
HAL Id: tel-00710193
https://theses.hal.science/tel-00710193v1

Submitted on 20 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Taking architecture and compiler into account in formal
proofs of numerical programs

Thi Minh Tuyen Nguyen

To cite this version:
Thi Minh Tuyen Nguyen. Taking architecture and compiler into account in formal proofs of numerical
programs. Other [cs.OH]. Université Paris Sud - Paris XI, 2012. English. �NNT : 2012PA112090�.
�tel-00710193�

https://theses.hal.science/tel-00710193v1
https://hal.archives-ouvertes.fr

N o NNT: 2012PA112090

UNIVERSITÉ DE PARIS-SUD

ÉCOLE DOCTORALE: INFORMATIQUE PARIS-SUD
DISCIPLINE : INFORMATIQUE

THÈSE DE DOCTORAT

soutenue le 11 juin 2012

par

Thi Minh Tuyen NGUYEN

Preuves formelles de programmes numériques
en prenant en compte l’architecture

et le compilateur

Composition du jury:

Président : Jean-Michel MULLER

Rapporteurs: David MONNIAUX
César A. MUÑOZ

Examinateurs Xavier LEROY
Florent HIVERT
Claude MARCHÉ, co-directeur
Sylvie BOLDO, co-directrice

2

Acknowledgements

This thesis is the result of more than three years of work under the supervision of Sylvie Boldo
and Claude Marché, to who I would like to express my sincere gratitude. They gave me a chance
to work in a big team. I would like to thank to Sylvie for her helps from the beginning of my
PhD. She was always available to discuss with me each time I needed her. I would like to thank
to Claude for his guidance. Spending time working with him gave me more ideas to finish my
thesis.

I also thank my reviewers David Monniaux and Cesar A. Muñoz who spent much of their
time to understand my memoir and gave me constructive comments. I especially thank Cesar
Muñoz who came to Paris to attend my defence.

Not forget, great appreciations go to ProVal team. This is the best team that I’ve ever
worked with. I also thank Régine for her helps in setting up my life. I thank Guillaumne for his
helps in using Gappa tool. Thanks Romain, François, Asma, Kalyan, etc.

I would like to thank the people in Hisseo project who gave me helpful ideas for improving
my work.

The special thank goes to my father, mother, brothers and sisters who shared with me all
my difficulties. They gave me the motivation to finish my PhD.

Last but not least, thanks Luyen, my husband and my son, Minh Thien.

3

4

Contents

1 Introduction 9
1.1 Floating-point arithmetic . 9
1.2 Formal verification . 10
1.3 Contributions . 11

2 Background 13
2.1 Floating-point arithmetic . 13

2.1.1 The IEEE-754 floating-point standard . 13
2.1.2 Architecture-dependent issues . 16

2.2 Why- An Intermediate Verification Language . 18
2.2.1 Logical declarations in Why . 20
2.2.2 Programs in Why . 20
2.2.3 Example . 21
2.2.4 Use of Why in this thesis . 23

2.3 ACSL and Frama-C . 25
2.3.1 ACSL . 25
2.3.2 Frama-C . 25

I Hardware-independent proofs 27

3 Hardware-independent bounds for floating-point operations 29
3.1 Bounds for one floating-point operation . 29

3.1.1 Case 1: Rounding error in 64-bit rounding 30
3.1.2 Case 2: Rounding error in 80-bit rounding 30
3.1.3 Case 3: Rounding error in double rounding 31
3.1.4 Proof in Coq . 31

3.2 Proofs of numerical programs . 32
3.2.1 When FMA occurs . 32
3.2.2 Bounds of a sequence of operations . 33

3.3 Implementation . 33

4 When the compiler re-organizes a computation 35
4.1 Associativity for the addition . 35
4.2 Implementation . 41

5 Experimentations 43
5.1 Double rounding example . 43
5.2 KB3D example . 44

5

5.3 Summation example . 46
5.4 Clock drift example . 47
5.5 Scalar product example . 49

II Hardware-dependent proofs 51

6 Principle of proofs on assembly code with Why 53
6.1 Steps of proofs . 53
6.2 Essential elements of assembly language . 54

6.2.1 Operands and Instruction Naming . 54
6.2.2 EFLAGS register . 55
6.2.3 General-purpose instructions . 56
6.2.4 Calling procedures using call and ret . 56
6.2.5 Some assembler directives . 57
6.2.6 Inline assembly . 58

6.3 Preparation of source code . 59
6.4 Examples . 61

7 Case of Simple programs 65
7.1 Definition of the class of “simple” C programs . 65
7.2 Translation to Why . 65

7.2.1 Translation of 32-bit and 64-bit integers 65
7.2.2 Translation of operands . 66
7.2.3 Annotations . 68
7.2.4 Translation of an instruction . 69
7.2.5 Sequences and functions . 70

7.3 Soundness of translation . 71
7.3.1 Reminder of the soundness of Why . 72
7.3.2 About the condition in function call . 73
7.3.3 Definition of the execution of an assembly program 74
7.3.4 Relation between the Why state and the assembly state 75

7.4 Examples . 77
7.4.1 Simple example . 77
7.4.2 Square example . 78

8 Floating-point programs 83
8.1 Assembly with floating-point arithmetic . 83

8.1.1 SSE/SSE2 . 83
8.1.2 x87 Floating-point Unit . 84
8.1.3 FMA . 86

8.2 Definition of programs supported . 87
8.3 Translation to Why . 89

8.3.1 Abstract functions . 89
8.3.2 When constants are referenced by %rip 89
8.3.3 Modifying the translation of general-purpose instructions 90
8.3.4 Translation of SSE/SSE2 instructions . 91
8.3.5 x87 Floating-point Unit . 92
8.3.6 AVX instructions . 95

8.4 Translation of annotations to Why . 96

6

8.4.1 Translation of annotations in presence of floating-point arithmetic 96
8.5 Soundness of translation . 97

8.5.1 Definition of the execution of a assembly program 97
8.5.2 Relation between Why state and assembly state (case of floating-point

programs) . 98
8.5.3 About exact value . 99

8.6 Illustrations . 101
8.6.1 Double rounding example . 101
8.6.2 Overflow example . 104

9 Handling Conditional and loop statements 109
9.1 Conditional instructions in assembly . 109

9.1.1 Jump instructions . 109
9.1.2 Conditional move instructions: CMOVcc 110

9.2 Definition of programs supported . 110
9.3 Translation of comparison instructions . 110

9.3.1 Translation of cmp instruction . 111
9.3.2 Translation of floating-point comparison instructions 111

9.4 Control Flow Graph construction from assembly code 112
9.4.1 Example with if statement . 112
9.4.2 Example with do while statement . 114
9.4.3 Example with goto, do while and if statement 114

9.5 Translation from a CFG to Why . 115
9.6 Examples . 120

9.6.1 Clock drift . 120
9.6.2 KB3D . 123

9.7 Discussion . 123

10 Handling Arrays and Pointers 127
10.1 Handled programs . 127
10.2 New rules of translation for operands and instructions 127

10.2.1 Representation of memory in Why . 127
10.2.2 Definition of memory model . 134
10.2.3 Translation of operands and instructions to Why 134
10.2.4 Translation of annotations to Why . 138

10.3 When local variables are pointed by %rsp . 139
10.4 Examples . 141

10.4.1 Maximum of an array . 141
10.4.2 Scalar Product . 142

11 Bit-level reasoning 147
11.1 Motivations . 147

11.1.1 Examples of the chapter . 147
11.1.2 Goals of the chapter . 149

11.2 About endianness . 149
11.3 Why 3 . 150

11.3.1 Logic . 150
11.3.2 Theories . 151

11.4 Bitvector theories in Why 3 . 153
11.4.1 Theory BitVector . 153

7

11.4.2 Theory BV32 and BV64 . 156
11.4.3 Theory BV32_64 . 157
11.4.4 Theory BV_double . 157

11.5 Examples . 159
11.5.1 Negation by xor . 159
11.5.2 Conversion of an integer to a double . 160

11.6 Discussion . 164

12 Conclusion and Future works 165
12.1 Summary . 165

12.1.1 Hardware-independent approach . 165
12.1.2 Hardware-dependent approach . 166
12.1.3 Comparison with related works . 166
12.1.4 Difficulties . 167

12.2 Future works . 167
12.2.1 Hardware-independent approach . 167
12.2.2 Hardware-dependent approach . 168

8

Chapter 1

Introduction

The problem of program correctness is always an issue, especially as software applications are
more and more complex. Moreover, software correctness plays a crucial role in the overall
software quality especially in the automatic control of engines like airplanes or subways. A bug
in such systems can not only lost a lot of money but also human life. Thus, the validation of
program implementation, which checks whether the code conforms to developer’s intentions, is
necessary.

A common method for reducing bugs in programs is testing. However, this technique cannot
cover all cases of the input space, and thus, although the tests are successful, the implemen-
tation may still contain errors. Another possibility is to use formal verification methods. It
mathematically proves the correctness of the specification. Although formal verification is used
in critical software, there are some aspects which are not studied fully such as computations on
floating-point numbers.

Before describing the contributions and the organization of this thesis, we introduce some
reasons which cause the discrepancies of results in floating-point programs and give a state of the
art of formal verification in general and a state of the art of formal verification for floating-point
arithmetic.

1.1 Floating-point arithmetic

Nowadays, floating-point computations are widely used in critical systems from domains such
as physics, aerospace system, nuclear simulation, etc. In systems which use floating-point com-
putations, the calculations are not exact. This means that there is an approximation for each
operation and thus rounding error occurs. There were some famous disasters caused by calcula-
tion bugs. The first one is Patriot Missile Failure [67] on February 25, 1991. The cause was an
inaccurate calculation of the time since boot due to computer arithmetic errors. The second one
is the explosion of the Ariane 5 on June 4, 1996, just forty seconds after lift-off. ”The internal
SRI 1 software exception was caused during execution of a data conversion from 64-bit floating
point to 16-bit signed integer value. The floating point number which was converted had a value
greater than what could be represented by a 16-bit signed integer.”, explained the report of the
Inquiry Board [52]. The third one is a famous FDIV bug in 1994 in the Intel Pentium processor
that costs $500 millions [38]. The effort to reduce errors is thus necessary for the safety and
reliability of programs.

As we have presented, inaccurate calculation is an issue in critical systems. The reason is that
there exist inconsistencies between program executions on different architectures. The IEEE-

1SRI stands for Système de Référence Inertielle or Inertial Reference System.

9

754 is the IEEE standard for floating-point arithmetic. This standard specifies interchange,
arithmetic formats and methods for binary and decimal floating-point arithmetic in computer
programming environments. An implementation of a floating-point system conforming to this
standard may be realized entirely in software, hardware or in any combination of software and
hardware. This standard ensures that we get exactly the same results from the floating-point
calculations of a program when it executes in any processor that follows strictly this standard.
In Java, the floating-point calculations in a class or a method containing the modifier strictfp 2

will follow strictly the standard. In C, the compiler gcc for x86-64 architectures uses -msse and
-msse2 by default to enable SSE extensions. For example, a double number is represented in
64 bits; a calculation on double is always rounded in 64 bits. However, the computations do
not always follow strictly the IEEE-754 standard because of some architecture-dependent issues.
This means that for a double type in C for example, by changing options of the compiler, the
calculation is not always done directly in 64 bits. The first architecture-dependent issue is the x87
floating-point unit (FPU) featured in processors of IA32 architecture. It uses the 80-bit internal
floating-point registers on the Intel platform. The second one is the fused multiply-add (FMA)
instruction, supported by the PowerPC and the Intel Itanium architectures, computes xy ± z
with a single rounding. Besides, compiler issues like optimization may also cause discrepancies
in results. Because of the issues above, the floating-point computations of a program running
on different architectures may be different [58].

1.2 Formal verification

Formal verification is more and more studied and used in both academy and industry research
in order to guarantee the safety of programs. There are many approaches for verifying programs
formally. Among of them are approaches which verify the source code such as static analysis,
others formally verify the machine code implementation.

Static analysis is an approach for checking a program without running it. Deductive verifi-
cation techniques which perform static analysis of code, rely on the ability of theorem provers to
check validity of formulas in first-order logic or even more expressive logics. They usually come
with expressive specification languages such as JML [15, 46] for Java, ACSL [9] for C, Spec# [6]
for C#, etc. to specify the requirements. For automatic analysis of floating-point codes, a
successful approach is abstract interpretation based static analysis, that includes Astrée [22, 59]
and Fluctuat [26].

We introduce here a short history about the formalization of floating-point arithmetic for
the specification and the verification. Floating-point arithmetic has been firstly formalized
in 1989 by G. Barrett [8]. This is only the formalization of the IEEE standard for binary
floating-point arithmetic in the specification language Z. However, there are not any proofs
using this specification. Then, in 1995, Carreño and Miner [17] presented the specification of
the IEEE-875 Floating-point standard in HOL and PVS [63]. Two year later, Harrison [39]
presented his works on the specification of floating-point in HOL Light – a tool written by
himself – about the specification of floating-point arithmetic and demonstrated how to use this
specification for proving. The works of Russinoff [65] are the formal verification of floating-
point multiplication, division and square root instructions of the AMD-K7 microprocessor in
ACL2 [47]. The formalization of IEEE-754 standard in Coq [20] was first done in 2001 by
Théry, Rideau and Daumas [24]. The common point of these works is the formalization of the
floating-point standard for a specification language.

2http://java.sun.com/docs/books/jls/third_edition/html/expressions.html#249198

10

http://java.sun.com/docs/books/jls/third_edition/html/expressions.html#249198

There are few attempts in specifying and proving behavioral properties of floating-point
programs in deductive verification system. In 2004, Miné used relational abstract domains to
dectect floating-point run-time errors [57]. Leavens presented how to handle NaN problems
in floating-point operations for JML in Java in 2006 [48]. Another proposal has been made
in 2007 by Boldo and Filliâtre [11]. Authors introduced a methodology and proofs in Coq to
perform formal verification of floating-point C programs which was implemented in a tool called
Caduceus [34]. In 2010, Ayad and Marché [4] extended this to the support of special values
and to the use of automatic theorem provers. This work was implemented in the Jessie plug-in
of Frama-C platform. However, these works only follow strictly the IEEE-754 standard, with
neither FMA, nor extended registers, nor considering optimization aspects.

Formal verification of machine-code programs is an approach for verifying a program at
machine-code level. The specification and correctness of machine-code programs has been first
studied in 1961 by Goldstein and von Neumann [37]. After that, program verification was ap-
plied to machine code by Maurer [54] in 1976. This paper presented the effort to put techniques
for proving the correctness of assembly language and machine language programs into practice.
More precisely, it is used for programs written for the Litton C400 airborne computer including
overflow analysis, round-off and truncation analysis, fixed-point scaling considerations, etc.. A
year later, Floyd-Hoare-style verification condition generator was applied to machine code by
Clutterbuck and Carré [18]. In 1996, Boyer and Yu [14] formalized the MC68020 Instruction Set
in the automated reasoning system Nqthm (also known as “the Boyer-Moore theorem prover”
and predecessor of ACL2). In this paper, bit vector operations are defined with non-negative
integer arithmetic and not for floating-point arithmetic. Another point is that they were able
to verify few programs only specified in Nqthm. In 2006, Matthews et al. [53] published a pa-
per on mechanized Hoare logic reasoning for machine code in the form of verification condition
generator (VCG) inside the ACL2 theorem prover. Meanwhile, Leroy [49] used Coq for the
correctness of an optimizing compiler which takes a significant subset of C as input and pro-
duces PowerPC assembly code as output from a simple imperative intermediate language called
Cminor. In a separate work on compilation, Li and Slind et al. [51] showed that one can compile
programs with proof, directly from the logic of the HOL4 theorem prover. In 2007, Pavlova [64]
proposed a framework which allows the verification of Java bytecode programs. In that thesis,
she defined both a Bytecode Modeling Language (BML) and a verification condition generator
for Java bytecode which is independent from the source code. A year later, Myreen [61] made
contributions both to approaches for verification of programs and methods for automatically
constructing correct code. This work was implemented only for the HOL4 theorem prover.

Although there are a lot of former works on formal verification at low-level programs, none
of them considers any aspect of floating-point computation behavioral verification at assembly
level.

1.3 Contributions

As our goal is to verify floating-point programs in considering architecture and compiler as-
pect, this thesis consists of two approaches: first, proving floating-point properties by using
static analysis for multiple architectures; second, analyzing assembly code and translating it to
verification conditions proved by automatic or interactive provers.

The first approach proves numerical programs whatever the environment, or in other words,
it proves numerical programs with few restrictions on the compiler and the processor. More
precisely, considering rounding-to-nearest mode, double precision numbers and computations,
we calculate the rounding error for each operation independent to hardware and the choice of

11

compiler. This approach is implemented in Frama-C platform 3 associated with Why [35] for
static analysis of C code 4.

The second approach is to prove a program on its assembly code. This means that we prove
a program depending on the architecture and compiler. Indeed, with the first approach, we
assure that the result is correct in an interval and thus we cannot prove an exact value. Once
we compile the program into assembly code, all the necessary information is known such as
the precision of each operation, the order of operations, etc. By analyzing assembly code and
translating its instructions to verification conditions in the intermediate verification language
Why, we can prove a numerical program totally dependent to the architecture and the compiler.
A modified version of GAS (GNU Assembler) is used to generate Why verification conditions
(VCs) and then these VCs are proved by automatic or interactive provers. Our contributions
consist of a translator which allows us to translate all annotations in C program under the
forme of inline assmemly and another translator which interpret assembly code into Why. This
implementation is integrated in a modified version of GAS that we’ve mentioned above 5.

The structure of this dissertation is as follows:

Chapter 2 presents basic knowledge about the IEEE-754 floating-point standard and some
architecture-dependent issues. We also present in this chapter a few words about Why inter-
mediate verification language; Frama-C framework and ANSI/ISO C Specification Language
(ACSL).

Chapters 3, 4 and 5 present the approach for proving numerical programs for multiple archi-
tectures. Chapter 3 studies how to bound a floating-point operation and how to prove a program
independent to hardware. Next, Chapter 4 consider the bound when the additions/subtractions
re-organize in case of optimization. Chapter 5 then illustrates this approach by examples.

Chapters 6 to 10 will present step by step how to translate assembly code of a numerical
program into Why. Chapter 6 introduces an overview of how to prove a C program by using
our approach and presents essential elements of assembly language. Chapter 7 presents how
to translate assembly instructions to Why with simple programs. Then this translation will be
extended for floating-point programs in Chapter 8. Chapter 9 considers programs containing
conditional and loop statements. Chapter 10 presents a memory model for programs which
contain arrays and pointers. Chapter 11 is a preliminary attempt to support programs with
operations at the bit level.

The last chapter gives the summary of contributions and discusses directions of future works.

3http://frama-c.com/
4This approach is integrated in the version 2.30 of Why, available at http://why.lri.fr/download/why-2.

30.tar.gz
5These tools are available at http://www.lri.fr/~nguyen/contrib/

12

http://frama-c.com/
http://why.lri.fr/download/why-2.30.tar.gz
http://why.lri.fr/download/why-2.30.tar.gz
http://www.lri.fr/~nguyen/contrib/

Chapter 2

Background

This chapter includes the background on the floating-point arithmetic, architecture-dependent
and compiler optimization issues. We also presents the Why intermediate language, the ACSL
specification language and the Frama-C framework as they will be used in the next chapters.

2.1 Floating-point arithmetic

This section consists of two subsections: firstly, we will talk about the IEEE-754 standard;
secondly, we will present architecture-independent issues.

2.1.1 The IEEE-754 floating-point standard

The IEEE-754 standard [1] for floating-point arithmetic was developed to define formats and
behaviors for floating-point numbers and computations.

There are five basic formats defined in this standard:

• Three binary formats, with encodings in lengths of 32, 64 and 128 bits.

• Two decimal formats, with encodings in lengths of 64 and 128 bits.

In this thesis, we take into account only 32-bit and 64-bit binary formats.

Floating-point data

The set of finite floating-point numbers representable within a particular format is determined
by the following integer parameters:

• b = the radix, 2 or 10,

• p = the number of digits in the significand (precision),

• emax = the maximum exponent,

• emin = the minimum exponent where emin = 1− emax for all formats.

Within each format, the following floating-point data is represented:

• Signed zero or non-zero floating-point numbers of the form

(−1)s × be ×m (2.1)

where

13

– s is 0 or 1,

– e is any integer such that emin ≤ e ≤ emax,
– m is a number represented by a digit string of the form d0 · d1d2 . . . dp−1 where di is

an integer digit 0 ≤ di < b (therefore 0 ≤ m < b).

• Two infinities: +∞ and −∞,

• Two NaNs: qNaN (quiet) and sNaN (signaling).

There are two kinds of floating-point number: normal and subnormal. The smallest positive
normal floating-point number is bmin and the largest one is bmax × (b − b1−p). The non-zero
floating-point numbers for a format with magnitude less than bmin are called subnormal numbers.

Binary format encodings

In this thesis, we use only binary formats. The representation of floating-point data in the
binary format is coded in k bits in the three fields ordered as follow:

• 1-bit sign S,

• w-bit biased exponent E = e+ bias,

• (t = p−1)-bit trailing significand field T = d1d2 . . . dp−1. The leading bit of the significand,
d0, is implicitly encoded in the biased exponent E.

S
(sign)

E
(biased exponent)

T
(trailing significand field)

1 bit w bits t = p− 1 bits

E0 Ew−1 d1 . dp−1

The values of k, p, emax, t, w and bias are listed as follows:

Parameter binary32 binary64
k, storage width in bits 32 64
sign bit 1 1
w, exponent field width in bits 8 11
bias, E − e 127 1023
t, trailing significand field width in bits 23 52
p, precision in bits 24 53
emax, maximum exponent e 127 1023

The range of the encoding biased exponent E include:

• every integer in [1, 2w − 2] to encode normal numbers.

• the reserved value 0 to encode ±0 and subnormal numbers.

• the reserved value 2w − 1 to encode ±∞ and NaNs.

The value v of the floating-point datum represented are:

14

E T v

2w − 1 6= 0 NaN

2w − 1 0 (−1)S × (+∞)

[1, 2w − 2] (−1)S × 2E−bias × (1 + 21−p × T)
(normal numbers have an implicit leading significand bit of 1)

0 6= 0 (−1)S × 2emin × (0 + 21−p × T)
(subnormal numbers have an implicit leading significand bit of 0)

0 0 (−1)S × (+0) (signed zero)

Rounding error

Let x is a real number, x1 and x2 are the two floating-point numbers closest to x such that
x1 ≤ x ≤ x2. Let ◦(x) the rounding value of x to a floating-point number. IEEE-754 standard
includes five standard rounding modes:

• Round-to-+∞: ◦(x) = x2.

• Round-to-−∞: ◦(x) = x1.

• Round-to-zero:

◦(x) =
{
x1 if |x1| ≤ |x2|,
x2 if |x1| > |x2|.

• Round-to-nearest (ties to even):

◦(x) =

x1 if |x1 − x| < |x2 − x|,
x2 if |x1 − x| > |x2 − x|,
the one with the bit p− 1 of the significand being 0 if |x1 − x| = |x2 − x|.

• Round-to-nearest (ties away from zero):

◦(x) =

x1 if |x1 − x| < |x2 − x| or

(|x1 − x| = |x2 − x| and |x1| > |x2|),
x2 if |x1 − x| > |x2 − x| or

(|x1 − x| = |x2 − x| and |x1| ≤ |x2|).

When approximating a real number x by its rounding ◦(x), a rounding error usually happens.
We here consider only round-to-nearest mode, that includes both the default rounding mode (ties
to even) and the new round-to-nearest, ties away from zero. In radix 2 and round-to-nearest
mode, a well-known bound on the error is given by D. Goldberg [36] as follows:

• If a floating-point f = ◦(x) is such that |f | ≥ 2emin then we bound the rounding error by
the relative error: ∣∣∣∣x− fx

∣∣∣∣ ≤ 2−p

• For smaller f , the value of the relative error becomes large (up to 0.5). In that case, f is
a subnormal number and we prefer a bound based on the absolute error:

|x− f | ≤ 2emin−p

15

xa bc

Figure 2.1: Bad case for double rounding

i n t main (){
double x = 1 . 0 ;
double y = 0x1p−53 + 0x1p−64; // y = 2−53 + 2−64

double z = x + y ;
p r i n t f (" z=%a\n" , z) ;

}

Figure 2.2: A simple program giving different answers depending on the architecture.

2.1.2 Architecture-dependent issues

With the same program containing floating-point computations, the result may be different
depending on the compiler and the processor. We present in this subsection some architecture-
dependent issues.

x87 floating-point unit

A well-known cause of discrepancy happens in the IA32 architecture (Intel 386, 486, Pentium
etc.) [58]. The IA32 processors feature a floating-point unit called “x87”. This unit has 80-bit
registers in “double extended” format (64-bit significand and 15-bit exponent), often associated
to the long double C type. When using the x87 mode, the intermediate calculations are computed
and stored in the x87 registers (80 bits). The final result is rounded to the destination format.
Extended registers may lead to double rounding, where floating-point results are rounded twice.
For instance, the operations are computed in the long double type of x87 floating-point registers,
then rounded to IEEE double precision type for storage in memory. Double rounding may yield
different result from direct rounding to the destination type.

An example is given in Figure 2.1: the long vertical lines are floating-point numbers rep-
resentable in 64 bits, the short ones are floating-point numbers representable in 80 bits. We
assume x is near the midpoint c of two consecutive floating-point numbers a and b in the desti-
nation format. Using round-to-nearest, with single rounding, x is rounded to b. However, with
double rounding, it may firstly be rounded towards the middle c and then be rounded to a (if a
is even). The two obtained results are different.

A C program illustrated for Figure 2.1 is presented in Figure 2.2: the values x = 1.0 and
y = 2−53 + 2−64 are exactly representable in double precision. With strict IEEE-754 double
precision computations for double type, the result obtained is z = 1 + 2−52. Otherwise, on
IA32, if the computations on double is performed in the long double type inside x87 unit,
then converted to double precision, z = 1.0.

Another example which gives inconsistencies between x87 and SSE is presented in Figure
2.3. It is is part of the KB3D [27], an aircraft conflict detection and resolution program. In this
example, we have a function int sign(double x) which returns a value which is either −1 if

16

i n t s i g n (double x) {
i f (x >= 0) return 1 ;
e l s e return −1;

}
i n t ep s_ l i n e (double sx , double sy , double vx , double vy){

return s i g n (sx ∗ vx + sy ∗ vy) ∗ s i g n (sx ∗ vy − sy ∗ vx) ;
}
i n t main (){

double sx = −0x1 .0000000000001 p0 ; // sx = −1− 2−52

double vx = −1.0;
double sy = 1 . 0 ;
double vy = 0x1 . f f f f f f f f f f f f f p −1; // vy = 1− 2−53

i n t r = ep s_ l i n e (sx , sy , vx , vy) ;
p r i n t f (" Re s u l t = %d\n" , r) ;

}

Figure 2.3: A more complex program giving different answers depending on the architecture.

x < 0, or 1 if x ≥ 0. The function int eps_line(double sx, double sy, double vx, double
vy) then makes a direction decision depending on a sign after few floating-point computations.
We execute this program on SSE unit and obtain that Result = 1. When it is performed on
IA32 inside x87 unit, the result is Result = -1.

FMA

Another cause of discrepancy in the result of a floating-point program is the fact that some
processors (IBM PowerPC or Intel/HP Itanium) have a fused multiply-add (FMA) instruction
which computes x × y ± z as if with unbounded range and precision, and rounds only once to
the destination format. This operation can speed up and improve the accuracy of dot product,
matrix multiplication and polynomial evaluation. But how should a × b + c × d be computed?
When a FMA is available, the compiler may choose either ◦(a×b+◦(c×d)), or ◦(◦(a×b)+c×d),
or ◦(◦(a× b) + ◦(c× d)) which may give different results.

Optimization issues

The last cause for discrepancies occurs when compilers optimize floating-point computations.
This includes re-organizing additions or multiplications, use of distributivity, etc. Those math-
ematically correct identities are usually refuted by floating-point operations.

When we compile a C program with optimization options1, the assembly code may be
changed. Here are some options of gcc:

• -O0: no optimization. This is the default.

• -O, -O1: the compiler tries to reduce code size and execution time, without performing
any optimizations.

• -O2: Optimize even more. As compared to -O, this option increases both compilation time
and the performance of the generated code. -O2 turns on -finline-small-functions that

1http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

17

double f (double x){
return x/1 e308 ;

}

double squa r e (double x){
double y = x∗x ;
return y ;

}

i n t main (){
p r i n t f ("%g\n" , f (squa r e (1 E308))) ;
return 0 ;

}

Figure 2.4: A program giving different answers depending on the optimization.

allows to integrate functions into their callers when their body is smaller than expected
function call code.

• -O3: Optimize yet more. It turns on all optimizations specified by -O2 and also other
options including -finline-functions.

• -funsafe-math-optimizations: Allow optimizations for floating-point arithmetic, e.g.
use associative math, use reciprocal instead of division, disregard floating-point exceptions
(division by 0, overflow, underflow, etc).

The options above may change the assembly code and thus affect the result of floating-point
calculations except the first and the second one.

Inline function means that the function is integrated into their caller. On x87, inlining may
change the result. The program in Figure 2.4 which is presented by D. Monniaux [58] illustrates
this case. When compiling it with -mfpmath=387 -O2, function inlining occurs, the two functions
f and square are integrated in the function main and intermediate values are stored in 80-bit
registers, not in 64-bit registers. This means that the result is 1E308 and not overflow although
it is overflow (the result is Inf) with default option of gcc.

2.2 Why- An Intermediate Verification Language

Why2 is a software verification platform [35]. It is also known as an intermediate language for
program verification. In this dissertation, we use Why as a tool to express our results in the
logic world.

Figure 2.5 shows us the process of how Why receives Java and C programs as inputs and
generates verification conditions which are proved by automatic or interactive provers. Why has
front-ends for C and Java in which the front-end for C is in fact integrated in the Frama-C
environment for static analysis of C programs.

One advantage of Why is that it allows us to declare logical models (types, functions, pred-
icates, axioms, lemmas) that can be used in programs and annotations. Another advantage is
that the Why tool supports a set of existing provers:

2http://why.lri.fr/

18

KML-annotated
Java program

Krakatoa Jessie

VC generatorWhy

ACSL-annotated
C program

Frama-C

verification
conditions

Interactive provers
(Coq, PVS,

Isabelle/HOL, etc.)

Automatic provers
(Gappa, Alt-Ergo,
Z3, CVC3, etc.)

Figure 2.5: Why platform

• Proof assistants: Coq, PVS, etc.

• Automatic theorem provers: Alt-Ergo [19], CVC3 [7], Gappa [25, 55], etc.

In the input language of Why, we can define a pure model in the logic world by declaring abstract
sort names, declaring logic symbols operating on these sorts and posing first-order axioms to
axiomatize the behavior of these symbols. Equality and both integer and real arithmetic are
built-in in the logic. We can then declare a set of references which are mutable variables denoting
logic values. Finally, we can define procedures which can modify these references. The body of
such a procedure is made of statements in a while-style language.

Why includes also logical annotations (pre- and post-conditions, loop invariants and variants,
intermediate assertions). Procedures are equipped with pre- and post-conditions. The Why VC
generator then produces the necessary VCs to ensures that the body respects the post-condition.
One can alternatively just declare procedures by only giving pre- and post- conditions, but also
declaring the set of modified references. This feature allows to declare how the atomic operations
on a given data type behave.

The detail of the syntax of Why is found at: http://why.lri.fr/. In this section, we will
present in a few words axiomatizations, logic functions and parameters which we will use in the
thesis.

19

http://why.lri.fr/

2.2.1 Logical declarations in Why

Axiomatization

The axiomatization includes abstract types, declarations of functions and predicates, axioms.
For example:

predicate is_int32(x:int) = -2147483648 <= x and x <= 2147483647
type int32
logic integer_of_int32: int32 -> int
axiom int32_coerce: forall x:int32. is_int32(integer_of_int32(x))

Predicate gives a definition based on propositions. For example:

predicate is_int32(x:int) = -2147483648 <= x and x <= 2147483647

This predicate says that its argument ranges between -2147483648 and 2147483647.

Type is a declaration of an abstract type. For example:

type int32

The type int32 is an abstract type which represents a 32-bit integer.

Logic function is a function symbol which declares type of inputs and one of output. The
body of the function is not defined. Normally, we need to declare axioms to specify logic
functions. For example:

logic integer_of_int32: int32 -> int

The function logic integer_of_int32 returns an integer value from an abstract type int32.

Axiom is a logical statement that is assumed to be true.

axiom int32_coerce: forall x:int32, is_int32(integer_of_int32(x))

This axiom says that all value x having type int32 always denotes an integer value in the range
of 32-bit word.

2.2.2 Programs in Why

A program in Why can be defined as a function with a body, or declared as a parameter.

Reference declaration with parameter

Parameter can be used to declare a reference (mutable value) in Why. For example:

parameter value: int ref

20

Function with let

A function in Why may contain annotations (preconditions, post-conditions and assertions) and
statements.

let f (n:int) =
{ }
r := min !r n
{ r <= r@ }

The function f takes an integer n as input and assigns the value of min !r n to r. It has no
precondition and a post-condition which specifies that the final value of r is not greater than
its initial value (denotes by r@).

Function declaration with parameter

Parameter can be used for the declaration of an “abstract program” with precondition and post-
condition. For example:

parameter add_int: a:int -> b:int ref ->
{ }
unit writes b
{ b = b@ + a }

The parameter add_int takes an integer a and a variable b having type int with no precondition,
returns unit (nothing). The post-condition is that the new value of b is the sum of a and the
previous value of b. Notice that in parameter, there is a declaration of side-effects: the reads
and writes keywords declare the set of references possibly accessed and modified, respectively.

2.2.3 Example

In order to know how to write a Why program, a small program is presented as follows:

parameter x: int32 ref

parameter inc: n:int32 ref ->
{ is_int32(integer_of_int32(n) + 1) }

unit writes n
{ integer_of_int32(n) = integer_of_int32(n@) + 1 }

let main() =
{ is_int32(integer_of_int32(x) + 2)}

inc x;
inc x;
void

{ integer_of_int32(x) = integer_of_int32(x@) + 2 }

All the logical declarations of this program are explained in subsection 2.2.1. We declare a
parameter x having type int32, another parameter inc which returns the value of input after
adding 1.

In the function main, we assign to x the value of inc !x. This function is used twice. The
post-condition of the function main assures that the new value of x is equal to the sum of old

21

Figure 2.6: Result of a Why program

one and 2. A screen-shot in Figure 2.6 illustrates how to prove a Why program using automatic
provers.

There are three obligations generated. The two first ones check the precondition of the pa-
rameter inc. As the parameter inc has a precondition, each time it is invoked, the precondition
must be proved. In the function main, inc is called twice, this is the reason why we have two
obligations that check the precondition of inc. The last one checks the post-condition of the
function main.

We present below the VCs for these obligations and show how to prove it manually.

VCs for the first obligation

The VCs for proving the precondition of the first inc x in the function main are:

x: int32
H1: is_int32(integer_of_int32(x) + 2)

is_int32(integer_of_int32(x) + 1)

The hypothesis of this obligation is the precondition of main. As in H1 we have int(x)+2 which
is in range of 32-bit integer and as int(x) is also in the range thanks to axiom int32_coerce,
easily we prove that int(x) + 1 is also in this range.

VCs for the second obligation

The VCs for proving the precondition of the second inc x in the function main are:

x: int32
H1: is_int32(integer_of_int32(x) + 2)
H2: is_int32(integer_of_int32(x) + 1)
x0: int32
H3: integer_of_int32(x0) = integer_of_int32(x) + 1

is_int32(integer_of_int32(x0) + 1)

22

They are explained by:

H1 : int(x) + 2 is in range of 32− bit integer.
H2 : int(x) + 1 is in range of 32− bit integer.
H3 : int(x0) = int(x) + 1

Goal : int(x0) + 1 is in range of 32− bit integer.

We need to prove that: int(x0)+1 is in range of 32-bit integer. This means that (int(x)+1)+1
or int(x) + 2 (from H2, replace int(x0) with int(x) + 1) must be in range of 32-bit integer. As
int(x) is in the range and from H1, this obligation is proved.

VCs for the post-condition obligation

The VCs generated for post-condition of the function main are shown below:

x: int32
H1: is_int32(integer_of_int32(x) + 2)
H2: is_int32(integer_of_int32(x) + 1)
x0: int32
H3: integer_of_int32(x0) = integer_of_int32(x) + 1
H4: is_int32(integer_of_int32(x0) + 1)
x1: int32
H5: integer_of_int32(x1) = integer_of_int32(x0) + 1

integer_of_int32(x1) = integer_of_int32(x) + 2

This means that

H1 : int(x) + 2 is in range of 32− bit integer.
H2 : int(x) + 1 is in range of 32− bit integer.
H3 : int(x0) = int(x) + 1

H4 : int(x0) + 1 is in range of 32− bit integer.
H5 : int(x1) = int(x0) + 1

Goal : int(x1) = int(x) + 2

We need to prove that: int(x1) = int(x)+2. From H5, we replace int(x1) with int(x0)+1, then
from H3, we replace int(x0) with int(x)+1. Now what we have is: ((int(x)+1)+1) = int(x)+2
and the obligation is proved.

2.2.4 Use of Why in this thesis

We all know about the syntax of Why. The question now is how it works in this thesis. In the
whole thesis, we use the platform Why to generate verification conditions which are then proved
by automatic or interactive provers. The use of Why is illustrated in Figure 2.7. In Part 1, we
use Frama-C/Jessie which is a front-end of the Why platform for deductive program verification
for proving a numerical program. Here, we define a model written in Why called multirounding.
The Jessie plug-in uses this model to interpret each operation in a C program. In Part 2, we use

23

ACSL-annotated
C program

Frama-C

Jessie plug-in

multirounding
model

Why

VC generator

inline assembly
translator

C program
+ inline assembly

Assembly code

modified version
of GAS

verification
conditionsWhy platform

Automatic provers
(Alt-Ergo, CVC3,

Gappa, etc.)

Interactive provers
(Coq, PVS, etc.)

Figure 2.7: Use of Why

Why as the output of our translator. This means that we will translate the assembly code into
programs in Why. These Why programs are then the inputs of VC generator to generate VCs.
In Chapter 11, Why 3 – the next generation of Why (also called Why 2) – is used. We consider
in this chapter that Why 3 is a specification language and we write the program directly in Why
3. The VCs are generated from this Why 3 program by Why 3 platform.

24

/∗@ r equ i r e s \abs (x) <= 0x1p−5;
@ ensures \abs (\ r e s u l t − \ cos (x)) <= 0x1p−23;
@∗/

f l o a t my_cos (f l o a t x) {
//@ as se r t \abs (1 . 0 − x∗x ∗0 .5 − \ cos (x)) <= 0x1p−24;
return 1 .0 f − x ∗ x ∗ 0 .5 f ;

}

Figure 2.8: A C program annotated in ACSL

2.3 ACSL and Frama-C

2.3.1 ACSL

The ANSI/ISO C Specification Language (ACSL) 3 is a behavioral specification language for C
programs. It is inspired by Caduceus [34, 33], itself inspired by JML [15, 46]. Its goal is to allow
us to formally verify that the implementation of a C function respects its specifications.

The most important ACSL concept is the function contract. A function contract for a C
function f is a set of requirements over the arguments of f and/or a set of properties that are
ensured at the end of the function.

ACSL annotations are written in special C comments:

• /*@ */ for one or multiple lines,

• //@ for a single-line annotation.

There are three important annotations in ACSL:

Precondition Precondition begins by the keyword requires. It contains the conditions which
must hold before calling a function.

Post-condition Post-condition begins with the keyword ensures. It is the conditions which
must hold after calling a function.

Assertion Properties which must hold at a program point.

The example in Figure 2.8 contains a C function float my_cos(float x) with ACSL anno-
tations. It provides an approximation of the cosine function on a small interval around 0. The

precondition assumes that the absolute value of x is not greater than 2−5 (=
1

32
). The post-

condition says that the absolute value of total error (which includes method error and rounding
error) is not greater than 2−23. The method error is stated in an assertion which says that the
bound of method error is 2−24.

Notice that all the operations in the annotations are done in real, they are not floating-point
operations.

2.3.2 Frama-C

Frama-C is a framework for static analysis of C code. This framework is flexible as it is easy to
add a new plug-in. There are some ready-to-use plug-ins:

3http://frama-c.com/acsl.html

25

http://frama-c.com/acsl.html

Annotated C program

Frama-C/Jessie plug-in

WHY verification condition generator

Verification conditions

Automatic provers
(Alt-Ergo,Gappa,CVC3,etc.)

Interactive provers
(Coq, PVS)

Figure 2.9: Proof of numerical programs in Frama-C/Jessie

Value analysis This plug-in uses abstract interpretation techniques. It computes variation
domains for variables.

Jessie This is deductive verification plug-in. It is based on weakest precondition computation
techniques. It aims at deductive verification of behavioral properties of the code, specified
using the ACSL language.

In Jessie, there are some ready-to-use models for floating-point arithmetic called strict
model and full model. The strict model includes rounding modes; single and double types;
basic operations, etc. However, this model forbids exceptional values. The full model is an
extension of the strict one. It allows to verify the programs in considering special values
such as infinities, NaN, etc..

Figure 2.9 shows us how to prove a numerical program with Frama-C/Jessie. The input of this
plug-in is an annotated C program. Its annotations are specified in ACSL. The output of Frama-
C/Jessie plug-in is then the input of Why verification condition generator. This generator creates
VCs which can be proved by automatic provers (Alt-Ergo, Gappa, CVC3, etc.) or interactive
provers (Coq, PVS). The Gappa tool is an automatic prover, which handles formulas made of
equalities and inequalities over expressions involving real constants and arithmetic operations.
While Gappa does not handle quantifiers, SMT solvers which are a decision procedure that can
handle quantifiers, various types of arithmetic and other decidable theories. This is the reason
why in our examples, we often combine several automatic provers to prove a program.

Now let’s back to example in Figure 2.8. All the needed properties about floating-point
arithmetic are specified in ACSL. The analysis of this program is done by using Frama-C/Jessie
with the strict model which follows strictly the IEEE-754 standard. The verification conditions
generated are proved by Gappa except the assertion which is proved using Coq and interval
tactic [56].

26

Part I

Hardware-independent proofs of
numerical programs

27

Chapter 3

Hardware-independent bounds for
floating-point operations

This chapter presents how to bound the rounding error of floating-point operations whatever
the architecture and the compiler.

3.1 Bounds for one floating-point operation

As we want both correct and interesting properties on a floating-point computation without
knowing which rounding will be in fact executed, the chosen approach is to consider only the
rounding error. This will be insufficient in some cases, but we believe this can give useful and
sufficient results in most cases.

As explained, the choice between 64-bit, 80-bit and double rounding is the main reason that
causes the discrepancies of result. We prove a rounding error bound that is valid whatever the
hardware, and the chosen rounding (corresponds to interval arithmetic [41, 60] and standard
model [42]).

We denote by ◦64 the round-to-nearest in the double 64-bit type, by ◦80 the round-to-nearest
to the extended 80-bit registers.

Theorem 3.1 For a real number x, let �(x) be either ◦64(x), or ◦80(x), or the double rounding
◦64(◦80(x)). We have either(

|x| ≥ 2−1022 and
∣∣∣∣x−�(x)x

∣∣∣∣ ≤ 2050× 2−64
)

or (
|x| ≤ 2−1022 and |x−�(x)| ≤ 2049× 2−1086

)
.

The proof is done by case analysis in the following subsections. This theorem is the basis of
our approach to correctly prove numerical programs whatever the hardware. These bounds are
tight as they are reached in all cases where � is the double rounding. They are a little bigger
than the ones for 64-bit rounding (2050 and 2049 instead of 2048) for both cases. These bounds
are therefore both correct, very tight, and just above the 64-bit’s.

As 2−1022 is a floating-point number, we have �(2−1022) = 2−1022. As all rounding functions
are monotone1, �(x) is also monotone. Then |x| ≥ 2−1022 implies |�(x)| ≥ 2−1022 and vice
versa.

Now let us prove the bounds of Theorem 3.1 on the rounding error for all possible values
of �.

1A monotonic function f is a function such that, for all x and y, x ≤ y implies f(x) ≤ f(y).

29

3.1.1 Case 1: Rounding error in 64-bit rounding

From the formulas given by D. Goldberg [36] (explained in subsection 2.1.1), with 64-bit
rounding, we have p = 53 and emin = −1022. Therefore:

• With | ◦64 (x)| ≥ 2−1022:
∣∣∣∣x− ◦64(x)x

∣∣∣∣ ≤ 2−53

• With | ◦64 (x)| ≤ 2−1022: |x− ◦64(x)| ≤ 2−1075

Let us see Figure 3.1, the rounding error bounds of 64-bit rounding are above the line and the
ones of Theorem 3.1 (T3.1) are below the line. The rounding error bounds of D. Goldberg are
smaller than the desired ones, therefore Theorem 3.1 holds in 64-bit rounding.

64

T3.1

0

2−1022

+∞

x

|x−�(x)| ≤ 2049× 2−1086

|x− ◦64(x)| ≤ 2−1075

∣∣∣∣x− ◦64(x)x

∣∣∣∣ ≤ 2−53

∣∣∣∣x−�(x)x

∣∣∣∣ ≤ 2050× 2−64

Figure 3.1: Rounding error in 64-bit rounding vs. Theorem 3.1

3.1.2 Case 2: Rounding error in 80-bit rounding

The 80-bit registers used in x87 have a 64-bit significand and a 15-bit exponent. Thus, p = 64
and emin = −16382. By applying the formulas of D. Goldberg:

• With | ◦80 (x)| ≥ 2−16382:
∣∣∣∣x− ◦80(x)x

∣∣∣∣ ≤ 2−64

• With | ◦80 (x)| ≤ 2−16382: |x− ◦80(x)| ≤ 2−16446

80

T3.1

0
2−1022

2−16382 +∞
x

|x−�(x)| ≤ 2049× 2−1086

|x− ◦80(x)| ≤ 2−16446
∣∣∣∣x− ◦80(x)x

∣∣∣∣ ≤ 2−64

∣∣∣∣x−�(x)x

∣∣∣∣ ≤ 2050× 2−64

Figure 3.2: Rounding error in 80-bit rounding vs. Theorem 3.1

In Figure 3.2, the rounding error bounds in 80-bit rounding are above the line and the ones of
Theorem 3.1 are below the line. Intuitively, the rounding error bounds in case of 80-bit rounding
are much smaller in this case than Theorem 3.1’s except in the case where |x| is between 2−16382

and 2−1022. There, we have

|x− ◦80(x)| ≤ 2−64 × |x|
≤ 2−64 × 2−1022 = 2−1086.

All bounds are smaller than that of Theorem 3.1, so Theorem 3.1 holds in 80-bit rounding.

30

3.1.3 Case 3: Rounding error in double rounding

The bounds here will be the one of Theorem 3.1. We split in two cases depending on the value
of |x|.

Normal range We first assume that |x| ≥ 2−1022. We bound the relative error by some
computations and the previous formulas:∣∣∣∣x− ◦64(◦80(x))x

∣∣∣∣ ≤ ∣∣∣∣x− ◦80(x)x

∣∣∣∣ +

∣∣∣∣◦80(x)− ◦64(◦80(x))x

∣∣∣∣
≤ 2−64 +

∣∣∣∣◦80(x)− ◦64(◦80(x))◦80(x)
× ◦80(x)

x

∣∣∣∣
≤ 2−64 +

∣∣∣∣◦80(x)− ◦64(◦80(x))◦80(x)

∣∣∣∣× (∣∣∣∣◦80(x)− xx

∣∣∣∣+ 1

)
≤ 2−64 +2−53 ×

(∣∣∣∣◦80(x)− xx

∣∣∣∣+ 1

)
≤ 2−64 +2−53 × (2−64 + 1) = 2050× 2−64

Subnormal range We now assume that |x| ≤ 2−1022. The absolute error to bound is
|x− ◦64(◦80(x))|. We have two cases depending on whether x is in the 80-bit normal or subnor-
mal range.

If x is in the 80-bit subnormal range, then |x| < 2−16382 and

|x− ◦64(◦80(x))| ≤ |x− ◦80(x)|+ |◦80(x)− ◦64(◦80(x))|
≤ 2−16446 + 2−1075 < 2−1086 + 2−1075 = 2049× 2−1086.

If x is in the 80-bit normal range, then 2−16382 ≤ |x| < 2−1022 and

|x− ◦64(◦80(x))| ≤ |x− ◦80(x)|+ |◦80(x)− ◦64(◦80(x))|
≤ 2−64 × |x|+ 2−1075

≤ 2−64 × 2−1022 + 2−1075 = 2−1086 + 2−1075 = 2049× 2−1086.

Then Theorem 3.1 holds in double rounding.

In conclusion, Theorem 3.1 is proved for all 3 roundings.
In practice, instead of dividing into two cases: normal range and subnormal range, we can

use the following formula:
|x−�(x)| ≤ ε× |x|+ η (3.1)

with ε = 2050× 2−64 and η = 2049× 2−1086.
In strict IEEE-754, where inputs and outputs are on 64 bits, we can set η = 0 for addition

and subtraction. Unfortunately here, inputs may be 80-bit numbers so η cannot be set to 0.
Note also that absolute value and negation may produce a rounding if we put a 80-bit number
into a 64-bit number.

3.1.4 Proof in Coq

We used the Gappa Coq library 2 (version 0.13) for Coq (version 8.2) [12] to prove the correctness
of Theorem 3.1.

2The Gappa Coq Library adds a Gappa tactic to the Coq Proof Assistant. This tactic invokes the Gappa tool
to solve properties about floating-point or fixed-point arithmetic. It can also solve simple inequalities over real
numbers.

31

Theorem po s t_cond i t i o n s_co r r e c t n e s s :
f o r a l l x f , Rabs x <= powerRZ 2 (35000) −>
(f = gappa_rounding (r ound i ng_ f l o a t roundNE 53 (1074)) x

\/ f = gappa_rounding (r ound i ng_ f l o a t roundNE 64 (16445)) x
\/ f = gappa_rounding (r ound i ng_ f l o a t roundNE 53 (1074))

(gappa_rounding (r ound i ng_ f l o a t roundNE 64 (16445)) x)
\/ f = x) −>

(powerRZ 2 (−1022) <= Rabs x −>
(Rabs ((f−x)/ x) <= 2050 ∗ powerRZ 2 (−64)
/\ powerRZ 2 (−1022) <= Rabs f))

/\
(Rabs x <= powerRZ 2 (−1022) −>

(Rabs (f−x) <= 2049 ∗ powerRZ 2 (−1086)
/\ Rabs f <= powerRZ 2 (−1022))) .

Figure 3.3: Coq theorem certifying the correctness of Theorem 3.1

The corresponding theorem (see Figure 3.3) and proof (228 lines) are in Coq 3.
As we use the Gappa tactic in Coq to prove the theorem, a bound on x is necessary. This is

the reason why we add the requirement that |x| ≤ 235000. This value is large enough to satisfy all
operations (addition, subtraction, multiplication, division, square root, negation and absolute
value) in all types (64 or 80-bit rounding).

The Coq proof exactly corresponds to the one described. It is not very difficult, but needs
many computations and a very large number of subcases. The formal proof gives a very strong
guarantee on this result, allowing its use without doubt in the Frama-C platform.

3.2 Proofs of numerical programs

In the previous section, we gave a bound for one operation. If we have a program containing a
sequence of operations, how can we prove it? In this section, we will use Theorem 3.1 to prove
such a program.

3.2.1 When FMA occurs

Theorem 3.1 gives rounding error formulas for various roundings denoted by � (64-bit, 80-bit
and double rounding). Now, let us consider the FMA that computes x× y + z with one single
rounding. The question is whether a FMA was used in a computation. We therefore need an
error bound that covers all the possible cases.

The idea is very simple: we consider a FMA as a rounded multiplication followed by a
rounded addition. And we only have to consider another possible “rounding” that is the identity:
�(x) = x.

This specific “rounding” magically solves the FMA problem: the result of a FMA is �(x ×
y + z), that may be considered as �1(�2(x× y) + z) with �2 being the identity. So we handle
in the same way all operations even in presence of FMA or not, by considering one rounding for
each basic operation (addition, multiplication, etc.). Of course, this “rounding” easily verifies
the formulas of Theorem 3.1.

3The proof is available at http://www.lri.fr/~nguyen/research/rnd_64_80_post.html

32

http://www.lri.fr/~nguyen/research/rnd_64_80_post.html

What is the use of this odd rounding? The idea is that each basic operation will be considered
as rounded with a � that may be one of the four possible roundings. Let us go back to the
computation of a*b+c*d: it becomes �(�(a × b) + �(c × d)) with each � being one of the 4
roundings. It gives us 64 possibilities. In fact, only 45 possibilities are allowed (for example,
the addition cannot be exact). But all the real possibilities are included in all the considered
possibilities. And all considered possibilities have a rounding error bounded by Theorem 3.1.

So, by considering the identity as a rounding like the others, we handle all the possible uses
of the FMA in the same way as we handle multiple roundings.

3.2.2 Bounds of a sequence of operations

Theorem 3.2 Let � be an operation among addition, subtraction, multiplication, division,
square root, negation and absolute value. Let x = �(y, z) be the exact result of this opera-
tion (without rounding). Then, whatever the architecture and the compiler, the computed result
x̃ is such that

If |x| ≥ 2−1022, then
x̃ ∈

[
x− 2050× 2−64 × |x| , x+ 2050× 2−64 × |x|

]
\
]
−2−1022 , 2−1022

[
.

If |x| ≤ 2−1022, then
x̃ ∈

[
x− 2049× 2−1086 , x+ 2049× 2−1086

]
∩
[
−2−1022 , 2−1022

]
.

This is straightforward as the formulas of Theorem 3.1 subsume all possible roundings (64 or
80-bit) and operations (using FMA or not), whatever the architecture and the compiler choices.

Theorem 3.3 If we define each result of an operation by the formulas of Theorem 3.2, and
if we are able to deduce from these intervals an interval I for the final result, then the really
computed final result is in I whatever the architecture and the compiler that preserves the order
of operations.

This is proved by using Theorem 3.2.

3.3 Implementation

What we have until now is the bound of the rounding error for a sequence of operations. The
question is how to use Theorem 3.1 to prove a program in Frama-C/Jessie?

An interesting point of the Jessie plug-in is that we can change the interpretation of floating-
point operations easily. We define a new “pragma” called multirounding in the same way as the
strict model of Jessie plug-in and change the interpretation of each basic floating-point operation
(addition, subtraction, multiplication, division, absolute value, square root and negation). In
order to do this, we put as post-conditions the formulas of Theorem 3.1 for operations in the
Frama-C platform to look into the rounding error of the whole program. Ordinarily, the pragma
directive is the method specified by the C standard for providing additional information to the
compiler, beyond what is conveyed in the language itself. In our pragma as in Jessie, each
floating-point number is represented by two values, an exact one (a real value, as if no rounding
occurred) and a rounded one (the true floating-point value). At each computation, we are only
able to bound the difference between these two values, without knowing the true rounded value.

For example, the post-condition of the addition is defined by the following predicate:

33

predicate add_double_post(m:mode,x:double,y:double,result:double) =
(*CASE 1:*)
((abs_real(double_value(x) + double_value(y)) >= 0x1p-1022

and
abs_real(double_value(result) - (double_value(x) + double_value(y)))

<= 0x1.004p-53 * abs_real(double_value(x) + double_value(y))
)
or

(*CASE 2:*)
(abs_real(double_value(x) + double_value(y)) <= 0x1p-1022
and
abs_real(double_value(result)-double_value(x)+double_value(y))<=0x1.002p-1075
)

)
and
double_exact(result) = double_exact(x) + double_exact(y)

double is an abstract type, double_value and double_exact are logic functions which return
a rounded and an exact value from a double. This abstract type and the two logic functions
have already defined in the strict and full model and we reuse them in our approach. In this
predicate, we also define the exact result which is the addition of two exact values. Notice that
the value 0x1.004p-53 = 2050× 2−64 and 0x1.002p-1075 = 2049× 2−1086.

The post-conditions for other operations (subtraction, multiplication division, square root,
negation, absolute value) are defined in the same way as the addition.

Each operation is declared by a parameter and the post-condition will use the predicate
above. The parameter add_double for addition in double, for example, is declared as follows:

parameter add_double :
m:mode -> x:double -> y:double ->
{ no_overflow_double(m,double_value(x) + double_value(y)) }
double
{ add_double_post(m,x,y,result) }

This parameter returns a double value. The precondition assures that there is no overflow in
the addition. The post-condition is the predicate add_double_post.

Notice that the rounding modes that we handle in this approach are rounding-to-nearest
modes (ties to even and ties away from zero). Thus, in this Why parameter, either m =
nearest_even or m = nearest_away are allowed.

34

Chapter 4

When the compiler re-organizes a
computation

In the previous chapter, we bound the rounding error of each operation provided that the order of
the operations is preserved. We also showed that in case of FMA, our method is still valid. Our
problem here is that in case of optimizations, the re-organization of operations in a computation
may happen. How do we deal with it? We will explain in this chapter how to bound the error
of a computation when a reorganization of additions/subtractions occurs.

4.1 Associativity for the addition

For the sake of simplicity we will denote floating-point addition by ⊕ and floating-point sub-
traction by 	, when the precision is unknown (it may be 64- or 80-bit or double rounding).

Of course, floating-point addition is not associative even if compilers may re-associate ad-
ditions. For example, if |e| � |x|, then (e ⊕ x) 	 x gives zero while e ⊕ (x 	 x) gives e. This
catastrophic cancellation is the main problem for the reorganization of additions. The idea here
is that we will change the rounding error formula for the addition in order to guarantee that,
even if (a + b) + c is transformed into a + (b + c) by the compiler, the bound on the rounding
error will still hold. For that, instead of using the formula

|a⊕ b− (a+ b)| ≤ ε× |a+ b|+ η

with ε = 2050× 2−64 and η = 2049× 2−1086 (apply Formula (3.1) on page 31 for the addition),
we will use a formula (with a given ε′ and η′):

|a⊕ b− (a+ b)| ≤ ε′ · (|a|+ |b|) + η′ (4.1)

The new error proportional to |a| + |b| may increase the bound on the rounding error but it
handles the cancellations.

To prove a program in multiple environments, we will change the definition of the result of
an addition. As we have said in Section 3.3, the post-condition describes how to calculate an
operation result. Here, we modify the post-conditions to cover all cases, including the fact that
there are several possible results:

35

strict IEEE-754 standard
only one possible result: a⊕ b = ◦64(a+ b)

↓
FMA and extended registers

a⊕ b is some real such that |a⊕ b− (a+ b)| ≤ ε|a+ b|+ η
↓

FMA, extended registers and addition reorganization
a⊕ b is some real such that |a⊕ b− (a+ b)| ≤ ε′(|a|+ |b|) + η′

Note that the strict IEEE-754 definition implies a rounding error formula of the same type
but is moreover deterministic. The advantage of modifying the operation post-condition is that
it also handles reordering when intermediate values are handled. For example, x=a+b; y=x+c;
can be reordered into y=a+(b+c) if x is unused and b+c already computed.

To reason about any ordering of the additions, let us consider a generic algorithm for adding
a sequence of numbers [42].

Algorithm 1 Let S = {a0, . . . , an}.
Repeat while S contains more than one element

Remove two numbers x and y from S
and add their sum x⊕ y to S.

Return the remaining element.

This generic algorithm is instantiated by the choice of the two numbers that are removed
from S. We will denote by o an ordering and by So

n the result of Algorithm 1 for the ordering o.
For example, if you choose the preceding computed value and the ai of smaller index, you get
the left-associated summation (((a0 + a1) + a2) + · · ·) + an.

To ensure the correctness of the approach of taking Formula 4.1 as post-condition, we proved
the following theorem for a positive ε. We pose εn = (1 + ε)n − 1.

Theorem 4.1 Let n be an integer such that n ≤ 1
ε , (ai)0≤i≤n be a sequence of real numbers and

I be a real. Assume that we set the addition post-condition as: x⊕ y is any real number r such
that

|r − (x+ y)| ≤ εn · (|x|+ |y|) + n · η.
and for an ordering o1 of the additions, we are able to deduce that |So1

n −
∑n

0 ai| ≤ I.

Now if we set the addition post-condition as: x⊕ y is any real number r such that
|r − (x+ y)| ≤ ε · |x+ y|+ η.

Then, whatever the ordering o2 of the additions, we have |So2
n −

∑n
0 ai| ≤ I.

This means that, if we are able to prove a bound on the rounding error for a sum in a program
using our loose post-conditions (Formula (4.1)), then this bound is still correct whatever the
compiler reorganization. What is proved using Frama-C and the loose post-conditions (Formula
(4.1)) still holds with another ordering (in that case, we use the correct tight post-condition
(Formula (3.1) on page 31) proved in the preceding Chapter).

Proof.First, we prove an overestimation of |So2
n −

∑n
0 ai| with ⊕ having the ε · |x+ y| property.

We prove by induction on n, that whatever the ordering,

|So2
n −

n∑
0

ai| ≤ εn
n∑
0

|ai|+ n2η.

36

If n = 0, then

|So2
0 −

0∑
0

ai| = |a0 − a0|

= 0

= ε0|a0|+ 02η

so the property holds.

If n = 1, then

|So2
1 −

1∑
0

ai| = |a0 ⊕ a1 − (a0 + a1)|

≤ ε|a0 + a1|+ η

≤ ε · (|a0|+ |a1|) + η

≤ ε1
1∑
0

|ai|+ 12η.

If n = 2, then

|So2
2 −

2∑
0

ai| = |(a0 ⊕ a1)⊕ a2 − (a0 + a1 + a2)|

≤ ε|a0 ⊕ a1|+ ε|a2|+ η

≤ ε · (|a0|+ |a1|+ |a2|) + ε2(|a0|+ |a1|) + η + εη

≤ ε2 · (|a0|+ |a1|+ |a2|) + 2η

≤ ε2

2∑
0

|ai|+ 22η.

The other orderings of course give the same property so the overestimation of |So2
n −

∑n
0 ai|

holds for n = 2.

Let us assume that the property holds for any value k < n and that n ≥ 2 and let us consider
a sequence (ai)0≤i≤n+1 and an ordering o2. As n+1 > 1, the value So2

n+1 is computed as the sum
of two preceding computed values x and y. And x is a computed sum with a known ordering
deduced from o2 of a part of the {a0, . . . , an+1}. Let I1 be such that x ≈

∑
i∈I1 ai. If k = |I1|,

37

then 1 ≤ k ≤ n+ 1. Let us denote I2 = {0, . . . , n+ 1} \ I1, then |I2| = n+ 1− k.

|So2
n+1 −

n+1∑
0

ai| = |x⊕ y −
n+1∑
0

ai|

≤ |x⊕ y − (x+ y)|+ |x−
∑
i∈I1

ai|+ |y −
∑
i∈I2

ai|

≤ ε|x+ y|+ η + |x−
∑
i∈I1

ai|+ |y −
∑
i∈I2

ai|

≤ ε|x−
∑
i∈I1

ai + y −
∑
i∈I2

ai + (
∑
i∈I1

ai +
∑
i∈I2

ai)|+ η + |x−
∑
i∈I1

ai|+ |y −
∑
i∈I2

ai|

≤ ε(|x−
∑
i∈I1

ai|+ |y −
∑
i∈I2

ai|+ |
n+1∑
0

ai|) + η + |x−
∑
i∈I1

ai|+ |y −
∑
i∈I2

ai|

≤ ε|
n+1∑
0

ai|+ η + (1 + ε)

|x−∑
i∈I1

ai|+ |y −
∑
i∈I2

ai|

≤ ε

n+1∑
0

|ai|+ η + (1 + ε)

|x−∑
i∈I1

ai|+ |y −
∑
i∈I2

ai|

And x is the sum of (ai)i∈I1 with k − 1 numbers that is less or equal to n so the induction
hypothesis can be used. In a similar way, y is the sum of (ai)i∈I2 with n+ 1− k numbers that
is less or equal to n. Both are using an ordering that can be deduced from o2.

|So2
n+1 −

n+1∑
0

ai| ≤ ε
n+1∑
0

|ai|+ η + (1 + ε) ·εk∑
i∈I1

|ai|+ k2η + εn+1−k
∑
i∈I2

|ai|+ (n+ 1− k)2η

≤ (ε+ (1 + ε) ·max(εk, εn+1−k) ·

n+1∑
0

|ai|

+η ·
(
1 + (1 + ε) ·

(
k2 + (n+ 1− k)2

))
As (εi) is an increasing sequence, and as k2 + (n+ 1− k)2 has its maximum value for k = 1 or
k = n, we have:

|So2
n+1 −

n+1∑
0

ai| ≤ (ε+ (1 + ε)εn) ·
n+1∑
0

|ai|+ η · (1 + (1 + ε)(n2 + 1))

= εn+1 ·
n+1∑
0

|ai|+ η · (1 + (1 + ε)(n2 + 1))

The last equality is due to this fact:

ε+ (1 + ε)εn = ε+ (1 + ε)((1 + ε)n − 1)

= ε+ (1 + ε)n+1 − (1 + ε)

= (1 + ε)n+1 − 1

= εn+1.

38

Now we bound the η term:

1 + (1 + ε)(n2 + 1) = n2 + 1 + (1 + ε) + εn2

As n ≥ 2, we have

1 + (1 + ε)(n2 + 1) ≤ n2 + 1 + n+ n · (nε).

And as n ≤ 1
ε , we deduce

1 + (1 + ε)(n2 + 1) ≤ n2 + 1 + n+ n = (n+ 1)2.

Therefore,

|So2
n+1 −

n+1∑
0

ai| ≤ εn+1 ·
n+1∑
0

|ai|+ (n+ 1)2η,

so this overestimation property holds.

Next, we prove that

εn

n∑
0

|ai|+ n2η ≤ I

For that, we use the first hypothesis. The idea is that, if we were able to prove I with the given
post-condition, then we may choose each result of an operation (fulfilling this post-condition)
and see which error it creates.

For that, we will pose each operation result. More precisely,

• if neither x, nor y is an ai, then we choose for x⊕ y the value x+ y + nη;

• if x = ai and y is not an ai, then we choose for x⊕ y the value ai + y + εn|ai|+ nη;

• if y = ai and x is not an ai, then we choose for x⊕ y the value x+ ai + εn|ai|+ nη;

• if x = ai and y = aj , then we choose for x⊕ y the value ai + aj + εn|ai|+ εn|aj |+ nη.

All those results fulfill the post-condition requirements. Note also that there will be exactly n
additions (whatever the ordering). Therefore,

I ≥ |So1
n −

n∑
0

ai|

=

∣∣∣∣∣εn
n∑
0

|ai|+ n · nη

∣∣∣∣∣
= εn

n∑
0

|ai|+ n2η

≥ |So2
n −

n∑
0

ai|

that ends the proof.
�

39

We will use the preceding value ε = 2050 × 2−64 and η = 2049 × 2−1086 to handle any
rounding of one operation. What is proved is that, if we put Formula (4.1) as post-condition
of the addition and subtraction with ε′ = εn and η′ = n · η for a given n, then the produced
properties will be correct, even if the compiler re-associate the additions. Note that Formula
(4.1) subsumes Formula (3.1) for n ≥ 1. Note also that εn = nε+O(ε2) and that a similar value
for bounding the rounding error of a sum can be found by Higham [42].

The result is reasonable as the rounding error ε′ ≈ nε. This is an intuitive demonstration of
the optimality where we discard the ε2 terms (which is reasonable as ε ≈ 2−53) and we discard
underflows. We consider we are only allowed to modify the addition post-condition. In that
case, if we consider the post-condition of Formula (3.1) and if we study (((a0⊕a1)⊕a2)⊕a3) · · · ,
then the final error is at least n · ε · |a0| + (n − 1) · ε · |a1| + · · · + ε · |an|. To justify this, we
consider an example using 64-bit computations: let a0 = 1 and ai = 2−53, then (((a0 ⊕ a1) ⊕
a2)⊕ a3) · · · = a0 and the error is n · 2−53. We are only interested in the first term (n · ε · |a0|).
Now let us assume we use Formula (4.1) as post-condition and that the program was written
a0 ⊕ (a1 ⊕ (a2 ⊕ (a3 · · ·))) (but the compiler rewrote it in the inverse order). Then the error
will be about ε′ · |a0|+ 2 · ε′ · |a1|+ · · ·+ n · ε′ · |an|. As we want this last error to subsume the
previous one, we need ε′ ' n · ε to make this approach work.

We need that the ε′ of Formula (4.1) be εn and η′ will be nη but we do not know n beforehand.
The question left is the choice of n. A solution is to look into the program before to have an
overestimation of n. We did not put this idea in practice and decided that 16 will be enough. Of
course, for linear algebra, it will be insufficient, but for our examples, it will be correct. Moreover,
this value can be changed if a bigger value is needed. We will therefore put ε′ = 2051 · 2−60 so
that ε′ ≥ ε16 = 16ε+ 256ε2(1 + ε)16 and we will put η′ = 16η = 2049× 2−1082.

If we constructed a post-condition for a n-term floating-point addition, the results would be
better in some cases, but it would not handle the reordering that goes into intermediate values.
This is why we chose to only modify the basic block of the numerical program and did so in the
best possible way.

Theorem 4.2 is the combination of Theorem 3.1 and Theorem 4.1. It is proved by the
previous results.

Theorem 4.2 Let ε′ = 2051 · 2−60 and ε = 2050 × 2−64. Let η′ = 2049 × 2−1082 and η =
2049× 2−1086.
If we define each operation result as any real such that

|x⊕ y − (x+ y)| ≤ ε′ · (|x|+ |y|) + η′

|x	 y − (x− y)| ≤ ε′ · (|x|+ |y|) + η′

|x⊗ y − (x ∗ y)| ≤ ε · |x ∗ y|+ η

|x� y − (x/y)| ≤ ε · |x/y|+ η∣∣◦(√x)−√x∣∣ ≤ ε ·
∣∣√x∣∣+ η

and if we are able to deduce a property (such as a rounding error), then this property holds what-
ever the architecture and the compiler optimizations among commutativity, addition/subtraction
associativity (for less than 16 additions/subtractions), use of FMA, use of extended registers,
expression factorization and unfactorization.

Without any further work, our method handles other optimizations:

• commutativity: As we have only symmetric formulas for defining the result of an operation,
an optimization such as a+b −→ b+a does not endanger our analysis. And commutativity
inside associativity is handled by Theorem 4.1.

40

• expression factorization: As we only consider rounding errors for one operation, the fact
that the compiler factorizes or un-factorizes expressions is not a problem. This includes
reordering inside intermediate results.

4.2 Implementation

Similarly to Chapter 3, we create a new pragma multiroundingR and define the post-conditions
by using the formulas of Theorem 4.2 for basic operations in the Frama-C platform to look
into the rounding error of the whole program. With this pragma, we let Frama-C know that
floating-point computations may be done with extended registers and/or FMA and/or compiler
optimizations.

The parameter declared for each operation is the same as the one in the previous chapter.
What is changed in this pragma is the predicate in the post-condition of each operation. Here is
the predicate for the post-condition of addition. With subtraction, we do the same way as the
one of addition.

predicate add_double_post(m:mode,x:double,y:double,result:double)=
abs_real(double_value(result)-(double_value(x)+double_value(y)))

<=0x1p3000
and
abs_real(double_value(result)-(double_value(x)+double_value(y)))

<= 0x1.006p-49*(abs_real(double_value(x))
+abs_real(double_value(y)))+0x1.002p-1071

and
double_exact(result) = double_exact(x) + double_exact(y)

We use Gappa tool to prove floating-point properties, and Gappa need to bound correctly
|x ⊕ y − (x + y)| as a hint. For this reason, we assume that |x ⊕ y − (x + y)| ≤ 23000 and this
bound is large enough for all cases.

The post-condition of the multiplication is defined as follows:

predicate mul_double_post(m:mode,x:double,y:double,result:double)=
abs_real(double_value(result)-double_value(x)*double_value(y))

<=0x1p3000
and
abs_real(double_value(result)-double_value(x)*double_value(y))

<=0x1.004p-53*abs_real(double_value(x)*double_value(y))+0x1.002p-1075
and
double_exact(result) = double_exact(x) * double_exact(y)

The predicates and parameters of division, negation, square root and absolute value are defined
similarly.

41

42

Chapter 5

Experimentations

5.1 Double rounding example

This first example is the same as the one in Figure 2.2 and is presented in subsection 2.1.2. We
add to the original program an assertion written in ACSL (See Figure 5.1). In the modified
program, we define two bounds A and B. The assertion we need to prove is that z must be
between A and B. Thanks to Gappa, we can find the value of A and B depending on the pragma
we use.

#pragma J e s s i e F l o a tMode l (mu l t i r o und i n g)

#def ine A 1 .0
#def ine B 1 .0 + 0x1p−52

i n t main (){
double x = 1 . 0 ;
double y = 0x1p−53 + 0x1p−64;
double z = x + y ;
//@ as se r t A <= z <= B;

}

Figure 5.1: Double rounding example with ACSL annotation.

A B

Strict model 1.0 + 2−52 1.0 + 2−52

Multi-rounding 1.0 1.0 + 2−52

Multi-rounding + reorganization 1.0− (2−49 − 2−53) 1.0 + 2−49

With the multirounding model, we automatically prove that in every architecture or compiler,
the value of z in this program is always in [1, 1+2−52]. If we use the multirounding model with
addition reorganization, z will be in [1.0− (2−49− 2−53), 1.0+2−49]. This bound is higher than
the previous one but it ensures that with double rounding or not, with reordering of addition or
not, the bound is still hold. With the strict model, the value z is proved to be 1 + 2−52 where
only 64-bit rounding is used.

43

#pragma J e s s i e F l o a tMode l (mu l t i r o und i n g)

#def ine E 0x1 . aap−42

/∗@ l o g i c in teger l_ s i gn (r e a l x) = (x >= 0 . 0) ? 1 :−1; ∗/

/∗@ r equ i r e s e1<= x−\exact (x) <= e2 ;
@ ensures \abs (\ r e s u l t) <= 1 &&
@ (\ r e s u l t != 0 ==> \ r e s u l t == l_s i gn (\ exact (x))) ;
@∗/

i n t s i g n (double x , double e1 , double e2) {
i f (x > e2) return 1 ;
i f (x < e1) return −1;
return 0 ;

}

/∗@ r equ i r e s
@ sx == \exact (sx) && sy == \exact (sy) &&
@ vx == \exact (vx) && vy == \exact (vy) &&
@ \abs (sx) <= 100 .0 && \abs (sy) <= 100 .0 &&
@ \abs (vx) <= 1 .0 && \abs (vy) <= 1 . 0 ;
@ ensures \ r e s u l t != 0
@ ==>\ r e s u l t==l_s i gn (\ exact (sx) ∗ \exact (vx) + \exact (sy) ∗ \exact (vy))
@ ∗ l_ s i gn (\ exact (sx) ∗ \exact (vy) − \exact (sy) ∗ \exact (vx)) ;
@∗/

i n t ep s_ l i n e (double sx , double sy , double vx , double vy){
i n t s1=s i g n (sx ∗ vx+sy ∗vy ,−E , E) ;
i n t s2=s i g n (sx ∗vy−sy ∗vx ,−E , E) ;
return s1 ∗ s2 ;

}

Figure 5.2: Avionics program

5.2 KB3D example

This example includes possible FMA and/or extended registers use but not addition reordering
(only one addition). It is part of KB3D [28]1, an aircraft conflict detection and resolution
program. The aim is to make a decision corresponding to value −1 and 1 to decide if the plane
will go to its left or its right. The inputs are the relative position and speed of the other aircraft.
Note that KB3D has been formally proved correct using PVS and under the assumption that
the calculations are exact [28]. However, in practice, when the computed value is small, the
result may be inconsistent or incorrect. The original code is in Figure 2.3 and may give various
answers depending on the architecture/compilation. To prove the correctness of this program
which is independent to the architecture/compiler, we need to modify this program to detect
when the answer may be incorrect.

The modified program (See Figure 5.2) provides an answer that may be 1, −1 or 0. The
idea is that, if the result is nonzero, then it is correct. If the result is 0, it means that the
result may be under the influence of the rounding errors and the program is unable to give a
certified answer. The correctness of the modified program is proved with respect to the following
specification: if the result is nonzero, it is the same as if the computations were done on real

1See also http://research.nianet.org/fm-at-nia/KB3D/.

44

http://research.nianet.org/fm-at-nia/KB3D/

numbers.
In the original program, the discrepancy of the result is derived from the function

int sign(double x)

To use this function only at the specification level, we define a logic function

logic integer l_sign (real x)

with the same meaning. Then we define another function

int sign (double x, double e1, double e2)

that gives the sign of x provided we know its rounding error is between e1 and e2. In the other
cases, the result is zero.

The function

int eps_line (double sx, double sy, double vx, double vy)

of Figure 5.2 then does the same computations as the one of Figure 2.3, but the result may be
different. More precisely, if the modified function gives a nonzero answer, it is the correct one
(it gives the correct sign). But it may answer zero (contrary to the original program) when it
is unable to give a certified answer. As in interval arithmetic, the program does not lie, but it
may not answer.

About the other assertions, the given values of sx, vx, sy, vy are reasonable for the position
and the speed of the plane. The assertions about s1 and s2 are here to help the automatic
provers.

The most interesting part is the value chosen for e1 and e2: they need to bound the rounding
error of the computation sx ∗ vx+ sy ∗ vy (and its counterpart). Thanks to Gappa, we can find
the bound of the rounding error e1 and e2 and we can also prove that no overflow occurs.

The following table shows us the value of e1 and e2 depending on each model. In practice,
e1 = e2 = E. Thus, we will show only E in this table:

E

Strict model 0x1p-45

Multi-rounding 0x1.90641p-45

Multi-rounding + re-organization 0x1.aap-42

In the usual formalization where all computations directly round to 64 bits, the value
E = 0x1p-45 is correct. With multi-rounding approach, we have proved that the value E =
0x1.90641p-45 is correct whatever the architecture. We can also have the value E = 0x1.aap-42
when applying Theorem 4.2 (although it is useless because there is only one addition). This
means that the rounding error of sx∗vx+sy∗vy will always be smaller than this value whatever
the architecture or the compiler choices. This means that, even if a FMA is used or if extended
registers are used somewhere, this function does not lie.

The analysis of this program (obtained from the verification condition viewer gWhy [35]) is
given in Figure 5.3. By combining different automatic theorem prover: Alt-Ergo, CVC3, Gappa,
we successfully prove all proof obligations in this program.

45

Figure 5.3: Result of Figure 5.2 program

5.3 Summation example

To demonstrate our choices about summation reordering, we use an example by Ogita, Rump
and Oishi [62]. Take δ = 2−54. Then we add 1, δ, −1, δ2 and −δ. We denote by ⊕ the 64-bit
addition:

• exact computation: 1 + δ + (−1) + δ2 + (−δ) = δ2

• left-associated floating-point additions:
(((1⊕ δ)⊕ (−1))⊕ δ2)⊕ (−δ) = −δ

• right-associated floating-point additions:
1⊕ (δ ⊕ ((−1)⊕ (δ2 ⊕ (−δ)))) = 0

From this example, we make a small program (see Figure 5.4). Here, the reordering is critical.
With the strict model, we are able to prove that a = −δ, that b = 0 and that the exact values of
a and b are equal to δ2, and that no overflow occur. But if the compiler reorders these additions
(if we had not put parentheses for example), then these proved properties are fallacious. In
the multiroundingR pragma, we are only able to prove that the rounding error of a and b is
smaller than 0x1.0041p − 47 and that no overflow occur. The rounding error is the same for a
and b as this rounding error is big enough to cover all possible orderings, including the left- and

46

#pragma J e s s i e F l o a tMode l (mu l t i r ound ingR)

void main (){
double d e l t a = 0x1p−54;
double a = (((0 x1p0 + d e l t a) + (−0x1p0)) + d e l t a ∗ d e l t a) + (− d e l t a) ;
/∗@ as se r t \abs (a−(0x1p0+d e l t a+(−0x1p0)+ d e l t a ∗ d e l t a +(−d e l t a)))

<= 0x1 .0041p−47;∗/
//@ as se r t a == −d e l t a ;
double b = 0x1p0 + (d e l t a + ((−0x1p0) + (d e l t a ∗ d e l t a + (− d e l t a)))) ;
/∗@ as se r t \abs (b−((((0 x1p0+d e l t a)+(−0x1p0))+ d e l t a ∗ d e l t a)+(− d e l t a)))

<= 0x1 .0041p−47;∗/
//@ as se r t b == 0 ;

}

Figure 5.4: Summation program

the right-associated ones. Of course, the obtained error is bigger than what may really happen
as there are cancellations, but this is correct whatever the order of operations. We noticed
that Formula (4.1) is especially loose when cancellations happen as the error is proportional to
|x|+ |y| instead of to |x+ y|.

This program is fully proved by Gappa using Why/Frama-C with the multiroundingR
pragma.

5.4 Clock drift example

Clock drift is a phenomena where two clocks do not run at the same speed. This causes a drift
of normal clock compared to the actual time. It seems not very important if our clock drifts
only some seconds. However, this becomes dramatic in some cases such as the error in a Patriot
missile launcher, and caused several deaths 2. The interesting point of this example is that we
try to verify a property on the bound between the computed clock and the exact one.

The example of clock drift [13] 3 is presented in Figure 5.5. We assume that the initial value
of t is 0.0. At each step, t increases by 0.1. This is a classical example to illustrate rounding
errors, that is 0.1 is not a representable floating-point number. Here, the rounding error of 0.1
in double is A = 5.55114e-18. The bound B is the rounding error of t - (t’+(double)0.1)
where t’ is the previous value of t. At each step i, we assure that |t-i×0.1| is bound by
i*(A+B). The post-condition says that after n steps:

|result− n× 0.1| ≤ n× (A+B)

There are several lemmas which are added to help the automatic provers to solve the VCs.
This example is proved completely and automatically by the combination of Gappa, Alt-Ergo
and CVC3. The value of B changed in function of NMAX, is determined using Gappa, shown in
the following table:

2http://autarkaw.wordpress.com/2008/06/02/round-off-errors-and-the-patriot-missile/
3 This example can also be found at http://hisseo.saclay.inria.fr/drift.html

47

http://autarkaw.wordpress.com/2008/06/02/round-off-errors-and-the-patriot-missile/
http://hisseo.saclay.inria.fr/drift.html

#pragma J e s s i e F l o a tMode l (mu l t i r o und i n g)

#def ine NMAX 100
#def ine NMAXR 100 .0

//@ lemma rea l _of_int_inf_NMAX : \ f o r a l l i n teger i ; i <= NMAX==> i <= NMAXR;

//@ lemma rea l _of_int_succ : \ f o r a l l i n teger n ; n+1 == n + 1 . 0 ;

//@ lemma i n f_mul t : \ f o r a l l r e a l x , y , z ; x<=y && 0<=z ==> x∗ z <= y∗ z ;

// A i s a bound o f (doub l e) 0 . 1 − 0 .1
#def ine A 5.55114 e−18

//@ lemma round01 : \abs ((doub l e) 0 . 1 − 0 . 1) <= A;

#def ine B 1.122421 e−15
// B i s a bound o f round_er ro r (t+(doub l e) 0 . 1) f o r 0 <= t <=NMAXR+ 0.01

#def ine C (B + A)

/∗@ r equ i r e s 0 <= n <= NMAX;
@ ensures \abs (\ r e s u l t − n ∗0 . 1) <= n ∗ C ;
@∗/

double f_ s i n g l e (i n t n)
{

double t = 0 . 0 ;
i n t i ;

/∗@ loop i nva r i an t 0 <= i <= n ;
@ loop i nva r i an t \abs (t − i ∗ 0 . 1) <= i ∗ C ;
@ loop v a r i a n t n− i ;
@∗/

f o r (i =0; i < n ; i++) {
L :

//@ as se r t 0 .0 <= t <= NMAXR∗(0.1+C) ;
t = t + 0 . 1 ;
//@ as se r t \abs (t − (\ at (t , L) + (doub l e) 0 . 1)) <= B;

}
return t ;

}

Figure 5.5: Clock drift program

NMAX

10 100 1000

strict model/default 1.110224e-16 8.881785e-16 7.10543e-15

multirounding 1.22244e-16 1.122421e-15 1.11242e-14

multirounding+re-organization 1.956855e-15 1.79675e-14 1.78074e-13

48

5.5 Scalar product example

The annotated C program in Figure 5.6 computes the scalar product (also known as dot product)
of two vectors represented as arrays of doubles:∑

0≤i<n

xiyi

Each vector has n elements. We assume that the values of all the elements of two vectors are not
greater than 1.0. Because of the rounding error, the value of p − exact(p) increases after each
step of p = p′+xi×yi. This value may change depending on the options of compiler/architecture:
it might either follow strictly the standard IEEE-754, or use x87 with 80-bit internal registers,
or x87 with optimization, or FMA. In this example, we use a bound B for the rounding error of
p−(p′+xi×yi) where p′ is the previous value of p. The post-condition expresses a bound B on the
accumulated rounding error in function of a bound NMAX on the size of the vectors. Several extra
assertions are added in the body of the loop: these are needed to help the automatic provers
to solve the generated VCs. In particular, to make Gappa solve the VCs on the accumulated
rounding error, it is necessary to guarantee that p remains bounded: it is bounded by NMAX(1+B).

The value of B in function of NMAX when proving the program with the strict model and
our multirounding and multirounding with the addition re-organization are shown in the table
below:

NMAX

10 100 1000

strict model/default 0x1.1p-50 0x1.02p-47 0x1.004p-44

multirounding 0x1.629p-46 0x1.94ep-43 0x1.f55p-40

multirounding + re-org. 0x1.62ap-46 0x1.94ep-43 0x1.f55p-40

49

#pragma J e s s i e F l o a tMode l (mu l t i r o und i n g)

#def ine NMAX 1000
#def ine NMAXR 1000.0
#def ine B 0x1 . f57d5p−44

/∗@ lemma bound_int_to_ r e a l :
@ \ f o r a l l i n teger i ; i <= NMAX ==> i <= NMAXR; ∗/

/∗@ lemma t r i a n g u l a r _ i n e q u a l i t y :
@ \ f o r a l l r e a l x , y , z ; \abs (x−z) <= \abs (x−y) + \abs (y−z) ; ∗/

/∗@ r equ i r e s 0 <= n <= NMAX;
@ r equ i r e s \ va l i d_range (x , 0 , n−1) && \ va l i d_range (y , 0 , n−1) ;
@ r equ i r e s \ f o r a l l i n teger i ; 0 <= i < n ==>
@ \abs (x [i]) <= 1 .0 && \abs (y [i]) <= 1 .0 &&
@ x [i] == \exact (x [i]) && y [i] ==\exact (y [i]) ;
@ ensures \abs (\ r e s u l t − \exact (\ r e s u l t)) <= n ∗ B; ∗/

double s c a l a r_p roduc t (double x [] , double y [] , i n t n) {
double p = 0 . 0 ;
/∗@ loop i nva r i an t 0 <= i <= n ;

@ loop i nva r i an t \abs (\ exact (p)) <= i ;
@ loop i nva r i an t \abs (p − \exact (p)) <= i ∗ B;
@ loop v a r i a n t n− i ; ∗/

f o r (i n t i =0; i < n ; i++) {
// bounds , needed by Gappa
//@ as se r t \abs (x [i]) <= 1 . 0 ;
//@ as se r t \abs (y [i]) <= 1 . 0 ;
//@ as se r t \abs (p) <= NMAXR∗(1+B) ;

L :
p = p + x [i]∗ y [i] ;

// bound on the round ing e r r o r s i n the s ta tement above , proved by gappa
/∗@ as se r t \abs (p − (\ at (p , L) + x [i]∗ y [i])) <= B; ∗/

// the p rope r i n s t a n c e o f t r i a n g u l a r i n e q u a l i t y to show the main i n va r i an t
/∗@ as se r t \abs (p − \exact (p)) <=

\abs (p − (\ at (p , L) + x [i]∗ y [i])) +
\abs ((\ at (p , L) + x [i]∗ y [i]) − (\ exact (\ at (p , L)) + x [i]∗ y [i])) ; ∗/

// a lemma to show the i n va r i an t \abs (\ exact (p)) <= i
/∗@ as se r t \abs (\ exact (p)) <=

\abs (\ exact (\ at (p , L))) + \abs (x [i]) ∗ \abs (y [i]) ; ∗/

// a n e c e s s a r y lemma , p roved on l y by gappa
//@ as se r t \abs (x [i]) ∗ \abs (y [i]) <= 1 . 0 ;

}
return p ;

}

Figure 5.6: Scalar product program

50

Part II

Hardware-dependent proofs of
numerical programs

51

Chapter 6

Principle of proofs on assembly code
with Why

This chapter begins a new part of the thesis. Remind that the goal of this part is to show us
how to prove a C program on its assembly code. In order to do it, we present firstly the principle
of the proofs on assembly code with Why, then we present in each chapter how to translate an
assembly program into Why from the simplest cases to the complicated ones.

Before talking about the translation of assembly code into Why, this chapter will give a
general view of our approach and some basic knowledge about assembly code.

6.1 Steps of proofs

Our approach for proving a C source via analyzing its assembly follows several steps illustrated on
Figure 6.1. All the necessary steps to prove a program with their assembly code are presented in
the left hand-side of the figure. The one in the right hand-side instantiates these steps concretely
for the proof of some program foo.c.

C program +
ACSL annotations

C program + inline assembly

Assembly code

Proof obligations in Why

Automatic/interactive
provers

preparation of code

regular C compilation

modified assembler

proof

foo.c

foo_inline.c

foo_inline.s

foo_inline.why

Automatic/interactive
provers

./inlineasm foo.c

gcc -S foo_inline.c

./as-new foo_inline.s

gwhy foo_inline.why

Figure 6.1: Step-by-step from C program to Why proof obligations

53

In a C program with annotations written by ACSL, all annotations are put in comments.
When gcc generates assembly code, these annotations will be ignored. As annotations are
important to prove the program, a preparation step is needed. This step puts all annotations
into inline assembly in order to keep them in assembly code. This will be detailed in Section 6.3.

Once the preparation step is done, another C file containing inline assembly is generated.
The regular GNU compiler gcc is called with option -S to generate assembly code from this C
file.

The translation from assembly code to Why is implemented in our own modified version of
the GNU assembler GAS. This step generates a file containing proof obligations in Why. These
obligations are then attempted to be proved by automatic or interactive provers.

6.2 Essential elements of assembly language

An assembly language is a low-level programming language. It is directly influenced by the
instruction set and architecture of the processor. A program written in assembly language
consists of a series of statements. They are translated by an assembler to a stream of executable
instructions that can be loaded into memory and executed.

There exist many different assemblers which translate assembly source code into binary
programs such as NASM 1, MASM 2, GAS 3, etc. The GNU Assembler, commonly known as
GAS, is the default back-end of gcc and it is a part of the GNU Binutils package. By default,
on the x86 and x86-64 architecture, it uses the AT&T assembler syntax. We use gcc to generate
assembly code. This chapter will give a background on assembly language using the AT&T
syntax.

Assembly statements are entered one per line in the source file. They use the same format:

[label] mnemonic [operands] [comment]

The fields in the square brackets are optional.

6.2.1 Operands and Instruction Naming

Operands

An operand in assembly language may be a register, a memory reference or a constant. Note
that with AT&T syntax, the first operands are the sources and the last one is the destination
(if exists).

Registers are preceded by ’%’. For example: the EAX register is specified as %eax

Memory references Memory references in AT&T syntax has the following form:
section:disp(base, index, scale)

where base and index are the optional 32-bit base and index registers, disp is the optional
displacement, and scale, taking the values 1, 2, 4, 8 and multiplies index to calculate
the address of the operand. If there is no scale specified, it takes 1. section specifies
the optional section register for memory operand.

The address of a memory reference is calculated by

addr(m) = base+ scale× index+ disp

For example:
1Netwide Assembler (NASM): http://www.nasm.us/
2Microsoft Macro Assembler (MASM): http://www.masm32.com/
3GNU Assembler (GAS): http://sourceware.org/binutils/docs-2.21/as/index.html

54

http://www.nasm.us/
http://www.masm32.com/
http://sourceware.org/binutils/docs-2.21/as/index.html

• -4(%rbp): base is ’%rbp’; disp is ’-4’. index, scale are both missing.
• foo(,%eax,4): index is ’%eax’; scale is ’4’; disp is ’foo’. All others fields are

missing.

In our model, we suppose that there is no section, this means that there is only one
section in the memory.

The x86-64 architectures add an RIP (instruction pointer relative) addressing. This ad-
dressing mode is specified by using ’%rip’ as a base register. For example:

• 1234(%rip) points to the address 1234 bytes past the end of the current instruction.
• .LC0(%rip) points to the symbol .LC0 in RIP relative way [29].

Immediate operands are preceded by ’$’ and written in decimal or in hexadecimal.
For example: $1, $0x3f800000

Instruction Naming

In AT&T syntax, instruction mnemonics are suffixed with one character modifiers which specify
the size of operands. The letter ’b’, ’w’, ’l’, and ’q’ specify byte, word, long and quadruple
words operands. If no suffix is specified, GAS will try to fill in the missing suffix based on the
destination register operand.

For example, in the instruction

movl -4(%rbp), %eax

movl is an instruction mnemonic with the suffix ’l’. This means that the instruction copies data
from 32-bit source (-4%rbp)) to 32-bit destination (%eax).

movq %rdi, %rsi

movq is an instruction mnemonic with the suffix ’q’. This instruction moves data from 64-bit
source (%rdi) to 64-bit destination (%rsi).

6.2.2 EFLAGS register

The 32-bit EFLAGS register holds the state of the processor. It is modified by many instructions
and is used for comparing some parameters, conditional loops and conditional jumps. This
register contains a group of status flags, a control flag, and a group of system flags. The status
flags are presented as follows:

Carry Flag(CF) Set if an arithmetic operation generates a carry or a borrow out of the most-
significant bit of the result; cleared otherwise.

Parity Flag(PF) Set if the least-significant byte of the result contains an even number of 1
bits; cleared otherwise.

Adjust Flag(AF) Set if an arithmetic operation generates a carry or a borrow out of bit 3 of
the result; cleared otherwise. This flag is used in binary-coded decimal (BCD) arithmetic

Zero Flag(ZF) Set if the result is zero; cleared otherwise.

Sign Flag(SF) 0 indicates a positive value and 1 indicates a negative value.

Overflow Flag(OF) Set if the integer result is too large a positive number or too small a neg-
ative number (excluding the sign-bit) to fit in the destination operand; cleared otherwise.

55

6.2.3 General-purpose instructions

In this section, we only talk about the general-purpose instructions, floating-point instructions
will be presented in Chapter 8.

General-purpose instructions are divided into several groups as follows:

Data transfer instructions

The mov instruction transfers data from source operand to destination operand. It requires two
operands and has the syntax:

mov src, dest

The data is copied from src to dest and the src operand remains unchanged. Both operands
should be of the same size. The mov instruction can take one of the following five forms:

• mov register, register

• mov immediate, register

• mov immediate, memory

• mov register, memory

• mov memory, register

Binary Arithmetic Instructions

The following instructions make a binary calculation. They can be used to add/sub/mul/div
two 8-, 16-, 32- or 64-bit operands.

add src, dest dest = dest + src
sub src, dest dest = dest - src
mul src, dest dest = dest * src
div src, dest dest = dest / src

Notice that with multiplication and division operations, there exist the signed one and the
unsigned one. The unsigned instructions are mul and div. The signed ones use the prefix ’i’:
imul, idiv.

6.2.4 Calling procedures using call and ret

Stack frame

For function handling in assembly code, the following elements are needed:

• Stack has one stack frame per active function invocation

• Stack pointer register (ESP) points to top (low memory) of current stack frame

• Base pointer register (EBP) points to bottom (high memory) of current stack frame

Each stack frame contains

• Return address (Old EIP 4 (instruction pointer register, points to next instruction to be
executed))

4In Intel 64 architecture, ESP, EBP and EIP are replaced by RSP, RBP and RIP, respectively

56

• Old EBP

• Saved register values

• Local variables

• Parameters to be passed to callee function

call and ret instructions

The call instruction allows control transfers to procedures within the current code segment
(near call) and in a different code segment (far call). Near calls usually provide access to local
procedures within the currently running program or task. Far calls are usually used to access
operating system procedures or procedures in a different task.

The ret instruction also allows near and far returns to match the near and far versions of
the call instruction.

In this thesis, we only talk about near call and ret operation.
When executing a near call, the processor does the following steps:

1. Pushes the current value of the EIP register on the stack.

2. Loads the offset of the called procedure in the EIP register and begins execution of the
called procedure.

When executing a near return, the processor performs these actions:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. Resumes execution of the calling procedure.

6.2.5 Some assembler directives

All directives are specified by D. Elsner et al. [29]. In this section, we present some of them
which often appear in our examples.

Comm directive

The syntax of Comm directive is:

.comm symbol, length

It declares a common symbol named symbol. When linking, a common symbol in one object file
may be merged with a defined or common symbol of the same name in another object file. If
the GNU linker ld does not see a definition for the symbol – just one or more common symbols
– then it will allocate length bytes of uninitialized memory. The argument length must be an
absolute expression. If ld sees multiple common symbols with the same name, and they do not
all have the same size, it will allocate space using the largest size.

Global directive

Its syntax is:

.globl symbol

.global symbol

57

The directive .global makes the symbol visible to ld. If we define symbol in our partial
program, its value is made available to other partial programs that are linked with it. Otherwise,
symbol takes its attributes from a symbol of the same name from another file linked into the
same program. Both spellings .globl and .global are accepted, for compatibility with other
assemblers.

CFI directives

The directive .cfi_startproc is used at the beginning of each function that should have an
entry in .eh_frame. It initializes some internal data structures.

The directive .cfi_endproc is used at the end of a function where it closes its unwind entry
previously opened by .cfi_startproc, and emits it to .eh_frame.

6.2.6 Inline assembly

Inline assembly is a way to put directly assembly in high-level source code. We present here the
basic syntax of inline assembly which will be used in the next chapters.

Simple Inline Statement

The form of a basic inline statement is:

asm(“assembly code”);

For example: asm(“move %eax, %ebx”);

Extended Inline Statements

In basic inline assembly, we have only instructions. In extended assembly, we can also specify
the operands. The format of the asm statement consists of four components below:

asm(assembly template
:outputs /* optional */
:inputs /* optional */
:clobber list /* optional */

);

where each component is separated by a colon (:). The last three components are optional.

Assembly template consists of the assembly language statements to be inserted into the C
code. This may be a single instruction or a sequence of instructions.

Outputs specify the output operands for the assembly code. The format specifying each
operand is “=option-constraint” where option-constraint may be:

r : register operand constraint

m : memory operand constraint

rm : register or memory

ri : register or immediate

g : general

X : any operand whatsoever is allowed5.
5See http://gcc.gnu.org/onlinedocs/gcc/Simple-Constraints.html

58

http://gcc.gnu.org/onlinedocs/gcc/Simple-Constraints.html

Inputs are specified in the same way, except for the ’=’ sign.

Clobber list is the list of registers modified by the assembly instructions.

The operands specified in the output and input parts are assigned sequence numbers 0, 1, 2,
etc. For example:

asm(“movl %0, %1”
:”=r”(sum)/* output */
:”r”(number)/* input */

);

The C variables sum and number are both mapped to registers. In assembly statement, sum
is identified by %0 and number by %1.

We can put the keyword volatile after asm if our assembly statement must execute where
it is put. Its form is:

asm volatile (...: ...: ...: ...)

6.3 Preparation of source code

As said in Section 6.1, the goal of this step is to keep annotations when compiling to assembly
code. The idea of this step is that we create a new C file in which all annotations are put in
inline assembly statements. The assembly code will be generated from this new C file, not the
original one.

By using inline assembly in C program, all the variables in annotations will be replaced by
a memory reference or a register in assembly code.

For example, an annotation in ACSL :

/*@ requires n >= 0 && n < 100;*/

is put in inline assembly under the following format:

asm volatile("/*requires #int#%0# >= 0 && #int#%1# < 100;*/"::"X"(n),"X"(n));

where the first occurrence and the second one of n in this annotation are represented by “%0”,
“%1”.

Notice that in assembly code, we do not know the type of variables. This is the reason why
in this step, we add type of variables into annotations. In the example above, each variable is
replaced by #type_of_variable#index#. We indicate that this variable is input option of inline
assembly statement with the constraint “X”. The inline assembly above will then be translated
in assembly code as follows:

/*requires #int#-20(%rbp)# >= 0 && #int#-20(%rbp)# < 100;*/

In the programs containing labels like in the following piece of code:

for(i=0; i < n; i++) {
L:

t = t + 0.1f;
//@ assert \abs(t-(t@L+\round_single(\nearest_even,0.1)))<=B;

}

59

There is a label L and in the assertion, we use t@L which means that we get the value of t at
label L. When compiling this code into assembly, the label L will disappear. In order to keep
this label in assembly code, we also put it in inline assembly statement. In this case, the inline
assembly is

asm volatile("L:");

An another point we process in this step is to have only one returned value. This is not a
new work, it have been described in CIL (C Intermediate Language) 6. This ensures that each
function has one return statement. For example, the function sign below has three returns
statements:

int sign(double x, double e1, double e2) {
if (x > e2) return 1;
if (x < e1) return -1;

return 0;
}

The output after the preparation step is

int sign(double x, double e1, double e2) {
int res;

if (x > e2) {res = 1; goto resL;}
if (x < e1) {res = -1; goto resL;}

{res = 0; goto resL;}
resL:

return res;
}

In the output of this step, we define a local variable res (if this variable does not exist in the
program) with its type is the returned type of the function. In this case, the returned type is
int. Then, we replace each return statement return A; by {res = A; goto resL;}. Finally,
at the end of the function, we add resL: return res;.

In brief, what we do in this step are

• We replace all the macros in annotations

• We translate annotations under the form of inline assembly statements. We also keep the
type of variables in annotations. This is very important because at assembly level, we do
not know the type of the registers/memory references.

• We put the labels in C program into inline assembly so that it will appear in assembly
code with the same name.

• We have only one return statement in each function.

• Precondition and post-condition are put at the right place. This is important when the
function is integrated into the caller. The precondition and post-condition are also inte-
grated with inline function in the right position in assembly code.

6http://www.cs.berkeley.edu/~necula/cil/

60

http://www.cs.berkeley.edu/~necula/cil/

/∗@ r equ i r e s n >= 0 && n < 100 ; ∗/
i n t f (i n t n){

i n t tmp = 100 − n ;
//@ as se r t tmp > 0 ;
//@ as se r t tmp <= 100 ;

return tmp ;
}

Figure 6.2: A simple program

i n t f (i n t n){
asm v o l a t i l e (" /∗ r equ i r e s #i n t#%0#>=0 && #i n t#%1#<100;∗/ " : : "X"(n) ,"X"(n)) ;
i n t r e s ;
i n t tmp = 100 − n ;
asm v o l a t i l e (" /∗ as se r t #i n t#%0# > 0 ; ∗/ " : : "X"(tmp)) ;
asm v o l a t i l e (" /∗ as se r t #i n t#%0# <= 100 ; ∗/ " : : "X"(tmp)) ;
{ r e s = tmp ; goto r e sL ; }

r e sL :
return r e s ;

}

Figure 6.3: The program of Figure 6.2 after passing the preparation step

The advantage of using inline assembly statements is that when the program is compiled
with gcc -S, the compiler will replace all the variables in the annotations automatically by
registers/memory refenrences, even with optimization options. However, the assembly code
generated may be modified if we use the complex statement of inline assembly. Adding more
move instructions is one of the modifications.

6.4 Examples

Now let us see a first simple example (Figure 6.2) to know about a program in assembly code
and what we obtain in assembly code after passing the preparation step.

The example in Figure 6.2 has a function int f(int n) that returns the value of 100 − n.
The precondition of this function is 0 ≤ n < 100. We have two assertions in the body of the
function. These are tmp > 0 and tmp ≤ 100.

After the preparation step, a new C file containing the program as in Figure 6.3 is created.
Precondition and two assertions are put into inline assembly statement. A new variable int
res is added for returning.

The assembly code of this program (See Figure 6.4) is generated from program in Figure 6.3
by the default option of gcc. There are only three basic instructions used: transfer data with
mov instruction, sub instruction and instructions for returning a function.

The function f in assembly code is defined as a global symbol with type @function(line 1–2).
This means that this function is visible in other files. A label f begins this function. The body
is between two directives .cfi_startproc and .cfi_endproc.

As one can see, ACSL annotations appear between #APP and #NO_APP in assembly code.

61

1 . g l o b l f
2 . type f , @ func t i on
3 f :
4 .LFB0 :
5 . c f i_s ta r tp roc
6
7 movl %edi, −20(%rbp)
8 #APP
9 /∗ r equ i r e s #i n t #−20(%rbp)# >= 0 && #i n t #−20(%rbp)# < 100;∗/

10 #NO_APP
11 movl −20(%rbp) , %eax
12 movl $100 , %edx
13 movl %edx, %ecx
14 sub l %eax, %ecx
15 movl %ecx, %eax
16 movl %eax, −4(%rbp)
17 #APP
18 /∗ as se r t #i n t#−4(%rbp)# > 0;∗/
19 /∗ as se r t #i n t#−4(%rbp)# <= 100;∗/
20 #NO_APP
21 movl −4(%rbp) , %eax
22 l eave
23 .cf i_def_cfa 7 , 8
24 re t
25 .cf i_endproc

Figure 6.4: Assembly code of the example of Figure 6.3 (compiled by gcc -S)

/∗@ r equ i r e s 0 <= x <= 1000 ;
@ ensures \ r e s u l t == x ∗ x ; ∗/

i n t squa r e (i n t x){
i n t tmp = x ∗ x ;
return tmp ;

}

i n t main (){
i n t a = 5 ;
i n t b = squa r e (a) ;
//@ as se r t b== 25 ;

return 0 ;
}

Figure 6.5: Square program

These lines are generated by gcc -S.

The second example we illustrate here is a program containing a function which is called by
another (See Figure 6.5). In this example, there are two functions:

• The function int square(int x): calculates the square value of an integer;

62

i n t squa r e (i n t x){
asm v o l a t i l e (" /∗ r equ i r e s 0 <= #i n t#%0# <= 1000 ; ∗/ " : : "X"(x)) ;
i n t r e s ;

i n t tmp = x ∗ x ;
{ r e s = tmp ; goto r e sL ; }

r e sL :
asm v o l a t i l e (" /∗ ensures #i n t#%0# == #i n t#%1# ∗ #i n t#%2#;∗/"

: : "X"(r e s) , "X"(x) ,"X"(x)) ;
return r e s ;
}
i n t main (){
i n t r e s ;

i n t a = 5 ;
i n t b = squa r e (a) ;

asm v o l a t i l e (" /∗ as se r t #i n t#%0#== 25 ; ∗/ " : : "X"(b)) ;
{ r e s = 0 ; goto r e sL ; }

r e sL :
return r e s ;
}

Figure 6.6: Example in Figure 6.5 after preparation step

• The function int main() then calls the function int square(int x) in its body.

The new C program generated after the preparation step is illustrated in Figure 6.6. Like
previous example, all annotations are put in inline assembly statement. One point we want
to emphasize in this example is that the keyword \result is replaced by the variable res in
post-condition. We insist that this translation is done by our translator called “preparation of
source code”.

The assembly code of this program is in Figure 6.7. The function square is called in assembly
code by the instruction call square (line 41). Thank to the new variable res in the new
program in Figure 6.6, the returned value is replaced by the reference memory -4(%rbp) without
any further step (line 24). If we do not replace \result in annotation, it is difficult to determine
which register/memory reference is used for returning value.

63

1 . f i l e " s q u a r e_ i n l i n e . c "
2 . t e x t
3 . g l o b l squa r e
4 . type s q u a r e , @ func t i on
5 squa r e :
6 .LFB0 :
7 . c f i_s ta r tp roc
8
9 movl %edi, −20(%rbp)

10 #APP
11 /∗ r equ i r e s 0 <= #i n t #−20(%rbp)# <= 1000 ; ∗/
12 #NO_APP
13 movl −20(%rbp) , %eax
14 imu l l −20(%rbp) , %eax
15 movl %eax, −8(%rbp)
16 movl −8(%rbp) , %eax
17 movl %eax, −4(%rbp)
18 nop
19 .L2 :
20 #APP
21 /∗ ensures #i n t#−4(%rbp)# == #i n t #−20(%rbp)# ∗ #i n t #−20(%rbp)#;∗/
22 #NO_APP
23 movl −4(%rbp) , %eax
24
25 re t
26 .cf i_endproc
27
28 main :
29 .LFB1 :
30 . c f i_s ta r tp roc
31
32 movl $5 , −12(%rbp)
33 movl −12(%rbp) , %eax
34 movl %eax, %edi
35 c a l l squa r e
36 movl %eax, −8(%rbp)
37 #APP
38 /∗ as se r t #i n t#−8(%rbp)#== 25;∗/
39 #NO_APP
40 movl $0 , −4(%rbp)
41 nop
42 .L4 :
43 movl −4(%rbp) , %eax
44 l eave
45 re t
46 .cf i_endproc

Figure 6.7: Assembly code of the example of Figure 6.6 (compiled by gcc -S)

64

Chapter 7

Case of Simple programs

In the previous chapter, we have presented basic knowledge about assembly code and a general
view about how to prove a C program from their assembly code with our approach. We also
talked about the preparation step for obtaining the registers/memory references corresponding
to the variables in annotations.

In this chapter, we describe how to translate a very simple program C into Why including
the translation of instructions and annotations.

7.1 Definition of the class of “simple” C programs

Simple C programs considered in this chapter are made of a set of function definitions, specified
with ACSL-style annotations, which satisfy these restrictions:

• The only data types int and long int are assumed to denote 32-bit and 64-bit 2-
complement integers. In particular there are no float types, no arrays and no pointers.

• There are no global variables but only local variables and arguments of the functions.

• The body of any function is restricted to a sequence of assignments, i.e. there is no
compound instructions: no loop statements of any kind, neither if, nor switch and nor
goto statements.

• The allowed expressions are the arithmetic expressions and the function calls.

This class of programs is simple for us because the corresponding assembly codes contain only
general-purpose instructions, neither jump instructions nor any floating-point instructions.

7.2 Translation to Why

Now we will detail the translation of assembly code to Why. We present firstly how to translate
operands to Why. Secondly, we will talk about how to translate annotations to Why. Finally,
we present the translation of instructions.

7.2.1 Translation of 32-bit and 64-bit integers

Why has only unbounded mathematical integers built-in. Thus, 32-bit integers must be defined
in Why. We follow here the same technique as what is done in the Jessie plug-in of Frama-C.

The type int32 is an abstract type for an 32-bit integer.

65

type int32
logic integer_of_int32: int32 -> int

The logic function integer_of_int32 returns an integer value from an int32.
We need a predicate is_int32 which verifies whether an integer is in the range of 32-bit

word or not.

predicate is_int32(x: int) = -2147483648 <= x and x <= 2147483647

The axiom

axiom int32_coerce: forall x:int32, is_int32(integer_of_int32(x))

assures that all value x having type int32 always denotes an integer value in the range of 32-bit
word.

A 64-bit integer has type int64. Like int32, we define a following logic function and a
predicate for it:

type int64
logic integer_of_int64: int64 -> int
predicate is_int64(x: int) =

-9223372036854775808 <= x and x <= 9223372036854775807

We also have an axiom

axiom int64_coerce: forall x:int64, is_int64(integer_of_int64(x))

Although the 8-, 16- integers are not considered here for simplicity, they are handled similarly,
as in Jessie. We also consider signed integers and not unsigned integers, they are handled
similarly as well.

7.2.2 Translation of operands

We want to translate operands being registers or memory references into Why variables. To do
so, we make the following hypothesis:

Assumption 7.1 (Separation Assumption) On a simple C program, the compiler gener-
ates an assembly code where syntactically distinct memory references denote disjoint memory
locations.

For example, we assume that in any assembly code, the memory references -16(%rbp) and
-8(%rax) are disjoint. Of course there is no reason that this is true in general, but we claim
that for the “simple” C programs considered here, and our GNU compiler, this is true. Note
that in Chapter 10, this assumption will not be made anymore.

The Separation Assumption allows us to translate each memory reference into a Why variable
whose name is syntactically derived from it.

In assembly programs, %ax, %eax, %rax indicate the same register with different size:

0163264

%ax
%eax

%rax

66

As illustrated in the figure above, the size of %ax, %eax and %rax are 16, 32, 64 bits, respec-
tively. When translated into Why, they have the same name: _rax. Once we have this, we do
not need to cast from %ax and %eax to %rax and otherwise. With other general-purpose registers
such as %bx, %cx, %di, %si, etc. we do similarly.

The following abstract type will be used in this chapter:

type register

Each register or memory reference used as an operand will be declared in Why as a variable with
type register. In order to get a 32-bit and a 64-bit integer from a register, we need the two
following logic functions:

logic sel_int32: register -> int32
logic sel_int64: register -> int64

The logic function sel_int32 and sel_int64 returns a 32-bit and a 64-bit integer from a
register.

We distinguish two types of operands as follows:

• Immediate operand: begins by ’$’. There is not any declaration here because this operand
is a constant. We just delete the prefix ’$’.

• Registers and memory references: We denote by op the variable in Why corresponding to
the operand. Each register or memory reference will have a unique name in Why. In this
document, we name the register or memory reference by replacing all special character
(()+-%.) by ’_’.

Example: -4(%rbp) = _4__rbp_. The Why variable to declare for this operand is
parameter _4__rbp_: register ref

We denote by JopKint32 and by JopKint64 Why expressions (of Why type int) which denote
the integer that op represents as a signed 32-bit or 64-bit integer. They are defined by:

J$immKint32 = imm
JregKint32 = (integer_of_int32 (sel_int32 !reg))
JmemKint32 = (integer_of_int32 (sel_int32 !mem))
J$immKint64 = imm
JregKint64 = (integer_of_int64 (sel_int64 !reg))
JmemKint64 = (integer_of_int64 (sel_int64 !mem))

For example, with the following instruction:

movl $5, -4(%rbp)

we interpret its operands into Why by

J$5Kint32 = 5
J−4(%rbp)Kint32 = (integer_of_int32 (sel_int32 !_4__rbp_))

The instruction

movq %rax, -8(%rbp)

has two operands %rax and -8(%rbp). These operands are interpreted into Why as

J%raxKint64 = (integer_of_int64 (sel_int64 !_rax))
J−8(%rbp)Kint64 = (integer_of_int64 (sel_int64 !_8__rbp_))

67

7.2.3 Annotations

In order to simplify the translation of annotations in this chapter, the annotations handled are
only:

• preconditions

• post-conditions

• assertions

Thanks to the preparation step, all annotations in the original C program are kept in assembly
code and all variables in annotations are replaced by registers/memory references.

We denote by JAKterm the translation of a term (logic expression) into Why. The translation
of annotations into Why is described as below:

JA ==> BKterm = JAKterm -> JBKterm
JA == BKterm = JAKterm = JBKterm
JA && BKterm = JAKterm and JBKterm
JA || BKterm = JAKterm or JBKterm
J!AKterm = not(JA Kterm)
J#int#v#Kterm = JvKint32
J#long#v#Kterm = JvKint64
Je1 op e2Kterm = Je1Kterm op Je2Kterm where op ∈ {+,-,*}
Je1 / e2Kterm = computer_div(Je1Kterm, Je2Kterm)
Je1 % e2Kterm = computer_mod(Je1Kterm, Je2Kterm)
Je1 op e2Kterm = Je1Kterm op Je2Kterm where op ∈ {>,<,>=,<=}
Je1 != e2Kterm = Je1Kterm <> Je2Kterm
J\forall τ i; PKterm = forall i:JτKtype. JPKterm
J\exists τ i; PKterm = exists i:JτKtype. JPKterm

JintegerKtype = int (unbounded integer, not machine integer)

J\abs_int(e)Kterm = abs_int(Je Kterm)

There are built-in constructors in ACSL such as \abs, \max, \min, etc. which are overloaded.
This means that we can use these constructors for both integer and real type. Here, we decide
to simplify it by using ACSL-style syntax. For example: instead of using \abs(e) which returns
the absolute value of an integer or a real expression, we use \abs_int(e) and \abs_real(e).

For example, the following annotation

(#int#-4(%rbp)# != 0 ==> #int#-4(%rbp)# == l_sign(\exact(#double#-24(%rbp)#)))
&& \abs_int(#int#-4(%rbp)#) <= 1

is interpreted into Why as

(integer_of_int32(sel_int32(_4__rbp_)) <> 0 ->
integer_of_int32(sel_int32(_4__rbp_)) = l_sign((sel_exact(_24__rbp_))))

and
abs_int(integer_of_int32(sel_int32(_4__rbp_))) <= 1

68

7.2.4 Translation of an instruction

The move instructions and addition/subtraction/multiplication/division instructions are trans-
lated thanks to the following abstract functions in Why program:

parameter set_int32_no_check: imm:int -> dest: register ref ->
{ }

unit writes dest
{ integer_of_int32(sel_int32(dest)) = imm }

The previous abstract function will set a 32-bit integer to a register without verifying if this
value overflows or not.

parameter set_int32: imm:int -> dest: register ref ->
{ is_int32(imm) }

unit writes dest
{ integer_of_int32(sel_int32(dest)) = imm }

The post-condition of set_int32 is the same as set_int32_no_check. Its pre-condition verifies
whether imm is a 32-bit integer.

We denote by J ins Ki the Why translation of an instruction ins. Instructions in assembly
code are interpreted to Why as follows:

J movl src, dest Ki = set_int32_no_check JsrcKint32 dest
J addl src, dest Ki = set_int32 (JdestKint32 + JsrcKint32) dest
J subl src, dest Ki = set_int32 (JdestKint32 - JsrcKint32) dest
J imull src, dest Ki = set_int32 (JdestKint32 * JsrcKint32) dest
J call label Ki = label_parameter()

With 64-bit instructions, we declare the following parameters similarly:

parameter set_int64_no_check: imm:int -> dest: register ref ->
{ }

unit writes dest
{ integer_of_int64(sel_int64(dest)) = imm }

parameter set_int64: imm:int -> dest: register ref ->
{ is_int64(imm) }

unit writes dest
{ integer_of_int64(sel_int64(dest)) = imm }

The translation of 64-bit instructions are as follows:
J movq src, dest Ki = set_int64_no_check JsrcKint64 dest
J addq src, dest Ki = set_int64 (JdestKint64 + JsrcKint64) dest
J subq src, dest Ki = set_int64 (JdestKint64 - JsrcKint64) dest
J imulq src, dest Ki = set_int64 (JdestKint64 * JsrcKint64) dest

A special case for the translation is that each assertion is considered as an instruction. If we
have an assertion A then its translation is

J /*@ assert A;*/ Ki = assert JAKterm ;
Notice that leave and ret are instructions in assembly language but they do not have any

translation here. Notice also that when a function is called by another one, there are two
instructions: pushq %rbp at the beginning of the function and popq %rbp at the end of the
function before ret which push and restore the value of %rbp. The memory reference pointed

69

by %rbp is used locally in each function. This means that the addresses of -4(%rbp) in two
different functions are different. We do not translate pushq and popq to Why but we can assure
that the value of -4(%rbp) in two functions are different.

The source src of the instructions movl(q) is either a constant, a register or a memory
reference in 32(64) bits. Therefore, we do not need to verify if it overflows or not. However, for
addition/subtraction/multiplication instructions, we need to assure that this computation does
not overflow.

The case of division cannot be handled the same way as other operations since the divisor
must be check non-null. We thus use

J idivl src, dest Ki = div_int32 JsrcKint32 dest
J idivq src, dest Ki = div_int64 JsrcKint64 dest

with the special Why parameters:

parameter div_int32: imm: int -> dest: register ref ->
{ imm <> 0

and
is_int32(computer_div(integer_of_int32(sel_int32(dest),imm)))

}
unit writes dest

{
integer_of_int32(sel_int32(dest)) =

computer_div(integer_of_int32(sel_int32(dest@)),imm)
}

parameter div_int64: imm: int -> dest: register ref ->
{ imm <> 0

and
is_int64(computer_div(integer_of_int64(sel_int64(dest),imm)))

}
unit writes dest

{
integer_of_int64(sel_int64(dest)) =

computer_div(integer_of_int64(sel_int64(dest@)),imm)
}

The function computer_div is defined in the Why standard library and denotes the integer
division which rounds the result towards 0, which corresponds to the usual convention for division
in C and other programming languages.

7.2.5 Sequences and functions

Until now, we have described the translation of annotations and the one of each instruction.
How do we translate a sequence of instructions or a function containing annotations into Why?

Assume that we have a function with preconditions, post-conditions and assertions. The
translation of this function in assembly code into Why is illustrated in Figure 7.1. As we see in
this figure, the post-condition becomes an assertion in Why.

For each function having pre- and post-condition, we define an interface of function in Why
(at the bottom right hand side of Figure 7.1) where w is is a set of variables modified in the
function.

Notice that the real semantic of

assume P

70

f: −→ let f() =
.cfi_startproc

/*@ requires P; */ −→ assumes {JPKterm};
(body of the function f) −→ J (body of the function f) Ki
/*@ ensures Q; */ −→ assert {JQ Kterm};
leave void
ret

.cfi_endproc parameter f: unit ->
{ JP Kterm } unit writes w
{ JQ Kterm }

Figure 7.1: Translation of a function in assembly to Why

in Why is written as

[{} unit reads w { P }];

where w is a set of variables in P

Translation of annotations in presence of inline function

When the program is compiled with -O2, functions may be inlined. This means that the function
called is integrated into the caller. Thanks to the inline assembly statement asm volatile, we
can keep the annotations at the place they must be when integrating.

The question now is how to translate the annotations of inline function? Normally, when a
function is called, in Why, we will use its interface and the precondition is demanded to prove.
In case of inline function, the translation is specified below

• Jprecondition_inlineKterm = assert Jprecondition_inline Kterm

• Jpost-condition_inlineKterm = assumes Jpost-condition_inline Kterm

The translation of assertions are not changed in this case.

7.3 Soundness of translation

The goal of this section is to demonstrate that if the verification conditions hold then the
assembly program respects its annotations.

To express that a program respects its annotations, we use a blocking semantics [40]: the
execution of a program will block whenever an invalid annotation is met. Thanks to this defini-
tion, to prove that a program respects its annotations, we need to prove that there is a backward
simulation [50] of assembly code by the Why code.

Figure 7.2 shows us that the Why program is translated from assembly program. Then, by
using Why verification condition generator, verifications condition are generated. Now what we
want to prove in this section is that if the verification conditions hold then the Why program
does not block (Theorem 7.4 on page 73). If the Why program does not block then the assembly
program does not block (Theorem 7.8 on page 75).

71

ASM program Why program Verification conditions
translate VC generator

holddoes not blockdoes not block
Theorem 7.4Theorem 7.8

(by definition, Why
program respects its
annotations)

(by definition, ASM
program respects its
annotations)

Figure 7.2: Soundness of the translation

7.3.1 Reminder of the soundness of Why

Definition 7.2 (Why state) A Why state S is a map which gives the value of reference, that
is

• if r is a Why reference then S(r) denotes the value of r

• The notation S[r ← v] denotes the update of a map.

We denote (abuse of notation) S(t) the evaluation of a term t in S: it is defined by a natural
induction:

S(t1 + t2) = S(t1) + S(t2)
S(t1 − t2) = S(t1) − S(t2)
S(t1 ∗ t2) = S(t1) ∗ S(t2)
S(t1/t2) = S(t1) / S(t2)

S(!r) = S(r)

The execution of a program in Why is defined by an operational semantics. We use a big-
step-style semantics, that is we define the relation S, P ⇒m S′ which means “ in state S, the
program P executes and terminates after m steps in the state S′ ”.

It is defined by the following rules:

S, r := t⇒1 S[r ← t]

S, p1 ⇒m S′′ S′′, p2 ⇒n S′

S, p1; p2 ⇒(m+n+1) S′

A holds in S

S, assert A⇒1 S

Notice that if S(A) does not hold, then the program blocks.
There are two forms of Why functions that we use in this part:

• Case 1: Function (with let)

– with body,

– without parameters,

72

– the result is unit.

J Pre KS holds S, body ⇒n S′ J Post KS′ holds

S, f ⇒n+1 S′

• Case 2: Function (with parameter)

– without body,

– with parameters: the pure ones x1, . . . , xm and the reference ones r1, . . . , rl,

– the result is unit

– reads u1, . . . , um
– writes w1, . . . , wk, ri, . . . , rl (where w1, . . . , wk are global references).

J Pre KS⋃
{ri=S(si)}

⋃
{xj=S(ei)} holds

∀i, j.i 6= j → si 6= sj ∀i, j. si 6= uj ∀i, j. si 6= wj S ∼
w1,...,wl,s1,...,sk

S′

J Post KS′ ⋃{ri=S′(si)}
⋃
{xj=S(ei)}

⋃
{ri@=S(si)} holds

S, f(e1, . . . , en, s1, . . . , sk)⇒n+1 S′

where S ∼
w1,...,wl

S′ := for all references r such that r /∈ {w1, . . . , wl} then S(r) = S’(r).

The reason why we need to assure that ∀i, j.i 6= j → si 6= sj and ∀i, j.si 6= wj is explained
in subsection 7.3.2. Notice again that the execution blocks if a precondition or a post-
condition is invalid.

Definition 7.3 A program respects its annotations if it executes without blocking.

In Why, there is a verification condition generator in which a set of Why functions produces
a set of formulas (the verification condition). The soundness of this verification condition
generator is expressed by the following Theorem:

Theorem 7.4 For all Why program P , if the generated proof obligations hold then P
executes without blocking.

In P , the assertions, preconditions and post-conditions are verified when P is executed.
Indeed, this theorem was proved by Filliâtre [30, 31]. Recently, Herms certified it in
Coq [40].

7.3.2 About the condition in function call

parameter x: int ref

parameter inc: y:int ref ->
{...}

unit writes x, y
{ y = 1 and x = 2 }

73

We define a global parameter x. In the parameter inc we modify both y and global
reference x. In this example, s1 = y and w1 = x. If we call this function as follows:

let main() =
{...}
inc(x)

{ x = 1 and x = 2}

The Why VCGen rejects it with an error: “Application to x creates an alias”. If it was
accepted, we would be able to prove the post-condition above which is inconsistent. The
reason why we also need to have si 6= sj is illustrated by a similar example:

parameter inc: x:int ref -> y:int ref ->
{...}

unit writes x, y
{ y = 1 and x = 2 }

parameter z: int ref

let main() =
{...}
inc(z,z);

{ z = 1 and z = 2}

7.3.3 Definition of the execution of an assembly program

Definition 7.5 (Memory state in assembly program) A memory state S is a map which
returns

• a value (a bit vector bv) from the name of a register, denoted by S(r)

• a value stored in memory at any address x, denoted by S(x).

We denote by bv_to_int32(bv) the value in two’s complement integer of a bv, by
int32_to_bv(const) the bitvector converted from a two’s complement integer in 32 bits const.
For example:

bv_to_int32(0x00000001) = 1
bv_to_int32(0xffffffff) = −1

The execution of an instruction i is denoted as: S, i ⇒ S′. It is defined as follows:

S, movl src, dest⇒ S[dest← S(src)]

bv_to_int32(S(dest)) + bv_to_int32(S(src)) does not overflow
S, addl src, dest⇒ S[dest← int32_to_bv(bv_to_int32(S(dest)) + bv_to_int32(S(src)))]

bv_to_int32(S(dest))− bv_to_int32(S(src)) does not overflow
S, subl src, dest⇒ S[dest← int32_to_bv(bv_to_int32(S(dest))− bv_to_int32(S(src)))]

74

bv_to_int32(S(dest)) ∗ bv_to_int32(S(src)) does not overflow
S, imull src, dest⇒ S[dest← int32_to_bv(bv_to_int32(S(dest)) ∗ bv_to_int32(S(src)))]

bv_to_int32(S(dest)) <> 0 bv_to_int32(S(dest))/bv_to_int32(S(src)) does not overflow
S, idivl src, dest⇒ S[dest← int32_to_bv(bv_to_int32(S(dest))/bv_to_int32(S(src)))]

S, leave⇒ S

S, ret⇒ S

S, i1 → S1 S1, i2; . . . ; im → S′

S, i1; . . . ; im ⇒ S′

J Pre KS holds S, instr(P)⇒ S′ J Post KS′ holds

S, call P ⇒ S′

where instr(P) is a sequence of instructions from the address P until the instruction ret. For
64-bit arithmetic instructions, their execution is defined similarly.

7.3.4 Relation between the Why state and the assembly state (case of
“simple” programs)

Definition 7.6 Let bv be a bitvector and reg be a register. bv is congruent to reg (denotes by
bv ∼= reg) if

• bv_to_int32(bv) = JregKint32

• bv_to_int64(bv) = JregKint64

Definition 7.7 Let S be a Why state and S be an assembly state. S simulates S (denotes by
S ∼ S) iff

1. For all register r, S(r) ∼= S(r) where bv ∼= reg with bv is bitvector and reg is register.

2. For all memory reference m = off(reg,...), either m is defined and then S(m) ∼= S(m)
or m is not defined.

It is important to notice that in the “simple” case must follow Assumption 7.1, that is two
distinguished memory references (syntactically) imply two different addresses. This means that
if address(m1) = address(m2) then m1 = m2.

Lemma 1 For all assembly state S, Why state S, if S ∼ S and the translation of A into Why
JAKannot is true in S then A is true in S.

Proof. This is a straightforward induction on the structure of A. �

Theorem 7.8 For all assembly state S, Why state S such that S ∼ S. For all sequence of
assembly instructions i1, . . ., in:

If S, J i1; . . . ; in Ki ⇒m S′

then ∃S′ such that S, i1; . . . ; in ⇒ S′ where S′ ∼ S′.

75

This says that if Ji1, . . . , inK executes (without blocking) and we obtain the Why state S′ then
i1, . . . , in executes (without blocking) and we have the final memory state S′ of the execution of
i1, . . . , in so that S′ ∼ S′.
Proof. By recurrence on m:

1. With m = 0: We have n = 0.

2. With m ≥ 1: We have n ≥ 1. From S, J i1, . . . , in Ki ⇒m S′

we have S, J i1 Ki ⇒p S1 and S1, J i2, . . . , in Ki ⇒q S′

with p+ q + 1 = m.

We prove below by case analysis on i1 that there is a S1 such that S, i1 ⇒ S1 where
S1 ∼ S1.
By induction, because q < m, there exists S′ such that

• S1, i2, . . . , in ⇒ S′ and

• S′ ∼ S′

then S, i1, . . . , in ⇒ S′ and S′ ∼ S′ (proved).
We now proceed our case analysis. We illustrate the proof by the three following cases:
movl, addl and call instruction. With others instructions, we do similarly.

(a) movl instruction: movl src, dest
In assembly program, what we have is:

bv_to_int32(S′(dest)) = bv_to_int32(S(src)).

The translation into Why is:

J movl src, dest Ki = set_int32_no_check JsrcKint32 dest

From the post-condition of set_int32_no_check we have:
integer_of_int32(sel_int32(S′(dest))) = integer_of_int32(sel_int32(S′(src)))
As bv_to_int32(bv) = integer_of_int32(sel_int32(reg)) and S ∼ S, we have:

bv_to_int32(S′(dest)) = bv_to_int32(S(src))
= bv_to_int32(S′(dest)) (proved).

(b) addl instruction: add src, dest
In assembly program:
bv_to_int32(S′(dest)) = (bv_to_int32(S(src)) + bv_to_int32(S(dest))) mod 232

The translation into Why:

J addl src, dest Ki = set_int32 (JdestKint32 + JsrcKint32) dest

The post-condition of sel_int32 says that
integer_of_int32(sel_int32(S′(dest))) =
integer_of_int32(sel_int32(S(dest)))+integer_of_int32(sel_int32(S(src)))

As S ∼ S, we have:
integer_of_int32(sel_int32(S′(dest)))

= bv_to_int32(S(dest)) + bv_to_int32(S(src))
= (bv_to_int32(S(dest)) + bv_to_int32(S(src))) mod 232 (because there is no

overflow)
= bv_to_int32(S′(dest)) (proved).

76

/∗@ r equ i r e s n >= 0 && n < 100 ; ∗/
i n t f (i n t n){

i n t tmp = 100 − n ;
//@ as se r t tmp > 0 ;
//@ as se r t tmp <= 100 ;

return tmp ;
}

Figure 7.3: A simple program

It is important to notice that in this translation, the precondition is necessary as the
result of addition may overflow and the destination is in 32 bits. We need to assure
that the addition does not overflow. If it overflows then the Why program blocks.

(c) call instruction: call proc

We have J i1 Ki = f(): invokes a function in Why.
Because S, J f() Ki ⇒p S1, the rule of the function call implies

• J Pre KS holds, where Pre = J Pre Kannot
• S, body ⇒p−1 S1, where body =J instr(P) Ki (1)
• J Post KS1

holds

Lemma 1 says that J Pre KS holds.
By induction, because p− 1 < m and there exists S1 such that

• S, instr(f)⇒ S1 and
• S1 ∼ S1 (2)

From (1), (2) and with Lemma 1, we have J Post KS1 holds.
Consequently, the rule of call instruction in assembly applies: S, call f ⇒ S1.

�

7.4 Examples

7.4.1 Simple example

This example is presented in Section 6.4 and its assembly code is in Figure 6.4. The C source
code is also shown in Figure 7.3.

The Why program corresponding to the assembly code is presented in Figure 7.4. The
assembly instruction is put in the Why comments under the form (*....*) and the translation
of this instruction follows each instruction.

The function f has a precondition and no post-condition. Thus, in the parameter
f_parameter the post-condition is true.

The translation of this example is very simple. There are only two instructions we need to
translate: movl and subl and two assertions. What we prove are these two assertions. They are
proved by both Gappa, Alt-Ergo and CVC3 (See Figure 7.5).

77

parameter f_parameter : _: un i t−>
{ i n t ege r_o f_ in t32 (s e l_ i n t 32 (_rdi)) >= 0

and
i n t ege r_o f_ in t32 (s e l_ i n t 3 2 (_rdi)) < 100 }

un i t reads _rdi
{ t r u e }

l e t f_0 () =
_LFB0 :
(∗#movl %ed i , −20(%rbp) ∗)
move_reg32 ! _rdi _20__rbp_ ;

[{ }
un i t reads _20__rbp_

{ in t ege r_o f_ in t32 (s e l_ i n t 32 (_20__rbp_)) >= 0
and
i n t ege r_o f_ in t32 (s e l_ i n t 3 2 (_20__rbp_)) < 100}] ;

(∗#movl −20(%rbp) , %eax ∗)
move_reg32 !_20__rbp_ _rax ;

(∗#movl $100 , %edx ∗)
move_cte32 (100) (100 . 0) _rdx ;

(∗#movl %edx , %ecx ∗)
move_reg32 ! _rdx _rcx ;

(∗#sub l %eax , %ecx ∗)
set_reg32 ((i n t ege r_o f_ in t32 (s e l_ i n t 3 2 ! _rcx)) −

(i n t ege r_o f_ in t32 (s e l_ i n t 3 2 ! _rax))) _rcx ;
(∗#movl %ecx , %eax ∗)
move_reg32 ! _rcx _rax ;

(∗#movl %eax , −4(%rbp) ∗)
move_reg32 ! _rax _4__rbp_ ;

as se r t { i n t ege r_o f_ in t32 (s e l_ i n t 32 (_4__rbp_)) > 0} ;
as se r t { i n t ege r_o f_ in t32 (s e l_ i n t 32 (_4__rbp_)) <= 100} ;
(∗#movl −4(%rbp) , %eax ∗)
move_reg32 !_4__rbp_ _rax ;

(∗#l e a v e ∗)
(∗#r e t ∗)
void

Figure 7.4: Why program of Figure 6.4

7.4.2 Square example

This example is presented in Section 6.4 and shown in Figure 7.6. Its goal is to show us how
to translate a function call to Why. For each function in C program, we define a corresponding
parameter in Why. Corresponding to the function square in assembly code, we define parameter
square_parameter with no inputs and no outputs. This parameter contains the precondition
and post-condition of the function square and a set of variables assigned. Once the function
square is called in the function main, the parameter square_parameter is invoked (See Fig-
ure 7.7) and the precondition of the parameter square_parameter is proved. All the obligation
proofs are proved (See Figure 7.8).

78

Figure 7.5: Result of Figure 7.4 program

/∗@ r equ i r e s 0 <= x <= 1000 ;
@ ensures \ r e s u l t == x ∗ x ; ∗/

i n t squa r e (i n t x){
i n t tmp = x ∗ x ;
return tmp ;

}

i n t main (){
i n t a = 5 ;
i n t b = squa r e (a) ;
//@ as se r t b== 25 ;

return 0 ;
}

Figure 7.6: Square program

79

parameter square_parameter : _: un i t−>
{ 0 <= in t ege r_o f_ in t32 (s e l_ i n t 3 2 (_rdi)) <= 1000 }
un i t reads _rdi

{ i n t ege r_o f_ in t32 (s e l_ i n t 32 (_rax)) =
in t ege r_o f_ in t32 (s e l_ i n t 3 2 (_rdi))∗ i n t ege r_o f_ in t32 (s e l_ i n t 3 2 (_rdi)) }

l e t square_0 () =
_LFB0 :
(∗#movl %ed i , −20(%rbp) ∗)
move_reg32 ! _rdi _20__rbp_ ;

[{ }
un i t reads _20__rbp_

{ 0 <= in t ege r_o f_ in t32 (s e l_ i n t 3 2 (_20__rbp_)) <= 1000 }] ;
(∗#movl −20(%rbp) , %eax ∗)
move_reg32 !_20__rbp_ _rax ;

(∗#imu l l −20(%rbp) , %eax ∗)
set_reg32 ((i n t ege r_o f_ in t32 (s e l_ i n t 3 2 ! _rax))∗

(i n t ege r_o f_ in t32 (s e l_ i n t 3 2 !_20__rbp_))) _rax ;
(∗#movl %eax , −8(%rbp) ∗)
move_reg32 ! _rax _8__rbp_ ;

(∗#movl −8(%rbp) , %eax ∗)
move_reg32 !_8__rbp_ _rax ;

(∗#movl %eax , −4(%rbp) ∗)
move_reg32 ! _rax _4__rbp_ ;

_L2 :
as se r t { i n t ege r_o f_ in t32 (s e l_ i n t 32 (_4__rbp_)) =

in t ege r_o f_ in t32 (s e l_ i n t 3 2 (_20__rbp_)) ∗
i n t ege r_o f_ in t32 (s e l_ i n t 3 2 (_20__rbp_)) } ;

(∗#movl −4(%rbp) , %eax ∗)
move_reg32 !_4__rbp_ _rax ;

(∗#r e t ∗)
void

l e t main_0 () =
_LFB1 :
(∗#movl $5 , −12(%rbp) ∗)
move_cte32 (5) (5 . 0) _12__rbp_ ;

(∗#movl −12(%rbp) , %eax ∗)
move_reg32 !_12__rbp_ _rax ;

(∗#movl %eax , %ed i ∗)
move_reg32 ! _rax _rdi ;

(∗#c a l l s qua r e ∗)
square_parameter (_) ;

(∗#movl %eax , −8(%rbp) ∗)
move_reg32 ! _rax _8__rbp_ ;

as se r t { i n t ege r_o f_ in t32 (s e l_ i n t 32 (_8__rbp_)) = 25 } ;
(∗#movl $0 , −4(%rbp) ∗)
move_cte32 (0) (0 . 0) _4__rbp_ ;

_L4 :
(∗#movl −4(%rbp) , %eax ∗)
move_reg32 !_4__rbp_ _rax ;
void

Figure 7.7: Why program of Figure 6.7

80

Figure 7.8: Result of Figure 7.7 program

81

82

Chapter 8

Floating-point programs

Chapter 7 talks about the translation of the program containing only 32-bit and 64-bit integer
type. In this chapter, we will extend it with the floating-point computations.

8.1 Assembly with floating-point arithmetic

Before entering into the translation, we give some basic knowledge about the different modes:
SSE/SSE2, x87 and FMA and their instructions [2, 43, 44, 45].

8.1.1 SSE/SSE2

The Intel MMX (MultiMedia eXtensions) technology introduced single-instruction multiple-data
(SIMD) capacity into the IA-32 architecture, with the 64-bit mmx registers, 64-bit packed integer
data types, and instructions that allowed SIMD operations to be performed on packed integers.
SSE extensions expand the SIMD execution model by adding facilities for handling packed and
scalar single-precision floating-point value contained in 128-bit registers.

The extension SSE2 is a major enhancement to SSE. It adds new math instructions for
double-precision (64-bit) floating-point and also extends mmx instructions to operate on 128-bit
xmm registers.

Data Transfer Instruction

movsd xmm1 xmm2/m64 Move scalar double-precision floating-point value from xmm1 register
to xmm2/m64

movsd xmm2/m64 xmm1 Move scalar double-precision floating-point value from xmm2/m64 to
xmm1 register

movss xmm1 xmm2/m32 Move scalar single-precision floating-point value from xmm1 register
to xmm2/m32

movss xmm2/m32 xmm1 Move scalar single-precision floating-point value from xmm2/m32 to
xmm1 register

These instructions move a scalar double-precision (single-precision) floating-point value from
the source operand (first operand) to the destination operand (second operand). The source and
destination operands can be xmm registers or 64-bit (32-bit) memory locations.

83

Packed Arithmetic Instructions

addsd xmm2/m64, xmm1 Add the low double-precision floating-point value from xmm2/m64
to xmm1

addss xmm2/m32, xmm1 Add the low single-precision floating-point value from xmm2/m32 to
xmm1

subsd xmm2/m64, xmm1 Subtracts the low double-precision floating-point values in
xmm2/mem64 from xmm1

subss xmm2/m32, xmm1 Subtracts the low single-precision floating-point values in
xmm2/mem32 from xmm1

mulsd xmm2/m64, xmm1 Multiply the low double-precision floating-point value in
xmm2/mem64 by low double-precision floating-point value in xmm1

mulss xmm2/m32, xmm1 Multiply the low single-precision floating-point value in
xmm2/mem32 by low single-precision floating-point value in
xmm1

divsd xmm2/m64, xmm1 Divide low double-precision floating-point value in xmm1 by low
double-precision floating-point value in xmm2/mem64

divss xmm2/m32, xmm1 Divide low single-precision floating-point value in xmm1 by low
single-precision floating-point value in xmm2/mem32

Comparison Instructions

comisd xmm2/m64, xmm1
comiss xmm2/m32, xmm1
ucomisd xmm2/m64, xmm1
ucomiss xmm2/m32, xmm1

The comisd and comiss instructions compare the double-precision (single-precision) floating-
point values in the low quadwords (doublewords) of first operand and second operand, and sets
the ZF, PF, and CF flags in the EFLAGS register according to the result (unordered, greater
than, less than, or equal). The unordered result is returned if either source operand is a NaN.
The OF, SF and AF flags in the EFLAGS register are set to 0.

The comisd instruction differs from the ucomisd instruction in that it signals a SIMD
floating-point invalid operation exception when a source operand is either a qNaN or sNaN.
The ucomisd instruction signals an invalid numeric exception only if a source operand is an
sNaN.

8.1.2 x87 Floating-point Unit

The x87 floating-point unit (FPU) instructions are executed by the processor’s x87 FPU. These
instructions operate on floating-point, integer and binary-coded decimal(BCD) operands.

x87 FPU registers

This FPU provides several registers. These registers are divided into three groups: data registers,
control and status registers, and pointer registers.

The x87 FPU status register has 16 bits. It indicates the current state of the x87 FPU.
The flags in the x87 FPU status register include the FPU busy flag, top-of-stack (TOS) pointer,
condition code flags, error summary status flag, stack fault flag, and exception flags.

The x87 FPU has 8 floating-point registers to hold the floating-point operands. These
registers supply the necessary operands to the floating-point instructions. Unlike the processor’s

84

general-purpose registers such as the eax and ebx registers, these registers are organized as a
register stack.

R7
R6
R5
R4
R3
R2
R1
R0

Since these registers are organized as a register stack, these names are not statically assigned.
That is, st(0) does not refer to a specific register. It refers to whichever register is acting as
the top-of-stack (TOS) register. The next register is referred to as st(1), and so on; the last
register as st(7). There is a 3-bit top-of-stack pointer in the status register to identify the TOS
register. For example, if TOS points to R5 then st(0) indicates R5, st(1) indicates R6, etc.
Load operations decrement TOS by one and load a value into the new top-of-stack register, and
store operations store the value from the current TOS register in memory and then increment
TOS by one.

Each data register can hold an extended-precision floating-point number. It uses the 80 bits
format that we mentioned in Chapter 2.

x87 FPU instructions

Most floating-point instructions require one or two operands, located on the x87 FPU data-
register stack or in memory. When an operand is located in a data register, is referenced relative
to the st(0) register, rather than by a physical register name. Often the st(0) is an implied
operand.

These instructions are divided into the following groups: data transfer, load constants, and
FPU control instructions.

Data Transfer Instructions The data transfer instructions perform the following operations:

• Load a floating-point, integer, or packed BCD operand from memory into the st(0) reg-
ister.

• Store the value in an st(0) register to memory in floating-point, integer, or packed BCD
format.

• Move values between registers in the x87 FPU register stack.

Load Constant Instructions The following instructions push commonly used constants onto
the top st(0) of the x87 FPU register stack:

fldz st(0) ← +0.0
fld1 st(0) ← +1.0
fldpi st(0) ← ◦80(π)
fldl2t st(0) ← ◦80(log210)
fldl2e st(0) ← ◦80(log2e)
fldlg2 st(0) ← ◦80(log102)
fldln2 st(0) ← ◦80(loge2)

85

Each load instruction in the table above follows TOS ← TOS - 1.

Basic Arithmetic Instructions The addition, subtraction, multiplication and division in-
structions operate on the following types of operands:

• Two x87 FPU data registers

• An x87 FPU data register and a floating-point or integer value in memory

These are the floating-point instructions that perform basic arithmetic operations on floating-
point numbers:

fadd src st(0) ← st(0) + src
fadd src, dest dest ← dest + src
faddp src, dest dest ← dest + src

TOS ← TOS + 1
fsub src st(0) ← st(0) - src
fsub src, dest dest ← dest - src
fsubp src, dest dest ← dest - src

TOS ← TOS + 1
fsubr src st(0) ← src - st(0)
fsubr src, dest dest ← src - dest
fsubrp src, dest dest ← src - dest

TOS ← TOS + 1
fmul src st(0) ← st(0) * src
fmul src, dest dest ← dest * src
fmulp src, dest dest ← dest * src

TOS ← TOS + 1
fdiv src st(0) ← st(0) / src
fdiv src, dest dest ← dest / src
fdivp src, dest dest ← dest / src

TOS ← TOS + 1
fdivr src st(0) ← src / st(0)
fdivr src, dest dest ← src / dest
fdivrp src, dest dest ← src / dest

TOS ← TOS + 1

The src operand of instruction with one operand can be either 32- or 64-bit floating-point
number in memory. With instructions with two operands src and dest, both src and dest
must be FPU registers.

8.1.3 FMA

gcc uses AVX 1 instructions when generating assembly code with option -mfma4. Before talking
about FMA instructions we will present some AVX instructions [3].

1Advanced Vector Extensions (AVX) is an extension to the x86 instruction set architecture for microprocessors
from Intel and AMD proposed by Intel in March 2008.

86

AVX arithmetic instructions

vaddss xmm3/mem32, xmm2, xmm1 Add Scalar Single-Precision floating-point
vaddsd xmm3/mem64, xmm2, xmm1 Add Scalar Double-Precision floating-point

vsubss xmm3/mem32, xmm2, xmm1 Subtract Scalar Single-Precision floating-point
vsubsd xmm3/mem64, xmm2, xmm1 Subtract Scalar Double-Precision floating-point

vmulss xmm3/mem32, xmm2, xmm1 Multiply Scalar Single-Precision floating-point
vmulsd xmm3/mem64, xmm2, xmm1 Multiply Scalar Double-Precision floating-point

vdivss xmm3/mem32, xmm2, xmm1 Divide Scalar Single-Precision floating-point
vdivsd xmm3/mem64, xmm2, xmm1 Divide Scalar Double-Precision floating-point

The first source operand is either an xmm register or a 64-bit memory location and the second
source operand is a xmm register. The destination is a third xmm register. Bits [127:64] of the
second source operand are copied to bits [127:64] of the destination. Bits [255:128] of the ymm
register that correspond to the destination are cleared.

FMA instructions

Now both AMD and Intel have specifications for FMA. In this document, FMA instructions
generated thanks to gcc -mfma4 are specified by AMD [2].

vfmaddss src3, src2, src1, dest dest = ◦32(src1 * src2 + src3)
vfmaddsd src3, src2, src1, dest dest = ◦64(src1 * src2 + src3)
vfmsubss src3, src2, src1, dest dest = ◦32(src1 * src2 - src3)
vfmsubsd src3, src2, src1, dest dest = ◦64(src1 * src2 - src3)
vfnmaddss src3, src2, src1, dest dest = ◦32(-(src1 * src2) + src3)
vfnmaddsd src3, src2, src1, dest dest = ◦64(-(src1 * src2) + src3)
vfnmsubss src3, src2, src1, dest dest = ◦32(-(src1 * src2) - src3)
vfnmsubsd src3, src2, src1, dest dest = ◦64(-(src1 * src2) - src3)

The implementation of vfmaddsd is presented in Figure 8.1. The destination is a xmm register.
When the result is written to the destination xmm register, the upper quadword of the destination
register (bits 64 – 127) and the upper 128-bits of the corresponding ymm register are cleared to
zeros. The intermediate product is not rounded; the infinitely precise product is used in the
addition. The result of the addition is rounded.

The implementation of vfnmaddss is in Figure 8.2. The destination is always a xmm register.
When the result is written to the destination xmm register, the upper three doublewords of the
destination register (bits 32 – 127) and the upper 128-bits of the corresponding ymm register are
cleared to zeros. The intermediate products are not rounded; the infinitely precise products are
used in the addition. The results of the addition are rounded.

8.2 Definition of programs supported

This chapter is an extension of the previous one. The programs concerned are the ones in which
the types int, long int, float double and long double are supported. An interesting point
of this chapter is that we will show the different results obtained by compiling a floating-point
program with different options of compiler and different architectures.

The hypothesis of the assembly programs handled in this chapter are

87

src1 = xmm2
06364127

src2 = xmm3/mem64
06364127

src3 = xmm4/mem64
06364127

dest = xmm10s

06364127

0s

128255

mul

add

rnd

Figure 8.1: Illustration of vfmaddsd instruction

src1 = xmm
0313263649596127

src2 = xmm/mem32
0313263649596127

src3 = xmm/mem32
0313263649596127

dest = xmm10s 0s 0s

0313263649596127

0s

128255

mul

neg

add

rnd

Figure 8.2: Illustration of VFNMADDSS instruction

• We do not consider special values. We only verify the absence of overflow and use only
round-to-nearest rounding mode.

• For SSE/SSE2 mode, there is no difference between ucomiss/comiss and ucomisd/comisd.

• For x87 mode:

– We translate only floating-point operations, the integer instructions (fimul, fiadd,
etc.) will not be considered here.

– We consider the case where the stack is empty at the entrance and the exit of a
function (the top-of-stack pointer will point to the top register of the stack).

88

8.3 Translation to Why

8.3.1 Abstract functions

The abstract types single, double had already defined in the strict model and full mode and
we also used them in Part 1. In the same way, we define abstract type binary80 for x87 mode.

Similar to the functions sel_int32 and sel_int64 of Chapter 7, we declare the function for
getting the content of a register:

logic sel_single : register -> single
logic sel_double : register -> double
logic sel_80 : register -> binary80
logic sel_exact : register -> real

The logic functions sel_single, sel_double, sel_80 and sel_exact return a single, double,
binary80 and an exact value, respectively, from a register.

We denote by opr an operand being register or memory reference; by JoprKint32,JoprKsingle,
JoprKdouble and JoprKbinary80 the interpretation of an operand that returns a 32-bit integer value,
a real in 32 bits, 64 bits and 80 bits respectively from a register. The translation of operands is
specified as follows:

JoprKsingle = (single_value (sel_single !opr))
JoprKdouble = (double_value (sel_double !opr))
JoprKbinary80 = (binary80_value (sel_80 !opr))
JoprKexact = (sel_exact !opr)

JsymbolKsingle = (single_value (sel_single symbol))
JsymbolKdouble = (double_value (sel_double symbol))
JsymbolKbinary80 = (binary80_value (sel_80 symbol))
JsymbolKexact = (sel_exact symbol)

8.3.2 When constants are referenced by %rip

As specified in Intel document [43], bytes, words and doublewords in the packed data types are
stored in consecutive addresses. The least significant byte, word, or doubleword is stored at the
lowest address and the most significant byte, word, or doubleword is stored at the high address.
The ordering of bytes, words, or doublewords in memory is always little endian. That is, the
bytes with the low addresses are less significant than the bytes with high addresses.

In assembly language, a floating-point constant is often declared in data section and it is
referenced by the special register %rip. For example:

.LC1:
.long 0
.long 1025507328

When a value is stored in memory, we do not know its type. In order to point out the values
in Why, we define an axiom in which we presuppose all the types that we can access. Moreover,
depending on the number of part stored in the memory, we will determine the size of the number
pointed by the symbol.

With the example above, there are two 32-bit number following the symbol .LC1. Assume
that the little endian architecture is used, we will consider that from .LC1(%rip), we can get
both 32-bit and 64-bit numbers. Thus, in our axiom, we consider both forms: 32-bit integer and
single; 64-bit integer and double as follow:

89

logic _LC1__rip_: register
axiom _LC1__rip__axiom:

integer_of_int64(sel_int64(_LC1__rip_)) = 4404520435568345088
and
integer_of_int32(sel_int32(_LC1__rip_)) = 0
and
double_value(sel_double(_LC1__rip_))= 0x1p-45
and
single_value(sel_single(_LC1__rip_))= 0.0

Note that the integer value 4404520435568345088 is obtained by 1025507328 � 32 (lower part
is 0) and this value is converted to double, that is 2−45.

8.3.3 Modifying the translation of general-purpose instructions

As we have mentioned before, data transfer instructions copy data from one operand to another
without knowing its type. For example, movl is a data transfer instruction but we do not know
whether it transfers a 32-bit integer or a 32-bit floating-point number (float type in C).

In Chapter 7, with the simple program containing only integer value, the instructions movl
and movq are considered to copy 32-bit and 64-bit integer value from source to destination. As
in programs containing floating-point computations, the data of the mov instructions here may
be a floating-point value and the translation of mov in Chapter 7 is not enough anymore.

Our idea is that we define a parameter move_cte32 which copies at the same time a 32-bit
integer value, a single value and its exact value to dest and a parameter move_cte64 which
copies a 64-bit integer value, a double value and its exact value to dest. We need to assure
here that the integer value and the floating-point value are interpreted from the same bitvector.
We cannot express this in Why but we did it directly in our translator when generating Why
program.

parameter move_cte32:a:int-> b:real->bexact:real->c:register ref->
{ }

unit writes c
{ integer_of_int32(sel_int32(c)) = a

and
single_value(sel_single(c)) = b
and
sel_exact(c) = bexact }

parameter move_cte64:a:int->b:real->bexact:real->c:register ref->
{ }

unit writes c
{ integer_of_int64(sel_int64(c)) = a

and
double_value(sel_doule(c)) = b
and
sel_exact(c) = bexact }

The translation of movl and movq is shown as below:

J movl src, dest Ki = move_cte32 JsrcKint32 JsrcKsingle JsrcKexact dest
J movq src, dest Ki = move_cte64 JsrcKint64 JsrcKdouble JsrcKexact dest

90

8.3.4 Translation of SSE/SSE2 instructions

We need to set a floating-point value to a register. To do that, we define the following
parameter functions:

parameter set_single_no_check: a:real -> aexact:real -> b:register ref ->
{ }

unit writes b
{ single_value(sel_single(b)) = a

and
sel_exact(b) = aexact }

parameter set_single: a:real -> aexact:real -> b:register ref ->
{ no_overflow_single(nearest_even,a) }

unit writes b
{ single_value(sel_single(b)) = round_single(nearest_even,a)

and
sel_exact(b) = aexact }

Each parameter has three arguments: the real value, the exact value and the register to store.
Setting a single has two cases:

• Case 1: We do not need to check if the input value is overflow or not. We use it when
transferring data from src to dest in the movss instructions. Pay attention that in this
case, the value a is not rounded because we already know that it is a 32-bit floating-point
number.

• Case 2: We have to check the input value. This parameter is used when we set a value of
a computation (addition, subtraction, etc.) to a register.

We do similarly with double floating-point value.

parameter set_double_no_check: a:real -> aexact:real -> b:register ref ->
{ }

unit writes b
{ double_value(sel_double(b)) = a

and
sel_exact(b) = aexact }

parameter set_double: a:real -> aexact:real -> b:register ref ->
{ no_overflow_double(nearest_even,a) }
unit writes b
{ double_value(sel_double(b)) = round_double(nearest_even,a)

and
sel_exact(b) = aexact }

Division is a special case. We ensure that the divisor is not equal to 0.

parameter div_single: a:register -> b:register -> c:register ref ->
{ single_value(sel_single(a))<>0

and
no_overflow_single(nearest_even,

single_value(sel_single(b))/single_value(sel_single(a))) }

91

unit writes c
{ single_value(sel_single(c)) = round_single(nearest_even,

single_value(sel_single(b))/single_value(sel_single(a)))
and
sel_exact(c) = sel_exact(b)/sel_exact(a) }

parameter div_double: a:register -> b:register -> c:register ref ->
{ double_value(sel_double(a))<>0

and
no_overflow_double(nearest_even,

double_value(sel_double(b))/double_value(sel_double(a))) }
unit writes c

{ double_value(sel_double(c)) = round_double(nearest_even,
double_value(sel_double(b))/double_value(sel_double(a)))

and
sel_exact(c) = sel_exact(b)/sel_exact(a) }

The translation of data instructions and arithmetic ones are presented as follows:

Data Transfer Instructions

J movsd src, dest Ki = set_double_no_check JsrcKdouble JsrcKexact dest
J movss src, dest Ki = set_single_no_check JsrcKsingle JsrcKexact dest

Arithmetic Instructions

J addsd src, dest Ki = set_double (JsrcKdouble+JdestKdouble) (JsrcKexact+JdestKexact) dest
J addss src, dest Ki = set_single (JsrcKsingle+JdestKsingle) (JsrcKexact+JdestKexact) dest

J subsd src, dest Ki = set_double (JdestKdouble-JsrcKdouble) (JdestKexact-JsrcKexact) dest
J subss src, dest Ki = set_single (JdestKsingle-JsrcKsingle) (JdestKexact-JsrcKexact) dest

J mulsd src, dest Ki = set_double (JdestKdouble∗JsrcKdouble) (JdestKexact∗JsrcKexact) dest
J mulss src, dest Ki = set_single (JdestKsingle∗JsrcKsingle) (JdestKexact∗JsrcKexact) dest

J divsd src, dest Ki = div_double !src !dest dest
J divss src, dest Ki = div_single !src !dest dest

It is needed to say that if an instruction movq a b (movl a b) is followed
by an instruction movsd b c (movss b c) then in the Why program, the condition
integer_of_int64(sel_int(b)) (integer_of_int32(sel_int32(b))) is not used. It is just
redundant information. This value is only used when the following instruction is a general-
purpose one.

8.3.5 x87 Floating-point Unit

Representation of the stack in Why

As we mentioned in 8.1.2, the stack has eight floating-point registers (R0 – R7) to hold the
floating-point operands. There is a top-of-stack (TOS) pointer which identifies the TOS register.

To represent the stack, one solution is to use a Why array of type register. In order to
prove floating-point programs, we use mostly Gappa tool. As Gappa can not use the axioms
declared for Why array, we cannot prove Why programs by Gappa in x87 mode.

92

R0 R0

R1 R1

R2 R2

R3 R3

R4 R4

R5 R5

R6 R6

R7 R7

R8 R8

fldl -4(%rbp)

st_ptr = 3

%st(2)

%st(1)

%st(0)

st_ptr = 2

%st(2)

%st(1)

%st(0)

Figure 8.3: Illustration of the stack with instruction fldl

We propose another solution which helps Gappa to prove Why programs in x87 mode: instead
of using Why array, we define eight variables of type registers: st0, . . ., st7 to represent for the
registers R0–R7 of the stack. When analyzing assembly program, we use a temporary variable
st_ptr which simulates the top-of-stack TOS and translate “relative” stack registers to their
physical ones. We insist that this temporary variable is not a variable in Why program, it is in
our translator. In the generated Why program, there will be only physical stack registers.

For translating from “relative” stack registers into physical ones, we set initial value of st_ptr
as 8. Before each load instruction is executed, st_ptr decreases by 1. Otherwise, if the stack
pops a value (for example fstp, faddp, ect.), st_ptr increases by 1 after this instruction is
executed. The value of st_ptr is 0 ≤ st_ptr ≤ 8.

For illustration, Figure 8.3 shows us the changes of the stack after executing the instruction
fldl. Assume that the current value of st_ptr is st_ptr = 3. This means that in Why, st3
is on the top of the stack. If we access %st(1), it will be st4 in Why. After executing the
instruction fldl, the value of st_ptr decreases by 1 and its value is st_ptr = 2 and now st2 is
on the top of the stack. If we want to access %st(i) then the physical register will be st(st_ptr
+ i).

We denote by JstKst the translation of st to Why. The translation of the operand – when the
stack is used – is specified as follows:

JstKst = sti where i = st_ptr
Jst(i)Kst = sti where i = st_ptr + i and 0 ≤ st_ptr + i ≤ 7

93

Translation of instructions to Why

Similarly to the parameters for single and double types that we defined in Section 8.3.4, here
are the parameters for binary80 type.

parameter set_80_no_check: a:real -> aexact:real -> b:register ref ->
{ }

unit writes b
{ binary80_value(sel_binary80(b)) = a

and
sel_exact(b) = aexact }

parameter set_80: a:real -> aexact:real -> b:register ref ->
{ no_overflow_binary80(\nearest_even,a) }

unit writes b
{ binary80_value(sel_binary80(b)) = round_binary80(nearest_even,a)

and
sel_exact(b) = aexact }

The interpretation of instructions is presented as follows:

Data transfer instructions
J flds src Ki = set_80 JsrcKsingle JsrcKexact st0
J fldl src Ki = set_80 JsrcKdouble JsrcKexact st0

J fldlz Ki = set_80 (0.0) (0.0) st0
J fldl1 Ki = set_80 (1.0) (1.0) st0

J fsts dest Ki = set_single Jst0Kbinary80 Jst0Kexact dest
J fstl dest Ki = set_double Jst0Kbinary80 Jst0Kexact dest

Arithmetic instructions
As before, the division is a special case as we have to verify in the precondition that the

divisor is non-zero. The parameters for the division operation is declared below:

parameter div_80: a:real -> aexact:real -> b:register ref ->
{ a<>0

and
no_overflow_binary80(nearest_even, binary80_value(sel_80(b))/a) }
unit writes b

{ binary80_value(sel_80(b)) = round_binary80(nearest_even,
binary80_value(sel_80(b@))/a)

and
sel_exact(b) = sel_exact(b@)/aexact }

parameter divr_80: a:real -> aexact:real-> b:register ref ->
{ binary80_value(sel_80(b))<>0.0

and
no_overflow_binary80(nearest_even,

a/binary80_value(sel_80(b))) }
unit writes b

94

{ binary80_value(sel_80(b)) = round_binary80(nearest_even,
a/binary80_value(sel_80(b@)))

and
sel_exact(b) = aexact/sel_exact(b@) }

The translation of some arithmetic instructions is specified as follows:

J fadds src Ki = set_80 (Jst0Kbinary80 + JsrcKsingle) (Jst0Kexact + JsrcKexact) st0
J faddl src Ki = set_80 (Jst0Kbinary80 + JsrcKdouble) (Jst0Kexact + JsrcKexact) st0
J fsubs src Ki = set_80 (Jst0Kbinary80 - JsrcKsingle) (Jst0Kexact - JsrcKexact) st0
J fsubl src Ki = set_80 (Jst0Kbinary80 - JsrcKdouble) (Jst0Kexact - JsrcKexact) st0
J fsubrs src Ki = set_80 (JsrcKsingle - Jst0Kbinary80) (JsrcKexact - Jst0Kexact) st0
J fsubrl src Ki = set_80 (JsrcKdouble - Jst0Kbinary80) (JsrcKexact - Jst0Kexact) st0
J fmuls src Ki = set_80 (Jst0Kbinary80 ∗ JsrcKsingle) (Jst0Kexact ∗ JsrcKexact) st0
J fmull src Ki = set_80 (Jst0Kbinary80 ∗ JsrcKdouble) (Jst0Kexact ∗ JsrcKexact) st0
J fdivs src Ki = div_80 JsrcKsingle JsrcKexact st0
J fdivl src Ki = div_80 JsrcKdouble JsrcKexact st0
J fdivrs src Ki = divr_80 JsrcKsingle JsrcKexact st0
J fdivrl src Ki = divr_80 JsrcKdouble JsrcKexact st0
J fadd %st(i), %st(j) Ki = set_80 (JstjKbinary80 + JstiKbinary80) (JstjKexact + JstiKexact) stj
J faddp %st(i), %st(j) Ki = set_80 (JstjKbinary80 + JstiKbinary80) (JstjKexact + JstiKexact) stj
J fsub %st(i), %st(j) Ki = set_80 (JstjKbinary80 - JstiKbinary80) (JstjKexact - JstiKexact) stj
J fsubp %st(i), %st(j) Ki = set_80 (JstjKbinary80 - JstiKbinary80) (JstjKexact - JstiKexact) stj
J fsubr %st(i), %st(j) Ki = set_80 (JstiKbinary80 - JstjKbinary80) (JstiKexact - JstjKexact) stj
J fsubrp %st(i), %st(j) Ki = set_80 (JstiKbinary80 - JstjKbinary80) (JstiKexact - JstjKexact) stj
J fmul %st(i), %st(j) Ki = set_80 (JstjKbinary80 ∗ JstiKbinary80) (JstjKexact ∗ JstiKexact) stj
J fmulp %st(i), %st(j) Ki = set_80 (JstjKbinary80 ∗ JstiKbinary80) (JstjKexact ∗ JstiKexact) stj
J fdiv %st(i), %st(j) Ki = div_80 JstiKbinary80 JstiKexact stj
J fdivp %st(i), %st(j) Ki = div_80 JstiKbinary80 JstiKexact stj
J fdivr %st(i), %st(j) Ki = divr_80 JstiKbinary80 JstiKexact stj
J fdivrp %st(i), %st(j) Ki = divr_80 JstiKbinary80 JstiKexact stj

8.3.6 AVX instructions

There are AVX instructions that are not FMA ones but they are generated when a program is
compiled with gcc -mfma4. The translation of them is described in the following table. Indeed,
the specification of these instructions are not different from the instructions in SSE/SSE2. The
difference is that they have three operands and have the prefix ’v’. Here are the translations of
some AVX instructions:

J vaddss src2, src1, dest Ki = set_single (Jsrc1Ksingle + Jsrc2Ksingle)
(Jsrc1Kexact + Jsrc2Kexact) dest

J vaddsd src2, src1, dest Ki = set_double (Jsrc1Kdouble + Jsrc2Kdouble)
(Jsrc1Kexact + Jsrc2Kexact) dest

J vsubss src2, src1, dest Ki = set_single (Jsrc1Ksingle - Jsrc2Ksingle)
(Jsrc1Kexact - Jsrc2Kexact) dest

J vsubsd src2, src1, dest Ki = set_double (Jsrc1Kdouble - Jsrc2Kdouble)
(Jsrc1Kexact - Jsrc2Kexact) dest

J vmulss src2, src1, dest Ki = set_single (Jsrc1Ksingle ∗ Jsrc2Ksingle)
(Jsrc1Kexact ∗ Jsrc2Kexact) dest

95

J vmulsd src2, src1, dest Ki = set_double (Jsrc1Kdouble ∗ Jsrc2Kdouble)
(Jsrc1Kexact ∗ Jsrc2Kexact) dest

J vdivss src2, src1, dest Ki = div_single !src1 !src2 dest
J vdivsd src2, src1, dest Ki = div_double !src1 !src2 dest

The translation of FMA instructions is specified as follows:

J vfmaddss src3,src2,src1,dest Ki = set_single (Jsrc1Ksingle∗Jsrc2Ksingle+Jsrc3Ksingle)
(Jsrc1Kexact∗Jsrc2Kexact+Jsrc3Kexact) dest

J vfmaddsd src3,src2,src1,dest Ki = set_double (Jsrc1Kdouble∗Jsrc2Kdouble+Jsrc3Kdouble)
(Jsrc1Kexact∗Jsrc2Kexact+Jsrc3Kexact) dest

J vfmsubss src3,src2,src1,dest Ki = set_single (Jsrc1Ksingle∗Jsrc2Ksingle-Jsrc3Ksingle)
(Jsrc1Kexact∗Jsrc2Kexact-Jsrc3Kexact) dest

J vfmsubsd src3,src2,src1,dest Ki = set_double (Jsrc1Kdouble∗Jsrc2Kdouble-Jsrc3Kdouble)
(Jsrc1Kexact∗Jsrc2Kexact-Jsrc3Kexact) dest

J vfnmaddss src3,src2,src1,dest Ki = set_single (-(Jsrc1Ksingle∗Jsrc2Ksingle)+Jsrc3Ksingle)
(-(Jsrc1Kexact∗Jsrc2Kexact)+Jsrc3Kexact) dest

J vfnmaddsd src3,src2,src1,dest Ki = set_double (-(Jsrc1Kdouble∗Jsrc2Kdouble)+Jsrc3Kdouble)
(-(Jsrc1Kexact∗Jsrc2Kexact)+Jsrc3Kexact) dest

J vfnmsubss src3,src2,src1,dest Ki = set_single (-(Jsrc1Ksingle∗Jsrc2Ksingle)-Jsrc3Ksingle)
(-(Jsrc1Kexact∗Jsrc2Kexact)-Jsrc3Kexact) dest

J vfnmsubsd src3,src2,src1,dest Ki = set_double (-(Jsrc1Kdouble∗Jsrc2Kdouble)-Jsrc3Kdouble)
(-(Jsrc1Kexact∗Jsrc2Kexact)-Jsrc3Kexact) dest

8.4 Translation of annotations to Why

8.4.1 Translation of annotations in presence of floating-point arithmetic

The translation of annotations was presented in Chapter 7 but it is only for 32-bit and 64-bit
integer. In this chapter, we add some rules of the translation of annotations for floating-point
types: float and double.

J#float#v#Kterm = single_value(sel_single(v))
J#double#v#Kterm = double_value(sel_doule(v))
J\exact(#τ#v#)Kterm = sel_exact(v) where τ ∈ {float, double}

When st(i) is in annotations

When a C program is compiled with optimization options in x87 mode, the variables in annota-
tions in assembly code may be a x87 stack register. In this case, their type is no longer a double
or float, we impose that its type is extended double.

J#single#st(%i)#Kterm = binary80_value(sel_80(sti))
J#double#st(%i)#Kterm = binary80_value(sel_80(sti))

For example, the following annotation:

\abs_real(#double#%st#) <= 1000.0 * (1.0 + 0x1.004p-44)

is translated into Why as

abs_real(binary80_value(sel_80(st0))) <= 1000.0*(1.0+0x1.004p-44)

96

8.5 Soundness of translation

The soundness of the translation in simple programs (which contain only general-purpose in-
structions) is presented in Section 7.3. In this section, we will extend it for floating-point
numbers.

8.5.1 Definition of the execution of a assembly program

The definition of memory state in assembly program in Section 7.3 is reused. We denote by
bv2single(bv) and bv2double(bv) the representation in single and double of bv, by single2bv(x)
and double2bv(x) the bitvector of a single and double value x, by ◦32(x) and ◦64(x) the rounding
value in round-to-nearest mode in 32 and 64 bits of x. The execution of an instruction in
SSE/SSE2 mode is : S, i ⇒ S′. It is defined as follows:

S, movss src, dest⇒ S[dest← single(S(src))]

S, movsd src, dest⇒ S[dest← double(S(src))]

bv2single(S(dest)) + bv2single(S(src)) does not overflow in 32 bits

S, addss src, dest⇒ S[dest← single2bv(◦32(bv2single(S(dest)) + bv2single(S(src))))]

bv2double(S(dest)) + bv2double(S(src)) does not overflow in 64 bits

S, addsd src, dest⇒ S[dest← double2bv(◦64(bv2double(S(dest)) + bv2double(S(src))))]

bv2single(S(dest))− bv2single(S(src)) does not overflow in 32 bits

S, subss src, dest⇒ S[dest← single2bv(◦32(bv2single(S(dest))− bv2single(S(src))))]

bv2double(S(dest))− bv2double(S(src)) does not overflow in 64 bits

S, subsd src, dest⇒ S[dest← double2bv(◦64(bv2double(S(dest))− bv2double(S(src))))]

bv2single(S(dest)) ∗ bv2single(S(src)) does not overflow in 32 bits

S, mulss src, dest⇒ S[dest← single2bv(◦32(bv2single(S(dest)) ∗ bv2single(S(src))))]

bv2double(S(dest)) ∗ bv2double(S(src)) does not overflow in 64 bits

S, mulsd src, dest⇒ S[dest← double2bv(◦64(bv2double(S(dest)) ∗ bv2double(S(src))))]

bv2single(S(src)) <> 0 bv2single(S(dest))/bv2single(S(src)) does not overflow in 32 bits

S, divss src, dest⇒ S[dest← single2bv(◦32(bv2single(S(dest))/bv2single(S(src))))]

bv2double(S(src)) <> 0 bv2double(S(dest))/bv2double(S(src)) does not overflow in 64 bits

S, divsd src, dest⇒ S[dest← double2bv(◦64(bv2double(S(dest))/bv2double(S(src))))]

97

8.5.2 Relation between Why state and assembly state (case of floating-point
programs)

Remind what we have said in Section 7.3 that if S is a Why state and S is assembly state then
S simulates S (denotes by S ∼ S) iff

1. For all register r, S(r) ∼= S(r) where bv ∼= reg with bv is bitvector and reg is register.

2. For all memory reference m = off(reg,...), either m is defined and then S(m) ∼= S(m)
or m is not defined.

It is necessary to make sure that two distinguished memory references (syntactically) imply
two different addresses (This follows Assumption 7.1). This means that if address(m1) =
address(m2) then m1 = m2.

We denote double(bv) = double_value(sel_double(reg)), this means that the translation
of double(bv) to Why will be double_value(sel_double(reg)). We denote in the same way for
single.

Here we will prove that Theorem 8.1 (the stating of this theorem is the same as Theorem 7.8)
is still correct with SSE/SSE2 instructions.

Theorem 8.1 For all assembly state S, Why state S such that S ∼ S. For all sequence of
assembly instructions i1, . . ., in:

If S, J i1; . . . ; in Ki ⇒m S′

then ∃S′ such that S, i1; . . . ; in ⇒ S′ where S′ ∼ S′.

As specified in parameters, each floating-point number has two parts: the rounded one and
the real one (or the exact one). Here, S ∼ S does not depend on sel_exact. The proof of the
rounded part is done below. The exact part will be mentioned in the next subsection. As before,
we only detail a few instructions.
Proof.

1. movsd instruction: movsd src, dest

In assembly program:

bv2double(S′(dest)) = bv2double(S(src)) .

The translation into Why:

J movsd src, dest Ki = set_double_no_check JsrcKdouble JsrcKexact dest

From the post-condition of set_double_no_check we have:

double_value(sel_double(S′(dest)))=double_value(sel_double(S(src)))

Because bv2double(bv) = double_value(sel_double(reg)) and S ∼ S, we have:

bv2double(S′(dest)) = bv2double(S(src))
= bv2double(S′(dest))(proved).

2. addsd instruction: addsd src, dest

In assembly program:

bv2double(S′(dest)) = ◦64(bv2double(S(dest)) + bv2double(S(src))) if the addition does
not overflow.

The translation into Why of this instruction is:

98

J addsd src,dest Ki= set_double (JsrcKdouble+JdestKdouble) (JsrcKexact+JdestKexact) dest

From the post-condition of set_double we have:

double_value(sel_double(S′(dest))) =
round_double(nearest_even,double_value(sel_double(S(dest)))+

double_value(sel_double(S(src))))

As bv2double(bv) = double_value(sel_double(reg)) and S ∼ S, we have:

bv2double(S′(dest)) = ◦64(bv2double(S(dest)) + bv2double(S(src)))
= bv2double(S′(dest)) (proved).

Notice that in the translation of addsd instruction, the precondition must specify that the
addition does not overflow. If the addition overflows in 64 bits then the program blocks.

�
For proving other instructions in SSE/SSE2 mode and also in x87 and FMA, we do the same

way as the proof of the two instructions above.

8.5.3 About exact value

In assembly, there does not exist the real value of an operand. As the assembly code generated
contains annotations, we define here the semantic of the assembly in which each operand op
(register or memory reference) value is a pair (bv, real). This semantic is different from the one
in Chapter 7 where each operand (register or memory reference) value is a bv. The modified
semantic helps us to prove the properties about exact value in annotations.

We denote by S(op) the pair (Sb(op), Se(op)) where Sb(op) is the notation S(op) we used in
subsection 8.5.1, Se(op) is the exact value of op. The execution of an instruction in SSE/SSE2
mode for exact value is defined below:

S, movss src, dest⇒ Se(dest)← Se(src)

S, movsd src, dest⇒ Se(dest)← Se(src)

bv2single(Sb(dest)) + bv2single(Sb(src)) does not overflow in 32 bits

S, addss src, dest⇒ Se(dest)← Se(dest) + Se(src)

bv2double(Sb(dest)) + bv2double(Sb(src)) does not overflow in 64 bits

S, addsd src, dest⇒ Se(dest)← Se(dest) + Se(src)

bv2single(Sb(dest))− bv2single(Sb(src)) does not overflow in 32 bits

S, subss src, dest⇒ Se(dest)← Se(dest)− Se(src)

bv2double(Sb(dest))− bv2double(Sb(src)) does not overflow in 64 bits

S, subsd src, dest⇒ Se(dest)← Se(dest)− Se(src)

99

bv2single(Sb(dest)) ∗ bv2single(Sb(src)) does not overflow in 32 bits

S, mulss src, dest⇒ Se(dest)← Se(dest) ∗ Se(src)

bv2double(Sb(dest)) ∗ bv2double(Sb(src)) does not overflow in 64 bits

S, mulsd src, dest⇒ Se(dest)← Se(dest) ∗ Se(src)

bv2single(Sb(src)) <> 0 bv2single(Sb(dest))/bv2single(Sb(src)) does not overflow in 32 bits

S, divss src, dest⇒ Se(dest)← Se(dest)/Se(src)

bv2double(Sb(src)) <> 0 bv2double(Sb(dest))/bv2double(Sb(src)) does not overflow in 64 bits

S, divsd src, dest⇒ Se(dest)← Se(dest)/Se(src)

The exact value is an additional information and this value may overflow. However, in order
to assure that an instruction is executed without overflow in 32 and 64 bits, the precondition
about single and double value of the result is needed.

Now we will prove Theorem 8.1 for exact value.
Proof.

1. movsd instruction: movsd src, dest

In assembly program, we have:

S′e(dest) = Se(src).

The translation into Why is:

J movsd src, dest Ki = set_double_no_check JsrcKdouble JsrcKexact dest

From the post-condition of set_double_no_check, we have:

sel_exact(S′e(dest)) = sel_exact(Se(src))

Because Se(reg) = sel_exact(reg) and S ∼ S, we have:

S′e(dest) = Se(src)
= S′e(dest)(proved).

2. addsd instruction: addsd src, dest

In assembly program:

S′e(dest) = Se(dest) + Se(src).

The translation into Why of this instruction is:

J addsd src,dest Ki= set_double (JsrcKdouble+JdestKdouble) (JsrcKexact+JdestKexact) dest

From the post-condition of set_double we have:

sel_exact(S′e(dest)) = sel_exact(Se(dest)) + sel_exact(Se(src))

As Se(reg) = sel_exact(reg) and S ∼ S, we have:

S′e(dest) = Se(dest) + Se(src)
= S′e(dest)(proved).

Notice that in the translation of addsd instruction, the precondition is necessary in order
to make sure that the addition does not overflow. If it overflows then the program blocks.

Others instructions are handled similarly.
�

100

double doub l e r ound i ng (){
double x = 1 . 0 ;
double y = 0x1p−53 + 0x1p−64;
double z = x + y ;

//@ as se r t z == 1 . 0 ;
return z ;

}

Figure 8.4: A simple floating-point program

1 movabsq $4607182418800017408, %rax
2 movq %rax, −32(%rbp)
3 movabsq $4368493837572636672, %rax
4 movq %rax, −24(%rbp)
5 f l d l −32(%rbp)
6 fadd l −24(%rbp)
7 f s t p l −16(%rbp)

Figure 8.5: Assembly code in x87 mode of Figure 8.4 example

8.6 Illustrations

The two following examples are used for illustrating the translation of floating-point instructions
to Why. These examples are proved with different results when compiling with different options
of compiler.

8.6.1 Double rounding example

Let us go back to the example about double rounding in Figure 2.2. We modify it by adding an
assertion //@ assert z == 1.0 (See Figure 8.4) which will be true in x87 case and won’t be
true in SSE2 case.

x87 mode

The assembly code in Figure 8.5 is generated by gcc -S -mfpmath=387.

• At line 1, the instruction movabsq copies the value 4607182418800017408 to %rax. The
value 4607182418800017408 corresponds to 1.0 in double. Notice that in assembly code,
the floating-point value is represented as an integer value.

• Then at line 2, the content of the register %rax is copied to the memory reference -32(%rbp)
(corresponds to x).

• Similarly to line 1, at line 3, 4368493837572636672 (corresponds to 2−53 +2−64) to %rax.

• Next, at line 4, -24(%rbp) (corresponds to y) receives the data from register %rax.

• At line 5, loads the the floating-point value at -32(%rbp) to the register st(0)(80 bits) of
the stack by the instruction fld.

101

Figure 8.6: Result of Figure 8.4 program

• At line 6, the instruction faddl adds st(0) with -24(%rbp):
st(0) ← ◦80(st(0) + -24(%rbp)).

• At line 7, the floating-point value in st(0) is rounded to 64 bits and copied to the memory
reference -16(%rbp).

When this assembly code is fed into our translator to Why, and the result analyzed by Why,
three proof obligations are produced. One is naturally for proving the assertion, the two others
are required to prove the absence of overflow: once at line 6 of Figure 8.5, corresponding to the
addition x+y in the source code, and once at line 7, which amounts to store the 80-bit value
of the x87 stack into a 64-bit memory cell. These three obligations are proved valid using the
Gappa automatic prover (See the screenshot in Figure 8.6).

Here are the VCs for proving the assertion in x87 mode:

_rax: register
H1: double_value(sel_double(_rax)) = 0x1.p0
_32__rbp_: register
H2: double_value(sel_double(_32__rbp_)) = double_value(sel_double(_rax))
_rax0: register
H3: double_value(sel_double(_rax0)) = 0x1.002p-53
_24__rbp_: register
H4: double_value(sel_double(_24__rbp_)) = double_value(sel_double(_rax0))
st7: register
H5: binary80_value(sel_80(st7)) = double_value(sel_double(_32__rbp_))
H6: no_overflow_binary80(nearest_even,

binary80_value(sel_80(st7)) + double_value(sel_double(_24__rbp_)))
st7_0: register
H7: binary80_value(sel_80(st7_0)) = round_binary80(nearest_even,

(binary80_value(sel_80(st7)) +
double_value(sel_double(_24__rbp_))))

H8: no_overflow_double(nearest_even, binary80_value(sel_80(st7_0)))
_16__rbp_: register
H9: double_value(sel_double(_16__rbp_)) = round_double(nearest_even,

binary80_value(sel_80(st7_0)))

double_value(sel_double(_16__rbp_)) = 1.0

102

1 movabsq $4607182418800017408, %rax
2 movq %rax, −32(%rbp)
3 movabsq $4368493837572636672, %rax
4 movq %rax, −24(%rbp)
5 movsd −32(%rbp) , %xmm0
6 addsd −24(%rbp) , %xmm0
7 movsd %xmm0, −16(%rbp)

Figure 8.7: Assembly code in SSE2 mode of Figure 8.4 example

They are explained as follows:

H1 : double(_rax) = 0x1p0

H2 : double(_32__rbp_) = double(_rax)
H3 : double(_rax0) = 0x1.002p− 53

H4 : double(_24__rbp_) = double(_rax0)
H5 : binary80(st7) = double(_32__rbp_)

H6 : binary80(st7) + double(_24__rbp_) does not overflow in 80 bits

H7 : binary80(st7_0) = ◦80(binary80(st7) + double(_24__rbp_))

H8 : binary80(st7_0) does not overflow in 64 bits

H9 : double(_16__rbp_) = ◦64(binary80(st7_0))

Goal : double(_16__rbp_) = 1.0

If we do all possible substitutions, the goal reduces to:

◦64(◦80(0x1p0 + 0x1.002p− 53)) = 1.0

This is proved automatically by Gappa.

SSE2 mode

The assembly code in Figure 8.7 is generated by gcc -S without any other options. In this code,
64-bit instructions (movabs, movq, movsd, addsd) are used. Thus, all the calculations are in 64
bits.

• From line 1 to line 4, the instructions generated are the same as the ones in Figure 8.5.

• At line 5, %xmm0 receives the floating-point value from -32(%rbp).

• At line 6, a floating-point addition in 64-bit is done by the instruction addsd, that is
%xmm0 ← ◦64(%xmm0 + -24(%rbp)).

• Finally, the floating-point value of %xmm0 is rounded to 64 bits and then copied to
-16(%rbp) (corresponds to z).

With this assembly code, the generated proof obligation corresponding to the assertion can-
not be proved anymore. The modified assertion z == 1.0 + 0x1p-52 can be proved instead.
The VCs generated corresponding to the assembly code in Figure 8.7 are:

103

_rax: register
H1: double_value(sel_double(_rax)) = 0x1.p0
_32__rbp_: register
H2: double_value(sel_double(_32__rbp_)) = double_value(sel_double(_rax))
_rax0: register
H3: double_value(sel_double(_rax0)) = 0x1.002p-53
_24__rbp_: register
H4: double_value(sel_double(_24__rbp_)) = double_value(sel_double(_rax0))
_xmm0: register
H5: double_value(sel_double(_xmm0)) = double_value(sel_double(_32__rbp_))
H6: no_overflow_double(nearest_even,

double_value(sel_double(_xmm0)) + double_value(sel_double(_24__rbp_)))
_xmm0_0: register
H7: double_value(sel_double(_xmm0_0)) = round_double(nearest_even,

(double_value(sel_double(_xmm0)) +
double_value(sel_double(_24__rbp_))))

_16__rbp_: register
H8: double_value(sel_double(_16__rbp_)) = double_value(sel_double(_xmm0_0))

double_value(sel_double(_16__rbp_)) = 1.0 + 0x1.p-52

The VCs above say that:

H1 : double(_rax) = 0x1p0

H2 : double(_32__rbp_) = double(_rax)
H3 : double(_rax0) = 0x1.002p− 53

H4 : double(_24__rbp_) = double(_rax0)
H5 : double(_xmm0) = double(_32__rbp_)

H6 : (double(_xmm0) + double(_24__rbp_)) does not overflow in 64 bits

H7 : double(_xmm0_0) = ◦64(double(_xmm0) + double(_24__rbp_))

H8 : double(_16__rbp_) = double(_xmm0_0)

Goal : double(_16__rbp_) = 1.0 + 0x1p− 52

If we do all possible substitutions, the goal reduces to:

◦64(0x1p0 + 0x1.002p− 53) = 1.0 + 0x1p− 52

This is proved by Gappa.

8.6.2 Overflow example

Monniaux [58] considers the program in Figure 8.8 to illustrate differences between architectures
with respect to overflows.

When compiled with non-optimized options

The overflow example is compiled by gcc -mfpmath=387 -O0. Excerpt of the generated assembly
code are shown on Figure 8.9.

104

double f oo () {
double v = 1e308 ;
double y = v ∗ v ;
return y/v ;

}

Figure 8.8: Overflow example

1 movabsq $9214871658872686752, %rax
2 movq %rax, −8(%rbp)
3 f l d l −8(%rbp)
4 fmul l −8(%rbp)
5 f s t p l −16(%rbp)
6 f l d l −16(%rbp)
7 f d i v l −8(%rbp)
8 f s t p l −24(%rbp)
9 movsd −24(%rbp) , %xmm0

10

Figure 8.9: Non-optimized assembly code of overflow example

• At line 1, 9214871658872686752 (corresponds to ◦64(1e308)) is copied to %rax.

• At line 2, the data in %rax is copied to the memory reference -8(%rbp) (corresponds to
the variable x in C program).

• Next, at line 3, st(0) of the stack receives the value of -8(%rbp).

• Then, at line 4, a multiplication operation is done by the instruction fmul, that is
st(0) ← ◦80(st(0) * -8(%rbp)).

• At line 5, the value in st(0) is rounded to 64 bits and copied to -16(%rbp) (corresponds
to y).

• At line 6, st(0) receives the value of -16(%rbp).

• At line 7, st(0) ← ◦80(st(0) / -8(%rbp)).

• At line 8, -24(%rbp) ← ◦64(st(0)).

• Finally, at line 9, the value of -24(%rbp) is copied to the register %xmm0.

In brief, with the non-optimized assembly code in x87 mode, v ∗ v is calculated in 80 bits
(line 4) and then rounded in 64 bits (line 5) before doing the division operation (line 7). The
return value of this version is Infinity.

For this version, 5 obligations are generated to check absence of overflow at lines 4, 5, 7 and
8 of assembly code of Figure 8.9, and to check that divisor is not zero at line 7. All are proved by
Gappa except the overflow at line 5, where the content of the 80-bit register holding the result
of the multiplication is moved into a 64-bit memory cell, which indeed overflows. The VCs of
the obligation at line 5 which check the overflow are shown below:

105

1 f l d l .LC0 (%rip)
2 f l d %st (0)
3 fmul %st(1) , %st
4 f d i v r p %st, %st(1)
5 f s t p l −8(%rsp)
6 movsd −8(%rsp) , %xmm0
7
8 .LC0 :
9 . l o n g 2246822048

10 . l o n g 2145504499

Figure 8.10: Optimized assembly of overflow example

_rax: register
H1: double_value(sel_double(_rax)) = 0x1.1ccf385ebc8ap1023
_8__rbp_: register
H2: double_value(sel_double(_8__rbp_)) = double_value(sel_double(_rax))
st7: register
H3: binary80_value(sel_80(st7)) = double_value(sel_double(_8__rbp_))
H4: no_overflow_binary80(nearest_even,

binary80_value(sel_80(st7)) * double_value(sel_double(_8__rbp_)))
st7_0: register
H5: binary80_value(sel_80(st7_0)) = round_binary80(nearest_even,

(binary80_value(sel_80(st7)) *
double_value(sel_double(_8__rbp_))))

--
no_overflow_double(nearest_even, binary80_value(sel_80(st7_0)))

They are explained as follows:

H1 : double(_rax) = 0x1.1ccf385ebc8ap1023 (◦64(1e308))
H2 : double(_8__rbp_) = double(_rax)
H3 : binary80(st7) = double(_8__rbp_)

H4 : binary80(st7) ∗ double(_8__rbp_) does not overflow in 80 bits

H5 : binary80(st7_0) = ◦80(binary80(st7) ∗ double(_8__rbp_))

Goal : binary80(st7_0) does not overflow in 64 bits

If we do all possible substitutions, the goal reduces to:

◦80(0x1.1ccf385ebc8ap1023 ∗ 0x1.1ccf385ebc8ap1023) does not overflow in 64 bits

This obligation is not proved because ◦80(0x1.1ccf385ebc8ap1023 ∗ 0x1.1ccf385ebc8ap1023)
overflows in 64 bits.

When compiled with optimized options

The optimized version (Figure 8.10) is compiled with gcc -mfpmath=387 -O1. In this assembly
code, the multiplication and division are done directly in 80 bits (line 3-4). Its result is v and it
does not overflow. More precisely:

106

• At line 1, st(0) receives the value at .LC0(%rip) (the value ◦64(1e308) is put in data
section determined by the symbol .LC0).

• At line 2, the stack loads the value at st(0), this means that after executing this instruc-
tion, st(1) and st(0) has the same value ◦64(1e308).

• At line 3, st(0) ← ◦80(st(0) * st(1)).

• Then at line 4, st(1) ← ◦80(st(0) / st(1)) and pops st(0).

• At line 5, the result of the division is rounded in 64 bits and put in -8(%rbp).

• The result at line 5 is copied to %xmm0 (at line 6).

For this version, 4 obligations are generated at lines 3, 4 and 5 of Figure 8.10 and all are
proved by Gappa. Indeed there is no overflow in this version because the result of multiplication
is not temporarily stored into a 64-bit register. The VCs generated for obligation at line 5 are
illustrated below:

H1: double_value(sel_double(_LC0__rip_)) = 0x1.1ccf385ebc8ap1023
st7: register
H2: binary80_value(sel_80(st7)) = double_value(sel_double(_LC0__rip_))
st6: register
H3: binary80_value(sel_80(st6)) = binary80_value(sel_80(st7))
H4: no_overflow_binary80(nearest_even,

binary80_value(sel_80(st7)) * binary80_value(sel_80(st6)))
st6_0: register
H5: binary80_value(sel_80(st6_0)) = round_binary80(nearest_even,

(binary80_value(sel_80(st7)) *
binary80_value(sel_80(st6))))

H6: binary80_value(sel_80(st7)) <> 0.0 and
no_overflow_binary80(nearest_even,
binary80_value(sel_80(st6_0)) / binary80_value(sel_80(st7)))

st7_0: register
H7: binary80_value(sel_80(st7_0)) = binary80_value(sel_80(st6_0)) /

binary80_value(sel_80(st7))
--
no_overflow_double(nearest_even, binary80_value(sel_80(st7_0)))

The hypothesis H1 above comes from the axiom we define for the label .LC0 in data section
(line 8–10 of Figure 8.10). The VCs above are explained as follows:

H1 : double(_LC0__rip_) = 0x1.1ccf385ebc8ap1023 (◦64(1e308))
H2 : binary80(st7) = double(_LC0__rip_)

H3 : binary80(st6) = binary80(st7)

H4 : (binary80(st7) ∗ binary80(st6)) does not overflow in 80 bits

H5 : binary80(st6_0) = ◦80(binary80(st7) ∗ binary80(st6))
H6 : binary80(st7) <> 0.0 and

(binary80(st6_0)/binary80(st7)) does not overflow in 80 bits

H7 : binary80(st7_0) = ◦80(binary80(st6_0)/binary80(st7))

Goal : binary80(st7_0) does not overflow in 80 bits

107

If we do all possible substitutions, the goal reduces to:

◦80(◦80(0x1.1ccf385ebc8ap1023 ∗ 0x1.1ccf385ebc8ap1023)/0x1.1ccf385ebc8ap1023)
does not overflow in 64 bits.

This is proved by Gappa.

With SSE2 mode

We can also analyze the code compiled in the SSE2 mode, resulting in 3 obligations: overflows
for the multiplication and division and check divisor is not null. As expected, it cannot be
proved that the multiplication does not overflow.

108

Chapter 9

Handling Conditional and loop
statements

The goal of this chapter is to present how to handle conditional and loop statements. In order
to do that, we need to construct a control flow graph (CFG) and to translate a CFG to Why.

9.1 Conditional instructions in assembly

The conditional instructions are divided into two groups: Jump instructions and conditional
move instructions. Both do their task based on the value of the status flags which are set
by instructions such as test, cmp, comisd, ucomisd, etc. Jump instructions transfer program
control to another point whereas conditional move instructions make a move operation.

9.1.1 Jump instructions

There are two types of jump instructions:

Unconditional jump instruction

The unconditional jump instruction transfers program control to a different point in the instruc-
tion stream without recording return information. The destination operand specifies the address
of the instruction being jumped to. This operand may be an immediate value, a general-purpose
register, or a memory reference. The syntax of unconditional jump instruction is:

jmp target

Conditional jump instructions: Jcc

All the Jcc instructions are specified by Intel [44]. In this chapter, we present some of them
which are often appeared in our examples.

109

Mnemonic Meaning Condition tested
jz jump if zero ZF = 1
je jump if equal
jnz jump if not zero ZF = 0
jne jump if not equal
jg jump if greater ZF = 0 and SF = OF
jnle jump if not less or equal
jge jump if greater or equal SF = OF
jnl jump if not less
jl jump if less SF <> OF
jnge jump if not greater or equal

9.1.2 Conditional move instructions: CMOVcc

These instructions check the state of one or more status flags and perform a move operation
if the flags are in a specified state. A condition code (cc) is associated with one instruction to
indicate the condition being tested for. If the condition is not satisfied, a move is not performed,
an execution continues with the instruction following the CMOVcc instruction.

Mnemonic Meaning Condition tested
cmova Move if above CF = 0 and ZF = 0
cmovae Move if above or equal CF = 0
cmovb Move if below CF = 1
cmovbe Move if below or equal CF = 0 or ZF = 1
cmovg Move if greater ZF = 0 and SF = OF
cmovge Move if greater or equal SF = OF
cmovnz Move if not zero ZF = 0
cmovz Move if zero ZF = 1

9.2 Definition of programs supported

In this chapter, we continue to extend the model from the previous chapters. More precisely, the
assembly programs may contain condition instructions, corresponding to the complex statements
in C language: if then else, switch, for, do while, goto, etc.

We add here some other constraints:

• It is possible that the compiler generates the calculated jump instruction for C statements
such as switch. In this chapter, we do not handle this kind of jump instruction. We only
consider the jump to a near relative address in which its operand is a label.

• Remind that in subsection 8.3.5, we try to translate “relative” stack registers into physical
stack register statically. When compiling with x87 mode, one thing we want to make sure
is that the value we calculate for top-of-stack register must be unique whatever is the path
of the control-flow graph to reach the instruction. In all the programs that we handled
in the previous chapter, this hypothesis was satisfied and we think that a compiler never
generates the assembly code in which the top-of-stack value is not unique at each point.

9.3 Translation of comparison instructions

As conditional instructions depend on the status flags which are set by comparison instructions
such as cmp, comisd, ucomisd, etc., we present here how to translate such instructions into Why.

110

We declare 6 status flags of EFLAGS register (See subsection 6.2.2) as follows:

parameter CF: int ref
parameter PF: int ref
parameter AF: int ref
parameter ZF: int ref
parameter SF: int ref
parameter OF: int ref

Notice that the value of these status flags in Why is either equal to or different 0 (instead of
equal to 1).

9.3.1 Translation of cmp instruction

The cmp (CoMPare) instruction compares two operands (equal, not equal, and so on) and sets
the status flags (See Section 6.2.2). It performs the same operation as the sub except that
the result of subtraction is not saved. Thus, cmp does not change the source and destination
operands. It is typically used in conjunction with a conditional jump instruction for decision
making.

To translate the instruction cmp into Why, we declare the following parameter:

parameter cmp: a:int ->b:int ->
{ }

unit writes OF, ZF, SF
{ (b = a -> (ZF <> 0 and OF = 0 and SF = 0))

and
(b > a -> ZF = 0 and OF = 0 and SF = 0)
and
(b < a -> ZF = 0 and OF = 0 and SF <> 0) }

The translation of the instruction cmp is as follows:
J cmpl op1, op2 Ki = cmp Jop1Kint32 Jop2Kint32
J cmpq op1, op2 Ki = cmp Jop1Kint64 Jop2Kint64

9.3.2 Translation of floating-point comparison instructions

The floating-point comparison instructions are presented in subsection 8.1.1. To translate them
into Why, we declare only one parameter comi as follows:

parameter comi: a:real->b:real->
{ }

unit writes CF, PF, AF, SF, ZF, OF
{ (b = a -> (ZF <> 0 and CF = 0 and PF = 0 and OF = 0 and SF = 0 and AF = 0))

and
(b > a -> (ZF = 0 and CF = 0 and PF = 0 and OF = 0 and SF = 0 and AF = 0))
and
(b < a -> (ZF = 0 and CF <> 0 and PF = 0 and OF = 0 and SF = 0 and AF = 0)) }

This parameter compares two real values and set status flags. The translation of this kind
of instructions are as below:

J comisd op1, op2 Ki = comi Jop1Kdouble Jop2Kdouble
J comiss op1, op2 Ki = comi Jop1Ksingle Jop2Ksingle
J ucomisd op1, op2 Ki = comi Jop1Kdouble Jop2Kdouble
J ucomiss op1, op2 Ki = comi Jop1Ksingle Jop2Ksingle

111

//@ l o g i c in teger l_ s i gn (r e a l x) = (x >= 0 . 0) ? 1 : −1;

/∗@ r equ i r e s e1<= x−\exact (x) <= e2 ;
@ ensures (\ r e s u l t != 0 ==> \ r e s u l t == l_s i gn (\ exact (x))) &&
@ \abs (\ r e s u l t) <= 1 ;
@∗/

i n t s i g n (double x , double e1 , double e2) {
i f (x > e2)

return 1 ;
i f (x < e1)

return −1;

return 0 ;
}

Figure 9.1: Example with if

9.4 Control Flow Graph construction from assembly code

CFG is an important part of this chapter. Before talking about how to construct it, the definition
of a CFG is given below:

Definition 9.1 A Control Flow Graph (abbreviated as CFG) is a directed graph where each
node has:

• a label (a unique integer)

• a content

• an optional other label which denotes its normal successor node

The content is either

• a set of instructions

• an annotation: pre, post, assert or invariant

• a jump instruction, either conditional or unconditional, together with the label of the node
to jump to.

By convention, the entry node is labeled 0. The exit nodes are those which are not unconditional
jumps or do not have a normal successor node (the unconditional jumps do not have a normal
successor node but they have a label of node to jump to).

We construct one CFG for each function in assembly code.

9.4.1 Example with if statement

In order to understand how to construct a CFG with assembly code, we begin with a simple
example in Figure 9.1 which is presented in Section 5.2. This example contains if statements.

The assembly code of function sign generated by gcc -S is in Figure 9.2. From Definition
9.1, we construct a CFG for this code (See Figure 9.3). This program has only one function
sign, we have thus only one CFG.

112

1 s i g n :
2 .LFB0 :
3 . c f i_s ta r tp roc
4
5 movsd %xmm0, −24(%rbp)
6 movsd %xmm1, −32(%rbp)
7 movsd %xmm2, −40(%rbp)
8 #APP
9 /∗ r equ i r e s #doub le#−32(%rbp)# <=

10 #doub le#−24(%rbp)#−\exact(#doub l e#−24(%rbp)#)
11 <= #doub le#−40(%rbp)#; ∗/
12 #NO_APP
13 movsd −24(%rbp) , %xmm0
14 ucomisd −40(%rbp) , %xmm0
15 seta %al
16 testb %al, %al
17 j e .L2
18 movl $1 , −4(%rbp)
19 jmp .L3
20 .L2 :
21 movsd −32(%rbp) , %xmm0
22 ucomisd −24(%rbp) , %xmm0
23 seta %al
24 testb %al, %al
25 j e .L4
26 movl $−1 , −4(%rbp)
27 jmp .L3
28 .L4 :
29 movl $0 , −4(%rbp)
30 nop
31 .L3 :
32 #APP
33 /∗ ensures (# i n t#−4(%rbp)# != 0 ==>
34 #i n t#−4(%rbp)# == l_s i gn (\ exact(#doub l e#−24(%rbp)#)))
35 && \ abs(# i n t#−4(%rbp)#) <= 1 ;∗/
36 #NO_APP
37 movl −4(%rbp) , %eax
38 . . .
39 re t
40 .cf i_endproc

Figure 9.2: Assembly code of program in Figure 9.1

The table in Figure 9.3 have 14 nodes, begins by node 0 and ends by node 13. Each node
contains a label, its content and an optional successor node. Node 13 does not point to any
node in order to show that it is the last one. The nodes that are neither the final ones nor
unconditional jump ones will point to a successor node in the list. The unconditional jump
nodes such as node 6, node 10 do not have a successor node but they have a label of node to
jump to. The conditional jump nodes have both a successor node and a node to jump to. For
example, node 3 contains the conditional jump instruction je .L2, its successor is node 5 and
the node to jump to is node 4. We illustrate this table by a graph (below the table).

113

Node Content Successor node Jump to
0 (Line 2 – 7) 1
1 precondition 2
2 (Line 13 – 16) 3
3 je .L2 5 4
4 (Line 20 – 24) 8
5 (Line 18) 6
6 jmp .L3 7
7 (Line 31) 12
8 je .L4 9 11
9 (Line 26) 10
10 jmp .L3 7
11 (Line 28 – 30) 7
12 post-condition 13
13 (Line 37 – 39)

0 1 2 3

5

4 8 9 10

6

7 12

11

13

Figure 9.3: CFG for assembly code in Figure 9.2

9.4.2 Example with do while statement

The goal of the example in Figure 9.4 is to show how to construct a CFG of a program containing
a loop statement do while. This example has a function main with two variables x and i. Their
initial values are x = 0 and i = 10. In the loop, we increase x by 1 and decrease i by 1. The
condition to exit the loop is that i ≤ 0. The precondition of this function is x ≥ 0 and the
post-condition ensures x = 10.

In assembly code, the jump condition instructions generated from the statement if in C and
the one generated from the statement do while are not different. The one different thing is that
the jump instruction of do while creates a cycle in CFG.

The CFG corresponding to the assembly code generated by gcc -S is presented in Figure 9.5.
This CFG has 11 nodes from node 0 to node 10. Node 1 contains the preconditions, node 4
contains the invariants and node 9 contains the post-conditions. There is a cycle: 3→ 4→ 5→
6→ 3.

9.4.3 Example with goto, do while and if statement

The example in Figure 9.6 finds the maximum value of a double array [9]. It contains many
complex statements such as goto, if and do while. This CFG is thus a general one. The
assembly instruction corresponding to goto statement is just a jmp instruction.

The CFG corresponding to the assembly code generated by gcc -S is presented in Figure
9.7. This CFG has 18 nodes: from node 0 to node 17 and has two cycles:

114

i n t x ;
i n t i ;

/∗@ r equ i r e s x >= 0 ;
@ ensures x == 10 ; ∗/

void main (){
x = 0 ;
i = 10 ;
do{
/∗@ loop i nva r i an t x == 10 − i && 10 >= i > 0 ;

@ loop v a r i a n t i ; ∗/
x = x + 1 ;
i = i − 1 ;

}whi le (i >0);
}

Figure 9.4: Program with loop statement

0 1 2 3 4 5

6

7 8 9 10

Figure 9.5: CFG of Program in Figure 9.4

• 3→ 8→ 6→ 9→ 10→ 11→ 12→ 4→ 7→ 3

• 6→ 9→ 10→ 11→ 12→ 4→ 5→ 6

The node 10 contains invariants of the program. This node is important when we generate Why
functions from this CFG.

Notice that this example is not proved in this chapter because it contains arrays. It will be
proved in Chapter 10.

What we have now is a Control Flow Graph for each function in assembly code. It facilitates
the translation to Why which will be explained in the next section.

9.5 Translation from a CFG to Why

Our goal now is to build a Why program from a given CFG, so that the VCs generated from
that Why program guarantee that the assembly program represented by the CFG satisfies its
annotations.

Our construction of that Why program is inspired from other techniques proposed for dealing
with unstructured programs in general [5, 32].

We assume that on any cycle of the CFG, there is at least one invariant node.

Algorithm 9.2 We start from the initial node and traverse the CFG. The traversal stops when-
ever we meet a final node or an invariant node. From the assumption above, this traversal must
terminate.

115

/∗@ r equ i r e s n > 0 && \ va l i d_range (t , 0 , n−1);
@ ensures \ f o r a l l i n teger k ; 0<=k<n ==> \ r e s u l t >= t [k] ;
@ ∗/

double max_array (double t [] , i n t n) {
double m; i n t i = 0 ;
goto L ;
do{

i f (t [i] > m){
L :

m = t [i] ;
}
//@ as se r t m >=t [i] ;

/∗@ loop i nva r i an t 0 <= i < n &&
@ \ f o r a l l i n teger k ; 0<=k<=i ==> m >= t [k] ;
@ ∗/

i = i +1;
}whi le (i < n) ;

return m;
}

Figure 9.6: Program with loop and goto statement

0 1 2 3 8

7

4 5

6 9 10 11

12

13 14

15

16

17

Figure 9.7: CFG for assembly code generated by gcc -S from example in Figure 9.6

algo generateWhy(g:CFG) : List of Why functions

var done : array[node] of boolean

(* traverse_from(n) will be called on each node n of the CFG of type pre
or inv. using array done, we ensure that each of such node is treated
only once *)

recursive traverse_from(n:node) : Why expression;

(* explore(n,pre) will generate all the necessary Why functions to

116

encode the subgraph of the CFG starting from node n, with
precondition pre *)

procedure explore(n:node, pre:Why predicate)

var visited : array[node] of boolean

(* explore_rec(n,prefix) traverses the CFG from node n and produces
the Why function to encode the subgraph starting from n, assuming
that prefix is the list of statements which encodes the path which
arrives to n *)

recursive explore_rec(n:node,prefix:Why expression)
if visited[n]: fail (hypothesis not satisfied)
visited[n] <- true;
switch n.content_tag :

case instruction(i) :
explore(n.succ, prefix :: why_instr(i))

case assert(p) :
explore(n.succ, prefix :: assert (why_pred(p)))

case pre(p) :
explore(n.succ, prefix :: assume (why_pred(p)))

case post(p) :
explore(n.succ, prefix :: assert (why_pred(p))

case inv(p) :
produce_why_fun (prefix:: assert why_pred(p));
traverse_from(n)

case jump(l):
explore_rec (l, prefix)

case jump(c,l) :
explore_rec (l, prefix :: assume (why_cond(c))) ;
explore_rec (n.succ, prefix :: assume (not why_cond(c)))

case conditional_move(i,c,l):
explore_rec (l, prefix :: assume (why_cond(c)) :: why_instr(i)) ;
explore_rec (n.succ, prefix :: assume (not why_cond(c)))

If n is the last node of the subgraph then
produce_why_fun (prefix)

end explore_rec

visited[i] <- false for each node i;
explore_rec(n,[assume pre]);

end explore

if done[i] return;
done[i] <- true;
switch n.content_tag

case pre(p): explore(n.succ, why_pred(p));
case inv(p): explore(n.succ, why_pred(p));
default : impossible

117

end traverse_node

main:
done[i] <- false for each node i;
traverse_from(0).

The algorithm generateWhy(g:CFG) takes a CFG g and returns a list of Why functions corre-
sponding to g. Assume that we have the following functions:

• why_instr(i): translates a sequence of instructions i (except conditional instructions)
into Why

• why_pred(p): translates a predicate p into Why

• why_cond(c): translates a conditional instruction c into Why

• proc_why_func: produces a Why function.

• prefix::str: concatenates a string str to prefix.

• n.succ : returns the successor node of the node n.

This algorithm is described by using the following sub-functions:

• Recursive function traverse_from(n:node):Why expression is invoked on each node n
having type precondition or invariant of the CFG. We use the array done in order to
ensure that each of such node is treated once. The following function explore will be
called in this function.

• Function explore(n:node, pre: Why predicate) generates Why functions to encode a
subgraph of the CFG from node n with precondition pre. We use an array visited to
know whether a node is visited.

• Recursive function explore_rec(n:node, prefix: Why expression) traverses the CFG
from node n and produces the Why function to encode the subgraph starting from n,
assuming that prefix is the list of statements encoding the path which arrives to n. The
implementation of this function is described as follows:

Firstly, if this node is visited then fails else we set visited[n] by true.

Secondly, we consider the type of node n:

– Instruction i: prefix::why_instr(i)

– Assertion p: prefix::assert why_pred(p)

– Precondition p: prefix::assume why_pred(p)

– Post-condition p: prefix::assert why_pred(p)

– Invariant p:

∗ produce_why_func(prefix::assert why_pred(p))
∗ traverse_from(n)

– Unconditional jump instruction with label l: explore_rec (l, prefix)

– Jump instruction with condition c and label l:

∗ explore_rec (l, prefix:: assume why_cond(c))

118

∗ explore_rec (n.succ, prefix:: assume not (why_cond(c)))

– Conditional move instruction i with condition c and label l:
∗ explore_rec (l, prefix:: assume why_cond(c)::why_instr(i))
∗ explore_rec (n.succ, prefix:: assume not why_cond(c))

Finally, if n is the last node of the subgraph then produce_why_fun (prefix)

This algorithm fails only when there exists a cycle without any invariant. Its complexity is
an exponential number of the size of the CFG. Such complexity is introduced by a following
example:

if c0 then t0 else e0;
if c1 then t1 else e1;
if c2 then t2 else e2;
...
if ck then tk else ek;

Its CFG is as follows

n0
/ \

t0 e0
\ /
n1

/ \
t1 e1
\ /
.
.
.
nk

/ \
tk ek
\ /
s

The number of paths from n0 to s of this CFG is 2k, so our algorithm will generate 2k Why
functions. However, this exponent is not a big problem. If we meet such case, it is possible to
solve the problem manually by inserting invariants. With the example above, if we put manually
invariants at each node nk then the number of Why functions will be 2k.

Theorem 9.3 (Soundness) Let p be the assembly code of a function, g its CFG, and E the
set of Why programs generated by generateWhy(g). If the VCs for the Why programs in E are
valid, then p satisfies its annotations.

Proof. From any state satisfying the precondition of p, a given execution corresponds to a
path P in the graph g, from its initial node to a final node. If that path contains at least a
cycle (with invariant I inside) then it can be split into subpaths p1, . . . , pn, such that p1 goes
from the initial node to a node with an invariant I; p2, . . . , pn−1 goes from a node containing
I to a node with an invariant I; and pn goes from a node containing I to a final node. Each
pi corresponds to an execution of one of the generated Why function, in a state satisfying its
precondition (straightforward induction on n) and thus its satisfies the precondition of p.

119

Each ei is the corresponding Why program of pi. This means that if the VCs for the function
ei in E are valid then pi satisfies its annotations.
�
Now let us go back to the examples that we have presented in the previous section. By

applying Algorithm 9.2, the corresponding Why functions for each CFG is as below:

• The CFG in Figure 9.3 does not contains any cycles, so the Why functions generated are:

– 0→ 1→ 2→ 3→ 4→ 8→ 9→ 10→ 7→ 12→ 13

– 0→ 1→ 2→ 3→ 4→ 8→ 11→ 7→ 12→ 13

– 0→ 1→ 2→ 3→ 5→ 6→ 7→ 12→ 13

• For the CFG in Figure 9.5, there is a cycle in which node 4 contains the invariant. The
Why functions generated are:

– 0→ 1→ 2→ 3→ 4

– 4→ 5→ 6→ 3→ 4

– 4→ 5→ 7→ 8→ 9→ 10

• The CFG in Figure 9.7 has two cycles with the node 10 containing the invariant. There
are 4 Why functions corresponding to this CFG:

– 0→ 1→ 2→ 3→ 8→ 6→ 9→ 10

– 10→ 11→ 12→ 4→ 5→ 6→ 9→ 10

– 10→ 11→ 12→ 4→ 7→ 3→ 8→ 6→ 9→ 10

– 10→ 11→ 13→ 14→ 15→ 16→ 17

9.6 Examples

9.6.1 Clock drift

This example (See Figure 9.8) is presented in Section 5.4. We prove it with our translator by
analyzing its assembly code. The goal of this example is firstly to construct CFG from assembly
code generated from a program containing for statement; secondly to apply Algorithm 9.2 to
generate Why functions and thirdly to illustrate the value of st_ptr on assembly code generated
by gcc -mfpmath=387. We also demonstrate in this example that when compiling with different
options of gcc, the bound of the rounding error is changed.

Now let us see the assembly code generated by gcc -S -mfpmath=387 -O2 in Figure 9.9.
With this assembly code, we look at only instructions related to x87 stack: fldz, flds, etc.
which will change the value of top-of-stack. The value of top-of-stack in our model is shown
below:

Line Instruction st_ptr
8

6 fldz 7
8 flds .LC1(%rip) 6
17 fstp %st(1) 7
19 fstps -4(%rsp) 8

120

#def ine A 1.49012 e−09
// A i s a bound o f (f l o a t) 0 . 1 − 0 .1
#def ine B 4.76838 e−07
// B i s a bound o f round_er ro r (t+(f l o a t) 0 . 1) f o r 0 <= t <= 10.01
#def ine C (B + A)

/∗@ lemma round01 :
\abs (\ round_single (\ nearest_even , 0 . 1) − 0 . 1) <= A; ∗/

/∗@ lemma round_01 :
\ round_single (\ nearest_even , 0 . 1) == 0x1 .99999 ap−4;∗/

/∗@ r equ i r e s 0 <= n <= 100 ;
@ ensures \abs (\ r e s u l t − n ∗0 . 1) <= n ∗ C ; ∗/

f l o a t f_ s i n g l e (i n t n){
f l o a t t = 0 .0 f ;
i n t i ;
f o r (i =0; i < n ; i++) {

/∗@ loop i nva r i an t 0 <= i < n <=100 &&
@ \abs (t− i ∗0 . 1) <= i ∗C ;
@ loop v a r i a n t n− i ; ∗/

L :
//@ as se r t 0 .0 <= t <= 100.0∗(0 .1+C) ;
t = t + 0 .1 f ;
//@ as se r t \abs (t−(t@L+\round_single (\ nearest_even ,0.1))) <=B;

}

return t ;
}

Figure 9.8: Clock drift program

Remind that we use the intermediate variable st_ptr to store the value of top-of-stack. At
the entry of the function, we set st_ptr = 8. For each load instruction, the value of st_ptr
decreases by 1. For each store and pop instruction, the value of st_ptr increases by 1. As
expected, at the entry and at the exit of the function f_single, st_ptr = 8 indicates that the
stack is empty. There is a cycle (line 11 – 16) in this assembly code but there are not any in-
structions which change the value of st_ptr. Obviously, at each node in the CFG corresponding
to this function, the value of st_ptr is unique whatever the path of the CFG.

An excerpt of assembly code generated by gcc -mfpmath=387 is in Figure 9.10. All the
instructions that change the value of top-of-stack is in the cycle. The change of st_ptr is shown
as below:

Line Instruction st_ptr
8

8 flds -12(%rbp) 7
9 flds .LC1(%rip) 6
10 faddp %st, %st(1) 7
11 fstps -12(%rbp) 8

At the entry and at the exit of the cycle, st_ptr = 8 indicates that the stack is empty. In
this case, we can also make sure that the value of st_ptr is unique whatever the path.

121

1 f_ s i n g l e :
2 .LFB0 :
3 . c f i_s ta r tp roc
4
5 t e s t l %edi, %edi
6 f l d z
7 j l e .L2
8 f l d s .LC1 (%rip)
9 fxch %st (1)

10 xo r l %eax, %eax
11 .L4 :
12 .L3 :
13 fadd %st (1) , %st
14 addl $1 , %eax
15 cmpl %edi, %eax
16 jne .L4
17 f s tp %st(1)
18 .L2 :
19 f s t p s −4(%rsp)
20 movss −4(%rsp) , %xmm0
21 re t
22 .cf i_endproc

Figure 9.9: Assembly code of program in Figure 9.8 (generated by gcc -S -mfpmath=387 -O2)

1 f_ s i n g l e :
2 .LFB0 :
3 . c f i_s ta r tp roc
4
5 .L4 :
6 ; ; i n va r i an t i s h e r e
7 .L3 :
8 f l d s −12(%rbp)
9 f l d s .LC1 (%rip)

10 faddp %st, %st (1)
11 f s t p s −12(%rbp)
12 addl $1 , −8(%rbp)
13 .L2 :
14 movl −8(%rbp) , %eax
15 cmpl −20(%rbp) , %eax
16 j l .L4
17
18 re t
19 .cf i_endproc

Figure 9.10: Assembly code of program in Figure 9.8 (generated by gcc -S -mfpmath=387)

By analyzing assembly code using our translator, we construct a CFG for the function
f_single. Then, from this CFG, we have four Why programs by using Algorithm 9.2. The obli-
gations of these four Why functions (which are generated from assembly code compiled with gcc
-S and gcc - S -mfpmath=387) are proved completely and automatically by the combination

122

of Gappa, Alt-Ergo and CVC3.
Thanks to Gappa, we have different values of the bound B when compiling the C program

with different options of gcc. The following table show us the value of B depending on the mode
and the optimization level. When the program is compiled in SSE2 mode or x87 mode without
optimization, the value of B is 4.76838e-07. However, the value of B is much smaller than
the previous ones, B = 4.33681e-19, when the C program is compiled with gcc -mfpmath=387
-O2. There, all the value of t at each step is stored in 80 bits stack registers.

Architecture B

SSE2 4.76838e-07

x87 -O0 4.76838e-07

x87 -O2 4.33681e-19

9.6.2 KB3D

This example (See Figure 9.11) illustrates the handling of conditional statements, the handling
of function calls, and the way we express properties on rounding errors across functions. The
presentation has been done in Section 5.2. Our goal here is to analyze what should be the value
of E depending on the architecture.

Feeding the program in our assembly analyzer in SSE2 mode, the VCs are automatically
proved valid using a combination of Gappa and SMT solvers (Alt-Ergo and CVC3). The bound E
is indeed in that case exactly the same as the one found in Section 5.2 in a strict IEEE-754 mode.
At least on this example, this shows that SSE2 assembly conforms strictly to the standard. The
table below shows the value of E that are proved correct using various architecture-dependent
settings.

Architecture E

SSE2 0x1p-45

x87 -O0 0x1.004p-46

x87 -O2 0x1.004p-46

FMA -O2 0x1.8p-46

As expected, using FMA improves over SSE2 (25% less) since less rounding occur. The
extended precision of x87 is even better (around 50% less). The result is the best one with x87
and optimization -O2 where all the values are stored in 80 bits. This new result is 1/1025 the
one without optimization. Of course, all these bounds are smaller than the one we found in
Section 5.2, which was 0x1.90641p-45 ≈ 3203 × 2−56, that is more than 50% higher than the
SSE2 one. If we prove this program with Frama-C/Jessie, the value E we can prove is exactly
the same as the case SSE2 in the table above.

9.7 Discussion

The weakest-precondition computation helps to prove assembly code which is an unstructured
programs. However, this approach still have some limits. Compared to the traditional WP, this
WP need more information to prove a program, especially when the program has a cycle with a
loop invariant. For example, if a constant is stored in a variable and is used in the loop then this

123

#def ine E 0x1p−45

//@ l o g i c in teger l_ s i gn (r e a l x) = (x >= 0 . 0) ? 1 : −1;

/∗@ r equ i r e s e1<= x−\exact (x) <= e2 ;
@ ensures (\ r e s u l t != 0 ==> \ r e s u l t == l_s i gn (\ exact (x))) &&
@ \abs (\ r e s u l t) <= 1 ;
@∗/

i n t s i g n (double x , double e1 , double e2) {
i f (x > e2) return 1 ;
i f (x < e1) return −1;
return 0 ;
}

/∗@ r equ i r e s
@ sx == \exact (sx) && sy == \exact (sy) &&
@ vx == \exact (vx) && vy == \exact (vy) &&
@ \abs (sx) <= 100 .0 && \abs (sy) <= 100 .0 &&
@ \abs (vx) <= 1 .0 && \abs (vy) <= 1 . 0 ;
@ ensures \ r e s u l t != 0
@ ==> \ r e s u l t == l_s i gn (\ exact (sx)∗\ exact (vx)+\exact (sy)∗\ exact (vy))
@ ∗ l_ s i gn (\ exact (sx)∗\ exact (vy)−\exact (sy)∗\ exact (vx)) ;

∗/
i n t ep s_ l i n e (double sx , double sy , double vx , double vy){

i n t s1 , s2 ;

s1=s i g n (sx ∗ vx+sy ∗vy , −E , E) ;
s2=s i g n (sx ∗vy−sy ∗vx , −E , E) ;

return s1 ∗ s2 ;
}

Figure 9.11: Avionics program

information need to be put in invariant. Or if the precondition is needed to prove annotations
in the loop then we also put it in invariant.

To illustrate what we have said above, let us go back to example Clock drift in Fig-
ure 9.8. When we generate assembly code with gcc -S -mfpmath=387 -O2, the assembly
code is in Figure 9.12. Here, the constant ◦32(0.1) is stored in st(1) (line 7 – 8). In the
cycle (line 10 – 18), the addition is done by the instruction fadd %st(1), %st(0), that is
%st(0) = ◦80(%st(0) + %st(1)) and the value of %st(1) is set only once at line 8 (outside
the cycle). Hence, the Why functions corresponding to the paths: inv I → . . . → inv I and
inv I → . . .→ Postcondition do not have any information about %st(1). It is thus necessary
to insert the condition %st(1) = ◦32(0.1) into the invariant I.

Still in this example, in the precondition, we have 0 ≤ n ≤ 100. This condition must be
added one more time into the invariant I because the Why functions corresponding to the paths:
inv I → . . .→ inv I and inv I → . . .→ Postcondition do not know that 0 ≤ n ≤ 100.

124

1 f_ s i n g l e :
2 .LFB0 :
3 . c f i_s ta r tp roc
4 t e s t l %edi, %edi
5 f l d z
6 j l e .L2
7 f l d s .LC1 (%rip)
8 fxch %st (1)
9 xo r l %eax, %eax

10 .L4 :
11 .L3 :
12 #APP
13 /∗ i n va r i an t I ∗/
14 #NO_APP
15 fadd %st (1) , %st
16 addl $1 , %eax
17 cmpl %edi, %eax
18 jne .L4
19 f s tp %st(1)
20 .L2 :
21 f s t p s −4(%rsp)
22 movss −4(%rsp) , %xmm0
23 re t
24 .cf i_endproc

Figure 9.12: Assembly code of program in Figure 9.8 (generated by gcc -S -mfpmath=387 -O2)

125

126

Chapter 10

Handling Arrays and Pointers

With programs containing pointers, the Separation Assumption 7.1 is not correct anymore. In
order to prove such programs, we propose a new memory model. New rules for translating
instructions and annotations into Why based on the memory model will be presented in the next
sections.

10.1 Handled programs

The programs supported in this chapter have the following characteristics:

• Arrays and pointers with C types: int, long, float, double and long double are sup-
ported,

• Dynamic memory allocation is allowed,

• There are no structure type, no pointer of pointer and no cast in the program.

• The assembly code is generated on IA-64 architecture.

In the previous model, we translated registers and memory references into Why variables. How-
ever, there were no differences between the translation of a register and the one of a memory
reference. In this model, all the memory references are represented and their translation is
similar to the way the program access and store value in the memory.

10.2 New rules of translation for operands and instructions

The form of memory references in assembly language has been presented in chapter 6. Based
on its form, in this section we will talk about the representation of memory in Why.

10.2.1 Representation of memory in Why

Memory space is divided into segments. Code, data, and stacks may be all contained in the same
or different segments depending on the memory model. Each of them is pointed by different
registers. For example, local variables are pointed by the register %rbp, a data stored in memory
is pointed by %rip, etc.

In order to transform the memory references into Why, we model the memory in supposing
that the memory is continuous and has three parts:

127

• Memory references for local variables and function arguments are normally pointed by the
register %rbp. This %rbp points to the last data item placed on the stack. The memory
references pointed by %rbp are -4(%rbp), -8(%rbp), -16(%rbp), etc. This means that the
value of disp is negative.

• Memory references for global variables and constants are pointed by the special register
%rip. The displacement disp is usually a symbol or non-negative value.

• Dynamic allocated variables (which are not global variables) occupy a space in memory
and their addresses do not change. We reserve a memory space for allocated variables (if
exist) and this space is between %rip and %rbp (see the following figure). In other words,
we make an assumption: in our model, the address value of allocated variables is less than
%rip and greater than %rbp.

We insist that what we suppose here is not exactly the same as what the compiler do. What we
assure in our memory model is that the three regions do not overlap.

0

+

−

pointed by %rip

pointed by %rbp

dynamic allocated variables are in this region

In order to specify the validity of an address, we use the ACSL built-in predicate \valid
and \valid_range. In our translator, they are interpreted by: the address is not less than %rbp.
The translation of this predicate into Why will be discussed in the subsection 10.2.4.

To model the memory, we declare two following pointers:

logic _rbp: int
logic _rip: int

We set: _rbp ≤ 0. As _rbp and _rip do not point at the same address in the memory, we
will set _rip a positive integer. In our model, we thus set _rip = 4. All the memory references
are based on these two pointers. Note that the address of dynamic allocated variables are always
not less than _rbp. Two axioms associated with _rbp and _rip are:

axiom rbp_axiom: _rbp <= 0
axiom _rip_axiom: _rip = 4

128

i n t ga1 [1] , ga2 [2] , ga3 [3] ;

/∗@ ensures ga1 [0] == i ;
@ ensures ga2 [1] == i +1;
@ ensures ga3 [2] == i +2;
@∗/

void f g (i n t i) {
ga1 [0] = i ;
ga2 [1] = i +1;
ga3 [2] = i +2;

}

Figure 10.1: An example containing arrays as global values.

Notice that in assembly code, %rip and %rbp addressing are relative. In our model, %rip and
%rbp are considered as constants. This assumption is correct because the proofs are done function
by function. Also notice that as we declare _rbp as a constant, all the instructions in which
%rbp is the destination operand will not be translated into Why. This happens only when

• at the beginning of the function with instruction movq %rsp, %rbp to copy the value of
%rsp to %rbp.

• at the end of the function with popq %rbp to restore the previous value of %rbp.

Without these instructions, the proofs do not change anything because they are done function
by function.

We will present the translation of memory references depending on their scope: global vari-
ables, local variables and variables being arguments of a function as follows:

Translation of arrays defined as global variables

Remind that the directive .comm symbol, length declares a common symbol. By observing
assembly code, we see that the declaration of global variables begins by the assembly directive
.comm where symbol is the name of the variable and length is the total size of the variable. If it
is an array, length is the memory allocated for this array (the number of elements × size of each
element). These symbols are interpreted as constants like %rbp and %rip.

To illustrate the translation of an array being a global variable, we have a small C program
in Figure 10.1. Its assembly code compiled with gcc -S is in Figure 10.2.

In this example, we have three integer arrays: ga1 having one element, ga2 having two
elements and ga3 having three elements. The size of each element in each array is 4.

In the assembly code, they are declared by using the directive .comm (line 1–3 of Figure 10.2).
We consider only the first and the second argument after .comm (the third one is the alignment
of the symbol, it is an optional argument). The first one is the symbol name and the second
one is the length (in bytes). In others words, the second argument is the total number of bytes
allocated for each symbol. These arrays are defined in Why as follows:

logic ga1: int
logic ga2: int
logic ga3: int

129

1 .comm ga1 , 4 , 4
2 .comm ga2 , 8 , 4
3 .comm ga3 , 12 , 4
4
5 f g :
6 .LFB0 :
7 . c f i_s ta r tp roc
8
9 movl %edi, −4(%rbp)

10 movl −4(%rbp) , %eax
11 movl %eax, ga1 (%rip)
12 movl −4(%rbp) , %eax
13 addl $1 , %eax
14 movl %eax, ga2+4(%rip)
15 movl −4(%rbp) , %eax
16 addl $2 , %eax
17 movl %eax, ga3+8(%rip)
18 movl ga1 (%rip) , %eax
19 movl ga2 (%rip) , %edx
20 movl ga3 (%rip) , %ecx
21 #APP
22 /∗ ensures #i n t p o i n t e r#%eax#[0] == #i n t#−4(%rbp)#;
23 ensures #i n t p o i n t e r#%edx#[1] == #i n t#−4(%rbp)#+1;
24 ensures #i n t p o i n t e r#%ecx#[2] == #i n t#−4(%rbp)#+2;∗/
25 #NO_APP
26
27 re t
28 .cf i_endproc
29

Figure 10.2: Assembly code in SSE2 mode of Figure 10.1 example

Each array is defined as a constant indicating the position of the first element of the array in
the memory.

An important question is: when we have many arrays in the same program, how can we
make sure that the memory allocated for each array does not overlap the others?

There exists a model that separates the memory for pointers in C program [34]. As defined
in this separation model, each pointer is considered to have a memory variable. For the three
arrays above, we have three different memory variables. This model works well in C code source.
We tried to apply this model in assembly code but it does not work. This is because if we use
separation model, we cannot define the relation between these memory variables. We thus use
only one memory variable for all. This memory variable will be presented in subsection 10.2.3.

As we have explained in subsection 10.2.1, memory references accessed by %rbp and %rip have
two different directions. Memory references pointed by these two pointers are always disjoint.

Now let us back to the example in Figure 10.1. The three arrays represented in this model
are illustrated in Figure 10.3.

We know that the size of int is 4 (bytes) so the total size of the array ga1 is 1× 4 = 4, the
total size of ga2 is 2× 4 = 8, the total size of ga3 is 3× 4 = 12. We can also get the total size
in the second argument of .comm and we use this value in our translator.

In order to assure that the memory references for these arrays do not overlap, we have some
constraints:

130

(_rbp - 4)

_rbp

_rip = 4 ga1

8 ga2

16 ga3

Dynamic allocated variables

Figure 10.3: Memory model

• ga1 = 4 (ga1 = _rip)

• ga2 = 8 (ga2 = ga1 + 4)

• ga3 = 16 (ga3 = ga2 +8)

The order of the symbols in the memory is not important. The important thing is that the
memory space for each symbol does not overlap the others.

In Why, we use the following axioms to specify these constraints:

axiom ga1_axiom: ga1 = 4
axiom ga2_axiom: ga2 = 8
axiom ga3_axiom: ga3 = 16

Once the axioms above are defined, when we translate these variables into Why, we do not need
the pointer _rip anymore. To access ga2[1] for example, it is simply written (ga2 + 1*4).

Translation of arrays defined as local variables

An example containing arrays as local variables is in Figure 10.4. Its assembly code is in Figure
10.5.

It is simpler to translate local arrays to Why because in assembly code, they are referenced
by _rbp and the memory reference of a certain element of an array has been indicated by
the compiler. For example, with the local variable int la2[2], the first element of la2 in

131

void l g (i n t i) {
i n t l a 1 [1] , l a 2 [2] , l a 3 [3] ;

l a 1 [0] = i ;
l a 2 [1] = i + 1 ;
l a 3 [2] = i + 2 ;

//@ as se r t l a 1 [0] == i ;
//@ as se r t l a 2 [1] == i + 1 ;
//@ as se r t l a 3 [2] == i + 2 ;

}

Figure 10.4: C code of a program with arrays defined as local variables

1
2 l g :
3 .LFB0 :
4 . c f i_s ta r tp roc
5
6 movl %edi, −52(%rbp)
7 movl −52(%rbp) , %eax
8 movl %eax, −16(%rbp)
9 movl −52(%rbp) , %eax

10 addl $1 , %eax
11 movl %eax, −28(%rbp)
12 movl −52(%rbp) , %eax
13 addl $2 , %eax
14 movl %eax, −40(%rbp)
15 movl −16(%rbp) , %eax
16 #APP
17 /∗ as se r t #i n t p o i n t e r#%eax#[0] == #i n t #−52(%rbp)#;∗/
18 #NO_APP
19 movl −32(%rbp) , %eax
20 #APP
21 /∗ as se r t #i n t p o i n t e r#%eax#[1] == #i n t #−52(%rbp)# + 1;∗/
22 #NO_APP
23 movl −48(%rbp) , %eax
24 #APP
25 /∗ as se r t #i n t p o i n t e r#%eax#[2] == #i n t #−52(%rbp)# + 2;∗/
26 #NO_APP
27 re t
28 .cf i_endproc

Figure 10.5: Assembly code in SSE2 mode of Figure 10.4 example

assembly code is at -32(%rbp), so in Why, it will be (_rbp - 32). la2[1] then will be (_rbp
+ (-32+1*4)) or (_rbp - 28) where 4 is the size of int (corresponds to the second operand in
line 11 of Figure 10.5).

132

/∗@ r equ i r e s \ va l i d_range (t , 0 , n−1);
@ ensures \ f o r a l l i n teger k ; 0<=k<n ==> t [k] = 1 . 0 ;
@∗/

void i n i t (double t [] , i n t n){
i n t i ;
f o r (i =0; i<n ; i++)

t [i] = 1 . 0 ;
}

Figure 10.6: A C program with an array defined as an argument of a function

1 i n i t :
2 .LFB0 :
3 . c f i_s ta r tp roc
4
5 movq %rdi, −24(%rbp)
6 movl %esi, −28(%rbp)
7 #APP
8 /∗ r equ i r e s \ va l i d_range(#doub l e p o i n t e r#−24(%rbp)# , 0 ,#i n t #−28(%rbp)#−1);∗/
9 #NO_APP

10 movl $0 , −4(%rbp)
11 jmp .L2
12 .L3 :
13 movl −4(%rbp) , %eax
14 c l tq
15 sa lq $3 , %rax
16 addq −24(%rbp) , %rax
17 movabsq $4607182418800017408, %rdx
18 movq %rdx, (%rax)
19 addl $1 , −4(%rbp)
20 .L2 :
21 movl −4(%rbp) , %eax
22 cmpl −28(%rbp) , %eax
23 j l .L3
24 #APP
25 /∗ ensures \ f o r a l l i n teger k ; 0<=k<#i n t #−28(%rbp)#
26 => #doub l e p o i n t e r#−24(%rbp)#[k] = 1 . 0 ;∗/
27 #NO_APP
28 re t
29 .cf i_endproc

Figure 10.7: Assembly code in SSE2 mode of Figure 10.6 example

Translation of arrays being arguments of a function

This case is illustrated by the example in Figure 10.6. The inputs of the function init: an array
t in double and the number of elements n. An excerpt of the generated assembly code in SSE2
mode is shown in Figure 10.7.

Normally, general-purpose registers are used for storing the address of the arguments of a
function. We consider their address is a 64-bit integer. In the example above, %rdi (line 5 of

133

Figure 10.7) contains the address of the array t. In order to get this address, in Why, we write
(integer_of_int64 (sel_int64 _rdi)).

In the C program, the variable t must be allocated dynamically in the memory before
it is used. In the precondition, it is necessary to specify that this pointer is valid by using
\valid_range(t,0,n-1). As discussed in Section 10.2.1, there is a memory space reserved for
dynamic allocated variables. The translation of \valid_range(t,0,n-1) into Why will be: the
address of all elements of t must be greater than or equal to _rbp (See Figure 10.3). We do not
specify that t must be less than _rip because the array t may be a global variable.

10.2.2 Definition of memory model

We define here a memory model which will be used in the next section. This model uses the
standard theory of arrays [66]. In order to access a value at an address in the memory, we need
a variable having the following type:

type ’v memory

where ’v is a type which has already been defined such as int, real, etc. In our approach, ’v
is register.

We also need the following abstract function to access the value in the memory:

logic select: ’v memory, int -> ’v

The logic function select returns a ’v value at an address specified by an integer in the memory
’v memory.

Notice that in the standard theory of arrays, there exists a function store which stores a
value to memory. In the previous version, we used both select and store. However, the proof
obligations are proved with a big value of timeout. The reason is that the automatic provers
take time to find the relation between select and store. In addition, Gappa is unable to use
directly the axiomatics about the relation. We found another way to improve this: instead of
using store which make the proofs slower, we use only select. The idea here is to indicate
in the post-condition of the parameter all the properties we need: express what is changed and
what is not changed in the memory after each modification.

10.2.3 Translation of operands and instructions to Why

Type of memory

The address of a pointer or of the first element of an array being argument of a function will
be stored in a general-purpose register. As we consider an address to be an integer, there is no
difference between the operations (addition, subtraction, multiplication, etc.) on addresses and
the ones on integers. The translation of each instruction will be detailed in this section.

The memory is modeled as a map of register. We define the following variable:

parameter MEM: register memory ref

Remind that we have already defined logic functions to get a value from a register in Chapter 7
and Chapter 8, we will use it again.

A memory reference mem = disp(base, index, scale) is interpreted as the integer address
JmemKaddr = base+ disp+ index× scale. The translation of memory reference is as follows:

134

Jd(b, i, s)Kaddr = JbKint64+d+s*JiKint64
Jd(%rbp, i, s)Kaddr = _rbp + d + s*JiKint64

Jsymbol(%rip)Kaddr = symbol
JmemKint32 = integer_of_int32(sel_int32(select(MEM,JmemKaddr)))
JmemKint64 = integer_of_int64(sel_int64(select(MEM,JmemKaddr)))
JmemKsingle = single_value(sel_single(select(MEM,JmemKaddr)))
JmemKdouble = double_value(sel_double(select(MEM,JmemKaddr)))
JmemKexact = sel_exact(select(MEM,JmemKaddr))

Remind again that %rbp is a special case of the translation as in our model we defined it as
a constant (See Section 10.2.1).

In our model, memory is a map of register and we assume that the size of this register
is not fixed (maybe in 32 or in 64 bits depending on the instruction). Therefore, we need some
constraints for what is not changed when we update the value at an address.

addraddr-4addr-8 addr+n

unchanged unchanged

Let us see the figure above. Assume that we update a register with size n bytes at address
addr in the memory, there are some different cases:

• If the address is less than or equal to addr-8 (8 is the number of bytes of a double or
64-bit integer) or is greater than or equal to addr+n then the bitvector (not greater than
64 bits) obtained from this address is not changed if we update the value at addr.

• If the address is not greater than addr-4 (4 is the number of bytes of a single or 32-bit
integer) then the single value and 32-bit integer value at this address are not changed if
we update the value at addr.

• We do not take into account the case where the address is greater than addr-4 and is less
than addr because the bitvector (32 or 64 bits) at this address may be changed.

From the idea above, we have the following predicate:

predicate unchanged_mem(MEM1: register memory,MEM2:register memory,
addr:int,nb:int) =

(forall i:int. i<= addr-8 or i>=addr+nb -> select(MEM1,i) = select(MEM2,i)
)
and
(forall i:int. i<=addr-4 ->

integer_of_int32(sel_int32(select(MEM1, i))) =
integer_of_int32(sel_int32(select(MEM2, i)))

and
single_value(sel_single(select(MEM1, i))) =

single_value(sel_single(select(MEM2, i)))
)

where MEM1 and MEM2 are the memory after and before the value at address addr is
updated.

Here are the translation of some instructions:

135

Data transfer instructions

We define two parameters move_mem_to_reg64 and move_reg_to_mem32 which move the
data (in 64 bits and in 32 bits) of a register to memory:

parameter move_reg_to_mem64: a:register -> b:int->
{ }

unit writes MEM
{ integer_of_int64(sel_int64(select(MEM, b)))=integer_of_int64(sel_int64(a))

and
double_value(sel_double(select(MEM, b)))=double_value(sel_double(a))
and
sel_exact(select(MEM, b))=sel_exact(a)
and
unchanged_mem(MEM, MEM@, b, 8)

}

parameter move_reg_to_mem32: a:register -> b:int->
{ }

unit writes MEM
{ integer_of_int32(sel_int32(select(MEM, b)))=integer_of_int32(sel_int32(a))

and
single_value(sel_single(select(MEM, b)))=single_value(sel_single(a))
and
sel_exact(select(MEM, b))=sel_exact(a)
and
unchanged_mem(MEM, MEM@, b, 4)

}

The translation of the mov instructions are specified as follows:

J movl mem, reg Ki = move_cte32 JmemKint32 JmemKsingle JmemKexact reg
J movl reg, mem Ki = move_reg_to_mem32 !reg JmemKaddr
J movq mem, reg Ki = move_cte64 JmemKint64 JmemKdouble JmemKexact reg
J movq reg, mem Ki = move_reg_to_mem64 !reg JmemKaddr

The instruction lea loads effective address. It computes the effective address of the source
operand and stores it in the destination operand. The source operand is a memory address
(offset part), the destination operand is a general-purpose register.

J leaq mem, reg Ki = set_int64 JmemKint64 reg
J leal mem, reg Ki = set_int32 JmemKint32 reg

The instruction cltq extends the 32-bit register %eax to the 64-bit register %rax. In order
to translate this instruction into Why, we declare a parameter:

parameter cltq: _:unit ->
{ }
unit writes _rax
{ integer_of_int64(sel_int64(_rax)) = integer_of_int32(sel_int32(_rax@))

and
integer_of_int32(sel_int32(_rax)) = integer_of_int32(sel_int32(_rax@)) }

136

Remind that %eax = _rax. The translation fo cltq is

J cltq Ki = cltq (_)

Notice that for all instructions, when dest is a register, we reuse the Why parameter of
Chapter 7 and Chapter 8.

Arithmetic instructions

The instruction salq imm, dest multiplies the destination dest by 2, imm times. In other
words, we multiply dest by 2imm. We need the following parameter:

parameter salq:a:int->b:register ref->
{ }
unit writes b
{ integer_of_int64(sel_int64(b)) = integer_of_int64(sel_int64(b@))*a }

The translation of salq is as follows:

J salq imm, dest Ki = salq 2pimm dest

where 2pimm = 2imm. Notice that this is a bit-level instruction and we can not translate it
into Why. Instead, the value 2pimm is calculated directly by our translator, not in generated
Why program.

To store a 32- and 64-bit integer to memory, we need the following parameters:

parameter store_imm32: a:int -> b:int->
{ is_int32(a) }

unit writes MEM
{ integer_of_int32(sel_int32(select(MEM, b))) = a

and
unchanged_mem(MEM, MEM@, b, 4)

}

parameter store_imm64: a:int -> b:int->
{ is_int64(a) }

unit writes MEM
{ integer_of_int64(sel_int64(select(MEM, b))) = a

and
unchanged_mem(MEM, MEM@, b, 8)

}

We do similarly with single and double:

parameter store_single: a:real -> aexact:real -> b:int->
{ no_overflow_single(nearest_even,a) }

unit writes MEM
{ single_value(sel_single(select(MEM, b))) = round_single(nearest_even,a)

and
sel_exact(select(MEM,b)) = aexact
and
unchanged_mem(MEM, MEM@, b, 4)

}

137

parameter store_double: a:real -> aexact:real -> b:int->
{ no_overflow_double(nearest_even,a) }

unit writes MEM
{ double_value(sel_double(select(MEM, b))) = round_double(nearest_even,a)

and
sel_exact(select(MEM,b)) = aexact
and
unchanged_mem(MEM, MEM@, b, 8)

}

The translation of arithmetic instructions are as follows. We present here some general-
purpose and SSE/SSE2 instructions:

J addl reg, mem Ki = store_imm32 (JmemKint32 + JregKint32) JmemKaddr
J addl src, reg Ki = set_int32 (JregKint32 + JsrcKint32) reg
J addq src, reg Ki = set_int64 (JregKint64 + JsrcKint64) reg
J addq reg, mem Ki = store_imm64 (JmemKint64 + JregKint64) JmemKaddr
J subl reg, mem Ki = store_imm32 (JmemKint32 - JregKint32) JmemKaddr
J subl src, reg Ki = set_int32 (JregKint32 - JsrcKint32) reg
J subq src, reg Ki = set_int64 (JregKint32 - JsrcKint64) reg
J subq reg, mem Ki = store_imm64 (JmemKint64 - JregKint64) JmemKaddr
J addss reg, mem Ki = store_single (JmemKsingle + JregKsingle)

(JmemKexact + JregKexact) JmemKaddr
J addss mem, reg Ki = set_single (JregKsingle + JmemKsingle)

(JregKexact + JmemKexact) reg
J addsd reg, mem Ki = store_double(JmemKdouble + JregKdouble)

(JmemKexact + JregKexact) JmemKaddr
J addsd mem, reg Ki = set_double (JregKdouble + JmemKdouble)

(JregKexact + JmemKexact) reg
J subss reg, mem Ki = store_single(JmemKsingle - JregKsingle)

(JmemKexact - JregKexact) JmemKaddr
J subss mem, reg Ki = set_single (JregKsingle - JmemKsingle)

(JregKexact - JmemKexact) reg
J subsd reg, mem Ki = store_double(JmemKdouble - JregKdouble)

(JmemKexact - JregKexact) JmemKaddr
J subsd mem, reg Ki = set_double (JregKdouble - JmemKdouble)

(JregKexact - JmemKexact) reg

10.2.4 Translation of annotations to Why

The translation of variables in annotations is specified as follows:

J#int#reg#Kterm = JregKint32
J#single#reg#Kterm = JregKsingle
J#double#reg#Kterm = JregKdouble

J#intpointer#mem#Kterm = Jselect(MEM,JmemKaddr)Kint32
J#singlepointer#mem#Kterm = Jselect(MEM,JmemKaddr)Ksingle
J#doublepointer#mem#Kterm = Jselect(MEM,JmemKaddr)Kdouble

138

J#intpointer#reg#[V]Kterm = Jselect(MEM,JregKint64 + JV Kint32*4)Kint32
J#singlepointer#reg#[V]Kterm = Jselect(MEM,JregKint64 + JV Kint32*4)Ksingle
J#doublepointer#reg#[V]Kterm = Jselect(MEM,JregKint64 + JV Kint32*8)Kdouble

J#intpointer#symbol#[V]Kterm = Jselect(MEM,symbol + JV Kint32*4)Kint32
J#singlepointer#symbol#[V]Kterm = Jselect(MEM,symbol + JV Kint32*4)Ksingle
J#doublepointer#symbol#[V]Kterm = Jselect(MEM,symbol + JV Kint32*8)Kdouble

J#intpointer#d(%rbp)#[V]Kterm = Jselect(MEM,_rbp + d + JV Kint32*4)Kint32
J#singlepointer#d(%rbp)#[V]Kterm = Jselect(MEM,_rbp + d + JV Kint32*4)Ksingle
J#doublepointer#d(%rbp)#[V]Kterm = Jselect(MEM,_rbp + d + JV Kint32*8)Kdouble

where V is the index of an element in the array, V can be either a register, a symbol or a
constant in 32 bits. If V is in 64 bits then we replace JV Kint32 by JV Kint64.

J\valid_range(#intpointer#p#,i,j)Kterm = forall k:int. i<=k<=j ->
integer_of_int64(sel_int64(p)) + k*4 >= _rbp

J\valid_range(#singlepointer#p#,i,j)Kterm = forall k:int. i<=k<=j ->
integer_of_int64(sel_int64(p)) + k*4 >= _rbp

J\valid_range(#doublepointer#p#,i,j)Kterm = forall k:int. i<=k<=j ->
integer_of_int64(sel_int64(p)) + k*8 >= _rbp

For example, the translation of the annotation #int#a#[2] == 3 into Why is as below:
J#int#a#[2] == 3 Kterm = integer_of_int32(sel_int32(select (MEM, a + 2*4))) = 3

10.3 When local variables are pointed by %rsp

For many compilers, %rbp is used to point to local variables. However, in some cases, %rsp is
used instead of %rbp. In this section, we will discuss about this case.

A piece of assembly function f which uses %rsp to point to local variables looks like:

f:
subq $32, %rsp

....
movsd %xmm0, (%rsp)
movsd %xmm1, 8(%rsp)
movsd %xmm2, 16(%rsp)
movsd %xmm3, 24(%rsp)
(preconditions)

....
addq $32, %rsp

At the beginning of f, %rsp is decreased by n = 32 bytes where n is the total bytes of local
variables of the function. After subtracting n from %rsp, the displacement of memory reference
pointed by %rsp is a non-negative integer. Then, the value of parameters of the function is
copied to local variables pointed by %rsp. The pre-condition generated is put right after these
data transfer instructions. At the end of the function f, the value of %rsp is restored by adding
with n.

Now let us go back to the memory model, we will declare the Why variable corresponding to
%rsp as follows:

parameter _rsp: int ref

139

and add to each Why function generated from this function a condition assume _rsp <= 0.

The translation of the operand containing %rsp will be:

Jd(%rsp, i, s)Kaddr = _rsp + d + s*JiKint64

The translation of annotations containing %rsp will be:

J#intpointer#d(%rsp)#[V]Kterm = Jselect(MEM,_rsp + d + JV Kint32*4)Kint32
J#singlepointer#d(%rsp)#[V]Kterm = Jselect(MEM,_rsp + d + JV Kint32*4)Ksingle
J#doublepointer#d(%rbp)#[V]Kterm = Jselect(MEM,_rsp + d + JV Kint32*8)Kdouble

where V is the index of an element in the array, V can be either a register, a symbol or a
constant in 32 bits. If V is in 64 bits then we replace JV Kint32 by JV Kint64.

J\valid_range(#intpointer#p#,i,j)Kterm = forall k:int. i<=k<=j ->
integer_of_int64(sel_int64(p)) + k*4 >= _rsp + totalbytes

J\valid_range(#singlepointer#p#,i,j)Kterm = forall k:int. i<=k<=j ->
integer_of_int64(sel_int64(p)) + k*4 >= _rsp + totalbytes

J\valid_range(#doublepointer#p#,i,j)Kterm = forall k:int. i<=k<=j ->
integer_of_int64(sel_int64(p)) + k*8 >= _rsp) + totalbytes

where totalbytes is not a Why variable. It is imm in the instruction subq $imm, %rsp of the
current function. If the function does not have this instruction then totalbytes = 0. Also notice
that in the same program, the value of totalbytes is changed from function to function. Our
translator will replace totalbytes by a constant in the translation \valid_range into Why.

The Why function corresponding to the function f above is:

let f =
assume _rsp <=0
J subq $32, %rsp Ki
....
J movsd %xmm0, (%rsp) Ki
J movsd %xmm1, 8(%rsp) Ki
J movsd %xmm2, 16(%rsp) Ki
J movsd %xmm3, 24(%rsp) Ki
assume JpreconditionsKterm
....
J addq $32, %rsp Ki

void

The figure below is the same as the one in subsection 10.2.1. Before executing the instruction
subq $totalbyte, %rsp

the position of %rsp and %rbp is the same. After this subtraction instruction,
%rbp = %rsp + totalbytes. This is the reason why in the translation of \valid_range, instead
of using _rbp, we use _rsp + totalbytes.

140

to
ta
lb
yt
es

0

+

−

%rbp

%rsp

local variables

pointed by %rip

dynamic allocated variables

global variables

10.4 Examples

10.4.1 Maximum of an array

The example in Figure 10.8 finds the maximum floating-point value in an array. It was presented
in subsection 9.4.3. This first simple example has no floating-point computation but it has an
array being input of the function. Therefore, we can illustrate how to apply our memory model
to prove it. Moreover, we also show that we can handle many complex statements: goto, do
while and if in the same program.

The assembly code of this example is in Figure 10.9. The address of the first element of the
array t is stored in -40(%rbp) (line 5). The statement m = t[i] in the source code corresponds
to line 27 – 32 in assembly code. There, -4(%rbp) (corresponds to i) is copied to %eax (line
27). In line 28, the instruction cltq extends %eax in 32 bits to %rax in 64 bits. Then in line
29, the instruction salq shifts %rax to the right by 3 bits, this means that %rax = %rax * 23

where 23 = 8 is the number of bytes of a double. In line 30, %rax receives the address of t[i],
that is the address of the first element of t plus i*8. Then in line 31, the new value of %rax is
the value obtained at the address stored in %rax (old value of %rax). Finally, in the line 32, the
value of %rax is copied to -24(%rbp)(corresponds to m).

The CFG of the assembly code in Figure 10.9 was presented in Figure 9.7. By using Algo-
rithm 9.2, the four Why functions are generated:

• 0→ 1→ 2→ 3→ 8→ 6→ 9→ 10

• 10→ 11→ 12→ 4→ 5→ 6→ 9→ 10

• 10→ 11→ 12→ 4→ 7→ 3→ 8→ 6→ 9→ 10

• 10→ 11→ 13→ 14→ 15→ 16→ 17

141

/∗@ r equ i r e s n > 0 && \ va l i d_range (t , 0 , n−1);
@ ensures \ f o r a l l i n teger k ; 0<=k<n ==> \ r e s u l t >= t [k] ;
@ ∗/

double max_array (double t [] , i n t n) {
double m; i n t i = 0 ;
goto L ;
do{

i f (t [i] > m){
L :

m = t [i] ;
}
//@ as se r t m >=t [i] ;

/∗@ loop i nva r i an t 0 <= i < n &&
@ \ f o r a l l i n teger k ; 0<=k<=i ==> m >= t [k] ;
@ ∗/

i = i +1;
}whi le (i < n) ;

return m;
}

Figure 10.8: Maximum of an array program

By analyzing its assembly code (generated by gcc -S), this example is translated into four
Why functions which are completely and automatically proved by Alt-Ergo and CVC3.

10.4.2 Scalar Product

This example illustrates how we combine floating-point analysis with other features such as loops
and arrays. It is presented in Section 5.5 and the same code source is in Figure 10.10.

In this example, the role of the preconditions \valid_range(x,0,n-1) and
\valid_range(y,0,n-1) is important as these preconditions help to separate x[i] and p
and also to separate y[i] and p. This works because:

• addr(x+ i×8) ≥ _rbp for all i such that 0 ≤ i ≤ n−1 (8 is the size (in bytes) of a double)

• addr(y + i× 8) ≥ _rbp for all i such that 0 ≤ i ≤ n− 1

• addr(p) < _rbp

The table below displays the value of B (found by Gappa tool) in function of NMAX and the
architecture-dependent settings.

142

1 max_array :
2 .LFB0 :
3 . c f i_s ta r tp roc
4
5 movq %rdi, −40(%rbp)
6 movl %esi, −44(%rbp)
7 #APP
8 /∗ r equ i r e s #i n t #−44(%rbp)# > 0 &&
9 \ va l i d_range(#doub l e p o i n t e r#−40(%rbp)# , 0 ,#i n t #−44(%rbp)#−1); ∗/

10 #NO_APP
11 movl $0 , −4(%rbp)
12 jmp .L2
13 .L4 :
14 movl −4(%rbp) , %eax
15 c l tq
16 sa lq $3 , %rax
17 addq −40(%rbp) , %rax
18 movsd (%rax) , %xmm0
19 ucomisd −24(%rbp) , %xmm0
20 seta %al
21 testb %al, %al
22 j e .L3
23 .L2 :
24 #APP
25 /∗ l a b e l L : ∗/
26 #NO_APP
27 movl −4(%rbp) , %eax
28 c l tq
29 sa lq $3 , %rax
30 addq −40(%rbp) , %rax
31 movq (%rax) , %rax
32 movq %rax, −24(%rbp)
33 .L3 :
34 #APP
35 /∗ as se r t #doub le#−24(%rbp)# >=#doub l e p o i n t e r#−40(%rbp)#[# i n t#−4(%rbp)#] ;∗/
36 /∗ loop i nva r i an t ;∗/
37 #NO_APP
38 addl $1 , −4(%rbp)
39 movl −4(%rbp) , %eax
40 cmpl −44(%rbp) , %eax
41 j l .L4
42 movq −24(%rbp) , %rax
43 movq %rax, −16(%rbp)
44 nop
45 .L5 :
46 #APP
47 /∗ ensures \ f o r a l l i n teger k;0<=k<#i n t #−44(%rbp)#
48 ==> #doub le#−16(%rbp)# >= #doub l e p o i n t e r#−40(%rbp)#[k] ; ∗ /
49 #NO_APP
50 movq −16(%rbp) , %rax
51 movq %rax, −56(%rbp)
52 movsd −56(%rbp) , %xmm0
53 re t
54 .cf i_endproc

Figure 10.9: Assembly code in SSE2 mode of Figure 10.8 example

143

NMAX

Arch. 10 100 1000

SSE2 -O0 0x1.1p-50 0x1.02p-47 0x1.004p-44

x87 -O0 0x1.0022p-50 0x1.0021p-47 0x1.00201p-44

x87 -O2 0x1.1p-61 0x1.02p-58 0x1.004p-55

FMA -O2 0x1p-50 0x1p-47 0x1p-44

The SSE2 mode, supposed to be strictly compliant with the standard, is worse than FMA
and x87, because the roundings in FMA and x87 are slightly more precise.

The x87 without optimization is better than the SSE2 mode. The reason is that the value
p is calculated in 80 bits and then it is rounded to 64 bits before entering the next step of the
loop for.

The case of FMA is even better than the two previous modes because p + x[i] × y[i] is
computed with a single rounding.

The improvement with x87 with optimization is impressive: around 211 ' 2000 times better.
The reason is that optimization makes the value of p stored into the x87 stack thus with extended
80-bits precision for the complete execution of the loop: no intermediate rounding to 64-bit is
done.

144

#def ine NMAX 1000
#def ine NMAXR 1000.0
#def ine B 0x1 . f57d5p−44

/∗@ lemma bound_int_to_ r e a l :
@ \ f o r a l l i n teger i ; i <= NMAX ==> i <= NMAXR; ∗/

/∗@ lemma t r i a n g u l a r _ i n e q u a l i t y :
@ \ f o r a l l r e a l x , y , z ; \abs (x−z) <= \abs (x−y) + \abs (y−z) ; ∗/

/∗@ r equ i r e s 0 <= n <= NMAX;
@ r equ i r e s \ va l i d_range (x , 0 , n−1) && \ va l i d_range (y , 0 , n−1) ;
@ r equ i r e s \ f o r a l l i n teger i ; 0 <= i < n ==>
@ \abs (x [i]) <= 1 .0 && \abs (y [i]) <= 1 .0 &&
@ x [i] == \exact (x [i]) && y [i] ==\exact (y [i]) ;
@ ensures \abs (\ r e s u l t − \exact (\ r e s u l t)) <= n ∗ B; ∗/

double s c a l a r_p roduc t (double x [] , double y [] , i n t n) {
double p = 0 . 0 ;
/∗@ loop i nva r i an t 0 <= i <= n ;

@ loop i nva r i an t \abs (\ exact (p)) <= i ;
@ loop i nva r i an t \abs (p − \exact (p)) <= i ∗ B;
@ loop v a r i a n t n− i ; ∗/

f o r (i n t i =0; i < n ; i++) {
// bounds , needed by Gappa
//@ as se r t \abs (x [i]) <= 1 . 0 ;
//@ as se r t \abs (y [i]) <= 1 . 0 ;
//@ as se r t \abs (p) <= NMAXR∗(1+B) ;

L :
p = p + x [i]∗ y [i] ;

// bound on the round ing e r r o r s i n the s ta tement above , proved by gappa
/∗@ as se r t \abs (p − (\ at (p , L) + x [i]∗ y [i])) <= B; ∗/

// the p rope r i n s t a n c e o f t r i a n g u l a r i n e q u a l i t y to show the main i n va r i an t
/∗@ as se r t \abs (p − \exact (p)) <=

\abs (p − (\ at (p , L) + x [i]∗ y [i])) +
\abs ((\ at (p , L) + x [i]∗ y [i]) − (\ exact (\ at (p , L)) + x [i]∗ y [i])) ; ∗/

// a lemma to show the i n va r i an t \abs (\ exact (p)) <= i
/∗@ as se r t \abs (\ exact (p)) <=

\abs (\ exact (\ at (p , L))) + \abs (x [i]) ∗ \abs (y [i]) ; ∗/

// a n e c e s s a r y lemma , p roved on l y by gappa
//@ as se r t \abs (x [i]) ∗ \abs (y [i]) <= 1 . 0 ;

}
return p ;

}

Figure 10.10: Scalar product: annotated code

145

146

Chapter 11

Bit-level reasoning

There are numerical programs containing bit-level operations such as negation by XOR, conver-
sion of an integer to a double which were not handled in previous chapters. Finding a model
which we can integrate into our translator to prove such programs automatically is a difficult
task. Hence, this is a future work. What we can do now is to write manually such programs
directly in Why 3 1 [10]. The goal of this step is to create a bit-level model. Firstly, we will
explain why we handle these examples. Secondly, we will present the Why3. Then we will detail
how to construct theories in Why 3. Finally, there are examples for illustrating our theories.

11.1 Motivations

Before talking about the goal of this chapter, we present firstly some examples which are not
proved by our hardware-dependent approach. These examples containing bit-level operations
and they are what we want to prove in this chapter.

11.1.1 Examples of the chapter

Negation by XOR

This example is the computation of the negation of a floating-point number using XOR operation
which is often found in assembly code. A C program is shown in Figure 11.1 and its assembly
code corresponding to the negation is in Figure 11.2.

double neg (double x){
return −x ;

}

Figure 11.1: Negation of a floating-point number

In this assembly code, %xmm1 stores the value of x (line 1), %xmm0 contains the value
0x8000000000000000 (line 2) which is represented in 64-bit binary format as 100000. . .0. The
XOR operation is executed by the instruction xorpd (line 3). Return to our hardware-dependent
approach, as we do not handle instructions in bit level, this program cannot be proved. In order
to compute the negation of a floating-point number x:

1http://why3.lri.fr/

147

http://why3.lri.fr/

1 movsd −8(%rbp) , %xmm1
2 movsd .LC0 (%rip) , %xmm0
3 xorpd %xmm1, %xmm0
4
5 .LC0 :
6 . l o n g 0
7 . l o n g −2147483648

Figure 11.2: Excerpt of assembly code in SSE mode of Figure 11.1 example

x0 x1 x63

0x8000000000000000

x0 x1 x63
XOR

where x0 is the sign bit of the floating-point number x.

Figure 11.3: Negation of a double by XOR

#inc lude <s t d i o . h>
#inc lude <a s s e r t . h>

union{double d ; i n t i [2] ; } Var , Const ;

i n t doub le_of_int (i n t x){

i n t j = 0x43300000 ;
Const . i [1] = j ; Var . i [1] = j ;
j = 0x80000000 ;
Const . i [0] = j ; Var . i [0] = j ^x ;
double f = Var . d − Const . d ;

a s s e r t (f == (double) x) ;
}

Figure 11.4: Example about conversion of an integer to a double

• x XOR 0x80000000 (if x is a single) and

• x XOR 0x8000000000000000 (if x is a double).

It is illustrated in Figure 11.3.

Conversion of an integer to double

This example is presented by a C program in Figure 11.4. Notice that this example is tested in
a little endian architecture. The definition of endianness and the difference between little endian
and big endian will be talked in the next section.

148

0x43300000 0x80000000

0x800000000x43300000Const Const = 252 + 231

0x80000000 ˆ x0x43300000Var Var = 252 + 231+x

Var - Const is x converted to double

Figure 11.5: Convert an integer to a double

The idea of this example is to convert an integer to a double, shown in Figure 11.5. We
have two integers: j = 0x43300000 and j’ = 0x80000000. The value of Const is obtained by
concatenating j and j’. The value of Const is Const = 252 + 231. Var is the concatenation of
j and (j’ XOR x). The value of Var is Var = 252 + 231+x. Then, Var - Const is the value of
x in double.

We cannot prove the examples above with our hardware-dependent approach because this
approach did not handle bit-level operations. If we change the translation in our approach
in order to prove them, this means that the translation of each instructions must be done in
bitvectors, all the examples from Chapter 7 to Chapter 10 will not be proved anymore.

11.1.2 Goals of the chapter

The goal of this chapter is to do an experience in Why 3: We will implement examples directly
in Why 3 and see what is possible to prove with bitvectors.

Also notice that in this chapter, we will use Why 3 instead of Why 2 2 as in Why 3, it is easy
to prove a part of obligations in Coq and with automatic provers. Moreover, in Why 3, we can
use or clone a theory, this helps to write Why 3 code clearer.

There does not exist the Why 3 standard library for bitvector. Writing a bitvector library in
Why 3 is also a goal of this chapter.

11.2 About endianness

Endianness 3 is the format indicating how multi-byte data is stored in computer memory. It
describes the location of the most significant byte (MSB) and least significant byte (LSB) of an
address in memory.

There are two types of endianness:

• Little endian: stores the LSB at the lowest address. The architectures supporting the little
endian are Intel 80x86, DEC Alpha, etc.

2The Why syntax that we use from Chapter 2 to Chapter 10 is called Why 2
3http://en.wikipedia.org/wiki/Endianness
http://www.intel.com/design/intarch/papers/endian.pdf

149

http://en.wikipedia.org/wiki/Endianness
http://www.intel.com/design/intarch/papers/endian.pdf

• Big endian: stores the MSB at the lowest address. The architectures using this type of
endianness are Motorola 68k, IBM Power, etc.

Besides, there are architectures such as ARM, PowerPC, etc. which feature a setting which
allow to switch to either big or little endian (Bi-Endian) by setting a processor register.

Here is an example illustrating the difference between little endian and big endian: consider
a 32-bit integer (in hex) 0xabcdef12. It consists of 4 bytes: ab, cd, ef and 12. Assuming that
we store this 32-bit integer at the memory address starting 1000. Then, on little and big endian
system, the memory will be:

Address Little endian Big endian
1000 12 ab
1001 ef cd
1002 cd ef
1003 ab 12

Let us go back to example in Figure 11.4, now we assume that the memory address of Const
starting at 1000 and with both little and big endian, the memory of Const will be:

i[1] i[0]

Little endian 43 30 00 00 80 00 00 00

Big endian 00 00 30 43 00 00 00 80

Address 1007 1006 1005 1004 1003 1002 1001 1000

With little endian, the value of Const = 252 + 231. However, the value of Const with big
endian does not. In order to get the same value Const = 252 + 231 with big endian, we just
swap the value of i[0] and i[1], the memory is as below:

i[1] i[0]

Big endian 00 00 00 80 00 00 30 43

Address 1007 1006 1005 1004 1003 1002 1001 1000

In big endian architecture, we also swap the value of i[0] and i[1] of the variable Var.

We do not intend to handle the endianness in this chapter. However, it is necessary to know
a little about it because it is related to the the bitvector. We consider in the next sections only
little endian. The big endian is handled similarly.

11.3 Why 3

Why 3 is the next generation of Why platform. It clearly separates the purely logical specification
part from generation of verification conditions for programs. In this section, we present logic
declarations and theories in Why 3 that we will use in the next sections.

11.3.1 Logic

The logic in Why 3 is a first-order logic with polymorphic types with several extensions: recursive
definitions, algebraic data types and inductive predicates.

150

Types

A type can be non-interpreted, an alias for a type expression or an algebraic data type, such as

type bv
type bool = True | False

Like Why 2, in Why 3 we can declare an abstract type bv which represents a bitvector type. The
type bool is an abstract type with two values True and False.

Function and predicate symbols

Every function or predicate symbol in Why 3 has a type signature. For example:

function nth bv int: bool

Both functions and predicates can be given definitions, possibly mutually recursive. For example:

predicate eq (v1 v2 : bv) =
forall n:int. 0 <= n < size -> nth v1 n = nth v2 n

The predicate eq defines that the value of the nth bit of v1 is equal to the nth bit of v2 for
all values of n such that 0 ≤ n < size.

11.3.2 Theories

A Why 3 input is a file organized as a list of theories. A theory is a list of declarations.
Declarations introduce new types, functions and predicates, state axioms, lemmas and goals.
These declarations can be directly written in the theory or taken from existing theories.

Excerpt of the theory BitVector in Figure 11.6 illustrates how to define a theory in Why 3.
The detail of this theory will be talked in the next section.

This theory has a list of declarations:

• the size of a bitvector,

• a type bv representing a bitvector,

• the function nth: returns the value of the bitvector bv at a given position,

• functions bvzero and bvone and the corresponding axioms Nth_zero and Nth_one: express
that bvzero is a bitvector with all values being False and bvone is a bitvector with all
value being True,

• a predicate eq.

use and clone

When we need to reuse a theory, we use the keyword use or clone. If we use a theory without
duplicate it, we use the keyword use. On the contrary, when we clone a theory with the keyword
clone, we create a local copy of every cloned declaration, and the newly created symbols, despite
having the same names, are different from their originals. More precisely:

If a theory T1 is used in another theory T2 then

• the symbols of T1 are shared

151

theory B i tVec to r

funct ion s i z e : i n t

type bv

axiom s i z e _ p o s i t i v e : s i z e >0

funct ion nth bv i n t : boo l

funct ion bvze ro : bv
axiom Nth_zero :

f o r a l l n : i n t . 0 <= n < s i z e −> nth bvze ro n = Fa l s e

funct ion bvone : bv
axiom Nth_one :

f o r a l l n : i n t . 0 <= n < s i z e −> nth bvone n = True

pred icate eq (v1 v2 : bv) =
f o r a l l n : i n t . 0 <= n < s i z e −> nth v1 n = nth v2 n

. . . .
end

Figure 11.6: A Why 3 theory example

• the axioms of T1 remain the axioms

• the lemmas of T1 become the axioms

• the goals of T1 are ignored

If a theory T1 is cloned by another theory T2 then

• the declarations of T1 are copied or replaced

• the axioms of T1 remain the axioms or become the lemmas or goals

• the lemmas of T1 become the axioms

• the goals of T1 are ignored

For example:

theory BV32

function size : int = 32

clone export BitVector with function size = size

end

The theory BV32 above is a clone of the theory BitVector in which size = 32.

152

Theory Bitvector

end

Theory BV32

end

Theory BV64

end

Theory BV32_64

end

Theory BV_double

end

clo
ne

clone

use

us
e

use

Figure 11.7: Bitvector theories

11.4 Bitvector theories in Why 3

Figure 11.7 contains bitvector theories that we define for this chapter. It illustrates the relations
between the theory BitVector and the others. Besides, we also define other theories: Pow2int
Pow2real for the exponent of 2 in integer and in real value.

The detail of the theories in Figure 11.7 will be presented below.

11.4.1 Theory BitVector

This theory consists of elements and functions of a bitvector. The detail of this theory is
presented in Figure 11.8. It contains:

• the size of a bitvector

• an abstract type bv

• the functions about logic operations: bitwise and, bitwise or, bitwise xor, bitwise not,
logical shift right/left;

• the function to_nat_sub b j i: returns the non-negative integer value of the bitvector b
from index i to j;

• the function from_int n: returns the bitvector representing an integer n on size bits;

• the function from_int2c: returns the bitvector of an 2-complement integer.

We present below how to define the three functions that we will use in our examples in
Section 11.5.

153

theory B i tVec to r

use export boo l . Bool
use import i n t . I n t
use import Pow2int
use import i n t . E u c l i d e a nD i v i s i o n

funct ion s i z e : i n t

type bv

funct ion nth bv i n t : boo l

funct ion bvze ro : bv

funct ion bvone : bv

funct ion bw_and (v1 v2 : bv) : bv

funct ion bw_or (v1 v2 : bv) : bv

funct ion bw_xor (v1 v2 : bv) : bv

funct ion bw_not (v : bv) : bv

(∗ l o g i c a l s h i f t r i g h t ∗)
funct ion l s r bv i n t : bv
(∗ a r i t hm e t i c s h i f t r i g h t ∗)
funct ion a s r bv i n t : bv
(∗ l o g i c a l s h i f t l e f t ∗)
funct ion l s l bv i n t : bv

(∗ c o n v e r s i o n to / from i n t e g e r s ∗)
(∗ g e n e r a l i z a t i o n : (to_nat_sub b j i) r e t u r n s the non−n e g a t i v e number

r e p r e s e n t e d by b [j . . i] ∗)

funct ion to_nat_sub bv i n t i n t : i n t
(∗ (to_nat_sub b j i) r e t u r n s the non−n e g a t i v e i n t e g e r whose

b i n a r y r e p r i s b [j . . i] ∗)
. . . .

(∗ (f rom_int n) r e t u r n s the b i t v e c t o r r e p r e s e n t i n g the i n t e g e r n on
s i z e b i t s . ∗)

funct ion f rom_int (n : i n t) : bv
. . . .
(∗ f rom_int2c : i n t −> bv take an i n t e g e r as i n pu t and r e t u r n s a bv

wi th 2−complement ∗)
funct ion f rom_int2c (n : i n t) : bv

. . . .
end

Figure 11.8: BitVector theory

154

Function to_nat_sub

The function to_nat_sub(b:bv, j:int, i:int):int is defined recursively by:

to_nat_sub b j i =

to_nat_sub b (j - 1) i if 0 ≤ i ≤ j < size and nth b j = False

2j−i + to_nat_sub b (j - 1) i if 0 ≤ i ≤ j < size and nth b j = True
0 if i > j

For example, if we have a 8-bit bitvector b = 10101010 then

to_nat_sub b 3 0 = 23 + to_nat_sub b 2 0 (nth b 3 = True)
= 23 + to_nat_sub b 1 0 (nth b 2 = False)
= 23 + 21 + to_nat_sub b 0 0 (nth b 1 = True)
= 23 + 21 + to_nat_sub b -1 0 (nth b 0 = False)
= 23 + 21 (0 > -1)
= 10

The corresponding function 4 in Why 3 is presented as follows:

function to_nat_sub bv int int : int
(* (to_nat_sub b j i) returns the non-negative integer

whose binary repr is b[j..i] *)

axiom to_nat_sub_zero :
forall b:bv, j i:int.

0 <= i <= j < size ->
nth b j = False ->

to_nat_sub b j i = to_nat_sub b (j-1) i

axiom to_nat_sub_one :
forall b:bv, j i:int.

0 <= i <= j < size ->
nth b j = True ->

to_nat_sub b j i = (pow2 (j-i)) + to_nat_sub b (j-1) i

axiom to_nat_sub_high :
forall b:bv, j i:int.

i > j ->
to_nat_sub b j i = 0

Function from_int

The function from_int(n:int):bv returns the bitvector representing the non-negative integer
n on size bits. It is defined by: For all integers n, i such as 0 ≤ i < size

• If (n/2i)%2 = 0 then nth (from_int n) i = False

• If (n/2i)%2 <> 0 then nth (from_int n) i = True

The corresponding Why function is shown below:
4Notice that Why 3 does not allow defining functions recursively on integers, this is the reason why we use

axioms instead of defining recursive functions.

155

function from_int (n:int) : bv

axiom nth_from_int_high_even:
forall n i:int. size > i >= 0 /\ mod (div n (pow2 i)) 2 = 0 ->

nth (from_int n) i = False

axiom nth_from_int_high_odd:
forall n i:int. size > i >= 0 /\ mod (div n (pow2 i)) 2 <> 0 ->

nth (from_int n) i = True

Function from_int2c

The function from_int2c (n:int):bv takes a signed integer n as input and returns a bitvector
bv with two’s complement representation. It is defined by:

• For sign bit: For all integer n:

– If n ≥ 0 then nth (from_int2c n) (size-1) = False

– If n < 0 then nth (from_int2c n) (size-1) = True

• For all integer n, i such as 0 ≤ i < size− 1

– If (n/2i)%2 = 0 then nth (from_int n) i = False

– If (n/2i)%2 <> 0 then nth (from_int n) i = True

The declaration of this function in Why is below:

axiom nth_sign_positive:
forall n :int. n>=0 -> nth (from_int2c n) (size-1) = False

axiom nth_sign_negative:
forall n:int. n<0 -> nth (from_int2c n) (size-1) = True

axiom nth_from_int2c_high_even:
forall n i:int. size-1 > i >= 0 /\ mod (div n (pow2 i)) 2 = 0

-> nth (from_int2c n) i = False

axiom nth_from_int2c_high_odd:
forall n i:int. size-1 > i >= 0 /\ mod (div n (pow2 i)) 2 <> 0

-> nth (from_int2c n) i = True

The logic functions div and mod are the integer division (which rounds down) and the modulo
functions. The function pow2 i, which is declared in theory Pow2int, return the integer value
of 2i.

11.4.2 Theory BV32 and BV64

The theory BV64, presented in Figure 11.9 and the theory BV32 is the similar one. The theory
BV32(64) declares a theory for bitvector in 32(64) bits. It is a clone version of the theory
BitVector with size = 32(64).

156

theory BV64

funct ion s i z e : i n t = 64

clone export B i tVec to r w i th funct ion s i z e = s i z e

end

Figure 11.9: BV64 theory

theory BV32_64

use import i n t . I n t
use BV32
use BV64

funct ion concat BV32 . bv BV32 . bv : BV64 . bv

axiom concat_low : f o r a l l b1 b2 : BV32 . bv .
f o r a l l i : i n t . 0<=i <32 −> BV64 . nth (concat b1 b2) i = BV32 . nth b2 i

axiom concat_high : f o r a l l b1 b2 : BV32 . bv .
f o r a l l i : i n t . 32<=i <64 −> BV64 . nth (concat b1 b2) i = BV32 . nth b1 (i −32)

end

Figure 11.10: Bv32_64 theory

11.4.3 Theory BV32_64

The theory BV32_64 (See Figure 11.10) use the theories BV32 and BV64. The function concat
in this theory concatenates two 32-bit bitvectors to create a 64-bit bitvector.

x0 x1 x31b2 x0 x1 x31 b1

x32 x33 x63x0 x1 x31

As shown in the figure above, b1 and b2 are two 32-bit bitvectors. After concatenating, b2
becomes the lower part and b1 becomes the higher part of a 64-bit bitvector.

11.4.4 Theory BV_double

The theory BV_double contains declarations for converting a 64-bit bitvector to a double. It
uses the theory BV64 (see Figure 11.11). In this theory, we do not take into account special

157

theory BV_double

use import BV64
use import r ea l . R e a l I n f i x
use import i n t . I n t
use import Pow2rea l
use import r ea l . FromInt

funct ion double_of_bv64 (b : bv) : r e a l

funct ion exp (b : bv) : i n t = BV64 . to_nat_sub b 62 52

funct ion mant i s s a (b : bv) : i n t = BV64 . to_nat_sub b 51 0

funct ion s i g n (b : bv) : boo l = BV64 . nth b 63

funct ion s i gn_va lue (s : boo l) : r e a l

axiom s i g n_va l u e_ f a l s e :
s i gn_va lue (F a l s e) = 1 .0

axiom s i gn_va lue_t rue :
s i gn_va lue (True) = − .1.0

axiom z e r o : f o r a l l b : bv .
exp (b) = 0 /\ mant i s s a (b) = 0 −> double_of_bv64 (b) = 0 .0

axiom s i gn_o f_doub l e_pos i t i v e :
f o r a l l b : bv . s i g n b = Fa l s e −> double_of_bv64 (b) >=. 0 .0

axiom s ign_of_doub le_negat ive :
f o r a l l b : bv . s i g n b = True −> double_of_bv64 (b) <=. 0 .0

axiom double_of_bv64_value :
f o r a l l b : bv . 0 < exp (b) < 2047 −>

double_of_bv64 (b) = s i gn_va lue (s i g n (b)) ∗ .
(pow2 ((exp b) − 1023)) ∗ .
(1 . 0 +. (f rom_int (mant i s s a b)) ∗ . (pow2 (−52)))

end

Figure 11.11: Bv_double theory

values (NaNs, infinities). In order to calculate the double value from a bitvector, we use the
following formula (presented in Section 2.1).

(−1)sign × 2exp−bias × (1 + fraction× 21−prec) (11.1)

where 1 ≤ exp ≤ 2046, bias = 1023, prec = 53. If exp = 0 and fraction = 0 then the
double value is 0.0. The function double_of_bv64 (b:bv):real returns the value of a bitvector
interpreted as a IEEE double precision number by using Formula (11.1). This function needs
the following functions:

158

theory TestNegAsXOR

use import BV64
use import BV_double
use import i n t . I n t
use import boo l . Bool
use import r ea l . R e a l I n f i x

funct ion j : bv = from_int 0 x8000000000000000

lemma MainRe su l tB i t s : f o r a l l x : bv . f o r a l l i : i n t . 0 <= i < 63 −>
nth (bw_xor x j) i = nth x i

lemma MainResu l tS ign : f o r a l l x : bv . nth (bw_xor x j) 63 = notb (nth x 63)

lemma Sign_of_xor_j : f o r a l l x : bv . s i g n (bw_xor x j) = notb (s i g n x)

lemma Exp_of_xor_j : f o r a l l x : bv . exp (bw_xor x j) = exp (x)

lemma Mantissa_of_xor_j : f o r a l l x : bv . mant i s s a (bw_xor x j) = mant i s s a (x)

lemma MainResu l tZero : f o r a l l x : bv . 0 = exp (x) /\ mant i s s a (x) = 0 −>
double_of_bv64 (bw_xor x j) = −. double_of_bv64 x

lemma s ign_neg :
f o r a l l x : bv . s i gn_va lue (notb (s i g n (x))) = −. s i gn_va lue (s i g n (x))

lemma MainResu l t : f o r a l l x : bv . 0 < exp (x) < 2047 −>
double_of_bv64 (bw_xor x j) = −. double_of_bv64 x

end

Figure 11.12: Negation of a double by XOR

• exp (b:bv):int returns the value of bitvector b in range [52..62] interpreted as a non-
negative integer;

• mantissa (b:bv):int returns the value of bitvector b in range [0..51] interpreted as a
non-negative integer;

• sign (b:bv):bool returns the value of the sign bit of b (63th bit of b);

• sign_value (s:bool):real returns the value of sign: either 1.0 or -1.0.

11.5 Examples

11.5.1 Negation by xor

This example was presented in subsection 11.1.1. The theory TestNegAsXOR is presented in
Figure 11.12. A screen-shot of the proofs is in Figure 11.13. There are 8 lemmas to prove:

• 7 lemmas proved automatically by Alt-Ergo and

159

Figure 11.13: Result of Figure 11.12 program

• only one lemma proved using Coq (11 lines).

All these lemmas are described in the following table:

Lemma Description Proved by

Goals

MainResultZero The result is 0.0: when exp(x) =
0.0 and mantissa(x) = 0

Alt-Ergo

MainResult when 0 < exp(x) < 2047 Coq

Extra lemmas

MainResultBits The value of each bit in the result
bitvector except sign bit

Alt-Ergo
MainResultSign The value of sign bit of the result

bitvector
Sign_of_xor_j Lemma about the sign of x XOR j
Exp_of_xor_j Exponent of the bitvector of

x XOR j
Mantissa_of_xor_j Mantissa of the bitvector of x XOR j
sign_neg A lemma about sign value helps to

prove MainResult

11.5.2 Conversion of an integer to a double

This example was presented in subsection 11.1.1. We implement it directly in Why 3. In order
to do that, we have three parts:

• Declaration of constants j and j’

• Proof of Const = 252 + 231

• Proof of Var(x) = 252 + 231+ x

• Final goal: Const - Var(x) = (double)x

The detail of this program is shown below:

160

1 funct ion j : BV32 . bv = BV32 . f rom_int 0 x43300000
2 funct ion j ’ : BV32 . bv = BV32 . f rom_int 0 x80000000
3 (∗ ∗∗∗ ∗)
4 (∗ d e f i n i t i o n s : ∗)
5 (∗ con s t : bv64 = concat j j ’ ∗)
6 (∗ const_as_double : r e a l = double_of_bv64 (con s t) ∗)
7 (∗ ∗∗∗ ∗)
8 funct ion con s t : BV64 . bv = BV32_64 . concat j j ’
9

10 funct ion const_as_double : r e a l = double_of_bv64 cons t
11
12 (∗ ∗∗∗ ∗)
13 (∗ next lemma : const_as_double = 2^52 + 2^31 ∗)
14 (∗ ∗∗∗ ∗)
15 lemma nth_const1 : f o r a l l i : i n t . 0 <= i <= 30 −> BV64 . nth cons t i = Fa l s e
16 lemma nth_const2 : BV64 . nth con s t 31 = True
17 lemma nth_const3 : f o r a l l i : i n t . 32 <= i <= 51 −> BV64 . nth cons t i = Fa l s e
18 lemma nth_const4 : f o r a l l i : i n t . 52 <= i <= 53 −> BV64 . nth cons t i = True
19 lemma nth_const5 : f o r a l l i : i n t . 54 <= i <= 55 −> BV64 . nth cons t i = Fa l s e
20 lemma nth_const6 : f o r a l l i : i n t . 56 <= i <= 57 −> BV64 . nth cons t i = True
21 lemma nth_const7 : f o r a l l i : i n t . 58 <= i <= 61 −> BV64 . nth cons t i = Fa l s e
22 lemma nth_const8 : BV64 . nth con s t 62 = True
23 lemma nth_const9 : BV64 . nth con s t 63 = Fa l s e
24
25 lemma s i gn_cons t : s i g n (con s t) = Fa l s e
26
27 lemma exp_const : exp (con s t) = 1075
28
29 lemma to_nat_mantissa : (BV64 . to_nat_sub con s t 30 0) = 0
30
31 lemma mantissa_const_to_nat51 :
32 BV64 . to_nat_sub cons t 51 0 = BV64 . to_nat_sub cons t 31 0
33
34 lemma mant i s sa_const : mant i s s a (con s t) = Pow2int . pow2 31
35
36 lemma cons t_va lue0 : const_as_double = 1 . 0 ∗ . Pow2rea l . pow2 (1075 − 1023) ∗ .
37 (1 . 0 +. Pow2rea l . pow2 31 ∗ . Pow2rea l . pow2 (−52))
38
39 lemma cons t_va lue : const_as_double = Pow2rea l . pow2 52 +. Pow2rea l . pow2 31

Figure 11.14: Declaration and proofs of Const

Declaration of constants

We declare two bitvectors j and j’ which are the 32-bit binary representation of two values
0x43300000 and 0x80000000.

function j : BV32.bv = BV32.from_int 0x43300000
function j’: BV32.bv = BV32.from_int 0x80000000

161

j = 0x43300000
j’ = 0x80000000
var(x) = concat j (j’ xor x)

lemma1: ∀ integer x, to_nat_sub (j xor x) 31 0 = 231 + x
lemma2: ∀ integer x, mantissa(var(x)) = 231 + x
lemma3: ∀ integer x, exp(var(x)) = 1075
lemma4: ∀ integer x, sign(var(x)) = false

Goal: ∀ integer x, var_as_double(x) = 252 + 231 + x

Figure 11.15: Lemmas for proving var(x) = 252 + 231+x

Proof of Const = 252 + 231

The declaration of the variable Const and the proofs related to Const are shown in Figure 11.14.
We declare the function const that returns a 64-bit bitvector by concatenating j and j’ (line 8).
The function const_as_double returns the real value of bitvector const (line 10). We need to
prove that Const = 252+231. The corresponding lemma const_value is at line 39. All the lem-
mas from line 15 – 37 help to prove const_value. All the lemmas for proving Const = 252 + 231

are proved automatically by Alt-Ergo, CVC3 and Z3 except the lemma exp_const which is
proved using Coq (30 lines). There are 5 other lemmas that help to prove the lemmas above by
automatic provers.

Proof of Var(x) = 252 + 231+ x

The steps to prove Var(x) = 252+231+ x are presented in Figure 11.15. We define the following
function

function jpxor(x:int): BV32.bv = (BV32.bw_xor j’ (BV32.from_int2c x))

that returns a 32-bit bitvector of j’ XOR x. The function var(x)

function var(x:int): BV64.bv = (BV32_64.concat j (jpxor x))

returns a 64-bit bitvector by concatenating j and jpxorx(x). The double value of an integer
converted to double is defined by the function var_as_double(x):

function var_as_double(x:int) : real = double_of_bv64 (var x)

The lemma lemma1 helps to prove the lemma lemma2. lemma2 proves that the fraction value
of var(x) is 231+ x. The lemmas lemma2, lemma3, lemma4 helps to find the double value of
var(x).

The lemma lemma1 is the most difficult one to prove. The proofs of lemma2, lemma3, lemma4
are similar to the proofs of fraction, exponent and sign in the case of const. The Why code of
lemma1 and others lemmas needed to prove lemma1 is shown in Figure 11.16.

These lemmas are proved by the combination of automatic provers and interactive prover
Coq. They are shown in the following table:

162

1 (∗ ∗∗∗ ∗)
2 (∗ lemma 1 : f o r a l l i n t e g e r x , to_nat (j p x o r (x)) = 2^31 + x ∗)
3 (∗ ∗∗∗ ∗)
4
5 pred icate i s_ i n t 32 (x : i n t) = − Pow2int . pow2 31 <= x < Pow2int . pow2 31
6
7 (∗ b i t s o f j p x o r x ∗)
8
9 lemma nth_0_30 : f o r a l l x : i n t . f o r a l l i : i n t . i s_ i n t 32 (x) /\ 0<=i <=30 −>

10 BV32 . nth (BV32 . bw_xor j ’ (BV32 . f rom_int2c x)) i =
11 BV32 . nth (BV32 . f rom_int2c x) i
12 lemma nth_jpxor_0_30 :
13 f o r a l l x : i n t . f o r a l l i : i n t . i s_ i n t 32 (x) /\ 0<=i <=30 −>
14 BV32 . nth (j p x o r x) i = BV32 . nth (BV32 . f rom_int2c x) i
15 lemma nth_var31 : f o r a l l x : i n t .
16 BV32 . nth (j p x o r x) 31 = notb (BV32 . nth (BV32 . f rom_int2c x) 31)
17
18 lemma to_nat_sub_0_30 : f o r a l l x : i n t . i s_ i n t 32 (x)−>
19 BV32 . to_nat_sub (BV32 . bw_xor j ’ (BV32 . f rom_int2c x)) 30 0 =
20 BV32 . to_nat_sub (BV32 . f rom_int2c x) 30 0
21
22 (∗ ca se x >= 0 ∗)
23
24 lemma jpxorx_pos : f o r a l l x : i n t . x>=0 −>
25 BV32 . nth (BV32 . bw_xor j ’ (BV32 . f rom_int2c x)) 31 = True
26
27 lemma from_int2c_to_nat_sub_pos :
28 f o r a l l i : i n t . 0 <= i <= 31 −>
29 f o r a l l x : i n t . 0 <= x < Pow2int . pow2 i −>
30 BV32 . to_nat_sub (BV32 . f rom_int2c x) (i −1) 0 = x
31
32 lemma lemma1_pos : f o r a l l x : i n t . i s_ i n t 32 x /\ x >= 0 −>
33 BV32 . to_nat_sub (j p x o r x) 31 0 = Pow2int . pow2 31 + x
34
35 (∗ ca se x < 0 ∗)
36
37 lemma jpxorx_neg : f o r a l l x : i n t . x<0 −>
38 BV32 . nth (BV32 . bw_xor j ’ (BV32 . f rom_int2c x)) 31 = Fa l s e
39
40 lemma from_int2c_to_nat_sub_neg :
41 f o r a l l i : i n t . 0 <= i <= 31 −>
42 f o r a l l x : i n t . −Pow2int . pow2 i <= x < 0 −>
43 BV32 . to_nat_sub (BV32 . f rom_int2c x) (i −1) 0 = Pow2int . pow2 i + x
44
45 lemma lemma1_neg : f o r a l l x : i n t . i s_ i n t 32 x /\ x < 0 −>
46 BV32 . to_nat_sub (j p x o r x) 31 0 = Pow2int . pow2 31 + x
47
48 (∗ f i n a l lemma ∗)
49
50 lemma lemma1 : f o r a l l x : i n t . i s_ i n t 32 x −>
51 BV32 . to_nat_sub (j p x o r x) 31 0 = Pow2int . pow2 31 + x

Figure 11.16: Proofs of lemma1

163

Lemma Proved by
nth_jpxor_0_30

Alt-Ergo
nth_0_30
nth_var31
to_nat_sub_0_30
jpxorx_pos
from_int2c_to_nat_sub_pos 60 lines of Coq
lemma1_pos 14 lines of Coq
jpxorx_neg CVC3, Z3
from_int2c_to_nat_sub_neg 82 lines of Coq
lemma1_neg 14 lines of Coq
lemma1 Alt-Ergo

The final goal to prove is

function double_of_int32 (x:int) : real = var_as_double(x) -. const_as_double
lemma MainResult: forall x:int. is_int32 x -> double_of_int32 x = from_int x

It is proved automatically by Alt-Ergo and Z3.

11.6 Discussion

We had tried to define a bitvector model in Why 2 and tried to prove the two examples above.
As Why 3 allows proving a part of obligations in Coq and in addition, it allows reusing existing
theories, we choose Why 3 for this experience.

What we obtained in this chapter are that firstly we defined a bitvector library in Why 3.
Secondly, we are successful in proving programs containing bit-level operation in Why 3. With
this experience, we had to prove many lemmas in Coq. It is thus too difficult to prove such
program only with automatic provers. For this reason, in order to integrate the bitvector model
into hardware-dependent approach, the improvement of bitvector theory is needed.

164

Chapter 12

Conclusion and Future works

12.1 Summary

This thesis demonstrates that the formal proofs of numerical programs in considering architec-
ture and compiler aspect is possible. This possibility is shown by two proposed approaches:

12.1.1 Hardware-independent approach

This approach gives correct rounding errors whatever the architecture and allowing many choices
to the compiler. This is implemented in the Jessie plugin of the Frama-C framework for all basic
operations: addition, subtraction (with possible reordering), multiplication, division, square
root, negation, absolute value.

Moreover, it handles both rounding according to 64-bit rounding in IEEE-754 double preci-
sion, 80-bit rounding in x87, double rounding in IA-32 architecture, and FMA in Itanium and
PowerPC processors and all possible reorganizations of additions and subtractions.

A drawback of this approach is that we may only prove rounding errors. There is no way
to prove, for example, that a computation is correct (even if it would be correct in all possible
roundings and compilations). This means that some subtle floating-point properties may be lost
but bounding the final rounding error is usually what is wanted by engineers and this does not
appear to be a big flaw.

Note that we only consider double precision numbers as they are the most used. This is easily
applied to single precision computations the same way (with single rounding, 80-bit rounding or
double rounding). The idea would be to give similar formulas and to provide the basic operations
with those post-conditions.

We only handle rounding-to-nearest (ties to even and ties away from zero). The reason is
that directed roundings do not suffer from these problems: double rounding gives the correct
answer and if some intermediate computations are done in 80-bit precision, the final result is
more accurate, but still correct as it is always rounded in the correct direction. When additions
are reordered, we may have different results, but all are smaller than the exact result, so the
wanted property still holds whatever the order. Only rounding-to-nearest causes discrepancies.

This work is at the boundary between software and hardware for floating-point programs
and this aspect of formal verification is very important. Moreover, this work deals both with
normal and subnormal numbers, the latter ones being usually dismissed.

Another interesting point is that our error bounds may be used by other tools. As shown
here, considering a slightly bigger error bound for each operation suffices to give a correct final
error. This means that if Fluctuat [26] for example would use them, it would also consider all
our cases of hardware and of compilation.

165

12.1.2 Hardware-dependent approach

Former work on the verification of assembly code are mainly in the context of the so-called
proof-carrying-code, where proof obligations for safety (of memory dereferencing, absence of
overflow, etc.) are generated on the object code. However these do not consider any behavioral
specification language to specify deeper properties than safety. Thus, we believe that what we
have presented is the first method being able to prove architecture- and compiler-dependent
behavioral properties of floating-point programs. Our approach and our prototype show that
proving complex behaviors of floating-point programs is possible. Our approach is implemented
by modifying GAS (≈ 10k lines of C code).

The advantage of this method is that we can prove programs based on their assembly code.
For this reason, firstly, it is possible to consider the accuracy of the result depending on the
architecture and compiler. Secondly, the precision of each operations is also considered in the
calculations. Thirdly, the optimizations are taken into account. Finally, there is no reasoning at
the bit-level representation. More importantly, we can prove that the same program may give
different result when it is compiled by different architecture/options of compiler.

We handled both single, double and extended rounding. In addition, we also handled FMA
instructions. Operations on 32-bit and 64-bit integer were also taken into account. We were
successful in proving C programs with complex statement such as for, goto, do while, etc. We
supported inlining functions which allow us to prove programs compiled with optimization at
-O2 level. By supporting this, we could find better results of programs.

We had two different models:

• the simple one that ignores the access of memory, dedicates to proving programs without
arrays and pointers.

• the memory model which supports for programs containing pointers and arrays.

We also considered a special class of programs containing bit operations such as the negation
of a floating-point number by using XOR, the bit-level conversion (integer number from/to
floating-point number). This work is still in progress as it is only an experience in Why 3 for
finding a way to prove such programs automatically.

However, it is clearly not mature enough for a non-expert user, because there is a lot of open
issues. First, some languages features are not supported, like pointer casts at the C level, and
also at the assembly level. Second, we are not able to interpret all the compiler optimizations.
Besides, there are still constraints for each class of programs we handle.

12.1.3 Comparison with related works

Before comparing with previous works, it is important to talk about the role of Why. Why is
an excellent tool which supports many automatic and interactive provers. Thanks to Why, we
can prove a program by using a combination of many provers. It is very difficult to use only
one prover to prove all proof obligations and none of provers can support many features. For
example, Gappa is a good prover which can prove obligations about floating point behaviors
while others cannot do that. Otherwise, many tools such as Alt-Ergo, CVC3, Z3, etc. helps us
to prove non-floating-point properties. For the reasons above, using Why is an advantage of our
work compared to previous works which support only one prover.

About the first approach, we compared it firstly with the strict model and full model. We
based on these two models to construct our approach. The difference is that our model consider
architecture and compiler aspects while these models support strictly the IEEE-754 standard.
Although the bound of each rounding error is higher than the one in previous works, it is true

166

for multiple architecture. In addition, we consider rounding in 64 bits while the strict model
and full model support both 32-bit and 64-bit rounding. Moreover, the full model supports also
for special values while we prove that they do not happen like in the strict mode.

Fluctuat is a tool aiming at analyzing the numerical precision and stability of complex
algorithms. Its aim is to detect automatically a possible catastrophic loss of precision and its
source, or else prove its absence. It relies on abstract domains for the estimation of values and
errors, based on interval and affine arithmetic. This tool follows only the IEEE-754 standard
while we consider the rounding error for multiple architecture and compiler.

About the second approach, as said before, we are the first ones who can prove numerical
programs considering architecture and compiler issues. This is thus the first difference compared
to the related works.

The work of Burdy and Pavlova [16] defined a specification language for bytecode called
BML (Bytecode Modeling Language) and proposed a verification condition generator for Java
bytecode which is completely independent from the source code. They also defined a compiler
from JML to BML which allows Java to benefit from the JML source specification (requires
not to optimize). Our work is a similar one, dedicates for proving C numerical program, and
we use ACSL-style specifications and translate the annotations into assembly without defining
a compiler for it. We do not need to define another specification language for assembly. More
precisely, we simplify what this work did and we focus on floating-point aspect. Moreover, thanks
to Why, we can prove assembly program (compiler optimizations are allowed) with automatic
provers while the work of Burdy and Pavlova dedicate to the interactive prover Coq.

Another work that we want to compare with is the one of Myreen in 2008. This work
proposed to translate assembly code into recursive functions in the HOL4 system and it did not
support for floating-point computation. Our work is a similar one but we translate assembly
code of floating-point program into Why intermediate language and the proof obligations can be
proved with many different provers.

Compared with the default model of Frama-c/Jessie, proving a program on its assembly
code is more complicated than proving it at source level. When we prove a C program on its
assembly code, in some cases, we need more information in order to prove it with automatic
provers. For example, in the case when we use memory model or when we have a loop invariant
in the program.

12.1.4 Difficulties

The difficulty I met is my limited knowledge about assembly language. Indeed, there are a lot
of assemblers with different syntaxes. It took me a large amount of time to understand different
syntaxes and finally I chose AT&T syntax which is supported by gcc. I also took a lot of time
to try to write a parser in OCaml for assembly and finally I found that it is a difficult task and
not the main goal of the thesis. For this reason, I modified GAS which already had a parser for
assembly.

12.2 Future works

12.2.1 Hardware-independent approach

Among the many future works are the numerous other possible compiler optimizations. We
have looked a little into multiplication reordering, but, due to underflow, the natural formulas
are either wrong or unusable. It is very difficult to only modify the one operation formula to
handle all possible underflows in a sequence of multiplications. If we had dismissed underflows,

167

this would have been easy, but we are still trying to find a correct and useful solution. We are
also interested in distributivity, meaning a⊗ (b⊕ c)←→ (a⊗ b)⊕ (a⊗ c), and in the replacing
of the division by the multiplication by the inverse: a � b ←→ a ⊗ (1 � b) (this is known to
be incorrect, but may speed up a lot of computations, such as Gaussian elimination [21]). The
interaction of all those optimizations with one another should be carefully studied.

12.2.2 Hardware-dependent approach

A simple future work is to consider special values such as NaNs, infinities, etc. A similar work
was done by Marché and Ayad [4]. We handled only rounding-to-nearest mode which is a default
of gcc. Another perspective is to consider other rounding modes.

In this thesis, we had two models: simple one (Chapter 7 to 9) and memory one (Chapter 10).
The goal is to use only memory model as the main model for this work. However, we need to
find a way to prove program automatically more easily. Until now, we need redundant assertions
to help automatic provers to prove it.

An ongoing work is bit-level reasoning. As discussed in Chapter 11, we proved some examples
containing bit-level operations in Why 3 such as the negation of a floating-point number, the
conversion of an integer number from/to a floating-point number. However, to prove such
programs automatically, it is still a hard work. A possible future work is to find a way to do it
automatically.

One another work that we would like to do is to see how the assembly code is changed when
it is compiled with gcc -funsafe-math-optimizations where the operations are re-organized
and may be rewritten and we would like to study what happens when a processor allows to
vectorize [58]. Our approach may work when the program is compiled with this kind of opti-
mization.

An important limitation is that the translation of annotations by using inline assembly may
change assembly code such as the compiler may add more move instructions. Thus it is not a
safe way. We wonder if the assert statement in C program is a better choice.

Our translator is tested only on Intel-64 architecture with gcc compiler. One of the future
work is try to test it in other architectures. For example, instead of generating FMA instructions
by gcc on Intel processors, we can generate assembly code directly by a PowerPC or an Intel
Itanium and use our translator to prove it. In order to do that, the translator must be modified
because the instructions of PowerPC are different from Intel-64. This work is tedious but direct
from our work.

A future work that is not related to floating-point arithmetic is to improve the weakest-
precondition algorithm for unstructured programs. We took some time to find out another
algorithm but we were not successful. We reused proposed techniques [32, 5] and in some cases
we have to add more information for loop invariants.

For longterm perspectives, our ambition is to integrate this approach into a certified compiler.
A similar work related to certified compiler was presented by Leroy [49]. Author proposed
the formal certification of a compiler from Cminor (a Clike imperative language) to PowerPC
assembly code, using the Coq proof assistant both for programming the compiler and for proving
its correctness. A future work is to see whether we can either integrate this approach into such
a work or reuse it, not dedicate to interactive language like Coq but our goal is for automatic
provers. We also intend to improve the robustness and reduce the trusted code base.

168

Bibliography

[1] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–58, 2008. http:
//ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4610933.

[2] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Manual. Volume 6: 128-
Bit and 256-Bit XOP and FMA4 Instructions. Specification, 2009.

[3] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Manual Volume 4: 128-
Bit Media Instructions. Specification, 2011.

[4] A. Ayad and C. Marché. Multi-prover verification of floating-point programs. In J. Giesl and
R. Hähnle, editors, Fifth International Joint Conference on Automated Reasoning, volume
6173 of Lecture Notes in Artificial Intelligence, pages 127–141, Edinburgh, Scotland, July
2010. Springer.

[5] M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs. In Pro-
ceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, PASTE ’05, pages 82–87, New York, NY, USA, 2005. ACM.

[6] M. Barnett, K. R. M. Leino, K. Rustan, M. Leino, andW. Schulte. The Spec# Programming
System: An Overview. pages 49–69. Springer, 2004.

[7] C. Barrett and C. Tinelli. CVC3. In Damm and Hermanns [23], pages 298–302.

[8] G. Barrett. Formal methods applied to a floating-point number system. IEEE Transactions
on Software Engineering, 15(5):611–621, 1989.

[9] P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto.
ACSL: ANSI/ISO C Specification Language, version 1.5, 2011. http://frama-c.cea.fr/
acsl.html.

[10] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd your herd of
provers. In Boogie 2011: First International Workshop on Intermediate Verification Lan-
guages, Wrocław, Poland, August 2011.

[11] S. Boldo and J.-C. Filliâtre. Formal Verification of Floating-Point Programs. In 18th IEEE
International Symposium on Computer Arithmetic, pages 187–194, Montpellier, France,
June 2007.

[12] S. Boldo, J.-C. Filliâtre, and G. Melquiond. Combining Coq and Gappa for Certifying
Floating-Point Programs. In 16th Symposium on the Integration of Symbolic Computation
and Mechanised Reasoning, volume 5625 of Lecture Notes in Artificial Intelligence, pages
59–74, Grand Bend, Canada, July 2009. Springer.

169

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4610933
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4610933
http://frama-c.cea.fr/acsl.html
http://frama-c.cea.fr/acsl.html

[13] S. Boldo and C. Marché. Formal verification of numerical programs: from C annotated
programs to mechanical proofs. Mathematics in Computer Science, 2011.

[14] R. S. Boyer and Y. Yu. Automated proofs of object code for a widely used microprocessor.
J. ACM, 43(1):166–192, 1996.

[15] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. International Journal on Software
Tools for Technology Transfer (STTT), 7(3):212–232, June 2005.

[16] L. Burdy and M. Pavlova. Java bytecode specification and verification. In Symposium on
Applied Computing, pages 1835–1839. ACM, 2006.

[17] V. A. Carreño and P. S. Miner. Specification of the IEEE-854 floating-point standard in
HOL and PVS. In HOL95: 8th International Workshop on Higher-Order Logic Theorem
Proving and Its Applications, Aspen Grove, UT, Sept. 1995.

[18] D. Clutterbuck and B. Carre. The verification of low-level code. Software Engineering
Journal, 3:97–111, 1988.

[19] S. Conchon, E. Contejean, and J. Kanig. CC(X): Efficiently combining equality and solv-
able theories without canonizers. In S. Krstic and A. Oliveras, editors, SMT 2007: 5th
International Workshop on Satisfiability Modulo, 2007.

[20] The Coq Proof Assistant. http://coq.inria.fr/.

[21] M. Cosnard, J.-M. Muller, Y. Robert, and D. Trystram. Computation costs versus commu-
nication costs in parallel Gaussian elimination. In M. C. et al., editor, Parallel Algorithms
and architectures, pages 19–29. North Holland, 1986.

[22] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The
ASTRÉE analyzer. In ESOP, number 3444 in Lecture Notes in Computer Science, pages
21–30, 2005.

[23] W. Damm and H. Hermanns, editors. Computer Aided Verification, volume 4590 of Lecture
Notes in Computer Science, Berlin, Germany, July 2007. Springer.

[24] M. Daumas, L. Rideau, and L. Théry. A generic library for floating-point numbers and
its application to exact computing. In Proceedings of the 14th International Conference on
Theorem Proving in Higher Order Logics, TPHOLs ’01, pages 169–184, London, UK, 2001.
Springer-Verlag.

[25] F. de Dinechin, C. Q. Lauter, and G. Melquiond. Assisted verification of elementary func-
tions using gappa. In Proceedings of the 2006 ACM symposium on Applied computing, SAC
’06, pages 1318–1322, New York, NY, USA, 2006. ACM.

[26] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine. Towards an
industrial use of FLUCTUAT on safety-critical avionics software. In FMICS, volume 5825
of LNCS, pages 53–69. Springer, 2009.

[27] G. Dowek and C. Muñoz. Conflict detection and resolution for 1,2,...,N aircraft. In Pro-
ceedings of the 7th AIAA Aviation, Technology, Integration, and Operations Conference,
AIAA-2007-7737, Belfast, Northern Ireland, 2007.

170

http://coq.inria.fr/

[28] G. Dowek, C. Muñoz, and V. Carreño. Provably safe coordinated strategy for distributed
conflict resolution. In Proceedings of the AIAA Guidance Navigation, and Control Confer-
ence and Exhibit 2005, AIAA-2005-6047, San Francisco, California, 2005.

[29] D. Elsner, J. Fenlason, and friends. Using as. Manual, 2009.

[30] J.-C. Filliâtre. Preuve de programmes impératifs en théorie des types. PhD thesis, Université
Paris-Sud, July 1999.

[31] J.-C. Filliâtre. Verification of non-functional programs using interpretations in type theory.
Journal of Functional Programming, 13(4):709–745, July 2003.

[32] J.-C. Filliâtre. Formal Verification of MIX Programs. In Journées en l’honneur de Donald
E. Knuth, Bordeaux, France, October 2007. http://knuth07.labri.fr/exposes.php.

[33] J.-C. Filliâtre, T. Hubert, and C. Marché. The Caduceus tool for the verification of C
programs. http://caduceus.lri.fr/.

[34] J.-C. Filliâtre and C. Marché. Multi-prover verification of C programs. In J. Davies,
W. Schulte, and M. Barnett, editors, 6th International Conference on Formal Engineering
Methods, volume 3308 of Lecture Notes in Computer Science, pages 15–29, Seattle, WA,
USA, Nov. 2004. Springer.

[35] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deductive pro-
gram verification. In Damm and Hermanns [23], pages 173–177.

[36] D. Goldberg. What every computer scientist should know about floating point arithmetic.
ACM Computing Surveys, 23(1):5–47, 1991.

[37] H. H. Goldstine and J. von Neumann. Planning and coding of problems for an electronic
computing instrument. In John von Neumann, Collected Works, volume V, pages 34–235.
Pergamon Press, Oxford, 1961.

[38] H. P. Sharangpani and M. L. Barton. Statistical analysis of floating point flaw in the
Pentium processor. Intel Technical Report, 1994.

[39] J. Harrison. Formal verification of floating point trigonometric functions. In Proceedings of
the Third International Conference on Formal Methods in Computer-Aided Design, volume
1954 of Lecture Notes in Computer Science, pages 217–233, Austin, Texas, 2000. Springer.

[40] P. Herms, C. Marché, and B. Monate. A certified multi-prover verification condition gener-
ator. In R. Joshi, P. Müller, and A. Podelski, editors, VSTTE, Lecture Notes in Computer
Science. Springer, 2012.

[41] T. Hickey, Q. Ju, and M. H. Van Emden. Interval arithmetic: From principles to imple-
mentation. J. ACM, 48:1038–1068, September 2001.

[42] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

[43] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Mannual. Volume
1: Basic Architecture. Specification, 2009.

[44] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Mannual. Volume
2A: Instruction Set Reference, A-M. Specification, 2009.

171

http://knuth07.labri.fr/exposes.php
http://caduceus.lri.fr/

[45] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Mannual. Volume
2A: Instruction Set Reference, N-Z. Specification, 2009.

[46] JML — Java Modeling Language. www.jmlspecs.org.

[47] M. Kaufmann, J. S. Moore, and P. Manolios. Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[48] G. T. Leavens. Not a number of floating point problems. Journal of Object Technology,
5(2):75–83, 2006.

[49] X. Leroy. Formal certification of a compiler back-end or: programming a compiler with a
proof assistant. In Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’06, pages 42–54, New York, NY, USA, 2006.
ACM.

[50] X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,
43(4):363–446, 2009.

[51] G. Li, S. Owens, and K. Slind. Structure of a proof-producing compiler for a subset of higher
order logic. In Proceedings of the 16th European conference on Programming, ESOP’07,
pages 205–219, Berlin, Heidelberg, 2007. Springer-Verlag.

[52] J.-L. Lions, L. Lübeck, J.-L. Fauquembergue, G. Kahn, W. Kubbat, S. Levedag, L. Mazzini,
D. Merle, and C. O’Halloran. Ariane 5 flight 501 failure. Report, Ariane 501 Inquiry Board,
Paris, July 1996.

[53] J. Matthews, J. S. Moore, I. Ray, and D. Vroon. Verification condition generation via
theorem proving. In Proceedings of the 13th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR 2006), Vol. 4246 of LNCS, pages
362–376, 2006.

[54] W. D. Maurer. Proving the correctness of a flight-director program for an airborne minicom-
puter. In Proceedings of the ACM SIGMINI/SIGPLAN interface meeting on Programming
systems in the small processor environment, SIGMINI ’76, pages 103–108, New York, NY,
USA, 1976. ACM.

[55] G. Melquiond. De l’arithmétique d’intervalles à la certification de programmes. PhD thesis,
École Normale Supérieure de Lyon, Lyon, France, 2006.

[56] G. Melquiond. Proving bounds on real-valued functions with computations. In A. Armando,
P. Baumgartner, and G. Dowek, editors, Proceedings of the 4th International Joint Con-
ference on Automated Reasoning, volume 5195 of Lecture Notes in Artificial Intelligence,
pages 2–17, Sydney, Australia, 2008.

[57] A. Miné. Relational abstract domains for the detection of floating-point run-time errors.
In Proc. of the European Symposium on Programming (ESOP’04), volume 2986 of Lecture
Notes in Computer Science, pages 3–17. Springer, 2004. http://www.di.ens.fr/~mine/
publi/article-mine-esop04.pdf.

[58] D. Monniaux. The pitfalls of verifying floating-point computations. TOPLAS, 30(3):12,
May 2008.

[59] D. Monniaux. Analyse statique : de la théorie à la pratique. Habilitation to direct research,
Université Joseph Fourier, Grenoble, France, June 2009.

172

www.jmlspecs.org
http://www.di.ens.fr/~mine/publi/article-mine-esop04.pdf
http://www.di.ens.fr/~mine/publi/article-mine-esop04.pdf

[60] R. Moore. Interval Analysis. Prentice-Hall, 1966.

[61] M. O. Myreen. Formal verification of machine-code programs. PhD thesis, University of
Cambridge, 2008.

[62] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product. SIAM Journal on
Scientific Computing, 26:1955–1988, 2005.

[63] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification system. In
D. Kapur, editor, 11th International Conference on Automated Deduction (CADE), volume
607 of Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga, NY, jun 1992.
Springer-Verlag.

[64] M. Pavlova. Vérification de bytecode et ses application. PhD thesis, École Supérieure en
Sciences Informatiques de Sophia Antipolis, 2007.

[65] D. M. Russinoff. A mechanically checked proof of IEEE compliance of the floating point
multiplication, division and square root algorithms of the AMD-K7 processor. LMS Journal
of Computation and Mathematics, 1:148–200, 1998.

[66] A. Stump, C. W. Barrett, D. L. Dill, and J. Levitt. A decision procedure for an extensional
theory of arrays. In Proceedings of the 16th Annual IEEE Symposium on Logic in Computer
Science, pages 29–, Washington, DC, USA, 2001. IEEE Computer Society.

[67] United States General Accounting Office. Patriot Missile Defense: Software Problem Led
to System Failure at Dhahran, Saudi Arabia. Report, 1992.

173

174

List of Figures

2.1 Bad case for double rounding . 16
2.2 A simple program giving different answers depending on the architecture. 16
2.3 A more complex program giving different answers depending on the architecture. 17
2.4 A program giving different answers depending on the optimization. 18
2.5 Why platform . 19
2.6 Result of a Why program . 22
2.7 Use of Why . 24
2.8 A C program annotated in ACSL . 25
2.9 Proof of numerical programs in Frama-C/Jessie 26

3.1 Rounding error in 64-bit rounding vs. Theorem 3.1 30
3.2 Rounding error in 80-bit rounding vs. Theorem 3.1 30
3.3 Coq theorem certifying the correctness of Theorem 3.1 32

5.1 Double rounding example with ACSL annotation. 43
5.2 Avionics program . 44
5.3 Result of Figure 5.2 program . 46
5.4 Summation program . 47
5.5 Clock drift program . 48
5.6 Scalar product program . 50

6.1 Step-by-step from C program to Why proof obligations 53
6.2 A simple program . 61
6.3 The program of Figure 6.2 after passing the preparation step 61
6.4 Assembly code of the example of Figure 6.3 (compiled by gcc -S) 62
6.5 Square program . 62
6.6 Example in Figure 6.5 after preparation step . 63
6.7 Assembly code of the example of Figure 6.6 (compiled by gcc -S) 64

7.1 Translation of a function in assembly to Why . 71
7.2 Soundness of the translation . 72
7.3 A simple program . 77
7.4 Why program of Figure 6.4 . 78
7.5 Result of Figure 7.4 program . 79
7.6 Square program . 79
7.7 Why program of Figure 6.7 . 80
7.8 Result of Figure 7.7 program . 81

8.1 Illustration of vfmaddsd instruction . 88
8.2 Illustration of VFNMADDSS instruction . 88

175

8.3 Illustration of the stack with instruction fldl . 93
8.4 A simple floating-point program . 101
8.5 Assembly code in x87 mode of Figure 8.4 example 101
8.6 Result of Figure 8.4 program . 102
8.7 Assembly code in SSE2 mode of Figure 8.4 example 103
8.8 Overflow example . 105
8.9 Non-optimized assembly code of overflow example 105
8.10 Optimized assembly of overflow example . 106

9.1 Example with if . 112
9.2 Assembly code of program in Figure 9.1 . 113
9.3 CFG for assembly code in Figure 9.2 . 114
9.4 Program with loop statement . 115
9.5 CFG of Program in Figure 9.4 . 115
9.6 Program with loop and goto statement . 116
9.7 CFG for assembly code generated by gcc -S from example in Figure 9.6 116
9.8 Clock drift program . 121
9.9 Assembly code of program in Figure 9.8 (generated by gcc -S -mfpmath=387 -O2)122
9.10 Assembly code of program in Figure 9.8 (generated by gcc -S -mfpmath=387) . 122
9.11 Avionics program . 124
9.12 Assembly code of program in Figure 9.8 (generated by gcc -S -mfpmath=387 -O2)125

10.1 An example containing arrays as global values. 129
10.2 Assembly code in SSE2 mode of Figure 10.1 example 130
10.3 Memory model . 131
10.4 C code of a program with arrays defined as local variables 132
10.5 Assembly code in SSE2 mode of Figure 10.4 example 132
10.6 A C program with an array defined as an argument of a function 133
10.7 Assembly code in SSE2 mode of Figure 10.6 example 133
10.8 Maximum of an array program . 142
10.9 Assembly code in SSE2 mode of Figure 10.8 example 143
10.10Scalar product: annotated code . 145

11.1 Negation of a floating-point number . 147
11.2 Excerpt of assembly code in SSE mode of Figure 11.1 example 148
11.3 Negation of a double by XOR . 148
11.4 Example about conversion of an integer to a double 148
11.5 Convert an integer to a double . 149
11.6 A Why 3 theory example . 152
11.7 Bitvector theories . 153
11.8 BitVector theory . 154
11.9 BV64 theory . 157
11.10Bv32_64 theory . 157
11.11Bv_double theory . 158
11.12Negation of a double by XOR . 159
11.13Result of Figure 11.12 program . 160
11.14Declaration and proofs of Const . 161
11.15Lemmas for proving var(x) = 252 + 231+x . 162
11.16Proofs of lemma1 . 163

176

Abstract

On some recently developed architectures, a numerical program may give different answers
depending on the execution hardware and the compilation. These discrepancies of the results
come from the fact that each floating-point computation is calculated with different precisions.
The goal of this thesis is to formally prove properties about numerical programs while taking
the architecture and the compiler into account. In order to do that, we propose two different
approaches. The first approach is to prove properties of floating-point programs that are true for
multiple architectures and compilers. This approach states the rounding error of each floating-
point computation whatever the environment and the compiler choices. It is implemented in
the Frama-C platform for static analysis of C code. The second approach is to prove behavioral
properties of numerical programs by analyzing their compiled assembly code. We focus on the
issues and traps that may arise on floating-point computations. Direct analysis of the assembly
code allows us to take into account architecture- or compiler-dependent features such as the
possible use of extended precision registers. It is implemented above the Why platform for
deductive verification.

Keywords: Floating-point arithmetic, Numerical programs, Static analysis, Compile-time
optimizations, the Why platform, the Frama-C platform.

Résumé

Sur des architectures récentes, un programme numérique peut donner des réponses différentes
en fonction du hardware et du compilateur. Ces incohérences des résultats viennent du fait que
chaque calcul en virgule flottante est effectué avec des précisions différentes. Le but de cette
thèse est de prouver formellement des propriétés des programmes opérant sur des nombres flot-
tants en prenant en compte l’architecture et le compilateur. Pour le faire, nous avons proposé
deux approches différentes. La première approche est de prouver des propriétés des programmes
en virgule flottante qui sont vraies sur plusieurs architectures et compilateurs. Cette approche
ne considère que les erreurs d’arrondi qui doivent être validées quels que soient l’environnement
matériel et le choix du compilateur. Elle est implantée dans la plate-forme Frama-C pour
l’analyse statique de code C. La deuxième approche consiste à prouver des propriétés des pro-
grammes en analysant leur code assembleur. Nous nous concentrons sur des problèmes et des
pièges qui apparaissent sur des calculs en virgule flottante. L’analyse directe du code assembleur
nous permet de considérer des caratéristiques dépendant de l’architecture ou du compilateur telle
que l’utilisation des registres en précision étendue. Cette approche est implantée comme une
sur-couche de la plate-forme Why pour la vérification déductive.

Mots clés: Arithmétique en virgule flottante, Programmes numériques, Analyse statique,
Optimisations à la compilation, Plate-forme Why, Plate-forme Frama-C.

	Introduction
	Floating-point arithmetic
	Formal verification
	Contributions

	Background
	Floating-point arithmetic
	The IEEE-754 floating-point standard
	Architecture-dependent issues

	Why- An Intermediate Verification Language
	Logical declarations in Why
	Programs in Why
	Example
	Use of Why in this thesis

	ACSL and Frama-C
	ACSL
	Frama-C

	I Hardware-independent proofs
	Hardware-independent bounds for floating-point operations
	Bounds for one floating-point operation
	Case 1: Rounding error in 64-bit rounding
	Case 2: Rounding error in 80-bit rounding
	Case 3: Rounding error in double rounding
	Proof in Coq

	Proofs of numerical programs
	When FMA occurs
	Bounds of a sequence of operations

	Implementation

	When the compiler re-organizes a computation
	Associativity for the addition
	Implementation

	Experimentations
	Double rounding example
	KB3D example
	Summation example
	Clock drift example
	Scalar product example

	II Hardware-dependent proofs
	Principle of proofs on assembly code with Why
	Steps of proofs
	Essential elements of assembly language
	Operands and Instruction Naming
	EFLAGS register
	General-purpose instructions
	Calling procedures using call and ret
	Some assembler directives
	Inline assembly

	Preparation of source code
	Examples

	Case of Simple programs
	Definition of the class of ``simple'' C programs
	Translation to Why
	Translation of 32-bit and 64-bit integers
	Translation of operands
	Annotations
	Translation of an instruction
	Sequences and functions

	Soundness of translation
	Reminder of the soundness of Why
	About the condition in function call
	Definition of the execution of an assembly program
	Relation between the Why state and the assembly state

	Examples
	Simple example
	Square example

	Floating-point programs
	Assembly with floating-point arithmetic
	SSE/SSE2
	x87 Floating-point Unit
	FMA

	Definition of programs supported
	Translation to Why
	Abstract functions
	When constants are referenced by %rip
	Modifying the translation of general-purpose instructions
	Translation of SSE/SSE2 instructions
	x87 Floating-point Unit
	AVX instructions

	Translation of annotations to Why
	Translation of annotations in presence of floating-point arithmetic

	Soundness of translation
	Definition of the execution of a assembly program
	Relation between Why state and assembly state (case of floating-point programs)
	About exact value

	Illustrations
	Double rounding example
	Overflow example

	Handling Conditional and loop statements
	Conditional instructions in assembly
	Jump instructions
	Conditional move instructions: CMOVcc

	Definition of programs supported
	Translation of comparison instructions
	Translation of cmp instruction
	Translation of floating-point comparison instructions

	Control Flow Graph construction from assembly code
	Example with if statement
	Example with do while statement
	Example with goto, do while and if statement

	Translation from a CFG to Why
	Examples
	Clock drift
	KB3D

	Discussion

	Handling Arrays and Pointers
	Handled programs
	New rules of translation for operands and instructions
	Representation of memory in Why
	Definition of memory model
	Translation of operands and instructions to Why
	Translation of annotations to Why

	When local variables are pointed by %rsp
	Examples
	Maximum of an array
	Scalar Product

	Bit-level reasoning
	Motivations
	Examples of the chapter
	Goals of the chapter

	About endianness
	Why 3
	Logic
	Theories

	Bitvector theories in Why 3
	Theory BitVector
	Theory BV32 and BV64
	Theory BV32_64
	Theory BV_double

	Examples
	Negation by xor
	Conversion of an integer to a double

	Discussion

	Conclusion and Future works
	Summary
	Hardware-independent approach
	Hardware-dependent approach
	Comparison with related works
	Difficulties

	Future works
	Hardware-independent approach
	Hardware-dependent approach

