(t) and Se(t) of the ground and excited states respectively, are due to their

coupling to the intermediate states m and the continuum channels ℓ:

Sj(t) = −E2(t)

2~2

[∑

m ̸=j

|µjm|2
ωmj

ω2
mj − ω2

L(t)
+ P

∫
dE

~

∑

ℓ

|µj;E,ℓ|2
ωEj

ω2
Ej − ω2

L(t)

]

with j = e, g, µjm (resp. µj;E,ℓ) the transition dipole moments between the state j, of energy

~ωj, and the intermediate state (resp. the continuum state of the channel ℓ and of energy E),

and ωmj = ωm − ωj, ωEj = E/~− ωj. P indicates the principal part of the integral when it is

inde�nite (if ωj+ωL reaches the continuum). The e�ective two-photon Rabi frequency between

the ground and the excited state is

Ω(t) = −E2(t)

2~2

[ ∑

m ̸=e,g

µgmµme

ωm − ωg − ωL(t)
+

∫
dE

~

∑

ℓ

µg;E,ℓµE,ℓ;e

E/~− ωg − ωL(t)

]
.

The �eld intensity I(t) is related to the �eld amplitude E(t) through the relation I[W/cm2] ≈
3.51 × 1016 (E [u.a.])2 . It is usually a good approximation to consider the mean (or central)

frequency of the laser ω0 instead of the instantaneous one ωL(t) to calculate the Stark shifts

and the Rabi frequency. This is generally the case when the frequency of the laser is chirped

on a very small interval ∆ωL ≡ ∆ϕ̇ ≪ ω0 We take into account that the excited state is lossy

through ionization by the laser. This is taken into account by summing the partial rates to the

continuum channel ℓ:

Γe(t) =
∑

ℓ

Γ(ℓ)
e , Γ(ℓ)

e =
π

2~
E2(t)|µe;E=~ωe+~ωL,ℓ|2. (7.4)

Here the partial rates have been written for the case of a single photon resonance between the

continuum and the excited state.
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