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Résumé

Nous étudions la mesure spectrale des transformations stationnaires, puis nous l’utilisons
pour étudier le théorème ergodique et le théorème limite central. Nous étudions égale-
ment les martingales avec une nouvelle preuve du théorème central limite, sans analyse
de Fourier. Pour le théorème limite central pour marches aléatoires dans un environ-
nement aléatoire sur la dimension 1, on donne deux méthodes pour l’obtenir: approxima-
tion pour une martingale et méthode des moments. La méthode des martingales fait ré-
soudre l’equation de Dirichlet (I−P )h = 0, alors que celle des moments résoudre l’equation
de Poisson (I − P )h = f . Enfin, nous pouvons utiliser la deuxième méthode pour prouver
la relation d’Einstein pour des diffusions réversibles dans un environnement aléatoire dans
une dimension.

Mots clés : mesure spectrale, théoréme limite centrale pour martingale, martingale
approximation, marche aléatoire dans un environnement aléatoire, la relation d’Einstein.
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Abstract

We study the spectral measure for stationary transformations, and then apply to Ergodic
theorem and Central limit theorem. We study also martingale process with a new proof of
the central limit theorem without Fourier analysis. For the central limit theorem for random
walks in random environment, we give two methods to obtain it: martingale approximation
and moments. The method of martingales solves Dirichlet’s equation (I−P )h = 0, and the
method of moments solves Poisson’s equation (I−P )h = f . Finally, we can use the second
method to prove the Einstein relation for reversible diffusions in random environment in
one dimension.

Keywords : spectral measure, martingale central limit theorem, martingale approxi-
mation, random walk in random environment, Einstein’s relation.
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Introduction

La mesure spectrale des transformations stationnaires associées à une fonction est bien
connue. Pour l’application au théorème central limite, en 1986, Kipnis et Varadhan [29]
ont donné une condition nécessaire (1.25) pour obtenir le théorème central limite dans le
contexte des chaines réversibles par resolution de l’équation de Poisson via la résolvante.
Dans la suite, nous allons construire à nouveau la mesure spectrale pour une transformation
inversible ou réversible de la chaine de Markov et ensuite l’appliquer au théorème ergodique
et au théorème central limite. Le théorème de Kipnis et Varadhan [29] est considéré comme
un exemple intéressant. Nous étudions également la mesure spectrale avec des valeurs dans
l’espace de l’opérateur.

Initié avec un résultat de Billingsley [2], Ibragimov [26] et ensuite Brown [8], le théorème
limite central pour les martingales a été étudié et très bien développés jusqu’ à pérsent (voir
Hall & Heyde [23]). Dans leur preuve, ces auteurs utilisent la fonction caractéristique. Dans
cette thèse, nous allons étudier une nouvelle méthode pour le théorème central limite,
surtout pour martingale, sans utiliser l’analyse de Fourier. Le point de cette méthode
est d’utiliser le developpement de Taylor à l’ordre 2 de la fonction f appartenant à C2

K ,
combiné des idées adaptées de Linderberg ([36], 1922), Trotter ([48], 1959), Billingsley ([2],
1961), Brown ([8], 1971).

Le théorème limite central pour la marche aléatoire sur un réseau stationnaire de con-
ductances a été étudié par plusieurs auteurs. En une dimension, lorsque conductances et
les résistances sont intégrables, une méthode de martingale introduite par S. Kozlov ([31],
1985) permet de prouver le théorème limite centrale “Quenched”. Dans ce cas, la vari-
ance de la loi limite n’est pas nulle. Si les résistances ne sont pas intégrables, le théorème
limite centrale “Annealed” avec une variance nulle a été établie par Y. Derriennic et M.
Lin (communication personnelle). Et puis, dans un document de J. Depauw et J-M. Der-
rien ([12], 2009), ils ont prouvé la version Quenched de la convergence de la variance par
une méthode simple qui utilise le théorème ergodique ponctuel (voir [51]), sans utiliser
aucune martingale. Nous avons deux méthodes pour établir le théorème de la limite cen-
trale Quenched pour la marche aléatoire réversible en milieu aléatoire sur Z. La première
méthode est d’utiliser l’approximation par une martingale et le seconde est d’adapter J.
Depauw et J-M. Derrien [12] sans utiliser aucune martingale. Pour la diffusion en continu,
le théorème de la limite centrale Quenched pour le temp continu et l’espace discret sera
montré en détail par un moyen similaire. Enfin, nous prouvons la relation d’Einstein pour
des diffusions réversibles dans un environnement aléatoire dans une dimension.

Cette thèse est organisée comme suit:
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INTRODUCTION

Chapitre 1: On construit à nouveau la mesure spectrale des transformations station-
naires associées à une fonction dans L2 et ensuite nous donnons quelques exemples de
leurs applications pour le théorème ergodique et le théorème central limite pour les chaines
de Markov réversibles. La preuve du théorème de Kipnis-Varadhan (1986) est montré
en détail. Nous rappelons aussi à la mesure spectrale avec des valeurs dans l’espace de
l’opérateur.

Chapitre 2: Nous donnons une nouvelle méthode pour obtenir le TLC pour les cas
d’indépendance des variables et des processus de martingale. Le point de cette méthode
est d’utiliser le developpement de Taylor à l’ordre 2 de la fonction f appartenant à C2

K ,
combinée à une technique nouvelle et des idées adaptées de Trotter (1959), Billingsley
(1961), Brown (1971),...

Chapitre 3: Les théorèmes de Gordin-Kipnis pour les fonctionnels addives de chaines
de Markov stationnaire et puis pour la chaine de Markov partant d’un point sont passés en
revue. Ces théorèmes sont très classiques, mais nous détaillons les épreuves avec soin, parce
que ils sont très utiles pour la convergence des marches aléatoires dans un environnement
aléatoire dans les chapitres suivants.

Chapitre 4: Ce chapitre est consacré à le TLC pour les marches aléatoires dans un
environnement aléatoire sur Z. Le TLC pour les marches alèatoires sera valide si la fonction
mesurable c définie sur Ω, l’espace des environnements, associée à la conductivité de l’arête
et de son inverse appartiennent à L1. L’approximation par une martingale est utilisé dans
la preuve, adaptée de Boivin (1993).

Chapitre 5: L’objectif principal de ce chapitre est d’obtenir le TLC pour les marches
aléatoires dans un environnement aléatoire dans le chapitre 4 sans martingales. Plus pré-
cisément, la convergence est fondée sur les moments des variables. Un analogue en temps
continu et espace discret est donné.

Chapitre 6: Nous considérons la relation d’Einstein pour les marches aléatoires dans un
environnement aléatoire par la même méthode que dans le chapitre précédent. Supposons
qu’il y a une dérive λ 6= 0, nous allons étudier la convergence de léspérance de la marche
aléatoire lorsque la “drift” λ tend vers zéro.
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Introduction

The spectral measure for stationary transformations associated to a function is well-
known. For the application to central limit theorem, in 1986 Kipnis and Varadhan [29]
gave a necessary condition (1.25) to obtain the Central limit theorem in the context of
reversible chains by solving the Poisson equation approximately via the resolvent. In the
sequel, we will build again the spectral measure for invertible transformation and reversible
Markov chain and then apply to Ergodic theorem and Central limit theorem. The theorem
of Kipnis and Varadhan [29] is regarded as an interesting example. We study also the
spectral measure with values in operator’s space.

Starting with a result of Billingsley [2], Ibragimov [26] and then Brown [8], the limit
theorey for martingales has been studied and very well-developed up to now (see Hall
& Heyde [23]). In their proof, they use characteristic fuction to obtain the limit. In this
thesis, we will study a new method for the central limit theorem, especially for martinggale,
without using Fourier analysis. The point of this method is to use Taylor’s expansion of
function f belongs to C2

K , combined some ideas adapted from Linderberg ([36], 1922),
Trotter ([48], 1959), Billingsley ([2], 1961), Brown ([8], 1971).

The Central limit theorem for random walk on a stationary network of conductances
has been studied by several authors. In one dimension, when conductances and resistances
are integrable, and following a method of martingale introduced by S. Kozlov ([31], 1985),
we can prove the Quenched Central limit theorem. In that case the variance of the limit
law is not null. When resistances are not integrable, the Annealed Central limit theorem
with null variance was established by Y. Derriennic and M. Lin (personal communication).
And then, in a paper of J. Depauw and J-M. Derrien ([12], 2009), they proved the quenched
version to obtain the limit of the variance by a simple method that is using the pointwise
ergodic theorem (see [51]) in their proof and without using any martingale. In this works,
we will two methods to establish the Quenched Central limit theorem for reversible random
walk in random environment on Z. The first method is using martingale approximation and
the second one is to adapt from J. Depauw and J-M. Derrien without using any martingale.
For the continuous diffusion, the Quenched Central limit theorem for continuous time and
discrete space will be proved in detail by a similar way. Finally, we prove the Einstein
relation for reversible diffusions in random environment in one dimension.

This thesis is organized as follows:
Chapter 1: We construct again the spectral measure for stationary transformations

associated to a function in L2 and then we give some examples for their applications to
the ergodic theorem and the central limit theorem for reversible Markov chain. The proof

13



INTRODUCTION

of the theorem of Kipnis and Varadhan (1986) is showed in detail. We also mention to the
spectral measure with values in operator’s space.

In chapter 2: We give a new method to obtain the CLT for independence case of
variables and for martingale processes.

Chapter 3: The theorems of Gordin and Lifsic for additive functional of stationary
Markov chain and then for stationary Markov chain started at a point are reviewed where
we use martingale approximation in the proof. These theorems are very classical, but we
draw the proofs carefully because they are very useful for the convergence of random walks
in random environment in the next chapters.

Chapter 4: This chapter is devoted to CLT for random walks in random environment
on Z. In there, the CLT for random walks will be validity if the measurable function c
defined on Ω, the space of environments, associated to conductivity of the edge and its
inverse belong to L1. Martingale approximation is used in the proof, adapted from Boivin
(1993).

Chapter 5: The main aim of this chapter is to obtain CLT for random walks in random
environment in chapter 4 without martingales. More precisely, the convergence is just
based on the moments of the variables. An analogue for continuous time and discrete
space is given.

Chapter 6: We consider Einstein’s relation for Random walk in Random environment
by the same method as in the preceding chapter. Assume that there are a drift λ 6= 0, we
will study the convergence of the expectation of Random walk when the drift λ goes to
zero.

14



Chapter 1

Spectral measure for stationary
transformations. Applications to
Ergodic theorem and Central limit
theorem

1.1 Spectral measure for invertible transformation

1.1.1 Invertible stationary transformation

Consider an invertible stationary transformation θ defined on a probability space (Ω,A, µ),
such that θ−1 is stationary (i.e measure preserving). The associated operator is defined by
Tf = f ◦ θ. It is an unitary operator if∫

Ω
Tf · ḡ dµ =

∫
Ω
f · T−1g dµ

for any f, g ∈ L2(Ω,C).
In the sequel, we will consider T as an operator defined on a stable closed subspace

H ⊂ L2. An example is H = L2
0 the space of nul expectation functions.

1.1.2 Spectral measure associated to a function

Let f ∈ L2(µ). We denote by H(T, f) the smallest Hilbert space which contains all
functions T kf , for k ∈ Z:

H(T, f) =

{
n∑

k=−n
akT kf ; n ≥ 1, a−n, . . . , an ∈ C

}L2(µ)

.

Theorem 1.1.1. Assume f ∈ L2(µ). There exists a positive measure µf on C such that
the map Ψ defined on C [X] by Ψ

(∑n
k=−n akX

k
)

=
∑n

k=−n akT
kf can be extended to an

15



1.1. SPECTRAL MEASURE FOR INVERTIBLE TRANSFORMATION

isometry

Ψ : L2(µf ) −→ H(T, f)
h 7−→ Ψ(h).

Moreover µf can be chosen such that the operator Π defined on L2(µf ) by (Πh)(t) = th(t)
satisfies Ψ ◦Π = T ◦Ψ.

Proof. For k, `,m integers, we consider

c(k, `) =

∫
Ω
T kf · T `f dµ;

γ(m) =

∫
Ω
Tmf · f̄ dµ.

One has

γ(k − `) =
〈
T k−`f, f

〉
L2(Ω,C)

=
〈
T kf, T `f

〉
L2(Ω,C)

= c(k, `)

and

γ(k) = 〈T kf, f〉L2(Ω,C) = 〈f, T−kf〉L2(Ω,C) = 〈T−kf, f〉L2(Ω,C) = γ(−k).

Let (ak)k=1,...,n a finite sequence of complex numbers. Put g =
∑n

i=0 aiT
if then

n∑
i=0

n∑
j=0

aiajγ(i− j) =

n∑
i=0

n∑
j=0

aiaj
〈
T if, T jf

〉
L2(Ω,C)

=

〈
n∑
i=1

aiT
if,

n∑
i=0

aiT
if

〉
L2(Ω,C)

= 〈g, g〉 = ‖g‖2L2(Ω,C) ≥ 0.

Thus, γ is a positive definite function. By the classical Herglotz’s theorem, there exists a
positive measure µf on [0, 2π] such that

γ(k) =

2π∫
0

eikθdµf (θ)

for any positive integer k.
For k is negative integer,

γ(k) = γ(−k) =

∫ 2π

0
e−ikθdµf (θ) =

∫ 2π

0
eikθdµf (θ).

We have thus proved that

γ(k) =

∫ 2π

0
eikθdµf (θ) (1.1)

for any k is integer. One also deduces

γ(0) =

∫ 2π

0
dµf = ‖f‖2L2(µf ). (1.2)

16



1.1. SPECTRAL MEASURE FOR INVERTIBLE TRANSFORMATION

In the sequel, using the change of variable θ 7→ z = eiθ, we consider that µf is a measure
on C (with support ⊂ S1 = {z ∈ C, |z| = 1}). Thus, formular (1.1) is rewritten as follows

γ(k) =

∫
S1

zkdµf (z). (1.3)

Denote Q [X] be the set of polynomials Q such that Q(X) =
m∑

k=−m
akX

k. For any

polynomial Q ∈ Q [X], we define

Ψ(Q) =
m∑

k=−m
akT

kf. (1.4)

For any polynomials Q1, Q2 ∈ Q [X], one has∫
S1

Q1Q2dµf =

∫
S1

m1∑
k=−m1

akz
k

m2∑
`=−m2

b`z`dµf =

∫
S1

m1∑
k=−m1

m2∑
`=−m2

akz
kb`z`dµf

=

m1∑
k=−m1

m2∑
`=−m2

akb`

∫
S1

zkz`dµf =

m1∑
k=−m1

m2∑
`=−m2

akb`

∫
S1

zk−`dµf

=

m1∑
k=−m1

m2∑
`=−m2

akb`γ(k − `) =

m1∑
k=−m1

m2∑
`=−m2

akb`〈T kf, T `f〉

=

∫
Ω

Ψ(Q1)Ψ(Q2)dµ.

It follows that
‖Ψ(Qn)‖L2(µ) = ‖Qn‖L2(µf ). (1.5)

Since µf has support in [0, 2π], for any h ∈ L2(µf ) then there exists (Qn)n≥1 ⊂ L2(µf )
such that Qn → h in L2. Therefore, for any ε > 0, there exists M > 0 such that ∀n > M∫

R
|Qn − h|2 dµf < ε. (1.6)

One has ‖Ψ(Qm) − Ψ(Qn)‖L2(µ) = ‖Qm − Qn‖L2(µf ) → 0 as m,n → ∞. Thus, Ψ(Qn)

is also a Cauchy sequence. Since L2(µf ) is complete, Ψ(Qn) converges in L2(µ) and we
denote

Ψ(h) = lim
n→∞

Ψ(Qn). (1.7)

We will show that this limit does not depend on the sequence (Qn)n≥1 by the following
lemma:

Lemma 1.1.1. For any sequence (Q′n)n≥1 → h in L2(µf ), then (Ψ(Q′n))n≥1 → Ψ(h) in
L2(µ).
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1.1. SPECTRAL MEASURE FOR INVERTIBLE TRANSFORMATION

Proof. One has

‖Ψ(Q′n)−Ψ(h)‖L2(µ) = ‖Ψ(Q′n)−Ψ(Qn) + Ψ(Qn)−Ψ(h)‖L2(µ)

≤ ‖Ψ(Q′n)−Ψ(Qn)‖L2(µ) + ‖Ψ(Qn)−Ψ(h)‖L2(µ)

≤ ‖Q′n −Qn‖L2(µf ) + ‖Ψ(Qn)−Ψ(h)‖L2(µ)

≤ ‖Q′n − h‖L2(µf ) + ‖h−Qn‖L2(µf ) + ‖Ψ(Qn)−Ψ(h)‖L2(µ)

then (1.6) and (1.7) ensure that limn→∞Ψ(Q′n) = Ψ(h).

By lemma 1.1.1 and by the linearity and continuity of Ψ,

‖Ψ(h)‖2H(T,f) = lim
n→∞

‖Ψ(Qn)‖2H(T,f) = lim
n→∞

‖Qn‖2L2(µf ) = ‖h‖2L2(µf ).

We deduce that the map Ψ : Q 7→ Q(T )f can be extented to a isometry

Ψ : L2(µf ) −→ H(T, f)
h 7−→ Ψ(h).

which proves the first part of Theorem 1.1.1.
Let Π be the operator defined on L2(µf ) by (Πh)(z) = zh(z). We will show that

Ψ ◦Π = T ◦Ψ.

⊕ For any polynomial h(z) =
n∑
k=0

akz
k, then Πh(z) =

n∑
k=0

akz
k+1. It follows that

(ΨΠ)h(z) =

n∑
k=0

akT
k+1f = T

(
n∑
k=0

akT
kf

)
= (TΨ)h(z).

⊕ For any h ∈ L2(µf ). There exists a polynomial hn which converges to h ∈ L2(µf ).
We have

lim
i→∞

Πhi(z) = lim
i→∞

zhi(z) = zh(z)

and

Ψ(Πhi(z)) =
n∑
k=0

a
(i)
k T

k+1f = TΨ(hi(z)).

Therefore, for i→∞ we obtain Ψ(Πh(z)) = TΨ(h(z)). Hence, we have the result

Ψ ◦Π = T ◦Ψ. (1.8)

1.1.3 Application to ergodic theroem

Definition 1.1.1. The operator T is ergodic if Th = h for some h ∈ L2(µ) then h is
constant.

Theorem 1.1.2. (Von Neumann). Assume that T is ergodic. For any f ∈ L2(µ) the
following limit holds in L2:

lim
n→∞

1

n

n−1∑
k=0

T kf =

∫
f dµ. (1.9)
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Proof. We begin with the following lemma:

Lemma 1.1.2. For any z ∈ C such that |z| = 1, then

lim
n→∞

(
1

n

n−1∑
k=0

zk − 1{1}(z)

)2

= 0. (1.10)

Proof. It is obvious to see that (1.10) holds for z ∈ {−1, 1}.
For any z ∈ C/R such that |z| = 1, we have

1

n

n−1∑
k=0

zk − 1{1}(z) =
1

n

n−1∑
k=0

zk =
1

n

1− zn

1− z

which completes

lim
n→∞

(
1

n

n−1∑
k=0

zk − 1{1}(z)

)2

= 0

on S1 = {z ∈ C, |z| = 1}.

Proof of theorem 1.1.2. Since
∣∣∣∣ 1
n

n−1∑
k=0

zk − 1{1}(z)
∣∣∣∣ ≤ 2, the dominated convergence

theorem ensures that

0 = lim
n→∞

∫ ∣∣∣∣∣ 1n
n−1∑
k=0

zk − 1{1}(z)

∣∣∣∣∣
2

dµf = lim
n→∞

∥∥∥∥∥ 1

n

n−1∑
k=0

zk − 1{1}(z)

∥∥∥∥∥
L2(µf )

= lim
n→∞

∥∥∥∥∥Ψ

(
1

n

n−1∑
k=0

zk − 1{1}(z)

)∥∥∥∥∥
H(T,f)

.

We have thus proved

lim
n→∞

1

n

n−1∑
k=0

T kf = h in L2 with h = Ψ
(
1{1}(z)

)
. (1.11)

Moreover, since z1{1}(z) = 1{1}(z), ∀z ∈ C implies that Ψ
(
z1{1}(z)

)
= Ψ

(
1{1}(z)

)
.

Using the fact Ψ ◦ Π(h) = T ◦ Ψ(h), one has Ψ
(
z1{1}(z)

)
= T ◦ Ψ

(
1{1}(z)

)
and hence

Th = h. It follows that h = c (constant) since T is ergodic. And since the transformation
is stationary, ∫

T kfdµ =

∫
fdµ, ∀k ≥ 0

and so ∫
1

n

n−1∑
k=0

T kf dµ =

∫
f dµ. (1.12)

Combine (1.11) and (1.12) one has

lim
n→∞

∫
1

n

n−1∑
k=0

T kf dµ = c =

∫
f dµ.

which completes the proof of theorem 1.1.2.

19



1.2. SPECTRAL MEASURE FOR REVERSIBLE MARKOV CHAIN

1.2 Spectral measure for reversible Markov chain

1.2.1 Markov Chain

Suppose (Xn)n≥0 is a stationary Markov chain defined on a probability space (Ω,A, µ)
with µ-initial distribution and (X ,B) be the state space. A stochastic kernel (transtion
probability) is a map P : X × B → [0; 1] such that:

• x 7−→ P (x,A) is B-measurable for any A ⊂ B.

• A 7−→ P (x,A) is a probability measure for any x ∈ X .

It also acts on the space B(X ) of bounded, measurable functions by

Pf(x) = E {f(X1)/X0 = x} . (1.13)

1.2.2 Reversible Markov Chain

Consider a Markov operator P defined on a probability space (Ω,A, µ). We suppose
that the associated Markov chain (Xn)n≥0 with initial law µ is reversible, i.e.:

Definition 1.2.1. The Markov chain (Xn)n≥0 with transition operator P and initial law
µ is reversible is P = P ? in L2(µ):∫

Ω
Pf · ḡ dµ =

∫
Ω
f · Pg dµ

for any f, g ∈ L2(Ω,C).

In this situation, (Xn)n≥0 is a stationary Markov chain, i.e
∫
Pf dµ =

∫
f dµ.

In the sequel, we will consider P as an operator defined on a stable closed subspace
H ⊂ L2. We recall

‖P‖H = sup
‖f‖6=0

‖Pf‖L2(µ)

‖f‖L2(µ)
(1.14)

so we have ‖P‖H ≤ 1 (but not necessary = 1). An example is H = L2
0 the space of nul

expectation functions.

1.2.3 Spectral measure associated to a function

Let f ∈ L2(µ). We denote by H(P, f) the smallest Hilbert space which contains all
functions P kf , for k ≥ 0:

H(P, f) =

{
n∑
k=0

akP kf ; n ≥ 0, ak ∈ C

}L2(µ)

.
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1.2. SPECTRAL MEASURE FOR REVERSIBLE MARKOV CHAIN

Theorem 1.2.1. Assume f ∈ L2(µ). There exists a positive measure µf on R such that
the map Ψ defined on C [X] by Ψ

(∑n
k=0 akX

k
)

=
∑n

k=0 akP
kf can be extended to an

isometry

Ψ : L2(µf ) −→ H(P, f)
h 7−→ Ψ(h).

Moreover µf can be chosen such that the operator Π defined on L2(µf ) by (Πh)(t) = th(t)
satisfies Ψ ◦Π = P ◦Ψ.

Proof. For k, `,m positive integers, we consider

c(k, `) =

∫
Ω
P kf · P `f dµ;

γ(m) =

∫
Ω
Pmf · f̄ dµ.

and for s, t, u ∈ R

ψ(s, t) =
∞∑
k=0

∞∑
`=0

(is)k(−it)`

k!`!
c(k, `);

φ(u) =
∞∑
m=0

(iu)m

m!
γ(m).

One has

ψ(s, t) =

∞∑
k=0

∞∑
`=0

(is)k(−it)`

k!`!

〈
P kf, P lf

〉
=
〈
eisP f, eitP f

〉
=

〈
ei(s−t)P f, f

〉
= φ(s− t)

since eitP = e−itP and P = P ∗. Hence, ψ(s, t) = φ(s− t).
Moreover |φ(u)| = |〈eiuP f, f〉| ≤ ‖eiuP f‖L2(µ)‖f‖L2(µ) ≤ ‖f‖2L2(µ). Then, the domi-

nated convergence theorem follows that lim
u→0

φ(u) = ‖f‖2L2(µ). In addition, φ(0) = ‖f‖2L2(µ),
follows that φ is continuous at 0.

Let (ak)k=1,...,n a finite sequence of complex numbers, and (sk)k=1,...,n a finite sequence
of real numbers.

n∑
k=1

n∑
`=1

akā`φ(sk − s`) =

〈
n∑
k=1

ak

∞∑
m=0

(isk)
m

m!
Pmf,

n∑
k=1

ak

∞∑
m=0

(isk)
m

m!
Pmf

〉
.

Put g =
∑n

k=1 ak
∑∞

m=0
(isk)m

m! Pmf , one has

‖g‖ ≤
n∑
k=1

∥∥∥∥∥ak
∞∑
m=0

(isk)
m

m!
Pmf

∥∥∥∥∥ ≤
n∑
k=1

|ak| ·

∥∥∥∥∥
∞∑
m=0

(isk)
m

m!
Pmf

∥∥∥∥∥
≤

n∑
k=1

|ak| ·
∞∑
m=0

|isk|m

m!
‖f‖ ≤

n∑
k=1

|ak| · es
2
k ‖f‖ <∞.
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1.2. SPECTRAL MEASURE FOR REVERSIBLE MARKOV CHAIN

hence, g ∈ L2(µ) and
∑n

k=1

∑n
`=1 akā`φ(sk − s`) = ‖g‖2L2(µ) ≥ 0.

Thus, φ is a positive definite function. By the classical Bochner’s theorem, there exists
a positive measure µf on R such that

φ(u) =

∫
R

eiutdµf (t) = µ̂f (u). (1.15)

One also deduces that
µ̂f (0) =

∫
R

dµf = φ(0) = ‖f‖2L2(µ). (1.16)

By the definition of derivative of φ

φ′(u) = lim
h→0

φ(u+ h)− φ(u)

h
= lim

h→0

∫
(ei(u+h)t − eiut)

h
dµf

= lim
h→0

∫
eiut

(eiht − 1)

h
dµf

since
∣∣∣ (eiht−1)

h

∣∣∣ ≤ 2|t| <∞, the dominated convergence theorem follows

φ′(u) = i

∫
teiutdµf

and similarly

φm(u) = im
∫
tmeiutdµf .

Furthermore, by computing directly the derivatives of φ, we also have

φm(0) = imγ(m)

Hence, one has

γ(m) = 〈Pmf, f〉 =

∫
tmdµf . (1.17)

Denote Q [X] be the set of polynomials Q such that Q(X) =
m∑
k=0

akX
k. For any

polynomial Q ∈ Q [X], we define

Ψ(Q) =
m∑
k=0

akP
kf.

Then, for any polynomials Q1, Q2 ∈ Q [X] we have∫
R

Q1Q2dµf =

m1∑
k=0

m2∑
`=0

akb`

∫
R

tk+`dµf =

m1∑
k=0

m2∑
`=0

akb`γ(k + `)

=

m1∑
k=0

m2∑
`=0

akb`c(k, `) =

∫
Ω

Ψ(Q1)Ψ(Q2)dµ.
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1.2. SPECTRAL MEASURE FOR REVERSIBLE MARKOV CHAIN

It follows that
〈Ψ(Q1),Ψ(Q2)〉L2(µ) = 〈Q1, Q2〉L2(µf )

and hence
‖Ψ(Qn)‖L2(µ) = ‖Qn‖L2(µf ). (1.18)

Lemma 1.2.1. µf has a bounded support.

Proof. For any g ∈ H(P, f), then g =
n∑
k=0

akP
kf for some ak ∈ C.

Put Q(t) =
n∑
k=0

akt
k. We have

‖P (g)‖2L2(µf ) = ‖P (Ψ(Q))‖2L2(µf ) ≤ ‖P‖
2
H(P,f)‖Ψ(Q)‖2L2(µf )

then ∫
t2|Q(t)|2dµf ≤ ‖P‖2H(P,f)

∫
|Q(t)|2dµf .

It follows that |t| ≤ ‖P‖H(P,f), µf a.s. So, support of µf ⊂
[
−‖P‖H(P,f), ‖P‖H(P,f)

]
.

By lemma 1.2.1, for any h ∈ L2(µf ) then there exists (Qn)n≥1 ⊂ L2(µf ) such that
Qn → h in L2. So, for any ε > 0, there exists M > 0 such that for any n > M then∫

R
|Qn − h|2 dµf < ε. (1.19)

Furthermore, (Qn)n≥1 is also a Cauchy sequence, and so we have

‖Ψ(Qm)−Ψ(Qn)‖L2(µ) = ‖Qm −Qn‖L2(µf ) → 0 as m, n→∞

Hence Ψ(Qn) is a Cauchy sequence also. Since L2(µf ) is complete, Ψ(Qn) converges in
L2(µ) and denote

Ψ(h) = lim
n→∞

Ψ(Qn). (1.20)

Lemma 1.2.2. For any sequence (Q′n)n≥1 → h in L2(µf ), then (Ψ(Q′n))n≥1 → Ψ(h) in
L2(µ).

Proof. One has

‖Ψ(Q′n)−Ψ(h)‖ = ‖Ψ(Q′n)−Ψ(Qn) + Ψ(Qn)−Ψ(h)‖
≤ ‖Ψ(Q′n)−Ψ(Qn)‖+ ‖Ψ(Qn)−Ψ(h)‖
≤ ‖Q′n −Qn‖+ ‖Ψ(Qn)−Ψ(h)‖
≤ ‖Q′n − h‖+ ‖h−Qn‖+ ‖Ψ(Qn)−Ψ(h)‖

then (1.19) and (1.20) ensure that limn→∞ ‖Ψ(Q′n)−Ψ(h)‖ = 0.
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1.2. SPECTRAL MEASURE FOR REVERSIBLE MARKOV CHAIN

Therefore, by the linearity and continuity of Ψ,

‖Ψ(h)‖2H(P,f) = lim
n→∞

‖Ψ(Qn)‖2H(P,f) = lim
n→∞

‖Qn‖2L2(µf ) = ‖h‖2L2(µf ).

We deduce that the map Ψ : Q 7→ Q(P )f can be extented to a isometry

Ψ : L2(µf ) −→ H(P, f)
h 7−→ Ψ(h).

which proves the first part of Theorem 1.2.1.
Let Π the operator defined on L2(µf ) by (Πh)(t) = th(t). For any polynomial

h(t) =
n∑
k=0

akt
k. We have Πh(t) =

n∑
k=0

akt
k+1 and then

(ΨΠ)h(t) =
n∑
k=0

akP
k+1f = P

(
n∑
k=0

akP
kf

)
= (PΨ)(h(t)).

For any h ∈ L2(µf ). There exists a polynomial hn which converges to h ∈ L2(µf ). We
have

lim
i→∞

Πhi(t) = lim
i→∞

thi(t) = th(t)

and

Ψ(Πhi(t)) =
n∑
k=0

a
(i)
k P

k+1f = PΨ(hi(t)).

Therefore, for i→∞ we obtain Ψ(Πh(t)) = PΨ(h(t)). Hence, we have

Ψ ◦Π = P ◦Ψ (1.21)

which completes the proof of Theorem 1.2.1.

Denote S(µf ) the support of µf :

S(µf ) = {t : ∀ε > 0, µf [t− ε, t+ ε] > 0} .

Proposition 1.2.1. We have ‖P‖H(P,f) = supt∈S(µf ) |t|.

Proof. Since Ψ is an isometry from L2(µf ) onto H(P, f)

‖P‖H(P,f) = sup
‖g‖H(P,f)=1

‖P (g)‖H(P,f) = sup
‖Ψ(h)‖H(P,f)=1

‖P ·Ψ(h)‖H(P,f)

= sup
‖h‖L2(µf )

=1
‖Ψ ·Π(h)‖H(P,f) = sup

‖h‖L2(µf )
=1
‖Π(h)‖L2(µf )

= sup
‖h‖L2(µf )

=1
‖th(t)‖L2(µf ).

We have also

sup
‖h‖L2(µf )

=1
‖th(t)‖L2(µf ) ≤ sup

‖h‖L2(µf )
=1

t∈S(µf )

|t| · ‖h(t)‖L2(µf ) ≤ sup
t∈S(µf )

|t|.
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We will prove that this inequalities is equalities. Put t0 = sup
t∈S(µf )

|t| and for each 1 ≤ n ∈ N,

let tn ∈ S(µf ) such that |tn − t0| <
1

n
.

Choose hn =
1
√
cn
1B(tn,1/n) where cn =

tn+ 1
n∫

tn− 1
n

dµf > 0 since tn ∈ S(µf ) and B(tn, 1/n)

be the open balls have radius 1/n and center at tn, then ‖hn‖L2(µf ) = 1. By computing,

‖thn‖L2(µf ) =
1
√
cn

√√√√√√
tn+1/n∫
tn−1/n

t2dµf , ∀n ≥ 1.

For n is large enough,
‖thn‖L2(µf ) ≈ |tn| ≈ t0

Hence,
sup

‖hn‖L2(µf )

‖thn‖L2(µf ) = t0 = sup
t∈S(µf )

|t|

so,
‖P‖H(P,f) = sup

‖h‖L2(µf )

‖th‖L2(µf ) = sup
t∈S(µf )

|t|.

Corollary 1.2.1. S(µf ) ⊂ [−1, 1].

Indeed, since ‖P‖H(P,f) = sup
t∈S(µf )

|t| ≤ 1 we obtain the desired result.

1.2.4 Application to ergodic theorem

Definition 1.2.2. P is ergodic if Ph = h for some h ∈ L2(µ) then h is constant.

Proposition 1.2.2. Assume that P is ergodic. For any f ∈ L2(µ) the following limit holds
in L2:

lim
n→∞

1

n

n∑
k=1

P kf =

∫
f dµ. (1.22)

Proof. Consider

1

n

n−1∑
k=0

tk −→


0 if |t| < 1
0 if t = −1
1 if t = 1

Then we have

lim
n→∞

(
1

n

n−1∑
k=0

tk − 1{1}(t)

)2

= 0 on [−1, 1] .
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Since

∣∣∣∣∣ 1n
n−1∑
k=0

tk − 1{1}(t)

∣∣∣∣∣ ≤ 2, the dominated convergence theorem ensures that

lim
n→∞

∫ ∣∣∣∣∣ 1n
n−1∑
k=0

tk − 1{1}(t)

∣∣∣∣∣
2

dµf = 0

so

lim
n→∞

∥∥∥∥∥Ψ

(
1

n

n−1∑
k=0

tk − 1{1}(t)

)∥∥∥∥∥
H(P,f)

= lim
n→∞

∥∥∥∥∥ 1

n

n−1∑
k=0

tk − 1{1}(t)

∥∥∥∥∥
L2(µf )

= 0.

It follows that

lim
n→∞

∥∥∥∥∥ 1

n

n−1∑
k=0

P kf − h

∥∥∥∥∥ = 0 in L2 with h = Ψ(1{1}(t))

and hence, we obtain

lim
n→∞

1

n

n−1∑
k=0

P kf = h in L2.

Moreover,
t1{1}(t) = 1{1}(t), ∀t ∈ R

so
Ψ(t1{1}(t)) = Ψ(1{1}(t)) =⇒ Ph = h =⇒ h = c

where c is a constant since P is ergodic. On the other hand, since the Markov chain is
stationary, ∫

P kfdµ =

∫
fdµ, ∀k ≥ 0

then ∫
1

n

n−1∑
k=0

P kf dµ =

∫
f dµ =⇒ c =

∫
f dµ.

Hence, we deduce that

lim
n→∞

1

n

n−1∑
k=0

P kf =

∫
f dµ in L2.

1.2.5 Application to Central limit theorem

1.2.5.1 Variance principle

Proposition 1.2.3. Assume that f ∈ L2
0(µ). There exists g ∈ H(P, f) such that f = g−Pg

if and only if ∫ 1

−1

1

(1− t)2
dµf (t) < +∞. (1.23)
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In this case, setting σ2
f = ‖g‖2 − ‖Pg‖2 we have

σ2
f =

∫ 1

−1

1 + t

1− t
dµf (t). (1.24)

Proof. We will prove the sufficient and necessary conditions of this lemma.

Suppose that (1.23) holds , then h(t) =
1

1− t
∈ L2(µf ), and hence (1 − t)h(t) = 1 ∈

L2(µf ). It follows that Ψ(h)−Ψ(th) = Ψ(1) = f . Put g = Ψ(h), then f = g − Pg.
Conversely, if there exists g ∈ H(P, f) such that f = g−Pg. We recall the operator Ψ

which is isometry

Ψ : L2(µf ) −→ H(P, f)
1 7−→ f = Ψ(1)
h 7−→ g = Ψ(h).

One has
Pg = P (Ψ(h)) = Ψ(Π(h)) = Ψ(th(t)).

Since f = g−Pg, then Ψ(1) = Ψ(h(t))−Ψ(th(t)) and so Ψ(1−h(t)+ th(t)) = 0. It follows

that 1− h(t) + th(t) = 0, implies h(t) =
1

1− t
∈ L2(µf ). Hence, we obtain (1.23).

We deduce also

σ2
f = ‖g‖2H(P,f) − ‖Pg‖

2
H(P,f) = ‖Ψ(h)‖2H(P,f) − ‖Ψ(Π(h))‖2H(P,f)

= ‖h‖2L2(µf ) − ‖Π(h)‖2L2(µf ) =

∫ 1

−1

(
1

1− t

)2

dµf (t)−
∫ 1

−1

(
t

1− t

)2

dµf (t)

=

∫ 1

−1

1 + t

1− t
dµf (t).

which completes (1.24).

We consider the power series expansion (1− t)1/2 = 1−
∑∞

j=1 ajt
j , where a1 = 1/2 and

aj =
1
2(1− 1

2) . . . (j − 1− 1
2)

j!
for j ≥ 2.

We have aj > 0 for j ≥ 1 and
∑∞

j=1 aj = 1, so for a contraction P in a Banach space
L2(µ) the series

∑∞
j=1 ajP

j is absolutely convergent in the operator norm, and defines a
contraction P1/2 (see Derriennic and Lin [13], page 95).

Definition 1.2.3. For a contraction P in a Banach space L2(µ), we define

√
I − P = I − P1/2 = I −

∞∑
j=1

ajP
j .

Remark 1.2.1. There is another definition of
√
I − P with spectral theory (see (1.56) in

remark 1.3.2, section 1.3).
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Proposition 1.2.4. Assume that f ∈ L2
0(µ). There exists g′ ∈ H(P, f) such that f =√

I − Pg′ if and only if ∫ 1

−1

1 + t

1− t
dµf (t) < +∞. (1.25)

Proof. Suppose (1.25) holds, then
∫ 1
−1

1
1−tdµf (t) < ∞ since 1+t

1−t + 1 = 2
1−t . Put h(t) =

1√
1−t ∈ L

2(µf ), then

1 =
√

1− t.h(t) ∈ L2(µf ). (1.26)

Lemma 1.2.3. Put ϕ1 =
√

1− t ∈ L2(µf ). Assume that ϕ2 and ϕ1ϕ2 ∈ L2(µf ) then

Ψ (ϕ1ϕ2) = ϕ1(P ) ◦Ψ (ϕ2) . (1.27)

Proof. There exists a sequence of polynomials Qn = 1 −
∑n

j=1 ajt
j converges to ϕ1 in

L2(µf ). One has

Qnϕ2 = (1−
n∑
j=1

ajt
j)ϕ2 ∈ L2(µf )

since Qn continuous on [−1, 1] and so bounded. Applying formula Ψ ◦Π = P ◦Ψ, then

Ψ(Qnϕ2) = Ψ(ϕ2) + Ψ(

n∑
j=1

ajt
jϕ2) = Ψ(ϕ2) + P ◦Ψ(

n∑
j=1

ajt
k−1ϕ2)

=

I +

n∑
j=1

ajP
j

 ◦Ψ(ϕ2) = Qn(P ) ◦Ψ(ϕ2).

For n→∞, the bracket tend to
√
I − P , one has Ψ (ϕ1ϕ2) =

√
I − P ◦Ψ (ϕ2) .

Apply lemma 1.2.3 for (1.26), , one has

Ψ(1) =
√
I − PΨ(h) = f.

Put g′ = Ψ(h) ∈ H(P, f), then f =
√
I − Pg′.

Conversely, if there exists g′ ∈ H(P, f) such that
√
I − Pg′ = f . Put

q1 =
√

1− t, q2 = Ψ−1(g′)

then q1, q2 and q1q2 ∈ L2(µf ). Applying lemma 1.2.3, one has

Ψ(q1q2) = q1(P ) ◦Ψ(q2) = f = Ψ(1).

It follows that
Ψ (1− q1q2) = 0

then
q2 =

1

q1
=

1√
1− t

∈ L2(µf )

which completes (1.25).
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We recall here Markov chain (Xn)n≥0 with initial law µ is reversible. Denote

Sn =
n∑
k=1

f(Xk).

Proposition 1.2.5. Assume that f ∈ L2
0(µ). Then supn E

{
S2
n

n

}
is finite if and only if

(1.25) holds.

Proof. Firstly, one has

E
{
f2(Xk)/X0 = x

}
=

∫
f2(y)P k(x, dy) =

∫
f2(y)

∫
P k−1(x, dz)P (z, dy)

=

∫
Pf2(z)P k−1(x, dz) = . . . =

∫
P k−1f2(t)P (x, t)

= P kf2(x)

and for 1 ≤ k < ` ≤ n,

E {f(Xk)f(X`)/X0} = E {E {f(Xk)f(X`)/Xk} /X0} = E {f(Xk)E {f(X`)/Xk} /X0}
= E

{
f(Xk)P

`−kf(Xk)/X0

}
= P k(fP `−kf)(X0).

Therefore,

E
{
S2
n

n

}
= E

{
1

n
E
{
S2
n/X0

}}
=

1

n

n∑
k=1

E
{
P k(f2)(X0)

}
+

2

n

∑
1≤k<`≤n

E
{
P k(f · P `−kf)(X0)

}
=

1

n

n∑
k=1

∫
P k(f2)dµ+ 2

∑
1≤k<`≤n

∫
P k(f · P `−kf) dµ

=

∫
f2dµ+

2

n

∑
1≤k<`≤n

〈
f, P `−kf

〉
=

∫ 1

−1

1 +
2

n

∑
1≤k<`≤n

t`−k

 dµf (t)

=

∫ 1

−1
hn(t) dµf (t)

with hn(t) = 1 + 2
n

∑n−1
k=1

∑k
`=1 t

`.

Lemma 1.2.4. We have

lim
n→∞

hn(t)→
{

1+t
1−t if −1 < t < 1

0 if t = −1

Moreover, if t ∈ [0, 1) then the limit is monotone; and if t ∈ [−1, 0) then |hn(t)| ≤ 1.

Proof. • Consider the case |t| < 1,

lim
n→∞

hn(t) = lim
n→∞

(
1 +

2

n

n−1∑
k=1

t− tk

1− t

)
=

1 + t

1− t
.
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• Consider t = −1,

h2n(−1) = 0,

lim
n→∞

h2n+1(−1) = lim
n→∞

(
−1 + 2

n+ 1

2n+ 1

)
= 0.

One obtains
lim
n→∞

hn(−1) = 0.

• It is clear that if t ∈ [0, 1) then hn(t) is a positive increase sequence, the limit is
monotone.

• Consider t ∈ [−1, 0), then −1 ≤
∑k

`=1 t
` < 0. It follows that −1 + 2/n ≤ hn(t) ≤ 1

implies |hn(t)| ≤ 1.

Denote byM the space of invariant functions by P , that is

M =
{
ϕ ∈ L2(µ) : Pϕ = ϕ

}
.

Lemma 1.2.5. For any f ∈M⊥ in L2(µ), then µf ({1}) = 0.

Proof. For any ϕ ∈M

0 = 〈f, ϕ〉 = 〈f, Pϕ〉 = 〈Pf, ϕ〉 =
〈
P kf, ϕ

〉
, ∀k ≥ 0

=

〈
n∑
k=0

akP
kf, ϕ

〉
, ∀n ≥ 0, ak ∈ C

It follows thatM⊥ H(P, f).
Let h = 1{1}(t) ∈ L2(µf ) then, there exists g = Ψ(h) ∈ H(P, f) such that

‖g‖2H(P,f) = ‖h‖2L2(µf ) =

∫
1{1}(t) dµf (t) = µf ({1})

On the other hand, by the definition of function h we have th(t) = h(t),∀t ∈ R, then

Ψ(th(t)) = P (Ψh(t)) = Pg
Ψ(th(t)) = Ψ(h(t)) = g

and so Pg = g. It follows that g ∈ M implies g ∈ M∩H(P, f) = {0} then ‖g‖2H(P,f) = 0

and hence µf ({1}) = 0.

Now, we return the proof of the proposition 1.2.5. Firstly, we prove the necessary
condition. Assume that

∫ 1
−1

1+t
1−tdµf (t) = +∞, we have

+∞ =

∫ 1

−1

1 + t

1− t
dµf (t) =

∫ 0

−1

1 + t

1− t
dµf (t) +

∫ 1

0

1 + t

1− t
dµf (t)
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≤
∫ 1

−1
dµf (t) +

∫ 1

0

1 + t

1− t
dµf (t)

then we obtain
∫ 1

0
1+t
1−tdµf (t) = +∞. By the monotone convergence theorem,

lim
n→∞

∫ 1

0
hn(t)dµf (t) =

∫ 1

0
lim
n→∞

hn(t)dµf (t) =

∫ 1

0

1 + t

1− t
dµf (t) = +∞.

Moreover, by the dominated convergence theorem, one has

0 ≤ lim
n→∞

∫ 0

−1
hn(t)dµf (t) =

∫ 0

−1
lim
n→∞

hn(t)dµf (t) =

∫ 0

−1

1 + t

1− t
dµf (t) < +∞.

We have thus proved that

lim
n→∞

∫ 1

−1
hn(t)dµf (t) = lim

n→∞

∫ 0

−1
hn(t)dµf (t) + lim

n→∞

∫ 1

0
hn(t)dµf (t) = +∞

Thus, lim
n→∞

E
{
S2
n/n

}
= +∞. This is a contradiction.

Conversely, if (1.25) holds then

E
{
S2
n

n

}
=

∣∣∣∣∫ 1

−1
hn(t) dµf (t)

∣∣∣∣ ≤ ∣∣∣∣∫ 0

−1
hn(t) dµf (t)

∣∣∣∣+

∣∣∣∣∫ 1

0
hn(t) dµf (t)

∣∣∣∣
≤

∫ 1

−1
dµf (t) +

∫ 1

0

1 + t

1− t
dµf (t) < +∞.

Furthermore, by the dominated convergence theorem

lim
n→∞

∫ 0

−1
hn(t) dµf (t) =

∫ 0

−1
lim
n→∞

hn(t) dµf (t) =

∫ 0

−1

1 + t

1− t
dµf (t)

and by the monotone convergence theorem

lim
n→∞

∫ 1

0
hn(t) dµf (t) =

∫ 1

0
lim
n→∞

hn(t) dµf (t) =

∫ 1

0

1 + t

1− t
dµf (t).

Hence,

lim
n→∞

E
{
S2
n

n

}
= lim

n→∞

∫ 0

−1
hn(t) dµf (t) + lim

n→∞

∫ 1

0
hn(t) dµf (t) =

∫ 1

−1

1 + t

1− t
dµf (t).

1.2.5.2 Central limit theorem for reversible Markov chain

Theorem 1.2.2. (Kipnis - Varadhan, 1986) Assume that (Xk)k∈Z is a stationary ergodic
reversible Markov chain and f ∈ L2

0(µ) satisfies∫ 1

−1

1 + t

1− t
dµf < +∞ (1.28)
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then the sequence
1√
n
Sn

D−−−−−→ N
(
0, σ2

f

)
(1.29)

where Sn =
∑n−1

k=0 f(Xk) and σ2
f =

∫ 1
−1

1+t
1−tdµf (t).

Proof. For any ε > 0, then ‖P‖L2(µ) < 1 + ε. It follows that (1 + ε)I − P invertible and
denoted by

[(1 + ε)I − P ]−1 = ϕε(P ) = [ϕε(P )]∗ (1.30)

and there exists uε ∈ L2(µ) such that

(1 + ε)uε − Puε = f. (1.31)

We will investigate the behavior of uε as ε→ 0. Put

fε = f − εuε (1.32)

then
Puε − uε + fε = 0 (1.33)

and put

M ε
n =

n−1∑
k=0

[uε(Xk+1)− uε(Xk) + fε(Xk)] (1.34)

then for each ε > 0, M ε
n is a martingale with respect to Fn = σ(Xn, Xn−1, . . .). Indeed, by

using the fact
Ph(Xk) = E {h(Xk+1)/Xk} (1.35)

for any function h ∈ L2(µ), from (1.33) we have

E
{
M ε
n+1/Fn

}
= M ε

n + E {[uε(Xn+1)− uε(Xn) + fε(Xn)] /Fn}
= M ε

n + Puε(Xn)− uε(Xn) + fε(Xn)
= M ε

n.

Now, for each ε > 0, then Sn is decomposed as follows

Sn = M ε
n + ξεn + ηεn, (1.36)

where

ξεn = −
n−1∑
k=0

[uε(Xk+1)− uε(Xk)] ,

ηεn =

n−1∑
k=0

[f(Xk)− fε(Xn)] =

n∑
k=1

εuε(Xk).

The next step we will show that Sn can be written as

Sn = Mn + ξn (1.37)

where Mn is a martingale with respect to Fn and limn→∞
1

n
E{ξ2

n} = 0.
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1.2. SPECTRAL MEASURE FOR REVERSIBLE MARKOV CHAIN

Lemma 1.2.6. For each n ≥ 1,

lim
ε→0

M ε
n = Mn exists in L2(µ). (1.38)

Proof. Since M ε
n is a martingale with stationary increments, to show that M ε

n has a limit
in L2(µ), it is suffient to check that

lim
ε→0

M ε
1 = lim

ε→0
{uε(X1)− uε(X0) + fε(X0)}

= lim
ε→0
{uε(X1)− Puε(X0)} exists in L2(µ). (1.39)

Since L2(Ω, µ) is complete, we need to check only that {uε(X1)− Puε(X0)}ε is a Cauchy
sequence as follows

lim
ε1,ε2→0

E
{

[(uε1 − uε2)(X1)− P (uε1 − uε2)(X0)]2
}

= 0. (1.40)

We have

E
{

[u(X1)− Pu(X0)]2
}

= E
{
u2(X1)− 2u(X1)(Pu)(X0) + (Pu)2(X0)

}
= E{u2(X1)− 2E {u(X1)Pu(X0)/X0}+ (Pu)2(X0)}
= E

{
u2(X1)

}
− E

{
(Pu)2(X0)

}
=

〈
u, (I − P 2)u

〉
. (1.41)

Applying the above formula for u = uε1 − uε2 , then (1.40) becomes

lim
ε1,ε2→0

〈
uε1 − uε2 , (I − P 2)(uε1 − uε2)

〉
= 0. (1.42)

From equation (1.31), we have

uε = [(1 + ε)I − P ]−1 f = ϕε(P )f.

Using the reversibility of the chain i.e P = P ∗, we have〈
uε1 − uε2 , (I − P 2)(uε1 − uε2)

〉
=

〈
(I − P 2) [ϕε1(P )− ϕε2(P )]2 f, f

〉
= 〈Φ(P )f, f〉

where Φ(P ) = (I − P 2) [ϕε1(P )− ϕε2(P )]2. We recall

〈Pmf, f〉 =

∫ 1

−1
tmdµf (t) (1.43)

and more generally that

〈φ(P )f, f〉 =

∫ 1

−1
φ(t)dµf (t), ∀φ ∈ L2(µf ). (1.44)

Since Φ(t) = (1− t2)
(

1
1+ε1−t −

1
1+ε2−t

)2
∈ L2(µf ) then by (1.44)

〈Φ(P )f, f〉 =

∫ 1

−1
Φ(t)dµf (t)
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Without losing the generality, we can assume that ε2 ≥ ε1 ≥ 0, one has

Φ(t) =
(ε2 − ε1)2(1− t2)

(1 + ε1 − t)2(1 + ε2 − t)2
≤ ε2

2(1− t2)

(1− t)2ε2
2

≤ 1 + t

1− t
,

then (1.28) ensures that 1+t
1−t is integrable with respect to dµf . By the dominated conver-

gence theorem, we obtain

lim
ε1,ε2→0

〈
uε1 − uε2 , (I − P 2)(uε1 − uε2)

〉
= lim

ε1,ε2→0

∫ 1

−1
Φ(t)dµf (t) = 0

which completes (1.38).

Lemma 1.2.7. We have
lim
ε→0

ε‖uε‖2L2(µ) = 0 (1.45)

and for each n ≥ 1,
lim
ε→0

ηεn = 0 in L2(µ). (1.46)

Proof. By the definition of ηεn it is easy to see that (1.45) implies (1.46). To obtain (1.45),
we consider ϕ2

ε(t) = 1
(1+ε−t)2 ∈ L

2(µf ). By (1.44) one has

ε 〈uε, uε〉 = ε
〈
ϕ2
ε(P )f, f

〉
=

∫ 1

−1

ε

(1 + ε− t)2
dµf (t) <

∫ 1

−1

1

1− t
dµf (t) < +∞.

By the dominated convergence theorem, we have thus proved (1.45).

Now in (1.36), it remains ξεn. It will be treated by the following lemma

Lemma 1.2.8. For each n ≥ 1,

lim
ε→0

ξεn = ξn exists in L2(µ) (1.47)

and
lim
n→∞

1

n
E{|ξn|2} = 0. (1.48)

Proof. Since Sn = M ε
n + ξεn + ηεn and is independent of ε > 0, (1.38) and (1.46) imply

(1.47). Furthermore ξn = Sn −Mn, hence for every ε > 0

ξn = M ε
n −Mn + ξεn + ηεn.

Since M ε
n −Mn is a martingale with stationary increments, using Cauchy-Schwarz’s in-

equality

1

n
E
{
|ξn|2

}
=

1

n
E
{
|M ε

n −Mn + ξεn + ηεn|2
}

≤ 3

n
E
{
|M ε

n −Mn|2
}

+
3

n
E
{
|ξεn|2

}
+

3

n
E
{
|ηεn|2

}
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= 3E
{
|M ε

1 −M1|2
}

+
3

n
E
{
|ξεn|2

}
+

3

n
E
{
|ηεn|2

}
.

Using (1.38)
lim
ε→0

E
{
|M ε

1 −M1|2
}

= 0.

Therefore it is sufficient to choose ε = 1/n and then show that

lim
n→∞

1

n
E
{
|ξ1/n
n |2

}
= 0 and lim

n→∞

1

n
E
{
|η1/n
n |2

}
= 0.

Clearly,

E
{
|ξ1/n
n |2

}
= E

{
|u1/n(Xn)− u1/n(X0)|2

}
≤ E

{(
|u1/n(Xn)|+ |u1/n(X0)|

)2}
≤ E

{
2|u1/n(Xn)|2 + 2|u1/n(X0)|2

}
≤ 4

{
E|u1/n(X0)|2

}
= 4

〈
u1/n, u1/n

〉
= o(n).

by (1.45). Similarly

E
{∣∣∣η1/n

n

∣∣∣2} = E


[

1

n

n−1∑
k=0

u1/n(Xk)

]2
 ≤ 1

n
E


[
n−1∑
k=0

|u1/n(Xk)|

]2


≤ 1

n
E

{
n
n−1∑
k=0

|u1/n(Xk)|2
}
≤ E

{
|u1/n(X0)|2

}
=

〈
u1/n, u1/n

〉
= o(n).

We now return the proof of theorem 1.2.2. Combine (1.38), (1.46) and (1.47) then by
(1.36) one has

1√
n
Sn =

1√
n
Mn +

1√
n
ξn (1.49)

with Mn is a martingale with respect to Fn and limn→∞
1
nE
{
|ξn|2

}
= 0. Therefore, it

remains to show that
1√
n
Mn

D−−−−−→ N
(
0, σ2

f

)
(1.50)

to complete the proof of theorem 1.2.2. Set Yn = Mn −Mn−1 with M0 = 0, then (Yn)n≥1

is a stationary ergodic sequence and by (1.41)

V ar(Y1) = E
{
|M1|2

}
− E {M1}2 = lim

ε→0
E
{
|M ε

1 |2
}
− lim
ε→0

E {M ε
1}

2

= lim
ε→0

〈
uε, (I − P 2)uε

〉
− lim
ε→0

E {uε(X1)− uε(X0) + fε(X0)}2

=

∫ 1

−1

1− t
1 + t

dµf (t)− 0 = σ2
f .

By the hypothesis (1.28), V ar(Y1) is finite. Moreover,

E {Yn/Yn−1, . . . , Y1} = E {Mn −Mn−1/Xn−1, . . . , X0} = 0.
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Hence, (Yn)n≥1 satisfies Billingsley’s theorem which is stated and proved on page 51 (the-
orem 2.3.1), we recall it for convenience: Suppose the sequence of (X̃n)n≥1 be stationary
and ergodic such that V ar

{
X̃1

}
= E{X̃2

1} is finite and

E{X̃n/X̃1, . . . , X̃n−1} = 0, a.s. (1.51)

Then the distribution of
1√
n

n∑
k=1

X̃k tends to the normal distribution with mean 0 and

variance E{X̃2
1}.

Applying this theorem for (Yn)n≥1, we have

1√
n
Mn =

1√
n

n∑
k=1

Yk
D−−−−−→ N

(
0, σ2

f

)
with σ2

f = E
{
Y 2

1

}
=
∫ 1
−1

1−t
1+tdµf (t) which completes (1.50).

1.3 Spectral measure with values in operator’s space

In the sequel we consider the general case of a bounded operator P is self-adjoint, i.e
P = P ? (not necessary a Markov operator).

1.3.1 Spectral measure with values in operator’s space

We recall that
S(µf ) = {t : µf [t− ε; t+ ε] > 0, ∀ε > 0}.

In this section we will study the relationship between S(µf ) and spectral measure with
values in operator’s space.

Proposition 1.3.1. There exists f ∈ H such that for any g ∈ H the measure µg is
absolutely continuous with respect to µf .

We say that f has the maximal spectral type.

Proof. ⊕ Let f ′ ∈ H(P, f)⊥ then 〈Pmf, Pnf ′〉L2(µ) = 0, ∀m,n ≥ 0.
There exists finite positve measures µf , µf ′ , µf+f ′ such that:

µ̂f (u) =

∫
eiutdµf (t)

µ̂f ′(u) =

∫
eiutdµf ′(t)

µ̂f+f ′(u) =

∫
eiutdµf+f ′(t).

We have

µ̂f+f ′(u) =

∞∑
m=0

(iu)m

m!

〈
Pm(f + f ′), f + f ′

〉
=

∞∑
m=0

(iu)m

m!
(〈Pmf, f〉+ 〈Pmf ′, f ′〉)
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=

∞∑
m=0

(iu)m

m!
〈Pmf, f〉+

∞∑
m=0

(iu)m

m!

〈
Pmf ′, f ′

〉
= µ̂f (u) + µ̂f ′(u)

then µf+f ′ = µf + µf ′ .
⊕ Select g1, g2, . . . , gn, . . . a complete orthonormal set in H.
} Put f1 = g1, let Pf1 be the orthonormal projection on H(P, f1).
} Put f2 = g2 − Pf1(g1), let Pf2 be the orthonormal projection on H(P, f2).
. . . . . . . . .

} Put fr+1 = gr+1−Pf1(gr+1)−Pf2(gr+1)−. . .−Pfr(gr+1), let Pfr+1 be the orthonormal
projection on H(P, fr+1).

. . . . . . . . .

We see that each H(P, fi) is invariant under all
n∑
k=0

akP
k and H(P, fi) ⊥ H(P, fj) if

i 6= j.
Hence,

H = H(P, f1)
⊕
H(P, f2)

⊕
. . .
⊕
H(P, fn)

⊕
. . .

since for each n, gn ∈ H(P, f1)
⊕
H(P, f2)

⊕
. . .
⊕
H(P, fn).

Set

f =
1

2
f1 +

1

22
f2 + . . .+

1

2n
fn + . . . =

∞∑
k=1

1

2k
fk ∈ H.

We have

µf =
1

2
µf1 +

1

22
µf2 + . . .+

1

2n
µfn + . . . =

∞∑
k=1

1

2k
µfk <∞

and so µf (A) = 0 if and only if µfi(A) = 0 for any i = 1, 2, 3, . . .. Hence, µfi is absolute
continuous with respect to µf (denote µfi � µf ).

Moreover, for any g ∈ H, we can decomposite g followed by f1, f2, f3, . . . . Therefore
µg is absolutely continuous with respect to µf and so f has maximal spectral type.

Lemma 1.3.1. If f and f ′ have maximal spectral type, then S(µf ) = S(µf ′) (Denoted
S(P ) in the sequel).

Proof. If f, f ′ have maximal spectral type then µf � µf ′ and µf ′ � µf . So, µf and µf ′

are equivalent.
We recall that

S(µf ) = {t : µf [t− ε; t+ ε] > 0, ∀ε > 0}
S(µf ′) = {t : µf ′ [t− ε; t+ ε] > 0, ∀ε > 0}

Suppose t /∈ S(µf ), then there exists ε > 0 such that µf [t− ε; t+ ε] = 0. It follows that
µf ′ [t− ε; t+ ε] = 0 and so t /∈ S(µf ′).

In the converse, t /∈ S(µf ′) then t /∈ S(µf ). Hence, S(µf ) = S(µf ′) = S(P ).
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Theorem 1.3.1. The map
∑n

`=0 akt
k 7→

∑n
`=0 akP

k can be extended to an isometry from
the space C(S(P )) of continuous functions on S(P ) with norm of uniform convergence, to
the space L(H) of linear bounded operator with the usual operator’s norm.

Proof. ⊕ For any polynomial R(X) =
∑n

`=0 akX
k, we define the operator R(P ) on H by

R(P ) =
∑n

`=0 akP
k.

Let us consider the restriction of R(P ) on H(P, f). If

g = Ψ(Q) =
n∑
k=0

bkP
kf

then

R(P )g =
n∑
`=0

a`P
`

(
n∑
k=0

bkP
kf

)
=

n∑
`=0

n∑
k=0

a`bkP
`+kf = Ψ(RQ).

For any g = Ψ(h) with h ∈ L2(µf ), there exists (Qn)n≥1 → h such that

R(P )Ψ(Qn) = Ψ(RQn), ∀n ≥ 1.

For n→∞, by the continuity and linearity of Ψ, we obtain

R(P )g = Ψ(Rh).

Hence,

‖R(P )‖H(P,f) = sup
‖g‖H(P,f)=1

‖R(P )g‖H(P,f) = sup
‖Ψ(h)‖H(P,f)=1

‖Ψ(Rh)‖H(P,f)

= sup
‖h‖L2(µf )

=1
‖Rh‖L2(µf ) ≤ sup

t∈S(µf )
|R(t)|.

We will prove that this inequality is equality. There exists t0 ∈ S(µf ) such that

|R(t0)| = sup
t∈S(µf )

|R(t)|

and for each 1 ≤ n ∈ N, let tn ∈ S(µf ) such that |tn − t0| <
1

n
.

Choose hn =
1
√
cn
1B(tn,1/n) with cn =

tn+ 1
n∫

tn− 1
n

dµf > 0 since tn ∈ S(µf ) and B(tn, 1/n)

be the open balls have radius 1/n and center at tn, then ‖hn‖L2(µf ) = 1. By computing,

‖Rhn‖L2(µf ) =
1
√
cn

√√√√√√
tn+1/n∫
tn−1/n

R2(t)dµf , ∀n ≥ 1.

For n is large enough,
‖Rhn‖L2(µf ) ≈ |R(tn)| ≈ |R(t0)|.
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Hence,
sup

‖hn‖L2(µf )

‖Rhn‖L2(µf ) = |R(t0)| = sup
t∈S(µf )

|R(t)|

so,
‖R(P )‖H(P,f) = sup

‖h‖L2(µf )

‖R(t)h‖L2(µf ) = sup
t∈S(µf )

|R(t)|.

Suppose that f ∈ H be a maximal spectral type , then

‖R(P )‖H(P,f) = sup
t∈S(µf )

|R(t)| = sup
g∈H

sup
t∈S(µg)

|R(t)| = sup
g∈H
‖R(P )‖H(P,g) = ‖R(P )‖H

and hence ‖R(P )‖H = supt∈S(P ) |R(t)|.
⊕ Let P be the linear subspace of C(S(P )) consiting all polynomials, where C(S(P )) is

the space of continuous functions on S(P ) ⊂ R .
Define:

φ : P −→ L(H)
R 7−→ R(P ).

then φ is a linear transformation such that φ(QR) = φ(Q)φ(R) for all Q,R ∈ P and
‖φ(R)‖L(H) = ‖R(P )‖L(H) = supt∈S(P ) |R(t)| = ‖R‖C(S(P )). So, φ is isometry.

Moreover, since P is dense in C(S(P )), φ can be extended to an isometry from C(S(P ))
with uniform convergence, to the space L(H) of linear bounded operator on H, with the
norm of operators since L(H) is a complete space.

Usually, Θ is denoted as a Radon measure dE with values in L(H):

Θ(h) =

∫
S(P )

h(t)dE(t). (1.52)

Proposition 1.3.2. For any f ∈ H and for any h ∈ C(S(P )), we have∫
Θ(h)f · f̄ dµ =

∫
h dµf . (1.53)

This equality is usually denoted by

〈dE(t)f, f〉 = dµf (t) (1.54)

Proof. Denote P be the linear subspace of C(S(P )) consisting all polynomials.

If h = R(t) ∈ P then Θ(h) =
n∑
k=0

akP
k. Hence,

∫
Θ(h)f · f̄dµ =

n∑
k=0

akγ(k) =
n∑
k=0

ak

∫
tkdµf =

∫
hdµf .

If h ∈ C(S(P )) then there exists a sequence (Rn(t))n in P which converges to h and
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∫
Θ(Rn(t))f · f̄dµ =

∫
Rn(t)dµf .

For n→∞, by the dominated convergence theorem, it follows that∫
Θ(h)f · f̄dµ =

∫
hdµf .

.

1.3.2 Approximate eigenvalues

Definition 1.3.1. A bounded operator A is normal if A ·A∗ = A∗ ·A

Definition 1.3.2. The spectrum of P is the set Σ(P ) of λ ∈ C such that P − λI is not
invertible (as a bounded Hilbert operator of L2(µ)). The resolvent set is its complementary
Ω(P ) = C \ Σ(P ).

Denote ρ(P ) = supλ∈Σ(P ) |λ| the spectral radius.
The aim of this paragraph is to prove the following theorem

Theorem 1.3.2. We have Σ(P ) = S(P ).

To prove this theorem, we prove that these two sets are equal to the set of approximate
eigenvalues, defined as follows

Definition 1.3.3. A complex number λ ∈ C is an approximate eigenvalue if there exists
(fn)n such that ‖fn‖L2(µ) = 1 and ‖(P − λI)fn‖L2(µ) → 0 for n→∞.

Denote V(P ) the set of approximate eigenvalues.

Proposition 1.3.3. We have Σ(P ) = V(P ).

Proof. We need two steps:
The first step is to prove that V(P ) ⊂

∑
(P ). Let λ ∈ V(P ). If λ ∈ Ω(P ) then

P − λI is inversible. For any f ∈ L2(µ),

‖f‖ = ‖(P − λI)−1(P − λI)f‖ ≤ ‖(P − λI)−1‖‖(P − λI)f‖

and so
‖(P − λI)f‖ ≥ ‖(P − λI)−1‖−1‖f‖.

This implies that ‖(P−λI)fn‖ ≥ ‖(P−λI)−1‖−1 > 0 for any (fn)n such that ‖fn‖L2(µ) = 1
and hence, λ /∈ V(P ). This is a contradiction! We deduce that λ ∈

∑
(P ) and therefore

V (P ) ⊂
∑

(P ).
And, the second step is to prove

∑
(P ) ⊂ V(P). Let λ ∈ C and λ 6∈ V(P), we will

prove that λ 6∈ Σ(P ) by showing that P − λI is invertible. In the proof, we will use the
fact that is for any normal operator A, then Ker(A)⊥ = Im(A).
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We first prove that Im(P − λI) = L2(µ). Since P is normal and (P − λI)∗ = P ∗ − λ̄I,
then

(P − λI)(P − λI)∗ = (P − λI)(P ∗ − λ̄I) = PP ∗ − λP ∗ − λ̄P + λλ̄I
= (P ∗ − λ̄I)(P − λI) = (P − λI)∗(P − λI)

and hence P − λI is normal. It follows that Ker(P − λI)⊥ = Im(P − λI). Moreover,there
exists ε > 0 such that ∀f ∈ L2(µ) then

‖(P − λI)f‖ ≥ ε‖f‖.

If f ∈ Ker(P − λI) then (P − λI)f = 0. We have

0 = ‖(P − λI)f‖ ≥ ε‖f‖ =⇒ ‖f‖ = 0 =⇒ f = 0

Thus,
Ker(P − λI) = {0} =⇒ Ker(P − λI)⊥ = Im(P − λI) = L2(µ).

Now, we will prove Im(P−λI) = L2(µ). Let (gn)n be a sequence in Im(P−λI) tending
to g ∈ Im(P − λI). Then, there exists (fn)n ⊂ Im(P − λI) such that gn = (p− λI)fn.

We have

‖gm − gn‖ = ‖(P − λI)(fm − fn)‖ ≥ ε‖fm − fn‖, ∀m,n ∈ N.

Since gn → g ∈ Im(P − λI), then (gn)n be a Cauchy sequence. And hence, (fn)n be also
a Cauchy sequence in Im(P − λI). Then, ∃f ∈ Im(P − λI) : fn → f . By the continuity of
P − λI, we have

(P − λI)f = (P − λI) lim
n→∞

fn = lim
n→∞

(P − λI)fn = lim
n→∞

gn = g.

It follows that g ∈ Im(P−λI), implies Im(P−λI) is closed, and hence Im(P−λI) = L2(µ).
Finally, we prove that P − λI is invertible. Since Im(P − λI) = L2(µ), then P − λI

is one to one onto L2(µ). Thus, P − λI be a bijection and so there exists unique linear
transformation (P − λI)−1 from L2(µ) onto L2(µ). We will show that (P − λI)−1 is also
bounded. For any g ∈ L2(µ), there exists f ∈ L2(µ) such that

(P − λI)f = g =⇒ f = (P − λI)−1g.

Since
‖g‖ = ‖(P − λI)f‖ ≥ ε‖f‖ = ε‖(P − λI)−1g‖

then
‖(P − λI)−1g‖ ≤ 1

ε
‖g‖

and so
‖(P − λI)−1‖ ≤ 1

ε
.

Therefor, P − λI is invertible. It follows that λ /∈ Σ(P ). We finish the proof.
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Proposition 1.3.4. We have S(P ) = V(P ).

Proof. We need also two steps to prove this proposition.
Firstly, we prove that S(P ) ⊂ V(P ). Let f ∈ H and t0 ∈ S(µf ) and claim that

t0 ∈ V(P ). It is sufficient to show that there exists a sequence (fn)n≥1 ⊂ L2(µ) such that
‖fn‖L2(µ) = 1 and lim

n→∞
‖(P − t0I)fn‖L2(µ) = 0.

Let fn = 1√
cn
1(t0−1/n;t0+1/n) with cn =

t0+1/n∫
t0−1/n

dµf > 0. Then by computing, ‖fn‖L2(µf ) =

1, ∀n ≥ 1. One has

lim
n→∞

‖(P − t0I)fn‖L2(µ) = lim
n→∞

〈(
P 2 − 2t0P + t20I

)
fn, fn

〉
= lim

n→∞

(
〈P 2fn, fn〉 − 2t0〈Pfn, fn〉+ t20〈fn, fn〉

)
= lim

n→∞

1

cn

√√√√√√
t0+1/n∫
t0−1/n

(t− t0)2dµf = 0.

And the second, we will prove that V(P ) ⊂ S(P ). Assume that f of maximal
spectral type and t0 6∈ S(µf ). For any (fn)n≥1 such that ‖fn‖L2(µ) =

∫
dµfn = 1, we claim

that ‖(P − t0)fn‖L2(µ) 6→ 0.
Since f is a maximal spectral type, then µfn � µf and there exists (hn)n≥1 such that

dµfn = hndµf for any n ≥ 1 and
∫
hndµf = 1. Since t0 6∈ S(µf ), there exists ε > 0 such

that µf [t0 − ε; t0 + ε] = 0. We have

‖(P − t0I)fn‖2L2(µ) =

∫
(t− t0)2dµfn =

∫
(t− t0)2hndµf =

∫
|t−t0|>ε

(t− t0)2hndµf

≥ ε2

∫
|t−t0|>ε

hndµf = ε2 > 0

since
∫
hndµ =

∫
|t−t0|>ε

hndµf = 1. This shows that t0 6∈ Σ(P ) or V(P ) ⊂ S(P ).

Remark 1.3.1. Let λ in the resolvent set. We have

(P − λI)−1 =

∫
S(P )

1

t− λ
dE(t). (1.55)

Indeed, let us consider h(t) =
1

t− λ
with λ ∈ C/S(P ), it is a measurable bounded

function. And th(t) is also bounded.
One has (t− λ)h(t) = 1 and hence (P − λI)h(P ) = I. It follows that (P − λI)−1 =

h(P ) = Θ(h) if λ ∈ Ω(P ). Thus,
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〈
(P − λI)−1f, f

〉
= 〈h(P )f, f〉 =

∫
h(t)dµf (t) =

∫
1

t− λ
dµf (t)

and we deduce that

(P − λI)−1 =

∫
S(P )

1

t− λ
dE(t).

Remark 1.3.2. We can use this theory to define
√
I − P as follows

√
I − P =

∫
S(P )

√
1− tdE(t). (1.56)

Remark 1.3.3. Note that all preceding questions in subsection 1.3.1 and subsection 1.3.2
are still valid if T is unitary operator: T ∗ = T−1, exepted remark 1.3.2 because z 7−→

√
z

is not defined on C. We can prove that Σ(T ) is a closed subset of S1 = {z ∈ C; |z| = 1}.
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Chapter 2

The proofs of Central limit theorem
for martingales without Fourier
analysis

2.1 Introduction

The main aim of this chapter is to use a new way without Fourier analysis to obtain
again the CLT for martingales. About the CLT for martingales, they are very classical, we
can find out in many works of Billingsley (1961, [4]), Brown (1971, [8]),... So, in our works
here, we are just interested in the method to obtain again theorem. What is the method?

Let’s us begin with an elementary proof of the CLT of Trotter in his paper [48] in 1959.
In there, Trotter used operator’s method to obtain the CLT for indentically independent
distributed (iid) variables and non iid random variables. That is, for any function f ∈ CB,
the set of bounded continuous functions, he introduced a linear operator associated to
random variable (rv’s) X with distribution function F

TXf(y) = E{f(x+ y)} =

∫
f(x+ y)dF (x). (2.1)

Then he used the fact
lim
n→∞

‖TXnf − TXf‖ = 0, ∀f ∈ C2 (2.2)

to prove that the sequence of random variables X1, X2, . . . , Xn, . . . converge in distribution
to random variable X.

In the sequel, we will use the similar way without operator to obtain again the CLT
for the cases of iid, non iid variables. The point of our method is using Taylor’s expansion
of a function up to the second derivative. It is necessary to give the proof for independent
cases in detail, because it is useful for martingale cases. For martingales, we will adapt also
some ideas from Billingsley [4] and Brown [8]. We thank also to Lindeberg for his proof in
[36], in there he used a similar way but he needed more conditions for random variables.

We review the fact that a sequence of random variables (Xn)n≥1 converge in distribution
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to rv’s X if and only if
lim
n→∞

E {f(Xn)} = E {f(X)} (2.3)

for any function f ∈ CB, the set of the bounded continuous functions. However, we need
more properties about function f . We think of the following lemma.

Lemma 2.1.1. Suppose that supn
{
E(X2

n)
}
and E

{
X2
}
are finite.

For any function f ∈ C2
K , the set of functions f ∈ C2 with support compact. Setting

In(f) = E {f(Xn)} − E {f(X)} . (2.4)

If lim
n→∞

In(f) = 0, then (Xn)n≥1 converge in distribution to rv’s X.

Proof. We decompose the proof into two steps:
Step 1. For any function g ∈ CK , there exists a sequence of functions gk ∈ C2

K such
that gk → g in L∞. We have

In(g) = E{g(Xn)− g(X)}
= E{g(Xn)− gk(Xn)}+ E{gk(Xn)− gk(X)}+ E{gk(X)− g(X)}
≤ 2‖g − gk‖∞ + In(gk)

so we get
|In(g)| ≤ 2‖g − fk‖∞ + |In(fk)|.

For n→∞ and then for k →∞, we will obtain limn→∞ In(g) = 0.
Step 2. For any function h ∈ CB. We claim that lim

n→∞
In(h) = 0. Let

σ2 = max

{
V ar(X), sup

n
[V ar(Xn)]

}
.

By Chebyshev’s inequality, for any ε > 0, there exists Mε > 0 such that

P {|Xn| ≥Mε} ≤
V ar(Xn)

M2
ε

≤ σ2

M2
ε

= ε,

P {|X| ≥Mε} ≤
V ar(X)

M2
ε

≤ σ2

M2
ε

= ε.

We define a continuous function gε on R by

gε(x) =


h(x) if x ∈ [−Mε,Mε]
g0(x) if x ∈ [−Mε − 1,−Mε] ∪ [Mε,Mε + 1]

0 if otherwise,

where |g0(x)| ≤ |h(x)|. It is easy to see that gε ∈ CK .
We have

In(h) = E{h(Xn)− h(X)}
= E{h(Xn)− gε(Xn)}+ E{gε(Xn)− gε(X)}+ E{gε(X)− h(X)}.
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Since

E{h(Xn)− gε(Xn)} = E{(h− gε)(Xn)}
= E

{
(h− gε)(Xn)1{|Xn|>Mε}

}
+ E

{
(h− gε)(Xn)1{|Xn|≤Mε}

}
≤ ‖h− gε‖∞P {|Xn| > Mε}+ 0 · P {|Xn| ≤Mε}
≤ ‖h‖∞ · ε.

Similarly,
E {gε(X)− h(X)} ≤ ‖h‖∞ · ε

Therefore
|In(h)| ≤ 2ε‖h‖∞ + |In(gε)| implies lim

n→∞
|In(h)| ≤ 2ε‖h‖∞

For ε → 0, we get the desired result that is limn→∞ In(h) = 0. That means (Xn)n≥1

converges in distribution to rv’s X.

2.2 CLT for sequence of independent variables

In this section, we will use lemma 2.1.1 to obtain the CLT for iid variables and non
iid variables. This is the case of independent random variables, adapted some ideas from
Trotter [48].

2.2.1 Indentically independent distributed variables

Theorem 2.2.1. Consider a sequence (Xn)n≥1 of iid random variables. Assume that they

are centered, and have finite variance σ2. Then the distribution of 1√
n

n∑
k=1

Xk tends to the

standard normal law N (0, 1) when n→∞.

Proof. Denote by (Yn)n≥1 a sequence of iid gaussian random variables N (0;σ2), indepen-
dent of the first sequence. Put

Vn =
X1 +X2 + . . .+Xn√

n
,

Wn =
Y1 + Y2 + . . .+ Yn√

n
.

For any function f ∈ CB. Setting

In(f) = E{f(Vn)} − E{f(Wn)}.

Since the distribution ofWn ∼ N (0, 1), the theorem 2.2.1 would be proved if we prove that
lim
n→∞

In(f) = 0. However, by Lemma 2.1.1 above we need only to prove lim
n→∞

In(f) = 0 for

any function f ∈ C2
K , the set of functions f ∈ C2 with support compact. Setting

Uk = (X1 +X2 + . . .+Xk) + (Yk+1 + Yk+2 + . . .+ Yn).
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We have

f(Vn)− f(Wn) =
n∑
k=1

[
f

(
Uk√
n

)
− f

(
Uk−1√
n

)]
=

n∑
k=1

[
f

(
Zk +

Xk√
n

)
− f

(
Zk +

Yk√
n

)]
,

where Zk =
X1+X2+...+Xk−1√

n
+

Yk+1+Yk+2+...+Yn√
n

.

Also, by Taylor’s expansions

f

(
Zk +

Xk√
n

)
= f(Zk) + f ′(Zk)

Xk√
n

+
1

2
f ′′(Mk)

X2
k

n
,

f

(
Zk +

Yk√
n

)
= f(Zk) + f ′(Zk)

Yk√
n

+
1

2
f ′′(Nk)

Y 2
k

n
,

for some Mk and Nk such that |Mk −Zk| ≤ |Xk|/
√
n and |Nk −Zk| ≤ |Yk|/

√
n. Thus, we

have

f

(
Zk +

Xk√
n

)
− f

(
Zk +

Yk√
n

)
= f ′(Zk)

(
Xn√
n
− Yn√

n

)
+
f ′′(Mk)X

2
k

2n
−
f ′′(Nk)Y

2
k

2n

= f ′(Zk)

(
Xn√
n
− Yn√

n

)
+

1

2
f ′′(Zk)

(
X2
k

n
−
Y 2
k

n

)
+
f ′′(Mk)− f ′′(Zk)

2
·
X2
k

n
− f ′′(Nk)− f ′′(Zk)

2
·
Y 2
k

n
= I1 + I2 + I3 − I4.

By independence of the random variables Xk, Yk, Zk, and E {X} = E {Y } = 0, E
{
X2
k

}
=

E
{
Y 2
k

}
= σ2, the expectation of I1 + I2 is null and the remainder is I3− I4. Since f ∈ C2

K ,
for any ε > 0, there exists δ > 0 such that |z − s| < δ then |f ′′(z)− f ′′(s)| < ε. It follows
that

|I3 − I4| ≤
1

n
‖f ′′‖∞

(
X2
k1{|Xk|>δ√n} + Y 2

k 1{|Yk|>δ√n}
)

+
ε

2n

(
X2
k + Y 2

k

)
.

Thus, the upper bound of E
{
f
(
Zk + Xk√

n

)
− f

(
Zk + Yk√

n

)}
is

1

n
‖f ′′‖∞

(
E
{
X2
k1{|Xk|>δ√n}

}
+ E

{
Y 2
k 1{|Yk|>δ√n}

})
+

ε

2n

(
E
{
X2
k

}
+ E

{
Y 2
k

})
.

Taking the sum on k = 1, 2, . . . , n, we have

|In| ≤ ‖f ′′‖∞
1

n

n∑
k=1

(
E
{
X2
k1{|Xk|>δ√n}

}
+ E

{
Y 2

1 1{|Y1|>δ√n}
})

+ εσ2.

For n→∞, we see that lim
n→∞

|In(f)| ≤ εσ2. Since ε as small as we need, the theorem 2.2.1
is proved.
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2.2.2 Non indentically distributed variables

Suppose (Xn)n≥1 be a sequence of independent random variables which does not have

the same distribution. Assume that E {Xk} = 0, E
{
X2
k

}
= σ2

k and denote s2
n =

n∑
k=1

σ2
k, we

have the theorem as follows

Theorem 2.2.2. If for any δ > 0, we have

lim
n→∞

1

s2
n

n∑
k=1

E
{
X2
k1{|Xk|>δsn}

}
= 0, (2.5)

then the distribution of 1
sn

n∑
k=1

Xk tends to the standard normal law N (0, 1) when n→∞.

Condition (2.5) is called Lindeberg’s condition.

Proof. Denote by (ξn)n≥1 a sequence of iid gaussian random variables N (0; 1), independent
of the first sequence. Let (Yn)n≥1 be a sequence of random variables such that Yn = σnξn,
independent of (Xn)n≥1. Put

Vn =
X1 +X2 + . . .+Xn

sn
,

Wn =
Y1 + Y2 + . . .+ Yn

sn
.

For any function f ∈ C2
K , we consider

In(f) = E{f(Vn)} − E{f(Wn)}.

Since the distribution ofWn ∼ N (0, 1), the theorem 2.2.2 would be proved if we prove that
lim
n→∞

In(f) = 0.

Set Uk = (X1 +X2 + . . .+Xk) + (Yk+1 + Yk+2 + . . .+ Yn). We have:

f(Vn)− f(Wn) =

n∑
k=1

[
f

(
Uk
sn

)
− f

(
Uk−1

sn

)]
=

n∑
k=1

[
f

(
Zk +

Xk

sn

)
− f

(
Zk +

Yk
sn

)]
,

where Zk =
X1+X2+...+Xk−1

sn
+

Yk+1+Yk+2+...+Yn
sn

.

Also, by Taylor’s expansions

f

(
Zk +

Xk

sn

)
= f(Zk) + f ′(Zk)

Xk

sn
+

1

2
f ′′(Mk)

X2
k

s2
n

,

f

(
Zk +

Yk
sn

)
= f(Zk) + f ′(Zk)

Yk
sn

+
1

2
f ′′(Nk)

Y 2
k

s2
n
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for some Mk and Nk such that |Mk − Zk| ≤ |Xk|/sn and |Nk − Zk| ≤ |Yk|/sn. Thus, we
have

f

(
Zk +

Xk

sn

)
− f

(
Zk +

Yk
sn

)
= f ′(Zk)

(
Xn

sn
− Yn
sn

)
+
f ′′(Mk)X

2
k

2s2
n

−
f ′′(Nk)Y

2
k

2s2
n

= f ′(Zk)

(
Xn

sn
− Yn
sn

)
+

1

2
f ′′(Zk)

(
X2
k

s2
n

−
Y 2
k

s2
n

)
+
f ′′(Mk)− f ′′(Zk)

2

X2
k

s2
n

− f ′′(Nk)− f ′′(Zk)
2

Y 2
k

s2
n

= I1 + I2 + I3 − I4.

By independence of the random variables Xk, Yk, Zk, and E {X} = E {Y } = 0, E
{
X2
k

}
=

E
{
Y 2
k

}
= σ2

k, the expectation of I1 + I2 is null and the remainder is I3− I4. Since f ∈ C2
K ,

for any ε > 0, there exists δ > 0 such that |z − s| < δ then |f ′′(z)− f ′′(s)| < ε. It follows
that

|I3 − I4| ≤
1

s2
n

‖f ′′‖∞
(
X2
k1{|Xk|>δsn} + Y 2

k 1{|Yk|>δsn}
)

+
ε

2s2
n

(
X2
k + Y 2

k

)
.

Thus, the upper bound of E
{
f
(
Zk + Xk

sn

)
− f

(
Zk + Yk

sn

)}
is

1

s2
n

‖f ′′‖∞
(
E
{
X2
k1{|Xk|>δsn}

}
+ E

{
Y 2
k 1{|Yk|>δsn}

})
+

ε

2s2
n

(
E
{
X2
k

}
+ E

{
Y 2
k

})
.

Taking the sum on k = 1, 2, . . . , n, we have

|In| ≤ ‖f ′′‖∞
1

s2
n

n∑
k=1

(
E
{
X2
k1{|Xk|>δsn}

}
+ E

{
Y 2
k 1{|Yk|>δsn}

})
+ ε.

For n → ∞, the proof of this theorem will be completed if we show that (Yn)n≥1 also
satisfies Lindeberg’s condition (2.5).

For any k = 1, 2, . . . , n, we have

E
{
Y 2
k 1{|Yk|>δsn}

}
= σ2

kE
{
Y 2

1{|Y |> δsn
σk

}} ≤ σ2
kE

{
Y 2

1{
|Y |> δsn

σj

}
}
,

where σj = max
k≤n
{σk} and Y ∼ N (0, 1).

Again, taking the sum on k = 1, 2, . . . , n, we have

1

s2
n

n∑
k=1

E
{
Y 2
k 1{|Yk|>δsn}

}
≤ E

{
Y 2

1{
|Y |> δsn

σj

}
}
. (2.6)

And, the last one, since

1

s2
n

n∑
k=1

E
{
X2
k1{|Xk|>δsn}

}
≥ 1

s2
n

E
{
X2
j 1{|Xj |>δsn}

}
≥ 1

s2
n

(
σ2
j − E

{
X2
j 1{|Xj |≤δsn}

})
≥ 1

s2
n

(
σ2
j − δ2s2

n

)
=

(
σj
sn

)2

− δ2,
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by Lindeberg ’s condition (2.5) of (Xn)n≥1, for n→∞, we have lim sup
n→∞

(
σj
sn

)2 ≤ δ2 for any

δ > 0. Thus, lim
n→∞

σj
sn

= 0. Finally, in (2.6), for n→∞ we have

lim
n→∞

1

s2
n

n∑
k=1

E
{
Y 2
k 1{|Yk|>δsn}

}
= 0.

2.3 Central limit theorem for martingales

We begin with Billingsley’s theorem for stationary martingale.

2.3.1 Stationary Martingale Central Limit theorem

Theorem 2.3.1. (Billingsley, 1961) Suppose the sequence of (Xn)n≥1 be stationary and
ergodic such that V ar {X1} = E{X2

1} is finite and

E{Xn/X1, . . . , Xn−1} = 0, a.s. (2.7)

Then the distribution of
1√
n

n∑
k=1

Xk tends to the normal distribution with mean 0 and

variance E{X2
1}.

Proof. To prove this theorem, we may assume the process is represented in the way of
Billingsley [4]. Let Ω be the Cartesian product of a sequence of copies of the real line,
indexed by the integers n = 0,±1,±2, . . .. Let Xn be the coordinate variables, let B be the
Borel field generated by them, and let P be the probability measure on B with the finite
dimensional distributions prescribed by the original process. Let Fn = σ(Xn, Xn−1, . . .)
then by (2.7)

E{Xn/Fn−1} = 0, a.s. (2.8)

for n = 0,±1,±2, . . ..
Let σ2

n = E{X2
n/Fn−1} and let σ2 = E{σ2

n} = E{X2
n}. If T is the shift operator then

σ2
n = Tnσ2

0. Since the hypothesis of the sequence of (Xn)n≥1 then T is ergodic, it follows
by the ergodic theorem that

lim
n→∞

1

n

n∑
k=1

σ2
k = σ2, a.s. (2.9)

Let q2
n = σ2

1 + . . .+ σ2
n, put mt = min{n : q2

n ≥ t} for t > 0, let ct be the number such
that 0 < ct ≤ 1 and q2

mt−1 + ctσ
2
mt = t, and finally, let Zt = X1 + . . . + Xmt−1 + ctXmt .

We see that mt is well defined and so other variables by the following lemma

Lemma 2.3.1. For t > 0 and mt defined as above, then
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i) If t <∞ then mt <∞.

ii) lim
t→∞

mt =∞.

Proof. For t < ∞, suppose that mt = ∞. Then we have mt − 1 = ∞, (2.9) shows that
q2
mt−1 = ∞. It follows that q2

mt−1 > t. This is a contradiction, hence, mt < ∞. This
proved i).

For t → ∞, suppose mt < N < ∞ then s2
N < ∞. By (2.9), sup

n

q2n
n < ∞. Hence,

q2
N < ∞ and so q2

mt < q2
N < t. This is a contradiction, hence, mt = ∞. This proved

ii).

Furthermore, we have the second lemma for mt.

Lemma 2.3.2. As above, mt = min{n : q2
n ≥ t} for t > 0, then we have

lim
t→∞

t

mt
= σ2. (2.10)

Proof. For any δ > 0, we have

qmt
mt
−
σ2
mt

mt
≤ qmt−1

mt
≤ t

mt
≤ qmt

mt
.

By (2.9) and lemma 2.3.1, this lemma would be proved if we can show that

lim
n→∞

σ2
n

n
= 0. (2.11)

Applying lemma 3.4.1, then for any ε > 0

∞∑
n=1

P
{
σ2
n

n
> ε

}
=

∞∑
n=1

P
{
σ2
n

ε
> n

}
≤ 1

ε
E
{
X2

1

}
=
σ2

ε
.

By Borel Cantelli ’s lemma, one has σ2
n
n < ε a.s for n large enough which completes

(2.11).

About Zt, it will plays an important part in our proof because we in the sequel can
show that

1√
t
Zt

D−−−−−→ N (0, 1) as t→∞. (2.12)

And hence, the proof of the theorem will then be completed by showing that

lim
n→+∞

P

{
n−1/2

∣∣∣∣∣
n∑
k=1

Xk − Znσ2

∣∣∣∣∣ > ε

}
= 0, ∀ε > 0. (2.13)

To prove (2.13), we will use (2.10) and Kolmogorov’s inequality for martingales. This is
adapted from Billingsley (1961). From (2.10), given ε > 0, choose n0 such that if n ≥ n0

then
P
{∣∣∣mnσ2

nσ2
− σ−2

∣∣∣ > ε3
}
< ε
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it follows that
P
{
|mnσ2 − n| > ε3nσ2

}
< ε.

If n ≥ n0 then

P

{
n−1/2

∣∣∣∣∣
n∑
k=1

Xk − Znσ2

∣∣∣∣∣ > ε

}
≤ ε+ P

{
max
a≤`≤b

∣∣∣∣∣∑̀
k=a

Xk

∣∣∣∣∣ ≥ εn1/2

2

}

where a = n−
[
ε3nσ2

]
and b = n+

[
ε3nσ2

]
. By Kolmogorov’s inequality for martingales

P

{
max
a≤`≤b

∣∣∣∣∣∑̀
k=a

Xk

∣∣∣∣∣ ≥ εn1/2

2

}
≤ 4

ε2n

b∑
k=a

E
{
X2
k

}
≤ 8εσ2.

We have thus proved that

P

{
n−1/2

∣∣∣∣∣
n∑
k=1

Xk − Znσ2

∣∣∣∣∣ > ε

}
≤ (1 + 8σ2)ε

if n ≥ n0, and we finish the proof of (2.13).
The remainder is to prove (2.12), we define new variables by

X̃k = Xk1{mt>k} +Xkct1{mt=k}. (2.14)

For mt > k, that means q2
k =

∑k
i=1 σ

2
i < t implies {mt > k} is Fk−1-measurable. Sim-

ilarly, {mt > k − 1} is Fk−1-measurable and {mt ≤ k} is the complement of {mt > k}
is also Fk−1-measurable; it follows that {mt = k} = {mt > k − 1} ∩ {mt ≤ k} is Fk−1-

measurable, and hence ct1{mt=k} is Fk−1-measurable since ct =
t−q2k−1

σ2
k

on {mt = k}.

Therefore, if σ̃2
k = E

{
X̃2
k/Fk−1

}
, then we have

σ̃2
k = σ2

k1{mt>k} + c2
tσ

2
k1{mt=k} (2.15)

and so
∞∑
k=1

σ̃2
k = t (2.16)

except on a set of measure zero. Moreover, we also have E
{
X̃k/Fk−1

}
= 0, a.s.

Adjoin to the space random variables ξ1, ξ2, . . ., each normally distributed with mean
0 and variance 1, which are independent of each other and of the Borel field B. If we put
new variables

ηn =
1√
t

(
X̃1 + X̃2 + . . .+ X̃n + σ̃n+1ξn+1 + σ̃n+2ξn+2 + . . .

)
then ηn =

1√
t
Zt, for any n ≥ mt. Moreover, since E {η0/B} = 0, E

{
η2

0/B
}

=
1

t

∞∑
k=1

σ̃2
k = 1,

then η0 has the standard normal distribution because of the independence of (ξi)i≥1. For
any function f ∈ C2

k we set
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It(f) = E
{
f

(
1√
t
Zt

)
− f(η0)

}
=
∞∑
k=1

E {f(ηk)− f(ηk−1)} . (2.17)

If we put

Wn =
1√
t

(
X̃1 + X̃2 + . . .+ X̃n−1 + σ̃n+1ξn+1 + σ̃n+2ξn+2 + . . .

)
then by Taylor’s expansions, we have

f(ηk) = f(Wk) + f ′(Wk)t
−1/2X̃k +

1

2
f ′′(Mk)t

−1X̃2
k

f(ηk−1) = f(Wk) + f ′(Wk)t
−1/2σ̃kξk +

1

2
f ′′(Nk)t

−1σ̃2
kξ

2
k

for someMk and Nk such that |Mk−Wk| ≤ |X̃k|/
√
t and |Nk−Wk| ≤ |σ̃kξk|/

√
t. Therefore

we have the following calculation

f(ηk)− f(ηk−1) = f ′(Wk)
1√
t

(
X̃k − σ̃kξk

)
+

1

2t
f ′′(Mk)X̃

2
k +

1

2t
f ′′(Nk)σ̃

2
kξ

2
k

= f ′(Wk)
1√
t

(
X̃k − σ̃kξk

)
+

1

2t
f ′′(Wk)

(
X̃2
k − σ̃2

kξ
2
k

)
+

1

2t

(
f ′′(Mk)− f ′′(Wk)

)
X̃2
k −

1

2t

(
f ′′(Nk)− f ′′(Wk)

)
σ̃2
kξ

2
k

= I1 + I2 + I3 − I4. (2.18)

We have

E {I1} = E {E {I1/ξk,B}}

= E
{

1√
t

(
X̃k − σ̃kξk

)
E
{
f ′(Wk)/ξk,B

}}
.

If we put

W 1
k =

1√
t

(
X̃1 + X̃2 + . . .+ X̃k−1

)
and

W 2
k =

1√
t

(σ̃k+1ξk+1 + σ̃k+2ξk+2 + . . .)

then
f ′(Wk) = f ′

(
W 1
k +W 2

k

)
and the law of W 1

k knowing {ξk,B} is Fk−1−measurable, the law of W 2
k knowing {ξk,B}

∼ N

(
0,

1

t

∞∑
`=k+1

σ̃2
`

)
∼ N

(
0, 1− 1

t

k∑
`=1

σ̃2
`

)
is also Fk−1−measurable. They follow that

E
{
f ′(Wk)/ξk,B

}
is Fk−1−measurable. And hence

E {I1} = E
{

1√
t
E
{(
X̃k − σ̃kξk

)
E
{
f ′(Wk)/ξk,B

}
/Fk−1

}}
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= E
{

1√
t
E
{
f ′(Wk)/ξk,B

}
E
{(
X̃k − σ̃kξk

)
/Fk−1

}}
= 0.

Similarly, we have also

E {I2} = E
{

1

2t
E
{
f ′′(Wk)

(
X̃2
k − σ̃2

kξ
2
k

)
/ξk,B

}}
= E

{
1

2t

(
X̃2
k − σ̃2

kξ
2
k

)
E
{
f ′′(Wk)/ξk,B

}}
= E

{
1

2t
E
{(
X̃2
k − σ̃2

kξ
2
k

)
E
{
f ′′(Wk)/ξk,B

}
/Fk−1

}}
= E

{
1

2t
E
{
f ′′(Wk)/ξk,B

}
E
{(
X̃2
k − σ̃2

kξ
2
k

)
/Fk−1

}}
= 0.

And the remainder is I3 − I4. Since f ∈ C2
K , for any ε > 0, there exists δ > 0 such that

|z − s| < δ then |f ′′(z)− f ′′(s)| < ε. It follows that

|I3 − I4| ≤ ‖f ′′‖∞
1

t
X̃2
k1{|X̃k|>δ

√
t} + σ̃2

kξ
2
k1{|σ̃kξk|>δ

√
t} +

ε

2t

(
X̃2
k + σ̃2

kξ
2
k

)
.

Thus, the upper bound of E {(f(ηk)− f(ηk−1))} is

‖f ′′‖∞E
{

1

t
E
{
X̃2
k1{|X̃k|>δ

√
t}/Fk−1

}
+ E

{
σ̃2
kξ

2
k1{|σ̃kξk|>δ

√
t}
}}

+εE
{

1

2t
E
{
X̃2
k/Fk−1

}
+ E

{
σ̃2
kξ

2
k

}}
.

Taking the sum on k = 1, 2, . . ., we have

|It(f)| =

∣∣∣∣E{f ( 1√
t
Zt

)
− f(η0)

}∣∣∣∣
≤ ‖f ′′‖∞E

{
1

t

∞∑
k=1

[
E
{
X̃2
k1{|X̃k|>δ

√
t}/Fk−1

}
+ E

{
σ̃2
kξ

2
k1{|σ̃kξk|>δ

√
t}
}]}

+
ε

2t
E

{ ∞∑
k=1

[
E
{
X̃2
k/Fk−1

}
+ σ̃2

kξ
2
k

]}

≤ ‖f ′′‖∞E

{
1

t

mt∑
k=1

[
E
{
X̃2
k1{|X̃k|>δ

√
t}/Fk−1

}
+ E

{
σ̃2
kξ

2
k1{|σ̃kξk|>δ

√
t}
}]}

+
ε

2t
E

{
mt∑
k=1

[
E
{
X̃2
k/Fk−1

}
+ σ̃2

kξ
2
k

]}

≤ ‖f ′′‖∞E

{
1

t

mt∑
k=1

[
E
{
X̃2
k1{|X̃k|>δ

√
t}/Fk−1

}
+ E

{
σ̃2
kξ

2
11{|σ̃kξ1|>δ

√
t}
}]}

+ε.
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Since
∑mt

k=1 σ̃
2
k = t, the integrand in last expression is bounded by 2. Therefore, for t→∞,

by the dominated convergence theorem, the proof of (2.12) will be completed if we show
that

1

t

mt∑
k=1

E
{
X̃2
k1{|X̃k|>δ

√
t}/Fk−1

}
−→ 0 (2.19)

and
1

t

mt∑
k=1

E
{
σ̃2
kξ

2
11{|σ̃kξ1|>δ

√
t}
}
−→ 0 (2.20)

by using ergodicity, stationarity of (Xn)n≥1 and lemma 2.3.2.
Proof of (2.19). For u > 0, then t > u for t large enough. And, for any k = 1, 2, . . . , n,

we have

lim sup
t→∞

1

t

mt∑
k=1

E
{
X̃2
k1{|X̃k|>δ

√
t}/Fk−1

}
≤ lim sup

t→∞

1

t

mt∑
k=1

E
{
X2
k1{|Xk|>δ√u}/Fk−1

}
.

(2.21)
If follows from the ergodic theorem that

lim
n→∞

1

n

n∑
k=1

E
{
X2
k1{|Xk|>δ√u}/Fk−1

}
= E

{
X2

11{|X1|>δ
√
u}
}
. (2.22)

From (2.10) and (2.22), we have that the left hand member of (2.21) is bounded by

σ−2E
{
X2

11{|X1|>δ
√
u}
}

For u → ∞, this bound goes to 0 by the dominated convergence theorem, the left hand
member of (2.21) is 0 a.s.

Proof of (2.20). Similarly, for v > 0, then t > v for t large enough. And, for any
k = 1, 2, . . . , n, we have

lim sup
t→∞

1

t

mt∑
k=1

E
{
σ̃2
kξ

2
11{|σ̃kξ1|>δ√v}

}
≤ lim sup

t→∞

1

t

mt∑
k=1

E
{
σ2
kξ

2
11{|σkξ1|>δ√v}

}
. (2.23)

If follows from the ergodic theorem that

lim
n→∞

1

n

n∑
k=1

E
{
σ2
kξ

2
11{|σkξ1|>δ√v}

}
= E

{
σ2

1ξ
2
11{|σ1ξ1|>δ√v}

}
. (2.24)

From (2.10) and (2.24), we have that the left hand member of (2.23) is bounded by

σ−2E
{
σ2

1ξ
2
11{|σ1ξ1|>δ√v}

}
For v → ∞, this bound goes to 0 by the dominated convergence theorem, the left hand
member of (2.23) is 0 a.s. Thus, the integrand on the right in (2.19) goes to 0 a.s., which
completes the proof of (2.12).
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2.3.2 Martingale Central Limit Theorem

Let (Xn)n≥0 be a sequence of random variables defined over the probability space
(Ω,A,P), B = σ(Xn, n = 0, 1, 2, 3, . . .) and Fn = σ(Xn, Xn−1, . . .). Assume that the
partial sums of Xn define a martingale: Xn is Fn-measurable and E {Xn/Fn−1} = 0 for

n ≥ 1. Put s2
n =

n∑
k=1

E
{
X2
k

}
.

Theorem 2.3.2. Assume that the following limits hold almost surely (a.s.)

lim
n→∞

1

s2
n

n∑
k=1

E
{
X2
k/Fk−1

}
= 1, (2.25)

and

lim
n→∞

1

s2
n

n∑
k=1

E
{
X2
k1{|Xk|>δsn}/Fk−1

}
= 0 (2.26)

then the distribution of
1

sn

n∑
k=1

Xk tends to the standard normal law N (0, 1) when n→∞.

Remark 2.3.1. In 1971, in [8] Brown proved Theorem 2.3.2 where conditions (2.25),
(2.26) hold in probability but we use with almost surely convergence.

Before proving Theorem 2.3.2, we need two lemmas as follows

Lemma 2.3.3. The conditions (2.25), (2.26) in Theorem 2.3.2 hold in L1.

Proof. Put

Gn =
1

s2
n

n∑
k=1

E
{
X2
k/Fk−1

}
− 1.

By (2.25), Gn → 0 a.s. Decompositing Gn = G+
n − G−n . Since, Gn ≥ −1 for any n

then 0 ≤ G−n ≤ 1 and follows that E {G−n } → 0 by the dominated convergence theorem.
Moreover, E {Gn} = 0, implies E {G+

n } = E {G−n } , for any n ≥ 1, then

lim
n→∞

E
{
G+
n

}
= lim

n→∞
E
{
G−n
}

= 0.

Therefore
lim
n→∞

E {|Gn|} ≤ lim
n→∞

E
{
G+
n +G−n

}
= 0

and hence Gn −→ 0 in L1. In the other hand, by putting

Hn =

n∑
k=1

E
{
X2
k1{|Xk|>δsn}/Fk−1

}
n∑
k=1

E
{
X2
k/Fk−1

} ,

Kn =
1

s2
n

n∑
k=1

E
{
X2
k1{|Xk|>δsn}/Fk−1

}
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we obtain Kn = (1 +Gn)Hn for any n. By condition (2.26),

lim
n→∞

Kn = lim
n→∞

(1 +Gn)Hn = 0 a.s.

and since Gn → 0 a.s. by (2.25), we deduce that Hn → 0 a.s.
Moreover 0 ≤ Hn ≤ 1, by the dominated convergence theorem then follows that

E {Hn} → 0 as n→∞. Finally,

E {Kn} = E {Hn}+ E {GnHn} ≤ E {Hn}+ E {Gn} −→ 0 as n→∞.

Hence, Kn → 0 in L1.

Lemma 2.3.4. lim
n→∞

s2
n =

∞∑
k=1

E
{
X2
k

}
=∞.

Proof. Assume lim
n→∞

s2
n = M2 <∞, then there exists N > 0 such that

s2
N > M2 −M2/3. (2.27)

By (2.26)
∞∑
k=1

E
{
X2
k1{|Xk|>δM}/Fk−1

}
= 0, a.s.

This implies E
{
X2
k1{|Xk|>δM}/Fk−1

}
= 0 a.s. and follows that E

{
X2
k1{|Xk|>δM}

}
= 0 for

any k ≥ 1 and for any δ > 0. Therefore,

s2
N =

N∑
k=1

E
{
X2
k1{|Xk|≤δM}

}
≤ Nδ2M2. (2.28)

Choose δ = 1/2
√
N , (2.27) and (2.28) give a contradiction !

Proof of Theorem 2.3.2. Let σ2
k = E

{
X2
k/Fk−1

}
and let q2

n = σ2
1 + . . . + σ2

n,
put mt = min{n : q2

n ≥ t} for t > 0, let ct be the number such that 0 < ct ≤ 1 and
q2
mt−1 + ctσ

2
mt = t, and finally, let Zt = X1 + . . .+Xmt−1 + ctXmt . We see that mt is well

defined and so other variables by the following lemma

Lemma 2.3.5. For t > 0 and mt defined as above, then

i) If t <∞ then mt <∞.

ii) lim
t→∞

mt =∞.

Proof. For t < ∞, suppose that mt = ∞. By lemma 2.3.4 we have s2
mt−1 = ∞, (2.25)

implies q2
mt−1 = ∞. It follows that q2

mt−1 > t. This is a contradiction, hence, mt < ∞.
This proved i).

For t → ∞, suppose mt < N < ∞ then s2
N < ∞. By (2.25), lim

n→∞
q2n
s2n

= 1 implies

sup
n

q2n
s2n

< ∞. Hence, q2
N < ∞ and so q2

mt < q2
N < t. This is a contradiction, hence,

mt =∞. This proved ii).
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Furthermore, we have the second lemma for mt

Lemma 2.3.6. We recall mt = min{n : q2
n ≥ t} for t > 0 then we have

lim
t→∞

t

s2
mt

= 1. (2.29)

Proof. We have

q2
mt

s2
mt

−
σ2
mt

s2
mt

=
q2
mt − σ

2
mt

s2
mt

≤
q2
mt−1

s2
mt

≤
(

t

s2
mt

)
≤
q2
mt

s2
mt

.

By (2.25) and lemma 2.3.5, this lemma would be proved if we can show that

lim
n→∞

σ2
n

s2
n

= 0. (2.30)

For any δ > 0, we have

1

s2
n

n∑
k=1

E
{
X2
k1{|Xk|>δsn}/Fk−1

}
≥ 1

s2
n

E
{
X2
n1{|Xn|>δsn}/Fn−1

}
=

σ2
n

s2
n

− 1

s2
n

E
{
X2
n1{|Xn|≤δsn}/Fn−1

}
≥ σ2

n

s2
n

− δ2.

By (2.26), for n→∞, we have lim sup
n→∞

σ2
n
s2n
≤ δ2 for any δ > 0. Thus, we obtain the desired

result.

About rv’s Zt, it plays an important role in our proof because in the sequel we can
show that

1√
t
Zt

D−−−−−→ N (0, 1) as t→∞. (2.31)

And hence, the proof of the theorem will be completed by showing that

lim
n→+∞

P

{
1

sn

∣∣∣∣∣
n∑
k=1

Xk − Zs2n

∣∣∣∣∣ > ε

}
= 0, ∀ε > 0. (2.32)

To prove (2.32), we will use (2.29) and Kolmogorov’s inequality for martingales. From
(2.29), given ε > 0, choose n0 such that if n ≥ n0 then

P

{∣∣∣∣∣s
2
m
s2n

s2
n

− 1

∣∣∣∣∣ > ε3

}
< ε

that means
P
{∣∣∣s2

m
s2n

− s2
n

∣∣∣ > ε3s2
n

}
< ε

59



2.3. CENTRAL LIMIT THEOREM FOR MARTINGALES

If n ≥ n0 then

P

{
1

sn

∣∣∣∣∣
n∑
k=1

Xk − Zs2n

∣∣∣∣∣ > ε

}
≤ P

{
max
a≤`≤b

∣∣∣∣∣∑̀
k=a

Xk

∣∣∣∣∣ ≥ εsn
2

}

where a = n+ms2n
−
∣∣n−ms2n

∣∣ and b = n+ms2n
+
∣∣n−ms2n

∣∣. By Kolmogorov’s inequality
for martingales

P

{
max
a≤`≤b

∣∣∣∣∣∑̀
k=a

Xk

∣∣∣∣∣ ≥ εsn
2

}
≤ ε+ 4

ε3s2
n

ε2s2
n

≤ 5ε.

We have thus proved that

P

{
1

sn

∣∣∣∣∣
n∑
k=1

Xk − Zs2n

∣∣∣∣∣ > ε

}
≤ 5ε

for n ≥ n0, and we finish the proof of (2.32).
The remainder is to prove (2.31), we define new variables by

X̃k = Xk1{mt>k} +Xkct1{mt=k} (2.33)

Similar arguments as in preceeding section, if σ̃2
k = E

{
X̃2
k/Fk−1

}
, then we have

σ̃2
k = σ2

k1{mt>k} + c2
tσ

2
k1{mt=k} (2.34)

and so
∞∑
k=1

σ̃2
k = t (2.35)

except on a set of measure zero. Moreover, we also have E
{
X̃k/Fk−1

}
= 0, a.s.

Adjoin to the space random variables ξ1, ξ2, . . ., each normally distributed with mean
0 and variance 1, which are independent of each other and of the Borel field B. If we put
new variables

ηn =
1√
t

(
X̃1 + X̃2 + . . .+ X̃n + σ̃n+1ξn+1 + σ̃n+2ξn+2 + . . .

)
then ηn = 1√

t
Zt, for n ≥ mt. Moreover, since E {η0/B} = 0, E

{
η2

0/B
}

= 1
t

∑∞
k=1 σ̃

2
k = 1,

then η0 has the standard normal distribution.
Write

Wn =
1√
t

(
X̃1 + X̃2 + . . .+ X̃n−1 + σ̃n+1ξn+1 + σ̃n+2ξn+2 + . . .

)
.

For any function f ∈ C2
k , put

It(f) = E
{
f

(
1√
t
Zt

)
− f(η0)

}
=

∞∑
k=1

E {f(ηk)− f(ηk−1)} (2.36)
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and then using the same method in the preceding section, we also have

|It(f)| =

∣∣∣∣E{f ( 1√
t
Zt

)
− f(η0)

}∣∣∣∣
≤ ‖f ′′‖∞E

{
1

t

∞∑
k=1

[
E
{
X̃2
k1{|X̃k|>δ

√
t}/Fk−1

}
+ E

{
σ̃2
kξ

2
k1{|σ̃kξk|>δ

√
t}
}]}

+
ε

2t
E

{ ∞∑
k=1

[
E
{
X̃2
k/Fk−1

}
+ σ̃2

kξ
2
k

]}

≤ ‖f ′′‖∞E

{
1

t

mt∑
k=1

[
E
{
X̃2
k1{|X̃k|>δ

√
t}/Fk−1

}
+ E

{
σ̃2
kξ

2
11{|σ̃kξ1|>δ

√
t}
}]}

+ε.

Since
∑mt

k=1 σ̃
2
k = t, the integrand in last expression is bounded by 2. Therefore, for t→∞,

by the dominated convergence theorem, the proof of (2.31) will be completed if we show
that

1

t

mt∑
k=1

E
{
X̃2
k1{|X̃k|>δ

√
t}/Fk−1

}
−→ 0 (2.37)

and
1

t

mt∑
k=1

E
{
σ̃2
kξ

2
11{|σ̃kξ1|>δ

√
t}
}
−→ 0 (2.38)

by using (2.25), (2.26) and lemma 2.3.6.
Proof of (2.37). We have

1

t

mt∑
k=1

E
{
X̃2
k1{|X̃k|>δ

√
t}/Fk−1

}
≤ 1

t

mt∑
k=1

E
{
X2
k1{|Xk|>δsmt−1}/Fk−1

}
≤

s2
mt−1

t
· 1

s2
mt−1

mt−1∑
k=1

E
{
X2
k1{|Xk|>δsmt−1}/Fk−1

}
+
s2
mt

t
·
σ2
mt

s2
mt

.

By (2.29) and (2.26), we have

lim
t→∞

s2
mt−1

t
· 1

s2
mt−1

mt−1∑
k=1

E
{
X2
k1{|Xk|>δsmt−1}/Fk−1

}
= 0,

and

lim
t→∞

s2
mt

t
·
σ2
mt

s2
mt

= 0.

Hence, we obtain (2.37).

Proof of (2.38). Let bt = max
1≤k≤mt

{
σk√
t

}
, we have lim

t→∞

σ2
k

s2
mt

= 0 for any 1 ≤ k ≤ mt. By

(2.29), lim
t→∞

σk√
t

= lim
t→∞

σk
smt

= 0 implies lim
t→∞

bt = 0. Therefore
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lim sup
t→∞

1

t

mt∑
k=1

E
{
σ̃2
kξ

2
11{|σ̃kξ1|>δ

√
t}
}
≤ lim sup

t→∞

1

t

mt∑
k=1

E
{
σ2
kξ

2
11{|σkξ1|>δ

√
t}
}

≤ lim sup
t→∞

1

t

mt∑
k=1

E
{
σ2
kξ

2
11{|ξ1|>δb−1

t }
}

≤ lim sup
t→∞

s2
mt

t
E
{
ξ2

11{|ξ1|>δb−1
t }
}
. (2.39)

Since lim
t→∞

bt = 0 implies lim
t→∞

b−1
t = +∞, then lim sup

t→∞
E
{
ξ2

11{|ξ1|>δb−1
t }
}

= 0 which

completes the proof of (2.38).

�
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Chapter 3

Central limit theorem for Markov
chain started at a point

This chapter is devoted to obtain CLT for Markov chain started at a point based on
martingale approximation.

We begin with Hopf Maximal Ergodic Theorem.

3.1 Hopf Maximal Ergodic Theorem

We recall (Xn)n≥0 be a stationary Markov chain defined on a probability space (Ω,A,P)
with µ-initial distribution and (X ,B) be the state space. A stochastic kernel P such that

Pf(Xk) = E {f(Xk+1)/Xk} for k ≥ 0 (3.1)

with f be a bounded, measurable function on the state space.
In the sequel, we will denote

Skf =

k∑
i=0

P if,

S∗nf = max
0≤k≤n

Skf

S∗f = sup
k
Skf.

We will establish the ergodic theorem for operator P under measure µ. Firstly, we need
the following theorem regarded as Maximal Ergodic Theorem

Theorem 3.1.1. (Maximal Ergodic Theorem) For any f ∈ L1(µ), we have∫
S∗f>0

f dµ ≥ 0. (3.2)

Proof. For a ∈ R, set a+ = max{a, 0}. For any a, b ∈ R then

max{a, a+ b} = a+ max{b, 0} = a+ b+.
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For two functions g, h ∈ L1(µ)
P (max{g, h}) = P (g + (h− g)+) = P (g) + P ((h− g)+) ≥ P (g)

P (max{g, h}) = P (h+ (g − h)+) = P (h) + P ((g − h)+) ≥ P (h)

then
P (max{g, h}) ≥ max{P (g), P (h)}.

And hence,

P (g+) = P (max [0, g}) ≥ max{P (0), P (g)} = max{0, P (g)} = [P (g)]+ .

Consider

S∗n+1f = max
0≤k≤n+1

Skf = max

{
f, f + Pf, . . . , f +

n+1∑
i=1

P if

}
= f + max

{
0, max

0≤k≤n
P (Skf)

}
= f + max

{
P (0),max

k≤n
P (Skf)

}
≤ f + P

(
max{0,max

k≤n
Skf}

)
= f + P (max{0, S∗nf})

≤ f + P
[
(S∗nf)+

]
.

Set En = {S∗nf > 0}. Since

S∗nf ≤ f + P
[
(S∗n−1f)+

]
≤ f + P

[
(S∗nf)+

]
then ∫

En

S∗nfdµ ≤
∫
En

fdµ+

∫
En

P
[
(S∗nf)+

]
dµ ≤

∫
En

f dµ+

∫
R

P
[
(S∗nf)+

]
dµ

≤
∫
En

fdµ+

∫
R

(S∗nf)+dµ =

∫
En

fdµ+

∫
En

S∗nfdµ.

It follows that, ∫
En

fdµ ≥ 0 for any n ≥ 0.

For n→∞, we obtain
∫

S∗f>0

f dµ ≥ 0 with S∗f = supk Skf .

Corollary 3.1.1. For any function f ∈ L1(µ) then∫
M∗f>α

f dµ ≥ αµ{M∗f > α}, (3.3)

with M∗f = supk | 1
k+1Skf |.

64



3.1. HOPF MAXIMAL ERGODIC THEOREM

Proof. By preceding theorem,∫
M∗(f−α)>0

(f − α) dµ =

∫
M∗(f−α)>0

f dµ− αµ{M∗(f − α) > 0} ≥ 0

and we get then ∫
M∗f>α

f dµ ≥ αµ{M∗f > α}.

Definition 3.1.1. A Markov chain (Xn)n≥1 is ergodic if Ph = h for some h ∈ L1(µ) then
h is constant.

Theorem 3.1.2. (Hopf’s Ergodic Theorem) If the chains (Xn)n≥1 is ergodic then for
any g ∈ L1(µ)

lim
k→∞

1

k + 1
Skg =

∫
g dµ, µ a.s.

Proof. Denote

Mkg =
1

k + 1
Skg and h = lim

k→∞
inf
k
Mkg

We decompose the proof into two steps:
Step 1. We consider the case 0 ≤ g ≤ 1. Firstly, we show that h is a constant. For any

` ≥ 0, P (inf`≤kMkg) ≤ inf`≤kMkPg by Fatou’s lemma. For `→∞, we have

Ph ≤ lim
`→∞

inf
`<k

(MkPg) ≤ lim
`→∞

inf
`<k

{
Mkg +

1

k + 1
P k+1g − 1

k + 1
g

}
≤ lim

`→∞
inf
`<k

(Mkg) ≤ h

Since 0 ≤ 1− g ≤ 1, we have also: P (1− h) ≤ 1− h and so, Ph ≥ h. Hence, Ph = h and
then h is constant by the ergodicity of the chains (Xn)n≥1.

For any ε > 0, set

F =

{
h−

∫
gdµ+ ε < 0

}
and

E =

{
inf
k

{
Sk

(
g −

∫
gdµ+ ε

)}
< 0

}
.

We will show that F ⊂ E and then µ {F} = 0. We have

h−
∫
g dµ+ ε = lim

k→∞
inf
k

1

k + 1
Skg −

∫
g dµ+ ε

≥ inf
k

1

k + 1
Skg −

∫
g dµ+ ε

= inf
k

1

k + 1
Sk

(
g −

∫
g dµ+ ε

)
If h−

∫
gdµ+ ε < 0 then infk Sk

(
g −

∫
g dµ+ ε

)
< 0. Hence, F ⊂ E. Moreover,
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E =

{
inf
k

{
Sk
(
g −

∫
gdµ+ ε

)}
< 0

}
=

{
sup
k

{
Sk
(∫
gdµ− g − ε

)}
> 0

}
.

By theorem 3.1.1, we have
∫
E

(∫
gdµ− ε− g

)
dµ ≥ 0. It follows that

∫
E

(∫
gdµ− ε

)
dµ ≥

∫
E
gdµ ≥

∫
F

gdµ

and then
(∫
gdµ− ε

)
µ {E} ≥

∫
F

gdµ. Since h is a constant, µ {F} equals either 0 or 1. If

µ {F} = 1 then µ {E} = 1 since F ⊂ E. Therefore
∫
F

gdµ ≤
∫
gdµ− ε, ∀ε > 0. This is a

contradiction! Hence, µ {F} = 0. And for ε→ 0, h ≥
∫
gdµ, µ a.s. We obtain

lim
k→∞

inf
k

1

k + 1
Skg ≥

∫
g dµ, µ a.s. (3.4)

Similarly, since 0 ≤ 1− g ≤ 1 we have

1

k + 1
Sk(1− g) = 1− 1

k + 1
Skg

then
1

k + 1
Skg = 1− 1

k + 1
Sk(1− g)

and so

lim
k→∞

sup
k

1

k + 1
Skg = 1− lim

k→∞
inf
k

1

k + 1
Sk(1− g) ≤ 1−

∫
(1− g)dµ =

∫
g dµ. (3.5)

Combine (3.4) and (3.5), we obtain

lim
k→∞

inf
k

1

k + 1
Sk(g) ≥

∫
g dµ ≥ lim

k→∞
sup
k

1

k + 1
Skg

Hence,

lim
k→∞

1

k + 1
Skg =

∫
g dµ.

Step 2. For any g ∈ L1(µ), there exists M > 0 such that |g| ≤M µ a.s.
Set f = 1

2M (g +M), then 0 ≤ f ≤ 1. Applying Step 1, we have also

lim
k→∞

1

k + 1
Skf =

∫
f dµ, µ a.s

and hence
lim
k→∞

1

k + 1
Skg =

∫
g dµ, µ a.s

We finish the proof.
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Corollary 3.1.2. For any f ∈ L1(µ) such that
∫
f dµ = 0 then

µ{|Mf | > 0} = 0,

with Mf = lim
k→∞

Mkf .

Proof. For any ε > 0 there exists g ∈ L∞(µ) such that ‖g − f‖1 ≤ ε. We have

Mf = Mg +M(f − g)

then
|Mf | ≤ |Mg|+M∗(f − g) ≤

∣∣∣∣∫ g dµ

∣∣∣∣+M∗(f − g) ≤ ε+M∗(f − g).

For any a > 0, by corollary 3.1.1

µ{|Mf | > a} ≤ µ{M∗|f − g| > a− ε} ≤ ‖f − g‖1
a− ε

≤ ε

a− ε
.

For ε→ 0,
µ{|Mf | > a} = 0.

For a→ 0,
µ{|Mf | > 0} = 0.

3.2 Central limit theorem for stationary Markov chain

Suppose that (Xn)n≥0 is stationary Markov chain with ν-initial stationary distribution
and P is the transition probability of the chain. Define the operator Π on the space
L∞(ν ⊗ ν) by

Πh(Xk) = E {h(Xk, Xk+1)/Xk} . (3.6)

We consider again the theorem of Gordin-Lifshitz (1978).

Theorem 3.2.1. For any f ∈ L2(ν), set g = Pf − f then we have

1√
n

n−1∑
k=0

g(Xk)
D−−−−−→ N

(
0, σ2

g

)
as n −→∞

where σ2
g =

∫
f2dν −

∫
(Pf)2dν.

Proof. Firstly, we decompose g(Xk) as follows

g(Xk) = Pf(Xk)− f(Xk+1) + f(Xk+1)− f(Xk)

and then taking the sum on k = 0, . . . , n− 1

1√
n

n−1∑
k=0

g(Xk) =
1√
n

n−1∑
k=0

[Pf(Xk)− f(Xk+1)] +
1√
n

[f(Xn)− f(X0)]
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=
1√
n

n∑
k=1

Mk +
1√
n

[f(Xn)− f(X0)]

where Mk = Pf(Xk−1)− f(Xk).
To prove this theorem, we have to prove that

1√
n

n∑
k=1

Mk
D−−−−−→ N

(
0, σ2

g

)
as n −→∞ (3.7)

and
lim
n→∞

1√
n

[f(Xn)− f(X0)] = 0 in L2. (3.8)

Set Fn = σ(X0, X1, . . . , Xn), we see that Mn is Fn-measurable and E {Mn/Fn−1} = 0
for any n ≥ 1. We will show that the partial sums ofMn is a martingale with respect to Fn
which satisfies the condition of Brown’s theorem for martingale (theorem 2.3.2, chapter 2)
and the remainder 1√

n
[f(Xn)− f(X0)] is negligible. This method is also called “martingale

approximation” followed by several authors. For the most of this thesis, Brown’s theorem
mentions to theorem 2.3.2.

Since f ∈ L2(ν), it is easy to see that (3.8) holds. So, it remains to prove (3.7). By
setting

Sn =
n∑
k=1

Mk

for any n ≥ 1, then Sn be a martingale with respect to Fn since

E {Sn+1/Fn} = Sn + E {Mn+1/Fn} = Sn

In order to prove (3.7), by Brown’s theorem for martingale, we claim that

I1 = lim
n→∞

1

s2
n

n∑
k=1

E
{
M2
k/Fk−1

}
= 1, (3.9)

and the second one

I2 = lim
n→∞

1

s2
n

n∑
k=1

E
{
M2
k1{|Mk|>δsn}/Fk−1

}
= 0, ∀δ > 0 (3.10)

where s2
n =

n∑
k=1

E
{
M2
k

}
.

Proof of (3.9). For each k ≥ 1, one has

E
{
M2
k/Fk−1

}
= Pf2(Xk−1)− (Pf)2(Xk−1) = ψ(Xk−1).

where ψ = Pf2 − (Pf)2, and

s2
n =

n∑
k=1

E
{
M2
k

}
= E

{
n∑
k=1

E
{
M2
k/Fk−1

}}
=

n−1∑
k=0

E
{
Pf2(Xk)− (Pf)2(Xk)

}
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3.2. CENTRAL LIMIT THEOREM FOR STATIONARY MARKOV CHAIN

=
n−1∑
j=0

∫ [
Pf2 − (Pf)2

]
dν = n

∫
ψdν.

The law of large number for stationary (Yn = ψ(Xn))n≥0 ensures that

lim
n→∞

1

n

n∑
k=1

E
{
M2
k/Fk−1

}
= lim

n→∞

1

n

n−1∑
k=0

ψ(Xk) = E {ψ(X0)}

=

∫
ψdν, in L1.

We have thus proved

I1 = lim
n→∞

1
n

n−1∑
k=0

ψ(Xk)

1
ns

2
n

=

∫
ψ dν∫
ψ dν

= 1.

and we finished the proof of (3.9).
Proof of (3.10). Fix M > 0, put

ψM = ΠhM ,

where hM (x, y) = [Pf(x)− f(y)]2 1{|Pf(x)−f(y)|>δM}. One has

lim
n→∞

1

n

n∑
k=1

E
{
M2
k1{|Mk|>δM}/Fk−1

}
= lim

n→∞

1

n

n−1∑
k=0

ψM (Xk) = E {ψM (X0)}

=

∫
ψMdν.

Since lim
n→∞

sn = +∞, there exists N > 0 such that for any n > N then sn > M . And
therefore,

1

s2
n

n∑
k=N+1

E
{
M2
k1{|Mk|>δsn}/Fk−1

}
≤ 1

s2
n

n∑
k=N+1

E
{
M2
k1{|Mk|>δM}/Fk−1

}
for any n > N . For n→∞, we obtain

I2 ≤
lim
n→∞

1
n

n∑
k=1

E
{
M2
k1{|Mk|>δM}/Fk−1

}
lim
n→∞

s2n
n

=

∫
ψMdν∫
ψdν

Since lim
M→∞

∫
ψMdν = 0, then

lim
n→∞

1

s2
n

n∑
k=1

E
{
M2
k1{|Mk|>δsn}/Fk−1

}
= 0 in L1
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and we finished the proof of (3.10).
Finally, by Brown’s theorem (theorem 2.3.2) for martingale

1

sn

n∑
k=1

Mk
D−−−−−→ N (0, 1)

it follows that
1√
n

n∑
k=1

Mk
D−−−−−→ N

(
0, σ2

g

)
since sn = σg

√
n.

3.3 Rewrite the preceding proof for the framework of shift

We recall here (Xn)n≥0 be a stationary Markov chain defined on a probability space
(Ω,A,P) with ν-initial distribution, P is a transition probability and (X ,B) be the state
space.

We construct a preserving-measure system (RN,B,Pν , σ) by

σ : RN −→ RN

x 7−→ σx,

such that (σx)n = xn+1.
Define

Pν{x0 ∈ A0, . . . , xr ∈ Ar} =

∫
A0

ν(dx0)

∫
A1

P (x0, dx1) . . .

∫
Ar−1

P (xr−2, dxr−1)P (xr−1, Ar)

Define πn be the projection onto the nth coordinate of RN

πn : RN −→ R
x 7−→ πnx = xn.

Since (πn)n has the same joint distribution on RN as (Xn)n on Ω, then (π0 ◦ σn)n has the
same joint distribution on RN as (Xn)n on Ω. In the sequel of this section and the next
one, we will assume that Ω = RN and Xk = π0 ◦ σk.

For any f ∈ L2(ν), let g = Pf − f . We have

1√
n

n−1∑
k=0

g(Xk) =
1√
n

n∑
k=1

Mk +
1√
n

[f(Xn)− f(X0)] (3.11)

where Mk = Pf(Xk−1)− f(Xk).
Now, we want to show that (Mk)k≥1 satisfies the condition of Brown’s theorem. Set

Fn = σ(X0, X1, . . . , Xn), we see that Mn is Fn-measurable and E {Mn/Fn−1} = 0 for any
n ≥ 1. It remains to check coditions (3.9) and (3.10) in the preceding section.
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Proof of (3.9). Set s2
n =

n∑
k=1

E
{
M2
k

}
. We have

s2
n = E

{
n∑
k=1

E
{
M2
k/Fk

}}
=

n−1∑
k=0

E
{
Pf2(Xk)− (Pf)2(Xk)

}
=

n−1∑
j=0

∫ [
Pf2 − (Pf)2

]
dν = n

∫
φ dPν , (3.12)

where φ =
[
P (f2)− (Pf)2

]
π0.

For each k = 1, 2, . . .

E
{
M2
k/Fk−1

}
= P (f2)(Xk−1)− (Pf)2(Xk−1)

≈ Pf2(π0 ◦ σk−1)− (Pf)2(π0 ◦ σk−1)
=

[
P (f2)− (Pf)2

]
π0 ◦ σk−1.

Taking the sum on k = 1, 2, . . . , n

n∑
k=1

E
{
M2
k/Fk−1

}
=

n−1∑
k=0

φ ◦ σk.

For n→∞, to treat this limit, we use the ergodic theorem with σ be measure preserving
transformation. To do that, we must show that φ ∈ L1(ν), i.e

∫
|φ|dν <∞. One has∫

|φ| dPν =

∫ ∣∣[Pf2 − (Pf)2
]
π0

∣∣ dPν =

∫ ∣∣[Pf2 − (Pf)2
]∣∣ dν

≤
∫ ∣∣Pf2

∣∣ dν +

∫ ∣∣(Pf)2
∣∣ dν ≤ ∫ f2dν +

∫
Pf2dν <∞.

By ergodic theorem

lim
n→∞

1

n

n−1∑
k=0

φ ◦ σk =

∫
φ dPν . (3.13)

Combine (3.12) and (3.13) then I1 = 1 which completes the proof of (3.9).
Proof of (3.10). Fix M > 0, put

φM (x) = ΠhM (x),

with hM (x, y) = [Pf(x)− f(y)]2 1{|Pf(x)−f(y)|>δM}. One has

lim
n→∞

1

n

n∑
k=1

E
{
M2
k1{|Mk|>δM}/Fk−1

}
= lim

n→∞

1

n

n−1∑
k=0

φM (Xk) = E {φM (X0)}

=

∫
φMdν, ν a.s.

Since lim
n→∞

sn = +∞, there exists N > 0 such that for any n > N then sn > M . And
therefore,

1

s2
n

n∑
k=N+1

E
{
M2
k1{|Mk|>δsn}/Fk−1

}
≤ 1

s2
n

n∑
k=N+1

E
{
M2
k1{|Mk|>δM}/Fk−1

}
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for any n > N . For n→∞, we obtain

I2 ≤
lim
n→∞

1
n

n∑
k=1

E
{
M2
k1{|Mk|>δM}/Fk−1

}
lim
n→∞

s2n
n

=

∫
φMdν∫
φ dPν

.

Since lim
M→∞

∫
φMdν = 0, then I2 = 0, which completes the proof of (3.10).

3.4 Central limit theorem for Markov chain started at a point

Suppose (Xn)n≥0 be a sequence of ergodic stationary Markov chain. In section 3.2, we
supposed that there is a transition probability P such that

Pf(Xk) = E {f(Xk+1)/Xk}

and there exist a probability measure ν is P−invariant. Now, we consider here the case
X0 = x0 fixed. Let f ∈ L2(ν), set g = f − Pf . Using martingale approximation method,

we claim that Sn =
n−1∑
k=0

g(Xk) be also asymptotic normality.

We construct a preserving-measure system (RZ,B,Px0 , σ)

σ : RZ −→ RZ

x 7−→ σx,

such that (σx)n = xn+1. Define

Px0{x0 ∈ A0, . . . , xr ∈ Ar} = δx0(A0)

∫
A1

P (x0, dx1) . . .

∫
Ar−1

P (xr−2, dxr−1)P (xr−1, Ar)

where δx0 be the unit mass concentrated at x0

δx0(A0) =

{
1 if x0 ∈ A0

0 if x0 /∈ A0.

Define πn be the projection onto the nth coordinate of RZ

πn : RZ −→ R
x 7−→ πnx = xn.

Since (πn)n has the same joint distribution on RZ as (Xn)n on Ω, so (π0 ◦ σn)n has the
same joint distribution on RZ as (Xn)n on Ω.

Theorem 3.4.1. For any f ∈ L2(ν), set g = Pf − f then we have

1√
n

n−1∑
k=0

g(Xk)
D−−−−−→ N

(
0, σ2

g

)
as n −→∞

where σ2
g =

∫
f2dν −

∫
(Pf)2dν.
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Proof. Decomposing g(Xk) as the preceding section, we obtain also

1√
n

n−1∑
k=0

g(Xk) =
1√
n

n−1∑
k=0

[Pf(Xk)− f(Xk+1)] +
1√
n

[f(Xn)− f(X0)]

=
1√
n

n∑
k=1

Mk +
1√
n

[f(Xn)− f(X0)]

by putting Mk = Pf(Xk−1)− f(Xk).

Proposition 3.4.1. We have

lim
n→∞

1√
n

[f(Xn)− f(X0)] = 0, Pν a.a. (3.14)

Proof. To prove this proposition, we need the following lemma:

Lemma 3.4.1. For any g ∈ L1(µ) and g ≥ 0, then
∞∑
n=1

µ{g > n} ≤
∫
g dµ.

Since this lemma is basic, we skip the proof here to concentrate on the proposition. By
lemma 3.4.1, then for any ε > 0

∞∑
n=1

Pν
{

1√
n
f ◦ σn > ε

}
=

∞∑
n=1

Pν
{
f2

ε2
> n

}
≤ 1

ε2

∫
f2 dPν

By Borel Cantelli ’s lemma, we obtain

Pν
{

lim
n→∞

1√
n
f ◦ σn > ε

}
= 0,

and hence,

lim
n→∞

1√
n
f ◦ σn = 0, Pν a.a

This implies

lim
n→∞

1√
n
f(Xn+1) = 0, Pν a.a.

Proposition 3.4.2. For n→∞, the following asymptotic normality holds

1√
n

n∑
k=1

Mk
D−−−−−→ N

(
0, σ2

g

)
(3.15)

Proof. Set Fn = σ(X0, X1, . . . , Xn), we see that Mn is Fn-measurable. We will show that
the partial sums of Mn is a martingale with respect to Fn which satisfies the condition of
Brown ’s Theorem.

It is easy to check that Ex0 {Mn/Fn−1} = 0 for any n ≥ 1 and hence the partial sums
of Mn is a martingale with respect to Fn. The next step, we will treat the following
statements:
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I1 = lim
n→∞

1

s2
n

n∑
k=1

Ex0
{
M2
k/Fk−1

}
= 1, (3.16)

and

I2 = lim
n→∞

1

s2
n

n∑
k=1

Ex0
{
M2
k1{|Mk|>δsn}/Fk−1

}
= 0, ∀δ > 0 (3.17)

where s2
n =

n∑
k=1

Ex0
{
M2
k

}
. Since (Xn)n≥0 is a Markov chain, the conditional expectation

in (3.16) and (3.17) does not depend on x0. It will be denoted by E {•/Fk−1} in the sequel.
Proof of (3.16). Let begin with the calculator of s2

n

s2
n =

n∑
k=1

Ex0
{
M2
k

}
=

n∑
k=1

Ex0
{
E(M2

k/Fk−1)
}

=
n−1∑
k=0

Ex0
{
Pf2(Xk)− (Pf)2(Xk)

}
=

n−1∑
k=0

Ex0
{[
Pf2 − (Pf)2

]
π0 ◦ σk

}
=

n−1∑
k=0

Ex0
{
φ ◦ σk

}
=

n−1∑
k=0

P kψ(x0)

where φ =
[
Pf2 − (Pf)2

]
π0 = ψπ0.

For each k = 1, 2, . . . , n

E
{
M2
k/Fk−1

}
= Pf2(Xk−1)− (Pf)2(Xk−1)

≈ Pf2(π0 ◦ σk−1)− (Pf)2(π0 ◦ σk−1)
= φ ◦ σk−1.

It follows that

I1 =

lim
n→∞

n−1∑
k=0

φ ◦ σk

lim
n→∞

n−1∑
k=0

P kψ ◦ π0

=

lim
n→∞

1
n

n−1∑
k=0

φ ◦ σk

lim
n→∞

1
n

n−1∑
k=0

P kψ ◦ π0

=

∫
φ dPν∫
φ dPν

= 1, Pν a.a x

which completes the proof of (3.16).
Proof of (3.17). Fix M > 0, put

φM (x) = ΠhM (x),

where the function M (x, y) is defined by

hM (x, y) = [Pf(x)− f(y)]2 1{|Pf(x)−f(y)|>δM}.

One has

lim
n→∞

1

n

n∑
k=1

E
{
M2
k1{|Mk+1|>δM}/Fk−1

}
= lim

n→∞

1

n

n−1∑
k=0

φM (Xk) = E {φM (X0)}

74



3.4. CENTRAL LIMIT THEOREM FOR MARKOV CHAIN STARTED AT A POINT

=

∫
φMdν, ν a.s

Since lim
n→∞

sn = +∞, there exists N > 0 such that ∀n > N then sn > M . And therefore,

1

s2
n

n∑
k=N+1

E
{
M2
k1{|Mk+1|>δsn}/Fk−1

}
≤ 1

s2
n

n∑
k=N+1

E
{
M2
k1{|Mk|>δM}/Fk−1

}
for any n > N . For n→∞, we obtain

I2 ≤
lim
n→∞

1
n

n∑
k=1

E
{
M2
k1{|Mk|>δM}/Fk−1

}
lim
n→∞

s2n
n

=

∫
φMdν∫
φ dPν

Since lim
M→∞

∫
φMdν = 0, then I2 = 0, which completes the proof of (3.9).

Finally, by Brown’s theorem for martingale

1

sn

n∑
k=1

Mk
D−−−−−→ N (0, 1)

it follows that
1√
n

n∑
k=1

Mk
D−−−−−→ N

(
0, σ2

g

)
since sn = σg

√
n.
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Chapter 4

Central limit theorem for Random
walk in Random environment based
on martingale approximation

4.1 Introduction

4.1.1 Random environment and random walks

Let (Ω,A,P) be a probability space. The definition of a Random walk in Random
environment involves two ingredients:

• The environment which is randomly chosen but remains fixed throughout the time
evolution.

• The random walk whose transition probability are determined by the environment.

The space Ω is interpreted as the space of environments. For each ω ∈ Ω, we define the
random walk in the environment ω as the (time-homogeneous) Markov chain {Xn, n =
0, 1, 2, . . .} on Zd with certain (random) transition probabilites

p(x, y, ω) = Pω{X1 = y/X0 = x}. (4.1)

The probability measure Pω that determines the distribution of the random walk in a given
environment ω. In the case the random walk with the initial condition X0 = x,

Pxω{X0 = x} = 1. (4.2)

The probability measure Pxω indicates the distribution of the random walk in a given envi-
ronment ω with the initial position of the walk is referred to as the Quenched law.

By averaging the Quenched probability Pxω further, with respect to the environment dis-
tribution, we obtain the Annealed measure Px = P×Pxω, which determines the probability
law of the random walk in random environment

Px(A) =

∫
Ω
Pxω(A)P(dω) = E {Pxω(A)} . (4.3)
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Expectation with respect to the Annealed measure Px will be denoted by Ex.

Remark 4.1.1. If some property A of the random walk in random environment holds
almost surely with respect to the Quenched law Pxω for almost all environments, then this
property is also true with probability one under the Annealed law Px.

In the sequel of this chapter, it is devoted to the Quenched version. We will establish
the Quenched CLT for reversible random walk in random environment in one dimension.
Our proof is to use martingale approximation for the random walk.

4.1.2 Presentation of the model-dimension one

4.1.2.1 Site randomnes

Let (Ω,A,P) be a probability space. One chooses i.i.d. variables p(x, ω), x ∈ Z, with
value in [0, 1], q(x, ω) = 1− p(x, ω), and for a given realization ω of the environment , one
considers a Markov chain Xn on Z, which has probability p(x, ω) of jumping to the right
neighbor x + 1 and q(x, ω) of jumping to the left neighbor x − 1, given it is located in x.
This is the so-called random walk in random environment in one dimension.

4.1.2.2 Bond randomness

One now chooses i.i.d. variables cx,x+1(ω), x ∈ Z, with value in (0,+∞), and for a
given realization ω of the environment , Xn is a Markov chain on Z, performing jumps to
nearest neighbors with a transition kernel determined by

p(x, ω) =
cx,x+1(ω)

cx−1,x(ω) + cx,x+1(ω)
. (4.4)

The quantity cx,x+1(ω) is the so-called conductance of the edge between {x, x+ 1} in the
environment "ω".

4.1.3 The environment viewed from the particle

The basic idea is to focus on the evolution of the environment viewed from the current
position of the walk. More specifically in the case of bond randomness, for 0 < a < b <∞,

• Ω = [a, b]C with C = {{x, x+ 1}, x ∈ Z}, the set of nearest neighbor bonds on Z,
endowed with the canonical product σ-field B.

• P : a product measure on Ω, making the canonical coordinates i.i.d.

• T x, x ∈ Z, the canonical translations on Ω :

(T yω) ({x, x+ 1}) = ω ({x+ y, x+ y + 1}) . (4.5)

• Pxω, x ∈ Z, the canonical law of the Markov chain on Z with transition probability
described by (4.4) with cx,x+1(ω) = ω ({x, x+ 1}).
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The environment viewed from the particle is the ω-value process

ωn = TXnω, n ≥ 0. (4.6)

Under P0
ω, ω ∈ Ω, ωn is a Markov chain with state space Ω and transition kernel:

Pf(ω) = p(0, ω)f(Tω) + q(0, ω)f(T−1ω) (4.7)

with f bounded measurable on Ω.

4.2 CLT for Reversible Random Walks in Random environ-
ment

Let (Ω,A, µ) be a probability space and T is an invertible measure preserving trans-
formation on Ω which is ergodic. More precisely, T acts on Ω by

T : Ω× Z −→ Ω
(ω, k) 7−→ T kω,

which is joint measurable and satisfies

• For any k, h ∈ Z : T k+h = T kT h and T 0ω = ω.

• T preserves the measure µ : µ(T kA) = µ(A) for any k ∈ Z.

• T is ergodic: If T kA = A (up to null sets) for some k ∈ Z then µ(A) = 0 or 1.

For k ∈ Z, we define a conductivity of the edge between {k, k + 1} is c(T kω) and
{k, k − 1} is c(T k−1ω), which c be a positive measurable function on Ω. We refer to ω as
an environment since each ω in Ω determines a conductivity for all edges of Z. The space
Ω is interpreted as the space of environments.

Fix ω ∈ Ω, we consider a random walk (Xn)n≥0 on Z which X0 = 0 and its transition
probability p(ω, k, h) given by

p(ω; k, k + 1) =
c(T kω)

c̄(T kω)
and p(ω; k, k − 1) =

c(T k−1ω)

c̄(T kω)
, (4.8)

where c̄(ω) = c(ω) + c(T−1ω). The set of possible jumps will be denoted by Λ = {−1, 1}
and for y ∈ Λ we abbreviate p(ω; 0, y) = p(ω; y). These random walks are reversible since
c̄(T xω)p(ω;x, y) = c̄(T yω)p(ω; y, x) for all adjacent vertices x, y in Z.

We note that random walk Xn depend on the property of function c. In the sequel
of this chapter, we will establish the Quenched CLT for (Xn)n≥0. The method is to use
martingale approximation. It is also adapted from Kozlov ([31], 1985) and Daniel Boivin
([7], 1993).

Theorem 4.2.1. For almost all environment ω,

Xn√
n

D−−−−−→ N
(
0, σ2

)
as n −→∞

if c and c−1 ∈ L1(µ), where σ2 =
[∫

1
c dµ

∫
c dµ

]−1.
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To prove this theorem, we define a real additive 1-cocycle of the action T be a real
measurable function

F : Ω× Z −→ R
(ω, k) 7−→ F (ω, k),

such that

F (ω, k + h) = F (ω, k) + F (T kω, h)

and {
F (ω, 1) = 1

c(ω)

F (ω, 0) = 0.

By the definition of F , one has

F (ω, k) =



k−1∑
i=0

1
c(T iω)

if k ≥ 1

0 if k = 0

−
−k∑
i=1

1
c(T−iω)

if k ≤ −1.

and by the pointwise ergodic theorem

lim
m→∞

F (ω,m)

m
=

∫
1

c
dµ, µ a.a ω. (4.9)

It follows that 1∫
1
c
dµ
F (ω,m) ∼ m. Therefore, we will decompose Xn as follows

Xn√
n

=
1∫
1
cdµ

F (ω,Xn)√
n

+
1√
n

(
Xn −

1∫
1
cdµ

F (ω,Xn)

)
. (4.10)

Set Mn = F (ω,Xn). Fix ω ∈ Ω and let Fn = σ(X0, . . . , Xn), we point out (Mn)n≥0 is a
martingale with respect to Fn and Xn− 1∫

1
c
dµ
F (ω,Xn) defines a cocycle of nul expectation.

Furthermore, we claim that Mn√
n
be asymptotic normality.

Proposition 4.2.1. For almost environment ω,

Mn√
n

D−−−−−→ N

(
0,

∫
1
cdµ∫
cdµ

)
as n −→ +∞.

Proof. We shall show that (Mn)n≥0 sastifies the conditions of Brown’s theorem for mar-
tingale (theorem 2.3.2).

Fix ω ∈ Ω, let Yn = Mn − Mn−1 for any n ≥ 1, then Mn =
∑n

i=1 Yi since M0 =
F (ω, 0) = 0. One has

Eω {Yn/Fn−1} = Eω {(Mn −Mn−1)/Xn−1 = k}

=
1

c(T kω)

c

c̄
(T kω)− 1

c(T k−1ω)

c(T k−1ω)

c̄(T kω)
= 0
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then (Mn)n≥0 is a martingale with respect to Fn. Let s2
n =

n∑
i=1

Eω
{
Y 2
i

}
. By Brown’s

theorem, the proposition 4.2.1 will be proved if the following conditions hold:

I1 = lim
n→∞

1

s2
n

n∑
i=1

Eω
{
Y 2
i /Fi−1

}
= 1, (4.11)

and

I2 = lim
n→∞

1

s2
n

n∑
i=1

Eω
{
Y 2
i 1{|Yi|>δsn}/Fi−1

}
= 0 (4.12)

for any δ > 0.
Proof of (4.11). We introduce the left shift σ : ΩN → ΩN such that ∀ω̃ = (ωi) ∈ ΩN

then (σω̃)i = ωi+1. The shift σ is a measure preserving on ΩN.
Let us build for any probability measure ν on Ω a probability measure Pν on ΩN by

Pν(ω̃) = ν(ω0)⊗ Pω0(ω1, ω2, . . .).

The projection onto the nth coordinate of ΩN is defined by

πn : ΩN −→ Ω
ω̃ 7−→ πnω̃ = ωn.

One has

Eω
{
Y 2
n /Xn−1 = k

}
=

1

c2(T kω)
· c
c̄
(T kω) +

1

c2(T k−1ω)
· c(T

k−1ω)

c̄(T kω)

=

(
1

c(T kω)
+

1

c(T k−1ω)

)
1

c̄
(T kω)

= ϕ(T kω)

where ϕ =

(
1

c
+

1

c(T−1)

)
1

c̄
. Hence,

1

n

n∑
i=1

Eω
{
Y 2
i /Fi−1

}
=

1

n

n∑
i=1

Eω
{
Y 2
i /Xi−1

}
=

1

n

n∑
i=1

ϕ
(
TXi−1ω

)
. (4.13)

We want to use Birkhoff’s ergodic theorem to treat the limit of the right hand side in
(4.13). To to this, we have to show that

(
TXnω

)
n≥0

with initial law dν(ω) = c̄(ω)∫
c̄dµ

dµ(ω)

be a stationary ergodic Markov chain.
Consider the process of the environment viewed from the particle (Wn)n≥0 on Ω defined

by
Wn = TXnω and W0 = ω (4.14)

then it is a Markov chain with the transition probabilities
P {(Wn = Tω)/(Wn−1 = ω)} =

c(ω)

c̄(ω)
,

P
{

(Wn = T−1ω)/(Wn−1 = ω)
}

=
c(T−1ω)

c̄(ω)
,
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and the initial distribution dν(ω) =
c̄(ω)∫
c̄dµ

dµ(ω). The transition operator of this chain is

Pψ(ω) = E {ψ(W1)/W0 = ω}

= ψ(Tω)
c

c̄
(ω) + ψ(T−1ω)

c(T−1ω)

c̄(ω)
(4.15)

with ψ be a bounded measurable function on Ω.

Lemma 4.2.1. (Wn)n≥0 is a stationary, ergodic Markov chain.

Proof. One has

Eν {ψ(W1)} = Eν {E(ψ(W1)/W0)}

=

∫ (
ψ ◦ T · c

c̄
+ ψ ◦ T−1 c(T

−1)

c̄

)
c̄∫
c̄dµ

dµ

=

∫
ψ ◦ T · c 1∫

c̄dµ
dµ+

∫
ψ ◦ T−1 · c(T−1)

1∫
c̄dµ

dµ

=

∫
ψ · c(T−1)

1∫
c̄dµ

dµ+

∫
ψ · c 1∫

c̄dµ
dµ

=

∫
ψ
[
c(T−1) + c

] 1∫
c̄dµ

dµ

=

∫
ψdν.

which shows that the chain is stationary.
For the ergodicity of the chain, we suppose Pψ(ω) = ψ(ω), ∀ω ∈ Ω then

ψ(ω) = ψ(Tω)
c

c̄
(ω) + ψ(T−1ω)

c(T−1ω)

c̄(ω)
. (4.16)

We claim that ψ is a constant. Put

Q(ω) =

∫ ∑
y∈Λ

c̄(ω)p(ω; y) [ψ(T yω)− ψ(ω)]2 dν

then Q(ω) = 0. Indeed, we have

Q(ω) =

∫ ∑
y∈Λ

c̄(ω)p(ω; y)ψ2(T yω)dν − 2

∫ ∑
y∈Λ

c̄(ω)p(ω; y)ψ(T yω)ψ(ω)dν

+

∫ ∑
y∈Λ

c̄(ω)p(ω; y)ψ2(ω)dν

=

∫ ∑
y∈Λ

c̄(T−yω)p(T−yω; y)ψ2(ω)dν − 2

∫
c̄(ω)ψ2(ω)dν +

∫
c̄(ω)ψ2(ω)dν

Since∑
y∈Λ

c̄(T−yω)p(T−yω; y) = c̄(T−1ω)p(T−1ω; 1) + c̄(Tω)p(Tω;−1)
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= c̄(T−1ω)
c(T−1ω)

c̄(T−1ω)
+ c̄(Tω)

c(ω)

c̄(Tω)
= c(T−1ω) + c(ω)

= c̄(ω)

then Q(ω) = 0. By the hypothesis c > 0, one obtains ψ(T yω) = ψ(ω) ν a.e. And, by the
ergodicity of T y, y 6= 0 then ψ is a constant. Hence, (Wn)n≥0 is ergodic. We have thus
proved that (Wn)n≥0 is a stationary ergodic Markov chain in Ω.

Therefore, the formula (4.13) can be written as

lim
n→∞

1

n

n∑
i=1

Eω
{
Y 2
i /Fi−1

}
= lim

n→∞

1

n

n∑
i=1

ϕ(Wi−1) = lim
n→∞

1

n

n∑
i=1

ϕπ0(σi−1)

=

∫
(ϕ ◦ π0)dPν , Pν a.e.

by Birkhoff’s ergodic theorem since Wn is ergodic. And then,

lim
n→∞

1

n

n∑
i=1

Eω
{
Y 2
i /Fi−1

}
=

∫
ϕdν, ν a.e ω.

Moreover,

lim
n→∞

s2
n

n
= lim

n→∞

1

n

n∑
i=1

Eω
{
Y 2
i

}
= lim

n→∞

1

n

n∑
i=1

Eω {ϕ(Wi−1)}

= lim
n→∞

1

n

n∑
i=1

P iϕ(ω) =

∫
ϕdν (4.17)

by Hopf’s ergodic theorem. Therefore,

I1 = lim
n→∞

1
n

n∑
i=1

Eω
{
Y 2
i /Fi−1

}
1
ns

2
n

= 1, ν a.e. ω

which completes the proof of (4.11).

�

Proof of (4.12). Fix M > 0, one has

Eω
{
Y 2
i 1{|Yi|>δM}/Xi−1 = k

}
=

(
1

c(T kω)

)2

1{ 1

c(Tkω)
>δM

} c(T kω)

c̄(T kω)
+

(
1

c(T k−1ω)

)2

1{ 1

c(Tk−1ω)
>δM

} c(T k−1ω)

c̄(T kω)

=

(
1

c(T kω)
1{ 1

c(Tkω)
>δM

} +
1

c(T k−1ω)
1{ 1

c(Tk−1ω)
>δM

}) 1

c̄(T kω)

= ϕM (T kω)
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where ϕM =

(
1

c
1{ 1

c
>δM} +

1

c(T−1)
1{ 1

c(T−1)
>δM

}) 1

c̄
. Hence,

lim
n→∞

1

n

n∑
i=1

Eω
{
Y 2
i 1{|Yi|>δM}/Fi−1

}
= lim

n→∞

1

n

n∑
i=1

ϕM
(
TXi−1ω

)
=

∫
ϕMdν,

ν a.e. ω by the above similar way. Since lim
n→∞

sn = +∞, there exists N > 0 such that for
any n > N then sn > M . And therefore,

1

s2
n

n∑
i=N

Eω
{
Y 2
i 1{|Yi|>δsn}/Fi−1

}
≤ 1

s2
n

n∑
i=N

Eω
{
Y 2
i 1{|Yi|>δM}/Fi−1

}
for any n > N . For n→∞, we obtain

I2 ≤
lim
n→∞

1
n

n∑
i=1

Eω
{
Y 2
i 1{|Yi|>δM}/Fi−1

}
lim
n→∞

s2n
n

=

∫
ϕMdν.

Since
∫
ϕMdν −→ 0 as M −→ +∞, then I2 = 0 which completes the proof of (4.12).

�

The proposition 4.2.1 is then followed since by (4.17) one has

lim
n→∞

s2
n

n
=

∫
ϕ dν =

∫ (
1

c
+

1

c(T−1)

)
1

c̄
dν

=

∫ (
1

c
+

1

c(T−1)

)
1∫
c̄dµ

dµ

=

∫
1
cdµ∫
c dµ

.

Proposition 4.2.2. lim
n→∞

1√
n

(
Xn −

1∫
1
cdµ

F (ω,Xn)

)
= 0 in L2.

Proof. By the pointwise ergodic theorem

lim
h→∞

F (ω, h)

h
=

∫
1

c
dµ, µ a.e.

then for any ε such that 0 < ε <

∫
1

c
dµ, there exists M(ε) > 0 such that for any |Xn| >

M(ε) we have ∣∣∣∣F (ω,Xn)

Xn
−
∫

1

c
dµ

∣∣∣∣ < ε.
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It follows that

|Xn| −

∣∣∣∣∣F (ω,Xn)∫
1
cdµ

∣∣∣∣∣ <
∣∣∣∣∣F (ω,Xn)∫

1
cdµ

−Xn

∣∣∣∣∣ < ε∫
1
cdµ
|Xn| (4.18)

and hence,

|Xn|

(
1− ε∫

1
cdµ

)
<

∣∣∣∣∣F (ω,Xn)∫
1
cdµ

∣∣∣∣∣
implies that

ε∫
1
cdµ
|Xn| <

(
ε∫

1
cdµ · (

∫
1
cdµ− ε)

)
|F (ω,Xn)|. (4.19)

Combining (4.18) and (4.19), one has∣∣∣∣∣F (ω,Xn)∫
1
cdµ

−Xn

∣∣∣∣∣ < ε∫
1
cdµ
|Xn| <

(
ε∫

1
cdµ · (

∫
1
cdµ− ε)

)
|F (ω,Xn)|

for any |Xn| > M(ε).
Put

H(ε) = sup
|h|≤M(ε)

|F (ω, h)|∫
1
cdµ

.

One has∣∣∣∣∣F (ω,Xn)∫
1
cdµ

−Xn

∣∣∣∣∣ ≤ max

{
ε∫
1
cdµ
|Xn|;M(ε) +H(ε)

}

≤ max

{(
ε∫

1
cdµ · (

∫
1
cdµ− ε)

)
|F (ω,Xn)|;M(ε) +H(ε)

}

≤ max

{(
ε∫

1
cdµ ·

(∫
1
cdµ− ε

)) |Mn|;M(ε) +H(ε)

}

and hence if we put Nn = 1√
n

(
F (ω,Xn)∫

1
c
dµ
−Xn

)
then

N2
n ≤ max


(

ε∫
1
cdµ · (

∫
1
cdµ− ε)

· Mn√
n

)2

;
[M(ε) +H(ε)]2

n


≤

(
ε∫

1
cdµ ·

(∫
1
cdµ− ε

))2(
Mn√
n

)2

+
[M(ε) +H(ε)]2

n
.

Therefore,

Eω
{
N2
n

}
≤

(
ε∫

1
cdµ ·

(∫
1
cdµ− ε

))2

Eω

{(
Mn√
n

)2
}

+
Eω
{

[M(ε) +H(ε)]2
}

n
.
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Since

lim
n→∞

Eω

{(
Mn√
n

)2
}

=

∫
1
cdµ∫
c dµ

< +∞

and ε as small as we need, we have limn→∞ Eω
{
N2
n

}
= 0. We finished the proof of

proposition 4.2.2 and theorem 4.2.1 is then followed.
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Chapter 5

Central limit theorem for reversible
Random walk in Random
environment based on moments and
analogue for continuous time

The main aim of this chapter is to introduce a new way to obtain again the Quenched
CLT for reversible Random walk in Random environment in the preceding chapter without
using any martingale. More precisely, for a given realization ω of the environment, we
consider Poisson’s equation (Pω − I)g = f and then use the pointwise ergodic theorem
to treat the limit of the solutions, the CLT will be establish by the convergence of the
moments. In particular, there is an analogue for Markov process with continuous time and
discrete space.

5.1 Random walk in random environment

Consider, on the Z network, a random stationary sequence of conductances, defined
on a probability space (Ω,A, µ), an invertible µ−preserving transformation T which is
also ergodic, and a random variable c > 0. The space Ω is interpreted as the space of
environments.

For a fixed environment ω ∈ Ω, the conductances of the edges [k, k + 1] is c(T kω) and
[k, k − 1] is c(T k−1ω).

Let c̄ = c+c◦T−1. We introduce the random walk (Xn)n≥0 on Z with initial condition
X0 = 0 and Markov ’s operator f 7−→ Pωf defined by

Pωf(k) =
1

c̄(T kω)

[
c(T k−1ω)f(k − 1) + c(T kω)f(k + 1)

]
. (5.1)

In the sequel of this section, theorem 5.1.1, we will establish a Quenched central limit
theorem for random walk (Xn)n≥0. The method is to use the pointwise ergodic theorem
and without using any martingale.
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Theorem 5.1.1. For almost all environment ω,

Xn√
n

D−−−−−→ N
(
0, σ2

)
as n −→ +∞

if c and c−1 ∈ L1(µ) and where σ2 =
[∫

1
c dµ

∫
c dµ

]−1.

Remark 5.1.1. If c or c−1 /∈ L−1(µ) then Xn√
n
−→ 0 as n −→ +∞ (Depauw and Derrien

[12]).

Consider a standard normal distribution Z ∼ N (0, 1), for each ` = 1, 2, 3, . . ., one has

E
{
Z`
}

=

{
0 if ` = 2k − 1

(2k)!
k!2k

if ` = 2k

By the method of moments which was introduced in [3] (Billingsley’s book: "Probability
and measure", theorem 30.2, page 390), to prove theorem 5.1.1 we have to show that for
almost all environment ω

lim
n→+∞

Eω

{(
Xn

σ
√
n

)`}
= E

{
Z`
}

=

{
0 if ` = 2k − 1

(2k)!
k!2k

if ` = 2k

for each ` = 1, 2, 3, . . .. In the sequel, we will use the pointwise ergodic theorem to treat
these limits. It is adapted from Depauw and Derrien [12].

Theorem 5.1.2. (Depauw and Derrien, [12]) For almost all environments ω, we have

lim
n→+∞

Eω
{
X2
n

n

}
= σ2. (5.2)

Proof. Fix ω ∈ Ω. We consider a function f1 ≥ 0, defined on Z, such that (Pω − I)f1 ≡ 1
and f1(0) = 0 . For example, we can take

f1(m) =



m−1∑̀
=0

1
c(T `ω)

∑̀
s=1

c̄(T sω), if m ≥ 1

0, if m = 0
−m∑̀
=1

1
c(T−`ω)

`−1∑
s=1

c̄(T−sω), if m ≤ −1

It is easy to check that the function f1 satisfies

(Pω − I)f1(m) = 1, ∀m ∈ Z.

Replace m by Xn and take the expectation

Eω {(Pω − I)f1(Xn)} = 1, ∀n ≥ 0.

This is equivalent to

Eω {f1(Xn+1)} − Eω {f1(Xn)} = 1, ∀n ≥ 0.
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Since Eω {f1(X0)} = Eω {f1(0)} = 0, we will obtain

Eω {f1(Xn)} = n, ∀n ≥ 0. (5.3)

The formula (5.3) can be rewritten as

Eω
{
f1(Xn)

X2
n

× X2
n

n

}
= 1

and note that if limm→∞
f1(m)
m2 exists then so limn→+∞ Eω

{
X2
n
n

}
.

The next step we will compute the limit of f1(m)
m2 by using the pointwise ergodic theorem.

We need the following lemma in the proof:

Lemma 5.1.1. Let un and vn be two sequences of positive real numbers and let Un be a
partial sum Un =

∑n
`=1 u`. Assume that

lim
n→∞

1

n
Un = u and lim

n→∞
vn = v (5.4)

then for each α ∈ N

lim
n→∞

1

nα+1

n∑
`=1

`αu`v` =
uv

α+ 1
. (5.5)

Proof. Firstly consider the case α = 0, we will show that

lim
n→∞

1

n

n∑
`=1

u`v` = uv. (5.6)

One has ∣∣∣∣∣ 1n
n∑
`=1

u`v` − uv

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
`=1

u`(v` − v)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
`=1

(u` − u)v

∣∣∣∣∣
≤ 1

n

n∑
`=1

u` |v` − v|+ v

∣∣∣∣∣ 1n
n∑
`=1

u` − u

∣∣∣∣∣
< ε

for any ε > 0 when n large enough which completes (5.6).
Now assume that (5.5) is true for α ≥ 0, we claim that it holds also for α+ 1 that is

lim
n→∞

1

nα+2

n∑
`=1

`α+1u`v` =
uv

α+ 2
. (5.7)

Put Wn =
∑n

`=1 `
αu`v`, using Abel’s transformation

1

nα+2

n∑
`=1

`α+1u`v` = − 1

nα+2

n−1∑
`=1

W` +
1

nα+1
Wn

= −I1 + I2.
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By the assumption limn→∞ I2 = limn→∞
1

nα+1Wn = uv
α+1 , and one has∣∣∣∣I1 −

uv

(α+ 1)(α+ 2)

∣∣∣∣ ≤ 1

nα+2

n−1∑
`=1

`α+1

∣∣∣∣ W`

`α+1
− uv

α+ 1

∣∣∣∣+

∣∣∣∣∣ 1

nα+2

n−1∑
`=1

`α+1 − 1

α+ 2

∣∣∣∣∣ uv

α+ 1

< ε

for any ε > 0 when n large enough since limn→∞
1

nα+2

∑n−1
`=1 `

α+1 =
∫ 1

0 x
α+1dx = 1

α+2 . It
follows that limn→∞ I1 = uv

(α+1)(α+2) . And hence,

lim
n→∞

1

nα+2

n∑
`=1

`α+1u`v` = − uv

(α+ 1)(α+ 2)
+

uv

α+ 1
=

uv

α+ 2

which completes (5.7).

Lemma 5.1.2. With f1 defined as above, we have

lim
m→±∞

f1(m)

m2
=

∫
Ω

1

c
dµ

∫
Ω
c dµ = σ−2. (5.8)

Proof. Consider firstly the case m > 0. Applying lemma 5.1.1 for u` = 1
c(T `ω)

, v` =
1
`

∑`
s=1 c̄(T

sω) and α = 1, one has

lim
m→+∞

f1(m)

m2
= lim

m→+∞

1

m2

m−1∑
`=0

`

c(T `ω)

1

`

∑̀
s=1

c̄(T sω) =
1

2

∫
Ω

1

c
dµ

∫
Ω
c̄ dµ

=

∫
Ω

1

c
dµ

∫
Ω
c dµ.

Similarly, one has the same result for the case m < 0.

From lemma 5.1.2, for any ε > 0, there exists M > 0 such that for any m > M then∣∣∣∣ m2

f1(m)
− σ2

∣∣∣∣ < ε/2. (5.9)

Now we combine (5.3) and (5.9) to prove theorem 5.1.2. Put

K1 = Eω
{
X2
n

n
1{|Xn|>M}

}
− Eω

{
σ2 f1(Xn)

n
1{|Xn|>M}

}
,

K2 = Eω
{
X2
n

n
1{|Xn|≤M}

}
− Eω

{
σ2 f1(Xn)

n
1{|Xn|≤M}

}
For n large enough

|K1| =

∣∣∣∣Eω {( X2
n

f1(Xn)
− σ2

)
f1(Xn)

n
1{|Xn|>M}

}∣∣∣∣
≤ Eω

{∣∣∣∣ X2
n

f1(Xn)
− σ2

∣∣∣∣ f1(Xn)

n
1{|Xn|>M}

}
< ε/2
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since f1(m) ≥ 0 for any m ∈ Z, and

|K2| =

∣∣∣∣ 1nEω {(X2
n − σ2f1(Xn)

)
1{|Xn|≤M}

}∣∣∣∣
≤ 1

n
Eω
{∣∣X2

n − σ2f1(Xn)
∣∣1{|Xn|≤M}} < ε/2.

It follows that ∣∣∣∣Eω {X2
n

n

}
− σ2

∣∣∣∣ = |K1 +K2| ≤ |K1|+ |K2| < ε

for n large enough. Since ε is as small as we need, then lim
n→+∞

Eω
{
X2
n
n

}
= σ2.

Theorem 5.1.3. For almost all environments ω, we have

lim
n→+∞

Eω

{(
X2
n

n

)k}
=

(2k)!

2kk!
σ2k (5.10)

for each k ≥ 1.

This is the generalization of theorem 5.1.2.

Proof. We will use the similar method in theorem 5.1.2 to prove theorem 5.1.3.
Fix ω ∈ Ω. We consider a sequence of functions fk ≥ 0, defined on Z, such that

(Pω − I)fk+1 ≡ fk, fk(0) = 0 and f1 is defined as above. For instance, we can take for
k ≥ 1

f0(m) = 1 ∀m ∈ Z

f1(m) =



m−1∑̀
=0

1
c(T `ω)

∑̀
s=1

c̄(T sω)f0(s), if m ≥ 1

0, if m = 0
−m∑̀
=1

1
c(T−`ω)

`−1∑
s=1

c̄(T−sω)f0(−s), if m ≤ −1

f2(m) =



m−1∑̀
=0

1
c(T `ω)

∑̀
s=1

c̄(T sω)f1(s), if m ≥ 1

0, if m = 0
−m∑̀
=1

1
c(T−`ω)

`−1∑
s=1

c̄(T−sω)f1(−s), if m ≤ −1
. . .

fk(m) =



m−1∑̀
=0

1
c(T `ω)

∑̀
s=1

c̄(T sω)fk−1(s), if m ≥ 1

0, if m = 0
−m∑̀
=1

1
c(T−`ω)

`−1∑
s=1

c̄(T−sω)fk−1(−s), if m ≤ −1

It is easy to check that

(Pω − I)fk(m) = fk−1(m), ∀m ∈ Z.
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Replace m by Xn and take the expectation

Eω {(Pω − I)fk(Xn)} = Eω {fk−1(Xn)} , ∀n ≥ 0.

It follows that

Eω {fk(Xn+1)} = Eω {fk(Xn)}+ Eω {fk−1(Xn)} , ∀n ≥ 0.

Lemma 5.1.3. With n large enough and for each k ≥ 1, then

Eω {fk(Xn)} ∼ nk

k!
. (5.11)

Proof. It is obvious to work with k = 1.
Assume that it is true with k ≥ 1, we claim that it is also with k + 1. That means: if

Eω {fk(Xn)} ∼ nk

k!

then

Eω {fk+1(Xn)} ∼ nk+1

(k + 1)!
.

Since

Eω {fk+1(Xn)} = Eω {fk+1(Xn−1)}+ Eω {fk(Xn−1)} ∀n ≥ 1.

∼
n∑
i=1

(i− 1)k

k!

with n large enough.
Using the fact

n∑
i=1

ik ∼
1

k + 1
nk+1 (5.12)

for each k ≥ 1 when n large enough then

Eω {fk+1(Xn)} ∼ (n− 1)k+1

(k + 1)!
∼

nk+1

(k + 1)!
.

The formula (5.11) can be rewritten as

Eω
{
fk(Xn)

X2k
n

× X2k
n

nk

}
∼ 1

k!

and note that if limm→∞
fk(m)
m2k exists then so limn→+∞ Eω

{
X2k
n

nk

}
.

The next step we will compute the limit of f1(m)
m2 by using the pointwise ergodic theorem

and lemma 5.1.1.
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Lemma 5.1.4. For each k ≥ 1, with fk defined as above then

lim
m→±∞

fk(m)

m2k
=

2k

(2k)!
σ−2k = Ck. (5.13)

Proof. This limit is true for k = 1 (lemma 5.1.2).
Assume that (5.13) is also true for k ≥ 1, we claim that it holds for k + 1, that is

lim
m→±∞

fk+1(m)

m2(k+1)
=

2k+1

(2(k + 1))!
σ−2(k+1). (5.14)

Consider firstly the case m > 0. Applying lemma 5.1.1 for us = c̄(T sω), vs = 1
s2k
fk(s) and

α = 2k, one has

lim
`→+∞

1

`2k+1

∑̀
s=1

c̄(T sω)fk(s) = lim
`→+∞

1

`2k+1

∑̀
s=1

s2k c̄(T sω)
1

s2k
fk(s)

=

∫
Ω
c dµ

2k+1

(2k + 1)!
σ−2k.

Again, applying lemma 5.1.1 for u′` = 1
c(T `ω)

, v′` = 1
`2k+1

∑`
s=1 c̄(T

sω)fk(s) and α = 2k+ 1,
one has

lim
m→+∞

f2k+1(m)

m2(k+1)
= lim

m→+∞

1

m2(k+1)

m−1∑
`=0

1

c(T `ω)

∑̀
s=1

c̄(T sω)fk(s)

= lim
m→+∞

1

m2(k+1)

m−1∑
`=0

`2k+1

c(T `ω)

1

`2k+1

∑̀
s=1

c̄(T sω)fk(s)

=
2k+1

(2(k + 1))!
σ−2(k+1).

Similarly, one has the same result for the case m < 0.

From lemma 5.1.4, for any ε > 0, there exists M > 0 such that for any m > M then∣∣∣∣ m2k

fk(m)
− 1

Ck

∣∣∣∣ < ε/2. (5.15)

Now we combine (5.11) and (5.15) to prove theorem 5.1.3. Put

K3 = Eω
{
X2k
n

nk
1{|Xn|>M}

}
− Eω

{
fk(Xn)

nkCk
1{|Xn|>M}

}

K4 = Eω
{
X2k
n

nk
1{|Xn|≤M}

}
− Eω

{
fk(Xn)

nkCk
1{|Xn|≤M}

}
.

By lemma 5.1.3 and lemma 5.1.4, when n large enough, we have

|K3| =

∣∣∣∣Eω {( X2k
n

fk(Xn)
− 1

Ck

)
fk(Xn)

nk
1{|Xn|>M}

}∣∣∣∣
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≤ Eω
{∣∣∣∣ X2k

n

fk(Xn)
− 1

Ck

∣∣∣∣ fk(Xn)

nk
1{|Xn|>M}

}
< ε/2

since function fk ≥ 0 , and

|K4| =

∣∣∣∣ 1

nk
Eω
{(

X2k
n −

1

Ck
fk(Xn)

)
1{|Xn|≤M}

}∣∣∣∣
≤ 1

nk
Eω
{∣∣∣∣X2k

n −
1

Ck
fk(Xn)

∣∣∣∣1{|Xn|≤M}} < ε/2.

It follows that ∣∣∣∣∣Eω
{(

X2
n

n

)k}
− 1

k!Ck

∣∣∣∣∣ ≈ |K3 +K4| ≤ |K3|+ |K4| < ε

for n large enough. Since ε is as small as we need, then we obtain the result

lim
n→+∞

Eω

{(
X2
n

n

)k}
=

(2k)!

k!2k
σ2k.

Theorem 5.1.4. For almost all environments ω, we have

lim
n→+∞

Eω
{
Xn√
n

}
= 0. (5.16)

Proof. Fix ω ∈ Ω.
We consider a function g1, defined on Z, satisfying (Pω − I)g1 ≡ 0 and g1(0) = 0. For

instance, we can take

g1(m) =



m−1∑̀
=0

1
c(T `ω)

, if m ≥ 1

0, if m = 0

−
−m∑̀
=1

1
c(T−`ω)

, if m ≤ −1

It is easy to check that
(Pω − I)g1(m) = 0, ∀m ∈ Z

then
(Pω − I)g1(Xn) = 0, ∀n ≥ 0

and take the expectation

Eω {Pωg1(Xn)} − Eω {g1(Xn)} = 0, ∀n ≥ 0,

and so
Eω {g1(Xn+1)} − Eω {g1(Xn)} = 0, ∀n ≥ 0.
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It follows that
Eω {g1(Xn)} = Eω {g1(X0)} = 0, ∀n ≥ 0. (5.17)

The formula (5.17) can be rewritten as

Eω
{
g1(Xn)

Xn
× Xn√

n

}
= 0

and note that if limm→∞
g1(m)
m exists then so limn→+∞ Eω

{
Xn√
n

}
.

The pointwise ergodic theorem ensures that

lim
m→∞

g1(m)

m
=

∫
Ω

1

c
dµ = D1. (5.18)

Therefore, for any ε > 0, there exists M > 0 such that for any |m| > M then∣∣∣∣g1(m)

D1m
− 1

∣∣∣∣ < ε. (5.19)

Now we combine (5.17) and (5.19) to prove theorem 5.1.4. Put

K5 = Eω
{

1√
n
Xn1{|Xn|≤M}

}
− Eω

{
1√
n

g1(Xn)

D1
1{|Xn|≤M}

}

K6 = Eω
{

1√
n
Xn1{|Xn|>M}

}
− Eω

{
1√
n

g1(Xn)

D1
1{|Xn|>M}

}
.

For n large enough we have

|K5| =
∣∣∣∣Eω { 1√

n

(
Xn −

g1(Xn)

D1

)
1{|Xn|≤M}

}∣∣∣∣ < ε

and

|K6| =

∣∣∣∣Eω { 1√
n

(
Xn −

g1(Xn)

D1

)
1{|Xn|>M}

}∣∣∣∣
=

∣∣∣∣Eω { 1√
n

(
1− g1(Xn)

XnD1

)
Xn1{|Xn|>M}

}∣∣∣∣
≤ εEω

{
|Xn|√
n

}
≤ ε

√
Eω
{
X2
n

n

}
.

It follows that ∣∣∣∣Eω {Xn√
n

}∣∣∣∣ = |K5 +K6| ≤ |K5|+ |K6| < ε+ ε

√
Eω
{
X2
n

n

}
for n large enough. By theorem 5.1.2

lim
n→+∞

Eω
{
X2
n

n

}
= σ2 <∞

and ε is as small as we need, then we obtain lim
n→+∞

Eω
{
Xn√
n

}
= 0.
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Theorem 5.1.5. For almost all environments ω, we have

lim
n→+∞

Eω

{(
Xn√
n

)2k−1
}

= 0 (5.20)

for each k ≥ 1.

Proof. Fix ω ∈ Ω.
We consider a sequence of functions gk, defined on Z, satisfying (Pω − I)gk+1 ≡ gk for

any k ≥ 1 and g1 is defined as above. For instance, we can take for k ≥ 1

gk+1(m) =



m−1∑̀
=0

1
c(T `ω)

∑̀
s=1

c̄(T sω)gk(s), if m ≥ 1

0, if m = 0
−m∑̀
=1

1
c(T−`ω)

`−1∑
s=1

c̄(T−sω)gk(−s), if m ≤ −1

Then we have
(Pω − I)gk+1(m) = gk(m), ∀m ∈ Z.

Replace m by Xn and take the expectation

Eω {Pωgk+1(Xn)} − Eω {gk+1(Xn)} = Eω {gk(Xn)} , ∀n ≥ 0

and so
Eω {gk+1(Xn+1)} = Eω {gk+1(Xn)}+ Eω {gk(Xn)} , ∀n ≥ 0.

Lemma 5.1.5. With functions gk defined as above

Eω {gk(Xn)} = 0, ∀n ≥ 0 (5.21)

for each k ≥ 1.

Proof. It is true with k = 1. Suppose it is also true with k ≥ 1, that means

Eω {gk(Xn)} = 0, ∀n ≥ 0

we want to show that
Eω {gk+1(Xn)} = 0, ∀n ≥ 0.

We have

Eω {gk+1(Xn+1)} = Eω {gk+1(Xn)}+ Eω {gk(Xn)}
= Eω {gk+1(Xn)} = . . . = Eω {gk+1(X0)} = 0.
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The formula (5.21) can be rewritten as

Eω
{
gk(Xn)

X2k−1
n

× X2k−1
n

(
√
n)2k−1

}
= 0

and note that if limm→∞
gk(m)
m2k−1 exists then so limn→+∞ Eω

{(
Xn√
n

)2k−1
}
.

The next step we will compute the limit of gk(m)
m2k−1 by using the pointwise ergodic theorem

and lemma 5.1.1.

Lemma 5.1.6. For each k ≥ 1 and gk defined as above, we have

lim
m→∞

gk(m)

m2k−1
=

2k−1

(2k − 1)!

[∫
Ω

1

c
dµ

]k [∫
Ω
c dµ

]k−1

= Dk. (5.22)

Proof. This limit is true for k = 1 (5.18).
Assume that (5.22) is also true for k ≥ 1, we claim that it holds for k + 1, that is

lim
m→+∞

gk+1(m)

m2k+1
=

2k

(2k + 1)!

[∫
Ω

1

c
dµ

]k+1 [∫
Ω
c dµ

]k
. (5.23)

Consider firstly the case m > 0. Applying lemma 5.1.1 for us = c̄(T sω), vs = 1
s2k−1 gk(s)

and α = 2k − 1, one has

lim
`→+∞

1

`2k

∑̀
s=1

c̄(T sω)gk(s) = lim
`→+∞

1

`2k

∑̀
s=1

s2k−1c̄(T sω)
1

s2k−1
gk(s)

=
2k

(2k)!

[∫
Ω

1

c
dµ

]k [∫
Ω
c dµ

]k
.

Again, applying lemma 5.1.1 for u′` = 1
c(T `ω)

, v′` = 1
`2k

∑`
s=1 c̄(T

sω)gk(s) and α = 2k, one
has

lim
m→+∞

gk+1(m)

m2k+1
= lim

m→+∞

1

m2k+1

m−1∑
`=0

1

c(T `ω)

∑̀
s=1

c̄(T sω)gk(s)

= lim
m→+∞

1

m2k+1

m−1∑
`=0

`2k

c(T `ω)

1

`2k

∑̀
s=1

c̄(T sω)gk(s)

=
2k

(2k + 1)!

[∫
Ω

1

c
dµ

]k+1 [∫
Ω
c dµ

]k
.

Similarly, one has the same result for the case m < 0.

From lemma 5.1.6, for any ε > 0, there exists M > 0 such that for any |m| > M then∣∣∣∣ gk(m)

m2k−1Dk
− 1

∣∣∣∣ < ε. (5.24)
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Now we combine (5.21) and (5.24) to prove theorem 5.1.5. Put

K7 = Eω
{

1

(
√
n)2k−1

X2k−1
n 1{|Xn|≤M}

}
− Eω

{
1

(
√
n)2k−1

gk(Xn)

Dk
1{|Xn|≤M}

}

K8 = Eω
{

1

(
√
n)2k−1

X2k−1
n 1{|Xn|>M}

}
− Eω

{
1

(
√
n)2k−1

gk(Xn)

Dk
1{|Xn|>M}

}
.

For n large enough we have

|K7| =
∣∣∣∣Eω { 1

(
√
n)2k−1

(
X2k−1
n − gk(Xn)

Dk

)
1{|Xn|≤M}

}∣∣∣∣ < ε

and

|K8| =

∣∣∣∣Eω { 1

(
√
n)2k−1

(
X2k−1
n − gk(Xn)

Dk

)
1{|Xn|>M}

}∣∣∣∣
=

∣∣∣∣Eω { 1

(
√
n)2k−1

(
1− gk(Xn)

X2k−1
n Dk

)
X2k−1
n 1{|Xn|>M}

}∣∣∣∣
< εEω

{(
|Xn|√
n

)2k−1
}
≤ ε

√√√√Eω

{(
X2
n

n

)2k−1
}
.

It follows that∣∣∣∣∣Eω
{(

Xn√
n

)2k−1
}∣∣∣∣∣ = |K7 +K8| ≤ |K7|+ |K8| < ε+ ε

√√√√Eω

{(
X2
n

n

)2k−1
}

for n large enough. By theorem 5.1.3

lim
n→∞

Eω

{(
X2
n

n

)2k−1
}

=
[2(2k − 1)]!

(2k − 1)!22k−1
σ2(2k−1)

and ε is as small as we need, then we obtain the result lim
n→+∞

Eω
{(

Xn√
n

)2k−1
}

= 0.

Finally, for each ` = 1, 2, 3, . . . we obtain

lim
n→∞

Eω

{(
Xn√
n

)`}
=

{
0 if ` = 2k − 1

(2k)!
2kk!

σ2k if ` = 2k

And hence, for almost all environment ω

Xn√
n

D−−−−−−−−→ N
(
0, σ2

)
as n −→ +∞

which completes the proof of theorem 5.1.1.
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5.2 Markov process with discrete space

We consider Markov process (Xt)t∈R on Z with X0 = 0, the generator infinitesimal

Lωf(k) = c(T k−1ω)f(k − 1) + c(T kω)f(k + 1)− c̄(T kω)f(k), (5.25)

In the sequel of this section, theorem 5.2.1, we will establish a central limit theorem for
Markov process (Xt)t∈R. We will use also an analogue method in section 5.1.

Theorem 5.2.1. For almost environment ω,

Xt√
t

D−−−−−→ N
(
0, σ2

)
as t −→ +∞

if c−1 ∈ L1(µ) and where σ2 = 2
[∫

1
c dµ

]−1.

Proof. As in theorem 5.1.1, to prove theorem 5.2.1 we have to show that for almost all
environment ω

lim
t→+∞

Eω

{(
Xt

σ
√
t

)`}
=

{
0 if ` = 2k − 1

(2k)!
k!2k

if ` = 2k

for each ` = 1, 2, 3, . . .. In the sequel, we will use also the pointwise ergodic theorem to
treat these limits.

Theorem 5.2.2. For almost all environments ω, we have

lim
n→+∞

Eω
{
X2
t

t

}
= σ2. (5.26)

Proof. Fix ω ∈ Ω.
We consider a function f1 ≥ 0, defined on Z, such that Lωf1 ≡ 1 and f1(0) = 0. For

example, we can take

f1(m) =



m−1∑̀
=0

`
c(T `ω)

, if m ≥ 1

0, if m = 0
−m∑̀
=1

`
c(T−`ω)

, if m ≤ −1

It is easy to check that Lωf1(m) = 1 for any m ∈ Z.

Lemma 5.2.1. With function f1 defined as above, we have .

Eω {f1(Xt)} = t (5.27)

for any t ≥ 0.
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Proof. Put h1(t) = Eω {f1(Xt)} then

Lωf1(Xt) = lim
s→0

Eω
{
Eω(f1(Xt+s)/Xt)− f1(Xt)

s

}
= lim

s→0
Eω
{
f1(Xt+s)− f1(Xt)

s

}
= lim

s→0

h1(t+ s)− h1(t)

s
= h′1(t).

Since Lωf1(Xt) = 1 then h′1(t) = 1,∀t implies h1(t) = t+c,∀t. Since h1(0) = Eω {f1(X0)} =
0 implies c = 0, and hence h1(t) = Eω {f1(Xt)} = t.

The formula (5.27) can be rewritten as

Eω
{
f1(Xt)

X2
t

× X2
t

t

}
= 1

and note that if limm→∞
f1(m)
m2 exists then so limn→+∞ Eω

{
X2
t
t

}
.

The next step we will compute the limit of f1(m)
m2 by using the pointwise ergodic theorem

and lemma 5.1.1.

Lemma 5.2.2. With function f1 defined as above

lim
m→±∞

f1(m)

m2
= σ−2. (5.28)

Proof. Consider firstly the case m > 0. Applying lemma 5.1.1 for u` = 1
c(T `ω)

, v` = 1 and
α = 1, one has

lim
m→+∞

f1(m)

m2
= lim

m→+∞

1

m2

m−1∑
`=0

`

c(T `ω)
=

1

2

∫
Ω

1

c
dµ.

Similarly, one has the same result for the case m < 0.

From lemma 5.2.2, for any ε > 0, there exists M > 0 such that for any m > M then∣∣∣∣ m2

f1(m)
− σ2

∣∣∣∣ < ε/2. (5.29)

Now we combine (5.27) and (5.29) to prove theorem 5.1.2. Put

H1 = Eω
{
X2
t

t
1{|Xt|>M}

}
− Eω

{
σ2 f1(Xt)

t
1{|Xt|>M}

}

H2 = Eω
{
X2
t

t
1{|Xt|≤M}

}
− Eω

{
σ2 f1(Xt)

t
1{|Xt|≤M}

}
.

For t large enough

|H1| =

∣∣∣∣Eω {( X2
t

f1(Xt)
− σ2

)
f1(Xt)

t
1{|Xt|>M}

}∣∣∣∣
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≤ Eω
{∣∣∣∣ X2

t

f1(Xt)
− σ2

∣∣∣∣ f1(Xt)

t
1{|Xt|>M}

}
< ε/2

since f1 ≥ 0, and

|H2| =
∣∣∣∣1tEω {(X2

t − σ2f1(Xt)
)
1{|Xt|≤M}

}∣∣∣∣ < ε/2

It follows that ∣∣∣∣Eω {X2
t

t

}
− σ2

∣∣∣∣ = |H1 +H2| ≤ |H1|+ |H2| < ε

for t large enough. Since ε is as small as we need, then lim
t→+∞

Eω
{
X2
t
t

}
= σ2.

Theorem 5.2.3. For almost all environments ω, we have

lim
n→+∞

Eω

{(
X2
t

t

)k}
=

(2k)!

k!2k
σ2k (5.30)

for any k ≥ 1.

Proof. Fix ω ∈ Ω.
We consider a sequence of functions fk ≥ 0, defined on Z, such that Lωfk ≡ fk−1,

fk(0) = 0 and f1 is defined as above. For example, we can take

f0(m) = 1 ∀m ∈ Z

f1(m) =



m−1∑̀
=0

`
c(T `ω)

f0(s), if m ≥ 1

0, if m = 0
−m∑̀
=1

`
c(T−`ω)

f0(−s) if m ≤ −1
. . .

fk(m) =



m−1∑̀
=0

1
c(T `ω)

∑̀
s=1

fk−1(s), if m ≥ 1

0, if m = 0
−m∑̀
=1

1
c(T−`ω)

`−1∑
s=1

fk−1(−s), if m ≤ −1

Then it is easy to check that Lωfk(m) = fk−1(m) for any m ∈ Z.

Lemma 5.2.3. For each k ≥ 1, then

Eω {fk(Xt)} =
tk

k!
(5.31)

for any t ≥ 0.
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Proof. It is obvious to work with k = 1. Assume that it is true with k ≥ 1, we claim that
it is also with k + 1. That means: if

Eω {fk(Xt)} =
tk

k!

then

Eω {fk+1(Xt)} =
tk+1

(k + 1)!
.

Put hk(t) = Eω {fk(Xt)} for k ≥ 1 then

Lωfk+1(Xt) = lim
s→0

Eω
{
Eω(fk+1(Xt+s)/Xt)− fk+1(Xt)

s

}
= lim

s→0
Eω
{
fk+1(Xt+s)− fk+1(Xt)

s

}
= lim

s→0

hk+1(t+ s)− hk+1(t)

s
= h′k+1(t).

Since Lωfk(Xt) = tk

k! then h′k+1(t) = tk

k! , ∀t implies hk+1(t) = tk+1

(k+1)! + c. Since hk+1(0) =

Eω {fk+1(X0)} = 0 implies c = 0 and hence hk+1(t) = tk+1

(k+1)! .

The formula (5.31) can be rewritten as

Eω
{
fk(Xt)

X2k
t

× X2k
t

tk

}
=

1

k!

and note that if limm→∞
fk(m)
m2k exists then so limn→+∞ Eω

{(
X2
t
t

)k}
.

The next step we will compute the limit of fk(m)
m2k by using the pointwise ergodic theorem

and lemma 5.1.1.

Lemma 5.2.4. For each k ≥ 1,

lim
m→±∞

fk(m)

m2k
=

2k

(2k)!
σ−2k = Fk (5.32)

Proof. This limit is true for k = 1 (lemma 5.2.2).
Assume that (5.32) is also true for k ≥ 1, we claim that it holds for k + 1, that is

lim
m→±∞

fk+1(m)

m2(k+1)
=

2k+1

(2(k + 1))!
σ−2(k+1). (5.33)

Consider firstly the case m > 0. Applying lemma 5.1.1 for us = 1, vs = 1
s2k
fk(s) and

α = 2k, one has

lim
`→+∞

1

`2k+1

∑̀
s=1

fk(s) = lim
`→+∞

1

`2k+1

∑̀
s=1

s2k 1

s2k
fk(s) =

2k

(2k + 1)!
σ−2k.
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Again, applying lemma 5.1.1 for u′` = 1
c(T `ω)

, v′` = 1
`2k+1

∑`
s=1 fk(s) and α = 2k + 1, one

has

lim
m→+∞

f2k+1(m)

m2(k+1)
= lim

m→+∞

1

m2(k+1)

m−1∑
`=0

1

c(T `ω)

∑̀
s=1

fk(s)

= lim
m→+∞

1

m2(k+1)

m−1∑
`=0

`2k+1

c(T `ω)

1

`2k+1

∑̀
s=1

fk(s)

=
2k+1

(2(k + 1))!
σ−2(k+1).

Similarly, one has the same result for the case m < 0.

From lemma 5.2.4, for any ε > 0, there exists M > 0 such that for any |m| > M then∣∣∣∣ m2k

fk(m)
− 1

Fk

∣∣∣∣ < ε/2. (5.34)

Now we conbine (5.31) and (5.34) to prove theorem 5.2.3. Put

H3 = Eω
{
X2k
t

tk
1{|Xt|>M}

}
− Eω

{
fk(Xt)

tkFk
1{|Xt|>M}

}

H4 = Eω
{
X2k
t

tk
1{|Xt|≤M}

}
− Eω

{
fk(Xt)

tkFk
1{|Xt|≤M}

}
.

For t large enough

|H3| =

∣∣∣∣Eω {( X2k
t

fk(Xt)
− 1

Fk

)
fk(Xt)

tk
1{|Xt|>M}

}∣∣∣∣
≤ Eω

{∣∣∣∣ X2k
t

fk(Xt)
− 1

Fk

∣∣∣∣ fk(Xt)

tk
1{|Xt|>M}

}
< ε/2

since fk ≥ 0, and

|H4| =
1

tk

∣∣∣∣Eω {(X2k
t −

1

Fk
fk(Xt)

)
1{|Xt|≤M}

}∣∣∣∣ < ε/2.

It follows that ∣∣∣∣∣Eω
{(

X2
t

t

)k}
− 1

k!Fk

∣∣∣∣∣ = |H3 +H4| ≤ |H3|+ |H4| < ε

for t large enough. Since ε is as small as we need, then lim
t→+∞

Eω
{(

X2
t
t

)k}
= (2k)!

k!2k
σ2k.

Theorem 5.2.4. For almost all environments ω, we have

lim
t→+∞

Eω
{
Xt√
t

}
= 0 (5.35)
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Proof. Fix ω ∈ Ω.
We consider a function g1, defined on Z, satisfying Lωg1 ≡ 0 and g1(0) = 0. For

instance, we can take

g1(m) =



m−1∑̀
=0

1
c(T `ω)

, if m ≥ 1

0, if m = 0

−
−m∑̀
=1

1
c(T−`ω)

, if m ≤ −1

Put q1(t) = Eω {g1(Xt)}, then

Lωg1(Xt) = lim
s→0

Eω
{
Eω(g1(Xt+s)/Xt)− g0(Xt)

s

}
= lim

s→0
Eω
{
g1(Xt+s)− g1(Xt)

s

}
= lim

s→0

q1(t+ s)− q0(t)

s
= q′1(t)

Since Lωg1(Xt) = 0 then q′1(t) = 0, ∀t implies q1(t) = c,∀t. Since q1(0) = Eω {g1(X0)} = 0
implies c = 0, and hence

Eω {g1(Xt)} = q1(t) = 0. (5.36)

The formula (5.36) can be rewritten as

Eω
{
g1(Xt)

Xt
× Xt√

t

}
= 0

and note that if limm→∞
g1(m)
m exists then limn→+∞ Eω

{
Xt√
t

}
exists.

The pointwise ergodic theorem ensures that

lim
m→∞

g1(m)

m
=

∫
Ω

1

c
dµ = G1

Therefore, for any ε > 0, there exists M > 0 such that for any |m| > M then∣∣∣∣g1(m)

G1m
− 1

∣∣∣∣ < ε. (5.37)

We now combine (5.36) and (5.37) to prove theorem 5.2.4. Put

H5 = Eω
{

1√
t
Xt1{|Xt|≤M}

}
− Eω

{
1√
t

g1(Xt)

G1
1{|Xt|≤M}

}
and

H6 = Eω
{

1√
t
Xt1{|Xt|>M}

}
− Eω

{
1√
t

g1(Xt)

G1
1{|Xt|>M}

}
.

We have
|H5| =

∣∣∣∣Eω { 1√
t

(
Xt −

g1(Xt)

G1

)
1{|Xt|≤M}

}∣∣∣∣ < ε
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and

|H6| =

∣∣∣∣Eω { 1√
t

(
1− g1(Xt)

XtG1

)
Xt1{|Xt|>M}

}∣∣∣∣
≤ εEω

{
|Xt|√
t

}
≤ ε

√
Eω
{
X2
t

t

}
for t large enough. It follows that∣∣∣∣Eω {Xt√

t

}∣∣∣∣ = |H5 +H6| ≤ |H5|+ |H6| < ε+ ε

√
Eω
{
X2
t

t

}
for t large enough. By theorem 5.2.2 lim

t→+∞
Eω
{
X2
t
t

}
= σ2 < ∞ and ε is as small as we

need, then we obtain lim
t→+∞

Eω
{
Xt√
t

}
= 0.

Theorem 5.2.5. For almost all environments ω, we have

lim
t→+∞

Eω

{(
Xt√
t

)(2k−1)
}

= 0 (5.38)

for each k ≥ 1.

Proof. Fix ω ∈ Ω. We consider a sequence of functions gk, defined on Z, satisfying
Lωgk+1 ≡ gk, ∀k ≥ 1 and g1 is defined as above. For instance, we can take

gk+1(m) =



m−1∑̀
=0

1
c(T `ω)

∑̀
s=1

gk(s), if m ≥ 1

0, if m = 0
−m∑̀
=1

1
c(T−`ω)

`−1∑
s=1

gk(−s), if m ≤ −1

Lemma 5.2.5. For each k ≥ 1, then

Eω {gk(Xt)} = 0 (5.39)

for any t ≥ 0.

Proof. It is obvious to work with k = 1. Assume that it is true with k ≥ 1, we claim that
it is also with k + 1. That means: if

Eω {gk(Xt)} = 0

then
Eω {gk+1(Xt)} = 0.

Similarly, put qk(t) = Eω {gk(Xt)} for k ≥ 1then

Lωgk+1(Xt) = lim
s→0

Eω
{
Eω(gk+1(Xt+s)/Xt)− gk+1(Xt)

s

}
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= lim
s→0

Eω
{
gk+1(Xt+s)− gk+1(Xt)

s

}
= lim

s→0

qk+1(t+ s)− qk+1(t)

s
= q′k+1(t).

Since Lωgk(Xt) = 0 then q′k+1(t) = 0, for any t implies qk+1(t) = c (constant). Since
qk(0) = Eω {gk(X0)} = 0 implies c = 0, and hence qk(t) = Eω {gk(Xt)} = 0, for any t.

The formula (5.39) can be rewritten as

Eω

{
gk(Xt)

X2k−1
t

× X2k−1
t(√
t
)2k−1

}
=

1

k!

and note that if limm→∞
gk(m)
m2k−1 exists then so limn→+∞ Eω

{(
Xt√
t

)2k−1
}
.

The next step we will compute the limit of fk(m)
m2k by using the pointwise ergodic theorem

and lemma 5.1.1.

Lemma 5.2.6. For each k ≥ 1 one has

lim
m→∞

gk(m)

m2k−1
=

1

(2k − 1)!

[∫
Ω

1

c
dµ

]k
= Gk (5.40)

Proof. This limit is true for k = 1.
Assume that (5.40) is also true for k ≥ 1, we claim that it holds for k + 1, that is

lim
m→+∞

gk+1(m)

m2k+1
=

1

(2k + 1)!

[∫
Ω

1

c
dµ

]k+1

. (5.41)

Consider firstly the case m > 0. Applying lemma 5.1.1 for us = 1, vs = 1
s2k−1 gk(s) and

α = 2k − 1, one has

lim
`→+∞

1

`2k

∑̀
s=1

gk(s) = lim
`→+∞

1

`2k

∑̀
s=1

s2k−1 1

s2k−1
gk(s)

=
1

(2k)!

[∫
Ω

1

c
dµ

]k
.

Again, applying lemma 5.1.1 for u′` = 1
c(T `ω)

, v′` = 1
`2k

∑`
s=1 gk(s) and α = 2k, one has

lim
m→+∞

gk+1(m)

m2k+1
= lim

m→+∞

1

m2k+1

m−1∑
`=0

1

c(T `ω)

∑̀
s=1

gk(s)

= lim
m→+∞

1

m2k+1

m−1∑
`=0

`2k

c(T `ω)

1

`2k

∑̀
s=1

gk(s)

=
1

(2k + 1)!

[∫
Ω

1

c
dµ

]k+1

.

Similarly, one has the same result for the case m < 0.
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From lemma 5.2.6, for any ε > 0, there exists M > 0 such that for any |m| > M then∣∣∣∣ gk(m)

m2k−1Gk
− 1

∣∣∣∣ < ε. (5.42)

We now combine (5.39) and (5.42) to prove theorem 5.2.5. Put

H7 = Eω
{

1

(
√
t)2k−1

X2k−1
t 1{|Xt|≤M}

}
− Eω

{
1

(
√
t)2k−1

gk(Xt)

Gk
1{|Xt|≤M}

}
and

H8 = Eω
{

1

(
√
t)2k−1

X2k−1
t 1{|Xt|>M}

}
− Eω

{
1

(
√
t)2k−1

gk(Xt)

Gk
1{|Xt|>M}

}
.

We have
|H7| =

∣∣∣∣Eω { 1

(
√
t)2k+1

(
X2k−1
t − gk(Xt)

Gk

)
1{|Xt|≤M}

}∣∣∣∣ < ε

and

|H8| =

∣∣∣∣∣Eω
{

1

(
√
t)2k−1

(
1− gk(Xt)

X2k−1
t Gk

)
X2k−1
t 1{|Xt|>M}

}∣∣∣∣∣
< εEω

{∣∣∣∣Xt√
t

∣∣∣∣2k−1
}
≤ ε

√√√√Eω

{(
X2
t

t

)2k−1
}

for t large enough. It follows that∣∣∣∣∣Eω
{(

Xt√
t

)(2k−1)
}∣∣∣∣∣ = |H7 +H8| ≤ |H7|+ |H8| < ε+ ε

√√√√Eω

{(
X2
t

t

)2k−1
}

for t large enough. By theorem 5.2.3 one has

lim
t→+∞

Eω

{(
X2
t

t

)2k−1
}

=
(2(2k − 1))!

(2k − 1)!2(2k−1)
σ2(2k−1)

and ε is as small as we need, then lim
t→+∞

Eω
{(

Xt√
t

)(2k−1)
}

= 0.

Finally, for each ` = 1, 2, 3, . . . we obtain

lim
t→+∞

Eω

{(
Xt√
t

)`}
=

{
0 if ` = 2k − 1

(2k)!
2kk!

σ2k if ` = 2k

And hence, for almost all environment ω

Xt√
t

D−−−−−−−−→ N
(
0, σ2

)
as t −→ +∞

which completes the proof of theorem 5.2.1.
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Chapter 6

Einstein’s relation for reversible
diffusions in a random environment
in one dimension

This chapter is devoted to consider reversible diffusions in a random environment in
one dimension and prove the Einstein’s relation for this model. It says that the derivative
at 0 of the effective velocity under an additional local drift equals the diffusivity of the
model without drift (theorem 6.1.1). This equality was used by Einstein to measure the
Avogadro number. Our method here is to solve the Poisson’s equation (Pω−I)g = f which
introduced in the preceding chapter, and then use the pointwise ergodic theorem to treat
the limit of the solutions to obtain the desired result.

6.1 Introduction

Consider again, on the Z network, a random stationary sequence of conductances,
defined on a probability space (Ω,A, µ), an invertible µ−preserving transformation T which
is also ergodic, and a positive measurable function c on Ω. The space Ω is interpreted as
the space of environments.

For a fixed environment ω ∈ Ω and a fixed number λ 6= 0, the conductances of the edges
[k, k + 1] is eλc(T kω) and [k, k − 1] is e−λc(T k−1ω). The number λ is called the "drift" of
the model.

We consider Markov process (Xt)t≥0 on Z with X0 = 0, the generator infinitesimal

Lλ,ωf(k) = e−λc(T k−1ω)f(k − 1) + eλc(T kω)f(k + 1)− π(T kω)f(k), (6.1)

where π = eλc+ e−λc ◦ T−1.

Definition 6.1.1. The Quenched diffusivity of a diffusion process Xt without drift is de-
fined by

Σ = lim
t→+∞

1

t
Eω
{
X2
t

}
(6.2)
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Remark 6.1.1. When the model without drift λ = 0, in the preceding chapter theorems
5.1.2 and 5.2.2 show that for almost all environment ω

Σ = lim
t→+∞

1

t
Eω
{
X2
t

}
= σ2 (6.3)

where

σ2 =


[∫

1
c dµ

∫
c dµ

]−1 if c, c−1 ∈ L1(µ) and Xn is a random walk.

2
[∫

1
c dµ

]−1 if c−1 ∈ L1(µ) and Xt is a Markov process with time continuous.

Definition 6.1.2. The Quenched effective drift of a diffusion process Xt in Z is defined by

dω(λ) = lim
t→+∞

1

t
Eλ,ω {Xt} . (6.4)

Remark 6.1.2. When the model without drift λ = 0, then dω(0) = limt→+∞
1
tEω {Xt} = 0

with the same condition of function c in remark 6.1.1. It was defined in the preceding
chapter (theorems 5.1.4 and 5.2.4).

Theorem 6.1.1. (Einstein’s relation) The function λ 7−→ dω(λ) has a derivative at
λ = 0 which satisfies

lim
λ→0

dω(λ)

λ
= Σ = σ2 (6.5)

if c, c−1 ∈ L2(µ) for a random walk and c−1 ∈ L1(µ) for a Markov process with time
continuous respectively.

This theorem will be proved into two cases:

• For Random walk in Random environment with a drift, we have theorem 6.2.1.

• For Markov processes in Random environment with a drift, we have theorem 6.3.1.

We will see in the proof of these theorems that dω(λ) is defined a.s and doesn’t depend
on ω. So, it will be denoted by d(λ) in the sequel.

Remark 6.1.3. About Einstein’s relation for reversible diffusions in random environment,
there is a paper of Gantert, Mathieu, Piatnitski [19] recently. They used independence’s
assumption in the environment.

6.2 Random walk in Random environment with a drift

We introduce the random walk (Xn)n≥0 on Z with initial condition X0 = 0 and
Markov’s operator f 7−→ Pλ,ωf defined by

Pλ,ωf(k) =
1

π(T kω)

[
e−λc(T k−1ω)f(k − 1) + eλc(T kω)f(k + 1)

]
. (6.6)
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Theorem 6.2.1. For almost all environment ω,

lim
λ→0

d(λ)

λ
= lim

λ→0

1

λ
lim
n→∞

Eλ,ω
{
Xn

n

}
=

[∫
Ω
c dµ

∫
Ω

1

c
dµ

]−1

. (6.7)

if c, c−1 ∈ L2(µ).

Proof. This theorem is proved by Theorems 6.2.2 and 6.2.3.

Theorem 6.2.2. For almost all environment ω and for λ > 0

lim
λ→0+

d(λ)

λ
= lim

λ→0+

1

λ
lim
n→∞

Eλ,ω
{
Xn

n

}
=

[∫
Ω
c dµ

∫
Ω

1

c
dµ

]−1

. (6.8)

Proof. Fix ω ∈ Ω. We consider a functions fλ, defined on Z, such that (Pλ,ω − I)fλ ≡ 1
and fλ(0) = 0. For example, we can take

fλ(m) =



m−1∑̀
=0

1
c(T `ω)e2`λ

∑̀
s=−∞

π(T sω)e(2s−1)λ, if m ≥ 1

0, if m = 0

−
−m∑̀
=1

1
c(T−`ω)

e2`λ
−∑̀

s=−∞
π(T sω)e(2s−1)λ, if m ≤ −1

It is easy to check that (Pλ,ω − I)fλ(m) = 1 for any m ∈ Z. Replacing m by Xn and take
the expectation, one has

Eλ,ω {fλ(Xn)} = n ∀n ≥ 0. (6.9)

The formula (6.9) can be rewritten as

Eω
{
fλ(Xn)

Xn
× Xn

n

}
= 1

and note that if limm→∞
fλ(m)
m exists then so limn→+∞ Eω

{
Xn
n

}
.

The next step we will compute the limit of fλ(m)
m by using the pointwise ergodic theorem.

We need the following lemma in the proof:

Lemma 6.2.1. Let (an)n≥0 be a sequence of positive real numbers and let An be a partial

sum An =

n∑
i=0

ai. Assume that lim
n→∞

1

n
An = L then

+∞∑
`=0

a`ρ
` < +∞ (6.10)

and
+∞∑
`=0

a``ρ
` < +∞ (6.11)

where 0 < ρ < 1. Furthermore

lim
ρ→1−

(1− ρ)

+∞∑
`=0

a`ρ
` = L. (6.12)
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Proof. It is clear that (6.10) is followed by (6.11).
Proof of (6.11). Applying Abel’s lemma we have

n∑
`=0

a``ρ
` =

n−1∑
`=0

A`

(
`ρ` − (`+ 1)ρ`+1

)
+Annρ

n

= (1− ρ)
n−1∑
`=0

A``ρ
` −

n−1∑
`=0

A`ρ
`+1 +Annρ

n.

Since lim
n→∞

1

n
An = L then lim

n→∞
Annρ

n = 0,
+∞∑
`=0

A``ρ
` and

+∞∑
`=0

A`ρ
`+1 converge by D’Alembert

criterion, which prove (6.11).
Furthermore, for any ε > 0 there exists N > 0 such that for any n ≥ N we have∣∣∣∣ 1nAn − L

∣∣∣∣ < ε and lim
n→∞

Anρ
n = 0. Therefore∣∣∣∣∣(1− ρ)

+∞∑
`=0

a`ρ
` − L

∣∣∣∣∣ =

∣∣∣∣∣(1− ρ)2
∞∑
`=0

A`ρ
` − (1− ρ)2

ρ
L

+∞∑
`=0

`ρ`

∣∣∣∣∣
= (1− ρ)2

∣∣∣∣∣
∞∑
`=0

(
A`
`
− 1

ρ
L

)
`ρ`

∣∣∣∣∣
≤ (1− ρ)2

N−1∑
`=0

∣∣∣∣A`` − 1

ρ
L

∣∣∣∣ `ρ` + (1− ρ)2
∞∑
`=N

`ρ`
(

1

ρ
L− L+ ε

)

≤ (1− ρ)2
N−1∑
`=0

∣∣∣∣A`` − 1

ρ
L

∣∣∣∣ `ρ` + (1− ρ)L+ ε

for ρ→ 1−, (6.12) is followed.

In the sequel, we always assume that ρ =
1

e2λ
and by the pointwise ergodic theorem

1

n

n−1∑
k=0

π(T−kω) =

∫
Ω
π dµ. Therefore if we put Hλ(ω) =

√
ρ

+∞∑
k=0

π(T−kω)ρk, lemma 6.2.1

shows that Hλ(ω) < +∞ and

lim
λ→0+

(1− e−2λ)Hλ(ω) = lim
ρ→1−

(1− ρ)Hλ(ω) =

∫
Ω
π dµ. (6.13)

Lemma 6.2.2. With function fλ defined as above, we have

lim
m→±∞

fλ(m)

m
=

∫
Ω

Hλ

c
dµ = Lλ. (6.14)

Proof. By the definition of function fλ, for m > 0

fλ(m)

m
=

1

m

m−1∑
`=0

ρ`

c(T `ω)

√
ρ
∑̀
s=−∞

π(T sω)ρ−s =
1

m

m−1∑
`=0

1

c(T `ω)

√
ρ
∑̀
s=−∞

π(T sω)ρ`−s
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=
1

m

m−1∑
`=0

1

c(T `ω)

[
√
ρ
∑̀
s=−∞

π(T s−`ω)ρ`−s

]
◦ T `.

Replacing `− s by k we obtain

fλ(m)

m
=

1

m

m−1∑
`=0

1

c(T `ω)

[
√
ρ

+∞∑
k=0

π(T−kω)ρk

]
◦ T ` =

1

m

m−1∑
`=0

Hλ

c
◦ T `(ω)

By Cauchy-Schwarz’s inequality, we have

H2
λ(ω) ≤ ρ

1− ρ

+∞∑
k=0

π2(T−kω)ρk

then ∫
Ω
H2
λdµ ≤

ρ

(1− ρ)2

∫
Ω
π2dµ.

Since π ∈ L2(µ) then Hλ ∈ L2(µ), and hence by Holder’s inequality
Hλ

c
∈ L1(µ). It follows

that

lim
m→+∞

fλ(m)

m
= lim

m→+∞

1

m

m−1∑
`=0

Hρ

c
◦ T `(ω) =

∫
Ω

Hλ

c
dµ

by pointwise ergodic theorem. Similarly, for m < 0

fλ(m)

m
=

1

−m

−m∑
`=1

ρ−`

c(T−`ω)

√
ρ
−∑̀

s=−∞
π(T sω)ρ−s

=
1

−m

−m∑
`=1

1

c(T−`ω)

√
ρ
−∑̀

s=−∞
π(T sω)ρ−s−`

=
1

−m

−m∑
`=1

1

c(T−`ω)

[
√
ρ
−∑̀

s=−∞
π(T s+`ω)ρ−s−`

]
◦ T−`.

Replacing s+ ` by −k we obtain

fλ(m)

m
=

1

−m

−m∑
`=1

1

c(T−`ω)

[
√
ρ

+∞∑
k=0

π(T−kω)ρk

]
◦ T−` =

1

−m

−m∑
`=1

Hλ

c
◦ T−`(ω).

By pointwise ergodic theorem

lim
m→−∞

fλ(m)

m
= lim

m→+∞

1

m

m∑
`=1

Hλ

c
◦ T−`(ω) =

∫
Ω

Hλ

c
dµ = Lλ.
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For any ε > 0, by (6.14) there exists M > 0 such that for any |m| > M then∣∣∣∣ 1

Lλ

fλ(m)

m
− 1

∣∣∣∣ < ε. (6.15)

We now combine (6.9) and (6.15) to compute the limit of Eλ,ω
{
Xn
n

}
. Put

Iλ1 = Eλ,ω
{
Xn

n
1{|Xn|≤M}

}
− Eλ,ω

{
1

Lλ

fλ(Xn)

n
1{|Xn|≤M}

}

Iλ2 = Eλ,ω
{
Xn

n
1{|Xn|>M}

}
− Eλ,ω

{
1

Lλ

fλ(Xn)

n
1{|Xn|>M}

}
then ∣∣∣Iλ1 ∣∣∣ =

∣∣∣∣ 1nEλ,ω
{[
Xn −

fλ(Xn)

Lλ

]
1{|Xn|≤M}

}∣∣∣∣
≤ 1

n
Eλ,ω

{∣∣∣∣Xn −
fλ(Xn)

Lλ

∣∣∣∣1{|Xn|≤M}}
< ε

and ∣∣∣Iλ2 ∣∣∣ =

∣∣∣∣Eλ,ω {(1− 1

Lλ

fλ(Xn)

Xn

)
Xn

n
1{|Xn|>M}

}∣∣∣∣
< ε

√
Eλ,ω

{
X2
n

n2

}
for n large enough. It follows that∣∣∣∣Eλ,ω {Xn

n

}
− 1

Lλ

∣∣∣∣ =
∣∣∣Iλ1 + Iλ2

∣∣∣ ≤ ∣∣∣Iλ1 ∣∣∣+
∣∣∣Iλ2 ∣∣∣ < ε+ ε

√
Eλ,ω

{
X2
n

n2

}
(6.16)

for n large enough. We see that if limn→∞ Eλ,ω
{
X2
n

n2

}
exists then so limn→∞ Eλ,ω

{
Xn
n

}
.

Proposition 6.2.1. For almost all environment ω,

lim
n→∞

Eλ,ω
{
X2
n

n2

}
=

1

[Lλ]2
. (6.17)

Proof. We consider a function gλ ≥ 0, defined on Z, such that (Pλ,ω − I)gλ ≡ fλ and
gλ(0) = 0. For example, we can take

gλ(m) =



m−1∑̀
=0

1
c(T `ω)e2`λ

∑̀
s=−∞

π(T sω)e(2s−1)λfλ(s), if m ≥ 1

0, if m = 0

−
−m∑̀
=1

1
c(T−`ω)

e2`λ
−∑̀

s=−∞
π(T sω)e(2s−1)λfλ(s), if m ≤ −1
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then (Pλ,ω−I)gλ(m) = fλ(m) for anym ∈ Z. Replacingm byXn and take the expectation,
one has

Eλ,ω {gλ(Xn)} =
n(n− 1)

2
, ∀n ≥ 0. (6.18)

The formula (6.18) can be rewritten as

Eω
{
gλ(Xn)

X2
n

× X2
n

n2

}
∼ 1

2

and note that if limm→∞
gλ(m)
m2 exists then so limn→+∞ Eω

{
X2
n

n2

}
.

The next step we will compute the limit of gλ(m)
m2 by using the lemmas 6.2.1 and 6.2.2.

Lemma 6.2.3. With function gλ defined as above

lim
m→±∞

gλ(m)

m2
=

1

2
[Lλ]2 . (6.19)

Proof. Consider the case m > 0. Put

ξ1 =
1

m2

m−1∑
`=0

ρ`

c(T `ω)

√
ρ

0∑
s=−∞

π(T sω)ρ−sfλ(s),

ξ2 =
1

m2

m−1∑
`=0

ρ`

c(T `ω)

√
ρ
∑̀
s=1

π(T sω)ρ−sfλ(s),

ξ3 =
1

m2

m−1∑
`=0

ρ`

c(T `ω)

√
ρ
∑̀
s=1

π(T sω)ρ−ss.

By the definition of function gλ, we have
gλ(m)

m2
= ξ1 + ξ2. We will prove that

lim
m→+∞

ξ1 = 0 (6.20)

and
lim

m→+∞
ξ2 =

1

2
[Lλ]2 . (6.21)

By (6.11) and lim
s→∞

fλ(s)

s
= Lλ then

0∑
s=−∞

π(T sω)ρ−sfλ(s) is bounded which completes

(6.20).
Proof of (6.21). Replacing `− s by k we obtain

ξ3 =
1

m2

m−1∑
`=0

1

c(T `ω)

√
ρ
∑̀
s=1

π(T sω)ρ`−ss =
1

m2

m−1∑
`=0

1

c(T `ω)

√
ρ

`−1∑
k=0

π(T−kω)ρk(`− k)

=
1

m2

m−1∑
`=0

`

c(T `ω)

[
√
ρ

`−1∑
k=0

π(T−kω)ρk

]
◦ T ` − 1

m2

m−1∑
`=0

√
ρ

c(T `ω)

[
`−1∑
k=0

π(T−kω)kρk

]
◦ T `.
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Since
√
ρ

`−1∑
k=0

π(T−kω)kρk is bounded by (6.11) then

lim
m→+∞

1

m2

m−1∑
`=0

√
ρ

c(T `ω)

[
`−1∑
k=0

π(T−kω)kρk

]
◦ T ` = 0.

On the other hand, since lim
`→+∞

√
ρ
`−1∑
k=0

π(T−kω)ρk = Hλ(ω) then

lim
m→+∞

sup
`≤m

1

m

∣∣∣∣∣√ρ
`−1∑
k=0

π(T−kω)ρk −Hλ(ω)

∣∣∣∣∣ = 0.

And hence,

lim
m→+∞

ξ3 = lim
m→+∞

1

m

m−1∑
`=0

Hλ

c
◦ T `(ω)

(
`

m

)
=

1

2
Lλ.

Moreover, since lim
s→∞

fλ(s)

s
= Lλ then lim

m→+∞
sup
s≤m

1

m
|fλ(s)− sLλ| = 0. It follows that

lim
m→+∞

ξ2 = lim
m→+∞

ξ3Lλ =
1

2
[Lλ]2

which completes (6.21).
Similarly, we get also the same result for the case m < 0.

By lemma 6.2.3, for any ε′ > 0, there exists M ′ > 0 such that for any |m| > M ′ then∣∣∣∣ m2

gλ(m)
− 2

[Lλ]2

∣∣∣∣ < ε′/2.

Put

IIλ1 = Eλ,ω
{
X2
n

n2
1{|Xn|≤M ′}

}
− Eλ,ω

{
2

[Lλ]2
gλ(Xn)

n(n− 1)
1{|Xn|≤M ′}

}
IIλ2 = Eλ,ω

{
X2
n

n2
1{|Xn|>M ′}

}
− Eλ,ω

{
2

[Lλ]2
gλ(Xn)

n(n− 1)
1{|Xn|>M ′}

}
then ∣∣∣IIλ1 ∣∣∣ =

∣∣∣∣ 1

n2
Eλ,ω

{[
X2
n −

2gλ(Xn)

[Lλ]2
n2

n(n− 1)

]
1{|Xn|≤M ′}

}∣∣∣∣
≤ 1

n2
Eλ,ω

{∣∣∣∣X2
n −

2gλ(Xn)

[Lλ]2
n2

n(n− 1)

∣∣∣∣1{|Xn|≤M ′}}
< ε′/2

and ∣∣∣IIλ2 ∣∣∣ =

∣∣∣∣Eλ,ω {(X2
n

n2
− 2

[Lλ]2
gλ(Xn)

n(n− 1)

)
1{|Xn|>M ′}

}∣∣∣∣
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=

∣∣∣∣Eλ,ω { gλ(Xn)

n(n− 1)

(
n(n− 1)

n2

X2
n

gλ(Xn)
− 2

[Lλ]2

)
1{|Xn|>M ′}

}∣∣∣∣
< ε′/2

for n large enough since g(m) ≥ 0 for any m ∈ Z. It follows that∣∣∣∣Eλ,ω {X2
n

n2

}
− 1

[Lλ]2

∣∣∣∣ =
∣∣∣IIλ1 + IIλ2

∣∣∣ ≤ ∣∣∣IIλ1 ∣∣∣+
∣∣∣IIλ2 ∣∣∣ < ε′

for n large enough.

We have thus proved that limn→∞ Eλ,ω
{
X2
n

n2

}
= 1

[Lλ]2
. From (6.16), we obtain

lim
n→∞

Eλ,ω
{
Xn

n

}
=

1

Lλ
=

[∫
Ω

Hλ

c
dµ

]−1

= d(λ).

Finally, by (6.13) one has

lim
λ→0+

d(λ)

λ
= lim

λ→0+

(1− e−2λ)

λ

[∫
Ω

(1− e−2λ)Hλ

c
dµ

]−1

= lim
λ→0+

(1− e−2λ)

λ(e−λ + eλ)

[∫
Ω
c dµ

∫
Ω

1

c
dµ

]−1

=

[∫
Ω
c dµ

∫
Ω

1

c
dµ

]−1

.

Theorem 6.2.3. For almost all environment ω and for λ < 0

lim
λ→0−

d(λ)

λ
= lim

λ→0−

1

λ
lim
n→∞

Eλ,ω
{
Xn

n

}
=

[∫
Ω
c dµ

∫
Ω

1

c
dµ

]−1

. (6.22)

Proof. The proof of this theorem is very similar to theorem 6.2.2 which modifies functions
fλ and gλ, defined on Z, as follows

fλ(m) =


−
m−1∑̀

=0

1
c(T `ω)e2`λ

+∞∑
s=`

π(T sω)e(2s+1)λ, if m ≥ 1

0, if m = 0
−m∑̀
=1

1
c(T−`ω)

e2`λ
+∞∑
s=−`

π(T sω)e(2s+1)λ, if m ≤ −1

and

gλ(m) =


−
m−1∑̀

=0

1
c(T `ω)e2`λ

+∞∑
s=`

π(T sω)e(2s+1)λfλ(s), if m ≥ 1

0, if m = 0
−m∑̀
=1

1
c(T−`ω)

e2`λ
+∞∑
s=−`

π(T sω)e(2s+1)λfλ(s), if m ≤ −1

where ω is fixed.
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Remark 6.2.1. We have proved that for λ 6= 0 and for almost all ω

lim
n→∞

Eλ,ω
{
Xn

n

}
= d(λ) (6.23)

and

lim
n→∞

Eλ,ω
{
X2
n

n2

}
= d(λ)2. (6.24)

This implies that for ω a.s

Xn

n

P−−−−−→ d(λ) as n −→∞ (6.25)

where P−−→ is denoted as the convergence in probability.

6.3 Markov processes in Random environment with a drift

We consider Markov process (Xt)t∈R on Z with X0 = 0, the generator infinitesimal

Lλ,ωf(k) = e−λc(T k−1ω)f(k − 1) + eλc(T kω)f(k + 1)− π(T kω)f(k), (6.26)

where π = eλc+ e−λc ◦ T−1.

Theorem 6.3.1. For almost all environment ω,

lim
λ→0

d(λ)

λ
= lim

λ→0

1

λ
lim

t→+∞
Eλ,ω

{
Xt

t

}
= 2

[∫
Ω

1

c
dµ

]−1

(6.27)

if c−1 ∈ L1(µ).

Proof. This theorem is proved by Theorems 6.3.2 and 6.3.3.

Theorem 6.3.2. For almost all environment ω and for λ > 0

lim
λ→0+

dω(λ)

λ
= lim

λ→0+

1

λ
lim
t→∞

Eλ,ω
{
Xt

t

}
= 2

[∫
Ω

1

c
dµ

]−1

. (6.28)

Proof. Fix ω ∈ Ω. We consider a functions fλ, defined on Z, such that Lλ,ωfλ ≡ 1 and
fλ(0) = 0. For example, we can take

fλ(m) =



m−1∑̀
=0

1
c(T `ω)e2`λ

∑̀
s=−∞

e(2s−1)λ, if m ≥ 1

0, if m = 0

−
−m∑̀
=1

1
c(T−`ω)

e2`λ
−∑̀

s=−∞
e(2s−1)λ, if m ≤ −1

It is easy to check that Lλ,ωfλ(m) = 1 for any m ∈ Z. Replacing m by Xt and take the
expectation, one has

Eλ,ω {fλ(Xt)} = t ∀t ≥ 0. (6.29)
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The formula (6.29) can be rewritten as

Eω
{
fλ(Xt)

Xt
× Xt

t

}
= 1

and note that if limm→∞
fλ(m)
m exists then so limn→+∞ Eω

{
Xt
t

}
.

The next step we will compute the limit of fλ(m)
m by using the pointwise ergodic theorem.

Lemma 6.3.1. Put ρ =
1

e2λ
and function fλ defined as above, one has

lim
m→±∞

fλ(m)

m
=

√
ρ

1− ρ

∫
Ω

1

c
dµ = Lλ. (6.30)

Proof. By the definition of function fλ, for m > 0

fλ(m)

m
=

1

m

m−1∑
`=0

ρ`

c(T `ω)

√
ρ
∑̀
s=−∞

ρ−s =
1

m

m−1∑
`=0

1

c(T `ω)

√
ρ
∑̀
s=−∞

ρ`−s

=
1

m

m−1∑
`=0

1

c(T `ω)

√
ρ

+∞∑
k=0

ρk =

√
ρ

1− ρ
1

m

m−1∑
`=0

1

c(T `ω)

and hence by pointwise ergodic theorem (6.30) is followed.
Similarly for m < 0 we will obtain the desired result.

For any ε > 0, by (6.30) there exists M > 0 such that for any |m| > M then∣∣∣∣ 1

Lλ

fλ(m)

m
− 1

∣∣∣∣ < ε. (6.31)

We now combine (6.29) and (6.31) to compute the limit of Eλ,ω
{
Xt
t

}
. Put

Iλ1 = Eλ,ω
{
Xt

t
1{|Xt|≤M}

}
− Eλ,ω

{
1

Lλ

fλ(Xt)

t
1{|Xt|≤M}

}
,

Iλ2 = Eλ,ω
{
Xt

t
1{|Xt|>M}

}
− Eλ,ω

{
1

Lλ

fλ(Xt)

t
1{|Xt|>M}

}
then ∣∣∣Iλ1 ∣∣∣ =

∣∣∣∣1tEλ,ω
{[
Xt −

fλ(Xt)

Lλ

]
1{|Xt|≤M}

}∣∣∣∣
≤ 1

t
Eλ,ω

{∣∣∣∣Xt −
fλ(Xt)

Lλ

∣∣∣∣1{|Xt|≤M}}
< ε

and ∣∣∣Iλ2 ∣∣∣ =

∣∣∣∣Eλ,ω {(1− 1

Lλ

fλ(Xt)

Xt

)
Xt

t
1{|Xt|>M}

}∣∣∣∣
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< ε

√
Eλ,ω

{
X2
t

t2

}
for t large enough. It follows that∣∣∣∣Eλ,ω {Xt

t

}
− 1

Lλ

∣∣∣∣ =
∣∣∣Iλ1 + Iλ2

∣∣∣ ≤ ∣∣∣Iλ1 ∣∣∣+
∣∣∣Iλ2 ∣∣∣ < ε+ ε

√
Eλ,ω

{
X2
t

t2

}
(6.32)

for t large enough. We see that if limt→+∞ Eλ,ω
{
X2
t
t2

}
exists then so limt→+∞ Eλ,ω

{
Xt
t

}
.

Proposition 6.3.1. For almost all environment ω,

lim
t→+∞

Eλ,ω
{
X2
t

t2

}
=

1

[Lλ]2
. (6.33)

Proof. We consider a function gλ ≥ 0, defined on Z, such that Lλ,ωgλ ≡ fλ and gλ(0) = 0.
For example, we can take

gλ(m) =



m−1∑̀
=0

1
c(T `ω)e2`λ

∑̀
s=−∞

e(2s−1)λfλ(s), if m ≥ 1

0, if m = 0

−
−m∑̀
=1

1
c(T−`ω)

e2`λ
−∑̀

s=−∞
e(2s−1)λfλ(s), if m ≤ −1

then Lλ,ωg(m) = f(m) for any m ∈ Z. Replacing m by Xt and take the expectation, one
has

Eλ,ω {g(Xt)} =
t2

2
, ∀t ≥ 0. (6.34)

The formula (6.34) can be rewritten as

Eω
{
gλ(Xt)

X2
t

× X2
t

t2

}
=

1

2

and note that if limm→∞
gλ(m)
m2 exists then so limn→+∞ Eω

{
Xn
n

}
.

The next step we will compute the limit of gλ(m)
m2 by using the pointwise ergodic theorem

and lemma 5.1.1.

Lemma 6.3.2. With function gλ defined as above

lim
m→±∞

gλ(m)

m2
=

1

2
[Lλ]2 . (6.35)

Proof. Consider the case m > 0. Put

ξ1 =
1

m2

m−1∑
`=0

ρ`

c(T `ω)

√
ρ

0∑
s=−∞

ρ−sfλ(s),
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ξ2 =
1

m2

m−1∑
`=0

ρ`

c(T `ω)

√
ρ
∑̀
s=1

ρ−sfλ(s),

ξ3 =
1

m2

m−1∑
`=0

ρ`

c(T `ω)

√
ρ
∑̀
s=1

ρ−ss.

By the definition of function gλ, we have
gλ(m)

m2
= ξ1 + ξ2. We will prove that

lim
m→+∞

ξ1 = 0 (6.36)

and
lim

m→+∞
ξ2 =

1

2
[Lλ]2 (6.37)

By (6.11) and lim
s→∞

fλ(s)

s
= Lλ then

0∑
s=−∞

ρ−sfλ(s) is bounded which completes (6.36).

Proof of (6.37). Replacing `− s by k we obtain

ξ3 =
1

m2

m−1∑
`=0

1

c(T `ω)

√
ρ
∑̀
s=1

ρ`−ss =
1

m2

m−1∑
`=0

1

c(T `ω)

√
ρ
`−1∑
k=0

ρk(`− k)

=
1

m2

m−1∑
`=0

`

c(T `ω)

√
ρ

`−1∑
k=0

ρk − 1

m2

m−1∑
`=0

√
ρ

c(T `ω)

`−1∑
k=0

kρk.

Since
√
ρ

`−1∑
k=0

π(T−kω)kρk is bounded by (6.11) and lim
`→+∞

√
ρ

`−1∑
k=0

ρk =

√
ρ

1− ρ
then by lemma

5.1.1, one has

lim
m→+∞

ξ3 =
1

2

∫
Ω

1

c
dµ

√
ρ

1− ρ
=

1

2
Lλ

Moreover, since lim
s→∞

fλ(s)

s
= Lλ then lim

m→∞
sup
s≤m

1

m
|fλ(s)− sLλ| = 0. It follows that

lim
m→+∞

ξ2 = lim
m→+∞

ξ3Lλ =
1

2
[Lλ]2

which completes (6.37).
Similarly, we get also the same result for the case m < 0.

For any ε′ > 0, by (6.35) there exists M ′ > 0 such that for any m > M ′ then∣∣∣∣ m2

gλ(m)
− 2

[Lλ]2

∣∣∣∣ < ε′/2. (6.38)

We now combine (6.34) and (6.38) to compute limt→+∞ Eλ,ω
{
X2
t
t2

}
. Put

IIλ1 = Eλ,ω
{
X2
t

t2
1{|Xt|≤M ′}

}
− Eλ,ω

{
2

[Lλ]2
gλ(Xt)

t2
1{|Xt|≤M ′}

}
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IIλ2 = Eλ,ω
{
X2
t

t2
1{|Xt|>M ′}

}
− Eλ,ω

{
2

[Lλ]2
gλ(Xt)

t2
1{|Xt|>M ′}

}
then ∣∣∣IIλ1 ∣∣∣ =

∣∣∣∣ 1

t2
Eλ,ω

{[
X2
t −

2gλ(Xt)

[Lλ]2

]
1{|Xt|≤M ′}

}∣∣∣∣
≤ 1

t2
Eλ,ω

{∣∣∣∣X2
t −

2gλ(Xt)

[Lλ]2

∣∣∣∣1{|Xt|≤M ′}}
< ε′/2

and ∣∣∣IIλ2 ∣∣∣ =

∣∣∣∣Eλ,ω {(X2
t

t2
− 2

[Lλ]2
gλ(Xt)

t2

)
1{|Xt|>M ′}

}∣∣∣∣
≤ Eλ,ω

{
gλ(Xt)

t2

∣∣∣∣ X2
t

gλ(Xt)
− 2

[Lλ]2

∣∣∣∣1{|Xt|>M ′}}
< ε′/2

for n large enough. It follows that∣∣∣∣Eλ,ω {X2
t

t2

}
− 1

[Lλ]2

∣∣∣∣ =
∣∣∣IIλ1 + IIλ2

∣∣∣ ≤ ∣∣∣IIλ1 ∣∣∣+
∣∣∣IIλ2 ∣∣∣ < ε′

for n large enough.

We have thus proved that limt→+∞ Eλ,ω
{
X2
t
t2

}
= 1

[Lλ]2
. From (6.32) we obtain

lim
t→+∞

Eλ,ω
{
Xt

t

}
=

1

Lλ
=

1− ρ
√
ρ

[∫
Ω

1

c
dµ

]−1

= (eλ − e−λ)

[∫
Ω

1

c
dµ

]−1

= d(λ).

Finally

lim
λ→0+

d(λ)

λ
= lim

λ→0+

eλ − e−λ

λ

[∫
Ω

1

c
dµ

]−1

= 2

[∫
Ω

1

c
dµ

]−1

.

Theorem 6.3.3. For almost all environment ω and for λ < 0

lim
λ→0−

d(λ)

λ
= lim

λ→0−

1

λ
lim

t→+∞
Eλ,ω

{
Xt

t

}
= 2

[∫
Ω

1

c
dµ

]−1

. (6.39)

Proof. The proof of this theorem is very similar to theorem 6.2.2 which modifies functions
fλ and gλ, defined on Z, as follows

fλ(m) =


−
m−1∑̀

=0

1
c(T `ω)e2`λ

+∞∑
s=`

e(2s+1)λ, if m ≥ 1

0, if m = 0
−m∑̀
=1

1
c(T−`ω)

e2`λ
+∞∑
s=−`

e(2s+1)λ, if m ≤ −1
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and

gλ(m) =


−
m−1∑̀

=0

1
c(T `ω)e2`λ

+∞∑
s=`

e(2s+1)λfλ(s), if m ≥ 1

0, if m = 0
−m∑̀
=1

1
c(T−`ω)

e2`λ
+∞∑
s=−`

e(2s+1)λfλ(s), if m ≤ −1

where ω is fixed.

Remark 6.3.1. We have proved that for λ 6= 0 and for almost all ω

lim
t→+∞

Eλ,ω
{
Xt

t

}
= d(λ) (6.40)

and

lim
t→+∞

Eλ,ω
{
X2
t

t2

}
= d(λ)2 (6.41)

with d(λ) = (eλ − e−λ)
[∫

Ω
1
cdµ

]−1. This implies that for ω a.s

Xt

t

P−−−−−→ d(λ) as t −→ +∞ (6.42)

where P−−→ is denoted as the convergence in probability.
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Glossaire

• P {A} : probability of an event A

• E {X} : mathematical expectation of random variable X

• D−−−−−→ : converges in distribution

• µ a.s : almost surely under measure µ

• 1{} : indicator function.
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