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Résumé

Ce travail porte sur l’étude des transferts thermiques à une interface entre un milieu poreux et un
milieu libre en utilisant une approche multi-échelles. L’utilisation d’une approche multi-échelles per-
met de passer d’une description fine du milieu poreux et de l’interface à une échelle de description
macroscopique. A l’échelle macroscopique, le domaine est constitué d’une région poreuse homogène
et d’une région libre séparée par une interface de discontinuité. L’enjeu d’une telle description réside
dans la détermination des conditions de saut à imposer à l’interface. Quelle est la forme des conditions
de saut à imposer? Les grandeurs physiques sont-elles continues ou discontinues? Quelle est la valeur
des paramètres de saut associés à ces conditions de saut? Ces paramètres de saut sont-ils des grandeurs
intrinsèques? Afin d’aborder ces questions, nous avons choisi d’utiliser une méthodologie basée sur
l’utilisation de trois niveaux de description de l’interface et deux étapes de changement d’échelle.

Le premier changement d’échelle correspond au passage de la description microscopique à la description
mésoscopique grâce à l’opérateur de prise de moyenne volumique. A l’échelle mésoscopique, l’interface
est diffuse et le domaine est séparé en trois parties: une région poreuse homogène, une zone de transition
et une région libre. L’objectif de ce changement d’échelle est de caractériser les transferts thermiques
grâce à un modèle dont les coefficients effectifs sont constants dans les régions homogènes et varient de
façon continue dans la zone de transition.

Le second changement d’échelle correspond au passage de la description mésoscopique à la descrip-
tion macroscopique. L’enjeu de cette étape est de remplacer la description continue de l’interface par
des conditions de sauts équivalentes. Pour cela, deux méthodes sont utilisées: l’analyse générique et la
méthode des développements asymptotiques raccordés.
L’analyse générique est une méthode basée sur la conservation de l’énergie entre les échelles méso-
scopiques et macroscopique. Elle permet d’obtenir des conditions de saut sous forme de valeur en excès
de grandeur physiques. Cependant ces valeurs en excès impliquent des grandeurs mésoscopiques qui ne
sont pas connues à l’échelle macroscopique.
La méthode des développements asymptotiques raccordés est un outil mathématique utilisé pour résoudre
les équations différentielles partielles dont les coefficients varient en fonction d’un petit paramètre ε.
Appliquée à une interface libre-poreux, cette méthode donne des solutions approchées à différent ordres
des équations mésoscopiques en fonction de ε, où ε correspond à la longueur de la zone interfaciale
sur la longueur du domaine. Les solutions d’ordre 0 correspondent à la résolution du modèle macro-
scopique avec des conditions limites de continuité à l’interface libre-poreux. Ces solutions ne capturent
pas l’ensemble des transferts thermiques et dépendent de la position de l’interface. Il faut donc augmenter
l’ordre de la résolution. Pour les solutions d’ordre 1, des conditions de sauts à l’interface libre-poreux
apparaissent. Ces conditions de sauts impliquent des grandeurs macroscopiques d’ordre 0 et des valeur
en excès de coefficients effectifs. Sous cette forme, les conditions de saut sont fermées et les solutions
ainsi obtenues ne dépendent pas de la position de l’interface. La pertinence de cette méthode est illustrée
sur des exemples d’application.
Nous notons cependant que l’évaluation de ces solutions nécessite une résolution en deux temps. Dans
un premier temps, le modèle macroscopique d’ordre 0 doit être calculé pour déterminer les grandeurs
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Résumé

d’ordre 0 présentes dans les relations de saut d’ordre 1, puis le modèle macroscopique d’ordre 1 peut
être calculé.

Pour s’affranchir de la résolution en deux temps, nous étudions la notion d’interface apparente. Cette
notion consiste à déterminer la position de l’interface où les conditions de continuité sont suffisantes
pour fermer le problème à l’échelle macroscopique et obtenir les champs souhaités dans les milieux ho-
mogènes. Plusieurs questions se posent: est-elle unique? Dépend-elle uniquement de grandeurs intrin-
sèques de l’interface? Si la réponse à ces questions est positive, la connaissance de l’interface apparente
permet de simplifier considérablement la résolution du modèle macroscopique. Dans ce cas, la déter-
mination des solutions d’ordre 1 en deux temps peut être évitée. Seule la détermination des coefficients
effectifs et une unique résolution sont nécessaires. On montrera que les solutions d’ordre 1 obtenues
grâce à cette approche multi-échelles permettent d’étudier analytiquement la notion d’interface appar-
ente.

Dans ce mémoire, nous allons appliquer cette approche multi-échelles et discuter l’existence de l’interface
apparente pour les problèmes de transferts de chaleur (i) à l’équilibre thermique local et (ii) dans le cas du
déséquilibre thermique local pour un écoulement normal a l’interface libre-poreux, et enfin (ii) pour un
écoulement turbulent tangent à l’interface libre-poreux. Afin de modéliser les transferts dans la zone de
transition lire-poreux, nous avons du développer une méthode alternative. Pour cela nous nous sommes
appuyer sur les méthodes classiques des milieux poreux homogènes.

Le chapitre 2 présente les connaissances théoriques de la modélisation des transferts thermiques dans
un milieu poreux homogène. Trois méthodes sont exposées.
La méthode heuristique, basée sur des modèles empiriques et dont les coefficients effectifs sont déter-
minés à partir d’expériences. La méthode de prise de moyenne volumique, qui dérive un système
d’équations à l’échelle macroscopique via un filtre spatial. Ce processus fait apparaître des termes carac-
téristiques de l’échelle locale qui doivent être fermés. Des analyses d’ordre de grandeurs et la résolution
de problème de fermeture permettent de déterminer ces termes. La dernière méthode est la méthode
mixte. Elle dérive la forme ouverte des équations macroscopique en utilisant l’opérateur de prise de
moyenne, mais postule la forme fermée des équations sans la prouver formellement comme pour la
méthode de prise de moyenne volumique.
A l’équilibre thermique, les trois approches convergent vers un modèle à une température identique. Dans
le chapitre 3, nous étendons la méthode mixte pour caractériser les transferts thermiques à l’interface
libre-poreux.
Dans le cas du déséquilibre thermique, les méthodes présentent des différences que nous discutons.
Par ailleurs aucune de ces méthodes ne peut être directement utilisée pour caractériser les transferts à
l’interface libre-poreux. Pour pallier à ce manque, nous proposons une méthode alternative basée sur les
méthodes déjà existantes. Une fois validée pour un milieu poreux homogène, cette méthode à l’avantage
de pouvoir être facilement étendue à l’étude des transferts dans une zone interfaciale. Elle sera utilisée
dans les chapitres 4 et 6.

Le chapitre 3 étudie les transferts à l’équilibre thermique local pour un écoulement normal a l’interface
libre-poreux. Cette étude permet de présenter l’approche multi-échelles de façon didactique. Le premier
changement d’échelle abouti a une équation continue de la température. La détermination du tenseur
de conductivité thermique effectif dans l’ensemble du domaine incluant la zone de transition permet de
fermer le problème à l’échelle mésoscopique. Le second changement d’échelle donne les conditions de
saut à imposer à l’interface libre-poreux pour la température et le flux de chaleur total. En s’appuyant
sur les résultats obtenus par la méthode des développements asymptotiques raccordés nous montrons de
façon analytique que l’interface apparente existe et qu’elle est facilement localisable une fois le profil du
tenseur de conductivité thermique effectif connu dans la zone de transition.
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Le chapitre 4 étudie les transferts dans le cas du déséquilibre thermique local pour un écoulement normal
a l’interface libre-poreux. Cette étude est plus complexe que la précédente du fait du nombre de coef-
ficients effectifs impliqués dans le modèle à deux températures. Une fois le problème fermé à l’échelle
mésoscopique grâce à la détermination des coefficients effectifs, le second changement d’échelle est
étudié. A cette étape, une nouvelle difficulté apparaît: coupler le modèle à deux températures dans le mi-
lieu poreux homogène avec un modèle à une température dans la région libre. Ce problème est résolu en
introduisant une écriture équivalente pour rétablir le même nombre d’équations dans chaque région ho-
mogène. De cette façon, l’analyse générique et la méthode des développements asymptotiques raccordés
peuvent être utilisées. Ainsi nous obtenons des conditions de saut sur la température et le flux de chaleur
total pour la phase fluide et une condition de saut sur le flux total pour la phase solide. Comme pour le
cas de l’équilibre thermique local, nous déterminons de façon analytique la relation donnant la position
de l’interface apparente. Cette relation fait intervenir les gradients des flux transverses des phases fluide
et solide, et la source solide volumique. Si un des ces phénomène est dominant devant les autres, la
position de l’interface apparente peut être déterminée a priori. Dans le cas contraire l’interface apparente
n’est pas intrinsèque et la résolution du problème macroscopique à l’ordre 1 est nécessaire.

Le chapitre 5 étudie les transferts thermiques pour un écoulement turbulent tangent à l’interface. La
physique des transferts thermiques turbulents pour une telle configuration est très complexe et n’a encore
jamais été étudiée. Pour pallier à ce manque d’information, une simulation numérique directe des trans-
ferts est réalisée. A partir de la géometrie utilisée par Breugem and Boersma (2005) pour les écoulements
turbulents au dessus d’un milieu poreux, nous calculons le champ de température pour trois conditions
aux limites différentes. Les résultats obtenus pour le champ vitesse sont comparés à ceux de Breugem
afin de valider la DNS pour le transfert des moments. Pour les transferts thermiques, seule la couche
limite thermique à la paroi solide supérieure est comparée aux résultats existant dans la litérature. Les
champs obtenus permettent de comprendre plus clairement l’impact de l’interface libre-poreux sur les
transferts thermiques. Pour le nombre de Péclet étudié, nous montrons que la diffusivité turbulente et
la diffusivité moléculaire sont toutes les deux présentes dans la région libre, tandis que dans le milieu
poreux, la diffusivité turbulente disparaît au profit de la diffusivité moléculaire. De plus cette DNS
donne les informations nécessaires à la modélisation de la turbulence (viscosité turbulente, énergie ciné-
tique turbulente, taux de dissipation et diffusivité thermique turbulente...).

Le chapitre 6 étudie la modélisation des transferts thermiques pour un écoulement turbulent tangent
à l’interface. L’objectif de ce chapitre est de coupler un modèle macroscopique de type k-ǫ avec un mod-
èle de Prandtl turbulent dans le milieu poreux homogène avec un modèle standard k-ǫ avec un modèle
Prandtl turbulent standard dans la région libre. Pour le transfert des moments, Chandesris and Jamet
(2009b) déterminent une position de l’interface où les conditions limites de continuité sont suffisantes
pour capturer correctement les profils des différentes grandeurs physiques (vitesse, énergie cinétique tur-
bulente et taux de dissipation). Pour le transfer thermique, une équation de la conservation de l’énergie
avec un modèle de Prandtl turbulent moyenné est dérivée à l’échelle mésoscopique avec l’opérateur de
prise de moyenne volumique. Puis l’analyse générique est appliquée donnant la forme des conditions de
saut. A partir de la connaissance acquise lors des études laminaires, nous sommes capable de faire les
simplifications appropriées afin de fermer les conditions de saut pour le transfert thermique. Après cette
étape, la difficulté principale de cette étude réside dans la modélisation du transfert thermique turbulent.
En effet, le modèle de Prandtl turbulent moyenné ne permet pas de capturer les bons transferts ther-
miques dans le milieu poreux. Nous proposons donc un autre modèle de turbulence capable de retrouver
le profil de diffusivité thermique turbulent et les bons flux de chaleur en comparaison avec les résultats
de référence donné par la DNS.
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Chapter 1

Introduction

The issue of this study is to propose physical models to characterize heat transfer problems at an
interface between a porous medium and a free medium. Such problems are encountered in many indus-
trial applications, and especially in the nuclear industry, for which an important application is related
to thermal-hydraulic characteristics of the nuclear vessel. In this context, the transfers considered are
turbulent and the physics involved are very complex. It involves porous modeling, turbulent transfers,
turbulence modeling and free-porous interface problematic. However these physical phenomena can be
studied in fundamental configurations, for which analytical developments are possible. This introduction
presents the issues related to these subjects.

1.1 Modeling of turbulent transfers in porous media

The use of numerical simulations in fluid mechanics has increased during the last thirty years. Today,
numerical simulation is used as a tool to study transfers in many industrial domains such as aeronautics,
nuclear industry, car industry etc.

The constant increase of the computing power makes possible the direct numerical simulation (DNS) of
physical problems increasingly complex. In a DNS, the Navier-Stokes and energy equations are solved
directly without any modeling. Furthermore it gives access to instantaneous local quantities of the over-
all transfers. Thus, a DNS corresponds to a numerical experiment allowing a better understanding of the
physical phenomena involved in the transfer. Even though the available computing power is significant,
the use of DNS is limited by the mesh size and the computation time required to study complex problems.
The study of turbulent transfers or transfers in porous media are particularly concerned by this limitation.

The numerical simulation of turbulent flows requires a cubic mesh with a cell number proportional to
Reynolds numbers of Re9/4, while the computing capacity and the computation time limit the meshes
to [108-109] cells. This is why DNS is not used to study industrial configurations with high Reynolds
numbers (Re ≈ 106). To reduce the computation cost, turbulence models are developed allowing the
simulation of turbulent transfers for higher Reynolds numbers.
The Reynolds Averaged Navier-Stokes (RANS) approach is based on a statistical average of the equa-
tions. This process creates turbulent correlation terms that are modeled as a function of averaged charac-
teristics of the transfers. The closure models reduce the number of degrees of freedom, and therefore the
computation cost. However, the ability to reproduce the transfers depends on the closure models used
that depend themselves on the studied configurations. Thus, this approach often suffers from a lack of
universality.
Another approach is the Large Edddy Simulation (LES), which is an intermediate between the DNS
and the RANS approach. The turbulent structures of the transfers, whose size is larger than a cut-off
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scale are explicitly computed as for a DNS. The impact of the smallest structures on the larger scales are
modeled with sub-filter models. The asset of this approach relies on the generality of the sub-filter mod-
eling. Furthermore, as for a DNS, this approach captures the unsteady characteristics of the transfers.
Nevertheless, the computation cost associated is important and limits its use to industrial applications to
moderate Reynolds numbers (Re ≈ 104 − 105).

In the context of porous media, the direct numerical simulation of the transfers relies on the fine meshing
of the porous matrix to compute precisely the transfers at the local scale, also called the microscopic

scale. However a porous medium is often composed by a very large number of solid grains, whose
size is small compared to the size of the system studied. The description of such geometries requires
an important amount of mesh cells that limits the use of the DNS. To overcome this difficulty, the fine
representation of the fluid and solid phases of the porous medium is substituted by an equivalent contin-
uous description at the system scale called the macroscopic scale. This description can be reached using
different formalisms. The issue is to derive a description at the macroscopic scale from the governing
equations at the microscopic scale. Different up-scaling formalisms exist in the literature.
The probabilistic approaches (Renard and de Marsily, 1997; Matheron, 1967) are often used to study
natural porous media. For such problems, the porous medium is very irregular and can be considered as
random. Thus, the quantities at the local scale are random variables and the up-scaling step to reach the
macroscopic description is realized using expected values.
The homogenization approach (Sanchez-Palencia, 1974; Allaire, 1989; Mikelic, 2000) is based on the
introduction of independent length variables: a quick variable ψ∗ and a slow variable ψ̃∗ = ψ∗/ǫ, where
ǫ is supposed to be very small. The quantities are decomposed following an asymptotic expansion in ǫ.
Then, the separation by orders of magnitude as a function of ǫ leads to different problems. This approach
is mathematically accurate and gives information on the shape and regularity of the solutions, but does
not take an interest in the evaluation of the macroscopic properties of the porous medium.
The volume averaging approach (Whitaker, 1967) consists in integrating the local governing equations
on a representative elementary volume (REV) to derive a system of equations at the macroscopic scale.
It combines a phase indicator function to discriminate the fluid and solid phases and a volume averaging
operator to smooth spatially. Thus, the fluid and the solid phases are substituted by an equivalent con-
tinuous medium and the equations of each phase are valid in the whole domain. The process of spatial
smoothing creates at the macroscopic scale unclosed terms involving local quantities. These terms must
be closed and the determination of closure models constitutes the main difficulty of this approach. This
volume averaging approach is used with success for a large range of transfers and gives informations
on the effective properties of the porous medium at the macroscopic scale. Furthermore, this approach
is able to combine the turbulence modeling and the porous description by the application of successive
averaging (Antohe and Lage, 1997; Nakayama and Kuwahara, 1999; Getachew et al., 2000; de Lemos
and Pedras, 2001b,a; Chandesris and Jamet, 2009b; Pinson et al., 2007; Drouin et al., 2010).

In a nuclear reactor, the geometry of the core is very complex and involves many solid structures as
presented in Fig 1.1. The reactor core contains a fuel zone where the assemblies are located. For a pres-
surized water reactor (PWR), the fuel zone is made of about 150 assemblies made of 389 rods. Thus, the
complexity of the geometry and the number of mesh cells required for a fine description prevents the use
of DNS in the entire fuel zone. To perform the computation of the transfers in such a domain, modeling
is required that combine the porous and turbulent models.
Thus, the fuel zone is described with less details using a porous modeling approach. The fine structure is
substituted by an equivalent continuous medium with effective properties at the macroscopic scale. Since
the fuel zone is composed of a large amount of identical elements, the equivalent continuous medium is
homogeneous.
Introducing the turbulent problematic in the homogeneous porous medium, the issue is to get information
on the characteristics of the turbulent transfers at the macroscopic scale. The modeling of turbulence in
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a porous medium relies on the choice of two methods: one to model the turbulence and another to
model the porous medium, both having to be compatible. A first approach is to introduce in LES-type
modeling additional terms related to the friction created by the solid structures in the porous medium
(Shaw and Schumann, 1992; Finnigan, 2000; Watanabe, 2004). However this approach is not relevant
for a homogeneous porous medium for which the size of the pore is larger than the size of the turbulent
structures. The second approach consists in combining the RANS modeling with the volume averaging
method (Antohe and Lage, 1997; Nakayama and Kuwahara, 1999; Getachew et al., 2000; de Lemos and
Pedras, 2001b,a). In the context of transfers in a nuclear core, this approach is more relevant and has been
validated in different studies (Chandesris and Jamet, 2009b; Pinson et al., 2007; Drouin et al., 2010).

Solide
Fluide 

Combustible

Motif élémentaire Assemblage Coeur

Nuclear fuel

AssembleesBasic pattern Core

Solid
Fluid

Core scales

upper plenum, lower plenum, fuel zone

Three descriptions :

Fuel zone : core

Figure 1.1: Description of a nuclear reactor vessel.

1.2 Modeling of transfers at a free-porous interface

The configuration where a porous medium succeeds to a free region is encountered in many indus-
trial applications. Especially in the reactor vessel, that can be divided in three successive main zones as
presented in Fig 1.1: a free medium (the lower plenum), a porous medium (the fuel zone) and another
free medium (the upper plenum). The description of such geometries at the macroscopic scale using
the porous formalism is relevant. At this scale of description, the domain is characterized by a macro-
scopic model in the homogeneous porous medium and standard models in the free regions connected
by boundary conditions at the free-porous interfaces. The main modeling issue relies on the definition
of appropriate boundary conditions at the free-porous interfaces. This issue has been the topic of many
studies for momentum and heat transfers.

Momentum transfers
The transfers at a free-porous interface is studied first on the experiment of Beavers and Joseph (1967).
In this experiment, Beavers and Joseph (1967) study a laminar flow over a porous medium. To model
this problem, they consider the system as a porous medium and a free region separated by a surface of
discontinuity. The models used in each region, Darcy in the porous region and Stokes in the free region,
are coupled at the free-porous interface through a semi-empirical slip-condition:

∂u

∂y
=

α√
K

(uB − UD) (1.1)
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where uB is the fluid velocity at the interface, UD is the velocity in the porous medium far from the
interface, K is the permeability of the porous medium, α is a slip parameter and y is the direction nor-
mal to the interface. This heuristic approach gives information on the impact of the porous medium on
the flow in the free channel through the slip parameter α. However, this parameter is not related to the
macroscopic properties of the medium and the determination of its value requires many experiments.
With this modeling, another question arises: the dependency of the slip coefficient with the interface
location (Larson and Higdon, 1986, 1987; Saffman, 1971; Sahraoui and Kaviany, 1992).
The relation between the interfacial physical phenomena and the slip parameter α is made explicit de-
riving the boundary conditions with up-scaling methods based on the momentum balance. Using such
an approach to couple the Darcy-Brinkman model in the porous region and the Stokes model in the free
region, Ochoa-Tapia and Whitaker (1995a,b) show that the shear stress discontinuity at the interface arise
from an excess quantity. In order to close this excess quantity, they postulate a jump condition involving
a jump parameter β for a given interface:

∂ 〈u〉
∂y

|y+m − 1

φp
∂ 〈u〉
∂y

|y−m = − β√
K

〈u〉 |ym (1.2)

where φp is the porosity in the homogeneous porous medium, and 〈u〉 is the volume averaged veloc-
ity. Nevertheless, as for Beavers and Joseph (1967), the parameter β is not related to the macroscopic
properties of the medium and depends on the interface location. Following the same idea Goyeau et al.
(2003) succeed to relate the parameter β with continuous spatial variations of the porous structure within
the transition zone. However β is also related to the variations of the velocity, which is an unknown of
the problem.
To study this issue, Chandesris and Jamet (2006, 2007, 2009c,b,a) introduce an intermediate continu-
ous scale of description, called mesoscopic scale (Fig 1.2). At this scale of description, the interface is
continuous and the issue is to model the physical transfers specific of the interfacial region through a
continuous modeling. Once the transfer characterisation is achieved, the continuous modeling obtained
is replaced by an equivalent discontinuous model with jump conditions at the macroscopic scale. This
approach, applied in the context of momentum transfer, allows to derive a closed jump condition. The
jump condition involves closed excess values easily computable knowing the porosity and permeability
profiles in the transition zone.

∂ 〈u〉
∂y

|y+m − 1

φp
∂ 〈u〉
∂y

|y−m =

((
φ

K

)ex
− (φ)ex γ

)
〈u〉(0) (1.3)

where γ is a constant determined from the Darcy number and the porosity in the homogeneous porous
medium. These excess quantities are linear functions of the interface location, and thus, the dependency
between the jump parameter and the interface location is clarified.

Heat transfer
For heat transfer, successive works have brought valuable information to understand the issue of bound-
ary conditions at a free-porous interface. First tests were performed using the application of boundary
conditions at the nominal interface (defined by the position of the last solid grain (Beavers and Joseph,
1967)). Regarding conductive heat transfer, conditions of continuity for both the temperature and the
heat flux can give good results (Prat, 1990). However, for more complex phenomena including con-
vective transfer, these boundary conditions are inappropriate and may be corrected with a temperature
jump involving a slip coefficient (Sahraoui and Kaviany, 1994) similar to the velocity jump introduced
by Beavers and Joseph (1967). Thus, these studies show that it is possible to capture the interfacial heat
transfer with semi-empirical boundary conditions, but the relation between the interfacial physical phe-
nomena and the slip coefficient is not made explicit.
To study this issue, Ochoa-Tapia and Whitaker (1997) perform the up-scaling method developed for mo-
mentum transfer on the energy equations and derive a jump condition for the heat flux involving excess
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Figure 1.2: The three different scales of description of a free-porous interface.

values:

−npl
[
Kp · ∇ 〈T 〉p − kl∇〈T 〉l

]
=

(
(〈ρ〉 cp)

∂ 〈T 〉
∂t

)ex
+(∇ · [(〈ρ〉 cp) 〈u〉 〈T 〉 − K · ∇ 〈T 〉])ex (1.4)

where npl is the unit vector normal to the interface from the porous region to the free region, 〈T 〉 the
volume-averaged temperature, K the effective conductivity vector and the indices p and l stand for the
porous and free regions respectively. These excess values are not closed due to the presence of averaged
quantities unknown in the interfacial transition zone. Furthermore, the closure of the excess values by
postulating a jump condition is inadequate because the jump parameter depends on the interface location.
The use of an intermediate continuous scale of description, as proposed by Chandesris and Jamet (2006,
2007, 2009c) for momentum transfer allows to separate these two difficulties and will be used in the
present work.

The main objective of this work is to study the heat transfers at the interface between a porous medium
and a free region using the multi-scale approach presented by Chandesris and Jamet (2006, 2007, 2009c)
for momentum transfer (see Fig 1.2).
At the microscopic scale, each solid grain is described and the interface is located considering the ge-
ometry of the solid matrix. For this scale of description, transfers are characterized by the Navier-Stokes
equations for the momentum and energy conservation equation for the heat transfer. The first up-scaling
step changes the scale of description from microscopic to mesoscopic using the volume averaging oper-
ator.
At the mesoscopic scale, the solid and fluid phases are substituted by an equivalent medium in the
porous region and the interface is diffuse. Thus, the domain is composed of three regions: a homoge-
neous porous region where the effective properties are constant, a transition zone where the effective
properties vary continuously and a free region with constant properties. The issue is to characterize the
transfers by equations valid in the whole domain including the transition zone with continuous effective
coefficients. To proceed a modeling step must be achieved for which questions arise:

• the form of the closed mesoscopic equations: How to model the non-closed terms characteristic of
the porous description-type? Are the usual models available in the literature valid in the transition
zone?
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• the determination of the effective coefficients: How to determine the effective coefficients in the
transition zone?

For the laminar momentum transfer, these questions are easily answered. Indeed, only one non-closed
term exists that is modeled through a permeability coefficient known in the transition zone. For the heat
transfer, there are four non-closed terms (tortuosity for the fluid phase, tortuosity for the solid phase, heat
transfer coupling and dispersion) that require complex modelings involving numerous effective transfer
coefficients.
The second up-scaling step changes the scale of description from mesoscopic to macroscopic using
conservation principles.
At the macroscopic scale, the interface is modeled by a surface of discontinuity that separates the
domain in two homogeneous regions, a porous and a free one. The issue is to replace the continuous
modeling of the interface by equivalent closed jump conditions. Considering this issue, questions arise:

• the form of the boundary conditions that must apply at the interface: Are the physical quantities
continuous or discontinuous at the free-porous interface?

• the value of the jump parameters related to these jump conditions: Are these jump parameters
intrinsic quantities? How to determine them?

• the location of the surface of discontinuity.

The conservation constraints allow to derive the jump conditions from the difference between the macro-
scopic and mesoscopic descriptions (see 1.3). It results a surface excess quantity defined for a mesoscopic
quantity ψ such that:

(ψ)(ex) =

∫

H
(ψ − ψm)dH (1.5)

where ψm is the macroscopic description of ψ. Among the existing conservation methods, the matched
asymptotic expansions establishes the relationship between the jump condition and the interface location
through the surface excess quantity of effective properties.

Transition zone

ψ
Interface

ψm
ψex

Figure 1.3: Surface excess definition

In this manuscript, we will use this multi scale approach for heat transfer problems (i) at local thermal
equilibrium, (ii) at local thermal non-equilibrium and (ii) for a turbulent flow in partially porous domain.

1.3 Contents

This manuscript is organized as follows.
In Chapter 2, we review different macroscopic models existing in the literature to describe heat transfer
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in a homogeneous porous medium at local thermal equilibrium and at local thermal non-equilibrium.
Three methods to derive such models are presented:

• the heuristic method based on empirical modeling and the determination of the effective transfer
coefficients using experiments;

• the volume averaging method based on homogenization methods and for which the effective trans-
fer coefficients are determined using the length scale separation;

• the mixed method combining the volume averaging formalism with the empirical modelings and
determining the effective transfer coefficients with numerical experiments.

In the context of the transfer modeling in a free-porous transition zone, these methods cannot be used
directly. Thus, we develop another approach that is validated in a homogeneous porous medium through
comparison with results given by the heuristic, volume averaging and mixed methods.

In Chapters 3 and 4, we study heat transfer in a system composed of a fluid-porous interface at local ther-
mal equilibrium (LTE) and at local thermal non-equilibrium (LTNE). We apply the multi-scale approach
based on three levels of description of the interface and two up-scaling steps presented by Chandesris and
Jamet (2006, 2007, 2009c) for momentum transfer. The first up-scaling step gives a continuous modeling
of the transfers in the whole domain including the interfacial transition zone using the models presented
in Chapter 2. The second up-scaling step leads to the determination of the jump conditions that must be
applied at the discontinuous interface between the homogeneous porous medium and the free medium at
the macroscopic scale. Then, the closed macroscopic model obtained with this multi-scale approach is
discussed to determine a preferred interface location.
Chapter 3 considers transfers at local thermal equilibrium and gives a clear understanding of the multi-
scale approach and the discussion about the interface location.
Chapter 4 deals with transfers at local thermal non-equilibrium. In this case, a new issue appears: the
coupling of a two-temperature model in the homogeneous porous region with a one-temperature model
in the free region. To overcome this difficulty, related to the different number of equations in each do-
main, we introduce of a new writing. Thus, the whole multi-scale approach can be performed and the
interface location discussed.

In Chapters 5 and 6, we study turbulent heat transfer in a fluid-porous domain. The issue is to bring
a better understanding of the physics at the free-porous interface and to characterize the turbulent trans-
fers through accurate models.
Chapter 5 presents a direct numerical simulation (DNS) of turbulent heat transfer realized on the con-
figuration chosen in (Breugem and Boersma, 2005; Breugem et al., 2005) to study turbulent flow at a
fluid-porous interface. The DNS solves directly the Navier-Stokes equations and the energy conserva-
tion equation without requiring any closure model. Thus it is considered as a numerical experiment and
gives access to local quantities of the heat transfer. The results (temperature fields, rms temperature fluc-
tuations, heat flux, cross-correlation) of the DNS offer a first theoretical basis on the turbulent statistic
of heat transfer at a free-porous interface. Furthermore, it gives access to valuable information about the
turbulence modeling in a partially porous domain (turbulent viscosity, turbulent kinetic energy, dissipa-
tion rate, turbulent diffusivity)
Chapter 6 introduces the macroscopic RANS modeling in the homogeneous porous medium and the
common RANS modeling in the free region. The issue is to determine the jump conditions that must be
applied at the free-porous interface to couple the two turbulent models. The multi-scale approach, used
in Chapters 3 and 4, is applied to the local k-ǫ with turbulent Prandtl model. Each up-scaling step is ac-
companied by a turbulence modeling for the momentum and heat transfers. At last, a closed macroscopic
model is obtained for a unique interface location and its validity is verified by comparing the results with
the DNS ones.
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Chapter 2

Heat transfer modeling in homogeneous
porous media

2.1 Porous medium modeling

2.1.1 Context

A porous medium is a heterogeneous system made of a solid matrix with its voids filled with fluids.
Such a structure has the characteristic to possess various length scales of observation. In this study, we
distinguish the two main length scales:

• the microscopic scale or pore scale where each solid grain is described individually, the associated
lengthscale is the pore diameter lc;

• the macroscopic scale corresponding to the lengthscale lM of the observed phenomena.

At the macroscopic scale, the porous medium is represented by an equivalent homogeneous medium.
The homogeneous medium is characterized by effective properties standing for the overall effects of the
physical phenomena occurring at the pore scale. Different methods exist to obtain the description of
the porous medium at the macroscopic scale. However, we present here only the methods used in the
remainder of the manuscript to study heat transfer at a free-porous interface.

As with any technological problem, the treatment of fluid flow and heat transfer starts from direct em-
pirical relations where the macroscopic laws are postulated and the medium properties are determined
experimentally. Such a method is called heuristic and has the advantage of being generally intuitive.

In 1967, Whitaker introduces a method based on homogenization principles to change the scale of de-
scription of a porous medium from microscopic to macroscopic (Whitaker, 1967, 1969). This method
is named the volume averaging method and can be decomposed into three steps. First the governing
equations at the local scale of a given quantity, ψα, are integrated on a volume of averaging to derive
the governing equations at the macroscopic scale. The averaged quantity is noted 〈ψα〉. This spatial
smoothing process makes appear non-closed terms in the averaged equations that involve a spatial devia-
tion term, noted ψ̃α. This term is characteristic of the microscopic scale, and thus, the averaged equations
are not closed. The second step closes the open terms with a closure relation for the spatial deviation
term ψ̃α. The closure relation expresses the spatial deviation ψ̃α as a function of macroscopic averaged
quantities and closure coefficients. These closure variables are characteristic of the microscale and can be
related to the effective transfer coefficients. In the third step one determines the closure variables through
the resolution of closure problems using the length scale separation between the spatial deviation term,
the representative volume of averaging and the averaged term. Following the three steps of the volume
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averaging method, the problem at the macroscopic scale is entirely closed and characterized. The ad-
vantage of this method is to derive the macroscopic model from the microscopic governing equations. It
relies on the strong hypothesis of the length scale separation. However, in the context of the heat transfer
study at a free-porous interface, this method cannot be directly used to characterize the transfers because
the length scale separation is not verified at the interface.

In 1996, another approach is introduced in (Kuwahara et al., 1996; Kuwahara and Nakayama, 1999;
Kuwahara et al., 2001) that we call the mixed method. This method uses the formalism and the first step
of the volume averaging method to derive the non-closed macroscopic equations from the microscopic
equations. However, the closed form of the governing macroscopic equations are postulated and not
formally proved as in the volume averaging method. The expressions for the effective coefficients are
determined analytically by identifying the terms in the postulated closed equations and the non-closed
terms. Thanks to this identification, the effective coefficients are then computed with temperature and
velocity fields solutions of numerical simulations. In this context, the numerical simulations correspond
to experimentations with as many measuring points as mesh cells. The limits of this method are the pos-
tulation of the closed equations. Indeed, the postulated two-temperature model does not involve enough
physical phenomena, that leads to incoherent results for the effective transfer coefficients, as we will see
in Section 2.3.4. The advantage of this method is that it gives access to the determination of the effective
transfer coefficients without consideration of length scale separation. Thus, this method of determination
can be used in the transition zone where the length scale separation is not valid.

The present work proposes an alternative approach that improves the mixed method in the case of heat
transfer at local thermal non-equilibrium (see Fig. 2.1). This alternative method uses the advantage of
the mixed and volume averaging methods. First, the closed and the non-closed macroscopic models are
derived from the microscopic governing equations with the first and second steps of the volume averag-
ing method. Then, the determination of the effective coefficients is achieved by identification between
the closed and the non-closed models following the mixed method. For homogeneous porous medium,
this alternative method does not present any advantage because the volume averaging method gives more
accurate results. The great interest is at the free-porous interface, where the volume averaging method
cannot be used. On the contrary, the alternative method is easily applicable assuming the validity of the
closed macroscopic model in this region. This alternative method is used in Chapter 4 to characterize
heat transfer at a free-porous interface. The issue of this chapter is to verify this method for homogeneous
porous media for which the corresponding results are numerous. We notice, that the approach cannot be
discriminated at the free-porous interface

In the following, we present the macroscopic modelings obtained by the three different methods to char-
acterize the heat transfer in a homogeneous porous medium at local thermal equilibrium (LTE) and at
non-local thermal equilibrium (LTNE) (see Fig. 2.1). In the last section, the alternative method is pre-
sented and validated in a homogeneous porous medium comparing with the results given by the volume
averaging method (Quintard et al., 1997). Furthermore, this chapter presents the closed macroscopic
equations that will be used in Chapters 3 and 4 to study heat transfer at the free-porous interface.

2.1.2 The volume averaging formalism

In this section, we present the first step of the volume averaging method changing the scale of de-
scription from microscopic to macroscopic. From the governing equations at the local scale, the averaged
equations are rigorously derived. These continuous equations characterize all the physical phenomena
existing in the porous system, but are not closed.
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CHAPTER 2 : Heat transfer modeling in homogeneous porous media

where χα is the indicator function of the phase α, mp is a weighting function, x is the centroid of the
averaging volume related to the relative position vector by (see Fig. 2.2):

y = r − x (2.2)

y

x

fluid phase

solid phase

lc

averaging
volume V

−nfs

Afs

r

r0

Figure 2.2: Illustration of the volume averaging technique for an ordered porous medium.

The intrinsic volume average is related to the superficial volume average 〈φα〉α by the relation:

〈ψα〉α (x) =
〈ψα〉 (x)

φα(x)
(2.3)

where φα is the volume fraction of the α phase within the averaging volume (φα = Vα(x)/V ). For
conciseness, the following formalisms is introduced:

〈ψα〉 (x) =
1

V

∫

V
ψα(r) dV (2.4)

〈ψα〉α (x) =
1

Vα

∫

V α
ψα(r) dV (2.5)

and for the volume averaging on the Aαβ interface (separating phases α and β) this formalism corre-
sponds to:

1

V

∫

Aαβ

ψα(r)dA =

∫
Aαβ

mp(r − x)χα(r)ψα(r)dA
∫
V mp(r)dV

(2.6)

In addition, the field ψα can be splited into an averaged value and a spatial deviation term as follows
(Gray and Lee, 1977):

ψα = 〈ψα〉α + ψ̃α (2.7)

The volume averaging operator verifies two properties:

• the linearity, due to the linearity of the summation on a closed volume;

• the idempotence
〈
ψ̃α

〉α
≈ 0, when the length scales separation between the microscopic and the

macroscopic scale is verified. This property is valid in a homogeneous porous medium, but not at
the free-porous interface inside the transition zone.
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2.1 Porous medium modeling

In particular the length scale separation in a periodic porous medium imposes the following condition
for the filter size r0:

lc ≈ r0 << LM

where lc and LM are respectively the length scales of the microscopic and the macroscopic variations.

Theorem and classical developments
The averaged equations involve gradients and to express the terms 〈∇ψα〉 as functions of the macroscopic
variable 〈ψα〉, the differentiation and integration operators must be interchanged. This can be done with
the spatial averaging theorem (Whitaker, 1999):

〈∇ψα〉 (x) = ∇〈ψα〉 (x) +
1

V

∫

Aαβ

ψα(r) nαβdA (2.8)

where nαβ is the unit normal vector directed from the phase α to the phase β.
Introducing the spatial deviation term ψ̃α, the intrinsic average 〈ψα〉α (see equations (2.7) and (2.3)) and
the following relation for the porosity gradient,

∇φα(x) = − 1

V

∫

Aαβ

nαβdA (2.9)

the theorem (2.8) is rewritten:

〈∇ψα〉 (x) = φα∇〈ψα〉α (x) +
1

V

∫

Aαβ

(
〈ψα〉α (r) − 〈ψα〉α (x) + ψ̃α(r)

)
nαβdA (2.10)

Based on the theorem (2.10), two classical relations are derived.

〈∇ · ∇ψα〉 (x) = ∇ · 〈∇ψα〉 (x) +
1

V

∫

Aαβ

(
∇〈ψα〉α (r) + ∇ψ̃α(r)

)
· nαβ dA (2.11)

〈∇ · vfψα〉 (x) = ∇ · 〈vfψα〉 (x) +
1

V

∫

Aαβ

nαβ · vf (r) ψα(r) dA

︸ ︷︷ ︸
=0

(2.12)

because the velocity is zero at the fluid-solid interfaces: vf = 0 on Aαβ .

Derivation of the volume averaged conductive-convective equations
We consider a laminar flow through a rigid homogeneous porous medium where the fluid and solid
properties (density, viscosity, heat capacity) are assumed constant. For stationary cases, the governing
equations at the microscopic scale are given, in the fluid phase by, the Navier-Stokes equations and the
convective-conductive equation, and, in the solid phase, by the conductive equation:

∇ · vf = 0 (2.13)

(vf · ∇)vf = −1

ρ
∇p+ ν∇2vf (2.14)

(ρcp)f∇ · (vfTf ) = ∇ · (kf∇Tf ) , for the fluid phase (2.15)

0 = ∇ · (ks∇Ts) , for the solid phase (2.16)

associated to the continuity conditions and the no-slip condition at the fluid-solid interfaces Afs:

Tf = Ts (2.17)

nfs · (kf∇Tf ) = nfs · (ks∇Ts) (2.18)

vf = 0 (2.19)
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CHAPTER 2 : Heat transfer modeling in homogeneous porous media

where the subscripts f and s stand for the fluid and solid phases respectively.

The up-scaling process is obtained applying the volume average to the local temperature equations (2.15),
(2.16).
The convective term is rewritten introducing a dispersive flux τTv:

〈(ρcp)f∇ · (vfTf )〉 = (ρcp)f∇ ·
(
〈vf 〉 〈Tf 〉f

)
+ (ρcp)f∇ · τTv (2.20)

where τTv = 〈vfTf 〉 − 〈vf 〉 〈Tf 〉f (2.21)

Using equation (2.11) to express the conductive term of equation (2.15), one obtains:

〈∇ · (kf∇Tf )〉 = ∇ · 〈kf∇Tf 〉 +
kf
V

∫

Afs

nfs ·
(
∇〈Tf 〉f (r) + ∇T̃f (r)

)
dA (2.22)

Then, applying the relation (2.10), this term can be rewritten as:

〈∇ · (kf∇Tf )〉 = ∇ ·
(
kfφf∇〈Tf 〉f

)
+ ∇ ·

(
kf
V

∫

Afs

T̃f (r) nfsdA

)
+

∇ ·
(
kf
V

∫

Afs

(
〈Tf 〉f (r) − 〈Tf 〉f (x)

)
nfsdA

)
+

kf
V

∫

Afs

nfs ·
(
∇〈Tf 〉f (r) + ∇T̃f (r)

)
dA (2.23)

The same process is applied to the conductive term of the solid phase, which gives:

〈∇ · (ks∇Ts)〉 = ∇ · ksφs∇〈Ts〉s + ∇ · ks
V

∫

Asf

T̃s(r) nsfdA+

∇ · ks
V

∫

Asf

(〈Ts〉s (r) − 〈Ts〉s (x) ) nsfdA+

ks
V

∫

Asf

nsf ·
(
∇〈Ts〉s (r) + ∇T̃s(r)

)
dA (2.24)

Finally, the governing equations for the heat transfer at the macroscopic scale can be written as:
For the fluid phase

(ρcp)f∇ ·
(
〈vf 〉 〈Tf 〉f

)
= ∇ · kfφf∇〈Tf 〉f︸ ︷︷ ︸

diffusion

+∇ · kf
V

∫

Afs

T̃f (r) nfsdA

︸ ︷︷ ︸
tortuosity

− (ρcp)f∇ · τTv︸ ︷︷ ︸
thermal dispersion

+ ∇ ·
[
kf
V

∫

Afs

(
〈Tf 〉f (r) − 〈Tf 〉f (x)

)
nsfdA

]

︸ ︷︷ ︸
≈0 when lc≈r0<<lM

+

kf
V

∫

Afs

nfs ·
(
∇〈Tf 〉f (r) + ∇T̃f (r)

)
dA

︸ ︷︷ ︸
heat coupling

(2.25)
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2.1 Porous medium modeling

For the solid phase

0 = ∇ · ksφs∇〈Ts〉s︸ ︷︷ ︸
diffusion

+∇ · ks
V

∫

Asf

T̃s(r) nsfdA

︸ ︷︷ ︸
tortuosity

+∇ ·
[
ks
V

∫

Asf

(〈Ts〉s (r) − 〈Ts〉s (x) ) nsfdA

]

︸ ︷︷ ︸
≈0 when lc≈r0<<lM

+
ks
V

∫

Asf

nsf ·
(
∇〈Ts〉s (r) + ∇T̃s(r)

)
dA

︸ ︷︷ ︸
heat coupling

(2.26)

At the macroscopic scale, the governing equations are composed of:

• terms of diffusion for the fluid and solid phases;

• terms of tortuosity traducing the resistance to the fluid diffusion caused by the presence of the solid
phase and inversely;

• a term of dispersion in the fluid phase corresponding to effects of the velocity spatial variations on
the heat transfer;

• terms of coupling between the phases through fluid-solid heat transfer;

• a term that vanishes when the length scale separation is verified, written here to show all the
hypotheses.

These macroscopic governing equations (2.25), (2.26) are not closed because the dispersive flux τTv and
the integral terms involve spatial deviation terms characteristic of the microscopic scale (see equations
(2.21) and (2.25)-(2.26)). To close the macroscopic equations, these terms have to be modeled, i.e ex-
pressed as functions of macroscopic variables only.
As we have just recalled, the first step of the volume averaging method allows to derive the governing
macroscopic equations from the microscopic scale equations. These equations have been obtained with-
out any length scale consideration and present all the physical phenomena existing at the macroscopic
scale. For this reason, there are used in the chapters 3 and 4 to characterize the heat transfer at the porous-
free interface where the length scale separation is not valid. However the topic of this chapter is about
homogeneous porous media, and the validity of the length scale separation allows some simplifications.

Length scale separation and associated simplifications
In a homogeneous porous medium where the length scale separation is valid, the gradient of volume
averaged terms can be considered constant within the representative elementary volume, which leads to,
using the relation (2.9):

1

V

∫

Asf

nsf · ∇ 〈Ts〉s (r)dA ≈ −∇〈Ts〉s (x) · ∇φf = 0 (2.27)

because the porosity is constant in a homogeneous porous medium.

Furthermore, the additional term 1/V
∫
Afs

(
〈Tf 〉f (r) − 〈Tf 〉f (x)

)
nfsdA of equation (2.25) can be

neglected. Using a Taylor expansion in y limited to first order, 〈Tf 〉f (r) is rewritten as

〈Tf 〉f (r) = 〈Tf 〉f (x) + y
∂ 〈Tf 〉f (x)

∂x
+O(y2) (2.28)

where y = r − x (2.29)
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CHAPTER 2 : Heat transfer modeling in homogeneous porous media

Thus, with the same argument as previously, one obtains:

1

V

∫

Afs

(
〈Tf 〉f (r) − 〈Tf 〉f (x)

)
nfsdA ≈ 1

V

∂ 〈Tf 〉f (x)

∂x

∫

Afs

y dA = 0 (2.30)

by definition of the integration of y on the representative elementary volume for a periodic porous
medium.
The dispersive flux τTv, defined by the relation (2.21) can be rewritten using spatial deviations for Tf
and vf such that:

τTv =
〈
(〈vf 〉f + ṽf )(〈Tf 〉f + T̃f )

〉
−
(
φf 〈vf 〉f 〈Tf 〉f

)
(2.31)

Then, under the length scale separation constraint, the linearity and the idempotence of the volume
averaging leads to (see (Carbonell and Whitaker, 1984)):

τTv =
〈

ṽf T̃f
〉

(2.32)

Finally the governing equations for the heat transfer at the macroscopic scale take the following forms:
For the fluid phase

(ρcp)f∇ ·
(
〈vf 〉 〈Tf 〉f

)
= ∇ · kfφf∇〈Tf 〉f︸ ︷︷ ︸

diffusion

+∇ · kf
V

∫

Afs

T̃fnfsdA

︸ ︷︷ ︸
tortuosity

−∇ · (ρcp)f
〈
T̃f ṽf

〉

︸ ︷︷ ︸
thermal dispersion

+

kf
V

∫

Afs

nfs · ∇T̃fdA
︸ ︷︷ ︸

heat coupling

(2.33)

For the solid phase

0 = ∇ · ksφs∇〈Ts〉s︸ ︷︷ ︸
diffusion

+∇ · ks
V

∫

Asf

T̃snsfdA

︸ ︷︷ ︸
tortuosity

+
ks
V

∫

Asf

nsf · ∇T̃sdA
︸ ︷︷ ︸

heat coupling

(2.34)

The averaged equations (2.33) and (2.34) are not closed, because the terms of tortuosity, dispersion and
heat coupling involve spatial deviation terms characteristic of the local scale. In order to close the equa-
tions, these terms have to be modeled.

In this section, we presented the volume averaging formalism and performed the first step of the volume
averaging method. From the governing equations at the microscopic scale, the averaged equations (2.33)
and (2.34) are derived. These equations characterize all the physical phenomena existing for porous
transfers, but they are not closed. The heuristic method, the mixed method and the volume averaging
method suggest different modelings to close the averaged equations (2.33) and (2.34). In the following,
we present the closed averaged equations existing for heat transfer at local thermal equilibrium and local
thermal non-equilibrium.

2.2 One-temperature model

In this section, we study heat transfer at local thermal equilibrium where the temperature difference
between the fluid and solid phases is assumed negligible. For such a heat transfer, the closed macroscopic
model is presented as well as the determination of the associated effective coefficient using the volume
averaging method. This case is very simple and the three approaches agree on the form of the closed
macroscopic model and the values of the effective coefficient.
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2.2 One-temperature model

2.2.1 Closure of the macroscopic equation

At local thermal equilibrium the intrinsic average temperature of the fluid and solid phases are as-
sumed to be equal:

〈Tf 〉f ≈ 〈Ts〉s (2.35)

with at the fluid-solid interface Afs:
T̃f ≈ T̃s (2.36)

Let us recall that inside Vf and Vs, the distribution of deviations T̃f and T̃s differ.
A spatial averaged temperature 〈T 〉 is introduced such that:

〈T 〉 = 〈Tf 〉 + 〈Ts〉 (2.37)

It verifies
〈T 〉 ≈ 〈Tf 〉f ≈ 〈Ts〉s (2.38)

In this context, the macroscopic equations (2.33) and (2.34) are added to give a one-temperature transport
equation:

(ρcp)f∇ ·
(
〈vf 〉 〈T 〉

)
= ∇ · (kfφf + ksφs)∇〈T 〉︸ ︷︷ ︸

diffusion

+∇ ·
[
kf − ks

V

∫

Afs

T̃f (r) nfsdA

]

︸ ︷︷ ︸
tortuosity

−∇ · (ρcp)f
〈
T̃f ṽf

〉

︸ ︷︷ ︸
thermal dispersion

(2.39)

The macroscopic transport equation is not closed because the integral term and the thermal dispersion
term involve quantities characteristic of the local scale: T̃f and ṽf .

The heuristic and the mixed method postulate the form of the closed macroscopic equation from em-
pirical considerations. It allows to close the tortuosity and dispersion terms with a temperature gradient
∇〈T 〉 (Fried and Combarnous, 1971; Kaviany, 1995; Han et al., 1985; Kuwahara et al., 1996; Kuwahara
and Nakayama, 1999). The volume averaging method, performing the second step, gives an identical
form of the closed macroscopic equation (Carbonell and Whitaker, 1984). Following this approach we
detail here the developments.

In order to close the macroscopic equation (2.39), the spatial deviation terms T̃f must be expressed
as functions of the source terms characteristic of the macroscopic scale. For this reason, one looks for
the differential equation and boundary condition of T̃f . They are obtained by subtracting the non-closed
macroscopic equations (2.39) divided by the porosity φf with the local governing equation for the fluid
phase (2.15). Thus:

(ρcp)f∇ ·
(
〈vf 〉f T̃f

)
+ (ρcp)f ṽf · ∇T̃f + (ρcp)f ṽf · ∇ 〈T 〉︸ ︷︷ ︸

source term

= ∇ · kf∇T̃f + ∇ · ks
φs
φf

∇〈T 〉︸ ︷︷ ︸
source term

−∇ · kf − ks
φfV

∫

Afs

T̃f (r) nfsdA+ ∇ · (ρcp)f
〈
T̃f ṽf

〉f
(2.40)

since ∇ · ṽf = 0.
The equation (2.40) makes appear the source term ∇〈T 〉. Thus, one can relate the spatial deviation T̃f
to the macroscopic quantity ∇〈T 〉 such as

T̃f = bf · ∇ 〈T 〉 (2.41)
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where bf is a vector .
Introducing the writing for the fluid fluctuation in the non-closed macroscopic equation (2.39) and con-
sidering the length scale separation, one obtains the following closed one-temperature model:

(ρcp)f∇ ·
(
〈vf 〉f 〈T 〉

)
= ∇ · (K · ∇ 〈T 〉) (2.42)

where K is the total effective thermal conductivity tensor defined by:

K = kfφf + ksφs +
kf − ks

V

∫

Afs

bf nfsdA

︸ ︷︷ ︸
tortuosity tensor

−(ρcp)f 〈bf ṽf 〉︸ ︷︷ ︸
dispersion tensor

(2.43)

For heat transfer at local thermal equilibrium, the closed macroscopic equation is a one-temperature
model (2.42) involving a convective and effective conductive phenomena. The effective conductive phe-

nomenon is characterized by an effective thermal conductivity tensor K at the macroscopic scale. In the

following, we present the determination of K for the three approaches.

2.2.2 Determination of the effective thermal conductivity tensor

The literature associated to the characterization of the effective thermal conductivity tensor is signif-
icant and this paragraph does not draw up a detailed list. For more informations, we suggest Kaviany’s
book (Kaviany, 1995).

For the heuristic approach
The heuristic approach was the first to give information on the tortuosity tensor and on the dispersion
tensor. Despite the lack of formalism, this approach gives the right physics and the correlations con-
necting the effective coefficients with the Peclet number are still relevant. The results for the tortuosity
phenomenon are abounding and we recommend the reader to refer to Kaviany’s literature review (Ka-
viany, 1995). For the dispersion phenomenon, we summarize here the mean observations. Thus, the
dispersion in the flow direction is constant for Peclet numbers Pe < 1, then increases as Pe2 for Peclet
numbers Pe > 1. In the direction normal to the flow, the dispersion is independent of the Peclet number.
These experimental results obtained by Fried and Combarnous (1971) and Han et al. (1985) are usually
used as reference by the mixed and volume averaging methods, that involve numerical tools.

For the mixed approach
Kuwahara et al. (1996) and Kuwahara and Nakayama (1999) present a method to determine the effective
thermal conductivity. In their study (Kuwahara et al., 1996; Kuwahara and Nakayama, 1999), they
distinguish different parts of the effective thermal conductivity such as:

K = keI +Ktor +Kdis (2.44)

where ke is the equivalent conductivity, Ktor the tortuosity tensor and Kdis the dispersion tensor. The
relations for the different effective thermal conductivities are obtained by identification between the non-
closed macroscopic equation (2.39) and the closed one (2.42). It leads to:

ke = kfφf + ksφs (2.45)

Ktor · ∇ 〈T 〉 =
kf − ks

V

∫

Afs

T̃f (r) nfsdA (2.46)

Kdis · ∇ 〈T 〉 = (ρcp)f

〈
T̃f ṽf

〉
(2.47)
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2.2 One-temperature model

To determine the tensors Ktor and Kdis, the fields ṽf , T̃f and ∇〈T 〉 are computed from microscopic
temperature and velocity fields obtained through a numerical simulation. The numerical simulation is
realized on a representative elementary volume with well-posed boundary conditions of periodicity (see
Fig. 2.3) and an imposed macroscopic temperature gradient. On such a physical system, the variation in
the flow direction allows the computation of the longitudinal and tangential components of the tortuosity
and dispersion tensors. The obtained results are in good agreement with the experimental data (Fried and
Combarnous, 1971; Han et al., 1985), which validates their method of identification.

y

x

REV

Figure 2.3: Physical system and its coordinate system.

For the volume averaging approach
In this paragraph, we briefly present the developments used to compute the effective coefficients. The
issue is to present the main assumptions and, to simplify the resolution, we present the simplified case
ks = 0 (Kaviany, 1995).
From the relation (2.43), the determination of the effective thermal coefficient requires the knowledge of
the vector field bf . It is obtained from the equation of the spatial deviation T̃f (2.40) associated to orders
of magnitude considerations. The length scale lc and lM represent the lenght scale of the non-averaged
and averaged terms respectively. The no-slip condition at the fluid-solid interface gives:

〈vf 〉f ≈ ṽf , on Afs (2.48)

The different orders of magnitude of the different terms of the relation (2.40) are presented in Tab. 2.1
Finally, the equation (2.40) reduces to:

(ρcp)f∇ ·
(
〈vf 〉f T̃f

)
+ (ρcp)f ṽf · ∇T̃f + (ρcp)f ṽf · ∇ 〈T 〉 = ∇ · (kf∇T̃f ) (2.49)

Substituting T̃f by its closure relation (2.41), and using the order-of-magnitude consideration due to
constant source term at the scale of the deviation, thus ∇〈T 〉 ≪ ∇bf one obtains:

(ρcp)f∇ ·
(
〈vf 〉f bf

)
+ (ρcp)f ṽf · ∇bf + (ρcp)f ṽf = ∇ · (kf∇bf ) (2.50)

The boundary conditions on the fluid-solid interface give the following condition:

− nfs · ∇bf = nfs (2.51)
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terms of equation (2.40) Order of magnitude neglected/conserved

(ρcp)f∇ · (〈vf 〉f T̃f ) 〈vf 〉f T̃f/lc conserved

(ρcp)f ṽf · ∇T̃f 〈vf 〉f T̃f/lc conserved

(ρcp)f ṽf · ∇ 〈T 〉 〈vf 〉f 〈T 〉 /lM conserved

∇ · kf∇T̃f kf T̃f/l
2
c conserved

∇ · ksφs/φf∇〈T 〉 ksφs/φf 〈T 〉 /l2M neglected

∇ · (kf − ks)/(V φf )
∫
Afs

T̃f (r) nfsdA kf T̃f/l
2
M neglected

∇ · (ρcp)f
〈
T̃f ṽf

〉f
〈vf 〉f T̃f/lM neglected

Table 2.1: Orders of magnitude for the terms composing the equation of the spatial deviation T̃f

Furthermore, to complete the closure problem, one must consider boundary conditions of periodicity of
spatial period r0 for the unit cells:

[bf (x + r0)] = [bf (x)] (2.52)

The computation of the closure function has been done by Koch and Brady (1985, 1987a,b); Koch et al.
(1989), by Quintard and Whitaker (1993), and by Kaviany (1995).

We notice that this method of determination cannot be directly used at the free-porous interface. Indeed
the separation between the length scales is not verified and the simplifications leading to the equation
(2.50) cannot be done. Furthermore, the unit cell is not periodic and the relation (2.52) cannot be applied.
Thus, at the free-porous interface, the closure problem becomes very complex and its resolution requires
additional assumptions. For this reason, we do not use this method of determination to characterize the
heat transfer at the free-porous interface.

In this section, we presented the closed one-temperature model and the associated effective transfer coef-
ficient using the volume averaging method. This method is very rigorous and gives a good understanding
of the origin of the different phenomena existing at the macroscopic scale. The heuristic method and the
mixed method are also presented. The three methods are consistent. They use an identical closure model
for the dispersion and tortuosity terms and obtain similar correlations in Peclet numbers for the effective
conductive tensor.

2.3 Two-temperature models: literature review

In this section, we present, in the case of local thermal non-equilibrium, the closure of the two-
temperature model and the determination of the associated effective coefficients using the three different
approaches. Following the summarizing work done by Kaviany (1995) chapter 7, we present the results
of Wakao and Kaguei (1982) for the heuristic method , the recent results found by Kuwahara et al. (2001)
for the mixed method and we detail the closure of the two-temperature modeling obtained by Quintard
et al. (1997) with the volume averaging method. The positive and negative points of each method are
detailed. Thus, we are able to propose an alternative approach especially adapted to study the interfacial
transition zone. This alternative approach is presented in Section 2.4 and will be used in Chapter 4.
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2.3.1 The heuristic approach

The determination of a closed two-temperature model giving a good understanding of heat transfer
processes in a porous media is complicated. Thus, there are many models proposed in the literature for
the heuristic approach. From all the propositions, we consider here the more complete one, which, at the
steady state, reads as follows (Wakao and Kaguei, 1982):

(ρcp)f∇ ·
(
〈vf 〉 〈Tf 〉f

)
= ∇ ·

(
Kf + Kdis

)
· ∇ 〈Tf 〉f − aV h

(
〈Tf 〉f − 〈Ts〉s

)
(2.53)

0 = ∇ ·
(

Ks · ∇ 〈Ts〉s
)

+ aV h
(
〈Tf 〉f − 〈Ts〉s

)
(2.54)

This two-temperature model is heuristic since the closure relations are not derived from the local govern-
ing equations but are based on experimental observations. In this model, one considers effective thermal
conductivities Kf and Ks, a thermal coupling term between the phases modeled with an effective heat
transfer coefficient aV h where aV is an interfacial area per unit volume, and a dispersion phenomenon
in the fluid phase characterized by the tensor Kdis. If the modeling of the local conductivity at the
macroscopic scale using the phases continua is intuitive, the modelings of the dispersion and the ther-
mal coupling between the phases deserve to be commented. The dispersion is modeled as a conductive
phenomenon with the fluid temperature gradient ∇〈Tf 〉f . The thermal coupling between the phases

is modeled as a heat transfer phenomenon with a temperature difference
(
〈Tf 〉f − 〈Ts〉s

)
. With these

modelings, both phenomena (dispersion and thermal coupling) are modeled through two independant
macroscopic source terms: the temperature gradient and the temperature difference.

The modeling via independent source terms allows the computation of the effective coefficients sepa-
rately. The effective coefficients Kf , Ks and Kdis are measured experimentally at local thermal equilib-
rium. Indeed, if the dispersion is independent of the fluid-solid heat transfer, the results obtained at LTE
are still valid at LTNE.
The effective transfer coefficient aV h is then computed using correlations based on boundary layer theory
according to Wakao and Kaguei (1982):

aV h
(
〈Ts〉s − 〈Tf 〉f

)
= −ks

V

∫

Afs

∇Ts · nfsdA (2.55)

The effective transfer coefficient aV h depends on the Peclet number and, for packed beds, Wakao and
Kaguei (1982) obtain the following correlation:

aV h d
2
p

kf
= 2 + 1.1Re0,6Pe1/3 (2.56)

In the following, the mixed method uses this correlation and improves its precision by using more exper-

imental data. Conversely, the volume averaging method disproves this correlation with arguments that
are presented in the following.

2.3.2 The mixed approach

Kuwahara et al. (2001) study heat transfer at local thermal non-equilibrium. They use the formal-
ism and perform the first step of the volume averaging method to determine the non-closed macroscopic
equations. But instead of pursuing with the second step and use closure relations for the spatial tem-
perature deviations, they postulate the closed macroscopic equations from the heuristic literature. Thus,
Kuwahara et al. (2001) model the phenomena of dispersion and thermal coupling between the phases by
two independent macroscopic source terms. As for the heuristic method, this assumption has an impact
on the determination of the effective transfer coefficients.
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In order to determine the analytical relation of the effective transfer coefficients, Kuwahara et al. (2001)
start from the following non-closed macroscopic equations:

(ρcp)f∇ ·
(
φf 〈vf 〉f 〈Tf 〉f

)
= ∇ · kfφf∇〈Tf 〉f + ∇ · kf

V

∫

Afs

nfsT̃fdA−∇ · (ρcp)f
〈
T̃f ṽf

〉

+
kf
V

∫

Afs

nfs · ∇T̃fdA (2.57)

0 = ∇ · ksφs∇〈Ts〉s −∇ · ks
V

∫

Afs

nfsT̃fdA− kf
V

∫

Afs

nfs · ∇T̃fdA (2.58)

These equations are equivalent to the equations (2.33) and (2.34) using the temperature and heat flux
continuity relations at the fluid-solid interface. Then, the non-closed macroscopic equations (2.57)-(2.58)
are compared with the closed model (2.53)-(2.54). The effective transfer coefficient aV h is identified to
the term existing in equations (2.57) and (2.58) with opposite sign. The determination of the effective
thermal conductivities and the dispersive tensors relies on the assumption that the non-closed terms inside
the divergence of (2.57) and (2.58) vary with ∇〈Tf 〉f for the fluid phase and with ∇〈Ts〉s for the solid
phase. All these considerations lead to the following analytical relations:

Kf · ∇ 〈Tf 〉f = kfφf∇〈Tf 〉f +
kf
V

∫

Afs

nfsT̃fdA (2.59)

Kdis · ∇ 〈Tf 〉f = −(ρcp)f

〈
T̃f ṽf

〉
(2.60)

Ks · ∇ 〈Ts〉s = ksφs∇〈Ts〉s −
ks
V

∫

Afs

nfsT̃fdA (2.61)

aV h
(
〈Tf 〉f − 〈Ts〉s

)
= −kf

V

∫

Afs

nfs · ∇T̃fdA (2.62)

In a second step, each term of the analytical relations (2.59) to (2.62) is computed from the microscopic
temperature and velocity fields obtained by a numerical simulation.

From the choice of the dispersion modeling, Kuwahara et al. (2001) assume that the determination of Kf

and Kdis done at local thermal equilibrium (Kuwahara et al., 1996; Kuwahara and Nakayama, 1999) is
still valid at local thermal non-equilibrium.
The effective transfer coefficient aV h is obtained from a numerical simulation realized on an elementary
volume with isothermal cubes (see Fig. 2.4). The obtained values are in good agreement with the ones
obtained from the experimental data of Wakao and Kaguei (1982).

2.3.3 The volume averaging approach

An alternative to these approaches is to derive the form of the closed model from the non-closed one.
To obtain this closed form, the second step of the volume averaging method must be performed. The
non-closed equations (2.33) and (2.34) involve averaged terms (〈Tf 〉f and 〈Ts〉s) characteristic of the

macroscopic scale and spatial deviations (T̃f and T̃s) characteristic of the microscopic scale. In order
to close the equations (2.33) and (2.34), the spatial deviation terms must be expressed as functions of
averaged quantities. These averaged quantities are given by the equations of T̃f and T̃s. They are at the
origin of the spatial deviations and are called source terms. Thus, closure relations can be postulated that
as relating the spatial deviations to the source terms via closure variables independent of macroscopic
phenomena. Then, the closure variables are brought together to make appear effective coefficients. At
last, one obtains closed macroscopic equations.
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y

x

REV

Figure 2.4: Physical system and its coordinate system.

The equation for the fluid temperature deviation is established subtracting the equation of 〈Tf 〉f (see
(2.33)) divided by the porosity φf :

(ρcp)f∇ ·
(
〈vf 〉f 〈Tf 〉f

)
= ∇ · kf∇〈Tf 〉f︸ ︷︷ ︸

diffusion

+∇ · kf
φfV

∫

Afs

T̃fnfsdA

︸ ︷︷ ︸
tortuosity

−∇ · (ρcp)f
〈
T̃f ṽf

〉f

︸ ︷︷ ︸
thermal dispersion

+
kf
V φf

∫

Afs

nfs · ∇T̃fdA
︸ ︷︷ ︸

fluid/solid heat transfer

(2.63)

and the equation of Tf :
(ρcp)f∇ · (vfTf ) = ∇ · (kf∇Tf ) (2.64)

One obtains:

(ρcp)f∇ ·
(
〈vf 〉f T̃f

)
= ∇ · kf∇T̃f − (ρcp)f ṽf ∇〈Tf 〉f︸ ︷︷ ︸

source

−(ρcp)f∇ ·
(

ṽf T̃f
)

−∇ · kf
φfV

∫

Afs

T̃fnfsdA+ (ρcp)f∇ ·
〈
T̃f ṽf

〉f
+

kf
φfV

∫

Afs

nfs · ∇T̃fdA (2.65)

Proceeding identically for the solid phase and for the conditions at the fluid-solid interfaces Afs, one
obtains:

0 = ∇ · ks∇T̃s −∇ · ks
φsV

∫

Asf

T̃snsfdA+
ks
φsV

∫

Asf

nsf · ∇T̃sdA (2.66)

T̃f − T̃s = 〈Ts〉s − 〈Tf 〉f︸ ︷︷ ︸
source

, on Afs (2.67)

kfnfs · ∇T̃f − ksnfs · ∇T̃s = ksnfs · ∇ 〈Ts〉s︸ ︷︷ ︸
source

−kfnfs · ∇ 〈Tf 〉f︸ ︷︷ ︸
source

, on Afs (2.68)

In the deviation equations (2.65) to (2.68), there are three macroscopic sources terms: ∇〈Tf 〉f , ∇〈Ts〉s

and
(
〈Ts〉s − 〈Tf 〉f

)
. The scale of variation of these macroscopic terms is very large compared to
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the size of the REV. Thus, these source terms can be supposed to remain constant at the scale of the
deviations, which suggests the following closure relations for T̃f and T̃s:

T̃f = bff · ∇ 〈Tf 〉f + bfs · ∇ 〈Ts〉s − sf

(
〈Tf 〉f − 〈Ts〉s

)
(2.69)

T̃s = bss · ∇ 〈Ts〉s + bsf · ∇ 〈Tf 〉f + ss

(
〈Ts〉s − 〈Tf 〉f

)
(2.70)

where for the fluid phase, bff , bfs and sf are the vectors and scalar field mapping ∇〈Tf 〉f , ∇〈Ts〉s and(
〈Tf 〉f − 〈Ts〉s

)
onto T̃f , and respectively for the solid phase.

The closure relations for the pore scale deviation of T̃f is introduced in the terms of tortuosity and
wall heat transfer of the macroscopic equations (2.33), which, combined with the scale separation con-
siderations, gives:

kf
V

∫

Afs

nfsT̃fdA =
kf
V

∫

Afs

bffnfsdA · ∇ 〈Tf 〉f +
kf
V

∫

Afs

bfsnfsdA · ∇ 〈Ts〉s

−
(
〈Tf 〉f − 〈Ts〉s

) kf
V

∫

Afs

sfnfsdA (2.71)

kf
V

∫

Afs

nfs · ∇T̃fdA = uff · ∇ 〈Tf 〉f + ufs · ∇ 〈Ts〉s − avhf

(
〈Tf 〉f − 〈Ts〉s

)
(2.72)

where

avhf =
kf
V

∫

Afs

nfs · ∇sfdA (2.73)

uij =
kf
V

∫

Afs

nij · ∇bijdA (2.74)

are respectively effective heat transfer and transport coefficients.
Similarly, the dispersion term is closed as follows:

〈
T̃f ṽf

〉
= 〈bff ṽf 〉 · ∇ 〈Tf 〉f + 〈bfsṽf 〉 · ∇ 〈Ts〉s − 〈sf ṽf 〉

(
〈Tf 〉f − 〈Ts〉s

)
(2.75)

To lighten the writing for future discussions, we introduce the following notations for the dispersion term
and the tortuosity term:

〈
T̃f ṽf

〉
= −D

f

p · ∇ 〈Tf 〉f −D
s

p · ∇ 〈Ts〉s − Da

(
〈Tf 〉f − 〈Ts〉s

)
(2.76)

kf
V

∫

Afs

nfsT̃fdA = K
ff

tor · ∇ 〈Tf 〉f +K
fs

tor · ∇ 〈Ts〉s + Ka
tor

(
〈Tf 〉f − 〈Ts〉s

)
(2.77)

where

D
f

p = −〈bff ṽf 〉 , D
s

p = −〈bfsṽf 〉 , Da = 〈sf ṽf 〉

K
ff

tor =
kf
V

∫

Afs

bffnfsdA, K
fs

tor =
kf
V

∫

Afs

bfsnfsdA, Ka
tor = −kf

V

∫

Afs

sf

From equations (2.76) and (2.77), one introduces an additional transport coefficient df :

df = (ρcp)fDa + Ka
tor (2.78)
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Then, the other terms can be brought together to make appear the mean effective conductivity tensor and
the coupled tensor

Kff = φfkf I +K
ff

tor + (ρcp)fD
f

p (2.79)

Kfs = K
fs

tor + (ρcp)fD
s

p (2.80)

The effective thermal conductivity tensors are composed of a tortuosity part and a dispersive part.
Proceeding identically with the solid phase, the non-closed equations (2.33) and (2.34) can be rewritten
under the following closed forms:

(ρcp)fφf 〈vf 〉f · ∇ 〈Tf 〉f − uff · ∇ 〈Tf 〉f − ufs · ∇ 〈Ts〉s = ∇ ·
(

Kff∇〈Tf 〉f + Kfs∇〈Ts〉s +

df (〈Tf 〉f − 〈Ts〉s)
)
− aV hf

(
〈Tf 〉f − 〈Ts〉s

)
(2.81)

−usf · ∇ 〈Tf 〉f − uss · ∇ 〈Ts〉s = ∇ ·
(

Ksf∇〈Tf 〉f + Kss∇〈Ts〉s + ds(〈Ts〉s − 〈Tf 〉f )
)

+aV hs

(
〈Ts〉s − 〈Tf 〉f

)
(2.82)

where

uss =
ks
V

∫

Asf

nsf · ∇bssdA, usf =
ks
V

∫

Asf

nsf · ∇bsfdA

Ksf = −ks
V

∫

Asf

nsfbssdA, Kss = φsksI +
ks
V

∫

Asf

nsfbsfdA

ds =
ks
V

∫

Asf

nsfssdA, aV hs =
ks
V

∫

Asf

nsf · ∇ssdA

The temperature continuity and the heat flux continuity at the fluid-solid interface allow to make the
following simplifications:

ufs = −uss, uff = −usf , aV hf = −aV hs = aV h

Thus, the closed macroscopic equations are rewritten as follows:
For the fluid phase

(ρcp)fφf 〈vf 〉f · ∇ 〈Tf 〉f − uff · ∇ 〈Tf 〉f − ufs · ∇ 〈Ts〉s = ∇ ·
(

Kff∇〈Tf 〉f + Kfs∇〈Ts〉s +

df (〈Tf 〉f − 〈Ts〉s)
)
− aV h

(
〈Tf 〉f − 〈Ts〉s

)
(2.83)

For the solid phase

uff · ∇ 〈Tf 〉f + ufs · ∇ 〈Ts〉s = ∇ ·
(

Ksf∇〈Tf 〉f + Kss∇〈Ts〉s + ds(〈Ts〉s − 〈Tf 〉f )
)

− aV h
(
〈Ts〉s − 〈Tf 〉f

)
(2.84)

The equations (2.83)-(2.84) are closed and involve nine effective transfer coefficients (uff , ufs, aV h,

Kff , Kfs, Ksf , Kss, ds, df ). These effective coefficients correspond to nine separated macroscopic phe-
nomena, whose origin have been made explicit in the previous developments. This closed macroscopic
model is more complete than the one presented previously (see equations (2.53)-(2.54). However it is
not used and no study gives the values of the effective coefficients related to this model. The study using
the closest form of model is the one proposed by Quintard et al. (1997). By gathering some terms, they
obtained a slightly different model. They compute the effective coefficients for various Peclet numbers,
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conductivity ratios and geometries. We will use these values of effective coefficients to verify the results
obtained with our alternative approach (see Section 2.4.2)

Quintard et al. (1997) make the choice to associate the different transport terms of the two-temperature
model (2.83)-(2.84). Indeed, the transport coefficients di are constant in a homogeneous medium allow-
ing the followiwriting writting:

∇ ·
(

di(〈Tf 〉f − 〈Ts〉s)
)

= di · ∇ 〈Tf 〉f − di · ∇ 〈Ts〉s (2.85)

and the association of the transport terms according to their respective gradients gives:

cff = uff + df , cfs = ufs − df (2.86)

csf = uff − ds, css = ufs + ds

Thus, the two-temperature model becomes:

(ρcp)f 〈vf 〉 · ∇ 〈Tf 〉f − cff · ∇ 〈Tf 〉f − cfs · ∇ 〈Ts〉s = ∇ ·
(

Kff∇〈Tf 〉f + Kfs∇〈Ts〉s
)

−aV h
(
〈Tf 〉f − 〈Ts〉s

)
(2.87)

−csf · ∇ 〈Tf 〉f − css · ∇ 〈Ts〉s = ∇ ·
(

Ksf∇〈Tf 〉f + Kss∇〈Ts〉s
)

+ aV h
(
〈Tf 〉f − 〈Ts〉s

)
(2.88)

The two-temperature model (2.87)-(2.88) possesses 9 effective coefficients that must be determined.
The determination of the effective coefficients is achieved during the third step of the volume averaging
method. This method of determination is complex and involves numerous closure problems. This is not
the subject of this chapter and for more information we recommend the paper of Quintard et al. (1997).
Furthermore, we recall that this method of determination cannot be directly used at the free-porous in-
terface as explained in Section 2.2.

We presented the volume averaging method applied to heat transfer at local thermal non-equilibrium.
The resulting closed macroscopic model (equations (2.87)-(2.88)) is different from the one of the heuris-
tic and mixed methods (equations (2.53)-(2.54). In the following we discuss this difference.

2.3.4 Discussion

This discussion is about the difference between the macroscopic closed two-temperature models
proposed by the heuristic and volume averaging approaches. This difference has two origins. The first
difference comes from the lack of formalism to derive the macroscopic equations in the heuristic method.
The second difference arises from the way to determine the effective coefficients. Indeed, in the heuris-
tic approach, the determination of the effective coefficients with experimentation is difficult. Thus, the
issue is to look for the simplest closed macroscopic model possessing the main physical phenomena.
Conversely, the volume averaging method is not concerned by this problematic. The effective transfer
coefficients are determined from the resolution of independent microscopic closure problems inside the
REV, one for each closure variable. This independence cannot be obtained in experiments. The differ-
ence between the two approaches affects the modeling of the dispersion and heat coupling phenomena
as presented in Fig 2.5. The heuristic approach models the dispersive flux as proportional to a fluid
temperature gradient and the heat coupling as proportional to a difference between the phase temper-
atures. Quintard et al. (1997) show that the modeling of the dispersion and heat coupling phenomena
is not that simple. They must be both modeled as functions of the source terms ∇〈Ts〉s, ∇〈Tf 〉f and(
〈Tf 〉f − 〈Ts〉s

)
. Such a modeling has important consequences on the effective coefficients obtained
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and the associated correlations. In particular, the resulting effective transfer coefficient h does not depend
or very weakly on the Peclet number instead to verify the dependency in RenPrm expressed by Wakao
and Kaguei (1982) or Kuwahara et al. (2001). Why such a difference of appreciation for the thermal
coupling between the two modeling approaches has not been corrected?

The following explanation comes from the results that we have obtained performing many simulations
to determine the effective coefficients. For porous media composed of aligned cubes where the heat
transfer is created by volume sources in the solid matrix with ks/kf in [10−4, +∞], we have observed

in our numerical simulations that the averaged terms ∇〈Ts〉s, ∇〈Tf 〉f and
(
〈Tf 〉f − 〈Ts〉s

)
are pro-

portional in the whole domain. In such situations, the effective coefficients computed with the heuristic
closed two-temperature model have the following characteristics: they are independent of the various
solicitations at their origin and seem to characterize the macroscopic properties of the studied porous
medium. This is why the users of the heuristic or mixed approaches that perform studies verifying such
thermal configurations, do not notice the modeling error. Especially, it is the case for (Kuwahara et al.,
1996; Kuwahara and Nakayama, 1999; Kuwahara et al., 2001). Comparing their modeling choice of the
thermal coupling with that of Quintard et al. (1997), we conclude that instead of considering the transfer
coefficients aV h, they compute the contributions of the three terms: uff , ufs and aV h. That explains
the difference between the two studies for the values of the effective transfer coefficient. For the disper-
sion, the difference of modeling is similar. Kuwahara et al. (1996) and Kuwahara and Nakayama (1999)

compute the contributions of the three terms (D
f

p , D
s

p and Da) instead of D
f

p . However, the modeling

error has a limited effect because D
f

p ≫ D
s

p + Da. Thus, the two authors find similar correlation for the

Peclet dependency of D
f

p .

In the context of the study of heat transfer at a free-porous interface none of these methods can be
used directly. Indeed, the mixed method postulates a closed macroscopic model that does not charac-
terized properly the macroscopic properties of the porous medium. Furthermore, the second and third
steps of the volume averaging method require a length scale separation that is not valid in the transition
zone. At the free-porous interface, the non validity od the length scale separation hypothesis encourages
us to determine the effective coefficients by identification following the mixed method. However, this
determination by identification is accurate only if the closed macroscopic model is as complete as pos-
sible. Based on these considerations, we develop another method. The non-closed macroscopic model
is derived from the governing microscopic equations performing the first step of the volume averag-
ing method. This leads to the equations (2.25) and (2.26) that are valid everywhere in the domain and
in particular within the interfacial transition zone since no length-scale constraint has been used. The
closed-macroscopic model is determined in the homogeneous porous medium with the closure relations
using the second step of the volume averaging method. The obtained equations are then assumed to be
valid in the continuous transition zone. Then the effective coefficients are determined by identification
between the closed and non-closed macroscopic models in the whole domain including the free-porous
transition zone.
For this alternative approach, we cannot use directly the closed macroscopic models given by the second
step of the volume averaging method. Indeed the equations (2.87) and (2.88) cannot be used to deter-
mined the effective coefficients with the identification approach because dispersive and heat coupling
terms are mixed. Furthermore, the equations (2.83) and (2.84) involve too many effective coefficients
that must be determined. Thus, we propose a new form of closed macroscopic model inspired from the
work of Pinson et al. (2007) and Drouin et al. (2010). This new model keeps the dispersion separated
from the heat coupling and considers passive and active phenomena. This modeling is very accurate to

characterize heat transfer for which the averaged terms ∇〈Ts〉s, ∇〈Tf 〉f and
(
〈Tf 〉f − 〈Ts〉s

)
are not

proportional as we will see in the following.
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The next section presents the work of Pinson et al. (2007) and Drouin et al. (2010) and shows the valid-
ity of our alternative method in the homogeneous porous medium comparing with the results given by
Quintard et al. (1997).
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Figure 2.5: Synthesis of the differences between the modelings

2.4 Two-temperature modeling: another interpretation

As presented previously, the dispersion and the heat coupling can be modeled through macroscopic
terms, that deserves particular attention. This modeling issue is studied by Pinson et al. (2007) and
Drouin Drouin et al. (2010) for the fluid equation only, and they illustrate it on practical examples where
a non-constant heat flux is imposed at channel walls. For such cases, the dispersive phenomena at the
macroscopic scale is composed of a passive part proportional to a temperature gradient and an active

part proportional to the flux imposed at the solid boundaries. Extending this result to the heat coupling
between the fluid ans solid phases, we compare the active and passive parts to determine domains where
one phenomenon dominates the other. From this discussion, we propose three different models.

2.4.1 Active dispersion

Pinson et al. (2007) and Drouin et al. (2010) show in their respective works, the modifications caused
by non-constant local heat fluxes. To simplify their study, the solid temperature equation is not solved
and they impose directly the wall heat flux. For 1D laminar flows in pipes, the tortuosity phenomenon
vanishes and the averaged equation of the fluid phase (2.33) reduces to:

(ρcp)f∇ ·
(
〈vf 〉 〈Tf 〉f

)
= ∇ · kfφf∇〈Tf 〉f −∇ · (ρcp)f

〈
T̃f ṽf

〉
+

1

V

∫

Afs

ΦdA (2.89)

where Φ is an incoming flux at the fluid-solid walls such that:

Φ = kf∇Tf · nfs (2.90)
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2.4 Two-temperature modeling: another interpretation

At the macroscopic scale, only the diffusion and dispersion phenomena are present in the governing
equations. The macroscopic equation is not closed due to the spatial deviation T̃f in the dispersive term.
Looking for the closure relation, they determine the source terms at the origin of the deviation. These
source terms are the temperature gradient and the imposed flux at the walls, which leads to the following
closure relation:

T̃f = bff · ∇ 〈Tf 〉f + sf
1

V

∫

Afs

ΦdA (2.91)

Introducing this relation in the dispersive term, one obtains:

〈
T̃f ṽf

〉
= 〈bff ṽf 〉 · ∇ 〈Tf 〉f + 〈sf ṽf 〉

1

V

∫

Afs

ΦdA (2.92)

They define dispersion coefficients as follows:

D
f

p = −〈bff ṽf 〉 , Da = −〈sf ṽf 〉 (2.93)

where D
f

p is a passive dispersion tensor corresponding to an additional diffusion due to the velocity
deviations, and Da is an active dispersion vector seen as the macroscopic representation of the effect of
the wall heat transfer.
Thus, the closed macroscopic model can be written as follows:

(ρcp)f∇·
(
〈vf 〉 〈Tf 〉f

)
= ∇·kfφf∇〈Tf 〉f+∇·

(
D
f

p · ∇ 〈Tf 〉f
)

+∇·
(

Da
1

V

∫

Afs

ΦdA

)
+

1

V

∫

Afs

ΦdA

(2.94)
where the effective coefficients of passive and active dispersion are determined from the closure prob-
lems.

To validate the model, Drouin et al. (2010) study the impact of the imposed wall heat flux on the dis-
persion. For a constant heat flux, the active dispersion vanishes and the passive dispersion is needed to
model heat transfer for transient problems. For a non-constant imposed heat flux with a triangular form,
the macroscopic modeling requires the passive and active dispersions to recover the total heat transfer.
Furthermore, comparing the passive and the active dispersions, Drouin et al. (2010) show that the ac-
tive dispersion dominates the passive dispersion. For laminar cases, the active/passive ratios are 7/2 in
channels and 2 in circular pipes. However the dispersion ratio is not enough to suppress the passive
dispersion for the active dispersion. Thus, the appropriate macroscopic model to reflect the heat transfer
is the equation (2.94).

In this study, Drouin et al. (2010) are able to illustrate the influence of the wall heat transfer on the
macroscopic phenomenon of dispersion. In the following, we use this result to study the more complex
case of two-temperature modeling. As for the dispersive phenomenon studied by citeDrouin2010, we
write the heat coupling with a passive part and an active part. Then, the relative importance of the two
parts are discussed.

2.4.2 The two-temperature model

In this Section, we study heat transfer configurations where the temperature gradients are not pro-
portional to the temperature difference. The closed two-temperature model is derived from the local
governing equations with the volume averaging method. Then, to determine the effective transfer co-
efficients, the identification method used by Kuwahara et al. (1996); Kuwahara and Nakayama (1999);
Kuwahara et al. (2001) is applied. Thus, we characterize the heat transfer at the macroscopic scale and
we are able to discuss the different modeling options.
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2.4.2.1 Setting up of a modeling

To study the heat coupling between the phases at the macroscopic scale, we apply a volume heat
source in the solid matrix that gives temperature gradients that are not proportional to the temperature
difference. Furthermore, this heating configuration is the one used in Chapter 4 for the computation of
the effective coefficients. The first two steps of the volume averaging method gives identical closed and
non-closed macroscopic equations as that presented previously ((2.83), (2.84), (2.33) and (2.34)) with
an additional averaged solid source term. More specifically the closed macroscopic equations take the
following forms:
For the fluid phase

(ρcp)fφf 〈vf 〉f · ∇ 〈Tf 〉f − uff · ∇ 〈Tf 〉f − ufs · ∇ 〈Ts〉s =

∇ ·
(

Kff∇〈Tf 〉f + Kfs∇〈Ts〉s + df (〈Tf 〉f − 〈Ts〉s)
)
− aV h

(
〈Tf 〉f − 〈Ts〉s

)
(2.95)

For the solid phase

uff · ∇ 〈Tf 〉f + ufs · ∇ 〈Ts〉s = ∇ ·
(

Ksf∇〈Tf 〉f + Kss∇〈Ts〉s + ds(〈Ts〉s − 〈Tf 〉f )
)

− aV h
(
〈Ts〉s − 〈Tf 〉f

)
+ 〈Ss〉 (2.96)

The two-temperature model is composed of 9 effective coefficients that must be determined. To sim-
plify their determination, we want to decrease the number of effective coefficients involved in the two-
temperature model. For that purpose, one looks for an acceptable simplification of the modeling. Con-
sidering the dispersion and heat coupling modelings (2.76), (2.72), we determine the passive and active
parts for each phenomena:

〈
T̃f ṽf

〉
= 〈bff ṽf 〉 · ∇ 〈Tf 〉f︸ ︷︷ ︸

fluid passive dispersion

+ 〈bfsṽf 〉 · ∇ 〈Ts〉s︸ ︷︷ ︸
solid passive dispersion

−〈sf ṽf 〉
(
〈Tf 〉f − 〈Ts〉s

)

︸ ︷︷ ︸
active dispersion

(2.97)

kf
V

∫

Afs

nfs · ∇T̃fdA = uff · ∇ 〈Tf 〉f︸ ︷︷ ︸
fluid active coupling

+ ufs · ∇ 〈Ts〉s︸ ︷︷ ︸
solid active coupling

− avhf

(
〈Tf 〉f − 〈Ts〉s

)

︸ ︷︷ ︸
passive coupling

(2.98)

We choose to use the adjective passive and active for the heat coupling to make a bond with the dispersive
phenomena.
To simplify the modeling, we assume that the fluid and solid passive terms of the dispersive phenomenon
are correlated and can be modeled together. We do the same for the fluid and solid active terms of the
heat coupling phenomenon. Furthermore, our preliminary numerical studies show the equality between
the fluid and solid gradients:

∇〈Tf 〉f ≈ ∇〈Ts〉s (2.99)

The dispersion and heat coupling can thus be rewritten as follows:
〈
T̃f ṽf

〉
= Dp · ∇ 〈Tf 〉f + Da

(
〈Tf 〉f − 〈Ts〉s

)
(2.100)

kf
V

∫

Afs

nfs · ∇T̃fdA = u · ∇ 〈Tf 〉f − avhf

(
〈Tf 〉f − 〈Ts〉s

)
(2.101)

where

Dp = D
f

p +D
s

p , u = uff + ufs (2.102)

Using the equality between the temperature gradients, the effective conductivity tensor are brought to-
gether such that:

Kf = Kff + Kfs , Ks = Kss + Ksf , (2.103)
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where

Kf = φfkf I +
kf
V

∫

Afs

bfnfsdA+ (ρcp)fDp (2.104)

Ks = φfksI −
ks
V

∫

Afs

bfnfsdA (2.105)

Thus, a simplified two-temperature model can be written as follows:

(ρcp)f 〈vf 〉 · ∇ 〈Tf 〉f − u · ∇ 〈Tf 〉f = ∇ ·
(

Kf · ∇ 〈Tf 〉f + df (〈Tf 〉f − 〈Ts〉s)
)

−aV h
(
〈Tf 〉f − 〈Ts〉s

)
(2.106)

u · ∇ 〈Tf 〉f = ∇ ·
(

Ks · ∇ 〈Ts〉s + ds(〈Tf 〉f − 〈Ts〉s)
)

+ aV h
(
〈Tf 〉f − 〈Ts〉s

)
+ 〈Ss〉 (2.107)

This two-temperature model is composed of 6 effective coefficients that must be determined. The ef-
fective coefficients are determined in the next paragraph using the identification method of (Kuwahara
et al., 1996; Kuwahara and Nakayama, 1999; Kuwahara et al., 2001).

In this paragraph we introduced a new closed macroscopic model that verifies the constraints imposed by
the identification method. Indeed, the identification method imposes to keep separated the modelings of
the dispersive and heat coupling phenomena. These macroscopic phenomena are modeled considering
a passive and an active part with two different microscopic origins (see Fig. 2.6). We will discuss these
modelings in the following.

2.4.2.2 Determination of the effective coefficients

Geometry and boundary conditions
We consider laminar flows through an infinite porous medium made of in-line squares (see Fig. 2.7).
The mean flow is directed towards the y-direction. The study is performed for various Peclet numbers
(0, 1 < Pe < 300) and thermal conductivity ratios (0, 001 < ks/kf < 10000). The numerical computa-
tions are realized for a fixed porosity φp = 5/9 and a fixed Prandtl number Pr = 1.
The boundary conditions at the outlet and at the inlet are conditions of pseudo-periodicity for the temper-
ature and the pressure. The variable change used to compute the temperature field resulting of boundary
conditions of pseudo-periodicity is presented in appendix A. At the steady-state, the boundary conditions
of pseudo-periodicity impose ∇〈Tf 〉f · ey = cste. In order to create temperature gradients not propor-

tional to the temperature difference ((〈Tf 〉f − 〈Ts〉s) 6= cste), we combine the solid heat source with
an incoming heat flux on the lateral boundaries.
The microscopic temperature field is obtained by solving numerically the equations (2.13) to (2.16) on
a uniform Cartesian grid. The finite-volume method is used with a second-order central-differencing
scheme for the spatial discretization.

Identification method
The expression for the effective coefficients are obtained by identification between the non-closed macro-
scopic equations (2.33), (2.34) and the closed ones (2.106), (2.107). One can write:

Kf · ∇ 〈Tf 〉f + df
(
〈Tf 〉f − 〈Ts〉s

)
= kf∇〈Tf 〉 +

kf
V

∫

Afs

nfsT̃fdA− (ρcp)f

〈
T̃f ṽf

〉
(2.108)

Ks · ∇ 〈Ts〉s + ds
(
〈Tf 〉f − 〈Ts〉s

)
= ks∇〈Ts〉 −

ks
V

∫

Afs

nfsT̃fdA (2.109)

aV h
(
〈Tf 〉f − 〈Ts〉s

)
− u · ∇ 〈Tf 〉f = −kf

V

∫

Afs

nfs · ∇T̃fdA (2.110)
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Figure 2.6: Synthesis of the different modelings.
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Figure 2.7: Geometry and its coordinate system.
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Then, each term of the above relations is computed using the microscopic temperature and velocity fields
of the numerical simulations.
The porous medium is isotropic and the averaged velocity field is uniform on the whole domain, thus, the
effective transfer coefficients are constant and do not depend on the y- and x-directions. Consequently,
the knowledge of the microscopic temperature and velocity fields in the REV is sufficient to compute
the effective coefficients. Furthermore, one recalls that the boundary conditions are chosen to obtain
temperature gradients valid for the determination of the effective coefficients. In order to verify the
effective nature of the coefficients obtained with the identification method, we change the boundary
conditions and we verify that the coefficients are independent of the temperature fields.
Introducing the following writings:

Ki =

(
Ki
xx Ki

xy

Ki
yx Ki

yy

)
, di =

(
dix
diy

)
, u =

(
ux
uy

)
(2.111)

the equations (2.108), (2.109) can be developed such that:
In the x-direction

Kf
xx

∂ 〈Tf 〉f

∂x
+Kf

xy

∂ 〈Tf 〉f

∂y
+ dfx

(
〈Tf 〉f − 〈Ts〉s

)
= kf

∂ 〈Tf 〉
∂x

+
kf
V

∫

Afs

nfsT̃fdA · ex

−(ρcp)f

〈
T̃f ṽf

〉
· ex (2.112)

Ks
xx

∂ 〈Ts〉s
∂x

+Ks
yx

∂ 〈Ts〉s
∂y

+ dsx

(
〈Tf 〉f − 〈Ts〉s

)
= ks

∂ 〈Ts〉
∂x

− ks
V

∫

Afs

nfsT̃fdA · ex (2.113)

In the y-direction

Kf
yy

∂ 〈Tf 〉f

∂y
+Kf

yx

∂ 〈Tf 〉f

∂x
+ dfy

(
〈Tf 〉f − 〈Ts〉s

)
= kf

∂ 〈Tf 〉
∂y

+
kf
V

∫

Afs

nfsT̃fdA · ey

−(ρcp)f

〈
T̃f ṽf

〉
· ey (2.114)

Ks
yy

∂ 〈Ts〉s
∂y

+Ks
yx

∂ 〈Ts〉s
∂x

+ dsy

(
〈Tf 〉f − 〈Ts〉s

)
= ks

∂ 〈Ts〉
∂y

− ks
V

∫

Afs

nfsT̃fdA · ey (2.115)

And the relation (2.110) can be rewritten as:

aV h
(
〈Tf 〉f − 〈Ts〉s

)
− ux

∂ 〈Tf 〉f

∂x
− uy

∂ 〈Tf 〉f

∂y
= −kf

V

∫

Afs

(
∂T̃f
∂x

+
∂T̃f
∂y

)
dA (2.116)

The equations (2.112) to (2.116) are composed of 15 unknowns. To solve this system, three numerical
simulations with different solid heat sources or incoming heat fluxes are realized to obtain 15 equations.
Thus, for example, the system corresponding to the relation (2.112) takes the following form:

Kf
xx

∂
〈
T 1
f

〉f

∂x
+Kf

xy

∂
〈
T 1
f

〉f

∂y
+ dfx

(〈
T 1
f

〉f −
〈
T 1
s

〉s)
= f(T 1

f ) (2.117)

Kf
xx

∂
〈
T 2
f

〉f

∂x
+Kf

xy

∂
〈
T 2
f

〉f

∂y
+ dfx

(〈
T 2
f

〉f −
〈
T 2
s

〉s)
= f(T 2

f ) (2.118)

Kf
xx

∂
〈
T 3
f

〉f

∂x
+Kf

xy

∂
〈
T 3
f

〉f

∂y
+ dfx

(〈
T 3
f

〉f −
〈
T 3
s

〉s)
= f(T 3

f ) (2.119)
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where

f(T if ) = kf
∂
〈
T if

〉

∂x
+
kf
V

∫

Afs

nfsT̃
i
fdA · ex − (ρcp)f

〈
T̃ if ṽf

〉
· ex (2.120)

The simulation results show that Kf
yx ≈ Kf

xy ≈ Ks
yx ≈ Ks

xy ≈ 0. Thus, the effective conductivity
tensors are diagonal. This result can be explained by the isotropic porous matrix and the uni-directed
mean flow. Furthermore, one obtains ux ≈ dfx ≈ dsx ≈ 0, resulting from the no-transportation and the
no-active dispersion in the x-direction since the mean flow is 1D in the y-direction.
Figs. 2.8(a), 2.8(b), 2.9(a), 2.9(b), 2.10(a), 2.10(b), 2.11(a) and 2.11(b) present the effective transfer co-
efficients as functions of the Peclet number and for various conductivity ratios.

(a) (b)

Figure 2.8: Effective thermal conductivity coefficient in the flow direction (a) for the fluid phase Kf
yy;

(b) for the solid phase Ks
yy.

The fluid and solid effective thermal conductivities in the flow direction are illustrated in Figs. 2.8(a)
and 2.8(b). For the fluid phase, the usual behavior of the longitudinal thermal conductivity coefficient is
recovered (Quintard et al., 1997). The values can be divided in three domains. For low Peclet numbers
(Pe < 0.2 for ks/kf < 1 and Pe < 3 for ks/kf > 1), the values are constant and diffusion dominates,
then follows a transition regime (0.2 < Pe < 1 for ks/kf < 1 and 3 < Pe < 10 for ks/kf > 1) and an
asymptotic increase in Pen characteristic of the passive dispersion phenomenon at large Peclet numbers
(> 1 for ks/kf < 1 and Pe > 10 for ks/kf > 1). For the solid phase, the values of Ks

y correspond to
the diffusion and the tortuosity phenomena, which are weakly dependent on the Peclet number.

The effective transport coefficients in the flow direction dfy and dsy are presented in Figs. 2.9(a) and 2.9(b).

Let us remind that dfy is composed of the tortuosity and the active dispersion phenomena, whereas for
the solid phase, dsy is composed of the tortuosity phenomenon exclusively. The tortuosity values are
close for the solid and fluid phase and are estimated to 10−2 (see Figs. 2.9(b)). Considering the order of
magnitude of dfy at 10−1, one can assume that the active dispersion dominates the tortuosity in dfy

The transverse effective thermal conductivities are showed in Figs. 2.10(a) and 2.10(b). The profiles
of Kf

x depend on the conductivity ratio. For ks/kf > 10, the diffusion phenomenon dominates and the
profiles weakly depend on the Peclet numbers. For ks/kf < 10, the profiles can be divided in three
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(a) (b)

Figure 2.9: Effective transport coefficient in the flow direction (a) for the fluid phase dfy ; (b) for the solid
phase dsy.

(a) (b)

Figure 2.10: Transverse effective transport coefficient (a) for the fluid phase Kf
xx; (b) for the solid phase

Ks
xx.

domains: a domain for low Peclet numbers (Pe < 1) where the diffusion phenomenon dominates, a
domain of transition (1 < Pe < 40) and at high Peclet numbers (Pe > 40) a domain where the values
increase. In this last domain, the values of Kf

x are lower than Kf
y . Thus, one can conclude that the

dispersion phenomenon is directed for a large part in the y-direction. For the solid phase, Ks
x does not

depend of the Peclet numbers and the values of Ks
y for low Peclet numbers are recovered.

The effective transport coefficient uy and the effective heat transfer coefficient aV h are presented in
Figs. 2.11(a) and 2.11(b). The effective heat transfer coefficient does not depend on the Peclet numbers
for conductivity ratios kf/ks < 1, and for kf/ks > 1 a slight influence appears at Pe > 10. However,
this dependence is smaller than the behavior in Re0.6Pe1/3 found by the heuristic approach (see (Wakao
and Kaguei, 1982).
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(a) (b)

Figure 2.11: (a) Effective convective coefficient uy. (b) Effective heat transfer coefficient avh.

In order to compare the results with those published in (Quintard et al., 1997), we recall the quanti-

ties illustrated. Quintard et al. (1997) present the tensors K
i

ii and K
i

ij that are related to our values

according to K
i

= K
i

ii + K
i

ij for the fluid and solid phases respectively. Allowing for the different
choices of the geometry, in-line cubes instead of in-line cylinders, the main behaviors of the effective
coefficients are recovered.
Furthermore, even if the negative values of the effective coefficients uy and dfy seem to be inaccurate,
such results are valid. Similar results are observed by Quintard et al. (1997) for the effective trans-
port coefficients cff , cfs and csf in the flow direction (see equations (2.87), (2.88)). From the relation
cff + cfs = u, Fig. 2.11(a) can be compared with the added profiles of Figs. 9 and 10 page 87 in (Quin-
tard et al., 1997).

In this Section we have presented an alternative approach to the volume averaging and mixed methods.
This method allows to characterize a homogeneous porous medium (determination of a macroscopic
model and of effective coefficients) and can be extended to the study of heat transfer at a free-porous
interface. The advantages are that the effective coefficients are determined without length scale consid-
erations and the macroscopic model is derived from the microscopic equations in a homogeneous porous
medium. The obtained effective coefficients are in accordance with the results presented by Quintard
et al. (1997), which validates the method. In the following, these results are used to discuss further
different modeling options for the dispersion and heat coupling phenomena.

2.4.2.3 Determination of the main heat transfer phenomena

This paragraph is about the modeling of the dispersion and the heat coupling phenomena. As the
dispersion phenomenon is negligible in the x-direction, the discussion focuses on the heat transfer mod-
eling in the y-direction only.
The dispersion and the heat coupling are composed of a passive part and of an active part. The objective
of this paragraph is to determine which part dominates the other. In order to discuss the modeling, the
passive and active part are computed and compared using the following definition of percentage:

% =
|part|

|passive part| + |active part| ∗ 100 (2.121)
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2.4 Two-temperature modeling: another interpretation

For the dispersive flux, the passive part Dp · ∇ 〈Tf 〉f and the active part Da(〈Tf 〉f − 〈Ts〉s) in the y-
direction are determined using the identification method for various Peclet numbers and conductivity
ratios. The results are presented in Figs. 2.12(a), 2.12(b), 2.13(a) and 2.13(b).

(a) (b)

Figure 2.12: (a) Comparison between active and passive dispersive flux for Pe = 0, 1; (b) Comparison
in percent for Pe = 0, 1.

(a) (b)

Figure 2.13: (a) Comparison between active and passive dispersive flux for Pe = 10; (b) Comparison in
percent for Pe = 10.

The composition of the dispersive flux varies with the thermal conductivity ratio ks/kf and can be
divided in two parts for Peclet numbers Pe < 5 :

• for ks/kf < 2, the passive part dominates the active part. The dispersive flux is created by the
spatial deviation of the velocity field.

• for ks/kf > 2, the passive part and the active part are of the same order.

For Peclet numbers Pe > 5, an additional zone appears:
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• for ks/kf > 10, the active part Da(〈Tf 〉f − 〈Ts〉s) dominates the passive part Dp · ∇ 〈Tf 〉f .

For the heat coupling between the phases, the passive part aV h(〈Tf 〉f − 〈Ts〉s) and the active part

u ·∇ 〈Tf 〉f are computed for various Peclet numbers and conductivity ratios The results are presented in
Figs. 2.14(a), 2.14(b), 2.15(a) and 2.15(b).

(a) (b)

Figure 2.14: (a) Comparison between active and passive heat coupling for Pe = 0, 1; (b) Comparison in
percent for Pe = 0, 1.

(a) (b)

Figure 2.15: (a) Comparison between active and passive heat coupling for Pe = 10; (b) Comparison in
percent for Pe = 10.

The composition of the coupling between the phases varies with the thermal conductivity ratio ks/kf
and can be divided in two parts for Pe < 5:

• for ks/kf < 2, the passive part dominates the active part;

• for ks/kf > 2, the passive part and the active part are of the same order.

For Pe > 5, an additional zone appears:
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2.4 Two-temperature modeling: another interpretation

• for ks/kf > 10, the active part u · ∇ 〈Tf 〉f dominates the passive part aV h(〈Tf 〉f − 〈Ts〉s).

Furthermore, we assume some simplifications for the tortuosity term, whose definition (2.77) is rewritten
using the temperature gradient equality ∇〈Tf 〉f = ∇〈Ts〉s :

kf
V

∫

Afs

nfsT̃fdA = K
f

tor · ∇ 〈Tf 〉f + Ka
tor

(
〈Tf 〉f − 〈Ts〉s

)
(2.122)

where

K
f

tor = K
ff

tor +K
fs

tor (2.123)

The quantity Ka
tor is involved in the effective transport coefficient df through the relation (2.78). In the

y-direction, the dispersive term dominates the tortuosity term (see note in Section 2.4.2.2). Thus the
effective transport coefficients can be simplified:

dfy = Da
y (2.124)

To consider the passive dispersion in the effective conductivity tensor, we use the following decomposi-
tions:

Kf = φfkfI +K
f

tor +D
f

p (2.125)

Extending this writing to the solid phase, one has:

Ks = ksI +K
s

tor (2.126)

From all these results, one can construct two-temperature models based on the modeling of the dispersive
flux and the coupling between the phase phenomena:
• For Pe < 5 and ks/kf < 2

(ρcp)f
∂

∂y

(
φf 〈vf 〉f 〈Tf 〉f

)
=

∂

∂y

(
(φfkf +Ktor,f

yy +Dp
yy)

∂ 〈Tf 〉f

∂y

)

−aV hf
(
〈Tf 〉f − 〈Ts〉s

)
(2.127)

0 =
∂

∂y

(
(φsks +Ktor,s

yy )
∂ 〈Ts〉s
∂y

+ dsy

(
〈Tf 〉f − 〈Ts〉s

))
+ aV hf

(
〈Tf 〉f − 〈Ts〉s

)
(2.128)

This two-temperature model is quite similar to the one used by the heuristic approach. This modeling
reflects, that the dispersion is mainly due to the velocity fluctuations and the heat coupling by the thermal
disequilibrium between the fluid and the solid temperatures. However this kind of conductivity ratio is
rarely observed in real cases.
• For Pe < 5 and ks/kf > 2, the model cannot be simplified and all the phenomena have to be taken
into account.

(ρcp)f
∂

∂y

(
〈vf 〉 〈Tf 〉f

)
− ufy

∂ 〈Tf 〉f

∂y
=

∂

∂y

(
(kf +Ktor,f

yy +Dp
yy)

∂ 〈Tf 〉f

∂y

)

+
∂

∂y

(
Da
y

(
〈Tf 〉f − 〈Ts〉s

))
− aV hf

(
〈Tf 〉f − 〈Ts〉s

)
(2.129)

ufy
∂ 〈Tf 〉f

∂y
=

∂

∂y

(
(ks +Ktor,s

yy )
∂ 〈Ts〉s
∂y

+ dsy

(
〈Tf 〉f − 〈Ts〉s

))

+aV hf

(
〈Tf 〉f − 〈Ts〉s

)
(2.130)

Apart from the difference in the writing, such a modeling corresponds to one obtained with the volume
averaging method (Quintard et al., 1997). In this case, this two-temperature model seems to be the most
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CHAPTER 2 : Heat transfer modeling in homogeneous porous media

appropriate to describe the heat transfer.
• For higher Peclet number (Pe > 5) and conductivity ratios ks/kf > 10, there exists another form
of two-temperature model. Indeed, in such a configuration, the dispersion and the coupling between the
phase phenomena are directed by their active part and the associate modeling is the following:

(ρcp)f
∂

∂y

(
φf 〈vf 〉f 〈Tf 〉f

)
− uy

∂ 〈Tf 〉f

∂y
=

∂

∂y

(
(kf +Ktor,f

yy )
∂ 〈Tf 〉f

∂y

)

+
∂

∂y

(
Da
y

(
〈Tf 〉f − 〈Ts〉s

))
(2.131)

uy
∂ 〈Tf 〉f

∂y
=

∂

∂y

(
(ks +Ktor,s

yy )
∂ 〈Ts〉s
∂y

+ dsy

(
〈Tf 〉f − 〈Ts〉s

))
(2.132)

To conclude, the form of the two-temperature model depends strongly on the conductivity ratio and in
the case of high ratio it depends also of the velocity fields. For small conductivity ratios (ks/kf < 2), the
simplified modeling of Wakao and Kaguei (1982) is valid. For higher conductivity ratios, this modeling
is not appropriate and all the phenomena must be considered. Indeed, the two-temperature model can-
not be simplified and the determination of the 6 effective coefficients is required to correctly reflect the
transfers. For high Peclet numbers and for conductivity ratio ks/kf > 10, the complete two-temperature
modeling can be simplified again as equations (2.131) and (2.132).

In this Section, we have compared the passive and active parts of the dispersion and heat coupling phe-
nomena. It results in some simplifications for the closed macroscopic model. Thus, we have proposed
three different closed macroscopic models depending on the conductivity ratio and Peclet numbers.

2.5 Conclusion

In this chapter, we reviewed different macroscopic models existing in the literature to describe the
heat transfer at local thermal equilibrium and local thermal non-equilibrium in a homogeneous porous
medium. We present three methods to derive such models:

• the heuristic method based on empirical modeling and the determination of the effective transfer
coefficients with experimentation;

• the volume averaging method that characterizes the porous medium following three steps. First a
smoothing process changes the scale of description from microscopic to macroscopic. This pro-
cess makes appear non-closed terms involving spatial deviations characteristic of the microscopic
scale. The second step closes the macroscopic model by connecting the non-closed terms with the
macroscopic phenomena at the origin of the deviations. The third step consists in determining the
effective transfer coefficients with closure problems based on length scales considerations. The
advantage of this method is to derive a closed model from the microscopic governing equations
that gives all the phenomena existing at the macroscopic scale. However this method relies on the
strong hypotheses of length scale separation that is not valid in a transition zone;

• the mixed method that uses the volume averaging method and the heuristic method. The non-
closed macroscopic model is derived from the governing microscopic equations performing the
first step of the volume averaging method, while the closed macroscopic model is postulated fol-
lowing the literature of the heuristic method. The determination of the effective coefficient is
obtained by identification between the non-closed and closed macroscopic models. The advan-
tage of this method relies on the absence of length scale considerations to determine the relations
of the effective coefficients. However, these relations strongly depend on the form of the closed
macroscopic model.
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2.5 Conclusion

In the context of the transfer modeling in a transition zone, these methods cannot be used directly. In-
deed the steps 2 and 3 of the volume averaging method cannot be performed in the transition zone where
the length scale separation is not valid. Furthermore, the closed macroscopic model used by the mixed
method is not appropriate to study heat transfer at the local thermal non-equilibrium. Thus, we de-
veloped another approach to characterize the heat transfer. First the non-closed macroscopic model is
derived from the microscopic equations performing the first step of the volume averaging method. Sec-
ond, the macroscopic model is closed using the second step of the volume averaging method. Then the
effective coefficients are determined by identification between the closed and non-closed macroscopic
model as for the mixed method. We remind, that this identification method requires to keep separated
the macroscopic dispersion and heat coupling phenomena . This is the reason why we propose a differ-
ent closed macroscopic model from the one presented by Quintard et al. (1997). Finally, this method is
validated by comparing with the results given by the volume averaging method (Quintard et al., 1997).

The models presented in this chapter (see Tab. (2.2) hereafter ) are used in Chapters 3 and 4 to study
heat transfer at a free-porous interface.
In Chapter 3, we study heat transfer at local thermal equilibrium for a flow normal to the free-porous
interface. The first step of the volume averaging method is performed given the one-temperature equa-
tion (2.133a) valid in the whole domain including the transition zone. The second step of the volume
averaging model leads to the closed macroscopic model (2.133b) in the homogeneous porous region and
we assume that it is valid in the transition zone. Then, the effective coefficients are determined in the
whole domain following the mixed method.
In Chapter 4, we study heat transfer at the local thermal non-equilibrium for a flow normal to the free-
porous interface. Performing an identical process, we obtain two-temperature macroscopic models (see
equations (2.133c) to (2.133f)). By construction, the non-closed model (2.133c) and (2.133d) is valid in
the whole domain including the transition zone, while the closed model (2.133e) and (2.133f) is derived
in the homogeneous porous medium and then extended to the transition zone. At last, the effective coef-
ficients are computed in the whole domain including the transition zone.
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At local thermal equilibrium
Non-closed one-temperature model:

(ρcp)f∇·
(
φf 〈vf 〉f 〈T 〉

)
= ∇·((kfφf + ksφs)∇〈T 〉)+∇·

(
kf − ks

V

∫

Afs

T̃f (r) nfsdA

)
+

∇ ·
(
kf − ks

V

∫

Afs

(〈T 〉 (r) − 〈T 〉 (x)) nfsdA

)
−∇ ·

(
(ρcp)f

〈
T̃f ṽf

〉)
(2.133a)

Closed one-temperature model:

(ρcp)f∇ ·
(
φf 〈vf 〉f 〈T 〉

)
= ∇ ·

(
K · ∇ 〈T 〉

)
(2.133b)

At the local thermal non-equilibrium
Non-closed two-temperature model:

(ρcp)f∇ ·
(
φf 〈vf 〉f 〈Tf 〉f

)
= ∇ ·

(
kfφf∇〈Tf 〉f +

kf
V

∫

Afs

nfsT̃fdA− (ρcp)fτTv

)
+

∇ ·
(
kf
V

∫

Afs

(
〈Tf 〉f (r) − 〈Tf 〉f (x)

)
nsfdA

)
+

kf
V

∫

Afs

nfs ·
(
∇〈Tf 〉f (r) + ∇T̃f (r)

)
dA (2.133c)

0 = ∇ ·
(
ksφs∇〈Ts〉s −

ks
V

∫

Afs

nfsT̃fdA− ks
V

∫

Afs

(
〈Tf 〉f (r) − 〈Tf 〉f (x)

)
nsfdA

)
−

kf
V

∫

Afs

nfs ·
(
∇〈Tf 〉f (r) + ∇T̃f (r)

)
dA (2.133d)

Closed two-temperature model:

(ρcp)fφf 〈vf 〉f · ∇ 〈Tf 〉f − uf · ∇ 〈Tf 〉f = ∇ ·
(

Kf∇〈Tf 〉f + df (〈Tf 〉f − 〈Ts〉s)
)
−

aV h
(
〈Tf 〉f − 〈Ts〉s

)
(2.133e)

uf · ∇ 〈Tf 〉f = ∇ ·
(

Ks∇〈Ts〉s + ds(〈Ts〉s − 〈Tf 〉f )
)
− aV h

(
〈Ts〉s − 〈Tf 〉f

)
(2.133f)

Table 2.2: Synthesis of porous medium models.
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Chapter 3

Free-porous interface modeling for
laminar heat transfer at local thermal
equilibrium

3.1 Introduction

In the introduction , we have presented different issues related to the computation of heat transfer in
a nuclear reactor. An important issue is the coupling between the models used in the free regions and
in the fuel region. However many questions about the boundary conditions that must be applied at a
free-porous interface remain, even for laminar heat transfer. Where is the interface located? What jump
conditions to apply? The answer to these questions is essential to correctly model the heat transfer in
practical applications.
Due to the complexity of the method, we first study the simple problem of heat transfer at local thermal
equilibrium in a free-porous domain.

An interesting idea is to derive the boundary conditions at the free-porous interface using up-scaling
methods based on the energy conservation. Using such an approach, Ochoa-Tapia and Whitaker (1997)
show that the boundary conditions involve surface excess quantities that can be modeled with jump pa-
rameters. However, this method does not make explicit the observed dependence between the value of
the jump parameters and the interface location (Larson and Higdon, 1986, 1987).
In order to study this issue, we propose to use the multi-scale method presented by Chandesris and Jamet
(2006, 2007, 2009c,b,a) for momentum transfer at a fluid-porous interface. This approach is based on
two up-scaling steps and three levels of descriptions of the interface. The first up-scaling step consists in
characterizing the transfer at a continuous scale, called mesoscopic, where the interface is diffuse. The
second up-scaling step introduces the method of matched asymptotic expansions and allows to make
explicit the dependency between the jump parameters and the interface location.
Nevertheless, applying this method to heat transfer, a question arises at the first up-scaling step: how to
characterize the heat transfer in the transition zone?
In a recent study, Aguilar-Madera and Ochoa-Tapia (2011) adapt the volume averaging method in the
transition zone. The adaptation relies on two modifications of the method. First, to verify the validity
of the length scale separation, they consider a large volume of average larger than the elementary cell
(2r0 = 15lc). Second, to complete the closure problem, they fix conditions other than the periodicity
at the boundaries of the volume of average. Using these modifications, they are able to derive a closed
temperature model and determine effective coefficients in the transition zone. We choose not to pursue
this work and found a substitutive method to characterize the heat transfer in the transition zone. This
approach, presented in Chapter 1, is inspired from (Kuwahara et al., 1996; Kuwahara and Nakayama,
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1999; Kuwahara et al., 2001). It postulates a closed continuous model in the transition zone and deter-
mines the effective coefficients by identification using numerical experiments.

The obtained results regarding the jump conditions that must be applied at a free-porous interface in
the case of the local thermal equilibrium are presented as an article published in the International Jour-

nal of Heat and Mass Transfer.
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3.1 Article 1

3.2 Article 1: Boundary conditions at a fluid-porous interface for a con-
vective heat transfer problem: Analysis of the jump relations

A. d’Hueppe a, , M. Chandesris a, , D. Jamet a, B. Goyeau b

International Journal of Heat and Mass Transfer 54 (2011) 3683-3693

a CEA, DEN, DER/SSTH/LDAL, 17 rue des martyrs, F-38054 Grenoble, France
b EM2C,UPR-CNRS 288,Ecole Centrale Paris,Grande Voie des Vignes,Châtenay-Malabry, France

Abstract. This paper presents a two-step up-scaling approach to determine the jump relations that
must be imposed at the interface between a homogeneous porous domain and a free domain. We study
convective heat transfer at such an interface under the assumption of local thermal equilibrium. The two-
step approach has the capability of providing closed jump relations depending on intrinsic characteristic
of the interface. In addition, from the resulting jump relations, it is possible to determine a particular
interface location where the condition of continuity are sufficient. Thus, the use of jump or continuity
conditions depend only on the interface location inside the fluid-porous transition region.

Keywords. Porous media, Convection, Interface, Boundary conditions, Excess quantity

3.3 Introduction

Heat and mass transfers at the fluid-porous interface play an important role in many industrial or
environmental applications. At the microscopic scale, where each pore of the porous media is described,
the direct numerical simulation gives the exact description of the transfers. However, this approach is not
relevant to study application cases for two reasons:

(i) the required meshing and associated costs would be prohibitive;

(ii) it is not always possible to describe exactly the geometry at the microscopic scale.

For these reasons it is necessary to lower down the precision of the porous region by using a macroscopic
description scale. At this level, the domain is characterized by homogeneous models for the porous and
free media connected by boundary conditions at the fluid-porous interface. Far away from the interface,
the physic is well understood and the established models give good results. In the interface region, other
transfer phenomena occur due to the disapearing of the solid phase. These complex transfer phenomena
are difficult to model through appropriate boundary conditions. However, this information can be the key
of the model success. This is the reason why the recent challenging problems related to the determination
of the boundary conditions at a fluid/porous interface are the topic of many studies (Shavit, 2009; Nield,
2009; Hirata et al., 2009; de Lemos, 2009; Pokrajac and Manes, 2009; Ghisalberti and Nepf, 2009).

This paper focuses on the convective heat transfer problems at a fluid/porous interface and on the as-
sociated boundary conditions. Different types of boundary conditions can be found in the literature, as
summarized by Alazmi and Vafai (2001). They are obtained using different approaches. A first one is to
postulate the boundary conditions for the heat flux and the temperature at the nominal interface (Beavers
and Joseph, 1967) defined by the position of the last solid grain. Prat (1989, 1990, 1992) shows that
conditions of continuity for both the temperature and the heat flux give reasonable results for conductive
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heat transfer. For convective transfers, assuming heat flux continuity, Sahraoui and Kaviany (1994) intro-
duce a temperature jump with a slip coefficient, similar to the velocity jump introduced by Beavers and
Joseph (1967). However, the a priori determination of this slip coefficient remains difficult and very sen-
sitive to the interface location. Another approach is to derive the boundary conditions using up-scaling
methods based on the energy conservation. Using such an approach, Ochoa-Tapia and Whitaker (1997)
show that the boundary conditions involve surface excess quantities which can be modeled with jump
parameters. Valdés-Parada et al. (2006, 2007a,b, 2009a,b) compute these jump parameters by solving
closure problem in the case of mass transport. However, this method does not allow us to understand the
observed dependence between the value of the jump parameters and the interface location (Larson and
Higdon, 1986, 1987). To study this issue for momentum problems, Chandesris and Jamet (2006, 2007,
2009c,b,a) introduce an intermediate continuous scale of description, called the mesoscopic scale (see
Fig. 3.1). First, the physical transfers specific of the interfacial region are modeled at this continuous
scale. Then, the continuous model of the transfers is replaced by an equivalent discontinuous model
with jump conditions at the macroscopic scale. With this approach, the mesoscopic and the macroscopic
scales are dissociated and the dependence between the value of the jump parameters and the interface
location can be explained.

The objective of the present study is to determine the jump conditions for 2D convective heat transfer
problems with a laminar flow perpendicular to the fluid-porous interface using the two steps up-scaling
approach of Chandesris and Jamet (2006). Section 3.4 describes the first up-scaling step. The heat trans-
fers are modeled by a closed mesoscopic one-temperature equation and the associated effective thermal
coefficients are computed for several Péclet numbers. Then, in Section 3.5, the second up-scaling step
allows to derive the jump relations and to determine the surface excess quantities required to close the
macroscopic model. Finally, given the obtained results and in order to simplify the method, we look for
a particular interface location such that the jump relations vanish and the conditions of continuity are
sufficient.

transition zone

solid Interface

Microscopic scale

(Diffuse interface) (Sharp interface)

Mesoscopic scale Macroscopic scale

fluid

homogeneous free region

homogeneous

porous region

(1)
(2)

δ

Figure 3.1: Interface between the porous media and the fluid media for various scales of description
(figure adapted from Chandesris and Jamet (2007)).
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3.4 First up-scaling step

3.4.1 Microscopic model

We consider a laminar flow in a domain partially filled with a model porous medium. As illustrated
in Fig. 3.2(a), the mean flow is in the y-direction and is thus perpendicular to the fluid-porous interface.
The porous region is composed of arranged lines of squares with a porosity φ = 5/9. The study is per-
formed for moderate Peclet numbers between 0.1 and 10, where the dispersive phenomenon is smaller
than the diffusive one. The thermal conductivity ratio is fixed to kf/ks = 1/50 and the Prandtl number
to Pr = 1. Regarding the boundary conditions at the edges of the domain, at the lateral boundaries,
symmetry conditions are used for the velocity to obtain a 1D mean flow. For the temperature, an incom-
ing heat flux is imposed to obtain a 2D temperature field with gradients appropriate for the computation
of the different components of the effective thermal conductivity tensor (see Eqs (3.20) and (3.21)). At
the inlet, the boundary conditions are established profiles of temperature and velocity to report the result
that would be obtained with an infinite porous medium. These profiles are computed with a recirculation
box whose characteristics are identical to those of the main geometry. To handle the periodicity of the
recirculation box, the classical change of variables for the pressure and the temperature is used (Kawa-
mura et al., 1999; Stalio and Nobile, 2003).

The problem is considered stationary and the physical properties of the fluid and solid are assumed
to be constant. The fluid motion is governed by the Navier-Stokes equations and the heat transfer by the
convective equations
In the fluid phase

∇ · vf = 0 (3.1)

(vf · ∇)vf = −1

ρ
∇p+ ν∇2vf (3.2)

(ρcp)f∇ · (vfTf ) = ∇ · (kf∇Tf ) (3.3)

In the solid phase

0 = ∇ · (ks∇Ts) (3.4)

At the fluid-solid interface Afs, the boundary conditions are given by:

Tf = Ts (3.5)

nfs · (kf∇Tf ) = nfs · (ks∇Ts) (3.6)

vf = 0 (3.7)

where nfs is the unit normal vector directed from the fluid phase to the solid phase.
The microscopic temperature field is obtained by solving numerically Eqs. (3.1)-(3.7) on a uniform
Cartesian grid with a finite-volume method based on a second-order central-differencing scheme. Thus,
Fig. 3.2(b) represents the iso-contours of the microscopic fluid temperature computed for the geometry
presented in Fig. 3.2(a) at a Peclet number Pe = 5 and with an incoming flux on the lateral boundaries
qw = 5 (non-dimensional value).

3.4.2 Mesoscopic model

3.4.2.1 Averaging filter

The fluid and the solid phases in the porous region are substituted by an equivalent continuous
medium with the volume averaging method (Whitaker, 1999). Two types of averages are introduced
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Figure 3.2: (a) Geometrical configuration. (b) Iso-contours of the microscopic fluid temperature.

(Whitaker, 1969; Gray, 1975): the superficial average of any quantity ψα of the α phase is given by

〈ψα〉 (x) =

∫
V mp(r − x)χα(r)ψα(r)dV∫

V mp(r)dV
(3.8)

where x is the centroid of the averaging volume, χα is the indicator function of the α phase and mp is a
weighting function. The intrinsic average is related to the superficial volume average by the relation

〈ψα〉α =
〈ψα〉
φα

(3.9)

where φα is the volume fraction of the α phase within the averaging volume (φα = Vα/V ). When
choosing the weighting function mp(x) involved in Eq. (3.8), some points have to be considered. First
the averaging volume should match the topology of the porous medium. Secondly, the volume averaged
fields should contain negligible variations on scales smaller than the filter size while being sufficiently
small to preserve as much information as possible (Quintard and Whitaker, 1994; Breugem et al., 2005).
Given the topology of the porous medium, a top-hat filter based on a unit cell with one obstacle could
be used. However, the computation with different filters: top-hat, triangular shaped (top-hat convoluted
twice), quadratic shaped (top-hat convoluted three times) show that only the quadratic filter succeeds to
create averaged fields gradients free of fluctuations. These gradients are needed for the determination
of the effective coefficients (see 3.4.3). Thus, for the rest of this study, we use the quadratic weighting
function obtained from the top-hat filter convoluted three times. The size of the quadratic filter, 2ro, is
three times bigger than the top-hat filter and contains three elementary obstacles (see Figs. 3.3(a)-3.3(b)).
The size of the transition zone is 2ro and it is the smallest size which, with our method, gives access to
the effective thermal conductive coefficients.
Finally, for conciseness, the following formalism is introduced:

〈ψα〉 =
1

V

∫

V
ψαdV (3.10)
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and for the volume averaged on the fluid-solid surfaces this formalism corresponds to

1

V

∫

Afs

ψαdA =

∫
Afs

mp(r − x)χα(r)ψα(r)dA
∫
V mp(r)dV

(3.11)

solid phase 

fluid phase 

dp

averaging volume V

surface A of solid phase inside volume V

ro

(a)

 0

 0.5

 1

 1.5

-1 -0.5  0  0.5  1

x/ro
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top−hat
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(b)

Figure 3.3: (a) Illustration of the averaging volume. (b) Quadratic weighting function mp(x).

3.4.2.2 Mesoscopic one-temperature equation

Let us apply the superficial average operator to the governing microscopic equations (3.3), (3.4).
Classical developments (Quintard and Whitaker, 1993; Kaviany, 1995), using the spacial averaging the-
orems to interchange differentiation and integration, give an averaged heat transfer equation valid in the
homogeneous regions and in the interfacial transition zone:
For the fluid

(ρcp)f∇ ·
(
〈vf 〉 〈Tf 〉f

)
= ∇ ·

[
kf∇〈Tf 〉 +

kf
V

∫

Afs

nfsTfdA− (ρcp)fτvT

]

+
kf
V

∫

Afs

nfs · ∇TfdA (3.12)

where τvT = 〈Tfvf 〉 − φf 〈Tf 〉f 〈vf 〉f is a dispersive flux.
For the solid

0 = ∇ ·
[
ks∇〈Ts〉 −

ks
V

∫

Afs

nfsTfdA

]
− kf
V

∫

Afs

nfs · ∇TfdA (3.13)

Assuming the local thermal equilibrium in the homogeneous porous region and in the interfacial transi-
tion zone, we have the approximation 〈T 〉 ≈ 〈Tf 〉f ≈ 〈Ts〉s, where 〈T 〉 is the spatial volume averaged

temperature defined by 〈T 〉 = φ 〈Tf 〉f + (1 − φ) 〈Ts〉s. The one equation model is obtained by adding
Eqs. (3.12), (3.13) to give (Kaviany, 1995)

(ρcp)f∇ ·
(
〈vf 〉 〈T 〉

)
= ∇ ·

[
kf∇〈Tf 〉 + ks∇〈Ts〉 +

kf − ks
V

∫

Afs

nfsTfdA− (ρcp)fτ
′

vT

]
(3.14)
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where the dispersive vector is built based on the total spatial volume averaged temperature 〈T 〉 instead
of the intrinsic volume averaged temperature 〈Tf 〉f :

τ
′

vT = 〈Tfvf 〉 − φf 〈T 〉 〈vf 〉f (3.15)

At this stage, Eq. (3.14) is not closed due to the microscopic variables existing in the area integral term
and in the dispersive vector. Thus to close Eq. (3.14), the right hand side of the equality is substituted by
a model traducing the same transfer phenomena.
In the homogeneous porous region, the length scale constraint (ro << H) is satisfied and therefore
according to Quintard and Whitaker (1993) and Kaviany (1995) we have

(ρcp)f∇ ·
(
〈vf 〉 〈T 〉

)
= ∇ ·

(
K
p
· ∇ 〈T 〉

)
(3.16)

where K
p

is the effective thermal conductivity tensor of the porous medium.
In the homogeneous fluid region, 〈T 〉 = 〈Tf 〉 and the dispersive vector τ

′

vT is negligible1, therefore
Eq. (3.14) reduces to

(ρcp)f∇ ·
(
〈vf 〉 〈T 〉

)
= ∇ ·

(
kf I · ∇ 〈T 〉

)
(3.17)

In the interfacial transition region, we postulate that the transfer phenomenon is well represented by
an effective thermal conductivity tensor K(x), where x is the position vector. This effective thermal

conductivity tensor varies continuously in the transition zone from K
p

in the homogeneous porous region
to kf I in the free region. Thus, the closed one-temperature equation valid in the whole domain takes the
form

(ρcp)f∇ ·
(
〈vf 〉 〈T 〉

)
= ∇ ·

(
K(x) · ∇ 〈T 〉

)
(3.18)

To close the model at the mesoscopic scale, the effective thermal conductivity tensor K(x) must be
determined.

3.4.3 Determination of the effective thermal conductivity tensor

As shown in Fig. 3.2(b), the domain is submitted to a temperature stress in the x- and y- directions.
As the effective thermal tensor is a property of the medium and of the flow, it should not be dependent
on the temperature stress. Consequently the effective thermal tensor should not be dependent on the
x- direction in accordance with both the geometry of the domain and the imposed flow. The effective
thermal conductivity tensor K(y) is obtained by comparing the unclosed equation (3.14) with the closed
one (3.18). Therefore

K(y) · ∇ 〈T 〉 = kf∇〈Tf 〉 + ks∇〈Ts〉 +
kf − ks
V

∫

Afs

nfsTfdAfs − (ρcp)fτ
′

vT (3.19)

where the two first terms of the right hand side of Eq. (3.19) represent the conductive contribution while
the third one represents the tortuosity, the last one being the dispersion contribution. The components of
K(y) are evaluated by computing the right hand side of the relation (3.19) in the x- and y- directions. Due
to the shape of the temperature field, there exists a position, x = 0, where the gradient of the temperature
in the x- direction is nul. At this particular position, the components of the tensor are easily computable
and reveals the nullity of the extra-diagonal terms. Thus, the diagonal components Kxx and Kyy are
given by

Kxx(y) =

[
kf
∂ 〈Tf 〉
∂x

+ ks
∂ 〈Ts〉
∂x

+
kf − ks
V

∫

Afs

nfsTfdAfs · x − (ρcp)fτ
′

vT · x

]
/
∂ 〈T 〉
∂x

(3.20)

Kyy(y) =

[
kf
∂ 〈Tf 〉
∂y

+ ks
∂ 〈Ts〉
∂y

+
kf − ks
V

∫

Afs

nfsTfdAfs · y − (ρcp)fτ
′

vT · y

]
/
∂ 〈T 〉
∂y

(3.21)

1in the homogeneous free region, the fluctuations are negligible and ψf ∼ 〈ψf 〉
f
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Furthermore, the assumption that the effective thermal conductivity tensor is not dependent on the x-
direction has been confirmed by computing the profiles of Kxx and Kyy for different x locations.

Figs. 3.4 and 3.5 present the influence of the Péclet number on the effective conductive components
Kxx and Kyy. As expected, the values of the effective thermal conductivities Kxx and Kyy are constant
in the homogeneous regions and vary continuously in the transition zone. In the homogeneous porous
region, the dependency of Kyy with the Péclet number is more important than for Kxx. This result is ex-
pected since the mean flow is normal to the interface. As the Péclet number increases, the convective part
of the transfer increases in the y- direction and affects directly Kyy, which represents the heat transfer
in this direction. In the interfacial zone, the variation zone of Kyy spreads over with the Péclet number
and a bump comes out at Pe = 10. At the same Péclet number, a small bump is also observed on the
Kxx profile at the end of the interfacial zone. These behaviors are due to recirculations at the exit of the
porous media that become more and more important with the increase of the Reynolds number.

Figure 3.4: Profiles of Kxx for various Péclet numbers.

Figure 3.5: Profiles of Kyy for various Péclet numbers.

The homogeneous porous values of Kyy and Kxx obtained for various Péclet numbers are reported in

Fig. 3.6. On the same figure, the associated dispersive values Kdis
ii = −(ρcp)fτ

′

vT · i/
∂ 〈T 〉
∂i

in the x- and

y-direction are added. As expected, Kdis
yy varies with Pe2 (see Fig. 3.6 where the Pe2 tendency is drawn)
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and Kdis
xx ≈ 0 for low Péclet numbers (Pe < 10) in accordance with the results reported in (Kaviany,

1995).

Figure 3.6: Values of the effective thermal conductivities and their dispersive part in the porous medium.

3.5 Second up-scaling step

At the macroscopic scale, the problem is composed of homogeneous porous and free regions sepa-
rated by a discontinuous interface. In the homogeneous regions, the media properties are constant and the
energy transfer is modeled by partial differential equations equivalent to the mesoscopic ones far away
from the interface. However the exact interface location and the jump relations that must be imposed are
unknown. The purpose of this section is to derive the macroscopic jump relations from the mesoscopic
scale using conservation principles and to investigate the choice of the interface location, written ym.

3.5.1 Generic analysis

To ensure the conservation of the transfers between the macroscopic and mesoscopic modelings, we
use the generic analysis method (Edwards et al., 1991) based on two principles:

(i) the comparison of the conservation equations in the whole domain between the macroscopic and
mesoscopic scales;

(ii) the equivalence between the macroscopic and the mesoscopic terms in the homogeneous regions.

Therefore, the remainder terms represent the transfers not considered by the macroscopic modeling in
comparison with the mesoscopic one. Indeed the continuous description of the interface at the meso-
scopic scale is replaced by a surface of discontinuity with constant values on each side at the macro-
scopic scale. Thus, the macroscopic model forgets the variations of the effective properties existing in
the interfacial transition zone, and the generic analysis method reports this difference.

At the macroscopic scale, the transfer phenomena are modeled using constant properties:

In the homogeneous porous region: (ρcp)f∇ · (vmT pm) = ∇ ·
(

K
p
· ∇T pm

)
(3.22)

In the homogeneous fluid region: (ρcp)f∇ ·
(

vmT lm
)

= ∇ ·
(
kf Id · ∇T lm

)
(3.23)
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where T pm and T lm are the temperatures in the porous and the fluid regions, respectively at the macroscopic
scale corresponding to the mesoscopic spatial volume averaged temperature 〈T 〉; and vm is the velocity at
the macroscopic scale corresponding to the mesoscopic superficial averaged velocity 〈vf 〉. The principle
(i) of the generic analysis method is applied to Eqs. (3.18), (3.22), (3.23) and leads to

∫ ym

H−

(ρcp)f∇ ·
(
〈vf 〉 〈T 〉 − vmT pm

)
dy +

∫ H+

ym

(ρcp)f∇ ·
(
〈vf 〉 〈T 〉 − vmT lm

)
dy =

∫ ym

H−

∇ ·
(

K(y) · ∇ 〈T 〉 − K
p
· ∇T pm

)
dy +

∫ H+

ym

∇ ·
(

K(y) · ∇ 〈T 〉 − kf Id · ∇T lm
)
dy (3.24)

Using the equivalence between the macroscopic and the mesoscopic terms in the homogeneous regions
(see (ii)), Eq. (3.24) reduces to:

qlY m(x, ym) − qpY m(x, ym) =

∫ ym

H−

[
∂

∂x

(
Kxx(y)

∂ 〈T 〉
∂x

−Kp
xx
∂T pm
∂x

)]
dy+

∫ H+

ym

[
∂

∂x

(
Kxx(y)

∂ 〈T 〉
∂x

− kf
∂T lm
∂x

)]
dy (3.25)

where qY m = (ρcp)fvmTm −Kyy∂Tm/∂y stands for the macroscopic total heat flux in the y- direction.
The right hand side of the equation (3.25) corresponds to the quantity not considered by the macroscopic
modeling in comparison with the mesoscopic one. This quantity is called surface-excess quantity and
noted as (Jamet and Chandesris, 2009):

(ψ)ex(ym) =

∫ ym

H−

(〈ψ〉 − ψpm)dy +

∫ H+

ym

(〈ψ〉 − ψlm)dy (3.26)

According to this notation the jump relation on the heat flux (3.25) is rewritten

qlY m(x, ym) − qpY m(x, ym) =

[
∂

∂x

(
Kxx

∂ 〈T 〉
∂x

)]ex
(3.27)

The jump relation for the total heat flux corresponds to the energy conservation between the lower part
and the upper part of the transition region. In our case, an incoming heat flux on the lateral boundaries
creates a temperature gradient in the x- direction. Consequently, the conservation of the energy between
the macroscopic and mesoscopic descriptions results with an excess surface convective transport in the
x- direction.

The temperature jump is obtained from the difference between the mesoscopic conductive heat flux
in the y- direction 〈qcY 〉 = −Kyy∂ 〈T 〉 /∂y and the following macroscopic equations

In the homogeneous fluid region: qlcY m = −kf
∂T lm
∂y

(3.28)

In the homogeneous porous region: qpcY m = −Kp
yy
∂T pm
∂y

(3.29)

Performing the same developments as previously, the temperature jump relation takes the following form:

T lm(x, ym) − T pm(x, ym) = −
(
〈qcY 〉

1

Kyy

)ex
(3.30)

The jump relation for the temperature involves the excess quantity of the product of the conductive flux
time to the thermal resistance. This jump relation is identical to the one presented by Jamet and Chan-
desris (2009) for a purely conductive heat transfer problem.

61



CHAPTER 3 : Free-porous interface modeling for laminar heat transfer at local thermal
equilibrium

Jump relations for the temperature and the heat flux have been derived. However, they depend on the
mesoscopic unknowns 〈T 〉 and 〈qcY 〉 and are thus not closed. To obtain closed jump relations, another
method called the matched asymptotic expansions is used. This method allows us to determine the
macroscopic temperature as Taylor series expansions solution of the mesoscopic equation.

3.5.2 Method of matched asymptotic expansions

The method of the matched asymptotic expansion is a mathematical tool used to solve partial differ-
ential equations with variable coefficients (Zwillinger, 1989; Zeytounian, 1986; Chandesris and Jamet,
2006). It is commonly used to study diffuse interface problem (Emmerich, 2003) and therefore well
adapted for the resolution of Eq. (3.18) of the mesoscopic scale. Indeed, the coefficient K(y) in (3.18)
strongly varies in function of y/ε , ε being the ratio between the width of the interfacial transition zone
and the characteristic length of the whole domain (see Figs. 3.4-3.5). Macroscopic approximated so-
lutions of the mesoscopic equation will be obtained at different orders. The detailed developments are
presented in Appendix 3.8. Only the main results are presented in the following.

3.5.2.1 Resolution at order 0

The approximated solution at order 0 of the mesoscopic model is given by:

Tm = T (0)
m (3.31)

where T (0)
m satisfies the system of equations (3.22) and (3.23) and the following jump relations (see

Appendix 3.8 Eqs. (3.58) and (3.65)):

q
l(0)
Y m(x, y+

m) − q
p(0)
Y m (x, y−m) = 0 (3.32)

T l(0)m (x, y+
m) − T p(0)m (x, y−m) = 0 (3.33)

Thus, at order 0, continuity of the temperature and of the total heat flux in the y-direction is obtained. The
surface-excess quantities do not appear in these boundary conditions compared to the results obtained
in 3.5.1.

The solutions Tm for different interface locations are presented with the averaged microscopic solu-
tion in Fig. 3.7. The values of the macroscopic temperatures in the homogeneous free region vary with
the interface location. The error is due to the no-conservation of the energy between the mesoscopic
modeling and the macroscopic one when conditions of continuity are used. As the error depends on the
interface location, there exists one particular position (ym ≈ 0) where the conservation of the energy is
verified. In that case, the macroscopic temperature Tm matches the averaged microscopic temperature of
reference.

3.5.2.2 Resolution at order 1

The approximated solution at order 1 corresponds to the increase of the resolution order of the meso-
scopic equation (3.18). This solution takes the form in ε

Tm = T (0)
m + ε T (1)

m (3.34)

where T (0)
m is the solution at order 0 while T (1)

m is the correction term at first order and ε the non-
dimensional parameter related to the transition zone. At this order, Tm satisfies the system of equations
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Figure 3.7: Macroscopic temperature at zeroth order for x = 0(
T ∗ =

T − (〈T 〉 (0;H−) + 〈T 〉 (0;H+))/2

〈T 〉 (0;H+) − 〈T 〉 (0;H−)

)
.

(3.22) and (3.23) and the following jump relations (see Appendix 3.8 Eqs. (3.68) and (3.66)):

qlY m(x, y+
m) − qpY m(x, y−m) =

∂2T
(0)
m

∂x2
(x, ym) (Kxx)

ex (3.35)

T lm(x, y+
m) − T pm(x, y−m) = −q(0)Y,c m(x, ym)

(
1

Kyy

)ex
(3.36)

The jump relations at order 1 are characterized by the same transfer phenomena that exist in the jump
relations obtained using the generic analysis (3.27)-(3.30). However, the form of the jump relations at
order 1 is different. It is indeed composed of a macroscopic unknown term and an excess quantity of a
component of the effective thermal conductivity tensor that is known. Thus, the macroscopic problem is
closed.

Since the effective conductivities in the homogeneous regions are constant and different, the excess
quantity (3.26) can be rewritten such as (Jamet and Chandesris, 2009)

(ψ)ex(ym) = (ψl − ψp)(ym − yψ) (3.37)

where yψ is the center of gravity of the effective coefficient ψ. Actually, yψ corresponds to the particular
location of the interface where (ψ)ex(ym) = 0. It is characteristic of the ψ profile in the interfacial
transition region, and consequently of the interfacial transfer. Here, the involved centers of gravity are

y 1
Kyy

and yKxx associated to the excess values

(
1

Kyy

)ex
and (Kxx)

ex. Thus, y 1
Kyy

and yKxx are com-

puted for several Péclet numbers and compared with the nominal interface location ynom according to
(yψ− ynom)/dp (see Fig. 3.8). We recall that the nominal interface corresponds to the position of the last
solid grain (Beavers and Joseph, 1967). The center of gravity yKxx is located near the nominal interface
and hardly varies with the Péclet number in accordance with the mean flow in the y- direction. On the
contrary, the center of gravity y 1

Kyy
depends on the Péclet number and strongly differs from the nominal

interface when the fluid velocity increases. This reflects the expansion of the dispersive transfer in the
direction normal to the interface.
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Figure 3.8: Center of gravity for various Péclet values (y∗ = (yψ − ynom)/dp).

Using the formulation of the above excess quantities, the jump relations at order 1 can be rewritten as
follows:

qlY m(x, y+
m) − qpY m(x, y−m) =

∂2T
(0)
m

∂x2
(x, ym)

(
K l

xx −Kp
xx

)
(ym − yKxx) (3.38)

T lm(x, y+
m) − T pm(x, y−m) = −q(0)Y,c m(x, ym)

(
1

K l
yy

− 1

Kp
yy

)
(ym − y 1

Kyy
) (3.39)

Thus, the jump relations at order 1 depend on intrinsic interfacial properties (y 1
Kyy

, yKxx), on the location

of the interface ym and on the properties of the homogeneous media (K l
yy, Kp

yy, K l
xx, Kp

xx). There-
fore, the jump relations at order 1 are easy to compute and the solutions of the macroscopic model at
order 1 obtained for several interface locations are presented in Fig. 3.10. The macroscopic solutions
exactly match the temperature of reference in both homogeneous regions. In particular, the values in
the homogeneous fluid region do not vary with the interface location unlike the order 0. The first order
correction ensures the conservation of the energy between the macroscopic and mesoscopic models for
each interface location (see Fig. 3.9).
In fact, the macroscopic temperature at first order is obtained in two steps. First, it is necessary to solve
the macroscopic model at zeroth order to obtain the coefficients ∂2T

(0)
m /∂x2 and q(0)Y,c m, and then the

macroscopic model at order 1 can be solved. This two-step resolution gives correct temperature in the
homogeneous regions whatever the interface location. However, it requires two numerical resolutions
and the numerical implementation of the jump conditions. For these reasons, we will try to determinate
if the conditions of continuity can be used at a particular interface location.

3.6 Determination of the apparent interface

3.6.1 Procedure

At this stage, the jump conditions are determined and the dependence of the jump parameters with
the interface location is understood. However, to avoid the numerical implementation of the jump condi-
tions and the two-step numerical resolution, we investigate the alternative approach of Duman and Shavit
(2009) and look for the apparent interface which is defined as the interface location where the boundary
conditions of continuity are sufficient.
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Figure 3.9: Correction term at first order T (1)
m for x = 0

(
T ∗ =

T
(1)
m

〈T 〉 (0;H+) − 〈T 〉 (0;H−)

)
.

Figure 3.10: Macroscopic temperature at first order for x = 0(
T ∗ =

T − (〈T 〉 (0;H−) + 〈T 〉 (0;H+))/2

〈T 〉 (0;H+) − 〈T 〉 (0;H−)

)
.

A first idea to locate the apparent interface is to find the position ym where the jump at order 1 van-
ish thanks to

(
1/Kyy

)ex
= (Kxx)

ex = 0. In such a case, the apparent interface would be defined by
ym = yKxx = y1/Kyy . However, this is available only if the centers of gravity yKxx and y1/Kyy coincide.
For low Péclet numbers, the previous results show that the locations of the centers of gravity are almost
equal (see Fig. 3.8). Thus, the two jump relations at order 1 vanish at the same location and the apparent
interface location is easily found. For high Péclet numbers, the locations of the centers of gravity are
different (see Fig. 3.8) and no obvious apparent interface location can be proposed.

Since T (1)
m depends on the interface location (see Fig. 3.9), another idea is to look for the interface

location such that the correction term T
(1)
m (x, y) has no-contribution in the homogeneous regions. Thus,

T
(1)
m (x, y) must verify the condition limy→±∞ T

(1)
m = 0. The correction term T

(1)
m (x, y) verifies Eqs. (3.22),
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(3.23) and the convergent solution in each homogeneous regions is:

In the free region: T (1)l
m (x, y) = A(x) exp

(
−(ρcp)fvmy

K l
yy

(√
1 +X l/Pe2 − 1

2

))
(3.40)

In the porous region: T (1)p
m (x, y) = B(x) exp

(
(ρcp)fvmy

Kp
yy

(
1 +

√
1 +Xp/Pe2

2

))
(3.41)

where A(x) and B(x) are unknown functions of x, and Xi = 4(Ki
yyK

i
xx/k

2
f )(2kπ)2(dp/(xg − xd))

2

with xg and xd the lateral boundaries. For high Péclet numbers, 1 + Xi/Pe2 ≈ 1 and the solutions in
the homogeneous regions (3.40) and (3.41) simplify as follows:

T (1)l
m (x, y) = A(x) (3.42)

T (1)p
m (x, y) = B(x) exp

(
(ρcp)fvmy

Kp
yy

)
(3.43)

The jump relations at the interface (3.35) and (3.36) allow to determine A(x) and B(x) and leads to

T (1)l
m (x, y) =

∂2T
(0)
m

∂x2
(x, ym) (Kxx)

ex (3.44)

T (1)p
m (x, y) =

(
∂2T

(0)
m

∂x2
(x, ym) (Kxx)

ex + (ρcp)fvm q
(0)
Y,c m(x, ym)

(
1

Kyy

)ex)

exp

(
(ρcp)fvm(y − ym)

Kp
yy

)
(3.45)

which correspond to the profile of Fig. 3.9. At this point, the correction term T
(1)
m is general and sat-

isfies Eqs. (3.44) and (3.45) in both the homogeneous regions. To determine the particular correction
term T

(1)
m , the condition limy→±∞ T

(1)
m = 0 is imposed to Eqs. (3.44) and (3.45). In the homogeneous

porous region, T (1)p
m verifies this condition for any interface locations because of the exponential decay.

In the homogenous free region, T (1)l
m verifies the condition only if (Kxx)

ex = 0. Therefore, there is only

one interface location ym = yKxx , for which the contribution of the correction term T
(1)
m is zero in the

homogeneous regions.

Under these circumstances, we claim that the apparent interface exists for 2D convective problems and
is located at ym = yKxx for low and high Péclet numbers. Let us note that the apparent interface corre-
sponds to the location where the flux continuity is verified. The flux conservation leads the transfers at
the interface and must be carefully considerate. In the following, we will illustrate this result on complex
interfacial geometries.

3.6.2 Illustration

Commonly, the macroscopic problem is solved with boundary conditions of continuity applied at the
nominal interface (the plane tangential to the last cube). This modeling can give sometimes good results,
but for complex cases the use of the apparent interface is more appropriate. In the previous section,
developments have been made to characterize the location of the apparent interface and we will illustrate
here the suitability of the result. To do this, rough interfaces are used with different locations of the
nominal interface (see Fig. 3.11). The microscopic simulations are made for a moderate Péclet number
such as Pe = 5. The components of the effective thermal tensor and their associated center of gravity
are reported on Fig. 3.12. It is found that the center of gravity yKxx does not depend on the interface
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y=0

nominal interface

(a) (b) (c) (d)

interface of reference

Figure 3.11: Geometry of the interface.
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Figure 3.12: Center of gravity for various interfacial geometries

(
y∗ =

y − yref

dp

)
with yref being the

nominal interface for the geometry without rugosity.

geometry and is clearly separated from the nominal interface. Thus the flux continuity is not always
verified at the nominal interface and the use of rough interface illustrates it.

Using the geometry (d), the macroscopic models with boundary conditions of continuity at the apparent
interface and at the nominal one are solved respectively. The resulting macroscopic temperatures are
compared to the averaged microscopic temperature of reference. In Fig. 3.13 the temperature profile at
x = 0 are represented. They show that the correct temperature profiles in the homogeneous region are
recovered when the interface is located at ym = yKxx . If the interface is located at the nominal interface,
the corresponding macroscopic profile in the homogeneous free region exhibits a large difference with
the correct profile. The qualitative results in two-dimension are illustrated in Fig. 3.14. These results
are obtained for the geometry (d) with the Péclet number Pe = 5 and an incoming flux qw = 5 (non-
dimensional value) at the lateral boundaries. Fig. 3.14 shows that the mesoscopic temperature field
obtained from the averaged microscopic results is identical to the solution of the macroscopic model
computed for boundary conditions of continuity at ym = yKxx .
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Figure 3.13: Macroscopic temperature at zeroth order for x = 0(
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Figure 3.14: 2D temperature field: (a) microscopic scale, (b) averaged microscopic solution, (c) macro-
scopic solution.

For complex interfacial geometries, the question of the interface location is crucial. Indeed, the boundary
conditions of continuity cannot be applied anywhere to get accurate macroscopic solution and only the
apparent interface is pertinent. Thus, the determination of the apparent interface developed here answers
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this question and the results illustrate in Figs. 3.13-3.14 show the relevance and the generality of the
location.

3.7 Conclusion

The main objective of this paper is to determine the boundary conditions that must be applied at
a fluid/porous interface in the case of convective heat transfer. A multi-scale approach based on three
descriptions of the interface and two distinct up-scaling steps has been presented.
The first up-scaling step corresponds to the switch over between the microscopic and the mesoscopic
scales. It is performed using the volume averaging method. A mesoscopic model is derived and the
physical transfers specific of the interfacial transition region are modeled through effective transfer co-
efficients determined in the whole domain. At this scale, the interface is diffuse and there is no need to
specify an exact interface location.
The second up-scaling step consists in determining the boundary conditions at the fluid/porous interface
to close the macroscopic problem. The generic analysis is one method to provide boundary condi-
tions containing surface excess quantities. However, the obtained relations involve unknown mesoscopic
terms. For this reason, the method of the matched asymptotic expansion has been used. It provides
approximated solutions of the mesoscopic equation at different orders, which satisfy jump relations at
the interface. At order 0, the continuity of the heat flux and of the temperature are satisfied. At first
order, the jump relations involve excess quantities of the effective thermal conductivities determined at
the mesoscopic scale. Therefore, the jump relations at zeroth and first order are closed and depend only
on intrinsic characteristic of the interface. Thus, the macroscopic problem can be solved. After solving
the macroscopic model at different orders, we conclude that only the resolution at first order gives the
correct temperature profile in the homogeneous regions whatever the location of the interface. For this,
it is necessary to proceed in two steps. The macroscopic model at order 0 has to be solved first to get the
macroscopic terms involved in order 1 jump relations, then the macroscopic model at first order can be
solved.
Furthermore, the existence and the location of an apparent interface has been obtained. It allows the cor-
rect determination of the macroscopic temperature using only the continuity condition. For the studied
2D convective problem, it corresponds to the center of gravity of Kxx. This apparent interface presents
the advantage to considerably simplify the numerical implementations required to solve the macroscopic
problem.
Future work will examine the case of the two-temperature model.

3.8 Appendix

3.8.1 Appendix1: The matched asymptotic expansion method

In the case of heat transfer between a porous layer and a plain fluid, let us write the mesoscopic
one-temperature equation (see Eq. 3.18)

(ρcp)f∇ ·
(
〈vf 〉 〈T 〉

)
= ∇ ·

[
K(y) · ∇ 〈T 〉

]
(3.46)

which is equivalent to
∇ · 〈q〉 = 0 (3.47)

where 〈q〉 is the mesoscopic total heat flux. The method of the matched asymptotic expansion consists

in breaking up the domain in three parts: an inside region where the tensor K(y) strongly varies and two
outside regions where it is constant. Furthermore, the tensor depends on ε in the interfacial transition
zone where ε = δ/L, δ being the size of the inside region and L the length of the domain. In the outside
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regions, the macroscopic temperatures solution of Eq. (3.46) take the shape of asymptotic expansions in
ε

T lm(x, y) = T l(0)m (x, y) + εT l(1)m (x, y) + O(ε2), in the fluid region (3.48)

T pm(x, y) = T p(0)m (x, y) + εT p(1)m (x, y) + O(ε2), in the porous region (3.49)

In the inside region, the tensor strongly varies. Thus, a new variable y = (y − ym)/ε is introduced to
make the coefficients K̂xx(ŷ) and K̂yy(ŷ) go slower and to be able to perform the expansion. With this
change of variable, the expression of the temperature in the inside region is:

T̂ (x, ŷ) = T̂ (0)(x, ŷ) + εT̂ (1)(x, ŷ) + O(ε2) (3.50)

and K̂xx(ŷ) and K̂yy(ŷ) do not depend on ε.
In the outside regions, the interface is located at the boundary y+

m for the free medium and y−m for the
porous medium. From the inside region standpoint, the free and porous homogeneous regions are placed
at ŷ = ±∞. To obtain a solution in the whole domain, a tie must be made between the inside and the
outside regions. This tie is given by the matching conditions (Zwillinger, 1989). At zeroth and first
orders, they can be written for any physical term ψ

lim
by→±∞

ψ̂(0)(x, ŷ) = lim
y→±ym

ψ(0)
m (x, y) (3.51)

lim
by→±∞

[
ψ̂(1)(x, ŷ) − ŷ lim

y→±ym

∂ψ
(0)
m (x, y)

∂y

]
= lim

y→±ym

ψ(1)
m (x, y) (3.52)

3.8.1.1 Jump relations for the total heat flux

The asymptotic expansions in ε are introduced in Eq. (3.47) in the inside region and in the outside
regions. Consequently, the system of equations at zeroth and first order in ε is obtained:
Outside problem, fluid region (for the porous region, the equations are similar):

∂q
l(0)
Xm

∂x
+
∂q

l(0)
Y m

∂y
= 0 ;

∂q
l(1)
Xm

∂x
+
∂q

l(1)
Y m

∂y
= 0 (3.53)

Inside problem:

∂q̂
(0)
Y

∂ŷ
= 0 (3.54)

∂q̂
(0)
X

∂x
+
dq̂

(1)
Y

∂ŷ
= 0 (3.55)

To provide the jump relation for the total heat flux at order 0, Eq. (3.54) is integrated

q̂
(0)
Y (x, ŷ) = k1(x) (3.56)

where k1(x) does not depend on ŷ and must be determined. The matching condition (3.51) applied at
the boundaries between the inside/outside regions gives the values of the total heat flux on each side of
the interface:

lim
by→±∞

q̂
(0)
Y (x, ŷ) = k1(x) = q

l,p(0)
Y m (x, y+

m) (3.57)

Then, the difference between the fluid and porous values leads to:

q
l(0)
Y m(x, y+

m) − q
p(0)
Y m (x, y−m) = 0 (3.58)
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Thus, the total heat flux in the y- direction is continuous at zeroth order at the interface.

To provide the jump relation for the total heat flux at order 1, Eq. (3.55) is rewritten with the appro-
priate macroscopic term on each side of the equality and is then integrated over the fluid region:

∫ +∞

0

∂

∂ŷ

[
q̂
(1)
Y − ŷ lim

y→+ym

∂q
l(0)
Y m

∂y
(x, y)

]
dŷ = −

∫ +∞

0

[
∂q̂

(0)
X

∂x
+ lim
y→+ym

∂q
l(0)
Y m

∂y
(x, y)

]
dŷ (3.59)

Using the boundary y+
m of Eq. (3.53), the matching condition (3.52) for the total heat flux and the relation

ŷ = (y − ym)/ε, Eq. (3.59) takes the following form:

q
l(1)
Y m(x, y+

m) − q̂
(1)
Y (x, 0) = −1

ε

∫ +∞

y+m

[
∂q̂

(0)
X

∂x
− ∂q

l(0)
Xm

∂x
(x, y+

m)

]
dy (3.60)

A similar development is realized for the porous region and the sum of the two results gives:

q
l(1)
Y m(x, y+

m) − q
p(1)
Y m (x, y−m) = −1

ε

∫ +∞

y+m

[
∂q̂

(0)
X

∂x
− ∂q

l(0)
Xm

∂x
(x, y+

m)

]
dy

− 1

ε

∫ y−m

−∞

[
∂q̂

(0)
X

∂x
− ∂q

p(0)
Xm

∂x
(x, y−m)

]
dy

With the definition of the excess value, the expression of the jump relation of the total heat flux at order
1 in the y- direction becomes:

q
l(1)
Y m(x, y+

m) − q
p(1)
Y m (x, y−m) = −1

ε

(
∂q̂

(0)
X

∂x

)ex
(3.61)

3.8.1.2 Jump relations for the temperature

The jump relations for the temperature are computed from the definition of the conductive heat flux.
Using the asymptotic expansion (3.48), (3.49) and (3.50) in the conductive flux equation, the differential
equations at zeroth and first order for the outside regions and for the inside region are obtained. Only the
equations for the conductive heat flux in the inside region and in the y- direction are written here:

0 = −K̂yy
∂T̂ (0)

∂ŷ
(3.62)

q̂
l(0)
Y,c = −K̂yy

∂T̂ (1)

∂ŷ
(3.63)

To get the jump relation for the temperature at zeroth order, Eq. (3.62) is integrated, which gives, since
K̂yy is not nul:

T̂ (0)(x, ŷ) = k2(x) (3.64)

where k2(x) does not depend on ŷ and must be determined. Then, the matching condition (3.51) gives
the continuity of the temperature at order 0:

T l(0)m (x, y+
m) − T p(0)m (x, y−m) = 0 (3.65)

To determine the jump relation for the temperature at first order, the previous developments are realized
from Eq. (3.63) and leads to:

T l(1)m (x, y+
m) − T p(1)m (x, y−m) = −q(0)Y,c m(x, ym)

1

ε

(
1

Kyy

)ex
(3.66)
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Furthermore, the temperature at zeroth order in the inside region T̂ (0) is constant and worths T (0)
m (x, ym).

Thus, the heat flux in the x- direction takes the following form:

q̂
(0)
X = −Kxx

dk2

dx
(x) = −Kxx

∂T
(0)
m

∂x
(x, ym) (3.67)

Thanks to this writting, the jump relation of the total heat flux (3.61) at order 1 becomes:

q
l(1)
Y m(x, y+

m) − q
p(1)
Y m (x, y−m) =

1

ε

∂2T
(0)
m

∂x2
(x, ym) (Kxx)

ex (3.68)
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3.9 Conclusion

The issue of this chapter is to derive the jump conditions that must be applied at a free-porous in-
terface for heat transfer at local thermal equilibrium. Using a multi-scale approach, we perform two
up-scaling steps and obtain three descriptions of the interface (see Tab. 3.1 hereafter).

In the first up-scaling step, we change the scale of description from microscopic to mesoscopic using
the method presented in Chapter 1. At this scale of description, the interface is diffuse and the domain
is separated in three parts: an homogeneous porous region where the effective properties are constant,
a transition zone where the effective properties vary continuously and a free region with constant prop-
erties. The issue is to characterize the heat transfer with a continuous one-temperature equation (3.69c)

valid in the whole domain and to determine the effective coefficient K.
Performing the first and second steps of the volume averaging method, we obtain a non-closed model
and a closed model. By construction, the non-closed model is valid in the whole domain including the
transition zone, while we derive the closed model in the homogeneous porous region, then we extend it
to the rest of the domain. The relations given the effective coefficients are determined by identification
between the closed and the non-closed models and computed with microscopic temperature and velocity
fields of a numerical simulation. However, the relation involves the division by a temperature gradient
and its computation requires specific microscopic temperature fields with non-zero gradients. This con-
straint is very limiting at a free-porous interface. Indeed, at the exit of the porous matrix, it exists in the
microscopic velocity field, recirculating structures that change the local temperature gradient. In order to
verify the constraint, we use complex boundary conditions to impose the non-zero temperature gradient

in the transition zone. Thus, we determine the effective coefficient K for different Peclet numbers.

In the second up-scaling step, we change the scale of description from mesoscopic to macroscopic. At
this scale of description, the interface is modeled as a surface of discontinuity that separates the domain
in two homogeneous regions, a porous one and a free one. The issue is to replace the continuous model-
ing of the interface by equivalent closed jump conditions. The most appropriate method is the method of
matched asymptotic expansion that gives an approximate solution of the continuous problem.
We obtain solutions at order 0 that result from a macroscopic model made of the equations (3.69d) and
(3.69e) in the homogeneous porous and free region, coupled at the free-porous interface by boundary
conditions of continuity for the temperature and the heat flux. However, these solutions depend of the
interface location.
Then, increasing the order of resolution, we derive boundary conditions at order 1 with jump conditions
for the temperature (3.69f) and the heat flux (3.69g). These jump conditions involve excess values of ef-
fective transfer coefficients, macroscopic quantities of the solution at order 0, and the interface location.
Thus, the jump conditions are closed and the dependence with the interface location is made explicit. As
a consequence, we obtain solutions at order 1 free of the interface location.
Furthermore, we propose a best interface location for which the boundary conditions of continuity give
an accurate modeling of the heat transfer. This interface is called apparent interface and located at the

center of gravity of
(
Kf
xx

)ex
. For continuity boundary conditions at any other location, the total heat

flux is not conserved and it results in an error estimated by the relation (3.69h).

In Chapter 4, we increase the complexity of the heat transfer problem by adding a volume source in
the solid matrix to create a local thermal non-equilibrium.
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At the microscopic scale

(ρcp)f∇ · (vfTf ) = −∇ · (kf∇Tf ) , for the fluid phase (3.69a)

0 = −∇ · (ks∇Ts) , for the solid phase (3.69b)

At the mesoscopic scale

(ρcp)f 〈vf 〉 · ∇ 〈T 〉 = ∇ ·
(

K(x) ∇〈T 〉
)

(3.69c)

At the macroscopic scale
In the porous region (H− < y < ym)

(ρcp)fV · ∇T pm = ∇ ·
(

K
p
· ∇T pm

)
(3.69d)

In the free region (ym < y < H+)

(ρcp)fV · ∇T lm = ∇ ·
(

K
l
· ∇T lm

)
(3.69e)

At the porous-free interface ym

[T fm] = −
(

1

Kyy

)ex

q(0)cym (3.69f)

[qfym] = (Kxx(y))
ex ∂

2T
(0)
m

∂x2
(3.69g)

The correction term in the free region is:

T (1)
m =

(
Kf
xx

)ex ∂2T
f(0)
m

∂x2
(3.69h)

Table 3.1: Synthesis of the models used for the three scales descriptions.
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Chapter 4

Free-porous interface modeling for
laminar heat transfer at local thermal
non-equilibrium

4.1 Introduction

In Chapter 2, we applied the multi-scale approach, proposed by Chandesris and Jamet (2006, 2007,
2009c,b,a) for momentum problems, to heat transfer at local thermal equilibrium. Thus, we have de-
termined the jump conditions for 2D convective heat transfer with a laminar flow perpendicular to the
fluid-porous interface. These jump conditions are easily computable knowing the profile of the effec-
tive conductivity tensor in the interfacial transition zone and the interface location. This profile can be
obtained through a numerical simulation. However, beyond the closure of the macroscopic model with
jump conditions, we obtained two essential pieces of information about the heat transfer at a free-porous
interface:

• to correctly capture the heat transfer phenomena at a free-porous interface the essential is to con-
serve the total heat flux;

• we can evaluate the error done using boundary conditions of continuity for a chosen interface
location.

Getting similar information in the case of heat transfer at local thermal non-equilibrium is the main ob-
jective of this chapter.
In this chapter, we increase the complexity by adding a volume source in the solid matrix to create a
local thermal non-equilibrium between the solid and fluid phases. Performing the multi-scale approach
on such a heat transfer problem, a new difficulty arises: the coupling at the free-porous interface of the
two-temperature model in the porous region with the one-temperature model in the free region. To re-
store an identical number of equations on each side of the interface, we introduce a new writing. Thus,
we can discuss the heat transfer modeling at the free-porous interface and bring the essential information
that we are looking for.
The results regarding the jump conditions that must applied at a free-porous interface in the case of local
thermal non-equilibrium are presented in an article submitted to the International Journal of Heat and

Mass Transfer.
Finally in Section 4.8, the results obtained allow to discuss the existence of an apparent interface where
continuity boundary conditions can be applied. The discussion on the apparent interface is illustrated
with several examples relevant for nuclear applications.

This chapter is a step in the understanding of the transfer phenomena existing in a reactor core. Even if
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we use for the study a very low Reynolds number Re = 5, the form of the jump conditions and the key
results are independent of the velocity. They are valid for laminar flows with high Peclet number and for
turbulent flows as we will see in Chapter 6. Thus, the knowledge of the physical phenomena created by
the local thermal non-equilibrium can be used for turbulent flows as we will see in Chapters 4 and 5.
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4.1 Article 2

4.2 Article 2: Coupling a two-temperature model and a one-temperature
model at a fluid-porous interface

A. d’Hueppe a, , M. Chandesris a, , D. Jamet a, B. Goyeau b

submitted at International Journal of Heat and Mass Transfer

a CEA, DEN, DER/SSTH/LDAL, 17 rue des martyrs, F-38054 Grenoble, France
b EM2C,UPR-CNRS 288,Ecole Centrale Paris,Grande Voie des Vignes,Châtenay-Malabry, France

Abstract. We study a convective heat transfer problem in a fluid-porous domain in the case of the
local thermal non-equilibrium assumption (LTNE). The issue of this study is to determine appropriate
boundary conditions to model heat transfer, while using models with a different number of equations: a
two-temperature model in the homogeneous porous region versus a one-temperature model in the free
region. To proceed, a two-step up-scaling approach is used, which has the particularity to provide closed
jump relations depending on intrinsic characteristic of the interface. Thus, the use of jump or continuity
conditions depend only on the interface location inside the fluid-porous transition region. The pertinence
of the approach is illustrated on a 2D convective heat transfer problem considering a solid heat source in
the porous medium.

4.3 Introduction

The configuration of a free flow above a porous medium with a heat source in the solid matrix is
present in many environmental or industrial applications. Such a configuration is commonly modeled
by an homogeneous porous medium and a free medium separated by a surface of discontinuity. In the
heated homogeneous porous medium, the local thermal non-equilibrium (LTNE) must be considered
and the transfer can be modeled using the porous formalism through accurate two-temperature models
(Kaviany, 1995; Quintard et al., 1997; Whitaker, 1999). In the free medium, a classical one-temperature
model can be used. To complete the modeling, boundary conditions must be applied at the fluid-porous
interface to couple the models used in both homogeneous regions and take into account the transfers in
the transition region. However, given the different number of equations used in each region, questions
regarding the general form of the boundary conditions arise. Up to now, these questions are still opened
and the determination of the boundary conditions at the fluid-porous interface remains a scientific chal-
lenge.

For heat transfer at the local thermal equilibrium (LTE), successive works using one-temperature mod-
els in each region have brought valuable informations to better understand the complex question of the
boundary conditions at the fluid-porous interface. First tests were performed using the application of
boundary conditions at the nominal interface (defined by the position of the last solid grain (Beavers and
Joseph, 1967)). Regarding the conductive heat transfer, conditions of continuity for both the temperature
and the heat flux can give good results (Prat, 1990). However, for more complex phenomena including
convective transfer, these boundary conditions are inapropriate and can be corrected with a temperature
jump involving a slip coefficient (Sahraoui and Kaviany, 1994) similar to the velocity jump introduced by
Beavers and Joseph (1967). Thus, these studies show that it is possible to capture the interfacial transfer
with semi-empirical boundary conditions, but the relation between the interfacial physical phenomena
and the slip coefficient is not explicited. This relation can be obtained deriving the boundary conditions
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with up-scaling methods based on the energy conservation. Using such an approach, Ochoa-Tapia and
Whitaker (1997) show that boundary conditions involve surface excess quantities which can be modeled
with jump parameters. However, these jump parameters can not be determined because of two problems
identified by some authors for momentum transfer (Larson and Higdon, 1986; Saleh et al., 1993): the
characterization of the transfer in the interfacial region is complex due to the spatial change of the local
porous structure, and the jump parameters show a strong dependence with the interface location. The first
problem is studied in Aguilar-Madera and Ochoa-Tapia (2011) via the resolution of closure problems in
the transition zone at the local thermal equilibrium and non-equilibrium. Another approach consists in
separing the two difficulties by introducing an intermediate continuous scale of description, called the
mesoscopic scale (see Fig. 4.1). This method has been introduced by Chandesris and Jamet (2006, 2007,
2009c) for momentum problem and used by d’Hueppe et al. (2010) for convective transfer in the case of
the local thermal equilibrium (LTE). First, the physical transfer specific of the interfacial region is mod-
eled at this continuous scale. Then, the transfer is traduced at the macroscopic scale through equivalent
jump conditions and the dependence with the interface location is clarified.

The paper presents appropriate boundary conditions at the fluid-porous interface in the case of con-
vective heat transfer problem with local thermal non-equilibrium (LTNE) in the porous region. A 2D
convective heat transfer problem with a laminar flow perpendicular to the fluid-porous interface is stud-
ied. The method used is based on the two steps up-scaling approach of Chandesris and Jamet (2006)
and Section 4.4 describes the first up-scaling step. At the mesoscopic scale, the heat transfer is mod-
eled by closed two-temperature equations valid in the whole domain and the associated effective ther-
mal coefficients are computed from numerical simulations. In Section 4.5, the second up-scaling step
gives the jump relations needed to couple the two-temperature model of the porous region with the one-
temperature model of the free region. Then, the surface excess quantities involved in the jump relations
are determined. Finally, the relevance of the macroscopic model is illustrated on a 2D practical case.

transition zone

solid Interface

Microscopic scale

(Diffuse interface) (Sharp interface)

Mesoscopic scale Macroscopic scale

fluid

homogeneous free region

homogeneous

porous region

(1)
(2)

δ

Figure 4.1: Interface between the porous medium and the fluid medium for various scales of description
(figure adapted from Chandesris and Jamet (2007)).

4.4 The first up-scaling step

4.4.1 Microscopic equations

We consider a stationnary laminar flow through a rigid porous medium followed by a free medium.
The mean flow is directed towards the normal at the fluid-porous interface in the y-direction as illustrated
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in Fig. 4.2(a).

x

y

15 dp

y=−H

mean flow direction

y=0
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2 dp

30 dp 1 dp

 dp=H/30

outlet

inlet

boundaries

lateral

(a) (b)

Figure 4.2: (a) Geometrical configuration. (b) Iso-contours of the microscopic fluid temperature.

The study of the two-temperature model at the mesoscopic scale requires a physical situation where the
local thermal equilibrium assumption fails. This situation occurs when the convective term is important
or also for large volumique heat sources Ss in the solid. In this work, we consider this second case.
Fluid and solid properties (density, viscosity, heat capacity) are assumed constant, thus the velocity field
can be determined independently. The numerical computations are realized for a porosity φp = 5/9, a
thermal conductivity ratio ks/kf = 3, a Prandtl number Pr = 1 and a Péclet number Pe = 5. The
boundary conditions are established profiles of temperature and velocity representative of an infinite
porous medium at the inlet, and a constant pressure for the velocity at the outlet. At the lateral bound-
aries, the boundary conditions will be discussed in the following (see section 4.4.3).

For stationnary cases, the governing equations at the microscopic scale are given by:

∇ · vf = 0 (4.1)

(vf · ∇)vf = −1

ρ
∇p+ ν∇2vf (4.2)

(ρcp)f∇ · (vfTf ) = −∇ · (kf∇Tf ) , for the fluid phase (4.3)

0 = −∇ · (ks∇Ts) + Ss, for the solid phase (4.4)

The associated boundary conditions at the fluid-solid interface Afs are:

Tf = Ts (4.5)

nfs · (kf∇Tf ) = nfs · (ks∇Ts) (4.6)

vf = 0 (4.7)

where nfs is the unit normal vector directed from the fluid phase to the solid phase.
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4.4.2 Mesoscopic model

Following Whitaker (1967) in the porous region, the up-scaling process is carried out using the
volume averaging method. However, the averaging is not performed only in the porous region but in the
whole domain. For any quantity ψα of the α phase, the superficial volume average is given by

〈ψα〉 (x) =

∫
V mp(r − x)χα(r)ψα(r)dV∫

V mp(r)dV
(4.8)

where x is the centroid of the averaging volume and χα is the indicator function of the α phase. For the
weighting function mp, given the methodology chosen to compute the effective coefficients, we use the
quadratic function obtained from the box function convoluted three times in (d’Hueppe et al., 2010) and
with a filter size of 2r0 = 9dp (Fig. 4.2(a)). The intrinsic volume average is related to the superficial
volume average by the relation

〈ψα〉α =
〈ψα〉
φα

(4.9)

where φα is the volume fraction of the α phase within the averaging volume. The pore-scale deviation
ψ̃α in the α phase is defined using Gray’s decomposition (Gray, 1975)

ψ̃α = 〈ψα〉α − ψα (4.10)

For conciseness, the following formalism is introduced:

〈ψα〉 =
1

V

∫

V
ψαdV (4.11)

and for the volume averaged on the fluid-solid surfaces this formalism corresponds to

1

V

∫

Afs

ψαdA =

∫
Afs

mp(r − x)χα(r)ψα(r)dA
∫
V mp(r)dV

(4.12)

The application of the volume average to Eqs. (4.3), (4.4) combined with the spatial averaging theorems
to interchange differenciation and integration (Whitaker, 1967) gives mesoscopic equations valid in the
whole domain
For the fluid

(ρcp)f∇ ·
(
〈vf 〉 〈Tf 〉f

)
= ∇ · kf∇〈Tf 〉 + ∇ · kf

V

∫

Afs

nfs 〈Tf 〉f dA+ kf ∇ · 1

V

∫

Afs

nfsT̃fdA

︸ ︷︷ ︸
tortuosity

−∇ · (ρcp)fτvT︸ ︷︷ ︸
thermal dispersion

+
kf
V

∫

Afs

nfs · ∇TfdA
︸ ︷︷ ︸

fluid/solid heat transfer

(4.13)

where τvT = 〈Tfvf 〉 − φf 〈Tf 〉f 〈vf 〉f is a dispersive flux.
For the solid

0 = ∇·ks∇〈Ts〉−∇· ks
V

∫

Afs

nfs 〈Tf 〉f dA−ks∇ · 1

V

∫

Afs

nfsT̃fdA

︸ ︷︷ ︸
tortuosity

− kf
V

∫

Afs

nfs · ∇TfdA
︸ ︷︷ ︸

fluid/solid heat transfer

+ 〈Ss〉

(4.14)
This non-closed mesoscopic representation needs to be closed by modeling the tortuosity, dispersion and
wall heat transfer contributions which involve local deviation terms.
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In the homogeneous porous region, where the local constraint is satisfied (i.e, r0 the size of the volume
averaging is small compared to the scale of variation of the averaged quantities H), the spatial devia-
tion temperature can be closed in terms of macroscopic sources (Kaviany, 1995; Quintard and Whitaker,
1993; Carbonell and Whitaker, 1984)

T̃f = bff · ∇ 〈Tf 〉f + bfs · ∇ 〈Ts〉s − sf

(
〈Tf 〉f − 〈Ts〉s

)
(4.15)

where bff , bfs and sf are the vector and scalar fields maping ∇〈Tf 〉f , ∇〈Ts〉s and
(
〈Tf 〉f − 〈Ts〉s

)

onto T̃f . Introducing the closure (4.15) in Eqs. (4.13), (4.14) leads to the closed mesoscopic equations
(see Appendix A for more details)
For the fluid

(ρcp)f 〈vf 〉 · ∇ 〈Tf 〉f − upff · ∇ 〈Tf 〉f − upfs · ∇ 〈Ts〉s = ∇ ·
(

K
p

ff∇〈Tf 〉f + K
p

fs∇〈Ts〉s

+dpf (〈Tf 〉
f − 〈Ts〉s)

)
− aV h

p
(
〈Tf 〉f − 〈Ts〉s

)
(4.16)

For the solid

upff · ∇ 〈Tf 〉f + upfs · ∇ 〈Ts〉s = ∇ ·
(

K
p

sf∇〈Tf 〉f + K
p

ss∇〈Ts〉s + dps(〈Tf 〉f − 〈Ts〉s)
)

+ aV h
p
(
〈Tf 〉f − 〈Ts〉s

)
+ 〈Ss〉 (4.17)

where K
p

ii is the main effective conductive tensor, K
p

ij the coupled one, hp the film heat transfer co-
efficient, aV the interfacial area per unit volume, upii, upij and dpi are the transport coefficients in the
homogeneous porous medium.
This two-temperature model is very general but involves 9 different effective coefficients, which have
to be determined. This high degree of complexity can explain why this model is rarely used under this
form. In the present study, the local thermal non-equilibrium 〈Tf 〉f 6= 〈Ts〉s is verified. Furthermore in

our preliminary numerical studies we have observed that ∇〈Tf 〉f = ∇〈Ts〉s. Thus, we use this result as
an assumption to simplify the model and reduce the number of effective coefficients. We define

K
p

f = K
p

ff + K
p

fs, K
p

s = K
p

ss + K
p

sf , up = upff + upfs (4.18)

In the transition region,the local constraint, r0 << H , used to derive the model in the homogeneous
porous region is no longer valid. The characterization of the transfer is complex due to the spatial change
of the local porous structure. However, we assume that the simplified two-temperature model with
variables effective coefficients is able to capture the transfer in the transition zone. In the free region,
since there is no solid and that Tf = 〈Tf 〉f with vf = 〈vf 〉f , the model reduces to the governing equation
(4.3). Thus, one can write the following closed two-temperature model valid in the whole domain:
For the fluid

(ρcp)f 〈vf 〉 · ∇ 〈Tf 〉f − u(x) · ∇ 〈Tf 〉f = ∇ ·
(

Kf (x) ∇〈Tf 〉f + df (x)(〈Tf 〉f − 〈Ts〉s)
)

− aV h(x)
(
〈Tf 〉f − 〈Ts〉s

)
(4.19)

For the solid

u(x) · ∇ 〈Tf 〉f = ∇ ·
(

Ks(x) ∇〈Ts〉s + ds(x)(〈Tf 〉f − 〈Ts〉s)
)

+ aV h(x)
(
〈Tf 〉f − 〈Ts〉s

)
+ 〈Ss〉

(4.20)

81



CHAPTER 4 : Free-porous interface modeling for laminar heat transfer at local thermal
non-equilibrium

where x is the position vector, Ki the effective thermal conductivity tensor for the fluid and the solid
respectively, h is the film heat transfer coefficient, u is the transport coefficient related to the fluid/solid
heat transfer modeling and di is the transport coefficient related to the dispersion modeling. The effective
coefficients are constant in the homogeneous regions and vary in the transition zone. Let us notice that
due to the variation of di in the interfacial transition zone, this term can not be taken out of the divergence
operator. Thus, we make the modeling choice to keep separated the terms u and di for the rest of the
study. To close the problem at the mesoscopique scale all the presented effective coefficients have to be
determined.

4.4.3 Determination of the effective transfer coefficients

The effective coefficients are obtained from a microsocopic simulation using an identification method
introduced by Kuwahara et al. (1996) and used by d’Hueppe et al. (2010). First, the comparison of the
non-closed model with the closed one gives by identification analytical relations for the effective coef-
ficients. Then, each term of the analytical relations is computed with the microscopic temperature and
velocity fields of the simulation.

The non-closed model (4.13)-(4.14) is compared with the closed one (4.19)-(4.20) that leads to the fol-
lowing analytical relations for the effectives coefficients

Kf · ∇ 〈Tf 〉f + df
(
〈Tf 〉f − 〈Ts〉s

)
= kf∇〈Tf 〉 +

kf
V

∫

Afs

nfsTfdA− (ρcp)fτvT (4.21)

Ks · ∇ 〈Ts〉s + ds
(
〈Tf 〉f − 〈Ts〉s

)
= ks∇〈Ts〉 −

ks
V

∫

Afs

nfsTfdA (4.22)

aV h
(
〈Tf 〉f − 〈Ts〉s

)
− u · ∇ 〈Tf 〉f = −kf

V

∫

Afs

nfs · ∇TfdA (4.23)

Thus, the analytical relations for the effective coefficients are easily obtained, but a limit of the identifi-
cation method appears at the evaluation step. Indeed, to have effective coefficients defined in the whole
domain, the system (4.21)-(4.23) cannot be solved for any temperature fields. The averaged y-gradients
and the temperature difference must be non zero. In addition, a temperature field with a symmetry axis
in x = 0 where the averaged x-gradients are null simplifies the computation of the effective coefficients
as one can see thereafter. The conditions at the lateral boundaries are chosen for this purpose and corre-
spond to a condition of symmetry for the velocity and an incoming flux for the temperature. Furthermore,
due to the invariance of the geometry and of the velocity field in the x-direction, the effective coefficients
only depend on the y-direction and the conductivity tensors are diagonal. One can write

Kf
ii(y)

∂ 〈Tf 〉f

∂i
+ dfi (y)

(
〈Tf 〉f − 〈Ts〉s

)
= kf

∂ 〈Tf 〉
∂i

+
kf
V

∫

Afs

nfsTfdA · i

−(ρcp)fτvT · i (4.24)

Ks
ii(y)

∂ 〈Ts〉s
∂i

+ dsi (y)
(
〈Tf 〉f − 〈Ts〉s

)
= ks

∂ 〈Ts〉
∂i

+
ks
V

∫

Afs

nfsTfdA · i (4.25)

aV h(y)
(
〈Tf 〉f − 〈Ts〉s

)
− ufy(y)

∂ 〈Tf 〉f

∂y
− ufx(y)

∂ 〈Tf 〉f

∂x
= −kf

V

∫

Afs

nfs · ∇TfdA(4.26)

with the index i for x and y respectively.

The relation (4.24) for the index i = x at the position x such as
∂ 〈Tf 〉f

∂x
(x, y) = 0 (symmetry at x = 0)

gives dfx = 0 and an easy computation of Kf
xx(y) for any else x location. The determination of Kf

yy(y)

and dfy requires two numerical simulations with two differents values of the solid source Ss to obtain a
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system composed of two-unknows and two-equations. The solid effective coefficients are computed with
the same method that gives in particular dsx = 0. Identically, one determines aV h(y) and ufy(y) with
Eq. (4.26) computed at x = 0. Then using this values at another x-location, one gets ufx(y) = 0. Let us
notice, that these developments rely on the assumption that the effective coefficients do not depend on the
local fields or on the x-location (given the geometry). This assumption has been verified by computing
the effective coefficients at different x-location.

First, to verify the value of the effective coefficients in the homogeneous porous region, a comparison
is realized with the results from Quintard et al. (1997) obtained with a similar heat transfer modeling.
To proceed, the effective coefficients are determined with the identification method for various Peclet
numbers and four thermal conductivity ratios ks/kf (see Figs. 4.3(a), 4.3(b) and 4.4). Let us remains

that Quintard et al. (1997) give the tensors K
i,p

ii and K
i,p

ij that are related to our values according to

K
i,p

= K
i,p

ii +K
i,p

ij for the fluid and the solid phases respectively. Thus, Fig. 4.3(a) must be compared
with the sum of Figs. 5(a) and 7(b) in Quintard et al. (1997) for the fluid phase, and Fig. 4.3(b) must be
compared with the sum of Figs. 8(a) and 7(a) in Quintard et al. (1997) for the solid phase. Allowing for
the different choice of the geometry, in-line cubes instead of in-line cylinders, the main behaviors of the
effective coefficients are recovered.

Figs. 4.5(a)-4.6(b) present the profiles of the different effective coefficients. As expected, the values
of the effective coefficients are constant in the homogeneous regions and continuously vary in the inter-
facial transition zone. Especially, the transition zone of reference is the porosity one, that varies between
−0, 13 < y/H < 0, 13 and represents the averaged geometry only. In the interfacial transition zone,
the bumps observed on the different profiles result from recirculations in the velocity field at the outlet
of the porous media. In the free region, as expected, the effective coefficient values of the solid phase,
Ks,l
ii , are zero, along with the coefficients associated to the fluid/solid transfer (hl and uf,ly ). For the fluid

coefficient, the characteristics of the fluid phase are recovered, thus Kf,l
xx = Kf,l

yy = kf = 1.

(a) (b)

Figure 4.3: Effective thermal conductivity coefficient in the flow direction (a) for the fluid phase Kf
yy;

(b) for the solid phase Ks
yy.

At this point, the microscopic problem has been replaced by a mesocopic model where each phase
is described by a continuous equation in the whole domain. Thus, at the mesoscopic scale, the heat
transfer is characterized by a two-temperature closed model valid in the entire domain. As the effective
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Figure 4.4: Profiles of h for various ks/kf .
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Figure 4.5: Profiles of the effective conductivities (a) Kf
yy and Ks

yy for Pe = 5; (b) Kf
xx and Ks

xx for
Pe = 5.

coefficients have been determined, the problem at the mesoscopic scale is solved and we are able to
perform the second up-scaling step.

4.5 The second up-scaling step

In the previous section, the heat transfer has been modeled at the mesoscopic scale through equations
with continuous variable coefficients. However, for pratical applications, the use of highly variable
coefficients in the transition zone is not adequate because it requires a fine meshing to simulate the
transfer. Thus, the modeling process must be pursued to substitute the transition zone by a surface of
discontinuity with associated jump boundary conditions. To proceed, a new scale of description, called
macroscopic scale, is introduced, and the second up-scaling step is performed to derive a discontinuous
model from the mesoscopic continuous one (4.19)-(4.20). At the macroscopic scale, the heat transfer is
described using the following equations characterised by constant properties in each region:
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(a) (b)

Figure 4.6: Profiles of (a) the heat transfer coefficient h for Pe = 5, where lc(= 3dp) is the length of one
unit cell; (b) the transport coefficients uy, dfy and dsy for Pe = 5.

In the porous region (H− < y < ym); a two-temperature model

(ρcp)fvm · ∇T f,pm − up · ∇T f,pm = ∇ ·
(

K
p

f · ∇T f,pm + dpf

(
T f,pm − T s,pm

))
−

aV h
p
(
T f,pm − T s,pm

)
(4.27)

up · ∇T f,pm = ∇ ·
(

K
p

s · ∇T s,pm
)

+ aV h
p
(
T f,pm − T s,pm

)
+ φpsSs (4.28)

In the free region (ym < y < H+); a one-temperature model

(ρcp)fvm · ∇T f,lm = ∇ ·
(
kf I · ∇T f,lm

)
(4.29)

where ym is the interface location. Let us notice that due to the diffuse nature of the interface at the
mesoscopic scale, the interface location at the macroscopic scale is an unknown parameter.

At the macroscopic scale, the solid equation is not defined in the free region. In this up-scaling mod-
eling approach, we choose to introduce an equivalent writting of the system (4.27)- (4.29), with a two-
temperature model in both homogeneous regions:

(ρcp)fvm · ∇T f,im − ui · ∇T f,im = ∇ ·
(

K
i

f · ∇T f,im + dif
(
T f,im − T s,im

))
−

aV h
i
(
T f,im − T s,im

)
(4.30)

ui · ∇T f,im = ∇ ·
(

K
i

s · ∇T s,im
)

+ aV h
i
(
T f,im − T s,im

)
+ φisSs (4.31)

with the indice i being p or l in the porous and the free media respectively. In the free media, the

coefficients ul, K
l

s , hl, dlf , φls are zero and K
l

f = kf I. Under these circumstancies, the solid temperature
is undefined in the free region. To define it, one assumes that the solid temperature is continuous at
the interface and there is no solid heat flux in the y-direction in the free region. Thus, the number of
equations in the porous and in the free media is the same and the developments are identical for the solid
and the fluid phases.
At this step the macroscopic model is not closed since it must be completed by boundary conditions
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at the interface. Two different methods based on conservation principles are used: the first one is the
generic analysis and the second one is the method of the matched asymptotic expansions. Both methods
are presented in the following subsections.

4.5.1 The generic analysis

The method of the generic analysis (Edwards et al., 1991) ensures the conservation of the energy
between the macroscopic and the mesoscopic scales by comparing the governing equations integrated
over the transition region. The remainders terms represent the variations existing in the transition zone
at the mesoscopic scale and not considered by the macroscopic model in the two homogeneous regions.
To proceed, the macroscopic equations (4.30) and the mesocopic equation (4.19) are integrated on
[H−; ym] and substracted

[
(ρcp)f (〈vf 〉 〈Tf 〉f − vmyT

f,p
m )

]ym

H−

−
∫ ym

H−

(
uy(y)

∂ 〈Tf 〉f

∂y
− upy

∂T f,pm

∂y

)
dy =

[
Kf
yy(y)

∂ 〈Tf 〉f

∂y
−Kf,p

yy

∂T f,pm

∂y

]ym

H−

+
[
dy(y)(〈Ts〉s − 〈Tf 〉f ) − dpy(T

f,p
m − T s,pm )

]ym

H−

+

∫ ym

H−

∂

∂x

(
Kf
xx(y)

∂ 〈Tf 〉f

∂x
−Kf,p

xx

∂T f,pm

∂x

)
dy

−
∫ ym

H−

aV

(
h(y)(〈Tf 〉f − 〈Ts〉s) − hp

(
T f,pm − T s,pm

))
dy (4.32)

One reminds that ux = dfx = 0. To compare the energy transfer over the whole transition region,
Eqs. (4.31) and (4.19) are compared on [ym;H+] and added to Eq. (4.32). Then using the equivalence
between the macroscopic and the mesocopic terms in the homogeneous regions1, one can write

qf,ly,m(x, ym) − qf,py,m(x, ym) =
∫ ym

H−

∂

∂x

(
Kf
xx(y)

∂ 〈Tf 〉f

∂x
−Kf,p

xx

∂T f,pm

∂x

)
dy +

∫ H+

ym

∂

∂x

(
Kf
xx(y)

∂ 〈Tf 〉f

∂x
−Kf,l

xx

∂T f,lm

∂x

)
dy

− aV

∫ ym

H−

[
h(y)

(
〈Tf 〉f − 〈Ts〉s

)
− hp

(
T f,pm − T s,pm

)]
dy

− aV

∫ H+

ym

[
h(y)

(
〈Tf 〉f − 〈Ts〉s

)
− hl

(
T f,lm − T s,lm

)]
dy

+

∫ ym

H−

(
uy(y)

∂ 〈Tf 〉f

∂y
− upy

∂T f,pm

∂y

)
dy +

∫ H+

ym

(
uY (y)

∂ 〈Tf 〉f

∂y
− uly

∂T lmf, l

∂y

)
dy (4.33)

where for the rest of the study, the total fluid heat flux in the y-direction is

qf,iy,m = (ρcp)fvmyT
f,i
m −Kf,i

yy
∂T f,im

∂y
− dy(T

f,i
m − T s,im ).

The right hand side of the equality (4.33) corresponds to the difference of the interface modelisation
between the macroscopic and mesoscopic models. They can be gathered into terms called surface-excess

quantities and noted for any field ψ as

(ψ)ex =

∫ ym

H−

(ψ − ψpm)dy +

∫ H+

ym

(ψ − ψlm)dy (4.34)

1〈vf 〉 = Vmy = cst in the whole domain due to the mass conservation.

86



4.5 The second up-scaling step

where ψlm and ψpm are the macroscopic representations of the field ψ in the free and porous homogeneous
regions respectively. According to this notation, Eq. (4.33) becomes:

qf,ly,m(x, ym) − qf,py,m(x, ym) =

(
∂

∂x

(
Kf
xx(y)

∂ 〈Tf 〉f

∂x

))ex
−
(
aV h(y)

(
〈Tf 〉f − 〈Ts〉s

))ex

+

(
uy(y)

∂ 〈Tf 〉f

∂y

)ex
(4.35)

The jump condition for the solid flux is obtained with an identical development and takes the form

qs,ly,m(x, ym) − qs,py,m(x, ym) =

(
∂

∂x

(
Ks
xx(y)

∂ 〈Ts〉s
∂x

))ex
+
(
aV h(y)

(
〈Tf 〉f − 〈Ts〉s

))ex

−
(
uy(y)

∂ 〈Tf 〉f

∂y

)ex
+ (〈Ss〉)ex (4.36)

where for the rest of the study, the total solid heat flux is qs,iy,m = −Ks,
yy
∂T s,im
∂y

. The jump relations

for the fluid and solid total heat flux correspond to the energy conservation between the lower part and
the upper part of the transition region. The effect of the temperature gradient in the x-direction is cap-
tured as in (d’Hueppe et al., 2010) and two terms characteristic of the two-temperature transfer appear.(
h(y)

(
〈Tf 〉f − 〈Ts〉s

))ex
and

(
uy(y)

∂〈Tf〉f

∂y

)ex
come from Eq. (4.26) and model the transfer be-

tween the fluid and the solid phases. In the heat flux jumps, they traduce the exces amount of heat
received by the fluid when the solid phase disappears in the interfacial transition zone.

The jump condition for the fluid temperature is determined comparing the mesoscopic conductive heat

flux in the y- direction 〈qy,cf 〉f = −Kf
yy(y)

∂ 〈Tf 〉f

∂y
and the following macroscopic equations:

qf,lcmy = −Kf,l
yy

∂T f,lm

∂y
, in the free region (4.37)

qf,pcmy = −Kf,p
yy

∂T f,pm

∂y
, in the porous region (4.38)

Performing the same developments as previously, the temperature jump for the fluid takes the form:

T f,lm (x, ym) − T f,pm (x, ym) = −
(
〈qcy〉f

1

Kf
yy

)ex
(4.39)

The jump relation for the temperature involves the excess quantity of the conductive flux time the ther-
mal resistance. This jump relation is identical to the one presented in (d’Hueppe et al., 2010) for a
one-temperature problem. Regarding a possible jump for the solid temperature, the question is not rele-
vant, since it is continuous due to the chosen definition.

The two-equation/one-equation formalism is recovered using the chosen assumption of no solid heat
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flux in the free region for Eq. (4.36). Thus, one obtains

T f,lm (x, ym) − T f,pm (x, ym) = −
(
〈qcy〉f

1

Kf
yy

)ex
(4.40)

qf,ly,m(x, ym) − qf,py,m(x, ym) =

(
∂

∂x

(
Kf
xx(y)

∂ 〈Tf 〉f

∂x

))ex
−
(
aV h(y)

(
〈Tf 〉f − 〈Ts〉s

))ex
+

(
uy(y)

∂ 〈Tf 〉f

∂y

)ex
(4.41)

qs,py,m(x, ym) = −
(
∂

∂x

(
Ks
xx(y)

∂ 〈Ts〉s
∂x

))ex
−
(
aV h(y)

(
〈Tf 〉f − 〈Ts〉s

))ex
+

(
uy(y)

∂ 〈Tf 〉f

∂y

)ex
− (〈Ss〉)ex (4.42)

The generic analysis gives the form of the jump relations to close the macroscopic system. Thus, for
the two-equation/one-equation formalism, the closure requires jump conditions for the temperature and
total heat flux for the fluid phase, and one boundary condition for the solid total heat flux. However
these boundary conditions can not be computed because of the presence of mesoscopic unknowns in the
excess values. To obtain closed boundary conditions the alternative method of the matched asymptotic
expansion is used.

4.5.2 The method of the matched asymptotic expansion

The method of the matched asymptotic expansion, also called boundary layer method, can be ap-
plied to solve differential equations with a small parameter ε and gives a solution in terms of this small
parameter (Zwillinger, 1989). This method used in the context of diffuse interface modeling, establishes
the relationship between the diffuse interface and sharp interface modeling equations (Emmerich, 2003).
In the present case, the small parameter is the ratio between the width of the interfacial transition zone
and the characteristic length of the whole domain, that is ε = δ/L. The sharp interface model is ob-
tained when ε tends to zero. Thus, using the method of the matched asymptotic expansion, one obtains
approximated solutions at different order of the mesoscopic equations. Therefore, it is possible to de-
rive analytically, and at a given order, the boundary conditions of the macroscopic model such that the
macroscopic problem is equivalent to the mesoscopic one. The detailed developments are presented in
appendix B and only the main results are presented in the following, using the two-equation/one-equation
formalism.

4.5.2.1 Resolution at order 0

The approximated solutions at order 0 of the mesoscopic model for the fluid and solid phases,
T im = T

i(0)
m , verify the macroscopic equations in the homogeneous regions (Eqs. (4.30), (4.31)) and

the conditions of continuity for the flux and the temperature at the interface (see Appendix B)

T f,lm (x, ym) = T f,pm (x, ym) (4.43)

qf,lym(x, ym) = qf,pym(x, ym) (4.44)

qs,pym(x, ym) = 0 (4.45)

The fluid and solid macroscopic temperatures obtained with this model are presented with the averaged
microscopic solution in Fig. 4.7 for three different locations of the interface representative of the transi-
tion zone defined between (−0, 13 < y/H < 0, 13). The presented macroscopic temperatures depend
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on the interface location in the homogeneous free region. This behavior has been observed by d’Hueppe
et al. (2010) and can be explained by the no-conservation of the energy balance between the mesoscopic
and macroscopic models at 0 order. Thus, it is necessary to increase the resolution order to make appear
jump conditions.

Figure 4.7: Macroscopic temperature at zeroth order for x = 0(
T ∗
i = [Ti − (〈Tf 〉f (0;H−) + 〈Tf 〉f (0;H+))/2]/[〈Tf 〉f (0;H+) − 〈Tf 〉f (0;H−)]

)
.

4.5.2.2 Resolution at order 1

At order 1, the approximated solutions of the mesoscopic problem, T im = T
i(0)
m + εT

i(1)
m for the fluid

and solid phases, verify the macroscopic equations in the homogeneous regions Eqs. (4.30)-(4.31) and
the following jump conditions (see Appendix B Eqs. (4.98)-(4.100))

T f,lm (x, ym) − T f,pm (x, ym) = −
(

1

Kf
yy

(y)

)ex
qf(0)
cym(x, ym) (4.46)

qf,lym(x, ym) − qf,pym(x, ym) =
(
Kf
xx(y)

)ex ∂2T
f(0)
m

∂x2
(x, ym)

−aV (h(y))ex (T f(0)
m − T s(0)m )(x, ym) −

(
uy(y)

Kf
yy(y)

)ex
qf(0)
cym(x, ym) (4.47)

qs,pym(x, ym) = − (Ks
xx(y))

ex ∂
2T

s(0)
m

∂x2
(x, ym) − aV (h(y))ex (T f(0)

m − T s(0)m )(x, ym)

−
(
uy(y)

Kf
yy(y)

)ex
qf(0)
cym(x, ym) − (φs(y))

ex Ss (4.48)

The excess quantities of the effective transfer coefficients and the associated centers of gravity are intro-
duced in the jump conditions via the relation (Jamet and Chandesris, 2009)

(ψ)ex(ym) = (ψl − ψp)(ym − yψ) (4.49)
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y 1

K
f
yy

/H y
Kf

xx
/H yKs

xx
/H y uy

K
f
yy

/H yh/H yφs
/H

0.3 -0.02 -0.001 0.03 0.005 -0.001

Table 4.1: Values of the centers of gravity for kf/ks = 3, Pe = 5, φp = 5/9

where yψ is the center of gravity of the effective coefficient ψ and corresponds to the particular location
(ψ)ex(ym) = 0. Thus, Eqs. (4.101)-(4.103) can be rewritten as follow

T f,lm (x, ym) − T f,pm (x, ym) = −qf(0)
cym

(
1

Kf,l
yy

− 1

Kf,p
yy

)
(ym − y 1

K
f
yy

) (4.50)

qf,lym(x, ym) − qf,pym(x, ym) =
∂2T

f(0)
m

∂x2

(
Kf,l
xx −Kf,p

xx

)
(ym − y

Kf
xx

) −

qf(0)
cym

(
uly

Kf,l
yy

− upy

Kf,p
yy

)
(ym − y uy

K
f
yy

) − (T f(0)
m − T s(0)m )aV

(
hl − hp

)
(ym − yh) (4.51)

qs,pym(x, ym) = −∂
2T

s(0)
m

∂x2

(
Ks,l
xx −Ks,p

xx

)
(ym − yKs

xx
) − qf(0)

cym

(
uly

Kf,l
yy

− upy

Kf,p
yy

)
(ym − y uy

K
f
yy

) −

(T f(0)
m − T s(0)m )aV

(
hl − hp

)
(ym − yh) − Ss

(
φls − φps

)
(ym − yψp

) (4.52)

The jump relations at order 1 are similar to those obtained with the generic analysis (see Eqs. (4.35), (4.36)and
(4.40)) and traduce the same transfer phenomena. However, the matched asymptotic expansion method

allows to take out the terms qf(0)
cym , T i(0)m and

∂2T
i(0)
m

∂x2
of the exces values and to close the jump relations.

Indeed they depend on intrinsic interfacial properties (y 1

K
f
yy

, y
Kf

xx
, yKs

xx
, y uy

K
f
yy

, yh, yφs
see Tab. 4.1),

on the properties of the homogeneous media (Kf,p
yy , Kf,p

xx , Kf,l
xx , Ks,p

xx , hp, up, φps) and on the interface
location ym. Therefore the jump relations at order 1 are easy to compute.
The solutions of the macroscopic model at order 1 for several interface locations are compared with the
averaged microscopic solution in Fig. 4.8. Regarding the fluid macroscopic temperatures, its values in
the homogeneous region are free of the interface location and match the averaged microscopic solution.
Thanks to the first order correction, the energy between the macroscopic and mesoscopic model is con-
served for any interface location. In addition, this result shows that the heat transfer between the solid
phase and the fluid phase at the interface has been successfully modeled.

4.5.3 Illustration

Supported by the success of the previous results, we want to prospect the potency of the present
up-scaling method on a heat transfer configuration closer to pratical cases existing in the industrial ap-
plications. The solid source is modified: a column of cubes is heating 20% higher than the others. The
numerical simulation of reference is computed with a solid source such as (see Fig. 4.2(b))

Ss(x) =

{
10 , for − 0, 5 < x < −0, 2 and − 0, 1 < x < 0, 5
12 , for − 0, 2 < x < −0, 1

and the initial lateral boundary conditions for the temperature are replaced by condition of symmetry.
The characteristic of the porous media are also conserved (φp = 5/9, ks/kf = 3, Pr = 1, Pe = 5). The
resulting fluid temperature field is represented in Fig. 4.10(a).
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Figure 4.8: Macroscopic temperature at first order for x = 0(
T ∗
i = [Ti − (〈Tf 〉f (0;H−) + 〈Tf 〉f (0;H+))/2]/[〈T 〉f (0;H+) − 〈Tf 〉f (0;H−)]

)
.

It should be pointed out, that the transfer modeling realized through the multi-scale approach presented
in the paper is still valid. As the characteristics of the porous medium in the homogeneous and transi-
tion regions have not changed, the effective transfer coefficients determined in the first up-scaling step
(Section 4.4) can be used. Furthermore, the two-temperature equations and the boundary conditions at
order 1 (see Eqs. (4.51)- (4.52)) do not depend on the value of the solid heat source and are thus still
adapted. The resolution of this macroscopic model at order 1 for several interface location gives the fluid
and solid temperature profiles presented in Fig. 4.9. In the porous region, the macroscopic temperatures
match the averaged microscopic temperature of reference for the fluid and solid phases, that validates the
values of the effective coefficients determined in Section 4.4. In the free region, the macroscopic fluid
temperatures also match the averaged microscopic temperature of reference for different values of the
interface location. This result shows the suitability of the boundary conditions that have been applied
at the fluid/porous interface. Furthermore, it illustrates the asset of the modeling depending on intrinsic
properties of the interface. Indeed, even if the heat transfer is different, a new modeling at the mesoscopic
scale is not required. The qualitative macroscopic results in 2D are illustrated in Fig. 4.10(c).

4.6 Conclusion

This paper presents the question of the boundary conditions that must be applied at an interface
between a heating porous medium and a free medium. The main difficulty of this study is to couple the
two-temperature model in the homogeneous porous region with the one-temperature model in the free
region. To proceed, a multi-scale approach based on three descriptions of the interface and two distinct
up-scaling steps is used.
In the first up-scaling step, the heat transfer is modeled in the whole domain including the interface
through a continuous description called mesoscopic. At this scale of description, the interface is diffuse
and the information about the interface location is lost. A two-temperature model is derived applying
the volume averaged method in the homogeneous porous region, and is extended to the interfacial zone.
Then, to fully characterize the transfer, the effective properties are determined in the whole domaine
from microscopic simulations.
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Figure 4.9: Macroscopic temperature at first order for x = 0(
T ∗
i = [Ti − (〈Tf 〉f (0;H−) + 〈Tf 〉f (0;H+))/2]/[〈Tf 〉f (0;H+) − 〈Tf 〉f (0;H−)]

)
.

(a) (b) (c)

Figure 4.10: 2D fluid temperature field: (a) microscopic scale, (b) averaged microscopic solution, (c)
macroscopic solution.

In the second up-scaling step, the continuous modeling of the transfer is remplaced by a discontinuous
one. At this new scale of description called macroscopic, the model is composed of a two-temperature
model in the porous region and a one-temperature model in the free region separated by a surface of
discontinuity where boundary condition must be applied. However the determination of appropriate
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boundary conditions at the fluid/porous interface is complicated by the different number of equations
used in each region. To proceed, one introduce a new equivalent writting of the modeling with an
identical number of equation in both region (see Fig.4.11). Thank to this new formalism, two methods
providing boundary conditions can be used. The first one is the generic analysis and gives three jump
relations as boundary conditions at the fluid/interface: a temperature jump and a heat flux jump for the
fluid phase and a heat flux condition for the solid phase. Altough this method is able to characterize
the transfer at the interface through surface excess quantities, the obtained relations involve unknown
mesoscopic terms. The second method is the matched asymptotic expansion, that gives approximated
solution at different order of the mesoscopic problem. Thus, boundary conditions at different order can
be derived such that the macroscopic description is equivalent to the mesoscopic one. At the order 1,
the boundary conditions involve intrinsic properties of the interface, the properties of the homogeneous
media and the interface location ym. The associated model is closed and gives the correct macroscopic
temperatures for the fluid and solid phases in the homogeneous regions. To end the study, the validity of
the macroscopic model is illustrated on a different and more practical case of an overheating column of
cubes.
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transition zone

Interface
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fluid

δ

method

2 governing equations :

- fluid phase (Tf)

- solid phase (Ts)

Volume averaging

Generic Analysis

M.A.E.M

-2-temperature model (〈Tf 〉f , 〈Ts〉s)

2 equations (T f,pm ,T s,pm ) 2 equations (T f,pm ,T s,pm )

1 equation (T f,lm )

[T fm], [qfm], qs,pm (ym)

Bondary conditions : Bondary conditions :

[T fm], [qfm], [qsm], [T sm]

2 equations (T f,lm ,T s,lm )

¯̄Kp
s = dps = hp = up = 0

valid in the whole domain ;

-continuous effective coefficients.

+T s,lm (y, x) = T s,pm (ym, x),

Macroscopic scale : discontinuous description

Mesoscopic scale : continuous description

Microscopic scale : local description

Figure 4.11: Two-upscaling method summarization with local thermal non-equilibrium (LTNE).
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4.7 Appendix

4.7.1 Appendix A: Closed mesoscopic model

In this annexe, we recall how the two-temperature model is derived in the homogeneous porous
medium. The developments are rather classical an can be find elsewhere (Quintard and Whitaker, 1993;
Kaviany, 1995; Carbonell and Whitaker, 1984). They are recall for completness concern.

In the homogeneous porous medium, the averaged microscopic equations are
For the fluid

(ρcp)f∇ ·
(
〈vf 〉 〈Tf 〉f

)
= ∇ · kf∇〈Tf 〉 + ∇ · kf

V

∫

Afs

nfs 〈Tf 〉f dA+ ∇ · kf
V

∫

Afs

nfsT̃fdA

−∇ · (ρcp)fτvT +
kf
V

∫

Afs

nfs · ∇TfdA (4.53)

where τvT = 〈Tfvf 〉 − φf 〈Tf 〉f 〈vf 〉f is a dispersive flux.
For the solid

0 = ∇·ks∇〈Ts〉−∇·ks
V

∫

Afs

nfs 〈Tf 〉f dA−∇·ks
V

∫

Afs

nfsT̃fdA−frackfV
∫

Afs

nfs ·∇TfdA+〈Ss〉

(4.54)
In the homogeneous porous region, via local theory provided by length-scale contraints (Quintard and
Whitaker, 1994), the volume averaged temperature can be taken out of the area integral, that associated
to the constant porosity leads to:

kf
V

∫

Afs

nfs 〈Tf 〉f dA ≈ −〈Tf 〉f ∇φf = 0 (4.55)

Furthermore, using the Gray’s decomposition for the temperature and the velocity in the dispersive flux
τvT and the length-scale contraint consideration, this term becomes (Kaviany, 1995):

τvT =
〈
T̃f ṽf

〉
(4.56)

Thus, the averaged microscopic equations can be rewritten as follows:
For the fluid

(ρcp)f∇ ·
(
〈vf 〉 〈Tf 〉f

)
= ∇ ·

(
φfkf∇〈Tf 〉f +

kf
V

∫

Afs

T̃fnfsdA− (ρcp)f

〈
T̃f ṽf

〉)

+
kf
V

∫

Afs

∇T̃f · nfsdA (4.57)

For the solid

0 = ∇ · φsks∇〈Ts〉s −∇ · ks
V

∫

Afs

T̃fnfsdA− kf
V

∫

Afs

∇T̃f · nfsdA+ 〈Ss〉 (4.58)

To close the terms of tortuosity, dispersion and heat transfer, the representation of the spatial deviation
temperature presented by (Kaviany, 1995; Quintard and Whitaker, 1993; Carbonell and Whitaker, 1984)
is used

T̃f = bff · ∇ 〈Tf 〉f + bfs · ∇ 〈Ts〉s − sf

(
〈Tf 〉f − 〈Ts〉s

)
(4.59)
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where bff , bfs and sf are the vector and scalar fields maping ∇〈Tf 〉f , ∇〈Ts〉s and
(
〈Tf 〉f − 〈Ts〉s

)

onto T̃f . Thus, under the hypothesis of scale separation, the surface integrals become

kf
V

∫

Afs

nfsT̃fdA = ∇〈Tf 〉f ·
kf
V

∫

Afs

nfsbffdA+ ∇〈Ts〉s ·
kf
V

∫

Afs

nfsbfsdA

−
(
〈Tf 〉f − 〈Ts〉s

) kf
V

∫

Afs

nfssfdA (4.60)

kf
V

∫

Afs

nfs · ∇T̃fdA = uff · ∇ 〈Tf 〉f + ufs · ∇ 〈Ts〉s − avh
(
〈Tf 〉f − 〈Ts〉s

)
(4.61)

where avh =
kf
V

∫

Afs

nfs · ∇sfdA and uij =
kf
V

∫

Afs

nij · ∇bijdA are respectively heat transfer and

transport coefficients.
Similarly, the term of dispersion takes the following shape

〈
T̃f ṽf

〉
= 〈bff ṽf 〉 · ∇ 〈Tf 〉f + 〈bfsṽf 〉 · ∇ 〈Ts〉s − 〈sf ṽf 〉

(
〈Tf 〉f − 〈Ts〉s

)
(4.62)

From Eq. (4.60) and Eq. (4.62), one can introduce an additional transport coefficient

df = (ρcp)f 〈sf ṽf 〉 −
kf
V

∫

Afs

nfssfdA (4.63)

The terms can be bring together to make appear the mean effective conductivity tensor and the coupled
one

Kff = φfkf I +
kf
V

∫

Afs

nfsbffdA− (ρcp)f 〈bff ṽf 〉 (4.64)

Kfs =
kf
V

∫

Afs

nfsbfsdA− (ρcp)f 〈bfsṽf 〉 (4.65)

Therefore Eqs. (4.57) and (4.58) become
For the fluid

(ρcp)f 〈vf 〉 · ∇ 〈Tf 〉f − uff · ∇ 〈Tf 〉f − ufs · ∇ 〈Ts〉s = ∇ ·
(

Kff∇〈Tf 〉f + Kfs∇〈Ts〉s +

df (〈Tf 〉f − 〈Ts〉s)
)
− aV h(y)

(
〈Tf 〉f − 〈Ts〉s

)
(4.66)

For the solid

uff · ∇ 〈Tf 〉f + ufs · ∇ 〈Ts〉s = ∇ ·
(

Ksf∇〈Tf 〉f + Kss∇〈Ts〉s + ds(〈Tf 〉f − 〈Ts〉s)
)

+ aV h(y)
(
〈Tf 〉f − 〈Ts〉s

)
+ 〈Ss〉 (4.67)

with ds =
ks
V

∫

Afs

nfssfdA, Ksf = −ks
V

∫

Afs

nfsbffdA and Kss = φsksI −
ks
V

∫

Afs

nfsbfsdA

4.7.2 Appendix B: The method of the matched asymptotic expansion

For a heating porous medium followed by a free medium in the case of the local thermal non equi-
librium (LTNE), the heat transfer in the whole domain is well modeled by the two-temperature equations
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(see Eqs. (4.19) and (4.20) )

(ρcp)f 〈vf 〉 · ∇ 〈Tf 〉f − u(x) · ∇ 〈Tf 〉f = ∇ ·
(

Kf (x) ∇〈Tf 〉f + df (x)(〈Tf 〉f − 〈Ts〉s)
)

−aV h(x)
(
〈Tf 〉f − 〈Ts〉s

)
(4.68)

u(x) · ∇ 〈Tf 〉f = ∇ ·
(

Ks(x) ∇〈Ts〉s + ds(x)(〈Tf 〉f − 〈Ts〉s)
)

+ aV h(x)
(
〈Tf 〉f − 〈Ts〉s

)

+ 〈Ss〉 (4.69)

The method of the matched asymptotic expansion consists in breaking up the domain in three parts:
an inside region where the effective coefficients strongly vary and two outside regions where they are
constant. Furthermore, the effective coefficients depend on ε in the interfacial transition zone where
ε = δ/L, δ being the size of the inside region and L the length of the domain. In the outside regions, the
macroscopic temperatures solution of Eqs. (4.68) and (4.69) take the shape of asymptotic expansions in
ε

T i,lm (x, y) = T i,l(0)m (x, y) + εT i,l(1)m (x, y) + O(ε2), in the fluid region (4.70)

T i,pm (x, y) = T i,p(0)m (x, y) + εT i,p(1)m (x, y) + O(ε2), in the porous region (4.71)

the index i being f or s for the fluid and the solid phases respectively.
In the inside region, the effective coefficients strongly vary. Thus, a new variable ȳ = (y − ym)/ε is
introduced to make the coefficients go slower and to be able to perform the expansion. With this change
of variable, the expression of the temperature in the inside region becomes:

T̂ i(x, ŷ) = T̂ i,(0)(x, ŷ) + εT̂ i,(1)(x, ŷ) + O(ε2) (4.72)

and K̂i
xx(ŷ), K̂

i
yy(ŷ), ûy(ŷ), d̂

i
y(ŷ) and ĥ(ŷ) do not depend on ε.

In the outside regions, the interface is located at the boundary y+
m for the free medium and y−m for the

porous medium. From the inside region standpoint, the free and porous homogeneous regions are placed
at ŷ = ±∞. To obtain a solution in the whole domain, a tie must be made between the inside and the
outside regions. This tie is given by the matching conditions (Zwillinger, 1989). At zeroth and first
orders, they can be written for any physical term ψ

lim
by→±∞

ψ̂(0)(x, ŷ) = lim
y→±ym

ψ(0)
m (x, y) (4.73)

lim
by→±∞

[
ψ̂(1)(x, ŷ) − ŷ lim

y→±ym

∂ψ
(0)
m (x, y)

∂y

]
= lim

y→±ym

ψ(1)
m (x, y) (4.74)

At the mesoscopic scale, the averaged equations are valid in the whole domain and similar for the fluid
and the solid phases. At the macroscopic scale, we use the two-equation/two-equation formalism (see
section 3.). Thus, the developments are identical for the fluid and solid phases. In the following, only the
analytical developments for the fluid phase will be explicited.

Jump relation for the temperature
The temperature jump is determined from the resolution of the conductive flux equation in the y-direction

〈qcf 〉f = −Kf
yy

∂ 〈Tf 〉f

∂y
(4.75)

Introducing the asymptotic expansion in Eq. (4.75), a system of equation at 0 and 1 order in ε is written :
Outside problems,

qf,i(0)
cym = −Kf,i

yy

∂T
f,i(0)
m

∂y
(4.76) qf,i(1)cym = −Kf,i

yy

∂T
f,i(1)
m

∂y
(4.77)
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with i = p in the porous region and i = l in the free region.
Inside problem,

0 = −Kf
yy

∂T̂ f(0)

∂ŷ
(4.78) q̂f(0)

cy = −K̂f
yy

∂T̂ f(1)

∂ŷ
(4.79)

At order 0, Eq. (4.78) is integrated using the fact that K̂f
yy is not null. The matching condition (4.73) at

inside/outside boundaries leads to the continuity of the temperature at the interface

T f,l(0)m (x, ym) = T f,p(0)m (x, ym) (4.80)

At order 1, the temperature jump is obtained by integrating Eq. (4.79 ) on [0; +∞] with the appropriate
macroscopic term on each side of the equality

∫ +∞

0

∂

∂ŷ

[
T̂ f(1) − ŷ lim

y→+∞

∂T
f,l(0)
m

∂y
(x, y)

]
dŷ = −

∫ +∞

0

[
q̂f(0)
cy

1

K̂f
yy

+ lim
y→+∞

∂T
f,l(0)
m

∂y
(x, y)

]
dŷ(4.81)

Using the boundary ym of Eq. (4.78), the matching condition (4.74) for the temperature and the change
of variable ŷ = (y − ym)/ε, Eq. (4.81) can be rewritten as

T f,l(1)m (x, ym) − T̂ f(1)(x, ym) = −1

ε
qf,l(0)cym

∫ +∞

ym

[
1

Kf
yy(y)

− 1

Kf,l
yy

]
dy (4.82)

A similar relation can be obtained on [−∞; 0]. Added to Eq. (4.82) it gives the jump relation for the
temperature at order 1 which implies an excess value

T f,l(1)m (x, ym) − T f,p(1)m (x, ym) = −1

ε

(
1

Kf
yy

)ex
qf(0)
cym(x, ym) (4.83)

Regarding a possible jump for the solid temperature, the question is not relevant due to the chosen
assumption that the solid temperature is arbitrarily defined in the free region using continuity.

Jump relations for the total heat flux
The jump for the fluid total heat flux is determined from the resolution of the energy equation

∇ · 〈qf 〉f = −aV h(〈Tf 〉f − 〈Ts〉s) + u · ∇ 〈Tf 〉f (4.84)

where 〈qf 〉f = (ρcp)f 〈vy〉 〈Tf 〉f −Kf
yy∂ 〈Tf 〉f /∂y + dfy(〈Tf 〉f − 〈Ts〉s).

Introducing the asymptotic expansion and the change of variable in the inside region, the system of
equations at 0 and 1 order in ε can be written as:
Outside problem,

∂q
f,i(0)
xm

∂x
+
∂q

f,i(0)
ym

∂ŷ
= −aV hi(T f,i(0)m − T s,i(0)m ) + uiy

∂T
f,i(0)
m

∂ŷ
(4.85)

∂q
f,i(1)
xm

∂x
+
∂q

f,i(1)
ym

∂ŷ
= −aV hi(T f,i(1)m − T s,i(1)m ) + uiy

∂T
f,i(1)
m

∂ŷ
(4.86)

with i = p in the porous region and i = l in the free region.
Inside problem,

∂q̂
f(0)
y

∂y
= ûy

∂T̂ f(0)

∂y
(4.87)

∂q̂
f(0)
x

∂x
+
∂q̂

f(1)
y

∂y
= −aV ĥ(T̂ f(0) − T̂ s(0)) + ûy

∂T̂ f(1)

∂y
(4.88)
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At order 0, Eqs. (4.87) and (4.78) and the matching condition (4.73) give the continuity of the total heat
flux at the interface

qf,l(0)ym (x, ym) = qf,p(0)ym (x, ym) (4.89)

At order 1, the development is identical as the one for the temperature jump. Thus, by integrating Eq.
(4.88) on [0; +∞] one obtains

qf,l(1)ym (x, ym) − q̂f(1)
y (x, 0) =

1

ε

∂2T
f(0)
m

∂x2
(x, ym)

∫ +∞

ym

(
Kf
xx(y) −Kf,l

xx

)
dy

− 1

ε
(T f,l(0)m −T s,l(0)m )(x, ym)

∫ +∞

ym

aV

(
h(y) − hl

)
dy+

1

ε

∫ +∞

ym

(
uy(y)

∂T̂ f(1)

∂ŷ
− uly

∂T
f,l(0)
m

∂y

)
dy

(4.90)

Then, using Eqs. (4.79) and (4.76) and q̂f(0)
cy (ŷ) = q

f,l(0)
cym (ym) in Eq. (4.90), one can write

qf,l(1)ym (x, ym) − q̂f(1)
y (x, 0) =

1

ε

∂2T
f(0)
m

∂x2
(x, ym)

∫ +∞

ym

(
Kf
xx(y) −Kf,l

xx

)
dy

− 1

ε
(T f,l(0)m − T s,l(0)m )(x, ym)

∫ +∞

ym

aV

(
h(y) − hl

)
dy − 1

ε
qf,l(0)cym

∫ +∞

ym

(
uy(y)

Kf
yy(y)

−
uly

Kf,l
yy

)
dy

(4.91)

Finally, the jump condition for the total fluid heat flux at 1 order is

qf,l(1)ym (x, ym) − qf,p(1)ym (x, ym) =
1

ε

(
Kf
xx(y)

)ex ∂2T
f(0)
m

∂x2
(x, ym)

− 1

ε
aV (h(y))ex (T f(0)

m − T s(0)m )(x, ym) − 1

ε

(
uy

Kf
yy

)ex
qf(0)
cym(x, ym) (4.92)

For the solid phase, similar developments lead to

qs,l(0)
ym (x, ym) = qs,p(0)ym (x, ym) (4.93)

qs,l(1)
ym (x, ym) − qs,p(1)ym (x, ym) = (Ks

xx(y))
ex 1

ε

∂2T
s(0)
m

∂x2
(x, ym) + aV (h(y))ex

1

ε
(T f(0)
m − T s(0)m )(x, ym)

+

(
uy

Kf
yy

)ex
qf(0)
cym(x, ym) + (〈Ss〉)ex (4.94)

Summary
The two-equation/1-equation formalism is recovered using the chosen assumption of no solid heat flux
in the y-direction for the free region. Thus, the jump relations becomes
At zeroth order

T f,l(0)m (x, ym) − T f,p(0)m (x, ym) = 0 (4.95)

qf,l(0)ym (x, ym) − qf,p(0)ym (x, ym) = 0 (4.96)

qs,p(0)ym (x, ym) = 0 (4.97)
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At first order

T f,lm (x, ym) − T f,pm (x, ym) = −
(

1

Kf
yy

(y)

)ex
qf(0)
cym(x, ym) (4.98)

qf,lym(x, ym) − qf,pym(x, ym) =
(
Kf
xx(y)

)ex ∂2T
f(0)
m

∂x2
(x, ym) − aV (h(y))ex (T f(0)

m − T s(0)m )(x, ym)

−
(
uy(y)

Kf
yy(y)

)ex
qf(0)
cym(x, ym) (4.99)

qs,pym(x, ym) = − (Ks
xx(y))

ex ∂
2T

s(0)
m

∂x2
(x, ym) − aV (h(y))ex (T f(0)

m − T s(0)m )(x, ym)

−
(
uy(y)

Kf
yy(y)

)ex
qf(0)
cym(x, ym) − (φs(y))

ex Ss (4.100)
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4.8 Apparent interface

In this section, we look for the essential information presented in the introduction of the chapter: the
heat flux conservation at the free-porous interface and the error done with a modeling using boundary
conditions of continuity for a chosen interface location. In order to proceed, we consider the macroscopic
model at order 1 obtained with method of the matched asymptotic expansions and we follow develop-
ments similar to those performed in Section 3.6.

The macroscopic model is closed with jump conditions at order 1 at the free-porous interface. These
jump conditions at order 1 are:

T f,lm (x, ym) − T f,pm (x, ym) = −
(

1

Kf
yy

(y)

)ex
qf(0)
cym(x, ym) (4.101)

qf,lym(x, ym) − qf,pym(x, ym) =
(
Kf
xx(y)

)ex ∂2T
f(0)
m

∂x2
(x, ym) − aV (h(y))ex (T f(0)

m − T s(0)m )(x, ym)

−
(
uy(y)

Kf
yy(y)

)ex
qf(0)
cym(x, ym) (4.102)

qs,pym(x, ym) = − (Ks
xx(y))

ex ∂
2T

s(0)
m

∂x2
(x, ym) − aV (h(y))ex (T f(0)

m − T s(0)m )(x, ym)

−
(
uy(y)

Kf
yy(y)

)ex
qf(0)
cym(x, ym) − (〈Ss〉)ex (4.103)

Due to zeroth order macroscopic terms involved in these jump conditions, the macroscopic temperature
at first order is obtained in two steps. First, the macroscopic model at zeroth order is solved to determine
the coefficients qf(0)

cym , ∂2T
f(0)
m /∂x2, ∂2T

s(0)
m /∂x2 and (T

f(0)
m − T

s(0)
m ). Then, the macroscopic model

at order 1 can be solved. This two-step resolution gives the correct temperatures in the homogeneous
regions whatever the interface location as shown in Section 4.5.2. However, it requires two numerical
resolutions and the determination of the effective coefficients in the transition zone. For these reasons,
we look for an alternative and simpler approach to this two-step resolution.

4.8.1 Determination of an apparent interface

A first idea to simplify the two-step resolution is to investigate the approach of Duman and Shavit
(2009) presented in the previous chapter. It consists in looking for the apparent interface ym defined as
the interface location where the boundary conditions of continuity are sufficient.

T f,lm (x, ym) − T f,pm (x, ym) = 0 (4.104)

qf,lym(x, ym) − qf,pym(x, ym) = 0 (4.105)

qs,pym(x, ym) = 0 (4.106)

The apparent interface corresponds to the interface location where the correction term T
f(1)
m (x, y) has no

contribution in the homogeneous regions, thus lim
y→±∞

T
f(1)
m (x, y) = 0.

We notice that a condition for the solid phase such that lim
y→±∞

T
f(1)
s (x, y) = 0 does not give information

about the interface location. In the free region, the solid phase is not defined, while the condition in the
porous region is always verified whatever the interface location, as we will see in the following.

The velocity field is 1D and the geometry of the porous matrix at the free-porous interface is periodic in
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the x-direction. Since the apparent interface location ym is characteristic of the porous matrix and the
flow, it should not depend of x. This result has been verified in the case of local thermal equilibrium.
Due to the similarity between the one-temperature and two-temperature models for the direction depen-
dency, we assume that ym is also independent of x for the two-temperature model. Thus, for the sake of
simplification, we use T f(1)

m invariant in the x-direction to determine the apparent interface location ym.
In the free region ([ym; +∞[), T f(1)

m verifies the following equation:

(ρcp)fvmy
∂T

f(1)
m

∂y
= Kf,l

yy

∂2T
f(1)
m

∂y2
(4.107)

considering only the solutions with a finite value at the limits ±∞, one can write:

T f(1),l
m (y) =

A

(ρcp)fvmy
, where A is an unknown (4.108)

In the homogeneous porous region (]−∞; ym)), T f(1)
m and T f(1)

m verify the following coupled system:





(ρcp)fvmy
∂T

f(1)
m

∂y
− upy

∂T
f(1)
m

∂y
= Kf,p

yy

∂2T
f(1)
m

∂y2
+ df,py

∂

∂y

(
T f(1)
m − T s(1)m

)
− hp

(
T f(1)
m − T s(1)m

)

upy
∂T

f(1)
m

∂y
= Ks,p

yy

∂2T
s(1)
m

∂y2
+ ds,py

∂

∂y

(
T f(1)
m − T s(1)m

)
+ hp

(
T f(1)
m − T s(1)m

) (4.109)

The solution of the system (4.109) has the following form:

{
T
f(1),p
m =

∑3
i=1Biexp(Riy)

T
s(1),p
m =

∑3
i=1B

′
iexp(Riy)

(4.110)

where Bi and B′
i are unknowns and the Ri are solutions of the following cubic equation:

Kf,p
yy K

s,p
yy R

3 +
[
Ks,p
yy d

f,p
y −Kf,p

yy d
s,p
y − (ρcp)fvmy − uy

]
R2

+
[
ds,py [(ρcp)fvmy − uy] − df,py uy − h(Ks,p

yy +Kf,p
yy )
]
R+ (ρcp)fvmyh = 0 (4.111)

In our case, the roots of the cubic function are:

R1 = R2 = a , R3 = −b , where [a, b] ∈ R
+ (4.112)

which leads to the following temperature fields solution of the system (4.109):

{
T
f(1),p
m = B1 e

ay +B2 e
−by

T
s(1),p
m = B3 e

ay +B4 e
−by

(4.113)

where Bi are unknowns that must be determined.
Considering only the convergent temperature fields on (]−∞; ym]), we have:

B4 = B2 = 0 (4.114)

Introducing the temperature fields in the system (4.109), one obtains the following condition:

B3 =
Kf,p
yy a+ df,py + ds,py − (ρcp)fvmy

−Ks,p
yy a+ df,py + ds,py

B1 (4.115)
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Thus, the temperature fields solution of the system (4.109) have the following form:




T
f(1),p
m = B1 exp(ay)

T
s(1),p
m = B1

Kf,p
yy a+ df,py + ds,py − (ρcp)fvmy

−Ks,p
yy a+ df,py + ds,py

exp(ay)
(4.116)

Using the jump conditions at the interface (4.102) and (4.103), the three unknowns are related by the
relations:

[qfm](1)(ym) = A−B1 exp (aym) Ψ1 (4.117)

−qs,pym(ym) = −B1 exp (aym) Ψ2 (4.118)

with

Ψ1 = −aKf,p
yy − dfy + (ρcp)fvmy + dfy

Kf,p
yy a+ df,py + ds,py − (ρcp)fvmy

−Ks,p
yy a+ df,py + ds,py

(4.119)

Ψ2 = −dsy +
(
dsy − aKs,p

yy

) Kf,p
yy a+ df,py + ds,py − (ρcp)fvmy

−Ks,p
yy a+ df,py + ds,py

= −Ψ1 (4.120)

The unknown B1 is given by the relation (4.118) and A is obtained adding the relations (4.117) and
(4.118), which leads to:

A =
(
Kf
xx(y)

)ex ∂2T
f(0)
m

∂x2
(x, ym) + (Ks

xx(y))
ex ∂

2T
s(0)
m

∂x2
(x, ym) + (〈Ss〉)ex (4.121)

B1 = Ψ2exp (−aym)

[
− (Ks

xx(y))
ex ∂

2T
s(0)
m

∂x2
(x, ym) − aV (h(y))ex (T f(0)

m − T s(0)m )(x, ym)

−
(
uy(y)

Kf
yy(y)

)ex
qf(0)
cym(x, ym) − (〈Ss〉)ex

]
(4.122)

Thus, introducing the relations (4.121) and (4.122) in the equations of the first order temperature T f(1)
m

in the homogeneous porous (4.116) and free regions (4.108), one obtains:
In the free region ([ym; +∞[)

T f(1)
m =

(
Kf
xx(y)

)ex ∂2T
f(0)
m

∂x2
(x, ym) + (Ks

xx(y))
ex ∂

2T
s(0)
m

∂x2
(x, ym) + (〈Ss〉)ex (4.123)

In the homogeneous porous region (]−∞; ym))

T f(1)
m = Ψ2

[
− (Ks

xx(y))
ex ∂

2T
s(0)
m

∂x2
(x, ym) − aV (h(y))ex (T f(0)

m − T s(0)m )(x, ym)

−
(
uy(y)

Kf
yy(y)

)ex
qf(0)
cym(x, ym) − (〈Ss〉)ex

]
exp (a(y − ym)) (4.124)

a depending of the boundary conditions.

Now, to determine the apparent interface ym, one looks for the particular correction term T
f(1)
m that

verifies lim
y→±∞

T
f(1)
m = 0. In the homogeneous porous region, this condition is verified for any interface

location because of the exponential decay. In the free region, this condition leads to:

(
Kf
xx(y)

)ex ∂2T
f(0)
m

∂x2
(x, ym) + (Ks

xx(y))
ex ∂

2T
s(0)
m

∂x2
(x, ym) + (〈Ss〉)ex = 0 (4.125)
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This relation must be compared to the one obtained for model at local thermal equilibrium:

(Kxx(y))
ex ∂

2T
(0)
m

∂x2
(x, ym) = 0 (4.126)

We conclude that the relation (4.125) is coherent. It involves transverse heat flux as for the one-
temperature model and the additional volume heat source.
For heat transfer with transverse heat flux and a volume heat source of same order-of-magnitude, the
analytical determination of the apparent interface cannot be done. Indeed, its location depends of zeroth

order terms ∂2T
f(0)
m

∂x2 (x, ym) and ∂2T
s(0)
m

∂x2 (x, ym) (see (4.125)) and thus, requires iterative methods using
the jump conditions. In this context, the apparent interface location is not a characteristic of the porous
medium and the approach proposed by Duman and Shavit (2009) is not appropriate.
For heat transfer without Ss, the apparent interface location can be determined if the center of gravity of
the surface excess quantities of Kf

xx(y) and Ks
xx(y) are close to each other. In this case, the apparent

interface location ym is given by:
ym = y

Kf
xx

= yKs
xx

(4.127)

For heat transfer with transverse heat flux null or negligible, the relation (4.125) reduces to:

(〈Ss〉)ex = 0 (4.128)

and the apparent interface location is ym = ySs . In the following, we illustrate this result on three
examples of heat transfers with Ss only.

4.8.2 Heat transfer driven by a heat source in the solid

In this example, we study heat transfer with a volume heat source in the solid matrix and without
transverse heat flux. In this case, the apparent interface is located at the center of gravity of the surface
excess (〈Ss〉)ex, thus ym = ySs To illustrate this point, we consider a rough interface as presented in
Fig. 4.12. For such a geometry, the center of gravity ySs is separated from the nominal interface ynom,
which is the tangent plane to the last grain (this notion has been presented in Section 3.6.2). In our case,
we have ynom/H = 0.28, while the center of gravity of the volume source is located at ySs/H = 0.09.

ySs

y/H = 0

y/ = −0.13

y/H = 0.43
ynom

Figure 4.12: Geometry of the interface

The macroscopic temperatures are computed with boundary conditions of continuity for two interface
locations: ynom and ySs . The resulting profiles are compared with the averaged microscopic solutions in
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Fig. 4.13. The correct temperature profile in the free region is recovered when the interface is located
at ym = ySs . If the interface is located at the nominal interface, the corresponding macroscopic profile
exhibits a large difference with the profile of reference.
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Figure 4.13: Macroscopic temperature at zeroth order for x = 0(
T ∗
i = [Ti − (〈Tf 〉f (0;H−) + 〈Tf 〉f (0;H+))/2]/[〈Tf 〉f (0;H+) − 〈Tf 〉f (0;H−)]

)
.

This heat transfer configuration shows the importance of the interface location when boundary conditions
of continuity are used to couple the macroscopic models at the free-porous interface. These boundary
conditions are valid only for a peculiar position of the interface and only if there is no lateral flux.

4.8.3 Variable heat source

Until now, the studied averaged temperature gradients were constant and the values of the effective
conductivity tensor had no effect on the model. The issue of this example is to validate the effective con-
ductivity tensors via non-constant averaged temperature gradients. Thus, we consider a volume source
Ss(y) varying in the solid matrix with a flat interface; the heat source variation considered corresponds
to the heat distribution in a reactor core at steady state. The different scales of description are presented
in Fig. 4.14. To characterize the heat transfer, we use the macroscopic model with boundary conditions
of continuity at the interface ym = ySs .
At the microscopic scale, the distribution of the heat source in the solid corresponds to

Ss(y) =





6.9 for − 2 < y < −1.8 and − 0.2 < y < 0
9.6 for − 1.8 < y < −1.6 and − 0.4 < y − 0.2
12.3 for − 1.6 < y < −1.4 and − 0.6 < y − 0.4
14.8 for − 1.4 < y < −1.2 and − 0.8 < y − 0.6
16 for − 1.2 < y < −0.8
0 for y > 0

At the macroscopic scale, the heat source distribution corresponds to:

Sm(y) =

{
2.6 cos(2.4 (y + 1)) + 4.5, in the homogeneous porous region
0, in the free region
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Figure 4.14: Solid heat source for the different scales of description

At the mesoscopic scale, 〈Ss〉 corresponds to the macroscopic source Sm in the homogeneous regions
and differs in the transition zone where the values vary continuously. Since the volume source depends
on y, the center of gravity ySs differs from the one computed in Section 4.5.2. In the present case, the
center of gravity is given by the following relation:

∫ ySs

H−

(〈Ss〉 (y) − Sm(y)) dy =

∫ H+

ySs

(〈Ss〉 (y) − Sm(y)) dy (4.129)

leading to ySs/H = −0.009.

The macroscopic temperatures are computed with boundary conditions of continuity for three differ-
ent interface locations: the boundaries of the transition zone ym/H = ±0.13, and the center of gravity
ySs/H . The resulting profiles are compared with the averaged microscopic solutions in Fig. 4.15. In the
homogeneous porous region, due to the non constant temperature gradients, the good agreement between
the macroscopic profiles and the temperatures of reference validates the computation of the effective co-
efficients in the y-direction. In the free region, the macroscopic profiles of the fluid phase depend on
the interface location. For interfaces located at the boundaries of the transition zone, the profiles do not
correspond to the temperature of reference. Conversely, if the interface is located at the center of gravity
of the solid source, the macroscopic temperature fits the temperature of reference.
From the previous work, we can compute the error done, when the boundary conditions of continuity are
applied at the wrong location. This information is directly given by the order 1 temperature T f(1)

m in the
free region (see the relation (4.123)). When there is no transverse heat flux, the relation (4.123) reduces
to

T f(1)
m (ym) = Spm(ySs − ym) (4.130)

where ym is the interface location that can be chosen anywhere in the transition zone and Spm = Spm(H+
ym) because Spm is not constant. In the case studied the maximum error is obtained for ym/H = −0.13;
which is one of the limit of the transition zone. Thus the error is:

error = 0.12 (4.131)

Compared to the variation of the fluid temperature in the whole domain, this error is 12%.
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Figure 4.15: Macroscopic temperature at first order for x = 0(
T ∗
i = [Ti − (〈Tf 〉f (0;H−) + 〈Tf 〉f (0;H+))/2]/[〈Tf 〉f (0;H+) − 〈Tf 〉f (0;H−)]

)
.

4.8.4 Industrial nuclear codes

In the industrial nuclear codes, the conductive or dispersive phenomena are often neglected and only
the fluid-solid heat transfer is computed. Such modelings would take the following form:

• In the homogeneous porous region

(ρcp)fvmy
∂T

f(1)
m

∂y
− upy

∂T
f(1)
m

∂y
= −hp

(
T f(1)
m − T s(1)m

)
(4.132)

upy
∂T

f(1)
m

∂y
= hp

(
T f(1)
m − T s(1)m

)
(4.133)

• In the free region

(ρcp)fvmy
∂T

f(1)
m

∂y
= 0 (4.134)

• At the free-porous interface: boundary conditions of continuity at the nominal interface

ynom/H = −0.016 (4.135)

The solutions of this macroscopic model are compared to the averaged microscopic temperatures in
Fig. 4.16. In the homogeneous porous regions, the macroscopic profiles do not correspond to the temper-
atures of reference. The difference between the fluid and the solid temperatures is recovered, but not the
temperature gradients. In the free region, for the interface located at the nominal interface, the profiles
do not correspond to the temperature of reference.
The error associated to this modeling is 4%, compared to variation of the fluid temperature in the whole
domain. The approximation done for the heat transfer model in the homogeneous porous medium partly
recapture the error created by the choice of a wrong interface location. At last, this error is small and
one can conclude that the simplification made by the industrial models are relevant. However, what are
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Figure 4.16: Macroscopic temperature at first order for x = 0(
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)
.

the possibilities to reduce it? The determination of the center of gravity of the volume solid source is
not a good choice, because for a flat interface, ySs is close to the nominal interface. Thus, the remaining
solution is to consider the conductivity and the dispersive phenomena.

In this section, we have studied the heat transfer modeling at a free-porous interface.
For heat transfer dominated by a volume source in the porous matrix, the macroscopic modeling can be
simplified. Instead of using jump conditions at the interface, the condition of continuity applied at the
center of gravity of the solid source is enough to obtain accurate temperature values in homogeneous
regions.
For the other cases of local thermal non-equilibrium, no simplification is available and only the macro-
scopic model at order 1 is able to characterize correctly the heat transfer at a free-porous interface.

4.9 Conclusion

This chapter presents a heat transfer problem at local thermal non-equilibrium in a free-porous do-
main. The issue is to determine appropriate boundary conditions in order to model the heat transfer at the
free-porous interface. We use the multi-scale method, based on three levels of description of the interface
and two distinct up-scaling steps, presented in Chapter 2 for heat transfer at local thermal equilibrium.
The results are summarized in Tab. 4.2.

In the first up-scaling step, we change the scale of description from microscopic to mesoscopic with
the volume averaging method. Applying the spatial smoothing with a representative elementary volume
constant in the whole domain, we obtain a diffuse interface between the porous and free regions. To
characterize the heat transfer, we determine a two-temperature model valid in the whole domain with ef-
fective coefficients constant in the homogeneous regions and varying continuously in the transition zone.

In the second up-scaling step, we change the scale of description from mesoscopic to macroscopic with
methods using conservation principles. The issue is to gain computational time substituting the transi-
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tion zone by a surface of discontinuity with jump boundary conditions. The most appropriate method to
model diffuse interfaces is the method of the matched asymptotic expansion that gives approximate solu-
tions at different orders of the mesoscopic problem. We obtain solutions at order 0 that verify boundary
conditions of continuity at the interface. These solutions do not capture the overall transfer and depend
on the interface location. Then, increasing the order of resolution, we determine solutions at order 1
verifying boundary conditions with excess quantities at the porous-free interface. These excess quanti-
ties involve intrinsic properties of the interface, properties of the homogeneous medium and the interface
location ym. Thus, we have characterized the interface and obtained a very good approximation of the
mesoscopic temperature of reference whatever the interface location.

Furthermore, the macroscopic model at order 1 gives the two essential informations that we are looking
for: the heat flux conservation at the free-porous interface and the error done with a modeling using
boundary conditions of continuity for a chosen interface location. Thus, in order to verify the total heat
flux conservation, we show that the transverse conduction and the volume solid source must be consid-
ered. These terms are also present in the evaluation of the error. In particular, for thermal configurations
where the volume solid source dominates on the transverse conduction, the error is given by the excess
value of the volume solid source, thus:

error(ym) = (〈Ss〉)ex = Spm(ySs − ym) (4.136)

For high velocity, the model structure does not change and only the effective transfer coefficient are mod-
ified. The form of the boundary conditions and the relation giving the apparent interface are unchanged.
Thus, similar conclusions will be applied.

In the following chapter, we present a direct numerical simulation (DNS) of turbulent heat transfer
realized on the configuration chosen in (Breugem and Boersma, 2005; Breugem et al., 2005) to study
turbulent flows at a fluid-porous interface. The DNS solves directly the Navier-Stokes equations and the
conductive convective equations without the need of any closure model. Thus, these results are used in
Chapter 5 as solutions of reference to validate the macroscopic turbulent models.
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At the microscopic scale

(ρcp)f∇ · (vfTf ) = −∇ · (kf∇Tf ) , for the fluid phase (4.137a)

0 = −∇ · (ks∇Ts) + Ss , for the solid phase (4.137b)

At the mesoscopic scale

(ρcp)f 〈vf 〉 · ∇ 〈Tf 〉f − u(x) · ∇ 〈Tf 〉f = ∇ ·
(

Kf (x) ∇〈Tf 〉f + df (x)(〈Tf 〉f − 〈Ts〉s)
)

−aV h(x)
(
〈Tf 〉f − 〈Ts〉s

)
(4.137c)

u(x) · ∇ 〈Tf 〉f = ∇ ·
(

Ks(x) ∇〈Ts〉s + ds(x)(〈Tf 〉f − 〈Ts〉s)
)

+aV h(x)
(
〈Tf 〉f − 〈Ts〉s

)
+ 〈Ss〉 (4.137d)

At the macroscopic scale
In the porous region (H− < y < ym)

(ρcp)fvm · ∇T f,pm − up · ∇T f,pm = ∇ ·
(

K
p

f · ∇T f,pm + dpf

(
T f,pm − T s,pm

))
−

aV h
p
(
T f,pm − T s,pm

)
(4.137e)

up · ∇T f,pm = ∇ ·
(

K
p

s · ∇T s,pm
)

+ aV h
p
(
T f,pm − T s,pm

)
+ φpsSs (4.137f)

In the free region (ym < y < H+)

(ρcp)fvm · ∇T f,lm = ∇ ·
(
kf I · ∇T f,lm

)
(4.137g)

At the porous-free interface ym

[T fm] = −
(

1

Kf
yy

)ex
qf(0)
cym (4.137h)

[qfym] =
(
Kf
xx(y)

)ex ∂2T
f(0)
m

∂x2
− aV (h)ex (T f(0)

m − T s(0)m ) −
(
uy

Kf
yy

)ex
qf(0)
cym (4.137i)

qs,pym = − (Ks
xx)

ex ∂
2T

s(0)
m

∂x2
− aV (h)ex (T f(0)

m − T s(0)m ) −
(
uy

Kf
yy

)ex
qf(0)
cym

− (〈Ss〉)ex (4.137j)

The correction term in the free region is:

T f(1)
m =

(
Kf
xx

)ex ∂2T
f(0)
m

∂x2
+ (Ks

xx)
ex ∂

2T
s(0)
m

∂x2
+ (〈Ss〉)ex (4.137k)

Table 4.2: Synthesis of models used for the different scales of description.
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Chapter 5

Direct numerical simulation of a turbulent
heat flow in a partially porous domain

In Chapters 2 and 3, we have studied jump conditions that must be applied at a free-porous interface
for laminar heat transfers. However as presented in the introduction, heat transfer in a nuclear reactor
is turbulent and its computation requires the use of turbulence modeling RANS-type combined to the
porous description in the fuel zone. The modeling commonly used is the turbulent Prandtl model in
free regions and the macroscopic turbulent Prandtl model in homogeneous porous regions. However, are
these models valid at a free-porous interface? The issue of this chapter is to answer this question via a
direct numerical simulation of a turbulent heat transfer problem in a three-dimensional domain partially
filled with a porous medium.

5.1 Introduction

In practical applications, various turbulence models are used in software for computational fluid
dynamics and heat transfer. However the turbulence is a complex phenomenon and the direct numerical
simulation constitutes an important research tool to analyze and model the turbulent flows. The advances
in large-scale computers during the last decade has allowed a better understanding of the turbulence for
increasingly complex geometries. In this context, Breugem and Boersma (2005) study a turbulent flow
over permeable walls. To validate a method of turbulence computation, they perform a DNS considered
as a simulation of reference. This DNS gives the flow field in a channel over a porous medium constituted
of a three-dimensional grid of cubes. For turbulent heat transfer, studies have been realized for flows in
channel or in porous media as we will see in the following. However, to our knowledge, no result
exists in a free-porous domain. Thus, using the geometry proposed by Breugem and Boersma (2005),
we investigate the effect of such a configuration on the turbulent heat transfer through a new direct
numerical simulation. With this DNS we obtain valuable information of the turbulence that develops in
such a configuration. In order to understand the issues related to the study of turbulent heat transfer at
a free-porous interface, we present the main mechanisms of the turbulence and the results existing for
turbulent heat flows in channel and homogeneous porous media only.

The physics of the turbulence
Turbulence is a flow regime characterized by the appearance of unsteady vortices in a viscous fluid on
many scales that interact with each other. It is a diffusive-dissipative mechanism continuously trans-
ferring the energy between the different scales from the larger eddies to the smaller ones. This energy
cascade described by Kolmogorov is governed by three main phenomena:

• the production, that corresponds to the energy injected by the main flow;
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• the inner redistribution of the turbulent agitation between the structures of decreasing sizes, which
length scales are closed to each other;

• the dissipation at the scale of the smallest eddies.

The length scale of the smallest structures η can be determined using the Kolmogorov’s first hypothesis
that fixes the limiting condition of existence to the balance between the inertial and viscous forces. With
dimensional considerations, it can be expressed as a function of the fluid viscosity νf and the dissipation
rate ǫ computed from the largest eddies:

η =

(
ν3
f

ǫ

)1/4

= LRe
−3/4
t (5.1)

where L and Ret are the length scale and the Reynolds number of the largest turbulent structures.
Another property of the turbulence is its highly irregular nature. This is why turbulence problems are
mostly treated statistically rather than deterministically.
Furthermore, turbulence is characterized by the generation of three-dimensional vortices. This mecha-
nism corresponds to vortex stretching, which is essential to the process of the turbulence energy cascade.

Turbulent heat transfer in channel flows
Numerous direct numerical simulations have been provided for turbulent heat transfer in channel flows.
The issue of these studies is to investigate the effects of the wall boundary conditions and the Prandtl and
friction Reynolds numbers on the thermal boundary layer.
First DNS simulations are done by Kim and Moin (1989) for a Reynolds number Reτ = 180 and Prandtl
numbers Pr = 0.1, 0.71 and 2.0 using isothermal boundary conditions at walls. They confirm the
observed features of turbulent heat transfers such as the high correlation between the streamwise velocity
and temperature fluctuations and the existence of thermal streaky structures. However, an isothermal
boundary condition corresponds to the physical configuration where a fluid with a negligible density,
heat capacity and thermal conductivity is heated by a thick wall with high density, high heat capacity
and high thermal conductivity (αf/αs → 0). Such a boundary condition is uncommon in practical heat
transfer applications, thus for a more realistic heating condition, Kasagi et al. (1992) perform similar
computation with isoflux walls. Despite the difference in the thermal boundary conditions they obtain
thermal turbulence statistics close to those of Kim and Moin (1989). This result can be explained by the
underestimation of the wall temperature fluctuations. To overcome this weakness, Tiselj et al. (2001a)
couple the turbulent heat transfer and the unsteady conduction in solid wall. Thus, they obtain accurate
predictions and show the influence of thermal boundary conditions on the thermal boundary layer.
At the same time, several researchers have directed their studies to higher Reynolds and Prandtl numbers.
Thus, Kawamura et al. (1999) and Abe et al. (2004) perform DNS for Reτ up to 1020 with Pr = 0.025
to 0.71. Na et al. (1999) and Tiselj et al. (2001a) simulate turbulent channel flows for low Reτ = 150
and moderate Prandtl numbers Pr = 0.71 to 10. These studies show the very weak influence of the
friction Reynolds number on the turbulent heat transfer statistics, while the effect of Prandtl number is
noteworthy. Furthermore, attention must be paid to the numerical accuracy and the spatial resolution
must verified the Batchelor length scale η0 as η0 = ηPr−1/2. Thus, increasing Pr requires finer spatial
resolution and bigger amount of mesh cell number (Tennekes and Lumley, 1972; Kozuka et al., 2009).

Turbulent flow in a porous medium
To our knowledge, no direct numerical simulation exists for porous media. However, an important mod-
eling work has been done in the context of RANS simulations. As presented in the introduction, the
turbulent transfers in porous media are studied using two distinct average operators: a time averaging
operator to be independent from the turbulence irregularity and the volume averaging operator to replace
the fluid and solid phase by an equivalent porous medium (see Chapter 1). In order to study the DNS and
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to compare the results with those of the literature, we apply these filters. The two averages are applied
one after another and the question of the application order arises. Pedras and de Lemos (2000) show
that from a mathematical point of view, the order of averagings of the two operators (time averaging and
volume averaging) leads to similar twice-averaged equations for the mean flow. A similar conclusion
is obtained by Rocamora and de Lemos (2000) for the mean temperature. The problem of the order of
application appears at the modeling step to close the twice-averaged equations and to obtain a closed
macroscopic description. At this step, the order of application has an important impact on the modeling
of the physical phenomena. Antohe and Lage (1997) and Getachew et al. (2000) apply the volume av-
eraging operator first, perform a first modeling then apply the time averaging operator. Using the spatial
averaging operator first implies that only the length scale larger than the representative elementary vol-
ume can be considered. However the turbulence structures larger than the REV are rapidly destroyed by
the solid matrix, which constrains the eddy size to the pore size. Thus the validity of this approach is
not accurate. On the contrary, Nakayama and Kuwahara (1999), de Lemos and Pedras (2001b), Nield
(2001), Breugem and Boersma (2005), Chandesris et al. (2006), Pinson et al. (2006) choose to perform
the volume averaging on the time averaged equations.
In the remainder of the study, we follow Chandesris et al. (2006) and perform the time averaging process
first.

equations

Local instantaneous Time−averaged 

equations(DNS) averaging

time

averaging

volume Twice−averaged 

equations

ξ ξ + ξ′
〈
ξ
〉f

+ ξ̃ + 〈ξ′〉f + ξ̃′

Figure 5.1: Description of the chosen averaging process.

This Chapter presents the direct numerical simulation of turbulent heat transfer in a domain with a free-
porous interface. Section 5.2 describes the geometry, the boundary conditions and the numerical proce-
dures. Section 5.3 expresses the fundamental equations and develops the two averaging processes (time
and volume averaging) leading to the twice-averaged equations for the flow and the heat transfer. Section
5.4 presents the low-order turbulent statistics and the characteristic of the turbulent structures. We recall
that each presented quantity is twice-averaged.

5.2 Problem description and numerical method

5.2.1 Geometry

We consider a turbulent flow in a domain partially filled with a model porous medium. As illustrated
in Fig. 5.2, the mean flow is in the x-direction and is thus tangential to the fluid-porous interface. The
domain dimension is 3H × 2H × 2H respectively in the direction parallel to the flow (x-direction),
perpendicular to the flow (z-direction) and perpendicular to walls (y-direction). The porous medium
is composed of arranged lines of 30x20x9=5400 cubes with a porosity φp = 0.875. The cube size is
dp = H/20 and the distance between cubes is df = dp.
We consider two different regions: a free fluid or channel region between y = 0 and y = H and a porous
region between y = −H and y = 0. The channel height H is defined following Breugem and Boersma
(2005). It relies on the porosity profile and corresponds to the distance between the top wall and the plan
y = 0 where the porosity starts to vary (see Fig. 5.3). We note δ the channel half width.
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Figure 5.3: Porosity profile in the y-direction of the three-dimensional geometry (from Breugem (2005)).

5.2.2 Boundary conditions

The domain is limited by solid walls at y = H and y = −H , and the inlet and outlet are located at
x = 0 and x = 3H respectively.
For the Navier-Stokes equations, boundary conditions of periodicity are imposed at the domain inlet and
outlet. At the upper- and lower-walls boundary conditions of no-slip velocity are fixed.
For the heat transfer, the boundary conditions at the domain inlet and outlet depend of the heating config-
uration considered, the issue being to represent an infinite channel with an establish heat transfer. If there
is no injected heat flux (flux null and constant temperature fixed at walls), one can use classical boundary
conditions of periodicity on a finite channel. If heat flux is injected in the system with constant fluxes
imposed at walls or at the cubes, the temperature cannot verify the boundary condition of periodicity
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because its averaged value constantly increases in the flow direction. In order to represent an infinite
channel with established heat transfer conditions using a finite channel, we introduce a new variable θ
(Kawamura et al., 2000):

θ = T − ∆T

L
x (5.2)

where ∆T is the temperature increase on the domain of length L and is obtained performing an energy
balance on the domain that gives (see Appendix A):

A =
∆T

L
=

(qb − qh)L+
∫
Afs

qdS

(ρcp)fL
∫ H
−H u(0; y)dy

(5.3)

where q is the heat flux at the lower wall for qb and at the upper wall for qh. Such a change of variable
makes appear an additional term in the energy equation such that (see Appendix A):

(ρcp)f∇ · (vθ) + (ρcp)fuA = ∇ · (kf∇θ) (5.4)

where u is the velocity in the flow direction. We notice that T and θ satisfy identical boundary conditions
for the heat flux at the upper and lower walls. However, θ satisfies boundary conditions of periodicity at
the domain inlet and outlet, and additional boundary conditions at cubes walls in the flow direction (see
Appendix A).

Concerning the walls and the cubes, we consider three different heating configurations.

• Case 1: the cubes surfaces are adiabatic and a constant temperature is fixed at the top and bottom
walls (T (y = H) > T (y = −H)). With this choice, classical boundary conditions of periodicity
for the temperature are used and there is no need to subtract the averaged flux. This configuration
allows the validation of the results at the solid wall by comparing with DNS computation in free
channels.

• Case 2: the cubes surfaces are adiabatic and a constant incoming heat flux is fixed at the top
and bottom walls. Since a heat flux is injected in the system, one must perform the change of
variable θ and consider the source term ∆T/L (see equation 5.2). This configuration also allows
the validation of the results at the solid wall by comparing with DNS computation in free channels.

• Case 3: the walls are adiabatic and an incoming heat flux is fixed at the cubes. As previously, due
to the injected heat flux, the change of variable is performed. This configuration get closer to heat
transfers existing in industrial cases, for which the solid heats.

In the following, the results for Cases 2 and 3 will be presented with the quantities θ0 and θ1. The
boundary conditions are summarized in Tab. 5.1.

inlet and outlet Periodic (z-direction) Non-slip (y-direction)
Periodic or Pseudo-periodic (x-direction)

Case 1 T (−H) = 0; T (+H) = 1; qw(cubes) = 0
Case 2 qw(−H) = 1; qw(+H) = 1; qw(cubes) = 0
Case 3 qw(−H) = 0; qw(+H) = 0; qw(cubes) = 1

Table 5.1: Computational condition.
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Figure 5.4: Boundary conditions.

5.2.3 Study parameters

For the Navier-Stokes equations, the bulk Reynolds number is fixed at Reb = UbH/ν = 5500 to
compare our results with those results of Breugem and Boersma (2005). The initial condition for the
velocity is a perturbed in the y- and z-directions parabolic profile corresponding to the bulk velocity
1.084Ub in the free region and a velocity null in the porous region. The factor 1.084 is obtained from the
results of Breugem and Boersma (2005) and corresponds to the ratio between the total bulk velocity in
the whole domain and the bulk velocity through the surface y > 0. This initial profile imposes a similar
total bulk as Breugem and Boersma (2005), once the bulk is distributed between the porous and free
regions.
For the heat transfer, the choice of the Prandtl number has been dictated partially by the convergence
time of the computation. The convergence time is a limiting factor of the DNS. For this configuration,
it corresponds to the time scale of the conductive phenomenon in the y-direction ( (ρcp)f (2H)2/kf )
and can be reduced by increasing kf . Since the Prandtl number is related to kf via Pr = µcp/kf , the
convergence time imposes the value of the Prandtl number. For this study, we choose the Prandtl number
Pr = 0.1. Thus, this Prandtl number combined with the Reynolds number gives the Peclet number
Pep = RepPr = 1 in the porous region and Pel = 550 in the free region.

5.2.4 Numerical method

The governing equations are discretized on a Cartesian mesh constituted of 96.106 cells, which size
isH/200 (see Tab. 5.2). The meshing is identical in the whole domain, nevertheless in the porous region,
the interior of the cubes is not discretized. For Prandtl number Pr > 1, the spatial resolution is imposed
by the temperature and must verify the Batchelor length scale η0, which is estimated as η0 = ηPr−1/2

where η is the Kolmogorov length scale. For heat transfer with Prandtl numbers Pr < 1, the spatial
resolution is imposed by the velocity, which is the studied case. Thus, we keep the same spatial resolution
as the one used by Breugem and Boersma (2005).
For the time advancement, the third-order Runge-Kutta scheme is applied. It has the advantage to be
precise and stable. The time increment is 7.6 10−3H/Ub. The momentum convection is computed with
a centered spatial discretization scheme, while the heat convection is performed with a non-centered
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Reynolds number Reτ = 390
Prandtl number Pr = 0.1
Computational volume (x,y,z) 6δ × 4δ × 4δ
Computational volume (x+,y+,z+) 1170 × 780 × 780
Spatial resolution (∆x+, ∆y+, ∆z+) 2 × 2 × 2
Grid numbers 600 × 400 × 400

Table 5.2: Spatial resolution.

spatial discretization scheme quick. The computational conditions are summarized in Tab. 5.3. The time
integration is repeated for about 3527 H/Ub until the thermal field is judged to be fully developed and
then the computation is further continued about 5523 H/Ub to obtain the necessary statistics. The num-
ber of instantaneous data fields used for the statistics is equal to 3000, spanning on a total time interval
of 1996 H/Ub. The data sampling is started when the statistics variations (velocity, temperature and
variance) are observed to be in a steady state. However, there are very low frequency variation on these
time histories although their amplitudes are very small. Thus, the statistically steady state is judged with
some arbitrariness.
For the computation, we use the Trio_U software which is a Computational Fluid Dynamics code devel-
opped by the CEA. The DNS is computed on the JADE computer from the Centre informatique National

de l’Enseignement Superieur CINES. The cluster SGI Altix ICE 8200, JADE, is a parallel scalar super-
computer with a power of 147 Tflops/s. For more information, we recommend the CINES’s website:
www.cines.fr.
For one time step advancement, 3.26s CPU time is required. The present DNS has been computed on
500 processors (velocity, pressure and temperature).

Mesh Staggered mesh
Time advancement third-order Runge-Kutta
Momentum convection second-ordered central sheme
Heat convection non-central quick sheme
inlet and outlet Periodic (z-direction) Non-slip (y-direction)

Periodic or Pseudo-periodic (x-direction)

Table 5.3: Computational method.

5.3 Governing equations

In this section, we present the formalism used to analyze the numerical results. The local and in-
stantaneous equations are time-averaged, then volume-averaged. Thus, twice-averaged equations are
obtained that are characteristic of turbulent transfers in porous media.

5.3.1 General equations

Navier-Stokes and conductive-convective equations
The flow is incompressible and its thermodynamical properties are assumed constant. The Navier-Stokes
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and energy equations governing the flow are:

∂ui
∂xi

= 0 (5.5)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

(5.6)

∂T

∂t
+
∂ujT

∂xj
=

∂

∂xj

(
α
∂T

∂xj

)
(5.7)

where α is the thermal diffusivity of the fluid phase.

Statistical averaging
To handle the turbulent characteristics of the flow, the Navier-Stokes equations are statistically averaged.
The statistical averaging is defined by:

ψ = lim
p→+∞

p∑

n=1

ψn(x, t) (5.8)

where ψn is any function of the turbulent field at the location x and the time t. Using the Reynolds
decomposition, the function ψ can be written with the mean field ψ and turbulent fluctuations ψ′ such
that:

ψ(x, t) = ψ(x, t) + ψ′(x, t) (5.9)

The statistical averaging verifies the linearity, the idempotence and the commutation between differen-
tiation and the time operators. Given these properties, the time averaging applied to the Navier-Stokes
equations gives:

∂ui
∂xi

= 0 (5.10)

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xj
+ ν

∂2ui
∂x2

j

− ∂

∂xj

(
u′iu

′
j

)
(5.11)

∂T

∂t
+

∂

∂xi

(
uiT

)
=

∂

∂xi

(
α
∂T

∂xi

)
− ∂

∂xi

(
u′iT

′
)

(5.12)

Correlation terms u′iu
′
j and u′iT

′ appear in the momentum and temperature equations. The term u′iu
′
j

is the Reynolds stress tensor and corresponds to the contribution of the turbulence. The off-diagonal
components are shear stresses and play a dominant role in the theory of mean momentum transfer by
turbulent motion. The diagonal components are normal stresses and contribute little to the transport of
the mean momentum.
The temperature being a passive scalar, the turbulent heat flux u′iT

′ is seen as an additional diffusion
created by the turbulence.

Spatial averaging
The volume averaging operator is applied to the governing equations to look for the mean characteristics
of the flow in the porous region. Given the properties of the volume averaging operator (see Section 2.1.2)
and the no-slip boundary conditions at the solid walls, the equation of continuity becomes:

∂ 〈ui〉
∂xi

= 0 (5.13)

The momentum equation takes the following form:

∂ 〈ui〉
∂t

+
∂

∂xj

(〈ui〉 〈uj〉
φ

)
+

∂

∂xj
τ iju = −1

ρ

∂ 〈p〉
∂xi

+
∂

∂xj

(
ν
∂ 〈ui〉
∂xj

)
− ∂

∂xj

〈
u′iu

′
j

〉
+ f il (5.14)
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where f il is a drag force that results from the interaction between the solid and fluid phases:

f il =
1

V

∫

Afs

(
ν
∂ui
∂xj

− p− 〈p〉f (x0)

ρ
δij

)
· njdS (5.15)

τ iju corresponds to the momentum dispersion tensor due to the spatial deviation of the velocity field
defined by:

τ iju = 〈uiuj〉 −
〈ui〉 〈uj〉

φ
(5.16)

The volume averaging operator applied to the temperature equation gives:

φ
∂
〈
T
〉f

∂t
+

∂

∂xi

(
φ 〈ui〉f

〈
T
〉f)

+
∂τ iuT
∂xi

=
∂

∂xi

(
αφ

∂
〈
T
〉f

∂xi

)
− ∂

∂xi

〈
u′iT

′
〉

+ Tor + P (5.17)

where τ iuT is the thermal dispersion vector defined by:

τ iuT =
〈
uiT

〉
− φ 〈ui〉f

〈
T
〉f

(5.18)

The term Tor is the tortuosity that traduces the opposition by the solid matrix to the diffusion effect:

Tor =
∂

∂xi

(
1

V

∫

Afs

α
(
T − 〈T 〉f (x0)

)
ni dS

)
(5.19)

The term P corresponds to the wall heat flux:

P =
1

V

∫

Afs

α
∂T

∂xi
nidS − 1

V

∫

Afs

∂u′iT
′

∂xi
nidS

︸ ︷︷ ︸
=0

(5.20)

since u′iT
′ = 0 at the fluid-solid interface Afs.

The direct numerical simulation provides the overall terms present in the twice-averaged equations, in-
cluding f il , τ

ij
u , τ iuT and Tor that are characteristic of turbulent transfer in porous media.

5.3.2 Simplified equations

In the studied DNS, the turbulent flow is at steady state and the thermo-physical properties of the
fluid (ρ, cp, ν, kf ) are assumed constant. For the equations of continuity (5.13) and momentum (5.14),
the boundary conditions of periodicity in the x- and z-directions imposes that the averaged velocity
gradients are constant in these directions. For the equation of energy (5.17), the diffusion, the tortuosity
and the dispersion are constant in the x- and z-directions for the boundary conditions considered. Thus,
one obtains the following simplified equations:

∂ 〈u〉
∂y

= 0 (5.21)

∂

∂y

(〈u〉 〈v〉
φ

)
+

∂

∂y
τyxu = −1

ρ

∂ 〈p〉
∂x

+
∂

∂y

(
ν
∂ 〈u〉
∂y

)
− ∂

∂y

〈
u′v′

〉
+ fyl (5.22)

〈u〉
∂
〈
T
〉f

∂x
+

∂

∂y

(
φ 〈v〉f

〈
T
〉f)

+
∂τyuT
∂y

=
∂

∂y

(
αφ

∂
〈
T
〉f

∂y

)
− ∂

∂y

〈
v′T ′

〉
+ Tor + P (5.23)
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The energy equations for the three boundary conditions are solved in parallel with a single velocity
field solution. Considering Cases 2 and 3, the variable change and the heating configuration impose nul
averaged temperature gradients in the x- and z-directions. Thus, the energy equation (5.23) becomes:

Case 1:
∂τyuT
∂y

=
∂

∂y

(
αφ

∂
〈
T
〉f

∂y

)
− ∂

∂y

〈
v′T ′

〉
+ Tor (5.24)

Case 2: 〈u〉A0 +
∂τyuθ0
∂y

=
∂

∂y

(
αφ

∂
〈
θ0
〉f

∂y

)
− ∂

∂y

〈
v′θ′0

〉
+ Tor (5.25)

Case 3: 〈u〉A1 +
∂τyuθ1
∂y

=
∂

∂y

(
αφ

∂
〈
θ1
〉f

∂y

)
− ∂

∂y

〈
v′θ′1

〉
+ Tor + P (5.26)

In order to study the turbulent transfer characteristics at the free-porous interface, the results of the DNS
are filtered twice, as the governing equations. First, the statistical quantities are computed (see equations
(5.10), (5.11), and (5.12)) for each mesh cell of the whole domain. Furthermore, since the geometry is
2dp-periodic in the x- and z-directions, we can increase the statistics by adding the quantity ψ of each
periodic cell as:

ψnew(x, y, z) =

30∑

i=0

20∑

k=0

ψ(x+ i2dp, y, z + k2dp) (5.27)

The geometry is thus reduced to a column of cubes in the y-direction.
Then, the volume averaging process is performed applying a spatial filter in the three directions. Finally,
one obtains a twice-averaged quantity

〈
ψnew

〉
(y). The results presented in the next Section correspond

to the twice-averaged quantities. Considering the geometry obtained once the statistical filter has been
performed, we use a top-hat formed filter in the x- and z-direction, and a quadratic filter (top-hat con-
voluted twice, see Chapter 1) in the y-direction. The choice of a quadratic filter differs from Breugem
and Boersma (2005), who perform the spatial averaging using a triangle shaped filter (top-hat convoluted
once). The quadratic filter shows its accuracy for the turbulent viscosity profile and does not change the
profiles of the statistic quantities as it will be shown in the following. Furthermore, we remind that the
volume averaging operator does not give accurate values at the wall on a half of VER spacing. For a
quadratic filter, the zones impacted by the wall effect correspond to −1 < y/H < −1 + 3dp = −0.85
and 1 − 3dp = 0.85 < y/H < 1. These zones are delimited by dotted lines in the following figures.
On the contrary, Breugem and Boersma (2005) choose to reduce the wall-normal extent of the averag-
ing volume close to the wall (−1 < y/H < −1 + 2ddp). This can explain the difference between the
Breugem’s and our profiles in these zones.

5.4 Results

In this section, we present the averaged results from the DNS performed with Trio_U. For the ve-
locity field, the low-order turbulence statistics and characteristic turbulent structures (velocity, variance,
shear stresses, turbulent quantities) are compared with those obtained by Breugem and Boersma (2005).
This comparison is a first verification of the relevance of the DNS. An identical work is done for the tem-
perature. However, no similar study exists to validate the results at the free-porous interface. Only, the
behavior of the turbulent thermal boundary layer at the top-wall is verified using the knowledge existing
for turbulent channel flows.
The results of the present DNS offer a first theoretical basis on turbulent statistics of heat transfer at a
free-porous interface.

120



5.4 Results

5.4.1 Statistics of the velocity field

In this paragraph, the results obtained with Trio_U are compared with Breugem’s DNS (Breugem and
Boersma, 2005). The values of the different Reynolds numbers that characterize both DNS are presented
in Table 5.4. The Reynolds numbers are defined by:

Reb = UbH/ν with Ub =

∫ H

0
udy , the bulk flow in the free region

ReT = 2UTH/ν with UT =
1

2H

∫ H

−H
udy , the averaged flow in the whole domain

Reip = UpH/ν with Up =

∫ 0

−H
udy , the bulk flow in the porous medium

Retτ = utτH/ν with utτ =

√
−ν ∂u

∂y
(H) , the wall shear stress

Repτ = UpτH/ν with upτ =

√
−ν ∂ 〈u〉

∂y
(0) , the porous wall shear stress at y = 0

DNS φ Reb Rep ReT Retτ Repτ

Breugem 0.875 5500 502 5963 394 669

Trio_U 0.875 5351 450 5851 390 664

Difference in % 0 2 1 1 2 1

Table 5.4: Characteristic of the Breugem’s DNS and Trio_U’s DNS.

The values presented in Table 5.4 show a good agreement between the Reynolds number character-
istic of Breugem’s DNS and our DNS. The small differences could come from the use of the Immersed
Boundary Method at cubes used by Breugem and Boersma (2005) that introduces a small penetration
velocity through the cubes. This method allows to consider the porous domain as continuous, and thus,
the Fast Fourier Transform solver can be used to solve the Poisson equation for the pressure.

5.4.1.1 Velocity profiles

The velocity profiles are presented in Fig. 5.6. In the flow direction (see Fig. 5.6(a)), the profiles
obtained by Breugem and Trio_U are very close. The difference between the porous medium and the free
region is recovered. In the free region, the profile is skewed with a maximum located above the center
of the channel at y/H = 0.6875. It results from a skin friction coefficient Cf = 2(uτ/Ub)2 larger for
the free-porous interface than for the solid top wall. Furthermore, the velocity profile shows an inflexion
point (d2u/dy2 = 0) at y/H = −0.082. This inflexion point is at the origin of large vortical structures
that develop just above the porous wall. These large vortical structures can be associated to instabilities
of the Kelvin-Helmholtz type (see Breugem et al. (2005).)
In the normal and cross directions (see Figs. 5.6(b) and 5.6(c)), the averaged velocity must be null at
convergence. This result is verified for 〈v〉 but not exactly for 〈w〉, which profile shows small fluctua-
tions in the free region. In our study, we use an identical forcing term in the porous and free regions to
impose the periodicity condition. There is no-friction in the free region and the slight time-variations of
the forcing term can be at the origin of the observed fluctuations in the 〈w〉 profile. A similar observation
can be done for the Breugem’s DNS.
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Breugem et al. (2005) study the transfer mechanisms at the free-porous interface using a similar analysis
as for solid wall and considering the interfacial free-porous zone as a porous wall. They locate the porous
wall at y/H = 0. Thus, they show that two boundary layers can be distinguished in the free region: one
above the permeable wall and one below the solid wall. The border between the two boundary layers
corresponds to the maximum of the mean velocity (see Fig. 5.5).

y/H=0.68

y/H=1

y/H=−1

y/H=0

Production zone

Dissipation zone 

Dissipation zone 

Boundary layer 

top wall

porous wall

1

2

3

Dissipation zone

5

4 Production zone 

Boundary layer 

Figure 5.5: Scaling regions for turbulent flow in a free-porous domain.

5.4.1.2 RMS profiles of velocity components

The profiles of the averaged velocity variance are presented in Fig. 5.7. The fluctuations of the three
components of the velocity are close for both DNS.
The rms values are low in the porous region, increase to reach a peak at the free-porous interface, then
decrease in the free region to reach a smaller peak near the solid wall and decrease again. From this pro-
file description, one can identify two zones of production and three zones of dissipation of fluctuations
(see Fig. 5.5). The production of fluctuations is characterized by the peaks at the free-porous interface
and at the solid wall. The width and the height of peaks give information on the mechanism at the origin
of the fluctuations. Thus, the difference between the peak width shows that the fluctuations are created by
two different mechanisms and the size shows that the production at the free-porous interface is stronger
than at the solid wall. The zones of dissipation of the fluctuations are located in the porous region and in
the free region between the two production zones. In the porous region, the dissipation of the fluctuation
is very important and is due to the drag created by the solid matrix. In the free region, two zones of
dissipation exist and are related to the two zones of production at the free-porous interface and at the
solid wall.

For the dissipation in the free region, Breugem et al. (2005) study the spectra of the rms of the velocity
fluctuation and show a very interesting phenomenon. Although the wave number of the fluctuations de-
crease exponentially, the larger-scale fluctuations decrease more slowly than the small-scale fluctuations.
This result confirms the observation of large vortices entering in the upper part of the porous medium.

122



5.4 Results

(a) Averaged velocity profile in the flow direction (b) Normal averaged velocity profile

(c) Cross averaged velocity profile

Figure 5.6: Averaged velocity profiles.

5.4.1.3 Shear stress profiles

The total shear stress is defined by:

〈τxz〉 = ν
∂ 〈u〉
∂y

−
〈
u′v′

〉
− 〈u v〉 (5.28)

The right hand terms represent respectively the viscous shear stress (ν ∂〈u〉∂y ), the turbulent shear stress

(
〈
u′v′

〉
) and the volume averaged mean shear stress (〈u v〉). The different terms are presented in Fig. 5.8

showing similar profiles for both DNS. The turbulent constraint is negligible in the homogeneous porous
region and rises strongly in the interfacial zone to decrease linearly in the free region. The volume av-
eraged viscous and the volume averaged mean shear stresses are negligible in the whole domain. The
total shear stress has values of the same order of magnitude as the turbulent shear stress. Thus, one can
conclude that the turbulent shear stress contributes the most to the total shear stress.
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(a) Variance of the axial velocity (b) Variance of the normal velocity

(c) Variance of the cross velocity

Figure 5.7: Profiles of the averaged velocity variance.

5.4.1.4 Turbulent kinetic energy and dissipation rate profiles

The profiles of the turbulent quantities 〈k〉 and 〈ǫ〉 are presented in Fig. 5.9.
For the volume averaged turbulent kinetic energy (see Fig. 5.9(a)), the profiles obtained by Trio_U and
Breugem are identical. This quantity illustrates the intensity of the mixing in the domain. The values
are null in the porous medium far from the porous wall, increase to reach a peak around y = 0, then
decrease in the free region to a minimum around y = 0.7, which corresponds to the maximum of the
velocity field (border between the two boundary layers). The peak width at y = 0 corresponds to
large vortical structures (Breugem, 2005). These structures are rapidly destroyed in the porous medium
(−0.5 < y < 0) due to the friction force created by the solid matrix. In the free region, the vortical
structures elongate and eventually disappear.
For the dissipation rate (see Fig. 5.9(b)), the profile cannot be compared because the Breugem’s results
is not known. However, the behavior is consistent with the physics of turbulent transfer in a free-porous
domain. It can be decomposed in four regions:

• In region 1 (−1 < y/H < −0.5), the dissipation rate is very low, which corresponds to no-
turbulence;
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(a) Volume averaged turbulent shear stress (b) Volume averaged viscous shear stress

(c) Volume averaged mean shear stress (d) Volume averaged total shear stress

Figure 5.8: Profiles of the volume averaged shear stresses.

• In region 2 (−0.5 < y/H < 0), the dissipation rate increases to reach a peak at y/H = −0.1; it
characterizes the dissipation of the turbulence by the drag due to the presence of the solid matrix;

• Region 3 (0 < y/H < 0.7) corresponds to the dissipation of the Kelvin-Helmholtz vortices created
by the porous wall;

• Region 4 (0.7 < y/H < 1.) corresponds to the dissipation of the turbulent structures coming from
the solid wall.

From this profile analysis, one recovers two characteristics of the turbulent flow in a free-porous domain.
The impact of the porous region in the dissipation rate compared to the free region and the difference
between the porous and solid walls illustrated by the shifted profile in the channel. The shifted profile in
the channel is compared to the result of Moser et al. (1999) obtained for Reτ = 360.

5.4.2 Turbulent viscosity profile

The DNS does not use any model for the Reynolds stresses and solves all the turbulence scales.
However, it is important to compute the averaged turbulent viscosity to compare the macroscopic model
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(a) Volume averaged turbulent kinetic energy

1 2 3 4

(b) Volume averaged dissipation rate

Figure 5.9: Profiles of turbulent quantities.

using this hypothesis. This quantity is obtained with:

νtφ =
−
〈
u′v′

〉

∂ 〈u〉 /∂y (5.29)

The profiles of the averaged turbulent viscosity are presented in Fig. 5.10. In the relation (5.29), the
numerator and the denominator are null for different locations. This is observed in both DNS for y = 0.7,
y = −0.5 and y = −0.75.
A difference between the profiles is observed for −0.5 < y < 0. This is due to the use of different
volume averaging filters. Breugem (2005) uses a triangle shaped function, while we average with a
quadratic function. Thus, the observed fluctuations in the Breugem’s profile follow the geometry. The
order of the filter he uses, is not sufficient.
For y < −0.5 , the averaged turbulent viscosity is not defined. In this zone, the flow is not disordered
by the turbulence, that has been destroyed by the friction force existing in the porous medium. Thus, the
axial velocity is homogeneous and the Reynolds stress is null.

The twice averaged quantities (velocity fields, rms velocity fluctuations, shear stresses) and the turbulent
characteristics (〈k〉, νtφ) of the DNS are compared with those of Breugem and Boersma (2005). The pro-
file comparison shows a good agreement validating the computation of the turbulent flow. Furthermore,
new quantities are represented (〈k〉, 〈ǫ〉, νtφ) that will be used to build a turbulent macroscopic model in
Chapter 6.

5.4.3 Statistics of the temperature field

This Section presents the low-order turbulence statistics and characteristic turbulent structures of the
heat transfer for the three studied heating configurations: fixed temperature at walls and adiabatic cubes
(Case 1), fixed flux at walls and adiabatic cubes (Case 2) and fixed flux at cubes and adiabatic walls
(Case 3). For Case 1, the computed quantity is the temperature T . For Cases 2 and 3, where heat is
injected in the system, the computed temperatures are the new variables θ0 and θ1.
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Figure 5.10: Profiles of turbulent quantities.

The quantities are non-dimensioned by the friction or the difference temperature defined by:

T tτ =
α∂T∂y (H)

ρcputτ
, θtτ =

qw
ρcputτ

solid wall friction temperature

T pτ =
α
∂〈T〉
∂y (0)

ρcputτ
, θpτ =

α
∂〈θ〉
∂y (0)

ρcputτ
porous wall friction temperature

∆T = [T ]H−H , ∆θ = [θ]H−H temperature difference at walls

5.4.3.1 Verification at the solid wall

As presented in the introduction, many studies have been performed to understand the turbulent
heat transfers in the thermal boundary layer. The obtained results offer theoretical basis on turbulence
statistics for different thermal conditions at the solid wall. Thus, we are able to verify the accuracy of
our own results in the thermal boundary layer at the upper wall. The temperature and variance profiles
for Cases 1 and 2 are presented in Fig. 5.11. The results obtained for Case 3 are not presented because
adiabatic wall corresponds to a particular boundary condition.
The dimensionless quantities are presented as a function of y+ (= uτy/ν) and defined as:

ψ
+
(x, y, z) = (ψ(x,H, z) − ψ(x, y, z))/ψtτ

ψ
+

rms = ψrms/ψ
t
τ , u′ψ′ +

= u′ψ′/utτψ
t
τ , v′ψ′ +

= v′ψ′/utτψ
t
τ

where ψ corresponds to the temperatures T and θ0. The results are presented for y+ < 120, thus
0.69 < y/H < 1. It corresponds to the channel part between the location of the inflection point of the
velocity profile and the upper-wall.

The temperature profiles are presented in Fig. 5.11(a). The profiles follow the relation T
+

= Pry+ in the
viscous region (y+ < 10) for the isothermal and isoflux boundary conditions in accordance with the liter-
ature (Tiselj et al., 2001b,a; Kawamura et al., 1999, 2000). Distant from the wall (y+ > 30), Kawamura
et al. (2000) show the existence of a logarithmic sublayer in 1/0.43ln(y+)+Cste for 1 > Pr > 0.2 and
the absence of logarithmic sublayer for Pr < 0.025. It shows that the effects of the viscosity become
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(a) Profiles of mean temperatures (b) Profiles of rms temperature fluctuation

(c) Comparaison of rms profiles for imposed heat flux (d) Profiles of the turbulent wall axial heat flux

(e) Profiles of the turbulent wall normal heat flux

Figure 5.11: Low-order turbulence statistic profiles at the solid wall for isothermal and isoflux boundary
conditions
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more important for low Prandtl numbers and move the logarithmic zone at a larger distance from the
wall. In our study with Pr = 0.1, the profiles does not exhibit a logarithmic sublayer (see Fig. 5.11(a)).
This can be due to the effect of the viscosity as presented above and the effect of the porous wall.

The variance profiles are presented in Fig. 5.11(b). For isothermal boundary condition, the tempera-
ture fluctuation are null at the wall and increase in the viscous sublayer (y+ < 10), to reach a peak at
y+ = 87. Such a behavior can be compared with the results obtained in a channel flow by Debusschere
and Rutland (2004) (Reτ = 186, Pr = 0.7) and Nicoud and Poinsot (1999) (Reτ = 180, Pr = 0.76).
Indeed, they find temperature fluctuations null at walls and that increase to reach a peak at y+ ≈ 20.
For isoflux boundary conditions, the temperature fluctuations are constant in the viscous sublayer (y+ <
10) and reach a peak at y+ = 45. This result are in accordance, with those of Tiselj et al. (2001b,a)
(Reτ = 170, Pr = 1, 5 and Reτ = 150, Pr = 0.71, 5, 7). Especially, Tiselj et al. (2001a) show
that the constant value of the temperature fluctuations in the viscous sublayer and the peak location vary
with the Prandtl number. They obtained T

+
rms ≈ 2 and a maximum at y+ ≈ 20 for Pr = 0.71, and

T
+

rms ≈ 8.7 and a maximum at y+ ≈ 7 for Pr = 7 (see Fig. 5.11(c)).

The turbulent flux profiles in the streamwise and normal-wall directions are presented in Figs. 5.11(d)
and 5.11(e). The distinct feature is that the thermal wall boundary condition does not affect the turbulent
normal heat flux close to the wall (see Fig. 5.11(d)), while it impacts the turbulent axial heat flux in the
viscous sublayer (see Fig. 5.11(e)). This feature is coherent with the one observed by Tiselj et al. (2001a)
for a low Prandtl number (Reτ = 150, Pr = 0.71).

The study of the thermal boundary layer validates the accuracy of the DNS results. in the near-wall
layer. The main features of the low order turbulent statistics are recovered in accordance with the litera-
ture (Kawamura et al., 2000; Tiselj et al., 2001b,a; Nicoud and Poinsot, 1999; Debusschere and Rutland,
2004)

5.4.3.2 Temperature and RMS profiles

The profiles of the averaged temperatures for the three heating configurations are presented in Fig. 5.12.
They can be divided in three domains: the porous and free domains with different temperature gradients
and a transition zone making the bond between the two domains.
In order to show the effect of the turbulence in the porous medium, we compare the obtained temperature
profiles with temperature profiles obtained without turbulence. In the y-direction, the dispersion can be

neglected and the tortuosity approximated by Tor = αtorφ∂
2
〈
T
〉f
/∂y2, as we will see in Chapter 6.

With these simplifications, the equations (5.24), (5.25), (5.26) reduce to:

Case 1: 0 = (α+ αtor)φ
∂2
〈
T
〉f

∂y2
(5.30)

Case 2: 〈u〉A0 = (α+ αtor)φ
∂2
〈
θ0

〉f

∂y2
(5.31)

Case 3: 〈u〉A1 = (α+ αtor)φ
∂2
〈
θ1

〉f

∂y2
+ P (5.32)

where α = 10 and αtor = −0.8. The equations (5.30), (5.31), (5.32) are integrated on the domain
and the temperature profile are presented in Fig. 5.12. Comparing the turbulent and laminar profiles
in the homogeneous porous medium, one observes that the effect of the turbulence is negligible for
−1 < y/H < −0.5 and begins to be visible for y/H > −0.5.
In the free region, the turbulence dominates the heat transfer. For Case 1, with fixed temperature at wall
and adiabatic cubes, the temperature profile presents an inflexion point at y/H = 0.12 (see Fig. 5.12(b)).
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For Case 2, with fixed flux at wall and adiabatic cubes, the temperature profile presents a minimum at
y/H = 0.44 (see Fig. ??). These points corresponds to the minimum location of the rms temperature
fluctuations (see Fig. 5.13).

(a) Case 1: fixed temperature at walls (b) Case 2: fixed flux at walls

(c) Case 3: fixed flux at cubes

Figure 5.12: Profiles of the volume averaged temperature with ψ∗ =
〈ψ〉f−(ψ(H)+ψ(−H))/2

∆ψ , ψ being T ,
θ0 and θ1.

The roots mean square temperature fluctuation ψ is defined by:

ψrms =

√〈
ψ′2
〉f

(5.33)

The profiles of the rms quantities are presented in Fig. 5.13.
For the three heating configurations, the maximum temperature fluctuation is located inside the porous
medium (y/H = −0.38 for Case 1, y/H = −0.40 for Case 2 and /H = −0.31 for Case 3). Further-
more, the rms values are not negligible in the porous medium compared to free region, unlike the rms
velocities. These behaviors could be related to the presence of large vortices in the upper-part of the
porous medium as found by Breugem et al. (2005). In the free region, the temperature fluctuation behav-
ior depends on the heating configuration. For Case1, the minimum value is located around the inflexion
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point of the temperature profile at y/H = 0.12. For Case 2, the minimum value is located around the
minimum of the temperature profile at y/H = 0.44.
At the present time, the profiles of the rms temperature fluctuations are not well understood. A solution
for a better understanding of the phenomena, is to decompose the rms temperature fluctuations between
its different contributions, (i) the fluctuation of the mean flow and (ii) those of the subfilter scale. This
decomposition makes explicit the contributions of the different sources of the fluctuations. This work is
not presented here due to a lack of time.

(a) (b)

(c)

Figure 5.13: Profiles of the RMS temperature fluctuation.

5.4.3.3 Total heat flux profiles

The profiles of different contributions to heat flux in the normal wall direction are presented in
Fig. 5.14. For the three heating configurations, the following observations can be done:

• the dispersion is negligible;

• the molecular diffusion dominates the heat transfer in the porous region and is not negligible
compared to the turbulent diffusion in the transition zone and in the free region;
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• the turbulent diffusion dominates the heat transfer in the free region, it is still important in the
upper-part of the porous region and it is negligible for y/H < −0.5.

The description of the flux profiles shows two main characteristics of the studied heat transfer. The Peclet
numbers (Pep = 1 in the porous medium and Pel = 550 in the free region) are not high enough to have
a negligible diffusive flux compared to the turbulence flux. The turbulent heat flux is negligible in the
lower-part of the porous region, which confirms the disappearance of the turbulence in this zone.

(a) Case 1 (b) Case 2

(c) Case 3

Figure 5.14: Profiles of the heat flux budget.

For fully developed flow and temperature fields, the exact total heat flux in the wall normal direction
can be obtained from the integration on [−H; +H] of the averaged energy equations (5.24), (5.25) and
(5.26). One obtains:

Case 1: qy = cste (5.34)

Case 2: q0y = A0

∫ y

H−

〈u〉 (y)dy (5.35)

Case 3: q1y = A1

∫ y

H−

〈u〉 (y)dy −
∫ H+

H−

P(y)dy (5.36)
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The comparison between the present total heat flux and the exact total heat flux are presented in Fig. 5.15.
The exact total heat flux are translated to fit the sum of the present total flux at the porous wall y = 0.
For the three heating configurations, slight differences between the profiles are observed (±5%). It could
arise from the lack of periodicity in the z-direction (see Fig. 5.6(c)).

(a) Case 1 (b) Case 2

(c) Case 3

Figure 5.15: Comparison of the total heat flux in the wall normal direction.

5.4.3.4 Turbulent heat flux profiles

The profiles of the streamwise averaged turbulent heat flux are presented in Fig. 5.16. In the porous
medium, the behaviors are identical for the three heating configurations (see Fig. 5.16(d)). The values are
null at the wall, decrease to a minimum at y/H = −0.4 then increase to reach a peak close to the porous
interface at y/H = −0.05. We notice that the location of the minimum value corresponds approxi-
mately to the maximum location of the rms temperature fluctuation (see Fig. 5.13). In the free region,
the behaviors are different depending on the applied boundary conditions (see Fig. 5.16(d)). However
the profile superimposition in Fig. 5.16(d) shows a noteworthy point at y/H = 0.7 that corresponds to
the maximum of the velocity field (border between the two boundary layers).

The wall-normal averaged turbulent heat flux are presented in Fig. 5.17. In the porous medium, the
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behaviors are identical for the three heating configurations (see Fig. 5.17(d)). The values are null at the
wall then decrease to a minimum around −0.05 < y/H < 0. In the free region, the behaviors are differ-
ent depending on the applied boundary conditions as presented in Fig. 5.17(d).
As for the rms temperature fluctuations, the study of the different contributions of the turbulent heat
fluxes gives a better understanding of the main contributions at the origin of the profiles. This work is
not done in this study due to a lack of time.

Comparing the wall-normal and the streamwise heat fluxes, some observations can be done:

• the values of the wall-normal heat flux are smaller by an order-of-magnitude than the streamwise
ones;

• except the extremum location (−0.05 < y/H < 0), the form of the wall-normal and streamwise
profiles is different.

From these observations, we assume that the wall-normal and streamwise turbulent heat fluxes result
from different mechanisms. In order to illustrate this assumption, we study the cross-correlation in the
following. The issue is to improve the knowledge of the turbulent heat flux for the RANS simulation of
the macroscopic heat transfer in Chapter 6.

(a) Case 1 (b) Case 2

(c) Case 3 (d)

Figure 5.16: Profiles of the streamwise turbulent heat flux.
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(a) Case 1 (b) Case 2

(c) Case 3 (d)

Figure 5.17: Profiles of the wall-normal turbulent heat flux.

5.4.3.5 Cross-correlation profiles

A cross-correlation study is performed by Kasagi et al. (1992) for heat transfer in a turbulent channel.
They defined a correlation coefficient Rψξ by Rψξ = ψ′ξ′/ψrmsξrms where ψ and ξ are DNS fields (u,v
and T ). After the computation of the correlation coefficients, they compare the obtained profiles and
conclude that the wall-normal turbulent heat flux v′T ′ and the Reynolds shear stress u′v′ are generated
by similar mechanisms in a turbulent channel.
Following this analysis for free-porous domain, we define the correlation coefficients below:

Ruψ =

〈
u′ψ′

〉

urmsψrms
, Rvψ =

〈
v′ψ′

〉

vrmsψrms
, Rvu =

〈
v′u′

〉

vrmsurms

where ψ corresponds to the temperatures T , θ0 and θ1 respectively. The profiles of the cross-correlation
coefficients are presented in Fig. 5.18.

For the heating configuration with imposed temperature at walls, the profiles of the cross-correlation
RuT , RvT and Ruv are presented in Fig. 5.18(a). The comparison between the profiles of RvT and Ruv
shows an important difference. It reveals a lack of correlation between the averaged turbulent heat flux〈
v′T ′

〉
and the averaged Reynolds stress

〈
v′u′

〉
. On the contrary, the profiles Ruv and RuT have a close
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main behavior. Thus, the Reynolds shear stress and the turbulent flux
〈
u′T ′

〉
in the flow direction are

generated by similar turbulence mechanisms.
In order to illustrate the similarity, the stresses

〈
u′v′

〉
and

〈
u′T ′

〉
are superposed in Fig. 5.18(b). The

Reynolds constraint is scaled following:

f〈u′v′〉f = −
〈
u′v′

〉f

Pr(upτ )2
(5.37)

The comparison shows an identical decrease between the two constraints at the porous wall in the porous
region.
For the two other heating configurations, Case 2 and Case 3, the profiles are presented in Fig. 5.18(c) to (f).
It leads to the same observations as for Case 1.

5.4.3.6 Turbulent diffusivity profile

The DNS provides information about the characteristics of the turbulent structures existing in tur-
bulent transfers to create accurate turbulence modeling that can be used for LES or RANS simulations.
For this reason, the issue is to express the turbulent correlations as a function of main quantities. In the
context of this study, we want to characterize

〈
v′T ′

〉
to perform a RANS simulation of the turbulent

heat transfer in a free-porous domain at the macroscopic scale (see Chapter 6). We propose a turbulence
modeling inspired from the one commonly used for free flow. It relates the turbulent heat correlation〈
v′T ′

〉
to the gradient of the main temperature via a volume averaged turbulent diffusivity αtφ as:

αtφ =

〈
v′T ′

〉f

∂
〈
T
〉f
/∂y

(5.38)

The profiles of the macroscopic turbulent diffusivity for the three heating configurations are presented in
Fig. 5.19. The three profiles fit in the porous region and are different in the free region. For Case 2, the
values diverge due to the intrinsic volume average temperature gradient null for y/H = 0.44. However,
one observes an identical main behavior for the three cases. The values are negligible for y/H < −0.5,
then rapidly increase to reach a peak at y/H = 0.1 and decrease in the free region.
The identical behavior of the volume averaged turbulent diffusivity for the three heating configurations
confirms the relevance of the modeling of the turbulent heat correlation (5.38).
The next step is the closure of αtφ , that we study in more details in Chapter 6. We present here only the
main problematic of this step. For the simulation of turbulent free flows via RANS simulations using the
k-ǫ model, the turbulent diffusivity is closed via the turbulent Prandtl model as:

αt =
νt
Prt

, with Prt = 0.9 (5.39)

Such a modeling is based on the passive nature of the temperature field, whose turbulence length scale
is equal to that of the flow. It verifies the correlation between v′T ′, u′T ′ and u′v′. For a homogeneous
porous medium, de Lemos and Rocamora (2002) assume that the correlation is also valid for the volume
averaged quantities and propose the following modeling:

〈
v′T ′

〉f
=

νtφ
Prt

∇
〈
T
〉f

(5.40)

However, we shown that
〈
v′T ′

〉
and

〈
v′u′

〉
result from different mechanisms. Thus, the model (5.40)

might not be appropriate for the RANS simulation of turbulent heat transfer in a free-porous domain at
the macroscopic scale. In the following chapter, we discuss this problematic and we propose another
model to close the volume averaged turbulent diffusivity.
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(a) Cross-correlation coefficients-Case 1 (b) Comparison between
˙

u′T ′

¸

and
˙

u′v′
¸

-Case 1

(c) Cross-correlation coefficients-Case 2 (d) Comparison between
D

u′θ′0

E

and
˙

u′v′
¸

-Case 2

(e) Cross-correlation coefficients-Case 3 (f) Comparison between
D

u′θ′1

E

and
˙

u′v′
¸

-Case 3

Figure 5.18: Profiles of the cross-correlations and of the constraints comparison.
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Figure 5.19: Profile of the volume averaged turbulent diffusivity.

5.5 Conclusion

This Chapter presents a direct numerical simulation of turbulent heat transfer in a three-dimensional
domain partially filled with a porous medium constituted of cubes. Using the geometry and the spatial
discretization of Breugem and Boersma (2005), the simulation is performed at constant friction Reynolds
number Reτ = 390 and Prandtl number Pr = 0.1. Furthermore, considering the fluid temperature as a
passive scalar, the energy equations for three heating boundary conditions are solved in parallel with a
single velocity field solution. The results of the DNS are statistical quantities, that we spatially average
on the whole domain.
For the flow, the twice averaged quantities (velocity fields, rms of velocity fluctuations, shear stresses)
and the turbulent characteristics (averaged turbulent kinetic energy and averaged turbulent viscosity)
are compared with the results of Breugem and Boersma (2005). The profile comparison shows a good
agreement validating the DNS computation of the turbulent flow. Thus, we recover the observations of
Breugem and Boersma (2005) that the turbulent structures are created at the porous wall and elongate in
the free channel, while they are rapidly destroyed in the porous medium by the solid matrix.
For the temperature, no comparison can be done with previous studies. However using the results existing
for turbulent channel flows, we validate the thermal boundary layer at the top wall in the viscous zone
and show the impact of the porous wall in the logarithmic zone. We present the twice averaged quantities
(temperature field, rms temperature fluctuations, cross correlation, heat flux balance) and the turbulent
heat characteristics (averaged turbulent diffusivity) for the three heating configurations. Thus, we show
that the turbulent heat flux in the wall normal direction

〈
v′T ′

〉
and the Reynolds constraint

〈
u′v′

〉
are

created by different mechanisms. This information is very important for the modeling of the turbulent
heat correlations in the context of RANS simulations and will be used in the next chapter. Indeed, the
issue of Chapter 5 is to simulate a macroscopic turbulent heat transfer at a free-porous interface with a
k-ǫ model for the flow and a thermal model for the temperature. The macroscopic results obtained with
the model will be compared to the DNS profiles considered as results of reference.
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Chapter 6

Turbulent heat transfer at the free-porous
interface for a Poiseuille flow

In Chapters 2 and 3, we studied the jump conditions that must be applied at a free-porous interface for
laminar heat transfer. However, as presented in the introduction, the heat transfer is turbulent in a core of
a nuclear reactor. In Chapter 5, we have presented a direct numerical simulation of turbulent heat transfer
in a free-porous domain that gives access to local quantities. In this chapter, we study the coupling at
the interface between the macroscopic turbulent heat transfer model used in the homogeneous porous
region and the standard turbulent heat transfer model of the free region. As for laminar studies, we use
the multi-scale method based on two up-scaling steps and three levels of description of the interface. At
last, the macroscopic profiles are compared with the results of reference given by the DNS.

6.1 Introduction

The study of laminar heat transfer at a free-porous interface relies on the description scale of the
interface. For turbulent heat transfer, the modeling depends also on the description of the turbulence. In
order to introduce the different modeling issues, we present first the turbulent models and for each one
the associated model of the interface.

Direct numerical simulation
The direct numerical simulation of turbulent heat transfer at a free-porous interface captures the turbu-
lence without the use of any modeling and describes the fine structure of the porous medium. Such a
computation corresponds to a numerical experimentation that gives access to local quantities, and thus
can be used as a simulation of reference. The DNS presented in Chapter 5 is realized in this purpose.
At this scale of description of the turbulence, Breugem and Boersma (2005) propose a modeling for the
momentum transfer at the free-porous interface. It consists in applying a spatial average on the Navier-
Stokes equations, with a size for the representative elementary volume smaller than the length scale of
the turbulent structure. This constraint imposes a filter size different in the porous and free regions to
solve each scale of the turbulence. This approach called DNS with continuum gives correct profiles com-
paring to the results of reference but requires a large amount of discretization cells numbers (107 for the
DNS with continuum instead of 108 grid nods for the DNS with cubes).
Another approach consists in substituting the interfacial zone by an appropriate boundary condition at
the free-porous interface, that features the impact of the porous medium on the free region. Using such
an approach, Hahn et al. (2002) propose a boundary condition inspired from Beavers and Joseph (1967)
and obtain good results for laminar transfers. However, the approach fails for turbulent heat transfers
comparing to experimental results (Zagni and Smith, 1976; Zippe and Graf, 1983; Kong and Schetz,
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1982). Furthermore, as for the laminar case, the value of the jump coefficient α is not known and can
have a large impact on the results.
For turbulent heat transfer, there is no study that proposes a modeling of heat transfer at the free-porous
interface. Nevertheless, Stalio and Nobile (2003) study the influence of rough walls on the heat flux for
turbulent flows. Representing the rough wall by riblets, they perform direct numerical simulation for
different riblet geometry.

Large eddy simulation
Large eddy simulations (LES) of the turbulence introduce a first level of modeling. The turbulent struc-
tures of the transfer, whose sizes are larger than a cut-off scale are explicitly computed as for a DNS. For
the smallest turbulent structures, their impact on the larger scales are modeled with sub-filter models.
LES is used to study transfer at a free-porous interface for weather prediction (Shaw and Schumann,
1992; Finnigan, 2000; Watanabe, 2004). In such cases, an identical filter is used to average the turbu-
lence and the porous medium. However, as noted in the introduction, for homogeneous porous media the
size of the representative elementary volume is larger than the length scale of the turbulence. Thus, this
approach is not able to capture the turbulence inside the core of a nuclear reactor.

Reynolds-averaged Navier-Stokes modeling
As presented in the introduction, this approach relies on statistical averaging, which leads to turbulent
correlation terms. We present here, the closure associated to the k-ǫmodel where the Reynolds constraint
is modeled similarly to the molecular shear stress constraint with a turbulent viscosity. This closure will
be used in the remainder of the chapter.
This turbulence modeling can be used with a fine description of the porous medium as done by Prinos
et al. (2003) to study turbulent flow at a free-porous interface. The computational cost associated to
such a method is low (≈ 104 mesh cells for Reynolds numbers in 7.103 and 2.103) allowing various
simulations with different geometries and parameters. We remind that the k-ǫ model suffers a lack of
generality, especially in recirculation zones. However, knowing the limit of the modeling, the results
obtained using the k-ǫ model at the pore scale can be considered as reference to study transfers at the
free-porous interface.
For a macroscopic description of the interface, the domain is composed of two homogeneous regions
separated with a surface of discontinuity. The turbulence in the homogeneous porous medium is charac-
terized with a macroscopic k-ǫ model, while in the free region a standard model is used. The issue is to
couple the two models at the free-porous interface.
For momentum transfer, the first boundary conditions used are the continuity of the turbulent quantities
k, ǫ and their first gradients, and a jump condition for the shear stress (Lee and Howell, 1987; de Lemos
and Pedras, 2000). Then de Lemos et al. (de Lemos, 2005; de Lemos and Silva, 2006; de Lemos, 2009)
propose to introduce a jump condition for the diffusive flux of the turbulent kinetic energy k. On the con-
trary, Chandesris and Jamet (2009b) follow another approach. They close the macroscopic modeling of
the interface by determining the position where the jump conditions vanish. In their case, it corresponds
to the center of gravity of the surface excess value of the friction force.
For turbulent heat transfer, Kuznetsov et al. (Kuznetsov et al., 2002; Kuznetsov and Xiong, 2003;
Kuznetsov, 2004) propose a modeling based on the assumption of turbulent transfer in the clear fluid,
while it remains laminar in the porous region. Thus they perform studies that couple a standard k-ǫmodel
with a turbulent Prandtl in the free region and laminar model in the porous region. However, there exists
no study using this scale of description that couples a macroscopic thermal turbulent model in the porous
region with a standard thermal turbulent model in the free region. The literature proposes thermal turbu-
lent models for each region separately only. For free regions, the turbulent heat correlation is commonly
closed with a first gradient closure related to the turbulent quantities via the turbulent Prandtl model.
For homogeneous porous region, the authors follow the models existing in free regions. Thus, Hsu and
Cheng (1988) model the averaged turbulent heat correlation by an averaged temperature gradient with
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a macroscopic turbulent diffusivity. Then, de Lemos et al. (de Lemos and Rocamora, 2002; de Lemos
and Braga, 2003; Braga and de Lemos, 2006) use a macroscopic turbulent Prandtl model that relates the
averaged turbulent heat flux to the averaged turbulent quantities.

The issue of this chapter is to investigate the modeling of turbulent heat transfer at a free porous in-
terface at low numerical cost for the interface and turbulence description. Thus, we choose the approach
combining a macroscopic turbulent Prandtl model in the homogeneous porous region, a standard turbu-
lent Prandtl model in the free region and boundary conditions at the interface. For the determination of
the boundary conditions at the free-porous interface, we use the multi-scale method developed in Chap-
ters 2 and 3 for laminar heat transfer. This method allows to derive the boundary conditions from the
local governing equations performing two up-scaling steps and using three levels of description of the
interface. For the good understanding of the modeling process, we present the developments for the
momentum, turbulent quantities and thermal equations.
The first up-scaling step changes the scale of description from microscopic to mesoscopic using the
method presented in Chapter 1. At this scale of description, the transfer equations are valid in the whole
domain including the transition zone. The smoothing process makes appear additional non-closed terms
related to the turbulence. These quantities are closed introducing new turbulent model characteristic of
the mesoscopic scale and valid in the whole domain.
The second up-scaling step changes the scale of description from mesoscopic to macroscopic. At this
scale of description, the continuous modeling of the interface is replaced by equivalent closed jump con-
ditions. To derive the boundary conditions from the mesoscopic description, the generic analysis is used,
which allows to express the boundary conditions at the free-porous interface as a function of surface
excess quantities. The relations obtained are complex and involve unknown terms. In order to close the
boundary conditions, we use the knowledge acquired for laminar transfer in Chapters 2 and 3. Thus we
are able to propose a closed macroscopic model to characterize the turbulent heat transfer at a free-porous
interface. This model is assessed by comparison with the DNS reference results.

In this chapter, the jump conditions that must be applied to couple a macroscopic heat transfer turbu-
lent model in a porous region and a standard heat transfer turbulent model in a free region, are derived
using the multi-scale approach presented above. Section 5.2 presents the first up-scaling step and Sec-
tion 5.3 presents the second up-scaling step. In Section 5.4, the obtained macroscopic model is compared
with the results of reference given by the DNS in Chapter 5. The macroscopic turbulent Prandtl model
gives accurate results in the free region, but does not capture the correct physics in the porous region.
Thus, another model for the macroscopic turbulent flux is proposed that improves the characterization of
the turbulence decrease in the porous medium.

6.2 First up-scaling step

6.2.1 Governing equations at the microscopic scale

At the microscopic scale transfers are governed by the Navier-Stokes equations and the energy con-
servation equation. In the context of the turbulence modeling with the RANS approach, the statistical
averaging is applied to the governing equations. The flow being incompressible, it comes at steady state:

∂ui
∂xi

= 0 (6.1)

∂

∂xj
(uiuj) = −1

ρ

∂p

∂xj
+ ν

∂2ui
∂x2

j

− ∂

∂xj

(
u′iu

′
j

)
(6.2)

∂

∂xi

(
uiT

)
=

∂

∂xi

(
α
∂T

∂xi

)
− ∂

∂xi

(
u′iT

′
)

(6.3)
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The equations (6.2) and (6.3) are not closed due to the turbulent momentum correlation u′iu
′
j and the

turbulent heat correlation u′iT
′.

To close the momentum equation (6.2), the Reynolds constraint u′iu
′
j is modeled introducing a turbulent

viscosity νt:

u′iu
′
j = −νt

(
∂ui
∂xj

+
∂uj
∂xi

)
+

2

3
k δij (6.4)

and the standard k-ǫ turbulent modeling:

νt = Cµ
k2

ǫ
(6.5)

∂

∂xi
(uik) =

∂

∂xi

[(
ν +

νt
σk

)
∂k

∂xi

]
+ P − ǫ (6.6)

∂

∂xi
(uiǫ) =

∂

∂xi

[(
ν +

νt
σǫ

)
∂ ǫ

∂xi

]
+ (c1P − c2ǫ)

ǫ

k
(6.7)

where P is the turbulent production due to the averaged velocity gradients and defined by:

Pk = νt

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

(6.8)

Using the turbulent viscosity hypothesis, the momentum equation becomes:

∂

∂xj
(uiuj) = − ∂

∂xj

(
p

ρ
+

2

3
k

)
+

∂

∂xj

(
(ν + νt)

(
∂ui
∂xj

+
∂uj
∂xi

))
(6.9)

Thus, the momentum transfer is described at the microscopic scale with the standard k-ǫ turbulent model.
For the constant associated to this modeling, one uses the values recommended by Launder and Spalding
(1972):

Cµ = 0.09, c1 = 1.44, c2 = 1.92, σk = 1.00, σǫ = 1.3 (6.10)

In order to close the energy equation (6.3), the turbulent correlation u′jT
′ is modeled with the closure

assumption of the first gradient:

− u′jT
′ = αt

∂T

∂xj
(6.11)

where αt is a thermal turbulent diffusivity. This quantity is closed using the turbulent Prandtl model, that
relates the turbulent thermal diffusivity to the turbulent viscosity νt via a turbulent Prandtl number:

αt =
νt
Prt

,with Prt ≈ 0.9 (6.12)

This model is based on the consideration that, the temperature being a passive scalar, its turbulent length
scale corresponds to the momentum one.
Thus, the energy equation can be rewritten as follows:

∂

∂xi

(
uiT

)
=

∂

∂xi

(
(α+ αt)

∂T

∂xi

)
(6.13)

At the microscopic scale, the turbulence is described using the k-ǫ model for the momentum transfer and
the turbulent Prandtl model for the heat transfer. Thus, the governing equations are closed and we can
perform the first up-scaling step.

142



6.2 First up-scaling step

6.2.2 Governing equations at the mesoscopic scale

6.2.2.1 Continuity and momentum equations

The modeling at the mesoscopic scale is obtained applying the volume averaging operator to the local
governing equations (6.1) and (6.9). Using the permutation rule between the integral and the derivation
operators presented in Chapter 1, it comes:

∂ 〈ui〉
∂xi

= 0 (6.14)

∂

∂xj

(〈ui〉 〈uj〉
φ

)
+
∂τ iju
∂xj

= −1

ρ

∂ 〈p〉
∂xi

+
∂

∂xj

(
ν
∂ 〈ui〉
∂xj

)
+

∂

∂xj

〈
νt

(
∂ui
∂xj

+
∂uj
∂xi

)〉
+ f il (6.15)

where τ iju is the momentum dispersion tensor and f il the volume force applied to the fluid phase by the
solid phase. As seen in Chapter 5, they are defined by:

τ iju = 〈uiuj〉 −
〈ui〉 〈uj〉

φ
(6.16)

f il =
1

V

∫

Ai

(
ν
∂ui
∂xj

− p

ρ
δij

)
· njdS (6.17)

The equation (6.15) is obtained using the non-slip condition at the fluid-solid interface Ai for the spatial
deviation of the velocity. This condition leads to the turbulent viscosity νt null at the wall via a turbulent
diffusion u′iu

′
j .

In order to model the averaged turbulent Reynolds tensor, one uses the idea proposed by Pedras and
de Lemos (2001) for a homogeneous porous medium. They define a macroscopic turbulent viscosity νtφ
such that:

〈
νt

(
∂ui
∂xj

+
∂uj
∂xi

)〉
= νtφ

〈(
∂ui
∂xj

+
∂uj
∂xi

)〉
= νtφ

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
(6.18)

using the non-slip coefficient at the fluid-solid interface.
To model the macroscopic turbulent viscosity νtφ , Pedras and de Lemos (2001) propose the following
definition inspired from the k-ǫ model:

νtφ = Cµ
(〈k〉f )2

〈ǫ〉f
(6.19)

This assumption has not been verified by Pedras and de Lemos (2001). But it seems reasonable for
turbulent heat transfer in a fluid-porous domain. Indeed, using the DNS presented in Chapter 5, we
compare νDNS

tφ
and νmodel

tφ
defined by:

νDNS
tφ

=

〈
u′iu

′
j

〉

(
∂〈ui〉
∂xj

+
∂〈uj〉

∂xi

) , νmodel
tφ

= Cµ
(〈k〉f )2

〈ǫ〉f
(6.20)

where u′iu
′
j ,

∂ui

∂xj
, k and ǫ are computed from the DNS data. The comparison between νDNS

tφ
and νmodel

tφ
is presented in Fig. 6.1. The order of magnitude is verified. Thus, the definition (6.19) gives a correct
approximation of the mesoscopic turbulent viscosity in a free-porous domain.
The governing momentum equation at the mesoscopic scale is:

∂

∂xj

(〈ui〉 〈uj〉
φ

)
+
∂τ iju
∂xj

= −1

ρ

∂ 〈p〉
∂xi

+
∂

∂xj

(
ν
∂ 〈ui〉
∂xj

)
+

∂

∂xj
νtφ

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
+ f il (6.21)
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(a) Volume averaged eddy diffusivity (b) a priori test

Figure 6.1: Profiles of volume averaged eddy diffusivity.

The equation (6.21) is not closed due to terms characteristic of the local scale in τ iju and f il . Thus to
close (6.21), the momentum dispersion tensor τ iju and the volume force f il must be modeled. The closure
relations are proposed in Section 6.2.3.

6.2.2.2 Kinetic energy and dissipation rate equations

The mesoscopic equations of the kinetic energy 〈k〉 and the dissipation rate 〈ǫ〉 are obtained applying
the volume averaging operator to the local equations (6.6) and (6.7). Using the permutation rule between
the integral and derivation operators presented in Chapter 1, it comes:

∂

∂xi

(〈ui〉 〈k〉
φ

)
+
∂τ ik
∂xi

=
∂

∂xi

[(
ν +

νtφ
σ̃k

)
∂ 〈k〉
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]
+ 〈P 〉 − 〈ǫ〉 (6.22)
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)
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]
+
〈
(c1P − c2ǫ)

ǫ

k

〉
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where τk and τǫ are the sub-filter vectors associated to the transport of k and ǫ respectively. They are
defined as follows:

τk = 〈ui k〉 −
〈ui〉 〈k〉

φ
(6.24)

τ iǫ = 〈ui ǫ〉 −
〈ui〉 〈ǫ〉
φ

(6.25)

σ̃k and σ̃ǫ are macroscopic turbulent Prandtl numbers. They are introduced because the microscopic
turbulent viscosity νt is not constant inside the representative elementary volume. They are defined such
that:

〈
νt
σk

∂k

∂xi

〉
=
νtφ
σ̃k

〈
∂k

∂xi

〉
(6.26)

〈
νt
σǫ

∂ǫ

∂xi

〉
=
νtφ
σ̃ǫ

〈
∂ ǫ

∂xi

〉
(6.27)

and are supposed constant. The macroscopic turbulent Prandtl numbers are not computed and the local
turbulent Prandtl numbers σk and σǫ are used instead.
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Furthermore, the equations (6.22) and (6.23) are obtained using the non-slip condition at the wall for
k and its gradient. This condition is not verified for ǫ and the commutation between the integral and
derivation operators creates additional terms brought together in f iǫ :

f iǫ =
1

V

∫

Ai

ν
∂ ǫ

∂xi
ni dS +

∂

∂xi

(
(ν +

νtφ
σ̃ǫ

)
1

V

∫

Ai

ǫ nidS

)
(6.28)

Then, following Nakayama and Kuwahara (1999), the production terms 〈P 〉 and
〈
(c1P − c2ǫ)

ǫ
k

〉
are

separated into two contributions: a mesoscopic production term coming from the mesoscopic velocity
gradient, and a sub-filter production term:

〈P 〉 =

〈
νt

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

〉
= νtφ

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
∂ 〈ui〉
∂xj

+ Pk (6.29)

〈
(c1Pk − c2ǫ)

ǫ

k

〉
=

〈(
c1νt

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

− c2ǫ

)
ǫ

k

〉
(6.30)

=

(
c1νtφ

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
∂ 〈ui〉
∂xj

− c2 〈ǫ〉
) 〈ǫ〉

〈k〉 + Sǫ (6.31)

where Pk and Sǫ are the sub-filter production terms.
The equations for 〈k〉 and 〈ǫ〉 become:

∂

∂xi

(〈ui〉 〈k〉
φ

)
+
∂τ ik
∂xi

=
∂

∂xi

[(
ν +

νt
σ̃k

)
∂ 〈k〉
∂xi

]
+ νtφ

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
∂ 〈ui〉
∂xj

+

Pk − 〈ǫ〉(6.32)

∂

∂xi

(〈ui〉 〈ǫ〉
φ

)
+
∂τ iǫ
∂xi

=
∂

∂xi

[(
ν +

νt
σ̃ǫ

)
∂ 〈ǫ〉
∂xi

]
+

(
c1νtφ

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
∂ 〈ui〉
∂xj

− c2 〈ǫ〉
) 〈ǫ〉

〈k〉 + Pǫ(6.33)

where Pǫ is the sum of the sub-filter production Sǫ and the additional term fǫ coming from the commu-
tation:

Pǫ = Sǫ + fǫ (6.34)

To close (6.32) and (6.33), the sub-filter production terms Pk and Pǫ, the subfilter dispersion vectors τ ik
and τ iǫ must be modeled. The closure relations are proposed in Section 6.2.3.

6.2.2.3 Energy conservation equation

The mesoscopic modeling of the energy equation is obtained applying the volume averaging oper-
ator on the equation (6.13). Using the permutation rule between the integral and derivation operators
presented in Chapter 1, it comes:

∂

∂xi

(
φ 〈ui〉f

〈
T
〉f)

+
∂τ iuT
∂xi

=
∂

∂xi

(
αφ

∂
〈
T
〉f

∂xi
+ φ

〈
αt
∂T

∂xi

〉f)
+ Tor + P (6.35)

where τ iuT is the dispersive vector, Tor the tortuosity and P the wall heat flux. As seen in the previous
Chapter, there are defined by:

τ iuT =
〈
uiT

〉
− φ 〈ui〉f

〈
T
〉f

(6.36)

Tor =
∂

∂xi

(
1

V

∫

Ai

α
(
T −

〈
T
〉f

(x0)
)
ni dS

)
(6.37)

P =
1

V

∫

Ai

α
∂T

∂xi
ni dS +

1

V

∫

Ai

αt
∂T

∂xi
ni dS

︸ ︷︷ ︸
=0

(6.38)
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since u′T ′ = 0 at the fluid-solid interface Ai.
de Lemos and Rocamora (2002) propose a model for the averaged turbulent heat flux based on two
considerations. First, they consider a constant turbulent Prandtl number model, second they use the

passive characteristic of the temperature to assume that the modeling process between
〈
νt ∂

〈
T
〉f
/∂xi

〉

and
〈
νt

(
∂ui

∂xj
+

∂uj

∂xi

)〉
are identical. Thus, by similarity with the relation (6.18), they write:

1

Prt

〈
νt
∂
〈
T
〉f

∂xi

〉f
=

νtφ
Prt

∂
〈
T
〉f

∂xi
(6.39)

This assumption is very strong and might be inappropriate at a free-porous interface. We prefer to follow
another approach and define a mesoscopic turbulent thermal diffusivity αtφ such that:

〈
αt
∂T

∂xi

〉f
= αtφ

∂
〈
T
〉f

∂xi
(6.40)

This first modeling step consists in relating the averaged turbulent heat flux to the averaged temperature
gradient as presented in Section 5.4.3.6:

〈
u′iT

′
〉f

= αtφ
∂
〈
T
〉f

∂xi
(6.41)

The validity of this model in the y-direction is verified in Section 5.4.3.6 and using the DNS data one
can compute a mesoscopic turbulent diffusivity of reference αDNS

tφ
given by (see Fig. 5.19 in Chapter 5):

αDNS
tφ

=

〈
v′T ′

〉f

∂
〈
T
〉f
/∂y

(6.42)

This model is not closed and requires the closure of αtφ in function of averaged quantities characteristic
of the flow. In the second modeling step, we propose a closure for the mesoscopic turbulent diffusivity
inspired from the turbulent Prandtl model for free flow, that relates αtφ to νtφ such that:

αtφ =
νtφ
Prtφ

,with Prtφ = 0.9 (6.43)

This closure relies on the assumption that the length scale of the averaged turbulence is identical for the
flow and the heat transfer. This assumption is strong especially at a free-porous interface. For a first
verification, a modeled mesoscopic turbulent diffusivity is computed using the DNS data such that:

αmodel
tφ

= Cµ
(〈k〉f )2
〈ǫ〉2

1

Prtφ
(6.44)

The comparison between αmodel
tφ

and the αDNS
tφ

of reference is presented in Fig. 6.2. The order of mag-
nitude is verified. Thus, the closure (6.43) gives a correct approximation of the mesoscopic turbulent
diffusivity of reference in a free-porous domain.

The mesoscopic equation for 〈T 〉f becomes:

∂

∂xi

(
φ 〈ui〉f

〈
T
〉f)

+
∂τ iuT
∂xi

=
∂

∂xi

(
φ(α+ αtφ)

∂
〈
T
〉f

∂xi

)
+ Tor + P (6.45)
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6.2 First up-scaling step

(a) Volume averaged eddy diffusivity for heat (b) a priori test

Figure 6.2: Profiles of volume averaged eddy diffusivity.

This equation is not closed due to τ iuT and Tor that involve local terms characteristic of the microscopic
scale. In order to close the equation (6.45), the dispersion term τ iuT and the tortuosity term Tor must be
modeled. We recall that P is known and corresponds to the averaged flux at cubes.

The turbulent model derived at the mesoscopic scale using the volume averaging operator is presented
in the system (6.46). The closure of the model requires the modeling of height terms: τ iju , τ ik, τǫ, τ iuT ,
f il , Tor, Pk and Pǫ. The closure relations used in the homogeneous region and the transition zone are
discussed in the following.

∂ 〈ui〉
∂xi

= 0 (6.46a)

∂

∂xj

(〈ui〉 〈uj〉
φ

)
+
∂τ iju
∂xj

= −1

ρ

∂ 〈p〉
∂xi

+
∂

∂xj

(
ν
∂ 〈ui〉
∂xj

)
+

∂

∂xj
νtφ

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
+

f il (6.46b)

∂

∂xi

(〈ui〉 〈k〉
φ

)
+
∂τ ik
∂xi

=
∂

∂xi

[(
ν +

νt
σ̃k

)
∂ 〈k〉
∂xi

]
+ νtφ

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
∂ 〈ui〉
∂xj

+

Pk − 〈ǫ〉 (6.46c)

∂

∂xi

(〈ui〉 〈ǫ〉
φ

)
+
∂τ iǫ
∂xi

=
∂

∂xi

[(
ν +

νt
σ̃ǫ

)
∂ 〈ǫ〉
∂xi

]
+

(
c1νtφ

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
∂ 〈ui〉
∂xj

− c2 〈ǫ〉
) 〈ǫ〉

〈k〉 + Pǫ (6.46d)

∂

∂xi

(
φ 〈ui〉f

〈
T
〉f)

+
∂τ iuT
∂xi

=
∂

∂xi

(
φ(α+ αtφ)

∂
〈
T
〉f

∂xi

)
+ Tor + P (6.46e)

with νtφ = Cµ
(〈k〉f )2

〈ǫ〉f
, αtφ =

νtφ
Prtφ

(6.46f)
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6.2.3 Closed mesoscopic equations

At the mesoscopic scale, the averaged turbulent model is valid in the whole domain, i.e in the ho-
mogeneous regions and in the transition zone. However this model is not closed due to the presence of
local quantities in the terms of friction, sub-filter dispersion and sub-filter production. To characterize
the transfer at the mesoscopic scale and perform the second up-scaling step, these terms must be closed.
For the momentum, the kinetic energy and the dissipation rate equations ((6.46b), (6.46c) and (6.46d))
we use the closure relations proposed by Chandesris and Jamet (2009b). Six terms remain that we do
not characterize in the transition zone. However this information is not necessary to perform the second
up-scaling step, as we will see in Section 6.3.
For the heat transfer, the averaged mesoscopic model (6.46e) is similar to the non-closed mesoscopic
equation obtained for laminar studies. Thus, to close the equation (6.46e), we use the method performed
for laminar transfer in Chapters 2 and 3.

6.2.3.1 Momentum transfer and turbulent quantities

The closure at the mesoscopic scale is done by Chandesris and Jamet (2009b). We present here the
main results.

In the free region, the porosity is constant φ = 1 and there is no solid. The friction term f il present
in the equation (6.46b) is null. Furthermore, the terms of sub-filter production Pk and Pǫ are also null
because their expression ((6.31) and (6.29)) involve solid quantities only. Another simplification can be
done in the free region, if the filter size is smaller than the scale of variation of the averaged quantities.
In this case, the averaged quantities are equivalent to the local quantities (〈u〉 ≈ u, 〈k〉 ≈ k and 〈ǫ〉 ≈ ǫ)
and the sub-filter dispersions τ iju , τ ik and τ iǫ are null.
Thus, the equations (6.46b), (6.31) and (6.29) are identical to the equations of the standard turbulent k-ǫ
model (6.6), (6.7) and the associated momentum equation (6.2).

In the homogeneous porous region, closure relations must be specified for the friction term f il , for
the production terms Pk and Pǫ, and for the sub-filter dispersion terms τ iju , τ ik and τǫ.
The sub-filter dispersion terms are almost constant in the homogeneous porous region, and their diver-
gence in the equations (6.46b), (6.46c) and (6.46d) is neglected. Thus, the influence of the sub-filter
dispersion terms is not considered in the closed mesoscopic model.
For the friction term f il and the production terms Pk and Pǫ, their closure relation depend directly on the
geometry of the porous medium. Concerning the friction term f il , different correlations exist depending
different communities. In the community of natural porous medium, the friction term is modeled with
the Darcy-Forchheimer law:

f il = −νK−1(1 + F) 〈ui〉 (6.47)

where K is the permeability and F the Forchheimer coefficient.
For the sub-filter production terms Pk and Pǫ, we use the correlations proposed by Nakayama and Kuwa-
hara (1999) for porous media made of cubes:

Pk = ǫ∞ (6.48a)

Pǫ = c2
ǫ2∞
k∞

(6.48b)

ǫ∞ = 39φ2(1 − φ)5/2
〈u〉3
dp

(6.48c)

k∞ = 3.7(1 − φ)φ3/2 〈u〉2 (6.48d)

In the homogeneous porous region, the equations (6.46b), (6.46c) and (6.46d) are closed when the terms
f il , Pk and Pǫ are computed for the studied porous medium and for the Reynolds numbers considered.
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In the transition zone, the closure of the equations (6.46b), (6.46c) and (6.46d), requires the deter-
mination of six terms f il , Pk, Pǫ, τ

ij
u , τ ik and τǫ.

These quantities vary continuously in the transition zone and the divergence of the dispersive terms is not
null. Thus, the correlations giving f il , Pk and Pǫ in the homogeneous porous region are not valid. In the
transition zone, the quantities f il , Pk, Pǫ, τ

ij
u , τ ik and τǫ are not known and the equations (6.46b), (6.46c)

and (6.46d) are not closed. However the issue is to propose a modeling at the macroscopic scale and
we do not need to characterize precisely these terms in the transition zone. Indeed at the macroscopic
scale, the continuous interface is substituted by a surface of discontinuity and the value of these terms is
not used directly. We model only the impact of their variation on the homogeneous regions with jump
conditions at the interface.
We notice that the quantities f il , Pk, Pǫ, τ

ij
u , τ ik and τǫ can be computed with the data given by the DNS.

However, this degree of information is not necessary to derive a closed macroscopic k-ǫ model as we
will see in Section 6.3. Of course it could bring some improvements. Nevertheless it is not the issue
of this chapter, that is to present a macroscopic model for the turbulent heat transfer at a free-porous
interface. Thus, for the remainder of the study, we assume that the terms f il , Pk, Pǫ, τ

ij
u , τ ik and τǫ vary

continuously in the transition zone, without specifying these variations.

6.2.3.2 Heat transfer

In order to close the heat transfer equation (6.46e), closure relations for the thermal dispersion τ iuT
and the turbulent tortuosity Tor must be proposed. Using the method performed in Chapters 2 and 3,
a closed model is derived in the homogeneous porous region and we assume its validity in the whole
domain including the transition zone. The relation of the effective transfer coefficients are determined
comparing the closed and the non-closed model.

In the free region, the porosity is constant φ = 1 and there is no solid. The turbulent tortuosity Tor
and the injected heat P are null. Furthermore, the filter size is supposed to be smaller than the scale
of variation of the averaged quantities. The averaged quantities are equivalent to the local quantities
(〈u〉 ≈ u,

〈
T
〉
≈ T ) and the thermal dispersion tensor τ iuT is null.

Thus, in the free region, the temperature equation (6.46e) is identical to the local turbulent Prandtl model
(6.13).

In the homogeneous porous region, we close the dispersion vector τ iuT and the turbulent tortuosity
Tor using the closure relation for the spatial deviation temperature. Drouin et al. (2010) present the full
closure below:

T̃ = bi
∂
〈
T
〉f

∂xi
+ sP (6.49)

where bi and s are the vector and scalar fields mapping ∇〈Tf 〉f and P onto T̃ . The closure relation
(6.49) is injected in the open terms τ iuT and Tor. Considering the length scale separation, one obtains the
following closed relations:

−τ iuT = Dp
ij

∂
〈
T
〉f

∂xi
+Da

i P (6.50)

Tor =
∂

∂xi

(
φαorij

∂
〈
T
〉f

∂xi

)
+

∂

∂xi
(T a
i P) (6.51)

where the coefficients correspond to:
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• a passive dispersive tensor:

Dp
ij = −

〈
bj ũi

〉
(6.52)

• an active dispersive vector:

Da
i = −

〈
sũi

〉
(6.53)

• a passive tortuosity tensor:

αorij =
α

V

∫

Ai

bjni dS (6.54)

• an active tortuosity vector:

T a
i =

α

V

∫

Ai

s ni dS (6.55)

Using these writings in (6.45), the following closed turbulent temperature model is derived:

∂

∂xi

(
φ 〈ui〉f

〈
T
〉f)

=
∂

∂xi

(
[φ(α+ αtφ + αorij ) +Dp

ij ]
∂
〈
T
〉f

∂xi

)
+

∂

∂xi
((Da

i + T a
i ) P) +P (6.56)

The analytical relation of the effective coefficients Dp
ij , D

a
i , αorij and T a

i are determined comparing the
non-closed relations ((6.36), (6.37) and the closed ones ((6.50), (6.51). It results the following system:

Dp
ij

∂
〈
T
〉f

∂xi
+Da

i P =
〈
uiT

〉
− φ 〈ui〉f

〈
T
〉f

(6.57)

∂

∂xi

(
φαorij

∂
〈
T
〉f

∂xi

)
+

∂

∂xi
(T a
i P) =

∂

∂xi

(
1

V

∫

Ai

α
(
T −

〈
T
〉f

(x0)
)
ni dS

)
(6.58)

The computation of the effective coefficients requires two numerical simulations to obtain two tempera-
tures fields and solve a system composed of four unknowns and four equations.

In the transition zone, as for the homogeneous porous medium, the dispersion τ iuT and the turbu-
lent tortuosity Tor must be closed. In the transition zone, the length scale separation is not valid and
the commutation between the integral and derivation operator is not possible. Nevertheless, to close the
mesoscopic equation (6.46e), we assume that the closed mesoscopic equation (6.56) is valid in the tran-
sition zone. The effective coefficients are determined comparing the closed and non-closed models, that
leads to the relations (6.57) and (6.58).

The closed mesoscopic equation (6.56) involves all the phenomena and requires the determination of
four effective transfer coefficient Dp

ij , D
a
i , αorij and T a

i . However in the context of our study, simplifica-
tions can be done that reduce the number of effective transfer coefficient as we will see in the following.

6.2.4 1D problem

Once the statistical and the volume averages are applied, the turbulent flow is 1D at the mesoscopic
scale. Such a turbulent flow allows some simplifications on the mesoscopic temperature field.
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Governing equations at the mesoscopic scale
From the continuity equation and the non slip condition at the upper-wall, the velocity is null in the
y-direction 〈v〉 = 0. At the mesoscopic scale the system reduces to:

0 = − 1

ρ

∂ 〈p〉
∂x︸ ︷︷ ︸
fp

+
∂

∂y

(
(ν + νtφ)

∂ 〈u〉
∂y

)

︸ ︷︷ ︸
fv

+φν
1 + F
K 〈u〉

︸ ︷︷ ︸
f i

l

(6.59a)

0 =
∂

∂y

[(
ν +

νtφ
σ̃k

)
∂ 〈k〉
∂y

]

︸ ︷︷ ︸
diffk

+ νtφ

(
∂ 〈u〉
∂y

)2

︸ ︷︷ ︸
prodMk

+ Pk︸︷︷︸
prodk

− 〈ǫ〉︸︷︷︸
dissk

(6.59b)

0 =
∂

∂y

[(
ν +

νtφ
σ̃ǫ

)
∂ 〈ǫ〉
∂y

]

︸ ︷︷ ︸
diffǫ

+ c1νtφ

(
∂ 〈u〉
∂y

)2 〈ǫ〉
〈k〉︸ ︷︷ ︸

prodMǫ

− c2
〈ǫ〉2
〈k〉︸ ︷︷ ︸

dissǫ

+ Pǫ︸︷︷︸
prodǫ

(6.59c)

φ 〈u〉f
∂
〈
T
〉f

∂x
=

∂

∂y

(
φ(α+ αtφ + αor)

∂
〈
T
〉f

∂y

)
+ P (6.59d)

with νtφ = Cµ
(〈k〉f )2

〈ǫ〉f
αtφ =

νtφ
Prtφ

(6.59e)

where u is the velocity in the x-direction and αor is the component of the diagonal tortuosity tensor in
the y-direction.
To lighten the writing of the problem, we have assumed that the sub-filter dispersive terms are considered
in the variation of f il , Pk and Pǫ. The terms of porosity φ, permeability K, Forchheimer coefficient F , the
source terms Pk and Pǫ, and the diffusivities αtφ and αor are function of the y coordinate. Furthermore,
the pressure gradient is zero in the y-direction, and thus, the pressure gradient ∂ 〈p〉 /∂x is constant.
For the turbulent temperature equation, simplifications have been done based on three considerations:

• the averaged temperature gradient is null or constant in the x-direction and the effective transfer
coefficients are functions of the y coordinate, thus the diffuse flux is constant in the x-direction;

• the averaged flow is 1D in the x-direction and there is no averaged velocity in the y-direction, thus,
the dispersion is negligible in the y-direction:

τuT =
〈
uT
〉
− φ 〈u〉f

〈
T
〉f

= 0 (6.60)

that leads to Dp
yy = Da

y = 0. This results has been verified.

• the tortuosity reduces to:

Tor =
∂

∂y

(
φαor

∂
〈
T
〉f

∂y

)
(6.61)

For P = 0, the result is obvious, and for P = cste, the coefficient T a
i in the relation (6.51) is

constant in the homogeneous porous medium, thus, the active part of the tortuosity is null. The
tortuosity coefficients αor, computed from the DNS data for the three thermal configurations, are
presented in Fig. 6.3

We notice that, unlike the momentum and turbulent quantities, the mesoscopic model for the heat transfer
is closed, and the effective coefficients α, αtφ and αor are known in the whole domain including the
transition zone.
In the following, we perform the second up-scaling step to derive a closed model at the macroscopic
scale.
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Figure 6.3: Profiles of the tortuosity coefficients αor computed from the DNS data.

6.3 Second up-scaling step

At the mesoscopic scale, the transfer is modeled by equations valid in the whole domain, i.e in the
homogeneous porous and free regions and in the transition zone. At the macroscopic scale, the domain
is composed of two homogeneous regions (porous and free) separated by a surface of discontinuity.
The issue of this section is to study the boundary conditions that must be applied at the free-porous
interface for the different physical quantities. First, we present the results obtained by Chandesris and
Jamet (2009b) for the physical quantities related to the k-ǫ model (velocity, turbulent kinetic energy,
dissipation rate). Then, we study the jump conditions required for the macroscopic modeling of the
turbulent heat transfer.

6.3.1 Jump conditions for the velocity and the turbulent quantities

For the momentum equation, three forces are involved: the viscous force fv, the pressure force fp and
the friction force f il . At the mesoscopic scale, the porosity φ, the permeability K and the Forchheimer’s
coefficient F vary continuously in the transition zone. At the macroscopic scale, these quantities are
discontinuous at the interface. Thus, by construction, the friction and pressure forces are not correctly
described by the macroscopic model in the transition zone. Thus, as for the laminar study, we define
the surface excess quantity to consider the difference between the two descriptions. The surface excess
quantities of the friction and pressure forces are defined by:

(
f il
)ex

= ν

∫ ym

H−

(
φ

1 + F(〈u〉)
K 〈u〉 − φp

1 + Fp(um)

Kp
um

)
dy + ν

∫ H+

ym

φ
1 + F(〈u〉)

K 〈u〉 dy (6.62)

(fp)
ex =

(∫ ym

H−

(φ− φp)dy +

∫ H+

ym

(φ− φl)dy

)
1

ρ

d 〈p〉f
dx

=
(φ)ex

ρ

d 〈p〉f
dx

(6.63)

where um is the velocity at the macroscopic scale, Kp is the permeability in the homogeneous porous
region, Fp is the Forchheimer’s term in the homogeneous porous region and ym is the interface location.
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6.3 Second up-scaling step

For the viscous force, one obtains after integration:

(fv)
ex =

[
(ν + νtφ)

∂ 〈u〉
∂y

(H+) − (ν + νtφ)
∂ulm
∂y

(H+)

]
−

[
(ν + νtφ)

∂ 〈u〉
∂y

(H−) − (ν + νtφ)
∂upm
∂y

(H−)

]
−

[
(ν + νtφ)

∂ulm
∂y

(ym) − (ν + νtφ)
∂upm
∂y

(ym)

]
(6.64)

As for laminar studies, the macroscopic and mesoscopic quantities are identical in the homogeneous
regions. Thus, the first term of the right hand side of the equality is null. Adding the viscous, pressure
and friction forces, one obtains the jump condition that must be applied to the velocity gradient at the
free-porous interface:

(ν + νtφ)
∂ulm
∂y

(ym) − (ν + νtφ)
∂upm
∂y

(ym) =
(
f il
)ex

+ (fp)
ex (6.65)

The excess value of the pressure force is closed because it is related to the excess value of the porosity
that is known. The friction excess value

(
f il
)ex

is not closed due to the presence of mesoscopic terms
that are not known at the macroscopic scale. In order to close this excess quantity, we locate the interface
ym at the center of gravity of

(
f il
)ex

, leading to the following closure relation:
(
f il
)ex

(yf i
l
) = 0 (6.66)

Using the DNS results of Breugem and Boersma (2005), Chandesris and Jamet (2009b) shows that
the center of gravities of

(
f il
)ex

and (fp)
ex are approximately identical and correspond for the studied

geometry to:
yf i

l
≈ yφ = −0.075 (6.67)

Thus, for an interface location such that ym = −0.075, there is no excess value and the jump condition
for the gradient velocity reduces to the continuity:

(ν + νtφ)
∂ulm
∂y

(ym) − (ν + νtφ)
∂upm
∂y

(ym) = 0 (6.68)

The equation of the kinetic energy (6.59b) expresses the balance between four quantities: a diffusion
term (diffk), a production term at the macroscopic scale (prodMk), a sub-filter production term (prodk)
and a dissipation term (dissk). As for the momentum balance, excess values are defined and a jump
condition for the kinetic energy is expressed:

(
ν +

νt
σ̃k

)
∂klm
∂y

(ym) −
(
ν +

νt
σ̃k

)
∂kpm
∂y

(ym) = − (prodMk)
ex − (prodk)

ex + (dissk)
ex (6.69)

The structure of the transport equation of the dissipation rate is identical to the turbulent kinetic energy
one. Thus, the jump condition of the dissipation rate applied at the free-porous interface is the following:

(
ν +

νt
σ̃ǫ

)
∂ǫlm
∂y

(ym) −
(
ν +

νt
σ̃ǫ

)
∂ǫpm
∂y

(ym) = − (prodMǫ)
ex − (prodǫ)

ex + (dissǫ)
ex (6.70)

The jump conditions of the macroscopic turbulent kinetic energy and dissipation rate are not closed
because the excess values involve unknown mesoscopic terms.
In order to close these excess values, the method the asymptotic expansion can be proposed. However, to
simplify the study, we assume that the sum of the excess values is negligible when the interface location
corresponds to ym = −0.075. Thus for this particular interface location, the diffusive flux of the turbulent
kinetic energy km and the dissipation rate ǫm are continuous. This assumption is very strong, but has
given good results as shown by Chandesris and Jamet (2009b).

153



CHAPTER 6 : Turbulent heat transfer at the free-porous interface for a Poiseuille flow

6.3.2 Jump conditions for the heat transfer

We remind that for the studied case the mesoscopic and macroscopic temperature fields can be sim-
plified. However, in order to be exhaustive, we use the full equation (6.56) to derive the jump conditions
at the free-porous interface with conservation principles. Then, the macroscopic model is simplified in
the context of our study leading to closed jump conditions.

At the macroscopic scale, the heat transfer is described using the following equations:
In the porous region (H− < y < ym)

∂

∂xi

(
upi,mT

p
m

)
=

∂

∂xi

(
[φp(αp + αptφ + αor,pij ) +Dp,p

ij ]
∂T

p
m

∂xi

)
+

∂

∂xi

(
(Da,p

i + T a,p
i ) P i,p

m

)

+ P i,p
m (6.71)

In the free region (ym < y < H+)

∂

∂xi

(
uli,mT

l
m

)
=

∂

∂xi

(
[φl(αl + αltφ) +Dp,l

ij ]
∂T

l
m

∂xi

)
(6.72)

As for laminar heat transfer, the energy balance involves the heat flux and the injected heat. At the
mesoscopic scale, the effective coefficients and the heat source vary continuously in the transition zone,
while they are discontinuous at the macroscopic scale. Thus, the heat flux and the heat source are
not correctly described by the macroscopic model in the transition zone. The difference between the
modeling can be reflected through the corresponding excess values:

(
∂ 〈qi〉f
∂xi

)ex
=

∫ ym

H−

(
∂ 〈qi〉f
∂xi

−
∂qpi,m
∂xi

)
dy +

∫ H+

ym

(
∂ 〈qi〉f
∂xi

−
∂qli,m
∂xi

)
dy (6.73)

(P)ex =

∫ ym

H−

(
P − P i,p

m

)
dy +

∫ H+

ym

(P) dy (6.74)

where the mesoscopic total heat flux 〈qi〉f is defined by:

〈qi〉f = [φ(α+ αtφ + αorij ) +Dp
ij ]
∂
〈
T
〉f

∂xi
+ (Da

i + T a
i ) P − 〈ui〉

〈
T
〉

(6.75)

This definition is used for the macroscopic total heat flux in the homogeneous porous and free regions.
As for laminar heat transfer, the macroscopic and mesoscopic models are equivalent in the homogeneous
regions. Thus, the heat flux in the y-direction reduces to:

(
∂
〈
qy
〉f

∂xy

)ex
=

(
∂
〈
qy
〉f

∂y
(H+) −

∂qly,m
∂y

(H+)

)
−
(
∂
〈
qy
〉f

∂y
(H−) − ∂qpy,m

∂y
(H−)

)
−

(
∂qly,m
∂y

(ym) − ∂qpy,m
∂y

(ym)

)
(6.76)

which reduces to: (
∂
〈
qy
〉f

∂xy

)ex
=
∂qly,m
∂y

(ym) − ∂qpy,m
∂y

(ym) (6.77)

Adding the relations (6.73), (6.74) and (6.77), one obtains the jump condition for the heat flux in the
y-direction:

qly,m(ym) − qpy,m(ym) = −
(
∂ 〈qx〉f
∂x

)ex
−
(
∂ 〈qz〉f
∂z

)ex
− (P)ex (6.78)
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The temperature jump condition is determined from the conservation of the conductive heat flux in the
y-direction and takes the following form:

T
l
m(ym) − T

p
m(ym) =

( 〈
qy,c
〉f

φ(α+ αtφ + αoryy) +Dp
yy

)ex
(6.79)

These jump conditions are not closed because the excess values involve mesoscopic terms that are not
known at the macroscopic scale. A solution to close the excess values is to use the method of the matched
asymptotic expansions. However, in the context of our study where the fields are 1D, simplifications can
be done: the surface excess quantities of the flux gradient reduces to convective excess quantity in the
x-direction and there is no dispersion in the y-direction. Thus, the jump conditions can be rewritten such
that:

qly,m(ym) − qpy,m(ym) = −
(
φ 〈u〉

∂
〈
T
〉f

∂x

)ex
− (P)ex (6.80)

T
l
m(ym) − T

p
m(ym) =

( 〈
qy,c
〉f

φ(α+ αtφ + αoryy)

)ex
(6.81)

The jump condition for the heat flux involves two surface excess quantities coming from the convection
and the injected heat. The excess quantity of the injected heat is closed knowing its profile in the tran-
sition zone. On the contrary, the excess value of the convective term is not closed because it involves
mesoscopic terms that are not known at the macroscopic scale. However, in the following section we
study heat transfer, and it is shown that this term is zero or negligible. Thus, the jump conditions is
closed.
The jump condition for the temperature involves the surface excess quantity of the conductive flux times
to a resistivity. This surface excess is not closed, due to the mesoscopic terms

〈
qy,c
〉f

, that is not known
at the macroscopic scale. However, we use the results obtained in Chapters 2 and 3 showing that the tem-
perature jump has no impact on the macroscopic closure. Thus, we close the temperature jump condition
using the continuity at the free-porous interface.

qly,m(ym) − qpy,m(ym) = − (P)ex (6.82)

T
l
m(ym) − T

p
m(ym) = 0 (6.83)

6.4 Results

The momentum transfer is described using the standard k-ǫmodel. Considering the low bulk Reynolds
number (Reb = 5500), this might not be appropriate. However, Chandesris and Jamet (2009b) show that
the standard k-ǫ model is able to give accurate results. At the upper-wall, the application of a standard
wall function requires the location of the first computational node in the logarithmic zone (y+ > 30).
Since the Reynolds number is moderate, it implies that the size of the first computational cell is large.
Then, in order to have a maximum of precision in the rest of the domain, the mesh is refined far from the
upper wall. The total number of cells used in the y-direction is 80.
In the following we present the results obtained by Chandesris and Jamet (2009c) for the momentum
transfer. Then using the resulting macroscopic velocity profile, we compute the heat transfer at the
macroscopic scale. The macroscopic results are compared with the profiles of the DNS presented in
Chapter 5.

6.4.1 Results for the momentum transfer

The macroscopic profiles of velocity, turbulent quantities and turbulent viscosity are compared to
the results of reference obtained with the DNS (see Chapter 5) in Fig. 6.4. The different quantities
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are illustrated under a no-dimensional form obtained with the characteristic quantities of the associated
simulation. The characteristic quantities of the DNS and the macroscopic k-ǫ model (porosity, Darcy,
Reynolds number) are presented in Tab. 6.1. We remind the definitions of the Reynolds numbers below:

Reb = UbH/ν with Ub =

∫ 1

0
Udy , the bulk flow in the free region

ReT = 2UTH/ν with UT =
1

2H

∫ H

−H
Udy , the averaged flow in the whole domain

Reip = UipH/ν with Uip =

∫ 0

−1
Udy , the bulk flow in the porous medium

Retτ = utτH/ν with utτ =

(
−ν ∂u

∂y
(y = H)

)1/2

, the wall shear stress

Repτ = UpτH/ν with upτ =

(
−ν ∂ 〈u〉

∂y
(y = 0)

)1/2

, the porous wall shear stress y = 0

φ Da Reb Reip ReT Retτ Repτ

DNS (Trio-U) 0.875 3.4 10−4 5351 450 5851 390 664

macroscopic k-ǫ model 0.875 3.4 10−4 5500 535 6066 421 680

Ecart en % 0 0 3 15 3 7 2

Table 6.1: Characteristic of the DNS (Trio-U) and the macroscopic k-ǫ model.

The velocity profile um is in good agreement with the DNS result as presented in Fig. 6.4(a). The choice
of the standard k-ǫ model appears to be sufficient to capture the main physical features of the flow. In the
channel, the skewness of the profile is recovered. This skewness is created by the friction velocity higher
at the porous wall than at the upper wall. As a consequence, the position of the maximum of velocity is
located above the center of the channel.
In the transition zone, the velocity profile is well captured. This result supports the hypothesis done to
estimate the location of the center of gravity of (ff )

ex.
In the homogeneous porous region, the pressure gradient is imposed to have Reb = 5500.

The profiles of the turbulent quantities km and ǫm are presented in Figs. 6.4(b) and 6.4(c).
For the turbulent kinetic energy km, the main behavior and the order of magnitude are recovered. The
profile increases from y/H ≈ 0.5 to reach a peak at the porous wall where large-scale vortical structures
are created. Then, the profile decreases linearly in the channel featuring the disappearance of the turbu-
lence by elongation of the streaky structures.
The profile is shifted in the direction of the porous medium, which induces a weaker value of the gradient
of km in the channel. This result comes from the lack of accuracy of the boundary condition at the free-
porous interface. The assumption of the continuity of the diffuse flux of km at the free-porous interface
located at ym = −0.075, is not appropriate. However as we will see on the profile of the macroscopic
turbulent viscosity, this error modeling has a low impact.
For the turbulent dissipation ǫm, the values are recovered in the homogeneous regions far from the porous
wall. At the porous wall, the macroscopic profile has higher values and does not capture the decrease of
the DNS profile inside the free region. The difference between the two behaviors is explained by the fact
that the macroscopic model is not build to model correctly the transfer close to the free-porous interface,
but to capture the good profile in the homogeneous regions.
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Furthermore, we notice that the location of the macroscopic peak is close from the one of the DNS pro-
file. That validates the use of the continuity for the diffuse flux of ǫm at the free-porous interface located
at ym = −0.08.

The profile of the macroscopic turbulent viscosity νtφm is presented in Fig. 6.4(b). Compared to the
DNS result, the behavior and the order of magnitude are well recovered.
In the homogeneous porous region, the values are weak for ym/H < 0.5, then increase linearly to the
porous wall. It corresponds to the destruction of the turbulent structures by the friction force of the
porous matrix.
In the free region, the values follow a parabolic profile that reaches a maximum for ym/H ≈ 0.3. It
reflects, the creation of the turbulent structures at the porous wall, then their destruction in the upper part
of the channel due to the friction force created by the solid wall.

The shear stress constraints profiles are presented in Figs. 6.4(e) and 6.4(f).
For the viscous shear stress, the macroscopic profile fits the DNS results including the zone close to the
free-porous interface where the peak location and the values are recovered. Thus, the gradient of the
macroscopic velocity profile is well captured by the standard k-ǫ model.
For the turbulent shear stress, the macroscopic profile fits the DNS results except at the free-porous inter-
face. The peak locations between the macroscopic and DNS profiles are close. Thus, we conclude that
the macroscopic modeling of the volume averaged Reynolds shear stress is correct in the homogeneous
regions :

〈
u′v′

〉
= νtm

∂um
∂y

(6.84)

and that the boundary conditions of continuity for the diffuse flux of the velocity and the turbulent
quantity are a good approximation to close the macroscopic model at the free-porous interface.

6.4.2 Results for heat transfer

In this section, we present the results obtained with the macroscopic temperature model for the three
heating configurations studied in the DNS (see Chapter 5). At the macroscopic scale, the turbulent
thermal diffusivity can be closed by the macroscopic turbulent Prandtl model:

αtm =
νtm
Prt

, with Prt = 0.9 (6.85)

where νtm is computed with values from the macroscopic k-ǫ simulation. The macroscopic turbulent dif-
fusivity αtm is compared to the mesoscopic turbulent diffusivity of reference in Fig. 6.5. The comparison
shows that αtm does not capture properly the decrease of the turbulent diffusivity in the porous medium.
This difference is at the origin of wrong macroscopic temperature and heat flux profiles as we will see in
the following. Thus, the turbulent Prandtl model (6.85) is not accurate at the macroscopic scale. In order
to have a better approximation of the thermal turbulence at the porous interface, we propose another
closure for the macroscopic turbulent diffusivity:

α1
tm =

νtmkm
2(upτ )2

(6.86)

This new closure is obtained increasing the weighting of the turbulent kinetic energy to use its exponential
profile in the porous region (see Fig. 6.4(b)). Furthermore, it is constructed to be homogeneous to a
viscosity. However, the physic of such a relation is not currently understood.
The profile of the macroscopic turbulent diffusivity α1

tm is presented in Fig. 6.5. It shows a good capture
the physics at the porous wall, i.e the decrease in the porous medium and the peak location of the
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(a) Velocity profile in the x-direction (b) turbulent kinetic energy profile km

(c) dissipation rate profile ǫm (d) turbulent viscosity profile vtφm

(e) Viscous shear stress (f) Turbulent shear stress

Figure 6.4: Profiles of velocity, turbulent quantities, turbulent viscosity and shear stress constraints.

maximum turbulent thermal diffusivity.
The results obtained with the new closure (6.86) are presented in the following more extensively for the
three heating configurations.
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Figure 6.5: Profiles of turbulent thermal diffusivity.

Heating configuration with imposed temperatures at walls
For boundary conditions with imposed temperature at walls, there is no temperature gradient in the x-
direction. In such a case, the macroscopic model takes the following form:

• in the homogeneous porous region:

0 =
∂

∂y

[
φp(α+ αpor + αtm)

∂T pm
∂y

]
(6.87)

• in the free region:

0 =
∂

∂y

[
φl(α+ αlor + αtm)

∂T lm
∂y

]
(6.88)

• at the free-porous interface:

T lm(ym) − T pm(ym) = 0 (6.89)

qlym(ym) − qpym(ym) = 0 (6.90)

The profiles of the different quantities (temperature, tortuosity, diffuse heat flux, turbulent heat flux, dif-
fuse heat flux) obtained with this macroscopic model are presented in Fig. 6.6.

The temperature profiles are presented in Fig. 6.6(a) and both models give good results. Nevertheless,
the macroscopic profile obtained with the new modeling is closer to the result of reference. Thus, the
new model seems to be more appropriate to characterize the turbulent heat transfer at the free-porous
interface. This is verified increasing the order of comparison by comparing the heat flux.
The profiles of the molecular heat flux are presented in Fig. 6.6(c). The two macroscopic profiles have
the correct order of magnitude. Nevertheless only the new model profile fits the DNS values at the porous
wall for −0.5 < y < 0.5. The same observations can be done for the tortuosity profiles presented in
Fig. 6.6(b).
The profiles of the turbulent heat flux are presented in Fig. 6.6(d). The macroscopic turbulent Prandtl
model overestimates the turbulent heat flux in the whole domain, while the new model captures the main
behaviors.
The energy balance for the new model is presented in Fig. 6.6(e). It shows, that the energy transfer
between the different fluxes is well recovered.
All these observations about the heat flux validate the new model. We comment further that the macro-
scopic values are not correct at the upper-wall, which shows the shortage of the wall functions used at
the upper-wall.
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(a) Temperature profile in the y-direction (b) Tortuosity profile

(c) Molecular heat flux profile (d) turbulent heat flux profile

(e) Heat flux balance profile for the new model

Figure 6.6: Profiles of temperature and heat flux.

Heating configuration with imposed flux at walls
For boundary conditions with imposed flux at walls, the DNS gives the quantity θ0 issue from the variable
change T0 = θ0 −A0x (see Chapter 5), where A0 corresponds to the flux increase on the domain and is
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computed performing an energy balance. Such a variable change makes appear a source term (ρcp)uA0

in the local equation (see Appendix A equation (A.17)). Performing on the equation (A.17) the previous
developments, one obtains the following macroscopic model for θ0:

• in the homogeneous porous region:

(ρCp)u
p
mA0 =

∂

∂y

[
φp(α+ αpor + αtm)

∂θp0m
∂y

]
(6.91)

• in the free region:

(ρCp)u
l
mA0 =

∂

∂y

[
φl(α+ αlor + αtm)

∂θl0m
∂y

]
(6.92)

• at the free-porous interface:

θl0m(ym) − θp0m(ym) = 0 (6.93)

qlθym(ym) − qpθym(ym) = −(ρcp)A0 (〈u〉)(ex) (6.94)

The jump condition on the heat flux is not closed because the surface excess quantity involves the meso-
scopic velocity that is not known at the macroscopic scale. In order to determine the impact of a such a
jump condition, we determine the surface excess of the velocity for the macroscopic model used in this
study. Knowing the averaged velocity 〈u〉 from the DNS results and the macroscopic field um obtained
for the macroscopic model closed with boundary conditions of continuity at the interface ym = −0.075,
we obtained

(〈u〉)(ex) (ym = −0.075) =

∫ +H

−H
(〈u〉 − um)dy = −0.0047 (6.95)

The jump condition for the heat flux at the free-porous interface corresponds to 0.47 percent of the en-
ergy injected in the domain. Thus, the use of boundary condition of continuity for the heat flux is an
accurate approximation.
The different quantities obtained for this closed macroscopic model are presented in Fig. 6.7.

The temperature profiles are presented in Fig. 6.7(a). Unlike the previous heating configuration, the
profiles obtained with the macroscopic models are distant from the solution of reference. None of them
captures the correct temperature gradient in the porous medium. Nevertheless, the profile issue from α1

tm
is closer to the DNS profile.
The molecular and turbulent fluxes are presented in Figs. 6.7(c) and 6.7(d). The two macroscopic mod-
els give flux profiles with correct orders of magnitude. Nevertheless the macroscopic turbulent Prandtl
model profiles are distant from the DNS result in the porous medium, while the α1

tm modeling captures
the main behavior.
For the turbulent heat flux, the difference between the new model and DNS profile is of the same order
of magnitude as the one observes for the previous heating configuration. For the molecular flux and the
tortuosity (see Fig. 6.7(b)), the difference has increased in the porous medium. This difference is at the
origin of the error observed for the temperature profile.

Heating configuration with imposed flux at cubes
For boundary conditions with imposed flux at the cube walls, the DNS gives the quantity θ1 coming
from the change of variable T1 = θ1 − A1x (see Chapter 5). This heating configuration is similar to the
previous one and the form of the macroscopic model is identical to the equations (6.91) to (6.94) with an
additional thermal source in the porous medium. This thermal source appears in the jump condition of the
total heat flux in addition to the excess value of the velocity. As for the previous heating configuration,
the term (ρcp)A1 (〈u〉)(ex) is negligible compared to the total heat flux injected in the domain. Thus the
macroscopic model takes the following form:
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(a) Temperature profile in the x-direction (b) Tortuosity profile

(c) Molecular heat flux profile (d) Turbulent heat flux profile

(e) Heat flux balance profiles for the new model

Figure 6.7: Profiles of temperature and heat flux.

• in the homogeneous porous region:

(ρCp)u
p
mA1 =

∂

∂y

[
φp(α+ αpor + αtm)

∂θp1m
∂y

]
(6.96)
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• in the free region:

(ρCp)u
l
mA1 =

∂

∂y

[
φl(α+ αlor + αtm)

∂θl1m
∂y

]
(6.97)

• at the free-porous interface:

θl1m(ym) − θp1m(ym) = 0 (6.98)

qlθym(ym) − qpθym(ym) = − (P)(ex) (6.99)

The jump condition for the heat flux is closed knowing the profile of the injected heat in the transition
zone.
The quantities computed with this closed macroscopic model are presented in Fig. 6.8.
The observations about the obtained results are similar to those done for the previous heating config-
uration. The macroscopic temperature profiles are distant from the DNS profile (see Fig. 6.8(a)). The
flux study shows that the new model α1

tm captures the main behavior in the whole domain unlike the
macroscopic turbulent Prandtl model. The error existing for the temperature profile issue from the new
modeling comes from the tortuosity and the molecular flux.
The quantities (temperature, heat flux, turbulent thermal diffusivity) obtained with two macroscopic
models are compared with the results of the DNS. The comparison shows that the macroscopic turbulent
Prandtl model gives the good order of magnitude and the correct heat flux profiles in the free region.
However it does not capture the physic in the homogeneous porous region. Considering the difference
existing between the macroscopic turbulent thermal diffusivity and the DNS one, we conclude that the
system is not sensitive to the turbulence modeling in the free region. On the contrary, it is sensitive in
the homogeneous porous region and the approximate model is not able to give accurate results. Thus, we
propose improvements for the macroscopic turbulent Prandtl model, that increase the weighting of the
turbulent kinetic energy. This new model has the asset to characterize a better diffusivity in the homoge-
neous porous region. As a consequence, the behaviors of the heat flux profiles (tortuosity, molecular flux
and turbulent heat flux) are better recovered.
However we notice the sensitivity of the temperature to the value of turbulent diffusivity in the porous
medium. This quantity is underestimated in the porous region for y/H < −0.2 corresponding to a lack
of mixing in this zone (see Fig. 6.9). We observe, that the consequences of this lack of mixing on the
temperature field depend on the type of the boundary conditions used. For boundary conditions with im-
posed temperature (Dirichlet-type), the impact is not much noticeable (see Fig. 6.6(a)). On the contrary,
for boundary conditions with imposed flux (Neumann-type), the consequence on the temperature is im-
portant: the temperature is underestimated in the transition zone and in the free region (see Figs. 6.7(a)
and 6.8(a)).

6.5 Conclusion

In this chapter, we study the jump conditions that must be applied at a free porous interface for a
turbulent heat flow above a porous medium.
First, a k-ǫ model with turbulent Prandtl model is derived at the mesoscopic scale using the volume
averaging operator. This model is valid in the whole domain including the transition zone. It corresponds
to a macroscopic k-ǫ model with a macroscopic turbulent Prandtl model in the homogeneous porous
region and degenerates to the standard model in the free region.
Second, the jump conditions that must be applied at the discontinuous interface are derived from the
mesoscopic scale using conservation methods. For the momentum and turbulent equations, the jump
conditions are not closed, because they involve surface excess quantities with unknown mesoscopic
terms. In order to close these jump conditions we use the work of Chandesris and Jamet (2009b), that
closes the macroscopic model for a fixed interface location: the center of gravity of the surface excess
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(a) Temperature profile in the x-direction (b) Tortuosity profile

(c) Molecular heat flux profile (d) Turbulent heat flux profile

(e) Total heat flux profile

Figure 6.8: Profiles of temperature and heat flux.

quantity of the friction force. For this particular interface location, the continuity for the diffuse flux of the
velocity is verified and assuming also the continuity for the diffuse flux of k and ǫ, the macroscopic model
gives accurate fields in the homogeneous regions. For the turbulent heat transfer, the jump conditions are
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Figure 6.9: Zoom of the turbulent thermal diffusivity profiles.

closed considering the studied temperature field. They correspond to the continuity of the temperature
and to a jump condition with the surface excess quantity of the injected power for the heat flux. The
determination of this surface excess value at the interface is obtained knowing the profile of the injected
power in the transition zone.
The macroscopic model is compared to the simulation of reference given by the DNS in Chapter 5.
As expected, it gives good results for the momentum transfer, where the different quantities (velocity,
turbulent kinetic energy, turbulent viscosity and the shear stress constraints) are well captured. On the
contrary, the comparison for heat transfer shows the weakness of the macroscopic turbulent Prandtl
model to characterize the heat transfer at the porous wall. We propose another model for the macroscopic
thermal diffusivity:

αtm =
νtmkm
2(upτ )2

(6.100)

This model reproduces a turbulence decrease in the porous medium closer to the physics of reference.
Its accuracy is verified for the heating configurations with imposed temperature at the wall, but its limits
are revealed for heating configuration with constant flux. Such results show the sensitivity of the system
to the modeling of the turbulence decrease in the homogeneous porous region.

The results obtained in this chapter can be improved in different ways. The jump conditions obtained for
the momentum and turbulent quantities are not general. A study with the method of the matched asymp-
totic expansions would verify the assumption of continuity and would give approximate solutions of the
mesoscopic problem at different orders. Thus, the dependence between the jump conditions and the in-
terface location would be explained. For the heat transfer, the improvements rely on a better modeling
of the macroscopic thermal diffusivity in the homogeneous porous region. This information is the key
of the good characterization of the transfer at the interface. However the mechanism of the turbulence
decrease in the porous medium is complex and difficult to understand.
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Chapter 7

Conclusion

The main objective of this work is to study the heat transfers at the interface between a porous
medium and a free region using a multi-scale approach. In this Chapter we recapitulate the main results
and discuss different issues.

7.1 Main conclusions

In a free-porous domain, the exact description of the solid matrix can be complex and the computation
of the transfers at the local scale may require a large amount of degrees of freedom. The multi-scale
approach allows to lower down the fine description of the porous medium introducing a macroscopic
scale of description. At the macroscopic scale, the domain is characterized by homogeneous models
for the porous and free media connected by boundary conditions at the free-porous interface. The main
modeling issue relies on the definition of appropriate boundary conditions at the free-porous interface.
Considering this issue, questions arise:

• the form of the boundary conditions that must apply at the interface: Are the physical quantities
continuous or discontinuous at the free-porous interface?

• the value of the jump parameters related to these jump conditions: Are these jump parameters
intrinsic quantities? How to determine them?

• the location of the surface of discontinuity.

These questions are studied by Chandesris and Jamet (2006, 2007, 2009c,b,a) for momentum transfer.
They succeed in making explicit the physics that exists at the free-porous interface using a multi-scale ap-
proach based on three levels of descriptions of the interface (microscopic, mesoscopic and macroscopic)
and two up-scaling steps. With this approach, they derive the jump conditions that must be applied at
the macroscopic interface from the momentum equations at the microscopic scale. The main issues are
related to the second up-scaling step (mesoscopic/macroscopic) and they are similar to those existing for
the interfacial study in two-phase flows. Thus, it is suitable to transpose the methods used for two-phases
flows (generic analysis and method of matched asymptotic expansions) to the study of the free-porous
interface.

The multi-scale approach applied to heat transfers
Applying this multi-scale approach to the study of heat transfer at a free-porous interface, new questions
arise. First, questions are related to the first up-scaling step (microscopic/mesoscopic), which consists
in obtaining continuous equations that are valid in the whole domain including the transition zone. The
continuous equations are derived from the local equations at the microscopic scale using the volume
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averaging operator and involve non-closed terms. In order to close these terms a modeling step must be
achieved for which questions arise:

• the form of the closed mesoscopic equations: How to model the non-closed terms characteristic of
the porous description-type? Are the usual models available in the literature valid in the transition
zone?

• the determination of the effective coefficients: How to determine the effective coefficients in the
transition zone?

For the laminar momentum transfer, these questions are easily answered. Indeed, only one non-closed
term exists that is modeled through a permeability coefficient known in the transition zone. For the heat
transfer, there are four non-closed terms (tortuosity for the fluid phase, tortuosity for the solid phase, heat
transfer coupling and dispersion) that require complex modelings involving numerous effective transfer
coefficients.

In order to answer the question regarding the form of the closed model, the different approaches ex-
isting in the literature for homogeneous porous media are presented: the heuristic, mixed and volume
averaging methods. However, these approaches cannot be used directly at the free-porous interface. In-
deed, the volume averaging method relies on the strong hypothesis of length scale separation that is not
valid at the interface. And the mixed method postulates the form of the closed model instead of formally
proving it as for the volume averaging method. In Chapter 2, we propose another method built on the
advantages of the mixed and volume averaging methods. Thus, the form of the closed model is derived
using the volume averaging method and the effective coefficients are determined by identification as for
the mixed method. This new method allows to characterize the heat transfer at the free-porous interface
through continuous equations.

Results for laminar heat transfers
The laminar heat transfers are studied analytically for flows normal to the interface. For this configura-
tion, there is no jump condition for the flow and the averaged velocity is constant in the whole domain.
The determination of the jump conditions for the heat transfer via the second up-scaling step does not
present any major difficulty and small adjustments of the method were enough.

At local thermal equilibrium, jump condition for the temperature and a jump condition for the total
heat flux are obtained. As for the momentum transfer, the method of matched asymptotic expansions
shows that:

• the jump conditions depend on a 1 order phenomenon in ε;

• the value of the jump parameter can be related to intrinsic values of the interface and can be directly
computed for a given interface location.

Furthermore, from these results, the apparent interface can be determined. The apparent interface is de-
fined as the location of the interface for which the boundary conditions of continuity are sufficient. It
appears that the location of the apparent interface depends only of intrinsic properties of the interface
and illustrate it through an example on a complex geometry.

At local thermal non-equilibrium, both fluid and solid temperatures must be considered. The main diffi-
culty is to couple the two-temperature model of the homogeneous porous region with the one-temperature
model of the free region. To proceed we introduce a new equivalent writing of the modeling with an iden-
tical number of equations in both regions. Thanks to this formalism, both methods providing boundary
conditions can be used. One obtains three jump relations as boundary conditions at the fluid-porous
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interface: a temperature jump and a heat flux jump for the fluid phase and a heat flux jump for the solid
phase. As for transfer at local thermal equilibrium, the relation given the apparent interface is determined
analytically. The obtained relation is complex due to the number of involved phenomena, nevertheless
it can be discussed. When a phenomenon dominates the others, simplifications can be done that makes
explicit the location of the apparent interface. Otherwise, the apparent interface is not known directly
and the resolution of the macroscopic model at order 1 is needed.

Results for turbulent heat transfers
For the study of turbulent heat transfers at a free-porous interface, we face a lack of information in the
literature. In order to gain insight in the influence of the free-porous interface in the turbulent transfers,
a direct numerical simulation is performed. Using the geometry proposed by Breugem and Boersma
(2005), we compute a flow field that is in good agreement with Breugem’s results and three temperature
fields resulting in three different thermal boundary conditions (Reτ = 390, Pr = 0.1). As Breugem and
Boersma (2005), the results obtained for the momentum transfer shows that the turbulent structures at
the free-porous interface are different compared to the turbulence near the solid wall. At the free-porous
interface, the turbulence is dominated by large vortical structures responsible for exchange of momentum
in the channel that does not exist at the solid wall. This difference between the porous and solid wall
is also observed for the temperature fields. Furthermore, three characteristics of the heat transfer in a
free-porous domain are found:

• the wall-normal turbulent heat flux can be modeled with an averaged temperature gradient via a
turbulent diffusivity;

• the wall-normal turbulent heat flux and the Reynolds shear stress are not correlated;

• the temperature fluctuations are different from the velocity ones.

The first two characteristics give information about the turbulent heat flux modeling and can be used for
RANS simulations. From the characteristics, one can predict that the turbulent Prandtl model will not be
accurate in a free-porous medium. The third characteristic is not expected. It reflects that the turbulence
of the temperature field does not follow the turbulence of the flow. We did not succeed in clarifing this
point due to a lack of time.

The next step is to determine a RANS modeling of the turbulent heat transfer at the macroscopic scale
using the DNS as a simulation of reference. The momentum transfer is computed following the work
done by Chandesris2009a. They obtain accurate results with a k-ǫ model using boundary conditions of
continuity for a particular interface location. For the heat transfer, the issue to determine (i) the closure
for the turbulent diffusivity and (ii) the jump conditions that must be applied at the free-porous interface,
whose location is fixed by the momentum transfer. It turns out that using the knowledge acquired from
the laminar study and appropriate simplifications, the determination of the jump conditions becomes
very easy. One obtains the temperature continuity and a jump condition for the heat flux corresponding
to the excess value of the injected heat flux. The difficulty arises in the closure of the turbulent diffusiv-
ity. Indeed, the turbulent Prandtl modeling is not accurate enough to capture correctly the turbulent heat
transfer in the porous medium. Thus, we propose another closure for the turbulent diffusivity increasing
the weighting of the averaged kinetic energy. This new model is able to capture the turbulence decrease
in the porous medium and the resulting macroscopic model gives the correct flux in the domain including
the interface.

7.2 Discussion and outlooks

This study allows a better understanding of the heat transfer mechanisms at a free-porous interface.
The models used to characterize the heat transfer are complex due to the number of effective trans-
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fer coefficients involved. However, only the total heat flux conservation plays an important part in the
boundary conditions that must be applied at the free-porous interface. Such a result considerably sim-
plifies the determination of the boundary conditions. Thus, using boundary conditions of continuity for
the temperature, only the heat flux jump parameters must be computed to close the macroscopic model.
For heating configurations, for which the solid heat source dominates the heat transfer, the macroscopic
problem is easily solved for any interface location knowing the solid heat source in the transition zone.

With the analytical method, one can determine the boundary conditions of the heat transfer for any
free-porous interface location. The computation of such boundary conditions requires a two-steps reso-
lution. This computation can be avoid if the apparent interface exists. However, the apparent interface
location for the heat transfer can be different to the momentum transfer one. In such a case, a solution
is to use the resolution path presented below: the continuity of the temperature and a jump condition for
the total heat flux computed to the apparent interface of the momentum transfer.

Furthermore, it must be noted that the determination of order 1 jump condition has an interest depending
on the value of the ε parameter. If the size of the transition zone is large compared to the domain length (ε
large), thus the order 1 brings an important correction. Otherwise, the zeroth order solution is sufficient
to capture the correct order of magnitude.

This work can be extended to heat transfers for turbulent flows normal to the free-porous interface.
For this configuration, new problems arise. Indeed, the macroscopic model in the homogeneous porous
medium does not easily degenerate into the standard model used in the free region. It is due to slip-
streams in the free region, that require additional modelings especially for the dispersive phenomenon.
Once this work done, one can close the study with heat transfer for non one-dimensional turbulent flows.
This configuration is a first step in the understanding of the physics existing in a nuclear reactor. Indeed,
the presence of solid structures in the upper part of the nuclear reactor is at the origin of recirculating
flows from the upper plenum to the fuel zone.
Furthermore, another example of extension could be the study of geometries closer to industrial uses.
Indeed the present work, an academic geometry is used to allow the clarification of the physics existing
at the free-porous interface through analytical developments. With more practical geometries, one could
give information for the industrial models commonly built on empirical considerations.
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Appendix A

Boundary conditions of pseudo-periodicity

This appendix presents the boundary condition of pseudo-periodicity. This boundary condition is
used in Chapter 2 to compute an infinite homogneous porous medium, and in Chapter 5 to compute tur-
bulent heat transfer for a flow tangent at the interface. Especially, we use this configuration to introduce
the pseudo-periodicity.

A.1 The variable change

We study heat transfer for a flow tangent to a free-porous interface. To compute such a configuration,
boundary conditions must be applied at the domain (inlet/outlet) as presented in Fig. A.1.

y

x

outletinlet

Se

Sb

Ss

Ss

Sh

Figure A.1: Geometrical configuration.

For the velocity, using the boundary conditions of periodicity at the inlet/outlet is obvious. For the tem-
perature T , the choice of the boundary conditions at the inlet/outlet depends from the energy balance.
If there is no source of energy inside of the domain, boundary conditions of periodicity for the tempera-
ture are enough. If not, boundary conditions of periodicity for the temperature are not accurate because
the calcul is not able to converge. For a constant increase at the steady state, boundary conditions of
pseudo-periodicity are a good solution. It consists in performing a variable change and to compute the
new variable θ with boundary conditions of periodicity:

θ(x, y) = T (x, y) − ∆T

L
x (A.1)

where ∆T is the temperature increase on the domain of size L.
Preforming this change of variable, a source term appears in the microscopic equations as we will show
in the following.
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A.2 Determination of the source term

In order to determine the value of the source term A, an energy balance is performed on the whole
domain. The local governing equation of the fluid phase are integrated on whole fluid volume of the
domain and using the Stokes theorem one can obtain:

(ρcp)f∇ · (vfTf ) = ∇ · (kf∇Tf ) (A.2)∫

∂Vf

(ρcp)fTfv · n dS =

∫

∂Vf

kfn · ∇TfdS (A.3)

that can be rewritten as follows:

∫

Se

−(ρcp)fTf (0; y)vx(0; y)dy +

∫

Ss

(ρcp)fTf (L; y)vx(L; y)dy =

∫

Se

−kf
∂Tf
∂x

(0; y)dy +

∫

Ss

−kf
∂Tf
∂x

(L; y)dy +

∫

Sb

−kf
∂Tf
∂y

(x;−H)dx

+

∫

Sh

kf
∂Tf
∂y

(x;H)dx+

∫

Ss

kfn · ∇TfdS (A.4)

By construction, the increase of the temperature is constant and the velocity is periodic which gives:

Tf (L; y) = Tf (0; y) +AL (A.5)
∂Tf
∂x

(−H; y) =
∂Tf
∂x

(L; y) (A.6)

vx(0; y) = vx(L; y) (A.7)

Thus, the equation (A.4) reduces to:
∫

Ss

(ρcp)fALvx(L; y)dy =

∫

Sb

−kf
∂Tf
∂y

(x; 0)dx+

∫

Sh

kf
∂Tf
∂y

(x;H)dx+

∫

Ss

kfn · ∇TfdS (A.8)

Perfoming the energy balance for the solid phase, the local governing equation are integrated on the
volume and using the Stokes theorem we obtain:

0 = ∇ · (ks∇Ts) + Ss (A.9)

0 =

∫

∂Vs

−ksn · ∇Ts +

∫

Vs

SsdV (A.10)

(A.11)

With the continuity of the heat flux at the fluid-solid interface, the energy balance for the solid (A.10)
can be rewritten as follows: ∫

∂Vs

ksn · ∇Tf =

∫

Vs

SsdV (A.12)

Thus, the equation (A.8) becomes:

(ρcp)fAL

∫ H

−H
vx(0; y)dy =

∫ L

0
qbdx−

∫ L

0
qhdx+

∫

Vs

SsdV (A.13)

that gives the source term A

A =
(qb − qh)L+

∫
Vs
SsdV

(ρcp)fL
∫ H
−H vx(0; y)dy

(A.14)
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A.3 Implementation in Trio-U

Local governing equations
From the local governing equations for the temperatures Tf and Ts (see (A.2) et (A.9)), we introduce the
following variable change Tf = θf +Ax et Ts = θs +Ax, leading to:

(ρcp)f∇ · (vf (θf +Ax)) = ∇ · (kf∇(θf +Ax)) (A.15)

0 = ∇ · (ks∇(θs +Ax) + Ss) (A.16)

As the cource term A is constant, the system reduces to:

(ρcp)f∇ · (vf (θf )) + (ρcp)fvfA · ex = ∇ · (kf∇(θf )) (A.17)

0 = ∇ · (ks∇(θs)) + Ss (A.18)

Thus, the quantity (ρcp)fvfA · ex is the additionnal that must be implemented in Trio-U.

Conditions at the fluid-solid surface
At the fluid-solid interface, there is the continuity of the temperature and heat flux such that:

Tf = Ts (A.19)

kfnfs · ∇Tf = ksnfs · ∇Ts (A.20)

Using the variable change Tf = θf +Ax et Ts = θs +Ax in Eqs. (A.19) et (A.20), one obtains:

θf = θs (A.21)

kfnfs · ∇θf = ksnfs · ∇θs + (ks− kf)A nfs · ex (A.22)

Thus, the quantity (ks − kf)A nfs · ex is the additional term created by the variable change and must
be added in the code. In Trio-U, the continuity of the heat flux at the fluid-solid interface is computed as
follows:

kf
θf − θi
∆x/2

= h(θf − θs) + Cte1 (A.23)

ks
θi − θs
∆x/2

= h(θf − θs) + Cte2 (A.24)

where Cte1 and Cte2 are constant that must be determined, ∆x the length of the cell, θi the temperature at
the interface and h the transfer coefficient. Using the relation (A.22) with the temperature at the interface
θi, one obtains:

θi =
kfθf + ksθs
kf + ks

+
kf − ks
kf + ks

A
∆x

2
(A.25)

Injecting θi in the relations (A.23) and (A.24), the constantes Cte1 and Cte2 are determined:

Cte1 = −kf
kf − ks
kf + ks

A (A.26)

Cte2 = ks
ks − kf
kf + ks

A (A.27)

Furthermore h is computed by the code with:

h(θf − θs) = λf∇θf = λs∇θs, thus h =
λfλs
λf + λs

2

∆x
(A.28)
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Abstract
This work deals with the study of heat transfer between a porous medium and a free medium, using

multi scale approaches. First, we derive the boundary conditions that must be applied at a free-porous in-
terface for laminar heat transfer at local thermal equilibrium and, then, at local thermal non-equilibrium.
For turbulent heat transfer, a direct numerical simulation is performed supplying a better understanding
of the physic at the free-porous interface. Then, we determine a turbulent model with associated jump
conditions. These studies answer fundamental questions regarding the physical meaning of the jump
conditions, the values of the jump parameters and the location of the interface for heat transfer.

Keywords
Heat transfer, interface, boundary conditions, porous media, volume averaging method, multi-scale,

excess quantity, turbulence.

Résumé
Ce travail porte sur l’étude du transfert de chaleur entre un milieu poreux et un milieu libre en util-

isant une approche multi-échelle. Dans un premier temps, nous dérivons les conditions limites à imposer
à une interface libre-poreux dans le cas des transferts de chaleur à l’équilibre thermique local puis dans le
cas du déséquilibre thermique local. Pour les transferts de chaleur turbulent, une simulation numérique
directe est réalisée afin d’apporter une meilleur compréhension de la physique existant à l’interface libre-
poreux. Puis, nous déterminons un modèle turbulent avec des conditions de saut. Ces études répondent
à des questions fondamentales liées à la compréhension physique des conditions de saut, des valeurs des
paramètres des saut et de la position de l’interface dans le cadre des transferts de chaleur.

Mots-clés
Transfert de chaleur, interface, condition limites, milieu poreux, prise de moyenne volumique, multi-

échelles, grandeur en excès, turbulence.


	Introduction
	Modeling of turbulent transfers in porous media
	Modeling of transfers at a free-porous interface
	Contents

	Heat transfer modeling in homogeneous porous media
	Porous medium modeling
	Context
	The volume averaging formalism

	One-temperature model
	Closure of the macroscopic equation
	Determination of the effective thermal conductivity tensor

	Two-temperature models: literature review
	The heuristic approach
	The mixed approach
	The volume averaging approach
	Discussion

	Two-temperature modeling: another interpretation
	Active dispersion
	The two-temperature model

	Conclusion

	Free-porous interface modeling for laminar heat transfer at local thermal equilibrium 
	Introduction
	Article 1: Boundary conditions at a fluid-porous interface for a convective heat transfer problem: Analysis of the jump relations
	Introduction
	First up-scaling step
	Microscopic model
	Mesoscopic model
	Determination of the effective thermal conductivity tensor

	Second up-scaling step
	Generic analysis
	Method of matched asymptotic expansions 

	Determination of the apparent interface
	Procedure
	Illustration

	Conclusion
	Appendix
	Appendix1: The matched asymptotic expansion method

	Conclusion

	Free-porous interface modeling for laminar heat transfer at local thermal non-equilibrium 
	Introduction
	Article 2: Coupling a two-temperature model and a one-temperature model at a fluid-porous interface
	Introduction
	The first up-scaling step
	Microscopic equations
	Mesoscopic model
	Determination of the effective transfer coefficients

	The second up-scaling step
	The generic analysis
	The method of the matched asymptotic expansion
	Illustration

	Conclusion
	Appendix
	Appendix A: Closed mesoscopic model
	Appendix B: The method of the matched asymptotic expansion

	Apparent interface
	Determination of an apparent interface
	Heat transfer driven by a heat source in the solid
	Variable heat source
	Industrial nuclear codes

	Conclusion

	Direct numerical simulation of a turbulent heat flow in a partially porous domain 
	Introduction
	Problem description and numerical method
	Geometry
	Boundary conditions
	Study parameters
	Numerical method

	Governing equations
	General equations
	Simplified equations

	Results
	Statistics of the velocity field
	Turbulent viscosity profile
	Statistics of the temperature field

	Conclusion

	Turbulent heat transfer at the free-porous interface for a Poiseuille flow 
	Introduction
	First up-scaling step
	Governing equations at the microscopic scale
	Governing equations at the mesoscopic scale
	Closed mesoscopic equations
	1D problem

	Second up-scaling step
	Jump conditions for the velocity and the turbulent quantities
	Jump conditions for the heat transfer

	Results
	Results for the momentum transfer
	Results for heat transfer

	Conclusion

	Conclusion
	Main conclusions
	Discussion and outlooks

	Boundary conditions of pseudo-periodicity
	The variable change
	Determination of the source term 
	Implementation in Trio-U

	Bibliography

