
HAL Id: tel-00711805
https://theses.hal.science/tel-00711805v1

Submitted on 25 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A framework for distributed 3D graphics applications
based on compression and streaming

Ivica Arsov

To cite this version:
Ivica Arsov. A framework for distributed 3D graphics applications based on compression and stream-
ing. Other [cs.OH]. Institut National des Télécommunications, 2011. English. �NNT : 2011TELE0013�.
�tel-00711805�

https://theses.hal.science/tel-00711805v1
https://hal.archives-ouvertes.fr

Thèse Numéro : 2011TELE0013

Thèse de doctorat de Télécom & Management SudParis dans le cadre de l’école
doctorale S&I en co-accréditation avec

l’ Universite d’Evry-Val d’Essonne

Spécialité :
Informatique

Par

M. Ivica ARSOV

Thèse présentée pour l’obtention du diplôme de Docteur
de Télécom & Management SudParis

A framework for distributed 3D graphics applications based on
compression and streaming

Soutenue le 31 Mars 2011 devant le jury composé de :

Rapporteurs :
M. Jacques Fayolle, Maître de conférences, HDR, TELECOM Saint Etienne, France
M. Euee S. Jang, Professeur à l’Université Hanyang de Seoul, République de Corée

Examinateurs :
M. Vasile Buzuloiu, Professeur à l’Université Politehnica de Bucarest, Roumanie
M. Mohamed Daoudi, Professeur à Telecom Lille 1, France
M. Francisco Morán Burgos, Maître de conférences à l’Université polytechnique de Madrid, Espagne
M. Christian Timmerer, Maître de conférences à l’Université de Klagenfurt, Autriche

M. Bruno DEFUDE, Professeur à Telecom & Management SudParis, Directeur de thèse
M. Marius Preda, Maître de conférences, Telecom & Management SudParis, Co-encadrant

Acknowledgements

I would like to thank Prof. Françoise Préteux that lead my studies from 2006-2010.

I also owe my thanks to Prof. Bruno Defude, who accepted me as PhD student in the last

year of the studies. I owe my utmost gratitude to Dr. Marius Preda who has supported me

thoughout my thesis with his patience and knowledge whilst allowing me the room to work

in my own way. I could not have imagined having a better advisor and mentor for my Ph.D

study.

Besides my advisors, I would like to thank the rest of my thesis committee: Prof. Dr.

Jacques Fayolle, Prof. Dr. Euee S. Jang, Prof. Dr. Vasile Buzuloiu, Prof. Dr. Mohamed

Daoudi, Dr. Francisco Morán Burgos and Dr. Christian Timmerer, for their encouragement,

insightful comments, and hard questions.

It is a pleasure to thank all the people I worked with during the past years and made this

thesis possible. Particularly, I would like to show my gratitude to my colleague and girlfriend,

Dr. Blagica Jovanova, who has made wide available her support not only in the professional

field, but also in the private life. Honestly, I thank her for putting up with me during the

most difficult periods and to encourage me, and for all the emotional support, camaraderie,

entertainment, and caring she provided.

I also want to thank my fellow lab mates in the ARTEMIS department, for the stimulating

discussions, for the sleepless nights we were working together before deadlines, and for all the

fun we have had in the last years.

Last but not the least, I whould like to thank my familiy and for their continuous support

in every aspect.

I dedicate this work to my grandfather, Ignat Ilievski, who passed away in 2010 and did

not live to see my defense. He was there for me since my birth and always telling me to go

forward and to improve myself. I am taking his advice.

iii

Contents

Contents i

List of Figures vi

List of Tables viii

List of Abbreviations ix

Context and Objectives xi

Resumé long xiii

I.1 Introduction . xiii

I.2 Evolutions récentes des réseaux informatiques xiv

I.2.1 Une nouvelle approche dans le traitement des applications multimédia xiv

I.3 Analyse des architectures distribuées pour la 3D et les jeux xv

I.4 Analyse de formats de graphe de scène . xvi

I.5 Cadre formel pour les systèmes 3D distribués et le design d’architectures

de lecteurs MPEG-4 . xvii

I.5.1 Définition du cadre formel . xviii

I.5.2 Analyse du cadre formel . xix

I.5.3 Conception d’une nouvelle architecture de systèmes distribués . . . xix

I.5.4 Conception d’une Architecture de Lecteur MPEG-4 pour Plate-

formes Puissantes . xxi

I.5.5 MPEG Extensible Middleware (MXM) xxii

I.5.6 Conception d’une Architecture de lecteur MPEG-4 pour Dispositifs

Mobiles . xxiii

I.6 Expérimentations et Validation . xxiii

I.6.1 Lecteur MPEG-4 pour Dispositifs Mobiles xxiii

I.6.2 Validation de l’Architecture à partir d’un Jeux xxiv

I.6.2.1 Experiences et Résultats xxv

I.6.3 Système d’Animation en Ligne . xxvii

I.6.4 MPEG Middleware Extensible (MXM) xxvii

I.7 Conclusion et Perspectives . xxviii

I.7.1 Travail futur . xxxi

i

CONTENTS

1 State of The Art in Remote Computing for 3D Graphics and Games 1

I.1 Progress of Modern Remote Computing . 3

I.1.1 Central Computer Systems . 3

I.1.2 Client-Server Architectures . 4

I.1.3 Web Applications . 4

I.1.4 Rich Internet Applications . 5

I.1.5 A New Approach to Address Multimedia Applications 5

I.2 Distributed Architectures for 3D Graphics and Games 6

I.2.1 Graphics commands based solution 7

I.2.2 Pixels based solutions . 8

I.2.2.1 Video based . 8

I.2.2.2 Image Based . 9

I.2.2.3 X11 Protocol . 10

I.2.3 Graphics Primitives Based Solutions 10

I.2.3.1 2D Primitives . 11

I.2.3.2 3D Primitives . 11

I.2.3.2.1 3D Vectors . 11

I.2.3.2.2 Surfaces . 13

I.2.4 Adaptive methods . 14

I.2.4.1 Amount of motion on the screen 14

I.2.4.2 Amount of camera motion 15

I.2.4.3 Distance from the camera 15

I.2.4.4 Importance to the user . 16

I.2.4.5 Processing power of the users terminal 16

I.2.5 Analysis of the different architectures and conclusions 17

I.3 Multimedia Scene Description Languages 19

I.3.1 Review of scene-graph formats . 20

I.3.1.1 VRML and X3D . 20

I.3.1.2 SMIL . 21

I.3.1.3 SVG . 21

I.3.1.4 COLLADA . 22

I.3.1.5 MPEG-4 Scene Description Languages 23

I.3.1.5.1 BIFS . 23

I.3.1.5.2 XMT . 23

I.3.1.5.3 LASeR . 23

I.3.1.6 Analysis . 23

I.3.2 Description of the MPEG-4 standard 24

I.3.2.1 Introduction . 24

I.3.2.2 Usage Domains . 25

I.3.2.3 MPEG-4 File and Stream Organization 26

I.3.2.3.1 Fundamental concepts 26

I.3.2.3.2 Object Descriptors 27

I.3.2.3.3 Elementary Stream Descriptors 28

I.3.2.4 Synchronization Mechanisms 29

ii

CONTENTS

I.3.2.4.1 System Decoder Model 29

I.3.2.4.2 The Sync Layer 31

I.3.2.5 Scene-Graph Description 31

I.3.2.5.1 Scene format . 31

I.3.2.5.2 Scene Updates 32

I.3.2.6 Specific 3D Graphics Compression Tools 33

I.3.2.6.1 Geometry tools 33

I.3.2.6.2 Texture tools . 34

I.3.2.6.3 Animation tools 34

I.4 Conclusion . 34

2 Formal Framework for 3D Graphics Distributed Systems and

Design of MPEG-4 Player Architectures 37

I.1 Introduction . 39

I.2 Formal Framework Definition . 39

I.2.1 Set of Transformations . 40

I.2.1.1 Rendering . 40

I.2.1.2 Coding . 40

I.2.1.3 Simplification . 41

I.2.1.4 Modeling . 41

I.2.1.5 Scene Updates . 41

I.3 Analysis using the Formal Framework . 42

I.4 Design of a new Distributed System Architecture 47

I.4.1 Implementation of the new Distributed System Architecture 49

I.4.1.1 Requirements . 49

I.4.1.2 Description of the Proposed Distributed System Architec-

ture . 50

I.4.1.3 Analysis of the Proposed Distributed System Architecture 51

I.5 Design of an MPEG-4 Player Architecture for Powerful Platforms 54

I.5.1 Requirements . 54

I.5.2 Optimized SDM design . 55

I.5.3 MPEG-4 Player Components . 57

I.5.3.1 Scene Management . 58

I.5.3.2 Application Interface . 58

I.5.3.3 Stream Creator . 59

I.5.3.4 Timer . 59

I.5.3.5 Decoding . 60

I.5.3.6 Data Management . 61

I.5.3.7 Rendering . 61

I.5.3.8 Scene-Graph . 62

I.6 MPEG Extensible Middleware (MXM) . 63

I.6.1 Media Framework Engine . 65

I.6.1.1 Graphics3D Access API 66

I.6.1.1.1 Appearance API 66

iii

CONTENTS

I.6.1.1.2 Geometry API 67

I.6.1.1.3 Animation API 67

I.7 Design of an MPEG-4 Player Architecture for Mobile Devices 69

I.7.1 Requirements . 70

I.7.2 Implementation . 71

I.7.2.1 Application Interface . 72

I.7.2.2 Visual Interface . 72

I.7.2.3 Scene Manager . 72

I.7.2.4 Renderer . 73

I.7.2.5 Scene-graph . 73

I.7.2.6 Resource Manager . 73

I.8 Conclusion . 74

3 Experiments and Validation 75

I.1 Alternative Client-Server Architecture for 3D Graphics on Mobile Devices . 77

I.1.1 MPEG-4 Player for Mobile Devices 77

I.1.2 Architecture Validation by a Game 78

I.1.2.1 Car Racing Game . 80

I.1.2.2 Game Design . 82

I.1.2.3 Description of the Scene-Graph 83

I.1.2.3.1 Sending Key Actions to the Server 83

I.1.2.3.2 Main Screen . 84

I.1.2.3.3 Configuration Screen 85

I.1.2.3.4 Gameplay Screen 86

I.1.2.4 Simulation . 87

I.1.3 Results . 87

I.2 MPEG-4 Player Architecture for Powerful Platforms 89

I.2.1 Examples of Decoding Files . 89

I.2.1.1 Local Static File . 90

I.2.1.2 Local Animated File . 90

I.2.1.3 Local File with Streamed Animation 91

I.2.1.4 Full Streamed File . 91

I.2.2 On-line Animation System . 92

I.2.2.1 Production . 93

I.2.2.2 Transmission . 94

I.2.2.3 Visualization . 94

I.2.2.4 Implementation Examples 94

I.3 MPEG Extensible Middleware (MXM) . 95

I.4 Conclusion . 96

Conclusion and Perspectives 117

Bibliography 123

A Related Publications 131

iv

CONTENTS

B BIFS Scene-Graphs 133

I.1 Main Menu . 133

I.2 Configuration . 134

I.2.1 Car Selection - Images . 134

I.2.2 Car Selection - 3D Model . 136

I.3 Gameplay . 137

C MPEG-4 Player Class Diagram 141

v

List of Figures

I.1 Techniques pour l’affichage 3D . xv

I.2 Architecture proposée . xx

I.3 l’architecture originale du jeu de courses (a) et l’architecture adaptée (b) . . . xxv

I.4 Temps de réponse pour UMTS et Wi-Fi . xxvi

I.5 Architecture proposée pour un système en ligne de langage des signes xxvii

1.1 Modern Remote Computing Development . 3

1.2 Client-Server Architecture . 4

1.3 Web Application Architecture . 5

1.4 Bit-rate for the game Tux-Racer during game play 8

1.5 Architecture of video based system . 9

1.6 Architecture of video based system . 10

1.7 Example of a 3D model rendered using 2D vectors 11

1.8 Architecture of 2D vectors based system . 11

1.9 Comparison between rendering using textures and line rendering 12

1.10 Architecture of 3D vectors based system . 12

1.11 Architecture of 3D vectors based system . 14

1.12 Client-side and server-side model renderings 15

1.13 View dependent rendering of 3D objects . 16

1.14 Objects that are important to the user rendered in more detail 16

1.15 Techniques for displaying 3D graphics . 17

1.16 SVG Sample Image . 22

1.17 MPEG-4 terminal data flow . 27

1.18 Object Descriptor contents . 28

1.19 Elementary Stream Descriptor Contents . 29

1.20 System Decoder Model . 30

2.1 Model of graphics commands based solutions 43

2.2 Model of pixel based solutions . 43

2.3 Model of 2D primitives based solutions . 44

2.4 Model of 3D primitives based solutions . 44

2.5 Model of single object adaptation based solutions 45

2.6 Model of multiple object adaptation based solutions 45

2.7 Proposed Architecture . 48

vi

LIST OF FIGURES

2.8 The main functional components of an arbitrary game 50

2.9 Proposed architecture for mobile games . 51

2.10 Block Diagram of the MPEG-4 Player for PC 56

2.11 Class diagram of the Media Framework Engine 66

2.12 Mobile MPEG-4 player architecture . 71

3.1 Decoding time for static objects . 78

3.2 Decoding time for animated objects . 79

3.3 Decoding time improvement . 79

3.4 Snapshots for static (a and b) and animated (c and d) 3D graphics objects . . 80

3.5 The original Hero (a) and its simplified version (b) 80

3.6 The original architecture of the car racing game (a) and the adapted architec-

ture (b) . 81

3.7 Snapshot from the car game (Phases 1 and 2) 83

3.8 Snapshot from the car game (Phase 3) . 83

3.9 Response time for UMTS and Wi-Fi . 88

3.10 Player performance versus latency for different game categories 89

3.11 Example of static MPEG-4 files . 90

3.12 Example of animated MPEG-4 files with local animation 91

3.13 Example of animated MPEG-4 files with streamed animation 92

3.14 Example of completely streamed MPEG-4 file 93

3.15 Proposed Architecture for the Online Cued Speech system 93

3.16 Different target shapes defining the morph space 94

3.17 The architecture of the Chat service . 95

3.18 Ogre3D based player with many MPEG-4 files loaded 97

C.1 MPEG-4 Player Classes and Their Dependencies 142

C.2 MPEG-4 Player Classes and Their Dependencies 143

vii

List of Tables

I.2 Comparaison des standards pour la description des scènes multimédia xvii

I.3 Sous-ensemble de nœuds BIFS . xxi

I.4 Conditions nécessaires d’un lecteur MPEG-4 pour PC xxii

I.5 Latence (transmission et décodage) pour des composants 3D xxvi

1.1 Comparison of the Multimedia-Scene description Standards 24

2.1 Subset of BIFS nodes . 48

2.2 Comparative evaluation of the proposed method 53

2.3 Requirements for a MPEG-4 Player for PC . 57

2.4 Appearance Buffer . 67

2.5 Geometry Buffer . 68

2.6 BBA Animation Buffer . 69

2.7 FAMC Animation Buffer . 70

3.1 Latency (transmission and decoding) for the 3D assets 87

viii

List of Abbreviations

Abbreviation Description

1G First Generation of mobile networks

2D Two Dimensions

2G Second Generation of mobile networks

3D Three Dimensions

3DMC 3D Mesh Coding

3G Third Generation of mobile networks

AFX Animation Framework Extension

AI Artificial Intelligence

API Application Programming Interface

AU Access Unit

BBA Bone Based Animation

BIFS Binary Format for Scene

CAD Computer-Aided Design

COLLADA COLLAborative Design Activity

DAI DMIF Application Interface

DCC Digital Content Creation

DMIF Delivery Multimedia Integration Framework

DVD Digital Video Disc

EDGE Enhansed Data rates for GSM Evolution

EDSAC Electronic Delay Storage Automatic Calculator

ENIAC Electronics Numerical Integrator and Computer

ES Elementary Stream

ESD Elementary Stream Descriptor

FAMC Frame-Based Animated Mesh Compression

FFD Free-Form Deformation

FPS Frames Per Second

GPRS General Packet Radio Service

GPS Global Positioning System

GPU Graphics Processing Unit

GSM Groupe Special Mobile

GUI Graphical User Interface

HSCSD High-Speed Circuit-Switched Data

HSPA High-Speed Downlink Packet Access

ix

LIST OF ABBREVIATIONS

Abbreviation Description

HSUPA High-Speed Uplink Packet Access

IC Integrated Circuits

IOD Initial Object Descriptor

IPMP Intelectual Property Management and Protection

ISO International Standards Organization

JCL Job Control Language

LASeR Lightweight Application Scene Representation

LOD Level Of Detail

M3G Mobile 3D Graphics

MPEG Moving Pictures Expert Group

MTA Mobile System A

MTU Maximum Transfer Unit

MXM MPEG Extensible Middleware

OCI Object Content Information

OD Object Descriptor

ODF Object Descriptor Framework

OS Operating System

PC Perosnal Computer

PDA Personal Digital Assistant

RIA Rich Internet Applications

RTP Real-time Transport Protocol

RTSP Real Time Streaming Protocol

SDM System Decoder Model

SDP Session Description Protocol

SMIL Synchronized Multimedia Integration Language

SVG Scalable Vector Graphics

TCP Transmission Control Protocol

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunication System

VRML Virtual Reality Modeling Language

VTC Visual Texture Coding

WSS Wavelet Subdivision Surface

WWW World Wide Web

X3D eXtensible 3D

XML eXtensible Markup Language

XMT eXtended MPEG-4 Textual format

x

Context and Objectives

With the development of the computer networks, mainly the Internet, it became easier to

develop applications where the execution is shared between a local computer, the Client,

and one located on the other side of the network communication channel, the Server.

The so called distributed applications significantly changed the way computing is done

because, by offloading some part of the work to the Server, the client terminal can be

less powerful, hence less expensive. However, distributed applications are not new. In

fact, in the beginning of the computer development, it was the only practical way of using

computers.

The development of mobile devices made computing on the go possible. Usually mobile

devices have limitations in terms of computing power and storage capacity, therefore

distributed applications are one of the candidate solutions. Nowadays, mobile devices are

almost always connected to the Internet, thus distributed computing on mobiles is almost

as easy as for a fixed terminal. Most mobile distributed applications are web based,

using the HTTP protocol together with the HTML file format and JavaScript to build

the application. The limitations related to these standards encapsulate the applications

in a restricted environment. This is most obvious for entertainment applications, mainly

games, because most of them are impossible to implement by using only these standards.

Bringing Rich Internet Applications (RIA) to the mobile devices may overcome this gap,

however their virtual execution environment further stresses the already scarce resources of

the mobile device. Therefore, there are serious technical limitations in using distributed

solution for entertainment applications. In addition, mobile applications development

brings other challenges, mainly due to the mobile devices heterogeneous environment,

both in terms of software and hardware.

The hardware advancements in the recent years made it possible to display 3D graphics

(games, map navigation, virtual worlds) on mobile devices. However, executing these

complex applications on the client terminal is not possible without reducing the quality

of the displayed graphics or lowering its processing requirements. Different solutions

have already been proposed in academic publications, however none of them satisfies all

requirements.

The objective of this thesis is to propose an alternative solution for a new client-server

architecture where the connectedness of the mobile devices is fully exploited.

Several main requirements will be addressed:

1. Minimize the network traffic and reduce data rate fluctuations,

xi

CONTEXT AND OBJECTIVES

2. Reduce the required computational power on the terminal, and

3. Preserve the user experience compared with local execution.

Organization of the thesis

Chapter I provides a short overview of the history of distributed systems. First it presents

the different stages of remote computing developed since the beginning of the Internet.

Then the state of the art in distributed applications with main focus on distributed 3D

applications is presented. An analysis of these solutions is provided, exposing their advan-

tages and disadvantages by taking into account three criteria: hardware requirements at

the terminal side, the network bandwidth and the visual appearance. The second part of

Chapter I presents an overview of different formalisms for representing scene-graphs, the

core of any game, containing all visual elements, as well as their connectedness. They are

compared according to their supported features, focusing on graphics elements, streaming

support as well as some special requirements, like compression and interactivity support.

The most appropriate scene-graph is selected and it is presented in detail.

Chapter II proposes the main contribution of this thesis. The first part introduces

a formal framework that can effectively define and model distributed applications. The

intention is to use the framework to analyze the previously presented architectures from

a theoretical point of view, and draw conclusions about their capabilities. Then a model

of new architecture is presented, that overcomes the disadvantages of the architectures

presented in the state of the art. The next part explores the design of MPEG-4 capa-

ble architectures optimized for running on a PC. Some application may implement their

own scene-graph structure and use MPEG-4 only for storing assets, hence implementing

a complete MPEG-4 compatible player is not necessary. Therefore, an API is proposed

for accessing MPEG-4 content that is easy to integrate and use in third party applica-

tions. The last part of this chapter explores the design of MPEG-4 capable architectures

optimized for running on mobile devices, less powerful by nature. Several optimizations

needed to adapt the architecture are presented.

Chapter III presents the experiments and the validation of the contributions proposed

in Chapter II. The first part validates the formal framework by using it to model each

of the architectures presented in the state of the art. The second part of the chapter

validates the proposed architectures for a powerful platform as well as for mobile devices.

The performance of the player for mobile devices is evaluated with a goal to find the

maximum supported complexity of 3D data. Then a design of the new client-server

architecture will be validated by implementing a game and running simulations.

The last chapter concludes the work and proposes some possible extensions.

xii

Resumé long

I.1 Introduction

Avec le développement des réseaux informatiques, principalement d’Internet, il devient

de plus en plus facile de développer des applications dont l’exécution est répartie entre

un ordinateur local, le client, et un ordinateur à distance (à une autre extrémité du

canal de transmission), le serveur. Ainsi, ces applications dites applications distribuées

ont significativement modifié la façon d’effectuer les calculs puisqu’en sous-traitant une

partie de cette tache au serveur, le terminal client nécessite moins de puissance et est par

conséquence moins cher. Cependant, les applications distribuées ne sont pas vraiment

nouvelles. En réalité, aux débuts de l’informatique, elles étaient le seul moyen d’utiliser

les ordinateurs.

Le développement des appareils mobiles a généralisé l’usage de l’informatique. Habituelle-

ment, les appareils mobiles sont limités en termes de puissance de calcul et de capacité

de stockage. Dans ce cas, les applications distribuées sont une solution intéressante. A

l’heure actuelle, les dispositifs mobiles sont presque toujours connectés à Internet, ainsi le

calcul distribué peut ce faire presqu’aussi facilement qu’avec un terminal fixe. La plupart

de ces applications sont orientées web et font appel au protocole HTTP, au format de

fichier HTML et à JavaScript dans leur mise en œuvre. Les limitations propres à ces

standards imposent un environnement restreint à ces applications. En particulier, pour

les applications à but récréatif, principalement les jeux, il est impossible de les mettre en

œuvre en utilisant uniquement ces standards. L’arrivée des applications Internet riches

devrait combler ce fossé, cependant leur environnement d’exécution virtuel est consom-

mateur en ressources alors que celles-ci sont déjà rares dans un environnement mobile.

Par conséquent, les solutions distribuées pour les applications de divertissement doivent

faire face à des limitations techniques importantes.

Par ailleurs, le développement d’application pour mobiles pose de nombreux autres

problèmes, principalement à cause de l’hétérogénéité des environnements, à la fois logiciels

et matériels.

Les progrès techniques de ces dernières années au niveau matériel ont rendu possi-

ble l’affichage en 3D (jeux, navigation cartographique, mondes virtuels) sur les mobiles.

Cependant, l’exécution de ces applications complexes sur le terminal client est impossible,

à moins de réduire la qualité des images affichées ou les besoins en calcul de l’application.

Différentes solutions ont déjà été proposées dans la littérature mais aucune d’entre elles ne

xiii

RESUMÉ LONG

satisfait l’ensemble des besoins. L’objectif de cette thèse est de proposer une solution alter-

native, c’est à dire une nouvelle architecture client-serveur dans laquelle l’interconnexion

des dispositifs mobiles est complètement exploitée.

Les principales conditions de mise en œuvre seront traitées:

1. Minimiser le trafic réseau,

2. Réduire les besoins en puissance de calcul du terminal, et

3. Préserver l’expérience utilisateur par rapport à une exécution locale.

I.2 Evolutions récentes des réseaux informatiques

L’ère de l’informatique moderne à débuté suite à la période d’expansion d’internet avec

l’émergence des applications distribuées. Dans cette partie nous analysons les aspects les

plus importants des solutions modernes d’informatique en réseau en commençant par une

brève chronologie de l’évolution des architectures pendant ces 20 dernières années. Les

premières applications ne fournissaient que des services limités comme l’accès à différents

types de données. Le développement d’Internet, en apportant plus de fonctionnalités

avancées et des applications complètes, a permis l’émergence de systèmes plus complexes.

Le développement ultérieur d’Internet et des terminaux a permis d’utiliser ces derniers

pour faire du traitement et ainsi contribuer à la création d’applications mixtes qui traitent

une partie des données sur le serveur et une autre partie sur le client.

I.2.1 Une nouvelle approche dans le traitement des applications mul-

timédia

Les applications complexes comme certains jeux nécessitent une importante puissance de

calcul qui n’est pas toujours disponible avec des terminaux légers comme les téléphones

mobiles et les PDAs. En utilisant l’interconnexion de ces dispositifs, la tendance de ces

dernières années est d’avoir des applications client-serveur légères dans lesquelles le serveur

effectue les calculs complexes et le client ne gère alors que l’interaction et la visualisation.

Ainsi le paradigme évolue vers des clients légers et des serveurs puissants. Le client léger

est un dispositif mobile avec une connexion à Internet théoriquement omniprésente. Le

fait d’avoir un système de serveurs centralisés permet aussi d’accrotre l’efficacité de la

solution en terme de puissance. Avoir un serveur en charge la majorité du temps est

beaucoup plus efficace, du point de vue énergétique, que d’avoir une multitude de PCs

qui sont le plus souvent en attente.

L’industrie du divertissement, en particulier celle du jeu, est l’une des plus impor-

tantes à soutenir le développement des PCs. Il y a toujours une course poursuite entre

les producteurs de jeux et les constructeurs d’ordinateurs. Les premiers essayent de pro-

duire de meilleures représentations visuelles tandis que les seconds s’attachent à fournir

de meilleures performances matérielles qui puissent satisfaire les besoins de ces jeux. Pour

tester un nouveau jeu, il est souvent nécessaire de mettre à jour son matériel avec un im-

pact important sur le budget des utilisateurs. Malgré ce cot, ce matériel ne sera finalement

xiv

ANALYSE DES ARCHITECTURES DISTRIBUÉES POUR LA 3D ET LES JEUX

utilisé que de façon sporadique et donc cet investissement sera peu efficace. Une des solu-

tions réside dans l’exécution du jeu par un système centralisé où les clients se connectent

au serveur pour jouer [43]. OnLive1 en est un exemple : ce type de service permet de jouer

à distance à des jeux récents. L’utilisateur n’a besoin que d’un PC d’entrée de gamme

avec un navigateur internet et d’une connexion Internet avec une bande passante appro-

priée. Le principe du service est le suivant: le rendu du jeu s’effectue sur une machine

puissante et un flux audio-vidéo est envoyé au client. De l’autre cté, le client envoie les

commandes du jeu au serveur. Ainsi, le client n’effectue que du décodage audio et vidéo.

Certains boitiers vendus par les FAI peuvent aussi fournir ces services. L’inconvénient de

ce système est qu’il ne peut pas fonctionner correctement dans un environnement sans

fil. Ceci est du à une forte sensibilité à la latence et à la gigue. Bien que de nombreux

appareils mobiles puissent décoder et afficher la vidéo en temps réel, la connexion sans

fil n’est pas assez stable pour assurer une qualité constante. Aussi, d’autres architectures

doivent tre utilisées pour les terminaux mobiles; ceci constitue l’objet de ce travail de

recherche.

I.3 Analyse des architectures distribuées pour la 3D et

les jeux

La figure I.1 présente les différentes architectures analysées dans l’état de l’art. Les

méthodes sont ordonnées de la gauche vers la droite en fonction de leur dépendance à un

serveur. On distingue trois catégories: (1) la logique du jeu et les données sur le client,

(2) la logique du jeu sur le client et les données sur le serveur, et (3) la logique du jeu et

les données sur le serveur.

A l’extrme gauche, se trouvent les techniques pour lesquelles toute l’application s’exécute

sur le client alors qu’à l’extrme droite se trouvent les techniques avec une exécution

intégralement déportée sur le serveur et un affichage sur le client.

Les techniques sont séparées en deux groupes principaux: les techniques pour lesquelles

la logique de l’application s’exécute sur le client et celles pour lesquelles la logique s’exécute

sur le serveur. Le premier groupe est séparé en deux sous-parties: les techniques où l’on

stocke les données sur le client et celles où les données sont sur le serveur.

Game!Logic on!Client Data!on!Server Game!Logic and!Data!on!Server

Client
Server
video

Server!– graphics!
commands

Server
images

Server
3D!primitives

Server
2D!vectors

Server
3D!vectors

Client
3D!primitives

Client
3D!primitives!LOD

Client
3D!and!2D!bilboard

Server
3D!and!Image!mix

Server
3D!partially

Client
3D!primitives

Client
3D!primitives!LOD

Figure I.1: Techniques pour l’affichage 3D

L’analyse de la figure I.1 amène plusieurs conclusions. D’après l’état de l’art effectué

par Capin et al. dans [20], de nombreuses solutions existent pour optimiser le rendu sur

1www.onlive.com

xv

RESUMÉ LONG

les terminaux mobiles, cependant elles sont toujours limitées par la puissance de calcul de

ces dispositifs. Par exemple, le développement d’un très beau jeu d’échecs nécessiterait

de diminuer les capacités du jeu afin de permettre le traitement graphique. Capin et

al. en concluent que le rendu à distance peut tre une solution viable, et une solution

dans laquelle le traitement s’équilibre entre les approches locales et déportées constitue

une piste de recherche intéressante. Ainsi, cette thèse poursuit dans cette direction et se

concentre sur les architectures où la logique du jeu s’exécute sur le serveur et le rendu

s’effectue sur le client.

Les architectures peuvent tre séparées en six catégories principales:

1. Commandes graphiques

2. Pixels 2D

3. Primitives 2D

4. Vecteurs 3D

5. Objets 3D simples

6. Objets 3D multiples

Toutes ces architectures ont été analysées et il a été conclu que:

• Les techniques qui utilisent des transferts d’images ou de commandes graphiques ne

sont pas adaptées aux réseaux mobiles à cause de leur besoins en bande passante,

• Les techniques qui transfèrent des primitives graphiques 2D ou 3D sont meilleures,

mais elles manquent d’un contrle approprié sur les données dans la mesure où il n’y

a pas de graphe de scène pour organiser les données.

• Les techniques qui convertissent les données en lignes (2D ou 3D) ne sont pas vi-

suellement satisfaisantes.

Ainsi, aucune des architectures ne satisfait simultanément l’ensemble des besoins et donc

une architecture alternative, qui peut tre appliquée aux jeux sur mobiles, est nécessaire.

Il a été observé que l’organisation du graphe de scène a une importance majeure pour

les programmes de type jeux. Par conséquent, la partie suivante décrit l’état de l’art des

différents formats de graphe de scène.

I.4 Analyse de formats de graphe de scène

Les formalismes de graphe de scène suivants ont été analysés: VRML, X3D, SMIL, SVG,

COLLADA, MPEG-4 BIFS, XMT et LASeR.

Il a été observé que chacun d’entres eux a été mis au point pour des applications

différentes. Le choix d’un standard dépend de sa capacité à supporter ces trois contraintes:

• 3D: tre capable de représenter des objets en 3D et de les animer

xvi

CADRE FORMEL POUR LES SYSTÈMES 3D DISTRIBUÉS ET LE DESIGN

D’ARCHITECTURES DE LECTEURS MPEG-4

• Compression: réduire la taille des données transmises

• Streaming: avoir la possibilité de commencer à utiliser le contenu avant qu’il ne soit

complètement téléchargé

Le tableau I.2 résume les caractéristiques de tous les standards présentés précédemment.

Notons que SMIL et SVG ne supportent pas la 3D, ni le streaming, ni la compression.

VRML et X3D supportent la 3D mais pas le streaming ni la compression. Bien que

COLLADA soit très bon en tant que format interchangeable, il lui manque le support du

streaming et de la compression. Comme on peut l’observer dans le tableau I.2, il n’y a

que le standard MPEG-4 qui satisfasse toutes les contraintes en étant capable de gérer

la 3D, le streaming, la compression et la possibilité de mettre la scène à jour pendant

l’exécution.

Table I.2: Comparaison des standards pour la description des scènes multimédia

Caractéristiques MPEG4
Supportées: VRML X3D SMIL SVG COLLADA BIFS XMT LASeR

Primitives:
Texte X X X X X X X
2D X X X X X
3D X X X X X
Audio X X X X X X
Vidéo X X X X X X
Animation X X X X X X X X

Streaming:
2D X X X
3D X X
Audio X X X X X X
Vidéo X X X X X X
Animation X X X
Synchronisation X X X X X X

Special:
Compression X X
Interactivité X X X X X
Evènement
(client)

X X X

I.5 Cadre formel pour les systèmes 3D distribués et le

design d’architectures de lecteurs MPEG-4

Afin d’analyser les architectures présentées dans l’état de l’art, nous définissons tout

d’abord une représentation théorique. Pour ce faire, les systèmes sont divisés en plusieurs

xvii

RESUMÉ LONG

blocs de traitement connectés les uns aux autres et qui transforment les données en entrée.

Ces blocs doivent tre choisis avec attention afin de pouvoir modéliser tous les systèmes qui

ont été présentés. Le modèle va aider à mieux comprendre les opérations et les scénarios

d’utilisation, de mme que leurs limitations.

I.5.1 Définition du cadre formel

La chane de traitement d’un système distribué peut tre représentée comme un flux

d’informations faisant appel à des transformations. La base de ce travail a été réalisée

précédemment par Preda et al. dans [56], où ils ont analysé des systèmes de visualisation

de modèles graphiques 3D, pouvant provenir d’un serveur à travers un canal réseau. Une

limitation de ce travail est que la modélisation ne prend en compte qu’un seul objet 3D,

alors que des applications distribuées complexes, ex. les jeux, intègrent de nombreux

objets 3D et d’autres médias de différentes complexité.

Dans le modèle mathématique proposé dans [56], chaque objet est représenté par un

ensemble de caractéristiques {Fi} qui sont les entrées de chaque fonction de base. Pour

adapter des applications plus complexes, au modèle présenté dans ce chapitre, l’entrée de

la fonction de traitement est le graphe de scène Sg, qui est défini comme un ensemble de

nœuds {N t

i
} au temps t. Les nœuds peuvent tre des groupes de nœuds Nd qui contiennent

des données de rendu. Le graphe de scène est défini dans l’équation 1.

Sg =
{

N t

i

}

=
{

Ngt
i
, Ndt

i

}

(1)

La sortie du modèle reste la mme, {Pi}
2D = {Ri, Gi, Bi, Ai}, un ensemble de pixels

2D, avec les composantes RGB et la transparence (A), prts à tre affichés; ou {Pi}
3D =

{Ri, Gi, Bi, Ai, Di}, un ensemble de pixels 3D contenant une composante de profondeur

calculée au moment du rendu. Le but est de produire soit un, soit deux ensembles {Pi}
2D

ou {Pi}
3D à partir du graphe de scène SGt de façon optimisée, en prenant en compte les

contraintes inhérentes aux composantes du systèmes.

Les transformations possibles dans le processus sont: le rendu, le codage, la simplifi-

cation, la modélisation et la mise à jour des scènes. Leur définition mathématique est la

suivante:

Rendering : {Pi} = R (Sg) (2)

Coding :
{

SgC
i

}

= C (Sg) (3)

Simplification :
{

SGS

i

}

= S (Sg) (4)

Modeling : {Sgi} = M (Sg) (5)

Scene− updates :Sgt = U
(

Sgt−1, {Ii}
)

(6)

Où {Ii} représente les différentes entrées du jeux.

En utilisant le cadre formel précédemment décrit, la section suivante analyse les tech-

niques qui représentent l’état de l’art d’un terrain ordinaire.

xviii

CADRE FORMEL POUR LES SYSTÈMES 3D DISTRIBUÉS ET LE DESIGN

D’ARCHITECTURES DE LECTEURS MPEG-4

I.5.2 Analyse du cadre formel

La section I.5.1 propose un cadre formel pour décrire des architectures de systèmes dis-

tribués pour des rendus graphiques 2D et 3D. En utilisant ces transformations, quelques

architectures peuvent tre décrites et définies. On peut en conclure que les transformations

sont suffisantes pour décrire des architectures distribuées. Cependant, ce formalisme n’est

pas limité à cette catégorie d’architecture, mais au contraire, l’intention est de pouvoir

l’utiliser avec n’importe quelle architecture distribuée qui sera développée dans le futur.

Cette thèse propose une architecture pour jouer à des jeux 3D complexes sur téléphone

mobile. Etant donné que les téléphones mobiles ont une capacité de traitement assez

réduite, les architectures qui se basent sur une représentation à base de pixels ne sont pas

appropriées et la bande passante nécessaire pour satisfaire l’expérience est importante.

Néanmoins, les dispositifs mobiles ont la capacité de traiter des rendus graphiques 2D

et 3D et il est donc nécessaire d’utiliser d’autres architectures. les architectures à base

de commandes graphiques ont besoin du mme équipement graphique que les PC, ceux-ci

n’étant pas disponibles pour téléphones mobiles, ils ne peuvent pas tre utilisés. Les ar-

chitectures basées sur des primitives 2D nécessitent moins de bande passante en envoyant

uniquement des vecteurs 2D au client. Toutefois, il est nécessaire de les envoyer pour

chaque image et leur apparence n’est pas satisfaisante dans un jeu. Les architectures

basées sur des vecteurs 3D ont une bande passante plus efficace en envoyant des vecteurs

3D une seule fois pour chaque objet, mais leur apparence physique reste similaire à celle

des primitives 2D. L’architecture où chaque objet est transféré ne supporte pas des appli-

cations avec des graphes de scènes complexes, mais elle peut tre utilisée comme une partie

de l’architecture. Ainsi, les architectures multi objets semblent les plus appropriées, étant

capables de rendre des images visuellement satisfaisantes et de supporter des graphes de

scène complexes. Néanmoins, une de leurs limitations est que l’utilisateur peut seulement

contrler une proportion de la caméra ce qui ne permet pas son utilisation pour les jeux

où les actions des utilisateurs sont plus sophistiquées.

I.5.3 Conception d’une nouvelle architecture de systèmes distribués

L’architecture modelée correspond à une architecture distribuée qui est capable de sup-

porter des applications de jeux pour des dispositifs mobiles. En utilisant le cadre formel,

l’équation de l’application peut tre définie comme suit:

{Pi} = R ◦ C ◦ S ◦ U
(

Sgt−1, {Ii}
)

(7)

Les transformations sont réalisées dans l’ordre suivant:

1. Le graphe de scène est mis à jour par U

2. La structure du graphe de scène est simplifié (i.e. les noeuds sont éliminés tem-

porellement pour la transmission) en S, en fonction de différentes conditions et

paramètres.

3. Le graphe de scène est compressé et transmis au client par C

xix

RESUMÉ LONG

4. Le graphe de scène est rendu sur le client par R

Etant donné que dans tous jeux le contenu est organisé dans une espèce de graphe

de scène, il est logique de conclure que le fait d’utiliser le mme pour tous les jeux aug-

mente l’efficacité de leur développent. Le standard MPEG-4 a été proposé comme la car-

actéristique la plus complète pour une architecture de jeux, et sera donc utilisée comme

le format de graphe de scène pour l’architecture distribuée proposée.

La deuxième standardisation peut tre faite sur le genre de données envoyées par client

au serveur. Par exemple, dans une course de voitures, le fait d’appuyer sur la touche

”avance” incrémente la variable d’accélération, mais dans un autre jeu la mme touche peut

uniquement changer la position de la vue pour une valeur constante et par conséquent il

est nécessaire de standardiser les données. La solution la plus facile et la plus évidente

est de ne pas envoyer les actions que les touches produisent, mais le code de la touche

en lui-mme. Ainsi, le serveur pourra l’interpréter et produire l’effet désiré. Ceci soulage

l’application client de n’importe quel calcul pour un jeu spécifique et permet donc son

utilisation dans plusieurs jeux.

Le fait de standardiser les entrées et les graphes de scène permet l’indépendance du

client pour un jeu spécifique. Dans la section I.4 il a été conclu que le standard MPEG-

4 avait les caractéristiques nécessaires et donc le lecteur proposé utilisera ce standard.

Toutefois, toutes les fonctionnalités du standard ne pas doivent tre prises en charge pour

implémenter l’architecture du jeu.

Le schéma de l’architecture distribuée proposée est présenté dans la figure I.2.

ClientServer

SG SG’
Display

Key

Input

SG’ {Pi}

{Ii}

SG(t-1)

SG’’

Figure I.2: Architecture proposée

Pour le rendu du graphe de scène, les nœuds qui nécessitent d’tre supportés, sont

présentés dans le tableau I.3. La description détaillée des nœuds est présente dans le

standard MPEG-4. La réduction du nombre de nœuds aide à l’optimisation du moteur

de rendu, ainsi qu’à la réduction de la taille du code, et par conséquent la réduction

du fichier de l’application. De plus, cela permet aussi de développer les applications

plus rapidement, la courbe d’apprentissage du standard MPEG-4 étant raccourcie. Un

nombre plus réduit de nœuds permet une optimisation du cté serveur, et accélère donc la

génération de graphes de scène.

Chaque composant de l’architecture distribuée peut tre associé avec la technologie

correspondante. Le graphe de scène est basé sur le format de graphe de scène MPEG-4,

i.e. BIFS. La scène met à jour le composant U qui dépend du jeu en lui-mme et l’entrée

est reçue à partir du client en utilisant une requte AJAX (i.e. HTTP). La simplification

du composant S permet d’éliminer les nœuds qui ne sont pas visibles dans la position

actuelle de la caméra. Le composant de codage traite les mises à jour du graphe de scène

xx

CADRE FORMEL POUR LES SYSTÈMES 3D DISTRIBUÉS ET LE DESIGN

D’ARCHITECTURES DE LECTEURS MPEG-4

Table I.3: Sous-ensemble de nœuds BIFS

Node Name Node Name
Appearance Text
Background2D TextureCoordinate
Coordinate Transform
FontStyle Transform2D
Group Valuator
ImageTexture Viewpoint
IndexedFaceSet InputSensor
Inline BitWrapper
Layer2D SBBone
Layer3D SBSegment
Material SBSite
Material2D SBSkinnedModel
NavigationInfo SBVCAnimation
Normal MorphShape
OrderedGroup SBVCAnimationV2
Shape Rectangle
Script Switch

et génère les commandes d’actualisation BIFS qui sont transmises au client à travers le

réseau en utilisant RTSP, où ces commandes sont alors décodées et appliquées à la scène

BIFS. Le composant de rendu R décompose la scène BIFS et l’affiche.

I.5.4 Conception d’une Architecture de Lecteur MPEG-4 pour Plate-

formes Puissantes

Dans cette section nous présentons un lecteur MPEG-3 de contenu 3D qui a été conçu

pour optimiser le modèle SDM (System Decoder Model) MPEG-4 et qui utilise la capacité

de traitement multi-core pour obtenir un meilleur rendu et une expérience utilisateur plus

fluide et plus rapide. De plus, il est possible de faire évoluer ses composantes pour inclure

de nouveaux formats graphiques.

Etant donné que le lecteur est basé sur le standard MPEG-4, il est logique d’en dériver

les conditions nécessaires à son bon fonctionnement, mme s’il ne doit pas contenir toutes

ses caractéristiques.

Les conditions nécessaires qui en dérivent sont les suivantes:

1. Réception des données à partir de plusieurs sources : fichier ou réseaux

2. Utilisation optimale de la capacité du client terminal

3. Synchronisation de tous les flux de données

4. Adaptation de multiples formalismes de graphe de scène

5. Intégration facile de différents codeurs

xxi

RESUMÉ LONG

6. Intégration facile de différentes applications

La première condition est satisfaite par le SDM original en implémentant l’interface

DMIF.

L’implémentation doit tre faite dans l’architecture du lecteur puisque la deuxième

condition n’est pas spécifiée par le SDM.

La troisième condition n’est pas complètement satisfaite par le SDM original. Alors

que la synchronisation entre les flux de vidéo et audio n’est pas très complexe, celle des

rendus de scènes 3D connat plus de difficultés dues à la quantité de ressources nécessaires.

Celles-ci incluent les données de mesh, de textures et d’animation. Toutes ses ressources

doivent tre chargées dans la carte graphique, et pour le faire de façon optimale il est

nécessaire d’utiliser un seul fil d’exécution pour le processus de chargement. De plus, le

mesh et ses données d’animation sont très liées dans le sens où le mesh ne peut pas tre

rendu sans ces données.

La quatrième condition n’est pas satisfaite par le SDM car il utilise seulement un

formalisme de scène graphique (i.e. BIFS).

En ce qui concerne la cinquième condition, le SDM spécifie chaque décodeur comme

un composant indépendant; cependant, il ne spécifie pas l’interface d’intégration. Dès

lors, c’est à l’implémentation de l’architecture du lecteur de le concevoir.

La sixième condition n’est pas satisfaite par la conception SDM originale.

Le tableau I.4 résume les conditions antérieurement décrites et comment elles sont

résolues.

Table I.4: Conditions nécessaires d’un lecteur MPEG-4 pour PC

Conditions nécessaires Solution

Réception de données à partir de
plusieurs sources, fichier ou réseaux

Définition de l’interface standard pour
différent streams d’entrée

Synchronisation de tous les streams
de données

Implémentation du composant ”Timer” com-
mun

Adaptation de multiples formal-
ismes de graphe de scène

Définition de l’intermédiaire de graphe de
scène

Intégration facile des différents
décodeurs

Définition d’une interface standard pour
l’intégration des décodeurs

Intégration facile dans différentes
applications

Prédéfinition des fonctions et des messages
pour communiquer avec l’ architecture du
lecteur

Utilisation optimale de la capacité
du terminal client

Séparer les différentes tches en plusieurs fils
d’exécution

I.5.5 MPEG Extensible Middleware (MXM)

Accéder à du contenu MPEG-4 nécessite une profonde connaissance de ce standard. Bien

qu’il existe des systèmes pour accéder à du contenu MPEG-4 qui incluent des logiciels de

référence et une implémentation par un tiers comme GPAC, il n’est pas aisé de développer

un logiciel MPEG-4 performant. En conséquent, le fait d’avoir une API simplifiée peut tre

xxii

EXPÉRIMENTATIONS ET VALIDATION

d’une grande importance pour la diffusion de l’utilisation du standard. Le rle du MPEG

Extensible Middleware (MXM) est de s’adapter exactement au problème. Nous avons

contribué au processus de standardisation du MXM dans les aspects graphiques 3D.

L’API Graphics3D donne accès à du contenu 3D des données MPEG-4. elle décompose

les scènes et convertit chaque mesh dans une représentation intermédiaire qui est suffisam-

ment simple pour une décomposition par une application externe. L’API est divisée en

trois parties, chacune spécialisée dans différentes parties du contenu:

• Apparence - API pour l’apparence du mesh

• Géométrie - API pour le contenu 3D mesh

• Animation - API pour l’animation du mesh

I.5.6 Conception d’une Architecture de lecteur MPEG-4 pour Dis-

positifs Mobiles

Plusieurs implémentations graphiques de MPEG-4 sont accessibles dans des produits

comme ceux proposés par iVast ou Envivio ou dans des paquets open-source comme GPAC

[33]; cependant la littérature concernant les graphiques 3D pour MPEG-4 mobile est quasi

inexistante. Pour quantifier les capacités de qualité graphique utilisée dans un jeux, un

lecteur graphique 3D de MPEG-4 a été conçu et implémenté pour une plateforme Nokia

S60 basé sur un Symbian S60 FP1 SDK [30]. L’équipement testé inclut le Nokia N93, le

Nokia N95 et le Nokia N95 8GB (ils ont presque les mmes caractéristiques et les mmes

performances). Pour s’assurer de bonnes performances, le lecteur a été implémenté dans

les langages C et C++. Pour le démultiplexage et le décodeur BIFS, l’implémentation

est totalement faite au niveau logiciel (basé dans le cadre GPAC). L’implémentation du

rendu est supportée par l’équipement (basé sur OpenGL ES [63]).

Pour concevoir d’une façon adéquate le lecteur mobile MPEG-4, il est nécessaire

de réaliser une analyse des équipements mobiles et d’établir une liste de conditions

nécessaires:

• Simplifier l’architecture

• Trouver le codeur approprié pour les dispositifs mobiles

• Réduire le nombre de nœuds BIFS

• Supporter des entrées à partir de multiples flux

I.6 Expérimentations et Validation

I.6.1 Lecteur MPEG-4 pour Dispositifs Mobiles

Cette section présente les composants du cté client d’une architecture de systèmes dis-

tribués présentée dans le chapitre précédent: Le composant de rendu (R) et une partie

du composant codage (C). Comme il a été illustré dans la figure I.2, le composant codage

xxiii

RESUMÉ LONG

est séparé entre le serveur et le client. Dans le client, les données transmises sont tout

d’abord décodées et ensuite rendues. Ainsi, un des objectifs de notre expérimentation est

de trouver les limites supérieures en termes de complexité des caractéristiques 3D (en ce

qui concerne la géométrie, la texture et l’animation) en assurant un décodage rapide. Le

deuxième objectif est d’analyser les performances de rendu pour la plateforme choisie.

Le premier test concernant des fichiers MPEG-4 contenait exclusivement des objets

statiques avec un nombre différent de sommets et de triangles. Le décodage BIFS a été

mesuré, ainsi que le taux (images par seconde) de rendu pour chaque fichier. Le deuxième

test correspond à des objets animés basés sur l’approche de déformation ”skeleton-driven”.

Ce type de contenu, ayant besoin de plus de calculs dus aux opérations réalisées durant

l’animation (par sommet), il entraine un nombre d’images par seconde pour le rendu

inférieur à celui des objets statiques.

En ce qui concerne les capacités de décodage MPEG-4 et les capacités de rendu du

N95, on peut observer que pour obtenir un temps de décodage acceptable (moins de 2

secondes), un objet 3D représenté en MPEG-4 doit avoir moins de 58 000 primitives de

bas niveau (qui correspondent à des objets avec moins de 15 0000 sommets et 12 0000

triangles) pour des objets statiques et 1 500 triangles pour des objets animés. Le N95 est

capable de fournir un rendu d’objets texturisés et de luminosité statique d’environ 20 000

sommets et 20 000 triangles avec un taux acceptable de 25 images par seconde et il est

possible d’avoir des rendus avec ce mme taux pour des objets animés texturisés et éclairés

d’environ 6 000 sommets et 6 000 triangles.

La taille réduite de l’affichage sur les téléphones mobiles implique l’utilisation d’un

nombre limité de pixels pour le rendu. La simplification de la géométrie et de la texture

peut tre utilisée sans affecter la perception visuelle des objets. De cette façon, la taille

du contenu peut tre réduite de 60-80% et le temps de chargement de 70-90% en accord

avec Preda et al. [56]. La taille de la géométrie est réduite d’après la technique d’erreur

quadratique de Garland [35], et la taille de la texture en réduisant la largeur et la longueur.

Le fait de réduire la taille du fichier MPEG-4 à 428kb (24% de la taille originale) réduit

le temps de chargement à 3,8 secondes (57% plus rapide que l’original).

I.6.2 Validation de l’Architecture à partir d’un Jeux

Basé sur l’architecture proposée dans la section précédente, un jeu multi-joueurs de course

de voitures a été implémenté. Les conditions du jeu changent fréquemment et il est donc

approprié pour tester notre architecture. Le jeu a été originellement développé en J2ME

comme un jeu multi-joueurs traditionnel pour téléphone mobile. L’utilisateur contrle

uniquement la vitesse, cependant il y a deux paramètres supplémentaires qui affectent

la vitesse et les capacités de freinage: l’endommagement des pneus et/ou des freins.

l’endommagement des freins augmente chaque fois que la voiture réduit sa vitesse et celui

des pneus augmente chaque fois que la voiture passe un virage avec une vitesse supérieure

à celle recommandée.

Le jeu utilise le serveur GASP [3] pour communiquer entre les joueurs. Originellement,

le moteur logique et celui de rendu étaient implémentés dans le logiciel J2ME; le serveur

GASP était utilisé seulement pour transmettre la position entre les joueurs et un moteur

xxiv

EXPÉRIMENTATIONS ET VALIDATION

de rendu 2D très simple était utilisé pour créer les pistes et les voitures [1]. L’architecture

du jeu est illustrée dans la figure I.3a.

GASP Server

Client 1 Client 2 Client 3

(a) Architecture Originale

GASP Server

Game Server 1 Game Server 2

Client 1 Client 2 Client 3

(b) Architecture Adaptée

Figure I.3: l’architecture originale du jeu de courses (a) et l’architecture adaptée (b)

L’adaptation du jeu a été faite en plusieurs étapes :

1. Identification des structures utilisées pour garder les données pertinentes (position

des voitures, et rotation de la camera pendant la course).

2. Identification de la boucle principale et des appels de rendu.

3. Rajout des composantes de communication dans la boucle principale, du jeu au

lecteur et vice-versa.

4. Définition des messages de commande BIFS, codification, encapsulation et anal-

yse du message (pour envoyer la position des voitures aux joueurs et recevoir les

commandes des joueurs respectivement).

5. Conversion de tous les composants et du graphe de scène du jeu en fichiers MPEG-4.

I.6.2.1 Experiences et Résultats

Plusieurs expérimentations ont été mises en place pour mesurer objectivement l’expérience

des utilisateurs au moment de jouer, basées sur les temps de réponse et d’interaction

(phases 1 et 3) et sur le temps d’attente pour la transmission et le chargement des com-

posants 3D (phase 2).

Le tableau I.5 montre la latence quand les composants sont transmis et la figure I.4,

la latence quand seulement l’interaction de l’utilisateur et les commandes d’actualisation

sont transmises. Les mesures ont été réalisées pour deux configuration réseaux différentes

: Wi-Fi (IEEE 802.11, ISO/CEI 8802-11) et UMTS.

En ce qui concerne la connexion Wi-Fi, le temps moyen d’exécution est de 80 ms avec

un maximum de 170 ms. Dans le cas d’une connexion UMTS le temps moyen est de 350

ms avec un maximum de 405 ms. Ces résultats correspondent à la boucle entière, c’est-

à-dire le temps de la transmission des interactions utilisateurs, celui du traitement par le

xxv

RESUMÉ LONG

Table I.5: Latence (transmission et décodage) pour des composants 3D utilisé dans le jeu
de courses

Composant Voiture v1 Voiture v2 Circuit v1 Circuit v2
Nombre de som-
mets

253 552 1286 7243

Taille du fichier
MPEG-4 (KB)

82 422 208 1600

Temps de trans-
mission Wi-Fi
(ms)

27 126 68 542

Temps de trans-
mission UMTS
(ms)

422 2178 1067 8246

Temps de
décodage (ms)

112 219 328 2538

Temps d’attente
total Wi-Fi (ms)

139 345 396 3080

Temps d’attente
total UMTS
(ms)

534 2397 1395 10784

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50

R
e

s
p

o
n

c
e

 t
im

e
 (

m
s
e

c
)

Ellapsed time (sec)

Latency from WiFi

Latency from UMTS

Figure I.4: Temps de réponse (en ms) pour UMTS et Wi-Fi enregistré pendant la phase
3 ”Jouer le jeu”. L’axe horizontal la durée du jeu

xxvi

EXPÉRIMENTATIONS ET VALIDATION

serveur, la transmission des commandes BIFS, le décodage et le rendu de l’actualisation

des scènes locales.

I.6.3 Système d’Animation en Ligne

Afin de valider l’architecture du lecteur pour une plateforme puissante, un système en

ligne pour le langage des signes a été conçu. Ce système est capable de synthétiser en

temps réel des animations du visage et des mains pour le langage des signes, basé sur

un texte ou un discours saisi par l’utilisateur. La nouveauté de cette approche consiste

à utiliser une architecture de système basée dans un serveur dédié capable de réaliser

des opérations couteuses et d’obtenir des résultats de rendu comme les flux d’animation

compressés. Du cté de l’utilisateur, il suffit d’avoir un lecteur de graphiques 3D: il est

tout à fait possible d’implémenter l’application dans des terminaux très légers. Cette

approche a l’avantage de traiter le discours, en évitant des pertes de qualité de la voix

dues à des erreurs de transmission ou de variations de bande passante. L’architecture

proposée est illustrée dans la figure I.5. Du cté du serveur, les deux entrées, voix et texte,

sont converties dans des paramètres d’animation. Ces derniers sont codés comme des flux

d’animations MPEG-4 et diffusés sur le réseau. Cté client, un lecteur MPEG-4 reçoit le

flux de l’animation et fait les mises à jour de façon continue, le graphe de scène définit le

visage et la main de l’avatar.

Server Client
Voice

Capture

Voice

Analysis

Text

Input

Animation

Conversion

Animation

Encoding

Scene

Graph

Animation

Decoding

MP4 Player

Figure I.5: Architecture proposée pour un système en ligne de langage des signes

I.6.4 MPEG Middleware Extensible (MXM)

Dans la section I.5.5 une API pour accéder à du contenu MPEG-4 était proposée en

utilisant seulement quelques fonctions et sans aucune connaissance du standard MPEG-

4. Dans le but de valider l’API, un visionneur de fichier MPEG-4 a été implémenté en

utilisant le moteur de rendu Ogre 3D 2. Le moteur Ogre 3D a son propre format pour

stocker les données et les matériels du mesh 3D mais propose des structures complètes

pour charger des données d’autres formats.

2http://www.ogre3d.org/

xxvii

RESUMÉ LONG

I.7 Conclusion et Perspectives

L’objectif principal de cette thèse est de proposer une architecture client-serveur alter-

native de pour créer des jeux sur mobile où la connectivité des dispositifs mobiles est

utilisée. Les nouveaux jeux en 3D nécessitent beaucoup de puissance de calcul, aussi

bien générale (CPU), que spécialisée (GPU). Les diapositifs mobiles ne sont pas capables

de tout exécuter de façon efficiente, d’où la nécessité d’avoir une application qui fasse

l’équilibre. Ainsi, une solution distribuée a été proposée : la logique du jeu est exécutée

par le serveur et le rendu est exécuté par le client. Pour que cette solution soit efficiente,

trois conditions sont nécessaires:

1. Minimiser le trafic réseau,

2. Exploiter de façon optimale les performances du terminal, et

3. Retenir l’expérience de l’utilisateur comme si le jeu était exécuter localement

Dans un premier lieu, le développement des architectures d’équipements distribuées

ont été analysés, accompagnées de la présentation des avancements relatifs aux calculs à

distance en mettant un accent dans les applications internet. A notre connaissance aucune

des architectures ne satisfait toutes les conditions, dès lors nat la nécessité de trouver une

nouvelle solution.

Il a été observé qu’une solution possible était de standardiser un composant qui soit

commun à tous les jeux, à savoir le graphe de scène. En utilisant le format de graphe de

scène standard il est possible de standardiser l’application client, ainsi que le protocole de

communication. Par conséquent, nous avons analysé et comparer différents standards. Les

analyses se sont centrées sur les capacités à supporter les caractéristiques des graphiques

3D, du streaming, de la compression et des interactions utilisateurs. Il s’est avéré que le

format MPEG-4 a été le seul qui puisse intégrer toutes les caractéristiques nécessaires et

a donc été celui utilisé dans l’architecture.

Pour analyser les architectures présentées dans l’état de l’art, nous avons défini un

cadre qui représente les fonctionnalités de chaque étape du processus. Cette représentation

mathématique nous a permis d’avoir une vue d’ensemble sur l’architecture par rapport

aux restrictions et scenarios d’utilisation. Nous avons observé qu’aucun d’eux n’étaient

appropriés pour les applications visées dans cette thèse. Ainsi, un nouveau cadre a été pro-

posé en présentant toutes ses composantes et des solutions pour chacune. L’architecture

utilise le standard MPEG-4 comme format de graphe de scène du jeu ainsi que comme

protocole de communication entre le serveur et le client. Les données du client au serveur

(i.e. commandes de l’utilisateur) sont transmises en utilisant des requtes AJAX.

La section suivante examine la conception d’une architecture qui correspond à un

lecteur MPEG-4 sur une plateforme puissante. Il s’agit d’une optimisation du SDM

MPEG-4 qui permet de charger des fichiers MPEG-4 ayant différents formalismes de

graphe de scène. Aussi, le traitement par fil d’exécution est utilisé pour décoder les tches

en parallèle, et permet une gestion plus facile des entrées des différents flux en mme temps.

L’architecture a été validée en implémentant un lecteur MPEG-4 capable de supporter

des fichiers qui incluent différents medias comme; des graphiques 3D, de l’animation, de

xxviii

CONCLUSION ET PERSPECTIVES

la vidéo et de l’audio ainsi que des applications distribuées. Une application web utilisant

un serveur pour convertir du texte en audio a aussi été présentée ainsi qu’une qui affiche

des animations pour le langage des signes.

Toutefois, nous avons remarqué que l’implémentation de cette architecture est com-

plexe. Lorsqu’il s’agit d’applications qui utilisent seulement des caractéristiques de stock-

age et qui par conséquent n’ont pas besoin de toutes les caractéristiques du standard il est

nécessaire de simplifier le mécanisme. C’est pour cela que nous avons conçu un MPEG

Middleware Extensible qui est une simple API pour accéder à des fichiers MPEG-4. Nous

proposons une API de moteur de graphiques 3D comme élément du moteur media. Nous

avons de mme présenté un exemple de son implémentation en utilisant le moteur 3D Ogre.

Ceci a permis de prouver que l’API était suffisamment simple pour tre utilisée dans des

architectures tierces.

Etant donné que les dispositifs mobiles ont moins de capacités de calcul que les or-

dinateurs, l’architecture du lecteur nécessite d’tre modifiée pour refléter ces restrictions.

Aussi, il est nécessaire de restreindre le format de graphe de scène (i.e. BIFS); le nombre

de nœuds utilisés (au minimum) et les codecs supportés. Ces changements permettent

d’avoir un lecteur optimal qui peut tre exécuté sur un dispositif mobile.

Nous avons réalisé deux types d’expériences: décodage et rendu pour du contenu

statique et animé; les résultats ont été satisfaisants. Cependant, les jeux ont besoin, en

plus du rendu, d’un traitement. Pour pouvoir supporter ces besoins, le nombre maximum

de sommets rendus doit tre réduit, et par conséquent la qualité de l’image rendue est aussi

dégradée. L’architecture proposée peut résoudre ce problème en exécutant la logique du

jeu dans le serveur et le rendu dans le client.

Etant donné que le standard MPEG-4 inclut, non seulement une représentation de la

scène, mais aussi une mise à jour des scènes, il a été utilisé pour représenter le graphe de

scène du jeu, ainsi que pour définir le protocole de communication entre les deux com-

posantes. L’utilisation d’un protocole standard se traduit par la possibilité de développer

les composants indépendamment. D’une part, un serveur peut tre développé sans la

connaissance du client, c’est-à-dire que plusieurs clients, pour différents dispositifs peu-

vent utiliser le mme serveur, i.e. jeux. D’autre part, le client peut tre développé en ne

possédant aucune connaissance du jeu et dans un second temps tre optimisé pour un

dispositif mobile spécifique tout en restant capable de jouer au mme jeu.

Pour mettre à l’épreuve cette architecture, nous avons adapté un jeu existant. Il s’agit

d’une simple course de voitures dans laquelle on ne contrle que la vitesse de la voiture.

Nous avons réalisé quelques expériences en mesurant la bande passante et le temps de

réponse (temps écoulé entre l’appui sur une touche et la réception de la mise à jour du

serveur) dans des réseaux UMTS et Wifi. Les résultats on été comparés avec les travaux

de Claypool M. [26] en ce qui concerne les effets de latence sur des utilisateurs de jeux

en ligne. En se basant sur ces résultats et dans la classification des jeux par rapport à la

complexité et la latence, nous en avons déduit les conclusions suivantes:

• L’architecture est appropriée pour des jeux omniprésents dans les deux configura-

tions réseau

• L’architecture est appropriée pour des jeux qui utilisent un avatar en troisième

xxix

RESUMÉ LONG

personne avec une connexion Wifi et se trouve dans le seuil de tolérance avec une

connexion UMTS

• L’architecture n’est pas appropriée pour des jeux qui utilisent un avatar en première

personne avec une connexion UMTS et se trouve dans la limite inférieure de tolérance

de utilisateur avec une connexion Wifi.

xxx

CONCLUSION ET PERSPECTIVES

I.7.1 Travail futur

De futurs travaux à partir de ce travail de recherche peuvent inclure une plus large per-

spective en ce qui concerne les systèmes distribués pour graphiques 3D. D’un cté on

trouve les architectures qui réalisent tout le traitement dans le client et d’un autre celles

qui le font dans le serveur et transfèrent une vidéo vers le client. Comme présenté dans le

premier chapitre, il existe actuellement des techniques entre ses deux cas extrmes, et en

fonction des besoins des applications, une architecture appropriée peut tre sélectionnée.

L’état de l’art ne couvre pas toutes les combinaisons possibles et cette formalisation peut

tre développée.

La performance du terminal a permis de réaliser le rendu mais pas d’autres opérations.

Des travaux futurs doivent se concentrer dans les architectures de streaming de vidéo, où,

par exemple, l’utilisation du processus de rendu améliore la performance, du temps de

traitement et de la qualité. Ceci peut tre fait en utilisant l’information pour que l’objet

principal choisisse les paramètres de codage afin d’avoir une meilleure qualité et que le

fond soit codé avec une qualité plus faible. Aussi, une optimisation du processus de codage

de la vidéo peut tre réalisée en utilisant deux sorties du processus de sortie pour optimiser

la détection de macro blocks pour le codage de la vidéo.

Le fait d’avoir des cas d’usage pour les différentes architectures peut tre utilisé pour

concevoir une architecture qui puisse s’adapter dynamiquement d’un système distribué

à un autre indépendanment de l’environnement. Il existe quelques travaux qui pointent

vers cette direction mais restent limités par le nombre de possibilités offertes. Un meilleur

système devrait tre capable de s’adapter à une plus large gamme d’architectures dis-

tribuées.

xxxi

Chapter 1

State of The Art in Remote Computing
for 3D Graphics and Games

Abstract

The first computers were very expensive and large in size. Therefore the only
economic way to use them was remote computing: connect to the central computer
by a light terminal. With the development of Integrated Circuits the components
started to be cheaper and smaller, therefore the terminals started to support com-
puting. Their processing power is currently enough for many applications, however
when more processing power is needed, there is still the possibility of remote com-
puting through the Internet or dedicated networks. With the arrival of mobile
terminals a new iteration of remote computing is happening. By nature the mobile
terminals are connected and since their processing power may not be enough for
many applications, they may be helped by a remote, more powerful computer.

Therefore, the main goal of this chapter is to introduce the remote computing
paradigm for multimedia applications. It will focus on a part of the multimedia
application, i.e. 3D graphics applications, and present the state of the art in this
field.

The first part of this chapter introduces the elements of the modern remote
computing with focus on the general architectures that are used. Next it reviews
the current state of the art for providing 3D graphics content in a client-server
configuration. Different architectures are compared, starting from systems imple-
menting all the operation for 3D graphics rendering on the client to distributed
systems implementing the rendering on the server and streaming the video to the
client. The analysis includes architecture intended for different types of terminals,
from powerful computers like PCs to light terminals like mobile phones and PDAs.

The second part of this chapter presents some of the most used standardized
multimedia scene formats, including VRML, X3D, SMIL, SVG, COLLADA and
MPEG-4. The standards are analyzed focusing on their capabilities in terms of
supported features, compression and streaming support. Then it is shown why
MPEG-4 was selected as the most appropriate format and further describes the
MPEG-4 standard with respect to its streaming and synchronization capabilities.
Furthermore, the BIFS format is described exposing its compression and scene up-
date capabilities.

I.1. PROGRESS OF MODERN REMOTE COMPUTING

I.1 Progress of Modern Remote Computing

What is generally considered as modern remote computing is the period after the expan-
sion of the Internet, when different distributed applications became possible. This section
analyzes the most important aspect of modern remote computing starting with a short
overview of how the application architectures progressed in the last 20 years. The first
applications were only providing limited services, like access to different types of data.
The development of the Internet enabled to have systems that became more complex,
providing more advanced features and complete applications. The further development of
the Internet and also of the terminals enabled to use them for processing, hence leading
to creation of mixed applications which process part of the data on the server and part
on the client. Figure 1.1 presents the development of modern remote computing.

Central computer Client/Server

Web Applications
Evolved Internet

Applications

1992

1998

2004

L
o

c
a

l
G

lo
b

a
l

R
a
n
g
e

Dynamism
Local Local

Figure 1.1: Modern Remote Computing Development

In Figure 1.1 four main stages can be identified:

• Central Computer Systems

• Client-Server Architectures

• Web Applications

• Rich Internet Applications

The next sections present in detail each of the stages.

I.1.1 Central Computer Systems

In the traditional application software, all the components are stored on one central
computer, therefore accessing and processing data is performed directly. Many problems
like networking and concurrent access can be avoided, thus making it easier to develop
applications. However, nowadays most of the systems require exactly these features,
therefore the development of traditional applications is diminishing.

3

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

I.1.2 Client-Server Architectures

Client-Server architectures are part of distributed systems where the work is separated
between two parties, one that is providing services and another that is consuming them.
The provider, usually named a Server, is running several server programs which provide
the services. On the other side are the Clients which are using the services provided by
the server, as illustrated in Figure 1.2.

Server

Client 1

Client2

Figure 1.2: Client-Server Architecture

Figure 1.2 represents the most basic client-server architectures, named two-tier, one
tier being the server, and the other being the client. Usually the communication between
the two tiers is through a computer network, either local or through the Internet, following
a specific protocol. Many applications that exist today are using the client-server model,
including the main Internet protocols like HTTP, POP, SMTP and Telnet. In most of the
applications the server is usually a data provider, processing only data request commands,
while the processing of the data itself is left to the client. For example, in the case of
HTTP servers, when the client requests a web page, the server reads the page from its
storage and sends it to the client. Another example is SQL server, where the client sends
the SQL command to the server where it is executed, and the result is returned.

I.1.3 Web Applications

The amount of data increases constantly, therefore the amount of processing power needed
increases. Sometimes the computational power of the client is not enough to process the
data, or a strong security is needed for the application, thus it is more appropriate to
process the data on a server, and just return the result to the client. This means that the
server side is separated in two parts: application and data, as illustrated on Figure 1.3.
The applications are named three-tier. The processing is done in four steps: the client
sends a request to the application server, which in turn requests and obtains data from
the data storage server, processes it and returns the result to the client.

Web applications are a subset of the three-tier applications, where the requests are
sent from and received at a standard web browser. The main advantage is exactly the
web browser, since the client does not need to execute complex calculations and have big
processing power. This means that the architecture can be used effectively on low power
devices, like smart-phones and PDAs.

Many applications exist that are based on the web application architecture, by using
the HTTP protocol for communication and the HTML standard to present the data.

4

I.1. PROGRESS OF MODERN REMOTE COMPUTING

Client 1

Client 2

Application

Server

Data

Storage

Figure 1.3: Web Application Architecture

Contrary to the standard HTML pages, which are static, in the case of web applications
they are generated and served dynamically. This can be done by executing server side
applications (CGI, JSP) or server side scripts (PHP, ASP). The server side applications
are compiled programs which the server executes on the clients request, while on the other
hand the scripts are compiled and executed when requested from the client. This allows
great flexibility for creating different kinds of applications, adding features and updating.

I.1.4 Rich Internet Applications

Nowadays the trend is to have web applications which look and behave like regular desktop
applications, named Rich Internet Applications (RIAs), and are usually delivered via a
specific browser, a browser plug-in and independently via sandboxes or virtual machines.
Therefore at the client side it is required to install a software framework that downloads,
updates and executes the RIA. Some of the most popular RIA frameworks are Adobe
Flex, Adobe Flash, Adobe Air, Java, JavaFX and Microsoft Silverlight. However, not all
RIA technologies need a software framework, for example RIA using AJAX that exploits
the already existing web browser features can deliver almost similar experience (with some
limitations).

While in the past RIAs were dominantly used for on-line games, recently they started
to be utilized for many other applications. Using RIAs can have many advantages:

• The complexity of implementing advanced solutions is reduced compared to tradi-
tional application software,

• Applications can be helped by servers, allowing less capable devices to run them,

• Server performance can be improved by offloading some of the work to the clients,

• The user interface is standardized between different platforms,

• Installation and maintenance is easier,

• Security may be improved by using sandboxed solutions that limit the access to the
user’s system storage.

I.1.5 A New Approach to Address Multimedia Applications

Complex applications such as some games require important processing power, not always
available on light terminals like mobile phones and PDAs. By using the connectedness of

5

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

the devices the trend in the recent years is to have thin client-server applications, where
the server makes the complex calculations and the terminal only performs the input and
the visualization. So the paradigm shifts again to thin client interfaces and powerful
servers. This time the thin client is a mobile device with an Internet connection that can
be taken virtually anywhere. Another reason for having centralized server system is the
power effectiveness of the solution. A server that is loaded most of the time is more power
effective than having many PCs that are idle most of the time.

One of the most important industries behind the development of the PC is the en-
tertainment industry, especially the computer gaming industry. There is always a direct
struggle between the game producers and the computer manufacturers. The first try to
produce better visual representation of the games, and the second try to create better
hardware performance that can cope with the requirements of these games. The common
way of playing games on PC is by buying the needed hardware. Having the latest hard-
ware to be able to play the latest games is stressing the user’s budget. And even if the
user buys it, the computer will stay idle for most of the time, thus it is not cost effective.
One of the solutions is a centralized system where the games are executed, and clients
connect to the server to play the game [43]. One example of this kind of service is OnLive1

which offers remote playing of the latest games. The user just needs an entry level PC
with an Internet browser and an appropriate Internet connection bandwidth. The service
works in a way that the game is rendered on a powerful server and an audio-video stream
is sent to the client. On the other hand, the commands from the client side are sent to
the server. Therefore on the client side only video and audio decoding is needed. Some
set-top boxes also may fit within this service. The disadvantage of this system is that it
cannot be used reliably over a wireless network. This is due to the fact that it is sensitive
to network latency and jitter. While many mobile devices can now decode and render the
video stream in real time, the wireless connection is not stable enough to provide constant
quality. Therefore some other architecture should be used for mobile devices and this is
the objective of the current work.

I.2 Distributed Architectures for 3D Graphics and Games

This section aims to present an exhaustive list of methods for accessing a game or 3D
content in general within the paradigm of remote rendering.

According to the type of the data that is transmitted between the server and the client
the techniques can be separated in several categories:

• Graphics commands based,

• Pixel based,

• Graphics primitives based,

• Adaptive.

The next sections will present in details each of these categories.

1www.onlive.com

6

I.2. DISTRIBUTED ARCHITECTURES FOR 3D GRAPHICS AND GAMES

I.2.1 Graphics commands based solution

The general idea behind the graphics commands based solution is to intercept the graphics
commands sent from the application to the graphics Application Programming Interface
(API) for the Operating System (OS) where the game is executed. If the OS is Microsoft
Windows the API can be either Direct3D2 or OpenGL3. If the OS is almost any unix
kind, including Linux and MacOS, then theAPI is OpenGL.

The interception is performed by replacing the system library with one that has the
same API functions. The application does not need to be changed and it will not recognize
that it uses some other library. This principle is used in WireGL [39].

In the library the graphics commands are processed, compressed and sent over the
network to the client. This imposes specific hardware requirements for the client. Because
the actual rendering is done on the client, the graphics accelerator on the server is not
used. That is an advantage because it reduces the required processing power on the server.
Also it means that the display resolution on the client will not affect the processing on
the server.

Let us note that some of the graphics commands require data back from the graphic
card. The straightforward solution is to request the data from the client. However,
because of the delay on the network, it can take some time for the data to arrive. It may
not be a problem if the data is requested only once in a frame, but if more requests are
made the added time easily accumulates and becomes larger, making the solution less
acceptable for real time games.

A solution is proposed by Buck et al. in [18], where simulation of the state of the
graphics card is performed on the server. When the game starts, the simulation is initial-
ized with the capabilities of the graphics card on the client. After the initial request, no
other request is made. When the game requests some data from the graphics card, the
local simulation can return the result. The solution adds a little processing overhead on
the server, but the improvement of the performance of the game is significant.

Another significant behavior can be observed related to the amount of data between
the client and the server as illustrated in Figure 1.4. It can be observed that the data
changes irregularly and, more important, significantly with time. This is due to the nature
of the graphics commands. The largest data is transferred at the beginning of the game
and when there is a scene change. The reason is that new data has to be displayed,
thus new data has to be transferred to the graphics card. The data usually includes
new 3D objects, textures and shaders. The impact on the bandwidth can be reduced by
compressing the data and implementing caching, as demonstrated by Nave et al. in [51].

The previous limitations make this solution less appropriate for mobile devices. The
main reasons are:

• The requirement to have a GPU on the client that supports the features which the
game requires to render the data,

• The big changes in the required bit-rate are still not appropriate for the mobile
networks.

2www.microsoft.com/windows/directx
3www.opengl.org

7

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

Figure 1.4: Bit-rate in bits/frame for the game Tux-Racer during game play. The upper
curve denotes the uncoded bit-rate, while the lower two show the results for activated
caching and additional encoding, respectively. Graph is courtesy of [51].

I.2.2 Pixels based solutions

In the pixel based category of methods the complete rendering is performed on the server.
The output image is captured, and sent to the client. Depending on how the image is
transferred the techniques can be grouped in three sub-categories.

I.2.2.1 Video based

The main attribute of the video based technique is the use of a video stream to transfer
the rendered images. The images are captured with constant frame-rate, encoded using a
video codec [23] and the result is streamed to the client. Because the complete rendering
is done on the server side, it can be optimized by different techniques.

For example in the Games@Large architecture [51] the servers loads the game in a
virtual machine. The games can share the graphics acceleration available on the server.
In the Chromium framework [40] the server does not have to be a single computer, but it
can be a cluster of computers that share the work. More complex scenes can be rendered
and displayed, scenes that would normally not even load on a single computer. For
instance, medical data [48], Computer-Aided Design (CAD) data, or data coming from a
3D scanner can be of several tens on gigabytes in size, making almost impossible to load
and display it on a single computer and aiming at interactive applications. An example
of a video streaming architecture is displayed in Figure 1.5.

On the client side, only a video player is needed. It needs to support input from
streaming and to execute the required audio-video decoders. The processing power should
be only enough to decode the video in real time. One advantage of using video streaming
is that the bit-rate of the stream can be predicted. This allows for easier and more precise
scaling of the requirements for the network traffic.

This solution is acceptable for devices connected to fast network connection. On the
contrary, the mobile devices are usually connected with lower bit-rate. To accommodate
the video for this network, the quality of the video needs to be scaled down, thus reducing
users experience to thresholds that can easily become unacceptable.

8

I.2. DISTRIBUTED ARCHITECTURES FOR 3D GRAPHICS AND GAMES

Figure 1.5: Architecture of a video based system.

I.2.2.2 Image Based

In the image based group of architectures the images are compressed and sent as stan-
dalone data [32]. In this framework the full image is transferred only when there is no
movement, and a small size image while there is movement. This allows to reduce the
required bandwidth, however in applications when there is movement most of the time,
the quality is constantly low. The image can be captured at any time, not as in the case
of video when it is captured in fixed intervals. This allows to have optimized control on
the frame-rate, thus having lower frame-rate or even not sending any data when there are
no changes on the displayed image, and bigger frame-rate when there are changes.

Sending constantly high quality images is appropriate for some application like mixed
reality [47] and photo-realistic rendering [12], however it is not optimal for application
where there is a lot of movement on the screen such as games. Then the amount of data
that is sent can become very large, and the responsiveness of the system may be reduced.
In some cases like virtual walkthrough applications the problem can be overcome by re-
stricting the possible movement (allowing only predefined directions) and then predicting
the next movement of the user [17]. Using this information the system can pre-render
and transfer the images to the user. The images corresponding to the most probable
movement are prioritized. However in most games the restriction of the movement is not
an option, therefore this solution cannot be successfully applied.

An architecture of an image based system is presented in Figure 1.6.

9

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

Configuration Database

Rendering Service

Model and Material Database

A
p
pl

ic
at

io
ns

 /
 S

er
vi

ce
s

D
at

a
U

se
r

Image Analysis

Composer Treatment

 Draft and High Q. Models
 Material Assignments
 Additional Product Infos

 Szene Configuration
 Object Selection and

Customization

 User Source Images and Videos
 User Informations
 Szene Configuration
 Object Configuration
 Rendered Images and Videos

 Determining
Camera and
Lighting

 Photorealistic
Image / Video
Rendering

Delivery
 Device

Capability
Dependant
Output

 Object
Generation from
CAD Data

 Material
Assignment

Re-ModelerViewerRegular User

Figure 1.6: Architecture of an image based system. Image courtesy of [47].

I.2.2.3 X11 Protocol

The X11 type of architectures are primary intended for remote display of operating sys-
tems. They use the most common forms found in the OSs (windows, buttons, dialogs) and
optimize the transmission protocol accordingly. One of the first remote display protocols
is X11 [58]. However if the content is not in the supported group, then it is sent like raw
pixels to the client.

Several attempts to optimize the X11 protocol exist. One recent optimization by
Baratto et al. [15], proposed to use five basic functions instead of using all X11 functions.
They also buffer the commands before sending, in order to discard commands that are
overwritten by a later command, thus optimizing the network traffic. If the user plays
a video on the server, then the system detects the video, and streams it to the client.
However, the method does not support 3D graphics.

Support for 3D graphics was researched earlier by Stegmaier et al. in [61], where it is
proposed to render the OpenGL 3D scene on the server, and then send the result as an
image to the client, thus the solution becomes similar to the image based ones.

I.2.3 Graphics Primitives Based Solutions

The basic principle of the graphics primitives group of architectures is that a server is
used to store the data. When the client needs to render a scene, it requests the data
from the server, which in turn prepares it and sends it back. Depending on the type of
the data, i.e. graphics primitives, that is sent, there are two main groups: 2D and 3D
primitives.

10

I.2. DISTRIBUTED ARCHITECTURES FOR 3D GRAPHICS AND GAMES

I.2.3.1 2D Primitives

An example of the 2D Primitives based architecture is the work done by Diepstraten et
al. in [28]. They introduce a new module after the rendering of the scene that converts
the 3D synthetic images in 2D vectors, by extracting different kinds of feature lines and
filtering them to find the 2D vectors, as illustrated in Figure 1.7.

Figure 1.7: Example of a 3D model rendered using 2D vectors. Image courtesy of [28].

Then the 2D vectors are sent to the client where they are rendered. Because of the
2D nature of the data, no complex calculations are needed, thus making it appropriate
for mobile devices that do not support 3D graphics. The architecture of the system is
presented in Figure 1.8.

Wireless

Access Point

Server

Mobile

client

2D line data User interaction

Figure 1.8: Architecture of 2D vectors based system. Image courtesy of [28].

I.2.3.2 3D Primitives

Two categories of 3D primitives can be considered: vectors and surfaces.

I.2.3.2.1 3D Vectors

In 3D vectors based technique the geometry of an object is approximated as a set of 3D
vectors (Figure 1.9b), operation performed in a preprocessing phase. The vectors are sent
to the client, which in turn renders them. Therefore the client needs to have support for
3D graphics. Because it renders only simple vectors, it does not need to support advanced

11

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

features like textures. Rendering lines takes less processing than rendering textured mesh,
thus better rendering frame-rate may be observed.

Because the creation of the 3D vectors takes significant processing time it is done when
objects are loaded, not when they are requested by the client. The processing is done by
rendering each object with the associated texture (Figure 1.9a), and then extracting the
vectors. The method allows having more details on the objects than in the case where
only the contour of the objects is extracted like in the previous mentioned 2D vectors
technique.

(a) Using original images (b) Line-based rendering

Figure 1.9: Comparison between rendering using textures and line rendering. Images
courtesy of [57].

An architecture based on a 3D vector approach was proposed by Quillet et al. in [57]
where they use it for displaying 3D city model for navigation purposes. They tested the
software using a mobile device and conclude that this type of rendering is appropriate
for recognizing building facades. The architecture representing this system is displayed
in Figure 1.10.

Figure 1.10: Architecture of 3D vectors based system. Image courtesy of [57].

12

I.2. DISTRIBUTED ARCHITECTURES FOR 3D GRAPHICS AND GAMES

I.2.3.2.2 Surfaces

In the surfaces group of techniques complete 3D graphics objects (i.e. surfaces) are
transferred. At the client side 3D rendering has to be supported. Because portable
devices are taken into account, the server has to be aware of the capability of the client
device to be able to adjust the content accordingly. The techniques can be separated in
two main groups. In the first group only one 3D object is transferred and optimization
is done per object. In the second multiple 3D objects are transferred and optimization is
performed for the entire scene as a sub-scene.

Single Object

Most of the challenges of transferring single objects are connected to the unreliability of
the network. The problem arises when the objects need to be transferred with short delays.
The TCP protocol is reliable, but introduces a significant delay over lossy networks. On
the other hand, the UDP protocol has a shorter delay, but it is unreliable. Because of the
importance of the delay, most of the interactive 3D applications use the UDP protocol.

The unreliability of the protocol can be partially overcome by adapting the data with
usage of error resilience. Depending of the way how the data is adapted, the algorithms
can be separated in two categories: segmentation and progressive.

The segmentation algorithms [14, 67] separate the mesh into more parts (segments)
that are transferred to the client separately. If a part of the mesh is lost, one can still see
the other parts. The lost part can be interpolated, but this requires additional processing
from the client. Different techniques exist that optimize the segmentation of the mesh for
improving the visual results.

The progressive algorithms remove vertices from the mesh, thus simplifying them as
it was proposed by Al-Regib et al. in [11, 10]. The details about the removed vertices are
stored and grouped into one data structure, being possible to restore the details to the
mesh at the receiver side. Removal of vertices is done in several steps, until a basic shape
with minimum number of vertices is acquired. These steps are called Levels of Detail
(LODs). Since restoring vertices depends of the previous LOD, if that LOD is lost, it is
not possible to restore the consequent LODs.

The biggest problem can arise when the basic mesh is lost. It means that the next
LOD that are received cannot be reconstructed and no mesh will be displayed in the
scene. Therefore the base mesh is usually sent by more secure means, either by using
TCP or a secure UDP transfer.

Multiple Objects

The challenges in transferring multiple objects are mostly connected with the order in
which the different objects are sent to the client. Usually, objects in a scene are organized
in some kind of graph, called scene-graph. The scene-graph contains the position of each
object in the scene, how different objects are grouped together and their connections.
To save memory, it is also possible to have multiple occurrences of the same object in
different parts of the scene. The object is not copied, but an instance of the object is
created in that branch of the graph. However, in most of the cases, the scene-graph
structure is simple and flat, including at most one level, and therefore it is not considered
for compression.

One of the most significant types of architecture is the one intended for virtual cities
maps where a large amount of data should be considered. Therefore not all of the data
is transferred at once but in a progressive manner. The data is chosen by the location

13

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

of the virtual camera. Only buildings that are near are rendered in full details. This
kind of architecture was proposed by Nurminen in [53] and later improved in [54]. The
buildings are grouped by their location in the 3D space, however only the groups that
are inside the viewing frustum and closest to the camera are transferred to the client.
Inside each group, the buildings are again compared with the frustum, and ordered by
the distance to the camera. According to the distance, different LODs are used, and only
the needed LODs are loaded. The most distant buildings are not textured at all, though
uniform color is used instead. The special buildings, like landmarks and monuments, are
processed separately. If they are far from the camera, only a billboard is used. Billboard
is a rectangle mesh with one texture that is always facing the camera, thus only giving
an impression that the object is 3D. An architecture of a such a system is presented in
Figure 1.11.

Figure 1.11: Architecture of multiple 3D objects based system. Image courtesy of [53].

The architecture proposed by Coors in [27] uses more diverse measures to compute
if a building should be sent to the client. The buildings are ranked by calculating an
importance map. The system, based on an Oracle database, creates a map for each user
based on his queries. The system learns what the user searched in the past, and it uses this
knowledge for ranking the results. The ranking also takes into account different attributes
that are specific for a building and technical resources like the hardware specification of
the user device and the available bandwidth.

I.2.4 Adaptive methods

The adaptive methods use a combination between two or more of the previous mentioned
methods. The methods can be grouped by several criteria such as motion, distance,
importance, terminal power.

I.2.4.1 Amount of motion on the screen

A method proposed by De Winter et al. [66] detects how often and how much the image
on the screen changes. If the changes are small, then an image based method is used.

14

I.2. DISTRIBUTED ARCHITECTURES FOR 3D GRAPHICS AND GAMES

When the frequency of motion increases, the system switches to a video based method.
The advantage of the adaptation is that when the screen changes are infrequent, the
bandwidth usage is small. When the amount of motion increases, for example in the case
when movie or game is played, the system stays responsive without large increase in the
needed bandwidth.

I.2.4.2 Amount of camera motion

The architecture for this method uses two LODs models for the objects in the scene. The
model with lower LOD is used by the client and the higher LOD model is used by the
server, as illustrated in Figure 1.12. When the user moves around the scene, then only the
lower LOD model is displayed. When the movement of the user stops, the client sends the
camera parameters to the server. Then the server renders a better quality image using the
high LOD model and sends it back to the client. This system, proposed by Koller et al.
in [46], is not intended for application where the client movement is almost continuous,
such as in games.

Figure 1.12: Client-side low resolution (left) and server-side high resolution (right) model
renderings. Images courtesy of [46].

I.2.4.3 Distance from the camera

In the case when there are many objects in a scene, usually the ones that are closest to
the camera have more visual impact that the rest. Therefore by sorting the objects with
respect to the distance from the camera, some priority can be assigned. Depending of
the capabilities of the target device, the closest objects are sent with full detail, the next
objects are sent with less detail, and the furthest objects are either not sent at all, or
simplified to the lowest possible detail.

Jehaes et al. in [41] proposed that the objects closest to the camera are rendered on
the target device, and all other objects are rendered on the server (Figure 1.13a). For the
later only a billboard representation is sent to the client. This helps to save bandwidth
(billboard objects take less space than full 3D models), increase the number of frames per
second (FPS) at which the scene is displayed (billboard objects are rendered faster than
3D models), and present the scene with acceptable image quality (although the quality
of the billboard is lower than that of the 3D object, because it is far from the camera, it
will not be very noticeable). Another example is the method proposed by Nurminen in
[53] and [54], where the buildings that are far from the camera are displayed with fewer
details and using flat colors instead of textures (Figure 1.13b).

15

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

(a) Billboard based (b) Color based

Figure 1.13: View dependent rendering of 3D objects. Images courtesy of [41] and [53].

I.2.4.4 Importance to the user

In city a navigation scenario, users often search for a specific location, apart from just
browsing the city. Hence, a criterion is how much the user is interested in a specific object
(i.e. location) in addition to the users location. By using this information, a research was
done by Coors in [27] where they use a database query to retrieve the objects and it is
illustrated in Figure 1.14.

Figure 1.14: Objects that are important to the user rendered in more detail. Image
courtesy of [27].

For example, if the user searches for available hotels in some area, the hotels found
are displayed with maximum available detail, the surrounding buildings with less details,
and the rest of the scene is only 2D.

I.2.4.5 Processing power of the users terminal

Sometimes there is a huge amount of data available that needs to be processed and
rendered. Usually one terminal is not capable of rendering all of the data, hence a
simplification is needed. This was researched by Grimstead in [36], where he proposes
that the data is sliced in smaller parts and only the quantity that can be rendered on the
target terminal is sent. If the target terminal is not powerful enough to render even a
part of the data, video streaming is used.

16

I.2. DISTRIBUTED ARCHITECTURES FOR 3D GRAPHICS AND GAMES

I.2.5 Analysis of the different architectures and conclusions

Figure 1.15 presents the different architectures reviewed in the previous sections. The
methods are ordered from left to right first by their dependence of a server. Let us note
that three categories may be observed: (1) game logic and data on the client, (2) game
logic on the client and data on the server, and (3) game logic and data on the server.

On the far left side are the techniques that have everything on the client, whereas on
the far right side are the techniques that have everything on the server, and only display
the end image on the client. The techniques are separated in two main groups: the first
one, containing the techniques that execute the application logic on the client and the
second one, containing the techniques that execute the application logic on the server.
The first group is separated in two main parts: one for techniques that store the data on
the client and the second part for techniques that store the data on a server.

Game Logic on Client Data on Server Game Logic and Data on Server

Client
Server
video

Server – graphics
commands

Server
images

Server
3D primitives

Server
2D vectors

Server
3D vectors

Client
3D primitives

Client
3D primitives LOD

Client
3D and 2D bilboard

Server
3D and Image mix

Server
3D partially

Client
3D primitives

Client
3D primitives LOD

Figure 1.15: Techniques for displaying 3D graphics

By analyzing Figure 1.15 some conclusions can be withdrawn. According to the state
of the art research done by Capin et al. in [20], there are numerous solutions that can op-
timize graphics rendering on mobile devices, however they are still limited by the devices’
processing power. For example, developing a visually beautiful chess game would require
reducing of the computer chess player capabilities in order to support the more beautiful
graphics. Capin et al. conclude that remote rendering can be a viable solution, and a
solution where the processing is balanced between on-device and remote rendering rep-
resents an interesting research direction. Therefore this thesis continues in this direction
and focuses on the architectures that have the game logic on the server and rendering on
the client.

As it was presented previously, they can be separated in six main categories:

1. Graphics commands

2. 2D pixels

3. 2D primitives

4. 3D vectors

5. Single 3D object

6. Multiple 3D objects

For these specific architectures additional observations can be made:
The Graphics commands based architecture can be dismissed immediately because of

the hardware incompatibility between mobile devices and PCs.

17

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

2D pixels The 2D pixels based architectures have two main disadvantages that are
closely connected: required network bandwidth and visual appearance. When streaming
video or images, the required network bandwidth is relatively high. Reduction of the
bandwidth can be achieved by increasing the compression ratio, however, this implies
that the quality of the video or images will be reduced. Furthermore, if the video stream
saturates the channel, the latency between the user commands and the respective response
from the server will also increase, hence the user experience will be reduced. Therefore a
balance has to be sought between these two components. In the case of mobile networks,
the available bandwidth is not enough to achieve good video quality because the synthetic
content is more sensitive to compression artifacts (e.g. blocking) than natural content.
The processing power on the terminal side has to be enough to support real-time decoding
of the input video stream or images. Therefore it can be concluded that these architecture
do not satisfy all requirements simultaneously.

2D primitives The 2D primitives based architectures require relatively low band-
width that can be supported by the mobile networks, however the visual quality of the
rendered image is significantly reduced. The limitation of this approach is that the con-
tours have to be recalculated and resent each time the scene view changes. When dealing
with simple scene objects, promising results may be observed. When the number of ob-
jects increases the detection of contours can take more of time on the server, thus making
it less appropriate for real-time applications. A second problem is the quality of rendered
image on the client side. Because of using only contours, there is a significant loss of visual
quality. For some applications this may be satisfactory, but for richer media applications
like games, such artifacts are opposite to the users’ expectations. Some improvement
in the visual quality can be made by adding color description for the lines, however it
increases the size of the transmitted data. The capabilities on the client side have to be
enough to support rendering of 2D primitives, which is the case for most mobile devices.

3D vectors An advantage of this architecture with respect to the 2D primitives one
is that the 3D vectors for one object can be sent only once, and the user can navigate into
the scene without additional data, meaning that the bandwidth requirements are lowered.
Because of the line rendering, far objects can be cluttered with lines, so LOD adaptation
based on the distance of the objects from the virtual camera may be implemented. The
principle consists in removing the least important (shortest) lines as the distance increases.
Because only 3D vectors are rendered, the system still has image quality drawbacks as for
the 2D primitives based. However, the processing requirements at the client side include
support for rendering simple 3D vectors, an operation that can be handled with ease by
the most devices.

Single 3D object The single 3D object architectures handle the transferring of a
single 3D object from the server to the user, however they do not handle the relationship
between different objects. Therefore they can not be used directly for representing com-
plex scenes such as the ones in games. Furthermore, these architecture do not include any
command from the client side, apart from the request for an object. Because the full 3D
object is transferred, the rendering quality at the client side is maximal. Furthermore,
the client has to support rendering of a full 3D object including texture, however this is
easily handled by current mobile devices.

18

I.3. MULTIMEDIA SCENE DESCRIPTION LANGUAGES

Multiple 3D objects The multiple 3D objects architectures are mainly used for
city navigation applications, hence the only operation that the server performs is to order
the objects with relation to the position and the orientation of the camera and then send
them in that order. This means that the server can send data that will not overwhelm
the capabilities of the user terminal, however it also means that there is no support for
complex manipulation of the scene-graph like semantically grouping of objects that is
needed for games. Furthermore, the only communication sent from the user terminal to
the server is the data with relation to the camera, however this is not sufficient for game
applications where the camera is not controlled directly by the user, but indirectly trough
the game logic. This is important because it means that the user should send key actions
to the server with latency as low as possible. Because the objects are sent only once,
it can be concluded that the required bandwidth will be within the limits of the mobile
networks.

The following statements summarize the analysis:

• The techniques that use image based or graphics commands based transfer are not
suited for mobile networks because of their bandwidth requirements,

• The techniques that transfer 3D or 2D graphics primitives are better, but what they
lack is an appropriate control on the data, in the sense that no scene-graph is used
for organizing the data,

• The techniques that convert the data in lines (2D or 3D) are not visually satisfactory.

Therefore none of the architectures satisfied simultaneously all requirements, hence
an alternative architecture that can be applied for games for mobile devices is needed.
It was observed that the scene-graph organization has a major importance for the game
applications. Therefore the next section will present the state of the art of the differ-
ent scene-graph formats. Furthermore, the most appropriate scene-graph format will be
selected and described in more detail.

I.3 Multimedia Scene Description Languages

The term Multimedia refers to media that can take multiple forms for representing and
processing information (i.e. text, audio, graphical elements, video, interactivity), with
the objective to inform or entertain the user or observer.

To be able to have coexistence of the different types of media, it is necessary to manage
their presentation, both temporally and spatially. Videos and images are displayed as 2D
arrays of colored pixels, sound is sent to the speakers, and 3D objects are placed into a
virtual scene and can be seen through the viewpoint of a virtual camera.

Managing the different media can be done by combining them into one entity, named
Multimedia Scene. It defines the logical, temporal and spatial relations between different
media in a scene, organized like a collection of nodes connected as graph or a tree. A
node can have multiple children, and in the case of the graph it can also have multiple
parents. An operation executed on the parent propagates to the children. For example,
at each node a geometrical transformation matrix can be associated, therefore allowing
control of the position of all children of that node at once. Historically, the scene graph
concepts are inherited from the techniques enabling to optimize 3D graphics rendering. In

19

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

order not to process invisible objects (i.e. objects being outside the view frustum) a spa-
tial organization of relations between them is created. Additionally, common properties
such as textures or lighting conditions may be used to group together different objects;
consequently, loading and unloading operations per object are now performed per group
of objects.

A Multimedia Scene Description is usually referred to as scene-graph. Through the
history different scene-graph representations were developed. Because of the lack of a
standard that can satisfy the needs of any scene, the producers of multimedia content
and multimedia viewers developed proprietary scene-graph representation. Nowadays
this is not practical due to the development of the Internet and the requirement of the
interoperability of the media content. If different multimedia platforms need to access
the same content, one should create a converter from the content format to the specific
application format. This can be tedious considering the number of proprietary formats.

I.3.1 Review of scene-graph formats

In the following sections different standards for scene description will be analyzed showing
their advantages and disadvantages.

I.3.1.1 VRML and X3D

Virtual Reality Modeling Language (VRML) [5] is one of the first open standards related
to 3D graphics and its second version (the firtst to be an ISO standard) was released in
1997. The main target of VRML was the publishing of 3D models and worlds over Internet,
by implementing similar functionalities as HTML does for text. Therefore VRML is a
textual format based on a human readable description, thus making the integration into
different content creation tools easier.

VRML does not have support for 2D graphics, having only 3D graphics primitives
that can be presented. There are four ways of presenting them:

• Basic 3D primitives (Box, Cone, Cylinder and Sphere),

• Points (PointSet),

• Triangle meshes (IndexedFaceSet, IndexedLineSet, ElevationGrid, Extrusion and
GeoElevationGrid),

• NURBSs (NurbsCurve, NurbsSurface and TrimmedSurface).

VRML allows creating files by using an inclusion mechanism that uses hyperlinks
to refer to an external file, re-utilizing data by referencing mechanism (DEF, USE), re-
utilizing complex content by macro definitions (PROTO, EXTERNPROTO). Another
important feature is the support for user interactivity actions by using special nodes names
Sensors (e.g. TouchSensor, TimeSensor and ProximitySensor). The user interactivity
is closely connected to the scripts supports by using the Script node. The scripts are
typically used to:

• Signify a change or user action;

• Receive events from other nodes;

20

I.3. MULTIMEDIA SCENE DESCRIPTION LANGUAGES

• Contain a program module that performs some computation;

• Effect change somewhere else in the scene by sending events.

Therefore it can be used to create not only scenes, but also applications. However
because of the interpreted nature of the scripts, they are not well suited for use for
complex computations on constrained devices.

One disadvantage of VRML is the lack of compression support. Streaming of graphical
content is also not allowed by VRML, making difficult to update the scene graph in real
time applications.

eXtensible 3D (X3D) [6] is the successor of VRML proposed by Web3D and published
in 2005 by ISO. It extends VRML by presenting the data using an XML schema and
adds new nodes. X3D is still being developed, integrating more advanced features that
previously mentioned standards, for example support for shaders, geospatial component,
particle systems, physics and different input devices. The compression of X3D became
possible with the introduction of X3D binary, based on compression methods that com-
press data based on its type, therefore utilizing its properties. X3D supports streaming
of only video and audio, but not 3D content, making it inappropriate for server types of
3D multimedia applications.

Despite some advantages over VRML, X3D is not accepted widely by the industry,
limiting its usage mainly to research.

I.3.1.2 SMIL

Synchronized Multimedia Integration Language (SMIL) [19] is another standard for scene-
graph description released in 1998 by WRC. The intention was to allow integration and
synchronization of a set of independent multimedia objects into one presentation. The
latest version 3.0 was released in 2008.

SMIL is an XML markup language that defines timing, layout, animations, and visual
transitions for presenting different media items that include text, images, video and audio.
The standard supports only reference to 2D graphics, and does not support 3D graphics.
For example it is used to represent animations in SVG files. Objects can be displayed
anywhere on the screen grouped organized in layouts and regions. Additionally for each
object timing information can be added, e.g. start time when the object should be
displayed, duration for how long the object is displayed.

Since SMIL uses hyperlinks for referencing the content, it is also used as a playlist
file. A hyperlink can be associated for each object, therefore SMIL can also be used for
creating interactive applications like the one used for the HD DVD format.

As VRML, SMIL does not support compression of its format, although the content
that is referenced is usually compressed.

I.3.1.3 SVG

Scalable Vector Graphics (SVG) [64] is an XML based language created by W3C and
released in 2001, that is used to describe 2D graphics and graphical applications. Unlike
bitmap formats that use pixels for representing data, SVG describes the scene using
2D graphics primitives like polygons, ellipses and Bzier curves, a format also known as
vector graphics. Since objects are defined parametrically, the scene can be viewed on any
resolution with the best possible quality. Objects can be displayed by using only their

21

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

outline, however they can also be filled with one solid color or a gradient of colors. An
example of rendered SVG image is displayed in Figure 1.16.

Figure 1.16: SVG Sample Image

On the other hand SVG supports scripting by using ECMAScript [9], hence all objects
can be accessed and manipulated in similar way to HTML. Furthermore, scripts can be
used to animate objects and respond to user or document generated events. All of these
features allow for creating richer scenes and applications.

In 2003 W3C released SVG Tiny and SVG Basic [65], two simplified versions of SVG
intended for use on mobile devices. SVG Tiny is intended for mobile phones, while SVG
Basic is intended for PDAs and smart-phones. These specifications removed many of the
features of SVG, making it less demanding in terms of memory and processing. One of
the removed features was the scripting support. Therefore SVG on mobile devices is used
primary for displaying static or animated images without interactivity.

SVG has the same disadvantage as the previous standards, the nonsupport for stream-
ing of the content. However some compression support was added with the introductions
of the SVGZ format which is basically a SVG file compressed by gzip. Although the com-
pression may be satisfactory, it only compresses the file like a simple textual file ignoring
any properties of the content itself (XML structure, 2D primitives etc.).

I.3.1.4 COLLADA

COLLAborative Design Activity (COLLADA) [44] is designed to be an intermediate
format between Digital Content Creation (DCC) tools. Sony Computer Entertainment
released the initial version in 2004, however since 2006 it is released through Khronos.
Unlike the previous standards, COLLADA is widely accepted by the industry, being
supported by number of DCC tools and game engines.

Given that it is mainly used as an intermediate format, it supports many 2D and 3D
graphical features [13], even some that are not used in games. The format can be used
to specify how the data is displayed on different terminals through the specification of
different profiles, therefore allowing the artist to tweak the data specifically. Additional
resources like images for textures are referenced by using hyperlinks.

The format is based on XML. Besides the strong support for 2D and 3D graphical
primitives, other type of media like video or sound and are not supported. This is a
big disadvantage since it means that COLLADA by itself cannot be used for storing data
needed for more complex multimedia applications and scenes. An additional disadvantage
is that there is no support for user interactivity or scripts, therefore limiting its usage
only for storing data. Furthermore there is no support for compression and no support
for streaming of data.

22

I.3. MULTIMEDIA SCENE DESCRIPTION LANGUAGES

I.3.1.5 MPEG-4 Scene Description Languages

The MPEG-4 standard defines three manners of describing scenes: BIFS, XMT and
LASeR. Each one is used for a specific targeted application. The next subsections explain
each representation.

I.3.1.5.1 BIFS

MPEG-4 BInary Format for Scene (BIFS) [4] is specified in chapter 8 of the standard
ISO/IEC 14496-1 released in 1999 and then revisited as a Part of the standard ISO/IEC
14496-11 in 2005. BIFS is a binary compressed format which is based on the VRML spec-
ification, extending it with additional functionalities including streaming, synchronization
and protection.

Like the VRML standard, BIFS can represent 3D scenes and object, however with the
addition of the 2D nodes, BIFS can also manage 2D scenes or mixed 2D/3D scenes. The
last functionality is made possible by the mechanism of layers. On the other hand BIFS
allows changing scene dynamically by making updates: scene elements can be added,
deleted, changed or replaced. This process changes the static representation of a scene
into a media stream that can be sent over a network and synchronized with other streams
like video or sound. Two mechanisms exist that allow the implementation of updates:
BIFS-Command and BIFS-Anim.

MPEG-4 BIFS functions with the MPEG-4 Object Descriptor Framework (ODF),
which allows unifying of the management of different types of media. For example, a
JPEG image and a video are accessed in a same way by using an OD for the image or
the video, respectively. An OD holds information about synchronization, encoding and
description for the media referenced by the object.

I.3.1.5.2 XMT

EXtended MPEG-4 Textual format (XMT) [45] is a standardized XML description of the
BIFS scene. It has two levels of abstraction. The first one, named XMT-A, is in a direct
correspondence with the binary BIFS, therefore it is very close to X3D. The second one,
named XMT-O, is an abstraction on a higher level, which has SMIL elements and which
allows for deployment of fast applications with lower complexity.

XMT can be compressed by applying a generic XML compression tool standardized
by MPEG and called BiM, therefore allowing deployment through networks with lower
capacity. However, XMT has only limited support for compression of 3D graphics streams.

I.3.1.5.3 LASeR

Lightweight Application Scene Representation (LASeR) [29] is designed for usage on low
performance terminals such as mobile phones by reducing the number of supported fea-
tures, i.e. nodes. One of the features removed is the support for 3D graphics, therefore
making LASeR the equivalent of SVG. Therefore it can be said that LASeR combines the
SVG elements with compression and streaming.

I.3.1.6 Analysis

By looking at the previously mentioned standards it can be concluded that all of them are
targeted at different applications. Choosing which standard to use depends of its support

23

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

for these main requirements:

• 3D graphics: to be able to represent 3D graphics as well as animation;

• Compression: to reduce the size of the transmitted data;

• Streamability: to enable players to start using the content before having downloaded
it entirely.

Table 1.1 summarizes the capabilities of all standards presented previously. It can be
observed that SMIL and SVG do not support 3D graphics, nor streaming or compression.
VRML and X3D have support for 3D graphics, however there is no support for streaming.
Furthermore they lack support for compression. Although COLLADA is very good as an
interchangeable format, it lacks any support for streaming and compression. As it can
be observed from Table 1.1, only the MPEG-4 standard satisfies all requirements, being
the only one able to deal with 3D graphics, its streaming, compression and offering the
possibility to update the scene during run-time. Therefore in the next section a description
of the MPEG-4 standard concerning scenes is presented.

Table 1.1: Comparison of the Multimedia-Scene description Standards

Supported MPEG4
features: VRML X3D SMIL SVG COLLADA BIFS LASeR

Primitives:
Text X X X X X X
2D Graphics X X X X
3D Graphics X X X X
Audio X X X X X
Video X X X X X
Animation X X X X X X X

Streaming:
2D Graphics X X
3D Graphics X
Audio X X X X X
Video X X X X X
Animation X X
Synchronization X X X X X

Special:
Compression X X
Interactivity X X X X
Client Events X X

I.3.2 Description of the MPEG-4 standard

I.3.2.1 Introduction

Bringing together the socio-economic challenges in the world of multimedia, the MPEG
(Moving Picture Experts Group) of ISO has promoted the audio compression standards

24

I.3. MULTIMEDIA SCENE DESCRIPTION LANGUAGES

MPEG-1 and MPEG-2, with a proved success in television, CD-ROMs and DVDs, without
forgetting the famous ”mp3”.

Meanwhile the MPEG-4 standard [7] marks a decisive leap in the evolution of audio
and video coding technologies. By adopting the paradigm of a new generation of compres-
sion tools, MPEG-4 implements object-oriented representations (natural and arbitrary or
synthetic shapes) and the principles of selective coding, while is supporting diverse range
of media and interactive applications.

Going far beyond the audio and video objects, MPEG-4 version 2 also specifies a rich
set of technologies dedicated to the management of 2D or 3D scenes, in the definition
of graphical primitives and their compression (applicable for the most demanding stor-
age capacity such as 3D meshes and animation of virtual characters), as well as user
interactivity.

I.3.2.2 Usage Domains

The primary objective of the MPEG-4 standard is being the successor of the MPEG-1
audio - video compression standards and the MPEG-2 standard for digital television.
However when developing the standard, many applications and features have been added
and continue to be added, thus surpass the initial goal. Therefore MPEG-4 grows into a
real revolution both in its concept and the number of applications it touches.

MPEG-4 is the merger of three worlds: computers, telecommunications and tele-
vision. It is the result of an international effort involving hundreds of engineers and
researchers around the world and from diverse backgrounds: universities, research cen-
ters, major computer companies (IBM, Microsoft, Sun. . .), telecommunications (AT&T,
France Telecom. . .) and other major industrial groups (Philips, Sony. . .).

The first version of MPEG-4 was finalized in October 1998 and since then new versions
have been integrated, providing both quality improvements in terms of compression and
new features. The development of the standard is motivated by the success of digital tele-
vision, interactive graphics, entertainment systems and multimedia (WWW). Nowadays
the most popular means of expression on the Internet is the video content created by
the users, and uploaded on web services like YouTube, Vimeo, and Dailymotion, having
some of them already use MPEG-4 video and audio compression to improve their user
experience. However in the next years it is expected to have another revolution, this time
in the field of on-line 3D graphics. Even today there are on-line services that allow users
to contribute and share 3D content (e.g. Google warehouse), consume 3D content (e.g.
GoogleEarth), although they are still not as expanded like video.

Interactive digital TV, mobile telephony, Internet, video games are now the major ap-
plications of MPEG-4 that must adapt seamlessly to the user, the constraints of available
resources both in terms of transmission and reception requirements at the client terminal.
Therefore MPEG-4 provides technologies not only for compression, but also for adapta-
tion of the content and the tools themselves dependent on the resources at the terminal.
In general it can be said that for each type of content, there are tools available that can
optimize it for the targeted terminal. For example one can choose slightly less effective
3D compression to get lover complexity of the decoder because of processing constrains
on the user terminal.

As a result, the MPEG-4 standard is also looking into the future and preparing for it,
its purpose being to ensure a technological standardization at all levels: production, dis-
tribution and streaming for all types of media. Therefore it provides a set of technologies
satisfying the needs of authors, vendors and end users.

25

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

• For authors: MPEG-4 enables the production of reusable resources. It allows great
flexibility, allowing the mix of digital television, animated graphics and web pages.
In addition, they can protect their creations.

• For ISPs: MPEG-4 offers transparent information which allows easily adapting to
the user request (e.g. adjustments to the language of the user) and controlling
transfer (management of data loss).

• For users: MPEG-4 has many possible applications and features that can be accessed
from a simple terminal. The wide range of applications covered by the contributions
of an MPEG-4 solution include:

– Real-time communication (videophone),

– Video monitoring,

– Multimedia mobile devices (mini laptop acting as a telephone, fax, calendar,
... via GSM or satellite),

– The storage and retrieval of information based on the content (in connection
with MPEG-7),

– Video playback on the Internet / Intranet without having to download the
whole source (streaming),

– Visualization of a same scene simultaneously at several terminals (conference
call)

– Transmission of any data type,

– Post-production (film and television),

– The next generation of DVDs, Blu-ray discs, etc,

– Applications of character animation synthesis and 3D worlds (virtual meetings,
on-line games, ...) based on Part 16 (AFX) [8] of the standard,

– The prioritizing and management of audio objects in a scene.

I.3.2.3 MPEG-4 File and Stream Organization

As it was discussed previously, the MPEG-4 standard is organized in a way that it provides
many features useful for different applications. Therefore in this section its organization
will be presented.

I.3.2.3.1 Fundamental concepts

A scene may be composed of many individual audio or visual entities, usually named
audio-visual objects. In the case of MPEG-4 they can be either natural (i.e. recorded)
or synthetic generated by the mechanisms of BIFS (illustrated in Figure 1.17). However
BIFS is not just a scene description language, it integrates both natural and synthetic
content into one presentation space. Therefore some objects may be described fully in
the scene description, while other are just referenced, having their data in other separate
channels. This coincides with the general paradigm of MPEG-4 that all information is
conveyed in a streaming manner.

In the MPEG-4 terms, channels are named elementary streams (ESs), containing each
a fully or partialy encoded representation of a single audio or video object, scene de-
scription, or control information. ESs, in turn, are identified and characterized by object

26

I.3. MULTIMEDIA SCENE DESCRIPTION LANGUAGES

Figure 1.17: MPEG-4 terminal data flow

descriptors (OSs) which are also stored as ESs and contain the format of the data (e.g.,
Bone Based Animation stream), a configuration specific for the decoder, as well as indica-
tion of the resources needed for decoding. ODs can also reference to multiple streams for
single audio-visual objects, enabling their scalable and adaptable representation. There-
fore the most important feature of an OD is that it contains all necessary information
to identify the location of the data for a stream either in terms of an actual transport
channel or a URL. This allows having an indirect approach and separating the internal
handling of the streams from the network and/or protocol-specific addressing.

I.3.2.3.2 Object Descriptors

Besides being considered as ESs, the scene description and the stream description are
strictly separated, meaning that the scene description does not contain any information
about the streams that it uses, whereas the stream description does not contain informa-
tion of how it is used in the scene. This mechanism allows having room for some other
meta-information, as well as facilitating editing and general manipulation of the MPEG-4
content. The stream descriptor follows the same concept as the other data, having the
form of an elementary stream. The link between the two descriptions is a numeric OD
identifier (OD ID) that the scene description uses to point to object descriptors, which
in turn provides the necessary information for assembling the ES data required to decode
and reconstruct the object at hand. The OD object integrates other descriptors including
ES descriptors which describe the individual streams that are associated with it. Ad-
ditional auxiliary descriptors include textual description of the content embedded into
Object Content Information (OCI) descriptor and Intellectual Property Management and
Protection (IPMP) descriptor as illustrated in Figure 1.18.

The integration of a stream into the scene is a two-step process: first the scene uses
the OD ID to reference the OD; and a second step, the OD uses the ES identifier (ES ID)
stored in the ES Descriptor to reference the stream itself. This organization has two main
advantages: first, more streams can be grouped together and second, each of these groups

27

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

Object Descriptor

OD_ID

URL or

ES Descriptor

...

ES Descriptor

OCI Descriptor

...

OCI Descriptor

IPMP Descriptor

...

IPMP Descriptor

Figure 1.18: Object Descriptor contents

can be accessed by different scene elements. The grouping of the streams allows having
an adaptability of the scene to the user preferences, for example the user can choose from
many possible languages for an audio stream, or for example the user can receive a stream
with different quality based on the available network bandwidth. It should be noticed
that grouping of streams in one OD is to be done only for streams that share the same
type. Therefore different stream types, as well as streams that are not related, will need
different ODs.

As illustrated in Figure 1.18, it is not needed to provide information about the streams
in the OD itself, since the OD can contain only an URL to an OD stored on a remote
location, however keeping the same OD ID. The OD is then retrieved from the remote
location in a transparent manner, without the scene knowing its origin.

The ODs are conveyed to the terminal by using a simple command structure named
OD Commands. By using these commands ODs can be inserted or removed from the
scene in a dynamic manner. Moreover, each of the commands are timed, in the same
way as the other streams (see Section 3.4), allowing them to tell the terminal when
it should be prepared to receive another elementary stream. The usage of commands
depends of the application and the user. For example, in a service that offers streaming
of TV channels may use this feature to make new audio and video streams available.
Because the information in ODs is vital to the application, it should be transported
using a reliable channel. Moreover, in order to begin the MPEG-4 presentation, initial
information about the scene and its object descriptors is transferred by using a special
object descriptor named Initial OD (IOD). Besides the information in a regular OD, the
IOD also contains information about the overall complexity of the scene, expressed in
profile and level indications. Therefore the IOD should be transferred before any ES
initialization, usually done in the session initialization stage.

I.3.2.3.3 Elementary Stream Descriptors

Elementary Stream Descriptors (ESDs) contain descriptive information about ES as il-
lustrated in Figure 1.19.

Each elementary stream is identified by a unique ES ID and an optional URL. The
ES ID is unique in a well-defined scope closely connected to the ODs. Therefore there

28

I.3. MULTIMEDIA SCENE DESCRIPTION LANGUAGES

ES Descriptor

ES_ID

streamPriority

dependsOn_ES_ID

URL(opt.)

DecoderConfigDesc

SLConfigDesc

IPI Descriptor (opt .)

IPMP DescrPtr (opt.)

Language Descriptor (opt.)

QoS Descriptor (opt.)

Figure 1.19: Elementary Stream Descriptor Contents

is a simple scoping rule: all scene description and OD streams that are associated to a
single-object descriptor constitute a single name scope for the identifiers used by them,
since they will all be attached to the scene through a single Inline node.

Contrary to the ODs, the URL field of the ESDs, if present, points to the stream itself,
rather to the information about the stream. The mandatory DecoderConfig descriptor
contains all the information needed to initialize the media decoder, including the object
type, the average and maximum bit-rates, as well as the size required for the decoding
buffer in the receiver terminal. Furthermore it may contain a binarized configuration
data named Decoder Specific Info that is passed to the specified decoder. The type of the
stream is identified by a minimum of 2 parameters: the first is the stream-type indication
which specifies the general type of the stream (audio, visual, scene. . .) and the second
is the object-type indication which specifies the exact compression scheme for the object.
In the case of the AFX [8] standard, there is an additional identification number stored
in the first byte of the decoder specific info that specifies the exact AFX stream type (e.g.
BBA, 3DMC, FootPrint).

I.3.2.4 Synchronization Mechanisms

The synchronization of ES is done by using a system that includes time stamps and clock
references, same as the one used in MPEG-2 systems. The discussion for this system
in MPEG-4 can be separated in two main parts: the first is the System Decoder Model
(SDM) [37] and the second is the synchronization layer, i.e., the sync layer.

I.3.2.4.1 System Decoder Model

The System Decoder Model defines the buffer and timing behavior of an MPEG-4 termi-
nal. The SDM illustrated in Figure 1.20, unlike in MPEG-1 and MPEG-2, receives indi-

29

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

vidual ESs from the delivery layer trough a DMIF Application Interface (DAI). Choosing
this kind of architecture allows the application to specify the network delivery protocol
itself, independent of the standard. The only requirement that MPEG-4 exposes is the
end-to-end delay, and it is up to the delivery layer to ensure it.

D
M

IF
-A

p
p

lic
a

ti
o

n
 I

n
te

rf
a

c
e

Decoding

Buffer 1

Decoding

Buffer 2

Decoding

Buffer 3

Decoder 1

Decoding

Buffer n

Decoder 2

Decoder m

Composition

Memory 1

Composition

Memory 2

Composition

Memory m

C
o

m
p
o

s
it
o
r

Elementary

Stream Interface

Figure 1.20: System Decoder Model

The core entity that is used trough the SDM is the Access Unit (AU). Each elementary
stream is separated in a sequence of AUs, having their semantic meaning determined by
the media encoders, thus unimportant for the SDM. However, there is one limitation:
the AU is the smallest unit for which timing information can be associated because for
each AU there are two timestamps, decoding and composition. The decoding timestamp
specifies when the AU should be sent to the decoder, however it may or may not be
present. The composition timestamp specifies when the decoded data should be available
to the compositor. Often the decoding and composition timestamp have the same value,
however the two values are retained because of some formats, for example video with
bi-directional predictive coding where one frame has to be decoded before its display
timestamp, so the frames that are in-between can be decoded.

By using this SDM, it is possible for the encoder to know how much decoding buffer
resources are available at the client side at any time and for any stream, however it does
not provide the possibility to know the size of the composition buffers.

The AUs that the DAI receive are first demultiplex and then sent to the appropriate
decoding buffer. An AU is moved out of the decoding buffer when its decoding time
arrives and then it is sent to the decoder. The decoder outputs the decoded data into
the composition memory in the form of composition units. The relationship between the
number of output composition units and the number of input AUs does not have to be
one-to-one. For example, it is possible, as illustrated on Figure 1.20, to have one decoder
that receives AUs from multiple decoding buffers and outputs into one single composition
memory, therefore it is possible to generate one composition unit from multiple AUs. In
addition, it is possible to generate more composition units from less AUs, for example

30

I.3. MULTIMEDIA SCENE DESCRIPTION LANGUAGES

by interpolation in the case of object animation. Each composition unit is available for
composition starting at the indicated composition time. The compositor accesses the
composition memory at each rendered frame, and it is not concerned with the timing
aspects of the composition unit.

I.3.2.4.2 The Sync Layer

The sync layer, located between the compression layer and the delivery layer, provides a
flexible syntax that encodes all relevant information about an AU while it allows map-
ping of complete or partial AUs into the delivery layer protocol. The atomic entity, SL
packet, of the sync layer is transferred to/from the delivery layer, however SL packets
cannot be concatenated to obtain a parsable stream. This is done intentionally to avoid
duplication of data by having the delivery layer that frames the packets. The purpose of
SL packets is to allow the encoder to guide the fragmentation of the AUs. By knowing
the size of the Maximum Transfer Unit (MTU), the encoder can provide self-contained
packets that are smaller leading to better error resilience. For example, in the case of
MPEG-4 video coding, SL packets correspond to video packets, while AUs correspond
to video object planes. Furthermore, smaller SL packets can be mixed into one delivery
packet, like in the case of the FlexMux tool, therefore reducing the framing overhead.

The sync layer is designed with flexibility in mind, meaning that it can be configured
separately for each elementary stream by using the SL descriptor in the ES descriptor. For
example, different streams may require different timestamp precision, therefore different
number of bits can be used for each, leading to lower bandwidth usage.

I.3.2.5 Scene-Graph Description

BIFS was introduced previously in section 2.5.1, therefore this section will introduce in
more detail its features from the usage point of view.

I.3.2.5.1 Scene format

The scene in MPEG-4 BIFS [60] has two components: visual and audio. The visual
part can be 2D, 3D or a combination of both, while the audio part can be a mix of
many audio sources. As VRML, BIFS is also organized as a hierarchical structure or a
scene tree, with the visible or audible object being the leaves of the tree or leaf nodes
connected to branching points or grouping nodes. The tree structure allows to group
nodes semantically, thus enabling organization of the scene in a manner convenient for
easier management. For example, the translation of a leaf node is the result of the addition
of all translation attached to any of its parents up to the root node.

BIFS currently implements more than 190 nodes [4]. However not all of these nodes
are needed for all application, hence only a subset of these nodes has to be chosen to be
used for these applications.

2D and 3D scenes One of the major features of BIFS in terms of composition is
the ability to mix effectively 2D and 3D graphics primitives in one scene by using the
Layer2D and Layer3D nodes. When the presentation engine encounters one of these
nodes, it switches the rendering mode into 2D or 3D respectively. This allows having a
2D interface rendered on top of a 3D scene, e.g. a “heads up display” in the case of games.

31

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

The Shape node The Shape node is used to encapsulate a visible entity inside the
scene. It has two main fields, appearance and geometry. The appearance field specifies the
visual appearance of the entity, like its color or texture, and it points to an Appearance
node. The Appearance node can point to a Material node type (Material or Material2D
depending on the type of object) and/or to a Texture node. The geometry field specifies
the shape of the entity, and it can point to different types of nodes, but, in our limited
set, it points only to an IndexedFaceSet node.

Animation To support both animations, bone-based and morphing, BIFS integrates
several nodes. The SBVCAnimation and SBVCAnimationV2 are the main nodes, the
latter being an improved version of the first. These animation nodes are in close relation
to the BBA standard for animation compression. The URL field of the SBVCAnimation
nodes point to the URL where the BBA animation is stored and the VirtualCharacters
field hols one or more models animated by the same BBA stream.

Each of the VirtualCharacters is a SBSkinnedModel node holding information for the
skeleton of the avatar (a tree structure of SBBone nodes) and its mesh is represented as
a list of Shape nodes sharing the same coordinates and normals lists.

Another type of animation system includes Interpolators. Currently eight interpo-
lator nodes exist: CoorindateInterpolator, CoorindateInterpolator2D, ColorInterpolator,
NormalInterpolator, PositionInterpolator, PositionInterpolator2D, ScalarInterpolator and
OrientationInterpolator. They are closely connected to the node or field type that they
can update. The change of value is triggered by an event, e.g. time has changed, and
therefore they are typically used to create small animations in the scene.

Referencing other scenes BIFS has support for including other scenes inside the
tree, sub-scenes, enabled by using the Inline node. Therefore it becomes possible to have
one MPEG-4 file having the structure of the scene, while the elements are located inside
other MPEG-4 files. One advantage is that it is easy to add, remove and change content
from the scene without significantly changing the size of the scene file itself, while keeping
its complexity low. Another advantage is observable while streaming, where the elements
of the scene can be easily saved and cached for further reference.

Script Scripting can be integrated into the scene by wrapping the script into Script
nodes. The syntax of the script is an ECMA-Script (or JavaScript), allowing to have
enriched interaction in the scene. In the case of games, it can be used to control the game
logic on the terminal. Scripts can be activated by different means, including timed events
and user actions. For example, a key press on the terminal can trigger execution of a
script that changes the position of an object in the scene.

I.3.2.5.2 Scene Updates

One of most important BIFS assets is its dynamic capabilities. A BIFS scene is not static
as a VRML scene, it can be updated in time. Since it follows the same transport means
as other media types, the scene updates are packed in AUs, each containing one or more
update commands.

Updating the data in a BIFS scene can be done in two ways: BIFS-Commands and
BIFS-Anim. The next sections present both of them.

32

I.3. MULTIMEDIA SCENE DESCRIPTION LANGUAGES

BIFS-Commands BIFS-Commands can update any part of the scene: node, node
field, route and a single value in a multivalued field. There are three basic commands:
Insert, Delete, and Replace, which are applied on the different parts of the scene.

The first command is always a Scene Replace command, that sets up the initial scene.
The following commands can be a combination of any other commands. The execution
time of the commands is the composition time-stamp field of the AU holding that com-
mand.

In a case of a static MPEG-4 file, all of the BIFS Commands are pre-created and
executed in a sequence while playing the file. However in a streaming setup, they can
be generated dynamically depending of different inputs, either from calculations or user
input.

BIFS-Anim BIFS-Anim is the second mean of updating data in a scene. While
BIFS-Commands allow updating any data, BIFS-Anim commands can update only nu-
meric fields. BIFS-Anim commands are compressed and sent using either the intra or pro-
gressive mode. When using the intra mode, quantized absolute values are sent, whereas
for the predictive mode, only differences between the current and the previous quantized
values are sent.

I.3.2.6 Specific 3D Graphics Compression Tools

Being the most generic format, BIFS allows a generic compression of a scene-graph,
however the downside is that it cannot completely exploit the redundancy of specific data
such as meshes or animation curves. To overcome this, MPEG-4 defines methods for
each kind of graphics primitive specified in Part 16 of the MPEG-4 standard [8] named
Animation Framework Extension (AFX). The compressed data is stored in an AFX stream
type, thus it has the same advantages as the other streams with regards to streaming
and synchronization support. Since all methods use the same stream type, they are
distinguished by using a type parameter stored in the first byte of the DecoderSpecificInfo
descriptor in the ES Descriptor.

The methods can be separated in three main categories: for shapes, 3D Mesh Coding
(3DMC) and Wavelet Subdivision Surface (WSS); for textures, Visual Texture Coding
(VTC) as well as the native support of PNG and JPEG[2000]; and for animations, Co-
ordinate (CI), Orientation (OI), and Position interpolators (PI), BBA, and Frame-Based
Animated Mesh Compression (FAMC).

I.3.2.6.1 Geometry tools

The geometry tools compress 3D geometry stored in the scene. The geometry that is
compressed is replaced by a BitWrapper node that can point to the compressed AFX
stream, or contain the encoded data inside its buffer field.

Only three tools from this category are important for this research: 3DMC Extension,
TFAN and MultiResolution Foot-Print Representations.

3DMC Extension [22] is used to compress a generic mesh stored into an IndexedFaceSet
node by using efficiently coding the vertex data and its connectivity information. This
compression encodes only one resolution of the mesh.

TFAN [49] is a 3D static mesh compression approach applicable directly to any 3D
triangular mesh of arbitrary topology (ie, manifold or not, oriented or not, closed or open).
It is based on partitioning of the mesh triangles into a set of triangle fans. An advantage

33

CHAPTER 1. STATE OF THE ART IN REMOTE COMPUTING FOR 3D GRAPHICS AND

GAMES

of TFAN is that the decoding is less complex than 3DMC, hence less processing power
and resources are needed.

MultiResolution Foot-Print Representation (FootPrint in short) [21] is a coding tool
for effective representation of city buildings. Since a city can have tens of thousands of
buildings, rendering them at once will require significant processing power. Therefore the
FootPrint tool proposes multiresolution representation of the buildings, based on their
footprint (base of the building). This allows having a 2D representation of the city, as
well as a 3D one created by extruding the footprint vertically by the specified height of
the building and applying texture on the facade.

I.3.2.6.2 Texture tools

This group includes tools for specifying particular cases of textures including Depth Image-
Based Representation and Multitexturing. The first one adds new nodes in the scene
that can specify rendering of an image alongside depth information about each pixel. The
second one adds new nodes that enable to integrate multiple textures for one object, thus
providing the possibility to specify more complex features like bump mapping.

I.3.2.6.3 Animation tools

This section refers to tools that change or deform a mesh in a scene. There are two
main categories: Deformation tools, and Generic skeleton, muscle and skin-based model
definition and animation.

The deformation tools specify new nodes that encapsulate a mesh, thus modifying
its form by a predefined function. The NonLinearDeformer tool specifies three types
of deformations: tapering, twisting or bending. The FreeFormDeformation (FFD) tool
wraps and deforms the mesh by using a NURBS surface.

Generic skeleton, muscle and skin-based model definition and animation tools specify
new nodes used to represent a skinned skeleton model of a mesh that can be animated.
The animation is encoded and compressed by a new stream named Bone Based Animation
(BBA) [55]. The compression allows for effective streaming of the animation data.

I.4 Conclusion

In the first part of this chapter presented a short overview of the modern remote com-
puting and how it changed from the simple to more complex applications. The different
distributed applications for providing 3D content were analyzed and grouped by the tech-
nique they use to provide the content to the client in six major groups. The analysis was
made based on the distribution of the work between the client and the server considering
the requirements for game applications on mobile devices. It was observed that these
techniques do not satisfy simultaneously all requirements. Therefore a new architecture
is needed and it is propozed in the next chapters.

In the second part different standard multimedia scene description languages were an-
alyzed. Then they were compared with respect to the supported features and compression
and streaming capabilities. Since the MPEG-4 standard is the only one that has support
for the needed features, it was chosen as the most appropriate for use in the architec-
tures presented in this dissertation. Therefore it was analyzed in more detail, describing
its targeted applications. Then it was described how streaming and synchronization are

34

I.4. CONCLUSION

handled by using ODs, ESDs and the Sync layer. Furthermore, the BIFS scene-graph
representation features were presented, as well as some supported compression tools.

This chapter concluded the presentation of the state of the art in distributed architec-
tures and rendering systems, as well as for scene-graph formalism. It was observed that
at the current state, the mobile devices, as well as the mobile networks are capable of
supporting distributed applications. The next chapters will present the main contribution
of this thesis.

35

Chapter 2

Formal Framework for 3D Graphics
Distributed Systems and Design of

MPEG-4 Player Architectures

Abstract

This chapter presents the main contribution of this dissertation. The first part
of this chapter proposes a formal framework that can be used to define and model
distributed system architectures for rendering 2D and 3D graphics. First, a set of
basic transformations are defined and all architectures that were presented in the
state of the art (Section I.2) are modeled using the proposed framework. Then
a new distributed architecture is presented based on these transformations. All
components of the architecture are analyzed, and a solution for each of them is
proposed.

The most significant part of the new distributed architecture is the MPEG-4
based player on the client side, and therefore the second part of this chapter explores
and proposes an architecture design for MPEG-4 player optimized for a powerful
platform. The player architecture extends the System Decoder Model (SDM) pro-
posed by the MPEG-4 standard. A set of requirements are presented and solutions
are proposed for each of them. It is observed that designing an MPEG-4 player can
be a difficult task, hence a framework for accessing MPEG-4 content is proposed in
the third part of this chapter. The framework uses a simple interface for obtaining
the 3D related data.

In order to complete the distributed architecture, the last part of this chapter
proposes a simplified version for MPEG-4 player on a mobile device. Considering
that mobile devices are less powerful than personal computers, the player architec-
ture has to be adapted. Furthermore, additional optimizations, made in order to
decode and display the content with the best performances, are presented.

I.1. INTRODUCTION

I.1 Introduction

As analyzed in Chapter 1, none of the existent distributed systems satisfies our require-
ments simultaneously. Furthermore, it can be observed that most of them use different
representation formalisms to describe the architecture, hence they can not be analyzed
theoretically on a common ground.

Therefore, in order to analyze them, we first define a theoretical representation. To
accomplish this, the systems are divided in several connected processing blocks that trans-
form the input data from one form into another. These blocks have to be chosen carefully
in order to be able to utilize them for modeling each system that was presented. The
model will help to better understand the operation and use-case scenario, as well as their
limitations.

I.2 Formal Framework Definition

The process of a distributed system can be represented as a work-flow involving a set
of transformations. The basis of this work was done previously by Preda et al. in [56]
where they analyzed systems that visualize 3D graphical models, possibly coming from a
server across a network channel. The limitation in their work is that the modeling process
takes into account only one 3D object, however complex distributed 3D applications, e.g.
games, integrates many 3D objects and other media of different complexities.

In the mathematical model proposed in [56], each object is represented as a set of
features {Fi} that is the input of each basic function. To accommodate more complex
applications, in the model presented in this chapter, the input of the process is the scene-
graph SGt, which is defined as a set of nodes {N t

i
} at a time t. The nodes can be grouping

nodes GP that are references to other nodes, data nodes GI that hold renderable data, or
scene control nodes SC that influence the scene. The scene-graph is defined in Equation
2.1.

SG =
{

N t

i

}

=
{

GP t

i
, GI t

i
, SCt

i

}

(2.1)

The output of the model remains the same, {Pi}
2D = {Ri, Gi, Bi, Ai}, a set of

2D pixels, with color RGB and transparency (A), ready to be displayed; or {Pi}
3D =

{Ri, Gi, Bi, Ai, Di}, a set of 3D pixels containing a depth component computed at ren-
dering time. The goal is to produce either one of the two sets {Pi}

2D or {Pi}
3D from the

scene-graph SGt in an optimized way, taking into account the constraints coming from
the components in the system.

In [56] the model is based on four transformations: rendering, coding, simplification
and modeling. However, for more complex application, and updated model is needed and
therefore we extend this model to include one more transformation: scene-graph updates.
This transformation models the part of the architecture that modifies the scene according
to the users commands or other types of input. This is an important transformation
because depending on how the scene is updated, it can lead to different optimizations.
The modifications is done by updating the state of the different objects in the scene, as
well as adding new objects or removing existing ones. Furthermore, the definition of the
four transformations has to be updated to consider the scene-graph in their processing.

The next section presents all transformations and describes their operation in details.

39

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

I.2.1 Set of Transformations

The possible transformations in the process are: rendering, coding, simplification, mod-
eling and scene updates. Their mathematical definition is defined as follows:

Rendering : {Pi} = R (SG) (2.2)

Coding :
{

SGC

i

}

= C (SG) (2.3)

Simplification :
{

SGS

i

}

= S (SG) (2.4)

Modeling : {SGi} = M (SG) (2.5)

Scene− updates :SGt = U
(

SGt−1, {Ii}
)

(2.6)

where {Ii} represents the different inputs in the game.

I.2.1.1 Rendering

Rendering R, which projects the model onto planes suitable for display, is converting
SG into {Pi} as defined by Equation 2.2. R wraps the graphics card API and it is
used to initialize the graphics rendering on the client terminal or the server. Therefore
the input SG is a collection of graphics objects represented in a format that can be
directly consumed by the graphics card. R is one of the components that requires a lot
of processing power and therefore it has to be optimized.

I.2.1.2 Coding

Coding C is used to make the representation of the scene-graph compact, as defined in
Equation 2.3. It is a combination of three transformations:

1. Encoding (compression)

2. Transmission (in a distributed environment)

3. Decoding (decompression)

The encoding process compresses the data into a more compact format. The compres-
sion method depends on the type of the input data. For example, the encoding process
transforms the scene-graph into a tight binary representation, encoding each node and
data separately, thus different encoding methods are used for different node types. The
mesh geometry data (3D positions of vertices) is less sensitive to errors, therefore a lossy
compression scheme can be used, while the scene-graph information should be exactly the
same, therefore a lossless compression scheme is used. This allows having better compres-
sion results than when using a common compression method for all data. It also allows
making the representation more robust against channel errors.

The decoding process transforms the data back into the original format, thus in the
case of a scene-graph, it restores the original structure exactly as it was. On the other
hand, if the data is compressed using a lossy compression, this is not possible, thus similar
data is restored. It is mostly noticeable in the case of video encoding, where blocking
artifacts can be observed from low bit-rate encoding.

40

I.2. FORMAL FRAMEWORK DEFINITION

I.2.1.3 Simplification

In many cases it is possible to simplify the set of features without affecting the final
quality of the presented pix-map, because the display resolution, the viewing conditions
or the scene allow the elimination of irrelevant information. This operation could be
performed simultaneously with rendering, but it is advantageous to model it as a separate
transformation, called simplification S, which provides adaptation to terminal and viewing
constraints, as indicated by Equation 2.4.

The display resolution has the biggest influence in the case where video should be
transferred, thus a video with greater resolution than the one on the terminal will look
very similar to a video with the same resolution as the terminal. The viewing condition
can have impact on the order in which the scene objects are loaded (or transferred), thus
objects that are inside the viewing frustum of the came can have greater priority than
the ones that are outside. This will significantly improve the user experience, since the
delay of the loading of the scene will be virtually reduced. It is also possible that the
organization of the scene itself leads to simplification, as for example, if an object is always
far from the camera, its details can be reduced, including the number of vertices and the
details of its texture, without sacrificing the visual impression of the scene.

I.2.1.4 Modeling

The fourth transformation, Modeling M (Equation 2.5), transforms the scene-graph rep-
resentation from one formalizm into another. This operation can be simple or complex
depending on the input and output data. Apart from being a direct transformation, M
can be a combination of two other operations, Rendering and Vectorization. Vectorization
is defined as reconstruction of a scene-graph from pixels (Equation 2.7).

V ectorization :SG = V ({Pi}) (2.7)

(2.8)

Vectorization usually involves a process of applying a feature detection algorithm on
a rendered image in order to reconstruct the scene-graph. However the scene-graph does
not have to be in the original representation formalism, hence the modeling asspect of
the vectorization.

I.2.1.5 Scene Updates

A part from the case where there is only one object, in a game the state changes contin-
uously, being affected by different inputs. The scene update transformation U represents
these updates, depending of the previous state of the scene-graph SGt−1 and a set of
influences {Ii}, as it is defined in Equation 2.6. However, it does not mean that the whole
scene is updated: only one node may be affected by the transform. The calculation of
U depends of the game itself and its complexity does not reflect the number of nodes
affected, e.g. a complex calculation like the Artificial Intelligence (AI) for a chess game
can produce change in only one node, e.g. move a pawn.

In the case of game, the inputs can be of very different nature:

• User actions - key press, mouse movement that result in update in the scene-graph

41

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

• Multiplayer action from a remote user - update a position of a remote player in the
local game state

• Artificial Intelligence - movement of AI entities inside the game

• Script - predefined movement of entities

• Scene description - structure of the initial scene-graph in the game

• Physics-based simulation - movement and interaction of entities in same way as if
they were real objects

By using the previously defined formal framework, the next section analyzes the tech-
niques presented in the state of the art on a common ground.

I.3 Analysis using the Formal Framework

Section I.2 proposed a formal framework for describing distributed system architectures
for rendering 2D and 3D graphics. This framework allows to represent and analyze the
architectures analyzed in the state of the art on a common ground. The order of transfor-
mations is very flexible, and capable to model different architectures. Furthermore, not
all transformations are needed for all architectures.

By using the transformations, some architectures are described and defined in the next
part of this section. The following equations represent the mathematical description of
the architectures:

{Pi} = R ◦ C ◦M ◦ U
(

SGt−1, {Ii}
)

(2.9)

{Pi} = C ◦ S ◦R ◦M ◦ U
(

SGt−1, {Ii}
)

(2.10)

{Pi} = R′ ◦M ′ ◦ C ◦ V ◦R ◦M ◦ U
(

Sgt−1, {Ii}
)

(2.11)

{Pi} = R′ ◦M ′ ◦ C
({

U
(

{GI, SC}t−1
, {Ii}

)

, V ◦R ◦M ◦ U
(

{GP}t−1
, {Ii}

)})

(2.12)

{Pi} = R ◦M ◦ U
(

SGt−1, {Ii} , C ◦ S ({Gd})
)

(2.13)

{Pi} = R ◦M ◦ C ◦ S ◦ U
(

Sgt−1, {Ii}
)

(2.14)

Equation 2.9 models the graphics commands solution presented in Section 1.2.1, where
at the servers side the commands sent from the program to the graphics card are inter-
cepted, and sent to the client who forward them to its own graphics card. The transfor-
mations are performed in the following order:

1. The scene-graph is updated by U .

2. The scene-graph is modeled into a new scene-graph formalism (SG′) that uses a
graphics card representation by M .

3. SG′ is compressed and sent to the client, where it is decompressed by C.

4. SG′ is rasterized to a pixel buffer by R at the client side and it is displayed.

42

I.3. ANALYSIS USING THE FORMAL FRAMEWORK

ClientServer

SG SG’
Display

User

Input

SG’ {Pi}

{Ii}

SG(t-1)

Figure 2.1: Model of graphics commands based solutions

This is illustrated in Figure 2.1 where Fb is a flat buffer of the graphics primitives,
including also textures, shaders and other information needed for rendering.

Equation 2.10 models the pixel based solution presented in section 1.2.2.1 and 1.2.2.2,
where the scene is rendered on the server and pixel buffers are sent to the client for direct
rendering. The difference between the two methods is the type of data that is transferred.
The transformations are performed in the following order:

1. The scene-graph is updated by U .

2. The scene-graph is modeled into a new scene-graph formalism (SG′) that uses a
graphics card representation by M .

3. SG′ is rendered into a pixel buffer by R.

4. The pixel buffer is simplified (scaled to fit the client screen) by S.

5. The simplified pixel buffer is compressed depending of the technique, transferred to
the client where it is decompressed by C and displayed.

This is illustrated in Figure 2.2.

ClientServer

SG {Pi}
Display

User

Input

{Pi}’ {Pi}’

{Ii}

SG(t-1)

SG’

Figure 2.2: Model of pixel based solutions

Equation 2.11 models the 2D primitives based solution presented in section 1.2.3.1,
where the scene is rendered on the server, the feature lines are extracted, and sent to the
client for rendering. The transformations are performed in the following order:

1. The scene-graph is updated by U .

2. The scene-graph is modeled into a new scene-graph formalism (SG′) that uses a
graphics card representation by M .

3. SG′ is rendered into a pixel buffer by R.

4. The pixel buffer is analyzed by an edge detection algorithm and 2D lines are ex-
tracted by V .

43

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

5. The 2D primitives are coded and transferred to the client by C.

6. The scene-graph is modeled into a new scene-graph formalism (SG′′′) that uses a
graphics card representation by M ′.

7. SG′′′ is rendered on the client side by R′.

This is illustrated in Figure 2.3.

ClientServer

SG {Pi}
Display

User

Input

SG’’ SG’’

{Ii}

SG(t-1)

{Pi}SG’ SG’’’

Figure 2.3: Model of 2D primitives based solutions

Equation 2.12 models the 3D vectors based solution presented in 1.2.3.2.1, where the
3D objects are transformed in 3D vectors and sent to the client. The transformations are
performed in the following order:

1. The scene-graph is updated by U .

2. The data nodes of the scene-graph are modeled into a new data nodes formalism
(GP ′) that uses a graphics card representation by M .

3. GP ′ are rendered into a pixel buffer by R.

4. The pixel buffer for each data node is analyzed by an edge detection algorithm and
3D lines are extracted by V .

5. The new scene-graph (SG′) is compressed and transferred to the client by C.

6. SG′ is modeled into a new scene-graph formalism (SG′′) that uses a graphics card
representation by M ′.

7. SG′ is rendered at the client by R′.

This is illustrated in Figure 2.4, where Li is a set of 3D lines representing each 3D
object separately.

ClientServer

SG {Pi}
Display

User

Input

{GP}’’ SG’

{Ii}

SG(t-1)

{Pi}

{GI,SC}

{GP} SG’
+X

{GP}’ SG’’

Figure 2.4: Model of 3D primitives based solutions

Equation 2.13 models the single object based solutions presented in section 1.2.3.2.2,
where optimization and compression is executed per object. The transformations are
performed in the following order:

44

I.3. ANALYSIS USING THE FORMAL FRAMEWORK

1. The object is simplified by S.

2. The simplified object (GP ′) is compressed and transferred to the client by C.

3. GP ′ is integrated in the scene-graph and updated by U .

4. Ihe scene-graph is modeled into a new scene-graph formalism (SG′) that uses a
graphics card representation by M .

5. SG′ is rendered at the client by R.

This is illustrated in Figure 2.5.

ClientServer

SG{GP}’
Display

User Input

{GP}’ {Pi}

{Ii}

SG(t-1)

{GP}
Objects DB

Figure 2.5: Model of single object adaptation based solutions

Equation 2.14 models the multiple objects based solution presented in section 1.2.3.2.2,
where an optimization is done by reducing the scene-graph. The transformations are
performed in the following order:

1. The scene-graph is updated by U .

2. The structure of the scene-graph is simplified (i.e. nodes are removed temporary
for sending) by S depending of different conditions and parameters.

3. The scene-graph is compressed and transferred to the client by C.

4. Ihe scene-graph is modeled into a new scene-graph formalism (SG′) that uses a
graphics card representation by M .

5. SG′ is rendered at the client by R.

This is illustrated in Figure 2.6.

ClientServer

SG SG’
Display

Camera

Position

SG’ {Pi}

{Ii}

SG(t-1)

SG’’

Figure 2.6: Model of multiple object adaptation based solutions

From the previous examples it can be observed that the defined transformations are
sufficient to describe distributed architectures. The list of examples represents all archi-
tectures that were analyzed in the state of the art (Section I.2). However this formalism

45

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

is not limited only to those architectures, on the contrary, the intention is to use it to
represent any distributed graphics architecture that could be developed in the future.

All these models are in principle capable of producing the same output, or at least
outputs that are visually indistinguishable from each other. Which one has to be used
depends on the constraints of the environment in the specific case: computational power
available on the server, available bandwidth, network latency and computational power
on the client side.

Terminals with very low processing power will be best served by the architecture
described in (2.10), where the client requirements are only to be capable to decode and
display the pixmap. If the computational power of the client increases, it becomes possible
that it can do rendering, therefore it is possible that instead of pixels, objects can be
transferred (2.11), thus less bandwidth may be used. As a special case is a terminal
which has graphical capabilities but not enough processing power for other tasks, thus
the processing is done on the server and graphical commands are transferred to the client
(2.9). As the computational power increases again, it will become possible that it can
render simple 3D objects like 3D vectors (2.12) and further increase will enable rendering
of more complex 3D objects, i.e. meshes (2.13). This means that the load on the server will
decrease, however the data has to be simplified to fit the clients capabilities. Sometimes
the size of the scene-graph is too big that even data simplification is not enough to enable
smooth experience, thus a simplification of the scene-graph is needed, as defined in (2.14)
It means that not all nodes are transferred to the client, thus only the ones that are
necessary, for example only the objects that are inside the camera frustum.

For designing a real system, each of these architectures should be tested and evaluated
using those system constraints, thus a decision which one to use will depends of the
analysis.

This thesis proposes a system where playing complex 3D games on mobile phones.
Since the mobile phones have low processing power, the system proposed in (2.10) seems
the most appropriate, however the bandwidth requirements for having a visually satis-
fying experience are too big. Because the mobile devices are powerful enough to handle
rendering of 2D and 3D graphics, therefore some of the other systems may be used. The
system described by (2.9) needs the same graphics hardware as a PC, however since the
hardware is not available on a mobile phone, it cannot be used. The system defined in
(2.11) requires less bandwidth by sending only 2D vectors to the client, however they need
to be sent for each frame and their visual appearance is not satisfying for a game. The
architecture defined in (2.12) is more bandwidth effective, thus sending the 3D vectors for
each object only once, however the visual appearance remains similar. The architectures
defined in (2.13) are intended for systems where a single object is transferred, hence they
do not handle systems with a complex scene-graph, although they may be used as a part
of such system. Therefore the systems defined with (2.14) seem the most appropriate,
being capable of rendering visually satisfying images and being capable of handling com-
plex scene-graphs, however, the limitation is that the user can only control the position
of the camera, hence it is not usable as a game architecture, where more sophisticated
user actions are needed.

The previous analysis confirmed that none of the systems presented in the state of the
art are capable of supporting game applications with the given requirements. Therefore,
now that the formal framework is defined, it can be used to design a new system that
satisfies all requirements simultaneously.

46

I.4. DESIGN OF A NEW DISTRIBUTED SYSTEM ARCHITECTURE

I.4 Design of a new Distributed System Architecture

The system that is modeled is a distributed one capable of supporting game applications
for mobile devices. Using the formal framework, the system equation can be defined as
follows:

{Pi} = R ◦ C ◦ S ◦ U
(

Sgt−1, {Ii}
)

(2.15)

The transformations are performed in the following order:

1. The scene-graph is updated by U .

2. The structure of the scene-graph is simplified (i.e. nodes are removed temporary
for sending) by S depending of different conditions and parameters.

3. The scene-graph is compressed and transferred to the client by C.

4. Ihe scene-graph is modeled into a new scene-graph formalism (SG′) that uses a
graphics card representation by M .

5. SG′ is rendered at the client by R.

Since in every game the content is organized in some sort of scene-graph, it is logical
to conclude that using the same one for all games will increase the effectiveness of their
development. As it was demonstrated in Chapter 1, there are already some scene-graph
formats available, hence developing a new one is not efficient. The MPEG-4 standard was
proposed as the most features complete for a game architecture, therefore it will be used
as the scene-graph format for the proposed distributed architecture.

The second standardization can be done on the type of the data sent from the client
to the server. For example in a car racing game holding the key for forward pressed
increases the forward acceleration, however in another game the same forward key may
only change the position of the viewer for a constant value, hence a way to standardize
this data is needed. The easiest and most obvious solution is not to send the action
that the key produces, but the code of the key itself, hence the logic on the server will
interpret it and produce the desired effect. This relieves the client application of any
game specific calculations, thus enabling to use the same one for different games. Since
not all terminals have the same keys, the server needs to be informed of their availability
on the client. This can be done in the initialization stage of the game where the client
will send information for the type of the terminal to the server.

Standardizing the user input and the scene-graph format enables having client inde-
pendence from a specific game. It was concluded in Chapter 1 that the MPEG-4 standard
has the needed features, therefore the player will be a standard MPEG-4 player. How-
ever, not all features of the standard need to be supported for implementing a game
architecture.

The block diagram of the proposed distributed architecture is displayed on Figure 2.7.
In the next section we propose a solution for each component of the architecture.

For rendering the scene-graph, the nodes that need to be supported are presented in
Table 2.1. Detailed descriptions of each of these nodes can be found in the MPEG-4
standard. The reduction of the number of nodes helps in optimizing the rendering engine,
as well as in reducing the size of the code, i.e. the size of the application’s executable file.

47

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

ClientServer

SG SG’
Display

Key

Input

SG’ {Pi}

{Ii}

SG(t-1)

SG’’

Figure 2.7: Proposed Architecture

Table 2.1: Subset of BIFS nodes

Node Name Node Name
Appearance TextureCoordinate
Background2D Transform
Coordinate Transform2D
FontStyle Valuator
Group Viewpoint
ImageTexture InputSensor
IndexedFaceSet BitWrapper
Inline SBBone
Layer2D SBSegment
Layer3D SBSite
Material SBSkinnedModel
Material2D SBVCAnimation
NavigationInfo MorphShape
Normal SBVCAnimationV2
OrderedGroup Rectangle
Shape Switch
Script DirectionalLight
Text PointLight

Furthermore, it allows faster development of applications because the learning curve for
the MPEG-4 standard is shortened. A number of nodes allows for optimization at the
server side, thus a speed-up for the generation of the scene-graph and its encoding can be
achieved.

As it was described in Chapter 1, updating the scene can be done using two techniques:
BIFS commands and BIFS-Anim. The BIFS update commands can change any part of
the scene, while the BIFS-Anim commands can update only limited number of fields (e.g.
SFVec3f, SFRotation, etc.). In the case of games, the scene may change not only in the
position of the different assets, but also new assets may be added or removed, hence the
BIFS commands mechanism has to be integrated. On the other hand, the BIFS-Anim
mechanism offers better compression for updating position of assets. Since the BIFS
update commands include the same features as BIFS-Anim, and furthermore to reduce
the complexity of encoders and decoders, they will be the only ones that are supported
by the distributed architecture. The MPEG-4 standard does not define the transport
protocol, hence it can be chosen at will. For this architecture, the RTSP standard was
selected as most appropriate because of its integrated support for the MPEG-4 standard.

Sending key code to the server can be achieved by two means: using the ServerCom-

48

I.4. DESIGN OF A NEW DISTRIBUTED SYSTEM ARCHITECTURE

mand node or using an AJAX request from a Script node. Using a ServerCommand node
implies defining an upStream channel using an ESDescriptor that enables the upstream
tag. This descriptor must depend on a downstream ES, in this case the BIFS stream.
Furthermore, it means that the server and the client have to implement support for an
upstream channel, thus adding further complexity to the code and to the learning curve.
The AJAX request is already a built-in feature in the JavaScript code of the Script node,
hence there is no need to add this feature to the client. The key code of the pressed key
is integrated in the request header, therefore the server need only to integrate a simple
parsing component to read it. In terms of communication complexity, the upstream com-
munication is lighter since it does not have to sent HTTP headers as the AJAX request.
However the bandwidth is not an issue because the user commands come infrequently, not
more than two in one second, and the current network capacity is far greater than that.
Furthermore, the user commands are important data, hence they have to be transferred
in a secure manner. One solution is to use a TCP connection for the upstream channel,
like the one used by AJAX request. Therefore, we can conclude that in this configuration
the AJAX request is a better choice than the ServerCommand.

Each component in the distributed architecture can be associated with the correspond-
ing technology. The scene-graph is based on the MPEG-4 scene-graph format, i.e. BIFS.
The scene updates component U depends of the game itself, however the input is received
from the client using an AJAX (i.e. HTTP) request. The Simplification component S

may simplify the scene-graph by removing nodes that are not visible from the current
camera position and produces a simplified scene-graph Sg’. The coding component pro-
cesses the scene-graph updates and generates a BIFS update command that is transferred
trough the network using RTSP to the client where it is decoded and applied to the local
BIFS scene. The Renderer component R parses the BIFS scene, and displays it.

Considering the previously discussed design of the new distributed architecture, the
next section presents its implementation.

I.4.1 Implementation of the new Distributed System Architecture

Using BIFS for streaming 3D content has been explored by Hosseini M.[38] proposing
a powerful JAVA-based framework, however less appropriate for mobile devices. Using
BIFS for games is not completely new, being already exploited by Tran S. M. [62] who
proposed several 2D games. However, the updates are handled locally, no server being
involved. To our knowledge, no other system addressing 3D games with client-server
interaction using BIFS has been published.

In addition to representing graphics assets and scenes locally, MPEG-4 introduced a
mechanism to update the scene from a server. BIFS-Commands are used to modify a set
of properties of the scene at a given time, being possible to insert, delete and replace nodes
and fields, as well as to replace the entire scene. The following section introduces a client-
server architecture and a communication protocol dedicated to mobile games exploiting
the remote commands feature of MPEG-4 BIFS.

I.4.1.1 Requirements

Two main categories of requirements have driven our developments in proposing the
client-server architecture:

49

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

• for game creators, the deployment of a game on a large category of terminals should
not lead to additional development cost,

• for players, the game experience (mainly measured in game reactivity and loading
time) should be similar compared with a game locally installed and executed.

The main idea is to separate the different components presented in a traditional game
into components that are executed on the server and components that are executed on the
terminal. In a simplified scheme as the one illustrated in Figure 2.8, one may observe two
major high processing components in a game: the game logic engine and the rendering
engine.

Figure 2.8: The main functional components of an arbitrary game

The first one receives updates from modules such as data parsers, user interaction
manager, artificial intelligence, and network, and updates the status of an internal scene
graph. The second is in charge of synthesizing the images by interpreting the internal
scene graph.

I.4.1.2 Description of the Proposed Distributed System Architecture

As shown in Chapter 1, MPEG-4 has the capability of representing (in a compressed
form) a scene graph and graphics primitives and an MPEG-4 player is able to interpret
them to produce the corresponding synthetic images. The main idea proposed here is
to replace the rendering engine of the game (right side in Figure 2.8) with an MPEG-4
player, with the following consequences: during the game, the scene graph (or parts of
it) has to be transmitted to the client and the user input (captured by the client) has to
be transmitted to the server. Figure 2.9 illustrates the proposed architecture. The direct
advantage is that the MPEG-4 player is a standard player and does not contain any game
specific code.

The main underlying idea of the distributed architecture proposed in Figure 2.9 is
to execute the game logic on the server and the rendering on the terminal. Therefore,

50

I.4. DESIGN OF A NEW DISTRIBUTED SYSTEM ARCHITECTURE

different types of games may be rooted in the proposed architecture. The only strong
requirement is the latency allowed by the game play. According to the games classification
with respect to complexity and amount of motion on the screen, as proposed by Claypool
M. [25], and game latency [26], our goal is to test the distributed architecture and state
on its appropriateness and the usage conditions for the following four classes of games:
third person isometric, omnipresent, third person linear, and first person.

In addition, the player receives only what is necessary at each step of the game (inter-
face 1 in Figure 2.9). For example, in the initial phase only some 2D graphics primitives
representing the menu of the game are transmitted. The 3D assets are sent only when
they are used, the MPEG-4 compression ensuring fast transmission.

Figure 2.9: Proposed architecture for mobile games using an MPEG-4 player on the client
side

During the game-play, the majority of the communication data consists in updates
(position, orientation) of assets in the local scene. Let us note that for games containing
complex assets it is also possible to download the scene graph, i.e. an MPEG-4 file,
before starting playing. The off-line transfer of content has a similar functionality to the
caching mechanism proposed by Eisert P. [31]. In addition, it is possible to adapt the
graphics assets for a specific terminal [50], allowing for the best possible trade-off between
performance and quality.

In the proposed distributed architecture, the communication characterized by inter-
faces 1 and 2 in Figure 2.9, unlike in [31], is based on a higher level of control: the
graphic primitives can be grouped and controlled as a whole by using few parameters.
The MPEG-4 standard allows any part of the scene to be loaded, changed, reorganized or
deleted. For example, the same game can be played on a rendering engine that supports
3D primitives, most probably accelerated by dedicated hardware, and simultaneously on
a rendering engine that only supports 2D primitives.

I.4.1.3 Analysis of the Proposed Distributed System Architecture

This flexible approach allows the distribution of the games on multiple platforms without
the need to change the code of the game logic. Another advantage is the possibility to

51

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

improve the game logic without additional costs to the client, allowing easy bug-fixing,
adding features and different optimizations.

Since the game logic can be hosted on a server that has much better performances
than the client terminal, it can implement more advanced features, traditionally not sup-
ported on the client terminal. These features may include advanced artificial intelligence
or advanced physics. These improvements will not change anything on the user side,
therefore allowing the user to play more complex games on the same terminal.

The flexibility of the proposed distributed architecture makes it also appropriate for
powerful terminals with the goal of reusing the rendering engine between different games.
Under these circumstances, it is possible to download the game logic server software,
install it on the terminal and use it to play the game locally. However, in order to
maintain this approach effective, the games should be designed from the start bearing in
mind the requirements and the restrictions.

The rendering engine (ensured by the MPEG-4 player) can be integrated into the
firmware of the device (i.e. supplied with the device), allowing the manufacturer to
optimize the decoders and rendering for specific hardware. Let us note that, besides
BIFS, which is a generic compression algorithm able to reduce the data size up to 15:1,
additional tools exist in MPEG-4 improving the compression of graphics primitives up to
40:1 [42].

Table 2.2 summarizes the advantages and disadvantages of the proposed approach
with respect to the local game play.

It is straightforward to observe from Table 2.2 that the main drawback of the proposed
method is the sensitivity to the network latency. Another weak point is the adaptation of
existing games. Two components need to be considered: sending the 3D content to the
client and getting the user commands from the client. There are three possibilities for
conveying the content to the client:

• If the source code of the game is accessible, then it can be relatively easily modified
for fitting with the proposed distributed architecture

• If a high level API is available for the game, supporting access to the graphics
objects and the scene-graph, then a separate application can be created that will
connect the architecture and the game

• If no game API is available, then a wrapper for the 3D library that is used by the
game can be created. It will extract the geometry and transformations from the
graphics calls. The cost is the need to implement a converter between graphics
commands and BIFS updates

There are two possibilities for receiving the user commands:

• If the source code of the game is available, it can be modified easily for receiving
the commands

• Otherwise, a software module can be created that will receive the commands from
the client, create the appropriate system messages and send them to the game

The most important part of the new distributed architecture is the game client, i.e.
the MPEG-4 player, that is executed on the users terminal. It has to be designed care-
fully considering all requirements. Therefore the next section presents the design of the
MPEG-4 player for a powerful platform.

52

I.4. DESIGN OF A NEW DISTRIBUTED SYSTEM ARCHITECTURE

Table 2.2: Comparative evaluation of the proposed method with respect to a game exe-
cuted locally

Local game play Proposed architecture
Advantages

Software
development

The game must be compiled
for each type of terminal

The game logic is compiled once
for the dedicated server. Game
rendering is ensured by a stan-
dard MPEG-4 player, optimized
for the specific terminal

Advanced game
features

Reduced due to the limitation
of the terminal

By choosing high end servers, any
modern game feature, such as ad-
vanced Artificial Intelligence can
be supported

Rendering frame
rate

Since the terminal processing
power is shared between game
logic and rendering, it is ex-
pected that the frame rate is
smaller

High because the terminal only
performs rendering and asyn-
chronous scene graph decoding

Game state
consistency in
multi-player
games

Synchronization signals should
be sent between terminals and
complex schemas must be im-
plemented

Synchronization is directly en-
sured by the server that controls
the scene graph of each terminal
at each step

Security Games can be easily copied The game starts only after con-
nection to the server, where an
authorization protocol may be
easily set up

Maintenance
and game
updates
management

Patches should be compiled for
each version of the game

Easily and globally performed on
the server

Disadvantages

Network No impact The game cannot run without
network connection

Network latency No impact The game experience decreases if
the loop (user interaction server
processing update commands
rendering) is not fast enough1

Adaptation of
existent local
games to the
proposed
distributed
architecture

No impact Access to the game source code is
recommended, but it is not neces-
sary

53

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

I.5 Design of an MPEG-4 Player Architecture for Powerful

Platforms

This section presents a player of MPEG-4 3D content that is designed in a way that
it optimizes the MPEG-4 System Decoder Model (SDM) to use the processing power
of multi-core CPUs to deliver better, fast and smooth user experience, and extend its
features to include new scene-graph formats.

The design of the optimized SDM is performed in several steps: the first step specifies
the requirements that need to be satisfied, the second step is the design of the new player
architecture that satisfies the requirements and the last one is the implementation.

I.5.1 Requirements

Since the player is based on the MPEG-4 standard, it is logical to derive the requirements
from the standard itself, however not all of its features need to be supported.

One of the strongest attributes of the MPEG-4 standard is its support for streaming,
hence all data is organized accordingly. However, the standard only defines the structure
of the packets, and not the underlying transport protocol. Therefore, to support multiple
transport protocols (loading from a local MPEG-4 file can be viewed as one), it is nec-
essary to separate the streaming protocol from the other parts of the player architecture
(i.e. decoders and compositors), and having only SL packets (see Section I.3.2.4.2) as
communication data. Furthermore, all data needs to be synchronized and composed at
the right time, as defined by their time-stamps.

From its creation, the MPEG-4 standard uses BIFS as scene-graph and composition
format. However, with the introduction of Part 25, other formalisms based on XML
(eXtensible Markup Language) can be used as scene-graph formats. However, not all of
them are compatible with the BIFS organization structure, therefore it is necessary to
separate BIFS from the composition engine.

The MPEG-4 standard integrates several compressed formats for different types of
data. An optimal implementation should enable easy integration of decoders, taking into
account that some of them are used for the same type of data (e.g. PNG and JPEG2000
for image).

One important necessary feature is to be able to integrate the player in a website,
enabling Internet experience of playing MPEG-4 content. However, usually there are
different web browsers that are used for viewing web pages, and in most of them there
is a different way of integrating a plug-in in the page, hence a different version is needed
for each of them. Furthermore, it should be possible to be able to run the player as a
standalone application, as well as to run it on different operating systems. Therefore, the
visual interface2 should be easily separated from the rest of the application.

From the previous discussion, the following main requirements are derived:

1. Receive data from multiple steams, either from local storage devices or network;

2. Utilize optimally the capacity of the client terminal;

3. Synchronize all data streams;

4. Accommodate multiple scene-graph formalisms;

2The visual interface is a part of the application that receives user input from mouse and keyboard,
and displays the window of the application.

54

I.5. DESIGN OF AN MPEG-4 PLAYER ARCHITECTURE FOR POWERFUL

PLATFORMS

5. Easily integrate different decoders;

6. Easily integrate in different applications and web browsers.

The first requirement is satisfied by the original SDM by implementing the DMIF
interface.

The second requirements is not specified in the SDM, hence it is up to the player
architecture implementation to address it.

The third requirement is not completely satisfied by the original SDM. While the
synchronization between the video and audio streams is not very complex, rendering a
3D scene synchronously has some difficulties because compositing the scene requires many
resources including 3D meshe, textures and animation data. All of these resources have to
loaded on the graphics card, and doing this optimally requires using only one thread for
the loading process. Furthermore, the mesh and its animation data are closely connected
in a sense that the mesh cannot be rendered without the animation data.

The fourth requirement is not satisfied by the original SDM because it uses only one
scene-graph formalism, i.e. BIFS.

With respect to the fifth requirement, the SDM specifies each decoder as a separated
component, however it does not specify the interface for integrating it. Therefore it is up
to the player architecture implementation to design it.

The sixth requirement is not satisfied by the original SDM design.
The next section describes how each of these requirements was addressed.

I.5.2 Optimized SDM design

As it was discussed before, in Section I.3.2.4.1, the MPEG-4 standard proposes an ar-
chitecture for implementing MPEG-4 decoding applications. However, this architecture
is very basic, and does not describe other components necessary for a complete player.
Figure 2.10 presents the complete block diagram of the MPEG-4 player.

On the left side of Figure 2.10 Data Input blocks can be observed, which represent
the components of the player that are responsible for handling different types of input
streams. One MPEG-4 scene can receive data from one or more input streams, thus it is
possible to have a local MPEG-4 file that receives some scene data, e.g. BBA animation,
from a network stream. The communication between the Data Inputs and the Decoders
is performed trough shared data structures (Input Buffer) that hold the data sent from
the Data Input until a Decoder is ready to receive it. The data transferred is in a
general binary format, hence it does not depend of its type. Therefore it is ensured that
Data inputs can be integrated without changing the rest of the system, hence the first
requirement is met.

The synchronization between different streams is done at the Data Output level by
using the Timer component that holds the time for the current frame. The time is
calculated since the beginning of the rendering for the current MPEG-4 scene. The Timer
starts counting at the time when all streams that have frames that need to be played at
time-stamp zero have at least one decoded frame, thus ensuring perfect synchronization.
The Timer value is frozen at the beginning of each frame, and then it is used to retrieve
the corresponding packet from the Output Buffers and present it. This allows skipping
late frames, thus avoiding synchronization problems.

One solution for solving the requirement to support multiple scene-graph formalisms
is to create an intermediate scene-graph format, that will be then used for rendering. As

55

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

D
a

ta
 I
n

p
u

t
1

Input

Buffer 1

Input

Buffer 2

Input

Buffer 3

Decoder 1

input

Buffer n

Decoder 2

Decoder m

Output

Buffer 1

Output

Buffer 2

Output

Buffer k

D
a
ta

 O
u
tp

u
t
2

Input

Buffer 4
Decoder 3

Output

Buffer 3
Input

Buffer 5
Decoder 4

D
a
ta

O
u
tp

u
t
1

D
a
ta

 M
a
n
a
g
e
m

e
n

t

Scene Management

Stream Creator

R
e
n
d
e
re

r

D
a
ta

O
u
tp

u
t

j

Data Flow Control Flow

Running in

Main Thread
Shared Structure

Running in

Separate Thread

Application Interface
D

a
ta

 I
n
p
u
t
i

Timer

S
c
e

n
e

-G
ra

p
h

Figure 2.10: Block Diagram of the MPEG-4 Player for PC

it was stated in Section I.4, Table 2.1, it is not necessary to implement all BIFS nodes,
hence an intermediate scene-graph is a viable solution. Furthermore, it separates the
input scene-graph format from the rendering one, thus allowing better optimization at
the Renderer.

The intermediate scene-graph is further used to standardize the Decoder to Data
Output communication, hence all decoders that produce mesh data should convert it into
that format. Furthermore, other types of decoders, like those for image, video, sound and
BBA animation, have predefined output format, hence allowing for easy integration of
new ones.

It can be observed from Figure 2.10 that the Application Interface communicates only
with the Scene Management component. The communication is based on a predefined
interface, having only the Application Interface that depends of the Scene Management
and not vice-versa. This allows having multiple Application Interfaces without changing
the rest of the system, therefore solving the requirement for easy integration in more
environments.

The last requirement is implementation oriented, but nevertheless it is also important.
Nowadays most of the computers include processors that have two or more sub-processors
or cores, hence it is important to design an application that will use all cores if possible.
The design of the MPEG-4 player takes this into consideration by implementing different
tasks in separate threads. The Main thread is executing the core of the application, while
additional threads are created when opening MPEG-4 scenes. Each Decoder and Data

56

I.5. DESIGN OF AN MPEG-4 PLAYER ARCHITECTURE FOR POWERFUL

PLATFORMS

Input is running in its own thread, while they pass data to each other and the main thread
by using the shared Input Buffer and Output Buffer structures. The decision of which
thread is executed at which core is left to the operating system. This solution tackles the
last requirement.

Table 2.3 summarizes the requirements and how they were solved.

Table 2.3: Requirements for a MPEG-4 Player for PC

Requirement Solution

Receive data from multiple steams,
either file or network

Define a standard interface for different input
streams

Synchronize all data streams Implement a common timer component
Accommodate multiple scene-graph
formalisms

Define an intermediate scene-graph

Easily integrate different decoders Define a standard interface for integrating
decoders

Easily integrate in different
applications

Predefine functions and messages for
communicating with the player architecture

Utilize optimally the capacity of the
client terminal

Separate different tasks in more threads

In this section it was shown how the different requirements were met by the design
the of the player. The next section presents the implementation in more detail.

I.5.3 MPEG-4 Player Components

As it can be observed from Figure 2.10, the player is separated in the following modules:

• Scene Management;

• Application Interface;

• Stream Creator;

• Timer;

• Decoding;

• Data Management;

• Rendering;

• Scene-graph.

Appendix C presents the classes included in the player and their inheritance.

The following sections explain each of the modules in detail.

57

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

I.5.3.1 Scene Management

This module is the core of the Player, executed in the main thread, and used to initialize,
connect and synchronize the operation of the other modules. Therefore, when the program
is executed, this is the only module called from the Application Interface. Except for its
initial creation, every other event passes trough it.

In order to separate the Application Interface from the rest of the player, the Scene
Manager was designed with clearly defined input and output functions. The data passed
to the functions does not depend on the application interface, or on the operating system.
When the user executes an action on the Application Interface, it calls this module, that
in turn forward the action to the appropriate component. An action may be a mouse
movement, key press, or a custom action such as the one for opening a file or change
rendering settings.

The implementation of Scene Management exposes six important methods:

• Init - Initializes the complete architecture.

• Destroy - Deletes all data and destroys the architecture.

• ProcessMessage - Processes a message from the user.

• LoadFile - Loads a file in the architecture.

• CloseFile - Closes a loaded file.

• RenderScene - Renders one frame of the scene .

I.5.3.2 Application Interface

The Application Interface depends on the different types of user environments. It creates
the user interface, initializes the Scene Manager and sends the user input to it. Currently
four interfaces are supported:

• The Windows application interface is the most versatile. It contains a menu that
can be used to see the current status of the rendering options, options to save and
load the current window and status to and from an ini file. Additionally it has an
option to capture a movie of the rendering, as well as an option for command-line
loading of scene, and capturing a screen-shot from that scene.

• The ActiveX interface can be used in other applications, or attached to a website,
while it only exposes a single function for loading a scene.

• The Mozilla plug-in interface is a specific for use in Mozilla web browsers. It has
the same options as the ActiveX interface.

• The Chrome extension interface is a specific for use in the Chrome web browser.
It has the same options as the ActiveX interface.

Because of the nature of the interfaces, the player is compiled separately for each one.

58

I.5. DESIGN OF AN MPEG-4 PLAYER ARCHITECTURE FOR POWERFUL

PLATFORMS

I.5.3.3 Stream Creator

The Stream Creator module is responsible for creating and managing all data streams
that flow from the input to the rendering module, hence it contains information for all
Data Input, Decoder, Data Output and Buffer structures that are used by a MPEG-4
scene. Since it is responsible for creating the data streams, it also holds information on
how each stream type is handled, i.e., which Decoder and Data Output is used.

Initially the Stream Creator creates the appropriate Data Input for the input MPEG-4
scene type. After that, for each found stream, the Data Input calls the Stream Creator
to create the relevant Decoders and Data Outputs and connects them by using the shared
buffer structures, hence a decode chain is created. Furthermore, it is used to execute
some action on all Data Inputs like checking whether all of them have at least one frame
available for display.

The implementation of Stream Creator exposes four important methods:

• CreateDataInput - Creates a specified data input.

• CreateDecodeChain - Creates a decode chain for a stream.

• AreAllStreamsLoaded - Checks whether all streams have at least one frame available.

• PlayAllStreams - Executes the play function of all active data outputs.

Furthermore, the Stream Creator is used to optimally create the decoders, in such a
way that the CPU on the terminal does not get overloaded with using too many threads.
One optimization is done for decoding images because in an MPEG-4 file the number and
size of images, i.e. textures, can be far greater than those of other streams. If it is allowed
to create a decoder, i.e. thread, for each image, they can use most of the processing power
and do not allow the other types of decoders to decode the data, leading to a big delay
in the loading of the scene. Therefore the Stream Creator creates one decoder for each
image type and all images of same type are forwarded to the same decoder.

I.5.3.4 Timer

This component tracks the time that is measured and its value is read at each rendered
frame. The time value is used by different data outputs, so they can compose the correct
data.

The Timer exposes the current time relatively to the start of the MPEG-4 scene, as
well as methods to stop and start the timer. The most important function is the one used
to freeze the time value that is executed before each rendered frame. Then this value
is used to synchronize the rendering of the animated components, especially in the case
when multiple animations are present. Therefore they will all compose data that has the
same value for the time-stamp, independent of the decoding time.

The implementation of Timer exposes three important methods:

• ClockReset - Resets the timer clock to zero.

• Frame Lock - Stores the current time.

• Frame Time Get ms - Retrieves the current time.

59

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

I.5.3.5 Decoding

The role of the Decoding module is to get the data from the input stream, transform it
in to a compatible format and send it to the output. It has multiple components (Data
Input, Decoder and Data Output) and each of them is responsible for different tasks in
the decoding process. The role of each component is:

• Data input - Gets the data from different sources (file, stream, . . .), demuxes the
data and sends the different types of data to the decoders.

• Decoder - Receives the data from the input, decodes it into a predefined format,
and sends it to the output.

• Data Output - Receives the data from the decoder, and according to the type of
data it prepares it for composition.

The data between the DataInput and the Decoder, and between the Decoder and the
DataOutput is transferred using the Buffer class. This class contains a list of frames
(Frame). A frame can be a simple buffer, or a specific frame dependent of the stream
type (FrameMesh, FrameAnim, FrameAudio, FrameImage). Each of these frame types can
contain additional data, for example the height and the width of the image in FrameImage.
Each frame contains information about the stream that the frame belongs to and a time-
stamp. The access to the frames in the Buffer from the different threads is controlled by
a mutex (to control the access to the frames) and a semaphore (to count the available
frames).

The Data Output components play a major role in the composition process and are
responsible for transferring the decoded data from memory to the graphics card, making
a connection between the scene-graph and the different resources (textures, animation,
etc.) and requesting decoding of new resources as well as new data inputs (e.g. streaming
of BBA).

The Data Input interface defines only three functions that need to be implemented by
a specific data input:

• Init Initialization of the data input, and creates the streams.

• GetTrackData Returns one frame of the requested stream.

• Destroy Frees memory and closes the data input.

The Decoder interface defines only three functions that need to be implemented by a
decoder in order to be included in the architecture:

• InitDecoder Initializes the decoder by using the first data that is sent from the data
input. This can be a decoder specific info if it is available, or the first data frame.

• Decode Decodes a frame from the input data and creates an output frame that is
returned from the method.

• FreeDecoder Frees memory and closes the decoder.

The (Data Output) interface defines only three functions that need to be implemented
by a specific data output:

60

I.5. DESIGN OF AN MPEG-4 PLAYER ARCHITECTURE FOR POWERFUL

PLATFORMS

• Init Initializes the data output.

• Play Prepares the decoded data and sends it to the specific output.

• Destroy Frees memory and closes the data output.

As it can be observed from the implementation, the interfaces are quite simple, en-
abling easy integration if other decoders and input streams are needed.

I.5.3.6 Data Management

This component is used to store information about all created data, including 3D meshes,
text and texture information. Depending of the selected options, the needed data is
grouped and sent to the Renderer for display. Furthermore, it controls referencing of
resources. For example if an image is requested and has been already decoded, its reference
will be returned.

The Data Management component exposes the following important methods:

• AddMeshGroup - Adds a new mesh to the mesh registry.

• AddDeformer - Adds a new deformer to the deformer registry.

• AddText - Adds a text to the texts registry.

• LoadImage - Requests decoding for an image used as texture.

• Render - Calls the Render method from renderer with the selected objects.

I.5.3.7 Rendering

The Rendering module is used to display the scene on the screen. In order to allow
interoperability with different operating systems, it is necessary to separate the render-
ing part from other components. Therefore the Rendering module defines an interface
for integrating different rendering APIs or graphics engines and includes the following
components:

• Renderer - Interface for the main rendering engine.

• Mesh - Interface for storing mesh data.

• Texture - Interface for storing texture data.

• Deformer - Interface for storing deformers that are used for bone-based animation
and morphing.

The Renderer interface exposes the following important methods:

• Init - Initializes the rendering engine.

• Cleanup - Destroys the rendering engine and all that was created by it.

• CreateMeshGroup - Creates a mesh from the input mesh data.

• CreateTexture - Creates a texture from the input pixel data.

61

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

• CreateDeformer - Creates a specific deformer for a mesh.

• CreateText - Creates a text overlay from the input string.

• AddMeshGroup - Adds a mesh in the rendering pipeline.

• BeginRender - Initializes the rendering process.

• Render - Renders one frame.

• EndRender - Draws the text overlay and finishes rendering.

• ProcessMouseMessage - Handles mouse input from the user for moving the camera.

As it can be observed from the methods, the Renderer component is used to create
instances of the other components, which is a necessity because each graphics API has its
own data structures.

I.5.3.8 Scene-Graph

The Scene-Graph module is defining a scene-graph structure that is filled with the decoded
data from the MPEG-4 scene, hence it separates the MPEG-4 decoders specific structures
from the other components of the player. Furthermore it allows for different optimizations
to be made on the scene-graph data, independent of the input scene-graph format.

One optimization is done when transferring mesh information from the original scene-
graph format to the player scene-graph format. How mesh is stored in the input scene-
graph is different in most scene-graph formalisms. For example, in BIFS, each component
(coordinates, normals, texture coordinates) and its indices are stored in separate arrays.
However, in COLLADA the indices are stored multiplexed in one single array. On the
other hand, graphics cards usually take for input array of vertex information and only
one index list, hence all data needs to be transformed into a unique graphics card format.
In the case of COLLADA, the indices first have to be demultiplexed and then the mesh
data can be converted. For BIFS, the data is converted directly. The conversion is done
using the following algorithm:

1. Create new arrays for vertices and all parameters (normals, texture coordinates,
etc.) that exist in the original mesh and create new index arrays.

2. For each index group (containing the indices in each of the index arrays having the
same position) check if that group of values existed previously in the index arrays.

a) If yes, put a new index into the new index array that points to the same vertex
as the previously found group.

b) If no, add a new vertex and parameters having the values that the indices point
to, and add a new index that points to this vertex.

From this data, a new node is created and it is used for rendering.
Another optimization is done with respect to the animation, more specifically the bone

based animation. The animation data is composed of two parts: bone hierarchy and bone
influences. This data is stored differently in both BIFS and COLLADA. In BIFS, the
hierarchy is made out of SBBone nodes that contain the initial transformation of the bone
with respect to the parent, as well as information for the bone influences on the vertices,

62

I.6. MPEG EXTENSIBLE MIDDLEWARE (MXM)

composed of pairs of vertex indices and weights. On the other hand, in COLLADA, the
hierarchy is made of JOINT nodes and the top element points to a controller node that
contains the initial transformation of the bones, as well as the bones influences. The
influences are stored in three arrays: the first array stores all used weight values, the
second array stores the number of influences per vertex and the third array stores pairs
of bone and weight indices for each influence for each bone.

As it can be observed both representations are different. Furthermore, there are some
limitations imposed by the animation processing on the graphics card: (1) an inverse
world bind pose matrix has to be calculated for each bone, (2) it does not optimally
handle a hierarchy of bones and (3) all bone influences have to be stored per vertex.
Therefore, in the player scene-graph, a unified format close to the graphics card is used
containing a list of matrices for each bone, as well as list of (bone index, bone weight)
pairs for each vertex of the animated mesh.

The processing is done in two stages: (1) calculation of the inverse world bind pose
matrix and (2) creation of the vertex influence list. For BIFS, the hierarchy is passed and
the matrix is calculated for each bone, and at the same time the influences of that bone
are added to the vertex influence structure. For COLLADA, first the hierarchy is passed
and the matrix is calculated for each bone, and then the controller node is parsed, and
the bone influences are transferred to the vertex influence structure.

The third optimization is done with respect to the morphing animation, which is
composed of two data structures: a list of vertex arrays corresponding to morph targets
and a list of weights used to calculate the final shape. The representation is similar in both
BIFS and COLLADA, however with the optimization of the vertices array of the base
shape, the target shapes no longer have the same array length. There are two solution for
the processing of the morph shape: (1) create a mapping between the new vertex position
and the old one and (2) expand also the target shapes when expanding the base shape.
The first solution is more memory efficient, however it requires that the vertex data be
taken from the graphics card and updated with the new positions, an operation that can
be very costly. The second solution requires more memory, however the calculation of the
new position can be done directly on the graphics card by using vertex shaders (there is
a limitation on the number of target shapes that can be used, depending on the graphic
card).

As it can be observed from the design process of the MPEG-4 player, accessing
MPEG-4 content can be very complex. In order to facilitate the process, a new mid-
dleware was designed and it will be presented in the next section.

I.6 MPEG Extensible Middleware (MXM)

As it can be observed from the previous section, accessing MPEG-4 content requires deep
knowledge of the MPEG-4 standard. Although there are already frameworks for accessing
MPEG-4 content including the reference software and third party implementations like
GPAC, development of MPEG-4 capable software is not facilitated enough. Therefore,
having a simplified API can be of a great importance for spreading the usage of the
standard.

The role of the MPEG Extensible Middleware (MXM) is to tackle exactly that prob-
lem. We contributed on the standardization process of MXM on the 3D graphics aspects.
MXM will enable the development of a global market of:

63

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

• MXM applications that can run on MXM devices thanks to the existence of a
standard MXM application API and MXM devices executing MXM applications
thanks to the existence of a standard MXM architecture.

• MXM engines thanks to the existence of standard MXM architecture and standard
APIs.

• Innovative business models because of the ease to design and implement media-
handling value chains whose devices interoperate because they are all based on the
same set of technologies, especially MPEG technologies.

MXM specifies a set of Application Programming Interfaces (APIs) so that MXM
applications executing on an MXM device can access the standard multimedia technologies
contained in its Middleware as MXM engines.

The APIs belong to two classes:

• The MXM engine APIs, i.e. the collection of the individual MXM engine APIs
providing access to a single MPEG technology (e.g. video coding) or to a group of
MPEG technologies where this is convenient.

• The MXM orchestrator API, i.e. the API of the special MXM engine that is capable
of creating chains of MXM engines to execute a high-level application call such as
Play, as opposed to the typically low-level MXM engine API calls.

The following MXM Engine APIs are currently implemented:

• Digital Item - defines interface for operating on ISO/IEC 21000-2 Digital Item Dec-
laration (DID) data structures.

• MPEG-21 File - defines the methods for operating over ISO/IEC 21000-9 MPEG-21
File Format files.

• REL - defines the methods for operating over ISO/IEC 21000-5 Rights Expression
Language (REL) data structures.

• IPMP - defines the methods for operating over ISO/IEC 21000-4 Intellectual Prop-
erty Management and Protection data structures.

• Media Framework - defines grouping together several media specific engines such as
Video, Image, Audio and Graphics Engines. It also implements common function-
alities (independent on the media type) such as resource loading and saving.

• Meta-data - defines the methods for operating over meta-data structures.

• Digital Item Streaming - defines the methods for operating over ISO/IEC 21000-18
Digital Item Streaming data structures.

• Digital Item Adaptation - specifies means to access and create information pertain-
ing to the usage environment context where Digital Items or media resources are
ultimately processed, consumed, created, distributed, etc.

• Event Reporting - defines the methods for operating over ISO/IEC 21000-15 Event
Reporting data structures.

64

I.6. MPEG EXTENSIBLE MIDDLEWARE (MXM)

• Content Protocol - defines the methods for for performing Content Protocols as
specified in ISO/IEC 29116-1.

• License Protocol - defines the methods for for performing License Protocols as spec-
ified in ISO/IEC 29116-1.

• IPMP Tool Protocol - defines the methods for for performing IPMP Tool Protocols
as specified in ISO/IEC 29116-1.

• Content Search - defines the methods for searching for content.

• Security - defines security-related methods.

• MVCO - lets an MXM Application access the functionalities of the Media Value
Chain Ontology specified in MPEG-21 Part 19. Media Value Chain Ontology (Com-
mittee Draft)

• Domain - defines methods for operating on ISO/IEC 29116-1 Domain management
data structures.

• Rendering - defines a number of interfaces allowing rendering of a scene.

Since accessing content is the main interest point, the Media Framework Engine will
be described in the next section.

I.6.1 Media Framework Engine

This section presents the work of the author that was done for and included in the MXM
API. The main goal of the work is to propose a solution for converting the MPEG-4
content into a more comprehensible and easily consumable format.

Figure 2.11 presents the classes included in the Media Framework Engine. Two main
groups can be observed: the first one, Access API, is used to load content from MPEG-4
files and the second one, Creation API, is used to create MPEG-4 files.

Both groups have the same type of APIs. The Engine is the main API that is used
to open MPEG-4 files and gives access the other APIs, which are used for a specific type
of content. Four main APIs exist:

• Audio - API for dealing with audio content.

• Image - API for dealing with image content.

• Video - API for dealing with video content.

• Graphics3D - API for dealing with Graphics3D content.

All of these APIs are simple and expose only few methods to access the data, however
they can still cover a wide range of applications. An application that needs to access only
video and audio streams, needs to use only a few methods to get the data.

While the data from audio, video and image is a simple one, the content from a
graphics scene is more complex and versatile. Therefore, the Graphics3D API is more
complex, however it is still much simpler than accessing the content in the standard way.
The next section describes the Graphics3D Access API in more details. Let us note that
this API was proposed by the author to MPEG for standardization in the process of
MXM.

65

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

Animation

MXMObject

Class

Appearance

MXMObject

Class

Geometry

MXMObject

Class

Graphics3DAccess

MXMObject

Class

Animation

MXMObject

Class

Appearance

MXMObject

Class

Geometry

MXMObject

Class

Graphics3DCrea…

MXMObject

Class

AudioAccess

MXMObject

Class

AudioCreation

MXMObject

Class

ImageAccess

MXMObject

Class

ImageCreation

MXMObject

Class

MXMObject
Class

MXMObject

Abstract Class

MXMEngine

Abstract Class

Engine

MediaFramework

Class

Engine

MediaFramework

Class

VideoAccess

MXMObject

Class

VideoCreation

MXMObject

Class

publicpublic

public

public

publicpublic

public

public

public

public

public

public

public

public

public

public

public

public

Access API

Creation API

Figure 2.11: Class diagram of the Media Framework Engine

I.6.1.1 Graphics3D Access API

The Graphics3D API gives access to the 3D content in the scene of the MPEG-4 file. It
parses the scene and converts each mesh into a flat buffer representation that is simple
enough for easy parsing by an external application.

The API is separated in three parts, each of them specialized for different part of the
content:

• Appearance - API for dealing with mesh appearance.

• Geometry - API for dealing with 3D mesh shape.

• Animation - API for dealing with mesh animation.

The following sections present each of the APIs in detail.

I.6.1.1.1 Appearance API

The Appearance API gives access to the visual appearance of the mesh, including its
diffuse, specular, etc. colors and a reference to a texture. The main function of the API
is GetAppBuffer that returns a buffer containing a description of the appearance for
each mesh of the scene.

66

I.6. MPEG EXTENSIBLE MIDDLEWARE (MXM)

Table 2.4: Appearance Buffer

Atom AppearanceData

{

Int(4) sizeAppearanceData;

Int(1) appearanceCount;

for (1 .. appearanceCount)

Appearance();

}

Atom Color

{

Float(4) red;

Float(4) green;

Float(4) blue;

}

Atom Appearance

{

Int(4) textureID;

Int(1) haveMaterial;

If (haveMaterial = 1)

{

Color diffuseColor;

Color specularColor;

Color emissiveColor;

Float(4) transparency;

Float(4) ambientIntensity;

Float(4) shininess;

}

}

The description of the appearance buffer is presented in Table 2.4.

It can be observed that the structure of the buffer is quite simple, thus parsing it is
easy.

I.6.1.1.2 Geometry API

The Geometry API gives access to all geometry in an MPEG-4 file. The geometry may be
included directly in the BIFS scene, or compressed by some other technique and referenced
in the BIFS scene. The main function to access the geometry is GetVBandIB, which
returns a buffer that is a flat representation of all geometry.

The description of the geometry buffer is presented in Table 2.5.

It can be observed that the buffer format is relatively simple, and using it does not
require knowledge of the internal format of MPEG-4. It organizes the meshes in an array
of vertex buffers that contain more index buffers that have separate appearance. The
data can be returned in two formats: vertex buffer format, in which the data is flattened
and there is only a coordinate index buffer, and a second format, IndexedFaceSet, that
keeps the original format of the mesh as it was stored in the scene.

This allows using MPEG-4 files in an application with only writing a few lines of code.
However, the simplification of the scene into a flat buffer has a price, it removes some
capabilities and features from the standard like access to the scene-graph, scripts and all
other advanced features. Since the API is intended to enable easy inclusion of MPEG-4
content in an application, and furthermore considering that most applications implement
their own scene-graph and scripting environments, these features can be easily excluded.

I.6.1.1.3 Animation API

The Animation API gives access to an animation, if existent, connected to a mesh. It
extends the usage of the APi for applications that require animated 3D graphics content.
The API supports two types of animations, bone-based provided by the BBA stream and
coordinate interpolation provided by the FAMC stream, hence it has two main methods.

67

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

Table 2.5: Geometry Buffer

Atom MeshData

{

Int(4) sizeMeshData;

Int(1) vbCount;

for (1 .. vbCount)

VertexBufferDesc();

}

Atom VertexBufferDesc

{

Int(4) sizeVertexBufferDesc;

VertexBuffer();

Int(1) ibCount;

For (1 .. ibCount)

IndexBuffer();

}

Atom IndexBuffer

{

Int(4) sizeIndexBuffer;

Int(4) appearanceID;

Int(4) coordIndexCount;

For (1 .. coordIndexCount)

{

Int(4) index;

}

Int(4) texCoordIndexCount;

For (1 .. texCoordIndexCount)

{

Int(4) index;

}

Int(4) normalIndexCount;

For (1 .. normalIndexCount)

{

Int(4) index;

}

}

Atom VertexBuffer

{

Int(4) sizeVertexBuffer;

Int(1) description;

Int(4) vertexCount;

For (1 .. vertexCount)

{

Float(4) x;

Float(4) y;

Float(4) z;

If (boneWeights)

{

Float(4) w0;

Float(4) w1;

Float(4) w2;

Float(4) w3;

Int(1) boneIndex0;

Int(1) boneIndex1;

Int(1) boneIndex2;

Int(1) boneIndex3;

}

}

Int(4) normalCount;

For (1 .. normalCount)

{

Float(4) nx;

Float(4) ny;

Float(4) nz;

}

Int(4) texCoordCount;

For (1 .. texCoordCount)

{

Float(4) u;

Float(4) v;

}

}

68

I.7. DESIGN OF AN MPEG-4 PLAYER ARCHITECTURE FOR MOBILE DEVICES

Table 2.6: BBA Animation Buffer

Atom AnimationBuffer

{

Int(4) sizeAnimationBuffer;

Int(1) hasHierarchy;

If (hasHierarchy)

Hierarchy h;

Int(4) NoOfFrames;

For (i = 1 .. NoOfFrames)

Frame f[i];

}

Atom Hierarchy

{

Int(4) sizeHierarchy;

Int(4) charactersCount;

For (i = 1 .. charactersCount)

Bone rootBone[i];

}

Atom Bone

{

Int(4) idBone ;

Int(4) childBonesCount;

For (i = 1 .. childBonesCount)

Bone Bone[i];

}

Atom Frame

{

Int(4) size;

Int(4) boneDataCount;

For (i = 1 .. boneDataCountt)

BoneData bd[i];

}

Atom BoneData

{

Int(1) boneDataMask;

For each (component in boneDataMask)

Float(4) component;

}

The first one is GetDecodedBBA, which returns a buffer containing all decoded BBA
frames. The description of the BBA buffer is presented in Table 2.6.

As it can be observe the structure is quite simple. First it gives the hierarchy of the
bones and then the transformation data for each frame.

The second one is GetDecodedFAMC, which returns a buffer containing all decoded
FAMC frames. The description of the FAMC buffer is presented in Table 2.7.

As the previous ones, this structure is also simple. First it gives the number of frames,
and then for each frame its time-stamp and an array of coordinates, normals and texture
coordinates.

Mobile device are far less powerful than personal computers, hence the same player
architecture cannot be used. Therefore, in order to be able to play MPEG-4 content on
a mobile device, many optimizations need to be performed. The next section presents
design of a MPEG-4 player for a mobile device.

I.7 Design of an MPEG-4 Player Architecture for Mobile

Devices

Several implementations of MPEG-4 graphics are made available in products such as the
ones proposed by iVast or Envivio, or in open source packages such as GPAC [33]; however,
the literature on MPEG-4 3D graphics on mobile phone is almost inexistent. In order to
quantify its capabilities for representing graphics assets as used in games, a MPEG-4 3D
graphics player was designed and implemented for the Nokia S60 platform based on the
Symbian S60 FP1 SDK [30]. The testing hardware included Nokia N93, Nokia N95 and

69

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

Table 2.7: FAMC Animation Buffer

Atom FAMCBufer

{

Int(4) sizeFAMCBuffer;

Int(4) NoOfFrames;

For (i = 1 .. NoOfFrames)

Frame f[i];

}

Atom Frame

{

Int(4) size;

Int(4) timeStamp;

Int(4) coordCount;

For (1 .. coordCount)

{

Float(4) X;

Float(4) Y;

Float(4) Z;

}

Int(4) normalCount;

For (1 .. normalCount)

{

Float(4) X;

Float(4) Y;

Float(4) Z;

}

Int(4) texCoordCount;

For (1 .. texCoordCount)

{

Float(4) U;

Float(4) V;

}

}

Nokia N95 8GB (which have nearly the same hardware and performances). To ensure good
performances, the player was implemented in C and C++. For MPEG-4 de-multiplexing
and BIFS decoding, the implementation is full software (based on the GPAC framework).
The implementation of the rendering is hardware supported (based on OpenGL ES [63]).

I.7.1 Requirements

To properly design the mobile MPEG-4 player, an analysis of the mobile devices needs to
be performed and a set of requirements defined.

Because the mobile phones are naturally weaker devices than a desktop or a laptop
computer, the architecture of the player should be simpler. Mainly, processors on mo-
bile phones have only one sub-processor, hence parallelizing different tasks in different
threads would not bring any benefit. Therefore, decoding the MPEG-4 file should be
done sequentially as different streams are needed or requested.

Another problem may arise with the decoding algorithms since most of them are
designed for PC. Mobile phones have restrictions in the processing power, as well as
memory limitations. Therefore the algorithms should be adapted for mobile phones.
Furthermore, implementing all MPEG-4 algorithms on a mobile phone is a tedious task,
and it may not be necessary. Therefore, a subset of decoding algorithms should be chosen,
having in mind their processing power and memory requirements.

As it was mentioned before, when the requirements for a PC MPEG-4 player were

70

I.7. DESIGN OF AN MPEG-4 PLAYER ARCHITECTURE FOR MOBILE DEVICES

discussed in Section I.5.1, with the introduction of MPEG-4 Part-25, different XML scene-
graph formalisms can be used inside MPEG-4 files. However, implementing them will add
significant complexity to the player and increase its memory requirements. Therefore, the
player will include support only for the standard MPEG-4 scene-graph format, namely
BIFS.

Connectedness to the Internet is one of the most important features of mobile phones,
hence it is necessary to implement an player architecture that can use it to access data.
Therefore, the player architecture should be capable of receiving data from multiple
streams, hence it opens opportunities for different applications.

The following main requirements can be derived:

• Simplify the architecture.

• Find decoders appropriate for mobile devices.

• Reduce the number of BIFS nodes.

• Support input from multiple streams.

The next section introduces the architecture of the player and presents how the dif-
ferent requirements were met.

I.7.2 Implementation

Figure 2.12 represents the block diagram of the architecture of the mobile player.

Application Interface

Scene Manager Resource Manager

Scene-graph

Renderer

Visual Interface

Decoder 1

Decoder 2

Decoder nInput 1 Input m

Figure 2.12: Mobile MPEG-4 player architecture

As it can be observed from Figure 2.12, the player architecture is simpler than the
one designed for the PC player presented in Section I.5.2. Every task executes in the
same thread and in the order that is requested. For example, when the user requests to
open a file, the Visual Interface sends this message to the Scene Manager that forward
the request to the Resource Manager. Then it opens the file with the appropriate Input,
and decodes the BIFS scene with the BIFS decoder. While the scene is parsed, every
resource (e.g. texture) is requested from the Resource Manager that, if the resource was
not decoded, decodes it using a Decoder and then it returns it. When the scene is ready,
the Renderer displays it.

71

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

In order to be able to decode the data as fast as possible, the coding algorithms
should be chosen carefully. The most important data is the mesh description. There
are several algorithms that can compress it effectively, however the complexity of the
decoder is very high for a mobile phone. Therefore only the BIFS scene-graph compression
is used to represent the mesh data. For representing the animation, the BBA codec
is used, however it was optimized for running on a mobile phone [55]. The textures
are also important assets, however their size is significant compared to the other ones.
Therefore the compression ratio is more important than the complexity of the codec,
hence JPEG2000 compression is used.

BIFS is very complex, containing many nodes that are not necessary for the targeted
mobile applications, hence a subset of nodes should be chosen to be used for simplifying
the implementation. This subset of nodes was presented previously in Section I.3.2.5.

As it can be can observed from Figure 2.12, the player architecture is separated in
several modules:

• Application Interface;

• Visual Interface;

• Scene Manager;

• Renderer;

• Scene-graph;

• Resource Manager.

I.7.2.1 Application Interface

The Application Interface module is dependent of the operating system. It is used to
initialize the applications and create all other modules. The main function is to create
the application window, however all user interface is rendered independently of the OS.

I.7.2.2 Visual Interface

The Visual Interface is a module that uses the Renderer to display the interface of the
application to the user. It has support for displaying buttons which can be activated by
touch events, as well as text and file browsing. The interface is adapted automatically to
the resolution and orientation of the screen of the device, hence it is usable for different
mobile phones.

I.7.2.3 Scene Manager

The Scene Manager is responsible for managing all other components. It request loading
of a file, update of animation and calls the rendering of the scene-graph. Furthermore, it
manages all states of the player, and switching between them on user actions. The states
of the player include: main screen, file browser screen, scene rendering screen and help
screen.

72

I.7. DESIGN OF AN MPEG-4 PLAYER ARCHITECTURE FOR MOBILE DEVICES

I.7.2.4 Renderer

The Renderer is responsible for all display actions in the player. It has methods for
displaying different kinds of data. When the program is started, the Renderer initializes
the screen and loads the fonts. When a scene is loaded, the methods of the Renderer are
called to display the data. Furthermore, it is used to display the user interface, hence the
connection from the Visual Interface to the Renderer.

I.7.2.5 Scene-graph

The Scene-graph is used to represent the scene that is to be rendered and it is an im-
plementation of the BIFS scene-graph format. It does not support all BIFS features,
however it supports updates of the scene, which are important for game applications.
The rendering code for each node is defined in its rendering method, hence all nodes
render themselves. The rendering is called just for the top node that propagates it trough
the hierarchy.

I.7.2.6 Resource Manager

The Resource Manager is very important for keeping track of all resources loaded for one
MPEG-4 file. Resources include MPEG-4 files, textures and animation. This component
provides easy access to the resources, and makes sure that each resource is decoded
and loaded only once. Furthermore, when all references to a resource are released, that
resource is unloaded.

73

CHAPTER 2. FORMAL FRAMEWORK FOR 3D GRAPHICS DISTRIBUTED SYSTEMS AND

DESIGN OF MPEG-4 PLAYER ARCHITECTURES

I.8 Conclusion

This chapter presented the main contribution of this dissertation.
The first section proposed a theoretical framework for describing distributed architec-

tures for rendering 2D and 3D graphics. The following basic transformations were defined:
rendering, coding, simplification, modeling and scene updates. This framework enables
to mathematically define the distributed architectures. By using the previously defined
formal framework functions, the architectures that were presented in the state of the art
were mathematically modeled. The functions were interconnected and reordered in order
to model each architecture. This allowed to analyze the state of the art architectures on
a common ground and concluded that none of them is appropriate for distributed game
applications.

Because none of the existent distributed architectures is able to answer to the re-
quirements of games on mobile devices, the proposed framework was used to define a
new architecture. This architecture is a distributed one, considering the game logic on
the server side, and only the rendering one the client. All components of the architec-
ture were analyzed, and a solution for each of them was proposed. Furthermore, the
architecture uses the MPEG-4 standard to facilitate the development of games. In the
proposed distributed architecture, a key component is the 3D rendering performed on the
client. Therefore, the second part of this chapter proposed an optimized approach for
rendering MPEG-4 3D content, both on a powerful platform (PC) and on less powerful
mobile platform. For the design of the MPEG-4 player for PC, six requirements were
defined, however only few of them were addressed previously by the traditional SDM. A
new player architecture is proposed that addresses all of the requirements and the pro-
posed implementation was described. By observing the complexity of the MPEG-4 player
architecture, it can be concluded that the access of MPEG-4 data is difficult. Therefore a
new framework for accessing MPEG-4 content was proposed, with the objective to facili-
tate the interface. Each of the components of the framework was presented, as well as all
of the buffer formats for each type of data (3D mesh, animation, etc.). The last section
of this chapter presented the design of the architecture for an MPEG-4 player for mobile
devices. Four main requirements were defined, specifying which parts of the PC-based
architecture need to be optimized in order to apply it to less powerful mobile devices.
Each of these requirements was analyzed and a solution was proposed. The next chapter
intends to validate newly the proposed distributed system architecture. Furthermore, it
will present the validation of the MPEG-4 players for PC and mobile devices and the
proposed simple MPEG-4 access framework.

74

Chapter 3

Experiments and Validation

Abstract

This chapter presents the validation of the distributed architecture proposed
in the previous chapter as well as experiments and validation for the MPEG-4
player architectures. Then the MPEG-4 player architecture for a mobile device is
presented and experiments are performed for determining the maximum complexity
of 3D content that can be supported by the used mobile device. In order to validate
the proposed distributed architecture, a game was adapted to use it. By using this
game, experiments were performed in order to determine the class of games that
can use this architecture as well as their complexity.

The second part of the chapter presents the MPEG-4 player architecture for PC
is validated by demonstrating how different MPEG-4 content samples are loaded
and by implementing an on-line animation system for cued speech language. The
proposed MXM API is then validated by integrating an MPEG-4 content loader in
a third party engine.

I.1. ALTERNATIVE CLIENT-SERVER ARCHITECTURE FOR 3D GRAPHICS ON

MOBILE DEVICES

I.1 Alternative Client-Server Architecture for 3D Graph-

ics on Mobile Devices

Section I.4 proposed an alternative distributed architecture for supporting games on mo-
bile devices. Section I.7 proposed an architecture for an MPEG-4 mobile player that
is to be used as a client in the proposed architecture architecture. Because of different
constraints in terms of client capacity, network bandwidth and latency, experiments were
performed in order to obtain the boundaries of each of these parameters.

I.1.1 MPEG-4 Player for Mobile Devices

This section presents the client components of the distributed system architecture pre-
sented in the previous chapter: the Rendering component (R) and a part of the Coding
component (C). As illustrated on Figure 2.7, the coding component is separated between
the server and the client. On the client, the transmitted data is first decoded and then
rendered. Therefore one of the objectives of our experiments is to find out the upper
limits in terms of 3D assets complexity (with respect to geometry, texture and anima-
tion) while ensuring fast decoding (it should be transparent to the player that the asset
was first decoded before rendering). The second objective is to analyze the rendering
performances of the selected platform.

The first tests performed addressed MPEG-4 files containing only static and textured
objects with different number of vertices and triangles. The BIFS decoding time was
measured, as well as the rendering frame-rate for each file. The second test is related
to animated objects based on skeleton-driven deformation approach. This kind of con-
tent, requiring more computations due to the operation per vertex performed during the
animation, leads to lower rendering frame-rate than the static objects.

Figure 3.1 and Figure 3.2 illustrate the classical behavior of decoding and rendering
capabilities against the number of low-level primitives (vertices, normals, triangles. . .) for
static and animated objects, respectively. The vertical axis on the left represents the BIFS
decoding time in milliseconds, and the vertical axis on the right represents the frame-rate
in frames per second (fps). Let us note that considering only vertices on the horizontal
axis does not provide a complete analysis for BIFS decoding, since the structure of the
object graph is not flat as in the case of the structure used when the object is rendered.
Indeed, when defining an object in BIFS it is possible to create different index lists for
each primitive (vertex, normals, texture coordinates, colors ...); hence the total number
of low-level primitives is reported on the horizontal axis.

In order to reduce the decoding time, one solution is to find a more compact manner
of representing the low level primitives. The number of index lists is reduced by pre-
processing the object in order to flatten its structure: vertices, normals and texture
coordinates are sharing a common list. This pre-processing has an impact on the length
of each individual primitives’ arrays (slightly increasing them), but overall it reduces the
size of the compressed data and implicitly the decoding time (around 15%). Furthermore,
it does not change the appearance of the object, just the representation of its 3D data.
Figure 3.3 shows the comparative BIFS decoding time obtained with and without pre-
processing.

Concerning the capabilities of MPEG-4 for decoding and N95 for rendering, it can
be observed that: to obtain acceptable decoding time (less than 2 seconds), a 3D asset
represented in MPEG-4 should have less than 58 000 low level primitives (corresponding

77

CHAPTER 3. EXPERIMENTS AND VALIDATION

0

10

20

30

40

50

60

70

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80

F
ra

m
e
-r

a
te

 (
F

P
S

)

B
IF

S
 D

e
c
o
d
in

g
 t

im
e
 (

s
e
c
)

Number of low level primitives in the MPEG-4 file Thousands

BIFS Decoding Time

Frame-rate

Figure 3.1: Decoding time (in s on left side) and rendering frame-rate (in fps on right
side) for static objects with respect to the total number of low level primitives in the
MPEG-4 file

to objects with less than 12 000 triangles) for static objects and 1 500 triangles for
animated objects. N95 is able to render textured and lighted static objects of around 20
000 triangles at an acceptable frame rate (25 fps) and it is able to render at the same
frame rate textured and lighted animated objects of around 6 000 triangles. Figure 3.4
presents snapshots of the player loading different static and animated objects used for
tests.

The reduced display size of the mobile phones implies that only few pixels are used to
render (sometimes dense) meshes. Simplification for geometry and texture can be used
without affecting the visual perception of the objects. By doing so, the size of the content
can be reduced by 60-80% and the loading time by 70-90% as it was researched by Preda
et al. in [56]. The size of the geometry is reduced by Garland’s quadric error metrics
technique [35], and the size of the texture by reducing its width and height. Figure 3.6
shows the original Hero model and its version simplified at 27%. The size of the simplified
file is 428kB (24% with respect to the original one) and the total loading time is 3.8 sec
(57% faster than the original one).

The two tests performed on a large database (around 5 000 graphics files of different
nature) indicate that MPEG-4 may offer appropriate representation solutions for simple
static and animated objects, both in terms of loading time and rendering frame-rate, by
offering a good compromise between compression performances and complexity.

I.1.2 Architecture Validation by a Game

To validate the architecture, this section presents experiments run with a simple car racing
game. To quantify the impact of network latency, a game was implemented and tested

78

I.1. ALTERNATIVE CLIENT-SERVER ARCHITECTURE FOR 3D GRAPHICS ON

MOBILE DEVICES

0

10

20

30

40

50

60

70

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10 12

F
ra

m
e
-r

a
te

 (
F

P
S

)

B
IF

S
 D

e
c
o

d
in

g
 t
im

e
 (

m
s
e

c
)

Number of low level primitives in the MPEG-4 file Thousands

BIFS Decoding time

Framerate

Figure 3.2: Decoding time (in ms on left side) and rendering frame-rate (in fps on right
side) for animated objects with respect to the number of low level primitives in the
MPEG-4 file

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80

B
IF

S
 D

e
c
o

d
in

g
 T

im
e

 (
s
e

c
)

Number of low level primitives in the MPEG-4 file Thousands

Original

Weak Terminal
Optimization

Figure 3.3: Decoding time improvement (in msec) due to the 3D assets pre-processing.
On the horizontal the total number of low level primitives

79

CHAPTER 3. EXPERIMENTS AND VALIDATION

(a) decoding time
1.6 s, rendering
frame-rate 63 fps

(b) decoding time
2.2 s, rendering
frame-rate 59 fps

(c) decoding time
2.2 s, rendering
frame-rate 62 fps

(d) decoding time 1
s, rendering frame-
rate 61 fps

Figure 3.4: Snapshots for static (a and b) and animated (c and d) 3D graphics objects

(a) Original model,
6846 triangles,
decoding time
8.8 s, rendering
frame-rate 32 fps

(b) Simplified
model, 1874 trian-
gles, decoding time
3.8 s, rendering
frame-rate 58 fps

Figure 3.5: The original Hero (a) and its simplified version (b)

them in different conditions. Furthermore, a methodology of 6 steps was defined to adapt
an existing game to run in the proposed architecture.

I.1.2.1 Car Racing Game

Based on the architecture proposed in the previous section, a multi-player car racing game
was implemented. The game state changes frequently, making it appropriate for testing
the architecture. The game was originally developed in J2ME as a traditional multiplayer
game for mobile phones. The users control only the speed of the car, however there
are two additional parameters which effect its maximal speed and breaking capabilities:
damage of the tires and damage of the brakes. The damage of the brakes increases each
time the car reduces speed, and the damage of the tires increases each time the car passes
a corner faster than the recommended maximal speed.

80

I.1. ALTERNATIVE CLIENT-SERVER ARCHITECTURE FOR 3D GRAPHICS ON

MOBILE DEVICES

The game uses a GASP server [?] for communication between the players. Originally,
the logic and the rendering engine were implemented in the J2ME software, the GASP
server was used only to transfer the positions between the players and a simple 2D render-
ing engine was used which rendered the track and the cars as sprites [?]. The architecture
of the game is illustrated on Figure 3.6a.

GASP Server

Client 1 Client 2 Client 3

(a) Original Architecture

GASP Server

Game Server 1 Game Server 2

Client 1 Client 2 Client 3

(b) Adapted Architecture

Figure 3.6: The original architecture of the car racing game (a) and the adapted archi-
tecture (b)

A conversion procedure was defined that uses the transformations presented previously
(Coding, Update, Modeling and Rendering) and it consists of 5 steps:

1. Identification of relevant data for Update transformation (position of the cars, ro-
tation of the camera in the case of the car race).

2. Defining and formalizing Scene Updates.

3. Discarding 2D graphics assets and replacement by 3D ones (Coding Transform).

4. Converting the game scene-graph into MPEG-4.

5. Discarding rendering calls and replacement by network communication (separation
of the scene graph between client and server).

The MPEG-4 player presented in Section I.7 was enriched with a BIFS communication
layer to ensure connection to the game server. It receives the BIFS-commands and updates
the scene accordingly, and it transmits the key pressed by the player to the game server.
The key-presses are detected by using the BIFS node InputSensor. When this node is
activated, some JavaScript [34] code stored in the scene is executed. The code makes an
HTTP request by using AJAX [2] which transfers the pressed key code to the server.

After this adaptation, the structure of the game architecture changed as illustrated on
Figure 3.6b. Three main components can be observed: Client, Game server and GASP
Server. The client is the MPEG-4 player, i.e. the decoding and rendering component
of the distributed architecture (Figure 2.7). The Game server executes the game logic
and represents the server part of the distributed architecture, i.e. the scene updates
component (U), the Simplification component (S) and the part of the Coding component

81

CHAPTER 3. EXPERIMENTS AND VALIDATION

(C) responsible for encoding and transmission. The GASP Server remains the same as in
the original architecture.

The next section presents the game design and the BIFS scene-graph for each game
state.

I.1.2.2 Game Design

A game design compliant to the proposed architecture has three phases: initialization,
assets transmission and playing. The following paragraph defines the three phases for the
car race game in two configurations, single and multi-user by analyzing at each step the
transmitted data.

1. Initialization:

• The player initiates a game by pointing to an URL referring to a remote
MPEG-4 file

• When a request is received, the server initiates a TCP session and sends the
initial scene containing a simple 2D scene presenting a menu with different
options: ”New Game”, ”Connect”, ”Exit” as illustrated in Figure 3.7a; (the
data transmitted is about 0.4 kB)

2. Assets transmission:

• if ”New Game” is selected

a) The server sends an update command for displaying the snapshots (still
images) of several cars, one at a time. The user can go forward and back
trough all cars. The transmitted data is about 30 kB for 4 cars.

b) When the user selects one snapshot, the server sends a scene update con-
taining the 3D representation of the car (around 82 kB). The car is received
by the player and rendered as an 3D object as illustrated in Figure 3.7b
(the local 3D camera is also enabled).

c) When the car is validated, the server sends still images with available
circuits and the same scenario as for the car is implemented (about 30 kB
for the 4 tracks, 208 kB and 1.6 MB for the 3D circuits).

• If ”Connect” is selected, the server checks for existent sessions (previously
initiated by other users) and sends a list;

a) after selecting one session (implicitly the track is selected), the server sends
the screen for selecting the car;

b) after selecting the car, the 3D object representing it is transmitted.

3. Playing the game:

• the code of the key pressed by the user (accelerate or break) is directly trans-
ferred to the server (about 350 bps), that computes car speed and implements
the rules for game logic (points, tire usage . . .);

• the server sends the new 3D position of all the cars in the race (about 650 bps),
updates for the status icons and the number of points; the player processes the
local scene updates as illustrated in Figure 3.8.

82

I.1. ALTERNATIVE CLIENT-SERVER ARCHITECTURE FOR 3D GRAPHICS ON

MOBILE DEVICES

(a) Phase 1: Initial-
ization

(b) Phase 2: Assets
transmission - car

(c) Phase 2: Assets
transmission - cir-
cuit

Figure 3.7: Snapshot from the car game (Phases 1 and 2)

(a) Phase 3: Play-
ing the game

(b) Phase 3: Play-
ing the game

Figure 3.8: Snapshot from the car game (Phase 3)

I.1.2.3 Description of the Scene-Graph

The game is separated in three main screens: Main Screen, Configuration Screen and
Gameplay Screen. Their appearance and functionality is presented in the next sections.

I.1.2.3.1 Sending Key Actions to the Server

Common for all screens is the manner of sending the key events from the client to the
server. As it was mentioned in the previous section, this is done by calling a JavaScript
function that executes an AJAX request. The BIFS code can be separated in two parts:
a first part for getting the key code and a second one for sending it to the server.

The key code is read by integrating an InputSensor node in the scene, and adding an
input stream to the MPEG-4 file of type KeySensor attached to this node. The following
code represents the integration of the InputSensor node:

DEF N1 Valuator {}

83

CHAPTER 3. EXPERIMENTS AND VALIDATION

InputSensor {

url [od:10]

buffer {

REPLACE N1.inSFInt32 BY 0

}

}

The url field points to the stream that generates the key data. The key code is
generated by the player and sent to the scene by using the stream. The buffer field
receives the data and executes the REPLACE command using the received value in the
first byte, which is the key code of the pressed key. Therefore the Valuator node will
receive the key code value in its inSFInt32 field.

The following code defines the script that sends the key to the server:

DEF SEND_KEY Script

{

eventIn SFInt32 KeyCode

url "javascript:

function KeyCode(value)

{

xml = new XMLHttpRequest();

var link = ’’;

link=’http://192.168.0.1:4734/’;

link=link+value;

xml.open(’GET’, link, true);

xml.send(null);

}

"

}

The eventIn field receives the key code and executes the KeyCode function using it
as an input value, hence the function sends it to the server. The connection between the
Valuator field and the script is done by defining a ROUTE as follows:

ROUTE N1.outSFInt32 TO SEND_KEY.KeyCode

I.1.2.3.2 Main Screen

This section represents the initial screen that is displayed when the game is loaded. The
screen presents a menu with three options: New Game, Connect and Quit. The option
New Game starts a new game session, and leads to the second screen, i.e. Configuration.
The option Connect connects to an already existing game session and, like the first option,
leads to the Configuration screen. The third option quits the game.

The complete scene-graph is presented in Appendix I.1. Here we will present the most
important nodes and their role.

As it can be observed from the scene-graph, three similar sections exist, each for one
item of the menu, consisting of six nodes:

• Transform2D - Used to position the menu item on the screen.

84

I.1. ALTERNATIVE CLIENT-SERVER ARCHITECTURE FOR 3D GRAPHICS ON

MOBILE DEVICES

• Shape - General grouping node that is displayed containing appearance and geom-
etry fields.

• Appearance - Used to reference material and textures.

• Material2D - Defines the color of the text.

• Text - Defines the string to be displayed and points to its style.

• FontStyle - Defines the size of the font and its justification.

The menu item that is selected has a bigger font size, hence the FontStyle nodes have
been DEF-ed, meaning that an ID is attached to them so that they can be referenced
in update commands. When the user presses the up or down key, the server changes
the selected item and send a BIFS update command to change the displayed text. For
example, to select the Connect menu item, the following update command is sent:

AT 2000 {

REPLACE MENU_NEW.size BY 20

REPLACE MENU_CONN.size BY 26

}

When the user selects a menu item and presses the select key, the server sends a scene
replace command that loads a new scene, dependent on the selection. For example:

AT 3000 {

REPLACE SCENE BY OrderedGroup {

....

}

}

If the user selects the Connect command, then a list of active sessions is displayed.
The list has the same structure as the main menu.

I.1.2.3.3 Configuration Screen

The configuration screen is used to select a car that will be used for racing. It consists
of two screens: the first one is used to select a car from several options, and the second
one is used to view the selected car in 3D. The BIFS scene-graph representing these
configuration screens are presented in Appendix I.2.1 for the first one and Appendix I.2.2
for the second one.

Both screens are composed of two sections each: a menu-like user interface, and an
asset display. This is implemented with Layer nodes. The menu items are implemented
in the same manner as in the main menu, having options to: view previous and next
car, select the current car and go back to the previous screen. The asset display section
includes an image of the currently selected car. A few new nodes are woth noticing:

• Layer2D - Specifies that its children nodes should be rendered using 2D display.

• ImageTexture - Specifies a texture for the current object.

• Rectangle - Specifies that the rendered object is a rectangle with some size.

85

CHAPTER 3. EXPERIMENTS AND VALIDATION

The ImageTexture node is the one used to display the image of the currently selected
car.

After the user selects the Select menu item, and presses the select key, the second
screen is loaded by using a scene replace command. In this screen the menu is changed,
containing only items for confirming the selected car and to go back to the previous screen.
However, the second section is different, since the Layer2D node is replaced by a Layer3D
node containing the 3D model of the car. The three following nodes are introduced:

• Layer3D - Specifies that its children nodes should be rendered using 3D display.

• NavigationInfo - Specifies the type of camera used to view the 3D scene.

• Inline - Specifies that in this place in the scene-graph a new content should be
included.

The type of the selected camera is Examine, which is a camera that rotates around
a fixed point the world, usually located in the center of the object, hence it is used to
examine the object from all sides. The Inline node includes the 3D model of the car,
which is an MPEG-4 file that contains the mesh and the textures of the model.

If the user selected the Connect menu item in the main menu, choosing the Select
menu item changes to the Gameplay screen. However, if the New Game menu item was
selected, choosing the Select menu item changes to the track selection screen. This screen
is same as for the car selection screen, the only difference being that the assets are racing
tracks. At the end of the second screen it switches to the Gameplay screen.

I.1.2.3.4 Gameplay Screen

This screen is used to play the game. It is divided in two main sections: information and
game, as presented in Appendix I.3.

The information section displays the number of players, the current lap, as well as
information about the state of the tires and brakes. This state is presented as rectangle
that is colored depending of the level of damage: green for none, yellow for medium and
red for high damage. The color is changed when the server decides that there is a damage
by updating the material of the appropriate rectangle, hence the materials are DEF-ed.
For example, changing the color to red is done by sending the update command:

AT 4200 {

REPLACE MAT_BR.emmisive BY 1 0 0

}

When one lap is finished, the server sends field update command to the Text TXT LAPS
to update the counter.

The game content, i.e. track and cars, are grouped together in a Layer3D node,
however the cars are further wrapped in a Transform node that is DEF-ed. They are
included in the scene by using the Inline node, however they are loaded previously when
they were selected in the previous screens.

Updating the car positions is done by updating the translation field of their Transform
nodes, hence the server generates and sends field update commands for each car when its
position changes, as illustrated by the following command:

86

I.1. ALTERNATIVE CLIENT-SERVER ARCHITECTURE FOR 3D GRAPHICS ON

MOBILE DEVICES

Table 3.1: Latency (transmission and decoding) for the 3D assets used in the car race
game

Asset Car v1 Car v2 Circuit v1 Circuit v2
Number of ver-
tices

253 552 1286 7243

MPEG-4 file size
(KB)

82 422 208 1600

Transmission
time Wi-Fi (ms)

27 126 68 542

Transmission
time UMTS
(ms)

422 2178 1067 8246

Decoding time
(ms)

112 219 328 2538

Total waiting
time Wi-Fi (ms)

139 345 396 3080

Total waiting
time UMTS
(ms)

534 2397 1395 10784

AT 4200 {

REPLACE TR_CAR1.translation BY 26 15 0

REPLACE TR_CAR2.translation BY 6 35 0

}

I.1.2.4 Simulation

Several experiments were set up to objectively measure the user experience when playing
the car race game, based on time to respond at user interaction (phases 1 and 3) and time
to wait for transmission and loading of 3D assets (phase 2). Table 3.1 presents the latency
when assets are transmitted and Figure 3.9 the latency when only user interaction and
updates commands are transmitted. The measurements are performed for two network
configurations: Wi-Fi (IEEE 802.11g, ISO/CEI 8802-11) and UMTS.

Let us note an average execution time of 80 ms and a maximum of 170 ms for Wi-Fi
connection and an average of 350 ms and a maximum of 405 ms for UMTS connection for
the entire loop consisting in transmission of user interaction (interface 2 in Figure 2.9),
time for processing on the server, BIFS-commands transmission (interface 1 in Figure
2.9), decoding and rendering of the local scene updates.

I.1.3 Results

To evaluate the results, they were compared to the research done by Claypool M. [26]
on the effect of latency on users in on-line games. The paper proposes experiments with
different types of games [16, 24, 52, 59] and evaluates how the latency influences the
game-play results. The quality of the game-play specific for each game is measured.
For example, for first person game the hit fraction when shooting at a moving target is
measured, for a driving game the lap time, etc. Then the results are normalized in a range

87

CHAPTER 3. EXPERIMENTS AND VALIDATION

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50

R
e

s
p

o
n

c
e

 t
im

e
 (

m
s
e

c
)

Ellapsed time (sec)

Latency from WiFi

Latency from UMTS

Figure 3.9: Response time (in ms) for UMTS and Wi-Fi recorded during Phase 3 ”Playing
the game”. The horizontal axis represents the playing time

from 0 (worst) to 1 (best) and exponential curves for each game category are obtained.
A copy of these curves is represented in Figure 3.10. The horizontal gray bar around
0.75 (originally proposed by Claypool M. [26]) represents the player tolerance threshold
with respect to latency. The section above is the area where the latency does not affect
the game play performance. The section below is the area where the game cannot be
correctly played.

The latency results obtained for the race game are plotted on the same graph. Based
on Figure 3.10 and on the classification of the games according to scene complexity and
latency, some conclusions can be withdrawn:

• The architecture is appropriate for omnipresent games for the two network config-
urations.

• For third-person avatar games, the proposed architecture is appropriate when a
Wi-Fi connection is used, and it is on the edge of user tolerance when a UMTS
connection is used.

• For first-person avatar games, the proposed architecture is inappropriate when using
UMTS connection and it is on the lower boundary of the user tolerance when using
Wi-Fi connection.

It should be noted that the network conditions during the measurements were not
taken into account. The goal of this experiment was to verify that it is possible to use
this architecture for playing games. The research on the stability of the network conditions
is out of the scope of this thesis because, as illustrated in Figure 3.10, the effect of latency

88

I.2. MPEG-4 PLAYER ARCHITECTURE FOR POWERFUL PLATFORMS

Figure 3.10: Player performance versus latency for different game categories. Original
image reproduced from [26] with permission.

influences the types of game that can be played using this architecture. Increasing or
decreasing the latency only means a restriction on the types of games, but not on the
architecture itself.

I.2 MPEG-4 Player Architecture for Powerful Platforms

In section I.5 an optimized MPEG-4 player architecture was presented. As it can be
observed, the architecture is very complex. Therefore, in order to better understand how
the player works, the next section describes in more detail how different MPEG-4 streams
are loaded.

I.2.1 Examples of Decoding Files

This section presents in more detail the operation of the player in different use-case
scenarios that have been chosen to represent each aspect of its functionality. The following
scenarios will be described:

• Local Static File;

• Local Animated File;

• Local File with Streamed Animation;

• Completely Streamed File.

89

CHAPTER 3. EXPERIMENTS AND VALIDATION

I.2.1.1 Local Static File

After a file open is requested, the Scene Manager calls the Stream Creator that in turn
creates an DataInput instance of the type DataInputMP4. Then the Scene Manager
initializes the DataInput and runs the DataInput thread that opens the file and processes
the information for the streams. Then for each of the streams it calls the StreamCreator to
create a Decoding Chain for that stream that includes Decoder, DataOutput and Buffers.
The Stream Creator runs the Decoders and the DataOutput threads that start waiting
for data.

Having a static file means that a BIFS stream is present in the file, hence the DataInput
enables decoding only for the BIFS stream. After BIFS is decoded, the BIFS Data Output
(DataOutputBifs) receives the Scene-Graph and creates groups(IMeshGroup) of entities
(IMeshEnitites) for each mesh node in it. These are then passed to the Data Management
that in turn passes them to the Renderer. If there are other resources (e.g. textures)
connected with the mesh data, it connects the Data Output of the their streams to the
entities and requests their decoding from the DataInput. After a texture is decoded, it
will be connected to the appropriate mesh. Since the file is static, the Timer has no effect.

Figure 3.11 presents loaded MPEG-4 static files.

(a) Chapel (b) Cottage

Figure 3.11: Example of static MPEG-4 files

I.2.1.2 Local Animated File

A local animated file is processed in a similar way to a static file. One difference is that
BIFS may or may not be present inside the file.

If BIFS is present, the processing is done as for a static file, however some meshes
may be connected to a BBA animation stream. Therefore, a Deformer, which receives
the animation data, is created for that mesh. At each frame the Data Output of the BBA
stream checks for data unit in the Output Buffer that has the current time-stamp. If one
exists, it is taken out of the buffer and it is used to update the Deformer.

On the other hand, if BIFS is not present, it enables decoding for all streams (usually
only video and/or audio). If a stream is an Image or a Video, the data output requests
a rectangle mesh from the data input that is perpendicular to the camera with a specific
aspect ratio. After the rectangle mesh is created, its texture is connected to the stream
that requested it, hence it will display the image/video. If the stream is an audio, the

90

I.2. MPEG-4 PLAYER ARCHITECTURE FOR POWERFUL PLATFORMS

output is rendered to the sound card. As for the BBA stream, new data is checked for at
each frame.

Figure 3.12 presents loaded MPEG-4 animated files with local animation.

(a) Hero (b) Troll

Figure 3.12: Example of animated MPEG-4 files with local animation

I.2.1.3 Local File with Streamed Animation

Differently from what happens in the case of the previous file, in this file the BBA ani-
mation for the mesh is not stored in the file itself, but in a remote location. The location
is specified in the URL field of the SBVCAnimation node in the case of BIFS. Accessing
the remote data can be done using different protocols, however the current implementa-
tion only supports RTSP (Real Time Streaming Protocol). All other data, like mesh and
textures, remain in the file.

The opening of the file is same as for the previous section, however the way the BBA
stream is connected to the mesh is different. When the BIFS data output detects the
URL, it calls the Stream Creator to create the appropriate DataInput that connects to
the remote server and receives information about the stream. Then this information is
used to initialize the decoding chain for the stream. Since the BIFS data output has
information for the stream type in advance, it connects the stream data output to the
mesh deformer.

Figure 3.13 presents a locally loaded MPEG-4 animated file using streamed animation.
The system generates cued speech movements based on the entered text by each of the
users, and streams the animations to the client.

I.2.1.4 Full Streamed File

To open a scene from a stream, the user enters a URL to the server where the stream is
located. RTSP is the only protocol that is supported.

91

CHAPTER 3. EXPERIMENTS AND VALIDATION

Figure 3.13: Example of animated MPEG-4 files with streamed animation

At the beginning, the the Scene Manager calls the Stream Creator that in turn creates
an DataInput instance of the type DataInputRTSP and runs its thread. The data input
connects to the RTSP session an receives the SDP (Session Description Protocol) data
which informs it about all sub-sessions, i.e. data streams, that are available. If needed,
the information includes OD IDs for each of the streams. As for a file, BIFS stream is
optional.

If BIFS is present, then its sub-session is the only one that is decoded at the beginning.
The other sub-sessions are decoded only at a request from the BIFS data output. Since the
BIFS data is essential for the scene, it is transported in a more secure transport protocol:
RTP (Real-time Transport Protocol) over TCP (Transmission Control Protocol). The
textures that use a non error-resilient compression (e.g. JPEG) use the same transport
protocol. For the rest of the stream for which is allowed to lose packets, RTP over UDP
(User Datagram Protocol) is used.

Internally the decoding of the data is done in the same manner as for a static file.

Figure 3.14 presents a completely streamed MPEG-4 animated file with streamed
animation. When the website is opened, the MPEG-4 player requests the file from the
server, which is then streamed. Furthermore, the animation stream is loaded from a
system that generates cued speech movements based on the entered text by the user.

I.2.2 On-line Animation System

In order to validate the player architecture for a powerful platform, an on-line system for
CS (Cued Speech) was designed, able to synthesize in real time face and hand animation
for CS, based on the text or speech input by the user. The novelty of our approach
consists in the system architecture based on a dedicated server able to perform costly
operations and to deliver the results as a compressed animation stream. On the user side,
only a 3D graphics player is required, being possible to implement it on light terminals.
Such an approach has the advantage of processing the speech very close to the capture
place, avoiding voice quality loss due to transmission errors and bandwidth. The proposed
architecture is illustrated in Figure 3.15. On the server side, the two entries, voice and
text, are converted in animation parameters. The latter are encoded as an MPEG-4

92

I.2. MPEG-4 PLAYER ARCHITECTURE FOR POWERFUL PLATFORMS

Figure 3.14: Example of completely streamed MPEG-4 file

animation stream and broadcast to the network. On the client side, an MPEG-4 player
receives the animation stream and updates, in a continuous manner, the scene graph
defining the avatar’s face and hand.

Server Client
Voice

Capture

Voice

Analysis

Text

Input

Animation

Conversion

Animation

Encoding

Scene

Graph

Animation

Decoding

MP4 Player

Figure 3.15: Proposed Architecture for the Online Cued Speech system

The system is composed of three main components: Production, Transmission and
Visualization.

I.2.2.1 Production

In the production component there are two modules: off-line preparation of the avatar
and on-line animation generation from speech and text. The first is based on a protocol
establishing the way to build the configurations for the face and for the hand. The output
is an MPEG-4 file defining the avatar. In our model, the face is defined by 11 target
shapes (Figure 3.16); for the hand there are 9 configurations and 6 positions.

The on-line animation production exploits the previously obtained MPEG-4 file and
converts each phoneme into MPEG-4 animation parameters. These parameters are then
compressed by the BBA encoder.

93

CHAPTER 3. EXPERIMENTS AND VALIDATION

target shapes (Fig. 3.), there are 9 configurations for the hand and 6 positions.

Figure 3.16: Different target shapes defining the morph space

I.2.2.2 Transmission

The output of the BBA encoder provides animation data encapsulated in standard AUs
(Access Units). Each AU contains time information that can be used for obtaining trans-
port packets. Two transport protocols are currently implemented: UDP and RTSP.

I.2.2.3 Visualization

On the client size, the MPEG-4 3D Graphics player is able to load a local or remote file or
stream, decode the geometry, the texture and the animation, and render the 3D graphics
scene.

I.2.2.4 Implementation Examples

Based on the components presented above, two prototypes were developed for learning
and practicing CS: a web service where the user inputs the text and visualizes the an-
imation, and a chat service, allowing a CS communication between two users. In both
prototypes, a server-client architecture is used, where the server has the role of comput-
ing and encoding the MPEG-4 animation parameters, and the client has only the role of
decoding and visualizing the avatar. Together with the animation, a sound track is com-
puted (synthesized from text), compressed (in MPEG-4 AAC), transmitted and played
by the same MPEG-4 player. Since similar approaches are used in both prototypes, only
the components of the Chat service is presented in details. The architecture of the Chat
service for two clients is illustrated in Figure 3.17. The two main components of the
system are the AS (Application Server) and the CC (Chat Client). The AS manage the
communication between the clients and the conversion from text to speech and anima-
tion. The CC gets the input from the user, sends it to the AS as ASCII text, decodes
and displays the animation and the audio received from the server. The AS is composed
of the following units: Chat server, TTS (Text To Speech) and CS engine, CS to BBA
converter, WAV to AAC converter and RTSP streaming server. The Chat server is re-
sponsible for managing the communication session (login, authentication) and the text
exchanges between the clients. The text messages received from the clients are first sent
to the TTS and CS engine, and when the synthesized audio and animation are ready for
streaming, it sends the text to the other clients. The TTS and LPC engine is used to
convert the text to synthesized audio and CS commands for animation.

The CS data and the audio are converted into more usable streams. The CS is con-
verted into a BBA stream, which can be used directly by the MPEG-4 player to display

94

I.3. MPEG EXTENSIBLE MIDDLEWARE (MXM)

Application Server

Chat server

Text to Speech

and CS engine

CS to BBA WAV to AAC

AAC

stream

RTSP streaming server 1

RTSP streaming server 2

BBA

stream

Chat Client 1

Chat connection

MPEG-4 Player

MPEG-4 Player

Text

Chat Client 2

Chat connection

MPEG-4 Player

MPEG-4 Player

Text

RTSP Stream

RTSP Stream

Figure 3.17: The architecture of the Chat service

the animation. The audio is compressed into an AAC stream. Then both bit-streams are
sent to the RTSP servers, which in turn send them to the appropriate Client. The use
of the RTSP server is needed to achieve synchronization between the animation and the
sound. There is a separate RTSP server for each connected user. Therefore the chat client
initializes a new RTSP server for each new connected user. The Live555 library is used
to implement the RTSP server and it was extended to be able to read and synchronize
the BBA and AAC streams. The CC is composed of the following units: Chat connection
(Figure 3.13) and MPEG-4 player. The process of connecting to the Chat server is per-
formed in the following manner: after the user authenticates, he joins the chat-room and
he can send and receive text. Additionally the user receives from the server the parame-
ters for initializing the RTSP connection. The client initializes the MPEG-4 player that
loads a local MPEG-4 file containing the avatar. After connection to the streaming server,
it is ready to receive animation and audio data. When the user enters text, the text is
sent to the server, and all the connected users receive the entered text, the animation and
the audio stream.

I.3 MPEG Extensible Middleware (MXM)

Section I.6 proposed an API for accessing MPEG-4 content by using only a few functions
and without any knowledge of the MPEG-4 standard. In order to validate the API, a
MPEG-4 file viewer was implemented using the Ogre 3D 1 rendering engine, which has its
own proprietary file format for storing 3D mesh data and materials, but which it exposes
complete structures for loading data from other formats.

Loading an MPEG-4 file requires a few steps:

1. Creating an engine to access the methods:

MediaFrameworkEngine::Access::Engine eng;

1Ogre 3D rendering engine: http://www.ogre3d.org/

95

CHAPTER 3. EXPERIMENTS AND VALIDATION

2. Loading an MPEG-4 file:

eng.LoadMP4(fileName, MediaFrameworkEngine::Access::Engine::OUT_VB);

3. Parsing the appearance:

eng.GetGraphics3DEngine()->GetAppearance()->GetAppBuffer(true,

buff, size);

ParseAppearance(eng, prefix, buff, size);

eng.GetGraphics3DEngine()->GetAppearance()->FreeBuffer(buff);

While parsing the appearance buffer, the Ogre3D specific appearance structures are
created. After all appearance structures have been parsed, the needed textures are
loaded. This is done by accessing the Image Engine:

MediaFrameworkEngine::Access::Image::ImageAccess::ImageDescriptor d;

eng.GetImageEngine()->GetDecodedImage(true, texIds[i], texbuff,

texsize, d);

The parameter d returns the size of the image and its pixel format

4. Parsing the vertex and index buffers:

eng.GetGraphics3DEngine()->GetGeometry()->GetVBandIB(true,

buff, size);

ParseVB(List, eng, prefix, buff, size);

eng.GetGraphics3DEngine()->GetGeometry()->FreeBuffer(buff);

While parsing the vertex and index buffers, the Ogre3D specific mesh structures are
created. Furthermore, each mesh is connected to the correct appearance structure
by using the id provided in each index buffer.

As it can be observed from the previous example, the integration of the MXM API
in a third party 3D engine becomes an easy exercise. Figure 3.18 presents a screen shot
from a running Ogre3D base MPEG-4 player that has many loaded files.

I.4 Conclusion

This chapter presented the experiments and the validation for the proposed distributed
architecture as well as the architectures for the MPEG-4 players for powerful platform
and mobile devices.

The first part of this chapter presented experiments and results with relation to the
alternative architecture for games on mobile phones aiming to cope with the problems
of costly deployment of games due to the heterogeneity of the mobile terminals. By
exploiting and extending some concepts of ”thin clients” introduced in the early nineties,

96

I.4. CONCLUSION

Figure 3.18: Ogre3D based player with many MPEG-4 files loaded

the solution was based on 3D graphics capabilities of MPEG-4. An implementation of an
MPEG-4 3D graphics player for mobile phones was presented and its capabilities in terms
of decoding time and rendering performance were evaluated. It was observed that in order
to achieve reasonable decoding times, the maximum size of one static object should be
15000 vertices and for an animated one it should be 1500 vertices. However, in order
to achieve reasonable frame-rates of around 25 fps the total number of rendered vertices
should be less than 20000 for static objects and less than 6000 for animated ones. For
scenes that combine both types of objects, the number of vertices should be calculated
proportionally. Furthermore, a pre-processing technique was presented that reduced the
size of the data and its decoding time for around 15%. Additionally, it was presented
that applying a simplification algorithm on the models can decrease their size, decoding
and rendering complexity while preserving similar visual appearance.

Demonstrating the pertinence of using MPEG-4 as a standard solution of representing
3D assets on mobile phones, the main idea of the proposed architecture is to maintain
the rendering on the user terminal and to move the game logic to a dedicated server.
The approach presents several advantages, such as the ability to play the same game
on different platforms without adapting and recompiling the game logic, and to use the
same rendering engine to play different games. The usage of MPEG-4 scene updates
for the communication layer between the game logic and the rendering engine allows
the independent development of the two, with the advantage of breaking the constraints
on the game performances (by using the server) and of addressing a very fragmented
and heterogeneous park of mobile phones. The measurements performed on different
networks and end-user terminals are satisfactory with respect to the quality of player
gaming experience. In particular, the latency between user interaction on the keyboard
and the rendered image is small enough (around 80 ms for Wi-Fi and 350 ms for UMTS)
to ensure that a large category of games can be played on the proposed architecture.

In the next part of the chapter, the architecture of the MPEG-4 player for powerful
platform was evaluated. First it was presented how different type of content is loaded,
including local static file, local animated file, local file with streamed animation and
completely streamed file. Then the architecture was further validated by implementing

97

CHAPTER 3. EXPERIMENTS AND VALIDATION

an on-line animations system. The system used a server for generating cued speech
animation and speech from inputed text. Two use case scenarios were presented: a web
application for learning and practicing cued speech and a chat program. Both scenarios
validated that the player architecture is capable of supporting complex MPEG-4 content.
For the powerful platform, the next section validated the MXM API, which is composed
of many smaller APIs, i.e. engines, focused each on one part of the MPEG-4 standard.
It was confirmed that integrating this API into a third party 3D rendering engine is an
easy task by creating an application that can load a display 3D graphics content using
the Ogre3D 3D graphics rendering engine.

98

Conclusion and Perspectives

117

The main topic of this thesis is to propose an alternative client-server architecture for
creating mobile games where the connectedness of the mobile devices is used. The newer
3D games demand a lot of processing power, both for general and graphics processing.
However mobile devices are not capable to effectively execute everything, hence the ap-
plication has to find a balance between what is on the client vs. the server. A distributed
solution was proposed, where the game logic is executed on the server and the rendering
is executed on the client. For this solution to be effective, three main requirements were
defined:

1. Minimize the network traffic and reduce data rate fluctuations,

2. Reduce the required computational power on the terminal, and

3. Preserve the user experience compared with local execution.

First, the development of distributed computer architectures was analyzed. Further-
more, the advance in modern remote computing was presented, focusing on Internet
applications. Then the current state of the research connected to remote computing was
presented. Different architectures were analyzed considering the requirements. However
it was observed that none of them could satisfy all requirements, thus the need for a new
solution was detected.

It was observed that a possible solution is to standardize a component that is common
for all games, namely the scene-graph. By using a standard scene-graph format, it becomes
possible to standardize the client application, as well as the communication protocol.
Therefore different standards were analyzed and compared. The analysis focused on
their capabilities to support 3D graphics assets, streaming and compression and user
interactions. The MPEG-4 format was observed as the only one that integrates all needed
features, hence it was chosen to be used in the architecture.

In order to analyze the architectures presented in the state of the art review, a frame-
work of functions was defined, which represents each processing stage. This mathematical
representation enabled having an overview of the architecture in terms of limitations and
use-case scenarios. It was observed that none of them is appropriate for use in the targeted
applications of this thesis. Therefore, a new framework was proposed, all its components
were presented and solutions were proposed for each of them. The architecture uses the
MPEG-4 standard as a scene-graph format for the game, as well as a communication pro-
tocol between the server and the client. The client to server data (i.e. user commands) is
transferred using AJAX requests.

The next section investigated a design of an architecture intended for an MPEG-4
player on a powerful platform. It presented an optimization of the MPEG-4 System De-
coder Model that allows loading of MPEG-4 files having different scene-graph formalisms.
Furthermore, threading is used to execute the decoding tasks in parallel, as well as allow-
ing easier management of input from different streams at the same time. The architecture
was validated by implementing an MPEG-4 player capable of supporting files with differ-
ent media (3D graphics, animation, video and sound) as well as distributed applications.
A web application was presented that uses a server for converting text to audio and cued
speech animations.

However, it was observed that implementing this architecture is complex, which can be
overlooked if one needs an MPEG-4 player. Because some applications may use MPEG-4
only for storing assets and therefore not require all features of the standard, a simplified
access mechanism is necessary. Hence, the MPEG Extensible Middleware was designed,

119

CONCLUSION AND PERSPECTIVES

which is a simple API for accessing MPEG-4 files. We propose a 3D Graphics Engine API
and an example of its usage was also presented, using the Ogre 3D engine. This proves
that the API was simple enough to be used in third party architectures.

Because the mobile devices have less processing capabilities than the PCs, the player
architecture had to be changed to reflect these restrictions. Furthermore, other restrictions
had to be implemented: limiting to only one scene-graph format (i.e. BIFS), limiting the
number of used nodes to the minimum needed and limiting the supported codecs. This
allowed having a more optimized player that can be run on a mobile device.

Two types of experiments were performed: decoding and rendering for both static
and animated content that showed satisfying results. However, games require, apart from
rendering, also other processing. To be able to support both, the maximum number of
rendered vertices has to be reduced, thus the quality of the rendered image will also be
reduced. Therefore, a client-server architecture was proposed that can solve this problem
by executing the game logic on the server, and only the rendering on the client.

Because the features of the MPEG-4 standard include not only representation of a
scene, but also scene updating, the standard was used to represent the scene-graph of the
game, as well as to define the communication protocol between the two components. Since
a standard protocol is used, both components can be developed independently. On one
hand, a server (i.e. game) can be developed without the knowledge of the client, meaning
that different clients, for different mobile devices can be used for the same server. On the
other hand, a client can be developed without any knowledge of a particular game, and
furthermore optimized for a specific mobile device, but remaining capable of playing the
same game.

To demonstrate the architecture, an existing game was adapted, which consist of
simple car racing by controlling only the speed of the car. A few experiments were
performed, measuring the bandwidth and the round-trip time (time between the user
pressing a key, and the player receiving updated data from the server) on UMTS and Wi-
Fi networks. The results were compared to the research done by Claypool M. [26] on the
effect of latency on users in on-line games. Based on the results and on the classification of
the games according to scene complexity and latency, some conclusions were withdrawn:

• The architecture is appropriate for omnipresent games for the two network config-
urations,

• For third-person avatar games, the proposed architecture is appropriate when a
Wi-Fi connection is used, and it is on the edge of user tolerance when a UMTS
connection is used,

• For first-person avatar games, the proposed architecture is inappropriate when using
UMTS connection and it is on the lower boundary of the user tolerance when using
Wi-Fi connection.

To summarize, the architecture can be used for a wide range of games, however they
should be designed to use it from the beginning.

120

Perspectives

The perspectives for the work in this thesis can be sought from the broader viewpoint of
distributed systems for 3D graphics. On one side are architectures that render everything
on the client, while on the other side are architectures that render everything on the
server and transfer video to the client. As it was presented in Chapter I, there are already
techniques that fit in-between these extreme cases, and depending on the requirements of
an application, an appropriate architecture can be selected. However, the state of the art
does not cover all possible combinations.

This thesis handled one of these gaps, where the performance on the terminal allowed
rendering, but not other operations. Future work may focus on the video streaming
architectures where, for example, using the input of the rendering process may improve
the rendering performance both in processing time and quality. This can be done by
utilizing the information for the main focus object of the scene to choose the encoding
parameters for having better quality, while the background is encoded with worse quality.
Furthermore, an optimization of the video encoding process can be achieved by using the
Z buffer output of the rendering process to optimize the detection of the macro blocks for
the video encoding.

Having most of the use-cases handled by different architectures can be used to design
an architecture that can switch dynamically from one distributed system to another de-
pending on the environment. Some research has already been carried in this direction,
which was presented in Chapter I, however these systems use only two or three architec-
tures, and are limited to only a small portion of the whole range of possible architectures.
A better system could be able to switch between wider range of distributed architectures.

121

Bibliography

[1] Buisson p., kozon m., raissouni a., tep s., wang d., xu l., jeu multi-
joueur sur telephone mobile, (in french), rapport de projet ingenieur, rapport fi-
nal projet s4 2007 (TELECOM bretagne), available online at http://proget.int-
evry.fr/projects/JEMTU/ConceptReaJeu.html. [cited at p. xxv]

[2] Garrett JJ, 2005, ajax: A new approach to web applications,
http://www.adaptivepath.com/ideas/essays/archives/000385.php, february 2005.
[cited at p. 81]

[3] Pellerin r., delpiano f., duclos f., Gressier-Soudan e. et simatic m., GASP: an open source
gaming service middleware dedicated to multiplayer games for J2ME based mobile phones,
proceedings of international conference on computer games, angouleme, france, 28-30
novembre 2005. [cited at p. xxiv]

[4] ISO/IEC 14496-11:2005 - ”information technology coding of audio-visual objects part 11:
Scene description and application engine”, 2004. [cited at p. 23, 31]

[5] ISO/IEC 14772-1:1997 and ISO/IEC 14772-2:2004 virtual reality modeling language
(VRML), 2004. [cited at p. 20]

[6] ISO/IEC 19775:2004 Extensible 3d (X3D), 2004. [cited at p. 21]

[7] ISO/IEC 14496-11:2005 - ”information technology coding of audio-visual objects part 1:
Systems”, 2005. [cited at p. 25]

[8] ISO/IEC 14496-11:2005 - ”information technology coding of audio-visual objects part 16:
Animation framework extension (afx)”, 2005. [cited at p. 26, 29, 33]

[9] ECMAScript Language Specification, ECMA-262, ISO/IEC 16262, ecma international, 5th
edition, 2009. [cited at p. 22]

[10] Ghassan Al-Regib and Yucel Altunbasak. 3TP: 3-D models transport protocol. In Proceed-
ings of the ninth international conference on 3D Web technology, pages 155–162, Monterey,
California, 2004. ACM. [cited at p. 13]

[11] Ghassan Al-Regib, Yucel Altunbasak, and Jarek Rossignac. Error-resilient transmission of
3D models. ACM Trans. Graph., 24(2):182–208, 2005. [cited at p. 13]

[12] Matt Aranha, Piotr Dubla, Kurt Debattista, Thomas Bashford-Rogers, and Alan Chalmers.
A physically-based client-server rendering solution for mobile devices. In Proceedings of the
6th international conference on Mobile and ubiquitous multimedia, pages 149–154, Oulu,
Finland, 2007. ACM. [cited at p. 9]

123

BIBLIOGRAPHY

[13] Remi Arnaud and Mark C. Barnes. Collada: Sailing the Gulf of 3d Digital Content Creation.
AK Peters Ltd, 2006. [cited at p. 22]

[14] C. Bajaj, S. Cutchin, V. Pascucci, and G. Zhuang. Error resilient streaming of compressed
VRML. 1998. [cited at p. 13]

[15] Ricardo A. Baratto, Leonard N. Kim, and Jason Nieh. THINC: a virtual display architec-
ture for thin-client computing. SIGOPS Oper. Syst. Rev., 39(5):277–290, 2005. [cited at p. 10]

[16] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel Agu, and Mark
Claypool. The effects of loss and latency on user performance in unreal tournament 2003. In
Proceedings of 3rd ACM SIGCOMM workshop on Network and system support for games,
pages 144–151, Portland, Oregon, USA, 2004. ACM. [cited at p. 87]

[17] Azzedine Boukerche, Raed Jarrar, and Richard Werner Pazzi. An efficient protocol for
remote virtual environment exploration on wireless mobile devices. In Proceedings of the
4th ACM workshop on Wireless multimedia networking and performance modeling, pages
45–52, Vancouver, British Columbia, Canada, 2008. ACM. [cited at p. 9]

[18] Ian Buck, Greg Humphreys, and Pat Hanrahan. Tracking graphics state for networked ren-
dering. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware, pages 87–95, Interlaken, Switzerland, 2000. ACM. [cited at p. 7]

[19] Dick C.A. Bulterman and Lloyd W. Rutledge. SMIL 3.0: Flexible Multimedia for Web,
Mobile Devices and Daisy Talking Books. Springer Publishing Company, Incorporated,
2008. [cited at p. 21]

[20] T. Capin, K. Pulli, and T. Akenine-Moller. The state of the art in mobile graphics research.
Computer Graphics and Applications, IEEE, 28(4):74 –84, 2008. [cited at p. xv, 17]

[21] Romain Cavagna, Christian Bouville, Patrick Gioia, and Jérôme Royan. A mpeg-4 afx
compliant platform for 3d contents distribution in peer-to-peer. In ICIP, pages 2688–2691,
2008. [cited at p. 34]

[22] Eun-Young Chang, Namho Hur, and E.S. Jang. 3d model compression in mpeg. In Image
Processing, 2008. ICIP 2008. 15th IEEE International Conference on, pages 2692 –2695,
12-15 2008. [cited at p. 33]

[23] Liang Cheng, Anusheel Bhushan, Renato Pajarola, and Magda El Zarki. Real-time 3D
graphics streaming using MPEG-4. In Proc. IEEE/ACM Wksp. on Broadband Wireless
Services and Appl, 2004. [cited at p. 8]

[24] Mark Claypool. The effect of latency on user performance in real-time strategy games.
Comput. Netw., 49(1):52–70, 2005. [cited at p. 87]

[25] Mark Claypool. Motion and scene complexity for streaming video games. In Proceedings of
the 4th International Conference on Foundations of Digital Games, pages 34–41, Orlando,
Florida, 2009. ACM. [cited at p. 51]

[26] Mark Claypool and Kajal Claypool. Latency and player actions in online games. Commun.
ACM, 49(11):40–45, 2006. [cited at p. xxix, 51, 87, 88, 89, 120]

[27] Volker Coors. Resource-adaptive interactive 3D maps. In Proceedings of the 2nd interna-
tional symposium on Smart graphics, pages 140–144, Hawthorne, New York, 2002. ACM.
[cited at p. 14, 16]

124

BIBLIOGRAPHY

[28] J. Diepstraten, M. Gorke, and T. Ertl. Remote line rendering for mobile devices. In
Computer Graphics International, 2004. Proceedings, pages 454–461, 2004. [cited at p. 11]

[29] Jean-Claude Dufourd, Olivier Avaro, and Cyril Concolato. An mpeg standard for rich
media services. IEEE MultiMedia, 12(4):60–68, 2005. [cited at p. 23]

[30] Leigh Edwards and Richard Barker. Developing Series 60 Applications: A Guide for Sym-
bian OS C++ Developers. Pearson Higher Education, 2004. [cited at p. xxiii, 69]

[31] P. Eisert and P. Fechteler. Low delay streaming of computer graphics. In Image Pro-
cessing, 2008. ICIP 2008. 15th IEEE International Conference on, pages 2704–2707, 2008.
[cited at p. 51]

[32] Klaus Engel, Ove Sommer, and Thomas Ertl. A framework for interactive hardware ac-
celerated remote 3D-Visualization. IN PROC. TCVG SYMP. ON VIS. (VISSYM, pages
167—177, 2000. [cited at p. 9]

[33] Jean Le Feuvre, Cyril Concolato, and Jean-Claude Moissinac. GPAC: open source multi-
media framework. In Proceedings of the 15th international conference on Multimedia, pages
1009–1012, Augsburg, Germany, 2007. ACM. [cited at p. xxiii, 69]

[34] David Flanagan and Flanagan David. JavaScript: The Definitive Guide. O’Reilly Media,
5 edition, August 2006. [cited at p. 81]

[35] Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. In
Proceedings of the 24th annual conference on Computer graphics and interactive techniques,
pages 209–216. ACM Press/Addison-Wesley Publishing Co., 1997. [cited at p. xxiv, 78]

[36] Ian J. Grimstead, Nick J. Avis, and David W. Walker. Visualization across the pond:
how a wireless PDA can collaborate with million-polygon datasets via 9,000km of cable.
In Proceedings of the tenth international conference on 3D Web technology, pages 47–56,
Bangor, United Kingdom, 2005. ACM. [cited at p. 16]

[37] C. Herpel and A. Eleftheriadis. Mpeg-4 systems: Elementary stream management. Signal
Processing: Image Communication, 15(4-5):299 – 320, 2000. [cited at p. 29]

[38] Mojtaba Hosseini and Nicolas D. Georganas. MPEG-4 BIFS streaming of large virtual
environments and their animation on the web. In Proceedings of the seventh interna-
tional conference on 3D Web technology, pages 19–25, Tempe, Arizona, USA, 2002. ACM.
[cited at p. 49]

[39] Greg Humphreys, Matthew Eldridge, Ian Buck, Gordan Stoll, Matthew Everett, and Pat
Hanrahan. WireGL: a scalable graphics system for clusters. In Proceedings of the 28th
annual conference on Computer graphics and interactive techniques, pages 129–140. ACM,
2001. [cited at p. 7]

[40] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D. Kirchner,
and James T. Klosowski. Chromium: a stream-processing framework for interactive ren-
dering on clusters. In ACM SIGGRAPH ASIA 2008 courses, pages 1–10, Singapore, 2008.
ACM. [cited at p. 8]

[41] Tom Jehaes, Peter Quax, and Wim Lamotte. Adapting a large scale networked virtual
environment for display on a PDA. In Proceedings of the 2005 ACM SIGCHI International
Conference on Advances in computer entertainment technology, pages 217–220, Valencia,
Spain, 2005. ACM. [cited at p. 15, 16]

125

BIBLIOGRAPHY

[42] B. Jovanova, M. Preda, and F. Preteux. MPEG-4 part 25: A generic model for 3D graphics
compression. In 3DTV Conference: The True Vision - Capture, Transmission and Display
of 3D Video, 2008, pages 101–104, 2008. [cited at p. 52]

[43] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J. P. Laulajainen,
R. Carmichael, V. Poulopoulos, A. Laikari, P. Perala, A. De Gloria, and C. Bouras. Platform
for distributed 3D gaming. Int. J. Comput. Games Technol., 2009:1–15, 2009. [cited at p. xv,

6]

[44] Khronos. Collada 1.5 specification, 2008. [cited at p. 22]

[45] Michelle Kim, Steve Wood, and Lai-Tee Cheok. Extensible mpeg-4 textual format (xmt). In
MULTIMEDIA ’00: Proceedings of the 2000 ACM workshops on Multimedia, pages 71–74,
New York, NY, USA, 2000. ACM. [cited at p. 23]

[46] David Koller, Michael Turitzin, Marc Levoy, Marco Tarini, Giuseppe Croccia, Paolo
Cignoni, and Roberto Scopigno. Protected interactive 3D graphics via remote rendering.
ACM Trans. Graph., 23(3):695–703, 2004. [cited at p. 15]

[47] Martin Kurze and Roman Englert. Network centric photorealistic mixed reality on mobile
devices. In Proceedings of the 3rd international conference on Mobile technology, applica-
tions \& systems, page 26, Bangkok, Thailand, 2006. ACM. [cited at p. 9, 10]

[48] Fabrizio Lamberti, Claudio Zunino, Andrea Sanna, Antonino Fiume, and Marco Maniezzo.
An accelerated remote graphics architecture for PDAS. In Proceedings of the eighth inter-
national conference on 3D Web technology, pages 55–ff, Saint Malo, France, 2003. ACM.
[cited at p. 8]

[49] Khaled Mamou, Titus Zaharia, and Françoise Prêteux. Tfan: A low complexity 3d mesh
compression algorithm. Comput. Animat. Virtual Worlds, 20(2‐3):343–354, 2009.
[cited at p. 33]

[50] Francisco Moran, Marius Preda, Gauthier Lafruit, Paulo Villegas, and Robert-Paul
Berretty. 3D game content distributed adaptation in heterogeneous environments.
EURASIP J. Adv. Signal Process, 2007(2):31–31, 2007. [cited at p. 51]

[51] I. Nave, H. David, A. Shani, Y. Tzruya, A. Laikari, P. Eisert, and P. Fechteler. Games@large
graphics streaming architecture. In Consumer Electronics, 2008. ISCE 2008. IEEE Inter-
national Symposium on, pages 1–4, 2008. [cited at p. 7, 8]

[52] James Nichols and Mark Claypool. The effects of latency on online madden NFL football. In
Proceedings of the 14th international workshop on Network and operating systems support
for digital audio and video, pages 146–151, Cork, Ireland, 2004. ACM. [cited at p. 87]

[53] Antti Nurminen. m-LOMA - a mobile 3D city map. In Proceedings of the eleventh inter-
national conference on 3D web technology, pages 7–18, Columbia, Maryland, 2006. ACM.
[cited at p. 14, 15, 16]

[54] Antti Nurminen. Mobile, hardware-accelerated urban 3D maps in 3G networks. In Pro-
ceedings of the twelfth international conference on 3D web technology, pages 7–16, Perugia,
Italy, 2007. ACM. [cited at p. 14, 15]

[55] Marius Preda, Blagica Jovanova, Ivica Arsov, and Françoise Prêteux. Optimized mpeg-
4 animation encoder for motion capture data. In Web3D ’07: Proceedings of the twelfth
international conference on 3D web technology, pages 181–190, New York, NY, USA, 2007.
ACM. [cited at p. 34, 72]

126

BIBLIOGRAPHY

[56] Marius Preda, Paulo Villegas, Franciso Moran, Gauthier Lafruit, and Robert-Paul Berretty.
A model for adapting 3D graphics based on scalable coding, real-time simplification and
remote rendering. Vis. Comput., 24(10):881–888, 2008. [cited at p. xviii, xxiv, 39, 78]

[57] Jean-Charles Quillet, Gwenola Thomas, Xavier Granier, Pascal Guitton, and Jean-Eudes
Marvie. Using expressive rendering for remote visualization of large city models. In Proceed-
ings of the eleventh international conference on 3D web technology, pages 27–35, Columbia,
Maryland, 2006. ACM. [cited at p. 12]

[58] Robert W. Scheifler and Jim Gettys. The x window system. ACM Trans. Graph., 5(2):79–
109, 1986. [cited at p. 10]

[59] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and Emmanuel Agu. The effect
of latency on user performance in warcraft III. In Proceedings of the 2nd workshop on
Network and system support for games, pages 3–14, Redwood City, California, 2003. ACM.
[cited at p. 87]

[60] Julien Signs, Yuval Fisher, and Alexandros Eleftheriadis. Mpeg-4’s binary format for
scene description. Signal Processing: Image Communication, 15(4-5):321 – 345, 2000.
[cited at p. 31]

[61] Simon Stegmaier, Marcelo Magallon, and Thomas Ertl. A generic solution for hardware-
accelerated remote visualization. In Proceedings of the symposium on Data Visualisation
2002, pages 87–ff, Barcelona, Spain, 2002. Eurographics Association. [cited at p. 10]

[62] S. M. Tran, M. Preda, F. J. Preteux, and K. Fazekas. Exploring MPEG-4 BIFS features for
creating multimedia games. In Proceedings of the 2003 International Conference on Multi-
media and Expo - Volume 2, pages 429–432. IEEE Computer Society, 2003. [cited at p. 49]

[63] N. Trevett. Khronos and OpenGL ES, proceedings of siggraph 04, tokyo, japan, 2004
http://www.khronos.org/opengles/1 X/. [cited at p. xxiii, 70]

[64] W3C. Scalable vector graphics (SVG). http://www.w3.org/Graphics/SVG/. [cited at p. 21]

[65] W3C. Mobile SVG profiles: SVG Tiny and SVG Basic, 2003. [cited at p. 22]

[66] D. De Winter, P. Simoens, L. Deboosere, F. De Turck, J. Moreau, B. Dhoedt, and P. De-
meester. A hybrid thin-client protocol for multimedia streaming and interactive gaming
applications. In Proceedings of the 2006 international workshop on Network and operating
systems support for digital audio and video, pages 1–6, Newport, Rhode Island, 2006. ACM.
[cited at p. 14]

[67] Zhidong Yan, S. Kumar, and C.-C.J. Kuo. Mesh segmentation schemes for error resilient
coding of 3-D graphic models. Circuits and Systems for Video Technology, IEEE Transac-
tions on, 15(1):138–144, 2005. [cited at p. 13]

127

Appendices

129

Appendix A

Related Publications

Book chapter:

1. I. Arsov, M. Preda, and F. Preteux, ”A Server-Assisted Approach for Mobile-Phone
Games”, Mobile Multimedia Processing, 2010, pp. 170-187.

Journal articles:

1. B. Jovanova, I. Arsov, M. Preda, F. Preteux, On-line animation system for practicing
Cued Speech, International Journal of Image and Graphics (IJIG), vol. 10, Issue: 4, Oct.
2010, pp. 497-512.

2. M. Preda, I. Arsov, and F. Moran, COLLADA +MPEG-4 OR X3D +MPEG-4, Vehicular
Technology Magazine, IEEE, vol. 5, Mar. 2010, pp. 39-47.

Conference articles:

1. A. M. Khan, I. Arsov, M. Preda, S. Chabridon, A. Beugnard, Adaptable client-server
architecture for mobile multi-player games, DIstributed SImulation & Online gaming (DI-
SIO), Torremolinos, Spain, 2010

2. I. Arsov, B. Jovanova, M. Preda, and F. Preteux, When MPEG-4 and COLLADA meet for
a complete solution of distributing and rendering 3D graphics assets, Consumer Electronics
(ICCE), 2010 Digest of Technical Papers International Conference on, 2010, pp. 431 -432.

3. I. Arsov, B. Jovanova, M. Preda, and F. Preteux, On-Line Animation System for Learning
and Practice Cued Speech, ICT Innovations 2009, pp. 315-325.

4. I. Arsov, M. Preda, and F.J. Preteux, MPEG-4 3D graphics for mobile phones, WMMP,
2008.

5. M. Preda, B. Jovanova, I. Arsov, and F. Preteux, Optimized MPEG-4 animation encoder
for motion capture data, Proceedings of the twelfth international conference on 3D web
technology, Perugia, Italy: ACM, 2007, pp. 181-190.

131

APPENDIX A. RELATED PUBLICATIONS

Standardization reports:

1. I. Arsov, M. Preda, Using MPEG-4 for mobile mixed reality applications Standardization
Report ISO/IEC JTC1/SC29/WG11, MPEG2011/M19289, Daegu, Korea, January 2011

2. I. Arsov, L.V. Ngo, M. Preda, FootPrint API for MXM, Standardization Report ISO/IEC
JTC1/SC29/WG11, MPEG2009/M17284, Kyoto, Japan, January 2010

3. I. Arsov, M. Preda, F. Preteux, Integrated MXM API for 3D Graphics, Standardization
Report ISO/IEC JTC1/SC29/WG11, MPEG2009/M16427, Maui, USA, April 2009

4. I. Arsov, M. Preda, F. Preteux, MXM API for 3D Graphics content creation, Standardiza-
tion Report ISO/IEC JTC1/SC29/WG11, MPEG2009/M16151, Lausanne, Switzerland,
February 2009

5. I. Arsov, M. Preda, F. Preteux, MPEG-4 3D Graphics Player for N93 and N95, Stan-
dardization Report ISO/IEC JTC1/SC29/WG11, MPEG2008/M15087, Antalya, Turkey,
January 2008.

6. I. Arsov, M. Preda, F. Preteux, Support for multiple texture coordinates and additional
attributes per vertex in 3DMC, Standardization Report ISO/IEC JTC1/SC29/WG11,
MPEG2007/M14905, Shenzhen, China, October 2007.

7. M. Preda, I. Arsov, B. Jovanova, F. Preteux, Compression performances of MPEG-4
3D Graphics for large databases, Standardization Report ISO/IEC JTC1/SC29/WG11,
MPEG2007/M14710, Lausanne, Switzerland, July 2007.

8. M. Preda, T. Laquet, I. Arsov, C. Pelvet, O. Marre, F. Preteux, MPEG-4 3D Graphics for
cartoons : Pigmentz authoring tool, Standardization Report ISO/IEC JTC1/SC29/WG11,
MPEG2007/M14198, Marrakech, Morocco, January 2007.

9. M. Preda, S.M. Tran, D. Tran, I. Arsov, F. Preteux, www.3DoD.org: an MPEG-4 3D
database, Standardization Report ISO/IEC JTC1/SC29/WG11, MPEG2006/M13962,
Hangzhou, China, October 2006.

10. M. Preda, I. Arsov, F. Preteux, MPEG-4 3D Graphics rendering based on DirectX, Stan-
dardization Report ISO/IEC JTC1/SC29/WG11, MPEG06/13591, Klagenfurt, Austria,
July 2006.

11. M. Preda, T. Laquet, W.V. Raemdonckn, I. Arsov, B. Jovanova, F. Preteux, MPEG-
4 3D Graphics on mobile phone, Standardization Report ISO/IEC JTC1/SC29/WG11,
MPEG06/13179, Montreux, Switzerland, April 2006.

132

Appendix B

BIFS Scene-Graphs

I.1 Main Menu

OrderedGroup {

children [

Background2D { backColor 1 1 1 }

Transform2D {

translation 0 60

children [

Shape {

appearance DEF MENU_APP Appearance {

material Material2D {

emissiveColor 0 0 1

filled TRUE

}

}

geometry Text {

string ["New Game"]

fontStyle DEF MENU_NEW FontStyle {

justify ["MIDDLE"]

size 26

}

}

}

]

}

Transform2D {

translation 0 20

children [

Shape {

appearance USE MENU_APP

geometry Text {

string ["Connect"]

fontStyle DEF MENU_CONN FontStyle {

justify ["MIDDLE"]

size 20

133

APPENDIX B. BIFS SCENE-GRAPHS

}

}

}

]

}

Transform2D {

translation 0 -20

children [

Shape {

appearance USE MENU_APP

geometry Text {

string ["Quit"]

fontStyle DEF MENU_QUIT FontStyle {

justify ["MIDDLE"]

size 20

}

}

}

]

}

...

]

}

I.2 Configuration

I.2.1 Car Selection - Images

OrderedGroup {

children [

Background2D { backColor 1 1 1 }

Layer2D {

size 240 250

children [

Shape {

appearance Appearance {

texture ImageTexture { url "./car1.jpg"}

}

geometry Rectangle { size 150 200}

}

]

}

Layer2D {

children [

Transform2D {

translation -90 140

children [

Shape {

appearance DEF MENU_APP Appearance {

material Material2D {

emissiveColor 0 0 1

134

I.2. CONFIGURATION

filled TRUE

}

}

geometry Text {

string ["<<<"]

fontStyle DEF MENU_LEFT FontStyle {

justify ["MIDDLE"]

size 20

}

}

}

]

}

Transform2D {

translation 0 140

children [

Shape {

appearance USE MENU_APP

geometry Text {

string ["Select"]

fontStyle DEF MENU_SELECT FontStyle {

justify ["MIDDLE"]

size 26

}

}

}

]

}

Transform2D {

translation 90 140

children [

Shape {

appearance USE MENU_APP

geometry Text {

string [">>>"]

fontStyle DEF MENU_RIGHT FontStyle {

justify ["MIDDLE"]

size 20

}

}

}

]

}

Transform2D {

translation -90 -150

children [

Shape {

appearance USE MENU_APP

geometry Text {

string ["Back"]

fontStyle DEF MENU_BACK FontStyle {

justify ["MIDDLE"]

135

APPENDIX B. BIFS SCENE-GRAPHS

size 20

}

}

}

]

}

]

}

...

]

}

I.2.2 Car Selection - 3D Model

OrderedGroup {

children [

Background2D { backColor 1 1 1 }

Layer3D {

size 240 250

navigationInfo DEF NAV NavigationInfo {type ["Examine","ANY"] }

children [

Inline {url "./car1.mp4"}

]

}

Layer2D {

children [

Transform2D {

translation 0 140

children [

Shape {

appearance DEF MENU_APP Appearance {

material Material2D {

emissiveColor 0 0 1

filled TRUE

}

}

geometry Text {

string ["Select"]

fontStyle DEF MENU_SEL FontStyle {

justify ["MIDDLE"]

size 26

}

}

}

]

}

Transform2D {

translation -90 -150

children [

Shape {

appearance USE MENU_APP

geometry Text {

136

I.3. GAMEPLAY

string ["Back"]

fontStyle DEF MENU_BACK FontStyle {

justify ["MIDDLE"]

size 20

}

}

}

]

}

]

}

...

]

}

I.3 Gameplay

OrderedGroup {

children [

Background2D { backColor 0 0 0 }

Layer3D {

size 240 320

navigationInfo DEF NAV NavigationInfo {type ["Examine","ANY"] }

children [

Inline {url "track1.mp4"}

DEF TR_CAR1 Transform {

translation 24 10 0

children [

Inline {url "car1.mp4"}

]

}

DEF TR_CAR2 Transform {

translation 25 10 0

children [

Inline {url "car2.mp4"}

]

}

]

}

Layer2D {

children [

Transform2D {

translation 60 130

children [

Shape {

appearance Appearance {

material DEF MAT_BR Material2D {filled TRUE emissiveColor 0 1 0}

}

geometry Rectangle { size 20 40 }

}

]

137

APPENDIX B. BIFS SCENE-GRAPHS

}

Transform2D {

translation 90 130

children [

Shape {

appearance Appearance {

material DEF MAT_TI Material2D {filled TRUE emissiveColor 0 0.5 0}

}

geometry Rectangle { size 20 40 }

}

]

}

Transform2D {

translation -110 140

children [

Shape {

appearance DEF INFO_APP Appearance {

material Material2D {

emissiveColor 1 1 1

filled TRUE

}

}

geometry Text {

string ["Laps :"]

fontStyle DEF INFO_STYL FontStyle {

justify ["BEGIN"]

size 20

}

}

}

]

}

Transform2D {

translation -50 140

children [

Shape {

appearance USE INFO_APP

geometry DEF TXT_LAPS Text {

string ["0/3"]

fontStyle USE INFO_STYL

}

}

]

}

Transform2D {

translation -110 115

children [

Shape {

appearance USE INFO_APP

geometry Text {

string ["No players : 2"]

fontStyle USE INFO_STYL

138

I.3. GAMEPLAY

}

}

]

}

]

}

...

]

}

139

Appendix C

MPEG-4 Player Class Diagram

141

A
P
P
E
N
D
IX

C
.
M
P
E
G
-4

P
L
A
Y
E
R

C
L
A
S
S
D
IA

G
R
A
M

Buffer

PlayerObject

Class

DataManagement

PlayerObject

Class

IDeformer

Abstract Class

IDeformer

Abstract Class

ICreatable

PlayerObject

Class

PlayerObject

Abstract Class

PlayerObject

Abstract Class

IThread
ICreatable

Abstract Class

IThread
ICreatable

Abstract Class

IThread
ICreatable

Abstract Class

PlayerObject

Abstract Class

IMeshEntity

PlayerObject

Class

PlayerObject

Abstract Class

PlayerObject

Abstract Class

PlayerObject

Abstract Class

Abstract Class

Logger

PlayerObject

Class

PlayerObject
Class

SceneManagem…

PlayerObject

Class

StreamCreator

PlayerObject

Class

Timer

PlayerObject

Class

AACAudioSink

MediaSink
PlayerObject

Class

DataInputCarGa…

IDataInput

Class

DataInputMP4

IDataInput

Class

DataInputRTP

IDataInput

Class

DecoderAAC

IDecoder

Class

DecoderBBA

IDecoder
Animator

Class

DecoderBIFS

IDecoder

Class

DecoderCarGame

IDecoder

Class

DecoderFP

IDecoder

Class

DecoderJPEG

IDecoder

Class

DecoderJPEG2000

IDecoder

Class

DecoderRectGen

IDecoder

Class

DecoderXVID

IDecoder

Class

DataOutputAudio

IDataOutput

Class

DataOutputBBA

IDataOutput

Class

DataOutputBIFS

IDataOutput

Class

DataOutputCarG…

IDataOutput

Class

DataOutputFP

IDataOutput

Class

DataOutputImage

IDataOutput

Class

virtual public

virtual public public public

virtual public

publicpublic

public
public

public

public

virtual public virtual public

publicpublic public public publicpublic public public public

public public publicpublicpublic public public public public

virtual public

virtual public virtual public

virtual public virtual public

virtual public

virtual public virtual public

virtual public virtual public

F
igu

re
C
.1:

M
P
E
G
-4

P
layer

C
lasses

an
d
T
h
eir

D
ep

en
d
en
cies

142

indexInfomation
Struct

FileLoader
Class

IFrame
Class

MeshGroupList : …
Typedef

TextList : std::ve…
Typedef

Mutex
Class

ObjectTracker
Class

Scope_Mutex
Class

Semaphore
Class

StreamInfo
Class

MP4PlayerUsage…

BasicUsageEnvironment0

Class

ANMTransform

ANMTransformAtom

Class

ANMBone

ANMBoneAtom

Class

ANMSkeleton

ANMSkeletonAtom

Class

ANMAnimation

ANMAnimationAtom

Class

MPG_IfsQ_E_Ifs

MPG_IfsQ_E

Class

AppTexMap
Struct

ElemTransform
Class

CarInfo
Class

Frame

IFrame

Class

MorphData
Struct

FrameAnim

IFrame

Class

FrameAudio

IFrame

Class

FrameFP

IFrame

Class

FrameImage

IFrame

Class

FrameMesh

IFrame

Class

FrameRectImg

IFrame

Class

publicpublic public public public public public

F
igu

re
C
.2:

M
P
E
G
-4

P
layer

C
lasses

an
d
T
h
eir

D
ep

en
d
en
cies

143

