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Introduction

Ce mémoire comporte deux parties distinctes.

• La première partie concerne une étude d’algèbres n-aires. Une algèbre n-aire est un espace vectoriel
sur lequel est définie une multiplication sur n arguments. Classiquement les multiplications sont binaires,
mais depuis l’utilisation en physique thorique de multiplications ternaires, comme les produits de Nambu,
de nombreux travaux mathématiques se sont focalisés sur ce type d’algèbres. Deux classes d’algèbres n-
aires sont essentielles: les algèbres n-aires associatives et les algèbres n-aires de Lie. Nous nous intéressons
aux deux classes. Concernant les algèbres n-aires associatives, on s’intéresse surtout aux algèbres 3-aires
partiellement associatives, c’est-à-dire dont la multiplication vérifie l’identité

((x1 · x2 · x3) · x4 · x5) + (x1 · (x2 · x3 · x4) · x5) + (x1 · x2 · (x3 · x4 · x5)) = 0.

Ce cas est intéressant car les travaux connus concernant ce type d’algèbres ne distinguent pas les cas n pair
et n-impair. On montre dans cette thèse que le cas n = 3 ne peut pas être traité comme si n était pair.
On étudie en détail l’algèbre libre 3-aire partiellement associative sur un espace vectoriel de dimension finie.
Cette algèbre est graduée : L(V ) = ⊕p≥0Lp(V ). On calcule précisément les dimensions des composantes
pour p = 1, 2, 3, 4, 5, 6, 7. On donne dans le cas général un système de générateurs ayant la propriété qu’une
base est donnée par la sous famille des éléments non nuls. Les principales conséquences sont

1. L’algèbre libre 3-aire partiellement associative est résoluble.

2. L’algèbre libre commutative 3-aire partiellement associative est telle que tout produit concernant 9
éléments est nul. soit Lc(V ) = ⊕0≤p≤3Lp(V ).

3. L’opérade quadratique correspondant aux algèbres 3-aires partiellement associatives ne vérifient pas la
propriété de Koszul.

On s’intéresse ensuite à l’étude des produits n-aires sur les tenseurs. L’exemple le plus simple est celui d’un
produit interne sur des matrices non carrées. Nous pouvons définir le produit 3-aire donné par A ·tB ·C. On
montre qu’il est nécessaire de généraliser un peu la définition de partielle associativité. Nous introduisons
donc les produits σ partiellement associatifs où σ est une permutation du groupe Σp.

Concernant les algèbres de Lie n-aires, deux classes d’algèbres ont été définies: les algèbres de Fillipov
(aussi appelées depuis peu les algèbres de Lie-Nambu) et les algèbres n-Lie. Cette dernière notion est très
générale. La condition de Jacobi sécrit

∑

σ∈Σ2n−1

(−1)ǫ(σ)µ(µ(xσ(1), · · · , xσ(n)), xσ(n+1), · · · , xσ(2n−1)) = 0.

Quant aux algèbres de Lie de Fillipov, la condition est

[[u1, · · · , un], v1, · · · , vn−1] = [[u1, v1, · · · , vn−1], u2, · · · , un] + [u1, [u2, v1, · · · , vn−1], u3, · · · , un]

+ · · ·+ [u1, · · · , [un, v1, · · · , vn−1]]

Cette dernière notion, très important dans l’étude de la mécanique de Nambu-Poisson, est un cas particulier
de la première. Mais pour définir une approche du type Maurer-Cartan, c’est-à-dire définir une cohomologie
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iv INTRODUCTION

scalaire, nous considérons dans ce travail les algèbres de Fillipov comme des algèbres n-Lie et développons
un tel calcul dans le cadre des algèbres n-Lie. On s’intéresse également à la classification des algèbres n-aires
nilpotentes.

Le dernier chapitre de cette partie est un peu à part et reflète un travail poursuivant mon mémoire de
Master. Il concerne les algèbres de Poisson sur l’algèbre des polynômes. On commence à présenter le crochet
de Poisson sous forme duale en utilisant des équations de Pfaff. On utilise cette approche pour classer les
structures de Poisson sur C[X1, X2, X3] non homogènes. Le lien avec les algèbres de Lie est clair. Du coup
on étend notre étude aux algèbres de Poisson dont l’algèbre de Lie sous jacente est rigide et on applique les
résultats aux algèbres enveloppantes des algèbres de Lie rigides.

• La partie 2 concerne l’arithmétique des intervalles. Cette étude a été faite suite à une rencontre avec
une société d’ingéniérie travaillant sur des problèmes de contrôle de paramètres, de problèmes inverses
(dans quels domaines doivent évoluer les paramètres d’un robot pour que le robot ait un comportement
défini). Dans le cadre de l’arithmétique des intervalles, les intervalles sont les variables et les opérations
sur les intervalles sont définies en suivant la règle: le résultant de l’opération de deux intervalles doit être
l’intervalle contenant les résultants de la même opération sur les éléments des deux intervalles. Ces opérations,
l’addition, la multiplication, la soustraction, ne suivent pas les règles de l’arithmétique classique. Par exemple
la multiplication n’est pas distributive par rapport à l’addition, ce qui pose quelques problèmes calculatoires.
Dans ce travail, on définit un modèle algébrique, en plongeant l’ensemble des intervalles dans une algèbre
associative de dimension 4. Ceci permet de mener un calcul formel algébrique sur les intervalles. Par contre
le résultat du produit est plus large que le résultat espéré (il faut controler à tout instant les opérations,
sinon très rapidement les calculs sur les intervalles peuvent résulter sur un intervalle résultat pouvant t̂re par
exemple égal à R. Nous montrons qu’il existe une suite d’algèbre associative de dimension bien définie, dans
chacune desquelles nous pouvons plonger l’ensemble des intervalles mais avec une précision sur les calculs de
plus en plus grande. On applique ces résultats à des problèmes de diagonalisation de matrices d’intervalles.
Une approche des intervalles infiniment petits est également abordée.
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Chapter 1

Free ternary partially associative

algebras and applications

An n-ary algebra is a vector space provided with a multiplication given by an n-linear map. A 3-ary algebra
is said to be partially associative if the product x · y · z satisfies

((x1 · x2 · x3) · x4 · x5) + (x1 · (x2 · x3 · x4) · x5) + (x1 · x2 · (x3 · x4 · x5)) = 0.

We compute the dimensions of the homogeneous components of degree ≤ 7 in the free 3-ary partially
associative algebra over a field of characteristic zero and give a system of generators for all the homogeneous
components. We show that this system is a basis if and only if none of these generators is zero. As a
consequence, we show that the corresponding operad doesn’t verify the Koszul property. We also prove
that any 3-ary partially associative algebra is solvable of derived length at most 2 and any 3-ary partially
associative commutative algebra is nilpotent of index at most 3.

For arbitrary integer n we describe the operadic cohomology of the n-ary partially associative algebras.

1.1 Introduction

There is no need to explain the importance of the class of associative algebras when we study binary algebras.
So when we explore n-ary algebras, that is, algebras with an n-linear operation, it is natural to generalize
the associativity to the n-ary case. There exist two standard ways to do this, leading to partial and total
associativity and more recently σ-partial and σ-total associativity ([52]). Partially and totally associative
algebras for even n were considered by Gnedbaye in [17]. He studied the corresponding free algebras and
the associated operads. The results of [17] can be understood as a natural generalization of the binary case
n = 2. But the case of odd n behaves in a completely different way. An explanation of this phenomenon can
be done in terms of operads. If we consider for example the operad for partially associative n-ary algebras
with n = 2k + 1 ≤ 7, it is non-Koszul ([41],[39]), so the natural homology of the free algebra is not trivial,
while the operad for partially associative n-ary algebras with n = 2k is Koszul. If P is a quadratic operad
generated by an operation of arity n and degree d, then the generating operation of P ! has the same arity
but degree −d + n − 2, i.e. for n odd, the Koszul duality does not preserve the parity of the degree of the
generating operation.

In this paper we study the free 3-ary partially associative algebra generated by a finite set. We give a
system of generators for all the homogeneous components and show that this system is a basis if and only
if none of these generators is zero. We prove that the free 3-ary partially associative algebra generated by
a finite set is solvable so any partially associative algebra is solvable. Under the additional assumption of
commutativity we show that this algebra is nilpotent of index 3. Since the coefficients of the generating
series of an operad coincide with the dimensions of the homogeneous components of the corresponding
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free algebra, the computing of the first components leads to the result that the operad for 3-ary partially
associative algebras cannot be Koszul. The main consequence of this property concerns deformation theory.
If we write a deformation of an n-ary partially associative algebra as a formal series µ =

∑
tiϕi, then the

linear part ϕ1 is a 2-cocycle of the deformation cohomology (see [40] and [41]). If n = 2, µ0 is associative
and this cohomology is the Hochschild cohomology of µ0, that is the natural cohomology given by the
corresponding operad. If n = 3 and µ0 is partially associative, as the corresponding operad is not Koszul,
these cohomologies differ. In this case, following [41], we have to consider 3-ary multiplication of degree d.
We determine explicitly the operadic complex for any n-ary partially associative multiplication of degree 1. If
n is even, we find the same result as in [15]. To understand the importance of the degree of the multiplication,
we determine the spaces of cochains for an n-ary partially associative algebra with a multiplication of degree
0 and coboundary operators whose actions on cochains are similar to the Hochschild coboundary operators.
In this case, we obtain a complex whose space of cochains depends on the partially associative multiplication.

1.2 Associative n-ary algebras

Let K be a field of characteristic zero. An n-ary algebra (V, µ) is a K-vector space V with a linear map

µ : V ⊗n → V.

In what follows, I0⊗µ and µ⊗I0 mean µ and, for any positive integer k, Ik is the identity map of End(V ⊗k).

Definition 1 The n-ary algebra (V, µ) is

• partially associative if µ satisfies

n−1∑

p=0

(−1)p(n−1)µ ◦ (Ip ⊗ µ⊗ In−p−1) = 0 (1.1)

• totally associative if µ satisfies

µ ◦ (µ⊗ In−1) = µ ◦ (Ip ⊗ µ⊗ In−p−1), (1.2)

for any p = 0, · · · , n− 1.

Example : Gerstenhaber products. Let A be a (binary) associative algebra andH∗(A,A) its Hochschild
cohomology. The space of k-cochains is Ck(A) = HomK(A⊗k,A). Gerstenhaber ([15]) defined a graded pre-
Lie algebra ⊕kCk(A) with the product

•n,m : Cn(A)× Cm(A)→ Cn+m−1(A)

given by

(f •n,m g)(X1 ⊗ · · · ⊗Xn+m−1) =
m∑

i=1

(−1)(i−1)(m−1)f(X1 ⊗ · · · ⊗ g(Xi ⊗ · · ·Xi+m−1)⊗ · · · ⊗Xn+m−1).

The k-cochain µ satisfying the identity µ •k,k µ = 0 provides A with a k-ary partially associative structure.

Remark. There exists a generalization of the notions of partial and total associativity leading to a natural
extension of the classical product of matrices to hypercubic matrices. Let σ be an element of the symmetric
group Σn of degree n and consider the endomorphism of V ⊗n given by

φV
σ (ei1 ⊗ · · · ⊗ ein

) = ei
σ−1(1)

⊗ · · · ⊗ ei
σ−1(n)

.

An n-ary algebra (V, µ) is
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• σ-partially associative if µ satisfies

n−1∑

p=0

(−1)p(n−1)ε(σp)µ ◦ (Ip ⊗ (µ ◦ φV
σp)⊗ In−p−1) = 0 (1.3)

where ε(τ) is the signature of the permutation τ .

• σ-totally associative if µ satisfies

µ ◦ (µ⊗ In−1) = µ ◦ (Ip ⊗ (µ ◦ φV
σp)⊗ In−p−1), (1.4)

for any p = 0, · · · , n− 1.

In the particular case, where σ = Id we get partial and total associativity. In [52] we defined a sk-totally
associative (2k+1)-product on the vector space T p

q (E) of tensors of q contravariant and p covariant type on
a vector space E where sk is the permutation

sk(1, · · · , 2k + 1) = (2k + 1, 2k, · · · , 2, 1).

1.3 Free 3-ary partially associative algebras

The free n-ary totally associative algebras (for arbitrary n) and the free n-ary partially associative algebras
for even n were described in [17]. But the methods used for the study of the free n-ary partially associative
algebras do not work for odd n. In this section, we compute the case n = 3.

1.3.1 Free 3-ary algebras

Definition 2 A 3-magma is a set M with a ternary operation

M ×M ×M →M, (x, y, z)→ xyz

with no axioms imposed.

Let V be a finite dimensional vector space over K and X = {v1, · · · , vn} be a basis of V . The free 3-magma
on X is

MX =
∞⊔

p=1

X2p+1

where X2p+1 is defined as follows: X1 = X, X3 consists of all expressions vivjvk where vi, vj , vk ∈ X, X5

consists of all expressions (vivjvk)vlvs, vi(vjvkvl)vs, vivj(vkvlvs) and more generally

X2p+1 =
∏

i+j+k=p−1
X2i+1 ×X2j+1 ×X2k+1.

An element of MX is called a word. If this element is in X2p+1, we say that it is of length 2p+ 1. We have
a natural 3-ary multiplication thus MX is a 3-magma.

Let FX be the vector space of finite formal linear combinations of elements ofMX . The 3-ary multiplication
in MX extends to a 3-ary multiplication in FX . Thus FX is a 3-ary algebra. This algebra is graded:
FX = ⊕p≥1F

2p+1
X , where F 2p+1

X is the vector space of finite formal linear combinations of words of length
2p+1. It is easy to prove that FX is a solution of a universal problem with maps on X into a 3-ary algebra.
Thus FX is called the free 3-ary on X. If X ′ is another basis of V , then FX′ and F

2p+1
X′ are the same as FX

and F 2p+1
X . We can denote this algebra by F (V ) and F 2p+1

X by F 2p+1(V ). So

F (V ) = ⊕p≥1F
2p+1(V ).
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1.3.2 Coding a vector of F 2p+1(V )

Let X be a basis of V . An element of X2p+1 is a word of length 2p + 1 with p parentheses. We say that
a left parenthesis is at the position k if it is between the (k − 1)-th and the (k)-th generators appearing in
the word. Clearly the position of the parentheses can be coded by the position of the left parentheses. To
simplify, we forget the first left parenthesis, which is always before the first vector (and the corresponding
right parenthesis which is after the last vector). Thus in F 5(V ) the left parenthesis are coded by {1} , {2} , {3}
which correspond respectively to the words ((v1·v2·v3)·v4·v5), (v1·(v2·v3·v4)·v5), (v1·v2·(v3·v4·v5)). In F 7(V ),
the left parenthesis are coded by {11} , {12} , {13} , {14} , {15} , {22} , {23} , {24} , {25} , {33} , {34} , {35} . For
example (v1 · (v2 · (v3 · v4 · v5) · v6) · v7) corresponds to {23} .

Lemma 1 A (p − 1)-sequence {n1 · · ·np−1} of positive integers is a coding of a word of X2p+1 if and only
if 1 ≤ n1 ≤ 3, n1 ≤ n2 ≤ 5, · · · , np−2 ≤ np−1 ≤ 2p − 1. Such a sequence is called an admissible (p − 1)-
sequence or coding vector of length p−1. Moreover, considering a coding vector {n1n2 · · ·np−1} and a vector
(v1, v2, · · · , v2p+1) of X2p+1 we get only one element of X2p+1 by bracketing with the defined coding.

The condition on a (p − 1)-sequence to be a coding of an element of X2p+1 translates the fact that the
multiplication is ternary. For example {16} is not an admissible 2-sequence. There is no 3-product of 7
vectors corresponding to this sequence.

We denote by C̃p−1 the linear space generated by the coding vectors of length p − 1. In this space all

the coding vectors of length p − 1 are independent. Thus F 2p+1(V ) is isomorphic to C̃p−1 ⊗ V ⊗2p+1. For
example, if p = 2, then

C̃1 = span({1} , {2} , {3})

and

dimF 5(V ) = 3 · dimV ⊗5.

1.3.3 Free 3-ary partially associative algebras

Let us consider in F (V ) the ideal R generated by

(abc)de+ a(bcd)e+ ab(cde)

with a, b, c ∈ F (V ). This ideal is graded:

R =
∞⊕

n=1

Rm, with Rm = R
⋂
Fm(V ).

The free 3-ary partially associative algebra on V (or on X) is the graded algebra

L(V ) =
F (V )

R
=

∞⊕

n=1

F 2p+1(V )

R2p+1
.

This algebra is a solution of the universal problem: for any 3-ary partially associative algebra A and any
map φ : X → A, there exists a unique 3-ary partially associative algebra LX and a linear map φ : LX → A
satisfying φ ◦ π = φ where π is the natural embedding of X in LX . If X is a basis of V , the solution of this

problem is LX = L(V ). If we denote by L2p+1(V ) the quotient
F 2p+1(V )

R2p+1
, we have

L(V ) =
∞⊕

n=1

L2p+1(V )

with L1(V ) = K, L3(V ) = F 3(V ) = V .
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1.3.4 Coding the relations of L2p+1(V ).

Since the vector space L2p+1(V ) is a graded quotient space of F 2p+1(V ), the coding of the vectors of L2p+1(V )

is determined by the coding of F 2p+1(V ). We denote by Cp−1 the linear subspace of C̃p−1 corresponding to
the coding relations of R2p+1(V ) for p ≥ 2. Thus, up to isomorphism, we have

R2p+1(V ) = Cp−1 ⊗ V ⊗
2p+1

and
L2p+1(V ) = (C̃p−1/Cp−1)⊗ V ⊗

2p+1

.

Examples

1. If p = 2, dim C̃1 = 3, C1 = span({1}+ {2}+ {3}) and

dimL5(V ) = 2 dimV ⊗
5

.

2. If p = 3, dim C̃2 = 12, and

C2 = span({11}+ {14}+ {15} , {12}+ {22}+ {25} , {13}+ {23}+ {33} ,
{14}+ {24}+ {34} , {15}+ {25}+ {35} , {11}+ {12}+ {13} ,
{22}+ {23}+ {24} , {33}+ {34}+ {35}).

Thus dimC2 = 8 and
dimL7(V ) = 4 dimV ⊗7.

Proposition 1 All relations in Cp−1 are obtained from the relations in Cp−2 by the two following rules:

• Consider an element of Cp−2. For any coding vector {i1, · · · , ip−2} appearing in the linear presentation
of the element, we add the index i in front of this coding where i runs over the set {1, 2, 3} and we
replace il by il + (i− 1) for all the elements {i1, · · · , ip−2} of the element of Cp−2.

• Consider an element of Cp−2. For all {i1, · · · , ip−2} appearing in the linear presentation of the element,
we add the index i in front of this coding where i takes successively values 1, 2, · · · , 2p−1 and, if i1 ≤ i,
we leave i1 unchanged, otherwise we replace i1 by i1 + 2, and we apply the same rule for all indices
that follow. Then we reorder subscripts to get an admissible sequence (Lemma 4).

This proposition permits to obtain a description of L2p+1 directly from one of L2p−1.

Example. We consider {11}+ {12}+ {13} ∈ C2. We obtain the following elements of C3 (and relations in
F 9(V )): 




{111}+ {112}+ {113} we added 1,
{222}+ {223}+ {224} we added 2 and changed il by il + 1,
{333}+ {334}+ {335} we added 3 and changed il by il + 2,
{111}+ {114}+ {115} we added 1 and changed il by il + 2 if il > 1,
{112}+ {122}+ {125} we added 2 and changed il by il + 2 if il > 2,
{113}+ {123}+ {133} we added 3 and changed il by il + 2 if il > 3,
{114}+ {124}+ {134} we added 4 and rearranged the sequence,
{115}+ {125}+ {135} we added 5 and rearranged the sequence,
{116}+ {126}+ {136} we added 6 and rearranged the sequence,
{117}+ {127}+ {137} we added 7 and rearranged the sequence.

Thus 8 elements of C2 lead to 80 relations of C̃3 which determine the space R
9(V ).

Remark: Symmetric elements, symmetric relations. Let {i1i2 · · · ip} be a coding vector of C̃p. It
defines a vector of F 2p+3 which is written with p parentheses. For this vector we consider the position of
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the right parentheses counted from the right side. This sequence {j1j2 · · · jp} satisfies Lemma 4 and belongs
to C̃p. Let us consider the linear map

s : C̃p → C̃p

given by
s({i1i2 · · · ip}) = {j1j2 · · · jp}.

It satisfies
s2 = Id.

A coding vector {i1i2 · · · ip} of C̃p is symmetric if

s({i1i2 · · · ip}) = {i1i2 · · · ip}.

More generally, a vector v of C̃p is symmetric if

s(v) = v.

We call such a relation symmetric if the corresponding vector of Cp is symmetric. The generating relation

of C1 is given by the symmetric vector {1}+ {2}+ {3} of C̃1 because s({1}) = {3} and s({2}) = {2}. This
implies that the symmetrization of any vector of Cp is in Cp. In other words if we have a defining relation of
L2p+1(V ), we have also a symmetric relation among the defining relations of L2p+1(V ).

1.4 Description of dim L2p+1(V ) for 1 ≤ p ≤ 7.

Proposition 2 If m = dimV , then

• dimL3(V ) = dimV ⊗
3

= m3.

• dimL5(V ) = 2m5 and {{1} , {3} = s({1})} is a basis of C̃1/C1.

• dimL7(V ) = 4m7 and {{11} , {13} , {35} = s({11}), {33} = s({13})} is a basis of C̃2/C2.

• dimL9(V ) = 5m9 and {{113} , {133} , {355} = s({113}), {335} = s({133}), {117}} is a basis of C̃3/C3.

• dimL11(V ) = 6m11 and a basis of C̃4/C4 is

{{1133} , {1335} , {3557} = s({1133}), {3355} = s({1335}), {1177} , {1379} = s({1177})}

• dimL13(V ) = 7m13 and {{11335} , {13355} , {35577} , {33557} , {11779} , {13399} , {11399}} is a basis

of C̃5/C5.

• dimL15(V ) = 8m15 and

{{113355} , {133557} , {355779} , {335577} , {117799} , {1335(11)(13)} , {11399(11)} , {1339(11)(11)}}

is a basis of C̃6/C6.

Proof. The first two cases are clear.

• dimL7(V ) = 4m7. To simplify notation, we use ij instead of {ij}. We obtain the following identities




1) 25 = 11
2) 15 = −11− 35,
3) 14 = 35,
4) 22 = 13,
5) 12 = −11− 13,
6) 34 = −33− 35,
7) 23 = −13− 33,
8) 24 = 33.
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We choose
{11, 13, 35 = s(11), 33 = s(13)}

as a basis of C̃2/C2.

• dimL9(V ) = 5m9. To simplify notation, we use ijk instead of {ijk}. At this step some trivial monoidal
identities ijk = 0 occur for the first time. More precisely, we have

0 = 111 = 114 = 115 = 125 = 135 = 136 = 144 = 147 = 222 = 225 = 226 = 236 = 246 = 247 = 255,
= 333 = 336 = 337 = 347 = 357.

The other identities reduce to:




a) 113 = 122 = −112 = −137 = −227 = 237,
b) 355 = s(113) = 145 = −146 = −155 = 346 = −356,
c) 133 = 124 = −134 = 223 = −224 = −233,
d) 335 = s(133) = −235 = −244 = 245 = −334 = 344,
e) 117 = −116 = 126 = −157 = −256 = 257,
f) 123 = −133 + 113,
g) 345 = 335− 355,
h) 127 = 113 + 117,
i) 156 = 117 + 355,
j) 234 = 133 + 335.

Remark that the second line is symmetric to the first line, the third and fourth lines are symmetric to each
other. We have also that s(117) = 157 and the fifth line is preserved by the symmetry (modulo the sign).
In the same way, s(f) = g, s(h) = i and s(j) = j. Due to the above symmetries, we can choose

{113, 133, 355, 335, 117}

as a basis of C̃3/C3.

• dimL11(V ) = 6m11. Any coding vector that is deduced from a trivial one in C̃3/C3 is a trivial coding

vector in C̃4/C4. Then we have the following new trivial vectors:

0 = 1122 = 1125 = 1126 = 1127 = 1137 = 1169 = 1179 = 1227 = 1237 = 1248 = 1266 = 1269 = 1346
= 1348 = 1377 = 1455 = 1458 = 1459 = 1468 = 1469 = 1555 = 1558 = 1559 = 1569 = 2233 = 2237
= 2238 = 2248 = 2277 = 2347 = 2348 = 2358 = 2359 = 2377.

Nontrivial identities are




1133 = −1233 = −1123 = 1124 = −1134 = 1223 = −1224 = −1249 = −1339 = 1349 = −2239 = 2249
= 2339 = −2349,

1335 = −1235 = −1244 = 1245 = −1334 = −1345 = −2234 = 2235 = 2244 = −2245 = 2334 = −2335
= −2344 = 1344,

1177 = −2578 = −1167 = 1168 = −1178 = 1267 = −1268 = −1277 = −2567 = 2568 = 2577 = −1568
= −1577 = 1578

1234 = 1335 + 1133,
1239 = 1133 + s(1177),
1278 = s(1177) + 1177,
2345 = 1335 + s(1335).

and the relations derived from the above using the symmetry. Thus, we can choose as a basis the following
family

{{1133} , {1335} , {3557} = s(1133), {3355} = s(1335), {1177} , {1379} = s(1177)} .

• dimL13(V ) = 7m13, dimL15(V ) = 8m15. In these cases the dimensions have been computed with

Mathematica and the given coding vectors form a basis of C̃p/Cp. For n ≥ 15, the computations with
Mathematica become impossible because of problems of computer memory. But in the next section, we are
going to describe generators of C̃p/Cp in the general case. Let us notice that the dimensions of the first
homogeneous components have been computed, using another approach, in [10].
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1.5 A system of generators of L2p+1(V )

In order to visualize and to better understand the relations that appear in any dimension, and especially
to determine a minimal system of generators we represent each coding vector of C̃p−1 by a planar rooted
tree with (2p+ 1) leaves and only ternary nodes (i.e.vertices have precisely 3 incoming edges), that is, three
entries and one exit, since the multiplication is ternary (see [?, Section 4] or [43, II.1.5] for terminology). We
denote by T2p+1 the set of all trees with (2p+1) leaves and p ternary nodes. These trees are constructed by
induction by p. We extend the definition by considering T1 the one-point set consisting of the exceptional

tree with one leg and no internal vertex . If p = 1 we represent the vector {} of C̃0 corresponding to the

product (abc) by the tree ❅❅  . The set T3 consists of this tree only.
The vectors {3}, {1} = s({3}), {2} of C̃1, corresponding to the products ab(cde), (abc)de, a(bcd)e, are

represented respectively by the trees

❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  

Let a ∈ X2k1+1, b ∈ X2k2+1, c ∈ X2k3+1 with k1 + k2 + k3 = p − 1, ki ∈ {0, · · · , p − 1}. Let A,B,C be
respectively the trees corresponding to the products a, b, c. Then A ∈ T2k1+1, B ∈ T2k2+1 and C ∈ T2k3+1.

The tree T of T2p+1 corresponding to the product (abc) is ❅❅  
A B C

The leaves are the external edges, that is, the edges which have only one adjacent vertex. The root vertex
of a tree is at the depth 0 and the level of a vertex v is its distance to the root, that is, the number of edges
between v and the root vertex. The level k of a tree is then defined by the set of vertices of level k. The
height of a tree is the maximal level of the vertices. The tree of T1 will be considered of height 0, the

tree ❅❅  is of height 1. A tree T of T2p+1 i.e. of type ❅❅  
A B C

with A ∈ T2k1+1, B ∈ T2k2+1 and C ∈ T2k3+1

is then of height h(T ) = 1 + sup(h(A), h(B), h(C)).

As there is an one-to-one correspondence between the coding vectors and their corresponding trees we will
identify the coding vector to its corresponding tree. For example, since {2} = {1} − {3}, a basis of C̃1/C1
is represented by the following trees of height 2:

❅❅  
❅❅  

❅❅  
❅❅  

By a subtree of a tree T we mean a connected part of T obtained from it by cutting at the nodes.

Definition 3 We say that a tree T has no central branch if it has no subtree of type ❅❅  

A B C

with B different from the exceptional tree.

It means that the second ”branch” of any subtree of this tree is in fact a leaf.

For example, the trees corresponding to {1} and {3} have no central branches whereas {2} has one.

Proposition 3 A tree T has no central branches if and only it has not a subtree corresponding to {2} .

Lemma 2 There exists a system of generators of C̃p/Cp which is represented by trees without central
branches.

Proof. We prove that any tree can be written as a linear combination of trees with no central branches. It
is obviously true for any tree in T3 and we have already shown it for T5. Assume that we have established
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this property for all trees in T2m+1 for 0 ≤ m < k, k ≥ 1 and prove it for k = m. Consider a tree in T2k+1.

There are two cases. The first case is that the tree T is of the form T = ❅❅  
T1 T3

. Since h(T1) and h(T3) are
strictly less than m each can be written as a linear combination of trees with no central branches implying
that T itself can be written as a linear combination of trees with no central branches.

The second case is that T = ❅❅  
T1 T2 T3

with h(T2) > 0. We will use induction on h(T2). Since h(T2) > 0, the

tree T2 has the form T2 = ❅❅  
T 2

1 T 2
2 T 2

3

so we can write the tree

T = ❅❅  
❅❅  T1

T 2
1 T 2

2 T 2
3

T3
= −❅❅  

❅❅  T1 T 2
1

T 2
2 T 2

3
T3

− ❅❅  
❅❅  

T1 T 2
1 T 2

2

T 2
3

T3

= −T ′ − T ′′

with h(T 2i ) < h(T2) for i = 1, 2, 3. By the induction hypothesis the trees T ′ and T ′′ can be represented in
the required form.

Example.
{22} = −{12} − {25} = {11}+ {13} − {25} = {11}+ {13}+ {15}+ {35}

and the trees representing the last vector don’t contain central branches.

Remark. The chosen basis of C̃2/C2 is represented by the following trees

❅❅  
❅❅  
❅❅  

❅❅  
❅❅  

❅❅  

❅❅  
❅❅  
❅❅  

❅❅  
❅❅  

❅❅  

In L9(V ) some identically trivial products appear for the first time, i.e. some coding vectors of C̃3/C3 are
zero. Those whose associated trees are without central branches are the following: {357}, {135}, {115} and
their symmetric images {111}, {333}, {337}. We deduce:

Proposition 4 Every tree that represents a coding vector and that contains one of the following trees as
subtree

❅❅  
❅❅  
❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  
❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  
❅❅  ❅❅  

❅❅  

❅❅  
❅❅  
❅❅  

represents the null vector.

Corollary 4 Any tree with no central branches which has as subtree at level at least 1 the tree

❅❅  
❅❅  ❅❅  (i.e. {15}) or

❅❅  
❅❅  
❅❅  

(i.e. {35}) or
❅❅  
❅❅  
❅❅  

(i.e. {11}) represents a null coding vector.

We denote by T1(A,C,E,G), T2(A,C,E,G), T3(A,C,E,G), the following trees where the letters A,C,E,G
represent grafted trees.

❅
❅❅
 
  

❅
❅❅
  ❅

❅❅
 
  

A
C
E G

❅
❅❅

 
  

❅
❅❅
 
  

❅
❅❅
 
  

A C

E

G

❅
❅❅
 
  
❅
❅❅
 
  
❅
❅❅
 
  

A

C

E G
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We will denote the exceptional tree by 0; we will also call it trivial tree. For example, T1(A, 0, E,G)

corresponds to ❅
❅❅

 
  

❅
❅❅
 
 

❅
❅
 
  

A E G

To simplify the terminology we say that two trees are equal if they represent two coding vectors that are
equal; a tree represents the null vector if its corresponding coding vector is null.

Proposition 5 Let us consider the tree T1(A,C,E,G).

1. If G 6= 0 and A 6= 0 then T1(A,C,E,G) = 0 for any C and E.

2. If G 6= 0 and A = 0 then T1(0, C,E,G) = −T2(0, C,E,G).

3. If G = 0 and A 6= 0 then T1(A,C,E, 0) = −T3(A,C,E, 0).

4. If G = 0 and A = 0 then T1(0, C,E, 0) = −T2(0, C,E, 0)− T3(0, C,E, 0).

Proof. From the identity {15} = −{11} − {35}, we obtain that T1(A,C,E,G) = −T2(A,C,E,G) −
T3(A,C,E,G). If A 6= 0, T2(A,C,E,G) = 0. If G 6= 0, T3(A,C,E,G) = 0. If A = G = 0, we obtain
T1(0, C,E, 0) = −T2(0, C,E, 0)− T3(0, C,E, 0).

Corollary 5 Consider the tree T1(A,C,E,G). If it doesn’t represent the null vector it can only be of the
type T1(A, 0, E, 0) or T1(0, C, 0, G). Moreover, the tree T1(A, 0, E, 0) is uniquely determined by the heights of
the trees A and E and the tree T1(0, C, 0, G) is uniquely determined by the heights of the trees C and G.

Proof. In all other cases the trees have subtrees representing the null vector so the trees themselves represent
the null vector. Indeed, consider T = T1(A,C,E,G). If G 6= 0, A 6= 0 the tree represents the null vector for
any C and E. For G 6= 0, A = 0 the tree represents the null vector if E is nontrivial because it has the tree
{15} as a subtree at level at least 1. The same happens if G = 0 and A 6= 0 meaning that if C is nontrivial,
the tree {15} is a subtree at level at least 1 of the initial tree which then represents the null vector. If
G = 0, A = 0 then the tree is trivial if C 6= 0 and E 6= 0 because T2(0, C,E, 0) and T3(0, C,E, 0) (containing
the tree {15} at level 1) represent the null vector. It then remains the trees T1(0, 0, E, 0), T1(0, C, 0, 0)
and T1(0, 0, 0, 0). So all the trees T1(A,C,E,G) which could not represent the null vector are of the type
T1(A, 0, E, 0) (with no restriction on A and E) or T1(0, C, 0, G) (with no restriction on C and G). The second
part of the corollary also uses the fact that the trees T1(A, 0, E, 0) and T1(0, C, 0, G) must not have subtrees
representing the null vector. For T1(A, 0, E, 0), the tree A, if it is not the exceptional tree or the tree {}, may
also have just one tree at the level one and this tree must be at the right side. All other levels are handled
in the same way. So A is of type

❅❅  
❅❅  

❅❅  
❅❅  

...

We get E by similar reasoning. The case T1(0, C, 0, G) can be treated in the same way.

Theorem 6 Any element of C̃p−1/Cp−1 is a linear combination of the coding vectors:



1.5. A SYSTEM OF GENERATORS OF L2P+1(V ) 13

1. p = 4k.




v1 = {113355 · · · (p− 3)(p− 3)(p− 1)}, v2 = {13355 · · · (p− 1)(p− 1)},
v5 = {117799 · · · (p+ 1)(p+ 1)(p+ 3)}, v6 = {11399 · · · (p+ 3)(p+ 3)},
v7 = {1133(11)(11) · · · (p+ 3)(p+ 3)(p+ 5)}, · · · ,
v p

2+2
= {1133 · · · (p

2 − 3)(p
2 − 3)(p

2 − 1)(p+ 1)(p+ 1) · · · (p+ p
2 − 1)(p+ p

2 − 1)},
their symmetrics,
v p

2+3
= {1133 · · · (p

2 − 1)(p
2 − 1)(p+ 3)(p+ 3)(p+ 5)(p+ 5) · · · (p+ p

2 + 1)}.

v3 = s(v1), v4 = s(v2), v p
2+4

= s(v5), · · · , vp+1 = s(v p
2+2

)

2. p = 4k + 2.




v1 = {1133 · · · (p− 3)(p− 3)(p− 1)}, v2 = {133 · · · (p− 1)(p− 1)},
v5 = {117799 · · · (p+ 1)(p+ 1)(p+ 3)}, v6 = {11399 · · · (p+ 3)(p+ 3)}, · · · ,
v p

2+2
= {1133 · · · (p

2 − 2)(p
2 − 2)(p+ 1)(p+ 1) · · · (p+ p

2 − 2)(p+ p
2 − 2), (p+ p

2 )},
their symmetrics,
v p

2+3
= {1133 · · · (p

2 − 2)(p
2 − 2)(p

2 )(p+ 3)(p+ 3)(p+ 5)(p+ 5) · · · (p+ p
2 )(p+

p
2 )}.

v3 = s(v1), v4 = s(v2), v p
2+4

= s(v5), · · · , vp+1 = s(v p
2+2

)

3. p = 4k + 1





v1 = {1133 · · · (p− 2)(p− 2)}, v2 = {13355 · · · (p− 2)(p− 2)p},
v5 = {1177 · · · (p+ 2)(p+ 2)}, v6 = {11399 · · · (p+ 2)(p+ 2)(p+ 4)}, · · · ,
v p+5

2
= {1133 · · · (p−7

2 )(p−7
2 )(p−3

2 )(p−3
2 )(p+ 2)(p+ 2)(p+ 4)(p+ 4) · · · (p+ p−1

2 )(p+ p−1
2 )},

their symmetrics.

v3 = s(v1), v4 = s(v2), v p+7
2
= s(v5), · · · , vp+1 = s(v p+5

2
)

4. p = 4k + 3





v1 = {1133 · · · (p− 2)(p− 2)}, v2 = {13355 · · · (p− 2)(p− 2)p},
v5 = {1177 · · · (p+ 2)(p+ 2)}, v6 = {11399 · · · (p+ 2)(p+ 2)(p+ 4)},
v p+5

2
= {1133 · · · (p−5

2 )(p−5
2 )p−1

2 (p+ 2)(p+ 2)(p+ 4)(p+ 4) · · · (p+ p−3
2 )(p+ p−3

2 )(p+ p+1
2 )},

their symmetrics.

v3 = s(v1), v4 = s(v2), v p+7
2
= s(v5), · · · , vp+1 = s(v p+5

2
)

Consider ZL,l the left zigzag tree of height l and ZR,l the right zigzag tree of height l i.e

ZL,2s

❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  

ZL,2s+1

❅❅  
❅❅  

❅❅  

❅❅  
❅❅  

ZR,2s

❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  

ZR,2s+1

❅❅  
❅❅  

❅❅  

❅❅  
❅❅  

Then the trees corresponding to the vectors of the theorem are

ZL,l

❅❅  

ZR,l

❅❅  

ZR,l

❅❅  

ZL,l

❅❅  
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with l = p− 1 and

ZR,l1 ZR,l2

❅
❅❅
 
  

❅❅  ❅❅  

with l1+ l2+3 = p, 1 ≤ l1 ≤ ⌈p−3
2 ⌉ (where ⌈x⌉ denotes the ceiling function of x, that is the smallest integer

not less than x) and the symmetric images of these trees (except for the last one when p is even)

Examples. If 2p+1 = 9, then p = 4 and the generating coding vectors are {113}, {133}, s({113}), s({133})
and {117} corresponding respectively to the trees

❅❅  
❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  
❅❅  

❅❅  

❅❅  

❅
❅❅
 
  

❅❅  ❅❅  
❅❅  

If 2p+1 = 11, then p = 5 and the generating coding vectors are {1133}, {1335}, s({1133}), s({1335}), {1177}
and s({1177}). corresponding respectively to the trees

❅❅  
❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  

❅❅  

❅❅  
❅❅  

❅❅  
❅❅  

❅❅  

❅❅  
  ❅❅

❅
❅❅
 
  

❅❅  ❅❅  
❅❅  ❅❅  

❅
❅❅

 
  

❅❅  ❅❅  
❅❅  ❅❅  

.

If 2p+1 = 13, then p = 6 and the generating coding vectors are {11335}, {13355}, s({11335}), s({13355}),
{11779}, {11399} and s({11779}) corresponding respectively to the trees

❅❅  
❅❅  
❅❅  

❅❅  
❅❅  
❅❅  

❅❅  
❅❅  
❅❅  

❅❅  
❅❅  

❅❅  

❅❅  
❅❅  

❅❅  

❅❅  
❅❅  

❅❅  

❅❅  
❅❅  

❅❅  

❅❅  
❅❅  
❅❅  

❅
❅❅
 
  

❅❅  ❅❅  
❅❅  ❅❅  

❅❅  

❅
❅❅

 
  

❅❅  ❅❅  
❅❅  ❅❅  
❅❅  

❅
❅❅
 
  

❅❅  ❅❅  
❅❅  ❅❅  

❅❅  

.

Finally, if 2p + 1 = 15, p = 7, the generating coding vectors are {113355}, {133557}, s({113355}),
s({133557}), {117799}, {11399(11)}, s({117799}) and s({11399(11)}) corresponding respectively to the trees

❅❅  
❅❅  
❅❅  

❅❅  
❅❅  
❅❅  

❅❅  

❅❅  
❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  

❅❅  

❅❅  
❅❅  

❅❅  
❅❅  

❅❅  
❅❅  

❅❅  

❅❅  
❅❅  
❅❅  

❅❅  

❅
❅❅
 
  

❅❅  ❅❅  
❅❅  ❅❅  

❅❅  
❅❅  

❅
❅❅

 
  

❅❅  ❅❅  
❅❅  ❅❅  
❅❅  ❅❅  
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❅
❅❅
 
  

❅❅  ❅❅  
❅❅  ❅❅  

❅❅  
❅❅  

❅
❅❅

 
  

❅❅  ❅❅  
❅❅  ❅❅  

❅❅  ❅❅  

.

Let’s notice that these families of the generators are the bases defined in Proposition 6.

Proof. By Lemma 2, any tree in T2p+1 is a linear combination of trees which does not have the tree {2} as a
subtree, that is, without central branches. So, we are going to find a system of generators with trees grafted
to the level 2 on the trees {1}, {3} and {15} following the rules of Lemma 2, Proposition 4, its consequences
and Proposition 5. This means that we consider, because of Lemma 2, trees of type

T2T1
❅❅  
❅❅  

T2T1
❅❅  

❅❅  

and T1(A,C,E,G). Let us consider a tree with {1} at the bottom. To obtain a tree in T2p+1 we will graft
a tree at a level at least 2. There are only two ways to do it, which correspond to the two first trees of the
theorem. In fact, we cannot graft two nontrivial trees at the level 2 because we would get a tree with {115}
as a subtree, so representing the null vector. So we can graft only one tree on the left or on the right at level 2
(i.e. T1 or T2 is the trivial tree) and in both cases there is the only possibility to obtain a tree in T2p+1 which
is not representing the null vector (T2 = ZL,p−2 and T1 = 0 or T1 = ZR,p−2 and T2 = 0). The case of a tree
with {3} at the bottom can be treated in a similar way. Thus it only remains to examine the trees with {15}
at the bottom. By Proposition 5 and its corollary, these trees are the trees T1(A, 0, E, 0) with height h(A) of
A, less than p−3 and T1(0, C, 0, G) with height h(C), of C less than p−3. We also have that if T1(A, 0, E, 0)
is not representing the null vector and if A 6= 0, then A can only be of the form ZR,p1 , and if E 6= 0, then
E = ZR,p2 . Similarly if T1(0, C, 0, G) is not representing the null vector and if C 6= 0, then C = ZL,p3 , and if
G 6= 0, then G = ZL,p4

. If h(A) = 0, then the tree T1(A, 0, E, 0) = T1(0, 0, E, 0) is, up to the sign, a tree with
{3} at the bottom and if h(C) = 0, the tree T1(0, C, 0, G) = T1(0, 0, 0, G) is, up to the sign, a tree with {1}
at the bottom. Moreover h(A) ≥ 0, T1(A, 0, E, 0) = −T1(0, C ′, 0, G′) = −s(T1(A′, 0, E′, 0)) with h(C ′) ≥ 0
and h(A′) = p− 2− h(A) + 1. Then instead of considering the trees T1(A, 0, E, 0) with nontrivial A, we can
take the trees presented in the theorem which were selected by symmetry reasons.

Corollary 7 For any p ≥ 3, dimL2p+1(V ) ≤ (p + 1)(dimV )2p+1. If 3 ≤ p ≤ 7 then dimL2p+1(V ) =
(p+ 1)(dimV )2p+1.

We denote by G2p+1 the generating family of vectors of C̃p−1/Cp−1 defined in Theorem 6 and in the
following the vectors vi’s correspond to those defined in this theorem.

Theorem 8 Assume that, for every p, every vector v of G2p+1 is non zero. Then

dimL2p+1(V ) = (p+ 1)(dimV )2p+1.

Proof. To each coding vector v ∈ G2p+1 we assign the tree tv ∈ T2p+1. We count the leaves of tv from left
to right. If t and t′ are two trees of T2k1+1 and T2k2+1 respectively, we denote t ◦i t

′ the tree of T2(k1+k2)+1

obtained by grafting the tree t′ at the leaf i of t. Let
∑p+1

i=1 aitvi
= 0 be a linear combination of the trees

tvi
, vi ∈ G2p+1. Let u be the tree of T3. By grafting u twice in adapted places, we will prove successively that

all the ai’s are zero. Consider the trees tvi
◦1 u. From Corollary 4, all these trees represent the null vector

except of tv3 ◦1 u and tv4 ◦1 u. Thus the equality
∑p+1

i=1 aitvi
= 0 implies a3tv3 ◦1 u + a4tv4 ◦1 u = 0. If we

then graft u at the highest left leaf of tv3
◦1 u and tv4

◦1 u, exactly one of the two obtained trees of T2(p+2)+1
is zero, the other one is by hypothesis nonzero so its corresponding coefficient is zero. Thus coming back to



16 CHAPTER 1. FREE TERNARY PARTIALLY ASSOCIATIVE ALGEBRAS AND APPLICATIONS

a3tv3 ◦1 u+a4tv4 ◦1 u = 0 we get that a3 = a4 = 0. From symmetry reasons, the coefficients corresponding to

the symmetric images of these trees, that is, tv1
and tv2

, are zero. Then
∑p+1

i=5 aitvi
= 0 concerns only trees of

type T1(A, 0, E, 0) with nontrivial A and of type T1(0, C, 0, G) with nontrivial G. By grafting u at the highest
level, the equality

∑p+1
i=5 aitvi

= 0 reduces to a linear combination of two trees associated to vectors of G2p+3.
We repeat application of this process to

∑p+1
i=5 aitvi

= 0. Grafting u at the correct place,
∑p+1

i=5 aitvi
= 0

reduces to two terms only. With a new grafting the corresponding linear combination is reduced to one term
and its coefficient is zero. This implies that the second coefficient of the linear combination containing two
terms is zero. Repeating this process we prove that all coefficients are zero. So all the ai’s are zero, and the

vectors of G2p+1 are independent and G2p+1 defines a basis of C̃p−1/Cp−1.

Corollary 9 If there exists p such that v2 ∈ G2p+1 is zero, then L2k+1 = 0 for some k ≥ p.

Proof. In fact v2 is a subtree of any tree of L
2k+1 for some k greater than p.

1.6 Consequences

1.6.1 Solvability of ternary partially associative algebras

Definition 10 Let (A,µ) be a ternary partially associative algebra. We denote by D0(A) = A,D1(A) =
µ(A,A,A) and more generally Dp+1(A) = µ(Dp(A),Dp(A),Dp(A)). We say that (A,µ) is solvable if there
is an integer p such that Dp(A) = {0} .

Theorem 11 The free partially associative ternary algebra L(V, ·) is solvable of the derived length 2.

Proof. Studying L7(V ), we saw that {147} = 0. This means that (v1 · v2 · v3) · (v4 · v5 · v6) · (v7 · v8 · v9) = 0,
for any vector v1, · · · , v9 in V.
Thus D2(L(V, ·)) = 0 and L(V, ·) is solvable.

Corollary 12 Any ternary partially associative algebra is solvable of derived length at most 2.

1.6.2 Nilpotence of commutative ternary partially associative algebras

A ternary partially associative algebra is commutative if µ(x1, x2, x3) = µ(xσ(1), xσ(2), xσ(3)) for any permu-
tation σ.

Theorem 13 Let A(V ) be the free commutative ternary partially associative algebra on the vector space V .
Then A9(V ) = 0.

Proof. We have A(V ) = ⊕k∈NA2k+1(V ). We have A1(V ) = V and we know that A3(V ) is of dimension
Cn+2
3 = (n+2)(n+1)n

6 because the commutativity implies x1 ·x2 ·x3 = xσ(1) ·xσ(2) ·xσ(3) for any σ ∈ Σ3 so we
get a basis of A3(V ) consisting of ei1⊗ei2⊗ei3 with i1 ≤ i2 ≤ i3, i1, i2, i3 ∈ [[1, · · · , n]] . Clearly A2k+1(V ) ⊂
L2k+1(V ). The generators of L9(V ) are given by the coding vectors 113, 133, 117, 355 = s(113), 335 = s(133).
Consider the vector 113. It corresponds to the product ((x1 · x2 · (x3 · x4 · x5)) · x6 · x7) · x8 · x9. The
commutativity implies that this product is equal to (((x3 ·x4 ·x5) ·x1 ·x2) ·x6 ·x7) ·x8 ·x9 which corresponds
to the coding vector 111. But 111 = 0. Thus 113 = 0. Likewise we have 133 = 111 = 0. By symmetry,
355 = 335 = 0. We have also 117 = 144 = 0. Thus any commutative product of 9 elements is trivial.

Corollary 14 Let A be a commutative ternary partially associative algebra. Consider the following sequence




C0(A) = A,
C1(A) = µ(A,A,A),

Cp(A) =
⊕

i+ j + k = p− 1,
i ≥ j ≥ k

µ(Ci(A), Cj(A), Ck(A)).
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Then Ck(A) = 0 for any k ≥ 4.

1.6.3 The operad pAss3 of 3-ary partially associative algebras

¿From Proposition 2, we can deduce the following result (see also [41] and [48]):

Theorem 15 The operad pAss3 for 3-ary partially associative algebras is not Koszul.

Proof. Recall that the quadratic operad pAss3 is a sequence (pAss3(2k + 1))k∈N of vector spaces where
any pAss3(2k + 1) is also provided with a structure of Σ2k+1-module, where Σn is the symmetric group of
degree n. Moreover, the Σ3-module pAss3(3) is isomorphic with the group algebra K[Σ3], and the Σ5-module
pAss3(5) is the quotient space of tree copies of K[Σ5] by the operadic ideal defined by the relation of partial
associativity. The previous calculus shows that

dim(pAss3(3)) = dimK[Σ3] = 6, dim(pAss3(5)) = 2× dimK[Σ5] = 240

and more generally
dim(pAss3(2k + 1)) = (k + 1) dimK[Σ2k+1]

for k = 3, 4, 5, 6, 7. By definition, the generating function of an operad P is

gP(x) :=
∑

a≥1

1

a!
χ(P(a))xa,

where
χ(P(a)) :=

∑

i

(−1)i dim(Pi(a)).

(see [43]). If a quadratic operad P is Koszul, then its generating function and the generating function of its
dual P ! are tied by the functional equation ([43])

gP(−gP!(−x)) = x. (1.5)

The generating function of pAss3 then reads

gpAss3(x) = x+ x3 + 2x5 + 4x7 + 5x9 + 6x11 + 7x13 + 8x15 + · · ·

Let s be a formal power series satisfying

gpAss3(−s(−x)) = x.

We find
s(x) = x− x3 + x5 − 19x11 +O[x]12.

But the dual operad of pAss3 is the operad tAss31, of totally associative algebras with generating ternary
operation of degree 1 (see [41]) and its generating series is

gtAss3
1
(x) = x− x3 + x5.

So pAss3 cannot be a Koszul operad.

Remark: the operad p̃Ass3. Let P be a quadratic operad. In [50] we defined the operad P̃ so that for any

P-algebra A and P̃-algebra B the algebra A⊗B is again a P-algebra and P̃ is maximal with this property.
If P = pAss3 then P̃ = tAss3, and P̃ is different from the dual operad of P.
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Chapter 2

(2k + 1)-ary partially associative

algebras and coalgebras

2.1 Tensor algebra and associative n-ary product

Recall that for any vector space V , the associated tensor algebra T (V ) is the unique solution, up to iso-
morphism, of the universal problem which determine from a linear application f : V → A in an associative
algebra A, a morphism of associative algebras T (V )→ A. The construction of this algebra comes from the
isomorphisms

Φn,m : T⊗n(V )⊗ T⊗m(V )→ T⊗(n+m)(V )

defined by

Φn,m((x1 ⊗ x2 ⊗ · · · ⊗ xn)⊗ (y1 ⊗ y2 · · · ⊗ ym)) = x1 ⊗ x2 ⊗ · · ·xn ⊗ y1 ⊗ y2 ⊗ · · · ⊗ ym.

In fact the multiplication µ of T (V ) is given by

µ((x1 ⊗ x2 · · · ⊗ xn)⊗ (y1 ⊗ y2 · · · ⊗ ym)) = Φn,m((x1 ⊗ x2 · · · ⊗ xn)⊗ (y1 ⊗ y2 · · · ⊗ ym))

and the associativity of the multiplication follows from

Φn+m,p • (Φn,m ⊗ Idp) = Φn+m,p • (Idn ⊗ Φm,p).

We can define another isomorphism no longer adapted to the associative structure but adapted to the n-ary
structure. For this we consider the family of vector isomorphisms

Ψn,m,p : T
⊗n(V )⊗ T⊗m(V )⊗ T⊗p(V )→ T⊗n+m+p(V )

satisfying

{
Ψn,m+p+q,r • (Idn ⊗Ψm,p,q ⊗ Idr) = −2Ψn,m+p+q,r • (Idn+m ⊗Ψp,q,r)

= −2Ψn,m+p+q,r • (Ψn,m,p ⊗ Idq+r).

2.2 Deformations of (2k + 1)-ary partially associative algebras

2.2.1 Deformation cohomology

Let (V, µ0) be an n-ary partially associative algebra and µ(t) = µ0 +
∑

i≥1 t
iφi a formal deformation of µ0

(see [19] and [13] for the terminology). As µ(t) is an n-ary partially associative algebra product, the n-linear
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map φ1 satisfies the following linear identity:

µ0 ◦ (
n∑

p=0

Ip ⊗ φ1 ⊗ In−p−1) + φ1 ◦ (
n∑

p=0

Ip ⊗ µ0 ⊗ In−p−1) = 0, (2.1)

where Ik is the identity map on (V )
⊗k and I0 ⊗ f = f ⊗ I0 = f for an n-linear map f . By [40], there exists

a complex (C∗, ∂∗) such that (2.1) corresponds to ∂2(φ1) = 0. This cohomology which governs deformations
is called the deformation cohomology. When the corresponding quadratic operad is Koszul, this cohomology
coincides with the natural cohomology defined by the operad (operadic cohomology, for definition see [43]).
But if µ0 is a product of a 3-ary partially associative algebra, Theorem 15 implies that the corresponding
operad is not Koszul. It follows that the two cohomologies are different.

Remarks

1. If n is even, the operad pAssn
0 for n-ary partially associative algebras is Koszul and the deformation

cohomology coincides with the operadic cohomology. This cohomology is described in [17]. But in [17],
the author doesn’t distinguish the odd and even cases and the results concerning the odd case are not
correct (see also [48]).

2. In [41], we develop a general approach to deformations of algebras over non Koszul operads. We also
define the notion of dual operads for n-ary algebras. Earlier, this notion was given in [17] but it was
wrong. Our definition is given in terms of multiplication with nontrivial degree.

2.2.2 n-ary-product of degree d

Let Ck(V ) be the vector space of k-linear maps of V . For any f ∈ Cn(V ) and g ∈ Cm(V ), the Gerstenhaber
product f •n,m g is

f •n,m g =
n∑

i=1

(−1)(i−1)(m−1)f ◦i g

with

(f ◦i g)(X1 ⊗ · · · ⊗Xn+m−1) = f(X1 ⊗ · · · ⊗ g(Xi ⊗ · · ·Xi+m−1)⊗ · · · ⊗Xn+m−1).

The product ◦i is the comp-i operations of Gerstenhaber.

Definition 16 An n-ary product µ is of degree d if we have for 1 ≤ j ≤ n,

(µ ◦j µ) ◦i µ =





(−1)d2

(µ ◦i µ) ◦j+n−1 µ if 1 ≤ i ≤ j − 1,
µj ◦ (µ ◦i−j+1 µ) if j ≤ i ≤ n+ j − 1,

(−1)d2

(µ ◦i−n+1 µ) ◦j µ if i ≥ j + n.

Examples.

1. Degree 0 partially associative 2-ary algebras are classical associative algebras.

2. If n = 2, d = 1 and µ associative, then µ satisfies





µ ◦1 µ = µ ◦2 µ,
(µ ◦1 µ) ◦1 µ = µ ◦1 (µ ◦1 µ),
(µ ◦1 µ) ◦2 µ = µ ◦1 (µ ◦2 µ),
(µ ◦1 µ) ◦3 µ = −(µ ◦2 µ) ◦1 µ,
(µ ◦2 µ) ◦2 µ = µ ◦2 (µ ◦1 µ),
(µ ◦2 µ) ◦3 µ = µ ◦2 (µ ◦2 µ).
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3. If n = 3, d = 1 and if µ is totally associative, we have

µ ◦1 µ = µ ◦2 µ = µ ◦3 µ,

and 



(µ ◦1 µ) ◦4 µ = −(µ ◦2 µ) ◦1 µ,
(µ ◦1 µ) ◦5 µ = −(µ ◦3 µ) ◦1 µ,
(µ ◦2 µ) ◦5 µ = −(µ ◦3 µ) ◦2 µ.

2.2.3 A cohomology for (2k+1)-ary partially associative algebras with operation

in degree 1

In what follows, we denote by • any Gerstenhaber product •p,q. For the notion of pre-Lie algebras see for
example [23].

Lemma 3 (Graded pre-Lie identity)

Let ϕ1 ∈ Cn(V ), ϕ2 ∈ Cm(V ) and ϕ3 ∈ Cp(V ), and let |ϕ1|, |ϕ2|, ϕ3| be the respective degrees of ϕ1, ϕ2, ϕ3.
Then

(ϕ1 • ϕ2) • ϕ3 − ϕ1 • (ϕ2 • ϕ3) = (−1)(m−1)(p−1)(−1)|ϕ2||ϕ3|((ϕ1 • ϕ3) • ϕ2 − ϕ1 • (ϕ3 • ϕ2)).

¿From this lemma we directly deduce, taking in account ϕ2 = ϕ3 = µ and using that µ • µ = 0 :

Proposition 6 Let (V, µ) be a (2k+ 1)-ary partially associative algebra with a multiplication µ of degree 1.
Then, for any ϕ ∈ Ck(V ) we have (ϕ • µ) • µ = 0.

Let

δ : Cn(V ) −→ Cn+2k(V )

be the 1 degree operation defined by

δϕ = µ • ϕ− (−1)|ϕ|ϕ • µ (2.2)

where |ϕ| is the degree of ϕ. The graded pre-Lie identity gives

(µ • µ) • ϕ− µ • (µ • ϕ) = (−1)|ϕ|((µ • ϕ) • µ− µ • (ϕ • µ)).

This implies

δ(δϕ) = 0.

The complex

(C2k+1(V ), δ)k≥1

gives the operadic cohomology. In fact, it was proved in [41], that the quadratic operad associated with
n-ary partially associative multiplication of degree 1 is Koszul. When n is even and the multiplication of
degree 0, this complex also corresponds to the operadic cohomology. But this is false if n is odd and the
multiplication is of degree 0. In the following section we construct a complex whose coboundary operators
satisfy identities similar to the identity (2.2).

2.2.4 A complex associated to a product of (2k + 1)-ary partially associative

algebra in degree 0

In this section, we assume that µ is of degree 0.
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Lemma 4 Let µ be an n-ary partially associative product on a vector space V and ϕ ∈ Ck(V ).

1) If n is even, then (ϕ • µ) • µ = 0.

2) If n is odd, then

(ϕ • µ) • µ =
∑

1≤p≤q−n≤k−1
(ϕ ◦p µ) ◦q µ. (2.3)

where ◦i is the comp-i operation.

Proof. We have the pre-Lie identity ([15]):

(ϕ •k,n µ) •k+n−1,n µ− ϕ •k,2n−1 (µ •n,n µ) = (−1)(n−1)2 [(ϕ •k,n µ) •k+n−1,n µ− ϕ •k,2n−1 (µ •n,n µ)].

As µ •n,n µ = 0, the previous equation reduces to

(ϕ •k,n µ) •k+n−1,n µ = (−1)(n−1)2(ϕ •k,n µ) •k+n−1,n µ.

If n is even, it implies that (ϕ •k,n µ) •k+n−1,n µ = 0 so this case is similar to the case considered in the
previous section. But if n is odd, the previous identity is trivial. Computing directly (ϕ •k,n µ) •k+n−1,n µ,
we obtain identity (2.3) of Lemma 4.

Assume that n is odd. Lemma 4 shows that δk+1
i ◦ δk

i 6= 0. To define a cohomology in this case, we restrict
the spaces of cochains. Let χk(V ) be the subspace of Ck(V ) given by

χk(V ) =
{
ϕ ∈ Ck(V ), (ϕ • µ) • µ = (µ • ϕ) • µ = µ • (ϕ • µ) = 0

}
.

Pre-Lie identity applied to the triple (µ, ϕ, µ) implies

(µ • ϕ) • µ = µ • (ϕ • µ)− µ • (µ • ϕ),

and if ϕ ∈ χk(V ) we have also µ • (µ • ϕ) = 0.

Proposition 7 Let ∂k : χk(V )→ ϕk+n−1(V ) be the linear map defined by

∂kϕ = (−1)k−1µ • ϕ− ϕ • µ.

Then Im(∂k) ⊂ χk+n−1(V ) and
∂k+n−1 ◦ ∂k = 0.

For any i,
(χk(n−1)+i(V ), δk

i )k≥0

is a complex, where δj
i = ∂i+j(n−1).

Proof. Let ϕ be in χk(V ). Let us prove that ∂kϕ ∈ χk+n−1(V ). We have

(∂kϕ • µ) • µ = (−1)k−1((µ • ϕ) • µ) • µ− ((ϕ • µ) • µ) • µ = 0,

(µ • ∂kϕ) • µ = (−1)k−1(µ • (µ • ϕ)) • µ− (µ • (ϕ • µ)) • µ = 0,

and
µ • (∂kϕ • µ) = (−1)k−1µ • ((µ • ϕ) • µ)− µ • ((ϕ • µ) • µ) = 0.

Thus ∂kϕ ∈ χk+n−1(V ). But

(∂k+n−1 ◦ ∂k)ϕ = ∂k+n−1((−1)k−1µ • ϕ− ϕ • µ)
= µ • (µ • ϕ) + (−1)k−1µ • (ϕ • µ) + (−1)k(µ • ϕ) • µ+ (ϕ • µ) • µ = 0,

so
∂k+n−1 ◦ ∂k = 0.
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Remark: Graded n-ary algebras and n-ary super-algebras. We have just studied n-ary algebras with
multiplications with a nontrivial degree. It is also easy to define a notion of graded n-ary algebra. Let Γ be
an abelian group. If V = ⊕γ∈ΓVγ is a Γ-graded vector space and if µ is a n-ary multiplication on V , the
n-ary algebra (V, µ) is a graded n-ary algebra if

µ(Vγ1
, · · · , Vγn

) ⊂ Vγ1+···+γn

for any γ1, · · · , γn ∈ Γ. If Γ = Z3, such a graded algebra will be called super algebra.

2.3 Extension of the notion of coassociative algebras for n-ary

algebras

If n = 2, then n-ary partially associative algebras are just associative algebras and we can define coasso-
ciative coalgebras with the well-known relations between these two structures. In fact, the dual space of a
coassociative algebra can be provided with a structure of associative algebra, the dual space of a finite di-
mensional associative algebra can be provided with a structure of coassociative coalgebra structure and also.
In addition, if (A,µ) is an associative algebra and (M,∆) a coassociative coalgebra, the space Hom(M,A)
can be provided with an associative algebra structure. All these notions can be extended to n-ary algebras.

An n-ary partially associative algebra has a product µ satisfying:

n−1∑

p=0

(−1)p(n−1)µ ◦ (Ip ⊗ µ⊗ In−1−p) = 0.

We can give the following definition of partially coassociative n-ary coalgebra.

Definition 17 An n-ary comultiplication on a K-vector space M is a map

∆ :M →M⊗n.

An n-ary partially coassociative coalgebra is a K-vector space M provided with an n-ary comultiplication ∆
satisfying

n−1∑

p=0

(−1)p(n−1)(Ip ⊗∆⊗ In−1−p) ◦∆ = 0.

An n-ary totally coassociative coalgebra is a K-vector space M provided with an n-ary comultiplication ∆
satisfying

(Ip ⊗∆⊗ In−1−p) ◦∆ = (∆⊗ In−1) ◦∆,
for any p ∈ {0, · · · , n− 1}.

If (A, µ) is an n-ary algebra and (M,∆) an n-ary coalgebra we set

A(µ) =
n−1∑
p=0

(−1)p(n−1)µ ◦ (Ip ⊗ µ⊗ In−1−p),

Ã(∆) =
n−1∑
p=0

(−1)p(n−1)(Ip ⊗∆⊗ In−1−p) ◦∆.

Then an n-ary algebra (A, µ) is partially associative if and only if A(µ) = 0, and an n-ary coalgebra (M,∆)
is partially coassociative if and only if Ã(∆) = 0.

For any natural number k and any K-vector spaces E and F , we denote by

λk : Hom(E,F )
⊗k −→ Hom(E⊗k, F⊗k)

the natural embedding

λk(f1 ⊗ ...⊗ fk)(x1 ⊗ ...⊗ xk) = f1(x1)⊗ ...⊗ fk(xk).
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Proposition 8 The dual space of an n-ary partially coassociative coalgebra is provided with a structure of
n-ary partially associative algebra.

Proof. Let (M,∆) be an n-ary partially coassociative coalgebra. We consider the multiplication on the dual
vector space M∗ of M defined by

µ = ∆∗ ◦ λn.

It provides M∗ with an n-ary partially associative algebra structure. In fact we have

µ(f1 ⊗ f2 ⊗ · · · ⊗ fn) = µK ◦ λn(f1 ⊗ f2 ⊗ · · · ⊗ fn) ◦∆ (2.4)

for all f1, · · · , fn ∈M∗, where µK is the multiplication in K. Equation (2.4) becomes

µ ◦ (Ip ⊗ µ⊗ In−1−p)(f1 ⊗ f2 ⊗ · · · ⊗ f2n−1)
= µK ◦ (λn(f1 ⊗ · · · ⊗ fp ⊗ µ(fp+1 ⊗ · · · ⊗ fp+n)⊗ fp+n+1 ⊗ · · · ⊗ f2n−1)) ◦∆

= µK ◦ λn(f1 ⊗ · · · ⊗ fp ⊗ (µK ◦ λn(fp+1 ⊗ · · · ⊗ fp+n) ◦∆)⊗ fp+n+1 ⊗ · · · ⊗ f2n−1) ◦∆

= µK ◦ (Ip ⊗ µK ⊗ In−1−p) ◦ λ2n−1(f1 ⊗ · · · ⊗ f2n−1) ◦ (Ip ⊗∆⊗ In−1−p) ◦∆.

Using associativity and commutativity of the multiplication in K, we obtain

∀p ∈ {0, · · · , n− 1}, µK ◦ (Ip ⊗ µK ⊗ In−1−p) = µK ◦ (µK ⊗ In−1),

so

n−1∑
p=0

(−1)p(n−1)µ ◦ (Ip ⊗ µ⊗ In−1−p)

= µK ◦ (µK ⊗ In−1) ◦ λ2n−1(f1 ⊗ · · · ⊗ f2n−1) ◦
n−1∑
p=0

(−1)p(n−1)(Ip ⊗∆⊗ In−1−p) ◦∆ = 0

and (M∗, µ) is an n-ary partially associative algebra. �

Proposition 9 The dual vector space of a finite dimensional n-ary partially associative algebra has an n-ary
partially coassociative coalgebra structure.

Proof. Let A be a finite dimensional n-ary partially associative algebra and let {ei}i=1,...,n be a basis of A.
If {fi} is the dual basis, then {fi1 ⊗ · · · ⊗ fin

} is a basis of (A∗)⊗n. We define a coproduct ∆ on A∗ by

∆(f) =
∑

i1,··· ,in

f(µ(ei1 ⊗ · · · ⊗ ein
))fi1 ⊗ · · · ⊗ fin

.

In particular

∆(fk) =
∑

i1,··· ,in

Ck
i1··· ,in

fi1 ⊗ · · · ⊗ fin
,

where Ck
i1··· ,in

are the structure constants of µ related to the basis {ei}. Then ∆ is a comultiplication of an
n-ary partially coassociative coalgebra. �

Now we study the convolution product. Let us recall that if (A, µ) is an associative K-algebra and (M,∆)
a coassociative K-coalgebra then the convolution product

f ⋆ g = µ ◦ λ2(f ⊗ g) ◦∆

providesHom(M,A) with an associative algebra structure. This result can be extended to the n-ary partially
associative algebras and partially coassociative coalgebras.
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Proposition 10 Let (A, µ) be an n-ary partially associative algebra and (M,∆) an n-ary totally coalgebra.
Then the algebra (Hom(M,A), ⋆) is an n-ary partially associative algebra, where ⋆ is the convolution product:

f1 ⋆ f2 ⋆ · · · ⋆ fn = µ ◦ λn(f1 ⊗ f2 ⊗ · · · ⊗ fn) ◦∆.

Proof. Let us compute the convolution product of functions of Hom(M,A). For any i = 1, · · · , n we have

f1 ⋆ · · · ⋆ fi−1 ⋆ (fi ⋆ fi+1 ⋆ · · · ⋆ fi+n−1) ⋆ fi+n ⋆ · · · ⋆ f2n−1
= µ ◦ λn(f1 ⊗ f2 ⊗ · · · ⊗ fi−1 ⊗ (fi ⋆ · · · ⋆ fi+n−1)⊗ fi+n ⊗ · · · ⊗ fn) ◦ ∆

= µ ◦ λn(f1 ⊗ · · · fi−1 ⊗ (µ ◦ λn(fi ⊗ · · · ⊗ fi+n−1) ◦∆)⊗ fi+n ⊗ f2n−1) ◦ ∆

= µ ◦ (Ii−1 ⊗ µ⊗ In−i) ◦ λ2n−1(f1 ⊗ f2 ⊗ · · · ⊗ f2n−1) ◦ (Ii−1 ⊗∆⊗ In−i) ◦ ∆.

Since ∆ is an n-ary totally associative product, we have

A(⋆)(f1 ⊗ · · · ⊗ f2n−1)
=

n−1∑
p=0

(−1)p(n−1)µ ◦ (Ip ⊗ µ⊗ In−1−p) ◦ λ2n−1(f1 ⊗ · · · ⊗ f2n−1) ◦ (Ip ⊗∆⊗ In−1−p) ◦∆

=




n−1∑
p=0

(−1)p(n−1)µ ◦ (Ip ⊗ µ⊗ In−1−p)


 ◦ λ2n−1(f1 ⊗ · · · ⊗ f2n−1) ◦ (∆⊗ In−1) ◦∆ = 0,

which proves the result.
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Chapter 3

The n-ary algebra of tensors and of

hypercubic matrices

We define a ternary product and more generally a (2k+1)-ary product on the vector space T p
q (E) of tensors

of type (p, q) that is contravariant of order p and covariant of order q and total order (p+ q). This product is
totally associative up to a permutation sk of order k (we call this property a sk-totally associativity). When
p = 2 and q = 1, we obtain a (2k + 1)-ary product on the space of bilinear maps on E with values on E,
which is identified to the cubic matrices. If we call a l-matrix a square tableau with l × · · · × l entrances
(if l = 3 we have the cubic matrices and we speak about hypercubic matrices as soon as l > 3), then the
(2k + 1)-ary product on T p

q (E) gives a (2k + 1)-product on the space of (p+ q)-matrices. We describe also
all these products which are sk-totally associative. We compute the corresponding quadratic operads and
their dual.

3.1 On n-ary associative algebras

3.1.1 Recall: n-ary partially and totally associative algebras

A n-ary algebra is a pair (V, µ) where V is a vector space on a commutative field K of characteristic 0 and
µ a linear map

µ : V ⊗n → V

where V ⊗n denotes the n-tensor product V ⊗ · · · ⊗ V (n times).

A n-ary algebra is partially associative if µ satisfies

n−1∑

p=0

(−1)p(n−1)µ ◦ (Ip ⊗ µ⊗ In−p−1) = 0, (3.1)

for any p = 0, · · · , n− 1, where Ij : V
⊗j → V ⊗j is the identity map and I0 ⊗ µ = µ⊗ I0 = µ. For example,

if n = 2 we have the classical notion of binary associative algebra.

A n-ary algebra is totally associative if µ satisfies

µ ◦ (µ⊗ In−1) = µ ◦ (Ip ⊗ µ⊗ In−p−1), (3.2)

for all p = 0, · · · , n − 1. For n = 2, the two notions of partially and totally associativity coincide with the
classical notion of associativity. A totally associative (2p)-ary algebra is partially associative. A totally
associative (2p+ 1)-ary algebra is partially associative if and only if µ is 2-step nilpotent (i.e. µ ◦i µ = 0 for
any i = 1, · · · , n with µ ◦i µ = µ ◦ (Ii−1 ⊗ µ⊗ In−i)) .

27
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3.1.2 Definition of n-ary σ-partially and σ-totally associative algebras

We can generalize Identities (3.1) and (3.2) using actions of the symmetric group on n elements Σn. This
generalization is in the spirite of the binary K[Σ3]-associative algebras introduced and developped in [23]
and [50].

Definition 18 For a permutation σ in Σn define a linear map

ΦV
σ : V ⊗

n → V ⊗
n

by
ΦV

σ (ei1 ⊗ · · · ⊗ ein
) = ei

σ−1(1)
⊗ · · · ⊗ ei

σ−1(n)
.

A n-ary algebra (V, µ) is σ-partially associative if

n−1∑

p=0

(−1)p(n−1)(−1)pε(σ)µ ◦ (Ip ⊗ (µ ◦ ΦV
σp)⊗ In−p−1) = 0, (3.3)

for all p = 0, · · · , n− 1,

and σ-totally associative if

µ ◦ (µ⊗ In−1) = µ ◦ (Ip ⊗ (µ ◦ ΦV
σp)⊗ In−p−1), (3.4)

for all p = 0, · · · , n− 1.

Example If n = 3 and σ = τ12 is the transposition exchanging 1 and 2 then a τ12-totally associative algebra
satisfies

µ(µ(e1, e2, e3), e4, e5) = µ(e1, µ(e3, e2, e4), e5) = µ(e1, e2(µ(e3, e4, e5)),

and a τ12-partially associative algebra satisfies

µ(µ(e1, e2, e3), e4, e5)− µ(e1, µ(e3, e2, e4), e5) + µ(e1, e2(µ(e3, e4, e5)) = 0.

3.2 A (2p + 1)-ary product on the vector space of tensors T 2
1 (E)

3.2.1 The tensor space T 2
1 (E)

Let E be a finite dimensional vector space over a field K of characteristic 0. We denote by T 21 (E) = E⊗E⊗E∗
the space of tensors covariant of degree 1 and contravaviant of degree 2. The space T 21 (E) is identified to the
space of linear maps

L(E ⊗ E,E) = {ϕ : E ⊗ E → E linear} .
Let {e1, · · · , en} be a fixed basis of E. The structure constants

{
Ck

ij

}
of ϕ ∈ T 21 (E) are defined by

ϕ(ei ⊗ ej) =
n∑

k=1

Ck
ijek.

Definition 19 The dual map of ϕ ∈ T 21 (E) is the tensor ϕ̃ ∈ T 12 (E) ≃ L(E,E ⊗ E) defined by

ϕ̃ : E → E ⊗ E
ek 7→

∑

1≤i,j≤n

Ck
ijei ⊗ ej .

If ϕ is considered as a multiplication on E, then ϕ̃ is a coproduct. For example, if ϕ is an associative product
then ϕ̃ is the corresponding coassociative coproduct (often denoted by ∆).
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3.2.2 Definition of a 3-ary product on T 2
1 (E)

Let ϕ1, ϕ2, ϕ3 be in T
2
1 (E). We define a 3-ary product µ by

µ(ϕ1, ϕ2, ϕ3) = ϕ1 ◦ ϕ̃2 ◦ ϕ3. (3.5)

As ϕ̃2 : E → E ⊗E, then ϕ1 ◦ ϕ̃2 ◦ϕ3 ∈ T 21 (E) and µ is well defined. Let us compute its stucture constants.
We denote by Ck

ij(l) the structure constants of ϕl (l = 1, 2, 3).

µ(ϕ1, ϕ2, ϕ3)(ei ⊗ ej) = ϕ1 ◦ ϕ̃2 ◦ ϕ3(ei ⊗ ej)

=

n∑

k=1

Ck
ij(3)ϕ1 ◦ ϕ̃2(ek)

=

n∑

k=1

∑

1≤l,m≤n

Ck
ij(3)C

k
lm(2)ϕ1(el ⊗ em)

=
n∑

t=1

n∑

k=1

∑

1≤l,m≤n

Ck
ij(3)C

k
lm(2)C

t
lm(1)et.

Thus if µ(ϕ1, ϕ2, ϕ3)(ei ⊗ ej) =
n∑

t=1

At
ij(1, 2, 3)et we get

At
ij(1, 2, 3) =

∑

1≤k,l,m≤n

Ck
ij(3)C

k
lm(2)C

t
lm(1).

Proposition 11 The 3-ary product in T 21 (E) given by

µ(ϕ1, ϕ2, ϕ3) = ϕ1 ◦ ϕ̃2 ◦ ϕ3
satisfies

µ(µ(ϕ1, ϕ2, ϕ3), ϕ4, ϕ5) = µ(ϕ1, µ(ϕ4, ϕ3, ϕ2), ϕ5)
= µ(ϕ1, ϕ2, µ(ϕ3, ϕ4, ϕ5)),

that is this product is τ13-totally associative.

Proof. We have

µ(µ(ϕ1, ϕ2, ϕ3), ϕ4, ϕ5)(ei ⊗ ej) = (ϕ1 ◦ ϕ̃2 ◦ ϕ3) ◦ ϕ̃4 ◦ ϕ5(ei ⊗ ej)

=
∑

t


∑

k,l,m

Ck
ij(5)C

k
lm(4)A

t
lm(1, 2, 3)


 et

=
∑

t


∑

k,l,m

∑

u,r,s

(
Ck

ij(5)C
k
lm(4)C

u
lm(3)C

u
rs(2)C

t
rs(1)

)

 et.

Thus the structure constant At
ij((1, 2, 3), 4, 5) of this tensor is

At
ij((1, 2, 3), 4, 5) =

∑

1≤
k, l,m
u, r, s

≤n

Ck
ij(5)C

k
lm(4)C

u
lm(3)C

u
rs(2)C

t
rs(1).

Similary

µ(ϕ1, ϕ2, µ(ϕ3, ϕ4, ϕ5))(ei ⊗ ej) = ϕ1 ◦ ϕ̃2 ◦ (ϕ3 ◦ ϕ̃4 ◦ ϕ5)(ei ⊗ ej)

=
∑

t

[
∑

u,r,s

Au
ij(3, 4, 5)C

u
rs(2)C

t
rs(1)

]
et

=
∑

t


∑

u,r,s


∑

k,l,m

Ck
ij(5)C

k
lm(4)C

u
lm(3)


Cu

rs(2)C
t
rs(1)


 et.
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Thus
At

ij(1, 2, (3, 4, 5)) =
∑

k, l,m
u, r, s

Ck
ij(5)C

k
lm(4)C

u
lm(3)C

u
rs(2)C

t
rs(1),

and
At

ij(1, 2, (3, 4, 5)) = At
ij((1, 2, 3), 4, 5).

We also have

µ(ϕ1, µ(ϕ2, ϕ3, ϕ4), ϕ5)(ei ⊗ ej) = ϕ1 ◦ ( ˜ϕ2 ◦ ϕ̃3 ◦ ϕ4) ◦ ϕ5(ei ⊗ ej)

=
∑

t


∑

k,l,m

Ck
ij(5)A

k
lm(2, 3, 4)C

t
lm(1)


 et

=
∑

t


∑

k,l,m

∑

u,r,s

Ck
ij(5)C

u
lm(4)C

u
rs(3)C

k
rs(2)C

t
lm(1)


 et,

and
At

ij(1, (2, 3, 4), 5) =
∑

k, l,m
u, r, s

Ck
ij(5)C

u
lm(4)C

u
rs(3)C

k
rs(2)C

t
lm(1).

This shows that
At

ij((1, 2, 3), 4, 5) = At
ij(1, (4, 3, 2), 5).

Remarks.

1. We can define in this way other non equivalent products by:




µ2(ϕ1, ϕ2, ϕ3) = ϕ3 ◦ ϕ̃2 ◦ ϕ1,
µ3(ϕ1, ϕ2, ϕ3) = ϕ1 ◦ ϕ̃2 ◦ tϕ3,
µ4(ϕ1, ϕ2, ϕ3) = ϕ3 ◦ ϕ̃2 ◦ tϕ1,

where tϕ(ei ⊗ ej) = ϕ(ej ⊗ ei).

2. If we identify a tensor ϕ to its structure constants
{
Ck

ij

}
and if we consider the family

{
Ck

ij

}
as a cubic

matrix {Cijk} with 3-entries, the product µ on T 21 (E) gives a 3-ary product on the cubic matrices. This last
product has been studied in [1].

3.2.3 A (2k + 1)-ary product on T 2
1 (E)

Let ϕ1, · · · , ϕ2k+1 be in T 21 (E). We define a (2k + 1)-ary product µ2k+1 on T
2
1 (E) putting

µ2k+1(ϕ1, · · · , ϕ2k+1) = ϕ1 ◦ ϕ̃2 ◦ · · · ◦ ϕ2k−1 ◦ ϕ̃2k ◦ ϕ2k+1.

Let sk be the permutation of Σ2k+1 defined by

sk(1, 2, · · · , 2k + 1) = (2k + 1, 2k, · · · , 2, 1),

that is sk = τ1 2k+1 ◦ τ2 2k ◦ · · · ◦ τk−1 k+1 = Πk
i=iτi 2k+1−i. It satisfies (sk)

2p = Id and (sk)
2p+1 = sk for any

p (it is a symmetry).

Recall that the (2k + 1)-ary product µ2k+1 is a sk-totally associative product if

µ2k+1 ◦ (µ2k+1 ⊗ I2k) = µ2k+1 ◦ (Ip ⊗ (µ2k+1 ◦ Φs
p

k
)⊗ I2k−p),

for p = 1, · · · , 2k. In particular, we have

µ2k+1 ◦ (µ2k+1 ⊗ I2k) = µ2k+1 ◦ (I2q ⊗ µ2k+1 ⊗ I2k−2q),

for any q = 1, · · · , k.
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Proposition 12 The product µ2k+1 is sk-totally associative.

Proof. In fact if we put

µ2k+1(ϕ1, · · · , ϕ2k+1)(ei ⊗ ej) =
∑

t

At
ij(1, 2, · · · , 2k + 1)et,

then At
ij(1, 2, · · · , 2k + 1) =

∑

a1, · · · , ak+1

k1, · · · , kk

Ck1
ij (2k + 1)Ck1

a1a2
(2k)Ck2

a1a2
(2k − 1) · · ·Ckk

a2k−1a2k
(2)Ct

a2k−1a2k
(1).

More precisely the line of superscripts is

(k1, k1, k2, k2, · · · , kk, kk, t),

and the line of subscripts

((i, j), (a1, a2), (a1, a2), (a3, a4), (a3, a4), · · · , (a2k−1, a2k), (a2k−1, a2k)).
Let us consider

µ2k+1 ◦ (Il ⊗ (µ2k+1 ◦ Φsl
k
)⊗ I2k−l)(ϕ1, · · · , ϕ4k+1)(ei ⊗ ej) =

∑
Bt

ijet.

Thus for l = 2r, we get

Bt
ij =

∑
Ck1

ij (4k + 1)Ck1
a1a2

(4k)Ck2
a1a2

(4k − 1) · · ·Ckk−r
a2k−2r−1a2k−2r (2k + l + 2)

A
kk−r+1
a2k−2r−1a2k−2r (l + 1, · · · , 2k + l + 1)C

kk−r+1
a2k−2r+1a2k−2r+2(l) · · ·Ct

a4k−1a4k
(1),

such that the line of superscripts is

(k1, k1, k2, k2, · · · , kk−r, h1, h1, · · · , hk, hk, kk−r+1, kk−r+1, · · · , kk, kk, t),

where the terms h1, · · · , hk, kk−r+1 correspond to the factor A
kk−r+1
a2k−2r−1a2k−2r (l + 1, · · · , 2k + l + 1). Such a

line is the same as the line of superscripts of

µ2k+1 ◦ (µ2k+1 ⊗ I2k)(ϕ1, · · · , ϕ4k+1)(ei ⊗ ej).

The line of subscripts is

((i, j), (a1, a2), (a1, a2), · · · , (a2k−2r−1, a2k−2r), (a2k−2r−1, a2k−2r), (β1β2), · · · , (β2k−1, β2k),
(a2k−2r−1, a2k−2r), · · · , (a4k−1, a4k)).

So
µ2k+1 ◦ ((µ2k+1 ⊗ I2k) = µ2k+1 ◦ (Il ⊗ (µ2k+1 ◦ Φsl

k
)⊗ I2k−l),

for l = 2r. Assume now that l = 2r + 1. In this case Bt
ij is of the form

∑
· · ·Ckk−r+1

a2k−2r−1a2k−2r
(2k + l + 2)Akk−r+1

a2k−2r+1a2k−2r+2
(2k + l + 1, · · · , l + 1)Ckk−r+1

a2k−2r+1a2k−2r+2
(l) · · · .

We find the same list of exponents and of indices that for µ2k+1 ◦ (µ2k+1 ⊗ I2k). This finishes the proof.
Consequences.

1. The product µ2k+1 on T
2
1 (E) induces directly a (2k + 1)-ary products on cubic matrices.

2. All the other products which are sk-totally associative corresponds to



µ22k+1(ϕ1, · · · , ϕ2k+1) = ϕ2k+1 ◦ ϕ̃2k ◦ · · · ϕ̃2 ◦ ϕ1,
µ32k+1(ϕ1, · · · , ϕ2k+1) = µ2k+1(

tϕ1, ϕ2, · · · , ϕ2k+1),
µ42k+1(ϕ1, · · · , ϕ2k+1) = µ22k+1(ϕ1, · · · , ϕ2k, tϕ2k+1).

and more generally
µ2k+1(

tϕ1, ϕ2,
t ϕ3, · · · , ϕ2k+1)

or
µ2k+1(

tϕ1, ϕ2,
t ϕ3, · · · , ϕ2k+1).
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3.3 Generalisation: a (2k + 1)-ary product on T p
q (E)

3.3.1 The vector space T p

q
(E)

Let E be a finite m-dimensional K-vector space. The vector space T p
q (E) is the space of tensors which are

contravariant of degree p and covariant of degree q. In {e1, · · · , em} is a fixed basis of E, a tensor t of T p
q (E)

is written

t =
∑

1 ≤ ik, jl ≤ n
1 ≤ k ≤ p
1 ≤ l ≤ q

t
j1,··· ,jq

i1,··· ,ip
ei1 ⊗ · · · ⊗ eip

⊗ ej1 ⊗ · · · ⊗ ejq

where (e1, · · · , em) is the dual basis of (e1, · · · , em). As

T p
q (E) = T p

0 (E)⊗ T 0q (E),

then the tensor space

T (E) =
∞∑

p,q=0

T p
q (E)

is an associative algebra with product

T p
q (E)× T l

m(E) → T p+l
q+m(E)

(K,L) 7→ K ⊗ L .

But this product is not internal on each component T p
q (E). In this section we will define internal (2p − 1)-

ary-product on the components.

The vector space T p
q (E) is isomorphic to the space L(E⊗p, E⊗q) of linear maps

t : E⊗
p → E⊗

q

.

We define the structure constants by

t(ei1 ⊗ · · · ⊗ eip
) =

∑
C

j1 ··· jq

i1 ··· ip
ej1 ⊗ · · · ⊗ ejq

.

For such a map we define t̃ by

t̃ : E⊗
q → E⊗

p

(ej1 ⊗ · · · ⊗ ejq
) 7→

∑
C

j1 ··· jq

i1 ··· ip
ei1 ⊗ · · · ⊗ eip

.

3.3.2 A (2k + 1)-ary product on T p

q
(E)

Definition 20 The map µ defined by:

µ(ϕ1, · · · , ϕ2k+1) = ϕ2k+1 ◦ ϕ̃2k ◦ ϕ2k−1 ◦ · · · ◦ ϕ̃2 ◦ ϕ1, (3.6)

for any ϕ1, · · · , ϕ2k+1 ∈ T s
r (E) is a (2k + 1)-ary product on T s

r (E).

We take an odd number of map ϕi so we get compostions of ϕ̃j+1 ◦ϕj : E
⊗p → E⊗

p

for j = 1, · · · , 2k− 1
and finally compose with ϕ2k−1 : E⊗

p → E⊗
q

so µ is well defined.

Proposition 13 The (2k + 1)-ary product µ on T p
q (E) defined by (3.6) is sk-totally associative.
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Proof. The proof is similar to the proof of Proposition 12 concerning an (2k + 1)-ary product on T 21 (E). In
fact we have

µ(ϕ1, · · ·ϕ2p+1)(ei1 ⊗ · · · ⊗ eip
) =

∑
A

r1···rq

i1···ip
er1
⊗ · · · ⊗ erq

,

and

A
r1···rq

i1···ip
= C

j1···jq

i1···ip
(2k + 1)C

j1···jq

l1···lp (2k)C
m1···mq

l1···lp (2k − 1) · · ·Cr1···rq

s1···sp
(1),

that is the line of superscripts is

(j1 · · · jq)(j1 · · · jq)(m1 · · ·mq)(m1 · · ·mq) · · · (n1 · · ·nq)(n1 · · ·nq)(r1 · · · rq),

and the line of subscripts is

(i1 · · · ip)(l1 · · · lp)(l1 · · · lp) · · · (s1 · · · sp)(s1 · · · sp).

Using the same arguments that in Proposition 12, changing pairs by p-uples and q-uples, we obtain the
announced result.

Remark. We can also use the same trick that in Consequences 2. to find others sk-totally associative
products on T p

q (E).

Applications. This product can be translated as a product of ”hypercubic matrices” that is square tableau
of length p+ q. This generalizes in a natural way the classical associative product of matrices.

3.4 Current (2k + 1)-ary sk-totally associative algebras

The name refers to current Lie algebras which are Lie algebras of the form L⊗ A where L is a Lie algebra
and A is a associative commutative algebra, equipped with bracket

[x⊗ a, y ⊗ b]L⊗A = [x, y]L ⊗ ab.

We want to generalize this notion to (2k + 1)-ary sk-totally associative algebras. The problem is to find
a category of (2k + 1)-ary algebras such that its tensor product with a (2k + 1)-ary sk-totally associative
algebra gives a (2k + 1)-ary sk-totally associative algebra with obvious operation on the tensor product.
Such a tensor product will be called current (2k+1)-ary sk-totally associative algebra. We first focus on the
ternary case and s1 = τ13.

Let (V, µ) be a 3-ary algebra where µ is a τ13-totally associative product on V (for example V = T 21 (E)
and µ is defined by (3.5) ) so µ satisfies Equations (3.4) for σ = τ13, that is,

µ(µ(e1, e2, e3), e4, e5) = µ(e1, µ(e4, e3, e2), e5) = µ(e1, e2(µ(e3, e4, e5)),

for any e1, e2, e3 in V. Let (W, µ̃) be a 3-ary algebra. Then the tensor algebra (V ⊗W,µ⊗ µ̃) is a 3-ary
τ13-totally associative algebra if and only if

(µ⊗ µ̃)(v1 ⊗ w1 ⊗ v2 ⊗ w2 ⊗ v3 ⊗ w3) = µ(v1, v2, v3)⊗ µ̃(w1, w2, w3)

satisfies the τ13-totally associativity relation. But





(µ⊗ µ̃) ◦ (µ⊗ µ̃⊗ I4) = µ ◦ (µ⊗ I2)⊗ µ̃ ◦ (µ̃⊗ I2),
(µ⊗ µ̃) ◦ (I2 ⊗ (µ⊗ µ̃) ◦ ΦV⊗W

τ13
⊗ I2) = µ ◦ (I ⊗ µ ◦ ΦV

τ13
⊗ I)⊗ µ̃ ◦ (I ⊗ µ̃ ◦ ΦW

τ13
⊗ I),

(µ⊗ µ̃) ◦ (I4 ⊗ µ⊗ µ̃) = µ ◦ (I2 ⊗ µ)⊗ µ̃ ◦ (I2 ⊗ µ̃),

then (µ⊗ µ̃) ◦ (µ⊗ µ̃⊗ I4)− (µ⊗ µ̃) ◦ (I4 ⊗ µ⊗ µ̃) = 0 is equivalent to

µ ◦ (µ⊗ I2)⊗ µ̃ ◦ (µ̃⊗ I2)− µ ◦ (I2 ⊗ µ)⊗ µ̃ ◦ (I2 ⊗ µ̃) = 0. (3.7)
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But µ ◦ (µ⊗ I2) = µ ◦ (I2 ⊗ µ). Thus Equation (3.7) is equivalent to
µ ◦ (µ⊗ I2)⊗ [µ̃ ◦ (µ̃⊗ I2)− µ̃ ◦ (I2 ⊗ µ̃)] = 0,

and
µ̃ ◦ (µ̃⊗ I2) = µ̃ ◦ (I2 ⊗ µ̃).

Similary
(µ⊗ µ̃) ◦ (µ⊗ µ̃⊗ I4)− (µ⊗ µ̃) ◦ (I4 ⊗ µ⊗ µ̃)
µ ◦ (µ⊗ I2)⊗

[
µ̃ ◦ (µ̃⊗ I2)− µ̃ ◦ (I ⊗ µ̃ ◦ ΦW

τ13
⊗ I)

]
= 0,

which leads to
µ̃ ◦ (µ̃⊗ I2) = µ̃ ◦ (I ⊗ µ̃ ◦ ΦW

τ13
⊗ I).

So µ⊗ µ̃ is τ13-totally associative if and only if µ̃ is τ13-totally associative.

Proposition 14 Let (V, µ) be a 3-ary τ13-totally associative algebra and (W, µ̃) be a 3-ary algebra. Then
(V ⊗W,µ⊗ µ̃) is a 3-ary τ13-totally associative algebra if and only if (W, µ̃) is also of this type.

This result can be extended for (2k + 1)-ary sk-totally associative algebras.

Proposition 15 Let (V, µ) be a (2k + 1)-ary sk-totally associative algebra and (W, µ̃) be a (2k + 1)-ary
algebra. Then (V ⊗W,µ⊗ µ̃) is a (2k + 1)-ary sk-totally associative algebra if and only if (W, µ̃) is also of
this type.

Proof. The product µ is a (2k + 1)-ary sk-totally associative product so satisfies

µ ◦ (µ⊗ I2k) = µ ◦ (I2q ⊗ µ⊗ I2k−2q)
= µ ◦ (I2q+1 ⊗ µ ◦ ΦV

s
q

k

⊗ I2k−2q−1),

for any q = 0, · · · , k. The system
(µ⊗ µ̃) ◦ ((µ⊗ µ̃)⊗ I4k)− (µ⊗ µ̃) ◦ (I4q ⊗ (µ⊗ µ̃) ◦ ΦV⊗W

s
q

k

⊗ I4k−2q) =
µ ◦ (µ⊗ I2k)⊗ µ̃ ◦ (µ̃⊗ I2k)− µ ◦ (Iq ⊗ µ ◦ ΦV

s
q

k

⊗ I2k−q)⊗ µ̃ ◦ (Iq ⊗ µ̃ ◦ ΦW
s

q

k

⊗ I2k−q) = 0,

for any q = 0, · · · , k is equivalent to

µ ◦ (µ⊗ I2k)⊗
[
µ̃ ◦ (µ̃⊗ I2k)− µ̃ ◦ (Iq ⊗ µ̃ ◦ ΦW

s
q

k

⊗ I2k−q)
]
= 0,

for any q = 0, · · · , k. Then µ⊗ µ̃ is (2k + 1)-ary sk-totally associative if and only if

µ̃ ◦ (µ̃⊗ I2k)− µ̃ ◦ (Iq ⊗ µ̃ ◦ ΦW
s

q

k

⊗ I2k−q) = 0

for any q = 0, · · · , k that is µ̃ is a (2k + 1)-ary sk-totally associative product.

3.5 The operads pAss3, 3-totτ13Ass

3.5.1 On the operad pAss3

We denote by pAss3 the quadratic operad of 3-ary -i.e. ternary- partially associative algebras (with operation
in degree 0). In [28] we compute the free 3-ary partially associative algebra based on a finite dimensional
vector space V. In [49] we notice that the dual operad is in general defined in the graded framework, compute
it, as the knowledge of the dual is fundamental to study if the operad is Kozsul or not. We prove in [49]
that pAss3 is not Koszul. Note that this result contradicts some affirmations of the Koszulity of the operad
pAss3. This confusion can be explained by observing the general case of the operad n-paAss for n-ary
partially associative algebras with operation of degree 0. If n is even ([17]), n-paAss is Koszul and the dual
operad n-paAss! is the operad n-totAss for n-ary totally associative algebras with operation of degree 0
(which is also Koszul). But if n = 2k + 1, the operad n-paAss! is not n-totAss but n-tot1Ass for totally
associative algebras with operation of degree 1 and this operad is not Koszul (see[49]). As a consequence we
deduce that for n odd, the operadic cohomology (which always exits) is not the cohomology which governs
deformations (which also always exits contrary to what is written in [3]). Remark that in [28] we have also
defined a cohomology of Hochschild type for 3-ary partially associative algebras with some extra conditions.
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3.5.2 The operad 3-totτ13Ass

We denote by 3-totτ13
Ass the quadratic operad for 3-ary τ13-totally associative algebras that is satisfying

Relation (3.3) for σ = τ13. Let µ be a 3-ary multiplication, and

E3-totτ13
Ass(m) =

{
< µ >≃ K[Σ3], if m = 3 and
0, if m 6= 3.

We simply say that E3-totτ13Ass = E3-totτ13Ass(3). The ideal of relation is generated by the K[Σ5]-closure
R3-totτ13Ass of the τ13-associativity

{
r1 = µ(µ⊗ I2)− µ(I ⊗ µ · τ13 ⊗ I),
r2 = µ(µ⊗ I2)− µ(I2 ⊗ µ),

where µ · σ = µ ◦ Φσ for σ ∈ Σ3.
If Γ(E3-totτ13Ass) denotes the free operad generated byE3-totτ13Ass, we get thatR3-totτ13Ass ⊂ Γ(E3-totτ13Ass)(5).

The operad for 3-ary τ13-totally associative algebras is then the quadratic 3-ary operad

3-totτ13Ass = Γ(E3-totτ13
Ass)/(R3-totτ13

Ass),

that is 3-totτ13
Ass(m) = Γ(E3-totτ13Ass)(m)/(R3-totτ13Ass)(m).

3.5.3 The current operad ˜3-totτ13Ass

In [51] we have defined, for a quadratic operad P, the current operad P̃ that is, the maximal operad P̃ such

that the tensor product of a P-algebra A and a P̃-algebra B is a P-algebra with the usual product on A⊗B.
Let us compute ˜3-totτ13

Ass.

Proposition 16 The current operad of the operad 3-totτ13Ass is 3-totτ13Ass itself that is

˜3-totτ13Ass = 3-totτ13Ass.

This result follows from the Proposition 14.

3.5.4 The dual operad 3-totτ13Ass!

For n-ary quadratic operad P = Γ(E)/(R) with E = E(n), the dual (quadratic n-ary) operad is defined as
follows

P ! = Γ(E)/(R⊥),

where E =↑n−2 E# ⊗ sgnn, ↑n−2 denotes the suspension iterated (n − 2) times, # the linear dual and
R⊥ ⊂ Γ(E)(2n− 1) is the annihilator of R ⊂ Γ(E)(2n− 1) with respect to the pairing between Γ(E)(2n− 1)
and Γ(E)(2n− 1).

Proposition 17 The dual operad of 3-totτ13Ass is

3-totτ13Ass! = 3-pa1τ13
Ass,

that is the operad for τ13-partially associative algebras with operation in degree 1.

Proof. The operad P = 3-totτ13
Ass is the quadratic operad defined by

P = Γ(E)/(R),
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where µ a ternary operation of degree 0, Γ(E) the free operad generated by E =< µ > and R ⊂ Γ(E) is the
generated as K[Σ5]-module by the relations

{
µ(µ⊗ I2)− µ(I ⊗ µ · τ13 ⊗ I),
µ(µ⊗ I2)− µ(I2 ⊗ µ).

We consider
µ ◦s µ = µ(Is−1 ⊗ µ⊗ I3−s),

which ”plugs” µ into the s-st input of µ and

(f · σ)(i1, i2, · · · , im) = f(iσ−1(1), iσ−1(2), · · · , iσ−1(m)),

if f ∈ Γ(µ)(m), σ ∈ Σm.

We get E(3) =< α > where α is a ternary operation of degree 1 satisfying < µ,α >= 1. The pairing
between Γ(E)(5) and Γ(E)(5) is given by

< (µ ◦j µ)(i1, i2, i3, i4, i5), (α ◦j α > (i1, i2, i3, i4, i5))

=< µ,α > sgn5

(
1 2 3 4 5
i1 i2 i3 i4 i5

)
= sgn5

(
1 2 3 4 5
i1 i2 i3 i4 i5

)
,

for j = 1, 2, 3. So

< (µ ◦1 µ− µ ◦2 µ · τ13)(1, 2, 3, 4, 5), (α ◦1 α− α ◦2 α · τ13 + α ◦3 α)(1, 2, 3, 4, 5) >
=< µ ◦1 µ, α ◦1 α > + < µ ◦2 µ · τ13, α ◦2 α · τ13 >
= 1− < µ ◦2 µ, α ◦2 α >= 1− 1 = 0,

< (µ ◦1 µ− µ ◦3 µ)(1, 2, 3, 4, 5), (α ◦1 α− α ◦2 α · τ13 + α ◦3 α)(1, 2, 3, 4, 5) >
=< µ ◦1 µ, α ◦1 α > − < µ ◦3 µ, α ◦3 α >= 1− 1 = 0.

The dual operad is then the quadratic operad

P ! = Γ(α)/(R⊥),

with α ternary operation of degree 1 and R⊥ generated by

α(α⊗ I2)− α(I ⊗ α · τ13 ⊗ I) + α(I2 ⊗ α).

So this operad is the operad of ternary τ13-partially associative algebras with operations of degree 1.

Remark. A direct computation similar to [49] shows that

dimP(3) = 6, dimP(5) = 5! , dimP(7) = 7! .

The generating function of P is similar to the generating function of 3-totAss. Likewise the generating
function of 3-pa1τ13

Ass is the generating function of 3-pa1Ass. ¿From [32] the operads 3-totAss and 3-pa1Ass
are Koszul. We conclude that 3-totτ13

Ass is Koszul.



Chapter 4

n-ary Lie algebras

The notion of n-ary algebras, that is vector spaces with a multiplication concerning n-arguments, n ≥ 3,
became fundamental since the works of Nambu. Here we first present general notions concerning n-ary
algebras and associative n-ary algebras. Then we will be interested in the notion of n-Lie algebras, initiated
by Filippov, and which is attached to the Nambu algebras. We study the particular case of nilpotent or
filiform n-Lie algebras to obtain a beginning of classification. This notion of n-Lie algebra admits a natural
generalization in Strong Homotopy n-Lie algebras in which the Maurer Cartan calculus is well adapted.

4.1 n-ary algebras

4.1.1 Basic definitions

Let K be a commutative field of characteristic zero and V a K-vector space. Let n be in N, n ≥ 2. A n-ary
algebra structure on V is given by a linear map

µ : V ⊗n → V.

We denote by (V, µ) such an algebra. Classical algebras (associative algebras, Lie algebras, Leibniz algebras
for example) are binary that is given by a 2-ary product. In this paper, we are interested in the study of
n-ary algebras for n ≥ 3. A subalgebra of the n-ary algebra (V, µ) is a vector subspace W of V such that the
restriction of µ to W⊗n satisfies µ(W⊗n) ⊂W. In this case (W,µ) is also a n-ary algebra.

Definition 21 Let (V, µ) be a n-ary algebra. An ideal of (V, µ) is a subalgebra (I, µ) satisfying

µ(V ⊗p ⊗ I ⊗ V ⊗n−p−1) ⊂ I,

for all p = 0, · · · , n− 1 and where V ⊗0 ⊗ I = I ⊗ V ⊗0 = I.

Definition 22 Let (V1, µ1) and (V2, µ2) be n-ary algebras. A morphism of n-ary algebras is a linear map
ϕ : V1 → V2 satisfying

µ2 ◦ ϕ⊗n = ϕ ◦ µ1.

In this case, the linear kernel Kerϕ of the morphism ϕ is an ideal of (V1, µ1). In fact, if v ∈ Kerϕ, then

ϕ(µ1(v1 ⊗ · · · ⊗ v ⊗ · · · ⊗ vn−1)) = µ2(ϕ(v1)⊗ · · · ⊗ ϕ(v)⊗ · · · ⊗ ϕ(vn−1)) = 0.

To simplify notations, we identify the linear map µ on V ⊗n with the corresponding n-linear map on V n.
Then we write µ(v1 ⊗ · · · ⊗ vn) as well as µ(v1 · v2 · · · vn).

37
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4.1.2 Anticommutative n-ary algebras

Let (V, µ) be a n-ary algebra. It is called anticommutative if µ(v1⊗· · ·⊗vn) = 0 whenever vi = vj for i 6= j.
Since K is of characteristic 0, this is equivalent to

µ(vσ(1) ⊗ · · · ⊗ vσ(n)) = (−1)ε(σ)µ(v1 ⊗ · · · ⊗ vn),

for any σ in the symmetric group Σn where (−1)ε(σ) is the signum of the permutation σ. If µ is an antisym-
metric n-ary multiplication, we write

[v1, · · · , vn]

instead of µ(v1 ⊗ · · · ⊗ vn).

4.1.3 Symmetric and commutative n-ary algebras

A n-ary algebra (V, µ) is called symmetric if it satisfies

µ(vσ(1) ⊗ · · · ⊗ vσ(n)) = µ(v1 ⊗ · · · ⊗ vn),

for all v1, · · · , vn ∈ V and for all σ ∈ Σn. It is called commutative if
∑

σ∈Σn

(−1)ε(σ)µ(vσ(1) ⊗ · · · ⊗ vσ(n)) = 0,

for all v1, · · · , vn ∈ V. Of course, any symmetric n-ary algebra is commutative.

4.1.4 Derivations

Let (V, µ) a n-algebra.

Definition 23 A derivation of the n-algebra (V, µ) is a linear map

D : V → V

satisfying

D(µ(v1, · · · , vn)) =

n∑

i=1

µ(v1, · · · , D(vi), · · · , vn),

for any v1, · · · , vn ∈ V .

All derivations of (V, µ) generate a subalgebra of Lie algebra gl(V ). It is called the algebra of derivations of
V and denoted by Der(V ).

Remark. For any v1, · · · , vn−1 in V , let ad(v1, · · · , vn−1) be the linear map given by

ad(v1, · · · , vn−1)(v) = µ(v1, · · · , vn−1, v).

Then this linear map is a (inner) derivation if and only if the product µ satisfies

µ(v1, · · · , vn−1, µ(u1, · · · , un)) =
n∑

i=1

µ(u1, · · · , µ(v1, · · · , vn−1, ui), · · · , un). (4.1)

We will study such a product for n-Lie algebras. If n = 2, this shows that the maps ad(X) are derivations
of (V, µ) if and only if the binary product satisfies

µ(v1, µ(u1, u2)) = µ(µ(v1, u1), u2) + µ(u1, µ(v1, v2))

and (V, µ) is a Leibniz algebra ([11]). Thus, for any n, a n-algebra (V, µ) satisfying Equation (4.1) is called
n-Leibniz algebra.
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4.1.5 Simple, nilpotent n-ary algebras

Definition 24 A n-ary algebra (V, µ) is called simple if

• µ is not abelian (i.e µ(V · · ·V ) 6= 0).

• Any ideal is isomorphic to V or is equal to 0.

We define the derived series by

{
V (1) = V,
V (k) = µ(V (k−1), V (k−1), V, · · · , V ),

and the lower central series by {
V 1 = V,
V k = µ(V k−1, V, V, · · · , V ).

Definition 25 The n-ary algebra (V, µ) is called

• Solvable if there is an integer k such that V (k) = 0.

• Nilpotent if there is an integer k such that V k = 0.

The definitions presented here are the definitions given in [35].

4.2 n-Lie algebras

Many notions of n-Lie algebras have been presented to generalize Lie algebras for n-ary algebras. The
first one is probably due to Filippov ([14]). These algebras have been studied from an algebraic point of
view (classification, simplicity, nilpotency, representations) and because of their relations with the Nambu
mechanic. The second one is the notion introduced with the strong homotopy algebra point of view. In this
paper we are concerned by the two approaches. To distinguish these different definitions we will call n-Lie
algebras the first one and Lie n-algebras or sh-n-Lie algebras in the second one. In this section, we study
Filippov algebras.

Definition 26 An anticommutative n-ary algebra is a n-ary Lie algebra or simpler n-Lie algebra if the
following Jacobi identity holds:

[[u1, · · · , un], v1, · · · , vn−1] =
n∑

i=1

[u1, · · · , ui−1, [ui, v1, · · · , vn−1], ui+1, · · · , un],

for any u1, · · · , un, v1, · · · , vn−1 ∈ V.

This last condition is called Jacobi identity for n-Lie algebras.

4.2.1 Fundamental examples

1. This example was given by Fillipov. Let A be a n-dimensional vector space on K. Let {v1, · · · , vn+1} be
a basis of V . The following product

[v1, v2, · · · , v̂i, · · · , vn+1] = (−1)n+1+ivi,

for i = 1, · · · , n+ 1 provides A with a n-Lie algebra structure. We denote this algebra An+1.

Theorem 27 If K = C, every simple n-Lie algebra is of dimension n+ 1 and it is isomorphic to An+1.
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2. Let A = K[X1, · · · , Xn] be the associative algebras of n indeterminates polynomials. We consider the
product

[P1, · · · , Pn] = Jac(P1, · · · , Pn),

where Jac denotes the Jacobian, that is the determinant of the Jacobian matrix of partial derivatives of
P1, · · · , Pn. Provided with this product, A is an infinite dimensional n-Lie algebra.

3. The Nambu brackets. It generalizes directly the previous example. Let A = C∞(R3) be the algebra of
differential functions on R3. This algebra is considered as classical observables on the three dimensional
space R3 with coordinates x, y, z. We consider on A the 3-product

{f1, f2, f3} = Jac(f1, f2, f3).

This product is a 3-Lie algebra product which generalizes the usual Poisson bracket from binary to ternary
operations.

4. ([56]). Let A = K[X1, · · · , Xn] be the associative algebra of n indeterminates polynomials. Let Ir be the
linear subspace of A linearly generated by the monomials of A of degree greater than or equal to r. Clearly
Ir is a subspace of I3 as soon as r ≥ 3. We define Jr = I3/Ir for r > 3. For any Q1, · · · , Qn ∈ Jr we put

[Q1, · · · , Qn] = Jac(Q1, · · · , Qn).

This product is a n-Lie algebra bracket and Q is a finite dimensional nilpotent n-Lie algebra.

5. Every n-Lie algebra of dimension n is abelian.

4.2.2 Nilpotent n-Lie algebras

In the first section we have defined nilpotency for general n-ary algebras. Since any n-Lie algebra is a
n-Leibniz algebra, any adjoint operator ad(v1, · · · , vn−1) is a derivation.

Theorem 28 ([35]) For any finite dimensional nilpotent Lie algebras, the adjoint operators are nilpotent.
Conversely, if the adjoint operators of the n-Lie algebra V are nilpotent, then V is nilpotent.

Assume that V is a finite dimensional complex nilpotent n-Lie algebra. We will generalize the notion of
characteristic sequence of Lie algebras to n-Lie algebras. We consider the set of generators of V which is
isomorphic to V/V 2.

Lemma 5
dimV/V 2 ≥ n.

Let us consider a free family {v1, · · · , vn−1} of n− 1 vectors of V − V 2. The operator ad(v1, v2, · · · , vn−1) is
a linear nilpotent operator of V admitting v1, · · · , vn−1 as eigenvectors associated to the eigenvalue 0. We
consider now the ordered sequence of the similitude invariants (the dimensions of Jordan blocks ) of this
operator. It is of type (c1, · · · , ck, 1, · · · , 1) with at least n − 1 invariant equal to 1, corresponding to the
dimension of the eigenspace generated by the eigenvectors vi. We assume that c1 ≥ · · · ≥ ck ≥ 0.We denote
this sequence c(v1, · · · , vn−1).

Definition 29 The characteristic sequence of the nilpotent n-Lie algebra is the sequence

c(V ) = max{c(v1, · · · , vn−1)},

where (v1, · · · , vn−1) are n−1 independent vectors of V −V 2, the order relation being the lexicographic order.

Assume that dimV = p. The possible extremal values of c(V ) are

• (1, · · · , 1) and V is an abelian n-Lie algebra,
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• (p − n + 1, 1, · · · , 1). This sequence corresponds to a nilpotent operator ad(v1, v2, · · · , vn−1) with a
biggest nilindex.

Definition 30 A p-dimensional complex (or real) nilpotent n-Lie algebra is called filiform is its characteristic
sequence is equal to (p− n+ 1, 1, · · · , 1︸ ︷︷ ︸

n−1

).

Examples

• We consider n = 3 and p = 4. The characteristic sequence is equal to (2, 1, 1). Let {v1, v2, v3, v4} be a
basis of V such that the characteristic sequence of ad(v1, v2) is (2, 1, 1). If {v3v4} is the Jordan basis
of this operator then we have

[v1, v2, v3] = v4.

¿From the classification of [8], we deduce that we have obtained the only filiform 3-Lie algebra of
dimension 4.

• We generalize easily this example. Let V be the p-dimensional 3-Lie algebra given by





[X1, X2, X3] = X4,
[X1, X2, X4] = X5,
· · ·
[X1, X2, Xp−1] = Xp.

It is also a filiform 3-Lie algebra. It is a model ([25]) of the filiform 3-Lie algebras of dimension p, that
is any p-dimensional filiform 3-Lie algebras can be contracted on this algebra.

• Every filiform 5-dimensional 3-Lie algebra is isomorphic to





[X1, X2, X3] = X4,
[X1, X2, X4] = X5,
[X1, X3, X4] = aX5,
[X2, X3, X4] = bX5.

4.2.3 Graded filiform n-Lie algebras

Let f be a derivation of a complex filiform n-Lie algebra V . We assume that f is diagonalizable. The
decomposition of eigenspaces of V gives a graduation of this n-Lie algebra. We consider the maximal abelian
subalgebra of Der(V ) given by the diagonalizable derivations of V which commute with f . We denote this
algebra T (f).

Definition 31 The rank of V is the biggest dimension amongst the dimensions of T (f) for any diagonalizable
derivation f .

Proposition 18 The rank of any filiform n-Lie algebra is equal to or smaller than n.

Proof. We consider the model given by

[X1, X2, · · · , Xn−1, Xi] = Xi+1,

for i = n+ 1, · · · , p− 1, with p = dimV . We can assume that X1, X2, · · · , Xn are eigenvectors. If we put

f(Xt) = λtXt,

for t = 1, · · · , n, then other eigenvalues are

λi = λ1 + · · ·+ λn−1 + λi−1
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and this implies
λi = (n− i)(λ1 + · · ·+ λn−1) + λn.

Thus λ1, · · · , λn are the independent roots of this algebra which is then of rank n. Let V1 be any filiform n-Lie
algebra of dimension p. There exists (X1, · · · , Xn−1) independent vectors in V1 − V 2

1 such that the charac-
teristic sequence of V1 is given by the nilpotent operator ad(X1, · · · , Xn−1). We consider the corresponding
Jordan basis of V1. It satisfies

[X1, X2, · · · , Xn−1, Xi] = Xi+1

and other brackets are linear combinations of Xn+1, · · · , Xp. Let ft be the endomorphism given by ft(Xl) =
Xl if 1 ≤ l ≤ n and ft(Xl) = tXl for n+ 1 ≤ l ≤ p. This endomorphism generates a contraction of V1 in the
model V . We deduce that the rank of V1 is smaller than the rank of V .

• Let us consider the filiform 3-algebra




[X1, X2, X3] = X4,
[X1, X2, X4] = X5,
[X1, X3, X4] = aX5,
[X2, X3, X4] = bX5.

Its rank is equal to 2. In fact, in the basis {X1, X2, X3 − aX2, X4, X5}, the algebra writes




[X1, X2, X3] = X4,
[X1, X2, X4] = X5,
[X1, X3, X4] = 0,
[X2, X3, X4] = bX5.

Any diagonalizable derivation which admits this basis as eigenvectors basis, satisfies

f(Xi) = λiXi

with
λ3 = λ1, λ4 = 2λ1 + λ2, λ5 = 3λ1 + 2λ2.

Then the rank is 2.

• For n = 2, we have the following important result: any Lie algebra which admits a nonsingular
derivation is nilpotent. This is false as soon as n ≥ 3. We have the interesting example ([56]): consider
the n-Lie algebra given by

[X1, X2, · · · , Xn] = X2.

This algebra admits a non singular derivation but it is not nilpotent.

• In a forthcoming paper we develop the classification of filiform 3-Lie algebras whose rank is not 0.

4.3 sh-n-Lie algebras or Lie n-algebras

4.3.1 Definition

Definition 32 Let µ be a n-ary skewsymmetric product on a vector space A. We say that (A,µ) is a sh-n-Lie
algebra (or a Lie n-algebra) if µ satisfies the (sh)-Jacobi’s identity:

∑

σ∈Sh(n,n−1)
(−1)ǫ(σ)µ(µ(xσ(1), · · · , xσ(n)), xσ(n+1), · · · , xσ(2n−1)) = 0,

for any xi ∈ A, where Sh(n, n− 1) is the subset of Σ2n−1 defined by:

Sh(n, n− 1) = {σ ∈ Σ2n−1, σ(1) < · · · < σ(n), σ(n+ 1) < · · · < σ(2n− 1)}.



4.3. SH-N -LIE ALGEBRAS OR LIE N -ALGEBRAS 43

Moreover, we assume that µ is of degree n− 2.

For example, if n = 3, we have the following (sh)-Jacobi’s identity, writing (123)45 in place of µ(µ(x1, x2, x3), x4, x5):

(123)45− (124)35 + (125)34 + (134)25− (135)24 + (145)23− (234)15 + (235)14
−(245)13 + (345)12 = 0.

4.3.2 n-Lie algebras and sh-n-Lie algebras

Proposition 19 Any n-Lie algebra is a sh-n-Lie algebra.

Proof. The Jacobi condition for n-Lie algebras writes

µ ◦ (µ⊗ In−1) ◦ Φv = 0,

where v ∈ K[Σ2n−1], the algebra group of the symmetric group Σ2n−1 on 2n− 1 elements, given by

v = Id+
n∑

i=1

(−1)i(i, n+ 1, · · · , 2n− 1, 1, 2, · · · , i− 1, î, i+ 1, · · · , n),

where (i, n+ 1, · · · , 2n− 1, 1, 2, · · · , i− 1, î, i+ 1, · · · , n) is the permutation
(
1 2 · · · n n+ 1 n+ 2 · · · · · · · · · · · · 2n− 1
i n+ 1 · · · 2n− 1 1 2 · · · i− 1 i+ 1 · · · n

)
.

Let
w =

∑

σ∈Σ2n−1

(−1)ǫ(σ)σ.

We have in K[Σ2n−1], w ◦ v = α(n)w with α(n) = 1−n if n is odd and α(n) = 1+n if n is even. This shows
that the vector w is in the invariant subspace of K[Σ2n−1] generated by the vector v. This means that the
identity

µ ◦ (µ⊗ In−1) ◦ Φv = 0

implies
µ ◦ (µ⊗ In−1) ◦ Φw = 0

which is equivalent to the Jacobi identity for sh-n-Lie algebras.

Proposition 20 A sh-n-Lie algebra is a n-Lie algebra if and only if any adjoint operator is a derivation.

Proof. We have seen that a n-Lie algebra is a n-Leibniz algebras and these last are characterized by the
fact that any adjoint operator is a derivation.

Remark. Colored Lie algebras, colored n-Lie algebras. Let us consider a binary algebra with a
skew symmetric product satisfying a colored Jacobi identity:

α[[Xi, Xj ], Xk] + β[[Xj , Xk], Xl + γ[[Xk, Xi], Xj ] = 0,

for any i < j < k, the constants α, β, γ being in K. This identity is related to the vector v = αId+ βc+ γc2

of K[Σ3]. Let w = Id− τ12 − τ13 − τ23 + c+ c2 the vector of K[Σ3]. Since K is of characteristic 0, the Jacobi
identity, is equivalent to

µ ◦ (µ⊗ Id) ◦ Φw = 0.

But in K[Σ3] we have
w ◦ v = (α+ β + γ)w.

Then, if α+ β + γ 6= 0, the colored Lie algebra satisfies the (non colored) Jacobi condition. This minimizes
the interest of the notion of colored Lie algebras. It is the same for colored n-Lie algebras.
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4.3.3 3-Lie admissible algebras

To simplify notations, we consider the case n = 3. In this case the product is of degree 1. A 3-ary algebra
(A, ·) is called 3-Lie admissible if the antisymmetric product

[v1, v2, v3] =
∑

σ∈Σ3

(−1)ε(σ)vσ(1) · vσ(2) · vσ(3)

is a sh-3-Lie product.

Proposition 21 A n-ary algebra (A, ·) is 3-Lie admissible if and only if we have

∑

σ∈Σ5

(−1)ε(σ)((vσ(1) · vσ(2) · vσ(3)) · vσ(4) · vσ(5) + vσ(1) · (vσ(2) · vσ(3) · vσ(4)) · vσ(5)

+(vσ(1) · vσ(2) · (vσ(3) · vσ(4) · vσ(5))) = 0,

for any v1, v2, v3, v4, v5 ∈ A.

Examples.

• Any 3-ary partially associative algebra is 3-Lie admissible.

• In [52], a notion of σ-associative algebra have been introduced in the space of tensors (2, 1) based on
a vector space. In case of symmetric tensor, this product can be simplified. A symmetric tensor is
defined by its structure constants Tijk which satisfy

Tijk = Tjki = Tkij .

The 3-product T · U · V whose structure constants are

(T · U · V )ijk =
∑

l

TlijUlkiVljk

is 3-Lie admissible. Moreover the associated sh-3-Lie algebra is a 3-Lie algebra.

4.3.4 Maurer-Cartan equations

We assume in this section that any n-Lie algebras is of finite dimension. To simplify the presentation, we
assume also that n = 3. Let V be a finite dimensional 3-Lie algebras. Let {v1, · · · , vp} be a basis of V . The
structure constants of V related to this basis are given by

{vi, vj , vk} =
l∑

l=1

Cl
i,j,kvl

and satisfy

Cl
ijk = (−1)ε(σ)Cl

σ(i)σ(j)σ(k),

for any σ ∈ Σ3. The Jacobi condition writes

Ct
ijkC

s
tlm − Ct

ijlC
s
tkm + Ct

ijmC
s
tjk + Ct

iklC
s
tjm − Ct

ikmC
s
tjl + Ct

ilmC
s
tjl

−Ct
jklC

s
tim + Ct

jkmC
s
til − Ct

jlmC
s
tik + Ct

klmC
s
tij = 0,

for any i < j < k, l < m and s, t = 1, · · · , p. Let {ω1, · · · , ωp} be the dual basis of {v1, · · · , vp}. We consider
the graded exterior algebra Λ(V ) = ⊕Λk of V and the linear operator

d : Λ1(V ) = V ∗ → Λ3(V )
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given by

dωl =
∑

i<j<k

Cl
ijkωi ∧ ωj ∧ ωk.

If we denote also by d the linear operator

d : Λ3(V ) = V ∗ → Λ5(V )

defined by
d(ωi ∧ ωj ∧ ωk) = dωi ∧ ωj ∧ ωk + ωi ∧ dωj ∧ ωk + ωi ∧ ωj ∧ dωk,

we obtain
d(dωl) =

∑

i<j<k

Cl
ijk(dωi ∧ ωj ∧ ωk + ωi ∧ dωj ∧ ωk + ωi ∧ ωj ∧ dωk

=
∑

i<j<k

Cl
ijk(C

i
lstωl ∧ ωs ∧ ωt ∧ ωj ∧ ωk + Cj

lstωi ∧ ωl ∧ ωs ∧ ωt ∧ ωk

+Ck
lstωi ∧ ωj ∧ ωl ∧ ωs ∧ ωt).

In this summand, all the products containing two equal factors are zero (this justifies to use the exterior
algebra). In the same way, the Jacobi condition related to five vectors is trivial as soon as two vectors are
equal. In fact, if we compute the Jacobi condition for the vectors (X1, X2, X3, X1, X1) we find 0 = 0 and for
the vector (X1, X2, X3, X1, X5) we find

[[X1, X2, X3], X1, X5] + [[X1, X2, X5], X3, X1]− [[X1, X3, X5], X2, X1]
−[[X2, X3, X1], X1, X5]− [[X2, X1, X5], X1, X3]− [[X3, X1, X5], X1, X2] = 0,

that is, 0 = 0. Thus the Jacobi condition concerns a family of 5 independent vectors. Let us return to the
computation of d(dω). The coefficient of d(dωl) related for example to ω1 ∧ω2 ∧ω3 ∧ω4 ∧ω5 corresponds to
the coefficient of Xl in the Jacobi condition related to (X1, X2, X3, X4, X5). Thus

d(dωl) = 0.

These relations can be called the Maurer-Cartan equations.

Remark. We cannot use the same calculus to obtain Maurer-Cartan equations adapted to the structure
of n-Lie algebras. This means that the Maurer-Cartan equations of a n-Lie algebra are the Maurer-Cartan
equations of this algebra considered as a sh-n-Lie algebra. In the classical case of Lie algebras, we have also
such a situation. For example, when we consider the 2-step nilpotent Lie algebras, defined by the 2-step
Jacobi condition

[[Xi, Xj ], Xk] = 0,

there is no exterior calculus adapted to this special Jacobi condition. The Maurer-Cartan equations of a
2-step nilpotent algebra are the Maurer-Cartan equations of this algebra considered as a Lie algebra.
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Part II

Arithmetic of Intervals
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Chapter 5

An algebraic approach to the set of

intervals.

In this chapter we present the set of intervals as a normed vector space. We define also a four-dimensional
associative algebra whose product gives the product of intervals in any cases. With this approach we obtain
a notion differential calculus and a natural linear algebra on the set of intervals.

Introduction The interval arithmetic, or interval analysis has been introduced to compute very quickly
range bounds (for example if a data is given up to an incertitude). Now interval arithmetic is a computing
system which permits to perform error analysis by computing mathematic bounds. The extensions of the
areas of applications is important: non linear problems, PDE, inverse problems. It finds a large place of
applications in controllability, automatism and robotic. The interval arithmetic is based on the following
natural operations (called also Minkowski operations): if X and Y are bounded intervals of R, then

X ⋄ Y = {x ⋄ y / x ∈ X, y ∈ Y },

where ⋄ denotes a binary operation such as +,−, ∗. Thus the set of intervals IR of R is a set provided with
some binary operations but these operations do not give an algebraic structure on IR. In many problems
using interval arithmetic, there exists an informal transfers principle which permits, to associate with a
real function f a function define on the set of intervals IR which coincides with f on the interval reduced
to a point. But this transferred function is not unique. For example, if we consider the real function
f(x) = x2 + x = x(x+ 1), we associate naturally the functions f̃1 : IR −→ IR given by f̃1(X) = X(X + 1)

and f̃2(X) = X2+X. As IR is not algebraically structured, these two functions do not coincide. Usually this
problem is removed considering the most interesting transfers. But the qualitative ”interesting” depends
of the studied model and it is not given by a formal process. There exists some properties of the inclusive
function ( see [33]). In this work, we determine a natural extension IR of IR provided with a vector space
structure. The vectorial substraction X r Y does not correspond to the classical difference of intervals and
the interval rX has no real interpretation. But these ”negative” intervals have a computational role. If a
problem conduce to a ”negative” result, then this problem is ”pervert” (see Lazare Carnot with his feeling on
the natural negative number). We prove also, in this paper, that the vector space IR is a Banach space, that
is, a complete normed space. The interest of such a structure is that it permits to introduce a differential
calculus and to use some important tools and the fixed point theorem.

The plan of this chapter is the following. In a first time we recall the semi-group structure on the set IR
of intervals. By a classical process of completion, we endow this completed semi-group, denoted by IR, with
a vector space structure. The norm given by ||X|| = l(X) + |c(X)| where l(X) is the length of the interval
X and c(X) the center of X is complete and (IR, ||.||) is a Banach space. We define the notion of differential
function with values of IR. Next we extend the classical product to have a distributivity property. We end
this chapter by giving some simple applications.

An interval is a bounded non empty connected closed subset of R. The classical arithmetic operations on
intervals are defined such that the result of the corresponding operation on elements belonging to operand

49
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intervals belongs to the resulting interval. That is, if ⋄ denotes one of the classical operations +,−, ∗, we
have

[x−, x+] ⋄ [y−, y+] = {x ⋄ y / x ∈ [x−, x+], y ∈ [y−, y+]} .

In particular we have {
[x−, x+] + [y−, y+] = [x− + y−, x+ + y+],
[x−, x+]− [y−, y+] = [x− − y+, x+ − y−]

and

[x−, x+]− [x−, x+] = [x− − x+, x+ − x−] 6= 0.

Let IR be the set of intervals. It is in one to one correspondence with the half plane of R2:

P1 = {(a, b), a ≤ b}.

This set is closed for the addition and P1 is endowed with a regular semi-group structure. Let P2 be the
half plane symmetric to P1 with respect to the first bisector ∆ of equation y − x = 0. The substraction on
IR, which is not the symmetric operation of +, corresponds to the following operation on P1:

(a, b)− (c, d) = (a, b) + s∆ ◦ s0(c, d),

where s0 is the symmetry with respect to 0, and s∆ with respect to ∆. The multiplication ∗ is not globally
defined. Consider the following subset of P1:




P1,1 = {(a, b) ∈ P1, a ≥ 0, b ≥ 0},
P1,2 = {(a, b) ∈ P1, a ≤ 0, b ≥ 0},
P1,3 = {(a, b) ∈ P1, a ≤ 0, b ≤ 0}.

We have the following cases:

1) If (a, b), (c, d) ∈ P1,1 the product is written (a, b) ∗ (c, d) = (ac, bd).

The vectors e1 = (1, 1) and e2 = (0, 1) generate P1,1 that is any (x, y) in P1,1, can be decomposed as

(x, y) = xe1 + (y − x)e2,with x > 0 and y − x > 0.

The multiplication corresponds in this case to the following associative commutative algebra:

{
e1e1 = e1,
e1e2 = e2e1 = e2e2 = e2.

2) Assume that (a, b) ∈ P1,1 and (c, d) ∈ P1,2 so c ≤ 0 and d ≥ 0. Thus we obtain (a, b) ∗ (c, d) = (bc, bd)
and this product does not depend of a. Then we obtain the same result for any a < b. The product
(a, b) ∗ (c, d) = (bc, bd) corresponds to {

e1e1 = e2e1 = e1
e1e2 = e2e2 = e2

This algebra is not commutative and it is different from the previous.

3) If (a, b) ∈ P1,1 and (c, d) ∈ P1,3 then a ≥ 0, b ≥ 0 and c ≤ 0, d ≤ 0 and we have (a, b) ∗ (c, d) = (bc, ad).
Let e1 = (1, 1), e2 = (0, 1). This product corresponds to the following associative algebra:





e1e1 = e1,
e1e2 = e2,
e2e1 = e1 − e2.

This algebra is not associative because (e2e1)e1 6= e2(e1e1). We have similar results for the cases (P1,2,P1,2), (P1,2
and (P1,3,P1,3).
An objective of this paper is to present an associative algebra which contains all these results.
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5.1 The real vector space IR

5.1.1 The group (IR,+)

We recall briefly the construction proposed by Markov [44] to define a structure of abelian group. As (IR,+)
is a commutative and regular semi-group, the quotient set, denoted by IR, associated with the equivalence
relations:

(x, y) ∼ (z, t)⇐⇒ x+ t = y + z,

for all x, y, z, t ∈ IR, is provided with a structure of abelian group for the natural addition:

(x, y) + (z, t) = (x+ z, y + t)

where (x, y) is the equivalence class of (x, y). We denote by r(x, y) the opposite of (x, y) . We have r(x, y) =
(y, x). If x = [a, a], a ∈ R, then (x, 0) = (0,−x) where −x = [−a,−a], and r(x, 0) = (0, x). In this case,
we identify x = [a, a] with a and we denote always by R the subset of intervals of type [a, a]. Naturally, the
group IR is isomorphic to the additive group R2 by the isomorphism (([a, b], [c, d])→ (a− c, b− d). We find
the notion of generalized interval.

Proposition 22 Let X = (x, y) be in IR. Thus

1.If l(y) < l(x), there is an unique A ∈ IR \ R such that X = (A, 0),

2. f l(y) > l(x), there is an unique A ∈ IR \ R such that X = (0, A) = r(A, 0),

3. If l(y) = l(x), there is an unique A = α ∈ R such that X = (α, 0) = (0,−α).

Any element X = (A, 0) with A ∈ IR− R is said positive and we write X > 0. Any element X = (0, A) with
A ∈ IR− R is said negative and we write X < 0. We write X ≥ X ′ if X rX ′ ≥ 0. For example if X and X ′
are positive, X ≥ X ′ ⇐⇒ l(X ) ≥ l(X ′).. The elements (α, 0) with α ∈ R∗ are neither positive nor negative.

5.1.2 Vector space structure on IR

In [44], one defines on the abelian group IR , a structure of quasi linear space with the external multiplication
given by ∀α, β, γ ∈ R and ∀a, b, c ∈ IR, we have





α ∗ (β ∗ γ) = (α ∗ β) ∗ γ,
γ ∗ (a+ b) = γ ∗ a+ γ ∗ b,
1 ∗ a = a,
(α+ β) ∗ c = α ∗ c+ β ∗ c if αβ > 0.

Our approach is a little bit different. We propose to construct a real vector space structure on the group
(IR,+). We recall that if A = [a, b] ∈ IR and α ∈ R+, the product αA is the interval [αa, αb]. We consider
the external multiplication:

· : R× IR −→ IR

defined, for all A ∈ IR, by {
α · (A, 0) = (αA, 0) ,

α · (0, A) = (0, αA) ,

for all α > 0. If α < 0 we put β = −α. So we put:
{
α · (A, 0) = (0, βA),

α · (0, A) = (βA, 0).

We denote αX instead of α · X . This operation satisfies

1. For any α ∈ R and X ∈ IR we have:
{
α(rX ) = r(αX ),
(−α)X = r(αX ).
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2. For all α, β ∈ R, and for all X ,X ′ ∈ IR, we have




(α+ β)X = αX + βX ,
α(X + X ′) = αX + αX ′,
(αβ)X = α(βX ).

The two other equalities are defined in the multiplication of quasi linear space. So we have the result:

Theorem 33 The triplet (IR,+, ·) is a real vector space and the vectors X1 = ([0, 1], 0) and X 2 = ([1, 1], 0)
of IR determine a basis of IR. So dimR IR = 2.

Proof. We have the following decompositions:

{
([a, b], 0) = (b− a)X1 + aX2,
(0, [c, d]) = (c− d)X1 − cX2.

The linear map
ϕ : IR −→ R2

defined by {
ϕ( ([a, b], 0) ) = (b− a, a),
ϕ( (0, [c, d]) ) = (c− d,−c)

is a linear isomorphism and IR is canonically isomorphic to R2.

Remark. Let E be the subspace generated by X2. The vectors of E correspond to the elements which have
a non defined sign. Then the relation ≤ defined in the paragraph 1.2 gives an order relation on the quotient
space IR/E.

5.1.3 A Banach structure on IR

Let us begin to define a norm on IR. Any element X ∈ IR is written (A, 0) or (0, A). We define its length
l(X ) as the length of A and its center as c(A) or −c(A) in the second case.

Theorem 34 The map || || : IR −→ R given by

||X || = l(X ) + |c(X )|

for any X ∈ IR is a norm.

Proof. We have to verify the following axioms:





1) ||X || = 0⇐⇒ X = 0,
2) ∀λ ∈ R ||λX|| = |λ|||X ||,
3) ||X + X ′|| ≤ ||X ||+ ||X ′||.

1) If ||X || = 0, then l(X ) = |c(X )| = 0 and X = 0.

2) Let λ ∈ R. We have

||λX|| = l(λX ) + |c(λX )| = |λ|l(X ) + |λ||c(X )| = |λ|||X ||.

3) We consider that I refers to X and J refers to X ′ thus X = (I, 0) or = (0, I). We have to study the two
different cases:
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i) If X + X ′ = (I + J, 0) or (0, I + J), then

||X + X ′|| = l(I + J) + |c(I + J)| = l(I) + l(J) + |c(I) + c(J)| ≤ l(I) + |c(I)|+ l(J) + |c(J)|
= ||X ||+ ||X ′||.

ii) Let X + X ′ = (I, J). If (I, J) = (K, 0) then K + J = I and

||X + X ′|| = ||(K, 0)|| = l(K) + |c(K)| = l(I)− l(J) + |c(I)− c(J)|

that is

||X + X ′|| ≤ l(I) + |c(I)| − l(J) + |c(J)| ≤ l(I) + |c(I)|+ l(J) + |c(J)| = ||X ||+ ||X ′||.

So we have a norm on IR.

Theorem 35 The normed vector space IR is a Banach space.

Proof. In fact, all the norms on R2 are equivalent and R2 is a Banach space for any norm. The vector space
IR is isomorphic to R2. Thus it is complete.

Remarks.

1. To define the topology of the normed space IR, it is sufficient to describe the ε-neighborhood of
any point χ0 ∈ IR for ε a positive infinitesimal number. We can give a geometrical representation,
considering χ0 = ([a, b], 0) represented by the point (a, b) ∈ R2. We assume that χ0 = ([a, b], 0) and ε
an infinitesimal real number. Let A1, · · · , A4 the points A1 = (a− ε, b− ε), A2 = (a+ ε

2 , b− ε
2 ), A3 =

(a+ε, b+ε), A4 = (a− ε
2 , b+

ε
2 ). If 0 < a < b, then the ε-neighborhood of χ0 = ([a, b], 0) is represented

by the parallelograms whose vertices are A1, A2, A3, A4.

2. We can consider another equivalent norms on IR. For example

||X || = ||r X|| = Sup(|x|, |y|)

where X = ([x, y], 0). But we prefer the initial one because it has a better geometrical interpretation.

5.2 A 4-dimensional associative algebra associated to IR

5.2.1 Classical product of intervals

We consider X,Y ∈ IR. The multiplication of intervals is defined by

X · Y = [min(x−y−, x−y+, x+y−, x+y+),max(x−y−, x−y+, x+y−, x+y+)].

Let X = (X, 0) and X ′ = (Y, 0) be in IR. We put

XX ′ = (XY, 0).

For this product we have:

Proposition 23 For all X = (X, 0) and X ′ = (Y, 0) in IR, we have

||XX ′|| ≤ ||X || ||X ′||.
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Proof. If X = ([x1, x2], 0) then 



||X || = 3x2 − x1
2

if c(X ) > 0,

||X || = x2 − 3x1
2

if c(X ) < 0.

Considering the different situations, we obtain

||X ||||X ′|| − ||XX ′|| = 3

4
l(X )l(X ′)

or 1
2 ||X ||l(X ′) or 1

2 ||X ′||l(X ). These expressions are always positive. We have ||X ||||X ′|| = ||XX ′|| if X or
X ′ are reduce to one point.

Proposition 24 We consider X = (X, 0) and X ′ = (Y, 0) in IR. We have

X ⊂ Y ⇒ ||X || ≤ ||X ′||.

Proof. Consider X = [x1, x2] and Y = [y1, y2].

First case: y1 ≥ 0. So 2||X ′|| = 3y2 − y1. As X ⊂ Y , then 2||X || = 3x2 − x1 and ||X || ≤ ||X ′||.
Second case: y1 < 0, y2 > 0. If c(Y ) ≥ 0, so 2||X ′|| = 3y2− y1. If c(X) ≥ 0, from the first case ||X || ≤ ||X ′||.
Otherwise 2||X || = x2−3x1. Thus ||X || ≤ ||X ′|| if and only if 3y2−y1 ≥ x2−3x1, that is 3(y2+x1) ≥ x2+y1
which is true.

If c(Y ) ≤ 0, then 2||X ′|| = y2 − 3y1. If c(X) ≤ 0, thus 2||X || = x2 − 3x1 and ||X || ≤ ||X ′||. If c(X) ≥ 0,
||X || ≤ ||X ′|| is equivalent to y2 − 3y1 ≥ 3x2 − x1. But c(Y ) ≤ 0 implies y1 + y2 ≤ 0 and y2 − 3y1 ≥ 4y2.
Similarly 3x2 − x1 ≤ 4x2, thus y2 − 3y1 ≥ 3x2 − x1 because x2 ≤ y2.

Third case: y1 < 0, y2 < 0. Similar computations give the result.

Remark. If X > 0, i.e X = (X, 0), and X ′ < 0, i.e. X ′ = (0, Y ), so rX ′ > 0 and if X ⊂ Y we deduce
||X || ≤ ||r X ′|| = ||X ′||.

5.2.2 Definition of A4

In introduction, we have observed that the semi-group IR is identified to P1,1 ∪ P1,2 ∪ P1,3. Let us consider
the following vectors of R2





e1 = (1, 1),
e2 = (0, 1),
e3 = (−1, 0),
e4 = (−1,−1).

They correspond to the intervals [1, 1], [0, 1], [−1, 0], [−1,−1]. Any point of P1,1 ∪ P1,2 ∪ P1,3 admits the
decomposition

(a, b) = α1e1 + α2e2 + α3e3 + α4e4

with αi ≥ 0.The dependance relations between the vectors ei are

{
e2 = e3 + e1
e4 = −e1.

Thus there exists a unique decomposition of (a, b) in a chosen basis such that the coefficients are non negative.
These basis are {e1,e2} for P1,1, {e2, e3} for P1,2, {e3, e4} for P1,3, Let us consider the free algebra of basis
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{e1, e2, e3, e4} whose products correspond to the Minkowski products. The multiplication table is

e1 e2 e3 e4
e1 e1 e2 e3 e4
e2 e2 e2 e3 e3
e3 e3 e3 e2 e2
e4 e4 e3 e2 e1

.

This algebra is associative. Let us denote this 4-dimensional associative algebra by A4. If x, y ∈ A4, thus
x =

∑
αiei and y =

∑
βiei and the analytic expression of the product is

xy = (α1β1 + α4β4)e1 + (α1β2 + α2β1 + α2β2 + α3β3 + α3β4 + α4β3)e2
+(α1β3 + α3β1 + α2β3 + α3β2 + α2β4 + α4β2)e3 + (α1β4 + α4β1)e4.

Theorem 36 The multiplication of intervals in the algebra A4 is distributive with respect the addition.

Example. Let us consider the product

[2, 3]([−1, 3] + [2, 6]).

The classical operations give

[2, 3].[1, 9] = [2, 27]

and

[2, 3].[−1, 3] + [2, 3][2, 6] = [−3, 9] + [4, 18] = [1, 27]

this shows the non distributivity of the classical product. In A4 we have




[2, 3] = 2e1 + e2,
[−1, 3] = 3e2 + e3,
[2, 6] = 2e1 + 4e2.

Thus
[2, 3].[−1, 3] + [2, 3][2, 6] = (2e1 + e2)(3e2 + e3) + (2e1 + e2)(2e1 + 4e2)

= (9e2 + 3e3) + (4e1 + 14e2)
= 4e1 + 23e2 + 3e3

and
[2, 3].([−1, 3] + [2, 3]) = (2e1 + e2)((3e2 + e3) + (2e1 + 4e2))

= (2e1 + e2) + (2e1 + 7e2 + e3)
= 4e1 + 14e2 + 23e3 + 2e2 + 7e2 + e3
= 4e1 + 23e2 + 3e3.

The vector 4e1 + 23e2 + 3e3 ∈ P1,3. It is written

4e1 + 23e2 + 3e3 = 4e1 + 23e2 + 3(e2 − e1) = e1 + 26e2.

This vector corresponds to [1, 27]. Thus we have

[2, 3].[−1, 3] + [2, 3][2, 6] = [2, 3]([−1, 3] + [2, 6]) = [1, 27].

This example shows how to pass from A4 to IR.The difficulty results from the fact that the application
ϕ : IR →A4 is not bijective. It is defined by





x = [a, b] ∈ P1,1, ϕ(x) = ae1 + (b− a)e2 (a ≥ 0, b− a ≥ 0)
x = [a, b] ∈ P1,2, ϕ(x) = −ae3 + be2 (−a ≥ 0, b ≥ 0)
x = [a, b] ∈ P1,3, ϕ(x) = −be4 + (b− a)e3 (−b ≥ 0, b− a ≥ 0).
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Consider in A4 the linear subspace F generated by the vectors e1 − e2 + e3, e1 + e4. As

(e1 + e4)(e1 + e4) = 2(e1 + e4)
(e1 + e4)(e1 − e2 + e3) = e1 + e4
(e1 − e2 + e3)(e1 − e2 + e3) = e1,

F is not a subalgebra of A4. Let us consider the map

ϕ : IR →A4/F

defined from ϕ and the canonical projection on the quotient vector space A4/F . A vector x =
∑
αiei ∈ A4

is equivalent to a vector of A4 with positive components if and only if

α2 + α3 ≥ 0.

In this case, all the vectors equivalent to x =
∑
αiei with α2 + α3 ≥ 0 correspond to the interval [α1 −

α3 − α4, α1 + α2 − α4] of IR. Thus we have for any equivalent classes of A4/F associated with
∑
αiei with

α2 + α3 ≥ 0 we have a preimage in IR. The map ϕ is injective. In fact, two intervals belonging to pieces
P1,i,P1,j with i 6= j, have distinguish images. Now if (a, b) and (c, d) belong to the same piece, for example
P1,1, thus

ϕ(a, b) = {(a+ λ+ µ, b− a− λ, λ, µ), λ, µ ∈ R.}
If ϕ(c, d) = ϕ(a, b), there are λ, µ ∈ R such that (c, d) = (a+ λ+ µ, b− a− λ, λ, µ). This gives a = c, b = d.
We have the same results for all the other pieces.Thus ϕ : IR →A4/F is bijective on its image, that is the
hyperplane of A4/F corresponding to α2 + α3 ≥ 0.

Practically the multiplication of two intervals will so be made: letX,Y ∈ R. ThusX =
∑
αiei, Y =

∑
βiei

with αi, βj ≥ 0 and we have the product

X • Y = ϕ−1(ϕ(X).ϕ(Y ))

this product is well defined because ϕ(X).ϕ(Y ) ∈ Imϕ. This product is distributive because

X • (Y + Z) = ϕ−1(ϕ(X).ϕ(Y + Z))
= ϕ−1(ϕ(X).(ϕ(Y ) + ϕ(Z))
= ϕ−1(ϕ(X).ϕ(Y ) + ϕ(X).ϕ(Z))
= X • Y +X • Z

Remark. We have
ϕ−1(ϕ(X).ϕ(Y + Z)) 6= ϕ−1(ϕ(X)).ϕ−1(ϕ(Y + Z))).

We shall be careful not to return in IR during the calculations as long as the result is not found. Otherwise
we find the classic problems of the distributivity.

We extend naturally the map ϕ : IR →A4 to IR by

{
ϕ(A, 0) = ϕ(A)

ϕ(0, A) = −ϕ(A)

for every A ∈ IR.

Theorem 37 The multiplication
X ′ • X ′′ = ϕ−1(ϕ(X ′).ϕ(X ′′))

is distributive with respect the addition.

Proof. This is a direct consequence of the previous computations.
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5.2.3 The algebras An and an better result of the product

In this section, we compute the product of intervals using the product in A4 and we compare with the
Minkowski product. Let X = [a, b] and Y = [c, d] two intervals.

Lemma 6 If X and Y are not in the same piece P1,i, then X • Y corresponds to the Minkowski product.

Proof. i) If X ∈ P1,1 and Y ∈ P1,2 then ϕ(X) = (a, b− a, 0, 0) and ϕ(Y ) = (0, d,−c, 0). Thus

ϕ(X)ϕ(Y ) = (ae1 + (b− a)e2)(de2 − ce3)
= bde2 − cbe3
= (0, bd,−cb, 0)
= ϕ([cb, bd]).

ii) If X ∈ P1,1 and Y ∈ P1,3 then ϕ(X) = (a, b− a, 0, 0) and ϕ(Y ) = (0, 0, d− c,−d). Thus

ϕ(X)ϕ(Y ) = (ae1 + (b− a)e2)((d− c)e3 − de4)
= (ad− bc)e3 − ade4
= (0, 0, ad− cb,−ad)
= ϕ([bc, ad]).

iii) If X ∈ P1,2 and Y ∈ P1,3 then ϕ(X) = (0, b,−a, 0) and ϕ(Y ) = (0, 0, d− c,−d). Thus

ϕ(X)ϕ(Y ) = (be2 − ae3)((d− c)e3 − de4)
= ace2 − bce3
= (0, ac,−cb, 0)
= ϕ([bc, ad]).

Lemma 7 If X an Y are both in the same piece P1,1 or P1,3, then the product X • Y corresponds to the
Minkowski product.

The proof is analogous to the previous.

Let us assume that X = [a, b] and Y = [c, d] belong to P1,2. Thus ϕ(X) = (0, b,−a, 0) and ϕ(Y ) =
(0, d,−c, 0). We obtain

XY = (be2 − ae3)(de2 − ce3) = (bd+ ac)e2 + (−bc− ad)e3.

Thus
[a, b][c, d] = [bc+ ad, bd+ ac].

This result is greater that all the possible results associated with the Minkowski product. However, we have
the following property:

Proposition 25 Monotony property: Let X1,X2 ∈ IR. Then

{
X1 ⊂ X2 =⇒ X1 • Z ⊂ X2 • Z for all Z ∈ IR.
ϕ(X1) ≤ ϕ(X2) =⇒ ϕ(X1 • Z) ≤ ϕ(X2 • Z)

The order relation on A4 that ones uses here is




(x1, x2, 0, 0) ≤ (y1, y2, 0, 0)⇐⇒ y1 ≤ x1 and x2 ≤ y2,
(x1, x2, 0, 0) ≤ (0, y2, y3, 0)⇐⇒ x2 ≤ y2,
(0, x2, x3, 0) ≤ (0, y2, y3, 0)⇐⇒ x3 ≤ y3 and x2 ≤ y2,
(0, 0, x3, x4) ≤ (0, y2, y3, 0)⇐⇒ x3 ≤ y3,
(0, 0, x3, x4) ≤ (0, 0, y3, y4)⇐⇒ x3 ≤ y3 and y4 ≤ x4.



58 CHAPTER 5. AN ALGEBRAIC APPROACH TO THE SET OF INTERVALS.

Proof. Let us note that the second property is equivalent to the first. It is its translation in A4. We can
suppose that X1 and X2 are intervals belonging moreover to P1,2: ϕ(X1) = (0, b,−a, 0), ϕ(X2) = (0, d,−c, 0).
If ϕ(Z) = (z1, z2, z3, z4), then

{
ϕ(X1 • Z) = (0, bz1 + bz2 − az3 − az4,−az1 + bz3 − az2 + bz4, 0),
ϕ(X2 • Z) = (0, dz1 + dz2 − cz3 − cz4,−cz1 + dz3 − cz2 + dz4, 0).

Thus

ϕ(X1 • Z) ≤ ϕ(X2 • Z)⇐⇒
{

(b− d)(z1 + z2)− (a− c)(z3 − z4) ≤ 0,
−(a− c)(z1 + z2) + (b− d)(z3 = z4) ≤ 0.

But (b− d), −(a− c) ≤ 0 and z2, z3 ≥ 0. This implies ϕ(X1 • Z) ≤ ϕ(X2 • Z).

We can refine our result of the product to come closer to the result of Minkowski. Consider the one
dimensional extension A4⊕Re5 = A5, where e5 is a vector corresponding to the interval [−1, 1] of P1,2. The
multiplication table of A5 is

e1 e2 e3 e4 e5
e1 e1 e2 e3 e4 e5
e2 e2 e2 e3 e3 e5
e3 e3 e3 e2 e2 e5
e4 e4 e3 e2 e1 e5
e5 e5 e5 e5 e5 e5

.

The piece P1,2 is written P1,2 = P1,2,1 ∪ P1,2,1 where P1,2,1 = {[a, b],−a ≤ b} and P1,2,2 = {[a, b],−a ≥ b}.
If X = [a, b] ∈ P1,2,1 and Y = [c, d] ∈ P1,2,2, thus

ϕ(X).ϕ(Y ) = (0, b+ a, 0, 0,−a).(0, 0,−c− d, 0, d) = (0,−(a+ b)(c+ d), 0, 0, a(c+ d) + bd).

Thus we have
X • Y = [−bd− ac− ad,−bc].

Example Let X = [−2, 3] and Y = [−4, 2]. We have X ∈ P1,2,1 and Y ∈ P1,2,2. The product in A4 gives

X • Y = [−16, 14].

The product in A5 gives
X • Y = [−12, 10].

The Minkowski product is
[−2, 3].[−4, 2] = [−12, 8].

Thus the product in A5 is better.

Conclusion. Considering a partition of P1,2, we can define an extension of A4 of dimension n, the choice
of n depends on the approach wanted of the Minkowski product. For example, let us consider the vector e6
corresponding to the interval [−1, 12 ]. Thus the Minkowsky product gives e6.e6 = e7 where e7 corresponds
to [− 1

2 , 1]. We obtain a 7-dimensional associative algebra whose table of multiplication is

e1 e2 e3 e4 e5 e6 e7
e1 e1 e2 e3 e4 e5 e6 e7
e2 e2 e2 e3 e3 e5 e6 e7
e3 e3 e3 e2 e2 e5 e7 e6
e4 e4 e3 e2 e1 e5 e7 e6
e5 e5 e5 e5 e5 e5 e5 e5
e6 e6 e6 e7 e7 e5 e7 e6
e7 e7 e7 e6 e6 e5 e6 e7

.
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Example Let X = [−2, 3] and Y = [−4, 2]. The decomposition on the basis {e1, · · · , e7} with positive
coefficients writes

X = e5 + 2e7, Y = 2e6.

Thus

X • Y = (e5 + 2e7)(4e6) = 4e5 + 8e6 = [−12, 8].

We obtain now the Minkowski product.

5.2.4 Algebraic study of A4

In A4 we consider the change of basis 



e′1 = e1 − e2
e′i = ei, i = 2, 3
e′4 = e4 − e3.

This change of basis shows that A4 is isomorphic to A′4

e1 e2 e3 e4
e1 e1 0 0 e4
e2 0 e2 e3 0
e3 0 e3 e2 0
e4 e4 0 0 e1

.

The unit of A′4 is the vector e1 + e2. This algebra is a direct sum of two ideals: A′4 = I1 + I2 where I1
is generated by e1 and e4 and I2 is generated by e2 and e3. It is not an integral domain, that is, we have
divisors of 0. For example e1 · e2 = 0.

We denote by A′∗4 the group of invertible elements. We compute this group. The cartesian expression of
this product is, for x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) in A′4:

x · y = (x1y1 + x4y4, x2y2 + x3y3, x3y2 + x2y3, x4y1 + x1y4).

We consider the equation

x · y = (1, 1, 0, 0).

We obtain 



x1y1 + x4y4 = 1,
x2y2 + x3y3 = 1,
x3y2 + x2y3 = 0,
x4y1 + x1y4 = 0.

For a given vector x, we obtain a solution y if and only if:

(x21 − x24)(x22 − x23) 6= 0.

Proposition 26 The multiplicative group A∗4 is the set of elements x = (x1, x2, x3, x4) such that

{
x4 6= ±x1,
x3 6= ±x2.

If x ∈ A∗4 we have:

x−1 =

(
x1

x21 − x24
,

x2
x22 − x23

,
x3

x22 − x23
,

x4
x21 − x24

)
.
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5.3 Divisibility and an Euclidean division

We have computed the invertible elements of A′4. If x = (x1, x2, x3, x4) ∈ A′4 and if ∆ = (x21−x24)(x22−x23) 6= 0
then

x−1 =

(
x1

x21 − x24
,

x2
x22 − x23

,
x3

x22 − x23
,

x4
x21 − x24

)
.

The elements associated to X = (K, 0) are of the form





(x1, x2, 0, 0) if 0 < x1 < x2,
(0, x2,−x1, 0) if x1 < 0 < x2,
(0, 0,−x1,−x2) if x1 < x2 < 0,

and to X ∈ (0,K) 



(0, 0, x1, x2) if 0 < x1 < x2,
(−x1, 0, 0, x2) if x1 < 0 < x2,
(−x1,−x2, 0, 0) if x1 < x2 < 0.

The inverse of (x1, x2, 0, 0) with 0 < x1 < x2 is

(
1

x1
,
1

x2
, 0, 0

)
.

The inverse of (0, 0,−x1,−x2) with x1 < x2 < 0 is

(
0, 0,− 1

x1
,− 1

x2

)
.

The inverse of (0, 0, x1, x2) with 0 < x1 < x2 is

(
0, 0,

1

x1
,
1

x2

)
.

The inverse of (−x1,−x2, 0, 0) with x1 < x2 < 0 is

(
− 1

x1
,− 1

x2
, 0, 0

)
.

For X = (0, x2,−x1, 0) or (−x1, 0, 0, x2) with x1x2 < 0, then ∆ = 0 and X is not invertible. Then if ∆ 6= 0
the inverse is always represented by an element of IR thought ψ.

5.3.1 Division by an invertible element

We denote by IR
+
the subset (X, 0) with X = [x1, x2] and 0 ≤ x1.

Proposition 27 Let X = (X, 0) and Y = (Y, 0) be in IR
+

with X = [x1, x2], Y = [y1, y2]. If
y2
y1
≥ x2
x1

then

there exists an unique Z = (Z, 0) ∈ IR
+

such that Y = XZ.

Proof. Let Z be defined by c(Z) = 1
2

(
y2
x2

+
y1
x1

)
and l(Z) =

(
y2
x2
− y1
x1

)
. Then l(Z) ≥ 0 if and only if

y2
x2
≥ y1
x1

that is
y2
y1
≥ x2
x1
. Thus we have Y = XZ. In fact

(ϕ(X ))−1 =
(
1

x1
,
1

x2
, 0, 0

)
= ψ

(
(0, [− 1

x1
,− 1

x2
])

)
.

Thus

ϕ(Y) · ϕ(X )−1 = (y1, y2, 0, 0) ·
(
1

x1
,
1

x2
, 0, 0

)
=

(
y1
x1
,
y2
x2
, 0, 0

)
.

As
y1
x1
≤ y2
x2
,

ψ(ϕ(Y) · ϕ(X )−1) =
(
[
y1
x1
,
y2
x2
], 0

)
.
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We can note also that (
0, [− 1

x1
,− 1

x2
]

)
• ([y1, y2], 0) =

(
[
y1
x1
,
y2
x2
], 0

)
.

Then the divisibility corresponds to the multiplication by the inverse element.

5.3.2 Division by a non invertible element

Let X = [−x1, x2] with x1, x2 > 0. We have seen that ϕ(X) = (0, x2, x1, 0) is not invertible in A4. For any
M = (y1, y2, y3, y4) ∈ A4 we have

ϕ(X) ·M = (0, x2y2 + x1y3, x1y2 + x2y3, 0)

and this point represents a non invertible interval. Thus we can solve the equation Y = X • Z for X =
([−x1, x2], 0) , Y = ([−y1, y2], 0) with x1, x2 > 0 and y1, y2 > 0. Putting ϕ(Z) = (z1, z2, z3, z4), we obtain

(0, y2, y1, 0) = (0, x2, x1, 0) · (z1, z2, z3, z4),

that is {
y2 = x2z2 + x1z3,
y1 = x2z3 + x1z2,

or (
y1
y2

)
=

(
x1 x2
x2 x1

)(
z2
z3

)
.

If x21 − x22 6= 0, 



z2 =
x1y1 − x2y2
x21 − x22

,

z3 =
−x2y1 + x1y2

x21 − x22
.

If x21− x22 = 0 then x1 = x2 and the center of X = [−x1, x1] is 0. Let us assume that x1 6= x2. If x
2
1− x22 < 0

that is x1 < x2 then {
x1y1 − x2y2 < 0,
x1y2 − x2y1 < 0,

and
x1
x2

<
y2
y1
,
x1
x2

<
y1
y2
. If α =

x1
x2

< 1 we have y2 > αy1, y1 > αy2 then y2 > α2y2 and 1 − α2 > 0. This

case admits solution.

Proposition 28 Let X = ([−x1, x2], 0) with x1, x2 > 0 and x1 < x2. Then for any Y = ([−y1, y2], 0) with

y1, y2 > 0 and
x1
x2

<
y2
y1
,
x1
x2

<
y1
y2
, there is Z = ([−z1, z2], 0) such that Y = X • Z.

Suppose now that x21 − x22 > 0 that us x1 > x2. In this case we have
{
x1y1 − x2y2 > 0,
x1y2 − x2y1 > 0,

that is
y2
y1

<
x1
x2

and
y1
y2

<
x1
x2
.

Proposition 29 Let X = ([−x1, x2], 0) with x1, x2 > 0 and x1 > x2. For any Y = ([−y1, y2], 0) with

y1, y2 > 0,
x1
x2

>
y2
y1
,
x1
x2

>
y1
y2
, there is Z = ([−z1, z2], 0) such that Y = X • Z.

Example. X = ([−4, 2], 0), Y = ([−2, 3], 0). We have
x2
x1

=
1

2
,
x1
x2

= 2 and
3

2
< 2 < 6. Then Z exists and it

is equal to Z = ([− 8

12
,
2

12
], 0).
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5.3.3 An Euclidean division

Consider X = ([x1, x2], 0) and Y = ([y1, y2], 0) in IR
+
. We have seen that Y is divisible by X as soon as

x1
x2
≥ y1
y2
. We suppose now that

x1
x2

<
y1
y2
. In this case we have

Theorem 38 Let X and Y be in IR
+

with
x1
x2

<
y1
y2
. There is a unique pair (Z,R) unique in IR

+
such that

{
Y = X • Z +R,
l(R) = 0 and c(R) minimal.

This pair is given by 



Z =
y2 − y1
x2 − x1

([1, 1], 0),

R =
x2y1 − x1y2
x2 − x1

([1, 1], 0).

Proof. We consider Z = ([z1, z2], 0) with z1 > 0. Then Y = X • Z +R gives

R = ([y1, y2], [z1x1, z2x2]).

We have R ∈ IR
+
if and only if 0 ≤ y1 − x1z1 ≤ y2 − x2z2 that is





z1 ≤
y1
x1
,

z2 ≤
y2
x2
,

z1 ≥
y1 − y2 + x2z2

x1
.

The condition z1 ≤ z2 implies
y1 − y2 + x2z2

x1
≤ z2 that is z2 ≤

y2 − y1
x2 − x1

. Consider the case z2 =
y2 − y1
x2 − x1

.

Then z1 ≥
y1 − y2 + x2z2

x1
=
y2 − y1
x2 − x1

= z2 and z1 = z2. This case corresponds to





Z =
y2 − y1
x2 − x1

([1, 1], 0),

R =
x2y1 − x1y2
x2 − x1

([1, 1], 0).

Let us note that y1x2−x1y2 > 0 is equivalent to
y1
y2

>
x1
x2

which is satisfied by hypothesis. We have also for

this solution l(R) = 0 and c(R) = x2y1 − x1y2
x2 − x1

.

Conversely, if l(R) = 0 then y1−z1x1 = y2−z2x2 and z1 = z2
x2
x1
+
y1 − y2
x1

. As z1 > 0, we obtain z2 >
y1 − y2
x1

and z1 ≤ z2 implies
y2 − y1
x2

≤ z2 ≤
y2 − y1
x2 − x1

.

But c(R) = y1 − z1x1 = y2 − z2x2. Thus

x2y1 − x1y2
x2 − x1

≤ c(R) ≤ y1.

The norm is minimal when c(R) = x2y1 − x1y2
x2 − x1

.
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Example. Let X =([1, 4], 0) and Y = ([1, 3], 0). We have
x1
x2

=
1

4
<
y1
y2

=
1

3
. Thus Z =

2

3
([1, 1], 0) and

R =
1

3
([1, 1], 0). The division writes

([1, 3], 0) = ([1, 4], 0) · ([2
3
,
2

3
], 0) + ([

1

3
,
1

3
], 0).

Suppose now that X and Y are not invertible, that is X = ([−x1, x2], 0) and Y = ([−y1, y2], 0) with
x1,x2, y1, y2 positive. We have seen that Y is divisible by X as soon as





x1
x2

>
y2
y1

and
x1
x2

>
y1
y2
,

or
x1
x2

<
y2
y1

and
x1
x2

<
y1
y2
.

We suppose now that these conditions are not satisfied. For example we assume that

x1
x2

>
y2
y1

and
x1
x2

<
y1
y2

(The other case is similar). If Y = X • Z +R then R = ([−r1, r2], 0) with r1 ≥ 0 and with r2 ≥ 0 because
ϕ(R) = (0, r2, r1, 0). This shows that we can choose Z such that ϕ(R) = (0, z2, z3, 0) and





z2 =
x1(y1 − r1)− x2(y2 − r2)

x21 − x22
,

z3 =
x1(y2 − r2)− x2(y1 − r1)

x21 − x22
,

with the condition z2 ≥ 0 and z3 ≥ 0. If x1 < x2 then this is equivalent to




x1
x2

<
y2 − r2
y1 − r1

,

x1
x2

<
y1 − r1
y2 − r2

.

If we suppose that R ≤ Y, thus 0 < r2 < y2 and 0 < r1 < y1, we obtain

r1 >
x2
x1
r2 +

−x2y2 + x1y1
x1

< r1 <
x1
x2
r2 +

x2y1 − x1y2
x2

.

Then length l(R) = r1 + r2 is minimal if and only if r2 = 0 and in this case r1 =
x1y1 − x2y2

x1
. We obtain

{
z2 = 0,

z3 =
y2
x1
.

Theorem 39 Let X = ([−x1, x2], 0) with x1, x2 > 0 and x1 > x2. If Y = ([−y1, y2], 0) with y1, y2 > 0,

satisfies
x1
x2

>
y2
y1

and
x1
x2

<
y1
y2
, there is a unique pair R,Z of non invertible elements such that

{
l(R) minimal,
R < Y.

This pair is given by 



Z = ([− y2
x1
, 0], 0),

R = ([−x1y1 − x2y2
x1

, 0], 0).
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5.4 Applications

5.4.1 Differential calculus on IR

As IR is a Banach space, we can describe a notion of differential function on it. Consider X0 = (X0, 0)
in IR . The norm ||.|| defines a topology on IR whose a basis of neighborhoods is given by the balls
B(X0, ε) = {X ∈ IR, ||X rX0|| < ε}. Let us characterize the elements of B(X0, ε). X0 = (X0, 0) = ([a, b], 0).

Proposition 30 Consider X0 = (X0, 0) = ([a, b], 0) in IR and ε ≃ 0, ε > 0. Then every element of B(X0, ε)
is of type X = (X, 0) and satisfies

l(X) ∈ BR(l(X0), ε1) and c(X) ∈ BR(c(X0), ε2)

with ε1, ε2 ≥ 0 and ε1 + ε2 ≤ ε, where BR(x, a) is the canonical open ball in R of center x and radius a.

Proof. First case : Assume that X = (X, 0) = ([x, y], 0) . We have

X r X0 = (X,X0) = ([x, y], [a, b])

=

{
([x− a, y − b], 0) if l(X) ≥ l(X0)

(0, [a− x, b− y]) if l(X) ≤ l(X0)

If l(X) ≥ l(X0) we have

||X r X0|| = (y − b)− (x− a) +
∣∣∣∣
y − b+ x− a

2

∣∣∣∣
= l(X)− l(X0) + |c(X)− c(X0)|.

As l(X)− l(X0) ≥ 0 and |c(X)− c(X0)| ≥ 0, each one of this term if less than ε. If l(X) ≤ l(X0) we have

||X r X0|| = l(X0)− l(X) + |c(X0)− c(X)|.

and we have the same result.

Second case : Consider X = (0, X) = ([x, y], 0) . We have

X r X0 = (0, X0 +X) = ([x+ a, y + b])

and
||X r X0|| = l(X0) + l(X) + |c(X0) + c(X)|.

In this case, we cannot have ||X r X0|| < ε thus X /∈ B(X0, ε).

Definition 40 A function f : IR −→ R is continuous at X0 if

∀ε > 0,∃η > 0 such that ||X r X0|| < η implies ||f(X )r f(X0)|| < ε.

Consider (X1,X2) the basis of IR given in section 2. We have

f(X ) = f1(X )X1 + f2(X )X2 with fi : IR −→ R.

If f is continuous at X0 so

f(X )r f(X0) = (f1(X )− f1(X0))X1 + (f2(X )− f2(X0))X2.
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To simplify notations let α = f1(X ) − f1(X0) and β =f2(X ) − f2(X0). If ||f(X ) r f(X0)|| < ε, and if we
assume f1(X )− f1(X0) > 0 and f2(X )− f2(X0) > 0 (other cases are similar), then we have

l(αX1 + βX2) = l([β, α+ β], 0) < ε

thus f1(X )− f1(X0) < ε. Similarly,

c(αX1 + βX2) = c([β, α+ β], 0) =
α

2
+ β < ε

and this implies that f2(X )− f2(X0) < ε.

Corollary 41 f is continuous at X0 if and only if f1 and f2 are continuous at X0.

Examples.

• f(X ) = X . This function is continuous at any point.

• f(X ) = X 2. Consider X0 = (X0, 0) = ([a, b], 0) and X ∈ B(X0, ε). We have

||X 2 r X 2
0 || = ||(X r X0)(X + X0)||

≤ ||X r X0||||X + X0||.

Given ε > 0, let η =
ε

||X + X0||
, thus if ||X r X0|| < η, we have ||X 2 r X 2

0 || < ε and f is continuous.

• Consider P = a0+a1X+ · · ·+anX
n ∈ R[X]. We define f : IR −→ IR with f(X ) = a0X2+a1X + · · ·+

an
nXn where Xn = X · Xn−1 . From the previous example, all monomials are continuous, it implies
that f is continuous.

Definition 42 Consider X0 in IR and f : IR −→ IR continuous. We say that f is differentiable at X0 if
there is g : IR −→ IR linear such as

||f(X )r f(X0)r g(X r X0)|| = o(||X r X0||).

5.4.2 Study of the function q2

We consider the function q2 : IR −→ IR given by

q2([a, b], 0) =





([a2, b2], 0) if 0 < a < b,

([b2, a2], 0) if a < b < 0,

([0, sup(a2, b2)]) if a < 0 < b.

and q2(0, [a, b]) = q2([a, b], 0). For any invertible element X ∈ IR, we have q2(X ) = X • X . If X is not
invertible, it writes X = ([a, b], 0) with a < 0 < b ( we assume that X is of type (K, 0)). In this case X •X
= ([2ab, a2 + b2], 0) and q2 ⊂ X •X .

Proposition 31 The function q2 is continuous on IR.

Proof. Let X0 ∈ IR. Assume that X0 = ([a, b], 0) with 0 < a < b. An η -neighborhood is represented by the

parallelogram (A,B,C,D) with A = (a− η

2
, b+

η

2
), B = (a−η, b−η), C = (a+

η

2
, b− η

2
), D = (a+η, b+η).

We have q2(X0) = X 2
0 = ([a2, b2], 0). For any ε > 0 we consider the ε-neighborhood of q2(X0). it is represented
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by the parallelogram (A1, B1, C1, D1) with A1 = (a2− ε

2
, b2+

ε

2
), B1 = (a2−ε, b2−ε), C1 = (a2+

ε

2
, b2− ε

2
),

D1 = (a2 + ε, b2 + ε). If η satisfy 



2aη + η2 <
ε

2
,

η2 − 2aη > −ε
2

the for every point of the η-neighborhood of X0, the image q2(X ) is contained in the ε -neighborhood of

q2(X0). If a 6= 0, as ε is infinitesimal we have η =
ε

8a
. If a = 0, we have η = ε. Then q2 is continuous at the

point X0. Is X0 = ([a, b], 0) with a < b < 0, taking η = − ε

8a
we prove in a similar way the continuity at X0.

Assume that X0 = ([a, b], 0) with a < 0 < b then q2(X0) = ([0, sup(a2, b2)]). If X = ([x, y], 0) is an η-
neighborhood of X0 with q2(X ) = ([0, sup((x+ η)2, (y + η)2)]) then a− η < x < a+ η, b− η < y < b+ η and

we can find η such that sup(a2, b2)− ε

2
< sup((x+η)2, (y+η)2) < sup(a2, b2)+

ε

2
. Thus q2 is also continuous

in this point. As q2(0,K) = q2(K, 0), we have the continuity of any point.

Theorem 43 The function q2 is not differentiable.

Proof. The function q2 is differentiable at the point X0 if there is a linear map L such that

lim
||XrX0||→0

||q2(X )r q2(X0)r L(X r X0)||
||X r X0||

= 0.

We consider L be the linear function given by

L(X ) = 2X0 • (X ).

We assume that X0 = ([a, b], 0) with 0 < a < b. If X is in an infinitesimal neighborhood of X0, then
X = ([x, y], 0) with 0 < x < y.

• If 0 < x− a < y − b
X r X0 = ([x, y], [a, b]) = ([x− a, y − b], 0)

Thus L(X r X0) = 2([a, b], 0) • ([x− a, y − b], 0) = 2([a(x− a), b(y − b), 0) and

q2(X )r q2(X0)r L(X r X0) = ([x2, y2], 0)r ([a2, b2], 0)r 2([a(x− a), b(y − b), 0]),
= ([x2 − a2, y2 − b2], 0)r 2([a(x− a), b(y − b), 0]),
= ([(x− a)2, (y − b)2], 0).

We deduce

||q2(X )r q2(X0)r L(X r X0)|| = (y − b)2 − (x− a)2 + | (y − b)
2 + (x− a)2
2

|,

=
3(y − b)2 − (x− a)2

2
.

Thus
||q2(X )r q2(X0)r L(X r X0)||

||X r X0||
=
3(y − b)2 − (x− a)2
3(y − b)− (x− a) .

Then
||q2(X )r q2(X0)r L(X r X0)||

||X r X0||
≤ ε is equivalent to

3(y − b)2 − (x− a)2 ≤ ε(3(y − b)− (x− a)).

Then for every point of the ε-neighborhood of X0, the ε inequality of the differentiability is satisfied. This
shows that, if q2 is differentiable at X0, then the differential is the linear function L(X ) = 2X0 • X .
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• If 0 < a− x < y − b. We find again the previous case.

• If 0 < y − b < a− x, then

X r X0 = ([x, y], [a, b]) = ([x− a, y − b], 0).

Thus L(X r X0) = 2([a, b], 0) • ([x− a, y − b], 0) = 2([b(x− a), b(y − b), 0) and

q2(X )r q2(X0)r L(X r X0) = ([x2, y2], 0)r ([a2, b2], 0)r 2([b(x− a), b(y − b)], 0),
= ([x2 − a2, y2 − b2], 0)r 2([b(x− a), b(y − b)], 0),
= ([(x− b)2 − (a− b)2, (y − b)2], 0).

We deduce
||q2(X )r q2(X0)r L(X r X0)||

||X r X0||
=
3(y − b)2 − (x− b)2 + (a− b)2

(y − b) + 3(a− x) .

Then
||q2(X )r q2(X0)r L(X r X0)||

||X r X0||
≤ ε is equivalent to

3(y − b)2 − (x− b)2 + (a− b)2 ≤ ε(y − b) + 3(a− x).

We see that the representation of E doesn’t contains any points of the representation of a η-neighborhood
of X0 for all η. This gives a contradiction of the differentiability at X0.
Remarks.

1. In a following work, we will study the differentiability of the function s : IR −→ IR define by s[a, b] =
[−b,−a]. This function is used in numerical approach. It is different of the function χ −→ rχ.

2. Some applications concerning linear problems in the vector spaces IR, such as reductions of matrices
of intervals, eigenvalues, eigenspaces, are studied in [30].

3. Non-linear simplex methods using interval analysis and linear algebra of intervals is proposed in [?].
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Chapter 6

Linear Algebra in the vector space of

intervals IR

In the previous chapter, we have given an algebraic model to the set of intervals. Here, we apply this model
in a linear frame. We define a notion of diagonalization of square matrices whose coefficients are intervals.
But in this case, with respect to the real case, a matrix of order n could have more than n eigenvalues
(the set of intervals is not factorial). We consider a notion of central eigenvalues, this permits to describe
criterium of diagonalization. As application, we define a notion of Exponential map.

6.1 The module gl(n, IR)

Let gl(n, IR) be the set of square matrices of order n whose elements are in IR. A matrices of gl(n, IR) is
denoted by

A = (Xij)i,j=1,··· ,n

with Xij = (Kij , 0) or (0,Kij). It is clear that gl(n, IR) is a real vector space. We define a product by

A ·B = (Xij) · (Yij) = (Zij)

with Zij =
n∑

k=1

Xik · Ykj . Thus gl(n, IR) is an associative algebra.

Definition 44 A matrix A ∈ gl(n, IR) is called invertible if its determinant, computed by the Cramer rule,
is an invertible element in IR.

Recall that the group IR of invertible elements contain

Xi = (Ki, 0) or (0,Ki)

with 0 /∈ Ki. To compute the determinant, we use the classical Cramer formula.

Example 1. Let us consider the matrix

M =

(
[1, 2] [−1.3]
[−1, 3] [1, 2]

)

Thus

detB1 = ([1, 2], 0)([1, 2], 0)r ([−1, 3], 0)([−1, 3], 0)
= ([1, 4], 0)r ([−3, 9], 0)
= ([0, [−4, 5])
= r([−4, 5], 0).

69
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As ([−4, 5], 0) is not an invertible element of IR, the matrix B1 is not invertible.

Example 2. Now if

B2 =

(
[1, 2] [−1.3]
[−1, 3] [1, 7]

)

then, by the similar computation, we obtain

detB2 = r([−7,−4], 0)

and B2 is invertible.

Definition 45 If A is an invertible matrix on gl(n, IR), the inverse matrix A−1 of A is given by

A ·A−1 = Id

where

Id =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




with 1 = ([1, 1], 0) and 0 = ([0, 0], 0).

The determination of A−1 can be computed using the classical rules.

Example. If we consider the invertible matrix B2, we obtain

B−12 = [
1

7
,
1

4
]

(
[1, 7] r[−1.3]

r[−1, 3] [1, 2]

)
.

Let us verify that B2B
−1
2 = Id. Using the product on IR we obtain

B2B
−1
2 = [

1

7
,
1

4
]

(
[1, 2] [−1.3]
[−1, 3] [1, 7]

)
·
(

[1, 7] r[−1.3]
r[−1, 3] [1, 2]

)
.

The coefficient in place (1, 1) is

a11 = [
1

7
,
1

4
]([1, 2][1, 7] + [−1.3](r[−1, 3])).

¿From the definition of the product (see section 1), this element is

a11 = (
1

7
,
1

4
, 0, 0)((1, 2, 0, 0)(1, 7, 0, 0)− (0, 3, 1, 0)(0, 3, 1, 0)

= (
1

7
,
1

4
, 0, 0)((1, 14, 0, 0)− (0, 10, 6, 0))

= (
1

7
,
1

4
, 0, 0)(1, 4,−6, 0)

= (
1

7
,
1

4
, 0, 0)(7, 4, 0, 0)

= (1, 1, 0, 0)

which corresponds to [1, 1]. Similarly we have a12 = a21 = (0, 0, 0, 0) and a22 = (1, 1, 0, 0). Thus B2B
−1
2 = Id.
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6.2 Diagonalization

6.2.1 Eigenvalues and central eigenvalues

Let A be in gl(n, IR). An eigenvalue of A is an element X ∈ IR such that there exists a vector V 6= 0 ∈ IR
n

with
A ·t V = X ·t V.

Thus X is a root of the characteristically polynomial with coefficients in the ring IR

CA(X ) = det(A−X I) = 0.

Example. Let

B3 =

(
[1, 2] [1, 2]
[1, 3] [2, 5]

)
.

We have

B3 −X I =
(
[1, 2]r X [1, 2]
[1, 3] [2, 5]r X

)

and

det(B3 −X I) = ([1, 2]r X )([2, 5]r X )− [1, 3][1, 2]

= [2, 10]−X [2, 5]−X [1, 2] + (rX )(rX )− [1, 6]

= (rX )(rX )−X [3, 7] + [1, 4].

Let X = ([x, y], 0). It is represented in A4 by (x, y, 0, 0) or (0, y, x, 0) or (0, 0, x, y) = −(x, y, 0, 0).

First case: det(B3 − X I) = (x2, y2, 0, 0) − (3x, 7y, 0, 0) + (1, 4, 0, 0) = (x2 − 3x + 1, y2 − 7y + 4, 0, 0).
Then det(B3 −X I) = 0 implies {

x2 − 3x+ 1 = 0,
y2 − 7y + 4 = 0,

that is 



x =
3±

√
5

2
,

y =
7±

√
33

2
.

We obtain 



X1 = ([
3 +

√
5

2
,
7 +

√
33

2
], 0),

X2 = ([
3−

√
5

2
,
7 +

√
33

2
], 0),

X3 = ([
3−

√
5

2
,
7−

√
33

2
], 0).

Second case: det(B3−X I) = (0, y2+x2, 2xy, 0)− (0, 7y, 7x, 0)+ (1, 4, 0, 0) = (1, y2+x2− 7y+4, 2xy−
7x, 0). Then det(B3 −X I) = 0 implies

{
1− 2xy + 7x = 0,

y2 + x2 − 7y + 4 = 0.

This gives
4y4 − 56y3 + 261y2 − 455y + 197 = 0.

We have the following solutions

(x; y) = {(−2, 8; 3, 32), (2, 9; 3, 67), (−0, 17; 0, 63), (0, 17; 6, 37)}.
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We obtain the eigenvalues {
X4 = ([−2, 8, 3.32], 0),
X5 = ([−0.17, 0.63], 0).

Third case: det(B3 − X I) = (x2, y2, 0, 0) + (3x, 7y, 0, 0) + (1, 4, 0, 0) = (x2 + 3x + 1, y2 + 7y + 4, 0, 0).
Then det(B3 −X I) = 0 implies 




x =
−3±

√
5

2
,

y =
−7±

√
33

2
,

then

X6 = ([
−3−

√
5

2
,
−7 +

√
33

2
], 0).

We obtain six eigenvalues.

Remark. To compute the interval-eigenvalues of a matrix A, we have to find the roots of the character-
istically polynomial of A. But this polynomial is with coefficients in IR (or A4) and this set is not a field
neither a factorial ring. Then it is natural to meet some special results (e.g if we consider the second degree
polynomial X2−1 with coefficients in Z

8Z
which is not factorial, it admits four roots,1, 3, 5, 7.) In our example

we finds 6 roots. Now if we consider the real matrix whose coefficients are the centers of interval-coefficients
of B3, that is

cB3 =

(
1.5 1.5
2 3.5

)

then the eigenvalues of cB3
are 4.5 and 0.5 which are closed to the center of X1 and X3. We call these

eigenvalues, the central eigenvalues.

Definition 46 Let A be a matrix in gl(n, IR). Lat Ac be the real matrix whose elements are the center of the
intervals of A. We say that an eigenvalue of A is a central eigenvalue if its center is (close to) an eigenvalue
of Ac.

Remark. The determination of negative eigenvalues that is of type (0,K) is similar. Nevertheless we have
to consider only matrices with positive entries thus we studies only the positive eigenvalues. The negative
eigenvalues do not correspond to physical entities.

6.2.2 Eigenvectors, eigenspaces

Now we will look the problem of reduction of an interval matrix. Recall that the characteristically polynomial
is with coefficient in a non factorial ring. This is the biggest change with respect the classical real linear
algebra.

Definition 47 Let A a square matrix with coefficients in IR. If X is an eigenvalue of A, then every vector
V ∈ IR

n
satisfying AtV = X tV is an eigenvector associated with X .

Let EX be the set

EX = {V ∈ IR
n
such that AtV = X tV}.

Then EX is a R-subspace of IR
n
where n is the order of the matrix A. It is also a IR submodule of IR

n
.

Proposition 32 Let X1 and X2 be two distinguish eigenvalues of A. Then EX1
∩ EX2

= {0}.
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Proof . Let V be in EX1 ∩ EX2 . We have

AtV = X1V,
AtV = X2V.

This X1V r X2V = (X1 r X2)V = 0. As IR is without zero divisor, we have X1 r X2 = 0 or V = 0. We
deduce EX1 ∩ EX2 = {0}.

Proposition 33 Let CA(X ) be the characteristically polynomial of A. If the real polynomial CCA
(X ) asso-

ciated with the central matrix of A is a product of factor of degree 1, then CA(X ) admits a factorization on
IR

We have seen that CA(X ) can be have more than degree(CA(X ) roots. If X1, · · · ,Xn are the central roots,
we have the decomposition

CA(X ) = an

n∏

i=1

(X r Xi).

Example. If we consider the matrix

B3 =

(
[1, 2] [1, 2]
[1, 3] [2, 5]

)
.

then CB3(X ) admits X1, · · · ,X6 as positive roots. The central eigenvalues are X1 and X3 and we have

det(B3 r X I) = (X r X1)(X r X3).

If we consider the roots X2 = ([
3−

√
5

2
,
7 +

√
33

2
], 0), and if we assume that CB3s(X ) = (X r X2)(X r Y ),

we obtain

Y = (3, 7,
3−

√
5

2
,
7 +

√
33

2
) = (

3 +
√
5

2
,
7−

√
33

2
, 0, 0)

which does not correspond to a positive eigenvalue.

Theorem 48 For any n-uple of roots (X1, · · · ,Xn) such that CA(X ) = an

n∏
i=1

(X r Xi), and if for any i =

1, · · · , n the dimension of EXi
coincides with the multiplicity of Xi, then we have the vectorial decomposition

IR
n
= ⊕i∈IEXi

where the roots Xi, i ∈ I are pairwise distinguish.

Example. Let us compute the eigenspaces of B3 associated to the central eigenvalues.

• X1 = ([
3 +

√
5

2
,
7 +

√
33

2
], 0).

Let V =

(
V1
V2

)
∈ IR. Then

(A−X1I)
(
V1
V2

)
= 0

is equivalent to




(0, [
1 +

√
5

2
,
3 +

√
33

2
])V1 ([1, 2], 0)V2

([1.3], 0)V1 (0, [
−1 +

√
5

2
,
−3 +

√
33

2
])V2


 = 0
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that is 



r[
1 +

√
5

2
,
3 +

√
33

2
]V1 + [1, 2]V2 = 0,

[1.3]V1 r [
−1 +

√
5

2
,
−3 +

√
33

2
]V2 = 0.

This gives

V2 =
[
1 +

√
5

2
,
3 +

√
33

2
]V1

[1, 2]
.

If we choose V1 = ([1, 1], 0) we have

V2 =
[
1 +

√
5

2
,
3 +

√
33

2
]

[1,2]

= [
−1 +

√
5

2
,
−3 +

√
33

2
] • (r[−1, −12 ])

= r([− 3+
√
33

2 ,− 1+
√
5

4 ])

Thus the X1-eigenvectors are of the form

V =

(
([1, 1], 0)

r([− 3+
√
33

2 ,− 1+
√
5

4 ], 0)

)
.

Remark. We can choose V1 such that all the coordinates of V are positive. For example if V1 = [1, 2] then

V =




([1, 2], 0)

([
1 +

√
5

2
,
3 +

√
33

2
], 0)




• X3 = ([
3−

√
5

2
,
7−

√
33

2
], 0).

Let V =

(
V1
V2

)
∈ IR. Then

(A−X1I)
(
V1
V2

)
= 0

is equivalent to




([
−1 +

√
5

2
,
−3 +

√
33

2
], 0)V1 ([1, 2], 0)V2

([1.3], 0)V1 ([
1 +

√
5

2
,
3 +

√
33

2
], 0)V2


 = 0

that is 



[
−1 +

√
5

2
,
−3 +

√
33

2
]V1 + [1, 2]V2 = 0,

[1.3]V1 + [
1 +

√
5

2
,
−3 +

√
33

2
]V2 = 0.

This gives

V2 =
r([

−1 +
√
5

2
,
−3 +

√
33

2
])V1

[1, 2]
.
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If we choose V1 = ([1, 1], 0) we have

V2 =
r[
−1 +

√
5

2
,
−3 +

√
33

2
]

[1,2]

= r[
−1 +

√
5

2
,
−3 +

√
33

2
] • (r[−1, −12 ])

= ([3−
√
33

2 , 1−
√
5

4 ])

Thus the X3-eigenvectors are of the form

V =

(
([1, 1], 0)

([ 3−
√
33

2 , 1−
√
5

4 ], 0)

)
.

6.3 The Exponential map

We define the exponential map
Exp : gl(n, IR) −→ gl(n, IR)

in a classical way by series expansions. If the matrix A is diagonalizable, then

D = P−1AP

is diagonal and Exp(A) is a diagonal matrix whose diagonal element are the exponential of the eigenvalues.

Example. Let

B3 =

(
[1, 2] [1, 2]
[1, 3] [2, 5]

)
.

The central eigenvalues are 



X1 = ([
3 +

√
5

2
,
7 +

√
33

2
], 0),

X3 = ([
3−

√
5

2
,
7−

√
33

2
], 0).

and we have

D =

(
X1 0
0 X3

)

with

P =

(
([1, 1], 0) ([1, 1], 0)

r([− 3+
√
33

2 ,− 1+
√
5

4 ], 0) ([3−
√
33

2 , 1−
√
5

4 ], 0)

)
.

We deduce

Exp(B3) = P.




([exp(
3 +

√
5

2
), exp(

7 +
√
33

2
], 0)) 0

0 ([exp(
3−

√
5

2
), exp(

7−
√
33

2
], 0))


 .P−1

In a forthcoming paper, we apply this calculus to solve linear differential system.
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Chapter 7

The arithmetic of infinitesimal

intervals

7.1 Introduction

The intervals arithmetic is used in many domains. For example, in the geometrical conception of a robot.It
is necessary to look if the set of parameters does not contain some singularities. If we have to consider some
local minimal points, thus the system depends weakly of initial data. The problem of conditioning of a robot
can be approached by intervals arithmetic. A second important area of applications are problems where
one are obliged to take into account of some uncertainty. These appear when the parameters are not in a
reality given by real number (e.g the temperature, the degree of humidity..). Then the parameter have to be
substituted to an infinitesimal intervals containing all the possible values of the parameter. This appear too
in a computer calculus. A real number is not represented by a element of the real field but by an interval.
If the calculations are long or recurrent, it implies an accumulation of mistakes In this chapter we present a
study of infinitesimal intervals based :

1. On a non standard approach of infinitesimal numbers.

2. On the algebraic model of the set of intervals developed in the previous chapters.

7.2 Infinitesimal numbers

7.2.1 What are infinitesimal numbers

In 1964, A.Robinson [54] proposed a non archimedean extension of field, denoted by R∗, of the field R of
real numbers permitting to obtain a notion of infinitesimal numbers from their natural property

α ≃ 0⇐⇒ |α| < x for any x ∈ R

where ≃ 0 means infinitesimal. Such an element α ≃ 0 belongs to R∗ − R. We note that this relation on
R has no sense. In fact, the relation |α| < x for any x ∈ R implies α = 0. This is a consequence of the
archimedean property of R∗. And R doesn’t contain infinitesimal elements except zero, infinitesimal can
be understood in the natural sense, a number smallest that all the classical numbers. With the Robinson
extension, one sees that infinitesimals belong to R∗ − R. The elements of R∗ which belong to R are the
standard numbers, that is numbers constructed by standard process. Moreover, R∗ appears as the smallest
extension of the field R which contains infinitesimal numbers. Thus, all writings concerned by the classic
infinitesimal calculus express themselves very merely in Robinson’s extension. One can hope therefore that

77
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the use of the infinitesimal numbers facilitates the calculations. For example, classically, we have to use three
quantificators to express that f is derivable at x0 with derivative equal to a:

∀ε > 0,∃η,∀x, | x− x0 |< η ⇒ |f(x)− f(x0)
x− x0

| < ε.

Using infinitesimal numbers, the same identity writes:

| f(x0 + ε)− f(x0)
ε

|≃ a.

7.2.2 Characteristically properties of R∗

1. R∗ is a non-archimedean field that is

∃a, b ∈ R∗,∀n ∈ N, na < b

containing R as a subfield.

2) R∗ is a valued field. It exists a valuation v on R∗, that is a map

v : R∗ −→ G ∪∞

where G is an totaly ordered abelian group, satisfying





v(xy) = v(x) + v(y),
v(x+ y) ≥ min(v(x), v(y)),
v(x) =∞⇐⇒ x = 0.

We denote by L the associated valuation ring, that is

L = {x ∈ R∗; v(x) ≥ 0}.

It is a local ring admitting an unique maximal ideal m

m = {x ∈ R∗; v(x) > 0}.

3) Let m be the maximal ideal of the local ring L. The quotient ring
L
m

is a field ( because m is

maximal) isomorphic to R satisfying

x ∈ R∗ − L ⇐⇒ x−1 ∈ m.

If we interpreter the elements of R∗ − L as infinitely large elements, the previous relation means that
x is an infinitely large element if and only is the converse x−1 is infinitesimal. For the reasons L is
called the ring of limited numbers (limited is synonymous with not infinitely large) and m the ideal
of infinitesimal numbers.

Remark. E. Nelson, in 1976, proposed another approach of infinitesimal numbers, called IST and based on
a conservative extension of the theory of sets from the axioms of Zermelo-Fraenkel. In this framework the
infinitesimals are elements of R and the classical real numbers are expressed by a predicate ”standard”. This
approach is undoubtedly attractive. But contrary to what claim The adepts to this approach, this theory is
relatively complicated. Proof is that all articles using IST, devotes a third of their contents to recall what
the IST is. We prefer to stay here in the algebraic approach proposed by Robinson.
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7.2.3 Operations in the field R∗

Practically, in R∗ we have two types of elements: the elements of R, called standard and the elements of
R∗ − R called of course non standard. Among the elements of R∗ we have

• the elements of L, called limited or not infinitely large (all standard element is limited).

• the elements of m called infinitesimal.

• the elements of R∗ − L called infinitely large.

Thus we find again the classical Leibniz rules:

• limited + limited = limited

• limited × limited = limited

• infinitesimal × limited = infinitesimal

• infinitesimal + infinitesimal = infinitesimal

• 1/infinitesimal = infinitely large

• infinitely large × (limited not infinitesimal) = infinitely large.

7.2.4 Relation between R∗ and R

The most important property that joins the field R and its extension R∗ is the following : let us consider a
non infinitely large element α ∈ R∗, that is α ∈ L. Then, there is a unique element a ∈ R such that

α− a ∈ m

that is this difference is an infinitesimal number. It is clear that, if α ∈ R, thus a = α. This number a is
classically denoted by ◦α. The map

◦ : L → R

is a surjective R-linear map and a ring homomorphism.

If f is a real-valued function of a real variablex ∈ R, defined on an open interval ]a, b[, on passing in R∗,
f(x) is extended to a function which is defined for all number x ∈ R∗ such that a < x < b. Usually we
denote by the same letter the initial function and its transferred. For example, a function f(x) is continuous
at the point x0 ∈ R, if and only if the transferred function satisfies

f(x) ≃ f(x0), ∀x ≃ x0, x ∈ R∗,

where x ≃ x0 means x− x0 ∈ m.

7.3 Arithmetic of halos

The notion of halo corresponds to a general infinitesimal neighborhood of a point a ∈ R. In this section we
shall construct an arithmetic on the set of halos analogous to the arithmetic of intervals.

Definition 49 Let a in R. The halo of a denoted by h(a), is a subset of R∗ defined by

h(a) = a+m

where m is the maximal ideal of infinitesimals.



80 CHAPTER 7. THE ARITHMETIC OF INFINITESIMAL INTERVALS

Thus for any point α ∈ h(a) we have
◦α = a

and

L =
⋃

a∈R

h(a).

Let H be the subset of P(R∗) whose elements are the halos of elements of R. We define of H the following
operation {

h(a) + h(b) = h(a+ b), ∀a, b ∈ R,
λh(a) = h(λa), ∀a, λ ∈ R.

This addition is associative and commutative. It has an identity element h(0) = m because h(a)+h(0) = h(a).
Then we have

Proposition 34 The set H is real vector space.

As h(a) = ah(1), this space is of dimension 1. If we put ||h(a)|| = |a|, we endow the space H of a normed
complete vector space.

We can define also an internal multiplication on H , putting :

h(a)h(b) = h(ab).

This multiplication is distributive and the vector space with this multiplication is an algebra (and even a
field ) isomorphic to R.

Proposition 35 The external multiplication

(λ, h(a)) ∈ L ×H 7−→ h(◦λa).

endows the abelian group H with a L-module structure.

This module is finitely generated and of rank 1. In fact any element h(a) is written h(a) = ah(1). But this
module is not free. In fact we have εh(1) = h(0) = m. For any n ∈ N , n 6= 0, the module

Hn = {h(a), a ∈ Rn}.

is isomorphic to the cartesian product n times of H is a finitely generated L-module of rank n. But this
module is not free. This structure have been studied in [55] and called neutrices.

7.4 Infinitesimal intervals

7.4.1 The module I
The notion of halo of a point a in R corresponds to a general notion of infinitesimal neighborhood. That
amounts to give a real number a up to an infinitesimal incertitude but in some problems the data are given
with a precise incertitude. In this case the real datum belong to an interval of the type [a− ε, a+ ε] with ε
infinitesimal, ε ≥ 0. Thus we have to define an arithmetic of the sets of such intervals.

Let a ∈ R ⊂ R∗. We denote by Ia(ε) the interval [a− ǫ, a+ ǫ] in R∗ with ǫ ∈ m , and by I the set

I = {Ia(ǫ), a ∈ R, ǫ ∈ m}.

We put

Ia(ǫ1) + Ib(ǫ2) = Ia+b(ǫ1 + ǫ2).
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This operation is associative commutative and I0(0) is an unit. Thus I is a semi-group. Following the
approach developed in the previous chapter, we construct a natural vectorial structure on the symmetrized
I of the regular semi-group (I,+). Recall that I is the quotient set associated with the equivalence relation

(Ia(ǫ1), Ib(ǫ2)) ∼ (Ic(ǫ3), Id(ǫ4))⇐⇒ Ia(ǫ1) + Id(ǫ4) = Ib(ǫ2) + Ic(ǫ3).

We denote by
(Ia(ǫ1), Ib(ǫ2))

the equivalent class of
(Ia(ǫ1), Ib(ǫ2)).

In particular the class of (0, 0) is

(0, 0) = {(Ia(ǫ), Ia(ǫ)), a ∈ R, ǫ ∈ m}

where 0 is the interval [0, 0]. In this context we can define the opposite of (Ia(ǫ1), Ib(ǫ2)) by

r(Ia(ǫ1), Ib(ǫ2)) = (Ib(ǫ2), Ia(ǫ1)).

This gives
(Ia(ǫ1), Ib(ǫ2))r (Ic(ǫ3), Id(ǫ4)) = (Ia(ǫ1) + Id(ǫ4), (Ic(ǫ3) + Ib(ǫ2)).

This defines a structure of abelian group on I and every element of I writes (Ia(ǫ), 0) or (0, Ia(ǫ)).

Theorem 50 The group I is provided with a structure of R-vector space and of L-module.

Proof. We have seen that I is an abelian group for the addition. Let λ ∈ L. We put





1) If λ > 0,

{
λ(Ia(ǫ), 0) = (Iλa(λǫ), 0)

λ(0, Ia(ǫ)) = (0, Iλa(λǫ))
,

2) If λ < 0,

{
λ(Ia(ǫ), 0) = (0, I−λa(−λǫ))
λ(0, Ia(ǫ)) = (I−λa(−λǫ), 0)

.

We deduce
(−1)(Ia(ǫ), 0) = (0, Ia(ǫ)) = r(Ia(ǫ), 0).

The external multiplication verifies the axioms of modules. If we restrict the scalar λ to R (recall that R in
included in L), we obtain the structure of R-vector space on I. But the dimension of this real vector space
is not finite.

7.4.2 Decomposition of an infinitesimal of R∗n.

Theorem 51 Let (ǫ1, · · · , ǫn) be n element of m. Then there are k linear independent vectors in Rn, k ≤ n,
such that

(ǫ1, · · · , ǫn) = α1V1 + α1α2V2 + · · ·+ α1 · · ·αkVk

with αi ∈ m−{0}. This decomposition is unique if we assume that the frame {V1, · · · , Vk} is an orthonormed
frame.

Let’s examine the particular case n = z. The decomposition of (ǫ1, ǫ2) writes

(ǫ1, ǫ2) = α1V1 + α1α2V2

with αi ≃ 0. If V2 6= 0, then (V1, V2) are linearly independent. If we put V1 = (v1, v2) and V2 = (w1, w2),
the decomposition is equivalent to {

ǫ1 = α1v1 + α1α2w1,
ǫ2 = α1v2 + α1α2w2.
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If v1v2 6= 0, thus the quotient
ǫ1
ǫ2

is a an infinitesimal number and

◦(
ǫ1
ǫ2
) =

v1
v2
.

In this case, we shall said that ǫ1 and ǫ2 are equivalent. If v1v2 = 0, for example if v2 = 0, then
{
ǫ1 = α1v1 + α1α2w1,
ǫ2 = α1α2w2.

In this case
ǫ2
ǫ1

=
α1α2w2

α1v1 + α1α2w1
= α2

w2
v1 + α2w1

and ◦(
ǫ2
ǫ1
) = 0. Thus

ǫ2
ǫ1

is infinitesimal.

7.4.3 Equivalent infinitesimal intervals

If Ia(ǫ) ∈ I, we denote by Ja(ǫ) the class in I of (Ia(ǫ), 0). Thus �Ja(ǫ) is the class of (0, Ia(ǫ)).

Definition 52 Let Ja(ǫ1) and Ja(ǫ2) be in I. They are called equivalent if the decomposition

(ǫ1, ǫ2) = α1V1 + α1α2V2

with αi ∈ m− {0} and V1 = (v1, v2) satisfies v1v2 6= 0.

This relation is an equivalence relation. We denote by Ĩ the quotient set and J̃a(ǫ) the class of Ja(ǫ). Thus

J̃a(ǫ) = {([a− ǫ1, a+ ǫ1], 0), ǫ1 = ρ1ǫ+ ǫǫ′ with ρ1 ∈ R− {0}}.

Proposition 36 The quotient set Ĩ is a R−vector space and a L−module.

Proof: In fact the addition is given by J̃a(ǫ1)+ J̃b(ǫ2) = J̃a+b(ǫ1+ǫ2). The unitary element is J̃0(0). If b ∈ R,
we put

bJ̃a(ǫ) =

{
J̃ba(ǫ) if b ≥ 0,

rJ̃ba(ǫ) if b < 0.

Thus Ĩ is a R−vector space. If ρ ∈ L, we put

ρJ̃a(ǫ) =

{
J̃◦ρa(ǫ) if ρ > 0 and ρ /∈ m,

J̃0(ρǫ) if ρ > 0 and ρ ∈ m.

If ρ < 0, we use the signs rule. This product provides Ĩ with a L-module structure.

7.4.4 A multiplication in I
To define a multiplication distributive with respect the addition, we use the product of A4 (see Chapter 4).

Assume that ε ≤ 0, ε ∈ m.

• If a > 0, thus
[a− ε, a+ ε] = (a− ε)e1 + 2εe2.

• If a < 0, thus
[a− ε, a+ ε] = (−a− ε)e4 + 2εe3.
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A direct computation of the multiplication gives

1. If a > 0, b > 0,

[a− ε1, a+ ε1][b− ε2, b+ ε2] = ((a− ε1)e1 + 2ε1e2)((b− ε2)e1 + 2ε2e2)
= (a− ε1)(b− ε2)e1 + 2(aε2 + bε1)e2
= [ab− aε2 − bε1 + ε1ε2, ab+ aε2 + bε1 + ε1ε2].

2. If a > 0, b < 0,

[a− ε1, a+ ε1][b− ε2, b+ ε2] = ((a− ε1)e1 + 2ε1e2)((−b− ε2)e4 + 2ε2e3)
= (a− ε1)(−b− ε2)e4 + 2(aε2 − bε1)e3
= [ab− aε2 + bε1 + ε1ε2, ab+ aε2 − bε1 − ε1ε2].

3. If a < 0, b < 0,

[a− ε1, a+ ε1][b− ε2, b+ ε2] = ((−a− ε1)e4 + 2ε1e3)((−b− ε2)e4 + 2ε2e3)
= (−a− ε1)(−b− ε2)e4 + 2(−aε2 − bε1)e3
= [ab+ aε2 + bε1 + ε1ε2, ab− aε2 − bε1 + ε1ε2].

Each one of these results do not belong to I.

The product of first approximation. Let us consider the decomposition of (ε1, ε2):

(ǫ1, ǫ2) = α1V1 + α1α2V2

with αi ≃ 0 and if V2 6= 0, then the vectors (V1, V2) are linearly independent. If we put V1 = (v1, v2) and
V2 = (w1, w2), the decomposition is equivalent to

{
ǫ1 = α1v1 + α1α2w1,
ǫ2 = α1v2 + α1α2w2.

As we assume that εi ≥ 0 for i = 1 and 2, the infinitesimal elements αi also are positif. Likewise, the
components of the vectors Vi are not negative. Let us examinate each one of the previous case

1. If a > 0, b > 0,

aε2 + bε1 = α1(av2 + bv1) + α1α2(aw2 + bw1)

and ρ = av2 + bv1 = 〈(v1, v2), (b, a)〉 > 0 where 〈V,W 〉 is the classical inner product on R2.

Definition 53 If a > 0, b > 0, the product of first approximation of the infinitesimal intervals [a −
ε1, a+ ε1] and [b− ε2, b+ ε2] is

[a− ε1, a+ ε1].[b− ε2, b+ ε2] = [ab− α1ρ, ab+ α1ρ]

where ρ = av2 + bv1 = 〈(v1, v2), (b, a)〉.

2. If a > 0, b < 0,

aε2 − bε1 = α1(av2 − bv1) + α1α2(aw2 − bw1)
and ρ = av2 − bv1 = 〈(v1, v2), (−b, a)〉 > 0.

Definition 54 If a > 0, b < 0, the product of first approximation of the infinitesimal intervals [a −
ε1, a+ ε1] and [b− ε2, b+ ε2] is

[a− ε1, a+ ε1].[b− ε2, b+ ε2] = [ab− α1ρ, ab+ α1ρ]

where ρ = av2 − bv1 = 〈(v1, v2), (−b, a)〉.
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3. If a < 0, b < 0,

−aε2 − bε1 = α1(−av2 − bv1) + α1α2(−aw2 − bw1)
and ρ = −av2 − bv1 = 〈(v1, v2), (−b,−a)〉 > 0.

Definition 55 If a < 0, b < 0, the product of first approximation of the infinitesimal intervals [a −
ε1, a+ ε1] and [b− ε2, b+ ε2] is

[a− ε1, a+ ε1].[b− ε2, b+ ε2] = [ab− α1ρ, ab+ α1ρ]

where ρ = −av2 − bv1 = 〈(v1, v2), (−b,−a)〉.

The product of second approximation.

If the first approximation is too coarse, that is if the result gives one interval whose infinitesimal length is
too imprecise, it will be necessary to describe this length to an infinitesimal of order 2. We will precise this
notion. If the length of the interval is an infinitesimal ε, this length will be given to an infinitesimal of order
2 if it is given by an infinitesimal ε + εε′ with ε′ infinitesimal. For each of the three previous cases, we are
going to describe that produced of order 2.

1. If a > 0, b > 0,

[a− ε1, a+ ε1][b− ε2, b+ ε2] = ((a− ε1)e1 + 2ε1e2)((b− ε2)e1 + 2ε2e2)
= (a− ε1)(b− ε2)e1 + 2(aε2 + bε1)e2
= [ab− aε2 − bε1 + ε1ε2, ab+ aε2 + bε1 + ε1ε2].

But {
ǫ1 = α1v1 + α1α2w1,
ǫ2 = α1v2 + α1α2w2.

Thus

aε2 + bε1 + ε1ε2 = a(α1v2 + α1α2w2) + b(α1v1 + α1α2w1) + (α1v1 + α1α2w1)(α1v2 + α1α2w2)
= α1(av2 + bv1) + α1α2(aw2 + bw1) + α21v1v2 + α21θ

with θ ≃ 0. Thus, if we forgot the infinitesimal α21θ, we have

aε2 + bε1 + ε1ε2 = α1ρ+ α1α2〈W, (b, a)〉+ α21v1v2.

We have to compare the infinitesimals α1α2 and α
2
1 that is 1 and α2. For this we use the decomposition:

{
α1 = β1v3 + β1β2w3,
α2 = β1v4 + β1β2w4

with βi ≃ 0 for i = 1 and 2, and the vectors V2 = (v3, v4) and W2 = (w3, w4) are independent vectors
of R2. Thus {

α1α2 = β21v3v4 + β21θ1,
α21 = β21v

2
3 + β21θ2,

with θi ≃ 0 for i = 1 and 2. We deduce




aε2 + bε1 + ε1ε2 = α1ρ+ α1(α1v1v2 + α2〈W, (b, a)〉)
= α1ρ+ α1(β1v1v2v3 + β1v4〈W, (b, a)〉)
= α1ρ+ α1β1(v1v2v3 + v4〈W, (b, a)〉)

Definition 56 If a > 0, b > 0, the product of second approximation of the infinitesimal intervals
[a− ε1, a+ ε1] and [b− ε2, b+ ε2] is

[a− ε1, a+ ε1].[b− ε2, b+ ε2] = [ab− ǫ, ab+ ǫ]

where
ǫ = α1ρ+ α1β1(v1v2v3 + v4〈W, (b, a)〉).
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2. If a > 0, b < 0,

[a− ε1, a+ ε1][b− ε2, b+ ε2] = ((a− ε1)e1 + 2ε1e2)((−b− ε2)e4 + 2ε2e3)
= [ab− aε2 + bε1 + ε1ε2, ab+ aε2 − bε1 − ε1ε2].

If we use the decomposition of the infinitesimal vector (α1, α2), we obtain

Definition 57 If a > 0, b < 0, the product of second approximation of the infinitesimal intervals
[a− ε1, a+ ε1] and [b− ε2, b+ ε2] is

[a− ε1, a+ ε1].[b− ε2, b+ ε2] = [ab− ǫ, ab+ ǫ]

where

ǫ = α1(av2 − bv1) + α1β1(−v1v2v3 + v4(aw2 − bw1).

3. If a < 0, b < 0,

[a− ε1, a+ ε1][b− ε2, b+ ε2] = ((−a− ε1)e4 + 2ε1e3)((−b− ε2)e4 + 2ε2e3)
= (−a− ε1)(−b− ε2)e4 + 2(−aε2 − bε1)e3
= [ab+ aε2 + bε1 + ε1ε2, ab− aε2 − bε1 + ε1ε2].

In this case, we can define the product by

Definition 58 If a < 0, b < 0, the product of second approximation of the infinitesimal intervals
[a− ε1, a+ ε1] and [b− ε2, b+ ε2] is

[a− ε1, a+ ε1].[b− ε2, b+ ε2] = [ab− ǫ, ab+ ǫ]

where

ǫ = α1(−av2 − bv1) + α1β1(v1v2v3 − v4(aw2 − bw1).

7.4.5 A distributive product in I
The extension of the product of first or second approximation of I to I makes itself like the extension of the
distributive product of IR to IR.

We have define the product of second approximation. It is clear that the process of decomposition of an
infinitesimal vector permits to define a product until an arbitrary approximation.

7.5 A global product

Let J̃(a, ǫ1) and J̃(b, ǫ2) ∈ Ĩ. We assume, in first time, that correspond to (J(a, ǫ1), 0) and (J(b, ǫ2), 0).

First case: a > 0, b > 0. We put

J̃(a, ε1) • J̃(b, ε2) = J̃(ab, aε2 + bε1).

We note that if (ε1, ε2) = α1V1 + α1α2V2, then as ε1 and ε2 are positive infinitesimals, the component v1
and v2 are positive and not zero. We deduce that

aε2 + bε1 = a(α1v2 + α1α2w2) + b(α1v1 + α1α2w1)

where V2 = (w1, w2).Thus

aε2 + bε1 = α1(av2 + bv1) + α1α
′

2
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with α
′

2 ∈ m. As av2 + bv1 6= 0 (a > 0, b > 0, v1 ≥ 0, v2 ≥ 0, v1 6= 0), then aε2 + bε1 are equivalent to α1 and

J̃(ab, aε2 + bε1) = J̃(ab, α1).

Second case : a > 0, b < 0.If u ∈ [a− ε1, a+ ε1] and [b− ε2, b+ ε2] then we can write u = a+ρ1, v = b+ρ2
with −εi ≤ ρi ≤ εi and i = 1, 2. We deduce

uv = (a+ ρ1)(b+ ρ2) = ab+ aρ2 + bρ1 + ρ1ρ2

and
−aε2 + bε1 ≤ aρ2 + bρ1 ≤ aε2 − bε1.

Then, as a and −b are positive, the infinitesimal −aε2 + bε1 ≤ aρ2 + bρ1 ≤ aε2 − bε1 up to an infinitesimal
equivalent to ε1ε2. We put

J̃(a, ε1) • J̃(b, ε2) = J̃(ab, aε2 − bε1) = J̃(ab, α1).

Third case : a < 0, b < 0. The study realized in the first case permits to write

J̃11(−a, ε1) • J̃2(−b, ε2) = J̃(ab, ǫ1 + ǫ2).

Fourth case:a = 0. If b 6= 0 we put

J̃(0, ε1) • J̃(b, ε2) = J̃(0, bε1).

If b = 0 then
J̃(0, ε1) • J̃(0, ε2) = J̃(0, α1α2)

if v1v2 6= 0, or
J̃(0, ε1) • J̃(0, ε2) = J̃(0, α21α2).

To end the definition of this product we put

J̃(a, ε1) • (rJ̃(b, ε2)) = r(J̃(a, ε1) • J̃(b, ε2)) = (rJ̃(a, ε1)) • J̃(b, ε2)

and
(rJ̃(a, ε1)) • (rJ̃(b, ε2)) = J̃(a, ε1) • J̃(b, ε2).

Proposition 37 This product is commutative and associative. Moreover J̃(1, 0) is an unit for this product.

Let us examine the distributivity of this product with respect to the addition. Let J̃1, J̃2, J̃3 ∈ Ĩ. We put
J̃1 = J̃(a, ε1), J̃2 = J̃(b, ε2), J̃3 = J̃(c, ε3).

1) If a, b, c are positive, then

J̃1 • (J̃2 + J̃3) = J̃1 • J̃2 + J̃1 • J̃3.

2) Assume that a > 0, b > 0 and c < 0. Then

J̃2 + J̃3 = J̃(b+ c, ε2 + ε3).

If b+ c > 0, then

J̃1 • (J̃2 + J̃3) = J̃(a(b+ c), (b+ c)ε1 + a(ε2 + ε3)),

J̃1 • J̃2 + J̃1 • J̃3 = J̃(ab, bε1 + aε2) + J̃1 • J̃3.
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But J̃1 • J̃3 = J̃(ac, aε3 − cε1), thus

J̃1 • J̃2 + J̃1 • J̃3 = J̃(ab, ε1(b− c) + a(ε2 + ε3).

The decomposition of the infinitesimal vector (ε1, ε2, ε3) writes:

(ε1, ε2, ε3) = β1U1 + β1β2U2 + β1β2β3U3

with βi ≃ 0 and {U1, U2, U3} a standard orthonormed frame. As b− c > 0, then (b+ c)ε1 + a(ε2 + ε3) and
(b− c)ε1 + a(ε2 + ε3) are equivalent to β1. We deduce that

J̃1 • (J̃2 + J̃3) = J̃1 • J̃2 + J̃1 • J̃3.

If b+ c < 0, then
J̃1 • (J̃2 + J̃3) = J̃(a(b+ c), a(ε2 + ε3)− (b+ c)ε1).

In this case we also a(ε2 + ε3)− (b+ c)ε1 and (b− c)ε1 + a(ε2 + ε3) are equivalent to β1, thus

J̃1 • (J̃2 + J̃3) = J̃1 • J̃2 + J̃1 • J̃3.

3) Assume that a > 0, b < 0 and c < 0. Then

J̃2 + J̃3 = J̃(b+ c, ε2 + ε3)

and

J̃1 • (J̃2 + J̃3) = J̃(a(b+ c),−(b+ c)ε1 + a(ε2 + ε3)),

J̃1 • J̃2 + J̃1 • J̃3 = J̃(ab,−bε1 + aε2) + J̃(ac,−cε1 + aε2),

= J̃(ab+ ac,−(b+ c)ε1 + a(ε2 + ε3),

= J̃1 • (J̃2 + J̃3).

4) We obtain the same results for a < 0.

Theorem 59 The product • is distributive with respect the addition:

J̃1 • (J̃2 + J̃3) = J̃1 • J̃2 + J̃1 • J̃3

for all J̃1, J̃2, J̃3 ∈ I.

Consequence: the triple (I,+, •) is an (infinite dimensional) associative algebra.
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Chapter 8

Annexe: On Poisson algebras

8.1 Poisson structures on C[X1, . . . , Xn] and exterior calculus

8.1.1 Poisson bracket and differential forms

Let An be the commutative associative algebra C[X1, . . . , Xn]. A Poisson structure on An is given by a
bivector

P =
∑

1≤i<j≤n

Pij∂i ∧ ∂j

where ∂i =
∂

∂Xi
and Pij ∈ An, satisfying

[P,P]S = 0

where [, ]S is the Schouten’s bracket. If An is endowed with a Poisson structure P, the multiplication given
by

{P,Q} = P(P,Q),
for any P,Q ∈ An is a Lie bracket satisfying the Leibniz identity

{PQ,R} = P{Q,R}+Q{P,R}

for any P,Q,R ∈ An.

We denote by Sp,q the set of (p, q)-shuffles where a (p, q)-shuffle is a permutation σ in the symmetric group
Sp+q of degree p + q such that σ(1) < σ(2) < · · · < σ(p) and σ(p + 1) < σ(p + 2) < · · · < σ(q). Given a
bivector P we consider the (n− 2)-exterior form

Ω =
∑

σ∈S2,n−2

(−1)ǫ(σ)Pσ(1)σ(2)dXσ(3) ∧ · · · ∧ dXσ(n)

where ǫ(σ)) is the signature of the permutation σ.

We assume that n > 3. Let αi1,··· ,in−3 the pfaffian form given by

αi1,··· ,in−3
(Y ) = Ω(∂i1 , ∂i2 , . . . , ∂in−3

, Y )

where Y =
∑
Yi∂i, Yi ∈ An. If n = 3 we put α = Ω.

Theorem 60 A bivector P on An satisfies [P,P]S = 0 if and only if

dαi1,··· ,in−3
∧ Ω = 0

for every i1, · · · , in−3 such that 1 ≤ i1 < · · · < in−3 ≤ n.

89
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Proof. The integrability condition [P,P]S = 0 writes

n∑

r=1

Pri∂rPjk + Prj∂rPki + Prk∂rPij = 0

for any 1 ≤ i, j, k ≤ n. But

αi1,··· ,in−3 =
∑

(−1)NPjkdXl

the summand concerning the triples (j, k, l) where (j, k, i1, . . . , l, . . . in−3) is a permutation of S2,n−2 and
N = ε(σ) + p− 3. Then

dαi1,··· ,in−3 =
∑

(−1)NdPjk ∧ dXl

and dαi1,··· ,in−3
∧ Ω = 0 corresponds to [P,P]S = 0.

8.1.2 Lichnerowicz-Poisson cohomology

We denote by AP the algebra An = C[X1, . . . , Xn] provided with the Poisson structure P. Let χk(AP) be
the vector space of k-biderivations that is of k-skew linear maps on A satisfying

ϕ(P1Q1, P2, . . . , Pk) = P1ϕ(Q1, P2, . . . , Pk) +Q1ϕ(P1, P2, . . . , Pk)

for all Q1, P1, . . . , Pk ∈ A. For k = 0 we put χ0(AP) = AP . Let δk be the linear map

δk : χk(AP) −→ χk+1(AP )

given by

δkϕ(P1, P2, . . . , Pk+1) =
∑k+1

i=1 (−1)i−1{Pi, ϕ(P1, . . . , P̂i, . . . Pk+1)}
+

∑
1≤i<j≤k+1(−1)i+jϕ({Pi, Pj}, P1, . . . , P̂i, . . . , P̂j , . . . Pk+1)

where P̂i means that the term Pi does not appear. We have δk+1 ◦ δk = 0 and the Lichnerowicz-Poisson
cohomology corresponds to the complex (χk(AP), δk)k. Let us note that χ

k(AP) is trivial as soon as k > n.
A description of the cocycle δkϕ is presented in [?] in the 3-dimensional case using the vector calculus. We
will describe these formulae using exterior calculus for the dimension greater or equal to 3. Let us begin with
some notations :

• To any element P ∈ A =χ0(AP), we associate the n-exterior form

Φn(P ) = PdX1 ∧ . . . ∧ dXn.

• To any ϕ ∈ χk(AP), we associate the n− k exterior form

Φn−k(ϕ) =
∑

σ∈Sk,n−k

(−1)ε(σ)ϕ(Xσ(1) . . . Xσ(k))dXσ(k+1) ∧ . . . ∧ dXσ(n).

• To any ϕ ∈ χn(AP) we associate the function Φ0(ϕ) = ϕ.

Finally, if θ is an k-exterior form and Y =
∑
Yi∂i is a vector field with Yi ∈ A then the inner product i(Y )

of Y by θ is the k − 1-exterior form given by

i(Y )θ(Z1, · · · , Zk−1) = θ(Y,Z1, · · · , Zk−1)

for every vector field Z1, · · · , Zk.
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Theorem 61 Suppose n = 3. Then we have

1. For all P ∈ AP ,

Φ2(δ
0P ) = Ω ∧ dP.

2. For all f ∈ χ1(AP),

Φ1(δ
1f) = −i(∂1, ∂2)[Ω ∧ d(i(∂3)Φ2(f)) + d(i(∂3)Ω) ∧ Φ2(f)]

+i(∂1, ∂3)[Ω ∧ d(i(∂2)Φ2(f)) + d(i(∂2)Ω) ∧ Φ2(f)]
−i(∂2, ∂3)[Ω ∧ d(i(∂1)Φ2(f)) + d(i(∂1)Ω) ∧ Φ2(f)

where i(X,Y ) denotes the composition i(X) ◦ i(Y ).
3. For all ϕ ∈ χ2(AP),

Φ0(δ
2ϕ) = i(∂1, ∂2, ∂3)(dΩ ∧ Φ1(ϕ) + Ω ∧ dΦ1(ϕ)).

Proof If n = 3 we have
Ω = P12dX3 − P13dX2 + P23dX1

and α = Ω. Then the integrability of P is equivalent to the integrability condition Ω∧ dΩ = 0. The theorem
results of a direct computation and of the following general formula, which writes in the general case :

∀ϕ ∈ χk(AP), ϕ(P1, . . . , Pk) =
∑

1≤i1≤...≤ik≤n

ϕ(∂i1,...,∂ik
)∂i1P1 . . . ∂ik

Pk.

Application. We consider the Poisson algebra A1 = (C[X1, X2, X3],P) where P is given by



P(X1, X2) = X2

P(X1, X3) = 2X3

P(X2, X3) = 0.

Then we have
dimH0(A1) = 1, dimH1(A1) = 3, dimH2(A1) = 2, H3(A1) = {0}.

In this case Ω = X2dX3 − 2X3dX2 and dΩ = 3dX2 ∧ dX3. We will look, for example, H2(A1) . Let
ϕ ∈ χ2(A1). Then Φ0(δ2ϕ) = 0 implies dΩ ∧ Φ1(ϕ) + Ω ∧ dΦ1(ϕ)) = 0, that is

X2(∂1ϕ(X1, X3) + ∂2ϕ(X2, X3)) + 2X3(−∂1ϕ(X1, X2) + ∂3ϕ(X2, X3))
+3ϕ(X2, X3) = 0

Now, if f ∈ χ1(A1) then

Φ1(δf) = [X2(−∂2f(X2)− ∂1f(X1))− 2X3(∂3f(X2)) + f(X2)]dX3

−[2X3(∂1f(X1) + ∂3f(X3)) +X2(∂2f(X3))− 2f(X3)]dX2

−[X2(−∂1f(X3))− 2X3(∂1f(X2))]dX1.

Comparing these two relations we obtain that H2(A1) is generated by the two cocycles corresponding to
{

Φ1(ϕ1) = X3dX2

Φ1(ϕ2) = X2
2dX2

Now let us consider the general case. Let A = C[X1, . . . , Xn] be provided with the Poisson structure P.

Theorem 62 Let φ ∈ χk(AP). Then, we have

Φn−k−1(δ
kφ) = ǫ

∑

σ∈Sk+1,n−k−1

i(∂σ(1), · · · , ∂σ(k+1))[d(i(∂σ(k+2), · · · , ∂σ(n))Ω) ∧ Φn−k(φ)

+Ω ∧ d(i(∂σ(k+2), · · · , ∂σ(n))Φn−k(φ))]

where ǫ(n, k) = (−1) (n−k)(n−k+1)
2 .
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Proof. To simplify the length of the formulae, we will write di in front of dXi. We have seen that for every
P ∈ AP we have δ0P = Ω ∧ dP. But

Φn−1(δP ) = {P,X1}d2 ∧ · · · ∧ dn − {P,X2}d1 ∧ d3 · · · ∧ dn + · · ·+
+(−1)n−2{P,Xn−1}d1 ∧ · · · ∧ dn−2 ∧ dn + (−1)n−1{P,Xn}d1 ∧ · · · ∧ dn−1.

with
{P,Xi}d1 ∧ · · · ∧ d̂i ∧ · · · ∧ dn =

∑i−1
j=1 Pji∂jPd1 ∧ · · · ∧ d̂i ∧ · · · ∧ dn

−
∑n

j=i+1 Pji∂jPd1 ∧ · · · ∧ d̂i ∧ · · · ∧ dn

But

i(∂1)[Ω ∧ d(i(∂2, · · · , ∂n)Φn(P )) + d(i(∂2, · · · , ∂n)Ω) ∧ Φn(P )]

= i(∂1)[Ω ∧ d(i(∂2, · · · , ∂n)Φn(P )] = (−1)n(n−1)
2 i(∂1)[Ω ∧ dP ∧ d1]

= −(−1)n(n−1)
2

∑n
i=2 P1i∂iPd2 ∧ · · · ∧ dn = (−1)n(n−1)

2 Φn−1(P )(∂2, · · · , ∂n).

Similary

i(∂j)[Ω ∧ d(i(∂1, · · · , ∂̂j , · · · , ∂n)Φn(P )) + d(i(∂1, · · · , ∂̂j , · · · , ∂n)Ω) ∧ Φn(P )]

= i(∂j)[Ω ∧ d(i(∂1, · · · , ∂̂j , · · · , ∂n)Φn(P )) = (−1)j−1+n(n−1)
2 i(∂j)[Ω ∧ dP ∧ dXj ]

= (−1)j−1+n(n−1)
2 i(∂j)(

∑l=j−1
l=1 (P1j∂lPd2 ∧ · · · ∧ dn −

∑l=n
l=j+1 Pjl∂lPd2 ∧ · · · ∧ dn

= (−1)j−1+n(n−1)
2 i(∂j)(

∑l=j−1
l=1 P1j∂lP −

∑l=n
l=j+1 Pjl∂lP )d1 ∧ · · · ∧ dn

= (−1)n(n−1)
2 (

∑l=j−1
l=1 P1j∂lP −

∑l=n
l=j+1 Pjl∂lP )d1 ∧ · · · ∧ d̂j · · · ∧ dn

= (−1)n(n−1)
2 {P,Xi}d1 ∧ · · · ∧ d̂i ∧ · · · ∧ dn.

We deduce

Φn−1(δ
1f) = (−1)

n(n−1)
2

n∑

j=1

(−1)j−1i(∂j)[Ω ∧ d(i(∂1, · · · , ∂̂j , · · · , ∂n)Φn(P ))

which proves the theorem for k = 1. The proof is similar for any k.

Application. We consider the n-dimensional complex Lie algebra defined by the brackets

[X1, Xi] = (i− 1)Xi

for i = 2, ..., n.. Let P the Poisson bracket on C[X1, ..., Xn] given by P(Xi, Xj) = [Xi, Xj ]. Let χ
k
2(AP)

the subspace of χk(AP) whose elements are homogeneous of degree 2. We denote by H2
2 (AP) = Z22/B

2
2 the

corresponding subspace of H2
2 (AP). Let N = n(n−1)

2 .

• If n is even, then

dimB2
2 = N + (N − 1) + ...+N − n/2 + 1 = n2(2n− 1)/4.

• If n is odd, then

dimB2
2 = N + (N − 1) + (N − 1) + ...+ (N − (n− 1)/2) = (n− 1)(2n2 + n+ 1)/4.

In fact, if f ∈ χ12(AP), then f(Xi) = Pi and Pi is homogeneous of degree 2:

Pi = Σai
i1,...,in

Xi1
1 X

i2
2 ...X

in
n

with i1 + ....in = 2. We deduce :
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1. In the expansion of δf(X1, X2l) we find N − l independent coefficients of P2l. The coefficients which
do not appear are:

a2l1,0,0,...,0,1,0,...,0, a2l0,1,0,...,0,1,0,...,0, ..., a2l0,0,..,1,1,0,...,0

(the second 1 are in the places 2l, 2l − 1, ..., l + 1.

2. In the expansion of δf(X1, X2l+1) we find N − l− 1 independent coefficients of P2l+1. The coefficients
which do not appear are:

a2l+11,0,0,...,0,1,0,...,0, a2l+10,1,0,...,0,1,0,...,0, ..., a2l+10,0,..,0,2,0,...,0

(the second 1 being in place 2l + 1, 2l, ..., l + 2 and in the last case the 2 is in place l + 1).

3. And δf(Xi, Xj) for i ≥ 2 and j > i is defined by the (n− 2) coefficients ai
1,0,0,...,0,1,0,..,0.

Now we are to able to find the generators of H2
2 (AP). We can choose φ ∈ χ22 such that





φ(X1, X2) = 0

φ(X1, X3) = a1,31,3X1X3 + a2,21,3X
2
2

· · ·
φ(X1, X2l) = a1,2l1,2lX1X2l + a2,2l−11,2l X2X2l−1 + ...+ al,l+1

1,2l XlXl+1

φ(X1, X2l+1) = a1,2l+11,2l+1X1X2l+1 + a2,2l1,2l+1X2X2l + ...+ al,l
1,2l+1X

2
l

· · ·
φ(X1, Xn) = a1,n1,nX1Xn + a2,n−11,n X2Xn−1 + ...
φ(Xi, Xj) = Ai,j

where Ai,j is a degree 2 homogeneous polynomial without monomial of type X1Xk and XiXj . If we solve
Φn−2(δφ) = 0 we obtain the generators of H2

2 (AP). They are given by




φ(X1, X2) = 0

φ(X1, X3) = a2,21,3X
2
2

· · ·
φ(X1, X2l) = a2,2l−11,2l X2X2l−1 + ...+ al,l+1

1,2l XlXl+1

φ(X1, X2l+1) = a2,2l1,2l+1X2X2l + ...+ al+1,l+1
1,2l+1 X

2
l+1

· · ·
φ(X1, Xn) = a2,n−11,n X2Xn−1 + ...+ am,m+1

1,n XmXm+1, if n = 2m
φ(Xi, Xj) = Ai,j .

the last term being am+1,m+1
1,n X2

m+1, if n = 2m+ 1.

For example:

- if n = 2 , dimH2
2 (A,A) = 1,

- if n = 3, dimH2
2 (A,A) = 3,

- if n = 4, dimH2
2 (A,A) = 8,

- if n = 5, dimH2
2 (A,A) = 16.

8.2 Poisson structures of degree 2 on C[X1, X2, X3]

Let P be a Poisson structure on A = C[X1, X2, X3]. It writes P = ΣPij∂i ∧ ∂j with Pij ∈ C[X1, X2, X3].
We will say that P is of degree k if k = max(d◦Pij). It is homogeneous if all the Pij are homogeneous with
the same degree. The homogeneous Poisson structure of degree less than 2 are well known. We will look in
this section the non homogeneous case with k ≤ 2. In this case P writes

P = P0 + P1 + P2
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where Pi is homogeneous of degree i. The associate form Ω is decomposed in homogeneous part Ω =
Ω0 +Ω1 +Ω2. As Ω is en integrable Pfaffian form, we obtain

Ω0 ∧ dΩ0 = 0

Ω2 ∧ dΩ2 = 0

Ω0 ∧ dΩ1 +Ω1 ∧ dΩ0 = 0

Ω0 ∧ dΩ2 +Ω2 ∧ dΩ0 +Ω1 ∧ dΩ1 = 0

Ω1 ∧ dΩ2 +Ω2 ∧ dΩ1 = 0.

If k = 0, then Ω1 = Ω2 = 0 and Ω is isomorphic to one of the following form

Ω1 = 0

Ω2 = Ω20 = dX3.

If k = 1, then Ω2 = 0 and Ω is isomorphic to one of the following form

Ω3 = Ω31 = X3dX3

Ω4 = Ω41 = X2dX3 +X3dX2 +X1dX1

Ω5 = Ω51 = X2dX3 − αX3dX2

Ω6 = Ω61 = (X2 +X3)dX3 −X3dX2

Ω7 = Ω20 +Ω71 = dX3 −X3dX2

Ω8 = Ω20 +Ω81 = X3dX3 − dX2

Ω9 = Ω90 +Ω91 = X2dX3 +X3dX2 + dX1

The Poisson structures associated to Ω1,Ωi
1, i = 3, 4, 5, 6 correspond to the classification of 3-dimensional

complex Lie algebras. For Ω21,Ω
7
1,Ω

8
1 and Ω

9
1, they are associated to 4-dimensional complex Lie algebra with

1-dimensional center contained in the derived subalgebra.

Let us suppose now that k = 2. If Ω0 = Ω1 = 0, then Ω2 is homogeneous and the classification is given
in ([?]). Thus we will assume that Ω0 or Ω1 is nontrivial. In this section we will describe the corresponding
classification up a graded linear isomorphism of the graded algebra A = ⊕n≥0 Vn where Vn is the space of
degree n homogeneous polynomials.

Definition 63 We call equivalence of order 2, any linear isomorphism

f : ⊕n≥0Vn → ⊕n≥0Vn

satisfying

• f(V1) ⊂ V1 ⊕ V2

• f(V0) = V0

• f |⊕n≥2Vn
= Id

Such a mapping is written

f(Xi) =
∑

aj
iXj +

∑
bjk
i XjXk

f(XiXj) = XiXj
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If the Poisson bracket on A induces a Lie algebra structure on V1 (that is Ω1 ∧ dΩ1 = 0) we will impose that
π1 ◦ f is a Lie automorphism of V1, where π1 is the projection on V1. We define a new Poisson structure on
A putting Yi = f(Xi) and

{Yi, Yj} = f({f(Xi), f(Xj)}).
These two Poisson structure are called equivalent.

First case : Ω0 = 0.

The Poisson structure is given by Ω = Ω1 +Ω2 with




Ω1 ∧ dΩ1 = 0
Ω1 ∧ dΩ2 +Ω2 ∧ dΩ1 = 0
Ω2 ∧ dΩ2 = 0.

Thus Ω1 = Ωi
1 , i = 1, 3, 4, 5, 6 and V1 is a Lie algebra. Let

Ω2 = A3dX3 −A2dX2 +A3dX1

be with

A1 = a1X
2
1 + a2X

2
2 + a3X

2
3 + a4X1X2 + a5X1X3 + a6X2X3

A2 = b1X
2
1 + b2X

2
2 + b3X

2
3 + b4X1X2 + b5X1X3 + b6X2X3

A3 = c1X
2
1 + c2X

2
2 + c3X

2
3 + c4X1X2 + c5X1X3 + c6X2X3.

If dΩ2 = 0 then we have to solve Ω2 ∧ dΩ1 = 0 with Ω1 Ω
i
1 , i = 1, 3, 4, 5, 6. For i = 1, 3, 4 we have dΩ1 = 0

and dΩ2 = 0 is equivalent to

A1 = a1X
2
1 + a2X

2
2 + a3X

2
3 + a4X1X2 + a5X1X3 + a6X2X3

A2 = b1X
2
1 + b2X

2
2 −

a6
2
X2
3 + b4X1X2 − a4X1X3 − 2a2X2X3

A3 = c1X
2
1 −

b4
2
X2
2 +

a5
2
X2
3 − 2b1X1X2 + 2a1X1X3 + a4X2X3.

For i = 5 we have Ω1 = X2dX3−αX3dX2 thus dΩ1 = (1+α)dX2 ∧ dX3 with 1+α 6= 0. Thus Ω2 ∧ dΩ1 = 0
implies A3 = 0. For i = 6, we have dΩ1 = 2dX2 ∧ dX3 and Ω2 ∧ dΩ1 = 0 implies also A3 = 0.

Let us assume that dΩ2 6= 0. If Ω1 = Ω31,Ω
5
1, then Ω2 have to satisfy
{

Ω1 ∧ dΩ2 = 0
Ω2 ∧ dΩ2 = 0

.

This implies PdΩ2 = Ω1∧Ω2 where P is an homogeneous polynomial of degree 2. We will solve this equation
in each of these cases after a simplification of Ω2 by equivalence.

• Ω1 = Ω31 = X3dX3 .

Let us consider the equivalence of degree 2 given by Yi = Xi for i = 1, 2 and Y3 = X3 +B with B ∈ V2. We
obtain the equivalent Poisson structure




{X1, X2} = X3 −B
{X1, X3} = {X1, B}
{X2, X3} = {X2, B}

Thus we can suppose that Ω = X3dX3−A2dX2+A3dX1 with A2, A3 ∈ V2. Let us note that an equivalence
of degree 1 permits to simplify one coefficient to A2 or A3. The equation Ω1 ∧ Ω2 = PdΩ2 is written




−∂1A2 − ∂2A3 = 0
P∂3A3 = −X3A3
P∂3A2 = −X3A2.



96 CHAPTER 8. ANNEXE: ON POISSON ALGEBRAS

If X3 is not a factor of P , then ∂3A2 = αX3 and ∂3A3 = βX3. If α = β = 0, then A2 = A3 = 0 and Ω2 = 0.
Let us assume that α 6= 0. Then

A2 = b1X
2
1 + b2X

2
2 + b3X

2
3 + b4X1X2

with α = 2b3. If β 6= 0, then P = −( 1
b3
)A2 = −( 1β )A3. As we can simplify one coefficient of A2 or A3, this

hypothesis can be eliminated. Then β = 0 this gives A3 = 0. The first relation implies −∂1A2 = 0 that is

A2 = b2X
2
2 + b3X

2
3 .

We deduce the following Poisson structure given by

Ω8 = X3dX3 − (b2X
2
2 + b3X

2
3 )dX2.

Let us assume now that P = X3Q where Q is a degree 1 homogeneous polynomial. This gives



−∂1A2 − ∂2A3 = 0
Q∂3A3 = −A3
Q∂3A2 = −A2.

If b3 6= 0,then we can consider that b3 = 1 and

A2 = (2X3 + b5X1 + b6X2)(
1

2
X3 +

b5
4
X1 +

b6
4
X2).

We deduce

A3 = (
1

2
X3 +

b5
4
X1 +

b6
4
X2)∂3A3.

As we can suppose that the coefficient of X2
3 invA3 vanishes, thus A3 = 0 and ∂1A2 = 0. This gives

A2 = (2X3 + b6X2)(
1

2
X3 +

b6
4
X2) =

b26
4
X2
2 +X2

3 + b6X2X3 = (
b6
2
X2 +X3)

2.

Proposition 38 Every Poisson structure on C[X1, X2, X3] whose linear part is given by Ω1 = X3dX3 is
equivalent to 




(P1) =




{X1, X2} = X3

{X1, X3} = b2X
2
2 + b3X

2
3

{X2, X3} = 0.

(P2) =




{X1, X2} = X3

{X1, X3} = (aX2 +X3)
2

{X2, X3} = 0.

(P3) =





{X1, X2} = X3

{X1, X3} = b1X
2
1 + b2X

2
2 + b4X1X2

{X2, X3} = c1X
2
1 − b4

2 X
2
2 − 2b1X1X2.

The last case corresponds to dΩ2 = 0.

• Ω1 = Ω41 = X2dX3 +X3dX2 +X1dX1 .

If we consider Ω2 = 0, the change of basis given by Y1 = X1 + B, Y2 = X2, Y3 = X3 gives a structure of
degree 2 corresponding to A3 = −B equivalent to the structure associated to Ω = Ω1. Thus we can suppose
in Ω2 that A3 = 0 that is Ω2 = A1dX3 −A2dX2. By hypothesis, PdΩ2 = Ω1 ∧ Ω2 with P ∈ V2. But

Ω1 ∧ Ω2 = −X1A2dX1 ∧ dX2 +X1A1dX1 ∧ dX3 + (A2X2 +A1X3)dX2 ∧ dX3

this gives 



P∂1A2 = X1A2
P∂1A1 = X1A1
P (∂2A1 + ∂3A2) = (A2X2 +A1X3)
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This polynomial system can be easily solved. We obtain the following solutions:

A1 =
α1
2
X2
1 +

α2
2α1

(α1 − a6)X2
2 +

α1
2α2

(α1 − a6)X2
3 + a6X2X3

A2 =
α2
α1
A1

A1 = 0

A2 =
α2
2
X2
1 + b2X

2
2 + α2X2X3

A1 = a4X1X2

A2 = −a4X1X3

Then we have

Proposition 39 Every Poisson structure on C[X1, X2, X3] whose linear part is given by Ω1 = X2dX3 +
X3dX2 +X1dX1 is equivalent to





(P4) =





{X1, X2} = X2 +
α1

2 X
2
1 +

α2

2α1
(α1 − a6)X2

2 +
α1

2α2
(α1 − a6)X2

3 + a6X2X3

{X1, X3} = −X3 +
α2

α1
(α1

2 X
2
1 +

α2

2α1
(α1 − a6)X2

2 +
α1

2α2
(α1 − a6)X2

3 + a6X2X3)

{X2, X3} = X1.

(P5) =




{X1, X2} = X2

{X1, X3} = −X3 +
α2

2 X
2
1 + b2X

2
2 + α2X2X3

{X2, X3} = X1.

(P6) =




{X1, X2} = X2 + a4X1X2

{X1, X3} = −X3 − a4X1X3

{X2, X3} = X1.

(P7) =




{X1, X2} = X2 + a2X

2
2 + a3X

2
3 + a6X2X3

{X1, X3} = −X3 + b2X
2
2 − a6

2 X
2
3 − 2a2X2X3

{X2, X3} = X1.

The last case corresponds to dΩ2 = 0.

• Ω1 = Ω51 = X2dX3 − αX3dX2

Let us assume that α 6= 0 and α 6= −1. The equivalence given by Y2 = X2 + B2, Yi = Xi for i = 1, 3 and
B2 ∈ V2 shows that the structure corresponding to Ω = Ω1 is equivalent to a structure of degree 2 given by

A1 = a2X
2
2 + a3X

2
3 +

c6

α
X1X2 + c3X1X3

A2 = 0
A3 = c3X

2
3 + c5X1X3 + c6X2X3

Thus we can assume that in Ω2 we have c3 = c5 = c6 = a2 = a3 = a6 = 0. The new equivalence of degree 2
given by Y3 = X3 +B3, Yi = Xi for i = 1, 2 and B3 ∈ V2 gives a Poisson structure of degree 2 equivalent to
the structure of degree 1 with

A1 = 0
A2 = b2X

2
2 + b3X

2
3 − c2X1X2 +

c6

α
X1X3

A3 = c2X
2
2 + c4X1X2 + c6X2X3

Thus we can assume that

Ω2 = (a1X
2
1 + a4X1X2 + a5X1X3)dX1 + (b1X

2
1 + b4X1X2 + b5X1X3)dX2 + c1X

2
1dX3.

Now Ω1 ∧ dΩ2 +Ω2 ∧ dΩ1 = 0 implies

Ω2 = a4X1X2dX1 + alphaa4X1X3dX2.
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If α = −1 then dΩ1 = 0 and Ω1 ∧ dΩ2 = 0 implies

Ω2 = (A1 = a4X1X2 + a6X2X3)dX1 + (−a4X1X3 + b6X2X3)dX2 + c1X
2
1dX3.

The equation Ω2 ∧ dΩ2 = 0 implies c1b6 = c1a6 = a4b6 = a4a6 = 0.

If α = 0, by equivalence of degree 2 we can assume that

Ω2 = a3X
2
3dX1 + (b1X

2
1 + b3X

2
3 + b5X1X3)dX2 + (c2X

2
2 + c3X

2
3 + c4X1X2 + c6X2X3)dX3.

But Ω1 ∧ dΩ2 + Ω2 ∧ dΩ1 = 0 and Ω2 ∧ dΩ2 = 0 implies X2(∂1A2 + ∂2A3) + A3 = 0 that is c3 = 0 and
a3c4 = a3c6 = b3c4 = b3c6 = 0.

Proposition 40 Every Poisson structure on C[X1, X2, X3] whose linear part is given by Ω1 = X2dX3 −
αX3dX2 is equivalent to





(P8) =




{X1, X2} = X2 + a4X1X2

{X1, X3} = αX3 + αa4X1X3

{X2, X3} = 0.
α 6= −1, 0

(P9, α = −1) =




{X1, X2} = X2 + a6X2X3

{X1, X3} = −X3 + b6X1X3

{X2, X3} = 0.

(P10, α = −1) =




{X1, X2} = X2 + a4X1X2

{X1, X3} = −X3 − a4X1X3

{X2, X3} = c1X
2
1 .

(P11, α = 0) =




{X1, X2} = X2

{X1, X3} = b1X
2
1 + b5X1X3

{X2, X3} = c2X
2
2 + c4X1X2 + c6X2X3..

(P12, α = 0) =




{X1, X2} = X2 + a3X

2
3

{X1, X3} = b1X
2
1 + b3X

2
3 + b5X1X3

{X2, X3} = c2X
2
2 .

• Ω1 = Ω61 = (X2 + X3)dX3 − X3dX2. By equivalence of degree 2, we can assume that A1 = 0, c5 = 0
and b4 = 0. The equation Ω1 ∧ dΩ2 + Ω2 ∧ dΩ1 = 0 implies c1 = c4 = b1 = 0, c6 = −b5 = 2c2. The equation
Ω2 ∧ dΩ2 = 0 implies c2 = 0 and b2c3 = b6c3 = 0. Then we have

Proposition 41 Every Poisson structure on C[X1, X2, X3] whose linear part is given by Ω1 = (X2 +
X3)dX3 −X3dX2 is equivalent to





(P13) =




{X1, X2} = X2 +X3

{X1, X3} = X3 + b2X
2
2 + b3X

2
3 + b6X2X3

{X2, X3} = 0.

(P14) =




{X1, X2} = X2 +X3

{X1, X3} = X3 + b3X
2
3

{X2, X3} = c3X
2
3 .

Second case :Ω0 6= 0.

Here the Poisson structure is given by Ω = Ω0 +Ω1 +Ω2. As Ω0 is of degree 0, the dΩ0 = 0. We have





Ω0 ∧ dΩ1 = 0
Ω0 ∧ dΩ2 +Ω1 ∧ dΩ1 = 0
Ω1 ∧ dΩ2 +Ω2 ∧ dΩ1 = 0
Ω2 ∧ dΩ2 = 0.
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The form Ω0 ⊕ Ω1 provided the vector space V0 ⊕ V1 with a linear Poisson bracket. Then V0 ⊕ V1 is a ie
algebra such that V0 is in the center. This implies Ω1 ∧ dΩ1 = 0. The form Ω2 = A1dX3 −A2dX2 +A3dX1

satisfies: 



Ω0 ∧ dΩ2 = 0
Ω1 ∧ dΩ2 +Ω2 ∧ dΩ1 = 0
Ω2 ∧ dΩ2 = 0.

•. Ω = Ω7 = Ω20 + Omega71 = dX3 −X3dX2. By equivalence we can assume that a3 = a5 = b3 = c5 = 0.
The equation Ω0 ∧ dΩ2 = 0 implies b4 = −2c2, c4 = −2b1, c6 = −b5, Ω1 ∧ dΩ2 + Ω2 ∧ dΩ1 = 0 impliesc1 =
c2 = c3 = c4 = 0, a1 = a4 = 0, and Ω2 ∧ dΩ2 = 0 gives b5b2 = b5a2 = b5a6 = 0.

Proposition 42 Every Poisson structure on C[X1, X2, X3] given by Ω = dX3 −X3dX2 + Ω2 is equivalent
to 




(P15) =




{X1, X2} = 1 + a2X

2
2 + a6X2X3

{X1, X3} = X3 + b2X
2
2 + b6X2X3

{X2, X3} = 0.

(P16) =




{X1, X2} = 1
{X1, X3} = X3 + b5X1X3 + b6X2X3

{X2, X3} = −b5X2X3.

• Ω = Ω8 = Ω20+Ω81 = X3dX3− dX2. We can assume that A2 = b2X
2
2 + b4X1X2. As dΩ1 = 0, the system

is reduced to Ω0 ∧ dΩ2 = Ω1 ∧ dΩ2 = 0. This gives c4 = c6 = a4 = 0 and b4 +2c2 = a5 − 2c3 = 2a1 − c5 = 0.
Thus Ω2 ∧ dΩ2 = 0 is equivalent to (2a2X2 + a6X3)A3 = 0.

Proposition 43 Every Poisson structure on C[X1, X2, X3] given by Ω = X3dX3 − dX2 is equivalent to





(P17) =




{X1, X2} = 1 + a1X

2
1 + a2X

2
2 + a3X

2
3 + a5X1X3 + a6X2X3

{X1, X3} = X2 + b2X
2
2 + b4X1X2

{X2, X3} = 0.

(P18) =





{X1, X2} = 1 + a1X
2
1 + a3X

2
3 + a5X1X3

{X1, X3} = X2 + b5X1X3 + b6X2X3

{X2, X3} = c1X
2
1 − b4

2 X
2
2 +

a5

2 X
2
3 + 2a1X1X3.

• Ω = Ω9 = Ω20 +Ω91 = X2dX3 +X3dX2 + dX1. By equivalence we can assume b5 = b2 = a3 = a5 = c2 =
c5 = 0. As dΩ1 = 0, the equation Ω0 ∧ dΩ2 = Ω1 ∧ dΩ2 = 0 implies b6 + 2a2 = a6 + 2b3 = a4 = a1 = b1 =
b4 = c3 = 0 . In this case Ω2 ∧ dΩ2 = 0 is equivalent to c6(X2A2 +X3A1) = 0.

Proposition 44 Every Poisson structure on C[X1, X2, X3] given by Ω = X2dX3+X3dX2+dX1 is equivalent
to 




(P19) =




{X1, X2} = X2 + a2X

2
2 + a6X2X3

{X1, X3} = −X3 − a6

2 X
2
3 − 2a2X2X3

{X2, X3} = 1 + c1X
2
1

(P20) =




{X1, X2} = X2

{X1, X3} = −X3

{X2, X3} = 1 + c1X
2
1 .

8.3 Poisson algebras associated to rigid Lie algebras

8.3.1 Rigid Lie algebras

We fix a basis of Cn. With respect to this basis, a multiplication µ of a n-dimensional complex Lie algebra
is determined by its structure constants Ck

ij which satisfy the Jacobi polynomial conditions. We denote by
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Ln the algebraic variety C[Ck
ij ]/I where I is the ideal generated by the polynomials:

{
Ck

ij + Ck
ji = 0∑n

l=1 C
l
ijC

s
lk + Cl

jkC
s
li + Cl

kiC
s
li = 0

for all 1 ≤ i, j, k, s ≤ n. Then every multiplication µ of a n-dimensional complex Lie algebra is identified to
one point of Ln. We have a natural action of the algebraic group Gl(n,C) on Ln whose orbits correspond to
the classes of isomorphic multiplication:

O(µ) =
{
f−1 ◦ µ ◦ (f × f), f ∈ Gl(n,C)

}
.

Let g = (Cn, µ) be a n-dimensional complex Lie algebra. We denote always by µ the corresponding point
of Ln.

Definition 64 The Lie algebra g is called rigid if its orbit O(µ) is open (for the Zariski topology) in Ln.

Amongst rigid complex Lie algebras, there are all the simple and semi-simple Lie algebras, all the Borel
algebras and parabolic Lie algebras. We know also the classification of rigid Lie algebra up the dimension 8
([?] ), the classification of solvable rigid Lie algebras whose nilradical is filiform ([?]). But to day we do not
know any rigid nilpotent Lie algebras. Recall two interesting tools to look the rigidity or not of a given Lie
algebra :

Theorem 65 Let g = (Cn, µ) a n-dimensional complex Lie algebra. Then

1. g is rigid if and only if any valued deformation g′ where the structure constants are in a valuation ring
R is (K∗)-isomorphic to g where K∗ is the fraction field of R.

2. If H2(g, g) = 0, then g is rigid.

The notion of valued deformation, which extends of natural way the classical notion of Gerstenhaber
deformations also called formal deformations is developed in [23]

The second part of this theorem is the Nijenhuis-Richardson theorem. But its converse is not true. There
exists solvable rigid Lie algebras with H2(g, g) 6= 0. This fact can be interpreted as follows: let

µt = µ+
∑

i≥1
tiϕi

a deformation of µ with coefficient in the valued ring of formal series C[[t]]. As µt is a multiplication of Lie
algebra, this implies in particular that ϕ1 ∈ H2(g, g). If µ is rigid, then, from the first previous result, µt is
isomorphic to µ, the isomorphism belonging to Gl(n,C[[t]]). If H2(g, g) = 0, then every deformation of µ is
isomorphic to µ and µ is rigid. If H2(g, g) 6= 0, then µ is not rigid or µ is rigid and there is ϕ1 6= 0 ∈ H2(g, g)
which never is the first term of a deformation of µ.

8.3.2 Finite dimensional rigid Poisson algebras

We recall in this section a result of [28] which precises the structure of a finite dimensional complex Poisson
algebras whose the underlying Lie bracket is rigid. Let P a finite dimensional complex Lie algebra. We denote
by [X,Y ] and X.Y the corresponding Lie bracket and associative multiplication. If the bracket corresponds
to a simple complex (and thus rigid) Lie algebra, then the associative product is trivial : X.Y = 0. Let us
assume now that the Lie bracket corresponds to a rigid solvable Lie algebra. We recall the following result:

Proposition 45 Let g be a n-dimensional complex solvable rigid Lie algebra. Then g is written:

g = t⊕ n

where n is the nilradical of g and t a maximal abelian subalgebra such that the adjoint operators adX are
diagonalizable for every X ∈ t.
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This subalgebra t is usually called the Malcev torus. All these maximal torus are conjugated and their
common dimension is called the rank of g. Then we have [28]

Proposition 46 Let g be a rigid solvable Lie algebra of rank 1 with non-zero roots. Then there is only one
Poisson algebra P such that gP = g. It is defined by

Xi ·Xj = {Xi, Xj}.

8.3.3 Cohomology of An+1 = C[X0, X1, · · · , Xn] associated to a rigid Lie bracket

In this section we consider a linear Poisson bracket on C[X0, · · · , Xn] such that the brackets {Xi, Xj} =
P(Xi, Xj) corresponds to a solvable rigid Lie algebra g of rank 1. We assume that the roots [?] of this rigid
Lie algebras are 1, · · · , n. In this case we have




{X0, Xi} = iXi, i = 1, · · · , n
{X1, Xi} = Xi+1, i = 2, · · · , n− 1
{X2, Xi} = Xi+2, i = 3, · · · , n− 2.

We denote this (n + 1)-dimensional Poisson algebra by P(g). This algebra is a deformation of the Poisson
algebra studied in section 1.2. The corresponding (n− 1)−exterior form is

Ω =
n∑

i=1

(−1)i−1Xid1 ∧ ... ∧ d̂i ∧ ... ∧ dn +
n−1∑
i=2

(−1)iXi+1d0 ∧ d2 ∧ ... ∧ d̂i ∧ ... ∧ dn

+
n−2∑
i=3

(−1)i+1Xi+2d0 ∧ d1 ∧ d3 ∧ ... ∧ d̂i ∧ ... ∧ dn

where di denotes dXi and d̂i signifies that this term does not appear is the considered expression. Let ϕ be
a 2-cochain. We denote by ϕ(i, j) the vector ϕ(Xi, Xj). The ϕ is a 2 cocycle if and only if

Φn−1(ϕ) = (−1)n−2ϕ(1, i)d0 ∧ d2 ∧ ... ∧ d̂i ∧ ... ∧ dn

+
n∑

i=3

(−1)i−1ϕ(2, i)d0 ∧ d1 ∧ d3 ∧ ... ∧ d̂i ∧ ... ∧ dn

+
∑

3≤i<j≤n

(−1)j−i−1ϕ(i, j)d0 ∧ ... ∧ d̂i ∧ ... ∧ d̂j ∧ ... ∧ dn

satisfies
d(i(∂σ(1), ..., ∂σ(n−2))Ω) ∧ Φn−1(ϕ) + Ω ∧ d[i(∂σ(1), ..., ∂σ(n−2))Φn−2(ϕ)] = 0 (8.1)

for any σ ∈ S3,n−2.
As g = t⊕n, we have the decomposition P(g) = P(t)⊕P(n) where P(t) (respect. P(n)) is the polynomial

algebra generated by X0 (respec. by X1, ..., Xn]). From the Hochschild-Serre factorization theorem, we
assume that the cocycles are t-invariant and with values in P(n). We denote this space by χk(P(g),P(g))t.
If f ∈ χ1(P(g),P(g))t then

{X0, f(Xi)} = if(Xi)

and we obtain

f(X1) = a11X1, f(X2) = a111 X
2
1 + a22X2, ..., f(Xi) =

∑

l1+...+lk=i

al1...lk
i X l1

1 ...X
lk
k .

Thus δf(X1, Xi) = a11{X1, Xi}+ {X1, f(Xi)} − f(Xi+1) and we can reduce any element ϕ ∈ Z2(P(g,P(g)t
to a 2-cocycle satisfying

ϕ(X1, Xi) = 0 for i = 2, ..., n− 1.

We denote by Z∗k(P(g,P(g))t (resp B∗k , H∗k) the subspace homogeneous cocycle of degree k.

Let us look the system on the ϕ(i, j) which is deduced from equation(1).
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- If (σ(1), ..., σ(n− 2)) = (3, 4, ..., n) then (1) is trivial.

- If (σ(1), ..., σ(n−2)) = (2, 3, ..., l̂, ..., n) then (1) is trivial as soon as l 6= n. If l = n then (1) is reduced to

nϕ(X1, Xn) + (−1)n−1
∑

iXi∂iϕ(X1, Xn) = 0

and ϕ(X1, Xn) is of weight n+ 1.

- If (σ(1), ..., σ(n− 2)) = (1, 2, ..., ı̂, ..., ̂..., n) we obtain

(i+ j)ϕ(Xi, Xj) =
∑

kXk∂kϕ(Xi, Xj)

and ϕ(Xi, Xj) is of weight i+ 1.

- If (σ(1), ..., σ(n− 2)) = (0, 1, 2, ..., ı̂, ..., ̂, ..., k̂, . . . , n) with i ≥ 3, then we obtain

Ω ∧ d(ϕ(Xi, Xj)dXk + ϕ(Xi, Xk)dXj + ϕ(Xj , Xk)dXi) = 0

- If (σ(1), ..., σ(n − 2)) = (0, 3, ..., l̂, ..., n) we obtain relation between ϕ(3, l) and ϕ(2, l + 1). We deduce
that ϕ(2, i) generates Z21 (Ap, Ap)

t more precisely we have

ϕ(X2, Xi+1) + ϕ(X3, Xi) = X3∂2ϕ(2, i) +X4∂3ϕ(2, i) + ...+Xn∂n−1ϕ(2, i).

In case of k = 1, ϕ(2, i) = a2iX2+i if i ≤ n− 2.

Case k = 1 As ϕ(X1, Xn) is of weight n + 1, then ϕ(X1, Xn) = 0. We have also ϕ(Xi, Xj) = ai+j
ij Xi+j if

i+ j ≤ n.

If (σ(1), ..., σ(n − 2)) = (1, 2, ..., iˆ, ..., jˆ, ..., n) we obtain (i + j)ϕ(Xi, Xj) =
∑
kXk∂kϕ(Xi, Xj) and

ϕ(Xi, Xj) is of weight i+ 1. Then ϕ(Xi, Xj) = ai+j
ij Xi+j if i+ j ≤ n.

If (σ(1), ..., σ(n−2)) = (0, 3, ..., lˆ, ..., n) we obtain relation between ϕ(3, l) and ϕ(2, l+1).We deduce that
ϕ(2, i) generates Z21 (Ap, Ap)

t more precisely we have

ϕ(X2, Xi+1) + ϕ(X3, Xi) = X3∂2ϕ(2, i) +X4∂3ϕ(2, i) + ...+Xn∂n−1ϕ(2, i).

In case of k = 1, ϕ(2, i) = a2iX2+i if i ≤ n− 2.

Then we have a2(i+1) + a3i = a2i if 3 ≤ i ≤ n− 2. Their relation gives
{
ai+1j + aij+1 = aij

ai+2j + aij+2 = aij
.

We deduce that

Lemma 8 If n ≥ 7, then H2
1 (Ap, Ap) is of dimension 1 and generated by the cocycle given by





ϕ(X2, Xi) = (i− 1)X2+i i = 4, ..., n− 2
ϕ(X3, Xi) = X3+i i = 4, ..., n− 3
ϕ(Xi, Xj) = 0 in other case

.

The nilradical is filiform. These algebras have been studied in [?]. We have

• For n = 2, 3, 4, then gn is not rigid.

• For n = 5, 6, then gn is rigid with H2(gn, gn) = {0}.
• For 7 ≤ n ≤ 11, gn is not rigid.

• For n ≥ 12, then gn is rigid with dimH2(gn, gn) = 1. In this case a basis of H2(gn, gn) is given by the
cohomology class of the 2-cocycle which satisfies





φ(X,Xi) = 0, i ≥ 1
φ(X1, Xi) = 0, i ≥ 2
φ(X2, X3) = 0, , φ(X2, Xi) = (4− i)Xi+2, i ≥ 4
φ(X3, Xi) = i+ 3, i ≥ 4
φ(Xi, Xj) = 0, 4 ≤ i < j < n
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8.3.4 Deformations of Enveloping algebra of rigid Lie algebra

In [G,A] the rigid solvable Lie algebras such that n is a filiform Lie algebras (that is of maximal nilindex)
are classified using the determination of the set of roots associated to the action of t on n. In the next
section, we consider H2(A3, A3) where A3 is the Poisson algebra on A where linear part is nothing that this
rigid Lie algebra.

The Poisson algebra A3

Let G be the Lie algebra defined in the Poisson {X0, X1, ..., Xn} by




[X0, Xi] = iXi i = 1, ..., n
[X1, Xi] = Xi+1 i = 2, ..., n− 1
[X2, Xi] = Xi+2 i = 3, ..., n− 2

.

The rigidity of the Lie algebra is proved in [CA]. Let P be the Poisson bracket on C[X0, ..., Xn] such that

{Xi, Xj} = P (Xi, Xj) = [Xi, Xj ].

The corresponding (n− 1)−exterior form is

Ω =

n∑

i=1

(−1)i−1Xid1∧...∧dˆi∧...∧dn+

n−1∑

i=2

(−1)iXi+1d0∧d2∧...∧dˆi∧...∧dn+

n−2∑

i=3

(−1)i+1Xi+2d0∧d1∧d3∧...∧dˆi∧...∧dn

where di denotes dXi and d
ˆ
i signifies that this faction does not appear is the considered expression.

The ϕ is a 2 cocycle if and only if

Φn−1(ϕ) = (−1)n−2ϕ(1, i)d0 ∧ d2 ∧ ... ∧ dˆi ∧ ... ∧ dn

+
n∑

i=3

(−1)i−1ϕ(2, i)d0 ∧ d1 ∧ d3 ∧ ... ∧ dˆi ∧ ... ∧ dn

+
∑

3≤i<j≤n

(−1)j−i−1ϕ(i, j)d0 ∧ ... ∧ dˆi ∧ ... ∧ dˆj ∧ ... ∧ dn

satisfies
d(i(∂σ(1), ..., ∂σ(n−2))Ω) ∧ Φn−1(ϕ) + Ω ∧ d[i(∂σ(1), ..., ∂σ(n−2))Φn−2(ϕ)] = 0

for any σ ∈ S3,n−2.
As G = t ⊕ n, we have the decomposition A3 = A3(t) ⊕ A3(n) where A3(t) is the polynomial algebra

generated byX0 and A(n) = C[X1, ..., Xn]. From the Hochschild-Serre factorization theorem and with assume
that the cocycles are t-invariant and with values in A3(n). We denote this space by χk(A3, A3(n))

t. If f ∈
χ1(A3, A3(n))

t then f{X0, Xi} = if(Xi) and we obtain f(X1) = a11X1, f(X2) = a111 X
2
1 + a22X2, ..., f(Xi) =∑

l1+...+lk=i

al1...lk
i X l1

1 ...X
lk
k .

Thus δf(X1, X2) = a11{X1, X2}+{X1, f(X1)}−f ′(Xi+1) and we can reduce any element ϕ ∈ Z2(AP , A
′
P (n))

t to
a 2-cocycle satisfying

ϕ(X1, Xi) = 0 for i = 2, ..., n− 1.

We denote by Z∗k(Ap, Ap(n))
t (resp B∗k , H

∗
k) the subspace homogeneous cocycle of degree k.

Case k = 1 If (σ(1), ..., σ(n− 2)) = (3, 4, ..., n) then is trivial.

If (σ(1), ..., σ(n− 2)) = (2, 3, ..., kˆ, ..., n) then is reduced to nϕ(X1, Xn)+ (−1)n−1∑ iXi∂iϕ(X1, Xn) = 0
and ϕ(X1, Xn) is of weight n+ 1. Then, as k = 1, ϕ(X1, Xn) = 0.

If (σ(1), ..., σ(n − 2)) = (1, 2, ..., iˆ, ..., jˆ, ..., n) we obtain (i + j)ϕ(Xi, Xj) =
∑
kXk∂kϕ(Xi, Xj) and

ϕ(Xi, Xj) is of weight i+ 1. Then ϕ(Xi, Xj) = ai+j
ij Xi+j if i+ j ≤ n.
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If (σ(1), ..., σ(n−2)) = (0, 3, ..., lˆ, ..., n) we obtain relation between ϕ(3, l) and ϕ(2, l+1).We deduce that
ϕ(2, i) generates Z21 (Ap, Ap)

t more precisely we have

ϕ(X2, Xi+1) + ϕ(X3, Xi) = X3∂2ϕ(2, i) +X4∂3ϕ(2, i) + ...+Xn∂n−1ϕ(2, i).

In case of k = 1, ϕ(2, i) = a2iX2+i if i ≤ n− 2.

Then we have a2(i+1) + a3i = a2i if 3 ≤ i ≤ n− 2. Their relation gives

{
ai+1j + aij+1 = aij

ai+2j + aij+2 = aij
.

We deduce that

Lemma 9 If n ≥ 7, then H2
1 (Ap, Ap) is of dimension 1 and generated by the cocycle given by





ϕ(X2, Xi) = (i− 1)X2+i i = 4, ..., n− 2
ϕ(X3, Xi) = X3+i i = 4, ..., n− 3
ϕ(Xi, Xj) = 0 in other case

.

Application. Let us consider the multiplication given by





µ(X0, Xi) = iXi i = 1, ..., n
µ(X1, Xi) = Xi+1 i = 2, ..., n− 1
µ(X2, X3) = X5

µ(X2, Xi) = (5− i)X2+i i = 4, ..., n− 2
µ(X3, Xi) = X3+i i = 4, ..., n− 3

.

This product is not a Lie algebra product because ϕ is a not integrable cocycle. But µ as a ”non Lie”
deformation of the product of the rigid algebra G.



Bibliography

[1] V. Abramov, R. Kerner, O. Liivapuu, S. Shitov. Algebras with ternary law of composition and their
realization by cubic matrices. arXiv:0901.2506

[2] J. M. Ancochea Bermudez, J. Fresan, J. Sanchez Hernandez. On the variety of two dimensional real
associative algebras. arXiv:0707.1076, 2007

[3] H. Ataguema, A. Makhlouf. Notes on Cohomologies of Ternary Algebras of Associative Type.
arXiv:0812.0707.

[4] H. Ataguema, A. Makhlouf. Deformations of ternary algebras. J. Gen. Lie Theory Appl. 1 (2007), no. 1,
41–55.

[5] A. Awane. k-symplectic structures. Journal of Mathematical physics 33 (1992) 4046-4052.

[6] Azzouz Awane, Michel Goze¡¡¡¡¡¡¡¡¡¡; Pfaffian systems, k-symplectic systems. Kluwer Academic Publishers.
Dordrecht/boston/London 2000.

[7] R. Bai, Z. Zhang, H.Li, H.Shi. The inner derivation algebras of (n+1)-dimensional n-Lie algebras. Comm.
Algebra 28 (2000), no. 6, 2927–2934.

[8] R. Bai,S. Guojie S. The classification of six dimensional 4-Lie algebras. J.Phys. A. Math. Theor. (42),
(2009), 035207.

[9] R.Bai, D. Meng. The simple n-ary Lie algebras. Hadronic J. 25 (2002), no. 6, 713–723.

[10] M. Bremner. On free partially associative triple systems. Comm. Algebra 28 (2000), no. 4, 2131–2145.

[11] C. Cuvier. Leibnitz algebras. Ann. Sc. E.N.S. (1999).

[12] A.S. Dzhumadil’daev. Wronskians as n-Lie multiplications. arXiv math.RA/0202043.

[13] M. Doubek, M. Markl, P.Zima. Deformation theory (lecture notes). Arch. Math. (Brno) 43 (2007), no.
5, 333371.

[14] V.T. Filippov¡; n-Lie algebras. Sib. Mat. Zh, 26(6), (1985), 126-140.

[15] M. Gerstenhaber. On the deformation of rings and algebras. Ann. of Math. (2) 79 1964 59–103.

[16] V. Ginzburg, M. Kapranov. Koszul duality for operads. Duke Math. J. 76 (1994), no. 1, 203–272.
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