
HAL Id: tel-00710013
https://theses.hal.science/tel-00710013v2

Submitted on 26 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic control for the task/posture coordination of
humanoids : toward synthesis of complex activities

Joseph Salini

To cite this version:
Joseph Salini. Dynamic control for the task/posture coordination of humanoids : toward synthesis of
complex activities. Automatic. Université Pierre et Marie Curie - Paris VI, 2012. English. �NNT : �.
�tel-00710013v2�

https://theses.hal.science/tel-00710013v2
https://hal.archives-ouvertes.fr

THÈSE de DOCTORAT
de

l’Université Pierre & Marie Curie

École Doctorale de Sciences Mécanique, Acoustique, Électronique et Robotique de Paris

Spécialité

Mécanique - Robotique

présentée par

Joseph SALINI

Commande dynamique pour la coordination
tâche/posture des humanöıdes : vers la synthèse

d’activités complexes

Soutenue le 15 Juin 2012

JURY

M. P. Fraisse Professeur à l’Université Montpellier 2 Rapporteur

M. J.P. Laumond Directeur de recherche au LAAS-CNRS Rapporteur

M. A. Micaelli Directeur de recherche au CEA/LIST, Fontenay-aux-Roses Examinateur

M. O. Khatib Professeur à l’Université de Stanford Examinateur

M. P.B. Wieber Chargé de recherche à l’INRIA Rhône-Alpes Examinateur

M. P. Bidaud Professeur à l’Université Pierre & Marie Curie Directeur

M. V. Padois Mâıtre de Conférences à l’Université Pierre & Marie Curie Examinateur

M. O. Sigaud Professeur à l’Université Pierre & Marie Curie Membre invité

A dissertation submitted for the degree of

Doctor of Philosophy
of the

Pierre and Marie Curie University

in

Mechanics and Robotics

presented by

Joseph SALINI

Dynamic control for the task/posture coordination of
humanoids : toward synthesis of complex activities

Defended on June 15th, 2012

Committee in charge

M. P. Fraisse Professor at University of Montpellier 2 Referee

M. J.P. Laumond Research Director at LAAS-CNRS Referee

M. A. Micaelli Research Director at CEA/LIST, Fontenay-aux-Roses Examiner

M. O. Khatib Professor at Stanford University Examiner

M. P.B. Wieber Research scientist at the INRIA Rhône-Alpes Examiner

M. P. Bidaud Professor at the Pierre & Marie Curie University Adviser

M. V. Padois Associate professor at the Pierre & Marie Curie University Examiner

M. O. Sigaud Professor at the Pierre & Marie Curie University Guest member

Résumé

Les travaux de recherche développés dans le cadre de cette thèse traitent d’une manière générale du
problème de la commande dynamique ≪ orientée tâche ≫ de systèmes sous-actionnés et redondants en
considérant plus spécifiquement les systèmes robotiques humanöıdes ou encore les humains virtuels.

Nous avons cherché à apporter des contributions au problème de la ≪ synthèse par la commande d’ac-
tivités motrices ≫ pour des systèmes contraints par leurs capacités intrinsèques et par leurs interactions
notamment physiques avec l’environnement. Les problèmes plus spécifiques qui ont été traités sont re-
latifs à : 1) la commande dynamique des systèmes humanöıdes pour la réalisation d’activités motrices
nécessitant la coordination tâche/posture perturbées par des interactions physiques, 2) l’enchâınement
dynamique continu des activités d’un répertoire de coordinations motrices, 3) la planification et l’adapta-
tion des activités élémentaires dans l’objectif d’un enchâınement automatique supervisé pour la réalisation
de tâches complexes dans des contextes non déterministes.

Le premier chapitre de ce mémoire de thèse est consacré à la description d’un moteur de simulation
physique et de lois de commande pour le développement de comportements dynamiques élémentaires
de systèmes mécaniques poly-articulés. Ces derniers sont contraints par des liaisons binaires bilatérales
ainsi que des liaisons unilatérales comme des contacts frictionnels. Nous développons dans un premier
temps le formalisme supportant le développement de ce simulateur avant de décrire son implémentation
et son fonctionnement à travers des exemples simples. Les équations du mouvement sont ici développées
en s’appuyant sur les équations de Boltzmann-Hamel de systèmes mécaniques à base flottante, et la
résolution numérique des contraintes s’effectue au travers d’un algorithme itératif de type Gauss-Seidel.
L’intégration numérique du système se fait à pas de temps constant selon le schéma d’intégration Euler
semi-implicite, et l’ensemble des différentes étapes du processus est illustré par un exemple simple.

Le deuxième chapitre propose une commande générique fondée sur la réalisation de plusieurs tâches
sous contraintes. Ces contraintes sont principalement la représentation des limitations physiques du robot,
à la fois internes comme les butées articulaires, et externes comme les contacts frictionnels lors des
interactions avec l’environnement. Le formalisme s’inspire des ≪ fonctions de tâches ≫, et la résolution
simultanée de plusieurs d’entre-elles est réalisée par une commande optimale quadratique multicritère. Elle
s’appuie sur des méthodes d’optimisation convexe, et les bonnes propriétés des programmes quadratiques
(QP) permettent un contrôle efficace (en temps, convergence, robustesse) de l’ensemble du corps pour la
coordination tâche/posture. Une stratégie fondée sur les pondérations est utilisée pour la gestion de tâches
concurrentes, cela permettant une grande souplesse du contrôle lors de transitions dans les ensembles de
tâches pour obtenir la continuité des variables de commande.

Le troisième chapitre développe une implémentation de ce contrôleur générique sur des activités types
au travers du modèle virtuel du robot iCub (http://www.robotcub.org/). Ces expériences mettent
en évidence la capacité de la commande à réaliser des tâches complexes incluant des transitions lors de
séquences de tâches ou lors de changement d’état dans l’ensemble des contraintes lors de la rupture des
contacts par exemple. De plus, les performances du programme d’optimisation d’un point de vue temporel
sont étudiées pour différentes expériences et différents formalismes.

Le quatrième chapitre développe un contrôleur haut-niveau permettant de planifier et d’adapter une
séquence pour la matérialisation d’activités plus complexes en se basant sur un répertoire d’actions
prédéterminées et la supervision de leur performances, tout en garantissant la continuité de la commande.
Pour cela, un moteur de décision fondé sur la logique floue est mis en place à l’aide du logiciel ≪ Spirops ≫.
Les informations perçues par les capteurs servent d’entrées au moteur décisionnel qui utilise un ensemble
de règles floues pour avoir, en sortie, des valeurs d’intérêt associées à chaque action que le robot peut
exécuter. Ce choix s’est imposé à nous en raison des bonnes propriétés de cette technique, à savoir 1) sa
robustesse et son efficacité, 2) l’utilisation d’une représentation plus ≪ symbolique ≫ pour le contrôle de
systèmes robotiques, et 3) l’emploi de variables continues pour la modélisation d’événements discrets, et
donc une interconnexion très simple avec le contrôleur générique bas-niveau. Ce schéma est validé par
plusieurs expériences où le robot iCub génère des comportements relativement complexes en vérifiant
l’état de ses actions et en s’adaptant aux conditions géométriques et dynamiques de l’environnement.

Mots Clés : Simulateur Dynamique, Robot humanöıde, Contrôle Global du Mouvement, Programme
Linéaire Quadratique, Transitions, Moteur de Décision.

v

http://www.robotcub.org/

Abstract

The research developed in this PhD thesis deals with the general problem of dynamic control of “task-
oriented” under-actuated and redundant systems considering more specifically the humanoid robotic
systems or virtual humans.

This research brings contributions to the problem of motor activities synthesis for constrained systems
by their intrinsic capacities and by particular physical interactions with the environment.

More specific issues that were addressed relate to : 1) the dynamic control of humanoid systems for
carrying out basic activities requiring task/posture coordination perturbed by physical interactions, 2)
the building of sequences of continuous dynamic activities based on a repertoire of motor coordination, 3)
the planning and the adaptation of activities in the aim of a supervised automatic sequencing for complex
non-deterministic tasks.

The first chapter of this thesis is devoted to the description of a physical simulation engine and control
laws for the development of dynamic behaviors of elementary poly-articulated mechanical systems. These
latter are constrained by binary relations and bilateral links as unilateral frictional contacts. We develop
the formalism supporting the development of this simulator before describing its implementation and
operation through simple examples. The equations of motion are developed here based on the Boltzmann-
Hamel equations of mechanical systems with a free-floating base, and the numerical solution of the
constraints is done through an iterative algorithm of Gauss-Seidel. The numerical integration of the
system is in constant time step integration scheme according to the semi-implicit Euler method, and all
the different steps of the process are illustrated by a simple example.

The second chapter provides a generic command based on the completion of several tasks under con-
straints. These constraints are mainly the representation of physical limitations of the robot, both internal,
such as joint limits, and as external frictional contacts during interactions with the environment. The
formalism is based on “task functions”, the simultaneous resolution of several of them is realized by
a quadratic multicriteria optimal control scheme. It is based on convex optimization methods, and the
good properties of quadratic programming (QP) can efficiently perform the whole body control (in time,
convergence, robustness) for the task/ posture coordination. A strategy based on weights is used to man-
age conflicting tasks. It allows a great flexibility of control during transitions in the sets of tasks and
constraints for the continuity of the control variables.

The third chapter develops an implementation of this controller on generic activities through the virtual
model of the iCub robot (http://www.robotcub.org/). These experiments verify the achievement
of multi-task problems and performance of the controller for managing transitions in task sequences or
when state change in the set of constraints, when a contact is broken, for example. In addition, program
performance optimization of a temporal point of view are studied for different experiences and different
formalisms.

The fourth chapter develops a high-level controller to plan and adapt a sequence for the realization
of more complex activities based on a predetermined repertoire of actions and monitoring their perfor-
mance, while ensuring the control variables continuity. For this, a decision engine based on fuzzy logic
is implemented via “SpirOps” software. The information collected by sensors are used as inputs to the
decision making engine that uses a set of fuzzy rules for the output values of interest associated with each
action that the robot can execute. This choice was forced on us for the good properties of this technique,
namely 1) its robustness and efficiency, 2) the use of a more symbolic for control of robotic systems, and
3) the use of continuous variables for modeling discrete event, and therefore a very simple interconnection
with the generic low-level controller. This scheme is validated by several experiments where the robot
iCub generates relatively complex behaviors by checking the status of its actions and adapting to the
geometric and dynamic conditions of the environment.

Keywords : Dynamic Simulator, Humanoid Robot, Whole-Body Dynamic Control, Linear Quadratic
Programming, Transitions, Decision Making Engine.

vii

http://www.robotcub.org/

À ma famille.

Ce que le monde nous apporte
Outre les bienfaits d’une nature comblée
Usinons le pour forger la grande porte

La porte qui mène à la fraternité

Eux les hommes que nous appelons nos frères
Usant de leurs dons pour servir l’humanité
Recevront de Dieu le cadeau le plus sacré

Celui de vivre heureux aux cotés de leurs pairs

Oublions les querelles du passé
Retrouvons le bonheur du présent

Si par l’idée ou le sang nous sommes liés à nos ainés
Ensemble nous resterons, et ce jusqu’à la fin des temps

xi

“Ce qui est simple est faux. Ce qui ne l’est pas est inutilisable.”
Paul Valéry

Contents

List of Figures xviii

List of Symbols xxi

Introduction 1

1. Modeling and simulating mechanical systems 5

1.1. Modeling mechanical systems . 7

1.1.1. Coordinates in space . 8

1.1.1.1. Orientation with the special orthogonal group SO(3) . . 9

1.1.1.2. Configuration with the special Euclidean group SE(3) . . 9

1.1.2. Rigid motion velocity . 12

1.1.2.1. Exponential representation in SO(3) 12

1.1.2.2. Exponential representation in SE(3) 14

1.1.2.3. Twist . 15

1.1.3. Dynamics . 16

1.1.3.1. Wrench . 16

1.1.3.2. Dynamic equation of rigid body in space 17

1.1.4. Representation of tree-structure . 18

1.1.4.1. Open kinematic chain . 18

1.1.4.2. Dynamic of tree-structure 22

1.2. Simulating mechanical systems with Arboris-python 23

1.2.1. Simulating the world . 24

1.2.2. Updating controllers . 25

1.2.2.1. Explanation about the impedance argument 26

1.2.3. Updating constraints . 26

1.2.3.1. Joint limit . 28

1.2.3.2. Ball and socket constraint 28

1.2.4. Integrating . 29

1.2.5. Example : 3R robot with joint limits 29

1.2.5.1. Modeling the system . 30

1.2.5.2. Updating the controllers 31

1.2.5.3. Updating the constraints 31

1.2.5.4. Integrating . 32

1.3. Conclusion . 33

2. Controlling a mechanical system in interaction with its environment 35

2.1. Definition of the problem . 37

2.1.1. Equations of motion with interactions 37

xiii

xiv Contents

2.1.2. Actuation limits . 38

2.1.2.1. Torque limit . 38

2.1.2.2. Acceleration limit . 38

2.1.2.3. Velocity limit . 39

2.1.2.4. Joint limit . 39

2.1.3. Obstacle avoidance . 40

2.1.3.1. Constraint expression . 41

2.1.4. Interaction with the environment 41

2.1.4.1. Bilateral Closure . 42

2.1.4.2. Unilateral frictional contact 42

2.2. Solving convex problems . 44

2.2.1. Resolution of unconstrained convex problem 45

2.2.1.1. Gradient descent . 45

2.2.1.2. Special case : the quadratic problem 46

2.2.2. Resolution of convex problem with equality constraints 48

2.2.2.1. Special case : the quadratic problem 49

2.2.3. Resolution of convex problem with inequality constraints 49

2.2.3.1. Interior point algorithm : barrier method 49

2.2.3.2. Active constraint-set method 51

2.3. Controlling a mechanical system with optimization tools 52

2.3.1. Tasks definition . 54

2.3.1.1. Generic task . 54

2.3.1.2. Acceleration task . 54

2.3.1.3. Wrench task . 55

2.3.1.4. Tasks homogenization . 55

2.3.1.5. Task normalization . 56

2.3.2. Problem formalism : dependent or independent variable 57

2.3.3. Special case : the task space dynamics representation 57

2.3.4. Predefined controllers to achieve task : task servoing 58

2.3.4.1. Proportional derivative control 58

2.3.4.2. Quadratic control for walking 59

2.3.4.3. Impedance control with the upper limbs 60

2.3.5. Managing several tasks simultaneously 61

2.3.5.1. Hierarchical strategy . 61

2.3.5.2. Weighting strategy . 62

2.3.6. Chaining up tasks in a physically constrained environment 63

2.3.6.1. Transition in the set of task 63

2.3.6.2. Transition in the set of constraints 64

2.4. Conclusion . 65

3. Experiments on humanoid robots : low-level control 67

3.1. Performing multi-tasks . 69

3.1.1. Stand up . 69

3.1.2. Walk . 71

3.1.3. Grab . 72

3.2. Impedance controller for interaction . 75

Contents xv

3.3. Obstacle avoidance . 76

3.3.1. Goal reaching in presence of fixed obstacles 77

3.3.2. Avoiding moving obstacles . 77

3.4. Transitions in the tasks and constraints sets 78

3.4.1. Transition in the tasks set . 79

3.4.2. Transition in the constraints set 81

3.5. Comparison between the different task types 82

3.5.1. Comparison between the two formalisms 82

3.5.2. Comparison with the special case 84

3.6. Conclusion . 85

4. High-Level control : coupling a decision making engine 87

4.1. Decision making engine . 88

4.1.1. Perceptual information . 88

4.1.2. Decision making process . 89

4.1.3. Introduction to SpirOps : a decision making toolbox 90

4.1.4. Example : the iCub control . 91

4.1.4.1. Perceptual information 91

4.1.4.2. Actions . 91

4.1.4.3. Goals : the fuzzy rules . 95

4.2. Experiments . 96

4.2.1. Geometric conditions . 96

4.2.1.1. Grabbing a box . 96

4.2.1.2. Opening a door . 97

4.2.2. Dealing with uncertainties . 97

4.2.3. Dynamic adaptation . 100

4.3. Conclusion . 102

Conclusion & perspectives 103

5.1. Conclusion . 103

5.2. Perspectives . 105

5.2.1. Problem resolution and modeling 105

5.2.2. Tasks and strategy . 105

5.2.3. Toward more complex behaviors 106

Bibliography 108

Appendix 117

A. Arboris-python 119

A.1. Modeling mechanical structures with Arboris-python 119

A.1.1. Modeling bodies . 120

A.1.2. Modeling joints . 123

A.1.3. Modeling shapes . 124

A.1.4. Modeling constraints . 125

A.1.5. Modeling structures . 125

xvi Contents

A.1.6. Controlling a multibody system : Controller class 127
A.1.7. Observing the world : Observer class 128

A.2. Examples . 129
A.2.1. Modeling and simulating a simple robot 129
A.2.2. Add shapes and constraints . 130

B. LQP-based control 133

B.1. LQP-based controller parameters . 133
B.2. Controlling iCub with LQP-based controller 134

B.2.1. Standing . 134
B.2.2. Swinging . 135
B.2.3. Walking . 135

List of Figures

0.1. Some humanoid robots realizing different tasks. 2

1.1. transformation from p expressed in Ψa to p expressed in Ψb. 10

1.2. Composition rule for homogeneous matrices. 11

1.3. Rotation of vector u linked to Ψe about Ψo with an angle θ. 13

1.4. Displacement of point p linked to frame Ψe relative to Ψo. 14

1.5. Graph representing an open kinematic chain. 18

1.6. Ball and Cardan joints with their configurations description. 19

1.7. View of a scene created with Arboris-python. 24

1.8. 3R robot in Arboris-python and its schematic representation. 30

1.9. Convergence of the Gauss-Seidel algorithm. 32

2.1. Description of the obstacle avoidance problem. 41

2.2. Coulomb cone of friction and its linear approximation. 43

2.3. Illustration of the gradient descent algorithm. 46

2.4. Comparison of the gradient descent between different t. 47

2.5. Approximation of I− according to parameter t. 50

2.6. Description of the barrier method. 52

2.7. The human gait can be model by a Linear Inverted Pendulum Model. . . 60

2.8. Weights evolution, from ω = 1e−2 to 1 and vice versa. 64

3.1. iCub : the robot designed by the RobotCub consortium. 68

3.2. Sequence “stand up”. 70

3.3. Evolution of the input torque vector over time. 71

3.4. Strip of the first sequence “walk”. 72

3.5. CoM and ZMP trajectories during first sequence “walk”. 72

3.6. Strip of the second sequence “walk”. 73

3.7. CoM and ZMP trajectories during second sequence “walk”. 73

3.8. Sequence “grab”. 74

3.9. Evolution of the input torque vector over time. 74

3.10. Impedance control simulation. 75

3.11. Evolution of board and hands positions, as well as their objectives. 76

3.12. Fixed obstacle avoidance simulation. 77

3.13. Evolution of the minimal distance between the hand and the obstacles. . . 78

3.14. Fixed obstacle avoidance simulation, because of a local unfeasible path. . 78

3.15. Collision avoidance simulation. 79

3.16. Evolution of board and hands positions, as well as their objectives. 79

3.17. Sequence “grab” extended with action “drop”. 80

3.18. Evolution of tasks importances & input torque vector over time. 81

3.19. Evolution of the input torque vector with soft transitions. 83

3.20. Evolution of the input torque vector with constraints. 83

xvii

xviii List of Figures

3.21. Comparison between the two formalisms. 84
3.22. Average computation time for different simulations. 85

4.1. Graph illustrating the decision process from the goals to the tasks. 90
4.2. Perceptual information in Spirops. 92
4.3. Some goals or fuzzy rules in Spirops. 93
4.4. Experiment 1 – Grabbing a box with different initial conditions. 96
4.5. Experiment 1 – Interests for actions and normalized distance to the box. . 97
4.6. Experiment 2 – The robot opens a door many times. 98
4.7. Experiment 2 – Evolution of actions interests and perceptions. 98
4.8. Experiment 3 – Dealing with uncertainties while grabbing a box. 99
4.9. Experiment 3 – Interests for actions, distance and velocity of hands. . . . 99
4.10. Experiment 4 – Dynamic adaptation when grabbing boxes. 100
4.11. Experiment 4, second case – Interests for actions and critical distances. . 101
4.12. Experiment 4, second case – CoM & ZMP trajectories. 101

5.1. Joints motions generated by the CPG controller. 107

A.1. Arboris-python diagram. 120
A.2. Presentation of three different constructions of the same body. 122
A.3. Modeling a structure composed of three bodies. 126

List of Symbols

Scalar are lower-case letters. Matrix are noted in upper-case letters. Vector are bold
lower-case letters. The sign < compares two scalars whereas ≺ compares two vectors
term by term.

R
n n-dimensional vector space over the field of the real numbers

In identity matrix of Rn×n

•T transpose

•̇ •̈ time derivative and second time derivative

‖•‖ Euclidean norm

Ψ frame in space

•a,b from Ψa to Ψb

•a relative to Ψa

SO(3) special orthogonal group of dimension 3

SE(3) special Euclidean group of dimension 3

so(3) Lie algebra of SO(3)

se(3) Lie algebra of SE(3)

se
∗(3) dual vector space of se(3)

p point in space

u vector in space

R rotation matrix

H homogeneous matrix

•̃ homogeneous coordinate of considered vector

•̂ skew-matrix according to considered vector

v linear velocity vector

ω rotational velocity vector

T twist

f force vector

τ torque vector or generalized force

W wrench

W mechanical work

xix

xx List of Figures

Q generalized coordinates matrix for nonlinear configuration space joint

ν generalized velocity vector for nonlinear configuration space joint

q generalized coordinates vector for linear configuration space joint

q̇ generalized velocity vector for linear configuration space joint

q̈ generalized acceleration vector for linear configuration space joint

DoF degrees of freedom of joint or system

Ad adjoint matrix

J Jacobian matrix

J̇ time derivative Jacobian matrix

m mass of body

I inertia matrix of body

L Lagrangian

M generalized mass matrix

N generalized nonlinear effects matrix

n generalized nonlinear effects vector

B generalized viscosity matrix

g generalized gravity vector

Z mechanical impedance, for example such as f = Zv

Y mechanical admittance, inverse of impedance

py in this font, class/instance/snippet of code in python language

LP linear program

LQP linear quadratic program

SOCP second-order cone program

SDP semidefinite program

LMI linear matrix inequality

x unknown of primal optimization problem

y unknown of dual optimization problem

•∗ optimal solution

A equality constraints matrix

b equality constraint vector (Ax = b)

G inequality constraints matrix

h inequality constraint vector (Gx � h)

S Selection matrix

List of Symbols xxi

χ action variable, composed of input torque vector and contact forces

X dynamic variable, X = [q̈ χ]

t subset of twist vector

w subset of wrench vector

E coefficient matrix of the controlled part of task

f the objective part of task

ω weight (importance) of considered task

‖•‖M Euclidean M -weighted norm

Λ projection of inertia matrix onto task space

CoM center of mass

ZMP zero moment point

Introduction

Since antiquity, people have tried to reproduce their behavior through artificial beings.
The first examples can be found in mythology with the assistants created by Hephaestus,
and it has continued until automatons development in the nineteenth century. These
entirely mechanical systems were sometimes even programmable, like those designed by
Jaquet-Droz such as the automated writer or musician. With the advent of computers in
the mid-twentieth century, it became possible to control complex systems and to produce
much more sophisticated programmable behaviors. This opened the area of the modern
robotics and the first industrial robot, the Unimate, was integrated into car assembly
lines in 1961. Robots also offer the ability to adapt their behavior by the richness of
their mechanical potential and the exploitation of data from sensors that are integrated,
especially data on their evolution or working environment.

Their complexity can now allow to consider interventions with some degree of auton-
omy in non-structured and dynamic environments by taking advantage of mechanical
systems with high mobility, with the means of visual, tactile, auditory perceptions, and
the capacity to plan their activities based on reasoning mechanisms taking into account
uncertainties, non-determinism, etc.

Humanoid robots inherently offer a great potential to mimic the human in a number
of these activities. They focus today an important number of research activities rela-
tively diverse in nature (Fig. 0.1). This ambition to create robots like humans led to
quite challenging and unique research problems compared to other systems. Beyond the
philosophical concept to create an artificial being at the image of man, the complexity
of these systems assume that issues are dealt with the control of highly redundant and
under-actuated systems under multiple and variable constraints. The latter represent for
instance motor coordination in sensorimotor optimal control and learning, multi-modal
perception including visual, acoustic, otolithic and somesthetic perception as well as the
physical and non-physical interaction through collaborative activities with humans.

The control of these systems must allow to produce full-body motions, obviously com-
patible with their physics, but also beyond that to take into account specific constraints
as the dynamic of unstable equilibrium in systems with unilateral joints subject to ex-
pected or/and unexpected perturbations coming from interactions with the physical
working and evolving environment. Activities combining basic tasks (such as grasping,
manipulating, pushing) and postural balance must be controlled so as to meet different
objectives of basic tasks, but they must also be linked smoothly to build more compre-
hensive activities. This sequence of elementary functions and settings for each of them
should be appropriate for the state of the system, its perception of tasks (current state,
performance), and the knowledge of the inner system capacities.

Some of these issues have already been addressed in several previous works. For in-
stance, Sentis [Sentis2007] has presented an analytical solution on dynamic whole-body
control where a hierarchical set of tasks is performed using null space projectors. He pro-

1

2 List of Symbols

Figure 0.1.: Some humanoid robots realizing tasks from grabbing to co-manipulation. – Left :
the iCub robot developed by the Robocub consortium [RobotCub]. Center :
Asimo, developed by Toyota. Right : HRP-2 from Kawada Industries Inc. & AIST
[KawadaHRP2].

posed a framework that requires each task to be “dynamically consistent”. However this
technique cannot take into account inequalities, which is necessary when robot motion
has to satisfy very restrictive inequality constraints.

The use of kinematic redundancy in the control of robotic systems is the source of
several works that began in the late 1970s, particularly with Liegeois [Liegeois1977]. They
were then developed to include dynamic coupling between the movements produced to
perform simultaneously various tasks by the same system [Sentis2005]. In parallel, works
based on optimal control techniques [Shieh1988, Dorato1995] have yielded proposals for
understanding the optimal trajectories or equilibrium issues, including laws governing
particular human movements [Flash1985, Uno1989].

Considering physical constraints acting on the system while designing control schemes
in order to get, at the end, a physically realizable controlled system, different control
strategies have been investigated based on rigorous mathematical optimization tech-
niques, among which quadratic control problem (QP) with inputs and/or state con-
straints. Nowadays, numerical methods to derive optimal control or predictive control
take advantage of advances in optimization techniques, from linear programming to
nonlinear convex optimization methods. With the advent of these powerful and efficient
computational algorithms, real-time solutions to constrained optimal control problems
are nearing a reality.

These direct methods in optimal control that transform optimal control problems
into nonlinear programming problems by discretization are particularly well adapted for
dealing with real world applications that have been approached using multi-objective or
sequential methods.

Multi-objective optimization, which also refers to multi-attribute optimization or multi-
objective programming, is the process of simultaneously optimizing two or more conflict-
ing objectives subject to certain constraints. Successive Linear/Quadratic Programming
(SLP, SQP) algorithms solve nonlinear optimization problems via a sequence of linear
or quadratic programs. They have been introduced in the early 1960s, and since then
several applications and variants of SLP and SQP have appeared. They are fairly easy
to implement for solving non-separable as well as separable large problems [Zhang1985].

A number of control problems in robotics can be effectively solved by methods of lin-
ear, quadratic or convex programming. For instance, in [Barthelemy2008], some balance

List of Symbols 3

performance measures are extracted thanks to linear programs, and active balancing is
presented in [Park2007] through second-order cone programming (SOCP). Furthermore,
the robot posture can be optimized with QP to reject perturbations and keep balance as
presented in [Collette2009], and [Kanoun2009b] has developed the whole-body kinematic
control of humanoid robots with SQP, and integrates “inequality tasks”, i.e. tasks that
may become constraints when some inequalities are not respected. In dexterous manipu-
lation, many works intend to improve the grasping task by optimizing force distribution
with Linear Programming (LP) [Liu1999], SOCP [Liu2004], and even Semi-Definite Pro-
gramming (SDP) [Buss1997].

One of the most widespread modern control principles which is the discrete-time
method Model Predictive Control (MPC, also called receding horizon control) exploits
the solution of quadratic programming problems where constraints on control signals
and states can easily be handled [Bemporad2002]. In each time step, MPC requires the
solution of a quadratic program minimizing a cost function over a receding horizon.
Recently, the interest focuses on the use of MPC for controlling systems containing a
mix of continuous and integer unknown variables. Unfortunately, when this problem
is formulated as an optimization problem, the result is no longer a QP problem but a
Mixed Integer Quadratic Programming (MIQP) problem whose solution is more difficult
to obtain.

These optimal control processes must work in conjunction with some planning algo-
rithm to perform the synthesis of complex behaviors in nondeterministic environments.
Tasks sequencing, which is required for the achievement of complex missions, has to be
defined from dynamics and logical rules based on supervisors that analyze tasks sta-
tuses and achievements. In industry, some tools allow to control sequences of dynamic
events, for instance by using finite-state machine [Kolen2001], or by using “Graphcet” to
clearly separate control and supervision [Charbonnier1995]. In robotics, decision making
based on perceptual information to achieve a sequence of tasks is done in [Cambon2009].
A planning method based on symbolic actions is proposed to perform tasks and reach
goals in quasi-static frameworks. The work of [Yoshida2005] describes the dynamic mo-
tion planning of humanoid robots to perform manipulation and locomotion tasks without
colliding obstacles, and to adjust trajectories when dynamic effects lead to infeasible mo-
tions.

The objective of the work developed in this thesis aims to address the problem of
“synthesis” of dynamic behaviors when controlling humanoid robots or virtual humans
carrying out activities with physical interactions with the environment, or in others
words we try to establish in real-time optimal trajectory control methods, by optimizing
the system behavior with respect to a given goal while satisfying the dynamics, as well
as the state and actuation constraints.

In this aim, we addressed the following problems :

– The control problem is formulated and solved as a quadratic programming problem
with equality and inequality constraints to find the nonlinear mapping between
desired torques and positions. It leads to the design of a generic whole-body dynamic
controller based on optimization programs.

– We consider the coordination and synthesis of complex activities by the decompo-
sition of the problem into sub-problems, while ensuring the continuity of solutions.
This is a very general issue that can be considered either by successive or mul-

4 List of Symbols

ticriteria algorithms. Here we pay a particular attention to task transition when
changes happen in the set of tasks and constraints, using a weighing strategy and
soft evolutions, to ensure proper control.

– Finally, we consider the problem of dynamic planning of motor activity for solving
problems defined as overall functional objectives. We address this issue by incorpo-
rating a means of supervision and decision on actions.

Hence, this work is divided into four chapters. In the first one, we provide a formulation
of the equations of motion of constrained multi-body systems and control systems. This
formulation is guided by the specification of the implementation that led to the software
Arboris-python.

The second chapter focuses on optimization problems. The internal and external ro-
botic limitations are established and the appropriate program is selected, according to
the constraints type. Then, we recall how to solve unconstrained and constrained convex
problems. This serves to understand the formulations and resolution methods of LQP
which is the optimization program in the core of our controller. This LQP optimizes a
cost function based on a set of tasks, sometimes conflicting, so it has to make a choice
or a trade-off to perform them at the same time. We focus on the building of this cost
function with a homogeneous cost, and the means to manage transitions in a sequence
of tasks.

In the third chapter, we present some experiments which are carried out on the simu-
lator Arboris-python with the virtual humanoid robot iCub, to validate the techniques
described throughout this thesis. The LQP-based low-level controller is tested through
some sequences where several tasks are performed simultaneously using relatively com-
plex methods to interact with the world, and their performances in term of precision
and computation time are detailed through three simulations.

In the last chapter, the low-level controller is connected to a high-level decision making
engine. Decisions are based on some relatively simple rules which deal with high-level
operations. The simplicity and efficiency of this connection are demonstrated through
some experiments where geometric parameters and dynamic effects are not known a
priori.

Finally, the conclusion recalls the contributions, and some perspectives are suggested
to continue this work according to some lines of research.

1. Modeling and simulating mechanical
systems

Contents

1.1. Modeling mechanical systems 7

1.1.1. Coordinates in space . 8

1.1.1.1. Orientation with the special orthogonal group SO(3) 9

1.1.1.2. Configuration with the special Euclidean group SE(3) 9

1.1.2. Rigid motion velocity . 12

1.1.2.1. Exponential representation in SO(3) 12

1.1.2.2. Exponential representation in SE(3) 14

1.1.2.3. Twist . 15

1.1.3. Dynamics . 16

1.1.3.1. Wrench . 16

1.1.3.2. Dynamic equation of rigid body in space 17

1.1.4. Representation of tree-structure 18

1.1.4.1. Open kinematic chain 18

1.1.4.2. Dynamic of tree-structure 22

1.2. Simulating mechanical systems with Arboris-python 23

1.2.1. Simulating the world . 24

1.2.2. Updating controllers . 25

1.2.2.1. Explanation about the impedance argument 26

1.2.3. Updating constraints . 26

1.2.3.1. Joint limit . 28

1.2.3.2. Ball and socket constraint 28

1.2.4. Integrating . 29

1.2.5. Example : 3R robot with joint limits 29

1.2.5.1. Modeling the system 30

1.2.5.2. Updating the controllers 31

1.2.5.3. Updating the constraints 31

1.2.5.4. Integrating . 32

1.3. Conclusion . 33

In this chapter, a dynamic simulator is presented for prototyping and validating the
methods proposed in this work, and first we introduce the formalism used to describe
the dynamics of rigid-body mechanical systems.
Nowadays, the advances in information technology allow to simulate and animate vir-

tual characters or mechanisms with even more realism. For instance, visual effects using
computer graphics have become more and more important in movies of the last decades
because they can render physically consistent mechanics, fluids, explosions, without any
expensive special effects or devices. Their rendering is possible thanks to a graphics en-
gine on one hand, and a physics engine on the other hand, the first by processing lights,

5

6 Chapitre 1. Modeling and simulating mechanical systems

shadows and textures frame-by-frame, and the second by computing the scene state at
the next frame. Here we focus on this second type of engine for simulating mechanical
systems.

Obviously, there are several different engines available but all are not suitable for a par-
ticular problem. Typically, the most interested domains are the cinema, the video game
industry and the research departments for mechanical systems. In the video game indus-
try, the some popular physics engines are HavokTM [Havok] (non-free), PhysX [PhysX]
(free for non-commercial use), Newton Game Dynamics [NewtonDyn], ODE [ODE] and
Bullet [Bullet] (open sources). Generally, this field requires real-time processing to get
good gameplay and good rendering with no latency, so the physical consistency of the
generated motions can be lost to fasten the algorithms by simplifying models, colli-
sion detections, etc. In movies, the purpose is a little different because it is a matter
of aesthetics, one can cheat with physics for entertaining reasons, so motions can be
readjusted off-line in post-production. When more realistic rendering is necessary, some
movies use Bullet, especially computer-animated films. Finally, researchers in mechanics
and robotics have many tools available to design their structures and controllers, and
in addition to ODE and Bullet there is also Adams [Adams], Microsoft Robotics Studio
[MRS], OpenHRP3 [OpenHRP], Webots (based on ODE 1) [Webots] and XDE [XDE].
Note also that many specific dynamic simulators have been developed in robotics, for
instance SAI [Khatib2002, SAI], GraspIt ! [Miller2004] to manage grasping tasks with
complex objects, or the simulator integrated in AMELIF [Chardonnet2009] for interac-
tive simulations.

Although most of simulators exploit the equations of motion derived from the Newton-
Euler or Lagrange formalisms, the ways of modeling these systems vary with the kind
of application and the associated limitations, for instance global coordinates permit to
deal with the whole set of parameters, independent or not, and generalized coordinates
focus on the subset of parameters representing the configuration of a constrained system
(for instance by some joints). The first case is employed in many dynamic simulators
because no assumption is made on the links connecting the different parts (Adams, Bul-
let, ODE) and the resolution of all the constraints is done simultaneously ([Baraff1996]
uses the constraint matrix sparsity for efficient resolutions). The second case reduces the
problem size by integrating the holonomic joint constraints directly in the equations of
motion, so the forward dynamics can be computed by some very efficient algorithms, as
employed in XDE. Furthermore, the generalized acceleration computation can be done
with the Featherstone algorithm [Featherstone1983, Mirtich1996] whose complexity is
proportional to the number of joints, which is very interesting for ragdoll physics in
video games or real-time robotic control with OpenHRP3 (AIST edition) 2.

Nevertheless, many constraints cannot be integrated in the equations of motion, for
instance non-holonomic or unilateral constraints, and solving the dynamic equations
requires some specific algorithms.

These constraints are generally replaced by some constraint forces, and when they
are properly computed they ensure that the dynamics equations of motion are satis-
fied. A way to make this calculation is to use a penalty method, as in Adams or XDE,

1. iCub Simulator [iCubSim] is a simulator specifically designed for the iCub platform [Sandini2007],
also based on ODE.

2. Two version of OpenHRP3 have been developed in parallel, the AIST and Tokyo university editions.
For more information : http://www.openrtp.jp/openhrp3/en/about.html

http://www.openrtp.jp/openhrp3/en/about.html

1.1. Modeling mechanical systems 7

which returns some forces according to the distance which measures the constraints vi-
olation. It is a simple method to quickly find a solution, but it does not always satisfy
all the constraints (for instance, some little interpenetrations may occur when dealing
with contacts) and may lead to oscillating behaviors. One can also use direct methods
which solve the problem in a finite number of iterations, for example conjugate gradient
methods in Newton Game Dynamics, or iterative methods to obtain the solution with
a given tolerance, for example Gauss-Seidel methods in Bullet. Note that XDE can also
use a Gauss-Seidel-like method 3 to solve the constraints [Merlhiot2011]. Finally, one can
directly solve the Linear Complementary Problem (LCP) where these constraints are re-
placed by some Lagrange multipliers [Baraff1996], as it is done in ODE or OpenHRP3
(Tokyo edition) 4.

In this chapter we propose a new dynamic simulator, Arboris-python, to quickly and
easily design robots and robotic controller. Whereas most of the programs described
above are written in C++, Arboris-python focuses on the prototyping of the algorithms
by using the python language which is weakly typed and does not require any compi-
lation. Arboris-python is very handy to quickly model and simulate multibody systems
composed of rigid bodies interconnected in a tree-structure by joints, and it gives access
to modeling, controllers and constraints. The dynamics of these systems are computed in
a form similar to the Boltzmann-Hamel equations [Greenwood2003, Duindam2007]. Us-
ing time-stepping and a semi-implicit Euler integration scheme, a first-order approxima-
tion of the model is also computed. This allows for additional constraints such as contacts
and kinematic loops to be solved using a Gauss-Seidel algorithm [Albu2002, Liu2005].

Many works have already focused on the description of rigid-body dynamics, from
single body to multiple bodies systems, composed of unilateral and bilateral joints, holo-
nomic or not, etc. In this work, we recall the equations of rigid bodies mechanisms in
a way suitable to the design of Arboris-python, meaning that we look for the matrix
forms of the relations which describe the dynamic behavior of the system. This serves
as theoretical basis for understanding how Arboris-python is designed and the ways to
model, control, integrate the world and solve the constraints.

The first part of this chapter aims to extract the kinematic and dynamic equations that
give information on the future robot state. It focuses on the matrix equations that rule
the dynamics of rigid body systems. The second part describes the algorithms needed to
simulate mechanical systems subject to several constraints. It focuses on the theoretical
issues through the methods implemented in Arboris-python, which represent the core of
the simulator. More details about practical implementation, modeling and control are
given in Appendix A.1.

1.1. Modeling mechanical systems

Constrained kinematic or dynamic mechanical system models are the basis for con-
troller design, particularly for model-based control system analysis and design, where
explicit dynamic equations of motion are required. General methods were formulated for
this purpose more than 200 years ago and have been actively and continuously worked

3. XDE use also penalty method, but it is mainly employed to get real-time applications for get
proper haptic feedbacks (about 1 kHz).

4. In [Chardonnet2009], it is stated that the AIST edition of OpenHRP2 uses penalty method.

8 Chapitre 1. Modeling and simulating mechanical systems

on since by many engineers, mathematicians and scientists. Analytical mechanics, which
essentially make use of variational principles to obtain the explicit formulation of equa-
tions of motion for mechanical systems including constrained systems, have had a fruitful
association with control theory from its birth. In the past decade, the emergence of a
geometric theory for nonlinear control systems closely linked to the modern geometric
formulation of analytical mechanics. The geometrical approaches to the rigid multi-body
systems dynamics in [Stramigioli2001b, Chevallier2006, Merlhiot2009] exploit the ma-
trix representation of SE(3) and its Lie group structure. A Lie-group formulation for the
kinematics and dynamics of holonomic constrained mechanical systems (CMS) is pre-
sented in [Muller2003], where the group properties are implicitly used to algebraically
derive the Lagrangian rigid multi-body systems equations of motion.

In the purpose of this thesis, we restrain our study to matrix representations in or-
der to get the means to quickly implement these equations in Arboris-python. So the
mechanics description is conducted as follows. First, the geometric problem of position
and orientation representation in space is addressed with the Special Orthogonal and
Euclidean groups SO(3) and SE(3), as well as a redundant description of configurations
in space through homogeneous representation. Second, the system evolution over time is
introduced with the exponential representation of applications belonging to SO(3) and
SE(3), which leads to the description of velocities with twists. Then, the dynamic of a
simple body is described through its inertial properties and external wrenches in order
to obtain the equations of motion. The last section gives the principles of rigid-body me-
chanical systems by explaining the representation and the dynamics of tree-structures.

1.1.1. Coordinates in space

The study of mechanical systems evolution describes the motion of any point with
minimal data thanks to the relations which exist between the different particles of the
whole system. In robotics, most of mechanisms are composed of parts considered as rigid,
whose relative motions are constrained by joints. Besides, all the particles of the same
part perform similar motions. Considering that these parts have infinite stiffness, the
application which describes their relative positions is called a rigid transformation.

Before dealing with entire complex systems, one needs to know how to represent its
basic elements. First, a point in space p is defined by 3 real components p = (x, y, z) ∈ R

3

which stand for its projection onto the three axes of a Cartesian frame. Second, a vector
u ∈ R

3 is the difference between two points, p and q, such as u = p − q. Finally, a
frame Ψa is defined by a point pa and three orthogonal unit vectors xa,ya, za with a
right-handed representation, meaning that they satisfy xa×ya = za where × represents
the cross product of two vectors in R

3.
From this, the objective is to characterize the motion of any point p with respect to

the time t such as p(t) = (x(t), y(t), z(t)) using the fact that particles of a rigid body
have no relative motion, i.e. the distance between any couple of points remains constant.
In this purpose, a rigid transformation is defined as an application f : R3 → R

3 which
preserves distance and cross-product, and leads to the following properties
– ‖f(p)− f(q)‖ = ‖p− q‖ for all points p, q,
– f(u× v) = f(u)× f(v) for all vectors u,v.
All these applications transform any right-handed coordinate frame into another right-

handed coordinate frame, so it gives a way to relate all the points of the same body, and
to describe their motions with a minimum knowledge.

1.1. Modeling mechanical systems 9

1.1.1.1. Orientation with the special orthogonal group SO(3)

Rotation transformations can be represented for instance through rotation matrices.
Let Ψa = (pa,xa,ya, za) be an inertial coordinate frame, and Ψb = (pb,xb,yb, zb) any
frame in space. The vectors xa,b,ya,b, za,b ∈ R

3 are respectively the coordinates of the
orthonormal vectors xb,yb, zb relative to Ψa, and the rotation matrix Ra,b ∈ R

3×3 defines
the transformation from Ψa to Ψb such as

Ra,b =
[
xa,b ya,b za,b

]

Given a rotation matrix R = [rx, ry, rz], its rows and columns are orthonormal, which
is expressed in the following equalities

rTi ri = 1 ∀i
rTi rj = 0 ∀i 6= j

and give the following assertions

RRT = RTR = I3 (1.1)

R−1 = RT (1.2)

det(R) = ±1 (1.3)

where I3 is the identity matrix in R
3. As the previous statement asserts that the coordi-

nate frames orientation must be “right-handed”, the last equality becomes det(R) = 1.
Associated to matrix multiplication, the set of matrices in R

3×3 which have these
properties is denoted by SO(3) for the Special Orthogonal group in the 3-dimensional
space [Murray1994, Mahony2009] with the following definition

SO(3) =
{
R ∈ R

3×3 | R−1 = RT, det(R) = 1
}
. (1.4)

Hence, the representation of any vector in different coordinate frames is done with ele-
ments in SO(3). Given a vector u, its coordinates can be written ua = (uxaxa+uyaya+
uzaza) relative to the frame Ψa and ub = (uxbxb + uybyb + uzbzb) relative to the frame
Ψb. The relation that links these coordinates is given by the rotation matrix Ra,b as u

a =
Ra,bu

b. Furthermore, given a third frame Ψc, the coordinates u
c = (uxcxc+uycyc+uzczc)

are related to ub with the rotation matrix Rb,c as u
b = Rb,cu

c, and the association with
the equation above gives ua = Ra,cu

c with

Ra,c = Ra,bRb,c. (1.5)

By extension, it is possible to get a succession of frames where each frame is expressed
with respect to the previous one, and Eq.(1.5) is then called the composition rule for
rotations.

1.1.1.2. Configuration with the special Euclidean group SE(3)

The previous section focuses on orientation representation and rotational transforma-
tion, but the rigid body configuration in space also needs some information about the
body position. Given two frames Ψa and Ψb, their locations in space are given by their

10 Chapitre 1. Modeling and simulating mechanical systems

origins pa and pb, so with Ψa the reference frame, the coordinates of pb expressed in
Ψa are denoted by pa,b ∈ R

3, and their relative configuration in space is defined by the
couple (Ra,b,pa,b).

These transformations represent rigid motions. Given a point p and its coordinates
pa = (pxaxa + pyaya + pzaza) and pb = (pxbxb + pybyb + pzbzb) expressed respectively
in Ψa and Ψb, the transformation equation from the first one to second one is given as
follows (see Fig. 1.1)

pa = pa,b +Ra,bp
b. (1.6)

pa,b

Ψa

pa

pb

Ψb

p

Figure 1.1.: transformation from p expressed in Ψa to p expressed in Ψb.

However, even if it allows to describe very easily any transformation in space, one
has to pay attention to the nature of the transformed items. Equation (1.6) describes
the method for a point, but the coordinates transformation of a vector u, which is the
difference between two points u = p− q, is a little different. Denoting by ua and ub its
coordinates in frames Ψa and Ψb, the transformation only needs the rotation matrix, as
shown below

ua = pa − qa

= pa,b +Ra,bp
b − (pa,b +Ra,bq

b)

= Ra,bu
b (1.7)

which indicates that a distinction must be done between points and vectors transforma-
tions.
This differentiation of treatment may become a problem if the nature of a triplet is

unknown. Fortunately, this issue can be overcome with the use of homogeneous coordi-
nates which integrate the affine component in their representations. So, given a point pa

and a vector ua expressed in Ψa, their respective homogeneous coordinates p̃a and ũa

yield in R
4 such as

p̃a =

pxa
pya
pza
1

 ũa =

vxa
vya
vza
0

 .

Thus, it becomes very easy to concatenate the information of a rigid motion from the
frame Ψa to the frame Ψb characterized by the couple (Ra,b = [xa,b ya,b za,b], pa,b).
The rotational components are vectors, the translation component is a point, and the

1.1. Modeling mechanical systems 11

gathering of these elements in a single matrix written in homogeneous coordinates be-
comes

Ha,b =
[
x̃a,b ỹa,b z̃a,b p̃a,b

]
=

[
Ra,b pa,b

0 1

]
, (1.8)

where Ha,b is called the homogeneous transformation matrix from Ψa to Ψb.

Hence, similarly to SO(3), it is possible to define SE(3) as the Special Euclidean
Group in the 3-dimensional space [Murray1994] which regroups the applications that
describe translation and rotation transformations in space. Associated to matrix multi-
plication, it is written as

SE(3) =

{
H =

[
R p

0 1

]
| R ∈ SO(3), p ∈ R

3

}
. (1.9)

Hence, elements in SE(3) can specify orientation in space, but also translation transfor-
mation from a frame to another.

The linear relations defined in Eqs.(1.6)–(1.7) can be written with the same element
belonging to SE(3), and thanks to homogeneous coordinates the following properties
occur

– ũa = Ha,bũ
b for all vectors u,

– p̃a = Ha,bp̃
b for all points p,

– given two points p̃a, q̃a, the difference ũa = p̃a − q̃a is a vector,
– given two vectors ũa, ṽa, the sum/difference w̃a = ũa ± ṽa is a vector,
– given a point p̃a and a vector ũa, the sum q̃a = p̃a + ũa is a point.

It follows that homogeneous matrix composition shown in Fig. 1.2 can be expressed
similarly to the rotation matrix composition, and let p̃ be the homogeneous coordinates
of a point in space, it follows that (the same applies to vectors by replacing p̃ with ũ)

p̃a = Ha,bp̃
b p̃b = Hb,cp̃

c p̃a = Ha,cp̃
c

with

Ha,c = Ha,bHb,c =

[
Ra,bRb,c Ra,bpb,c + pa,b

0 1

]
. (1.10)

Ψa

Ψb
Ψc

Ha,b

Hb,c

Ha,c

Figure 1.2.: Composition rule for homogeneous matrices.

As a group, every element lying in SE(3) is invertible, the identity element being
represented by I4, and the inverse homogeneous matrix can be deduced from the last

12 Chapitre 1. Modeling and simulating mechanical systems

equation as follows

H−1
a,b = Hb,a =

[
Rb,a pb,a

0 1

]
=

[
RT

a,b −RT

a,bpa,b

0 1

]
. (1.11)

1.1.2. Rigid motion velocity

The previous section describes the position and orientation of any parts of the system
with rigid motions. This can be viewed as a “snapshot” of the world at one instant, and
the location and orientation of coordinate frames from a reference is deduced through the
applications of the group SE(3). The objective of this section is to define the evolution
of the system over time by extending the previous methods. This is done through the
exponential representation of the components lying in the groups SO(3) and SE(3) and
by the introduction of the twist representation.

1.1.2.1. Exponential representation in SO(3)

Rotation matrix, which belongs to R
3×3, gives a representation method for rotation

in space, but its elements are not all independent and it is not the only way to represent
rotation transformation. In fact, it exists several ways to represent rotations in space,
for example one can use Euler angles, quaternion, or axis-angle representation, each of
them having their advantages and drawbacks. This section describes the exponential
representation of rotation. The main interest is to implicitly link the orientation of a
coordinate frame with its rotational velocity. This leads to the description of its evolution
over time.

For now, we only consider the rotational motion of a vector u. Given two frames
Ψo (for origin) and Ψe (for end) where Ψe rotates with respect to Ψo with a constant
velocity, the coordinates of vector u are constant in Ψe but vary in Ψo as shown in
Fig. 1.3. The evolution of u over time is described by the derivative of the equation
between its coordinates in the two frames, which is

d

dt
(uo(t)) =

d

dt
(Ro,e(t)u

e)

u̇o(t) = Ṙo,e(t)u
e

u̇o(t) = Ṙo,e(t)R
T

o,e(t)u
o(t) (1.12)

Thus, a vector linked with its derivative over time through a simple linear expression.
But the expression of the matrix Ṙo,e(t) is unknown and may make the development of
this last equation impossible.

The idea is to focus on the product Ṙo,eR
T
o,e. This multiplication recalls Eq.(1.1) about

the orthogonality of rotation matrix. Thus, by computing the derivative of this product
with respect to time, it follows

Ṙo,eR
T

o,e +Ro,eṘ
T

o,e = 0

Ṙo,eR
T

o,e = −
(
Ṙo,eR

T

o,e

)T

which proves that this multiplication is antisymmetric. It implies that the 3 components
of the diagonal are necessarily null because they are equal to their opposite, and that the

1.1. Modeling mechanical systems 13

Ψe

Ψo

u

θ

Figure 1.3.: Rotation of vector u linked to Ψe about Ψo with an angle θ.

three terms of the upper triangular part are constrained to be the opposite of the three
other terms of the lower triangular part. Hence, the matrix Ṙo,eR

T
o,e is only composed

of 3 independent terms, and it is possible to find a vector ω ∈ R
3 and its related skew-

symmetric matrix ω̂ such as 5

ω =

ωx

ωy

ωz

 ω̂ =

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 ω̂ = Ṙo,eR

T

o,e. (1.13)

All these skew-symmetric matrices ω̂ belong to the vector space so(3) which is the Lie
algebra of SO(3). The Lie algebra of a Lie group can be defined as the tangent space of
the group at the identity element. In this case, so(3) represents the vector space tangent
to the group of rotations, that is the rotational velocities.

Returning to Eq.(1.12), omitting the subscript and superscript for clarity, the instan-
taneous velocity of u becomes

u̇(t) = ω̂u(t) (1.14)

which is a time invariant linear differential equation with a well-know solution. Given
its initial value u(0), the result of this differential equation is

u(t) = eω̂tu(0) with eω̂t =

∞∑

i=0

(ω̂t)i

i!
= I3 + ω̂t+

(ω̂t)2

2!
+

(ω̂t)3

3!
+ · · ·

Of course, the expression of the last term is quite complicated, and a brute force
computation can be imprecise and time consuming. To handle it, one has to point out
that the successive powers of the matrix ω̂ only depend on ω̂ and ω̂2. After some steps,
the final formulation of the exponential representation of rotation is [Murray1994]

eω̂t = I3 +
sin(‖ω‖ t)
‖ω‖ ω̂ +

(1− cos(‖ω‖ t))
‖ω‖2

ω̂2. (1.15)

This equation is also true for ω → 0. This particular case occurs when there is no
velocity, which implies no rotation and a transformation equal to the identity, that is
eω̂t = I3.

Hence, a relation exists between exponential representation and rotation matrices.
Indeed, while rotating about a constant rotational velocity ω during a time t, the point

5. Note that the cross product between two vectors is equivalent to the left multiplication of the
second one with the related skew-symmetric matrix of the first one, i.e. a× b ⇔ âb.

14 Chapitre 1. Modeling and simulating mechanical systems

p moves through a circular path with an angle θ = ‖ω‖ t. So if u represents the unit
vector collinear to ω with the same direction, the last equation becomes

R(u, θ) = eûθ = I3 + sin(θ)û+ (1− cos(θ))û2. (1.16)

1.1.2.2. Exponential representation in SE(3)

Similarly to the previous section, the exponential representation of rigid motion is a
way to relate the coordinates of a point in space with its velocity and to describe its
evolution over time.

Here, the reference frame is Ψo and the moving frame Ψe moves relative to Ψo with
constant rotational and translational velocities as shown in Fig. 1.4. The point p is rigidly
linked with Ψe and the expression of its evolution over time is given by the derivative of
its coordinates in the two frames, which is written as follows

ṗo(t) = Ṙo,e(t)p
e + ṗo,e(t)

= Ṙo,e(t)
(
RT

o,e(t)p
o(t)−RT

o,e(t)po,e(t)
)
+ ṗo,e(t) (1.17)

This equation is linear and links the velocity ṗo of point po with its coordinates in the
reference frame.

Ψo

Ψe

po,e

p

Figure 1.4.: Displacement of point p linked to frame Ψe relative to Ψo with a constant velocity.

This formulation is close to rotation transformation of Eq.(1.12), so the expression
can be modified to lead to an exponential solution. This is done through homogeneous
representation. To do so, the vector and affine parts of the equation are separated into
two components, the first one being ω̂ = Ṙo,eR

T
o,e ∈ R

3×3 and the second one being

v = −ω̂po,e+ ṗo,e ∈ R
3. In this way, their concatenation in a matrix T̂ allows to rewrite

Eq.(1.17) with homogeneous coordinates such as (again, the subscripts and superscripts
are omitted for clarity)

[
ṗ

0

]
=

[
ω̂ v

0 0

] [
p

1

]
⇔ ˜̇p = T̂ p̃. (1.18)

The matrices T̂ belong to se(3), the Lie algebra of SE(3). Similarly to so(3), it represents
in this case the vector space tangent to the group of configuration in space, that is the
velocities in space.

1.1. Modeling mechanical systems 15

Returning to Eq.(1.18), the desired time invariant linear differential equation with
respect to p̃ is obtained. The notation of matrix T̂ is explained by the fact that it plays
the same role as ω̂ which is the conversion of the vector ω composed of 3 independent
parameters to a matrix expressed in R

3×3. Similarly, the matrix T̂ ∈ se(3) is related to
a vector composed of 6 independent parameters denoted by T , and named a twist. This
vector is more detailed in the next section.

So, given the initial conditions of the point p̃(0), the solution of Eq.(1.18) is

p̃(t) = eT̂ tp̃(0). (1.19)

This matrix-exponential form is quite difficult to obtain [JonghoonPark2005], one needs
to notice the good properties of T̂ and its successive powers [Murray1994]. It follows that
solution of Eq.(1.19) is obtained by the development of the exponential representation

e(T̂ t) such as

e(T̂ t)

ω 6= 0

=

[
e(ω̂t)

(
(I3 − e(ω̂t))ω̂ + ωωTt

)
v

‖ω‖2

0 1

]
e(T̂ t)

ω = 0

=

[
I3 v

0 1

]
. (1.20)

which is an element of the group SE(3).

1.1.2.3. Twist

The exponential representation of rigid motion expressed in Eq.(1.20) depends on ω

and v, which give information about the relative rotational and translational velocities
between two coordinate frames. These particular values are independent but the matrix
T̂ used to compute Eq.(1.18) is overabundant. So, the twist is introduced as the vector

T o
o,e (and the related matrix T̂

o

o,e ∈ se(3)) which is the concatenation of ωo
o,e and vo

o,e,
such as

T o
o,e =

[
ωo

o,e

vo
o,e

]
T̂

o

o,e =

[
ω̂o

o,e vo
o,e

0 0

]
˜̇po

= T̂
o

o,ep̃
o.

As the order of ω and v in twists is not very important, we have arbitrarily chosen
in this thesis to follow the convention adopted by [Stramigioli2001a]. Twist can also be
computed from the time derivative of the related homogeneous transformation as follows

T̂
c

a,b = Hc,aḢa,bHb,c T̂
o

o,e = Ḣo,eH
−1
o,e T̂

e

o,e = H−1
o,e Ḣo,e (1.21)

The twist denoted by T c
a,b is defined as the vector describing the rotational and trans-

lational velocities of Ψc rigidly linked to Ψb which moves relative to Ψa. Using twists in
the velocity description allows to characterize all particles velocities in the same body at
the same time. Indeed, if one has the expression of a twist expressed in Ψa, it is straight-
forward to get the twist expressed in Ψb when these two frames are rigidly linked. The
displacement of this twist from Ψa to Ψb is done through the following equations

ωa
o,e = Ra,bω

b
o,e (1.22)

va
o,e = Ra,bv

b
o,e + p̂a,bRa,bω

b
o,e. (1.23)

16 Chapitre 1. Modeling and simulating mechanical systems

These equations can be expressed in a matrix form, and the adjoint matrix Ada,b
which depends on the homogeneous matrix Ha,b is defined to describe the displacement
from Ψa to Ψb in the following manner

Ada,b =

[
Ra,b 0

p̂a,bRa,b Ra,b

]
T a

o,e = Ada,bT
b
o,e. (1.24)

Twists are also useful to describe the composition of velocities between several bodies.
The idea is similar to the composition of rotation or homogeneous matrix where the
relation from a frame to another is built from the links which compose the chain. Given
two twists T d

a,b and T d
b,c, the twist T d

a,c is computed such as

T d
a,c = T d

a,b + T d
b,c. (1.25)

From this simple equation, some simple assertions can be highlighted. For example, a
rigid body has no relative motion with itself, so for all frames Ψa, Ψb and Ψd one can
write that T d

a,b = −T d
b,a. Furthermore, two frames Ψb and Ψc belonging to the same

body have no relative motion, which implies that for all frames Ψa and Ψd one gets
T d

a,b = T d
a,c.

For the rest of the thesis, the twist denoted by T a refers to the twist T a
0,a where the

frame Ψ0 is the Cartesian frame (the origin). The same goes for vectors ωa and va.

1.1.3. Dynamics

This section focuses on the systems dynamic equations. The previous sections give
methods to describe the configuration of coordinate frames over time, but it does not
explain how to affect their evolutions. Actually, this is done through forces and torques.
The following section explains how these forces are represented and how they act on
rigid body motions.

1.1.3.1. Wrench

Wrenches represent the forces and torques acting on rigid bodies. Given the force
fo
o,e ∈ R

3 (the linear component) and the moment of force τ o
o,e ∈ R

3 (the rotational
component) which are the actions of body Ψo on Ψe expressed in Ψo, the related wrench
denoted by W o

o,e is the concatenation of the two elements such as

W o
o,e =

[
τ o
o,e

fo
o,e

]
. (1.26)

Wrenches belong to se
∗(3), the dual vector space of se(3). Indeed, the order of the

parameters is not arbitrary, it depends upon the order given to the twists parameters,
so each component is located at the same position as its respective twist counterpart.
Similarly to twist, the wrench denoted by W a refers to the W a

0,a where Ψ0 is the
Cartesian frame, and the same goes for τ a and fa.

The duality between wrench and twist allows to compute the infinitesimal work δW
and the total work between times t1 and t2 acting on a body as follows

δW = (W a)TT a = (τ a)Tωa + (fa)Tva W =

∫ t2

t1

(W a(t))TT a(t) dt .

1.1. Modeling mechanical systems 17

Similarly to twist, the expression of a wrench at one frame is linked with its expression
on another frame of the same rigid body. However, if the adjoint defined in Eq.(1.24)
allows to displace twists, the wrench displacement is a little different. To do so, one has
to notice that the infinitesimal work δW does not depend upon the frame of the body
where it is computed, so it implies that

δW = (W a)TT a = (W a)T(Ada,bT
b) = (W b)

T

T b

W b = AdTa,bW
a. (1.27)

The reader should be aware of the dual relation it exists between twist and wrench,
resulting in the use of similar operators, but in different ways (T a = Ada,bT

b but W b =
AdTa,bW

a). Finally, when several wrenches act simultaneously on one body, they can be

concatenated in a unique acting wrench. For example, if two wrenches W a and W b act
on the frames Ψa and Ψb (rigidly linked), the global wrench is computed in Ψc as

W c
body = AdTa,cW

a +AdTb,cW
b.

1.1.3.2. Dynamic equation of rigid body in space

This section determines how wrenches provide the possibility to change body motion.
The Newton’s laws of motion give a part of the answer, especially the second one which
relates the force acting on a point to its acceleration, the well-known formula f = ma

where m is the mass of the point. This section extends this relation to a rigid body from
the Newton-Euler equations.

Dynamic equation The rigid-body equation of motion arises from the derivative of the
momentum with respect to time. The computation is done by separating translational
and rotational parts [Murray1994] and leads to the following equations

M bṪ
b
+N bT b = W b (1.28)

M b =

[Ib mbr̂

mbr̂
T mbI3

]
N b =

[
ω̂bIb mbr̂ω̂

b

mbω̂
br̂T mbω̂

b

]

where Ψb is the body frame, M b and N b are respectively the generalized mass matrix 6

and the generalized nonlinear effects matrix of body b expressed in Ψb, ω
b is the rotational

part of T b, r (retrieved from M b) represents the center of mass location relative to Ψb,
mb(∈ R

+∗) is the body mass, and Ib(∈ R
3×3) is the body inertia matrix expressed in

Ψb.
In a general manner, Ib is computed as follows

Ib = −
∫

V

ρ(pb)p̂b
2
dV =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 (1.29)

where V is the volume of the body, ρ is the local density, pb is the integration variable

(a point) locating the infinitesimal volume in V , and p̂b is the related skew-matrix.

6. also called kinetic energy matrix.

18 Chapitre 1. Modeling and simulating mechanical systems

Although this equation is not quite simple at first sight, inertia is easy to compute when
Ψb coincides with the body principal axes of inertia Ψc. In this case, it becomes
diagonal Ic = diag([Ixx Iyy Izz]) and Ixx, Iyy, Izz ∈ R

+∗ are called the principal
moments of inertia. Then, the computation of the related kinetic energy Ekb of body b
is obtained as follows

Ekb =
1

2
mb(v

c)Tvc +
1

2
(ωc)TIcωc

=
1

2
(T c)TM cT c (1.30)

M c =

[
Ic 0
0 mbI3

]
.

We retrieve the generalized mass matrix M c, this time expressed in Ψc. The computation
is frame-independent, so the expression of the generalized mass matrix Ma relative to
another frame Ψa belonging to the same body is given as follows

Ekb =
1

2
(T c)TM cT c =

1

2
(T a)TMaT a

with

Ma = AdTc,aM
cAdc,a. (1.31)

1.1.4. Representation of tree-structure

The previous sections describe the frames and bodies representation, but even if rigid
motion is discussed, no information is given about the relative velocities of different
bodies, and for now they only have free motions in space. This section deals with the
representation of dynamic multibody systems in robotics.

1.1.4.1. Open kinematic chain

When two rigid bodies are linked, their relative velocities are constrained through the
use of joints. Each body has parents and children bodies connected with joints, which
implicitly leads to represent mechanical structures called kinematic chains as graphs
composed of rigid bodies as nodes, and joints as links. This definition is extended to
open kinematic chains where no kinematic cycle occurs, i.e. the graph is a tree, as
shown in Fig. 1.5. If no detail is given, the following relations refer to this last definition.

B0 B1
J0

B2J1

B6

J5

B3J2

B5
J4

B4
J3

B7
J6

B8J7

B9

J8

Figure 1.5.: Graph representing an open kinematic chain. There is no kinematic loop, i.e. it is
a tree.

1.1. Modeling mechanical systems 19

Joints We consider in this thesis the use of joints which are holonomic and bilateral, i.e.
they transmit power without loss, their constraints are geometric (they are not expressed
in terms of velocity parameters), and there are no inequality constraints. They are also
globally parameterized rigid joints, as defined in [Duindam2006]. It means that when
the twist T c

p,c (Ψp and Ψc are respectively the parent and child frame belonging to two
different rigid bodies) is mapped to a linear subspace of dimension kj , then the joint j
can be characterized by two parameters, a matrix Qj which parameterizes the relative
configuration 7, and the vector νj ∈ R

kj which parameterizes the relative twist. Although
the joint configuration can be described by a vector of dimension kj (for instance Euler
angles for ball joint), its time derivative may not represent the real relative velocity
between Ψp and Ψc, implying the necessity to use Qj and νj .

So for simplicity, this thesis only considers joints that evolve in linear configuration
spaces, so the configuration is given by qj ∈ R

kj and q̇j ∈ R
kj , which respectively repre-

sent the generalized coordinates and the generalized velocities. The difference between
these two types of joints is shown in Fig. 1.6.

Q = R ∈ SO(3)
ν ∈ R

3
q =

[
q1
q2

]
∈ R

2

q̇ ∈ R
2

q2
q1

Figure 1.6.: Left : ball joint whose configuration is described by a matrix Q (which is a rotation
matrix) and a vector ν. Right : Cardan joint whose configuration is described by
two vectors q and q̇.

The relative position, orientation and velocity between the linked frames Ψp and Ψc

are expressed as follows

Hp,c = Hp,c(qj)

T c
p,c = X(qj)q̇j

where X(qj) represents the domain of evolution of the joint j. The number of degrees of
freedom, commonly called DoF, is then defined as the dimension of this domain, that
is the number kj . When qj is null, the homogeneous transformation Hp,c is the identity
matrix, i.e. Ψp and Ψc are coincident.

Thus, the configuration between two rigid bodies linked with this joint is fully pa-
rameterized by the couple (qj , q̇j). Generally, systems are composed of several bodies
connected with joints, and as their configurations lie on linear subspaces, it is possible

7. Qj may refer to rotation or homogeneous matrices to describe configurations. However, it evolves
in a kj-dimensional subspace.

20 Chapitre 1. Modeling and simulating mechanical systems

to concatenate their generalized coordinates and velocities, leading to the construction
of the variables q and q̇, the generalized coordinates and velocity of the entire system,
such as

q =

q1
...
qn

 q̇ =

q̇1
...
q̇n

where n is the number of joints. Their dimension is ndof =
∑n

j=0 kj which is the total
number of DoF in the system, and the joint space can be mapped on R

ndof .

Forward kinematics The computation of position and orientation of any frame is
done using the composition rule for homogeneous matrix exposed in Eq.(1.11). Given
the path of the kinematic chain between a reference frame Ψ0 and the ending frame Ψe,
the m joints are extracted to obtain their generalized coordinates qi, as well as the m−1
bodies to get the transformation matrices Hci,pi+1 from joint i to joint i + 1. Thus, the
homogeneous matrix H0,e which is the transformation from Ψ0 to Ψe is computed as

H0,e = H0,p1

(
m−1∏

i=1

Hpi,ci(qi)Hci,pi+1

)
Hpm,cm(qm)Hcm,e (1.32)

This computation is called the forward kinematics. On the other hand, retrieving the
generalized parameters qi from the knowledge of the homogeneous matrix H0,e is called
the inverse kinematics problem, whose solutions, if any, are more difficult to obtain.

Forward velocity model and Jacobian Twist can be computed from the time deriva-
tive of the related homogeneous matrix as described in Eq.(1.21), or one can exploit
the tree structure of the system. Indeed, similarly to the forward kinematics, the twist
computation of any frame can be done using the twist composition rule presented in
Eq.(1.25). Given the same problem as above, the twist of Ψe relative to Ψ0 expressed in
any frame Ψa is computed as

T a
0,e = T a

0,p1 +

m−1∑

i=1

(
T a

pi,ci
(qi, q̇i) + T a

ci,pi+1

)
+ T a

pm,cm
(qm, q̇m) + T a

cm,e.

This expression can be simplified. Indeed, some twists (those that do not depend on the
generalized parameters) represent the velocity between two frames rigidly linked, and
are consequently null. Thus, twists only depend on the joint velocities, which lead to the
following formulation

T a
0,e =

m∑

i=1

T a
pi,ci

(qi, q̇i) =
m∑

i=1

Ada,ciT
ci
pi,ci

(qi, q̇i) =
m∑

i=1

Ada,ciXi(qi)q̇i (1.33)

This computation is called the forward velocity model, and the mapping from the
Cartesian space to the joint space is named the inverse velocity model. This is a very
challenging issue especially for redundant robots like humanoids, and the literature is
very abundant in this domain.

1.1. Modeling mechanical systems 21

The twist T a
0,e in Eq.(1.33) depends linearly on the generalized velocities of the joints

composing the kinematic chain. However, it does not take into account the whole set of
joints. In order to relate T a

0,e with q̇, generalized velocities of the remaining joints are
multiplied by 0 and added in the equation above. It converts instantaneous velocities from
the joint space (in R

ndof) into the Cartesian space (in SE(3)) where the translational
and rotational velocities are projected onto the reference frame Ψ0. This leads to the
definition of the natural Jacobian Ja

0,e which relates the twist T a
0,e to the generalized

velocity q̇ such as

T a
0,e = Ja

0,e(q)q̇ =
[
δ10,eAda,c1X1(q1) · · · δn0,eAda,cnXn(qn)

]

q̇1
...
q̇n

 (1.34)

δi0,e =

{
1 if joint i is in the kinematic chain between Ψ0 and Ψe,
0 otherwise.

Twist displacement and composition operations expressed in Eqs.(1.24)–(1.25) are also
true for Jacobians, which implies that Ja

0,e = Ada,bJ
b
0,e and Ja

0,e = Ja
0,b+Ja

b,e for all frames
Ψ0,Ψe,Ψa,Ψb.

For clarity, the following notation Je refers to the Jacobian Je
0,e.

Force acting on a kinematic chain The last point about kinematic chains is the
effect of wrenches applied on structures. In Section 1.1.3, the behavior of a single body
is studied when it is subject to a wrench. But this is different when it acts on a kinematic
chain due to the fact that the motions are constrained by the joints of the mechanical
structure.

This section presents the transcription of wrench acting on a frame into a set of forces
and torques applied at the joint level, i.e. the way to transform a wrench expressed in
the Cartesian space into a vector of forces and torques expressed in the joint space. This
problem is similar to the one explained above, so denoting by τwi

the forces and torques
applied at the ith joint, the vector τw is introduced as

τw =

τw1

...
τwn

which is named the generalized force induced by this wrench and has the same dimension
as q and q̇. However, the link between the wrench W a and its generalized force denoted
by τwa is not yet established. To do so, one has to notice that the mechanical work
created by the wrench W a and the twist T a is equal to the sum of the mechanical works
produced by the joints, that is

W = (W a)TT a = (W a)TJaq̇ or W =

n∑

i=1

τT

i q̇i = τT

wa
q̇

and by identification

τwa = JT

a W
a. (1.35)

22 Chapitre 1. Modeling and simulating mechanical systems

1.1.4.2. Dynamic of tree-structure

The last objective is to determine the equations that rule the behavior of tree-structure
systems in space depending upon a minimal set of parameters, which are their generalized
parameters expressed in joint space. This is done through the computation of the kinetic
and potential energies.

Kinetic energy The total kinetic energy is quite simple to obtain because it is the
summation of the kinetic energies of its subsystems, already computed in Eq.(1.30).
Then, the computation of the kinetic energy Ek of the whole system is

Ek(q, q̇) =
∑

b

Ekb =
1

2

∑

b

(T b)TM bT b =
1

2
q̇TM(q)q̇

M(q) =
∑

b

JT

b (q)M
bJb(q) (1.36)

where b represents the bodies, and M is called the generalized mass matrix (or kinetic
energy matrix) of the system, which is symmetric and positive-definite.

Potential energy The potential energy defines the energy accumulated by the system
when it gains altitude. This energy depends upon a frame of reference, and for a single
rigid body b, it is computed as follows

Epb(q) = gmbhb(q)

where q is the generalize coordinates vector, g represents the gravitational constant, mb

is the mass of b, and hb(q) is its altitude.
Again, the potential energy of the system is the sum of all subsystems potential ener-

gies, so

Ep(q) = g
∑

b

mbhb(q). (1.37)

Equations of motion Finally, the equations of motion of tree-structures evolving in
space are computed thanks to its Lagrangian, defined as the difference between kinetic
and potential energies L(q, q̇) = Ek(q, q̇)−Ep(q). The equations of motion are derived
from this expression and the Lagrange’s equations [Murray1994]

d

dt

∂L
∂q̇i
− ∂L

∂qi
= τi ∀i (1.38)

where qi, q̇i and τi are respectively the independent (linear or angular) coordinate, ve-
locity and force applied at the ith degree of freedom.

Then, a compact representation of the equations of motion of an open kinematic chain
can be written as follows

M(q)q̈ +N(q, q̇)q̇ = g(q) + τ +
∑

j

τwj
(1.39)

where q, q̇, q̈ are respectively the generalized coordinates, velocity and acceleration vec-
tors, M(q), N(q, q̇), g(q) are the generalized inertia matrix, the nonlinear effects matrix

1.2. Simulating mechanical systems with Arboris-python 23

(Coriolis and centrifugal) and the generalized gravity force vector, that is the summation
of all the gravitational forces expressed in generalized coordinates. Finally, the general-
ized force vector τ represents the forces applied by joint actuators, and the vectors τwj

denote the generalized forces induced by some external wrenches and undergone by the
system, for instance friction, adhesion, contact, etc.

1.2. Simulating mechanical systems with Arboris-python

The aim of this section is to describe the algorithms used in our dynamic simulator
Arboris-python to simulate the evolution of the mechanical systems. Indeed, thanks to
equations of motion of a tree-structure Eq.(1.39), one can predict during a short period of
time the robot state evolution. However, the study is bounded to open kinematic chains,
i.e. to robots without any kinematic loop closure. This means that, for a humanoid robot,
interactions with the environment are not determined, behaviors are unknown when it
touches the ground or when it grabs an object with its hands, which is very restrictive.
The extension of this model can be done with different methods and leads to the use of
a robotic dynamic simulator.

Here, we present the core of the dynamic simulator Arboris-python [Arboris] which
allows to model and simulate many rigid-body systems with kinematic loops.

Background In 2005, Alain Micaelli, a researcher from CEA LIST, wrote a first ver-
sion of the simulator in the Matlab language. It was an implementation (and often an
extension) of the algorithms described in [Murray1994], [Park2005] and [Liu2005].

He was later joined by Sébastien Barthélemy, from ISIR/UPMC, who reorganized the
code to take advantage of the early matlab object-oriented features. It eventually became
clear that the language was ill-designed, and that a full rewrite was necessary. With the
help of the author of this thesis, also from ISIR/UPMC, Arboris-python was born. The
resulting framework is quite similar to what is presented in [Duindam2006].

What is Arboris-python Arboris-python is a rigid multibody dynamics and contacts
simulator written in python language. It includes a generic and easily extensible set of
joints (singularity-free multi-DoF joints, non-honolomic joints, etc.) for modeling open
rigid body mechanisms with a minimal set of state variables. It is mostly useful for robotic
applications and human motion studies, and the python language makes it particularly
suited for fast-paced development (prototyping) and education.

Arboris-python is very handy to quickly model and simulate a multibody system
composed of rigid bodies interconnected by joints. The entire model is concatenated in
a single instance of class World. It gives access to modeling, controllers and constraints.
The equations of motion of these systems are obtained from the Boltzmann-Hamel equa-
tions [Greenwood2003, Duindam2007] in a matrix form. Arboris-python computes the
first-order approximation of the model, and the integration is done with a time-stepping
method and a semi-implicit Euler integration scheme. In this way, it is possible to solve
the additional constraints, i.e. the kinematic loops which can be unilateral like contacts
or bilateral like a revolute joint, with a Gauss-Seidel algorithm [Albu2002, Liu2005].

Notice that the Boltzmann-Hamel formalism is very interesting because it can inte-
grate in the equations of motion some joints that do not evolve in linear configuration

24 Chapitre 1. Modeling and simulating mechanical systems

Figure 1.7.: View of a scene created with Arboris-python. A virtual iCub model (on the left
side) stands beside a wireframe view of a human36 model [HuManS] (on the right
side).

spaces, and thus avoid singular parameterizations (for instance with Euler angles to de-
scribe orientations). The configuration of such a joint is expressed with a matrix Qj and
a vector νj which respectively represent the generalized coordinates and velocity of joint
j, as it is illustrated in Fig. 1.6 with a ball joint. It becomes possible to write down the
equations of motion in terms of Q and ν, which are loosely the concatenation of Qj and
νj , in a very similar manner than in Eq.(1.39), as follows

M(Q)ν̇ +N(Q,ν)ν = g(Q) + τ +
∑

j

τwj
(1.40)

However, for simplicity reasons, the remaining of this work continues with the formal-
ism of Eq.(1.39) to develop the algorithms used in Arboris-python. The reader should
keep in mind that the Boltzmann-Hamel formalism permits to integrate more general
joints without much complexity, especially to represent structure with free-floating base
without singularity problem. One can refer to [Duindam2007] for more explanations.

1.2.1. Simulating the world

In Arboris-python, the simulation of the world is done through four steps which have
to be called successively in the following order :

1. update the dynamic parameters of the world,

2. update the generalized forces generated by the controllers,

3. update the closure forces to ensure that the world constraints are satisfied,

1.2. Simulating mechanical systems with Arboris-python 25

4. integrate the joints positions and velocities to get the new state of the world.

These lines represent the simulation loop. The first one deals with the updating of both
the world dynamic components (the matrices M , N) and the kinematic components
such as the position, orientation and velocity of all frames in the system, using Eq.(1.11)
and Eq.(1.33) (the frames, as well as all the other elements of world, are described in
Section A.1). Notice that Arboris-python introduces a new parameter B which refers
to the generalized viscosity matrix of the system. This leads to a fluid friction when
multiplied by q̇ and permits to simulate motions in fluids, for instance in water. Denoting
the bodies by b, the matrices M , N and B are computed as follows

M =
∑

b

JT

b M
bJb B =

∑

b

JT

b B
bJb N =

∑

b

JT

b

(
M bJ̇b +N bJb

)
. (1.41)

where M b, N b refer to matrices in Eq.(1.28), Jb is the Jacobian matrix of Ψb and Bb is
a constant user-defined matrix (see Section A.1.1).
The second line of the snippet of code above updates all the controllers available in

World and computes both the input torque vector τ applied to the system and the
global admittance. This is detailed in Section 1.2.2 below. This method has an input
argument dt which represents the time interval between two simulation loops, denoted
by dt in the remaining of this section.

The third line handles the updating of the world constraints, meaning the resolution
of the kinematic loop closures, an issue not addressed in the previous section. Indeed
the modeling of kinematic chain composed of some closures is possible by deleting and
replacing them with external wrenches whose values ensure the closures, in order to
retrieve an open kinematic chain modeling. This is more detailed in Section 1.2.3 below.

Finally, the fourth line integrates the joints positions and velocities to get the new
state of the world, as explained in Section 1.2.4.

1.2.2. Updating controllers

In a general manner, dynamic controllers return some generalized forces to perform
the desired goals. In Arboris-python, this notion is extended with the introduction of
some impedance terms, in order to give another leverage for the robotic control. The step
which updates the controllers collects the generalized forces and impedances computed
by all the Controller instances registered in the world, and it updates a so called
global mechanical admittance.

Indeed, in order to obtain this admittance, each controller returns two arguments,
the first one is the reactive part of control denoted by τ c0, and the second one is
the impedance of control (inverse of admittance) denoted by Zc. When the latter is
multiplied by the future generalized velocity q̇(t+ dt), one obtains the proactive part
of control. The Controller class is described in Section A.1.6. Hence, considering the
following integration scheme q̈(t + dt) = (q̇(t + dt) − q̇(t))/dt, the first order dynamic
equation of the actuated model resulting from Eq.(1.39) is written as

M(t)q̈(t+ dt) +
(
N(t) +B(t)

)
q̇(t+ dt) =

∑

c

τ c(t).

(
M(t)

dt
+N(t) +B(t)−

∑

c

Zc(t)

)
q̇(t+ dt) =

M(t)

dt
q̇(t) +

∑

c

τ c0(t) (1.42)

26 Chapitre 1. Modeling and simulating mechanical systems

where τ c is the generalized force returned by controller c such as τ c(t) = τ c0(t) +
Zc(t)q̇(t + dt), and M,N,B are the dynamic parameters computed in Eq.(1.41). From
this equation, one can introduce the world impedance Z, and admittance Y . This last
matrix leads to a more compact expression of the first order model equation above, such
as

Y (t) = Z−1(t) =

(
M(t)

dt
+N(t) +B(t)−

∑

c

Zc(t)

)−1

q̇(t+ dt) = Y (t)

(
M(t)

dt
q̇(t) +

∑

c

τ c0(t)

)
. (1.43)

1.2.2.1. Explanation about the impedance argument

This argument refers to the mechanical impedance explained for example in [Hogan1985].
It relates forces with velocities, for instance f(ω) = Z(ω)v(ω) where ω is the system
frequency.
In Arboris-python, the purpose is to decompose the generalized force computed by

the controller into 2 components. The first one (denoted by gforce in the software)
represents the reactive part of the results τ c0 because it only depends upon the actual
state of the robot, and the second one (denoted by impedance) refers to the proactive
part of the control which depends upon the future generalized velocity q̇(t+ dt). Thus,
the generalized force returned by the controller is written as τ c(t) = τ c0(t)+Zcq̇(t+dt)
where Zc is the impedance argument.

The description of this operation is illustrated below with a proportional derivative
controller with Kp and Kd the respective stiffness and damping matrices. Without any
anticipation term, one should write at time t

τ c(t) = Kp(qdes − q(t)) +Kd(q̇des − q̇(t)). (1.44)

To integrate the anticipation term into this equation, one has to consider the state of the
system at the instant t+ dt, and with the simple equation q(t+ dt) = q(t)+ q̇(t+ dt)dt,
it becomes

τ c(t) = Kp(qdes − q(t+ dt)) +Kd(q̇des − q̇(t+ dt))

τ c(t) = τ c0(t) + Zcq̇(t+ dt) (1.45)

with

τ c0(t) = Kp(qdes − q(t)) +Kdq̇des Zc = −(dtKp +Kd). (1.46)

1.2.3. Updating constraints

The first order actuated model of tree-structure systems is computed in Eq.(1.43),
but it does not handle kinematic loop closure constraints which may occur during sim-
ulations. The step which updates the constraints takes them into account through the
Constraint instances. The description of this class is done in Section A.1.4. Each of
them represents an external wrench which acts on the constraint frames, and the pur-
pose of this step is to find the proper wrenches that ensures the closures. The solution
is solved iteratively using the Gauss-Seidel algorithm [Albu2002, Liu2005].

1.2. Simulating mechanical systems with Arboris-python 27

For each constraint k the algorithm acts on two variables, tk and wk which are the
images of the twist and wrench constraint T k and W k, i.e. the constrained part of these
vectors. For instance in the case of a ball and socket constraint, we want to prevent
translational motions, so rotational motions are free, and we have

S =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 tk = ST k wk = SW k (1.47)

The parameters wk are considered as Lagrange multipliers. The Jacobian Jk is then
defined such as tk = Jkq̇ and τ k = JT

k wk where τ k is the generalized force induced by
constraint k. All these generalized forces are added to the actuation of the world, and
they lead to the final model

q̇(t+ dt) = Y (t)

(
M(t)

dt
q̇(t) +

∑

c

τ c0(t) +
∑

k

τ k(t)

)
. (1.48)

To find the Lagrange multipliers values, Arboris-python focuses on the constrained
subset of the world. The concatenation of the Jacobians Jk and the vectors tk and wk

are denoted by J, t and w, the constraint admittance is denoted by Y = JY J
T
, and one

can write down the following equation

t(t+ dt) = J(t)q̇(t+ dt)

t(t+ dt) = J(t)Y (t)

(
M(t)

dt
q̇(t) +

∑

c

τ c0(t)

)
+ Y (t)w(t) (1.49)

The first part of the equation above does not depend on the constraint forces, so the
algorithm focuses on the second part. The solution is found iteratively, as presented in
Algorithm (1) (we introduce the notation t[k] = tk and w[k] = wk)

8.

Algorithm 1: Constraints resolution in Arboris-python.

Initialize w←− w0, choose ε (the tolerance)
Compute J , Y and t with Eq.(1.49)
repeat

t−1 ←− t
for each constraint k do

∆wk ←− solve constraint k according to (t[k], Y [k, k], dt)
w[k]←− w[k] + ∆wk (update force of constraint k)
t←− t+ Y [:, k]∆wk (update whole constrained velocities)

until
∥∥t− t−1

∥∥ < ε

At the end of this procedure, all the Lagrangian multipliers wk are properly com-
puted and the generalized constrained forces of Eq.(1.48) are obtained such as

∑
k τ k =

8. In this algorithm, the notation u[k] (M [k, k]) corresponds to the sub-vector (sub-matrix) defined
by the k = [k1, k2, ..., kn] rows of vector u (the k rows and k columns of matrix M). The notation u[:]
(M [:, k]) indicates that all the vector rows (all the matrix rows and k columns) are considered. This is
similar to the python language notation.

28 Chapitre 1. Modeling and simulating mechanical systems

∑
k J

T

k wk = J
T
w. However, the variable ∆wk is obtained by the procedure “solving

constraint k” which depends upon the type of constraint that has to be satisfied. This
kind of procedure is described in the following sections through some examples.

1.2.3.1. Joint limit

The purpose of joint limits is to maintain some generalized coordinates inside some
bounded intervals. Given joint k with generalized coordinates and velocity qk, q̇k, and
given the bounds m,M , the constraint k is m � qk � M . But this formulation does
not consider the constraint force and velocity vectors.
To do so, one has to compute the future generalized coordinates qk(t + dt) after a

short period of time dt. At iteration 0, the constraint force is null, that is w
(0)
k = 0, and

noticing that the joint generalized velocity is also the constraint velocity q̇k(t+dt) = tk,

a simple integration gives qk(t+ dt) = q
(0)
k = qk(t) + t

(0)
k dt. At iteration i, the velocity

is modified according to the force difference, which is expressed as follows

t
(i+1)
k = t

(i)
k + Y [k, k]

(
w

(i+1)
k −w

(i)
k

)

︸ ︷︷ ︸
∆wk

(1.50)

To estimate ∆wk, we first consider the case when no constraint forces occur in the

next iteration, meaning that ∆wk = −w(i)
k . The future generalized coordinates is then

deduced

q
(i+1)
k = qk(t) +

(
t
(i)
k − Y [k, k]w

(i)
k

)
dt (1.51)

which leads to three possible cases

– m � q
(i+1)
k �M , which implies that the constraint is satisfied without any forces,

so the procedure returns ∆wk = −w(i)
k ,

– q
(i+1)
k ≺m, meaning that the constraint is violated, so the distance must be reduced

by m − q
(i+1)
k , the difference of velocities must be t

(i+1)
k − t

(i)
k = (m − q

(i+1)
k)/dt,

and the procedure returns ∆wk = Y [k, k]
−1
(
m− q

(i+1)
k

)
/dt−w

(i)
k ,

– M ≺ q
(i+1)
k , meaning that the constraint is also violated. Proceeding in the same

manner as above, the procedure returns ∆wk = Y [k, k]
−1
(
M − q

(i+1)
k

)
/dt−w

(i)
k .

1.2.3.2. Ball and socket constraint

The ball and socket constraint allows to create kinematic loops in the mechanical
structure by constraining the relative position between two frames. Given Ψa and Ψb

connected together by constraint k, the homogeneous matrix Ha,b and the constraint
Jacobian Jk are written as follows

Ha,b =

[
Ra,b 0
0 1

]
Jk = Ada,bJ

b
0,b − Ja

0,a (1.52)

where Ψ0 is the inertial frame, Jb
0,b, Ja

0,a are respectively the Jacobian matrix of Ψa and
Ψb. The relative velocity between the two frames is given by the twist T a

a,b = T k = Jkq̇.
For our problem, we only consider the translational part, so we use the variables tk and

1.2. Simulating mechanical systems with Arboris-python 29

wk for the constraint velocity and force, as defined in Eq.(1.47), the Jacobian Jk being
reduced accordingly.

At iteration 0, the relative displacement pa,b is extracted from Ha,b = Ha,0H0,b. The
force wk start with a null value and must be updated to enforce that pa,b = 0. At

iteration i, the new position is computed such as p
(i+1)
a,b = pa,b(t) + t

(i+1)
k dt, and given

Eq.(1.50) it becomes

p
(i+1)
a,b = pa,b(t) +

(
t
(i)
k + Y [k, k]∆wk

)
dt,

Finally, by imposing that p
(i+1)
a,b = 0, the solution is given as follows

∆wk = −Y [k, k]
−1
(
t
(i)
k +

pa,b(t)

dt

)
. (1.53)

1.2.4. Integrating

The integration method of Arboris-python is based on time-stepping and a semi-
implicit Euler integration scheme. Even if explicit methods exist 9, as for instance Runge-
Kutta which may be more precise, semi-implicit (and implicit) methods are generally
more stable when simulating rigid multibody systems with contacts.

Thus, the updated generalized velocity q̇ is computed thanks to Eq.(1.48) after an
interval of time dt. This new value is transmitted to the joints which update their inner
generalized position and velocity Qj , νj (see Section 1.1.4.1) in accordance with their
own integration method. It means that when the configuration of joint j lies in a linear
vector space, its inner generalized position and velocity Qj , νj can be represented by
vector qj , q̇j , and the integration scheme is simply

qj(t+ dt) = qj(t) + dtq̇j(t+ dt). (1.54)

However, the integration of some joints is not straightforward, and the generalized co-
ordinates computation is left to dedicated methods. For instance, the class FreeJoint
included in the arboris.joints module describes a free motion between two frames.
Thus, Qj is equal to homogeneous matrix Hpj ,cj , and its integration is done as follows

Qj(t) = Hpj ,cj

Qj(t+ dt) = Qj(t)e
(ν̂jdt)

where e(ν̂jdt) is the exponential representation of a rigid motion computed in Eq.(1.20).
Finally, when the integration of all joints is performed, the matrices of the world are

no more up to date, and the simulator gets ready to start a new simulation step.

1.2.5. Example : 3R robot with joint limits

To illustrate the simulation process used in Arboris-python, an example is developed
here for a robot composed of rigid bodies connected together with 3 revolute joints
with bounded ranges (3R robot). It falls under the influence of gravity and a simple
proportional derivative controller maintains the system about a reference configuration.

9. Roughly, explicit methods compute the current motion based on previous configurations, whereas
implicit methods give the current motion according to the final configuration.

30 Chapitre 1. Modeling and simulating mechanical systems

y

z
q0

q1

q2

Figure 1.8.: 3R robot in Arboris-python (left) and its schematic representation (right) with
generalized coordinates q0, q1, q2. All joints rotates about the x-axis.

1.2.5.1. Modeling the system

All the rigid bodies are cylindrical bars of length 0.5 m, radius 0.1 m and mass 10.0 kg.
Each body frame (denoted by Ψb0, Ψb1, Ψb2) is located at the bar center of mass. They
are all connected at their extremities, and the first one is connected with the ground, as
shown in Fig. 1.8.

The robot configuration at time t and the joint limits are summarized in Table (1.1).
Joints 0 and 1 are on their maximal limits with positive velocities, so one can expect
that some constraints are enabled and must be solved to correctly simulate the behavior
of the system.

joint i qi(t) (rad) q̇i(t) (rad.s
−1) qi min (rad) qi max (rad)

0 0 0.196 -1.57 0

1 0.524 0.196 -1.57 0.524

2 0.314 0.196 None None

Table 1.1.: Robot configuration at time t and its joint limits. Note that the initial velocities are
not null. The robot has reached some bounds (red).

This configuration leads to the following matrices

Mb(0,1,2) =

0.215 0 0 0 0 0
0 0.215 0 0 0 0
0 0 0.0125 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 10

Nb0 =

0 0 0 0 0 0
0 0 −0.00245 0 0 0
0 0.0421 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1.96
0 0 0 0 1.96 0

Nb1 =

0 0 0 0 0 0
0 0 −0.00491 0 0 0
0 0.0843 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −3.93
0 0 0 0 3.93 0

Nb2 =

0 0 0 0 0 0
0 0 −0.00736 0 0 0
0 0.126 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −5.89
0 0 0 0 5.89 0

1.2. Simulating mechanical systems with Arboris-python 31

Jb0 =

1 0 0
0 0 0
0 0 0
0 0 0

−0.25 0 0
0 0 0

Jb1 =

1 1 0
0 0 0
0 0 0
0 0 0

−0.683 −0.25 0
0.25 0 0

Jb2 =

1 1 1
0 0 0
0 0 0
0 0 0

−1.06 −0.726 −0.25
0.526 0.155 0

J̇b0 =

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

J̇b1 =

0 0 0
0 0 0
0 0 0
0 0 0

0.0491 0 0
0.085 0 0

J̇b2 =

0 0 0
0 0 0
0 0 0
0 0 0

0.176 0.0303 0
0.225 0.0934 0

Thanks to these matrices, one can achieve the first step of the simulation loop consisting
in updating the whole system dynamics, that is the matrices in Eq.(1.39)

M =

20.6 10.6 2.86
10.6 6.56 2.03
2.86 2.03 0.84

 N =

−0.809 −1.36 −0.775
0.475 −0.0758 −0.228
0.334 0.152 0

 g =

203
80.1
16.4

1.2.5.2. Updating the controllers

The second step retrieves the information from the controllers according to a short
period of time dt = 0.01 s.

Here, a proportional derivative controller keeps the system about a desired configu-
ration (qdes, q̇des) thanks to the proportional and derivative gains Kp, Kd defined as
follows

qdes =

0
0
0

 q̇des =

0
0
0

 Kp =

10 0 0
0 10 0
0 0 10

 Kd =

2 0 0
0 2 0
0 0 2

Generally, this controller generates a generalized force τ c based on the current config-
uration, and the results of this method is shown in Eq.(1.55) (left). In Arboris-python,
the possibility is given to change the impedance of the controller to separate the active
and proactive parts of the control (cf. Section 1.2.2). It gives the couple (τ c0, Zc) used
in the simulation loop and detailed in Eq.(1.55) (right), and leads to the admittance
matrix Y in Eq.(1.56).

τ c =

−0.393
−5.63
−3.53

 τ c0 =

0
−5.24
−3.14

 Zc =

−2.1 −0 −0
−0 −2.1 −0
−0 −0 −2.1

 (1.55)

Y =

0.00379 −0.0082 0.00672
−0.00821 0.0233 −0.0276
0.00673 −0.0277 0.0544

 (1.56)

1.2.5.3. Updating the constraints

In the previous sections, we have described how to compute the equations of motion
of the actuated system, but nothing ensures that the joint limits are satisfied. To do so,

32 Chapitre 1. Modeling and simulating mechanical systems

we use the Gauss-Seidel algorithm described in Section 1.2.3. The constraint Jacobian
and admittance J and Y , as well as the initial values of the reduced vectors t and w,
are shown in Eq.(1.57).

J =

[
1 0 0
0 1 0

]
Y =

[
0.00379 −0.0082
−0.00821 0.0233

]
t =

[
0.441
−0.0866

]
w =

[
0
0

]
(1.57)

Note that the initial value of w may be different from 0, for instance the constraint force
at the previous simulation loop, to speed up the process. The algorithm modifies the
constraint force and velocity until it converges to a stable configuration. This convergence
is shown in Fig. 1.9 where the tolerance value is set to ε = 1e−6.

0 5 10 15 20 25 30 35 40 45
number of iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
error ‖t−t−1‖ (rad.s−1)

0 5 10 15 20 25 30 35 40 45
number of iteration

500

400

300

200

100

0
constraint forces (N.m)

Figure 1.9.: Convergence of the Gauss-Seidel algorithm. The left figure shows the evolution of
the velocity error which tends asymptotically to 0, and the right figure shows the
evolution of the constraint forces which tend to values that ensure the respect of
the constraints. The algorithm stops when the error is less than 1e−6. Note that in
a general manner, these graphs should have no units because they may mix linear
and rotational components.

Finally, when the process is finished, the constraint force w also converges and the

generalized force generated by the latter is obtained such as τ const =
∑

k τ k = J
T
w.

The result becomes

w =

[
−454
−156

]
τ const =

−454
−156
0

 (1.58)

1.2.5.4. Integrating

The last step of the simulation loop is the computation of the new system configura-
tion. Equation (1.48) sets the new generalized velocity vector, and each joint is updated
according to its integration scheme. In this simulation, all joints configurations lie in
linear vector spaces, so they follow the integration scheme described in Eq.(1.54). The
new configuration is finally obtained in Eq.(1.59), and the simulator becomes ready to

1.3. Conclusion 33

start a new simulation loop.

q(t+ dt) =

0
0.524
0.329

 q̇(t+ dt) =

0
0

1.46

 (1.59)

1.3. Conclusion

This first chapter presents the mechanical equations to model the global configuration,
as well as the kinematic and dynamic equations of constrained rigid-body systems, by
taking into account interaction forces with the environment. It results in the equations
of motion of mechanical tree-structure. Thus, it follows with the description of the dy-
namic simulator Arboris-python through the way to model rigid-body systems, and its
algorithms to obtain physically consistent motion.
Although the simulator models the kinematic loops as redundant joints and solves

their actions on the system iteratively with a Gauss-Seidel algorithm, we prefer to use
these kinematic constraints directly in the control loop, as explained in the next chapter.

2. Controlling a mechanical system in
interaction with its environment

Contents

2.1. Definition of the problem . 37

2.1.1. Equations of motion with interactions 37

2.1.2. Actuation limits . 38

2.1.2.1. Torque limit . 38

2.1.2.2. Acceleration limit . 38

2.1.2.3. Velocity limit . 39

2.1.2.4. Joint limit . 39

2.1.3. Obstacle avoidance . 40

2.1.3.1. Constraint expression 41

2.1.4. Interaction with the environment 41

2.1.4.1. Bilateral Closure . 42

2.1.4.2. Unilateral frictional contact 42

2.2. Solving convex problems . 44

2.2.1. Resolution of unconstrained convex problem 45

2.2.1.1. Gradient descent . 45

2.2.1.2. Special case : the quadratic problem 46

2.2.2. Resolution of convex problem with equality constraints 48

2.2.2.1. Special case : the quadratic problem 49

2.2.3. Resolution of convex problem with inequality constraints . . . 49

2.2.3.1. Interior point algorithm : barrier method 49

2.2.3.2. Active constraint-set method 51

2.3. Controlling a mechanical system with optimization tools . . 52

2.3.1. Tasks definition . 54

2.3.1.1. Generic task . 54

2.3.1.2. Acceleration task . 54

2.3.1.3. Wrench task . 55

2.3.1.4. Tasks homogenization 55

2.3.1.5. Task normalization 56

2.3.2. Problem formalism : dependent or independent variable 57

2.3.3. Special case : the task space dynamics representation 57

2.3.4. Predefined controllers to achieve task : task servoing 58

2.3.4.1. Proportional derivative control 58

2.3.4.2. Quadratic control for walking 59

2.3.4.3. Impedance control with the upper limbs 60

2.3.5. Managing several tasks simultaneously 61

2.3.5.1. Hierarchical strategy 61

2.3.5.2. Weighting strategy . 62

35

36 Chapitre 2. Controlling a mechanical system in interaction with its environment

2.3.6. Chaining up tasks in a physically constrained environment . . 63

2.3.6.1. Transition in the set of task 63

2.3.6.2. Transition in the set of constraints 64

2.4. Conclusion . 65

This chapter addresses control methods based on optimization programs in the case
where robots physically interact with their environment. A particular attention is paid
to transitions and control continuity.

Generally, robotic manipulators are controlled with analytic techniques for real-time
applications, and a common one is to use inverse kinematics. Jacobians, which give ve-
locities in Cartesian space from velocities in joint space, are inverted so the control is
achieved by tracking a Cartesian reference trajectory. Although this control seems quite
simple to implement, some difficulties may occur, depending on the robot structure and
the task to accomplish. For instance, redundancy has been one of the first problems
extensively studied. In this case, robots have more DoF than needed to achieve a task.
Jacobian matrices are rectangular, their inverses are not unique, and solutions can be to
use the Moore-Penrose pseudo-inverse [Siciliano1990, Tevatia2000]. This inversion tech-
nique may lead to inappropriate behaviors when facing singularity problems, typically
when manipulators are fully extended, and the desired joint velocities can be very high
in the neighborhood of these configurations. Some algorithms are proposed in the liter-
ature to cope with this issue, for example the Damped Least Squared (DLS) exposed
in [Caccavale1995, Chiaverini1997]. More recently numeric optimization programs have
been used, as presented in [Escande2010]. This class of numerical methods allows to se-
lect the inversion through a cost function and some constraints, whereas pseudo-inverse
is generally a simple norm minimization 1.

However, inverse velocity kinematics is not sufficient when robots have to interact with
their environment because the contact forces are not deduced from the computation. To
do so, one has to use inverse dynamics where the robot inertial properties are taken
into account, by using Eq.(1.39), as exposed in [Kreutz1989, Murray1994]. It offers more
possibilities when performing manipulation, grasping, weight compensation, etc. For
example, one can perform force control [Park2006] to ensure proper contact forces, one
can perform impedance control [Hogan1987, Morel1994] to manage behaviors during the
disturbances rejection, or one can perform operational space control to unify motion and
force control [Khatib1987].

Independently from these types of control, having redundant systems also means that
many tasks can be achieve simultaneously, depending on the number of remaining DoF.
The tasks are conflicting in a general manner so control is achieved in two ways, the
first one is hierarchical strategy where low-level tasks are projected onto high-level tasks
null spaces [Siciliano1991], the second one is weighting strategy where compromise be-
tween the tasks is found based on their respective importances [Shen2007]. For instance,
Sentis performs several dynamic tasks with humanoid robots using null spaces hierar-
chy [Sentis2007]. Furthermore, a critical point is the control continuity when actuating
mechanical systems. This is done with smooth transitions to ensure that actuators can
track the desired control values. For instance, [Padois2005] deals with secondary tasks
switching for wheeled mobile manipulators, and [Mansard2007] gives means to achieve
smooth transitions in a hierarchical set of tasks while performing kinematic control, a

1. There is also weighted pseudo-inverse to lead the computation toward a particular solution, as
presented in [Park2001]

2.1. Definition of the problem 37

technique reused in [Keith2009] where both the behavior and the overlapping scheduling
of sequences of tasks are optimized.

However, most of the works presented above give analytic results to control the robot,
and although equality constraints can be integrated in computation, it is not the case for
inequality constraints. Some techniques approximate these constraints and create tasks
to avoid them, for example with potential field [Khatib1985], but it may disturb the main
tasks and may reduce the control range. To properly take into account these inequalities,
a solution is to rely on optimization programs. It permits to keep the methods above and
to separate what the robot can do, the tasks, and what it undergoes, the equality and
inequality constraints. Among all existing optimization programs, we focus on Linear
Quadratic Program (LQP), an algorithm widely used in robotics. It can solve some local
obstacle avoidance problems [Kanehiro2008], it can achieve humanoid kinematic control
to perform several tasks hierarchically using cascading LQPs [Kanoun2009b], and it can
optimize the posture of the robot to improve robot balance [Collette2009]. The work of
Saab [Saab2011] is very interesting because it presents humanoid dynamic control using
cascading LQPs. Note that it is also dedicated to generate physically consistent motions
in the computer graphic field [Abe2007, DaSilva2008, Muico2009].

Most of the works using optimization programs for dynamic control do not focus on
transitions when there are some changes, both in the set of tasks and the set of con-
straints. The last ones happen when kinematic loop closures are broken. In this chapter,
we focus on the design of a generic whole-body dynamic control based on optimization
programs which can deal with these transitions. The multi task management and their
sequencing is done with a weighting strategy. First, the robotic constraints are exposed
to give the means to choose the most suitable algorithm, then the resolution of the
problem is explained, and finally the building of the robotic problem is presented.

2.1. Definition of the problem

This section presents equations that describe robots and their interactions with their
environment, which are both the internal and external physical constraints of the system.

2.1.1. Equations of motion with interactions

Humanoid robots can be modeled as underactuated tree-structures composed of rigid
bodies linked together with revolute joints. Thus the evolution of such a system is de-
scribed by the equations of motion Eq.(1.39) defined in the previous chapter. It derives
from the Euler-Lagrange formalism and relates the generalized acceleration with the
generalized forces generated by the actuators and the external wrenches. The motion
depends on variables belonging on either the acceleration space or the force space, and
this can be viewed as a function with the forces as input and the accelerations as output.
Hence, the equation is rewritten as follows

M(q)q̈ + n(q, q̇) = g(q) + Jχ(q)
Tχ. (2.1)

where we recall that q, q̇, q̈ are respectively the generalized coordinates, velocity and
acceleration vectors, M(q),n(q, q̇), g(q) are the generalized inertia matrix, the nonlin-
ear effects vector (Coriolis and centrifugal, such as n = N q̇ with N from Eq.(1.39)),
and the gravity force vector. The last term of the equation regroups the generalized

38 Chapitre 2. Controlling a mechanical system in interaction with its environment

forces applied to the system. The matrix denoted by Jχ(q)
T =

[
Jc(q)

T S
]
is called

the generalized wrench Jacobian and χ = [wT
c τT]T is called the action varia-

ble of the system. Jc(q) is the concatenation of the nc Jacobians of contacts denoted
by Jci(q) (i ∈ [1..nc]), wc is the concatenation of the associated external wrenches
wci (i ∈ [1..nc]) and Jc(q)

Twc =
∑nc

i=1 Jci(q)
Twci is the torque induced by the wrenches

applied to the system at the nc contact points 2. Finally, S and τ are respectively the
actuation selection matrix, which accounts for the fact that some DoF are not actuated
(typically the free-floating base), and the input torque vector applied at the actuators
level.

Although Eq.(2.1) is nonlinear, it is generally linearized around the state (q, q̇) for
small variations, and then the matrices M,n, g, Jχ are supposed to be known. It defines
the surjective mapping from the joint torque and contact forces to the joint acceleration
spaces, so χ is sufficient to describe the dynamics of the system and q̈ is considered as
an overabundant variable.
However, the following expressions which describe the dynamic constraints can only

depend on q̈, and their expressions in the wrench space may make them less readable.

Hence, for the sake of clarity, X =
[
q̈T χT

]T
, called the dynamic variable of the

system for the remaining of this thesis, is introduced to define the dynamic equations in
the generic form A(q)X ≦ b(q, q̇). The transformation from the overabundant formula-
tion to the independent one exists and is discussed later.

2.1.2. Actuation limits

This section presents the actuation limits of the robot. Plenty of actuators are avai-
lable in the robotic field with different types, sizes, capacities, etc. It is obvious that
real mechanical systems have not unbounded capabilities, and for the sakes of safety,
durability and efficiency, constructors may restrain actuators capacities. The following
of this section addresses the expression and integration of these constraints.

2.1.2.1. Torque limit

Here, we consider a particular range of actuators that can achieve torque tracking 3. As
they are real mechanical systems, their output is bounded, so given τmax the maximum
torque vector of the robot actuators, the torque limit is expressed as follows

− τmax � τ � τmax ⇔
[
0 Sτ

0 −Sτ

]
X �

[
τmax

τmax

]
(2.2)

where the selection matrix Sτ is defined such as τ = Sτχ.

2.1.2.2. Acceleration limit

As the actuation is bounded, the equations of motion imply that the generalized
acceleration is also bounded, and Eq.(2.2) should be sufficient to limit the evolution of

2. wci represents the image set of the wrench W ci . For example, when a contact occurs, some
torques are not transmitted, and wci is the remaining contact efforts. The Jacobian Jci is then chosen
accordingly.

3. We only consider torques because humanoid robots are mainly composed of revolute joints. Of
course, one has to refer to forces if linear actuators are used, and this study remains valid.

2.1. Definition of the problem 39

the system in space. However, for some technical reasons, one may want to set his own
limits in acceleration. Hence, given the boundaries q̈min � 0, q̈max � 0, the acceleration
limit is expressed as

q̈min � q̈ � q̈max ⇔
[

I 0
−I 0

]
X �

[
q̈max

−q̈min

]
(2.3)

where I is the identity matrix.

2.1.2.3. Velocity limit

Similarly to acceleration, one may want to limit the generalized velocity of the system.
Theoretically, given the boundaries q̇min � 0, q̇max � 0, the joint velocity limit is
expressed as q̇min � q̇ � q̇max. However this formulation does not depend on the
dynamic variable of the system. This issue is very difficult to handle because there
is no exact linear relation between q̇ and X. Here, we propose to constrain the future
generalized velocity assuming a uniformly accelerated motion of the joints, which leads to
a linear relation between accelerations and velocities. Thus, the velocity limit constraint
depending on the dynamic variable is written as follows

q̇min � q̇ + h1q̈ � q̇max ⇔
[

I 0
−I 0

]
X � 1

h1

[
q̇max − q̇

−(q̇min − q̇)

]
(2.4)

where h1 is an anticipation coefficient set to compute the estimated values of the future
state (q, q̇), assuming a constant generalized acceleration q̈.

2.1.2.4. Joint limit

Finally, the generalized coordinates of the robot can also be bounded. The constraint
can be written qmin � q � qmax, but for the same reasons as above we constrain
the future coordinates, so given the boundaries qmin, qmax, the joint position limit is
expressed as follows

qmin � q + h2q̇ +
(h2)

2

2
q̈ � qmax ⇔

[
I 0
−I 0

]
X � 2

(h2)2

[
qmax − (q + h2q̇)

−(qmin − (q + h2q̇))

]

(2.5)

where h2 plays a role similar to h1.

In order to avoid overabundant constraints, Eqs.(2.3)–(2.5) can be concatenated into
a unique inequality as written below

[
I 0
−I 0

]
X �

min

(
q̈max,

q̇max − q̇

h1
,
2(qmax − (q + h2q̇))

(h2)2

)

−max

(
q̈min,

q̇min − q̇

h1
,
2(qmin − (q + h2q̇))

(h2)2

)

 . (2.6)

where the min and max functions select the best values term-by-term, meaning that the
more restrictive constraints are selected for each DoF.

40 Chapitre 2. Controlling a mechanical system in interaction with its environment

2.1.3. Obstacle avoidance

Collisions are also physical robotic limitations in any environment. Indeed, working
with a human in the same workspace implies limited powers, less rigid structures, but if
collisions occur they may lead to great damages, so sudden impact should be prevented.
Furthermore, if some unexpected obstacles block the achievement of some tasks, it would
be interesting to reactively take into account these spatial constraints to avoid collision,
or at least to control the contact. Finally, for the same reasons, a very challenging prob-
lem is about the self-collision. This can be easily illustrated, for example if a humanoid
robot falls due to some disturbances and has to reactively recover balance by displacing
its feet, then the moving leg must have a path which does not go through the supporting
leg.

Many techniques have been developed in robotics to avoid obstacles. For instance, a
fast and reliable technique is to use an artificial potential field approach [Khatib1985],
to create virtual repulsive forces when manipulators get too close to the obstacles. These
potential fields are built from convex shapes surrounding obstacles. They allow real-
time applications and reactive avoidance control. But as a result, this technique reduces
the working space independently of the robot velocity and may adversely affect mission
achievement, or it may lead to oscillating behaviors in very constrained environments.
An interesting data called the collidability measure is introduced in the following paper
[Choi2000] which gives some knowledge about possible future collisions by taking into
account the linear and rotational object velocities in the computation of this measure.
However, it is done with ellipsoid and spherical bounding volumes, which again reduces
the working space.

The paper of [Maciejewski1985] proposes a two-levels control where the principal goal
is the main task (for example path tracking) and the secondary goal is the obstacle
avoidance using null space projector. This gives more space to the manipulator when
environments are complex and are composed of several obstacles. The same idea is pro-
posed in [Sentis2005], where obstacle avoidance is set as the principal goal in a control
scheme based on recursive null space projections. Besides, [Stasse2008] deals with colli-
sion and auto-collision for humanoid robots by using avoidance tasks on convex bounding
volumes, and a particular attention is paid to control continuity. However, avoidances
are considered as tasks in these methods and not as inequality constraints.

In [Faverjon1987], collision avoidances are considered as constraints in a LQP. This
proposition allows to extend the available workspace to the maximum (generally with
some safety margins), and it takes into account the velocity of the system. In addition,
this work presents an assembly tree that approximates the robot shape with unions
of convex bounds, whose number and precision increase in the subtrees. For efficient
distance computation between very complex meshes (even non-convex), the reader can
refer to [Merlhiot2009].

All these solutions are adapted to local procedures and cannot be applied in more
complex tasks, for example when manipulators have to reach some goals in highly clut-
tered spaces. The global approach resolution is more complicated and is addressed in
other works where off-line path planning is proposed [LaValle2006]. As the control de-
veloped in this work must be reactive, we focus on local techniques that can be used in
optimization programs.

2.1. Definition of the problem 41

2.1.3.1. Constraint expression

To prevent any collision, obstacle avoidance constraints must be set between several
couples of shapes, as proposed in [Faverjon1987], but here in a dynamic framework. One
needs to find the vector∆i,j which supports the minimal distance di,j between the shapes
i and j, and to maintain it positive di,j > 0. Again, this is a position constraint, and
the link with the dynamic parameters of the system is not straightforward without any
assumptions or approximations. Similarly to the position and velocity limits, we consider
a uniformly accelerated motion of the points which determine the minimal distance and
keep it positive.
This statement is very strong, firstly because the acceleration is not constant, and

secondly the points which define the minimal distance run on the shapes, and are con-
sequently not constant. However using smooth shapes and low speeds, the points which
define the future minimal distance will be located in the neighborhoods of the current
points, and this assumption can be considered valid.
Hence, the constraint can be expressed in terms of the dynamic variable. The Jacobian

of collision avoidance between the shapes i and j is defined as the mapping from the
generalized velocity to their relative velocities projected onto axis ∆i,j such as Ji,j(q) =
Jj(q) − Ji(q), and its time-derivative is defined such as J̇i,j(q, q̇) = J̇j(q, q̇) − J̇i(q, q̇).
Usually, one wants to perform many obstacle avoidances in the same time, and given
d, ḋ, Ja, J̇a the concatenation of respectively the relative distances, velocities, and Jaco-
bians, the obstacle avoidance constraint becomes

0 � d+ h3ḋ+
(h3)

2

2

(
Ja(q)q̈ + J̇a(q, q̇)q̇

)

⇔ −(h3)
2

2

[
Ja(q) 0

]
X � d+ h3ḋ+

(h3)
2

2
J̇a(q, q̇)q̇ (2.7)

where h3 plays a role similar to h1 and h2. Note that this equation can also be used for
self-collision avoidance.

Ψi

Ψj

ḋ

d

vi

−vj

vj

∆i,j

Figure 2.1.: Description of the obstacle avoidance problem : the objective is to obtain d and ḋ,
which are the relative distance and velocity between Ψi and Ψj .

2.1.4. Interaction with the environment

Whereas the section above focuses on the modeling of a constraint which prevents
any collision, this one deals with the interaction between the robot and the environment

42 Chapitre 2. Controlling a mechanical system in interaction with its environment

to achieve the objectives defined by the user. As humanoid robots are under-actuated
systems, meaning that they cannot actuate all their DoF (their location and orientation
in space), it must interact with the surrounding world for its activities, starting with
its locomotion. To do so, the system creates some kinematic loops and loses its tree-
structure property. Like the joints, there is many different type of interactions, which
can be unilateral or bilateral, time-dependent, holonomic or not, etc. In this section,
we focus on two type of interactions, the bilateral closure and the unilateral frictional
contact.

2.1.4.1. Bilateral Closure

Bilateral closures constrain the relative motion between two frames of the system with
bilateral actions. It means that interaction forces do not evolve in half-spaces, as it is
the case with contact points where there is no attractive force. In fact, it is a joint
which cannot be integrated in the equations of motion Eq.(1.39) (because it would be
considered as redundant) and must be considered as a constraint. But unlike the joint,
this closure is expressed through the fixed part of the link, that is the subspace with no
relative motion.

For example, if a ball and socket joint is added to create a bilateral closure between
frames Ψi and Ψj , it means that there is no relative translational motion which leads
to vi − vj = 0. Denoting by Ji, Jj and J̇i, J̇j the frames Jacobians and their derivatives
composed of their translational parts, the equation can be expressed as follows

(
Ji(q)− Jj(q)

)
q̈ +

(
J̇i(q, q̇)− J̇j(q, q̇)

)
q̇ = 0

⇔
[
Ji(q)− Jj(q) 0

]
X = −

(
J̇i(q, q̇)− J̇j(q, q̇)

)
q̇. (2.8)

Now, if this bilateral closure is created with a hinge joint, it is sufficient to extend the
Jacobians with their blocked rotational parts.

2.1.4.2. Unilateral frictional contact

Similarly to bilateral closures, unilateral frictional contacts create kinematic-loops and
relate two frames by constraining their relative velocity. But the difference lies in the fact
that interaction forces evolve in half-spaces, i.e. there are only repulsive forces and no
attractive force. Besides, when the contact appears, the velocity goes from a non-negative
value to 0 very quickly, and a reaction force is created to avoid interpenetration. The
contact point can remain at the same location, but it can also slide on the contact
surfaces with some frictional forces. One refers to open and closed contacts whether
some forces are transmitted or not, and due to these binary states, some problems about
nonlinearity may occur.
The control of robot with unilateral contacts is not easy to handle [Park2006], it de-

pends on the stiffness of the materials, their roughness, the dissipation of the mechanical
energy during impacts, etc. However, a simple approximation of the contact comes from
the Amontons’ law and the use of the Coulomb cone of friction. This modeling is suffi-
cient for the rest of this thesis, but one may refer to more complicated ones, for example
a “soft finger contact” which integrates a frictional torque about the normal axis as used
in [Trinkle2001, Liu2005].

Note that the resolution of several frictional contacts in multibody systems simula-
tors is usually performed through Linear Complementary Problem (LCP) [Stewart1996,

2.1. Definition of the problem 43

Anitescu1997]. Here, we only consider the modeling of unilateral frictional contact, the
resolution being left to another optimization program.

Constraint expression The expression of the contact is based on the modeling of
dry friction. Considering the ith contact, it depends on two variables, one describing
its velocity vci and the other one describing its force wci , the same as that defined in
Section 2.1.1. Each one has a related Coulomb friction cone which relates the normal
component of the force with the tangential component through the frictional coefficient
µi. Then given the normal vector of contact n, the equation becomes

‖wci − (wci · n)n‖ ≤ µi(wci · n). (2.9)

This friction cone model can be formulated as a Linear Matrix Inequality (LMI), and
[Han2000] gives very good explanations on this formulation and the related optimization
programs to find the contact forces.

When a simpler model is sufficient, one can use a less precise model reduced to a linear
approximation of the Coulomb cone, and the equation above can be written in a matrix
form such as Cciwci � 0 where Cci represents the linearized cone, as shown in Fig. 2.2.

wci

Figure 2.2.: Coulomb cone of friction (red) and its linear approximation (blue). The force wci

must stay inside to avoid sliding.

As previously stated, a frictional contact has different discrete states 4. First, the
contact is established, leading to a null velocity and a force lying in the friction cone,
so Eq.(2.9) is valid and v = 0. Second, there is no contact, meaning that the motion of
the points is not constrained and the force is null, so wci = 0. These cases have to be
expressed in terms of the dynamic variable. Recalling the Jacobian Jci(q), composed of
the translational part only, relates q̇ to the linear velocity vci such as vci = Jci(q)q̇, and

4. Here, we present only two cases. There is also a transitional case when the contact is lifting
requiring a positive velocity along the normal, and a sliding case when the contact is closed and the
force lies outside the cone, requiring a null velocity along the normal. However, these two cases are not
discussed in this thesis because they are useful only in complex situations that are not relevant in this
work.

44 Chapitre 2. Controlling a mechanical system in interaction with its environment

defining the selection matrix Swci
such as wci = Swci

χ, each closed contact constraint
can be expressed with the linearized friction cone as follows

{
Jci(q)q̈ + J̇ci(q, q̇)q̇ = 0
Cciwci � 0

⇔
{ [

Jci(q) 0
]
X = − ˙Jci(q, q̇)q̇[

0 CciSwci

]
X � 0

. (2.10)

Finally, the trivial case of the open contact (no interaction force) is expressed according
to X as

[
0 Swci

]
X = 0.

2.2. Solving convex problems

Although many optimization programs exist, all are not suitable for a particular prob-
lem. Of course, the choice of the program depends upon the type of cost function and
constraints, but one can modify the level of detail of the modeling to use faster al-
gorithms. This is useful for real-time applications. Generally, the input parameters of
robotic low-level controllers belong to the continuous domain, so it is possible to build
a continuous cost function to control the robot, and the resolution of such a problem,
constrained or not, relies mainly on its convexity. If it is not convex, the most common
approach is to use a branch-and-bound method. Otherwise, when the problem is convex,
it refers to the convex optimization field, which contains lots of interesting subproblems
as the Linear Problem (LP), the Linear Quadratic Problem (LQP), the Second-Order
Cone Program (SOCP), etc. To go deeper into this field, the reader can refer to the
following books [Bertsekas2003, Boyd2004].

Convex optimization is a tool largely used in robotics. for instance [Barthelemy2008]
employs a LP to specify a residual radius which formalizes the robustness of virtual
human dynamic equilibrium by taking into account the forces lying into the Coulomb
friction cone. The set is defined by a polyhedron and the residual radius is computed as
the solution of the LP which solves the following problem :

minimize fTx

subject to Gx � h

Ax = b

where fTx is the linear cost function which determines the balance state, the couples
(A, b) & (G,h) are respectively the linear equality and inequality constraints.

Furthermore, [Park2007] considers the problem of active balancing for legged robots
through a SOCP, which is written as follows

minimize fTx

subject to ‖Gix+ hi‖2 ≤ cTi x+ di ∀i
Ax = b

where fTx defines the balance state, the couple (A, b) is the linear equality constraint,
and the tuples (Gi,hi, ci, di)∀i represent the conic inequality constraints.

Finally, the whole-body kinematic control of humanoid robots has been explored in
[Kanoun2009a, Kanoun2009b] (where the achievement of a hierarchical set of possibly
conflicting tasks is solved with cascading LQPs) and in [Saab2011]. The latter propose

2.2. Solving convex problems 45

humanoid dynamic control using cascading LQPs to perform model-based motions (from
algorithms using equations of motion) or data-driven motions (from human motion cap-
ture).

Although computer graphics and animation are not part of the robotics field, they
share the same algorithms in order to obtain physically consistent motions when the
elements of the scene have to interact with each other, are subject to gravity and are
subject to collisions. This is done with optimization as in [Muico2009], and especially
with LQP [Abe2007, DaSilva2008].

Notice that one may face huge constraints sets while performing robotic control with
these methods, especially many inequality constraints which may be larger than the
number of DoF of the system. That may lead to incompatibilities in the constraint set
and return no available solution, but it is inconceivable to let the robot uncontrolled in
these situations. This issue is not addressed in this thesis, but the reader may refer to
[Rubrecht2010a, Rubrecht2010b] which ensure the management of inequality problems
for highly redundant robots in over-constrained spaces.

This work focuses on the resolution of convex problems, unconstrained, constrained
with equalities, and constrained with inequalities, with a particular focus on LQP.

2.2.1. Resolution of unconstrained convex problem

A function f : Rn → R is called convex if for all vectors a, b and all real numbers
t ∈ [0, 1], the relation f(ta+(1−t)b) ≤ tf(a)+(1−t)f(b) is satisfied. These functions are
particularly interesting because all their local minima are also global, which simplifies
the resolution of the minimization problem. An unconstrained convex problem is written
as follows

minimize f(x) (2.11)

where x is the unknown vector and f is a convex twice continuously differentiable func-
tion 5. Thanks to convexity, the research of local minima (with fast and efficient methods)
leads to a global solution. The most common algorithm for this purpose is the gradient
descent which is described hereafter.

2.2.1.1. Gradient descent

Given a starting point, this algorithm seeks for a local minimum according to the path
with the steepest descent. This can be illustrated by a ball subject to the gravity which
falls into a bowl representing the convex function, and finishes its path at the lowest
point, as shown in Fig. 2.3. The algorithm is described as follows

This procedure is very simple and when the gradient ∇(f(x)) of the function f at
point x is inferior to the tolerance ε, the actual position x is returned, i.e. one considers
that it is very close to the lowest point of the convex function. Unfortunately, this method
implies that the solution is close to the optimum according to an error. So, in the
presence of convex function with very flat “bottom”, it may lead to solutions far from
real optimum.
Besides, the computation of the step t is quite difficult. A low value may slow down the

search of the optimum and increase the time, and a high value may involve oscillating
behaviors near the solution, as shown in Fig. 2.4.

5. The minimization of f is also the maximization of its opposite −f .

46 Chapitre 2. Controlling a mechanical system in interaction with its environment

Algorithm 2: Gradient Descent.

Initialize x←− x0, choose ε (the tolerance)
repeat

compute the gradient descent direction −∇(f(x))
compute the step t > 0
update : x←− x− t∇(f(x))

until ∇(f(x)) ≤ ε
return x .

Figure 2.3.: Illustration of the gradient descent algorithm. The first iterations go down quickly
toward the optimal value, and slow down when they get closer to the solution.

The selection of t can be addressed by some dedicated algorithms, for example the
backtracking linesearch, which initializes it to a high value and decreases it as the method
gets closer to the solution, i.e. the descent becomes less steep.

2.2.1.2. Special case : the quadratic problem

A quadratic function, meaning that it can be written as a homogeneous polynomial of
degree two, is a particular convex function whose minimum can be computed analytically.
In this case, the function to optimize is written in a general form as follows

minimize f(x) =
1

2
xTPx+ qTx+ r. (2.12)

and the optimality condition is obtained through the computation of its derivative which
must be null, so Px∗ + q = 0 with x∗ is the optimal solution. It leads to two cases

2.2. Solving convex problems 47

Figure 2.4.: Comparison between different values of parameter t. low values are very effective
on steep descents (upper left) but take more iterations on “flat area” (lower left). In
contrast, the search may oscillate on steep descents with high values (upper right)
but optimal value is recovered with less iterations on flat area (lower right).

– the matrix P is invertible and the optimal solution is computed as x∗ = −P−1q,
– the matrix P is not invertible, so all x∗ which satisfy Px∗ + q = 0 are solutions, if

any.

Alternatively, the quadratic program can be written in a different manner as follows

minimize ‖Ex− f‖22 = xT(ETE)x− 2(ETf)Tx+ fTf . (2.13)

This formulation is quite similar to the previous one and the transformation from
one to the other one is straightforward. The optimal condition of this problem becomes
ETEx∗ = ETf , and the solution relies on the invertibility of the matrix ETE. One
possibility is to express it in terms of E†, the pseudo-inverse of Moore-Penrose of E
[Albert1972], such as x∗ = E†f , and given a reference vector z0, the solution becomes

x∗ = E†f + (I − E†E)z0 (2.14)

48 Chapitre 2. Controlling a mechanical system in interaction with its environment

where z0 is any vector projected onto (I − E†E) the null space of E, and consequently
does not interfere with the optimality condition.

2.2.2. Resolution of convex problem with equality constraints

This section considers the convex minimization problem subject to linear equality
constraints, expressed as follows

minimize f(x) (2.15)

subject to Ax = b.

The dimension of the problem and the constraints are respectively denoted by n and
p such as x ∈ R

n, A ∈ R
p×n, b ∈ R

p with the assumptions that the matrix A is full
rank and that p < n. If the first statement is false, it means that some constraints are
expressed many times in the set of equalities, therefore it is mandatory to extract the
full rank subsystem 6. Furthermore, if the second statement is false, the problem is then
over-constrained and cannot be optimized.

Subject to these assumptions, the solution derives from the Karush-Khun-Tucker con-
ditions (KKT) [Boyd2004] which are always necessary for optimality, but also sufficient
for convex problems due to the fact that all minima are global. Thus, the computation
of the solution x∗ is related to a vector y∗, the solution of the dual problem, such as

{
Ax∗ = b

∇f(x∗) +ATy∗ = 0

where ∇ is the vector differential operator. The first line, called the primal feasibility
equations, is a linear expression with respect to the primal solution vector x∗, and the
second line, called the dual feasibility equations, is generally nonlinear with respect
to x and depends on the dual solution vector y∗.
The resolution of this problem can be tackled in two ways. The first one is to build

the unconstrained dual problem and to recover the solution x∗ from the optimal dual
y∗, a more complex method not developed in this thesis. The second one is to directly
reduce the problem to a non-constrained one with a variable substitution. To do so, one
has to find a couple (F,x0) ∈ R

n×(n−p)×R
n, where F is a null space projector of A and

x0 is a solution of the equality constraint 7. Hence, the following sets are equivalent

{x | Ax = b} =
{
Fz + x0 | z ∈ R

n−p, x0 ∈ R
n, AFz = 0, Ax0 = b

}
(2.16)

and the problem 2.15 can now be transformed into a non-constrained one

minimize f ′(z) = f(Fz + x0) (2.17)

whose solution is found using the gradient descent (see Algorithm (2)). The optimal
solution x∗ of Problem (2.15) is finally obtained from the optimal solution z∗ of Prob-
lem (2.17) with x∗ = Fz∗ + x0.

6. This is the full-rank decomposition, done from the Singular Value Decomposition (SVD). Decom-
posing A such as A = USV T (U, V are orthogonal, S is diagonal), the rank r of S determines the rank of
A. The reduced matrices Ur, Sr, Vr, whose obsolete rows and columns are deleted, leads to the equivalent
full-rank equality system SrV

T

r x = UT

r b.

7. A simple method to find one couple (F,x0) is to use A†, the Moore-Penrose pseudo-inverse of A
described above, and to notice that Ax = b ⇔ x = A†

b︸︷︷︸
x0

+(I −A†A)︸ ︷︷ ︸
F

z .

2.2. Solving convex problems 49

2.2.2.1. Special case : the quadratic problem

Again, a particular attention is paid to the minimization of a quadratic function, now
subject to linear constraints, which transforms the problem as follows

minimize
1

2
xTPx+ qTx+ r (2.18)

subject to Ax = b.

Indeed, it holds some good properties which lead to an analytic solution very efficiently
by expressing the KKT conditions into a matrix form

{
Ax∗ = b

Px∗ + q +ATy∗ = 0
⇔

[
A 0
P AT

] [
x∗

y∗

]
=

[
b

−q

]
(2.19)

where x∗ and y∗ are the primal and dual solutions if they exist. This equation is called
the KKT system, and the coefficient matrix on the left-side is called the KKT ma-
trix. The resolution is reduced to the cases of the unconstrained quadratic minimization
expressed above, depending this time on the rank of the KKT matrix. Thus, the reso-
lution of problem (2.18) becomes straightforward, and the solutions of the primal and
dual problem are returned simultaneously.

2.2.3. Resolution of convex problem with inequality constraints

The previous section gives methods to deal with convex optimization subject to equal-
ity constraints, this section addresses the core of the issue in optimization, that is the
management of inequality constraints. Given a set of m convex functions fi that repre-
sent in a generic manner the inequality constraints, the convex problem becomes

minimize f0(x) (2.20)

subject to Ax = b

fi(x) ≤ 0 i ∈ [1..m]

Notice that no assumption is made about the linearity of these constraints. There is no
analytical solution, but this system can be solved with iterative methods whose purpose
is to reduce the problem into convex subproblems subject to equality constraints only.
According to the encountered problem, many methods are presented in the literature,

which go from the simplex algorithm for linear programming [Bartels1969], to interior-
point methods (for example the polynomial-time Karmarkar algorithm [Karmarkar1984],
again for linear programming), the ellipsoid methods [Luthi1985], and finally the active
constraint-set methods [Dauer1991, Dimitrov2009, Escande2010]. The following sections
focus on two of these methods.

2.2.3.1. Interior point algorithm : barrier method

The main idea is to approximate Problem (2.20) with another convex problem with
equality constraints only [Hindi2006]. To do so, the function I− : R −→ R, which is the
indicator function to the non-positive reals, is introduced such as

I−(u) =

{
0 u ≤ 0
∞ u > 0

. (2.21)

50 Chapitre 2. Controlling a mechanical system in interaction with its environment

so it becomes possible to rewrite the problem without any inequality constraints with
the following formulation

minimize f0(x) +
m∑

i=1

I− (fi(x)) (2.22)

subject to Ax = b.

However, although I− is convex, it is not twice continuously differentiable, which makes
the resolution difficult with the previous methods.

The idea is then to approximate the indicator function with a logarithmic function
such as I− ≈ −(1/t) log(−u) ∀u ∈ R

+∗ where the parameter t > 0 set the accuracy of
the approximation as shown in Fig. 2.5 (when t −→∞, one gets the function I−).

Let φ(x) =
∑m

i=1− log (−fi(x)) be the concatenation of all the approximated in-
equality constraints, and multiplying the cost function with the accuracy parameter t,
the approximated convex problem can be written as follows

minimize f0(x)t+ φ(x) (2.23)

subject to Ax = b.

10 8 6 4 2 0 23

2

1

0

1

2

3

I−(u)

−(1/t)log(−u)

Co
ns

tr
ai

ne
d

zo
ne

t=1

t=2

t=5

t=10

Figure 2.5.: Approximation of I
−

according to parameter t.

Roughly, from the optimality conditions and the bounds defined by the primal and
dual solutions, one can prove that the optimal solution x∗

1 of Problem (2.23) is a m/t-
suboptimal solution of the original problem, which means that given the original solution
x∗
0, it verifies ‖f0(x∗

1)− f0(x
∗
0)‖ ≤ m/t, wherem and t are the number of inequalities and

the accuracy parameter. Hence, the approximation of the optimal value is found with
a bounded error, and given a desired tolerance ε = m/t, Problem (2.20) is transformed
into the following one

minimize
m

ε
f0(x) + φ(x) (2.24)

subject to Ax = b.

2.2. Solving convex problems 51

The accuracy of this approximation increases while ε decreases.

Although this procedure gives theoretically the optimal solution with a given tolerance,
in practice it only works for small problems with moderate accuracy, because the research
of the optimal point is very difficult with numerical methods. This is due to the fact that
the variations of the Hessian matrix of the cost function (related to the second order
derivative of φ(x)) are too sharp near the “barriers”, which adversely affects convergence.

To cope with this issue, the iterative algorithm called the barrier method (formerly
named the Sequential Unconstrained Minimization Technique (SUMT)) is used.
Actually, it is an extension of the previous method which searches for the optimal argu-
ment of Problem (2.24) iteratively with a decreasing value of ε, i.e. from very inaccurate
solutions to more precise ones. Given a feasible point of the problem, a first imprecise
solution designated as a central point is found. Then, a loop computes a new central
point from the last one with increasing accuracy until the tolerance is fulfilled. The tra-
jectory described by these points is called the central path and is shown in Fig. 2.6. The
complete SUMT method is described in Algorithm (3).

Algorithm 3: Sequential Unconstrained Minimization Technique (SUMT).

Input: strictly feasible x, t := t0 > 0, µ > 1, tolerance ε > 0
repeat

Increase. t := µt1

Centering step. Computing x∗ the optimal solution of Problem (2.24)2

Update. x := x∗
3

until m/t < ε (m is the number of inequalities)

2.2.3.2. Active constraint-set method

With the previous method, the whole set of inequality constraints is taken into account
simultaneously, which is a great drawback when one has huge inequality set. It turns out
that very few constraints are active, i.e. the optimal point lies on a very small subset
of edges of the domain defined by the inequalities, or is strictly inside. Hence, Prob-
lem (2.20) is not modified if it only takes into account the active inequality constraints,
which can also be considered as equality constraints in this case.

Of course, the main difficulty is to discover which constraints are active. A method
would be to test all the cases (all the inequalities subsets) and to return the best so-
lution, but the number of tests has to be limited by a dedicated algorithm to save the
computation time. This is the role of the active constraint-set method which clev-
erly appends or removes some constraints at each iteration, until an optimal and feasible
solution is found.

The illustration of this active constraint-set method is developed below for a quadratic
problem subject to linear equality and inequality constraints. But in the first place, it is
necessary to determine the optimality of a given point, which is possible by checking the
KKT conditions of the quadratic problem min((1/2)xTPx + qTx + r subject to some
linear inequality constraints Gx � h. Assuming that all these inequalities are active,
and recalling that the KKT conditions are necessary and sufficient for optimality in case

52 Chapitre 2. Controlling a mechanical system in interaction with its environment

starting
point

unconstrained
optimum

optimum

Constrained
Zone

Figure 2.6.: Barrier method : the problem is presented in the upper left graph. Contour lines
range from light to dark when approaching the optimal value which is located in
the constrained zone. So the objective is to build successive unconstrained convex
problems by taking “barriers” into account directly in the cost function. The first
iteration starts with gentle slopes and finds a solution far from the optimum (upper
right). The next ones find more accurate values and converge toward the optimum
of the constrained problem, but they become harder to solve due to steeper slopes.

of convex problems, one has the following relation

[
G 0
P GT

] [
x

y

]
=

[
h

−q

]
. (2.25)

The optimality condition is obtained by observing the dual vector y : if y � 0, the
variable x is thus optimal, otherwise the solution can be improved 8. Using this test, the
active constraint-set method for quadratic problems is developed in Algorithm (4).

2.3. Controlling a mechanical system with optimization tools

In the previous sections of this chapters, we have discussed robot control issues for
considering robot limitations and physical constraints, which are implicitly taken into

8. There is a third possibility but it only occurs for non-strictly convex problems, which is not the
case here.

2.3. Controlling a mechanical system with optimization tools 53

Algorithm 4: Active constraint-set method.

Set problem : minimize (f(x) = (1/2)xTPx+ qTx+ r) s.t. (Gx � h)
Input: a feasible point x0, an active constraint set S0 = {}
repeat

sk ← argmin f(xk + s) s.t. Gks = 0
if (the point xk + sk feasible) then

xk+1 ← argmin f(x) s.t. Gkx = hk

yk+1 ← the related Lagrangian coefficients of Eq.(2.25)
if (yk+1 � 0) then

break : xk+1 is optimal !
else
Sk+1 ← Sk \ {i | ith line where yk+1 negative [yk+1]i < 0}

else
Sk+1 ← Sk ∪ {j, the most violated constraints [G(xk + sk)− h]j > 0}
xk+1 ← xk + uksk, such as xk+1 feasible and uk ∈ [0, 1]

Gk+1,hk+1 sub-matrices of G,h composed of numbered line in Sk+1

until optimal point is found

account by the optimization problem as equality and inequality constraints, as well as
the methods to solve convex problems. Here, this section addresses the optimization-
based control of a mechanical system. It aims to determine the most suitable program
for the dynamic control problem, as well as the construction of the cost function, and
the resolution techniques.

The control systems lead to a rather way to correct the error between actual and
desired states, for example by minimizing an error resulting from the quadratic norm of
their difference. Beyond the convexity of the problem, this error can be minimized with
many dedicated algorithms depending upon the modeling of the problem, such as the
Linear Quadratic Program (LQP), the Second-Order Cone Program (SOCP), and the
Semi-Definite Program (SDP) 9.

Mechanical systems advanced control design may take benefit of a suitable optimiza-
tion program. Actually these problems depend hierarchically on each other. The LQP
problem, composed of a quadratic cost function with linear constraints, can be translated
into a SOCP problem, composed of a linear cost function with quadratic constraints,
which can also be translated into a SDP problem, composed of a linear cost function
subject to linear matrix inequality constraints. However, the reverse transformations are
not possible, and programs which solve a greater variety of problems are also slower in
a general manner.

When looking at the constraints expressed in Section 2.1, all of them are linear ex-
cept one. Indeed, Eq.(2.9) representing the constraint of the contact forces lying in the
Coulomb friction cone is nonlinear, but it is at least quadratic. The LMI formulation of
the friction cones can be solved with SOCP or SDP [Han2000]. But for simplicity, a less
accurate model using a linear formulation is presented in Eq.(2.10).

So, two proper solutions are available : the SOCP (or SDP) with a more accurate

9. There is also the Quadratically Constrained Quadratic Program (QCQP) with possibly non-convex
problems, but this is not discussed in this thesis.

54 Chapitre 2. Controlling a mechanical system in interaction with its environment

model, and the LQP with a faster resolution. In this thesis, we will rely on the LQP
formulation 10 because the problem is simpler and it is more likely to be used in real
time controllers, which is required for the dynamic control of humanoid robots.

2.3.1. Tasks definition

This section focuses on the low-level control of the robot through the achievement of
tasks, meaning the control of one or more DoF of the system toward objectives which
are generally the minimization of tracking errors. This is the task function approach,
a formalism used in robotic control [Espiau1990, Samson1991]. Even if these objectives
are independent, they are subject to many disturbances due to the internal and exter-
nal constraints, the dynamic couplings, and their conflicting interests, which may affect
their achievements. The tasks are composed of two main elements, the subset of the con-
trolled DoF, and their desired goals. The following sections develop their mathematical
expressions and explain the important points of their constructions.

2.3.1.1. Generic task

A generic task function is defined as an error dependent on X (the dynamic variable
defined in Section 2.1.1) which has to be minimized in the dynamic space. Although X

is overabundant due to the interdependence of q̈ and χ, it makes the description of the
tasks simpler, and the way to transform the tasks from a non-independent problem to
an independent one is addressed later on.

As written above, a task function is the norm of an error, and a generic task function
can be defined in a general manner such as

T (q, q̇,X) =
∥∥KNKH

(
E(q)X− f(q, q̇)

)∥∥2 . (2.26)

where (E(q)X − f(q, q̇)) is the error to minimize. The purposes of matrices KH and
KN are respectively to give the possibility to change the homogeneity of the task, and
to weight the norm of the computation if one wants to modify the classic Euclidean
norm. A focus on these matrices is given in the next sections. In order to separate the
parts which compute the acceleration error from the force error, the matrix E(q) can be
decomposed as follows [Eq̈(q) Eχ(q)].

2.3.1.2. Acceleration task

An acceleration task acts on the derivative of a twist attached to the system in the
Cartesian or joint spaces. Thus, it only depends on the generalized acceleration q̈, and
its general definition is written as

Ti =
∥∥∥KNi

KHi

(
ṫi − ṫ

des

i

)∥∥∥
2
⇔
∥∥∥KNi

KHi

(
Ji(q)q̈ + J̇i(q, q̇)q̇ − ṫ

des

i

)∥∥∥
2

(2.27)

where Ji(q), J̇i(q, q̇) and ṫ
des

i are respectively the Jacobian of the controlled parts i of
the robot, its derivative and the desired acceleration. According to the space considered

(Cartesian or joint), ṫi may represent respectively a subset of the twist derivative Ṫ
i

10. LQP can always be transformed into SOCP/SDP with the appropriate constraints.

2.3. Controlling a mechanical system with optimization tools 55

related to the frame Ψi, or a subset of the variable q̈, to select the DoF one wants to
control. Of course, matrices Ji and J̇i are built accordingly.

As it only depends on q̈, the acceleration task is defined with the following elements

Ei(q) =
[
Ji(q) 0

]
f i(q, q̇) = −

(
J̇i(q, q̇)q̇ − ṫ

des

i

)
. (2.28)

2.3.1.3. Wrench task

Similarly to the acceleration task, a wrench task acts in the Cartesian and joint spaces.
This task is a little simpler because it directly acts on the action variable of the system,
so it suffices to find the proper selection matrix. Thus, it only depends on χ, and a
wrench task is defined in a general manner as

Ti =
∥∥∥KNi

KHi

(
wi −wdes

i

)∥∥∥
2

(2.29)

wherewi andwdes
i are respectively the effective and desired values of the wrench i. In the

Cartesian space, it represents an interaction with the world (contact, bilateral closure)
and may refer to a subset of the variable wci , whereas in the joint space it represents a
direct control of the actuators, referring to a subset of the input torque vector τ .

As it only depends on χ, it is sufficient to extract the selection matrix Swi
such as

wi = Swi
χ, and the wrench task is defined with the following elements

Ei(q) =
[
0 Swi

]
f i(q, q̇) = wdes

i (2.30)

2.3.1.4. Tasks homogenization

In robotics, especially in humanoid robotics, several tasks with different natures are
generally performed simultaneously to complete the high-level goals, for instance in ac-
celeration and/or in wrench space. The compatibility of all these tasks is not guaranteed
without any prior treatments, this is the multi-tasks issue, i.e. the achievement of all
goals knowing that they may not be feasible simultaneously.
From a high-level point of view, this problem is expressed as a scheduling process

where a sequence has to be selected to optimize some high-level objectives over a finite
time horizon. From a low-level point of view, it refers to the simultaneous achievement
of the several tasks at one instant, and the problem is then to define the relative tasks
importance and the related strategy (hierarchy or trade-off). But, their comparison is
possible only if the tasks are all from the same nature, which advocates for a homoge-
nization step.
To consider this problem, the parameter KHi

previously defined is used as a homog-
enization matrix. For example, one possibility is to “convert” all the acceleration tasks
into wrench tasks. To do so, the projection of the inertia matrix onto the task space

is defined such as Λi(q) =
(
Ji(q)M(q)−1Ji(q)

T
)−1

, with Ji and M the task Jacobian
and the generalized mass matrices. In Cartesian space, Λi, which only depends on the
configuration q, represents the equivalent inertia of the whole tree-structure reduced to
one virtual body linked to the frame Ψi. The conversion is done by setting KHi

= Λi,
which leads to

Ti(q, q̇,X) =
∥∥∥KNi

Λi

(
Ji(q)q̈ + J̇i(q, q̇)q̇ − ṫ

des

i

)∥∥∥
2
. (2.31)

56 Chapitre 2. Controlling a mechanical system in interaction with its environment

Another possibility is to “convert” all the wrench tasks into acceleration tasks. This
time, the inverse of the projection of the inertia matrix onto the task space is used as
the homogenization matrix KHi

, which implies

Ti(q, q̇,X) =
∥∥∥KNi

Λ−1
i

(
wi −wdes

i

)∥∥∥
2
. (2.32)

Of course, these are not the only ways to transform the nature of the tasks, indeed this
formulation let the possibility to define its own comparison technique, for example to
compute the cost of the tasks as power, energy, etc.

2.3.1.5. Task normalization

Modification of the norm For various reasons, one may want to use a modified norm
to compute the tasks errors instead of the Euclidean norm used by default. An idea is
to use the Euclidean W -weighted norm. Given a symmetric positive-definite matrix W
and a vector a, its W -weighted norm is defined such as ‖a‖W =

√
aTWa. Due to its

good properties, the matrix W admits a square root
√
W which can be computed with

the Cholesky or the Singular Value Decomposition (SVD) algorithms, leading to the
following equation

‖a‖W =
∥∥∥
√
Wa

∥∥∥ . (2.33)

Hence, it becomes possible to change the normalization method in the task computa-
tion thanks to the normalization matrix KN defined above, such as KN =

√
W . So given

task Ti, the left-multiplication of its error by KNi
is equivalent to compute its Euclidean

W -weighted norm, as expressed hereinafter

Ti = ‖KNi
KHi

(EiX− f i)‖2 = ‖KHi
(EiX− f i)‖2W . (2.34)

The matrix W may refer to any symmetric positive-definite matrix, for example the
projection of the inertia matrix in the task space Λi, its inverse, the representation of
the dynamic manipulability ellipsoid, etc.

Problem of metric in SE(3) Although the normalization problem is explained in
a very general context, the desire to change the Euclidean norm comes from a great
problem in robotics, that is the metric in SE(3). The tasks are considered as the error
minimization in a subset of wrenches or time derivative of twists, but these vectors are
composed of translational and rotational parts, and the computation of the classic norm
in the concerned space gives an inhomogeneous result.

According to [Doty1992, Doty1993], one way is to use the inertia matrix Λi as the
normalization matrix, according to the type of error one wants to minimize. For instance,
given εq̈ the acceleration error of Ti, the Λi-weighted norm of this error gives

‖εq̈‖2Λi
= εTi Λiεi = δPi. (2.35)

Similarly, given εχ the force error of Tj , its Λ
−1
j -weighted norm is expressed as

‖εχ‖2Λ−1
j

= εTj Λ
−1
j εj = δPj . (2.36)

The two values δPi and δPj are physically consistent. They are both homogeneous to
power time-derivative, thus it becomes possible to compare these two different tasks.

2.3. Controlling a mechanical system with optimization tools 57

2.3.2. Problem formalism : dependent or independent variable

The description of the equations of motion Eq.(2.1) raises an interesting point about
the interdependence of the dynamic variables. All the previous equations dealing with the
dynamic of the system are function of q̈ and χ (respectively the generalized acceleration
and the action variable) but the equations of motion Eq.(2.1) show that χ is sufficient.
So there are two available formalisms, one using an overabundant representation of the
system with the dynamic variable X as the unknown of the problem, and the other using
the action variable χ only. The transformation of the tasks from the first formalism
to the other one is performed by implicitly using the equations of motion in the tasks
representation.

As the generalized mass matrix M is usually strictly positive-definite, one gets the
following equation (for the sake of clarity, the dependencies with respect to q and q̇ are
omitted) q̈ = M−1(g−n+JT

χχ), and the generic task defined in Section 2.3.1.1 becomes

T = ‖KNKH (EX− f)‖2 = ‖KNKH (Eq̈(q)q̈ + Eχχ− f)‖2

=
∥∥∥KNKH

(
Eq̈M

−1
(
g − n+ JT

χχ
)
+ Eχχ− f

)∥∥∥
2

= ‖KNKH (E2χ− f2)‖2

with

E2 = Eq̈M
−1JT

χ + Eχ f2 = f − Eq̈M
−1(g − n). (2.37)

The whole problem has to be expressed according to either the variable X or the
variable χ. Then, the equality and inequality constraints defined in Section 2.1 must
also be transformed, and they become

AX ≦ b

⇔Aq̈q̈ +Aχχ ≦ b

⇔A2χ ≦ b2

with

A2 = Aq̈M
−1JT

χ +Aχ b2 = b−Aq̈M
−1(g − n). (2.38)

Due to the surjective relation from the action space (where χ lies) to the acceleration
space (where q̈ lies), the transformation from X to χ can be achieved, but the transfor-
mation from X to q̈ is generally not possible without any assumption on the vector χ,
that is why this case is not exposed in this thesis.

2.3.3. Special case : the task space dynamics representation

To validate our definition of the task functions, the previous expressions are compared
with existing definitions. For instance, a specific representation of the tasks denoted by
the task space dynamics representation is described in the literature [Khatib1987]
and relies on the following equation

Λi(q)ṫi = J̄i(q)
TJχ(q)

Tχ− µi(q, q̇) + pi(q) (2.39)

58 Chapitre 2. Controlling a mechanical system in interaction with its environment

with ṫi the task space acceleration associated to task i, Λi(q),µi(q, q̇),pi(q) the task
space projections of respectively the inertia matrix (defined above), the nonlinear ef-
fects vector and the gravity force vector. By definition they are expressed as follows :
µi(q, q̇) = J̄i(q)

Tn(q, q̇) − Λi(q)J̇i(q, q̇)q̇ and pi(q) = J̄i(q)
Tg(q), where matrix J̄i(q)

represents the dynamically consistent weighted pseudo-inverse 11 of Ji(q) which is ex-
pressed as J̄i(q) = M(q)−1Ji(q)

TΛi(q).
Now, due to the fact that the system is subject to dynamic couplings and constraints,

if one wants to perform a desired task space acceleration such as ṫi = ṫ
des

i , the solution
is to minimize the error induced in Eq.(2.39). It turns out that this expression can be
written as

∥∥∥J̄i(q)TJχ(q)Tχ− µi(q, q̇) + pi(q)− Λi(q)ṫ
des

i

∥∥∥
2

Λ−1
i

=
∥∥∥Λi(q)

(
Ji(q)M(q)−1

(
Jχ(q)

Tχ− n(q, q̇) + g(q)
)
+ J̇i(q, q̇)q̇ − ṫ

des

i

)∥∥∥
2

Λ−1
i

=
∥∥∥Λi(q)

(
Ji(q)q̈ + J̇i(q, q̇)q̇ − ṫ

des

i

)∥∥∥
2

Λ−1
i

where the Λ−1
i -weighted norm is used to get a consistent value. Finally, it results in the

exact definition of an acceleration error converted into a wrench task, with the matrices

KNi
=
√

Λ−1
i and KHi

= Λi. Given the acceleration error εq̈ = ṫ
des

i − ṫi, the computation

of the task is reduced to

Ti(q, q̇,X) = εTq̈ Λiεq̈. (2.40)

2.3.4. Predefined controllers to achieve task : task servoing

The previous section deals with the construction of the tasks, now it remains to de-
termine the task errors, i.e. to compute the desired values one wants to reach. Here, the
aim is to express the instantaneous objective of the task without taking into account
the multiple disturbances which may make its achievement impossible. In this purpose,
some controllers from the literature are presented in this section.

2.3.4.1. Proportional derivative control

In order to ensure some robustness with respect to robot model and to enforce a given
task behavior (e.g. a virtual spring-damper system), a controller can be derived at the
task level. When dealing with an element from the time-derivative of a twist during a
tracking task, this type of controller is often written

ṫ
des

= ṫ
goal

+Kpǫp +Kdǫ̇p (2.41)

where ṫ
goal

is the trajectory reference acceleration, ǫp, ǫ̇p are the pose and velocity er-
rors, and Kp,Kd are the proportional and derivative gains reflecting respectively the
stiffness and damping of the virtual system. Unlike the vector ǫ̇p = tgoal − t, the com-
putation of ǫp is trivially computed when dealing with its position parts, but it requires
to resort to a non-minimal representation to describe its orientation parts, e.g. by using

11. The dynamic consistency is ensured by using the inertia matrix as a weight for pseudo-inversion.

2.3. Controlling a mechanical system with optimization tools 59

the quaternions [Altmann1986, Yuan1988, Wang2006]. Notice that a reaching task is a
particular case of the tracking task where the goal trajectory is reduced to one point

and ṫ
goal

= tgoal = 0.

An equivalent wrench formulation leads to

wdes = wgoal +Kfpǫw +Kfi

∫
ǫwdt (2.42)

where wgoal is the reference force along a trajectory, ǫw is the wrench error, and the
matrices Kfp,Kfi are proportional and integral gains.

2.3.4.2. Quadratic control for walking

When considering humanoid control, and particularly the walking task, the accom-
plishment of complex behaviors with simple virtual spring-damper systems is very diffi-
cult to obtain, that is why more sophisticated task controllers are necessary. The purpose
of this subsection is to control the robot for the walking task, it does not intend to quan-
tify the robot equilibrium state, as proposed in [Barthelemy2008]. Here, the objective is
to get some trajectories that the robot has to track to perform locomotion.

To tackle this problem, the literature proposes the control of the Zero Moment Point
(ZMP), a virtual point projected onto the ground which gives some information about the
balancing of the robot. It has been introduced in [Vukobratovic1973], and further used
in the other works to control a humanoid robot, for instance in [Kajita2006, Wieber2006,
Kanoun2009b] . But some assumptions are required to compute the ZMP properly. First,
all the contact points must be coplanar, which implies a flat ground, no interaction with
the upper body during the walk and no task dedicated to the climbing of the stairs.
Second, the friction between the feet and the ground is not taken into account, meaning
that the control remains the same when the robot walks on concrete or on ice.

The computation of the ZMP is not linear with respect to the action variable (the
work of Sardain and Bessonet [Sardain2004a] gives useful explanations), however its
approximation can be controlled in order to perform a walking or a balancing task
through the control of the Center of Mass (CoM), as exposed in [Kajita2003]. It is
computed as follows

c̈ = Jcom(q)q̈ + J̇com(q, q̇)q̇

z = c− h

g
c̈ (2.43)

where Jcom is the Jacobian of the CoM, h is its height, z, c are respectively the horizontal
position vectors of the ZMP and of the CoM, and g is the gravity value. These equations
directly refer to the Linear Inverted Pendulum Model (LIPM), an unstable system whose
control must consider the prediction of the future states of the system. z and c would
respectively represent the foot of the pendulum and the projection of the point mass
onto the ground.

As described in [Wieber2006], the initial configuration of the CoM is denoted by
C0 = [c, ċ, c̈]T and the prediction of the ZMP along a time horizon H is denoted by
ZH = [z1, z2, ..., zH]T. Hence, the input matrix is composed of the future CoM jerks...
CH = [

...
c 0,

...
c 1, ...,

...
cH−1]

T and one can compute the state and input matrices Px, Pu to

60 Chapitre 2. Controlling a mechanical system in interaction with its environment

Figure 2.7.: The human gait can be model by a Linear Inverted Pendulum Model (LIPM) where
the total mass of the human is supposed to be concentrated in one point (red) whose
altitude remains constant. Then, the supporting foot stands for the pendulum foot.

obtain the equation

ZH = PxC0 + Pu

...
CH

The objective is then to minimize the norm of the difference between a ZMP reference
(Zref computed a priori) and the predicted trajectory. This minimization problem is
unconstrained and can be solved analytically, which gives

...
CH = −(PT

u .Pu +R.I)−1.PT

u .(Px.Xcom − Zref) (2.44)

where R is a ratio between the state and the input tracking error, and I is the identity
matrix. Finally, the first row of this input matrix controls the ZMP trajectory, and given
c̈p the previous acceleration of the CoM and dt the time step, the desired acceleration
of the CoM task becomes

ṫ
des

com = c̈p +
...
c 0dt.

2.3.4.3. Impedance control with the upper limbs

The impedance control is a way to unify the twist and wrench controls [Hogan1987,
Morel1994, Morel1998, Szewczyk1998]. Instead of directly controlling forces or accelera-
tions, impedance control aims at inducing a proper behavior to reject the disturbances
with respect to the contacts with the environment. A typical approach is to set a refe-
rence position to a frame attached to the robot and to control the wrench induced by a
disturbance with a unified controller for non-constrained and constrained motions.

A simple impedance controller can be modeled using a spring-damper system linking
the controlled part of the system to the virtual reference. Hence, the choice of the
reference position, the stiffness and the damping coefficients allows to tune the reaction
behavior, for instance to speed up the completion of the task or to increase the contact
wrench of the end-effector.

2.3. Controlling a mechanical system with optimization tools 61

Note that impedance control can be coupled with the quadratic control presented
in Section 2.3.4.2 for the walking task. It allows manipulation tasks while maintaining
balance, by taking into account the relative perturbations which can be anticipated or
not. So it gives the possibility to generate safer procedures by tuning the stiffness of
manipulation tasks to change the ZMP trajectory [Ibanez2011].

2.3.5. Managing several tasks simultaneously

All the tasks described above have to be mixed to achieve the desired high-level mis-
sions. This can be treated with a stack of tasks as presented in [Mansard2009]. However,
these tasks are subject to all the equality and inequality constraints developed in Sec-
tion 2.1, plus some incompatibilities between them, leading to the use of an optimization
program. The well-known solver used in this thesis is the LQP which solves the following
problem

min
(x)

1

2

(
xTPx+ qTx+ r

)
(2.45)

s.t. : Gx � h

Ax = b

where x is the vector to optimize, P, q, r represent the quadratic cost function, G,h
define the inequality constraints, and A, b define the equality constraints, which are the
concatenation of Eqs.(2.1)–(2.10).

The aim is to build these matrices according to the tasks and the physical constraints
acting on the robot and, when the solution is found, to extract the input torque vector
τ and actuate the system. x can be replaced either by X or χ, depending upon the
chosen formalism. In the remaining of the thesis, the variable used is X, knowing that
the transformation from one formalism to another is always possible, as described in
Section 2.3.2. Two opposite strategies are described in the following sections to perform
the tasks, the hierarchy and the weighting.

2.3.5.1. Hierarchical strategy

In the case of a hierarchical strategy, the higher tasks are achieved without any dis-
turbance from the lower tasks. The first point to do is to sort the tasks by order of
importance, a problem handled by the user or a high-level decision program. This strat-
egy is close to the projection onto successive null spaces that grows as the number of
tasks increases, as exposed in [Sentis2007, Khatib2008], but the equality and especially
the inequality constraints must be taken into account. To do so, we follow the work of
[Kanoun2009b], and the optimization problem is solved recursively as detailed in Algo-
rithm (5). Note that in his work, Kanoun also implements a mean to treat “inequality
tasks” thanks to the hierarchical strategy.
Given an ordered set of n tasks Ti(q, q̇,X), the program i is solved subject to AiX = bi

and GX � h, and the solution X
∗
i will be part of the next problem in the equality

constraints, knowing that the initial problem is built such as A1 = A, b1 = b. The
function to minimize at level i is then

1

2

(
Ti(q, q̇,X) + ω2

0.T0(q, q̇,X)
)

(2.46)

62 Chapitre 2. Controlling a mechanical system in interaction with its environment

A task T0 is dedicated the minimization of the whole optimization variable. This is
required when the control problem has many solutions, in order to ensure the uniqueness
and more specifically to provide a solution that minimizes the input torque vector τ .
Being in conflict with any other task, T0 has a very small weight 0 < ω0 ≪ 1 to limit
the induced error.

Algorithm 5: LQP-based control with hierarchical strategy.

A1 ← A and b1 ← b

for i = 1..n do

Ti(q, q̇,X) =
∥∥KNi

KHi

(
Ei(q)X− f i(q, q̇)

)∥∥2
get X

∗
i , the solution of the problem

min
(X)

1

2

(
Ti(q, q̇,X) + ω2

0.T0(q, q̇,X)
)

s.t. : GX � h

AiX = bi

Ai+1 ←
[
AT

i (KNi
KHi

Ei)
T
]T

bi+1 ←
[
bTi (KNi

KHi
EiX

∗
i)

T
]T

Finally, in order to have a canonical expression of the quadratic cost function, the
elements P, q, r in Eq.(2.45) depend on the tasks T0, Ti such as

E =

[
ω0KN0KH0E0

KNi
KHi

Ei

]
f =

[
ω0KN0KH0f0
KNi

KHi
f i

]

P = ETE q = −2fTE r = fTf . (2.47)

2.3.5.2. Weighting strategy

A weighting strategy associates each task with a coefficient that sets its importance
with respect to the others (a task with a higher weight gets a higher priority). Again, the
first point is to set these coefficients, but unlike the hierarchy which defines a discrete set
of importances, these ones are real values. As a consequence, priorities are not strict and
all tasks are achieved according to the trade-off defined by the weights, as described in
Algorithm (6). Given a set of n tasks and their related weights (Ti(q, q̇,X), ωi) i ∈ [1..n],
one solves their weighted sum subject to the concatenation of the constraints Eqs.(2.1)–
(2.10). The task T0 plays the same role as above, where its importance is very low with
respect to all the other tasks, meaning that ω0 ≪ ωi ∀i. This program is solved only
one time per call. To obtain the canonical form of the quadratic cost, the computation
of the elements P, q, r is done in the same way as in Eq.(2.47) considering the following
components

E =

ω0KN0KH0E0
...

ωnKNnKHnEn

 f =

ω0KN0KH0f0
...

ωnKNnKHnfn

 . (2.48)

2.3. Controlling a mechanical system with optimization tools 63

Algorithm 6: LQP-based control with weighting strategy.

get X
∗
i , the solution of the problem

min
(X)

1

2

(
n∑

i=1

(
ω2
i .Ti(q, q̇,X)

)
+ ω2

0.T0(q, q̇,X)

)

s.t. : GX � h

AX = b

2.3.6. Chaining up tasks in a physically constrained environment

The optimization-based control of robots is presented above, here we focus on the
synthesis of complex behaviors. The previous section describes how to perform several
tasks simultaneously, but the mechanical system must also chain the tasks over time in
a continuous way, and the continuity of the input torque vector must be ensured, which
is a critical point of the control.

2.3.6.1. Transition in the set of task

This issue can be treated according to two different approaches. On one hand, the
state changes dramatically, for instance due to an impact, an objective out of range, etc.
The reaction is quick, but the actuators may have some problems to respect the optimal
torque values, that is why a model of the actuation capability must be added to the set
of constraints. This has to be expressed in terms of the dynamic variable, so given the
maximum time derivative of torque τ̇max, this constraint becomes

−τ̇max ≤
τ − τ p

dt
≤ τ̇max ⇔

[
0 Sτ

0 −Sτ

]
X �

[
τ̇maxdt+ τ p

τ̇maxdt− τ p

]
(2.49)

where τ p is the previous torque vector applied to the robot and dt is the sampling time
between two successive calls of the LQP. Hence the continuity of the torque vector is
ensured by this constraint.

On the other hand, the user decides to change the set of tasks, their objectives, their
activities, etc. and a more versatile approach is to choose the weighting strategy and to
change the weights of the tasks in a continuous manner until the transition is complete.
This can be done manually or through a program which scripts their evolutions based
on perceptual information, and gives a great basis to interface the low-level control
with a high-level decision making engine. This is more detailed in the experiments of
Chapter 4. If the transitions are done manually, they must follow continuous functions
during a certain amount of time, again to preserve the input torque continuity. For
instance, one can deal with linear functions or piecewise polynomial functions, and as
the importances are a matter of order, one may prefer a logarithmic scale to represent
the transitions.

Of course, the choice of the tasks weights and their evolutions should be automated to
generate an efficient generic whole-body motion controller. With the use of a relatively
sequential approach, each task has triggers for its start and its end. A supervisor may
evaluate its completeness and modifies its weight according to the mission context and

64 Chapitre 2. Controlling a mechanical system in interaction with its environment

with respect to the criticality of the other tasks. As a matter of fact, the tasks weights
can be modified automatically without requiring any complex tuning

ωi =

ωprev, t < te

exp
(
(log (ωnext)− log (ωprev))

t− te

ts − te
+ log (ωprev))

)
, t ∈ [te, ts]

ωnext, t > ts

(2.50)

where ωprev and ωnext are the weights of task i respectively for the previous and the
next mission contexts, and te, ts are the time triggers respectively for the end of the
previous mission context and the start of the next one. The time between te and ts is
thus naturally defined as the transition time. Weights evolution based on Eq.(2.50) is
presented in Fig. 2.8.

Of course, the constraint about the input torque derivative in Eq.(2.49) and the smooth
transitions of the tasks weights are complementary and can be used simultaneously.

0.0 0.5 1.0 1.5 2.0 2.5
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

w
ei

gh
t

0.0 0.5 1.0 1.5 2.0 2.5
time (s)

10-2

10-1

100

Figure 2.8.: Weights evolution, from ω = 1e−2 to 1 and vice versa – Left : plotting on linear
scale. Right : plotting on logarithmic scale.

2.3.6.2. Transition in the set of constraints

Similarly, the set of constraints evolves over time, mainly due to the contacts evolution
of the robot with its environment. However, the management of these modifications is
difficult because the state of the constraints is binary, i.e. the contacts are open or closed,
which implies that their evolutions are discontinuous.

One can wonder what would be the reaction of the robot subject to these modifications.
It may have few consequences, for example if the robot grabs or releases a door knob,
because the input vectors of the two states are close enough and do not induce very
different dynamic behaviors. But in the opposite, the reaction may become erratic, and
even dangerous, if the behaviors with and without the contact vary greatly and imply
very different input vectors. Furthermore, it is totally different if the robot breaks the

2.4. Conclusion 65

contacts willingly or not, for instance if the robot gets up from a chair, or if the support
vanishes. Although Eq.(2.49) ensures that the torque vector does not undergo any sharp
evolution, it may lead to very problematic states, so this constraint is not sufficient.

When the contact breaking is not wanted, the robot undergoes the modifications
and must have the required capabilities to recover a stable behavior. But when it is
wanted, the idea is to limit the variation between the constrained and the non-constrained
states, and to transform the interaction constraints into tasks with a weighting strategy.
Considering one kinematic loop in the graph of the system and its related constraint,
it represents a joint in the system which forces the relative twist between two frames
thanks to a wrench. If the loop is open (i.e. no contact), the wrench is null and the twist
is free, but if it is closed, the twist is constrained and the wrench is generally not null.
It recalls the Signorini conditions [Jean1999], the objective is then to respect them in a
continuous manner.
For example, if a frictional contact has to be broken, the transition of the constraint

expressed in Eq.(2.10) is performed as follows. First, a wrench task Tw is set with a
desired wrench wdes = 0 and a null weight ωw = 0. By increasing ωw, the error of
the task decreases accordingly until it becomes inferior to a very low tolerance. Then,
the interaction becomes practically null and the wrench constraint can be removed, but
the acceleration constraint must be transformed into an acceleration task 12 Ta, with a

desired value ṫ
des

= 0 and a heavy weight ωa which decreases to 0 during a short period
of time. Hence, it avoids any sudden motion and ensures a continuous transition.

2.4. Conclusion

This chapter presents the methods to perform robotic optimization-based controls
in dynamics. The first part enumerates the main constraints acting on robots, both
internal as actuation limits or external as contacts, which are equalities and inequalities.
Because of these constraints, analytical solutions for control are difficult to obtain, and
this advocates for the use of optimization program. So the second part focuses on the
resolution of convex problems whose variables are continuous, especially on LQP which
is dedicated to the resolution of quadratic problems. Then, the equalities and inequalities
are taken into account as the LQP constraints, and the definition of the quadratic cost
function is developed in the third part of this chapter. It describes the tasks and their
possible modifications, as well as a formalism using an independent variable. Besides, it
analyses the changes in the tasks and constraints sets, and proposes a way to perform
good transitions (to obtain continuous evolutions of the input torque vector) with a
weighting strategy and soft modifications of the weights.
However, the choice of these weights and their evolution is not straightforward. For

simple sequences, it can be user-defined, but in the presence of undetermined events
this should be automated. The next chapter presents some experiments about the use of
this LQP-based controller, its capabilities and performances, and develops an association
with a high-level controller to automatically choose the tasks goals and weights.

12. Equality constraint AX = b can become task T = ‖AX− b‖. Then, there should be an error.

3. Experiments on humanoid robots :
low-level control

Contents

3.1. Performing multi-tasks . 69

3.1.1. Stand up . 69

3.1.2. Walk . 71

3.1.3. Grab . 72

3.2. Impedance controller for interaction 75

3.3. Obstacle avoidance . 76

3.3.1. Goal reaching in presence of fixed obstacles 77

3.3.2. Avoiding moving obstacles . 77

3.4. Transitions in the tasks and constraints sets 78

3.4.1. Transition in the tasks set . 79

3.4.2. Transition in the constraints set 81

3.5. Comparison between the different task types 82

3.5.1. Comparison between the two formalisms 82

3.5.2. Comparison with the special case 84

3.6. Conclusion . 85

This chapter aims at illustrating the effectiveness of the proposed control framework
on a fairly complex humanoid robot : iCub [Sandini2007]. iCub was designed by the
RobotCub consortium [RobotCub] and is shown on Fig. 3.1. The aim of this consortium
was to develop an open-source infant-like robotic platform dedicated to developmental
robotics. Especially, its size, motor and cognitive abilities were inspired from the cognitive
and physical abilities of a three years old child. iCub is a 53 DoF full body humanoid
robot designed to crawl on all fours members, and sit up with free arms. Most of its
DoF are located in the upper-body, especially in the highly anthropomorphic hands,
which allow dexterous and fine manipulation. It has proprioceptive, visual, vestibular,
auditory and haptic sensory capabilities [Tsagarakis2007, Metta2010]. It is a completely
open system platform : both hardware and software are licensed under the GNU General
Public License (GPL), and the middleware used for intra-process communication, YARP,
is also an open-system released under the GNU Lesser General Public License (LGPL)
[Metta2006].

Despite the presence of an early version of iCub at ISIR, the proposed validation is
done on a simulated version of the robot. Several technical aspects justify this choice :

– iCub legs and feet were not designed with walking in mind. As a result the feet are
very small and rigid, the power of the legs is not very high and the force sensors
required for walking are not available ;

– iCub comes with an umbilical which is mandatory for energy reasons (the robot has
no batteries) and which strongly restricts its free locomotion ;

67

68 Chapitre 3. Experiments on humanoid robots : low-level control

Figure 3.1.: Left : iCub robot designed by the RobotCub consortium. Middle & right : super-
imposition between virtual and real sequences performing the same trajectories.

– low-level torque control cannot be achieved, which is a major issue when dealing
with robots whose physical interactions with the environment are mandatory to
ensure their controllability.

Given these constraints and the fact that the major contribution of this work is on
control algorithms, the choice is made to keep the work in simulation and to propose pro-
totyping software tools that can be used prior to any test on a real robot. Even though
this choice alleviates the implementation from several experimental factors (mostly re-
lated to perception), constraints related to the overall computational load of the control
algorithm are considered.

The simulation framework is the open-source dynamic simulator Arboris-python devel-
oped at the ISIR and whose internal mechanisms are detailed in Section 1.2. Dexterous
manipulation and active visual servoing are not topics covered by the work in this the-
sis, and as a consequence only 32 actutated DoFs are modeled in addition to six virtual
floating joints to locate the root of the robot with respect to the inertial frame. Also,
four contact points are added at the extremities of each foot to simulate contact with
the ground (using the Arboris-python class SoftFingerContact, cf. Section A.1.4) 1.

On the programming side, the controller is coded in the Python language which is
highly suitable for quick and efficient software prototyping and naturally integrates with
the simulator. More specifically, the implementation of this controller relies on CVXOPT
[Cvxopt], a free Python package dedicated to convex optimization. Among many other

1. Arboris-python cannot simulate contact between two boxes, or a box and a plane

3.1. Performing multi-tasks 69

problems, CVXOPT can solve LQPs and SOCPs using the interior-point method (see
Section 2.2.3.1).

To define the problem constraints (see Section 2.3.2), the maximum input torque
vector τmax and the joint position limits qmin, qmax are extracted from the description
of the iCub robot [RobotCub], the boundaries of the generalized velocity are −q̇min =
q̇max = 5 rad.s−1, and the anticipation coefficients are set to h1 = 0.2 s, h2 = 0.1 s (we
consider no direct constraint on the generalized acceleration vector). Task T0 presented
in Algorithms (5)–(6) is defined such as E0 = I, f0 = 0 and its weight ω0 = 1e−7.
Finally, the simulations sampling time is set to dt = 0.01 s. For simplicity, there is no
tasks consistency transformation or normalization except in the last experiments, which
implies that the matrices KH and KN defined in Sections 2.3.1.4–2.3.1.5 are equal to
the identity matrix.

The three first sections of this chapter describe dynamic tasks and the interactions,
illustrated through some examples. The fourth section deals with transitions while per-
forming relatively complex sequences of tasks. The last section consists in the comparison
of the different problem formalisms.

3.1. Performing multi-tasks

The following experiments describe in three separate sequences the virtual iCub stand-
ing up from a chair, walking, and grabbing a box using a weighing strategy. They are
used as standard sequences for more complicated experiments in the rest of the thesis.

3.1.1. Stand up

Here, the robot stands up from a seat. A contact is added between the seat and the
pelvis (the buttocks), and four tasks are used to achieve the sequence :

– two for the postures, sitting Tsit and standing Tstand,
– one for the spine Tspine,
– one for the CoM TCoM .

The sequence 2 is illustrated in Fig. 3.2. At the beginning the robot is sitting, so the
contact with the seat is established. ωsit (the weight related to the sitting posture task
Tsit) is equal to 1e−3, and ωstand (related to Tstand) is equal to 0. As the robot is idle,
the CoM is not controlled, and the weight of its task ωCoM is null. Notice that the
spine task which maintains the torso joints in the same positions with a constant weight
ωspine = 1e−2 is added to stiffen the upper body and to displace the trade-off effects (due
to the weighting strategy) in the other joints. Finally, all these tasks use proportional
derivative controllers (denoted by PD, see Section 2.3.4.1) whose gains are Kp = 10 s−2

and Kd = 2
√
Kp s−1 (in the remaining of this thesis, if the value of Kd is not given, one

must refer to this relation).

Then the order is given to stand up. In this purpose, the position of the CoM is
controlled in the horizontal plane to reach the center of the base of support (i.e. the
convex hull defined by the projection of the feet onto the ground). As it is the most
important task of the sequence, its weight becomes ωCoM = 1. However, this sudden
change in the control of the system may lead to discontinuities in the evolution of the

2. It corresponds to the movie 01 getting up.avi provided as an attachment to this thesis.

70 Chapitre 3. Experiments on humanoid robots : low-level control

Figure 3.2.: Sequence “stand up” : 1-the robot is idle on the seat ; 2-it moves its CoM ; 3-the
CoM is in the base of support, the contacts are broken and it starts to stand up ;
4-it stands upright and becomes idle again.

input torque vector, a bad behavior for real systems. This issue can be overcome in two
ways. The costs of the CoM task at the previous and the next times have to be equal
to 0, so either the error or the weight ωCoM must be null. The first case means that the
target of the task starts at the actual position of the CoM, and goes progressively toward
the middle of the feet. In the second case, ωCoM starts at 0 and increases progressively
to 1. Here, we choose the second solution, and the evolution of ωCoM follows Eq.(2.50)
with a transitional time ts − te = 0.25 s.

Hence, the robot moves its upper body forward to reach a state which does not lead to
the fall when it rises. From a dynamic point of view, this assertion is difficult to qualify,
and the ZMP cannot be defined due to the fact that the contact points are not coplanar.
So we just look for the static equilibrium. The contact is deleted when the projection
of the CoM gets into the convex hull, the acceleration constraints at the pelvis level is
released, and then, the robot can go from a sitting posture to a standing posture. It
results in a continuous change of their respective importances where ωstand and ωsit go
respectively to 1e−3 and 0 with a transitional time of 0.25 s as described above. Finally,
after a short period of time, the robot reaches all the objectives, finishes the sequence
and stands idle in front of the seat.

Figure 3.3 shows the evolution of the input torque vector with respect to time. It is
continuous for the whole experiment except at time t = .7 s of the simulation, when
the contact is broken. At this instant, a big gap between the previous and next states
occurs. This issue is discussed in Section 3.4.2.

The weights of the tasks performed in this experiment are all less or equal to 1.
Actually, the choice of these values is theoretically arbitrary as long as their relative
importances are respected. Nevertheless, for the sake of normalization, we impose the
task with the highest importance to have a unitary weight (the other tasks weights being
set accordingly).

3.1. Performing multi-tasks 71

0 0.5 1 1.5 2 2.5 3
time (s)

10

5

0

5

10

to
rq

ue
s

(N
.m

)

Figure 3.3.: Evolution of the input torque vector over time. At time t ≈ 0.9 s, the contacts are
broken, leading to discontinuities.

3.1.2. Walk

Here, the robot has to walk for 0.5 meter and stop. The achievement of this mission
relies on two important points, the CoM control with a quadratic controller defined in
Section 2.3.4.2 which generates the oscillating movement and the forward motion, and
the feet control along predefined trajectories. This sequence is composed of two tasks, a
posture task Tpos (ωpos = 1e−2) which controls the joints to stay around some reference
positions, and a walk task Twalk (ωwalk = 1) which controls the CoM and the feet.

As the goal of the latter is the ZMP control, its objective computation is not straight-
forward so we proceed as follows. First, one has to give the path from the starting to the
final position in the horizontal plane, as well as the angular path during the displace-
ment (for lateral or even back motions). So, given the fact that the longitudinal distance
between two steps should be equal 0.08 m, the lateral distance of the feet should be
0.05 m and the maximal height of the steps should be 0.01 m. Then, a set of points and
angles is extracted from these paths to specify the positions and orientations of the feet
during the walk. This returns both the feet trajectories, whose control is done with a
PD controller with a high stiffness (Kp = 150 s−2), and the reference ZMP trajectory.
This last one is used to compute the desired CoM jerks at each instant (the parameters
of Eq.(2.44) are set to R = 1e−6 and H = 1.7/dt), and the desired CoM acceleration is
obtained by integration.

The result of this simulation 3 is illustrated in Fig. 3.4, and the CoM and ZMP tra-
jectories are presented in Fig. 3.5. But although the mission is properly achieved, the
upper body of the robot oscillates too much, which is not close to the human gait 4.

3. Corresponds to Attachment 02 01 walking only.avi.
4. This comparison is not really possible because their controls and their actuations are completely

72 Chapitre 3. Experiments on humanoid robots : low-level control

Figure 3.4.: Strip of the first sequence “walk” : the robot moves forward but the knees are not
bent, the pelvis is not controlled and the upper body oscillates significantly.

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
x position (m)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

y
po

si
tio

n
(m

)

CoM
ZMP

Figure 3.5.: CoM and ZMP trajectories during first sequence “walk”.

In order to reduce the upper body oscillations, two new tasks are added, the first one to
stiffen the spine Tspine (ωspine = 1e−1) as described in the previous experiment, and the
second one to control the altitude and orientation of the pelvis Tpelvis with ωpelvis = 1.
The gait of the robot is slightly improved 5, as illustrated in Fig. 3.6, and the new CoM
and ZMP trajectories are plotted in Fig. 3.7.

3.1.3. Grab

In this experiment, the objective is to grab a box located on a table ahead, whose
mass is set to 0.1 kg. However, by simplifying the robot, the hands are modeled roughly
without any finger, so the action of grasping is not possible. This issue is overcome by
creating four bilateral closures between the hands and the box through the Arboris-
python class BallAndSocketConstraint, whose activities (their closure states) are

different. For instance, humans use the energy stored in the tendons to maintain the gait cycle, whereas
the robot motors do not possess this capacity. Therefore, one cannot reasonably expect the same behav-
iors.

5. Corresponds to Attachment 02 02 walking with root and back.avi.

3.1. Performing multi-tasks 73

Figure 3.6.: Strip of the second sequence “walk” : here the knees are bent, the pelvis is controlled
and the upper body remains straight.

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
x position (m)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

y
po

si
tio

n
(m

)

CoM
ZMP

Figure 3.7.: CoM and ZMP trajectories during second sequence “walk”.

set by the user. Here, the main purpose is to show the management of kinematic loops
induced by grasping.

This sequence is composed of five tasks :

– one for the standing posture Tstand (ωstand = 1e−4),
– one for the spine Tspine (ωspine = 1e−2),
– one for the altitude and orientation of the pelvis Tpelvis (ωpelvis = 1),
– one for the CoM TCoM (ωCoM = 1),
– and one for the hands Thand.

The four first tasks are the same as defined in the previous experiments, and the last
one controls the positions and orientations of the hands.

At the beginning, the robot is inactive, meaning that it just stands upright with
ωhand = 0. Then the order is given to get the object, so this importance increases to
1e−1 in 0.25 s. The objectives of the related task are straight paths from the hands to
the box, tracked with PD controllers with high stiffness Kp = 200 s−2. When this task is
finished, the hands are located on the virtual handles of the box, so the bilateral closures
can be activated, creating four virtual ball and socket joints thanks to the interaction
forces. Finally, the robot lifts the box from the table and the mission is complete.

74 Chapitre 3. Experiments on humanoid robots : low-level control

Figure 3.8.: Sequence “grab” : 1-the robot is idle in front of the box ; 2-the order is given, so it
moves to grab the box ; 3-the kinematic loop closure is achieved ; 4-the robot grabs
the box.

0 0.5 1 1.5 2 2.5 3
time (s)

8

6

4

2

0

2

4

to
rq

ue
s

(N
.m

)

Figure 3.9.: Evolution of the input torque vector over time. Notice a discontinuity at time
t ≈ 1.6 s due to no management of the tasks transition.

The sequence 6 is described in Fig. 3.8, and Fig. 3.9 shows the evolution of the input
torque vector applied to the robot. A discontinuity occurs when the robot grabs the box
due to the fact that there is no management of the tasks transition, a problem discussed

6. Corresponds to Attachment 03 grabbing a box.avi.

3.2. Impedance controller for interaction 75

in Section 3.4.1.

3.2. Impedance controller for interaction

As mentioned in Section 2.3.4, the impedance control gives a method to unify the
kinematic and force controls. It provides a way to deal with interactions which may occur
in a changing environment where the robot behavior may be passive if it undergoes some
disturbances, or active if it initiates or anticipates the actions (for instance if it has to
pull, to push, etc.).

In this experiment, iCub stands in front of a moving table which prints a vertical
oscillating motion, and eight contact points are active between the hands and the board.
The mission is to reach some positions located in the space swept by the moving object,
leading to some conflicting actions between the table and the robot when the contact is
established.

Figure 3.10.: Impedance control simulation : the board comes into contact with the hands which
offer resistance, depending on the control stiffness. Then it goes down to track the
sinusoidal reference trajectory, and the hands return to their objectives.

In the purpose of having some real bilateral efforts, the board is controlled dynamically.
It weighs 1 kg and follows a sinusoidal reference trajectory with a period of 3 s and
amplitude of 0.04 m. The tracking is done with a spring-damper system whose gains are
given such as Kp = 10 s−2.

Besides, the robot has to perform the following tasks :

– one for the standing posture Tstand (ωstand = 1e−4),
– one for the spine Tspine (ωspine = 1),
– one for the position and orientation of the pelvis Tpelvis (ωpelvis = 1),
– and one for the hands Thand (ωhand = 1e−1).

With this new set of weights, the robot stands upright while the effects of the distur-
bances due to the board principally act on the arms.

This experiment 7 is shown in Fig. 3.10. When the contact occurs, a force of interaction
depending on the error of the task Thand appears. Thus, the table tries to go further and
slows due to a higher contact force, until it has to go down, so the hands return to their
objectives with no disturbances. Unlike the previous experiments, the contacts are not
considered as constraints any more, meaning that Eq.(2.10) is not taken into account in
the LQP-based controller which “assumes” that the hands are free to move. Thus, some

7. Corresponds to Attachment 04 impedance control.avi.

76 Chapitre 3. Experiments on humanoid robots : low-level control

0 1 2 3 4 5 6 7
time (s)

0.56

0.58

0.60

0.62

0.64

0.66

po
si

tio
n

(m
)

board
board goal

lowest hand point
hand goal

0 1 2 3 4 5 6 7
time (s)

0.56

0.58

0.60

0.62

0.64

0.66

po
si

tio
n

(m
)

board
board goal

lowest hand point
hand goal

0 1 2 3 4 5 6 7
time (s)

0.00

0.10

0.20

0.30

0.40

0.50

fo
rc

e
(N

)

0 1 2 3 4 5 6 7
time (s)

0.00

0.10

0.20

0.30

0.40

0.50

fo
rc

e
(N

)

Figure 3.11.: Evolution of board and hands positions, as well as their objectives (top) & evolu-
tion of interaction forces at the contact level (down) – Left : The control stiffness
is low, the tracking of the board trajectory has minor errors, and the hands take
some time before returning to their goals. Right : The control stiffness is high,
the tracking is worse due to more resistance, and the hands return faster to their
objectives.

forces are produced by the hands during the interactions with the surrounding world,
depending upon their kinematic objectives in a non-constrained environment.

The task Thand uses a PD controller, and the behavior of the robot is analyzed for
two different cases in Fig. 3.11. In the first one (left), the associated gains are set with
Kp = 10 s−2, and in the second one (right), they are set with Kp = 50 s−2.

Notice that in the second case, the hands oppose greater resistance to the table and
they take less time to return toward their goals. This illustrates the behavior of the robot
subject to a disturbance depending on the impedance controller stiffness.

3.3. Obstacle avoidance

The previous section deals with the control of the robot while interacting with its
environment, but sometimes the contacts should be avoided. Here, the experiments focus
on the obstacle avoidance when the robot is operating in a constrained space. Two
experiments are performed to illustrate the different cases, the first one where the objects
are fixed and the robot has to move without touching them, and the second one where

3.3. Obstacle avoidance 77

they are moving and it has to react accordingly.

3.3.1. Goal reaching in presence of fixed obstacles

The robot has to reach a target located just in front of it with its left hand, but the
straight path is blocked with some obstacles. For this experiment, the robot performs
the following tasks :

– one for the standing posture Tstand (ωstand = 1e−1),
– one for the spine Tspine (ωspine = 1),
– one for the position and orientation of the pelvis Tpelvis (ωpelvis = 1),
– one for the position and orientation of the left hand Thand (ωhand = 1).

Figure 3.12.: Fixed obstacle avoidance simulation : 1-the left hand must reach a objective lo-
cated in front of the chest ; 2-it gets closer to the obstacles and slows down due
to the associated constraints ; 3-the available space is large enough, the hand can
pass ; 4-the hand reaches its objective.

The hand is attracted toward the goal with the PD controller whose stiffness is Kp =
10 s−2, and when it gets closer to the obstacles the motion is constrained due to Eq.(2.7),
and the path is reactively modified. The sequence 8 is shown in Fig. 3.12.

However, Fig. 3.14 shows that this method does not guarantee to find a feasible path
to reach the goal 9, the hand is blocked by too many obstacles and cannot reactively get
out of this situation. This problem is addressed by more global approaches, for example
path planning.

3.3.2. Avoiding moving obstacles

Here, the scenario is based on the impedance control experiment with the same tasks
(see Section 3.2), but this time the mission of the robot is to avoid any contact with the
board while this one moves near the hands objectives. The path of the moving obstacle
is not known a priori, but the instantaneous position and velocity are supposed to be
observable, hence it is possible to compute the equation of obstacle avoidance Eq.(2.7)
and prevent any collision with the moving object. The resulting sequence 10 is shown in

8. Corresponds to Attachment 05 01 obstacle avoidance.avi.
9. Corresponds to Attachments 05 02 hand blocked.avi & 05 02bis hand blocked.avi.

10. Corresponds to Attachment 05 03 moving obstacle.avi.

78 Chapitre 3. Experiments on humanoid robots : low-level control

0 1 2 3 4 5
time (s)

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

di
st

an
ce

 (m
)

obs1 avoid
obs2 avoid
obs3 avoid

obs1 no avoid
obs2 no avoid
obs3 no avoid

Figure 3.13.: Evolution of the minimal distance between the hand and the obstacles. With-
out avoidance, interpenetration occurs at time t ≈ 0.2 s, otherwise the minimal
distance remains positive (with a margin of 0.002 m).

Figure 3.14.: Fixed obstacle avoidance simulation : because of a local unfeasible path, the hand
is stuck and cannot get out reactively.

Fig. 3.15, and the behavior of the robot is tuned thanks to anticipation coefficient h3 as
illustrated in Fig. 3.16.

3.4. Transitions in the tasks and constraints sets

The previous section shows that the dynamic control of humanoid robots interacting
or not with the environment is possible thanks to the use of a LQP-based controller
and a weighting strategy. But even if the sequences previously described provide some

3.4. Transitions in the tasks and constraints sets 79

Figure 3.15.: Collision avoidance simulation : like impedance control simulation, the board fol-
lows a sinusoidal trajectory. Unlike the latter, the robot avoids contact and gets
closer to its goal when the table moves away.

0 1 2 3 4 5
time (s)

0.58

0.60

0.62

0.64

0.66

0.68

po
si

tio
n

(m
)

board
board goal

hand h3 =.1

hand h3 =.5

hand goal

Figure 3.16.: Evolution of board and hands positions, as well as their objectives. The hands
behavior changes according to anticipation coefficient h3.

interesting behaviors, the input torque vector is not always suitable for real mechanical
systems, mainly due to bad management of transitions in the control scheme. This
section addresses the problem of transitions in the set of tasks and constraints described
in Section 2.3.6.

3.4.1. Transition in the tasks set

The context is the same as the one proposed in the grabbing experiment detailed
above, extended with some other tasks to perform more significant transitions. Here,
the scenario is described in Fig. 3.17 where iCub catches a box and moves it to another

80 Chapitre 3. Experiments on humanoid robots : low-level control

position 11.

Figure 3.17.: Sequence “grab” extended with action “drop” : the robot bends over to grab the
box on the left side. It straightens up and brings it at the chest level, then drops
it on the right side, and becomes idle again.

A comparison is made between the hierarchical strategy (where importances are in-
teger values) and the weighing strategy (where importances are real values), to show
the benefits of the tasks weights during transitions in the set of tasks. Here, each task
importance is denoted by a couple representing first the weight of the weighting strategy,
and second the priority value of the hierarchy 12. In both cases, six tasks are used. Three
of them are constant, which are :

– the standing posture Tstand (ωstand = (1e−4 | 4)),
– the altitude and orientation of the pelvis Tpelvis (ωpelvis = (1. | 0)),
– the position of the CoM TCoM (ωCoM = (1. | 0)),

and the three other ones are :
– the spine Tspine,
– the hands Thand,
– the position of the box Tbox.

The importances of Tspine, Thand and Tbox must evolve over time, otherwise they can-
not reach their objectives and the displacement of the box cannot be completed. The
following of this section focuses on these three tasks.

The experiment is conducted as follows. At first the robot is idle, it has to stand upright
without looking for interaction with the box, so the relative importance of the spine task
is ωspine = (1e−1 | 1), and the others are not active. When the sequence begins, the
robot needs to bend over to achieve the box grabbing which requires a modification of
the relative tasks importances, so ωspine becomes equal to (1e−3 | 3) and the hands task
is activated with ωhand = (1e−1 | 1) (in the case of the weighting strategy, these values
are modified in a continuous manner over a time horizon of 0.5 s). The hands have to
reach the box, and the achievement of the related task takes about 1.5 s. When they
are close enough to their targets, the bilateral closures which simulate the grasping are
activated. Then, the robot straightens up while lifting the box, and thanks to the new
kinematic loops, the motion of the box can be controlled through a task. The hands task

11. Corresponds to Attachment 06 transition tasks.avi.
12. The tasks of the hierarchical strategy are solved in ascending order.

3.4. Transitions in the tasks and constraints sets 81

0 1 2 3 4 5 6 7
time (s)

10-5

10-4

10-3

10-2

10-1

100

101

w
ei

gh
ts

posture
spine

CoM & root
hands & box

0 1 2 3 4 5 6 7
time (s)

1

0

1

2

3

4

5

le
ve

ls

posture
spine

CoM & root
hands & box

0 1 2 3 4 5 6 7
time (s)

10

5

0

5

Ta
u

(N
.m

)

0 1 2 3 4 5 6 7
time (s)

10

5

0

5

Ta
u

(N
.m

)

Figure 3.18.: Evolution of tasks importances (top) & evolution input torque vector over time
(down) – Left : The weighing strategy generates smooth transitions in the set of
importances, leading to a continuous torque vector and a proper control. Right :
The hierarchy leads to discontinuous transitions, which affects the evolution of
the input torque vector.

is deleted and the new importances become ωspine = (1e−1 | 1), and ωbox = (1e−3 | 3).
Again, the transition is smooth for the weighting strategy over a time horizon of 0.5 s.
When the robot brings the box at the chest, it waits a moment and drops it at the other
side of the table, so it has to bend over again and the importances of the tasks change in
the same way. Finally, at the end of the mission, the robot releases the box, the bilateral
closures are deactivated and it becomes idle again.

The change in the set of importances is illustrated on Fig. 3.18 (on top) in the case of
weighting strategy (left), and hierarchical strategy (right). Their resulting input torque
vectors are respectively shown on Fig. 3.18 (at the bottom). Some sharp evolutions occur
with the hierarchy, this illustrates the advantages of using smooth transitions in the set
of tasks to obtain good control continuity.

3.4.2. Transition in the constraints set

The previous section focuses on the transitions in the set of tasks, this one focuses
on the sequencing of tasks inducing a transition between constraint and non-constraint
states. Here, the experiment is based on the scenario where the robot stands up from a

82 Chapitre 3. Experiments on humanoid robots : low-level control

seat described in Section 3.1.1, with the same set of tasks. Actually, iCub has to break
the contact with the chair to stand up, so it leads to some modifications in the constraints
set when the contact vanishes and some control discontinuity. Thus, the purpose of the
following experiment is to develop a strategy to avoid any sharp evolution of the input
torque vector during a change in the set of constraints. Two ways are compared, the
first one uses weights to perform the transitions, the second one uses a constraint on the
time derivative of the torque.

In the first case, two new tasks associated to the contact with the seat are added to
the set of tasks, which are :

– one for the contact acceleration Tcacc ,
– one for the contact force Tcforce .

The transition has to be performed with the method explained in Section 2.3.6.2. Initially,
the task Tcacc has a high weight ωcacc = 1 with null desired acceleration at the contact
point 13, and the task Tcforce has no weight ωcforce = 0 with a desired null force. The
beginning of the simulation is similar to the previous one, the difference occurs when the
projection of the CoM onto the ground enters in the base of support. At this instant,
the importance ωcforce increases up to 1 over a time horizon of 0.5 s, which preserves the
sitting position but decreases the contact force down to 0 N . Then, the contact can be
broken without big consequences on the input torque vector. The importance of the task
related to the acceleration at the contact point level goes down to 0 in 0.5 s, and finally
the robot becomes completely free to stand up from the chair. This method is possible
only with the weighting strategy. Figure 3.19 shows the evolution of the input torque
vector during this simulation. The sharp transition occurring in Fig. 3.3 is deleted, which
allows a better control of the robot.

In the second case, the management of the transition is done by bounding the time
derivative of the torque vector. Here, when the CoM enters into the base of support, The
contact constraint is deleted the same way as the first experiment (see Section 3.1.1),
but the transition is ensured with Eq.(2.49). The result is illustrated in Fig. 3.20.

Of course, these methods also work when a contact appears, it suffices to run the
processes backward. Furthermore, the two methods described above are relatively com-
plementary and can be used simultaneously without any problem, the first one allowing
more active monitoring of the transition, and the second one more passive management.

3.5. Comparison between the different task types

The method described in this thesis is used to perform many missions, but the way
to achieve them is not unique. An interesting point is the control performance in terms
of computation time, because the computation of homogeneity, normalization and es-
pecially the formalism used in the control scheme may change the performance of the
control.

3.5.1. Comparison between the two formalisms

Here, the two formalisms exposed in Section 2.3.2 are compared. The first one uses
the overabundant dynamic variable X and the second one relies on the independent

13. For now, this acceleration task has no effect on the control, since the contact constraint is still
active.

3.5. Comparison between the different task types 83

0 0.5 1 1.5 2 2.5 3
time (s)

15

10

5

0

5

10

15

to
rq

ue
s

(N
.m

)

Figure 3.19.: Evolution of the input torque vector. The continuity is ensured with soft transi-
tions, even when the contacts are lost.

0 0.5 1 1.5 2 2.5 3
time (s)

15

10

5

0

5

10

15

to
rq

ue
s

(N
.m

)

Figure 3.20.: Evolution of the input torque vector. Even if the continuity is ensured by con-
straints, the variations are relatively sharp.

action variable χ. However, although the dimension of the problem is bigger using X,
the writing of the cost function and the constraints is more complicated with χ and

84 Chapitre 3. Experiments on humanoid robots : low-level control

may spend more computing resources. Besides, due to the fact that the solver uses
the barrier method (explained in Section 2.2.3.1), some errors may occur between the
two problems. Actually, the tuning of the tolerance associated to this method is made
through the solver parameters abstol, reltol and feastol, which are respectively
the absolute, relative and feasible tolerance of the solution. So, in order to highlight the
differences between the formalisms, the following of this section compares the time spent
by the control loop depending on solver tolerances.

Three experiments are repeated to confront the performances of the LQP-based con-
troller. The first one is the standing up simulation with transitional tasks explained in
Section 3.4.2, the second one is the walking sequence with root task described in Sec-
tion 3.1.2, and the last one is the grabbing simulation of Section 3.1.3. The average
solving time is extracted for each sequence, simulated with the two formalisms and for
a tolerance which goes from 1e−6 to 1e−14.

1e-6 1e-7 1e-8 1e-9 1e-10 1e-11 1e-12 1e-13 1e-14
solver tolerance

0

50

100

150

200

250

m
ea

n
co

m
pu

ta
tio

n
tim

e
(m

s)

standing up ()

walking ()

grabbing box ()

standing up (χ)
walking (χ)
grabbing box (χ)

1e-6 1e-7 1e-8 1e-9 1e-10 1e-11 1e-12 1e-13 1e-14
solver tolerance

0.0

0.5

1.0

1.5

2.0

2.5

3.0
er

ro
r b

et
w

ee
n

fo
rm

al
is

m
s

(%
)

standing up
walking
grabbing box

Figure 3.21.: Comparison between the two formalisms when performing different sequences,
depending on the solver tolerance – Left : average computation time . Right :
average torque error.

The results are exposed on Fig. 3.21 where the left part shows the solving times of
the control loop and the right part gives the errors between the two formalisms. Using
χ is usually faster than using X, and the results are quite similar for low tolerances (less
than 1% for a tolerance of 1e−10). Hence, it seems very interesting to use χ. A more
complete comparison is done in the next experiment.

3.5.2. Comparison with the special case

Finally, this last experiment of the low-level control is the comparison of the per-
formances when one employs the expression of the special case, that is the task space
dynamics representation explained in Section 2.3.3. To do so, the simulations used in
the previous experiments are repeated here, but the homogenization and normalization
matrices KH ,KN introduced in Sections 2.3.1.4–2.3.1.5 are not equal to identity any
more. Four cases are taken into account :

1. KH = I, KN = I, x = X,

2. KH = I, KN = I, x = χ,

3. KH = Λ, KN =
√
Λ−1, x = X,

3.6. Conclusion 85

4. KH = Λ, KN =
√
Λ−1, x = χ,

where Λ is the projection of the mass matrix in the related task space. The first case
represents the previous problem, the third and fourth ones are the task space dynamics
representation. The simulations are run with the same parameters, and the tolerance is
set to 1e−10.

KH =
KN =
x=

I
I

Λ√
Λ−1

I
I
χ

Λ√
Λ−1

χ

I
I

Λ√
Λ−1

I
I
χ

Λ√
Λ−1

χ

I
I

Λ√
Λ−1

I
I
χ

Λ√
Λ−1

χ

50

100

150

200

tim
e

(m
s)

11.5 11.7 11.6 11.7

20.4 21.9 20.5 21.9

74.6 75.9

11.9 11.8

10.4 10.6 10.6 10.6

40.2 42.0 41.4 42.8

31.9 26.9
13.7 11.0

13.2 13.4 13.5 13.5

14.7 15.7 14.9 15.8

168.0 159.9

67.2 56.7

Standing up
Grabbing
 boxWalking

Performance of LQPcontroller with different options

solve
update tasks
update robot state

Figure 3.22.: Average computation time for different simulations in the four cases described in
this section. Each bar represents the time of the control loop which is divided
into three subparts : 1-update of the robot state, in green, mainly to prepare the
problem matrices (the Jacobian of contact, the inverted mass matrix, the constant
matrices for formalisms, etc.) ; 2-update of the task, in blue, to build the problem
and obtain E and f for each task. 3-solve, in red, to format the problem, delete
the redundant constraints, and obtain the input torque vector by solving LQP.

Generally, the computation time grows when the dimension of the problem increases,
i.e. when the number of interaction forces increases. Notice also that even if the task
space dynamics representation is more complicated, the computation time of the whole
control loop is equivalent to the normal one. Finally, the comparison between these
two representations is quite difficult to conduct because it does not lead to significant
differences in the robot behavior, even if the first one is physically consistent.

3.6. Conclusion

This chapter presents some experiments on the control of the humanoid robot iCub
with the LQP-based controller developed in the previous chapter. The first part focuses
on low-level control which mainly deals with the computation of the optimal input torque
vector depending upon the sets of tasks and constraints. This allows to perform some
sequences with several (possibly conflicting) tasks, for instance “to stand up”, “to walk”,
“to grab”. Besides, it illustrates the use of interesting controllers such as an impedance
controller, and interesting constraints, for example related to the obstacle and collision
avoidance. Then, the transitions in the set of tasks and constraints are discussed, showing
the benefits provided by a weighting strategy. Finally, the computation times of this

86 Chapitre 3. Experiments on humanoid robots : low-level control

LQP-based control loop are recorded in several simulations to compare the sequence
and the two formalisms presented in Section 2.3.2.

4. High-Level control : coupling a
decision making engine

Contents

4.1. Decision making engine . 88

4.1.1. Perceptual information . 88

4.1.2. Decision making process . 89

4.1.3. Introduction to SpirOps : a decision making toolbox 90

4.1.4. Example : the iCub control . 91

4.1.4.1. Perceptual information 91

4.1.4.2. Actions . 91

4.1.4.3. Goals : the fuzzy rules 95

4.2. Experiments . 96

4.2.1. Geometric conditions . 96

4.2.1.1. Grabbing a box . 96

4.2.1.2. Opening a door . 97

4.2.2. Dealing with uncertainties . 97

4.2.3. Dynamic adaptation . 100

4.3. Conclusion . 102

The main drawback of the technique presented in the previous chapter to perform
transitions between tasks (through the computation of Eq.(2.50)) lies in the fact that
the choice of the weights is left to the programmer. This is a strong limitation regarding
the complexity of the missions/goals that can be achieved. The same applies to hierarchy-
based approaches where the choice of the hierarchy itself is also left to the programmer.
So one needs a high level controller whose role would be to reactively elect tasks of interest
based on contextual information. These tasks and their associated relative weights could
then be accounted for at a lower, physics related control level.

Even if similar concerns have been tackled from an optimal control point of view
in [Li2006], ways to combine such low and high level controllers have not been ex-
tensively explored in humanoid robotics. A recent work in this domain is proposed
in [Philippsen2009] which introduces an architecture combining a Whole-Body Control
(low) level and a Reactive Symbolic Planning (high) level through what is called a Mobile
Manipulation Database and whose goal is to deal with information which is relevant to
all components of the system. However, this architecture has not been tested as a whole
yet and some works remain to be done. Other works such as in [Yoshida2005] offer ded-
icated mission-level planning methods for humanoids which are coupled, in an iterative
fashion, to task-level controllers. Reactive decisions are only taken at the task level and
the mission-level planner does not aim at playing the role of a controller, i.e. take de-
cision based on control goals and perceptual feedback. The work of [Cambon2009] also
approaches the problem from a planning perspective. It explicitly builds plans that relate

87

88 Chapitre 4. High-Level control : coupling a decision making engine

the mission with the motion levels, and where preconditions and effects are described
at a geometric level. The last feature is only compatible with quasi-static worlds and
does not fit the humanoid robotics framework where dynamics is intrinsically present in
simple tasks such as “Standing”.

An alternative paradigm is presented in this chapter which proposes a method to
combine a low-level tasks controller (the LQP-based one presented in Section 2.3), able
to deal with highly complex and constrained systems at the dynamics level, with a higher
level decision making controller, dealing mostly with symbolic representations of what
a robotic mission is. The contribution of the proposed work has to be interpreted from
an “action selection” perspective, where no explicit plan is constructed, and where a
mission is described in terms of high level goal, e.g. “Bring object O2 to location L1”.
This goal, associated to contextual information (percepts), e.g. “Object O1, O2 and O3

are reachable”, “Location L1 is x meters far”, and rules, e.g. “If target location is further
than x meters, walk toward it”, allow the triggering of high level actions, e.g. “Walk”,
“Grab”, “Sit” which are a blend of lower level tasks : “control of the center of mass”,
“control of the right foot”, “posture control”. . . This formulation allows the application
of a rule-based high level controller in order to decide at each time which actions should
be performed given a goal to reach and various percepts. This decision is automatically
translated in terms of tasks instances along with context related parameters and relative
weights (the LQP weights).

This work illustrates the use of such a high level controller in combination with a
powerful task-level controller in environments where complex whole-body humanoid be-
haviors cannot be planned in a deterministic manner because of the involved dynamics
and uncertainties, and thus have to be automatically and reactively generated in order
to fulfill complex missions.

In this section, the first part is dedicated to a rather general description of the goal
driven controller and of its implementation with the SpirOps AI software [Spirops]. The
second part presents the results illustrating the versatility of such an approach.

4.1. Decision making engine

This section focuses on the decision making engine used to perform high-level complex
behaviors in non-deterministic environments. Its aim is not to expose new methods that
may make a significant breakthrough in the artificial intelligence field, but to present a
feasible and suitable connection between a high-level controller and the LQP-based one
using a weighting strategy. For that, it relies on some perceptual information to change
the weights accordingly and achieve complex scenarii. The following sections present this
connection.

4.1.1. Perceptual information

Achieving complex missions requires the blending of several tasks. This blending prob-
lem can be formulated at each time as : given a goal to achieve and a perceptual context,
which task should be activated and what should be its relative weight with respect to
others ? As shown in the previous experiments of Section 3, this can be done manually
for rather simple missions and leads to rather satisfactory results when it exists one
simple solution.

4.1. Decision making engine 89

However, such a manual method finds its limitation with increasingly complex mis-
sions, and finding a priori the correct combination and sequence of tasks is even not
possible when dynamic external events can occur during the mission. As an example,
avoiding a moving obstacle cannot be planned a priori, as the obstacle trajectory is
not known in advance and thus needs to be triggered reactively in accordance with the
relevant percepts. Also, one may wish to specify a mission in terms of high-level goals :
“Go to this location”, “Grab this box”, “Sit on this object”. . . without having to specify
intermediate goals such as : “first Stand, then Walk and finally Grab”.
The existence of a higher level decision making problem is obvious and a potential

solution has to be able to decide reactively what are the robot actions to trigger and
with which interests, based on :
– contextual information issued from the perceptions (“The box is close enough to be
grabbed”, “The location has been reached”, “The object is too high to be sat on”,
. . .) ;

– the higher level goal which is pursued (“Grab the red box”. . .).
A quite general decision making method that takes into account these data is described
hereafter.

4.1.2. Decision making process

At the lowest level, the set of nt tasks T which can potentially be assigned to the
robot is defined. On one hand, the tasks can be operational frame control tasks. In the
specific case of this work, 8 potentially interesting frames attached to the following parts
of the humanoid bodies are retained : the CoM, the head, the pelvis, the gluteal, the
left and right hands and the two feet. On the other hand, tasks can also be related
to specific human body postures and in this work, 2 postures of interest are retained :
sitting and standing. Some tasks may act on the same parts of the robots, but their
goals are different. This set of tasks can be combined together in a physically consistent
manner using the LQP formulation described in Section 2.3.5.

At an intermediate level, the set of na actions A is defined as some predefined tasks
combinations. The actions refer to the verbs, “Walk”, “Balance”, “Grab”, “Lift”, “Stand
up”, “Sit” or “Stand”. . . and rely on the blending of the tasks which can control the
CoM, pelvis, hand and feet. A given action is connected to a set of “children” tasks
(but each task has only one “parent” action), and its role is to convert the high-level
goal into objectives for its children, and to coordinate their executions. The blending of
these tasks is described using constant blending factors βi,j whose values settle the
importance of the achievement of task Ti to obtain action Aj .

At the highest level, a set of ng goals G is defined in accordance to the objective of
the mission. Each goal Gk acts on one and only one action Aj , and the Desire δj,k to
perform this action and achieve this goal is the combination of its adequacy αj,k ∈ [0, 1]
(“I want”) and its opportunity θj,k ∈ [0, 1] (“I can”). It is computed as δj,k = αj,k.θj,k.
Although each goal has a unique “child” action, one action may have several “parent”
goals.
Hence, the purpose of the decision making engine is to select the goals with the max-

imum desire but with exclusive actions. In other words, for one action Aj , it selects the
“parent” goal Gk with the best desire as written in Eq.(4.1). Then, the goal parameters
are transmitted to the action (e.g. the location to reach, the colored box to grab) which
updates the goals of its “children” tasks Ti and computes their weights ωi in Eq.(4.2).

90 Chapitre 4. High-Level control : coupling a decision making engine

δ∗j = max
k

(δj,k) (4.1)

ωi = βi,jδ
∗
j . (4.2)

To illustrate this method (see Fig. 4.1), one can imagine two goals which are Gy “Grab
the yellow box” and Gb “Grab the blue box”. They both use the action Ag “Grab” which
controls the two tasks Tl, Tr related to the left and right hands. The decision making
engine computes the desires δg,y, δg,b to perform the actionAg, chooses the higher one (say
δ∗g,y), collects the chosen goal parameters and spreads the objectives to the children tasks
with the weight (Tl, βl,gδ

∗
g,y), (Tr, βr,gδ

∗
g,y), then performed by the LQP-based controller.

With this technique, the function argmax is called na (< ng) times on lists whose
dimension is less than ng, and ng desires are computed. Thus, the complexity of this
method mainly depends on the number of independent actions specified for the robot.

G1

A1
0.9

0.9

G2

0.8

G3

A2
0.7

0.2

G4

0.7

G5

0.5

G6

A3

0.

G7

0.

T1
0.9

1.

T2
0.09

0.1

T3
0.09

0.1

T4
0.7

1.

T5
0.35

.5

T6

1.

Figure 4.1.: Graph illustrating the decision process from the goals to the tasks. The red arrows
link the elected goals (top), actions (middle) and tasks (bottom), with their respec-
tive weights. The value embedded in each task is its respective weight used during
low-level control.

In the framework of this thesis, the computation of the desires is left to the SpirOps
AI decision making toolbox which is described in the next section. SpirOps also provides
to the programmer a framework for the description of rules, key percepts and action
parameters. The choice of the blending factors is complex. It requires for example to
answer to the following question : given a mission context, what is the importance of
the CoM control with respect to the feet in a “Balancing” action ? The setting of these
factors could probably be automated but this would require the use of machine learning
techniques which is out of scope of the present work. As a matter of fact, this type of
tuning is left to the experience of the programmer.

4.1.3. Introduction to SpirOps : a decision making toolbox

SpirOps AI tools [Spirops] provide an open environment to easily and incrementally
design autonomous decision processes. A graphical editor is used to edit independent
Goals. Minimal C++ code is needed to plug the decision process into the host applica-
tion. This decision process pulls data from the host application as lists of typed objects

4.1. Decision making engine 91

described by attributes, including the entity that uses the decision process itself. A sim-
ple call is used to ask the decision-making process to think. It outputs a report of all the
Desires it has elected to be acted upon.

Each Goal is an action producer and represents an independent module responsible
for a reflex, a need or a goal. It produces Desires as possible intentions of action. Each
Desire includes a target, an action, and the different parameters used to produce a
complex action. It has to compute its interest with respect to the pursued goal and the
current context. The interest can be seen as a fuzzy value, and the Goal as an extended
0+ fuzzy rule [Magnus2005]. For each sensed object, the Goal computes the interest and
the parameters for each action it produces.

SpirOps AI includes a complex action selection mechanism. The basics are simple.
Goals are sorted according to their interests. The mutual exclusivity between Goals
is automatically managed. The most interesting combination of non-exclusive Goals is
then elected as the corresponding action to perform. More advanced interferences be-
tween Goals can be designed, such as inhibition, secondary decisions and parametric
interferences.

4.1.4. Example : the iCub control

The decision making process is illustrated through the case of the iCub high-level
control. The outline proposed in this section is used in the next experiments carried out
in Section 4.2. Figs. 4.2 & 4.3 show an overview of the implementation interface of these
fuzzy rules in Spirops. They give synthetic representations of the relations between goals
and actions in the decision making process shown in Fig. 4.1. We will describe these
representation as following. First, we enumerate the perceptual data (the evaluation of
robot and items states) which gives means to drive iCub toward its objectives. Then, we
look at the available actions given to the robot, and finally we focus on the goals, i.e.
the fuzzy rules, which serve as basis to the decision making process.

4.1.4.1. Perceptual information

Perceptual information can be treated as raw values, as those described in Table (4.1),
or they can be transformed as fuzzy values to ease implementation and to get more
symbolic data, as in Table (4.2). Notation • represents the complement value : v =
NOT(v) = 1 − v. Note that positions are in meters (m), angles are in radians (rad),
and that boolean values, as well as the stepCompletion variable, can be directly
transformed in fuzzy variables.

4.1.4.2. Actions

The actions are the possible maneuvers the robot can handle and represent the in-
termediate level as presented in Section 4.1.2. Each action can have some parameters,
for instance hands trajectories, desired CoM position or iCub destination. The available
actions are listed in Table (4.3). Every action is monitored to evaluate its completion,
and when problems or errors occur, for instance in the Grab action, a boolean value
ProblemGrab raises and some corrective actions are provided in the decision making
engine to increase the robot capabilities.

92 Chapitre 4. High-Level control : coupling a decision making engine

Figure 4.2.: Perceptual information in Spirops. The upper figure represents the proprioceptive
sensations, that is the perceptions of its “Self”. The lower figure is dedicated to the
box perception located in the scene, so this module is named “BoxPerceptionLayer”.

4.1. Decision making engine 93

1©

1©

1©

1©

2©

2©

2©

2©

3©

3©

3©

3©

3©

3©

3©

3©

3©
3©

3©
3©

3©

3©
3©

3©

3©

4©

4©

4©

4© 4©

4©

4©

4©

4©
4©

5©

5©

5©

5©

6©

6©

6©

6©

7©

7©

7©

1© Goal name

2© Related action

3© fuzzy inputs

4© fuzzy operators

5© adequacy ouput

6© opportunity ouput

7© action parameters

Figure 4.3.: Some goals or fuzzy rules in Spirops. The legend on the right explains what com-
ponents take parts in these modules. 1© are the fuzzy inputs shown in Fig. 4.2.
5© and 6© are respectively the adequacy and opportunity outputs needed for the
decision making process described in Section 4.1.2.

94 Chapitre 4. High-Level control : coupling a decision making engine

name type description
dGlutealChair float distance between the robot bottom and the chair

dKnees float summation of the knees angular positions
dHandBox float minimal distance between the hands and the closest box
dCoMinCH float minimal distance between the CoM and the base of support

borders, to have information about balance
rootPos 2D vector root position (the pelvis) projected onto horizontal plane
feetPos 2D vector feet position. We take the central point of the base of support
boxPos 2D vector box positions. There are as many variables as boxes
boxId integer box number. There are as many variables as boxes

isWalking boolean true when robot is walking
isStepping boolean true when robot is stepping (when it makes one step for

correcting action)
isWellBalanced boolean true as long as CoM is not to close to the base of support

borders
hasGrabbed boolean true when iCub has caught the desired item
hasArrived boolean true when iCub has arrived to the desired location

stepCompletion ∈ [0, 1] percentage that indicates the step completion, while perfor-
ming corrective action

Table 4.1.: Perceptual information in the iCub decision making process. This table enumerates
available raw variables.

name description

isSitting fuzzy definition of the sitting position :

dGlutealChair

i
s
S
i
t
t
i
n
g

0

1

0 0.1

isStanding fuzzy definition of the standing position :

dKnees

i
s
S
t
a
n
d
i
n
g

0

1

π/6 π

isNear

= isFar

fuzzy definition of the distance robot/box :

dHandBox

i
s
N
e
a
r

0

1

0.5 0.6 ‖rootPos− boxPos‖

0

1

0.4 0.6

OR

Table 4.2.: Perceptual information in the iCub decision making process. This table enumerates
available fuzzy variables.

4.1. Decision making engine 95

name parameters tasks
Balance None control ZMP to be at the center of the base of support
Stand None control the robot standing posture
Sit None control the robot sitting posture
Walk goal (2D vector) control the walking task to go to a desired location
GetUp CanBreakUp (boolean) control CoM and bottom contacts to get up
Grab CanGrab (boolean)

BoxId (integer)
control arms and hands contacts to grab the desired
box

Lift None control arms to lift the box
MakeStep goal (2D vector) walk (make a single step) to correct a position

Table 4.3.: Available Actions in the iCub decision making process.

4.1.4.3. Goals : the fuzzy rules

The goals represent the needs that will drive the robot toward the achievement of
its main objective. They are based on fuzzy rules which combine adequacies and the
opportunities (cf. Section 4.1.2). We present in Table (4.4) all the rules used in the
experiments. In this table, the function LIN(v0, var, v1) allows to write in a condensed
manner a fuzzy output such as :

LIN(v0, var, v1) =

{
0 var ≤ v0
(var − v0)/(v1 − v0) v0 ≤ var ≤ v1
1 v1 ≤ var

name action Desire = adequacy AND opportunity

To Keep

Balance
Balance

adequacy : 1
opportunity : NOT(isSitting OR isStepping OR isWalking)

To Stand Stand
adequacy : 1
opportunity : isStanding

To Sit Sit
adequacy : 1
opportunity : isSitting

Recover

Balance
MakeStep

adequacy : 1
opportunity : isStepping OR isWellBalanced

To Get

Up
GetUp

adequacy : GetBox AND isFar

opportunity : isSitting

To Walk Walk
adequacy : GetBoxAND (isFarOR isWalkingOR hasArrived)
opportunity : isSitting

To Grab Grab

adequacy : GetBox AND NOT(hasGrabbed OR (ProblemGrab
AND isStepping AND LIN(0.75, StepCompletion, 1)))
opportunity : isNear

To Lift Lift
adequacy : GetBox
opportunity : hasGrabbed

Correct

Position
MakeStep

adequacy : ProblemGrab
opportunity : isWalking

Table 4.4.: Fuzzy rules defined in the iCub decision making process.

96 Chapitre 4. High-Level control : coupling a decision making engine

4.2. Experiments

The efficiency of the connection between the SpirOps AI software and the LQP-based
controller is demonstrated through some experiments where iCub has to adapt its be-
havior according to its perception of the surrounding world. In the first case, the robot
performs some missions with different geometric conditions, then it deals with some
uncertainties in its perceptions, and finally, it has to realize some missions while being
subject to some dynamic disturbances.

4.2.1. Geometric conditions

First, the robot must be able to achieve and repeat any mission, even when geometric
conditions are different. This can be for instance the initial conditions (robot posture,
box position, box height) or the nature of the objects (box dimension). This issue is
illustrated through two examples where the robot has to grab a box on one hand, and
it has to open a door in the other hand.

4.2.1.1. Grabbing a box

Figure 4.4.: Experiment 1 – Left-hand side : The box can be grabbed without walking – Right-
hand side : A walking phase is necessary to grab the box.

In this experiment, the mission is to grab a box. This mission is tested in two cases
where initial conditions are different. In both cases, the robot is initially sitting but the
box is much further from the chair in the second case than in the first one. In the first
case 1, the box is grabbed without a walk phase (see Fig. 4.4, left). In the second case 2,
the robot has to walk (see Fig. 4.4, right) and Fig. 4.5 illustrates two points :

– actions are activated in a smooth manner without specifying any explicit transition
task in contrast to what is proposed in Section 3,

1. Corresponds to Attachment 07 01 grabbing box near.avi.
2. Corresponds to Attachment 07 02 grabbing box far.avi.

4.2. Experiments 97

isNear

isSitting
perception

0 1 2 3 4 5 6 7
time (s)

sit

walk

lift

stand

grab

balance

standup
interests evolution

Figure 4.5.: Experiment 1 – Interests for actions and normalized distance to the box as a func-
tion of time. Bold dashed red lines highlight the correlations between percepts and
action triggering. Thin dashed red lines highlight the correlations between actions.

– the obtained sequence of actions was not manually specified : it is automatically
and reactively generated by SpirOps based on rules defined off-line, percepts such
that the ”isSitting” or ”isNear” information, and the pursued goal.

4.2.1.2. Opening a door

In this second experiment, the robot opens a door many times in the same sequence.
It pushes the door at the maximum, and when the task cannot be performed correctly,
the robot adapts its position and posture, uses the closest hand to grab the door knob
and pushes the door again. Figure 4.6 illustrates this experiment 3, and the perceptions
of the robot are described in Fig. 4.7.

4.2.2. Dealing with uncertainties

In the previous experiments, the minimum grabbing distance between the robot and
an object is well defined by the programmer. In some cases, it is not easy to define
such values beforehand and this experiment shows how the high-level controller is able
to call upon a corrective action in order to deal with an erroneous value. To illustrate
this possibility, the robot is asked to grab a box but the minimum grabbing distance
is not accurate and it is actually not small enough to grab the box (see Fig. 4.8) 4. To

3. Corresponds to Attachment 08 opening a door.avi.
4. Corresponds to Attachment 09 dealing with uncertainties.avi.

98 Chapitre 4. High-Level control : coupling a decision making engine

Figure 4.6.: Experiment 2 – The robot opens a door many times. It uses its left or right hand,
depending on the distance between the hands and the knob.

isNear

perception

0 1 2 3 4 5 6 7 8 9
time (s)

walk

makestep

lift

stand

grab

balance

interests evolution

Figure 4.7.: Experiment 2 – Evolution of the actions interests according to perceptions. Bold
dashed red lines show the correlation with perception, the thin ones highlight the
relations between actions.

4.2. Experiments 99

Figure 4.8.: Experiment 3 – Left-hand side : The robot fails to grab because of an erroneous
choice of the ”reachable” distances – Right-hand side : a corrective step allows it
to manage this situation.

0.00
0.04
0.08
0.12
0.16
0.20

po
si

tio
n

(m
)

hands tasks errors for grab action

lhand
rhand

0.20
0.16
0.12
0.08
0.04
0.00

ve
lo

ci
ty

 (m
/s

)

0 1 2 3 4 5 6 7
time (s)

makestep

lift

grab

balance

t1 t2

interests evolution

Figure 4.9.: Experiment 3 – Interests for actions, distance and velocity of hands toward the box
as a function of time.

100 Chapitre 4. High-Level control : coupling a decision making engine

circumvent this kind of problem, a rule is added to trigger a stepping action whenever the
distance to the box cannot be reduced by just standing. This is illustrated by Fig. 4.9 :
at time t1 the box is too far and its distance with respect to the hands is not evolving
(velocity is ≈ 0.0m/s). The stepping action is activated in order to manage this situation.
At time t2 the box is grabbed and can be lifted. This rule can be formalized as
CONDITION : IF d(Box) > dmin AND ḋ(Box) > ḋmin

ACTION : WALK ONE STEP TOWARD Box

Even though this additional rule is added by the programmer, its nature is rather
general and a limited number of such corrective rules may suffice for the system to cope
with similar situations which are characterized by the non-convergence of some error
signal.

4.2.3. Dynamic adaptation

The previous experiment illustrates the need for corrective rules when dealing with
purely geometric information (the distance to an object), and the triggering of the step-
ping action could have been decided a priori. However when dealing with the balance
of a humanoid, corrective rules are based on the state of the system. This state cannot
be predicted beforehand since it is the result of the evolution of the system, subjected
to unknown disturbances, over time. As a matter of fact, one needs to define corrective
rules/actions based on information related to the dynamics of the system. The proposed
example illustrates this concept in the case of a manipulation task. The robot is sup-
posed to grab a box and to drop it on the other side of the table. However, the final
position of the box and its weight may be such that achieving the task can potentially
be incompatible with equilibrium conditions and thus may call upon corrective actions.
The rule triggering this action is based on the following equilibrium test : given the
current state (position and velocity) of the CoM and the closest critical location of the
ZMP (on the convex hull), is it possible to decelerate the CoM so that it actually stops
before reaching this critical ZMP location ? This test is performed using a prediction of

Figure 4.10.: Experiment 4 – Left-hand side : the robot has to move a 0.10Kg box and does
it without corrective actions – Right-hand side : the robot has to move a 2.50Kg
box and cannot do it without corrective actions.

4.2. Experiments 101

0.00
0.05
0.10
0.15

x
(m

)

Center of Mass Evolution

Convex Hull CoM

0.24
0.28
0.32
0.36

x
(m

)

Box Trajectory

goal box

0 1 2 3 4 5 6 7
time (s)

makestep

lift

grab

balance

t1 t2 t3

Interests Evolution

Figure 4.11.: Experiment 4, second case – Interests for actions, distance between the box and
its final location, projection of the CoM position on the ground in the forward
direction (red) and convex hull critical limit (real (plain black) and with safety
margin (dashed black)) as a function of time.

0.0 0.1 0.2 0.3
x (m)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

y
(m

) left

right

start end

table

Center of Mass/Pressure Trajectories in Convex Hulls

Convex Hull
CoM
ZMP

box
start
1st grab (t1)

drop (t2)
2nd grab (t3)
end

Figure 4.12.: Experiment 4, second case – Trajectories of the ground projections of the CoM
position (plain bold red), ZMP position (plain blue) / Box positions (dashed green)
/ Foot placement (colored zones) and convex hulls (plain black) before and after
corrective actions.

102 Chapitre 4. High-Level control : coupling a decision making engine

the future states of the CoM (based on [Kajita2003]) and a safety margin is taken with
respect to the actual convex hull. The associated corrective action is to drop the load (if
present) and to step toward the critical direction.

Two cases are tested 5. In the first case (see Fig. 4.10, left), the box weighs 0.10Kg.
The box lifting action does not induce a large modification of the CoM location and as
matter of fact the task is achieved without having to resort to any corrective action. In
the second case (see Fig. 4.10, right), the box weighs 2.50Kg which induces a shift of
the CoM projection at time t1 (as shown in Figs. 4.11 & 4.12). So given the desired box
motion, this leads to a situation where equilibrium may not be ensured any longer. This
situation is detected using the described equilibrium test and leads to the dropping of
the box at time t2 thus inducing an improvement of the stability margin. The second
corrective action is a step in the critical direction which brings the robot to a location
where the box can finally be lifted and left at the correct location at time t3 without
risks in terms of equilibrium.

4.3. Conclusion

This chapter presents high-level control whose purpose is to adjust the parameters
of this low-level control based on the perceptual information of iCub. This controller
uses fuzzy logic to elect the best couples “Goal/Action” according to some simple rules,
and their “Interests” (fuzzy value between 0 and 1) are particularly suitable to set tasks
weights of the low-level when using a weighting strategy. This association is illustrated
through different experiments where iCub adapts its actions according to geometric
conditions, uncertainties and dynamic effects. The purpose of this second part is to
demonstrate that the connection between the two levels of control is possible and intuitive
when using a weighting strategy.

5. Corresponds to Attachments 10 01 dyn light.avi & 10 02 dyn heavy.avi.

Conclusion & perspectives

5.1. Conclusion

Humanoid robots are very sophisticated mechanical systems which are intended in the
future to work in human environment. Although there are many advances in humanoid
robotics, controlling such mechanisms is still very challenging, for it requires effective
algorithms to achieve missions subject to many constraints. For instance, multitasking
and task sequencing are important issues when one wants to generate complex behav-
iors like humans. Analytical methods allow to perform many tasks simultaneously, but
they are not suitable when inequality constraints should be taken into account. Thus,
this thesis focuses on the use of constrained optimization tools to control humanoids, as
well as the synthesis of complex behaviors with high level controllers, while ensuring the
control vector continuity.

To do so, many tools and methods have been developed. First, a new dynamic sim-
ulator, Arboris-python, is presented. Based on the Matlab version developed by Alain
Micaelli, later joined by Sébastien Barthélemy and the author, this simulator written
in the python language is very suitable for designing and prototyping robots and con-
trollers thanks to a weakly typed language and no compilation. The equations of motion
of mechanical systems composed of rigid bodies interconnected with joints are recalled
in matrix forms, and they are computed from the Boltzmann-Hamel equations which
allow to take into account more complex joints, as the ball and socket joint. The inte-
gration is done using time-stepping and a semi-implicit Euler integration scheme to have
a good stability, and constraints are then solved with a Gauss-Seidel algorithm. The
main advantage of Arboris-python is the use of generalized coordinates to compute the
equations of motion by integrating joints configuration in the model. It reduces matrices
dimension, speeds up the calculation and prevents numerical errors. A quick example of
the simulation process is developed at the end of the first chapter.

Then, the control of mechanical systems with optimization tools is developed. There
are many constraints in robotics which have to be integrated to generate efficient control,
both internal like equations of motion, and external like interactions. These constraints,
especially inequalities, are difficult to handle with analytical methods, but can be treated
with optimization-based controllers. So, methods to solve convex problems subject to
equality and inequality constraints are recalled. Constraints type, as well as dynamic
control requirements, lead to the development of a LQP-based controller which gives a
way to perform dynamic control of humanoid robots when they evolve in constrained
environments.

However, it remains to deal with the task definition, the achievement of several tasks
simultaneously and their sequencing, in order to synthesize complex behaviors. Inspired
from the task function approach [Espiau1990], the tasks defined in this thesis can be

103

104 Chapitre 4. High-Level control : coupling a decision making engine

modified to get a physically consistent cost function, and their achievement can fol-
low weighting or hierarchical strategies. In the literature, some authors have proposed
hierarchical methods to perform multiple tasks, for instance Kanoun which controls a hu-
manoid robot in kinematics [Kanoun2009b]. We propose in this thesis to use a weighting
strategy while performing multitasking in dynamics, whose advantages are the following :

– it speeds up computation,
– it allows monitoring of input torque vector continuity when changes happen in the
set of tasks and constraints,

– it gives some means to set a simple connection between low and high-level con-
trollers.

Indeed, a hierarchical strategy requires to solve as many optimization programs as
tasks, which can be restrictive for large tasks set and may make real-time applications
unfeasible, whereas weighting strategy computes a single optimization program per call.

Besides, the whole-body control must be feasible for all sequences composed of several
tasks, and one has to focus on transition to get continuity of the input torque vector
evolution. This can happen when changes occur in the set of tasks and constraints. The
proposed solution is to use a weighting strategy and to change the tasks weights in a
continuous manner during a short period of time. This is also a way to manage transi-
tions during contact breaking, and more generally when the kinematic chain structure
is modified.

This LQP-based low-level controller allows to perform many sequences of tasks, but
more complex ones may need high-level control. In this thesis, this connection is done
thanks to fuzzy logic based rules and the decision making engine SpirOps, the tasks
weights becoming some fuzzy variables quite easy to handle.

Validation of the LQP-based controller is done through many experiments carried out
with the simulator Arboris-python. The virtual model is based on the iCub robot. It per-
forms multitasking with the different task controllers, for instance to control impedance
while interacting or to avoid some obstacles. Then, transitions in the set of tasks and
constraints are studied by comparing weighting and hierarchical strategies on one hand,
and by varying the weights continuously during the constraints transition period on the
other hand. It shows that sharp evolutions in the input torque vector are avoided and
that the control of transitions is easily performed. The last experiments compare the
different task formalisms through three different cases.

Finally, the LQP-based low-level controller and a high-level controller are connected
to perform more complex behaviors. This thesis does not intend to solve artificial intel-
ligence problems but to highlight the link between these two controllers in an easy and
efficient way. To do so, the decision process is performed with fuzzy logic based rules by
taking into account the robot goals, the perceptual information, and the tasks weights
as fuzzy variables. The core of the decision making engine relies on the available actions
which select the goals to achieve, and adjust the tasks accordingly. This decision process
is done with SpirOps.

To illustrate this connection, some experiments are carried out with the virtual iCub
robot where the tasks sequencing is not known in advance, so the robot has to adapt. The
first experiments deal with geometric considerations, for instance if initial conditions are
not the same, and they show the fuzzy variables evolution function to perceptions. Then

5.2. Perspectives 105

the decision process takes into account some uncertainties about the rules to properly
achieve robot mission. Finally, the robot achieves some missions with different dynamic
conditions, with boxes of different weights.

5.2. Perspectives

In the future, some interesting points should be investigated to extend and improve
the capabilities of optimization-based control.

5.2.1. Problem resolution and modeling

The first one is about LQP resolution. In this thesis, the solver CVXOPT uses interior-
point methods that require some tolerance parameters to find the solution. This may lead
to uncertainties and affect the results found in Section 3.5.1 with the two formalisms.
One way would be to use active constraint-set methods, as presented in Section 2.2.3,
because it transforms the original inequality problem into many equality problems which
are solved analytically when they are quadratic. This implies that no more tolerance are
necessary in the algorithm, and uncertainties are left to the numerical computation of
the solution. Besides, the number of active inequality constraints during simulations is
low in practice, which should lead to few iterations.

If the emphasis is set on the problem modeling, one can look for SDP or LCP. These
methods may be more time consuming but they integrate more precise model. For in-
stance, SDP can be used for integrating LMIs, which give more accurate representation
of the Coulomb cone of friction (see Eq.(2.9)), and LCP can manage unilateral contact
more efficiently, without any assumption about contacts state.

5.2.2. Tasks and strategy

One can wonder about the influence of the different tasks types used in control. The ex-
periments carried out in this thesis do not compared the effects of matrices KH and KN

because it is difficult to extract significant differences during simulations. Some com-
plementary studies are necessary, wishing that using such transformations give other
interesting benefits on problem resolution (better condition number, sparsity) or robotic
control (singularity management, better torque distribution).

Another interesting point can be addressed to LQP building. Indeed, iCub interacts
with the world, but the contact points and kinematic loops occurring during experi-
ments are not always active, so they can be deleted from the problem. In the opposite,
equality constraints are added to the problem when contacts appear, these equations
(and more generally all equality constraints of the problem) can be integrated in the
problem variable by substitution, reducing the problem dimension. Generally, optimiza-
tion literature does not recommend this technique in order to keep the useful structure
of large dimensional problems, but those proposed in this thesis are quite small, and
variable substitution from one formalism to the other gives encouraging results in terms
of computation time (see Section 3.5.2).

106 Chapitre 4. High-Level control : coupling a decision making engine

A more difficult point to handle is about the boundary definition between tasks and
constraints. As presented in Section 2.3, a task can be expressed as a constraint, in the
hierarchical strategy for instance, and a constraint can become a task, admitting some
error. Some constraints seem immutable (e.g.the equations of motion), but others are
disputable. For instance, when a robot carries a box with handles, interactions can be
modeled as bilateral closure constraints, however it may be secondary to other tasks like
“maintaining balance”, and should be deleted when the error is too high. Hence, this
issue should be investigated to better understand this boundary.

One last point is about the strategy used in this thesis. Experiments in Chapters 3–
4 have shown interesting results with weighting strategy. However, a hybrid controller
can be an alternative to take advantages of both hierarchy and trade-off, if tasks have
constant relative importances (i.e. no shifting between them). For instance, a balancing
task is generally more important than a grabbing task, which can be treated with a hier-
archical strategy, whereas left and right arms tasks have generally the same importance,
and thus can be treated with a weighting strategy. Besides, this technique would allow
to integrate “inequality tasks”, as presented in [Kanoun2009b].

5.2.3. Toward more complex behaviors

Robot behaviors can be improved by replacing or associating SpirOps with other high-
level controllers. For instance, a planning module would give to the robot some means
not to fall into “traps” that cannot be avoided reactively. Besides, the decision making
engine can be completed with tools from the artificial intelligence, for instance dynamic
programming to select better politics. The most interesting point would be to use rein-
forcement learning to improve the set of task weights, to obtain efficient values before
and during transitions.

One can also expect to extend the LQP-based controller with more task controllers, as
proposed in Section 2.3.4.3. The impedance controller described in this thesis is only used
with upper limbs without walking. An idea would be to join impedance and walking to
mix manipulation and balancing by taking into account disturbances, anticipated or not.

Finally, some works have already started about controllers based on Central Pattern
Generator (CPG) [Hooper2001], to perform the walking task in a different manner. It
generates some coupled oscillating trajectories tracked by the lower limbs joints, as shown
in Fig. 5.1. This method is very interesting because it does not need to know in advance
the feet positions and it requires few parameters to tune the robot gait.

5.2. Perspectives 107

8
4
0
4

Hip
rol

l
Left leg (deg)

0
10
20

Hip
pit

ch

4
0
4

Hip
ya

w

50
30
10

Kn
ee

2
2
6

Ank
le

rol
l

2 4 6 8
Time (s)

20
10
0

Ank
le

pit
ch

4
0
4

Right leg (deg)

0
10
20

4
0
4

50

30

10

4
0
4

2 4 6 8
Time (s)

20

10

Figure 5.1.: Joints motions generated by the CPG controller. The blue and green lines are
respectively the reference and effective trajectories.

Bibliographie

[Abe2007] Yeuhi Abe, M. da Silva, and Jovan Popović. Multiobjective control with
frictional contacts. In ACM SIGGRAPH/Eurographics symposium on
Computer animation. Proceedings, pages 249–258, 2007.

[Adams] Adams Multibody Dynamics Simulation. http://www.mscsoftware.
com/Products/CAE-Tools/Adams.aspx.

[Albert1972] Arthur Albert. Regression and the Moore-Penrose pseudoinverse. Elsevier,
1972.

[Albu2002] F. Albu, J. Kadlec, N. Coleman, and A. Fagan. The gauss-seidel fast affine
projection algorithm. In IEEE Workshop on Signal Processing Systems,
pages 109–114, oct. 2002.

[Altmann1986] S.L. Altmann. Rotations, quaternions, and double groups. Clarendon
Press Oxford, 1986.

[Anitescu1997] M. Anitescu and F.A. Potra. Formulating dynamic multi-rigid-body con-
tact problems with friction as solvable linear complementarity problems.
Nonlinear Dynamics, 14 :231–247, 1997.

[Arboris] S. Barthélemy, J. Salini, and A. Micaelli. Arboris-python. https://

github.com/salini/arboris-pyhton.

[Baraff1996] David Baraff. Linear-time dynamics using lagrange multipliers. In Proceed-
ings of the 23rd annual conference on Computer graphics and interactive
techniques, pages 137–146, 1996.

[Bartels1969] Richard H. Bartels and Gene H. Golub. The simplex method of linear pro-
gramming using lu decomposition. Communication of the ACM, 12 :266–
268, may 1969.

[Barthelemy2008] S. Barthélemy and P. Bidaud. Stability measure of postural dynamic
equilibrium based on residual radius. RoManSy’08 : 17th CISM-IFToMM
Symposium on Robot Design, Dynamics and Control, 2008.

[Bemporad2002] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N. Pis-
tikopoulos. The explicit linear quadratic regulator for constrained systems.
Automatica, 38(1) :3–20, 2002.

[Bertsekas2003] D.P. Bertsekas, A. Nedić, and A.E. Ozdaglar. Convex analysis and opti-
mization. Athena Scientific optimization and computation series. Athena
Scientific, 2003.

[Boyd2004] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

[Bullet] Bullet Physics Library Game Physics Simulation. http://

bulletphysics.org/wordpress/.

109

http://www.mscsoftware.com/Products/CAE-Tools/Adams.aspx
http://www.mscsoftware.com/Products/CAE-Tools/Adams.aspx
https://github.com/salini/arboris-pyhton
https://github.com/salini/arboris-pyhton
http://bulletphysics.org/wordpress/
http://bulletphysics.org/wordpress/

110 Bibliographie

[Buss1997] M. Buss, L. Faybusovich, and J.B. Moore. Recursive algorithms for real-
time grasping force optimization. In IEEE International Conference on
Robotics and Automation. Proceedings, volume 1, pages 682–687, apr.
1997.

[Caccavale1995] F. Caccavale, P. Chiacchio, and S. Chiaverini. Kinematic control of a
seven-joint manipulator with non-spherical wrist. In IEEE International
Conference on Systems, Man and Cybernetics, volume 1, pages 50–55, oct.
1995.

[Cambon2009] S. Cambon, R Alami, and F Gravot. A hybrid approach to intricate
motion, manipulation and task planning. International Journal of Robotics
Research, 28 :104–126, jan. 2009.

[Charbonnier1995] F. Charbonnier, H. Alla, and R. David. The supervised control of
discrete event dynamic systems : a new approach. 34th IEEE Conference
on Decision and Control. Proceedings, 1 :913–920, dec. 1995.

[Chardonnet2009] Jean-Rémy Chardonnet. Modèle Dynamique Temps-Réel pour l’Ani-
mation d’Objets Poly-Articulés dans les Environnements Contraints, Prise
en Compte des Contacts Frottants et des Déformations Locales : Applica-
tion en Robotique Humanöıde et aux Avatars Virtuels. PhD thesis, Uni-
versité Montpellier II - Sciences et Techniques du Languedoc, 2009.

[Chevallier2006] D. Chevallier. Introduction à la théorie des groupes de Lie réels.
Mathématiques à l’université. Ellipses, 2006.

[Chiaverini1997] S. Chiaverini. Singularity-robust task-priority redundancy resolution
for real-time kinematic control of robot manipulators. IEEE Transactions
on Robotics and Automation, 13(3) :398–410, jun. 1997.

[Choi2000] Su Il Choi and Byung Kook Kim. Obstacle avoidance control for redun-
dant manipulators using collidability measure. Robotica, 18 :143–151, mar.
2000.

[Collette2009] Cyrille Collette. Commande dynamique d’humains virtuels : équilibre
robuste et gestion des tâches. PhD thesis, INRS - Institut National de
Recherche et de Sécurité, 2009.

[Cvxopt] J. Dahl and L. Vandenberghe. cvxopt - python software for convex opti-
mization. http://abel.ee.ucla.edu/cvxopt/.

[DaSilva2008] M. da Silva, Yeuhi Abe, and J. Popović. Simulation of human motion data
using short-horizon model-predictive control. Computer Graphics Forum,
27(2) :371–380, apr. 2008.

[Dauer1991] J. P. Dauer. Optimization over the efficient set using an active constraint
approach. Mathematical Methods of Operations Research, 35 :185–195,
1991.

[Dimitrov2009] D. Dimitrov, P.-B. Wieber, O. Stasse, H.J. Ferreau, and H. Diedam.
An optimized linear model predictive control solver for online walking
motion generation. In IEEE International Conference on Robotics and
Automation, pages 1171 –1176, may 2009.

[Dorato1995] Peter Dorato, Chaouki T. Abdallah, and Vito Cerone. Linear Quadratic
Control : An Introduction. Prentice-Hall, 1995.

http://abel.ee.ucla.edu/cvxopt/

Bibliographie 111

[Doty1992] Keith L. Doty. An essay on the application of weighted generalized-inverses
in robotics. In 5th Conference on Recent Advances in Robotics. Proceed-
ings, Florida Atlantic University, Boca Raton, 1992.

[Doty1993] Keith L. Doty, Claudio Melchiorri, and Claudio Bonivento. A theory of
generalized inverses applied to robotics. International Journal of Robotics
Research, 12 :1–19, feb. 1993.

[Duindam2006] Vincent Duindam. Port-based modeling and control for efficient bipedal
walking robots. PhD thesis, University of Twente, 2006.

[Duindam2007] V. Duindam and S. Stramigioli. Lagrangian dynamics of open multi-
body systems with generalized holonomic and nonholonomic joints. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3342 –3347, nov. 2007.

[Escande2010] A. Escande, N. Mansard, and P.-B. Wieber. Fast resolution of hierar-
chized inverse kinematics with inequality constraints. In IEEE Interna-
tional Conference on Robotics and Automation, pages 3733 –3738, may
2010.

[Espiau1990] Bernard Espiau, François Chaumette, and Patrick Rives. Une nouvelle ap-
proche de la relation vision-commande en robotique. Rapport de recherche
RR-1172, INRIA, 1990.

[Faverjon1987] B. Faverjon and P. Tournassoud. A local based approach for path plan-
ning of manipulators with a high number of degrees of freedom. In IEEE
International Conference on Robotics and Automation. Proceedings, vol-
ume 4, pages 1152–1159, mar 1987.

[Featherstone1983] R. Featherstone. The calculation of robot dynamics using
articulated-body inertias. International Journal of Robotics Research,
2 :13–30, May 1983.

[Flash1985] Tamar Flash and Neville Hogans. The coordination of arm movements : An
experimentally confirmed mathematical model. Journal of neuroscience,
5 :1688–1703, 1985.

[Greenwood2003] D.T. Greenwood. Advanced dynamics. Cambridge University Press,
2003.

[Han2000] Li Han, J.C. Trinkle, and Z.X. Li. Grasp analysis as linear matrix inequal-
ity problems. IEEE Transactions on Robotics and Automation, 16(6) :663–
674, dec. 2000.

[Havok] Havok physics. http://www.havok.com/products/physics.

[Hindi2006] H. Hindi. A tutorial on convex optimization ii : duality and interior point
methods. In American Control Conference, jun. 2006.

[Hogan1985] Neville Hogan. Impedance control : An approach to manipulation. In
American Control Conference, pages 304–313, 1985.

[Hogan1987] Neville Hogan. Stable execution of contact tasks using impedance control.
In IEEE International Conference on Robotics and Automation. Proceed-
ings, volume 4, pages 1047–1054, mar. 1987.

[Hooper2001] Scott L Hooper. Central Pattern Generators. John Wiley & Sons, Ltd,
2001.

http://www.havok.com/products/physics

112 Bibliographie

[HuManS] Martine Eckert, Mitsuhiro Hayashibe, David Guiraud, Pierre-brice
Wieber, and Philippe Fraisse. Simulating the human motion under
functional electrical stimulation using the humans toolbox. In Nadia
Magnenat-Thalmann, Jian J. Zhang, and David D. Feng, editors, Re-
cent Advances in the 3D Physiological Human, pages 121–131. Springer
London, 2009.

[Ibanez2011] Aurélien Ibanez. Planification dynamique de tâches complexes pour man-
nequin virtuel. Master’s thesis, Université Pierre et Marie Curie, Paris 6,
2011.

[Jean1999] M. Jean. The non-smooth contact dynamics method. Computer Methods
in Applied Mechanics and Engineering, 177(3-4) :235–257, 1999.

[JonghoonPark2005] Jonghoon Park and Wan-Kyun Chung. Geometric integration on
euclidean group with application to articulated multibody systems. IEEE
Transactions on Robotics, 21(5) :850–863, oct. 2005.

[Kajita2003] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, Kensuke
Harada, Kazuhito Yokoi, and Hirohisa Hirukawa. Biped walking pattern
generation by using preview control of zero-moment point. In IEEE Inter-
national Conference on Robotics and Automation. Proceedings, volume 2,
pages 1620–1626, 2003.

[Kajita2006] Shuuji Kajita, Mitsuharu Morisawa, Kensuke Harada, Kenji Kaneko, Fu-
mio Kanehiro, Kiyoshi Fujiwara, and Hirohisa Hirukawa. Biped walking
pattern generator allowing auxiliary zmp control. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, volume 2, pages
2993–2999, oct. 2006.

[Kanehiro2008] Fumio Kanehiro, Florent Lamiraux, Oussama Kanoun, Eiichi Yoshida,
and Jean paul Laumond. A local collision avoidance method for non-
strictly convex polyhedra. In Proceedings of Robotics : Science and Sys-
tems IV, 2008.

[Kanoun2009a] Oussama Kanoun, Florent Lamiraux, Pierre-Brice Wieber, Fumio Kane-
hiro, Eiichi Yoshida, and Jean-Paul Laumond. Prioritizing linear equality
and inequality systems : Application to local motion planning for redun-
dant robots. In IEEE International Conference on Robotics and Automa-
tion, pages 2939–2944, may 2009.

[Kanoun2009b] Oussama Kanoun. Contribution à la planification de mouvement pour
robots humanöıdes. PhD thesis, Université de Toulouse III - Paul Sabatier,
2009.

[Karmarkar1984] N. Karmarkar. A new polynomial-time algorithm for linear program-
ming. In Proceedings of the sixteenth annual ACM symposium on Theory
of computing, pages 302–311, 1984.

[KawadaHRP2] AIST. Humanoid robotics project, with kawada industries, inc.
www.is.aist.go.jp/humanoid or http://global.kawada.jp/

mechatronics/.

[Keith2009] François Keith, Nicolas Mansard, Sylvain Miossec, and Abderrahmane
Kheddar. Optimization of tasks warping and scheduling for smooth se-
quencing of robotic actions. In IEEE/RSJ international conference on
Intelligent robots and systems. Proceedings, pages 1609–1614, 2009.

www.is.aist.go.jp/humanoid
http://global.kawada.jp/mechatronics/
http://global.kawada.jp/mechatronics/

Bibliographie 113

[Khatib1985] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. In IEEE International Conference on Robotics and Automation.
Proceedings, volume 2, pages 500–505, mar. 1985.

[Khatib1987] Oussama Khatib. A unified approach for motion and force control of
robot manipulators : The operational space formulation. IEEE Journal of
Robotics and Automation, 3(1) :43–53, feb. 1987.

[Khatib2002] Oussama Khatib, Oliver Brock, Kyong-Sok Chang, Francois Conti, Diego
Ruspini, and Luis Sentis. Robotics and interactive simulation. Commun.
ACM, 45 :46–51, mar. 2002.

[Khatib2008] Oussama Khatib and Luis Sentis. A unified framework for whole-body
humanoid robot control with multiple constraints and contacts. European
Robotics Symposium, pages 303–312, 2008.

[Kolen2001] J. Kolen and S. Kremer. Representation of Discrete States. Wiley-IEEE
Press, 2001.

[Kreutz1989] K. Kreutz. On manipulator control by exact linearization. IEEE Trans-
actions on Automatic Control, 34(7) :763–767, jul. 1989.

[LQPctrl] Joseph Salini. LQP-based controller. https://github.com/salini/
LQPctrl.

[LaValle2006] Steven M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[Li2006] W. Li. Optimal Control for Biological Movement Systems. PhD thesis,
University of California, San Diego, USA, 2006.

[Liegeois1977] Alain Liégeois. Automatic supervisory control of the configuration and
behavior of multibody mechanisms. IEEE Transactions on Systems, Man
and Cybernetics, 7(12) :868–871, dec. 1977.

[Liu1999] Yun-Hui Liu. Qualitative test and force optimization of 3-d frictional form-
closure grasps using linear programming. IEEE Transactions on Robotics
and Automation, 15(1) :163–173, feb. 1999.

[Liu2004] Guanfeng Liu and Zexiang Li. Real-time grasping-force optimization
for multifingered manipulation : theory and experiments. IEEE/ASME
Transactions on Mechatronics, 9(1) :65–77, mar. 2004.

[Liu2005] T. Liu and M.Y. Wang. Computation of three dimensional rigid body dy-
namics of multiple contacts using time-stepping and gauss-seidel method.
IEEE Transactions on Automation Science and Engineering, nov. 2005.

[Luthi1985] Hans-Jakob Lüthi. On the solution of variational inequalities by the el-
lipsoid method. Mathematics of Operations Research, 10(3) :pp. 515–522,
1985.

[MRS] Microsft R© Robotics Developer Studio. http://www.microsoft.com/
robotics/.

[Maciejewski1985] A.A. Maciejewski and C.A. Klein. Obstacle avoidance for kinemat-
ically redundant manipulators in dynamically varying environments. In-
ternational Journal of Robotics Research, 4(3) :109, 1985.

[Magnus2005] P. D. Magnus. forallx : An Introduction to Formal Logic. University at
Albany, State University of New York, 2005.

https://github.com/salini/LQPctrl
https://github.com/salini/LQPctrl
http://www.microsoft.com/robotics/
http://www.microsoft.com/robotics/

114 Bibliographie

[Mahony2009] R. Mahony, T. Hamel, J. Trumpf, and C. Lageman. Nonlinear attitude
observers on so(3) for complementary and compatible measurements : A
theoretical study. In 48th IEEE Conference on Decision and Control, held
jointly with the 2009 28th Chinese Control Conference. Proceedings, pages
6407–6412, dec. 2009.

[Mansard2007] Nicolas Mansard and Francois Chaumette. Task sequencing for high-
level sensor-based control. IEEE Transactions on Robotics, 23(1) :60–72,
2007.

[Mansard2009] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar. A versatile gener-
alized inverted kinematics implementation for collaborative working hu-
manoid robots : The stack of tasks. In International Conference on Ad-
vanced Robotics, ICAR 2009, pages 1 –6, june 2009.

[Merlhiot2009] Xavier Merlhiot. Une contribution algorithmique aux outils de simula-
tion mécanique interactive pour la maquette numérique industrielle. PhD
thesis, Université Pierre et Marie Curie, Paris 6, 2009.

[Merlhiot2011] Xavier Merlhiot. On some industrial applications of time-stepping me-
thods for nonsmooth mechanical systems : issues, successes and challenges.
In Euromech Colloquium [516] - Nonsmooth contact and impact laws in
mechanics, jul. 2011.

[Metta2006] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. Yarp : Yet an-
other robot platform. International Journal of Advanced Robotic Systems,
3(1) :43–48, March 2006.

[Metta2010] Giorgio Metta, Lorenzo Natale, Francesco Nori, Giulio Sandini, David Ver-
non, Luciano Fadiga, Claes von Hofsten, Kerstin Rosander, Manuel Lopes,
José Santos-Victor, Alexandre Bernardino, and Luis Montesano. The icub
humanoid robot : An open-systems platform for research in cognitive de-
velopment. Neural Networks, 23(8-9) :1125 – 1134, 2010.

[Miller2004] A.T. Miller and P.K. Allen. Graspit ! a versatile simulator for robotic
grasping. IEEE Robotics Automation Magazine, 11(4) :110–122, dec. 2004.

[Mirtich1996] Vincent Mirtich. Impulse-based Dynamic Simulation of Rigid Body Sys-
tems. PhD thesis, University of California at Berkeley, 1996.

[Morel1994] G. Morel. Programmation et adaptation de l’impédance de manipulateurs
au contact. PhD thesis, Université Pierre et Marie Curie, Paris 6, 1994.

[Morel1998] G. Morel, E. Malis, and S. Boudet. Impedance based combination of
visual and force control. In IEEE International Conference on Robotics
and Automation. Proceedings, volume 2, pages 1743–1748, may 1998.

[Muico2009] Uldarico Muico, Yongjoon Lee, J. Popović, and Zoran Popović. Contact-
aware nonlinear control of dynamic characters. ACM Transactions on
Graphics, 28(3) :1–9, jul. 2009.

[Muller2003] A. Müller and P. Maißer. A lie-group formulation of kinematics and dy-
namics of constrained mbs and its application to analytical mechanics.
Multibody System Dynamics, 9 :311–352, 2003.

[Murray1994] R.M. Murray, Zexiang Li, and S.S. Sastry. A mathematical introduction
to robotic manipulation. CRC, 1994.

Bibliographie 115

[Nakanishi2007] J. Nakanishi, M. Mistry, and S. Schaal. Inverse dynamics control with
floating base and constraints. In Robotics and Automation, 2007 IEEE
International Conference on, pages 1942–1947, apr. 2007.

[NewtonDyn] Newton Game Dynamics Open-Source Physics Engine. http://

newtondynamics.com/forum/newton.php.

[ODE] Open Dynamics Engine. http://www.ode.org/.

[OpenHRP] OpenHRP3 Official Site. http://www.openrtp.jp/openhrp3/en/

index.html.

[Padois2005] Vincent Padois. Enchâınement dynamiques de tâches pour des manipula-
teurs mobiles à roues. PhD thesis, Ecole Nationale d’Ingénieurs de Tarbes,
2005.

[Park2001] Jonghoon Park, Youngjin Choi, Wan Kyun Chung, and Youngil Youm.
Multiple tasks kinematics using weighted pseudo-inverse for kinematically
redundant manipulators. In IEEE International Conference on Robotics
and Automation. Proceedings, volume 4, pages 4041–4047, 2001.

[Park2005] Jonghoon Park. Principle of dynamical balance for multibody systems.
Multibody System Dynamics, 14(3-4) :269–299, nov. 2005.

[Park2006] Jaeheung Park. Control strategies for robots in contact. PhD thesis, Stan-
ford University, 2006.

[Park2007] J Park, J Han, and FC Park. Convex optimization algorithms for active
balancing of humanoid robots. IEEE Transactions on Robotics, 23(4) :817–
822, aug. 2007.

[Philippsen2009] Roland Philippsen, Negin Nejati, and Luis Sentis. Bridging the gap be-
tween semantic planning and continuous control for mobile manipulation
using a graph-based world representation. In 1st Int. Work. on Hybrid
Control of Autonomous Systems held in conj. with the Int. Joint Conf. on
AI, Pasadena, USA, jul. 2009.

[PhysX] GeForce R© PhysX. http://www.geforce.com/Hardware/

Technologies/physx.

[RobotCub] RobotCub. the robotcub project. http://www.robotcub.org/.

[Rubrecht2010a] S. Rubrecht, V. Padois, P. Bidaud, and M. de Broissia. Constraint
Compliant Control for a Redundant Manipulator in a Cluttered Environ-
ment, pages 367–376. Slovenia, jun. 2010.

[Rubrecht2010b] S. Rubrecht, V. Padois, P. Bidaud, and M. De Broissia. Constraints
compliant control : constraints compatibility and the displaced configu-
ration approach. In IEEE/RSJ International Conference on Intelligent
Robots and Systems. Proceedings, Taipei, Taiwan, oct. 2010.

[SAI] SAI Simulation and Active Interfaces. http://ai.stanford.edu/

˜conti/sai.html.

[Saab2011] Layale Saab. Generating Whole Body Movements for Dynamic Anthropo-
morphic Systems under Constraints. PhD thesis, Université de Toulouse
III - Paul Sabatier, 2011.

[Salaun2010] C. Salaün. Learning Models To Control Redundancy In Robotics. PhD
thesis, Université Pierre et Marie Curie, Paris 6, 2010.

http://newtondynamics.com/forum/newton.php
http://newtondynamics.com/forum/newton.php
http://www.ode.org/
http://www.openrtp.jp/openhrp3/en/index.html
http://www.openrtp.jp/openhrp3/en/index.html
http://www.geforce.com/Hardware/Technologies/physx
http://www.geforce.com/Hardware/Technologies/physx
http://www.robotcub.org/
http://ai.stanford.edu/~conti/sai.html
http://ai.stanford.edu/~conti/sai.html

116 Bibliographie

[Samson1991] Claude Samson, Bernard Espiau, and Michel Le Borgne. Robot Control :
The Task Function Approach. Oxford University Press, 1991.

[Sandini2007] G. Sandini, G. Metta, and D. Vernon. The icub cognitive humanoid robot :
An open-system research platform for enactive cognition. In 50 Years of
Artificial Intelligence, Lecture Notes in Computer Science, chapter 32,
pages 358–369. Springer, 2007.

[Sardain2004a] Philippe Sardain and Guy Bessonnet. Forces acting on a biped robot.
center of pressure-zero moment point. IEEE Transactions on Systems,
Man and Cybernetics, Part A : Systems and Humans, 34(5) :630–637,
2004.

[Sentis2005] Luis Sentis and Oussama Khatib. Synthesis of whole-body behaviors
through hierarchical control of behavioral primitives. International Jour-
nal of Humanoid Robotics, 2(4) :505–518, dec. 2005.

[Sentis2007] Luis Sentis. Synthesis and control of whole-body behaviors in humanoid
systems. PhD thesis, Stanford University, 2007.

[Shen2007] W. Shen and J. Gu. Multi-criteria kinematics control for the PA10-7C
robot arm with robust singularities. In IEEE International Conference on
Robotics and Biomimetics, pages 1242–1248, 2007.

[Shieh1988] L. S. Shieh, H. M. Dib, and S. Ganesan. Linear quadratic regulators with
eigenvalue placement in a specified region. Automatica, 24 :819–823, nov.
1988.

[Siciliano1990] Bruno Siciliano. Kinematic control of redundant robot manipulators : A
tutorial. Journal of Intelligent & Robotic Systems, 3 :201–212, 1990.

[Siciliano1991] Bruno Siciliano and J.J.E. Slotine. A general framework for managing
multiple tasks in highly redundant robotic systems. In 5th International
Conference on Advanced Robotics, pages 1211–1216, 1991.

[Spirops] Axel Buendia. Spirops AI, a behavior production tool. http://www.

spirops.com/SpirOpsAI.php.

[Stasse2008] O. Stasse, A. Escande, N. Mansard, S. Miossec, P. Evrard, and A. Khed-
dar. Real-time (self)-collision avoidance task on a hrp-2 humanoid robot.
In IEEE International Conference on Robotics and Automation, pages
3200–3205, may 2008.

[Stewart1996] D. E. Stewart and J. C. Trinkle. An implicit time-stepping scheme for rigid
body dynamics with inelastic collisions and coulomb friction. International
Journal for Numerical Methods in Engineering, 39(15) :2673–2691, 1996.

[Stramigioli2001a] Stefano Stramigioli. Modeling and IPC control of interactive mechan-
ical systems - A coordinate-free approach. Springer Berlin / Heidelberg,
2001.

[Stramigioli2001b] Stefano Stramigioli and Herman Bruyninckx. Geometry and Screw
Theory for Robotics (Tutorial T9). 2001.

[Szewczyk1998] Jérôme Szewczyk. Planification et contrôle de la manipulation coor-
donnée par distribution d’impédance. PhD thesis, Université Pierre et
Marie Curie, Paris 6, 1998.

http://www.spirops.com/SpirOpsAI.php
http://www.spirops.com/SpirOpsAI.php

Bibliographie 117

[Tevatia2000] G. Tevatia and S. Schaal. Inverse kinematics for humanoid robots. In
IEEE International Conference on Robotics and Automation. Proceedings,
volume 1, pages 294–299, 2000.

[Trinkle2001] J. C. Trinkle, J. A. Tzitzouris, and J. S. Pang. Dynamic multi-rigid-body
systems with concurrent distributed contacts. Philosophical Transactions :
Mathematical, Physical and Engineering Sciences, 359(1789) :2575–2593,
2001.

[Tsagarakis2007] N.G. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Bec-
chi, L. Righetti, J. Santos-Victor, A.J. Ijspeert, M.C. Carrozza, and D.G.
Caldwell. icub : the design and realization of an open humanoid platform
for cognitive and neuroscience research. Advanced Robotics, 21(10), 2007.

[Uno1989] Y. Uno, M. Kawato, and R. Suzuki. Formation and control of optimal
trajectory in human multijoint arm movement. Biological Cybernetics,
61 :89–101, 1989.

[Vukobratovic1973] Miomir Vukobratovic. How to control artificial anthropomorphic
systems. Systems, Man and Cybernetics, IEEE Transactions on, 3(5) :497–
507, 1973.

[Wang2006] Qiyu Wang, Jianping Yuan, and Zhanxia Zhu. The application of error
quaternion and pid control method in earth observation satellite’s attitude
control system. In 1st International Symposium on Systems and Control
in Aerospace and Astronautics, pages 128–131, 2006.

[Webots] WebotsTM 6 fast prototyping and simulation of mobile robots. http:

//www.cyberbotics.com/.

[Wieber2006] P.B. Wieber. Trajectory free linear model predictive control for stable
walking in the presence of strong perturbations. 6th IEEE-RAS Humanoid
Robots, pages 137–142, 2006.

[XDE] XDE eXtended Dynamic Engine. xde-support@saxifrage.cea.fr.

[Yoshida2005] E. Yoshida, I. Belousov, C. Esteves, and J.-P. Laumond. Humanoid mo-
tion planning for dynamic tasks. In IEEE/RAS International Conference
on Humanoid Robots. Proceedings, Tsukuba, Japan, 2005.

[Yuan1988] JS Yuan. Closed-loop manipulator control using quaternion feedback.
IEEE Journal of Robotics and Automation, 4(4) :434–440, 1988.

[Zhang1985] Jianzhong Zhang, Nae-Heon Kim, and L. Lasdon. An improved successive
linear programming algorithm. Management Science, 31(10) :1312–1331,
oct. 1985.

[iCubSim] ICub Simulator Installation. http://eris.liralab.it/wiki/ODE.

http://www.cyberbotics.com/
http://www.cyberbotics.com/
xde-support@saxifrage.cea.fr
http://eris.liralab.it/wiki/ODE

A. Arboris-python

A.1. Modeling mechanical structures with Arboris-python

Section 1.2 addresses the simulation principles in Arboris-python. Here, the aim is
to describe the construction of the world (the kinematic chains) and its constituting
elements to obtain the matrices in Eq.(1.41) and achieve a good control of the system.
Actually, one can consider that the world is a robotic system represented by a tree-
structure graph, where the nodes are the bodies and the links are the joints connecting
some frames of different bodies. The kinematic loops are modeled in Arboris-python
with velocity constraints, typically the contacts between two shapes.

Hence, the bases of Arboris-python are set. The elements written in bold above are
included in the World instance, and the methods that recover these data are given
hereafter

1 from arboris.core import World # import the World class from the core module.

2 world = World() # world instance, the core of the system, which

3 # gives access to the following elements:

4 bodies = world.getbodies() # list of bodies

5 frames = world.getframes() # frames

6 joints = world.getjoints() # joints

7 shapes = world.getshapes() # shapes

8 constraints = world.getconstraints() # constraints

The variables bodies, frames, joints, shapes and constraints are named
lists, which means that if the first body is named "Arm", this instance can be obtained
with the following lines 1

1 body_Arm = bodies[0]

2 body_Arm = bodies["Arm"]

This method is case-sensitive, and that the position of bodies in the list is not straight-
forward due to the fact that tree-structures are not serial. Consequently, the use of the
second line is encouraged.

It also regroups all information related to simulations and dynamics of the world.
These parameters are

1 t = world.current_time # current time, updated by the simulation

2 M = world.mass # generalized mass matrix

3 N = world.nleffects # nonlinear effects matrix

4 gvel = world.gvel # generalized velocity of the world

5 ndof = world.ndof # total number of DoF

6 gforce = world.gforce # generalized force of the world

where t is the current time, M, N are respectively the matrices M , N in Eq.(1.39), gvel
is the vector q̇, ndof is the number of DoF in the world instance, and gforce is the
input torque vector τ .

1. In python language, similarly to C++, containers index starts from 0.

119

120 Annexe A. Arboris-python

But Arboris-python does not simply retrieve all these values, it also extends Eq.(1.39)
with two other parameters,

1 B = world.viscosity # generalized viscosity matrix

2 admittance = world.admittance # admittance of the world

where B refers to the generalized viscosity matrix B (which leads to a fluid friction when
multiplied by q̇), and admittance refers to the mechanical admittance of the system.

Now that the access to these elements is clarified, the following sections describe more
precisely the world components.

Observer

EnergyMonitor

PerfMonitor

Hdf5Logger

SocketCom

NamedObject

World

Constraint

Controller

Frame

Shape

Joint

JointLimits

BallAndSocketConstraint

SoftFingerContact

WeightController

ProportionalDerivativeController

Body

SubFrame MovingSubFrame

Point / Plane/ Box / Cylinder / Sphere

FreeJoint

LinearConfigurationSpaceJoint
R[x|y|z]Joint

T[x|y|z]Joint

DaenimCom

Figure A.1.: Arboris-python diagram. Dashed boxes represent abstract classes, and plain boxes
represent concrete classes.

A.1.1. Modeling bodies

The Frame class The frame is an abstract class which defines the position and
orientation of a particular part of the system relative to the Galilean reference frame
of the world. The frame class has three concrete subclasses, Body, SubFrame and

A.1. Modeling mechanical structures with Arboris-python 121

MovingSubFrame (meaning that they can also be considered as Frame), and the
methods and properties described below are common to all of them. The Galilean refe-
rence frame is defined by the ground frame Ψ0 which is a World instance property

1 galilean_frame = world.ground

Actually, this parameter is a Body instance with no mass. The description of this class
is detailed below.

In Arboris-python, each Frame Ψa is connected to one Body Ψb, and all frames
instances (denoted by frame) contain the following properties

1 body = frame.body # parent body

2 pose = frame.pose # pose relative to the ground

3 bpose = frame.bpose # pose relative to its body

4 twist = frame.twist # twist

5 jacobian = frame.jacobian # Jacobian

6 djacobian = frame.djacobian # time derivative Jacobian

The first line returns the pointer to the associated body, the second and third line return
the frame poses relative to the ground and the body, which are the homogeneous matrices
H0,a and Hb,a. The fourth line returns the frame twist relative to the ground expressed
in its own coordinate system, which is denoted by T a, and the two last lines return the
Jacobian and its time derivative Ja(q) and J̇a(q, q̇), which give the following equations

T a =Ja(q)q̇

Ṫ
a
=Ja(q)q̈ + J̇a(q, q̇)q̇

with q, q̇ and q̈ the generalized coordinates, velocity and acceleration vectors defined in
Section 1.1.4.

The Body class This subclass incorporates the inertia and viscosity properties of the
nodes contained in the tree-structure graph, and as a part of the kinematic chain, it
gives information of its relations with the links in the graph. Given an instance body of
class Body, these properties are accessible as follows

1 from arboris.core import Body # import Body class.

2 from arboris.massmatrix import sphere # import a function that computes the

3 # predefined mass matrix of a sphere.

5 M_sphere = sphere(radius=.1, mass=1.) # SI units

6 body = Body(mass=M_sphere, viscosity=None, name="myBody") # the body instance

8 M = body.mass # get inertia matrix

9 N = body.nleffects # nonlinear effects matrix

10 B = body.viscosity # viscosity matrix

11 p_joint = body.parentjoint # parent joints (link in the graph)

12 c_joints = body.childrenjoints # children joints

where the matrices M,N,B ∈ R
6×6 represent respectively the inertiaM b, nonlinear effects

N b and viscosity matricesBb of the body expressed in Ψb. p joint is the Joint instance
which represents the parent link in the tree-structure, and c joints is a list containing
the possible children Joint instances, detailed in the next section. The world.ground
body is considered as the fist node of the tree-structure, so it is a Body instance with
no parent joint.

122 Annexe A. Arboris-python

When the Body class is instantiated (line 6), the first argument is the mass matrix
expressed at the body frame Ψb, but the predefined mass matrices denoted by M c (avai-
lable in the module arboris.massmatrix) are all expressed at the inertial principal
frame Ψc, which is generally not coincident with Ψb. The displacement from M c to M b

is explained in Eq.(1.31), and this computation is left to the user discretion if he would
like to use his own mass matrix. Arboris-python has a predefined method to compute
this displacement. It is also possible to get the transformations from body frames to
inertial principal frames based on mass matrices.

1 from arboris.massmatrix import sphere, transport, principalframe

3 M_c = sphere(radius=.1, mass=1.) # mass expressed in center of mass

4 H_c_b = array([[1, 0, 0,.1], # homogeneous matrix from center of mass to body

5 [0, 0,-1, 0],

6 [0,-1, 0,.2],

7 [0, 0, 0, 1]])

8 M_b = transport(M_c, H_c_b) # mass expressed in body

9 H_b_c = principalframe(M_b) # homogeneous matrix from body to center of mass

Ψb = Ψ0

CoM

CoM

Ψ1

Ψ0

Ψb

Ψ1

Ψ0

Ψ1
Ψb = CoM

Figure A.2.: Presentation of three different constructions of the same body. On top, the body
frame Ψb is located at the center of mass position, implying a diagonal mass matrix.
At the bottom, the two other constructions show that Ψb can be at the joint frame
(Ψb = Ψ0) or anywhere else, the mass matrix being computed accordingly thanks
to the method transport.

Unlike the constant matrices M b and Bb, N b has to be updated when the body
configuration is modified, as it is shown in Eq.(1.28). Hence, it is possible to extend
Eq.(1.28) and to write the Newton-Euler equation of rigid body [Murray1994] expressed
in any frame Ψb

M bṪ
b
+
(
N b +Bb

)
T b = W b (A.1)

where W b is the resulting wrench applied on this frame.

SubFrame & MovingSubFrame These classes allow to represent interesting frames
other than bodies, and all of them must be connected to a body. They usually represent

A.1. Modeling mechanical structures with Arboris-python 123

some specific parts of robots, for instance the tips of the hand, some sketching elements
of modeling, or some specific objectives for goals achievement during the robot control.
The instantiation of these classes is done as follows

1 from arboris.core import SubFrame, MovingSubFrame

2 from arboris.homogeneousmatrix import transl

3 H_b_f = transl(.1,.2,.3) # translation homogeneous matrix from body to subframe

5 frame = SubFrame(body=world.ground, bpose=H_b_f, name="myFrame") # bpose is constant

7 mframe = MovingSubFrame(world.ground, name="myMovingFrame")

8 mframe.bpose = H_b_f # possible only with MovingSubFrame instance

A.1.2. Modeling joints

The RigidMotion Class This abstract class allows the representation of rigid mo-
tions between two frames belonging to different bodies (denoted by Ψp, Ψc for the parent
and child frames). It regroups all the basic methods required by joints to describe their
configurations, but these methods are also useful for studying any rigid motions of the
world. Given rm, an instance of a RigidMotion subclass, one can access the following
methods

1 pose = rm.pose() # its inverse: ipose = rm.ipose()

2 twist = rm.twist() # itwist

3 adjoint = rm.adjoint() # iadjoint

4 adjacency = rm.adjacency() # iadjacency

5 dadjoint = rm.dadjoint() # idadjoint

which respectively return the pose Hp,c from Ψp to Ψc, the twist T c
p,c of Ψc relative to

Ψp expressed in Ψc, the adjoint Adp,c built from Hp,c, the “adjacency” matrix adcp,c built

from the twist T c
p,c and finally the time derivative of the adjoint Ȧdp,c. The two last

variables are useful to compute the derivative of the twist Ṫ
c

p,c computed such as

T c
p,c =

[
ωc

p,c

vc
p,c

]
adcp,c =

[
ω̂c

p,c 0

v̂c
p,c ω̂c

p,c

]
Ȧdp,c = Adp,cad

c
p,c

Ṫ
p

p,c = Ȧdp,cT
c
p,c +Adp,cṪ

c

p,c (A.2)

The Joint Class The Joint class is also an abstract subclass which is derived from
the RigidMotion class extended with an implementation of the joint properties, by
constraining the relative motions between two frames Ψp (parent) and Ψc (child). This
implementation is based on ideal joints described in Section 1.1.4.1, and in addition to
the RigidMotion methods it gives access to the following properties

1 gpos = joint.gpos # generalized coordinates in joint subspace

2 gvel = joint.gvel # generalized velocity

3 ndof = joint.ndof # number of DoF

4 dof = joint.dof # slice of the DoF in the world instance

5 jacobian = joint.jacobian # inner Jacobian

6 djacobian = joint.djacobian # inner time derivative Jacobian

124 Annexe A. Arboris-python

where joint is an instance of a concrete subclass. gpos and gvel are the generalized
position and velocity 2, referring respectively to Qj and νj of joint j (see the joint
description in Section 1.1.4.1), ndof is its number of DoF and dof is a slice which maps
its DoF into the generalized velocity parameter of the world. The terms jacobian
and djacobian are improperly used because it does not compute a twist from the
generalized velocity vector but the matrix X(Qj) and its derivative instead, such as
T c

p,c = X(Qj)νj .

An abstract subclass called LinearConfigurationSpaceJoint is defined to pa-
rameterize the configuration of joint j with a vector qj ∈ R

ndof instead of the matrix
Qj . It describes most of the joints present in the real world, and their configurations
integration with respect to time is simpler.

The following concrete subclasses are implemented in Arboris-python :

– TxJoint,TyJoint,TzJoint are prismatic joints along the axes x, y and z,
– RxJoint,RyJoint,RzJoint are revolute joints along the axes x, y and z,
– RzRyJoint,RzRxJoint,RyRxJoint are the composition of two consecutive rev-
olute joints respectively along the axes y then z, x then z, and x then y,

– RzRyRxJoint is the composition of three consecutive revolute joints along axes x,
y then z,

– FreeJoint is a non-constrained motion between two bodies.

Notice that except for the FreeJoint which is a Joint subclass, all other joints
are LinearConfigurationSpaceJoint subclasses. The following snippet of code
presents some examples on how to instantiate these concrete classes

1 from arboris.joints import RyRxJoint, FreeJoint

2 joint = RyRxJoint(gpos=[.1,.2], gvel=[.0,.1], name="theRyRxJoint")

4 gpos = array([[1,0,0,.1],

5 [0,1,0,.2],

6 [0,0,1,.3],

7 [0,0,0, 1]])

8 free_joint = FreeJoint(gpos=gpos, gvel=[.1,.2,.3,.4,.5,.6], name="theFreeJoint")

A.1.3. Modeling shapes

In Arboris-python shapes are some simple primitives used either to decorate the vi-
sualization and to determine if contacts or collisions occur during simulations.

The subclasses of the abstract class Shape already defined in Arboris-python are the
Point, the Plane, the Sphere, the Cylinder and the Box. Given frame an instance
of a Frame defined above, they are instantiated as follows

1 from arboris.shapes import Point, Plane, Sphere, Cylinder, Box

2 shape = Point(frame=frame, name="thePoint")

3 shape = Plane(frame=frame, coeffs=(0,1,0,.1), name="thePlane")

4 shape = Sphere(frame=frame, radius=.1, name="theSphere")

5 shape = Cylinder(frame=frame, length=1., radius=.1, name="theCylinder") # along z axis

6 shape = Box(frame=frame, half_extents=(.1, .2, .3), name="theBox")

2. In a general manner, the generalized coordinates cannot be described by an element of a vector
space. This prevents the use of the variables qj and q̇j .

A.1. Modeling mechanical structures with Arboris-python 125

A.1.4. Modeling constraints

The tree-structure modeling of a system is not sufficient when the graph is com-
posed of kinematic loops. Several methods have been developed to cope with this prob-
lem. In Arboris-python, these kinematic loops are treated through the abstract class
Constraint which generates a virtual wrench between two frames of different bodies
to ensure that the related closure is properly performed. These constraints can be uni-
lateral, e.g. contacts with the environment, or bilateral, e.g. ball and socket constraints.
For a given concrete instance const derived from the Constraint class, it is possible
to access the following methods and properties

1 const.ndol # number of degrees of ’linkage’ = 6 - ndof

2 const.gforce # generalized force generate by the constraint

3 const.jacobian # Jacobian of the constraint

5 const.enable() # to enable the constraint

6 const.disable() # to disable

7 const.is_enabled() # return the state of the constraint: True/False

8 const.is_active() # return whether the kinematic loop closure is active or not

ndol is the number of “degrees of linkage”. If ndof is the number of DoF not constrained
in this kinematic loop, then one has ndol = 6 - ndof. The parameter gforce refers
to the generalized force applied by the constraint to the system τ c, and finally the
parameter jacobian is Jc which gives the link between τ c and the wrench generated
by the constraint W c such as τ c = JT

c W
c.

The methods enable, disable and is enabled set or get information about the
user-defined availability of the constraint. Note that these methods are different from
is active which returns the activity of the kinematic loop closure induced by the
constraint, i.e. when the two frames are close enough and the closure has to be satisfied.

Three subclasses are provided in Arboris-python. JointLimits bounds the range of
joints that evolve in linear configuration spaces, BallAndSocketConstraint forces
the position of two frames to be coincident, and SoftFingerContact simulates fric-
tional contact. They are instantiated as follows

1 joint = ... # must be concrete LinearConfigurationSpaceJoint subclass

2 const = JointLimits(joint=joint, min=min_values, max=max_values, name="theJointLimits")

4 f0,f1 = ... # a couple of frames

5 const = BallAndSocketConstraint(frames=(f0,f1), name="theBaSConstraint")

7 s0,s1 = ... # a couple of shapes

8 const = SoftFingerContact(shapes=(s0,s1), friction_coeff= 1., name="theSFContact")

However, for now the SoftFingerContact constraint has limited collision solvers,
meaning that only some couples of shapes are candidates. Hopefully, this module can
easily be extended with user-defined collision solvers.

A.1.5. Modeling structures

All the tree-structures elements are presented above, it remains to explain how to
build kinematic chains. The connection between two bodies is done through the method
add link of the world instance as follows

1 f_parent = ... # parent frame

2 f_child = ... # child frame

126 Annexe A. Arboris-python

3 joint = ... # joint which create the link

4 world.add_link(f_parent, joint, f_child)

The use of this method ensures that no kinematic loop is created accidentally with any
Joint instance in the graph.

However, the user has to know that this method only registers the elements of the
system that are useful to create the structure, which means that some elements need to
be registered afterward. For example, the frames used as arguments in the add link

method become part of the structure and are directly registered with their related bodies,
but the remaining frames, shapes and constraints are unknown by the world and are
left over as illustrated in Fig. A.3.

ground

f11

J0

f01

B1

f14

f12
f13

S1

B2

f21
f22

f23

B3
f31

f32

f33

J1

J2

C1

B = Body
f = subframe
J = Joint
S = Shape

C = Constraint

Figure A.3.: Modeling a structure composed of three bodies. The joints create connections
between frames of different bodies thanks to the add link method. The elements
in green are then registered in the world. It remains to register the red elements.

They must be registered, and in this purpose one has to call the method register

of the world instance

1 f_shape = ... # frame that supports a shape

2 shape = ... # a shape

3 const = ... # a constraint

4 world.register(f_shape)

5 world.register(shape)

6 world.register(const)

7 ...

If the kinematic chain is built correctly, one can call the following methods without
raising any errors

1 world.init() # initialize the world. should be called when ...

2 # ... the modeling of the structure is finished.

A.1. Modeling mechanical structures with Arboris-python 127

3 world.update_geometric() # compute forward kinematics

4 world.update_dynamic() # compute forward dynamics

where init method initializes all the world parameters, update geometric com-
putes the forward kinematics and gives access to all the pose properties (but not the
twist ones), and the last call computes the forward velocity model and also updates
the matrices related to the dynamic of the chain.

A.1.6. Controlling a multibody system : Controller class

Implementation of a Controller The modeling of the robot gives access to the geo-
metric, kinematic and dynamic data, but without any control it is just a snapshot of
the world. Here, the purpose of controllers is to generate appropriate sets of wrenches
at the joint level, which means some generalized force vectors to achieve a desired goal
or behavior.

Arboris-python allows the control of the system through the derivation of the abstract
class Controller. A minimalist subclass, for instance which does nothing, can be
written as follows

1 from arboris.core import Controller # basic Controller class

2 from numpy import zeros # to generate arrays composed of 0

4 class MinimalistController(Controller):

5 def __init__(self):

6 pass

7 def init(self, world):

8 self.world = world # get a pointer of the world

9 def update(self, dt): # dt is the time step of the simulation

10 n = self.world.ndof # get the number of DoF in the world

11 gforce = zeros(n) # generalized force generated by the controller

12 imp = zeros((n,n)) # the ’impedance’ generated by the controller

13 return gforce, impedance

14 ...

15 world.register(MinimalistController())

There are three mandatory methods. The first one, init , is the class constructor and
may have several user-defined arguments, the second one, init, initializes the controller
relative to the world instance with fixed arguments, and the third one, update, is the
main function which updates the input generalized force, again with fixed arguments.

One has to keep in mind the following points : the init method is called by the
init method of the world instance, and thus may be called more than one time before
the beginning of the simulation, then the update method is called only once for each
simulation loop with the time step argument dt, and finally one can of course add many
other user-defined methods. Like the other world components, the controllers have to be
registered to be taken into account during the simulation, as written in the last line of
the snippet of code above.

Hence, the dynamic control of a particular joint is possible, for instance through the
use of the following subclass

1 from arboris.core import Controller

2 from numpy import zeros

4 class MyController(Controller):

5 def __init__(self, joint_name):

6 self.name = joint_name # save the name of the joint

7 def init(self, world):

128 Annexe A. Arboris-python

8 self.world = world # get the pointer of the world

9 self.joint = world.getjoints()[self.name] # joint

10 def update(self, dt):

11 n = self.world.ndof

12 gforce = zeros(n)

13 imp = zeros((n,n))

14 gforce[self.joint.dof] = self._get_objective(dt) # set the desired force

15 return gforce, impedance

16 ...

17 world.register(MyController("Shoulder"))

where the method get objective at line 14 has to be implemented by the user. Of
course, more complex controllers can easily be written, for example an inverse dynamic
controller [Nakanishi2007, Salaun2010]

1 from arboris.core import Controller

2 from numpy import zeros, dot

4 class InverseDynamicController(Controller):

5 def __init__(self, frame_name, goal):

6 self.name = frame_name # save frame name

7 self.goal = goal # frame goal

8 def init(self, world):

9 self.world = world # get the pointer of the world

10 self.frame = world.getframes()[self.name] # frame

11 def update(self, dt):

12 n = self.world.ndof

13 M = self.world.mass # generalized mass matrix

14 N = self.world.nleffects # nonlinear effect matrix

15 dq = self.world.gvel # generalized velocity vector

16 ddq_des = self._get_ddq_des(self.frame, self.goal) # has to be user-defined

17 gforce = dot(M, ddq_des) + dot(N, dq)

18 imp = zeros((n,n))

19 return gforce, impedance

Again, the method get ddq des at line 16 has to be defined by the user to get the
desired generalized acceleration vector.

Some predefined controllers are supplied with Arboris-python. For instance, one can
use the WeightController which simulates the effects of gravity on the system, or
the ProportionalDerivativeController to quickly control some joints toward
some desired goals with virtual spring-damper systems.

A.1.7. Observing the world : Observer class

Unlike controllers, the instances of the abstract class Observer (as the name sug-
gests) should not interfere with the conduct of the simulation, i.e. its only purpose
should be to print, save or spread some information resulting from the evolution of
the system. But whereas controllers have no information about the starting and ending
times, observers have access to the simulation timeline and can allocate memory before
the beginning of the simulation. A simple observer is described hereafter

1 from arboris.core import Observer

3 class MinimalistObserver(Observer):

4 def __init__(self): # constructor, with user-defined arguments

5 pass

6 def init(self, world, timeline): # initialization, with fixed arguments.

7 self.joints = world.getjoints() # get the pointer to the joints list

8 def update(self, dt):

9 for j in self.joints: # loop which print for each joint:

A.2. Examples 129

10 print j.name, j.gpos # its name and its generalized position.

11 def finish(self): # finish method: must be always overwrite,

12 pass # to finalize some procedures.

Its structure is quite similar to the Controller class, plus the timeline argument at
line 6 and the finish method at line 11. Some predefined observers are supplied with
Arboris-python, for instance the EnergyMonitor to plot the mechanical, potential
and kinetic energies of the system with respect to time, the PerfMonitor to print
information about the time performance of the simulation process, the Hdf5Logger to
save the simulation data in a hdf5 file, and the DaenimCom to connect the simulation
with an external viewer which shows the evolution of the world during the simulation.
As an observer is not part of the world, it must be used in the simulation loop as

described in the simulation method included in the arboris.core module

1 def simulate(world, timeline, observers):

2 world._current_time = timeline[0] # initialize the current time

3 world.init() # the world

4 for obs in observers: # all the observers

5 obs.init(world, timeline)

6 for next_time in timeline[1:]: # simulation loop:

7 dt = next_time - world._current_time # compute time interval dt

8 world.update_dynamic() # update dynamic of the world

9 world.update_controllers(dt) # generalized force of controllers

10 world.update_constraints(dt) # constraints for kinematic loops

11 for obs in observers: # all the observers

12 obs.update(dt)

13 world.integrate(dt) # integrate the world to get new configuration

14 for obs in observers: # finalize all the observations

15 obs.finish()

where lines 2 to 5 initialize the simulation components, lines 14 and 15 execute the
observers post-process, and lines 6 to 13 run the core of the simulation loop.

Notice that user-defined methods can be used to perform the simulation, as long as the
order of methods update dynamic, update controllers, update constraints

and integrate is respected.

A.2. Examples

A.2.1. Modeling and simulating a simple robot

The following snippet of code creates a robot composed of three revolute joints, and
simulates its motion when it is not actuated and falls down due to gravity.

1 ############## CREATE THE WORLD ##############

2 from arboris.core import World, Body, SubFrame

3 from arboris.joints import RzJoint # Revolute joint about z axis

4 from arboris.homogeneousmatrix import transl # translation homogeneous matrix

5 from arboris.massmatrix import box # return box mass matrix

7 L = .1 # rod half length (meter)

8 m = 1. # rod mass (kg)

9 M = box(half_extents=(L, L/10., L/10.), mass=m) # 6x6 mass matrix defined at CoM

11 w = World() # create the world

13 B0 = Body(name="B0", mass=M) # create bodies

14 B1 = Body("B1", M)

15 B2 = Body("B2", M)

130 Annexe A. Arboris-python

17 J0 = RzJoint(gpos=[0.], gvel=[0.], name="J0") # create joints

18 J1 = RzJoint(name="J1")

19 J2 = RzJoint(name="J2")

21 SF00 = SubFrame(body=B0, bpose=transl(-L,0,0), name="SF00") # create subframes

22 SF01 = SubFrame(B0, transl(L,0,0), name="SF01")

23 SF10 = SubFrame(B1, transl(-L,0,0), name="SF10")

24 SF11 = SubFrame(B1, transl(L,0,0), name="SF11")

25 SF20 = SubFrame(B2, transl(-L,0,0), name="SF20")

26 SF21 = SubFrame(B2, transl(L,0,0), name="SF21")

28 w.add_link(w.ground, J0, SF00) # create the kinematic chain

29 w.add_link(SF01 , J1, SF10)

30 w.add_link(SF11 , J2, SF20)

31 w.register(SF21) # do not forget to register the tree leaves

32 w.init() # IMPORTANT to create the DoF in the world

33 w.update_dynamic() # update the dynamic properties

36 ############## MODIFY INITIAL POSITION ##############

37 joints = w.getjoints()

38 joints[0].gpos[:] = [0.] # be aware that joints 0 may be different of J0

39 joints["J1"].gpos[:] = [0.2] # it changes the joint with name "J1" (safer)

40 joints["J1"].gvel[:] = [0.1]

43 ############## ADD CONTROLLERS ##############

44 from arboris.controllers import WeightController

45 w.register(WeightController(gravity=-9.81, name="weight"))

48 ############## ADD OBSERVERS ##############

49 from arboris.observers import PerfMonitor, Hdf5Logger, DaenimCom

50 observers = []

51 observers.append(PerfMonitor(log=True)) # display sim performance

52 observers.append(Hdf5Logger("sim.h5", mode=’w’)) # save sim data in hdf5 file

54 from arboris.visu_collada import write_collada_scene

55 write_collada_scene(w, "scene.dae") # write scene in dae file

56 observers.append(DaenimCom(r"daenim", "scene.dae")) # link deanim with scene ...

57 # ... for visualization

59 ############## SIMULATE THE WORLD ##############

60 from arboris.core import simulate

61 from numpy import arange

62 simulate(w, arange(0, 1., .001), observers) # simulate from 0 to 1s (dt= 0.001s)

65 ############## END OF SIMULATION: RESULTS ##############

66 print observers[0].get_summary() # print summary of simulation performance

68 from arboris.visu_collada import write_collada_animation

69 write_collada_animation("anim.dae", "scene.dae", "sim.h5") # save dae animation

A.2.2. Add shapes and constraints

This example shows how to add some shapes in the world, and how to retrieve them. It
also shows how to add some constraints, for instance a joint limit or a frictional contact
between two shapes.

1 ############## CREATE THE WORLD ##############

2 from arboris.core import World

3 from arboris.homogeneousmatrix import transl # translation homogeneous matrix

4 from arboris.robots import simplearm # model of a 3R robot

A.2. Examples 131

5 from arboris.shapes import Plane, Sphere

7 w = World() # create the world

8 simplearm.add_simplearm(w) # add 3R robot

10 sh = Sphere(w.getframes()["EndEffector"], radius=.1, name="sphere") # add sphere

11 w.register(sh) # register

12 w.register(Plane(w.ground, (0,1,0,-.6), name="floor")) # add a floor

14 w.update_dynamic() # update the dynamic properties

17 ############## MODIFY INITIAL POSITION ##############

18 joints = w.getjoints()

19 shapes = w.getshapes()

20 joints["Shoulder"].gpos[:] = [1.5] # change initial configuration

21 joints["Elbow"].gpos[:] = [1.5]

22 joints["Wrist"].gpos[:] = [1.5]

24 from arboris.constraints import JointLimits, SoftFingerContact

25 w.register(JointLimits(joints["Elbow"], -2, 2)) # Limit joint range

26 w.register(SoftFingerContact([shapes["sphere"], shapes["floor"]], 1.)) # contact

28 consts = w.getconstraints() # if needed later for user defined methods

31 ############## ADD CONTROLLERS ##############

32 from arboris.controllers import WeightController

33 w.register(WeightController(gravity=-9.81, name="weight"))

36 ############## ADD OBSERVERS ##############

37 from arboris.observers import PerfMonitor, Hdf5Logger, DaenimCom

38 observers = []

39 observers.append(PerfMonitor(log=True))

42 ############## SIMULATE THE WORLD ##############

43 from arboris.core import simulate

44 from numpy import arange

45 simulate(w, arange(0, 1., .001), observers)

B. LQP-based control

This chapter briefly presents the LQP-based controller developed throughout this
thesis. Like Arboris-python, this controller has been written in Python and is available at
this address [LQPctrl]. The purpose of this chapter is to introduce the ways to instantiate
the controller, its tasks and its constraints, through some examples where an iCub robot
is controlled in Arboris-python. They are minimalist scripts derived from the experiments
in Section 3. One can refer to the examples included in the LQPctrl package for more
details about this controller.

B.1. LQP-based controller parameters

The LQP-based controller can handle many constraints and perform many tasks.
However, it requires to set some parameters to work properly. Default values are already
defined to ease the handling of the controller, but all the available options are described
in the following snippet of code to allow more precise control.

1 lqpc = LQPcontroller(

2 gforcemax, # {’jointname’: torquemax} set torque limit

3 dgforcemax, # {’jointname’: dtorquemax} set torque derivative limit

4 qlim, # {’jointname’: (qmin, qmax)} set position limit

5 vlim, # {’jointname’: vmax} set velocity limit

6 tasks, # list of tasks

7 events, # list of events

8 data, options, solver_options, # see below

9 name=None) # controller name

11 data = {

12 ’bodies’ : None, # body list to get CoM, ZMP and const Jacobian

13 ’Hfloor’ : eye(4), # floor orientation, for walking task

14 ’cop constraints’ : []} # to compute the CoP of the system.

16 options = {

17 ’pos horizon’ : None, # anticipation coefficient for position const

18 ’vel horizon’ : None, # anticipation coefficient for velocity const

19 ’avoidance horizon’: None, # anticipation coefficient for avoidance const

20 ’avoidance margin’ : 0., # distance margin for avoidance const

21 ’npan’ : 8, # number of side of linearized friction cone

22 ’solver’ : ’cvxopt’, # for now, the only solver available

23 ’base weights’ : (1e-7, 1e-7, 1e-7), # weights of whole minimization task T0

24 ’cost’ : ’normal’,# or ’wrench consistent’ # tasks cost

25 ’norm’ : ’normal’,# or ’inv(lambda)’ # tasks normalization

26 ’formalism’ : ’dgvel chi’} # or ’chi’ # tasks formalism

28 solver_options = {

29 ’show_progress’ : True, # show details of cvxopt resolution

30 ’abstol’ : 1e-8, # absolute tolerance

31 ’reltol’ : 1e-7, # relative tolerance

32 ’feastol’ : 1e-7, # feasible tolerance

33 ’maxiters’ : 100} # maximum iterations number

133

134 Annexe B. LQP-based control

B.2. Controlling iCub with LQP-based controller

The following snippet of code shows how to create an iCub robot in the World instance
with unilateral contact constraints on the floor, and how to control it with the LQP-based
controller.

1 from arboris.robots import icub

2 from numpy import pi, arange

3 from arboris.controllers import WeightController

4 from arboris.observers import PerfMonitor

5 from arboris.core import World, simulate

6 from arboris.shapes import Plane

7 from arboris.constraints import SoftFingerContact

9 ############## CREATE WORLD & INITIALIZATION ##############

10 w = World() # create the world

11 w._up[:] = [0,0,1] # set the "up" vector along z

12 icub.add(w) # add icub in world

14 w.register(Plane(w.ground, (0,0,1,0), "floor")) # create the floor

15 w.register(WeightController()) # add gravity

17 joints = w.getjoints()

18 shapes = w.getshapes()

20 joints[’root’].gpos[0:3,3] = [0,0,.598] # modify initial joint positions

21 for name, value in [(’shoulder_roll’, pi/8), (’elbow_pitch’, pi/8),

22 (’knee’ , -.1), (’ankle_pitch’, -.1)]:

23 joints[’l_’+name].gpos[:] = value

24 joints[’r_’+name].gpos[:] = value

26 floor_const = [SoftFingerContact((shapes[s], shapes[’floor’]), 1.5, name=s)

27 for s in [’lf1’, ’lf2’, ’lf3’, ’lf4’, ’rf1’, ’rf2’, ’rf3’, ’rf4’]]

28 for c in floor_const: # create contact constraints ...

29 w.register(c) # ... between feet and floor

31 ############## CREATE TASKS, EVENTS & LQP controller ##############

32 add_lqp_controller(w)

34 ############## SET OBSERVERS & SIMULATE ##############

35 simulate(w, arange(0,3,0.01), obs)

Note that at line 32, the method add lqp controller(w) must be user-defined. It
must integrate the tasks to perform by the controller and register the latter in the World.
The next sections give some examples about this method implementation.

B.2.1. Standing

The following code allows to perform a basic task, that is to keep the current posture
and to stand upright.

1 def add_lqp_controller(w):

2 from arboris.robots import icub

3 joints = w.getjoints()

4 icub_joints = [joints[n] for n in icub.get_joints_data()] # get icub joints

5 pose = [j.gpos[0] for j in icub_joints] # save config

7 ############## TASKS ##############

8 from LQPctrl.task import MultiJointTask

9 from LQPctrl.task_ctrl import KpCtrl

10 tasks = []

11 tasks.append(MultiJointTask(

12 icub_joints, # joints controlled

B.2. Controlling iCub with LQP-based controller 135

13 KpCtrl(pose, Kp=10), # KP task controller

14 [], # DoF to control ([] means all)

15 1, # weight (for weighting)

16 0, # level (for hierarchy)

17 True, # activity

18 "standing_pose")) # name

20 ############## LQP CONTROLLER ##############

21 from LQPctrl.LQPctrl import LQPcontroller

22 gforcemax = icub.get_torque_limits() # joint torque limit

23 lqpc = LQPcontroller(gforcemax, tasks=tasks) # create controller

24 w.register(lqpc) # register controller

B.2.2. Swinging

The purpose of this code is to perform a swinging task by controlling the ZMP of the
iCub robot.

1 def add_lqp_controller(w):

2 from arboris.robots import icub

3 joints = w.getjoints()

4 bodies = w.getbodies()

5 icub_joints = [joints[n] for n in icub.get_joints_data()] # get icub joints

6 icub_bodies = [bodies[n] for n in icub.get_bodies_data()] # get icub bodies

7 pose = [j.gpos[0] for j in icub_joints] # save config

9 ############## ZMP TRAJECTORY ##############

10 from numpy import zeros, arange, sin, pi

11 T, dt, amp = 1., .01, .02 # period (s), sampling time (s), amplitude (m)

12 t = arange(0, 3., dt)

13 y = amp*sin(t*2*pi/T) # create a sinusoidal trajectory along y

14 zmp_traj = zeros((len(y),2)) # no trajectory along x

15 zmp_traj[:,1] = y

17 ############## TASKS ##############

18 from LQPctrl.task import MultiJointTask, CoMTask

19 from LQPctrl.task_ctrl import KpCtrl, ZMPCtrl

20 tasks = []

21 # create the ZMP controller

22 zmp_ctrl = ZMPCtrl(zmp_traj, # the ZMP trajectroy defined above

23 QonR=1e-6, # ratio between state and input tracking

24 horizon=1.7, # horizon of tracking

25 dt=dt, # sampling time

26 cdof=[0,1]) # give trajectory plane: here (0=>x,1=>y)

27 # add the ZMP (swinging) task

28 tasks.append(CoMTask(icub_bodies, zmp_ctrl, [0,1], 1, 0, True, "swinging"))

29 # add the posture task

30 tasks.append(MultiJointTask(icub_joints, KpCtrl(pose, 10),

31 [], 1e-4 , 0, True, "pose"))

33 ############## LQP CONTROLLER ##############

34 from LQPctrl.LQPctrl import LQPcontroller

35 gforcemax = icub.get_torque_limits() # joint torque limit

36 lqpc = LQPcontroller(gforcemax, tasks=tasks) # create controller

37 w.register(lqpc) # register controller

B.2.3. Walking

This last example shows how to perform a walking task with a bipedal robot. The
algorithm is mainly based on [Wieber2006].

1 def add_lqp_controller(w):

136 Annexe B. LQP-based control

2 from arboris.robots import icub

3 w.update_dynamic()

4 joints = w.getjoints()

5 bodies = w.getbodies()

6 frames = w.getframes()

7 consts = w.getconstraints()

8 icub_joints = [joints[n] for n in icub.get_joints_data()] # get icub joints

9 icub_bodies = [bodies[n] for n in icub.get_bodies_data()] # get icub bodies

10 pose = [j.gpos[0] for j in icub_joints] # save config

11 l_const = [c for c in consts if c.name[0:2] == ’lf’] # get l foot const

12 r_const = [c for c in consts if c.name[0:2] == ’rf’] # get r foot const

13 l_frame, r_frame = frames[’l_sole’], frames[’r_sole’] # get feet frames

15 ############## WALKING PARAMETERS ##############

16 from arboris.homogeneousmatrix import rotx

17 from numpy import pi

18 goal = {"action": "goto", "pos": [-0.2,0]} # goal info

19 zmp = {’QonR’:1e-6, ’horizon’:1.7, ’dt’:.01, ’cdof’:[0,1]} # zmp info

20 # information on feet trajectory tracking:

21 feet = {"Kp":150, "Kd":None, # KP params

22 "l_frame":l_frame, "r_frame":r_frame, # feet frames

23 "l_const":l_const, "r_const":r_const, # feet consts

24 "weight":1, # tracking weight

25 "R0":rotx(pi/2.)} # floor orientation

26 # information on steps:

27 step={"length":.05, "side":.05, "height":.01, # step distances (m)

28 "time": .8, # period for one step (s)

29 "ratio":.7, # simple/double support ratio

30 "start": "left"} # starting foot

32 ############## TASKS ##############

33 from LQPctrl.task import MultiJointTask, JointTask

34 from LQPctrl.task_ctrl import KpCtrl

35 from LQPctrl.walk import WalkingCtrl, WalkingTask

37 tasks = []

38 # create the walking controller

39 wctrl = WalkingCtrl(goal, zmp, feet, step)

40 # add the walking task

41 tasks.append(WalkingTask(icub_bodies, wctrl, [], 1., 0, True, "walk"))

42 # add the posture task

43 tasks.append(MultiJointTask(icub_joints, KpCtrl(pose, 10),

44 [], 1e-4 , 0, True, "pose"))

46 ############## LQP CONTROLLER ##############

47 from LQPctrl.LQPctrl import LQPcontroller

48 gforcemax = icub.get_torque_limits() # joint torque limit

49 lqpc = LQPcontroller(gforcemax, tasks=tasks) # create controller

50 w.register(lqpc) # register controller

	List of Figures
	List of Symbols
	Introduction
	Modeling and simulating mechanical systems
	Modeling mechanical systems
	Coordinates in space
	Orientation with the special orthogonal group SO(3)
	Configuration with the special Euclidean group SE(3)

	Rigid motion velocity
	Exponential representation in SO(3)
	Exponential representation in SE(3)
	Twist

	Dynamics
	Wrench
	Dynamic equation of rigid body in space

	Representation of tree-structure
	Open kinematic chain
	Dynamic of tree-structure

	Simulating mechanical systems with Arboris-python
	Simulating the world
	Updating controllers
	Explanation about the impedance argument

	Updating constraints
	Joint limit
	Ball and socket constraint

	Integrating
	Example: 3R robot with joint limits
	Modeling the system
	Updating the controllers
	Updating the constraints
	Integrating

	Conclusion

	Controlling a mechanical system in interaction with its environment
	Definition of the problem
	Equations of motion with interactions
	Actuation limits
	Torque limit
	Acceleration limit
	Velocity limit
	Joint limit

	Obstacle avoidance
	Constraint expression

	Interaction with the environment
	Bilateral Closure
	Unilateral frictional contact

	Solving convex problems
	Resolution of unconstrained convex problem
	Gradient descent
	Special case: the quadratic problem

	Resolution of convex problem with equality constraints
	Special case: the quadratic problem

	Resolution of convex problem with inequality constraints
	Interior point algorithm: barrier method
	Active constraint-set method

	Controlling a mechanical system with optimization tools
	Tasks definition
	Generic task
	Acceleration task
	Wrench task
	Tasks homogenization
	Task normalization

	Problem formalism: dependent or independent variable
	Special case: the task space dynamics representation
	Predefined controllers to achieve task: task servoing
	Proportional derivative control
	Quadratic control for walking
	Impedance control with the upper limbs

	Managing several tasks simultaneously
	Hierarchical strategy
	Weighting strategy

	Chaining up tasks in a physically constrained environment
	Transition in the set of task
	Transition in the set of constraints

	Conclusion

	Experiments on humanoid robots: low-level control
	Performing multi-tasks
	Stand up
	Walk
	Grab

	Impedance controller for interaction
	Obstacle avoidance
	Goal reaching in presence of fixed obstacles
	Avoiding moving obstacles

	Transitions in the tasks and constraints sets
	Transition in the tasks set
	Transition in the constraints set

	Comparison between the different task types
	Comparison between the two formalisms
	Comparison with the special case

	Conclusion

	High-Level control: coupling a decision making engine
	Decision making engine
	Perceptual information
	Decision making process
	Introduction to SpirOps: a decision making toolbox
	Example: the iCub control
	Perceptual information
	Actions
	Goals: the fuzzy rules

	Experiments
	Geometric conditions
	Grabbing a box
	Opening a door

	Dealing with uncertainties
	Dynamic adaptation

	Conclusion

	Conclusion & perspectives
	Conclusion
	Perspectives
	Problem resolution and modeling
	Tasks and strategy
	Toward more complex behaviors

	Bibliography
	Appendix
	Arboris-python
	Modeling mechanical structures with Arboris-python
	Modeling bodies
	Modeling joints
	Modeling shapes
	Modeling constraints
	Modeling structures
	Controlling a multibody system: Controller class
	Observing the world: Observer class

	Examples
	Modeling and simulating a simple robot
	Add shapes and constraints

	LQP-based control
	LQP-based controller parameters
	Controlling iCub with LQP-based controller
	Standing
	Swinging
	Walking

