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Abstract

In the absence of exact theoretical methods, many questions related to the non-
equilibrium Anderson model have remained unsolved and are at the origin of an intense
research activity. In this thesis I discuss transport through quantum dots put in the
Kondo regime by means of an equations-of-motion method that was developed in
order to account for the non-equilibrium effects and in particular the decoherence of
the virtual spin-flip processes involved in the Kondo effect. I compare my results to
previous approximations and show the improvements brought by the new decoupling
scheme, which solves pathologies at the particle-hole symmetric point and enables the
description of the system over a wide range of parameters. A decoherence rate is
derived for the excitations which is shown to involve a crossover from the strong- to the
weak-coupling regime when either the temperature or the bias voltage or the magnetic
field is increased. In the light of this result, I conclude on the applicability of the
present equations-of-motion scheme out of equilibrium. I also discuss observables out of
equilibrium; the differential conductance exhibits a zero-bias peak reaching a maximum
value G = 2e2/h. Its low-energy behavior turns out to be universal after the bias voltage
is normalized by the Kondo temperature. I finally show that a finite magnetic field splits
the zero-bias peak in the differential conductance. The actual distance between the
peaks is discussed in the light of recent experiments for which I give a phenomenolog-
ical explanation. A new experimental setup is proposed in order to verify my assumptions.
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Résumé

En l’absence de méthodes théoriques exactes, beaucoup de questions liées au modèle
d’Anderson hors d’équilibre n’ont pas encore trouvé de solution, engendrant une intense
activité de recherche. Dans cette thèse, je discute le transport à travers des boîtes
quantiques placées dans le régime Kondo au moyen d’une méthode d’équations du
mouvement développée afin de tenir compte des effets de non-équilibre, et en particulier
de la décohérence des processus virtuels de spin-flip impliqués dans l’effet de Kondo.
Je compare mes résultats aux approximations précédentes, et montre les améliorations
apportées par le nouveau schéma de découplage, qui résout les pathologies au point
de symétrie particule-trou et permet la description du système dans une vaste gamme
de paramètres. Je dérive un taux de décohérence pour les excitations, et montre son
implication dans le passage du régime de couplage fort à celui de couplage faible sous
l’effet d’une différence de potentiel, de la température ou d’un champ magnétique.
À la lumière de ce résultat, j’étudie l’applicabilité des équations du mouvement hors
d’équilibre. Je discute ensuite l’évolution d’observables hors d’équilibre ; la conductance
différentielle présente un pic centré autour d’une différence de potentiel nulle et atteignant
une value maximale G = 2e2/h. Son comportement à basse énergie se révèle universel
lorsque la différence de potentiel est normalisée par la température Kondo. Je montre
finalement qu’un champ magnétique divise le pic dans la conductance différentielle. La
distance exacte entre les deux sommets est discutée à la lumière d’expériences récentes,
pour lesquelles je donne une explication phénoménologique, et je propose un nouveau
schéma expérimental pour vérifier mes hypothèses.
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Introduction

"It would indeed be remarkable if Nature fortified herself against further advances
in knowledge behind the analytical difficulties of the many-body problem."

Max Born, 1960

Many-body quantum physics deals with systems containing large numbers of par-
ticles and with the correlations among them. In many cases, the interactions on the
microscopic level involve fantastic modifications of the behavior of the macroscopic sys-
tem. Therefore, many-body physics is at the origin of a vast number of theoretical
problems in condensed matter physics, as for example superconductivity, Bose-Einstein
condensation or Luttinger liquids.

A new playground for the study of quantum correlations was opened in the eighties
when the improvement of experimental techniques enabled the confinement of electrons
in small regions of typical length of a few nanometers (a few tens of atoms), called quan-
tum dots. This opened the field for descriptions at the interface between microscopic
and macroscopic physics. The new discipline, called mesoscopic physics, studies objects
containing large numbers of particles, but that are nevertheless sensitive to quantum
fluctuations. It is of great interest in the prospect of applications in the electronics
industry, which aims at a constant miniaturization of the size of the transistors.

In this work, I study the Kondo effect [46] that results from a many-body exchange
interaction of itinerant electrons with a localized spin state. It was first studied in
bulk systems after the measurement of a strong increase of the resistivity at low tem-
perature in dilute magnetic alloys in the 1930s. The explanation for that experiment
was given by J. Kondo about 30 years later and lies in coherent scattering processes
in which the internal spin state of the impurity and of the scattered electron are ex-
changed, giving rise to logarithmically divergent contributions for the resistivity, and
hence providing a satisfactory explanation to the above-cited experimental results. For
a spin-1/2 magnetic moment, A.H. Wilson demonstrated that the localized impurity
and the delocalized conduction electrons are bound together in a spin singlet Ground
State [105].

The interest for the Kondo effect has undergone a strong revival these last ten
years after its observation in small quantum dots tunnel-coupled to two-dimensional
reservoirs of conduction electrons (also called leads) [32, 20, 94]. When the quantum
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2 INTRODUCTION

dot contains an odd number of electrons, it carries a spin that interacts with the spin
of the conduction electrons in a very similar way to the case of dilute magnetic alloys.
At low temperature, the many-particle spin-flip processes involved in the Kondo effect
allow for the conduction electrons to tunnel freely from a reservoir to the other. As
a consequence, system is completely transparent at zero temperature and the linear
conductance of the system reaches the conductance quantum 2e2/h (i.e. the maximum
value for a single conductance channel). Thanks to the excellent tunability of their
parameters (dot energy levels, charging energy, tunnel coupling, ...) quantum dots
have broadened the horizon for the study of the Kondo effect, raising new questions
and opening new areas for research.

On the theoretical level, the Kondo effect in quantum dots is often described by a
model due to P.W. Anderson [7] in which the magnetic moment comes as a consequence
of a localized Coulomb repulsion on the dot. When the chemical potentials of the
leads are equal, the system is at equilibrium and most of its properties are now well
understood as the Anderson model was solved by a panel of powerful techniques [36].
However most of them fail out of equilibrium, involving a huge interest for new methods
to tackle the problem of the Kondo effect in that case, and more generally to study non-
equilibrium effects in strongly-correlated electron systems.

An important theoretical feature of the non-equilibrium Kondo effect is the decoher-
ence of the spin singlet Ground State associated to the Kondo effect [41], which evolves
to a Steady State in the presence of electronic current through the device [24]. Within
this framework, the theoretical description of the Kondo effect is far more cumbersome
and no exact result has been obtained so far, leaving the door open for additional in-
vestigation. In this thesis the system is driven out of equilibrium by applying a bias
voltage between the two leads connecting the dot. An equations-of-motion method is
developed out of equilibrium in order to discuss some theoretical aspects of decoherence
and its consequences on the physical behavior of the system. I also discuss other sources
of decoherence for the the spin-flip processes such as the temperature and the magnetic
field.

This manuscript is organized as follows: Chapter 1 introduces the main features
of the Kondo effect, both on the theoretical and experimental point of views. I start
with a short history of its discovery and its early explanations, and discuss the new
fundamental problems it raised. I give the main consequences of the Kondo effect for the
transport through quantum dots, and the experimental signatures that are associated
with. Finally, I discuss the challenges for its future study.

Chapter 2 describes the equations-of-motion formalism that I used for solving the
Anderson model. I review several approximation schemes proposed in the literature
and discuss their successes and weaknesses. I propose and motivate an extension of
those approximations in order to deal with non-equilibrium setups. I give the result
for the Green’s function and send the reader to Appendix B for more details about its
derivation.

Chapter 3 presents the main features of the Kondo effect at equilibrium, in the
framework of the different approximations developed in Chap. 2. I discuss the im-
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provement brought by our approach in comparison with the decouplings at lower order,
and compare with the experimental results. At the end of the chapter, I discuss the
temperature-induced decoherence rate for the spin-flip excitations, and show the influ-
ence on the density of states in the dot.

Chapter 4 is dedicated to non-equilibrium transport through the quantum dot in
the absence of magnetic field. I discuss the splitting of the Kondo resonance in the
density of states inside the dot in the presence of a bias voltage, and the smearing
of the corresponding peaks by the decay rates of the excitations. From the smearing
of the divergent terms, a criterion is derived for the crossover from the strong- to the
weak-coupling regime, where the perturbative corrections are small, and I discuss the
applicability of the equations-of-motion method out of equilibrium. Eventually, I show
the numerical results for the differential conductance, which develops a peaked structure
at low bias, and compare it with the results obtained by other methods.

Chapter 5 is devoted to the influence of a magnetic field on the non-equilibrium
transport through a quantum dot. The zero-bias peak in the differential conductance
is split by an energy close to the double of the Zeeman splitting, as observed experi-
mentally. The differential conductance is shown to be sensitive to the decoherence of
the Kondo spin singlet Ground State, which has consequences on the distance between
the peaks. An explanation is proposed for the crossover between a regime where this
distance is smaller than twice the Zeeman splitting to another where it is larger, and is
related to the decoherence effects. Finally, I propose an experimental setup that could
detect a possible additional contribution to the decoherence rate.

All along this thesis, I have tried to present the developments as pedagogically as
possible, hoping it could be useful to another Ph.D. student or any researcher who would
like to continue this work and investigate other aspects of the non-equilibrium Anderson
model using the equations-of-motion technique. This results in some technical sections
- especially in Sec. 2 and App. B - essential for a deep understanding of the method,
its applicability and limitations. The reader more interested in new physical results is
directly sent to Chaps. 3, 4 and 5.
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Chapter 1

General aspects on the Kondo effect
and electronic transport through
quantum dots

The improvement in the experimental fabrication processes over the last few years,
together with the cryogenic techniques, brought to the surface the discovery of a wide
range of new phenomena. For instance, by reaching sufficiently low temperatures to
kill the thermal fluctuations, one has been able to reach quantum regimes where the
transport properties are essentially determined by many-particle phenomena like su-
perconductivity or the Kondo effect.

In this thesis, we describe the low-temperature transport through devices whose
three dimensions are smaller than the coherence length. These objects, called quantum
dots, are often referred to as artificial atoms (molecules) as the spacial confinement in-
duces a discrete energy spectrum which can be tuned by acting on external parameters.

We give a general introduction on the electronic transport through quantum dots
and the Kondo effect. In particular, we describe its signatures in the conductance and
the theoretical challenges out of equilibrium. For more details on other aspects of the
Kondo effect, see for instance [61, 82].

1.1 History of the Kondo effect in dilute magnetic al-

loys

For temperatures lower than the Debye temperature, the resistivity of a metal is
essentially determined by electron-phonon scattering and decreases with T as ρ(T ) ∝
T 5. At even lower temperatures, it eventually saturates to a minimum resistivity which
was found to be related to the scattering by the defects of the crystal lattice. However,
in 1934, a different behavior was pointed out in an experiment on gold samples cooled
down below 10K, in which a dramatic increase of the resistivity was observed at low
temperature [22].

5



6 CHAPTER 1. GENERAL ASPECTS ON THE KONDO EFFECT

Figure 1.1: Comparison of the theoretical results obtained by Kondo and the experimental
results for the temperature dependence of the resistivity in dilute magnetic alloys [46].

This remained a mystery until 1964, when an experiment showing the evidence of a
relationship between this behavior and the presence of dilute magnetic impurities [90]
motivated the Japanese theorist Jun Kondo to consider a model involving an anti-
ferromagnetic exchange interaction J between the magnetic impurities and the sea of
conduction electrons [46]. Using perturbation theory in J , he observed that the next-
to-leading order terms involve logarithmic corrections responsible for the increase of the
resistivity at low temperature

ρ(T ) = aT 5 + cimpρ0 − cimpρ1 ln(kBT/D), (1.1)

where the first term is the phonon contribution, the second one is the temperature-
independent contribution from impurity scattering, and the final one accounts for spin-
flip scattering off the local moment, which is responsible for the low-temperature in-
crease of the resistivity. The comparison with experiments is given in Fig 1.1, and
shows a very good agreement for different concentrations of impurities.

On the theoretical level, an earlier important model was developed for the de-
scription of localized impurities in a conduction electron bath, namely the Anderson
model [7]. This model involves a short-range Coulomb interaction U between electrons
on the localized site. Interestingly, it has been shown that the Kondo model can be
derived from the Anderson model by mapping out the states with zero and double oc-
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cupancy [96], which means that the local interaction U is responsible for the formation
of local moments.

Although the pioneering work by Kondo had brought an accurate explanation for the
experiments, it soon raised new questions as the logarithmic corrections diverge at zero
temperature. After resummation on the infinite series of log-divergent terms [1], the
divergence in the resistivity is shifted to an energy scale TK , called Kondo temperature.
Therefore, the results are valid only for T ≫ TK , and new conceptual techniques are
required to study the regime T ≪ TK . This limitation, often referred to as the Kondo
problem, called for a development of a non-perturbative method, and was solved by
Wilson in 1975 by means of a new (logarithmic) renormalization group approach [105].
Within this new technique, the system is described by a strong coupling fixed point
resulting in a spin singlet the Ground State between the magnetic impurity and the
surrounding sea of conduction electrons. The effective interactions among the quasi-
particles resulting from the polarization of the singlet are responsible for the power-law
dependence of the resistivity in T 2/T 2

K observed at low temperature.
In parallel, some low-energy effective Hamiltonians were derived in the 70s by Noz-

ières [76] and Yamada [108], in terms of a Landau Fermi liquid theory that derived the
T ≪ TK results. Finally, exact solutions were found in the 80s for the thermodynamic
properties of spin S = 1/2 case by means of Bethe ansatz techniques, both for the
Kondo model [8] and the Anderson model [103].

This is however not the end of the end of the story. Indeed, an exact analytical
solution is still missing for calculating the dynamical response of the system, which
is needed to compare with some experimental techniques such as photo-emission or
neutron scattering, or to study more exotic forms of Kondo effect.

1.2 Kondo effect in mesoscopic physics

In the last decade, there has been a strong experimental revival of the Kondo effect
through the development of quantum dots, as it had been suggested theoretically long
time before [10]. Quantum dots made possible the investigation of the Kondo effect on
a much wider range of parameters, bringing with them many new challenging questions
for the theorists.

1.2.1 Physical picture of a quantum dot

A quantum dot is a device in which a few electrons are confined in a region whose
three dimensions are smaller than the coherence length of the electrons in the material.
Experimentally, there are several ways to build a quantum dot, each of them offering
different advantages: lateral and vertical semiconductor dots, and carbon nanotube
quantum dots [61, 32, 91, 83]. In parallel, several experiments have been done where
the quantum dot is replaced by a molecule (e.g. C60), opening new perspectives to the
existing issues [80, 84, 85]. In this thesis, we will mostly focus on the description of
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Figure 1.2: The left image shows a lateral quantum dot obtained by Scanning Electron
Microscopy (SEM) [61]. The dot consists of a little region of an 2D electron gas, where the
electrons are confined electrostatically by applying potentials on the gates. The transport
happens between the extended 2D electron gases (source and drain) by tunneling electrons
through the dot. The right image represents the energy levels in the system, with the discrete
energy levels inside the dot connected to 2D Fermi seas through tunneling barriers.

lateral quantum dots, even if most of our results can be extended to the other setups.
To manufacture a lateral quantum dot, a two dimensional electron gas (2DEG) is

formed by confining electrons at the interface of a semiconductor heterostructure (e.g.
GaAs/AlGaAs). Several metallic gates are deposited on the top of the 2DEG, as shown
on Fig 1.2. By applying a voltage on those gates, a small droplet of confined electrons
can be defined, constituting the lateral quantum dot. Depending on the voltages applied
on the different gates, one can cover a wide range of parameter regions. For instance,
the central gate on Fig 1.2 can be used to control the electron occupancy in the dot.
This size is of the order of a few tens of nanometers, much smaller than the electron
coherence length, implying that only discrete quantum energy levels can be occupied by
the electrons on the dot. The side gates control the tunnel-coupling with the extended
sections of the 2DEG (called leads). In order to study the electronic transport through
the system, the device can be driven out of equilibrium by applying a bias voltage V
between the two leads (also called source and drain).

As we will see, much interesting physics comes from the fact that such a quantum
dot has a very small capacitance, and therefore adding or removing an electron costs a
large energy 2e2/C. As a consequence, the total occupation number of electrons inside
the dot will be a well defined integer number N (the dot is in the state |N〉), except for
the transition regions from |N〉 to |N ± 1〉.

On the theoretical level, the Hamiltonian of the system can be decomposed in three
parts

H = Hdot + Hleads + Htun, (1.2)

where Hdot describes the dot where the interactions take place, Hleads is the Hamilto-
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nian for the non-interacting leads, and Htun stands for the tunneling through the two
junctions.

The isolated quantum dot can be modeled by

Hdot =
∑

iσ

εiσn̂iσ +
U

2

∑

iσ

∑

i′σ′ 6=iσ

n̂iσn̂i′σ′ , (1.3)

with n̂iσ = f †
iσfiσ, where fiσ is the annihilation operator of an electron of spin σ on the

ith energy level in the quantum dot (with energy εiσ). The charging energy 2e2/C for
adding an electron on the dot is modeled as a Coulomb repulsion U between electrons.

In experiments, the dot is connected to extended 2DEG playing the role of the leads,
which are described by non-interacting Fermi liquids

Hleads =
∑

αkσ

εkn̂αkσ, (1.4)

where n̂αkσ = c†αkσcαkσ and c†αkσ(cαkσ) is the creation (annihilation) operator of an
electron of momentum k and spin σ in the α(= L, R) lead (with energy εk). The
momentum distributions for electrons inside the two leads are given by Fermi-Dirac
functions fα(εk) = f(εk − µα), where µα is the chemical potential in the lead α.

Finally, the dot and the leads are connected through tunnel barriers

Htun =
∑

αkiσ

(
tαiσc†αkσfiσ + H.c.

)
, (1.5)

where tαiσ is the tunneling matrix element between the state |kασ〉 in the lead α, and
the state |iσ〉 in the dot. For simplicity, we assume tαiσ to be real1 and k-independent.

This model was originally introduced by Anderson to describe localized magnetic
impurities in metals [7], and obtained a revival of interest with its application to quan-
tum dot devices.

1.2.2 Current through a quantum dot

Let us consider a quantum dot connected to two leads (left and right). When a bias
voltage is applied to the leads (eV = µL − µR), the system is driven out of equilibrium
and a current is induced through the quantum dot. The current I within the Anderson
model is expressed by the generalized Landauer formula [68, 21] accounting for the
interactions among electrons

I =
2e

~

∑

σ

∫ W

−W

dε
ΓLσ(ε)ΓRσ(ε)

ΓLσ(ε) + ΓRσ(ε)
[fL(ε, V ) − fR(ε, V )] ρσ(ε, V ), (1.6)

where
1A complex phase would not change anything to the quantities discussed in this thesis since they

involve only |tαiσ|2
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• W is the half-bandwidth of the conduction electron band in the leads,

• Γασ(ε) is the tunneling rate of the spin σ dot electron at energy ε into the lead α,
defined as Γασ(ε) = π

∑
k t2ασδ(ε−εαk) = πt2ασνα(ε) with να(ε) the unrenormalized

density of states at energy ε in the lead α,

• fα(ε) = {exp [(ε − µα)/kBT ] + 1}−1 is the Fermi-Dirac distribution function in
the lead α,

• ρσ(ε, V ), the local density of states for spin σ in the dot, can be expressed in
terms of the retarded electron Green’s function in the dot Gr

σ(ε) according to
ρσ(ε) = −1/πImGr

σ(ε), where the dependence on V is implicit.

As pointed out in Ref. [68], Eq. (1.6) is valid provided that the tunneling couplings for
both leads ΓLσ(ε) and ΓRσ(ε) differ only by a constant multiplicative factor. In the
following, we take a constant density of states in the leads ν = 1/2W , and therefore
Γασ = πt2ασν is also constant.

The differential conductance dI/dV can be derived from Eq. (1.6)

dI

dV
=

2e

~

∑

σ

ΓLσΓRσ

ΓLσ + ΓRσ

∫ W

−W

dε

[
dfL(ε, V )

dV
− dfR(ε, V )

dV

]
ρσ(ε, V )

+
2e

~

∑

σ

ΓLσΓRσ

ΓLσ + ΓRσ

∫ W

−W

dε [fL(ε, V ) − fR(ε, V )]
dρσ(ε, V )

dV
. (1.7)

At equilibrium V = 0 and zero temperature, this simplifies to

G = lim
V →0

dI

dV
=

2e

~

∑

σ

ΓLσΓRσ

ΓLσ + ΓRσ

ρσ(εF ), (1.8)

The linear conductance is related to the density of states in the dot at the Fermi level
of the leads. Throughout this thesis, we choose the Fermi energy εF as origin of the
energy axis (

∑
α µα = 0).
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(a)

(b)

Figure 1.3: (a) Linear (zero-bias) conductance as a function of the gate voltage in the
Coulomb blockade regime [97]. (b) Cartoon explaining the single-particle tunneling processes
through a dot with degenerate energy levels εd and a Coulomb repulsion between electrons U .
The transport is possible only when the effective dot energy level is aligned with the chemical
potential of the leads (right). This is responsible for the conductance peaks in (a). In the other
regimes (left), the dot occupation number is fixed and the transport through the quantum dot
is blocked.

1.2.3 Single-particle transport and Coulomb blockade

When the coupling between the dot and the leads is weak, the system is in the
sequential tunneling regime; the time between successive tunneling events is the largest
scale in the problem, and there is therefore no coherence between them.

At high temperature (T ≫ U), the transport through the quantum dot depends
only on the series of two tunnel barriers between the dot and the left/right leads. The
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conductance G of the system is

1

G∞

=
1

GL

+
1

GR

, (1.9)

where the left/right conductances depend on the strength of the tunnel barrier and the
number of channels in the dot

Gα =
4e2

~

Γα

δE
, (1.10)

with α = L/R, Γα =
∑

i πνt2αi the escape rate of electrons to the lead α (ν being the
density of states in the leads, assumed energy independent), and 1/δE the density of
states in the dot.

When the temperature is lower than the charging energy (Γα ≪ T ≪ U), the system
behaves differently, as shown on Fig. 1.3(a). The total occupation number in the dot
N is now fixed by the Coulomb repulsion and the electronic transport is blocked. This
phenomenon is called the Coulomb blockade regime. The transport is only favored in
the transition regions where the energy of the state |N〉 is aligned with the chemical
potential of the leads, as illustrated on Fig. 1.3(b). On the left figure, a lead electron
cannot enter the dot because the Coulomb repulsion would bring its energy much higher
than the chemical potential of the leads, and the transport from one lead to the other
is blocked. On the contrary, on the right figure, it is very easy for an electron to tunnel
in or out of the dot without any energy cost. As a consequence, the linear conductance
through the dot shows a succession of peaks associated with the degeneracy regions
(Coulomb peaks), separated by regions of low conductance.

As the temperature is decreased, the Fermi momentum distribution function in the
leads gets sharper, and the effect gets more pronounced: the height of the Coulomb
peak grows while the Coulomb blockade is still more efficient. For more information
on the transport through quantum dots put in the Coulomb blockade regime, see for
instance [50].

1.2.4 Many-particle transport and the Kondo effect

When the temperature T becomes lower than the tunneling rate Γ between the dot
and the leads, higher-order virtual tunneling processes though high-energy states be-
come relevant and eventually dominate the transport. The coherence between electrons
may involve a strong modification of the features described in Sec. 1.2.3. However, as
long as we consider spinless levels, the conductance profile remains qualitatively the
same, reaching small values in the Coulomb blockade region.

The situation gets dramatically different when we take the spin into account. Con-
sidering that the Coulomb repulsion on the dot U is smaller than the level spacing δE,
the levels are filled one after the other because of the Pauli exclusion principle. In that
case, an odd electron occupancy in the dot implies that it carries a net spin 1/2. This
situation is analogous to the case of the scattering by magnetic impurities described in
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Section 1.1, and we can expect logarithmic divergent contributions for the conductance
at low-temperature typical of the Kondo effect.

On the theoretical level, the Anderson Hamiltonian can be mapped on a low-energy
Kondo Hamiltonian in the Coulomb blockade region for odd occupancy. This is done by
applying the so-called Schrieffer-Wolff transformation [96] that projects out the high-
energy empty and doubly occupied dot states of the Anderson model. For a single-level
quantum dot in the absence of magnetic field, the effective Hamiltonian obtained after
transformation reads

HKondo =
∑

kσ

εkc
†
kσckσ + J

∑

kk′

~Sd.~Skk′, (1.11)

with

J = −2 |t|2
[

1

εd
− 1

εd + U

]
> 0, (1.12)

~Skk′ =
~

2

∑

αα′

∑

σσ′

~τσσ′c†α′k′σ′cαkσ, (1.13)

where ~τσσ′ are the matrix elements of the Pauli matrices τα (α = x, y, z). The derivation
is given in Appendix A. The second term in Eq. (1.11) involves an exchange interaction
between the dot spin ~Sd and the spin density of the conduction electrons at the site of
the impurity

∑
kk′

~Skk′. This exchange interaction is anti-ferromagnetic as J > 0.
In analogy with the study of bulk systems described in section 1.1, we can define a

Kondo temperature

TK = W̃ exp

(
− 1

νJ

)
, (1.14)

where W̃ is the effective bandwidth for the low-energy excitations. This Kondo scale can
be interpreted as the binding energy of the spin singlet Ground State. At equilibrium,
the temperature dependence of the linear conductance shows the following asymptotic
behavior [82]

G(T ) =






G0

[
1 −

(
πT
TK

)2
]

T ≪ TK

G0
3π2/16

ln2 (T/TK)
T ≫ TK

, (1.15)

with

G0 =
2e2

h

4ΓLΓR

(ΓL + ΓR)2 . (1.16)

While the Kondo effect in bulk systems induces an additional scattering process which
increases the resistivity, it strongly enhances the transport in quantum dots by providing
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Figure 1.4: Linear conductance as a function of the gate voltage for different tempera-
tures [100]. At high temperature (T ≫ TK , red curve), the conductance is blocked when the
dot occupation number is fixed, while it shows peaks in the degeneracy regions. At lower
temperature (T ≪ TK , black curve), the conductance gets enhanced in the odd occupancy
regions because of the emergence of the Kondo effect.

a new transmission channel between the two leads. From Eq. (1.15), we can infer
the main aspects to be checked when looking for Kondo effect in an experiment: the
conductance should show a crossover from a Fermi liquid regime characterized by a
quadratic temperature dependence for any physical quantity, to a weak-coupling regime
showing a logarithmic decrease with temperature. The maximum conductance G0 is
obtained for zero temperature, and reaches the universal quantum of conductance 2e2/h
(called unitary limit) in the case of a symmetric coupling to the leads (ΓL = ΓR). In
addition, universality is a hallmark of the Kondo effect, meaning that the same curve
should be obtained after rescaling over the Kondo temperature T/TK .

The first experiments showing evidence for Kondo effect in quantum dots were
realized about ten years ago [32, 20, 94, 100]. Fig. 1.4 shows the crossover from the
Coulomb blockade regime to the Kondo regime measured by lowering the temperature.
At high temperature, we recover a succession of Coulomb peaks and valleys in which
the conductance is blocked as in Fig. 1.3(a). When the temperature is lowered, the
conductance is enhanced in one valley on the two. It can be interpreted by associating an
odd number of electrons to these valleys, which implies that they carry a non-zero spin
responsible for the enhanced conductance by the Kondo effect at low temperature. The
conductance eventually reaches the unitary quantum limit 2e2/h at zero temperature.
In contrast, the regions of even occupancy, where no Kondo effect is possible, show
a conductance that decreases with temperature because of the reinforcement of the
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Figure 1.5: Linear conductance as a function of the temperature [100] for different gate
voltages. The three curves lie on the top of each other after normalizing the temperature by
the Kondo temperature and the conductance by its value at zero temperature (inset). This
one-parameter scaling is observed over a wide range of parameters.

Coulomb blockade.
Another vantage in quantum dots for studying the Kondo effect lies in the tunability

of the different parameters, allowing for the examination of the universality by studying
the dependence on an external parameter (e.g. temperature, bias voltage, magnetic
field) of several observables (e.g. conductance, noise) in different regimes (e.g. by
changing the gate voltage). Indeed, theory predicts that all physical quantities should
develop a universal behavior as a function of the external parameters (temperature,
magnetic field, bias voltage) after normalizing them on the Kondo temperature TK .
This was observed in several experiments and for different devices as quantum dots [100]
or molecules [100, 80].

In Fig. 1.5, we show the data obtained by van der Wiel et al. for the linear conduc-
tance as a function of the temperature. Three curves are obtained for different values of
the gate voltage, corresponding to different values of the Kondo temperature TK . After
normalizing the temperature over the corresponding values for TK , the three curves
are found to sit on top of each other, providing a clear signature of the universality
characteristic of the Kondo effect.

Another characteristic of the Kondo effect in quantum dots can be found in the
bias-voltage dependence of the differential conductance dI/dV , that shows a narrow
peak at low bias voltage V (Fig. 1.6). As noticed previously, the height of the peak
reaches the unitary limit 2e2/h at zero bias and zero temperature. When either the
temperature or the bias voltage is increased, the spin-flip scattering processes become
incoherent, destroying the coherent Kondo effect, and the conductance decreases. The
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Figure 1.6: Differential conductance dI/dV as a function of the bias voltage V [100]. The
narrow peak at low bias is due to the Kondo effect, while the high-voltage peaks are related
to single-particle transport.

increase of the differential conductance at very high voltage occurs when the chemical
potential of one lead is aligned with a dot level. In that case, the electrons can tunnel
easily into or out of the dot through single-particle processes. On the theoretical point
of view, the non-equilibrium transport for the Anderson model in the presence of a bias
voltage has not been solved exactly so far. Therefore, the explanation of Fig. 1.6 is an
important challenge, which we address in Chap. 4.

1.3 Perspectives

Due to its fairly ancient history in metals containing magnetic impurities, the theory
of the Kondo effect is already well established and can interpret many experimental
results with high accuracy. Because some aspects of the behavior of quantum dots are
conceptually quite similar, there is no wonder that a fast agreement between theory
and experiments has been reached on many points. Namely, exact solutions exist for
the equilibrium SU(2) case (µL = µR).

However, the framework of quantum dots has also brought to the surface a wide set
of new problems [61, 5]. For instance, what happens when the dot is attached to ferro-
magnetic or superconducting leads? In the first case, the dynamics of Kondo spin-flip
exchange turn out to be affected by the spin imbalance in the ferromagnetic reservoirs.
When both leads have the same magnetic orientation [66], this has consequences on
the density of states in the dot similar to the effect induced by a magnetic field (see
Chap. 5). For anti-parallel magnetic lead alignment, the Kondo effect is equivalent
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to the non-magnetic case at equilibrium, while the non-equilibrium behavior exhibits
some differences. Despite the rich consequences predicted by theory, few experimen-
tal realizations have come out because of the difficulty of reliably creating magnetic
semiconductor structures. The Kondo effect in presence of superconducting [28, 17] or
Luttinger-liquid [42] leads is quite challenging as well because of the zero density of
states at the Fermi level in the leads. The behavior of the system therefore depends on
the interplay of many effects and on the relative values of the Kondo temperature and
the superconducting gap (or Luttinger parameters).

Even more exotic features can be investigated in more complex systems such as
double quantum dots [104, 14] or carbon nanotubes [83]. In those systems, a non-
spin Kondo effect can take place through the two-fold degeneracy respectively in the
two dots and in the orbital moment. This opens the door to systems where the dot
exhibits a higher symmetry than SU(2) [39, 72] leading to fundamental modification
in its physical properties. All those questions have already generated an important
literature, and are still open to debate. In this thesis, we address the transport through
a quantum dot out of equilibrium (when the left and right leads are put to different
chemical potentials). In that case, an electronic current flows through the system,
and most equilibrium theories fail because of the decoherence of the resonant spin-flip
scattering process.
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Chapter 2

Equations-of-motion formalism

We want to characterize the electronic transport through the system. As we have
shown in Eq. (1.6) that the current depends on the density of states in the dot, we need
a method that gives the expression of the Green’s function in the dot. To this end, we
derive of the equations-of-motion (EOM) of the dot Green’s function for the Anderson
model. The recursive application of the Heisenberg equations-of-motion [109] generates
an infinite hierarchy of equations, which relate the different Green’s functions of the
system. This hierarchy has to be truncated by a suitable approximation scheme in
order to form a closed set of equations. The choice of the truncation scheme is crucial
in order to treat carefully the correlation effects both from the Coulomb interaction
and from the dot-lead tunneling.

The equations-of-motion technique was applied to the original Anderson model at
equilibrium long time ago [25, 26, 11, 98, 63, 81, 52, 53] in the context of the dilute
magnetic alloys. When applying the standard approximation based on a truncation
of the equations of motion at second order in the hybridization term tσ, it yields re-
sults which agree with perturbation theory calculations for temperatures above the
Kondo temperature, TK . This truncation scheme is usually referred to as the Lacroix
approximation [52]. Even though the scheme has serious drawbacks at this level of
approximation (underestimation of the Kondo temperature TK , absence of Kondo ef-
fect just at the particle-hole symmetric point), it is acknowledged to provide a valuable
basis for the description of the Kondo effect both at high and low temperatures. The
applicability of the Lacroix approximation is nicely reported in a recent paper by V.
Kashcheyevs et al [43].

There have been recent attempts to use an approximation which truncates the equa-
tions of motion at higher order in tσ [71, 59, 38]. Their authors claimed to improve
quantitatively at equilibrium the Kondo temperature and the density of states around
the Fermi energy and have been able to investigate some nonequilibrium issues. How-
ever, there is need to clarify the decoherence effects in the framework of the equations-
of-motion method. In this chapter we present the main approximation schemes and
propose an extension to the often-used Lacroix approximation. We discuss the motiva-
tions and improvements of our method. The different approximation schemes will be

19
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compared in Chapter 3.

2.1 Equation-of-motion for the Green’s functions

Consider the retarded Green’s function involving fermionic operators Â and B̂ in
the Heisenberg representation

Gr
AB(t, t′) = −i〈{Â(t), B̂(t′)}〉Θ(t− t′). (2.1)

In the frequency space, it writes

〈〈Â, B̂〉〉 = −i lim
δ→0+

∫ ∞

0

dτ ei(ω+iδ)τ 〈{Â(τ), B̂(0)}〉, (2.2)

where we used the Zubarev notation Gr
AB(ω) = 〈〈Â, B̂〉〉 [109]. The infinitesimal positive

number δ is needed to have a well-defined expression. Using the Heisenberg equations-

of-motion dÂ(t)/dt = i/~

[
H, Â

]
gives

〈〈Â, B̂〉〉 = −i lim
δ→0+

1

i(ω + iδ)

[
ei(ω+iδ)τ 〈{Â(τ), B̂(0)}〉

]∞
0

−i lim
δ→0+

{
− i

~
lim

δ→0+

∫ ∞

0

dτ ei(ω+iδ)τ 〈{
[
H, Â

]
, B̂}〉

}

= lim
δ→0+

−1

(ω + iδ)

{
−〈{Â, B̂}〉 − i

~
lim

δ→0+

∫ ∞

0

dτ ei(ω+iδ)τ 〈{
[
H, Â

]
, B̂}〉

}
.

(2.3)

where we integrated Eq. (2.2) by parts. The small constant δ is important in order for
the first term to be well defined. In the rest of the thesis, the imaginary part iδ going
alongside ω will be implicit. Reorganizing the terms and using the definition (2.2)

ω〈〈Â, B̂〉〉 = 〈{Â, B̂}〉 + 〈〈[Â,H], B̂〉〉. (2.4)

The philosophy of the EOM is to develop the hierarchy of equations by using Eq. (2.4)
recursively for the new Green’s functions 〈〈[Â,H], B̂〉〉 that appear on the right-hand-
side. Very often, this hierarchy generates an infinite number of equations and has to
be truncated by an appropriate decoupling method. In this chapter, we show how this
can be applied to the single-level Anderson model.

2.2 Equations-of-motion for the Anderson model

We model the quantum dot connected to Nα leads by the single-level (spin-1/2)
Anderson impurity Hamiltonian introduced in Chapter 1

H =
∑

αkσ

εkn̂αkσ +
∑

σ

(
εd +

∆

2
σ

)
n̂σ + Un̂σn̂σ̄ +

∑

αkσ

(
tασc†αkσfσ + H.c.

)
. (2.5)
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We consider the Nα leads to have the same constant density of states ν = 1/2W , where
W is the bandwidth for the conduction electrons. A magnetic field can split the single-
particle energy of the dot εσ by a Zeeman energy ∆ = gµBB (we write εσ = εd +∆σ/2,
with σ = ±1), where µB is the Bohr magneton and g is an effective gyromagnetic factor
that depends on the screening of the magnetic field inside the material.

From Eq. (2.5), it is possible to perform a unitary transformation on the lead op-
erators cαkσ such that the dot will be coupled to a single effective lead. For that lead,
the result of the transformation is

c̃kσ =
1

t̃σ

∑

α

tασcαkσ, (2.6a)

t̃σ =

√∑

α

t2ασ. (2.6b)

The remaining Nα −1 uncoupled c̃ operators obtained from the unitary transformation
can be built by means of the Gram-Schmidt orthonormalization procedure. However,
finding them is unimportant as they do not couple to the dot. The remaining Hamil-
tonian (2.5) can be written

H =
∑

kσ

εkc̃
†
kσc̃kσ +

∑

σ

εσn̂σ + Un̂σn̂σ̄ +
∑

kσ

(
t̃σ c̃†kσfσ + H.c.

)
. (2.7)

We should remember about the transformation of Eqs. (2.6) when dealing with sta-
tistical parameters. Indeed, the distribution in the effective lead f̃(εk) is given by the
linear combination of the Nα initial leads

f̃(εk) = 〈c̃†kσc̃kσ〉 =
1

t̃2σ

∑

α

t2ασfα(εk). (2.8)

In the following, we derive the equations of motion directly from Eq. (2.7), omitting
the tilde on the c operators.

The equation (1.6) highlights the interest in computing the dot Green’s function to
determine the transport though the system. We derive a hierarchy of equations for the
dot Green’s function Gr

σ(ω) ≡ 〈〈fσ, f
†
σ〉〉. As the EOM given by Eq. (2.4) acts only on

the the left operator in the Green’s function, we adopt a simpler notation by changing

〈〈Â, f †
σ〉〉 −→ 〈〈Â〉〉. (2.9)

Using Eq. (2.4), the first equations-of-motion is

(ω − εσ) 〈〈fσ〉〉 = 1 + U〈〈nσ̄fσ〉〉 + tσ
∑

k

〈〈ckσ〉〉. (2.10)
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Two new Green’s functions appear on the right-hand side. Let us first write the EOM
for the single-particle Green’s function1 〈〈ckσ〉〉

(ω − εk) 〈〈ckσ〉〉 = tσ〈〈fσ〉〉. (2.11)

Combining the equations (2.10) and (2.11) gives for the dot Green’s function
(
ω − εσ − Σ0

σ(ω)
)
〈〈fσ〉〉 = 1 + U〈〈nσ̄fσ〉〉, (2.12)

where we introduced the non-interacting self-energy

Σ0
σ(ω) = t2σ

∑

k

1

ω − εk
= −iΓσ, (2.13)

with Γσ = πνt2σ = πt2σ/2W . The second equality in Eq. (2.13) stands if the half-
bandwidth W is much larger than all the other energy scales, so that the band-edge
effect does not affect the local density of states in the dot ρσ(ω). In this case, the
properties of the system at low temperature do not depend on the exact value of W
since only states around the Fermi level contribute, justifying the consideration of the
wide-band limit W → ∞ [11]2.

From Eq. (2.12), we notice that finding the dot Green’s function 〈〈fσ〉〉 requires the
expansion of the EOM for the two-particle Green’s function 〈〈nσ̄fσ〉〉. This can be done
through several approximation schemes that we discuss in this chapter.

2.3 Exact limits

Before treating the approximation schemes, it is illuminating to discuss two limiting
cases for which the equations-of-motion provide exact results.

2.3.1 Non-interacting limit (U = 0)

When there is no Coulomb repulsion between the electrons on the dot (U = 0), the
Eq. (2.12) simply becomes

〈〈fσ〉〉 =
1

ω − εσ + iΓσ
. (2.14)

The density of states in the dot ρσ(ω) = −Im〈〈fσ〉〉/π is a lorentzian centered at the
dot energy level εσ.

ρσ(ω) =
1

π

Γσ

(ω − εσ)2 + Γ2
σ

. (2.15)

1We define the n-particle Green’s function by a Green’s function implying n creation operators and
n destruction operators (including the implicit f †

σ at time t = 0 in Eq. (2.9)). Note that in general a
two-particle Green’s functions means 〈〈ab, c†d†〉〉 with two operators on both sides. In this manuscript,
we extend the definition to functions as 〈〈c†ab, d†〉〉 to which they are related by a phase factor.

2This is in agreement with experiments in quantum dots, in which U is typically 3 orders of
magnitude smaller than W .
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The finite width Γσ of the lorentzian corresponds to the escape rate of electrons from/into
the dot due to the hybridization with the leads.

2.3.2 Atomic limit (Γ = 0)

When the dot is isolated from the leads (tσ = 0), we obtain a closed system of
equations for the Green’s functions

(ω − εσ) 〈〈fσ〉〉 = 1 + U〈〈nσ̄fσ〉〉, (2.16)

(ω − εσ − U) 〈〈nσ̄fσ〉〉 = 〈nσ̄〉. (2.17)

This leads to

〈〈fσ〉〉 =
1 − 〈nσ̄〉
ω − εσ

+
〈nσ̄〉

ω − εσ − U
, (2.18)

and, taking the imaginary part,

ρσ(ω) = [1 − 〈nσ̄〉] δ(ω − εσ) + 〈nσ̄〉δ(ω − εσ − U). (2.19)

The density of states shows two Dirac peaks located at the bare dot energy-levels εσ

and εσ + U . They respectively correspond to the energy needed to add an electron in
the state |σ〉 when the state |σ̄〉 is unoccupied (resp. occupied), and the weight of the
peaks are 1 − 〈nσ̄〉 (resp. 〈nσ̄〉).

2.4 Hartree approximation (truncation at zeroth or-

der in t)

For the general case (U 6= 0, Γ 6= 0), the easiest approximation possible is to truncate
the hierarchy of equations at the mean-field level by decoupling directly the 2-particle
Green’s function

〈〈nσ̄fσ〉〉 ≈ 〈nσ̄〉〈〈fσ〉〉. (2.20)

Using Eq. (2.12), the dot Green’s function writes

〈〈fσ〉〉 =
1

ω − εσ − U〈nσ̄〉 + iΓσ
. (2.21)

The density of states is similar to the non-interacting case, except that the lorentzian
peak is shifted toward higher energy by U〈nσ̄〉 due to the Coulomb repulsion with
electrons in the state |σ̄〉. The approximation is obviously correct in the non-interacting
limit U → 0. The Eq. (2.21) has to be complemented by the equation for the occupation
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number in the dot 〈nσ̄〉. From the fluctuation-dissipation theorem [89], it writes at zero
temperature

〈nσ〉 =
1

π

∫ 0

−W

dω
Γσ

(ω − εσ − U〈nσ̄〉)2 + Γ2
σ

= −1

π
arctan

(
εσ − U〈nσ̄〉

Γσ

)
+

1

2
.

(2.22)

The Green’s function and the occupation number are found by solving Eqs. (2.21)
and (2.22) self-consistently. Anderson showed that such a treatment gives rise to a
phase diagram with axes Γ/U and εd/U that exhibits a phase at small U with a single
non-magnetic solution 〈n↑〉 = 〈n↓〉 and a phase at large U with three mathematical
solutions: the non-magnetic one 〈n↑〉 = 〈n↓〉 and two magnetic ones 〈n↑〉 = 1 − 〈n↓〉
with 〈n↑−n↓〉 ≈ ±1 [7]. In the second case, it turns out that only the magnetic solutions
are stable, highlighting the formation of a local magnetic moment. The formation of
such a magnetic moment is an indication that the Anderson model can be mapped on
a Kondo model3.

For 〈n↑−n↓〉 ≈ +1, the spin-up (resp. spin-down) density of states shows a peak at εd

(resp. εd+U). The result should be averaged with the second solution at 〈n↑−n↓〉 ≈ −1
in order to restore the spin rotation symmetry. By doing so, the self-consistent Hartree
solution recovers the atomic limit as will be shown in Chap. 3.

2.5 First-order approximation (truncation at first or-

der in t)

In order to go beyond the Hartree approximation, we can expand the equations-of-
motion for the Green’s function 〈〈nσ̄fσ〉〉

(ω − εσ − U) 〈〈nσ̄fσ〉〉 = 〈nσ̄〉 +
∑

k

[
tσ〈〈nσ̄ckσ〉〉 + tσ̄〈〈f †

σ̄ckσ̄fσ〉〉 − tσ̄〈〈c†kσ̄fσ̄fσ〉〉
]
.

(2.23)

Three new Green’s functions have appeared on the right-hand-side. A physical inter-
pretation of those functions is obtained by applying the EOM on the implicit operator
f †

σ at time t′, which tunnels to c†kσ. 〈〈nσ̄ckσ, c
†
kσ〉〉 is related to the potential scattering

of a conduction electron on the impurity; 〈〈f †
σ̄ckσ̄fσ, c†kσ〉〉 stands for the co-tunneling

scattering of a conduction electron with spin-flip and 〈〈c†kσ̄fσ̄fσ, c†kσ〉〉 describes a process
in which two conduction electrons leave the dot [37].

Turning back to Eq. (2.23), decoupling at this stage gives

〈〈nσ̄ckσ〉〉 ≈ 〈nσ̄〉 〈〈ckσ〉〉,
〈〈f †

σ̄ckσ̄fσ〉〉 ≈ 〈f †
σ̄ckσ̄〉 〈〈fσ〉〉,

〈〈c†kσ̄fσ̄fσ〉〉 ≈ 〈c†kσ̄fσ̄〉 〈〈fσ〉〉.
3Of course, no Kondo physics can be obtained at the mean-field level as it results from strong

correlations induced by higher-order virtual processes.
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Introducing inside Eq. (2.23), we get

(ω − εσ − U) 〈〈nσ̄fσ〉〉 = 〈nσ̄〉 − iΓσ〈nσ̄〉〈〈fσ〉〉 − i〈Îσ̄〉〈〈fσ〉〉, (2.24)

where we used Eq. (2.11) and defined the total spin-current operator

Îσ = i
∑

k

tσ

[
f †

σckσ − c†kσfσ

]
. (2.25)

If there is no current source inside the dot, the total average current entering the dot
is always zero4 (〈Îσ̄〉 = 0). Combining with Eq. (2.12), and after some straightforward
algebra, the dot Green’s function reads

〈〈fσ〉〉 =
ω − εσ − U (1 − 〈nσ̄〉)

(ω − εσ + iΓσ) (ω − εσ − U) + iΓσU〈nσ̄〉
. (2.26)

Using the identity A+B〈nσ̄〉 = A(1−〈nσ̄〉)+ (A+B)〈nσ̄〉, we can rewrite it under the
form

〈〈fσ〉〉 =
1 − 〈nσ̄〉

ω − εσ + iΓσ

[
1 + U〈nσ̄〉

(ω−εσ−U)

] +
〈nσ̄〉

ω − εσ − U + iΓσ

[
1 − U(1−〈nσ̄〉)

ω−εσ

] . (2.27)

Interestingly, this expression recovers directly both the non-interacting limit U = 0 and
the atomic limit Γ = 0. In the general case, the dot density of states ρσ(ω) is given by
two resonances centered around εσ and εσ + U . The height of the peaks is pinned at
1/πΓσ for any value of the dot energy level εσ or the Coulomb repulsion U , while their
width of the resonances is renormalized in comparison with the Hartree case.

2.6 Lacroix approximation (truncation at second or-

der in t)

The approximations dicussed in Sec. 2.4 and 2.5 are only able to describe single-
particle physics. Some interesting many-body physics can be captured by going to the
next order in the EOM, by expanding the three Green’s functions appearing on the
right-hand side of Eq (2.23)

(ω − εk) 〈〈nσ̄ckσ〉〉 = tσ〈〈nσ̄fσ〉〉
+
∑

k1

tσ̄

[
〈〈f †

σ̄ck1σ̄ckσ〉〉 − 〈〈c†k1σ̄fσ̄ckσ〉〉
]
, (2.28a)

(ω − εk − ∆σ) 〈〈f †
σ̄ckσ̄fσ〉〉 = 〈f †

σ̄ckσ̄〉 + tσ̄〈〈nσ̄fσ〉〉
+
∑

k1

[
tσ〈〈f †

σ̄ckσ̄ck1σ〉〉 − tσ̄〈〈c†k1σ̄ckσ̄fσ〉〉
]
,(2.28b)

(ω + εk − 2εd − U) 〈〈c†kσ̄fσ̄fσ〉〉 = 〈c†kσ̄fσ̄〉 − tσ̄〈〈nσ̄fσ〉〉
+
∑

k1

[
tσ̄〈〈c†kσ̄ck1σ̄fσ〉〉 + tσ〈〈c†kσ̄fσ̄ck1σ〉〉

]
. (2.28c)

4Remind that the c operator includes a sum over all the leads.
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Again, we can decouple the new Green’s functions appearing on the right-hand side

〈〈f †
σ̄ck1σ̄ckσ〉〉 ≈ 〈f †

σ̄ck1σ̄〉 〈〈ckσ〉〉,
〈〈c†k1σ̄fσ̄ckσ〉〉 ≈ 〈c†k1σ̄fσ̄〉 〈〈ckσ〉〉,
〈〈c†k1σ̄ckσ̄fσ〉〉 ≈ 〈c†k1σ̄ckσ̄〉 〈〈fσ〉〉.

Decoupling at this stage is often referred to as the Lacroix approximation [52]. Using
the equations (2.11) and (2.13), and reminding 〈Îσ̄〉 = 0, the Eqs. (2.28) become

(ω − εk) 〈〈nσ̄ckσ〉〉 = tσ〈〈nσ̄fσ〉〉,
(2.29a)

(ω − εk − ∆σ) 〈〈f †
σ̄ckσ̄fσ〉〉 = 〈f †

σ̄ckσ̄〉 + tσ̄〈〈nσ̄fσ〉〉
−iΓσ〈f †

σ̄ckσ̄〉 〈〈fσ〉〉 − tσ̄
∑

k1

〈c†k1σ̄ckσ̄〉 〈〈fσ〉〉,

(2.29b)

(ω + εk − 2εd − U) 〈〈c†kσ̄fσ̄fσ〉〉 = 〈c†kσ̄fσ̄〉 − tσ̄〈〈nσ̄fσ〉〉
+tσ̄

∑

k1

〈c†kσ̄ck1σ̄〉 〈〈fσ〉〉 − iΓσ〈c†kσ̄fσ̄〉 〈〈fσ〉〉.

(2.29c)

Grouping the Equations (2.12), (2.23) and (2.29), we find the expression for the Green’s
function inside the dot

〈〈fσ〉〉 =

[
u2σ(ω) − 〈nσ̄〉 −

∑

k

tσ̄〈f †
σ̄ckσ̄〉

ω − εk − ∆σ
+
∑

k

tσ̄〈c†kσ̄fσ̄〉
ω + εk − 2εd − U

]

×


u1σ(ω)u2σ(ω) −

∑

kk1

t2σ̄〈c†k1σ̄ckσ̄〉 + iΓσ〈f †
σ̄ckσ̄〉δkk1

ω − εk − ∆σ
−
∑

kk1

t2σ̄〈c†kσ̄ck1σ̄〉 − iΓσ〈c†kσ̄fσ̄〉δkk1

ω + εk − 2εd − U



−1

,

(2.30)

where

u1σ(ω) = ω − εσ + iΓσ, (2.31)

u2σ(ω) = − 1

U
[ω − εσ − U + iΓσ + 2iΓσ̄] . (2.32)

The very new feature in comparison to lower-order approximations is that the
Green’s function contains terms which exhibit low-energy divergences around ω = ∆σ
and ω = 2εd +U . As it can be seen from the Green’s function in Eq. (2.29b), the diver-
gence at ω = ∆σ is related to many-particle spin-flip scattering processes, as involved
in the Kondo effect. The divergence at ω = 2εd + U in Eq. (2.29c) corresponds to
processes in which two electrons are removed/added at the same time in the dot. Such
a process is highly unlikely and the corresponding peak turns out to be unphysical. It
is projected out when using the Lacroix approximation in the U → ∞ limit. For the
general case of a finite interaction U , we need to go beyond the Lacroix approximation,
as will be shown in Sec. 2.7.
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2.6.1 Non self-consistent solution

In order to get some analytical results, we can take the lowest-order approximation
for the the average values in Eq. (2.48) [70]

〈f †
σ̄ckσ̄〉 = 〈c†kσ̄fσ̄〉 ≈ 0,

〈c†k1σ̄ckσ̄〉 = 〈c†kσ̄ck1σ̄〉 ≈ f(εk)δkk1.

This approximation is accurate to describe the high-energy behavior where the correc-
tions for the non-interacting average values are small. We can write the dot Green’s
function under the equivalent form

〈〈fσ〉〉 =
1 − 〈nσ̄〉

ω − εσ + iΓσ +
U

ω − εσ − U + iΓσ + 2iΓσ̄
t2σ̄
∑

k

[
f(εk)

ω − εk − ∆σ
+

f(εk)

ω + εk − 2εd − U

]

+
〈nσ̄〉

ω − εσ − U + iΓσ − U

ω − εσ + iΓσ + 2iΓσ̄
t2σ̄
∑

k

[
1 − f(εk)

ω − εk − ∆σ
+

1 − f(εk)

ω + εk − 2εd − U

] .

(2.33)

We recognize the two resonances around εσ and εσ+U , as in the Hartree approximation.
However, the renormalization of the parameters is different as the width of the peaks is
now equal to Γσ + Γσ̄ = Γ. The position of those peaks is also renormalized according
to the equation

ε̃σ ≈ εσ − Γσ̄

π
ln

∣∣∣∣
ε̃σ − ∆σ

ε̃σ − 2εd − U

∣∣∣∣ , (2.34)

which is obtained by solving for the real part of the first term in Eq. (2.33) around
ω ≈ ε̃σ. In the U → ∞ limit, the dot level is shifted toward higher energies. In
the mixed valence regime (Min{εσ − µα, µα − εσ − U} ≈ Γ), the renormalization of the
bare energy-level is consistent with the prediction from the scaling theory [33, 36].

On the other side, the main interest of the Lacroix approximation is that the dot
Green’s function in Eq. (2.48) contains some low-energy divergences. At zero temper-
ature, the real part of the denominator in the dot Green’s function contains a term of
the form

Γσ̄

π
ln

∣∣∣∣
ω − 2εd − U

ω − ∆σ

∣∣∣∣ .

The logarithmic divergences around ω = ∆σ and ω = 2εd + U cancel each other out
when ∆σ = 2εd + U . In the zero magnetic field case (∆ = 0), this corresponds to the
particle-hole symmetric point εd = −U/2. As a consequence, no Kondo physics can be
found at that point in the present approximation scheme. It is still the case when using
a self-consistent scheme for the average values in Eq. (2.48), as discussed later on.
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On the other hand, the approximations here above for the average values are accu-
rate essentially far from the resonances ω = ∆σ and ω = 2εd + U . At resonance, the
divergence in the denominator implies that the dot Green’s function equals zero, and
from Eq. (1.8) the linear conductance also vanishes at zero temperature, in opposition
with the maximum conductance G = 2e2/h expected in the Kondo regime. We show
in Sec. 2.6.4 that this pathology is cured in a self-consistent treatment.

2.6.2 Universality and Kondo temperature

Before addressing the issue of the self-consistency, it is enlightening to investigate
further the low-energy properties under the approximations of Sec. 2.6.1. In the Kondo
regime ω ≪ min(−εd, εd + U), and far from the particle-hole symmetric point ω ≪
|2εd + U |, the frequency dependence comes essentially from the resonance around ω =
∆σ = 0 (we still consider the absence of magnetic field). The non-self-consistent dot
Green’s function can then be written under the form

〈〈fσ〉〉 =
u2σ(0) − 〈nσ̄〉

u1σ(0)u2σ(0) +
Γσ̄

π
ln

∣∣∣∣
2εd + U

ω

∣∣∣∣+ iΓσ̄ [f(ω) + f(2εd + U)]

. (2.35)

For spin-independent coupling (Γσ = Γσ̄ = Γ/2) and Γ ≪ U , this gives

〈〈fσ〉〉 ∝ 1

1 − ln

∣∣∣∣
TK

ω

∣∣∣∣− i
UΓ/2

εσ (εσ + U)

[
f(ω) + f(2εd + U) + 1 + 4

εd

U

] , (2.36)

where we define

TK = (2εd + U) exp

[
2πεσ (εσ + U)

UΓ

]
. (2.37)

The Eq. (2.36) shows that the Green’s function depends only on the ratio ω/TK for
|ω| ≫ T . For zero temperature, we recover the universality characteristic of the Kondo
effect. The energy scale TK is identified with the Kondo temperature; its expression
essentially differs from the exact result (UΓ/4)1/2exp [πε0(ε0 + U)/ΓU ] [33] by a factor
2 in the exponential.

2.6.3 Self-consistency at equilibrium

The approximations made in Section 2.6.1 for the expectation values 〈f †
σckσ〉, 〈c†kσck1σ〉

and 〈nσ〉 = 〈f †
σfσ〉 appearing in the dot Green’s function (2.48) were shown to be inac-

curate at low-energy. In order to determine properly these quantities, we have to define
a self-consistent scheme that connects them to the Green’s functions. At equilibrium,



2.6. LACROIX APPROXIMATION 29

this can be done by means of the spectral theorem:

〈nσ〉 = −1

π

∫ W

−W

dεf(ε) ImGr
σ(ε), (2.38a)

〈f †
σckσ〉 = −1

π

∫ W

−W

dεf(ε) ImGr
kσ,σ(ε), (2.38b)

〈c†kσck1σ〉 = −1

π

∫ W

−W

dεf(ε) ImGr
k1σ,kσ(ε), (2.38c)

where Gr
kσ,σ(ω) = 〈〈ckσ, f

†
σ〉〉 and Gr

k1σ,kσ(ω) = 〈〈ck1σ, c†kσ〉〉. The EOM for these two
Green’s functions are

〈〈ckσ, f
†
σ〉〉 =

tσ
ω − εk

〈〈fσ, f †
σ〉〉, (2.39a)

〈〈ck1σ, c†kσ〉〉 =
δkk1

ω − εk
+

t2σ
(ω − εk) (ω − εk1)

〈〈fσ, f †
σ〉〉. (2.39b)

Inserting Eqs (2.39) inside Eqs (2.38b-2.38c) leads to

〈f †
σckσ〉 = −tσ

π
lim
δ→0

∫ W

−W

dεf(ε) Im
Gr

σ(ε)

ε − εk + iδ
, (2.40a)

〈c†kσck1σ〉 = f(εk)δkk1 −
t2σ
π

lim
δ→0

∫ W

−W

dεf(ε) Im
Gr

σ(ε)

(ε − εk + iδ) (ε − εk1 + iδ)
. (2.40b)

Looking at the terms where these average values appear inside Eq. (2.30), we observe
that they enter in a summation over εk and εk1, with an additional pole in ω ± εk + iδ.
Let us look for instance at the term

tσ̄
∑

k

〈f †
σ̄ckσ̄〉

ω − εk − ∆σ + iδ
= − t2σ̄

2Wπ

∫
dεk

∫
dεf(ε)

1

ω − εk − ∆σ + iδ
Im

Gr
σ̄(ε)

ε − εk + iδ

= −Γσ̄

π

∫
dεk

∫
dεf(ε)

1

ω − εk − ∆σ + iδ

× 1

2i

[ Gr
σ̄(ε)

ε − εk + iδ
− Ga

σ̄(ε)

ε − εk − iδ

]

=
Γσ̄

2iπ

∫
dεf(ε)Ga

σ̄(ε)

∫
dεk

1

ω − εk − ∆σ + iδ

1

ε − εk − iδ

= Γσ̄

∫
dε

f(ε)Ga
σ̄(ε)

ω − ε − ∆σ + iδ

Only the terms with poles in the two quadrants give a non-zero contribution in the
wide-band-limit. Proceeding similarly for the other terms, we end up with a closed
system of equations. We will show in Sec. 4.1 how these expressions can be generalized
out of equilibrium.
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2.6.4 Unitary limit

The unitary limit G = 2e2/h for the zero-temperature conductance in the Kondo
regime implies, according to Eq. (1.8), that the dot density of states at the Fermi level
of the leads is pinned at a value ρσ(0) = 1/πΓσ = 2/πΓ.

It is interesting to check whether this is true for the Lacroix approximation. Ob-
viously, the answer is negative at the particle-hole symmetric point εd = −U/2, as we
already mentioned that the Lacroix approximation fails to recover any Kondo physics
at this very point.

Therefore, we consider the case εd 6= −U/2. We look for the value of the density of
states at the precise point ω = 0; at that point, the result from the Lacroix approxima-
tion is dominated by the diverging terms at ω = ∆ = 0 in Eq. (2.30). Considering that
the Green’s function varies slowly around the Fermi level compared to the Fermi-Dirac
distribution, we can take the approximation [27]

∑

α=L,R

Γασ

π

∫
dε

fα(ε)Ga
σ(ε)

ω − ε
≈

∑

α=L,R

Γασ

π
Ga

σ(0)

∫
dε

fα(ε) − 1/2

ω − ε
= −Γσ

π
Ga

σ(0) ln
∣∣∣
ω

W

∣∣∣ ,

valid for ln(W/ω) ≫ π. Putting these two expressions into the dot Green’s func-
tion (2.30) gives

Gr
σ(0) ≈ lim

ω→0

Γσ

π
Ga

σ(0) ln
∣∣ ω
W

∣∣
Γσ

π
ln
∣∣ ω
W

∣∣ [1 + iΓGa
σ(0)]

. (2.41)

The divergent correction appears both in the numerator and the denominator; as a
consequence, the Green’s function itself is not divergent. Inverting Eq. (2.41) directly
implies

Im [Gr
σ(0)]−1 =

Γ

2
. (2.42)

This relation implies number conservation and is sometimes referred to as the unitary
condition [54, 43]. It is satisfied in the Lacroix approximation for εd 6= −U/2. However,
the real part of the inverse Green’s function at the Fermi energy, should be given by
the Friedel sum rule

Re [Gr
σ(0)]−1 = −Γσ cot (πñσ) , (2.43)

with

ñσ = −1

π
Im

∫
dωf(ω)

[
1 − ∂Σr

σ(ω)

∂ω

]
Gr

σ(ω).

The relation (2.43) is not satisfied in the Lacroix approximation, and the low-energy
Fermi liquid relationships are therefore violated [43].
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2.7 Beyond the Lacroix approximation (decoupling at

order O(t4))

As we saw in Sec. 2.6, the Lacroix approximation is able to capture several aspects
of the Kondo physics on the qualitative level. However, it also suffers some drawbacks
that require a more sophisticated treatment. Let us summarize the main features of
the self-consistent Lacroix decoupling

1. the renormalization of the high-energy parameters εσ and Γσ is correct,

2. the important spin-flip scattering processes associated to the Kondo effect lies
inside the two-particle Green’s function 〈〈f †

σ̄ckσ̄fσ〉〉,

3. there is a spurious negative peak at ω = 2εd+U , related to the pole of 〈〈c†kσ̄fσ̄fσ〉〉.
It cancels out with the Kondo resonance at the particle-hole symmetric point,
where TK = 0,

4. the Kondo temperature differs from the exact result by a factor 2 in the exponen-
tial,

5. the low-energy density of states shows a universal behavior after rescaling ω/TK,

6. the unitary condition Im [Gr
σ(0)]−1 = Γ/2 is satisfied due to a correct balance be-

tween the coefficients of the logarithmic terms in the numerator and denominator,

7. all the Fermi liquid relationships at low energy are not recovered. In particular,
the density of states is not a function of ω2/T 2

K for ω ≪ TK ,

8. the divergent terms remain in the presence of a bias voltage or a magnetic field,
while they are expected to be smeared out by decoherence effects.

Many of those points were investigated recently [27, 43]. We question whether a
derivation of the EOM at higher order can improve some drawbacks of the Lacroix
approximation. In this thesis, we develop a systematic method that captures contri-
butions beyond the derivation at second-order in t. We show in the following chapters
that our result solves the drawbacks 3 and 8 of the Lacroix approximation, and im-
proves the point 4. The Holy Grail would be to recover the Fermi-liquid relations at
low energy, which would probably drive the EOM technique high onto the front stage
for Kondo-related problems [40]. The reader interested in digging in that direction
should be aware of the work by Nagaoka [73] who applied of the EOM to the Kondo
Hamiltonian and recovered a very accurate low-energy behavior5. Following the track
of his approach while starting from the Anderson model might bring some clue to the
problem. We do not address this issue in this thesis, as we focus on the high-energy
behavior, for instance when the system is driven out of equilibrium by applying a bias

5See also [107]
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voltage V > TK . The parameter region V = T = ∆ = 0 will be looked at only to
benchmark our approximation by comparing it to other ones. Therefore, the Fermi
liquid regime is not our main concern and we propose an extension of the EOM whose
roots are the Lacroix approximation.

Going beyond the Lacroix approximation has had several attempts (e.g. [25, 71, 59]),
but few of them were able to extend it in a controllable way. The essence of the difficulty
is the following: Lacroix had the good idea to stop the hierarchy of EOM by decoupling
the two-particle Green’s functions when only one dot operator remains at time t. If
we wish to expand the hierarchy beyond this point, we have to deal with three-particle
Green’s functions, implying tricky correlations, and an exploding number of equations
and combinations of energy parameters. Many of those terms turn out to be negligible,
and keeping track of all of them is essentially irrelevant. Therefore, we show and discuss
what terms we expect to give a sensible contribution to the Kondo effect. However, when
decoupling Green’s functions generated at different orders, there is a danger for double
counting. A simple example can be found if we try to perform both the decoupling at
the mean-field level (Sec. 2.4) and at first order (Sec. 2.5). This is forbidden because it
corresponds to decoupling the same quantity twice, at different orders of the expansions
of the EOM. We develop a new formalism that keeps track of the decouplings and avoids
this kind of double couting.

2.7.1 Decoupling procedure

Let us first remind how the EOM work for the Anderson model. Each time we com-
pute the anti-commutation of a Green’s function with the Hamiltonian, the operators
are changed according to

fσ → tσcσ + Unσ̄fσ,

cσ → tσfσ.

However, due to the finite Hilbert space on the dot, a Green’s function of higher particle
number appears only if includes a single dot operator fσ (f †

σ). Hence, in order to
generate a new Green’s function with two additional dot operators generated by the
Coulomb interaction U , two of the dot operators f from the group nσ̄fσ have to tunnel
into lead operators c. This allows us to organize the hierarchy of EOM into different
generations in U . A Green’s function of generation6 n will contain 2n + 1 operators at
time t (〈〈fσ〉〉 is the zeroth generation).

In order to stop the infinite hierarchy of EOM, we have to truncate it. The exact

6The Green’s functions appearing at the nth generation are what we called n-particle Green’s
functions.
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truncation follows the procedure due to Kubo [51] for fermionic operators a, b, c, · · ·

〈〈b†cd〉〉 = 〈b†c〉〈〈d〉〉 − 〈b†d〉〈〈c〉〉+ 〈〈b†cd〉〉c, (2.44)

〈〈a†b†cde〉〉 = −〈a†c〉〈〈b†de〉〉 + 〈a†d〉〈〈b†ce〉〉 − 〈a†e〉〈〈b†cd〉〉
+〈b†c〉〈〈a†de〉〉 − 〈b†d〉〈〈a†ce〉〉 + 〈b†e〉〈〈a†cd〉〉
+〈a†b†cd〉〈〈e〉〉 − 〈a†b†ce〉〈〈d〉〉 + 〈a†b†de〉〈〈c〉〉
+2〈a†c〉〈b†d〉〈〈e〉〉 − 2〈a†d〉〈b†c〉〈〈e〉〉 − 2〈a†e〉〈b†d〉〈〈c〉〉
+2〈a†d〉〈b†e〉〈〈c〉〉 − 2〈a†c〉〈b†e〉〈〈d〉〉
+2〈a†e〉〈b†c〉〈〈d〉〉+ 〈〈a†b†cde〉〉c, (2.45)

where 〈〈· · ·〉〉c represents the correlated part which cannot be decoupled. This is com-
pletely general7. Let us stress that this decoupling takes the non-interacting Ground
State average values and Green’s functions. Computing carelessly the average values
in a self-consistent scheme can lead to a double-counting problem. Indeed, in that
case, the EOM hierarchy develops both in the decoupled expectation value and in the
remaining Green’s function. In order to avoid this, we have to keep track of the terms
directly generated by the self-consistent calculation of the average values decoupled at
a lower generation, not to decouple them another time. Introducing the decoupling of
Eq. (2.44) inside Eq. (2.45) leads to

〈〈b†cd〉〉 = 〈b†c〉〈〈d〉〉 − 〈b†d〉〈〈c〉〉+ 〈〈...b†cd...〉〉c,
〈〈a†...b†cd

...e〉〉 = −〈a†c〉〈〈...b†d...e〉〉 + 〈a†d〉〈〈...b†c...e〉〉 + 〈b†e〉〈〈a†...cd
...〉〉

−〈a†...b†c
...e〉〈〈d〉〉 + 〈a†...b†d

...e〉〈〈c〉〉
+2〈a†d〉〈b†e〉〈〈c〉〉 − 2〈a†c〉〈b†e〉〈〈d〉〉+ 〈〈a†b†cde〉〉c,

where we put vertical dots to remind the operators that have already been decoupled
in a previous generation. We stress that this is the same decoupling, but with average
values and Green’s functions computed self-consistently.

We build a new approximation on the top of the Lacroix scheme by introducing the
higher-order contributions that are physically relevant. One of the biggest limitations
of the Lacroix approximation lies in its unphysical anti-resonance in the dot density
of states at ω = 2εd + U . If we track the derivation of the corresponding term, it
appears in Eq. (2.28) in the denominator of the Green’s function 〈〈c†kσ̄fσ̄fσ〉〉. This
gives us the motivation to look for the processes which give a self-energy to 〈〈c†kσ̄fσ̄fσ〉〉,
with the hope that a finite imaginary part would smear the divergence out. Of course,
we should do the same for the other two-particle Green’s functions of the same order
in Eq. (2.28), namely 〈〈nσ̄ckσ〉〉 and 〈〈f †

σ̄ckσ̄fσ〉〉, and consider coupling terms between
those three Green’s functions.

7For the Anderson model, a spin-conservation condition has to be considered in the decoupling (i.e.
we cannot decouple 〈a†

σ
cσ̄〉).
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We can write this in the following system of equations

[
ω:k − Σ1σ(ω:k)

]
〈〈nσ̄ckσ〉〉 = tσ〈〈nσ̄fσ〉〉 +

∑

k1

t12,σ(ω, k, k1)〈〈f †
σ̄ck′σ̄fσ〉〉

+
∑

k1

t13,σ(ω, k, k1)〈〈c†k′σ̄fσ̄fσ〉〉, (2.46a)

[
ωσ̄:kσ − Σ2σ(ω:k)

]
〈〈f †

σ̄ckσ̄fσ〉〉 = 〈f †
σ̄ckσ̄〉 + tσ̄〈〈nσ̄fσ〉〉

+
∑

k1

[
−tσ̄〈c†k1σ̄ckσ̄〉 − iΓσ〈f †

σ̄ckσ̄〉
]
〈〈fσ〉〉

+
∑

k1

t23,σ(ω, k, k1)〈〈c†k1σ̄fσ̄fσ〉〉, (2.46b)

[
ωk:σσ̄ − U − Σ3σ(ωk:)

]
〈〈c†kσ̄fσ̄fσ〉〉 = 〈c†kσ̄fσ̄〉 − tσ̄〈〈nσ̄fσ〉〉

+
∑

k1

[
tσ̄〈c†kσ̄ck1σ̄〉 − iΓσ〈c†kσ̄fσ̄〉

]
〈〈fσ〉〉

+
∑

k1

t32,σ(ω, k, k1)〈〈f †
σ̄ck1σ̄fσ〉〉. (2.46c)

The Lacroix approximations is recovered by setting the functions Σiσ and tij,σ to zero.
Those functions are calculated at second order in t in Appendix B; a schematic repre-
sentation of the new approximation is given in Fig. 2.1. This leads to a Green’s function
〈〈fσ〉〉 that is exact at fourth order in t. In order to simplify the expressions in Eqs. 2.46,
we use a shorthand notation

ωαβ···:ab··· ≡ ω + εα + εβ + · · · − εa − εb − · · · , (2.47)

with {αβ · · · , ab · · · } being any set of parameters within k and σ8. In order to sum-
marize the ideas, a schematic representation of our approximation scheme is given in
Fig. 2.1, where it is compared to the Lacroix approximation scheme.

The dot Green’s function can be written

〈〈fσ〉〉 =
u2σ(ω) − 〈nσ̄〉 − Πσ(ω)

u1σ(ω)u2σ(ω) + Ξσ(ω)
, (2.48)

where the functions Πσ(ω) and Ξσ(ω) are defined by

Πσ(ω) =
∑

k

t2σ(ω:k)〈f †
σ̄ckσ̄〉

ω:k − ∆σ − Σ2σ(ω:k)
+
∑

k

t3σ(ωk:)〈c†kσ̄fσ̄〉
ωk: − 2εd − U − Σ3σ(ωk:)

, (2.49a)

Ξσ(ω) = −tσ̄
∑

kk1

[
t2σ(ω:k)〈c†k1σ̄ckσ̄〉

ω:k − ∆σ − Σ2σ(ω:k)
− t3σ(ω:k)〈c†kσ̄ck1σ̄〉

ωk: − 2εd − U − Σ3σ(ωk:)

]
− iΓσΠσ(ω).

(2.49b)

8We have for instance: ω:k ≡ ω−εk, ωk: ≡ ω+εk, ωσ̄:kσ ≡ ω+εσ̄−εk−εσ, and ωk:σσ̄ ≡ ω+εk−εσ−εσ̄.
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Figure 2.1: Schematic representation of the hierarchy of Green’s functions and the resum-
mations done within the Lacoix and the fourth order (in t) approximation schemes. The
coefficients t21 and t31 are zero at second order in t, which explains why they are absent in
Eqs. 2.46. The system of equations obtained at fourth order can be diagonalized, and we
obtain effective coefficients tiσ from the Green’s function 〈〈nσ̄fσ〉〉 to 〈〈nσ̄ckσ〉〉, 〈〈f †

σ̄ckσ̄fσ〉〉
and 〈〈c†kσ̄fσ̄fσ〉〉.
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The coefficients t2σ and t3σ are related to tij,σ by Eqs. (B.10). Again, the Lacroix
approximation corresponds to the lowest order in t for the coefficients: Σ

(0)
iσ = 0, t

(0)
1σ =

tσ, t
(0)
2σ = tσ̄ and t

(0)
3σ = −tσ̄. The renormalization of the coefficients tiσ changes the

value of the Kondo temperature, which we discuss in Sec. 3.1.3, but has little influence
on the qualitative point of view. Therefore, let us focus on the effect of the value of the
self-energies Σiσ at higher order in t in order to check whether they would introduce a
finite cutoff to the poles in Eqs. (2.46). As demonstrated in Appendix B, we obtain at
second order in t are

Σ
(2)
1 (ω:k) = −2iΓσ̄, (2.50a)

Σ
(2)
2σ (ω:k) = −iΓ +

∑

k1

[
−t2σ̄Dσ(ωk1:k) + t2σD∗

σ̄(−ωk1:k)
]
f(εk1), (2.50b)

Σ
(2)
3σ (ωk:) = −iΓ −

∑

k1

[
t2σDσ̄(ωk:k1σ̄) + t2σ̄Dσ(ωk:k1σ)

]
f(εk1), (2.50c)

where the function Dσ(ω) is defined by

Dσ(ω) = −U
1

ω − εσ

1

ω − εσ − U
. (2.51)

It is enlightening to relate Dσ to the Kondo exchange coupling J = 2 |t|2 Dσ(0) for zero
magnetic field, which enables easy comparison with results obtained from the Kondo
model. As explained in Appendix B, Dσ can be replaced by a dressed expression by
resumming higher-order terms:

D̃σ(ω) =
1

u1σ(ω)u2σ(ω) + Ξσ(ω)
. (2.52)

It is particularly interesting to study the value of the imaginary part of the self-
energies at the pole of the corresponding Green’s functions in Eq. (2.28) (e.g. at ω:k =
∆σ for 〈〈f †

σ̄ckσ̄fσ〉〉). This quantity defines the decay rate of the excited state (e.g.
f †

σc†kσ̄fσ̄|GS〉, where the ground state is denoted by |GS〉). At zero temperature and for
spin-independent tunneling, those decay rates are

γ
(2)
1σ = −ImΣ

(2)
1σ (0) = Γ, (2.53a)

γ
(2)
2σ = −ImΣ

(2)
2σ (∆σ) =

Γ

2

∑

σ

[1 − f(εσ) + f(εσ + U)] , (2.53b)

γ
(2)
3σ = −ImΣ

(2)
3σ (2εd + U) =

Γ

2

∑

σ

[1 + f(εσ) − f(εσ + U)] . (2.53c)

In the Kondo regime (εσ/Γ ≪ 0 ≪ (εσ + U)/Γ), we get γ
(2)
2σ = 0 and γ

(2)
3σ = 2Γ.

Therefore, only the divergence of 〈〈f †
σ̄ckσ̄fσ〉〉 survives in Eq. (2.46), giving rise to large

corrections around ω = ∆σ associated with spin-flip transitions, while the spurious
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MF HF Lacroix our method

U → 0 limit OK OK OK OK

atomic limit ≈ OK OK OK OK

high-energy spectrum ≈ OK ≈ OK OK OK

low-energy spectrum - - ≈ OK ≈ OK

T -dependent spectrum no no yes yes

Coulomb blockade ≈ OK OK OK OK

Unitary limit for G - - OK OK

for εd 6= −U/2 for εd 6= −U/2 for εd 6= −U/2 for εd 6= −U/2

decoherence effects no no no yes

Table 2.1: Comparison of the different approximation schemes within the EOM

divergence at ω = 2εd +U obtained in the Lacroix approximation is completely washed
out.

The main features captured within the different approximation schemes for the EOM
are briefly reviewed in Tab. 2.1. This is illustrated in more detail in Chapter 3, where
we compare the numerical results.

2.8 Particle-hole symmetry

Besides the improvement brought by our approximation scheme, as listed in Tab. 2.1,
the Green’s function (2.48) slightly violates the particle-hole symmetry. This can for
instance be checked by noticing that the dot density of the states at the particle-hole
symmetric point 2εd + U is not exactly an even function. In this section, we show how
this symmetry can be restored in the general case.

Let us consider the charge conjugation operator C which transforms an creation-
into a destruction operator, or in other terms an electron into a hole: fσ → C(fσ) =
f †

σ, ckσ → C(ckσ) = c†kσ. This gives us an identity that relates the electron- to the hole
Green’s function

C [Gr
σ(ω)] ≡ 〈〈C(fσ), C(f †

σ)〉〉ω = −Gσ(−ω). (2.54)

In addition, the Anderson Hamiltonian for holes C [H] = Hh is, to within an additive
constant,

Hh =
∑

ασk

(−εk)C(cαkσ)C(c†αkσ) +
∑

σ

(−εσ − U) C(nσ) + UC(n↑)C(n↓)

−
∑

ασk

(
tασC(fσ)C(c†αkσ) + h.c.

)
, (2.55)
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Figure 2.2: Schematic representation of two dual systems in the electron picture. The
dotted line represents the particle-hole symmetric point E∗. Each system is equal to the
mirror symmetry of its dual counterpart around E∗ in energy space . The electrons in System
1 must behave exactly the same as the holes in System 2, and reversely.

where we keep the parameters of the original Hamiltonian for electrons. It maintains
the structure of an Anderson Hamiltonian, but with new parameters given by

C(εσ) = −εσ − U, C(U) = U, C(tσ) = −tσ, C(εk) = −εk. (2.56)

To the hole Hamiltonian Hh (2.55) corresponds an electron Hamiltonian HSyst2
e of an-

other system, whose parameters share with Hh:

HSyst2
e =

∑

ασk

εkc
†
αkσcαkσ +

∑

σ

(−εσ − U) nσ + Un↑n↓ −
∑

ασk

(
tασf †

σcαkσ + h.c.
)
,

(2.57)

with a Fermi distribution f(εk + µα) in the leads. We call dual systems two systems
showing the symmetry HSyst1

h = HSyst2
e , as illustrated in Fig. 2.2. For instance, we can

have the following parameters

System 1 System 2

He εd = −2 ; U = 6 εd = −4 ; U = 6

Hh C(εd) = −4 ; C(U) = 6 C(εd) = −2 ; C(U) = 6

An electron in the first system behaves exactly as a hole in the second (dual) system
and reversely.

This symmetry is slightly broken by our approximation scheme in the single-occupancy
Coulomb blockade regime. The reason is due to the fact that at order t4σ we do not
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treat the particle and hole contributions on an equal footing. The decay rates ex-
tracted from the self-energies Σ2σ and Σ3σ have different values in the frequency range
εσ ≤ ω ≤ εσ +U . This leads to slightly asymmetric renormalization of the position and
the broadening of the resonant peaks at εσ and εσ + U , which affects the occupation
number. For instance, at the particle-hole symmetric point (εσ = −U/2, µL = −µR),
the dot occupation number 〈nσ〉 is expected to be exactly 1/2 at equilibrium or in the
symmetric bias setting, for which our numerical result shows a deviation by a few per-
cents at worst. However, it has almost no effect on the low-frequency density of states
structure.

In order to restore the symmetry, we compute the Green’s function in the dual
system. Because of the definition of the duality, we have the identity

GSyst1
σ (ω) = C

[
(GSyst2

σ (ω)
]
, (2.58)

where Systems 1 and 2 are dual of each other. Using Eq. (2.54) on System 2, we can
express this equality in terms of electron Green’s functions only:

GSyst1
σ (ω) = −

[
GSyst2

σ (−ω)
]∗

.

As mentioned earlier, this equality is slightly violated at high frequencies by our ap-
proximation scheme. We therefore symmetrize the two by setting

Gr
σ(ω) =

1

2

{
GSyst1

σ (ω) −
[
GSyst2

σ (−ω)
]∗}

. (2.59)
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Chapter 3

Equilibrium properties of the
Anderson model

The transport observables of the single-level Anderson model at equilibrium have
been solved exactly by means of Bethe Ansatz techniques [103, 9]. In addition, many
energy-dependent quantities can be solved by numerical methods such as the numerical
renormalization group [105, 16]. Several other techniques were developed for the study
of a specific range of parameters, such as the Fermi-liquid theory [76], conformal field
theory [2], density matrix renormalization group [102], slave boson [13] and equation-
of-motion approaches [52]).

Therefore, it is insightful to look at the results obtained with the EOM in order
to check the agreement with exact methods in order to build its extensions out of
equilibrium on a solid basis. We compare the various approximations schemes presented
in Chapter 2, and discuss the improvements brought by our method. We also discuss the
effect of a finite temperature on the density of states in the dot and on the differential
conductance, and we introduce the concept of decoherence. Throughout this chapter,
we consider a zero magnetic field ∆ = 0.

3.1 Results at zero temperature

At zero temperature, divergent logarithmic corrections appear in the perturbative
expansion in the exchange coupling J of any physical quantity and the system sits in
the strong coupling regime. Therefore, the higher-order corrections are large and the
bare perturbation theory cannot be applied. As the EOM are essentially a perturbative
method too, we expect its results to be badly controlled. However, thanks to a re-
summation of some divergent series at all orders, the divergent terms eventually cancel
each other out in the Green’s function, and we get a finite density of states ρσ(ω) even
at zero temperature1. Therefore, we expect that our equations-of-motion can describe
qualitatively several features of the Kondo effect even at zero temperature, where the

1However, the derivative dρσ(ω)/dω is divergent at the Fermi level.

41
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Figure 3.1: Equilibrium density of states in the particle-hole symmetric case at T = 0 for
different values of the parameter U (the chemical potential of the leads µeq is taken equal to
0). The density of states for large U shows a three-peak structure with two broad side peaks
and a narrow Kondo resonance peak centered at the Fermi level.

comparison with exact methods is easier2. In this section, we compare the approxi-
mation schemes presented in Chapter 2, and discuss the improvements brought by our
method.

3.1.1 Density of states in the dot

The density of states in the dot is an interesting quantity in the Kondo effect, as
it provides a clear signature of the many-body singlet state around the Fermi level of
the leads. In addition, it is required to study the transport through the dot, and more
precisely the compute the current from Eq. (1.6). The figure 3.1 represents the density
of states in the dot ρσ(ω) = −1/πImGr

σ(ω) at equilibrium for different values of the
parameter U using our equations-of-motion approach. The Fermi level of the leads µeq

is taken equal to zero. We willingly choose to consider the particle-hole symmetric
case (εd = −U/2) since we know that it is a delicate case in the sense that the EOM
approaches developed so far have failed to describe it correctly. As soon as U becomes
larger than πΓ, a local moment develops inside the dot [7], and the density of states
shows a three-peak structure with two broad peaks at high energy and a narrow Kondo
resonance peak.

Let us first focus on the broad peaks. They are related to single-particle processes
in which an electron is added in the dot state |σ〉, either when the other dot state
|σ̄〉 is unoccupied (left peak around εσ) or when another electron sits in the state |σ̄〉,

2The reader interested in the validity of the Lacroix approximation at zero temperature should
read [27] and [43].
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costing an additional energy U because of the Coulomb repulsion (right peak around
εσ + U). Including higher order processes does not modify this qualitative picture, but
only involves a renormalization of the dot energies εσ and U . In order to quantify this
renormalization, we can take the lowest order corrections to the pole in the denominator
of the Green’s function Gσ(ω) in Eq. (2.48). Around ω ≈ εσ, we find

Gσ(ω ≈ εσ) ≈
1 − 〈nσ̄〉

u2σ(ω)

ω − εσ + iΓσ +
Ξσ(ω)
u2σ(ω)

≈ 1 − 〈nσ̄〉
ω − ε∗σ + iΓ∗

σ

, (3.1)

with the recursive identity

ε∗
σ

= εσ + tσ̄
∑

k

f(εk)Re

[
t2σ(ω:k)

[
ωσ̄:kσ − Σ2σ(ω:k)

]−1 − t3σ(ωk:)
[
ωk:σσ̄ − U − Σ3σ(ωk:)

]−1

u2σ(ω)

]

ω=ε∗

σ

.

(3.2)

The value of U∗ can be deduced directly from particle-hole symmetry ε∗d + U∗/2 =
εd + U/2. In addition, the width of the peak gets also renormalized, and its value is
given by

Γ∗
σ = Γσ − tσ̄

∑

k

f(εk) Im

[
t2σ(ω:k)

[
ωσ̄:kσ − Σ2σ(ω:k)

]−1 − t3σ(ωk:)
[
ωk:σσ̄ − U − Σ3σ(ωk:)

]−1

u2σ(ω)

]

ω=ε∗

σ

.

(3.3)

The renormalization of those peaks is close to the value obtained within the Lacroix
approximation in Eq. (2.34); their position, intensity and amplitude agree quantitatively
with the numerical renormalization group result [19]. As expected, the renormalization
effects are small around the particle-hole symmetric case (εσ = −U/2). In the large
U/|εσ| limit, the renormalization effects are very important, as it is the case for quantum
dots coupled to ferromagnetic leads [66, 99].

Let us now describe the central narrow peak in Fig. 3.1. It is the consequence of
the low-energy divergent terms inside Πσ(ω) and Ξσ(ω) in the dot Green’s function
(2.48). As we discussed in Sec. 2.7.1, the poles of those terms appear in the expansion
of the EOM for higher-order Green’s functions in Eqs. (2.46). The imaginary part of
the corresponding self-energies evaluated at the pole of the Green’s functions (e.g. at
ω:k = ε∗σ − ε∗σ̄ for 〈〈f †

σ̄ckσ̄fσ〉〉) defines the decay rate of the excited state f †
σc†kσ̄fσ̄|GS〉,

where the ground state is denoted by |GS〉. Within second order in tσ, and taking
into account the renormalization of the dot level energies, the decay rates are given by
Eqs. (2.53).

At the particle-hole symmetric point, a single decay rate (namely γ2σ) is zero, while
the other ones are finite and smear out the corresponding divergences. As a consequence,
the only divergences that eventually survive are those located at ω = ∆σ. Therefore,
in the absence of magnetic field (∆ = 0), the Kondo resonance peak is pinned at
the Fermi level of the leads. The relevant pole appears in the expansion of the EOM



44 CHAPTER 3. EQUILIBRIUM PROPERTIES OF THE ANDERSON MODEL

for 〈〈f †
σ̄ckσ̄fσ, f †

σ〉〉, which is related to the many-particle spin-flip scattering processes
involved in the Kondo effect, as described in Chapter 1. Moreover, the density of states
at the Fermi level is found to be ρσ(µeq) = 2/πΓ, in agreement with the Fermi liquid
property at zero temperature and hence respecting the unitarity condition. This can
be shown by similar arguments as in Sec. 2.6.4, and the relationship

Gr
σ(0) ≈ lim

ω→0

Ga
σ(0) ln

∣∣ ω
W

∣∣
ln
∣∣ ω
W

∣∣ [1 + iΓGa
σ(0)]

holds even at the particle-hole symmetric point εd = −U/2. The fact that our equations-
of-motion scheme correctly describes the particle-hole symmetric case is one of the
successes of the w nemethod. This can be understood by the fact that in the previous
EOM approaches, for the Kondo regime, there is an exact cancellation of the divergent
terms in the Lacroix Green’s function (2.30) for ∆ = 2εd + U = 0

−
∑

k

tσ̄〈f †
σ̄ckσ̄〉

ω − εk
+
∑

k

tσ̄〈c†kσ̄fσ̄〉
ω + εk

= t2σ̄
∑

k

[
−f(εk)Gr

σ(εk)

ω − εk
+

f(εk)Ga
σ(εk)

ω + εk

]
= 0,

∑

kk1

t2σ̄f(εk)

ω − εk
+
∑

kk1

t2σ̄f(εk)

ω + εk
= −2iΓσ̄.

In order to prove the first identity, we used the relation Ga
σ(ε) = −Gr

σ(−ε), valid at the
particle-hole symmetric point. The cancellation of the two divergences is cured in our
EOM approach since the denominator ω + εk acquires a finite decay rate γ3σ = 2Γ,
and the corresponding divergence is smeared out. Therefore, the cancellation does not
occur any longer, and we are left with a single divergence from the pole at ω = ε at the
origin of the formation of the Kondo resonance peak.
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(a) Density-of-states in the dot for U/Γ = 6 and εd/Γ = −3
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(b) Density-of-states in the dot for U/Γ = 6 and εd/Γ = −2

Figure 3.2: Total density
of states in the dot ρd(ω) =
ρ↑(ω) + ρ↓(ω), for the dif-
ferent decoupling schemes
of the equations-of-motion.
(a) At the particle-hole sym-
metric point εd = −U/2,
the Lacroix approximation
(at O(t2)) fails to produce
the Kondo resonance at the
Fermi level. This pathol-
ogy is cured by our approx-
imation scheme (at O(t4)).
(b) Outside the particle-
hole symmetric point εd 6=
−U/2, the Lacroix approx-
imation produces a Kondo
resonance at the Fermi level
which is in qualitative agree-
ment with the peak at
fourth order. However,
the second order approxima-
tion also shows an unphysi-
cal anti-resonnance at ω =
2εd + U , which is smeared
out by our higher-order ap-
proximation scheme.

The comparison of our approach with lower-order approximation schemes is shown
in Fig. 3.2. The approximations at zeroth and first order in t are unable to describe the
many-particle Kondo effect and the related resonance at the Fermi level of the leads.
They reproduce two single-particle peaks around εd and εd + U . For the self-consistent
Hartree solution (at order 1), the two peaks are lorentzians of width Γ. Their position is
renormalized in comparison with the bare dot energy parameters because of the effective
mean field generated by the Coulomb repulsion inside the dot (see Sec. 2.4). Let us
stress that the result in Fig. 3.2 is the average on the two stable solutions obtained
from the self-consistent treatment. For a particular solution, one peak (say at εd)
would correspond to the density of states in one of the spin states (say spin-up), while
the other peak would be associated to the opposite spin.

The total density of states is quite similar at first order in t. The two peaks sit a the
bare dot energy levels εd and εd +U and their widths are renormalized, as expressed in
Eq. (2.27).

At the particle-hole symmetric point εd = −U/2 (Fig. 3.2(a)), our approximation
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γ
(2)
1σ γ

(2)
2σ γ

(2)
3σ

Empty dot (εσ − µα ≫ Γ) Γ Γ Γ

Kondo regime (εσ + U − µα, µα − εσ ≫ Γ) Γ 0 2Γ

Doubly-occupied dot (µα − εσ − U ≫ Γ) Γ Γ Γ

Mixed valence regime (Min{εσ − µα, µα − εσ − U} ≈ Γ) Γ Γ Γ

Table 3.1: Decay rates γ
(2)
i at the second order in tσ and at zero temperature, as given in

Eq. (2.53), for the different regimes of the Anderson model obtained by the EOM approach.

Notice that, in the Kondo regime, γ
(2)
2 = 0 yields low-energy logarithmic divergence of the

self-energy of the dot Green’s function, responsible for the Kondo effect.

scheme (at fourth order in t) is the only one able to recover the Kondo resonance at
the Fermi level. At high energy, there is a good agreement between our method and
the Lacroix approximation (second order in t): the two broad single-particle peaks are
located at the renormalized dot levels ε∗d and ε∗d + U∗, and their width is equal to Γ.

For the other cases εd 6= −U/2 (Fig. 3.2(b)), both our approach and the Lacroix
approximation are able to recover the Kondo resonance at the Fermi level of the leads.
However, as we discussed in Sec. 2.6, the Lacroix approximation shows a spurious
negative peak at ω = 2εd + U . That feature corresponds to processes in which two
electrons enter/leave the quantum dot at the same time, and we have shown that the
related excited states acquire a finite decay rate γ3σ = 2Γ at higher order that smears
out the resonance.

So far, we only discussed the Kondo regime where εd/Γ < −1 and (εd + U)/Γ > 1.
In order to describe the transport through the quantum dot for any dot energy level εd

and Coulomb interaction U , it is instructive to study the second-order decay rates in
the different transport regimes. Let us consider the case of spin-independent tunneling
(Γ↑ = Γ↓ = Γ/2) to make the discussion easier. The results are reported in Table 3.1
for the different regimes of the Anderson model at zero temperature.

From Eq. (2.53), we can note that, in the wide-band limit, the value of γ
(2)
1σ = Γ

does not depend on the occupancy in the dot. In contrast, the other transition rates
vary depending on the regimes considered. Putting the dressed D functions into the
expressions of the γiσ leads to

γ
(2)
2σ ≈ Γ

2

∑

σ

[1 − f(ε∗σ) + f(ε∗σ + U∗)] , (3.4a)

γ
(2)
3σ ≈ Γ

2

∑

σ

[
1 + f(ε∗σ) − f(ε∗σ + U )

]
. (3.4b)

We can distinguish three regimes:

a) In both the empty and doubly-occupied dot regimes, γ
(2)
2σ = γ

(2)
3σ = Γ. The



3.1. RESULTS AT ZERO TEMPERATURE 47

finite values of γ
(2)
2σ and γ

(2)
3σ provide a cut-off to the integrals involved in the

calculation of the remaining terms, thereby preventing them from diverging at
low energy. As a result, the electron density of states in the dot does not show
any resonance peak but only two broad peaks located at the positions of the
renormalized dot level energies. As all the diverging corrections are smeared
out, the lowest order approximation schemes is quite accurate and higher-order
corrections are negligible.

b) In the mixed valence regime (take for instance εσ − µα ≈ Γ), the renormalization
effects push the dot level energies above the chemical potential, hence the decay
rates are identical to those found in the two regimes of a). Our numerical results
for the density of states are in better agreement with the exact numerical renor-
malization group result than those found in the Lacroix approximation or the
non-crossing approximation, for which a spurious peak may appear at the Fermi
level, as it has been shown in Ref. [71].

c) The singly-occupied dot (Kondo) regime is the most interesting since one of the
decay rates, namely γ

(2)
2σ , vanishes. This gives rise to a logarithmical divergence

at low energy of the integral involved in the calculation of the first term of Ξσ(ω)
and Πσ(ω) in Eqs. (2.49). The presence of the above-mentioned logarithmical
divergence is responsible for the formation of the Kondo resonance peak in the
electron density of states in the dot.

3.1.2 Linear conductance

The electrons around the chemical potential of the leads can tunnel through the
dot if there is an open channel at the Fermi level. At zero temperature, the linear
conductance is therefore directly related to the value of the dot density of states at
ω = µL = µR, as discussed in Sec. 1.2.2. In particular, we discussed in the previous
section the occurrence of a resonant peak in the dot density of states around the Fermi
level in the Kondo regime, with a height equal to ρσ(0) = 2/πΓ. From Eq. (1.8), it
implies a maximum conductance G = 2e2/h in the case of a symmetric coupling to the
leads (ΓL = ΓR).

Outside the Kondo regime, we saw in Sec. 3.1.1 that the divergent terms at the
Fermi level are smeared out. As a consequence, the density of states inside the dot is
only a single-particle spectrum composed by two lorentzians of width Γ around the dot
energy levels εd and εd + U , and the conductance is large only when one of those levels
is close the the chemical potential in the leads. We compare the dependence of the
linear conductance on the gate voltage (Vg ∝ −εd +cst) for the different approximation
schemes of equations-of-motion in Fig. 3.3.

In our approximation scheme at fourth order in t, the linear conductance is enhanced
in the Kondo regime to a maximum value of 2e2/h (central region). The conduc-
tance starts decreasing when it approaches the mixed-valence regime (in a bandwidth
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Figure 3.3: Linear conductance as a function of the gate voltage Vg ∝ −εd + cst at zero
temperature and for U = 4Γ. We compare the different approximation schemes. The con-
ductance obtained after truncation at zeroth and first order only reproduces the Coulomb
blockade regime. At second order (Lacroix approximation), the conductance is increased in
the single-occupancy region −εd ∈ [Γ, U − Γ] because of the Kondo effect, except around the
particle-hole symmetric point εd = −U/2, where the approximation fails. This problem is
solved at fourth order (our study).

Γ around εd = 0 or εd + U = 0), where the charge fluctuations from the single-particle
states become dominant. Finally, it goes to zero in the empty (εd ≫ 0) or doubly
occupied (εd + U ≪ 0) regimes because of the Coulomb blockade. This picture is in
perfect agreement with experimental results (see for instance Fig. 1.4).

A small discontinuity is observed around εd = 0 or εd + U = 0 due to the presence
of step function in the bare expression of γ2σ in Eq. (2.53). This discontinuity can be
smeared out by replacing the bare D function by a dressed one in the expression for Σ2σ,
see Eq. (B.4). However, if this is valid in the mixed-valence regime, it involves higher-
order terms which cancel out in the Kondo regime with other fourth order contributions
to Σ2σ as discussed in App. B, and we prefer showing the result with the bare expression
everywhere.

None of the lower-order approximation schemes is able to reproduce the correct
qualitative behavior of the conductance for any dot level εd. As expected from the
discussion in Sec. 3.1.1, the Lacroix approximation (second order in t) fails to recover
the unitary limit G = 2e2/h at the particle-hole symmetric point, while it is rather
accurate for εd 6= −U/2. On the other hand, the truncations at zeroth and first order
capture only the Coulomb blockade regime, but are unable to describe the Kondo
physics.
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3.1.3 Kondo temperature

At equilibrium and at zero temperature, the Kondo scale TK can be roughly esti-
mated from the real part of the pole of Gr

σ(ω) in Eq. (2.48) located near the chemical
potential [36]. Considering spin-independent couplings Γσ = Γσ̄ = Γ/2 in the wide-
band limit, the real part of the denominator of the dot Green’s function around the
ω ≈ 0 is, at second order in t

u1σ(0)u2σ(0) +
Γσ̄

π

t2σ(0)

tσ̄
ln

∣∣∣∣
max(2εd + U, 2Γ)

ω

∣∣∣∣ = 0. (3.5)

Solving for ω = TK gives

TK ≃ max(2εd + U, 2Γ) exp

{
2πεd(εd + U)

ΓU

tσ̄
t2σ(0)

}
, (3.6)

TK is independent of W , as expected since the high-energy scale is now regulated by
U .

The result for TK in Eq. (3.6) shows two improvements in comparison with the
expression found within the Lacroix approximation [2εd + U ]exp [2πεd(εd + U)/ΓU ].
First, the Lacroix result for TK is improved by an exponential factor tσ̄/t2σ(0) < 1, in
better agreement with Haldane’s prediction (UΓ/4)1/2exp [πεd(εd + U)/ΓU ] [33]. This
is due to the renormalization of the coupling t2σ between 〈〈nσ̄fσ〉〉 and 〈〈f †

σ̄ckσ̄fσ〉〉
at fourth order in t (see Fig. 2.1). Secondly, at the particle-hole symmetric point
(2εd + U = 0), the proposed approximation cures the aforementioned pathology of the
Lacroix approximation for which TK vanishes. The expression of TK at that point is
given by

TK ≃ 2Γ exp

[
πεd

Γ

tσ̄
t2σ(0)

]
. (3.7)

The analytical expression given by Eq. (3.6) is only approximate since it neglects the
self-consistent treatment. Therefore, we will rather calibrate it numerically when we
show the curves. As it is done in experiments, it can be extracted from the temperature
dependence of the zero-bias conductance

dI

dV

∣∣∣∣
T=TK ;V =0

=
1

2
G0, (3.8)

where G0 = 2e2/h is the zero-bias conductance at zero temperature.

3.2 Finite temperature

At finite temperature, the system can no longer be described by its Ground State
only, and the quantum description is more difficult. As a consequence, the system lies
in a superposition of the spin-singlet Ground State and its excited states.
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Figure 3.4: Kondo resonance in the dot density of states for different temperatures at the
particle-hole symmetric point εd = −U/2 and for U = πΓ.

Therefore, the spin-flip scattering processes associated with the Kondo effect no
longer involves energy conservation. As a consequence, we expect that the related
excited state f †

σ̄ckσ̄fσ |GS〉 acquires a finite decay rate γ2σ. As γ
(2)
2σ = 0 at second order

in t, it motivates us to check whether a finite temperature-dependent contribution is
obtained at fourth order in t. The calculation is done in Appendix B. We obtain a new
contribution γ

(4)
2σ in Eq. (B.17) which is expressed as an integral over an energy window

f(x) [1 − f(x)]. For T ≪ |εσ| , εσ + U , the energy window for the conduction electrons
can be approximated by a Dirac peak: f(x) [1 − f(x)] → Tδ(x). The decoherence rate
γ

(4)
2σ is given by

γ
(4)
2σ (T ) = T

∑

σ′σ′′

Γσ′Γσ′′

π
D2

σ′′(0) = T
Γ2U2

πε2
d (εd + U)2 = (νJ)2 πT. (3.9)

πT is the phase factor accounting for the electronic density of states near the Fermi
surface and νJ = ΓDσ(0) accounts for the spin-flip probability. This result can be com-
pared to the Korringa width γ2σ = ~/τ2 in nuclear magnetic resonance [49], where τ2 is
the average time for the spin fluctuations. It is not surprising because the equations-
of-motion are a perturbative method valid for T ≫ TK ; in that regime, the spin fluc-
tuations are controlled by the scattering of the conduction electrons on the magnetic
impurity. This result was already obtained by means of an EOM method applied to the
Kondo model [107]. At low temperature T ≪ TK , τ2 is related to the binding energy
of the singlet state ~/τ2 = TK [77]. As the system lies in a spin-singlet Ground State,
an external conduction electron sees a non-magnetic impurity. The latter regime is
however out of scope of the equations-of-motion.

The occupation of excited states leads at finite temperature to a smearing of the
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Figure 3.5: Temperature dependence of the linear conductance at the particle-hole sym-
metric point εd = −U/2 for different values of the Coulomb interaction U . We rescaled the
temperature on TK in order to show the universal behavior of G(T/TK). The unscaled curves
G(T ) are shown in the inset.

Kondo peak in the dot density of states. On Fig. 3.4, we show the Kondo peak for
different temperatures. As the temperature is increased, the height of the peak goes
down while its width is increased. By definition of the Kondo temperature, the height
of ρσ(ω) at T = TK is half of the value at zero temperature: ρσ(ω = TK) = 1/πΓ.

The temperature dependence of the conductance is shown on Fig. 3.5. A fast decay
of the conductance is observed when the temperature is increased. Let us stress that
the mechanism governing this decrease is essentially independent of the smearing of
the Kondo resonance in the density of states. Instead, it is related to the fact that we
integrate over an energy window of width T around the Fermi level to compute the
current; the conductance is proportional to the weight of the density of states in that
interval around the Fermi level (and, as a consequence, around the Kondo resonance).
The main effect of the decoherence rate γ2σ is to smear the resonance in the density
of states by a quantity proportional to the temperature T . As a consequence, the
weight of the resonance is essentially redistributed in that window, and the result of
the integration that gives the conductance is almost independent of the decoherence
rate γ2σ of the excited state f †

σ̄ckσ̄fσ |GS〉. The linear conductance was calculated for
different values of the Coulomb interaction U . When U/Γ is increased, the Kondo
temperature TK diminishes, which implies that the Kondo resonance in the density
of states is narrower, as it was illustrated in Fig. 3.1. Therefore, its weight in the
energy-window of width T is smaller and the decrease of the conductance with the
temperature is faster (see inset of Fig. 3.5). When the temperature T is normalized
on the Kondo temperature TK , we recover the universal behavior for the conductance
G(T/TK) (main figure of Fig. 3.5). This is a hallmark of the Kondo effect and was
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Figure 3.6: Linear conductance as a function of dot level energy εd, for U/Γ = 4 and
at different temperatures. We choose for TK the Kondo temperature at the particle-hole
symmetric point. When the temperature is lowered, the conductance is enhanced in the singly-
occupied regime −εd/Γ ∈ [0, 4], and eventually reaches the maximum conductance 2e2/h for
a single channel at zero temperature.

observed experimentally in many devices (see for instance Fig. 1.5).
Figure 3.6 shows the linear conductance as a function of dot energy level εd at differ-

ent temperatures for U/Γ = 4. At zero temperature, we recover the unitary limit 2e2/h
in the Kondo regime εd ∈ [−U +Γ,−Γ], as discussed previously. When the temperature
is raised, the linear conductance decreases in the Kondo regime, and eventually reaches
a Coulomb blockade regime when T ≫ TK . The Kondo temperature depends on the
position of the dot level and reaches a minimum at the particle-hole symmetric point
(we choose that value of TK for the scaling of the temperature). Therefore, the Kondo
effect is destroyed faster at that point than closer to the single-particle peaks, which
explains why the conductance is lower in the middle of the Kondo region. Finally, the
external regions of zero and double occupancy are always in the Coulomb blockade
regime as they carry a zero spin. Therefore, the conductance is independent of TK in
those regions and tends to be slightly raised by an increase of the temperature.



Chapter 4

Non-equilibrium transport

At equilibrium, the Anderson model can be solved exactly and a good agreement is
found between theory and experiment. In opposite, several new questions arise when
the system is put out of equilibrium by applying a bias voltage V between two leads, as
no exact theoretical method could be extended from a Ground State basis to a Steady
State basis. Theoretically, the Kondo effect out of equilibrium has been investigated by a
variety of techniques developed most of the time within the Keldysh formalism: pertur-
bation theory and perturbative renormalization group approach [41, 18, 79, 86, 87, 78],
slave-boson formulation solved by using either mean-field [3] or non-crossing approxi-
mation [106], equation-of-motion approaches [71, 38]. Exact solutions at the Toulouse
limit have been proposed [92]. Other ones have extended the Bethe ansatz out of
equilibrium [48, 47], and in some cases have used the results to construct a Landauer-
type picture of transport through the quantum dot. There have also been important
efforts to develop numerical techniques such as time-dependent Numerical Renormal-
ization Group [16, 6], time-dependent Density-Matrix Renormalization-Group [23] and
imaginary-time theory solved by using Quantum Monte Carlo [35]. All those approaches
have only a limited validity of their parameter regimes since they mostly describe the
properties of the system in its Ground State, and not in the excited many-body states
reached when the bias voltage drives a current through the dot.

The approximation scheme that we developed in Chapter 2 for the equations-of-
motion can be extended directly out of equilibrium by keeping the lead indexes α
alongside the wavenumber k in the derivations. The only difference lies inside the
computation of the average values, which are to be determined within the Keldysh
formalism. In this chapter, we show how this can be done, making the EOM a new
candidate for the non-equilibrium description of the Anderson model. We present the
results obtained for the density of states and the differential conductance. We also
discuss the decoherence of the Kondo state induced by the bias voltage, and discuss
when the system is driven to the weak-coupling regime.

53
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4.1 Self-consistency out of equilibrium

The derivations of the average values in Sec. 2.6.3 are not valid out of equilibrium,
and we demonstrate in this section how the calculation of the average values can be
extended for a finite bias voltage. In the general case, the expectation values (as for
instance 〈f †

σcαkσ〉) can be expressed in terms of the related lesser Green’s function

〈f †
σcαkσ〉 ≡ −i

∫
dω

2π
G<

αkσ,σ(ω), (4.1)

where G<
αkσ,σ(ω) = 〈〈cαkσ, f †

σ〉〉< is the Fourier transform of the lesser Green’s function
G<

αkσ,σ(t, t′) = i〈f †
σ(t′)cαkσ(t)〉 [62]. We reintroduce the lead index α, which was implicit

in Sec. 2.2, because the different leads no longer carry the same chemical potential
(µα 6= 0).

At equilibrium, the relationship G<
αkσ,σ(ω) = −f(ω−µα)[Gr

αkσ,σ(ω)−Ga
αkσ,σ(ω)] holds,

relating the lesser Green’s functions to the retarded and advanced ones, Gr
αkσ,σ(ω) and

Ga
αkσ,σ(ω) respectively. The expectation value is then given by

〈f †
σcαkσ〉 = −1

π

∫
dωf(ω − µα) ImGr

αkσ,σ(ω), (4.2)

as it was shown in Sec. 2.6.3. This relationship is nothing else but the spectral theorem
which expresses the expectation value in terms of a functional of the corresponding
retarded Green’s function.

However, the spectral theorem does not apply out of equilibrium [68] and it is
therefore necessary to invoke the non-equilibrium Keldysh formalism. We show how to
rewrite the expectation values in Eq. (2.48) in terms of integral functions. Making use
of the Dyson equation and the Langreth theorem [55], we find

〈f †
σcαkσ〉 ≡ − i

∫
dω

2π
G<

αkσ,σ(ω) = −itσ

∫
dω

2π
[gr

αkσ(ω)G<
σ (ω) + g<

αkσ(ω)Ga
σ(ω)]

=tσ

[
f(εk − µα)Ga

σ(εk) +

∫
dω

2πi

G<
σ (ω)

ω:k + iδ

]
, (4.3a)

〈c†αkσfσ〉 ≡ − i

∫
dω

2π
G<

σ,αkσ(ω) = −itσ

∫
dω

2π
[Gr

σ(ω)g<
αkσ(ω) + G<

σ (ω)ga
αkσ(ω)]

=tσ

[
f(εk − µα)Gr

σ(εk) +

∫
dω

2πi

G<
σ (ω)

ω:k − iδ

]
, (4.3b)
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〈c†α1k1σcαkσ〉 ≡ − i

∫
dω

2π
G<

αkσ,α1k1σ(ω)

= − i

∫
dω

2π

{
δαα1δkk1g

<
αkσ(ω) + t2σ

[
gr

αkσ(ω)Gr
σ(ω)g<

α1k1σ(ω)

+gr
αkσ(ω)G<

σ (ω)ga
α1k1σ(ω) + g<

αkσ(ω)Ga
σ(ω)ga

α1k1σ(ω)
] }

=δαα1δkk1f(εk − µα) + t2σ
f(εk − µα)Ga

σ(εk) − f(εk1 − µα1)Gr
σ(εk1)

εk − εk1 − iδ

+ t2σ

∫
dω

2πi

G<
σ (ω)

(ω:k + iδ)(ω:k1 − iδ)
, (4.3c)

where we used the unperturbed Green’s functions for conduction electrons

g
r/a
αkσ(ω) =

1

ω:k ± iδ
,

g<
αkσ(ω) = 2πif(εk − µα) δ(ω:k).

Using Eqs. (4.3c), we obtain after summation the two functions defined by Πσ(ω) and
Ξσ(ω) in Eqs. (2.49a-2.49b)

Πσ(ω) =
∑

α

Γασ̄

π

∫
dεk

t2σ(ω:k)

tσ̄

f(εk − µα)Ga
σ(εk)

ω − εk − ∆σ − Σ2σ(ω:k)

−
∑

α

Γασ̄

π

∫
dεk

t3σ(ω:k)

−tσ̄

f(εk − µα)Gr
σ(εk)

ω + εk − 2εd − U − Σ3σ(ωk:)
, (4.4a)

Ξσ(ω) = −
∑

α

Γασ̄

π

∫
dεk

t2σ(ω:k)

tσ̄

f(εk − µα)

ω − εk − ∆σ − Σ2σ(ω:k)

−
∑

α

Γασ̄

π

∫
dεk

t3σ(ω:k)

−tσ̄

f(εk − µα)

ω + εk − 2εd − U − Σ3σ(ωk:)
− iΓΠσ(ω), (4.4b)

Notice that the imaginary part self-energies Σiσ is always negative, so that the poles in
the integrals are all in the same half of the complex plane. In deriving the Eqs. (4.4b),
the terms associated with the lesser Green’s function G<

σ (ω) vanish upon summing
over k in the wide-band limit, since their denominators have two poles in the upper
half complex plane. It implies that the non-equilibrium functions Πσ(ω)and Ξσ(ω)
take the same form as in equilibrium in the wide-band limit, except that the Fermi-
Dirac distributions in the left and right leads carry different chemical potentials. No
knowledge of lesser Green’s functions is needed. This constitutes a huge simplification
in the computations.

As far as the occupation number in the dot 〈nσ〉 = 〈f †
σfσ〉 is concerned, the calcu-

lation is rather more complicated out of equilibrium since the simplification that takes
place for the calculation of Πσ(ω) and Ξσ(ω) does not occur, and we need to know the
lesser Green’s function G<

σ (ω) in order to derive 〈nσ〉 by the use of

〈nσ〉 ≡ −i

∫
dω

2π
G<

σ (ω). (4.5)
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To find G<
σ (ω), we use the Dyson equation written in the Keldysh formalism G<

σ (ω) =
Gr

σ(ω)Σ<
σ (ω)Ga

σ(ω) and express the lesser self-energy Σ<
σ (ω) via the Ng ansatz [74]

Σ<
σ (ω) = −2i

∑

α=L,R

Γασ

Γσ
f(ω − µα) ImΣr

σ(ω), (4.6)

where Σr
σ(ω) ≡ ω−εσ− [Gr

σ(ω)]−1 is the retarded self-energy. This ansatz is based on an
extrapolation from both the non-interacting limit out of equilibrium and the interacting
limit at equilibrium. Thanks to this ansatz, the calculation of 〈nσ〉 can be performed
from the knowledge of Gr

σ(ω) only. We expect this assumption to be accurate as the
occupation number is essentially influenced by the broad single-particle peaks around
εσ and εσ + U in the density-of-states, and not by some sharp resonances around the
Fermi-level which develop in the Kondo regime. Let us also mention that many results
can be obtained at the particle-hole symmetric point (also out of equilibrium), where
the occupation number is identically 1/2.

Therefore, all the expectation values relevant to the calculations can be expressed
in terms of Gr

σ(ω), and the self-consistent scheme is straightforward. Eq. (2.48) ends up
being a complex integral equation with respect to Gr

σ(ω), exactly as in the equilibrium
situation, except that the different chemical potentials of the two leads have to be
entered explicitly.

4.2 Density of states

At equilibrium, we have shown that the Kondo effect is responsible for the emergence
of divergent terms around the Fermi level of the leads in the Green’s function inside
the dot. Let us remind the EOM for the two-particle Green’s function 〈〈f †

σ̄ckσ̄fσ〉〉 that
was shown produce the Kondo divergence in the density of states

(ω:k − Σ2σ(ω:k)) 〈〈f †
σ̄cαkσ̄fσ〉〉 = 〈f †

σ̄ckσ̄〉 + tσ̄
∑

α′k′

〈c†α′k′σ̄cαkσ̄〉〈〈fσ〉〉 + O(t3),

where the lead index α was made explicit again in comparison with Eq. (2.46b). At
lowest order, we have 〈c†α′k′σ̄cαkσ̄〉 = f(εk − µα)δkk′δαα′ , and the contribution to the
corresponding term in Ξσ(ω) is

∑

αkσ

tασ̄
f(εk − µα)

ω:k − Σ2σ(ω:k)
.

Therefore, the divergence is shifted to the two points ω = µL and ω = µR, as could be
seen from the Eqs. (4.4b).

In addition, we expect that the Kondo effect is progressively destroyed by the ap-
plication of a bias voltage because related excited states acquire a finite decoherence
rates induced by the voltage-driven current.
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Figure 4.1: Non-equilibrium density of states in the particle-hole symmetric case at U = 4Γ
and T = 10−1TK , for different values of the bias voltage V . The chemical potentials of the two
leads are taken equal to µL/R = ±V/2. The Kondo resonance peak splits into two side peaks
located at ω = ±V/2, i.e. at the positions of the left- and right-lead chemical potentials. For
convenience we choose to represent the two energy scales (energy ω and bias voltage V ) as
normalized by the factor T−1

K .

Those excited states originate physically from the energy-conserving processes in
which an conduction electron hops onto the dot while another electron with opposite
spin hops out of the dot to one of the leads. When the two leads carry different
chemical potentials, such a process can result in the transfer of a conduction electron
above the Fermi level, destroying the coherence of the spin singlet wavefunction. Since
the processes involve two electrons hopping in and out, the lowest-order contribution
is fourth order in t. This motivated us to look for the higher order contribution to γ2σ.
Its expression for zero magnetic field is given by Eq. (B.17)

γ
(4)
2σ =

∑

α1α2

∑

σ1σ2

Γα1σ1Γα2σ2

π

∫ W

−W

dεkf(εk − µα1) [1 − f(εk − µα2)] D2
σ2

(εk).

As for the current, the decohrence rate γ2σ is an integral function on an energy window
[µL, µR]. At zero temperature and for spin-independent tunneling, we find at lowest
order in t

γ2σ(V ) =
ΓLΓR

π
D2

σ(0)V + O(t6) = π
ΓLΓR

Γ2
(νJ)2V + O(J3V ). (4.7)

As a consequence, the divergences in the dot density of states are smeared out when
current flows through the dot. The finite decoherence rate γ2σ broaden and diminish the
Kondo resonance peaks in the density of states as the bias voltage increases, as shown
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on Fig. 4.1. The figure reports our results for the non-equilibrium density of states,
in the particle-hole symmetric case at T = TK/10 and U = 4Γ for different values of
the bias voltage V . In contrast with the situation at equilibrium, the Kondo resonance
peak splits into two lower peaks pinned at the chemical potentials of the two leads. The
reason is that the transitions between the Ground State and the excited states of the
dot are now mediated by the conduction electrons with energies lying close to the left-
and right-lead chemical potentials.

4.3 Crossover from the strong-coupling to the weak-

coupling regime

In Chapter 1, we discussed the breakdown of the perturbative treatment of the
Anderson and Kondo models under a certain energy, because of the occurrence of low-
energy diverging terms in the series. This limits the applicability of the equilibrium
perturbation theory to temperatures larger than TK , which is called the weak-coupling
regime. In the strong-coupling regime, non-perturbative methods are required for solv-
ing the problem.

When a bias voltage is applied to the leads, it is interesting to investigate whether or
not the decoherence induced by the voltage-driven current may drive the system from
strong- to weak-coupling regime. We point out that this problem has been discussed
in previous studies for the Kondo model using either a perturbative renormalization
approach [18] or a slave-boson technique within non-crossing approximation [86]. As
the equations-of-motion are a perturbative method as well, it is interesting to tackle
this question for our approximation scheme. At lowest order in t and for V ≫ TK , the
dot Green’s function Gr

σ(ω) in the Kondo regime has a denominator of the form

Gr
σ(ω) ∝

[
1 − ln

(
(ω − V/2 + iγ2σ)(ω + V/2 + iγ2σ)

T 2
K

)]−1

, (4.8)

In order to avoid the Green’s function Gr
σ(ω) given by Eq. (4.8) to develop a pole on

the real axis, the following condition must be fulfilled

F (ω, V ) ≡
[
ω2 − V 2/4 − γ2

2σ

]2
+ [2γ2σω]2 − e2T 4

K > 0, (4.9)

where e is Euler’s number. We compute the two first derivatives of F (ω, V ) in order to
find the extrema

∂F (ω, V )

∂ω
= 4ω

[
ω2 − V 2/4 + γ2

2σ

]
,

∂2F (ω, V )

∂ω2
= 12ω2 − V 2 + 4γ2

2σ

There are 3 extrema, located at ω = 0 and ω = ±
√

V 2/4 − γ2
2σ. We have a minimum

at ω = 0 at low bias (|V | < 2γ2σ), and at ω = ±
√

V 2/4 − γ2
2σ at high bias (|V | > 2γ2σ).
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The condition (4.9) in those two cases becomes

F (0, V ) > 0 ⇔
∣∣V 2/4 − γ2

2σ

∣∣ > eT 2
K ,

F (±
√

V 2/4 − γ2
2σ, V ) > 0 ⇔ γ2σV > eT 2

K .

Combining those results, we find out that the dot Green’s function develops a pole as
soon as γ2σ is smaller than a characteristic energy scale defined by T ∗

T ∗ =






√
eT 2

K − V 2/4 : |V | <
√

2e TK

eT 2
K/V : |V | >

√
2e TK

(4.10)

From that expression, we define a criterion controlling the crossover between strong-
coupling (γ2σ < T ∗) and weak-coupling (γ2σ > T ∗) regime, as proposed in Ref. [86]. In
order to obtain the nontrivial decoherence rate γ2σ as a function of bias voltage V , we
replace Dσ(ε) appearing inside the bare exchange coupling Jασ,βσ′ in the decoherence
rate by the dressed D̃σ(ε), as defined in Eq. (2.52)1. In that way, we obtain a renor-
malized exchange coupling J̃ασ,βσ′ ≡ 2tασtβσ′D̃σ(µα). In the limit V ≫ TK , the scaling
theory predicts J̃ασ,βσ′ ∝ 1/[2 ln(V/TK)] and γ2σ ∝ V/[2 ln(V/TK)]2, which is always
larger than T ∗.

The results for the normalized decoherence rate γ2σ/TK as a function of the bias
voltage are reported in Fig. 4.2(a) for different values of U . Strikingly, the curves
coincide after normalizing over TK , underlining the universality of the evolution of
γ2σ/TK as a function of V/TK . Combining the results for T ∗/TK and γ2σ/TK , we can
derive the universal crossover bias voltage Vc/TK from strong- to weak-coupling regime.

At finite temperature, the derivation for T ∗ is the same except for replacing γ2σ →√
(γ2σ)2 + π2T 2 in Eq. (4.8). The results are given in Fig. 4.2(b) in the V − T plane,

displaying the crossover from strong-coupling to weak-coupling regime. Although the
physical mechanism at the origin of the crossover is different, both the bias voltage and
the temperature drive the system to the weak-coupling regime (see Sec. 3.2).

This analysis has interesting consequences concerning the applicability of the equations-
of-motion. Indeed, the perturbative corrections are small in the weak-coupling regime;
therefore, we expect that our method gives reliable results in that case. As a con-
sequence, it is a good candidate for studying non-equilibrium physics when the bias
voltage drives the system in the weak-coupling regime. In the strong coupling regime,
the EOM are more unstable but they nevertheless provide some qualitative results, as
we illustrated in Chapter 3, because of the resummation of the divergent terms in the
dot Green’s function.

1However, the RG analysis indicates that the flow of JLL(RR) is different from that of JRL for
Λ < V , where Λ is the cutoff, see Refs. [18, 86]. We suspect that this substitution does not work in
the low-energy regime where ω < V .
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Figure 4.2: (a) Decoher-
ence rate γ2σ and charac-
teristic energy scale T ∗ ver-
sus the normalized bias volt-
age V/TK at T/TK = 10−1

in the particle-hole symmet-
ric case for several values of
U/Γ. γ2σ/TK is a univer-
sal function of V/TK over a
large range of bias voltage
V . The comparison of both
energy scales (γ2σ and T ∗)
determines whether the sys-
tem is in the strong-coupling
regime (γ2σ < T ∗) or weak-
coupling regime (γ2σ >
T ∗). (b) Stability phase dia-
gram of the strong-coupling
and weak-coupling regimes
in the V −T plane. The nor-
malized crossover tempera-
ture Tc(V )/TK is a universal
function of V/TK .

4.4 Differential conductance

One of the main observables in non-equilibrium experiments on quantum dots is
the differential conductance dI/dV . Using the equations-of-motion to find the density
of states inside the dot and the expression of Eq. (1.6) the current, we obtain at zero
temperature and for a symmetric bias [µL, µR] = [V/2,−V/2]

dI

dV
=

2e

~

ΓLΓR

ΓL + ΓR

∑

σ

[
−1

2
ρσ(V/2) − 1

2
ρσ(−V/2) +

∫ V/2

−V/2

dε
∂ρσ(ε, V )

∂V

]
(4.11)

As ∂ρσ(ε, V )/∂V 6= 0, the conductance is no longer proportional to the probing of the
density of states at the chemical potential of the leads, in opposition to the equilibrium
case. In this Chapter, we show the results obtained by solving the equation numerically
over a wide range of parameters. An analytical formula for the differential conductance
in the weak-coupling regime will be derived in Chapter 5.
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Figure 4.3: Differential conductance dI/dV as a function of the bias voltage V at T/TK = 0.1
in the particle-hole symmetric case, and for different values of the Coulomb repulsion U . The
conductance saturates a low bias at a value determined by the temperature, and decreases
logarithmically when the bias voltage is increased. The inset shows that the differential con-
ductance as a function of normalized bias voltage V/TK scales to a single universal curve
dI/dV = f(V/TK). At higher voltages, the universal behavior is destroyed by a broad peak
resulting from charge fluctuations.

We present the bias voltage dependence of the differential conductance in Fig. 4.3
for different values of the Coulomb interaction U . The differential conductance exhibits
a narrow2 peak at low bias (often called zero-bias anomaly) saturating at at zero bias
and zero temperature, reflecting the Kondo effect as in the experiment discussed in
Fig 1.6. For our numerical study out of equilibrium, we are restricted to finite tem-
peratures if we want the results to be independent of the accuracy of the discretization
in energy (see App. C). We choose T = TK/10, which explains why the maximum in
the conductance is actually lower than the unitary limit. The differential conductance
decreases logarithmically at intermediate voltages V ∈ [TK/10, 10TK], before the bias
voltage reaches the renormalized value of the dot level energy, where the conductance
increases again because of single-electron charge transfers through the resonant level.

In the inset, the differential conductance is found to be a universal function of
the normalized bias voltage V/TK , independent of any other energy parameter. This
one-parameter scaling is obtained over a large range of V , before universality is lost
around V > 10TK because of the charge fluctuations. We stress that the Kondo tem-
perature has been obtained from the equilibrium temperature dependence of the linear
conductance (see Sec. 3.1.3), which is intrinsically independent of the non-equilibrium
differential conductance represented in Fig. 4.3. Let us notice that the figure encom-

2mind the logarithmic horizontal axis
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Figure 4.4: Differential conductance dI/dV as a function of the bias voltage V in the particle-
hole symmetric case at U/Γ = 3, for different values of temperature. The differential conduc-
tance is reduced when either the temperature or the bias voltage increases.

passes universality both in the bias voltage and the temperature. This highlights the
fact that, after rescaling any external low-energy parameters on TK , all observables
should develop a universal behavior in the Kondo regime.

The temperature dependence of the differential conductance is shown in Fig. 4.4.
The narrow peak at low bias in the differential conductance is destroyed by increas-
ing the temperature because the Fermi distributions inside the expression for the cur-
rent (1.6) are smoothed, and are less sensitive to the resonances around ω = µα in
the density of states inside the dot. As at equilibrium, the destruction of the Kondo
features by the temperature in the differential conductance is not directly related to the
half-width γ2sa of the peak in the dot density of states. Indeed, the current is propor-
tional to the area between the two maximums in the density of states and is therefore
insensitive to a redistribution of the weight of the resonances inside the integration
interval.

To further demonstrate that our extension of the equations-of-motion technique can
work over a wide range of parameters, we report in Fig. 4.5 the differential conductance
in a three-dimensional plot, as a function of the bias voltage V and gate voltage Vg ∝
−εd. The figure shows the so-called Coulomb diamond, whose edges correspond to
the alignment of the chemical potential of the leads with the single-particle energy
levels εd and εd + U inside the dot (with some additional renormalization effects in
the mixed valence regime). The inside of the diamonds defines regions in the Coulomb
blockade regime, where the total occupation number in the dot N (N =

∑
σ nσ) is

fixed. Sweeping the gate voltage Vg ∝ −εd, we successively find the empty region
N = 0, the single-occupancy region N = 1 and the doubly-occupied region N = 2. In
the single-occupancy region (central region on Fig. 4.5), we observe a strong increase
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Figure 4.5: Color plot of the differential conductance dI/dV as a function of bias voltage
V and dot-level energy εd for U/Γ = 4 and T = 10−3Γ. The contour of the Coulomb peaks
delimits the Coulomb blockade diamond, separating areas with well-defined dot occupation
number N ranging from 0, 1 to 2 at low V , and areas of charge fluctuations at high V . In the
N = 1 central valley, dI/dV shows a zero-bias peak related to the Kondo effect.

of the conductance at zero-bias, giving a signature of the Kondo effect. Making a cut
along the V = 0 line, we recover the linear conductance discussed in Fig. 3.6, which was
shown to be enhanced at low temperature in the Kondo regime. At zero temperature,
the zero-bias conductance reaches the unitary limit 2e2/h, and decreases logarithmically
when the temperature and/or the bias voltage is increased.

4.5 Comparison with other studies

We compare our results for the differential conductance with those obtained by other
groups using numerical methods such as the time-dependent Numerical Renormalisation
Group [6] and an imaginary-time theory solved by using Quantum Monte Carlo [35, 34].
We plot the results obtained for the bias voltage dependence of the differential conduc-
tance at zero temperature for comparison (Fig. 4.6). We find a qualitative agreement
at low bias voltage, when the system is in the strong-coupling regime. In that regime,
our method slightly underestimates dI/dV because it gives a smaller Kondo scale. The
three curves join at higher bias voltages, where a quantitative agreement is found. A
little local bump is observed for the EOM result at V = U , when the chemical potentials
of the leads are aligned with the resonant levels of the dot (µL = εd +U , µR = εd). This
is related to the fact that we used the bare Dσ(ε) functions (2.51) in the non-Kondo
regime, leading to divergence at µL(R) = {εd, εd + U}, as discussed in Sec. 3.1. This
bump can be smeared out by replacing the bare functions by the dressed ones D̃σ(ε).
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Figure 4.6: Comparison of the differential conductance dI/dV as a function of bias voltage
V with the results obtained by Anders [6] and Han [34] for −2εd/Γ = U/Γ = 2.5 and T/Γ =
0.008 ≪ TK/Γ (We are grateful to J.E. Han for providing us with his data points). Our curve
is plotted for T = 0 in order to compare the three results in the strong-coupling regime. The
differential conductance at small V is slightly different in the EOM approach because its value
for TK is smaller. At high bias voltage, the results of the three approaches agree perfectly.

4.6 Non-equilibrium occupation number in the dot

At equilibrium and for zero temperature, 〈nσ〉 is mainly determined by the weight of
the broad resonance peak far below the Fermi level. The narrow Kondo resonance near
the Fermi energy has little weight in comparison. Thus, even if a equations-of-motion
approach in a certain approximation scheme happens to describe only qualitatively
Kondo physics, it is able to determine numerically an occupation number that agrees
reasonably well with the Bethe ansatz or the numerical renormalization group.

When the system is driven out of equilibrium, the problem becomes more compli-
cated as we should use lesser Green’s functions instead of retarded ones to compute
the expectation values. As discussed in Sec. 4.1, the only place where this cannot be
circumvented is precisely for the dot occupation number 〈nσ〉 appearing in the Green’s
function (2.48). A rigorous treatment would require to compute the lesser Green’s func-
tion G<

σ (ω) and then obtain 〈nσ〉 according to Eq. (4.5), which is beyond the scope of
this work. So far, we considered the particle-hole symmetric case (εd = −U/2) and a
symmetric bias voltage setting [µL, µR] = [V/2,−V/2], in which case the occupation
number is identically 〈nσ〉 = 1/2 by symmetry.

Now, let us take an asymmetric bias voltage [µL, µR] = [0,−V ], which is more in
agreement with experiments. In that case, the occupation number 〈nσ〉 is no longer
fixed by symmetry arguments, and we use the Ng ansatz to compute the dot occupation
number, as described in Sec. 4.1. The bias voltage dependence of the occupation number
is shown on the solid blue curve in Fig. 4.7. As V increases, 〈nσ〉 decreases rapidly
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Figure 4.7: Electron occupation number in the dot 〈nσ〉 versus the bias voltage V in the
particle-hole symmetric case for U/Γ = 4 and T/Γ = 8.5 10−4, and under an asymmetric
bias voltage setting µL = 0 and µR = −V . The numerical result obtained from the EOM
(solid blue curve) is compared to the approximate analytical expression Eq. (4.12) obtained
from a single-particle picture (dotted red curve). We conclude that the Kondo effect has little
influence on the occupation number in the dot.

till V passes the dot-level energy U/2 and comes to stabilize at large V . This can be
qualitatively explained by the fact that at large V , the current through the dot no longer
increases monotonously with the bias voltage and reaches a horizontal asymptote. This
makes the occupation number insensitive to the bias voltage.

As the occupation number is mainly affected by the broad single-particle peaks in
the density of states, it is interesting to derive the non-equilibrium occupation number
within a simple high-energy model. For TK ≪ T ≪ Γ, the single-particle density of
states of the Anderson model has the form

ρσ(ω) =
1

π

[
(1 − 〈nσ̄〉)

Γ

(ω − εσ)
2 + Γ2

+ 〈nσ̄〉
Γ

(ω − εσ − U)2 + Γ2

]
,

while the dot occupation number is given by

〈nd〉 =
1

2

∫ µL

−W

dωρd(ω) +
1

2

∫ µR

−W

dωρd(ω),

where nd = n↑ + n↓ and ρd(ω) = ρ↑(ω) + ρ↓(ω). In the absence of magnetic field, this
leads to the self-consistent equation

〈nd〉 = 1 − 1

π

∑

α

[(
1 − 〈nd〉

2

)
arctan

(
εd − µα

Γ

)
+

〈nd〉
2

arctan

(
εd + U − µα

Γ

)]
.

(4.12)
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This expression gives a result quite close to the result obtained numerically within the
equations-of-motion approach and Ng’s Ansatz, as shown in Fig. 4.7. The two results
are quite close to each other, and we assume that the occupation number inside the dot
is almost independent of the Kondo effect.



Chapter 5

Transport under a magnetic field

When a magnetic field is applied on an isolated quantum dot, the discrete energy
levels inside the dot are split by the Zeeman energy ∆, which is proportional to the
magnetic field. On the other hand, the effect on the conduction electrons can be
absorbed in a renormalization of the bandwidth and has little influence on the Kondo
effect since it leaves the Fermi level unchanged. Therefore, the single-level Anderson
Hamiltonian for the total system of the dot connected to Nα leads becomes

H =
∑

ασk

εkc
†
αkσcαkσ +

∑

σ

(εd + ∆σ/2) f †
σfσ + Un↑n↓ +

∑

ασk

(tαc†αkσfσ + H.c.),

in which the dot energy levels are set to εd ±∆/2. As a consequence, flipping the spin
of the dot costs an energy ±∆, and we expect a shift of the Kondo resonance in the
dot density of states.

An interesting experimental signature of the magnetic field in the Kondo regime
can be found in the differential conductance dI/dV . By applying a finite bias to the
system, it is provided the external energy for the spin-flip scattering processes to occur,
and we can probe the Kondo-like resonances in the density of states. The zero-bias
peak described in Chapter 4 is split into two side peaks located around V ≈ ±∆ [70].
Higher order calculations suggest that the splitting slightly deviates from 2∆ because
of the screening of the magnetic field by the conduction electrons, and report a distance
between peaks equal to 2∆K < 2∆ [30]. However, recent experiments show that the
actual deviation rather evolves from a regime where ∆K < ∆ at low magnetic field
to a regime where ∆K > ∆ at high magnetic field [57]. This crossover has not been
explained by theory, and we draw the results obtained within the equations-of-motion
framework. The method we developed in the previous chapters accommodates quite
well to the study of this problem: first it is able to cover a wide range of parameters,
and more particularly non-equilibrium configurations; secondly, as the system lies in
the weak-coupling regime when the peak is split by the magnetic field, our results are
expected to be qualitatively reliable.

We show that the splitting in the differential conductance ∆K is connected to the
decoherence rate γ2σ, and propose an experimental setup in order to trace the presence

67
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of additional contributions to γ2σ.

5.1 Splitting of the Kondo resonance in the density of

states

We have seen that the Ground State of the Anderson model in the absence of
magnetic field is a many-particle spin singlet, and that the relevant excitations at low
energy happen through spin-flip scattering processes. Within the equations-of-motion
framework, this process gets described by the high-order Green’s function 〈〈f †

σ̄ckσ̄fσ〉〉
whose equation under magnetic field is given by

(ω:k − ∆σ − Σ2σ(ω:k)) 〈〈f †
σ̄ckσ̄fσ〉〉 = 〈f †

σ̄ckσ̄〉 + tσ̄
∑

k1

〈c†k1σ̄ckσ̄〉〈〈fσ〉〉

−iΓσ〈f †
σ̄ckσ̄〉〈〈fσ〉〉 + O(t3). (5.1)

In the Lacroix approximation, Σ2σ = 0, and the divergence in the Green’s function is
shifted to ω = ∆σ, corresponding to the energy cost for the spin-flip scattering process.
At equilibrium, the dot density of states exhibits a two-peak structure located at ±∆;
the distance between them is exactly equal to 2∆, i.e. twice the splitting of a single-
particle level [70]. While it captures the effect of the magnetic field on the Kondo effect
qualitatively, the Lacroix approximation suffers two main drawbacks. First, it is unable
to provide an explanation to the renormalization of the splitting predicted by other
theories [58] and some experiments [45, 4, 57], that show deviations form 2∆. Secondly,
we expect the divergence to be smeared out by the decoherence of the spin singlet state
because the many-particle spin-flip scattering process is no longer an elastic process.
This motivates us to go beyond the Lacroix approximation in the same spirit of the
previous chapters and study the effect of the higher-order self-energy Σ2σ of 〈〈f †

σ̄ckσ̄fσ〉〉.

5.1.1 Renormalization of the splitting of the Kondo resonance

The real part of Σ2σ implies a shift from ∆σ to ∆∗σ in the pole of 〈〈f †
σ̄ckσ̄fσ〉〉 (with

respect to ω:k) in Eq. (5.1), where the renormalized value ∆∗ is given by the recursive
equation

∆σ + ReΣ̂2σ(∆∗σ) = ∆∗σ.

At equilibrium and zero temperature, the renormalized splitting of the Kondo res-
onance ∆∗ at lowest order in t writes

∆∗ = ∆ +
Γ

2π

{
ln

∣∣∣∣
εd + ∆/2

εd − ∆/2

∣∣∣∣− ln

∣∣∣∣
εd − ∆/2 + U

εd + ∆/2 + U

∣∣∣∣
}

+ O(Γ2/U)

= (1 − νJ/2) ∆ + O(J2). (5.2)
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This result is in agreement with perturbation theory [30]. In the Kondo regime (J > 0),
the renormalized value ∆∗ is always smaller the the bare one. This phenomenon, also
known as the Knight shift [44], is related to the overpopulation of spin-down conduction
electrons with respect to spin-up ones in a magnetic field. As a consequence, the spin
operator brought by the conduction electrons in the Kondo model has a non-zero expec-
tation value 〈

∑
kk′

~Skk′.~1z〉 = −ν∆/2 (where ~1z is the direction of the magnetic field)
that results in an additional effective magnetic field −Jν∆/2 acting on the localized
spin.

It is interesting to compare the renormalization of the Zeeman energy ∆ with that
of the dot energy levels. At lowest order, the latter is given by

ε∗σ = εσ − Γ

2π
ln

∣∣∣∣
ε∗σ − ∆σ

ε∗σ − 2εd − U

∣∣∣∣+ O(Γ2/U),

and the distance between the renormalized levels is

ε∗↑ − ε∗↓ = ε↑ − ε↓ −
Γ

2π

{
ln

∣∣∣∣
εd − ∆/2

εd + ∆/2

∣∣∣∣+ ln

∣∣∣∣
εd + ∆/2 + U

εd − ∆/2 + U

∣∣∣∣
}

+ O(Γ2/U) = ∆∗.

Therefore, the renormalization of the high-energy dot levels εσ is in adequacy with the
low-energy renormalization of the pole of 〈〈f †

σ̄ckσ̄fσ〉〉.

5.1.2 Smearing of the Kondo resonance by a magnetic field

We expect that the coupling of the system to an external magnetic field implies
a decoherence of the Kondo spin-singlet Ground State, resulting in a smearing of the
related low-energy peak in the dot density of states. Within the EOM framework, this
can be obtained through the imaginary part of Σ2σ, similarly to the case of a bias
voltage. At equilibrium and for zero temperature, the decoherence rate (B.17) is, at
fourth order in t,

γ2σ|(∆,V =0) =
Γ2

4π

∫ 0

−∆

dεk D2
↓(εk)

=
Γ2

4π

[
U2

ε2
d (εd + U)2 ∆ − 2

U2

ε2
d (εd + U)2

2εd + U

εd (εd + U)
∆2 + O(∆3)

]
+ O(Γ3)

=
π

4
(νJ)2

[
∆ +

8πνK

Γ
∆2 + O(∆3)

]
+ O(J3), (5.3)

where K is the potential scattering term introduced in Eq. (A.24). At the particle-hole
symmetric point, K = 0 and the decoherence rate is proportional to the Zeeman energy.
When K is finite, the quadratic contribution should nevertheless remain negligible
because νK∆/Γ ≪ 1.

On the other hand, we will also need the non-equilibrium decoherence rate for
V ≈ ∆, corresponding to the bias voltage for which resonances in the dot density of
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Figure 5.1: (a) Equilibrium
density of states in the dot at
zero temperature for U = 4Γ, for
spin-up electrons (solid curves)
and spin-down electrons (dotted
curves), and for different values
of the magnetic field. (b) To-
tal density of states in the dot
(ρd(ω) = ρ↑(ω) + ρ↓(ω)) out of
equilibrium for U = 4Γ. We
chose a symmetric bias voltage
[µL, µR] = [V/2,−V/2] with V =
∆.

states are aligned with the chemical potentials of the leads. It is given by

γ2σ|(V =∆) =
Γ2

4π

[
1

2

∫ 0

−∆

dεk D2
↓(εk) +

1

4

∑

σ

∫ V/2

−V/2

dεk D2
σ(εk) +

1

4

∫ V/2

−∆−V/2

dεk D2
↓(εk)

]

=
15π

32
(νJ)2

[
∆ +

26

3

πνK

Γ
∆2 + O(∆3)

]
+ O(J3). (5.4)

We find γ2σ(V = ∆) ≈ 2γ2σ(∆, V = 0) underlining the fact that the finite bias voltage
favors the decoherence of the Kondo state.

5.1.3 Numerical result

The evolution with the magnetic field of the density of states in the dot calculated
from Eq. (2.48) is shown in Fig. 5.1. At equilibrium (Fig. 5.1(a)), the Kondo resonance,
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Figure 5.2: Schematic representation of the non-equilibrium co-tunneling process trough a
quantum dot under a magnetic field. A spin-down electron leaves the dot to the right lead
while a spin-up electron from the left lead simultaneously enters the central region. This
process is energetically allowed when the bias voltage V becomes larger than the Zeeman
splitting ∆ = ε↑ − ε↓ between energy levels in the dot.

initially located at the chemical potential of the leads, is shifted to the right for spin-up
electrons, and to the left for spin-down electrons. When the magnetic field is increased,
the decoherence rate γ2σ in Eq. (5.3) increases and induces a broadening of the peaks
and a reduction of their height. Their position is located around the renormalized
Zeeman energy ∆∗ < ∆, as we concluded from Eq. (5.2).

On the figure 5.1(b), we show the total density of states ρd(ω) = ρ↑(ω) + ρ↓(ω)
out of equilibrium. The two-peak structure discussed previously evolves to a 4-peak
structure, with maximums around ±∆∗ + µα, as the spin-flip scattering processes can
now happen through tunneling with two leads carrying different chemical potentials.
The decoherence is stronger than at equilibrium because of the combined effect of the
magnetic field and the bias voltage (see Eq. (5.4)).

5.2 Splitting of the Kondo peak in the differential con-

ductance

A finite magnetic field induces a strong decrease of the linear conductance in the
Kondo regime because the spin-flip of an electron inside the dot becomes an inelastic
process, costing an energy ∆. This energy can be provided by the outside environment
in a non-equilibrium setup by applying a bias voltage between two leads connecting the
dot, as represented schematically on Fig. 5.2. A spin-down electron can leave the dot
to the lead that carries the lowest chemical potential while an spin-up electron from
the other lead enters the dot at the same time. The energy balance between the initial
and final states is fulfilled if

εLk↑ + εd −
∆

2
= εRk↓ + εd +

∆

2
.
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For conduction electrons at the Fermi edge, we have εLk↑ = µL and εRk↓ = µR, implying

µL − µR = ∆.

Therefore, the bias voltage V = µL − µR probes the Zeeman splitting in the dot, and a
new channel opens up for electron transport at V ≥ ∆.

We derive analytically the differential conductance at zero temperature, for a sym-
metric coupling to the leads Γασ = Γ/4 and a symmetric bias voltage [µL, µR] =
[V/2,−V/2].1 In order to get an analytical expression that can be compared easily
to experiments, we keep only the lowest orders in the Kondo exchange coupling J ,2

which should be reasonable as the system is driven into the weak coupling regime by
the magnetic field and bias voltage (see Sec. 4.3). The differential conductance can be
obtained by Eq. (1.7), which simplifies under the symmetric case to

dI

dV
=

2e2

~

Γ

4

∑

σ

[
1

2
ρσ(V/2) +

1

2
ρσ(−V/2) +

1

e

∫ V/2

−V/2

dω
∂ρσ(ω, V )

∂V

]
. (5.5)

The two first terms involve the probing of the density of states at the chemical potentials
of the leads while the third one accounts for the dependence of the density of states,
and indirectly of the Kondo resonance, on the bias voltage. In order to determine this
last term, let us calculate the derivative of the Green’s function ∂Gσ(ε, V )/∂V : recalling
Eq. (2.48)

Gσ(ω, V ) =
u2σ(ω) − 〈nσ̄〉 − Πσ(ω, V )

u1σ(ω)u2σ(ω) + Ξσ(ω, V )
,

we get

∂Gσ(ω, V )

∂V
=

−∂Πσ(ω, V )/∂V

u1σ(ω)u2σ(ω) + Ξσ(ω, V )
− u2σ(ω) − 〈nσ̄〉 − Πσ(ω, V )

(u1σ(ω)u2σ(ω) + Ξσ(ω, V ))2 ∂Ξσ(ω, V )/∂V

= −D̃σ(ω)
∂Πσ(ω, V )

∂V
− Gσ(ω)D̃σ(ω)

∂Ξσ(ω, V )

∂V
+ O(J2). (5.6)

The functions Πσ(ω, V ) and Ξσ(ω, V ) in Eq. (2.49) depend on the bias voltage through
the Fermi distribution under the integral. At zero temperature, this can be computed

1In experiments, the bias voltage is usually asymmetric ([µL, µR] = [V, 0]), but this has little
influence on the low-energy features as the corrections are of the order O(V/εd).

2Our calculation is done from the general Anderson model, but we derive low-energy results in
series in J , as defined in Eq. (A.25), for a better comparison with results from the Kondo model. The
effect of the terms beyond the Kondo model will be disscussed.
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analytically

∂Πσ(ω, V )

∂V
=

Γ

4π

1

2

[ G∗
σ̄(V/2)

ω − V/2 − ∆∗σ + iγ2σ

− G∗
σ̄(−V/2)

ω + V/2 − ∆∗σ + iγ2σ

]

+
Γ

4π

1

2

[
− Gσ̄(V/2)

ω + V/2 − 2εd − U + iγ3σ
+

Gσ̄(−V/2)

ω − V/2 − 2εd − U + iγ3σ

]
.

∂Ξσ(ω, V )

∂V
= − Γ

4π

1

2

[
1

ω − V/2 − ∆∗σ + iγ2σ
− 1

ω + V/2 − ∆∗σ + iγ2σ

]

− Γ

4π

1

2

[
1

ω + V/2 − 2εd − U + iγ3σ

− 1

ω − V/2 − 2εd − U + iγ3σ

]

− iΓ
∂Πσ(ω, V )

∂V
,

Neglecting the real part of the dot Green’s function around the Fermi level, which
should be close to zero because of the Friedel sum rule [54], we obtain at lowest order
in t

∫ V/2

−V/2

dω
∂ρσ(ω, V )

∂V
≈ Dσ(0)

Γ

8π

[
ρσ̄(V/2) ln

(
∆∗2 + γ2

2σ

(V + ∆∗σ)2 + γ2
2σ

)

+ρσ̄(−V/2) ln

(
∆∗2 + γ2

2σ

(V − ∆∗σ)2 + γ2
2σ

)]
(5.7)

Introducing this result in Eq. (5.5), the differential conductance can be reduced to two
terms

dI

dV
≈ 2e2

~

ΓLΓR

ΓL + ΓR

∑

σ

[
1

2
ρσ(V/2)

(
1 +

νJ

4
ln

(
∆∗2 + γ2

2σ

(V − ∆∗σ)2 + γ2
2σ

))

+
1

2
ρσ(−V/2)

(
1 +

νJ

4
ln

(
∆∗2 + γ2

2σ

(V + ∆∗σ)2 + γ2
2σ

))]
, (5.8)

and we have to compute the density of states in the dot at the chemical potentials of
the leads (ρσ(±V/2)). For the simplicity of the calculations, we consider the infinite
U limit (U → ∞). We also send the dot level down to infinity (εd/Γ → −∞) while
keeping the ratio εd/U → 0. Within these approximations, the dot Green’s function
simplifies to

Gσ(ω) ≈ 1/2

u1σ(ω)u2σ(ω) + Ξσ(ω)
.

At order J3, the density of states is

ρσ(ω) =
1

π

1/2

(u1σ(ω)u2σ(ω))2
(ImΞσ(ω) + Γ/2)

(
1 − 2

ReΞσ(ω)

u1σ(ω)u2σ(ω)

)
+ O(J4/U).
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Only ρ↑(V/2) and ρ↓(−V/2) give a sensible contribution to the differential conductance
in Eq. (5.8), while ρ↑(−V/2) and ρ↓(V/2) just contribute to a small constant term. In
addition, due to the particle-hole symmetry at low energy, we have ρ↑(V/2) = ρ↓(−V/2)
and we are left with the calculation of ρ↓(−V/2).3 We find

ρ↓(ω) =
1

π2

Γ

8
D↓(ω)2

(
− arctan

(
ω + V/2 + ∆∗

γ2

)
− arctan

(
ω − V/2 + ∆∗

γ2

)
+ 3π

)

×
(

1 − 2
Γ

4π
D↓(ω)

1

2
ln

(
(V − ∆∗)2 + γ2

2

W 2

))
+ O(J4/U).

According to scaling theory, the conduction-electron bandwidth W can be renormalized
down to the Zeeman energy ∆. For V ≈ ∆∗ and ∆∗ ≫ γ2σ, the Eq. (5.8) for the
differential conductance becomes

dI

dV
≈ 2e2

h

π2

16
(νJ)2

[
5 +

2

π
arctan

(
V − ∆∗

γ2

)](
1 +

νJ

2
ln

(
∆∗2

(V − ∆∗)2 + γ2
2

))
+ cst.

(5.9)

In the limit γ2 → 0, the result of Eq. (5.9) is quite similar to the expression obtained
from the non-equilibrium perturbation theory at order J3 on the Kondo model [88, 30].
From scaling theory, we know that the exchange coupling is renormalized to νJ =
ln−1(max(∆, V )/TK).

The great improvement brought by the EOM approach lies in the fact that it allows
for the description of the decoherence of the Kondo state out of equilibrium, which
implies a smearing of the Kondo peak through the decoherence rate γ2 6= 0. This is
different from the zero-magnetic-field case, for which the differential conductance is
almost unaffected by the value of γ2 (see Sec. 4.4). The reason for it can be understood
by the fact that the Kondo resonances in the dot density of states are no longer aligned
with the chemical potentials of the leads. As a consequence, the crossing between the
two quantities in the calculation of the current from Eq. (1.6) happens at a well-defined
bias voltage V ; the associated increase of current will be all the more efficient so as
the resonance in the density of states is sharp, and therefore feels the influence of the
decoherence rate γ2.

Using the Eqs. (5.9), (5.2) and (5.4) with the renormalized exchange term νJ =
ln−1(max(∆, V )/TK), we compute the differential conductance for different values of
the magnetic field. Two transport regimes are found depending on the relative values
of the Zeeman energy and the Kondo temperature, as shown on Fig. 5.3. When the
ratio ∆/TK is much larger than one, νJ ≪ 1 and the main contribution comes from
the arctan term, which is then equivalent to a Heaviside function with borders around
∆ because γ2σ → 0 and ∆K → ∆. This regime, called the co-tunneling regime, can be
understood by the cartoon of Fig. 5.2 and yields an adequate method to measure the
bare Zeeman energy in the quantum dot [57]. The conductance is enhanced for |V | > ∆

3We choose to calculate ρ↓ rather than ρ↑ because its resonant spin-flip scattering process involves
an energy below the Fermi level, which should be better described in the electron picture (see Sec. 2.8).
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Figure 5.3: Differential conductance dI/dV as a function of the bias voltage V for different
values of the Zeeman energy ∆. The curves have been scaled by the zero-bias conductance
G(0) at each magnetic field to allow for comparison. The inset shows the unscaled curves and
the strong decrease of the conductance with the magnetic field.

as the bias voltage then provides enough energy for the transfer of an electron through
a spin-flip scattering process. When the ratio ∆/TK is decreased, higher-order spin-flip
scattering processes become relevant and we enter the Kondo regime. As the exchange
coupling constant J is no longer negligible, the log term in Eq. (5.9) becomes important
and is responsible for a peaked structure around ∆∗, as shown on the three other curves
of Fig. 5.3. The value of ∆∗ is smaller than the bare Zeeman splitting because of the
finite exchange coupling constant J . However, the actual maximum in the differential
conductance, called ∆K , is simultaneously pushed outwards by the arctan term, which
gets smoothed by the finite decoherence rate γ2σ.
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Figure 5.4: Position of the Kondo peaks in the differential conductance V = ±∆K under
a magnetic field (solid blue curve), compared to the position of the Kondo resonances in the
density of states V = ±∆∗ at equilibrium (dashed red curve).

We report the position V = ±∆K of the Kondo peaks in the differential conductance
on the solid blue curve in Fig. 5.4. We find out that the splitting ∆K is always smaller
that the bare Zeeman energy ∆, which it reaches asymptotically at high magnetic fields.
It is interesting to compare that value to the renormalized Zeeman energy entering in the
pole ∆∗ of the Green’s function 〈〈f †

σ̄ckσ̄fσ〉〉; as can be observed, the splitting measured
in the differential conductance is larger than ∆∗, and it is therefore not relevant to
draw conclusions from the distance between the peaks in the equilibrium density of
states. The increasing behavior of ∆K with the magnetic field is in agreement with
perturbation theory and the experiment by Liu et al [57], but we do not find any region
where ∆K > ∆.
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(a)

(b)

Figure 5.5: (a) Ratio ∆K/∆ of
the position of the Kondo peaks
in the differential conductance
V = ±∆K on the Zeeman en-
ergy, as a function of the deco-
herence rate γ2σ and the renor-
malization of the position of the
Kondo resonance at equilibrium
ηB = ∆∗/∆. (b) Phase diagram
showing the couples of parame-
ters (γ2σ, ηB) for which the split-
ting of the Kondo peaks in the
differential conductance is lower
than 2∆ (∆K < ∆) or larger
than 2∆ (∆K > ∆).

As the actual position ∆K depends on the interplay between the renormalization
ηB = ∆∗/∆ of the pole of 〈〈f †

σ̄ckσ̄fσ〉〉 and the associated decoherence rate γ2σ, it is
tempting to study the ratio ∆K/∆ as a function of the parameters γ2σ and ηB. The
result is presented in the color plot in Fig. 5.5. As expected, the ratio ∆K/∆ is small
when ηB and/or γ2σ go to zero, while there are chances to get ∆K larger than ∆ when
ηB approaches one and γ2σ is large. The crossover line is found to obey the relationship

∆ − ∆∗ =
3

2
γ2σ. (5.10)

The experimental results [45, 57] and the existence of couples (γ2σ, ηB) for which we
find ∆K > ∆ suggest an additional contribution to the decoherence rate γ2σ.

However, it is dubious whether the renormalization from scaling theory applies
for γ2σ. Indeed, its bare expression (B.17) is independent of the conduction-electron
bandwidth W because of the energy window [V/2,−V/2] in Eq. (B.17), contrary to the
second-order contribution to ∆∗. It is therefore tempting to keep the bare D function
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Figure 5.6: Position of the Kondo peaks in the differential conductance V = ±∆K. We use
the bare expression for γ2σ for different values of U/Γ. The splitting 2∆K increases when the
ratio U/Γ decreases, eventually reaching regions where ∆K > ∆ for small Coulomb interactions
on the dot. Universality is lost at high magnetic field. At low magnetic field, a single peak
is observed in the differential conductance as the Zeeman energy is too small in comparison
with the width of the peaks.

for the fourth-order decoherence rate. The result is shown in Fig. 5.6 for different values
of the ratio U/Γ.

When the magnetic field is smaller than the width of the zero-bias peak in the
differential conductance (of the order of TK), no splitting is observed as the two different
peaks are not resolved, and ∆K = 0. When the magnetic field is increased, the two
peaks are eventually separated and the distance between them quickly reaches a value
of the order of 2∆. On the contrary to Fig. 5.4, we observe a transition from ∆K < ∆ to
∆K > ∆ by increasing the magnetic field, as it was observed in the experiment by Liu
et al. (see Fig. 5.7). This crossover happens more easily when the Coulomb repulsion
on the dot is weak, which was the case in their measurement. This calls for reproducing
the experiment for a much larger ratio U/Γ, which can be achieved in carbon nanotubes
for instance.

In addition, we observe that the universality is destroyed at high magnetic field
because of the decoherence rate γ2σ. The relationship between the regime ∆K > ∆
and the non-universality was discussed in [57]. However, a clear link has not yet been
established and more evidence should be looked for.
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Figure 5.7: Experimental results for the position of the Kondo peaks in the differential
conductance V = ±∆K (Liu et al. [57]). The data were obtained at the particle-hole symmetric
point for U/Γ ≈ 2.6 (I) and U/Γ ≈ 2 (II).

5.3 Probing the splitting in the density of states through

a three-terminal experiment

In the previous section, we discussed the influence of the decoherence rate γ2σ on
the value of the peak splitting in the differential conductance by a magnetic field. We
observed that additional contributions to γ2σ modify the picture in agreement with
experimental results, calling for a more elaborate expression [95].

On the other hand we discussed the smearing the resonance in the density of states
in the dot by the decoherence rate in Sec. 5.1.2. This motivates a new experimental
setup; let us now consider a three-terminal system, in which one lead has a much weaker
tunneling rate to the dot (let us choose Γ3 ≪ Γ1 = Γ2). The third (weakly coupled)
lead does not influence the Kondo effect as the Kondo temperature is proportional
to the total coupling Γ =

√∑
Γ2

α ≈ Γ1 + Γ2 to the leads, and does not introduce
any relevant contribution to the decay rate because γ2σ is proportional to the dot-lead
couplings Γα. Therefore, we can assume that the dot density of states is unchanged in
comparison with the two-terminal experiment. Interestingly, we can access this density
of states experimentally in a three-terminal experiment by measuring the differential
conductance dI3/dV13, as demonstrated in [56]

dI3

dV13
= −4e2Γ3

~Γ
(Γ1 + Γ2)

∫ W

−W

dε ρd(ε + µ3)
∂f

∂ε
. (5.11)

At zero temperature, the differential conductance dI3/dV13 is proportional to ρd(µ3).
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Experimentally, the main difficulty lies in the fact that the ratio Γ3/Γ has to be small,
which implies that the measured signal is weak. This three-terminal setup can be used
to indirectly measure the decoherence rate γ2σ and compare it with the analytical result
of Eq. (5.3).

We apply a magnetic field on the quantum dot at zero temperature and at pseudo-
equilibrium µ1 = µ2 in such a way that the decoherence rate induced by the magnetic
field is much larger than the Kondo temperature γ2σ ≫ TK (the weakly-coupled lead
puts the system out of equilibrium, but this does not affect the Kondo effect that
tkes place with the strongly coupled leads). In that case, we sit in the weak-coupling
regime and the solution should be given by the lowest orders in t. At low frequency
ω ≪ max(|εσ| , εσ + U), we the functions Πσ and Ξσ appearing in Eq. (2.48) can be
approximated by

Πσ(ω) ≈ Γσ̄

π
G∗

σ̄(ω − ∆∗σ)

∫
f(εk) − 1/2

ω:k − ∆∗σ + iγ2σ

−Γσ̄

π
Gσ̄(2εd + U − ω)

∫
f(εk) − 1/2

ωk: − 2εd − U + iγ3σ

,

Ξσ(ω) ≈ iΓσ̄ − Γσ̄

π

∫
f(εk) − 1/2

ω:k − ∆∗σ + iγ2σ
− Γσ̄

π

∫
f(εk) − 1/2

ωk: − 2εd − U + iγ3σ
− iΓΠσ(ω),

where f(εk) was changed to f(εk) − 1/2 before taking the Green’s function out of the
integral in order to respect particle-hole symmetry [27].

We are interested in finding the density of states in the dot at the resonance ω =
∆∗σ. Using the expressions above, we can infer that it is related to the decoherence
rate γ2σ through solving the system of equations at the particle-hole symmetric point
(εd = −U/2). We obtain for the Green’s function

Gσ(∆∗σ) =
−i 3

2U
πνJ + νJ/2G∗

σ̄(0) ln |γ2σ/γ3σ|
1 + iπνJ/2 + νJ/2 [1 + iΓG∗

σ̄(0)] ln |γ2σ/γ3σ|
,

(5.12)

with G∗
σ̄(0) ≈ i3πνJ/2U at lowest order. At order J2, we find for the density of states

at the resonance

ρσ(∆∗σ) =
3

2U
νJ [1 − νJ ln |γ2σ/γ3σ|] + O(J3/U).

Similarly, we establish that the dot Green’s function for the opposite spin is

ρσ̄(∆∗σ) =
3

2U
νJ [1 − νJ ln |2∆∗/γ3σ|] + O(J3/U).

The dot density of states at the maximum of the resonance is therefore

ρd(±∆∗) =
3

2U
νJ [2 − νJ ln |γ2σ/2Γ| − νJ ln |∆∗/Γ|] + O(J3/U). (5.13)
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Figure 5.8: Height of the peak in the dot density of states as a function of the magnetic
field for U = 6Γ (circles). The data obtained from the numerical solution of the EOM (dots)
are fitted with the formula ρd(±∆) = aνJ + b(νJ)2 ln |∆/Γ| (solid line). The values obtained
from the fit are a = 0.0946/Γ and b = −0.0463/Γ.

The expression (5.13) can be used to measure the evolution of γ2σ with the magnetic
field by probing the maximum of the density of states in the dot, which should be
compared with the theoretical prediction for the decoherence rate in Eq. (5.3). If the
decoherence rate γ2σ is proportional to the Zeeman energy ∆, the height of the peak
should evolve as

ρd(±∆) = aνJ + b(νJ)2 ln |∆/Γ| + O(J3/U), (5.14)

with a, b two parameters independent of the magnetic field. Fitting the maximum
in the density of states with this formula could bring information on a possible addi-
tional contribution to the decoherence rate γ2σ that would be of higher order in ∆. In
Fig. 5.8, we show the comparison between this formula and the numerical result from
the equations-of-motion. The lowest-order approximation in Eq. (5.14) provides an ex-
pression for the maximum in the density of states giving close results to the complete
numerical curve, suggesting that it is accurate enough to discriminate an additional
contribution in experiments.
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Conclusion and Perspectives

Understanding non-equilibrium phenomena in strongly correlated systems poses fun-
damental challenges in theoretical physics supported by an intense experimental activ-
ity. During my Ph.D., I have tried to take up those challenges in order to unveil some
of the mysteries in this new field. In this document, I have attempted to put on paper
the different ideas that came up after many try-and-errors, and fruitful discussions with
collaborators. My focus here has been on structuring those ideas so that they could be
transfered to anyone willing to read this thesis carefully.

The interest for the Kondo effect, as several other many-particle effects in condensed
matter physics, lies in its intrinsic quantum nature and its strong consequences at low
energy on the dependence of any observable on external parameters. It is a fantas-
tic effect for studying the correlations between particles in strongly-correlated systems,
and requests sophisticated theoretical methods beyond mean-field approximations. One
of those mathematical tools is the equations-of-motion technique, developed short af-
ter Kondo’s explanation for the low-temperature minimum of the resistivity in dilute
magnetic alloys. It has been extensively applied at equilibrium using a large set of
approximation schemes that I summarized in Chap. 2, but few non-equilibrium exten-
sions have been proposed and none of them has been able to give an explanation for
the bias-induced decoherence of the processes involved in the Kondo effect. The new
experiments in quantum dots driven out of equilibrium and the lack of exact theory to
describe them have called for more elaborate approximations. In Chap. 2, a new decou-
pling scheme was motivated that builds on the Lacroix approximation while resumming
higher-order terms that are relevant for our focus.

At equilibrium, I showed that the new method that we developed cures strong
pathologies of the Lacroix approximation and extends the range of applicability to any
parameter set, in particular to the particle-hole symmetric point. A comparison with
approximation schemes at lower order was given for the density of states in the dot
and the linear conductance. While Kondo features start to show up in truncations
at second order in the tunneling coefficient t, the results are more stable within the
fourth order extension developed in this work by resumming the terms related to spin-
flip scattering processes (in particular it applies to the whole parameter range). The
linear conductance reaches the unitary limit G = 2e2/h at zero temperature in the
Kondo regime (i.e. when the total occupation number in the dot is one) while it goes
to zero in even-occupancy regions because of the Coulomb blockade. We saw that a
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finite temperature destroys the Kondo effect, and therefore produces a decrease of the
conductance in the single-occupancy region.

More importantly, previous decoupling schemes considered the excitations involved
in the spin-flip scattering process to have an infinite lifetime. This is true for a coherent
spin-flip scattering but we know that it is a wrong statement out of equilibrium or
under a magnetic field. In the latter case, the excitations acquire a decay rate reflecting
the decoherence of the Kondo Ground State. The new decoupling scheme allowed
for the investigation of problems out of equilibrium, as a decoherence rate was found
within the EOM framework by resumming higher-order terms related to the spin-flip
scattering processes. In Chap. 4, this decoherence rate was shown to play a crucial
role in the applicability of the equations-of-motion out of equilibrium by driving the
system from a strong-coupling regime, where the perturbative corrections are large
and resummations poorly controllable, to a weak-coupling regime, where the series are
convergent. I showed that the latter regime could also be reached by increasing the
temperature or the magnetic field4. Experimentally, the main relevant quantity is the
differential conductance, which is shown to be a universal function of the renormalized
bias voltage V/TK in the Kondo regime. We demonstrated that the method developed
in this paper covers the whole parameter range on the qualitative level by representing
the conductance in a three-dimensional figure as a function of the bias voltage and the
gate voltage, in complete agreement with experiments.

Eventually, I studied the effect of a magnetic field in Chap. 5. An analytical formula
was derived for the differential conductance at zero temperature; its expression is similar
to results obtained by renormalized perturbation theory, with the difference that the
EOM result also includes the dependence on the decoherence rate induced by both
the bias voltage and the magnetic field. The differential conductance develops two
peaks approximately separated by twice the Zeeman energy ∆. The actual value of
the splitting lies at the center of an intense debate between theory and experiment
since a value greater than 2∆ has been measured in a high-field regime. I have given
a phenomenological explanation to this experiment, based on the dependence of the
splitting on the decoherence rate. In order to check the validity of this assumption, an
experimental setup has been proposed aimed at the measurement of the decoherence
rate. The result of such experiments should shed light on the decoherence of the spin-
flip scattering processes by the magnetic field and on possible additional contributions
to those discussed in this thesis. In particular, the role of charge fluctuations inside the
dot and on the particle-hole asymmetry deserve further theoretical study.

This work opens new perspectives as the flexibility of the EOM method makes it a
good candidate for the study of many other problems. First, as it recovers the unitary
limit at the particle-hole symmetric point, it is a good candidate as a numerically-
efficient solver in Dynamical Mean Field Theory (DMFT) problems, where it would
solve pathologies of the Lacroix approximation [29]. On the other hand, I showed that

4The magnetic-field-induced crossover to the weak-coupling regime has not been presented explicitly,
but its mechanism corresponds to that described in Sec. 4.3, knowing that the magnetic-field also yields
a finite decoherence rate, as expressed by Eq. (5.3).
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the method is well-adapted to the study of transport problems through quantum dots,
and the results could be extended without great difficulty to more exotic setups such as
dots connected to ferromagnetic leads or hybrid systems. Transport in the presence of
superconducting leads could also be studied but the extension of the present derivations
is less straightforward because it would require to decouple pairs with two creation (resp.
destruction) operators. The EOM could also be applied to multiple-dot systems or
dots carrying many quantum numbers (for instance systems with a SU(4) symmetry).
However the complexity of the decoupling scheme explodes with the cardinal of the
Hilbert space in the dot, and focusing on a particular electron occupation number
in the dot would probably be wiser. I nevertheless believe that a general treatment
of such systems is also possible by identifying the relevant processes and symmetries
of the system, as it has been done in this work for the computation of higher-order
terms. Finally great improvements deserve to be looked for on a technical side, in
order to recover the exact Kondo temperature or the Fermi-liquid relationships at low
temperature. I gave some indications for a study in this direction in Chap. 2 following
the early work by Nagaoka [73]. A success in such a project would in my opinion be a
giant leap for the EOM and their use to study strongly-correlated physics.
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Appendix A

The Schrieffer-Wolff transformation

For the Kondo effect to take place, the single-level quantum dot must by singly
occupied and charge fluctuations have to be weak. As the Kondo effect takes place only
on low-energy scales, it is tempting to find a canonical transformation that projects the
Anderson Hamiltonian on an effective low-energy Hamiltonian in which the transitions
to the empty or doubly occupied states can happen only virtually. In this section, we
reproduce the derivation of such a transformation, as was proposed by Schrieffer and
Wolf in 1966 [96].

Let us decompose the Anderson Hamiltonian for a single-level quantum dot coupled
in two terms

H = H0 + H1, (A.1)

with

H0 =
∑

kσ

εknkσ +
∑

σ

εσnσ + Unσnσ̄, (A.2)

H1 =
∑

kσ

tσc†kσfσ + H.c. (A.3)

We consider the region where εd << εF and εF << εd + U , which implies the dot is
singly occupied. Any canonical transformation can be written

Heff = exp(−iS)H exp(iS) = H0 + H1 + [iS,H0] +
1

2!
[iS, [iS,H0]] +

1

2!
[iS, [iS,H1]] + · · · .

(A.4)

We are looking for a transformation that cancels out the tunneling term H1, since it
couples states with different occupation numbers on the dot. In order to get the effective
Hamiltonian Heff of second order in tσ, the operator S should satisfy

[iS,H0] = −H1. (A.5)

Under that condition, the development becomes

Heff = H0 +
1

2
[iS,H1] + O(t3). (A.6)
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Now we want to find S from Eq. (A.5). As H is hermitian, let us first notice the
property

[iS,H0] = −H1 = −H†
1 =

[
H†

0,−iS†
]

=
[
iS†,H0

]
⇒ S = S†. (A.7)

We write S under the form

iS =
∑

kσ

tσÂkσc†kσfσ + H.c., (A.8)

where Âkσ is chosen to commute with H0. Then, the condition (A.5) becomes

[
∑

kσ

tσÂkσc
†
kσfσ + h.c.,H0

]
= −H1, (A.9)

which can be achieved with

Âkσ

[
c†kσfσ,H0

]
= −c†kσfσ (A.10)

⇒ Âkσ (−εk + εσ + Un̂σ̄) c†kσfσ = −c†kσfσ (A.11)

We find

Âkσ = (εk − εσ − Un̂σ̄)−1 (A.12)

and

iS =
∑

kσ

tσ (εk − εσ − Un̂σ̄)−1
(
c†kσfσ − f †

σckσ

)
. (A.13)

However, this is not the most convenient expression since it contains an operator in
the denominator. Therefore, we project Âkσ on 1 − n̂σ̄ and n̂σ̄ and making two Taylor
expansions (valid for εk > εσ and εk < εσ + U)

1 − n̂σ̄ + n̂σ̄

εk − εσ − Un̂σ̄

= (1 − n̂σ̄) (εk − εσ − Un̂σ̄)−1 + n̂σ̄ (εk − εσ − U(n̂σ̄ − 1) − U)−1

= (1 − n̂σ̄)
{
(εk − εσ)

−1 + O(n̂σ̄)
}

+ n̂σ̄

{
(εk − εσ − U)−1 + O(1 − n̂σ̄)

}

=
1 − n̂σ̄

εk − εσ
+

n̂σ̄

εk − εσ − U
. (A.14)

We stress that there is no approximation here as we simply used the identity n̂2
σ̄ =

n̂σ̄ ⇒ (1 − n̂σ̄)n̂σ̄ = 0. Finally, the S operator can be written

iS =
∑

kσ

tσ

[
1 − n̂σ̄

εk − εσ
+

n̂σ̄

εk − εσ − U

] (
c†kσfσ − f †

σckσ

)
= iS+ − iS−. (A.15)
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The first term accounts for the virtual transitions to the empty state, while the second
one describes the transitions to the doubly-occupied state. The operator S− describes
events in which the electron of spin σ tunnels from the dot to the leads, while S+

describes the events in which a lead electron of spin σ enters the dot. Similarly, we
decompose H1 into H+

1 =
∑

kσ tσf †
σckσ and H−

1 =
∑

kσ tσc†kσfσ.
From now on, we only consider tunneling of lead electrons close to the Fermi level in

comparison with the energy parameters in the dot. We use the limit εσ << εk << εσ+U
and neglect the εk dependence in the denominators. We evaluate the commutator
[iS,H1] by focusing on the states of single occupancy in the dot, and discard terms
containing contributions like fσfσ̄ or f †

σf †
σ̄. This gives

[
iS+,H−

1

]
=

[
−
∑

kσ

tσ

[
1 − n̂σ̄

εσ
+

n̂σ̄

εσ + U

]
c†kσfσ,

∑

k′σ′

t∗σ′f
†
σ′ck′σ′

]

=

[
−
∑

kσ

tσ

{
1

+εσ

c†kσfσ +

[
− 1

εσ

+
1

εσ + U

]
n̂σ̄c†kσfσ

}
,
∑

k′σ′

t∗σ′f
†
σ′ck′σ′

]
.

As [
c†kσfσ, f †

σ′ck′σ′

]
= c†kσck′σ′δσσ′ − n̂σδkk′δσσ′ ,

[
n̂σ̄c†kσfσ, f †

σ′ck′σ′

]
= n̂σ̄c†kσck′σ′δσσ′ − fσ̄f †

σc†kσck′σ̄δσ̄σ′ ,

we find

[
iS+,H−

1

]
= −

∑

kσ

|tσ|2
1

εσ

(
∑

k′

c†kσck′σ − n̂σ

)

+
∑

kσ

∑

k′

tσ

[
1

εσ

− 1

εσ + U

](
t∗σn̂σ̄c†kσck′σ − t∗σ̄f †

σ̄fσc†kσck′σ̄

)
.

By symmetry, we have
[
−iS−,H+

1

]
=
[
−iS+†

,H−
1
†
]

=
[
H−

1 ,−iS+
]†

=
[
iS+,H−

1

]†
,

which implies that

[
−iS−,H+

1

]
= −

∑

kσ

|tσ|2
1

εσ

(
∑

k′

c†k′σckσ − n̂σ

)

+
∑

kσ

∑

k′

tσ

[
1

εσ
− 1

εσ + U

](
t∗σn̂σ̄c†k′σckσ − t∗σ̄f †

σfσ̄c
†
k′σ̄ckσ

)
.

Finally, because of the single occupancy on the dot,
[
iS+,H+

1

]
=
[
iS−,H−

1

]
= 0, and

the correction to the effective Hamiltonian is

[iS,H1] = −2
∑

kσ

|tσ|2
1

εσ

∑

k′

c†kσck′σ + 2
∑

kσ

∑

k′

|tσ|2
[

1

εσ
− 1

εσ + U

]
n̂σ̄c†kσck′σ

−
∑

kσ

∑

k′

tσt∗σ̄

[
1

εσ

− 1

εσ + U

](
f †

σ̄fσc†kσck′σ̄ + f †
σfσ̄c†k′σ̄ckσ

)
.
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We neglected the term containg only a n̂σ̄ operator as it leads only to an unimportant
shift of the energy levels (which are sent to infinite). Using nσ = 1/2 + (nσ −nσ̄)/2, we
re-write the commutator under the form

[iS,H1] = −
∑

kσ

∑

k′

|tσ|2
[

1

εσ
+

1

εσ + U

]
c†kσck′σ

+
∑

kσ

∑

k′

|tσ|2
[

1

εσ
− 1

εσ + U

]
(n̂σ̄ − n̂σ) c†kσck′σ

−
∑

kσ

∑

k′

tσt∗σ̄

[
1

εσ

− 1

εσ + U

] (
f †

σ̄fσc†kσck′σ̄ + f †
σfσ̄c†k′σ̄ckσ

)
. (A.16)

This new expression is interesting in the sense that it highlights the spin-spin in inter-
actions between the electron on the dot and the conduction electrons. In order to make
this clear, let us remind the representation of a spin 1/2 operator in second quantiza-
tion (see, for instance, [15], p.22); the expressions for the dot electron spin ~Sd and the
conduction electron spin ~Skk′ are

~Sd =
~

2

∑

σσ′

〈σ′| (τx, τ y, τ z) |σ〉 f †
σ′fσ =

~

2

∑

σσ′

~τσσ′f †
σ′fσ, (A.17)

~Skk′ =
~

2

∑

σσ′

〈σ′| (τx, τ y, τ z) |σ〉 c†k′σ′ckσ =
~

2

∑

σσ′

~τσσ′c†k′σ′ckσ, (A.18)

(A.19)

where ~τ are the Pauli matrices

~τ =






 0 1

1 0


 ,


 0 −i

i 0




 1 0

0 −1






 . (A.20)

The components of the dot spin are for example

(Sx
d , Sy

d , Sz
d) =

~

2

([
f †
↓f↑ + f †

↑f↓

]
, i
[
f †
↓f↑ − f †

↑f↓

]
,
[
f †
↑f↑ − f †

↓f↓

])
. (A.21)

Therefore, a spin-spin interaction between the electrons on the dot and in the leads is
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expressed by (taking ~ = 1)

~Sd.~Skk′ =
1

4

∑

σσ′

~τσσ′f †
σ′fσ.

∑

σ1σ′
1

~τσ1σ′
1
c†k′σ′

1
ckσ1

=
1

4

∑

σσ′

∑

σ1σ′
1

(
τx
σσ′τx

σ1σ′
1
+ τ y

σσ′τ
y
σ1σ′

1
+ τ z

σσ′τ z
σ1σ′

1

)
f †

σ′fσc†k′σ′
1
ckσ1

=
1

4

[(
f †
↑f↓ + f †

↓f↑

)(
c†k′↑ck↓ + c†k′↓ck↑

)
+ i2

(
−f †

↑f↓ + f †
↓f↑

)(
−c†k′↑ck↓ + c†k′↓ck↑

)

+
(
f †
↑f↑ − f †

↓f↓

)(
c†k′↑ck↑ − c†k′↓ck↓

)]

=
1

4

[
2
(
f †
↑f↓c

†
k′↓ck↑ + f †

↓f↑c
†
k′↑ck↓

)
+
(
f †
↑f↑ − f †

↓f↓

)(
c†k′↑ck↑ − c†k′↓ck↓

)]

=
1

4

∑

σ

[
2f †

σfσ̄c†k′σ̄ckσ + (nσ − nσ̄) c†k′σckσ

]
(A.22)

Hence, in the absence of magnetic field (εσ = εσ̄ = εd), and for spin independent
tunneling (tσ = tσ̄ = t), we identify

[iS,H1] = − |t|2
[

1

εd
+

1

εd + U

]∑

kk′

∑

σ

c†kσck′σ − 4 |t|2
[

1

εd
− 1

εd + U

]∑

kk′

~Sd.~Skk′

The effective Hamiltonian at second order in t can be written under the form

H(2)
eff = K

∑

kk′σ

c†kσck′σ + J
∑

kk′

~Sd.~Skk′, (A.23)

with

K = −1

2
|t|2
[

1

εd
+

1

εd + U

]
, (A.24)

J = −2 |t|2
[

1

εd

− 1

εd + U

]
= 2 |t|2 Dσ(0) > 0. (A.25)

As the dot operators are summed in an effective spin operator, we can focus on the
behavior of the conduction electrons the the total Hamiltonian writes

Heff =
∑

kk′σ

(εkδkk′ + K) c†kσck′σ + J
∑

kk′

~Sd.~Skk′. (A.26)

The constant K represents the energy for potential scattering between the conduction
electrons while J defines the exchange scattering between a conduction electron and
the spin of the impurity. As J > 0, the spin-spin interaction is anti-ferromagnetic,
meaning that the energy of the system is minimized when the spins are in an anti-
parallel configuration.
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The development of the Schrieffer-Wolff transformation can be easily generalized to
the case of a dot coupled to many leads (with the same density of states ν). At the
particle-hole symmetric point, the potential scattering term vanishes (K = 0), and we
find the effective Kondo Hamiltonian

HKondo =
∑

αkσ

εkc
†
αkσcαkσ + J

∑

kk′

~Sd.~Skk′, (A.27)

with the spin operator for the conduction electrons

~Skk′ =
~

2

∑

αα′

∑

σσ′

~τσσ′c†α′k′σ′cαkσ. (A.28)

Let us stress that the Kondo Hamiltonian is a simplification of the Anderson model as
it was derived from it by reducing the Hilbert space on the dot to two states |↑〉 and
|↓〉.



Appendix B

Calculation of the coefficients for the
resummations of the EOM

In this Appendix, we derive the coefficients that relate the Green’s functions in
Eqs. (2.46) at second order in t. In addition, the coefficient Σ2σ is calculated at fourth
order in t because its second order expression turns out to have a zero imaginary part
at resonance in the Kondo regime.

We call self-energies the coefficients that correct the energy terms in the denomina-
tors of the Green’s functions in Eqs. (2.46) and cross-coefficients those which relate the
different Green’s functions integrally (see Fig. 2.1).

B.1 Coefficients at second order in t

B.1.1 Self-energy of 〈〈nσ̄ckσ〉〉 (Σ1σ(ω:k))

The equations-of-motion for 〈〈nσ̄ckσ〉〉 is given by Eq. (2.28a):

ω:k〈〈nσ̄ckσ〉〉 = tσ〈〈nσ̄fσ〉〉 +
∑

k1

tσ̄

[
〈〈f †

σ̄ck1σ̄ckσ〉〉 − 〈〈c†k1σ̄fσ̄ckσ〉〉
]

= Σ1σ(ω:k)〈〈nσ̄ckσ〉〉 + · · · .

We want to re-sum all the processes that loop back to 〈〈nσ̄ckσ〉〉 at second order in
t, which define the self-energy Σ1σ(ω:k). On the right-hand-side, we have to con-
sider the EOM for the Green’s functions of higher order in t, namely 〈〈f †

σ̄ck1σ̄ckσ〉〉
and 〈〈c†k1σ̄fσ̄ckσ〉〉. The first one gives

ωσ̄:kk1〈〈f †
σ̄ck1σ̄ckσ〉〉 = −tσ̄

∑

k2

〈〈c†k2σ̄ck1σ̄ckσ〉〉 + tσ̄〈〈nσ̄ckσ〉〉

+tσ〈〈f †
σ̄ck1σ̄fσ〉〉 + U〈〈f †

σ

...f †
σ̄ck1σ̄ckσ

...fσ〉〉,
where the second term on the right-hand-side is the original Green’s function 〈〈nσ̄ckσ〉〉.
We put the vertical dots to remind the decoupling done at the order of Lacroix. The
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other terms do not provide any way back to 〈〈nσ̄ckσ〉〉 at second order in t (in particular,

there is no decoupling possible of 〈〈f †
σ

...f †
σ̄ck1σ̄ckσ

...fσ〉〉 at second order that leaves the op-
erator ckσ inside the Green’s function, and we can therefore not come back to 〈〈nσ̄ckσ〉〉).
We conclude that the only second-order process that comes back to 〈〈nσ̄ckσ〉〉 is

〈〈nσ̄ckσ〉〉 → 〈〈f †
σ̄ck1σ̄ckσ〉〉 → 〈〈nσ̄ckσ〉〉.

After re-summation on the corresponding coefficients and energy propagators, we
get the following contribution to the self-energy

Σ1σ(ω:k)|〈〈nσ̄ckσ〉〉→〈〈f†
σ̄ck1σ̄ckσ〉〉

=
∑

k1

t2σ̄
1

ωσ̄:kk1

= −iΓσ̄.

The correction for the processes starting with 〈〈nσ̄ckσ〉〉 → 〈〈c†k1σ̄fσ̄ckσ〉〉 can be
obtained by symmetry by making the transformation

Σσ(ω:k)|〈〈nσ̄ckσ〉〉→〈〈c†
k1 σ̄

fσ̄ckσ〉〉
→ − Σ∗

σ(−ω:k)|〈〈nσ̄ckσ〉〉→〈〈f†
σ̄ck1σ̄ckσ〉〉

.

The total self-energy at second order in t is

Σ
(2)
1σ (ω:k) = −2iΓσ̄. (B.1)

B.1.2 Self-energy of 〈〈f †
σ̄ckσ̄fσ〉〉 (Σ2σ(ω:k))

The EOM for 〈〈f †
σ̄ckσ̄fσ〉〉 is given by Eq. (2.28b):

ωσ̄:kσ〈〈f †
σ̄ckσ̄fσ〉〉 = 〈f †

σ̄ckσ̄〉 + tσ̄〈〈nσ̄fσ〉〉 +
∑

k1

[
tσ〈〈f †

σ̄ckσ̄ck1σ〉〉 − tσ̄〈〈c†k1σ̄ckσ̄fσ〉〉
]
.

Again, we have to look for the expansion of 〈〈f †
σ̄ckσ̄ck1σ〉〉 and 〈〈c†k1σ̄ckσ̄fσ〉〉. We

proceed in a similar way as in Sec. B.1.1 and indicate only the processes relevant for
contributions to Σ2σ(ω:k). Let us concentrate on the Green’s function 〈〈c†k1σ̄ckσ̄fσ〉〉 and
focus on the processes coming back to 〈〈f †

σ̄ckσ̄fσ〉〉 at second order in t. These are

1. 〈〈f †
σ̄ckσ̄fσ〉〉 → 〈〈c†k1σ̄ckσ̄fσ〉〉 → 〈〈f †

σ̄ckσ̄fσ〉〉.
This process leads to the following correction:

∑

k1

t2σ̄
1

wk1:kσ
= −iΓσ̄

2. 〈〈f †
σ̄ckσ̄fσ〉〉 → 〈〈c†k1σ̄ckσ̄fσ〉〉 → −U〈〈f †

σ̄

...c†k1σ̄ckσ̄fσ
...fσ̄〉〉 → 〈〈f †

σ̄

...c†k1σ̄ckσ̄fσ
...ck2σ̄〉〉 →

〈c†k1σ̄ck2σ̄〉〈〈f †
σ̄ckσ̄fσ〉〉,
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where the vertical dots to remind the decoupling already done at lower order. For
〈c†k1σ̄ck2σ̄〉 = f(εk1)δk1k2, this process leads to the following correction:

∑

k1

∑

k2

−tσ̄
wk1:kσ

−U

wk1:kσ − U
tσ̄〈c†k1σ̄ck2σ̄〉 = −t2σ̄

∑

k1

Dσ(ωk1:k)f(εk1),

where the function Dσ(ω) is defined by

Dσ(ω) = −U
1

ω − εσ

1

ω − εσ − U
. (B.2)

It can be replaced by a dressed expression in order to resum on all the intermediate

processes starting from 〈〈c†k1σ̄ckσ̄fσ〉〉 and 〈〈f †
σ̄

...c†k1σ̄ckσ̄fσ
...fσ̄〉〉, as those Green’s

functions acquire the same corrections on the denominator as 〈〈fσ〉〉 and 〈〈nσ̄fσ〉〉
(see Sec. 2.7.1),

D̃σ(ω) =
1

u1σ(ω)u2σ(ω) + Ξσ(ω)
. (B.3)

On the opposite, the average value 〈c†k1σ̄ck2σ̄〉 can not be computed self-consistently

because it would involve a double counting with the decoupling of 〈f †
σ̄ckσ̄〉 in the

Green’s function 〈〈f †
σ̄ckσ̄fσ〉〉 (see Sec. 2.7.1).

Finally, the processes starting with 〈〈f †
σ̄ckσ̄fσ〉〉 → 〈〈f †

σ̄ckσ̄ck1σ〉〉 → · · · can be found
directly by applying the following transformation to the previous results

Σσ(w:k) → −Σ∗
σ̄(−w:k).

Summing all the terms gives

Σ
(2)
2σ (ω:k) = −iΓ − t2σ̄

∑

k1

Dσ(ωk1:k)f(εk1) + t2σ
∑

k1

D∗
σ̄(−ωk1:k)f(εk1) + O(t4), (B.4)

where the O(t4) term stands for the additional contributions generated when the Dσ

function is replaced by its dressed expression.

B.1.3 Self-energy of 〈〈c†kσ̄fσ̄fσ〉〉 (Σ3σ(ωk:))

The EOM for 〈〈c†kσ̄fσ̄fσ〉〉 is given by Eq. (2.28c)

(ωk:σσ̄ − U) 〈〈c†kσ̄fσ̄fσ〉〉 = 〈c†kσ̄fσ̄〉 − tσ̄〈〈nσ̄fσ〉〉 +
∑

k1

[
tσ̄〈〈c†kσ̄ck1σ̄fσ〉〉 + tσ〈〈c†kσ̄fσ̄ck1σ〉〉

]
.

The processes starting with 〈〈c†kσ̄fσ̄fσ〉〉 → 〈〈c†kσ̄ck1σ̄fσ〉〉 give the following contri-
butions:
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1. 〈〈c†kσ̄fσ̄fσ〉〉 → 〈〈c†kσ̄ck1σ̄fσ〉〉 → 〈〈c†kσ̄fσ̄fσ〉〉
This process leads to the following correction:

∑

k1

t2σ̄
1

ωk:k1σ

= −iΓσ̄.

2. 〈〈c†kσ̄fσ̄fσ〉〉 → 〈〈c†kσ̄ck1σ̄fσ〉〉 → −U〈〈f †
σ̄

...c†kσ̄ck1σ̄fσ
...fσ̄〉〉 → −〈〈c†k2σ̄

...c†kσ̄ck1σ̄fσ
...fσ̄〉〉 →

〈c†k2σ̄ck1σ̄〉〈〈c†kσ̄fσ̄fσ〉〉
This process leads to the following correction:

∑

k1

∑

k2

tσ̄
ωk:k1σ

−U

ωk:k1σ − U
(−tσ̄) 〈c†k2σ̄ck1σ̄〉 = −t2σ̄

∑

k1

Dσ(ωk:k1σ)f(εk1).

Again, it is possible to replace Dσ by its dressed expression. The processes starting
with 〈〈c†kσ̄fσ̄fσ〉〉 → 〈〈c†kσ̄fσ̄ck1σ〉〉 → · · · can be computed similarly. They can be found
directly by applying the following transformation to the previous results:

Σσ(ωk:) → Σσ̄(ωk:).

Summing all the processes gives

Σ
(2)
3σ (ωk:) = −iΓ − t2σ

∑

k1

Dσ̄(ωk:k1σ̄)f(εk1) − t2σ̄
∑

k1

Dσ(ωk:k1σ)f(εk1) + O(t4). (B.5)

B.1.4 Cross-coefficient 〈〈nσ̄ck1σ〉〉 → 〈〈f †
σ̄ckσ̄fσ〉〉 (t12,σ)

The calculation of the cross-coefficient is similar to that of the self-energies: we look
for the processes that connect the Green’s functions considered. At second order in t,
there is only one path to go from 〈〈nσ̄ck1σ〉〉 to 〈〈f †

σ̄ckσ̄fσ〉〉:

〈〈nσ̄ck1σ〉〉 → 〈〈f †
σ̄ckσ̄ck1σ〉〉 → 〈〈f †

σ

...f †
σ̄ckσ̄ck1σ

...fσ〉〉 → 〈〈c†k2σ

...f †
σ̄ckσ̄ck1σ

...fσ〉〉
→ 〈c†k2σck1σ〉〈〈f †

σ̄ckσ̄fσ〉〉.

The corresponding amplitude is given by

t12,σ(ω, k1, k) = tσ̄
U

wσ̄:kk1

−tσ
wσ̄:kk1 + U

∑

k2

〈c†k2σck1σ〉.

As in the previous sections, we must take the bare average value 〈c†k2σck1σ〉 = f(εk1)δk1k2

in order to avoid double counting, we have

t12,σ(ω, k1, k) = tσtσ̄D∗
σ̄(−ω:kk1)f(εk1) + O(t4). (B.6)
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B.1.5 Cross-coefficient 〈〈nσ̄ck1σ〉〉 → 〈〈c†kσ̄fσ̄fσ〉〉 (t13,σ)

The process 〈〈nσ̄ck1σ〉〉 → 〈〈c†kσ̄fσ̄fσ〉〉 at second order in t is

〈〈nσ̄ck1σ〉〉 → 〈〈c†kσ̄fσ̄ck1σ〉〉 → 〈〈f †
σ

...c†kσ̄fσ̄ck1σ
...fσ〉〉 → 〈〈c†k2σ

...c†kσ̄fσ̄ck1σ
...fσ〉〉

→ 〈c†k2σck1σ〉〈〈c†kσ̄fσ̄fσ〉〉.

The corresponding amplitude is

t13,σ(ω, k1, k) = (−tσ̄)
−U

wk1:kσ̄

−tσ
wk1:kσ̄ − U

∑

k2

〈c†k2σck1σ〉.

Taking 〈c†k2σck1σ〉 = f(εk1)δk1k2 , we obtain

t13,σ(ω, k1, k) = tσtσ̄Dσ̄(ωk:k1)f(εk1) + O(t4). (B.7)

B.1.6 Cross-coefficient 〈〈f †
σ̄ck1σ̄fσ〉〉 → 〈〈c†kσ̄fσ̄fσ〉〉 (t23,σ)

The process 〈〈f †
σ̄ck1σ̄fσ〉〉 → 〈〈c†kσ̄fσ̄fσ〉〉 at second order in t is

〈〈f †
σ̄ck1σ̄fσ〉〉 → 〈〈c†kσ̄ck1σ̄fσ〉〉 → 〈〈f †

σ̄

...c†kσ̄ck1σ̄fσ
...fσ̄〉〉 → 〈〈c†k2σ̄

...c†kσ̄ck1σ̄fσ
...fσ̄〉〉

→ 〈c†k2σ̄ck1σ̄〉〈〈c†kσ̄fσ̄fσ〉〉.

The corresponding amplitude is

t23,σ(ω, k1, k) = (−tσ̄)
−U

wk:k1σ

−tσ̄
wk:k1σ − U

∑

k2

〈c†k2σck1σ〉.

Taking 〈c†k2σck1σ〉 = f(εk1)δk1k2 , we obtain

t23,σ(ω, k1, k) = t2σ̄Dσ(ωk:k1)f(εk1) + O(t4). (B.8)

B.1.7 Cross-coefficient〈〈c†k1σ̄
fσ̄fσ〉〉 → 〈〈f †

σ̄ckσ̄fσ〉〉 (t32,σ)

The process 〈〈c†k1σ̄fσ̄fσ〉〉 → 〈〈f †
σ̄ckσ̄fσ〉〉 at second order in t is

〈〈c†k1σ̄fσ̄fσ〉〉 → 〈〈c†k1σ̄ckσ̄fσ〉〉 → 〈〈f †
σ̄

...c†k1σ̄ckσ̄fσ
...fσ̄〉〉 → 〈〈f †

σ̄

...c†k1σ̄ckσ̄fσ
...ck2σ̄〉〉

→ 〈c†k1σ̄ck2σ̄〉〈〈f †
σ̄ckσ̄fσ̄〉〉.

The corresponding amplitude is

t32,σ(ω, k1, k) = tσ̄
−U

wk1:kσ

tσ
wk1:kσ − U

∑

k2

〈c†k1σ̄ck2σ̄〉.
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Taking 〈c†k1σ̄ck2σ̄〉 = f(εk1)δk1k2 , we obtain

t32,σ(ω, k1, k) = t2σ̄Dσ(ωk1:k)f(εk1) + O(t4). (B.9)

B.1.8 Effective couplings 〈〈nσ̄fσ〉〉 → 〈〈f †
σ̄ckσ̄fσ〉〉 (t2σ) and 〈〈nσ̄fσ〉〉 →

〈〈c†kσ̄fσ̄fσ〉〉 (t3σ)

The coefficients tij,σ connect the three Green’s functions 〈〈nσ̄ckσ〉〉, 〈〈f †
σ̄ckσ̄fσ〉〉 and

〈〈c†kσ̄fσ̄fσ〉〉 between each other. By summing up all paths leading to those functions,
we obtain the effective couplings t2σ for all processes 〈〈nσ̄fσ〉〉 to 〈〈f †

σ̄ckσ̄fσ〉〉 and t3σ for
all processes 〈〈nσ̄fσ〉〉 → 〈〈c†kσ̄fσ̄fσ〉〉 (see Fig. 2.1).

The effective coefficients are obtained by solving the self-consistent equations

t2σ(ω:k) = tσ̄ + tσ
∑

k1

1

ω:k1 − Σ1σ(ω:k1)
t12,σ(ω, k1, k)

+
∑

k1

t3σ(ωk1:)
1

ωk1:σσ̄ − U − Σ3σ(ωk1:)
t32,σ(ω, k1, k). (B.10a)

t3σ(ω:k) = −tσ̄ + tσ
∑

k1

1

ω:k1 − Σ1σ(ω:k1)
t13,σ(ω, k1, k)

+
∑

k1

t2σ(ω:k1)
1

ωσ̄:k1σ − Σ2σ(ω:k1)
t23,σ(ω, k1, k). (B.10b)

As t21,σ = t31,σ = 0, the coefficient relating the Green’s functions 〈〈nσ̄fσ〉〉 → 〈〈nσ̄ckσ〉〉
keeps its bare expression t1σ = tσ.

B.2 Self-energy Σ2σ(w:k) at fourth order in t

The second-order expressions for the self-energies are studied in Sec. 3.1. It turns
out the the imaginary part of Σ2σ(ω:k) is zero at the resonance point ω:k = ∆σ. The
corresponding diverging terms in the dot Green’s function therefore remain, and we
recover the Kondo features at equilibrium and for zero temperature.

However, we expect that the diverging terms should be smeared out when there is
decoherence of the Kondo Ground State, for instance when a bias voltage is applied
between the leads. As this feature is not present inside Σ

(2)
2σ , it gives a motivation to

look for the fourth-order contribution.

B.2.1 Fourth-order processes for Σ2σ(w:k)

As in the previous sections, we list the relevant processes.
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1. A first process is given by

〈〈f †
σ̄ckσ̄fσ〉〉 → 〈〈c†k1σ̄ckσ̄fσ〉〉 → −U〈〈f †

σ̄

...c†k1σ̄ckσ̄fσ
...fσ̄〉〉 → 〈〈f †

σ̄

...c†k1σ̄ckσ̄ck2σ
...fσ̄〉〉 →

〈〈f †
σ̄

...c†k1σ̄ckσ̄ck2σ
...ck3σ̄〉〉 → −U〈〈f †

σ

...f †
σ̄

...c†k1σ̄ckσ̄ck2σ
...ck3σ̄

...fσ〉〉
→ 〈〈c†k4σ

...f †
σ̄

...c†k1σ̄ckσ̄ck2σ
...ck3σ̄

...fσ〉〉 → +〈c†k1σ̄ck3σ̄〉〈c†k4σck2σ〉〈〈f †
σ̄ckσ̄fσ〉〉

where the second set of vertical dots avoids double-counting with the decouplings
done at second order. The corresponding contribution to the self-energy is given
by

∑

k1k2k3k4

−tσ̄
ωk1:kσ

−U

ωk1:kσ − U

tσ
ωk1:kk2

tσ̄
ωk1σ̄:kk2k3

U

ωk1σ̄:kk2k3 + U
(−tσ) 〈c†k1σ̄ck3σ̄〉〈c†k4σck2σ〉

= −t2σt2σ̄
∑

k1

Dσ(ωk1:k)f(εk1)
∑

k2

1

ωk1:kk2

D∗
σ̄(−ω:kk2)f(εk2).

2. A second process is given by

〈〈f †
σ̄cikσ̄fσ〉〉 → 〈〈c†k1σ̄cikσ̄fσ〉〉 → −U〈〈f †

σ̄

...c†k1σ̄cikσ̄fσ
...fσ̄〉〉 → 〈〈c†k2σ̄

...c†k1σ̄cikσ̄fσ
...fσ̄〉〉 →

〈〈c†k2σ̄

...c†k1σ̄cikσ̄fσ
...ck3σ̄〉〉 → −U〈〈f †

σ̄

...c†k2σ̄

...c†k1σ̄cikσ̄fσ
...ck3σ̄

...fσ̄〉〉
→ 〈〈f †

σ̄

...c†k2σ̄

...c†k1σ̄cikσ̄fσ
...ck3σ̄

...ck4σ̄〉〉 → 〈c†k1σ̄ck3σ̄〉〈c†k2σ̄ck4σ̄〉〈〈f †
σ̄cikσ̄fσ〉〉

The corresponding self-energy is

∑

k1k2k3k4

−tσ̄
ωk1:kσ

−U

ωk1:kσ − U

−tσ̄
ωk1k2:kσσ̄ − U

tσ̄
ωk1k2:kk3σ

−U

ωk1k2:kk3σ − U
tσ̄〈c†k1σ̄ck3σ̄〉〈c†k2σ̄ck4σ̄〉

= t4σ̄
∑

k1

Dσ(ωk1:k)f(εk1)
∑

k2

1

ωk1k2:kσσ̄ − U
Dσ(ωk2:k)f(εk2)

3. Finally, the remaining processes start with
〈〈f †

σ̄ckσ̄fσ〉〉 → 〈〈f †
σ̄ckσ̄ck1σ〉〉 → · · ·

These processes can be computed similarly. They can be found directly by ap-
plying the following transformation to the previous results:

Σ2σ(w:k) → −Σ∗
2σ̄(−w:k).
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Summing all the terms gives

Σ
(4)
2σ (ω:k) = −t2σt2σ̄

∑

k1

Dσ(ωk1:k)f(εk1)
∑

k2

1

ωk1:kk2

D∗
σ̄(−ω:kk2)f(εk2)

+t2σt2σ̄
∑

k1

D∗
σ̄(−ω:kk1)f(εk1)

∑

k2

1

−ω∗
k2:kk1

Dσ(ωk2:k)f(εk2)

+t4σ̄
∑

k1

Dσ(ωk1:k)f(εk1)
∑

k2

1

ωk1k2:kσσ̄ − U
Dσ(ωk2:k)f(εk2)

−t4σ
∑

k1

D∗
σ̄(−ω:kk1)f(εk1)

∑

k2

1

−ω∗
σσ̄:kk1k2

− U
D∗

σ̄(−ω:kk2)f(εk2).

(B.11)

Unfortunately, this expression does not involve only convolutions, on the contrary to
all the second-order coefficients. Numerically, we can no longer use a linear scale for
a complete self-consistent treatment (see App. C). One option is to use a logarithmic
scale, the other is to calculate the value of Σ

(4)
2σ analytically without any re-summing

on Dσ(ω).
However, for our concerns, it is not important to find the energy-dependence of

the fourth-order self-energy, but rather its expression at the pole of 〈〈f †
σ̄ckσ̄fσ〉〉. At

resonance, w:k = ∆σ, we find

Σ
(4)
2σ (∆σ) ≈ −t2σt2σ̄

∑

k1

Dσ(εk1 + ∆σ)f(εk1)
∑

k2

1

εk1 − εk2 + ∆σ + iδ
D∗

σ̄(εk2 − ∆σ)f(εk2)

+ t2σt2σ̄
∑

k1

D∗
σ̄(εk1 − ∆σ)f(εk1)

∑

k2

1

εk1 − εk2 − ∆σ + iδ
Dσ(εk2 + ∆σ)f(εk2)

+ t4σ̄
∑

k1

Dσ(εk1 + ∆σ)f(εk1)
∑

k2

1

εk1 + εk2 − 2εσ̄ − U + iδ
Dσ(εk2 + ∆σ)f(εk2)

− t4σ
∑

k1

D∗
σ̄(εk1 − ∆σ)f(εk1)

∑

k2

1

εk1 + εk2 − 2εσ − U + iδ
D∗

σ̄(εk2 − ∆σ)f(εk2),

(B.12)

which is now a convolution product that can be treated numerically without difficulty.

B.2.2 Simplification of fourth-order terms at resonance

In addition to the bare fourth order contribution Σ
(4)
2σ obtained in Eq. (B.12), we

have to consider the fourth order terms generated by Σ
(2)
2σ when we put the dressed D̃σ

propagator. Recalling Eq. (B.4)

Σ
(2)
2σ (ω:k) = −iΓ − t2σ̄

∑

k1

D̃σ(ωk1:k)f(εk1) + t2σ
∑

k1

D̃∗
σ̄(−ωk1:k)f(εk1), (B.13)
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where we expand the dressed propagator

D̃σ(ω) =
1

u1σ(ω)u2σ(ω) + Ξσ(ω)
=

1

u1σ(ω)u2σ(ω)
− Ξ(2)

σ (ω)
1

u2
1σ(ω)u2

2σ(ω)
+ O(t4).

(B.14)

where Ξ
(2)
σ (ω) corresponds to the second order terms inside Ξσ(ω):

Ξ(2)
σ (ω) = −t2σ̄

∑

k

[
f(εk)

ω:k − ∆σ
+

f(εk)

ωk: − 2εd − U

]
. + O(t4) (B.15)

Introducing Eqs. (B.14) and (B.15) inside Eq. (B.13) gives the following fourth order
contribution at resonance w:k = ∆σ

−t4σ̄
∑

k1

D2
σ(εk1 + ∆σ)f(εk1)

∑

k2

f(εk2)

εk1 − εk2 + iδ

−t4σ̄
∑

k1

D2
σ(εk1 + ∆σ)f(εk1)

∑

k2

f(εk2)

εk1 − εk2 − 2εσ̄ − U + iδ

+t4σ
∑

k1

D∗2
σ̄ (−εk1 − ∆σ)f(εk1)

∑

k2

f(εk2)

−εk1 + εk2 + iδ

+t4σ
∑

k1

D∗2
σ̄ (−εk1 − ∆σ)f(εk1)

∑

k2

f(εk2)

−εk1 + εk2 − 2εσ − U + iδ
. (B.16)

Interestingly, the contributions from the poles of the D functions inside Eq. (B.12)
cancel out with contributions of Eq. (B.16). Summing the imaginary part of all the
contributions for spin-independent tunneling, we get, after some long but straightfor-
ward calculations, the fourth order decoherence rate γ

(4)
2σ = −ImΣ

(4)
2σ (∆σ)

γ
(4)
2σ =

∑

α1α2

∑

σ1σ2

Γα1σ1Γα2σ2

π

∫ W

−W

dεkf(εk − µα1) [1 − f(εk − µα2 + εσ1 − εσ2)] D2
σ2

(εk),

(B.17)

where lead indexes α were re-introduced alongside the k numbers. As we can see from
Eq. (B.17), we obtain a finite decoherence rate as soon as either the temperature or
the bias voltage or the magnetic field is finite. Those three effects are discussed in the
thesis.
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Appendix C

Numerical computation

While the derivation of the equations-of motion (EOM) is completely analytical,
their solution for the Green’s function requires solving self-consistently a system of
integral equations (2.48). Using the atomic limit expression (2.18) as a starting point,
each iteration calculates the next order in dot-lead tunneling rate Γ (or more precisely
in exchange coupling νJ given by Eq. (A.25)) for the integral terms. In the weak-
coupling regime, corrections are small and an analytical treatment at lowest-order in
νJ should be satisfactory, as we did in Chap. 5. However when corrections grow larger
a numerical treatment is required.

Fortunately the integrals involve convolution products only, allowing for the use
of Discrete Fourier Transforms (DFT1) that reduce the numerical complexity of the
summation from N2 to N log(N), where N is the number of points used for the dis-
cretization. However the algorithm that enables such a reduction in complexity requires
a linear discretization step that suits poorly to the Kondo physics where one deals with
terms containing logarithmic divergences around the Fermi level. To circumvent this,
a logarithmic discretization is proposed that ’zooms’ on the resonance, allowing for a
smaller number of points.

C.1 Linear energy-scale

C.1.1 Relations after Fourier transform

For simplicity we consider the infinite U Lacroix approximation as its numerical
treatment can directly be extended to more sophisticated schemes. The Green’s func-
tion is obtained from the self-consistent equation

Gσ(ω) =

1 − 〈nσ̄〉 −
∑

α

Γασ̄

π

∫
dεk

1

ωσ̄:kσ + iδ
f(εk)G∗

σ̄(εk)

w − εσ + iΓσ −
∑

α

Γασ̄

π

∫
dεk

1

ωσ̄:kσ + iδ
f(εk) [1 + iΓG∗

σ̄(εk)]
. (C.1)

1Do not confuse with ’Density Functional Theory’.

103
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The Green’s functions couple integrally to each other inside a convolution product.
We define the two functions

Hσ(ω) ≡ f(ω)Gσ(ω), (C.2)

Aσ(ω) ≡
∑

α

Γiσ

π

∫
dw′ 1

w − w′ + iδ
H∗

iσ(w′). (C.3)

The Fourier transform of Hσ(ω) reads

Hσ(ω) =

∫ ∞

−∞

dte−iwtHiσ(t), (C.4a)

Hiσ(t) =
1

2π

∫ ∞

−∞

dweiwtHσ(ω). (C.4b)

The functions Hσ and Aσ are related by Eq. (C.1). The Fourier-transform of Aσ(ω) in
Eq. (C.3) is given by

Aσ(t) = 2π
∑

α

Γiσ

π
H∗

iσ(−t).
[
−ieδtΘ(−t)

]
= −2i

∑

α

ΓiσH
∗
iσ(−t)eδtΘ(−t). (C.5)

Notice that Aσ(t) is zero for t > 0. This is expected as it is related to the advanced
Green’s function G∗

σ̄(εk).

Proof of Eq. (C.5)

We demonstrate the equality (C.5) by taking the Fourier transform of Aσ(t).

Aσ(ω) = −2i
∑

α

Γiσ

∫ ∞

−∞

dte−iwtH∗
iσ(−t)eδtΘ(−t)

= −2i
∑

α

Γiσ

∫ ∞

0

dteiwtH∗
iσ(t)e−δt

= −2i
∑

α

Γiσ

∫ ∞

0

dteiwte−δt

[
1

2π

∫ ∞

−∞

dw′eiw′tHσ(w′)

]∗

= − i

π

∑

α

Γiσ

∫ ∞

−∞

dw′H∗
σ(w′)

∫ ∞

0

dt ei(w−w′)te−δt

= − i

π

∑

α

Γiσ

∫ ∞

−∞

dw′H∗
σ(w′)

[
ei(w−w′)te−δt

i(w − w′) − δ

]∞

0︸ ︷︷ ︸
− 1

i

1
w−w′+iδ

=
∑

α

Γiσ

π

∫ ∞

−∞

dw′H∗
σ(w′)

1

w − w′ + iδ
.

Notice the importance of the finite convergence factor δ when we put e−δt → 0 for
t → ∞; had we put δ = 0, the integral was badly defined. The actual value that has to
be chosen for the numerical computations to converge is given in Sec. C.1.2.



C.1. LINEAR ENERGY-SCALE 105

C.1.2 Linear discretization

On a linear scale, the DFT can be computed by means of a very efficient algorithm
called Fast-Fourier-Transform (FFT) and numerical computations will gain a lot of
efficiency (with an optimum when N = 2n, where n is an integer) allowing for the use
of large numbers of points (typically N = 106). We show how the expression from
the EOM can be mapped on such a scale by discretizing the energy variable ω → ωk

(k = 0, · · · , N − 1) in the Green’s function. We write Hσ[wk] = Hk;σ the sequence of
the discretized values of the analytical function Hσ(ω).

The Discrete Fourier Transform is defined by

Hk;σ =

N−1∑

n=0

Hn;σe
− 2πi

N
kn,

Hn;σ =
1

N

N−1∑

k=0

Hk;σe
2πi

N
kn.

The phase factor is zero for the first term of the sequence, while for the continuous
Fourier Transform this happens at ω = 0. We therefore have to care for the phase factor
by discretizing the integral carefully. We discretize the frequency space symmetrically
around the Fermi level

ω → ωk = −W

(
N − 1

N

)
+

2W

N
k (k = 0, · · · , N − 1); (C.6)

the origin ωk = 0 can be reached only for N odd (for k = (N − 1)/2), to the cost of
a longer computation time. After discretization of the integral, the continuous Fourier
transform becomes

Hσ(t) =
1

2π
lim

W→∞

∫ W

−W

dw eiwt Hσ(ω)

=
1

2π

2W

N

N−1∑

k=0

eiωkt Hσ[ωk] =
W

πN
e−iD N−1

N
t

N−1∑

k=0

ei 2W

N
kt Hk;σ,

where the bandwidth W is of course chosen large but finite. The time t has to be
discretized as well by setting

tn = − π

2W
(N − 1) +

πn

W
(n = 0, · · ·N − 1). (C.7)

We obtain

Hσ[tn] =
W

πN
eiπ

(N−1)2

2N e−iπ N−1
N

n

N−1∑

k=0

ei 2π

N
kn e−iπ N−1

N
k Hk;σ, (C.8)
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and find Aσ[tn] according to Eq. (C.5)

Aσ[tn] = An;σ = −2i
∑

α

ΓασeδtnH∗
σ[−tn]Θ(−tn)

= −2i
W

πN
eiπ

(N−1)2

2N eδ π

2W
(2n−N+1) Θ(N − 1 − 2n) e−iπ N−1

N
n

×
N−1∑

k=0

ei 2π

N
kn e−iπ N−1

N
k
∑

α

ΓασH∗
k;iσ.

We see that An;σ is the result of the DFT of a function proportional to H∗
k;σ multiplied

by a phase factor.
The last step is to transform back in frequency space Ak;σ = Aσ[ωk]. Discretizing

the inverse Fourier transform in a very similar way as previously and introducing the
result for An;σ, we obtain

Ak;σ =

∫ ∞

−∞

dte−iωktAσ(t)

≈ π

W

N−1∑

n=0

e−i π

2N
(−N+1+2k)(−N+1+2n)An;σ

=
π

W
e−iπ

(N−1)2

2N eiπ N−1
N

k

N−1∑

n=0

eiπ N−1
N

ne−i 2π

N
knAn;σ

= −2ieiπ N−1
N

k

{
N−1∑

n=0

e−i 2π

N
kn
[
eδ π

2W
(2n−N+1) Θ(N − 1 − 2n)

1

N

N−1∑

k′=0

ei 2π

N
k′n

(
e−iπ N−1

N
k′
∑

α

ΓασH∗
k′;iσ

)]}

We see clearly the sequence of two DFT. Notice that Ak;σ is not the DFT of An;σ

because of the additional phase factors.
A last important issue is the value we choose for δ. As we saw in the continuous

regime, it cannot be strictly zero, otherwise the integral would be badly defined . We
have to cover all the information in our time range, which is the case if

e−δπN/2W << 1 ⇔ δ >>
2W

πN
. (C.9)

Of course, if we want to describe the Kondo physics, we also need our energy resolution
to be smaller than TK . This has to be achieved playing on N, to the price of an
increasing computation time.

The non-zero value of δ has an influence on the low-energy results which are therefore
sensitive to a purely numerical issue. However, within our approximation scheme at
fourth-order in t, the pole in Eq. (C.3) gets smeared by the decoherence rate γ2σ that is



C.2. LOGARITHMIC ENERGY-SCALE 107

non-zero as soon as either the temperature or the bias voltage or the magnetic field is
non-zero, and δ is then replaced by a quantity that has a physical origin. It is therefore
possible to obtain results independent on numerical issues as soon as γ2σ >> 2W/πN ,
which sets the application range of the linear discretization for the EOM (or, reversing
the problem, allows to take smaller number of points when γ2σ is large).

C.2 Logarithmic energy-scale

As the Kondo effect exhibits a narrow resonance at low energy, it makes sense to
have a discretization which is finer in regions where the density of states has strong
variations.

C.2.1 Logarithmic discretization for a single resonance

At equilibrium V = 0, we only have to zoom on the central peak that shows a
logarithmic divergence around ω = 0 (the non-zero magnetic field is discussed later on).
In order to optimize the number of points needed to compute the Green’s function, it
is relevant to use a logarithmic scale for ω. This can be defined by

ωn =





ωmin an−N/2−1 for n ≥ N
2

+ 1

−ωmin aN/2−n for n ≤ N
2

, (C.10)

where ωmin and a are 2 parameters, and N is the number of points which is much
smaller than for the linear scale as the numerical complexity now turned to N2 (typi-
cally N = 103).

How to choose ωmin and a? First there is a boundary condition that fixes the
bandwidth W :

W = ωmin aN/2−1. (C.11)

The other condition is more loose and has to be chosen in order to make a compromise
between having ωmin very small in order to describe the Kondo peak very accurately,
and having a the closest to 1 in order to keep the precision on the high-energy physics
(we remind that there are two high-energy peaks around εd and εd + U). Notice that
the relative difference between to successive points depends only on a:

dω

ω
=

∣∣∣∣
ωn − ωn−1

ωn

∣∣∣∣ = 1 − 1

a
,

Hence, we decide to choose dω/ω = 0.1, corresponding to a = 1/0.9 = 1.111. This
gives a ratio wmin/D ≈ 10−23 for N = 103, which is much better than the linear scale
for which wmin/D ≈ 10−6.
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C.2.2 Discretization in the presence of 2 resonances

In a two-leads setup put out of equilibrium, the reservoirs carry two different chem-
ical potentials µL and µR and as a consequence two resonances show up in the density
of states, hence the need for a discretization that zooms on two different points ω = µα.
Let us consider the case of 2 resonances at p1 and p2; the discretization is then

ωn =





−ωmin aN1−n + p1 for n ≤ N1

ωmin an−N1−1 + p1 for N1 + 1 ≤ n ≤ N1 + N2

−ωmin aN1+2N2−n + p2 for N1 + N2 + 1 ≤ n ≤ N1 + 2N2

ωmin an−N1−2N2−1 + p2 for N1 + 2N2 + 1 ≤ n ≤ 2N1 + 2N2

, (C.12)

to which the intermediate points at p1, (p1 + p2)/2 and p2 should be added.
The parameters ωmin, a, N1, N2 have to be determined. We have the following

constraints2:

1. Total number condition
N1 + N2 = N/2, (C.13)

where N is the total number of points.

2. Boundary limit at high energy

W = min
(∣∣−ωmin aN1−1 + p1

∣∣ , ωmin aN1−1 + p2

)
, (C.14)

which leads to

ωmin aN1−1 = W − min (−p1, p2) = W + max (p1,−p2) . (C.15)

Indeed the boundary is different on the left and on the right if p1 + p2 6= 0 (for
instance in case of an asymmetric bias voltage).

3. Boundary limit at the middle of the peaks (p1 + p2)/2

ωmin aN2−1 + p1 ≤
p1 + p2

2
⇒ ωmin aN2−1 ≤ p2 − p1

2
, (C.16)

where N2 is the largest integer satisfying the inequality. Notice that that if these
conditions imply (p2 − p1)/2 < wamin, we turn back to the single-peak case.

There is still one free parameter that can be set by choosing a = 1/0.9 as in the previous
section. The relative precision at the peaks is at worst of the order of wmin/D ≤
10−23/2 ≈ 3.10−12, which is still much better than with the linear scale.

2The constraints are written for p1 ≤ 0 and p2 ≥ 0.
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C.2.3 The magnetic field issue

The logarithmic discretization is much more tricky in the presence of a magnetic
field as it splits the Kondo resonance in the density of states. As the integrals involve
a product f(εk)Gσ(εk), where the Fermi function is insensitive to the magnetic field,
the number of peaks that has to be considered increases to two at equilibrium3 (around
0 and ∆σ) or four out of equilibrium4 (around µL/R and µL/R + ∆σ). In the latter
case, the precision of the energy scale at the resonances is of the order of wmin/D ≤
10−23/4 ≈ 10−6, not better than with a linear scale.

Another difficulty comes from the renormalization of the peak position by the mag-
netic field (see Chap. 5) that implies we do not know a priori where to zoom precisely.
For those reasons, the logarithmic discretization is not adapted to the magnetic field
case. A more sophisticated method involving a dynamic discretization that depends on
the frequency-derivative of the density of states might overcome these problems. How-
ever, let us remind the results from Chap. 5 showing that a finite magnetic field induces
a decoherence rate that smears the resonance in the density of states; as a consequence
a linear scale is often satisfactory enough for most cases.

3In addition, the position of the peaks depends on the spin of the Green’s function.
4It can reduce to three peaks at some symmetric points.
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Appendix D

French summary (Résumé en français)

Introduction

« Il serait en effet remarquable que la Nature se soit elle-même prémunie con-
tre de nouvelles avancées dans la connaissance en se réfugiant derrière les difficultés
analytiques du problème N corps »

Max Born, 1960

La physique N corps s’intéresse à des systèmes contenant un nombre important
de particules et aux corrélations présentes entre elles. Dans de nombreux cas, les
interactions au niveau microscopique impliquent de fantastiques modifications du com-
portement du système macroscopique. La physique à N corps est par conséquent à
l’origine d’un grand nombre de problèmes théoriques en physique de la matière con-
densée, comme par exemple celui de la supraconductivité, de la condensation de Bose-
Einstein ou des liquides de Luttinger.

Un nouveau champ pour l’étude des corrélations quantiques s’est ouvert dans les
années 80, quand l’amélioration des techniques expérimentales a permis d’isoler des
électrons dans des zones d’une longueur typique de quelques nanomètres (quelques
dizaines d’atomes), appelées boîtes quantiques. Ceci ouvrait la porte à des descriptions
à l’interface entre physique microscopique et physique macroscopique. La nouvelle dis-
cipline, baptisée physique mésoscopique, étudie des objets qui contiennent un nombre
important de particules, mais qui restent néanmoins sensibles aux fluctuations quan-
tiques. Elle présente un grand intérêt dans la perspective d’applications à l’industrie
électronique, qui tend vers une miniaturisation constante de la taille des transistors.

Dans ce travail, j’étudie l’effet Kondo qui résulte de l’interaction d’échange à N
corps d’électrons itinérants avec un état de spin localisé. Il a d’abord été étudié dans
des systèmes macroscopiques suite à la mesure d’un important accroissement de la
résistivité à basse température dans des alliages magnétiques dilués dans les années 30.
L’explication de cette expérience a été donnée par J. Kondo environ 30 ans plus tard [46],
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et réside dans des processus de diffusion cohérents dans lesquels les spins de l’impureté
et de l’électron délocalisé sont échangés, donnant lieu à des contributions logarithmiques
divergentes pour la résisitivité, et fournissant par là une explication satisfaisante aux
résultats expérimentaux cités ci-dessus. Pour un moment magnétique de spin 1/2, A.H.
Wilson a démontré que l’impureté localisée et les électrons de conduction délocalisés
sont liés dans un état fondamental singulet de spin [105].

L’intérêt pour l’effet de Kondo a connu un grand renouveau ces dix dernières années
après son observation dans des boîtes quantiques couplées par effet tunnel à des réser-
voirs bidimensionnels d’électrons de conduction [32, 20, 94]. Quand la boîte quantique
contient un nombre impair d’électrons, elle porte un spin qui interagit avec les électrons
de la conduction d’une façon fort similaire à celle décrite dans les alliages magnétiques.

A basse température, les processus de spin-flip à N corps impliqués dans l’effet
de Kondo permettent aux électrons de conduction de passer librement d’un réservoir à
l’autre. Par conséquent, le système est complètement transparent à la température nulle
et la conductance linéaire atteint le quantum de conductance 2e2/h (c.à.d. la valeur
maximale pour un seul canal de conductance). Grâce à l’excellent contrôle de leurs
paramètres (niveaux discrets d’énergie, énergie de charge, couplage boîte-réservoir), les
boîtes quantiques ont ouvert de nouveaux horizons pour l’étude de l’effet de Kondo,
soulevant des questions et ouvrant de nouvelles voies à la recherche.

Au niveau théorique, l’effet de Kondo dans les boîtes quantiques est souvent décrit
à l’aide d’un modèle mis au point par P.W. Anderson [7] , dans lequel le moment mag-
nétique résulte d’une répulsion de Coulomb localisée sur la boîte. Quand les potentiels
chimiques des réservoirs sont égaux, le système est à l’équilibre et la plupart de ses
propriétés sont à présent bien comprises, le modèle d’Anderson ayant été résolu grâce à
une série de techniques perfectionnées. Cependant, la plupart de ces dernières échouent
hors d’équilibre, d’où le grand intérêt pour des méthodes susceptibles de résoudre le
problème de l’effet de Kondo dans ce cas, et d’une manière plus générale pour l’étude
des effets de non-équilibre dans des systèmes d’électrons fortement corrélés.

Une caractéristique importante de l’effet Kondo hors d’équilibre est la décohérence
de l’état fondamental singulet de spin associé à l’effet de Kondo, qui évolue vers un état
stationnaire en présence de courant électrique. Dans ce cadre-là, la description théorique
de l’effet de Kondo est beaucoup plus complexe, et aucun résultat exact n’a été obtenu
jusqu’à présent, ce qui laisse la porte ouverte à des recherches supplémentaires. Dans
cette thèse, le système est placé hors d’équilibre par l’application d’une différence de
potentiel entre les deux réservoirs connectant la boîte. Une méthode des équations du
mouvement hors d’équilibre est développée pour discuter certains aspects théoriques
de la décohérence et ses conséquences sur le comportement physique du système. Je
discute également d’autres sources de décohérence pour les processus de retournement
spin, telles que la température et le champ magnétique.
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D.1 Aspects généraux de l’effect Kondo et du trans-

port électronique à travers les boîtes quantiques

Nous étudions des systèmes composés d’une boîte quantique connectée à deux réser-
voirs d’électrons de conductions, et modélisée par l’Hamiltonien d’Anderson [7]

H = Hdot + Hleads + Htun, (D.1)

où Hdot décrit la boîte, Hleads les réservoirs, et Htun le passage entre les deux par effet
tunnel.

La boîte isolée est décrite par

Hdot =
∑

iσ

εiσn̂iσ +
U

2

∑

iσ

∑

i′σ′ 6=iσ

n̂iσn̂i′σ′ , (D.2)

avec n̂iσ = f †
iσfiσ, où fiσ est l’opérateur d’anihilation d’un électron de spin σ sur le

niveau d’énergie i dans la boîte. L’énergie de charge 2e2/C pour l’ajout d’un électron
est modélisée par une répulsion Coulombienne U .

Les réservoirs sont modélisés par

Hleads =
∑

αkσ

εkn̂αkσ, (D.3)

où n̂αkσ = c†αkσcαkσ and c†αkσ(cαkσ) est l’opérateur de création (annihilation) d’un élec-
tron de nombre d’onde k et de spin σ dans les réservoir α(= L, R). La distribu-
tion des électrons dans les réservoirs est donnée par la distribution de Fermi-Dirac
fα(εk) = f(εk − µα), où µα est le potentiel chimique du réservoir α.

Enfin, nous avons le terme de couplage

Htun =
∑

αkiσ

(
tαiσc†αkσfiσ + H.c.

)
. (D.4)

Comme je l’ai indiqué dans l’introduction, l’effet Kondo peut être observé dans les
boîtes quantiques lorsque celles-ci contiennent un nombre impair d’électrons et portent
par conséquence un spin non nul qui interagit avec les électrons de conduction dans
les réservoirs. Il en résulte une augmentation brutale de la conductance à basse tem-
pérature, atteignant la limite unitaire G = 2e2/h à température nulle. La principale
signature expérimentale de l’effet Kondo est liée au caractère universel du comportement
des observables en fonction des paramètres extérieurs lorsque ceux-ci sont normalisés
par une échelle d’énergie appelée température Kondo TK .

D.2 Formalisme des équations du mouvement

Afin de déterminer les propriétés de transport à travers le système, nous désirons
obtenir la fonction de Green dans la boîte. Pour ce faire, nous dérivons une méthode des
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équations du mouvement (EOM) qui décrit une hiérarchie infinie d’équations décrivant
les fonctions de Green du système. Pour une fonction de Green comprenant deux
opérateurs fermioniques Â et B̂ dans l’espace des fréquences

〈〈Â, B̂〉〉 = −i lim
δ→0+

∫ ∞

0

dτ ei(ω+iδ)τ 〈{Â(τ), B̂(0)}〉, (D.5)

nous avons les EOM suivantes

ω〈〈Â, B̂〉〉 = 〈{Â, B̂}〉 + 〈〈[Â,H], B̂〉〉. (D.6)

La hiérarchie infinie d’équations doit être tronquée à l’aide d’un schéma de découplage
adéquat. Dans cette thèse, nous présentons une méthode de troncation à l’ordre 4 en
t, permettant la description de phénomènes au-delà des approximations précédentes,
comme nous le décrivons dans les chapitres suivants.

D.3 Propriétés du modèle d’Anderson à l’équilibre

Il existe une littérature abondante sur le modèle d’Anderson à l’équilibre, ce qui
permet une vérification de la validité de notre schéma d’approximations. Nous discutons
l’amélioration amenée par notre approche en comparaison avec les découplages à l’ordre
inférieur, notamment en ce qui concerne la description de l’effet Kondo au point de
symétrie particule-trou. En effet, la très utilisée approximation de Lacroix (ordre 2 en
t) se révèle incapable de décrire l’effet Kondo à ce point en raison de la présence d’une
anti-résonance non physique dans la densité d’états en ω = 2εd + U .

Nous décrivons également la conductance différentielle. Dans le régime Kondo (un
seul électron dans la boîte), nous voyons que la conductance augmente brusquement
lorsque l’on décroît la température et que l’on atteint T = TK . Nous observons un
comportement inverse dans les autres régions en raison du blocage de Coulomb.

Enfin, nous montrons que la résonance à basse énergie dans la densité d’états dans
la boîte est atténuée lorsque l’on augmente la température. Ceci est lié au taux de
décohérence γ2σ des états excités liés à l’effet Kondo, dont l’expression est ici

γ
(4)
2σ (T ) = T

∑

σ′σ′′

Γσ′Γσ′′

π
D2

σ′′(0) = T
Γ2U2

πε2
d (εd + U)2 = (νJ)2 πT, (D.7)

où nous définissons la constante de couplage d’échange νJ = ΓU/πεd(εd + U).

D.4 Transport hors d’équilibre

Ce chapitre est dédié au transport hors d’équilibre à travers la boîte quantique en
l’absence de champ magnétique. De nombreux challenges subsistent dans ce cas en
raison de désaccords persistant entre théorie et expériences.
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Nous discutons la division de la résonance de Kondo dans la densité d’états à
l’intérieur de la boîte en présence d’une différence de potentiel et l’atténuation des
pics correspondants par les taux de relaxation des excitations. Cette atténuation est
reliée au taux de décohérence γ2σ des états excités liés à l’effet Kondo par la différence
de potentiel, dont l’expression est

γ2σ(V ) =
ΓLΓR

π
D2

σ(0)V + O(t6) = π
ΓLΓR

Γ2
(νJ)2V + O(J3V ). (D.8)

De l’atténuation des termes divergents, on dérive un critère pour le passage du
régime de couplage fort à celui de couplage faible, où les corrections perturbatives sont
suffisamment faibles pour être resommées, et nous en déduisons l’applicabilité de la
méthode des équations du mouvement hors d’équilibre. Le régime de couplage faible
est atteint lorsque le taux de décohérence γ2σ est supérieur à une échelle d’énergie T ∗

définie par

T ∗ =






√
eT 2

K − V 2/4 : |V | <
√

2e TK

eT 2
K/V : |V | >

√
2e TK

(D.9)

Enfin, nous donnons les résultats numériques pour la conductance différentielle,
qui développe une structure piquée à faible différence de potentiel, en accord avec les
résultats expérimentaux et d’autres théories. La conductance différentielle présente un
comportement universel en fonction de la différence de potentiel normalisée V/TK .

D.5 Transport sous champ magnétique

Ce Chapitre est dédié à l’influence d’un champ magnétique sur le transport hors
d’équilibre à travers une boîte quantique. A partir des EOM, nous dérivons une formule
analytique pour la conductance différentielle, dont l’expression est

dI

dV
≈ 2e2

h

π2

16
(νJ)2

[
5 +

2

π
arctan

(
V − ∆∗

γ2

)](
1 +

νJ

2
ln

(
∆∗2

(V − ∆∗)2 + γ2
2

))
+ cst,

(D.10)

où

∆∗ = ∆ +
Γ

2π

{
ln

∣∣∣∣
εd + ∆/2

εd − ∆/2

∣∣∣∣− ln

∣∣∣∣
εd − ∆/2 + U

εd + ∆/2 + U

∣∣∣∣
}

+ O(Γ2/U)

= (1 − νJ/2) ∆ + O(J2), (D.11)

et

γ2σ|(V =∆) =
15π

32
(νJ)2

[
∆ +

26

3

πνK

Γ
∆2 + O(∆3)

]
+ O(J3). (D.12)
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Le pic à différence de potentiel nulle dans la conductance différentielle est divisé par une
énergie proche du double de l’énergie Zeeman, comme observé expérimentalement. La
conductance différentielle est sensible à la décohérence γ2 de l’état fondamental singulet
de spin, ce qui a des conséquences sur la distance entre les pics. Une explication est
proposée pour le passage d’un régime où cette distance est inférieure au double de
la division de Zeeman à un autre régime où elle y est supérieure, comme cela a été
observé expérimentalement. Enfin, nous proposons un montage expérimental capable
de détecter une contribution additionnelle possible au taux de décohérence et ainsi
vérifier nos hypothèses.

Conclusion

La compréhension des phénomènes hors d’équilibre dans les systèmes fortement
corrélés pose des défis fondamentaux en physique théorique, soutenus par une intense
activité expérimentale. J’ai tenté de relever ces défis au cours de ma thèse en vue
de dévoiler certains des mystères dans ce nouveau champ d’étude. Sans ce document,
j’ai essayé de coucher sur le papier les différentes idées qui me sont venues après de
nombreux essais et erreurs et des discussions fructueuses avec mes collaborateurs. J’ai
cherché ici à structurer ces idées de façon à les rendre accessibles à quiconque désireux
de lire cette thèse avec attention.

L’intérêt pour l’effet Kondo, comme c’est le cas pour beaucoup d’autres effets à
N corps en physique de la matière condensée, réside dans sa nature intrinsèquement
quantique et de ses fortes conséquences à basse énergie sur la dépendance de toute
observable en les paramètres extérieurs. L’effet Kondo est très intéressant pour l’étude
des corrélations entre les particules dans des systèmes fortement corrélés, et il appelle
à des méthodes théoriques sophistiquées allant au-delà des approximations de champ
moyen. L’un de ces outils mathématiques est la technique des équations du mouve-
ment, développée peu après l’explication de Kondo de la résistivité minimale à basse
température dans des alliages magnétiques dilués. Elle a été beaucoup appliquée à
l’équilibre à l’aide d’une série de schémas d’approximation, résumés au chapitre 2, mais
peu d’extensions hors d’équilibre ont été proposées et aucune d’entre elles n’a su donner
d’explication à la décohérence induite par une différence de potentiel. Les expériences
nouvelles sur les boîtes quantiques hors d’équilibre et le manque de théorie précise pour
les décrire ont appelé des approximations plus élaborées. Un nouveau schéma de décou-
plage a été motivé au chapitre 2, qui se construit sur l’approximation de Lacroix tout
en re-sommant des termes d’ordre plus élevé qui sont pertinents pour notre objectif.

A l’équilibre, j’ai montré que la nouvelle méthode que nous avons développée résout
d’importantes faiblesses de l’approximation de Lacroix et élargit l’éventail d’applicabilité
à toute série de paramètres, en particulier au point de symétrie particule-trou. Une com-
paraison avec les schémas d’approximation d’ordre inférieur a été donnée pour la densité
des états dans la boîte et pour la conductance linéaire. Tandis que les caractéristiques
de l’effet Kondo commencent à apparaître pour les troncations au second ordre dans le
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coefficient t, les résultats sont plus stables à l’intérieur de l’extension au quatrième ordre
développée dans ce travail en re-sommant les termes liés aux processus de diffusion avec
spin-flip. La conductance linéaire atteint la limite unitaire G = 2e2/h à température
nulle dans le régime de Kondo (par exemple quand le nombre total d’occupation(s) dans
la boîte est d’un), tandis qu’elle tombe sous zéro dans des régions d’occupation paire
en raison du blocage de Coulomb. Nous avons vu que la température détruit l’effet de
Kondo, et produit dès lors une chute de la conductance dans la région d’occupation
unique.

De façon plus importante, le schémas de découplage précédents considéraient que
les excitations impliquées dans le processus de diffusion avec retournement du spin
avaient une durée de vie limitée. Ceci est vrai pour une diffusion cohérente du spin-
flip, mais nous savons que cet énoncé s’avère faux hors d’équilibre ou sous un champ
magnétique. Dans ce dernier cas, les excitations acquièrent un taux de relaxation qui
reflète la décohérence de l’état fondamental Kondo. Le nouveau schéma de découplage
a permis l’investigation de problèmes hors d’équilibre, un taux de décohérence ayant
été trouvé dans le cadre EOM. On a montré que ce taux de décohérence joue un rôle
crucial dans l’applicabilité des équations du mouvement hors d’équilibre en amenant
le système d’un régime de couplage fort, où les corrections perturbatrices sont impor-
tantes et les re-sommations mal contrôlées, à un régime de couplage faible, où les séries
sont convergentes. Nous avons vu montré que ce dernier régime pouvait également être
atteint par une augmentation de la température ou du champ magnétique. Expérimen-
talement, la quantité principale est la conductance différentielle, qui s’avère être une
fonction universelle de la différence de potentiel normalisée V/TK . Enfin, nous avons
montré que notre méthode s’applique à une vaste gamme de paramètres en représen-
tant la conductance dans une figure 3D en fonction de la différence de potentiel et du
potentiel de grille.

L’influence du champ mangétique a également été étudiée. Une formule analytique
a été dérivée pour la conductance différentielle à température nulle ; son expression est
similaire à celle obtenue par la théorie des perturbations, si ce n’est que notre expression
contient également l’effet de décohérence par la différence de potentiel. La conductance
différentielle présente une structure avec deux pics séparés d’une distance de l’ordre
de 2∆, où ∆ représente l’énergie de Zeeman. La valeur précise de l’écart entre les pics
s’avère dépendre du taux de décohérence γ2σ et être en accord avec l’expérience. Finale-
ment, nous proposons un nouveau schéma expérimental pour vérifier nos hypothèses.
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