Résumé Introduction

Des équipements médicaux de plus en plus sophistiqués apportent aujourd'hui des informations indispensables à la prise de décision du médecin, en particulier dans les domaines de la cancérologie et des pathologies neurologiques. Les progrès permis par les nouvelles technologies d'acquisition d'information médicale, que ce soit par l'amélioration du rapport signal à bruit ou le couplage inédit entre anatomie et physiologie, ont progressivement donné à l'imagerie médicale un statut indispensable dans l'élaboration du diagnostic, du pronostic et de la prise en charge thérapeutique. Par ailleurs, l'analyse de combinaisons de signaux biologiques apparait aujourd'hui prometteuse sans toutefois faire systématiquement partie de la routine clinique. Les techniques d'acquisition des signaux médicaux sont en outre en constante évolution (échographie endoscopique, Tomographie par émission de Positons TEP, spectroscopie par Résonance Magnétique Nucléaire, Imagerie par Résonance Magnétique IRM, imagerie IRM fonctionnelle IRMf) et fournissent une quantité croissante de données hétérogènes qui doivent être analysées par le médecin. En effet, d'une observation statique à une multi-observation dynamique, d'une information sur la structure des organes à l'information sur leurs fonctions, les techniques d'acquisition de signaux médicaux portent potentiellement la signature de la maladie (bio-marqueurs) bien au-delà de l'examen clinique ponctuel. Dans ce contexte, des méthodes automatiques de traitement des signaux médicaux sont régulièrement proposées pour aider l'expert dans l'analyse qualitative et quantitative en facilitant leur interprétation. Ces méthodes doivent tenir compte de la physique de l'acquisition, de l'a priori que nous avons sur ces signaux et de la quantité de données à analyser pour une interprétation plus précise et plus fiable. Parmi les nouvelles techniques d'acquisition de signaux, l'analyse des tissus biologique par spectroscopie RMN ou la recherche des activités fonctionnelles cérébrales et leurs connectivités par IRMf sont explorées pour la recherche de nouveaux bio-marqueurs (objet), que ce soit pour l'aide au diagnostic de pathologies ou pour le suivi d'effets thérapeutiques. Pour ce faire, il est également nécessaire d'améliorer les outils d'analyse associés à ces nouvelles techniques. Dans cette optique, nous proposons un nouveau schéma d'indexation et de recherche par le contenu d'objets pour la détection des bio-marqueurs.

Le scénario classique d'exploitation d'un système de recherche d'information est le suivant : un utilisateur soumet une requête et le système identifie les informations pertinentes à la requête soumise, puis les retourne à l'utilisateur. Ainsi, le but d'un système de recherche d'information est de retrouver les documents pertinents par rapport à une requête donnée. Cependant, l'évaluation de la pertinence d'un document n'est toujours pas aisée puisque la notion de la pertinence est très dépendante des préférences de l'utilisateur. La recherche traditionnelle des documents (par exemple, les images médicales, les sons respiratoires, etc) par mots-clés est l'approche la plus ancienne et la plus utilisée. Cependant, elle reste limitée par le faible pouvoir expressif des mots, par les contraintes linguistiques (le passage d'une langue à une autre, l'ambigüité sémantique) et par le caractère objectif des annotations (deux médecins peuvent annoter différemment une image médicale). En outre, elle nécessite l'intervention humaine et est donc contraignante pour les bases de données de tailles importantes si les mots clés sont générés manuellement. De plus, notons que l'annotation ne pourra jamais décrire le contenu d'un document de façon exhaustive.

Afin de contourner ces inconvénients, l'approche d'indexation et de recherche par le contenu a été proposée (appelée désormais approche d'indexation) [START_REF] Eakins | Automatic image content retrieval-are we getting anywhere?[END_REF]. Elle consiste à rechercher des documents en n'utilisant que le document lui-même, c'est-à-dire son contenu sans aucune autre information. Par exemple, dans le cas des images, l'idée est de caractériser le contenu visuel des images par des descripteurs visuels et d'effectuer des recherches par similarité visuelle à partir de ces descripteurs. Par conséquent, l'approche d'indexation basée sur le contenu nous permet non seulement d'indexer automatiquement les documents et d'interroger une base de données directement à partir de leur contenu informatif, sans intervention humaine, mais aussi d'analyser objectivement son contenu. Par exemple, si on considère une tumeur cérébrale comme une requête, nous pouvons facilement identifier avec une fonction de mesure de similarité objective les tumeurs similaires appartenant à la base de données sollicitée.

Généralement, le système d'indexation nécessite:

1. Une étape d'alignement de documents, 2. Une étape de codage de document et de mesure de similarité. En effet, le codage du document consiste à calculer pour chaque document un ensemble d'attributs descriptifs compacts qui définit sa signature. Une mesure de similarité utilisant ces descripteurs permet de comparer deux documents et d'identifier ainsi les documents similaires.

Afin d'accélérer la sollicitation de grande base de données, le schéma d'indexation peut être divisé en deux phases:

1. Une phase hors ligne dans laquelle on réalise l'alignement et le codage du contenu de la base de données. Durant cette phase, l'utilisateur n'est pas encore connecté au système. Cette phase peut alors prendre le temps nécessaire à l'extraction des descripteurs. Le codage hors ligne consiste à extraire les signatures associées aux contenus de la base de données. Ces dernières sont ensuite enregistrées dans une base de données organisée comme un dictionnaire inverse (nom du document et signature) permettant ainsi de retrouver rapidement le document associé à une signature donnée.

2. Une phase en ligne dans laquelle l'utilisateur interroge la base de données à l'aide d'un document exemple. Durant cette seconde phase, le temps de réponse du système est crucial et il faut l'optimiser. Notons que les étapes de l'alignement et du codage ne concernent que le document requête. Une mesure de similarité entre la v signature de la requête et celles établies dans le dictionnaire inverse est alors calculée. Enfin, les documents appartenant à la base de données sont classés par ordre de similarité.

Bien que ce système classique d'indexation a été appliqué avec succès sur des bases de données du Web [1], il n'est malheureusement pas adapté à la tâche d'identification des bio-marqueurs. En effet, cette dernière nécessite la classification des profils de signaux médicaux (groupes) pour la détection de changements. Par exemple, si on considère deux classes de profils: la classe saine et la classe pathologique, la tâche d'identification de biomarqueurs revient à classifier un groupe de signaux médicaux dans la classe des signaux sains ou pathologique (par exemple, le cancer ou les maladies psychologiques) et de détecter alors les différences (variations) entre eux. En fait, la classe des signaux sains peut être considérée comme la classe du "non changement" et la classe pathologique comme la classe du "changement". Par conséquent, l'ajout d'une étape de classification/détection de changement au schéma classique d'indexation nous permettrait de détecter les biomarqueurs à partir des données médicales considérées. Nous nous focalisons dans ce travail de thèse sur :

1. Les spectres à deux dimensions HSQC (Heteronuclear Single Quantum Coherence) obtenus en Résonance Magnétique Nucléaire (RMN) et plus particulièrement en spectroscopie RMN hétéro-nucléaire HR-MAS (High-Resolution Magic Angle Spinning : RMN haute résolution par rotation de l'échantillon à l'angle magique) qui permet l'analyse directe des tissus biologiques (biopsie)

2. Les images IRMf pour les régions fonctionnelles cérébrales.

De ce fait, et contrairement au schéma d'indexation classique, le nouveau schéma d'indexation contient deux étapes supplémentaires: une étape de détection d'objets (détection de pics de spectres HSQC et des zones actives d'images IRMf) et une étape de classification d'objets (détection de changements). Chaque information médicale traitée (spectres 2D RMN ou images IRMf) est alors caractérisée par un ensemble d'objets (biomarqueurs) que nous cherchons à extraire, aligner et coder. Le regroupement de ces objets par la mesure de leur similarité permet alors leur classification. C'est ce schéma globale d'indexation et de recherche par le contenu d'objets que nous avons adopté. Dans notre cas, ces objets sont :

-Les raies d'émission pour les spectres RMN HR-MAS 2D (i.e., un ensemble de pics est la réponse correspondant à la présence de métabolites, chaque métabolite générant différents pics d'émission traduisant la présence de petite molécule à travers des interactions Proton-Carbone 13 dans le cadre des spectres HSQC).

-Les zones actives pour les images IRMf (i.e., une zone active est la réponse d'une activité cérébrale à un stimulus).

vi

Le schéma d'indexation proposé est alors divisé en deux phases:

1. Une phase hors ligne dans laquelle on réalise sur chaque signal traité (spectre HSQC et image IRMf) : la de détection d'objets, l'alignement d'objets, lr codage d'objets, la mesure de similarité et enfin la classification d'objets. Finalement, des profils de groupes ou de populations données (par exemple groupe de signaux normaux ou pathologiques) sont établis.

2. Une phase en ligne dans laquelle l'utilisateur interroge la base de données en utilisant une requête (nouvel individu/groupe de spectres). Les mêmes étapes que dans la phase hors ligne sont appliquées sur la requête (spectre HSQC ou image IRMf). Enfin, cette requête est assignée à un profil préalablement défini à l'étape hors ligne. Notons que contrairement au schéma d'indexation classique, l'étape de mesure de similarité d'objets vise ici à regrouper les objets similaires appartenant à un groupe de signaux médicaux donnés permettant ainsi l'attribution de ce groupe au profil approprié. En d'autres termes, la tâche d'attribution d'un nouveau groupe/individu est abordée ici au niveau de l'étape de classification et non pas au niveau de l'étape de mesure de similarité comme c'est le cas pour le schéma d'indexation classique. Dans la suite, nous développons les étapes de détection-alignement d'objets, de codage vii et de mesure de la similarité ainsi que l'étape de classification d'objets.

Détection et alignement d'objets

Le problème de la détection d'objets consiste à découper le signal en un ensemble de groupes significatifs (objets) en se basant sur les informations spatiales et/ou les intensités des pixels. La tâche d'alignement d'objet est le processus de superposition de deux ou plusieurs objets pris à des moments différents, et/ou différents points de vue, et/ou par des modalités différentes. Plus précisément, l'alignement des objets consiste à aligner géométriquement un objet par rapport à un motif de référence. Notons que la tâche de détection d'objets et celle de l'alignement sont deux étapes cruciales dans le système d'indexation car toutes les autres étapes en dépendent. Par conséquent, afin d'aboutir à un résultat de détection et d'alignement d'objets optimal, toutes les connaissances a priori que nous avons sur les données doivent être correctement intégrées dans les méthodes proposées de détection et d'alignement d'objets. C'est la démarche que nous suivons dans cette thèse.

Pour l'étape d'extraction et d'alignement des objets, nous proposons une nouvelle méthode basée sur l'utilisation de la théorie de l'évidence qui combine la détection et l'alignement des raies d'émission. En effet, la théorie de l'évidence permet la manipulation de l'incertitude des modèles et l'imprécision qui caractérisent les spectres HSQC. Par conséquent, nous proposons le couplage entre la théorie des ensembles flous et la théorie bayésienne pour modéliser et quantifier le degré d'imprécision des spectres qui sera ainsi exploité pour définir les fonctions de masse (i.e., une fonction qui modélise le degré de croyance sur une hypothèse donnée). En ce qui concerne les images IRMf, nous procédons, dans une première étape à l'extraction des zones actives en utilisant un algorithme de segmentation par chaînes de Markov. Ensuite, nous proposons un nouvel algorithme d'alignement des zones actives basé sur l'utilisation de la méthode d'Analyse en Composante Principale (ACP) non-linéaire pour l'estimation des symétries de réflexion. Ces symétries de réflexion sont ensuite utilisées pour l'alignement des zones actives.

Détection et alignement de pics

Nous proposons dans cette thèse une nouvelle méthode de détection et d'alignement des pics de spectres RMN HR-MAS 2D en utilisant la théorie de l'évidence. Cette théorie permet d'affecter des degrés de confiance, aussi connus sous le nom de fonctions de masses, non seulement à des hypothèses simples, mais aussi à des réunions d'hypothèses(si la connaissance disponible ne porte que sur un ensemble d'hypothèses sans plus de précision). Par exemple, un pixel de spectre peut appartenir à la classe {H 1 , H 2 } où H 1 représente la classe des raies d'émission et H 2 celle du bruit. Il n'existe pas une méthode générique reconnue pour construire ces fonctions de masses et leur définition est très dépendante de l'application étudiée. Pour ce faire, nous nous intéressons à la modélisation du conflit pour la quantification de l'imprécision dans les spectres en définissant trois hypothèses triviales: viii hyp 1 (l'imprécision (contradiction) portant sur les amplitudes), hyp 2 (l'imprécision portant sur les formes des pics) et hyp 3 (l'imprécision portant sur les positions des pics). La contradiction sera maximale lorsque un pixel correspond à une raie d'émission dans un spectre et correspond en même temps à un bruit dans l'autre. Les différents paramètres des spectres (localisation des pics, charachtéristiques de chaque pic: amplitude et forme) sont estimés par une procedure Monte Carlo Markov Chain MCMC [START_REF] Griffin | Metabolic profiles of cancer cells[END_REF]. Figure 6.3 représente la chaîne de traitement de la méthode de détection et d'alignement des pics. 

Détection et alignement de zones actives

Nous rappelons que une image IRMf peut simplement être représentée par un ensemble de zones actives que nous cherchons à détecter et à aligner (comme pour les pics du spectre HSQC) en 3D. Chaque zone active peut être caractérisée par sa positon, sa forme et les intensités de ses voxels. Contrairement au schéma de détection et d'alignement des pics, les problèmes de détection et d'alignement des zone actives sont traités séparément. Plus explicitement, étant donnés deux objets détectés, notre objectif est de les aligner en fonction de leur pose canoniques. Pour ce faire, la détection des zones actives est d'abord effectuée en utilisant une méthode classique de segmentation par les chaînes de Markov cachées ix [START_REF] Bricq | Unifying framework for multimodal brain MRI segmentation based on hidden Markov chains[END_REF] permettant d'intégrer l'information spatiale dans la procédure de segmentation.

Afin d'aboutir à un résultat satisfaisant d'alignement, nous nous appuyons sur la perception humaine dans le schéma d'alignement qui consiste à aligner un objet en fonction de ses axes de symétrie. Cette approche nous permet de trouver la pose la plus naturelle de l'objet et ensuite aligner les objets visuellement similaires de la même manière. La plupart des méthodes basées sur la perception humaine ont opté soit pour le choix de l'ACP ou l'ACP continue [START_REF] Vranić | 3D shape descriptor based on 3D Fourier transform[END_REF][START_REF] Vranic | Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics[END_REF] pour estimer les plans de réflexion. Ces plans sont ensuite utilisés pour estimer le système de coordonnées cartésiennes approprié associé à l'objet. Bien que ces méthodes aient été appliquées avec succès pour l'alignement des objets 3D du Web [START_REF] Vranic | Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics[END_REF], elles sont malheureusement pas adoptées pour les objets 3D IRMf. En effet, en raison de la forme du cortex, la symétrie de réflexion sur les zones actives est plus sphérique que planaire. Nous proposons alors d'utiliser la ACP non-linéaire qui est plus adaptée à la forme de nos objets pour modéliser la symétrie de réflexion des zones actives [START_REF] Bishop | Neural networks for pattern recognition[END_REF]. Pour cela, nous avons développé une nouvelle méthode d'estimation des symétries de réflexion sphérique en se basant sur les réseaux de neurones qui ont montré leurs intérêts dans la modélisation de l'aspect non-linéaire des données [START_REF] Hsieh | Applying neural network models to prediction and data analysis in meteorology and oceanography[END_REF][START_REF] Stamkopoulos | ECG analysis using nonlinear PCA neural networks for ischemia detection[END_REF][START_REF] Scholz | Non-linear PCA: a missing data approach[END_REF]. Figure 6.5 représente la chaîne de traitement de la méthode de d'alignement des zones actives. 

Codage d'objets et mesure de similarité

Nous rappelons que chaque spectre est composé de plusieurs pics qui sont dispersés dans le spectre. Ces pics sont les réponses de la présence de métabolites. Par conséquent, les pics appartenant à un métabolite donné ont des propriétés communes. Afin d'aboutir à un meilleur résultat de codage et de mesure de similarité des pics, ces propriétés devraient être modélisées et injectées dans le schéma proposé. Ainsi, il est préférable de manipuler les métabolites plutôt que leurs pics séparément. Par ailleurs, dans le cas des spectres HSQC, l'étape de codage d'objets s'avère inutile puisque les pics peuvent être uniquement décrits par trois paramètres (localisation, amplitude et forme) et ils sont donc déjà représentés x d'une façon parcimonieuse. De ce fait, l'étape de codage et de mesure de similarité des pics revient à identifier les métabolites. Pour cela, nous proposons une nouvelle méthode basée sur la combinaison de la théorie bayésienne et de la théorie d'ensembles flous permettant de gérer l'incertitude et le caractère flou des observations et d'injecter notre connaissance a priori dans le modèle d'inférence. Concernant les images IRMf, nous proposons une nouvelle méthode de codage basée sur la transformation gaussienne généralisée permettant de décrire d'une manière fiable la topologie de surface des zones actives.

Identification de métabolites

On distingue généralement deux approches pour l'étude des métabolites. Dans la première approche, appelée l'approche schématique, les composants ne sont pas initialement identifiés. Seulement leurs modèles spectraux et intensités sont connus et comparés statistiquement pour identifier leurs caractéristiques spectrales appropriées qui distinguent des classes. Une fois ces caractéristiques établies, une variété d'approches peut alors être utilisée pour identifier les métabolites [START_REF] Brindle | Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1 H-NMR-based metabonomics[END_REF]. Dans l'autre approche, appelée l'approche du profil ciblé, les composants sont d'abord identifiés et évalués quantitativement en comparant le spectre NMR de la biopsie à une bibliothèque de référence spectrale obtenue de composants purs [START_REF] Weljie | Targeted profiling: quantitative analysis of 1H NMR metabolomics data[END_REF]. Bien que la première approche présente l'avantage de pouvoir détecter des métabolites non connus à l'avance, elle n'exploite pas de contraintes supplémentaires comme la connaissance de la composition de la biopsie, nombre de pics d'un métabolite, etc. Pour cela, nous allons définir trois critères triviaux pour modéliser ces a priori qui sont la localisation des pics, les paramètres de la densité de probabilité des amplitudes des pics et finalement le rapport entre les différent pics. Pour ce dernier, nous allons supposer que les rapports d'intensité des raies d'émission d'un métabolite donné sont les mêmes. Bien que cette contrainte soit théoriquement valide, elle n'est que rarement vérifiée en pratique du fait des changements des conditions d'acquisition, de la perte de la matière, etc. Pour contourner ce problème, nous allons utiliser la théorie des ensembles flous pour modéliser les erreurs introduites par ces perturbations et proposer un schéma d'annotation automatique. Le deuxième critère est les hyperparamètres de la Figure 4 représente la chaîne d'identification des métabolites.

Codage et mesure de similarité des zones actives

Parmi les méthodes de codage d'objets, le descripteur gaussien 3D (3DGD) proposé par Chaouch [START_REF] Chaouch | 3D Gaussian descriptor for 3D shape retrieval[END_REF] a montré son efficacité comparé à d'autres méthodes et a été classé premier sur la base de données de Princeton Shape Benchmark. Il fait partie de la famille des descripteurs basés sur une partition de l'espace. Le principe de ce descripteur est de caractériser et d'amplifier localement le voisinage de la surface 3D. Pour cela, les auteurs proposent d'utiliser des fonctions gaussiennes qui mesurent l'influence des points de la surface sur des points régulièrement répartis dans l'espace englobant l'objet 3D. Ce descripteur offre une caractérisation compacte, robuste et attachée à la forme 3D. Bien que cette méthode ait été appliquée avec succès sur la recherche sur Internet d'objets 3D, elle présente une lacune. En effet, elle ne fournit pas une information sur la topologie de sur- face d'objets. Pour cela, nous proposons un nouveau descripteur: le descripteur gaussien généralisé (3DGGD) inspiré de la méthode 3DGD. Cette méthode se base sur l'utilisation de la loi gaussienne généralisée à la place de la loi gaussienne permettant ainsi de s'adapter à la topologie de la surface de l'objet (surface plane, aiguë,..) grâce à son paramètre de forme α. La mesure de similarité peut être calculée en utilisant une distance euclidienne dans l'espace des coefficients gaussiens généralisés. Figure 5 représente la chaîne du codage des zones actives.

Classification d'objets

Plusieurs algorithmes de classification pour détecter les changements ont été développés dans les dernières décennies. Certains restent supervisées en raison de la difficulté de la tâche. D'autres ne le sont pas ce qui cause parfois une perte de robustesse et un temps de calcul relativement élevé. La première approche s'appuie sur des méthodes de classification supervisées afin de détecter les changements entre plusieurs acquisitions [START_REF] Derrode | Unsupervised Change Detection in SAR Images Using Multicomponent HMC Models[END_REF]. Cette tâche revient à discriminer les données entre deux classes: changement et non changement. La première nécessite une réalité de terrain afin d'en tirer une formation appropriée pour définir le processus d'apprentissage des classificateurs. Cependant, la vérité terrain est souvent difficile et coûteuse à trouver. Par conséquent, l'utilisation de méthodes de détection de changement non-supervisées est cruciale dans de nombreuses applications où la vérité terrain est hors portée [START_REF] Fumera | Reject option with multiple thresholds[END_REF]. Dans la littérature, les méthodes à noyau sont largement utilisées pour la détection de changement. En effet, elles offrent plusieurs avantages par rapport à d'autres approches : elles réduisent la malédiction de la dimensionnalité élevée dans les données, augmentent la fiabilité et la robustesse de la méthode à la présence d'un niveau élevé de bruit et permettent une cartographie flexible entre les objets qui sont représentés par un vecteur de caractéristiques (entrées) et de l'étiquette de classe (sorties) [Shawe-Taylor04]. Cependant, l'inconvénient majeur des méthodes à noyau est le choix de la fonction noyau qui dépend fortement de l'application [START_REF] Scholkopf | Support vector method for novelty detection[END_REF] .

Parmi les différentes méthodes à noyaux présentées dans la littérature (par exemple [START_REF] Furey | Support vector machine classification and validation of cancer tissue samples using microarray expression data[END_REF] et [START_REF] Bruzzone | A novel transductive SVM for semisupervised classification of remote-sensing images[END_REF]), les Descripteurs de données à vecteurs de support (SVDD) [START_REF] Tax | Support vector data description[END_REF] est adoptée ici.L'objectif de la méthode de classification SVDD consiste à cartographier les données dans un espace de grande dimension. Dans ce nouvel espace, une hypersphère entourant la plupart de l'ensemble de données appartenant à la classe d'intérêt (cible correspondant à la classe des données inchangées) et en rejetant les autres observations (qui seront considérées comme les valeurs aberrantes ) est définie. Dans cet article, le problème de détection de changement est abordé d'une manière non supervisée. Notre objectif est de discriminer les données en deux classes : classe des données changées et classe de données inchangées.

Bien que les fonctions noyau de base sont plus ou moins appliquées avec succès pour la détection de changement, elles n'exploitent pas des contraintes supplémentaires souvent disponibles, tels que la dépendance et la distribution des données. Afin de tenir compte de ces caractéristiques dans notre schéma de détection de changement, nous proposons une nouvelle fonction noyau qui combine les fonctions noyau de base avec de nouvelles informations sur la distribution de caractéristiques et de la dépendance des données. Le défi est alors de trouver le moyen approprié pour traiter cette dépendance. Pour cela, nous avons opté pour la théorie des copules qui a prouvé son efficacité pour traiter la dépendance. La méthode proposée est notée SV3DH (SV3DH est l'acronyme de Support Vector Data Description including Dependency Hypothesis). Figure 6 

Résultats

Dans cette section, nous présentons les résultats expérimentaux obtenus avec les méthodes proposées sur des données simulées et réelles. Pour mettre en évidence l'intérêt de ces méthodes, nous avons comparé chaque méthode proposée avec les méthodes existantes. Concernant la détection et l'alignement de pics des spectres HSQC, et afin de montrer l'intérêt de l'utilisation de la théorie de l'évidence, nous avons comparé notre méthode avec une méthode purement bayésienne [START_REF] Toews | Maximum a posteriori local histogram estimation for image registration[END_REF] sur des spectres simulés avec différent Peak to signal ratio PSNR. Les résultats obtenus sont présentés dans Table 1. Nous pouvons facilement constater que la méthode proposée est meilleure que la méthode bayésienne.

En ce qui concerne l'alignement des zones actives, nous avons comparé notre méthode avec la méthode de l'ACP continue [START_REF] Vranić | 3D shape descriptor based on 3D Fourier transform[END_REF] sur cinq bases de données simulées. Chacune contient cent objets 3D. Les résultats obtenus sont présentés dans Table 3.4. Nous pouvons constater que la méthode proposée est plus adaptée aux zones actives que l'ACP continue.

A l'égard de l'identification des métabolites, nous avons comparé notre méthode avec la méthode Support Vector Machine SVM [Camps-Valls05] et une autre méthode de seuillage [START_REF] Xia | MetaboMiner -semiautomated identification of metabolites from 2 D NMR spectra of complex biofluids[END_REF]. Afin de valider et de souligner les avantages de l'approche proposée, nous Méthode proposée ACP continue data set1 0.02± 1.2 10 -4 0.097 ± 7.85 10 -4 data set2 0.038 ± 5.8 10 -4 0.124 ± 2.14 10 -3 data set3 0.0474 ± 9.7 10 -4 0.301 ± 4.23 10 -3 data set4 0.062 ± 1.03 10 -3 0.832 ± 5.82 10 -2 data set5 0.078 ± 4.12 10 -3 1.177 ± 7.98 10 -2 Afin de valider et de souligner les avantages de l'approche proposée, nous utilisons trois mesures de performances: le nombre de fausses détections PFA, le nombre de détections manquées PMD et l'erreur globale PTE :

PFA = FA N F × 100%; PMD = MD N M × 100%; PT E = MD+FA N M +N F × 100%
Où FA représente le nombre de pixels inchangés et qui ont été incorrectement déterminé comme changés, N F le nombre total de pixels inchangés, MD le nombre de pixels changés et qui ont été incorrectement déterminés comme inchangés, N M le nombre total des pixels changés. 

Motivation

Technology is transforming healthcare. The better patient care and diagnosis efficiency is the goal. In this context, medical equipment and technology are increasingly sophisticated providing a new information essential to physician diagnosis, particularly in the areas of cancer and neurological diseases. Moreover, the progress in medical information acquisition technologies by improving the signal to noise ratio or by the coupling between anatomy and physiology, has gradually given to medical imaging its indispensable status for diagnosis, prognosis and therapeutic management. Furthermore, the analysis of biological signal combinations appears promising even if they are not systematically part of clinical routine today.

The medical signal acquisition techniques are constantly evolving in recent years (ultrasound endoscopy, Positron Emission Tomography PET, Nuclear Magnetic Resonance NMR spectroscopy, Magnetic Resonance Imaging-MRI, functional MRI-fMRI) and providing an increasing amount of data which should be then analyzed. Indeed, from a static observation to a dynamic multi-observation, from an information about the organs structure to an information about their functions, the signal acquisition techniques are potentially carrying the disease signature (biomarkers) well beyond the punctual clinical examination. In this context, automatic signal processing methods are regularly proposed to assist the expert in the qualitative and quantitative analysis of these images in order to facilitate their interpretation. These methods should take into account the physics of signal acquisition, the a priori we have on the signal formation and the amount of data to analyze for a more accurate and reliable interpretation.

Among the new signal acquisition techniques, the NMR spectroscopy for biological tissues analysis and the fMRI for functional brain activities and connectivity analysis are explored to identify new biomarkers (objects). These biomarkers could be used to help the diseases diagnosis or to monitor therapeutic effects. To this end, it is important to improve the analysis tools associated with these techniques. In this context, we propose a new content-based object indexing and retrieval scheme for biomarkers detection. This proposed indexing scheme consists of both an off-line and an on-line phases. In the off-line one, the medical profiles of different medical signal group or population (e.g, group of normal or pathological signals) are established. In the on-line phase, the assignment of a new individual/group to a given profile defined in the off-line phase is performed. Both phases are divided into three steps:

1. Object detection and alignment, 2. Object coding and similarity measurement, 3. Object classification.

Methodology

We focus in this thesis on:

• The two-dimensional 2D Heteronuclear Single Quantum Coherence HSQC spectra obtained by High-Resolution Magic Angle Spinning HR-MAS NMR for biological tissue (biopsy) analysis [Schmidt-Rohr94].

• The fMRI images for functional brain activities analysis [START_REF] Engel | Retinotopic organization in human visual cortex and the spatial precision of functional MRI[END_REF].

Each processed medical information (2D NMR spectra or fMRI) will be characterized by a set of objects (biomarkers) that we seek to extract, align, and code. The clustering of these objects by measuring their similarity will allow then their classification. It is this global content-based object indexing and retrieval scheme (henceforth called indexing scheme) that we adopt. In our case, these objects are:

• The emission peaks for 2D HR-MAS NMR spectra (i.e, a set of peaks is the response corresponding to the metabolite presences, each metabolite generating different emission peaks reflecting the presence of small molecule through the interaction between the Proton and Carbon-13 in the case of HSQC spectra).

• The active zones for fMRI (i.e, an active zone is the response of brain activity to a stimulus).

However, this indexing task is not trivial and requires the development of new processing tools. Therefore, we are interested in this thesis to properly model and integrate the a priori knowledge we have on these biological signal allowing us to propose thereafter appropriate methods to each indexing step and each type of signal. The methods we propose are:

• For the object detection and alignment step in the case of 2D HR-MAS NMR spectra, we propose a new peak detection and alignment method based on the use of evidence theory. Indeed, the evidence theory allows us to handel the uncertainty models and the imprecision that well adopted HSQC spectra. Therefore, we propose the coupling between the fuzzy set theory and Bayesian theory to model and quantify the degree of spectrum imprecision which will be used to define the mass functions (i.e, a function that models the belief degree on a given hypothesis). We particularly show that the use of the evidence theory for peak detection and alignment consistently achieve a higher performance compared to a pure Bayesian approach. Regarding the fMRI images, we proceed in a first step to the extraction of fMRI active zones using a Hidden Markov chain segmentation algorithm. Then, we propose a new active zone alignment algorithm relying on the use of non-linear principal component analysis (PCA) algorithm, well suited to fit the cortex shape, to estimate the planes of symmetry. These planes of symmetry will be used then to align active zones.

• The object coding step consist in calculating for each object a set of compact descriptive attributes defining its signature. A similarity measurement using the descriptors aims at comparing two objects and at grouping similar objects as well. For HSQC spectra, the object coding step is not useful since the peaks already have a parsimonious representation with three parameters (location, amplitude and shape). For the similarity measurement, we propose a new method based on the combination of Bayesian theory and the theory of fuzzy sets to handle the uncertainty and fuzziness of the observations and to integrate a priori knowledge in the inference process.

Concerning the fMRI images, we propose a new coding method based on the generalized Gaussian transformation allowing us to reliably describe the surface topology of the active zones. In particular, we show that the proposed coding method not only provides a compact representation of the object, but also a signature faithful to its shape. We also propose a similarity measurement robust to small displacements and little variations of the objects.

• For the objects classification step, we propose a new Support Vector Data Description (SVDD) kernel function combining the features of basic kernel functions with new information about features distribution and then dependency between samples. The dependency between samples will be based on copulas theory that is used for the first time to our knowledge in the SVDD framework. We show that the use of the new kernel function increases the classification performance with respect to the basic kernel functions either on simulated or real data.

Results

The different proposed methods were validated in a first part on simulated data to demonstrate their behavior compared to existing methods. In a second part, all the results obtained on real data have been examined by experts in each domain (HR-MAS NMR spectroscopy and fMRI). This validation shows the good performance of our algorithms leading to sim-ilar results to those obtained by physicians in a short time both for the HSQC spectra (HR-MAS NMR) and fMRI images.

Organization of the manuscript

This manuscript is divided into six chapters. The second chapter is devoted to the description of the medical images formation/acquisation on which we work in this thesis. We focus on the description of image content and on the different characteristics associated with the acquisition process. This chapter is divided into three parts: the first one describes the physical principles of Nuclear Magnetic Resonance (NMR) as well as the 1D and the 2D NMR experiments. Functional Magnetic Resonance Imaging (fMRI) is then introduced in part two. Finally, the Statement of indexing problem is studied.

In the third chapter, we describe in the first part the widely used object detection and alignment methods proposed for the indexing schemes. Then we detail the proposed peak detection and alignment method as well as the active zone alignment method in part two and three respectively.

Chapter four is devoted to the second step of the indexing scheme: the object coding and similarity measurements. To this end, we present in the first part an overview of object coding and similarity measurement methods. Then, we describe the proposed method for peak similarity measurement. In the third part, the proposed active zone coding algorithm inspired from the Gaussian transformation is presented.

The fith chapter presents the kernel-based methods for object classification task. We propose a new Support Vector Data Description (SVDD) kernel function which combines the characteristics of basic kernel functions with new information about features distribution. We pay a particular attention to check that the proposed kernel function is robust with higher performance compared to classic Support Vector Machine (SVM) and SVDD methods on both synthetic and real data sets.

In the sixth chapter, we first describe the entire work-flows of both treatment chains (HSQC spectra and fMRI data). Then, we provide an assessment of the developed methods. This is done in two stages. Initially, we proceed to a detailed study of some representative cases. Then, the results on a consistent databases is compared to a ground truth provided by experts. This work ends with a general conclusion that provides a summary contributions of this thesis. We present likewise some perspectives.

Publications

The main publications are available at the following URL: http://lsiit-miv.u-strasbg.fr/miv/84-BELGHITH-Akram.html Journal articles The medicine has considerably progressed over the past twenty years. On the one hand, the development of medical technology has enabled a significant increase in life expectancy. On the other hand, the costs of health services are increasing particularly in France which devotes 8.7% of its GDP (Gross Domestic Product) to medical services, the highest proportion of all countries [ICID10]. Therefore, increasing the diagnosis accuracy seems to be crucial in order to reduce the time of hospitalization and improve patient survival and his life quality. In this context, the medical signal processing has found its success and has emerged as an ideal technique for biomarkers identification and analysis and hence for helping the differential diagnosis of diseases.

• A.
Medical signal acquisition has certainly contributed to the improvement of medicine from 20 to 30 years. In particular, the development of new medical signal acquisition techniques such as the two dimensional 2D Heteronuclear Single Quantum Coherence (HSQC) NMR spectroscopy and the functional Magnetic Resonance imaging fMRI which are examples of technological advancements in medicine researches. These techniques allow physicians to directly observe phenomena that previously had to be blind-evaluated or predicted. Indeed, on the one hand, the NMR spectroscopy enables the identification of metabolites in non-invasive manner. On the other hand, fMRI technique is used to measure the hemodynamic response related to neural activity in the brain. This chapter is divided into three parts: in the first one we describe the physical principles of NMR spectroscopy, then we present the 1D as well as the 2D NMR ex vivo experiments. We particularly show the contribution of 2D spectra compared to 1D spectra. fMRI experiment is then briefly introduced in Section 2.2. Finally, the proposed content-based information indexing and retrieval scheme for biomarkers identification, the main topic of this thesis, is detailed in section 2.3.

NMR spectroscopy

The Metabolomics is an exponentially growing field of 'omics' research concerned with the comparison, identification and quantification of large numbers of metabolites in biological system [START_REF] Fiehn | Metabolomics-the link between genotypes and phenotypes[END_REF]. This emergent science of metabolomics enables the identification of biomarker diseases that integrates biochemical changes in disease and predict human reaction to treatments. In this context, the NMR spectroscopy has emerged as an ideal platform for metabolite studying [START_REF] Holzgrabe | NMR spectroscopy in drug development and analysis[END_REF][START_REF] Beckonert | Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts[END_REF]. Indeed, in 1977, Ekstrand et al. have established the possibility of studying the metabolism by application of NMR [START_REF] Ke Ekstrand | Proton NMR relaxation times in the peripheral blood or cancer patients[END_REF]. In this work, a suspension of red blood cells was analyzed by liquid NMR to study the proton relaxation times of some metabolites such as lactate, pyruvate, alanine or creatine. The large amount of information becoming accessible to a better understanding of metabolism using the NMR technique was immediately apprehended by the scientific community. This has naturally led the proton NMR performed on biological fluids to take a prominent place in the field of pharmacology, toxicology and the study of pathological changes metabolism. Fluids that have been analysed by NMR are: the urine [Bales84, Foxall95, Griffin00, Melendez01], the bile [START_REF] Keun | Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies[END_REF][START_REF] Paczkowska | High-resolution 1H nuclear magnetic resonance spectroscopy analysis of bile samples obtained from a patient after orthotopic liver transplantation: new perspectives[END_REF], the blood plasma [Wevers94, Nicholson95, Alum08], the cerebrospinal fluid [START_REF] Dunne | Metabolites from cerebrospinal fluid in aneurysmal subarachnoid haemorrhage correlate with vasospasm and clinical outcome: a pattern-recognition 1H NMR study[END_REF][START_REF] Jukarainen | Quantification of 1 H NMR spectra of human cerebrospinal fluid: a protocol based on constrained total-line-shape analysis[END_REF][START_REF] Sinclair | NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases-a diagnostic tool[END_REF], the milk [Martin-Pastor00, Holmes00, Bertram07], the saliva [Silwood99, [START_REF] Grootveld | 1H NMR analysis as a diagnostic probe for human saliva[END_REF][START_REF] Grootveld | Determination of the illicit drug gamma-hydroxybutyrate (GHB) in human saliva and beverages by 1 H NMR analysis[END_REF], the gastric fluid [START_REF] Lof | Kinetics of chlorambucil in vitro: effects of fluid matrix, human gastric juice, plasma proteins and red cells[END_REF], the seminal fluid [START_REF] Mj Lynch | Ultra high field NMR spectroscopic studies on human seminal fluid, seminal vesicle and prostatic secretions[END_REF][START_REF] Tomlins | High resolution NMR spectroscopic studies on dynamic biochemical processes in incubated human seminal fluid samples[END_REF] and the amniotic fluid [START_REF] Joe | 1H HR-MAS spectroscopy for quantitative measurement of choline concentration in amniotic fluid as a marker of fetal lung maturity: Inter-and intraobserver reproducibility study[END_REF][START_REF] Graca | 1H NMR Based Metabonomics of Human Amniotic Fluid for the Metabolic Characterization of Fetus Malformations[END_REF][START_REF] Cohn | Quantitative metabolic profiles of 2nd and 3rd trimester human amniotic fluid using 1 H HR-MAS spectroscopy[END_REF]. Nevertheless, the first studies involving the human organ analysis were addressed with the in vivo and ex vivo NMR. In fact, since the first application of NMR spectroscopy in vivo [START_REF] Bd | Application of 31P nmr to inborn errors of muscle metabolism[END_REF] and ex vivo [START_REF] Mountford | Characterization of transformed cells and tumors by proton nuclear magnetic resonance spectroscopy[END_REF], the technique of NMR has been increasingly used as a powerful tool to explore, in situ, a significant number of organs such as heart [START_REF] Barba | 1 H NMR-based metabolomic identification of at-risk areas after myocardial infarction in swine[END_REF], kidney [START_REF] Tate | Distinction between normal and renal cell carcinoma kidney cortical biopsy samples using pattern recognition of 1H magic angle spinning (MAS) NMR spectra[END_REF][START_REF] Garrod | High-resolution 1H NMR and magic angle spinning NMR spectroscopic investigation of the biochemical effects of 2bromoethanamine in intact renal and hepatic tissue[END_REF][START_REF] Righi | Ex vivo HR-MAS magnetic resonance spectroscopy of normal and malignant human renal tissues[END_REF], prostate [START_REF] Swanson | Quantification of cholineand ethanolamine-containing metabolites in human prostate tissues using 1H HR-MAS total correlation spectroscopy[END_REF], cervical [START_REF] Mahon | 1H magnetic resonance spectroscopy of invasive cervical cancer: an in vivo study with ex vivo corroboration[END_REF][START_REF] Sitter | Cervical cancer tissue characterized by high-resolution magic angle spinning MR spectroscopy[END_REF] as well as the stomach [START_REF] Tugnoli | Molecular characterization of human gastric mucosa by HR-MAS magnetic resonance spectroscopy[END_REF][START_REF] Tugnoli | Ex vivo HR-MAS magnetic resonance spectroscopy of human gastric adenocarcinomas: a comparison with healthy gastric mucosa[END_REF][START_REF] Calabrese | Biochemical alterations from normal mucosa to gastric cancer by ex vivo magnetic resonance spectroscopy[END_REF]. Indeed, the technique of NMR allows us to obtain metabolic information needed for clinical diagnosis of the patient with a suspected injury, to establish the prognostic or to study the diseases evolution [START_REF] Fa Howe | Proton spectroscopy in vivo[END_REF][START_REF] Ross | Clinical applications of magnetic resonance spectroscopy[END_REF][START_REF] Howe | 1H MR spectroscopy of brain tumours and masses[END_REF][START_REF] Kwock | Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast, and prostate cancer[END_REF]. The fields of application in the medicine include as well the study of brain tumors [START_REF] Opstad | Toward accurate quantification of metabolites, lipids, and macromolecules in HRMAS spectra of human brain tumor biopsies using LCModel[END_REF][START_REF] Opstad | Toward accurate quantification of metabolites, lipids, and macromolecules in HRMAS spectra of human brain tumor biopsies using LCModel[END_REF][START_REF] Wright | Ex-vivo HRMAS of adult brain tumours: metabolite quantification and assignment of tumour biomarkers[END_REF], the breast tumor [START_REF] Beckonert | Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps[END_REF], the ovarian tumors [START_REF] Odunsi | Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics[END_REF], the neurological disorders such as epilepsy [START_REF] Hammen | 1H-MR Spectroscopy Indicates Severity Markers in Temporal Lobe Epilepsy: Correlations between Metabolic Alterations, Seizures, and Epileptic Discharges in EEG[END_REF], the acquired immune deficiency syndrom AIDS [START_REF] Corr | Imaging of neuro-AIDS[END_REF], the Alzheimer's disease [START_REF] Thompson | Tracking Alzheimer's disease[END_REF] multiple sclerosis disease [START_REF] Brenner | The proton NMR spectrum in acute EAE: the significance of the change in the Cho: Cr ratio[END_REF][START_REF] Davies | High resolution proton NMR spectroscopy of multiple sclerosis lesions[END_REF] or other neurodegenerative diseases [START_REF] Apostolova | Brain mapping as a tool to study neurodegeneration[END_REF] as Parkinson's disease [START_REF] Camicioli | Magnetic resonance spectroscopic evidence for presupplementary motor area neuronal dysfunction in Parkinson's disease[END_REF]. In the following we describe the principles of the NMR technique.

NMR principles

The structure determination of almost any biological or organic molecules as well as many inorganic molecules begins with the NMR spectroscopy. Indeed, the technique of NMR Figure 2.1: The nucleus has a magnetic moment which can be assimilated to a small magnet.

has become one of the praised methods for identifying the structure of both pure and mixed compounds as well as solid or liquid compounds. This technique often involves performing NMR experiments to deduce the molecular structure from the magnetic properties of the atomic nuclei and the surrounding electrons. The NMR technique relies on the atom nucleus behavior while spinning. Indeed, the atom nucleus can be considered as a positively charged sphere spinning on itself (Fig. 2.1). As result of this spin, each nucleus processes an angular momentum p and a magnetic moment µ [START_REF] Friebolin | Basic one-and two-dimensional nmr spectroscopy[END_REF].

Thanks to the quantum mechanics, we can express the behavior of the magnetic moment µ with the number of spin denoted I [START_REF] Liboff | Introductory quantum mechanics[END_REF]. Indeed, I determines the number of possible directions that a nucleus can adopt in the presence of an external magnetic field. In fact, in the presence of a external magnetic field -→ B 0 , the component of µ along -→ B 0 (oriented along z-axis) is expressed as [START_REF] Friebolin | Basic one-and two-dimensional nmr spectroscopy[END_REF]:

µ z = γ. .m (2.1)
where γ is the gyromagnetic ratio related to the treated atom and is the reduced Planck constant. The magnetic quantum number m can take values m ∈ {I, I -1, I -2, ... -I} where I is the spin number. For example, if we consider a proton 1 H (I = 1 2 ) placed in a magnetic field, there are two possible states: m = ± 1 2 or m = -1 2 . Thus, we have:

µ z = ± γ.

2

(2.2) Fig. 2.2 shows the two possible orientations for a spin with I = 1 2 .

The proton nucleus, abundantly present in the human body in the water molecules form, are assumed to be randomly oriented. When a sample is exposed to an intense external magnetic field -→ B 0 , the nuclear magnetic moments are orientated in the direction of this field. However, the thermal agitation opposes to this orientation [Van de Ven95]. As we saw in the previous paragraph, the component magnetic moments µ z of spin 1 2 can only adopt two possible orientations: one is parallel to -→ B 0 (Fig. Figure 2.2: Orientations of the magnetic dipole in the presence a magnetic field -→ B 0 for a spin 1 2 .

Since, the number of parallel nuclei is slightly higher than that of antiparallel nuclei, the vector sum of all nuclear magnetic moments is non-zero and is then aligned among the direction of the field -→ B 0 [START_REF] Friebolin | Basic one-and two-dimensional nmr spectroscopy[END_REF]. This amount is called the nuclear magnetization and denoted by -→ M = ∑ i -→ u i (Fig. 2.4) where -→ µ i the magnetic moment of the i th nuclei. Since the dephasing between the different precession movements (i.e; changes in the orientation of the nuclei rotation axis) of the elementary magnetization -→ µ i is uniformly distributed, the transverse component of the resulting magnetization is equal to zero. Moreover, when a small magnetic field -→ µ is plunged into an intense magnetic field -→ B 0 , we can show that -→ µ is animated by a precession movement around -→ B 0 which is analogous to the movement of a spintop axis about the vertical (Fig. 2.5) [START_REF] Fukushima | Experimental pulse nmr: a nuts and bolts approach[END_REF]. The speed at which this precesses occurs is given by the Larmor frequency relationship:

ω 0 = γ.|| -→ B 0 ||
Since this precession is around -→ B 0 , it does not alter the direction or the modulus of the magnetization -→ M [START_REF] Fukushima | Experimental pulse nmr: a nuts and bolts approach[END_REF]. The origin of this precession movement lies in the fact that, when plunged into a magnetic field -→ B 0 , a magnetic moment -→ µ undergoes the force -→ F :

- This force is hence the result of the vector product ∧ of the magnetic moment -→ µ and the magnetic field -→ B 0 . This vector relation can be written as three differential equations:

→ F = -→ µ ∧ -→ B 0
dµ x dt = γB 0 µ y , dµ y dt = γB 0 µ x , dµ z dt = 0, (2.3) 
The solution of these equations is:

µ x = µ t=0
x sin(γB 0 t), µ y = µ t=0 y cos(γB 0 t), µ z = µ t=0 z (2.4) µ z remains unchanged and µ xy turn around -→ B 0 . The vector -→ µ is therefore animated by a precess around -→ B 0 .

We recall that the magnetization is proportional to the number of spins, so it is that we attempt to measure by NMR. However, -→ M remains unobservable when it is parallel to -→ B 0 , so it should be rotated by 90 • from z-axe (Fig. 2.6.a). To rotate -→ M , it is sufficient to apply another transient magnetic field -→ B 1 directed to 90 • from -→ B 0 . The magnetic moments are animated to precess around -→ B 1 . Once a rotation of 90 • was obtained, the -→ B 1 field is turned off (Fig. 2.6.b). Since, the magnetization -→ M is the sum of all nuclear magnetic moments, then it is oriented at 90 • from -→ B 0 and hence can be measured (Fig. 2.6.c). The resonance frequency depends on the molecular environment as well as the gyromagnetic ratio γ and -→ B 0 . We call "chemical shift" the variation of resonance frequency with the Figure 2.4: The sum of magnetic moment vector -→ M . In the presence of a magnetic field, -→ M is nonzero and directed in the direction of this field.

shielding hyperparameter σ (the process of reducing) of -→ B 0 . The expression of the chemical shift Ch s is given by:

δ = γ || -→ B 0 || (1 -σ) 2π (2.5)
Note that chemical shift Ch s is usually expressed in parts per million (ppm) by frequency, and it is calculated as follows: δ = difference between the resonance frequency and that of a reference substance operation frequency of the spectrometer (2.6)

Since the resonance frequency strongly depends of the structural environment of the nucleus, the NMR technique becomes the structural tool of choice for chemists [START_REF] Bovey | American Telephone and Telegraph Company[END_REF] to study molecular structures and their associations and interactions.

As shown in the previous paragraph, the advantage of NMR precisely lies in the observation of the spin return to the equilibrium state after being irradiated with -→ B 1 . This return to equilibrium is characterized by two relaxation processes. In order to describe the magnetization position during an NMR experiment, the coordinate system called "reference coordinate system" can be used. It consists of three orthogonal axes (x, y, z) relatively fixed to a reference. By convention, the z-axis is parallel to -→ B 0 . The z-axis is called the longitudinal axis and the plane (xy) is called transverse plane. At any instant of an NMR experiment, the magnetization has a component that is parallel to -→ B 0 so-called longitudinal magnetization (denoted M z ) and a component that is perpendicular to -→ B 0 called transverse magnetization (denoted M xy ). After being tipped in the transverse plane, the magnetization will return to its equilibrium position, parallel to -→ B 0 . The longitudinal and transversal components are differently affected by the relaxation phenomenon [START_REF] Friebolin | Basic one-and two-dimensional nmr spectroscopy[END_REF]:

1. the longitudinal relaxation: The return of the longitudinal magnetization (Mz) to its equilibrium state generally happens according to a mono-exponential process. We call the characteristic time of the longitudinal magnetization decay the "longitudinal relaxation time". Transverse relaxation mechanisms include, besides those mentioned above, interactions between spins. The interactions between magnetic dipoles of neighbor spins generate at each spin a local magnetic field. The local field fluctuates as a result of movement of neighbor spins, or as a result of changes in their quantum states. This loss of phase coherence is an additional mechanism for the transverse relaxation.

NMR experiments

The 1D NMR experiment

The basic 1D NMR experiment can be decomposed as follows:

1. An excitation phase: it consists in irradiating a sample with a radio-frequency (RF) pulse whose frequency is close to the resonance frequency of the considered nucleus.

The amplitude and duration of the RF pulse are calibrated to tip the magnetization to the transverse plane (90 • rotation of the magnetization).

2. A detection phase: it consists in measuring the tipped magnetization.

Since the -→ B 0 is always present, the magnetization -→ M rotates around it at the speed ω 0 . Due to the rotation of -→ M , the magnetic flux through the coil (proportional to the component of M along the axis of the coil) periodically varies and then induces, in the coil, an electrical signal directly proportional to -→ M . This signal is called the FID for "Free Induction Decay [Van de Ven95]. As -→ M returns gradually to its equilibrium position parallel to -→ B 0 , the FID signal decreases over time (Fig. 2.7.a).

In order to determine the nuclei frequencies of each molecules examined by the NMR, a Fourier Transform (FT) is then performed on the recorded FID signal (Fig. 2.7.b). As a matter of fact, each metabolite is presented by a set of peaks with specific characteristics (peak frequency and amplitude) (Fig. 2.8).

The Magic angle spinning MAS NMR technique

In traditional NMR techniques, the spectrum resolution is poor (i.e; peaks with large widths) for semisolid or solid samples due to residual dipole interactions, chemical shift anisotropy and susceptibility within the tissue sample. These factors can be minimized by low-speed Magic Angle Spinning MAS [START_REF] Griffin | Metabolic profiles of cancer cells[END_REF]. In MAS, samples rotate rapidly at 54.7 • to a magnetic field (angle between the rotation axis and the NMR magnetic field). Indeed, only at the magic angle, the nuclear dipole-dipole interaction between nuclei moments averages to zero. The use of MAS improves the quality of NMR spectra by eliminating broad peaks and obtaining enough information for easier molecule identification (Fig. 2.9)

The 2D NMR experiment

Although the 1D HR-MAS NMR spectroscopy is more or less successfully applied to identify the structure of solid or liquid compounds, this technique suffers from several shortcomings. Indeed, 1D NMR spectra of complex biological samples typically have high spectral overlap, which significantly limits the number of metabolites that can be uniquely identified and quantified. To overcome this drawback, the two dimensional 2D NMR HR-MAS should be recommended. This technique offers more detailed and unequivocal assignments of biologically metabolites in intact tissue samples and enables accurate identification of a large number of metabolites that are not resolvable in a 1D NMR spectroscopy. More precisely, 2D NMR offers two distinct advantages:

1. It reduces the overcrowding of resonance lines. Indeed, as the spectral information is spread out in two frequencies (better than a single frequency) the 2D NMR spectrum technique can reduce spectral overlap and allows the identification of some molecules that remains unresolvable in 1D NMR spectra. In other words, a 2D spectrum peak is no longer characterized by one frequency but by two frequencies allowing an easier discrimination.

2. It offers the ability to correlate pairs of resonance such as the proton 1 H and the carbon 13 C. Indeed, since almost metabolites contain carbon and proton, it is interesting to determinate which protons are connected to which carbons (i.e; which proton 1 H is correlated with which carbon 13 C).

For a typical 2D spectrum, we can distinguish four time intervals or periods, as shown in Fig. 2.10 [Schmidt-Rohr94]: τ p the preparation period, t 1 the evolution period, τ M the mixing period and t 2 the detection period. In the first period, the magnitude environment is prepared. During the t 1 period, the magnetization evolves freely, so that M xy precesses at its Larmor frequency, and each nuclear magnetization is featured according to its Larmor frequency. During the period τ M , another RF pulse signal or pulse signal sequence is injected into the system to enable the mixing of the nuclear magnetizations used to produce xy. Finally, t 2 is the usual data acquisition period in which an FID is acquired as in 1D experiment.

This procedure is then repeated many times, with different durations of the evolution period t 1 and keeping all other settings constant. For each value of t 1 period, the signal that is acquired during t 2 is stored. Once the experiments are achieved, we obtain a 2D time domain signal s(t 1 ,t 2 ) (FID 2D). In order to obtain the 2D spectrum, a 2D Fourier Transform is performed on the obtained 2D FID signal. Among various spectrum types, the most frequently applied is the Heteronuclear Single Quantum Coherence better known by its acronym, HSQC [START_REF] Berger | 200 and more nmr experiments: A practical course[END_REF]. In a HSQC experiment, the chemical shift range of the proton 1 H spectrum is plotted on one axis, while the chemical shift range of the 13 C spectrum for the same sample is plotted on the second axis. Indeed, since almost metabolites contain carbon and proton, the addition of a second dimension ( 13 C or 1 H) improves the frequency discrimination and enables the identification of a large number of metabolites that are not resolvable in a standard 1D 1 H or 1D 13 C NMR spectrum. Therefore, the 2D HSQC spectrum has become arguably one of the widely used technique to elucidate the relationships between clinically relevant cell processes and specific metabolites in order to identify diseases such as the multiple sclerosis disease [START_REF] Tiberio | Metabolite changes in early relapsing-remitting multiple sclerosis[END_REF] and tumor identification [START_REF] Piotto | Metabolic characterization of primary human colorectal cancers using high resolution magic angle spinning 1 H magnetic resonance spectroscopy[END_REF]. Along these lines, the relevant information characterizing the spectra is the metabolite peaks which could be considered for biomarkers identification and analyzing.

When the data are subjected to a Fourier transform, the resulting spectrum plot shows the chemical shift of 1 H plotted along x-axis and the chemical shift of 13 C plotted along the y-axis. Fig. 2.11 shows an example of a HSQC spectra of colon biopsy.

Figure 2.10: The schematic representation of a basic 2D NMR experiment in term of four periods: τ p evolution, t 1 mixing, τ M mixing and t 2 detection. For a given experiment, τ p and τ M are usually fixed periods while t 1 and t 2 are variable time periods.

Functional Magnetic Resonance Imaging

Since twenty years, functional brain imaging techniques allow an in vivo analysis of neural and hemodynamic phenomena associated with brain activity (activation imaging). The motor, sensory, or cognitive functions can be assigned to one or several anatomical areas of the cortical that are activated as networks [START_REF] Aster | Parameter estimation and inverse problems[END_REF].

The general basis of the human brain functional organization have been further refined through the Positron Emission Tomography (PET) technique. This technique measures changes in brain perfusion during a cognitive task thanks to the use of water labeled with the oxygen 15 as a marker [START_REF] Kaplan | Functional brain mapping using positron emission tomography scanning in preoperative neurosurgical planning for pediatric brain tumors[END_REF]. However, the significant technical limitations as well as the high cost of this technique explain the fact that the activation by PET imaging is currently restricted to research centers. Moreover, the danger of radiation limits its use on children.

The development of MRI in the early 1980s has revolutionized the study of neuroanatomical human brain thanks to its relatively easy use and particularly the lack of constraints related to irradiation. The MRI imaging has been very fertile in fundamental works on brain perfusion study at rest, using exogenous contrast agents [START_REF] Villringer | Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects[END_REF], intrinsic contrast agents such as blood velocity (MRI angiography) [START_REF] Rosen | Perfusion imaging with NMR contrast agents[END_REF], or diffusion phenomena [Le Bihan91]. However, the application of these techniques has been rapidly supplanted by the discovery of the BOLD (Blood Oxygenation Level Dependent) contrast associated with deoxyhemoglobin whose ease of implementation and high accuracy have promoted the success of the fMRI technique [START_REF] Engel | Retinotopic organization in human visual cortex and the spatial precision of functional MRI[END_REF][START_REF] Vazquez | Nonlinear Aspects of the BOLD Response in Functional MRI* 1[END_REF][START_REF] Rombouts | Model-free group analysis shows altered BOLD FMRI networks in dementia[END_REF]. Indeed, fMRI is an indirect imaging of neuronal activity through the detection of local perfusion changes. In early 1890, Roy and Sherrington had suggested the existence of a spatial relationship between neuronal activity and brain perfusion [START_REF] Roy | On the regulation of the blood-supply of the brain[END_REF]. Neuronal activity causes a small increase in local cerebral metabolism and hence an oxygen consumption as well. Very rapidly (within hundreds of milliseconds), this phenomenon is followed by an increase in local brain perfusion and hence an increase in the intake of oxyhemoglobin (ar- terial blood) which exceeds oxygen consumption [START_REF] Fox | Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects[END_REF]. It is possible to measure blood perfusion with MRI image, nevertheless, it has been shown that the use of BOLD contrast leads to a more accurate measurement [START_REF] Lee | Discrimination of Large Venous Vessels in Time-Course Spiral Blood-Oxygen-Level-Dependent Magnetic-Resonance Functional Neuroimaging[END_REF].

The difference in magnetic susceptibility between vessels filled red blood cells responsible for interstitial deoxyhemoglobin and diamagnetic induces a local gradient magnetic field that extends beyond the vascular wall. In this perivascular gradient, whose size depends on the diameter of the vessel and the concentration of deoxyhemoglobin, the spins of the protons undergo interstitial diffusion leading to a reduction in the value of T2 weighted image (T2 weighted image is a type of MRI image [START_REF] Mintorovitch | Comparison of diffusion-and T2-weighted MRI for the early detection of cerebral ischemia and reperfusion in rats[END_REF]). Ergo, blood vessels have a fairly dark color that is easily detected in the T2 weighted image. As a result, the relevant information that typifies the fMRI images is the the active zones which could be used to identify and analyze biomarkers. Fig. 2.12 shows an example of a fMRI acquisitions. The active zones are presented in red color. Fig. 2.13 display the superposition of the activation map (the different activation zones) on the anatomic brain image.

Furthermore, the development of the BOLD technique has facilitated the use the fMRI in medical researches. For example, many studies have attempted to show that fMRI has the ability to identify in primary visual [START_REF] Ganis | Brain areas underlying visual mental imagery and visual perception: an fMRI study[END_REF], somato-motor [START_REF] Nakata | Somato-motor inhibitory processing in humans: an event-related functional MRI study[END_REF] and even auditory brain areas [START_REF] Downar | The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study[END_REF] by the use of simple stimuli (flashing lights, simple movements of the hand). These initial results, the arrival of the echo-planar sequences and the relative ease of access to technology have contributed to the broad development of fMRI. This technique is now suitable for studying specific neurophysiological issues of patients and some clinical applications have been developed. Indeed, clinical applications of fMRI are booming. The two most advanced applications are: the presurgical sensorimotor functional mapping [START_REF] Zhang | Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with fMRI: initial experience[END_REF] and the study of hemispheric dominance of language [START_REF] Binder | Human brain language areas identified by functional magnetic resonance imaging[END_REF]. Other researchs explored more diseases such as epilepsy disease, the pathophysiology of various neurological disorders (MS [START_REF] Rocca | Adaptive functional changes in the cerebral cortex of patients with nondisabling multiple sclerosis correlate with the extent of brain structural damage[END_REF][START_REF] Reddy | Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability[END_REF], pathology of the basal ganglia [START_REF] Am Ferrandez | Basal ganglia and supplementary motor area subtend duration perception: an fMRI study[END_REF], ...), psychiatric (schizophrenia) [START_REF] Surguladze | Emotion processing in schizophrenia: fMRI study of patients treated with risperidone long-acting injections or conventional depot medication[END_REF], or cortical plasticity after injury or after surgery. 

fMRI experiment

The investigators hypothesize that individual responsiveness to specific antidepressant medications can be predicted based on patterns of brain network activity as visualized by functional connectivity analysis of fMRI data. Indeed, brain networks consist of groups of nerve cells from different brain regions that communicate with one another. Using fMRI, researchers can monitor which groups of nerve cells are active at any given moment. Functional connectivity studies take this analysis one step further. By comparing levels of activity among different groups of brain cells, researchers can determine which areas are communicating with one another. During an fMRI session, patients undergoes an activation paradigm. The activation paradigm is the sequence of stimuli that are used to highlight the desired brain activity given the context. As a matter of fact, two major contexts can be schematically distinguished:

1. The search context: in this context we want to highlight, in a homogeneous group of subjects, the common neurophysiological or neuropsychological behavior in response to a certain type of stimulations to understand better the operation of any normal or pathological cortical network. Therefore, elaborated paradigms must be perfectly reproducible from one patient to another. Nonresponder subject may be excluded or analyzed separately. The data analysis could be done subject by subject, by applying the same criteria of analysis, allowing the study of inter-individual variation.

2. The clinical context: in this context the problem is quite different. Indeed, it consists in analyzing for a particular patient behavior in response to a particular stimuli, depending on the pathology, diagnostic purposes and/or pretreatment. These studies can only be performed individually and a false negative results may have adverse consequences for the patient. The paradigm, which has previously been tested and calibrated in healthy subjects and possibly similar patients, should be relatively simple, robust and easy to perform in hospitals. Given the variability of aptitude among patients, the compliance and/or performance of the subject must be taken into account in the data analysis step.

However, recent functional connectivity analysis have shown that certain brain networks, called resting state networks, are especially active when the brain is at rest (i.e; no activation paradigm is performed) [De Luca06,[START_REF] Scholvinck | Neural basis of global resting-state fMRI activity[END_REF]. These networks are particularly used to analyze alzheimer [START_REF] Rombouts | Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study[END_REF] and schizophrenia diseases [START_REF] Liang | Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging[END_REF]. Note that in this thesis, we particularly focus on Nuto study network healthy patients.

Statement of the indexing problem

In the previous sections, two medical information acquisition techniques were presented: the 2D HSQC HR-MAS spectroscopy and the fMRI imaging. Moreover, we described the relevant information that typifies each signals: the peaks for the 2D HSQC spectra and the active zones for the fMRI images. Thus, each medical information (HSQC spectrum or fMRI image) consists of a set of relevant information or objects that could be used to identify new biomarkers particularly for cancer and neurological diseases. To this end, it is important to improve the tools of analysis associated with these techniques. In the same vein, we propose a new content-based object indexing and retrieval scheme for biomarkers detection.

The classical content-based information indexing and retrieval scheme

A classical indexing and information retrieval scheme operates as follows: a user submits a query and the system identifies the relevant information to the submitted query and then returned it to the user. The most ancient and widely used indexing and document (e.g., medical images, respiratory sounds, etc) retrieval scheme is the indexing by keywords where the document is described by a set of keywords (e.g; a word, a phrase, or an alphanumerical term). However, this technique remains limited by the low expressive power of words, by the language constraints (the transition from one language to another, semantic ambiguity) and the subjective nature of the annotations (two physicians can differently annotate a medical image). Moreover, the indexing technique by keywords requires human intervention which is a binding task particularly on large databases if the keywords are generated manually. In addition, the keyword annotation can never exhaustively describe the contents of a document (e.g, a tumor in a MRI image : location, type, ... etc). In order to overcome these drawbacks, the content-based information indexing and retrieval approach (henceforth called indexing approach) was proposed [START_REF] Eakins | Automatic image content retrieval-are we getting anywhere?[END_REF]. Indeed, contentbased means that the search will analyze the actual contents of the information rather than the meta-data such as keywords, tags, and/or descriptions associated with the information. For example, the term 'content' might refer to colors, textures, or any other information that can be derived from an image itself. Therefore, the content-based information indexing and retrieval approach allows us not only to automatically index the documents and query a database directly from their information content without human intervention but also to objectively analyze the database content. For example, if we consider a cerebral tumor as a query, we would be able to easily identify with an objective similarity measurement function the similar tumors belonged to the requested database. Basically, the indexing scheme requires:

1. Document alignment step, 2. Document codifying and similarity measurement steps. The first one aims at codifying different documents into a compact description whereas the second one consists in establishing the object similarity measurement procedure.

In order to accelerate the large database queries, the indexing scheme can be divided into two phases (Fig. 2.14):

1. An off-line phase in which the content database alignment and coding is performed.

Indeed, the off-line coding consists in extracting the signatures associated with the contents of the database. The latter are then stored in a reverse dictionary (file name and signature), which allows to quickly find the document associated with a given signature.

2. An online phase in which the user queries the database using a document request.

The online alignment and coding steps only concern the document request. A similarity measurement between the request document signature and those calculated in the reverse dictionary is then performed. Finally, the documents belonging to the database are classified by order of similarity. Although this indexing scheme was successfully applied on web databases document retrieval [START_REF] Chaouch | 3D Gaussian descriptor for 3D shape retrieval[END_REF], it is not suited to the biomarker identification task. Indeed, the later requires the classification of medical signal profiles (groups) for change detection. For example, if we consider two profile classes: the healthy class and the pathologic class, the biomarker identification consists in classifying a group of medical signals into the healthy and the pathologic classes (e.g cancer or psychological diseases) and to detect then the differences (changes) between them. As a matter of fact, healthy class can be considered as the "unchanged" class whereas the pathologic class as "changed" class. Consequently, adding a classification step to the classical indexing scheme would allow us to detect biomarkers from both HSQC spectra and fMRI images.

The proposed content-based object indexing and retrieval scheme

Unlike the classical indexing scheme (Fig. 2.14), the proposed indexing scheme contains two additional steps: an object detection step (detection of HSQC peaks and active zones fMRI images) and an object classification (change detection) step. The new indexing scheme is likewise divided into two phases (Fig. 2.15):

1. An off-line phase in which we perform on each medical signal: an object detection and alignment step, an object coding and similarity measurement step and finally an object classification step (e.g, healthy or pathological profile).

2. An online phase in which the user queries the database using a request (new individual/ group of medical signals). The same steps as in the off-line phase are applied on the medical signal request. Finally, the later is assigned to a previously defined profile (in the off line step). Note that unlike the classical indexing scheme, the object similarity step aims here at clustering the similar objects belonging to a given medical signal group allowing then the assignment of this group to the appropriate profile. In other word, the assignment of a new group/individual task is addressed using the classification step and not the similarity measurement step as in the classical indexing scheme. 

Conclusion

This chapter presented a brief recall of the NMR principles and how 1D/2D spectra are constructed from acquired signals. It also detailed the main basis of fMRI imaging techniques and its medical applications today and in the future. We particularly described the relevant information that typifies each signals: the peaks for the 2D HSQC spectra and the active zones for the fMRI images. Finally a first contribution of this work which consists in adding of a classification step to the classical indexing scheme for biomarkers identification was presented. In the next chapters, different steps of the indexing scheme (object detection and alignment Chap.3, object coding and similarity measurement Chap.4 and object classification Chap.5) are described. 
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Introduction

The problem of object detection consists in dividing signal into meaningful groups (objects) based on the spatial arrangement and/or pixel intensity. The object alignment task is the process of overlaying two or more objects taken at different times, and/or from different viewpoints, and/or by different modalities and intrinsic variabilities. More precisely, object alignment consists in geometrically aligning an object with reference pattern. The object detection and alignment task is a crucial step in the indexing scheme since all other steps depend on it. Consequently, in order to lead to an optimal object detection and alignment results, all a priori knowledge that we have on the data need to be properly integrated in the proposed object detection and alignment methods. That is the way we take in this thesis where we pay a particular attention to include a priori knowledge for two types of data (2D HSQC spectra and fMRI images).

In this chapter we present section 3.1) a brief overview of the object detection and alignment methods used in the indexing schemes. In section 3.2, we present the scheme for peak detection and alignment based on the use of evidence theory. We particularly show that the proposed evidential scheme for peak detection and alignment consistently achieves a higher performance compared to the existing schemes on both synthetic and real spectra.

Regarding the fMRI images, we present (section 3.3) the proposed active zone detection and alignment algorithm. The detection step is addressed using a Markov chain segmentation algorithm whereas the alignment step relies on the use of non-linear Principal Component Analysis (PCA) algorithm, which would be well suited to fit the cortex shape, to estimate the non-linear planes of symmetry. We notably show that the use of the non-linear PCA allows us to get more accurate object-alignment results compared to the classical PCA alignment algorithm.

Overview of object detection and alignment methods

Object detection

In the literature, we can distinguish two approaches to address the problem of object detection: the signal segmentation based approach and feature based approach.

• The segmentation approach: it aims at partitioning a signal into distinct meaningful entities sharing together the same properties, by defining boundaries between different objects. Several clustering techniques have been proposed in the literature [START_REF] Pappas | An adaptive clustering algorithm for image segmentation[END_REF][START_REF] Tao | Color image segmentation based on mean shift and normalized cuts[END_REF][START_REF] Zhang | Spectral clustering ensemble applied to SAR image segmentation[END_REF]. Basically, clustering algorithms don't use the training data. So, to compensate this deficiency, these algorithms seek to alternate between signal segmentation and cluster property characterization. In other words, clustering methods try to get trained by the utilization of the available data. Three commonly used clustering algorithms are the K-means [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF], the Markov model [START_REF] Fjortoft | Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields[END_REF] and the active contour [START_REF] Kass | Snakes: Active contour models[END_REF]. The latter approximates the ob-ject shape as a flexible 2D curve or a 3D surface that can be deformed to better fit the object shape. The notion of active contour was firstly proposed in Kass [START_REF] Kass | Snakes: Active contour models[END_REF]. The underlying idea is to create a link between a low-level process that only uses the available signal of intensities and a high-level process that integrates mechanisms for semantic interpretations.

• The features based approach: it aims at providing a sparse local representation of data. Its goal is to describe regions by keeping distinctive information and, at the same time, to provide robustness to small transformations and noise. The region descriptors offer an elegant solution to deal with occlusion and cluttered background since they only store salient information of the region and therefore they are not distracted by other parts of regions. The most used feature detection algorithms are the Harris point [START_REF] Harris | A combined corner and edge detector[END_REF], the Hessian detector [START_REF] Beaudet | Rotationally invariant image operators[END_REF] and the scale-invariant point of interest (e.g, the Laplacian-of-Gaussian (LoG) [START_REF] Lindeberg | Feature detection with automatic scale selection[END_REF]).

In this work, we adopt the feature based approach for peak detection (section 3.2) and the segmentation approach for the active zone detection (section 3.3).

Object alignment

Cost function minimization based approach

In this section, we focus on the alignment methods based on the optimization of an error function. This error function is constructed from a reference object and another object we need to align. The most used transformation models are:

1. The geometric distortion: it is parameterized by a geometric transformation T g () which models the viewpoint changes of the camera, the displacement of the object with respect to the reference object. This transformation acts either on the spatial coordinates of the objects [START_REF] Berg | Shape matching and object recognition using low distortion correspondences[END_REF][START_REF] Schneiderman | Probabilistic modeling of local appearance and spatial relationships for object recognition[END_REF] or on the object shape using the deformable model [START_REF] Mcinerney | Deformable models in medical image analysis: a survey[END_REF][START_REF] Leymarie | Tracking deformable objects in the plane using an active contour model[END_REF],

2. The photometric transformation: it is parameterized by a transformation T p () which models changes in brightness or noise measure modifying the pixel intensities of the object [START_REF] Seo | Range data registration using photometric features[END_REF].

Cost function minimization based approach aims at estimating the parameters of the transformations T g () and T p () by the definition of an optimization criterion (cost function). As for transformation models, the latter is chosen according to the context of the application. For example, we can opt to be robust to photometric transformations without estimating them (e.g.; shape based alignment methods), or to establish a noise model in order to take it into account in the alignment scheme. To estimate the hyperparameters of T g () and T p (), it is necessary to develop a strategy for solving the established cost function. Unfortunately, this task is generally complex and often cannot solve it exactly.

Cost function definition

Cost function establishment generally consists in defining a criterion for direct comparison of objects. This criterion can be based on light intensities [START_REF] Belongie | Shape matching and object recognition using shape contexts[END_REF], mutual information [START_REF] Viola | Alignment by maximization of mutual information[END_REF], etc, and its estimation leads to an optimization task. The existing methods often consider iterative approaches because of the nonlinear nature of the cost function. Among the existing cost functions, the most commonly used is the squared error SSD (Sum of Squared Difference) proposed in [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF], which is optimal in the sense of maximum likelihood under the assumption that the measurements are corrupted by a centered white Gaussian noise. Several variations of this SSD function have been proposed in the literature in order to increase the alignment accuracy results [START_REF] Keller | Fast motion estimation using bidirectional gradient methods[END_REF] [Zimmermann09] or to reduce computing time [START_REF] Hager | Efficient region tracking with parametric models of geometry and illumination. Pattern Analysis and Machine Intelligence[END_REF][START_REF] Baker | Lucas-kanade 20 years on: A unifying framework[END_REF]. Furthermore, in the case of significant geometric distortions, some studies propose the kernel-based cost function allowing to be more robust in situations where the geometric distortion of the observed scene is not fully addressed by the basic alignment algorithm [START_REF] Comaniciu | Kernel-based object tracking[END_REF][START_REF] Hager | Multiple Kernel Tracking with SSD[END_REF]. Finally, in order to address the alignment task with a Bayesian framework, methods based on the maximization of mutual information between images [Dowson08, Dame09] have been proposed. Indeed, mutual information measures the statistical dependence between the intensities of compared object. This dependency is assumed to be maximized when both objects are aligned. Nevertheless, it may turn out that mutual information is not adapted to object with thin structures [START_REF] Roche | Rigid registration of 3-D ultrasound with MR images: a new approach combining intensity and gradient information[END_REF].

Cost function optimization

Once the cost function determined, the optimization step consists in minimizing the cost by minimizing model hyperparameters in a supervised or an unsupervised way. The former mainly aims at approximating the cost function in order to lead to a linear system since these cost functions are generally non-linear. Generic iterative optimization methods such as gradient descent (used in [Amberg09]), or the Newton algorithm [START_REF] Shum | Construction of Panoramic Image Mosaics with Global and Local Alignment[END_REF][START_REF] Xiao | Improvement on mean shift based tracking using second-order information[END_REF] are the most commonly used ones. These methods consist in estimating the extrema of the cost function (e.g.; points where the gradients of the cost function are null). The second approach relies on a learning step. Indeed, the supervised methods require the modeling of most expected transformations between two patterns. Once these transformations are modeled, one uses a reference pattern to generate a series of reference errors which can be obtained by calculating differences between the reference pattern and the transformed one [La Cascia00]. These errors allow us to establish the link between a given observed error and the corresponding transformation [Jurie02, Bayro-Corrochano07]. Although these methods are not time-consuming, they require a high prior knowledge that is not always available.

Canonical system based approach

The canonical system based approach consists in estimating the canonical pose of a given object (e.g.;. estimate the axes of the cartesian coordinate system associated to the pattern). Thus, it is possible, if necessary, to define the sign or the direction of these axes in order to solve the problems of reflections. Methods based on this approach do not operate directly on object intensities but on object shapes (2D curves or 3D surfaces). In this section we present a brief overview of methods based on the canonical system and particularly those applied on the 3D objects. Generally, a 3D object can be presented in different manners. We can distinguish:

• Surface representation (3D mesh representation): the object is represented by its border. In the case of a polyhedral object, the border is composed of a set of planar polygonal facets. In the literature, the triangular mesh is the most popular form of polyhedral surfaces. Therefore, the object surface is composed of a set of interconnected triangles where each triangle consists of three vertices and a gravity center. The 3D triangular mesh presentation enables a compact encoding of object and a suitable object display according to the desired resolution [START_REF] Kos | An algorithm to triangulate surfaces in 3D using unorganised point clouds[END_REF].

• Volumetric representation (voxel representation): the object is represented by a union of disjoint elementary unit volumes called voxels. Unlike the surface representation, it is particularly useful for representing data density (point cloud). The fitness of this representation depends on the number of voxels [START_REF] Gibson | 3D chainmail: a fast algorithm for deforming volumetric objects[END_REF].

• Algebraic representation: the object is described by an equation (e.g.; f (x, y, z) = 0). The algebraic presentation enables a sparse object representation. However, such equation is not always available particularly for object with complex shape [START_REF] Kang | A linear dual-space approach to 3D surface reconstruction from occluding contours using algebraic surfaces[END_REF].

The two widely used methods to estimate the object canonical pose (the axes of the cartesian coordinate system associated to the pattern) from these possible definitions of the object, are:

Principal component analysis PCA

The Principal Component Analysis, also known as "PCA" is commonly used in data analysis to find the principal axes of an object [START_REF] Jolliffe | Principal component analysis[END_REF]. For 3D objects, it is used to calculate the three coordinate axes necessary for the 3D model. These three axes constitute then the new cartesian coordinate system associated to the pattern. Several variants of basic PCA method have emerged to address the problem of 3D object alignment. Indeed, although the basic PCA is not time-consuming and robust in the case of the object volumetric representation, it is not adapted to the object mesh representation [START_REF] Vranić | 3D shape descriptor based on 3D Fourier transform[END_REF] (the object is presented with a set of connected triangular forming its continuous surface). Thus, improvements have been proposed to overcome these problems. On the one hand, Paquet et al. [START_REF] Paquet | Description of shape information for 2-D and 3-D objects[END_REF] propose to weight the triangle facet gravity centers by their surface. On the other hand, Vranic and Saupe [START_REF] Vranić | 3D shape descriptor based on 3D Fourier transform[END_REF][START_REF] Vranic | Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics[END_REF] extend the work of Paquet et al and propose the PCA in the continuous case, noted "continuous PCA", and thus allow a better robustness in the case of a 3D mesh.

To estimate the alignment of a 3D model it is necessary to calculate a PCA on all centers of the triangle facets of an object. To achieve this, the objects must be composed of polygons whose vertices have always coplanar three points. The PCA aims at finding a basis where the projection of an object is symmetrically invariant.

In order to determine the orientation of an object, with respect to its faces, the continuous PCA estimates the three main axes of the 3D object. To this end, it calculates the covariance matrix on the facets vertices of the 3D mesh. The idea is to find the axis which maximizes the variance of the point cloud. The maximum variance is then obtained for the eigenvector associated with the largest eigenvalue. Similarly, the vector that contains the largest remaining inertia is the second eigenvector while the third expresses the residual inertia. To conclude, to define the 3D object orientation, it suffices to diagonalize the covariance matrix of normalized faces. The eigenvectors matrix stands for then the rotation matrix defining the 3D model alignment.

Orientation by the axes of symmetry

To orient a 3D object, Podolak et al. [START_REF] Podolak | A planar-reflective symmetry transform for 3D shapes[END_REF] propose to calculate the symmetry planes of the model. For this, they define the notion of symmetry for the plane intersecting the object through the calculation of the "Planar-Reflective Symmetry Transform" (PRST).

The PRST aims at associating to each plane a scalar value measuring its symmetry. The more this scalar value is great, the more the associated plane is symmetry. Then, they choose as the first axis, the normal of the plane that has the maximal symmetry. The second is the plane of the maximal symmetry orthogonal to the plane previously selected. Finally, the last axis is similarly obtained by finding the maximal symmetry plane that is perpendicular to the normal of the two selected planes.

Retained approaches

In the previous sections, we described two strategies to address the object detection task: the segmentation approach and the features based approach. We presented likewise two approaches to address the object alignment task: the cost function minimization based approach and the canonical system based approach.

A spectrum is composed of several peaks which are the responses of metabolite presence. Each peak can be characterized by its locations (chemical shifts), its amplitude and its shape. These peaks are scattered within the spectrum and hence they can not be presented by a curve. Therefore, the canonical system based approach is unappropriate in the peak case and for this reason we have opted for the cost function minimization based approach to address the peak alignment task. Note that the peak detection step is simultaneously performed with the alignment step.

Concerning the active zone of the fMRI images, it can be characterized by its location and its shape. Unlike peaks, an active zone is a dense form (consisting of neighboring voxels) and hence may be presented by a 3D surface. Therefore, the segmentation approach is adopted for active zone detection. In order to be robust to photometric transformation (a delicate task for the cost function minimization based approach), we have chosen the canonical system based approach for the fMRI active zone alignment. Note that the active zone detection step is separately addressed from the alignment step.

Peak detection and alignment algorithm (HSQC)

In this section, we propose a new method able to simultaneously detect and align different peaks. The peak characteristics theoretically invariable for the same metabolite between samples are in practice corrupted by a noise: a location imprecision is added to the spectra in practical cases. We will model this imprecision and the uncertainty always present on the observed HR-MAS 2D data so as to obtain an optimal peak alignment results.

The notions of uncertainty and imprecision are distinct and they must be now clearly defined [START_REF] Shafer | A mathematical theory of evidence[END_REF]. On the one hand, the uncertainty presents the belief or the doubt we have on the existence or on the validity of the data [START_REF] Gilks | Markov chain Monte Carlo in practice[END_REF] (presence or absence of a peak in the case of HSQC spectra). In the other hand, when we have not enough knowledge on the data, we describe it with vague terms but its realization is certain: in this case we speak about imprecision (a modification of the peak shape and location in the case of HSQC spectra). In order to take into account both imprecision and uncertainty of the spectra, we propose the use of the evidence theory [START_REF] Shafer | A mathematical theory of evidence[END_REF] which can be well suited to deal with raw data through the definition of a mass function. This mass function allows us to quantify the reliability of a given hypothesis. An overview of Evidence theory and its application on real cases is presented in (Appendix C).

Moreover, the evidential peak alignment scheme proposed in this thesis is based on the fuzzy set theory [START_REF] Bezdek | Fuzzy models and algorithms for pattern recognition and image processing[END_REF] to model and quantify the imprecision degree presented in the spectra. In particular, we show that this modeling, used in the mass function definition, increases the performance of the alignment scheme with comparison to the Bayesian scheme.

Evidential peak detection and alignment method

Spectra modeling

In this work, the spectrum is considered as a random field. To model 2D HSQC spectrum formation, we consider a 2D spectrum realization Y such that Y = y(i, j) i=1...M, j=1...N where (M × N) is the spectrum sizes. It corresponds to the observation of a theoretical 2D spectrum image realization X such that X = x(i, j) i=1...M, j=1...N , considered as a random field as well, through a nuclear magnetic resonance system. In our case, X consists of the various peaks corresponding to the metabolites present in the biopsy. If the nuclear magnetic resonance system was linear and shift-invariant, the relation between y(i, j) and x(i, j) on the same location should be expressed as a convolution product [START_REF] Dobrosotskaya | A wavelet-laplace variational technique for image deconvolution and inpainting[END_REF]:

y(i, j) = ∑ k 1 ,k 2 x(k 1 , k 2 ) h(i -k 1 , j -k 2 ) + b(i, j). (3.1)
where h is the Point Spread Function (PSF) of the nuclear magnetic resonance system, and B = b(i, j) i=1...M, j=1...N is a realization of a random field corresponding to an additive noise modeling both acquisition noise and degradation of the biopsy tissues.

In the case of the 2D spectra, h is assumed to be a Lorentzian filter [START_REF] Lowry | Modeling the accessible conformations of the intrinsically unstructured transactivation domain of p53[END_REF] whose continuous expression is parameterized by

γ Y = (γ Y 1 , γ Y 2 ): h(k 1 , k 2 ; γ Y 1 , γ Y 2 ) = 1/γ Y 1 ((1/γ Y 1 ) 2 + k 2 1 ) 1/γ Y 2 ((1/γ Y 2 ) 2 + k 2 2 ) (3.2)
Note that in some studies (e.g; [START_REF] Schanda | SOFAST-HMQC experiments for recording two-dimensional deteronuclear correlation spectra of proteins within a few seconds[END_REF][START_REF] Feliz | Fast 2D NMR ligand screening using Hadamard spectroscopy[END_REF]), the peak shape is assumed to be gaussian.

Imprecision quantification

Before step estimation, we have to define three assumptions hyp 1 , hyp 2 and hyp 3 in order to model and manage conflicts.

Assumption hyp 1

Let H 1 be the hypothesis corresponding to the absence of a peak located at (i, j), and H 2 the hypothesis of presence of a peak (detection) at the same position. We are interested with the a posteriori probabilities of the hypotheses H k , k ∈ {1, 2} of the observation Y to quantify the contradiction degree. The estimation of these probabilities p i, j (H k /Y ) at every position (i, j) will be presented in Appendix A Eq. A.6.

For a given hypothesis H k estimated at the location (i, j) in both images Y re f (reference image) and Y (image to align with respect to Y re f ), we will assume that the more the a posteriori probability are close the more the imprecision on the data is small.

Let us take the extreme case where p i, j (H 2 /Y re f ) = 1 and p i, j (H 2 /Y ) = 1. The contradiction in this case is absent because the peak appears at the same position in both images. This is based on the assumption that the higher is the conflict, the higher is the imprecision.

Assumption hyp 2

Let us denote by γ Y re f (i, j) = (γ

Y re f 1 (i, j), γ Y re f
2 (i, j)) the shape parameters of a peak at position (i, j) belonging to Y re f , and

γ Y (i 2 , j 2 ) = (γ Y 1 (i 2 , j 2 ), γ Y 2 (i 2 , j 2 ))
the shape parameter of a peak at position (i 2 , j 2 ) belonging to Y . The more the parameters of both peaks are close, the more the imprecision on the data is small.

Assumption hyp 3

We will model that the more the peaks are far, the more the contradiction is large. Indeed, the peak position variations are limited by a fuzzy neighborhood around the expected position. Outside of this neighborhood, two peaks can not be assigned as corresponding.

Membership function

These hypothesis are defined to quantify the imprecision in the data which may be modeled using the fuzzy set theory. This is based on the assumption that the concept of the imprecision is an ambiguous one, i.e, each data item is considered as imprecise with a certain degree of membership in this fuzzy set denoted E imprecise (e.g., the imprecise data set). In our case, the degree of membership µ i, j denotes how much the pixel with specific a posteriori probability is imprecise, given different hypothesis.

The link between hard domain and fuzzy domain can be given with an S-membership function f whose expression is given in Eq. 3.3. Note that the range [a, c] defines the fuzzy region.

f (x; a, b, c) =              0 x < a (x-a) 2 (b-a)(c-a) a ≤ x < b 1 -(x-c) 2 (c-b)(c-a) b ≤ x < c 1 otherwise (3.3)
where a < b < c.

To calculate µ i, j for each observed coefficient y(i, j), we will define in the next subsection, a S-membership function associated to each hypothesis.

Imprecision modeling through member function

Let us describe in this part the three S-membership functions associated with the three hypotheses:

Modeling of hyp 1 hyp 1 expresses the contradiction between two a posteriori probabilities for the same hypotheses of peak presence/absence. The modeling of hyp 1 requires the definition of a S-membership degree, µ

[hyp 1 ] i, j
∈ E imprecise for every pixel of Y re f and Y . To measure the distance between two variables we generally use their ratio, however this approach leads sometimes to obtain undefined fraction (dividing by zero). To avoid such difficulty, it is better to manipulate the exponential of these two variables before computing their ratio.

Therefore, membership degree computing in E imprecise means here calculating the ratio of the exponential of the a posteriori probabilities, then finding its projection by the Smembership function (defined in Eq. 3.3).

This function allows us to quantify, from this ratio of exponential, the membership to the fuzzy set E imprecise . The proposed µ

[hyp 1 ] i, j
1 defined by the exponential ratio of the smallest and the biggest probability of the couple (p i, j (H 2 /Y re f ), p i, j (H 2 /Y )) in order to keep a ratio smaller than one (< 1), is given by:

µ [hyp 1 ] i, j = f hyp 1 exp min( p i, j (H 2 /Y re f ),p i, j (H 2 /Y )) exp max( p i, j (H 2 /Y re f ),p i, j (H 2 /Y )) ; a 1 , b 1 , c 1 (3.4)
Note that the probabilities (p i, j (H 2 /Y re f ), p i, j (H 2 /Y )) are estimated using a Monte Carlo Markov Chain procedure (Appendix A, Eq.A.6).

Modeling of hyp 2

hyp 2 models the contradiction between the shape parameters of two peaks belonging to two spectrum images. The modeling of hyp 2 requires the definition of a membership degree µ

[hyp 2 ] i, j
∈ E imprecise using a S-membership function f hyp 2 expressed as:

µ [hyp 2 ] i, j = f hyp 2   min γ Y re f 1 (i, j).γ Y re f 2 (i, j), γ Y 1 (i 2 , j 2 ).γ Y 2 (i 2 , j 2 ) max γ Y re f 1 (i, j).γ Y re f 2 (i, j), γ Y 1 (i 2 , j 2 ).γ Y 2 (i 2 , j 2 ) ; a 2 , b 2 , c 2   (3.5)
Note that since the peak shape parameters γ Y 1 and γ Y 2 are strictly positive, the exponential function is unuseful in this case.

Modeling of hyp 3

hyp 3 models a neighborhood where the possibility to assign two peaks is highly encouraged. The modeling of hyp 3 requires the definition of a membership degree µ

[hyp 3 ] i, j ∈ E imprecise using an S-membership function f hyp 3 : µ [hyp 3 ] i, j = f hyp 3 ((i -i 2 ) 2 + ( j -j 2 ) 2 ; a 3 , b 3 , c 3 ) (3.6)
where (i, j) stands for the position of the peak belonging to Y re f and (i 2 , j 2 ) stands for the position of the peak belonging to Y . In practice, the values of the coefficients (a 1 , b 1 , c 1 , a 2 , b 2 , c 2 , a 3 , b 3 , c 3 ) are automatically estimated by the Genetic Algorithm (Appendix B) using a training datasets (spectra with known peak alignment results). Once these coefficients are estimated, they will used to measure the imprecision of new spectra and no coefficients reestimation is needed.

Overall membership degree function

Our aim is now to propose the overall membership degree µ i, j ∈ E imprecise . To this end, we simply opted for the average operator as fusion operator:

µ i, j = 1 3 .(µ [hyp 1 ] i, j + µ [hyp 2 ] i, j + µ [hyp 3 ] i, j ) (3.7) 1 µ [hyp 1 ] i, j
is the membership function degree to the fuzzy set E imprecise related to the first hypothesis hyp 1 .

In conclusion, we proposed in this section, an imprecision modeling scheme of spectrum images through three intuitive assumptions, mathematically translated and fused in order to obtain the overall membership degree µ i, j . We need a posteriori probability and peak shape parameters to estimate µ i, j : a proposed estimation scheme is presented in Appendix A with a Bayesian approach (Monte Carlo Markov Chain MCMC optimization). The quantification of µ i, j allows us now to define the mass functions, crucial step in the evidence theory (Appendix C). This mass function will be then used to detect and align peaks.

The peak detection and alignment scheme

Proposed mass function

Determination of the proposed mass function requires the a posteriori probability and the imprecision degree µ i, j already defined. Indeed, two extreme situations appear: 1) The first one is characterized by the total imprecision absence (µ i, j = 0), in this case only the mass functions of the simple hypotheses are non-zero. 2) The second situation is characterized by the total ignorance (µ i, j = 1): all the mass functions of the simple hypotheses are null. The expression of the proposed non-normalized mass function m i, j (Y ) for a given observation Y is:

m i, j ({H 1 };Y ) = (1 -µ i, j ).p i, j (H 1 /Y ) (3.8) m i, j ({H 2 };Y ) = (1 -µ i, j ).p i, j (H 2 /Y ) (3.9) m i, j ({H 1 , H 2 };Y ) = µ i, j .max(p i, j (H 1 /Y ), p i, j (H 2 /Y )) (3.10)
The normalization step consists in having:

m i, j ({H 1 };Y ) + m i, j ({H 2 };Y ) + m i, j ({H 1 , H 2 };Y ) = 1 (3.11)
When we have two or several sources on the same frame of discernment Θ built by various hypotheses (Ω = {H 1 , H 2 , {H 1 , H 2 }} in our case), we can associate for every image Y a mass function m i, j (Y ) which quantifies knowledge brought by the observation. The combination rule of Dempster-Shafer (DS) consists in supplying a single mass function from all the mass functions m i, j (Y ) associated to each observation Y (Appendix C). The combined mass function m i, j is then calculated using the DS combination (Appendix C) as follows:

m i, j ({H 2 }) =m i, j ({H 2 };Y ) . m i, j ({H 2 };Y re f ) + m i, j ({H 1 , H 2 };Y ) . m i, j ({H 1 , H 2 };Y re f ) (3.12) m i, j ({H 1 }) =m i, j ({H 1 };Y ) . m i, j ({H 1 };Y re f ) + m i, j ({H 1 , H 2 };Y ) . m i, j ({H 1 , H 2 };Y re f ) (3.13) m i, j ({H 1 , H 2 }) = m i, j ({H 1 , H 2 };Y ) . m i, j ({H 1 , H 2 };Y re f )
This mass function will be used in the following paragraph to estimate the chemical shift of a detected peak. We hence be able to propose a method realizing simultaneous detection and alinement of peaks.

Proposed cost function

In order to model the peak chemical shifts, we are interested in recovering a displacement vector d = {d i, j } i=1...M, j=1...N where d i, j = d i d j is a local displacement vector associated to the peak at the location (i, j). Adopting an evidence strategy previously defined, we formulate d as:

d = argmax d/d i, j ∈V [Bel i, j ({H 2 }/Y re f , (Y + d)] (3.14)
where V is the neighborhood selected according to hyp 3 and Bel i, j is the belief function which is derived from the mass function m i, j and expressed as (Appendix C):

Bel i, j ({H 2 }) = m i, j ({H 2 }) + m i, j ({H 1 , H 2 }) (3.15)
To maximize the cost function Eq. 3.14, we need the a posteriori probabilities as well as the parameters of the shape filters. An analytical solution of this problem is unfortunately impossible, and we decide to use a MCMC procedure to realize such optimization (see Appendix A). An overview diagram of the peak detection and alignment chain in Fig. 3.1.

Peak detection and alignment validation

This part describes some peaks detection and alignments results which are obtained with the proposed evidential alignment scheme. This method was applied on synthetic spectra designed to fit the characteristics of the HSQC HR-MAS spectra as well as on some real spectra. More results on real spectra will be presented in chapter 6. In order to validate and emphasize the benefit of the proposed approach, we have retained the following criteria for the estimaion validation:

1. Accuracy : it defines the accuracy level of estimated parameters. It represents the difference between computed and theoretical value known from a ground truth. In our case, we use the mean chemical shift error function. For each 2D spectrum image, we calculate the bias for the carbon chemical shift ε c and the hydrogen chemical shift ε h where

ε c = 1 N p N p ∑ p=1 [ Xc (p) -X r c (p)] ε h = 1 N p N p ∑ p=1 [ Xh (p) -X r h (p)] (3.16)
where ( Xc (p), Xh (p)) stands for the estimated coordinates of the a peak X p whereas (X r c (p), X r h (p)) stands for the theoretical location of the peak X and N p is the number of peaks. 2. Validation of some registration properties : in this study, we just retain the transitivity property : for any three spectra, the generated transformation from the second to the third spectrum composed with the generated registration transformation (i.e., alignment) from the first to the second one should be equal to the alignment from the first to the third one. This transitivity property can be formalized, for every detected peak at location (i, j), as :

d1→2 ( d2→3 )(i, j) = d1→3 (i, j) (3.17)
3. Robustness : evaluates the performance of the method in special cases such as the presence of pathology or different noise level in the data. The principle is that even if we have different initial conditions, the system converges toward a unique solution.

In our case, this means we obtain same alignment results (same number of detected peaks and value of mean error chemical shift).

The main advantage of using simulated data is that we perfectly know the characteristics of the data such as the number of peaks presented in every spectrum and the peak chemical shifts values. For this, we firstly generate a synthetic theoretical 2D spectrum image X re f with (M = 500 pixels by N = 500 pixels) which contains N p = 200 peaks.

This synthetic spectrum will be used as reference to register other synthetic spectra. Three other synthetic theoretical 2D spectrum images X 1 , X 2 and X 3 are generated from X re f by modifying the location and the shape hyperparameters of each peak of X re f . The values of chemical shift vectors are assumed randomly distributed following a Gaussian distribution with zero mean and variance matrix 0.02 0 0 0.25 . Note that this variance matrix was chosen to fit the real chemical shift vectors. The hyperparameters of the shape filter h for each peak are randomly generated from a Gaussian distribution with mean equals to 1 and variance 0.1. In order to simulate the peak shape modification, we randomly add a white gaussian error of variance 0.005 to each peak shape hyperparameters. A zero mean correlated noise B with covariance matrix Γ b was added to each spectrum to obtain the synthetic spectra used in the simulation Y re f , Y 1 ,Y 2 and Y 3 .

The Peak Signal to Noise Ratio PSNR of Y re f is set to 30dB where the PSNR is expressed as:

PSNR = 10 log 10 (max(X re f ) 2 /E[(B) 2 ]) (3.18)
This value of PSNR was chosen to fit at best the real spectra. Indeed, the PSNR of the real spectrum is ∼ 30dB that corresponds ta a strongly noised observation.

In order to emphasize the robustness of the proposed approach to the high level of noise, we have processed to the detection and the alignment of peaks contained in Y 1 , by taking Y re f as reference, with different values of PSNR (30, 28, 25 and 23 dB). The different peak detection and alignment results are presented in Table 4.1. Since the pixel resolution is 0.16ppm (resp 6.8 10 -3 ppm) for the y-axis, i.e. the 13 a sub-pixel precision for the mean chemical shift errors. In fact, with a PSNR=25 dB, the ε c < 0.16 and ε h <6.8 10 -3 (Eq. 3.16). Figure . 3.2(a) shows an example of missed peak.

As one would suspect, the missed detections correspond to weak events which are strongly noised. Indeed, the average amplitude of missed peaks is ∼ 1 10 maximum simulated noise amplitude. Fig. 3.3 shows an example of x-axis and y-axis projection of a missed and a detected peak. As one can remark, the missed peak is completely burred in the noise. The false peak assignments correspond to events which are strongly imprecise : the shapes, locations and a posteriori probabilities of the right peaks and the estimated assignment peak are too close. Figure . 3.2(b) shows an example of false peak alignment errors, the right location of the peak is presented with a continuous arrow and the estimated peak location is presented with a dotted arrow. As one can see, the characteristics of the estimated peak (location, shape and amplitude) are too close to the assignment peak characteristics. In this case, the imprecision is so great that a distinction between these two peaks turns out to be difficult and sometimes impossible.

In order to emphasize the benefit of the proposed approach, two different alignment methods were applied to the synthetic spectrum Y 3 with different values of PSNR: a Bayesian method [START_REF] Toews | Maximum a posteriori local histogram estimation for image registration[END_REF] and our alignment method. The peak alignment results are presented in Table 3.2. We can easily observe that the proposed method performed better than the Bayesian method. Indeed, even with a PSNR=25dB, we obtained a sub-pixel precision for the mean chemical shift errors which is two times smaller compared to that obtained by the Bayesian method. This can be explained by the fact that we took into account in our alignment scheme both uncertainty (the a posteriori probability) and imprecision in the spectra (conflict information). It is important to note that the Bayesian scheme provides only tools to handle the uncertainty and, for this reason, the use of evidence theory was proposed. Note that the Bayesian method only addresses the alignment step. Therefore, we have used the detection results obtained by the proposed method to perform the alignment step with the Bayesian Method. Now we consider the problem of transitivity property validation. Since the missed detections correspond to weak events which are strongly noised, the missed peaks are the same for each spectrum. The alignment error using transitivity property are presented in Figure 3.4 presents some results of peak alignment on the same region of simulated spectra. We can see that all the peaks were correctly detected and aligned. In addition, we can easily remark from Fig. 3.4 that a manual extraction of peaks (7,8; 13,14; 24 and 29) seems difficult even impossible.

Figure 3.5 displays the peaks detection and alignment results on the same zone of a healthy spectrum and cancerous spectrum. Some peaks like peak number 10 are visually very difficult to detect due to the high noise level, yet our method is actually able to detect and align it. Note that the spectra are presented as contour plots with the same number of level which explain the absence of a presentation the peak number 10 in Fig. 3.5 (b). 
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Active zone detection and alignment (fMRI)

We recall that an fMRI image can merely be presented by a set of active zones that we have to detect and align (as for HSQC spectrum peaks) but in 3D. Each active zone may be characterized with its location, its shape and its voxel intensities. In contrast to the peak alignment scheme, the detection and the alignment of the active zone is separately addressed. More explicitly, given two detected objects, our aim is to align them according to their canonical poses. To this end, the active zone detection is firstly performed using a Hidden Markov chain segmentation HMC approach [START_REF] Bricq | Unifying framework for multimodal brain MRI segmentation based on hidden Markov chains[END_REF] which allows us to integrate spatial information into the segmentation method. Concerning the alignment method, it is important to note that the alignment can be effectively exploited in the indexing procedure only if all the following criteria are verified:

• 3D rotation invariance: objects with similar shape should be identically aligned whatever their initial orientations;

• 3D anisotropic transformation invariance: an aligned object that has been undergoes a narrowing or lengthening of a reasonable size following the alignment directions should maintain the alignment result;

• Weak time-consuming.

Note that since the active zone detection is addressed using a classical HMC segmentation method, we present in this thesis only the active zone alignment method. In order to lead to a satisfactory alignment result, we integrate human perception in the scheme of alignment. Generally, one seeks to align an object according to its symmetry axis. This approach allows us both to find the most object natural pose and align visually similar objects in the same manner. Most methods opted for this approach use either the PCA/continuous PCA [START_REF] Vranić | 3D shape descriptor based on 3D Fourier transform[END_REF][START_REF] Vranic | Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics[END_REF] or the reflection measurement [START_REF] Simari | Folding meshes: hierarchical mesh segmentation based on planar symmetry[END_REF] to find the mirror planes (planes of reflection). These planes are then used to estimate the appropriate cartesian coordinate system associated with the object. Although these methods were successfully applied on 3D internet object searching, they are unfortunately not currently adopted to the 3D fMRI objects. Indeed, due the cortex shape, the reflection symmetry of the active zones is more spherical than planar. We propose to use non-linear PCA that is well suited to model the reflection symmetry of the cortical active zones.

Partial spherical object alignment method

The characterization of a 3D object by reflection symmetry has aroused a lot of works [START_REF] Bustos | An experimental comparison of feature-based 3D retrieval methods[END_REF][START_REF] Podolak | A planar-reflective symmetry transform for 3D shapes[END_REF][START_REF] Simari | Folding meshes: hierarchical mesh segmentation based on planar symmetry[END_REF][START_REF] Mitra | Partial and approximate symmetry detection for 3D geometry[END_REF]. Mainly relying on the studies of human perception, these works have motivated our choice and led us to consider this reflection symmetry. In the literature, the mirror symmetry is the most used symmetry. However, the main drawback of this approach lies in its high time-consuming which makes its utilization very constraining [START_REF] Vranić | 3D shape descriptor based on 3D Fourier transform[END_REF]. To overcome this, some authors [START_REF] Chaouch | A novel method for alignment of 3D models[END_REF] propose the use of the PCA/continuous PCA algorithms to calculate all reflection symmetries that may be characterized by the object main direction. Indeed, the PCA/continuous PCA seeks to describe the data variance with a set of orthogonal features better known as the Principal Components (PC) which can be estimated by the correlation matrix. These PC will be used as a new coordinate system on which the original data will be projected. In the linear (basic) PCA, the PC is either lines (2D object) or planes (3D object). The use of the planar PC as reflection symmetries has found lot of success in many applications particularly the 3D internet object searching [START_REF] Chaouch | A novel method for alignment of 3D models[END_REF]. The main drawback of this approach lies in its high time-consuming which makes its utilization very constrained. To overcome this, the authors [START_REF] Vranić | 3D shape descriptor based on 3D Fourier transform[END_REF][START_REF] Chaouch | A novel method for alignment of 3D models[END_REF] propose the use of the PCA/continuous PCA algorithms to calculate all reflection symmetries that may be characterized by the object principle direction. Indeed, the PCA/continuous PCA seeks to describe the data variance with a set of orthogonal features better known as the Principal Components (PC) which can be estimated by the correlation matrix. These PC will be used as a new coordinate system on which the original data will be projected. In the linear (basic) PCA, the PC is either lines (2D object) or planes (3D object). The use of the planar PC as reflection symmetries has found lot of success in many applications particularly the 3D internet object searching [START_REF] Chaouch | A novel method for alignment of 3D models[END_REF].

Nevertheless, the basic PCA/continuous PCA is very well not adapted for fMRI active zones alignment task due to the cortex shape. Indeed the reflection symmetry in our case is likely more spherical than planar. Our aim is then to properly integrate this a priori knowledge in the proposed scheme. An elegant way to address this task is the use of nonlinear PCA. This nonlinear behavior was firstly presented in [START_REF] Lingoes | Nonmetric factor analysis: a rank reducing alternative to linear factor analysis[END_REF][START_REF] Kruskal | A nonmetric variety of linear factor analysis[END_REF]. Then, many varieties of the nonlinear PCA were proposed such as the probabilistic nonlinear PCA [START_REF] Lawrence | Probabilistic non-linear principal component analysis with Gaussian process latent variable models[END_REF], the kernel nonlinear PCA [START_REF] Ge | Improved kernel PCA-based monitoring approach for nonlinear processes[END_REF] and the neural network PCA [START_REF] Kramer | Nonlinear principal component analysis using autoassociative neural networks[END_REF][START_REF] Scholz | Analysing periodic phenomena by circular PCA[END_REF]. Among all these works, we pay a particular attention to this latter: the Neural Network PCA (NNPCA) [START_REF] Kramer | Nonlinear principal component analysis using autoassociative neural networks[END_REF] has proved its high accuracy to estimate the non-linear PC in many field such as the meteorology [START_REF] Hsieh | Applying neural network models to prediction and data analysis in meteorology and oceanography[END_REF], the EEG Electro-Encephalo-Graphy signal [START_REF] Stamkopoulos | ECG analysis using nonlinear PCA neural networks for ischemia detection[END_REF], metabolism [START_REF] Scholz | Non-linear PCA: a missing data approach[END_REF]. Indeed, the NNPCA relies on Multi-Layer Perceptron (MLP) [START_REF] Bishop | Neural networks for pattern recognition[END_REF] with an auto associative topology allowing an identity mapping (e.g; the neural network input P should be equal to the neural network output P where P is the observed object voxel coordinates). To this end, the square reconstruction error ||P -P|| 2 should be minimized. The neural network is generally composed of five layers [2-1-2] interconnected with four network weight W l , l = 1...4 (Fig. 3.6). The layer in the middle is called the bottleneck layer which consists of a number of nodes lower than that of the input/output layers. This bottleneck layer, leading to a data compression and a decompression steps, makes the minimization of the square error not trivial. The two first layers constitute the non-linear extraction function Φ extr (.) allowing us to perform a nonlinear projection of the observed object coordinates P = p 1 ...p N (i.e; p i is the cartesian coordinates of the i th voxel of the object (the size of p i is three)), N is the number of object voxels, into the second layer (Φ extr (P) = Z) in order to obtain the matrix of score (the matrix of the nonlinear PC). In the other hand, the two last layers constitute the reconstruction function Φ gen (.) allowing us to perform a nonlinear reconstruction of the observation (Φ gen (Z) = P) thanks to the estimated score matrix (Fig. 3.6). 3 (the bottleneck layer) thanks to Φ extr function. The last two layers aim at reconstructing the data to P thanks to Φ gen function.

Our aim now is to properly integrate the a priori knowledge that we have on the data into this network. In other words, we should adopt the network to the spherical shape of the active zone. To this end, we can distinguish two cases. The first one consists of an entire spherical shape (Fig. 3.7.a) whereas the second one consists of a partial spherical shape (Fig. 3.7.b) which is the case of the fMRI active zones. In the next part, we describe the proposed methods to adopt the network for both shape cases: entire spherical shape and partial spherical shape. The developed method was inspired from the work proposed in [START_REF] Kirby | Circular nodes in neural networks[END_REF] where authors adapt the network to the case of circular data (2D data). We extend this work to the 3D data for entire spherical shape. To this end, the triplet (z

Entire spherical shape case

[3] 1 , z [3] 2 , z [3]
3 ) 2 (Fig. 3.6) are constrained to lie on a unit sphere:

(z [3] 1 ) 2 + (z [3] 2 ) 2 + (z [3] 3 ) 2 = 1
Generally, a sphere can be characterized with the triplet (r, θ, φ) where r ≥ 0 is the distance from the origin, θ ∈ [0, 2π[ the azimuth angle and φ ∈ [-π 2 , -π 2 [ the elevation angle. The three nodes of the bottleneck layer can be described by two hyperparameters (θ and φ):

z [3] 1 = cos(θ)cos(ϕ), z [3] 2 = sin(θ)cos(ϕ) and z [3] 3 = sin(ϕ) (3.19)
To calculate the radius r of the sphere, a forward propagation is performed. We recall that the link between the layer number 2 and the bottleneck layer is assured by the matrix

W 2 . Let z [2] m m ∈ [1...M],
M the number of nodes in the second layer, the value of the m th node of the layer number two. Each node m of this layer is connected to each node of the bottleneck layer with a weighted connection w im where i ∈ {1, 2, 3}. The radius r is expressed as:

r = (v 1 ) 2 + (v 2 ) 2 + (v 3 ) 2 (3.20)
where

v 1 = M ∑ m=1 w 1m z [2] m , v 2 = M ∑ m=1 w 2m z [2] m and v 3 = M ∑ m=1 w 3m z [2] m
In order to obtain a spherical constraint, we should have:

z [3] 1 = v 1 r , z [3] 2 = v 2 r and z [3] 3 = v 3 r (3.21)
To estimate the network weight W l , l = 1...4, a backward propagation is performed to minimize the error function E with respect to all network weight W l , l = 1...4:

E = N ∑ n=1 3 ∑ j=1 p j n -p j n 2 (3.22)
where (p 1 n , p 2 n , p 3 n ) is the cartesian coordinate of the object voxel p n and ( p1 n , p2 n , p3 n ) the reconstructed coordinates of p n . This error function can be minimized using the gradient optimization algorithm [START_REF] Nocedal | Numerical optimization[END_REF] and the derivation of the network weights W l , l = 1...4 are obtained by standard back propagation [START_REF] S E Fahlman | An empirical study of learning speed in back-propagation networks[END_REF].

Partial spherical shape case

In this paragraph, we adapt the method previously presented (the entire spherical shape) to the case of the fMRI active zones (the partial sphere shape). Unfortunately this task is not trivial since the fMRI active zones do not retain a unique shape and consequently the partial sphere modeling the reflection symmetry changes from an active zone to another one. In order to overcome the problem of shape variability, we proceed as follows:

2 z [3]
i is the value of the i th node of layer number three.

1. The first step consists of finding the closest sphere that properly fits the 3D object shape. To this end, we used the Inverse Non-Linear PCA method proposed in [START_REF] Scholz | Non-linear PCA: a missing data approach[END_REF] to initialize the reflection symmetry of the 3D object. Indeed, this method allows the estimation of the surface that models the reflection symmetry with no constrains on the expected surface shape (in our case a spherical shape). Then, we use the gradient descent algorithm to estimate the hyperparameters of the closest partial sphere (the triplet (r, θ, φ)) that properly fits the estimated surface.

2. The second step consists of adding samples to the 3D object to complete the sphere based on the partial sphere hyperparameters estimated in the pervious step. Therefore we obtain two 3D objects. The first one (P) is composed of the original samples coordinates and the second one, denoted by

P ′ = p ′ 1 ...p ′ N ′
, is composed of the added samples coordinates.

3. The last step consists in applying the proposed method to the constructed sphere.

However, only P contains the useful data and therefore samples of P ′ should be penalized in the network training step. To this end, it is sufficient to modify the error function (Eq. 3.22) by introducing a new hyperparameter 0 < ξ < 1 according to:

E = N ∑ n=1 3 ∑ j=1 p j n -p j n=1 2 + ξ N ′ ∑ n 3 ∑ j=1 p′ j n -p ′ j n 2 (3.23)
By this way, the error introduced by P ′ is penalized and it partially contributes to the gradient.

An overview diagram of the proposed active zones alignment chain is presented in Fig. 3.8. Finally, two objects are aligned according to their estimated partial spherical symmetries. Indeed, it is sufficient to first estimate two partial spherical symmetries for each object (Fig. 3.9) and than to superpose them to find the common object pose (Fig.

3.10).

Inverse Non-Linear PCA ?

Finding the closest sphere that properly fit the 3D object shape 

Active zone alignment validation

In this part, we provide some 3D object alignment results obtained with the proposed method. This method was applied on both spherical 3D objects and partial 3D objects designed to fit the characteristics of the active zones as well as on some real fMRI active zone. More results on real spectra will be presented in chapter 6. In order to emphasize the benefit of the proposed method and particularly the use of the non-linear PCA, we have compared our algorithm with the continuous PCA method [START_REF] Vranić | 3D shape descriptor based on 3D Fourier transform[END_REF].

The goal of our experiments is to assess the performance of the proposed alignment scheme. Let us start with spherical toys problem to demonstrate the effects of the proposed and the continuous PCA strategies. To construct our toy data set, we firstly generated a reference sphere denoted by S r (Fig 3.11.a). Note that we have opted for the 3D triangular mesh representation for all artificial toys (Fig 3 .11.b). This sphere will be used as reference to generate twenty nine other spheres by adding a Gaussian noise with zero mean and variance σ o to its cartesian coordinates (x r , y r , z r ) such that the PSNR ∈ [5dB, 20dB] (Fig. 3.12). Fig. 3.13 shows some results of spherical symmetry reflection estimation on synthetic toys with different PSNR values. In order to facilitate the visual interpretation of the results we have presented the cross sections of different spheres. As one can see, even with a small PSNR, we can correctly estimate the reflection symmetries.

We now address the problem of 3D partial spherical object alignment. To this end, we generated five partial spheres by removing 55%, 60%, 65%, 70% and 75% of S o and by adding a Gaussian noise with zero mean and variance σ oi as that the PSNR ∼ 15db. Then, Figure 3.12: Two synthetic spherical toys generated from the reference sphere S o

Proposed method

Continuous PCA data set1 (55% of S o ) 0.02 ± 1.2 10 -4 0.097 ± 7.85 10 -4 data set2 (60% of S o ) 0.038 ± 5.8 10 -4 0.124 ± 2.14 10 -3 data set3 (65% of S o ) 0.0474 ± 9.7 10 -4 0.301 ± 4.23 10 -3 data set4 (70% of S o ) 0.062 ± 1.03 10 -3 0.832 ± 5.82 10 -2 data set5 (75% of S o ) 0.078 ± 4.12 10 -3 1.177 ± 7.98 10 -2 Table 3.4: The mean shift errors and the standard deviation obtained by the proposed and the continuous PCA methods.

for each partial sphere S oi , i = 1...10, we generated forty nine other spheres by rotating S oi . The rotation angle is between 20 and 130 degrees. At the end of this procedure we obtained five data sets each one composed of 50 toys. Fig. 3.14.(a) shows an example of a generated toy whereas Fig. 3.14.(b) shows an example of a fMRI active zone. The toy alignment results for each data set are presented in Table 3.4. We can easily observe that the proposed method performed better than the continuous PCA method. Fig. 3.15 shows an example of real active zones alignment. As one can see, our method performs the best alignment result. 

Conclusion

In this chapter, we addressed the object detection and alignment task.

Concerning the 2D HSQC spectrum, we proposed a new peak detection and alignment methods which combined the modeling of the knowledge by means of the evidence theory and integrate the fuzzy theory to quantify the imprecision degree presented in the spectra. The handling of both imprecision and uncertainty by the evidence theory increased the robustness of the proposed alignment scheme with comparison to the Bayesian method.

In addition, we have used the deconvolution model to achieve a better fit of the HSQC spectrum. The synthetic validation of the proposed approach has shown its efficiency and particularly its robustness to the high level of noise, one of the delicate issues in HSQC spectra and its ability to align peaks even if they are manually difficult to separate. The proposed method offers not only a powerful automated tool for peaks detection and alignment but also a parametric representation of the NMR 2D spectrum which will be used for spectrum indexation in the next chapter.

On the other hand, the second method, dedicated to the fMRI active zone alignment, relies on the canonical system approach. This approach allows us to find the most object natural pose and to visually align similar objects in the same manner. In order to integrate our a priori knowledge, we proposed a new method for spherical symmetry estimation based on the non-linear PCA that is well suited to model the reflection symmetry of the cortical active zones. The synthetic validation of the proposed active zone alignment scheme has shown that the modeling of the partial spherical symmetry has increased the robustness of the proposed registration scheme with comparison to the continuous PCA method which does not take into consideration this a priori knowledge. 

CHAPTER 4

Object coding and similarity measurement
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Introduction

The Object coding and similarity measurement is the second step in the proposed object indexing scheme (Fig. 2.15). On one hand, the object coding task consists in coding different objects into a compact description. This compact description allows us to accelerate large database queries. On the other hand, the similarity measurement task consists in establishing the object similarity measurement procedure. In other word, this task returns to find and to group the most similar objects within a given medical signal group/population query.

In this chapter we present in section 4.1 an overview of the most used object coding and similarity measurement methods. In section 4.2, we develop a novel scheme for peak similarity measurement. Indeed, the step of object encoding is unnecessary since the peaks can only be described by three parameters (location, amplitude and shape) and are therefore already parsimoniously presented. For the similarity measurement, we propose a new method based on the combination of Bayesian theory and the fuzzy sets theory allowing us to handle the uncertainty and fuzzyness that characterize the observations and to inject our a priori knowledge into the inference model.

In section 4.3, we propose a new coding method based on generalized Gaussian transformation to reliably describe the topology of the active zones. In particular, we show that the proposed method provides not only a compact representation of the object in its space but also a signature faithful to its shape. We also propose a similarity measurement robust to small displacements and variations of objects. We show that the use of the proposed algorithms allow us to get more accurate object coding and similarity measurement results compared to the existing schemes.

Overview of object coding and similarity measurement algorithms

Object coding

Shape distributions

Osada et al. [START_REF] Osada | Shape distributions[END_REF] propose five distribution forms to code a 3D object. The object is assumed to be triangular meshing (Fig. 4.1). Therefore, the object surface is composed of a set of inter-connected triangles where each triangle consists of three vertices and a gravity center. The considered measurements are:

• The angles between three points on the surface (Fig. All considered points are randomly selected on the object triangular facets. The main advantages of this approach are the descriptor compactness and the calculation rapidity. Moreover, since the considered measurement does not depend on the object coordinate system, the shape distributions method is invariant to geometric transformations (rotation and translation). However, its use is more suited to search objects of similar overall shape since it is not able to discriminate small variations in the object meshing [START_REF] Ohbuchi | Shape-similarity search of 3D models by using enhanced shape functions[END_REF].

Geometric moments

The geometric moment approach consists in projecting a characteristic function h, that models a 3D object, on the family of functions x o y q z r , (o, q, r) ∈ N 3 . The geometric moments of order (o + q + r) are denoted by M oqr and calculated as follows:

M oqr = p∈T h(p) x o y q z r d p (4.1)
where p is a point belonging to the triangular mesh T of the object. In particular, the geometric moments of order one and two are used to calculate the normalization hyperparameters of the 3D object (the object gravity center and the three principal axes). In the context of coding, the description of a 3D shape by the geometric moments was proposed in [START_REF] Paquet | The MPEG-7 standard and the content-based management of three-dimensional data: A case study[END_REF]. In this work, the geometric moments are obtained by the following equation:

M oqr = ∑ p∈T A p (x p -x g ) o (y p -y g ) q (z p -z g ) r (4.2)
where A p (resp g p = (x p , y p , z p )) is the area (resp the gravity center) of the triangle associated to p ∈ T and g = (x g , y g , z g ) is the object gravity center. Note that the use of geometric moments is not the best object coding method. Indeed, a comparative study in terms of performance made by Varnic and Saupe [START_REF] Vranic | 3D model retrieval[END_REF] on different bases of 3D objects (e.g; the Princeton Shape Benchmark) which contains a database of 3D object models collected from the World Wide Web (Fig. 4.3) shows the limits of this method particularly for complex 3D shape coding [START_REF] Shilane | The Princeton Shape Benchmark[END_REF]. Finally, for each bin an histogram of mesh triangle center within this bin is calculated and the union of all histograms constitutes the signature of the object.

Shape histogram

The 3D Gaussian Descriptor

The 3D Gaussian Descriptor (3DGD) introduced by Chaouch [Chaouch09] relies on the object Gaussian transformation which is derived from the Gaussian law. Indeed, the Gaussian transform is a real application defined on a set of defined point in space and obtained by a summation over the surface of the 3D object. The Gaussian transformation denoted G on a point q of the space is given by the following expression:

G(q, T, σ) = p∈T exp -(p -q) 2 2σ 2 d p (4.3)
where d is the euclidian distance, p ∈ T (T the object triangular mesh) and σ > 0 is a positive real.

In order to code a 3D object, author proposes the partitioning of the object into N 3 cells and then the calculation for each one's center g i, j,k , i = 1...N, j = 1...N, k = 1...N (Fig. 4.5). Then, the author assigns to each cell a characteristic value c i, j,k as following: Thus, the 3D object is codified with c = c i, j,k i, j,k∈N . Note that the 3D Gaussian Descriptor (3DGD) has showed its effectiveness compared to other methods such as the shape histogram method and was ranked first on the Princeton Shape Benchmark database [START_REF] Chaouch | 3D Gaussian descriptor for 3D shape retrieval[END_REF].

c i, j,k = ∑ p∈T A p exp -(p -g i jk ) 2 2σ 2 (4.4) (a) (b) (c) (d) 

Similarity measurement

The similarity measurement consists in establishing the similarity between two codified objects, it means the most similar objects within the database toward the object we are looking for (query object).

Threshold approach

The threshold schemes are often used to accommodate differences between object descriptors. To this end, it is sufficient to experimentally set a threshold thres and to evaluate the differences between two objects O 1 and O 2 as following:

∆(O 1 , O 2 ) = 1 if d(c 1 , c 2 ) ≤ thres 0 otherwise (4.5)
where c 1 and c 2 are the object descriptors of O 1 and O 2 respectively and d(., .) is the euclidian distance. Thus, O 1 and O 2 are assigned together if the function ∆(O 1 , O 2 ) is equal to 1. The threshold based approach is a rudimentary technique but it found some success in applications such as in metabolite identification [START_REF] Zheng | 2D NMR metabonomic analysis: a novel method for automated peak alignment[END_REF][START_REF] Xia | MetaboMiner -semiautomated identification of metabolites from 2 D NMR spectra of complex biofluids[END_REF] thanks to its simplicity and speed. Nevertheless, thresholds set may strongly affect the robustness of the similarity measurements.

Distance minimization approach

The similarity between two objects O 1 and O 2 can be calculated using the euclidian distance as follows:

∆(O 1 , O 2 ) = d(c 1 , c 2 ) (4.6)
Thus, the most similar object O s to query object O within the database is the given by:

O s = argmin O i d(O, O i ) (4.7)
In order to be less sensitive to small displacements or minor geometric variations, [START_REF] Chaouch | 3D Gaussian descriptor for 3D shape retrieval[END_REF] introduced a new similarity measurement that minimizes the distance between adjacent pairs of components:

∆(O 1 , O 2 ) = 1 N 3 N ∑ i, j,k=1 min (c 1 i, j,k -c 2 i, j,k ) 2 (c 1 i, j,k -c 2 i ′ , j ′ ,k ′ ) 2 , i ′ , j ′ , k ′ ∈ V (i, j, k) (4.8)
where V (i, j, k) is the 3 × 3 × 3 neighborhood of the descriptor c 2 i, j,k .

Supervised learning approach

Supervised learning approach relies on the link function establishment between object descriptors and expected results (similar or no similar objects) via a training step. The widely common used methods are the Support Vector approach SVM [START_REF] Bruzzone | A novel transductive SVM for semisupervised classification of remote-sensing images[END_REF] and the Artificial Neural Networks [START_REF] Bate | A Bayesian neural network method for adverse drug reaction signal generation[END_REF]. Thus, the similarity measurement task is equivalent to a classification task. In other words, for each object O i belonging to the database, a classification function f(.) is established using a training dataset which contains objects with known similarity results. Therefore, a test object O t is assigned to the object O i (i.e.; O t and O i are considered as similar) if f(O t ) = 1. As one can remark, the supervised learning approach is a generalization of the threshold approach since it allows a non-linear behavior of the assignment function f(.).

Retained approaches

We recall that each spectrum is composed of several peaks that are scattered within the spectrum. These peaks are the responses of metabolite presence. Therefore, peaks belonging to a given metabolite have common properties. In order to improve the peak coding and similarity measurement task, these properties should be modeled and injected into the proposed scheme. Thus, it is better to manipulate metabolites than single peaks. Moreover, since a metabolite is described by a set of few peaks with specific characteristics (locations, shapes and amplitudes) the metabolite coding step is no longer necessary (the metabolite is already compactly presented) and finally the peak coding and similarity measurement task is simply equivalent to a metabolite identification task (e.g, identify the most similar metabolite to a given metabolite).

Concerning the fMRI image, unlike peaks, an active zone is a dense form (consisting of neighboring voxels) and therefore a compact representation of this active zone should be carried out. Among different object coding methods, the 3D Gaussian Descriptor (3DGD) introduced by [START_REF] Chaouch | 3D Gaussian descriptor for 3D shape retrieval[END_REF] has showed its effectiveness compared to other methods and was ranked first on the Princeton Shape Benchmark database. For this reason, the Gaussian transformation is retained in this work for fMRI active zones

Metabolite similarity measurement (HSQC)

In the literature, we distinguish two methods [START_REF] Zheng | 2D NMR metabonomic analysis: a novel method for automated peak alignment[END_REF][START_REF] Xia | MetaboMiner -semiautomated identification of metabolites from 2 D NMR spectra of complex biofluids[END_REF] that deal with the metabolite similarity measurement. In these works, two metabolites are considered as similar if their peaks appear at the same locations. To this end, these methods use threshold schemes to accommodate the chemical shift differences between different metabolites. Nevertheless, the choice of the thresholds may strongly affect the robustness of the similarity measurement method. To overcome this problem, we propose the use of the fuzzy set theory which is well appropriate to handle fuzzy situations [START_REF] Waltz | Multisensor data fusion[END_REF] and hence avoid a binary reasoning (similar or not similar). Moreover, in order to lead to a more robust, more accurate and efficient similarity measurement method, additional constraints, other than peaks location, such as the knowledge of the biopsy compositions or peak amplitudes should be integrated into the assignment scheme. These a priori knowledge are available in a metabolites library denoted the "corpus". Indeed, the corpus contains different metabolites expected to be present within the spectra as well as the characteristics of each metabolites (expected peak locations and peaks amplitudes). The corpus can be obtained by two ways. In the first one, a reference spectrum is manually annotated (i.e; the spectrum annotation task is equivalent to metabolites identification task) and then the annotation results are used to identify metabolite presented in other spectra obtained from the same type of biopsy. In the second one, the corpus does not depend on the biopsy. For example, it can be the annotation results of spectra obtained from pure compounds. Indeed, since the metabolites are independent of the treated tissue type, the corpus origin has no influence on the metabolite identification scheme. Moreover, in order to increase the metabolite similarity measurement accuracy, it is better to consider a multi-spectra metabolite identification.

Metabolite identification

The proposed fuzzy metabolite similarity measurement scheme is divided into three steps:

1. Randomly choose a peak denoted the reference peak, 2. Find the candidate metabolites that may contain the selected reference peak, 3. Find the right metabolite candidate according to different criteria exposed in the following.

Candidate metabolites selection

The first selection criterion, in the metabolite similarity measurement scheme, is the peak location. Indeed, each metabolite is composed of one or several peaks at very specific frequency coordinates (carbon-13 C chemical shift in x axis and proton-1 H chemical shift in y axis of the spectrum image). However, we recall that peaks can slightly be shifted from their expected positions. To overcome this, we assume that the peak membership to a metabolite is a fuzzy concept. In fact, a given peak may belong to several metabolites with a membership degree denoted µ M . The value of this membership degree depends on both the expected and the measured peak location.

For the transformation from the hard to fuzzy domain, a Π membership function denoted f is used. The expression of f is given below:

f (x; a 1 , b 1 ) = 1 1 + x-a 1 b 1 2 (4.9) Fig 4.7.(a)
shows an example of Π membership function for a given pair (a 1 , b 1 ). For a given metabolite M from the corpus, the membership degree µ M , using a Π membership function, is expressed as:

µ M = f ((i -i M ) 2 + ( j -j M ) 2 ; a 1 , b 1 ) (4.10)
where (i, j) is the peak measured position and (i M , j M ) is the expected peak position (available from the corpus). The hyperparameters (a 1 , b 1 ) are automatically estimated with the Genetic Algorithm procedure (see Appendix B). Indeed, the GA aims at estimating the model hyperparameters using a training dataset that contains metabolites with known similarity results. Once the candidate metabolites (set of metabolites such that (a 1b 1 ) < µ M < (a 1 + b 1 ) denoted henceforth C M ) have been selected, we address in the next part the problem of the right candidate identification.

Right metabolite identification

Our challenge in this study is to properly model the metabolite profile using the a priori knowledge in order to lead to a optimal selection of the right metabolite. To this end, we define three criteria to be respected in the metabolite scheme identification: Criterion 1 Theoretically, and with respect to the reproducibility principle, the ratio of two peaks belonging to the same metabolite must be the same for any observation. But this rule is not perfectly verified in practice (due to the degradation of the tissues used in the biopsy during acquisition and/or the acquisition conditions that are not necessarily the same for all observations). Therefore, the modeling of the ambiguity introduced by these disturbances is essential to avoid false negative identification (assigning a peak to a wrong candidate). Let us denote r o as the observed ratio between the reference peak and a new candidate peak and r t as the expected ratio given by the corpus. The more these ratios are close, the more the metabolite identification is reliable. To model this reliability, we define an S type function f 1 as the membership function. The expression of f 1 is : The proposed reliability degree denoted µ cr1 is then given by Eq. 4.12. The hyperparameters of this function are estimated using the Genetic algorithm (see Appendix B).

f 1 (x; a 2 , b 2 , c 2 ) =              0 x < a 2 (x-a 2 ) 2 (b 2 -a 2 )(c 2 -a 2 ) a 2 ≤ x < b 2 1 -(x-c 2 ) 2 (c 2 -b 2 )(c 2 -a 2 ) b 2 ≤ x < c 2 1 otherwise (4.
µ cr1 = f 1 (min(r t , r o )/max(r t , r o ); a 2 , b 2 , c 2 ) (4.12) Criterion 2
In this method, we consider simultaneously N biopsies (multivariate analysis). We assume that the peak amplitudes follow a Gamma distribution. Indeed, the major advantage of this distribution is that the shape parameters allow the fitting of spectral data that possibly present some sparsity and/or a background [START_REF] Dobigeon | Bayesian separation of spectral sources under non-negativity and full additivity constraints[END_REF]. The criterion 2 models the likelihood between the observed peaks and a given metabolite belonging to the corpus. The Gamma distribution [START_REF] Dobigeon | Bayesian separation of spectral sources under non-negativity and full additivity constraints[END_REF] G is expressed as:

G (y i ; α, β) = y (α-1) i β α Γ(α) exp (-βy i ) y > 0 (4.13)
where y i stands for the amplitude, and α, β > 0 represent the shape and the inverse scale parameters respectively. The likelihood term has to be expressed in a multidimensional way. Nevertheless, an analytical expression of the multidimensional Gamma distribution is not available. To overcome this problem, we propose the use of the copula theory which offers an elegant way to model the dependency between the different observations (the metabolite realizations over several spectra) and hence to access to the multidimensional Gamma distribution [START_REF] Joe | Multivariate models and dependence concepts[END_REF].

Several studies show the effectiveness of the Gaussian copula c g to handle dependency [START_REF] Joe | Multivariate models and dependence concepts[END_REF]. In order to properly take into account the metabolite dependency into the similarity measurement scheme, we adopt this copula:

∀ y = (y 1 , • • • , y N ) ∈ IR N , c g (y, Γ) = |Γ| -1 2 exp - ỹT (Γ -1 -I)ỹ 2 (4.14)
where ỹ = (Φ -1 (y 1 ), • • • , Φ -1 (y N )) T with Φ(.) the standard Gaussian cumulative distribution, Γ is the inter-spectra correlation matrix and I the N × N identity matrix. Let us now denote R = (R 1 , ..., R i , ..., R N ) the amplitude of reference peak over the N considered spectra and X = (X 1 , ..., X i , ..., X N ) the amplitude of a candidate peak over the N spectra and let a i be the theoretical ratio between R i and X i : X i = a i × R i , i = 1...N. In our case, R i follows a gamma distribution with hyperparameters α i and β i . Under these assumptions, (X i /M) follows a gamma distribution with hyperparameters α i and β i a i . Using the Gaussian copula c g , the likelihood is then given by :

P(X/M) = f ga (X 1 ; α 1 , β 1 a 1 ) × ... × f ga (X N ; α N , β N a N ) × c g (X, Γ X )
where Γ X is the inter-metabolite correlation matrix. The hyperparameters of P(X/M) are estimated using an MCMC procedure [START_REF] Smith | Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods[END_REF]. We use this last expression to build the reliability degree: considering an S membership f 2 as, the proposed reliability degree denoted µ cr2 is given by:

µ cr2 = f 2 (P(X/M); a 3 , b 3 , c 3 ) (4.15)
Thus, the higher the likelihood value P(X/M) is great, the more µ cr2 is close to 1 and the more the probability of the metabolite M to be the right metabolite is large.

Criterion 3

This criterion deals with the variations of the observed peak chemical shifts from their theoretical positions defined in the corpus. We use the same membership function as in Eq.4.9. The proposed reliability degree denoted by µ cr3 is hence expressed as:

µ cr3 = f M (((i -i M ) 2 + ( j -j M ) 2 ); a 1 , b 1 ) (4.16)
where (i, j) stands for the observed peak position and (i M , j M ) for the theoretical peak position.

Global criterion

We combine the 3 reliability degrees previously defined, to expect the best candidate in the following way:

M = argmax M∈C M ( K ∏ k=1 µ cr1 (X k ).µ cr2 (X k ).µ cr3 (X k )) (4.17)
As one can remark, given the cost function definition (Eq. 4.17), a solution of the metabolite identification always exists which is not necessarily correct (i.e; a metabolite can be not present in a spectrum). In order to reduce the number of false positive identification, the reliability of the membership degrees for all different criteria of M should also be quantified. In other word, not all solutions of (Eq. 4.17) are acceptable. Therefore, we propose a last fuzzy decision function that takes as input the criterion value of M and as output their reliability. This reliability is quantified by the membership degree of MB to the fuzzy set: the metabolites biomarkers set. We opted for the trapezoidal function denoted by g as a membership function. The expression of g is given by : 

g(x; a 4 , b 4 , c 4 , d 4 ) =            ( x-a 4 b 4 -a 4 ) a 4 ≤ x < b 4 1 b 4 ≤ x < c 4 ( d 4 -x d 4 -c 4 ) c 4 ≤ x < d 4 0 otherwise
g( K ∏ k=1 µ cr1 (X k ).µ cr2 (X k ).µ cr3 (X k ); a 4 , b 4 , c 4 , d 4 , a 1 , b 1 , a 2 , b 2 , c 2 ; a 3 , b 3 , c 3 ) (4.19) If g ∏ K k=1 µ cr1 (X k ).µ cr2 (X k ).µ cr3 (X k ) = 1 then M is selected.
It is important to note that under some circumstances, such as the changes in the nucleus environment features, some peaks of a given metabolite may not be present. Thus, such exceptions should be taken into account in the annotation scheme due to a priori knowledge. To this end, an exception list is made by physicians. This list contains the peak set that may not be present for each metabolite. Let us denote by X k , k = 1...K the peaks of a given metabolite M e belonging to the exception list and by X ke the peak which could not be present. The exception handling is defining in Alg.1.

Algorithm 1 Exception handling algorithm

Input=X ke and M e . 1-Calculate the membership function µ cr3 (X ke ) (Eq. 4.16), 2-If µ cr3 (X ke ) = 0, no change on M e composition is made,

3-If µ cr3 (X ke ) = 0, the new composition of M e is X k , k = {1...K} -{ke}, Output=new composition of M e .
An overview diagram of the metabolite identification chain is presented in Fig. 4 

Metabolite identification validation

This part describes some biomarker identification results obtained with the proposed scheme. This method was applied on synthetic spectra designed to fit the characteristics of the 1 H -13 C HSQC HR-MAS spectra as well as on some real spectra. More results on real spectra are presented in chapter 6.

In order to validate and emphasize the benefits of the proposed approach, we have retained the recall and the precision measurements for the synthetic data validation:

recall = T P T P+FN ; precision = T P T P+FP
where T P stands for the number of true positive identifications, FN the number of false negative identifications and FP the number of false positive identifications.

The main advantage of using simulated data is that we perfectly know the characteristics of the data such as the number of peaks presented in every spectrum and the peaks chemical shifts values. For this, we firstly generate a synthetic theoretical 2D spectrum image X re f ( M = 500 pixels by N = 500 pixels) which contains N p = 500 peaks corresponding to two hundred metabolites N m = 200. The positions of different peaks and the hyperparameters of the shape filter for each peak are randomly generated. This synthetic spectrum will be used as reference to register other synthetic spectra. Nine other synthetic theoretical 2D spectrum images X i , i = 1...9 are generated from X re f by applying a displacement vector at each peak of X re f . The values of chemical shift vectors are assumed to be random and following a Gaussian distribution with zero mean and a variance matrix

Γ d =
0.02 0 0 0.25 . The new shape peak hyperparameter for each peak is calculated by adding a zero-mean Gaussian random noise of variance 0.005. A spatially zero mean correlated noise B was added to each spectrum to obtain the synthetic spectra used in the simulation Y re f , Y i , i = 1...9. Figure 4.9 shows the synthetic theoretical 2D spectrum image X re f and the reference synthetic spectrum Y re f with PSNR = 30dB where:

PSNR = 10 log 10 (max(X re f ) 2 /E[(B) 2 ]) (4.20)
This value of PSNR was chosen to fit at best the real spectra. In fact, the PSNR of the real spectrum is ∼ 30dB. Concerning the used corpus, it summarizes the ground truth of Y re f . It is important to note that all the spectra are presented as contour plots with the same number of level.

In order to emphasize the benefit of the proposed approach, three different similarity measurements methods were applied to the synthetic spectra Y i , i = 1...9 with different values of PSNR: our identification method , an SVM method [Camps-Valls05] and a threshold method [START_REF] Xia | MetaboMiner -semiautomated identification of metabolites from 2 D NMR spectra of complex biofluids[END_REF] . The metabolites identification results of Y i are presented in Table 4.1. First, as one can see, the proposed method is enough robust to a hight level of noise. In fact, even with a PSNR= 23dB, the recall and the precision measurements are still close to 90%. Secondly, we can easily observe that the proposed method performed better than the SVM method which does not take into account the a priori knowledge. The average recall(%) and precision(%) obtained with: our identification method, the SVM method, a threshold method on synthetic spectra.

Proposed method SVM Threshold method PSNR recall(%) precision(%) recall(%) precision(%) recall(%) precision(

Figure 4.10 presents the metabolites identifications results on the same region of Y 1 and Y 2 . Each peak p belonging to a given metabolite M is labeled with (p, M). As we can see, some peaks (like peak number (6,1), (3,2) and (9,1)) are visually very difficult to identify, yet our method is able to properly assign them.

The performance of the proposed method was evaluated in the case of missing peaks. The missing peaks were simulated by removing peaks of each metabolite randomly with 0%, 20% and 50% probabilities. We can distinguish two cases. If the modified metabolite belongs to the exception list, the exception handling algorithm (Algorithm 1) is then performed. In the other case, we assume that the peak absence of a given metabolite is the result of the metabolite absence. We have applied our annotation scheme on the synthetic spectra. The results show that every modified metabolite which does not belong to the exception list was not identified and indeed every metabolite belonging to the exception list was identified. In other words, we obtained the same results as those presented in Table 4.1.

Figure 4.11 displays the metabolites identification results on the same zone of a healthy and a cancerous spectra. As we can see, some metabolites (like metabolite number (5,2)) are visually very difficult to identify. Yet our method is actually able to correctly identify them even with a high noise level. (1,1)

(1,3)

(2,1) (1,1) 

(3,1) (1,2) (2.2) (4,1) (3,2) (2,2) (5,1) (1,4) (4,2) (5,2) (a)
(1,3) (1,2) (2,1) (3,1) (2.2) (5,1) (2,2) (3,2) (4,1) (5,2) (4,2) (1,4) (b) 

Active zone coding and similarity measurement (fMRI)

Among object coding methods, the 3D Gaussian Descriptor (3DGD) proposed by Chaouch [START_REF] Chaouch | 3D Gaussian descriptor for 3D shape retrieval[END_REF] has showed its effectiveness compared to other methods and was ranked first on the Princeton Shape Benchmark database. The 3DGD method relies on the object Gaussian transformation which is derived from the Gaussian law. Although this method was successfully applied on 3D internet object searching, it presents a shortcoming. Indeed, it does not provide an information about the object surface topography. In order to lead to a more accurate fMRI active zone objects coding and similarity measurement result such information should be taken into account the proposed scheme. To this end, we propose a new descriptor: the 3D Generalized Gaussian Descriptor (3DGGD) inspired from the 3DGD method.

The 3D Generalized Gaussian Descriptor

In order to code a 3D object, we recall that author of [START_REF] Chaouch | 3D Gaussian descriptor for 3D shape retrieval[END_REF] proposed the partitioning of the object into N 3 cells and then the calculation for each one's center g i, j,k , i = 1...N, j = 1...N, k = 1...N. Then, the author assigned to each cell a characteristic value c i, j,k as following (Fig. 4.6):

c i, j,k = ∑ p∈T A p exp -(p -g i jk ) 2 2σ 2 (4.21)
where A p is the area of the triangular associated to p. Thus, the 3D object is codified with c i, j,k .

Our goal is now to adapt the partitioning object step to the partial spherical shape of the fMRI active zones and to introduce the surface topology into the coding step. Concerning the first task (object partitioning), it is sufficient to put the active zone into a unit sphere modeled by M points g m , m = 1...M (Fig. 4.12). Then, we assign to each point of the sphere a portion t m , m = l...M of the object surface. Concerning the second task, c i, j,k is independent of the topology of the cell surface. In other words, this method treats in the same way a flat surface (Fig. An elegant way to integrate such information is the use of the Generalized Gaussian function. Fig. 4.14 shows the shape of Generalized Gaussian function with different values of the shape parameter α. This parameter α allows us to adapt our function to the topology of t m surface (Fig. 4.15). In other words, the more the t m surface is flat the more α is great. The shape parameter α for each t m portion is estimated using the Maximum Likelihood (ML) algorithm.

The 3DGG descriptor c GG (m), m = 1...M (Fig. 4.12), is given by: 

c GG (m) = ∑ p∈t m A p exp [-(η(α m )|p m -g m |) α m ] (4.22)

Gaussian descriptor

Gaussian descriptor where t)dt and g m is the point belonging to the unit sphere and associated to t m .

η(α m ) = Γ(3/α m ) σ 2 Γ(1/α m ) 1 2 , Γ(α) = ∞ 0 t α-1 exp(-
To compare two objects O 1 and O 2 , we firstly calculate for each one the 3DGGD

c 1 = [c 1 GG (m)] m∈M and c 2 = [c 2 GG (m)] m∈M .
The similarity can be calculated using the euclidian distance as follows:

∆(O 1 , O 2 ) = d(c 1 , c 2 ) (4.23)
In order to be less sensitive to small displacements or minor geometric variations, we introduce a new similarity measure that minimizes the distance between adjacent pairs of components:

∆(O 1 , O 2 ) = 1 M M ∑ m=1 min (c 1 GG (m) -c 2 GG (m)) 2 (c 1 GG (m) -c 2 GG (m ′ )) 2 , m ′ ∈ V m
where V m is the 1-order neighborhood of the descriptor c 2 GG (m). An overview diagram of the proposed active zones coding and similarity measurement chain is presented in Fig. 4.16.

Active zone coding and similarity measurement validation

In this part, we provide some 3D object coding and similarity measurement results obtained with the proposed method. As for the alignment method validation, this method was applied on partial 3D objects designed to fit the characteristics of the active zones as well as on some real fMRI images. More results on real active zones are presented in chapter 6. In order to emphasize the benefit of the proposed method and particularly the use of the Generalized Gaussian function to model the surface topology, we have compared our algorithm to (3DGD) method [START_REF] Chaouch | 3D Gaussian descriptor for 3D shape retrieval[END_REF] and the Shape histogram method [Ankerst99]. The goal of these experiments is to assess the performance of the proposed coding and similarity measurement scheme. To construct our toy data set, we firstly generated five partial Table 4.2: The average recall(%) and precision(%) obtained with: our coding and similarity measurement method 3DGGD, the 3DGD method, the shape histogram method on different simulated datasets.

spheres, PS i i = 1...5, by removing 55%, 60%, 65%, 70% and 75% of an entire sphere S o . Each PS i is then partitioned into M = 20 portions. From each PS i , we generate nineteen other partial spheres PS i j , j = 1...10 by only modifying three portions of PS i surface. Finally, from each PS i j we generate fifty other 3D object by adding a Gaussian noise such that the PSNR ∈ [10dB, 20dB]. At the end, we obtain five datasets. Each dataset contains one thousand 3D objects. These simulated datasets allow us to evaluate the performance of the method in difficult cases such as the capacity to discriminate objects with minor changes (only three surface portions) and its robustness to different values of Peak Signal to Noise Ratio PSNR. Note that we have opted for the 3D triangular mesh representation for all artificial toys. For the performance assessment, we retained the same recall and the precision measurements as the metabolite identification validation.

Figure .4.17 shows some simulated 3D objects. The object coding and similarity measurement results for each data set are presented in Table 4.2. First, as one can see, the proposed method performs the best coding and similarity measurement results compared to the 3DGD and the Shape histogram methods which do not take into account the surface topology information. Secondly, the recall and the precision measurements are still close to 90% for all datasets which proves that the proposed method is well adapted to this type of 3D objects (partial spherical object). Figure . 4.18 shows an example of two simulated 3D objects wrongly assigned with the 3DGD method. As one can see, it is very difficult to visually observe the differences. Note that these two objects were correctly indexed by our method. Figure . 4.19 shows an example of real active zones assignment.

Conclusion

In this chapter, we presented two new object coding and similarity measurement methods. The first method, dedicated to the 2D HSQC spectrum metabolite identification, is based on the use of the fuzzy set theory to deal with the ambiguity which is in the heart of such an identification task. The use of the metabolite likelihood measure as metabolite signature has increased the robustness of the proposed identification scheme with comparison to the SVM and the threshold methods which do not take into account the a priori knowledge. In the other hand, the second method, dedicated to the fMRI active zone object, relies on the Partition-Space approach. This approach allows us to code different objects into an appropriate description and to calculate the similarity between two objects. In order to integrate the surface topology information into the coding and similarity measurement scheme, we proposed a new descriptor: the 3D Generalized Gaussian Descriptor (3DGGD). The synthetic validation of the proposed active zone coding and similarity measurement scheme has shown that the modeling of the surface topology has increased the robustness of the proposed coding and similarity measurement scheme with comparison to the 3DGD method which does not take into consideration this a priori knowledge. 
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Introduction

The Object classification is the third step in the proposed object indexing scheme (Fig. 2.15). This step aims at comparing a request (individual/group of medical signal) to defined groups belonging to the available database (e.g, healthy group or pathological group) for change detection. Indeed, detecting the changes between groups is equivalent to discriminating the data into two classes: changed and unchanged (or unimportant changed) data classes (the later will be the class of interest in the following). In this case, the corresponding classifier is know a one-class classifier (target class and reject class). The classification method may either be supervised due to the difficulty of the task or unsupervised but the cost is sometimes a loss of robustness and/or higher computing time. In the supervised case, the process requires to be able to access to a ground truth in order to derive a suitable training set for the learning process of the classifiers. However, the ground truth is usually difficult and expensive to find (which is unfortunately our case) . Consequently, the use of unsupervised change-detection methods is crucial in many applications where ground truth is out of reach.

Among all object classification/change detection methods, we pay attention in this thesis to the kernel based classification methods. Indeed, the kernel-based methods offer several advantages compared to other approaches: they reduce the curse of high dimensionality in data and increase the reliability and the robustness of the method to a high level of noise [START_REF] Li | Support vector machine for structural reliability analysis[END_REF]. In this chapter, we present in section 5.1, a brief overview of the object kernel-based methods. In section 5.2, we propose a new kernel function which combines the characteristics of basic kernel functions with new information about features distribution and then dependency between samples. This kernel function is then used to map the data into a high dimensional features space where an hypersphere encloses most patterns belonging to the "unchanged" class. The dependency between samples will be based on copulas theory that will be used for the first time to our knowledge in the support vector data description (SVDD) framework. In section 5.3, we pay a particular attention to check that the proposed kernel function is robust with higher performance compared to classic Support Vector Machine (SVM) and Support Vector Data Description (SVDD) methods.

Kernel-based classifiers

In the literature, two very interesting and widely-used unsupervised change-detection methods are the Bayesian methods [START_REF] Fumera | Reject option with multiple thresholds[END_REF] and the kernel methods . Although the former approach is relatively simple, it exhibits a major drawback: it requires a large amount of knowledge about the class of interest which is not always available, particularly, in highly complex applications like the medical one [Sanchez-Hernandez07]. Moreover, when only weak changes occurred between the two considered data set, the probability density function (pdf) of the changed data may be confused with the unchanged data pdf (e.g., the Hidden Markov Model method generally tries to regularize bad classification results due to this ill-posed problem and the presence of outliers in the data [START_REF] Belghith | Segmentation of respiratory signals by evidence theory[END_REF]).

Although these drawbacks, Bayesian methods offer efficient tools to include an a priori through a posteriori pdf.

Furthermore, the kernel methods are more flexible. Indeed, the kernel-based function offers several advantages compared to other approaches: they reduce the curse of high dimensionality in data, increase the reliability and the robustness of the method to a high level of noise and allow flexible mapping between objects (inputs) represented by a feature vector and class label (outputs)[Shawe-Taylor04]. Among all these advantages, the kernel based change-detection method is not time-consuming and then allows to develop real time applications. The mainly used kernel-based methods are the Support Vector Machine (SVM) and the Support Vector Data Description (SVDD).

Support vector Machine SVM

Let {x i } i=1...K , x i ∈ R N be the vector containing the N features of a given object and {r i } i=1...K , with r i ∈ {±1}, the corresponding output of {x i } i=1...K . The SVM algorithm aims at classifying {x i } i=1...K into two classes: class of targets (i.e.; unchange or r i = +1 class) and the outliers (i.e.; change or r i = -1 class). In the supervised case, the purpose of SVM algorithm is to predict the label r i from a set of observations called training set composed by objects {x i } i=1...K with known classification results {r i } i=1...K . Thus, the problem is to find a separating function f that assigns the label 1 (respectively -1) to each object x i such that f (x i ) ≥ 0 (respectively f (x i ) < 0). The separating surface (or the separating hyperplane) is then given by the equation f (x i ) = 0.

Linear classifier

Suppose the training data

(x i , r i ) i=1...K , x i ∈ R N , r i ∈ {-1, 1}
can be separated by a hyperplane :

w T x i + b = N ∑ j=1 w j x i ( j) + b = 0 (5.1)
where w ∈ R N and b ∈ R (called the bias) are the hyperparameters of the hyperplane. We say that this set of vectors is separated by the optimal hyperplane if it is separated without error and the distance between closest vector to the hyperplane is maximal [START_REF] Vapnik | The nature of statistical learning theory[END_REF]. The separating hyperplane can be described by the following form:

r i w T x i + b ≥ 1, i = 1...K (5.2)
To find this hyperplane, one has to solve the following quadratic programming problem:

min w 1 2 w T w (5.3)
subject to constraints (Eq. 5.2). This is a classical optimization problem with inequality constraints. Such an optimization problem can be solved by the saddle point of the Lagrange function [START_REF] Vapnik | The nature of statistical learning theory[END_REF]:

L(w, b, α) = w T w 2 - K ∑ i=1 α i r i w T x i + b -1 (5.4)
where α ≥ 0 is the Lagrange multipliers. To find this point, one has to minimize this function over w and b and to maximize it over the Lagrange multipliers α ≥ 0. At the saddle point, the solution (w * , b * , α * ), should satisfy the condition:

∂L(w * , b * , α * ) ∂w = 0 (5.5) ∂L(w * , b * , α * ) ∂b = 0 (5.6)
Rewriting theses equations, one obtains the following properties of the optimal hyperplane:

1. The coefficient α * for the optimal hyperplane should satisfy the constraints:

K ∑ i=1 α * i r i = 0 α * ≥ 0 (5.7)
2. w * is a linear combination of the vectors of the training set:

w * = K ∑ i=1 α * i r i x i (5.8)
3. Only the so-called Support Vectors (SV) can have nonzero coefficients α i * in the expansion of w * . The support vectors are the vectors for which in inequality (Eq. 5.2), equality is achieved.

w * = ∑ i∈SV α * i r i x i (5.9)
This fact follows from the classical Kuhn-Tucker theorem, according to which necessary and sufficient conditions for optimal hyperplane are that the separating hyperplane satisfies the conditions [START_REF] Vapnik | Statistical learning theory[END_REF]:

α * i r i (w * ) T x i + b * -1 = 0 i = 1...K (5.10)
Putting (Eq.5.8) into (Eq.5.4) and taking into account the Kuhn-Tucker conditions, one obtains the functional:

W (α) = K ∑ i=1 α i - 1 2 K ∑ i, j=1 r i r j α i α j x T i x j (5.11)
It remains to maximize this functional in the nonnegative quadrant α i ≥ 0 and under the constraint:

K ∑ i=1 α i r i = 0 (5.12)
This can be achieved by the use of standard quadratic programming methods [START_REF] Bazaraa | Nonlinear programming: theory and algorithms[END_REF].

Let the vector α * = (α * 1 , ..., α * K ) be the solution to this quadratic optimization problem. The separating function function f is given by:

f (x) = sign ∑ i∈SV α * i r i x T x i + b * (5.13)
where sign(.) is the sign function and

b * = r i -w * T x s (5.14)
where x s is a given support vector.

Non-linear classifier

In the previous paragraph, patterns belonging to the training set are assumed to be linearly separable with a plane separating surface. However, the assumption of linear separability case is too restrictive for many particular applications, especially when data are noisy. The optimal margin algorithm is generalized [START_REF] Cortes | Support-vector networks[END_REF] to nonseparable problems by the introduction of non-negative slack variables denoted by ζ i,i∈{1,...,K} ≥ 0 in the statement of the optimization problem (Fig. 5.1).

The changed objective functional with penalty parameter C (a regularization parameter that controls the trade-off between the marge w and the number of learning errors) is:

w T w 2 +C K ∑ i=1 ζ i (5.15)
subject to the inequality constraints:

r i w T x i + b ≥ 1 -ζ i , i = 1...K, ξ i ≥ 0 (5.16)
In analogy with what was done for the separable case, the use of the Lagrange multipliers leads do the following optimization problem: Maximize

W (α) = K ∑ i=1 α i - 1 2 K ∑ i, j=1
r i r j α i α j x T i x j (5.17) subject to:

K ∑ i=1 α i r i = 0 and 0 ≤ α i ≤ C (5.18)
As one can remark, the only difference from the separable case is that now the α i have an upper bound of C. However, even with the introduction of the slack variables ζ i , the training set may require a decision surface more complicated than a simple linear hyperplane. To take into account non-linear separator, the linear SVM can be generalized by the introduction of the kernel functions (Fig. 5.2) [START_REF] Boser | A training algorithm for optimal margin classifiers[END_REF]. Indeed, the kernel function allows the mapping of data set defined over the input I into a higher dimensional Hilbert space H (feature space) where the patterns are assumed to be linearly separated. The mapping function is denoted by ϕ : X → H. If a given algorithm can be expressed in the form of dot products in the input space, its non-linear kernel version only needs the dot products among mapped samples. Kernel methods compute the similarity between training samples using pairwise inner products between mapped samples [START_REF] Halmos | A hilbert space problem book[END_REF]. The bottleneck for any method based on kernel function is the proper definition of a kernel function that accurately reflects the similarity among samples. In the early years of kernel machine learning research, researchers considered kernels satisfying the conditions of Mercer's theorem (e.g., [START_REF] Rousseau | Nonlinear estimation from quantized signals : quantizer optimization and stochastic resonance[END_REF]).

Definition 1 Let X be a closed set of R N . A symmetric function K : X × X → R which for all g(.) ∈ L 2 (X ) (square integrable function): X X K (x, y)g(x)g(y)dxdy ≥ 0 (5.19)
is said to be a Mercer kernel [START_REF] Minh | Mercer's theorem, feature maps, and smoothing[END_REF].

In [START_REF] Hofmann | Kernel methods in machine learning[END_REF], authors show that the positive definite kernels are the right class of kernels to consider.

Definition 2 Let X be a nonempty set R N . A symmetric function K : X × X → R which for all x i ∈ X and real numbers a i ∈ R:

∑ i j a i a j K (x i , x j ) ≥ 0 (5.20)
is said to be a positive definite kernel [START_REF] Minh | Mercer's theorem, feature maps, and smoothing[END_REF].

The most common used kernel are:

• the linear kernel K (x i , x j ) = x i T x j , • the polynomial kernel K (x i , x j ) = (x i T x j + 1) d , d > 0 • the Radial Basis Function (RBF), K (x i , x j ) = exp(-(x i -x j ) T (x i -x j )/2σ 2 ), σ > 0
Once a valid kernel K has been chosen, to find the coefficient α i in the separable case (analogously in the non-separable case) it is sufficient to: maximize

W (α) = K ∑ i=1 α i - 1 2 K ∑ i, j=1 r i r j α i α j K (x i , x j )
(5.21) with α i ≥ 0 and under the constraint:

∑ i α i r i = 0 (5.22)
and the decision function is 

f (x) = sign K ∑ i=1 α * i r i K (x i , x j ) + b * (5.23) -6 -5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2 Feature 1

Support Vector Data Description SVDD

The aim of SVDD classifier method consists in mapping the data into a high dimensional feature space. In this new space, an hypersphere enclosing most of the data set belonging to the class of interest (target class corresponding to unchanged data) and rejecting the other observations (that will be considered like outliers) is defined (Fig. 5.3) [START_REF] Tax | Support vector data description[END_REF]. This amounts to draw a minimum volume hypersphere in the kernel feature space that includes all or most of the target objects which are available in the training set. By analogy with the SVM problem (which consists in estimating the hyperparameters of the hyperplane (w, b), the sphere is characterized by its center a and its radius R > 0. Thus, the problem is to find a decision function f that assigns the label 1 (respectively -1) to each object

x i such that f (x i ) ≤ R (respectively f (x i ) > R).
In the following the target objects are enumerated by indices i and j. Thus, minimizing the volume of the sphere returns to minimizing R 2 with the constraints [START_REF] Tax | Support vector data description[END_REF]:

(x i -a) T (x i -a) ≤ R 2 ∀i (5.24)
To allow the possibility of outliers in the training set, the distance from x i to the center a should not be strictly smaller than R 2 , but larger distances should be penalized. Therefore we introduce slack variables ζ i ≥ 0 and the minimization problem changes into:

min R,a,ζ i R 2 +C ∑ i ζ i (5.25)
with constraints that almost all objects belonging to the target class are within the sphere:

(x i -a) T (x i -a) ≤ R 2 + ζ i ∀i, ζ i ≥ 0 (5.26)
As for the SVM case, the saddle point of the primal Lagrangian L(R, a,

ζ i , α i , γ i ) [Tax04]: L(R, a, ζ i , α i , γ i ) = R 2 +C ∑ i ξ i -∑ i α i R 2 + ξ i -x i T x i -2a T x i + a T a -∑ i γ i ξ i (5.27)
where α i ≥ 0 and γ i ≥ 0 are the Lagrangian multipliers. Again, one should find an optimal saddle point (R * , a * , ζ * , α * , γ * ) by minimizing L with respect to (a, R, ζ) and maximizing L with respect to non-negative (α, γ). In analogy with what was done for the SVM case, a solution in dual space is found using standard conditions for an optimum of a constrained function:

∂L ∂R = 0, i.e, ∑ i α * i = 1 (5.28) ∂L ∂a = 0, i.e, a * = ∑ i α * i x i (5.29) ∂L ∂ζ i = 0, i.e, α * i + γ * i = C (5.30)
From the last equation α * i + γ * i = C and because α i ≥ 0, γ i ≥ 0, Lagrange multipliers γ i can be removed when we demand that 0 ≤ α i ≤ C. The use of the dual variables Lagrangian leads do the following optimization problem : Maximize

W (α) = ∑ i α i x i T x i -∑ i, j α i α j x T i x j (5.31) subject to: 0 ≤ α i ≤ C (5.32)
Eq.5.29 shows that the center of the sphere is a linear combination of the objects. Only the support vectors x s are needed in the description. R 2 is the distance from the center of the sphere a to (any of the support vectors on) the boundary. Support vectors which fall outside the description (α i = C) are excluded. Therefore:

R 2 = x s T x s -2 ∑ i α i x s T x i + ∑ i, j α i α j x i T x j (5.33) 
To test an object z, the distance to the center of the sphere has to be calculated. A test object z belongs to the target class when this distance is smaller or equal than the radius R:

f (z) = z T z -2 ∑ i α * i z T x i + ∑ i, j α * i α * j x i T x j ≤ R 2 (5.34)
When negative examples (objects which should be rejected) are available, they can be incorporated in the training to improve the description. In contrast with the training (target) examples which should be within the sphere, the negative examples should be outside it. This data description now differs from the normal Support Vector Classifier in the fact that the SVDD always obtains a closed boundary around one of the classes (the target class). In the following the target objects are enumerated by indices i, j and the negative examples by l, m. Again we allow for errors in both the target and the outlier set and introduce slack variables ζ i ≥ 0 and ζ l ≥ 0 and the minimization problem changes into [START_REF] Tax | Support vector data description[END_REF]:

min R,a,ζ i ,ζ l R 2 +C 1 ∑ i ζ i +C 2 ∑ l ζ l
(5.35) and the constraints

(x i -a) T (x i -a) ≤ R 2 +ζ i , (x l -a) T (x l -a) ≥ R 2 -ζ l , ζ i ≥ 0, ζ l ≥ 0, ∀i, l (5.36)
where C 1 and C 2 are two regularization parameters. The saddle point of the primal Lagrangian L(R, a,

ζ i , ζ l , α i , α l , γ i , γ l ): L(R, a, ζ i , ζ l , α i , α l , γ i , γ l ) =R 2 +C 1 ∑ i ξ i +C 2 ∑ l ξ l -∑ i γ i ξ i -∑ l γ l ξ l -∑ i α i R 2 + ξ i -x T i x i -2a T x i + a T a -∑ l α l x T l x l -2a T x l + a T a -R 2 + ξ l (5.37)
where α i ≥ 0, α l ≥ 0,γ i ≥ 0 and γ l ≥ 0 are the Lagrangian multipliers. Setting the partial derivatives of L with respect to R, a, ξ i and ξ l to zero gives the constraints:

∑ i α * i -∑ l α * l = 1 (5.38) a * = ∑ i α * i x i -∑ l α * l x l (5.39) 0 ≤ α i ≤ C 1 , 0 ≤ α l ≤ C 2 , ∀i, l (5.40)
The use of the Lagrange multipliers leads do the following optimization problem [Tax04]: Maximize

W (α i , α l ) = ∑ i α i x i T x i -∑ l α l x l T x l -∑ i, j α i α j x T i x j -∑ l,m α l α m x T l x m + 2 ∑ l, j
α j α l x T j x l (5.41) subject to:

0 ≤ α i ≤ C 1 , 0 ≤ α l ≤ C 2 ∀i, l (5.42) 
If we define new variables α ′ n = r n α n . Note that the following the index n and q enumerate both target and outlier objects.

The SVDD with negative examples is identical to the normal SVDD. The constraints given in (Eq. 5.38) and (Eq. 5.39) change into ∑ n (α

′ n ) * = 1 and a * = ∑ n (α ′ n ) *
x n and again the testing function Eq.5.34 can be used.

Once a valid kernel K has been chosen, to find the coefficient α i in the positive case (analogously in the positive and negative case) it is sufficient to: maximize

W (α) = ∑ i α i K (x i , x i ) -∑ i, j α i α j K (x i , x j )
(5.43) subject to:

0 ≤ α i ≤ C (5.44) -6 -4 -2 0 2 -6 -4 -2 0 2 Feature 1
Feature 2 outlier target The new testing function is expressed as:

f (z) = K (z, z) -2 ∑ i α * i K (z, x i ) + ∑ i, j α * i α * j K (x i , x j ) ≤ R 2
(5.45)

For the case with negative examples, the testing function is expressed as:

f (z) = K (z, z) -2 ∑ n (α ′ n ) * K (z, x n ) + ∑ n,q (α ′ n ) * (α ′ q ) * K (x n , x q ) ≤ R 2
(5.46)

Support Vector Data Description including Dependency Hypothesis

The change-detection/classification problem is tackled in an unsupervised way using the kernel-based approach. However, the main bottleneck of kernel methods is the choice of the kernel function which depends strongly of the application [START_REF] Scholkopf | Support vector method for novelty detection[END_REF]. Although the basic kernel functions are more or less successfully applied for change-detection, they do not exploit additional constraints often available, such as the dependency and the distribution of different features. We particularly show that the change-detection should be more robust, more accurate and more efficient if such information is integrated and correctly modeled within the change-detection method. In order to take into account these characteristics in our change-detection scheme, we propose the new kernel function which combines the old kernel functions with a new information about features distribution and dependency. The challenge is then to find the appropriate way to handle this dependency.

To this end, we have opted for the copula theory which has proved its effectiveness to handle dependency [START_REF] Joe | Multivariate models and dependence concepts[END_REF]. Several studies show the effectiveness of the SVDD method to detect changes [START_REF] Yang | A framework for adaptive anomaly detection based on support vector data description[END_REF]. Indeed, in the case with few available labeled information, purely supervised approaches like SVMs yield poor solutions since there is no information on the change class. Contrarily, SVDD offers very good results since the method tries to model the 'unchange' class accurately rather than building a separating hyperplane 'change'/'unchange' . For this reason we opt for the SVDD method. Moreover, we show that the use of the new kernel function increases the performance of the change-detection compared to the basic kernel functions. The proposed method is denoted SV3DH (SV3DH is the acronym for Support Vector Data Description including Dependency Hypothesis).

Copula kernel function

The proposed kernel function

We remind that we seek to blindly classify the data into two classes: class of targets (i.e.; unchange) and the outliers using the SVDD method. In this part we define the proposed kernel function. Our aim is then to properly model and integrate both the dependency and the distribution of different features in the kernel function to reach a more accurate change-detection result. The new kernel function should combine the old kernel functions (in our case the RBF function which offers some freedom degree thanks to the hyperparameter σ) with a new information about correlated features distribution. To this end, we propose a simple, yet powerful, kernel function based on the copula theory.

Several studies show the effectiveness of the Gaussian copula c G to handle dependency [START_REF] Joe | Multivariate models and dependence concepts[END_REF] and we adopt this one:

∀ y = (y 1 , • • • , y L ) ∈ IR L , c G (y) = |Γ| -1 2 exp - ỹT (Γ -1 -I)ỹ 2 (5.47)
where ỹ = (Φ -1 (y 1 ), • • • , Φ -1 (y L )) T with Φ(.) the standard Gaussian cumulative distribution, Γ is the inter-data correlation matrix and I the L × L identity matrix.

The proposed kernel function is given by:

K (x i , x j ) = C G (x i , x j ). exp(-(x i -x j ) T (x i -x j )/2σ 2 ) σ > 0 (5.48) where C G (x i , x j ) = ( 1 N ∑ N k=1 c G (x i (k), x j (k))
and N is the length of the vector x i and x j . Simply expressed, the more the couple (x i , x j ) is dependent the more C G (x i , x j ) is close to 1. The hyperparameters of the copula function are estimated with the Maximum Likelihood (ML) procedure. Since the new kernel is the sum and the product of positive definite kernels, it is a positive definite kernel as well [START_REF] Hofmann | Kernel methods in machine learning[END_REF].

The SV3DH algorithm

The proposed scheme is based on two steps: 1) an initialization step 2) the SV3DH core algorithm.

Fuzzy K-means initialization

The first step of the proposed change-detection scheme is to identify two classes: the class of targets and the class of outliers which are required to initialize the SVDD classifier. In order to address the gradual transition between both classes, we apply the fuzzy Kmeans method [START_REF] Duda | Pattern classification[END_REF] to extract classes. To estimate the membership function defining the membership degree of an element to the class of targets, we used an S-membership function.

Let µ be the estimated membership of an object to the target class. At the end of this K-means-based initialization step, we get two hard classes and two fuzzy classes: 1) Hard class of target population: µ = 1 denoted C ht , 2) Fuzzy class of target population: µ > 0.5 denoted C f t , 3) Fuzzy class of outlier population: 0 < µ ≤ 0.5 denoted C f o and 4) Hard class of outlier population: µ = 0 denoted C ho . This result will be used for initializing the SVDD algorithm.

The SV3DH core algorithm

The second step aims at describing the target class by exploiting the information present in the target and outlier sets defined in the initialization step (we use the SVDD with positive and negative patterns). For this, we replaced the kernel function in Eq. 5.46 by the proposed one. The leave-one-out cross-validation estimator was used to estimate our model hyperparameters [START_REF] Cawley | Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers[END_REF]. This algorithm, often cited as being highly attractive for the purposes of model selection, provides an almost unbiased estimate.

Experiments

In this section, we present the experimental results obtained with the proposed method on synthetic on real dataset which have been introduced in [Ratsch01] as a benchmark collection. The advantage of this collection is that the ground truth is available. Unfortunately, since no ground truth is available for 2D HSQC spectra, only a comparison between results obtained with the proposed method on 2D HSQC spectra and results obtained on 1D spectra (both 1D and 2D spectra are obtained from the same biopsy) is presented in chapter 6.

Let us start with artificial toys problem to demonstrate the effects of different algorithm initialization strategies. For this, we have generated three artificial toys. Samples (x, y) ∈ R 10 × ±1 are drown as follows: first we fix a label y with equal probability, then:

1. Database 1: we set x i = g i + z i for i ∈ 1, ..., 5 and x i = z i , where the z i ∼ N (0, 1) are standard normal distribution and g i ∼ G (1 + y i /4, 1) are the Gamma distribution where its expression is given by Eq.5.49. For both z i and g i , the dependency of samples is 0.5.

G (g i , α, β) = k (α-1) β α Γ(α) exp (-βg i ) g i > 0 (5.49)
2. Database 2: we set x i = g i + z i for i ∈ 1, ..., 5 and x i = z i , where the z i ∼ N (0, 1) are standard normally distribution and g i ∼ GG(α, σ, µ) (σ = 1, µ = y i ) are the Generalized Gaussian distribution where its expression is given by Eq.5.50. For both z i and g i , the dependency of samples is 0.5.

GG(g

i ; α, σ, µ) = η(α)α [2Γ(1/α)] exp [-(η(α)|g i -µ|) α ] (5.50) where η(α) = Γ(3/α) σ 2 Γ(1/α) 1 2 , Γ(α) = ∞ 0 t α-1 exp -t dt
and µ, σ, α the mean, standard deviation and shape parameter.

3. Database 3: we set x i = y i /2 + z i for i ∈ 1, ..., 5 and x i = z i , where the z i ∼ N (0, 1) are standard normally distribution. For z i , the dependency of samples is 0.5. Thus, all coordinates are noisy, and only the first five coordinates carry task relevant information. We draw 5000 examples which were split into 50 partitions. In order to emphasize the benefit of the proposed initialization algorithm and particularly the use of the fuzzy k-means, three different methods were used to initialize the SV3DH: the proposed method, the k-means method and the Maximum likelihood method. The results of validation on synthetic databases are summarized in Table . 5.1. As one can see, our method performed the best. This means that our initialization algorithm is well adapted to the proposed change detection method. initialization database1 database 2 database 3 fuzzy k-means 4.49 ± 0.45 4.52 ± 0.68 3.52 ± 0.48 k-means 5.39 ± 0.88 5.98 ± 0.82 4.99 ± 0.57 ML 5.12 ± 0.82 5.69 ± 0.71 4.74 ± 0.51 Table 5.1: SV3DH averaged classification error in % and the standard deviation on synthetic data sets obtained with different initialization algorithms.

Moreover, and in order to evaluate the performance of the proposed algorithm on real datasets, we considered two multitemporal remote sensing image data sets acquired from a geographical area of Alaska and Philadelphia which are available from [lsiml]. The first database (Alaska image) contains a high resolution (1305 x 1520 pixels) set of multispectral images collected on a geographical area of Alaska. These images were acquired by Landsat-5 Thematic Mapper (TM) on July 22, 1985 and July 13, 2005, respectively. An area with 1024 x 1024 pixels is selected for experiments. The Landsat-5 TM provides optical imageries using seven spectral bands, Bands 1-7. The instrument's pixel resolution is 30 m. The ground truth of the change detection maps is available in [lsiml].

The second database (Philadelphia image) contains a high resolution (2000 x 2000 pixels) set of multispectral images collected on a geographical area of Philadelphia. These images were acquired by Landsat-5 Thematic Mapper (TM) on June 28, 1988 and a Landsat-7 Enhanced Thematic Mapper (ETM+) on September 23, 1999, respectively. As the Landsat-5, the Landsat-7 provides optical imageries using seven spectral bands. An area with 1024 x 1024 pixels is selected from Philadelphia image for experiments. Pixel size for all bands is 28.5 m. This includes the Landsat 7 ETM+ thermal band which has been resampled from its 57 m resolution and the Landsat 5 TM thermal band which has been resampled from its 114 m resolution. The ground truth of the change detection maps is available in [lsiml].

For multitemporal change detection, we consider the multispectral difference image I δ = I2 -I1 on 7 spectral bands. Therefore the high dimensional information present in the multispectral difference image is considered to improve the change detection accuracy. Fig. 5.4 (resp Fig. 5.5) displays the feature distribution of the unchanged class (gray) and changed class (dark) pixels in the 2-dimensional I δ Alaska image (resp Philadelphia image) according to the available ground truth map. As one can seen from Fig. 5.5, the change detection problem on Philadelphia image is quite more complex than that on Alaska image, as the target and outlier classes are significantly overlapped.

In order to perform the change detection evaluation, we use the False Alarm PFA, the Miss Detection PMD and the Total Error PTE measurements computed in percentage and defined by:

PFA = FA N F × 100%; PMD = MD N M × 100%; PT E = MD+FA N M +N F × 100%
where FA stands for the number of unchanged pixels that were incorrectly determined as changed ones, N F the total number of unchanged pixels, MD the number of changed pixels that were mistakenly detected as unchanged ones, N M the total number of changed pixels.

Tab. 5.2 presents the false detection, missed detection and total errors on both databases resulting from:

• The proposed SV3DH method initialized with the fuzzy K-means algorithm,

• The SVM method with the proposed copula kernel function (SVM with Dependance Handling SVMDH) initialized with the fuzzy K-means algorithm,

• The proposed method trained using only positive examples (SV3DH+) initialized with the fuzzy K-means algorithm,

• The proposed method initialized with the k-means algorithm (hard-SV3DH),

• The SVDD with the RBF kernel function trained using positive and negative examples (SVDD) and initialized with the fuzzy K-means algorithm, 5.2: False detection, missed detection and total errors resulting from: the proposed method SV3DH, the SVM method with the proposed copula kernel function SVMDH, the proposed method trained using only positive examples SV3DH+, the proposed method initialized with the k-means algorithm, the SVDD trained using positive and negative examples (SVDD), the SVDD trained using only positive examples (SVDD+) and the SVM method.

• The SVDD with the RBF kernel function trained using only positive examples (SVDD+) and initialized with the fuzzy K-means algorithm,

• The SVM with the RBF kernel function methods initialized with the fuzzy K-means algorithm,.

As one can remark, the SV3DH and the SVMDH perform similar results. That means that the proposed kernel function improves the features discrimination for both standard SVDD and SVM methods. Moreover, the fuzzy k-means initialization allows us to obtain a better results than a k-means initialization particularly in the high uncertainty situation (Philadelphia image). Indeed, we obtained 8.34 % of total error with the fuzzy initialization while the k-means initialization lead to 10.35 % of total errors.

In order to emphasize the benefit of the Gaussian copula for features dependency handling, we have compared the feature fit goodness of the proposed copula with five other copula functions: the t-student copula [START_REF] Demarta | The t copula and related copulas[END_REF], the Farlie-Gumbel-Morgenstern (FGM) copula [START_REF] Cossette | On the compound Poisson risk model with dependence based on a generalized Farlie-Gumbel-Morgenstern copula[END_REF], the Gumbel copula, the Frank copula and finally the Clayton copula functions [START_REF] Rodriguez | Measuring financial contagion: A copula approach[END_REF]. To this end, we used the copula goodness-of-fit measurement approach proposed in [START_REF] Genest | Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models[END_REF]. This approach consists in measuring the discrete Alaska image Philadelphia image Gaussian 5.12 10 -3 4.02 10 -3 t-student 5.48 10 -3 4.19 10 -3 FGM 5.91 10 -3 4.61 10 -3 Clayton 6.85 10 -3 5.17 10 -3 Frank 5.57 10 -3 4.28 10 -3 Gumbel 6.11 10 -3 4.97 10 -3

Table 5.3: The L 2 norm for different copula types with the empirical copula.

L 2 norm between a set of copulas and the empirical copula and then select the one with the minimum difference. We have applied this approach and the real databases. Results are presented in Tab. 5.3. As on can remark, Gaussian copula seems to be the one which better approximates the empirical copula.

Conclusion

In this chapter, the third step step in the indexing scheme is tackled. Indeed, the SV3DH method for unsupervised change-detection/classification based on SVDD has been proposed. This method could be used either for assigning a new query to the appropriate profile defined in the off-line phase (classification) or for detecting changes between two medical signal groups (change detection). We particularly focus on the formulation of change problem as a minimum enclosing ball problem with unchanged samples as target objects. The use of the dependency measurement for the first time to our knowledge in the SVDD framework increases the robustness of the proposed change-detection scheme with comparison to the classical SVM and SVDD methods. Of course, any performance gain depends on the quality of the prior samples distribution, which amounts to the quality of chosen distributions and consequently, the copula theory was used. Indeed, it provides tools to model samples dependency even if their distribution does not follow a gaussian law (HSQC spectrum peaks and fMRI object surface). Experimental results clearly indicate the benefit of the proposed method. Different applications of the proposed method on real HSQC spectra are presented in the next chapter.

Introduction

This chapter aims at experimentally validating the proposed treatment framework on real HSQC spectra and fMRI images. All comments, suggestions and conclusions presented in this chapter are the result of analysis conducted in conjunction with experts in the field of NMR: Pr. Karim Elbayed from Institut de Chimie, University of strasbourg and Pr Izzie Jacques Namer from Department of Biophysics and Nuclear Medicine, University Hospitals of Strasbourg and in the field of fMRI images: Dr Jacques Foucher from Clinique psychiatrique, University Hospitals of Strasbourg.

In section 6.1, we describe first the HSQC database used to perform the experiments. The second part details the complete scheme for HSQC spectrum processing. Finally, the experimental validation of the proposed approaches is presented and discussed.

After describing the real data involved in the fMRI validation and the way they have been reconstructed from the raw data, we details in the second part of section 6.2 the complete scheme for fMRI image analysis. Finally, the experimental results obtained with the proposed approaches is presented.

Finally, some conclusions are drawn based on the validation results in section 6.3.

HSQC spectrum Experiments

HSQC spectra data sets

Our data base contains two datasets: dataset1 and dataset2. The first one is dedicated to the Multiple Sclerosis (MS) pathology of central nerve system (c.f, Fig. 6.1). Note that we have used the Experimental Autoimmune Encephalomyelitis (EAE) as a model of multiple sclerosis pathology. Dataset2 is dedicated to the colon cancer pathology. A detailed description of the database is given in Tab.6.1.

The 2D HSQC spectra were recorded on a Bruker Avance III 500 spectrometer operating at a proton frequency of 500.13 MHz. This instrument is installed at the Hautepierre University Hospital in Strasbourg and is dedicated to the analysis of biopsies by HR-MAS. It is operated by qualified scientific and medical personnel in the context of the CARMeN project. Indeed, the CARMeN project (Cancer RMN) is a consortium that gathers Strasbourg University Hospitals, Strasbourg University, CNRS, INSERM and Bruker BioSpin. It was labeled on December 20th 2006 by the Pole of Competitiveness «Therapeutic Innovations» of the Alsace region. This project aimed at creating a metabolic database in cancer research using the metabolic phenotype of tumors to identify high risk cancers and to develop personalized treatments.

The used corpus contains 45 referenced metabolites given by the physicians. Tab.6.2 displays different metabolites present in the corpus as well as the chemical shifts of their peaks in ppm. Note that for privacy concerns, the decimal digits of the chemical shift of hydrogen 1 H and the carbon 13 C are not provided. Table 6.2: Different metabolites present in the used corpus as well as the hydrogen chemical shifts 1 H and the carbon chemical shift 13 C of their peaks in ppm.

Before applying the treatment chain, a manual calibration of spectra using a peak reference (the lactate which is presented in bold in Tab. 6.2) with well known location (22.7ppm for carbon 13 C axis and 1.33ppm for proton 1 H axis) is performed. Then all the HSQC spectrum intensities are divided by their biopsies masses.

Treatment framework

We recall that our indexing scheme is composed of an off-line step which consists in establishing the profile of each diseases and then an on-line step which aims at assigning a new individual/group to a pathologic/healthy profile.

In the case of the HSQC spectrum analysis, the considered objects are the peaks within the spectrum. A summary of the treatment framework is presented in Fig. 6 Off-line step The first step of the indexing framework consists in detecting and aligning different peaks within spectra (an overview of the proposed method is presented in Fig. 6.3). This step requires up to 3h30 of computation time with Intel 2.66 GHz and a combination of C and matlab codes. Once this step achieved, we turn to the metabolite similarity measurement step. This step consists in identifying different metabolites in the spectra using the Once the metabolite is identified, we address the metabolite classification/change detection step. This step aims at comparing a new individual/population of spectra by identifying changed metabolites from unchanged ones. In order to achieve a more accurate metabolite change detection results, we introduce more a priori knowledge we have on the spectra into the change detection scheme. As a matter of fact, we assume that the residual spectrum image (the difference between the observed and the parameterized spectrum) is the same for all observations. Indeed, as the acquisition system is isolated from the outside environment, the characteristics of acquisition noise should be the same. Thus, any difference between two residual images is due either to errors in estimating the hyperparameters of the spectrum, to a deterioration of tissues or to a modification in biopsy features (e.g; the pH). To achieve a better change detection result, all these disturbances must be taken into account. To this end, we propose a method to compensate the estimation error within the change detection scheme (Alg.2). Finally, the overview diagram of the metabolite classification/change detection chain is described in Fig. 6.5. Note that, this step requires up to 20mn of computation time with Intel 2.66 GHz and matlab codes.

Algorithm 2 Error compensation estimation

Input: a reference spectrum Y re f , another spectrum Y as well as their parameterized (reconstructed) forms Y rec, re f and Y rec (Eq.3.1). 1-For each two assigned peaks x re f (i, j) and x(i, j) estimated from Y re f and Y (Eq.3.1) :

- In the practice, the proposed metabolite classification/change detection (SV3DH) algorithm can be used for three different uses:

1. Metabolite change detection: given two spectrum populations, we aim at detecting the changed metabolites from unchanged ones. In this case, a feature vector x M i is associated to each metabolite M i . The vector x M i consists of the peak amplitudes of the metabolite (Eq.3.1), the peak shape hyperparameters (Eq.3.2) and the peak chemical shifts (Eq.3.14). As one can remark, each metabolite is separately treated from the other ones. The first step consists in selecting a spectrum population and then estimating the hypersphere hyperparameters (a M i , R M i ) that model the profile of each metabolite M i using the SV3DH method. Then, the decision function f (Eq. 5.46) is applied to each spectrum belonging to the second population. In order to quantify the metabolite change degree denoted µ M i , we propose the use of an Smembership function f 1 (Eq.3.3). The expression of µ M i is given by:

µ M i = f 1 ( f (x M i )/R M i ) (6.2)
where (a M i , R M i ) are the hypershpere hyperparameters. Therefore, the more µ M i is close to 1 the more the metabolite M i has changed. Thus the metabolites can be ranked according to their change degrees allowing the physicians to select the relevant changed metabolites by a simple threshold and then to control the results. In order to facilitate the threshold setting, we have classified the metabolites according to the change degree into two classes: "weak change" and "high change". To this end, we used a Maximum Likelihood (ML) classifier with respect to the statistical distribution law of metabolite change degrees. For example, the estimated threshold is about 0.4 for dataset1 et 0.35 for dataset2. Note that µ M i is assumed to follow a Generalized Gaussian distribution. Moreover, as we already remarked, µ M i mainly depends on the hypersphere radius R M i (the distance from the center of the sphere a M i to any of the support vectors on the boundary and the feature vector x M i . In order to quantify our uncertainty on the metabolite change degree estimation, we assign to each µ M i a confidence margin which is equal to:

ε M i = f 1 ((e M i )/R M i ) (6.3)
where e M i consists of the difference between the estimated metabolite peak amplitudes (Eq.3.1) and the normalized peak amplitude (Eq.6.1). Therefore, the more the difference is great the more the metabolite peaks amplitude estimation is unreliable and the more ε M i is great. In the practice, the f 1 hyperparameters (a 1 , b 1 , c 1 ) are set as follows:

• a 1 = 1,

• b 1 = median ({µ M i } i=1...N /µ M i > 1)
, where N is the number of metabolites within the spectra and median(.) is the median function,

• c 1 = max ({µ M i } i=1...N /µ M i > 1).
Once all metabolite change degree for each spectrum belonging to the second population are estimated, a p-value is associated with each metabolite allowing to reject the null hypothesis H 0 (changed metabolite). Hence, computing the significance of the metabolite change over all the second population spectra amounts to compare p(µ M i > 0.1/H 0 ) with α (generally set to 10 -3 ). Thus, if p(µ M i > 0.1/H 0 ) < α the null hypothesis H 0 cannot be rejected.

2. Spectrum discrimination: given a set of spectra, we aim at discriminating two groups. In this case, a feature vector x X s is associated to each spectrum X s . The vector x X s consists of the peak amplitudes of the spectra (Eq.3.1). As one can remark, all metabolites are conjointly treated. Note that in spectrum discrimination case, the SV3DH method allows us to directly obtain the discrimination results and no statistical test is required.

3. Spectrum classification: given several spectrum populations P kk>1 , we aim at classifying a new spectrum X . As the spectrum discrimination case, the feature vector contains all the spectrum peaks. The first step consists in estimating the hypershpere hyperparameters (a P k , R P k ) modeling the profile of each population P k (or the class profile) using the SV3DH method. Then, the decision function is applied to the new spectrum X which will be assigned to the population with the lowest ( f (x X )/R P k ) value.

Results on real spectra

The results obtained by the proposed methods on real HSQC spectra are presented in two parts. In the first one, we focus on some case studies in order to emphasize the benefit of the proposed schemes and particularly the use of the deconvolution model for peaks detection and the use of fuzzy set theory to deal with the ambiguity which is in the heart of the metabolite identification task. In the second part, some metabolite change detection results and a comparison with results obtained with 1D spectra are presented.

Metabolite identification results

The first step in the HSQC spectrum analysis is the peak detection. This task is very important since all the rest of the processing chain depends on it. Indeed, a poor peak detection can cause the fail of the framework. For this reason we have paid an important attention to this task. We recall that the proposed peak detection algorithm relies on the deconvolution model to achieve a better fit of the HSQC spectrum (Eq.3.1) which allows us to overcome the problem of peak overlap. For example, Fig. 6.6.(a) shows two peaks that can be easily detected without a deconvolution step. However, in some cases ( e.g Fig. 6.6.(b)) two peaks could be overlapped and then a manual peak extraction seems to be a difficult task. Thus, the peak deconvolution allows us to overcome such problem.

However, the problem of peak overlap is unfortunately not the single one to be addressed to automatic the peak analysis process. In fact, the high complexity of this type of spectra brought by the noise and the artifacts make the detection task more delicate and difficult [START_REF] Becker | High resolution NMR: theory and chemical applications[END_REF]. Indeed, due to experimental conditions, correlated vertical lines appear sometimes in the observed spectrum [START_REF] Becker | High resolution NMR: theory and chemical applications[END_REF]. In order to overcome this problem, we proposed the use of the multivariate Gaussian distribution to model the noise correlation. We recall that the synthetic validation of the proposed approach has shown its robustness to the high level of noise (Tab.4.1). Unfortunately, the validation task on real spectra is not trivial since no ground/absolute truth is available. A manual validation by NMR experts is then required in order to assess the performances of the proposed scheme on real spectra. Note that the only available ground truth is the biological nature of the biopsies (a metabolite exists or does not exist) and hence a peak presence or absence does not have a biological sense. Therefore, our NMR experts have validated the metabolite identification results and thus explicitly the peak detection and alignment results. The validation results show that most metabolites belonging to the corpus are properly detected and identified. For example, only 3/45 metabolites were wrongly identified in the dataset2.

Metabolite change detection results

We are now faced with the problem of metabolites change detection on real HSQC HR-MAS 2D spectra. We recall that our first objective is the determination of discriminant parameters between two states of the same biological system ( e.g., two evolution stages of the same type of tumor). Indeed, the identification of metabolic fingerprint associated with specific biological states could reveal metabolic differences related to different considered groups of spectra (e.g, healthy and pathological groups of spectra). In a second step, these metabolic fingerprints (discriminants or biomarkers) should allow us to under-stand the metabolic processes associated with each treated group of spectra and then to establish the group profiles.

Metabolite change detection results on dataset1

In the following, we detail the change detection results on the dataset1 (EAE disease). Since no ground truth is available, we will compare our results with those obtained with the 1D spectrum experiments to study the result coherence (concordance). To this end, we distinguish three different experiments: the 1D experiment and the 2D HSQC experiment on the same sample. In the last one, we repeat the 1D experiment on the sample taken from the spectrometer after the 2D experiment. Indeed, due to the high time sample spinning (rotation) during the 2D HSQC experiment, the concentrations of some metabolites particularly the Ace, Ala, Asp, Cr, Cho, GABA, Glu Gly Lac, mI, NAA, Pcho and Tau may be changed [START_REF] Detour | Ultra fast in vivo microwave irradiation for enhanced metabolic stability of brain biopsy samples during HRMAS NMR analysis[END_REF].

To facilitate the result interpretations, we used a table for each configurations of EAE/Healty spectrum group comparisons (c.f, Tab 6.1). In this table, we distinguish four typefaces:

1. Normal font (e.g, Asp). In this case, the metabolite was detected as a changed metabolite only with the 2D experiment.

2. Italic font (e.g, Asp). In this case, the metabolite was detected as a changed metabolite with the 2D experiment and the first 1D experiment.

3. Bold font (e.g, Asp). In this case, the metabolite was detected as a changed metabolite with the 2D experiment and the second 1D experiment.

4. Italic bold font (e.g, Asp). In this case, the metabolite was detected as a changed metabolite with the 2D experiment, the first 1D experiment and the second 1D experiment.

Note that the metabolites detected as changed only with the first and second 1D experiment are presented in the table caption. We present likewise in the same table the metabolite concentration changes ("inc" for concentration increase and "dec" for concentration decrease) as well as the metabolite change detection degree µ M (Eq.6.2). As one can see, we identify with the 2D experiment most metabolites identified with the first and the second 1D experiment. Moreover, some metabolite like the "NAA", the "Ala" and the "Lys" were identified only with the first 1D experiment and the 2D experiment. We recall that the concentrations of these metabolites change during the 2D experiment and for this reasons they were not detected in the second 1D experiment. However, we still able to identify them as changed metabolites. This could be explained by the fact that we used in our SV3DH algorithm beside the metabolite concentration other features like the peak chemical shifts and the peak shapes for change detection. In addition, we remark that the Arg, Ile, Gly and Ser were detected as changed metabolites only with the 2D experiment. 
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Metabolite change detection results on dataset2

We address now the metabolite change detection on colon cancer HSQC spectra. Fig. 6.8 (a) shows a healthy colon biopsy spectrum whereas Fig. 6.8 (b) displays a cancerous colon biopsy spectrum. The mean image of the 25 reconstructed healthy spectra (after peak detection with the MCMC procedure) is presented in Fig. 6.8 (c). Fig. 6.8 (d) displays the mean image of the 25 reconstructed cancerous spectra. As one can remark, all the spectrum noise was removed and only the relevant peaks (belonging to the corpus) were preserved allowing an easier interpretation of the spectra by physicians. Fig. 6.9 presents some metabolites change detection results on a cancerous spectrum (drawn in red arrows). As one can see, it is difficult to manually detect changed metabolites. The metabolite change detection results on dataset2 are presented in Tab.6.9. Nota that no second 1D experiment was performed in the case of the colon biopsy spectra.
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All these results for both datasets were examined and validated by NMR experts. The first conclusion that 2D experiment results confirm those obtained with 1D experiments. Secondly, the 2D experiment can be used to discriminate some spectrum populations (c.f, Tab.6.7 and Tab.6.8).

Spectrum classification results

We address now the spectrum classification validation. To this end, we used the Leave-One-Out Cross-Validation (LOOCV). Indeed, this validation involves to use a single observation from a spectrum group as the validation data (the spectrum query), and the remaining spectra as the training data (the spectrum group profiles) (c.f, Fig. 6.2). In other words, we select a spectrum form the database and we try to assign it to one of the available spectrum groups. In our case, we dispose of ten spectrum groups: the ON healthy group, the ON EAE group, the CSC healthy group, the CSC EAE group, the TSC healthy group, the TSC EAE group, the LSC healthy group, the LSC EAE group, the colon healthy group and finally the colon cancerous group (c.f, 6.1). In order to emphasize the benefits of the proposed classification method and particularly the use of the copula kernel function, we use two methods for spectrum classification: the proposed SV3DH method and the classical SVDD method with a RBF kernel function. Note that we trained both methods only with target class (c.f, Chap.5). Tab 6.10 shows the spectrum classification results. As one can remark, most of the spectra were correctly classified except the ON group. This can be explained by the high biopsy degradation during the HSQC experiments. Moreover, the proposed method performs the best comparing to the classical SVDD method. 

Spectrum discrimination results

Let's turn now to the spectrum discrimination validation. In this experiment, we try to discriminate between two groups of the same biopsy: healthy group and pathological group. We compared likewise our method to the classical SVDD and SVM methods. Tab 6.11 shows the spectrum discrimination results. As one can remark, most of the spectra were correctly discriminated. Moreover, the proposed method performs the best in all tested configurations compared to the classical SVM and SVDD methods. 1. Spatially coherent positive or negative 3D blobs, i.e. within and between slices. The component can be followed on slice series and its parts look like a 3D coherent map.

In the case of an interleaved acquisition, a signal occurring every two slices is not considered as spatially coherent.

2. The spatial distribution of the blobs overlaps on grey matter only.

3. The signal time course is in the appropriate frequency range, i.e., most of the power is below the frequency of the hemodynamic response (< 0.08 Hz), but oscillating at a higher frequency than 0.004 Hz (max. period of 2 min.).

Examples of typical SAMs are shown in Fig. 6.10.(1) to (5) (radiological convention) (1: Default Mode Network DMN; 2: verbal working memory network; 3: visuospatial working memory/attentional network; 4-5: visual networks).

Rejection criteria. To avoid artifact or noisy components, none of the following criteria should be present anywhere in the volume or the time course or represent a negligible aspect of it:

1. A spatial alternating aspect, i.e., a juxtaposition of significantly correlated and anticorrelated voxels, alternating in space and sometimes appearing like a reticule (Fig. 6.10.( 6)).

2. A spatial noisy aspect, i.e. the voxels are mildly significant and disseminated (Fig. 6.10.( 7)). For this, we add two new constraints to the objects clustering step: the object position and overlap. Thus, the more their positions are close, the more they can be assigned together.

Real results

Since the fMRI images of subjects with psychologic pathologies are not yet available, we only focus on the two first steps of the indexing scheme: the active zone alignment step and the active zone clustering step (active zone coding and similarity measurement). We have applied the proposed methods on our fMRI database. At the end of the second step, we obtained 72 fMRI object clusters.

Let us start with the object alignment validation. In order to emphasize the benefit of the alignment method and particularly the use of the partial-spherical PCA, we have compared our algorithm with the continuous PCA method [START_REF] Vranić | 3D shape descriptor based on 3D Fourier transform[END_REF] on some objects belongings to three different clusters (C1, C2 and C3). (resp C2 and C3) obtained with the continuous PCA method. As one can see, our method performs the best alignment result. Moreover, even with no pronounced partial spherical shape of the active zones (cf. Fig. 6.16), the proposed method still works well and provides better results than the continues PCA. This can be explain by the fact that the initialization step properly fit the object shape thanks to the sphere hyperparameters (r, θ, φ). For example, the more the object shape seems to a plan, the more r is great.

We address now the object clustering validation. Since no ground truth is available, the clustering results were examined by an expert. The preliminary results are promising and we are now working on a comprehensive validation of the results. Fig. 6.18 and Fig. 6.19 display four active zone clusters obtained by the proposed methods.

Conclusion

The evaluation of real cases and statistical comparisons with the results obtained by experts were used to validate the behavior of our methods on large scale datasets. We were able to obtain good or satisfactory arrangements for all considered characteristics. This study and critical analysis carried out with the experts allowed us to identify the main limitations of the algorithms on a significant number of objects and then determine a number of changes to solve most encountered problems. Below a summary of physician suggestions:

For the HSQC spectra:

• Consideration of the peak with the largest amplitude as reference to calculate the peak ratios of a given metabolite in the annotation scheme;

• Normalization of the spectra with their biopsy masses;

• Introduction of a metabolite confidence degree for each identified metabolite;

• Introduction of a change threshold to select the relevant changed metabolites.

For the fMRI images:

• Separation between fMRI objects with positive and negative intensities;

• Tightening of the fMRI object location and object overlap constraints in the clustering step; 

Conclusion and perspectives

This research work aimed at developing an approach for biomarker identification from medical signals and particularly the HSQC HR-MAS 2D NMR spectra and fMRI images. Our approach should be based on characterizations having a clear and proven physician interpretation. We have answered this problem in two steps. On the one hand, the development of a hierarchical model providing a high semantics description level of medical signals, and an access to the relevant information of the medical signal using a new global content-based object indexing and retrieval scheme. On the other hand, we are interested to properly model and integrate the a priori knowledge we have on the biological signal allowing us to propose thereafter appropriate methods to each indexing scheme step and each type of treated signals. The performances obtained by the combination of these two aspects were then evaluated on a consistent medical databases. The results were discussed in depth with physicians and we were able to show the relevance and robustness of the proposed methods.

The main contributions of this PhD are the followings:

1. A global content-based object indexing and retrieval scheme. We have imagined a strategy to adapt classical indexing scheme to biomarker identification problem, thus providing a global application framework valid for most types of medical signals. To this end, we proposed the add of a classification step to the classical indexing scheme. Indeed, the biomarker identification consists in classifying for example a group of medical signals into the healthy and the pathologic classes (e.g cancer or psychological diseases) and to detect then the differences (changes) between them.

One perspective of this development involves the introduction of an interaction module between the system and the user (a real time feedback) allowing the results control according to the physicians expectations.

2. An evidential peaks detection and alignment method. This method combined the modeling of the knowledge by means of the evidence theory and integrates the fuzzy theory to quantify the imprecision degree presented in the spectra. The handling of both imprecision and uncertainty by the evidence theory increased the robustness of the proposed alignment scheme with comparison to the Bayesian method. In addition, we have used the deconvolution model to achieve a better fit of the HSQC spectrum and the multivariate Gaussian distribution to model the noise correlation enabling method robustness to a high level of noise, one of the most delicate issues in HSQC spectra. All these developments resulted in a detection procedure and fully automatic alignment of peaks to a fully parametric representation of the observed spectra.

In this work, we used a deconvolution method for spectrum peak detection. The optimization of the problem is addressed by a classic MCMC procedure where the Gibbs algorithm was used to model hyperparameters sampling. This allowed us to take advantage of the sampler computing time rapidity. However, more sophisticated samplers can potentially be used to achieve better results like the Reversible Jump MCMC procedure [START_REF] Larocque | Reversible jump MCMC for joint detection and estimation of sources in colored noise[END_REF] allowing a variant peak number handling. Moreover, it would be particularly interesting to replace the evidence theory by the possibility theory. Indeed, possibility theory is one of the current uncertainty theories devoted to the handling of incomplete information. Basically, this theory is similar to the probability theory because it is based on set-functions but differs from the latter by the use of a pair of dual set functions called possibility and necessity measures [START_REF] Dubois | Possibility theory and statistical reasoning[END_REF].

3. An active zone alignment method. Based on the reflection symmetry, this method allows us to find the most object natural pose and align visually similar objects in the same manner. Indeed, in order to integrate our a priori knowledge and particularly the partial spherical active zone shape, we proposed a new method for spherical symmetry estimation based on the non-linear PCA to model the reflection symmetry of the cortical active zones. To calculate the spherical symmetries of the fMRI active zones, we develop previous works proposed in [START_REF] Kirby | Circular nodes in neural networks[END_REF] where authors adapt the network to the case of circular data (2D data). In a first step, we extend this work to the 3D data case (entire spherical shape) and then to the partial spherical shape which is well suited to fit the active zone shape due the human cortex shape.

In neuroimaging, it is well known that the brain is made up of three main components: white matter, gray matter and cerebral spinal fluid. Many efficient segmentation algorithms are now available and allow to precisely extract these three components. Based on such segmentation, the active zones detection algorithm may be extended to take into account the differences between these three tissue types inside the brain. Moreover, extending the proposed active zone alignment method by combining the detection and alignment steps in a joint framework would also lead to a fully automatic method exploiting the brain tissue varieties.

4.

A metabolite similarity measurement method. We have proposed the use of the fuzzy set theory to deal with the ambiguity which is in the heart of such identification task. The use of the metabolite likelihood measure as a metabolite signature has increased the robustness of the proposed identification scheme with comparison to the SVM method which does not take into account the a priori knowledge. Genetic Algorithm (GA) was employed to train the comparison model in order to calibrate the parameters in an unsupervised way.

One perspective of this development involves the use of the residual image (the image difference between the observation and the parametric spectrum representation) to compensate the estimation error within the similarity measurement scheme.

5.

A fMRI active zone coding and similarity measurement method. Inspired from the Gaussian transformation , the proposed active zone coding method is improved by using of the Generalized Gaussian transformation which is well suited to describe the surface topology of the fMRI active zones. In particular, we showed that the proposed method not only provides a compact representation of the object in its space but also a signature faithfully attached to its surface topology (flat surface or surface with reliefs). Moreover, in order to be less sensitive to small displacements or minor geometric variations, we introduced a new similarity measure.

It would be interesting to extend the method to other complex surface topology by combining the GG transformation with other transformations (e.g mixture Gaussian and mixture GG transformations).

6. A object classification/change detection method. In this method, we proposed a new SV3DH kernel function which combines the characteristics of basic kernel functions with new information about features distribution and then dependency between samples. The dependency between samples was handled based on copulas theory that is be used for the first time to our knowledge in the SVDD framework.

The proposed classification method is limited to two classes. As a matter of fact, new individual/group is classified into two classes: changed and unchanged class. This method can potentially be extended to the multi-class case allowing a multi-diseases discrimination.

Finally, the different proposed methods were validated in a first part on simulated data to demonstrate their behavior compared to existing methods. In a second part, all the results obtained on real data have been examined by experts in each domain (HR-MAS NMR spectroscopy and fMRI). This validation shows the good performance of our algorithms leading to similar results to those obtained by physicians in a short time both for the HSQC spectra (HR-MAS NMR) and fMRI images. The discussions we had with physicians convinced us of the relevance of the proposed approaches, the proximity of the parametric model with the biological model allowing a dialogue and an easy feedback between both communities. 

            b(1, j) b(2, j) . . . b(M, j)         -µ b         T Γ -1 b                 b(1, j) b(2, j) . . . b(M, j)         -µ b                  (A.2)
where (M × N) is the spectrum size. The likelihood corresponding to the data-driven term is expressed as:

p(Y /X , γ Y , θ b ) = N ∏ j=1 N (y j -x γ Y , j , θ b ) (A.3)
where y j = [y(1, j), y(2, j), ..., y(M, j)] T , x j = x γ Y , j (1), ..., x γ Y , j (i), ..., x γ Y , j (M)

T , x γ Y , j (i) = ∑ ∑ k1,k 2 x(k 1 , k 2 ) h(ik 1 , jk 2 ) and θ b = {Γ b , µ b }.

Simulation scheme

We present in this paragraph the implementation of the iterative Gibbs algorithm we used for sampling. We introduce the variables θ prior x and θ vs x which represent the parameter of the a priori probability p(X /θ prior x ) and the likelihood probability P(Y /X , θ vs x ) respectively. To sample p(X , γ, θ), at every iteration l, the main steps consist in:

1. sampling the theoretical 2D spectrum image X [l+1] from p(X /Y, θ vs x , θ prior x

) (A.4) with    θ vs x = X [l] , Γ [l]
b , γ Y [l] θ prior x = α [l] , β [l] (A.5)

where α [l] , β [l] are the hyperparameters of the Gamma distribution modeling the a priori on X . The gamma distribution is an exponential family distribution which is used for fitting non-negative data [START_REF] Hsiao | Bayesian image reconstruction for transmission tomography using deterministic annealing[END_REF]. Indeed, the shape parameters ( α [l] , β [l] ) of the Gamma distribution allow to fit spectral data that may present some sparsity and possibly a background [START_REF] Dobigeon | Bayesian separation of spectral sources under non-negativity and full additivity constraints[END_REF]. The gamma density G is expressed as: 

DS Combination

In the case of problems taking into account both uncertain and imprecise data, it should be useful to combined the information obtained from several sources in order to get more relevant information. DS theory offers tools to combine the knowledge given by different sources. The orthogonal rule also called Dempster's rule of combination is the first combination defined within the framework of evidence theory. K is often interpreted as a measure of conflict between the different sources and is introduced as a normalization factor. The larger is K, the more the sources are conflicting and the less sense has their combination. The K factor indicates the amount of evidential conflict. If K = 0, this shows a complete compatibility and if 0 < K < 1, it shows partial compatibility. Finally, the orthogonal sum does not exist when K = 1. In this case, the sources are totally contradictory, and it is no longer possible to combine them. 
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Abstract:

The medical signal acquisition techniques are constantly evolving in recent years and providing an increasing amount of data which should be then analyzed. In this context, automatic signal processing methods are regularly proposed to assist the expert in the qualitative and quantitative analysis of these images in order to facilitate their interpretation. These methods should take into account the physics of signal acquisition, the a priori we have on the signal formation and the amount of data to analyze for a more accurate and reliable interpretation. In this thesis, we focus on the two-dimensional 2D Heteronuclear Single Quantum Coherence HSQC spectra obtained by High-Resolution Magic Angle Spinning HR-MAS NMR for biological tissue analysis and the functional Magnetic Resonance Imaging fMRI images for functional brain activities analysis. Each processed medical information will be characterized by a set of objects that we seek to extract, align, and code. The clustering of these objects by measuring their similarity will allow their classification and then the identification of biomarkers. It is this global content-based object indexing and retrieval scheme that we propose. We are interested in this thesis to properly model and integrate the a priori knowledge we have on these biological signal allowing us to propose thereafter appropriate methods to each indexing step and each type of signal.

Keywords: Biomarker identification, HSQC spectra, fMRI images, indexing, object detection and alignment, object coding and similarity measurement, change detection.
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 21 Figure 1: Schéma synoptique de la méthode d'indexation proposée.
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 3 Figure 3: La chaîne d'alignement des zones actives.
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 5 Figure 5: La chaîne du codage et de mesure de similarité des zones actives.
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 6 Figure 6: Chaîne de calcification et de détection du changement.

  Pour cela, nous avons considéré une série d'images à haute résolution (1305 x 1520 pixels) recueillies sur une zone géographique de l'Alaska. Ces images sont disponibles en ligne [lsiml]. Elles ont été acquises par le satellite Landsat-5 Thematic Mapper (TM) en 22 juillet 1985 et 13 juillet 2005, respectivement. Une zone avec 1024 x 1024 pixels est sélectionnée pour les expériences. Le satellite Landsat-5 TM fournit des imageries optiques sur sept bandes spectrales (Bandes 1-7). la vérité terrain des cartes de détection des changements est disponible dans [lsiml].

  2.3.a) and the other one is anti-parallel to -→ B 0 (Fig.2.3.b).
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 23 Figure 2.3: Orientation of nuclear magnetic moments: a) in the absence b) in the presence of an external magnetic field.
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 2 Figure 2.5: Precession movement: a) of a spintop around the vertical b) of a magnetic moment around the field -→ B 0 .
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 26 Figure 2.6: The sum of magnetic moment vector -→ M . In the presence of -→ B 0 , -→ M is non-zero and directed along z (a). The application of a field -→ B 1 perpendicular to -→ B 0 causes the 90 • rotation of all the magnetic moments (b). When -→ B 1 is no longer applied, the magnetic moments return to a precession rotation around -→ B 0 , and only -→ M remains in the transverse plane (c).
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 2 Figure 2.7: (a) The NMR signal detected and (b) the spectrum obtained after Fourier transform.
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 28 Figure 2.8: The ethanol peaks.
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 2 Figure 2.9: An example of a 1D spectrum with the NMR technique in blue and the HR-MAS technique in red.

Figure 2

 2 Figure 2.11: An example of a HSQC spectrum displayed as (a) a contours plot (b) as 3D plot.
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 2 Figure 2.12: An example of fMRI acquisitions. The active zones are presented with the red color.
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 2 Figure 2.13: Superposition of the activation map on the anatomic brain image. The active zones are presented with the red color.
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 2 Figure 2.14: Overview diagram of the classical indexing scheme.
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 2 Fig. 2.15 shows the overview diagram of the proposed indexing scheme.
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 31 Figure 3.1: Overview diagram of the peak detection and alignment chain.
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 3 Figure 3.2: Example of (a) a missed peak, (b) a false peak assignment : real location in dotted arrow and estimated position in continuous arrow.
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 33 Figure 3.3: An example of the x and y projections of a missed and a detected peak (a) x-axis projection of a missed peak, (b) y-axis projection of a missed peak, (c) x-axis projection of a detected peak, (d) y-axis projection of a detected peak
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 3 Figure 3.5: The detection and alignment results on (a) a real healthy spectra (b) a real cancerous spectra.
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 3 Figure 3.6: A standard MLP network with an auto associative topology. This network is composed of 3 parts [2-1-2]. The first two layers aim at compressing the original signals P to only three components z [3] 1 , z [3] 2 and z [3]
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 3 Figure 3.7: Example of (a) an entire sphere, (b) a partial sphere.
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 13933 Figure 3.8: Overview diagram of the proposed active zones alignment chain.
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 33 Figure 3.13: Spherical symmetry reflection estimation on synthetic toys with (a) PSNR = 15dB, (b) PSNR = 12dB, (c) PSNR = 10dB and (d) PSNR = 8dB

  4.2.(b)),• The distance between the mass center and a point of the object (Fig.4.2.(c)), • The distance between two points (Fig.4.2.(d)), • The area square root of a triangle formed by three points (Fig.4.2.(e)), • The volume cube root of the tetrahedron formed by four points (Fig.4.2.(f)).
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 41 Figure 4.1: An object triangular mesh.
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 42 Figure 4.2: The five considered measurements of the shape distribution method applied on the (a) Dragon object: (b) 1-the angles between three points on the surface, (c) 2-the distance between the mass center and a point of the object, (d) 3-the distance between two points, (e) 4-the area square root of a triangle formed by three points and (f) 5-the volume cube root of the tetrahedron formed by four points.
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 43 Figure 4.3: Examples of Princeton Shape Benchmark 3D objects.
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 44 Figure 4.4: The shape histogram descriptors: (a) Spherical space, (b) 3 shell bins, (c) 6 sector bins, (d) combination of 3 shell bins and 6 sector bins.
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 4 Figure 4.5: The 3D object partitioning.
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 46 Figure 4.6: Contribution of object surface point in the local description of g i, j,k .

  11) Where a 2 < b 2 < c 2 are the hyperparameters of the f 1 function. Fig 4.7.(b) shows an example of S membership function for a given triplet (a 2 , b 2 , c 2 ).

Figure 4 . 7 :

 47 Figure 4.7: Different fuzzy membership functions used in the metabolite identification scheme: (a) Π membership function, (b) S membership function and (c) trapezoidal membership function. The hyperparameters of these fuzzy membership functions are estimated with the Genetic algorithm using a set of training spectrum databases. Each database contains several spectra with known metabolite identification results. The simulations show that these fuzzy membership function hyperparameters are almost the same for all databases.

  (4.18) where a 4 < b 4 < c 4 < d 4 . The allure of g for a given quadruple (a 4 , b 4 , c 4 , d 4 ) is presented in Fig. 4.7.(c). Another time, the Genetic algorithm was used to estimate this quadruple. The decision to identify M as a right metabolite depends on the output of the function g. As one can remark, g function depends on the quadruple (a 4 , b 4 , c 4 , d 4 ) as well as on (a 2 , b 2 , c 2 ), (a 3 , b 3 , c 3 ) and (a 1 , b 1 ). The decision function is expressed as:
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 44 Figure 4.9: (a) The synthetic theoretical 2D spectrum X re f , (b) a contours plot of the reference synthetic observed spectrum Y re f (PSNR = 30dB).

Figure 4 .

 4 Figure 4.11: Metabolites identification results on (a) a real healthy spectrum (b) a real cancerous spectrum. Every peak p belonging to a given metabolite M is labeled with (p, M).

  4.13.(a)) or a surface with reliefs (Fig.4.13.(b)).
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 4 Figure 4.12: Spherical partitioning of a fMRI active zone.
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 4444 Figure 4.13: Contribution of an: (a) object flat surface, (b) object acute surface, points in the local description of g i, j,k using a Gaussian function.
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 4 Figure 4.17: Six simulated 3D objects.
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 4 Figure 4.18: An example of two simulated 3D objects wrongly assigned with the 3DGD method.

Figure 4 .

 4 Figure 4.19: Assignment result of real active zones obtained with the proposed method.
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 552 Figure 5.1: Non-linear classifier separation by a hyperplane with slack variables ζ i .
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 53 Figure 5.3: Linear classifier separation by an hypersphere.
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 5 Figure 5.4: Distribution of the unchanged class (gray) and changed class (dark) pixels in the 2-dimensional I δ Alaska image according to the available ground truth.
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 55 Figure 5.5: Distribution of the unchanged class (gray) and changed class (dark) pixels in the 2-dimensional I δ Philadelphia image according to the available ground truth.
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 61 Figure 6.1: Central nerve system of the rat.
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 62 Figure 6.2: Overview diagram of the proposed classification framework for HSQC 2D NMR spectra.
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 64 Figure 6.4: Overview diagram of the metabolite identification chain.
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 6 Figure 6.5: Overview diagram of the metabolite classification/change detection chain.
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 6 Figure 6.6: Examples of (a) two separated peaks, (b) two overlapped peaks. In both cases, the proposed evidential peak detection method has correctly identified peaks.
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 6 Figure 6.7: A real HSQC spectrum
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 6869 Figure 6.8: Example of (a) a healthy colon biopsy spectrum, (b) a cancerous colon biopsy spectrum, (c) The mean image of the 28 reconstructed healthy spectra, (d) The mean image of the 28 reconstructed cancerous spectra.
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  Brutal crash or slow drift on the temporal time course. 4. No aspect of any known artifacts: • Head motion artifacts. Translation or rotation movements are surrounding high spatial contrasts (Cerebrospinal fluid (CSF)/brain, CSF or brain/skull etc) sometimes with a symmetrical aspect (positive correlation on one side and negative on the other side). Temporal course comes with slow drift or brutal crashes. Fig. 6.10.(8) shows the aspect of a z-translation residuum after registration. • Ocular movements artifacts: signal in the eyeball with more or less trails in the encoding phase axis, Dirac spike on the time course (Fig. 6.10.(9a) and (9b)) • CSF-pulse artifacts. Arterial pulse and respiration induce CSF flux and this T1 partial saturation effect leads to signal fluctuation in sensitive regions, i.e., the temporal pole, Sylvian sulcus, skull base around the circle of Willis, aqueduct of Sylvius, foramen of Monro or ventricles (Fig. 6.10.(10)). The temporal course is mostly at high frequency. • Scanner artifacts, i.e., radio frequency (trails of alternating significant voxels) or Analogic-Digital converter artifacts (signal drop or instability in one slice).The pretreatment chain is presented in Fig.6.11.

FigureFigure 6

 6 Figure 6.10: Spontaneous Activity Map (SAM) selection criteria

  Fig.6.17.(b)) displays the active zone alignment results on three objects belonging to C1 (resp C2 and C3) obtained with the continuous PCA method. As one can see, our method performs the best alignment result. Moreover, even with no pronounced partial spherical shape of the active zones (cf. Fig.6.16), the proposed method still works well and provides better results than the continues PCA. This can be explain by the fact that the initialization step properly fit the object shape thanks to the sphere hyperparameters (r, θ, φ). For example, the more the object shape seems to a plan, the more r is great.
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 666 Figure 6.15: Alignment results of three active zones belonging to the same cluster with the (a) the proposed method and (b) the Continues PCA method.
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 6 Figure 6.18: Two active zone clusters obtained by the proposed method. A reference brain is displayed to indicate the position of the active zone clusters.

Figure 6 .

 6 Figure 6.19: Two active zone clusters obtained by the proposed method. A reference brain is displayed to indicate the position of the active zone clusters.
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  (x(i, j), α, β) x(i, j) > 0 , j) (α-1) β α Γ(α) exp (-βx(i, j)) (A.6) 2. sampling the hyperparameters of the Lorentzian shape filter γ[l+1] fromp(γ Y /Y, θ vs γ Y , γ Y = X [l+1] , Γ [l] b , γ Y [l] θ prior γ Y = σ [l](A.8) as the Bayesian theory but rather leave the sample in the {H 1 , H 2 } class. Applications were developed in medical signals[START_REF] Chaabane | Dempster-Shafer evidence theory for image segmentation: application in cells images[END_REF][START_REF] Yazdani | Classification of EEG signals using Dempster Shafer theory and a k-nearest neighbor classifier[END_REF], object detection [Aeberhard11], image segmentation [Pieczynski07,Ben Chaabane09], and remote sensing classification[START_REF] Ja Malpica | Dempster-shafer theory in geographic information systems: A survey[END_REF].The belief and plausibility functions, derived from m, are respectively defined from Ω to [0, 1]:Bel(A/Y ) = ∑

  Let us denote m(Y 1 ),...,m(Y L ), L masses of belief coming from L distinct sources Y l , l = 1...L. The belief function m resulting from the combination of the L sources by means of Dempster's combination rule is defined by: m(A) = m(A;Y 1 ) ⊕ m(A;Y 2 ) ⊕ ... ⊕ m(A;Y L ) (C.3) where ⊕ is defined by: m(A;Y 1 ) ⊕ m(A;Y 2

  

  

  

  

Table 1 :

 1 Les erreurs de déplacement chimiques moyennes du carbone ε c et de l'hydrogène ε H

	xiv				
		Méthode évidentielle Méthode bayésienne
	PSNR	ε c	ε H	ε c	ε H
	30dB	5.1 10 -3	9.1 10 -5	0.097	6.1 10 -3
	28dB 1.21 10 -2 5.1 10 -4	0.139	8.6 10 -3
	25dB	0.1098	2.5 10 -3 0.2584 1.91 10 -2
	23dB	0.1874	9.35 10 -3 0.3278 2.03 10 -2
	exprimées ppm.				

Table 2 :

 2 Les erreurs de déplacement moyenne et l'écart type obtenus par la méthode proposée et la ACP continue. FN le nombre de fausses identifications négatives et FP le nombre de fausses identifications positives. Les résultats sont présentés dans Table4.1. Nous remarquons que la méthode proposée donne de meilleurs résultats que ceux obtenus avec la méthode SVM qui ne prend pas en compte notre connaissances a priori sur les spectres.

		Méthode proposée	SVM		Méthode de seuillage
	PSNR rappel(%) prcision(%) rappel(%) prcision(%) rappel(%) prcision(%)
	30dB	93.87	95.11	90.38	91.72	81.16	78.01
	28dB	92.42	94.82	88.50	89.61	78.98	76.12
	25dB	92.84	94.64	82.11	86.90	75.77	74.25
	23dB	89.02	90.18	83.02	84.66	74.02	71.88

utilisons deux mesures de performences: rappel et précision définis par: rappel = T P T P+FN ; precision = T P T P+FP où T P représente le nombre de vraies identifications,

Table 3 :

 3 Les mesures rappel(%) et prcision(%) obtenues avec: notre méthode, la méthode SVM, et la méthode de seuillage sur des données simulées.

	xv

Pour le codage et la mesure de similarité des zones actives, nous avons comparé notre méthode à la méthode (3DGD)

[START_REF] Chaouch | 3D Gaussian descriptor for 3D shape retrieval[END_REF] 

et à la méthode de l'histogramme [Ankerst99].

Table 4 :

 4 Les mesures rappel(%) et prcision(%) obtenues avec: notre méthode, la méthode 3GD, et la méthode de l'histogramme sur des données simulées.Les résultats obtenus sont présenté dans Table4.2. Comme nous pouvons le voir, notre méthode achève un meilleur résultat de codage et de mesure de similarité.Nous présentons maintenant les résultats expérimentaux obtenus avec la méthode SV3DH pour la détection de changements en imagerie satellitaires. Ces images ont été particulièrement sélecionnées car on dispose d'une vérité terrain ce qui n'est pas souvent le cas pour d'autres applications comme l'imagerie médicale.

Table . 5

 . .2 presente les résultats obtenus avec la méthode SV3DH avec deux autres méthodes: l'SVDD classique[START_REF] Tax | Support vector data description[END_REF] et le Système à Vastes Marges SVM standard[START_REF] Bruzzone | A novel transductive SVM for semisupervised classification of remote-sensing images[END_REF]. Notons que le noyau RBF gaussien est utilisé pour les deux méthodes. Nous pouvons constater que la méthode que nous proposons fournit des résultats meilleurs par rapport aux deux autres méthodes. Cela signifie que la fonction noyau proposée améliore la discrimination des caractéristiques.

	xvi			
		Fausses détections détections manquées erreur globale
	SV3DH	0.71 %	5.01 %	1.09 %
	SVDD	1.87 %	6.81 %	2.01 %
	SVM	1.04 %	6.31 %	1.75 %

Table 5 :

 5 Le nombre de fausses détections, le nombre de détections manquées et l'erreur globale obtenus avec les méthodes SV3DH, SVDD et SVM.

Conclusion

Dans cette thèse, nous nous sommes intéressés à la recherche par le contenu d'objets 3D, et plus particulièrement à l'identification des bio-marqueurs. L'objectif de notre travail a été de proposer des méthodes rapides et efficaces permettant de classifier les signaux médicaux et de détecter les changement entre un individu/groupe requête et les différents groupes de profils appartenant à une base de signaux médicaux. L'idée clé était de proprement intégrer notre connaissances a priori dans les méthodes proposées. Les différentes problématiques de été étudiées à savoir l'alignement, le codage, la mesure de similarité et la classification d'objets 3D. Les différentes méthodes proposées ont été validées, dans une première étape, sur des données simulées (ou réelle quand on dispose d'une vérité terrain) afin de prouver leur apport comparées aux méthodes existantes. Dans une deuxième partie, l'ensemble des résultats obtenus sur les données réelles ont été examinés par des experts de chaque domaine (spectroscopie RMN HR-MAS et IRMf). Cette validation montre le bon comportement de nos algorithmes ainsi que leur applicabilité à grande échelle que ce soit pour les spectres HSQC (RMN HR-MAS) et les images IRMf. CHAPTER 1 Introduction Contents 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Organization of the manuscript . . . . . . . . . . . . . . . . . . . . . . 4
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  It is denoted by T 1 . The longitudinal relaxation mechanisms are associated with fluctuations of local magnetic fields. What matters in the context of longitudinal relaxation are the fluctuations of the local fields at the Larmor frequency. 2. the transverse relaxation: It consist in canceling M xy . In most cases the transverse magnetization mono-exponentially decreases. We call the characteristic time of the monoexponential decay the "transverse relaxation time". It is denoted by T 2 .

  Weight of the i th node belonging to the l th layer W lNetwork weight matrix connecting l th layer with (l + 1) th layer w i jConnection weight from node i to node j Φ extr(.) 

		Observed object coordinates
	P ′	Added samples coordinates
	P	Estimation of P
	Z	Projection of P with Neural Network PCA
	[l] z i	
		Neural Network extraction function
	Φ gen (.) (r, θ, φ)	reconstruction function Spherical coordinate system
	Acronyms:	
	HR-MAS	High Resolution Magic Angle Spinning
	EEG	Electro-Encephalo-Graphy
	HSQC	Heteronuclear Single Quantum Coherence spectrum
	fMRI	functional Magnetic Resonance Imaging
	PCA	Principal Component Analysis
	PC	Principal Components
	MI	Mutuel Information
	DS	Dempster Shafer
	SSD	Sum of Squared Difference
	PRST	Planar-Reflective Symmetry Transform
	PSF	Point Spread Function
	PSNR	Peak Signal to Noise Ration
	MCMC	Monte Carlo Markov Chain
	MLP	Multi-Layer Perceptron
	NNPCA	Neural Network Principal Component Analysis
	ANNs	Artificial Neural Networks
	GA	Genetic Algorithm

Table 3 .

 3 C chemical shift axis, (resp x-axis, i.e. the 1 H chemical shift axis), as one can remark, even with a PSNR=25dB, we obtained 1: Detection and alignment error on the synthetic spectrum Y 1 . The mean chemical shift errors are expressed in ppm.

	PSNR	ε c	ε h	nb of missed peaks nb of false peak assignments
	30dB 0.0064 9 10 -5	9/200	4/200
	28dB 0.0107 7 10 -4	9/200	5/200
	25dB	0.149 0.0052	11/200	8/200
	23dB	0.291	0.019	13/200	10/200

Table 3 .

 3 3. As one can see, we obtained the same alignment results which validate the Table3.2: The mean chemical shift errors ε c ε h on the synthetic spectrum Y 3 expressed in ppm obtained by the proposed and the Bayesian methods.

		Proposed scheme	Bayesian scheme
	PSNR	ε c		ε h	ε c	ε h
	30dB	5.1 10 -3	9.1 10 -5	0.097	6.1 10 -3
	28dB 1.21 10 -2 5.1 10 -4	0.139	8.6 10 -3
	25dB	0.1098	2.5 10 -3 0.2584 1.91 10 -2
	23dB	0.1874	9.35 10 -3 0.3278 2.03 10 -2
	PSNR	ε c	Y re f →1→2 ε h	ε c	Y re f →2	ε h
	30dB 0.0059 8.7 10 -5 0.006 8.5 10 -5
	28dB	0.011 5.3 10 -4 0.010 4.2 10 -4
	25dB	0.149	0.0012	0.0984	0.0011
	23dB 0.2245	0.0121	0.2278	0.0131
	Table 3.3: Alignment error using transitivity property
	transitivity property.					
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	Symbols: Symbols:	
	X	Candidate peak amplitudes
	R	Reference peak amplitudes
	Y	Observed spectrum
	Y re f	Reference observed spectrum
	r o	Observed peaks ratio
	r e	Expected peaks ratio
	G	Gamma distribution
	(α, β)	Hyperparameters of the Gamma distribution
	Γ X	Inter-metabolite correlation matrix
	I	Identity matrix
	Φ	Standard Gaussian cumulative distribution
	B	Noise
	Γ b	Noise covariance matrix
	c g	Gaussian copula
	h(i, j)	Peak shape filter
	γ Y = (γ Y 1 , γ Y 2 ) Shape hyperparameters of peaks within the spectrum Y
	hyp 1,2,3	Hypotheses modeling the spectrum imprecision
	X	An estimation of the theoretical spectrum X
	f	Π -membership function used for candidate metabolites selection
	f 1	S-membership function associated to criterion 1
	f 2 f M	S-membership function associated to criterion 2 Π -membership function associated to criterion 3
	g	Trapezoidal membership function associated to global criterion
	µ M	Metabolite reliability degree associated to f
	µ cr1	Metabolite reliability degree associated to criterion 1
	µ cr2	Metabolite reliability degree associated to criterion 2
	µ cr3	Metabolite reliability degree associated to criterion 3
	M e	Metabolite belonging to exception list
	recall	Recall measurement
	Precision	Precision measurement
	E[X ]	Expected value of X
	X	Theoretical spectrum
	X re f	Reference theoretical spectrum
	Y	Observed spectrum
	Y re f	Reference observed spectrum
	M	A metabolite
	M	An estimation of M
	C M	Candidate Metabolite set
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			Candidate metabolites selection		-	metabolite signature criteria (Eq. 4.15)
			6			
			Criterion fuzzy				signature ?
	6 Randomly peaks selection Peak detection and	-	modeling: fuzzy membership functions (Eq.4.9) 6 Location criterion	Genetic algorithm optimization (Appendix B)	-	modeling: fuzzy membership functions (Eq. 4.17) ? Right metabolite
	alignment		(Eq.4.10)				selection (Eq. 4.19)
	Stage 1		Stage 2				Stage 3
	Figure 4.8: Overview diagram of the metabolite identification chain.

. . 105 Symbols:

  

	x i	Object features vector
	r i	Classification result of x i
	f	Separating function
	(w, b)	Hyperplane hyperparameters
	(w * , b * ) β	Optimal hyperplane hyperparameters Lagrange multipliers
	γ α	Lagrange multipliers Lagrange multipliers
	α * ζ i	Optimal Lagrange multipliers Slack variable associated to x i
	C	Regularization parameter
	C 1	Regularization parameter
	C 2	Regularization parameter
	K	Kernel function
	ϕ(.)	Mapping function
	H	Hilbert space
	(R, a)	Hypersphere hyperparameters
	(R * , a * )	Optimal hypersphere hyperparameters
	C G Φ	Gaussian copula Standard Gaussian cumulative distribution
	Γ	Correlation matrix
	I	Identity matrix
	µ	Membership degree to the target class
	C ht	Hard class of target population
	C f t	Fuzzy class of target population
	C ho	Hard class of outlier population
	C f o	Fuzzy class of outlier population

  .2.

					Peak detection,			
		available data sets		-	alignment, coding, similarity measurement,	-	class / population profiles.
					and classification				?
	Online step	request HSQC spectra	-	peak detection and alignment (section 3.2)	-	(section 4.2) measurement and similarity peak coding	6 metabolite classification	(Chap.5)

  Extract the local spectrum areas containing Y local, re f and Y local : Y rec,re f local, re f and Y rec

					local
	respectively.			
	-Calculate the covariance matrix Γ Y local -Y rec local ).	re f local (resp Γ local ) of Y local,re f -Y local, re f (resp rec,re f
	-Perform the Principal Component Analysis PCA algorithm on both Γ	re f local and Γ local
				x(i, j) =	λ λ re f	x(i, j)	(6.1)
	Metabolite identification		-	Identified metabolites	-Estimation error compensation (Alg. 2)
	(Fig.6.3)			
	6				?
					SV3DH algorithm
					(section 4.2 )
				?	?
	Peak detection and alignment (Fig.6.3)	-	1-Peak shape parameters (Eq.3.2) 2-Peak chemical shifts (Eq.3.14) 3-Peak amplitudes (Eq.3.1)	Changed quantification (metabolite are ranked from largest to smallest changes)
	Previous chains			Change detection input	Output

-Let λ re f (resp λ) be the largest eigenvalue of the PCA decomposition performed on Γ re f local (resp Γ local ): the estimated peak amplitude x(i, j) is normalized as follows:

Table 6

 6 

		µ M	concentration
	Arg	0.519	inc
	Ser	0.461	inc
	Asp	0.390	inc
	Cho	0.331	dec
	Pcho	0.327	dec
	Glu	0.321	dec
	Ace	0.298	dec
	Ala	0.214	dec
	Ile	0.214	dec
	Gln	0.267	dec
	Ascorbate 0.218	inc
	mI	0.165	dec
	Cr	0.166	dec
	Gly	0.168	inc
	NAA	0.150	inc
	Lys	0.144	inc
	Lac	0.110	dec

.3: Identified biomarkers for healthy ON biopsy vs. EAE ON biopsy with 2D spectra. The changed metabolites identified with the first 1D experiment are: GPCho and N-acetylglutamate. The changed metabolites identified with the second 1D experiment are: Thr, Succinate, GABA and Tau.

Table 6 .

 6 5: Identified biomarkers for healthy TSC biopsy vs. EAE TSC biopsy with 2D spectra. The changed metabolites identified only with the first 1D experiment are: Ala, Succ, Hypotaurine, Val and NAA. The changed metabolites identified only with the second 1D experiment are: Ala, Hypotaurine. As one can remark, we identify with the 2D experiment most metabolites identified with the first and the second 1D experiment. However, the Ala and the Hypotaurine were detected only with the first and the second 1D experiments.

		µ M	concentration
	alpha-Glc	0.824	inc
	Hypotaurine 0.834	inc
	beta-Glc	0.724	inc
	mI	0.684	dec
	Gln	0.642	inc
	Cho	0.627	dec
	Thr	0.546	inc
	GPCHO	0.510	inc
	Ace	0.464	dec
	Tau	0.446	inc
	Asp	0.394	dec
	Glu/Gln	0.389	inc
	Lys	0.347	inc
	Ser	0.341	inc
	Ala	0.260	inc
	Arg	0.257	inc
	PCho	0.239	dec
	Ethanolamine 0.234	dec
	Gly	0.179	dec
	Lac	0.124	dec
	Val	0.116	dec
	Table 6.4: Identified biomarkers for healthy CSC biopsy vs. EAE CSC biopsy with 2D
	spectra. The changed metabolites identified only with the first 1D experiment are: Succ,
	Ile and NAA. The changed metabolite identified only with the second 1D experiment is the
	Cr. As one can remark, we identify with the 2D experiment most metabolites identified
	with the first and the second 1D experiment. Moreover, some metabolite like the "Ser",
	the "Gly" and the "Gln" were identified only with the first 1D experiment and the 2D
	experiment.		

Table 6 .

 6 6: Identified biomarkers for healthy LSC biopsy vs. EAE LSC biopsy with 2D spectra. The changed metabolites identified only with the first 1D experiment are: Lys, Hypotau, Succ, Tau, PCho, GPCho and NAA. The changed metabolites identified only with the second 1D experiment are: Lys, Hypotau, Tau and GPCho. As one can remark, we identify with the 2D experiment most metabolites identified with the first and the second 1D experiment. However, as one can observe, some metabolites like the Lys and Hypotau were detected only with the first and the second 1D experiments while the Val was detected only with the 2D and the second 1D experiments.

	Metabolite	µ M	concentration
	Arg	0.452	inc
	Tau	0.363	dec
	Val	0.291	inc
	Gln	0.256	inc
	NAA	0.198	inc
	Thr	0.116	inc

Table 6 .

 6 7: Identified biomarker for healthy CSC biopsy vs. healthy LSC biopsy with 2D spectra. In this experiment, no changed metabolite was detected with the first and second 1D experiments while 6 metabolites were be detected with the 2D experiment. This means that our method is able to discriminate the healthy CSC biopsy from the healthy LSC biopsy.

	Metabolite	µ M	concentration
	mI	0.341	inc
	Arg	0.338	inc
	Tau	0.320	dec
	Gln	0.311	inc
	Glu/Gln	0.224	inc
	NAA	0.211	inc
	Tyr	0.184	dec
	Cho	0.161	inc
	Cr	0.157	inc
	PCho	0.149	inc

Table 6 .

 6 8: Identified biomarkers for healthy CTC biopsy vs. healthy LTC biopsy with 2D spectra. In this experiment, no changed metabolite was detected with the first and second 1D experiments while 10 metabolites were be detected with the 2D experiment.

Table 6 .

 6 9: Identified biomarkers for healthy colon biopsy vs. cancerous colon biopsy with 2D spectra. As one can remark, we identify the same metabolite as in first 1D experiment.

		µ M	concentration
	Tau	0.895	inc
	mI	0.771	dec
	beta-Glc 0.638	dec
	Asp	0.621	inc
	Glu	0.502	inc
	Lac	0.445	inc
	Pcho	0.394	inc

Table 6 .

 6 11: Spectrum discrimination with the SV3DH, the SVDD and the SVM methods.

	Spectrum group	number of wrong discriminated spectra
		SV3DH 3/20
	ON healthy vs. ON EAE groups	SVM	4/20
		SVDD	6/20
		SV3DH 0/20
	CSC healthy vs. CSC EAE groups	SVM	3/20
		SVDD	3/20
		SV3DH 1/20
	TSC healthy vs. TSC EAE groups	SVM	1/20
		SVDD	2/20
		SV3DH 0/20
	LSC healthy vs. LSC EAE groups	SVM	2/20
		SVDD	4/20
		SV3DH 2/56
	Healthy vs. cancerous colon groups	SVM	4/56
		SVDD	4/56

  [Aeberhard11] M. Aeberhard, S. Paul, N. Kaempchen and T.Bertram. Object existence probability fusion using dempster-shafer theory in a high-level sensor data fusion architecture. In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages 770-775. IEEE, 2011. (Cited on page 156.) [Alum08] M.F. Alum, P.A. Shaw, B.C. Sweatman, B.K. Ubhi, J.N. Haselden and S.C. Connor. 4, 4-Dimethyl-4-silapentane-1-ammonium trifluoroacetate (DSA), a promising universal internal standard for NMR-based metabolic profiling studies of biofluids, including blood plasma and serum. Metabolomics, vol. 4, no. 2, pages 122-127, 2008. (Cited on page 8.) [Amberg09] B. Amberg, A. Blake and T. Vetter. On compositional image alignment, with an application to active appearance models. In conference of Computer Vision and Pattern recognition, pages 1714-1721, 2009. (Cited on page 32.) [Ankerst99] M. Ankerst, G. Kastenmuller, H.P. Kriegel and T. Seidl. 3D shape histograms for similarity search and classification in spatial databases. In Advances in Spatial Databases, pages 207-226. Springer, 1999. (Cited on pages xiv, 65 and 86.) Les techniques d'acquisition des signaux médicaux sont en constante évolution et fournissent une quantité croissante de données hétérogènes qui doivent être analysées par le médecin. Dans ce contexte, des méthodes automatiques de traitement des signaux médicaux sont régulièrement proposées pour aider l'expert dans l'analyse qualitative et quantitative en facilitant leur interprétation. Ces méthodes doivent tenir compte de la physique de l'acquisition, de l'a priori que nous avons sur ces signaux et de la quantité de données à analyser pour une interprétation plus précise et plus fiable. Dans cette thèse, l'analyse des tissus biologique par spectroscopie RMN et la recherche des activités fonctionnelles cérébrales et leurs connectivités par IRMf sont explorées pour la recherche de nouveaux bio-marqueurs. Chaque information médicale sera caractérisée par un ensemble d'objets que nous cherchons à extraire, à aligner, et à coder. Le regroupement de ces objets par la mesure de leur similitude permettra leur classification et l'identification de bio-marqueurs. C'est ce schéma global d'indexation et de recherche par le contenu d'objets pour la détection des bio-marqueurs que nous proposons. Pour cela, nous nous sommes intéressés dans cette thèse à modéliser et intégrer les connaissances a priori que nous avons sur ces signaux biologiques permettant ainsi de proposer des méthodes appropriées à chaque étape d'indexation et à chaque type de signal.

	Résumé:

Mots clès: Identification de bio-marqueurs, spectres HSQC, images fMRI, indexation, détection et alignement d'objet, codage et mesure de similarité, détection de changement.
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corpus (Fig. 6.4). This step requires up to 15mn of computation time with Intel 2.66 GHz and matlab codes.

fMRI experiments

Material and Database

Participants After giving written informed consent, 62 right-handed healthy participants (age 37.3 ± 7.9 years) with no history of neurological or psychiatric disorders underwent a resting-state fMRI session. This study was part of a protocol approved by the local Ethics Committee. Participants were instructed to lie down with their eyes closed without falling asleep.

Data acquisition

Four hundred and five whole-brain T2*-weighted echo planar images were acquired interleaved on a 2T Bruker scanner (Ettlingen, Germany) (session parameters: TR = 3 s; flip angle = 90 • ; TE = 43ms; FOV = 256 mm x 256 x mm x 128mm; Imaging matrix = 64 × 64 × 32; 4 mm isotropic voxels, with fat saturation preparation) during 20 minutes.

Preprocessing

After conversion to Analyze format, images were preprocessed using Statistical Parametric Mapping toolbox v99 (Welcome Department of Cognitive Neurology, London, UK) working on Matlab R2009b (The MathWorks, Inc., Sherborn, MA, USA). For each participant, the first 5 images were removed to account for T1 partial saturation. The 400 remaining images were then motion corrected, and all the volumes were realigned on the 200th volume (sinc interpolation).

Statistical analyzes of fMRI data

For each participant, Independent Component Analysis (ICA) [Te-Won98] was performed using FMRLAB toolbox 2.3 (Swartz Center for Computational Neuroscience, University of San Diego, CA, USA) with an implementation of INFOMAX algorithm [START_REF] Theis | Linear geometric ICA: Fundamentals and algorithms[END_REF]. Since we planned to capture even small spontaneous activities for medical application, the dimension of the data was only reduced from 400 to 250 using a principal component approach for each participant. This procedure allowed maintaining the computational time for the algorithm to converge in acceptable limits. For display purpose, the components were superimposed on the (EPI) (Echo-Planar Imaging) mean image at a threshold of ±1.5 standard deviation [START_REF] Weiskopf | Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI[END_REF]. Each ICA component is called a Spontaneous Activity Map (SAM). At the end of the ICA algorithm, we obtain 250 SAM.

Selection of relevant SAM

In order to only select the relevant SAM, several criteria should be respected. Indeed, these criteria suppose that the whole brain volume is displayed with positive and negative parts of the spatial components overlapped on the mean EPI (z-score is above or below ±1.5). The time course has to be evaluated on the component time course more than on the average region of interest time course. Positive selection criteria: a plausible BOLD signal is expected to fit with every following criteria for the whole cerebral volume or time course: Off-line step Figure 6.12: Overview diagram of the proposed classification framework for fMRI images.

fMRI treatment framework

In the case of the fMRI image analysis, the considered objects are the active zones (AZ). A summary of the treatment framework is presented in Fig. 6.12. The first step of the indexing framework consists in detecting and aligning different active zones within fMRI images. To this end, we firstly perform an active zone detection step using a Hidden Markov Chain (HMC) segmentation algorithm [START_REF] Bricq | Unifying framework for multimodal brain MRI segmentation based on hidden Markov chains[END_REF]. However, when only weak differences occurred between samples of the considered classes (i.e; active zone with positive intensity class, active zone class with negative intensity class and no active zone), the probability density function (pdf) of one calss may be confused with the pdf of another class (e.g., the Hidden Markov Model method generally tries to regularize bad segmentation results due to this ill-posed problem and the presence of outliers in the data [START_REF] Belghith | Segmentation of respiratory signals by evidence theory[END_REF]). To overcome this issue, we applied a fuzzy contrast enhancement (FCE) method on each detected object with the HMC algorithm. This method aims at segmenting an unknown sample based on the intensity of its neighbors by considering a fuzzy class transition (i.e the edge intensities of two adjacent classes follow a S-membership function). Once the active zones are detected we apply first the proposed active zone alignment algorithm (Fig. 6.13). This step requires up to 3mn of computation time with Intel 2.66 GHz and matlab codes. Then the AZ coding and similarity measurement (Fig. 6.14) to cluster similar objets (about 1mn of computation time with a matlab codes). However, two objects with two similar shapes can not be affected together if they are not in the same brain area.

MCMC

In this Appendix, we develop a Monte Carlo Markov Chain (MCMC) procedure to estimate the peak locations, amplitudes and shapes required for the proposed peak detection and alignment scheme. The principle of MCMC method is to generate samples drawn from the posterior densities and then to be able to achieve hyperparameter estimation using the Marginal Mean (MPM) estimator [START_REF] Gilks | Markov chain Monte Carlo in practice[END_REF]:

where X is the variable to estimate (theoretical spectrum) from the observation Y (observed spectrum).

We use a Gibbs sampler [START_REF] Smith | Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods[END_REF] based on a stationary ergodic Markov chain allowing to draw samples whose distribution asymptotically follows the a posteriori density p(X , θ/Y ), θ = {θ γ Y , θ b , θ x }) where:

• θ γ Y stands for the pdf hyperparameters of the Lorentzian shape filter γ Y (Eq.3.2),

• θ b stands for the hyperparameters of additive noise B = b(i, j) i=1...M, j=1...N (Eq.3.1),

• θ x represents the hyperparameters of the theoretical 2D spectrum image X (location, shape, amplitude (Eq.3.1)).

Noise Model

MCMC method requires the definition of a noise model that can be based in a Bayesian framework as additive, white and Gaussian. However, the hypothesis of a white gaussian noise is not always entirely justified [START_REF] Bodenhausen | Elimination of flip angle effects in two-dimensional NMR spectroscopy. Application to cyclic nucleotides[END_REF]. Thus, we propose here to keep the Gaussian behavior but to take into account the correlation of the additive noise. Indeed, vertical lines appear sometimes in the observed spectrum and which are due to experimental condition [START_REF] Becker | High resolution NMR: theory and chemical applications[END_REF]: it leads us to introduce a correlated noise modeling this kind of artefact. Then, we adopt a multivariate Gaussian distribution with covariance matrix Γ b and mean µ b . The expression of the noise density is given by: where σ [l] is the variance of the gaussian distribution modeling our a priori on

(A.9)

3. sampling the covariance matrix of the noise

After l max iterations, X and γ Y are given by

where l min stands for the number of iterations corresponding to the burn-in time of the Markov chain [START_REF] Cowles | Markov Chain Monte Carlo convergence diagnostics: a comparative review[END_REF]. In our case l min is equal to 200 iterations whereas l max is equal to 500. Concerning the computation time, the MCMC algorithm requires up to 3h30 to converge with a 2.66 GHz Intel processor and a combination of matlab and C code.

Genetic algorithm

Genetic Algorithms (GA) are adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic [START_REF] Goldberg | Genetic Algorithms in Search and Optimization[END_REF]. The basic concept of GA is designed to simulate processes in natural system necessary for evolution, specifically those that follow the principles first laid down by Charles Darwin of survival of the fittest. As such they represent an intelligent exploitation of a random search within a defined search space to solve a problem. The aim of genetic algorithm is to use simple representations to encode complex structures and simple operations to improve theses structures.

We describe in this part how to use GA to ascertain the hyperparameters of different membership functions. As a matter of fact, we used the GA algorithm for the peak detection-alignment and the metabolite identification schemes. To this end, we use a training data base containing 10 spectra where each one consists of 30 metabolites with known characteristics (the number of metabolite peaks, the locations and the shape od each peaks).

Concerning the fuzzy membership functions hyperparameters used in the peak detection and alignment scheme, let us denote by (a 1 , b 1 , c 1 , a 2 , b 2 , c 2 , a 3 , b 3 , c 3 ) the population representing the hyperparameters of these functions where (a 1 , b 1 , c 1 ) are the hyperparameters of the function f hyp1 (Eq.3.4), (a 2 , b 2 , c 2 ) the hyperparameters of f hyp2 (Eq. 3.5) and (a 3 , b 3 , c 3 ) the hyperparameters of f hyp3 (Eq. 3.6). We apply real coding to encode the chromosomes of the population. Each individual is represented by a vector of {0, 1}. The different steps of GA are:

1. Generating an initial population:

3 )

The initialization is done in an experimental way.

Define individual fitness function to indicate the fitness of every chromosome. The

proposed function is expressed as:

where μ[l] (i, j) is given by Eq.3.7 with respect to the estimated hyperparameters at iteration l and µ e is the expected solution.

3. Generating offspring by selection and crossover: 20% of the population which has best fitness is copied directly to next generation to keep the best gene. The other 80% of the population is obtained by crossover operation with a probability P c = 0.8. We select randomly one cut-point and then we exchange the right part of two chromosomes.

4. Mutation operation: only the chromosomes having undergone crossover can be affected by the mutation. It consists in modifying a gene with a probability Pm = 0.008.

5. Ending condition: if the maximal evolutionary epoch (maximal number of iterations 500) is reached, the GA end.

For the metabolite identification problem, let us denote by:

the population representing the parameters of the used fuzzy membership functions. Indeed, (a 1 , b 1 ) are the hyperparameters of Eq. 4.16, (a 2 , b 2 , c 2 ) the hyperparameters of Eq. 4.12, (a 3 , b 3 , c 3 ) the hyperparameters of Eq. 4.15 and (a 4 , b 4 , c 4 , d 4 ) the hyperparameters of Eq. 4.18. We apply real coding to encode the chromosomes of the population. Therefore, each individual is represented by a vector of {0, 1}. The different steps of GA are:

1. Generating in an experimental way the initial population:

2. Define individual fitness function to indicate the fitness of every chromosome. The proposed function is expressed as:

where g is given by Eq. 4.19 and 1 is the expected result (c. f Eq. 4.19).

3. Generating offspring by selection and crossover: 20% of the population which has best fitness is copied directly to next generation to keep the best gene. The other 80% of the population is obtained by crossover operation with a probability P c = 0.8. We select randomly one cut-point and then we exchange the right part of two chromosomes.

4. Mutation operation: only the Chromosomes having undergone crossover can be affected by the mutation. It consists in modifying a gene with a probability Pm = 0.008.

5. Ending condition: if the maximal evolutionary epoch (maximal number of iterations 500) is reached, the GA end.

Concerning the computation time, the GA algorithm requires up to 6h45 to converge with a 2.66 GHz Intel processor and a matlab codes.

Evidence theory

The Dempster Shafer (DS) is a mathematical theory of evidence. In a finite discrete space, DS theory may be red as a generalization of probability theory. Indeed, the probabilities are assigned to sets as against to mutually exclusive singletons. In probability theory, evidence is only related to one hypothesis [START_REF] Shafer | A mathematical theory of evidence[END_REF]. In DS theory, evidence is related to sets of events. As a matter of fact, the DS theory is designed to cope with varying levels of precision regarding the information. To this end, DS theory provides tools to represent the uncertainty of data where an imprecise may be characterized by a set or an interval and the resulting output is a set or an interval.

The mass function

Let us denote Θ the frame of discernment, which is defined as: where / 0 is the empty set. In the Bayesian theory, the uncertainty about an hypothesis is calculated by the probability and imprecision associated with uncertainty is assumed to be null. In the evidence theory, the plausibility value may be explained as the maximum uncertainty value about A whereas the belief value of hypothesis A may be explained as the minimum uncertainty value about A. Therefore, this theory, which allows to represent both imprecision and uncertainty, appears as a more flexible and general approach than the Bayesian one. Indeed, when the mass affected to a compound hypothesis {H 1 , H 2 } is nonzero, it means that we have an option not to make the decision between {H 1 } or {H 2 }