N

N
N

HAL

open science

Quantum chromodynamics at high energy and noisy
traveling waves

Stéphane Munier

» To cite this version:

Stéphane Munier. Quantum chromodynamics at high energy and noisy traveling waves. High Energy
Physics - Phenomenology [hep-ph]. Université Pierre et Marie Curie - Paris VI, 2011. tel-00712413

HAL Id: tel-00712413
https://theses.hal.science/tel-00712413

Submitted on 27 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-00712413
https://hal.archives-ouvertes.fr

UNIVERSITE PIERRE ET MARIE CURIE

MEMOIRE D’HABILITATION A DIRIGER DES RECHERCHES

“Quantum chromodynamics at high energy

and noisy traveling waves”

Stéphane MUNIER

présenté le 30 novembre 2011 devant la Commission composée de

Nestor ARMESTO rapporteur
Yuri DOKSHITZER membre
Francois GELIS rapporteur
Cécile MONTHUS rapporteur
Lech SZYMANOWSKI membre

Jean-Bernard ZUBER président



Abstract

When hadrons scatter at high energies, strong color fields, whose dynamics is described by
quantum chromodynamics (QCD), are generated at the interaction point. If one represents these
fields in terms of partons (quarks and gluons), the average number densities of the latter saturate
at ultrahigh energies. At that point, nonlinear effects become predominant in the dynamical
equations. The hadronic states that one gets in this regime of QCD are generically called “color
glass condensates”.

Our understanding of scattering in QCD has benefited from recent progress in statistical and
mathematical physics. The evolution of hadronic scattering amplitudes at fixed impact parameter
in the regime where nonlinear parton saturation effects become sizable was shown to be similar
to the time evolution of a system of classical particles undergoing reaction-diffusion processes.
The dynamics of such a system is essentially governed by equations in the universality class of
the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation, which is a stochastic nonlinear
partial differential equation. Realizations of that kind of equations (that is, “events” in a particle
physics language) have the form of noisy traveling waves. Universal properties of the latter can
be taken over to scattering amplitudes in QCD.

This review provides an introduction to the basic methods of statistical physics useful in QCD,
and summarizes the correspondence between these two fields and its theoretical and phenomeno-
logical implications.

Résumé

Lors de la diffusion de hadrons & haute énergie, d’intenses champs de couleur, dont la dy-
namique est décrite par la chromodynamique quantique (QCD), sont créés au point d’interaction.
Si on représente ces champs en termes de partons (quarks et gluons), la densité de ces derniers
sature & trés haute énergie. Les effets non-linéaires deviennent alors dominants dans les équations
dynamiques. Les états hadroniques que ’on obtient dans ce régime de la QCD sont génériquement
appelés “condensat de verre de couleur”.

Notre compréhension de la diffusion en QCD a bénéficié de progrés récents en physique statis-
tique et en physique mathématique. On a montré que I’évolution des amplitudes de diffusion
hadronique & paramétre d’impact fixé dans le régime dans lequel les effets non-linéaires de satu-
ration des densités de partons deviennent importants est semblable & 1’évolution temporelle d’un
systéme de particules classiques soumis & des processus de type réaction-diffusion. La dynamique
d’un tel systéme est essentiellement gouvernée par des équations dans la classe d’universalité
de I’équation de Fisher-Kolmogorov-Petrovsky-Piscounov stochastique, qui est une équation aux
dérivées partielles stochastique et non-linéaire. Les réalisations de telles équations (c’est-a-dire les
événements, dans un langage de physique des particules) ont la forme d’ondes voyageuses bruitées.
Les propriétés universelles de celles-ci peuvent étre transposées aux amplitudes d’interactions en
QCD.

Ce mémoire est une introduction aux méthodes de physique statistique utiles en QCD, et
résume la correspondance entre ces deux domaines ainsi que ses implications théoriques et phé-
noménologiques.
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Chapter 1

Introduction to high energy
scattering in QCD

What is the origin of the mass of ordinary matter? How are the nucleons “glued” together to form
stable nuclei? How can we understand the “z00” of the particles (hadrons) which are sensitive to
the “strong” force?

The modern theory of strong interactions, quantum chromodynamics (abreviated QCD; For a
comprehensive textbook, see Ref. [2]), discovered about 40 years ago, seems to have the ability
to help all these problems and many others in a most compact and elegant way. This theory is
parallel in its formulation to the more well-known theory of electromagnetic interactions, quantum
electrodynamics, and, with some caveats still to be understood, to the theory of weak interactions,
consistently with the idea of a (partial) unification of the elementary forces. However, QCD poses
outstanding mathematical problems, and it became soon clear that its various regimes had to
be explored by dedicated experiments and specialized theoretical tools. While “simple” fixed-
order perturbation theory has proved extremely successful to investigate electrodynamics due to
the intrinsic weakness of the force acting between charged leptons (the characteristic coupling is
Qe =2 ﬁ), chromodynamics has to deal with strong coupling instead (the coupling «; is of order
0.1 in the most favorable cases and up to 1 in general), and with more subtle nonlinearities which
severely limits the use of fixed-order perturbation theory. Perturbative expansions have to be
handled with care, and dedicated tools have to be invented for QCD.

It has happened that methods were borrowed from other fields of physics: For example the
computation of low-energy properties of the hadrons (masses, decay rates...) are investigated using
lattice field theory, like in solid state physics. More recently, tools developed by string theorists
have proved useful to address the calculation of specific processes involving very high-order terms
in a perturbative expansion.

This review, which is a revised version of the author’s publication [1], summarizes some recent
investigations in a specific regime of quantum chromodynamics, the so-called high-energy or, more
technically, “small-z” regime. We focus on how this regime is formally related to some models which
appear in statistical physics and show how this correspondence may be used. We shall first go
over the recent history of high-energy QCD in order to better expose the context of this research.

Short history of the field. The study of quantum chromodynamics in the high-energy regime
has undergone a rapid development in the last 15 years with the wealth of experimental data that
have been collected, first at the electron-proton collider DESY-HERA, and then at the heavy-ion
collider RHIC. More energy in the collision enables the production of objects of higher mass in the
final state, and thus the discovery of new particles. But higher energies make it also possible to
observe more quantum fluctuations of the incoming objects, that is to say, to study more deeply
the structure of the vacuum.

Analytical approaches to QCD in this regime are based on a sophisticated handling of per-
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turbative expansions of observables in powers of the strong coupling constant s which, thanks
to asymptotic freedom, is justified for carefully chosen observables in special kinematical regimes.
Some sophistication is needed because in the evaluation of Feynman graphs, the coupling constant
always comes with “infrared” and “collinear” logarithms that are related to the phase space that is
available to the reaction, that is to say, to kinematics, and may easily push the effective coupling
to large values. Resumming part of these logarithms is mandatory. Resumming all of them is too
difficult. The question is to carefully select the dominant ones, and this is not at all easy.

An experimental facility able to investigate the high-energy regime of QCD was the HERA
collider, where electrons or positrons scattered off protons at the center-of-mass energy /s, ex-
changing a photon of virtuality (). Through the scattering, one could probe partonic fluctuations
of the proton (made of quarks and gluons) of transverse momenta k ~ @, and longitudinal mo-
mentum fractions z ~ Q%/(Q?* + s).

For a long time, the dominant paradigm had been that the collinear logarithms In Q?, that
become large when Q2 is large compared to the QCD confinement scale A2, were the most impor-
tant ones. As a matter of fact, searches for new particles or for exotic physics require to scrutinize
matter at very small distances, and hence very large Q2 have to be considered. Perturbative series
of powers of a, In Q2 have to be fully resummed. The equation that performs this resummation is
the celebrated Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [3-5].

However, once HERA had revealed its ability to get extremely good statistics in a regime in
which Q2 is moderate (from 1 to 100 GeV?) and x very small (down to 10~°) it became clear
that infrared logarithms (In1/x) could show up and even dominate the measured observables.
The resummation of the series of infrared logs is performed by the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation [6-8]. The series > (asIn1/x)* (with appropriate coefficients) is the leading
order (LO), while the series Y as(asIn1/x)* is the next-to-leading order (NLO), which has also
been computed [9,10]. The BFKL equation is a linear integro-differential equation.

At ultrahigh energy, the bare BFKL equation seems to violate the Froissart bound, that states
that total hadronic cross-sections cannot rise faster than (In?s)/m?2. The latter is a consequence
of the unitarity of the probability of scattering. The BFKL equation predicts a power rise with the
energy of the form s°, where ¢ is positive and quite large (0.3 to 0.5 according to the effective value
of o, that is chosen). The point at which the BFKL equation breaks down depends on the value
of the typical transverse momentum which characterizes the observable (It is the photon virtuality
Q in the case of deep-inelastic scattering). One may define the energy-dependent saturation scale
Qs(x) in such a way that the BFKL equation holds for @ > Q4(x). For Q ~ Qs(z), the probability
for scattering to take place is of order 1, and for @ < Qs(x), it would be larger than 1 if one trusted
the BFKL equation. The saturation scale is a central observable, which we shall keep discussing
in this review: It signs the point at which the linear (BFKL) formalism has to be corrected for
nonlinear effects. The regime in which nonlinearities manifest themselves is a regime of strong
color fields, sometimes called the color glass condensate (For the etymology of this term, see e.g.
the lectures of Ref. [11]; for a review, see Ref. [12]).

The fact that unitarity is violated is not only due to the lack of a hadronic scale in the BFKL
equation, which is a perturbative equation; Introducing confinement in the form of a cutoff would
not help this particular problem: The violation of unitarity which we are talking about occur at
small distances. It is just that still higher orders are needed. The NLO corrections to the BFKL
kernel indeed correct this behavior in such a way that the description of the HERA data in the
small-z regime is possible by the BFKL equation. However, these corrections are not enough to
tame the power-like growth of cross-sections as predicted by the LO BFKL equation. It seems
that a resummation of contributions of arbitrary order would be needed.

New equations were proposed well before the advent of colliders able to reach this regime.
Gribov-Levin-Ryskin wrote down a model for the evolution of the hadronic scattering cross-sections
in the early 80’s [13,14], and Mueller and Qiu derived a similar equation from QCD a bit later
[15]. These equations are integral evolution equations with a nonlinear term, which basically
takes into account parton saturation effects, that is to say, recombination or rescattering. The
latter cannot be described in a linear framework such as the BFKL formalism. Subsequently,
more involved QCD evolution equations were derived from different points of view. In the 90’s,
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McLerran and Venugopalan [16-18] proposed a first model, mainly designed to approach heavy-ion
collisions. Later, Balitsky [19], Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and Kovner
(B-JIMWLK) [20-24] worked out QCD corrections to this model, and got equations that reduce to
the BFKL equation in the appropriate limit. Technically, these equations actually have the form
of an infinite hierarchy of coupled integro-differential equations (in Balitsky’s formulation [19]), of
a functional renormalization group equation, or alternatively, of a Langevin equation (in Weigert’s
formulation [24]). A much simpler equation was derived in 1996 by Balitsky [19] and rederived
by Kovchegov in 1999 [25,26] in a very elegant way within a different formalism. The obtained
equation is called the Balitsky-Kovchegov equation (BK). The latter derivation was based on
Mueller’s color dipole model [27], which proves particularly suited to represent QCD in the high-
energy limit.

The exciting feature of this kinematical regime of hadronic interaction from a theoretical point
of view is that the color fields are strong, although, at sufficiently high energies, the QCD coupling
is weak, authorizing a perturbative approach, and thus some of the analytical calculations out-
lined above. In such strong field regime, nonlinear effects become crucial. But the conditions of
applicability of the different equations that had been found had never been quite clear. Anyway,
these equations are extremely difficult to solve, which had probably been the main obstacle to
more rapid theoretical developments in the field until recently.

Furthermore, for a long time, the phenomenological need for such a sophisticated formalism was
not obvious, since linear evolution equations such as the DGLAP equation were able to account for
almost all available data. But Golec-Biernat and Wiisthoff showed that unitarization effects may
have already been seen at HERA [28,29]. Their model predicted, in particular, that the virtual
photon-proton cross-section should only depend on one single variable 7, made of a combination of
the transverse momentum scale (fixed by the virtuality of the photon @) and z. This phenomenon
was called “geometric scaling” [30]. It was found in the HERA data (see Fig. 1.1): This is maybe
one of the most spectacular experimental result from HERA in the small-z regime.

This observation has triggered many phenomenological and theoretical works. Soon after
its discovery in the data, geometric scaling was shown to be a feature of some solutions of the
Balitsky-Kovchegov (BK) equation, essentially numerically, with some analytical arguments (see
e.g. [32-35]). The energy dependence of the saturation scale was eventually precisely computed by
Mueller and Triantafyllopoulos [36]. Later, it was shown that the BK equation is actually in the
universality class of the Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation [37,38], and
geometric scaling was found to be implied by the fact that the latter equation admits traveling-wave
solutions [39].

A first step beyond the BK equation, in the direction of a full solution to high energy QCD,
was taken by Mueller and Shoshi in 2004 [40]. Actually, they did not solve the B-JIMWLK
equations, which would be the natural candidate for a complete theory. Instead, they solved
the linear BFKL equation with two absorptive boundary conditions, which they argued to be
appropriate to represent the expected nonlinearities. Geometric scaling wiolations were found
from their calculation, which should show up at any energies.

Subsequently, it was shown that high-energy QCD at fixed coupling is actually in the univer-
sality class of reaction-diffusion processes, studied in statistical physics, whose dynamics may be
encoded in equations similar to the stochastic FKPP equation [41]. The Mueller-Shoshi solution
was shown to be consistent with solutions to the latter equation. So high-energy QCD seems to be
in correspondence with disordered systems studied in statistical physics. This correspondence has
provided a new understanding of QCD in the high-energy regime, and it has proven very useful
to find more features of high-energy scattering.

Outline of this memoir. The next chapter is devoted to describing scattering in QCD from
a s-channel point of view, relying essentially on the parton model or, rather, on a realization
useful in the high-energy limit, the color dipole model. Once this picture is introduced, it is
not difficult to understand the correspondence with reaction-diffusion processes occuring in one
spatial dimension, whose dynamics is captured by equations in the universality class of the Fisher-
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Figure 1.1: [From Ref. [31]] Photon-proton total cross-section from the most recent set of deep-
inelastic scattering data in the low-z regime plotted as a function of a single scaling-variable
7 = Q?/Q%(x), where Q is the virtuality of the photon and Q?(x) ~ A%2z~°3 is the so-called
saturation scale. Although the cross-section is a priori a function of two variables, all data fall on
the same curve. This phenomenon is called geometric scaling and was discovered in Ref. [30].
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Kolmogorov-Petrovsky-Piscounov (FKPP) equation. We then explain how traveling waves appear
in this context. In Chap. 3, we study in greater detail a toy model for which many technics (field
theory, statistical methods) may be worked out completely. This model however ignores spatial
dimensions, and thus, does not account for traveling waves. We summarize the state-of-the-art
research on equations in the universality class of the FKPP equation in Chap. 4. We then come
back to QCD, discussing the issue of the impact parameter. This will lead us to introduce new
models beyond the simple one-dimensional reaction-diffusion type models (Chapter 5). Finally,
we will show how noisy traveling waves may show up in the actual data.

Over the last few years, several hundreds of papers have appeared related to this subject,
mainly issued from a very active though restricted community. Obviously, this memoir cannot
give a complete account of this abundant literature. As a matter of fact, some important recent
developments had to be left out. Concerning the correspondence itself, we do not attempt to
establish a definite stochastic nonlinear evolution equation for QCD amplitudes, for to our judge-
ment, this research line is not mature enough yet: A better understanding of the very saturation
mechanism at work in QCD is definitely needed before one may come to this issue. Furthermore,
it is not clear to us that a stochastic formulation would be a technical progress, since there are
not many known methods to handle complicated stochastic equations. We feel that the same is
true for the search for effective actions that would include so-called Pomeron loops. We also do
not address the developments based on the boost-invariance symmetry that scattering amplitudes
should have: This would drive us too far off the main focus of this review. As for more phenomeno-
logical aspects, we only discuss the basic features of total cross-sections without attempting to
address other observables such as diffraction. We do also not address the issue of next-to-leading
effects such as the running of the QCD coupling. This discussion, though crucial if one wants
to make predictions for actual colliders, would probably only be technical in its nature: There is
no conceptual difference between the fixed coupling and the running coupling cases. Here, only
basic phenomenological facts brought about by this new understanding of high-energy QCD are
addressed, namely geometric scaling and diffusive scaling.



Chapter 2

Hadronic interactions and
reaction-diffusion processes

We shall introduce here the physical picture of high-energy scattering in the parton model. In
the first section, the color dipole model [27] is described since it is particularly suited to address
high-energy scattering, especially close to the regime in which nonlinear effects are expected to play
a significant role. In a second section, we shall argue that high-energy scattering is a peculiar
reaction-diffusion process.

Contents
2.1 Parton model and dipoles . . .. .. .. ... 10
2.1.1 General picture . . . . ... 10
2.1.2 BFKL equation from the dipole model . . . . . . . . ... ... ... .. 11
2.1.3  Unitarity and the Balitsky-Kovchegov equation . . . . . . ... ... .. 14
2.1.4 The B-JIMWLK formalism . . . . . . .. ... ... ... .. ...... 16
2.1.5  Saturation . . . . ... ...l 17
2.1.6 The Pomeron language . . . . . . . .. . ... ... L. 18
2.2 Analogy with reaction-diffusion processes . . . . . .. ... ... ... 21
2.2.1 The BK equation and the FKPP equation . . . . . .. ... ... .... 21
2.2.2  Reaction-diffusion processes: an example . . . . . . .. ... ... ... 22
2.2.3  Universality class of high-energy QCD . . . . . . ... ... ... .... 24

2.1 Parton model and dipoles

2.1.1 General picture

For definiteness, let us consider the scattering of a hadronic probe off some given target, in the
restframe of the probe and at a fixed impact parameter, that is to say, at a fixed distance between
the probe and the center of the target in the two-dimensional plane transverse to the collision
axis. In the parton model, the target interacts through one of its quantum fluctuations, made
of a high-occupancy Fock state if the energy of the reaction is sufficiently high (see Fig. 2.1a).
As will be understood below, the probe effectively “counts” the partons in the Fock state of the
target whose transverse momenta k (or sizes r ~ 1/k) are of the order of the momentum that
characterizes the probe: The amplitude for the scattering off this particular partonic configuration
is proportional to the number of such partons.

The observable that is maybe the most sensitive to quantum fluctuations of a hadron is the
cross-section for the interaction of a virtual photon with a hadronic target such as a proton or a

10
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nucleus. The virtual photon is emitted by an electron (or a positron). What is interesting with this
process, called “deep-inelastic scattering”, is that the kinematics of the photon is fully controlled by
the measurement of the scattered electron. The photon can be considered a hadronic object since
it interacts through its fluctuations into a quark-antiquark state. The latter form a color dipole
since although both the quark and the antiquark carry color charge, the overall object is color
neutral due to the color neutrality of the photon. The probability distribution of these fluctuations
may be computed in quantum electrodynamics (QED). Subsequently, the dipole interacts with the
target by exchanging gluons. The dipole-target cross-section factorizes at high energy. One typical
event is depicted in Fig. 2.1a.

Dipole models [42, 43] have become more and more popular among phenomenologists since
knowing the dipole cross-section enables one to compute different kinds of observables. Like
parton densities, the latter is a universal quantity, that may be extracted from one process and
used to predict other observables. Different phenomenological models may be tried for the dipole
cross-section. QCD evolution equations may even be derived, as we shall explain below. A critical
recent study of the foundations of dipole models may be found in Ref. [44,45].

In QCD, the state of a hadronic object, encoded in a set of wave functions, is built up from
successive splittings of partons starting from the valence structure. This is visible in the example of
Fig. 2.1a: The quark and the antiquark that build up, in this example, the target in its asymptotic
state each emit a gluon, which themselves emit, later on in the evolution, other gluons. As one
increases the rapidity y by boosting the target, the opening of the phase space for parton splittings
makes the probability for high occupation numbers larger. Indeed, the probability to find a gluon
that carries a fraction z (up to dz) of the momentum of its parent parton (which may be a quark
or a gluon) is of order asN.dz/z for small z (N, is the number of colors; N. = 3 in real-life QCD).
As we see, there is a logarithmic singularity in z, meaning that emissions of very soft gluons (small
z) are favored if they are allowed by the kinematics. The splitting probability is of order 1 when
the total rapidity of the scattering y = In1/z is increased by roughly 1/& (the convenient notation
@ = asN./m has been introduced). Only splittings of a quark or of a gluon into a gluon exhibit the
1/z singularity. Therefore, at large rapidities, gluons eventually dominate the partonic content of
the hadrons.

The parton model in its basic form, where the fundamental objects of the theory (quarks and
gluons) are directly considered, is not so easy to handle in the high-energy regime. One may
considerably simplify the problem by going to the limit of a large number of colors (N, > 1), in
which a gluon may be seen as a zero-size quark-antiquark pair. Then, color-neutral objects become
collections of color dipoles, whose endpoints consist in “half gluons” (see Fig. 2.1b). There is only
one type of objects in the theory, dipoles, which simplifies very much the picture. Furthermore,
going to transverse coordinate space (instead of momentum space, usually used in the DGLAP
formalism) by trading the transverse momenta of the gluons for the sizes of the dipoles (through an
appropriate Fourier transform) brings another considerable simplification. Indeed, the splittings
that contribute to the amplitudes in the high-energy limit are the soft ones, for which the emitted
gluons take only a small fraction of the momentum of their parent, the latter being very large.
Therefore, the positions of the gluons, and thus of the edges of the dipoles, in the plane transverse
to the collision axis are not modified by subsequent evolution once the gluons have been created.
Thus, the evolution of each dipole proceeds through completely independent splittings to new
dipoles.

We will now see how this picture translates into a QCD evolution equation for scattering
amplitudes, first in the regime in which there are no nonlinear effects. In a second step, we will
try and understand how to incorporate the latter.

2.1.2 BFKL equation from the dipole model

The building up of the states of each hadron is specified by providing the rate at which a dipole
whose endpoints have transverse coordinates (xg,z1) splits into two dipoles (zg, 22) and (z2,21)
as the result of a gluon emission at position zo when the rapidity of the initial dipole is increased.

11
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Figure 2.1: (a) The scattering of a virtual photon probe off a particular fluctuation of an evolved
target made of a quark and an antiquark in its bare state. The photon necessarily goes through
a quark-antiquark pair at high enough energies, when the target is dominated by dense gluon
states. (What is represented in this figure is actually the inelastic amplitude, which is a cut of the
total cross-section or of the forward elastic amplitude). (b) In the dipole model, the probe and
the target may be represented by sets of color dipoles, and the interaction proceeds through gluon
exchanges. It is now the elastic amplitude that is represented. The curly vertical lines represent
2-gluon exchanges between pairs of dipoles.

It is computed in perturbative QCD and reads [27]

dP |£E0 — .’E1|2 d2x2
_— = . 2.1
d(&y) (xo1 = Zo2, T12) (2.1)

" |wo — w22z — 22]? 27
Thanks in particular to the large- N, limit, dipole splittings are independent. After some rapidity
evolution starting from a primordial dipole, one gets a chain of dipoles such as the one depicted
in Fig. 2.2.
The elementary scattering amplitude for one projectile dipole (2, 1) off a target dipole (zo, 21)
is independent of the rapidity and reads [27]

2.2
[0
Shl2

2 |x0—20|2\x1—21|2'

T |zg — 21|2|z1 — 202

T ((z0,71), (20, 21)) =

(2.2)

If the target is an evolved state at rapidity y, then it consists instead in a distribution n(y, (20, 21))
of dipoles. The (forward elastic) scattering amplitude A(y, (zo, 1)) is just given by the convolution
of n and T, namely

d220 d221

A(y, (w0, 71)) = WWTEI((JJO,M)’ (20, 21))n(y, (20, 21))- (2.3)

Let us examine the properties of 7. To this aim, it is useful to decompose the coordinates of
the dipoles in their size vector r, = xg — z1 (resp. r, = zp — 21) and impact parameter b, = otz
(resp. by = %) In the limit in which the relative impact parameters of the dipoles b = b, — by,

is very large compared to their sizes, we get the simplified expression

2,2
2TaTp

s b47

Tel(ra, 7, 0) ~

2.4
I7al, |7 <0] @4

and thus the scattering amplitude decays fast as a function of the relative impact parameter. If
instead the relative impact parameter is small (of the order of the size of the smallest dipole), we
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Figure 2.2: Schematic picture of a realization of the dipole evolution after the first two steps of
the evolution ((a) and (b)), and after some larger rapidity evolution (c). In the first step (a), the
initial dipole (zo, z1) (denoted by a dashed line) splits to the new dipoles (zg, x2) and (z2, 1) (full
lines). The points represent the edges of each dipole, that is to say, the position of the gluons. In
the next step (b), the dipole (z2, x1) itself splits in two new dipoles. The splitting process proceeds
(c) until the maximum rapidity is reached. Many very small dipoles are produced in the vicinity of
each of these endpoints, due to the infrared singularity visible in Eq. (2.1) (Only a fraction of them
is represented). The zones 1 and 2 in (c), separated by the transverse distance Ab, would evolve
quasi-independently after the stage depicted in this figure when saturation effects are included
(See Sec. 5.1 for the corresponding discussion).

13



CHAPTER 2. HADRONIC INTERACTIONS AND REACTION-DIFFUSION PROCESSES

get for disymmetric sizes

T (ra,rpb)  ~  alls, (2.5)

[Tal,lmpl~b] " TS

where r~ = min(|r,|, |rp|), 7> = max(|ry|, |rs|), and where the integration over the angles has been
performed.

Equation (2.4) means that the dipole interaction is local in impact parameter: It vanishes as
soon as the relative distance of the dipoles is a few steps in units of their size. Eq. (2.5) shows
that only dipoles whose sizes are of the same order of magnitude interact. These properties are
natural in quantum mechanics. Thus the amplitude A in Eq. (2.3) effectively “counts” the dipoles
of size of the order of |z¢1| at the impact parameter 22221 (up to |zo1| = |z — 21]), with a weight
factor a?.

An evolution equation for the amplitude A with the rapidity of the scattering can be estab-
lished. It is enough to know how the dipole density in the target evolves when rapidity is increased,
since all the rapidity dependence is contained in n in the factorization (2.3), and such an equation
may easily be worked out with the help of the splitting rate distribution (2.1). It reads [27]

on(y, (zo, 1)) :/d2x2 \x01|2

a(dy) 2 |5L‘02‘2|{E12|2

where x4, = z, — xp. The very same equation holds for A. The elementary scattering amplitude
T°' only appears in the initial condition at y = 0, which is not shown in Eq. (2.6).

In a nutshell, the integral kernel encodes the branching diffusion of the dipoles. The total
number of dipoles at a given impact parameter grows exponentially, and their sizes diffuse. The
appropriate variable in which diffusion takes place is In(1/|zo1]?). (This is due to the collinear
singularities in Eq. (2.1).) Equation (2.6) is nothing but the BFKL equation. A complete solution
to this equation, including the impact-parameter dependence, is known [46].

An important property of the amplitude A is that it is boost-invariant. This property is
preserved in the BFKL formulation. We could have put the evolution in the projectile instead
of the target, or shared it between the projectile and the target: The result for the scattering
amplitude would have been the same. In a frame in which the target carries ¢’ units of rapidity
and the projectile y — 3/, the amplitude A reads

[n(y, (x0, 2)) + n(y, (x2,21)) = n(y, (xo,21))],  (2.6)

2 2 20 g2/
d*zod“z1 d 20 d 21 nprojectile(

2 27 27 27

y =, (20, 21)| (20, 71))

Aly, (z0,01)) = /
X T (20, 21), (24, )08y (2, 20). (27)

pProjectile (ol (24, 21)| (20, 1)) is the density of dipoles (zp, z1) found in a dipole of initial size
(0, x1) after evolution over y — 3’ steps in rapidity. If 4/ = y, one recovers Eq. (2.3). If ¢ =0,
then all the evolution is in the projectile instead.

The amplitude A is related to an interaction probability, and thus, it must be bounded: In
appropriate normalizations, A has to range between 0 and 1. But as stated above, the BFKL
equation predicts an exponential rise of A with the rapidity for any dipole size, which at large ra-
pidities eventually violates unitarity. Hence the BFKL equation is not the ultimate representation
of high-energy scattering in QCD.

2.1.3 Unitarity and the Balitsky-Kovchegov equation

It is clear that one important ingredient that has been left out in the derivation of the BFKL
equation is the possibility of multiple scatterings between the probe and the target. Several
among the nProjectile dipoles in Eq. (2.7) may actually interact with the n'@¢* dipoles in the other
hadron simultaneously. The only reason why such interactions may not take place is that 7 ~ a2
(see Eq. (2.2)), and thus the probability for two simultaneous scatterings is of order o, which is

parametrically suppressed. But this argument holds only as long as the dipole number densities
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Xo

S(y.(%, .%,))
X,

S(Ya(xz X ))
X

Figure 2.3: Derivation of the Balitsky-Kovchegov equation.

are of order 1. If n ~ 1/a2 (which is also the point above which the unitarity of A is no longer
preserved in the BFKL approach), then it is clear that multiple scatterings should occur.

In order to try and implement these multiple scatterings, we introduce the probability that
there be no scattering between a dipole (z¢, z1) and a given realization of the target in a scattering
with total rapidity y, that we shall denote by S(y, (zo,x1)). Let us start with a system in which the
evolution is fully contained in the target. We increase the total rapidity by boosting the projectile
(initially at rest) by a small amount dy. Then there are two cases to distinguish, depending on
whether the dipole (zg, 1) splits in the rapidity interval dy. In case it splits into two dipoles
(zo,22) and (z2, 1), the probability that the projectile does not interact is just the product of the
probabilities that each of these new dipoles do not interact. This is because once created, dipoles
are assumed to be independent. In summary:

S(y, (xo, ith proba 1 — ady [ -2 (z01 — wos,
S(y + dy, (z0, 1)) z{ (v, (w0, @1)) with proba 1 - ady J,, 3(ay (vo1 = 702, 212) (2.8)

S(y, (w0, 22))S(y, (v2,21)) with proba adyzdis (w1 — o2, 712)
Taking the average over the realizations of the target and the limit dy — 0, we get

a d2 2
5y (S (w0, 7)) = =2 0

5 (S, (v0, 2))S(y, (22, 21))) — (S(y, (w0, 21)))]  (2.9)

2
2m afyy,

(See Fig. 2.3 for a graphical representation.) We see that this equation is not closed: An evolution
equation for the correlator (S(y, (zo, z2))S(y, (v2,x1))) is required. However, we may assume that
such correlators factorize in the following sense:

(S(y, (w0, 22))S(y, (w2, 21))) = (S(y; (20, 22))) (S (y; (x2,21)))- (2.10)

This assumption is justified if the dipoles scatter off uncorrelated targets, for example, off different
nucleons of a very large nucleus. Writing A = 1 — (S), we get the following closed equation for A:

2 2
d*zo 3

[A(y; (x0,22)) + A(y, (22, 21))

— A(y, (zo, 1)) — Ay, (0, 22)) Ay, (x2,71))], (2.11)

(%A(ya (0, 1)) = 54/

2 2
2T TGy

which is the Balitsky-Kovchegov (BK) equation [25,26]. Note that if one neglects the nonlinear
term, one gets back the BFKL equation (2.6) (written for A instead of n). A graphical represen-
tation of this equation is given in Fig. 2.4.

It is not difficult to see analytically that the BK equation preserves the unitarity of A: When
A becomes of the order of 1, then the nonlinear term gets comparable to the linear terms in
magnitude, and slows down the evolution of A with y, which otherwise would be exponential.
Hence the solution of the BK equation will exhibit essentially two regimes: A BFKL regime of
low density in which A < 1 and in which the evolution proceeds linearly, and a high-density
regime A ~ 1. At fixed y, the transition between these two regimes is controlled by the so-called
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Figure 2.4: Picture of the BK equation. All the QCD evolution is put in the probe, which carries
the total rapidity. It develops a high occupancy state of dipoles, which scatter independently off
the target.

Xy X0

S(y.(%) X;))

X S(y, (%, X))
S(y.(x, %)) %2 .
S(y.(% %, )
X, X
(a) (b)

Figure 2.5: (a) Contribution to the B-JIMWLK equation for the 2-point correlator restricted to
dipoles (24 is taken equal to x5 in this figure). (b) A graph that would also contribute to the
2-point correlator and that is missing in the B-JIMWLK formalism.

saturation scale Q;(y), which is the inverse size of the dipoles which scatter with an amplitude A
equal to some fixed number of order 1, for example % (Qs also depends a priori on the impact
parameter, as will be discussed in Chap. 5).

Let us go back to Eqs. (2.8),(2.9) and instead of assuming the factorization of the correla-
tors (2.10), work out an equation for the two-point correlator (SS). From the same calculation as
before, we get

0 [ d%xs x(2)2
87y<50252/1> = a/ o 1%31%2 (<503532S2'1> - <50252/1>)

m/d%‘“’%’«s S31S02) — (SoaS21)),  (2.12)
o0 x%?)mgg’ 2/393102 020271 ) .

where we have introduced the notation S, = S(y, (24, 2p)). (See Fig. 2.5a for the corresponding
graphical representation.)

This equation calls for a new equation for the 3-point correlators, and so on. The obtained
hierarchy is nothing but the Balitsky hierarchy [19] (see also Ref. [47-49]) restricted to dipoles.

2.1.4 The B-JIMWLK formalism

For completeness, let us briefly mention the Balitsky-Jalilian Marian-Iancu-McLerran-Weigert-
Leonidov-Kovner (B-JIMWLK) formalism. It is a systematic approach beyond the large- N, limit,
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initially supposed to completely describe high-energy scattering under appropriate well-defined
approximations. (Nowadays, the status of this approach is less clear, as we shall discuss later on).
Instead of evolving dipole or parton number densities, B-JIMWLK evolves observables constructed
with the help of Wilson operators

U(z) = Pexp (igs / dzﬂAg(x)ta> (2.13)

where Aj is the color 4-potential over which one eventually averages to arrive at observables, ¢
the standard color matrics (fundamental representation), and g; = v/4ma, the coupling of the line
to the color field. The integration in the exponent goes along the trajectory of the quark whose
interactions are described by U, which is essentially a straight lightlike line at very high energies.
There are several equivalent ways to present this physics. Let us exhibit the so-called “Balitsky
hierarchy”, which is an infinite system of coupled integro-differential equations for the correlators
of U. In terms of the U’s, the S-matrix for dipole scattering off a particular field configuration
reads i
Sap = ~—TrU (24U (25). (2.14)
N,
The observables are the associated correlators: For example the dipole amplitude is obtained from
S by averaging over the color fields.
The first equation of the Balitsky hierarchy for the observable (Sp1) is identical to Eq. (2.9).
The second equation, needed to solve the first one, reads

0 (S02521) = 64/ sy { { o ((So3S32 — So2)S21) + o (S02(S03531 — Sm))}

Jy 2m L3313 L3373

+ L |:_ (.230 — .133) . (xl — 1‘3) _ 1 (33‘0 — 1‘3) . ($2 — .133) (1‘2 — l‘3) . (1‘1 — 1‘3):|
NZ (w0 — w3)?(x1 —3)% (22 —23)? (w0 — 23)%(w2 —x3)2 (w2 — x3)%(21 — 23)?

x u (Tr (U UL, UL, UL UL, US ) ) + Ni (Tr (U, UL, U, UL U, US )Y — 2501” (2.15)
The first line is the same as Eq. (2.12). The other terms involve sextupoles and are suppressed at
large-N.. Hence in the dipole approximation, we recover Eq. (2.12).

The factorized correlators (2.10) is a solution of the whole dipole hierarchy, and turn actually
out to be a good approximation to the solution of the full B-JIMWLK equations. This statement
was first made after the numerical solution to a version of the B-JIMWLK formalism was worked
out in Ref. [50]. We note however that the latter simulations did not cover a very large range
in rapidity, and therefore, they may have missed physical effects that would differentiate the full
B-JIMWLK equation from its approximate forms.

We may wonder why there are no terms involving one-point functions in the right-hand side of
the previous equation. Actually, such terms would correspond to graphs like the one of Fig. 2.5b,
in which, for example, two dipoles merge. They are expected to occur if saturation is properly
taken into account. While the restriction of the Balitsky equation to dipoles does a priori not
drastically change the solution for the scattering amplitudes, such terms would instead have a
large effect, as we shall discover in the next section. To simplify the discussion, we will stick to
the dipole approximation, which leads to the evolution equations (2.9),(2.12).

2.1.5 Saturation

The BK equation may be well-suited for the ideal case in which the target is a nucleus made of
an infinity of independent nucleons. But it is not quite relevant to describe the scattering of more
elementary objects such as two dipoles (or two virtual photons, to be more physical).

Indeed, following Chen and Mueller [51] (see also Ref. [52]), let us consider dipole-dipole
scattering in the center-of-mass frame, where the rapidity evolution is equally shared between the
projectile and the target (see Fig. 2.6a). Then at the time of the interaction, the targets are
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dipoles that stem from the branching of a unique primordial dipole. Obviously, the assumption of
statistical independence of the diffusion centers, which was needed for the factorization (2.10) to
hold, is no longer justified.

So far, we have seen that nonlinear effects which go beyond the factorization formula (2.7) are
necessary to preserve unitarity as soon as n ~ 1/a2. This came out of an analysis of Eq. (2.7)
in the restframe of the target. The rapidity yprki, at which the system reaches this number of
dipoles and hence at which the BFKL approach breaks down may be found from the form of the
typical growth of n with y, namely n(y) ~ e®¥. Parametrically,

1 1
YBFKL ™~ a In —. (2.16)

af

Now we may go to the center-of-mass frame, where Eq. (2.7) with ' = y/2 would describe the
scattering amplitude in the absence of nonlinear effects. There, the typical number of dipoles in
the projectile and in the target are well below 1/a2: n(yprkL/2) ~ 1/as. We actually see that the
evolution of the dipoles in each of theses systems remains linear until ¥y = 2ygrky,. In that rapidity
interval, nonlinear effects consist in the simultaneous scatterings of several dipoles from the target
and the projectile but the evolution of n still obeys the BFKL equation. Now, performing a boost
to the projectile restframe, the evolution goes into the target. Formula (2.3) should then apply
for the amplitude A. But if the evolution of the target were kept linear, then the amplitude would
break unitarity because the number of dipoles would be larger than 1/a2. Hence, through some
nonlinear mechanism, which was represented by multiple scatterings between linearly evolving
objets in the center-of-mass frame, the dipole number density has to be kept effectively lower
than 1/a? in order to preserve unitarity. This is called parton saturation. The precise saturation
mechanism has not been formulated in QCD. It could be dipole recombinations due to gluon
fusion, multiple scatterings inside the target which slow down the production of new dipoles [53],
“dipole swing” as was proposed more recently [54,55], or any other mechanism. Some of these
mechanisms may be implemented in simplified toy models; see Chap. 3.

Hence, unitarity of the scattering amplitudes together with boost-invariance seem to require
some sort of saturation of the density of partons. It is not clear whether such a mechanism is
included in the B-JIMWLK formalism, since the latter is not obviously boost-invariant. What is
clear is that some saturation mechanism lacks in the dipole model.

A pedagogical review of saturation and the discussion of the relationship between saturation
and unitarity may be found in Ref. [56]. Original papers include Refs. [57,58].

Visualizing saturation: Evolution in different models

We now wish to illustrate how the different schemes of unitarization (BK unitarization, multiple
scatterings in the center-of-mass frame, explicit parton number saturation) affect the evolution of
scattering amplitudes.

In Fig. 2.7, we plot the S-matrix element at different rapidity and as a function of the (loga-
rithmic) dipole size resulting from the evolution of toy models with dynamics similar to QCD (The
use of such models will be justified later, when we will establish the correspondence of high-energy
QCD with more general processes). We see that S goes to zero in a region of sizes that extends
with rapidity. This phenomenon is slower when there are saturation effects explicitly included in
the evolution, as discussed above in this section.

2.1.6 The Pomeron language

So far, we have presented in detail a s-channel picture of hadronic interactions, and it is in this
formalism that we will understand most easily the link with reaction-diffusion processes. In the
s-channel formulation, all the QCD evolution happens in the form of quantum fluctuations of
the interacting hadrons. However, a picture maybe more familiar to the reader belonging to the
“traditional” QCD community is a t-channel picture, where the rapidity evolution is put in the
t-channel, while the projectile and target stay in their bare states. This picture directly stems
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Figure 2.6: (a) Scattering in the dipole model in the center-of-mass frame. The evolution is shared
between the target and the probe. The amplitude is unitarized through the multiple scatterings
occurring between the two evolved wave-functions. (b) Boost of the previous graph to the restframe
of the projectile. There is now twice as much evolution in the target and the nonlinear effects
should occur inside its wave-function, in the course of the evolution. They may take the form of
“Internal” rescatterings (as depicted), or dipole merging...

\ [
Unitarized - LAB —-<--
1.2 COM ----o---- |
Saturation

Figure 2.7: [From Ref. [59]] S-matrix element as a function of the logarithm of the dipole size
for y = 5,10,20,30 (from the center of the figure towards the outskirts). 1/a? = 20. For low
rapidities (y = 5 and y = 10), the evolution is linear (of BFKL type). At y = 20, the unitarity
limit has been reached in all calculations (S becomes zero in some region of sizes). Later (y = 30),
the region in which S = 0 propagates outwards. Different unitarization mechanisms are tested:
simple BK unitarization (“Unitarized-LAB”), center-of-mass unitarization (“COM”) and intrinsic
saturation.
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diagrams

Figure 2.8: The BFKL Pomeron is a sum of ¢-channel gluon Feynman diagrams.

(a) (b)

Figure 2.9: (a) Example of a diagram contributing to the BK equation in the ¢-channel represen-
tation (see Fig. 2.4). The dashed lines represent Pomerons. The rapidity is proportional to the
length of the Pomeron lines in the ¢-channel. (b) Pomeron representation of a class of diagrams
to which Fig. 2.6a belongs.

from the usual Lorentz-invariant formulation of quantum field theory, while the dipole picture (or
the parton model) is derived in the framework of time-ordered perturbation theory.

Both pictures have their respective advantages and drawbacks. The covariant formulation
seems to be more suited for higher-order systematic calculations, since for a given observable the
number of diagrams is smaller than in the time-ordered (s-channel) formalism. The time-ordered
formalism seems unpractical beyond the tree-level approximation. On the other hand, the latter
gives maybe a more intuitive picture of scattering processes and seems to be particularly useful to
study the approach to unitarity.

In the t-channel picture, classes of Feynam diagrams can be grouped into “Pomerons” (or
Reggeized gluons, see Fig. 2.8), in terms of which scattering processes may be analyzed. (A
pedagogical review on how to derive the BFKL equation in such a formalism is available from
Ref. [60]). An effective action containing Pomeron fields and Pomeron vertices may be constructed.
In these terms, the s-channel diagrams of Fig. 2.4 and 2.6a may be translated in terms of the
diagrams of Fig. 2.9. The effective action formalism was initially developped in Refs. [61-63].
More recently, there has been some progress in the definition of the effective action [64], some of
it with the help of the correspondence with statistical physics processes [65,66].
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We will not expand on this formulation in the present review, because it is difficult to see the
analogy with statistical physics in this framework. A s-channel picture is much more natural.
However, a full solution of high-energy QCD may require to go back to that kind of calculation
and compute accurately the 1 — n Pomeron vertices. This program was formulated some time
ago [67,68], and there is continuing progress in this direction (see e.g. [69,70]).

2.2 Analogy with reaction-diffusion processes

We are now in position to draw the relationship between high-energy QCD and reaction-diffusion
processes. In the first section below, we will show that the BK equation is, in some limit, an
equation that also appears in the context of statistical physics. Second, we will exhibit a simple
reaction-diffusion model, and show in the final section how this model is related to scattering in
QCD, even beyond the approximations implied in the BK equation.

2.2.1 The BK equation and the FKPP equation

Let us first show at the technical level that under some well-controlled approximations, the BK
equation (2.11) may be mapped exactly to a parabolic nonlinear partial differential equation. This
observation was first made in Ref. [39].

To simplify, we will look for impact-parameter independent solutions: A(y, (zg, 1)) is assumed
to depend on y and xp; only, not on ””OJQF“. We switch to momentum space through the Fourier
transformation

Aly, k) = %ei%‘nA(y 2o1) (2.17)
) 27_‘_3:(2)1 s 401)- .

This transformation greatly simplifies the BK equation [25,26]. It now reads
Day Ay, k) = X(—Om2) Ay, k) — A%(y, k). (2.18)

The first term on the right-hand side, which is a linear term, is actually an integral transform
whose kernel, obtained by Fourier transformation of the BFKL kernel (first three terms on the
right-hand side of Eq. (2.11)). It is most easily expressed in Mellin space since the powers k=27
are its eigenfunctions, with the corresponding eigenvalues

x(v) = 2¢(1) = ¥(y) — (1 — 7). (2.19)

This kernel may be expanded around some real v = g, fixed between 0 and 1. Keeping the terms
up to O((y — 70)?) is the well-known diffusive approximation, which is a good approximation at
"o—

large rapidities. Introducing the notations xo = x(v0), X6 = X' (70) and x§ = x”(7), the BK
equation reads

OayA = X022 A+ (Yox0 — X0)Omr2 A+ (Xo — Y0X4 + @)A - A% (2.20)

Through the linear change of variable (ay,Ink?) — (¢, ),

B t
ay = 77
Xo — Yoxh + 138
_ L (2.21)
k2 — Xo v YoXo — Xo ¢
2(x0 — Y+ 2l . 1 éxy
X0 — Y0Xo) + Y5 X0 Xo — YoXo + %

one may get rid of the first-order partial derivative in the right handside. We then find that the

rescaled function
A(y(t), Ink*(t, x))

/ 2. 11
Xo — YoXxo + o5

u(t,z) = (2.22)
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obeys the equation

Ou(t,z)  d%u(t,x)

ot 022

which is the Fisher [37] and Kolmogorov-Petrovsky-Piscounov [38] (FKPP) equation. This equa-
tion was first written down as a model for gene propagation in a population in the limit of large
number of individuals. But it turns out to apply directly or indirectly to many different physical
situations, such as reaction-diffusion processes, but also directed percolation, and even mean-field
spin glasses [71]. A recent comprehensive review on the known mathematics and the phenomeno-
logical implications of the FKPP equation can be found in Ref. [72].

As a side remark, we note that if v is chosen such that the equation x(v0) = vox'(70) is
verified, then the mapping drastically simplifies. Actually, this choice has a physical meaning, as
we will discover in Chap. 4 when we try and solve the BK equation.

Beyond the exact mapping (2.23) between an approximate form of the BK equation and the
FKPP equation, the full BK equation is said to be in the universality class of the FKPP equation.
All equations in this universality class share some common properties, as will be understood below.
The exact form of the equation is unessential. As a matter of fact, recently, it has been checked
explicitly that the BFKL equation with next-to-leading order contributions to the linear evolution
kernel (but keeping the QCD coupling fixed) is also in the same universality class. A mapping to a
partial differential equation (which involves higher-order derivatives in the rapidity variable) was
exhibited [73]. What defines physically the universality class of the FKPP equation is a branching
diffusion process with some saturation mechanism. The details seem unimportant.

We must however keep in mind that there is for the time being no theorem that would clearly
state the necessary and sufficient conditions for a model to belong (or not) to the universality class
of the FKPP equation: Our statements are nothing but conjectures, supported by arguments and
checked against numerical simulations.

In the next section, we shall give a concrete example of a reaction-diffusion process: We will
see how the FKPP equation appears as a fluctuationless (or “mean-field”) limit of some stochastic
reaction-diffusion process. In Ref. [39], it had not been realized that the analogy of QCD with
such processes is in fact much deeper than the formal mapping between the BK equation and the
FKPP equation that we have just outlined. But this is actually the case, as we shall shortly argue.

+u(t,z) — u?(t, z), (2.23)

2.2.2 Reaction-diffusion processes: an example

We consider the reaction-diffusion model which was introduced in Ref. [74]. Tt consists in a set
of particles which are evolving in discrete time on a one-dimensional lattice. The following rules
define the dynamics of the system: At each timestep, a particle may jump to the nearest position
on the left or on the right with respective probabilities p; and p,., and may split into two particles
with probability \. We also allow each of the n(¢,z) particles on site z at time ¢ to die with
probability An(¢,z)/N.

We can guess what a realization of this evolution may look like at large times. The particles
branch and diffuse (they undergo an evolution which can be represented by a linear finite difference
equation) until their number n becomes of the order of N, at which point the probability that
they “die” starts to be sizable, in such a way that their number never exceeds N by a large
amount, on any site. If the initial condition is spread on a finite number of lattice sites, the linear
branching-diffusion process may always proceed towards larger values of ||, where there were no
particles in the beginning of the evolution. Hence after some lapse of time (typically larger than
In N) a realization will look like a double front connecting an ensemble of lattice sites where a
quasi-stationary state in which the number of particles is N (up to fluctuations) has been reached,
to an ensemble of empty sites. One front will move towards * — +oo, the other one towards
x — —oo as the branching diffusion process proceeds. Let us focus on the front traveling to the
right. The position of the front X (¢) may be defined in different ways, leading asymptotically to
equivalent determinations, up to a constant. For example, one may define X (¢) as the rightmost
bin in which there are more than N/2 particles, or, alternatively, as the total number of particles
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CHAPTER 2. HADRONIC INTERACTIONS AND REACTION-DIFFUSION PROCESSES

Figure 2.10: Picture of a realization of the system of particles at two successive times. In the
bins in which the number of particles is of order N, some particles disappear, others are created
by splittings, but overall the number of particles is conserved up to fluctuations of order v/N. In
the bins in which n is small compared to N, the dynamics is driven by branching diffusion. As a
result, n(t, z) looks like a noisy wave front moving to the right.

in the realization whose positions are greater than 0, scaled by 1/N. A realization and its time
evolution is sketched in Fig. 2.10.

Between times ¢ and t + At, n;(t, ) particles out of n(t,xz) move to the left and n,.(¢,z) of
them move to the right. Furthermore, n (¢, x) particles are replaced by their two offspring at x,
and n_(t,z) particles disappear. Hence the total variation in the number of particles on site x
reads

n(t+ At,x) —n(t,z) = —ny(t, ) — n.(t,2) —n_(t, x)
+ng(t,x) +n(t,z + Az) + n.(t,x — Ax). (2.24a)
The numbers describing a timestep at position xz have a multinomial distribution:

n!

P({niyne,msin}) = A (/N )™ (1= —pr — A= An/N)A",  (2.24b)

n
mnng n_1An! !
where An =n —n; —n, —n4 —n_, and all quantities in the previous equation are understood at
site x and time ¢. The evolution of w = n/N is obviously stochastic. One could write the following
equation:

u(t + At,x) = (u(t+At2)) + /(W2(t+ A ) — (u(t+At, x))2 v(t + At, ) (2.25)

where the averages are performed over the time step that takes the system from ¢ to ¢ + At. They
are conditioned to the value of v at time ¢. v is a noise, i.e. a random function. The equation was
written in such a way that it has zero mean and unit variance. Note that the noise is updated at
time ¢ + At in this equation.

One can compute the mean evolution of u = n/N in one step of time which appears in the
right-hand side of Eq. (2.25) from Eq. (2.24). It reads

(ult+ At ) {ult, 2)}) =u(t, 2)+plu(t, 7+ Az) —u(t, 2)]
+prlu(t,z—Azx) —u(t, )]+ u(t, 2)[1—u(t, x)]. (2.26)

The mean evolution of the variance of u that appears in Eq. (2.25) may also be computed. The
precise form of the result is more complicated, but roughly speaking, the variance of w after
evolution over a unit of time is of the order of u/N for small « ~ 1/N. This is related to the fact
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CHAPTER 2. HADRONIC INTERACTIONS AND REACTION-DIFFUSION PROCESSES

that the noise has a statistical origin: Having n particles on the average in a system means that
each realization typically consists in n + y/n particles.

When N is infinitely large, one can replace the u’s in Eq. (2.26) by their averages: This would
be a mean-field approximation. Obviously, the noise term drops out, and the equation becomes
deterministic. Note that if we appropriately take the limits Az — 0 and At — 0, setting

At

B (2.27)

A=At, pr=pr=

the obtained mean-field equation is nothing but the FKPP equation (2.23). For the numerical
simulations of this model that we will perform in Sec. 4, we will keep At and Ax fixed, which is
more convenient for computer implementation.

Thus we have seen that the evolution of reaction-diffusion systems is governed by a stochastic
equation (2.25) whose continuous limit (At — 0, Az — 0) and mean-field limit (N > 1) is a
partial differential equation of the form of (exactly actually, in our simple case study) the FKPP
equation. We shall now argue that partons in high-energy QCD form a similar system.

2.2.3 Universality class of high-energy QCD

Let us come back to the QCD dipole model discussed in Sec. 2.1. We have seen that evolution
proceeds through a branching diffusion process of dipoles. Let us denote by T'(y,r) the scattering
amplitude of the probe dipole off one particular realization of the target at rapidity y and at a given
fixed impact parameter. This means that we imagine for a while that we may freeze the target
in one particular realization after the rapidity evolution y, and probe the latter with projectiles
of all possible sizes. Of course, this is not doable in an actual experiment, not even in principle.
But it is very important for the statistical picture to decompose the physical observables with the
help of such a “gedanken observable”. The amplitude A, which is related to the measurable total
cross-section, is nothing but the average of T' over all possible realizations of the fluctuations of
the target, namely

Aly,r) =(T(y,r)). (2.28)

The branching diffusion of the dipoles essentially occurs in the In(1/72) variable. The scattering
amplitude is roughly equal to the number of dipoles in a given bin of (logarithmic) dipole size,
multiplied by o?. From unitarity arguments and consistency with boost-invariance, we have seen
that the branching diffusion process should (at least) slow down in a given bin as soon as the
number of objects in that very bin is of the order of N = 1/a?, in such a way that effectively, the
number of dipoles in each bin is limited to V. A typical realization of T is sketched in Fig. 2.11.
As in the case of the reaction-diffusion process, from similar arguments, it necessarily looks like a
front. The position of the front, defined to be the value r4 of r for which T is equal to some fixed
number, say %, is related to the saturation scale defined in the Introduction: rs = 1/Q4(y)-

We now see that there is a very close analogy between what we are describing for QCD here
and the model that we were introducing in the previous section. So in particular, one might be
able to formulate interaction processes in QCD with the help of a stochastic nonlinear evolution
equation for the “gedanken” amplitude 7. We already know the equation that one should get in
the mean-field limit in which NV is very large: It is the BK equation, as was rigorously proven
above. Thus we know the equivalent of the term (u(t + At,z)) in Eq. (2.25). The noise term is
not known, but since it is of statistical origin, it must be of the order of the square root of the
number of dipoles normalized to N, that is to say, of order /T /N. We may write an equation of
the form

a&yT(ya k) = X(_aln kQ)T(y’ k) - 17 (yv k) + QT(yv k) V(y7 k)7 (2'29)

where v is a noise, uncorrelated in rapidity and transverse momentum, with zero mean and unit
variance. This equation is to be compared to the following one:

2u(t, )
N v(t, ),

pu(t, ) = O2u(t, ) + u(t, ) — u?(t,z) + (2.30)
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saturation

=M \/IIIII I T A

log(r’f/r2 )
dipoles

Figure 2.11: Sketch of the scattering amplitude T' of a dipole of size r off a frozen partonic
configuration. The small lines on the axis denote the dipoles ordered by their logarithmic sizes.
Up to fluctuations, T looks like a wave front.

which is the so-called “Reggeon field theory” equation when the noise v is exactly a normal Gaussian
white noise, that is to say, whose non-vanishing cumulants read

(v(t,z))
(w(t, z)v(t',2"))
It is a stochastic extension of Eq. (2.23). If the noise term were of the form

2u(t,z)(1 — u(t,x))
\/ i v(t,x) (2.32)

(2.31)

0
5t —t)o(x — ).

instead, then this equation would be what is usually referred to as the stochastic Fisher-Kolmogorov-
Petrovsky-Piscounov equation. The sFKPP equation and the physics that it represents is reviewed
in Ref. [75].

Taking averages over events converts this equation into a hierarchy of coupled equations, which
has a lot in common in its structure with the (modified) Balitsky hierarchy (2.9,2.12). A detailed
study may be found in Ref. [76]. We will perform explicit calculations in this spirit within simpler
models in Chap. 3 below.

Based on these considerations, we may establish a dictionary between QCD and reaction-
diffusion processes. The correspondence is summarized in Tab. 2.1.

The mechanism for saturation of the parton densities (i.e. of the dipole number) is not known
for sure in QCD. There is even some evidence that dipole degrees of freedom are no longer sufficient
to describe scattering beyond some rapidity, as is understood from the appearance of sextupoles in
the second equation of the full Balitsky hierarchy. There are also important differences between the
reaction-diffusion model introduced above and QCD that lie in the “counting rule” of the particles
(provided by the form of T® in the QCD case). But from the general analysis of processes described
by equations in the universality class of the stochastic FKPP equation and the underlying evolution
mechanisms presented in Chap. 4, we will understand that most of the observables have universal
properties in appropriate limits, which do not depend on the details of the mechanism at work.
We draw the reader’s attention to Refs. [77,78], where a precise stochastic equation was searched
for in QCD. Some of the problems one may face with the use and the very interpretation of such
equations were studied in Ref. [79].

The way in which we view high energy QCD in this review is actually not particularly original:
It is nothing but the QCD dipole model, which was implemented numerically in the form of a Monte
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Reaction-diffusion

QCD

Occupation fraction u(t, x)

Average occupation fraction (u(t, z))
Space variable x

Time variable ¢

Average maximum density of particles N
Position of the front X (t)

Branching-diffusion kernel w(—9,,)
(w(=0:) = 8% + 1 in the FKPP case)

Scattering amplitude for the probe off a frozen
realization of the target T'(y, k)

Physical scattering amplitude A = (T')

In(k%/A?) or In(1/22A?)

Saturation scale In(Q?(y)/A?)

BFKL kernel x(—0, x2)
or its equivalent in coordinate space

Table 2.1: Dictionary between QCD and the reaction-diffusion model for the main physical quan-

tities. A is a typical hadronic scale.

Carlo event generator by Salam [80-82] (see also [54] for another more recent implementation). He
also devised and implemented a ad hoc saturation mechanism [53] that went beyond the original
dipole model pictured in Fig. 2.6a, but which is necessary, as we argued before.

Before discussing more deeply the physical content of equations of the form of Eq. (2.29), we
shall first study a model in which spatial dimensions are left out, that we will be able to formulate

in different ways.
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Chapter 3

The simplest saturation model

In the previous chapter, we have understood that scattering at high energy in QCD may be viewed
as a branching-diffusion process supplemented by a saturation mechanism. We have exhibited a
simple toy model with these characteristics, whose dynamics is represented by an equation of the
type (2.30).

Unfortunately, even that toy model is too difficult to solve analytically. We shall study a still
simplified model, where there is no diffusion mechanism: Realizations are completely specified
by the number of particles that the system contains at a given time. Of course, in this case, a
saturation scale cannot be defined, which limits the relevance of this model for QCD. However, we
will be able to formulate this model in many different ways, and to draw parallels with QCD.

We start by defining precisely the model. Then, two approaches to the computation of the
moments of the number of particles are presented. The first set of methods relies on field theory
(Sec. 3.2). The second method relies on a statistical approach (Sec. 8.3) and will be extended in
a phenomenological way to models with a spatial dimension in Chap. 4. We shall then draw the
relation to a scattering-like formulation (Sec. 3.4). Finally (Sec. 3.5), some variants of the basic
model are reviewed.

Contents
3.1 Definition . . . . ¢ v v it i i e e e e e e e e e e e e e e e e e e e 27
3.2 “Field theory” approach . .. ... ... ... .. .00, 28
3.2.1 Particle Fock states and their weights . . . . . ... ... ... ... .. 28
3.2.2  “Pomeron” field theory . . .. ... ... ... .. .. ... . ..., 30
3.2.3 Stochastic evolution equations . . . . . . .. ... Lo 33
3.3 Statistical methods . . .. .. .. ... . L 0 0 0ol o e oo 35
3.4 Relation to high energy scattering and the parton model approach 38
3.5 Alternative models in zero dimension . ... ... ........... 40
3.5.1 Allowing for multiple scatterings between pairs of particles . . . . . .. 40
3.5.2 Reggeon field theory . . . . . .. ... .. ... o000 41

3.1 Definition

Let us consider a simple model in which at a given time ¢, the system is fully characterized by
the number n; of particles. The evolution rules are the following. Between times ¢ and t + dt,
each particle has a probability dt to split in two particles. For each pair of particles, there is a
probability dt/N that they merge into one. We may summarize these rules by the following set of
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CHAPTER 3. THE SIMPLEST SATURATION MODEL

equations:
ny+1 proba n;dt
Ty (nt—l)dt
N (3.1)
—1)dt
ng proba 1—n;dt — M
N
From this, one can easily derive an equation for the time evolution of the probability P(n,t) of
observing n particles in the system at time ¢:
oP n(n+1) (n—1)

Sr(nt) = (= DP(n = 1,t) + ==P(n+1,1) - (n + "N> P(n,t). (3.2)

A ny—1 proba

This is the master equation for the Markovian process under consideration. The two first terms
with a positive sign represent the process of going from one state containing n particles to an
adjacent one containing n + 1 or n — 1 particles respectively, while the last term simply corrects
the probability to keep it unitary.

By multiplying both sides of this equation by n and summing over n, we get an evolution
equation for the average number of particles (n;):

d(nt> o 1
= () = 5 (ne(ny = 1), (3:3)

Obviously, this equation is not closed, and one would have to establish an equation for (n;(n;—1)),
which would involve 3-point correlators of n;, and so on, ending up with an infinite hierarchy of
equations, exactly like in Chap. 2 for QCD (see Eqs. (2.9) and (2.12)).

This illustrates the difficulties one has to face before one can get an analytical expression for
(ny), even in such a simple model.

3.2 “Field theory” approach

In the next subsections, we will follow different routes to get analytical results on the moments
of the number of particles in the system at a given time t. The first one will be similar to the
s-channel picture of QCD (see Sec. 2), since it will consist in computing the time (equivalent to
the rapidity in QCD) evolution of realizations of the system. The second one will be closer to the
t-channel picture of QCD. We will see how “Pomerons” may appear in these simple systems. We
will then examine a formulation in terms of a stochastic nonlinear partial differential equation,
which is nothing but the sFKPP equation in which the space variable (z) has been discarded.

3.2.1 Particle Fock states and their weights

Statistical problems were first formulated as field theories by Doi [83] and Peliti [84]. Different
authors have used these methods (see Ref. [85] for a review). We shall start by following the
presentation given in Ref. [86].

We would like to interpret the master equation (3.2) as a quasi-Hamiltonian evolution equation
of the type of the ones that appear in quantum mechanics. To this aim, we need to introduce the
basis of states |n) of fixed number n of particles. We define the ladder operators a and a' by their
action on these states:

aln) =n|n — 1), a'ln) = |n+ 1) (3.4)

and which obey the commutation relation
[a,al] = 1. (3.5)

The n-particle state may be constructed from the vacuum (zero-particle) state by repeated appli-
cation of the ladder operator:
n
In)y = (a')" |0). (3.6)
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The normalization is not standard with respect to what is usually taken in quantum mechanics.
In particular, the orthogonal basis |n) is defined in such a way that (m|n) = nld,, . This implies
that the completeness relation reads

3 %|n> (n] = 1. (3.7)

We also introduce the state vector of the system at a time ¢ as a sum over all possible Fock states
weighted by their probabilities:

[6(t)) = > P(n.t)|n). (3.8)

It is straightforward to see that the master equation (3.2) is then mapped to the Schrédinger-type
equation

0
510(2)) = —H|o(t), (3.9)
where H is the “Hamiltonian” operator
H=(1-a"ala— %(1 —al)ala® (3.10)

The first term represents the splitting of particles, while the second one, proportional to 1/N,
represents the recombination. We may rewrite H as

H=Ho+ Hi, (3.11)
where
Ho = ata (3.12)
is the “free” Hamiltonian whose eigenstates are the Fock states. We now go to the interaction
picture by introducing the time-dependent Hamiltonian
Hi(t) = Mot e ot (3.13)

and the states |¢); = e*0?|¢). The solution of the evolution reads

|@1=Tam(—43wﬂxﬂ)wwz -

t t t’
=wm-AdmmwmmﬁAwAcwwWWNM%n+~

We may then compute the weights of the successive Fock states by applying this formula. Let us
show how it works in detail by computing the state of a single particle evolved from time 0 to time
t, in the limit NV = oo in which there are no recombinations. We follow the usual method to deal
with such problems in field theory. We repeatedly insert complete bases of eigenstates of Hy into
Eq. (3.14), namely

b = 1) = [t Y ) 1)+ (3.15)

(We have kept the first two terms in Eq. (3.14) explicitely). Using the expression for H;(¢) as a
function of Hy and H;, together with the knowledge that the Fock states are eigenstates of Hg,
we get

t
!’ ’ 1
16) = e~1]1) —Zf’“t/o e ) [Hal) + - (3.16)

Inserting the expression for H;, one sees that in the infinite-N limit, there is only one possible
elementary transition, namely the splitting. Performing the integration over ¢ and computing in
the same manner the higher orders, one finally gets the expansion

lp) =e 1) +e t(1—e)2) + - +e f(1—e D" n) + - (3.17)
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from which one can read the probabilities of the successive Fock states. This expansion is similar
to the expansion in dipole Fock states introduced in Sec. 2: The n-particle states correspond to
n-dipole states in QCD, and their weights are computed by applying successive splittings to the
system, whose rates are given by Eq. (2.1). (They are just unity in the case of the zero-dimensional
model.)

We see that this method is well-suited to compute the probabilities of the lowest-lying Fock-
states, and their successive corrections at finite N. But in general we are rather interested in
averages such as (n*), for which the weights of all Fock states are needed. We will develop a
slightly different (but equivalent) formalism below, that will enable us to get these averages in a
much more straightforward way.

3.2.2 “Pomeron” field theory

Let us introduce the generating function of the factorial moments of the distribution of the number
of particles

Z(z,t) = (1+42)"P(n,t). (3.18)

n

The evolution equation obeyed by Z can easily be derived from the master equation (3.2):
07 oz 10%*Z
— =z(1 — - ——. 3.19
ot~ A +Z)<8z N822> (3.19)
We may represent this equation in a second-quantized formalism by introducing the operators

0

pt = h= —
= 0z

=z (3.20)

acting on the set of states |Z) consisting in the analytic functions of z. Then we may write

oz P
—=-HZ 3.21
=7, (3:21)
where 1
HP = Uy +HEY, with HE = —bTb, HE = —bTpTH + Nb*(l + )b (3.22)
A basis for the states is
k) = 2%, (k| = 2" (3.23)

which is orthogonal with respect to the scalar product

dzdz =
@z = [ CEe ) 2, (320

and obeys the normalization condition (k|l) = k!dx;. We shall call these states “k-Pomeron” states,
by analogy with high-energy QCD. We may apply exactly the same formalism as before, since the
operators b, bf have the same properties as the a, af.

From the definition of the scalar product, it is not difficult to see that the k-th factorial
moment of n may be obtained by a mere contraction of the state vector |Z), computed by solving
the Hamiltonian evolution, with a k-Pomeron state. The following identity holds:

2y =G (3.25)

where the average in the right-hand side goes over the realizations of the system. As for the
initial condition, starting the evolution with one particle means taking as an initial condition the
superposition |0) 4+ |1) of zero- and one-Pomeron states respectively. The zero-Pomeron state does
not contribute to the evolution, hence effectively a one-Pomeron state is like a one-particle state.
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Ay X

() (b) (c) (d)

Figure 3.1: Propagator and vertices for the Pomeron field theory. Time flows from the top to the
bottom.

In order to simplify the systematic computation of these moments, we may use a diagrammatic
method and establish Feynman rules. To this aim, we write the contribution of the graphs with
[-vertices (corresponding to the term of order [ in the expansion of Eq. (3.14)), starting with a
one-Pomeron state:

t t t—
. 1 -1 1 P 1 P
(k|Z) > (-1) /0 dtl/o dtz"'/o dt, Z <k\nz>m<nl|ﬂf\nl—1>"'nT!<’ﬂ1|7'lI|1>- (3.26)

ni, Ny

Each matrix element that appears in this equation is associated to a vertex, and propagators
connect these vertices. We read on the expression for the Hamiltonian (3.22) that there is one
propagator and three vertices in the theory: one splitting vertex (1 — 2), one recombination
(2 — 1) and a 2 — 2 elastic diffusion vertex.

The method to compute the 1 to kK Pomeron transition amplitude is standard. First, one draws
all possible diagrams for this transition that contain [ vertices, including all possible permutations.
(Note that a splitting may occur in k different ways, if k is the number of Pomerons before the
splitting; A recombination instead may occur in k(k—1)/2 ways). Then, the propagators (Fig. 3.1a)
are replaced by

(1]e""Mo|1) = €, (3.27)
(where ¢ is the time interval they span). The n-Pomeron state propagates as <n|e*mg|n> = em,
Intermediate times are eventually integrated over. As for the vertices (Figs. 3.1b-d), the following
factors have to be applied:

2-2): 2. (3.28)

1—=2): -1; (2—=1): I

N;
In addition, there is a (—1)#Vertices factor. Finally, an overall k! factor leads to the expression for
the factorial moment (n(n —1)---(n — k+ 1)).

The lowest-order diagram for the average particle number, consisting in a simple propagator,
reads (n) = e’. We now understand that this method leads to a more straightfoward computation
of the moments of the number of particles than the one based on the computation of the proba-
bilities of successive Fock states, for a single Pomeron already resums an infinity of particle Fock
states. The Pomeron in this case is exactly like the BFKL Pomeron introduced in Sec. 2, which
leads to an exponential increase of the scattering amplitudes with the rapidity (Eq. (3.27)).

We now move on to the computation of higher-order diagrams in which recombinations are
absent. First, let us recover simple results by taking the infinite-V limit. We consider the diagrams
in Fig. 3.2, which are the only ones that survive at infinite NV in the evaluation of the moment
(n(n—1)---(n—k+1)). Using the Feynman rules, we get for each individual diagram

t t t
1 _
(—1)% x (=1)F x ekt/ dtle_tl/ dtae™t . / dtge M = Eekt (1- e_t)k ' (3.29)
0 t1 .

tr—1
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(k! such diagrams)

Figure 3.2: Diagrams contributing to the one Pomeron — k-Pomeron transition, which gives the
moments (n(n —1)---(n—k+ 1)) at leading order in a 1/N expansion.

0

t
) (b) (©) (d)

(a

©)

Figure 3.3: Diagrams up to order 1/N? contributing to the average of the number of particles in
the system after an evolution over the time interval ¢.

There are k! such diagrams (corresponding to all possible permutations of the Pomerons), and
there is an extra overall k! factor to be added in order to get the relevant factorial moment:

(n(n—1)---(n—k+1)) = klek* (1 —e ). (3.30)

Next, we would like to perform the computation of the one-Pomeron — one-Pomeron transition
(which provides the value of (n)) within the full theory, including the recombinations. Some of
the lowest-order diagrams are shown in Fig. 3.3. A straightforward application of the Feynman
rules edicted above leads to the following results for the graphs that are depicted in Fig. 3.3:

<n>|tree, Fig. 3.3a = et

o2t L,
<n>|1 loop, Fig. 3.3b = _2'W (1 —€ (1 + t)>

S (144 ~2(3
<n>|2 loops, Fig. 3.3¢ — 3ﬁ ( +4e ( - t) —€ ( t+ 5)) (331)

e2t

<TL>|2 loops, Fig. 3.3d = 4m (t -3+ e_t (é +2t+ 3>)

€2t

<n>|2 loops, Fig. 3.3 — 4ﬁ (t -2+ et (t + 2))

We may classify these different contributions according to their order in e¢!/N: We see on the
explicit expressions that the leading terms for large ¢ and e'/N ~ 1 are always of the form
N (et /N)1#loops Tt turns out that we may compute easily these dominant terms at any number
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of loops. They stem from the graphs in which all splittings occur before all recombinations (such
as 3.3b and 3.3c). These terms build up a series that reads

kt

(n) = Z(_mk—lk!]\fkﬂ. (3.32)
k=1

This series is factorially divergent, but is easy to resum with the help of the Borel transformation.
Indeed, using the identity

—+oo
kl = / dbbFe?, (3.33)
0

replacing it in Eq. (3.32), then exchanging the integration over b and the sum over the number of
Pomerons k, one gets

—+o0
(n)y = N2t / db%e*Nﬂ’ =N (1 — NeNe"r(o,Ne*t)> , (3.34)
0 1+
where I is the incomplete Gamma, function.

This result was obtained for the first time using a diagrammatic method in Ref. [87]. The
authors of the latter paper also computed the next-to-leading order, that is to say, the terms of
relative order 1/N after the resummation has been performed. The equivalent of the diffractive
processes known in QCD were also investigated by these very authors in Ref. [88]. More results
were obtained on that kind of models by another group in Ref. [89,90], using different techniques,
which go beyond the perturbative approach. Remarkably, the latter calculations can be applied
to some extent to QCD [91,92].

3.2.3 Stochastic evolution equations

The model may also be formulated in the form of a stochastic evolution equation for the number
of particles n; it contains at each time ¢. The most straightforward way of doing this would be to
first compute the mean and variance of ny14; given n;, with the help of the master equation (3.2).
This would enable one to write the time evolution of n; in terms of a drift and of a noise of zero
mean and normalized variance, namely:

dnt nt(nt - 1) nt(nt — 1)

E:nt74 + nt+ N

N Vitdt, (3.35)

where v is such that (v;) = 0 and (;vp) = 6(t — t/). This equation is similar to Egs. (2.29)
and (2.30), except for it does not have a spatial dimension where some diffusion could take place.
The noise term is of order y/n, as it should according to the argumentation of Chap. 2. Note that
the distribution of v depends on n; and is not a Gaussian. This last point is easy to understand:
The evolution of v; is intrinsically discontinuous, since it stems from a rescaling of n;, which is
an integer at all times. A Brownian evolution (i.e. with a Gaussian noise) would necessarily be
continuous. For completeness, we write the statistics of vy 4, which is deduced from the evolution
of n:

ﬁ — % proba n; dt
Vitdt = — 2 probal—nydt— %dt (3.36)
—-L-— 2 proba 7"‘(7\’;_1)&,

where A = n; — W and 0 = ¢/n; + W There are jumps, represented by the large
terms proportional to 1/dt.

This formulation is not of great interest, neither for analytical calculations nor for numerical
simulations, since it is much easier to just implement the rules that define the model in the first
place (Eq. (3.1)) in the form of a Monte Carlo event generator.
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There is a better way to arrive at a stochastic evolution equation for this model, although it
is a bit more abstract. (It is actually equivalent to the Pomeron field theory formulated before.)
Instead of following states with a definite number of particles like above, we may introduce coherent
states

|2) = e==t2a"|0), (3.37)

where z is a complex number. For real positive values of z, the state |z) is nothing but a Poisso-
nian state, which is a superposition of |k)-particle states, where the weight of each term follows
the Poisson law of parameter z. For the simplicity of the argument, let us restrict ourselves to
Poissonian states. By applying the Hamiltonian # (defined in Eq. (3.10)) to a Poissonian state
|2¢), one gets a new state |¢sqq:):

|prrar) = |ze) — dt H|z). (3.38)

Of course, that new state is not itself a Poissonian state in general, but may be written as a
superposition of such states. One writes

|Pttat) = /de /dzf Zefz . (3.39)

The idea is to interpret the weight function f(z) as the probability to observe a given Poissonian
state |z). Hence the evolution is viewed as a stochastic path

C = Zt—dt —7 2t —7 Zthdt — Rt+2dt — (340)

with well-defined transition rates from one Poissonian state to the next one. Inserting the explicit
expression for the Hamiltonian (3.10) and the decomposition (3.39) in Eq. (3.38), one gets for each
Fock state |n)

. - Zn ., on P 1 1 Zn+1 n
/d'ze ue n'_ ML [(n—tn!_(nt—z)!_N<(nt—1)!_(n—t2)!>] (341)

Finally, this equation can be inverted for f(z) by a weighted integration over n, f 2 along
an appropriate contour in the complex plane. After some straightforward algebra we get

22 1 z2
f(ztvar) = 6(zepar — 2) +dt (Zt - ]\t,) 6" (ze1ar — 2e) + 5 {26115 <Zt - N) 8" (zeqdr — Zt)] - (3.42)

2 2
This is a representation for the Gaussian law centered at z; + dt(z; — %) of variance 2dt(z; — %)
Introducing a normal Gaussian noise v; which satisfies

() =0 and (v) = d(t —t), (3.43)
we may write
dzy 22 22

where one must be careful to take the noise at time ¢ + dt, and hence, this equation is to be
interpreted in the Ito sense. If z;—g is a real number between 0 and NV, then the equation keeps it
in this range. But of course the equation is valid for more general coherent states, with complex
Zt-

This equation is suitable for numerical simulations: One may discretize the time in small steps
At < 1 in which case v; is distributed as

p(ve) = \/Qjm exp (—;zt) . (3.45)
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(In many cases, one has to use more sophisticated methods, see e.g. Ref. [93]; A more rigorous and
general derivation of this stochastic formulation may be obtained from a path integral formalism
starting from the Hamiltonian (3.10), see Ref. [85]). Analytical manipulations of this equation
using Ito’s calculus are also quite easy. We are going to give an example of such a calculation
below, avoiding unnecessary formalism. (We refer again the reader to [93] for a textbook on a
more mathematical handling of stochastic equations).

We may transform the stochastic equation (3.44) to a hierarchy of equations for the factorial
moments of the number of particles, using the relation

Y =tmn-1)(n—k+1)=n®, (3.46)

First, let us write Eq. (3.44) in a discretized form:

# 2
Zt4dt = At + dt zZt — N + dty/2 Zt — N Vitdt- (347)

We then take the k-th power of the left and the right-hand side, and we average the result over
realizations. Expanding in powers of dt for small dt, we get

(2F q) = (2F) + dtk oA +dtk( 2F71 (2 zt—fzg (Vigar)
t+dt t t N t N +
k(k—1 _ 2k
+ae B 2 )<2 (Zf - Nt>><yt2+dt>+"' (3.48)

We have factorized the averages over the time intervals [t,¢ + dt] and [0,¢], since the noise v is
uncorrelated in time. The term proportional to dt vanishes thanks to the fact that vy 4 averages
to zero. One may think that the next term could be neglected for it is apparently proportional to
dt?. Actually, it gives a contribution of order dt, because for discretized t, (v7, ;) = 1/dt. The
dots stand for terms of order dt? at least. Using Eq. (3.46) to identify the factorial moments of n,

we eventually get
dn(®) (k+1) (k)
L (n(k) . ) +h(k—1) (n(kl) - ”> (3.49)

dt N N

This equation is similar to the (modified) Balitsky hierarchy in high-energy QCD. Indeed, let us
write explicitly the equations for the first two moments:

W) _ ) — < tnln— 1), 550
3.50
w _9 <1 _ _;b) (n(n—1)) - %(n(n —1)(n - 2)) +2(n).

We note the similarity in structure with Eqs. (2.9), (2.12), except for the term 2(n) in the right-
hand side of the second equation. This term stems precisely from the particle recombinations, and
was absent in the B-JIMWLK /BK formalism.

3.3 Statistical methods

The field theory methods presented above provide a systematics to solve the evolution of the
system to arbitrary orders in 1/N, at least theoretically. (In practice, identifying and resumming
the relevant diagrams becomes increasingly difficult). However, it would look quite unreasonable
to get into such an involved formalism if one were only interested in computing the lowest order in
a large-N expansion. Indeed, as we shall demonstrate it below, in the case of this simple model,
an intuitive and economical calculation leads to the right answer [94]. We work it out here because
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T T T
5000 | - 10 realizations of n;
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Figure 3.4: [From Ref. [94]] Ten different realizations of the stochastic evolution of the zero-
dimensional model (dotted lines; N = 5 x 10%). All realizations look the same, up to a shift
in time. They are all parallel to the solution to the mean-field equation (3.52) (dashed line).
Note the significant difference between the latter and the average of the particle number over the
realizations (full line).

this line of reasoning is at the basis of the solution of more complicated models, closer to QCD,
that we shall address in the next chapter (Chap. 4).

As before, we denote by n; the value of the number of particles in a given realization of the
system. We further introduce p;(f) the distribution of the times at which the number of particles
in the system reaches some given value 7 for the first time, and (n.|n;) the conditional average
number of particles at time ¢ given that there were n; particles in the system at time . One may
write the following factorization formula:

oo

() = ; dipr (t){ne|ng). (3.51)

This formula holds exactly for any value of 7. In particular, if NV is large enough, one may choose
n such that 1 < n < N.

Observing at a few realizations generated numerically (Fig. 3.4), one sees that the curves that
represent n; look like the solution to the mean-field equation obtained by neglecting the noise
term in Eq. (3.35), up to a translation of the origin of times by some random t,. (The curves look
also slightly noisy around the average trend, but the noise would still be much weaker for larger
values of N.) This suggests that once there are enough particles in the system (for n; > n > 1),
the evolution becomes essentially deterministic and in that stage of the evolution, the noise can
safely be discarded. Thus stochasticity only manifests itself in the initial stages of the evolution,
but in a crucial way. Indeed, as one can see in Fig. 3.4, after averaging, (n;) differs significantly
from the mean-field result, and this difference stems from rare realizations in which the particle
number stays low for a long time. Therefore, in individual realizations, stochasticity should be
accurately taken into account as long as n; < n. Fortunately, when the number of particles in the
system is small compared to the parameter N that fixes the typical maximum number of particles
in a realization, the stochastic evolution is essentially governed by a linear equation.

Thanks to this discussion, we may assume that the evolution is linear as long as there are less
than 7 particles in the system and deterministic when n; > 7. It is then enough to compute p (%)
for an evolution without recombinations, and (n;|n7) for an evolution without noise. The second
quantity is most easily computed by replacing the averages of powers of n; in Eq. (3.3) by nM¥
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and discarding the term of order 1/N. One gets a closed equation for nMF in the form

dni\/IF — pMF (n}:\/IF)Q

F i A v (3.52)
which is solved by
N
niv[F— —_— (3.53)

—fla — 1+ %ef(tff)

where the initial condition has been chosen in such a way that ny = 7.

As for the distribution ps(¥) for the waiting times ¢ to observe i particles in the system, its
derivation is a bit more subtle.

Let us introduce R(n,t) the probability distribution of the first passage time at the given
population size 7, starting with n individuals at time 0. The probability ps (%) we are looking for
is nothing but R(1,17).

We now establish an evolution equation for R. Recall that the evolution equation for P was
obtained by considering the variation in the number of particles in the system between times ¢
and t + dt. Here we consider the beginning of the time evolution, between times 0 and dt. The
probability that the system has 7 particles for the first time at ¢ + dt starting with n particles at
time 0, R(n,t+ dt), is the probability ndt that the system gains a particle between times 0 and dt
multiplied by R(n + 1,t), minus a unitarity-preserving term. In this way, after having taken the
limit dt — 0, we get

OR(n,t)
ot
This equation is valid when we neglect recombination processes, which is the relevant approxi-

mation here since we stick to the dilute regime. In order to find a solution, we introduce the
generating function for the moments of n:

=n(R(n+1,t) — R(n,t)), with the condition R(7,t) = §(¢). (3.54)

G(u,t) = Z u"R(n,t) (3.55)
n=0
and the Laplace transform
~ +OO
G(u,s) = / dte 5'G(u,t). (3.56)
0
The evolution of R implies the following equation for G:
dG 1\ -
1-— = — | G. 3.57
(-0 = (s+1) (3357)

This equation is straightforward to integrate. Its solution reads
G(u,s) = Cu(l —u)~t%, (3.58)

The constant C' must be determined from the initial condition, namely from the equation R(7n,t) =
4(t), which after Laplace transform reads R(n,s) = 1. The latter means that the n-th order in
the expansion of GG in powers of u should be set to one, which writes

I'(s+n)

T(s+DD(n) L (3.59)

For large n, the Stirling formula enables one to cast the equation in the simplified form C' =
I'(s + 1)n~°. We then see that R(1,s) = I'(1 + s)2~®. The inverse Laplace transform of this
function is just the Gumbel distribution:

= -t

R(1,t) = pa(t) = ne "¢ . (3.60)
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Plugging Eqgs. (3.60) and (3.53) into Eq. (3.51), we get for the average number of particles after
t time units of evolution:

(ne) N/ 5 S (3.61)

Because the Gumbel distribution is strongly damped for ¢ < 0, the lower integration boundary
may safely be extended to —oo. Indeed, it is easy to see that a conservative upper bound for the
contribution of the domain ] — 0o, 0] to the integral is e~", which is very small in the limit 72 >> 1.
Finally, we perform the change of variable b = ne!~¢/N to arrive at the form

1 e
(nt):Nze_t/ db—e “Newb, (3.62)
0 1+ b

It can be checked that it is exactly the form found through the diagrammatic approach to Pomeron
field theory (compare Eq. (3.62) to Eq. (3.34)).

The factorization in Eq. (3.51) and the convenient approximations that it subsequently allows
are actually very important. Indeed, we realized that we may write the average number of particles
at time ¢, whose expression would a priori be given by the solution of a nonlinear stochastic
differential equation, by solving two much simpler problems. The key observation was the following.
When the number of particles in the system is low compared to the maximum average number
of particles N allowed by the reaction process, then the nonlinearity is not important, but the
noise term is instead crucial. On the other hand, when the number of particles is large compared
to 1, then the noise may be discarded, but the nonlinearity of the evolution equation, which
corresponds to recombinations of particles, must be treated accurately. From this method, one
gets an expression for (n;) for any time up to relative corrections of order 1/N.

When we address the problem of reaction-diffusion with one spatial dimension, we will rely on
the very same observation. It is essentially the latter which will enable us to find analytical results
also in that case.

3.4 Relation to high energy scattering and the parton model
approach

So far, we have focussed on the factorial moments of the number n of particles in the system.
We have seen how they may be computed from “Pomeron” diagrams, which are quite similar to
the diagrams that appear in effective formulations of high-energy QCD. However, the relation to
scattering amplitudes, which are the observables in QCD, may not be clear to the reader at this
stage. In particular, we do not understand yet what would correspond to boost invariance of the
QCD amplitudes. The aim of this section is to try and clarify these points.

Let us consider a realization of the system of particles, evolved up to time ¢, that we may call
the projectile. A convenient formalism to compute the weights of Fock states was presented in
Sec. 3.2.1. At time ¢, the system of particles scatters off a target consisting of a single particle,
and can have at most one exchange with the target, which “costs” a factor 1/N. All the particles
in the system have an equal probability to scatter. Hence the probability that the system scatters
reads T' = n/N.

This way of viewing the evolution of the system makes it obviously very similar to the QCD
dipole model introduced in Chap. 2, provided one identifies the number of particles to the number
of dipoles and the time to the rapidity variable. The average of T over realizations is the elastic
scattering amplitude.

From this analogy, there is a property similar to boost invariance that should hold. Instead of
putting all the evolution in the projectile, we may share it between the projectile and the target.
Let us call ny the number of particles in the projectile at the time of the interaction, and m;_4
the number of particles in the target. The total evolution time is the same as before. To establish
the expression for 7' in this frame, it is easier to work with the probability S = 1 — T that there
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Figure 3.5: Representation of the scattering of two systems of particles. The systems evolve in
time from the left to the right. The horizontal lines represent the particles, and the vertical dashed
lines the interactions between the systems. Each of the elementary scatterings comes with a power
of 1/N. Note the strong similarity with the QCD diagram in Fig. 2.6a, except that in the present
case, recombinations are included in the evolution of each of the systems.

is no interaction. If any number of interactions were allowed between each pair of particles from
the projectile and the target, then one would simply write S = exp(—nym;—p /N ). But since the
number of scatterings should be limited to one per particle, one has to decrease n and m for each
new power of 1/N, i.e. for each additional rescattering:

. L1 11
S=1— —nm+ n=Dllm(m = 1] = 5143

N g [n(n — 1)(n = 2)][m(m — 1)(m — 2)] -+

(3.63)
where the time dependences are understood, in order to help the reading. This is like a “normal
ordering” of the expression to which we would arrive by assuming any number of exchanges. Note
that .S is not necessarily positive in a given event, and hence looses its probabilistic interpretation

once one has performed the normal ordering.
Taking the average over realizations, one gets

o=3 (), (o), 3.6

k=0

Let us analyze this expression.

First, if ' = ¢ —t' (“center-of-mass frame”), the first two factors in each term of the series are of
course identical after averaging. The sum runs over the number of actual exchanges between the
probe and the target. A realization of the evolution, which would correspond to an event in QCD,
is represented in Fig. 3.5. Note that the figure is very similar to Fig. 2.6a, except that particle
mergings are allowed, while they have not been properly formulated in QCD yet.

Second, this expression should be independent of ¢. It is not difficult to check that this is
indeed true by taking the derivative of (S) with respect to ¢'. Expressing the averages of the
factorial moments of the number of particles with the help of the probability distributions P(n,t’)
and P(m,t — t’) respectively, each term of the sum over k and m, n reads

d(s) . . n! m!  (=1)F

= Pan - PnP .
At | ke fixed ( m) (n—k)! (m —k)! kKINk

(3.65)

The time dependence is again implicit, and we introduced the notation P, = P(n,-) and P, =
OtP(n, ) to get a more compact expression. The time variabe that should be used for each factor
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is unambiguous since it is in one-to-one correspondence with the particle number index. We may
use the master equation (3.2) to express the time derivatives:

n(n+1)
N

(n—1)

PuPp — PuPp = |(n—1)Py_y + Poy1 — <n + 2 5 ) Pn] Py, —[n+m]. (3.66)

Recalling that there are sums over m, n and k& which go from 0 to oo, one may shift first the
indices m and n in order to factorize P, P, in each term. The factors 1/N may then be absorbed
by shifting k for the relevant terms. Then cancellations occur between the terms of both squared
brackets in such a way that once the summations over n, m and k have been performed, the global
result is 0. This proves the independence of (S) upon t', that is, “boost invariance” in a quantum
field theory language.

We have seen that we may formulate scattering amplitudes in the zero-dimensional toy model,
exactly in the same way as in QCD. We have seen in particular how crucial it is to include particle
mergings consistently with the form of the interaction between the states of the projectile and of
the target at the time of the interaction, in order to get a boost-invariant amplitude.

3.5 Alternative models in zero dimension

For the sake of completeness, we shall now construct some variants of the zero-dimensional model
introduced above, since the latter were also discussed in the literature. We review two of the most
popular models.

3.5.1 Allowing for multiple scatterings between pairs of particles

Instead of assuming that there is at most one single exchange between each pairs of partons, one
may allow for any number of exchanges. Then the definition of S is modified as follows:

($) = (=)= > P(n,t)P(m,t —t)e”F" (3.67)

n,m>1

One sees immediately that if the probabilities P satisfy the master equation (3.2), then this
expression cannot be boost-invariant (i.e. independent of ¢’). Indeed, if Eq. (3.2) holds, then

P(n,t — c0) =, n and P(n,t =0) = d,, 1. (3.68)
It follows that in the frame in which the projectile is at rest,
(S)tr=0.t—s00 =€ (3.69)

while in the center-of-mass frame (if the projectile and the target share an equal fraction of the
evolution),
()t oo =€ (3.70)

which is very different. Actually, in this model, the average number of particles cannot saturate
at a fixed value N. It would not be compatible with boost invariance.

In order to preserve boost-invariance, one has to modify the master equation. We may write
the following general equation for the evolution of the probability:

Py=> (ak 1 Puy—abPy). (3.71)
k#£0

The coefficients o are the transition rates from a (n — k)-particle state to a n-particle state. We
determine the o from the boost-invariance requirement. Actually, only the coefficient a*=! is
needed in the case of this model.
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Using the same method as the one employed for checking the boost invariance in the previous
model, we write

d(s) . . o
= > (BuPp — Py Py) (e %), (3.72)

n,m

and express P,, P, with the help of the master equation. Requiring that the sum over n and m
in the right-hand side cancels leads to the rates

al =N (1 - e_"/N) : (3.73)
where the overall constant is determined from the rate in the unsaturated version of the model,
which should hold for small values of n < N. This model was first proposed by Mueller and
Salam [53].

We see that the saturation mechanism is quite different than in the previous model. Indeed,
the average number of particles in the system keeps growing, but at a rate that slows down and
depends on the number of particles in the system itself. Unitarity of the scattering probability T’
is ensured first by multiple scatterings rather than by the saturation of the number of particles to
a constant number N (up to fluctuations).

This model was studied in detail in Ref. [95]. The conclusions drawn in there is that the
saturation mechanism implied by the above model is likely to be quite close to the one at work in
QCD. We could get analytical results for this model using one of the methods presented above. In
particular, the statistical method outlined in Sec. 3.3 would apply and lead in a straightforward
way to the expression for (n), up to corrections of relative order 1/N.

3.5.2 Reggeon field theory

Starting from the field theory formulation in Sec. 3.2.2, we may discard the 4-Pomeron vertex
(term (b7)2b?/N in Eq. (3.22)). The new Hamiltonian then reads

1
HEFT — _ptp — (b7)%0 + Nb*bz. (3.74)
The stochastic formulation reads
dz 22
i z— N + \/ZVt+dt (3.75)

(Compare to Eq. (3.44)). This is the zero-dimensional version of the stochastic equation defining
the so-called Reggeon field theory, which was intensely studied in the 70’s as a pre-QCD model
for hadronic interactions.

This model has peculiar properties if one insists on interpreting it as a particle model. Indeed,
the Hamiltonian (3.74) corresponds to a generating function for the factorial moments of the
number n of particles in the system at a given time ¢ that satisfies

YACR)
ot

0Z(z,t 2z 0%Z(z,t
=2(1+42) éz )fﬁ 822 ) (3.76)

and the corresponding master equation, obeyed by the probability P(n,t) to find n particles in
the system at time ¢, writes

OP(n,t)

P = —nP(n,t)+ (n—1)P(n — 1,t)

1 1
+ N(n +1)(n+2)P(n+2,t) — Nn(n +1)P(n+1,¢t). (3.77)

One can read off this equation the rates for particle creation/disappearance. One has a 1 — 2
splitting, with rate dt; a 2 — 0 annihilation with rate dt/N; and a 2 — 1 recombination with rate
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—dt/N. This is a negative number, and of course, it is unacceptable for a physical probability
not to take its values between 0 and 1. But we should not reject a priori negative probabilities
as a formal calculation tool [96], as long as the physical probabilities are well-defined. However, a
Monte-Carlo code based on these negative rates turns out to be extremely unstable, and thus of
no practical use.!

Note that the statistical approach teaches us that in the large NV > 1 limit, the moments of
the number of particles in the system should not be very different than for the model with 3 and
4-Pomeron vertices, since it is essentially the form of the fluctuations in the dilute regime which
determines the moments at all times.

A detailed study of the special properties of this model as well as a comparison with reaction-
diffusion-like models may be found in Ref. [97].

IWe thank Al Mueller and Bo-Wen Xiao for interesting discussions on this topic, and Krzysztof Golec-Biernat
for having brought Ref. [96] to our attention.
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Chapter 4

(General results on stochastic
traveling-wave equations

In chapter 2, we have shown the relevance of the stochastic FKPP equation for high-energy QCD.
The latter represents (classical) particle models that undergo a branching-diffusion process in one
dimension, supplemented by a saturation mechanism. Chapter 3 was dedicated to a detailed study,
from different points of view, of simplified models obtained from the former ones by switching off
diffusion. We now go back to the study of one-dimensional models. We proceed by steps: First, we
shall address the deterministic FKPP equation (which is equivalent to the BK equation in QCD)
(Sec. 4.1). Second, we shall introduce fluctuations to get solutions for equations in the universality
class of the sFKPP equation (Sec. 4.2 and 4.3).

Contents

4.1 Deterministic case: the FKPP equation . . . . ... ... ....... 43
4.1.1 General analysis and wave velocity . . . . . . .. ... .. .. ... .. 44

4.1.2 Diffusion equation with a boundary and the approach to the asymptotic
traveling wave . . . . . ... L 46
4.1.3 Discrete branching diffusion . . . . . ... ... 000000 50
4.2 Combining saturation and discreteness . ... ... .......... 53
4.3 Beyond the deterministic equations: Effect of the fluctuations . . . 57
4.3.1 Phenomenological model and analytical results . . . . . ... ... ... 57
4.3.2 Numerical simulations . . . . . . . .. ... . L oL 60

4.1 Deterministic case: the FKPP equation
We address the simplest reaction-diffusion equation, namely the FKPP equation
Opu = 0%u 4 u — u. (4.1)

This equation was found to describe scattering in QCD under some assumptions, see Chap. 2.
It is a mathematical theorem [98] that this equation admits traveling waves as solutions, that
is to say, solitonic-like solutions such that

u(t,x) = u(x — vt) (4.2)

where v is the velocity of the wave. w is a front that smoothly connects 1 (for x — —o0) to 0
(for z — +00). The velocities of the traveling waves and their shapes for large x are also known
mathematically. Starting with some given initial condition which itself is not necessarily a traveling

43



CHAPTER 4. GENERAL RESULTS ON STOCHASTIC TRAVELING-WAVE EQUATIONS

wave such as Eq. (4.2) (but which satisfies some conditions, see below), the FKPP equation
turns it into a stationary wave front at large times, namely a function which may be written in
the form (4.2). The front velocity during this phase may also be predicted asymptotically. We
informally review these results in this section.

4.1.1 General analysis and wave velocity

The FKPP equation (4.1) encodes a diffusion in space (through the term 92w in the right-hand
side), a growth (term u), and a saturation of this growth (term —u?). It admits two fixed-points:
the constant functions u(¢,z) = 0 and u(t,z) = 1. A linear stability analysis shows that 0 is
unstable, while 1 is stable. Indeed, thanks to the growth term u in the right-hand side, a small
perturbation w(t,z) = ¢ < 1 grows exponentially with time. On the other hand, a perturbation
near 1 of the form u(t,z) = 1 — e goes back to the fixed point 1 through evolution. Hence the
FKPP equation describes the transition from an unstable to a stable state. Therefore, we expect
that the linear part of the equation drives the motion of the traveling wave, since the role of the
nonlinear term is just to stabilize the fixed point u = 1.
We shall cast the linear part of the equation into a more general form:

Opu(t,x) = w(—0z)ul(t, z), (4.3)

where w(—0,) is a branching diffusion kernel. It may be an integral or differential operator. An
appropriate kernel is, in practice, an operator such that the “phase velocity” vy (y) = w(v)/vy (see
below) has a minimum in its domain of analyticity. The FKPP equation is obtained from the
choice w(—0,) = 0% + 1.

Let us follow the wave front in the vicinity of a specific value of u. To this aim, we define a
new coordinate zwp such that

x = xwp + vt. (4.4)

The solution of the linearized equation (4.3) writes most generally

u(t.a) = [ i) exp[r(owr +00) +o()0), (45)

where w(7y) is the Mellin transform of the linear kernel w(—9,) (and thus v corresponds to —0,),
and defines the dispersion relation of the linearized equation. wug(7y) is the Mellin transform of
the initial condition u(¢t = 0,x). Let us assume for definiteness that the initial condition is a
function smoothly connecting 1 at * = —oo to 0 at * = +o0o0, with asymptotic decay of the
form u(t = 0,2) ~ e~7%. Then ug(y) has singularities on the real negative axis, and on the
positive axis starting from v = 7 and extending towards +oco. Let us take a concrete example: If
u(0,z < 0) =1 and u(0,2 > 0) = e~ 7%, then ug(y) = 1/v+ 1/(y — 7). The integration contour
C should go parallel to the imaginary axis in the complex -plane and cross the interval [0, o).
Each partial wave of wave number v has a phase velocity

ve(7) = —=, (4.6)

whose expression is found by imposing that the exponential factor in the integrand of Eq. (4.5)
be time-independent when the velocity v of the frame is set to v = vy (7).

We are interested in the large-time behavior of u(t,x). The integrand in Eq. (4.5) admits a
saddle point at a value v, of the integration variable such that

W' (7e) = v, (4.7)

that is to say, when v coincides with the group velocity of the wave packet. But the large-time
solution is not necessarily given by the saddle point: This depends on the initial condition wug (7).
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Yo

Figure 4.1: Front velocity as a function of its asymptotic decay rate o (dashed curve). It has a
minimum at v = «.. The full line represents the actual velocity that would be selected starting
with an initial condition decaying as e~7% for large x. If v = v— < 7. (initial condition less
steep than ~.), then the asymptotic velocity is the phase velocity of a front which has the same
asymptotics as the initial condition. For any vy = ~v4+ > 7., the velocity of the front is the
minimum of the phase velocity vy(7).

In order to understand this point, let us work out in detail the simple example of initial condition
quoted above. The integral has two contributions for large t:

u(t,x) = e~ Yol@wrtvt)+w(vo)t 4 Re*'yc(mprrthw('yc)t, (4.8)

up to a relative O(1) factor k. The time invariance of u(t,z) in the frame of the wave may only
be achieved by tuning v to one of the following two values:

N o= wo) o wle)
(@) vo=—""" (#) ve=—1 (Ve)- (4.9)

In the second case, v coincides with the minimum of the phase velocity w(v)/v and in particular,
v < vg. The relevant value of v depends on the shape of the initial condition:

o If v < 7., i-e. the decay of the initial condition is less steep than the decay of the wave from
the saddle-point, then one has to pick the first choice (i) for the velocity. Indeed, this is
the only one for which the first term in Eq. (4.8) is time-independent, and the second term
vanishes at large time. Due to the fact that v. < v, choice (i) would make the first term
in Eq. (4.8) blow up exponentially, 1 ~ e¥0(vo=ve)t,

o If instead o > 7., then it is the second choice (ii) that has to be made. The saddle point
dominates, and the wave velocity at large time is independent of the initial condition.

Figure 4.1 summarizes these two cases.

The limiting case v9 = 7. requires a special treatment. Since it is not relevant for the physics of
QCD traveling waves, we refer the interested reader to the review paper of Ref. [72] for a complete
treatment also of that case.

There exists a rigorous mathematical proof of these solutions in the case of the straight FKPP
equation [98]. These results are largely confirmed in numerical simulations for various other
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Figure 4.2: Sketch of the shape of the front according to the large-x behavior of the initial condition
u(t = 0,z) ~ e "% Top: 79 < .. The asymptotic shape of the initial condition is conserved.
The relaxation of the front is fast. Bottom: vy > .. The asymptotic shape of the front is e™7",
and the velocity for ¢ = oo is v. = w(7.)/Y.. The asymptotic shape is reached over a distance /¢
ahead of the front, and the velocity at finite time is less than the asymptotic velocity by %

branching diffusion kernels, including the ones of interest for QCD (see e.g. [74,99], and Ref. [34,
100, 101] for earlier simulations of the BK equation).

Actually, in QCD as well as in many problems in statistical physics, the initial condition is
localized or has a finite support, and hence, its large-z decay is always very steep. Thus for the
physical processes of interest in this review, the asymptotic front velocity, that we shall denote by
Vs for reasons that will become clear later, reads

Vi = v = wive) _ W (7e), (4.10)

C

where the last equality defines ~, as the value of v for which v4(y) = w(y)/7v is minimum. Note
that in the context of particle physics, this result was already known from the work of Gribov,
Levin, Ryskin [14], and was rederived later in the framework of the BK equation [35,36,102].

So far, we have discussed the asymptotic velocity of the solutions to the FKPP equation as a
function of the initial condition. When the initial condition is steep enough, then the asymptotic
front velocity takes a fixed value which is the minimum of w(+y)/7. In the opposite case, the shape
of the initial condition is retained (see Fig. 4.2). We wish to know more detailed properties of the
wave front, such as its shape and the way its velocity approaches the asymptotic velocity. There
are several methods to arrive at this result (which is known from rigorous mathematics, see [98]).
At the level of principle, they all rely on a matching between a solution near the fixed point u = 1,
and a solution of the linearized equation which holds in the tail v < 1.

4.1.2 Diffusion equation with a boundary and the approach to the
asymptotic traveling wave

We now come back to the original FKPP equation (4.1). We have seen that the nonlinearity —u?
has the effect of taming the growth induced by the linear term w, when u gets close to 1. But
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X(t) Xt X

Figure 4.3: Shape of the solution of the branching diffusion equation (4.11) with a moving cutoff,
whose position is adjusted in such a way that the maximum of w(¢,z) be 1 at all times. The
solution is represented at two different times ¢; and 2, showing the soliton-like behavior of the
solution.

nonlinear partial differential equations are very difficult to address mathematically. It may be
much simpler to address the linear equation

Ou = 0%u+u (4.11)

supplemented with an absorptive (moving with time) boundary condition that ensures that u(t, x)
has a maximum value of 1 at any time. We need to work out the solution of Eq. (4.11) with this
kind of boundary condition. Here, we reformulate the approach proposed in the QCD context by
Mueller and Triantafyllopoulos [36] (see also Ref. [103] for an account of the next-to-leading order
BFKL kernel).

A solution to Eq. (4.11) with the initial condition u(t = 0,2) = d(x — o) is given, for positive

times, by
N2
exp (t - M) . (4.12)

t =
u(t, z) At

1
Vart
This solution holds if the boundary condition is at spatial infinity.

We note that the lines x of constant u(t,x) = C are given by

1
x =z + 2t — 3 Int — In(Cv4r) 4 terms vanishing for ¢ — oo. (4.13)

(We have selected the rightmost front z > xg). This would be the correct expression of the position
of the front if it were enough to solve the linearized FKPP equation, to stay around some line of
constant amplitude closing an eye on the exponential growth behind the latter line (which would
be tamed by the nonlinearity). The asymptotic velocity is 2, which coincides with the critical
velocity v, of the FKPP equation discussed above. It is corrected by a logarithmic term. We will
see that the actual solution has the same logarithm except for the coefficient. We will be able to
get the solution by setting an appropriate absorptive boundary which will be time dependent. We
will proceed by steps, implementing first some fixed boundary condition in order to gain intuition
on the form of the solution.

So if instead of the boundary condition at infinity there is an absorptive barrier at say © = X,
ie. if u(t,x = X) = 0 for any ¢, then a solution may be found through a linear combination of
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the latter solution with different initial conditions, in such a way as the sum vanishes at z = X.
This is known as the method of images. It is based on the elementary observation that any linear
combination of Eq. (4.12) also solves Eq. (4.11). From the solution with initial condition §(z —z),
we subtract the solution of the same equation but with initial condition §(z — (2X — x)), in such
a way that this linear combination vanishes for x = X, at any time. We get

t

(x—xg)2 (z—2X+z0)2
ux(t,z) = \/% (e_ s e ) . (4.14)

At this point, let us already comment that we do not expect the solution to this problem to
represent accurately the solution to the full FKPP equation near the boundary x ~ X since
in that region, the details of the nonlinearity must matter. So the region of interest will be
significantly ahead of the boundary, while the starting point zy of the evolution is at some finite
distance of the boundary:

z—X>1 and zp— X ~ 1. (4.15)

One may then expand the two Gaussian terms:

xo—Xx—X (x — X)?

But in this equation, X does not yet depend on time. We cannot implement in a straightforward
way a time-dependent absorptive boundary. We may get to such a solution by successive iterations:
The main trick is to go to a frame in which the solution of the branching diffusion with a boundary
is stationary for large times. We went through the steps of this procedure in Ref. [1]. Here we
wish to simply argue the form of the solution from the elements we have learned so far.

As we see in Eq. (4.16), the presence of the boundary at X requires w to vanish linearly
at x ~ X. We expect this property to be preserved when we promote X to a function of time.
Moreover, we know from our earlier investigations that the large-z asymptotic shape is e~ (*=X(*),
From Eq. (4.16), we see that this shape is reached diffusively; Hence there must be a factor of the
form e~ (@—X()?/(4t)

Putting everything together, we are lead to the ansatz

- X(1))?
u(t,x) = Ce X (. — X(t))e”@=X®) exp (—m) , (4.17)
where C' and X are constants.
We know that the front velocity at large time is X'(¢) ~ v, = 2 and we expect a logarithmic

correction c(t) ~ Int, so we write
X(t) =2t — c(t). (4.18)

Inserting Eq. (4.17) and (4.18) into Eq. (4.11) and setting = X (¢)+a (a is a constant), we arrive
at the equation
d(t) [2t(a— 1) + a*] = 3a (4.19)

which means that for large a and ¢, ¢(t) ~ 2 Int. Hence
X(t)Ex—x2+X:2t—glnt+O(1). (4.20)

The latter quantity is the position of the absorptive boundary for large times, and thus also the
position of the front. The constant X is the position of the front in the moving frame (while X (¢)
is its position in the initial reference frame). Setting X = —1 and C = 1, the maximum of u is
reached at = X(¢) + 1, and is indeed equal to 1.

For large ¢ or in the region  — X (t) < v/t which expands with time, the Gaussian factor goes
to 1, and we see that u(¢, z) only depends on one single variable z — X (¢). This was expected: It is
precisely the defining property of traveling waves. But in addition to these asymptotic solutions,
we get from this calculation the first finite-¢ correction to the front shape and front velocity.
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Actually, the speed of the front is intimately related to its shape. At time ¢, the front has
reached its asymptotic shape over the distance v/t from the saturation point. This remark will be
important in the following.

We have derived the solution of a problem that was not exactly the initial one, however, we
believe that the shape of the front in its forward part (v < 1, namely for x — X(¢) > 1) as
well as its velocity are quite universal. Heuristically, these properties are completely derived from
the linear part of the equation. For this reason, the front is said to be “pulled” by its tail. The
nonlinearity only tames the growth of u near v ~ 1, and so its precise form should not influence the
front position itself, at least at large enough times. Thus we expect these solutions to have a broad
validity, only depending on the diffusion kernel, and so, may be obtainable from our calculation
up to the replacement of the relevant parameters.

For the more general branching diffusion kernel in Eq. (4.3), the velocity of the front would
read

aX(t)  win) 3
at v 27t

Fo. (4.21)

where 7. solves w(v.) = y.w'(7c), as was explained in Sec. 4.1.1. The front shape in its forward
part  — X (¢) > 1 is represented by the equation

u(t, x) o (x — X (t))e 7@ X" exp <_m) : (4.22)

up to an overall constant. Fig. 4.3 represents a sketch of the solution at two different times. The
large-time shape is an exponential decay,

u(t, z) ~ e~ re@=X®) (4.23)

up to a linear growth, and from Eq. (4.22), this shape extends over a range

L=x—X(t) ~ 2w (~y.)t. (4.24)

In other words, the time needed for the front to reach its asymptotic shape over a range L reads

L2

f~o——
2w (7e)

(4.25)

Through our simple arguments and calculation, we got the lowest order in an expansion of the
front shape and position at large times. The next corrections to X (¢) would be of order 1 (this
constant depends on the way we define the position of the front), followed by an algebraic series in
t whose terms all vanish at large ¢. The first next-to-leading term in the series has been computed
(see Ref. [104]): It turns out to be of order 1/v/t. We will not reproduce the calculations that
lead to it because they are rather technical and there is already a comprehensive review paper
available on the topic [72]. But let us write the result for the position and the shape of the front
at that level of accuracy, for the more general branching diffusion kernel given by Eq. (4.3). To
that accuracy, the front position reads [104, 105]

w(Ye) 3 3 2r 1
= — Int — =/ ———— + O(1/1). 4.26
Ye Qf},c ’73 W//('Yc) \/i ( /) ( )

For the simple FKPP case, we recall that w(—3,) = 2 + 1, then 7. = 1 and w(v.) = 2. The first
two terms in the last equations match the ones found in Eq. (4.21). The shape of the front in its
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forward part has the following form [104, 105]:

u(t,z) = Cre~ @XM exp (=2%) x

{%(ff — X)) +C2 + <3 —2C, + m> 2

where (s
s EXO) (4.28)

V2w (o)t
C, and (s are constants, and oF5, 1 F; are generalized hypergeometric functions. The terms in
the first and second lines match with the result of our calculation (Eq. (4.22)). These expressions
should apply also to QCD, up to the relevant replacements given in Tab. 2.1.
So far, we have considered equations of the type of Eq. (4.1) as saturation equations, in the
sense that they describe the diffusive growth of a continuous function u until it is tamed for v ~ 1.
We will see below that these equations may actually be given a different physical interpretation.

Relevance of this formalism to the BK equation

In order to check that the formalism used to arrive at a solution to FKPP-like equation applies to
the BK equation in QCD, we performed in Ref. [74] a numerical simulation of the BK equation.
We compared the velocity of the obtained traveling wave with Eq. (4.26), using either the full
expression with three terms or a truncation of it keeping only the two dominant terms. We
defined the saturation scale by the equation A(y,Qs(y)) = k, and we chose different values of .
We see in the plot of Fig. 4.4 that the numerical result is consistent with the analytical expectations
(using the dictionary in Tab. 2.1), although the complete discussion is quite subtle. All details of
the numerics and the discussion of the results were published in Ref. [74].

4.1.3 Discrete branching diffusion

We have investigated the solutions of the FKPP equation in a mathematical way, without dis-
cussing the physics that may lead to such an equation. The absorptive boundary that we have put
replaces the nonlinear term in the FKPP equation, whose role is to make sure that u never exceeds
the limit v = 1. Hence we have thought of this boundary as a way to enforce the saturation of
some density of particles. Actually, the FKPP equation (4.1) may stem from a branching diffusion
process in which the number of particles is unlimited, and thus, for which there is no saturation at
all. As a matter of fact, this is what the BK equation describes in QCD: An exponentially growing
number of dipoles, stemming from the rapidity evolution of a hadronic probe, scatters off some
target. The overall interaction probability is unitary because multiple scatterings are allowed (the
interaction probability of n dipoles is actually of the form 1 — e’o‘in), but not because there is a
saturation of the number of dipoles in the wavefunction of the probe. We refer the reader back to
Fig. 2.4 for a picture of the process.

To illustrate how the FKPP equation arises in such a simple model of branching diffusion, let
us consider a set of particles on a line, each of them being indexed by a continuous variable x.
(Such a model was considered for instance in Ref. [71]). We let the system evolve according to
the following rules. During the time interval dt, each particle has a probability dt to split in 2
particles. Unless it splits, it moves of the small random amount §z, which is a Gaussian variable

distributed like (6 )2
x
. 4.2
exp( 4dt ) (4.29)

p(ow) = \/417Tdt
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Figure 4.4: Velocity of the QCD traveling wave as a function of the rapidity. The different curves
correspond to the numerical simulation, the saturation scale being defined in various ways with
the help of the parameter k (see the text for the definition of the latter), and to the analytical
formula of Eq. (4.26), either truncated after the second term (“Analytic 2 terms”), or complete
(“Analytic 3 terms”) (see the dictonary in Tab. 2.1 for the notations).

AN A

Figure 4.5: Example of branching diffusion process on a line (see the text for a mathematical
description of the evolution rules). If the number of individuals is limited by a selection process
which, at each new branching, eliminates the individual sitting at the smallest = as soon as the
total number of individuals reaches say N (N = 10 in this figure), then only the branches drawn
in thick line survive.
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Let us consider the number of particles n(¢, x) contained in an interval of given size Az centered
around the coordinate x. At time ¢ = 0, the system is supposed to consist in a single particle
sitting at the origin z = 0. A sketch of a realization of this model is shown in Fig. 4.5. From the
evolution rules, we easily get an equation for the average number of particles (n):

(n(t+dt,x)) = dt2(n) + (1 — dt) / d(0x)p(dx)(n(t,z — ox)) (4.30)

which reads, after replacing p by Eq. (4.29) and after the limit d¢t — 0 has been taken,

oy, . 0*n)
e Uty vt

(4.31)

All the dependence on the size Az of the “bin” is contained in the initial condition. It is clear that
for large enough times, the solution to this equation is given by Eq. (4.12).
Let us now define
S(t,z) = e B2)/N (4.32)

where N is some (large) constant. This definition is reminiscent of the S-function, related to the
scattering amplitude, introduced in the discussion of the BK equation in Chap. 2. At a fixed
time and for large enough x, n(t,z) < N and thus 1 — S(¢,2) ~ n(t,2)/N — 0. For any x, the
exponential makes sure that S ranges between 0 and 1. Thus S (or 1 — S) has the shape of a
traveling wave. Its position X (¢) is the value of = for which n(¢, x) is some given constant say of
the order of N. In the mean-field limit in which n is replaced by its average (n), it is very easy to
compute X (t) from the form of the solution (4.12). We get (see Eq. (4.13))

X(t) =2t — %mt (4.33)

up to a constant.
On the other hand however, the average of S over events, namely A = 1— (S) obeys the FKPP
equation. Indeed

(S(t+ dt,z)) = dt(S(t,2))* + (1 — dt) / d(52)p(62)(S(t,x — ox)). (4.34)

In the limit dt — 0 and rewriting the equation with the help of A, we get

0A 0?4 9
9t a2 + A-— A= (4.35)
Hence A is a traveling wave at large times, and its position X(t) is given by Eq. (4.20). It is
obviously behind by a term Int with respect to the value of x for which the average number
of particles has a given constant value (compare Eq. (4.20) and Eq. (4.13)). Furthermore, the
probability distribution of the position of the rightmost particle (or of the k-th rightmost particle
for any given k) may also be derived from the FKPP equation. (Brunet and Derrida have recently
given an advanced discussion of the statistics of the position of these particles, see Ref. [106,107]).
It turns out that in any event, the average x for which n(¢, x) has a given value, say ng, moves with
the FKPP velocity which can be read off from Eq. (4.20). This is much slower than the rate of
change of X (¢) when the latter is defined as the implicit solution of the equation (n(¢, X (t))) = no.
All this may seem a bit paradoxical. But actually, it is just related to the fact that (e="/")
cannot be approximated by e~ (/N We may understand it in the following way. By taking the
average of n, we have somewhat forgotten a fundamental property of n: its discreteness. Indeed,
it only takes integer values, and in particular, the distribution of n in a realization has a finite
support: At any time, there is a value of = to the right of which there are no particles at all. n
obeys a stochastic equation. This is not the case for (n), which just obeys an ordinary branching
diffusion equation.
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<n>

Figure 4.6: Solution of the branching diffusion equation (4.36) with a moving absorptive boundary
that forces (n) to vanish at the point X (¢) such that (n(¢, X (¢) — 1)) = 1. Two different times are
represented.

In order to recover the effect of the discreteness of n and compute the velocity, we may again
use the absorptive boundary trick. Let us solve the linear equation

dr(n) = 95(n) + (n) (4.36)

with an absorptive boundary. The latter will be placed in such a way that at a distance of order
one to its left (we will focus on the right-moving wave), (n) = 1 (see Fig. 4.6). There is no
difference in principle with the boundary calculation that we have performed before, except that
the absorptive boundary is now placed to the right of the front (i.e. o < X in the notations
used above). Thus we find without any further calculation that the realizations of n move, on the
average, with the FKPP velocity (4.21).

4.2 Combining saturation and discreteness

We have seen that physically, the FKPP equation (or the BK equation in QCD) may be interpreted
either as an equation for the growth, diffusion and saturation of a continuous function, or as the
evolution equation for the average of a bounded function of a discrete (thus stochastic) branching
diffusion process. For each of these interpretations, we may find the main features of the solutions
by imposing one absorptive boundary on the linear partial differential equation encoding branching
diffusion. In one case, the boundary is a cutoff that prevents u to be larger than 1: It represents
saturation, i.e. the explicit nonlinearity present in the FKPP equation. In the other case, the
boundary forces the function n that represents the number of particles to vanish quickly when n
becomes less than 1. Formally, it actually models the stochasticity due to the intrinsic discreteness
of the number n of particles, and avoids to address a stochastic equation directly.

In physical cases such as reaction-diffusion processes for finite N, we define wu(¢,z) as the
number of particles per site (or per bin) in = normalized to N. Hence it takes discrete values:
1/N, 2/N etc... While for large N discreteness is unlikely to play a role in the region u ~ 1, it
is expected to be crucial when u ~ 1/N. It is thus natural to impose the two boundaries: one
representing saturation of the particle number, the other one taking care of the discreteness of
the same quantity. A model that these two cutoffs may represent is for example, the branching
diffusion model in Sec. 4.1.3, but in which the total number of particles is limited to N by keeping
only the N rightmost ones at each new branching. It is clear that the function U(¢, z) defined to
be the number of particles to the right of some position x normalized to the maximum number N
is, for large enough times, a front connecting 1 (for x — —o0) to 0 (for z — +00) (see Fig. 4.7).
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fraction of particles to the right of x

!

I/N b

Figure 4.7: Branching diffusion model of Sec. 4.1.3 with selection that limits the total number of
particles to N. The function U(¢, x), which is the number of particles to the right of  normalized
to the maximum number of particles N, is represented. One sees that the fraction of particles to
the right of = looks like a traveling wave front.

Reaction-diffusion problems (described by nonlinear stochastic partial differential equations)
were interpreted as branching diffusion problems taking place between two absorptive boundaries
for the first time by Brunet and Derrida in Ref. [108] and later, independently, by Mueller and
Shoshi in the case of QCD in Ref. [40]. Note however that in the context of the QCD parton
model, the present interpretation of the cutoffs was only found in Ref. [41]. Mueller and Shoshi
introduced the both cutoffs for reasons related to the boost-invariance of the QCD amplitude.
(The discreteness cutoff was thought as the symmetric of the saturation cutoff under some boost).
The duality of the two boundaries, that is to say of the dense and dilute regimes of the traveling
wave, was studied more deeply in Refs. [109-113].

Before moving on to the technical derivation of the shape and position of the front in this case,
let us figure out what we expect to find.

Starting from the initial condition which we assume to be one or a few particles, the front
builds up and its velocity increases with ¢ (see Eq. (4.21)) until it reaches its asymptotic shape,
which is a decreasing exponential e ~7=(*=X®)) that holds for all = — X (t) > 1. (X (t) is here the
position of the bulk of the front, say for example of the leftmost surviving particle). But if the
front is made of discrete particles, then it has a finite support, and the exponential shape may not
extend to infinity to the right, since u(t, ) has to be either larger than 1/N, or zero. It cannot
take values that would be a fraction of 1/N in realizations, and thus, we cannot accommodate
the shape e~ 7(*=X®) for arbitrarily large values of z, since it would mean authorizing arbitrarily
small positive values of u(¢, z). From Eq. (4.25) and from the shape of the asymptotic front (4.23),
the exponential shape sets down to u = 1/N at time

c In N2
trelax = ——— . 4.37
ela ZUJ'/(’}/C) ( Ve ) ( )

Beyond, the front cannot develop any longer, and thus, its shape and velocity remain fixed. t ejax
is the time that is needed for the front to relax from any perturbation, which is why we have put
the subscript “relax”.

From Eq. (4.21) evaluated at ¢ = t,elax, We get the new asymptotic velocity, which takes into
account the effects of discreteness, in the form

dX(t) _ w(ve) 37w (1) (4.38)
dt Ye & 1D2N ' '
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Figure 4.8: Sketch of the solution to the branching diffusion equation with two boundaries.

The calculation of the constant ¢ requires a proper account of the exact shape of the front. We
shall turn to this calculation now.

As announced, we are now going to solve the linear branching diffusion equation with two
absorptive boundaries: one representing saturation, the other one discreteness. Using the intuition
gained from the study of the deterministic FKPP equation, we write the ansatz

u(t,x) = e Ye(@=X®) Ly <2w,/£;c)t, 3: _LX(t)> . (4.39)

L is a constant which will represent the size of the front, which is essentially equal to Ly = In N/,
for large N. When w is expanded to second order around the eigenvalue ~., then v obeys the
partial differential equation

0, = 02+ (i) - X (1) (440)
Y 4°° 20" (7e) e ’ |
where we have defined 2" (7o)t X(t)
W (e -
v="ga and p= o

We have only kept the dominant terms for large L. We see that w’(7.) — X’(t) has to scale like 1/L?
for all terms of this equation to be relevant, as was already guessed heuristically. The coefficient
of 1/L? must be chosen in such a way that in the large-y limit, there is a nontrivial stationary
solution. We will check that the correct ansatz is

2,1
XN(1) = W (7) — =0 g 4.42
(0) =20 = T a + ol1/17) (142
Equation (4.40) then becomes
1,5 72

up to higher-order terms when L is large.

We now implement the absorptive boundaries at p = 0 and another one at p = 1 (which
corresponds to a distance L between the boundaries in xz-coordinates, i.e. to the natural size of
the stationary front). The boundary conditions formally read

Y(y,p=0)=0 and Y(y,p=1)=0. (4.44)
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As for the initial condition, for reasons that will become clear later, put a localized mass close
to the rightmost boundary, namely we write

eYed

1/’(3/ =0, P) = 6(/) -1+ (_L)?, (445)

where @ is a constant of order 1/L, and therefore @ < 1. The value of the weight 7<% actually
corresponds to putting one single particle at a distance ¢ to the right of the rightmost boundary.
As we will see, such a weight corresponds to a fluctuation added to a stationary solution. But in
this section, we shall only focus on the large-time behavior: The initial condition will be forgotten
through the time evolution.

The solution of Eq. (4.43) with the conditions (4.44) and (4.45) reads

26%5 0 L ) =2(n2 1)y
Us(y, p) = 72 2:(—1)’“L sinwna sinTnpe” 1 . (4.46)

n=1

While the full solution with all harmonics will be of interest later, we shall discuss here only the
stationary solution. We see that for large y, the higher harmonics are suppressed exponentially
with respect to the fundamental mode n = 1, which gives the following contribution:

2¢7+% 2mae”e%

Vs, (Y, p) = 7sin7r&sin7r,o (_12_;1 —7

sin mp. (4.47)
Thanks to the choice (4.42) for X'(t), this solution has no y dependence, and leads to a stationary
u in the frame of the front. The expression (4.47) is independent of the initial condition except
for the overall normalization. The value of dy, which characterizes the initial condition, will be
adjusted later. Undoing the changes of variables which trade u for ¢, z for p and ¢ for y (Eq. (4.39)),
the stationary solution us, reads

(2—X (1) 2raee% Isin m(x — X(t))

L? L

ug, (t, ) = e e (4.48)

We further require that ug(¢,z) ~ 1 for x = X (t) + aL, where aL is a constant of order 1. This
condition is satisfied if we set dg ~ 31n L/v.. Indeed, with this choice,

ug, (t, X (t) + aL) ~ 2n%aal?e =k, (4.49)

Since alL and al are constants, the right-hand side is just a number of order 1.
All in all, the final solution reads

- X

u(t,z) o< ke @XM [sin @ = X®) (4.50)

(see Fig. 4.8) where the size of the front is
In N
L= (4.51)
Ye

and its velocity reads, from Eq. (4.42),

dX (t 2. .1 : . 2 . " .

dt 27.L Ye 2In“ N

The subscript BD stands for “Brunet-Derrida” after the first authors who wrote down such an
expression. In the FKPP case, namely for w(y) =92 + 1, 7. = 1 and w(v.) = w”(7.) = 2.
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u(t,x)

Figure 4.9: Evolution of the front with a forward fluctuation. At time ¢y, the primary front
extends over a size L and is a solution of the branching diffusion equation with two appropriate
boundaries. An extra particle is stochastically generated at a distance § with respect to the tip of
the primary front. At a later time, the latter grows deterministically into a secondary front that
is a bit slower, and that will add up to the primary one. The overall effect, after relaxation, is a
shift to the right of the distance R(4) with respect to the position of the front if a fluctuation had
not occured.

4.3 Beyond the deterministic equations: Effect of the fluc-
tuations

So far, we have actually solved deterministic equations although we were addressing a model with
a discrete number of particles, that therefore had necessarily fluctuations. Our procedure gave
the leading effects. We shall now incorporate more fluctuation effects, in a phenomenological way.
(We shall essentially review Ref. [114]).

4.3.1 Phenomenological model and analytical results

The two-boundary procedure has led to the following result: The front propagates at a velocity
vgp in Eq. (4.52) lower than the velocity predicted by the mean-field equation (4.21), and its
shape is the decreasing exponential e~ 7(*=X®) down to the position

In N
ip(t) = vBDl + —— (4.53)

Ve

at which it is sharply cut off by an absorptive boundary. This boundary was meant to make
the front vanish typically over one unit in x, hence to implement discreteness on a deterministic
equation.

But since the evolution is not deterministic, it may happen that a few extra particles are sent
stochastically ahead of the tip of the front (See Fig. 4.9). Their evolution would pull the front
forward. To model this effect, we assume that the probability per unit time that there be a particle
sent at a distance § ahead of the tip simply continues the asymptotic shape of the front, that is
to say, the distribution of ¢ is

p(6) = Cre 7, (4.54)

where C7 is a constant. Heuristic arguments to support this assumption were presented in
Ref. [114]. Note that while the exponential shape is quite natural since it is the continuation
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Figure 4.10: s, (y, p) + ¥s(y, p) [see Eqgs. (4.47), (4.46)] for different values of the reduced time
variable y after a fluctuation of size 6 = 5 has occurred at y = 0. In this plot, the size of the front
is L =10, and a = 0.1. We see how the fluctuation, initially localized at the tip of the front, gets
smeared uniformly over the width of the front as y gets large. Eventually, a small forward shift
X — X + R would be needed in order to absorb it and recover the stationary front.

of the deterministic solution (4.22) in the linear regime, the fact that C; need to be strictly
constant (and cannot be a slowly varying function of §) is a priori more difficult to argue.

Once a particle has been produced at position z, + 6, say at time to, it starts to multiply (see
Fig. 4.9) and it eventually develops its own front (after a time tye1ax of the order of L?), that will
add up to the deterministic primary front made of the evolution of the bulk of the particles.

Note that the philosophy of our phenomenological approach to the treatment of the fluctuations
is identical to the spirit of the statistical approach in Sec. 3.3 developped for the zero-dimensional
model. Whenever the number of particles is larger than 7 (7 = 1 here), we apply a deterministic
nonlinear evolution. Fluctuations instead are produced with a probability which stems from a
linear equation. The difficulty here is that we are unable to solve either of these equations for
arbitrary initial conditions and thus we have to make conjectures on the form of their solutions.

Let us estimate the shift in the position of the front induced by these extra forward particles.
The solution of the diffusion equation is the superposition of the large-time stationary solution
ug, given by Eq. (4.48) with §yp = 31n L/~., and of the solution us of the diffusion equation with
the generic initial condition characterized by ¢ (see Eq. (4.46)), up to a multiplicative constant
C5 of order 1 that we do not control in this calculation, since it certainly depends on the detailed
shape of the fluctuations. We write

u(t, z) = us, (t, ) + Coug(t, z) = e XL s (y, p) + Cotis(y, p)] (4.55)

up to the replacement of the variables by their expressions (4.41). The presence of the second term
alters the shape of the front (the front eventually relaxes back to the sine shape in Eq. (4.48)),
see Fig. 4.10. But of course, we want to keep the normalization condition for w, namely for
some appropriate value of z, u is required to equate Eq. (4.49) at all . This is possible by
shifting the value of x at which we enforce the normalization condition from x = X (t) + aL to say
x = X (t)+aL+R(t,0). Thisis equivalent to shifting the position of the front X (t) — X (¢t)+R(¢, ).
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Equation (4.55) then leads to

6. 2- 12 —~yeaL—7.R(t5 Vs (y,a)
u(t, X (t) + aL + R(t,0)) = 2n%aal?e Vol R(t9) [1 +0227r2&aL] . (4.56)

Equating the right-hand sides of Eq. (4.56) and Eq. (4.49), we get

R(t,6) = ! In|1+C v <2wL(2%)t’a)
t — - 7
(t,9) Ve " > 2%l ’

(4.57)
where only the lowest orders in @, a in the expansion of s must be kept. With the help of
Eq. (4.46), it is then straightforward to arrive at an explicit expression of R.

In the large time limit in which only the fundamental mode survives in the expression of 1,
we get the shift

1 el
R(6) = oo (1 + Carg ) . (4.58)

The probability distribution (4.54) and the front shift (4.58) due to a forward fluctuation define
an effective theory for the evolution of the position of the front X (¢):

X (t) + vppdt proba. 1—dt [~ dép(d)

(4.59)
X(t) +vppdt + R(§) proba. p(d)dddt.

X(t—&-dt)z{

From these rules, we may compute all cumulants of X (t), by writing the evolution of their gener-
ating function, deduced from the effective theory (4.59):

210 (X0) = yupp + [ o) (210 1), (4.60)

The left hand-side is a power series in A whose coefficients are the time derivatives of the cumulants
of X(t). Identifying the powers of A in the left and right-hand sides, we get

V = opp = / dop(5)R(5) = C;CQ ?jyllzf
ce (4.61)
[n-th cumulant] / n_ C1Cynl((n)
prtesmisnt] _ [ s = A2,

We see that the statistics of the position of the front still depend on the product C;C5 of the
undetermined constants C'; and C5. We need a further assumption to fix its value.

We go back to the expression for the correction to the mean-field front velocity, given in
Eq. (4.52). From the expressions of R(0) (Eq. (4.58)) and of p(d) (Eq. (4.54)), we see that the
integrand defining V' — vpp in Eq. (4.61) is almost a constant function of § for § < dp = 31In L/~,,
and is decaying exponentially for § > ;. Furthermore, R(dy) is of order 1, which means that
when a fluctuation is sent out at a distance & ~ dg ahead of the tip of the front, it evolves into
a front that matches in position the deterministic primary front. We also notice that when a
fluctuation has § < dp, its evolution is completely linear until it is incorporated to the primary
front, whereas fluctuations with § > §p evolve nonlinearly but at the same time have a very
suppressed probability. We are thus led to the natural conjecture that the average front velocity
is given by vgp in Eq. (4.52), with the replacement

In N In N Inln N
L— Lo = —— + 8y = —— + 322 (4.62)
Ve Ye Ve
namely
2,1
Ve In N 3lnln N
27(: < Ye + Ye )
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The large-N expansion of the new expression of the velocity yields a correction of the order of
Inln N/ In® N to the Brunet-Derrida result, more precisely

OJ(’)/C) 7(-2’700'}// (P)/c) 2 7" 3lnln N
Vo _ 42y (o) Y 4.64
7 owmrn e 0Ty (4.64)
Egs. (4.61) and (4.64) match for the choice
C1Cy = 720" (7). (4.65)

From this determination of C7C5, we also get the full expression of the cumulants of the position

of the front: n-th lant] ()

n-th cumulan 5 9 n!¢(n

. T Tew (%)W- (4.66)
We note that all cumulants are of order unity for ¢ ~ In® N, which is the sign that the distribution
of the front position is far from being a trivial Gaussian. This makes it particularly interesting.
On the other hand, the cumulants are proportional to k = t/ In® N, which is the sign that the
position of the front is the result of the sum of x independent random variables, and as such,
becomes Gaussian when k is very large. The properties of the statistics of the front position were
investigated in some more details in Ref. [115].

Thanks to our discussion in Chap. 2, we see that these results should apply to QCD with the

relevant substitution of the kernel w and of the parameter N according to Tab. 2.1.

4.3.2 Numerical simulations

The results obtained so far rely on a number of conjectures that no-one has been able to prove so
far. In order to check our results, let us consider again the model introduced in Sec. 2.2.2. The
first step to take before being able to apply our results to this particular model is to extract from
the linear part of Eq. (2.26) the corresponding function w(y), and then to compute ~.. Setting
Ax = At =1, we get

w)=In[1+A+p(e? =1)+p(e7 —1)], (4.67)

and . is defined by w(v.) = Y’ (Ve)-
For the purpose of our numerical study, we set

p=p, =01 and A=0.2. (4.68)

Simulated realizations for this set of parameters are shown in Fig. 4.11.
From (4.67), this choice leads to

Ye=1.352--- | w'(y.) =0.2553--,

4.69
W (7e) = 0.2267- - - . (4.69)

Predictions for all cumulants of the position of the front are obtained by replacing the values of
these parameters in Eqs. (4.64),(4.66).

Technically, in order to be able to go to very large values of N, we replace the full stochastic
model by its deterministic mean field approximation u — (u), where the evolution of (u) is given
by Eq. (2.26), in all bins in which the number of particles is larger than 103 (that is, in the bulk of
the front). Whenever the number of particles is smaller, we use the full stochastic evolution (2.24).
We add an appropriate boundary condition on the interface between the bins described by the
deterministic equation and the bins described by the stochastic equation so that the flux of particles
is conserved [116]. This version of the model will be called “model I”. Eventually, we shall use
the mean field approximation everywhere except in the rightmost bin (model II): at each time
step, a new bin is filled immediately on the right of the rightmost nonempty site with a number
of particles given by a Poisson law of average 6 = N(u(x,t+1)|{u(x,t)}). We checked numerically
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Figure 4.11: 1000 realizations of the model introduced in Sec. 2.2.2 at two different times (dotted
lines), and the average of u over the realizations (full line). One clearly sees that (u) does not
keep its shape upon time evolution, which shows that the traveling wave property of the FKPP
equation is lost due to the stochasticity. This point is addressed in some detail in Chap. 6.

that this last approximation gives indistinguishable results from those obtained within model I as
far as the statistics of the position of the front is concerned.
We define the position of the front at time t by

X = iou(x,t). (4.70)

We start at time ¢ = 0 from the initial condition u(z,0) =1 for x < 0 and u(z,0) =0 for > 0.
We evolve it up to time ¢ = In?> N to get rid of subasymptotic effects related to the building of
the asymptotic shape of the front, and we measure the mean velocity between times In? N and
16 x In® N. For model I (many stochastic bins), we average the results over 10* such realizations.
For model II (only one stochastic bin), we generate 10° such realizations for N < 10°° and 10*
realizations for N > 10°°. In all our simulations, models I and II give numerically indistinguishable
results for the values of N where both models were simulated, as can be seen on the figures (results
for model I are represented by a circle and for model II by a cross).

Our numerical data for the cumulants is shown in Fig. 4.12 together with the analytical predic-
tions obtained from (4.64),(4.66) (dotted lines in the figure). We see that the numerical simulations
get very close to the analytical predictions at large N. However, higher-order corrections are pre-
sumably still important for the lowest values of N displayed in the figure.

We try to account for these corrections by replacing the factor (In N)/v. = Lo in the denomi-
nator of the expression for the cumulants in Eqs. (4.64),(4.66) by the ansatz

3In(In NV) 4 dln(ln N)

Lg=1L .
eff o+ e c DN

(4.71)

The two first terms in the r.h.s. are suggested by our model. We have added two subleading terms
which go beyond our theory: a constant term, and a term that vanishes at large V. The latter
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Figure 4.12: [From Ref. [114]] From top to bottom, the correction to the velocity given by the cutoff
theory and the cumulants of orders 2 to 5 of the position of the front in the stochastic model. The
numerical data are compared to our parameter-free analytical predictions (4.64),(4.66), represented
by the dashed line.

are naturally expected to be among the next terms in the asymptotic expansion for large N. We
include them in this numerical analysis because in the range of N in which we are able to perform
our numerical simulations, they may still bring a significant contribution.

We fit (4.71) to the numerical data obtained in the framework of model II, restricting ourselves
to values of N larger than 103°. In the fit, each data point is weighted by the statistical dispersion
of its value in our sample of data. We obtain a determination of the values of the free parameters
c=—4.2640.01 and d = 5.12 + 0.27, with a good quality of the fit (x2/d.o.f ~ 1.15).

Now we see that with this modification of the expression of the size of the front, the results
for the cumulants shown in figure 4.12 (full lines) are in excellent agreement with the numerical
data over the whole range of V.
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Chapter 5

Spatial correlations

So far, all models and calculations aimed at describing QCD scattering amplitudes assumed umni-
formity in impact-parameter space, or, decoupling of the evolution between different points in the
transverse space. Indeed, we considered one-dimensional models while to fully describe the impact
parameter, two dimensions are necessary. We shall address here the issue of the correlations of
the QCD evolution between different impact parameters.

Contents
5.1 Relevance of one-dimensional models . . . . ... ........... 63
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5.2.3 Analytical expression for the correlations . . ... .. ... .. .. ... 73
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5.1 Relevance of one-dimensional models

So far, we have argued that high-energy scattering in QCD at fixed coupling and fixed impact
parameter is in the universality class of the stochastic FKPP equation (Chap. 2), which is an
equation with one evolution variable (time or rapidity in QCD), and one spatial dimension (x
generically, or Ink? ~ In(1/7?) in QCD). From the very beginning, we have simply discarded
the impact parameter dependence. It is important to understand that the spatial variable and
the impact parameter play different roles, and thus, the impact parameter may a priori not be
accounted for by a two-dimensional extension of the FKPP equation.

There are general arguments to support the assumption that the QCD evolution is local enough
for the different impact parameters to decouple through the rapidity evolution, which we are now
going to present.

Let us start with a single dipole at rest, and bring it gradually to a higher rapidity. As was
explained in Chap. 2, during this process, this dipole may be replaced by two new dipoles, which
themselves may split, and so on, eventually producing a chain of dipoles. Figure 2.2 pictures one
realization of such a chain.

According to the splitting rate given in Eq. (2.1), splittings to smaller-size dipoles are favored,
and thus, one expects that the sizes of the dipoles get smaller on the average, and that in turn, the
successive splittings become more local. The dipoles around region “1” and those around region
“2” should have an independent evolution beyond the stage pictured in Fig. 2.2: Further splittings
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will not mix in impact parameter space, and thus, the traveling waves around these regions should
be uncorrelated. For a dipole in region 1 of size r to migrate to region 2, it should first split
into a dipole whose size is of the order of the distance Ab between regions 1 and 2, up to some
multiplicative factor of order 1. (We assume in this discussion that the dipoles in region 2 relevant
to the propagation of the local traveling waves, that is, those which are in the bulk of the wave
front, also have sizes of order r). Roughly speaking, the rate of such splittings may be estimated
from the dipole splitting probability (2.1): it is of order a(r?/(Ab)?)?, while the rate of splittings
of the same dipole into a dipole of similar size in region 1 is of order &. Thus the first process is
strongly suppressed as soon as regions 1 and 2 are more distant than a few units of . Note that
for Ab 2> 1/Qs, saturation may further reduce the emission of the first, large, dipole leading to an
even stronger suppression of the estimated rate.

What could also happen is that some larger dipole has, by chance, one of its endpoints tuned
to the vicinity of the coordinate one is looking at (at a distance which is at most |Ar| < 1/Qs(y)),
and easily produces a large number of dipoles there. In this case, the position of the traveling wave
at that impact parameter would suddenly jump. If such events were frequent enough, then they
would modify the average wave velocity and thus the one-dimensional sFKPP picture. We may
give a rough estimate of the rate at which dipoles of size smaller than Ar are produced. Assuming
local uniformity for the distribution n of the emitting dipoles, the rate (per unit of ay) of such
events can be written

d?rg e\ 1 re
&7 d%e £y = 5.1
/ro>Ar 7"8 e<Ar n(TO) <T0> 27 Z.:2(7A0 - 5)2 ( )

where we integrate over large dipoles of size rg > Ar emitting smaller dipoles (of size ¢ < Ar) with
a probability d2e r3/(2me?(rg —€)?). The factor (¢/rq)? accounts for the fact that one endpoint of
the dipole of size o has to be in a given region of size ¢ in order to emit the dipoles at the right
impact parameter. To estimate this expression, we first use n(rg) = T'(r¢)/a? and approximate T
by

T(ro) = 0(ro — 1/Qy) + (13Q2) 6(1/Q, — o). (5.2)

The front is replaced by 1 above the saturation scale (for rqg > 1/Qs) and by an exponentially
decaying tail for rq < 1/Q. Using 1o —e = r( in the emission kernel, the integration is then easily
performed and one finds a rate whose dominant term is

T ((Ar)*Q3)
R (5.3)

For (Ar)? < (a2)Y/7 /Q?, i.e. ahead of the bulk of the front, this term is parametrically less than
1 and is in fact of the order of the probability to find an object in this region that contributes to
the normal evolution of the front [114]. Hence there is no extra contribution due to the fact that
there are many dipoles around at different impact parameters.

The arguments given here are based on estimates of average numbers of dipoles, on typical
configurations, and we are not able to account analytically for the possible fluctuations. As we have
seen through this review, the latter often play an important role. As a matter of fact, in the physics
of disordered systems, rare events sometimes dominate. So before studying the phenomenological
consequences of the statistical picture of high-energy QCD based on a one-dimensional equation,
one should check more precisely the locality of the evolution in impact parameter.

A numerical check was achieved in the case of a toy model that has an impact-parameter
dependence in Ref. [117]. Let us briefly describe the model, before presenting the main numerical
results.

5.1.1 A model incorporating an impact-parameter dependence

In order to arrive at a model that is tractable numerically, we only keep one transverse dimension
instead of two in 3+1-dimensional QCD. However, we cannot consider genuine 2-+1-dimensional
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QCD because we do not wish to give up the logarithmic collinear singularities at zo = x¢ and
o = x1. Moreover, QCD with one dimension less has very different properties at high energies
[118]. Starting from Eq. (2.1), a splitting rate which complies with our requirements is:

dP 1 ‘.’E01|
— = — X9.
d(ay) 4 |zoz|12]

(5.4)

We can further simplify this probability distribution by keeping only its collinear and infrared
asymptotics (as in Ref. [119]). If |zp2| < |zo1| (or the symmetrical case |z12| < |xo1]), the
probability reduces to dza/|zo2| (dxe/|x12| resp.). The result of the splitting is a small dipole
(20, x2) together with one close in size to the parent. So for simplicity we will just add the small
dipole to the system and leave the parent unchanged. In the infrared region, a dipole of size
|zoz| > |zo1| is emitted with a rate given by the large-|xoz| limit of the above probability. The
probability laws (2.1),(5.4) imply that a second dipole of similar size should be produced while the
parent dipole disappears. To retain a behavior as close as possible to that in the collinear limit,
we will instead just generate a single large dipole and keep the parent. To do this consistently one
must include a factor of two in the infrared splitting rate, so as not to modify the average rate of
production of large dipoles.

Let us focus first on the distribution of the sizes of the participating dipoles. (The simplifying
assumptions made above enable one to choose the sizes and the impact parameters of the dipoles
successively). We call r the modulus of the emitted dipole, ¢ the modulus of its parent and we
define Y = ay. The splitting rate (5.4) reads, in this simplified model

dPTo—)’r‘
dy

rodr dr
r2 + G(TO - T)?? (55)

=6(r —rp)

and the original parent dipole is kept. Logarithmic variables are the relevant ones here, so we
introduce
p =log,(1/7) or r=2"". (5.6)

We can thus rewrite the dipole creation rate as

dP

— I = 0(po — p) 207" log2dp + 0(p — po) log 2 dp. (5.7)
To further simplify the model, we discretise the dipole sizes in such a way that p is now an integer.
This amounts to restricting the dipole sizes to negative integer powers of 2. The probability that
a dipole at lattice site ¢ (i.e. a dipole of size 27*) creates a new dipole at lattice site j is

dy dY 2071 < (5.8)

AP .; /PHI P, ., {logQ j>i
P;

The rates dP;+ /dY for a dipole at lattice site 7 to split to any lattice site j > i or j < i respectively
are then given by

L—1 i—1
dPp; dP;_; ~  dP;i_ dP;_,; _
+ = ~1 —Jog 2(L — i), = ) —1 27"

dy ay ay ay ’

j=i =0

(5.9)

where we have restricted the lattice to 0 < i < L, for obvious reasons related to the numerical
implementation.

Now we have to address the question of the impact parameter of the emitted dipole. In QCD,
the collinear dipoles are produced near the endpoints of the parent dipoles. Let us take a parent
of size rp at impact parameter bg. We set the emitted dipole (size r) at the impact parameter b

such that n
X
b=by+ 0" %7 ; 5 (5.10)
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where s has uniform probability between 0 and 1. It is introduced to obtain a continuous distri-
bution of the impact parameter unaffected by the discretisation of r. This prescription is quite
arbitrary in its details, but the latter do not influence significantly the physical observables. Each
of the two signs that appear in the above expression is chosen to be either + or — with equal
weights. We apply the same prescription when the emitted dipole is larger than its parent.

Now that we have introduced a branching process similar to QCD dipole evolution, we must
define the scattering amplitude. We have explained above (see Sec. 2.1) that in QCD, the scattering
amplitude of an elementary probe dipole of size r; = 27% with a dipole in an evolved Fock state
is proportional to the number of objects which have a size of the same order of magnitude and
which sit in a region of size of order r; around the impact point of the probe dipole. Since in our
case, the sizes are discrete, the amplitude is just given, up to a factor, by the number of dipoles
that are exactly in the same bin of size as the probe, namely

T(i,by) = a? x #{dipoles of size 27" at impact parameter b satisfying |b — bo| < r;/2}. (5.11)
Finally, we must enforce unitarity, that is, the condition
T(i,b) < 1 (5.12)

for any ¢ and b. This condition is expected to hold due to gluon saturation in QCD. However,
saturation is not included in the original dipole model. The simplest choice is to veto splittings
that would locally drive the amplitude to values larger than 1. In practice, for each splitting that
gives birth to a new dipole of size i at impact parameter b, we compute T'(¢,b) and T'(i,b £ r;/2),
and throw away the produced dipole whenever one of these numbers gets larger than one.

Given the definition of the amplitude 7', this saturation rule implies that there is a maximum
number of objects in each bin of size and at each impact parameter, which is equal to Ngay = 1/a2.

5.1.2 Numerical evaluation of the correlators

We have implemented this model numerically. Let us discuss how we operated this implementation
and the results we obtained.

We take as an initial condition a number N, of dipoles of size 1 (¢ = 0), uniformly distributed
in impact parameter between —r/2 and r/2. The impact parameters b; that are considered are
respectively 0, 1076, 1074, 1072 and 10~'. The number of events generated is typically 10*,which
allows one to measure the mean and variance of the position of the traveling waves to a sufficient
accuracy.

We have checked that at each impact parameter, we get traveling waves whose positions grow
linearly with rapidity at a velocity less than the expected mean-field velocity for this model. Ngat
was varied from 10 to 200.

Figure 5.1 represents the correlations between the positions of the wave fronts at different
impact parameters, defined as

<,DS(Y, bl)ps(Ya b2)> - <Ps (Y7 b1)><ps(Ya b2)>' (5'13)

We set Ngat to 25 in that figure, but we also repeated the analysis for different values of Ngu4
between 10 and 200.

We see very clearly the successive decouplings of the different impact parameters in Fig. 5.1,
from the most distant to the closest one, as rapidity increases. Indeed, the correlation functions
flatten after some given rapidity depending on the difference in the probed impact parameters,
which means that the evolutions decouple. This decoupling is expected as soon as the traveling
wave front reaches dipole sizes which are smaller than the distance between the probed impact
parameters, i.e. at Y such that |by — by ~ 1/Q4(Y) = 277(Y). (We shall further comment on
this decoupling in the next section). From the data for ps(Y), we can estimate quantitatively
the values of the rapidities at which the traveling waves decouple between the different impact
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(ps(Y, 0)ps(Y, b)) — {ps(Y;0)) (ps(Y, b))

Figure 5.1: Correlations of the positions of the traveling wave fronts between different impact
parameters in the toy model of Sec. 5.1. The points where the correlations flatten correspond to
the decoupling of the waves in the corresponding regions of impact parameter.

parameters. (It is enough to invert the above formula for the relevant values of bs — b1). These
rapidities are denoted by a cross in Fig. 5.1 for the considered impact parameter differences. Our
numerical results for the correlations are nicely consistent with this estimate, since the correlations
start to saturate to a constant value precisely on the right of each such cross.

We conclude that the different impact parameters indeed decouple, as was expected from a
naive analytical estimate. What is true for our toy model should go over to full QCD, since we have
included the main features of QCD. When looking at the data more carefully however, it turns
out that the model with impact parameter does not reduce exactly to a supposedly equivalent
one-dimensional model of the sSFKPP type. This is a point that would deserve more work. We
refer the reader to Ref. [117] for all details of our numerical investigations.

However, even if one takes the statistical decoupling of impact parameters as soon as Ab >
1/Qs(Y) for granted, there may still be some effective correlations persisting at large rapidities
since two points in impact-parameter space share some common history. Indeed, fluctuations need
some rapidity to affect saturation scales, and history may be remembered way after the rapidity at
which the decoupling happened. Such effects are negligible at small rapidities, as was just shown
numerically, but may be crucial at large rapidities. We shall now investigate this point.

5.2 Computing the correlations

Our method will consist in proposing a simple toy model which contains the main physical features
of QCD, which may be implemented as a Monte-Carlo event generator and for which analytical
calculations will be possible. In these respects, our approach follows the one developed in the
previous section, but while the latter work was purely numerical, our main results will consist
in analytical expressions of the correlation of the saturation scale between two points in impact-
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parameter space, as a function of the distance between the points and as a function of the rapidity.
The content of this section was published in Ref. [120,121].

The model that we will study will have the following characteristics. With respect to QCD,
we assume the following simplifications: (i) Dipoles evolve by giving birth to one dipole of half
size (the left or the right half of the parent dipole), or to one dipole of double size (in such a way
that the parent be the left or right half of its offspring) at some fixed rates, (i) dipoles do not
disappear in the evolution, that is to say, the parent dipoles are not removed, (iii) the positions
and dipole sizes are discrete, and (iv) the configuration space of the dipoles is a line instead of the
full two-dimensional space. We thus give up two main properties of the QCD dipole model: The
collinear singularities, which cause the dipole endpoints to emit an arbitrary number of dipoles
of arbitrarily small sizes, and the continuous and two-dimensional nature of the dipole sizes and
positions. The first simplification is the diffusion approximation, which has been studied in the
context of BFKL physics (see e.g. Ref. [122]), but which was not assumed in the previous model.
The second simplification was instead already assumed in there. These model simplifications may
introduce some artefacts, but that we believe are under control, and many results which we will
obtain within such simple models are likely to apply to QCD since they will not depend on the
details.

Let us now specify completely the model. According to the evolution rules given above, starting
from a dipole of size 1, the sizes of all dipoles present in the system after evolution are powers of
2. In practice, we shall only consider fractions of 1, i.e. the sizes may be written as 2!, where
k > 1. For each value of k, there are 25~ possible values of the position b of the center of the
dipoles: b= —1 +27% —2 +3x27% ... 1 -3x27%F 1 —27% Let us number these bins by the
index 0 < j < 2= — 1 running from the negative to the positive positions. The model may be
represented as a hierarchy of bins that contain a discrete number of dipoles, see Fig. 5.2. Note that
to any given impact parameter b between f% and % corresponds one unique bin at each level of size.
For example, at position b = —%, one sees the bins (k=1,7=0), (k=2,7=0), (k=3,j =0)
etc... At position —0.2, one sees the bins (k=1,7=0), (k=2,5=0), (k=3,7=1) etc... More
generally, at position —3 + Ab, one sees (k, [Ab x 2°71]), where the square brackets represent the
integer part.

During the rapidity (or time) interval dt, a dipole in the bin (k, j) has a probability adt to give
birth to a dipole in the bin (k + 1,25), adt to give a dipole in the bin (k + 1,25 4+ 1), and Bdt/2
to give a dipole in the bin (k —1,;/2) if j is even and (k — 1,(§ — 1)/2) if j is odd. Note that dt
may be infinitesimal (which is generally speaking convenient for analytical calculations), but also
finite (which is convenient for numerical simulations).

As for the saturation mechanism, we assume the simplest one: We veto splittings to bins which
already host the number N of dipoles.

We can consider that the number density of “gluons” of a given size seen at one impact pa-
rameter is proportional to the number of dipoles in the corresponding bin (k,j). As rapidity is
increased, the occupation of the bins with low values of k gets higher until the number of objects
they contain reaches N. The subsequent filling of the bins indexed by larger values of k (smaller
dipole sizes) can be seen as the propagation of traveling wave fronts at each impact parameter,
with possibly complicated relationships between them. The (logarithm of the) saturation scale
X (b,t) at impact parameter b is related to the position of the front seen there at time ¢. There
are several equivalent ways to define the position of the front. It could be, for example, the largest
value of k for which the number of objects becomes some given fraction of N. (Later, we will use
a slightly different definition).

5.2.1 Basic features of the model

Let us denote by n(; ;) (t) the number of dipoles present in the bin (k, 7) at time t. Then, according
to the rules given above, we can write the following stochastic evolution equation:

Ny (t+ db) = min | N, ng ) () + 31 15 jo) (8) + 001 050 () + 0001 iy (B (5.14)
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1 (k=1,j=0)
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Figure 5.2: The hierarchical structure of the model. Each box represents a bin which may contain
up to N dipoles of given sizes (vertical axis) and positions in impact-parameter space (horizontal
axis). The conventional numbering of the bins that we have chosen is also shown for k& = 1,2, 3.

where the 5& ;) are drawn according to the binomial distribution
Proba [6&’j)(t) = l} = (n(k’g)(t)> (zdt) (1 — xdt) e O, (5.15)

This is a rather complicated equation which we do not know how to solve except numerically.

This model does not a priori look like a stochastic FKPP model. We may assume uniformity
in impact parameter: This would amount to imposing the same 6% and 6°/2 respectively for all j
at any given k. In this case, the model would be projected to the FKPP class, but by definition,
this would wash out the fluctuations between the different impact parameters. This simplified
model, that we call “FIP” (for “Fixed Impact Parameter”, since effectively, the model is completely
defined by a single impact parameter) is nevertheless useful since it provides a benchmark to
evaluate how the fluctuations between different impact parameters may alter the FKPP picture.
In this paper, we will rely on (and check again in the case of our model) the conclusion reached in
Ref. [117] that thanks to saturation, locally at each impact parameter, the full model is still well-
described by a one-dimensional FKPP equation, and the fluctuations between different positions
in impact-parameter space do not qualitatively change the picture.

Let us first apply the treatment of FKPP equations exposed in Chap. 4 to the FIP case. We
know that the large-rapidity realizations of the model are stochastic traveling waves, whose main
features can be determined from a simple analysis of the linear part of the evolution equation. In
this model, only the number of dipoles n;, in the bins say (k,0) (i.e. at impact parameter —3) is
relevant. The evolution equation reads!

ny(t + dt) = min [N, ne(t) + 62, (t) + (55“(75)} . (5.16)
The mean-field (or Balitsky-Kovchegov) approximation to the evolution leads to the equation

ng(t + dt) = min {N, ng(t) + adt ng_1(t) + fdt nk+1(t):| ) (5.17)

IWe could also write 265_{_21 (t) instead of the last term in Eq. (5.16). (This may even be a more literal implemen-
tation of the FIP approximation). But this would not make a large difference, which anyway, we would be unable
to capture analytically.
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where the ny are now real functions of k. The linearized equation (equivalent to the BFKL
equation) is simply obtained by discarding the “min” in the previous equation:

ng(t + dt) = ng(t) + adtng_1(t) + Sdt ngy1(t). (5.18)

From standard arguments, we know that for asymptotically large ¢t and N, the velocity of the wave
front, that is the time derivative of the position X (t) of the front, is given by

dX
vy = = w' (7e), (5.19)

dt
where w() is the eigenvalue of the kernel of the linearized evolution equation (5.18) corresponding
to the eigenfunction e~7*, namely

_ 1

p In (14 adte? + pdte™ ™), (5.20)

w(7)
and v, minimizes w(7y)/~. We recall that d¢t may be finite or infinitesimal, in which case Eq. (5.20)
is to be understood as the derivative of In(1 + -) at the origin.

Our aim is to study the correlations between the point at position b = —% in transverse space
(left edge of the system, see Fig. 5.2) and the one at position b = f% + Ab with 0 < Ab < 1. We
calculate the average of the squared difference of the positions of the front between these points,
which is formally related to the two-point correlation function of (the logarithm of) the saturation
scales, and which we deem a good estimator of the spatial fluctuations of the saturation scale.
In the hierarchical model, all bins with index & less than or equal to kap = 1 + [—log, Ab] (the
notation “[- - -]” stands for the integer part) and j = 0 overlap both impact parameters, and thus
the dipoles of size larger than 27%2¢ seen at these points are exactly the same. For k > kap
instead, the bins seen at the two points are distinct and nonoverlaping. So in particular, in our
model with 8 = 0, as soon as the position of the front at one point or at the other is larger than
kap, that is to say, as soon as there are of the order of N dipoles in the bin (kap,j = 0), then the
evolutions are completely uncorrelated at the two points in the corresponding bins. (We expect
that for finite § of order 1, the discussion would not be qualitatively changed.) This matches to
the picture that we may infer for the QCD dipole model: The dipoles at two positions in impact-
parameter space separated by a distance larger than the typical saturation scales in that region
evolve (almost) independently towards larger rapidities. Note that choosing pairs of points around
impact parameter 0, one with positive impact parameter and another one with negative impact
parameter, would not satisfy this property, due to the rigidity of the sizes and positions of the
dipoles. Indeed, these two points would decorrelate very soon in the evolution since their common
ancestors necessarily sit in the bin (k = 1,5 = 0), see Fig. 5.2.

As a consequence of these features of QCD reproduced in the toy model, studying two-point
correlations between points in impact-parameter space as a function of their distance Ab and of
the time (=rapidity) ¢ is equivalent to studying the time dependence of the correlations of the
saturation scales of two realizations of the model whose evolutions are identical until the tip of the
front reaches kap. On the average, it takes a time tap = (kap — 1)/v, v being the mean velocity
of the individual fronts, for the front whose tip is at kap = 1 at the beginning of the evolution
to have its tip at kap. Then the bins such that k& > kap evolve independently between the two
realizations over the remaining time interval

At =t—1tap, with tay = M. (5.21)
Note that this is very close to assuming that the realizations are identical for ¢ < ta; and completely
uncorrelated for t > tayp.

From this discussion, we see that the basic input of our calculation will be the mechanism for
the propagation of a FKPP front which was explained in Chap. 4. We will review it in the next
subsection, then we will proceed to the formulation of the calculation of the correlations.
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5.2.2 Formulation of the calculation of the correlations

In line with the above discussion, we wish to compute the correlations of the position of two fronts
whose evolutions are identical for ¢ < ta; and uncorrelated for ¢ > tap. Note that strictly speaking,
we would need to keep the content of all bins k < kaj identical between the two realizations at all
times, even after time tap. But these two formulations give quantitatively similar results.

Let us introduce X (tg,t) the position of the front at time ¢ in the frame in which X (¢o,%9) = 0.
We focus on what happens slightly before the initial time ty3. According to the mechanism of
front propagation explained in Chap. 4, on one hand, X (ty — dto,t) = X(to,t) + vepdty if no
fluctuation has occurred between times ¢ty — dtg and tg, on the other hand, X(ty — dto,t) =
X(to,t) + vppdty + R(t — to,0) if a fluctuation has occurred at a position § ahead of the front
(which happens with probability p(d)dd dtg). vsp was defined in Eq. (4.52), R(t,0) in Eq. (4.57)
and p(9) in Eq. (4.54). It is straightforward to write an equation for the generating function of
the cumulants of X:

i AX (tost) \ — AR(t—to,0)
oy u{e ) = v + / a5 p(s) (e 1), (5.22)

One now considers two such independent fronts and add up the generating functions. One gets

_d%) In (<e>\X1(t0,t)> <e—/\X2(to,t)>) _ /d5p(5) (eAR(t—to,a) 4 e MR(t—t0.6) _ 2) ) (5.23)

Expanding for A close to 0, the coefficients of the second power of A obey the equation

d

dt((x1 X,)? —2/d5p (§)R%(t — to,9), (5.24)

where we have used the fact that X; and X, are independent random variables for ¢ > ¢y, and we
have traded ¢y for ¢ in the derivative, taking advantage of the fact that both X; — X7 and R only
depend on t — ty. In practice, tg will be equal to tap, the time at which the tip of the single front
reaches kap. From Eq. (5.21), this time is [— logy Ab]/v.

We see that the basic ingredient is the time evolution of the shift of the front due to a forward
fluctuation. This shift was given in Eq. (4.57). It involved the expression for 5 in Eq. (4.46).
In order to write a compact expression for R, it is interesting to note that s is related to some
Jacobi 9 function [123]. Since

(zlg)=1+2 Z " cos(2nz)q n* (5.25)
we may rewrite Eq. (4.46) as
1 1 m(a+ p) m(a — p)
Vs(:p) = 573 [194 (2 q) = va(—5"a) |- (5.26)
The notation
n2y m2w! (ve)t
g=e 1T =e 217 (5.27)

has been introduced. Using Eq. (4.57) and performing the appropriate expansion for small @ and
a, we arrive at an expression for R(¢,0) in terms of the ¥4-function which is particularly compact:

1
R(t.5) = - n 1= 0,000 (528)
with
—9,94(0|q) = 22 1) Hp2gn 1, (5.29)
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It is actually quite natural that the Jacobi theta functions appear, since the latter are defined as
solutions of the one-dimensional heat equation with periodic boundary conditions.

We turn to the analysis of the obtained result. First, for large y, only the fundamental mode
contributes significantly to 5. Looking back at Eq. (4.46), we see that higher harmonics would
give a series of exponentially decreasing corrections. But at a finite time, a large number of modes
have to be taken into account, typically all modes such that n < (L/m)\/2/w”(v.)t. A few low-
lying modes are not enough to describe the small-time behavior. Instead, it is a saddle point (in
an appropriate integral reformulation) that dominates the sum (4.46). In this regime, it would
be useful to find a way to write the series of harmonics such that at asymptotically large y, only
the first term contributes instead of the whole series. This is actually possible using the Poisson
summation formula

+oo +oo
INIOERY /dxf e~ 2imhe (5.30)
n=-—oo k=—o00

In order to get R(t,d), we need the value of ¥5 at p = a. Hence we choose

eved
2

. —_ . 2_ ]
sin rzasin rra g® e, (5.31)

fla) = -

We then perform the integral over z in the r.h.s. of Eq. (5.30). Introducing vy = @ + a and
v_ =a — a, we get the following expression for s:

e’Yc5 1 (2k—1+7+)27r2 (2k—1—~4)27? (2k—14~_)2x2 (2k—1—~_)2x2
41nq 41Ingq — 41nq — 41Ingq
Ys(y, a) =17 lnq +e e e .

(5.32)
Since we eventually want to apply Eq. (4.57) in order to get an expression of the shift of the front,
we expand the latter formula for @,a < 1. The leading order reads

7r eed r2aa «X (2k=1)27?
\qu( Ing)5/2 L2 [7%(2k — 1) + 2Ing] e e (5.33)

k=1

1/}5 (ya (Z) =

The shift of the front due to a fluctuation is obtained from 5 with the help of Eq. (4.57):

1 \/>L26'YC 72w’ ()t = [ (7 ) _ (2k—1)2L2
R(t,6) = {1 + C. T Eg e 2L 2k — 1) — < ] 2077 (ve)t } 5.34
( ) Ye 2( (’}/C) )5/2 ; ( ) 2 ( )

q is the function of ¢ given by Eq. (5.27). This formula is extremely useful, since the series indexed
by k converges fast. Even for moderately large values of ¢, a few terms accurately describe the
whole function. This is actually the best formula for numerical evaluations of R.

We shall now examine the limit of small ¢ (y < 1). Then only the term k£ = 1 has to be kept.
The expression for R boils down to

R(t,9) = iln (1 + Cs

Ve

(5.35)

2
V270 [2 ¢~ T
(7w (70))5/2 5/2

As a final remark, let us note that the Poisson summation (5.30) that we have used to rewrite
the series of harmonics corresponds to a Jacobi identity for the ¥ functions [123]. Equation (5.34)
results from Eq. (5.28) with the replacement

(2k—1)272
—0y94(0q) = \gq YRE Z (2k —1)>+2Ing) e ma . (5.36)
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5.2.3 Analytical expression for the correlations

With the elements presented in the previous sections, we can write the expression for 0%, =
(X1 — X2)?). It is enough to insert the expression for the probability of fluctuations (Eq. (4.54))
and for the time-dependent shift (Eq. (5.28)) into Eq. (5.24):

do?, 20, [T _ _
e :721 | dse 768 12 {102 -094(0lg)| , (5.37)

where for 9,94(0|q) we use either one of the equivalent expressions (5.29), (5.36) according to the
limit that we want to investigate. We now have to fix the value of L. In Ref. [114], L was taken
to be a constant. (The phenomenological model predicted L = Ly = In N/ %, but empirically, we
saw that it was better to add a subdominant correction, namely L = L + = 3 1n Lo + const. ) In
this case, a change of variable can be made in the integrand. All the parameters may be factored
out, leaving us with a simple numerical integral to perform:

+oo T 71_2
/ i In?(1+x) =2¢(2) = 5 (5.38)
0 x2

Thus
dO’%2 - 7T20102

dt — 3y3L3
Replacing the product of the unknown constants by Eq. (4.65) and ¢ by Eq. (5.27) and integrating

over the time variable between 0 and At =t — tap, we arrive at a parameter-free expression for
0%, as a function of At, namely

[~0494(0]q)] - (5.39)

2
9 2

1
dq
012 = W 17 sz;’é’yc)At ; [_aqﬁ4(0|q)} : (540)

We now investigate the two interesting limits, i.e. At > L? and At <« L2. For large At, the
integral is dominated by the region ¢ — 0, thus —9,;94(0|¢) may be replaced by its value at ¢ = 0
(—0494(0]0) = 2). Performing the remaining integration, we get

2 2774 //(’70)

~ At 5.41
12 atsr2 39313 ’ (5.41)

which is twice the second-order cumulant of the position of the front in a fixed impact-parameter
model, see Eq. (4.66). For small At instead, say L < At < L?, we use the expansion of 9,94(0|q)
for ¢ — 1, i.e. the first term in Eq. (5.36), which reads

\/77' 7T2+21]flq 2
004000) = =y g (5:42)

Equation (5.40) boils down to the following expression:

) 4 25 L (5.43)
~ P ——— € S 77 A2l )
019 At L2 37103 W”('YC)At Xp ZMII(VC)At

So far, we have chosen the size of the front L constant, of the order of Ly. Another possible
model for L would be to promote it to a function of ¢ at the level of Eq. (5.37), namely

L = Lo+ 6+ const, (5.44)

where the constant has to be determined empirically. This choice takes maybe into account more
accurately the extension of the front by § generated by the fluctuations. The J-integral cannot
be performed analytically in Eq. (5.37) except in some limits, so a priori, there is no simpler
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expression than Eq. (5.37). Thus we need to know the values of C; and Cs individually. We can
consider that Cy = 7. is the natural normalization of the probability distribution p(d). Then, we
must set Cy = 72w (7.)/7. in order to satisfy Eq. (4.65).

The above-mentioned two models, in which L is either constant or §-dependent, differ by
subleading terms in the large-L limit. Since the values of § which dominate the J-integral in
Eq. (5.37) are of order - In Ly, like the first correction to Ly in the case of constant L, the models
are not expected to differ significantly. We will check this statement numerically.

Scaling

Looking back at Eq. (5.40), we see that 0%, has a nice scaling property. Indeed, we may rewrite
the latter equation as

02 = 7D
2 (v —v)

1

dgq

/ U [0,0.(0/9) (5.45)
e—ve(vg—v)at (

in terms of the properties of a single front (its velocity v and the diffusion constant D whose

analytical expressions were given in Eq. (4.52) and (4.66)), where vy can be read in Eq. (5.19). In

particular, we have the following scaling:

2
l()TZt = function[(vy — v)At]. (5.46)
From Eq. (5.43), we see that the function in the right-hand side is exponentially damped when its
argument is smaller than 1, i.e. parametrically for At < L2,
Once one knows the characteristics of the traveling waves in the FIP model (i.e. v and D),
this scaling of the correlations is a pure prediction. Thus it will be interesting to check it in the
numerical calculations.

Limits on the validity of the calculations

Let us try and evaluate the limits on the validity of our calculations. The latter were essentially
based on the assumption that the eigenvalue v = ~. of the kernel w dominates. While this
statement is clearly true at large times, when the traveling-wave front is well formed, it must
break down at early times right after a fluctuation has occurred: Indeed, a fluctuation has an
initial shape that is far from the one of the asymptotic front, see Fig. 4.10.

We wish to estimate the order of magnitude of the dispersion of the relevant eigenvalues about
~e. To this aim, neglecting for the moment the boundary conditions and the prefactors, we write
the solution of the general branching diffusion as

u(At k) ~ / dry e~ YkHe (AL (5.47)

The interesting values of k are the ones around the position of the wave front, therefore we write
k = voAt + 0k, where dk is of the order of the size L of the front. Expanding w(7y) about ., we
write

w(AL, v At + 8k) ~ e~ VeXOk / d(8) e 0Okt 3w (re) (67)* At (5.48)

where 0y = v — .. It is clear from this equation that the relevant values of §- are of the order
of 6k/(w" (.)At). Since the order of magnitude of §k is the size L of the front, we would a priori
conclude that the dispersion of vy around . is small and hence that the calculation is valid as soon
as At > L.

However, we have also expanded w(7) to second order. This means that for a generic kernel
w, we have neglected terms of the form %w(?’) (7e)(07)2 At ~ L3 /(At)? (which would fit in the dots
in Eq. (5.48)). The expansion is a good approximation if the latter term is small, i.e. if

At > L3/, (5.49)
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Back to impact-parameter space

So far, we have been working with the minimal model, consisting in two realizations of the FIP
model which evolve in the same way until their common tip reaches kap, and which decorrelate
for k > kap. The only relevant parameter which determined the decorrelation of the positions of
the fronts of the realizations was the time At = ¢t — tap after the tip had reached ka,. We now
wish to discuss the transcription of the obtained results to impact-parameter space, which was
our initial problem.

To this aim, we will of course make use of Eq. (5.21) to express tap with the help of the mean
front velocity v. But we also need a length scale to which the distance in impact-parameter space
Ab may be compared. The natural length is the dipole size at the position of the front, namely

(1) = 27 X0 = [ (tap)27 VA (5.50)

On the other hand, according to Eq. (5.21) and disregarding the integer part operator, —log, Ab =
kap and the tip of the front kap is ahead of the bulk X (¢tap) by L: kap = X (¢as) + L. Using the
previous equation, we may now express At as a function of Ab and of the length scale I4(t):

1 Ab

The scaling (5.46) reads

_Ab_
~ M x function

012 e (5.52)

Ab
L + 10g2 m
L2 '

This formula, together with the behavior of the scaling function (see Eq. (5.43)), shows that there
is little b-dependence until log,(Ab/I,(t)) ~ L?, that is to say, until Ab ~ I, (t)eCOHStXLQ. In other
terms, the size Ab of the domain around impact parameter b in which the fluctuations in the
position of the fronts are negligible is, in notations more familiar to QCD experts,

6const><ln2(1/a§)
Abmw (5.53)
Qs(b)
where Q;(b) is the usual saturation momentum at impact parameter b. Note that since the fronts
are statistically independent as soon as Ab x Q(b) > 1, this result may seem a bit surprising:
It says that the effective correlation length between different points in impact-parameter space is
much larger than 1/Q4(b) in the parametrical limit of small a.

5.2.4 Numerical simulations

In this section, we confront our analytical calculations to numerical simulations of the toy model.
First, we consider the full model and test the validity of the assumption that the minimal model is
a good approximation to the full model also for 5 ~ 1, i.e. when splittings to larger-size dipoles are
authorized. Second, we compare the minimal model to the analytical results for the fluctuations
between different positions in impact-parameter space (given essentially by Eqs. (5.37),(5.40)).

Full model

The model defined by Egs. (5.14) and (5.15) is straightforward to implement numerically in the
form of a Monte-Carlo event generator. The simplest is to store the number of dipoles in each
bin in an array whose index i is related to k and j through i = 2*~! + j. The splitting dynamics
relates bin i to 2i (down left), 2i + 1 (down right) and [i/2] (up; the square brackets stand once
again for the integer part).

We have to deal with an array whose size grows exponentially with time. It is thus very difficult
to pick large values of ¢, and thus also large values of N. Indeed, the relevant time scale grows
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Figure 5.3: One event of the full model with « = 8 =1, N = 100 and ¢t — tap = 4. Only the
bins k > 5 are represented. (The bins for k¥ < 5 all contain N dipoles.) The number of dipoles in
each bin is proportional to the blackness which is displayed. We see that in the transition region
close to blackness, nearby bins are often of similar grey levels, which illustrates the statement that

the density of gluons varies significantly only over scales which are larger than the relevant length
scale [5(t) (see Eq. (5.50)).

with N like In? N, and consequently the minimum number of entries in the array one wants to
consider grows like ¢!®* V. In practice, we limit ourselves to ¢ < 4 and N < 100. As for the time
step dt, the most convenient is to take it small but finite. We set dt = 1072.

We start with one particle and evolve it for a few hundred units of time using the FIP version
of the model. We obtain a traveling wave front, whose tip we eventually label k¥ = 1. (The
complete front sits in the bins k¥ < 1). From the initial condition built in this way, we evolve all
bins for which k£ < 1 using the FIP model, and all bins for £ > 1 using the full model. One event
is shown in Fig. 5.3. Although N and ¢ are small in this calculation, we see that the regions in
impact-parameter space which have similar numbers of dipoles are larger than the local length
scale [5(t) (see Eq. (5.50)).

After the evolution times t = 3 and ¢t = 4 respectively, we measure the position of the front at
various impact parameters on a uniform tight grid ranging from —% to —&—%. We use the following
definition of the position of the front:

Nk, [abx2k-1)) (1)

—+o0
X(Abt)=ko+ Y ~

k=ko+1

(5.54)

where ko is the largest k for which n japxor-1)) = N. Note that in principle, we could have
chosen X (Ab,t) = ko. In practice however, because of the discreteness of k in our model, this
choice would introduce artefacts which we do not expect in real QCD.

We compute the squared difference of the front positions between the impact parameters f%
and f% + Ab, and average over events. We plot the result as a function of ¢ 4 log, Ab/v, where v
is the average front velocity measured at impact parameter —%.

We compare the results to the correlations obtained in the minimal model, i.e. when we consider

two independent realizations of an initial front. We do not attempt to compare to our analytical
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Figure 5.4: 02, = ((X; — X2)?) as a function of At =t — ta in the full model with & = 1 and
B = 0 (lines with steps; one corresponds to an evolution time ¢ = 3, the other one to ¢ = 4) and
in the minimal model. In the full model, ta, = [—log, Ab]/v, where v is the measured velocity
of the front at impact parameter —%. In the FIP model, ta; is a fixed time, and corresponds to
the time at which the tip of the front reaches kay, the bin after which two uncorrelated evolutions

take place.

formulas since the values of N that we are able to reach are too small for the approximations that
we had to assume to be relevant.

The corresponding plot is displayed in Fig. 5.4 for N = 100, = 1, § = 0, and in Fig. 5.5 with
the same parameters except 3 = 2. First, we see that in the full model, the graph of 0%, exhibits
steps, i.e. 0, is constant by parts. This is related to the hierarchical structure of the model: The
correlations between b = —% and any of the points at b > 0 are identical; The same is true for
—0.25 <b <0, —0.375 < b < —0.25 etc... The logarithmic b-scale on the t-axis makes the widths
of the steps all equal. Next, we see that for small ¢ — ta; (i.e. impact parameters close to —%)
there are very little fluctuations in the front positions.

Finally, we see that for 8 = 0, as anticipated, the full model and the minimal ones coincide
almost perfectly (Fig. 5.4). For 8 = 2, i.e. when splittings towards larger dipole sizes are switched
on and therefore new correlations appear beyond the ones taken into account in the minimal model,
there are some quantitative differences for large ¢ (Fig. 5.5). But we see that using the minimal
model instead of the full model that keeps all impact parameters is a good approximation. This

corroborates the conclusions of the work in Ref. [117].

Minimal model

We now set 8 = 0, in which case, as discussed earlier and as checked numerically, the model
exactly reduces to a collection of one-dimensional FKPP-like models. Hence, in order to compute
two-point correlation functions, it is enough to evolve two realizations of the corresponding FIP
model with the constraint that all bins with £ < ka; be identical between the two realizations,
and the bins k > kap be completely independent. Alternatively, we could also generate one
single realization and evolve it for ta; time steps, replicate it at time tap, and then evolve the
two replicas completely independently of each other. The difference between these two possible
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Figure 5.5: The same as in Fig. 5.4 but for g = 2.
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Figure 5.6: 0}, as a function of At =t — ¢, in the minimal model with 8 = 0 for N = 10'°.
We display the results obtained within the model in which the realizations decorrelate in the bins
k > kap (labelled “Monte Carlo”), and within the model in which the decorrelation is complete
after time ta; (labelled “without correlations”). The theoretical curves use Eq. (5.40) with the two
possible choices for the front size L. Inset: The same, as a function of 1/At in order to highlight
the small-At region where, as expected, important differences appear between the models.
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Figure 5.7: The same as in Fig. 5.6, for N = 105, All curves coincide almost perfectly.

implementations of the minimal model cannot be accounted for in our analytical calculations, thus
the differences that we shall find numerically will give an indication of the model uncertainty. This
time, our aim is essentially to check our analytical formulas, thus we will pick very large values
of N, even if they appear to be unphysical in the QCD context since they would correspond to
exponentially small values of the strong coupling constant .

The parameters of the model are obtained from Eq. (5.20) with & =1, 3 =0 and dt = 10~2:

Ye=1.0136-- , vy=2681T-- , w’(v.)=2.6098" - (5.55)

These values are close to 1, e and e respectively, which would be the correct parameters if dt were
infinitesimal, in which case w(y) = €7 (see Eq. (5.20)).

The numerical results are shown in Fig. 5.6 for N = 10'° with the two versions of the model
(we generated about 10° realizations), and compared with the analytical predictions. We test the
two possible choices for the size L of the front: Either L is a constant, which from our previous
experience with FKPP traveling waves [114], we set to

1 .
L= tmng Smmy-32 (5.56)
Ve Ve Ye
(see e.g. Eq. (4.71)), or it is -dependent, namely
1
L="InN+6—14. (5.57)

Ye

The numerical constants, which are not determined in our theory, were chosen empirically so that
they properly describe all numerical data for N > 10'°. In the first case, Eq. (5.40) is used. In the
second case, Eq. (5.37) is integrated numerically over ¢ and 6. We see that the agreement between
the numerical calculation and the analytical predictions is good, except maybe for very small
values of At where the calculations are not expected to be accurate. Indeed, for the same values of
At, we also see in Fig. 5.6 a sizable discreapancy between the two versions of the minimal model.
The calculations for N = 10°° are shown in Fig. 5.7. The numerical results and the theoretical
expectations (Eq. (5.40)) coincide almost perfectly.

For larger and more realistic values of «y, the persistence of the correlations is still seen in
the numerical simulations, but some parameters should be modified in the analytical expressions

79



CHAPTER 5. SPATIAL CORRELATIONS

1/a? =100
1.6 T I T \
Monte Carlo S
& L4 = analytical with L = const +§ ------ 7
= 12+ -
<
+ 1 -
=
= 0.8 %
Q 7
I 0.6 rd -
S 04 4
2 e
~ 02} .
0 \ \ \ \ \
n 1 (2} 9 A = Ay lrd

Figure 5.8: Comparison of a numerical Monte Carlo simulation and our analytical formula. The
constant in the parameter L (see the text) which should be equal to In(1/a?) /v, for very small o,
has been shifted by a phenomenological constant. Once this is done, we get a very good agreement
between the two calculations.
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0.1

Figure 5.9: Numerical check of the scaling (5.46). The curves for the different values of N are
very close together for N > 10'°, but the scaling seems to break down for low values of N (see
the curve for N = 100), as expected.
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and tuned to account for our lack of understanding of subleading corrections important for finite
In(1/a?). We show such a calculation for oy = 0.1 in Fig. 5.8, compared to a variant of Eq. (5.40).

Finally, we check that the scaling in Eq. (5.46) is well reproduced by the numerical data. The
Monte-Carlo simulations are shown in Fig. 5.9, plotted in the appropriate scaling variables. The
diffusion constant of a single wave front D as well as the velocity v are measured from the same
data. We see that all curves nicely superimpose for N > 10!° (we show data for values of N
as large as 10%°), while there are clear deviations for smaller N (see the curve for N = 100), as
expected.
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Chapter 6

Phenomenological applications

In this chapter, we review the phenomenological consequences of the results obtained from the cor-
respondence with statistical physics. We derive new properties of the QCD scattering amplitudes
and discuss their impact on phenomenology.

Contents
6.1 Dipole models and geometric scaling . . . . .. ... ... ....... 82
6.2 Diffusivescaling . . .. .. .. .. it e e 83

As was stated in the Introduction, the initially unplanned opportunity to collect data in the
high-energy regime of deep-inelastic scattering at HERA triggered a renewed interest in small-
x physics among phenomenologists. The major discoveries in this regime is the (unexpected)
important fraction of diffractive events, and a new scaling, geometric scaling, featured by total
(and even semi-inclusive) cross-sections (see Fig. 1.1 in the Introduction).

In order to deal theoretically with the small-z regime, one needs new factorization theorems in
order to single out the elements of the cross-sections that are computable in perturbation theory.
High-energy, also called k -factorization [124-126], is the appropriate tool. A practical way to
implement k| -factorization is the color dipole model presented in Chap. 2.

6.1 Dipole models and geometric scaling

The main observable measured at HERA is the proton structure function Fs. It is proportional to
the sum of the virtual photon-proton cross-section for a transversely and longitudinally polarized
photon respectively.

A bare photon has no hadronic interactions, since it does not carry any color charge. However,
it may easily fluctuate into a quark-antiquark pair, overall color-neutral, thus forming a color
dipole. Subsequently, these dipoles interact with the target proton. This picture is represented by
the following equations:

Q2
= o (0T+UL>>
em (6.1)

o1 (@, Q%) = / dzdr (W1 (2,7, Q)2 oaipone (7).

FQ(:L‘, Q2)

Here, o7 1, are the photon-proton cross-sections for transversly and longitudinally polarized virtual
photons. Wrp ; are light-cone wavefunctions for v*, computable within QED (see, e.g., Ref. [28]
for explicit expressions to lowest order in oem). Furthermore, ogipole(x,r) is the cross-section
for dipole—proton scattering (for a dipole of transverse size r), and encodes all the information
about hadronic interactions (including unitarization effects). This cross-section is related to the
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amplitude A discussed so far by an integration over the impact parameter. (Actually, A was the
forward elastic amplitude; the optical theorem relates it to the total cross-section).
In Ref. [28,29], the dipole cross-section was modeled as

Odipole(T,7) = 09 (1 — e_ﬂQg(m)M)7 (6.2)

where o( is a hadronic cross-section: It stems from the integration over the impact parameter,
when the impact parameter dependence is supposed to be uniform over a disk of radius ~ ,/0¢.
Qs(z) plays the role of the saturation momentum, parametrized as Q2(x) = (zo/z)* x 1 GeVZ.
Note that, by construction, this cross-section only depends on the combined variable r2Q?(x)
instead of r and x separately. This property is transmitted to the measured photon cross-sections
or,1(z,Q?), which then depend on Q*/Q?%(z) only (this scaling is slightly violated by the masses
of the quarks). This is geometric scaling, predicted to be a feature of the solutions to the BK
equation at large rapidity.

Historically, geometric scaling was discovered first in the data (see Ref. [30]), after Golec-
Biernat and Wiisthoff (GBW) had written down their model: The latter happened to feature this
scaling (up to small violations induced by the quark masses). There was no apparent need for
finite rapidity scaling violations in the first HERA data. However, later analysis revealed that a
significant amount of explicit scaling violations in the dipole cross-section, predicted by the BK
equation, were actually required by more accurate data.

A now popular model that describes the HERA data in a way that takes a better account of
the subasymptotics, beyond the GBW model, was formulated in Ref. [127]. The dipole scattering
cross-section reads dgipole(z,7) = 27 R2N (y,7Q;), with

2Q2 'YC‘F%
N(yarQS) = NO ( 1 52 o (63)
1 — o—aln®(brQ.) for Qs > 2,

where Qs = Q,(x) = (xo/x)? GeV. The expression for the cross-section for r small compared
to 2/Qs corresponds to the solution of the BK equation (compare to Eq. (4.22) with the help of
Tab. 2.1), in which we substituted w(v.) = w(v.) and w”’(vy.) = w”’(7.) by the parameters A and
k that we subsequently fit to the data. The expression in the second line also has the correct
functional form for r > 2/Q);, as obtained by solving the BK equation [33]. This is strictly valid
only to leading-order accuracy, but here it is used merely as a convenient interpolation towards
the ‘black disk’ limit A/ = 1. (The details of this interpolation are unimportant for the calculation
of 04+«p.) The coefficients a and b are determined uniquely from the condition that N (rQs,Y") and
its slope be continuous at rQs = 2. The overall factor Ny in the first line of Eq. (6.3) is ambiguous,
reflecting an ambiguity in the definition of @s;. This model fits well all HERA data for structure
functions, in the range < 1072, All details may be found in Ref. [127].

The model explicitely breaks geometric scaling. However, effectively, geometric scaling remains
a fairly good symmetry of the model, as required by the data. The small finite-rapidity scaling
violations are needed to describe accurately the high-precision HERA data.

The model may also accomodate less inclusive observables, such as diffraction [128]. It has
been improved recently by including heavy quarks [129] (The crucial need for taking account
of the charm quark was emphasized in Ref. [130]). An impact-parameter dependence was also
introduced [131-133] that was already missing in the GBW model.

The range of validity of dipole models has been re-examined recently [134].

6.2 Diffusive scaling
At still higher energies, according to the discussion of Chap. 4, one expects the saturation scale

to acquire a dispersion from event to event that scales with the rapidity like /&y when rapidity
increases. Although this dispersion is not an observable since there is no way to measure the
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saturation scale of an individual event, it manifests itself in the total cross-section in the form of
a new scaling, different from geometric scaling.

The physical amplitude for the scattering of a dipole of size r off some target is given by the
average of all realizations of the evolution at a given y:

A(y,r) = (T(r))ly- (6.4)

For large enough rapidities and small enough «;, these realizations are exponentially decaying
fronts in the variable p = In(1/r?), fully characterized by a stochastic saturation scale, or rather
its logarithm p, = In Q?(y). For the purpose of the present discussion, it may be approximated in
the same way as in Eq. (5.2), namely

T(p) = 0(ps — p) + 0(p — ps)e Y=(P7P2). (6.5)

The statistics of ps is given by Eqgs. (4.64),(4.66) (up to the replacements suggested in Tab. 2.1
to go from a generic reaction-diffusion to QCD). At ultrahigh energies (and very small «y), it is
essentially a Gaussian centered at

o W(VC) . 772700‘1”('70) &
<ps>_< Ye 2(1n(1/ag)+31n1n(1/a§))2> Y (6.6)

and of variance

2 2\ 2 (o)
o =(p5) — (ps) = 313108 Y (6.7)

The scattering amplitude may be expressed by the simple formula

Aly,p) = J—;ﬂ [do. 1) ex0 (W) - (6.8)

The most remarkable feature of this amplitude is the scaling form for A that it yields:

Alg.p) = 4 | L=l (6.9)
ay/ 1 (1/a)

This equation may be obtained by performing the integration in Eq. (6.8) after the replacement
of T by its approximation (6.5). This scaling obviously violates geometric scaling: If the latter
scaling were satisfied, then A would be a function of p — {ps(y)) only.

In Ref. [40], Mueller and Shoshi had already noted that geometric scaling had to be violated
beyond the BK equation. However, the square root in the denominator of the scaling variable in
Eq. (6.9) was missing because their approach was relying on mean field throughout, thus missing
the stochastic nature of the evolution.

This new scaling is a firm prediction of the correspondence with statistical physics. However,
it may not be tested at particle colliders in a simple way. Let us work out the order of magnitude
of the rapidity needed for the different effects (saturation, geometric scaling, diffusive scaling) to
show up. The rapidity that is needed to reach saturation is roughly

In(1/a3)
YBFKL ~ — 1, -
aw(s)
The BK picture is expected to be valid until the asymptotic exponential shape of the front has
diffused down to the point where the amplitude becomes of the order of a?. This additional
rapidity needed to get to the regime of geometric scaling is thus given by Eq. (4.37) once the
appropriate replacements have been done

(6.10)

1 [111(1/043)}27

5o | (6.11)

YBK ™~
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and finally, the effect of the fluctuations of the saturation scale gets important at the rapidity

3
Yfuct ~ :i_m (6.12)
The relevant parameters in QCD are deduced from the BFKL kernel. They read
Ve = 0.627549, w(q.) = 3.0645, w’(7.) = 48.5176. (6.13)
For some realistic strong coupling constant, as ~ 0.2, we get
yBrKL ~ 6.07879 , ypk ~ 1.41965 , yauce ~ 0.348244. (6.14)

Given that rapidities in the small-z regime at HERA were of the order of 10, and will be of the
order of 15 at the LHC, these figures indicate that we may observe these effects. However, there
are many criticism to these naive estimates.

First, the values of the rapidity that delimitate the different regimes are largely underestimated
given that they rely on the leading-order BFKL kernel, which predicts a much too large growth
of the cross-section with the rapidity and a too fast diffusion (see the large value of w”(v.)).
Already the effect of the running coupling, which should be taken into account in any detailed
phenomenological study, is expected to still reduce the effects of the fluctuations [135].

Next, one also has to keep in mind that the former estimates should only hold for very small
values of ay, such that In1/a? > 1 which is certainly not true in real-life QCD. Note that
asymptotically, one should have yauet > ypk > ysrkL. The fact that the order is inverted means
that the quantitative results obtained within the phenomenological model for front propagation
should not be trusted for values of o, as “large” as 0.2.

Nevertheless, the effect of diffusive scaling (i.e. of the event-by-event fluctuations of the sat-
uration scale) on observables has already been investigated in some detail by several groups.
Diffractive amplitudes were studied in Ref. [136]. The ratio of the gluon distribution in a nucleus
to the same quantity in a proton was computed in Ref. [137].
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Chapter 7

Conclusion and outlook

We have reviewed a peculiar way of viewing high-energy scattering in QCD, based on the physics
of the parton model, and its strong similarities with reaction-diffusion processes (Chap. 2). The
correspondence is best summarized in the mapping of Tab. 2.1. We have seen that the equations
that describe the dynamics of these processes are in the universality class of the stochastic FKPP
equation, and admit traveling-wave solutions whose features are likely to be universal, in such a
way that a study of simple reaction-diffusion-like models may lead to exact asymptotic results also
for QCD scattering amplitudes. Understanding the very mechanism of traveling wave formation
and front propagation was crucial to see how the universality may come about (see Chap. 4).

In zero-dimensional stochastic models, we could perform exact calculations and get analytical
results within different formulations (Chap. 3). We understood that analyzing the structure of
single events was technically much simpler if one wants to get leading orders at large N (= 1/a2),
since in individual realizations, one may factorize the fluctuating part from the nonlinear effects.
Thanks to this observation, in one-dimensional models which admit realizations in the form of
stochastic traveling waves, we could also get precise analytical results on the form and shape of the
traveling waves, which are presumably exact asymptotically (Chap. 4). Universality enables one to
make statements on the form of the QCD scattering amplitudes at very high energies. Appropriate
extensions of the relevant statistical models which incorporate an additional dimension lead to
predictions for the correlations in the transverse plane (Chap. 5). Some of these results turn into
firm phenomenological predictions (Chap. 6), which however do not seem to be testable at colliders
in the near future. Nevertheless, getting new analytical results for QCD in some limit is always
an interesting achievement, given the complexity of the theory. Furthermore, while our analytical
results only apply for exponentially small s (In(1/a2) > 1), the picture itself should be valid in
the whole perturbative range, namely for a2 < 1.

Prospects. There are still many open questions. On the statistical physics side, the statistics
of the front position that we have found has not been derived rigorously, but rather guessed, and
rely on many quite ad hoc conjectures. We got confidence on the validity of our conjectures on
the basis of numerical simulations. Moreover, although we expect universality up to corrections
of order 1/N (that is to say O(a?) in QCD), we could only get analytical expressions relative to
the cumulants of the position of the front for the first terms in an expansion in powers of 1/In N,
which extremely large values of N (small «;) to be valid. But on a more general footing, the
sFKPP equation seems to describe many physical, chemical or biological problems (in particular
population evolution with selection in evolutionary biology). We have also found recently an
explicit analogy with the theory of spin glasses [138,139]. This large universality is maybe the
strongest incentive to try and find more accurate solutions to that kind of equations.

On the QCD side, the correspondence with reaction-diffusion processes strongly relies on the
assumption that there is saturation of some form of the quark and gluon densities in the hadronic
wave functions. While this is a reasonable guess that few experts would challenge, it is clear that
we cannot consider that the problem is solved before the saturation mechanism at work in QCD
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has been exhibited. QCD is formulated as a quantum field theory. To see the similarity with
reaction-diffusion, we basically needed to translate it into the parton model first. It would be
better to recover the results of Chap. 4 (and hopefully get more) directly from field theory [59], as
one could do it in the zero-dimensional model introduced in Chap. 3. This requires to understand
the strong field regime of field theory. This is an exciting challenge for both particle physicists
and statistical physicists.

Let us finally state our personal prospects in the field. First, we wish to go back to the
simple Balitsky-Kovchegov equation and study in more detail the properties of its solutions. It
is important for phenomenology, since it seems that in the range of energy that may be reached
at experiments, effects described by more advanced equations (incorporating genuine saturation
effects, as discussed at length in previous chapters) are likely to be negligible. Interestingly, since
the BK equation also represents the statistical properties of the tip of a random walk (see Chap. 4
and the recent paper [107]), some fine properties of scattering amplitudes may be inferred from
the study of the latter. Work is in progress in this direction in collaboration with Al Mueller.

On the pure statistical physics side, we wish to pursue the study of simple models like the ones
presented in Chap. 3, which could be of some interest in the interdisciplinary field of population
evolution studies.

Last, if the formalism of the dipole model on which relies most our work in QCD seems well-
suited for electron-proton or nucleus high-energy scattering, most of the experimental data which
will become available in the next decade are about proton and nucleus interactions at the Large
Hadron Collider (LHC). The new challenge to phenomenologists is to formulate and compute
observables in this context. It seems that quadrupoles play an important role for all interesting
observables, see e.g. Ref. [140]. Recently, we made a first step in the direction of computing the
evolution of such objects with the energy [141] and we will pursue in this promising direction.
An interesting theoretical question in the continuation of our work would be, for example, if the
correlations computed in Chap. 5 would show up in the evolution of these quadrupoles and hence
in the corresponding observables measured at the LHC.
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