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Resumé

Dans cette thèse, je me suis intéressé à deux aspects de la gestion de porte-
feuille : la maximisation de l’utilité d’un portefeuille financier lorsque on impose
une contrainte sur l’exposition au risque, et la couverture quadratique en marché
incomplet.

Part I. Dans la première partie, j’étudie un problème d’assurance de portefeuille
du point de vue du manager d’un fond d’investissement, qui veut structurer un
produit financier pour les investisseurs du fond avec une garantie sur la valeur du
portefeuille à la maturité. Si, à la maturité, la valeur du portefeuille est au dessous
d’un seuil fixé, l’investisseur sera remboursé à la hauteur de ce seuil par une troisième
partie, qui joue le rôle d’assureur du fond (on peut imaginer que le fond appartient
à une banque et que donc c’est la banque elle même qui joue le rôle d’assureur). En
échange de cette assurance, la troisième partie impose une contrainte sur l’exposition
au risque que le manager du fond peut tolérer, mesuré avec une mesure de risque
monétaire convexe. Je donne la solution complète de ce problème de maximisation
non convexe en marché complet et je prouve que le choix de la mesure de risque
est un point crucial pour avoir existence d’un portefeuille optimal. J’applique donc
mes résultats lorsque on utilise la mesure de risque entropique (pour laquelle le
portefeuille optimal existe toujours), les mesures de risque spectrales (pour lesquelles
le portefeuille optimal peut ne pas exister dans certains cas) et la G-divergence.
Mots-clés : Assurance de portefeuille ; maximisation d’utilité ; mesure de risque
convexe ; VaR, CVaR et mesure de risque spectrale ; entropie et G-divergence.

Part II. Dans la deuxième partie, je m’intéresse au problème de couverture qua-
dratique en marché incomplet. J’assume que le marché est décrit par un processus
Markovien tridimensionnel avec sauts. La première variable d’état décrit l’actif fi-
nancier, échangeable sur le marché, qui sert comme instrument de couverture ; la
deuxième variable d’état modélise un actif financier que intervient dans la dyna-
mique de l’instrument de couverture mais qui n’est pas échangeable sur le marché :
il peut donc être vu comme un facteur de volatilité de l’instrument de couverture,
ou comme un actif financier que l’on ne peut pas acheter (pour de raisons légales
par exemple) ; la troisième et dernière variable d’état représente une source externe
de risque qui affecte l’option européenne qu’on veut couvrir, et qui, elle aussi, n’est
pas échangeable sur le marché. Pour résoudre le problème j’utilise l’approche de la
programmation dynamique, qui me permet d’écrire l’équation de Hamilton-Jacobi-
Bellman associée au problème de couverture quadratique, qui est non locale en non
linéaire. Je prouve que la fonction valeur associée au problème de couverture quadra-
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tique peut être caractérisée par un système de trois équations integro-différentielles
aux dérivées partielles, dont l’une est semilinéaire et ne dépends pas du choix de
l’option à couvrir, et les deux autres sont simplement linéaires , et que ce système
a une unique solution régulière dans un espace de Hölder approprié, qui me permet
donc de caractériser la stratégie de couverture optimale . Ce résultat est démontré
lorsque le processus est non dégénéré (c’est à dire que la composante Brownienne
est strictement elliptique) et lorsque le processus est à sauts purs. Je conclus avec
une application de mes résultats dans le cadre du marché de l’électricité.
Mots-clés : Couverture quadratique ; modèle à sauts ; programmation dynamique ;
équation de Hamilton-Jacobi-Bellman ; équations aux dérivées partielles integro-
différentielles ; espaces de Hölder ; processus de Lévy ; marché de l’électricité.

Abstract

In this thesis I’m interested in two aspects of portfolio management: the port-
folio insurance under a risk measure constraint and quadratic hedge in incomplete
markets.

Part I. I study the problem of portfolio insurance from the point of view of a fund
manager, who guarantees to the investor that the portfolio value at maturity will be
above a fixed threshold. If, at maturity, the portfolio value is below the guaranteed
level, a third party will refund the investor up to the guarantee. In exchange for
this protection, for which the investor pays a given fee, the third party imposes a
limit on the risk exposure of the fund manager, in the form of a convex monetary
risk measure. The fund manager therefore tries to maximize the investor’s utility
function subject to the risk measure constraint. I give a full solution to this non-
convex optimization problem in the complete market setting and show in particular
that the choice of the risk measure is crucial for the optimal portfolio to exist.
An interesting outcome is that the fund manager’s maximization problem may not
admit an optimal solution for all convex risk measures, which means that not all
convex risk measures may be used to limit fund’s exposure in this way. I provide
conditions for the existence of the solution. Explicit results are provided for the
entropic risk measure (for which the optimal portfolio always exists), for the class
of spectral risk measures (for which the optimal portfolio may fail to exist in some
cases) and for the G-divergence.
Key words: Portfolio Insurance; utility maximization; convex risk measure; VaR,
CVaR and spectral risk measure; entropy and G-divergence.

Part II. In the second part I study the problem of quadratic hedge in incomplete
markets. I work with a three-dimensional Markov jump process: the first compo-
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nent is the state variable representing the hedging instrument traded in the market,
the second component models a risk factor which ”perturbs” the dynamics of the
hedging instrument and is not traded in the market (as a volatility factor for ex-
ample in stochastic volatility models); the third one is another source of risk which
affects the option’s payoff at maturity and is also not traded in the market. The
problem can be seen then as a constrained quadratic hedge problem. I privilege here
the dynamic programming approach which allows me to obtain the HJB equation
related to the value function. This equation is semi linear and non local due the
presence of jumps. The main result of this thesis is that this value function, as a
function of the initial wealth, is a second order polynomial whose coefficients are
characterized as the unique smooth solutions of a triplet of PIDEs, the first of which
is semi linear and does not depend on the particular choice of option one wants to
hedge, the other two being simply linear. This result is stated when the Markov
process is assumed to be a non-generate jump-diffusion and when it is a pure jump
process. I finally apply my theoretical results to an example of quadratic hedge in
the context of electricity markets.
Key words: Quadratic Hedge; jump processes; dynamic programming; Hamilton-
Jacobi-Bellman equations; partial integro-differential equations; Lévy processes;
Hölder spaces; electricity markets.
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C Hölder spaces 211
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
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Chapter 1

Introduction (French version)

Dans cette thèse, composée de deux parties indépendantes, je me suis interessé
à la gestion de portefeuille lorsque des contraintes sont imposées sur les stratégies
d’investissement possibles.

Dans la première partie, on étudie un problème non standard de maximisation
d’utilité de portefeuille. L’idée de fond de ce problème est la suivante: un manager
d’un fond d’investissement garantit à ses investisseurs que la valeur du portefeuille
à la maturité sera au dessus d’un seuil fixé z. Lorsque ce n’est pas le cas, les
investisseurs seront remboursés à la hauteur de ce seuil par une troisième partie,
dans le rôle d’assureur du fond. A ce stade, le payoff terminal pour l’investisseur sera
max(V ∗T , z), où V ∗T est la valeur du portefeuille optimal à maturité. Le gestionnaire
du fond choisira la stratégie qui maximise l’utilité du fond au-dessus de cette garantie
z:

V ∗T := arg sup
VT , V0=v0

E
[
u((VT − z)+)

]
On observe que le critère appliqué par le gestionnaire du fond est non-standard,
car la fonction d’utilité s’applique seulement au gain réel de l’investisseur. On
peut motiver ce choix sur un exemple très simple: prenons la fonction d’utilité
exponentielle u(x) = − exp(−x), la garantie fixée à z = 1 et deux portefeuilles dont
le profile à maturité est

V 1
T :=

{
1.50 on A
0.80 on Ac

V 2
T :=

{
1.40 on A
0.90 on Ac

où P(A) = 1/2. Un calcul élémentaire prouve que E[u(V 1
T )] < E[u(V 2

T )], mais un
investisseur qui est garanti à la hauteur de 1 choisira toujours le portefeuille V 1

T

plutôt que V 2
T , ce qui explique notre choix d’appliquer u seulement au gain effectif.

La contrainte imposée par troisième partie est donnée à travers une mesure de risque
monétaire convexe: le problème devient donc

V ∗T := arg sup
VT , V0=v0

E
[
u((VT − z)+)

]
tel que ρ(−(VT − z)−) ≤ ρ0

où ρ0 est le seuil de risque que l’assureur tolère.

Dans le Chapitre 3 on commence donc par une introduction rapide sur les
mesures de risque, en partant de leur définition axiomatique pour ensuite étudier en

11



12 Chapter 1. Introduction (French version)

détail des classes de mesures de risque très populaires qui seront utilisés par la suite
dans nos exemples: la Value at Risk (V aR); la Conditional Value at risk (CV aR)
et, de manière plus générale, les mesures de risque spectrales; la mesure de risque
entropique et les mesures de risque communément appelées G-divergence.

La solution du problème est exposé dans le Chapitre 4, où on fait l’hypothèse
que le marché est complet. La grande difficulté dans ce problème est due à sa
nature non convexe. On suppose donc, sans perdre de généralité que z = 0 et on
va introduire deux problèmes , cette fois-ci bien convexes, associés au problème de
depart:

U(A, x+) : maximum E [u(Z+)]
sous la contrainte Z ∈ H1 (A, x+) ou’ H1 (A, x+) :={
Z ∈ L1 (ξP) | E [ξZ] ≤ x+, Z = 0 on Ac, Z ≥ 0 on A

}
4 (A) : minimum E [ξY ]

sous la contrainte Y ∈ H2 (A) ou’ H2 (A) :={
Y ∈ L1 (ξP) | ρ (Y ) ≤ ρ0, Y = 0 on A, Y ≤ 0 on Ac

}
ou’ ξ est la densité de la probabilité martingale et A ∈ F est un ensemble mesurable.
Ces deux problèmes sont parametrisés par le couple (x+, A) ∈ R+×F . On va donc
chercher la solution optimale de la forme V ∗T := Z∗ + Y ∗, avec Z∗ et Y ∗ solutions
optimales des ces deux problèmes, correspondant au couple optimal ((x∗)+, A∗). En
effet on prouve que si x0 est le capital initial à disposition du gestionnaire du fond
alors

Si pour tout A ∈ F , 4 (A) > −∞ alors

sup
ρ(−(X)−)≤ρ0,E[ξX]≤x0

E[u(X+)] = sup
A∈F

U
(
A, x+ (A)

)
ou’ x+ (A) = x0−4 (A). Si de plus supx u(x) = +∞ et infA∈F 4 (A) > −∞
alors

sup
ρ(−(X)−)≤ρ0,E[ξX]≤x0

E[u(X+)] < +∞

Ce résultat nous donne un algorithme pour résoudre le problème initial: pour un
ensemble A ∈ F , on calcule d’abord 4 (A), ensuite U(A, x+ (A)) et on maximise
enfin sur tous les ensembles A. Si A∗ est ce supremum, et Z(A∗), Y (A∗) sont
les solutions optimales des deux problèmes convexes associés, alors une solution
optimale pour le gestionnaire de fond sera V ∗T = Z(A∗)1A∗ + Y (A∗)1(A∗)c . On
remarque que le problème initial n’étant pas convexe, on ne peut pas conclure que
cette solution est unique. De plus, si pour un ensemble A donné on peut toujours
trouver le Z(A) associé, la solution optimale Y (A) peut ne pas exister. Dans ce cas,
on n’a pas de solution optimale pour le problème initial mais on peut quand même
parler de solutions ε-optimales.
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La condition 4 (A) > −∞ pour tout A est fondamental pour obtenir une so-
lution optimale finie: si en effet 4 (A) = −∞ et supx u(x) = +∞ alors on peut
trouver une suite de portefeuilles admissible Xn tels que E[u(X+

n )] → +∞. Pour
cela il est important de bien choisir la mesure de risque ρ et, comme on montrera
dans le paragraphe (4.5.3), lorsque ξ est la densité de la probabilité martingale dans
un modèle de Black-Scholes et ρ = CV aR alors le problème n’a pas de solution car
4 (A) = −∞. En pratique, tester si 4 (A) > −∞ peut ne pas être facile: on donne
donc une condition nécessaire pour que cela soit verifiée:

Soit γmin la fonction de penalité minimale associée à la mesure de risque ρ.
Si

γmin(ξP) < +∞

alors
inf
A∈F
4 (A) > −∞

Pour les mesures de risque les plus populaires, la fonction γmin est suffisamment
explicite pour pouvoir tester cette condition et déduire si le problème a une solution
finie. Encore plus difficile peut parâıtre la maximisation de U(A, x+ (A)) lorsque A
décrit l’ensemble des événements mesurables F . Le résultat suivant prouve qu’on
peut réduire cette maximisation à une sous-classe d’événements mesurables indexée
par un paramètre réel:

Si la loi de ξ n’a pas d’atome et 4 (A) > −∞ pour tout A ∈ F alors

sup
ρ(−(X)−)≤ρ0,E[ξX]≤x0

E[u(X+)] = sup
c∈[ξ,ξ]

U({ξ ≤ c}, x+(c))

où ξ := essinf ξ, ξ := esssup ξ et x+(c) := x+({ξ ≤ c}).

L’existence d’un maximum pour la fonction c 7→ U({ξ ≤ c}, x+(c)) est difficile à
montrer en général pour toute mesure de risque. Cependant ce résultat nous permet
de trouver la solution explicite de notre problème de départ pour tout une grande
classe de mesures de risque, parmi lesquelles il y a certainement les plus connues
et utilisées en pratique: lorsque ρ est la mesure de risque entropique (pour laque-
lle la solution optimale existe toujours, Section 4.4); lorsque ρ est une mesure de
risque spectrale (pour laquelle la solution optimale peut ne pas exister, Section 4.5)
et lorsque ρ est une mesure de risque de type G-divergence (Section 4.6). Pour
conclure, on peut remarquer que l’algorithme de résolution issu du dernier résultat
est facilement implémentable numèriquement: dans le Paragraphe 4.4.2, on a pu
effectivement le tester pour la mesure de risque entropique, couplé avec la fonction
d’utilitè exponentielle et un modèle de Black and Scholes pour obtenir le payoff
optimal pour le gestionnaire de fond (Figure 4.2) et pour l’investisseur (Figure 4.4).

Dans la deuxième partie de cette thèse, je me suis interessé au problème de couver-
ture quadratique avec contraintes sur les stratégies. Le problème ensoi est très clas-
sique dans la littérature et plusieurs méthodes ont été developpées pour le résoudre
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dans un cadre très général. Ce type de couverture est devenue très populaire pour
les praticiens car elle est relativement facile à mettre en place lorsque il s’agit de
couvrir une option en marché incomplet, dans lequel il est bien connu que la cou-
verture parfaite est rarement possible. Dans sa formulation générale, le problème
de la couverture quadratique est le suivant:

Soit H ∈ L2 (FT ,P) et S une semimartingale. Sous des conditions appro-
priées d’intégrabilité, on cherche à

minimiser EP

[(
x+

∫ T

0
θtdSt −H

)2
]

lorsque x ∈ R et θ décrit un ensemble de stratégies que l’on appellera
”admissibles”

Si la solution de ce problème est connue, elle n’est néanmoins pas explicite pour
tout type de semimartingale. A ma connaissance, une solution semi-explicite est
disponible lorsque S est une martingale ou lorsque S a des propriétés particulières
(par example lorsque S est aux accroissements indépendants). D’un point de vue
pratique, il est donc important de pouvoir expliciter cette solution ou proposer des
méthodes numériques qui peuvent l’approcher.

Le problème reste également intéressant lorsqu’on le modifie de la manière suiv-
ante:

Supposons que S est une semimartingale multidimensionnelle et on cherche
à

minimiser EP

[(
x+

∫ T

0
θtdSt −H

)2
]

lorsque x ∈ R et θi = 0 pour tout i > 1.

Cette formulation est intéressante en pratique car il est possible que l’on n’ait pas
le droit d’investir dans une certaine classe d’actifs financiers qui, de même, peuvent
interagir avec la dynamique des actifs qui entrent dans notre portefeuille. Ou aussi
lorsque certains actifs financiers ne sont pas échangés sur le marché ou encore ne
peuvent pas être considérés comme des actifs financiers tout court (on pense, par
exemple, aux modèles à volatilité stochastique, ou’ le processus de volatilité ne peut
pas être utilisé comme actif de couverture).

Le modèle auquel je m’intéresse est donc le suivant:
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dZr := µ (r, Ur, Zr) dr + σ(r, Ur, Zr)dW
1
r +

∫
R
γ (r, Ur−, Zr−, y) J̄ (dydr)

dUr := µU (r, Ur)dr + σU (r, Ur)dBr +

∫
R
γU (r, Ur−, y) N̄ (dydr)

dPr := µP (r, Pr)dr + σP (r, Pr)dW
2
r +

∫
R
γP (r, Pr, y)J̄ (dydr)

où W,B sont deux mouvements Brownien et J,N deux mesures aléatoires de Pois-
son. L’actif financier dans lequel on peut investir est donné par S := exp(Z) et le
problème de couverture quadratique devient:

Pour une fonction f : R3 → R on cherche à

minimiser EP

[(
f(UT , PT , ZT )− x−

∫ T

0
θtd exp(Zt)

)2
]

lorsque x ∈ R et θ est une stratégie admissible.

Cette formulation explique bien le rôle de U et P : on imagine que U soit un facteur
de risque qui ”perturbe” la dynamique de notre actif financier (comme un facteur
de volatilité par exemple) et P est une autre source de risque qui influence la valeur
de l’option à la maturité. Ce type de problème est typique dans le marché des
commodités, en particulier du marché de l’électricité, duquel d’ailleurs je me suis
inspiré: en effet, dans ce marché l’actif financier qui représente le prix spot de
l’électricité ne peut pas être pensé comme un instrument de couverture, même s’il
influence la dynamique des autres actifs financiers. De plus, on peut bien imaginer
que les options sur livraison d’électricité peuvent dépendre d’un facteur externe de
risque (comme par exemple la température). Dans ce contexte, on notera par U le
prix spot de l’électricité et par P la température, qui donc ne feront pas partie de
la classe d’instruments financiers pour construire le portefeuille de couverture.

Dans le Chapitre 5, on commence à étudier le problème et donner ses propriétés
générales. Vu la nature Markovienne de notre modèle, on utilise les techniques
de la programmation dynamique pour caractériser la stratégie optimale à l’aide de
l’équation de Hamilton-Jacobi-Bellman. Par des arguments de projection orthogo-
nale dans les espaces de Hilbert, on montre d’abord que
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Si vf denote la fonction valeur du problème:

vf (t, u, p, z, x) := inf
θ
E

[(
f (UT , PT , ZT )− x−

∫ T

t
θr−d exp(Zr)

)2
]

où (UT , PT , ZT ) := (U t,uT , P t,pT , Zt,u,zT ), alors

vf (t, u, p, z, x) = a (t, u, z)x2 + b(t, u, p, z)x+ c(t, u, p, z)

où

a (t, u, z) = inf
θ
E

[(
1 +

∫ T

t
θr−d exp(Zt,u,zr )

)2
]

et bf et cf sont deux fonctions qui dépendent de f .

La fonction a ne dépend pas de l’option à couvrir f : elle est donc universelle dans
ce problème. Elle correspond à la mesure martingale optimale, qui est un outil fon-
damental pour résoudre le problème de couverture quadratique avec des méthodes
duales. Il est important pour la suite d’avoir des propriétés de régularité sur la
fonction a. En effet on peut montrer que

Il existe une constante C > 0 telle que

e−C(T−t) ≤ a (t, u, z) ≤ 1, pour tout t, u, z.

De plus, il existe T ∗ > 0 et Ka
lip ≥ 0 tels que si T < T ∗ alors on a

|a(t, u, z′)− a(t, u, z)| ≤ Ka
lip|z − z′|, pour tout t, u, z

Un théorème de vérification nous permet de caractériser les fonctions a, b, c et la
stratégie optimale du problème de couverture quadratique, si les fonctions a, b et
c sont les uniques solutions régulières d’un système de trois PIDEs. L’étude de la
régularité des ces fonctions sera fait dans les Chapitres 6 et 7.

Dans le chapitre 6, on étudie le problème lorsque on impose une condition de stricte
ellipticité sur la matrice de voltilité σ. On étudie d’abord les opérateurs différentiels
associés au processus (Z,U, P ) et, en utilisant des techniques de contraction dans des
espaces de Hölder appropriés, on arrive à montrer notre résultat principal (Théorème
6.8):
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Si T < T ∗ alors les fonctions a, b et c sont les uniques solutions de

0 = −∂a
∂t

+Ata− Bta− inf
|π|≤Π̄

{
2πQa+ π2Ga

}
0 = −∂b

∂t
+Atb− Btb− π∗Qtb

0 = −∂c
∂t

+Atc− Btc+
1

4

(Qtb)2

Gta

avec a(T, .) = 1, b(T, .) = −2f et c(T, .) = f2 dans l’espace de Hölder
C(1−δ)/2+1,2+(1−δ)([0, T ] × R3) pour un δ ∈ (0, 1). Ici A− B denotes
l’opérateur integro-différentiel associé au processus (U,P, Z) et Q,G sont
introduits dans la Définition 5.10. Le contrôle optimal est donné par

θ∗(t, u, p, z, x) := e−z
(
π∗(t, u, z)x− 1

2

Qtb
Gta

(t, u, p, z)

)
où

π∗(t, u, z) :=
Qta(t, u, z)

Gta(t, u, z)

On retrouve ici une des raisons qui ont fait de la couverture quadratique un outil très
efficace dans la gestion de portefeuille: en effet, pour trouver la stratégie optimale,
on doit résoudre une équation semi-linéaire (pour la fonction a) une fois pour toutes
et après on peut déterminer la stratégie optimale en résolvant une équation linéaire
(pour la fonction b), qui est relativement facile au moins numériquement. Cette
structure permet donc de déterminer la stratégie optimale pour plusieurs options à
couvrir au même temps, qui est numériquement efficace. La régularité de la fonction
valeur permet aussi d’implémenter des schémas numériques très fiables avec des
bons contrôles sur l’erreur d’approximation. De la structure de la fonction valeur,
on retrouve facilement le prix de couverture optimale, simplement en minimisant
sur x:

x∗(f)(t, u, p, z) := −b(t, u, p, z)
2a(t, u, z)

On retrouve ici une autre caractéristique de la couverture quadratique, c’est à dire
la linéarité de la strategie optimale et du prix optimal par rapport à l’option f . Cet
aspect est très pratique lorsque on veut couvrir une option qui est une complexe
combinaison linéaire d’options simples. Non négligeable est également le fait que la
linéarité du prix optimal par rapport à f est une propriété importante qu’on peut
observer sur le marché au moins pour les options liquides (les options vanille pour
exemple).

Dans le Chapitre 7, je donne un équivalent du résultat précédent lorsque on tra-
vaille avec des processus à sauts purs. Ce cas est très intéressant dans le contexte
des marchés de commodités car, comme cela a été observé dans plusieurs travaux
empiriques, les mouvements des prix des actifs financiers sont dus essentiellement
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à l’activité des sauts. De plus, la présence de pics dans les courbes des prix et
des queues de distribution très épaisses ne peuvent pas être expliqués par un com-
portement Gaussien des actifs au moins à une petite échelle de temps. Le modèle
simplifié qu’on va étudier est donc

dZr := µ (r, Zr) dr +

∫
R
γ (r, Zr−, y) J̄ (dydr)

et

vf (t, z, x) := inf
θ
E

[(
f
(
Zt,zT

)
− x−

∫ T

t
θr−d exp(Zt,zr )

)2
]

On ne pourra pas s’attendre à une regularité de la fonction valeur comme dans le
cas précédent, qui, on le rappelle, était due à la présence du mouvement Brownien.
Pour avoir la régularité nécessaire, on assume que les petits sauts de la mesure J se
comportent comme dans le cas d’un processus α-stable avec α ∈ (1, 2):

ν(dy) := g(y)|y|−(1+α)

avec g positive, bornée et avec une décroissance appropriée à l’infini, pour
garantir l’intégrabilité de Z.

Le choix d’une mesure de Lévy de ce type est dû au fait qu’on pourra montrer com-
ment l’opérateur integro-différentiel associé à Z peut être approché par l’opérateur
integro-différentiel associé à un processus de Lévy α-stable. Pour ce type de pro-
cessus on a des estimations sur leur densité de probabilité, ce qui nous permet-
tra finalement de réutiliser les techniques de contractions appliquées dans le cadre
précédent:

Btϕ(z) :=

∫ (
ϕ(t, z + γ(., y))− ϕ(t, z)− γ(., y)

∂ϕ

∂z
(t, z)1{|y|≤1}

)
ν(dy)

 

Bstt ϕ(z) :=

∫ (
ϕ(t, z + y)− ϕ(t, z)− y∂ϕ

∂z
(t, z)1{|y|≤1}

)
νst(dy)

νst(dy) :=
g(0+)

|y|1+α
1{0<y} +

g(0−)

|y|1+α
1{y<0}

Néanmoins, on remarque que dans ce contexte, on n’a pas besoin de travailler
avec des fonctions valeur deux fois différentiables. Le résultat auquel on parvient
est le suivant:
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Supposons que d
dyγ(t, z, 0) = 1 pour tout t, z. Si 0 < δ < α − 1 et T < T ∗

alors les fonctions a, b et c sont les uniques solutions de

0 = −∂a
∂t
− µ∂a

∂z
− Bta− inf

π∈R

{
2πQa+ π2Ga

}
0 = −∂b

∂t
− µ∂b

∂z
− Btb− π∗Qtb

0 = −∂c
∂t
− µ∂c

∂z
− Btc+

1

4

(Qtb)2

Gta

avec a(T, .) = 1, b(T, .) = −2f et c(T, .) = f2 dans l’espace de Hölder de
type 2 Hα+δ([0, T ]×R) et différentiables par rapport à t; le contrôle optimal
est donné par

θ∗(t, z, x) := e−z
(
π∗(t, z)x− 1

2

Qtb
Gta

(t, z)

)
, où π∗(t, z) :=

Qta(t, z)

Gta(t, z)

La structure du contrôle optimal et ses propriétés sont les mêmes que dans le cadre
précédent. Par contre, l’hypothèse sur la régularité de γ au point zero peut parâıtre
très contraignante: à titre d’exemple, la fonction γ(t, z, y) := γ̂(t, z)y la vérifie si
et seulement si γ̂(t, z) := 1 qui réduit énormément la classe de modèles qu’on peut
étudier. Cependant, dans la Section 7.5 du même chapitre, on montrera que cette
hypothèse peut être supprimée si on impose des conditions de bornitude sur les
dérivées de la fonction γ par rapport à y en zéro, ces conditions étant verifiés dans
la plupart des modèles qu’on retrouve en pratique. Dans la Section 7.7 qui conclut
le chapitre, on traite le cas ou’ le processus Z est à variation finie. Dans ce cas, on
n’a plus besoin d’imposer de conditions sur la fonction γ: en effet, dans ce cas là,
les équations de Hamilton-Jacobi-Bellman peuvent être dérivées sans supposer de
régularité particulière si la fonction de dérive µ = 0. On va donc faire un changement
de variable Lt = φ(t, Zt) pour que le nouveau processu L n’ait pas de drift. Si on
réécrive le problème en termes de L et on note par vL la fonction valeur du problème
alors le résultat qu’on a est le suivant:
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On a vL(t, l, x) = x2aL(t, l) + xbL(t, l) + cL(t, l) et si T < T ∗ alors les
fonctions aL, bL et cL sont les uniques solutions de

0 = −∂a
L

∂t
− BLaL − inf

π∈R

{
2πQLaL + π2GLaL

}
0 = −∂b

L

∂t
− BLbL − π∗QLbL

0 = −∂c
L

∂t
− BLcL +

(QLbL)2

4GLaL

avec a(T, .) = 1, b(T, .) = −2f et c(T, .) = f2 dans l’espace de Hölder de
type 2 H1([0, T ]×R) et différentiables par rapport à t; le contrôle optimal
est donné par

θ∗(t, l, x) := e−φ
−1(t,l)

(
π∗(t, l)x− 1

2

QLb(t, l)
GaL(t, l)

)
, où

π∗(t, l) := −Q
L
t a

L(t, l)

GLt aL(t, l)

Dans le Chapitre 8 on applique les résultats obtenus sur le problème de la couverture
quadratique à un problème pratique du conteste des marchés de l’électricité. Ce
Chapitre est le fruit d’une intense collaboration avec Xavier Warin de l’équipe R&D
de EDF France. Après avoir donné une brève description de ces marchés (Section
8.1), on introduit dans la Section 8.2 le ”future”, un produit financier très populaire
qu’on va utiliser comme instrument de couverture:

Un contrat future de maturité T et durée de livraison d est un produit
qui permet d’acheter de l’électricité à prix fixé qui sera livré à la date T
pour une période d. Son prix à la date t est noté Fd,T,t. Le problème de
couverture quadratique est

minimiser E

[(
f̃(Fd,T,t)− x−

∫ T

t
θu−dFd,T,t

)2
]

Un modèle classique proposé dans la littérature est d’assumer que le prix du future
soit une déformation aléatoire de la courbe des prix à la date 0:
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On introduit d’abord

Ls = ζs+

∫ s

0

∫
R
yJ̄(dyds) et At :=

∫ t

0
ecsdLs

pour ζ ∈ R , c ≥ 0 et J mesure de Poisson. On prend ensuite Fd,T,t :=
exp(Φ(At)) ou’

Φ(A) := log

(
1

d

∫ T+d

T
ψ(0, s) exp

(
e−csA

)
ds

)
et s→ ψ(0, s) est la curve des prix à terme à la date zéro.

On montre d’abord que la dynamique de ce produit financier satisfait les hypothèses
du modèle décrit dans le Chapitre 7 et ensuite on réécrit le problème de la couverture
quadratique de la manière suivante:

Le processus Zt := log(Fd,T,t) vérifie l’EDS:

dZt = µ(t, Zt)dt+

∫
γ(t, Zt−, y)J̄(dydt)

où les coefficients sont donnés par

γ(t, z, y) := Φ(Φ−1(z) + yect)− z

µ(t, z) := ζectΦ′(Φ−1(z)) +

∫
|y|≤1

(
γ(t, z, y)− yectΦ′(Φ−1(z))

)
ν(dy)

et le problème de couverture quadratique se transforme

vf (t, z, x) = inf
θ
E

[(
f(Zt,zT )− x−

∫ T

t
θu−d exp(Zt,zs )

)2
]

On peut donc appliquer nos résultats pour caractériser la fonction valeur et déterminer
la stratégie optimale. Cette modélisation permet notamment de couvrir les options
dont le sous-jacent est un future avec durée de livraison différente: par exemple
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Soit p(x) = (G− x)+, d′ 6= d et

h(A) :=
1

d′

∫ T+d′

T
ψ(0, s)eg(s)Ads

Il s’ensuit que h ◦Φ−1(Zt) = Fd′,T,t. En particulier, le problème de couver-
ture quadratique pour f = p ◦ h ◦ Φ−1(Zt) devient

minimiserE

[(
(G− Fd′,T,t)+ − x−

∫ T

t
θu−dFd,T,u

)2
]

ce qui correspond à couvrir une option put dont le sous-jacent est Fd′,T
avec un portefeuille composé de contrats futures avec durée de livraison
d. Cet aspect est intéressant lorsque on veut couvrir des options dont le
sous-jacent n’est pas échangé sur le marché (en effet, les future qui sont
échangés sur le marché ont des durées de livraison standardisées, 1 mois, 3
mois, etc.).

Dans la Section 8.3, on propose un schéma numérique pour résoudre les PIDEs
associées introduites dans le Chapitre 7. On conclut avec la Section 8.4 où’ on
teste nos schémas lorsque le processus de Lévy L est un NIG (Normal Inverse
Gaussian). Pour ce type de processus, qui est très populaire pour les praticiens, nos
résultats ne peuvent pas s’appliquer directement car les petits sauts de ce processus
se comportent comme les sauts d’un processus α-stable avec α = 1. Cependant, les
résultats numériques qu’on trouve semblent être très satisfaisants et suggèrent que
la fonction valeur dans ce cas particulier aussi est régulière.
Les schémas numériques utilisés dans le Chapitre 8 on montré l’importance d’étudier
des PIDE sur un domaine tronqué, de la forme [0, T ]× [−Z,Z], avec une condition
de Dirichlet artificielle au bord. Dans le Chapitre 9, qui conclut cette thèse, on
s’intéresse donc à une PIDE de la forme



0 = −∂a
∂t

+ ηa+Ata− Bta−H[a] (t, z) ∈ [0, T )× (−Z, Z)

a(T, z) = eηT z ∈ (−Z, Z)

a(t, z) = eηtq(t, z) (t, z) ∈ [0, T ]× (−Z, Z)c

où q est une fonction régulière.

Pour simplifier, on suppose que les coefficients du processus Z ne dépendent pas
de U et que la fonction de volatilité σ est strictement positive. Analyser cette
PIDE directement peut s’avérer très compliqué si la mesure de Lévy n’est pas finie.
L’idée est donc de transformer le problème initial, qui correspond au choix des
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paramètres
(
µ, σ2, γ, ν(dy)

)
, en remplaçant les petits sauts du processus Z par un

mouvement Brownien. À ces nouveaux paramètres correspond un nouveau problème
d’optimisation:

Pour h > 0 on définit γh(t, z) =
∫
|y|≤h γ

2(t, z, y)ν(dy) et les nouveaux

paramètres
(
µ, σ2 + γh, γ, ν(dy)1{h<|y|}

)
. Soit ah la fonction valeur du

problème de couverture quadratique lorsque f = 0 et x = 1, correspon-
dant à ces nouveaux paramètres. Alors

1.
∥∥a− ah∥∥

2−δ,H → 0 lorsque h→ 0

2.
∥∥π∗ − (πh)∗

∥∥
1−δ,H → 0 lorsque h→ 0

où a est la fonction valeur du même problème avec les paramètres initiaux
et π∗ est le contrôle optimal correspondant.

Ce résultat nous donne une première approximation pour la fonction a. De
plus, comme la nouvelle mesure de Lévy est finie, on déduit que les opérateurs non
locales, associés au processus Z avec les nouveaux paramètres, sont d’ordre zéro.
On va donc tronquer la PIDE qui caractérise la fonction ah plutôt que celle de a et
on prouve que

Si la condition de Dirichlet est suffisamment régulière alors la PIDE

0 = −∂a
tr

∂t
+ ηatr +Aht atr − Bht atr −Hh[atr] (t, z) ∈ [0, T )× (−Z, Z)

atr(T, z) = eηT z ∈ (−Z, Z)

atr(t, z) = eηtq(t, z) (t, z) ∈ [0, T ]× (−Z, Z)c

a une unique solution atr ∈ C1+κ/2,2+κ([0, T ] × [−Z,Z]), où κ ∈ (0, 1), et
les opérateurs Ah, Bh et Hh sont les opérateurs différentiels usuels, corre-
spondant aux nouveaux paramètres.

Cela nous permet d’évaluer l’erreur entre la fonction atr et ah:
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Soit

βt,z := T ∧ inf
{
s > t;

∣∣Zt,zs ∣∣ ≥ Z}
le premier instant de sortie du processus Z (correspondant aux nouveaux
paramètres). Pour tout (t, z) ∈ [0, T ]× [−Z,Z] on a∣∣∣ah(t, z)− atr(t, z)

∣∣∣ ≤M1

∥∥∥ah − q∥∥∥
∞,[0,T ]×[−Z,Z]c

P
(
βt,z < T

)1/2
où M1 est une constante positive qui ne dépend pas de t, z, ah, q ou Z. De
plus, il existe une constante M2 > 0 tel que

P
(
βt,z < T

)
≤ M2

Z2 (1 + z2)

On a donc une estimation de l’erreur entre la fonction a et atr, qui est dû, à la fois,
à la troncature des petits sauts du processus Z et à la troncature du domaine de
la PIDE. À une constante près, cette erreur est majorée par la probabilité de sortie
du domaine du processus Z, qui décroit à zéro lorsque Z → +∞.

En appendice, on trouvera des résultats techniques qui ont été utilisés au cours de
cette thése: sur l’exponentielle stochastique d’une semi-martingale (Appendice A);
sur une équation différentielle cubique (Appendice B); sur les espaces de Hölder
(Appendice C); sur la formule de Ito pour les processus à sauts (Appendice D); sur
la densité d’un processus d’Itô α-stable (Appendice E).



Chapter 2

Introduction

The main object of this thesis is to propose, investigate and solve some problems
on portfolio management theory. The work is composed of two parts. In the first
one we propose a new problem concerning the utility maximization theory, where
the usual convex structure of the problem is removed (by a modification of the
maximization criterion) and a new type of constraint is imposed on the admissible
strategies, inspired by portfolio insurance problems. In the second one we solve
the quadratic hedge problem for a class of discontinuous Markovian models which
turns out to be well adapted in the context of commodities markets, which partially
inspired this work. The mathematical tools and the methodologies used in the two
parts are completely different. In the first one we privilege the so called ”dual”
formulation which is more adapted in the context of utility maximization theory
when the market is complete, whereas in the second one, where no assumptions are
made on the completeness on the market, we exploit the Markovian structure of the
model in order to implement the well known dynamic programming principle and
the relative Hamilton-Jacobi-Bellman equations.

The thesis starts with a brief but sufficiently complete introduction on risk mea-
sures (Chapter 3), which have become an important tool in finance. After a short
discussion of their properties (Sections 3.1–3.2) we recall some of the most popular
risk measures: the Value at Risk VaR, the Conditional Value at Risk CVaR and
more generally the spectral risk measures (Section 3.3); the entropic risk measure
and the G-divergence (Section 3.4). These special risk measures present many nice
properties and are analytically tractable, so that they will be used to deduce explicit
results in our non-standard utility maximization problem. The problem is presented
in Chapter 4 and in Section 4.2 we develop our methodology to solve it and pro-
pose its solution. An important issue of this chapter is to show how the problem
may fail to have a finite solution if the risk measure does not fill a non-degeneracy
assumption. For this we provide a criterion, easy to check, which guarantees the
existence of a finite solution and an algorithm to explicitly compute the optimal so-
lution. We then start to test our results on practical examples: in Section 4.4 we use
the entropic risk measure and we provide a simple numerical experiment; Section
4.5 is devoted to the study of the maximization problem when one uses a general
spectral risk measure and we provide a criterion under which the problem has a
finite solution. The special case of the CVaR is treated in Paragraph 4.5.3, whereas
the G-divergence case is studied in Section 4.6. Section 4.7, which concludes the
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chapter, is devoted to a comparison with other types of portfolio insurance which
have been studied in the literature.

The second part of the thesis is devoted to the quadratic hedge problem for
discontinuous Markovian models. The problem in all its generality is presented in
Chapter 5, starting by a short survey on what is already done in the literature (Sec-
tion 5.1) and what is new in our work. As already pointed out in many previous
works, a fundamental step to solve the quadratic hedge problem is the so called pure
investment problem: basically it is the quadratic hedge problem when one wants
to hedge the option with payoff f = 0. Both the quadratic hedge and the pure
investment problem are introduced in Section 5.2 together with a general class of
Markovian models used in the thesis. The model consists of a three-dimensional
process (Z,U, P ), where exp(Z) is the hedging instrument traded in the market, U
is a risk factor in the dynamics of Z which cannot be used as a hedging instrument
(as a volatility factor for example) whereas P is another factor of risk which influ-
ences the option one wants to hedge and is also not traded in the market. In Section
5.3 we recall many properties of the value function corresponding to the pure in-
vestment problem, and we use them to prove that it is uniformly bounded from
below by a strictly positive constant, and Lipschitz continuous, whereas Section 5.4
shows many general properties on the structure of the quadratic hedge problem.
In Sections 5.5, we first introduce the integro-differential operators related to the
Markovian discontinuous model, and then we characterize the value function of the
pure investment problems as the solution of a semi linear PIDE, provided that this
PIDE has a unique smooth solution. This is done with a verification argument, and
it also give us the optimal strategy for the pure investment problem. We repeat this
procedure in Section 5.6 for the value function of the quadratic hedge problem. The
existence and uniqueness of the solution of these PIDEs are studied in Chapters
6–7. We finally give a survey on the viscosity solution theory and see how it can be
used in our context (Section 5.7).

In Chapter 6 we assume that the Markovian model used in the quadratic hedge
problem is a non degenerate jump-diffusion, which is done by assuming strict el-
lipticity on the matrix of the Brownian component. Section 6.1 is devoted to the
study of the integro-differential operators associated to the jump-diffusion model:
in particular we focus on their behavior when one considers them as operators in an
appropriate Hölder space. We obtain some fundamental results on their continuity
in this space. In Section 6.2, we expose the methodology we use to prove that the
HJB equation corresponding to the value function of the pure investment problem
has a unique solution in a Hölder space of smooth functions. The proof is a mixture
of contraction techniques in Banach spaces (classical tool for specialists in differen-
tial equations) and probabilistic techniques. Other methods to solve this problem
are discussed in Paragraph 6.2.4, especially the ones making use of Backward SDEs
or Sobolev spaces. Once one knows the value function of the pure investment prob-
lem, it is straightforward to characterize the value function of the quadratic hedge
problem. In Section 6.3 we prove our main result concerning the quadratic hedge
problem for jump-diffusion models: its value function can be characterized as the
solution of a triplet of Partial integro-differential equations, the first of which is semi
linear and it corresponds to the value function of the pure investment problem; the
other two are linear, so relatively easy to solve (at least numerically).
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The results of Chapter 6 are derived by assuming, in particular, that the matrix
of the Brownian component is strictly elliptic. This assumption seems to be very
restrictive if one wants to apply our results, for example, to the quadratic hedge
problem in commodities markets. In these markets, it is popular to model the
stock price as a purely discontinuous process, which basically corresponds to assume
that Brownian component is equal to zero. Motivated by many discussions with
practitioners in commodities markets, in Chapter 7 we assume that the stock price
process is driven by a Poisson random measure. We start Chapter 7 by introducing
a pure jump model for the stock price used for the quadratic hedge problem, for
which we assume some properties on its Lévy measure (Section 7.1). In particular
we assume that the small jumps of the process ”look like” the jumps of an α-stable
process, i.e. the Lévy measure has a density w.r.t. the Lebesgue measure, which is
assumed to be a weighted deformation of the density of an α-stable Lévy process
with α ∈ (1, 2). This is done since many properties are known for these processes,
in particular on their density, and this will allow us to prove the smoothness of the
value function. We proceed then as in Chapter 6 by studying the integro-differential
operators in a new functional space that we call Hölder space of type 2. This is
done since in the pure jump case we cannot expect the same regularity for the value
function as before. The fundamental result in this case is that we can replace the
principal term of the HJB solved by the value function with the integro-differential
operator associated to an α-stable Lévy process, for which we know many properties
(Paragraph 7.3). We prove (Paragraphs 7.4.1–7.4.2) that the value function of the
pure investment problem can be characterized as the unique smooth solution in an
appropriate Hölder space of type 2 of a semi linear PIDE. We can finally characterize
the value function of the quadratic hedge problem in the pure jump case (Section
7.6), and, as in Chapter 6, we find that it solves a triplet of semi linear PIDEs.
Section 7.7, which concludes the chapter, is devoted to the study of the problem
when the stock price is modeled by a finite variation pure jump process (which
includes the case α ∈ (0, 1) excluded before): in this relatively simple case we also
find that the value function is characterized by a triplet of PIDEs which have a
unique solution in the space of Lipschitz continuous functions.

We can finally apply the results provided in Chapter 7 on a practical problem
from the portfolio management in electricity markets. Chapter 8 summarizes an
intense and fruitful collaboration with Xavier Warin of R&D department of EDF
France. We first discuss why financial instruments in electricity markets are gener-
ally modeled by pure jump processes (Section 8.1) and then we present the future
contract, a popular hedging instrument in these markets (Section 8.2). Section 8.3
is devoted to the numerical methodology used to solve the PIDEs related to the
value function of the quadratic hedge problem. We conclude the Chapter by using
these schemes when the future contract is modeled as a random deformation of the
forward curve, the randomness coming from a NIG process, which corresponds to
the case α = 1 in Chapter 7. Although for this case we cannot directly apply our
result and then it should be considered as a degenerate case in some sense, the
numerical results that we obtain are encouraging. In particular we obtain a numer-
ical approximation for the value function of the pure investment problem and its
optimal control and the profiles for the value functions of an at-the-money call and
put options written on the future contract.
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The numerical schemes used in Chapter 8 showed that it is important to study
the PIDEs on a bounded domain and to quantify the truncation error. We do this
analysis in Chapter 9 where, to simplify, we assume that the process Z does not
depend on U . In a general framework it is not easy to study these PIDEs on a
bounded domain, unless one assumes that the intensity measure of the process Z is
finite. Since the method can be readapted for all the PIDEs, we just study the PIDE
characterizing the value function of the pure investment problem a. We provide a
first approximation of this value function by cutting the small jumps of the process
Z and replacing them with a Brownian motion. This is equivalent to consider the
model with new parameters, where, in particular, one has a finite intensity measure.
This new model leads to a new value function of the pure investment problem and in
Section 9.2 we are able to give an estimate on the error between the value function
a and the new value function, and prove that we can make this error as small
as we want, provided that the level at which we cut the jumps is small enough.
Once we have approximated this value function, we concentrate on the PIDE that
characterizes this new value function. We first prove that the truncated version
of this PIDE also has a unique smooth solution (Section 9.3) and finally give an
estimate on the error between the new value function and the unique solution of
the truncated PIDE (Section 9.4).

We conclude the thesis with several appendices in which one can find many
interesting technical results that we used throughout the thesis: on stochastic ex-
ponentials for semimartingales (Appendix A); on a cubic differential equation (Ap-
pendix B); on Hölder spaces (Appendix C); on Itô’s formula for pure jump processes
(Appendix D) and on the density of α-stable Lévy processes (Appendix E).
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Chapter 3

An overview on Risk measures

In this chapter we will recall the axiomatic definition of risk measures and their
main properties (Section 3.2). We then describe some of the most popular risk
measures used in finance: the Value-at-Risk (VaR), the Conditional Value-at-Risk
(CVaR) and, more generally, the spectral risk measures (Section 3.3); the Entropic
risk measure and the G-divergence (Section 3.4). Since we are more interested in
the use of them in risk management, we restrict ourselves to a brief survey on their
axiomatic definition and their main properties. Excellent works on the subject can
be found in our references.

Contents

3.1 Practical needs of the risk measures: empirical evidence 31
3.2 Law invariant risk measures . . . . . . . . . . . . . . . . . 32

3.2.1 Definition and main properties . . . . . . . . . . . . . . . 32
3.2.2 Representation of convex risk measures . . . . . . . . . . 33

3.3 VaR, CVaR and spectral risk measures . . . . . . . . . . 35
3.4 G-divergence and entropy . . . . . . . . . . . . . . . . . . 37
3.5 Risk Measures on Lp-spaces . . . . . . . . . . . . . . . . . 38

3.1 Practical needs of the risk measures: empirical ev-
idence

The last decade of 1980 has seen the increasing interest for risk measures. Ex-
plicit references to them can be found in many reports by the Basel Committee of
Banking Supervision (BCBS) and the well known Basel accords (Basel Committee,
1996, 2004). The main objective was to find a way to measure the exposure to risks
for investors, banks, and, more generally, for financial institutions. They become a
fundamental tool in risk management for banks and insurance companies since they
use them to compute, for example, minimal capital requirements:

[. . .]A significant innovation of the revised Framework is the greater use
of assessments of risk provided by banks internal systems as inputs to capital
calculations. In taking this step, the Committee is also putting forward a
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detailed set of minimum requirements designed to ensure the integrity of these
internal risk assessments. [. . .]Basel Committee (2004)

The above citation suggests a way to define these risk measures: roughly speaking
a risk measure can be thought as the extra capital one needs to add to her portfolio
in order to have a new portfolio with zero risk. The question now is the following:
what is a portfolio with zero risk? This procedure is not yet satisfactory but gives
us an important property for any reasonable definition of risk measure: in order
to define it, one only needs to be able to identify the portfolios with zero risk. In
particular two portfolios with the same risk should keep the same risk exposure
if one adds the same amount of capital to both of them. Remark however that
deciding which portfolios have zero risk is a subjective choice. Following these ideas
Artzner et al. (1999) first gave a precise definition of what should be a reasonable
definition of a risk measure.
We want to give here a simple example of what should not be a good way to measure
the risk: assume that there are two portfolios, say P1 and P2, at time t = 0, such
that at time t = 1 they have the following distribution:

P1 =

{
1 on the set A
−1 on the set Ac

P2 =

{
100 on the set A
−100 on the set Ac

where A is a set of possible scenarios with P(A) = 1/2. If we agree to measure
the portfolio’s risk with the probability of being negative then risk(P1) = risk(P2),
whereas risk(P1 + 1) > risk(P2 + 1). It follows that adding the same amount to
both the portfolios changes their risk in a different way. This violate the property
seen before that any reasonable risk measure should have. Remark that any investor
would agree that the portfolio P2 is more risky than P1, so that this way of measure
the portfolio’s risk is not reasonable.

3.2 Law invariant risk measures

3.2.1 Definition and main properties

We now present the construction of risk measures for bounded random variables
in the static case, by following the ideas of Föllmer and Schied (2004). For the
dynamic definition of risk measures we refer to Frittelli and Gianin (2004); Bion-
Nadal (2008, 2009) and references therein. The use of quadratic BSDEs in the
dynamic risk measures theory can be found in Barrieu and El Karoui (2004, 2008)
and their related bibliography.
Let (Ω, F , P) be a probability space and L∞ := L∞(Ω,P) the Banach space of (es-
sentially) bounded random variable X : Ω→ R. The multidimensional case has to
be carefully treated because there are some non trivial technical difficulties; however
the main results that we will present can be extended in the multidimensional case
(Jouini et al., 2004; Ekeland et al., 2009; Ekeland and Schachermayer, 2011).

Definition 3.1. A law invariant risk measure ρ on L∞(Ω) is a functional ρ :
L∞(Ω)→ R verifying the following properties:

i). For any X ≤ Y P-a.s. ρ(X) ≥ ρ(Y ) (Monotonicity)
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ii). For any m ∈ R ρ(X +m) = ρ(X)−m (Cash Invariance)

We say that ρ is normalized if ρ(0) = 0. ρ is said to be law invariant if

ρ(X) = ρ(Y ) whenever X
L
= Y

From now on, except when mentioned, we consider all risk measures to be law
invariant.

Definition 3.2. Let ρ be a risk measure on L∞(Ω).

i). We say that ρ is convex if for any λ ∈ [0, 1] and any X,Y ∈ L∞(Ω) one has
ρ (λX + (1− λ)Y ) ≤ λρ (X) + (1− λ)ρ (Y ) .

ii). We say that a convex risk measure ρ is coherent if for any m ≥ 0 and any
X ∈ L∞(Ω) one has ρ(mX) = mρ(X)

The financial meaning of Definition 3.1 is clear. More interesting are the condi-
tions given in Definition 3.2: condition i) essentially says that if the risk is measured
with a convex risk measure ρ then diversification decreases the risk, whereas condi-
tion ii) says that proportional portfolios have proportional risks.

The cash invariance and monotonicity property also gives that any risk measure
is Lipschitz continuous : |ρ(X)− ρ(Y )| ≤ ‖X − Y ‖∞. An important object related
to risk measures is the so called acceptance set :

Aρ := {X ∈ L∞ | ρ(X) ≤ 0} (3.1)

This set has some interesting properties, in particular the fact that any risk measure
can be recovered from its acceptance set. We list here some properties of Aρ:

Lemma 3.3. Let X,Y ∈ L∞ and Aρ as in (3.1). Then:

i). If X ∈ Aρ and Y ≥ X then Y ∈ Aρ and inf {x ∈ R | x ∈ Aρ} > −∞

ii). ρ admits the representation :ρ(X) = inf {x ∈ R | x+X ∈ Aρ}

iii). If ρ is a convex risk measure then Aρ is a convex subset of L∞

iv). If ρ is a coherent risk measure then Aρ is a convex cone in L∞

Conversely, a risk measure can be defined from a suitable acceptance set: let
A ⊆ L∞ be a set of bounded random variables which verifies the property i) of
Lemma 3.3. Then the functional ρ defined in Lemma 3.3 iii) is a risk measure,
which is convex if A is a cone, and coherent if A is a convex cone.

3.2.2 Representation of convex risk measures

In this paragraph we will recall some well known results on the representation
of convex risk measures. We keep following Föllmer and Schied (2004) and we refer
to them for the proofs. The general result is the following:
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Theorem 3.4. For any convex risk measure ρ (not necessarily law invariant) there
exists a functional γmin :M1,f → [0, 1], where M1,f is the set of normalized finite
additive measures on F , such that

ρ(X) : sup
Q∈M1,f

(
EQ [−X]− γmin (Q)

)
, X ∈ L∞

The functional γmin is called the minimal penalty function and it is related to ρ by

γmin (Q) := sup
X∈Aρ

EQ [−X] (3.2)

If ρ is coherent then γmin takes values in {0, +∞}.

The above Theorem shows that any risk measure can be characterized by a
functional on M1,f . However it is preferable to have a representation for which
the minimal penalty takes finite values only on true probabilities, which have to be
σ−additive. This is possible if the risk measure has a regular behavior in the sense
of the Definition below:

Definition 3.5. We say that a convex risk measure is continuous from below if for
any Xn ↗ X we have ρ(Xn) ↘ ρ(X), Xn, X ∈ L∞. We say that it is continuous
from above if for any Xn ↘ X we have ρ(Xn)↗ ρ(X)

Theorem 3.6. Let ρ be a convex risk measure (not necessarily law invariant) con-
tinuous from below. Then

ρ(X) : sup
Q∈M1

(
EQ [−X]− γmin (Q)

)
, X ∈ L∞

where M1 is the set of probabilities on (Ω,F). In this case ρ is also continuous
from above and satisfies the Fatou’s property

Xn → X P-a.s. then ρ(X) ≤ lim inf
n→∞

ρ(Xn)

Theorems 3.4–3.6 hold true for any convex risk measure not necessarily law
invariant: when it is the case, the minimal penalty functional takes values in a
particular subset of M1:

Theorem 3.7. Let ρ be a law invariant convex risk measure. Then

ρ(X) : sup
Q�P

(
EQ [−X]− γmin (Q)

)
, X ∈ L∞

if and only if ρ is continuous from above, or equivalently, if and only ρ has the
Fatou’s property

Xn → X P-a.s. then ρ(X) ≤ lim inf
n→∞

ρ(Xn)

In the next sections we will present some of the most popular risk measures and
their main properties.



Chapter 3. An overview on Risk measures 35

3.3 VaR, CVaR and spectral risk measures

Let λ ∈ (0, 1) andX ∈ L∞. A λ-quantile ofX is a real number in
[
q−λ (X) , q+

λ (X)
]

where

q−λ (X) := inf {x ∈ R|P (X ≤ x) ≥ λ}
q+
λ (X) := sup {x ∈ R|P (X < x) ≥ λ}

Definition 3.8. The Value-at-Risk of X at level λ is defined as

V aRλ (X) :=− q+
λ (X) = inf {m ∈ R |P (X +m < 0) ≤ λ} (3.3)

Equivalently we also have that V aRλ (X) = −F−1
X (λ) where F−1

X is a generalized in-
verse distribution function of X. Since the generalized inverse distribution function
has at most a countable number of discontinuities, this definition does not depend
on the particular choice of this function (right-continuous or left-continuous). We
shall always use the definition

F−1
X (λ) := inf{x : F (x) ≥ λ} (3.4)

with the convention inf ∅ = +∞.

It is not difficult to prove that the V aRλ is a law invariant risk measure. Many
examples have shown that the V aR is not a convex risk measure. This feature has
some important financial consequences: in risk management diversification in the
portfolio selection should decrease its risk, but if we measure this risk with the V aR
then this is not always the case.

Example 3.9. Let P1 and P2 the two portfolios in Section 3.1 and assume that P1

is independent from P2. It is easy to verify that

V aRλ(P1) =

{
1 if λ < 0.5
−1 if λ ≥ 0.5

V aRλ(P2) =

{
100 if λ < 0.5
−100 if λ ≥ 0.5

and

V aRλ(
1

2
P1 +

1

2
P2) =


50.5 if 0 < λ < 0.25
45.5 if 0.25 ≤ λ < 0.5
−45.5 if 0.5 ≤ λ < 0.75
−50.5 if 0.75 ≤ λ < 1

If now we take 0.5 ≤ λ < 0.75 we obtain

−45.5 = V aRλ(
1

2
P1 +

1

2
P2) >

1

2
V aRλ(P1) +

1

2
V aRλ(P2) = −50.5

which shows that diversification does not decrease the risk.

In spite of the above example, the V aR is a popular risk measure which is
widely used by practitioners since it has a simple financial interpretation. Our first
example of risk measure which is, at the same time, convex and simple to use, is
the so called Conditional Value-at-Risk:
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Definition 3.10. The Conditional Value-at-Risk of X at level λ is defined as

CV aRλ (X) :=
1

λ

∫ λ

0
V aRu (X) du = − 1

λ

∫ λ

0
F−1
X (u)du (3.5)

The following Proposition lists some properties of the CV aR:

Proposition 3.11. Let λ ∈ (0, 1). The CV aRλ is a coherent risk measure and it
admits the representation

CV aRλ (X) = sup
Q∈Hλ

EQ [−X] , Hλ :=

{
Q� P | dQ

dP
≤ 1

λ
P− a.s.

}
The supremum in the above representation is achieved by the probability

dQ∗

dP
:=

1

λ

(
1{X<q} + k1{X=q}

)
where q is any λ-quantile in

[
q−λ (X) , q+

λ (X)
]

and

k =

{
0 if P (X = q) = 0

λ−P(X<q)
P(X=q) otherwise

From the above Proposition we can determine the minimal penalty function for the
CV aRλ:

γmin (Q) :=

{
0 if dQ

dP ≤
1
λ , P-a.s

+∞ otherwise
(3.6)

It can also be proved that if (Ω, F , P) is atomless then the CV aR is the smallest
law invariant convex risk measure to be continuous from below that dominates the
V aR (Föllmer and Schied, 2004).

Proposition 3.12. Let λ ∈ (0, 1), X ∈ L∞ and q be a λ-quantile for X in[
q−λ (X) , q+

λ (X)
]
. Then

CV aRλ (X) =
1

λ
inf
s∈R

(
E
[
(s−X)+

]
− λs

)
=

1

λ
E
[
(q −X)+

]
− q

The representation given in Proposition 3.12 is much more simple to handle then
the one given in Proposition 3.11, especially in risk management problems, since the
maximization can be carried out over the real line instead of a set of probabilities.
The CV aR is a special case of the so called spectral risk measure:

Definition 3.13. Let µ be a probability measure on (0, 1). The related spectral risk
measure is defined as

ρµ (X) :=

∫ 1

0
CV aRu (X)µ(du) (3.7)

It is straightforward to see that ρµ is a coherent risk measure continuous from
above, since the CV aR is. In particular, if λ ∈ (0, 1) and µ(du) = δλ(du) then
ρµ = CV aRλ. Furthermore, from the definition of CV aR we also can write

ρµ (X) :=

∫ 1

0
µ̃(u)V aRu (X) du where µ̃(u) :=

∫ 1

u

µ(dx)

x
(3.8)

The function µ̃ is right-continuous, non increasing and normalized:
∫ 1

0 µ̃(u)du = 1.
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Lemma 3.14. Let (ρi)i be a family of convex risk measures such that supi ρi(0) <
+∞. Then

ρ(X) := sup
i
ρi(X)

is a convex risk measure.

Using Lemma 3.14 we can define a wide class of risk measures: for any subset
of probability measure M on (0, 1) the

ρM(X) := sup
µ∈M

∫ 1

0
CV aRu(X)µ(du) (3.9)

is a coherent risk measure continuous from above. It can be proved that if (Ω, F , P)
is atomless then any coherent risk measure continuous from above can be represented
by a subset of probability measures on (0, 1) as in (3.9) (Föllmer and Schied, 2004).

3.4 G-divergence and entropy

In this section we will introduce another class of risk measures which are par-
ticularly simple to handle in risk management problems.
Let G : R+ → R ∪ {+∞} be a convex, increasing and non constant function,
with G (1) < ∞ and G (x) /x → +∞ when x → +∞. The G−divergence of any
absolutely continuous probability Q� P is defined as

IG (Q | P) := E
[
G

(
dQ
dP

)]
(3.10)

By using the G-divergence as penalty function in Theorem 3.6 we can build a new
risk measure (Csiszar, 1967):

ρG(X) := sup
Q�P

(
EQ [−X]− IG (Q | P)

)
(3.11)

The fact that G (x) /x → +∞ when x → +∞ and de la Vallée-Poussin’s criterion
(See, for example, Doob (1994), Chapter VI, §17) show that the supremum in the
above definition is achieved by some probability measure Q∗. Furthermore, since G
is convex, a Lagrangian-type argument allows us to rewrite the above risk measure
as

ρG(X) := inf
y∈R

(
EP [G∗(y −X)]− y

)
(3.12)

where G∗ (x) = supy>0 (yx−G (y)). For a detailed proof, see for example, Csiszar
(1967); Liese and Vajda (1987); Föllmer and Schied (2004). For example, if λ ∈ (0, 1)
and

G (y) =

{
0 if 0 ≤ y ≤ 1

λ
+∞ otherwise

then G∗ (y) =

{ y
λ if y ≥ 0
0 otherwise

then

ρ (X) =
1

λ
inf
y∈R

(
E
[
(y −X)+]− λy)
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which is nothing but the CV aRλ as stated in Proposition 3.12.

Another special case is given by G(x) := βx log(x) for β > 0: IG (Q | P) is the
well known entropy of Q with respect to P. The related entropic risk measure has
the form

ρβ(X) := β logE
[
e
−X
β

]
(3.13)

Remark 3.15. A heuristic Taylor expansion yields

ρβ ≈ −E [X] +
1

2β
E
[
X2
]

Small β implies high risk aversion.

3.5 Risk Measures on Lp-spaces

In risk management problems generally one has to deal with unbounded random
variables. The domain of definition of ρ may be taken equal, for example, to some
Lp space (Kaina and Rüschendorf, 2009) or a more general Orlicz space (Section 5.4
in Biagini and Frittelli (2009)). A general theory for risk measures on such spaces
is available and a generalization of the representation given in Theorem 3.4 is also
available. We do not go into details since it is not the scope of this thesis, however it
is not difficult to extend the risk measures introduced in Sections 3.3–3.4 to L1(P).
This extension is straightforward for the V aR, the CV aR and, more generally, for
all spectral risk measures.

For the entropic risk measure we first remark that E [exp(−X/β)] is always well
defined and it may take the value +∞. Furthermore Jensen’s inequality yields
ρβ(X) ≥ −E [X]1, which allows us to extend the entropic risk measure to L1(P).
Remark that now it takes values in (−∞,+∞]. A slight difference appears in the
dual representation: if X ∈ L1(P) then we need to write

ρβ(X) := sup
Q�P,log( dQdP )∈L1(Q)

(
EQ [−X]− EQ

[
log

(
dQ
dP

)])
(3.14)

to avoid ambiguities.
For the risk measures issued from the G-divergence, we can remark that

lim sup
x→0+

G(x) = 0 ⇒ G∗ ≥ 0

so the right-hand side of (3.12) is well defined and we can use it as the definition of a
wide class of risk measures on L1(P). This condition is a quite standard assumption
on the function G.

1This is actually true for all law invariant, normalized and convex risk measures which also are
continuous from above if (Ω, F , P) is atomless
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Portfolio Insurance

We study the problem of portfolio insurance from the point of view of a fund man-
ager, who guarantees to the investor that the portfolio value at maturity will be above
a fixed threshold. If, at maturity, the portfolio value is below the guaranteed level,
a third party will refund the investor up to the guarantee. In exchange for this pro-
tection, the third party imposes a limit on the risk exposure of the fund manager, in
the form of a convex monetary risk measure (Section 4.1). To enter in this portfolio
insurance, the investor pays an initial fixed fee. The fund manager therefore tries to
maximize the investor’s utility function subject to the risk measure constraint. We
give a full solution to this non-convex optimization problem in the complete market
setting and show in particular that the choice of the risk measure is crucial for the
optimal portfolio to exist (Section 4.2). An interesting outcome is that the fund
manager’s maximization problem may not admit an optimal solution for all convex
risk measures, which means that not all convex risk measures may be used to limit
fund’s exposure in this way. We provide conditions for the existence of the solution
and we also study the impact of the fee paid by the investor (Section 4.3). Explicit
results are provided for the entropic risk measure (for which the optimal portfolio
always exists, Section 4.4); for the class of spectral risk measures (for which the op-
timal portfolio may fail to exist in some cases, Section 4.5) and for the G-divergence
(Section 4.6). Finally, in Section 4.7, we briefly recall some of the recent work that
have been done in the Portfolio Insurance management and the connections to our
work (De Franco and Tankov, 2011).
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4.7 Portfolio Insurance: a short review . . . . . . . . . . . . . 63

4.1 The Problem

We consider the problem of a fund manager who wants to structure a portfolio
insurance product where the investors pay the initial value v0 at time 0 and are
guaranteed to receive at least the amount z at maturity T . We assume that if, at
time T , the value of the fund’s portfolio VT is smaller than z, a third party pays
to the investor the shortfall amount z − VT . In practice, this guarantee is usually
provided by the bank which owns the fund, subject to a fee f . The final payoff for
the investor will be

Payoff = max (VT , z) (4.1)

In exchange, the third party imposes a limit on the risk of shortfall −(VT − z)−,
represented by a law-invariant convex risk measure ρ . Let (Ω,F ,Ft,P) be a filtered

Bank
Guarantees the fund

Wants to limit exposure

Investor
Has utility function u
Wants a guaranteed

return z

VT

V0

-(VT-z)-

Fund manager
Maximizes 𝔼[u(VT-z)+]

subject to
ρ(-(VT-z)-) ≤ ρ0

Figure 4.1: The structure of the portfolio insurance.

probability space. We consider an arbitrage-free complete financial market consist-
ing of d risky assets with (Ft)-adapted price processes (Sit)

i=1,...,d
0≤t≤T and the risk-free

asset with price process S0
t ≡ 1. We do not specify the dynamics of risky assets

and the precise definition of admissible strategies because they are not relevant for
what follows. See Karatzas and Shreve (1998) for the standard example of a mar-
ket which satisfies our assumptions in the Brownian filtration. For an admissible
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trading strategy π, the investor’s portfolio value is

V π
T = v0 +

∫ T

0
πudSu

The unique martingale measure will be denoted by Q, and we define ξ := dQ
dP . The

market completeness implies that for any FT -measurable random variable X with
E[ξ|X|] < ∞ such that E [ξX] = v0, there exists an admissible trading strategy π

such that V π
T := v0 +

∫ T
0 πtdSt = X a.s. Since the interest rate is zero, z ≤ v0 to

avoid direct arbitrage for the investor.

Without loss of generality we will assume z = 0 in the rest of the chapter.
The attitude of the investor towards gains above 0 is measured, in the spirit of
the Von Neumann-Morgenstern expected utility theory, by a twice differentiable,
strictly concave and strictly increasing function u : [0,+∞) → R, satisfying the
usual condition limx→+∞ u

′(x) = 0. We suppose u(0) = 0 and we denote u?(y) =
supx≥0(u(x)−xy) the convex conjugate of u and I(y) := (u′)−1(y) if y < limx↓0 u

′(x)
and I(y) = 0 otherwise. Moreover, we assume that the following integrability
condition holds: E[u?(λξ)] < ∞ for all λ > 0. Remark that the investor payoff is
given by max(VT , 0) and that the utility function u takes value on the positive real
line: in other worlds we are assuming that the utility of the portfolio is given by
u(V +

T ), as if the investor was indifferent to the portfolio’s value below the guarantee
z = 0.

The risks are measured using a convex law-invariant risk measure (not necessar-
ily normalized) and continuous from above ρ : X → R ∪ {+∞} where the domain
of definition X is a subset of L1(ξP) (Chapter 3, Section 3.5). To simplify notation
later on, we additionally define ρ(X) = +∞ if X ≤ 0 and X /∈ X .

The fund manager therefore faces the following problem:

maximize E[u((V π
T )+)] (4.2)

subject to ρ(−(V π
T )−) ≤ ρ0 and V0 := x0 := v0 − f. (4.3)

where ρ0 > ρ (0) represents the risk tolerance allowed by the third party and f is a
fee that the investor pays to enter in this portfolio insurance. This is a nonstandard
maximization problem, because the objective function is not concave, therefore it
cannot be solved using standard Lagrangian methods. We now assume that the fee
f = 0, and we will discuss in Section 4.3 the case f 6= 0.

Using the market completeness, the optimization problem (4.2)–(4.3) can be
reformulated as the problem to find, if it exists, a X∗ ∈ H such that

E
[
u
(
(X∗)+

)]
= sup

X∈H
E
[
u
(
X+
)]

(4.4)

where

H :=
{
X ∈ L1 (ξP)

∣∣E [ξX] ≤ x0, ρ
(
−X−

)
≤ ρ0

}
(4.5)

To simplify the notation, let us define U (X) := E [u (X+)]. Table 4.1 summarizes
the assumption made above.
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Market
Complete. Martingale measure: Q ξ :=
dQ/dP

Utility function
u′ vanishing at infinity, u(0) = 0. We denote
I(y) := (u′)−1(y) if y < u′(0+), 0 otherwise

Integrability conditions for ad-
missible pay-offs

E[u?(λξ)] < ∞ for all λ > 0 where u?(y) =
supx≥0(u(x)− xy).

Risk measure
ρ: law invariant convex risk measure continu-
ous from above not necessarily normalized

Initial wealth, guarantee, risk tol-
erance and fee

x0, z = 0, ρ(0) < ρ0 and f = 0

Table 4.1: Portfolio Insurance problem: Assumptions.

4.2 The decoupling and the solution

In this Section we will decouple problem (4.2)–(4.3) into two convex problems
for which Lagrangian methods are available. Let us start by remarking that for
any X ∈ H we have E [u (X+)] = E [u (X1A)], where A := {X ≥ 0}. A financial
interpretation of this equality is that only X1A remains important for the investor.
This remark suggests the following decoupling: let (A, x+) ∈ F × R+ and consider

P1 : maximize U(Z)

subject to Z ∈ H1

(
A, x+

)
where (4.6)

H1

(
A, x+

)
:=
{
Z ∈ L1 (ξP) | E [ξZ] ≤ x+, Z = 0 on Ac, Z ≥ 0 on A

}
P2 : minimize E [ξY ]

subject to Y ∈ H2 (A) where (4.7)

H2 (A) :=
{
Y ∈ L1 (ξP) | ρ (Y ) ≤ ρ0, Y = 0 on A, Y ≤ 0 on Ac

}
Problem P2 is a minimization of a linear function over a convex set and, as we will
see later, Problem P1 can be viewed as a concave maximization problem under a
linear constraint.

Definition 4.1. For all A ∈ F we define:

U
(
A, x+

)
:= sup

Z∈H1(A,x+)

U(Z) (4.8)

4 (A) := inf
Y ∈H2(A)

E [ξY ] (4.9)

x+ (A) := x0 −4 (A) (4.10)

We will often refer to 4 (A) as the value function of problem P2, to U (A, x+) as
the value function of problem P1 and to x+ (A) as the extra capital.
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We first study Problems P1 and P2 and then we clarify the relationship between
these problems and problem (4.4).

Remark 4.2. Before going on let us investigate the behavior of P1 and P2 on
trivial sets. If P (A) = 0 then 0 ∈ H2 (A) and then 4 (A) ≤ 0 which means that
x+ (A) ≥ x0 ≥ 0. Therefore, 0 ∈ H1 (A, x+ (A)) and U (A, x+ (A)) = u(0).

Lemma 4.3. Suppose P (A) > 0. The unique maximizer of problem P1 is given by

Z
(
A, x+

)
= I

(
λ
(
A, x+

)
ξ
)
1A

where λ (A, x+) is the unique solution of

E
[
ξI
(
λ
(
A, x+

)
ξ
)
1A

]
= x+. (4.11)

The value function U(A, x+) is strictly increasing and continuous in x+, and for
every c > 0 there exists C <∞ such that

U(A, x+) ≤ C + cx+ (4.12)

for all A ∈ F and all x+ ≥ 0.

Proof.
Introduce the new probability space (A,FA := {B ∩A,B ∈ F},P (· | A)) and let EA
denote the expectation under the conditional probability P (· | A). The maximizer
of P1, if it exists, is given by

Z
(
A, x+

)
= W

(
A, x+

)
1A

where W (A, x+) is the maximizer of the following problem on the new probability
space:

sup
W≥0

EA [u (W )] subject to EA [ξW ] =
x+

P (A)

This is a classical problem of maximizing a concave function under a linear con-
straint which can be solved by Lagrangian methods (see e.g., Karatzas and Shreve
(1998)). Remark first that u? is continuously differentiable and the mapping λ 7→
E[u?(λξ)] is convex and finite for all λ, so then it is almost everywhere differentiable.
Moreover, from the definition of u∗, we have

(u∗)′(λξ) = −λξI(λξ) = u∗(λξ)− u(I(λξ))

so that ξI(λξ) ∈ L1(P). The dominated convergence applies and we deduce that
λ 7→ E[u?(λξ)] is differentiable everywhere. In particular E[ξ(u?)′(λξ)] = −E [ξI (λξ)] <
+∞ for all λ > 0. Therefore, the solution to the above optimization problem is

W
(
A, x+

)
= I

(
λ
(
A, x+

)
ξ
)

where λ (A, x+) is the unique solution of EA [ξI (λξ)] = x+/P (A).
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To show that x+ 7→ U (A, x+) is strictly increasing, let x+
1 < x+

2 . Then the
random variable

X = I
(
λ
(
A, x+

1

)
ξ
)
1A +

x+
2 − x

+
1

E [ξ1A]
1A

belongs to H1

(
A, x+

2

)
, which proves that U

(
A, x+

1

)
< U

(
A, x+

2

)
.

The continuity of
x+ 7→ U

(
A, x+

)
follows from inequality

u(I(λξ)) ≤ u?(cξ) + cξI(λξ) (4.13)

which holds true for any c > 0, and the continuity of x+ 7→ λ(A, x+), which is
straightforward since the function λ 7→ E[ξI(λξ)1A] is strictly decreasing and con-
tinuous. The upper bound on U is also a consequence of (4.13), after taking expec-
tations, where C = E [u∗(cξ)1A].

�

We can now clarify the relationship between Problems (4.4) and P1–P2.

Theorem 4.4. Assume that

for all A ∈ F , 4 (A) > −∞ (4.14)

Then,

sup
X∈H

U (X) = sup
A∈F

U
(
A, x+ (A)

)
(4.15)

If, in addition, supxu(x) =∞ and

inf
A∈F
4 (A) > −∞ (4.16)

then both sides of (4.15) are finite.

Proof.
We start with the inequality “≤”. Let Xn ∈ H such that U (Xn) ↑ supX∈H U (X).
Define An := {Xn ≥ 0} and xn := E [ξXn1An ]. We have then

U (Xn) = U (Xn1An) ≤ U (An, xn)

because Xn1An ∈ H1 (An, xn) and U(An, xn) is the supremum over H1 (An, xn).
The random variable Y n := Xn −Xn

1An belongs to H2 (An) and verifies

x0 − xn = E [ξY n] ≥ inf
Y ∈H2(An)

E [ξY ] = 4 (An) = x0 − x+ (An)

It follows xn ≤ x+ (An) and since U(A, x+) is nondecreasing in x+ we deduce

U (Xn) = U (Xn1An) ≤ U (An, xn) ≤ U (An, x+ (An)) ≤ sup
A∈F

U (A, x+ (A))
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Let us prove the inequality “≥”. Select An ∈ F such that

U (An, x+ (An)) ↑ sup
A∈F

U (A, x+ (A)) := m, when n→ +∞

By the assumption of the Theorem, x+(An) < ∞ for all n. If for fixed ε > 0 we
could find, for all n, Xn ∈ H such that

U(Xn) ≥ U (An, x+ (An))− ε (4.17)

then we are done. If P(An) > 0, by Lemma 4.3 there exists an explicit maximizer
of Problem P1, denoted by Z(An, x

+), and recall that U(An, x
+) = U(Z(An, x

+))
is continuous in x+. Therefore, we can find Yn ∈ H2(An) with E[ξYn] sufficiently
close to 4(An) so that U(An, x0 − E[ξYn]) ≥ U(An, x

+(An)) − ε. Then Xn :=
Z(An, x0 − E[ξYn]) + Yn satisfies (4.17). If P(An) = 0 then, as we saw in Remark
4.2, taking 0 ∈ H and Xn = 0 satisfies U(Xn) = u(0) = U (An, x+ (An)).

Finally, the fact that m <∞ under Assumption (4.16) follows directly from the
estimate (4.12).

�

Clearly, (4.14) depends on the particular choice of ρ and ξ. In particular, a choice
under which 4 (A) = −∞ for some A is not appropriate in this kind of portfolio
insurance. As we will see later on an example, the use of the CVaRλ in the Black
and Scholes model yields4 (A) = −∞, whereas the same risk measure coupled with
a bounded ξ satisfies (4.16). A simple example clarifies why assumption (4.14) is
fundamental in this kind of portfolio insurance:

Example 4.5. Assume that supx u(x) = +∞ anc fix A ∈ F with P (A) > 0 and
4 (A) = −∞. It is then possible to find, for each n ∈ N a random variable Y n ∈
H2 (A) such that E [ξY n] ≤ −n. Define now

Xn =
x0 + n

E [ξ1A]
1A + Y n

It is clear that Xn ∈ H for all n and U (Xn) → supx u (x) = +∞, which means
that Problem (4.4) does not admit a maximizer.

Nevertheless, in practice, it may be difficult to check whenever Assumptions
(4.14)–(4.16) hold true: the following proposition, which is simpler to verify, guar-
antees them but it is not necessary.

Proposition 4.6. Assume that

γmin (ξP) < +∞, (4.18)

where γmin is the minimal penalty function of ρ defined in (3.2). Then the condition
(4.16) holds true.
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Proof.
By definition of γmin in (3.2) and the acceptance set related to ρ in (3.1) we have,

γmin (ξP) = sup
Y ∈Aρ

E [−ξY ]

=− ρ0 + sup {E [−ξY ] | Y + ρ0 ∈ Aρ}
≥ − ρ0 + sup {E [−ξY ] | Y + ρ0 ∈ Aρ, Y ≤ 0}
≥ − ρ0 + sup {E [−ξY ] | Y + ρ0 ∈ Aρ, Y ≤ 0, Y = 0 on A}
=− ρ0 −4 (A)

from which the result follows.

�

Theorem 4.4 gives us a condition under which the value function of problem (4.4)
is finite and a way to compute it:

Algorithm 4.7.

1. fix A ∈ F

2. solve P2 (A) and find 4 (A)

3. solve P1 (A) with parameter (A, x+ (A))

4. maximize the value function of problem P1 U (A, x+ (A)) over A ∈ F

The next result establishes a relationship between the maximizers of problem (4.4)
and P1–P2.

Theorem 4.8. Let (4.14) hold true.
If X∗ achieves the maximum in Problem (4.4) and A∗ := {X∗ ≥ 0} then

• A∗ achieves the maximum in the right-hand side of (4.15)

• Y ∗ := X∗ −X∗1A∗ ∈ H2 (A∗) achieves the minimum in P2.

Conversely, let A∗ ∈ F , P (A∗) > 0 and Y ∗ ∈ H2 (A∗) such that

U
(
A∗, x+ (A∗)

)
= sup
A∈F

U
(
A, x+ (A)

)
E [ξY ∗] =4 (A∗) = inf

Y ∈H2(A∗)
E [ξY ]

Then a solution of problem (4.4) is given by

X∗ := I (λ∗ξ)1A∗ + Y ∗ (4.19)

where λ∗ = λ (A∗, x+ (A∗)) verifies (4.11). In this case, the payoff for the investor
will be

Payoff = I (λ∗ξ)1A∗ (4.20)
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Proof.
Let X∗ ∈ H be an optimal solution for (4.4), A∗ = {X∗ ≥ 0} and Y ∗ = X∗1{X∗<0}.
It is clear that Y ∗ ∈ H2 (A∗). It is also clear that P(A) > 0, since otherwise
E[ξX∗] < x0 which of course is not optimal. Theorem 4.4 and the fact that U(A, x+)
is increasing in x+ (Lemma 4.3) give:

sup
A∈F

U
(
A, x+ (A)

)
= sup
X∈H

U (X) = U (X∗) = U (X∗1A∗)

=U (A∗, x0 − E[ξY ∗]) ≤ U
(
A∗, x+ (A∗)

)
which means that A∗ achieves the supremum in (4.15). Since U(A, x+) is strictly
increasing in x+, we shall have x+(A∗) = x0−E[ξY ∗], otherwise we would obtain a
strict inequality in the second line of the above estimate, which, of course, yields a
contradiction. It follows then that Y ∗ achieves the minimum in P2.

Conversely, assume that A∗ is a maximizer of (4.15) and Y ∗ is a minimizer of
P2. We can then solve Problem P1 with parameters (A∗, x0−4(A∗)) and we know,

by Lemma 4.3, that its solution is given by
[
I (λ∗ξ)+]+

1A∗ . Let then

X∗ := I (λ∗ξ)1A∗ + Y ∗

We have ρ (−(X∗)−) = ρ (Y ∗) ≤ ρ0 and E [ξX∗] ≤ x0, i.e. X∗ ∈ H . Using Theorem
4.4, we conclude our proof:

U (X∗) =U (X∗1A∗) = U
(
A∗, x+ (A∗)

)
= sup

A∈F
U
(
A, x+ (A)

)
= sup

X∈H
U (X) .

�

Remark 4.9. Algorithm 4.7 and Theorem 4.4 give us a way to find an optimal
solution for problem (4.4) if we are able to find a maximizer in (4.15) and the
minimizer in P2.

But what happens in the case when the maximizer in (4.15) or the minimizer
in P2 do not exist? In this case, under Assumption 4.14, following the steps of the
proof of Theorem 4.4, one can show that for all ε > 0 there exist Aε ∈ F , λε ∈ R
and Y ε ∈ H2(Aε) such that

Xε := [I (λεξ)]1Aε + Y ε (4.21)

verifies U (Xε) + ε > supX∈H U (X), i.e. Xε is a sequence of ε-optimal solutions.

The main difficulty to apply Theorems 4.4–4.8 is to find a maximizer A∗. Gen-
erally, maximization of a set-valued function over F is not simple. Our aim now
is to show that this latter maximization may be carried out over a subset of F ,
parameterized by a real number. A similar approach was used in Jin and Yu Zhou
(2008), where they faced the same difficulty.

Theorem 4.4 tells us that under Assumption (4.14) we have

sup
X∈H

U (X) = sup
A∈F

U
(
A, x+ (A)

)
= sup

A∈F
sup

X∈H1(A,x+(A))

U (X)



48 Chapter 4. Portfolio Insurance

In order to focus our attention on the set dependence, we will introduce the following
notation:

v (A) := sup
X∈H1(A,x+(A))

U (X) (4.22)

Let us also define ξ := essinf ξ and ξ := esssup ξ.

Theorem 4.10. Suppose that the law of ξ has no atom and that Assumption (4.14)
holds true. Let A ∈ F and c ∈

[
ξ, ξ
]

such that P (ξ ≤ c) = P (A). Then

v (A) ≤ v(c), where v(c) := v ({ξ ≤ c}) (4.23)

which means that

sup
X∈H

U (X) = sup
A∈F

v (A) = sup
c∈[ξ,ξ]

v(c). (4.24)

Proof.
We will use the methods developed in Jin and Yu Zhou (2008) (see the proof of
Theorem 5.1 therein). There are however some important differences in our proof
which are due to the presence of a risk measures in our context.

The theorem will be proved in two steps: in Step 1 we will prove that for every
A ∈ F , there exists c ≥ 0 such that 4 (A) ≥ 4 (c) := 4 ({ξ ≤ c}) so that x+ (c) :=
x0 − 4 ({ξ ≤ c}) ≥ x+ (A), and in Step 2 we will find, for every X ∈ H1 (A, x+)
some X̂ ∈ H1 ({ξ ≤ c} , x+ (c)) such that U(X̂) ≥ U (X). We conclude then that
v (c) ≥ v (A)

If P(A) = 1 then the result trivially holds true, whereas if P(A) = 0 we can use
Remark 4.2 and again the result holds true. Assume then 0 < P (A) < 1 and define
α = P(Ac) = 1− P(A). Let us fix c ∈

[
ξ, ξ
]

so that

P (ξ ≤ c) = 1− α

This is possible since ξ has no atom. Consider the following sets:

A1 = {ξ ≤ c} ∩A A2 = {ξ > c} ∩A (4.25)

B1 = {ξ ≤ c} ∩Ac B2 = {ξ > c} ∩Ac (4.26)

Since P(A1)+P(A2) = P(A1)+P(B1) = 1−α it follows P(A2) = P(B1). If P (A2) = 0
then A = {ξ ≤ c} and the result trivially holds true. We can suppose P(A2) > 0.
Step 1. Let Y ∈ H2(A). Our aim is to construct Ŷ ∈ H2({ξ ≤ c}) with E[ξŶ ] =
E[ξY ] and ρ(Y ) ≥ ρ(Ŷ ). This will imply that 4 (A) ≥ 4(c) since we can decrease
Ŷ . Introduce the following notation:

1. f1 (t) := P (Y ≤ t | B1)

2. g1 (t) := P (ξ ≤ t | A2)

3. Z1 = g1 (ξ), that is, L (Z1 | A2) = U([0, 1]), because ξ has no atom.

4. W1 = f−1
1 (Z1), that is, the law of W1 on A2 is the same as the law of Y on

B1.
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Let

k1 :=


1 if W1 = 0 on A2

E[ξY 1B1 ]
E[ξW11A2 ]

otherwise

Observe that since ξ ≤ c on B1, and ξ > c on A2, we have that k ≤ 1. Now define

Ŷ = Y 1B2 + kW11A2 .

By definition, Ŷ = 0 on {ξ ≤ c} and Ŷ ≤ 0 on {ξ ≤ c}. In addition, since k1 ≤ 1,
we easily get that P(−Ŷ > t) ≤ P(−Y > t) for every t > 0:

P(−Ŷ > t) =P(B2)P(−Ŷ > t | B2) + P(A2)P(−Ŷ > t | A2)

=P(B2)P(−Y > t | B2) + P(B1)P(−kW1 > t | A2)

≥P(B2)P(−Y > t | B2) + P(B1)P(−W1 > t | A2) since k1 ≤ 1

=P(B2)P(−Y > t | B2) + P(B1)P(−Y > t | B1)

=P(−Y > t)

Let F and F̂ be the distribution functions of, respectively, −Y and −Ŷ , and F−1

and F̂−1 their generalized inverses (defined in (3.4)). From the above inequal-
ity, they satisfy F̂−1(u) ≤ F−1(u) for all u ∈ [0, 1]. Let U be a random vari-
able with uniform distribution on [0, 1]. Since ρ is law invariant, we obtain that
ρ(Ŷ ) = ρ(−F̂−1(U)) ≤ ρ(−F̂−1(U)) = ρ(Y ) ≤ ρ0 and therefore Ŷ ∈ H2({ξ ≤ c}).
On the other hand, E[ξŶ ] = E[ξY ] (this is due to our choice of the constant k).
Since the choice of Y was arbitrary, this means that 4 (A) ≥ 4(c).

Step 2. Let X be feasible for P1 with parameter (A, x+ (A)), and define

1. f2 (t) := P (X ≤ t | A2)

2. g2 (t) := P (ξ ≤ t | B1)

3. Z2 = g2 (ξ)

4. W2 = f−1
2 (Z2), that is, the law of W2 on B1 is the same as the law of X on

A2.

Let

k2 :=

 1 if W2 = 0 on B1
E[ξX1A2 ]
E[ξW21B1 ]

otherwise

Note that now, k2 ≥ 1. We define a new random variable X̂ by

X̂ := X1A1 + k2W21B1 +
x+ (c)− x+ (A)

E
[
ξ1{ξ≤c}

] 1{ξ≤c}

Since E
[
ξX̂
]

= x+(c) we deduce X̂ ∈ H1 ({ξ ≤ c} , x+ (c)). Moreover, since k2 ≥ 1,

similar computations as before yield P
(
X̂ > t

)
≥ P (X > t). By definition

U (X) = E
[
u
(
X+
)]

=

∫ +∞

0
P
(
X+ > u−1 (t)

)
dt
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and since u−1 (t) is positive,{
X+ > u−1 (t)

}
=
{
X > u−1 (t)

}
we conclude that U (X) ≤ U

(
X̂
)

.

�

Theorem 4.10 allows us to simplify Algorithm 4.7:

Algorithm 4.11.

1. fix c ∈
[
ξ, ξ
]

and consider A = {ξ ≤ c}

2. solve P2 with parameter ({ξ ≤ c}) and find 4 (c) := 4 ({ξ ≤ c})

3. solve P1 with parameters ({ξ ≤ c} , x+(c)), x+(c) := x0 −4 (c)

4. find c∗, if it exists, that maximizes c→ v (c)

The question of the existence of c∗ which maximizes c → v(c), and the related
question of the existence of the optimal pay-off for the fund manager is difficult to
answer for general risk measures. A complete answer to this question will be given
in Section 4.4 in the case of the entropic risk measure (see Theorem 4.12) and in
Section 4.5 for spectral risk measures (Theorem 4.16).

4.3 The fee

The question of the role and the amount of the fee f , which the investor pays
to the bank to enter the portfolio insurance scheme, is closely related to the more
general issue of the economic rationality of the three-party structure bank—fund—
investor. From the point of view of the bank, providing the guarantee is equivalent
to providing a put option written on the optimal contingent claim with pay-off
(−X∗)+ to the investor (we still suppose z = 0), in exchange of the initial fee f .
This transfer of risk from the investor towards the bank makes sense because the
bank, as a large financial institution, can accommodate greater losses than the other
two parties. It is less risk averse than the fund or the investor, and may even be
risk seeking. While the fee leads to an immediate return for the bank, the tail risk
associated to the put option may be reduced by diversification, or it may simply be
kept on the balance sheet as an unhedgeable risk. These and similar considerations
can induce a bank to provide the portfolio guarantee for a fee which is less than
the replication price of the put option. On the other hand, the fee cannot be
greater than the replication price, since in that case it would be optimal for the
fund manager to replicate the guarantee himself, which is not what is observed in
reality.

This leads us to a new formulation where the fee is assumed to be a percentage
of the no-arbitrage price of the put option:

maximize E[u((VT )+)] (4.27)

over vT subject to

ρ(−(VT )−) ≤ ρ0 and V0 = x0 − pEQ [(−VT )+
]
. (4.28)
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for p ∈ [0, 1]. The case p = 1 corresponds to the situation when the fee is equal to
the price of the put option: since the bank can completely hedge away her risk, we
deduce that the value function does not depend on ρ0, and therefore on the amount
of risk which is being transferred to the bank, so one can take from the beginning
ρ0 = 0 (no risk transfer). In this case, the problem can be transformed into

maximizeE [u(VT )] over VT ≥ 0 and V0 = x0

If the bank asks a fee which completely covers the price of the option she sells, then
the fund manager has no reason to take any risk.

From now on let 0 ≤ p < 1. Assume that problem (4.2) has a solution, given by
(4.19). Since we know that the optimal solution is of the form

V (c) := X(c)1ξ≤c + Y (c)1ξ>c

for c ∈
[
ξ, ξ
]
, the price of a put option written on V (c) is −4(c). Hence the problem

(4.27)–(4.28) can be transformed into

maximize E[u(I(λcξ))1ξ≤c] (4.29)

over c ∈
[
ξ, ξ
]

where λc satisfies

EQ [I(λcξ)1ξ≤c] = x0 − (1− p)4(c) (4.30)

If there exists a c∗ which maximizes the above expression and P(ξ > c∗) > 0 then
the solution of this problem is given by

V ∗T := I(λ(c∗)ξ)1ξ≤c∗ + Y (c∗)1ξ>c∗

where Y (c∗) is the solution of problem P2 with parameter {ξ ≤ c∗}. The effect of
the fee on the optimal portfolio will be further analyzed in the specific example of
the entropic risk measure in Section 4.4.

4.4 Explicit result: the Entropic risk measure

4.4.1 The result

In this section we show how Theorems 4.8 and 4.10 can be used to solve problem
(4.27)–(4.28) when one uses the entropic risk measure defined in (3.13):

ρβ (X) := β logE
[
exp

(
− 1

β
X

)]
where β > 0. From (3.14):

ρβ (X) = sup
Q�P, log( dQdP )∈L1(Q)

(
EQ [−X]− βEQ

[
log

(
dQ
dP

)])
.

In particular, γmin (ξP) = βE [ξ log (ξ)] .
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Theorem 4.12. Let ρβ to be the entropic risk measure and assume that the state
price density ξ has no atom and satisfies ξ log ξ ∈ L1 (P ). Assume also that the fee
is a fraction p ∈ [0, 1] of the price of the put option corresponding to the guarantee,
as in Section 4.3. Then the optimal claim for the fund manager is given by

V ∗ := I (λ (c∗) ξ)1{ξ≤c∗} − β
[
log

(
β

η (c∗)
ξ

)]+

1{ξ>c∗}

where

• λ (c) is the unique solution of E
[
ξI (λ (c) ξ)1{ξ≤c}

]
= x0 − (1− p)4 (c)

• α (c) := P (ξ > c)

• 4 (c) = −βE
[
ξ log

(
βξ
η(c) ∨ 1

)]
• η (c) is the unique solution of: E

[(
βξ
η(c) ∨ 1

)
1ξ>c

]
= e

ρ0
β + α(c)− 1.

• c∗ attains the supremum of c→ E
[
u (I (λ (c) ξ))1{ξ≤c}

]
Proof.
Remark first that the condition ξ log ξ ∈ L1 (P ) implies that Assumptions (4.16)
holds true (Proposition 4.6). The proof is just a simple application of Theorems
4.8, 4.10, Lemma 4.3 and Lagrangian methods.

We first need to compute the map c→4(c). Fix c and consider the problem:

minimizeE [ξY ] over ρ (Y ) ≤ ρ0, Y = 0 on A and Y ≤ 0 on Ac

whereA = {ξ ≤ c}. Working on the new space
(
Ac, F̂ := {B ∩Ac, B ∈ F}, P̂ := P(·|Ac)

)
,

we can transform this minimization into

minimize α (c) Ê [ξW ] over Ê
[
exp

(
−W
β

)]
≤ δ(c), W ≤ 0

δ (c) =
e
ρ0
β + α (c)− 1

α (c)

where Ê is the expectation under the new probability P̂ and W is a random variable
on the new space. Using Lagrangian methods we can find the unique optimal
solution:

W ∗ (c) := −β
[
log

(
β

η (c)
ξ

)]+

where η (c) is the unique solution of:

E
[(

βξ

η(c)
∨ 1

)
1ξ>c

]
= e

ρ0
β + α(c)− 1

so then

Y ∗ (c) := W ∗ (c)1{ξ>c}.
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A simple calculation then gives:

4 (c) = −βE
[
ξ log

(
βξ

η(c)
∨ 1

)]
If now we set x+ (c, p) := x0 − (1 − p)4 (c), by Lemma 4.3, Problem P1 with
parameters ({ξ ≤ c} , x+ (c, p)) can be easily solved and its unique solution is given
by

X (c, p) = I (λ (c, p) ξ)1{ξ≤c}

where, by (4.11),

E
[
ξI (λ (c, p) ξ)1{ξ≤c}

]
= x+ (c, p) .

By using Theorem 4.10 we find that the optimal c∗ is the maximizer of the function

c→ E
[
u (I (λ (c) ξ))1{ξ≤c}

]
.

�

4.4.2 Numerical example

We will apply Theorem 4.12 in a simple case. Let the market be composed of
one risky asset, S, which follows the Black and Scholes dynamics:

dSt = St (bdt+ σdWt) S0 > 0

Suppose µ = b/σ > 0. The unique equivalent martingale measure is given by
Q = ξP where

ξ = exp(−µWT − µ2T/2) =
[
ST exp

(
T
(
σ2 − b

)
/2
)
/S0

]− b
σ2

We will use the exponential utility function u (x) = 1− e−δx. For this example we
take b = 0.15, σ = 0.4, µ = 0.375, T = 1, S0 = 5, v0 = 3.5, ρ0 = 1.5, β = 1, and
δ = 0.6.

The optimal pay-off is a spread of two options on the log contract log(ST ): one
option is sold to match the desired risk tolerance and the second one is bought to
obtain the gain profile desired by the investor.

X∗ :=

[
b

δσ2
log (ST ) +K1

]+

1{ST≥s∗} − β
[
K2 −

b

σ2
log (ST )

]+

1{ST<s∗}

where

s∗ = S0 exp
(
T
(
b− σ2

)
/2
)

(c∗)−
−σ2
b

K1 =
1

δ

(
b
(
σ2 − b

)
2σ2

T − b

σ2
log (S0)− log

(
λ (c∗)

δ

))

K2 =
b

σ2
log (S0)−

b
(
σ2 − b

)
2σ2

T + log

(
β

η (c∗)

)
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p s∗ K1 K2 c∗ 4(c∗) P(ST ≥ s∗) v(c∗)

0 2.340 1.458 5.863 2.028 −0.234 0.981 0.892
0.25 2.158 1.306 6.307 2.188 −0.164 0.989 0.890
0.5 1.491 1.139 8.798 3.095 −0.0202 0.9993 0.887
1 0.491 1.111 1 0.886

Table 4.2: Numerical results for different values of p.
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Figure 4.2: Optimal pay-off of the fund manager as function of the stock price value ST
for p = 0.

In the case p = 1 we know that the value function does not depend on ρ0 (Section
4.3), and the problem becomes

maximize E[1− eδX+
] over X ≥ 0 an EQ [X] = x0

whose solution is given by

X∗ =

[
b

δσ2
log (ST ) +K1

]+

1{ST≥s∗}

The numerical values of various quantities of interest for different values of p are
given in Table 4.2. The optimal pay-off of the fund manager as function of ST is
shown in Figure 4.2. Figure 4.3 shows the value function as function of c. Figure 4.4
shows the gain for the investor compared to the situation where no risk is allowed.
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the value function v(c)
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Figure 4.3: Value function of Problem P1 as function of c for p = 0.
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Figure 4.4: The pay-off profile for the investor for different values of p.
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4.5 Explicit result: the spectral risk measure

4.5.1 The result

In this section we solve the portfolio optimization problem (4.27)–(4.28) when
the risk constraint is given by a spectral risk measure. For a given probability on
[0, 1] the related spectral risk measure is given by (3.7)–(3.8) :

ρµ (X) :=

∫ 1

0
CV aRβ (X)µ(dβ) or equivalently

ρµ (X) :=

∫ 1

0
µ(u)V aRu (X) du where µ(u) :=

∫ 1

u

µ(dx)

x

Following Algorithms 4.7–4.11 we first need to compute the mappings A → 4 (A)
and c→4(c):

Lemma 4.13. For A ∈ F with P (A) < 1, let F̂ξ be the conditional distribution of
ξ on Ac and define αA := P (Ac). 4 (A) > −∞ if and only if

lim
x→0+

F̂−1
ξ (1− x)

µ (x)
< +∞ (4.31)

In this case

4 (A) = −ρ0 max
x∈[0,1]

r (x) (4.32)

r (x) :=
αA∫ αAx

0 µ (u) du

∫ x

0
F̂−1
ξ (1− u) du (4.33)

Proof.
In order to compute 4 (A) we reformulate Problem P2 in terms of the conditional
distribution function of Y ∈ H2 (A) on Ac. Introduce a new probability P̂ via
dP̂
dP = 1Ac

αA
. Let F̂Y be the distribution function of Y under this probability and F̂−1

Y

its generalized inverse . Using this new probability we can rewrite the ingredients
of our problem as

E[ξY ] = αAÊ[ξY ]

and

CV aRβ(Y ) = − 1

β

∫ β

0
F−1
Y (u) = − 1

β

∫ β∧αA

0
F̂−1
Y (u/αA)du

= −αA
β

∫ β
αA
∧1

0
F̂−1
Y (u)du.

Fubini’s theorem gives

ρµ(Y ) = −αA
∫ 1

0

∫ 1

0
1{0≤αAu≤β∧αA}F̂

−1
Y (u)

µ(dβ)

β
du

= −αA
∫ 1

0

∫ 1

αAu

µ(dβ)

β
F̂−1
Y (u)du

= −αA
∫ 1

0
µ(αAu)F̂−1

Y (u)du

To express Ê[ξY ], we make use of the following Lemma:
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Lemma 4.14. Let F1 and F2 be distribution functions on [0,∞). Then

sup
X∼F1, Y∼F2

E[XY ] =

∫ 1

0
F−1

1 (u)F−1
2 (u)du.

The proof of this result is given in Paragraph 4.5.2.

We can transform problem P2 as

4 (A) = αA inf

∫ 1

0
F̂−1
ξ (u)F̂−1

Y (1− u)du (4.34)

subject to − αA
∫ 1

0
µ (αAu) F̂−1

Y (u)du ≤ ρ0, (4.35)

where the inf is taken over all generalized inverse distribution functions F̂−1
Y of

non-positive random variables. Such a function can always be written as

F̂−1
Y (u) := −

∫ 1

u
ζ (du) , (4.36)

where ζ is a positive measure on [0, 1]. By using Fubini’s theorem we can rewrite
problem (4.34)–(4.35) in terms of this measure:

4 (A) = −αA sup

(∫ 1

0
ζ(ds)

∫ s

0
F̂−1
ξ (1− u)du

)
subject to αA

(∫ 1

0
ζ(ds)

∫ s

0
µ (αAu) du

)
≤ ρ0.

The solution of this problem can easily be shown to be a point mass: ζ = hδx where
h ≥ 0 and x ∈ [0, 1] can be found from

4 (A) = −αA sup

(
h

∫ x

0
F̂−1
ξ (1− u)du

)
(4.37)

subject to αAh

∫ x

0
µ (αAu) du = ρ0, (4.38)

The constraint (4.38) gives us

h = h (x) =
ρ0

αA
∫ x

0 µ (αAs) ds

and using definition (4.33) we get

4 (A) = −αA sup
x∈[0,1]

(
ρ0

αA
∫ x

0 µ (αAs) ds

∫ x

0
F̂−1
ξ (1− u)du

)
= −ρ0 max

x∈[0,1]
r (x)

The function r is differentiable on (0, 1] and may only have a singularity at x = 0;
using l’Hôpital’s rule, we get

r
(
0+
)

= lim
x→0

F̂−1
ξ (1− x)

µ (x)

So 4 (A) > −∞ if and only if r is bounded on [0, 1], which is true if and only if
r (0+) < +∞.
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�

Corollary 4.15. The function 4(c) is given by

4(c) = −ρ0 max
0≤z≤α(c)

R(z), R(z) :=
E
[
ξ1{1−Fξ(ξ)<z}

]
∫ z

0 µ (u) du

Assume that the limit

lim
x→0+

F−1
ξ (1− x)

µ (x)
(4.39)

exists. Then

lim
c↑ξ
4(c) = −ρ0 lim

x→0+

F−1
ξ (1− x)

µ (x)
.

Proof.
In order to make the dependence on c explicit, we introduce the notation

4 (c) := −ρ0 max
x∈[0,1]

R (x, c)

where

R (x, c) :=
α (c)

∫ x
0 F̂

−1
ξ (1− u) du∫ α(c)x

0 µ (u) du

which holds true from Lemma 4.13. Noting that F̂−1
ξ (1− u) = F−1

ξ (1− α(c)u) ≥ c
and making a change of variable,

R (x, c) =
E
[
ξ1{c<ξ}1{F̂−1

ξ (1−x)<ξ}
]

∫ α(c)x
0 µ (u) du

=
E
[
ξ1{F−1

ξ (1−α(c)x)<ξ}
]

∫ α(c)x
0 µ (u) du

=
E
[
ξ1{1−Fξ(ξ)<α(c)x}

]
∫ α(c)x

0 µ (u) du

The function 4(c) can then be rewritten as

4(c) = −ρ0 max
0≤z≤α(c)

R(z), R(z) :=
E
[
ξ1{1−Fξ(ξ)<z}

]
∫ z

0 µ (u) du

�

The following theorem, which is the main result of this section, characterizes the
solution of the problem (4.4) when the risk constraint is given by a spectral risk
measure via an one-dimensional optimization problem.
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Theorem 4.16. Assume that there exists c∗ with P[ξ > c∗] > 0 such that v(c∗) =
maxξ≤c≤ξ v(c) with

v(c) = E[u(I(λ(c)ξ))1ξ≤c],

where λ(c) is the solution of

E[ξI(λ(c)ξ)1ξ≤c] = x0 +
ρ0E[ξ1ξ>c]∫ P[ξ>c]

0 µ(u)du
.

Then the solution to the problem (4.4) is given by

X∗ = I(λ(c∗)ξ)1ξ≤c∗ −
ρ0∫ P[ξ>c∗]

0 µ(u)du
1ξ>c∗ .

Proof.
From Theorem 4.10 we need to maximize the function c → v(c) over c ∈ [ξ, ξ].
Assume that v(c) achieves its maximum at the point c∗ such that 4(c∗) = −ρR(z)
with z < α(c) and let c′ = α−1(z). Then 4(c) is constant on the interval [c, c′],
which means that x+(c) = x+(c′),

H1

(
{ξ ≤ c} , x+(c)

)
⊂ H1

({
ξ ≤ c′

}
, x+(c′)

)
and therefore v(c) ≤ v(c′). This argument shows that the solution of the optimiza-
tion problem appearing in the right-hand side of (4.24) does not change if we replace
the expression for 4(c) given by Corollary 4.15 by

−ρ0R(α(c)) = −
ρ0E[ξ1ξ>c]∫ P[ξ>c]

0 µ(u)du
.

Applying Lemma 4.3 we then find

v(c) = E[u(I(λ(c)ξ))1ξ≤c],

where

E[ξI(λ(c)ξ)1ξ≤c] = x0 +
ρ0E[ξ1ξ>c]∫ P[ξ>c]

0 µ(u)du
.

If there exists a c∗ with P(ξ > c∗) > 0 which maximizes the value function c→ v(c)
then the optimal contingent claim is given by

X∗ = I(λ(c∗)ξ)1ξ≤c∗ −
ρ0∫ P[ξ>c∗]

0 µ(u)du
1ξ>c∗ .

where
− ρ0∫ P[ξ>c∗]

0 µ(u)du
1ξ>c∗ .

is the optimal solution of Problem P2 corresponding to {ξ ≤ c∗}, which can be
deduced from the proof of Lemma 4.13.

�
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Remark 4.17. If supξ≤c≤ξ v(c) is attained only by c∗ = ξ and

lim
c→ξ

E[ξ1ξ>c]∫ P[ξ>c]
0 µ(u)du

<∞,

(the latter condition holds, in particular, if ξ < ∞), then infA∈F ∆(A) > −∞
but this infimum is not achieved: the extra gain from allowing a risk tolerance is
bounded, but the optimal claim does not exist. Intuitively, claims which are “almost
optimal” will lead to a very large loss occurring with a very small probability.

If

lim sup
c→ξ

E[ξ1ξ>c]∫ P[ξ>c]
0 µ(u)du

=∞

then infA∈F 4(A) = −∞: the extra gain from allowing a risk tolerance is un-
bounded.

4.5.2 Proof of Lemma 4.14

Proof.
It will be easier to work with survival functions F̄1(x) = 1 − F1(x) and F̄2(x) =
1−F2(x) rather than distribution functions. Let F̄ (x, y) = P(X > x, Y > y) denote
the 2-dimensional survival function of (X,Y ). By Fubini’s theorem and elementary
bounds on distribution functions,

E[XY ] =

∫ ∞
0

∫ ∞
0

F̄ (x, y)dxdy ≤
∫ ∞

0

∫ ∞
0

min(F̄1(x), F̄2(y))dxdy,

which means that the maximum of E[XY ] is attained when the survival function of
X and Y is equal to min(F̄1(x), F̄2(y)). But it is straightforward to check that the
survival function of the couple (F−1

1 (U), F−1
2 (U)), where U is uniform on [0, 1], has

exactly this form.

�

4.5.3 The special case: CV aRβ

Definition 3.13 gives that the CV aRβ is a special case of spectral risk measure,
when one takes µ (du) = δβ (du), which yields µβ (x) := 1

β1{β>x}. The condition
(4.31) appearing in Lemma 4.13 becomes

lim
x→0+

βF̂−1
ξ (1− x) = βξ

Corollary 4.15, Lemma 4.3 and Theorems 4.10 and 4.16 enable us to give the solution
of Problem (4.4):

• If ξ̄ := essup ξ <∞, then the value function of problem (4.4) is:

sup
X∈H

U (X) = sup
c∈[ξ, ξ]

E
[
u (I (λ (c) ξ))1{ξ≤c}

]
(4.40)
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where λ (c) is the unique solution of

E
[
ξI (λ (c) ξ)1{ξ≤c}

]
= x0 + ρ0

E[ξ1{ξ>c}]

1 ∧ α(c)
β

• If ξ̄ = +∞ then there exists A ∈ F with 4 (A) = −∞.

The maximum in (4.40) is always attained for some c∗ ∈ [ξ, ξ] because the value

function is continuous and [ξ, ξ] is compact. If c∗ < ξ then Theorem 4.16 applies
and then we have a optimal solution for Problem (4.4). If the maximum is attained
at c∗ = ξ, then, as in Remark 4.17, the optimal claim does not exist.

Remark 4.18. From (3.6), the minimal penalty function for the CV ARβ is given
by:

γmin (Q) :=

{
0 if dQ

dP ≤
1
β , P-a.s

+∞ otherwise

If ξ is bounded but P
(
ξ > 1

β

)
> 0 then γmin (ξP) = +∞ and we have an example of

a situation where Assumption (4.16) holds true but the stronger assumption (4.18)
does not.

4.6 Explicit result: the G-divergence

The goal of this section is to solve problem (4.4) when ρ is related to some
G-divergence. Let then G be a convex, increasing and non constant function, with
G(0) = 0, G(1) < +∞ and G(x)/x → +∞ when x → +∞. The risk measure
related to G was introduced in Section 3.4:

ρG(X) := sup
Q�P, IG(Q|P)<+∞

(
EQ [−X]− IG(Q | P)

)
or equivalently, by (3.12):

ρG(X) := inf
t∈R

(E [G∗(t−X)]− t)

where G∗(u) := supu>0(ut − G(u)). In order to solve problem (4.4) let us first
compute the map A→4 (A). For this we introduce, for t ∈ R

4(A, t) := inf
Y ∈H2(A,t)

E [ξY ] where (4.41)

H2(A, t) :=
{
Y ∈ L1(ξP) | E [G∗(t+ Y )] ≤ ρ0 + t, Y = 0 on A, Y ≤ 0 on Ac

}
Lemma 4.19. Let G : R → R+ ∪ {+∞} to be a convex, increasing function with
G(0) = 0, G(x)/x → +∞ when x +∞ and assume that there exists some ε > 0
such that G(1 + ε) < +∞. Then

4 (A) := inf
t∈R
4(A, t)
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Proof.
From the definition of 4 (A) in (4.9) and H2 (A) in (4.7) we have

H2(A, t) ⊆ H2 (A) , for all t ∈ R

which means that 4(A, t) ≥ 4 (A), so then inft4(A, t) ≥ 4 (A). The equality
holds true if we will show that for any Y ∈ H2 (A) there exists a t ∈ R such that
Y ∈ H2(A, t). For sake of clarity, let us introduce ψ(t) := E [G∗(t+ Y )] − t. It is
straightforward to prove that ψ is convex. Furthermore for some η ∈ (0, 1) we have

lim
t→+∞

ψ(t)

t
≥ E

[
lim inf
t→+∞

G∗(t+ Y )

t

]
− 1

≥ E
[
lim inf
t→+∞

(
(1 + ε)

(
1 +

Y

t

)
− G(1 + ε)

t

])
− 1

≥ ε

lim
t→−∞

ψ(t)

t
≤ E

[
lim sup
t→−∞

G∗(t+ Y )

t

]
− 1

≤ E
[
lim sup
t→−∞

(
(1− η)

(
1 +

Y

t

)
− G(1− η)

t

])
− 1

≤ −η

which proves that ψ is a coercive function: for any Y ∈ H2 (A) there exists a tY ∈ R
such that

inf
t∈R

(E [G∗(t+ Y )]− t) = E [G∗(tY + Y )]− tY

so then Y ∈ H2(A, tY ) which concludes our proof.

�

Remark how both the CV aR and the Entropy satisfy the assumptions of Lemma
4.19.

To compute 4(A, t) we can use Lagrangian arguments: on the new space(
A, FA := {A ∩B|B ∈ F} , P̂ := P(|A)

)
we can transform the problem into

minimize αAÊ [ξY ] over Y ≤ 0 and (4.42)

Ê [G∗(t+ Y )] ≤ ρ0 + t−G∗(t)(1− αA)

αA

where αA := P(A) and Ê is the expectation under P̂. Once we know 4(A, t) for
all t we first apply Lemma 4.19 and then Algorithm 4.11 gives us a way to solve
problem (4.4).
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4.7 Portfolio Insurance: a short review

Portfolio insurance is a widely popular concept in financial industry, and there
exists an extensive literature on this topic. When the guarantee constraint is im-
posed in an almost sure way, a common strategy is the option based portfolio in-
surance, which uses put options written on the underlying risky asset as protection.
The optimality of OBPI for European and American capital guarantee is studied in
El Karoui et al. (2005). The difficulty of finding a sufficiently long-dated option for
use in OBPI has lead to the appearance of strategies which involve only the under-
lying risky asset, of which the most popular is the Constant Proportion Portfolio
Insurance (CPPI), (Black and Perold, 1992), where the exposure to the risky asset
is proportional to the difference between the value of the fund and the discounted
value of the guaranteed payment. If the price path of the underlying risky asset
admits jumps, the CPPI strategy no longer ensures that the fund value will be a.s.
above the guaranteed level at maturity, unless the portfolio is completely delever-
aged (Cont and Tankov, 2009), which usually imposes too strong a restriction on
the potential gains. The current market practice is therefore to require that the
portfolio stays above the guaranteed level with a sufficiently high probability, or,
for example, that it remains above the guarantee for a certain set of stress scenarios,
chosen from historical data coming from highly volatile periods. A more flexible
approach, which can take into account not only the probability of loss but also the
sizes of potential losses, is to impose a constraint on a risk measure of the shortfall.
This has led to the development of literature on portfolio insurance and, more gen-
erally, portfolio optimization under probabilistic / risk measure constraints.

Emmer et al. (2001) study one-period portfolio optimization under Capital-at-Risk
constraint (the Capital-at-Risk is defined as the difference between the mean value
of the portfolio and its VaR). Still in the one-period setting, Rockafellar and Urya-
sev (2000) provide an algorithm for minimizing the CVaR of a portfolio under a
return constraint. Basak and Shapiro (2001) solve the utility optimization prob-
lem under the VaR constraint and Boyle and Tian (2007) discuss continuous-time
portfolio optimization under the constraint to outperform a given benchmark with
a certain confidence level. Like us, these authors also face some issues related to
the non-convexity of the optimization problem, although the non-convexity appears
for a different reason (non-convexity of the constraint itself). Another stream of
literature (Föllmer and Leukert, 1999; Bouchard et al., 2009) considers hedging
problems when the hedging constraint is imposed with a certain confidence level
rather than almost surely. The viscosity solution approach of Bouchard et al. (2009)
was extended in (Bouchard et al., 2010) to stochastic control problems under target
constraint (that is, for example, under the constraint to outperform a benchmark
with a certain probability) but it does not seem possible to treat risk measure con-
straints in this setting. He and Zhou (2010) have recently introduced a general
methodology for solving law-invariant portfolio optimization problems by reformu-
lating them in terms of the quantile function of the terminal value of the portfolio.
While such a reformulation is in principle possible for our problem by using the
dual representation results for law-invariant convex risk measures (see Föllmer and
Schied (2004) and Jouini et al. (2006)), the resulting problem is still non-linear and
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non-convex so such a transformation does not necessarily simplify the treatment.
Gundel and Weber (2007) solve the problem of maximizing the robust utility of a
portfolio under a constraint on the expected shortfall, which includes, in particu-
lar, all coherent risk measures. Rogers (2009) discusses utility optimization when a
portfolio constraint in the form of a coherent risk measure is present, and goes on
to study optimal contracting problems in this context. The main difference/novelty
of our work from these two studies is that in our approach, the utility function is
only applied to positive gains while the risk measure is only applied to negative
shortfall. This brings us much closer to the reality of portfolio insurance and at the
same time allows to obtain explicit solutions.
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Chapter 5

Quadratic hedge: introduction
and main properties

The Chapter is organized as follows: we first introduce the Quadratic Hedge prob-
lem in its most general formulation and give a review of the literature on the subject.
In Section 5.2 we introduce the general model, the value function associated to the
Quadratic Hedge problem, we define the so called Pure investment problem and we
study the structure of these value functions (Sections 5.3 and 5.4). Next, with a ver-
ification argument, we characterize the value functions of the pure investment and
the quadratic hedge problems as the unique solution of a semi linear partial integro-
differential equations (Sections 5.5 and 5.6). We finally do a short digression on
the theory of viscosity solutions and how it can be used in this context (Section 5.7).
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5.1 Introduction

In incomplete markets the perfect hedge does not exist in general, and most of
the markets are incomplete. In these cases, pricing and hedging an option is a hard
task since one cannot totally hedge away the risk. Once we accept that a residual risk
may affect our hedging strategy, an important issue, especially from a practitioner’s
point of view, is to quantify and control this residual risk. A common way to
measure this residual risk is to compute the expected squared distance between the
option one wants to hedge and the portfolio. The quadratic hedge problem is to

67
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find the optimal portfolio which minimizes this residual risk. In its most general
form the quadratic hedge problem can be formulated as follows: consider a random
variable H ∈ L2 (FT ,P) and a set of admissible strategies, which has to be carefully
specified,

θ ∈ X ⊆ L (S) (5.1)

where S is a semimartingale modeling the stock price. Up to appropriate integra-
bility conditions, the quadratic hedge problem becomes

minimize EP

[(
x+

∫ T

0
θt−dSt −H

)2
]

over x ∈ R and θ ∈ X (5.2)

If (x∗, θ∗) achieves this infimum, we call θ∗ the optimal mean-variance hedging
strategy and x∗ its price. When one defines

A :=

{
x+

∫ T

0
θtdSt | x ∈ R, θ ∈ X

}
then problem (5.2) can be viewed as the L2-projection of H on the space A: one
tries to minimize the L2-distance between the contingent claim H and a set of all
admissible portfolios in A.

The quadratic hedge problem is a particular case of the so called utility-based
pricing and hedging problem: for an utility function U one tries to solve

maximize EP
[
U

(
x+

∫ T

0
θtdSt −H

)]
over x ∈ R and θ ∈ X

For a complete overview on the utility-based indifference price problem we refer
to El Karoui and Rouge (2000); Schweizer (2001); Delbaen et al. (2002). Assume
now that (xH , θH) achieves the maximum in the above problem and consider the
following map P from L2 to R:

P : L2(FT ,P) 3 H → xH ∈ R

Generally this map is not linear, unless one takes U(x) = −x2, which corresponds
to the quadratic hedge problem. Although one cannot speak of pricing rule (the
utility function has to be increasing and this is not the case), the fact that the above
mapping P is linear has several advantages: from a practical point of view, when
one wants to price an entire portfolio, let us say H =

∑
iHi, according to (5.2), she

can first compute the prices corresponding to the single positions Hi, and then add
them up to obtain the portfolio’s price.

Several methods have been proposed to solve the quadratic hedge problem,
depending on the features of the semimartingale S or on the set of admissible
strategies X . An elegant solution is provided when S is a martingale under the
historical probability P, by using the Galtchouk-Kunita-Watanabe decomposition
(Kunita and Watanabe, 1967; Galtchouk, 1976): since H ∈ L2(P,FT ), one can find
a predictable process θH ∈ L(S) such that

H = EP [H] +

∫ T

0
θHu−dSu +NH

T a.s.
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whereNH
t := EP

[
NH
T | FT

]
is a square integrable martingale such thatNH

t

∫ t
0 θu−dSu

is still a martingale under P, i.e. (NH
t )t is strongly orthogonal to the set A. By

using this decomposition it is straightforward to deduce that the problem (5.2) is
solved by θ∗ = θH and x∗ = EP [H]. Even if the Galtchouk-Kunita-Watanabe de-
composition gives the optimal hedging strategy and the minimal price in problem
(5.2), some important questions naturally arise when one wants to compute it in
practice: firstly, does θH belong to X ? and if it is the case, can it be thought as a
trading strategy, i.e. is it caglad? In many important cases, the answer is positive,
and it is also possible to compute the hedging strategy semi-explicitly, in particular
when S is Lévy process (Cont and Tankov, 2004) or, more generally, if S is a general
Markov jump martingale (Cont, Tankov, and Voltchkova, 2007).

When S fails to be a martingale under P, problem (5.2) becomes much more dif-
ficult because the Galtchouk-Kunita-Watanabe decomposition is no longer available.
To solve the quadratic hedge problem many authors have exploited the particular
features of the model S which allow to find the solution of problem (5.2), but it
is no longer explicit enough (which is an important question since this procedure
is commonly used in practice). For example, when S is a continuous Itô process,
the solution can be found by making an appropriate change of probability in prob-
lem (5.2), and then using the Galtchouk-Kunita-Watanabe decomposition to obtain
the optimal hedging strategy. For a complete review on this procedure we refer to
Laurent and Pham (1999) or Pham (2000).

The idea of looking for a suitable change of probability that makes S a martingale
turns out to be the key tool to solve the quadratic hedge problem in a general setting:
it can be proved that this suitable martingale measure can be obtained by solving
problem (5.2) for H = 0 and x = 1:

minimize EP

[(
1 +

∫ T

0
θtdSt

)2
]
, over θ ∈ X (5.3)

In the literature this problem is known as the pure investment problem. In a general
setting (i.e. S discontinuous semimartingale ) Černỳ and Kallsen (2007) give many
interesting properties of problem (5.3) and provide its solution. They derive then
the optimal strategy of problem (5.2) and, in particular, they find that it is given
by:

θ∗t = α̂t−X
θ∗
t− + β̂t,−, Xθ∗

t = x+

∫ t

0
θ∗r−dSr

for some semi-explicit processes α̂, β̂, where α̂ does not depend on the particular
option H and it is related to the optimal solution of problem (5.3), whereas β̂ lin-
early depends on H. This procedure completely characterizes the optimal hedging
strategy in problem (5.2) but, nevertheless, this solution is no longer explicit for all
types of semimartingale S, unless the stock price S has a particular structure: with
stationary and independent increment (Hubalek, Kallsen, and Krawczyk, 2006) or
affine stochastic volatility models (Černỳ and Kallsen, 2008; Kallsen and Vierthauer,
2009).

Our contribution is to give a systematic way to solve problem (5.2) when S is a
general Markov jump process but not necessarily a P-martingale by using stochastic



70 Chapter 5. Quadratic hedge: introduction and main properties

optimization tools (value function and Hamilton-Jacobi-Bellman equation). All over
the work, we tried to move according to the following objectives:

• Considering a sufficiently general model which allows us to apply our results
to some practical problems (which partially motivated our work)

• Solving problem (5.2) and characterizing the optimal hedging strategy in the
more explicit way

• Proving regularity, in a sense which has to be specified, of the optimal hedging
strategy

As we will explain in Chapter 8, portfolio management in electricity markets
motivated our work. We think it is helpful to briefly anticipate the main lines of
that Chapter in order to understand our model on S.
The electricity spot price is generally modeled by a Lévy-driven process whereas a
typical hedging instrument available in this market (the semimartingale S) is the
future contract, which turns out to be Markov jump process and it does not posses
the martingale property under P. Moreover the spot price process may affect the
dynamics of the future contract price, and since the electricity cannot be stored,
one has to consider it as a non hedgeable source of risk like, for example, a volatility
factor. We concentrate on European options written on S which may also depend
on the spot price at maturity and on some other non hedgeable source of risk like,
for example, the temperature.

The price of our hedging instrument is denoted by S = exp(Z), U denotes the
spot price process and P the temperature, where (Z,U, P ) is a R3-valued Markov
jump process. The quadratic hedge problem for practitioners of the electricity
markets can be formulated as follows

minimize E

[(
H(UT , PT , e

ZT )− x−
∫ T

0
θr−de

Zr

)2
]

(5.4)

over x ∈ R, θ ∈ X

Problem (5.4) can be also viewed as a constrained quadratic hedge problem: if
S̃ := (S,U, P ) then the problem above can be rewritten as

minimize E

[(
H(S̃T )− x−

∫ T

0
θ′r−dS̃r

)2
]

over x ∈ R and θ ∈ L(S̃), θ2 = θ3 = 0

In order to solve problem (5.4) with the classical instruments of the stochastic
optimization, we will assume that the dynamics of the state variable are of Markov
type with appropriate assumptions on their coefficients. This will allow us to write
and solve the partial integro-differential equation (PIDE) associated to the above
problem in a particular space of smooth functions. A particular attention will be
devoted to the case H = 0 since, as we have seen, this is a fundamental tool to solve
the quadratic hedge problem.
Still inspired by practical problems, we will consider essentially three different cases:
when Z is a jump-diffusion process (Chapter 6) and when it is a pure jump process
with infinite/finite variation (Chapter 7). The pure jump case is quite interesting
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since, in commodities markets, upward and downward movements of the stock price
process S (and then Z) are essentially due to jumps. To conclude, we want to point
out that our goal is proving that the value function of problem (5.4) is smooth
(so that the optimal strategy also is): this is important from a numerical point
of view and also because it will give us a better understanding of the optimal
strategy behavior (their derivatives), which is undoubtedly an important task in
risk management.

5.2 The Model

Let (Ω,F ,Ft,P) be a filtered probability space. On this space we introduce
two independent Brownian motions W and B, taking values respectively in R2

and R, and two independent Poisson random measures J and N on R \ {0}, both
independent from W and B. We assume that Ft is the natural filtration of J, N ,
W and B and that F0 is augmented with the null sets. We also assume F = FT
where T > 0 is given. Furthermore

[
W 1, W 2

]
t

= λt for some λ ∈ (−1, 1). The
positive Lévy measure on R \ {0} related to J is denoted by ν (dy) and it satisfies
the standard integrability condition

∫
R
(
1 ∧ |y|2

)
ν (dy) < ∞. The same holds true

for the Lévy measure νn(dy) associated to N . We denote

J̃(dydt) = J(dydt)− ν(dy)dt Ñ(dydt) = N(dydt)− νn(dy)dt

the compensated Poisson measures on R and

J̄(dydt) :=J(dydt)− dt× ν(dy)1{|y|≤1}, N̄(dydt) :=N(dydt)− dt× νn(dy)1{|y|≤1}

On this probability space we introduce the family of R3-valued Markov jump pro-
cesses (Z,U, P ) as follows:

dZt,u,zr :=µ
(
r, U t,ur , Zt,u,zr

)
dr + σ(r, U t,ur , Zt,u,zr )dW 1

r +

∫
R
γ
(
r, U t,ur− , Z

t,u,z
r− , y

)
J̄ (dydr)

dU t,ur :=µU (r, U t,ur )dr + σU (r, U t,ur )dBr +

∫
R
γU
(
r, U t,ur− , y

)
N̄ (dydr)

dP t,pr :=µP (r, P t,pr )dr + σP (r, P t,pr )dW 2
r +

∫
R
γP (r, P t,pr , y)J̄ (dydr) (5.5)

with initial conditions Zt,u,zt = z, U t,ut = u and P t,pt = p, for t ∈ [0, T ) and z, u, p ∈
R. The stock price process S is given by S = exp(Z).

We make the following assumptions:

Assumption 5.1.
[C]- The coefficients-1.

i). There exists µ ≥ 0 such that max
(
‖µ‖∞ ,

∥∥µU∥∥∞ , ∥∥µP∥∥∞) ≤ µ.

ii). The volatility functions σ, σU , σP take values in [σmin, σmax], for some 0 ≤
σmin ≤ σmax.

iii). For all t ∈ [0, T ] and u, y ∈ R the functions z → µ(t, u, z), z → σ(t, u, z) and
z → γ(t, u, z, y) belong to C1(R).
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iv). There exist two constants Kc
lip ≥ 0, Kd

lip ≥ 0 and a positive locally bounded

function ρ : R→ R+ such that for all y ∈ R we have∣∣µ(t, u, z)− µ(t, u′, z′)
∣∣ ≤ Kc

lip

(
|z − z′|+ |u− u′|

)∣∣σ(t, u, z)− σ(t, u′, z′)
∣∣ ≤ Kc

lip

(
|z − z′|+ |u− u′|

)∣∣γ(t, u, z, y)− γ(t, u′, z′, y)
∣∣ ≤ Kd

lipρ(y)
(
|z − z′|+ |u− u′|

)
for all t ∈ [0, T ], z, z′, u, u′ ∈ R.

v). Property iv) holds true for µU , σU and γU (resp. µP , σP and γP ) for some
positive constant KU ≥ 0 and some positive locally bounded function ρU (resp.
some KP ≥ 0 and some positive locally bounded function ρP )

[I1]- Integrability conditions-1. The functions

τ (y) := max

(
sup
t,u,z

(
|γ (t, u, z, y) |,

∣∣∣eγ(t,u,z,y) − 1
∣∣∣) , ρ(y)

)
τU (y) := max

(
sup
t,u
|γU (t, u, y)|, ρU (y)

)
τP (y) := max

(
sup
t,p
|γP (t, p, y)|, ρP (y)

)
verify τ, τP ∈ L2(R, ν(dy)) and τU ∈ L2(R, νn(dy)).

[I2]- Integrability conditions-2. The function τ verifies τ ∈ L4({|y[≥ 1}, ν(dy)).

We define Kmax := max(Kc
lip, K

d
lip),

µ̃ :=µ+
1

2
σ2 +

∫
|y|<1

(eγ − 1− γ)ν(dy) and ‖µ̃‖ := sup
t,u,z
|µ̃(t, u, z)| (5.6)

and

|Γ| :=
∫
R

Γ(y)ν(dy), where Γ(y) := inf
t,u,z

(
eγ(t,u,z,y) − 1

)2
(5.7)

In the rest of the chapter we denote ‖τ‖1,ν :=
∫
|y|≥1 τ(y)ν(dy) whereas ‖τ‖22,ν :=∫

R τ
2(y)ν(dy). The same convention holds for τP and τU (with respect to the Lévy

measure νn(dy)).

It is well known that there exists a unique semimartingale (U,Z, P ) which solves
the SDE (5.5) (see for example Jacod and Shiryaev (2003) or Protter (2004)).

Let us introduce the set of admissible strategies θ in problem (5.4): as already
pointed out in Černỳ and Kallsen (2007), this set has to be carefully chosen: if it
is too wide we may violate the principle of no arbitrage; if it is too small we may
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not be able to find the optimal strategies. We follow Černỳ and Kallsen (2007) to
define a good set of admissible strategies: first let us introduce the sets of simple
caglad strategies:

D :=

{
θ := Y0 +

∑
i

Yi1]ςi,ςi+1], Yi ∈ L∞(Fςi) and ςi ≤ ςi+1 are stopping times

}
Dt :=

{
θ1(t,T ] | θ ∈ D

}
(5.8)

D̄t denotes the L2(P)-closure of Dt, and for t, u, z, x ∈ [0, T )×R3, θ ∈ D̄t we define
the wealth process as

dXt,u,z,x,θ
r := θr−dS

t,u,z
r , Xt,u,z,x,θ

t := x (5.9)

Here θ represents the number of shares in the portfolio at time t. We say that a
control θ is admissible if it is caglad and Xt,u,z,x

r ∈ L2(P) for any r, t, u, z, x: the set
of admissible strategies is then defined as

X (t, u, p, z) :=

{
θ ∈ D̄t | x+

∫ s

t
θr−dS

t,u,z
r ∈ L2(P), for all t ≤ s ≤ T

}
(5.10)

Consider a European option of the form f (UT , PT , ZT ) where f is, for the moment, a
measurable function with f(U t,uT , P t,pT , Zt,u,zT ) ∈ L2(P) for all (t, u, p, z) ∈ [0, T )×R3

(according to problem (5.4) we have f(., z) = H(., ez)).
The quadratic hedging problem can be formulated as follows:

QH : minimize EP
[(
f
(
U0,u
T , P 0,p

T , Z0,u,z
T

)
−X0,u,z,x,θ

T

)2
]

over θ ∈ X (0, u, z, x), x ∈ R

The value function of QH is given by

vf (t, u, p, z, x) := inf
θ∈X (t,u,p,z)

EP
[(
f
(
U t,uT , P t,pT , Zt,u,zT

)
−Xt,u,z,x,θ

T

)2
]

(5.11)

vf (T, u, p, z, x) = (f (u, p, z)− x)2

Deeply related to the solution of problem (5.11) is the so called Pure investment
problem, which essentially is Problem (5.11) when f = 0:

v0 (t, u, z, x) := inf
θ∈X (t,u,z)

EP

[(
x+

∫ T

t
θr−dS

t,u,z
r

)2
]

(5.12)

=x2 inf
θ∈X (t,u,z)

EP

[(
1 +

∫ T

t
θr−dS

t,u,z
r

)2
]

=x2a(t, u, z)

where

a (t, u, z) = inf
θ∈X (t,u,z)

E

[(
1 +

∫ T

t
θr−dS

t,u,z
r

)2
]

(5.13)

because the set X (t, u, z) is a cone.
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5.3 The pure investment problem: a priori estimate

Problem QH when f = 0 is known in the literature as the the pure investment
problem. Several properties have been shown for this problem by using its dual
formulation. We recall here the most important ones. For a complete review in a
more general setting we recommend Černỳ and Kallsen (2007).

Lemma 5.2. Let a be the function defined in (5.13) and θ∗ the optimal strategy
which achieves the infimum. Then

i). a(t, u, z) = EP
[(

1 +
∫ T
t θ∗r−dS

t,u,z
r

)2
]

= EP
[
1 +

∫ T
t θ∗r−dS

t,u,z
r

]
and it is strictly

positive.

ii). Define the set

Mt,u,z :=

signed Q� P

∣∣∣∣∣∣
Q(Ω) = 1 and

(
ZQr S

t,u,z
r

)
r≥t

is a martingale

where ZQ
r := EP

[
dQ
dP

∣∣∣Fr]


Mt,u,z is called the set of all absolutely continuous signed σ−martingale mea-
sures. Then

dQ∗ :=
1

a(t, u, z)

(
1 +

∫ T

t
θ∗r−dS

t,u,z
r

)
dP

belongs to Mt,u,z.

iii). The function a verifies

1 = inf
Q∈Mt,u,z

E

[(
dQ
dP

)2
]
a (t, u, z) (5.14)

and the infimum above is achieved by Q∗.

In the literature Q∗ is called Variance-optimal signed martingale measure .

Proof.

i). It can be proved that there exists a unique strategy θ∗ which achieves the infi-
mum in (5.13) (Černỳ and Kallsen, 2007). It follows that for any η ∈ X (t, u, z) and
ε 6= 0

a(t, u, z) ≤ EP

[(
1 +

∫ T

t
(θ∗r− + εηr−)dSt,u,zr

)2
]

which implies

0 ≤ ε2EP

[(∫ T

t
ηr−dS

t,u,z
r

)2
]

+ 2εEP
[(

1 +

∫ T

t
θ∗r−dS

t,u,z
r

)∫ T

t
ηr−dS

t,u,z
r

]
Dividing by ε and taking the limit ε→ 0 we obtain

EP
[∫ T

t
θ∗r−dS

t,u,z
r

∫ T

t
ηr−dS

t,u,z
r

]
= −EP

[∫ T

t
ηr−dS

t,u,z
r

]
(5.15)
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If we take η = θ∗ then EP
[(∫ T

t θ∗r−dS
t,u,z
r

)2
]

= −EP
[∫ T
t θ∗r−dS

t,u,z
r

]
, which, in

particular, gives

a(t, u, z) = EP

[(
1 +

∫ T

t
θ∗r−dS

t,u,z
r

)2
]

= EP
[
1 +

∫ T

t
θ∗r−dS

t,u,z
r

]
ii). By using Lemma 3.1 in Černỳ and Kallsen (2007), we also have a(t, u, z) > 0,
so then the following signed measure Q∗:

dQ∗

dP

∣∣∣∣
Fs

:= Y ∗s , Y ∗s :=
1

a(t, u, z)
E
[(

1 +

∫ T

t
θ∗r−dS

t,u,z
r

)∣∣∣∣Fs]
is well defined. It follows that Q∗ � P in the sense of signed measures (Jordan-Hahn
decomposition Theorem) and trivially Q∗(Ω) = 1. Q∗ is an absolutely continuous
σ−martingale measure if and only if Y ∗S is a P-martingale. This is equivalent to
prove that for any stopping time % taking values in (t, T ] one has EP [Y ∗% S%] = YtSt:

EP [Y%S%] =
1

a(t, u, z)
EP
[(

1 +

∫ T

t
θ∗r−dS

t,u,z
r

)
S%

]
=

1

a(t, u, z)

(
EP [S%] + EP

[
S%

∫ T

t
θ∗r−dS

t,u,z
r

])
By taking η := 1(t,%] in (5.15) we obtain

EP
[∫ T

t
θ∗r−dS

t,u,z
r (S% − St)

]
= −EP [S%] + St

so then

EP [Y%S%] =
1

a(t, u, z)

(
EP [S%] + EP

[∫ T

t
θ∗r−dS

t,u,z
r S%

])
=

St
a(t, u, z)

EP
[
1 +

∫ T

t
θ∗r−dS

t,u,z
r

]
= YtSt

iii). Take now any other absolutely continuous σ-martingale measure Q with dQ/dP ∈
L2(P). Then

EP

[(
dQ
dP

)2
]
− EP

[(
dQ∗

dP

)2
]
≥ 2EP

[
dQ∗

dP

(
dQ
dP
− dQ∗

dP

)]
=

2

a(t, u, z)

(
EP
[
dQ
dP

∫ T

t
θ∗r−dS

t,u,z
r

]
− EP

[
dQ∗

dP

∫ T

t
θ∗r−dS

t,u,z
r

])
=0

since both Q and Q∗ are martingale measures. It follows that

inf
Q∈Mt,u,z

EP
[(

dQ
dP

)2
]

= EP
[(

dQ∗

dP

)2
]

=
1

a(t, u, z)

by using i).
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�

The characterization given in Lemma 5.2-iii) can be used to deduce an upper and
lower bound for function a:

Lemma 5.3. Let Assumptions 5.1-[C, I1] hold true and assume that one of the
conditions below also holds true

i). 0 < σmin

ii). 0 < |Γ|, where |Γ| is defined in 5.7

Then the function a verifies

e−C(T−t) ≤ a (t, u, z) ≤ 1 (5.16)

where C := 2
(
‖µ̃‖2 + ‖τ‖21,ν

) (
max

(
σ2
min, |Γ|

))−1

Proof.
Trivially a ≤ 1 whereas from (5.14) we deduce

a (t, u, z) = sup
Q∈Mt,u,z

1

E
[(

dQ
dP

)2
]

If σmin > 0 then Itô’s formula yields

dSt = St−(µ̃dt+ σdW 1
t +

∫
R

(eγ − 1)J̄(dydt)

Girsanov’s Theorem for Markov jump process (Jacod and Shiryaev, 2003) allows us
to select dQ/dP := ξT where dξt := −ξtαtdW 1

t and

α :=
1

σ

(
µ+

1

2
σ2 +

∫
R

(
eγ − 1− γ1{|y|≤1}

)
ν(dy)

)
so that

E
[
ξ2
T

]
= 1 +

∫ T

t
E
[
ξ2
rα

2
(
r, U t,ur , Zt,u,zr

)]
dr ≤ 1 + 2

‖µ̃‖2 + ‖τ‖21,ν
σ2
min

∫ T

t
E
[
ξ2
r

]
dr

If instead |Γ| > 0 then we can select dQ′/dP := ηT where dηt = −ηt
∫
R βt(y)J̃(dydt)

and

βt(y) =
(eγ − 1)∫

R(eγ − 1)2ν(dy)

(
µ+

1

2
σ2 +

∫
R

(
eγ − 1− γ1{|y|≤1}

)
ν(dy)

)
and again

E
[
η2
T

]
= 1 +

∫ T

t
E
[
η2
rβ

2
(
r, U t,ur , Zt,u,zr

)]
dr ≤ 1 + 2

‖µ̃‖2 + ‖τ‖21,ν
|Γ|

∫ T

t
E
[
η2
r

]
dr

Gronwall’s inequality, in both cases, gives a (t, u, z) ≥ eC(t−T ).
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�

In order to solve Problem (5.11) by the Hamilton-Jacobi-Bellman approach we also
need some a priori regularity on the function a.

Theorem 5.4. Let Assumptions 5.1 hold true. The map (t, u, z) → a(t, u, z) is
measurable. Furthermore let us assume that one of the conditions below also holds
true

i). 0 < σmin

ii). 0 < |Γ|, where |Γ| is defined in 5.7

Then there exists some T ∗ > 0 and Ka
lip ≥ 0 depending on T ∗ such that for T < T ∗

one has
|a(t, u, z′)− a(t, u, z)| ≤ Ka

lip|z − z′|

for all t ∈ [0, T ] and u, z, z′ ∈ R. T ∗ depends on µ, τ and τU , σmin, σmax and Kmax

and T ∗ → +∞ when Kmax → 0 and the other constants remain fixed.

Proof.
We start by considering the problem (5.12) when the minimization is only carried
over piecewise constant simple strategies. This corresponds to discretize the value
function v0 on a partition of [0, T ]. Let then n ∈ N∗ and 0 = t0 < t1 < · · · < t2n = T
where ti = iT2−n. The set of admissible strategies at time tk is given by

Dnk :=

θ : (tk, T ]× Ω→ R, θr =
2n−1∑
j=k

θ̃j1r∈]tj ,tj+1] | θ̃j ∈ L∞(Ftj )


The discretized wealth process is defined as:

4Xtk,u,z,x,θ
ti

= θti−1

(
Stk,u,zti

− Stk,u,zti−1

)
, Xtk = x, k < i ≤ 2n (5.17)

We can write the corresponding value function for all k < 2n:

vnk (u, z, x) := inf
θ∈Dnk

EP

x+

2n−1∑
j=k

θj

(
S
t
tk,u,z

j+1
− Stk,u,ztj

)2 = x2ank(u, z) (5.18)

ank(u, z) := inf
(πj), πj∈L2(Ftj )

EP

1 +
2n−1∑
j=k

πj

(
e
Z
t
tk,u,z
j+1

−Ztk,u,ztj − 1

)2 (5.19)

At time tn = T we have vn2n(u, z, x) = x2 and an2n(u, z) = 1. If π∗k(u, z) is the
optimal strategy in (5.19) then the optimal strategy in (5.18) is given by

θ∗k(u, z, x) := e−zπ∗k(u, z)x (5.20)

Remark also that

a(tk, u, z) ≤ ank(u, z) (5.21)
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since Dnk in included in X (t, u, p, z) defined in (5.10). To simplify the notations we
introduce

Ce := max(Ce,2, Ce,3, Ce,4) Cdz := max(Cdz,2, Cdz,3) (5.22)

where CE,i and CDZ,i are defined in Corollaries A.3–A.4 in Appendix A. The scheme
of the proof is the following

Step 1: We prove that the functions ak defined above are continuous and con-
tinuously differentiable w.r.t. z with bounded derivative, for all n ∈ N and
0 ≤ k ≤ 2n, and we give a relation between the Lipschitz constants of ak and
ak+1.

Step 2: We prove that there exists a T ∗ such that if T < T ∗ then the functions ak
are uniformly Lipschitz w.r.t.z.

Step 3: We consider the linear interpolation of the functions ak and we prove that
this interpolation converges pointwise to the function a defined in (5.13). We
conclude.

Step 1: The functions ak are all continuous and continuously differen-
tiable w.r.t. z. The prove is done by recurrence. Fix k ≤ 2n and let ak the
function defined in (5.19) where, to simplify the notation, we omit the superscript
n. Assume then
Recurrence hypothesis: for all l = k + 1, . . . , 2n

i). al ∈ C0(R2) and al(u, .) ∈ C1(R), for all u ∈ R.

ii). There exist a family of positive constants Ll ≥ 0 such that |∂zal(u, z)| ≤ Ll
for all u, z ∈ R

Remark that the above assumptions are trivially verified by a2n with L2n = 0.
These regularity assumptions on the functions ak allow us to prove a dynamic
programming principle:

Lemma 5.5. Let Assumptions 5.1 stand in force and assume that the recurrence
hypothesis holds true and that for all l = k + 1, . . . , 2n − 1

al(u, z) = inf
π∈R

EP

[(
1 + π

(
e
Z
tl,u,z
tl+1

−z − 1

))2

al+1

(
U tl,utl+1

, Ztl,u,ztl+1

)]
(5.23)

then ak also verifies the above expression.

The Proof of this Lemma is postponed in paragraph 5.3.1.

Lemma 5.5 tells us that the function ak verifies (5.23) provided that the functions al,
l = k+ 1, . . . , 2n − 1 verify the recurrence hypothesis and (5.23). By differentiating
w.r.t. π we find the optimal control

π∗tk(u, z) := −
EP
[(
e
Z
tk,u,z
tk+1

−z − 1

)
ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]
EP

[(
e
Z
tk,u,z
tk+1

−z − 1

)2

ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)] (5.24)
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Since ak+1 is assumed to be Lipschitz we have

∣∣π∗tk(u, z)
∣∣ ≤

∣∣∣∣E [(eZtk,u,ztk+1
−z − 1

)
ak+1

(
U tk,utk+1

, z
)]∣∣∣∣+ Lk+1E

[∣∣∣∣eZtk,u,ztk+1
−z − 1

∣∣∣∣ ∣∣∣Ztk,u,ztk+1
− z
∣∣∣]

E

[(
e
Z
tk,u,z
tk+1

−z − 1

)2

ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]

≤ eCT

Ce,5T2−nϑ2−n

[∣∣∣∣E [(eZtk,u,ztk+1
−z − 1

)
ak+1

(
U tk,utk+1

, z
)]∣∣∣∣+ Lk+1Ce,2T2−nϑ2−n

]
where we used Lemma A.1, Corollaries A.3–A.4 given in Appendix A and estimation
(5.21) together with the bounds on a stated in Lemma 5.3. Consider the process

Vs := E
[
ak+1(U tk,utk+1

, z) | U tk,us

]
, tk ≤ s ≤ tk+1

It is a bounded martingale with respect to the filtration generated by the Brownian
motion B and the Poisson random measure N . The martingale representation
property yields

Vs = E
[
ak+1(U tk,utk+1

, z)
]

+

∫ s

tk

αrdBr +

∫ s

tk

∫
R
βr−(y)Ñ(dydr) (5.25)

for some predictable processes α, β. By using the Itô’s formula and the independence
of the Brownian motions and the Poisson random measures leading the processes
Z and U we obtain∣∣∣∣E [(eZtk,u,ztk+1

−z − 1

)
ak+1

(
U tk,utk+1

, z
)]∣∣∣∣ =

∣∣∣∣E [(eZtk,u,ztk+1
−z − 1

)
Vtk+1

]∣∣∣∣
=

∣∣∣∣∣E
[∫ tk+1

tk

eZr−zVr

(
µ̃r +

∫
|y|≥1

(eγ − 1)ν(dy)

)
dr

]∣∣∣∣∣ ≤ Ce,3T2−nϑ2−n

According to (5.22) we obtain an important estimation on the optimal π∗:∥∥π∗tk∥∥∞ ≤ eCT Ce
Ce,5

(1 + Lk+1)ϑ2−n (5.26)

and from (5.23) we can also write

ak (u, z) =E
[
ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]
−

E
[(
e
Z
tk,u,z
tk+1

−z − 1

)
ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]2

E

[(
e
Z
tk,u,z
tk+1

−z − 1

)2

ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]

Lemma 5.6. Let Assumptions 5.1 stand in force and assume that the recurrence
hypothesis hold true and that for all l = k + 1, . . . , 2n − 1 al verifies (5.23). Then
ak also verifies the recurrence hypothesis and

Lk := Lk+1 +

(
Ce
eCT

Ce,5

)2 [
Λ(Kmax) + Ψ(Kmax)Lk+1(L2

k+1 + 1)
]
T2−nϑ2−n (5.27)
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where

Λ(Kmax) := 2C
1/2
dz

(
6C1/2

e + C
1/2
dz

)
Ψ(Kmax) :=

3

2

(
Λ(Kmax) + Cdz + 2(Ce +Kmax(σmax + ‖τ‖22,ν)) + Ce

(
3 +Kmax

2

))
Furthermore

Λ(Kmax)√
Kmax

→M for some M ≥ 0 when Kmax → 0 (5.28)

The Proof of this Lemma is postponed in paragraph 5.3.2.

We have already remarked that a2n trivially verifies the recurrence hypothesis:
Lemma 5.5 tells us that a2n−1 verifies the dynamic programming (5.23) and con-
sequently we can use Lemma 5.6 to prove that a2n−1 also verifies the recurrence
hypothesis. By repeating the above argument we conclude that all the functions ak
finally verify the recurrence hypothesis.

Step 2: The functions ak are uniformly Lipschitz w.r.t. z. We now prove
that the constants Lk are uniformly bounded. Let us start by considering the
following ODE:

− L′(t) =

(
CE

eCT

Ce,5

)2 [
Λ(Kmax) + Ψ(Kmax)L(t)(L(t)2 + 1)

]
, 0 ≤ t < T, L (T ) = 0

Lemma B.1 in Appendix B gives a way to compute L, which is a positive and non
increasing function. It follows that for all k ≤ 2n,

L(tk) =L(tk+1) +

∫ tk+1

tk

L′(r)dr

≥L(tk+1) + T2−n
(
CE

eCT

Ce,5

)2 [
Λ(Kmax) + Ψ(Kmax)L(tk+1)(L(tk+1)2 + 1)

]
From (5.27) we deduce Lk ≤ L(tk): our aim is then to prove that the function L
is bounded. Again Lemma B.1 gives that the function L only depends on y∗ ∈ R
defined as follows:

(y∗)3 + y∗ +
Λ(Kmax)

Ψ(Kmax)
= 0

Remark that this y∗ does not depend on T, n of k. In particular supt≤T L(t) =
L(0) < +∞ if and only if T < T (y∗), and we have the explicit form of this T (y∗)
(see (B.2)):

T (y∗) =
M1(y∗)

Ψ(Kmax)
= M2(y∗)e−2CT := T (y∗, T )

for some positive constants M1(y∗),M2(y∗). It follows that if T ∗ is the unique
solution of T ∗ = T (y∗, T ∗) and T < T ∗, then L(0) < +∞. We conclude that
supn∈N,k≤2n Lk ≤ L(0) and then

sup
n,k

∣∣ank(u, z)− ank(u, z′)
∣∣ ≤ L(0)|z − z′|
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for all u, z, z′, provided that T < T ∗. Still from Lemma B.1 we have T ∗ → +∞
when Λ(Kmax) → 0, and this is the case when Kmax → 0 and the other constants
appearing in the definition of Λ(Kmax) remain fixed.

Step 3: The linear combination of ak converges pointwise to a. From now
on we will always highlight the dependence of ank on n. Let us define the function
an (t, u, z) on [0, T ]× R2 as follows

an (t, u, z) = 2n
(
ank+1 (u, z)− ank (u, z)

)
(t− tk) + ank (u, z) (5.29)

where k verifies : tk ≤ t < tk+1

From the properties of ank we have that the interpolation function an is continuous,
continuously differentiable in the variable z and under the condition T < T ∗ it is
straightforward to see that∣∣an (t, u, z)− an

(
t, u, z′

)∣∣ ≤ Ka
lip

∣∣z − z′∣∣ , for all t ∈ [0, T ] , u, z, z′ ∈ R (5.30)

where Ka
lip = 3L(0).

Lemma 5.7. Suppose Assumptions 5.1-[C, I1] hold true. Fix (t, u, z) ∈ [0, T ]×R2,
ε > 0 and θ̄ ∈ Dt so that

E

[(
1 +

∫ T

t
θ̄rdS

t,u,z
r

)2
]
≤ a (t, u, z) + ε

There exist M > 0 and n̄ ∈ N only depending on θ̄ such that for all n ≥ n̄ we can
find θε,n ∈ Dnk with∣∣∣∣∣E

[(
1 +

∫ T

t
θ̄rdS

t,u,z
r

)2
]
− E

[(
1 +

∫ T

tk

θε,nr dStk,u,zr

)2
]∣∣∣∣∣ ≤Mε (5.31)

where 0 ≤ k ≤ 2n verifies tk ≤ t < tk+1. The same result still holds true if we
consider tk+1 instead of tk.

The Proof of this Lemma is postponed in paragraph 5.3.3.

The above result tells us that for all ε > 0 there exists n̄ such that for all n ≥ n̄ we
can select two controls θε,n,1 ∈ Dnk and θε,n,2 ∈ Dnk+1 verifying

ank (u, z) ≤ E

[(
1 +

∫ T

tk

θε,n,1r− dStk,u,zr

)2
]
≤a (t, u, z) + (M + 1)ε

ank+1 (u, z) ≤ E

(1 +

∫ T

tk+1

θε,n,2r− dS
tk+1,u,z
r

)2
 ≤a (t, u, z) + (M + 1)ε

The above estimations and (5.21) yield

|ank+1(u, z)− ank(u, z)| ≤ (M + 1)ε (5.32)
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so that, for fixed (t, u, z), ε > 0 and n ≥ n̄ as above we obtain:

|an(t, u, z)− a(t, u, z)| ≤2n(t− tk)
∣∣ank+1(u, z)− ank(u, z)

∣∣+ |ank(u, z)− a(t, u, z)|
≤(M + 1)(T + 1)ε

Arbitrary ε > 0 allows us to deduce that an → a pointwise: in particular, if T < T ∗

then the function a is Lipschitz continuous in the variable z and at least measurable
in the variable t, u (since it is the limit of continuous functions).

�

5.3.1 Proof of Lemma 5.5

Proof.
If (5.23) holds true, then, by differentiating w.r.t. π we obtain

al(u, z) = (5.33)

EP
[
al+1

(
U tl,utl+1

, Ztl,u,ztl+1

)]
−

EP
[(
e
Z
tl,u,z
tl+1

−z − 1

)
al+1

(
U tl,utl+1

, Ztl,u,ztl+1

)]
EP

[(
e
Z
tl,u,z
tl+1

−z − 1

)2

al+1

(
U tl,utl+1

, Ztl,u,ztl+1

)]
for all l > k. From the definition of ak in (5.19) we can write

ak(u, z) = inf
(πk,...,π2n−1)

E

1 +
2n−2∑
j=k

πj

(
e
Z
tj ,u,z

tj+1
−Z

tj ,u,z

tj − 1

)2

+

2π2n−1

1 +
2n−1∑
j=k

πj

(
e
Z
tj ,u,z

tj+1
−Z

tj ,u,z

tj − 1

)EFt2n−1

[(
e
Z
tk,u,z
t2n

−Ztk,u,zt2n−1 − 1

)]

+ π2
2n−1E

Ft2n−1

[(
e
Z
tk,u,z
t2n

−Ztk,u,zt2n−1 − 1

)2
]]

where EFt2n−1 [. . . ] stands for the conditional expectation w.r.t. Ft2n−1
. We can

now minimize the above expression w.r.t. π2n−1: by using the Markov property of
(U,Z) and (5.33) we obtain

ak(u, z) = inf
(πk,...,π2n−2)

E

1 +
2n−2∑
j=k

πj

(
e
Z
tj ,u,z

tj+1
−Z

tj ,u,z

tj − 1

)2

a2n−1

(
U tk,ut2n−1

, Ztk,u,zt2n−1

)
Remark that the right hand side of the above expression is well defined since a2n−1

is supposed to verify the recurrence hypotheses. We can repeat the procedure for
πt2n−2

, πt2n−3
, . . . , πtk+1

and finally we obtain

ak(u, z) = inf
πk∈R

E

[(
1 + πk

(
e
Z
tk,u,z
tk+1

−z − 1

))2

ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]
which concludes our proof.

�
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5.3.2 Proof of Lemma 5.6

Proof.
We know that

ak (u, z) =E
[
ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]
−

E
[(
e
Z
tk,u,z
tk+1

−z − 1

)
ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]2

E

[(
e
Z
tk,u,z
tk+1

−z − 1

)2

ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]
provided that al, l > k verifies the assumptions of Lemma 5.5. It is straightforward
to see that ak is continuous: for this one can use the fact that ak+1 is continuous
and the estimations on the exponential of Z given in Corollary A.3, Appendix A.
We now prove that ak is also differentiable w.r.t. z and give an estimation of this
derivative. To simplify, let us call

δk (u, z) :=E
[
ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]
αk (u, z) :=E

[(
e
Z
tk,u,z
tk+1

−z − 1

)
ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]
βk (u, z) :=E

[(
e
Z
tk,u,z
tk+1

−z − 1

)2

ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]

so that ak = δk − (αk)
2/βk. Remark that

αk(u, z) =e−zE
[
e
Z
tk,u,z
tk+1 ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]
− δk(u, z)

βk(u, z) =e−2zE
[
(e
Z
tk,u,z
tk+1 )2ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]
− δk(u, z)− 2αk

Proving that δk is continuously differentiable is trivial and we obtain

∂zδk(u, z) = E
[
∂zak+1(U tk,utk+1

, Ztk,u,ztk+1
)DZtk,u,ztk+1

]
where DZ is the derivative of the flow Z with respect to z (see Appendix A):

DZt,u,zs = 1 +

∫ s

t
DZt,u,zr−

(
∂µr
∂z

dr +
∂σr
∂z

dW 1
r +

∫
R

∂γr(y)

∂z
J̄ (dydr)

)
where ∂µr/∂z := ∂µr/∂z(r, U

t,u
r , Zt,u,zr ). We can prove that αk and βk are differen-

tiable with the same type of computations, so we just detail them for βk. For this,
let us assume that αk is differentiable, so we only need to prove that

β̃k(u, z) := E
[
e

2Z
tk,u,z
tk+1 ak+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]
is differentiable w.r.t. z. We start with

β̃ (u, z + ε)− β̃ (u, z)

ε
= E

[
D]Z

ε,tk,u,z
tk+1

∫ 1

0
ϕ
(
U tk,utk+1

, Ztk,u,ztk+1
+ rεD]Z

ε,tk,u,z
tk+1

)
dr

]
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where ϕ(u, z) = e2z(2ak+1(u, z) + ∂zak+1(u, z)) and D]Z
ε,tk,u,z
s := (Ztk,u,z+εs −

Ztk,u,zs )/ε. From Lemma A.1 and Corollary A.4 we get

Ztk,u,z+εtk+1

P−→ Ztk,u,ztk+1
and D]Z

ε,tk,u,z
tk+1

P−→ DZtk,u,ztk+1
when ε→ 0

Corollaries A.3–A.4 and the recurrence hypothesis on ak+1 allow us to apply domi-
nated convergence:

D]Z
ε,tk,u,z
tk+1

∫ 1

0
ϕ
(
U tk,utk+1

, Ztk,u,ztk+1
+ rεD]Z

ε,tk,u,z
tk+1

)
dr

P−→ DZε,tk,u,ztk+1
ϕ
(
U tk,utk+1

, Ztk,u,ztk+1

)
If we prove that the family ε→ D]Z

ε,tk,u,z
tk+1

∫ 1
0 ϕ

(
U tk,utk+1

, Ztk,u,ztk+1
+ rεD]Z

ε,tk,u,z
tk+1

)
dr is

uniformly integrable we are done: first we have∣∣∣∣D]Z
ε,tk,u,z
tk+1

∫ 1

0
ϕ
(
U tk,utk+1

, Ztk,u,ztk+1
+ rεD]Z

ε,tk,u,z
tk+1

)
dr

∣∣∣∣
≤Lk+1 + 2

ε

∣∣∣Ztk,u,z+εtk+1
− Ztk,u,ztk+1

∣∣∣ e2Z
tk,u,z
tk+1

∫ 1

0
e

2r
(
Z
tk,u,z+ε
tk+1

−Ztk,u,ztk+1

)
dr

≤Lk+1 + 2

ε

∣∣∣∣e2Z
tk,u,z+ε
tk+1 − e2Z

tk,u,z
tk+1

∣∣∣∣
Take now the test function g(x) = x1+υ for some υ > 0. The Cauchy-Schwarz
inequality yields

E
[
g

(∣∣∣∣D]Z
ε,tk,u,z
tk+1

∫ 1

0
ϕ
(
U tk,utk+1

, Ztk,u,ztk+1
+ rεD]Z

ε,tk,u,z
tk+1

)
dr

∣∣∣∣)] ≤(
Lk+1 + 2

2ε

)1+υ

E

[∣∣∣∣eZu,z+εtk+1 − eZ
u,z
tk+1

∣∣∣∣2
] 1+υ

2

E

[∣∣∣∣eZu,z+εtk+1 + e
Zu,ztk+1

∣∣∣∣2 1+υ
1−υ
] 1−υ

2

Recall that the exp(Z) admits a fourth moment: if we select 0 < υ < 1/3 then

E
[∣∣∣exp(Zu,z+εtk+1

) + exp(Zu,ztk+1
)
∣∣∣2 1+υ

1−υ
] 1−υ

2

is uniformly bounded in ε, provided that

ε ≤ ε0, for any ε0. We use again Corollary A.3 to deduce that

E
[
g

(∣∣∣∣D]Z
ε,z
tk+1

∫ 1

0
ϕ(Zztk+1

+ r(Zz+εtk+1
− Zztk+1

))dr

∣∣∣∣)] ≤M
for some positive M which depends on u, z but not on ε: with the de La Vallée-
Poussin criterion (See, for example, Doob (1994), Chapter VI, 17) we finally prove
that the family ε→ D]Z

ε
tk+1

∫ 1
0 ϕ(Utk+1

, Ztk+1
+rεD]Z

ε
tk+1

)dr is uniformly integrable
for ε ≤ ε0. Dominated convergence applies and we can pass to the limit ε→ 0 and
get

β̃ (u, z + ε)− β̃ (u, z)

ε

ε→0−→

E
[
DZtk,u,ztk+1

e
2Z

tk,u,z
tk+1

(
2ak+1(U tk,utk+1

, Ztk,u,ztk+1
) + ∂zak+1(U tk,utk+1

, Ztk,u,ztk+1
)
)]
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The continuity of ∂zβ̃ can be proved by using the continuity of ak+1 together with
its derivative and the estimations on eZ and DZ given in Corollaries A.3–A.4, and
this is enough to prove that ak is continuously differentiable w.r.t. z: ak verifies
part i) of the recurrence hypothesis.

We now give an estimate on the derivative of ak w.r.t. z. From now on, in or-
der to lighten the notations, we omit the superscript (tk, u, z) so that (U,Z) :=(
U tk,utk+1

, Ztk,u,ztk+1

)
, exp(Z) := exp(Ztk,u,ztk+1

) and DZ := DZtk,u,ztk+1
. By using the deriva-

tive of flow DZ we obtain

∂zak (u, z) =E [∂zak+1(U,Z)DZ] + 2π∗tk(u, z)E
[
eZ−z(DZ − 1)ak+1(U,Z)

]
+2π∗tk(u, z)E

[(
eZ−z − 1

)
∂zak+1(U,Z)DZ

]
+2(π∗tk(u, z))2E

[(
eZ−z − 1

)
eZ−z(DZ − 1)ak+1(U,Z)

]
+(π∗tk(u, z))2E

[(
eZ−z − 1

)2
∂zak+1(U,Z)DZ

]
where π∗tk is defined in (5.24). We can rearrange the terms above to obtain

∂zak (u, z) =E
[(

1 + π∗tk(u, z)
(
eZ−z − 1

))2
∂zak+1(U,Z)DZ

]
(5.34)

+2π∗tk(u, z)E
[
eZ−z(DZ − 1)ak+1(U,Z)

]
(5.35)

+2(π∗tk(u, z))2E
[(
eZ−z − 1

)
eZ−z(DZ − 1)ak+1(U,Z)

]
(5.36)

and we know that ‖π∗tk‖∞ ≤ eCTCe (1 + Lk+1) /Ce,5.
Let us start with (5.36): by recalling that 0 < ak+1 ≤ 1 and using Corollaries
A.3–A.4 we have

|2(π∗tk(u, z))2E
[(
eZ−z − 1

)
eZ−z(DZ − 1)ak+1(U,Z)

]
|

≤2
∥∥π∗tk∥∥2

∞

(
E
[∣∣eZ−z − 1

∣∣2 |DZ − 1|
]

+ E
[∣∣eZ−z − 1

∣∣ |DZ − 1|
])

≤4
∥∥π∗tk∥∥2

∞C
1/2
e C

1/2
dz T2−nϑ2−n

For (5.35) we have∣∣2π∗tk(u, z)E
[
eZ−z(DZ − 1)ak+1(U,Z)

]∣∣
≤2
∥∥π∗tk∥∥∞ (E [∣∣eZ−z − 1

∣∣ |DZ − 1|
]

+ |E [(DZ − 1) ak+1(U,Z)]|
)

≤2
∥∥π∗tk∥∥∞ (C1/2

e C
1/2
dz T2−nϑ2−n + |E [(DZ − 1)ak+1(U, z)]|+ Lk+1C

1/2
e C

1/2
dz T2−nϑ2−n

)
The term |E [(DZ − 1)ak+1(U, z)]| can be estimated by using the martingale repre-
sentation in (5.25) and we obtain

|E [(DZ − 1)ak+1(U, z)]| ≤ Cdz,3T2−nϑ2−n ≤ CdzT2−nϑ2−n

hence ∣∣2π∗tk(u, z)E
[
eZ−z(DZ − 1)ak+1(U,Z)

]∣∣
≤2 ‖π∗tk‖∞C

1/2
dz

(
C1/2
e + C

1/2
dz + Lk+1C

1/2
e

)
T2−nϑ2−n
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For (5.34) we use Lemma A.5 in Appendix A:∣∣∣E [(1 + π∗tk(u, z)
(
eZ−z − 1

))2
∂zak+1(U,Z)DZ

]∣∣∣
≤Lk+1E

[(
1 + π∗tk

(
eZ−z − 1

))2 |DZ|] ≤ Lk+1

(
1 + Cdz,e(π

∗
tk

)T2−nϑ2−n
)

where

Cdz,e(π
∗
k) = Cdz + 2|π∗tk |(Ce +Kmax(σmax + ‖τ‖22,ν)) + |π∗tk |

2Ce

(
3 +Kmax

2

)
From the estimations for (5.34)–(5.35)–(5.36) and the bound on |π∗tk | we will obtain,
for some constants Λ and ci to be determined, a polynomial expression in Lk+1:

|∂zak (u, z)|

≤Lk+1 + max

((
Ce
eCT

Ce,5

)2

, 1

)(
Λ + Lk+1

(
c1 + c2Lk+1 + c3L

2
k+1

))
T2−nϑ2−n

=Lk+1 +

(
Ce
eCT

Ce,5

)2(
Λ +

3

2
max(c1, c2, c3)Lk+1

(
L2
k+1 + 1

))
T2−nϑ2−n

since Ce ≥ Ce,2 ≥ Ce,5. Precise computations yield

Λ := 2C
1/2
dz

(
6C1/2

e + C
1/2
dz

)
3

2
max(c1, c2, c3) :=

3

2

(
Λ + Cdz + 2(Ce +Kmax(σmax + ‖τ‖22,ν)) + Ce

(
3 +Kmax

2

))
Furthermore from the definition of Cdz in (5.22) we have Cdz → 0 when Kmax → 0
(see Corollary A.4). We focus on this by writing Λ = Λ(Kmax) so then

Λ(Kmax)√
Kmax

→M for some M ≥ 0 when Kmax → 0

If we set Ψ(Kmax) =: 3
2 max(c1, c2, c3) then the following estimate holds true:

‖∂zak‖∞ := Lk = Lk+1 +

(
Ce
eCT

Ce,5

)2 [
Λ(Kmax) + Ψ(Kmax)Lk+1(L2

k+1 + 1)
]
T2−nϑ2−n

The above estimation proves that ak also verifies the part ii) of the recurrence
hypothesis.

�

5.3.3 Proof of Lemma 5.7

Proof.
From definition of Dt is (5.8), we have

θ̄r := Ym−11{r∈]t,ςm]} +

N∑
i=m

Yi1{r∈]ςi,ςi+1]}
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for some N ∈ N, Yi ∈ L∞(Fςi ,P) whereas (ςi)i are stopping times. Our idea here is
build a strategy which follows θ̄ along the time: for n ∈ N let

θε,ntj := θ̄tj for all k ≤ j ≤ 2n

Obviously there are windows of the time grid on which the two strategies do not
coincide. By using this strategy we can write∣∣∣∣∣E

[(
1 +

∫ T

t
θ̄r−dS

t,u,z
r

)2
]
− E

[(
1 +

∫ T

tk

θε,nr−dS
tk,u,z
r

)2
]∣∣∣∣∣

≤

∣∣∣∣∣E
[(

1 +

∫ T

tk

θ̄r−dS
tk,u,z
r

)2
]
− E

[(
1 +

∫ T

tk

θε,nr−dS
tk,u,z
r

)2
]∣∣∣∣∣

+

∣∣∣∣∣E
[(

1 +

∫ T

tk

θ̄r−dS
tk,u,z
r

)2
]
− E

[(
1 +

∫ T

t
θ̄r−dS

t,u,z
r

)2
]∣∣∣∣∣

The strategy θ̄ is bounded: the function s→ Es,u,z
[(

1 +
∫ T
s θ̄r−dSr

)2
]

is continu-

ous: there exist n̄ such that for all n ≥ n̄ one has∣∣∣∣∣E
[(

1 +

∫ T

tk

θ̄r−dS
tk,u,z
r

)2
]
− E

[(
1 +

∫ T

t
θ̄r−dS

t,u,z
r

)2
]∣∣∣∣∣ ≤ ε

since |t− tk| ≤ 2−n. We can concentrate then on the first term:∣∣∣∣∣E
[(

1 +

∫ T

tk

θ̄r−dS
tk,u,z
r

)2
]
− E

[(
1 +

∫ T

tk

θε,nr−dS
tk,u,z
r

)2
]∣∣∣∣∣

≤E

[(∫ T

tk

(
θ̄r− − θε,nr−

)
dStk,u,zr

)2
]

+ 2E
[∣∣∣∣1 +

∫ T

tk

θ̄r−dS
tk,u,z
r

∣∣∣∣ ∣∣∣∣∫ T

tk

(
θ̄r− − θε,nr−

)
dStk,u,zr

∣∣∣∣]

≤E

[(∫ T

tk

(
θ̄r− − θε,nr−

)
dStk,u,zr

)2
]

+ 2 (a(tk, u, z) + ε)
1
2 E

[(∫ T

tk

(
θ̄r− − θε,nr−

)
dStk,u,zr

)2
] 1

2

≤E

[(∫ T

tk

(
θ̄r− − θε,nr−

)
dStk,u,zr

)2
]

+ 2 (1 + ε)
1
2 E

[(∫ T

tk

(
θ̄r− − θε,nr−

)
dStk,u,zr

)2
] 1

2

We conclude our proof if we show that for some n̄ and for all n ≥ n̄ we have

E

[(∫ T

tk

(
θ̄r− − θε,nr−

)
dStk,u,zr

)2
]
≤ ε2 (5.37)

The Doob-Meyer decomposition and Assumptions 5.1-[C, I1] yield

E

[(∫ T

tk

(
θ̄r− − θε,nr−

)
dStk,u,zr

)2
]
≤ME

[∫ T

tk

(
θ̄r− − θε,nr−

)2
S2
r−dr

tk,u,z

]
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for some M > 0. Since θ̄r − θε,nr → 0 and∣∣∣(θ̄r − θε,nr )2
S2
r

∣∣∣ ≤M ′ sup
r∈[0,T ]

S2
r ∈ L1(P)

for some M ′ > 0 depending on the bounds of θ̄, we can apply dominated convergence
to deduce that

E

[(∫ T

tk

(
θ̄r− − θε,nr−

)
dStk,u,zr

)2
]
→ 0 when n→ +∞

which proves (5.37).

�

The Proof of Theorem 5.4 actually gives us some important elements on the struc-
ture of the pure investment problem: we found a sequence of bounded controls (as
stated in (5.24)):

πnk (u, z) := −
E
[(
e
Z
tk,u,z
tk+1

−z − 1

)
ank+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]
E

[(
e
Z
tk,u,z
tk+1

−z − 1

)2

ank+1

(
U tk,utk+1

, Ztk,u,ztk+1

)]

such that

ank(u, z) := E

1 +
2n−1∑
j=k

πnj

(
U tk,utj

, Ztk,u,ztj

)(
e
Z
tk,u,z
tj+1

−Ztk,u,ztj − 1

)2
and

sup
n∈N

sup
k≤2n

‖πnk‖∞ ≤
eCT

σ2
min ∨ |Γ|

Ce
(
1 +Ka

lip

)
:= Π̄ (5.38)

from the bound (5.26) and the fact that Lk+1 ≤ L(0) ≤ Ka
lip if T < T ∗. Con-

sider now the function an introduced in (5.29): according to the fact that an → a
pointwise and (5.32) we also deduce that for any t ∈ [0, T ]

a(t, u, z) = lim
n→∞

ank(u, z) where tk ≤ t < tk+1

In particular this implies that (πn)n is a minimizing sequence in Problem (5.13), or
equivalently, by using (5.20), the sequence θnr := θn(r, Ur−, Zr−, X

θn
r−), where

θn(r, u, z, x) := e−zx

2n−1∑
k=0

πnk (u, z)1{r∈]tk, tk+1]} (5.39)

is a minimizing sequence in problem (5.12). Remark that since πn is bounded the
strategy θn is admissible.
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5.4 The structure of the quadratic hedge value function

In this Section we will discuss the structure of the value function introduced in
(5.11). We define F t,u,p,z := f(U t,uT , P t,pT , Zt,u,zT ) and

S :=

{∫ T

t
θr−dSr |θ ∈ X (t, u, p, z)

}
(5.40)

In what follows PrS denotes the L2-projection into the space of stochastic integrals
S. Remark that the projection is well defined since S is a convex closed subset
in the Hilbert space L2(P). With these notations, we can see the quadratic hedge
problem (5.11) as the projection of the random variable F − x on S:

vf (t, u, p, z, x) =EP
[(

PrS(F t,u,p,z − x)
)2]

= EP
[(

PrS(F t,u,p,z)− xPrS(1)
)2]

=EP
[(

PrS(1))
)2]

x2 − 2EP [PrS(F t,u,p,z)PrS(1)
]
x+ EP

[(
PrS(F t,u,p,z)

)2]
From the definition of PrS we first obtain

EP
[(

PrS(1))
)2]

:= inf
θ∈X (t,u,z)

EP

[(
1 +

∫ T

t
θr−dS

t,u,z
r

)2
]

= a (t, u, z)

which does not depend on the particular structure of the function f . In conclusion,
if we define

bf (t, u, p, z) :=− 2EP
[
PrS(f(U t,uT , P t,pT , Zt,u,zT ))PrS(1)

]
and

cf (t, u, p, z) :=EP
[(

PrS(f(U t,uT , P t,pT , Zt,u,zT ))
)2
]

then the value function vf admits the following quadratic decomposition:

vf (t, u, p, z, x) = a (t, u, z)x2 + bf (t, u, p, z)x+ cf (t, u, p, z) (5.41)

This quadratic structure for the value function is well known in the literature ( see
for example Jeanblanc et al. (2011)). From Lemma 5.3 we have a > 0 so then it is
straightforward to obtain the optimal price in (5.11):

x∗(f) := arg min
x∈R

vf (t, u, p, z, x) = −b
f (t, u, p, z)

2a(t, u, z)
(5.42)

which is a linear function of the payoff f since bf is. The following Lemma proves
the stability of the optimal price x∗(f) and the optimal hedging strategy under
small perturbation of the function f :

Lemma 5.8. Let f1, f2 be two measurable functions with fi(U
t,u
T , P t,pT , Zt,u,zT ) ∈

L2(P) for all t, u, p, z, i = 1, 2. Then for any t < T and (u, p, z) ∈ R3

|x∗(f1)(t, u, p, z)− x∗(f2)(t, u, p, z)| ≤ a(t, u, z)−1/2
∥∥∥(f1 − f2)(U t,uT , P t,pT , Zt,u,zT )

∥∥∥
2∣∣∣(vf1 − vf2) (t, u, p, z, x)

∣∣∣ ≤
2
(
x+

∥∥∥(f1 + f2)(U t,uT , P t,pT , Zt,u,zT )
∥∥∥

2

)∥∥∥(f1 − f2)(U t,uT , P t,pT , Zt,u,zT )
∥∥∥

2
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Fix now (t, u, p, z, x) and let fn such that
∥∥∥(fn − f)(U t,uT , P t,pT , Zt,u,zT )

∥∥∥
2
→ 0, n →

∞. If θn is the optimal control in (5.11) when one uses fn then, for all ε > 0, there
exists some N > 0 such that for any n ≥ N one has∣∣∣∣∣vf (t, u, p, z, x)− EP

[(
f(U t,uT , P t,pT , Zt,u,zT )− x−

∫ T

t
θnr−dS

t,u,z
r

)2
]∣∣∣∣∣ ≤ ε

Proof.
Let4f := (f1−f2)(U t,uT , P t,pT , Zt,u,zT ). From the definition of bf and x∗(f) we obtain

|x∗(f1)(t, u, p, z)− x∗(f2)(t, u, p, z)| ≤a−1(t, u, z)E
[
PrS(1)2

]1/2 E [PrS (4f)2
]1/2

≤a(t, u, z)−1/2 ‖4f‖2
and from (5.41) we obtain∣∣∣vf1(t, u, p, z, x)− vf2(t, u, p, z, x)

∣∣∣
≤2
(
a1/2(t, u, z)|x|+

∥∥∥(f1 + f2)(U t,uT , P t,pT , Zt,u,zT )
∥∥∥

2

)
E
[
PrS (4f))2

]1/2

≤2
(
x+

∥∥∥(f1 + f2)(U t,uT , P t,pT , Zt,u,zT )
∥∥∥

2

)
‖4f‖2

We conclude the proof by remarking that

0 ≤E

[(
f
(
U t,uT , P t,pT , Zt,u,zT

)
− x−

∫ T

t
θnr−dS

t,u,z
r

)2
]
− vf (t, u, p, z, x)

=E

[(
((f − fn) + fn)

(
U t,uT , P t,pT , Zt,u,zT

)
− x−

∫ T

t
θnr dS

t,u,z
r

)2
]
− vf (t, u, p, z, x)

≤E
[
(f − fn)2

]
+ 2E

[
(f − fn)2

]1/2
vfn(t, u, p, z, x)1/2

≤M(1 + |x|) ‖fn − f‖∞ + |vfn − vf |

and by using the above estimation on |vfn − vf | we deduce that, for some positive
constant M which depends on t, u, p, z and x we find∣∣∣∣∣vf (t, u, p, z, x)− EP

[(
f(U t,uT , P t,pT , Zt,u,zT )− x−

∫ T

t
θnr−dS

t,u,z
r

)2
]∣∣∣∣∣

≤M
∥∥∥(fn − f)(U t,uT , P t,pT , Zt,u,zT )

∥∥∥
2

which concludes our proof.

�

Remark 5.9. Lemma 5.8 can be improved since, as stated in Lemma 5.3, we have
e−CT ≤ a(t, u, z) for some positive constant C, so then

|x∗(f1)(t, u, p, z)− x∗(f2)(t, u, p, z)| ≤ eCT/2
∥∥∥(f1 − f2)(U t,uT , P t,pT , Zt,u,zT )

∥∥∥
2

The message coming from the above Lemma is really interesting: one can ”replace”
a potentially non-smooth payoff function f with some smooth functions fn, by
controlling the error on the value function and the optimal quadratic hedge price
by ‖f − fn‖2.
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5.5 The pure investment problem: verification

When f = 0 in problem (5.11) we have seen that the value function is given by
v0(t, u, z, x) = a(t, u, z)x2. We can characterize the function a as the solution of a
semi linear partial integro-differential equation (PIDE). For this, let us introduce
the differential operators associated to the process (U,P, Z):

Definition 5.10. Let ϕ : [0, T ]× R3 → R be a smooth function. We denote

Atϕ :=−
(
µ
∂ϕ

∂z
+ µU

∂ϕ

∂u
+ µP

∂ϕ

∂p

)
−1

2

(
σ2∂

2ϕ

∂z2
+ (σP )2∂

2ϕ

∂p2
+ (σU )2∂

2ϕ

∂u2
− 2λσσP

∂2ϕ

∂p∂z

)
Btϕ :=

∫
R

(
ϕ(t, u, p+ γP , z + γ)− ϕ(t, u, p, z)−

(
γP

∂ϕ

∂p
+ γ

∂ϕ

∂z

)
1{|y|≤1}

)
ν(dy)

+

∫
R

(
ϕ(t, u+ γU , p, z)− ϕ(t, u, p, z)− γ ∂ϕ

∂u
1{|y|≤1}

)
νn(dy)

Qtϕ :=µ̃ϕ+ σ2∂ϕ

∂z
+ λσσP

∂ϕ

∂p

+

∫
R

(eγ − 1)
(
ϕ(t, u, p+ γP , z + γ)− ϕ(t, u, p, z)1{|y|≤1}

)
ν(dy)

Gtϕ :=σ2ϕ+

∫
R

(eγ − 1)2ϕ(t, u, p, z + γ)ν(dy)

where µ stands for µ(t, u, z) and so on.

We introduce the functional spaces with which we will work throughout this section:

� C l/2,l([0, T ] × R3), the Hölder space of type 1, defined in Paragraph C.2, where
l ∈ [0 , 3) \ {1, 2}.
� H l([0, T ] × R3), the Hölder space of type 2, defined in Appendix C, paragraph
C.3, where l ∈ [0, 3).

Recall that C l/2,l([0, T ] × R3) ⊂ H l([0, T ] × R3). With the following theorem we
characterize the function a as the solution of a semi linear PIDE, provided that
it has a unique smooth solution. This procedure is also known as the verification,
which in general is the ”easiest” part in a stochastic optimization problem.

Theorem 5.11. Let Assumptions 5.1 hold true and T < T ∗ as stated in Theorem
(5.4). Let also

H[ϕ] := inf
|π|≤Π̄

{
2πQϕ+ π2Gϕ

}
(5.43)

where

Π̄ :=
eCT

σ2
min ∨ |Γ|

Ce
(
1 +Ka

lip

)
(5.44)

and Ce is given in (5.22).
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Case σmin > 0
Assume that the PIDE

0 = −∂ϕ
∂t

+Atϕ− Btϕ−H[ϕ] ϕ(T, u, z) = 1 (5.45)

has a unique solution ϕ ∈ Cκ/2+1,κ+2([0, T ] × R2) for some κ ∈ (0, 1), which
also is strictly positive.

Case σmax=0

Suppose that the intensity measure ν(dy) (respectively νn(dy)) has a density
w.r.t. the Lebesgue measure: ν(dy) = g(y)|y|−(1+α)dy (respectively νn(dy) =
gn(y)|y|−(1+α)dy), where α ∈ (1, 2) and g (respectively gn) is a bounded, mea-
surable and positive function. Assume that the PIDE (5.45) has a unique
solution ϕ ∈ Hα+κ([0, T ] × R2), for some κ ∈ (0, 1), which also is strictly
positive and continuously differentiable w.r.t. t.

Then ϕ = a defined in (5.13) and the optimal strategy in problem (5.12) is given by

θ∗t = e−Zt−π∗ (t, Ut−, Zt−)Xθ∗
t−, Xθ∗

t := x+

∫ t

0
θ∗r−dSr (5.46)

where

π∗(t, u, z) :=− Qta(t, u, z)

Gta(t, u, z)
(5.47)

is the minimizer in the operator H.

Proof.
We start with the case σmin > 0. Let then ϕ ∈ Cκ/2+1,κ+2([0, T ]×R2) be the unique
solution of (5.45) and define w(t, z, x) := x2ϕ(t, u, z). Take now the minimizing
sequence θn of the problem (5.12) introduced in (5.39). If Xn is the wealth process
stated in (5.9) corresponding to θn then, from Itô’s formula, we obtain

E
[
w(t+ h, Ut+h, Zt+h, X

n
t+h)

]
= w(t, u, z, x) + E

[∫ t+h

t
(Xn

s−)2∂ϕ

∂t
(s, UsZs)ds

]
+

E
[∫ t+h

t
(Xn

s−)2 (−Asϕ+ Bϕ) (s, Us−, Zs−)ds

]
+

E
[∫ t+h

t
(θs−e

Zs−)

(
2µ̃Xn

s−ϕ+ σ2θs−e
Zs−ϕ+ 2σ2Xn

s−
∂ϕ

∂z

)
(s, Us, Zs)ds

]
+

E
[∫ t+h

t
(θs−e

Zs−)2

∫
R

(eγ − 1)2 ϕ(s, Us, Zs− + γ)ν(dy)ds

]
+

E
[∫ t+h

t
2θs−e

Zs−Xn
s−

∫
R

(eγ − 1)
(
ϕ(s, Us, Zs− + γ)− ϕ(s, Us, Zs−)1{|y|<1}

)
ν(dy)ds

]
where (U,Z,Xn) stands for (U t,u, Zt,u,z, Xt,u,z,n). Since ϕ ∈ Cκ/2+1,κ+2([0, T ]×R2)
(which implies that ϕ and its derivatives are bounded) we can omit the martingale
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part after taking expectation. Fix now (s, ω): if Xn
s−(ω) = 0 then the expression in

the expectation above becomes

σ2(θse
Zs)2ϕ(s, Us, Zs) + (θs−e

Zs−)2

∫
R

(eγ − 1)2 ϕ(s, Us, Zs− + γ)ν(dy) ≥ 0

since ϕ is positive. If Xn
s−(ω) 6= 0 we can introduce πn := θns e

Zs−/Xs− and, after
simple calculations, we deduce that the expression in the expectation turns out to
be non negative (since ϕ verifies the PIDE (5.45) and |πn| ≤ Π̄ as proved in (5.38)).
We deduce

E
[
w(t+ h, Ut+h, Zt+h, X

n
t+h)

]
≥ w(t, u, z, x)

The continuity of w gives w(t + h, Ut+h, Zt+h, X
n
t+h) →

(
x+

∫ T
t θnr−dSr

)2
when

h→ T − t. Since ϕ is bounded we also have∣∣w(t+ h, Ut+h, Zt+h, X
n
t+h)

∣∣ ≤ ‖ϕ‖∞ sup
s∈[t,T ]

|Xn
s |

2 ∈ L1(P)

This is true since Xn is a stochastic exponential (from the definition of θn in (5.39))
and πn is bounded:

dXn
r = πnr−X

n
r−e
−Zr−d exp(Zr)

so that we can apply Lemma 3.1 in Pham (1998) to prove that sups∈[t,T ] |Xn
s |

2 ∈

L1(P). Dominated convergence yields w(t, u, z, x) ≤ E
[(
x+

∫ T
t θnr−dSu

)2
]
. Since

θn is a minimizing sequence in problem (5.12), by taking the limit n→∞ we finally
obtain w(t, u, z, x) ≤ v0(t, u, z, x). To prove the equality, we use the strategy θ∗ in
(5.46), which is admissible since π∗ is bounded, and then it belongs to X (t, u, p, z).
Remark that

‖π∗‖∞ ≤
eCT

σ2
min ∨ |Γ|

(
‖µ̃‖+Ka

lipσ
2
max + ‖τ‖1,ν +Ka

lip ‖τ‖
2
2,ν

)
≤ Π̄

With a similar argument as before we can prove that

E
[
w(t+ h, Ut+h, Zt+h, X

θ∗
t+h)

]
= w(t, u, z, x)

and then, by letting h→ T − t, we deduce

w(t, u, z, x) = E

[(
x+

∫ T

t
θ̄r−dSu

)2
]
≥ v0(t, u, z, x)

which implies w(t, u, z, x) = v0(t, u, z, x). We conclude ϕ = a and θ∗ is the optimal
policy for the stochastic control problem in (5.12).
If σmax = 0 then (U,Z) is a pure jump process. In this case, one can use the Itô’s
formula for pure jump process given in Appendix D and repeat the same argument.

�
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Theorem 5.11 characterizes the function a as the solution of PIDE (5.45), pro-
vided that we can prove that it has a unique smooth solution which also is strictly
positive. In Chapter 6 we will prove that this PIDE has a unique smooth solution
when σmin > 0, whereas Chapter 7 is devoted to the analysis of this PIDE when
σmax = 0.

Remark 5.12. The function a does not depend on the variable p, so the operators
in Definition 5.10 appearing in PIDE (5.45) can be simplified.

Remark 5.13. If S is a martingale under the historical probability P then from
Lemma 5.2 we obtain

a(t, u, z) = EP
[
1 +

∫ T

t
θ∗r−dS

t,u,z
r

]
= 1

This fact can be also seen on the HJB equation (5.45): by applying Itô’s formula to
S we find

µ+
1

2
σ2 +

∫ (
eγ − 1− γ1{|y|≤1}

)
ν(dy) = 0

since it is a martingale. It follows that the non linear operator H in (5.43) will only
depend on ∂a, the first derivative of a, and then it is straightforward to deduce the
unique solution of PIDE 5.45 is given by a = 1.

5.6 The quadratic hedge problem: verification

As in Section 5.5, our aim is to characterize the function v given in (5.11) as the
unique solution of a PIDE. From (5.41) we know that vf has the following structure

vf (t, u, p, z, x) = a(t, u, z)x2 + b(t, u, p, z)x+ c(t, u, p, z)

We already know that a verifies the PIDE (5.45) if it is smooth enough to apply
Itô’s formula.

Theorem 5.14. Let Assumptions 5.1 hold true and T < T ∗ as stated in Theorem
(5.4). Suppose that f is continuous and that the PIDE (5.45) has a unique smooth
solution which also is strictly positive.

Case σmin > 0
Assume that the PIDEs

0 = −∂b
∂t

+Atb− Btb− π∗Qtb, b(T, .) = −2f (5.48)

0 = −∂c
∂t

+Atc− Btc+
1

4

(Qtb)2

Gta
, c(T, .) = f2 (5.49)

have a smooth solutions b, c ∈ C1+κ/2+1,2+κ([0, T ] × R3) for some κ ∈ (0, 1),
where π∗ is given in (5.47).
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Case σmax=0

Suppose that the intensity measure ν(dy) (respectively νn(dy)) has a density
w.r.t. the Lebesgue measure: ν(dy) = g(y)|y|−(1+α)dy (respectively νn(dy) =
gn(y)|y|−(1+α)dy), where α ∈ (1, 2) and g (respectively gn) is a bounded, mea-
surable and positive function. Assume that the PIDEs (5.48)–(5.49) have a
unique solutions b, c ∈ Hα+κ([0, T ]× R3), for some κ ∈ (0, 1), which also are
continuously differentiable w.r.t. t.

Then the value function of the problem (5.11) is

vf (t, u, p, z, x) = a(t, u, z)x2 + b(t, u, p, z)x+ c(t, u, p, z)

where a is the unique smooth solution of (5.45), whereas b, c are, respectively, the
unique smooth solution of PIDES (5.48)–(5.49). Furthermore the optimal strategy
in problem (5.11) is given by

θ∗t :=e−Zt−
(
π∗(t, Ut−, Zt−)Xθ∗

t− −
1

2

Qtb
Gta

(t, Ut−, Pt−, Zt−)

)
(5.50)

Xθ∗
t :=x+

∫ t

0
θ∗r−dSr

Proof.
As in the proof of Theorem 5.11, let us consider the case σmin > 0. We start
with wf (t, u, p, z, x) := a(t, u, z)x2 + b(t, u, p, z)x + c(t, u, p, z), where a is solution
of (5.45), whereas b and c are, respectively, the solutions of (5.48) and 5.49. Since
a > 0 then

0 = x2

[
∂a

∂t
−Ata+ Bta

]
+ x

[
∂b

∂t
−Atb+ Btb

]
+

[
∂c

∂t
−Atc+ Btc

]
+ inf

θ∈R

[
θez (2Qtax+Qtb) + θ2e2zGta

]
Let now θ ∈ X (t, u, p, z) and apply Itô’s formula to wf (t+h, Ut+h, Pt+h, Zt+h, X

θ
t+h).

We skip the computations, since they are similar to the ones we did in the proof of
Theorem 5.11: by using the continuity of f we obtain

wf (t, u, p, z, x) ≤ E
[(
f
(
U t,uT , P t,pT , Zt,u,zT

)
−Xt,u,z,x,θ

T

)2
]

From the arbitrariness of θ we deduce wf (t, u, p, z, x) ≤ vf (t, u, p, z, x). The equality
is obtained by using θ∗ in (5.50). When σmax = 0 one can use Itô’s formula for pure
jump processes stated in Appendix D to complete the proof.

�

The above result proves that one can characterize the value function of problem
(5.11) by solving a triplet of PIDEs, provided that they have a unique smooth
solution. This system has a ”triangular” structure: the first one, which is semi
linear, only depends on the function a; the second one is linear in b whenever we
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know a and the third one is again linear in c when we know a and b. The optimal
strategy of problem (5.11) has an affine structure

θ∗t := e−Zt−
(
π∗(t, Ut−, Zt−)Xθ∗

t− −
1

2

Qtb
Gta

(t, Ut−, Pt−, Zt−)

)
where the multiplier π∗ does not depend on the particular form of the payoff profile
f , so it is universal. This simplifies the implementation of the above strategy to
solve problem (5.11): firstly one computes the function a, which does not depend
on f , by solving a semi linear PIDE and then one only has to solve a linear PIDE
for the function b. This also allows to compute the hedge ratios for different options
at the same time once one has computed the function a.

In general it is not possible to find explicit solution for PIDE (6.1), so one has to
employ numerical schemes. However the triangular structure for the functions a, b
and c largely simplifies the problem: first one computes numerically the function a
and then uses it to compute the function b, which is relatively simple since it solves
a linear PIDE. Remark as well that in order to compute the optimal strategy and
the optimal quadratic hedge price (defined in (5.42)) one does not need the function
c.

5.7 Viscosity solutions

In Sections 5.5 and 5.6 we characterized the value functions a and vf in terms of
solution of PIDEs; however, at this point, we do not know whenever the functions
a, b and c are smooth or not, and in general semi linear partial differential equations
do not have smooth solutions. To give an idea of this difficulty, we would like to
recall a really simple example taken from Cannarsa and Sinestrari (2004), which
explains how even relatively simple non linear differentiable equations may fail to
have smooth solutions. Let u : [−1, 1] → R a smooth function verifying u(−1) =
u(1) = 0 and (u′)2 = 1 in (−1, 1). If such a u exists then one can find x0 ∈ (−1, 1)
with u′(x0) = 0, which contradicts the fact that (u′(x0))2 = 1. So there is no solution
to the above problem. However one can easily check that the function u(x) = |x|−1
verifies the above equation everywhere except at x = 0. For many applications it
may be sufficient to know that the problem above has a solution, provided that
one gives a precise sense of what is a non-smooth solution of a differential problem,
or, in other word, provided that one relaxes the notion of classical solution. Other
examples of this type, issued in particular from stochastic optimization problems
(Pham, 2007), prove that the classical notion of solution of a differential equation
was too restrictive and not appropriate for a wide class of interesting differential
problems.

The general theory of viscosity solutions is a well adapted context in which one
can give a precise sense for a non-smooth solution of a differential equation. Espe-
cially in the case of stochastic control problems and related differential equations,
the notion of viscosity solutions allows to characterize in a unique way the value
function.

Nowadays the theory of viscosity solutions has been highly developed and many
references can be found in the literature. To our knowledge the notion of viscosity
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solution in the diffusion case has been introduced by Lions (1983). A complete
review of this theory has been done in Crandall, Ishii, and Lions (1992) to sum
up ten years of intense research on the viscosity solutions theory applied to second
order semi linear partial differential equations. These ideas were afterwards adapted
to semi linear partial integro-differential equations, as for example PIDE (5.45)
(see Barles, Buckdahn, and Pardoux (1997); Pham (1998); Jakobsen and Karlsen
(2005); Barles and Imbert (2008) and references therein). Let us start with the
basic definition of viscosity solution for a second order parabolic PIDEs:

Definition 5.15. Let A ⊆ Rn a possibly unbounded domain and T <∞. Consider
the PIDE

∂v

∂t
+ F (t, w, v(w), Dv,D2v, v(.)) = 0, (t, w) ∈ [0, T )×A

v = ψ on the parabolic boundary [0, T ]× ∂A ∪ {T} ×A

where F : [0, T )×A×R×Rn×Sn×C2
p([0, T )×A) is a given functional, ψ : A→ R.

and C2
p([0, T ) × A) denotes the space of twice continuously differentiable functions

with polynomial growth at infinity with power p. A locally bounded map v is a
viscosity sub-solution (resp. super-solution) of the above PIDE if for any w ∈ A
and any ϕ ∈ C2

p([0, T ) × A) such that w is a local maximizer of v∗ − ϕ (resp.
minimizer of v∗ − ϕ) one has

∂ϕ

∂t
+ F (t, w, v∗(w), Dϕ(w), D2ϕ(w)v, ϕ(.)) ≤ 0, (sub-solution), v∗(T, .) = ψ∗(T, .)

∂ϕ

∂t
+ F (t, w, v∗(w), Dϕ(w), D2ϕ(w)v, ϕ(.)) ≥ 0, (super-solution), v∗(T, .) = ψ∗(T, .)

where v∗ (resp v∗) is the upper (resp lower) semi-continuous envelope of v . A map
v is a viscosity solution if it is at the same time a super-solution and sub-solution
of the above PIDE.

Remark 5.16. We omitted to list some necessary assumptions on the functional
F . One can find them, for example, in Jakobsen and Karlsen (2006) or Barles
and Imbert (2008) when the non local component is a Lévy operator as B given in
definition 5.10.

It is clear at this point how the notion of viscosity solution relaxes the classical
definition of smooth solution for PIDEs: according to the above definition, one
only asks that the solution has to be locally bounded. Equivalent definitions of
viscosity solution can be stated in terms of the so called sub and superjet (see for
this Crandall, Ishii, and Lions (1992) where there is no non-local component, or
Pham (1998) when a non local component is allowed). Proving the existence of a
viscosity solution is a relatively simple task under mild conditions on the functional
F . The main difficulties arise when one wants to prove its uniqueness: in many cases
this is done by proving a so called ”comparison theorem” or ”maximum principle”,
which allows us to compare a sub-solution and a super-solution on the entire domain.
In its general form this is stated as follows:

if v is a sub-solution and v′ is a super-solution with v∗ ≤ v′∗ on the
parabolic boundary of [0, T ]×A then

v∗ ≤ v′∗ on [0, T ]× Ā
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This comparison result depends on the form of the functional F . In the literature
a key tool to prove the above comparison theorem is given by the Jensen-Ishii
Lemma (Jensen, 1988; Ishii, 1989) and its extension to more general cases (see for
example Jakobsen and Karlsen (2006); Pham (1998); Barles and Imbert (2008)). We
point out that, although general comparison principles are stated for many types of
functionals F , the uniqueness problem remains an open problem in many situations,
even when the non-local component is not allowed. We can say that the viscosity
approach shifts the difficulty of proving the existence of a solution (which was the
hard task in classical setting) to its uniqueness.

The viscosity solutions theory turns out to be well adapted to stochastic opti-
mization problems when one can prove a so called dynamic programming principle.
In the rest of the section we will present it for the problem (5.12). Since what
follows is not fundamental for our work, we will do it in the simple case where Z
does not depend on U . The principle can be stated as follows:

Dynamic programming principle: for any h > 0 and (t, z, x) ∈ [0, T )× R3

v0(t, z, x) = inf
θ∈Xt+h(t,z,x)

E
[
v0
(
t+ h, Zt,u,zt+h , X

t,u,z,x,θ
t+h

)]
(5.51)

where Xt+h(t, z, x) is the set of admissible controls on the time window [t, t+h]. To
prove the above principle one needs some a priori regularity on the value function v0

(or equivalently on the function a). For example, if we could prove that the function
a is continuous then (5.51) holds true by using Proposition 3.2 in Pham (1998). We
do not insist on this but we just focus on the fact that when the admissible strategies
are not bounded, as in our case, proving the dynamic programming principle is a
delicate task, in particular when the state variable process can jump.

Fix (t, z, x) and let ψ be a smooth function with appropriate polynomial growth
such that

0 = (v0 − ψ)(t, z, x) = sup
[0,T ]×R2

(v0 − ψ)(t′, z′, x′)

It follows

0 ≤ inf
θ∈Xt+h(t,z,x)

E
[
ψ
(
t+ h, Zt,zt+h, X

t,z,x,θ
t+h

)
− ψ(t, z, x)

]
We can now apply Itô’s formula and, by letting h→ 0+, we obtain

0 ≥ −∂tψ − µ∂zψ −
1

2
σ2∂2

zψ −
(
θezµ̃∂xψ +

1

2
σ2(θez)2∂2

xψ + σ2θez∂2
zxψ +∫

(ψ(t, z + γ, x+ θez(eγ − 1))− ψ(t, z, x)− (γ∂zψ + θez(eγ − 1))∂xψ)1{|y|≤1}ν(dy)

)
for any θ ∈ R. From the fact that v0 = x2a(t, z) we deduce that

− ∂ϕ

∂t
(t, z) +Aϕ(t, z)− Bϕ(t, z)− inf

π∈R

{
2πQϕ(t, z) + π2Gϕ(t, z)

}
≤ 0

for any smooth ϕ verifying 0 = (a−ϕ)(t, z) = sup(a−ϕ)(t′, z′). Remark that since
ϕ ≥ a then

inf
π∈R

{
2πQϕ(t, z) + π2Gϕ(t, z)

}
> −∞
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It follows that the function a is a viscosity sub-solution of

− ∂a

∂t
+Aa− Ba− inf

π∈R

{
2πQa+ π2Ga

}
= 0

For the super-solution one has to take care of the fact that infπ∈R
{

2πQϕ+ π2Gϕ
}

can take the value −∞: in fact the test function ϕ is bounded from above by a and
then we do not know whenever Gϕ(t, z) is strictly positive or not. We do not detail
it but it can be proved that a is a super-solution and then a viscosity solution of

max

(
−∂a
∂t

+Aa− Ba− inf
π∈R

{
2πQa+ π2Ga

}
, inf
π∈R

{
2πQa+ π2Ga

})
= 0 (5.52)

Remark that at this point we never used any strict elliptic condition on the
volatility coefficient of Z. This is one of the reasons to use the viscosity approach
when the coefficient σ of the processes in (5.5) may be degenerate. We do not dis-
cuss here the uniqueness of the (viscosity) solution of (5.52) since we will not use
this PIDE in the sequel.

We conclude this Section with the following remark: the viscosity solution approach
is a powerful tool to characterize the value function of a stochastic optimization
problem, provided that one can prove the dynamic programming principle (for the
existence) and a comparison principle (for the uniqueness). However finding the
optimal control remains a open problem: from (5.47) we deduce that this optimal
control depends on the derivative of the value function which is not defined if the
value function is not differentiable.





Chapter 6

Smooth solutions: the
jump-diffusion case

The Chapter is organized as follows: we start by giving some regularity properties
of the differential operators introduced in Definition 5.10 (Section 6.1). To prove
the regularity of the value function a, we introduce an iterative sequence (Paragraph
6.2.1), for which we first give some fundamental a priori properties (Paragraph
6.2.2), and then we prove its convergence to the function a in an appropriate Hölder
space (Paragraph 6.2.3). We also compare our methods with two other ones, which
make use of, respectively, BSDEs theory and Sobolev spaces, that may be used in
some cases to prove that the function a is smooth. We conclude the Chapter with
Section 6.3 where we prove that the value function of the quadratic hedge problem
is smooth.
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6.1 Hölder regularity of the differential operators

This chapter is devoted to the analysis of the PIDE (5.45) when σmin > 0. We
will always assume that Assumptions 5.1 hold true together with the following:

Assumption 6.1.
[C]-The coefficients. There exists some m ≥ 0 such that for all t, t′ ∈ [0, T ] and
u, z, y ∈ R we have∣∣µ(t, u, z)− µ(t′, u, z)

∣∣+
∣∣σ(t′, u, z)− σ(t′, u, z)

∣∣ ≤ m|t− t′|∣∣γ(t, u, z, y)− γ(t′, u, z, y)
∣∣ ≤ mρ(y)|t− t′|

101
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and the same holds true for the coefficients of U (respectively P ) where one uses
positive constants mU and ρU (resp. 0 ≤ mP and ρP ).

[I]-Integrability condition There exists some δ ∈ (0, 1) such that∫
|y|≤1

(
τ2−δ(y) + (τP (y))2−δ

)
ν(dy) +

∫
|y|≤1

(τU (y))2−δνn(dy) < +∞

[ND]-No degeneracy. There volatility functions are uniformly bounded from be-
low by some positive constant: 0 < σmin ≤ σmax.

Recall that, according to Theorem 5.11, we need to prove that the following
PIDE

0 =− ∂a

∂t
+Aa− Ba−H[a], a(T, u, z) = 1 (6.1)

has a unique smooth solution which also is strictly positive. We also recall the
functional spaces used throughout this chapter:

� C l/2,l([0, T ] × R3), the Hölder space of type 1, defined in Paragraph C.2, where
l ∈ [0 , 3) \ {1, 2}.

� H l([0, T ] × R3), the Hölder space of type 2, defined in Appendix C, paragraph
C.3, where l ∈ [0, 3).

Remark that C l/2,l([0, T ]×R3) ⊂ H l([0, T ]×R3). In the rest of the chapter ‖ ‖l/2,l
denotes then the Hölder norm relatively to the Hölder space of type 1 (see definition
(C.3)), whereas ‖ ‖l,H is relative to the Hölder space of type 2 (see definition C.7).

In this section we will study the operators defined in Definition 5.10 and we
prove that they are Lipschitz continuous in their appropriate Hölder space. This
regularity is needed is order to prove that PIDE (6.1) has a unique smooth solution.

Lemma 6.2. Suppose that Assumptions 5.1-[C1, I1] and Assumptions 6.1-C hold
true and fix κ ∈ (0, 1). Then

B,Q, G : Cκ/2+1,κ+2([0, T ]× R3)→ Cκ/2,κ([0, T ]× R3)

Moreover there exist a positive constant M > 0 and two functions %, ς : (0, 1)→ R+

such that for all ε ∈ (0, 1), r ∈ (0, 1)

‖Qϕ‖κ/2,κ + ‖Gϕ‖κ/2,κ ≤M
(
ε1−κ ‖ϕ‖κ/2+1,κ+2 + ε−(1+κ) ‖ϕ‖∞

)
‖Bϕ‖κ/2,κ ≤M

((
%(r) + ε1−κς(r)

)
‖ϕ‖κ/2+1,κ+2 + ε−(1+κ)ς(r) ‖ϕ‖∞

)
for all ϕ ∈ Cκ/2+1,κ+2([0, T ]× R3).

Let now δ ∈ (0, 1) given in Assumption 6.1-[I], which is now supposed to hold true:
there exists a positive constant M > 0 such that for all ε, r ∈ (0, 1) and for all
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ϕ ∈ H2−δ([0, T ]× R3) one has

‖Qϕ‖∞ + ‖Gϕ‖∞ ≤M ‖ϕ‖1,H
‖Bϕ‖∞ ≤M

((
%(r) + ς(r)ε1−δ

)
‖ϕ‖2−δ,H + ς(r)ε−1 ‖ϕ‖∞,H

)
The constant M does not depend on ϕ, ε or r. Furthermore %(r) → 0 when r → 0
whereas ς(r) → +∞ if τ or τU are not integrable around zero, respectively, w.r.t.
ν(dy) and νn(dy).

Proof.
From now on M > 0 denotes a positive constant which only depend on the market
parameters given in Assumptions 5.1 but not on ϕ. It may also change from line to
line.

For the operator Q we can use the definition of µ̃ given in Assumptions 5.1 to
rewrite it in the following form

Qϕ :=

(
µ+

1

2
σ2 +

∫ (
eγ − 1− γ1{|y|≤1}

)
ν(dy)

)
ϕ+ σ2∂ϕ

∂z
+ λσσP

∂ϕ

∂p

+

∫ 1

0
dθ

∫
|y|≤1

(eγ − 1)

(
γ
∂ϕ

∂z
(t, u, p+ θγP , z + θγ) + γP

∂ϕ

∂p
(t, u, p+ θγP , z + θγ)

)
ν(dy)

Hence it is straightforward to deduce

‖Qϕ‖κ/2,κ ≤M
(
‖ϕ‖κ/2,κ + ‖Dxϕ‖κ/2,κ

)
≤M ‖ϕ‖(κ+1)/2,κ+1

and then we use Proposition C.2 to conclude

‖Qϕ‖κ/2,κ ≤M
(
ε1−κ ‖ϕ‖κ/2+1,κ+2 + ε−(1+κ) ‖ϕ‖∞

)
For G we obtain

‖Gϕ‖κ/2,κ ≤M
(
ε1−κ ‖ϕ‖κ/2+1,κ+2 + ε−(1+κ) ‖ϕ‖∞

)
From the above definition of Q it is straightforward to see that ‖Qϕ‖∞ ≤

M ‖ϕ‖1,H and also ‖Gϕ‖∞ ≤M ‖ϕ‖∞ ≤M ‖ϕ‖1,H

We can start our analysis of B. We first write Btϕ := Itϕ+ Jtϕ where

Itϕ :=

∫
R

(
ϕ(t, u, p+ γP , z + γ)− ϕ(t, u, p, z)−

(
γP

∂ϕ

∂p
+ γ

∂ϕ

∂z

)
1{|y|≤1}

)
ν(dy)

Jtϕ :=

∫
R

(
ϕ(t, u+ γU , p, z)− ϕ(t, u, p, z)− γU ∂ϕ

∂u
1{|y|≤1}

)
νn(dy)

If we prove the result for I and J then it also holds true for B by applying triangular
inequality. Since similar computations can be done for I and J , we give details
only for Jt. Define

%(r) :=

∫
|y|≤r

τU (y)2−δνn(dy) +

∫
|y|≤r

τU (y)2νn(dy), and ς(r) :=

∫
r<|y|

τU (y)νn(dy)
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The integrability conditions stated in Assumptions 5.1-[I1] yield that %(r) → 0
when r → 0 and ς(r)→ +∞ if τU is not integrable around zero.

We start with the estimations in the Hölder space of type 1. For any r ∈ (0, 1)
we have

Jtϕ =

∫ 1

0
dθ′
∫ θ′

0
dθ

∫
|y|≤r

(γU )2∂
2ϕ

∂u2
(t, u+ θγU , p, z)νn(dy)

+

∫ 1

0
dθ

∫
r<|y|

γU
(
∂ϕ

∂u
(t, u+ θγU , p, z)− ∂ϕ

∂u
1{|y|≤1}

)
νn(dy)

It follows that for some M > 0

‖Jϕ‖∞ ≤M
(
%(r)

∥∥D2
xϕ
∥∥
∞ + ς(r) ‖Dxϕ‖∞

)
Similarly we can prove that

〈Jϕ〉(κ)
x,QT

≤M
(
%(r)

(∥∥D2
xϕ
∥∥
∞ + 〈D2

xϕ〉
(κ)
x,QT

)
+ ς(r)

(
‖Dxϕ‖∞ + 〈Dxϕ〉(κ)

x,QT

))
〈Jϕ〉(κ/2)

t,QT
≤M

(
%(r)

(∥∥D2
xϕ
∥∥
∞ + 〈D2

xϕ〉
(κ/2)
t,QT

)
+ ς(r)

(
‖Dxϕ‖∞ + 〈Dtϕ〉(κ/2)

t,QT

))
By adding up the above estimations we obtain

‖Jϕ‖κ/2,κ ≤M
(
%(r) ‖ϕ‖κ/2+1,κ+2 + ς(r) ‖ϕ‖(κ+1)/2,κ+1

)
≤M

((
%(r) + ε1−κς(r)

)
‖ϕ‖κ/2+1,κ+2 + ε−(1+κ)ς(r) ‖ϕ‖∞

)
by applying Proposition C.2. A similar result can be obtained for Iϕ with, of course,
some different functions % and ς involving the functions τ and τP .

We can prove the estimations in the Hölder space of type 2 by slightly modifying
the previous argument:

Jtϕ =

∫ 1

0
dθ

∫
|y|≤r

γU
(
∂ϕ

∂u
(t, u+ θγU , p, z)− ∂ϕ

∂u

)
νn(dy)

+

∫ 1

0
dθ

∫
r<|y|<1

γU
(
∂ϕ

∂u
(t, u+ θγU , p, z)− ∂ϕ

∂u
1{|y|≤1}

)
νn(dy)

It follows

‖Jϕ‖∞ ≤M
(
%(r)〈Dxϕ〉(1−δ)x,QT

+ ς(r) ‖Dxϕ‖∞
)

We conclude by applying Proposition C.3 so then

‖Jϕ‖∞ ≤M
((
%(r) + ς(r)ε1−δ

)
‖ϕ‖2−δ,H + ς(r)ε−1 ‖ϕ‖∞

)
�
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For the non linear operator H we have the following

Lemma 6.3. Suppose that Assumptions 5.1-[C1, I1] hold true and fix β > 0. Then

H : H1+β([0, T ]× R3)→ Hβ([0, T ]× R3)

and there exists a positive constant M > 0 such that

‖H[ϕ]‖β,H ≤M ‖ϕ‖1+β,H

‖H[ϕ+ ψ]−H[ϕ]‖∞ ≤M ‖ψ‖1,H

for all ϕ,ψ ∈ H1+β([0, T ]× R3).

Suppose in addition that Assumptions 6.1-C also holds true and fix κ ∈ (0, 1). Then

H : Cκ/2+1,κ+2([0, T ]× R3)→ Cκ/2,κ([0, T ]× R3)

and there exists a positive constant M > 0 such that

‖H[ϕ]‖κ/2,κ ≤M ‖ϕ‖(κ+1)/2,κ+1

for all ϕ ∈ Cκ/2+1,κ+2([0, T ]× R3).

Proof.
If we define H(q, g) := inf |π|≤Π̄{2πq+ π2g} then H[ϕ] = H(Qϕ,Gϕ). From Lemma
6.2 we obtain

‖H[ϕ]‖∞ ≤M (‖Qϕ‖∞ + ‖Gϕ‖∞) ≤M ‖ϕ‖1+β,H

Let now w = (t, u, p, z) ∈ [0, T ] × R3 and assume now 0 ≤ H[ϕ](w) −H[ϕ](w′): it
follows

H[ϕ](w)−H[ϕ](w′) ≤ 2π∗
(
Qϕ(w)−Qϕ(w′)

)
+ (π∗)2

(
Gϕ(w)− Gϕ(w′)

)
where π∗ ∈ [−Π̄, Π̄] is the minimizer for H[ϕ](w′). A similar estimation can be
stated if H[ϕ](w)−H[ϕ](w′) ≤ 0. We deduce then

〈H[ϕ]〉(β)
x,QT

≤M
(
〈Qϕ〉(β)

x,QT
+ 〈Gϕ〉(β)

x,QT

)
≤M

(
‖ϕ‖1+β,H + ‖ϕ‖β,H

)
by using the definition of Q and G. Together with the estimation for ‖H[ϕ]‖∞ we
obtain ‖H[ϕ]‖β,H ≤ ‖ϕ‖1+β,H .

For the second estimation we use the concavity of H to obtain

H[ψ] ≤ H[ϕ+ ψ]−H[ϕ] ≤ sup
|π|≤Π̄

{
2πQψ + π2Gψ

}
so then

‖H[ϕ+ ψ]−H[ϕ]‖∞ ≤M (‖Qψ‖∞ + ‖Gψ‖∞) ≤M ‖ψ‖1,H

again from Lemma 6.2.
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For the estimation in the Hölder space of type 1 Cκ/2,κ([0, T ]× R3) we have

‖H[ϕ]‖∞ + 〈H[ϕ]〉(κ)
x,QT

= ‖H[ϕ]‖κ,H ≤M ‖ϕ‖1+κ,H ≤M ‖ϕ‖(1+κ/2),1+κ

whereas with the same type of computations we obtain

〈H[ϕ]〉(κ/2)
t,QT

≤M
(
〈ϕ〉(κ/2)

t,QT
+ 〈Dϕ〉(κ/2)

t,QT

)
≤M ‖ϕ‖(1+κ/2),1+κ

which concludes our proof.

�

6.2 Smoothness and characterization of the function a

6.2.1 The approximation sequence

In this section we will prove that PIDE (6.1) has a unique, smooth and strictly
positive solution. First of all let us transform the PIDE as follows: for η > 0

− ∂ϕ

∂t
+Aϕ− Bϕ−H[ϕ] + ηϕ = 0, ϕ(T, u, z) = eηT (6.2)

In particular, if ϕ is a solution of the above PIDE then e−ηtϕ(t, u, z) is a solution
of (6.1).

Let now κ ∈ (0, 1), which we will determine later on, and fix ϕ0 ∈ Cκ/2+1,κ+2([0, T ]×
R2). Consider the sequence (ϕn)n∈N defined recursively by

ϕ0 = ϕ0

− ∂

∂t
ϕn+1 +Aϕn+1 + ηϕn+1 = Bϕn +H[ϕn]

ϕn+1(T, u, z) = eηT

(6.3)

This sequence is well defined in the Hölder space Cκ/2+1,κ+2([0, T ] × R2): by re-
currence, if ϕn ∈ Cκ/2+1,κ+2([0, T ] × R2) then by Lemmas 6.2 and 6.3 we have
Btϕn+Ht[ϕn] ∈ Cκ/2,κ([0, T ]×R2) and we can apply Theorem 5.1 in Ladyzenskaja
et al. (1967), a classical result on second order parabolic PDE, to deduce that ϕn+1

is well defined in the Hölder space Cκ/2+1,κ+2([0, T ]× R2) and∥∥ϕn+1
∥∥
κ/2+1,κ+2

≤M
(
eηT + ‖Bϕn +H[ϕn]‖κ/2,κ

)
(6.4)

Furthermore we can write

ϕn+1(t, w) = eηt

+

∫ T

t
e−η(s−t)

∫
R2

Φ(T − t, w, T − s, ξ) (B +H)ϕn(s, ξ)dsdξ (6.5)

where w = (u, z) and Φ is the fundamental solution of the linear parabolic PDE
(Friedman, 1964; Ladyzenskaja et al., 1967). Estimations on the derivative of Φ are
also available:



Chapter 6. Smooth solutions: the jump-diffusion case 107

Lemma 6.4. There exist some positive constant m1,m2 such that the following
estimations hold true:

i). For 2r + s ≤ 2, s < t∣∣Di
tD

j
wΦ(t, w, s, ξ)

∣∣ ≤ m1(t− s)−
2+2i+j

2 exp

(
−m2

|w − ξ|2

t− s

)
ii). For 2i+ j = 2∣∣Di

tD
j
wΦ(t, w, s, ξ)−Di

tD
j
wΦ(t, w′, s, ξ)

∣∣
≤ m1

(
|w − w′|ι(t− s)−

4+ι
2 + |w − w′|ι′(t− s)−

4+α−ι
2

)
exp

(
−m2

|w − ξ|2

t− s

)
for any α ∈ (0, 1), ι ∈ [0, 1] and ι′ ∈ [0, α].

iii). For 2i+ j = 1, 2∣∣Di
tD

j
wΦ(t, w, s, ξ)−Di

tD
j
wΦ(t′, w, s, ξ)

∣∣
≤ m1|t′ − s|−

4+2i+j
2 |t− t′|

2−2i−j+α
2 exp

(
−m2

|w − ξ|2

t− s

)
If s < t′ < t

A detailed proof of this Lemma can be found in Ladyzenskaja et al. (1967), Ch. IV,
§13.

6.2.2 Weak convergence and uniqueness

Our aim now is to prove that the sequence defined in (6.3) converges in a (bigger)
Hölder space of type 2. The method we will develop can also be used to prove that
PIDE (6.1) has at most one solution. The main result of this paragraph is the
following

Proposition 6.5. Let Assumptions 5.1–6.1 hold true and δ ∈ (0, 1) given in As-
sumptions 6.1-[I]. There exists a η∗ > 0 such that for any η > η∗ the sequence
(ϕn)n defined in (6.3) verifies∥∥ϕn+1 − ϕn

∥∥
2−δ,H ≤ (1 + η)

∥∥ϕ1 − ϕ0
∥∥

2−δ,H β
n

for some β ∈ (0, 1) which does not depend on η, ϕ0 or ϕ1. In particular ϕn → ϕ∗

in H2−δ([0, T ]× R2), the Hölder space of type 2, for some ϕ∗ ∈ H2−δ([0, T ]× R2).

Furthermore for any υ ∈ (0, 1) there exists some positive constant Mυ which depends
on υ, η and the other parameters given in Assumptions 5.1–6.1 such that∣∣ϕ∗(t, u, z)− ϕ∗(t′, u, z)∣∣ ≤Mυ|t− t′|υ, for any t, t′, u, z

and ∣∣Dϕ∗(t, u, z)−Dϕ∗(t′, u, z)∣∣ ≤Mε|t− t′|υ/2, for any t, t′, u, z

where Dϕ∗ = (∂uϕ∗, ∂zϕ∗) is the spatial gradient of ϕ∗.



108 Chapter 6. Smooth solutions: the jump-diffusion case

Proof.
Let us start by remarking that 4n+1 := ϕn+1 − ϕn verifies

− ∂

∂t
4n+1 +At4n+1 + η4n+1 = Bt4n +Ht[ϕn]−Ht[ϕn−1]

4n+1 = 0

For sake of compactness let us call r(s, w) := (B4n + H[ϕn] − H[ϕn−1])(s, w),
w := (u, z) ∈ R2: according to (6.5) we can write

4n+1(t, w) =

∫ T

t
e−η(s−t)

∫
R2

Φ(T − t, w, T − s, ξ)r(s, ξ)dξds

Let us also recall the definition of the ‖ ‖2−δ,H norm:

‖ϕ‖2−δ,H = ‖ϕ‖∞ + ‖Dwϕ‖∞ + 〈Dwϕ〉(1−δ)w,QT

We easily obtain
∥∥4n+1

∥∥
∞ ≤ Mη−1 ‖r‖∞ and

∥∥Dw4n+1
∥∥
∞ ≤ M ‖r‖∞ by using

Lemma 6.4-i). The last thing we need to estimate is∣∣Dw4n+1(t, w)−Dw4n+1(t, w′)
∣∣

=

∫ T

t
e−η(s−t)

∫
R2

∣∣DwΦ(T − t, w, T − s, ξ)−DwΦ(T − t, w′, s(t, ξ)
∣∣ r(s, ξ)dξds

From Lemma 6.4-i) we have∫
R2

∣∣DwΦ(T − t, w, s− t, ξ)−DwΦ(T − t, w′, s− t, ξ)
∣∣ r(s+ t, ξ)dξ (6.6)

≤‖r‖∞
∫
R2

|DwΦ(T − t, w, T − s, ξ)|+
∣∣DwΦ(T − t, w′, T − s, ξ)

∣∣ dξ
≤M ‖r‖∞ (s− t)−1/2

and also ∫
R2

∣∣DwΦ(T − t, w, T − s, ξ)−DwΦ(T − t, w′, T − s, ξ)
∣∣ r(s, ξ)dξ (6.7)

≤‖r‖∞ |w − w
′|
∫
R2

∫ 1

0
dθ
∣∣D2

wΦ(T − t, w′ + θ(w − w′), T − s, ξ)
∣∣ dξdθ

≤M ‖r‖∞ |w − w
′|(s− t)−1

Using the above estimation we obtain∫
R2

∣∣DwΦ(T − t, w, s, ξ)−DwΦ(T − t, w′, T − s, ξ)
∣∣ r(s, ξ)dξ

≤M ‖r‖∞ |w − w
′|1−δ(s− t)−

2−δ
2

so that finally∣∣Dw4n+1(t, w)−Dw4n+1(t, w′)
∣∣

=

∫ T

t
e−η(s−t)

∫
R2

∣∣DwΦ(T − t, w, T − s, ξ)−DwΦ(T − t, w′, T − s, ξ)
∣∣ r(s, ξ)dξds

≤M ‖r‖∞ |w − w
′|1−δ

∫ T

t
(s− t)−(2−δ)/2ds ≤M ‖r‖∞ |w − w

′|1−δ
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or, equivalently 〈Dw4n+1〉(1−δ)w,QT
≤ M ‖r‖∞. We can now add up the previous esti-

mations to deduce∥∥4n+1
∥∥

2−δ,H ≤M
∥∥B4n +H[ϕn]−H[ϕn−1]

∥∥
∞∥∥4n+1

∥∥
∞ ≤Mη−1

∥∥B4n +H[ϕn]−H[ϕn−1]
∥∥
∞

Lemma 6.3 gives

‖B4n‖∞ ≤M
((
%(r) + ς(r)ε1−δ

)
‖4n‖2−δ,H + ς(r)ε−1 ‖4n‖∞

)
whereas from Lemma 6.3 and Proposition C.3 we obtain∥∥H[ϕn]−H[ϕn−1]

∥∥
∞ ≤M ‖4

n‖1,H ≤M
(
ε1−δ ‖4n‖2−δ,H + ε−1 ‖4n‖∞

)
so then∥∥4n+1

∥∥
2−δ,H ≤M

((
%(r) + ε1−δς(r)

)
‖4n‖2−δ,H + ε−1ς(r) ‖4n‖∞

)
∥∥4n+1

∥∥
∞ ≤Mη−1

((
%(r) + ε1−δς(r)

)
‖4n‖2−δ,H + ε−1ς(r) ‖4n‖∞

)
Select ε∗ and r∗ small enough such that 2M

(
%(r∗) + (ε∗)1−δς(r∗)

)
:= β < 1. Re-

mark that we can do it since %(r) → 0 and M does not depend on r or ε. Select
also

η∗ > 2M
(ε∗)−1ς(r∗)

β

If we define an equivalent norm on H2−δ([0, T ]× R2) as follows

‖ ‖2−δ,η,H := ‖ ‖2−δ,H + η ‖ ‖∞

then for η ≥ η∗ then we obtain
∥∥4n+1

∥∥
2−δ,η,H ≤ β ‖4

n‖2−δ,η,H which implies∥∥4n+1
∥∥

2−δ,η,H ≤ β
n
∥∥ϕ1 − ϕ0

∥∥
2−δ,η,H

or equivalently ∥∥ϕn+1 − ϕn
∥∥

2−δ,H ≤ (1 + η)
∥∥ϕ1 − ϕ0

∥∥
2−δ,η,H β

n

which in particular proves that (ϕn)n is a Cauchy sequence in H2−δ([0, T ] × R2)
and then converges to some ϕ∗. Remark that β does not depend on η, whereas the
function ϕ1 does.

Let us prove the regularity of ϕ∗ w.r.t. t. To simplify, assume that η = 0: from
(6.5) we get∣∣Dwϕ

n+1(t, w)−Dwϕ
n+1(t′, w)

∣∣
≤‖Bϕn +Hϕn‖∞

∫ T

t

∫
R2

∣∣DwΦ(T − t, w, T − s, ξ)−DwΦ(T − t′, w, T − s, ξ)
∣∣ dξds

+ ‖Bϕn +Hϕn‖∞
∫ t

t′

∫
R2

∣∣DwΦ(T − t′, w, T − s, ξ)
∣∣ dξds
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for t′ < t. The operators B, H are continuous and since ϕn → ϕ∗, we have

‖Bϕn +Hϕn‖∞ ≤M
(

1 + ‖ϕ∗‖2−δ,H
)

Furthermore∫ t

t′

∫
R2

∣∣DwΦ(T − t′, w, T − s, ξ)
∣∣ dξds ≤M ∫ t

t′
(s− t′)−1/2ds ≤M |t− t′|1/2

again from Lemma 6.4-i). We deduce then∣∣Dwϕ
n+1(t, w)−Dwϕ

n+1(t′, w)
∣∣

≤M
(
|t− t′|1/2 +

∫ T

t

∫
R2

∣∣DwΦ(T − t, w, T − s, ξ)−DwΦ(T − t′, w, T − s, ξ)
∣∣ dξds)

The above integral can be estimated as in (6.6)–(6.7): we finally obtain∣∣Dwϕ
n+1(t, w)−Dwϕ

n+1(t′, w)
∣∣ ≤M (

|t− t′|1/2 + |t− t′|υ/2
)

for any 0 < υ < 1. It follows then that Dwϕ
n is Hölder continuous w.r.t. t so that

we let n→∞ we deduce∣∣Dwϕ
∗(t, w)−Dwϕ

∗(t′, w)
∣∣ ≤M |t− t′|υ/2

We the same argument we can prove∣∣ϕn+1(t, w)− ϕn+1(t, w)
∣∣ ≤M |t− t′|υ

and by taking the limit n→∞ we obtain the same property for ϕ∗.

�

Remark 6.6. Proposition 6.5 gives us a fundamental property of the sequences
defined in (6.3) when η ≥ η∗. However this is not restrictive: if ϕn is a sequence
corresponding to some η < η∗ we can always transform it into ϕ̃n := exp((η∗−η)t)ϕn

and then deduce all the properties for ϕ̃n. With an abuse on language we will then
say that the above Lemma holds for every η > 0, where, of course, one has to modify
the constant which may change with η.

Corollary 6.7. Let Assumptions 5.1–6.1 hold true. The PIDE (6.1) has at most
one solution in the Hölder space Cκ/2+1,κ+2([0, T ]× R2).

Proof.
Proving that the PIDE (6.1) has a unique solution is equivalent to prove that PIDE
(6.2) has a unique solution. Suppose then that ϕi, i = 1, 2 are two solution of PIDE
(6.2). Consider then the sequences ϕn,i where ϕ0,i = ϕi for i = 1, 2. By construction
it is clear that ϕn,i = ϕi for all n. Let ∆n := ϕn,1 − ϕn,2: with the same type of
computation given in the proof of Proposition 6.5, it is possible to prove that∥∥∆n+1

∥∥
2−δ,H ≤ (1 + η)βn+1

∥∥ϕ1 − ϕ2
∥∥

2−δ,H

for some η big enough and β ∈ (0, 1). In particular ∆n → 0 in H2−δ([0, T ] × R2),
and since ∆n = ϕ1 − ϕ2 we conclude that ϕ1 = ϕ2.
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�

We can let n→∞ in (6.5) to deduce, for η = 0,

ϕ∗(t, u, z) = 1 + E
[∫ T

t
(Bϕ∗ +H[ϕ∗]) (s, Ũ t,us , Z̃t,u,zs )ds

]
(6.8)

where 
dZ̃t,u,zr := µ(r, Ũ t,ur , Z̃t,u,zr )dr + σ(r, Ũ t,ur , Z̃t,u,zr )dW 1

r

dŨ t,ur := µU (r, Ũ t,ur )dr + σU (r, Ũ t,ur )dBr

(6.9)

since the operators B and G are continuous in H2−δ([0, T ]×R2). We also have the
optimal π̂ related to ϕ∗ in the right hand side of the above equality:

π̂(t, u, z) := −Π̄ ∨ −Qϕ
∗(t, u, z)

Gϕ∗(t, u, z)
∧ Π̄ (6.10)

The regularity of ϕ∗ shows that π̂ is well defined and trivially bounded. Further-
more, from the definition of Q and G, we have that π̂ essentially depends on ϕ∗ and
its derivative w.r.t. z. In particular it is straightforward to deduce that π̂ is Hölder
continuous: more precisely, for any t, u, u′, z, z′∣∣π̂(t, u, z)− π̂(t, u′, z′)

∣∣ ≤M (
|u− u′|1−δ + |z − z′|1−δ

)
since ϕ∗ ∈ H2−δ([0, T ]×R2). Furthermore, by using the regularity condition w.r.t.
t given in Proposition 6.5 we also have∣∣π̂(t, u, z)− π̂(t′, u, z)

∣∣ ≤M |t− t′|υ/2
for any t, t′, u, z and any υ ∈ (0, 1). The above Hölder conditions implies that

π̂ ∈ C(1−δ)/2,1−δ([0, T ]× R2)

6.2.3 Characterization of the function a

We now have all the elements to prove that the PIDE (6.1) has a unique smooth
solution:

Theorem 6.8. Let Assumptions 5.1–6.1 hold true. The PIDE (6.1) has a unique
and strictly positive solution a ∈ C(1−δ)/2+1,2+(1−δ)([0, T ]× R2), where δ ∈ (0, 1) is
given in Assumptions 6.1-[I]. Moreover

‖ϕn − a‖2−δ,H ≤Mβn, n→∞

for some M > 0 and β ∈ (0, 1).

Proof.
Let ϕ∗ be the limit of the sequence ϕn when η = 0, as stated in Proposition 6.5,
and π̂ given in (6.10) which, as we know, belongs to C(1−δ)/2,1−δ([0, T ] × R2). For
sake of clarity we summarize here the scheme of the proof:
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Step 1. We prove that ϕ∗ is the unique viscosity solution of

−∂ϕ
∗

∂t
+Aϕ∗ − Bϕ∗ − 2π̂Qϕ∗ − π̂2Gϕ∗ = 0, ϕ∗(T, .) = 1 (6.11)

Step 2. We prove that PIDE (6.11) has a unique smooth solution

Step 3. We deduce that ϕ∗ ∈ C(1−δ)/2+1,2+(1−δ)([0, T ]× R2), it is strictly positive
and, from Theorem 5.11, we conclude that ϕ∗ = a.

Step 1. From (6.8) and the Markov property of the process (Ũ , Z̃) given in (6.9)
we have

ϕ∗(t, u, z) = E
[∫ t+h

t
(B +H)ϕ∗

(
s, Ũ t,us , Z̃t,u,zs

)
ds+ ϕ∗(t+ h, Ũ t,ut+h, Z̃

t,u,z
t+h

)
In Proposition 6.5 we proved that ϕ∗ Hölder continuous w.r.t t so that the right
hand side of the above equality is well defined. Remark that the above equality is
nothing but the dynamic programming principle. Let now (t, u, z) ∈ [0, T ]×R2 and
take Ψ1,Ψ2 ∈ C1,2([0, T ]× R2) such that

0 =ϕ∗(t, u, z)−Ψ1(t, u, z) = max
t′,u′,z′

(ϕ∗ −Ψ1)(t′, u′, z′)

0 =ϕ∗(t, u, z)−Ψ2(t, u, z) = min
t′,u′,z′,

(ϕ∗ −Ψ2)(t′, u′, z′)

It follows then

Ψ1(t, u, z) ≤E
[∫ t+h

t
(B +H)ϕ∗

(
s, Ũ t,us , Z̃t,u,zs

)
ds+ Ψ1

(
t+ h, Ũ t,ut+h, Z̃

t,u,z
t+h

)]
Ψ2(t, u, z, x) ≥E

[∫ t+h

t
(B +H)ϕ∗

(
s, Ũ t,us , Z̃t,u,zs

)
ds+ Ψ2

(
t+ h, Ũ t,ut+h, Z̃

t,u,z
t+h

)]
We can now apply Itô’s formula to obtain

−∂Ψ1

∂t
+AΨ1 − Bϕ∗ −Hϕ∗ ≤ 0 and −∂Ψ2

∂t
+AΨ2 − Bϕ∗ −Hϕ∗ ≥ 0

and by definition of π̂

− ∂Ψ1

∂t
+AΨ1 − Bϕ∗ − 2π̂Qϕ∗ − π̂2Gϕ∗ ≤ 0

− ∂Ψ2

∂t
+AΨ2 − Bϕ∗ − 2π̂Qϕ∗ − π̂2Gϕ∗ ≥ 0

According to Definition 5.15 we deduce that ϕ∗ is a viscosity solution of (6.11). We
do not detail it here but one can prove that ϕ∗ is the unique viscosity solution of
the above PIDE. We refer to Barles et al. (1997) or Pham (1998) for uniqueness
results, which are stated in a more general context.
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Step 2. Remark that the PIDE (6.11) is linear, so we can hope to prove that its
unique viscosity solution is a classical solution. For this, let η > 0 and consider
the map Ξη as follows: for ψ ∈ C1+(1−δ)/2, 2+(1−δ)([0, T ] × R2), Ξη(ψ) denotes the
unique solution of

− ∂Ξη(ψ)

∂t
+AΞη(ψ) + ηΞη(ψ) = Bψ + 2π̂Qψ + π̂2Gψ (6.12)

Ξη(ψ)(T, .) = eηT

Since π̂ ∈ C(1−δ)/2,1−δ([0, T ]× R2) and ψ ∈ C1+(1−δ)/2, 2+(1−δ)([0, T ]× R2), we can
apply Lemma 6.2 to deduce that

Bψ + 2π̂Qψ̃ + π̂2Gψ ∈ C(1−δ)/2,1−δ([0, T ]× R2)

Theorem 5.1 in Ladyzenskaja et al. (1967) (as in paragraph 6.2.1) proves that Ξη
is well defined and maps C1+(1−δ)/2, 2+(1−δ)([0, T ]× R2) into itself. Moreover there
exists some M > 0 not depending on η or ψ such that

‖Ξη(ψ)‖(1−δ)/2+1,2+(1−δ) ≤M
(
eηT +

∥∥Bψ + 2π̂Qψ + π̂2Gψ
∥∥

(1−δ)/2,(1−δ)

)
which proves that Ξη is well defined.
If we prove that Ξη is a contraction in C1+(1−δ)/2, 2+(1−δ)([0, T ] × R2) and ψ∗ de-
notes its unique fixed point, then e−ηtψ∗(t, u, z) ∈ C1+(1−δ)/2, 2+(1−δ)([0, T ] × R2).
Moreover it satisfies the PIDE (6.11): by the uniqueness of the viscosity solution,
proved in Step 1, we deduce ϕ∗(t, u, z) = e−ηtψ∗(t, u, z).

To prove that Ξη is a contraction we use the method introduced in Chapter III of
Bensoussan and Lions (1984). Fix ψ1, ψ2 ∈ C1+(1−δ)/2, 2+(1−δ)([0, T ]×R2): by using
Lemma 6.2 and the regularity of π̂, we have

‖Ξη(ψ1)− Ξη(ψ1)‖(1−δ)/2+1,2+(1−δ) (6.13)

≤M
(∥∥B(ψ1 − ψ2) + 2π̂Q(ψ1 − ψ2) + π̂2G(ψ1 − ψ2)

∥∥
(1−δ)/2,(1−δ)

)
≤M

((
%(r) + ς(r)εδ

)
‖ψ1 − ψ1‖(1−δ)/2+1,2+(1−δ) + ε−(2−δ)ς(r) ‖ψ1 − ψ1‖∞

)
for some positive M which does not depend on η or ψ1, ψ2. Moreover, the Feynman-
Kac formula gives

Ξη(ψ1)− Ξη(ψ1) = E
[∫ T

t
e−η(s−t) (B + 2π̂Q+ π̂2G

)
(ψ1 − ψ2)(s, Ũs, Z̃s)

]
where the process (Ũ , Z̃) is given in (6.9). It follows

‖Ξη(ψ1)− Ξη(ψ1)‖∞ (6.14)

≤Mη−1
(∥∥B(ψ1 − ψ2) + 2π̂Q(ψ1 − ψ2) + π̂2G(ψ1 − ψ2)

∥∥
∞
)

≤Mη−1
((
%(r) + ς(r)εδ

)
‖ψ1 − ψ1‖(1−δ)/2+1,2+(1−δ) + ε−(2−δ)ς(r) ‖ψ1 − ψ1‖∞

)
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Take now r∗ and ε∗ small enough to verify

2M
(
%(r∗) + ς(r∗)(ε∗)δ

)
< ω

for some ω ∈ (0, 1). Remark that we can do it since %(r) → 0 when r → 0 and
δ > 0. Select also

η > 2M
ς(r∗)(ε∗)−(2−δ)

ω
If we introduce the norm

‖ ‖η,δ := ‖ ‖1+(1−δ)/2, 2+(1−δ) + η ‖ ‖∞

on C1+(1−δ)/2, 2+(1−δ)([0, T ] × R2), which is equivalent to ‖ ‖1+(1−δ)/2, 2+(1−δ), then
from (6.13) and (6.14) we obtain

‖Ξη(ψ1)− Ξη(ψ1)‖η,δ ≤ ω ‖ψ1 − ψ1‖η,δ
which proves that Ξη is a contraction. As we already said, this proves that ϕ∗

belongs to C1+(1−δ)/2, 2+(1−δ)([0, T ]× R2).

Step 3. The process

dX̂t,u,z,x
s := π̂s−X̂

t,u,z,x
s− e−Z

t,u,z
s− deZ

t,u,z
s , X̂t,u,z,x

t = x

is well defined since π̂ is bounded. If follows that the function

w(t, u, z, x) := E
[(
X̂t,u,z,x
T

)2
]

(6.15)

is also well defined, continuous and w(t, u, z, x) = x2ϕ̃(t, u, z) for some ϕ̃. The
Markov property of the process (U,Z,X) gives

w(t, u, z, x) = E
[
w
(
t+ h, U t,ut+h, Z

t,u,z
t+h , X̂

t,u,z,x
t+h

)]
and, as before, it is not complicated to prove that ϕ̃ is a viscosity solution of

−∂ϕ̃
∂t

+Aϕ̃− Bϕ̃− 2π̂Qϕ̃− π̂2Gϕ̃ = 0, ϕ̃(T, .) = 1

Again the uniqueness of the viscosity solution yields ϕ∗ = ϕ̃. In particular

x2ϕ∗(t, u, z) = x2ϕ̃(t, u, z) = E
[(
X̂t,u,z,x
T

)2
]
≥ v0(t, u, z, x) = x2a(t, u, z)

where v0 is the value function defined in (5.12), since X̂ is an admissible portfolio.
From the above estimation and Lemma 5.3 we deduce e−CT < a(t, u, z) ≤ ϕ∗(t, u, z)
for all t, u, z.

To summarize, we proved that ϕ∗ ∈ C1+(1−δ)/2, 2+(1−δ)([0, T ] × R2), it is the
unique solution the PIDE (6.1) and it is strictly positive: we can then apply Theorem
5.11 to deduce a = ϕ∗ and characterize the optimal strategy of problem (5.12).
Finally we use Proposition 6.5 to obtain that ϕn → a in H2−δ([0, T ] × R2), which
concludes our proof.

�
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6.2.4 Comments

Another method to prove that PIDE (6.1) has a solution is provided by the
theory of backward stochastic differential equations with jumps (BSDEs). For a
complete review on different aspects of BSDEs see for example El Karoui et al.
(1997); Rong (1997); Royer (2006); Crépey and Matoussi (2008). We do not go
deeper in details but we think it is interesting to see how this method works. We
just make a (short) digression which essentially uses the ideas developed in Barles
et al. (1997). They start from a semi linear PIDE

−∂tϕ+ Lϕ− f(t, x,Dϕ, B̃ϕ) = 0, ϕ(T, .) = g

where L is the Dynkin operator associated to some (eventually discontinuous) pro-
cess X:

dXs = bX(Xs)ds+ aX(Xs)dWs +

∫
E
βX(Xs, e)P̃ (de, ds)

for some Brownian motion W and some Poisson measure P with Lévy measure
λ(de). B̃ is a first-order non local operator:

B̃ϕ =

∫
T

(ϕ(t, x+ βX(x, e))− ϕ(t, x))β̃(x, e)λ(de)

They prove then that the (unique) solution ϕ of this non linear PIDE can be related
to the unique solution of a BSDE with jumps: ϕ(t, x) := Y t,x

t where (Y,Σ, α) is the
unique solution of

−dY t,x
s = f(t, x, Y t,x

s ,Σt,x
s , αt,xs )− Σt,x

s dWs −
∫
E
αt,xs (e)P̃ (de, ds)

and where the ”driver” f has the particular form

f(t, x, Y,Σ, α) = f(t, x, Y,Σ,

∫
E
α(e)γ̃(e)λ(de))

for some γ̃. Under classical assumptions for BSDEs they prove existence and regu-
larity for the solution ϕ. In our context the process X is (U,Z) whereas the driver
f will be the non linear operator H :

f(t, (u, z), Y,Σ, α) := inf
π
f(π, (u, z), Y, S, α)

f(π, x, Y,Σ, α) :=Y (2πµ̃(t, u, z) + σ2π2 + π2

∫
(eγ − 1)2ν(dy))

+Σ(2πσ(t, u, z)) +

∫
R
α(y)

(
2π(eγ − 1)1{|y|≤1} + π2(eγ − 1)2)

)
ν(dy)

Unfortunately they do not fulfill all the assumptions given in Barles et al. (1997):
in particular the dynamics of the process X is not stationary so we cannot directly
apply their result. Also the comparison theorem cannot be directly applied since
the driver is not increasing in the α argument: this is due to the fact that we do
not control the sign of π(t, u, z).
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Another possibility would be to use the theory of weak solutions, i.e. to work in
(weighted) Sobolev spaces instead of Hölder spaces. A complete review on the use
of Sobolev spaces in the resolution of PIDEs can be found in Bensoussan and Lions
(1984), Ch III, §1-§3. For example they prove that a wide class of semi linear PIDEs
has a unique solution in some appropriate weighted Sobolev space over the parabolic
domain [0, T ]× R2. This method presents at the same time a great advantage and
a serious disadvantage compared to our method. Let us start by presenting its
advantage: in Bensoussan and Lions (1984), the existence is obtained by proving
that Ψ→ Ξη(Ψ) is a contraction in the weighted Sobolev spaceW2,1,p,λ(([0, T ]×Rn)
for η big enough, where Ξη(Ψ) is the (unique) solution of

−∂tΞη(Ψ) +AΞη(Ψ) + ηΞη(Ψ) = (B +H)Ψ

Let us assume, to simplify, that p = ∞ (Bensoussan and Lions (1984), Ch III, §3,
Theorem 3.3), so we look at L∞-norms. To prove the contraction they only need an
estimation on ‖B(Ψ1 −Ψ2)‖∞ and ‖H[Ψ1]−H[Ψ2]‖∞ to ensure that the sequence
Ψn+1 = Ξη(Ψn) converges in this Sobolev space.

In our case things are more complicated: firstly the spaceϕ ∈ C2([0, T ]× Rn),
2∑
i=0

∑
(j)

∥∥Djϕ
∥∥
∞ <∞


is not a Banach space: we cannot prove that the map Ξη is a contraction in this
space. In other words, having a control on

∥∥D2Ξη(Ψ1 −Ψ2)
∥∥
∞ is not enough to

ensure that the sequence Ψn+1 = Ξη(Ψn) converges in a classical sense. For this,

we need to have a control, for example, on 〈D2Ξη(Ψ1−Ψ2)〉(β)
QT

for some β ∈ (0, 1).
As we have already done several times, we can use (6.5) and find

D2Ξη(Ψ1 −Ψ2)(t, w)−D2Ξη(Ψ1 −Ψ2)(t, w′)

=

∫ T

t
e−η(s−t)

∫
R2

(D2Φ(T − t, w, T − s, ξ)−D2Φ(T − t, w′, T − s, ξ))r(s, ξ)dsdξ

where r = (B +H) (Ψ1 −Ψ2). If we use the estimation given in Lemma 6.4 then∣∣D2Ξη(Ψ1 −Ψ2)(t, w)−D2Ξη(Ψ1 −Ψ2)(t, w′)
∣∣

≤M ‖r‖∞
∫ T

t

∫
R2

∣∣D2Φ(T − t, w, T − s, ξ)−D2Φ(T − t, w′, T − s, ξ)
∣∣ dsdξ

∼
∫ T

t
(s− t)−1−β/2ds

which of course is not finite. To make this term finite we need to exploit the
regularity of r in its arguments: contrary to Bensoussan and Lions (1984), in our
case some Hölder regularity on r is needed (Lemmas 6.2–6.3). The message coming
for this short digression is that the use of Hölder spaces is more constraining if
compared to the use of Sobolev spaces.

On the other side the main difficulty when one uses Sobolev spaces is to find
good embeddings into some space of real and, possibly, smooth functions. In my
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knowledge embedding results are stated in bounded domains, which also verify the
so called cone condition (Adams and Fournier, 2009). Also it is not immediate to
find embeddings in the parabolic case: in Bensoussan and Lions (1984) for example
the Sobolev space is defined as

W2,1,p,λ([0, T ]×Rn) :=

{
u ∈ Lp

(
[0, T ]→W2,p,λ(Rn)

) ∣∣∣∣∂u∂t ∈ Lp
(

[0, T ]→ Lp,λ(Rn)
)}

for which direct embeddings are not available in my knowledge. We want to remark,
however, that the ideas developed by these authors are quite universal and can be
applied in different context, as we just did.

Before we conclude, we want to point out that, however, our model does not
fulfill the assumptions of Theorem 3.3 (Bensoussan and Lions, 1984) concerning the
regularity of the non local operator B: for these authors it has to be defined, in its
general form, as follows:

Bf =

∫ (
f(x+ y)− f(x)− 〈y,Df〉1{|y|≤1}

)
M(x, dy)

where M(x, dy) = c0(x, y)m(dy) is an unbounded measure, for some measure m(dy)
and 0 ≤ c0 ≤ 1. In our case this is not always true: for this we should be able to
invert the jump function γ and rewrite B, for example, as

Bf =

∫ (
f(x+ y)− f(x)− 〈y,Df〉1{|y|≤1}

)
ν(γ−1(x, y))Dγ−1(x, y)dy

This can be done if, for example, the Lévy measure has a density with respect to
the Lebesgue measure, which is not always the case.

We conclude the section with a technical result concerning the sequence defined in
(6.3), which will be used in Chapter 9. For sake of simplicity we prove it under the
assumption that the coefficients of the process Z do not depend on the process U ,
but it can be easily extended to the general case.

Lemma 6.9. Let Assumptions 5.1–6.1 hold true and ϕnη ∈ C1+
(1−δ)

2
,2+(1−δ)([0, T ]×

R) be the sequence given in (6.3). There exist a positive constant M ≥ 0 depending
on η such that

sup
n∈N

∥∥ϕn+1
∥∥

2,H
≤M

Proof.
Before we start the proof let us remark that ‖ϕn − a‖2−δ,H → 0, n→∞, which in
particular proves that

sup
n∈N

∥∥ϕn+1
∥∥

2−δ,H ≤M

for some positiveM . The proof will be completed if we can prove that supn∈N
∥∥∂2

zϕ
n+1
∥∥
∞ <

∞. Consider ϕn0 , the sequence corresponding to η = 0. To simplify the notations
we will omit the subscript. For any λ > 0 we obtain

ϕn+1(t, z) = ϕn+1(t+ λ, z)−
∫ t+λ

t

(
Aϕn+1 − Bϕn −H[ϕn]

)
(s, z)ds
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or equivalently∫ t+λ

t
Aϕn+1(s, z)ds = ϕn+1(t, z)− ϕn+1(t+ λ, z) +

∫ t+λ

t
(Bϕn +H[ϕn]) (s, z)ds

From the definition of A we get

−1

2

∫ t+λ

t
σ2∂

2ϕn+1

∂2z
(s, z)ds = Λn(λ) (6.16)

where

Λn(λ) =ϕn+1(t, z)− ϕn+1(t+ λ, z) +

∫ t+λ

t
µ
∂ϕn+1

∂z
(s, z)ds

+

∫ t+λ

t
(Bϕn +H[ϕn]) (s, z)ds

n→∞→ a(t, z)− a(t+ λ, z) +

∫ t+λ

t
µ
∂a

∂z
(s, z)ds+

∫ t+λ

t
(Ba+H[a]) (s, z)ds

so then supλ>0 supn ‖Λn(λ)/λ‖∞ ≤ m ‖a‖1+(1−δ)/2,2+(1−δ) for some positive con-
stant m. If supn∈N ‖ϕn‖2,H = ∞ then for any positive R > 0 we could find some

n ∈ N and (t, z) ∈ [0, T ] ∈ R such that, for example, ∂2
zϕ

n+1(t, z) > R (the same
argument stands in force is the second derivative is negative). In particular, the
continuity of ∂2

zϕ
n+1 proves that for some small λ, we will have

0 ≤ σ2
minR ≤

1

λ

∫ t+λ

t
σ2∂

2ϕn+1

∂2z
(s, z)ds ≤ −2

Λn(λ)

λ

Since the above inequality trivially contradicts the fact that Λn(λ)/λ is uniformly
bounded, we can conclude that supn∈N ‖ϕn‖2,H ≤ M , for some positive M . Obvi-
ously this constant depends on η when one consider the sequence in (6.3) for some
η > 0.

�

6.3 Smoothness and characterization of the function vf

According to Theorem 5.14, we now need to prove that the PIDEs (5.48)–(5.49)
have a unique smooth solution.

Theorem 6.10. Let Assumptions 5.1–6.1 hold true and δ ∈ (0, 1) given in Assump-

tions 6.1-[I]. Assume also that f ∈ H2+(1−δ)
e (R3). The value function vf defined in

(5.11) admits the decomposition given in (5.41):

vf (t, u, p, z, x) =a(t, u, z)x2 + b(t, u, p, z)x+ c(t, u, p, z)

vf (T, u, p, z, x) =(f(u, p, z)− x)2

where a ∈ C(1−δ)/2+1,2+(1−δ)([0, T ]×R2) is the unique solution of 6.1, so it does not
depend on f , and

b, c ∈ C(1−δ)/2+1,2+(1−δ)([0, T ]× R3)
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are the unique solutions of the following linear parabolic PIDEs

0 =− ∂b

∂t
+Atb− Btb− π∗Qtb b(T, .) = −2f (6.17)

0 =− ∂c

∂t
+Atc− Btc+

1

4

(Qtb)2

Gta
c(T, .) = f2 (6.18)

where π∗ is defined in (5.47).

Remark 6.11. The result also holds true if f ∈ H2+κ
e (R3), for some other 0 < κ.

In this case one would have

b, c ∈ Cκ′/2+1,κ′+2([0, T ]× R3)

where κ′ = min(1− δ, κ).

Proof.
We first prove that PIDEs (6.17)-(6.18) have a unique solution and then we use
Theorem 5.14 to conclude.
We already know that the unique solution of PIDE in (6.1) is the function a in
(5.13) and it belongs to the Hölder space C(1−δ)/2+1,2+(1−δ)([0, T ]× R2) (Theorem
6.8). It follows that π∗ ∈ C(1−δ)/2,(1−δ)([0, T ] × R2) (π∗ is Lipschitz continuous in
the space variable (u, z)). We can then rewrite the PIDE (6.17) into:

0 = −∂b
∂t

+Ab− Bb− π∗Qb+ ηb, b(T, .) = −2feηT (6.19)

and use the contraction principle as in the proof of Theorem 6.8: let Ξη(ψ) be the
unique smooth solution of

− ∂

∂t
Ξη(ψ) +AΞη(ψ) + ηΞη(ψ) = Bψ + π∗Qψ, on [0, T )× R3

Ξη(ψ)(T, .) = −2feηT

where ψ ∈ C(1−δ)/2+1,2+(1−δ)([0, T ]× R3). We skip the details, which are the same
as in the proof of Theorem 6.8, but it is possible to select η big enough such that Ξη
is a contraction in the Hölder space C(1−δ)/2+1,2+(1−δ)([0, T ]×R3): its fixed point ψ∗

is then the unique solution of (6.19), or, equivalently, e−ηtψ∗ is the unique solution
of (6.17). For the PIDE (6.18) we can proceed in the same way to deduce that it
has a unique smooth solution in C(1−δ)/2+1,2+(1−δ)([0, T ]× R3).

�

Theorem 6.10 holds true for smooth payoff functions. When f ∈ Hβ
e (R3) for some

β ∈ (0, 1], it is possible to find a sequence fn ∈ C∞b (R3), the space of infinitely
differentiable functions with bounded derivatives, such that:

i). ‖fn‖β,e ≤ 2 ‖f‖β,e and ‖f‖β,e ≤ lim infn ‖fn‖β,e
ii). ‖fn − f‖β′,e → 0, n→∞ for any β′ < β

See for example Mikulevicius and Pragarauskas (2009) for a complete proof. We
can then replace f with fn and use the argument exposed in Chapter 5, Section 5.4
to control the error.





Chapter 7

Smooth solutions: the pure
jump case

The Chapter is organized as follows: in Section 7.1 we modify the model proposed
in (5.5) by taking σ = 0, and assume that Z is an infinite variation jump process.
We then recall the quadratic hedge problem and the pure investment problem, by
deriving the PIDE verified by the value function a (Paragraph 7.2). We study the
integro-differential operators associated to the model, by proving their continuity in
the appropriate Hölder space of type 2, (Paragraph 7.3). We finally introduce a
special sequence of smooth functions and we prove that they converge to the value
function a in an appropriate functional space, which allows us to characterize the
value function a and the pure investment optimal strategy, under a particular as-
sumption on the jump size function appearing in the dynamic of Z (Paragraph
7.4.2). We then explain how to relax that particular assumption, and show that it
is not too restrictive as it may seem (Section 7.5). We finally study the quadratic
hedge problem by characterizing its value function and the optimal strategy (Section
7.6). We conclude the Chapter by studying the case when Z is a finite variation
pure jump process (Section 7.7).
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7.1 Infinite activity processes: the model

In Chapter 5 we introduced a R3-valued Markov process and the quadratic hedge
problem was stated in terms of the value functions a and vf . We also gave some
a priori estimates and properties, in particular for the function a, and we finally
deduced, with a verification argument, what type of PIDEs these functions have to
satisfy. Chapter 6 was devoted to a complete analytic study of these PIDEs in the
case of jump-diffusion processes, i.e. σmin > 0. By using viscosity solution theory
and contraction principles in Hölder spaces, we ended up with a complete charac-
terization of the quadratic hedge problem in terms of unique smooth solution of a
system of PIDEs. The fundamental Assumption σmin > 0 has been used in order
to apply a classical result of existence and uniqueness of smooth solutions for lin-
ear PDEs. Nevertheless, it is possible, under appropriate assumptions on the jump
activity of the Poisson random measure, to repeat those arguments, even under the
assumption σ = 0. This is the goal of this Chapter.

We propose a simplified model which allows us to focus on the main features of
the quadratic hedge problem in the pure jump case: for this we denote then

dZt,zr :=µ
(
r, Zt,u,zr

)
dr +

∫
R
γ
(
r, Zt,zr−, y

)
J̄ (dydr) , Zt,zt = z (7.1)

for t ∈ [0, T ) and z ∈ R where, as usual, the stock price process S is defined to be
S = exp(Z). In the rest of Chapter we will always assume that Assumptions 5.1
(with, of course, σmin = σmax = 0) hold true together with:

Assumption 7.1.

[L]-The Lévy measure. The Lévy measure ν(dy) verifies

ν(dy) = ν(y)dy where ν(y) := g(y)|y|−(1+α)

for some α ∈ (1, 2), where g is a measurable function verifying 0 < mg ≤ g(y) ≤
Mg, ∀y ∈ R, for some positive constants mg,Mg. We also assume that

lim
y→0−

g(y) = g(0−) and lim
y→0+

g(y) = g(0+) with g(0+), g(0−) > 0.

[I]-Integrability condition. The function τ defined in Assumptions 5.1 verifies,
for some y0 ∈ (0, 1) and some m > 0

sup
0<|y|≤y0

τ(y)

|y|
≤ m

[ND]- No degeneracy. The function Γ in (5.7) verifies

|Γ| :=
∫
R

Γ(y)ν(dy) > 0



Chapter 7. Smooth solutions: the pure jump case 123

It is well known that there exists a unique semimartingale Z which solves the SDE
defined above. Let us comment on these Assumptions, especially in view of As-
sumptions 5.1. The main difference here is that the process Z is only driven by a
Poisson random measure, whose intensity measure has a precise structure. This is
done since, as we will see, the non local linear operator arising from this process can
be approximated, in a special sense, by the integro-differential operator associated
to an α-stable Lévy process, and it is well known that this process has an infinitely
differentiable density. We will use this density, and estimations on its derivatives,
to prove that, in this case, non local linear PDEs do have a unique smooth solution.
This essentially is the equivalent of the results we took from Ladyzenskaja et al.
(1967).

The other main difference with the model in (5.5) is the fact that here we do
not consider the processes U and P . Adding the process U in this model could
be possible if one assumes some more regularity on the γ function, but it would
have increased the technical complexity and decreased the clarity of our discussion.
More interesting, instead, is the case of the process P : in the model (5.5), the non-
degenerate volatility matrix [σ;σU ;σP ] was the key property to deduce that linear
parabolic PIDEs have smooth solutions. In this context, this role is played by the
jump part: if we add the process P as in (5.5)

dP t,pr := µP
(
r, P t,u,pr

)
dr +

∫
R
γP
(
r, P t,pr− , y

)
J̄ (dydr) , P t,pt = p

then the jump matrix becomes (
γ(t, z, y) 0
γP (t, p, y) 0

)
which is clearly degenerate: there will be no hope to prove regularity for the value
function vf in this case. On the other side, one could take

dP t,pr := µP
(
r, P t,u,pr

)
dr +

∫
R
γP
(
r, P t,pr− , y

)
N̄ (dydr)

where N is Poisson random measure independent from J , with intensity νn(dy) =
gn(y)|y|−(1+α): in this case the jump matrix will be(

γ(t, z, y) 0
0 γP (t, p, y)

)
which is non degenerate under appropriate assumptions on the function γP . The
independence of J and N implies that one can easily repeat the argument we will
expose in this chapter when considering the quadratic hedge problem in (5.11) for
the couple (P,Z). Another choice would be to consider

dP t,pr := µP
(
r, P t,u,pr

)
dr+

∫
R
γP,J

(
r, P t,pr− , y

)
J̄ (dydr)+

∫
R
γP,N

(
r, P t,pr− , y

)
N̄ (dydr)

This case can also be treated under some more restrictive assumptions on the func-
tions γP,J and γP,N . This shows why we prefer to consider only the process Z and
privilege the clarity of our exposition.
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Remark 7.2. The no degeneracy condition in this context is given on the jump
function γ. Remark that Assumptions 7.1-[ND] is equivalent to the following:

There exists a Borel set with 0 < ν(B) < +∞ such that

inf
t,z,y∈B

|γ(t, z, y)| ≥ ε > 0 for some ε > 0.

If this condition is true then trivially∫
Γ(y)ν(dy) ≥

∫
B

Γ(y)ν(dy) ≥
(
e−ε − 1

)2
ν(B) > 0

If this condition was not true then for any Borel set B with 0 < ν(B) < +∞ one has
inft,z,y∈B |γ(t, z, y)| = 0 and then one can find (tn, zn, yn) such that γ(tn, zn, yn)→ 0,
n→∞. In particular

inf
y∈B

Γ(y) = inf
t,z,y∈B

(
eγ(t,z,y) − 1

)2
≤ lim

n→∞

(
eγ(tn,zn,yn) − 1

)2
= 0

which implies
∫

Γ(y)ν(dy) = 0.

It is clear then why we called it ”no degeneracy” condition as in Assumptions
6.1 (where, we recall, we assumed σmin > 0).

The quadratic hedge problem in this context becomes

QH : minimize EP
[(
f
(
Z0,z
T

)
−X0,z,x,θ

T

)2
]

over θ ∈ X (0, z, x)

where X is given in (5.9) and the set of admissible strategies is given in (5.10). The
dynamic version of it is defined as:

vf (t, z, x) := inf
θ∈X (t,z,x)

EP
[(
f
(
Zt,zT

)
−Xt,z,x,θ

T

)2
]

(7.2)

vf (T, z, x) = (f (z)− x)2

From (5.41) we know that

vf (t, z, x) = a(t, z)x2 + b(t, z)x+ c(t, z) (7.3)

and when f = 0:

v0 (t, z, x) :=x2 inf
θ∈X (t,z,1)

E

[(
1 +

∫ T

t
θr−dS

t,z
r

)2
]

= x2a(t, z) (7.4)

a (t, z) := inf
θ∈X (t,z,1)

E

[(
1 +

∫ T

t
θr−dS

t,z
r

)2
]

(7.5)

We already know many properties of the pure investment problem above (Lemma
5.2). Furthermore Assumptions 5.1– 7.1 allow us to use Lemma 5.3 to obtain

e−C(T−t) ≤ a (t, z) ≤ 1 where C :=
2(‖µ̃‖2 + ‖τ‖21,ν)

|Γ|
(7.6)
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whereas Theorem 5.4 gives us the existence of T ∗ > 0 and Ka
lip ≥ 0 such that if

T < T ∗ then

|a(t, z′)− a(t, z)| ≤ Ka
lip|z − z′| (7.7)

with T ∗ → +∞ when Kmax → 0. Remark that these results hold true without
making any specific assumption on the form of the Lévy measure ν(dy).

7.2 The pure investment problem: HJB characteriza-
tion

7.2.1 Formal derivation of the PIDE

From now on we will work with the Hölder spaces of type 2: Hα+δ([0, T ] × R)
for some δ ∈ [0, 1] (which of course is not the one of Assumptions 6.1-[I]) to be
determined. The Hölder space of type 2 is defined in Appendix C, paragraph C.3.
Remark that in Chapter 6 we proved that a belongs to some Hölder space of type
1: Cκ/2+1,κ+2([0, T ]× R2) (here κ = 1− δ, δ now given in Assumptions 6.1-[I]), so
in particular, twice continuously differentiable w.r.t. the space variable, and once
w.r.t. the time variable.

In this case, we can restrict ourselves to the Hölder space of type 2 since, in the
pure jump case, Itô’s formula can be used if a ∈ C1,1(R) with Hölder condition on
∂za (see Theorem D.1, Appendix D), so the natural choice is to look at solution in a
less constraining functional space, i.e. a ∈ Hα+δ([0, T ]×R) and a(., z) ∈ C1 ([0, T ])
for all z ∈ R.

For sake of clarity, we recall the integro-differential operators associated to the
process Z in the pure jump case:

Definition 7.3. Let δ ∈ (0, 1]. For a real valued function ϕ ∈ Hα+δ([0, T ]×R) we
denote

Aϕ(t, z) := µ(t, z)
∂ϕ

∂z
(t, z)

Bϕ(t, z) :=

∫
R

(
ϕ(t, z + γ(t, z, y))− ϕ(t, z)− γ(t, z, y)

∂ϕ

∂z
1{|y|≤1}

)
ν(dy)

Qϕ(t, z) := µ̃(t, z)ϕ(t, z) +

∫
R

(
eγ(t,z,y) − 1

) (
ϕ(t, z + γ(t, z, y))− ϕ(t, z)1{|y|≤1}

)
ν(dy)

Gϕ(t, z) :=

∫
R

(
eγ(t,z,y) − 1

)2
ϕ(t, z + γ(t, z, y))ν(dy)

Remark that B is well defined in the Hölder space Hα+δ([0, T ]× R). According to
Theorem 5.11, we need to prove that the PIDE

0 =− ∂a

∂t
−Aa− Ba−H[a], a(T, u, z) = 1 (7.8)

has a unique solution in Hα+δ([0, T ] × R), which also is strictly positive and con-
tinuously differentiable w.r.t. t, where

H[a] := inf
|π|≤Π̄

{
2πQa+ π2Ga

}
(7.9)
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and Π̄ is defined in 5.44.

7.3 Operators regularity

In order to prove that the PIDE (7.8) has a unique smooth solution, we need to
study the regularity of the operators introduced in Definition 7.3.

Lemma 7.4. Suppose that Assumptions 5.1 and Assumptions 7.1-[I] hold true.
Then there exists a positive constant M > 0 such that for all ε ∈ (0, 1)

‖Aϕ‖∞ + ‖Gϕ‖∞ + ‖Qϕ‖∞ ≤M
(
εδ ‖ϕ‖1+δ,H + ε−1 ‖ϕ‖∞

)
for all ϕ ∈ H1+δ([0, T ]× R), and

‖Aϕ‖δ,H + ‖Gϕ‖δ,H + ‖Qϕ‖δ,H ≤M
(
εα−δ ‖ϕ‖α+δ,H + ε−(1+δ) ‖ϕ‖∞

)
for all ϕ ∈ Hα+δ([0, T ]× R). The constant M does not depend on ε or ϕ.

Proof.
Definition 7.3 implies that ‖Aϕ‖∞ ≤ M ‖ϕ‖1,H and ‖Gϕ‖∞ ≤ M ‖ϕ‖∞ whereas
‖Qϕ‖∞ ≤M ‖ϕ‖1,H . It follows

‖Aϕ‖∞ + ‖Gϕ‖∞ + ‖Qϕ‖∞ ≤ ‖ϕ‖1,H ≤M
(
εδ ‖ϕ‖1+δ,H + ε−1 ‖ϕ‖∞

)
by using Proposition C.3.

Still from Definition 7.3 we obtain ‖Gϕ‖δ,H ≤M ‖ϕ‖δ,H , ‖Aϕ‖δ,H ≤M ‖ϕ‖1+δ,H

and ‖Qϕ‖δ,H ≤M ‖ϕ‖1+δ,H . It follows

‖Aϕ‖δ,H + ‖Gϕ‖δ,H + ‖Qϕ‖δ,H ≤M ‖ϕ‖1+δ,H ≤M
(
εα−δ ‖ϕ‖α+δ,H + ε−(1+δ) ‖ϕ‖∞

)
�

For the operator H we have

Lemma 7.5. Suppose that Assumptions 5.1 and Assumptions 7.1-[I] hold true.
Then

H : Hα+δ([0, T ]× R)→ Hδ([0, T ]× R)

There exists a positive constant M > 0 such that for all ε ∈ (0, 1)

‖H[ϕ+ ψ]−H[ϕ]‖∞ ≤M ‖ψ‖1,H ≤M
(
εδ ‖ψ‖1+δ,H + ε−1 ‖ψ‖∞

)
for all ϕ,ψ ∈ H1+δ([0, T ]× R). The constant M does not depend on ε or ϕ,ψ.

Proof.
Proving that H[ϕ] ∈ Hδ([0, T ]× R) is straightforward.
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As in Lemma 6.3 we use the concavity of the function H to get

H[ψ] ≤ H[ϕ+ ψ]−H[ϕ] ≤ sup
|π|≤Π̄

(
2πQψ + π2Gψ

)
for which we deduce

‖H[ϕ+ ψ]−H[ϕ]‖∞ ≤ (M (‖Qψ‖∞ + ‖Gψ‖∞) ≤M
(
εδ ‖ψ‖1+δ,H + ε−1 ‖ψ‖∞

)
by Lemma 7.4.

�

Our next goal it to prove that it is possible to replace the operator B with the
integro-differential operator associated to an α-stable Lévy process, if one assumes
some more regularity of the jump function γ around y = 0. We start with the
following assumption:

Assumption 7.6. There exist two positive constants m1,m2 such that

H1 For any t, z the mapping y → γ(t, z, y) is twice continuously differentiable
around zero and

0 < m1 ≤ inf
t,z,|y|≤y0

|γy(t, z, y)|and sup
t,z,|y|≤y0

|γyy(t, z, y)| ≤ m2

for some y0 > 0. It is not restrictive to assume that y0 is the same as in
Assumptions 7.1. In particular γ is invertible in (−y0, y0): we call γ−1(t, z, y)
its inverse.

H2 For all t, z ∈ [0, T )× R γy(t, z, 0) = 1

H3 The function γy is Lipschitz continuous in the variable z:

sup
t,z,|y|≤y0

|γy(t, z + h, y)− γy(t, z, y)| ≤ m2|h|

H4 For all y, y′ ∈ (−y0, 0) ∪ (0, y0) with yy′ > 0

|g(y)− g(y′)| ≤ m2|y − y′|

i.e. the function g is Lipschitz continuous away from zero.

Let us comment on the fact that, among the above Assumptions, [H2] may seem
to be very restrictive and many models do not verify it. However in Section 7.5 we
will show how to avoid it.

Lemma 7.7. . Let Assumptions 5.1–7.1 hold true together with Assumptions 7.6.
For any (t, z) ∈ [0, T ]× R let

ν̃(t, z, y) :=
ν(γ−1(t, z, y))

γy(t, γ−1(t, z, y), y)
(7.10)

where 0 < |y| ≤ y0. There exists then a positive M > 0 such that for any t, z

|ν̃(t, z + h, y)− ν̃(t, z, y)| ≤M |h| (|ν̃(t, z, y)|+ |ν̃(t, z + h, y)|) (7.11)

|ν̃(t, z, y)− ν(y)| ≤M (|ν(y)|+ |ν̃(t, z, y)|) |y| (7.12)
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Proof.
Let us start by remarking that the density ν̃ is well defined on {|y| ≤ y0} since the
function γ is invertible. Let M be a positive constant which may change from line to
line and, in order to simplify the exposition, we omit the dependence in the variable
t. For (7.11) we can write∣∣∣∣ ν(γ−1(z + h, y))

γy(γ−1(z + h, y))
− ν(γ−1(z, y))

γy(γ−1(z, y))

∣∣∣∣ ≤
|ν̃(z, y)|

∣∣∣∣1− γy(γ
−1(z, y))

γy(γ−1(z + h, y))

∣∣∣∣+ |ν̃(z + h, y)|

∣∣∣∣∣1− g(γ−1(z, y))

g(γ−1(z + h, y))

∣∣∣∣γ−1(z + h, y)

γ−1(z, y)

∣∣∣∣1+α
∣∣∣∣∣

The function γy is bounded from below (Assumptions 7.6-[H1]) and Lipschitz con-
tinuous w.r.t. z (Assumptions 7.6-[H3]). It follows then∣∣∣∣1− γy( z, γ

−1(z, y))

γy(z + h, γ−1(z + h, y))

∣∣∣∣
≤ 1

m1

(∣∣γy(z + h, γ−1(z + h, y))− γy(z + h, γ−1(z, y))
∣∣+
∣∣γy(z + h, γ−1(z, y))− γy(z, γ−1(z, y))

∣∣)
≤ 1

m1

(
sup

t,z,|y|≤y0
|γyy(t, z, y)| γ−1(z + h, y)− γ−1(z, y) ||+m2|h|

)
≤M |h|

since∣∣∣∣∂γ−1

∂z
(t, z, y)

∣∣∣∣ =

∣∣∣∣∣∂γ∂z (t, z, γ−1(t, z, y))

(
∂γ

∂y
(t, z, γ−1(t, z, y))

)−1
∣∣∣∣∣ ≤M (7.13)

For the other term we first write∣∣∣∣∣1− g(γ−1(z, y))

g(γ−1(z + h, y))

∣∣∣∣γ−1(z + h, y)

γ−1(z, y)

∣∣∣∣1+α
∣∣∣∣∣

≤
∣∣∣∣1− g(γ−1(z, y))

g(γ−1(z + h, y))

∣∣∣∣+

∣∣∣∣ g(γ−1(z, y))

g(γ−1(z + h, y))

∣∣∣∣
∣∣∣∣∣1−

∣∣∣∣γ−1(z + h, y)

γ−1(z, y)

∣∣∣∣1+α
∣∣∣∣∣

From (7.13) we have
∣∣γ−1(z + h, y)− γ−1(z, y)

∣∣ ≤ K−1|h| and since g is bounded
from above and below we deduce∣∣∣∣∣1− g(γ−1(z, y))

g(γ−1(z + h, y))

∣∣∣∣γ−1(z + h, y)

γ−1(z, y)

∣∣∣∣1+α
∣∣∣∣∣ ≤ ∣∣g(γ−1(z + h, y))− g(γ−1(z, y))

∣∣+M |h|

Remark that |γ−1(z, y)| > 0: if this is not true then for some ŷ ∈ (0, y) (or (y, 0) if
y < 0) one would have ∂−1

y (t, z, ŷ) = 0 which contradicts the Assumption 7.6-[H1].
From the Lipschitz condition on g away from zero (Assumption 7.6-[H4]) we obtain∣∣∣∣∣1− g(γ−1(z, y))

g(γ−1(z + h, y))

∣∣∣∣γ−1(z + h, y)

γ−1(z, y)

∣∣∣∣1+α
∣∣∣∣∣ ≤M |h| (7.14)
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so then ∣∣∣∣ ν(γ−1(z + h, y))

γy(γ−1(z + h, y))
− ν(γ−1(z, y))

γy(γ−1(z, y))

∣∣∣∣ ≤M |h| (|ν̃(z, y)|+ |ν̃(z + h, y)|)

For (7.12) we write∣∣∣∣ ν(γ−1(z, y))

γy(γ−1(z, y))
− ν(y)

∣∣∣∣
≤ |ν(y)|

∣∣∣∣1− 1

γy(z, γ−1(z, y))

∣∣∣∣+ |ν̃(z, y)|

∣∣∣∣∣1− g(y)

g(γ−1(z, y))

∣∣∣∣γ−1(z, y)

y

∣∣∣∣1+α
∣∣∣∣∣

Assumptions 7.6-H2 guarantees that γy(z, 0) = 1 for all z: it follows then∣∣∣∣1− 1

γy(z, γ−1(z, y))

∣∣∣∣ ≤ 1

m1

∣∣γy(z, γ−1(z, y))− γy(z, 0)
∣∣

≤ 1

m1
sup

t,z,|y|≤y0
|γyy(t, z, y)|

∣∣γ−1(z, y)
∣∣

=
1

m1
sup

t,z,|y|≤y0
|γyy(t, z, y)|

∣∣γ−1(z, y)− γ−1(z, 0)
∣∣

≤ |y|
m1

sup
t,z,|y|≤y0

|γyy(t, z, y)| 1

inft,z,|y|≤y0 |γy(z, γ−1(z, y))|
≤M |y|

since γ−1(z, 0) = 0. For the second term we have∣∣∣∣∣1− g(y)

g(γ−1(z, y))

∣∣∣∣γ−1(z, y)

y

∣∣∣∣1+α
∣∣∣∣∣ ≤

∣∣∣∣1− g(y)

g(γ−1(z, y))

∣∣∣∣
+

∣∣∣∣ g(y)

g(γ−1(z, y))

∣∣∣∣
∣∣∣∣∣1−

∣∣∣∣γ−1(z, y)

y

∣∣∣∣1+α
∣∣∣∣∣

We can expand γ−1(z, y) around y = 0:

γ−1(z, y) =
1

γy(z, 0))
y − y2

2

∫ 1

0

γyy(z, θy)

(γy(z, θy))2
dθ

ans since γy(z, 0) = 1 we deduce
∣∣γ−1(z, y)− y

∣∣ ≤ M |y|2. The same argument in
(7.14) allows us to deduce∣∣∣∣1− g(y)

g(γ−1(z, y))

∣∣∣∣+

∣∣∣∣∣1−
∣∣∣∣γ−1(z, y)

y

∣∣∣∣1+α
∣∣∣∣∣ ≤M |y|+ o(y)

from which we conclude∣∣∣∣ ν(γ−1(z, y))

γy(γ−1(z, y))
− ν(y)

∣∣∣∣ ≤M (|ν(y)|+ |ν̃(z, y)|) (|y|+ o(y))
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�

For (t, z) ∈ [0, T )× R we introduce the following:

B̄tϕ(z) :=

∫
R

(
ϕ(t, z + y)− ϕ(t, z)− y∂ϕ

∂z
(t, z)1{|y|≤1}

)
ν(dy) (7.15)

Bstt ϕ(z) :=

∫
R

(
ϕ(t, z + y)− ϕ(t, z)− y∂ϕ

∂z
(t, z)1{|y|≤1}

)
νst(y)dy (7.16)

where

νst(y) :=
g(0+)

|y|1+α
1{0<y} +

g(0−)

|y|1+α
1{y<0} (7.17)

Both are integro-differential operators associated to Lévy processes, the second one,
in particular, to some α-stable Lévy process. Our goal now is to prove that B−Bst
has a nice behavior in the Hölder space Hα+δ([0, T ]× R), and this will allow us to
replace the operator B in the PIDE (7.8) with Bst:

− ∂a

∂t
− Bsta = Aa+ (B − Bst)a+H[a], a(T, z) = 1

Proposition 7.8. Suppose that Assumptions 5.1–7.1 hold true together with As-
sumptions 7.6 and let δ ∈ (0, 1]. There exists a positive constant M > 0 such that
for any ε ∈ (0, 1) and any r ∈ (0, y0) one has∥∥(B − B̄)ϕ

∥∥
∞ ≤M

(
(r2−α + εδ|r|1−α) ‖ϕ‖1+δ,H + ε−1|r|1−α ‖ϕ‖∞

)
and∥∥(B − B̄)ϕ

∥∥
δ,H
≤M

((
r2−α + rδ + εmin(α−δ,δ)r1−α

)
‖ϕ‖α+δ,H + ε−(1+δ)r1−α ‖ϕ‖∞

)
for any ϕ ∈ Hα+δ([0, T ]× R). The constant M does not depend on ϕ, ε or r.

Proof.
Let r ∈ (0, y0) and split the operator B =

∫
|y|≤r · · ·+

∫
|y|>r. In the first integral one

has |y| ≤ r ≤ y0 so we can invert the function γ since γy(z, y) 6= 0: the change the
variable allows us to rewrite B as follows:

Bϕ(t, z) :=

∫
|y|≤r

(
ϕ(t, z + y)− ϕ(t, z)− y∂ϕ

∂z
(t, z)

)
ν̃(t, z, y)dy

+

∫
|y|>r

(
ϕ(t, z + γ(t, z, y))− ϕ(t, z)− γ(t, z, y)

∂ϕ

∂z
(t, z)1{|y|≤1}

)
ν(dy)

where ν̃ is given in (7.10). We obtain then (Bt − B̄t)ϕ := F1
t ϕ+ F2

t ϕ where

F1
t ϕ(z) :=

∫
|y|≤r

(
ϕ(t, z + y)− ϕ(t, z)− y∂ϕ

∂z
(t, z)

)
(ν̃(t, z, y)− ν(y)) dy

F2
t ϕ(z) :=

∫
|y|>r

(
ϕ(t, z + γ)− ϕ(t, z + y)− (γ − y)

∂ϕ

∂z
(t, z)1{|y|≤1}

)
ν(dy)
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It follows∥∥F1ϕ
∥∥
∞ ≤M ‖ϕ‖1,H sup

t≤T,z∈R

∫
|y|≤r

|y| |ν̃(t, z, y)− ν(y)| dy

∥∥F2ϕ
∥∥
∞ ≤M ‖ϕ‖1,H

(
1 +

∫
r<|y|≤1

(τ(y) + |y|)ν(dy)

)
≤M ‖ϕ‖1,H r

1−α

By using (7.12) we get∥∥F1ϕ
∥∥
∞ ≤M ‖ϕ‖1,H sup

t≤T,z∈R

∫
|y|≤r

y2 (|ν̃(t, z, y)|+ |ν(y)|) dy ≤M ‖ϕ‖1,H r
2−α

and then ∥∥(B − B̄)ϕ
∥∥
∞ ≤M

(
r2−α ‖ϕ‖1+δ,H + |r|1−α ‖ϕ‖1,H

)
We finally use Proposition C.3 to obtain∥∥(B − B̄)ϕ

∥∥
∞ ≤M

(
(r2−α + εδ|r|1−α) ‖ϕ‖1+δ,H + ε−1|r|1−α ‖ϕ‖∞

)
and this proves the first inequality.

For the second inequality, we can use the above estimation on the L∞−norm:∥∥(B − B̄)ϕ
∥∥
∞ ≤M

(
(r2−α + εδ|r|1−α) ‖ϕ‖1+δ,H + ε−1|r|1−α ‖ϕ‖∞

)
≤M

(
(r2−α + εδ|r|1−α) ‖ϕ‖α+δ,H + ε−1|r|1−α ‖ϕ‖∞

)
(7.18)

We now need to estimate 〈(B−B̄)ϕ〉(δ)z,QT . For the finite variation part it is straight-
forward to deduce ∣∣F2ϕ(z + h)−F2ϕ(z)

∣∣ ≤M |h|δr1−α ‖ϕ‖1+δ,H

Again from Proposition C.3 we obtain

〈F2ϕ〉(δ)z,QT ≤M
(
εα−δr1−α ‖ϕ‖α+δ,H + ε−(1+δ)r1−α ‖ϕ‖∞

)
(7.19)

For the infinite variation part, since

F1
t ϕ(z) :=

∫
|y|≤r

y

∫ 1

0

(
∂ϕ

∂z
(t, z + θy)− ∂ϕ

∂z
(t, z)

)
dθ (ν̃(t, z, y)− ν(y)) dy

we have∣∣F1ϕ(t, z + h)−F1ϕ(t, z)
∣∣ ≤ ∫ 1

0
dθ

∫
|y|≤r

|y| |ν̃(t, z, y)− ν(y)|∣∣∣∣∂ϕ∂z (t, z + h+ θy)− ∂ϕ

∂z
(t, z + θy)− ∂ϕ

∂z
(t, z + h)− ∂ϕ

∂z
(t, z)

∣∣∣∣ dy
+

∫
|y|≤r

|y|
∫ 1

0

∣∣∣∣∂ϕ∂z (t, z + h+ θy)− ∂ϕ

∂z
(t, z + h)

∣∣∣∣ dθ |ν̃(t, z + h, y)− ν̃(t, z, y)| dθdy
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Since ∣∣∣∣∂ϕ∂z (t, z + h+ θy)− ∂ϕ

∂z
(t, z + θy)− ∂ϕ

∂z
(t, z + h)− ∂ϕ

∂z
(t, z)

∣∣∣∣
≤


‖ϕ‖α+δ |h|

α+δ−1

‖ϕ‖α+δ |θ|
α+δ−1|y|α+δ−1

we deduce∣∣∣∣∂ϕ∂z (t, z + h+ θy)− ∂ϕ

∂z
(t, z + θy)− ∂ϕ

∂z
(t, z + h)− ∂ϕ

∂z
(t, z)

∣∣∣∣ ≤ ‖ϕ‖α+δ |h|
δ|y|α−1

and then∣∣F1ϕ(z + h)−F1ϕ(z)
∣∣ ≤M ‖ϕ‖α+δ |h|

δ

∫
|y|≤r

|y|α |ν̃(t, z, y)− ν(y)| dy

+M ‖ϕ‖α+δ

∫
|y|≤r

|y|α+δ |ν̃(t, z + h, y)− ν̃(t, z, y)| dy

Lemma 7.7 yields

〈F1
t ϕ〉

(1)
z,QT

≤Mrδ ‖ϕ‖α+δ,H

Together with (7.18) and (7.19) we obtain∥∥(B − B̄)ϕ
∥∥
δ,H
≤M

((
r2−α + rδ + εmin(α−δ,δ)r1−α

)
‖ϕ‖α+δ,H + ε−(1+δ)r1−α ‖ϕ‖∞

)

�

Corollary 7.9. Suppose that Assumptions 5.1–7.1 hold true together with Assump-
tions 7.6. There exists a positive constant M > 0 such that for any ε ∈ (0, 1) and
any r ∈ (0, y0) one has∥∥(B − Bst)ϕ

∥∥
∞ ≤M

(
(r2−α + εδ|r|1−α) ‖ϕ‖1+δ,H + ε−1|r|1−α ‖ϕ‖∞

)
and∥∥(B − Bst)ϕ

∥∥
δ,H
≤M

((
r2−α + rδ + εmin(α−δ,δ)r1−α

)
‖ϕ‖α+δ,H + ε−(1+δ)r1−α ‖ϕ‖∞

)
for any ϕ ∈ Hα+δ([0, T ] × R), where Bst is given in (7.16). The constant M does
not depend on ϕ, ε or r.

Proof.
We can easily estimate the difference B̄ − Bst:∥∥(B̄ − Bst)ϕ

∥∥
∞ ≤

∥∥∥∥∫ +∞

0+

(
ϕ(t, z + y)− ϕ(t, z)− y∂ϕ

∂z
(t, z)1{|y|≤1}

)
g(y)− g(0+)

|y|1+α
dy

∥∥∥∥
∞

+

∥∥∥∥∥
∫ 0−

−∞

(
ϕ(t, z + y)− ϕ(t, z)− y∂ϕ

∂z
(t, z)1{|y|≤1}

)
g(y)− g(0−)

|y|1+α
dy

∥∥∥∥∥
∞
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Remark that

|g(y)− g(0+)|+ |g(y)− g(0−)| ≤M |y| if 0 < |y| ≤ y0

from the definition of g(0+), g(0−) given in Assumptions 7.1 and the Lipschitz con-
tinuity of g away from 0 (Assumptions 7.6-[H4]). We can use the same arguments
of the proof of Proposition 7.8 to deduce∥∥(B̄ − Bst)ϕ

∥∥
∞ ≤M

(
(r2−α + εδ|r|1−α) ‖ϕ‖1+δ,H + ε−1|r|1−α ‖ϕ‖∞

)
Since

∥∥(B − Bst)ϕ
∥∥
∞ ≤

∥∥(B − B̄)ϕ
∥∥
∞+

∥∥(B̄ − Bst)ϕ
∥∥
∞, the result follows from the

above estimation and Proposition 7.8. In a similar way we can prove∥∥(B − Bst)ϕ
∥∥
δ,H
≤M

((
r2−α + rδ + εmin(α−δ,δ)r1−α

)
‖ϕ‖α+δ,H + ε−(1+δ)r1−α ‖ϕ‖∞

)
�

7.4 Smoothness and characterization of the function a

7.4.1 The approximating sequence and its main properties

As in Section 6.2, we will build a sequence in the Hölder space Hα+δ([0, T ]×R)
which converges to the unique solution of (7.8). We first recall a basic result on
linear PIDE with constant coefficients:

Theorem 7.10. Let ψ ∈ Hλ([0, T ] × R) for some λ ∈ (0, 1], f ∈ Hα+λ
e (R) and

consider the following PIDE

−∂tϕ− Bstt ϕ = ψ, ϕ(T, .) = f

where Bst is given in (7.16). There exists a unique solution of the above PIDE in
the Hölder space Hα+λ([0, T ]×R) which also is differentiable w.r.t. t. Furthermore

‖ϕ‖α+λ,H ≤M
(
‖ψ‖λ,H + ‖f‖α+λ,e

)
for some constant M > 0 which does not depend on ϕ and

‖ϕ(t, .)− ϕ(s, .)‖α
2

+λ,H ≤M(t− s)1/2
(
‖ψ‖λ,H + ‖f‖α+λ,e

)
for all 0 ≤ s ≤ t ≤ T .

This result is stated in Mikulevicius and Pragarauskas (2009) (Lemma 7 and
17) or Mikulevicius and Pragarauskas (2011) (Lemma 8) when f = 0, since the
operator Bst fulfills the assumptions of these Lemmas. When f 6= 0 the result can
be adapted by means of the Feynman-Kac formula and the density of an α-stable
process (See Appendix E). This is the equivalent of Theorem 5.1 in Ladyzenskaja
et al. (1967), in the case of pure jump processes. By using the estimates on this
density it is possible to relax the assumption f ∈ Hα+λ

e (R) and consider f ∈ H0
e (R).
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For η > 0 let us consider the PIDE

−∂ϕ
∂t
− Bstϕ+ ηϕ = H[ϕ] + (B − Bst)ϕ+Aϕ, ϕ(T, z) = eηT (7.20)

If ϕ is the unique solution of the above PIDE then a(t, z) := e−ηtϕ(t, z) is the unique
solution of (7.8). As in paragraph 6.2.1 we fix ϕ0 ∈ Hα+δ([0, T ]× R) and consider
the sequence

ϕ0 = ϕ0

− ∂
∂tϕ

n+1 − Bstϕn+1 + ηϕn+1 = (B − Bst)ϕn +H[ϕn] +Aϕn

ϕn+1(T, z) = eηT

(7.21)

This sequence is well defined in the Hölder space Hα+δ([0, T ]× R): by recurrence,
if ϕn ∈ Hα+δ([0, T ]× R) then by Lemmas 7.4–7.5 and Corollary 7.9 we have rn :=
(B − Bst)ϕn +H[ϕn] +Aϕn ∈ Hδ([0, T ] × R). Theorem 7.10 gives then that ϕn+1

belongs to Hα+δ([0, T ]× R) and verifies∥∥ϕn+1
∥∥
α+δ,H

≤M
(
eηT +

∥∥((B − Bst) +H+A
)
ϕn
∥∥
δ,H

)
(7.22)

for some M > 0 which does not depend on η. Remark also that ϕn are all differen-
tiable w.r.t. t. The Feynman-Kac formula also gives a probabilistic interpretation
of the above linear PIDE

ϕn+1(t, z) = eηt + E
[∫ T

t
e−η(s−t) ((B − Bst) +H+A

)
ϕn(s, Z̃t,zs )ds

]
(7.23)

where

Z̃t,zs := z +

∫ s

t

∫
R
yJ̄α(dydr)

is the Lévy process associated to the integro-differential operator Bst, i.e. Jα is a
Poisson random measure whose intensity measure is given in (7.17). Although the
functions ϕn may fail to be twice differentiable, the Feynman-Kac formula holds
true: this is a direct consequence of the Itô’s formula for pure jump processes (see
Corollary D.2, Appendix D).
At this point it is clear why we decided to replace the operator B with the Lévy
gradient Bst: such Lévy processes have an infinitely differentiable density and a
priori estimations on this density are available (see Appendix E).

We will now give the equivalent of Proposition 6.5 and Corollary 6.7 in the pure
jump case.

Proposition 7.11. Let Assumptions 5.1 –7.1 hold true together with Assumptions
7.6. If 0 < δ < α − 1 then there exists a η∗ > 0 such that for any η > η∗ the
sequence (ϕn)n defined in (7.21) verifies∥∥ϕn+1 − ϕn

∥∥
1+δ,H

≤ (1 + η)
∥∥ϕ1 − ϕ0

∥∥
1+δ,H

βn
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for some β ∈ (0, 1) which does not depend on η, ϕ0 or ϕ1. In particular ϕn → ϕ∗ ∈
H1+δ([0, T ]× R). Furthermore

sup
n∈N
‖ϕn‖1+δ,H ≤ c(η)

where c(η) is a positive constant depending on η and ϕ0. For any υ ∈ (0, 1) there
exists some positive constant Mυ > 0 such that

sup
z∈R
|ϕ∗(t, z)− ϕ∗(s, z)| ≤Mυ|t− s|υ/2

Proof.
The proof is really similar to the one we gave for Proposition 6.5, even more simple
since the definition of Hölder norm of type 2 is less constraining: if 4n+1 := ϕn+1−
ϕn then

− ∂

∂t
4n+1 − Bst4n+1 + η4n+1 =

(
(B − Bst) +A

)
4n−1 +H[ϕn]−H[ϕn−1]

4n+1(T, z) = 0

Let now r(t, z) :=
((

(B − Bst) +A
)
4n−1 +H[ϕn]−H[ϕn−1]

)
(t, z) so that

4n+1(t, z) =

∫ T−t

0
e−ηs

∫
R
r(s+ t, ξ)ms(ξ − z)dξds

where ms is the probability density of Z̃0,z
s , for which estimations are given in

Lemma E.1. Using this Lemma it is straightforward to deduce
∥∥4n+1

∥∥
∞ ≤Mη−1 ‖r‖∞

and ∥∥Dz4n+1
∥∥
∞ ≤M ‖r‖∞

∫ T−t

0
s−1/αds

and the integral in the right-hand side is finite since α > 1. We only need to estimate

〈Dz4n+1〉(δ)z,QT :

〈Dz4n+1〉(δ)z,QT ≤M ‖r‖∞ sup
t,z,0<|h|≤1

∫ T−t

0

∫
R
|Dzms(ξ − z − h)−Dzms(ξ − z)| dξds

From Lemma E.1 we obtain∫
R
|Dzms(ξ − z − h)−Dzms(ξ − z)| dξ ≤Ms−

1
α∫

R
|Dzms(ξ − z − h)−Dzms(ξ − z)| dξ ≤M |h|

∫ 1

0
dθ

∫
R
|D2

zms(ξ − z − θh)dξ ≤ |h|s−
2
α

so then∫
R
|Dzms(ξ − z − h)−Dzms(ξ − z)| dξ ≤M |h|δs−

2δ
α s−

1−δ
α = M |h|δs−

1+δ
α

We can use this estimation to obtain

〈Dz4n+1〉(δ)z,QT ≤M ‖r‖∞
∫ T−t

0
s−

1+δ
α ds
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where the integral in the right hand side is finite since δ < α− 1: we can conclude∥∥4n+1
∥∥

1+δ,H
≤M ‖r‖∞, or, equivalently∥∥4n+1
∥∥

1+δ,H
≤M

∥∥((B − Bst) +A
)
4n +H[ϕn]−H[ϕn−1]

∥∥
∞∥∥4n+1

∥∥
∞ ≤Mη−1

∥∥((B − Bst) +A
)
4n +H[ϕn]−H[ϕn−1]

∥∥
∞

From Lemmas 7.4-7.5 and Corollary 7.9 we obtain

‖A4ϕn‖∞ ≤M
(
εδ ‖4n‖1+δ,H + ε−1 ‖4n‖∞

)
∥∥H[ϕn]−H[ϕn−1]

∥∥
∞ ≤M

(
εδ ‖4n‖1+δ,H + ε−1 ‖4n‖∞

)
∥∥(B − Bst)4ϕn

∥∥
∞ ≤M

(
(r2−α + εδ|r|1−α) ‖4n‖1+δ,H + ε−1|r|1−α ‖4n‖∞

)
which implies∥∥4n+1

∥∥
2,H
≤M

((
r2−α + εδr1−α

)
‖4n‖1+δ,H + ε−1r1−α ‖4n‖∞

)
∥∥4n+1

∥∥
∞ ≤Mη−1

((
r2−α + εδr1−α

)
‖4n‖1+δ,H + ε−1r1−α ‖4n‖∞

)
We can now repeat the same argument of the proof of Proposition 6.5 to deduce∥∥4n+1

∥∥
1+δ,H

≤ (1 + η)βn
∥∥ϕ1 − ϕ0

∥∥
1+δ,H

for some β ∈ (0, 1) which does not depend on η. It follows that (ϕn)n is a Cauchy
sequence in H1+δ([0, T ]×R) and then converges to some ϕ∗ ∈ H1+δ([0, T ]×R). In
particular

sup
n∈N
‖ϕn‖1+δ,H ≤ c(η)

for some constant which depends on η. Furthermore, from (7.21) with η = 0, we
have for t′ < t

∣∣ϕn+1(t, z)− ϕn+1(s, z)
∣∣ ≤M ∥∥(B − Bst +A+H

)
ϕn
∥∥
∞

∫ T

t
ds

∫
R
|mT−t(ξ)−mT−t′(ξ)| dξ

+M
∥∥(B − Bst +A+H

)
ϕn
∥∥
∞

∫ t

t′
ds

∫
R
|mT−t′(ξ)| dξ

First remark that

sup
n

∥∥(B − Bst +A+H
)
ϕn
∥∥
∞ ≤M sup

n
‖ϕn‖1+δ,H ≤M

It follows∣∣ϕn+1(t, z)− ϕn+1(s, z)
∣∣ ≤M (∫ T

t
ds

∫
R
|mT−t(ξ)−mT−t′(ξ)| dξ + |t− t′|

)
From Lemma E.1 we have∫

R
|mT−t(ξ)−mT−t′(ξ)| dξ ≤

∫
R

(mT−t(ξ) +mT−t′(ξ)) dξ ≤M
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but also∫
R
|mT−t(ξ)−mT−t′(ξ)| dξ ≤ |t−t′|

∫ 1

0

∫
R

∣∣∂tmT−t′+θ(t−t′)(ξ)
∣∣ dξdθ ≤M(T−t)−2/α

so then, by using both these estimates, we obtain, for any υ ∈ (0, 1)∫
R
|mT−t(ξ)−mT−t′(ξ)| dξ ≤Mυ|t− t′|υ/2(T − t)−

υ
α

for some positive constant Mυ depending on υ. Finally

sup
z

∣∣ϕn+1(t, z)− ϕn+1(s, z)
∣∣ ≤Mυ|t− t′|υ/2

It follows then that, when we pass to the limit n → ∞, ϕ∗ inherits the same
property:

sup
z∈R
|ϕ∗(t, z)− ϕ∗(s, z)| ≤M |t− s|υ/2

�

Remark 7.12. By using Theorem 7.10 one would obtain, in particular∥∥ϕn+1(t, .)− ϕn+1(s, .)
∥∥
∞ ≤M(t− s)1/2

(
1 +

∥∥(B − Bst +A+H
)
ϕn
∥∥
λ,H

)
for λ ∈ (0, 1]. But we only know how to estimate∥∥(B − Bst +A+H

)
ϕn
∥∥
∞

which corresponds to the case λ = 0. So we cannot directly apply the above estimate
to deduce that t→ ϕ∗(t, z) is 1/2-Hölder continuous, but just υ/2-Hölder continuous
for any υ ∈ (0, 1). Nevertheless, we will improve this estimate and show that the
map t→ ϕ∗(t, z) is 1/2-Hölder continuous.

As explained in Remark 6.6 we can say, with an abuse of language, that the
above Proposition holds true for all η > 0. For the uniqueness we have

Corollary 7.13. Let Assumptions 5.1 –7.1 hold true together with Assumptions
7.6 and fix δ ∈ (0, α− 1) as in Proposition 7.11. Then the PIDE (7.8) has at most
one solution in the Hölder space Hα+δ([0, T ]× R).

Proof.
Proving that PIDE (7.8) has a unique solution is equivalent to prove that (7.20)
has a unique solution. We can then follow the argument of Corollary 6.7: if ϕi,
i = 1, 2 are two solutions of PIDE (7.20) and ϕn,i is the sequence given in (7.21)
where ϕ0,i = ϕi for i = 1, 2, then, by construction it is clear that ϕn,i = ϕi for all
n. If ∆n := ϕn,1−ϕn,2 then, as in the proof of Proposition 7.11, one can prove that∥∥∆n+1

∥∥
1+δ,H

≤ (1 + η)βn+1
∥∥ϕ1 − ϕ2

∥∥
1+δ,H

for η big enough and β ∈ (0, 1). In particular ∆n → 0 in L∞(R2), and since
∆n = ϕ1 − ϕ2, we conclude that ϕ1 = ϕ2.
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�

Proposition 7.11 stated that the sequence ϕn converges in the Hölder space
H1+δ([0, T ]× R) to some ϕ∗. Let n→∞ in (7.23) for η = 0 to deduce

ϕ∗(t, z) = 1 + E
[∫ T

t

(
(B − Bst) +H+A

)
ϕ∗(s, Z̃t,zs )ds

]
(7.24)

since the operators B−Bst, A and G are continuous in H1+δ([0, T ]×R). We denote
with π̂ the optimal control related to ϕ∗ in the right hand side of the above equality:

π̂(t, u, z) := −Π̄ ∨ −Qϕ
∗(t, z)

Gϕ∗(t, z)
∧ Π̄ (7.25)

The regularity of ϕ∗ shows that π̂ is well defined and bounded. Furthermore, from
the definition of G and Q, we deduce∣∣π̂(t, z)− π̂(t, z′)

∣∣ ≤M |z − z′|δ
for any t, z, z′, since ϕ∗ ∈ H1+δ([0, T ]×R). In other words, π̂ ∈ Hδ([0, T ]×R) and,
by using the regularity condition w.r.t. t given in Proposition 7.11, we also have
that t→ π̂(t, z) is Hölder continuous.

7.4.2 Characterization of the function a

We now are able to prove that the function a given in (7.5) is the unique smooth
solution of PIDE (7.8).

Theorem 7.14. Let Assumptions 5.1 –7.1 hold true together with Assumptions
7.6. The PIDE (7.8) has a unique, smooth and strictly positive solution a ∈
Hα+δ([0, T ] × R), for δ ∈ (0, α − 1). The function t → a(t, z) is also continuously
differentiable in (0, T ) and

sup
z∈R
‖a(t, z)− a(s, z)‖∞ ≤M(t− s)1/2

Moreover
‖ϕn − a‖1+δ,H ≤Mβn, n→∞

for some M > 0 and β ∈ (0, 1).

Proof.
The proof is really similar to the one of Theorem 6.8, so that we will skip all similar
computations. As in Step 1 of the proof of Theorem 6.8, we first prove that ϕ∗ is
the unique viscosity solution of

−∂ϕ
∗

∂t
−Aϕ∗ − Bϕ∗ − 2π̂Qϕ∗ − π̂2Gϕ∗ = 0, ϕ∗(T, .) = 1 (7.26)

where π̂ is given in (7.25). We then prove that PIDE (7.26) admits a unique smooth
solution: for this, let η > 0 and consider the map Ξη defined as follows:

− ∂Ξη(ψ)

∂t
− BstΞη(ψ) + ηΞη(ψ) =

(
B − Bst

)
ψ +Aψ + 2π̂Qψ + π̂2Gψ (7.27)

Ξη(ψ)(T, .) = eηT
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for ψ ∈ Hα+δ([0, T ] × R). Since π̂ ∈ Hδ([0, T ] × R), we can apply Lemma 7.4 and
Corollary 7.9 to deduce that(

B − Bst
)
ψ +Aψ + 2π̂Qψ + π̂2Gψ ∈ Hδ([0, T ]× R)

Theorem 7.10 ensures that Ξη(ψ) is well defined in the Hölder spaceHα+δ([0, T ]×R),
it is continuously differentiable w.r.t. t and, for some M > 0 not depending on η or
ψ, one has

‖Ξη(ψ)‖α+δ,H ≤M
(
eηT +

∥∥(B − Bst +A+ 2π̂Q+ π̂2G
)
ψ
∥∥
δ,H

)
‖Ξη(ψ)(t, .)− Ξη(ψ)(s, .)‖α

2
+δ,H ≤M(t− s)1/2

(
eηT+∥∥(B − Bst +A+ 2π̂Q+ π̂2G

)
ψ
∥∥
δ,H

)
In particular Ξη(ψ) is 1/2-Hölder w.r.t. t. By using the method developed in Step 2
of the proof of Theorem 6.8, together with Lemma 7.4 and Corollary 7.9, we prove
that Ξη is a contraction for η big enough. Denote with ψ∗ its unique fixed point. It
follows in particular

sup
z∈R
‖ψ∗(t, z)− ψ∗(s, z)‖∞ = ‖Ξη(ψ∗)(t, .)− Ξη(ψ

∗)(s, .)‖∞

≤M(t− s)1/2
(
eηT +

∥∥(B − Bst)ψ∗ +Aψ∗ + 2π̂Qψ∗ + π̂2Gψ∗
∥∥
δ,H

)
≤M(t− s)1/2

(
1 + ‖ψ∗‖α+δ,H

)
(7.28)

so then ψ∗ is 1/2-Hölder continuous w.r.t. t. But

− ∂Ξη(ψ
∗)

∂t
− BstΞη(ψ∗) + ηΞη(ψ

∗) =
(
B − Bst

)
ψ∗ +Aψ∗ + 2π̂Qψ∗ + π̂2Gψ∗

Ξη(ψ
∗)(T, .) = eηT

so that Ξη(ψ
∗) is continuously differentiable w.r.t. t (Theorem 7.10), and then

ψ∗ = Ξη(ψ
∗) also is. By the uniqueness of the viscosity solution we deduce that

ϕ∗(t, z) = e−ηtψ∗(t, z) and it belongs to Hα+δ([0, T ]× R).

We complete the proof by following the Step 3 of the proof of Theorem 6.8: let

dX̂t,z,x
s := π̂s−X̂

t,z,x
s− e−Z

t,z
s−deZ

t,z
s , X̂t,z,x

t = x

which is well defined since π̂ is bounded. The function

w(t, z, x) := E
[(
X̂t,z,x
T

)2
]

(7.29)

is continuous and w(t, z, x) = x2ϕ̃(t, z) for some ϕ̃. The continuity of w and the
Markov property of Z allow us to write

w(t, z, x) = E
[
w
(
t+ h, Zt,zt+h, X̂

t,z,x
t+h

)]
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which, in particular, proves that ϕ̃ is a viscosity solution of (7.26), and again from
the uniqueness of the viscosity solution of this PIDE, we deduce ϕ̃ = ϕ∗. In partic-
ular

x2ϕ∗(t, z) = x2ϕ̃(t, z) = E
[(
X̂t,z,x
T

)2
]
≥ v0(t, z, x) = x2a(t, z)

because X̂ is an admissible portfolio and v0 is defined in (7.4). From the above
estimation and Lemma 5.3 we deduce e−CT < a(t, z) ≤ ϕ∗(t, z) for all t, z.

To summarize we proved that ϕ∗ ∈ Hα+δ([0, T ]×R), it verifies the PIDE (7.8)
and it also is strictly positive: we can then apply Theorem 5.11 to deduce a = ϕ∗.
Finally we use Proposition 7.11 to obtain that ϕn → a in H1+δ([0, T ]×R) and the
estimate (7.28) to conclude our proof.

�

Remark 7.15. The above result is the equivalent of Theorem 6.8 in the case of
jump-diffusion. It is important to remark that the structure of the semi linear PIDE
(6.1) is not the same as that PIDE (7.8): in PIDE (6.1) the role of ”regularizer”
was played by the strictly elliptic matrix of second derivatives D2a whereas in PIDE
(7.8) this role is played by the non local Lévy operator B. Nevertheless this does not
change substantially the proof.

The last thing we want to point out is that we work here with Hölder space of
type 2, whereas we used Hölder spaces of type 1 in Theorem 6.8: as we explained
at the beginning of paragraph 7.2.1, in the pure jump case we do not need to prove
that a is twice differentiable w.r.t. z. It means that we do not need to assume any a
priori regularity w.r.t. t for the driver (B−Bst)ψ+Aψ+2π̂Qψ+ π̂2Gψ in the PDE
(7.27). On the other hand, it was necessary to assume some Hölder regularity w.r.t.
t for the driver Bψ + H[ψ] in the PDE (6.12) to deduce the regularity of Ξη(ψ).
This explains why here we work in the functional space Hα+δ([0, T ]×R), for which
no regularity w.r.t. t is required.

7.5 The change of variable

In Theorem 7.14 we proved that the function a can be characterized as the
unique solution of a semi linear PIDE if one imposes, in particular, Assumptions
7.6. Remark that Assumption 7.6-[H2] could appear very restrictive: if for example
the jump function is of the form γ(t, z, y) = γ̂(t, z)y then the only possible choice
would be γ̂(t, z) = 1 for all t, z.

Our goal here is to prove that it is possible to find a process Lt = φ(t, Zt) for
some smooth function φ such that

dLt,ls := µL(s, Lt,ls )ds+

∫
γL(s, Lt,ls−, y)J̄(dyds) (7.30)

with µL and γL verifying Assumptions 7.1–7.6, with especially ∂yγ
L(t, l, 0) = 1 for

all t, l. If this is possible then one could rewrite problem (7.4) in terms of L instead
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of the state variable Z :

v0,L (t, l, x) := inf
θ∈X (t,l)

EP
[(
Xt,l,x,θ
T

)2
]
, v0,L (T, l, x) := x2

where

Xt,l,x,θ
s :=x+

∫ s

t
θr−dS

t,l
r

dSt,lu

St,lu−
:=µ̃(u, φ−1(u, Lt,lu ))du+

∫ (
eγ(u,φ−1(u,Lt,lu ),y) − 1

)
J̄(dydu)

It is clear that the new value function v0,L and v0 in (7.4) are related: v0(t, z, x) =
v0,L(t, φ(t, z), x). Similarly the function

aL(t, l) := inf
θ∈X (t,l,1)

E

[(
1 +

∫ T

t
θu−dS

t,l
u

)2
]

(7.31)

is related to the function a defined in (7.5) by a(t, z) = aL(t, φ(t, z)). With the same
argument of Section 5.5 one can derive the PIDE verified by aL and find that it has
the same structure of PIDE (7.8), where in particular the operator B is replaced
with

BLϕ(t, l) :=

∫
R

(
ϕ(t, l + γL(t, l, y))− ϕ(t, l)− γL(t, l, y)

∂ϕ

∂l
(t, l)1{|y|≤1}

)
ν(dy)

We can then apply Theorem 7.14 to aL (since by construction γL verifies the As-
sumptions 7.6) and the prove the regularity of the function a simply by using the
regularity of the function aL. This explains why it is not restrictive to suppose
∂yγ(t, z, 0) = 1.

Let then φ be a real valued function defined on [0, T ]×R and Lt := φ(t, Zt). Assume
that for all t the function z → φ(t, z) is invertible and that φ is smooth enough to
apply Itô’s formula. We obtain

γL(t, l, y) := φ(t, φ−1(t, l) + γ(t, φ−1(t, l), y))− l (7.32)

µL(t, l) :=
∂φ

∂t
(t, φ−1(t, l)) + µ(t, φ−1(t, l))

∂φ

∂z
(t, φ−1(t, l))

+

∫
|y|≤1

(
γL(t, l, y)− γ(t, φ−1(t, l), y)

∂φ

∂z
(t, φ−1(t, l))

)
ν(dy) (7.33)

In particular one has

γLy (t, l, 0) =
∂φ

∂z
(t, φ−1(t, l)))γy(t, φ

−1(t, l), 0)

If we select for example

φ(t, z) :=

∫ z

0

ds

γy(t, s, 0)
(7.34)

then trivially γLy (t, l, 0) = 1 for all t, l. The following Lemma shows that this

choice guarantees that the coefficients µL and γL verify Assumptions 5.1 –7.1 and
Assumptions 7.6.
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Lemma 7.16. Assume that there exist some positive constants 0 < m1,m2 such
that

i). For all t, z ∈ [0, T ] × R the mapping y → γ(t, z, y) is differentiable at y = 0
and

0 < m1 ≤ |γy(t, z, 0)| ≤ m2 for all t, z ∈ [0, T ]× R

ii). The function (t, z)→ γy(t, z, 0) is differentiable and∣∣∣∣ ddtγy(t, z, 0)

∣∣∣∣+

∣∣∣∣ ddz γy(t, z, 0)

∣∣∣∣ ≤ m2 for all t, z ∈ [0, T ]× R

iii). The function z → d
dtγy(t, z, 0) is Lipschitz continuous:∣∣∣∣ ddtγy(t, z, 0)− d

dt
γy(t, z

′, 0)

∣∣∣∣ ≤ m2|z − z′| for all t ∈ [0, T ], z, z′ ∈ R

Then the functions µL and γL defined in (7.32)–(7.33) with the choice of φ given
by (7.34) verify Assumptions 5.1–7.1 and Assumptions 7.6.

Proof.
First we remark that we can assume m1 ≥ 1 otherwise we can normalize the process
Zt by m1: Z̃t := Zt/m1 so then the new jump function will verify 1 ≤ γ̃y(t, z̃, 0) for
all t, z̃. Also, under assumptions i) and ii) the function

φ(t, z) :=

∫ z

0

ds

γy(t, s, 0)

is well defined, invertible and ‖∂φ/∂z‖∞ ≤ 1/m1 ≤ 1. From now on M denotes a
positive constant which may change from line to line. Let start by studying γL:

γL(t, l, y) = γ(t, φ−1(t, l), y)

∫ 1

0

∂φ

∂z
(t, φ−1(t, l) + θγ(t, φ−1(t, l), y)dθ

It follows

sup
t,l

∣∣γL(t, l, y)
∣∣ ≤Mτ(y) and sup

t,l

∣∣∣eγL(t,l,y) − 1
∣∣∣ ≤Mτ(y)

and by using (7.32) and ii) we obtain∣∣∣∣∂γL∂l (t, l, y)

∣∣∣∣ =

∣∣∣∣∣−1 +
∂φ
∂z (t, φ−1(t, l) + γ(t, φ−1(t, l), y))

∂φ
∂z (t, φ−1(t, l))

(
1 +

∂γ

∂l
(t, φ−1(t, l), y)

)∣∣∣∣∣
≤M

(
sup
t,l
|γ(t, φ−1(t, l), y)|

∥∥∥∥∂2φ

∂z2

∥∥∥∥
∞

+ ρ(y)

)
≤Mτ(y)

In conclusion γL verifies Assumptions 5.1-[C, I1, I2] with τL(y) := Mτ(y). Assump-
tions 7.1-[L, I] have not been modified, whereas for the no degeneracy property we
can use Remark 7.2: since |γL| ≥ |γ|/m2 then γL also verifies Assumption 7.1-[ND].
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For the drift function µL, it is straightforward to deduce

(t, l)→ ∂φ

∂t
(t, φ−1(t, l)) + µ(t, φ−1(t, l))

∂φ

∂z
(t, φ−1(t, l))

is bounded and Lipschitz continuous in the variable l, whereas∫
|y|≤1

(
γ̃L(t, l, y)− γ(t, φ−1(t, l), y)

∂φ

∂z
(t, φ−1(t, l))

)
ν(dy) =∫ 1

−1
γ(t, φ−1(t, l), y)

∫ 1

0

(
∂φ

∂z
(t, φ−1(t, l) + θγ(t, φ−1(t, l), y)− ∂φ

∂z
(t, φ−1(t, l))

)
dθν(dy)

from which we deduce that

(t, l)→
∫
|y|≤1

(
γL(t, l, y)− γ(t, φ−1(t, l), y)

∂φ

∂z
(t, φ−1(t, l))

)
ν(dy)

is also bounded and Lipschitz continuous in the variable l: the function µL verifies
Assumption 7.1-[C].

For the Assumptions 7.6 we have that, by construction, H2 is verified, whereas
Assumptions 7.6-[H1,H3] hold true by using i), ii), iii), the bounds on ∂φ/∂z and
the properties of γ.

�

The above Lemma proves that it is possible to replace Assumption 7.6-[H2] by
assuming more regularity of γ at y = 0:

H2bis The function (t, z)→ γy(t, z, 0) is differentiable and∣∣∣∣ ddtγy(t, z, 0)

∣∣∣∣+

∣∣∣∣ ddz γy(t, z, 0)

∣∣∣∣ ≤ m2 for all t, z ∈ [0, T ]× R

H2ter The function z → d
dtγy(t, z, 0) is Lipschitz continuous:∣∣∣∣ ddtγy(t, z, 0)− d

dt
γy(t, z

′, 0)

∣∣∣∣ ≤ m2|z − z′| for all t ∈ [0, T ], z, z′ ∈ R

7.6 Smoothness and characterization of the function vf

We conclude with the study of Problem (7.2) when f 6= 0. According to Theorem
5.14, we need to prove that the following PIDEs

0 =− ∂b

∂t
−Ab− Bb− π∗[a]Qb, b(T, .) = −2f (7.35)

0 =− ∂c

∂t
−Ac− Bc+

1

4

(Qb)2

Ga
, c(T, .) = f2 (7.36)

have a unique smooth solution, where π∗ is the minimizer of the operator H in (7.9).
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Theorem 7.17. Let Assumptions 5.1–7.1 hold true together with Assumptions 7.6.
Fix δ ∈ (0, α − 1) and let f ∈ Hα+δ

e (R). The function vf in (7.2) admits the
decomposition (5.41):

vf (t, z, x) = a(t, z)x2 + b(t, z)x+ c(t, z), vf (T, z, x) = (f(z)− x)2

where a ∈ Hα+δ([0, T ] × R) is the unique solution of (7.8), so it does not depend
on f , and

b, c ∈ Hα+δ([0, T ]× R)

are the unique solutions of the linear PIDEs (7.35)–(7.36). The functions t →
a(t, .), b(t, .), c(t, .) are continuously differentiable in (0, T ).

Proof.
By applying Theorem (7.14) we have that the function a in (7.5) is the unique
solution of the PIDE in (7.8) and it belongs to the Hölder space Hα+δ([0, T ]× R).
Furthermore, from the regularity of the function a, it is not difficult to verify that
π ∈ H1([0, T ]×R). We can proceed as in the proof of Theorem 6.10: transform the
PIDE (7.35) into

− ∂b

∂t
− Bstb+ ηb = π∗Qb+ (B − Bst)b+Ab, bi(T, .) = −2feηT (7.37)

where Bst is given in (7.16). Consider the map Ξη defined as follows: for any
ψ ∈ Hα+δ([0, T ]× R), Ξη(ψ) verifies

− ∂

∂t
Ξη(ψ) + BstΞη(ψ) + ηΞη(ψ) = π∗Qψ + (B − Bst)ψ +Aψ, Ξη(ψ)(T, .) = −2feηT

This map is well defined by applying Theorem 7.10. By using Lemma 7.4 and
Corollary 7.9 it is possible to select η big enough such that Ξη is a contraction in
the Hölder space Hα+δ([0, T ] × R): its unique fixed point ψ∗ is then the unique
solution of (7.37), or, equivalently, e−ηtψ∗ is the unique solution of (7.35). For the
PIDE (7.36) we can proceed in the same way to deduce that it has a unique smooth
solution in Hα+δ([0, T ]× R).

�

The Remark (6.11) holds true in this case: in particular one can allow f ∈
Hα+δ′
e (R) for some δ′ ∈ (0, 1), and then obtain

b, c ∈ Hα+min(δ,δ′)([0, T ]× R).

7.7 Finite activity processes: the model

We conclude the chapter by studying the quadratic hedge problem when the
process Z is driven by a Poisson random measure whose intensity measure ν(dy)
is of finite variation, which, in particular, covers the cases ν(R) < ∞ or ν(dy) =
g(y)|y|−1+α for α ∈ (0, 1). As we will see later, the main difficulty here is to prove
that the value function vf is smooth. In general this is not true, especially for
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a finite measure. However, if the drift satisfies µ = 0 then the argument given
in Sections 5.5 and 5.6 can be rigorously justified even for non a smooth value
function vf . When Z is a finite variation process without drift, the Itô’s formula,
which is the key tool in the proof of Theorems 5.11–5.14, applies whenever vf is
once differentiable in t and Lipschitz continuous in z1 (see for example Proposition
8.12 in Cont and Tankov (2004)). For sake of clarity, we recall the model and the
Assumptions we will need:

dZt,zr :=µ
(
r, Zt,u,zr

)
dr +

∫
R
γ
(
r, Zt,zr−, y

)
J (dydr) , Zt,zt = z (7.38)

for t ∈ [0, T ) and z ∈ R and we assume:

Assumption 7.18.

[I]- Integrability conditions. The function τ defined in Assumptions 5.1 verifies,
for some y0 ∈ (0, 1) and some m > 0

sup
0<|y|≤y0

τ(y)

|y|
≤ m and τ ∈ L1({|y| ≤ y0}, ν(dy))

[ND]- No degeneracy. The function Γ in (5.7) verifies

|Γ| :=
∫
R

Γ(y)ν(dy) > 0

Remark that there is no need to truncate the jump measure J as in (7.1) since,
in this case, the function τ is integrable around zero. Our first objective is to prove
that, under an appropriate change of variable, it is possible to remove the drift
function in (7.38):

Lemma 7.19. Let Assumptions 5.1–7.18 hold true and define the function

φ(t, z) = zt,z
T where zt,z

u verifies zt,z
u := z +

∫ u

t
µ(s,zt,z

s )ds

Then z → φ(t, z) is invertible for all t and there exist two positive constants m,M
such that

0 < m ≤ ∂φ

∂z
≤M for all t, z ∈ [0, T ]× R.

The process Lt = φ(t, Zt) verifies

dLt,ls =

∫
γL(s, Lt,ls−, y)J(dydt), LT = ZT (7.39)

where γL(t, l, y) = φ(t, φ−1(t, l) + γ(t, φ−1(t, l), y))− l verifies Assumptions 7.18.

1In this case, Itô’s formula is nothing but the usual Lebesgue-Stieltjes change of variables for-
mula.
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Proof.
Since the drift function µ(t, z) is Lipschitz continuous and differentiable in the vari-
able z, the deterministic function z is well defined. Trivially

Dtzt,z
u =− µ(t, z) +

∫ u

t
∂zµ(s,zt,z

s )Dtzt,z
s ds

Dzzt,z
u =1 +

∫ u

t
∂zµ(s,zt,z

s )Dzzt,z
s ds

so that

Dtzt,z
u + µ(t, z)Dzzt,z

u = 0, for all t, z, u

Furthermore we can solve the linear ODE defining Dzzt,z
u to obtain

Dzzt,z
u = exp

(∫ u

t
∂zµ(s,zt,z

s )ds

)
> 0

and therefore

0 < m = exp (−T ‖∂zµ‖∞) ≤ ∂φ

∂z
≤M := exp (T ‖∂zµ‖∞)

In particular for fixed t the map z → zt,z
T is invertible. By applying Itô’s formula

to Lt := φ(t, Zt) we obtain

dLt =
(
Dtzt,Zt

T + µDzzt,Zt
T

)
dt+

∫
(φ(t, Zt− + γ)− φ(t, Zt−)) J(dydt)

=

∫
R
γL(t, Lt−, y)J(dydt)

where γL(t, l, y) := φ(t, φ−1(t, l) + γ(t, φ−1(t, l), y))− l. The upper and lower bound
on ∂φ/∂z can be used to deduce that the new jump function γL verifies Assumptions
7.18:

�

If we use L as the state variable instead of Z then the control problem 7.2
becomes

QH : minimize EP
[(
f
(
L0,l
T

)
−X0,l,x,θ

T

)2
]

over θ ∈ X (0, l, x)

where

Xt,l,x,θ
s :=x+

∫ s

t
θr−dS

t,l
u

dSt,lu

St,lu−
:=µ̃(u, φ−1(u, Lt,lu ))du+

∫ (
eγ(u,φ−1(u,Lt,lu ),y) − 1

)
J(dydu)
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and its dynamic version:

vf,L (t, l, x) := inf
θ∈X (t,l)

EP
[(
f
(
Lt,lT

)
−Xt,l,x,θ

T

)2
]

(7.40)

vf,L (T, z, x) := (f (l)− x)2

It is clear that the new value function vf,L and vf in (7.2) are related: vf (t, z, x) =
vf,L(t, φ(t, z), x), and, as we have already seen many times, vf,L admits the decom-
position

vf,L(t, l, x) := x2aL(t, l) + xbL(t, l) + cL(t, l) (7.41)

7.7.1 The pure investment problem in the finite variation case

As in Section 5.5 we first start with the case f = 0. In this case v0,L(t, l, x) =
x2aL(t, z), where

aL(t, l) := inf
θ∈X (t,l,1)

E

[(
1 +

∫ T

t
θu−dS

t,l
u

)2
]

(7.42)

which is related to the function a defined in (7.5) by a(t, z) = aL(t, φ(t, z)). We al-
ready know that the function a is bounded from above and below: e−CT ≤ a(t, z) ≤
1 and it is Lipschitz continuous w.r.t. z if T < T ∗ as stated in Theorem 5.4. These
properties also hold true for aL by using the fact that ∂φ/∂z is uniformly bounded
from above and below (Lemma 7.19). For sake of clarity we redefine the differen-
tial operators given in Definition 7.3 since, in the finite variation case, they can be
simplified:

Definition 7.20. For a function ϕ ∈ H1([0, T ]× R) let

BLϕ(t, l) :=

∫
R

(
ϕ(t, l + γL(t, l, y))− ϕ(t, l)

)
ν(dy)

QLϕ(t, l) :=µ(t, φ−1(t, l))ϕ+

∫
R

(eγ(t,φ−1(t,l),y) − 1)ϕ(t, l + γL(t, l, y))ν(dy)

GLϕ(t, l) :=

∫
R

(eγ(t,φ−1(t,l),y) − 1)2ϕ(t, l + γL(t, l, y))ν(dy)

HL[ϕ](t, l) := inf
|π|≤Π̄L

{
2πQLt ϕ(t, l) + π2GLt ϕ(t, l)

}
where

Π̄L :=
eCT

|Γ|
Ce
(
1 +mKa

lip

)
(7.43)

is obtained from (5.38) and the fact that |∂laL| = |∂za|/|∂lφ−1| ≤ mKa
lip.

The equivalent of Theorem 5.11, when the underlying process, is given by L is
the following:
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Proposition 7.21. Let Assumptions 5.1–7.18 hold true and let T < T ∗ as stated
in Theorem (5.4). Assume that the PIDE

0 = −∂ϕ
∂t
− BLt ϕ−HLt [ϕ], ϕ(T, l) = 1 (7.44)

has a unique solution ϕ ∈ H1([0, T ] × R), which also is strictly positive and for
all l ∈ R the map t → ϕ(t, l) is continuously differentiable. Then ϕ = aL and the
optimal strategy in problem (7.42) is given by

θ∗t = e−φ
−1(t,Lt−)π∗

(
t, φ−1(t, Lt−)

)
Xθ∗
t−, Xθ∗

t := x+

∫ t

0
θ∗r−dSr (7.45)

where

π∗(t, l) :=− Q
L
t a

L(t, l)

GLt aL(t, l)
(7.46)

is the minimizer in the operator HL.

Proof.
The proof follows the ideas of Theorem 5.11. Remark, however that, as we already
pointed out at the beginning, we only need that a belongs to H1([0, T ]×R) and is
differentiable in t to apply Itô’s formula.

�

The above Proposition gives us a way to characterize the function v0,L in (7.40)
when f = 0, by proving that PIDE (7.44) has a unique solution which also has
to be strictly positive. It also gives us the optimal policy for the pure investment
problem. Our goal now is to prove that PIDE (7.44) has a unique solution in its
appropriate Hölder space.

Theorem 7.22. Let Assumptions 5.1–7.18 hold true. The PIDE (7.44) has a
unique solution in the Hölder space H1([0, T ] × R), it is strictly positive and con-
tinuously differentiable w.r.t. t. Furthermore, the sequence ϕn defined by

ϕn+1(t, l) := E
[∫ T

t
HLt [ϕn](s, Lt,ls )ds

]
+ 1, ϕ0 ∈ H1([0, T ]× R) (7.47)

verifies ∥∥ϕn − aL∥∥∞ ≤Mβn, n→∞

for some M > 0 and β ∈ (0, 1)

Proof.
Transform the PIDE (7.44) into

0 = −∂a
∂t
− BLt a−HLt [a] + ηa, a(T, l) = eηT (7.48)
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for η > 0 and define the sequence

ϕn+1(t, l) := E
[∫ T

t
e−η(s−t)HLt [ϕn](s, Lt,ls )ds

]
+ eηt (7.49)

for some ϕ0 ∈ H1([0, T ]× R). Remark that, by recurrence, one can prove that the
sequence is well defined in H1([0, T ] × R). It is easy to prove that this sequence
converges, at least in L∞(R): from the structure of H in Definition 7.20, we get

∥∥ϕn+1 − ϕn
∥∥
∞ ≤

∥∥HL[ϕn]−HL[ϕn−1]
∥∥
∞

∫ T

t
e−η(s−t)ds

≤Mη−1
∥∥ϕn − ϕn−1

∥∥
∞ ≤ · · · ≤

(
M

η

)n ∥∥ϕ1 − ϕ0
∥∥
∞

≤M(η)βn (7.50)

for some M(η) > 0 depending on η and some β ∈ (0, 1), by taking η big enough.
Remark that the estimation concerning the operator H is different from the one we
gave in Lemma 7.5 since the process L is of finite variation, but it can be obtained
with the same type of computations. This proves that the sequence converges in
L∞(R). Let us call ϕ∗ this limit function. As in Corollary 7.13, this also proves
that the PIDE (7.44) has at most one solution in H1([0, T ] × R) which also is
differentiable w.r.t. t. Furthermore, from (7.49) we have

∥∥ϕn+1
∥∥

1,H
≤1 +M

∥∥HL[ϕn]
∥∥

1,H

∫ T

t
e−η(s−t)ds

≤1 +Mη−1 ‖ϕn‖1,H ≤ · · · ≤
(
M

η

)n+1 ∥∥ϕ0
∥∥

1,H
+

n∑
i=0

(
M

η

)i
which implies that supn ‖ϕn‖1,H ≤ c(η) for some constant c(η), provided that η is
big enough. As usual (see Remark 6.6) we can say that this sequence is bounded in
H1([0, T ]× R) for any η ≥ 0. In particular, for η = 0 and 0 ≤ t′ ≤ t ≤ T we have

∣∣ϕn+1(t, l)− ϕn+1(t′, l)
∣∣ ≤E [∫ t

t′

∣∣∣H[ϕn](s, Lt,ls )
∣∣∣ ds]

+E
[∫ T

t

∣∣∣H[ϕn](s, Lt,ls )−H[ϕn](s, Lt
′,l
s )
∣∣∣ ds]

≤‖H[ϕn]‖∞ |t− t
′|+ T ‖H[ϕn]‖1,H |t− t

′|1/2

≤M |t− t′|1/2 ‖ϕn‖1,H ≤M |t− t
′|1/2

i.e. the functions ϕn are all uniformly 1/2-Hölder w.r.t. t: the limit function ϕ∗

inherits of this property.

By taking the limit n→∞ in (7.49) with η = 0, we have

ϕ∗(t, l) := 1 + E
[∫ T

t
HLt [ϕ∗](s, Lt,ls )ds

]
(7.51)
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Exactly as in the proof of Theorem 7.14 we can prove that ϕ∗ is the unique viscosity
solution of (7.44) and, if we define

w(t, l, x) := E
[(
X̂t,l,x
T

)2
]

where dX̂t,l,x
s := π̂Ls−X̂

t,l,x
s− exp

(
−φ−1(s, Lt,ls−)

)
deφ

−1(s,Lt,ls ) and

π̂L := −Π̄L ∨ −Q
Lϕ∗

GLϕ∗
∧ Π̄L

then we can prove that w(t, l, x) = x2ϕ∗(t, l, x), from which we deduce that e−CT ≤
aL(t, l) ≤ ϕ∗(t, l). It follows then that e−CT ≤ ϕn(t, l) for all n ≥ n̄ and (t, l) ∈
[0, T ]× R, n̄ ∈ N.

Our aim now is to prove that ϕ∗ belongs to H1([0, T ]×R) and is differentiable
w.r.t. t. For this we could repeat the argument of the proof of Theorem 7.14, but
in this case, due to the simple form of the operator HL, we are able to prove it
directly. For this we have the following technical result

Lemma 7.23. Let Assumptions 5.1–7.18 hold true. Then

HL : H1([0, T ]× R)→ H ([0, T ]× R1)

and there exists some positive constant M > 0 such that∥∥HL[ϕ+ ψ]−HL[ϕ]
∥∥

1,H
≤M

(
‖ψ‖1,H + ‖ψ‖∞ ‖ϕ‖1,H

)
for any ψ,ϕ+ ψ ≥ m ≥ 0. The constant M does not depend on ϕ or ψ but on m.

We postpone the proof to paragraph 7.7.2.

From (7.49) and the previous Lemma we obtain

〈ϕn+1 − ϕn〉(1)
l,QT
≤M1〈HL[ϕn]−HL[ϕn−1]〉(1)

l,QT

∫ T

t
e−η(s−t)ds

≤M1η
−1
(∥∥ϕn − ϕn−1

∥∥
1,H

+
∥∥ϕn − ϕn−1

∥∥
∞min

(
‖ϕn‖1,H ,

∥∥ϕn−1
∥∥

1,H

))
by using the fact that E

[
|Lt,l1s − Lt,l2s |

]
≤ M |l1 − l2|. From to the fact that ϕn is

uniformly bounded in H1([0, T ]× R) and (7.50) we get

〈ϕn+1 − ϕn〉(1)
l,QT
≤Mη−1

(∥∥ϕn − ϕn−1
∥∥

1,H
+ c(η)M(η)βn−1

)
Together with (7.50) we deduce∥∥ϕn+1 − ϕn

∥∥
1,H
≤Mη−1

(∥∥ϕn − ϕn−1
∥∥

1,H
+ c(η)M(η)βn−1

)
+M(η)βn

· · · ≤
(
M

η

)n ∥∥ϕ1 − ϕ0
∥∥

1,H
+ βnc(η)(M(η) + 1)

n∑
i=0

(
M

βη

)i
≤M̃(η)

((
M

η

)n
+ βn

)
≤ M̃(η)β̃n
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for some positive constant M̃(η) and β̃ ∈ (0, 1) if η is big enough. We finally deduce
that ϕn → ϕ∗ in H1([0, T ]×R), since it is a Cauchy sequence. To prove that ϕ∗ is
differentiable w.r.t t one can use the Markov property of L and (7.51) to obtain

ϕ∗(t, l) = E
[∫ t+h

t
HL[ϕ∗](s, Lt,ls )ds+ ϕ∗(t+ h, Lt,lt+h)

]
Apply then Itô’s formula to obtain

ϕ∗(t, l)− ϕ∗(t+ h, l)

h
=

1

h
E
[∫ t+h

t
HL[ϕ∗](s, Lt,ls )ds+ ϕ∗(t+ h, Lt,lt+h − ϕ

∗(t+ h, l)

]
=

1

h
E
[∫ t+h

t
HL[ϕ∗]ds+

∫ t+h

t
BLϕ∗(t+ h, Lt,ls )ds

]
Since the process Ls has right continuous paths and ϕ∗ is 1/2-Hölder continuous
w.r.t. t, we can take the limit h → 0 and, by dominated convergence, we deduce
that the function ϕ∗ is continuously differentiable w.r.t. t. Furthermore, it verifies
the PIDE (7.44).
To summarize, we have found a function ϕ∗ ∈ H1([0, T ]×R), which also is contin-
uously differentiable w.r.t. t and it is bounded from below by e−CT , and satisfies
PIDE (7.48). Furthermore this ϕ∗ is the unique solution of this PIDE, as pointed
out when we proved that ϕn → ϕ in L∞(R). We conclude by applying Proposition
7.21.

�

Remark 7.24. Remark that the above theorem does not tell us anything new on the
regularity of aL w.r.t. l that we already did not know. In fact the theorem proves
that the equation (7.44) has a unique solution which belongs to H1([0, T ]× R), i.e.
it is bounded and Lipschitz continuous w.r.t. l, and it is also differentiable w.r.t. t.
From Proposition 7.21 this unique solution has to be aL, and we already knew that it
is bounded and Lipschitz continuous. Nevertheless the theorem proves that equation
(7.44) has a unique solution which also is strictly positive, which is necessary to
apply Proposition 7.21. We cannot have any further regularity on aL since there is
no ”regularizing” operator in (7.44). However, the regularity that we obtain for aL

is enough to apply Itô’s formula in the finite variation pure jump case.

The above Theorem and Proposition 7.21 allow us to characterize the value func-
tion v0,L and the optimal strategy. Remark that we only have Lipschitz regularity
for the function aL, and then Lipschitz regularity for the function a. If one does
not change the variable, then the presence of a drift term in the dynamic of Z will
demand at least C1 regularity for a, which is far from being always true.

7.7.2 Proof of Lemma 7.23

Proof.
Let us define H(q, g) := inf |π|≤Π̄{2πq + π2g} so then H[ϕ] = H(QLϕ,GLϕ). It
follows then

HL[ψ] ≤ HL[ϕ+ ψ]−HL[ϕ] ≤ sup
|π|≤Π̄

{
2πQLψ + π2GLψ

}
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so then∥∥HL[ϕ+ ψ]−HL[ϕ]
∥∥
∞ ≤M

(∥∥QLψ∥∥∞ +
∥∥GLψ∥∥∞) ≤M ‖ψ‖1,H (7.52)

form Definition 7.20. We now need to estimate 〈HL[ϕ+ ψ]−HL[ϕ]〉(1)
l,QT

, i.e.∣∣H[ϕ+ ψ](t, l)−H[ψ](t, l)−H[ϕ+ ψ](t, l′) +H[ψ](t, l′)
∣∣

Remark first that the function H is Lipschitz continuous, twice differentiable with
bounded second derivative when g is bounded from below by some strictly positive
ḡ:

sup
q∈R, 0<ḡ≤g

∣∣D2H(q, g)
∣∣ ≤M

for some positive M . If now g, g + η, g′, g′ + η′ ≥ ḡ then

H(q + h, g + η)−H(q, g)−H(q′ + h′, g′ + η′) +H(q′, g′) =

H(q + h, g + η)−H(q + h′, g + η) +H(q + h′, g + η)−H(q + h′, g + η′)

+H(q + h′, g + η′)−H(q, g)−H(q′ + h′, g′ + η′) +H(q′, g′)

In particular

|H(q + h, g + η)−H(q + h′, g + η) +H(q + h′, g + η)−H(q + h′, g + η′)|
≤M(|h− h′|+ |η − η′|)

and

|H(q + h′, g + η′)−H(q, g)−H(q′ + h′, g′ + η′) +H(q′, g′)|
≤M(|h′|+ |η′|)(|q − q′|+ |g − g′|)

We now use the above estimation with q = QLϕ(t, l), h = QLψ(t, l), g = GLϕ(t, l)
and η = GLψ(t, l) and the same for (t, l′). Since both GLϕ and GL(ϕ+ ψ) are
bounded from below by m|Γ|, as stated in Assumptions 7.18-[ND], we deduce∣∣H[ϕ+ ψ](t, l)−H[ψ](t, l)−H[ϕ+ ψ](t, l′) +H[ψ](t, l′)

∣∣ ≤
M
(
〈QLψ〉(1)

QT
l + 〈GLψ〉(1)

l,QT
+
(∥∥QLψ∥∥∞ +

∥∥GLψ∥∥∞) (〈QLϕ〉(1)
l,QT

+ 〈GLϕ〉(1)
l,QT

))
≤M

(
‖ψ‖1,H + ‖ψ‖∞ ‖ϕ‖1,H

)
|l − l′|

By taking the supremum over t we obtain

〈HL[ϕ+ ψ]−HL[ϕ]〉(1)
l,QT
≤M

(
‖ψ‖1,H + ‖ψ‖∞ ‖ϕ‖1,H

)
The above estimations and (7.52) allow us to conclude our proof.

�
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7.7.3 The quadratic hedge problem in the finite variation case

The general case f 6= 0 in problem (7.40) is very easy:

Theorem 7.25. Let Assumptions 5.1–7.18 hold true and T < T ∗ as in Theorem
(5.4). Fix then f ∈ H1

e (R). The function vf,L defined in (7.40) admits the represen-
tation vf,L(t, l, x) = x2aL(t, l)+xbL(t, l)+cL(t, l) where aL is the unique solution of
PIDE (7.44) in the Hölder space H1([0, T ]×R) and it is continuously differentiable
w.r.t. t, whereas b, c ∈ H1([0, T ]×R) are the unique solutions of the following linear
parabolic PIDEs

0 =− ∂bL

∂t
− BLt bL − π∗QLt bL, bL(T, .) = −2f ; (7.53)

0 =− ∂cL

∂t
− BLt cL +

1

4

(QLt bL)2

GLt aL
, cL(T, .) = f2 (7.54)

where π∗ is defined in (7.46) and the functions t→ b(t, .), c(t, .) also are continuously
differentiable in (0, T ). The optimal strategy in the control problem (7.40) is given
by

θ∗(t, l, x) :=e−φ
−1(t,l)

(
π∗(t, l)x− 1

2

QLb(t, l)
GaL(t, l)

)
(7.55)

Proof.
We know that vf,L(t, l, x) = x2aL(t, l) + xbL(t, l) + cL(t, l). We first prove that the
PIDEs (7.53)–(7.54) have a unique solution in H1([0, T ]×R) and then we conclude
with a verification argument.

We know that aL defined in (7.42) is the unique solution of semi linear PIDE
(7.44), it belongs to the Hölder space H1([0, T ]×R) and it is differentiable in time
(Theorem 7.22). Furthermore ‖π∗‖∞ ≤ Π̄L. But since aL is Lipschitz continuous
in the variable l and bounded from above and below, we also have

∣∣π∗(t, l)− π∗(t, l′)∣∣ ≤ ∣∣QLaL(t, l)−QLaL(t, l′)
∣∣

|GLaL(t, l)|

+

∣∣∣∣QLaL(t, l′)

GLaL(t, l′)

∣∣∣∣ 1

|GLaL(t, l)|
∣∣GLaL(t, l)− GLaL(t, l′)

∣∣
≤M |l − l′|

which implies that π∗ ∈ H1([0, T ]×R). For η > 0 consider the map Ξη in H1([0, T ]×
R) as follows:

Ξη(ψ)(t, l) := E
[∫ T

t
e−η(s−t) (π∗Qψ) (s, Lt,ls )ds− 2eηtf(Lt,lT )

]
(7.56)

The Lipschitz condition on π∗, µ and f prove that Ξη(ψ) ∈ H1([0, T ]×R) and that

‖Ξη(ψ1)− Ξη(ψ2)‖1,H ≤
M

η
‖ψ1 − ψ2‖1,H
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for some positive M . It follows that, for η big enough, Ξη is a contraction in
H1([0, T ]× R). If we call ψ∗ its unique fixed point then it verifies

ψ∗(t, l) = E
[∫ T

t
e−η(s−t) (π∗Qψ∗) (s, Lt,ls )ds− 2eηtf(Lt,lT )

]
We can apply the Markov property of L to get

ψ∗(t, l) = E
[∫ t+h

t
e−η(s−t) (π∗Qψ∗) (s, Lt,ls )ds+ ψ∗(Lt,lt+h)

]
from which we deduce that ψ∗ is differentiable w.r.t. t (as we did in Theorem 7.22).
Then it is the unique solution of

0 = −ψ
∗

∂t
− BLψ∗ − π∗QLψ∗ + ηψ∗

or, equivalently, bL(t, l) := e−ηtψ∗(t, l) is the unique solution of (7.53) in the Hölder
space H1([0, T ] × R) and is also continuously differentiable w.r.t. t. The same
method can be used to prove that PIDE (7.54) has a unique solution. A verification
argument (as in the proof of Theorem 5.14) can be used here to conclude that the
value function in (7.40) is given by vf,L(t, l, x) = x2aL(t, l) +xbL(t, l) + cL(t, l), and
the optimal strategy of the problem is given by (7.55).

�



Chapter 8

Quadratic hedge in electricity
markets

In this Chapter we apply the results obtained in Chapter 7 to the electricity market,
which inspired us to consider pure jump models for the quadratic hedge problem. In
Section 8.1 we briefly describe some features of these electricity markets. We then
introduce the future contracts, which play the role of hedging instrument, and we
model them in order to satisfy Assumptions 5.1–7.1 and Assumptions 7.6 (Section
8.2). We derive HJB equations as stated in Theorem 5.14 and propose a numerical
scheme to solve these PIDEs (Section 8.3). We finally test these schemes for the
NIG process which is a degenerate model (α = 1).

Contents

8.1 Electricity market: a short survey . . . . . . . . . . . . . 155
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8.3.2 Numerical algorithm for the function a . . . . . . . . . . . 168
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8.4 A numerical example . . . . . . . . . . . . . . . . . . . . . 171
8.4.1 The martingale case . . . . . . . . . . . . . . . . . . . . . 173

8.1 Electricity market: a short survey

In the last two decades energy markets have been liberalized by many govern-
ments, with the idea that a more open market should lead to a better distribution
of supply and demand, stabilization of prices and more competition between the
actors.1. For the electricity, the first example was given by Chile (early 1980s), fol-
lowed by Argentina and some other countries in South America. This liberalization
is rather advanced and, beyond standard operations (buy and sell electricity, secure

1In France, see for example the really recent ”loi NOME”,n.2010-1488 du 7 décembre 2010
portant nouvelle organisation du marché de l’électricité,
http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000023174854&categorieLien=id
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the supply), it is possible to make more sophisticated financial operations (buying
insurance, short-term trading, exchange of financial derivatives).

However, due to the nature of the electricity, this particular market presents
some problematic aspects. First of all, electricity is not exactly as any other com-
modity, since, it is not possible, at present, to store the excess production (although
many studies have been done in this direction). This means that a ”unit” of elec-
tricity has to be used when it is bought. With a macroeconomic language we can
say that, structurally, the supply follows the demand, which generally is ”instanta-
neous” whereas the supply is not. This mismatch implies the presence of spikes in
the electricity price, as showed for example in figures 8.1–8.2: upward movements
are followed by quick return to initial level. Consequently, a non-Gaussian behavior
is observed in empirical estimations of electricity price time series, as pointed out
in Geman and Roncoroni (2006) or Meyer-Brandis and Tankov (2008). This first

Figure 8.1: The spikes impact on the weekly averages of electricity prices. Compari-
son between France, Germany and the Nord Pool (Norway, Denmark, Swe-
den, Finland, and Estonia). Source: Commission de Regulation de l’énergie
www.cre.fr

remark suggests that a reasonable model for the electricity price should present
jumps in the path, together with a mean-reverting behavior. In practice, upward
and downward movements of electricity price are essentially due to jumps. Season-
ality also should be taken into account when modeling the electricity price. Another
important feature of electricity market is the procedure of price formation: in con-
trast with liquid and deep markets (the euro-dollar exchange for example), where
the price formation essentially reflects the supply and demand, the price formation
procedure for the electricity is more complex. We do not enter into the details, but
to understand this procedure one should consider many factors: the structurally bi-
ased supply and demand in the electricity context; the role of former monopolistic
public companies (which, at the same time, are producers, retail actors and exer-
cise their natural monopolistic function of distribution); the role of governments,
which care of the prices of socially sensible goods. These consideration suggests
that, when modeling, one should consider the electricity market as an illiquid and
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Figure 8.2: The observed price of electricity in the Ontario’s market. Source: http :
//www.energyadvantage.com

Figure 8.3: The realized volatility of the electricity price in different electricity markets:
Energy Exchange Austria (EXAA), Short-term Trading Deutschland (EPEX
DE), Amsterdam Power Exchange (APX), Short-term Trading France (EPEX
FR). Source EXAA Abwicklungsstelle für Energieprodukte AG.
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an incomplete one (which is partially due to the mismatch between the production
and the consumption) and should not consider the electricity spot price process as
a hedging instrument (since, as we said above, the electricity cannot be stored and
therefore, in some sense, is not tradeable).

8.2 Future contracts

In this section we will describe the future contract, a popular hedging instrument
which is traded in many electricity markets. For further details we refer to Clewlow
and Strickland (2000). Buying a future contract with maturity T and duration d
essentially means that at the maturity T one will be delivered a certain quantity of
electricity up to time T + d. We denote the price of this contract at time t with
Fd,T,t. To model this financial instrument we introduce L as follows

Figure 8.4: Price of futures with maturity 1 year, comparison France and Germany.
Source EPD France/Germany.

Ls = ζs+

∫ s

0

∫
R
yJ̄(dyds) (8.1)

where ζ ∈ R and J is a Poisson random measure, whose intensity measure is denoted
by ν(dy). Fix c ∈ R+, l(s) = e−cs and

At :=

∫ t

0
ecsdLs (8.2)

If T → ψ(0, T ) denotes the price at time 0 of a future contract with maturity T and
instantaneous delivery (which is supposed known), then we will model the price at
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time t of the same future contract as a random perturbation of the forward curve
ψ: with the previous notations we have

F0,T,t = ψ(0, T )el(T )At

We can imagine that the price at time t of a future contract with duration d is the
average on the time period [T, T+d] of the future contract prices with instantaneous
delivery. It is then reasonable to model the price at time t of a future contract with
delivery time T and duration d > 0 by

Fd,T,t =
1

d

∫ T+d

T
F0,s,tds =

1

d

∫ T+d

T
ψ(0, s)el(s)Atds

For some particular reason that would be clear in the sequel, we prefer the following
notation:

Fd,T,t := exp(Φ(At)) where Φ(A) := log

(
1

d

∫ T+d

T
ψ(0, s)el(s)Ads

)
(8.3)

The quadratic hedge problem, in this context, becomes

minimize E

[(
f̃(Fd,T,t)− x−

∫ T

t
θu−dFd,T,u

)2
]

over θ and x ∈ R (8.4)

for a given map f̃ . The process Fd,T,t corresponds to S in the formulation (5.2).

Lemma 8.1. The process Zt := log(Fd,T,t) verifies

dZt = µ(t, Zt)dt+

∫
γ(t, Zt−, y)J̄(dydt)

where

γ(t, z, y) :=Φ(Φ−1(z) + yect)− z

µ(t, z) :=ζectΦ′(Φ−1(z)) +

∫
|y|≤1

(
γ(t, z, y)− yectΦ′(Φ−1(z))

)
ν(dy)

Assume that the Lévy measure ν(dy) is given by ν(dy) = g(y)|y|−(1+α), for some
α ∈ (1, 2) and a bounded, positive and measurable g such that the following condition
hold true:

i). there exists some positive m ≥ 0 such that for all y, y′ ∈ (−y0, 0)∪ (0, y0) with
yy′ > 0, |g(y)− g(y′)| ≤ m|y − y′|

ii). lim
y→0−

g(y) = g(0−) and lim
y→0+

g(y) = g(0+) with g(0+), g(0−) > 0

iii).

∫
y≤−1

y4ν(dy) +

∫
1<y

e4yν(dy) < +∞
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then the functions µ and γ verify the Assumptions 5.1–7.1, where the function τ
introduced in Assumption 5.1-[I1] is given by

τ(y) = ecd max (|y|, |ey − 1|)

Furthermore the function γ verifies the Assumptions 7.6-[H1,H3,H4].

Proof.
Before we start, remark that the function A 7→ Fd,T (A) is strictly increasing, so
invertible, and infinitely differentiable: in particular

Φ′(A) =

∫ T+d
T ψ(0, s)l(s)el(s)Ads∫ T+d
T ψ(0, s)el(s)Ads

Φ′′(A) =

(∫ T+d
T ψ(0, s)l2(s)el(s)Ads

)(∫ T+d
T ψ(0, s)el(s)Ads

)
−
(∫ T+d

T ψ(0, s)l(s)el(s)Ads
)2

(∫ T+d
T ψ(0, s)el(s)Ads

)2

from which we deduce

e−c(T+d) ≤ Φ′(A) ≤ e−cT and e−2c(T+d) − e−2cT ≤ Φ′′(A) ≤ e−2cT − e−2c(T+d)

From Itô’s formula, we obtain

dZt =

(
Φ′(At)e

ctζ +

∫
|y|≤1

(
Φ(At− + ecty)− Φ(At−)− yectΦ′(At−)

)
ν(dy)

)
dt

+

∫
R

(
Φ(At− + ecty)− Φ(At−)

)
J̄(dydt)

or equivalently

dZt = µ(t, Zt)dt+

∫
γ(t, Zt−, y)J̄(dydt)

We can now prove that µ and γ verify the Assumptions 5.1. We detail the compu-
tations only for the function γ, since similar computations can be done for µ. First
we remark that z → γ(t, z, y) is differentiable and we can compute this derivative
to obtain

∂zγ(t, z, y) =− 1 + (Φ′(Φ−1(z)))−1Φ′(Φ−1(z) + yect)

=ecty(Φ′(Φ−1(z)))−1

∫ 1

0
Φ′′(Φ−1(z) + rect)dr

so that

|∂zγ(t, z, y)| =
∣∣∣∣ecty(Φ′(Φ−1(z)))−1

∫ 1

0
Φ′′(Φ−1(z) + rect)dr

∣∣∣∣
≤|y|ecT (inf

A
|Φ(A)|)−1

∥∥Φ′′
∥∥
∞ ≤ e

cT e−c(T+d)
∥∥Φ′′

∥∥
∞

≤|y|ecT ec(T+d)
(
e−2cT − e−2c(T+d)

)
≤ ecd|y|
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From the bounds on the first and second derivative of Φ we obtain supt,z |∂zγ(t, z, y)| ≤
ecd|y|, which gives us the function ρ introduced in Assumptions 5.1. From the
bounds on the first and second derivative of Φ we obtain supt,z |∂zγ(t, z, y)| ≤
e−cd|y|, which gives us the function ρ introduced in Assumptions 5.1. Also by
the definition of Φ in (8.3) we have

exp(e−c(T+d)y)− 1 ≤ eγ(t,z,y) − 1 ≤ ey − 1

if y > 0 and the inverse inequality stands in force if y < 0, which yield supt,z |eγ(t,z,y)−
1| ≤ |ey − 1|. According to the definition of the function τ given in Assumptions
5.1 and the estimations above we deduce that

τ (y) := max

(
sup
t,u,z

(
|γ (t, z, y) |,

∣∣∣eγ(t,z,y) − 1
∣∣∣) , ρ(y)

)
= ecd max (|y|, |ey − 1|)

which verifies Assumptions 5.1-[I1, I2] and Assumptions 7.1-[I] from iii). For As-
sumption 7.1-[ND] we have, from the definition of γ(

eγ(t,z,y) − 1
)2
≥
(

exp(e−c(T+d)y)− 1
)2

so then, for some positive M > 0 we have

Γ(y) :=

∫
R

inf
t,z

(
eγ(t,z,y) − 1

)2
ν(dy) ≥

∫
R

inf
t,z

(
exp(e−c(T+d)y)− 1

)2
ν(dy)

≥M
∫
|y|≤ε
|y|1−αg(y)dy > 0

since g(0+) and g(0−) are strictly positive, we can select ε small enough and obtain

Γ(y) ≥M
∫
|y|≤ε
|y|1−αdy > 0

For the Assumptions 7.6 we can differentiate γ w.r.t y to obtain ∂yγ(t, z, y) =

ectΦ′(Φ−1(z) + ecty) so then e−c(T+d) ≤ |∂yγ(t, z, y)| ≤ 1, which proves that As-
sumption 7.6-[H1] holds true. For Assumption 7.6-[H3], one can differentiate ∂yγ
w.r.t. z and give for it an upper bound to prove that z → ∂yγ(t, z, y) is Lipschitz
continuous, uniformly in t, y. Assumption 7.6-[H4] trivially holds true.

�

We can transform the problem (8.4) by using the process Z to obtain

vf (t, z, x) = inf
θ∈X (t,z,x)

E

[(
f(Zt,zT )− x−

∫ T

t
θu−d exp(Zt,zu )

)2
]
, x, z ∈ R (8.5)

where X (t, z, x) is defined in (5.10) and f(z) = f̃(ez).
In order to apply our results (Theorems 7.14 and 7.17) we need to verify all the

Assumptions 7.6. It is easy to prove that the function γ does not verify Assumption
7.6-[H2]: however, as we have already seen, this can be avoided by using Lemma
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7.16, whose assumptions are verified by γ. We could change the state variable Z
into a new one, say Z ′, study the problem (8.5) in the new state variable Z ′ (see the
discussion in Section 7.5, page 141) and finally obtain the characterization of the
optimal Markovian strategy as a function of the state variable Z ′. And by applying
the inverse change of variable, we can express this optimal strategy in terms of Z.
From a practical and numerical point of view, one can avoid to make this change of
variable, and apply directly Theorem 5.14 to obtain the optimal strategy.

To conclude this section, we want to introduce a special class of options one can
use in problem (8.5). First define, for some G > 0 the function p(x) : (G− x)+, the
usual put function, and

h(A) :=
1

d′

∫ T+d′

T
ψ(0, s)el(s)Ads

for some d′ 6= d. From (8.3) it follows that h ◦ Φ−1(Zt) = Fd′,T,t, and then, by
defining f := p ◦ h ◦ Φ−1, we obtain f(Zt) = (G − Fd′,T,t)+, which is a put option
written on a future contract with different duration d′. Using this particular option
we can rewrite problem (8.5) as follows

minimize over θ E

[(
(G− Fd′,T,t)+ − x−

∫ T

t
θu−dFd,T,u

)2
]

The financial meaning of the above problem is particularly interesting: one tries
to hedge (in the quadratic sense) a put option written on a future contract with
duration d′ 6= d only by using, as hedging instrument, the future contract with
duration d. This may be useful when, for example, one sells a future contract with
a non-standardized duration in the OTC market and hedges its position only by
using the instruments available in the market.

8.3 Numerical approximation of the functions a and b

In this section we will briefly discuss how one can solve the PIDEs obtained
in Theorems 5.11–5.14 in the particular example presented in Section 8.2. This
was done with the precious collaboration of Xavier Warin, EDF R&D (De Franco,
Tankov, and Warin, 2012).

As we proved in Theorem 7.17, the optimal Markovian strategy in problem (8.5)
is given by θ∗t = θ(t, Zt−, Xt−), where

θ∗(t, z, x) :=e−z
(
π∗(t, z)x− 1

2

Qtb(t, z)
Gta(t, z)

)
and

π∗(t, z) :=− Qta(t, z)

Gta(t, z)
(:= πt[a])

and the optimal price is given in (5.42) x∗ := −b(t, z)(2a(t, z))−1 To solve the
problem then we only need to compute the function a and b, which in this case,
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verify

0 =− ∂a

∂t
− µ∂a

∂z
− Bta− inf

|π|≤Π̄

{
2πQta+ π2Gta

}
, a(T, z) = 1

0 =− ∂b

∂t
− µ∂b

∂z
− Btb− πt[a]Qtb, b(T, z) = −2f

We will present here a numerical method to approximate the functions a and b.
For this, we prefer to rewrite the above PIDEs in a more comfortable way: with an
abuse of notation, we first invert the time direction µ(t, z) 7→ µ(T − t, z), and we
redefine our operators as follows:

µ(t, z)
redef
:= µ(t, z) +

∫
|y|≥1

γ(t, z, y)ν(dy)

Bϕ(t, z)
redef
:=

∫
R

(
ϕ(t, z + γ(t, z, y))− ϕ(t, z, y)− γ(t, z, y)

∂ϕ

∂z
(t, z)

)
ν(dy)

Qϕ(t, z)
redef
:=

[
µ(t, z) +

∫
R

(
eγ(t,z,y) − 1− γ(t, z, y)

)
ν(dy)

]
ϕ(t, z)

+

∫
R

(
eγ(t,z,y) − 1

)
(ϕ(t, z + γ(t, z, y))− ϕ(t, z)) ν(dy)

Gϕ(t, z)
redef
:=

∫
R

(
eγ(t,z,y) − 1

)2
ϕ(t, z + γ(t, z, y))ν(dy)

In particular, we will write π[ϕ]
redef
:= −Qϕ(t, z)(Gϕ(t, z))−1, where Q and G are the

redefined operators above. With these notations we obtain the new PIDEs verified
by a and b

0 =− ∂a

∂t
+ µ

∂a

∂z
+ Ba+ inf

|π|≤Π̄

{
2πQa+ π2Ga

}
, a(0, z) = 1 (8.6)

0 =− ∂b

∂t
+ µ

∂b

∂z
+ Bb+ π[a]Qb, b(0, z) = −2f (8.7)

In order to solve the above PIDEs, we need to truncate the domain, i.e. we will
numerically solve the above PIDEs in [0, T ] × [−Z,Z]. Due to the presence of the
integro-differential operator, the boundary conditions must be imposed not only at
the boundary ∂[0, T ]× {Z, Z} but also outside this parabolic boundary, let us say
on the region [0, T ] × [−Ẑ, −Z] ∪ [Z, Ẑ]. Moreover, we also need to truncate at
some Ŷ the integrals appearing in the definition of the coefficients in (8.6)–(8.7).
We finally assume the following condition:

for all t ∈ [0, T ]

Z + sup
z∈R,y∈[−Ŷ ,Ŷ ]

γ(t, z, y) ≤ Ẑ and − Z + inf
z∈R,y∈[−Ŷ ,Ŷ ]

γ(t, z, y) ≥ −Ẑ

8.3.1 The algorithm for the function a: truncation and first ap-
proximation

The truncation procedure transforms PIDE (8.6) into the following:
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• on [0, T ]× [−Z, Z] we solve

∂a

∂t
+ sup
π∈[−Π̄,Π̄]

{
−µ∂a

∂z
− Btra− 2πQtra− π2Gtra

}
= 0, a(0, z) = 1 (8.8)

where Π is the constant given in (5.44) and the truncated operators are defined as
follows:

Btra(t, z) :=

∫ Y

−Y

(
a(t, z + γ(t, z, y))− a(t, z, y)− γ(t, z, y)

∂a

∂z
(t, z)

)
ν(dy)

µQ(t, z) :=µ(t, z) +

∫ Y

−Y

(
eγ(t,z,y) − 1− γ(t, z, y)

)
ν(dy)

Qtra(t, z) :=µQ(t, z)a(t, z) +

∫ Y

−Y

(
eγ(t,z,y) − 1

)
(a(t, z + γ(t, z, y))− a(t, z)) ν(dy)

Gtra(t, z) :=

∫ Y

−Y

(
eγ(t,z,y) − 1

)2
a(t, z + γ(t, z, y)ν(dy)

• on [0, T ]× [−Z, −Z) ∪ (Z, Z] we impose

a(t, z) := 1

Remark 8.2. The effect of truncating the coefficients in the PIDE has been studied
in Jakobsen and Karlsen (2005) and we refer to it for an error estimation.

The choice of the boundary condition a(t, z) = 1 is motivated as follows: if
exp(Z) was a martingale, this is the value of the function a (see for example Remark
5.13). When exp(Z) fails to be a martingale, we should expect that the effect of the
drift term should not be too strong. Alternatively, one can replace the process Z,
outside the boundary, by a Lévy process, for which the solution can be computed
explicitly (it will be a simple time-dependent function).

We now adapt the methodology proposed by Forsyth et al. (2007) to solve the
truncated PIDE (8.8) on a regular grid zj = j∆z, for some ∆z > 0 and j ∈ (−N,N).
We also define two integers j−Ẑ and jẐ such that kj ∈ (−Ẑ, Ẑ) if and only if
j−Ẑ < j < jẐ . To avoid interpolation of the values of a when estimating the
integral term, we use a space and time dependent grid to define the intervals of
integration: the integration points yi are chosen to verify γ(t, z, yi(t, z)) = i∆z.
(Remark that this is possible since the function γ is invertible in the variable y).
For an integer k ≥ 1 we split the region [−Ŷ , Ŷ ] in three domains:

Ω̂0(t, z) =
{
y|y−k− 1

2
(t, z) ≤ y ≤ yk+ 1

2
(t, z)

}
,

Ω̂1(t, z) =
{
y|yk+ 1

2
(t, z) < y < 1 or − 1 < y < y−k− 1

2
(t, z)

}
, (8.9)

Ω̂2(t, z) = {y|1 ≤ |y| ≤ Y } ,

The parameter k is used to fit the size of the domain Ω0(t, z). Due to the very high
infinite activity of the jump process near 0, we will numerically fix k equal to 2 or
3 whereas Forsyth et al. (2007) take k = 1. We can write then

Btra(t, z) :=

∫
Ω̂0(t,z)

· · ·+
∫

Ω̂1(t,z)
· · ·+

∫
Ω̂2(t,z)

. . .
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For the first term we define

D(t, z) :=

∫
Ω̂0(t,z)

γ2(t, z, y)ν(dy)

so that ∫
Ω̂0(t,z)

(
a(t, z + γ(t, z, y))− a(t, z)− γ(t, z, y)

∂a

∂z
(t, z)

)
ν(dy)

=
D(t, z)

2

∂2a

∂z2
+

∫
Ω̂0(t,z)

O(γ3)ν(dy)

Since |γ(t, z, y)| ≤ M |y| around zero for some positive M (see Lemma 8.1), we
deduce∫

Ω̂0(z)

(
a(t, z + γ(t, z, y))− a(t, z)− γ(t, z, y)

∂a

∂z
(t, z)

)
ν(dy)

=
D(t, z)

2

∂2a

∂z2
+

∫
Ω̂0

O(|y|3)ν(dy) =
D(t, z)

2

∂2a

∂z2
+O(|yk+1/2(t, z)− y−(k+1/2)|3−α)

=
D(t, z)

2

∂2a

∂z2
+O(∆z3−α) (8.10)

since for some ξ ∈ Ω̂0 we have

(2k + 1)∆z =|γ(t, z, yk+1/2(t, z))− γ(t, z, y−(k+1/2)(t, z))|
=|∂yγ(t, z, ξ)||yk+1/2(t, z)− y−(k+1/2)|

and ∂yγ is bounded from below.

In the region Ω̂2, away from zero, we can subdivide the domain in disjoint
intervals centered in yi and expand the function γ around the integration points yi,
as it is done in Forsyth et al. (2007), to obtain∫

Ω̂2(z)

(
a(t, z + γ(t, z, y))− a(t, z)− γ(t, z, y)

∂a

∂z
(t, z)

)
ν(dy)

=
∑
yi∈Ω̂2

ω(t, z, yi)

(
a(t, z + γ(t, z, yi))− a(t, z)− γ(t, z, yi)

∂a

∂z

)
+O(∆z2)

=
∑
yi∈Ω̂2

ω(t, z, yi)

(
a(t, z + i∆z)− a(t, z)− z∆z ∂a

∂z

)
+O(∆z2)

where

ω(t, z, yi) :=

∫ yi+1/2(t,z)

yi−1/2(t,z)
ν(dy), yi ∈ Ω̂2

For the region Ω̂1 we need to transform the Lévy measure since it has infinite activity
close to zero. Following Forsyth et al. (2007), define ν̃(dy) := ν(y)y2dy and then
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y−2

(
a(t, z + γ(t, z, y))− a(t, z)− γ(t, z, y)

∂a

∂z
(t, z)

)
= y−2

i

(
a(t, z + γ(t, z, yi))− a(t, z)− γ(t, z, yi)

∂a

∂z
(t, z)

)
+ e(i, y)

e(i, y) := (y − yi)
d

dy

(
y−2

(
a(t, z + γ(t, z, y))− a(t, z, y)− γ(t, z, y)

∂a

∂z
(t, z)

))
|y=yi

+
(y − yi)2

2

∫ 1

0
dθ∫ θ

0

d2

dy2

(
y−2

(
a(t, z + γ(t, z, u))− a(t, z, u)− γ(t, z, u)

∂a

∂z
(t, z)

)) ∣∣
u=yi+r(y−yi) dr

Then, as before,∫
Ω̂1

(
a(t, z + γ(t, z, y))− a(t, z)− γ(t, z, y)

∂a

∂z
(t, z)

)
ν(dy)

=
∑

i: yi∈Ω̂1

ω(t, z, yi)

(
a(t, z + γ(t, z, yi))− a(t, z)− γ(t, z, yi)

∂a

∂z
(t, z)

)

+
∑

i: yi∈Ω̂1

∫ yi+1/2

yi−1/2

e(i, y)ν̃(dy)

where

ω(t, z, yi) := y−2
i

∫ yi+1/2(t,z)

yi−1/2(t,z)
|y|1−αg(y)dy, yi ∈ Ω̂1

We can use the bound on the function γ and its derivative w.r.t. y to control the
error term (See appendix A in Forsyth et al. (2007))∑

i: yi∈Ω̂1

∫ yi+1/2

yi−1/2

e(i, y)ν̃(dy) = O(∆zmin(2−ε,3−α))

for any ε > 0. We finally add up all the above estimations to obtain

Btra(t, z) :=
D(t, z)

2

∂2a

∂z2

+
∑

yi, |i|>k

ω(t, z, yi)

(
a(t, z + i∆z)− a(t, z)− i∆z ∂a

∂z
(t, z)

)
+O

(
∆zmin(2−ε,3−α)

)
where

ω(t, z, yi) :=


y−2
i

∫ yi+1/2(t,z)

yi−1/2(t,z)
|y|1−αg(y)dy if yi+1/2(t, z), yi−1/2(t, z) ∈ Ω̂1

∫ yi+1/2(t,z)

yi−1/2(t,z)
|y|−(1+α)g(y)dy otherwise

(8.11)
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The above terms can be calculated with the trapezoidal rule with an integration over
5 points, if the function g is twice continuously differentiable with bounded second
derivative away from zero: when yi ∈ Ω̂1 we obtain an error of order O(∆z3−α)
whereas for yi ∈ Ω̂2 we obtain an error of order O(∆z3).

Similarly we will treat the operators Qtr and Gtr. We skip the details to obtain:

Qtra(t, z) :=µQ(t, z)a(t, z) +D(t, z)
∂a

∂z

+
∑

yi, |i|>k

IQ(t, z, yi) (a(t, z + i∆z)− a(t, z)) +O(∆zmin(2−ε,3−α))

Gtra(t, z) :=D(t, z)a(t, z) +
∑

yi, |i|>k

IG(t, z, yi)a(t, z + i∆z) +O(∆z2−ε)

where

IQ(t, z, yi) :=


y−2
i

∫ yi+1/2(t,z)

yi−1/2(t,z)
(eγ − 1) |y|1−αg(y)dy if yi+1/2(t, z), yi−1/2(t, z) ∈ Ω̂1

∫ yi+1/2(t,z)

yi−1/2(t,z)
(eγ − 1) |y|−(1+α)g(y)dy otherwise

and

IG(t, z, yi) :=


y−2
i

∫ yi+1/2(t,z)

yi−1/2(t,z)
(eγ − 1)2 |y|1−αg(y)dy if yi+1/2(t, z), yi−1/2(t, z) ∈ Ω̂1

∫ yi+1/2(t,z)

yi−1/2(t,z)
(eγ − 1)2 |y|−(1+α)g(y)dy otherwise

Again a five point approximation can be used to estimate the above integrals.
The above computation allows us to rewrite PIDE (8.8) into the following:

∂a

∂t
(t, z)− D(t, z)

2

∂2a

∂z2
− µ(t, z)

∂a

∂z
+ sup
π∈[−Π̄,Π̄]

{(
Ṽ (t, z) −2πD(t, z))

∂a

∂z

−
∑
|i|≥k

W̃ (t, z, yi, π)a(t, z + i∆z) + R̃(t, z, π)a(t, z)
}

a(0, z) = 1 (8.12)

where

W̃ (t, z, yi, π) := ω(t, z, yi) + 2πIQ(t, z, yi) + π2IG(t, z, yi)

Ṽ (t, z) :=
∑
|i|≥k

i∆zω(t, z, yi)

R̃(t, z, π) :=
∑
|i|>k

(
ω(t, z, yi) + 2πIG(t, z, yi)

)
− 2πµQ(t, z)− π2D(t, z)
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Remark 8.3. The same type of computations can be used to approximate the coef-
ficients appearing in the PIDEs (8.6)–(8.7), like, for example,∫

|y|≥1
γ(t, z, y)ν(dy) and

∫
R

(
eγ(t,z,y) − 1− γ(t, z, y)

)
ν(dy)

8.3.2 The algorithm for the function a: numerical scheme and con-
vergence

Fix n̄ ∈ N, ∆t = T/n̄ and consider tn = n∆t. To solve PIDE (8.12) we use an
implicit scheme for linear part, which basically corresponds to a classical diffusion,
and an explicit one is used for the integral part: if an stands for a(n∆t, .) then this
will lead to

an+1 − an

∆t
− D(tn+1, .)

2

∂2an+1

∂z2
−

µ(tn+1, z)
∂an+1

∂z
+ sup
π∈[−Π,Π]

[
(Ṽ (tn, .)− 2πD(tn, z))

∂an

∂z
+

R̃(tn, .π)an −
∑
|i|>k

W̃ (tn, ., yi, π)an(z + i∆z)

 = 0 (8.13)

For the implicit term a classical central difference scheme (order two) is used for
the first order differential term coupled with forward/backward differencing when
matrix coefficients due to diffusion are negative (see for example Forsyth et al.
(2005)). The explicit first order differential term is treated to have monotony of the
scheme. This transforms equations (8.13) into

an+1
j (1 + ∆t(αj(t

n+1) + βj(t
n+1))−∆tαj(t

n+1)an+1
j−1 −∆tβj(t

n+1)an+1
j+1

+ sup
π∈[−Π,Π]

[
anj (−1 + ∆t(R̃(tn, zj , π

n) +
|Ṽ (tn, zj)− 2πD(tn, zj)|

∆z
)

−anj−1∆t
(Ṽ (tn, zj)− 2πD(tn, zj))

+

∆z
− anj+1∆t

(Ṽ (tn, zj)− 2πD(tn, zj))
−

∆z

−∆t
∑
|i|>k

W̃ (tn, zj , yi, π
n
j )anj+i

 = 0 (8.14)

where an+1
j stands for an approximation of an+1(zj) calculated at point zj and αj

and βj are positive weights (see for example Forsyth and Labahn (2007)) given by :

αj,central(t, ) =
D(t, zj)

2∆z2
− µ(t, zj)

2∆z

βj,central(t) =
D(t, zj)

2∆z2
+
µ(t, zj)

2∆z

if αj,central(t) or βj,central(t, π) is negative, we use

αj,forward/backward(t) =
D(t, zj)

2∆z2
+max(0,−µ(t, zj)

∆z
)

βj,forward/backward(t) =
D(t, zj)

2∆z2
+max(0,

µ(t, zj)

∆z
)
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Denote with M the matrix

Mj,j(t
n+1) = αj(t

n+1) + βj(t
n+1),

Mj,j+1(tn+1) = βj(t
n+1),

Mj,j−1(tn+1) = αj(t
n+1),

and with B the matrix

Bj,j(t
n, π) = R̃(tn, π, zj) +

|Ṽ (tn, zj)− 2πD(tn, zj)|
∆z

,

Bj,j−1(tn, π) = −(Ṽ (tn, zj)− 2πD(tn, zj))
+,

Bj,j+1(tn, π) = −(Ṽ (tn, zj)− 2πD(tn, zj))
−,

Bj,j+i(t
n, π) = −W̃ (tn, π, zj , yi), if |i| > k,

Bj,j+i(t
n, π) = 0, for 1 < |i| ≤ k,

The system can be written in terms of these matrices:

(I + ∆tM(tn+1))an+1 + sup
π∈(−Π,Π)

(−I + ∆tB(tn, π))an = 0 (8.15)

Theorem 8.4. Under the CFL condition

sup
t,j

[
Ṽ (t, zj)

∆z
+ 2Π(|µ(t, zj)|+D(t, zj))+

∑
|i|>k

(2ΠIQ(t, zj , yi) + ω(t, zj , yi)) + Π2D(t, zj))+

∆t < 1

the scheme 8.15 is consistent, monotone, L∞ stable and converges to the viscosity
solution of equation (8.8).

The proof of this result can be found in De Franco, Tankov, and Warin (2012). We
just remark that the integer k ≥ 1 in (8.9) is chosen to improve the convergence
of the scheme. This is needed since the jump activity of the process may be very
high, and then the error we do in our approximations (in the Taylor expansions
as, for example, in (8.10), or in the approximated integrals as (8.11)) can be very
important. Taking k ≥ 1 means that we extend the critical region Ω̂0(t, z) in (8.9)
and this allows us to be more precise.

8.3.3 Resolution methodology to calculate the function b

We will use the same methodology developed in paragraphs 8.3.1–8.3.2 for the
PIDE (8.7): we first rescale the function b to b̃(t, z) := e−ηtb(t, z) and then we
proceed by truncating the domain of definition of b to obtain the new PIDE:

• on [−Z, Z]  ∂b̃

∂t
− µ∂b̃

∂z
− Btr b̃+ ηb̃− πtr[a]Qtrb = 0

b̃(0, z) = −2f(z)
(8.16)

where πtr[a] := −Qtra
(
Gtra

)−1
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• on [−Z, −Z) ∪ (Z, Z] we impose

b̃(t, z) = −2f(z)a(t, z)e−ηt

Remark 8.5. The choice of the boundary condition outside the domain is justified
as follows: the value −b(t, z)/2a(t, z) can be interpreted as the cost of hedging the
pay-off f , that is, the wealth at time t which leads to the minimal hedging error at
maturity, as stated in (5.42). In the regions far from the money (and under the
assumption of zero interest rate), the cost of hedging can be approximated by the
option’s pay-off, whence the boundary condition for b.

Using the same discretization as before we get the following equation to solve
on [−Z,Z]:

∂b̃

∂t
− D(t, z)

2

∂2b̃

∂z2
+
∂b̃

∂z

(
(Ṽ (t, z)− µ(t, z)− πtr[a]D(t, z)

)
+b̃
(
η + R̂(t, z, πtr[a])

)
−
∑
|i|≥k

Ŵ (t, z, yi, π
tr[a])b̃(t, z + i∆z)

b̃(0, z) = −2f(z) (8.17)

where

Ŵ (t, z, yi, π
tr[a]) := ω(t, z, yi) + πtr[a]IQ(t, z, yi)

R̂(t, z, πtr[a]) :=
∑
|i|>k

(
ω(t, z, yi) + πtr[a]IQ(t, z, yi)

)
− πtr[a]µQ(t, z)

and Ṽ and D(t, z) are the functions introduced in paragraph 8.3.1. We propose, as
in paragraph 8.3.2, the following time discretization scheme :

b̃n+1 − b̃n

∆t
− D(tn+1, .)

2

∂2b̃n+1

∂z2
+

(Ṽ (tn+1, .)− π[a]n+1D(tn+1, z)− µ(tn+1, z))
∂b̃n+1

∂z
+ (R̂(tn+1, ., π[a]n+1) + η)b̃n+1 −∑

|i|>k

(Ŵ (tn+1, ., yi, π[a]n+1))+bn(z + i∆z) +

∑
|i|>k

(Ŵ (tn+1, ., yi, π[a]n+1))−bn(z + i∆z) = 0

which becomes

b̃n+1
j (1 + ∆t(αj(t

n+1) + βj(t
n+1) + R̂(tn+1, zj , π[a]n+1) + η)−

∆tαj(t
n+1)b̃n+1

j−1 −∆tβj(t
n+1)b̃n+1

j+1 + ∆t
∑
|i|>k

(Ŵ (tn+1, zj , yi, π[a]n+1))−b̃n+1
j+i

−∆t
∑
|i|>k

(Ŵ (tn+1, zj , yi, π[a]n+1))+b̃nj+i = 0 (8.18)
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where b̃nj is the approximated value of b̃ at (tn, zj), and αj , βj positive weights given
by :

αj,central(t, π) =
D(t, zj)

2∆z2
+
Ṽ (t, .)− πD(t, z)− µ(t, zj)

2∆z

βj,central(t, π) =
D(t, zj)

2∆z2
− Ṽ (t, .)− πD(t, z)− µ(t, zj)

2∆z

if αj,central(t, π) or βj,central(t, π) is negative, we use

αj,forward/backward(t, π) =
D(t, zj)

2∆z2
+

(
Ṽ (t, .)− πD(t, z)− µ(t, zj)

∆z

)+

βj,forward/backward(t, π) =
D(t, zj)

2∆z2
+

(
Ṽ (t, .)− πD(t, z)− µ(t, zj)

∆z

)−
Proposition 8.6. For a space discretization accurate enough (∆z small enough),
taking

η = (Π + ε) ‖µ‖∞ + 2

∫
|y|>1

(1 + Π|ey − 1|)ν(dy)

the scheme (8.18) is consistent and stable so it converges to the viscosity solution
of the PIDE (8.16).

Again, the proof of the above result is given in De Franco, Tankov, and Warin
(2012). Remark that this result is not the same of Theorem 8.4: the function b
depends on a through the optimal control π, for which we do not control the sign.
This has an important impact on the convergence of the Scheme for b.

8.4 A numerical example

In this last paragraph we will study the problem (8.5) when L in (8.1) is a
Normal Inverse Gaussian process with parameter α, β, δ, µ: Lt ∼ NIG(α, β, δt, µt).

Remark 8.7. Remark that α should not be mistaken for the parameter in Lemma
8.1; similarly µ is not the drift function given in the same Lemma. We use this
notation because it is standard in the literature.

We can write then

Lt =

(
µ+

βδ

α2 − β2
+

∫
|y|≥1

yν(dy)

)
t+

∫ t

0

∫
R
yJ̄(dyds)

where J is a Poisson random measure with intensity

ν(dy) =
αδ

π|y|
K1(α|y|)eβydy ν(dy)

y→0∼ 1

|y|2
dy

ν(dy)
y→+∞∼ 1

|y|3/2
e−(α−β)ydy ν(dy)

y→−∞∼ 1

|y|3/2
e−(α+β)|y|dy

where K1 is the modified Bessel function of the second kind (paragraph 4.4.3 in
Cont and Tankov (2004)).
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Remark 8.8. The NIG is a infinite variation Lévy process with stable-like behavior
of small jumps, and since the Blumenthal-Getoor index is equal to 1, we cannot
apply Lemma 8.1 and then Theorems 7.14–7.17. It is nevertheless a case of interest
because the NIG model is popular among practitioners.

We want to solve problem (8.5) for European options with maturity T = 1 week
and duration d equal to 7 days of the week. We recall that the future contract in
this case is given by

F7days,1week,t =
1

7

∫ 14

7
ψ(0, s)eg(s)Atds (8.19)

and At is given in (8.2) relatively to the NIG process L given above.
In Table 8.1 we give the forward curve for the week, whereas the discount factor

c is taken equal to 0.19. As we said in Remark 8.8, we cannot apply Lemma 8.1 and
Theorems 7.14–7.17 to solve problem (8.5) by the mean of the PIDEs (8.6)–(8.7).
It is nevertheless interesting to see what we get when we compute numerically these
PIDEs in the case of the NIG process. We obtain the dynamics of the process Z
by using the same computations of Lemma 8.1, and in this numerical experiment
we use the following parameters of the NIG process: µ = 0.08, α = 6.23, β = 0.06,
δ = 0.1027. Remark that the Lévy measure ν(dy) relative to these parameters
satisfies, at least, the regularity and integrability conditions i) − ii) − iii) of the
above mentioned Lemma. Remark also that in this case Z is not a Lévy process:
we cannot use the method given in Hubalek et al. (2006) to obtain the optimal
strategy in problem (8.5).

Day s Price (ψ(0, s))

Monday s ∈ [7, 8) 80
Tuesday s ∈ [8, 9) 90
Wednesday s ∈ [9, 10) 70
Thursday s ∈ [10, 11) 90
Friday s ∈ [11, 12) 80
Saturday s ∈ [12, 13) 70
Sunday s ∈ [13, 14] 60

Table 8.1: The forward curve. Prices are given in Eur.

For all numerical experiments we suppose that Ẑ = 12, Z = 8, we take a number of
meshes equal to 800 and a number of time step equal to 800. The value k, used to
define the domains Ω̂i in (8.9), is taken equal to 3. We already discussed on the fact
that it is numerically better to take k ≥ 1 when the jump activity of the process is
important, as in the NIG case.
All the MonteCarlo calculations are carried out with 2 million particles. We can now
apply the scheme (8.15) to compute the function a. Figure 8.5 shows what we obtain
by using a sufficiently accurate discretization procedure. Although we cannot apply
Theorem 7.14, we observe that, numerically, the function a is sufficiently smooth.
How to explain this regularity? The reason must be sought in the discretization pro-
cedure proposed in Paragraph 8.3.1, in where we replaced the non local first order
operator Btra with a second order term of the form D(t, z)∂2

zza+ first order terms.
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Figure 8.5: The value function (t, z)→ a(t, z) for the NIG process.

Heuristically this is equivalent to replace the small jumps of the process Z with a
Brownian motion. The second order term D(t, z)∂2

zza transform the PIDE (8.6) into
a non degenerate parabolic second order PIDE with artificial boundary conditions
(the PIDE (8.12)). As we will explain in Chapter 9, this PIDE has a unique smooth
solution, and this explain why we obtain a smooth numerical approximation of the
function a. This is one of the reasons that motivated us to test our PIDEs for the
NIG process, even if, as we said, the behavior of small jumps does not fulfill our
initial Assumptions 7.1.

The optimal control π∗(t, z) is shown in Figure 8.6. We now use the function a and
the optimal control π∗ to solve the PIDE (8.7) by means of the scheme (8.18). In
Figure 8.7 we present the result for an at-the-money call option with strike 1 on
the future contract introduced in (8.19), whereas Figure 8.8 shows the profile of an
at-the-money put option.

8.4.1 The martingale case

The quadratic hedge problem is relatively easy when the underlying stock price
is a martingale. Practitioners usually compute the hedge strategy by supposing that
the underlying stock price process is a martingale. Assuming that F is a martingale
means that we should have

Fd,T,t :=
1

d

∫ T+d

T
ψ(0, s) exp (M(s, t) + l(s)At) ds

for some M that makes F a martingale under the historical probability P. From
the definition of L and Itô’s formula it is easy to prove that M defined as follows

−dM(s, t) := e−c(s−t)
(
µ+

δβ

α2 − β2

)
dt+

∫ (
exp(e−c(s−t)y)− 1− e−c(s−t)y

)
ν(dy)dt
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Figure 8.6: The optimal control (t, z)→ π∗(t, z) for the NIG process.

Figure 8.7: The value function b(t, z) for an at-the-money call option.

makes F a martingale. If we want to solve problem (8.5) with the above F , then,
as usual, we have to compute the functions a and b, solutions of the PIDEs (8.6)–
(8.7). From Remark 5.13 we know that, in the martingale case, the function a is
equal to 1. The optimal strategy is then completely determined by the function b,
which is the solution of a linear PIDE. We compute numerically this strategy and
compare it with the one previously found, when we considered the model (8.19),
i.e. when F was not supposed to be a martingale. We propose to evaluate the
loss of efficiency when using these two hedge strategies on call and put options with
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Figure 8.8: The value function b(t, z) for an at-the-money put option.

different moneyness. Our efficiency comparison criterion is the following: if H is the
option (call/put) and θtrue, θmart are, respectively, the quadratic and the martingale
hedge strategies, then the efficiency is measured in terms of the standard deviation
of the hedged portfolios:

efficiency(θtrue)2 := variance

(
H(Fd,T,t)− xtrue −

∫ T

t
θtruer− dFd,T,r

)
where xtrue is the true optimal price given in (5.42). Similarly

efficiency(θmart)2 := variance

(
H(Fd,T,t)− xmart −

∫ T

t
θmartr− dFd,T,r

)
where xmart is the price given in (5.42) when one uses the function a and b relative
to the martingale model., i.e. xmart is the risk neutral price of H. Table 8.2 resumes
our analysis when t = 0. The numerical experiment proves that one loses efficiency
when using the martingale hedge strategy. This is coherent with the fact that θtrue

achieves the minimum un problem (8.5), so then it overperforms the strategy θmart,
which is just an admissible strategy in the previous mentioned problem.

Option H Moneyness Option value (xtrue) efficiency(θtrue) efficiency(θmart)

Call 1 4.199 1.085 1.316

Put 1 4.213 1.087 1.315

Call 1.5 0.120 0.168 0.212

Put 1.5 38.80 0.175 0.34

Table 8.2: Pricing and standard deviation of hedged portfolio





Chapter 9

The PIDE truncation effect

The chapter is organized as follows: we start by explaining why it is important to
study the semi linear PIDE verified by the value function of the pure investment
problem, when one truncates the domain of solvability (Section 9.1). For this, we
first provide an approximation of this value function by cutting the small jumps
of the Lévy measure and replace them with a term involving the second derivative,
and then we prove the convergence of this approximation to the true value function
(Section 9.2). We then prove that the truncated PIDE relative to this approximation
has a unique smooth solution (Section 9.3), and we finally prove an estimate on the
error due to the truncation of the domain (Section 9.4).
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9.1 Motivations

In the example proposed in Chapter 8 we showed how to solve the PIDEs (8.6)–
(8.7) to obtain the value function and the optimal control of problem (8.5). Our
theoretical results ensured that these PIDEs have a smooth classical solution on
the domain [0, T ]×R. Nevertheless, in order to implement a numerical scheme, we
needed to truncate the solvability domain of these PIDEs: we consider (8.6)–(8.7) in
a bounded domain of the form [0, T ]× [−Z,Z] with artificial Dirichlet conditions at
the boundary. It is then natural to ask whenever these truncated PIDEs still have
a smooth solution and how the artificial boundary conditions affect the solution.

To simplify the presentation we consider the model of Chapter 6 and we assume
that the process Z in (5.5) does not depend on U . We will also concentrate on
the PIDE verified by the function a, since a similar approach can be used for b.
Remark that, from a practical point of view, one only needs of a and b to compute

177
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the optimal strategy of problem (5.11), which is given in (5.50).

We recall that if a denotes the function in (5.13), then (t, z) → a(t, z)eηt is the
unique solution of

0 = −∂a
∂t

+ ηa+Ata− Bta−H[a], a(T, z) = eηT

and it belongs to C(1−δ)/2+1,2+(1−δ)([0, T ] × R), for any η ≥ 0. From a numerical
point of view one is instead interested in

0 = −∂a
∂t

+ ηa+Ata− Bta−Ht[a] (t, z) ∈ [0, T )× (−Z, Z)

a(T, z) = eηT z ∈ (−Z, Z)

a(t, z) = eηtq(t, z) (t, z) ∈ [0, T ]× (−Z, Z)c

(9.1)

for some artificial Dirichlet boundary condition q. Remark that it is possible to
consider a more general domain of the form (Z1, Z2): in general the choice of the
domain depends on the particular needs of the numerical discretization. However,
it is important for the sequel that the domain has a smooth boundary: in the
one dimensional case this is trivially true if one considers open intervals. For the
multidimensional case one should consider, for example, bounded cylinders. The
above truncated PIDE naturally arises when one wants to compute numerically
the function a. Our aim is then to prove that it has a unique solution, which
also is smooth inside the domain, and give some estimate of the error between the
function a and the solution of the above PIDE. The analysis of this PIDE may be
very difficult when the intensity measure is not finite. This is related to the behavior
of the non local operator

(t, z)→ Ba(t, z) :=

∫ (
a(t, z + γ(t, z, y))− a(t, z)− γ(t, z, y)

∂a

∂z
(t, z)1{|y|≤1}

)
ν(dy)

when z reaches the boundary of the truncated domain. Heuristically, we can remark
that the operator B behaves as ∂2

zza(t, z)+ ”first order operator”. Since there is no
hope to prove that the solution of PIDE (9.1) is twice continuously differentiable
at the boundary [0, T ] × {−Z,Z}, the operator B will be not properly defined on
the above boundary, and the map (t, z) → Ba(t, z), for |z| ≤ Z, may fail to be
uniformly Hölder continuous. Much more tractable is the case when the intensity
measure ν(dy) is finite. For this, before considering the truncated PIDE (9.1), we
show how to transform the initial parameters of the model (5.5), (µ, σ2, γ, ν(dy)) in
order to obtain a finite intensity measure. As we will see in Section 9.2, this is done
by cutting the small jumps of the process Z and ”replace” them with a Brownian
motion, as we did in Paragraph 8.3.1. This replacing transforms, at the same time,
the jump measure of the process into a finite intensity measure and the volatility
function σ. Our task then reduces to considering the value function of the pure
investment problem when the process Z has finite jumps. In the sequel, we will
denote this new function ah, where h > 0 is the level at which we cut the small
jumps. A first result is to prove that this new value function ah converges to the



Chapter 9. The PIDE truncation effect 179

function a when h → 0. In Section 9.3 we then study the truncated PIDE which
characterizes the function ah, which has the same structure as PIDE (9.1), except
for the fact that the non local operators are all of order zero.

Throughout the chapter we denote ΩT := [0, T ] × [−Z,Z] and fT := [0, T ] ×
(−Z,Z)c. Moreover, for a function ϕ defined on ΩT , ‖ϕ‖l/2,l,ΩT denotes the Hölder

norm of ϕ relatively to ΩT : for example,

‖ϕ‖∞,ΩT := sup
t≤T,|z|≤Z

|ϕ(t, z)| and 〈ϕ〉(l)
z,ΩT

:= sup
(t,z),(t,z′)∈ΩT

|ϕ(t, z)− ϕ(t, z′)|
|z − z′|l

The same convention stands in force for the Hölder norm of type 2, and for the
Hölder norm on the domain fT .

9.2 A first approximation

Let h > 0 and consider

γh(t, z) :=

∫
|y|≤h

γ2(t, z, y)ν(dy)

Assumptions 5.1–6.1 on γ show that γh is bounded, Lipschitz continuous w.r.t. t
and z and that γh → 0 when h→ 0, uniformly in t, z. Since

Bϕ(t, z) =

∫ 1

0
dθ

∫ θ

0
dθ′
∫
|y|≤h

γ2∂
2ϕ

∂z2
(t, z + θ′γ(t, z, y))ν(dy)

+

∫
|y|>h

(
ϕ(t, z + γ(t, z, y))− ϕ(t, z)− γ(t, z, y)

∂ϕ

∂z
(t, z)1{|y|≤1}

)
ν(dy)

then we could replace the above operator with

γh(t, z)

2

∂2ϕ

∂z2
(t, z) +

∫
|y|>h

(
ϕ(t, z + γ(t, z, y))− ϕ(t, z)− γ(t, z, y)

∂ϕ

∂z
(t, z)1{|y|≤1}

)
ν(dy)

This is equivalent to consider the pure investment problem (5.13) with the new
parameters (

µ, σ2 + γh, γ, ν(dy)1{|h|<y}

)
(9.2)

If ah denotes the value function of the pure investment problem corresponding to
these initial parameters, then from Theorems 5.11–6.8 we obtain that the map
(t, z)→ ah(t, z)eηt is the unique solution of

0 = −∂a
h

∂t
+ ηah +Aht ah − Bht ah −Hh[ah], ah(T, z) = eηT (9.3)
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provided that T < T ∗,h, where T ∗,h is the maximal time given in Theorem 5.4
relatively to the new parameters. The above operators are given by

Aht ah :=− µ∂a
h

∂z
− 1

2

(
σ2 + γh

) ∂2ah

∂z2

Bht ah :=

∫
h<|y|

(
ah(t, z + γ)− ah(t, z)− γ ∂a

h

∂z
1{|y|≤1}

)
ν(dy)

Qht ah :=µ̃hah +
(
σ2 + γh

) ∂ah
∂z

+

∫
h<|y|

(eγ − 1)
(
ah(t, z + γ)− ah(t, z)1{|y|≤1}

)
ν(dy)

Ght ah :=
(
σ2 + γh

)
ah +

∫
h<|y|

(eγ − 1)2ah(t, z + γ)ν(dy)

Hht [ah] := inf
|π|≤Π̄h

{
2πQht ah + π2Ght ah

}
(9.4)

where µ̃h is given in (5.6) with the new parameters and Π̄h in (5.38) is the a priori
bound corresponding to the new parameters. The main advantage when considering
the value function ah is due to the fact that the intensity measure is now finite and
then we could write, for example,

Bht ah =

∫
h<|y|

(
ah(t, z + γ)− ah(t, z)

)
ν(dy)− ∂ah

∂z

∫
h<|y|≤1

γ(t, z, y)ν(dy)

It is relatively easy to check the regularity of the right hand side when z approaches
the boundary of the truncated domain. Our aim now is to prove that the function ah

converges in some functional space to a and the optimal control (πh)∗ also converges
to π∗, the optimal control relative to the function a. For this we will suppose that

T < T ∗ ∧ T ∗,h (9.5)

in order to guarantee that both a and ah are smooth solutions of their respective
PIDEs.

Theorem 9.1. Let Assumptions 5.1–6.1 hold true together with the condition (9.5).
Then

i).
∥∥a− ah∥∥

2−δ,H ≤Mη%(h)

ii).
∥∥π∗ − (πh)∗

∥∥
1−δ,H ≤Mη%(h)

where (πh)∗ is the optimal control given in (5.47) relatively to ah, M(η) is a positive
constant that depends on η > 0 but not on h and %(h) is the function introduced in
Lemma 6.2:

%(h) :=

∫
|y|≤h

τ2(y)ν(dy)→ 0, when h→ 0

Proof.
From Proposition 6.5 we know that there exists a sequence ϕn ∈ C1+(1−δ)/2,2+(1−δ)([0, T ]×
R) that converges in H2−δ([0, T ]× R) to a:

‖ϕn − a‖2−δ,H → 0, n→∞
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and the same holds true when considering the function ah:∥∥∥ϕn,h − ah∥∥∥
2−δ,H

→ 0, n→∞

where ϕn,h is another sequence that also belongs to C1+(1−δ)/2,2+(1−δ)([0, T ] × R).
Since∥∥∥a− ah∥∥∥

2−δ,H
≤ ‖ϕn − a‖2−δ,H +

∥∥∥ϕn − ϕn,h∥∥∥
2−δ,H

+
∥∥∥ϕn,h − ah∥∥∥

2−δ,H
(9.6)

we can concentrate on the middle term
∥∥ϕn − ϕn,h∥∥

2−δ,H . Let M denote a positive
constant that does not depend on η or h whereas Mη is a positive constant that
does depend on η but not on h. They may change from line to line.

If ∆n
h := ϕn − ϕn,h then we can write

− ∂

∂t
4n+1
h +Aht4n+1

h + η4n+1
h = Bht4n

h +Ht[ϕn]−Hht [ϕn,h]

−1

2
γh
∂2ϕn+1

∂2z
+

∫
|y|≤h

(
ϕn(t, z + γ)− ϕn(t, z)− γ ∂ϕ

n

∂z
1{|y|≤1}

)
ν(dy)

4n+1
h (T, z) = 0

where we basically used the definition of these sequences stated in (6.3).
First we can estimate the second derivative appearing in the above PDE:∥∥∥∥∥1

2
γh
∂2ϕn+1

∂2z
−
∫
|y|≤h

(
ϕn(t, z + γ)− ϕn(t, z)− γ ∂ϕ

n

∂z
1{|y|≤1}

)
ν(dy)

∥∥∥∥∥
∞

≤M sup
n
‖ ϕn‖2,H

∫
|y|≤h

τ2(y)ν(dy) ≤Mη%(h) (9.7)

by using Lemma 6.9. We can proceed as in the proof of Lemma 6.2 to prove that
for any r, ε > 0∥∥∥Bh4n

h

∥∥∥
∞
≤M

((
%(r) + ς(r)ε1−δ

)
‖4n

h‖2−δ,H + ς(r)ε−1 ‖4n
h‖∞

)
(9.8)

where ς(r) → ∞ if the function τ is not integrable around zero. To conclude, we
readapt the proof of Lemma 6.3 and obtain∥∥∥H[ϕn]−Hh[ϕn,h]

∥∥∥
∞
≤M

(∥∥∥Qϕn −Qhϕn,h∥∥∥
∞

+
∥∥∥Gϕn − Ghϕn,h∥∥∥

∞

)
≤M

(
‖4n

h‖1+λ,H + %(h) ‖ϕn‖2,H
)

for some 0 < λ < 1 − δ, where we used the structure of the operators Q,G and
Qh,Gh. Apply then Proposition C.3 to deduce∥∥∥H[ϕn]−Hh[ϕn,h]

∥∥∥
∞
≤M

(
ε1−δ−λ ‖4n

h‖2−δ,H + ε−(1+λ) ‖4n
h‖∞ + %(h) ‖ϕn‖2,H

)
We now use the above estimation and (9.7)–(9.8) as in the proof of Proposition 6.5
to obtain, for some η big enough and some β ∈ (0, 1)∥∥4n+1

h

∥∥
2−δ,H,η ≤ β ‖4

n
h‖2−δ,H,η +M(η)%(h)
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where, as usual, ‖ ‖2−δ,H,η := ‖ ‖2−δ,H + η ‖ ‖∞. It follows then∥∥4n+1
h

∥∥
2−δ,H,η ≤M(η)

(
βn+1 + %(h)

)
Finally, we use the above estimate in (9.6) and let n → ∞ to prove part i). For
part ii) we have ∥∥∥π∗ − (πh)∗

∥∥∥
1−δ,H

=

∥∥∥∥QaGa − QhahGhah

∥∥∥∥
1−δ,H

Using the estimation given in i) and the structure of the above operators it is not
difficult to prove that ∥∥∥π∗ − (πh)∗

∥∥∥
1−δ,H

≤M(η)%(h)

Remark that the optimal control depends on the first derivative of a: this explains
why we can just give an estimate on the Hölder norm of order 1− δ.

�

This result proves that we can approximate with arbitrary precision the value
function a and the optimal control π∗ by taking h small enough. This allows us to
study the truncated PIDE for ah instead of a.

9.3 The semi linear PIDE on a bounded domain

9.3.1 Existence and Uniqueness in the viscosity sense

From now on we assume fixed h > 0. We start by making some simplifications
in the definition of the differential operators in (9.4): define first µh(t, z) := µ(t, z)−∫
h<|h|≤1 γ(t, z, y)ν(dy), then redefine the operators as follows:

Aht ah
redef
:= − µh∂a

h

∂z
− 1

2

(
σ2 + γh

) ∂2ah

∂z2

Bht ah
redef
:=

∫
h<|y|

(
ah(t, z + γ)− ah(t, z)

)
ν(dy)

Qht ah
redef
:=

(
µh +

1

2

(
σ2 + γh

))
ah +

(
σ2 + γh

) ∂ah
∂z

+

∫
h<|y|

(eγ − 1) ah(t, z + γ)ν(dy)

Ght ah
redef
:=

(
σ2 + γh

)
ah +

∫
h<|y|

(eγ − 1)2ah(t, z + γ)ν(dy)

Hht [ah]
redef
:= inf

|π|≤Π̄h

{
2πQht ah + π2Ght ah

}
(9.9)

The function (t, z)→ ah(t, z)eηt verifies

0 = −∂a
h

∂t
+ ηah +Aht ah − Bht ah −Hh[ah], ah(T, z) = eηT (9.10)

From the above definition we remark that the non local operators are all of order
zero, which will substantially simplify our computations. Remark however that at
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this point we cannot let anymore h→ 0, since the above coefficients and operators
may not be properly defined if the Lévy measure ν is infinite. According to Theorem
9.1, we assume then that h > 0 is selected and fixed in order to have a suitably
small error when replacing the function a with ah.

Remark 9.2. From now on, all the constants appearing in our estimates may
depend on h.

As we already anticipated in Section 9.1, let Z > 0 and consider the problem (9.10)
in the bounded parabolic domain [0, T ]× [−Z, Z]:



0 = −∂a
tr

∂t
+ ηatr +Aht atr − Bht atr −Hh[atr] (t, z) ∈ [0, T )× (−Z, Z)

atr(T, z) = eηT z ∈ (−Z, Z)

atr(t, z) = eηtq(t, z) (t, z) ∈ [0, T ]× (−Z, Z)c

(9.11)

Here the superscript tr stands for truncated. In the rest of the Chapter we will
prove that the above PIDE has a unique solution which is smooth in the domain
[0, T ] × [−Z, Z] and give an estimate on the error between atr and ah. One can
then use Theorem 9.1 to deduce an estimate on the error between atr and a.

Note that, due to the non local component, the Dirichlet condition q has to be
specified on the entire domain [0, T ] × (−Z, Z)c. We assume that q has the same
regularity as the function ah outside the domain1: q ∈ C(1−δ)/2+1,2+(1−δ)(fT ) and

lim
t→T,|z|≥Z

q(t, z) = 1 (9.12)

to ensure continuity at time t = T .

Lemma 9.3. Under Assumptions 5.1–6.1 there exists a unique viscosity solution
of PIDE (9.11). If (9.12) also holds true then it is continuous and it assumes the
boundary condition in the classical sense.

Proof.
The result is a direct application2 of Theorem 3 in Barles, Chasseigne, and Imbert
(2008). Remark that we would have a unique viscosity solution even under less
constraining Assumptions.

�

1This is actually not necessary and one could consider some other Dirichlet boundary condition
that belongs to C(1−δ′)/2+1,2+(1−δ′)(fT ) for some δ′ ∈ (0, 1). We prefer to take q in the same space
of ah for sake of coherence.

2Theorem 3 in Barles, Chasseigne, and Imbert (2008) proves existence and uniqueness for elliptic
differential problems. However, as the authors precise in Section 4.3 of the same paper, the proof
can be easily adapted to the parabolic case.
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9.3.2 Existence and Uniqueness in the viscosity sense

In this paragraph we will first prove that the unique viscosity solution of PIDE
(9.11) belongs to C2−δ(ΩT ). This will allow us to remove the non linearity in
the PIDE (9.11) and finally prove that this unique viscosity solution belongs to
C1+(1−δ)/2,2+(1−δ)(ΩT ).

For this, we will need to assume that the function q verifies a compatibility
condition at time t = T . Condition (9.12) gives the continuity of q, but we also have
to impose that the derivative w.r.t. t of the function atr, which can be computed
from the equation and the initial conditions, is equal to the derivative of the Dirichlet
boundary condition. In particular one must have

∂atr

∂t
(T, z) = ηeηT −Hh[atr(T, z)]

from (9.11). If we impose that

∂eηtq

∂t
(T, z) =

∂atr

∂t
(T, z), z ∈ {−Z,Z}

then we should have

∂q

∂t
(T, z) =

(
Qhatr(T, z)

)2
Ghatr(T, z)

, z ∈ {−Z,Z}

By using the terminal condition of atr and the definition of Ah and Gh, we will
obtain

∂q

∂t
(T, z)

=

((
µ+ 1

2σ
2
)

+
∫
R
((
eγ − 1− γ1{|y|≤1}

)
1{|h|<y} + 1

2γ
2
1{|y|≤h}

)
ν(dy)

)2
σ2 +

∫
h<|y|

(
(eγ − 1)21{|h|<y} + γ21{|y|≤h}

)
ν(dy)

(9.13)

where the coefficients are evaluated at the point (T, z) and z ∈ {−Z,Z}. We also
need to assume some regularity on the function γ and σ:

There exists δ′ ∈ (0, 1) such that ∂zσ, ∂zγ ∈ Hδ′([0, T ]× R), for any t, y. (9.14)

We will explain later where these assumptions are needed. Define then

κ := min(1− δ, δ′) (9.15)

As we already did many times (see Sections 6.2.2–7.4.1), we prove that the unique
viscosity solution of PIDE (9.11) belongs to C1+(1−δ)/2,2+(1−δ)(ΩT ) by introducing
a sequence of smooth function ϕn and proving that it converges to the unique
viscosity solution in the above mentioned Hölder space. Let us start with some
ϕ̃0 ∈ Hκ/2+1,2+κ([0, T ]× R) and consider (ϕ̃n)n∈N defined by

ϕ̃n+1(t, z) :=


ϕn+1(t, z) (t, z) ∈ [0, T ]× [−Z, Z]

eηtq(t, z) (t, z) ∈ [0, T ]× [−Z, Z]c
(9.16)

where ϕn+1 verifies
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−∂ϕ
n+1

∂t
+ ηϕn+1 +Ahϕn+1 = Bht ϕ̃n −Hh[ϕ̃n] (t, z) ∈ [0, T )× (−Z, Z)

ϕn+1(T, z) = eηT z ∈ (−Z, Z)

ϕn+1(t, z) = eηtq(t, z) (t, z) ∈ [0, T ]× {−Z, Z}

(9.17)

Remark 9.4. From now on we will adopt the following notation: for any function
ψ : ΩT → R, we denote with ψ̃ the extension of this map on the domain [0, T ]× R
with the Dirichlet boundary condition:

ψ̃n+1(t, z) :=


ψn+1(t, z) (t, z) ∈ [0, T ]× [−Z, Z]

eηtq(t, z) (t, z) ∈ [0, T ]× [−Z, Z]c

Our first objective is to prove that the sequence in (9.16) is well defined. For this
we need a preliminary result on the properties on the operators Bh and Hh:

Lemma 9.5. Let Assumptions 5.1–6.1 hold true. There exists some positive con-
stant M > 0 such that for all ψ ∈ Cκ/2+1,2+κ(ΩT ) we have∥∥∥Bhϕ̃n∥∥∥

∞,ΩT
≤M

(
‖ϕn‖∞,ΩT + eηT ‖q‖∞,fT

)
∥∥∥Hh[ϕ̃n]

∥∥∥
∞,ΩT

≤M
(
‖ϕn‖1,H,ΩT + eηT ‖q‖∞,fT

)
and ∥∥∥Bhϕ̃n∥∥∥

κ/2,κ,ΩT
≤M

(
‖ϕn‖κ/2,κ,ΩT + eηT ‖q‖κ/2,κ,fT

)
∥∥∥Hh[ϕ̃n]

∥∥∥
κ/2,κ,ΩT

+
∥∥∥Qhϕ̃n∥∥∥

κ/2,κ,ΩT
+
∥∥∥Ghϕ̃n∥∥∥

κ/2,κ,ΩT
≤

M
(
‖ϕn‖(κ+1)/2,1+κ,ΩT + eηT ‖q‖κ/2,κ,fT

)
where ψ̃ denotes the extension of ψ according to the Remark 9.4. The constant M
does not depend on η.

Proof.
The proof can be completed with the type of computations we made for Lemmas
6.2–6.3, by using the fact that outside the domain ΩT , the map ψ̃ is equal to eηtq.

The only difference arises when one has to estimate 〈Bhϕ̃n〉(κ)

z,ΩT
(or 〈Hhϕ̃n〉(κ)

z,ΩT
and

so on), since one has to take into account the particular form of ψ̃. We detail this

computation for 〈Bhϕ̃n〉(κ)

z,ΩT
: we first have

〈Bhϕ̃n〉(κ)

z,ΩT
≤
∫
h<|y|
〈ϕ̃n(t, z + γ(t, z, y))− ϕ̃n(t, z)〉(κ)

z,ΩT
ν(dy)
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Fix z, z′ ∈ [−Z,Z]: it follows∣∣ϕ̃n(t, z + γ(t, z, y))− ϕ̃n(t, z)− ϕ̃n(t, z′ + γ(t, z′, y)) + ϕ̃n(t, z′)
∣∣

≤〈ϕn〉(κ)

z,ΩT
|z − z′|κ +

∣∣ϕ̃n(t, z + γ(t, z, y))− ϕ̃n(t, z′ + γ(t, z′, y))
∣∣

If z + γ(t, z, y), z′ + γ(t, z′, y) ∈ (−Z,Z) then∣∣ϕ̃n(t, z + γ(t, z, y))− ϕ̃n(t, z′ + γ(t, z′, y))
∣∣ ≤M(1 + ρ(y)κ)|z − z′|κ〈ϕn〉(κ)

z,ΩT

If instead z + γ(t, z, y) ∈ (−Z,Z) but z′ + γ(t, z′, y) /∈ (−Z,Z), then we can find
some λ ∈ [0, 1] such that zλ +γ(t, zλ, y) ∈ [0, T ]×{Z,Z}, where zλ := z+λ(z′− z).
This is due to the continuity of the map z → γ(t, z, y). We deduce then∣∣ϕ̃n(t, z + γ(t, z, y))− ϕ̃n(t, z′ + γ(t, z′, y))

∣∣
≤ |ϕ̃n(t, z + γ(t, z, y))− ϕ̃n(t, zλ + γ(t, zλ, y))|
+
∣∣ϕ̃n(t, zλ + γ(t, zλ, y))− ϕ̃n(t, z′ + γ(t, z′, y))

∣∣
≤M(1 + ρ(y)κ)|z − zλ|κ

(
〈ϕn〉(κ)

z,ΩT
+ 〈q〉(κ)

fT

)
≤M(1 + ρ(y)κ)|z − z′|κ

(
〈ϕn〉(κ)

z,ΩT
+ eηT 〈q〉(κ)

fT

)
Finally, if both are outside the interval (−Z,Z) then, we can distinguish two cases

• both z+ γ(t, z, y) and z′+ γ(t, z′, y) are on the same side w.r.t. (−Z,Z), and
then∣∣ϕ̃n(t, z + γ(t, z, y))− ϕ̃n(t, z′ + γ(t, z′, y))

∣∣ ≤M(1 + ρ(y)κ)eηT |z − z′|κ〈q〉(κ)

fT

• one is bigger than Z whereas the other is smaller that −Z: in this case the
triangular inequality yields∣∣ϕ̃n(t, z + γ(t, z, y))− ϕ̃n(t, z′ + γ(t, z′, y))

∣∣
≤M(1 + ρ(y)κ)|z − z′|κ

(
〈ϕn〉(κ)

z,ΩT
+ eηT 〈q〉(κ)

fT

)
Adding up all the above estimates we obtain

〈Bhϕ̃n〉(κ)

z,ΩT
≤M

(
‖ϕn‖κ/2,κ,ΩT + eηT ‖q‖κ/2,κ,fT

)
The same argument can be used to estimate 〈Bhϕ̃n〉((κ)/2)

t,ΩT
.

�

The above Lemma allows us to prove that the sequence in (9.16) is well defined.
Assume that the compatibility conditions (9.12)–(9.13) hold true. By recurrence, if
ϕn ∈ Cκ/2+1,2+κ(ΩT ) is well defined then Lemma 9.5 yields

Bhϕ̃n +Hh[ϕ̃n] ∈ Cκ/2,κ(ΩT )
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We can use Theorem 5.2, Chapter IV in Ladyzenskaja et al. (1967) to deduce that
PIDE (9.17) has a unique solution which belongs to Cκ/2+1,2+κ(ΩT ). This proves
that ϕn+1 is also well defined. Furthermore

∥∥ϕn+1
∥∥
κ
2

+1,2+κ,ΩT
≤M

(
eηT +

∥∥∥Bhϕ̃n +Hh[ϕ̃n]
∥∥∥
κ/2,κ,ΩT

+
∥∥eηtq∥∥κ

2
,2+κ,fT

)
Remark 9.6. The function ϕ̃n is Lipschitz continuous at the boundary [0, T ] ×
{−Z,Z}: since ϕn ∈ Cκ/2+1,2+κ(ΩT ) then

∥∥Dzϕ
n+1
∥∥
∞,ΩT is finite. But

∥∥Dz(e
ηtq)

∥∥
∞,fT

is also finite for any t ≤ T . This means that the function z → ϕ̃n+1(t, z) is contin-
uous and has bounded left and right derivatives on the boundary [0, T ] × {−Z,Z},
which proves that ϕ̃n+1 is Lipschitz continuous on [0, T ]× {−Z,Z}.

The analog of Proposition 6.5 is this case it the following:

Proposition 9.7. Let Assumptions 5.1–6.1 hold true together with the compatibility
conditions (9.12)–(9.13). Assume also that condition (9.14) stands in force. For η
big enough, the sequence ϕn defined in (9.16) converges to some ϕ∗ ∈ H2−δ(ΩT ).
Furthermore for any υ ∈ (0, 1) there exists some positive constant Mυ which depends
on υ such that ∣∣ϕ∗(t, z)− ϕ∗(t′, z)∣∣ ≤Mυ|t− t′|υ, for any t, t′, z

and ∣∣Dzϕ
∗(t, z)−Dzϕ

∗(t′, z)
∣∣ ≤Mυ|t− t′|υ/2, for any t, t′, z

Proof.
If 4n+1 := ϕn+1 − ϕn and 4̃n+1 := ϕ̃n+1 − ϕ̃n then



−∂4
n+1

∂t
+ η4n+1 +Ah4n+1 = Bht 4̃n +Hh[ϕ̃n]−Hh[ϕ̃n−1] (t, z) ∈ [0, T )× (−Z, Z)

ϕn+1(T, z) = 0 z ∈ (−Z, Z)

ϕn+1(t, z) = 0 (t, z) ∈ [0, T ]× {−Z, Z}

The unique solution of the above linear PDE is explicitly given in Ladyzenskaja
et al. (1967), Section §16,

4n+1(t, z) =

∫ T

t
e−η(s−t)ds

∫ Z

−Z
G(T − t, z, T − s, ξ)Rn(y, ξ)dξ (9.18)

where Rn := Bh4̃n + Hh[ϕ̃n] − Hh[ϕ̃n−1] and G the Green’s function given in
Theorem 16.3 of Ladyzenskaja et al. (1967), Chapter IV, §16, which verifies

i). For 2r + s ≤ 2,

∣∣Di
tD

j
yG(t, z, s, ξ)

∣∣ ≤ m1(t− s)−
1+2i+j

2 exp

(
−m2

|z − ξ|2

t− s

)
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ii). For 2i+ j = 2 and any ι ∈ (0, 1)

∣∣Di
tD

j
zG(t, z, s, ξ)−Di

tD
j
zG(t, z′, s, ξ)

∣∣ ≤ m1|z − z′|ι(t− s)−
3+ι
2 exp

(
−m2

|z′′ − ξ|2

t− s

)

Here z′′ is the closest point to ξ which belongs to the segment
−→
zz′.

iii). For 2i+ j = 1, 2 and s < t′ < t.∣∣Di
tD

j
zG(t, z, s, ξ)−Di

tD
j
zG(t′, z, s, ξ)

∣∣ ≤m1|t′ − s|−
3+ι
2 |t− t′|

2−2i−j+ι
2

exp

(
−m2

|w − ξ|2

s− t

)

for 0 ≤ s < t and positive constants m1,m2.

We can follow the scheme of the proof of Proposition 6.5 to deduce that (ϕn)n
is a Cauchy sequence in H2−δ(ΩT ). There exists then some ϕ∗ ∈ H2−δ(ΩT ) such
that ϕn → ϕ∗.

Let us now prove the regularity of ϕ∗ w.r.t. t. From (9.18) we can write, for t′ < t,∣∣4n+1(t, z)−4n+1(t′, z)
∣∣

≤‖Rn‖∞,ΩT
∫ T

t
e−η(s−t)

∫ Z

−Z

∣∣G(T − t, z, T − s, ξ)−G(T − t′, z, T − s, ξ)
∣∣ dξds

+ ‖Rn‖∞,ΩT
∫ t

t′
e−η(s−t′)

∫ Z

−Z

∣∣G(T − t′, z, T − s, ξ)
∣∣ dξds

+ ‖Rn‖∞,ΩT
∣∣∣eη(t′−t) − 1

∣∣∣ ∫ T

t
e−η(s−t)

∫ Z

−Z

∣∣G(T − t′, z, T − s, ξ)
∣∣ dξds

By using Lemma 6.4 we have∫ Z

−Z

∣∣G(T − t, z, T − s, ξ)−G(T − t′, z, T − s, ξ)
∣∣ dξ ≤M

but also∫ Z

−Z

∣∣G(T − t, z, T − s, ξ)−G(T − t′, z, T − s, ξ)
∣∣ dξ ≤M |t− t′||s− t|−1

so that∫ Z

−Z

∣∣G(T − t, z, T − s, ξ)−G(T − t′, z, T − s, ξ)
∣∣ dξ ≤Mυ|t− t′|υ|s− t|−υ

The first term in the right hand side is then estimated with∫ T

t
e−η(s−t)

∫ Z

−Z

∣∣G(T − t, z, T − s, ξ)−G(T − t′, z, T − s, ξ)
∣∣ dξds ≤Mυ|t− t′|υ
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For the second it is straightforward∫ t

t′
e−η(s−t′)

∫ Z

−Z

∣∣G(T − t′, z, T − s, ξ)
∣∣ dξds ≤M |t− t′|

whereas for the third one, there is some λ ∈ [0, 1] such that∣∣∣eη(t′−t) − 1
∣∣∣ ∫ T

t
e−η(s−t)

∫ Z

−Z

∣∣G(T − t′, z, T − s, ξ)
∣∣ dξds

≤M |t− t′|ηeλη(t′−t)
∫ T

t
e−η(s−t)ds ≤M |t− t′|

since t′ < t. We conclude then∣∣4n+1(t, z)−4n+1(t′, z)
∣∣ ≤Mυ ‖Rn‖∞,ΩT |t− t

′|υ

for some positive Mυ which depends on υ. We can finally readapt the argument of
the proof of Proposition 6.5 to prove that the sequence of functions t → ϕn(t, .) is
also a Cauchy sequence in the Hölder space Hυ ([0, T ]), and then its limit, ϕ∗, has
to belong to this space. In particular∣∣ϕ∗(t, z)− ϕ∗(t′, z)∣∣ ≤Mυ|t− t′|υ, for any t, t′, z

With the same type of computations we prove that the sequence of functions t →
Dzϕ

n(t, z) is a Cauchy sequence in the Hölder space Hυ/2 ([0, T ]) for any υ ∈ (0, 1).
It follows that also Dzϕ

∗ has to belongs to this space.

�

Corollary 9.8. Let Assumptions 5.1–6.1 hold true together with the compatibility
conditions (9.12)–(9.13). Let ϕ∗ be the limit in H2−δ(ΩT ) of the sequence ϕn. Its
extension to [0, T ]× R, ϕ̃∗ is the unique viscosity solution of PIDE (9.11):

ϕ̃∗(t, z) = atr(t, z) (9.19)

Proof. We define

ψ(t, z) := E

[∫ β̂t,z

t
e−η(s−t)

(
Bht ϕ̃n −Hh[ϕ̃n]

)
(s, Ẑt,zs ) + eηβ

t,z
q
(
βt,z, Ẑt,z

β̂t,z

)]

where β̂t,z is the hitting time of the boundary:

β̂t,z := T ∧ inf
{
s > t :

∣∣∣Ẑt,zs ∣∣∣ ≥ Z} (9.20)

and
dẐt,zs := µh(s, Ẑt,zs )ds+

(√
σ2 + γh

)
(s, Ẑt,zs )dWs, Ẑt,zt = z

Remark that from the Markov property of the process Ẑ we have

β̂t,z = β̂θ,Ẑ
t,z
θ for any stopping time t ≤ θ ≤ β̂t,z
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In particular, according to Remark 9.4, we can write

ψ̃(t, z) := E
[∫ θ

t
e−η(s−t)

(
Bht ϕ̃n −Hh[ϕ̃n]

)
(s, Z̃t,zs )ds+ eηθψ̃

(
θ, Zt,zθ

)]
As in Step 3 of the proof of Theorem 6.8, we deduce that ψ is the unique viscosity
solution3 of (9.17). Since ϕn+1 is the unique smooth solution of (9.17), we deduce
ψ = ϕn+1, and then

ϕ̃n+1(t, z) := E
[∫ θ

t
e−η(s−t)

(
Bht ϕ̃n −Hh[ϕ̃n]

)
(s, Z̃t,zs )ds+ eηθϕ̃n+1

(
θ, Zt,zθ

)]
Since ϕn → ϕ∗ in H2−δ(ΩT ) (Proposition 9.7) and the operators Bh and Hh are
bounded and continuous, we can let n→∞ and obtain

ϕ̃∗(t, z) := E
[∫ θ

t
e−η(s−t)

(
Bht ϕ̃∗ −Hh[ϕ̃∗]

)
(s, Ẑt,zs ) + eηθϕ̃∗

(
θ, Zt,zθ

)]
For t = T we have ϕ̃∗(T, z) = ϕ∗(T, z) = eηT , by construction of the sequence ϕn,
which converges to ϕ∗. If instead |z| ≥ Z, i.e., we are outside the domain, then
trivially βt,z = t, from which we deduce ϕ̃(t, z) = eηtq(t, z). Again by following the
Step 3 of the proof of Theorem 6.8 we deduce that ϕ̃∗ is a viscosity solution of PIDE
(9.11): form the uniqueness of this solution (Lemma 9.3) we deduce

ϕ̃∗(t, z) = atr(t, z)

We are now able to prove the main result of this chapter:

Theorem 9.9. Let Assumptions 5.1–6.1 stand in force and assume also that the
functions σ and γ verify (9.14). If the Dirichlet boundary condition q belongs to
C(1−δ)/2+1,2+(1−δ)(fT ) and verifies the compatibility conditions (9.12)–(9.13), then
the PIDE (9.11) has a unique solution atr which verifies

atr
∣∣∣ΩT ∈ Cκ/2+1,κ+2(ΩT )

where κ is given in (9.15). Trivially

atr
∣∣∣fT ∈ Cκ/2+1,κ+2(fT )

since q belongs to this space, and z → atr(t, z) is Lipschitz continuous for all t ≤ T .

Proof.
The only thing we need to prove is that atr

∣∣
ΩT ∈ Cκ/2+1,κ+2(ΩT ) . Remark that

Hh[atr] = 2πtrQhatr + (πtr)2Gatr

3According to the definition of viscosity solution, one replaces the function ψ with a twice
continuously differentiable test function, for which we can apply Itô’s formula. Then we do not
need to take care of the non smoothness of ψ̃ at the boundary (0, T ) × {−Z,Z}. In other words,
the Feynman-Kac formula holds true and gives a probabilistic representation of the function ϕ̃n+1.
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where

πtr := −Π̄h ∨ −Q
hatr

Gatr
∧ Π̄h (9.21)

from the definition of Hh[atr] in (9.9). Proposition 9.7, Corollary 9.8 and the regu-
larity of q imply that πtr ∈ C(1−δ)/2,1−δ([0, T ] × R) and in particular, from (9.15),
we have πtr ∈ Cκ/2,κ([0, T ] × R). This allows us to linearize the PIDE (9.11): as
already seen many times, we define the map Ξη(ψ) as follows



−∂Ξη(ψ)

∂t
+ ηΞη(ψ) +AhΞη(ψ) = Bht ψ̃ + 2πtrQhψ̃ + (πtr)2Ghψ̃ [0, T )× (−Z, Z)

Ξη(ψ)(T, z) = eηT z ∈ (−Z, Z)

Ξη(ψ)(t, z) = eηtq(t, z) [0, T ]× {−Z, Z}

for ψ ∈ Cκ/2+1,2+κ(ΩT ). Theorem 5.2, Chapter IV in Ladyzenskaja et al. (1967)
guarantees that this map is well defined in Cκ/2+1,2+κ(ΩT ). We can now proceed
as in Step 2 of the proof of Theorem 6.8 to deduce that, for η big enough, the map
Ξη is a contraction in n Cκ/2+1,2+κ(ΩT )4. If call ψ∗ its unique fixed then, according
to Remark 9.4, it verifies



−∂ψ̃
∗

∂t
+ ηψ̃∗ +Ahψ̃∗ = Bht ψ̃∗ + 2πtrQhψ̃∗ + (πtr)2Ghψ̃∗ (t, z) ∈ [0, T )× (−Z, Z)

ψ̃∗(T, z) = eηT z ∈ (−Z, Z)

ψ̃∗(t, z) = eηtq(t, z) (t, z) ∈ [0, T ]× {−Z, Z}

Since atr is the unique viscosity solution of the above PIDE (Lemma 9.3) we deduce
that ψ̃∗ = atr, i.e. the restriction to ΩT of atr belongs to Cκ/2+1,2+κ(ΩT ). This
proves that PIDE (9.11) has a unique solution, whose restriction to ΩT belongs
to Cκ/2+1,2+κ(ΩT ). It is clear that this solution atr is Lipschitz continuous at
the boundary: we already know that it was continuous (Lemma 9.3), and since
the derivative w.r.t. z of atr and q are bounded, we deduce that atr is Lipschitz
continuous at the boundary. Clearly atr = q outside the boundary.

�

9.4 Estimate on the truncated PIDE

Theorem 9.9 tells us that there exists a unique solution of PIDE (9.11), which
is smooth in ΩT . For the remainder of this section we will concentrate on the error
estimation between the function ah introduced in Section 9.2 and the function atr.

4This is done by writing the Feynman-Kac formula for Ξη(ψ), and we explained in the proof of
Corollary 9.8 how it can be done.
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For this, we will prove that the function atr is the value function of a stochastic
optimization problem. Let us start with the definition of ah:

x2ah(t, z) := inf
θ∈X (t,z,x)

E
[(
Xt,z,x,θ
T

)2
]

where X is the wealth process given in (5.9) corresponding to the new parameters
in (9.2), and X (t, z, x) is the set of admissible strategies in (5.10). The function ah

belongs to Cκ/2+1,2+κ([0, T ]×R) and the optimal control π∗,h of the above stochastic
problem is given in (5.47). In particular

x2ah(t, z) := inf
θ∈ET (t,z,x)

E
[(
Xt,z,x,θ
T

)2
]

where

Eα(t, z, x) :=

θs := θ
(
s, Zt,zs−, X

t,z,x,θ
s−

) ∣∣∣∣∣∣
θ(t, z, x) := e−zπ(t, z)x and

π ∈ C(1+κ)/2,1+κ([0, T ]× R), t ≤ s ≤ α


since the optimal control π∗,h belongs to the above subset of admissible strategies.
Furthermore for any stopping times t ≤ α ≤ T we have

x2ah(t, z) := inf
θ∈Eα(t,z,x)

E
[(
Xt,z,x,θ
α

)2
ah
(
α,Zt,zα

)]
(9.22)

Remark that this is the dynamic programming principle when we restrict ourselves
to the Markovian strategies in E(t, z, x). The following result proves that atr can
also be represented as in (9.22).

Lemma 9.10. Let the Assumptions of Theorem 9.9 hold true. Then

x2atr(t, z) = inf
θ∈Eβ(t,z,x)

E
[(
Xt,z,x,θ
βt,z

)2
q
(
βt,z, Zt,zβt,z

)]
where

βt,z := T ∧ inf
{
s > t;

∣∣Zt,zs ∣∣ ≥ Z} (9.23)

and Z is the process given in (5.5) when using the parameters in(9.2).

Proof.
Let us define the Markovian strategy

θtrs := πtr(s, Zt,zs−)e−Z
t,z
s−Xt,z,x,θtr

s− , Xt,z,x,θtr

s := x+

∫ s

t
θtrs−de

−Zt,zs− (9.24)

where πtr is the optimal control given in (9.21) and

w(t, z, x) := E

(x+

∫ βt,z

t
θtrr−de

−Zt,zs−

)2

q
(
βt,z, Zt,zβt,z

) := x2ϕ̌(t, z)
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The flow (t, z) → Zt,z· is continuous in the topology of uniform convergence on
compacts (Theorem 37, Chapter V, Protter (2004)), so then (t, z)→ βt,z is at least
lower semi-continuous (Theorem 38, Chapter V, Protter (2004)). It follows that
(t, z, x)→ w(t, z, x) is continuous w.r.t. x and at least measurable w.r.t (t, z). Let
now α ∈

[
t, βt,z

]
be a stopping time: it follows

w(t, z, x) =E

EFα
(x+

∫ α

t
θtrr−de

−Zt,zs− +

∫ βt,z

α
θtrr−de

−Zt,zs−

)2

q
(
βt,z, Zt,zβt,z

)
=E

EFα
Xt,z,x,θtr

α +

∫ βα,Z
t,z
α

α
θtrr−de

−Zt,zs−

2

q

(
βα,Z

t,z
α , Zt,z

βα,Z
t,z
α

)
=E

[
w
(
α,Zt,zα , Xt,z,x,θ

α

)]
since the strategy θtr is Markovian. As in the proof of Theorem 6.8 we deduce that
ϕ̌ is a viscosity solution of PIDE (9.11) for η = 0, and then, from the uniqueness,
ϕ̌ = atr. It follows then

x2atr(t, z) =E

(1 +

∫ βt,z

t
θtrr−de

−Zt,zs−

)2

q
(
βt,z, Zt,zβt,z

)
≥ inf
θ∈Eβ(t,z,x)

E
[(
Xt,z,x,θ
βt,z

)2
q
(
βt,z, Zt,zβt,z

)]
If now

x2atr(t, z) > inf
θ∈Eβ(t,z,x)

E
[(
Xt,z,x,θ
βt,z

)2
q
(
βt,z, Zt,zβt,z

)]
then there would exist some π̂ ∈ C(1+κ)/2,1+κ([0, T ]× R) such that

x2atr(t, z) > E
[(
X̂t,z,x
βt,z

)2
q
(
βt,z, Zt,zβt,z

)]
:= x2ψ̂(t, z)

where dX̂t,z,x
s := X̂t,z,x

s− π̂(s, Zt,zs−)e−Z
t,z
s−deZ

t,z
s , X̂t,z,x

t = x. It is not complicated to

prove that ψ̂ is the unique solution of

−∂ψ̂
∂t

+Ahψ̂ = Bht ψ̂ + 2π̂Qhψ̂ + π̂2Ghψ̂ (t, z) ∈ [0, T )× (−Z, Z)

ψ̂(T, z) = 1 z ∈ (−Z, Z)

ψ̂(t, z) = q(t, z) (t, z) ∈ [0, T ]× (−Z, Z)c

and it belongs to C1+κ/2,2+κ(ΩT ). See for example the computations we did in the
proof of Theorem 9.9. Since atr verifies the PIDE (9.11) we deduce that ϕ := ψ̂−atr
should verify
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−∂ϕ
∂t

+Ahϕ− Bht ϕ− 2π̂Qhϕ− π̂2Ghϕ = F (t, z) ∈ [0, T )× (−Z, Z)

ϕ(T, z) = 0 z ∈ (−Z, Z)

ϕ(t, z) = 0 (t, z) ∈ [0, T ]× (−Z, Z)c

where F (t, z) :=
(
2π̂Qhatr + π̂2Ghatr −Hh[atr]

)
(t, z) ≥ 0 for all (t, z), simply from

the definition of Hh[atr] in (9.9). We can also rearrange the terms in the left hand
side of the above PIDE in the following way:

µnew(t, z) :=−
(
µh + 2π̂

(
σ2 + γh

))
σnew(t, z) :=

√
σ2 + γh

rnew(t, z) :=− 2π̂

(
µh +

1

2

(
σ2 + γh

)
+

∫
h<|y|

(eγ − 1) ν(dy)

)

− π̂2

(
σ2 + γh +

∫
h<|y|

(eγ − 1)2 ν(dy)

)
νnew(t, z, dy) := (1 + π̂ (eγ − 1))2 ν(dy)1{h<|y|}

where µh stands for µh(t, z) and so on. With these notations we can write



−∂ϕ
∂t
− µnew

∂ϕ

∂z
− 1

2
σ2
new

∂2ϕ

∂z2
− Bnewϕ− rnewϕ = F (t, z) ∈ [0, T )× (−Z, Z)

ϕ(T, z) = 0 z ∈ (−Z, Z)

ϕ(t, z) = 0 (t, z) ∈ [0, T ]× (−Z, Z)

where Bnew is the non local operator when one uses the Lévy measure νnew. The
Feynman-Kac formula5 yields

ϕ(t, z) = E

[∫ βt,z

t
F (s, Znew,t,zs ) exp

(∫ s

t
rnew(u, Znew,t,zu )du

)
ds

]
(9.25)

where

dZnew,t,zs =µnew(s, Znew,t,zs )ds+ σnew(s, Znew,t,zs )dWs

+

∫
γ(s, Znew,t,zs− , y)J̄ (s, Znew,t,zs− , dyds)

and J is a Poisson random measure such that, for all Borel set O whose closure
does not contain zero and any t, z, the process

ξs := J (t, z, [0, s]×O)−
∫ s

t

∫
O∩{|y|>h}

(
1 + π̂(t, z)

(
eγ(t,z,y) − 1

))2
ν(dy)

5See the proof of Corollary 9.8 to justify the Feynman-Kac formula for PIDE in truncated
domains.
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is a martingale. From (9.25) and F ≥ 0 we deduce ϕ := ψ̂ − atr ≥ 0, which is a
contradiction since we assumed that atr(t, z) > ψ̂(t, z). It follows then that

x2atr(t, z) ≤ inf
θ∈Eβ(t,z,x)

E
[(
Xt,z,x,θ
βt,z

)2
q
(
βt,z, Zt,zβt,z

)]
which concludes the proof.

�

We conclude the chapter with an estimate on the error ah − atr:

Theorem 9.11. Let the Assumptions of Theorem9.9 hold true. Then there exists
a positive constant M1 which only depends on the model parameters such that∣∣∣ah(t, z)− atr(t, z)

∣∣∣ ≤M1

∥∥∥ah − q∥∥∥
∞,fT

P
(
βt,z < T

)1/2
where βt,z is the hitting time of the process Z introduced in (9.23). Moreover, there
exists a positive constant M2 which only depends on the parameters of the process
Z such that

P
(
βt,z < T

)
≤M2

Z2 (1 + z2)

Proof.
From (9.22) and Lemma 9.10 we have

x2
(
ah(t, z)− atr(t, z)

)
≤ E

[(
Xt,z,x,θtr

βt,z

)2 (
ah − q

)(
βt,z, Zt,zβt,z

)]
where θtr is the optimal strategy given in (9.24). But also

x2
(
ah(t, z)− atr(t, z)

)
≥ E

[(
Xt,z,x,θh

βt,z

)2 (
ah − q

)(
βt,z, Zt,zβt,z

)]
where θh is the optimal strategy associated to the value function ah. Cauchy-
Schwarz inequality and standard estimate on the wealth process imply∣∣∣ah(t, z)− atr(t, z)

∣∣∣ ≤M1E
[∣∣∣ah − q∣∣∣2 (βt,z, Zt,zβt,z)]1/2

for some positive M1 > 0 that only depends on the parameters market. Remark
that this is possible since θtr and θh belong to the space E(t, z, x) and then the
related πtr and πh are bounded. We conclude by remarking that

E
[∣∣∣ah − q∣∣∣2 (βt,z, Zt,zβt,z)] = E

[∣∣∣ah − q∣∣∣2 (βt,z, Zt,zβt,z)1{βt,z<T}]
because on the set {βt,z = T} the compatibility condition (9.12) yields q(T, .) =
1 = ah(T, .). It follows∣∣∣ah(t, z)− atr(t, z)

∣∣∣ ≤M1

∥∥∥ah − q∥∥∥
∞,fT

P
(
βt,z < T

)1/2
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We conclude the proof with the estimate on P
(
βt,z < T

)
, using Chebyshev type

inequality : from

E
[(
Zt,zβt,z

)2
]
≥ E

[(
Zt,zβt,z

)2
1{βt,z<T}

]
we deduce

P
(
βt,z < T

)
≤Z−2E

[(
Zt,zβt,z

)2
]
≤ 2

(
z2 + E

[(
Zt,zβt,z − z

)2
])

We can readapt the proof of Lemma A.1 to deduce

P
(
βt,z < T

)
≤M2Z

−2(1 + z2)

for some positive constant M2 which only depends on the parameters of Z.

�

We remark that the estimate in Theorem 9.11 makes only use of the L∞-norm of
ah−q outside the boundary. It also makes explicit the dependence of the error with
respect to the probability that the process Z exits from the domain of truncation
[−Z,Z]. Nevertheless this estimate cannot be used to control the error between the
optimal strategies associated to ah and atr, since these optimal strategies depend
on the first derivative of their respective value functions, which are not taken into
account in the estimate of the above Theorem.
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Appendix A

Doléans-Dade exponential and
other estimations

The main objective of this appendix is to give an exhaustive description of the
processes used in Chapter 5.

Notations.
In this Appendix, E denotes the expectation under the historical probability P,
t ∈ [0, T ] and (u, z, x) ∈ R3. Also, ϑh denotes a positive function which only
depends on h > 0 and ϑh → 1 when h→ 0+. M denotes a positive constant, which
may change from line to line of our proofs, which does not depend on h, t or (u, z, x).

We will systematically omit high order terms of the form o(h) in our estimations.

We start by giving a short list of properties for the processes U and Z given in
(5.5).

Lemma A.1. Let Assumptions 5.1-[C, I1] hold true. For all t ∈ [0, T ), h > 0 and
z, u ∈ R2

E
[(
Zt,u,zt+h − z

)2
]
≤Cz,2hϑh, Cz,2 = 2(σ2

max + ‖τ‖22,ν)

E
[(
U t,ut+h − u

)2
]
≤Cu,2hϑh, Cu,2 = 2

(
σ2
max +

∥∥τU∥∥2

2,νn

)
and for all ε > 0 one has

E
[∣∣∣Zt,u+η,z+ε

t+h − Zt,u,zt+h

∣∣∣2] ≤M (
η2 + ε2

)
ϑh (A.1)

E
[∣∣∣U t,u+η

t+h − U t,ut+h
∣∣∣2] ≤Mη2ϑh (A.2)

where M > 0 does not depend on u, z, ε, η, t or h

Proof.
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The first estimation can be obtained by the Itô-Lévy isometry:

E
[(
Zt,u,zt+h − z

)2
]
≤ 2

∫ t+h

t
E
[
σ2(r, U t,ur , Zt,u,zr ) +

∫
R
γ2(r, U t,ur− , Z

t,u,z
r− , y)ν(dy)

]
dr

≤ 2
(
σ2
max + ‖τ‖22,ν

)
h

The same type of computations can be done for the process U to prove the result.
For (A.1)–(A.2) one can apply Lemma 3.1 in Pham (1998).

�

The other two processes appearing in Chapter 5, exp(Z) and the derivative of
flow DZ, are two examples of stochastic exponentials: let L be a R-valued semi-
martingale on a filtered probability space (Ω,P, (Ft)t≤T ) driven by a Brownian
motion W and an independent Poisson random measure J whose Lévy measure is
denoted by ν(dy):

Lt,ls := l +

∫ s

t
b(r)dr +

∫ s

t
a(r)dWr +

∫ s

t

∫
R
s(r, y)J̄ (dydr)

where b and a are caglad, bounded and measurable real valued processes. We set

β := sup
r∈[0,T ],ω∈Ω

|b(r, ω)| and α := sup
r∈[0,T ],ω∈Ω

|a(r, ω)|

We assume that s also is a caglad adapted real valued process such that g(y) :=
supr,ω |s(r, ω, y)| verifies g ∈ L2 (R, ν(dy)). We define

Ψ1 =

∫
|y|≥1

g (y) ν (dy) Ψ2 =

∫
R
g2 (y) ν (dy)

The stochastic exponential or Doléans-Dade exponential (DDE) (Doléans-Dade,
1970; Ash and Doléans-Dade, 2000) of the process L, usually denoted by E(L), is

the unique semimartingale solution of dV t,l
r = V t,l

r−dL
t,l
r , V

t,l
t = 1. The solution of

this SDE can be explicitly given in terms of L (Protter, 2004):

V t,l
r = exp

(
Lt,lr −

1

2

[
Lt,l, Lt,l

]c
r

) ∏
t≤u≤r

(
1 + ∆Lt,lu

)
e−∆Lt,lu (A.3)

where [L,L]c stands for the continuous part of the quadratic variation of L. The
next Lemma gives some classical estimations on the moments of the process V .

Lemma A.2. Let t ∈ [0, T ), l ∈ R and h ≥ 0. Then

E
[(
V t,l
t+h

)2
]
≤ eCV,1h, CV,1 = 2β + α2 + 2Ψ1 + Ψ2

E
[(
V t,l
t+h − 1

)2
]
≤ CV,2hϑh, CV,2 = 2(α2 + Ψ2)

∣∣∣E [V t,l
t+h − 1

]∣∣∣ ≤ CV,3hϑh, CV,3 = β + Ψ1
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Proof.
The proof is basically based on the Itô’s formula and the Gronwall’s inequality.
First we have

E
[(
V t,l
t+h

)2
]

=1 + E
[∫ t+h

t

(
V t,l
r

)2
(

2br + a2
r +

∫
R

(
s2 (r, y) + 2s (r, y)1{|y|≤1}

)
ν(dy)

)
dr

]
≤1 + CV,1

∫ t+h

t
E
[(
V t,l
r

)2
]
dr

From the Gronwall’s inequality we conclude E
[(
V t,l
t+h

)2
]
≤ eCV,1h. Convexity and

Itô-Lévy isometry yield

E
[(
V t,l
t+h − 1

)2
]
≤ 2E

(∫ t+h

t
V t,l
r

(
br +

∫
|y|≥1

s (r, y) ν (dy)

)
dr

)2


+ 2E
[∫ t+h

t

(
V t,l
r

)2
(
a2
r +

∫
R
s2 (r, y) ν (dy)

)
dr

]
≤ CV,2

∫ t+h

t
E
[(
V t,l
r

)2
]
dr + o(h)

and then E
[(
V t,l
t+h − 1

)2
]
≤ CV,2hϑh + o(h). For the last inequality we have

∣∣∣E [V t,l
t+h − 1

]∣∣∣ =

∣∣∣∣∣E
[∫ t+h

t
V t,l
r

(
brdr +

∫
|y|≥1

s (r, y) ν (dy)

)
dr

]∣∣∣∣∣
≤
∫ t+h

t
E

[∣∣∣V t,l
r

∣∣∣ ∣∣∣∣∣br +

∫
|y|≥1

s (r, y) ν (dy)

∣∣∣∣∣
]
dr ≤ CV,3

∫ t+h

t
E
[(
V t,l
r

)2
] 1

2

dr

so that
∣∣∣E [V t,l

t+h − 1
]∣∣∣ ≤ CV,3hϑh

�

The process exp(Z). By using Itô’s formula one has

deZ
t,u,z
r = eZ

t,u,z
r−

(
µ̃dr + σdW 1

r +

∫
R

(eγ − 1) J̄(dydr)

)
, eZ

t,u,z
t = ez (A.4)

where µ̃ = µ̃
(
r, U t,ur , Zt,u,zr

)
is defined in (5.6). We deduce that exp(Zr − z) is a

stochastic exponential.

Corollary A.3. Suppose that Assumptions 5.1-[C, I1] hold true. For all t,∈ [0, T ),
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h ≥ 0 and z, u ∈ R one has

E
[(
eZ

t,u,z
t+h −z

)2
]
≤ eCe,1h, Ce,1 = 2 ‖µ̃‖+ σ2

max + 2 ‖τ‖1,ν + ‖τ‖22,ν

E
[(
eZ

t,u,z
t+h −z − 1

)2
]
≤ Ce,2hϑh, Ce,2 = 2(σ2

max + ‖τ‖22,ν)

∣∣∣E [eZt,u,zt+h −z − 1
]∣∣∣ ≤ Ce,3hϑh, Ce,3 = ‖µ̃‖+ ‖τ‖1,ν

E
[(
eZ

t,u,z
t+h −z − 1

)2
]
≥ Ce,5h, Ce,5 = (σ2

min ∨ |Γ|)

Moreover

E
[(
eZ

t,u+η,z+ε
t+h − eZ

t,u,z
t+h

)2
]
≤M(ez)2(η2 + ε2)ϑηϑεϑh (A.5)

where M > 0 does not depend on u, z, h, η or ε. If Assumption 5.1-[I2] also holds
true then

E
[(
eZ

t,u,z
t+h −z − 1

)4
]
≤ Ce,4hϑh, Ce,4 =

(
2 ‖τ‖44,ν + σ2

max + 2 ‖τ‖22,ν
)
hϑh

Proof.
For the first three estimations we use Lemma A.2 with β = ‖µ̃‖, α = σmax and
g = τ . For the fourth inequality we remark that

E
[(
eZ

t,u,z
t+h −z − 1

)2
]

= 2E
[∫ t+h

t

(
eZ

t,u,z
r −z − 1

)
d(eZ

t,u,z
r −z)

]
+ E

[[
eZ

t,u,z
t+h − 1

]
t+h

]
Since

2E
[∫ t+h

t

(
eZ

t,u,z
r− −z − 1

)
d(eZ

t,u,z
r −z)

]
≥ −Mh

3
2

for some M > 0, we can omit this high order term. By using Jensen’s inequality we
get

E
[[
eZ

t,u,z
t+h −z − 1

]
t+h

]
≥(σ2

min ∨ |Γ|)
∫ t+h

t
E
[
(eZ

t,u,z
r −z)2

]
dr

≥(σ2
min ∨ |Γ|)

∫ t+h

t
e2E[Zt,u,zr −z]dr (A.6)

and

E[Zt,u,zr − z] =

∫ r

t
E

[
µ(s, U t,us , Zt,u,zs ) +

∫
|y|≥1

γ(s, U t,us− , Z
t,u,z
s− , y)ν(dy)

]
ds

From Assumptions 5.1 we have µ(t, u, z) ≥ −‖µ‖∞ whereas∫
|y|≥1

γ(s, u, z, y)ν(dy) ≥−
∫
|y|≥1

|γ(s, u, z, y)|ν(dy) ≥ −‖τ‖1,ν
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so then E[Zt,u,zr − z] ≥ −M(r − t) for some positive M . From (A.6) we conclude

E
[(
eZt+ht,u,z−z − 1

)2
]
≥ (σ2

min ∨ |Γ|)h

For estimation (A.5) we apply Lemma 3.1 in Pham (1998).

For the last inequality we first apply Itô’s formula to (eZ−z − 1)2 to obtain de
decomposition

(eZ
t,u,z
t+h −z − 1)2 =

∫ t+h

t
α(1)
s ds+

∫ t+h

t
α(2)
s dWs +

∫ t+h

t

∫
R
α(3)
s J̃(dyds)

Since we are interested to (eZ
t,u,z
t+h −z− 1)4 we can forget the process α(1) since it will

contribute with a high order term o(h). We are left with

α(2)
s =2σeZ

t,u,z
s −z

(
eZ

t,u,z
s −z − 1

)
α(3)
s =

(
eZ

t,u,z
s −z+γ − 1

)2
−
(
eZ

t,u,z
s −z − 1

)2

=eZ
t,u,z
s −z(eγ − 1)

((
eZ

t,u,z
s −z

)
(eγ − 1) + 2

(
eZ

t,u,z
s −z − 1

))
The Itô-Lévy isometry yields

E
[(
eZ

t,u,z
t+h −z − 1

)4
]
≤ 2 ‖τ‖44,ν

∫ t+h

t
E
[(
eZ

t,u,z
s −z

)4
]
ds

+
(

4σ2
max + 8 ‖τ‖22,ν

)∫ t+h

t
E
[(
eZ

t,u,z
s −z

)4
]1/2

E
[(
eZ

t,u,z
t+h −z − 1

)4
]1/2

ds

Since E

[(
eZ

t,u,z
s −z

)4
]
≤ e2M(s−t) for some M > 0 and

√
x ≤ x+ 1/4 for all x ≥ 0

we obtain

E
[(
eZ

t,u,z
t+h −z − 1

)4
]
≤2 ‖τ‖44,ν hϑh

+
(

4σ2
max + 8 ‖τ‖22,ν

)∫ t+h

t
eM(s−t)(

1

4
+ E

[(
eZ

t,u,z
s −z − 1

)4
]
)ds

≤
(

2 ‖τ‖44,ν + σ2
max + 2 ‖τ‖22,ν

)
hϑh

�

The derivative of flow DZ. The second example of stochastic exponential as-
sociated to Z is the so called derivative of flow , defined by

DZt,u,zs = 1 +

∫ s

t
DZt,u,zr−

(
∂µr
∂z

dr +
∂σr
∂z

dW 1
r +

∫
R

∂γr(y)

∂z
J̄ (dydr)

)
(A.7)

where ∂µr/∂u stands for ∂µ/∂z
(
r, U t,ur , Zt,u,zr

)
and so on.
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Corollary A.4. Suppose that Assumptions 5.1-[C, I1] hold true. For all t ∈ [0, T )
, h ≥ 0 and u, z ∈ R

E
[(
DZt,u,zt+h

)2
]
≤ eCdz,1h, Cdz,1 = Kmax

(
2(1 + ‖τ‖1,ν) +Kmax(1 + ‖τ‖22,ν)

)

E
[(
DZt,u,zt+h − 1

)2
]
≤ Cdz,2hϑh, Cdz,2 = 2K2

max(1 + ‖τ‖22,ν)

∣∣∣E [DZt,u,zt+h − 1
]∣∣∣ ≤ Cdz,3hϑh, Cdz,3 = Kmax(1 + ‖τ‖1,ν)

If we define for ε > 0

D]Z
ε,u,z
s := ε−1

(
Zt,u,z+εs − Zt,u,zs

)
(A.8)

then
E
[∣∣D]Z

ε,t,u,z
s −DZt,u,zs

∣∣]→ 0 when ε→ 0

Proof.
For the first three inequalities we apply Lemma A.2 with β = α = Kmax and g =

Kmaxτ . For D]Z, we remark that Lemma A.1 gives E
[∣∣∣D]Z

ε,t,u,z
s

∣∣∣2] ≤ Mϑs−t, so

then the family ε→ D]Z
ε,t,u,z
s is uniformly bounded in L2(P,Fs), which in particular

means that it is uniformly integrable. If we prove that D]Z
ε,t,u,z
s

P→ DZt,u,zs then
dominated convergence applies and we obtain the result. We first remark that the
process D]Z

ε,t,u,z is a Doléans-Dade exponential: dD]Z
ε,t,u,z
s = D]Z

ε,t,u,z
s− dP ε,t,u,zs

where

P ε,t,u,zr :=

∫ r

t
v1,ε
s ds+

∫ r

t
v2,ε
s dW 1

s +

∫ r

t

∫
R
v3,ε
s (y)J̄(dyds)

v1,ε
s :=

∫ 1

0
∂zµ

(
s, U t,us , Zt,u,zs + x

(
Zt,u,z+εs − Zt,u,zs

))
dx

v2,ε
s :=

∫ 1

0
∂zσ

(
s, U t,us , Zt,u,zs + x

(
Zt,u,z+εs − Zt,u,zs

))
dx

v3,ε
s (y) :=

∫ 1

0
∂zγ

(
s, U t,us− , Z

t,u,z
s− + x

(
Zt,u,z+εs− − Zt,u,zs−

)
, y
)
dx

Let us define

P ∗,t,u,zs :=

∫ s

t
∂zµrdr +

∫ s

t
∂zσrdW

1
r +

∫ r

t

∫
R
∂zγr(y)J̄(dydr)

where ∂zµr stands for ∂zµ(r, U t,zr , Zt,u,zr ) and so on. From Assumptions 5.1, Lemma
A.1 and Doob’s inequalities it is not complicate to prove that

E

[
sup
t≤s≤T

(
P ε,t,u,zs − P ∗,t,u,zs

)2]→ 0, ε→ 0
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and then, by using the Itô’s formula and Gronwall’s inequality

E

[
sup
t≤s≤T

(
D]Z

ε,t,u,z
s −DZt,u,zs

)2]→ 0, ε→ 0

We deduce then that D]Z
ε,t,u,z ucp→ DZt,u,z when ε→ 0, which concludes our proof.

�

Another inequality used in the proof of Theorem 5.4 mixes the exponential eZ and
|DZ|

Lemma A.5. Let Assumption 5.1-[C, I1, I2] hold true. Then for all l ∈ R and
(t, u, z ∈ [0, T )× R2)

E
[(

1− l
(
eZ

t,u,z
t+h −z − 1

))2 ∣∣∣DZt,u,zt+h

∣∣∣] ≤ 1 + Cdz,e(l)hϑh

where

Cdz,e(l) = (Cdz,3 + Cdz,2) + 2|l|
(
Ce,3 +Kmax(σmax + 3 ‖τ‖22,ν)

)
+
|l|2

2
(3Ce,2 +KmaxCe,4)

Proof.
In order to simplify our notations, we will always omit arguments in the coefficients
µ, σ and γ and, when there is no ambiguity, we also omit the superscript (t, u, z) in
the processes eZ and DZ.
From (A.3) we can derive the explicit solution of the SDE (A.7). In particular it is
straightforward to prove that the process Rs := |DZs| verifies

dRs
Rs

= ∂zµds+ ∂zσdW
1
s +

∫
A−s

(−2− ∂zγ)J̄(dyds) +

∫
A+
s

∂zγJ̄(dydu)

where

A−s := A−(s, u, z) := {y ∈ R | ∂zγ(s, u, z, y) < −1}
A+
s := A+(s, u, z) := {y ∈ R | ∂zγ(s, u, z, y) ≥ −1}

and from Assumptions 5.1 we have

A−(s, u, z) := {y ∈ R | ∂zγ(s, u, z, y) < −1} ⊆ {y ∈ R | Kmaxτ(y) > 1}

For sake of compactness let us define

α(s, u, z, y) := ∂zγ(s, u, z, y)1A+(s,u,z) − (2 + ∂zγ(s, u, z, y))1A−(s,u,z) (A.9)

which trivially verifies

sup
s,u,z
|α(s, u, z, y)| ≤ Kmaxτ(y) + 21{Kmaxτ(y)>1} (A.10)
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Remark that

ν({y ∈ R | Kmaxτ(y) > 1}) ≤K2
max ‖τ‖

2
2,ν (A.11)

If now Vs := leZs−z−(l+1) then our aim is to estimate E
[
V 2
t+hRt+h

]
. Let us denote

∆Vs := Vs − Vs− and ∆Rs := Rs −Rs−

The Itô’s formula yields:

V 2
s Ru =1 +Gs + Is + martingales

dGs :=
(
V 2
s Rs∂zµ+ 2VsRsle

Zs−zµ̃+Rsl
2e2(Zs−z)σ2 + 2Vs

(
leZs−zσRs∂zσ

))
ds

dIs :=

∫
|y|≥1

(
2Vs−Rs−∆Vs + V 2

s−∆Rs
)
ν(dy)ds

+

∫
R

(
∆V 2

s Rs− + ∆V 2
s ∆Rs + 2Vs−∆Vs∆Rs

)
ν(dy)ds

where Gt = It = 0. Elementary estimations yield∣∣∣∣E [∫ t+h

t
dGs

]∣∣∣∣ ≤ Kmax

∫ t+h

t
E
[
V 2
s Rs

]
ds+ l2σ2

max

∫ t+h

t
E
[
e2(Zs−z)Rs

]
ds

+ 2|l| (‖µ̃‖+Kmaxσmax)

∫ t+h

t
E
[
V 2
s Rs

]1/2 E [Rse2(Zs−s)
]1/2

ds

where we used the estimations given in Assumptions 5.1. From Corollaries A.3 and
A.4 we also have E

[
e2(Zs−z)Rs

]
≤ eM(s−t) for some positive M > 0: it follows∣∣∣∣E [∫ t+h

t
dGs

]∣∣∣∣ ≤ Kmax

∫ t+h

t
E
[
V 2
s Rs

]
ds+ l2σ2

maxhϑh

+ 2|l| (‖µ̃‖+Kmaxσmax)

∫ t+h

t
E
[
V 2
s Rs

]1/2
eM(s−t)/2du

For the process I we first have ∆Vs = leZs−−z(eγ − 1) and ∆Rs = Rs−αs where α
is defined in (A.9). It follows∣∣∣∣E [∫ t+h

t
dIs

]∣∣∣∣ ≤ ∫ t+h

t
E

[
V 2
s−Rs−

∫
|y|≥1

|αs|ν(dy)

]
ds

+ 2|l|
∫ t+h

t
E
[
|Vs−|Rs−eZs−−z

∫
R

(|eγ − 1|1{|y|≤1} + |αs−||eγ − 1|)ν(dy)

]
ds

+ |l|2
∫ t+h

t
E
[
e2(Zs−−z)Rs−

∫
R

(eγ − 1)2(1 + |αs−|)ν(dy)

]
ds

Using Assumptions 5.1 and estimations (A.11)–(A.10) we obtain∣∣∣∣E [∫ t+h

t
dIs

]∣∣∣∣ ≤ (Kmax ‖τ‖1,ν + 2K2
max ‖τ‖

2
2,ν

)∫ t+h

t
E
[
V 2
s−Rs−

]
ds

+ 2|l|
(
‖τ‖1,ν + 3Kmax ‖τ‖22,ν

)∫ t+h

t
E
[
V 2
s Rs

]1/2 E [Rs−e2(Zs−−z)
]1/2

ds

+ |l|2
(

3 ‖τ‖22,ν +Kmax ‖τ‖33,ν
)∫ t+h

t
E
[
e2(Zs−−z)Rs−

]
ds
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As for the process G, after simplifications, the above reduces to∣∣∣∣E [∫ t+h

t
dIs

]∣∣∣∣ ≤ (Kmax ‖τ‖1,ν + 2K2
max ‖τ‖

2
2,ν

)∫ t+h

t
E
[
V 2
s−Rs−

]
ds

+ 2|l|
(
‖τ‖1,ν + 3Kmax ‖τ‖22,ν

)∫ t+h

t
E
[
V 2
s Rs

]1/2
eM(s−t)/2ds

+ |l|2
(
σ2
max + 3 ‖τ‖22,ν +Kmax ‖τ‖33,ν

)
hϑh

By adding the above estimation with the one we found for the process G we prove
that

E
[
V 2
t+hRt+h

]
≤ 1 +

(
Kmax +Kmax ‖τ‖1,ν + 2K2

max ‖τ‖
2
2,ν

)∫ t+h

t
E
[
V 2
s Rs

]
ds

+ 2|l|
(
‖µ̃‖+Kmaxσmax + ‖τ‖1,ν + 3Kmax ‖τ‖22,ν

)∫ t+h

t
E
[
V 2
s Rs

]1/2
eM(s−t)/2ds

+ |l|2
(
σ2
max + 3 ‖τ‖22,ν +Kmax ‖τ‖33,ν

)
hϑh

We can simplify the above estimate by using the constants introduced in Corollaries
A.3–A.4: since

Kmax +Kmax ‖τ‖1,ν :=Cdz,3 2K2
max ‖τ‖

2
2,ν ≤ Cdz,2

‖µ̃‖+ ‖τ‖1,ν :=Ce,3 σ2
max + 3 ‖τ‖22,ν ≤

3

2
Ce,2

and

Kmax ‖τ‖33,ν ≤ Kmax

(∫
{y:τ(y)≤1}

τ2(y)ν(dy) +

∫
{y:τ(y)>1}

τ4(y)ν(dy)

)
≤ Kmax

2
Ce,4

we obtain

E
[
V 2
t+hRt+h

]
≤ 1 + (Cdz,3 + Cdz,2)

∫ t+h

t
E
[
V 2
s Rs

]
ds

+ 2|l|
(
Ce,3 +Kmax(σmax + 3 ‖τ‖22,ν)

)∫ t+h

t
E
[
V 2
s Rs

]1/2
eM(s−t)/2ds

+
|l|2

2
(3Ce,2 +KmaxCe,4)hϑh

Also
∫ t+h
t eM(s−t)/2 = h+ o(h) and

√
x ≤ px+ (4p)−1 for any p > 0: it follows then

E
[
V 2
t+hRt+h

]
≤ 1 +

1

2p
|l|
(
Ce,3 +Kmax(σmax + 3 ‖τ‖22,ν)

)
hϑh

+
|l|2

2
(3Ce,2 +KmaxCe,4)hϑh

+

∫ t+h

t

(
Cdz,3 + Cdz,2 + 2p|l|

(
Ce,3 +Kmax(σmax + 3 ‖τ‖22,ν)ϑh

))
E
[
V 2
s Rs

]
ds
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We can finally apply Gronwall’s inequality to deduce

E
[
V 2
t+hRt+h

]
≤ 1 +

1

2p
|l|
(
Ce,3 +Kmax(σmax + 3 ‖τ‖22,ν)

)
hϑh

+
|l|2

2
(3Ce,2 +KmaxCe,4)hϑh

+ (Cdz,3 + Cdz,2)hϑh + 2p|l|
(
Ce,3 +Kmax(σmax + 3 ‖τ‖22,ν)ϑh

)
hϑh

We minimize over p > 0 and find the optimal estimate for p = 1/2, which concludes
our proof.

�



Appendix B

About a cubic ordinary
differential equation

In this part we want to study the following ODE

− L′(t) = Λ + ΨL(t)(L2(t) + 1), L(T ) = 0, t ∈ [0, T ] (B.1)

where Ψ ≥ 0 and Λ ≥ 0 are given constants. We can assume that Λ > 0, otherwise
the solution will be null on [0, T ]. It follows that L is non increasing and then
positive. In particular

L (0) = sup
t∈[0,T ]

L(t)

We are interested in the behavior of L in the neighborhood of zero, and in finding
conditions on Λ and Ψ under which the function L has no explosion at t = 0, i.e.
L(0) < +∞.

Lemma B.1. Let y∗ < 0 be the unique real root of l → Ψl3 + Ψl + Λ and 4 :=√
3(y∗)2 + 4. Define

Q(L) :=
1

2(3(y∗)2 + 1)

[
log

(
(L− y∗)3

L3 + L+ Λ/Ψ

)
− 6y∗

4
arctan

(
2L+ y∗

4

)]
which depends only on the ratio Λ/Ψ. The solution of the ODE in (B.1) is implicitly
given by Q(L(t)) = Ψ(T − t) +Q(0). If we set

T (y∗) := − 1

Ψ

(
3y∗π

2(3(y∗)2 + 1)4
+Q(0)

)
(B.2)

then L (0) < +∞ if and only if T < T (y∗). Moreover T (y∗) → +∞ when Λ → 0
and Ψ remains fixed.

Proof.
Let 0 < λ := Λ/Ψ and q(l) := l3 + l + λ. Since q′ > 0 and q(0) = λ > 0 we
deduce that there exists a unique y∗ < 0 such that q(y∗) = 0 and then q(l) =
(l−y∗)(l2 +y∗l+1+(y∗)2). Finally remark that y∗ only depends on the ratio Λ/Ψ.
One may use Cardano’s formulae to find y∗ exactly.
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The ODE (B.1) can be integrated separately so then, at least formally, we can
write ∫

dL

L3 + L+ λ
= Ψ(ζ − t), for some ζ ∈ R

In particular if Q(l) is a primitive of 1/q then the solution of (B.1) will be given by
Q(L(t)) = Ψ(ζ − t) with ζ such that L(T ) = 0. Elementary computations give us
this primitive Q:

Q(L) =
1

2(3(y∗)2 + 1)

[
log

(
(L− y∗)3

L3 + L+ λ

)
− 6y∗

4
arctan

(
2L+ y∗

4

)]
According to the initial condition L(T ) = 0 we have Q(L(t)) = Q(0) + Ψ(T − t)
where

Q(0) =
1

2(3(y∗)2 + 1)

[
log

(
(y∗)2

1 + (y∗)2

)
− 6y∗

4
arctan

(
y∗

4

)]
≤ 0

since λ = −y∗(1 + (y∗)2). If we can invert this primitive then the solution of ODE
(B.1) is given by L(t) = Q−1 (Ψ(T − t) +Q(0)). But remark that Q′(L) > 0 if
L > 0. Furthermore

lim
L→+∞

Q(L) = − 3y∗π

2(3(y∗)2 + 1)4
It follows then that we can invert the primitive if and only if

Q(0) ≤ Ψ(T − t) +Q(0) ≤ − 3y∗π

2(3(y∗)2 + 1)4

for all t ∈ [0, T ], and this is possible if and only if

T ≤ − 1

Ψ

(
Q(0) +

3y∗π

2(3(y∗)2 + 1)4

)
:= T ∗(y∗)

Remark that since y∗ < 0 and Q(0) ≤ 0 it follows that T ∗(y∗) > 0. In particular if
T < T (y∗) then L(0) = supt L(t) < +∞. To conclude remark that when Λ→ 0 we
have y∗ → 0 and then Q(0)→ −∞ , so T (y∗)→ +∞.

�



Appendix C

Hölder spaces

C.1 Introduction

We give here a complete definition of the functional spaces used in Chapters 6
and 7. We call elliptic those spaces of functions which take values in Rn, whereas
parabolic are those spaces of functions defined in [0, T ]×Rn. The difference between
Hölder spaces of type 1 and type 2 arises in their parabolic version. This distinction
is needed since the natural space in which one has to work is not the same if one
deals with processes leaded by a Brownian motion and a Poisson random measure
(Chapter 6) or only by a Poisson random measure (Chapter 7).

For any l > 0 we define

l =blc+ {l}− where {l}− ∈ [0, 1), blc ∈ N
l =dle+ {l}+ where {l}+ ∈ (0, 1], dle ∈ N

From now on M denotes a positive constant which may change from line to line
and ϕ : Rn → E is a measurable map, where E equipped with ‖ ‖ is a Banach space.
Often E is some Rn or Sn(R), the space of symmetric matrices. For β ∈ (0, 1] we
define

〈ϕ〉(β) := sup
|x−x′|≤1

|ϕ(x)− ϕ(x′)|
|x− x′|β

(C.1)

We start with elliptic Hölder spaces: for a non negative l let Cdle(Rn) denote the
space of differentiable functions on Rn which are continuous together with their
derivative of all order j ≤ dle. On this space define the norm

‖ϕ‖l,e :=

dle∑
j=0

∑
(j)

∥∥Dj
xϕ
∥∥
∞ +

∑
(dle)

〈Ddlex ϕ〉({l}+) (C.2)

The elliptic Hölder space of order l is defined as the subset of Cdle(Rn) of functions
with finite norm:

H l
e(Rn) := Cdle(Rn) ∩

{
‖ϕ‖l,e <∞

}
We make the convention that H0

e (Rn) = L∞m (Rn), the space of bounded and mea-
surable functions. Equipped with the above norm they all are Banach spaces.
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C.2 Parabolic Hölder spaces of type 1

In this paragraph we (shortly) describe the parabolic Hölder spaces used in
Chapter 6. For a complete review see for example Chapter I in Ladyzenskaja et al.
(1967). Let QT := (0, T ) × Rn and Q̄T its closure. For ϕ : [0, T ] × Rn → E and
β ∈ (0, 1) we define

〈ϕ〉(β)
x,QT

:= sup
t≤T,x,x′:|x−x′|≤1

|ϕ(t, x)− ϕ(t, x′)|
|x− x′|β

〈ϕ〉(β)
t,QT

:= sup
x∈Rn,t,t′:|t−t′|≤1

|ϕ(t, x)− ϕ(t′, x)|
|t− t′|β

Let l be a positive non integer real number: l ∈ R+ \ N∗ and Cbl/2c,blc(Rn) denote
the space of continuously differentiable functions on QT which are continuous up the
boundary together with their mixed derivative of the form Dr

tD
s
x for all 2r+s ≤ blc.

On this functional space we introduce the following norm

‖ϕ‖l/2,l :=

blc∑
j=0

∑
2r+s=j

‖Dr
tD

s
xϕ‖∞ + 〈ϕ〉(l)QT (C.3)

〈ϕ〉(l)QT =〈ϕ〉(l)x,QT + 〈ϕ〉(l/2)
t,QT

〈ϕ〉(l)x,QT =
∑

2r+s=blc

〈Dr
tD

s
xϕ〉
{l}−
x,QT

, 〈ϕ〉(l/2)
t,QT

=
∑

0<l−2r−s<2

〈Dr
tD

s
xϕ〉

(l−2r−s)/2
x,QT

The parabolic Hölder space of type 1 is then defined as

C l/2,l([0, T ]× Rn) := Cbl/2c,blc(Rn) ∩
{
‖ϕ‖l/2,l <∞

}
and it is a Banach space. There are is no ambiguity to call it C l/2,l([0, T ] × Rn)
since l is always non integer and we can then distinguish it from Cbl/2c,blc(Rn).

We list here the parabolic Hölder spaces of type 1 which are used in Chapter 6
with their relative norm. For β ∈ (0, 1):
Parabolic Hölder space of order β: Cβ/2,β([0, T ]×Rn). For ϕ ∈ C0([0, T ]×Rn):

‖ϕ‖β/2,β := ‖ϕ‖∞ + 〈ϕ〉(β)
x,QT

+ 〈ϕ〉(β/2)
t,QT

Parabolic Hölder space of order 1 + β: C(1+β)/2,1+β([0, T ] × Rn). For ϕ ∈
C0,1([0, T ]× Rn):

‖ϕ‖(1+β)/2,1+β := ‖ϕ‖∞ + ‖Dxϕ‖∞ + 〈ϕ〉(1+β)/2
t,QT

+ 〈Dxϕ〉(β)
x,QT

+ 〈Dxϕ〉(β/2)
t,QT

Parabolic Hölder space of order 2 + β: C1+β/2,2+β([0, T ] × Rn). For ϕ ∈
C1,2([0, T ]× Rn)

‖ϕ‖1+β/2,2+β := ‖ϕ‖∞ + ‖Dxϕ‖∞ +
∥∥D2

xϕ
∥∥
∞ + ‖Dtϕ‖∞ + 〈Dxϕ〉(1+β)/2

t,QT

+〈Dtϕ〉(β)
x,QT

+ 〈Dtϕ〉(β/2)
t,QT

+ 〈D2
xϕ〉

(β)
x,QT

+ 〈D2
xϕ〉

(β/2)
t,QT

We now prove an important property involving the norms defined above. Let
us start with this useful result:
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Lemma C.1. If p ∈ (0, 1) and a, b > 0 then

apb1−p ≤ 1

M(p)

(
εa+

1

εp∗
b

)
for all ε > 0.

where p∗ = p
1−p and M(p) =

(
p

1−p

)1−p
+
(

1−p
p

)p
Proof.

The result can be obtained by minimizing the function ε→ 1
M(p)

(
εa+ 1

εp∗
b
)

.

�

We can now prove the following:

Proposition C.2. Let l, υ ∈ (0, 2) with l < υ and l, υ 6= 1. There exists a constant
M > 0 only depending on β, n, υ and T such that

‖ϕ‖(1+l)/2,1+l ≤



M
(
ε(υ−l)/2 ‖ϕ‖(1+υ)/2,1+υ + ε−(1+l) ‖ϕ‖∞

)
if l < υ < 1

M
(
ε(1−l)/2 ‖ϕ‖(1+υ)/2,1+υ + ε−(1+l) ‖ϕ‖∞

)
if l < 1 < υ

M
(
ε(υ−l)/2 ‖ϕ‖(1+υ)/2,1+υ + ε−(2+l) ‖ϕ‖∞

)
if 1 < l < υ

for all ϕ ∈ C(1+υ)/2,1+υ([0, T ]× Rn) and all ε ∈ (0, 1).

Proof.
To lighten our computations we will write ‖ ‖l := ‖ ‖l/2,l when there is no need to
highlight both the subscripts.

Take ε ∈ (0, 1) and denote with M a positive constant which may change from
line to line and that only depends on l, υ, n and T but not on ϕ or ε.

We distinguish several cases:
Case l, υ ∈ (0, 1). In this case we have

‖ϕ‖(1+l)/2,1+l := ‖ϕ‖∞ + ‖Dxϕ‖∞ + 〈ϕ〉(1+l)/2
t,QT

+ 〈Dxϕ〉(l)x,QT + 〈Dxϕ〉(l/2)
t,QT

Form Lemma C.1 with p = 1/2 we obtain

‖ϕ‖∞ ≤ ‖ϕ‖
1/2
∞ ‖ϕ‖

1/2
υ ≤M

(
ε ‖ϕ‖1+υ + ε−1 ‖ϕ‖∞

)
(C.4)

Also

〈ϕ〉((1+l)/2)
t,QT

= sup
x∈Rn

sup
|t−t′|≤1

|ϕ(t, x)− ϕ(t′, x)|
|t− t′|(1+l)/2

≤ sup
x∈Rn

sup
|t−t′|≤ε

|ϕ(t, x)− ϕ(t′, x)|
|t− t′|(1+υ)/2

|t− t′|(υ−l)/2 + sup
x∈Rn

sup
ε<|t−t′|≤1

|ϕ(t, x)− ϕ(t′, x)|
|t− t′|(1+l)/2

≤ε(υ−l)/2 ‖ϕ‖1+υ + ε−(1+l)/2 ‖ϕ‖∞ (C.5)
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Let now

4j [ε, ϕ](t, x) :=
ϕ(t, x+ εej)− ϕ(t, x)

ε
, 4[ε, ϕ](t, x) =

(
4j [ε, ϕ](t, x)

)
j≤n

where ej is the j−th element of the canonical base of Rn. It follows, for some
y ∈ [0, 1]n,

|Dxϕ(t, x)| ≤ |Dxϕ(t, x)−4[ε, ϕ](t, x)|+ |4[ε, ϕ](t, x)|
≤ |Dxϕ(t, x)−Dxϕ(t, x+ yε))|+ |4[ε, ϕ](t, x)|
≤ευ ‖ϕ‖1+υ + ε−1 ‖ϕ‖∞

By taking the supremum over (t, x) ∈ QT

‖Dxϕ‖∞ ≤M
(
ευ ‖ϕ‖1+υ + ε−1 ‖ϕ‖∞

)
(C.6)

For 〈Dxϕ〉(l)x,QT and 〈Dxϕ〉(l/2)
x,QT

we can proceed as in (C.5)

〈Dxϕ〉(l)x,QT ≤ε
υ−l ‖ϕ‖1+υ + ε−l ‖Dxϕ‖∞ ≤M

(
ευ−l ‖ϕ‖1+υ + ε−(l+1) ‖ϕ‖∞

)
〈Dxϕ〉(l/2)

t,QT
≤ε(υ−l)/2 ‖ϕ‖1+υ + ε−l/2 ‖Dxϕ‖∞ ≤M

(
ε(υ−l)/2 ‖ϕ‖1+υ + ε−1−l/2 ‖ϕ‖∞

)
where we used (C.6) in the last inequalities. By adding up the above estimations
together with (C.4)–(C.5) and (C.6) we obtain

‖ϕ‖(1+l)/2,1+l ≤M
(
ε(υ−l)/2 ‖ϕ‖1+υ + ε−(1+l) ‖ϕ‖∞

)
Case l < 1 < υ. In this case the function ϕ is twice differentiable w.r.t. x and once
w.r.t. t: we can use the same methods by modifying the exponents of ε. For (C.5)
we shall have

〈ϕ〉((1+l)/2)
t,QT

≤ ε(1−l)/2 ‖ϕ‖1+υ + ε−(1+l)/2 ‖ϕ‖∞

and (C.6) becomes

‖Dxϕ‖∞ ≤M
(
ε ‖ϕ‖1+υ + ε−1 ‖ϕ‖∞

)
whereas the estimations for 〈Dϕ〉 are modified into

〈Dxϕ〉(l)x,QT ≤M
(
ε1−l ‖ϕ‖1+υ + ε−(l+1) ‖ϕ‖∞

)
〈Dxϕ〉(l/2)

t,QT
≤M

(
ε(1−l)/2 ‖ϕ‖1+υ + ε−(1+l/2) ‖Dxϕ‖∞

)
so in conclusion

‖ϕ‖(1+l)/2,1+l ≤M
(
ε(1−l)/2 ‖ϕ‖1+υ + ε−(1+l) ‖ϕ‖∞

)
Case l ∈ (1, 2). Let r = l − 1 and u = υ − 1. From the definition of the Hölder
norm of order 1 + l > 2 we have

‖ϕ‖(1+l)/2,1+l = ‖ϕ‖r/2+1,r+2

= ‖ϕ‖∞ + ‖Dtϕ‖∞ + 〈Dtϕ〉(l−1)
x,QT

+ 〈Dtϕ〉((l−1)/2)
t,QT

+ ‖Dxϕ‖(1+r)/2+1,r+1
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Remark first that (C.4) still holds true and also

‖Dxϕ‖∞ ≤M
(
ε ‖ϕ‖1+υ + ε−1 ‖ϕ‖∞

)
As we did for the derivative w.r.t. x in the previous cases

‖Dtϕ‖∞ ≤M
(
ευ−1 ‖ϕ‖1+υ + ε−1 ‖ϕ‖∞

)
〈Dtϕ〉〉(l−1)

x,QT
≤M

(
ευ−l ‖ϕ‖1+υ + ε1−l ‖Dϕ‖∞

)
≤M

(
(ευ−l + ε2−l) ‖ϕ‖1+υ + ε−l ‖ϕ‖∞

)
〈Dtϕ〉〉((l−1)/2)

t,QT
≤M

(
ε(υ−l)/2 ‖ϕ‖1+υ + ε(1−l)/2 ‖Dϕ‖∞

)
≤M

(
(ε(υ−l)/2 + ε(3−l)/2) ‖ϕ‖1+υ + ε−(1+l)/2 ‖Dϕ‖∞

)
where we used the estimation given above on ‖Dxϕ‖∞. For the last estimation we
can use the result given in the first case:

‖Dϕ‖(1+r)/2+1,r+1 ≤M
(
ε(u−r)/2 ‖Dϕ‖1+u + ε−(1+r) ‖Dϕ‖∞

)
= M

(
ε(υ−l)/2 ‖ϕ‖1+υ + ε−l ‖Dϕ‖∞

)
If we use the estimation on ‖Dxϕ‖∞ with ε2 we obtain

‖Dϕ‖(1+r)/2+1,r+1 ≤M
(

(ε(υ−l)/2 + ε2−l) ‖ϕ‖1+υ + ε−(2+l) ‖ϕ‖∞
)

We can sum up the above estimation to get

‖ϕ‖(1+l)/2,1+l ≤M
(
ε(υ−l)/2 ‖ϕ‖1+υ + ε−(2+l) ‖ϕ‖∞

)
which concludes our proof.

�

C.3 Parabolic Hölder spaces of type 2

We now define parabolic Hölder spaces of type 2 on QT := (0, T ) × Rn: for
l > 0 let C0,dle(Rn) be the space of functions on QT which are continuous up the
boundary together with their derivative in the space variable Dj

x of all order j ≤ dle
and measurable w.r.t. t. On this space define the norm

‖ϕ‖l,H :=

dle∑
j=0

∑
(j)

∥∥Dj
xϕ
∥∥
∞ +

∑
(dle)

〈Ddlex ϕ〉({l}
+)

x,QT
(C.7)

The parabolic Hölder space of order l is then defined as

H l([0, T ]× Rn) := C0,dle(Rn) ∩
{
‖ϕ‖l,H <∞

}
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We also define H0([0, T ] × Rn) as the space of bounded and measurable functions
on [0, T ] × Rn. These spaces are all Banach spaces equipped with their respective
norms. For more details see for example Triebel (1992); Gilbarg and Trudinger
(2001); Adams and Fournier (2009). In the literature these are also called Hölder-
Zygmund spaces.

Remark that H l([0, T ]×Rn) = L∞m ([0, T ]→ H l
e(Rn)), the space of bounded and

measurable functions taking values in the elliptic Hölder spaceH l
e(Rn). Furthermore

in this definition we do not impose any condition on the regularity of t but the
measurability with respect to the Borel sets of [0, T ], which guarantees that we can
always write

∫
ϕ(t, x)dt.

Finally remark also that the parabolic Hölder space of type 1 is only defined for
non integer positive l whereas the one of type 2 is defined for any positive l.

We give here the analogous of Proposition C.2:

Proposition C.3. Let β, υ ∈ [0, 2), β < υ. There exists a constant M > 0 only
depending on β, υ, n and T such that for all ϕ ∈ H1+υ([0, T ]×Rn) and all 0 < ε < 1

‖ϕ‖β,H ≤


M
(
ε1−β ‖ϕ‖υ,H + ε−1 ‖ϕ‖∞

)
if β < 1 < υ

M
(
ευ−β ‖ϕ‖υ,H + ε−max(β,1) ‖ϕ‖∞

)
otherwise

Proof.
We can use the same ideas as in the proof of Proposition (C.2). From Lemma C.1
we deduce

‖ϕ‖∞ ≤ ‖ϕ‖
1/2
∞ ‖ϕ‖

1/2
υ,H ≤M

(
ε ‖ϕ‖υ,H + ε−1 ‖ϕ‖∞

)
(C.8)

If β < 1 then

sup
t,z,0<|h|≤1

|ϕ(t, z + h)− ϕ(t, z)|
|h|β

≤ sup
t,z,0<|h|≤ε

|ϕ(t, z + h)− ϕ(t, z)|
|h|β

+ sup
t,z,ε<|h|≤1

|ϕ(t, z + h)− ϕ(t, z)|
|h|β

≤M

(
εmin(υ,1)−β sup

t,0<|h|≤1

|ϕ(t, z + h)− ϕ(t, z)|
|h|min(υ,1)

+ ε−β ‖ϕ‖∞

)
≤M

(
εmin(υ,1)−β ‖ϕ‖υ,H + ε−β ‖ϕ‖∞

)
Using the above estimation and (C.8) we obtain

‖ϕ‖β,H ≤M
(
εmin(υ,1)−β ‖ϕ‖υ,H + ε−1 ‖ϕ‖∞

)
If β = 1 we can estimate ‖Dϕ‖∞ since υ > 1: we can use the same technique as in
the proof of Proposition C.2 to get

‖Dϕ‖∞ ≤M
(
ε{υ}

+ ‖ϕ‖υ,H + ε−1 ‖ϕ‖∞
)
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and then again

‖ϕ‖1,H ≤M
(
ευ−1 ‖ϕ‖υ,H + ε−1 ‖ϕ‖∞

)
since {υ}+ = υ − 1. Finally if β > 1 we can repeat the argument as in the case
β < 1:

〈Dϕ〉(β−1)
z,QT

≤M
(
ευ−β ‖ϕ‖υ,H + ε1−β ‖Dϕ‖∞

)
≤M

(
ευ−β ‖ϕ‖υ,H + ε−β ‖ϕ‖∞

)
by using the estimation on ‖Dϕ‖∞ so then

‖ϕ‖β,H ≤M
(
ευ−β ‖ϕ‖υ,H + ε−β ‖ϕ‖∞

)
which concludes our proof.

�





Appendix D

Itô’s formula for pure jump
processes

In the proof of Theorem 5.11–5.14, we used Itô’s formula for continuously differ-
entiable functions, when (U,Z, P ) is a pure jump process. In Theorem 32, Chapter
II of Protter (2004), the Itô’s formula is stated for twice continuously differentiable
functions:

f(Xt)− f(X0) =

∫ t

0+
f ′(Xs−)dXs +

1

2

∫ t

0+
f ′′(Xs−)d[X,X]cs

+
∑

0<s≤t

(
f(Xs)− f(Xs−)−∆Xsf

′(Xs−)
)

where f ∈ C2, X is a real valued semimartingale and [X,X]c is the continuous part of
its quadratic variation. The purpose of this appendix is to prove the above formula
under weaker assumptions when the semimartingale X is a pure jump process.

Theorem D.1. Let X be a Rn-valued semimartingale for which there exists η ∈
(1, 2) verifying ∑

0<s≤t:|∆Xs|≤1

|∆Xs|η <∞, a.s.

Let also f : [0, t] × Rn → R be a continuously differentiable function whose partial
derivative ∂xf satisfies the Hölder condition

sup
t≤T

sup
|x−y|≤1

|∂xf(t, x)− ∂xf(t, y)|
|x− y|η−1+δ

<∞

for δ > 0. Then the following formula holds:

f(t,Xt)− f(0, X0) =

∫ t

0
∂tf(s,Xs)ds+

∫ t

0+
∂xf(s,Xs−)dXs

+
∑

0<s≤t
(f(s,Xs)− f(s,Xs−)−∆Xs∂xf(s,Xs−))

Proof.
We follow the proof of Theorem 32, Chapter II in Protter (2004). For sake of

219
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simplicity, we assume that f does not depend on t. Define

T := {s ∈ (0, t] |∆Xs 6= 0}

the set of the jump times of X. For given 0 < ε < 1 let also A(ε, ω) and B(ε, ω) be
two subsets of T verifying

1)A ∪B = T 2)
∑
s∈B(ε)

|∆Xs|η+δ′ ≤ ε 3)A is finite

where 0 < δ′ < δ. Remark in particular that all the jump times corresponding to
the big jumps (|∆Xs| > 1) belong to A. For a partition 0 = Tn0 ≤ · · · ≤ Tnn = t
verifying supi |Tni − Tni−1| → 0 a.s. when n→∞, we can write

f(Xt)− f(X0) =
∑
i

(
f(XTni+T

)− f(XTni
)
)

=
∑
i,A(ε)

(
f(XTni+T

)− f(XTni
)
)

+
∑
i,B(ε)

(
f(XTni+T

)− f(XTni
)
)

where
∑

i,A stands for the summation over times Tni such that A(ε)∩(Tni , T
n
i+1] 6= ∅.

Since A is almost surely finite we deduce

lim
n→∞

∑
i,A(ε)

(
f(XTni+T

)− f(XTni
)
)

=
∑
s∈A(ε)

(f(Xs)− f(Xs−)) , a.s.

For the summation over the jumps in B, we need a non standard Taylor expansion
of f :

f(y) = f(x) + ∂xf(x)(y − x) +R(x, y)

where

R(y, x) = (y − x)′
∫ 1

0
(∂xf(x+ θ(y − x))− ∂xf(x)) dθ

Since ∂xf is locally Hölder , then for |y − x| ≤ 1

|R(x, y)| ≤M |x− y|η+δ = Mr(|y − x|)|x− y|η+δ′

for some positive constant M, where r(u) = uδ−δ
′
. It follows∑

i,B(ε)

(
f(XTni+T

)− f(XTni
)
)

=
∑
i

∂xf(XTni
)
(
XTni+T

−XTni

)
−
∑
i,A(ε)

∂xf(XTni
)
(
XTni+T

−XTni

)
+
∑
i,B(ε)

R
(
XTni+T

, XTni

)
By letting n→∞ we obtain∑

i

∂xf(XTni
)
(
XTni+T

−XTni

)
→
∫ t

0+
∂xf(Xs−)dXs, a.s∑

i,A(ε)

∂xf(XTni
)
(
XTni+T

−XTni

)
→

∑
s∈A(ε)

∂xf(Xs−)∆Xs, a.s.
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whereas, from the estimate on the function R and the definition of the set B

lim sup
n→∞

∑
i,B(ε)

R
(
XTni+T

, XTni

)
≤M ′r(ε)

for some positive constant M ′. By adding up all the above terms we deduce that,
for any ε > 0,

f(Xt)− f(X0) =

∫ t

0+
∂xf(s,Xs−)dXs +

∑
s∈A(ε)

(f(Xs)− f(Xs−)−∆Xs∂xf(Xs−)) +M ′r(ε)

The last thing we need to control is the convergence of the right hand side when
ε→ 0. The function r goes to zero since δ > δ′, so the only thing we need to check
is the convergence of the above series. Since∣∣∣∣∣∣

∑
0<s≤t

(f(Xs)− f(Xs−)−∆Xs∂xf(Xs−))−
∑
s∈A(ε)

(f(Xs)− f(Xs−)−∆Xs∂xf(Xs−))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
s∈B(ε)

(f(Xs)− f(Xs−)−∆Xs∂xf(Xs−))

∣∣∣∣∣∣ ≤M
∑
s∈B(ε)

|∆Xs|η+δ′ ≤ ε

then∑
i,A(ε)

(f(Xs)− f(Xs−)−∆Xs∂xf(Xs−))
ε→0→

∑
0<s≤t

(f(Xs)− f(Xs−)−∆Xs∂xf(Xs−))

and the proof is complete if we prove that the above series is absolutely convergent.
As pointed our in Theorem 32, Chapter II of Protter (2004), it suffices to prove the
convergence for the semimartingale X1Vk , where

Vk := inf{s > 0, |Xs| ≥ k}, k > 0

We can then assume that the semimartingale X takes values in a compact set of
Rn. Since f ′ is bounded on compact sets we deduce∑

0<s≤t
|f(Xs)− f(Xs−)−∆Xs∂xf(Xs−)|

≤M

 ∑
0<s≤t, |∆Xs|≤1

|∆Xs|η+δ +
∑

0<s≤t, |∆Xs|>1

|∆Xs|

 <∞

which concludes the proof.

�

As a consequence of the above theorem, we can prove the Feynman-Kac formula for
pure jump processes:
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Corollary D.2. Let µ, γ and ν(dy) verify the Assumptions 5.1-[C, I1] and Assump-
tion 7.6-[L, I]. Assume that ϕ ∈ Hα+δ([0, T ]× Rn) is the unique solution of

− ∂ϕ

∂t
− µ∂xϕ−

∫
(ϕ(t, x+ γ)− ϕ(t, x)− γ∂xϕ(t, x)) ν(dy) = F

ϕ(T, .) = G(.) (D.1)

where F ∈ Hδ([0, T ]× Rn) and G ∈ Hα+δ([0, T ]× Rn). Then

ϕ(t, x) = E
[
G
(
Xt,x
T

)
+

∫ T

t
F
(
s,Xt,x

s

)
ds

]
(D.2)

where

Xt,x
s = x+

∫ s

t
µ(r,Xt,x

r )dr +

∫ s

t

∫
R
γ(t,Xt,x

r−, y)J̃(dydr)

Remark D.3. The above corollary can be stated under mild assumptions: in par-
ticular one can allow non smooth terminal condition G, or unbounded coefficients
µ of γ, provided that they are Lipschitz continuous.

Proof.
Let ψ denote the right hand side of (D.2). The Markov property of the process X
yields

ψ(t, x) = E
[∫ t+h

t
F
(
s,Xt,x

s

)
ds+ ψ

(
t+ h,Xt,x

t+h

)]
for h > 0. As in the proof of Theorem 6.8, we can prove that ψ is the unique
viscosity solution of PIDE (D.1). From the uniqueness of the solution of PIDE
(D.1), we deduce that ψ = ϕ, and then (D.2) holds true.

�



Appendix E

Density of an α-stable Lévy
process

In this appendix we want to give some estimations on the density of the Lévy
process associated to the operator introduced in (7.16). Let us recall its definition:

Bstt ϕ(z) :=

∫
R

(
ϕ(t, z + y)− ϕ(t, z)− y∂ϕ

∂z
(t, z)1{|y|≤1}

)
νst(y)dy

where

νst(y) :=
g(0+)

|y|1+α
1{0<y} +

g(0−)

|y|1+α
1{y<0}

This is the differential operator corresponding to the Lévy process dLt :=
∫
yJ̄α(dydt),

where Jα is a Poisson random measure whose Lévy measure is given by νst(dy),
α ∈ (1, 2). The characteristic triplet of L is given by (0, νst, c), c :=

∫
|y|>1 yν

st(dy).

It follows that its characteristic function is Φt(w) := E [exp(iwLt)] := exp(tl(w))
and it is a well known result that

l(w) = −σα|w|α
(

1− iβsign(ω) tan
πα

2
+ icω

)
(E.1)

where

σ :=
[
−
(
g(0+) + g(0−)

)
Γ(−α) cos

(πα
2

)]1/α

β :=
g(0+)− g(0−)

g(0+) + g(0−)

See for example Proposition 28.3 in Sato (1999) or Section 3.7 in Cont and Tankov
(2004). It follows that the process L has a infinitely differentiable density which can
be expressed in terms of inverse Fourier transform of its characteristic functions:

mt(ξ) :=
1

2π

∫
e−iξwΦt(w)dw (E.2)

The objective of this appendix is to prove the following:
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Lemma E.1. Let mt(ξ), t ∈ (0, T ], be the density of a Lévy process L with char-
acteristic triplet (0, νst, c) where α ∈ (1, 2).There exists positive constant M =
M(α, T ) > 0, only depending on α, T and the characteristics of the Lévy process
such that ∫

R

∣∣∣Dk
ξmt(ξ)

∣∣∣ dξ ≤Mt−
k
α

and ∫
R

∣∣∣∣∂m∂t (t, ξ)

∣∣∣∣ dξ ≤Mt−
2
α

Proof.
In this proof M represents some positive constant only depending on T, α, k and the
characteristics of the Lévy process. It may change from line to line. By changing
the variable we can write∫

R

∣∣∣Dk
ξmt(ξ)

∣∣∣ dξ = t−
k
α

∫
R
t
k+1
α

∣∣∣Dk
ξmt(ξt

1
α )
∣∣∣ dξ (E.3)

Our goal is to prove that
∫
R t

k+1
α

∣∣∣Dk
ξmt(ξt

1
α )
∣∣∣ dξ is bounded uniformly in t. Cauchy-

Schwarz inequality yields∫
R
t
k+1
α

∣∣∣Dk
ξmt(ξt

1
α )
∣∣∣ dξ ≤(∫

R

1

1 + ξ2
dξ

)1/2(∫
R

(1 + ξ2)t
2(k+1)
α |Dk

ξmt(ξt
1
α )|2dξ

)1/2

≤M
(∫

R
(1 + ξ2)t

2(k+1)
α |Dk

ξmt(ξt
1
α )|2dξ

)1/2

Also

Dk
ξmt(ξt

1
α ) =

(−i)k

2π

∫
R
wke−iwξt

1
α Φt(w)dw = t−

k+1
α

(−i)k

2π

∫
R
wke−iwξΦt(wt

− 1
α )dw

where Φ is the Fourier transform of L: the k−th derivative of mt is simply the

Fourier transform of the function w → t−
k+1
α (−i)kwkΦt(wt

− 1
α ). Standard properties

of the Fourier transform yield∫
R
t
k+1
α

∣∣∣Dk
ξmt(ξt

1
α )
∣∣∣ dξ

≤M
(∫

R
(1 + ξ2)t

2(k+1)
α |Dk

ξmt(ξt
1
α )|2dξ

)1/2

≤Mt
(k+1)
α

(∫
R

(
t−2 k+1

α |ξkΦt(ξt
− 1
α )|2 + t−2 k+1

α | d
dξ

(ξkΦt(ξt
− 1
α ))|2

)
dξ

)1/2

≤M
(∫

R

(
|ξkΦt(ξt

− 1
α )|2 + | d

dξ
(ξkΦt(ξt

− 1
α ))|2

)
dξ

)1/2

(E.4)

If we prove that the above is bounded then we are done. From (E.1) it follows(∫
|ξkΦt(t

− 1
α ξ)|2

)1/2

=

(∫
|ξ|2ke−2σα|ξ|α

)1/2

≤M (E.5)
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For the second term, we first remark that

ξkΦt(ξt
− 1
α ) = ξk exp

(
−σα|ξ|α

(
1− iβ tan(

απ

2
)sign(ξ)

)
+ ict1−1/αξ

)
from which we deduce

| d
dξ

(ξkΦt(ξt
− 1
α ))| ≤M

(
1 + ξk

)
exp (−σα|ξ|α)

so then (∫
| d
dξ

(ξkΦt(ξt
− 1
α ))|2dξ

)1/2

≤M

since 1 < α < 2. We use the above estimations and (E.5) in (E.4) to prove the first
part of the Lemma.

For the second part, we can remark that the density function of the Lévy process
Lt,ls , ξ → m(s− t, ξ − l), verifies

∂m

∂t
(s− t, ξ − l)

+

∫ (
m(s− t, ξ − l − y)−m(s− t, ξ − l)− y∂m

∂ξ
(s− t, ξ − l)1{|y|≤1}

)
νst(dy) = 0,

m(0, ξ) = δl(ξ)

where δl(ξ) is the Dirac mass at the point l. It follows∣∣∣∣∂m∂t (t, ξ − l)
∣∣∣∣ ≤1

2

∫
|y|≤1

|y|2
∫ 1

0
dθ

∣∣∣∣∂2m

∂ξ2
(t, ξ − l − θy)

∣∣∣∣ νst(dy)

+

∫
|y|>1

|m(t, ξ − l − y)−m(t, ξ − l)| νst(dy)

We now integrate over ξ, and by using the previous estimate, we obtain∫
R

∣∣∣∣∂m∂t (t, ξ)

∣∣∣∣ dξ ≤Mt−
2
α

�





Notations

(Ω, F , P) Probability space
ω ∈ Ω Scenario of randomness
P, Q (eventually signed) probability measures
Q� P Q is absolutely continuous with respect to P
EP Expectation operator under P
Lp(E, µ), p ≥ 1 The Banach space of p-integrable functions on E

with respect to µ
δx(dy) The Dirac distribution with mass at x
Wt, Bt Standard Brownian motions
(J, ν(dy)), (N, νn(dy)) Poisson random measures and their Lévy measures
L(S) The space of integrands with respect to the semi-

martingale S
Ck(Rn) The space of R-valued continuously differentiable

functions up to the order m ≤ k taking values in
Rn.

Ch,k([0, T ]× Rn) The space of R-valued functions which are contin-
uously differentiable in the space variable up to
the order m ≤ k and in the time variable up to
the order m ≤ h, taking values in [0, T ]× Rn.

H l
e(Rn) The elliptic Hölder space of order l ∈ R+

C l/2,l([0, T ]× Rn), l ∈ R+ \ {N} The parabolic Hölder space of type 1 of order l
H l([0, T ]× Rn) The parabolic Hölder space of type 2 of order l
Dtϕ or ∂ϕ/∂t The derivative w.r.t. t for ϕ : [0, T ]× Rn → R.

D
|k|
x ϕ, ∂

|k|
x ϕ or ∂|k|ϕ/∂x|k| For a multi index k ∈ Nn, |k| = k1 + · · ·+ kn and

ϕ : [0, T ]× Rn → R D
|k|
x ϕ = ∂|k|ϕ/∂xk1 · · · ∂xkn

Sn(R) The space of real valued semi-definite positive
symmetric matrices

ϑh For h ≥ 0 it defines a positive locally bounded
function such that ϑh → 1 when h→ 0

For any l ≥ 0 l = blc+ {l}− where {l}− ∈ [0, 1) and blc ∈ N
For any l ≥ 0 l = dle+ {l}+ where {l}+ ∈ (0, 1] and dle ∈ N

227





Index

Acceptance set, 33
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G-divergence, 37, 61
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Linear PDE fundamental solution, 106
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Portfolio insurance, 40, 63
Pure investment problem, 69, 73, 74, 124,

147, 179

Quadratic hedge, 68

Risk measures, 31, 41
spectral, 35
coherent, 33
continuous from above, 34

continuous from below, 34
convex, 33
law invariant, 32, 40
minimal penalty function, 34, 45, 51
on Lp spaces, 38
representation, 33
spectral, 36, 56

Sobolev space, 116

Utility-based hedging, 68
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Viscosity solution, 96, 140, 150, 183, 191
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