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Stephan TEUFEL Universität Tübingen Rapporteur





“Wenn jemand sucht,” sagte Siddhartha, “dann geschieht es leicht,

daß sein Auge nur noch das Ding sieht, das er sucht, daß er nichts

zu finden, nichts in sich einzulassen vermag, weil er nur immer an das

Gesuchte denkt, weil er ein Ziel hat, weil er vom Ziel besessen ist.

Suchen heißt: ein Ziel haben. Finden aber heißt: frei sein, offen stehen,

kein Ziel haben.”

“When someone is searching,” said Siddhartha, “then it might eas-

ily happen that the only thing his eyes still see is that what he searches

for, that he is unable to find anything, to let anything enter his mind,

because he always thinks of nothing but the object of his search, be-

cause he has a goal, because he is obsessed by the goal. Searching

means: having a goal. But finding means: being free, being open, hav-

ing no goal.”

Hermann Hesse, Siddhartha
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qui rendent mon activité possible. Le CERMICS, et l’Ecole des Ponts de manière générale, est un

endroit merveilleux pour moi au quotidien, tant par la qualité des locaux, des équipements et du
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Molecular simulation aims at understanding and predicting the macroscopic properties of mat-

ter from models at the microscopic scale. My scientific activity in this broad field can be decom-

posed depending on the physical framework: classical statistical physics on the one hand, and

quantum physics on the other.

• My works in statistical physics can further be classified into two categories: the computation

of equilibrium properties (Section 1.1) and the study of nonequilibrium systems (Section 1.2).

In both cases, these studies are often performed with nonequilibrium or nonlinear dynamics,

the distinction arising from the fact that the stationary state of the dynamics is either an

equilibrium one (possibly upon an appropriate correction) or a nonequilibrium one.

• Section 1.3 presents some results for time dependent dynamics in quantum physics.

Publications from works done or substantially initiated during my PhD are referred to as [Pxx],

while the subsequent contributions are listed as [Hxx] (see the bibliography in Section 1.4).

1.1 (Non)Equilibrium methods to compute equilibrium properties

The theoretical and numerical analysis of some nonequilibrium dynamics to compute efficiently

equilibrium properties is presented Chapter 2. This research path was initiated during my PhD

work [P8], with an emphasis on free energy computations [P2, P6, P9, P10, P12]

With M. Rousset and T. Lelièvre, we wrote a book summarizing our current understanding

of the available techniques to compute free energy differences [B1]. In the past years, I studied

in particular equilibrium or nonequilibrium constrained Langevin dynamics [H29] and nonlinear

techniques where the free energy is updated depending on the current state of the system [H21].

I also considered an application of free energy methods to Bayesian statistics, where there is no

physical intuition about the choice of the parameter indexing the transition [H27]; and in condensed

matter physics to discuss the isentropic character of release waves [H17].

Motivated by a concrete application, namely the computation of Hugoniot curves (a question

asked by my colleagues at CEA-DAM), I also proposed a method to sample configurations satis-

fying a constraint in average [H15]. This method was then successfully applied for computations

of properties of real materials in [H23].
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1.2 Nonequilibrium systems and transport properties

Chapter 3 is devoted to nonequilibrium systems in a steady state. During my PhD, I proposed

reduced models to compute shock and detonation waves [P1, P5, P11]. Recently, this model was

applied to systems more realistic than the ones I studied [H25].

In the past years, I turned to the numerical computation of transport properties (thermal con-

ductivity, shear viscosity, ...), with an emphasis on nonequilibrium molecular dynamics techniques.

This research path was initiated during my post-doctoral work at IMPMC. Most of my contri-

butions in this field focus on the thermal conductivity of one dimensional systems, perturbed in

various ways: stochastic noises preserving some invariants of the system [H22, H28], atoms with

random masses [H16, H18], mechanical forcings applied at the boundary of the system [H24].

In the framework of the PhD work of R. Joubaud, I also studied the computation of the shear

viscosity [H26].

1.3 Time-dependent problems in quantum physics

The common denominator in the contributions summarized in Chapter 4 are the time dependence

of the quantum models I have considered. The part of my PhD work concerned with quantum

theory was focused on methods for finding the ground-state of molecular systems in quantum

chemistry [P3, P4, P7, P13]. My interests shifted towards models of quantum physics during my

post-doctoral work at IMPMC.

In a series of papers with Ch. Brouder and G. Panati, we studied the Gell-Mann and Low

technique, which provides a way to compute eigenstates of a perturbed Hamiltonian H0 + V from

eigenstates of the reference Hamiltonian H0, using some fictitious dynamics in the adiabatic limit.

Our mathematical result extends previous studies to the case when the eigenspace of the reference

Hamiltonian is degenerate [H20]. This result was motivated by the simple analytical example

described in [H14]. We also presented some physical implications in [H19].

Very recently, we studied with E. Cancès the behavior of defects in crystals under an external,

time dependent forcing [H30]. The aim of this study was to extend previous results on the static

(time-independent) response of crystals to the case of time-dependent forcings. There is therefore

a genuine time dependence in this model, which allows to derive, in some spatial homogenization

limit, the expression of the frequency-dependent permittivity of a crystal in terms of its band

structure.

1.4 Publications

I list here my publications by types, decomposing the publications in peer-reviewed journals into

two categories, depending on whether the material has been produced or substantially initiated

during my PhD, or afterwards.
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1967-1985

[P2] M. Rousset and G. Stoltz, An interacting particle system approach for molecular dy-

namics, J. Stat. Phys. 123(6) (2006) 1251-1272

[P3] E. Cancès, M. Lewin and G. Stoltz, The electronic ground state energy problem: a new

reduced density matrix approach, J. Chem. Phys. 125 (2006) 064101
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[P4] A. Scemama, T. Lelièvre, G. Stoltz, E. Cancès and M. Caffarel, An efficient

sampling algorithm for Variational Monte Carlo, J. Chem. Phys. 125 (2006) 114105
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Lett. 76(5) (2006) 849-855
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This chapter starts in Section 2.1 with a brief presentation of computational statistical physics.

One important aim in molecular simulation is the computation of average properties at fixed

thermodynamic conditions, see (2.2) below. However, not all properties of interest can be written as

averages with respect to a thermodynamic measure with given thermodynamic conditions. A very

important example is the computation of the free energy, which is considered in Section 2.2 (based

on [P2, P6, P9, P10, P12,H17,H21,H27,H29, B1]). Another situation which does not fall within

the standard framework of statistical physics is the case when the thermodynamic conditions are

not fixed a priori, but are part of the problem. This is the case when the system should satisfy a

constraint in average, the thermodynamic conditions being precisely such that this constraint is

indeed satisfied. An approach to this problem is described in Section 2.3 (based on [H15,H23]).

2.1 Computational statistical physics

Statistical physics provides a way to obtain macroscopic quantities starting from systems described

at the microscopic level. In this framework, the state of the system is described by some proba-

bility measure, the precise choice of the measure depending on the invariant quantities considered
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(number of particles or chemical potential, volume or pressure, energy or temperature). We focus

in this chapter on the canonical measure, which is the equilibrium probability distribution describ-

ing microscopic states of a system at fixed temperature (fixed average energy). Many theoretical

concepts and numerical techniques presented in this chapter can however straightforwardly be ex-

tended to other thermodynamic ensembles, or even to general (non-physical) probability measures

such as the ones encountered in Bayesian Statistics.

The configuration of a classical N -body system is denoted by (q, p) ∈ E . Typically, in dimension

d = 3, E = M × R
3N with M = R

3N when the system is confined by an external potential, or

M = DN when the system is enclosed in a periodic simulation box D = (LT)3 (with T = R\Z).
We assume for simplicity that the system is described by a separable Hamiltonian

H(q, p) =
1

2
pTM−1p+ V (q),

where the interaction potential V is a smooth function, and the mass matrix is a constant, posi-

tive definite, symmetric matrix M (typically a diagonal matrix M = Diag(m1Id3, · · · ,mN Id3) ∈
R

3N×3N with mi > 0 for all i = 1, . . . , N). Generalizations to non-separable Hamiltonians are

possible. The canonical measure reads

µ(dq dp) = Z−1 e−βH(q,p) dq dp, Z =

ˆ

E

e−βH , (2.1)

where Z is the normalizing constant ensuring that µ is indeed a probability distribution (we

assume Z < +∞), and β = (kBT )
−1 (with kB the Boltzmann constant) is proportional to the

inverse temperature. Macroscopic quantities A , such as the pressure for instance, are obtained by

averaging observables, which are functions of the microscopic state, with respect to the probability

measure describing the macroscopic state of the system:

A =

ˆ

E

A(q, p)µ(dq dp). (2.2)

The actual issue is the sampling of the configurational part of the canonical measure since momenta

follow a Gaussian distribution. The high dimensional integral (2.2) cannot be computed using

standard quadrature methods. It is approximated in practice by ergodic averages of appropriate

dynamics:

A = lim
T→+∞

1

T

ˆ T

0

A(qt, pt) dt. (2.3)

2.1.1 Sampling the canonical measure

Let us now present some well-known stochastic dynamics satisfying (2.3). An important require-

ment is that these dynamics should admit the canonical measure as invariant measure, which is

the case when the canonical measure is a stationary solution of the Fokker-Planck equation. For

a general stochastic dynamics (in the Itô sense)

dxt = b(xt) dt+ σ(xt) dWt, (2.4)

where xt ∈ R
n, Wt is a standard n-dimensional Brownian motion, and b and σ are smooth

functions, the Fokker-Planck equation reads

∂tψ = A∗ψ, (2.5)

where ψ(t, x) is the law at time t of xt, and A∗ is the adjoint (on L2(Rn)) of the generator
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A = b · ∇+
1

2
σσT : ∇2 = b · ∇+

1

2

n∑

i,j=1

(
σσT

)
i,j
∂xi

∂xj
. (2.6)

One dynamics admitting the canonical measure (2.1) as invariant measure is the Langevin dynam-

ics: {
dqt =M−1pt dt,

dpt = −∇V (qt) dt− γ(qt)M
−1pt dt+ σ(qt) dWt,

(2.7)

where Wt is a standard 3N -dimensional Brownian motion, and γ(q), σ(q) are 3N × 3N position

dependent real matrices satisfying the fluctuation-dissipation identity

σ(q)σT (q) =
2

β
γ(q). (2.8)

The Langevin dynamics may be seen as some modification of the Hamiltonian dynamics with

two added components: a damping term −γ(qt)M−1pt dt (dissipation) and a random forcing term

σ(qt) dWt (fluctuation). The energy dissipation due to damping is compensated by the random

forcing in such a way that the temperature of the system remains T = (kBβ)
−1. Under suitable

assumptions on the potential V , the friction and the dissipation matrices, the dynamics (2.7) can

be proved to be ergodic and (2.3) holds (see for instance the discussion in [P8]). Another important

dynamics is the overdamped Langevin dynamics, which is ergodic for the marginal of the canonical

measure in the position variables:

dqt = −∇V (qt) dt+

√
2

β
dWt. (2.9)

This dynamics can be obtained as a limit of the Langevin dynamics (2.7), either when the friction

goes to infinity (with an appropriate time rescaling) or for vanishing masses; see [B1, Section 2.2.4]

for further precisions.

2.1.2 Beyond the computation of standard average properties

The methods presented in this chapter can be used to compute equilibrium properties different

from the standard average properties (2.2).

• Free energy differences are important quantities to describe the relative likelihoods of states of

a system. Section 2.2 presents various new techniques to compute free energy differences.

• In some instances, it is desirable to consider ensembles such that some constraint is satisfied on

average. In this setting, the extensive or intensive parameters indexing the state of the system

(such as the temperature or the volume in the canonical ensemble) may be seen as unknowns

whose value has to be fixed. Section 2.3 summarizes my work in this direction, which was

triggered by numerical concerns of physicists at CEA/DAM.

Many methods described in this chapter turn out to be based on nonequilibrium or nonlinear

dynamics, although their stationary state is either an equilibrium one, or can be mapped back to

an equilibrium one by an appropriate correction. The nonequilibrium dynamics considered in this

chapter (see Section 2.2.3) are in fact time-inhomogeneous stochastic evolutions occuring over finite

times. They are termed “nonequilibrium” since the law of the process at time t is not a canonical

distribution. They should be distinguished from nonequilibrium dynamics in their steady states

which are studied in Chapter 3.
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2.2 Free energy computations

This section starts with an overview of techniques to compute free energy differences (see Sec-

tion 2.2.1). One of our contributions is then highlighted: the computation of free energy differences

indexed by a geometric parameter (the so-called reaction coordinate, defined in Section 2.2.1.1),

when the underlying dynamics is of Langevin type [H29]. Two methods are considered: thermo-

dynamic integration (Section 2.2.2) and nonequilibrium dynamics (Section 2.2.3).

2.2.1 A general overview

Free energy is a central concept in thermodynamics and in modern studies on biochemical and

physical systems. Typical examples studied by computer simulations include the solvation free

energies (which is the free energy difference between a molecule in vacuo and the same molecule

surrounded by solvent molecules) and the binding free energy of two molecules (which determines

whether a new drug can have an efficient action on a given protein).

The statistical physics definition of the free energy in the canonical ensemble (2.1) as the

logarithm of the partition function

F = − 1

β
ln

ˆ

E

e−βH(q,p) dq dp (2.10)

can be motivated by an analogy with macroscopic thermodynamics, where

F = U − TS, (2.11)

U being the internal energy of the system, and S its entropy. The microscopic definition of the

internal energy is the average energy as given by the laws of statistical physics:

Eµ(H) = Z−1

ˆ

E

H(q, p) e−βH(q,p) dq dp, (2.12)

while the microscopic counterpart of the thermodynamic entropy is the statistical entropy (see [11])

S = −kB
ˆ

E

ln

(
dµ

dq dp

)
dµ. (2.13)

Replacing U and S in (2.11) by (2.12) and (2.13) respectively, we obtain the definition (2.10).

2.2.1.1 Free energy differences

In many applications, the important quantity is actually the free energy difference between two

macroscopic states of the system, rather than the free energy itself (see [30]). Free energy differences

allow to quantify the relative likelihood of different states. A state should be understood here as

either

(i) the collection of all possible microscopic configurations distributed according to the canonical

measure associated with a Hamiltonian Hλ depending on some parameter λ (called the

alchemical parameter). The parameter λ is then the index of the state, and the free energy

difference reads

F (1)− F (0) = −β−1 ln




ˆ

E

e−βH1(q,p) dq dp
ˆ

E

e−βH0(q,p) dq dp


 . (2.14)

Typically, λ is a parameter of the potential energy function, or the intensity of an external

perturbation (such as a magnetic field for Ising systems);
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(ii) the collection of all possible microscopic configurations of the phase-space E = M × R
3N ,

distributed according to the canonical measure (2.1), and satisfying a given macroscopic

constraint ξ(q) = z, where ξ : M → R
m with m small. Such macroscopic constraints are

for instance the values of a few dihedral angles in the carbon backbone of a protein, or the

end-to-end distance of a long molecule. The function ξ is called the “reaction coordinate”.

In this case, the configurations are restricted to the set

Σ(z) =
{
(q, p) ∈ E

∣∣∣ ξ(q) = z
}

(2.15)

where z is the index of the state, and the free energy difference to compute reads

F (1)− F (0) = −β−1 ln




ˆ

Σ(1)×R3N

e−βH(q,p) δξ(q)−1(dq) dp

ˆ

Σ(0)×R3N

e−βH(q,p) δξ(q)(dq) dp


 . (2.16)

A rigorous definition of the conditional measures δξ(q)−z(dq) can be given using the co-area

formula (see [4, 57] as well as [B1, Chapter 3]): for any test functions f : R
m → R and

g : M → R,
ˆ

M

f(ξ(q)) g(q) dq =

ˆ

Rm

f(z)

(
ˆ

Σ(z)

g δξ(q)−z(dq)

)
dz.

The case of free energy differences indexed by a reaction coordinate is more technical than the

case of free energy differences indexed by an alchemical parameter. One of our aims in the study

of numerical techniques to compute free energy differences has precisely been the extension of

several techniques proposed for alchemical transitions to the reaction coordinate case (see in par-

ticular [P6,H29]), or the mathematical study of techniques proposed in the reaction coordinate

case (see [P10, P12]).

Free energy techniques can also be used in some contexts to compute entropy differences, and

not free energy differences, using appropriate alchemical transformations. This is what we have

done in [H17] to study the entropy increase when a hot and dense system, compressed in a box, is

allowed to expand when one of the boundaries of the box is removed. This procedure models the

behavior of materials after a shock compression.

2.2.1.2 Numerical methods to compute free energy differences

Together with Mathias Rousset and Tony Lelièvre, we wrote a review book on the numerical

methods to compute free energy differences (see [B1]). Most of the currently available strategies

fall within the following four classes, in order of increasing mathematical technicality:

(i) Methods of the first class are based on straightforward sampling methods. In the alchemical

case, the free energy perturbation method, introduced in [159], recasts free energy differences

as usual canonical averages. In the reaction coordinate case, usual sampling methods can also

be employed, using histogram methods [138];

(ii) The second technique, dating back to [97], is thermodynamic integration, which mimics the

quasi-static evolution of a system as a succession of equilibrium samplings (this amounts

to considering an infinitely slow switching between the initial and final states). In this case,

constrained equilibrium dynamics have to be considered. Section 2.2.2 presents the procedure

when constrained Langevin dynamics are used.

(iii) A more recent class of methods is based upon dynamics with an imposed “schedule” for the

reaction coordinate or the alchemical parameter: the system is started off at equilibrium, and

then the value of the reaction coordinate z(t) or of the alchemical parameter λ(t) is varied
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in time at a finite rate and in a predefined manner, independently of the state of the system.

The system therefore does not remain at equilibrium. Equilibrium properties can however

be recovered from the nonequilibrium trajectories with a suitable exponential reweighting,

see [92, 93]. Section 2.2.3 presents a recent extension based on Langevin dynamics in the

reaction coordinate case.

(iv) Finally, adaptive biasing dynamics may be used in the reaction coordinate case. The switching

schedule is not imposed a priori, but a biasing term in the dynamics forces the transition

by penalizing the regions which have already been visited (see Section 2.2.1.3 for further

precisions).

We refer to Figure 2.1 for a schematic representation of the computational methods in the reaction

coordinate case.

(a) Histogram method: sample points
around the level sets are generated.

(b) Thermodynamic integration: a
projected dynamics is used to sample
each “slice” of the phase space.

(c) Nonequilibrium dynamics: the
switching schedule is imposed a pri-

ori and is the same for all trajectories.

(d) Adaptive biasing dynamics: the
system is forced to leave regions
where the sampling is sufficient.

Fig. 2.1. Cartoon comparison of the different techniques to compute free energy differences in the reaction
coordinate case.

2.2.1.3 Free energy based importance sampling

Beside physical motivations to compute free energy differences, a computational motivation is to

overcome sampling barriers encountered when computing canonical averages (see the discussion

in [B1, Section 1.3.3]). Indeed, it is often the case in practice that the trajectories generated by

the numerical method remain trapped for a long time in some region of the phase space, and

only occasionally hop to another region, where they also remain trapped – a behavior known as

metastability. Chemical and physical intuition may guide the practitioners of the field toward the

identification of some slowly evolving degree of freedom responsible for the metastable behavior of

the system. This quantity is a function ξ(q) of the configuration of the system, where ξ : M → R
m
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with m small. The framework to consider is therefore the case of transitions indexed by a reaction

coordinate.

If the function ξ is well chosen (i.e. if the dynamics in the direction orthogonal to ξ is not too

metastable, which we henceforth assume), the free energy can be used as a biasing potential to

accelerate the sampling, relying on importance sampling strategies. More precisely, we sample the

probability measure1

µ̃(dq dp) = Z̃−1 e−β[H(q,p)−F (ξ(q))] dq dp, Z̃ =

ˆ

E

e−β(H−F◦ξ),

using for instance the biased Langevin dynamics





dqt =M−1pt dt,

dpt =
(
−∇V (qt) + F ′(ξ(q))∇ξ(q)

)
dt− γM−1pt dt+

√
2γ

β
dWt.

(2.17)

Canonical averages (2.2) with respect to the original canonical measure (2.1) are then obtained

by an appropriate reweighting of the trajectory of the biased dynamics as

Eµ(A) =
Eµ̃(A e−βF◦ξ)

Eµ̃(e
−βF◦ξ)

= lim
T→+∞

ˆ T

0

A(qt, pt) e
−βF (ξ(qt)) dt

ˆ T

0

e−βF (ξ(qt)) dt

. (2.18)

The terminology “reweighting” is motivated by the fact that all sampled configurations (qt, pt) do

not have the same weight in the average over the trajectory.

This viewpoint allows to use free energy techniques in other fields than the one traditionally

covered by statistical physics, such as Bayesian Statistics. In order to have an efficient method,

the weights e−βF (ξ(qt)) should not be too degenerate, that is, the average in (2.18) should not

be dominated by a few values dominant values. We have shown in [H27] that free energy based

importance sampling can be used in Bayesian statistics. More precisely, we have discussed various

choices of reaction coordinates for a mixture model, and tested the efficiency of the associated

importance sampling procedure.

Adpative importance sampling

Instead of first obtaining an estimate of the free energy profile, and then running a biased dynamics

such as (2.17), it is possible to use adaptive importance sampling strategies where estimates of

the free energy are computed on-the-fly. This is performed by integrating a dynamics biased by

an approximation Ft of the free energy, and updating this approximation in such a way that Ft
converges to the free energy F in the longtime limit. Many techniques have been proposed in

the literature. They can be classified into two categories (see the classification we have proposed

in [P10]):

(i) methods in which the free energy itself is updated, such as the Wang-Landau dynamics [151,

152], the nonequilibrium metadynamics [90], or self-healing umbrella sampling [112].

(ii) methods in which the gradient of the free energy is updated (such as the Adaptive Biasing

Force [37]).

We refer to [B1, Section 5.1] for a precise description of the above mentioned dynamics and a

general presentation of adaptive importance sampling techniques for free energy computations. Our

1 In fact, in order to ensure that the normalization constant Z̃ is finite when the state-space is not
compact, it may be necessary to truncate the free energy and consider the biasing potential F (ξ)1a6ξ6b

for well chosen values −∞ < a 6 b < +∞; or, rather, some smooth approximation of this potential.
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contributions to this domain involve the mathematical study of the convergence of the adaptive

biasing force method using entropy estimates (see [P12]), and some extension of the self-healing

umbrella technique (see [H21]).

2.2.2 Thermodynamic integration

The basic ideas behind thermodynamic integration are presented in the simple setting of alchem-

ical transitions in Section 2.2.2.1. The extension to transitions indexed by a reaction coordinate

uses constrained deterministic or stochastic dynamics. In the literature, constrained Hamiltonian

dynamics and overdamped Langevin dynamics have been considered [26,31,41,142]. The gradient

of the free energy is obtained from the constraining force or from the Lagrange multipliers used to

enforce the constraint. The main disadvantage of Hamiltonian dynamics is their lack of ergodicity;

while overdamped Langevin dynamics are rarely used in practice since most codes are based on

modifications of the Hamiltonian dynamics. On the other side, the Langevin dynamics is a mod-

ification of the Hamiltonian dynamics which can be proved to be ergodic. It is therefore relevant

for applications. Our aim in [H29] is precisely to show how to perform thermodynamic integration

using Langevin dynamics. Section 2.2.2.2 presents the underlying constrained Langevin dynamics,

while the evaluation of the gradient of the free energy is discussed in Section 2.2.2.3.

2.2.2.1 Thermodynamic integration in the alchemical case

We first present thermodynamic integration in the simple context of alchemical transitions when

Hλ(q, p) =
1
2p
TM−1p+ Vλ(q). Thermodynamic integration consists in remarking that

F (1)− F (0) =

ˆ 1

0

F ′(λ) ds, (2.19)

and that the derivative

F ′(λ) =

ˆ

E

∂Hλ

∂λ
(q, p) e−βHλ(q,p) dq dp

ˆ

E

e−βHλ(q,p) dq dp

is the canonical average of ∂λHλ = ∂λVλ with respect to the canonical measure

µλ(dq dp) = Z−1
λ e−βHλ(q,p) dq dp. (2.20)

In practice, the integral on the right-hand side of (2.19) is discretized in the λ variable by standard

quadrature rules to obtain the free energy difference profile. The values F ′(λi) at the quadrature

points λi ∈ [0, 1] are approximated using classical sampling techniques, relying on convergence

results such as

F ′(λ) = lim
T→+∞

1

T

ˆ T

0

∂Hλ

∂λ
(qt, pt) dt a.s.,

where (qt, pt) is a realization of the Langevin dynamics





dqt =M−1pt dt,

dpt = −∇Vλ(qt) dt− γM−1pt dt+

√
2γ

β
dWt.

Some elements on the numerical analysis of the choice of the quadrature points, allowing to

minimize the variance of the free energy estimator, can be read in [B1, Section 3.1.1].
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2.2.2.2 The constrained Langevin dynamics

We introduce in this section the Langevin dynamics for mechanically constrained systems, for a

configuration space M = R
3N . Positions are therefore subjected to a m-dimensional constraint

denoted by

ξ(q) = (ξ1(q), . . . , ξm(q))
T
= z ∈ R

m.

Constrained systems appear in computational statistical physics in two types of contexts:

(i) for free energy computations, where ξ is a given reaction coordinate parameterizing a tran-

sition between “states” of interest;

(ii) when the system is subjected to molecular constraints such as rigid covalent bonds, or rigid

bond angles in molecular systems.

We refer for instance to [123, Chapter 10], [36] and [B1] for applications to the computation

of free energy differences, and [7, 74, 105] for mathematical textbooks dealing with constrained

Hamiltonian dynamics.

In the sequel, ξ may be thought of as a reaction coordinate (see [H29] for handling additional

molecular constraints within the same formalism). The position of the system is constrained to

the submanifold Σ(z) defined in (2.15) and the associated phase space is denoted by

T ∗Σ(z) =
{
(q, p) ∈ E

∣∣∣ q ∈ Σ(z), ∇ξ(q)TM−1p = 0
}
. (2.21)

Note that the position constraint implicitly places an additional constraint on the momenta, often

termed hidden velocity constraint. For a given q ∈ Σ(z), the set of admissible momenta is denoted

by

T ∗
qΣ(z) =

{
p ∈ R

3N
∣∣∣ ∇ξ(q)T M−1p = 0

}
. (2.22)

The orthogonal projection on T ∗
qΣ(z) with respect to the scalar product induced by M−1 is

denoted

PM (q) = Id−∇ξ(q)G−1
M (q)∇ξ(q)TM−1, (2.23)

where GM (q) = ∇ξ(q)TM−1 ∇ξ(q). We assume that GM is invertible everywhere on Σ(z) (for

all z). It is easily checked that PM satisfies the projector property PM (q)2 = PM (q), and the

orthogonality property

M−1PM (q) = PM (q)TM−1.

Finally, it is useful to introduce projected friction and dissipation matrices:

(σP , γP ) = (PM σ, PM γ PTM ), (2.24)

Note that γP , σP satisfy the fluctuation-dissipation relation (2.8) when γ, σ do.

The canonical distribution associated with constrained systems is defined as

µT∗Σ(z)(dq dp) = Z−1
z,0 e

−βH(q,p) σT∗Σ(z)(dq dp), (2.25)

where σT∗Σ(z)(dq dp) is the phase space Liouville measure of T ∗Σ(z) (see [B1, Section 3.3.2] for

a precise definition of this measure), and Zz,0 the normalizing constant (z refers to the position

constraint, and 0 to the velocity or momentum constraint). A dynamics admitting the constrained

canonical measure (2.25) as an invariant equilibrium measure is the following Langevin process:

For a given initial condition (q0, p0) ∈ T ∗Σ(z),
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(CL)





dqt =M−1pt dt,

dpt = −∇V (qt) dt− γ(qt)M
−1pt dt+ σ(qt) dWt +∇ξ(qt) dλt,

ξ(qt) = z, (Cq)

where the Rm-valued adapted process t 7→ λt is the Lagrange multiplier associated with the (vecto-

rial) constraint (Cq), and γ(q), σ(q) are assumed to satisfy the fluctuation-dissipation relation (2.8).

Note that (qt, pt) ∈ T ∗Σ(z) for all t > 0.

Proposition 2.1. The constrained Langevin dynamics (CL) on T ∗Σ(z) admits the Boltzmann-

Gibbs distribution (2.25) as a stationary measure. Moreover, if γP (defined in (2.24)) is everywhere

strictly positive in the sense of symmetric matrices on T ∗
qΣ(z), then the invariant measure is

unique and the process (CL) is ergodic: for any smooth observable A,

lim
T→+∞

1

T

ˆ T

0

A(qt, pt) dt =

ˆ

T∗Σ(z)

AdµT∗Σ(z) a.s. (2.26)

Several recent studies (e.g. [31, 79,80,149]) have analyzed dynamics similar to (CL) and some

appropriate discretizations of the process in order to approximate the left-hand side of (2.26).

The first contribution of [H29] is to propose a simple discretization of the dynamics (CL) and to

highlight its remarkable properties. The numerical scheme is based on a splitting strategy between

the Hamiltonian and the fluctuation/dissipation part of the dynamics (in the spirit of the scheme

proposed in [20] in the unconstrained case). The Hamiltonian part is discretized using a Verlet

scheme with position and momentum constraints (the so-called RATTLE scheme, see [106]). We

show that this discretization enjoys the following properties:

(i) for some appropriate choice of the parameters (masses proportional to the time step ∆t or

friction proportional to ∆t−1), the numerical scheme reduces to an Euler discretization of

the overdamped Langevin dynamics with a projection step associated with the constraints.

This can be seen as the numerical counterpart of the fact that the overdamped Langevin

dynamics is the limit of the Langevin dynamics as either the friction goes to infinity or the

mass goes to zero, see the discussion after (2.9);

(ii) the numerical scheme can be complemented by a Metropolis-Hastings correction [82,114] to

obtain a Generalized Hybrid Monte Carlo (GHMC) method sampling exactly (i.e. without

any bias due to time-discretization) the constrained canonical distribution (2.25). The result-

ing numerical scheme is close to the ones proposed in [78–80] (see also [47, 109] for historic

references on Hybrid Monte Carlo methods, and [88] for GHMC).

The well-posedness of the Metropolis correction crucially relies on reversibility properties of

the numerical scheme, here the Hamiltonian part discretized by the RATTLE scheme. Such

corrections cannot be considered for standard discretizations of overdamped Langevin dy-

namics for instance, since the transition kernel corresponding to a single step of the numerical

method has no simple analytical expression due to the nonlinear projection step.

One outcome of [H29] is thus a new Metropolization procedure for overdamped Langevin dynamics

to sample, without bias, measures supported on a submanifold.

2.2.2.3 Thermodynamic integration with constrained Langevin dynamics

When using constrained simulations in phase space, the momentum variable of the dynamical

system is also constrained, and a modified free energy (called “rigid free energy”) is more naturally

computed:
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FMrgd(z) = − 1

β
ln

ˆ

T∗Σ(z)

e−βH(q,p)σT∗Σ(z)(dq dp). (2.27)

The rigid free energy is related to the standard free energy

F (z) = − 1

β
ln

ˆ

Σ(z)×R3N

e−βH(q,p) δξ(q)−z(dq) dp = − 1

β
ln

ˆ

Σ(z)

e−βV (q) δξ(q)−z(dq) + C (2.28)

used in (2.16) through the identity:

F (z)− FMrgd(z) = − 1

β
ln

ˆ

T∗Σ(z)

(detGM )−1/2dµT∗Σ(z) + C̃, (2.29)

where µT∗Σ(z) is the equilibrium distribution with constraints (2.25). The constants C, C̃ appearing

in the above expressions are independent of z. The relation (2.29) was already proposed in [36]

(see also [40, 48, 81, 136] for related formulas). It shows that FMrgd indeed depends on the mass

matrix, which is not obvious in the definition (2.27). For any value of the reaction coordinate, the

difference F (z)−FMrgd(z) can easily be computed with any dynamics sampling from the probability

distribution µT∗Σ(z), such as (CL), by averaging (detGM )−1/2 along a trajectory.

Several methods have been suggested in the literature to compute either FMrgd (or similar free

energies) from the Lagrange multipliers of a constrained process similar to (CL). In fact, a typical

result is that the longtime average of the Lagrange multipliers converges to the gradient of the

rigid free energy (2.27) (the so-called mean force). We refer for instance to [36] and references

therein for the Hamiltonian case, and to [31] and references therein for the overdamped case. We

have also obtained such a result for (CL):

Theorem 2.1. Assume that ∇ξ, G−1
M and σ are bounded functions on Σ(z), and γP is strictly

positive on T ∗
qΣ(z) (in the sense of symmetric matrices). Then,

lim
T→+∞

1

T

ˆ T

0

dλt = ∇zF
M
rgd(z) a.s. (2.30)

A similar result holds for the ‘Hamiltonian part’ of the Lagrange multipliers:

lim
T→+∞

1

T

ˆ T

0

dλhamt = ∇zF
M
rgd(z) a.s., (2.31)

where dλhamt = dλt +G−1
M ∇ξ(qt)TM−1

(
−γ(qt)M−1pt dt+ σ(qt)dWt

)
= fMrgd(qt, pt) dt.

The precise expression of fMrgd is given in [H29]. The important remark is that dλhamt only has

bounded variations since the martingale part due to the Brownian increments and the dissipation

term have been subtracted out. Therefore, the estimator based on (2.31) has a smaller variance

than the estimator based on (2.30). Similar results on variance reduction were obtained in the

overdamped case in [31].

As compared to [36], where a formal proof for the Hamiltonian case is proposed, we use an

explicit calculation that does not require the use of the Lagrangian structure of the problem,

or a change of coordinates. Once ∇zF
M
rgd(z) is obtained, FMrgd(z) can be computed (up to an

additive constant) by integration, similarly to what is done in the alchemical case described in

Section 2.2.2.1. Note that using (2.30) and thermodynamic integration, together with (2.29), allows

to obtain F (z) without computing second order derivatives of ξ. This is a desirable property since

computing such high derivatives may be cumbersome for some reaction coordinates used in prac-

tice. In contrast, straightforward computations of the mean force using the analytical expression

of fMrgd usually involve such high order derivatives.
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We show [H29] that the mean-force can be computed with second order accuracy (i.e. up to

O(∆t2) error terms, where ∆t is the time-step) using the Lagrange multipliers involved in the

Hamiltonian part of the splitting scheme. This is based on a discretization of (2.31), obtained

by averaging the two Lagrange multipliers involved in the RATTLE part of the scheme. We also

discuss in [H29] how these techniques can be generalized to compute the free energy for systems

with molecular constraints.

2.2.3 Nonequilibrium computations of the free energy

This section is devoted to nonequilibrium methods for free energy computations, based on a

Hamiltonian or Langevin dynamics with constraints subjected to a predetermined time evolution.

Such methods rely on a fluctuation equality, the so-called Jarzynski-Crooks relation (see [93] for a

pioneering work, as well as [32,33] for an extension). They are termed “nonequilibrium” since the

transition from one value of the reaction coordinate ξ to another one is imposed a priori, in a finite

time T , and with a given smooth deterministic schedule t ∈ [0, T ] 7→ z(t) ∈ R
m. The transition

can be arbitrarily fast. Therefore, even if the system starts at equilibrium, it does not remain

at equilibrium, in the sense that the law of the process at time t is not the canonical measure

associated with the value z(t) of the schedule.

Whereas many works consider nonequilibrium dynamics in the alchemical case, the reaction

coordinate case was not treated before our works on nonequilibrium overdamped Langevin dynam-

ics [P6]. Most results of [P6] can in fact be recovered from the results on nonequilibrium Langevin

dynamics [H29].

Section 2.2.3.1 first presents the basic idea of nonequilibrium fluctuation relations for computing

free energy differences in the simple alchemical case. We then turn to nonequilibrium Langevin

dynamics in the reaction coordinate case in Section 2.2.3.2.

2.2.3.1 Principle of the method

The Jarzynski equality expresses free energy differences as a nonlinear average of the work per-

formed in the switching from one state to another, see for instance (2.34) below. The interest of

this approach is that the computation of averages such as (2.34) can easily be parallelized using

many short trajectories. In practice however, it is often observed that the estimators based on

such equalities are numerically inefficient since they have very large variances (see for instance our

work [P2] as well as the discussion in [B1, Section 4.1.4]). The interest of the Jarzynski equality

and its extensions is therefore rather theoretical.

The Jarzynski equality can easily be obtained for alchemical transitions when the evolution

of the system is given by the Hamiltonian dynamics. Consider initial conditions (q(0), p(0)) at

equilibrium, canonically distributed according to µ0 (defined in (2.20)), and a switching schedule

λ : [0, T ] → R with λ(0) = 0 and λ(T ) = 1. The evolution is given by the following non-autonomous

ordinary differential equation for 0 6 t 6 T :





dq

dt
(t) = ∇pHλ(t)(q(t), p(t)),

dp

dt
(t) = −∇qHλ(t)(q(t), p(t)).

(2.32)

Defining by φλ the associated flow, the work performed on the system starting from an initial

condition (q, p) is defined through the energy variations induced by the imposed variations of the

alchemical parameter:

W(q, p) =

ˆ T

0

∂Hλ(t)

∂λ
(φλt (q, p))λ

′(t) dt = H1(φ
λ
T (q, p))−H0(q, p). (2.33)
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The rightmost equality in (2.33) is obtained by noticing that

d

dt

(
Hλ(t)(φ

λ
t (q, p))

)
=
∂Hλ(t)

∂λ
(φλt (q, p))λ

′(t) +

(
∇qHλ(t)(φ

λ
t (q, p))

∇pHλ(t)(φ
λ
t (q, p))

)
· ∂tφλt (q, p),

and the second term on the right-hand side vanishes in view of (2.32). The work therefore turns

out, in this simple setting, to be equal to the energy difference between the initial and the final

states. Then,
ˆ

E

e−βW(q,p) dµ0(q, p) = Z−1
0

ˆ

E

e−βH1(φ
λ
T (q,p)) dq dp.

Since φλT defines a change of variables of Jacobian 1, the above equality can be restated as

Eµ0

(
e−βW

)
=
Z1

Z0
= e−β(F (1)−F (0)),

or

F (1)− F (0) = − 1

β
lnEµ0

(
e−βW

)
, (2.34)

where the expectation is taken with respect to initial conditions (q, p) distributed according to µ0.

To approximate numerically (2.34), initial conditions are sampled using an appropriate method,

and for each initial condition, a numerical trajectory is integrated in time and the value of the

work along this trajectory is computed. Alternatively, dedicated Metropolis algorithms to sample

paths can be used (see for instance some algorithms to this end in my work [P9], as well as the

discussion in [B1, Section 4.4]).

The relation (2.34) can be generalized to many other dynamics in the alchemical case. The reac-

tion coordinate case is, on the other hand, more technical, and was not considered to our knowledge

before our previous work [P6] on switched overdamped Langevin dynamics. The Langevin case is

presented in Section 2.2.3.2.

2.2.3.2 Nonequilibrium switching with constrained Langevin dynamics

An appropriate nonequilibrium Langevin dynamics to perform the switching is given by the fol-

lowing equations of motion (“SCL” stands for “switched constrained Langevin”):

(SCL)





dqt =M−1pt dt,

dpt = −∇V (qt) dt− γP (qt)M
−1pt dt+ σP (qt) dWt +∇ξ(qt) dλt,

ξ(qt) = z(t), (Cq(t))

where t 7→ λt ∈ R
m is an adapted process enforcing the constraints (Cq(t)) (the Lagrange multipli-

ers). Initial conditions are sampled from the phase-space canonical distribution consistent with the

constraints ξ(q) = z(0) and ∇ξ(q)TM−1p = ż(0). This measure, denoted by µΣξ,vξ
(z(0),ż(0))(dq dp),

is made precise in [H29]. For simplicity, we restrict ourselves to projected fluctuation-dissipation

matrices of the specific form (2.24) since this simplifies the analysis, and eliminates spurious ran-

dom fluctuations in the direction of the switching. It also leads to more natural numerical schemes,

based again on a splitting procedure.

Our analysis applies to deterministic Hamiltonian dynamics upon choosing γ = 0. The dy-

namics (SCL) is a natural extension of the constrained Langevin dynamics (CL). It is different

from the dynamics proposed in [101], which is a Langevin dynamics associated with a modified

Hamiltonian with projected momenta, driven by a forcing term along ∇ξ which acts directly on

the position variable.
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An appropriate notion of work, generalizing the definition (2.33) in the simple case considered

in Section 2.2.3.1, is given by the integral of the displacement multiplied by the constraining force:

W0,t

(
{qs, ps}06s6t

)
:=

ˆ t

0

żT (s) dλs. (2.35)

Since momenta are implicitly constrained by the condition ξ(qt) = z(t) for all t ∈ [0, T ] (while, in

the “static” definition (2.28) of the free energy, they should not be constrained), some correction

term in the spirit of the right-hand side of (2.29) has to be considered in order to state a general-

ization of the fluctuation identity (2.34) in terms of the free energy F (z) defined in (2.28). More

precisely, consider the corrector

C(t, q) =
1

2β
ln
(
detGM (q)

)
− 1

2
ż(t)TG−1

M (q)ż(t),

where 1
2β ln detGM (q) is the so-called Fixman term due to the geometry of the position constraints,

and 1
2 ż(t)

TG−1
M (q)ż(t) is the kinetic energy term due to the velocity of the switching. We are now

in position to state the following result.

Theorem 2.2. Denote by {qt, pt}06t6T the solution of the Langevin dynamics (SCL) with initial

conditions distributed according to (q0, p0) ∼ µΣξ,vξ
(z(0),ż(0))(dq dp). Then,

F (z(T ))− F (z(0)) = − 1

β
ln



E

(
e−β[W0,T ({qt,pt}06t6T )+C(T,qT )]

)

E
(
e−βC(0,q0)

)


 , (2.36)

where the expectations are with respect to canonical (equilibrium) initial conditions and for all

realizations of the dynamics (SCL).

Generalizations of (2.36) (fluctuation relations à la Crooks, defined using forward and backward

processes, and involving path functionals) are given in [H29].

We also propose in [H29] an original numerical scheme allowing to compute free energy dif-

ferences without time discretization errors. This numerical scheme is based on a modification of

the splitting scheme used to discretize the constrained Langevin dynamics (CL). We are able to

prove a discrete-in-time version of the associated Jarzynski free energy estimator (2.36), based on

energy differences in the RATTLE steps.

Moreover, for some choice of the parameters, the numerical scheme yields a Jarzynski-Crooks

relation similar to (2.36) for an Euler discretization of the overdamped Langevin dynamics with

a projection step associated with the evolving constraints, without time discretization error. This

can be seen as an extension of the scheme formerly proposed in [P6].

2.3 Sampling constraints in average

This section presents a method to compute properties of systems with constraints fixed in aver-

age, proposed in [H15] and applied in [H23] to a real system of interest to physicists. Sampling

configurations of systems with constraints fixed in average is also of interest in other applications

fields such as polymeric fluids, although the formulation of the problems under consideration are

slightly different than (2.43) below (see [104] and references therein).

We make precise in Section 2.3.1 the original physical motivation. The method we have pro-

posed is then described in Section 2.3.2, while numerical results illustrating the approach are

provided in Section 2.3.3.
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2.3.1 Physical motivation: the computation of Hugoniot curves

When a fluid is hit by a shock wave, its pressure and energy increase. The variations of thermody-

namic quantities of interest (pressure, density, energy) across a shock interface are governed by the

Rankine-Hugoniot relations, which relate the jumps of the quantities under investigation to the

velocity of the shock front. The third Rankine-Hugoniot conservation law for the Euler equation

governing the hydrodynamic evolution of the fluid reads (macroscopic quantities are denoted by

curly letters)

E − E0 −
1

2
(P + P0)(V0 − V) = 0. (2.37)

In this expression, E is the internal energy of the fluid, P its pressure, and V its volume. The

subscript 0 refers to the initial state, the other quantities are evaluated after equilibration after

the passage of a shock wave. The Hugoniot curve corresponds to all the possible states (E ,P,V)
satisfying (2.37), given (E0,P0,V0). In practice, it is computed by considering shocks of different

strengths, inducing various compressions.

A reference temperature T0 and a simulation cell D0, for instance D0 = (L0T)
3, characterize

the equilibrium state before the shock. In numerical experiments, the compression rate

c =
|D|
|D0|

is varied from 1 to some maximal compression rate 0 < cmax < 1, so that D = (c1/3L0T)
3

when the compression is isotropic. Since all macroscopic quantities arising in the hydrodynamic

equations are obtained thanks to some local thermodynamic equilibrium assumption, (2.37) can be

reformulated at the microscopic level using statistical mechanics. For a given compression rate c,

〈H〉D,T − 〈H〉D0,T0
− 1

2
(〈P 〉D,T + 〈P 〉D0,T0

)(|D0| − |D|) = 0, (2.38)

where the pressure observable for a domain D is

P (q, p) =
1

3|D|

N∑

i=1

p2i
mi

− qi · ∇qiV (q),

and the notation 〈A〉D,T refers to canonical averages

〈A〉D,T =

ˆ

E

A(q, p)µD,T (q, p) dq dp (2.39)

with respect to the canonical measure on E = DN × R
3N

µD,T (q, p) =
1

ZD,T
e−βH(q,p), ZD,T =

ˆ

E

e−βH(q,p) dq dp, (2.40)

with β−1 = kBT . The final temperature T is the only unknown in (2.38), and is such that

〈
H(q, p)− 〈H〉D0,T0

+
1

2
(P (q, p) + 〈P 〉D0,T0

)(1− c)|D0|
〉

D,T

= 0.

Introducing the Hugoniot observable (parameterized by the compression parameter c)

Ac(q, p) = H(q, p)− 〈H〉D0,T0
+

1

2
(P (q, p) + 〈P 〉D0,T0

)(1− c)|D0|, (2.41)
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the identification of the thermodynamic states which can be obtained by a shock compression (the

so-called Hugoniot problem) can be reformulated as:

For a given compression cmax 6 c 6 1, find T such that 〈Ac〉c1/3D0,T = 0. (2.42)

Once the temperature T is known, the pressure and the internal energy of the fluid can be com-

puted. The compression rate c parameterizes a curve in the (P, T ) diagram, called the Hugoniot

curve.

Since shock waves propagate in one direction (for instance parallel to the x axis), anisotropic

versions of the Hugoniot problem are of interest. In this case, the compression acts in the x

direction only, and D = cL0T × (L0T)
2. This is relevant when the initial state before the shock

compression is in a solid phase. The average pressure P is replaced by the Pxx component of the

pressure tensor:

Pxx(q, p) =
1

|D|

N∑

i=1

p2i,x
mi

− qi,x∂qi,xV (q),

where qi,x, pi,x respectively denote the x components of the position and momentum of the i-th

particle, and the observable Ac is replaced by

Axx,c(q, p) = H(q, p)− 〈H〉D0,T0
+

1

2
(Pxx(q, p) + 〈Pxx〉D0,T0

)(1− c)|D0|.

Again, the issue is to find the temperature T such that 〈Ac,xx〉D,T = 0 for given D.

2.3.2 A nonlinear dynamics to sample constraints in average

In the sequel we focus on constraints depending on the temperature T , and therefore drop the

mention of the volume in the notation of the canonical averages when it is not relevant. Constraints

on the volume can be handled similarly. An abstract reformulation of questions such as (2.42) reads:

for a given observable A,

find T such that 〈A〉T = 0. (2.43)

In order to have a well-defined problem (and possibly upon replacing A by −A), we assume in the

sequel that (2.43) has a unique solution T ∗ and that, at least locally around T ∗,

0 < α 6
〈A〉T − 〈A〉T∗

T − T ∗
6 a. (2.44)

This assumption on the observable is satisfied as soon as the derivative of T 7→ 〈A〉T is smooth

and does not vanish at T ∗. For simplicity, we also assume that A, V are smooth (see [H15] for

precise conditions).

Several ways of solving (2.43) have been proposed in the literature. The first one relies on a

Newton-like strategy, in which case the derivative of the function T 7→ 〈A〉T should be computed

with a good accuracy. This is a non trivial task since this derivative is approximated in practice by

a finite difference (〈A〉T+∆T −〈A〉T−∆T )/2∆T , so that the statistical error inherent in the numer-

ical approximation of the quantities 〈A〉T±∆T should be sufficiently small compared to ∆T . This

requires a substantial computational effort. A second strategy is to resort to dedicated dynamics,

with some appropriate feedback mechanism to increase or decrease the energy of the system de-

pending on the current value of A (see [111]). However, the invariant measure of the corresponding

dynamics is not known, and so it is unclear in which sense (2.43) is satisfied.

In the dynamics we propose in [H15], the temperature is a variable and the state of the system is

described by the variables (q, p, T ). The idea is that the update of the current configuration (q, p) is

governed by a dynamics consistent with canonical sampling at the instantaneous temperature T (t),

while the temperature is updated depending on the current estimate of 〈A〉T (t): the temperature
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is decreased if the estimate is positive, increased otherwise. For instance, consider the following

dynamics of overdamped Langevin type:

{
dqt = −∇V (qt) dt+

√
2kBT (t) dWt,

T ′(t) = −γ E(A(qt)),
(2.45)

or the corresponding Langevin version:





dqt = M−1pt dt,

dpt = −∇V (qt) dt− ξM−1pt dt+
√
2ξkBT (t) dWt,

T ′(t) = −γ E(A(qt, pt)),
(2.46)

for some friction parameter ξ > 0. In both cases, γ > 0 determines the time scale of the temperature

feedback term, and Wt is a standard 3N -dimensional Brownian motion. To prove mathematical

results, it is convenient to use an overdamped Langevin dynamics, since the associated Fokker-

Planck equation describing the evolution of the law of the process qt is parabolic. However, we

use the hypoelliptic Langevin dynamics in numerical applications since this dynamics is more

commonly used in molecular simulation codes. Using tools of hypoellipticity and hypocoercivity

(see [150]), it should be possible to prove results similar to Theorems 2.3 and 2.4 below when the

underlying dynamics is of Langevin type.

The dynamics (2.45) and (2.46) can be motivated as follows. If the configurations followed

adiabatically the temperature changes, the positions qt (and possibly the momenta pt) would

be distributed canonically at the temperature T (t) at all times, and T ′(t) = −γ 〈A〉T (t). The

condition (2.44) then implies −γa(T (t)− T ∗) 6 T ′(t) 6 −γα(T (t)− T ∗) 6 0 if T (0) > T ∗, and a

similar inequality if T (0) < T ∗. In any case, T (t) → T ∗ exponentially fast.

Now, the positions are not canonically distributed at all times since the temperature varies at

a finite rate. The hope is that, even if equilibrium is not maintained at all times, the nonlinear

dynamics can still converge if the typical time arising in the temperature update is sufficiently small

compared to the typical relaxation time of spatial part of the dynamics on q, p. These heuristic

considerations can be quantified using functional inequalities, see Theorem 2.4 below.

2.3.2.1 Well-posedness of the dynamics

Let us first show that the dynamics (2.45) is well posed. This is not clear a priori since the

temperature T (t) should remain nonnegative. To this end, we consider a weak formulation of (2.45).

The Fokker-Planck equation describing the evolution of the law of the process reads





∂tψ = kBT (t)∇ ·
[
µT (t)∇

(
ψ

µT (t)

)]
= kBT (t)∆ψ +∇ · (ψ∇V ),

T ′(t) = −γ
ˆ

DN

A(q)ψ(t, q) dq,

(2.47)

where the periodic function q ∈ DN 7→ ψ(t, q) is the law of the process qt at time t, and

µT (q) = Z−1
T exp

(
−V (q)

kBT

)
. (2.48)

The well-posedness of (2.47) for short times is given by the following result, whose proof is based

upon an appropriate application of the Schauder fixed point theorem.

Theorem 2.3. For a given initial condition (T 0, ψ0), with T 0 > 0 and
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ψ0 ∈ H2(DN ), ψ0
> 0,

ˆ

DN

ψ0 = 1,

there exists a time τ >
T 0

2γ‖A‖∞
> 0 such that (2.47) has a unique solution (T, ψ) with T ∈

C1([0, τ ],R+) and ψ ∈ C0([0, τ ], H2(DN )). Moreover, ψ > 0, and ψ > 0 when ψ0 > 0.

2.3.2.2 Convergence to the target temperature

To study the convergence of the nonlinear dynamics (2.47) under its formulation as a partial

differential equation, entropy methods can be used (see for instance the review papers [6,70]). The

total entropy we consider here is the sum of a spatial entropy E(t), related to the distribution of

configurations at time t, and a temperature term:

E(t) = E(t) +
1

2
(T (t)− T ∗)2,

with

E(t) =

ˆ

DN

h (f(t))µT (t), f(t) =
ψ(t, ·)
µT (t)

, h(x) = x lnx− x+ 1. (2.49)

Note that the reference measure µT (t) is time-dependent. If E(t) → 0 as t→ +∞, then T (t) → T ∗

and ψ(t) → µT∗ .

A typical convergence result can be stated for initial data not too far from the fixed point

(T ∗, µT∗), provided that the canonical measure satisfies some functional inequalities. Roughly

speaking, these functional inequalities mean that the dynamics at a fixed temperature converges

sufficiently fast to equilibrium.

Assumption 2.1. There exists an interval ILSIT = [TLSI
min , T

LSI
max] (with T

LSI
min > 0 and TLSI

min < T ∗ <

TLSI
max) such that the family of measures {µT }T∈ILSI

T
satisfies a logarithmic Sobolev inequality (LSI)

with a uniform constant 1/ρ, namely

ˆ

DN

h(f)µT 6
1

ρ

ˆ

DN

|∇f |2
f

µT .

A LSI holds for instance in the following cases: when the potential V satisfies a strict convexity

condition of the form Hess(V ) > ν Id with ν > 0 (as a special case of the Bakry and Emery crite-

rion [10]), or when the measure µT is a tensorization of measures satisfying a LSI (see Gross [68]).

Moreover, when a LSI with constant ρ is satisfied by Z−1
V e−V (q) dq, then Z−1

V+W e−(V (q)+W (q)) dq

(with W bounded) satisfies a LSI with constant ρ̃ = ρ einfW−supW . This property expresses some

stability with respect to bounded perturbations (see Holley and Stroock [87]). In particular, the

canonical measure associated with smooth potentials on a compact state space (as is the case here)

satisfies a LSI. The uniformity of the constant can be ensured by restricting the temperatures to

a finite interval isolated away from 0.

Theorem 2.4. Consider an initial data (T 0, ψ0) with ψ0 ∈ H2(DN ), ψ0 > 0,

ˆ

DN

ψ0 = 1, and

associated entropy E(0) 6 E∗, where

E∗ = inf

{
1

2
(TLSI

min − T ∗)2,
1

2
(TLSI

max − T ∗)2
}
.

Then, there exists γ0 > 0 such that, for all 0 < γ 6 γ0, (2.47) has a unique solution (T, ψ) ∈
C1(R+,R)× C0(R+, H

2(DN )), and the entropy converges exponentially fast to zero: There exists

κ > 0 (depending on γ) such that
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E(t) 6 E(0) exp(−κt).

In particular, the temperature remains positive at all times: T (t) > TLSI
min > 0, and it converges

exponentially fast to T ∗.

The proof of this result follows from a Gronwall inequality on the entropy E(t), which, in turn,

is a consequence of the assumed uniform LSI and some algebraic computations to control the

time derivatives of the temperature. These computations allow to give an expression of the critical

temperature update rate γ0 and the exponential decay rate κ in terms of the the LSI rate ρ and

other parameters of the model (‖A‖∞, ‖V ‖∞, TLSI
min).

An alternative convergence result can be stated provided a Poincaré inequality holds (which

is a weaker statement than LSI) under a smallness condition on the L2 entropy of the initial data

(corresponding to the choice h(x) = 1
2 (x− 1)2 in (2.49)).

2.3.3 Some numerical results

We applied the proposed method (2.46), with expectations approximated by appropriate time

averages along a single trajectory, to a model Lennard-Jones fluid, using the code S-TAMP from

CEA/DAM (see the extensive numerical results presented in [H15]). We discussed in particular

the choice of the parameters, with a focus on the rate γ at which the temperature is modified. As

expected (and as predicted by Theorem 2.4), the convergence is slower for small values of γ (the

temperature is not updated fast enough), whereas larger frequencies trigger fast initial oscillations

in the temperature which may lead to numerical instabilities in the scheme. We present in Fig-

ure 2.2 typical time evolutions of the temperature for a given compression rate (left) and a typical

Hugoniot curve obtained from computations at various compression rates (right).
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Fig. 2.2. Left: Plot of the temperature as a function of time (in reduced units) for various values of
the frequency ν = NkBγ (in s−1), for a system of size N = 4, 000 and a given compression rate. Right:
Hugoniot curve for Argon (in reduced units, solid line and crosses). The reference results from [111] are
also reported (circles).

We have also applied the method in [H23] to compute the Hugoniot curve of TATB, a material

of interest for the physicists at CEA/DAM, before and after the passage of a detonation wave. In

this case, the underlying dynamics is a discrete Metropolis algorithm [114] rather than a Langevin

dynamics.
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This chapter is devoted to theoretical results and numerical methods for steady-state nonequi-

librium systems in computational statistical physics. Section 3.1 recalls the general frame-

work of linear response for nonequilibrium perturbations of equilibrium dynamics. Section 3.2

then presents some results related to thermal transport in one dimensional chains (see our

works [H16,H18,H22,H24,H28]); while Section 3.3, based on [H26], focuses on the computation

of the shear viscosity.
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3.1 Nonequilibrium systems and linear response theory

The aim of this section is to provide a general introduction to linear response theory for nonequi-

librium perturbations of equilibrium systems. Section 3.1.1 discusses general features of nonequi-

librium dynamics. Nonequilibrium perturbations of equilibrium dynamics are then considered in

Section 3.1.2. We introduce in particular two prototypical examples which illustrate our abstract

presentation throughout this section: the self-diffusion of a particle and the thermal transport

in one dimensional chains. Linear response is then studied in Section 3.1.3, where we provide in

particular a formal expression for the invariant probability measure of the system and connect the

computation of transport properties to appropriate correlation functions.

3.1.1 Equilibrium and nonequilibrium dynamics

Nonequilibrium systems are characterized, from a physical viewpoint, by the irreversibility of their

evolutions. We consider in this chapter dynamics in their steady-states. The irreversibility then

often manifests itself through the existence of non-zero fluxes or currents flowing from one part

of the system to another one. To create and maintain such fluxes, an appropriate external forcing

has to be applied. To study thermal transport for instance, a typical set-up is to maintain two

parts of the system at different temperatures, henceforth creating an energy flux from the hottest

to the coldest region. Of course, to reach some steady-state, some dissipation mechanism has to

be considered as well, otherwise the external forcing may lead to an uncontrolled growth of the

energy of the system.

In order to give a mathematical definition of steady-state nonequilibrium systems complement-

ing the above physical picture, we need to introduce a few notions. We consider in this introductory

section a general stochastic dynamics on a configuration space X (typically, the configuration space

R
3N or T3N when x = q, or the phase-space R

3N × R
3N or T3N × R

3N when x = (q, p)):

dxt = b(xt) dt+ σ(xt) dWt, (3.1)

where Wt is a standard Brownian motion. Recall that invariant measures of such processes are

stationary solutions of the Fokker-Planck equation (2.5) associated to (3.1) (see the introduction

of Chapter 2). The existence and uniqueness of an invariant probability measure with a smooth

density for the process (3.1) can be proved for instance by the techniques reviewed in [128].

From a mathematical viewpoint, equilibrium systems are characterized by the self-adjointness

of the generator A (defined in (2.6)) on the weighted Hilbert space L2(ψ∞), where ψ∞ is the

density of the (unique) invariant probability measure of the dynamics:

ˆ

X

Af g ψ∞ =

ˆ

X

f Ag ψ∞. (3.2)

This expresses the reversibility of the dynamics with respect to the invariant measure of the

process. In some cases, such a reversibility property holds only up to a one-to-one transformation

preserving the invariant measure. For example, for the Langevin dynamics, whose generator and

invariant probability measure respectively read

A =M−1p · ∇p −∇V · ∇p − γM−1p · ∇p +
1

β
∆p, ψ∞(q, p) dq dp = Z−1e−βH(q,p) dq dp,

reversibility is valid only upon momentum reversal S(q, p) = (q,−p):
ˆ

E

Af g ψ∞ =

ˆ

E

(f ◦ S)A(g ◦ S)ψ∞. (3.3)

Reversibility properties such as (3.2) or (3.3) are no longer true for nonequilibrium dynamics.
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An important property of nonequilibrium systems is that their invariant measures in general

depend non-trivially on the details of the dynamics. This is not the case for equilibrium dynamics.

Indeed, consider for instance the overdamped Langevin dynamics on the compact configuration

space T
d = (R\Z)d

dxt = −∇V (xt) dt+

√
2

β
dWt, (3.4)

for a smooth periodic potential V . Its unique invariant probability measure is Z−1e−βV (x) dx.

Now, if the dynamics (3.4) is perturbed by a smooth gradient modification of the drift term as

dxt =
(
−∇V (xt) +∇Ṽ (xt)

)
dt+

√
2

β
dWt, (3.5)

then the unique invariant measure becomes e−β(V (x)−Ṽ (x)) dx. In particular, the invariant measure

is modified only on the support of the perturbation Ṽ . For nonequilibrium dynamics (for instance,

when b does not derive from a gradient), the invariant measure is in general modified everywhere

even if the perturbation is restricted to a small domain. This is due to long-range correlations which

are generically present in nonequilibrium systems (see for instance [42]). Let us illustrate these

physical considerations by a simple analytical example (taken from [127, Section 2.5]). Consider

the dynamics (3.4) perturbed by a force which is not the gradient of a periodic potential, in

dimension d = 1 and in the case β = 1:

dxt =
(
− V ′(xt) + F

)
dt+

√
2 dWt,

where F ∈ R\{0} is a constant force. Standard techniques (see again [128]) allow to show the exis-

tence and uniqueness of an invariant probability measure ψ∞(x) dx, which satisfies the stationary

Fokker-Planck equation
d

dx

(
(V ′ − F )ψ∞ +

dψ∞

dx

)
= 0. (3.6)

In fact, it can be checked that the periodic function

ψ∞(x) = Z−1e−V (x)+Fx

ˆ x+1

x

eV (y)−Fy dy = Z−1

ˆ 1

0

eV (x+y)−V (x)−Fy dy,

with Z chosen such that
´ 1

0
ψ∞ = 1, indeed satisfies (3.6). It is clear from the expression of the

invariant measure that, even if the potential V is only locally perturbed by some potential Ṽ , the

invariant measure is in general modified everywhere on T.

3.1.2 Nonequilibrium perturbations of equilibrium dynamics

We consider in this chapter nonequilibrium perturbations of equilibrium dynamics, through:

(i) the addition of non-gradient forces as in Section 3.3, a prototypical example being given in

Section 3.1.2.1;

(ii) fluctuation terms with different temperatures, an example being thermal transport in one-

dimensional chains (Section 3.1.2.2).

These perturbations of equilibrium dynamics are introduced to compute a transport coefficient α,

which relates the magnitude of the response of the system in its steady-state (an average current)

to the magnitude of the external forcing (see (3.18) below).

Recall that there are three main types of techniques to compute transport properties:

(i) equilibrium techniques based on Green-Kubo formulas, which are integrated correlation func-

tions of the general form
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α =

ˆ +∞

0

E

(
A(xt)B(x0)

)
dt,

where A,B are two appropriate observables, and where the expectation is taken with respect

to all initial conditions distributed according to the invariant probability measure of some

reference dynamics, and for all realizations of this dynamics;

(ii) transient methods, where the system is initially locally perturbed, and the relaxation of this

perturbation is monitored as a function of time. The comparison with the assumed macro-

scopic evolution equation (for instance the heat equation for thermal transport) allows to

identify the physical parameters of the macroscopic evolution (such as the thermal conduc-

tivity); see [89,143] for an application of this technique.

(iii) steady-state nonequilibrium techniques where a forcing is permanently applied to the system.

The latter methods can be decomposed into two subcategories: boundary driven techniques

where the external forcing is imposed only in boundary regions, and bulk driven dynamics

where the perturbation is experienced by all particles in the system. In both cases, an appro-

priate flux is measured, and the transport coefficient is obtained as the ratio of the average

flux to the magnitude of the external forcing. The expression of the flux function is again

defined in analogy with macroscopic thermodynamics.

Bulk dynamics are often numerically more efficient since the forcing is applied globally to

the system, and therefore the steady state can be reached faster. Besides, it is in general

impossible to prove the existence and uniqueness of an invariant probability measure for

boundary driven dynamics, except in very simple geometries such as one dimensional atom

chains.

It should be emphasized that the definition of transport coefficients is based on an analogy with

macroscopic evolution equations. This is clear for transient and steady states dynamics. It is in

fact also the case for equilibrium methods since the expression of the transport coefficient as some

correlation function can be seen as a reformulation of the linear response result for steady state

nonequilibrium dynamics (see (3.19) below).

3.1.2.1 Non-gradient perturbations

Consider the following dynamics for a system in a periodic potential V :





dqt =M−1pt dt,

dpt =
(
−∇V (qt) + ξF

)
dt− γM−1pt dt+

√
2γ

β
dWt,

(3.7)

where (qt, pt) ∈ T
d ×R

d and F ∈ R
d. Note that a non-zero constant force F does not derive from

a periodic potential.

It is expected, from a physical viewpoint, that the application of a non-zero constant force in

a given direction induces a non-zero velocity in this direction. The relevant response of the system

is therefore chosen to be the observable

R(q, p) = F ·M−1p. (3.8)

This allows to define the mobility as the ratio of the average projected velocity R divided by ξ, in

the limit of small forcings (see (3.20) below).

3.1.2.2 Fluctuation terms with different temperatures

Consider a one dimensional chain of N atoms of equal masses 1, with positions q = (q1, . . . , qN )

and momenta p = (p1, . . . , pN ). The left end of the chain is attached to a wall (q0 = 0 and p0 = 0
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at all times), while the right end is free. Attaching the chain on one side is important to remove

the translation invariance of the whole system. Denoting by v the interaction potential among the

atoms when only nearest neighbor interactions are considered, the Hamiltonian reads

H(q, p) =
N∑

i=1

p2i
2

+ V (q), V (q) = v(q1) +
N−1∑

i=1

v(qi+1 − qi). (3.9)

The evolution is governed by the Hamiltonian dynamics in the bulk (that is, for i ∈ {2, . . . , N−1}),
and Langevin dynamics at the two ends of the chain in order to impose temperatures TL, TR at

the left and right boundaries respectively:





dqi = pi dt,

dpi =
(
v′(qi+1 − qi)− v′(qi − qi−1)

)
dt, i 6= 1, N,

dp1 =
(
v′(q2 − q1)− v′(q1)

)
dt− γp1 dt+

√
2γTL dW

1
t ,

dpN = −v′(qN − qN−1) dt− γpN dt+
√
2γTR dW

N
t ,

(3.10)

where γ > 0 is the intensity of the thermostats.

The existence and uniqueness of a smooth invariant probability measure for the dynamics (3.10)

can be proved under appropriate assumptions on the interaction potential v. In particular, some

(super)quadratic growth at infinity is required. Such results are based either on methods from

spectral theory [49, 51] (in which case some additional pinning potential of the form u(qi), with

u growing sufficiently fast at infinity, is required at each site), or on probabilistic techniques [25,

50, 130, 131]. In all cases, it is shown that the generator of the dynamics has a compact resolvent

in an appropriate Hilbert space. When TL = TR = T , this invariant probability measure is the

Gibbs measure at inverse temperature β−1 = kBT . When TL 6= TR, there is in general no simple

expression of the invariant measure. Note that there are also situations such as the one studied

in [75] where the existence of an invariant probability measure is not known. The main obstruction

is the lack of a spectral gap in the spectrum of the generator.

When TL 6= TR, an energy flow through the system from the cold to the hot region is expected.

This can be proved by computing the entropy production in the system [15, 50]. The thermal

conductivity is defined as the energy flux divided by the temperature difference (see (3.21) below).

The relevant physical response of the system is the total energy current J across the system

J(q, p) =

N−1∑

i=1

ji+1,i(q, p), ji+1,i(q, p) = −v′(qi+1 − qi)
pi + pi+1

2
, (3.11)

which is the sum of the local currents ji,i−1 expressing the local conservation of the energy. The

expression of these currents is motivated as follows. Consider an index i = 2, . . . , N − 1. The

energy εi at the i-th site is the sum of the kinetic energy and half of the interaction energies with

the neighboring sites:

εi(q, p) =
p2i
2

+
1

2

(
v(qi+1 − qi) + v(qi − qi−1)

)
, (3.12)

with appropriate modifications at the boundaries:

ε1(q, p) =
p21
2

+ v(q1) +
1

2
v(q2 − q1), εi(q, p) =

p2N
2

+
1

2
v(qN − qN−1).

A simple computation shows that the variation of the local energy in the bulk (2 6 i 6 N − 1) is

given by the following conservation law:
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dεi =
(
ji,i−1 − ji+1,i

)
dt.

The quantities ji,i−1 can therefore be interpreted as energy fluxes from the site i− 1 to the site i.

3.1.3 Linear response for nonequilibrium dynamics

We present in this section a formal study of nonequilibrium dynamics that are perturbations of

equilibrium processes. The various assumptions we make need to be justified for the particular

dynamics considered in applications.

3.1.3.1 Reference equilibrium dynamics

We denote by A0 the generator of the reference equilibrium dynamics on the state-space X , and

by ψ0 its invariant measure, which is assumed to be unique. The generator of the perturbation

is A1, so that the generator of the nonequilibrium dynamics reads A0 + ξA1.

Let us give the expressions of the above quantities for the two examples presented in Sec-

tion 3.1.2:

(i) For the dynamics (3.7), the generator of the reference dynamics (corresponding to the case

F = 0) and of the perturbation respectively read

A0 =M−1p · ∇p −∇V · ∇p − γM−1p · ∇p +
γ

β
∆p, A1 = F · ∂p. (3.13)

The invariant probability measure is

ψ0(q, p) dq dp = Z−1 exp

(
−β
[
1

2
pTM−1p+ V (q)

])
dq dp. (3.14)

(ii) Consider now the dynamics (3.10) with TL = T+∆T and TR = T−∆T . We set ξ = ∆T . The

reference equilibrium dynamics is the Langevin dynamics (3.10) with the two thermostats at

the boundaries at the same temperature T . Its generator reads

A0 =
N∑

i=1

pi∂qi − (∂qiV ) ∂pi − γ
(
p1∂p1 + pN∂pN

)
+ γT

(
∂2p1 + ∂2pN

)
, (3.15)

and the invariant probability measure has a density ψ0(q, p) = Z−1e−H(q,p)/T , where H is

given by (3.9). The generator of the perturbation is A1 = γ(∂2p1 − ∂2pN ).

3.1.3.2 Invariant measure of the nonequilibrium dynamics

Denote by ψξ the density of the invariant measure of the nonequilibrium dynamics (assuming that

it exists). We also assume that the invariant measure is unique. Recall that some techniques to

prove existence and uniqueness of invariant measures are reviewed in [128]. The function ψξ is

the stationary solution of the Fokker-Planck equation. Equivalently, ψξ is defined by the following

requirement:
ˆ

X

(
A0 + ξA1

)
ϕψξ = 0

for all test functions ϕ. It is convenient to write ψξ as a perturbation of the reference measure:

ψξ = fξ ψ0,

and to work on the Hilbert space L2(ψ0) endowed with the scalar product
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〈f, g〉L2(ψ0)
=

ˆ

X

f(x)g(x)ψ0(x) dx.

The function fξ is then the unique solution of the Fokker-Planck equation

(A∗
0 + ξA∗

1) fξ = 0,

ˆ

E

fξψ0 = 1, (3.16)

where adjoints are considered on L2(ψ0). Note that the invariance of the reference measure ψ0 is

expressed in this framework as

A∗
01 = 0.

The uniqueness of the reference invariant measure ψ0 means that Ker(A∗
0) = Span(1). It is useful

to introduce the Hilbert space

H =

{
f ∈ L2(ψ0)

∣∣∣∣
ˆ

X

fψ0 = 0

}
= L2(ψ0) ∩ {1}⊥,

where the orthogonality is understood with respect to the L2(ψ0) scalar product.

The following result gives the expression of the function fξ as a power series in ξ when ξ is

sufficiently small, under appropriate assumptions on the perturbation A1.

Theorem 3.1. Assume that (3.16) has a unique solution, and that

(a) (properties of the equilibrium dynamics) Ker(A∗
0) = 1 and A∗

0 is invertible on H;

(b) (properties of the perturbation) Ran(A∗
1) ⊂ H and (A∗

0)
−1 A∗

1 is bounded on H.

Denote by r the spectral radius of the bounded operator (A∗
0)

−1 A∗
1 ∈ B(H):

r = lim
n→+∞

∥∥∥
(
(A∗

0)
−1 A∗

1

)n∥∥∥
1/n

.

Then, for |ξ| < r−1, the unique solution of (3.16) can be written as

fξ =
(
1 + ξ (A∗

0)
−1 A∗

1

)−1

1 =

(
1 +

+∞∑

n=1

(−ξ)n
[
(A∗

0)
−1 A∗

1

]n
)
1. (3.17)

The linear term in ξ in the expression of fξ is denoted by

f1 = − (A∗
0)

−1 A∗
11.

Note that the measure (3.17) is a probability measure: the normalization constant for ψξ does not

depend on ξ. This owes to the fact that Ran((A∗
0)

−1 A∗
1) ⊂ H, and

ˆ

X

hψ0 = 0

for any h ∈ H, so that
ˆ

X

ψξ =

ˆ

X

ψ0 = 1.

The first assumption in the above theorem means that the equilibrium dynamics has good

ergodic properties, while the second one ensures that the perturbation is not too strong. A typical

way of proving that (A∗
0)

−1 A∗
1 is bounded onH is to show that A1 is A0-bounded:D(A0) ⊂ D(A1)

and there exists a, b > 0 such that ‖A1ϕ‖ 6 a‖A0ϕ‖+ b‖ϕ‖ for ϕ ∈ D(A0).

The proof of Theorem 3.1 is very simple. We already know that the solution of (3.16) is unique

and that (3.17) provides the solution when the series on the right-hand side of (3.17) converges.
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This convergence is guaranteed by the convergence in B(H) of the series

+∞∑

n=1

(−ξ)n
[
(A∗

0)
−1 A∗

1

]n
,

which is ensured by the condition |ξ|r < 1.

3.1.3.3 Linear response and correlation functions

Linear response properties are first order deviations (in ξ) of average properties computed in the

nonequilibrium steady state compared to the same average property computed at equilibrium.

Averages in the nonequilibrium steady state are obtained by the integration of an observable h

with respect to the measure ψξ:

〈h〉ξ =
ˆ

X

h(x)ψξ(x) dx = 〈h, fξ〉L2(ψ0),

while equilibrium averages, denoted by 〈h〉0, correspond to an integration with respect to ψ0. In

fact, upon considering h−〈h〉0 instead of h, there is no restriction in studying the linear response

of an observable h ∈ H, for which 〈h〉0 = 0 and 〈h〉ξ = O(ξ).

The appropriate response functions to be averaged, denoted by R in the sequel, are determined

by the physics of the problem. For instance, it is the projected velocity (3.8) for the Langevin

dynamics with an additional constant forcing term, and the thermal current (3.11) for one dimen-

sional chains coupled to thermostats with different temperatures at the boundaries.

Susceptibilities or transport coefficients are then defined as follows (recall that R ∈ H):

α = lim
ξ→0

〈R〉ξ
ξ

. (3.18)

In practice, an estimate of α can be obtained by choosing a value of ξ sufficiently small, approx-

imating 〈R〉ξ by a longtime average over one realization of the dynamics similar to (2.3), and

dividing this quantity by ξ. In order to check that the value of ξ is indeed small enough to neglect

higher order contributions, it is possible for instance to check the linearity of the response by

computing approximations of 〈R〉ξ with ξ replaced by, say, ξ/2 or 2ξ.

Now, using the expression (3.17) of the invariant measure in terms of the perturbation param-

eter ξ, and the equality

−A−1
0 =

ˆ +∞

0

etA0 dt

as operators on H (which, to be justified, requires some decay properties of the semi-group),

linear response properties can be rephrased using correlation functions. Introducing the function

S = A∗
11, it holds

α =

ˆ

X

R f1 ψ0 = −
ˆ

X

[
A−1

0 R
]
[A∗

11] ψ0 =

ˆ +∞

0

E

(
R(xt)S(x0)

)
dt, (3.19)

where the expectation is taken over all initial conditions distributed according to ψ0(x) dx, and

over all realizations of the reference equilibrium dynamics (with generator A0). The function S

may be called a conjugated response. Note that its expression is determined by the applied per-

turbation A1, and not by the response function R.

The autocorrelation of R is recovered for perturbations such that S ∝ R. For the two examples

presented in Section 3.1.2, studied in greater detail below, S(q, p) = βR(q, p) = βF ·M−1p for (3.7),

while S(q, p) = γβ2(p21 − p2N ) for (3.10). In the latter case, S cannot be related to the response

function defined in (3.11).



3.1 Nonequilibrium systems and linear response theory 37

3.1.3.4 Some examples

We present an application of the general definitions provided in Section 3.1.3.3 to the two proto-

typical examples introduced in Section 3.1.2. This gives the definition of the mobility of a system

described by a Langevin equation, and of the thermal conductivity of one dimensional chains.

Definition of the mobility.

We consider the dynamics (3.7). The linear response of the projected velocity (3.8) allows to

define the mobility in terms of the autocorrelation of the projected velocity for a system evolving

according to the reference dynamics with generator A0 defined in (3.13):

α = lim
ξ→0

〈
F ·M−1p

〉
ξ

ξ
= β

ˆ +∞

0

E

(
(F ·M−1pt)(F ·M−1p0)

)
dt. (3.20)

In fact, a simple computation also allows to relate the mobility defined by the linear response of a

nonequilibrium dynamics, to the self-diffusion coefficient obtained from the longtime behavior of

the projected position F ·qt for an equilibrium dynamics, in a diffusive scaling. Diffusive properties

of Langevin dynamics were studied in [120,133]. The diffusion coefficient is defined by the so-called

Einstein formula

D = lim
T→+∞

E

(
F · (qT − q0)

)2

2T
,

where the expectation is over all initial conditions distributed according to (3.14), and over all

realizations of the reference equilibrium dynamics (with generator A0 defined in (3.13)). The

relation between the mobility and the self-diffusion coefficient is

α = βD.

This equality is based on the identity

E

(
F · (qT − q0)

)2
= 2T

ˆ T

0

E

(
(F ·M−1pt)(F ·M−1p0)

)(
1− t

T

)
dt.

An application of the dominated convergence theorem gives the conclusion when the autocorrela-

tion function is integrable, using the expression (3.20) of the mobility α.

Definition of the thermal conductivity.

We now turn to the dynamics (3.10). The thermal conductivity is defined by the linear response

of the energy current :

κ = lim
∆T→0

〈J〉∆T
∆T

= −β2γ

ˆ +∞

0

ˆ

E

(
e−tA0J

)
(p21 − p2N )ψ0 dt. (3.21)

Some (non trivial) manipulations allow to rewrite the above correlation in terms of the energy

current autocorrelation (see for instance [15,100]):

κ = 2β2

ˆ +∞

0

E

(
ji+1,i(qt, pt)J(q0, p0)

)
dt =

2β2

N − 1

ˆ +∞

0

E

(
J(qt, pt)J(q0, p0)

)
dt, (3.22)

where the equalities hold for any i = 1, . . . , N − 1.
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3.1.3.5 Artificial dynamics

Transport coefficients can be computed by specifying both a perturbation (described by its gen-

erator A1) and an appropriate response function R. Once these two quantities are provided, the

transport coefficient is obtained by (3.18) or (3.19). In general, the expressions of A1 and R are

motivated by an analogy with experimental setups.

Now, the perturbationA1 actually enters only through the function S = A∗
11. There is therefore

some freedom in choosing a perturbation different from the physically relevant one, while ensuring

that the linear response is correct sinceA∗
11 is preserved. This is the basis of the “synthetic NEMD”

algorithms (with the terminology of [55]), in which non physical perturbations are considered. The

interest of these non physical perturbations is that they may have better numerical properties than

the standard, physically motivated perturbations: the average linear responses are the same, but

the variance of the observables may be different, or the sizes of the transient regime before the

steady state is reached may be different.

Two synthetic dynamics can be proposed for thermal transport in one dimensional chains.

They perturb the reference dynamics (Hamiltonian dynamics with Langevin thermostats at the

same temperature at the boundaries) by nongradient forcing terms, instead of modifying the

temperatures at the boundaries. These dynamics are bulk driven (the forcing is felt directly at

every site in the chain).

(i) In [54, 56, 103, 110] a non-gradient perturbation −ξ
(
v′(qi+1 − qi) + v′(qi − qi−1)

)
is applied

at site i, with appropriate modifications at the boundaries:





dqi = pi dt,

dpi =
(
(1− ξ)v′(qi+1 − qi)− (1 + ξ)v′(qi − qi−1)

)
dt, i 6= 1, N,

dp1 =
(
(1− ξ)v′(q2 − q1)− v′(q1)

)
dt− γp1 dt+

√
2γT dW 1

t ,

dpN = −(1 + ξ)v′(qN − qN−1) dt− γpN dt+
√

2γT dWN
t ,

The generator of the perturbation of the reference dynamics with generator (3.15) reads

A1 = −v′(q2 − q1)∂p1 −
N−1∑

i=2

(
v′(qi+1 − qi) + v′(qi − qi−1)

)
∂pi − v′(qN − qN−1) ∂pN ,

so that A∗
1 = −A1 − 2βJ .

(ii) Hamiltonian perturbations can also be employed. In this case, the dynamics is the Hamilto-

nian dynamics associated with the Hamiltonian H0 + ξH1 with

H1(q, p) =
N∑

i=1

iεi(q, p),

where εi is defined in (3.12), and the two end sites are still coupled to Langevin thermostats

at the same temperature T . The generator of the perturbation is

A1 = ∇pH1 · ∇q −∇qH1 · ∇p,

so that A∗
1 = −A1 − βJ .

In both cases, S = A∗
11 = −cβJ for some constant c > 0, so that the linear response of J allows

to recover the thermal conductivity, up to a known multiplicative constant (in view of the general

result (3.19) and of the definition (3.22) of the thermal conductivity).
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3.2 Thermal transport in one dimensional chains

Thermal transport properties are usually investigated using Fourier’s law: denoting by T the

temperature in the system,

cv(T ) ∂tT = ∇ · (κ(T )∇T ), (3.23)

where cv is the heat capacity and κ is the thermal conductivity (a matrix, in general). Fourier’s

law allows to discuss the relaxation to equilibrium of isolated systems. It expresses a diffusive

behavior of the energy. It can also be used to describe nonequilibrium steady states where the

system is put in contact with two reservoirs at different temperatures. In this case, there is a net

energy flow from the hotter to the colder reservoir. The heat current density j is proportional to

the temperature gradient j = −κ(T )∇T , and is such that

∇ · j = 0.

In this setting, the diffusive behavior of the energy is hidden in the transient relaxation to the

steady state.

Section 3.2.1 discusses the relevant space-time scalings to consider for microscopic systems

governed by dynamics such as (3.10) in order to obtain macroscopic evolution equations such

as (3.23). Section 3.2.2 then presents some results on the (non)validity of Fourier’s law in one

dimensional systems, mostly numerical in nature. Finally, Section 3.2.3 summarizes a numerical

study on the surprising behavior of a one dimensional system far from the linear response regime.

3.2.1 Space-time scalings for energy transport

Energy transport properties depend on the space-time scale on which the evolution is observed.

Before studying the energy transport in a diffusive time-scale where the evolution is followed over

long times N2t with space renormalized by a factor N−1 (this is the relevant scaling for Fourier’s

law), the system should first be understood in the hyperbolic time-scale, where the system is

studied over long times Nt with space renormalized by a factor N−1. Locally, the state of the

system should be close to some equilibrium Gibbs measure consistent with the local invariants

of the system, such as the energy, the momentum and the volume for Hamiltonian dynamics. In

the hyperbolic scaling, a reduced description of the evolution of the microscopic system is given

by a system of partial differential equations involving the invariants of the dynamics, known as

the hydrodynamic limit (see [96]). The limiting set of equations is often not difficult to obtain

formally. To rigorously prove the convergence, the method of choice is the relative entropy method

of Yau [156]. Some appropriate ergodicity properties are however required to apply it. It is currently

a major open problem to rigorously derive hydrodynamic limits for deterministic systems [18].

The situation is more favorable when the Hamiltonian dynamics is perturbed by appropriate

stochastic processes. Together with Cédric Bernardin, we have proved the hydrodynamic limit

for a modified Hamiltonian dynamics, where the kinetic energy function and the potential energy

function are equal. Our aim was to consider the simplest possible dynamics relevant for thermal

transport. In the model we have investigated, momenta and positions play the same role, and a

very simple dynamics is obtained, whose equations formally read (for the i-th degree of freedom)

dηi = [v′(ηi+1)− v′(ηi−1)] dt.

The proof of the hydrodynamic result follows the lines of the proof given in [60]; see [H28,Theorem 1].

Once the behavior of the system is understood in the hyperbolic space-time scaling, it is possible

to study the diffusion of the energy on a longer time-scale. If the process has a diffusive behavior

consistent with Fourier’s law, then the relevant time scale is indeed the diffusive one. However,

the energy often “superdiffuses” in one dimensional chains, so that the correct time scaling for
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time should rather be Nαt for 1 < α < 2 instead of N2t (see for instance [117] for a review of

the cases when such statements can be made mathematically rigorous). Another signature of the

anomalous diffusion in one dimensional systems is the fact that the thermal conductivity defined

by an appropriate scaling of (3.21) has no thermodynamic limit as the size of the system goes

to infinity. These two anomalous behaviors are a sign that Fourier’s law may not be valid in one

dimensional system; see Section 3.2.2 for a more precise discussion.

3.2.2 Validity of Fourier’s law and thermodynamic limit of the conductivity

For usual three dimensional materials, it is observed in numerical simulations that Fourier’s law

appropriately describes the behavior of the system. In particular, the thermal conductivity does

not depend on the system size, and so, it is a well-defined thermodynamical quantity. On the

other hand, the validity of Fourier’s law is questionable in one dimensional systems. In particular,

there is, in many cases, no thermodynamic limit for the thermal conductivity in these models, see

Section 3.2.2.1. This is consistent with some experimental results on the length dependence of the

thermal conductance of carbon nanotubes [29,153].

3.2.2.1 Some facts on the thermodynamic limit of the conductivity in one

dimensional systems

Define the thermal conductivity for a one-dimensional chain of oscillators of size N as the total

energy current (3.11) divided by the temperature gradient ∆T/N , assuming a linear temperature

profile (see (3.21) and (3.22)):

κN = lim
∆T→0

N〈J〉∆T
∆T

= 2β2 N

N − 1

ˆ +∞

0

N−1∑

i=1

E

(
j2,1(qt, pt)ji+1,i(q0, p0)

)
dt. (3.24)

The question is whether κN has a finite limit as the system size goes to infinity:

∃? κ = lim
N→+∞

κN < +∞. (3.25)

This issue has been the subject of many theoretical and numerical studies, see the review papers [18,

44, 107]. The limit (3.25) is often studied using numerical experiments (except in very simple

analytical cases corresponding to harmonic potentials). The following facts have been established

to date, by theoretical or numerical arguments:

(i) for harmonic systems [132] (even in the presence of a harmonic pinning potentials), κN = cN .

This is established by an analytical proof showing that the value of J is independent of N .

It is also expected that κN ∼ N for integrable systems [158] (for which there are as many

invariants of the dynamics as the number of degrees of freedom). A famous example of such

a system is the Toda lattice [83, 146], which corresponds to a chain of oscillators with the

interaction potential (b > 0)

v(r) =
e−br + br − 1

b2
.

For this potential, it is observed numerically that κN is constant.

(ii) the limit (3.25) exists for rotor chains (i.e. (3.10) when the interaction potential is v(r) =

1− cos(r); see the references in Section 3.2.3), systems with pinning potentials for which the

interaction potential and/or the pinning potential is anharmonic, or systems subjected to

specific random perturbations for which the momentum of the system is not conserved while

energy is (typically, changing the sign of the velocities at random times) [15,16].
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(iii) for chains with “generic” anharmonic potentials (non-integrable systems) and no pinning

potentials, the conductivity is observed to diverge as Nα with 0 < α < 1. The addition

of a stochastic perturbation preserving both the total momentum and the energy (such as

exchanging the velocities of neighboring atoms) does not change qualitatively the picture.

Such perturbations, introduced in [12], aim at modeling the effect of the nonlinearities of the

potential, and also ensure that the only invariants of the dynamics are the energy and the

total momentum. For harmonic interactions, it can be proved theoretically that κN ∼
√
N ,

while for anharmonic interactions κN 6 C
√
N (see [13]).

(iv) systems with atoms of random masses can be considered as well. For harmonic systems with

free boundary conditions [134], the conductivity diverges as κN ∼
√
N (this is also what

we observed for carbon nanotubes in our numerical study [H16]), while κN ∼ N−1/2 for

fixed boundary conditions [27] and κN decreases exponentially when some harmonic pinning

potential is considered. Depending on the boundary conditions, other scaling regimes can be

obtained [43]. There are also several studies on the influence of mass disorder on anharmonic

chains, such as [45], but the general conclusion is that mass disorder per se is not sufficient

to prevent the divergence of the thermal conductivity.

A question related to the convergence (3.25) is whether the dynamics of infinite dimensional

chains of oscillators is such that the energy current autocorrelation (an appropriate generalization

of the integrand in the rightmost term of (3.24)) is an integrable function of time or not. For

instance, for the simplified Hamiltonian dynamics studied in [H28], we proved that for harmonic

interactions and a stochastic perturbation preserving the invariants of the system, the current

autocorrelation function decays as t−1/2, so that the thermal conductivity obtained from the

Green-Kubo formula (generalizing (3.22) for infinite systems) is infinite, see Theorem 4 in [H28].

3.2.2.2 Numerical studies of stochastically perturbed systems

The scaling of the thermal conductivity for systems subjected to stochastic perturbations preserv-

ing both the energy and the momentum (such as [13]) can be rigorously determined for harmonic

interactions, while only an upper bound is obtained for anharmonic interactions (see the discussion

at the end of item (iii) above). To complement the theoretical results and characterize more pre-

cisely the divergence of the thermal conductivity for anharmonic potentials, we have performed ex-

tensive sets of numerical computations. In particular we have considered the Toda chains in [H22],

and various additional potentials for the simplified Hamiltonian dynamics proposed in [H28].

For Toda chains, we chose the simplest possible stochastic perturbation conserving both mo-

mentum and energy: Nearest neighbor particles exchange their momenta at random times dis-

tributed according to an exponential law of parameter γ > 0. We observe that the divergence

κN ∼ N is destroyed by the addition of a stochastic perturbation, and transforms into a diver-

gence κN ∼ Nα for 0 < α 6 1/2. The exponent α depends on the noise intensity γ, in a seemingly

monotonically increasing way, which is quite surprising (it is indeed expected that stronger noises

lead to less conduction). This may be explained by the fact that the noise destroys some diffusive

phenomena due to nonlinearities, like localized breathers, so that the current-current correlation

decays slower when more noise is present.

This dependence on the noise intensity is also observed in [H28]. It suggests that any theory

claiming the existence of a universal parameter α for the divergence of the thermal conductivity

(see the references in [107]) has to be properly circumstanced.

On the other hand, recent theoretical results [14] seem to indicate that, in an infinite one

dimensional chain perturbed by a stochastic noise locally preserving energy and momentum, the

decay of the current autocorrelation function depends only very mildly on γ. It is not completely

clear whether the exponent in the decay of the current autocorrelation function is the same as the

one characterizing the divergence of the thermal conductivity in the thermodynamic limit – but
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this theoretical result definitively calls for additional numerical works studying the dependence of

thermal properties with γ.

3.2.3 Nonlinear response under a strong mechanical forcing

The previous sections dealt with properties of the system in the linear response regime. We consider

in this section a system far from the linear response regime, and subjected to two forcings: a (weak)

thermal forcing and a (strong) mechanical one. We are not aware of any previous numerical study

of energy transport in mechanically forced atom chains. The aim is to study the interplay between

the thermal and the mechanical forcings. This presentation is based on [H24].

We consider a chain of N rotors. The name “rotor” is motivated by the fact that the config-

uration of a particle is described by an angle q and an angular velocity p, while the interaction

potential between neighboring particles is v(q) = 1 − cos(q). The leftmost rotor is attached to a

wall and put in contact with a Langevin thermostat at temperature TL, while the rightmost rotor

is subjected to a constant external force F and put in contact with another Langevin thermostat

at temperature TR. We consider a system with free boundary conditions on the right end (fixed

boundary conditions give very similar results), the evolution equations of which read:





dqi = pi dt,

dpi =
(
sin(qi+1 − qi)− sin(qi − qi−1)

)
dt, i 6= 1, N,

dp1 =
(
sin(q2 − q1)− sin(q1)

)
dt− γp1 dt+

√
2γTL dW

1
t ,

dpN =
(
F − sin(qN − qN−1)

)
dt− γpN dt+

√
2γTR dW

N
t ,

(3.26)

whereW 1
t andWN

t are independent standard Wiener processes, and γ > 0 determines the strength

of the coupling to the thermostat. In the sequel, we work with γ = 1. Note that the external

constant force F is non-gradient since it does not derive from a periodic potential.

To our knowledge, there is currently no mathematical result ensuring the existence and unique-

ness of a smooth invariant measure for (3.26), even in the case F = 0. Indeed, the standard tech-

niques used to prove existence and uniqueness of an invariant measure for chains of oscillators

under thermal forcing (see for instance [25, 129]) do not apply here. In particular, there is no

mechanism to prevent energy from concentrating in the center of the chain. However, we have not

observed such problems in our numerical simulations.

Our numerical results indicate that a steady state is reached. If F = 0 and TL = TR = T ,

the system is in equilibrium, and the Gibbs measure at temperature T is an invariant probability

measure. When TL 6= TR with F = 0, the properties of the non-equilibrium stationary state have

been studied numerically by various authors [63–65,155]. If F 6= 0, the system is out-of-equilibrium

even if TL = TR. The force, in the stationary state, induces an energy current towards the left. The

stationary state cannot be computed explicitly and, if F is large, linear response theory cannot be

used to obtain information about the conductivity of the system. If TL 6= TR and F 6= 0, there are

two mechanisms that separately generate an energy current in the system: The mechanical force F

and the thermal force given by the temperature gradient. It is however difficult to separate the

contributions of each mechanism. The numerical experiments reported in [H24] show that these

two mechanisms are not necessarily additive. In particular, even when the two forcings generate

a current in the same direction, one mechanism may reduce the effect of the other one, leading to

counterintuitive results.

Details on the numerical integration of the dynamics are given in [H24]. Figure 3.1 shows plots

of the average velocities, kinetic and potential temperatures for different system sizes. The potential

temperature is obtained by inverting the function which, to a given temperature, associates the

canonical average of the potential energy. Note that the temperature is maximal in the center of
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the system, whereas, in systems where there is no mechanical force, the temperature decreases

monotonically from the hot end to the cold one. We also checked in [H24] by various statistical

tests that, for sufficiently long systems, a local Gibbs equilibrium parameterized by the average

velocity and the (kinetic or potential) temperature holds.
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Fig. 3.1. Rescaled profiles for systems of increasing size N = 2k. The x variable is the site index i divided
by N . The value of the nongradient force is F = 1.6 and TL = TR = 0.2. Left: momenta. Right: kinetic
(solid lines) and potential (dashed lines) temperatures.
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Fig. 3.2. Comparison of the currents with fixed temperature on the right end and increasing temperatures
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same for all situations considered; for the longest systems, we have considered forces 0 6 F 6 1.6; for the
shortest ones, we have considered the range 0 6 F 6 2.4).

For large mechanical forcings F (see Figure 3.2), we observe numerically that

(a) when TR is fixed (Figure 3.2, left), the current varies qualitatively as when there is no me-

chanical forcing: The absolute value of the current increases when TL decreases. In this case,

a positive thermal conductivity is observed (for a fixed value F of the mechanical forcing,

considering only the response in the limit when TR − TL → 0).

(b) when TL is fixed (Figure 3.2, right), the current has a surprising behavior: Its absolute value

increases when TR decreases. This means that the thermal forcing, which is naively expected

to reduce the current induced by the mechanical forcing, actually enhances it. In this case,

a negative thermal conductivity is observed (again, for a fixed value F of the mechanical

forcing).
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We have no satisfactory explanation for this surprising behavior at the moment, although some

physical conjectures are provided in [H24].

3.3 Shear viscosity: A mathematical study of a bulk driven
nonequilibrium dynamics

Many mathematical works studied the definition and the properties of the self-diffusion coefficient

(see for instance the recent contributions [76, 77, 121] and references therein), or the thermal

conductivity of one dimensional chains (see the references in Section 3.2). On the other hand, the

mathematical literature on the atomistic definition and the properties of the shear viscosity is

rather scarce in comparison with the numerous works in computational physics. This motivated

us to study numerical methods to compute the shear viscosity in [H26].

The shear viscosity characterizes the resistance of a fluid to flow when subjected to a shear

stress. For Newtonian fluids, it is the tensor linearly relating the shear stress to the velocity

gradient (see (3.36) below). A review of the most standard approaches in molecular simulation to

compute the shear viscosity can be read in [55, 147]. A popular method is to use a version of the

SLLOD algorithm (see the references in [35]), in which an external non-Hamiltonian forcing term

is added both to the positions and the momenta. This method is used in conjunction with Lees-

Edwards boundary conditions [102], which are boundary conditions consistent with a constant

shear rate and a linear velocity profile. However, a mathematical study of the linear response in

this framework is cumbersome since the boundary conditions for the associated Fokker-Planck

operators are time-dependent and also depend on the shear rate. It is easier to study techniques

relying on periodic non-gradient forcings. In this case, standard periodic boundary conditions can

be used. This is the path we follow here.

We decided to use a standard Langevin dynamics as the underlying dynamics of the system

since this dynamics is ergodic and has many nice mathematical properties, while still being suffi-

ciently close to the Hamiltonian dynamics. We are able to rigorously prove linear response results

using recent developments on hypocoercivity [150], and also obtain an effective equation on the ob-

served velocity profile in terms of the applied external force through some closure relation. One of

our main concerns is the dependence of the viscosity as a function of the parameters of the under-

lying dynamics, in particular the friction. We analyzed the large friction asymptotics by extending

and adapting mathematical studies of the properties of the self-diffusion coefficient [76,77,121].

This section is organized as follows. The dynamics we use is presented in Section 3.3.1. The

shear viscosity is then defined in Section 3.3.2 (see in particular Section 3.3.2.2), and its behavior

as a function of the Langevin friction is studied there as well. Finally, some numerical results

illustrate the theoretical results in Section 3.3.3.

3.3.1 Description of the dynamics

We consider a system ofN particles, enclosed in a periodic simulation box D. For simplicity of nota-

tion, we restrict ourselves to two-dimensional systems, so that D = LxT×LyT. The particles are de-
scribed by their positions q = (q1, . . . , qN ) ∈ DN and their momenta p = (p1, . . . , pN ) ∈ R

2N , and

we assume that they have identical massesm > 0. Our results can however straightforwardly be ex-

tended to the general case of particles with different masses and/or three-dimensional systems. We

write qi = (qxi, qyi) ∈ D, pi = (pxi, pyi) ∈ R
2, as well as qx = (qx1, . . . , qxN ), px = (px1, . . . , pxN )

and similar definitions for qy, py. The mass density of the system is ρ = mN/|D|, |D| = LxLy
being the volume of the box. As usual, we denote by

H(q, p) =

N∑

i=1

p2i
2m

+ V (q)
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the Hamiltonian of the system, the function V being the potential energy.

3.3.1.1 Nonequilibrium Langevin dynamics

The equations of motion we consider are a linear perturbation of the Langevin equations, with

some additional non-gradient external force in the x-direction (the direction of the flow), the

magnitude of the force depending only on the y coordinate of the particle. The non-gradient term

mimicks the effect of some shear stress, and hence allows to create a velocity profile in the direction

of the forcing, from which the viscosity of the fluid can be extracted. The dynamics reads (for

i = 1, . . . , N):





dqi,t =
pi,t
m

dt,

dpxi,t = −∇qxi
V (qt) dt+ ξF (qyi,t) dt− γx

pxi,t
m

dt+

√
2γx
β

dW xi
t ,

dpyi,t = −∇qyi
V (qt) dt− γy

pyi,t
m

dt+

√
2γy
β

dW yi
t ,

(3.27)

where β = 1/(kBT ) is the inverse temperature, ξ is the magnitude of the external nongradient

force, (W x
t ,W

y
t )t≥0 is a 2N -dimensional standard Brownian motion and the friction coefficients

γx, γy are real positive numbers. In order to avoid irrelevant technical issues, we assume in the

sequel that the potential V and the external force F belong respectively to C∞(DN ) and C∞(LyT).

The infinitesimal generator of the equilibrium Langevin process (i.e. (3.27) in the case when

ξ = 0), reads A0 = Aham +Athm, with

Aham =
p

m
· ∇q −∇V (q) · ∇p, Athm =

∑

α=x,y

γα

(
−pα
m

· ∇pα +
1

β
∆pα

)
.

Note that the canonical measure

ψ0(q, p) dq dp = Z−1 e−βH(q,p) dq dp (3.28)

is invariant by the dynamics (3.27) when ξ = 0, and is actually the only invariant measure (see

[H26, Theorem 1]). The adjoint operator on L2(ψ0) of the generator is A∗
0 = −Aham +Athm. The

generator of the nonequilibrium perturbation and its adjoint on L2(ψ0) respectively read

A1 =

N∑

i=1

F (qyi)∂pxi
, A∗

1 = −
N∑

i=1

F (qyi)∂pxi
+
β

m
pxiF (qyi).

The generator of the dynamics (3.27) is therefore Aξ = A0 + ξA1.

3.3.1.2 Existence and uniqueness of an invariant measure

When ξ 6= 0, there is no obvious invariant probability measure for (3.27), and the very existence

of such a measure is not guaranteed a priori. However, in the case when γx, γy > 0, standard

techniques based on Lyapunov functions and hypoellipticity arguments can be used to prove the

existence and uniqueness of an invariant measure that has a smooth density with respect to the

Lebesgue measure.

Theorem 3.2. Consider γx, γy > 0 and suppose that V, F are smooth. Then, for any ξ ∈ R, the

dynamics (3.27) has a unique smooth invariant probability measure with density ψξ ∈ C∞(DN ×
R

2N ). In addition, there exists ξ∗ > 0 such that, for any ξ ∈ (−ξ∗, ξ∗), the following expansion

holds in L2(ψ0):
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ψξ = fξψ0, fξ = 1 +
∑

k≥1

ξkfk, (3.29)

where fk ∈ H = {1}⊥ is such that ‖fk‖L2(ψ0) 6 C(ξ∗)−k for some constant C > 0 independent

of ξ.

The existence and uniqueness of an invariant measure in the case when either γx = 0 or γy = 0

is a much more difficult question.

Let us briefly sketch the proof of Theorem 3.2. The existence and the uniqueness of an invariant

measure that has a smooth density with respect to the Lebesgue measure for any ξ ∈ R is a

standard result since the position space is compact and the forces are smooth. It suffices to use

hypoellipticity arguments and take the kinetic energy as a Lyapunov function (see for instance [128]

for the general strategy, and [121, Appendix A] for the specific case under consideration). To obtain

the expression of this invariant measure as an expansion in the parameter ξ, we follow the lines

of the general argument sketched in Section 3.1. Standard hypocoercivity results show that A−1
0

is bounded on H (and in fact compact by a treatment similar to [76,77,118]). Moreover, a simple

computation shows that there exists a constant C > 0 such that, for any smooth test function ϕ,

‖A1ϕ‖2L2(ψ0)
6 C

∣∣∣〈ϕ,A0ϕ〉L2(ψ0)

∣∣∣ 6 C‖ϕ‖L2(ψ0) ‖A0ϕ‖L2(ψ0).

so that, for any ϕ ∈ H,

‖A1A−1
0 ϕ‖2L2(ψ0)

6 C‖A−1
0 ϕ‖L2(ψ0) ‖ϕ‖L2(ψ0).

Since Ran(A1) ⊂ H, this shows that A1A−1
0 is a bounded operator on H. The same holds true for

(A∗
0)

−1A∗
1|H, which is its adjoint on H ⊂ L2(ψ0).

3.3.2 Mathematical analysis of the viscosity

The nonequilibrium perturbation is such that

−A∗
11 = − β

m

N∑

i=1

pxiF (qyi).

In view of Theorem 3.2, and relying on the argument presented in Section 3.1.3, it easy to prove

the following linear response result.

Corollary 3.1. Under the same assumptions as in Theorem 3.2, and for any sufficiently regular

function h,

lim
ξ→0

〈A0h〉ξ
ξ

= − β

m

〈
h,

N∑

i=1

pxiF (qyi)

〉

L2(ψ0)

. (3.30)

Moreover, for any function h ∈ H,

lim
ξ→0

〈h〉ξ
ξ

= − β

m

〈
A−1

0 h,

N∑

i=1

pxiF (qyi)

〉

L2(ψ0)

. (3.31)

In the next sections, our aim is to understand the behavior of the average velocity profile of

the fluid as a function of the applied force F .

3.3.2.1 Local conservation of the longitudinal velocity.

We prove in this section a conservation equation for velocities in the x-direction, when spatial

averages over small windows in the transverse direction y are considered. This allows to state an
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equation relating the off-diagonal terms of the stress tensor and the nongradient force acting on

the system, see (3.35) below. Our derivation may be seen as a mathematically rigorous rewriting

of the seminal work of Irving and Kirkwood [91]. We henceforth assume that the potential energy

is given by a sum of pairwise interactions:

V (q1, . . . , qN ) =
∑

16i<j6N

V(|qi − qj |), (3.32)

for some given smooth potential V.
Consider the following average longitudinal velocity:

Uεx(Y, q, p) =
Ly
Nm

N∑

i=1

pxiχε (qyi − Y ) , (3.33)

where χε (with 0 < ε 6 1) is an approximation of the identity on LyT. The factor Ly in (3.33)

accounts for the fact that χε has units of inverse lengths: in fact,

1

Ly

ˆ Ly

0

Uεx(Y, q, p) dY =
1

Nm

N∑

i=1

pxi

is the average velocity of the system. In practice, averages such as (3.33) are computed with bin

indicator functions.

We also need a spatially localized (with respect to the altitude Y ) version of the off-diagonal

term of the stress tensor. This quantity is given by the following expression:

Σε
xy(Y, q, p) =

1

Lx




N∑

i=1

pxipyi
m

χε (qyi − Y )−
∑

16i<j6N

V ′(|qi − qj |)
qxi − qxj
|qi − qj |

ˆ qyi

qyj

χε(s− Y ) ds


 .

(3.34)

The fact that it can be interpreted as some stress tensor is motivated by the conservation law (3.35).

Besides, the spatial average over Y of Σε
xy(Y, q, p) is the standard expression for the off-diagonal

term of the pressure tensor. The expression (3.34) comes out naturally from the mathematical

analysis (see the proof of Proposition 3.1 in [H26]), and was already proposed in [148].

The relationship between the local longitudinal velocity and the off-diagonal term of the stress

tensor is made precise in the following proposition.

Proposition 3.1. The limits

ux(Y ) = lim
ε→0

lim
ξ→0

〈Uεx(Y, ·)〉ξ
ξ

, σxy(Y ) = lim
ε→0

lim
ξ→0

〈
Σε
xy(Y, ·)

〉
ξ

ξ

belong to C∞(LyT) and
dσxy(Y )

dY
+ γxρux(Y ) = ρF (Y ), (3.35)

where ρ = ρ/m is the particle density.

The proof is based on an application of Corollary 3.1 with (3.33) as a test function. The order

of the limits ε→ 0 and ξ → 0 cannot be inverted since the linear response result of Corollary 3.1

cannot be applied with h replaced by the limit of χε (which is a Dirac mass).

3.3.2.2 Closure relation and definition of the viscosity

We now discuss a closure relation for (3.35), which allows to obtain an equation on the average ve-

locity only, from which the viscosity can be extracted. By analogy with continuum fluid mechanics,
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we define the shear viscosity η as follows:

σxy(Y ) = −η(Y )
dux(Y )

dY
. (3.36)

This definition leads to the following equation on ux:

− d

dY

(
η(Y )

dux(Y )

dY

)
+ γxρux(Y ) = ρF (Y ).

In the bulk of homogeneous fluids, the simplest closure is to assume that

η(Y ) = η > 0, (3.37)

so that the following equation on ux is obtained:

−ηu′′x(Y ) + γxρux(Y ) = ρF (Y ). (3.38)

In order to ensure the uniqueness of the solution when γx = 0, an additional condition on ux
should be added (such as a vanishing integral over the domain LyT).

The equation (3.38) obtained with the help of the closure relation is the basis for numerical

methods to compute the shear viscosity given a potential energy function V . We were not able

to justify mathematically the assumption (3.37), and therefore rely on the numerical validations

presented in Section 3.3.3, where we compare numerical profiles of σxy and −ηu′x.

3.3.2.3 Dependence of the viscosity on the friction parameter

An important issue is the dependence of the viscosity on the parameters of the dynamics. For

the Langevin dynamics (3.27), this means understanding the dependence of the viscosity on the

friction parameters γx, γy. The limits γx → 0 or γy → 0 are very difficult to study mathematically

without strong assumptions on the potential and/or the geometry of the system. We therefore rely

on numerical simulations for these cases (see [H26]). As expected, the viscosity has a finite limit

when only one of the friction parameters vanishes.

On the other hand, the limit when one of the friction parameters goes to infinity can be studied

mathematically. To this end, we have to understand the limit of the velocity field ux as either γx
or γy goes to infinity. This is done by rigorous asymptotic analysis. Thanks to (3.38), limiting

behaviors of the viscosity may be inferred from the limiting behaviors of the velocity profiles. The

key result to obtain the limiting velocity profile is to characterize the limit of some averages with

respect to specific solutions of the Poisson equation (see (3.39) below).

In the case γy → +∞ for a fixed value γx > 0 for instance (see [H26] for the case γx → +∞
with a fixed value of γy), we can prove the following result.

Theorem 3.3 (Infinite transverse friction). Consider a given smooth function G and a

longitudinal friction γx > 0. Define A0(γy) = Aham + γxAx,thm + γyAy,thm, with Aα,thm =

−m−1pα · ∇pα + β−1∆pα , and denote by fγy the unique solution in H of the equation

−A0(γy)fγy =
N∑

i=1

pxiG(qyi). (3.39)

Then, there exist f0 ∈ H1(ψ0) and a constant C > 0 such that, for all γy ≥ γx,

∥∥fγy − f0
∥∥
H1(ψ0)

6
C

γy
. (3.40)
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Besides, the function f0 is of the general form f0(q, p) =

N∑

i=1

G(qyi)φi(qx, qy, px), with φi ∈ C∞.

The proof is standard: we first write formally an expansion of the velocity in inverse powers of the

friction parameters, obtain the equations defining the higher order terms in the expansion, and

determine these terms by the solvability conditions of the associated equations (through a Fredholm

alternative). The formal computations are then made rigorous thanks to uniform hypocoercivity

estimates.

The above result can be used to understand the limit of ux(Y ) as γy → +∞. Indeed, by

Proposition 3.1,

uεx(Y ) = lim
ξ→0

〈Uεx(Y, ·)〉ξ
ξ

=
β

m

〈
U

ε
γy (Y, q, p),

N∑

i=1

pxiF (qyi)

〉

L2(ψ0)

,

where−A0(γy)U
ε
γy (Y, ·) = Uεx(Y, ·) is a Poisson equation of the form (3.39) (withG(y) proportional

to χε(y − Y )). The convergence result (3.40) shows that U ε
γy (Y, ·) has a limit as γy → +∞, and

the limiting velocity field reads

u∞,ε
x (Y ) =

βLy
Nm2

〈
N∑

j=1

χε(qyj − Y )φj(qx, qy, px),

N∑

i=1

pxiF (qyi)

〉

L2(ψ0)

.

The latter quantity has a limit as ε→ 0. Therefore, the viscosity extracted from (3.38) also has a

finite limit. These theoretical considerations are illustrated by numerical simulations in [H26].

3.3.3 Numerical results for the Lennard-Jones fluid

We conclude this section by presenting a few numerical results validating the closure assump-

tion (3.37). Additional numerical results, including a careful study of the dependence of the viscos-

ity on the friction parameters of the Langevin dynamics, can be found in [H26]. The computations

are performed for a 2-dimensional Lennard-Jones fluid (with a smoothly truncated potential), and

the results are presented in reduced units. The thermodynamic state of the system is determined

by the temperature and the density: β = 0.4, ρ = 0.69. We consider Lx = 360 and Ly = 18,

so that the number of simulated particles is N = 4500. The remaining adjustable parameters of

the model are the force amplitude ξ and the friction parameters γx, γy. The dynamics (3.27) is

integrated using a standard splitting strategy, and average values of the profiles as a function of

the altitude y are computed with a binning procedure.

Estimation of the shear viscosity.

The shear viscosity is obtained from a Fourier analysis of (3.38). More precisely, consider the

Fourier coefficients

Uk =
1

Ly

ˆ Ly

0

ux(y) exp

(
2ikπy

Ly

)
dy, Fk =

1

Ly

ˆ Ly

0

F (y) exp

(
2ikπy

Ly

)
dy.

The coefficients Uk can be estimated numerically using averages over a trajectory (qn)16n6Niter
as

UNiter

k =
1

NiterξN

Niter∑

n=1

N∑

j=1

pnxj
m

exp

(
2ikπqnyj
Ly

)
,

while Fk can be computed analytically for the forces we have considered (see below). The viscosity

is then obtained as
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η = ρ

(
Fk

UNiter

k

− γx

)(
Ly
2kπ

)2

. (3.41)

This equality is valid for any k ∈ Z\{0}. However, the coefficients Uk decrease very rapidly as |k|
increases, so that the relative statistical errors in their estimation increase rapidly. We therefore

restricted ourselves to |k| = 1 in our numerical simulations.

Nongradient forces.

We consider three different external perturbations, which are all normalized so that−1 6 F (y) 6 1:

(i) sinusoidal perturbation: F (y) = sin

(
2πy

Ly

)
;

(ii) piecewise linear perturbation: F (y) =





4

Ly

(
y − Ly

4

)
, 0 6 y 6

Ly
2
,

4

Ly

(
3Ly
4

− y

)
,

Ly
2

6 y 6 Ly;

(iii) piecewise constant constant perturbation: F (y) =





1, 0 < y <
Ly
2
,

−1,
Ly
2
< y < Ly.

Note that only the sinusoidal force satisfies the smoothness assumptions required to derive our

results. This shape of perturbation, introduced in [67], is the most popular choice for shear viscosity

computations.

Validation of the closure
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Fig. 3.3. Velocity profile and off diagonal component of the stress tensor for the sinusoidal nongradient
force.

We present in Figures 3.3, 3.4 and 3.5 the numerical approximations of the longitudinal ve-

locity ux and the off-diagonal term of the stress tensor σxy. The latter function is compared to

the quantity −ηu′x, where u′x is evaluated from the velocity profile using a second order finite

difference scheme. The good agreement between σxy and −ηu′x validates the assumption (3.37),

the discrepancies resulting from statistical fluctuations magnified by the numerical derivative, and

also, for the piecewise constant force, from the singularity at Ly/2.
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Besides, the velocity profile is consistent with (3.38), as can be checked by comparing the

numerical solution and the solution of (3.38) computed with the value of η estimated from the

simulation using (3.41) with k = 1.
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We present in this chapter two works on time-dependent dynamics in quantum physics. A

general introduction to some aspects of quantum physics is provided in Sections 4.1.1 and 4.2.1

(following the lines of our proceeding [C4]). In the first study (Section 4.1), the time dependence

is actually artificial since the dynamics is a fictitious one allowing to switch from a degenerate

eigenstate of some reference Hamiltonian to an eigenstate of a perturbed Hamiltonian. For the

time evolution of electronic defects in perfect crystals presented in Section 4.2, there is on the

other hand a genuine time dependence arising both from some time dependent external forcing

and from the nonlinear dynamics of the defect.
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4.1 Adiabatic switching of degenerate eigenstates

This section starts by presenting some elements on the spectral theory of N -body Schrödinger

operators (Section 4.1.1), for systems with interacting electrons (Section 4.1.1.1) and also for

simpler but non-physical systems with non-interacting electrons (Section 4.1.1.2). The idea is

that the eigenstates of non-interacting systems are considered as reference states for which the

interaction is turned on progressively in order to transform them into eigenstates of the system

with full interactions. This procedure, known as adiabatic switching, is presented in Section 4.1.2

in the simple case when the initial state of the non-interacting system is an eigenstate associated

with an isolated, non-degenerate eigenvalue. Section 4.1.3 then presents our contributions to this

field [H14,H20,H19]: we show how to perform the adiabatic switching when the eigenstate of the

non-interacting system belongs to a degenerate eigenstate. An application of adiabatic switching,

the definition of Green’s functions and correlation functions for interacting systems using states

of non-interacting systems, is finally provided in Section 4.1.4.

4.1.1 Some elements of quantum physics

4.1.1.1 The N-body Schrödinger model

Consider a molecular system with M nuclei of charges z1, . . . , zM . We omit the spin variable in

this presentation, and state the models in atomic units where

~ = 1, me = 1, e = 1,
1

4πε0
= 1,

so that zm is a positive integer. Within the Born-Oppenheimer approximation, the nuclei are

modelled as classical point-like particles. This approximation results from a combination of an

adiabatic limit (the small parameter being the ratio between the mass of the electron and the mass

of the lightest nucleus present in the system), and a semi-classical limit. We refer to [2,3,119,144]

and references therein for the mathematical aspects of this approximation.

If the M nuclei are located at points R1, . . . , RM of R3, the nuclear charge distribution and

the Coulomb potential generated by this distribution respectively read

ρnuc =

M∑

m=1

zmδRm
, V nuc(x) = −

M∑

m=1

zm
|x−Rm|

where δRm
is the Dirac measure at point Rm. In order to avoid some technical difficulties due to

the singularity of the potential generated by point-like nuclei, the nuclear charge distribution is

sometimes replaced by the charge distribution of smeared nuclei

ρnuc(x) =
M∑

m=1

zmχ(x−Rm),

where χ is a smooth approximation of the Dirac measure δ0, or more precisely a non-negative

smooth radial function such that
´

R3 χ = 1, supported in a small ball centered at 0. The associated

Coulomb potential is then V nuc(x) = −(ρnuc ⋆ | · |−1)(x).

Any (pure) state of a system of N electrons is entirely described by a wavefunction Ψ ∈ H
satisfying the normalization condition ‖Ψ‖L2(R3N ) = 1. The space H, defined as

H =
N∧

i=1

L2(R3) =
{
Ψ ∈ L2(R3N )

∣∣∣ Ψ(xp(1), · · · , xp(N)) = ε(p)Ψ(x1, · · · , xN ), ∀p ∈ SN

}
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(where SN is the group of the permutations of {1, · · · , N} and ε(p) the parity of p), is the set

of antisymmetrized tensor products of N spaces L2(R3). The antisymmetry constraint originates

from the fermionic nature of electrons. The spaces
∧N
i=1H

k(R3) for k = 1, 2 are defined in a similar

manner. The electronic density associated with Ψ is the function

ρΨ (x) = N

ˆ

R3(N−1)

|Ψ(x, x2, · · · , xN )|2 dx2 · · · dxN . (4.1)

Clearly,

ρΨ ≥ 0, ρΨ ∈ L1(R3),

ˆ

R3

ρΨ = N.

It can be checked that if Ψ ∈
∧N
i=1H

1(R3), then
√
ρ ∈ H1(R3), which implies in particular that

ρΨ ∈ L1(R3) ∩ L3(R3).

The ground state wavefunction Ψ0 is the normalized solution of lowest energy of the time-

independent Schrödinger equation

HNΨ = EΨ, Ψ ∈
N∧

i=1

H2(R3), ‖Ψ‖L2(R3N ) = 1, (4.2)

where HN is the electronic Hamiltonian. The latter operator is self-adjoint on
∧N
i=1 L

2(R3), with

domain
∧N
i=1H

2(R3) and form domain
∧N
i=1H

1(R3), and is defined as

HN = −1

2

N∑

i=1

∆xi
+

N∑

i=1

V nuc(xi) +
∑

16i<j6N

1

|xi − xj |
. (4.3)

The first term in the right-hand side of (4.3) models the kinetic energy of the electrons, the second

term the Coulomb interaction between nuclei and electrons and the third term the Coulomb

interaction between electrons. For later purposes, we write

HN = T + Vne + Vee,

where

T = −1

2

N∑

i=1

∆xi
, Vne =

N∑

i=1

V nuc(xi), Vee =
∑

16i<j6N

1

|xi − xj |
.

It is proved in [157] that if the molecular system is neutral (
∑M
m=1 zm = N) or positively charged

(
∑M
m=1 zm ≥ N), then the essential spectrum of HN is an interval of the form [ΣN ,+∞) with

ΣN 6 0 (ΣN < 0 if N ≥ 2), and its discrete spectrum is an increasing infinite sequence of negative

eigenvalues converging to ΣN . This guarantees the existence of Ψ0. If E0, the lowest eigenvalue

of HN is non-degenerate, Ψ0 is unique up to a global phase, and ρΨ0 is therefore uniquely defined

by (4.1). If E0 is degenerate, the ground state electronic density is not unique.

Note that Ψ0 can also be defined variationally. It is the minimizer of

inf

{
〈Ψ,HNΨ〉, Ψ ∈

N∧

i=1

H1(R3), ‖Ψ‖L2(R3N ) = 1

}
. (4.4)

Otherwise stated, it is obtained by minimizing the energy 〈Ψ,HNΨ〉 over the set of all normalized,

antisymmetric wavefunctions Ψ of finite energy.
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4.1.1.2 The N-body Schrödinger model for non-interacting electrons

Neither the Schrödinger equation (4.2) nor the minimization problem (4.4) can be solved with

standard numerical techniques when N exceeds 2 or 3. On the other hand, these problems be-

come rather simple when the interaction between electrons is neglected. In this case, the N -body

Hamiltonian is separable and reads

H0
N = T + Vne =

N∑

i=1

hxi

where

hxi
= −1

2
∆xi

+ V nuc

is a self-adjoint operator on L2(R3) with domain H2(R3) and form domain H1(R3), acting on

functions of the variable xi. It is known that the essential spectrum of h (formerly denoted by hxi
)

is [0,+∞) and that the discrete spectrum of h is an increasing infinite sequence of negative

eigenvalues converging to 0. Let us denote by ε1 < ε2 6 ε3 6 · · · the eigenvalues of h counted with

their multiplicities (it can be shown that ε1 is simple) and let (φi)i≥0 be an orthonormal family

of associated eigenvectors:

hφi = εiφi, ε1 < ε2 6 ε3 6 · · · , φi ∈ H2(R3), 〈φi, φj〉L2(R3) = δij . (4.5)

The eigenfunctions φi are called (molecular) orbitals and the eigenvalues εi are called (one-particle)

energy levels. It is easy to check that if εN < εN+1, then

inf

{
〈Ψ,H0

NΨ〉, Ψ ∈
N∧

i=1

H1(R3), ‖Ψ‖L2(R3N ) = 1

}
(4.6)

has a unique solution up to a global phase, given by the determinant (called a Slater determinant)

Ψ0(x1, · · · , xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ1(x2) · · · φ1(xN )

φ2(x1) φ2(x2) · · · φ2(xN )

· · · · · ·
· · · · · ·
· · · · · ·

φN (x1) φN (x2) · · · φN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣

. (4.7)

On the other hand, the ground-state of (4.6) is degenerate when εN = εN+1.

Since HN = H0
N + Vee, it is natural to think of the interelectronic potential Vee as a formal

perturbation of the reference Hamiltonian H0
N , and to try to obtain eigenstates of the full N -

body Hamiltonian HN from the eigenstates of H0
N . This can be completed by adiabatic switching,

a procedure described in Section 4.1.2. More precisely, we recall there how eigenstates of H0
N

can be transformed into eigenstates of HN using an artificial dynamics, in the case when the

initial eigenstate is not degenerate (see [116]). The case of degenerate eigenstates is dealt with in

Section 4.1.3.

4.1.2 Adiabatic switching of non-degenerate eigenstates

Adiabatic switching is a crucial ingredient of many-body theory (see Sections 4.1.1.1 and 4.1.1.2).

It provides a way to compute eigenstates of a perturbed Hamiltonian H0 + V from eigenstates

of the reference Hamiltonian H0. The method is presented is an abstract fashion here. A typical

application is the case described at the end of the previous section, where H0 = HN
0 and V = Vee.
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The basic idea of adiabatic switching is to start from an eigenstate ψ of H0 (for instance, the

ground state), and to very slowly turn on the interaction term V . This is done for instance by

following the dynamics generated by the time dependent Hamiltonian H(t) = H0 + f(εt)V on the

time interval [0, ε−1], where f is a smooth function such that f(0) = 0 and f(1) = 1, and the small

parameter ε > 0 eventually vanishes. As we explain below (see Section 4.1.2.2), this procedure is

not well defined as such because of a non-convergent phase factor. When the eigenstate belongs to a

non-degenerate eigenspace, Gell-Mann and Low solved the problem by dividing out the oscillations

by a suitable factor [62] (see (4.12) below). Mathematically, the convergence of this procedure has

been proved in 1989 by Nenciu and Rasche [116], elaborating on the adiabatic theorem [19,61,94]

(see also the more recent contributions [9, 71–73,113,115,119,140,144] and references therein).

The situation is more complicated when the eigenstate ψ belongs to a degenerate eigenspace.

Understanding for which states adiabatic switching can be performed is precisely the aim of our

contributions [H14,H20,H19], described more precisely in Section 4.1.3. We restrict ourselves, for

the simplicity of exposition, to the case of non-degenerate eigenvalues in this section.

In practice, since the system of interest is the one described by H0 + V , physicists prefer to

consider a switching procedure where the perturbed Hamiltonian is obtained at time 0, with a

dynamics started in the distant past from an eigenstate of the reference Hamiltonian (H(ε−1t0) =

H0 with t0 < 0, and H(0) = H0 + V ). Besides, non-compactly supported switching functions may

be considered, provided some integrability conditions are satisfied (see Assumption 4.1 below).

The prototypical example is

H(t) = H0 + e−ε|t|V (4.8)

on the time interval (−∞, 0]. This corresponds to a limiting procedure where the switching is

performed on a time interval [ε−1t0, 0], and the limit t0 → −∞ is then considered (see the dis-

cussion at the end of Section 4.1.2.1). The choice (4.8) is motivated by the greater simplicity of

some algebraic computations in the evaluation of the Green’s functions [59]. Since this is the phys-

ically relevant case, we therefore restrict ourselves in the sequel to Hamiltonians of the form (4.8),

see (4.10) below.

4.1.2.1 Switching procedure

Consider a Hilbert space H, a self-adjoint operator H0, with dense domain D(H0) ⊂ H, and a

symmetric perturbation V (such as the multiplication by a real-valued potential), H0-bounded

with relative bound a < 1. For instance, the interelectronic repulsion operator Vee is relatively

bounded with respect to the N -body Hamiltonian HN
0 of non-interacting electrons, with relative

bound 0 (see Section 4.1.1.2 for a definition of these operators).

Then, according to the Kato-Rellich theorem (Theorem X.12 in [124]), H0 + λV is self-adjoint

on D(H0) for any 0 6 λ 6 1. We denote

H̃(λ) = H0 + λV, (4.9)

with λ ∈ [0, 1], and introduce, for τ ∈ (−∞, 0],

H(τ) = H̃(f(τ)) = H0 + f(τ)V, (4.10)

where the switching function f has values in [0, 1] (in order for the operator H(τ) to be well-defined

as a self-adjoint operator on D(H0)). For the subsequent analysis, we assume that

Assumption 4.1. The switching function f : (−∞, 0] → [0, 1] is a C2 function such that

(i) f(0) = 1 and lim
τ→−∞

f(τ) = 0;

(ii) f, f ′, f ′′ ∈ L1((−∞, 0]).
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The most common choice in practice is f(τ) = eτ . The assumption f ∈ C2 ensures that the

adiabatic evolution, which is a unitary evolution introduced for technical reasons in the proof, is

well-defined (see [144]).

We denote by Uε(s, s0) the unitary evolution generated by H(εs), i.e. the unique solution

(which is well-defined by Theorem X.70 in [124]) of the problem:

i
dUε(s, s0)

ds
= H(εs)Uε(s, s0), Uε(s0, s0) = 1.

It is actually more convenient to rescale the time and to consider a macroscopic time t = εs. The

unitary evolution Uε(t, t0) in terms of the macroscopic time is the solution of

iε
dUε(t, t0)

dt
= H(t)Uε(t, t0), Uε(t0, t0) = 1.

In order to remove trivial divergent phase factors, evolution operators should be considered in

the interaction picture:

Uεint(t, t0) = eitH0/ε Uε(t, t0) e
−it0H0/ε.

To see why this is necessary, consider the case when V = 0. Then, an eigenstate ψ of H0, with

eigenvalue E, evolves as

Uε(t, t0)ψ = exp

(
−i
t− t0
ε

)
ψ,

while Uεint(t, t0)ψ = ψ. The interaction picture allows to get rid of the divergence of the phase (at

fixed ε) related to the free evolution generated by H0, and therefore allows to consider the limit

where t0 → −∞. Indeed, when V 6= 0, it is easy to show that Uεint(t,−∞)ψ = limt0→−∞ Uεint(t, t0)ψ

exists for ψ ∈ D(H0) (for instance, by rewriting this operator as the integral of its derivative with

respect to t0).

4.1.2.2 The Gell-Mann and Low wavefunction

Once the phase factors related to the free evolution e−itH0 have been removed, the state

Uεint(0,−∞)ψ is well defined for any ε > 0. The key point is that this state does not have a

limit as ε→ 0 since it carries in general a phase factor of the form e−iθ/ε. To make this statement

precise, we consider in the remainder of this section the case of a non-degenerate eigenvalue Ẽ(λ)

of H̃(λ) (defined in (4.9)), isolated from the remainder of the spectrum. Note that Ẽ can be chosen

to be a smooth function since, by the results of [95], the projectors and eigenvalues of H̃(λ) can

be chosen to be real analytic functions of λ on an open interval containing [0, 1].

Assumption 4.2 (Gap condition). There is a gap between the eigenvalue Ẽ and the remainder

of the spectrum, in the sense that

∆(λ) = dist
{
Ẽ(λ), σ

(
H̃(λ)

)
\{Ẽ(λ)}

}

is bounded from below by a positive constant:

inf
λ∈[0,1]

∆(λ) = ∆∗ > 0.

In accordance with (4.10), we introduce E(τ) = Ẽ(f(τ)). When Assumptions 4.1 and 4.2

hold, it can be proved that an eigenstate ψ associated with the eigenvalue Ẽ(0) = E(−∞) of the

reference Hamiltonian H0 evolves under the switching procedure as [116]

Uεint(0,−∞)ψ = e−iθ/εΩψ +Rε, θ =

ˆ 0

−∞

(
E(t)− E(−∞)

)
dt, (4.11)
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where Ωψ is an eigenstate of H0 + V and ‖Rε‖ 6 Cε. Note that θ is well defined since

ˆ 0

−∞

|E(t)− E(−∞)| dt 6 α

ˆ 0

−∞

|f | < +∞,

where the constant α is such that |Ẽ(λ)− Ẽ(0)| 6 α|λ| (this constant exists since the eigenvalue Ẽ
is a smooth function of λ).

The expression (4.11) allows to fully understand the origin of the divergence in the switching

procedure. It is then easy to remove the divergence by introducing a suitable ratio. This is the

Gell-Mann wavefunction:

Ψ = lim
ε→0

Uεint(0,−∞)ψ

〈ψ,Uεint(0,−∞)ψ 〉 =
Ωψ

〈ψ,Ωψ〉 . (4.12)

In order for this ratio to be well defined, the denominator has to be different from 0. It can be

shown that this is the case when ‖P (−∞) − P (0)‖ < 1, where P (t) is the orthogonal projector

onto the eigensubspace associated with the eigenvalue E(t).

4.1.3 Adiabatic switching of degenerate eigenstates

The physics community realized about fifty years ago [17] that a generalization of the Gell-Mann

and Low formula is needed when starting from a state associated to a degenerate eigenvalue of H0.

Degenerate states, and in particular degenerate ground states, arise in many practical situations,

for instance when the system is an atom or a molecule containing unfilled shells (this corresponds

to the condition εN+1 = εN in (4.5)). This problem has been discussed in several fields, including

nuclear physics, solid state physics, quantum chemistry and atomic physics, see the references

in [H14,H19].

More precisely, the aim is to find the initial states ψ in (4.12) for which the switching can be

performed. Indeed, the Gell-Mann and Low formula (4.12) is not applicable in general when the

initial state is chosen at random in the degenerate subspace, as illustrated in the simple model

analytically studied in [H14], where

H0 =

(
µ− δ 0

0 µ+ δ

)
, V =

(
0 v

v 0

)
, (4.13)

for some v 6= 0. The switching procedure is well defined when δ 6= 0. On the other hand, in the

case of a degenerate eigenvalue (δ = 0), the switching procedure cannot be performed for almost

all initial conditions in the degenerate eigenspace. There are only two directions for which the

procedure makes sense. They correspond to limiting eigenstates of the operators H0+λV as λ > 0

goes to 0. In this very simple setting, they turn out to be eigenstates of V .

A more precise mathematical analysis shows that the eigenstates for which the switching proce-

dure is well defined are eigenstates of the restriction of the perturbation operator to the degenerate

eigenspace, that is, eigenstates of P0V P0

∣∣
E0

(where P0 is the orthogonal projection onto E0, the de-
generate eigenspace; see (4.14) below for a precise definition). The result, as in the non degenerate

case, is based on the mathematical analysis of adiabatic problems.

4.1.3.1 Spectral structure of the problem

As usual in results from adiabatic theory, we need some assumptions on the spectrum of the

operators under considerations, in particular some gap conditions. A schematic representation of

the spectrum we have in mind is provided in Figure 4.1.

Throughout this section, we assume that the spectrum has the following structure.
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Assumption 4.3 (Structure of the spectrum). The spectrum of H̃(λ) = H0 + λV (for λ ∈
[0, 1]) consists of two disconnected components

σ
(
H̃(λ)

)
= σN (λ) ∪

(
σ
(
H̃(λ)

)
\σN (λ)

)

where σN (λ) is a finite subset of the discrete spectrum:

σN (λ) =
{
Ẽj(λ), j = 1, . . . , N

}
⊂ σdisc

(
H̃(λ)

)
,

corresponding to an initially degenerate eigensubspace: there exists an integer N > 1 and E0 ∈ R

such that Ẽj(0) = E0 for all 1 6 j 6 N .

Assumption 4.4 (Gap condition). There is a gap between the two parts of the spectrum, in the

sense that:

∆(λ) = min
j=1,...,N

[
inf
(∣∣∣Ẽj(λ)− E

∣∣∣ , E ∈ σ
(
H̃(λ)

)∖{
Ẽ1(λ), . . . , ẼN (λ)

})]
,

is bounded from below by a positive constant:

inf
λ∈[0,1]

∆(λ) = ∆∗ > 0.

The projectors associated with the N eigenvalues Ẽj(λ) are denoted by P̃m(λ), for 1 6 m 6M

with M 6 N . The case M < N corresponds to the case when an eigenvalue Ẽm(λ) is permanently

degenerate on the interval [0, 1]. The projector onto the subspace orthogonal to the eigenspace

spanned by the N eigenvectors is P̃N+1(λ) = 1−∑M
m=1 P̃m(λ). We denote in the sequel

P0 =
M∑

m=1

P̃m(0) (4.14)

the projector onto the eigenspace E0 = Ran(P0) spanned by the N degenerate eigenstates of H0.

Recall that, by the results of [95], the projectors and eigenvalues of H̃(λ) can be chosen to be real

analytic functions of λ on an open interval containing [0, 1].

For simplicity, we assume that the perturbation V is sufficient to split the degeneracy (so that

M = N), in the sense that the following assumption holds true.

Assumption 4.5 (Degeneracy splitting). The finite rank self-adjoint operator P0V P0 : E0 →
E0 has non-degenerate eigenvalues, and there is a gap between the N eigenvalues Ẽk (1 6 k 6 N)

in the interval (0, 1]: for any λ∗ > 0, there exists α (depending on λ∗) such that

min
λ∗6λ61

min
k 6=l

∣∣∣Ẽk(λ)− Ẽl(λ)
∣∣∣ > α > 0. (4.15)

This implies that the projectors P̃j(λ) are rank-1 projectors for any λ > 0 (since the pertur-

bation V is sufficient to split the eigensubspaces, and the gap condition on (0, 1] ensures that no

eigenvalue crossing can happen). In fact, Assumption 4.5 may be relaxed in several ways, see the

discussion in [H20].

4.1.3.2 Well-posedness of the switching

The switching procedure is the same as the one described in Section 4.1.2.1, except that, for

technical reasons, we require in addition to Assumption 4.1 that f is non-decreasing.
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Fig. 4.1. Splitting of the eigenspace E0 of the initial Hamiltonian H0 by the applied perturbation. The
three eigenvalues of interest, which all start from E = 1 at λ = 0, are plotted with a fat solid line. The
remaining parts of the spectrum (eigenvalues in thin solid line in this case) are isolated from the portion
of the spectrum of interest.

We denote by Pj(τ) the eigenprojectors and eigenvalues corresponding to the N eigenvalues

Ej(τ) of H(τ); also, PN+1(τ) = 1 − ∑N
k=1 Pk(τ). Of course, Pj(τ) = P̃j(f(τ)) and Ej(τ) =

Ẽj(f(τ)). We are now in position to state the main result of [H20].

Theorem 4.1. Suppose that the gap conditions on H0 and V (Assumptions 4.3 and 4.4) are

satisfied, and that the perturbation term V lifts the degeneracy (Assumption 4.5). Consider a non-

decreasing switching function f satisfying Assumption 4.1. Let (ψ1, . . . , ψN ) be an orthonormal

basis of E0 which diagonalizes the bounded operator P0V P0

∣∣
E0
. Then, the limit

Ψj = lim
ε→0

Uεint(0,−∞)ψj
〈ψj , Uεint(0,−∞)ψj 〉

(4.16)

exists and is an eigenstate of H0 + V associated with the eigenvalue Ej(0), provided

‖Pj(−∞)− Pj(0)‖ < 1. (4.17)

The labelling of the basis (ψ1, . . . , ψN ) is a priori unknown, but a relabelling can be performed a

posteriori, after the switching, depending on which eigenstate of H0 + V is obtained.

As an intermediate step in the proof, the eigenprojector Pj(0) and a corresponding eigenfunc-

tion Ψj can be recovered by Kato’s geometric evolution [94].

Definition 4.1. The Kato evolution operator A(s, s0), for s, s0 ∈ R is the unique solution of the

problem
dA(s, s0)

ds
= K(s)A(s, s0), A(s0, s0) = 1, (4.18)

with

K(s) = −
N+1∑

j=1

Pj(s)
dPj
ds

(s).
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By our assumptions, the operator K(s) is uniformly bounded. The Kato evolution operator is a

unitary operator which intertwines the spectral subspaces of H(s) and H(s0), in the sense that

A(s, s0)Pj(s0) = Pj(s)A(s, s0).

Our assumptions ensure that the limit A(s,−∞) = lim
s0→−∞

A(s, s0) is well-defined.

We can then prove the following result, where no condition analogous to (4.17) is assumed.

Proposition 4.1. Let Assumptions 4.1, 4.3, 4.4 and 4.5 be satisfied. Let (ψ1, . . . , ψN ) be an or-

thonormal basis of E0 which diagonalizes the operator P0V P0

∣∣
E0
. Then

Ψj = A(0,−∞)ψj

is an eigenvector of H0 + V .

It is actually much simpler to consider the geometric evolution operator A rather than the

evolution operator Uεint since less conditions on H0 and V are required. Indeed, there is no ratio

to consider in order to remove a divergent phase. However, the many-body theory used in physics

is defined in terms of Uεint and not in terms of A (see Section 4.1.4).

4.1.3.3 Sketch of the proof

We shortly sketch the structure of the proof of Theorem 4.1, which is completed in four steps:

(i) first, we use the Kato geometric evolution backward in time, in order to identify, though

in a non explicit manner, the initial subspaces of P0 whose vectors can be considered as

convenient initial states;

(ii) in a second step, we give an explicit description of these initial subspaces, in terms of the

eigenvectors of P0V P0

∣∣
E0
. At this stage, we are already in position to prove Proposition 4.1;

(iii) then, we show how the limit of the full evolution Uεint can be related to the geometric evolution

as ε→ 0. A first step is to introduce an intermediate concept, the adiabatic evolution, which

takes some dynamics into account (arising from the Hamiltonian operator). The adiabatic

evolution is also an intertwiner. Since intertwiners differ only by a phase (in a sense to be

made precise), and, provided this phase can be removed, the adiabatic evolution can be

reduced to the geometric evolution A(0,−∞);

(iv) the last point is to show that the limit as ε→ 0 of the full evolution agrees with the limit of

the adiabatic evolution.

Steps (iii) and (iv) are straightforward extensions of previous results in adiabatic theory, and our

proofs are based on the paper by Nenciu and Rasche [116] for (iii) and the book by Teufel [144]

for (iv). The main point of our proof is the identification of the initial subspaces in (ii) using

results of perturbation theory.

4.1.4 Physical application: definition of the Green’s functions

The previous results can be used to rigorously define correlation functions of two operators A,B

(see the definition (4.19) below). The extension to Green’s functions, where the operators A,B are

replaced by field operators, is discussed in [H19]. Statistical and nonequilibrium Green’s functions

are also considered there.

We consider for simplicity bounded operators A,B, although the argument can be extended

to more general cases. The operators A and B read, in the Heisenberg picture:

Ahsnbrg(t) = eitHA e−itH , Bhsnbrg(t) = eitHB e−itH ,
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and, in the interaction picture:

Aint(t) = eitH0A e−itH0 , Bint(t) = eitH0B e−itH0 .

The correlation function is defined as

CA,B(t, t
′) = 〈ψ, T [Ahsnbrg(t)Bhsnbrg(t

′)]ψ〉 , (4.19)

where ψ an eigenvector of H0 + V satisfying ‖ψ‖ = 1, and T is the time-ordering operator:

T [Ahsnbrg(t)Bhsnbrg(t
′)] =

{
Ahsnbrg(t)Bhsnbrg(t

′) if t > t′,

Bhsnbrg(t
′)Ahsnbrg(t) if t < t′.

The aim is to rewrite CA,B in terms of an expectation value with respect to ψ0, an eigenvector

of H0 (belonging to a possibly degenerate eigensubspace). To this end, we consider an initial

state ψ0 for which the Gell-Mann and Low switching can be performed (see Theorem 4.1), and

for which ψ is recovered. Note first that Uε,int(0,−∞) = Uεint(0,−∞) for any ε > 0, so that (4.16)

can be rewritten as

ψ = lim
ε→0

Uε,int(0,−∞)ψ0

〈ψ0, Uε,int(0,−∞)ψ0 〉
.

Similarly,

ψ = lim
ε→0

Uε,int(0,+∞)ψ0

〈ψ0, Uε,int(0,+∞)ψ0 〉
(4.20)

when the switching is done using H0 + f(−εt)V and t > 0. We are then in position to obtain

an expression of the correlation function in terms of an eigenstate of H0. Consider first the case

t > t′:

T [Ahsnbrg(t)Bhsnbrg(t
′)]ψ = Ahsnbrg(t)Bhsnbrg(t

′)ψ

= lim
ε→0

Uε,int(t, 0)
∗Aint(t)Uε,int(t, t

′)Bint(t
′)Uε,int(t

′, 0)ψ,

where the second equality is a consequence of the strong convergence Uε,int(t, 0) → eitH0e−itH as

ε→ 0 (for a given t ∈ R). Therefore,

CA,B(t, t
′) = lim

ε→0
〈ψ,Uε,int(t, 0)∗Aint(t)Uε,int(t, t

′)Bint(t
′)Uε,int(t

′, 0)ψ〉

= lim
ε→0

〈ψ,Uε,int(t, 0)∗Aint(t)Uε,int(t, t
′)Bint(t

′)Uε,int(t
′, 0)ψ〉

〈ψ,ψ〉

= lim
ε→0

〈ψ0, Uε,int(0,+∞)∗Uε,int(t, 0)
∗Aint(t)Uε,int(t, t

′)Bint(t
′)Uε,int(t

′, 0)Uε,int(0,−∞)ψ0〉
〈ψ0, Uε,int(+∞, 0)Uε,int(0,−∞)ψ0〉

= lim
ε→0

〈ψ0, Uε,int(+∞, t)Aint(t)Uε,int(t, t
′)Bint(t

′)Uε,int(t
′,−∞)ψ0〉

〈ψ0, Uε,int(+∞,−∞)ψ0〉

= lim
ε→0

〈ψ0, T [Aint(t)Bint(t
′)Uε,int(+∞,−∞)]ψ0〉

〈ψ0, Uε,int(+∞,−∞)ψ0〉
.

In the last equality, the notation

T [Aint(t)Bint(t
′)Uε,int(+∞,−∞)] = Uε,int(+∞, t)Aint(t)Uε,int(t, t

′)Bint(t
′)Uε,int(t

′,−∞)

is motivated by the fact that Uε,int(+∞, t)Uε,int(t, t
′)Uε,int(t

′,−∞) = Uε,int(+∞,−∞), so that

the right-hand side of the latter identity can be seen as the time ordering of the product of five
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operators appearing on the left. The same result holds for t < t′. The final expression for CA,B is

the basis for a perturbative treatment of the Green’s function, where the operators Uε,int(+∞,−∞)

in the numerator and denominator are expanded using Feynman diagrams (see [59, Chapter 3]).

4.2 Evolution of defects in crystals

This section describes our work [H30], whose aim was to extend the results on the static polar-

ization of crystals [24] to the time-dependent setting. Crystals are electronic systems composed

of an infinite number of nuclei and electrons, the nuclei being periodically arranged on a lattice.

The analysis presented in [H30] allows to place on rigorous grounds well-known results from the

physics literature on the frequency-dependent dielectric permittivity of crystals.

We start by recalling in Section 4.2.1 the mathematical framework to describe crystals and

their local defects. We then turn in Sections 4.2.2 and 4.2.3 to the response of the crystal to

an external perturbing field. Physically, it is expected that the material responds by a global

charge redistribution. When the external perturbation is weak, or, more precisely, when only the

linear response is considered, the perturbation of the electronic density can be expressed as the

time convolution of some causal response function (the dielectric permittivity) with the applied

external electric field. The case of a crystal subjected to an effective external field is considered in

Section 4.2.2. Now, in practice, the effective external potential should be replaced by an external

perturbation plus the electronic response of the crystal to this external perturbation. Since crystals

are described by nonlinear models, the electronic response turns out to be the solution of a self-

consistent evolution equation. This is made precise in Section 4.2.3, where we also provide an

expression of the macroscopic dielectric permittivity in terms of the band structure of the crystal

(by some homogenization limit).

4.2.1 A quantum description of crystals

We described in Section 4.1.1 the electronic states of a set of N non-interacting electrons in terms

of their orbitals. Such a description cannot easily be extended to infinite systems such as crystals,

where the number of orbitals is infinite. For this reason, we introduce in Section 4.2.1.1 a formu-

lation based on the concept of one-particle density operators, abbreviated as density operators,

and relate the description of electronic states in terms of wavefunctions and density operators in

Section 4.2.1.2. We then present in Section 4.2.1.3 the Hartree model for systems composed of a

finite number of particles, which is one important nonlinear model approximating the Schrödinger

equation. The Hartree model for crystals is obtained by passing to the thermodynamic limit on the

model for finite systems (see Section 4.2.1.4). Finally, we recall in Section 4.2.1.5 the framework

proposed in [23] to describe defects in perfect crystals.

4.2.1.1 Density operators

The (one-particle) density operator of a system of N electrons is an element of the convex set

DN =
{
γ ∈ S(L2(R3))

∣∣∣ 0 6 γ 6 1, Tr(γ) = N
}
,

where S(L2(R3)) ⊂ B(L2(R3)) is the subset of bounded, self-adjoint operators on L2(R3). Recall

that the notation A 6 B for A,B ∈ S(L2(R3)) means that 〈ψ,Aψ〉 6 〈ψ,Bψ〉 for all ψ ∈ L2(R3).

A density operator γ ∈ DN is trace-class. Recall that a bounded linear operator A on L2(R3)

is said to be trace-class [125, 139] if
∑
i

〈
φi,

√
A∗Aφi

〉
L2

< ∞ for some (hence, all) orthonormal

basis (φi) of L2(R3). Then Tr(A) =
∑
i 〈φi, Aφi〉L2 is well-defined and does not depend on the

chosen basis. A density operator γ ∈ DN can be diagonalized in an orthonormal basis:
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γ =

+∞∑

i=1

ni|φi〉〈φi|, (4.21)

with 〈φi, φj〉L2(R3) = δij , and where operators such as P = |f〉 〈g| (for f, g ∈ L2(R3)) are bounded

operators defined for φ ∈ L2(R3) by Pφ = 〈g, φ〉f . The eigenvalues ni in (4.21) are called occu-

pation numbers; the eigenfunctions φi are called natural orbitals. The conditions 0 6 γ 6 1 and

Tr(γ) = N are respectively equivalent to

0 6 ni 6 1,

+∞∑

i=1

ni = N.

The fact that 0 6 ni 6 1 is a mathematical translation of the Pauli exclusion principle, stipulating

that each quantum state |φi〉 is occupied by at most one electron. The sum of the occupation

numbers is equal to N , the number of electrons in the system. The density associated with γ is

defined by

ργ(x) =

+∞∑

i=1

ni|φi(x)|2, (4.22)

this definition being independent of the choice of the orthonormal basis (φi)i≥1 in (4.21), and

satisfies

ργ ≥ 0, ργ ∈ L1(R3),

ˆ

R3

ργ = N.

The kinetic energy of the density operator γ is defined as

T (γ) =
1

2
Tr(|∇|γ|∇|),

and can be finite or infinite. Recall that the operator |∇| is the unbounded self-adjoint operator

on L2(R3) with domain H1(R3) defined by

∀φ ∈ H1(R3), F(|∇|φ)(k) = |k|F(φ)(k),

where F is the unitary Fourier transform

Fφ(k) = φ̂(k) =
1

(2π)3/2

ˆ

R3

φ(x) e−ik·x dx. (4.23)

The kinetic energy of a density operator γ decomposed as (4.21) is finite if and only if each φi is

in H1(R3) and
∑+∞
i=1 ni‖∇φi‖2L2(R3) <∞, in which case

T (γ) =
1

2

+∞∑

i=1

ni‖∇φi‖2L2(R3).

As |∇| is the square root of −∆ (i.e. |∇| is self-adjoint, positive and |∇|2 = −∆), the element

Tr(|∇|γ|∇|) of R+ ∪ {+∞} is often denoted by Tr(−∆γ). Using this notation, we can define the

convex set PN of the density operators of finite energy as

PN =
{
γ ∈ S(L2(R3))

∣∣∣ 0 6 γ 6 1, Tr(γ) = N, Tr(−∆γ) <∞
}
.

Finally, it is useful to introduce the integral kernel of a density operator γ ∈ PN , which is called

a (one-particle) density matrix, and is usually also denoted by γ. It is by definition the function

γ ∈ L2(R3 × R
3) such that
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∀φ ∈ L2(R3), (γφ)(x) =

ˆ

R3

γ(x, x′)φ(x′) dx′. (4.24)

The expression of the density matrix γ in terms of natural orbitals and occupation numbers thus

reads

γ(x, x′) =
+∞∑

i=1

niφi(x)φi(x
′).

Formally ργ(x) = γ(x, x) and this relation makes sense as soon as the density matrix γ has a trace

on the three-dimensional vector subspace
{
(x, x), x ∈ R

3
}
of R3 × R

3.

4.2.1.2 Electronic states

Let us now clarify the link between the description of electronic structures in terms of wavefunctions

and the one in terms of density operators. The density matrix associated with a wavefunction

Ψ ∈ ∧Ni=1L
2(R3) such that ‖Ψ‖L2(R3N ) = 1 is the function of L2(R3 × R

3) defined as

γΨ (x, x
′) = N

ˆ

R3(N−1)

Ψ(x, x2, · · · , xN )Ψ(x′, x2, · · · , xN ) dx2 · · · dxN , (4.25)

and the corresponding density operator is

∀φ ∈ L2(R3), (γΨφ)(x) =

ˆ

R3

γΨ (x, x
′)φ(x′) dx′. (4.26)

It is easy to see that the density operator γΨ is in DN . Under the additional assumption that Ψ

belongs to ∧Ni=1H
1(R3), the density operator has better regularity properties and belongs to PN .

In addition, the definition (4.1) of the density associated with Ψ agrees with the definition (4.22)

of the density associated with γΨ , i.e. ρΨ = ργΨ , and the definitions of the kinetic energy coincide

when Ψ ∈ ∧Ni=1H
1(R3), namely 〈Ψ, TΨ〉 = T (γΨ ). Note however that not all elements of DN and

PN can be written as (4.25). In general, the elements of these sets are convex combinations of

pure states (4.25), and are called mixed states.

We can now reformulate the electronic structure problem for a system of N non-interacting

electrons (see Section 4.1.1.2), in terms of density operators:

(1) The energy of a wavefunction Ψ ∈ ∧Ni=1H
1(R3) is a linear form with respect to the density

operator γΨ :

〈Ψ,H0
NΨ〉 = E0

ρnuc(γΨ ), E0
ρnuc(γ) = Tr

(
−1

2
∆γ

)
+

ˆ

R3

ργV
nuc;

(2) The ground state density matrix, that is, the density operator associated with the ground

state wavefunction Ψ0 defined by (4.6), is the orthogonal projector (for the L2 inner product)

on the space Span(φ1, · · · , φN ):

γΨ0 =
N∑

i=1

|φi〉 〈φi|;

(3) The ground state energy and the ground state density operators are obtained by solving the

minimization problem

inf
{
E0
ρnuc(γ), γ ∈ S(L2(R3)), 0 6 γ 6 1, Tr(γ) = N, Tr(−∆γ) <∞

}
. (4.27)

The advantages of the density operator formulation, which are not obvious for finite systems

(except for numerical purposes [22]), will clearly appear in Section 4.2.1.4, where we deal with

crystals.
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4.2.1.3 The Hartree model

Variational formulation.

Let us now reintroduce the Coulomb interaction between electrons, taking as a starting point the

non-interacting system introduced in Section 4.1.1.2, reformulated in terms of density operators.

There are several approximations of (4.4), which all share the same mathematical structure: their

ground state energies and densities are obtained by minimizing some explicit functional Eρnuc(γ)

over the set of density operators PN . We focus in Sections 4.2.2 and 4.2.3 on the Hartree model

inf
{
EHartree
ρnuc (γ), γ ∈ S(L2(R3)), 0 6 γ 6 1, Tr(γ) = N, Tr(−∆γ) <∞

}
, (4.28)

with

EHartree
ρnuc (γ) = Tr

(
−1

2
∆γ

)
+

ˆ

R3

ργV
nuc +

1

2
D(ργ , ργ),

where

D(f, g) =

ˆ

R3

ˆ

R3

f(x) g(x′)

|x− x′| dx dx′ (4.29)

is the classical Coulomb interaction. Note that D(f, g) is well defined for example for f and g in

L6/5(R3), see for instance [124, Section IX.4]. Recall also that for each γ ∈ PN , ργ ∈ L1(R3) ∩
L3(R3) →֒ L6/5(R3).

The existence of a minimizer to (4.28) for a neutral or positively charged system is established

in [141]. The key-property allowing for a comprehensive mathematical analysis of the bulk limit

for the Hartree model considered in Section 4.2.1.4 is that the ground state density is unique.

This means that in the Hartree framework, all the minimizers to (4.28) share the same density.

Such a uniqueness property of the ground-state density is not known to hold for other models

of electronic structure, such as the Hartree-Fock model or Kohn-Sham models [99] of Density

Functional Theory (DFT) [46,86,108].

Euler-Lagrange equations.

The Euler equation for the Hartree model reads





γ0 =

+∞∑

i=1

ni|φi〉〈φi|, ρ0(x) = ργ0(x) =

+∞∑

i=1

ni|φi(x)|2,

H0φi = εiφi, 〈φi, φj〉 = δij ,

ni = 1 if εi < εF, 0 6 ni 6 1 if εi = εF, ni = 0 if εi > εF,

+∞∑

i=1

ni = N,

H0 = −1

2
∆+ V 0,

−∆V 0 = 4π(ρnuc − ρ0).

(4.30)

It can be proved that the essential spectrum of the self-adjoint operator H0 is equal to R+ and

that, for a neutral or positively charged system, H0 has at least N negative eigenvalues. The

scalar εF, called the Fermi level, can be interpreted as the Lagrange multiplier of the constraint

Tr(γ0) = N .

Assuming that εN < εN+1, the ground state density operator γ0 of the Hartree model is

unique: It is the orthogonal projector

γ0 =

N∑

i=1

|φi〉〈φi|.



68 4 Time-dependent problems in quantum physics

In this case, (4.30) can be rewritten under the more compact form





γ0 = 1(−∞,εF](H
0), ρ0 = ργ0 ,

H0 = −1

2
∆+ V 0,

−∆V 0 = 4π(ρnuc − ρ0),

(4.31)

for any εF ∈ (εN , εN+1). In this equation, the notation 1(−∞,εF](H
0) is used for the spectral

projector of H0 corresponding to the spectrum in the interval (−∞, εF].

Time-dependent model.

The time-dependent version of the Hartree model formally reads

i
dγ

dt
= [H0

γ , γ], H0
γ = −1

2
∆+ V nuc + ργ ⋆ | · |−1, (4.32)

where [A,B] = AB −BA denotes the commutator of the operators A and B. When the system is

subjected to some external time-dependent potential v(t) (modeling for instance the displacement

of some nuclei), the evolution is

i
dγ

dt
= [Hv

γ , γ], Hv
γ = H0

γ + v. (4.33)

We do not give the precise mathematical meaning of the formal equations (4.32) or (4.33) for finite

systems, but refer the reader to [5] and references therein (see in particular [39, Section XVII.B.5])

for further precisions. On the other hand, we will define and study a mild solution of such equations

(see for instance [122] for a definition of this class of solutions) in the case of crystals with defects

in Section 4.2.

The time-evolution corresponding to the Hartree model is known as the time-dependent self-

consistent field equation, and is in fact equivalent under some assumptions to the so-called random

phase approximation; see the discussion in [52].

Propagators are an important tool to study the evolution of systems described by time depen-

dent Hamiltonians. Recall that a two-parameter family of unitary operators U(t, s) (s, t ∈ R) on

L2(R3) is a unitary propagator provided (see [124, Section X.12]) (i) ∀(r, s, t) ∈ R
3, U(t, s)U(s, r) =

U(t, r); (ii) U(t, t) = 1 (the identity operator); and (iii) U(t, s) is jointly strongly continuous in t

and s.

4.2.1.4 The Hartree model for crystals

The Hartree model presented in the previous section describes a finite system of N electrons in

the electrostatic potential created by a nuclear density of charge ρnuc. Crystals are, on the other

hand, infinite periodic assemblies of nuclei surrounded by their electronic clouds. We consider

therefore the bulk limit where the nuclear density of the perfect crystal is described by a R-

periodic distribution ρnucper , R = Za1 +Za2 +Za3 denoting a periodic lattice of R3 ((a1, a2, a3) is a

given triplet of linearly independent vectors of R3). A unit cell of R is denoted by Γ . Functional

spaces of periodic functions are defined as

L2
per(Γ ) =

{
u ∈ L2

loc(R
3)
∣∣ u R-periodic

}
,

and similar definitions hold for Hk
per(Γ ), etc.
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Bloch-Floquet transform

The Bloch-Floquet theory was introduced by Floquet for periodic differential equations and gen-

eralized by Bloch to periodic partial differential equations. We just recall the basic results we need

and refer the reader to [125] for instance for further precisions.

The reciprocal lattice of the lattice R is R∗ = Za∗1+Za∗2+Za∗3, with ai ·a∗j = 2πδij . We denote

by Γ ∗ the first Brillouin zone (which is in particular a unit cell of R∗). Any function f ∈ L2(R3)

can be decomposed by the Bloch-Floquet transform as

f(x) =

 

Γ∗

fq(x) e
iq·xdq,

where
ffl

Γ∗
is a notation for |Γ ∗|−1

´

Γ∗
and where the functions fq are defined as

fq(x) =
∑

R∈R

f(x+R) e−iq·(x+R) =
(2π)3/2

|Γ |
∑

K∈R∗

f̂(q +K) eiK·x. (4.34)

For almost all q ∈ R
3, fq ∈ L2

per(Γ ). Besides, fq+K(x) = fq(x)e
−iK·x for all K ∈ R∗ and almost

all q ∈ R
3. Lastly,

‖f‖2L2(R3) =

 

Γ∗

‖fq‖2L2
per(Γ ) dq.

The main interest of the Bloch-Floquet transform (4.34) is that it provides a “block diagonaliza-

tion” of any R-periodic operator, that is of any operator on L2(R3) that commutes with trans-

lations operators τR for all R ∈ R. Consider first a bounded R-periodic operator A on L2(R3).

Then there exists a family (Aq)q∈Γ∗ of bounded operators on L2
per(Γ ) such that

∀v ∈ L2(R3), (Av)q = Aqvq for almost all q ∈ Γ ∗. (4.35)

If, in addition, A is self-adjoint on L2(R3), then Aq is self-adjoint on L
2
per(Γ ) for almost all q ∈ Γ ∗

and

σ(A) =
⋃

q∈Γ∗

σ(Aq).

Introducing the orthonormal Fourier basis (eK)K∈R∗ of L2
per(Γ ), with eK(x) = |Γ |−1/2eiK·x, it

follows from (4.35) that any bounded R-periodic operator on L2(R3) is completely characterized

by the Bloch-Floquet matrices

([
AK,K′(q)

]
(K,K′)∈R∗×R∗

)
q∈Γ∗

defined for almost all q ∈ Γ ∗ by AK,K′(q) = 〈eK , AqeK′〉L2
per(Γ ). In particular, for all (K,K ′) ∈

R∗ ×R∗ and almost all q ∈ Γ ∗,

∀v ∈ L2(R3), F(Av)(q +K) =
∑

K′∈R∗

AK,K′(q)Fv(q +K ′). (4.36)

For unbounded operators, the situation is slightly more intricate. Let us limit ourselves to the

case of R-periodic Schrödinger operators of the form

H = −1

2
∆+ Vper

with Vper ∈ L2
per(Γ ). By the Kato-Rellich theorem and [125, Theorem XIII.96], the operator H is

self-adjoint on L2(R3), with domain H2(R3). It can also be decomposed as follows:
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∀v ∈ H2(R3), vq ∈ H2
per(Γ ) and (Hv)q = Hqvq for almost all q ∈ Γ ∗,

where Hq is the self-adjoint operator on L2
per(Γ ) with domain H2

per(Γ ), defined by

Hq = −1

2
∆− iq · ∇+

|q|2
2

+ Vper.

It is easily seen that for each q ∈ Γ ∗, Hq is bounded below and has a compact resolvent. Conse-

quently, there exists a sequence (εn,q)n≥1 of real numbers going to +∞, and an orthonormal basis

(un,q )n≥1 of L2
per(Γ ) such that

Hq =

+∞∑

n=1

εn,q|un,q〉〈un,q|.

As the mapping q 7→ Hq is polynomial on R
3, it is possible to label the eigenvalues εn,q in such a

way that (εn,0)n≥1 is non-decreasing and that for each n ≥ 1, the mapping q 7→ εn,q is analytic in

each direction. Then, the spectrum is the union of bands

σ(H) =
⋃

q∈Γ∗

σ(Hq) =
⋃

n≥1

[
Σ−
n , Σ

+
n

]
,

with

Σ−
n = min

q∈Γ∗

εn,q, Σ+
n = max

q∈Γ∗

εn,q. (4.37)

The interval [Σ−
n , Σ

+
n ] is called the nth band of the spectrum of H. It is possible to prove that the

spectrum of H is purely absolutely continuous [145]. In particular, H has no eigenvalues.

Perfect crystals

The bulk limit argument allowing to obtain the correct limiting model to describe crystals in the

Hartree framework has been rigorously founded by Catto, Le Bris and Lions in [28], for nuclei of

unit charge on the cubic lattice Z
3. It is also possible to justify the periodic Hartree model by

passing to the limit on a supercell model with artificial periodic boundary conditions (see [23]).

The latter approach is less physical, but technically much easier, and its extension to arbitrary

crystalline structures is straightforward.

The model obtained by passing to the limit in (4.31) reads





γ0per = 1(−∞,εF](H
0
per), ρ0per = ργ0

per
,

H0
per = −1

2
∆+ V 0

per,

−∆V 0
per = 4π(ρnucper − ρ0per),

(4.38)

with
ˆ

Γ

ρ0per =

ˆ

Γ

ρnucper = N (4.39)

in order for the periodic Coulomb equation −∆V 0
per = 4π(ρnucper − ρ0per) to have a solution. As

V 0
per is R-periodic (and belongs to L2

per(Γ ) even for point-like nuclei), the operator H0
per can be

decomposed using the Bloch-Floquet transform:

(
H0

per

)
q
= −1

2
∆− iq · ∇+

|q|2
2

+ V 0
per =

+∞∑

n=1

εn,q|un,q〉〈un,q|. (4.40)

The operator γ0per = 1(−∞,εF](H
0
per) is a bounded self-adjoint operator which commutes with the

translations (τR)R∈R, and its Bloch-Floquet decomposition reads
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(
γ0per

)
q
=

+∞∑

n=1

1{εn,q6εF}|un,q〉〈un,q|.

Actually, the set {q ∈ Γ ∗ | ∃n ≥ 1 s.t. εn,q = εF} is of measure zero since the spectrum of H0
per is

purely continuous. It follows that γ0per is always an orthogonal projector, even if εF belongs to the

spectrum of H0
per.

Using the Bloch decomposition of γ0per, we can write the density ρ0per as

ρ0per(x) =

 

Γ∗

+∞∑

n=1

1{εn,q6εF}|un,q(x)|2 dq.

Integrating on Γ , using (4.39) and the orthonormality of the functions (un,q)n≥1 in L2
per(Γ ), we

obtain

N =
1

|Γ ∗|

+∞∑

n=1

|{q ∈ Γ ∗ | εn,q 6 εF}| . (4.41)

This equation uniquely determines the value of the Fermi level εF. It is easy to see that if the

periodic Coulomb potential is shifted by a uniform constant C, and if εF is replaced with εF +C,

then γ0per and ρ
0
per remain unchanged.

The results from [23, 28] ensure that (4.38) is well-posed. In particular, the Hartree ground

state density operator γ0per and the density ρ0per are uniquely defined. In addition, the periodic

Coulomb potential V 0
per and the Fermi level εF are uniquely defined up to an additive constant,

while V 0
per − εF is uniquely defined. Besides, γ0per can be obtained by minimizing some periodic

energy functional on the unit cell Γ .

In Sections 4.2.2 and 4.2.3, we assume that the system is an insulator (or a semi-conductor) in

the sense that the N th band is strictly below the (N + 1)st band:

Σ+
N = max

q∈Γ∗

εN,q < min
q∈Γ∗

εN+1,q = Σ−
N+1.

In this case, one can choose for εF any number in the range (Σ+
N , Σ

−
N+1). For simplicity we set in

the following

εF =
Σ+
N +Σ−

N+1

2

and denote by

g = Σ−
N+1 −Σ+

N > 0 (4.42)

the band gap.

4.2.1.5 The time-independent Hartree model for defects in crystals

Finally, we briefly recall the main properties of the time-independent model for crystals with a

localized defect (see [23, 24] for a detailed analysis). The charge of the defect is denoted by ν, so

that the total nuclear charge density is ρnucper +ν. Conditions on ν are provided in (4.50) below. It is

proved in [23] by means of bulk limit arguments that, for insulating and semiconducting materials,

the ground state density matrix of a crystal reads

γ = γ0per +Qν,εF . (4.43)

The proof is performed for a nuclear charge ρnucper ∈ L2
loc(R

3), corresponding to smeared nuclei.

However, as proved in [24], the limiting model describing the state of the defect (see (4.48) below)

makes sense for point-like nuclei.

We first need to introduce the Coulomb space
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C :=
{
f ∈ S

′(R3)
∣∣∣ f̂ ∈ L1

loc(R
3), | · |−1f̂(·) ∈ L2(R3)

}
,

where S ′ denotes the space of tempered distributions, the dual of the Schwartz space S . Endowed

with the scalar product extending (4.29) and defined by

D(f1, f2) := 4π

ˆ

R3

f̂1(k) f̂2(k)

|k|2 dk,

the space C is a Hilbert space. Recall that L6/5(R3) →֒ C and that, for f1 and f2 in L6/5(R3),

D(f1, f2) =

ˆ

R3

ˆ

R3

f1(x) f2(y)

|x− y| dx dy. (4.44)

Considering L2(R3) as a pivot space, the dual space of C is

C′ :=
{
V ∈ L6(R3) | ∇V ∈ (L2(R3))3

}
,

endowed with the inner product

〈V1, V2〉C′ :=
1

4π

ˆ

R3

∇V1 · ∇V2 =
1

4π

ˆ

R3

|k|2V̂1(k) V̂2(k) dk.

The appropriate functional space to describe local defects is the convex set

K =
{
Q ∈ Q

∣∣ −γ0per 6 Q 6 1− γ0per
}
, (4.45)

with

Q =
{
Q ∈ S2 | Q∗ = Q, Q−− ∈ S1, Q

++ ∈ S1, (4.46)

|∇|Q ∈ S2, |∇|Q−−|∇| ∈ S1, |∇|Q++|∇| ∈ S1

}
,

where S1 and S2 respectively denote the spaces of trace-class and Hilbert-Schmidt operators

on L2(R3), Q−− = γ0perQγ
0
per and Q

++ = (1− γ0per)Q(1− γ0per). Endowed with the norm defined

by

‖Q‖Q = ‖(1−∆)1/2Q‖S2
+ ‖(1−∆)1/2Q−−(1−∆)1/2‖S1

+ ‖(1−∆)1/2Q++(1−∆)1/2‖S1
,

the space Q is a Banach space. It is proved in [23] that although a generic operator Q ∈ Q is

not trace-class, it is possible to define a generalized trace Tr0(Q) = Tr(Q++) + Tr(Q−−) and a

density ρQ ∈ L2(R3) ∩ C. In addition, the mapping which to Q ∈ Q associates ρQ ∈ L2(R3) ∩ C is

continuous (see [23, Proposition 1]): there exists Cρ > 0 such that

‖ρQ‖L2∩C 6 Cρ‖Q‖Q (4.47)

for any Q ∈ Q. Note that if Q ∈ K ∩ S1, then of course Tr0(Q) = Tr(Q), ρQ ∈ L1(R3) and

Tr(Q) =
´

R3 ρQ.

The operator Qν,εF is obtained by minimizing over K the energy functional

Eν,εF(Q) = Tr0
(
H0

perQ
)
−
ˆ

R3

ρQ(ν ⋆ | · |−1) +
1

2
D(ρQ, ρQ), (4.48)

where Tr0
(
H0

perQ
)
is a notation for

Tr0
(
H0

perQ
)
= Tr

(∣∣H0
per − εF

∣∣1/2 (Q++ −Q−−
) ∣∣H0

per − εF
∣∣1/2

)
+ εFTr0(Q). (4.49)
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The energy functional Eν,εF is well-defined on K for all ν such that

(ν ⋆ | · |−1) ∈ L2(R3) + C′. (4.50)

The first term of Eν,εF makes sense as it holds

c1(1−∆) 6 |H0
per − εF| 6 c2(1−∆) (4.51)

for some constants 0 < c1 < c2 <∞ (see [23, Lemma 1]). The last two terms of Eν,εF are also well

defined since ρQ ∈ L2(R3) ∩ C for all Q ∈ K.

4.2.2 Response to a given time-dependent effective potential

The state γ0per of a perfect crystal at equilibrium does not evolve in time. On the other hand, if

originally the system is not at equilibrium and/or if some external perturbation is applied, the

state of the system evolves in time. We describe in this section how the crystal responds to some

local (in space) external perturbation. By local we mean here that the potential generated by the

defects has some integrability properties, see (4.58) below. Recall also that our analysis is limited

to insulating (or semiconducting) materials, i.e. (4.42) is assumed to hold.

More precisely, consider the case when the mean-field Hamiltonian H0
per = − 1

2∆+ V 0
per of the

perfect crystal (defined in (4.38)) is perturbed by a time-dependent effective potential v(t, x), so

that the system is described by the time-dependent Hamiltonian

Hv(t) = H0
per + v(t, ·) = −1

2
∆+ V 0

per + v(t, ·). (4.52)

The dynamics is characterized by the unitary propagator Uv(t, s) associated with the effective

time-dependent HamiltonianHv (see Section 4.2.2.1 for conditions on v ensuring that the evolution

operator is indeed well defined), and the state of the system at time t is described by the density

operator

γ(t) = Uv(t, 0)γ
0Uv(t, 0)

∗, (4.53)

where γ0 is the state of the system at time t = 0. Similar considerations hold for mean-field models

such as (4.38), although the situation is more complicated since both the periodic potential V 0
per

and the perturbation v depend self-consistently on the state γ. This situation is dealt with in

Section 4.2.3, using the results obtained in this section.

Considering v(t) as a perturbation of the time-independent Hamiltonian H0
per, it is natural, as

in the time-independent description of defects presented in Section 4.2.1.5 (see in particular the

definition (4.43)), to introduce

Q(t) = γ(t)− γ0per. (4.54)

The first aim of this section is to prove that, if initially Q(0) ∈ Q, the Banach space allowing to

describe local defects in crystals, then Q(t) ∈ Q at all subsequent times (see Section 4.2.2.1). We

then focus on the linear response of Q with respect to v. This allows to define the polarization

operator, which gives the electronic response of the crystal as a function of the external effective

perturbation (see Section 4.2.2.2). Finally, we show in Section 4.2.2.3 how the results of [24] on

the static polarization of crystals (which is the response of the electronic density to a given, time-

independent potential) can be recovered from the time-dependent setting in some adiabatic limit

where the effective time-dependent perturbation varies very slowly in time.

4.2.2.1 Nonlinear response to an external perturbing potential

We first define the evolution operator Uv associated with the time-dependent Hamiltonian (4.52)

and give some of its properties. When v ∈ C1(R, L∞(R3)), Theorem X.71 in [124] gives the
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existence of a unitary propagator (Uv(t, t0))(t0,t)∈R×R on L2(R3) such that for each ψ ∈ H2(R3),

and each t0 ∈ R, t 7→ φt0(t) = Uv(t, t0)ψ is in C1(R, L2(R3)) ∩ C0(R, H2(R3)), and satisfies

i
dφt0(t)

dt
(t) = Hv(t)φt0(t), φt0(t0) = ψ.

Besides, denoting by U0(t) = e−itH0
per the unitary propagator associated with the time-independent

Hamiltonian H0
per, (Uv(t, t0))(t0,t)∈R×R is the unique unitary propagator satisfying the Dyson equa-

tion

∀(t0, t) ∈ R× R, Uv(t, t0) = U0(t− t0)− i

ˆ t

t0

U0(t− s)v(s)Uv(s, t0) ds. (4.55)

Under the weaker assumption that

v ∈ L1
loc(R+, L

∞(R3)), (4.56)

it can be proved (see [H30, Lemma 1]) that there exists a unique unitary propagator solution

to (4.55). By extension, we will call (Uv(t, t0))(t0,t)∈R×R the unitary operator associated with the

time-dependent Hamiltonian Hv(t).

We now consider the evolution equation (4.53). This evolution automatically propagates for-

ward in time the conditions γ0 ∈ S(L2(R3)) and 0 6 γ0 6 1. Using (4.53)-(4.55) and the fact

that γ0per is a steady state of the system in the absence of perturbation (U0(t)γ
0
perU0(t)

∗ = γ0per),

a simple calculation shows that Q(t) satisfies the integral equation

∀t ∈ R+, Q(t) = U0(t)Q
0U0(t)

∗ − i

ˆ t

0

U0(t− s)[v(s), γ0per +Q(s)]U0(t− s)∗ ds, (4.57)

where Q0 = γ0−γ0per. It is easy to see that under the assumption (4.56) on the effective potential v,

the above integral equation has a unique solution in C0(R+,S(L2(R3))).

We now focus on the interesting and important case when v(t) is the effective potential gener-

ated by a local defect, that is when

v(t) = vc(ρ(t)) = ρ(t) ⋆ | · |−1. (4.58)

In order for the time evolution to be well defined, we assume that the electronic density of the

defect is sufficiently regular, namely ρ ∈ L1
loc(R, L

2(R3) ∩ C). The mapping vc is an invertible

bounded linear operator from C to C′, and it also defines a bounded operator from L2(R3) ∩ C to

L∞(R3). Hence, if ρ ∈ L1
loc(R, L

2(R3) ∩ C), the potential v defined by (4.58) satisfies (4.56). The

following proposition shows that, in this case, (4.57) can be considered not only as an integral

equation on S(L2(R3)), but also as an integral equation on the functional space Q.

Proposition 4.2. Consider Q0 ∈ Q, ρ ∈ L1
loc(R+, L

2(R3)∩C) and v the effective potential (4.58).

Then, the integral equation (4.57) has a unique solution in C0(R+,Q), and for all t ∈ R+,

Tr0(Q(t)) = Tr0(Q
0). In addition, if Q0 ∈ K, then Q(t) ∈ K for all t ∈ R+.

The Dyson expansion consists in writing (formally for the moment) the solution Q(t) of (4.57)

as the series

Q(t) = U0(t)Q
0U0(t)

∗ +

+∞∑

n=1

Qn,v(t), (4.59)

where the operators Qn,v(t) are obtained by inserting (4.59) into (4.57) and equating the terms

involving n occurrences of the potential v. In particular, the linear response is given by

Q1,v(t) = −i

ˆ t

0

U0(t− s)
[
v(s), γ0per + U0(s)Q

0U0(s)
∗
]
U0(t− s)∗ ds, (4.60)
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and the following recursion relation holds true:

∀n ≥ 2, Qn,v(t) = −i

ˆ t

0

U0(t− s) [v(s), Qn−1,v(s)]U0(t− s)∗ ds. (4.61)

The main result of this section is the following proposition.

Proposition 4.3. Consider ρ ∈ L1
loc(R+, L

2(R3)∩C) and v the effective potential (4.58). For each

n > 1, the operator Qn,v defined by (4.60) for n = 1 and by (4.61) for n ≥ 2 is in C0(R+,Q),

and, for any n > 1, Tr0(Qn,v(t)) = 0 for all t ∈ R+. Besides, there exist β,Ccom,Q > 0 such that

∀n ≥ 1, ∀t ∈ R+, ‖Qn,v(t)‖Q 6 β
1 + ‖Q0‖Q

n!

(
βCcom,Q

ˆ t

0

‖ρ(s)‖L2∩C ds

)n
(4.62)

and the right-hand side of (4.59) converges in Q, uniformly on any compact subset of R+, to the

unique solution to (4.57)-(4.58) in C0(R+,Q).

4.2.2.2 Linear response and definition of the polarization

The aim of this section is to motivate, using rigorous mathematical arguments, the formulae (4.73)

for the polarization matrix usually encountered in the physics literature, known as the Adler-Wiser

formulae [1, 154]. These expressions are established for a modified linear response involving some

damping. Proposition 4.6 gives a mathematical meaning to the polarization formulae when the

damping vanishes.

Definition of the polarization

Since the polarization is defined as the linear response of the electronic density with respect to

variations of the external potential (see (4.64) below), we focus on the linear response operator

Q1,v(t) = −i

ˆ t

0

U0(t− s)
[
v(s), γ0per + U0(s)Q

0U0(s)
∗
]
U0(t− s)∗ ds

defined in (4.60). We choose in the sequelQ0 = 0. When the external perturbation v(t) is compactly

supported in time in some interval [−t0, t0], we can view the perturbation process as a dynamics

starting in the distant past from an equilibrium state described by Q(t) = 0 up to time t = −t0,
and perturbed only for times t > −t0. Upon changing the the reference time from 0 to −t0, the
following integral equation is then obtained:

∀t ∈ R, Q1,v(t) = −i

ˆ t

−∞

U0(t− s)
[
v(s), γ0per

]
U0(t− s)∗ ds. (4.63)

The interest of this formulation (compared to the original formulation (4.60)) is that it can be

interpreted as some time convolution, which can then be rewritten in a simpler manner using

Fourier transforms in time. Since v 7→ Q1,v defines a continuous linear mapping from L1(R, C′)

to C0
b(R,Q), where C0

b(R,Q) denotes the space of the continuous bounded Q-valued functions

on R, it is then possible, by density, to consider external perturbations v ∈ L1(R, C′), and not only

perturbations with compact supports in time. Alternatively, for a given perturbation ṽ(t) defined

only for positive times, it is possible to write the linear response (4.60) as (4.63) upon considering

v(t) = ṽ(t)1t>0.

SinceQ1,v(t) ∈ Q for all t ∈ R, a density ρQ1,v
(t) ∈ L2(R3)∩C can be associated to this operator

in view of [23, Proposition 1]. This defines the polarization operator, which is the bounded linear

mapping
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χ0 : L1(R, C′) → C0
b(R, L

2(R3) ∩ C)
v 7→ ρQ1,v

.
(4.64)

In fact, it is more convenient to work with the mapping E = v
1/2
c χ0v

1/2
c . As v

1/2
c is an invertible

bounded linear operator from L2(R3) onto C′, and from C onto L2(R3), and as L2(R3) ∩ C′ =

H1(R3), E is a continuous linear operator from L1(R, L2(R3)) to C0
b(R, H

1(R3)):

E : L1(R, L2(R3)) → C0
b(R, H

1(R3))

f 7→ v
1/2
c

(
ρQ

1,v
1/2
c (f)

)
.

(4.65)

In order to state our results, we need to introduce additional Fourier transforms taking the time

variable into account. The partial Fourier transform with respect to the time variable, denoted

by Ftf , has the following normalization:

(Ftf) (ω, x) =
ˆ +∞

−∞

f(t, x) eiωt dt. (4.66)

The spatial Fourier transform (4.23) is denoted by Fx in the sequel in order to avoid confusions.

The space-time Fourier transform is then Ft,x = FtFx = FxFt.

Damped linear response

In order to study the properties of the linear response, it is convenient to first focus on the damped

linear response defined, for η > 0, as

Qη1,v(t) = −i

ˆ t

−∞

U0(t− s)
[
v(s), γ0per

]
U0(t− s)∗e−η(t−s) ds. (4.67)

We introduce the associated damped linear response operator

E η : L1(R, L2(R3)) → C0
b(R, H

1(R3)) ∩ L1(R, H1(R3))

f 7→ v
1/2
c

(
ρQη

1,v
1/2
c (f)

)
.

(4.68)

As shown below (see Proposition 4.6), the operator E η is indeed an approximation of the oper-

ator E . The interest of the operator E η is that it has better regularity properties than the plain

linear response E .

For a given η > 0, we consider a simple closed contour Cη in the complex plane, symmetric

with respect to the real axis, enclosing σ(H0
per) ∩ (−∞, εF], containing no element of R ± iη (see

Figure 4.2), and such that

dist
(
Cη, σ

(
H0

per

)
∩ (−∞, εF]

)
>
η

3
, dist

(
Cη,R+ iη

)
>
η

3
. (4.69)

We can then prove the following result.

Proposition 4.4. The operator E η is bounded on L2(R, L2(R3)) and, for f1, f2 ∈ L2(R, L2(R3)),

〈f2,E ηf1〉L2(L2) =

ˆ

R

〈Ftf2(ω),E η(ω)Ftf1(ω)〉L2(R3) dω, (4.70)

where, for h1, h2 ∈ L2(R3),

〈E η(ω)h1, h2〉L2(R3) =
1

π
Im

(
˛

Cη

TrL2(R3)

[
(γ0per)

⊥

z − (H0
per + ω + iη)

v
1/2
c (h2)

(γ0per)

z −H0
per

v1/2c (h1)

]
dz

)
.

(4.71)
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Cη

+iη

−ω

εF

R+ iη

R

Fig. 4.2. Integration contour Cη.

In addition, there exists a constant C > 0 such that

‖E η‖B(L2(R,L2(R3))) = sup
ω∈R

‖E η(ω)‖B(L2(R3)) 6
C

η2
.

Since the linear response commutes with time translations, it is not surprising that the op-

erator E η is diagonal in the frequency domain (in the sense of (4.70)). Besides, the operators

E η(ω) commute with spatial translations of the lattice. They are hence decomposed by the Bloch

transform associated with the lattice R. Equalities similar to (4.36) can be obtained. The action

of E η(ω) on the fiber associated with the Bloch vector q ∈ Γ ∗ is denoted by E η(ω, q). The Bloch

matrices of the operator E η(ω) are then defined using the Fourier basis (eK)K∈R∗ of L2
per(Γ ) as

E
η
K,K′(ω, q) = 〈eK ,E η(ω, q)eK′〉L2

per
,

and it holds

∀K ∈ R∗, Ft,x (E ηf) (ω, q+K) =
∑

K′∈R∗

E
η
K,K′(ω, q)Ft,xf(ω, q+K ′), for a.a. (ω, q) ∈ R×Γ ∗.

(4.72)

As stated in the proposition below, the Bloch matrices of the operators E η can be written

in terms of the Bloch decomposition of the mean-field Hamiltonian H0
per. As mentioned at the

beginning of this section, the expressions (4.73) are known in the physics literature under the

name of Adler-Wiser formulae [1, 154].

Proposition 4.5. For each η > 0, the Bloch matrices of the damped linear response operator E η

are given by

E
η
K,K′(ω, q) =

1Γ∗(q)

|Γ |
|q +K ′|
|q +K| T

η
K,K′(ω, q), (4.73)

where the continuous functions T ηK,K′ : R× R
3 → C defined by

T ηK,K′(ω, q) =
+∞∑

n,m=1

(1n6N<m−1m6N<n)

 

Γ∗

〈um,q′ , e−iK·x un,q+q′〉L2
per
〈un,q+q′ , eiK

′·xum,q′〉L2
per

εn,q+q′ − εm,q′ − ω − iη
dq′

(4.74)

are uniformly bounded.

The above expressions are well defined (in particular, the sums are normally convergent).

Standard linear response

We now come back to the linear response defined in (4.65), which corresponds to the limit of the

damped response (4.68) as η → 0 (this limit is made precise in Proposition 4.6 below). It is not

possible to pass to the limit directly in (4.73) since the denominators in (4.74) may vanish when

|ω| > g (recall that g is the band gap of the host crystal, defined in (4.42)). The limit of the
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expressions (4.73) is rather singular, and should be understood as a tempered distribution. It is

therefore useful to first rewrite (4.72) using tempered distributions: for all f ∈ S (R× R
3),

Ft,x (E ηf) =
∑

K,K′∈R∗

τK

(
τ−K′

(
Ft,xf

)
E
η
K,K′

)
, (4.75)

where τKf(ω, q) = f(ω, q −K) is the momentum space translation of vector K. It can be proved

that the series on the right hand side of (4.75) converges to Ft,x (E ηf) in the sense of the tempered

distributions. The Bloch-frequency decomposition of the operator E defined by (4.65) is then

obtained by passing to the limit in (4.75) when η → 0.

Proposition 4.6. The operators E η converge to E in the following sense: for any f ∈ L1(R, L2(R3)),

lim
η↓0

E
ηf = E f in L∞

loc(R, H
1(R3)).

Besides, for each (K,K ′) ∈ R∗ ×R∗, the Bloch matrix E
η
K,K′ converges in S ′(R × R

3), when η

goes to zero, to a limiting distribution denoted by EK,K′ . Finally, for each f ∈ S (R × R
3), the

following equality holds in S ′(R× R
3):

Ft,x (E f) =
∑

K,K′∈R∗

τK

(
τ−K′

(
Ft,xf

)
EK,K′

)
. (4.76)

This result shows that the matrix (EK,K′)K,K′ can be interpreted as the Bloch matrix of the

operator E .

4.2.2.3 Adiabatic limit: static linear response

The linear response of the electronic density for time-independent perturbations was studied in [24].

The aim of this section is to recover the static polarization operator from the time-dependent one

in some adiabatic limit.

The time-independent polarizability operator defined in [24, Proposition 1] reads

Ẽ static : L2(R3) → L2(R3)

h 7→ v
1/2
c

(
ρQstatic

1,v
1/2
c (h)

)
,

(4.77)

with, for V ∈ C′,

Qstatic
1,V =

1

2iπ

˛

C0

(z −H0
per)

−1V (z −H0
per)

−1 dz,

where C0 is a simple closed contour in the complex plane enclosing σ(H0
per) ∩ (−∞, εF] and con-

taining no element of σ
(
H0

per

)
∩ [εF,+∞). We deduce from the results in [24] that

∀(K,K ′) ∈ R∗ ×R∗, Ẽ
static
K,K′ (q) = EK,K′(0, q) for a.a. q ∈ Γ ∗.

The time-independent polarizability operator is therefore the zero-frequency limit of the dynamical

response, obtained by setting ω = 0 in (4.73) and passing to the limit η → 0.

This observation leads us to study the adiabatic limit of the linear response, where, for some

sufficiently small parameter α > 0, the evolution of the time-dependent potential v is slowed down

by replacing v(t) by v(αt), and the effect of the perturbation is considered on longer times t/α in

order to obtain a non-trivial result. More precisely, given a time dependent perturbation v(t), we

introduce the linear response Q̃α1,v(t) = Q1,v(α·)(t/α) (where Q1,v is defined in (4.63)):
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Q̃α1,v(t) = −i

ˆ t/α

−∞

U0

(
t

α
− s

)[
v(αs), γ0per

]
U0

(
t

α
− s

)∗

ds.

Equivalently, this procedure may be seen as accelerating the free evolution generated by H0
per and

appropriately rescaling the result. Indeed, a change of variables shows that

Q̃α1,v(t) = − i

α

ˆ t

−∞

U0

(
t− s

α

)[
v(s), γ0per

]
U0

(
t− s

α

)∗

ds.

For any α > 0, we introduce the rescaled linear response operator

Ẽ α : L1(R, L2(R3)) → C0
b(R, H

1(R3))

f 7→ v
1/2
c

(
ρQ̃α

1,v
1/2
c (f)

)
.

(4.78)

Proposition 4.7. For any function f ∈ S (R× R
3),

lim
α↓0

Ẽ
αf = Ẽ

0f in S
′(R× R

3),

where for all t ∈ R,
(
Ẽ 0f

)
(t) = Ẽ static(f(t)).

This result means that, in the adiabatic limit we consider, the linear response at time t only

depends on v(t). There is no memory effect. Moreover, the linear response at time t is given by

the time-independent (or static) polarization operator Ẽ static studied in [24, Proposition 4].

4.2.3 The time-dependent Hartree model for defects in crystals

We consider in this section the evolution of the state of a crystal with defects when the system

evolves according to a nonlinear evolution equation generalizing the evolution (4.33) for finite

systems. Formally, we write, as in (4.54), the state of the system in the thermodynamic limit

as γ(t) = γ0per + Q(t). The key point is to take into account the perturbations of the potential

arising from the perturbation of the electronic density. Still denoting by v(t) the applied external

perturbation, this amounts to replacing the effective time dependent Hamiltonian (4.52) by

Hv
γ (t) = H0

per + v(t) + vc(ρQ(t)).

The equation governing the time evolution of the defect can then be motivated by a formal

thermodynamic limit of the evolution equation (4.33) for finite systems, leading to the following

nonlinear dynamics:

i
dQ(t)

dt
=
[
H0

per + ρQ(t) ⋆ | · |−1 + v(t), γ0per +Q(t)
]
. (4.79)

The well-posedness of this dynamics is discussed in Section 4.2.3.1. In a second step, we obtain in

Section 4.2.3.2 the expression of the macroscopic dielectric permittivity in terms of the microscopic

description of the crystals through some homogenization limit.

4.2.3.1 Well-posedness of the dynamics

We consider mild solutions of the von Neumann equation (4.79), for an applied perturbation

v(t) = −vc(ν(t)), with a nuclear charge distribution of defects ν(t) ∈ L2(R3) ∩ C for all t. The

notion of mild solution is defined in [122] for instance. Since [H0
per, γ

0
per] = 0, the mild solutions

satisfy the following nonlinear integral equation:
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∀t ∈ R+, Q(t) = U0(t)Q
0U0(t)

∗−i

ˆ t

0

U0(t−s)
[
vc(ρQ(s)−ν(s)), γ0per+Q(s)

]
U0(t−s)∗ds, (4.80)

for a given initial condition Q0 ∈ K (recall that K is defined in (4.45)). We can prove the following

result.

Theorem 4.2. Let ν ∈ L1
loc(R+, L

2(R3))∩W 1,1
loc (R+, C). Then, for any Q0 ∈ K, the time-dependent

Hartree equation (4.80) has a unique solution in C0(R+,Q). Besides, for all t ≥ 0, Q(t) ∈ K and

Tr0(Q(t)) = Tr0(Q
0). Finally, if γ0per +Q0 is an orthogonal projector, then γ0per +Q(t) is also an

orthogonal projector for all t > 0.

The proof of local existence and uniqueness is classical and is based upon a Banach fixed point

argument in a well-chosen ball of Q. Once local-in-time existence and uniqueness is ensured, it is

possible to extend the well-posedness of the dynamics to all times by proving that the Q-norm of

Q(t) does not blow up in finite time. This can be completed by controlling the growth of ‖Q(t)‖Q
by means of the energy functional E : R+ ×Q → R defined by

E(t, Q) = Tr0(H
0
perQ)−D(ρQ, ν(t)) +

1

2
D(ρQ, ρQ), (4.81)

where Tr0(H
0
perQ) is defined in (4.49).

Under appropriate regularity assumptions on Q0 and ν, the unique solution of (4.80) is a

classical solution of (4.79) (see [H30, Proposition 12]).

4.2.3.2 Macroscopic dielectric permittivity

We motivate in this section the definition of the dielectric matrix starting from the nonlinear

evolution equation (4.80). We start with formal computations, which, to be justified, would require

estimates on the long time behavior of Q(t). Unfortunately, we do not have such estimates, see

the discussion after Proposition 4.8. For the same reasons as the ones presented before (4.63), we

choose Q0 = 0 in (4.80) and change the reference time from 0 to t0, letting then t0 go to −∞,

formally obtaining

Q(t) = −i

ˆ t

−∞

U0(t− s)
[
vc(ρQ(s) − ν(s)), γ0per +Q(s)

]
U0(t− s)∗ds. (4.82)

The above integral equation can be rewritten as

Q(t) = Q1,vc(ρQ−ν)(t) + Q̃2,vc(ρQ−ν)(t), (4.83)

where the linear operator Q1,v is defined in (4.60), and where the remainder Q̃2,vc(ρQ−ν)(t) collects

the higher order terms. Equation (4.83) can be reformulated in terms of electronic densities as

ρQ(t) = [L(ν − ρQ)] (t) + r2(t), (4.84)

where L = −χ0vc and r2(t) = ρQ̃2,vc(ρQ−ν)(t)
, or, equivalently,

[(1 + L)(ν − ρQ)] (t) = ν(t)− r2(t). (4.85)

This motivates the following result.

Proposition 4.8 (Properties of the operator L). For any 0 < Ω < g (where g is the band

gap of the host crystal), the operator L is a non-negative, bounded, self-adjoint operator on the

Hilbert space
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HΩ =
{
̺ ∈ L2(R, C)

∣∣∣ supp(Ft,x̺) ⊂ [−Ω,Ω]× R
3
}
,

endowed with the scalar product

〈̺2, ̺1〉L2(C) =

ˆ

R

D
(
̺2(t, ·), ̺1(t, ·)

)
dt = 4π

ˆ Ω

−Ω

ˆ

R3

Ft,x̺2(ω, k)Ft,x̺1(ω, k)
|k|2 dω dk.

Hence, 1 + L, considered as an operator on HΩ, is invertible.

This result cannot be used as such to study (4.85) since, even when ν belongs to HΩ , the

nonlinear response r2 generally involves frequencies with absolute values larger than Ω. This can

be seen from the relation (4.61). For instance, Q2,v is a convolution between the time evolution U0

of the perfect crystal, and products such as vQ1,v. Since the time Fourier transform of each of the

element of the latter product has support in (−Ω,Ω), the time Fourier transform of their product

has support in (−2Ω, 2Ω).

In order to rigorously obtain the macroscopic dielectric permittivity from (4.85), some spatial

rescaling should be performed. In the time-independent case dealt with in [24], the equivalent

of the nonlinear term r2 turns out to become negligible under this spatial rescaling. In order to

prove that the same phenomenon occurs in the time-dependent case, we would need estimates

on the time growth of the nonlinear term r2(t). Controlling this term is probably difficult since

very few is known about the long time limit of dynamics such as (4.82). Typical tools to this

end are Strichartz-like estimates, which allow to establish appropriate decays in time and prove

scattering results (see for instance [126, Section XI.13]). Such inequalities are easy to prove for

the operator −∆ on L2(R3). To our knowledge, the only known dispersion inequality for periodic

Schrödinger operators is restricted to the one-dimensional setting, see the recent work [34]. The

proof is based on the stationary phase method, but several fine estimates rely explicitly on the

fact that the system is one-dimensional. It is unclear whether such results can be extended to

three-dimensional systems.

We will therefore limit ourselves to pass to the macroscopic limit on the following linear prob-

lem, which can be seen as a simplification of (4.84): Ω ∈ (0, g) and ν ∈ HΩ being given, seek

ρν ∈ HΩ such that

∀t ∈ R, [(1 + L)(ν − ρν)] (t) = ν(t). (4.86)

In order to obtain some macroscopic property, we consider the regime where the perturbation is

weak but spread out over a large region, using the same spatial rescaling as in [24]. For η > 0,

introduce the rescaled charge of the external perturbation

νη(t, x) = η3ν(t, ηx). (4.87)

Note that the total charge of the defect is preserved since
´

R3 νη(t, x) dx =
´

R3 ν(t, x) dx for all

η > 0 and all t ∈ R. We also define the rescaled potential generated by the total charge of the

defect νη − ρνη as

W η
ν (t, x) = η−1vc(νη − ρνη )

(
t, η−1x

)
. (4.88)

The scaling of the potential is such that, in the absence of dielectric response (L = 0), the potential

effectively seen by the crystal is W η
ν = vc(ν). We are then able to prove the following result.

Proposition 4.9. There exists a smooth mapping εM(ω) for ω ∈ (−g, g), with values in the space

of symmetric 3 × 3 matrices, satisfying εM(ω) > 1 for all ω ∈ (−g, g), and such that, for all

ν ∈ HΩ (0 < Ω < g), the rescaled potential W η
ν defined by (4.86)-(4.88) converges weakly in HΩ

when η goes to 0, to the unique solution Wν in HΩ to the equation

−div
(
εM(ω)∇ [FtWν ] (ω, ·)

)
= 4π [Ftν] (ω, ·), (4.89)
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where div and ∇ are the usual divergence and gradient operators with respect to the space variable x.

A precise expression of εM(ω) in terms of the Bloch decomposition of the mean-field Hamilto-

nian H0
per is given in [H30]. Note that in the macroscopic equation (4.89), the pulsation ω enters

only as a parameter: there is no coupling between different values of ω. In the space-time do-

main, this means that the charge ν(t, x) and the potential Wν(t, x) are related by a space-time

convolution.
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I present in this chapter some of the research tracks I intend to explore in the near future: nu-

merical methods for nonequilibrium systems in statistical physics (Section 5.1), and mathematical

and numerical analysis of models from quantum physics (Section 5.2).

5.1 Numerical methods for nonequilibrium systems in statistical physics

The computation of average properties of nonequilibrium systems, such as average values of the

response functions considered in Section 3.1.3, is almost always performed using longtime averages

over the nonequilibrium dynamics. In many situations however, these averages are not converging

very fast because of the large variance of the estimator compared to the average value to be

computed (see for instance the discussion in [H22]). Moreover, in some situations such as thermal

transport computations in very long atom chains, long transient regimes have to be removed from

the computation of the average. With my implementation of the numerical algorithms and the

computers we have at CERMICS, this means sometimes discarding several weeks, if not months,

of computations for the longest chains (N ∼ 100, 000). There is clearly a need for more efficient

numerical techniques to compute linear response properties, and properties of nonequilibrium

systems in general.

5.1.1 Variance reduction techniques

Variance reduction techniques are used on a daily basis in equilibrium simulations. The use of such

techniques is often based on the explicit expression of the invariant measure, and its modification

under appropriate perturbations. I have three strategies in mind: importance sampling, stratifi-

cation, and the control variate method. As I argue below, none of these methods can be used as

such for nonequilibrium systems. Indeed, the control variate method is an interesting technique for
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very specific dynamics only; while the unpleasant behavior of the invariant measure of nonequi-

librium systems under perturbations (described below) somehow prevents the use of importance

sampling and stratification by constrained dynamics. This is of course related to the fact that

nonequilibrium systems are really characterized by their dynamics, and the invariant measure is

not as central a concept as for equilibrium systems.

5.1.1.1 Importance sampling

Importance sampling in computational statistical physics is implemented in practice in equilib-

rium methods by adding some biasing potential A to the Langevin dynamics or the Metropolis

algorithm. The correctness of the procedure is based upon the fact that the perturbed measure is

the original measure Z−1e−βV multiplied by a factor proportional to eA, so that the microscopic

configurations sampled by the biased dynamics can be reweighted in order to be distributed ac-

cording to the measure of interest. There are several ways to find appropriate biasing potentials,

using for instance the free energy associated with a slow degree of freedom (see the discussion in

Section 2.2.1.3).

On the other hand, consider a nonequilibrium dynamics

dqt = b(qt) dt+ σdWt,

with invariant measure ψ∞(q) dq, perturbed by a gradient term, such as

dqt =
(
b(qt) +∇A(qt)

)
dt+ σdWt.

We denote by ψA∞(q) dq the invariant measure of this process (assuming that it exists). In general,

ψA∞(q) dq is different from Z−1ψ∞(q)eA(q) dq (consider for instance the simple example discussed

after (3.5)). The expression of ψA∞ is actually not known, and has in general no simple relationship

with the expression of ψ∞. It is therefore unclear how to use importance sampling strategies for

nonequilibrium systems.

5.1.1.2 Stratification

Stratification is another way of decomposing a difficult sampling problem in several easier ones.

Typically, it can be applied by constraining the dynamics on the iso-surface of some slowly evolving

degree of freedom, and varying the values of the constraint in order to sample the full phase-

space, as is done in thermodynamic integration (see Section 2.2.2). For equilibrium systems, it is

easy to construct constrained dynamics sampling the restriction of the invariant measure of the

unconstrained dynamics.

The invariant measure of constrained nonequilibrium dynamics may, on the other hand, have no

relationship whatsoever with the invariant measure of the unconstrained nonequilibrium dynamics.

Let us illustrate this point by a simple example. Consider the dynamics

{
dx1t = ∂x2

H(x1t , x
2
t ) +

√
2 dW 1

t ,

dx2t = −∂x1
H(x1t , x

2
t ) +

√
2 dW 2

t ,

on the state space T
2, for a given smooth periodic function H. A simple computation shows that

ψ∞ = 1T2 is an invariant probability measure. Besides, this is the unique invariant probability

measure since the process is ergodic. Consider now the constraint ξ(x) = x2. The restriction of

ψ∞ to the space {x ∈ T
2 | ξ(x) = 0} = T× {0} is ψ∞(x1) = 1T. The process constrained using a

constraining force in the direction of ∇ξ reads

dx1t = f(x1t ) dt+
√
2 dW 1

t , f(x1) = ∂x2
H(x1, 0).
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In general, the invariant measure for this process is different from 1T. Indeed, introduce

F =

ˆ 1

0

f, V (x1) =

ˆ x1

0

(f(s)− F ) ds.

Note that V is a periodic function (V (0) = V (1) = 0). The computations made in Section 3.1.1

show that the unique invariant measure of the constrained process is

ψ∞(x1) = Z−1

ˆ 1

0

eV (x1+y)−V (x1)−Fy dy,

which is different from 1T in general.

5.1.1.3 Control variate method

As far as I know, the only variance reduction technique I have seen applied to nonequilibrium

systems is the control variate method, in the case of a fully stochastic dynamics [66], where the

average flux of particles across the system is measured. The general idea of the control variate

method for nonequilibrium systems is to simulate a system at equilibrium and a system subjected

to a small external forcing, and to monitor the difference between the flux of interest in the

nonequilibrium system, and the flux in the equilibrium one (which, up to statistical errors, should

vanish). When the coupling is sufficiently strong, the variance of the difference of the fluxes is much

smaller than the variance of the flux of the nonequilibrium system alone. On the other hand, this

approach is useless in systems where the bulk dynamics is Hamiltonian since the coupling is too

weak. An interesting question is then: Is there a way to modify the dynamics in order to increase

its coupling properties, while keeping an appropriate linear response?

5.1.2 Variance reduction for nonequilibrium systems: some possible tracks

Finding general variance reduction techniques for nonequilibrium systems is a very challenging

problem. A more amenable path is to understand the standard variance reduction techniques

used for equilibrium systems in the linear response regime, benefiting from the expression of the

invariant measure as a series expansion in powers of the magnitude of the forcing (see (3.17)).

5.1.2.1 Constraining nonequilibrium systems (stratification)

What does it mean to constrain nonequilibrium systems? Or, in a less schematic way, how should

the constraining be performed, and what is the measure sampled by the constrained process? I

have two motivations in mind:

(i) the computation of free energy differences. In this case, the constraint fixes the value of the

reaction coordinate ξ, and the aim is to compute the normalization factor for the restriction of

ψ∞ to Σ = ξ−1{0}. To this end, the constrained dynamics should sample the marginal of the

invariant measure of the unconstrained dynamics. I expect that the appropriate constraining

process to fulfill this requirement involves the (unknown) invariant measure, but the hope

is that this dependence can be made explicit in the linear response regime, at least at first

order;

(ii) the computation of transport properties of systems with molecular constraints, such as the

computation of the shear viscosity by bulk-driven steady-state nonequilibrium methods for

rigid models of water. The question is in this case: How should the constraints be implemented

in order to have a consistent linear response theory, in the sense that the constraining process

and the linear response procedure commute?
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5.1.2.2 Non-physical dynamics

Another path to more efficient simulations is to more systematically explore the use of “non-

physical” dynamics, that may have better convergence properties than standard dynamics.

(i) As described in Section 3.1.3, there are (infinitely) many equivalent ways of obtaining the

correct linear response by choosing appropriately the perturbation applied to the system.

This does not mean however that the corresponding numerical approaches are equivalent.

In particular, the convergence to the steady state may be faster for some dynamics. The

latter question may be reformulated mathematically by saying that we are looking for a

perturbationA1 maximizing the spectral gap of the generator of the nonequilibrium dynamics

A0 + ξA1, under the constraint that the conjugated response ξA∗
11 is fixed.

It would be interesting for instance to compare the numerical performances of the three

dynamics presented in Section 3.1.3.5 to begin with.

(ii) A possibly interesting approach is the simulation of systems with fixed fluxes, called Norton

ensembles (see [55, Chapter 6] and [135]). In standard nonequilibrium dynamics, a forcing

is applied to the reference dynamics (for instance, a temperature difference for thermal

transport) and the average of some response function R (such as the energy current) is

monitored. It may however be possible as well to fix exactly the value of the response function

by appropriately constraining the system, and determine the forcing induced on the system.

Linear response properties would then be obtained by dividing the fixed value of the response

by the average forcing. I would like to understand how such a procedure works, and under

which assumptions it is indeed consistent with the standard approach; and then compare its

convergence properties (theoretically and/or numerically) with the convergence properties of

the standard approaches.

5.2 Mathematical and numerical analysis of models in quantum physics

There are several problems which I would like to study in quantum physics, at the intersection of

theoretical mathematical physics and numerical analysis.

First, many extensions of the work on the time dependent linear response of crystals presented

in Section 4.2 can be envisioned:

• The linear response of the system can be studied in the case when the perturbation is not local,

but is rather a global (weak) electromagnetic field.

There are several models to describe magnetism in finite (molecular) systems. Let us present

for instance the Hartree-Fock model for finite systems. It is fundamental to take the spin

variable into account. The state of the system is therefore described by a density operator

γ ∈ S(L2(R2,C2)), such that 0 6 γ 6 1 and Tr(γ) = N , with kernel

γ(x, y) =

(
γ↑↑(x, y) γ↑↓(x, y)

γ↓↑(x, y) γ↓↓(x, y)

)
.

The electronic density is ργ(x) = TrC2(γ(x, x)) = γ↑↑(x, x) + γ↓↓(x, x), and the magnetization

is the vector

mγ(x) = (mγ,x1
(x),mγ,x2

(x),mγ,x3
(x)), mγ,xi

(x) = TrC2 (σiγ(x, x)) ,

where σ1, σ2, σ3 are the Pauli matrices. The energy of such a state in the Hartree-Fock model

reads
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E(γ) =
1

2
Tr
(
(−i∇+Aext)

2γ
)
+

ˆ

R3

V nucργ +

ˆ

R3

mγ ·Bext +
1

2
D(ργ , ργ)

− 1

2

ˆ

R3

ˆ

R3

∑
σ,σ′∈{↑,↓} |γσσ′(x, y)|2

|x− y| dx dy,

where Bext is an external magnetic field, and Aext is the associated potential vector. Other

first principle models of electronic structure, such as spin density functional theory or current

density functional theory and their extensions (see [53] and references therein), have forms

similar to the Hartree-Fock energy.

At the macroscopic level, magnetism is described by Maxwell’s equations. For crystals (infinite

systems obtained in the thermodynamic limit), a fundamental issue would be to obtain an

expression of the magnetic permeability from a homogenization limit of a quantum model

describing magnetic crystals. I expect the mathematical techniques involved in this derivation

to be similar enough to the ones used in Section 4.2. A first question is however to write an

appropriate model describing magnetic crystals depending on the type of magnetism of interest

(orbital vs. spin magnetism). For the free electron gas and tight-binding models, there are some

recent results on the definition of the magnetic susceptibility for orbital magnetism [21, 137].

For nonlinear models of density functional theory, this is not the case. In fact, the spectral

theory of effective, periodic magnetic Hamiltonians is still an active research topic [69, 98].

• Another interesting issue is the interaction of the electronic defects and the nuclear degrees of

freedom. Vibrations of the nuclei around their equilibrium positions are described by phonons,

which represent the elementary displacement waves of the underlying crystal lattice. Interac-

tions between electronic states and phonons are modeled in the physical literature by appropri-

ate (linear) couplings. I would like to investigate how such empirical couplings can be derived

rigorously in some limiting regime from an underlying reference fully ab-initio model. This

involves incorporating nuclear degrees of freedom in the model of electronic defects presented

in [23, 24]. One mathematical difficulty will be that the perturbations of the nuclear lattice,

arising from the relaxation of the nuclear degrees of freedom, are not necessary local.

There are also other models that are very relevant in applications, and which have not been

investigated from a mathematical viewpoint:

• A first one is the GW method to compute electronic excitations such as the ones created

by the incident light on photovoltaic cells [8, 58, 84, 85]. The unknown in this method is the

Green’s function of the system, which satisfies a self-consistent equation for a non-self adjoint

Hamiltonian. The non-self adjointness arises from a frequency dependent exchange correlation

term, which generalizes the standard functionals used in density functional theory (such as

LDA or GGA). Formulating this model in an appropriate functional framework is already

quite challenging.

• I would like also to investigate models for transport at the quantum level, in particular self-

consistent models in the framework of nonequilibrium Green’s functions (see [38] for a simple

introduction to such techniques). For instance, it is not clear whether these nonlinear models

are well posed (existence and uniqueness of a solution).

The mathematical difficulties common to all the models hinted at above are the nonlinearity of

the equations and their genuine time-dependence.
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[31] G. Ciccotti, T. Lelièvre, and E. Vanden-Eijnden, Projection of diffusions on sub-
manifolds: Application to mean force computation, Commun. Pure Appl. Math. 61(3) (2008)
371–408.

[32] G. E. Crooks, Nonequilibrium measurements of free energy-differences for microscopically
reversible Markovian systems, J. Stat. Phys. 90(5) (1998) 1481–1487.

[33] G. E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work re-
lation for free-energy differences, Phys. Rev. E 60(3) (1999) 2721–2726.

[34] S. Cuccagna, Dispersion for Schrödinger equation with periodic potential in 1D, Commun.
Partial Differ. Equ. 33(11) (2008) 2064–2095.

[35] P. J. Daivis and B. D. Todd, A simple, direct derivation and proof of the validity of the
SLLOD equations of motion for generalized homogeneous flows, J. Chem. Phys. 124 (2006)
194103.

[36] E. Darve, Thermodynamic integration using constrained and unconstrained dynamics, In
Free Energy Calculations, C. Chipot and A. Pohorille (Eds.) (Springer, 2007), pp. 119–
170.

[37] E. Darve and A. Porohille, Calculating free energy using average forces, J. Chem. Phys.
115 (2001) 9169–9183.

[38] S. Datta, Quantum Transport: From Atom to Transistor (Cambridge University Press,
2005).

[39] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science
and Technology. Evolution Problems I (Springer, 2000).

[40] W. K. den Otter, Thermodynamic integration of the free energy along a reaction coordi-
nate in Cartesian coordinates, J. Chem. Phys. 112(17) (2000) 7283–7292.

[41] W. K. den Otter and W. J. Briels, The calculation of free-energy differences by con-
strained molecular-dynamics simulations, J. Chem. Phys. 109(11) (1998) 4139–4146.



References 95

[42] B. Derrida, J. L. Lebowitz, and E. R. Speer, Large deviation of the density profile
in the steady state of the open symmetric simple exclusion process, J. Stat. Phys. 107(3/4)
(2002) 599–634.

[43] A. Dhar, Heat conduction in the disordered harmonic chain revisited, Phys. Rev. Lett.
86(26) (2001) 5882–5885.

[44] A. Dhar, Heat transport in low-dimensional systems, Adv. Phys. 57 (2008) 457–537.
[45] A. Dhar and J. L. Lebowitz, Effect of phonon-phonon interactions on localization, Phys.

Rev. Lett. 100 (2008) 134301.
[46] R. Dreizler and E. K. U. Gross, Density functional theory (Springer, 1990).
[47] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid Monte-Carlo,

Phys. Lett. B 195(2) (1987) 216–222.
[48] W. E and E. Vanden-Eijnden, Metastability, conformation dynamics, and transition

pathways in complex systems, In Multiscale Modelling and Simulation, S. Attinger and

P. Koumoutsakos (Eds.), volume 39 of Lect. Notes Comput. Sci. Eng. (Springer, Berlin,
2004), pp. 35–68.

[49] J.-P. Eckmann and M. Hairer, Non-equilibrium statistical mechanics of strongly anhar-
monic chains of oscillators, Commun. Math. Phys. 212 (2000) 105–164.

[50] J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, Entropy production in nonlinear,
thermally driven Hamiltonian systems, J. Stat. Phys. 95(3/4) (1999) 305–331.

[51] J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, Non-equilibrium statistical mechan-
ics of anharmonic chains coupled to two heat baths at different temperatures, Commun.
Math. Phys. 201 (1999) 657–697.

[52] H. Ehrenreich and M. H. Cohen, Self-consistent field approach to the many-electron
problem, Phys. Rev. 115(4) (1959) 786–790.

[53] E. Engel and R. M. Dreizler, Density Functional Theory – An advanced course, Theo-
retical and Mathematical Physics (Springer, 2011).

[54] D. J. Evans, Homogeneous NEMD algorithm for thermal conductivity. Application of non-
canonical linear response theory, Phys. Lett. A 91(9) (1982) 457 – 460.

[55] D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Cam-
bridge University Press, 2008).

[56] F. Zhang D. J. Isbister D. J. Evans, Nonequilibrium molecular dynamics simulations
of heat flow in one-dimensional lattices, Phys. Rev. E 61 (2000) 3541–3546.

[57] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,
Studies in Advanced Mathematics (CRC Press, 1992).

[58] B. Farid, Ground and low-lying excited states of interacting electron systems: a survey and
some critical analyses, In Electron Correlation in the Solid State, N. March (Ed.) (World
Scientific/Imperial College Press, 1999), pp. 103–261.

[59] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle systems (Dover
Publication, 2003).

[60] J. Fritz, T. Funaki, and J. L. Lebowitz, Stationary states of random Hamiltonian
systems, Probab. Theory Related Fields 99 (1994) 211–236.

[61] L. M. Garrido, Generalized adiabatic invariance, J. Math. Phys. 5 (1964) 335–362.
[62] M. Gell-Mann and F. Low, Bound states in quantum field theory, Phys. Rev. 84(2)

(1951) 350–354.
[63] O. V. Gendelman and A. V. Savin, Normal heat conductivity of the one-dimensional

lattice with periodic potential of nearest-neighbor interaction, Phys. Rev. Lett. 84(11) (2000)
2381–2384.

[64] O. V. Gendelman and A. V. Savin, Gendelman and Savin reply, Phys. Rev. Lett. 94(21)
(2005) 219405.
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Sci. Paris Sér. I Math. 317(2) (1993) 217–220.

[141] J.-P. Solovej, Proof of the ionization conjecture in a reduced Hartree-fock model., Invent.
Math. 104 (1991) 291–311.

[142] M. Sprik and G. Ciccoti, Free energy from constrained molecular dynamics, J. Chem.
Phys. 109(18) (1998) 7737–7744.

[143] G. Stoltz. Some mathematical methods for molecular and multiscale simulation. PhD
thesis, Ecole des Ponts, 2007.

[144] S. Teufel, Adiabatic perturbation theory in quantum dynamics, volume 1821 of Lecture
Notes in Mathematics (Springer-Verlag, Berlin, Heidelberg, New York, 2003).

[145] L. E. Thomas, Time dependent approach to scattering from impurities in a crystal, Com-
mun. Math. Phys. 33 (1973) 335–343.

[146] M. Toda, Solitons and heat conduction, Physica Scripta 20 (1979) 424–430.
[147] B. D. Todd and P. J. Daivis, Homogeneous non-quilibrium molecular dynamics simula-

tions of viscous flow: Techniques and applications, Mol. Sim. 33(3) (2007) 189–229.
[148] B. D. Todd, Denis J. Evans, and Peter J. Daivis, Pressure tensor for inhomogeneous

fluids, Phys. Rev. E 52(2) (1995) 1627–1638.
[149] E. Vanden-Eijnden and G. Ciccotti, Second-order integrators for Langevin equations

with holonomic constraints, Chem. Phys. Lett. 429(1-3) (2006) 310–316.
[150] C. Villani, Hypocoercivity, Mem. Amer. Math. Soc. 202(950) (2009).
[151] F. Wang and D.P. Landau, Determining the density of states for classical statistical

models: A random walk algorithm to produce a flat histogram, Phys. Rev. E 64 (2001)
056101.

[152] F. G. Wang and D. P. Landau, Efficient, multiple-range random walk algorithm to
calculate the density of states, Phys. Rev. Lett. 86(10) (2001) 2050–2053.

[153] Z. L. Wang, D. W. Tang, X. H. Zheng, W. G. Zhang, and Y. T. Zhu, Length-
dependent thermal conductivity of single-wall carbon nanotubes: prediction and measure-
ments, Nanotechnology 18 (2007) 475714.

[154] N. Wiser, Dielectric constant with local field effects included, Phys. Rev. 129(1) (1963)
62–69.

[155] L. Yang and B. Hu, Comment on “normal heat conductivity of the one-dimensional lat-
tice with periodic potential of nearest-neighbor interaction”, Phys. Rev. Lett. 94(21) (2005)
219404.

[156] H. T. Yau, Relative entropy and hydrodynamics of Ginzburg-Landau models, Lett. Math.
Phys. 22(1) (1991) 63–80.

[157] G. M. Zhislin and A. G. Sigalov, The spectrum of the energy operator for atoms
with fixed nuclei on subspaces corresponding to irreducible representations of the group of
permutations, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965) 835–860.

[158] X. Zotos, Ballistic transport in classical and quantum integrable systems, Journal of low
temperature physics 126(3-4) (2002) 1185–1194.

[159] R. W. Zwanzig, High-temperature equation of state by a perturbation method. I. Nonpolar
gases, J. Chem. Phys. 22(8) (1954) 1420–1426.


