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Résumé

Nous étudions la mesure spectrale des transformations stationnaires, puis nous I'utilisons
pour étudier le théoréme ergodique et le théoréme limite central. Nous étudions égale-
ment les martingales avec une nouvelle preuve du théoréme central limite, sans analyse
de Fourier. Pour le théoréme limite central pour marches aléatoires dans un environ-
nement aléatoire sur la dimension 1, on donne deux méthodes pour I'obtenir: approxima-
tion pour une martingale et méthode des moments. La méthode des martingales fait ré-
soudre I’equation de Dirichlet (I —P)h = 0, alors que celle des moments résoudre 1’equation
de Poisson (I — P)h = f. Enfin, nous pouvons utiliser la deuxiéme méthode pour prouver
la relation d’Einstein pour des diffusions réversibles dans un environnement aléatoire dans
une dimension.

Mots clés : mesure spectrale, théoréme limite centrale pour martingale, martingale
approximation, marche aléatoire dans un environnement aléatoire, la relation d’Einstein.
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Abstract

We study the spectral measure for stationary transformations, and then apply to Ergodic
theorem and Central limit theorem. We study also martingale process with a new proof of
the central limit theorem without Fourier analysis. For the central limit theorem for random
walks in random environment, we give two methods to obtain it: martingale approximation
and moments. The method of martingales solves Dirichlet’s equation (I — P)h = 0, and the
method of moments solves Poisson’s equation (I — P)h = f. Finally, we can use the second
method to prove the Einstein relation for reversible diffusions in random environment in
one dimension.

Keywords :  spectral measure, martingale central limit theorem, martingale approxi-
mation, random walk in random environment, Einstein’s relation.
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Introduction

La mesure spectrale des transformations stationnaires associées & une fonction est bien
connue. Pour lapplication au théoréme central limite, en 1986, Kipnis et Varadhan [29)
ont donné une condition nécessaire pour obtenir le théoréme central limite dans le
contexte des chaines réversibles par resolution de 1’équation de Poisson via la résolvante.
Dans la suite, nous allons construire & nouveau la mesure spectrale pour une transformation
inversible ou réversible de la chaine de Markov et ensuite ’appliquer au théoréme ergodique
et au théoréme central limite. Le théoréme de Kipnis et Varadhan [29] est considéré comme
un exemple intéressant. Nous étudions également la mesure spectrale avec des valeurs dans
I’espace de I'opérateur.

Initié avec un résultat de Billingsley [2], Ibragimov [26] et ensuite Brown [§], le théoréme
limite central pour les martingales a été étudié et trés bien développés jusqu’ & pérsent (voir
Hall & Heyde [23]). Dans leur preuve, ces auteurs utilisent la fonction caractéristique. Dans
cette thése, nous allons étudier une nouvelle méthode pour le théoréme central limite,
surtout pour martingale, sans utiliser ’analyse de Fourier. Le point de cette méthode
est d’utiliser le developpement de Taylor a l'ordre 2 de la fonction f appartenant a C%,
combiné des idées adaptées de Linderberg ([36], 1922), Trotter (J48], 1959), Billingsley (|2],
1961), Brown ([8], 1971).

Le théoréme limite central pour la marche aléatoire sur un réseau stationnaire de con-
ductances a été étudié par plusieurs auteurs. En une dimension, lorsque conductances et
les résistances sont intégrables, une méthode de martingale introduite par S. Kozlov (|31],
1985) permet de prouver le théoréme limite centrale “Quenched”. Dans ce cas, la vari-
ance de la loi limite n’est pas nulle. Si les résistances ne sont pas intégrables, le théoréme
limite centrale “Annealed” avec une variance nulle a été établie par Y. Derriennic et M.
Lin (communication personnelle). Et puis, dans un document de J. Depauw et J-M. Der-
rien ([12], 2009), ils ont prouvé la version Quenched de la convergence de la variance par
une méthode simple qui utilise le théoréme ergodique ponctuel (voir [51]), sans utiliser
aucune martingale. Nous avons deux méthodes pour établir le théoréme de la limite cen-
trale Quenched pour la marche aléatoire réversible en milieu aléatoire sur Z. La premiére
méthode est d’utiliser 'approximation par une martingale et le seconde est d’adapter J.
Depauw et J-M. Derrien [12] sans utiliser aucune martingale. Pour la diffusion en continu,
le théoréme de la limite centrale Quenched pour le temp continu et ’espace discret sera
montré en détail par un moyen similaire. Enfin, nous prouvons la relation d’Einstein pour
des diffusions réversibles dans un environnement aléatoire dans une dimension.

Cette these est organisée comme suit:

11



INTRODUCTION

Chapitre 1: On construit & nouveau la mesure spectrale des transformations station-
naires associées a une fonction dans L? et ensuite nous donnons quelques exemples de
leurs applications pour le théoréme ergodique et le théoréme central limite pour les chaines
de Markov réversibles. La preuve du théoréme de Kipnis-Varadhan (1986) est montré
en détail. Nous rappelons aussi a la mesure spectrale avec des valeurs dans ’espace de
l'opérateur.

Chapitre 2: Nous donnons une nouvelle méthode pour obtenir le TLC pour les cas
d’indépendance des variables et des processus de martingale. Le point de cette méthode
est d’utiliser le developpement de Taylor & 'ordre 2 de la fonction f appartenant & C%(,
combinée a une technique nouvelle et des idées adaptées de Trotter (1959), Billingsley
(1961), Brown (1971),...

Chapitre 3: Les théorémes de Gordin-Kipnis pour les fonctionnels addives de chaines
de Markov stationnaire et puis pour la chaine de Markov partant d’un point sont passés en
revue. Ces théorémes sont trés classiques, mais nous détaillons les épreuves avec soin, parce
que ils sont trés utiles pour la convergence des marches aléatoires dans un environnement
aléatoire dans les chapitres suivants.

Chapitre 4: Ce chapitre est consacré a le TLC pour les marches aléatoires dans un
environnement aléatoire sur Z. Le TLC pour les marches aléatoires sera valide si la fonction
mesurable ¢ définie sur €2, 'espace des environnements, associée a la conductivité de ’aréte
et de son inverse appartiennent a L!. L’approximation par une martingale est utilisé dans
la preuve, adaptée de Boivin (1993).

Chapitre 5: L’objectif principal de ce chapitre est d’obtenir le TLC pour les marches
aléatoires dans un environnement aléatoire dans le chapitre 4 sans martingales. Plus pré-
cisément, la convergence est fondée sur les moments des variables. Un analogue en temps
continu et espace discret est donné.

Chapitre 6: Nous considérons la relation d’Einstein pour les marches aléatoires dans un
environnement aléatoire par la méme méthode que dans le chapitre précédent. Supposons
qu’il y a une dérive A # 0, nous allons étudier la convergence de léspérance de la marche
aléatoire lorsque la “drift” A tend vers zéro.

12



Introduction

The spectral measure for stationary transformations associated to a function is well-
known. For the application to central limit theorem, in 1986 Kipnis and Varadhan [29]
gave a necessary condition to obtain the Central limit theorem in the context of
reversible chains by solving the Poisson equation approximately via the resolvent. In the
sequel, we will build again the spectral measure for invertible transformation and reversible
Markov chain and then apply to Ergodic theorem and Central limit theorem. The theorem
of Kipnis and Varadhan [29] is regarded as an interesting example. We study also the
spectral measure with values in operator’s space.

Starting with a result of Billingsley [2], Ibragimov [26] and then Brown [§], the limit
theorey for martingales has been studied and very well-developed up to now (see Hall
& Heyde [23]). In their proof, they use characteristic fuction to obtain the limit. In this
thesis, we will study a new method for the central limit theorem, especially for martinggale,
without using Fourier analysis. The point of this method is to use Taylor’s expansion of
function f belongs to C%, combined some ideas adapted from Linderberg ([36], 1922),
Trotter ([48], 1959), Billingsley ([2], 1961), Brown (|§], 1971).

The Central limit theorem for random walk on a stationary network of conductances
has been studied by several authors. In one dimension, when conductances and resistances
are integrable, and following a method of martingale introduced by S. Kozlov ([31], 1985),
we can prove the Quenched Central limit theorem. In that case the variance of the limit
law is not null. When resistances are not integrable, the Annealed Central limit theorem
with null variance was established by Y. Derriennic and M. Lin (personal communication).
And then, in a paper of J. Depauw and J-M. Derrien ([12], 2009), they proved the quenched
version to obtain the limit of the variance by a simple method that is using the pointwise
ergodic theorem (see [51]) in their proof and without using any martingale. In this works,
we will two methods to establish the Quenched Central limit theorem for reversible random
walk in random environment on Z. The first method is using martingale approximation and
the second one is to adapt from J. Depauw and J-M. Derrien without using any martingale.
For the continuous diffusion, the Quenched Central limit theorem for continuous time and
discrete space will be proved in detail by a similar way. Finally, we prove the Einstein
relation for reversible diffusions in random environment in one dimension.

This thesis is organized as follows:

Chapter 1: We construct again the spectral measure for stationary transformations
associated to a function in L? and then we give some examples for their applications to
the ergodic theorem and the central limit theorem for reversible Markov chain. The proof

13



INTRODUCTION

of the theorem of Kipnis and Varadhan (1986) is showed in detail. We also mention to the
spectral measure with values in operator’s space.

In chapter 2: We give a new method to obtain the CLT for independence case of
variables and for martingale processes.

Chapter 3: The theorems of Gordin and Lifsic for additive functional of stationary
Markov chain and then for stationary Markov chain started at a point are reviewed where
we use martingale approximation in the proof. These theorems are very classical, but we
draw the proofs carefully because they are very useful for the convergence of random walks
in random environment in the next chapters.

Chapter 4: This chapter is devoted to CLT for random walks in random environment
on Z. In there, the CLT for random walks will be validity if the measurable function ¢
defined on €2, the space of environments, associated to conductivity of the edge and its
inverse belong to L!. Martingale approximation is used in the proof, adapted from Boivin
(1993).

Chapter 5: The main aim of this chapter is to obtain CLT for random walks in random
environment in chapter 4 without martingales. More precisely, the convergence is just
based on the moments of the variables. An analogue for continuous time and discrete
space is given.

Chapter 6: We consider Einstein’s relation for Random walk in Random environment
by the same method as in the preceding chapter. Assume that there are a drift A # 0, we
will study the convergence of the expectation of Random walk when the drift A goes to
Zero.

14



Chapter 1

Spectral measure for stationary
transformations. Applications to
Ergodic theorem and Central limit
theorem

1.1 Spectral measure for invertible transformation

1.1.1 Invertible stationary transformation

Consider an invertible stationary transformation € defined on a probability space (€2, A, ),
such that =1 is stationary (i.e measure preserving). The associated operator is defined by
Tf = fof. It is an unitary operator if

/QTf-gduz/ﬂf-T‘lgdu

for any f,g € L*(Q,C).
In the sequel, we will consider T as an operator defined on a stable closed subspace
H C L?. An example is H = L% the space of nul expectation functions.

1.1.2 Spectral measure associated to a function

Let f € L?(u). We denote by H(T, f) the smallest Hilbert space which contains all
functions T* f, for k € Z:

n

Lo ()
’H(T,f):{Zakaf;nZL an,...,ane(C} .

k=—n

Theorem 1.1.1. Assume f € L%(u). There exists a positive measure py on C such that
the map U defined on C[X] by U (3p__, axX¥) = Y4 _ axT*f can be extended to an

15



1.1. SPECTRAL MEASURE FOR INVERTIBLE TRANSFORMATION

1sometry

U Lpp) — H(T.S)
h — W(h).

Moreover jig can be chosen such that the operator 1L defined on L?(uys) by (ILh)(t) = th(t)
satisfies Woll =T o W,
Proof. For k, ¢, m integers, we consider
|77 T ds

Q

Y(m) = / T"f- f dp.
Q

One has

k=) = (T5f) = (TRTf) = clk0)

L2(Q,C) L2(Q,0)

and
(k) = (T*f, Pizec) = T e = TFF P 2qe = 1(=k).

Let (ag)k=1,. » a finite sequence of complex numbers. Put g = Y"1 ;a; 7" f then

n n

SoXaaii-g) = D3 aw (T 1) e = <ZaiTif,ZaiTif >
=1 =0

i=0 j=0 i=0 j=0
= (9:9) = l9ll72(0) > 0.

L2(Q,0)

Thus, v is a positive definite function. By the classical Herglotz’s theorem, there exists a
positive measure f15 on [0, 27] such that

2

v(k) = /eikaduf(ﬁ)

o

for any positive integer k.

For k is negative integer,

We have thus proved that
2r
k) = [ s o) (1)

for any k is integer. One also deduces
2w )
90 = [ dus = 171 (1.2

16



1.1. SPECTRAL MEASURE FOR INVERTIBLE TRANSFORMATION

In the sequel, using the change of variable § — z = €%, we consider that ¢ is a measure

on C (with support C S' = {z € C, |z| = 1}). Thus, formular (1.1)) is rewritten as follows

1) = [ g (a) (13)

Sl

Denote @ [X] be the set of polynomials @ such that Q(X) = > apX*. For any
k=—m

polynomial @ € @ [X], we define

V(@) = > aTf (1.4)
k=—m
For any polynomials @1, Q2 € Q [X], one has

% apz® % Wduf:/ % % akszduf

g1 k=—m1 {=—mo g1 k=—my {=—mo

= gl: §2: akbg/zszduf: gl: §2: akbg/zk_éduf
S S

[ @@y
J

k=—m1 f=—mo k=—m1 f=—mo

= > Y wbnti-0= > Y abd(TH T

k=—m1 l=—mgo k=—m1 l=—mgo
= /‘I’(Q1)‘P(Q2)du-
Q
It follows that
(@)l 22wy = 1@nllz2(uy)- (1.5)

Since pf has support in [0, 27], for any h € L?(uy) then there exists (Qn)n>1 C L%(uy)
such that @, — h in L?. Therefore, for any € > 0, there exists M > 0 such that Vn > M

/RQn —h|? dpy <e. (1.6)

One has [[¥(Qm) — ¥(Qn)llr2() = @m — @ullr2(u,) — 0asm,n — oo. Thus, ¥(Qn)

is also a Cauchy sequence. Since L?(yuy) is complete, ¥(Q,,) converges in L?*(u) and we
denote

U(h) = lim T(Qn). (1.7)

n—oo

We will show that this limit does not depend on the sequence (Qp)n>1 by the following
lemma:

Lemma 1.1.1. For any sequence (Q))n>1 — h in L*(uy), then (¥(QL))n>1 — (h) in
L*(p).

17



1.1. SPECTRAL MEASURE FOR INVERTIBLE TRANSFORMATION

Proof. One has

1(Qn) — ©(h) ]l L2 1%(Qy) — U(@n) + ¥ (Qn) = Y (h)l| L2()
19(Q7) = U (Qn)llL2(uy + 1(Qn) — (1)l L2,
1@n = QullL2gayy + 1¥(Qn) — U(A) 12

1Q% = PllL2upy + b = Qnllz2guy) + [1¥(Qn) — ¥ (R)|| L2 ()
then (1.6) and (1.7 ensure that lim, . ¥(Q),) = ¥(h). O

By lemma and by the linearity and continuity of W,

IAIAIA

1O (W) 3erp) = Jim 19 (Qn) 3z ) = Jim 1QnlZ2(,) = IRl 2., )-
We deduce that the map ¥ : Q — Q(T')f can be extented to a isometry

U Lpp) — H(T.S)
h — W(h).

which proves the first part of Theorem [1.1.1

Let II be the operator defined on L?(us) by (I1h)(2) = zh(z). We will show that
Yoll=To0oW.
@ For any polynomial h(z) = 3 axz¥, then ITh(z) = 3 apzF!. Tt follows that
k=0 k=0
(PIDh(z) = Y a TFf =T (Z apT* f) = (TU)h(z).
k=0

k=0

@® For any h € L?(uuf). There exists a polynomial h,, which converges to h € L?(uy).
We have
lim ITh;(z) = lim zh;(z) = zh(z)

1—00 1—00
and "
U(IThi(2) = Y al) TELf = T (hy(2)).
k=0
Therefore, for i — oo we obtain W (IIh(z)) = T¥(h(z)). Hence, we have the result
Uoll=ToU. (1.8)

O]

1.1.3 Application to ergodic theroem

Definition 1.1.1. The operator T is ergodic if Th = h for some h € L?(u) then h is
constant.

Theorem 1.1.2. (Von Neumann). Assume that T is ergodic. For any f € L*(u) the
following limit holds in L?:

n—1
1 k
nhﬁnolonkgOT f—/f dp. (1.9)

18



1.1. SPECTRAL MEASURE FOR INVERTIBLE TRANSFORMATION

Proof. We begin with the following lemma:
Lemma 1.1.2. For any z € C such that |z| = 1, then

n—1 2
. 1
nh—>120 (n kz 2F — 11{1}(7:)) = 0. (1.10)
=0

Proof. Tt is obvious to see that (1.10]) holds for z € {—1,1}.
For any z € C/R such that |z| = 1, we have

n—1 n—1
1 11-—2"
- 1 — E_ ~
D A ) =) =
k=0 k=0
which completes
1 n—1 2
- k_ -
nh_}nolo <n 2 z ]l{l}(z)) 0
on St ={z€C,|z| =1} O

Proof of theorem (1.1.2  Since < 2, the dominated convergence

n—1
% kg—:o 2k — ]1{1}(,2)

theorem ensures that

n—1 2 n—1

. 1 . 1
0 = nlLH;o - sz — 1y ()| dpy = nlLIEO - sz — 1y (2)
k=0 k=0 L2(py)
1 n—1
= lim ¥ ( > - 1{1}(z)>
" k=0 H(T,f)
We have thus proved
n—1
1 . :
nll_}rglo - kZOka =hin L? with h = ¥ (ﬂ{l}(z)) . (1.11)

Moreover, since zl13(z) = 1g3(2), Vz € C implies that ¥ (2141y(2)) = ¥ (1413(2)).
Using the fact ¥ o II(h) = T o W(h), one has ¥ (z133(2)) = T o ¥ (1{13(2)) and hence
Th = h. It follows that h = ¢ (constant) since T is ergodic. And since the transformation
is stationary,

/T’“fdu:/fdu, Vk >0

and so
1 n—1
/Zkad,u—/fdu. (1.12)
n
k=0
Combine ((1.11)) and (1.12]) one has
n—1
. 1 k
nILII;O/nkZ_OT fd,u—c—/fd,u.

which completes the proof of theorem [1.1.2 O
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1.2 Spectral measure for reversible Markov chain

1.2.1 Markov Chain

Suppose (Xy,)n>0 is a stationary Markov chain defined on a probability space (€2, A, 1)
with p-initial distribution and (X, B) be the state space. A stochastic kernel (transtion
probability) is a map P : X x B — [0; 1] such that:

e r+— P(x,A)is B-measurable for any A C B.

e A+—— P(x,A) is a probability measure for any z € X.

It also acts on the space B(X') of bounded, measurable functions by

Pf(x) = E{f(X1)/Xo = }. (1.13)

1.2.2 Reversible Markov Chain

Consider a Markov operator P defined on a probability space (2,4, ). We suppose
that the associated Markov chain (X,,)n>0 with initial law g is reversible, i.e.:

Definition 1.2.1. The Markov chain (X,)n>0 with transition operator P and initial law
w is reversible is P = P* in L*(u):

| Pieadn= [ 1P
for any f,g € L?(Q,C).

In this situation, (X,),>0 is a stationary Markov chain, i.e [ Pf du= [ f du.
In the sequel, we will consider P as an operator defined on a stable closed subspace
H C L?. We recall
1P fllz2
|Plly = sup ==

(1.14)
20 (1 1eze)

so we have ||P|lzy < 1 (but not necessary = 1). An example is H = L2 the space of nul
expectation functions.
1.2.3 Spectral measure associated to a function

Let f € L?(u). We denote by H(P, f) the smallest Hilbert space which contains all
functions P* f, for k > 0:

p La(p)
H(P, f) = {ZakPkf; n >0, ake(C} )

k=0
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1.2. SPECTRAL MEASURE FOR REVERSIBLE MARKOV CHAIN

Theorem 1.2.1. Assume f € L*(u). There exists a positive measure py on R such that
the map W defined on C[X] by W (X p_garX¥) = Sp_gaxP*f can be extended to an
1sometry

U L(u) — H(P.S)
h — W(h).

Moreover jig can be chosen such that the operator 11 defined on L*(uys) by (ILh)(t) = th(t)
satisfies Woll = Po .

Proof. For k, £, m positive integers, we consider
c(k,0) = [ P*f-PLf dp;

P™f. fdpu.

S—S—

and for s,t,u € R

o= (is)k(—it)*
wist) = 33 B 0,

kgo() ZZ.O
o) = 3 )
m=0 ’

One has

X o= (is)F(—it)* . ‘
P(s,t) = ZZW <Pkf,Plf> _ <62$Pf,eZtPf>

k=0 ¢=0

= (eCTPL ) = ols— 1)

since eitP = ¢~ P and P = P*. Hence, (s,t) = ¢(s — t).
Moreover |p(u)| = [(e™"f, /)l < €™ fll 2l fll 22y < IIf172(,- Then, the domi-
nated convergence theorem follows that lim ¢(u) = ||fHL2( In addition, ¢(0) = ||f||L2
u—0 D) ()
follows that ¢ is continuous at 0.

Let (ag)k=1,. n a finite sequence of complex numbers, and (si)g=1,...» a finite sequence
of real numbers.

ZZakaw Sk — S¢) <Z Z (isx) me,ZakZ m?umf>

k=1 (=1

Put g =30 a0 %me, one has

m:O

n

; < Z\@k\

n

llsk!
Sl 32y < S et 51 < .
k=1 m=0 k=1

IN

> Ll pny

m=0

lgll

IN
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1.2. SPECTRAL MEASURE FOR REVERSIBLE MARKOV CHAIN

hence, g € LQ(M) and Zzzl Z?:l axaed(sk — s¢) = ||g||L2 () > (.
Thus, ¢ is a positive definite function. By the classical Bochner’s theorem, there exists
a positive measure py on R such that

o) = [ ey (®) = iy w). (1L.15)
R
One also deduces that
j50) = [ ding = 6(0) = 113 (1.16)
R

By the definition of derivative of ¢

] + h) (z)( ) ) ( (uth) ezut)
¢ () ) h B0 h i
tht 1)
= 1 wut (6 d
nso) © h Hf
since ‘&};1)) < 2|t| < oo, the dominated convergence theorem follows
¢ (u) = z’/temtd,uf
and similarly
¢m(u) — im/tmeiutd'uf'
Furthermore, by computing directly the derivatives of ¢, we also have
¢"(0) = i"vy(m)
Hence, one has
Am) = (P 1, 1) = [ ¢y, (1.17)
Denote @ [X] be the set of polynomials @ such that Q(X) = 3 azX*. For any
k=0
polynomial @ € Q [X], we define
= Z apP*f.
k=0
Then, for any polynomials @1, Q2 € Q [X] we have
L mi1 mo mi1 m2
/QledW = Zzakbg/tk+fdu =D arbey(k + 0)
R k=0 =0 k=0 ¢=0
mi1 Mma
= > apbec(k, ) / (Q1)¥(Q2)du
k=0 ¢=0
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1.2. SPECTRAL MEASURE FOR REVERSIBLE MARKOV CHAIN

It follows that
(W(Q1), ¥(Q2)) 2y = (Q1, @2)2(sp)

and hence
(@)l 22wy = 1@nllz2 () (1.18)

Lemma 1.2.1. py has a bounded support.

n
Proof. For any g € H(P, f), then g = 3 a3 P*f for some a;, € C.
k=0

apt®. We have
0

Put Q(t) =

k

1P() 13,y = IPOE@) 22, < IPWsp 1@ 20,

n

then
/ 21Q()2dpy < P2y, / Q1) .

It follows that [t| < ||P|[3p,s), pts a-s. So, support of py C [—HPH’H(PJ‘), I Pll3cp.p)] -
O

By lemma [1.2.1} for any h € L?*(uy) then there exists (Qn)n>1 C L*(us) such that
Qn — hin L?. So, for any € > 0, there exists M > 0 such that for any n > M then

/\Qn—h|2 duy < e. (1.19)
R
Furthermore, (Qy)n>1 is also a Cauchy sequence, and so we have

19(Qm) = B Q)220 = 1@ — Qull ey = 0 as m,n — o0

Hence ¥(Q,) is a Cauchy sequence also. Since L?(uy) is complete, ¥(Q,) converges in
L?(p) and denote

U(h) = lim T(Qn). (1.20)

n—o0

Lemma 1.2.2. For any sequence (Q))n>1 — h in L*(uy), then (¥(Q)))n>1 — W(h) in
L* ().

Proof. One has

(@) — T (n)] [U(Qn) = ¥(Qn) + ¥ (Qn) — T(h)]

< %(Qn) — ¥(Qn)]l + [19(Qn) — T (h)]
< Qn = Al + (I = Qull + [1¥(Qn) — ¥(R)]|
then and ensure that lim,_, ||¥(Q),) — ¥ (h)|| = 0. O
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Therefore, by the linearity and continuity of W,
19 (W) 3y 5y = Jim 19 (Qu)lFyps) = Jim. 1Qnl 72,y = 1RlI72(,, -
We deduce that the map ¥ : Q — Q(P)f can be extented to a isometry

U Lpy) — H(PS)
h —  W(h).
which proves the first part of Theorem [1.2.1
Let II the operator defined on L%(us) by (IIh)(t) = th(t). For any polynomial

h(t) = 3 apth. We have ITh(t) = > apt**! and then
k=0 k=0

(VIDA(t) = > apPFHf=P (Z anP* f) = (PU)(h(t)).

k=0 k=0

For any h € L?(uy). There exists a polynomial h,, which converges to h € L*(uys). We
have

lim TTh;(t) = lim th(t) = th(t)

1—00 1—00

and

U(Mh(t) = > alV PEHf = PO(hy(t)).
k=0
Therefore, for i — oo we obtain W (I1A(t)) = P¥(h(t)). Hence, we have

Uoll=Pol (1.21)
which completes the proof of Theorem [I.21] O
Denote S(us) the support of fiy:
S(pf)={t: Ve >0,pup[t —e,t+¢] >0}.

Proposition 1.2.1. We have || P|[3(p ) = subsesu,) Itl-

Proof. Since ¥ is an isometry from L?(uf) onto H(P, f)

IPllypy = sup  [|1P(9)llup,p = sup [P W (h)ll3p,p)
lglle(p,r)=1 ¥ (R l3(p,py=1
= sup ||V -IL(A)|lygppy =  sup  [IL(A)[|2(uy)
HhHLZ(Mf):l ”h”LQ(uf):l
= sup  [th(t)llL2(u)-
HhHL2(Mf):1

We have also
sup  [[th()llr2upy < sup [t [MB)]lz2u,) < sup [t-
”h”LQ(,uf):l HhHLQ(Hf):l tES(/Lf)
teS(py)
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We will prove that this inequalities is equalities. Put tg = sup |t| and for each 1 <n € N,
teS(uy)

1
let t,, € S(us) such that |t, —to| < —.
n

tn+

1p(t,,1/n) Where ¢, = / dps > 0 since t, € S(uy) and B(t,,1/n)

3=

1

n

Choose h,, =

th—1

be the open balls have radius 1/n and center at t,, then |[hy[/z2(,,) = 1. By computing,

tn+1/n
1
chnHLQ(uf) = — / t2dpyg, Yn>1.
\/C
" th—1/n

For n is large enough,
||thn||L2(‘uf) ~ ’tn| ~ t()

Hence,

sup  |thallz2(u,) =to = sup [t
Hh"”LQ(Hf) d teS(uy)

S0,

[Pl = sup |[thllraq,) = sup [t].
HhHLQ(Mf) tES(/.Lf)

Corollary 1.2.1. S(uy) C [—1,1].

Indeed, since || Py (p) = sup [t[ <1 we obtain the desired result.
teS(py)

1.2.4 Application to ergodic theorem
Definition 1.2.2. P is ergodic if Ph = h for some h € L?(p1) then h is constant.

Proposition 1.2.2. Assume that P is ergodic. For any f € L?(p) the following limit holds
in L?:

B
T}E&n;]g f_/f du. (1.22)
Proof. Consider
=yt 00 if t=-1
" =0 1 if t=1

Then we have
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1 n—1

Since |— Z th — I413(t)| <2, the dominated convergence theorem ensures that

n
k=0
1 n—1 2
. k _
nhﬁ\l{.lo 5Zt — 1y (t)| duy=0
k=0
1 n—1 1 n—1
lim || @ <n >t ]1{1}(t)> Jim | =Ty (t) 0.
k=0 H(P,f) k=0 L2(uy)

It follows that

lim =0 in L* with h = W (1 (t))

n—1
1
f§ PEf—h
n

k=0

and hence, we obtain
n—1

: 1 ke _ 1 : 2
nh—{réoﬁzp f=hin L*.
k=0
Moreover,
t]l{l}(t) = ]l{l}(t), vVt e R

\I/(t]l{l}(t)) = \I/(ﬂ{l}(t)) = Ph=h=—h=c

where ¢ is a constant since P is ergodic. On the other hand, since the Markov chain is
stationary,

/Pkfdu:/fdu, Vk >0
then

Jigrra e oo

Hence, we deduce that

n—1
2 ke _ 72
nl;rgonkz_on /fd,ulnL.

1.2.5 Application to Central limit theorem
1.2.5.1 Variance principle

Proposition 1.2.3. Assume that f € L3(n). There exists g € H(P, f) such that f = g—Pg
if and only if

1
/_1 (1_175)2 dus (1) < +oo. (1.23)
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In this case, setting 0]2@ = |lg|> — |IPg||* we have

Y1+t
7= [ T st (1.21)

Proof. We will prove the sufficient and necessary conditions of this lemma.

1
Suppose that (1.23)) holds , then h(t) = 13 € L?(uy), and hence (1 —t)h(t) =1 €
L%(uy). It follows that U(h) — W(th) = ¥(1) = f. Put g = ¥(h), then f = g — Pyg.
Conversely, if there exists g € H(P, f) such that f = g — Pg. We recall the operator ¥
which is isometry

U L2(,uf) — H(P, f)
1 — f=9(1)
— g =Y(h).

One has
Pg = P(¥(h)) = ¥(IL(h)) = V(th(t)).

Since f = g— Pg, then U(1) = U(h(t)) — ¥ (th(t)) and so ¥(1—h(t)+th(t)) = 0. It follows
1
that 1 — h(t) + th(t) = 0, implies h(t) = —— G L%(uys). Hence, we obtain (|1.23).
We deduce also

o = oy — 1Polrs = 19 ) — 190 By
1 1 2 1 ¢ 2
= gy 100 gy = [ (125) aust = [ (1) dusto)
P14t
= /_ll_tdﬂf(t)-
which completes ((1.24)). O

We consider the power series expansion (1 —¢)/2 =1 — PO a;jt/, where a; = 1/2 and

a-9H..G-1-3

a; =

We have a; > 0 for j > 1 and Zjoil a; = 1, so for a contraction P in a Banach space
L?(p) the series Z;; aj P’ is absolutely convergent in the operator norm, and defines a
contraction Pj /5 (see Derriennic and Lin [13], page 95).

Definition 1.2.3. For a contraction P in a Banach space L*(u), we define
o .
VI-P=I-Pp=I-Y aF.
j=1

Remark 1.2.1. There is another definition of /I — P with spectral theory (see mn
remark [1.3.3, section 1.3).
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Proposition 1.2.4. Assume that f € Li(u). There exists ¢ € H(P, f) such that f =
VI — Pg' if and only if

LN
/ _t dug(t) < +oo. (1.25)
—1

Proof. Suppose |i holds, then f_ll ﬁduf(t) < oo since % +1= ﬁ Put h(t) =
L_ < 12(uuy), then

Vi—t
1 =+1—th(t) € L*(uy). (1.26)
Lemma 1.2.3. Put o1 =/1—1t € L?(uy). Assume that ps and @102 € L*(uys) then
U (p1p2) = 1(P) 0 ¥ (p2) . (1.27)
Proof. There exists a sequence of polynomials @, = 1 — Z?Zl ajtj converges to (1 in

L%(uys). One has

Quipa = (1= ajt!)pa € L*(py)
j=1

since )y, continuous on [—1,1] and so bounded. Applying formula ¥ oIl = P o ¥, then

V(Qup2) = (o) + 0> ajtips) = U(pa) + Pou(d ajt*Lpy)
Jj=1 j=1

= |1+ a;P7| 0 ¥(pa) = Qu(P) 0 ¥(p).
j=1

For n — oo, the bracket tend to /I — P, one has ¥ (¢1¢2) = VI — Po W (¢2). O

Apply lemma for (|1.26)), , one has
V(1) =+vI1—-PY(h)=f.

Put g/ = \ll(h) [ H(P’ f)’ then f — mgl
Conversely, if there exists ¢’ € H(P, f) such that /T — Pg’ = f . Put

q=Vi—t, @=Yv"'()
then ¢1,¢2 and q1g2 € L?(us). Applying lemma one has
Y(q1g2) = qi(P) o ¥(g2) = f = ¥(1).

It follows that
U(l—-qq)=0

then
1

1
©= == L)
which completes ((1.25)). O
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We recall here Markov chain (X,,),>0 with initial law p is reversible. Denote

Sn =Y f(X).
k=1

512

Proposition 1.2.5. Assume that f € L3(n). Then sup, E {"} is finite if and only if
n

holds.

Proof. Firstly, one has

E{f(X)/Xo =2} = / () P*(, dy) = / ) / PFL(z, dz) P(z, dy)

= /PfQ(z)Pkl(x,dz) =...= /PklfQ(t)P(a;,t)
= P'fi(a)
and for 1 <k < ¥ <n,

E{/(X)f(X0)/Xo} = B{E{f(Xi)f(X)/Xs}/Xo} = E{/(X0)E {f(X¢)/Xs} /Xo}
E{ f(X0) P! F(X0)/ Xo } = PH(FPH£)(Xo).

Therefore,
5721 1 2 1 . k(2 2 k (—k
{3} - efle(sixg} =i r{Ptm+ 2 S B{P¢ P 0]
k=1 1<k<t<n
1 n
- = PR dy + 2 PE(F- PR A
n;/ (/) %/ (- P ) dy
1
= [Pawsl S (P = [ (162 S e gt
™ <het<n -1 " <h<t<n
1
= [ o

with R, (t) = 14 2 5021 S0 ¢
Lemma 1.2.4. We have

lim hy,(t) —

n—oo

=i —l<t<1
0 if t=-1

Moreover, if t € [0,1) then the limit is monotone; and if t € [—1,0) then |hy(t)| < 1.

Proof. e Consider the case |t| < 1,

n—oo n—o0

lim h,(t) = lim <1—|—
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e Consider t = —1,

hon(—1) = 0,
n—+1
li nt1(—1) = 1 —-1+2 =
i a1 (=1) 7£&( +2n+J
One obtains
lim h,(—1) = 0.
n—oo

e It is clear that if t € [0,1) then h,(t) is a positive increase sequence, the limit is
monotone.

e Consider ¢t € [-1,0), then —1 < 212;1 t* < 0. Tt follows that —1 +2/n < h,(t) <1
implies |hy,(t)] < 1.
O

Denote by M the space of invariant functions by P, that is
M={pel’(n): Pp=p}.
Lemma 1.2.5. For any f € ML in L?(p), then us({1}) = 0.

Proof. For any ¢ € M
0 = (fip)=(f,Pp)=(Pf,¢)= <P’“f,s0>, Vk >0

= <ZakPkf,go>, Vn >0,a;, € C

k=0

It follows that M L H(P, f).
Let h = 1y13(t) € L*(puy) then, there exists g = W(h) € H(P, f) such that
190B2cp.0y = 18132y = [ Lty (® diag(®) = (1)
On the other hand, by the definition of function h we have th(t) = h(t),Vt € R, then

U(th(t)) = P(Vh(t)) =
V(th(t)) = P(nr(t) =g

and so Pg = g. It follows that g € M implies g € M NH(P, f) = {0} then HgH%(Pf) =0
and hence pr({1}) = 0. O

Now, we return the proof of the proposition [I.2.5] Firstly, we prove the necessary
condition. Assume that f 1 %*tduf( ) = 400, we have

L O 14¢ T14¢
+oo = / duf(t)z/ ——dpg(t) + 7dﬂf()
1t 1t o 1
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< /duf /l_tdﬂf

then we obtain fol %du #(t) = +00. By the monotone convergence theorem,

1 1 1
fim [ haOdns) = [t ha @iy = [ g0 = 4.

n—o00 n—00 1

Moreover, by the dominated convergence theorem, one has

0 0
0< lim lhn(t)duf(t):/ lim hn(t)d,uf(t):/l %duf()<+oo.

n—oo | _ _1n—00

We have thus proved that

1 0 1
lim hp(t)dpg(t) = lim hi(t)dps(t) + lim hn(t)dpy(t) = 400

n—oo J_4 n—oo [_q n—o0 Jq

Thus, lim E {Sg/n} = +4-o00. This is a contradiction.
n—oo
Conversely, if (1.25) holds then

) - [l vl |
< /_1 dpg(t) /d#f()<+00

Furthermore, by the dominated convergence theorem

0 0 0
tim [ hale) dist) = / lim o (£) duf(t):/_lmdﬂf(t)

n—00 _1n—0o0

and by the monotone convergence theorem

n—oo n—oo

1 1 1
fim [ ha(t) dug(t) = /0 lim hn(t)duf(t):/o L ).

Hence,

n—00 n n—o0

52 0 1 L]y
lim E{"} = lim ha(t) dpg(t) + ILm hn(t) dpg(t) :/ ——dpy(t).
-1 n—=o0 Jo —-11=

1.2.5.2 Central limit theorem for reversible Markov chain

Theorem 1.2.2. (Kipnis - Varadhan, 1986) Assume that (Xj)kez is a stationary ergodic
reversible Markov chain and f € L3(un) satisfies

1+t
/ 1:% < +o0 (1.28)
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then the sequence
1

7n
where Sy, =Y ) f(Xk ) and crf fll Ty (t

Sy —2— N (0,0%) (1.29)

Proof. For any € > 0, then ||P|72¢,) <1+ ¢. It follows that (1 +¢)I — P invertible and
denoted by
[(1+ &) = P]™" = ¢e(P) = [:(P)]" (1.30)
and there exists u. € L?(u1) such that
(14 ¢e)us — Pu. = f. (1.31)

We will investigate the behavior of u. as ¢ — 0. Put

Je= 1T —euc (1.32)
then
Pu. —u.+ f- =0 (1.33)
and put
n—1
Mg =3 [ue(Xpr) = ue(Xp) + fo(Xp)] (1.34)
k=0

then for each £ > 0, M is a martingale with respect to F,, = (X, X;,—1,...). Indeed, by

using the fact
Ph(Xy) = E{h(Xps1)/ Xk} (1.35)

for any function h € L?(u), from (1.33) we have
E{M 1 /Fn} = My +E{[ue(Xni1) — ue(Xn) + fo(Xn)] /Fn}
= M; + Pu.(X,) — ue(Xn) + fo(Xn)
= M;.

Now, for each € > 0, then 5,, is decomposed as follows

where
n—1
& = [ue(Xpt1) — ue(Xg)] s
mo= D (Xk) = f(X0)] =D euc(Xy).
k=0 k=1

The next step we will show that .S,, can be written as

Sp =M, +&, (1.37)

1
where M,, is a martingale with respect to F,, and lim, o, —E{¢2} = 0.
n
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Lemma 1.2.6. For each n > 1,

lim M: = M, exists in L*(). (1.38)

e—0

Proof. Since M} is a martingale with stationary increments, to show that M has a limit
in L%(p), it is suffient to check that

lim M7 = lim{u:(X1) — us(Xo) + f-(X0)}

e—0 e—0

= lim{u.(X;) — Pu-(Xo)} exists in L*(p). (1.39)

e—0

Since L?(Q, u) is complete, we need to check only that {u.(X1) — Pu.(Xo)}, is a Cauchy
sequence as follows

lim E {[(ual — ue,)(X1) — Plue, — u€2)(X0)]2} = 0. (1.40)

€1,e2—0
We have
E{[u(X1) - PuXo)’} = E{u?(X1) - 2u(X1)(Pu)(Xo) + (Pu)*(Xo0)}

= E{u*(X1) — 2E {u(X1)Pu(Xo)/Xo} + (Pu)*(Xo)}
E {uQ(Xl)é} —E{(Pu)*(Xo)}

= (u,(I —P)u). (1.41)
Applying the above formula for v = u., — u,,, then (1.40) becomes
lim  (ue, — ey, (I — P?)(ue, — Ug,y)) = 0. (1.42)
£1,e2—0

From equation ((1.31]), we have
u. = [(1+e)I - P  f = (P)f.

Using the reversibility of the chain i.e P = P*, we have

(tey = ey, (= PP, — ) = (I = P*)[pu,(P) = s (P 1. f)
(@(P)f. 1)

where ®(P) = (I — P?)[p2,(P) — ¢e,(P)]*. We recall

1

(P™f, [) = / t"dpug(t) (1.43)
-1
and more generally that
1
GPI = [ ot Vo€ ). (1.4
Since ®(t) = (1 —t?) (1+511—t - 1+512_t>2 € L*(uy) then by (1.44

1

(@(P)f. f) = / D (t)dy (1)

-1
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1.2. SPECTRAL MEASURE FOR REVERSIBLE MARKOV CHAIN

Without losing the generality, we can assume that €2 > 1 > 0, one has

(82 —e1)*(1 = %) e3(1— )

R (e Z ey A (i
L+t
-1t

then ((1.28)) ensures that +Et is integrable with respect to duy. By the dominated conver-
-t g f
gence theorem, we obtain

1
lm  (ue, — ue,, (I — P?)(us —ug,)) = lim O(t)dps(t) =0

€1,62—0 e1,e2—0 J_1
which completes ([1.38)). O
Lemma 1.2.7. We have
. 2 o
gl_l%aHugHLz(u) =0 (1.45)
and for eachn > 1,
lim 75 = 0 in L*(u). (1.46)
e—0

Proof. By the definition of 7 it is easy to see that ([1.45)) implies (1.46]). To obtain (1.45)),
we consider p?(t) = (lﬁ%t)g € L*(uys). By 1' one has

1 1
9 € 1
= P = —dur(t —dus(t .
flwe) = (RPN = [ i) < [ i) < +oc
By the dominated convergence theorem, we have thus proved ([1.45]). O

Now in (|1.36)), it remains &;. It will be treated by the following lemma

Lemma 1.2.8. For eachn > 1,

lim &8 = &, exists in L*(p) (1.47)
e—0
and 1
. 4 2V _
Jim S E{[6|7} = 0. (1.48)

Proof. Since S, = MS + &5 + 15, and is independent of ¢ > 0, (1.38) and (1.46|) imply
(1.47). Furthermore &, = S,, — M, hence for every ¢ > 0

fn:Mz_Mn"Féfz"’_n?Er

Since M: — M, is a martingale with stationary increments, using Cauchy-Schwarz’s in-
equality

1 1

CE{&) = E{IMZ - M+ &+l

E € _ 2 é €12 § £12
“EA{IM; =Mo"} + —E{IG ) + —E{|n [}

IN
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1.2. SPECTRAL MEASURE FOR REVERSIBLE MARKOV CHAIN

3 3
= 3E{|M{ - M*} + EE{|§Z|2} + EE{WZF} .

Using ([1.38)
lim E {|M§ — M;|*} = 0.
e—0

Therefore it is sufficient to choose ¢ = 1/n and then show that
: 1 1/n2| _ /m2
nh_}rrolo EE{\gn | } 0 and hm E{|77n | }
Clearly,

E{I6"?} = E{lun(Xa) = un(Xo)?} < E{<|u1/n<xn>| + s n(X0))* }
E{2|u1/n( n)|2 +2]u1/n X() | } S 4{E\u1/n(X0)]2}
4<u1/nau1/n> = o(n).

A

by ([1.45). Similarly
9 1 n—1 n—1 2
E{ n } = [n > w1 /n(Xk) > ’ul/n(Xk)’]
k=0 k=0

< % {nZ\ul/n Xi)| }SE{|U1/n(XO)|2}

= <u1/n7u1/n> - O(Tl)

2
1/n
n

O]

We now return the proof of theorem[1.2.4 Combine (1.38)), (1.46) and (1.47) then by
(1.36) one has

1 1 1
= Mt =6 (1.49)

with M, is a martingale with respect to F, and lim, s %E {|§n|2} = 0. Therefore, it

remains to show that 1

7
to complete the proof of theorem Set Y,, = M,, — M,,_1 with My = 0, then (Y,,)n>1
is a stationary ergodic sequence and by (|1.41])

M, —2— N (0,03) (1.50)

Var(y1) = E{!MﬂQ}—E{Ml}zzgg)E{\MﬂQ}—;g%E{Mf}Q
= lim (ue, (I~ Pu.) — lim B {ue (X7) — ue(Xo) + f-(X0)¥?

b1—t
_ /1duf(t)—0—(f]2c.

By the hypothesis (1.28), Var(Y1) is finite. Moreover,

E{Y,/Yn-1,...., Y1} =E{M,, — My,_1/Xp_1,..., X0} = 0.
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1.3. SPECTRAL MEASURE WITH VALUES IN OPERATOR’S SPACE

Hence, (Y;,)n>1 satisfies Billingsley’s theorem which is stated and proved on page 51 (the-
orem , we recall it for convenience: Suppose the sequence of (Xp)p>1 be stationary

and ergodic such that Var {Xl} = E{X?} is finite and

E{X,/X1,..., X, 1} =0, a.s. (1.51)

n
Then the distribution of LZX;C tends to the normal distribution with mean 0 and
NLD
variance E{X?}.
Applying this theorem for (Y,,)n>1, we have
L= LYW 2N (0,07
vn Vi &= i

with aj% =E {Yf} = f_ll %—:;d,uf(t) which completes (|1.50)). O

1.3 Spectral measure with values in operator’s space

In the sequel we consider the general case of a bounded operator P is self-adjoint, i.e
P = P* (not necessary a Markov operator).
1.3.1 Spectral measure with values in operator’s space

We recall that
S(ug)={t:pplt —e;t+¢] >0, Ve >0}

In this section we will study the relationship between S(u¢) and spectral measure with
values in operator’s space.

Proposition 1.3.1. There exists f € H such that for any g € H the measure pig is
absolutely continuous with respect to .

We say that f has the maximal spectral type.

Proof. ® Let f' € H(P, f)* then (P™f, P {2 =0, ¥Ym,n > 0.
There exists finite positve measures py, piyr, prp4 - such that:

jistu) = [ eyt
i) = [ edupe)

frpp(u) = / edpup g (t).

We have
o) = 3 iy gy pa )= 3 W e g gy ey )
m=0 m=0
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1.3. SPECTRAL MEASURE WITH VALUES IN OPERATOR’S SPACE

= > - 3 O ) = gt + i
m=0 m=0

then /Lerf/ = /Lf + /,Lf/
@ Select g1,92,...,9n, ... a complete orthonormal set in H.
© Put fi = g1, let Py, be the orthonormal projection on H(P, f1).
© Put fo = g2 — Py, (g1), let Py, be the orthonormal projection on H (P, f2).

© Put fri1 = gr41—Pr (9r41) = Ppy(Gr41) —- - - — Py, (gr41), let Py, be the orthonormal
projection on H(P, fr41).

We see that each H(P, f;) is invariant under all > apP* and H(P, f;) L H(P, f;) if
k=0
i#j.
Hence,

H=HP HEPHP LD ... PHEP)EP. -

since for each n, g, € H(P, f1) D H(P, f2) D ... D H(P, fn).

Set,

1 1 1 1

f=ghtght tofat.. =) fieH.
k=1

We have

1 1 1 1

,ufz§Mf1+?uf2+...+2fn,ufn+...:z2—kufk<oo
k=1

and so pr(A) = 0 if and only if py,(A) = 0 for any 7 = 1,2,3,.... Hence, uy, is absolute
continuous with respect to py (denote piy, < piy).

Moreover, for any g € H, we can decomposite g followed by f1, fo, fs,... . Therefore
ftg is absolutely continuous with respect to py and so f has maximal spectral type. O

Lemma 1.3.1. If f and f' have maximal spectral type, then S(us) = S(pyp) (Denoted
S(P) in the sequel).

Proof. If f, f’ have maximal spectral type then puf < pp and pp < py. So, py and pug
are equivalent.

We recall that

S(pg) = {t:pfplt—et+e] >0, Ve >0}
S(up) = {t:pplt—et+el >0, Ve >0}

Suppose t ¢ S(us), then there exists € > 0 such that ps [t —e;t+¢] = 0. It follows that
pp [t —est+e]l=0and sot ¢ S(up).
In the converse, t ¢ S(uys) then t ¢ S(uy). Hence, S(ug) = S(us) = S(P). O
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1.3. SPECTRAL MEASURE WITH VALUES IN OPERATOR’S SPACE

Theorem 1.3.1. The map >, apth — Y ieo apP* can be extended to an isometry from
the space C(S(P)) of continuous functions on S(P) with norm of uniform convergence, to
the space L(H) of linear bounded operator with the usual operator’s norm.

Proof. & For any polynomial R(X) = >, apX*, we define the operator R(P) on H by
R(P) = Y7 P
Let us consider the restriction of R(P) on H(P, f). If

g=U(Q)=> bP"f
k=0

then

R(P)g = Zn: ay P <Zn: by, P f) = Zn: Zn: agbp PF f = U(RQ).
=0 k=0

=0 k=0
For any g = W(h) with h € L?(py), there exists (Qn)n>1 — h such that

For n — oo, by the continuity and linearity of ¥, we obtain

R(P)g = U(Rh).

Hence,
|R(P)|lpyy = sup  [|R(P)gllucp,p = sup W (RR)|3(p,f)
llgll(p, r=1 (PP, 1) =1
= sup  [[Rh|[z2(;) < sup [R(1)]-
1Al 20, =1 €5 (1ug)

We will prove that this inequality is equality. There exists tg € S(uy) such that

[R(to)| = sup [R(t)]
teS(uy)
1
and for each 1 <n € N, let ¢, € S(pus) such that |t, —to| < —.
n
tnt

1
Choose hy,, = ﬁlB(t"’l/") with ¢, = / dpg > 0 since t, € S(uy) and B(t,,1/n)
ty—+

be the open balls have radius 1/n and center at t,, then ||hn\|L2(M) = 1. By computing,

tn+1/n
1
Rl L2(up) = —= / R2(t)dug, Vn > 1.
Cn
\/7 th—1/n

For n is large enough,
[Rhn|[ L2,y = [R(tn)] = [R(to)]-
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1.3. SPECTRAL MEASURE WITH VALUES IN OPERATOR’S SPACE

Hence,
sup || Rhn|lr2(u) = [R(to)| = sup |R(?)]
Hh"”Lz(uf) teS(py)

S0,
I1R(P)llsppy = sup [R@AlL2uy) = sup |R(H)].
HhHL2(Mf) teS(uy)

Suppose that f € H be a maximal spectral type , then

IR(P)#ps) = sup [R(t)]=sup sup [R(t)| = sup||R(P)|lyry = [R(P)|n
teS(uy) gEH tES(1g) geH

and hence | R(P)[ = supqes(p) |R(1).
@ Let P be the linear subspace of C(S(P)) consiting all polynomials, where C(S(P)) is
the space of continuous functions on S(P) C R .

Define:

¢p: P — L(H)
R +— R(P).

then ¢ is a linear transformation such that ¢(QR) = ¢(Q)¢p(R) for all Q,R € P and
o) 22y = IR(P) |l 22y = subrespy [1R(E)| = | Rllc(s(py)- So, ¢ is isometry.

Moreover, since P is dense in C(S(P)), ¢ can be extended to an isometry from C(S(P))
with uniform convergence, to the space L(#H) of linear bounded operator on H, with the
norm of operators since £(#) is a complete space. O

Usually, © is denoted as a Radon measure dE with values in £L(H):
O(h) :/ h(t)dE(t). (1.52)
S(P)
Proposition 1.3.2. For any f € H and for any h € C(S(P)), we have
/@(h)f cfdu= /h dpg. (1.53)
This equality is usually denoted by

(dE)f, f) = dus(t) (1.54)

Proof. Denote P be the linear subspace of C(S(P)) consisting all polynomials.

If h = R(t) € P then ©(h) = 3 axP*. Hence,
k=0

n n
[t fau=3 ark) =S ax [ tdns = [ nduy
k=0 k=0
If h € C(S(P)) then there exists a sequence (R, (t)), in P which converges to h and
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1.3. SPECTRAL MEASURE WITH VALUES IN OPERATOR’S SPACE

[ e®)r- fan= [ Rty

For n — oo, by the dominated convergence theorem, it follows that

[ e fan= [ hu.

1.3.2 Approximate eigenvalues
Definition 1.3.1. A bounded operator A is normal if A- A* = A*- A

Definition 1.3.2. The spectrum of P is the set X(P) of A\ € C such that P — X\ is not
invertible (as a bounded Hilbert operator of L*(11)). The resolvent set is its complementary
Q(P)=C\ X(P).

Denote p(P) = supyex(p) |A| the spectral radius.

The aim of this paragraph is to prove the following theorem

Theorem 1.3.2. We have ¥(P) = S(P).

To prove this theorem, we prove that these two sets are equal to the set of approximate
eigenvalues, defined as follows

Definition 1.3.3. A complex number A € C is an approrimate eigenvalue if there exists
(fn)n such that || fullr2(u) = 1 and ||(P — M) fallp2(u) — 0 for n — oo.

Denote V(P) the set of approximate eigenvalues.

Proposition 1.3.3. We have 3(P) = V(P).

Proof. We need two steps:

The first step is to prove that V(P) C > (P). Let A € V(P). If X € Q(P) then
P — M is inversible. For any f € L?(u),

£l = 1(P = ADTHP = ADFIL < [|(P = AD)THI(P = AL f]

and so

I(P = ADFI = ([P = AD)THITHIAL

This implies that [[(P—AI) fu | > [[(P=AI)7![|7! > 0 for any (f,)n such that || f, |12, =1
and hence, A ¢ V(P). This is a contradiction! We deduce that A € > (P) and therefore
V(P) C Y (P).

And, the second step is to prove ) (P) C V(P). Let A € C and X € V(P), we will
prove that A € X(P) by showing that P — Al is invertible. In the proof, we will use the
fact that is for any normal operator A, then Ker(A)* = Im(A).
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1.3. SPECTRAL MEASURE WITH VALUES IN OPERATOR’S SPACE

We first prove that Im(P — AI) = L?(u). Since P is normal and (P — M\ )* = P* — \I,
then

(P—=X)(P—=X)* = (P—A)(P*—X)=PP* - \P* -~ AP+ \\I
(P* = X)(P— X)) = (P—\)*(P—\)

and hence P — Al is normal. It follows that Ker(P — AI)* = Im(P — AI). Moreover,there
exists € > 0 such that Vf € L?(u1) then

(P = ADfIl = el f1]-
If f € Ker(P— AI) then (P — AI)f =0. We have

0=[[(P=ADf[ Zellfl = Ifll=0=F=0
Thus,
Ker(P — M) = {0} = Ker(P — AI)* =Im(P — \I) = L?(p).
Now, we will prove Im(P —\I) = L?(u). Let (gn)n be a sequence in Im(P — AI) tending
to g € Im(P — AI). Then, there exists (fn), C Im(P — AI) such that g, = (p — ) fp.
We have

Hgm _gnH = H(P_ )‘I)(fm - fn)” > €||fm - fn”? Vm,n € N.

Since g, — g € Im(P — \I), then (gy), be a Cauchy sequence. And hence, (f,), be also
a Cauchy sequence in Im(P — AI). Then, 3f € Im(P — \I) : f, — f. By the continuity of
P — )1, we have

(P=X)f=(P—-XI) lim f, = lim (P—AIl)f, = lim g, =g.
n—oo n—oo n—oo

It follows that g € Im(P—AI), implies Im(P—\I) is closed, and hence Im(P—\I) = L?(u).
Finally, we prove that P — I is invertible. Since Im(P — AI) = L?(u), then P — \I

is one to one onto L?(u). Thus, P — Al be a bijection and so there exists unique linear
transformation (P — A )~! from L?(u) onto L?(x). We will show that (P — AI)~! is also
bounded. For any g € L?(u), there exists f € L?(u) such that

(P-X)f=g= f=(P-X)"ly.

Since
lgl = (P = ADFIl = el fll = el (P = AD) g
then )
I(P = AD)~g|l < —llgl
and so

—_

P— )7 <=
P-An7 <!
Therefor, P — AI is invertible. It follows that A\ ¢ ¥(P). We finish the proof.
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Proposition 1.3.4. We have S(P) = V(P).

Proof. We need also two steps to prove this proposition.

Firstly, we prove that S(P) C V(P). Let f € H and ty € S(us) and claim that
to € V(P). Tt is sufficient to show that there exists a sequence (f)n>1 C L*(11) such that
[ fallz2gy = 1 and Tim (P —tol) fall L2(u) = 0.

t0+1/n
Let f, = \/T]'(to Unito+1/n) With ¢, = [ dpuy > 0. Then by computing, || full22(,.,)
to—1/n
1, ¥n > 1. One has
Jim [[(P—toD)fullraqy = lim ((P? = 2toP + 1) fu, fu)
= lim ((P*fu. fu) = 2t0(Pfu, fu) + t6{fu: fu))
t0+1/n
1
— 1 i — 2 =
= nlggo - / (t —to)?dpys = 0.
tofl/n

And the second, we will prove that V(P) C S(P). Assume that f of maximal
spectral type and to & S(uy). For any (fy)n>1 such that || fnllz2( = [ duy, = 1, we claim

that H(P — tO)fn”L2(u) 7L> 0.
Since f is a maximal spectral type, then pyf, < py and there exists (hy)n>1 such that

dpy, = hndpy for any n > 1 and /hnd,uf = 1. Since ty € S(uy), there exists € > 0 such
that pf [to — e;t0 + €] = 0. We have

(P = toD) fall7eqy = /(t—to)Qdufn:/(t—to)thdeZ / (t — to)*hndypuy

[t—to|>e
> g2 / hnduf:€2>0
[t—to|>e
since /hndy = / hpdpy = 1. This shows that to ¢ X(P) or V(P) C S(P). O
|t—t0|>£
Remark 1.3.1. Let ) in the resolvent set. We have
(P—M\I)~ / 7dE (1.55)

1
Indeed, let us consider h(t) = P with A € C/S(P), it is a measurable bounded

A
function. And th(t) is also bounded.
One has (t — A\)h(t) = 1 and hence (P — M )h(P) = I. It follows that (P — A\I)~! =
h(P) = O(h) if A € Q(P). Thus,
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(P =D f) = (P f) = [ BOdns ) = [ gt
and we deduce that
(P—M\I)~ / tidE
S(P)
Remark 1.3.2. We can use this theory to define /I — P as follows
VI—P = / V1 —tdE(t). (1.56)
S(P)

Remark 1.3.3. Note that all preceding questions in subsection and subsection
are still valid if T is unitary operator: T* = T~ exepted remm’k because z — \/z
is not defined on C. We can prove that X(T) is a closed subset of S' = {z € C; |z| = 1}.
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Chapter 2

The proofs of Central limit theorem
for martingales without Fourier
analysis

2.1 Introduction

The main aim of this chapter is to use a new way without Fourier analysis to obtain
again the CLT for martingales. About the CLT for martingales, they are very classical, we
can find out in many works of Billingsley (1961, [4]), Brown (1971, [§]),... So, in our works
here, we are just interested in the method to obtain again theorem. What is the method?

Let’s us begin with an elementary proof of the CLT of Trotter in his paper [48] in 1959.
In there, Trotter used operator’s method to obtain the CLT for indentically independent
distributed (iid) variables and non iid random variables. That is, for any function f € Cp,
the set of bounded continuous functions, he introduced a linear operator associated to
random variable (rv’s) X with distribution function F

T (o) =E{f(@ +9)} = [ £+ p)iF (). (21)
Then he used the fact
lim |Tx, f — Txf|| =0, VfecC? (2.2)
n—oo
to prove that the sequence of random variables X7, Xo,..., X, ... converge in distribution

to random variable X.

In the sequel, we will use the similar way without operator to obtain again the CLT
for the cases of iid, non iid variables. The point of our method is using Taylor’s expansion
of a function up to the second derivative. It is necessary to give the proof for independent
cases in detail, because it is useful for martingale cases. For martingales, we will adapt also
some ideas from Billingsley [4] and Brown [8]. We thank also to Lindeberg for his proof in
[36], in there he used a similar way but he needed more conditions for random variables.

We review the fact that a sequence of random variables (X, ),>1 converge in distribution
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to rv’s X if and only if
lim E{f(X)} = E{f(X)} (23)

for any function f € Cp, the set of the bounded continuous functions. However, we need
more properties about function f. We think of the following lemma.

Lemma 2.1.1. Suppose that sup, {E(X?2)} and E{X?} are finite.
For any function f € C%, the set of functions f € C? with support compact. Setting

In(f) = E{f(Xn)} —E{f(X)}. (2.4)

If lim I,(f) =0, then (X,)n>1 converge in distribution to rv’s X.
n—o0 -

Proof. We decompose the proof into two steps:

Step 1. For any function g € Ck, there exists a sequence of functions g € C% such
that g — ¢ in L*°. We have

In(9) = E{g(X») —g(X)}
= E{g(Xn) — gx(Xn)} + E{gr(Xn) — gr(X)} + E{gn(X) — g(X)}
< 2|lg — gklloo + In(gr)

SO we get
110 (9)] < 2/lg = frlloo + [ n(fr)]-
For n — oo and then for k — oo, we will obtain lim,,_,« I,(g) = 0.
Step 2. For any function h € Cg. We claim that lim I,,(h) = 0. Let

0? = max {Var(X), sup [Var(Xn)}} .

By Chebyshev’s inequality, for any € > 0, there exists M. > 0 such that

Var(X,) < o?

Mz T M2

Var(X) _ o2
<

M2 = M2

)

P{|Xn|ZM6} < =&,

P{IX]=> M} <

=E€.

We define a continuous function g. on R by

h(z) if T € [~ M., M,]
gE(x) = go(l‘) Zf HAIS [_ME - 17 _ME] U [M€> Ms + 1]
0 if otherwise,

where |go(x)| < |h(z)|. It is easy to see that g. € Ck.
We have

Ii(h) = E{h(X,) - h(X)}
= E{h(Xpn) = g:(Xn)} + E{ge(Xn) — 9:(X)} + E{ge(X) — h(X)}.
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Since

E{h(Xn) — ge(Xn)}

E{(h - ge)(Xn)}
E{(h — g)(Xn)1x,>any b+ E{ (B — go)(Xn)1qx, <00} }

< b= gellooP{|Xn| > M} +0-P{|X,] < M.}
< hfles - e
Similarly,
E{g:(X) = h(X)} < ||hlloc - €
Therefore

L ()] < 2¢[|hllsc + Lu(g:) | implies Tim_ |, (1)] < 22][A]oc

For ¢ — 0, we get the desired result that is lim, o In(h) = 0. That means (X;)n>1
converges in distribution to rv’s X.

O]

2.2 CLT for sequence of independent variables

In this section, we will use lemma to obtain the CLT for iid variables and non
iid variables. This is the case of independent random variables, adapted some ideas from
Trotter [48].

2.2.1 Indentically independent distributed variables

Theorem 2.2.1. Consider a sequence (Xy,)n>1 of iid random variables. Assume that they
n

are centered, and have finite variance 0. Then the distribution of ﬁ > X tends to the
k=1

standard normal law N'(0,1) when n — .

Proof. Denote by (Y,,)n>1 a sequence of iid gaussian random variables N'(0; o), indepen-
dent of the first sequence. Put

X1+ Xo+...+ X,

Vn = \/ﬁ )
Wn _ Y1+Y2\‘/i‘ﬁ+yn

For any function f € Cg. Setting

Since the distribution of W,, ~ N(0, 1), the theorem would be proved if we prove that
lim I,,(f) = 0. However, by Lemma above we need only to prove lim I,(f) =0 for
n—00 n—o0

any function f € C2, the set of functions f € C? with support compact. Setting

Us=(X1+Xo+ ...+ X))+ Yies1 + Yo+ ...+ Y,).
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We have
- U Uk—1
Vo) — f(W,) = — | =
- - S ()15
- X Yy
= Zo+ 2R g, 28
>l (ae ) -1 (2 )
where Z, = X1+X2‘\;%+Xk—1 + Yk+1+YIv—ﬁz+m+Yn'
Also, by Taylor’s expansions
X B X 1 X?
2+ 3E) = s@+r@Tespron n
Y Y; 1
Hzr) = s@+r@) T vy,

for some M}, and Ny such that |My — Zi| < |Xg|/+/n and |Ny — Zy| < |Yi|/+/n. Thus, we
have

f <Zk + f;%) f <Zk + 3;%) = (2 (Xf _ f) f( 2n)Xk f”(];l;)Ykz

2 2
- (-5 g (2
M) — f”(Zk)‘X2 ["(Nk) = J"(Zk) Y7

2 n 2 ‘n
= hLh+DL+13—14

By independence of the random variables Xy, Yi, Z, and E{X} =E{Y} =0, E {X,f} =
E {YkQ} = 02, the expectation of I + I is null and the remainder is I3 — I4. Since f € C%(,

for any £ > 0, there exists § > 0 such that |z — s| < 0 then |f"(2) — f"(s)| < e. It follows
that

(I3 — I < *llf"lloo (Xkﬂ{|Xk|>5f} + Y 1{\Yk|>5\f}) (Xk +Y().
Thus, the upper bound of E {f (Zk + f) f (Zk + f)} is

7o (B{XEL sy} + B {1 sy ) + 5, (SR} +EOZD).

Taking the sum on k =1,2,...,n, we have

Il < ”f"”mrll,i (B{XE vy ) + B {I U smy }) + 2™
=1

For n — oo, we see that lim |I,(f)| < eo?. Since ¢ as small as we need, the theorem [2.2.1
n—oo

is proved.
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2.2.2 Non indentically distributed variables

Suppose (Xp)n>1 be a sequence of independent random variables which does not have
n
the same distribution. Assume that E{X;} =0, E{X?} = o7 and denote s2 = Y o7, we
k=1

have the theorem as follows

Theorem 2.2.2. If for any § > 0, we have

hm 7ZE{XkH{|Xk\>5Sn}} (25)

n—00 §2 —

then the distribution of = Z X}, tends to the standard normal law N(0,1) when n — oco.
Condition (2.5 (m) is called Lmdeberg s condition.

Proof. Denote by (&,)n>1 a sequence of iid gaussian random variables N'(0; 1), independent
of the first sequence. Let (Y},),>1 be a sequence of random variables such that Y;, = 0,,&,,
independent of (X,,)n,>1. Put

X1+ Xo+ ...+ X,
Vn == )

Sn
Yi+Yo+...+Y,
Sn '

W, =

For any function f € C%, we consider

L(f) = E{f(Va)} — E{f(Wn)}.
Since the distribution of W,, ~ N(0,1), the theorem would be proved if we prove that
lim I,,(f) =0.
n—oo
Set Uy = (X1 4+ Xo+ ...+ Xi) + (Vg1 + Yero + ...+ Y,). We have:

=g = 5[ (5) - (52)]

k=1

- Elrer2)-o(ae2)]

k=1 TL ’I’L

X1+Xo+.. 4+ XK1 + Yet1+Yeqo+. . +Yn

Sn Sn

Also, by Taylor’s expansions

where Z), =

2
(2+3E) = Ha)+ @3k + g onik,

2n
(z+) - f<zk>+f<zk>y’“+§f”< 0k
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for some My, and Ny such that |[My — Zx| < | Xk|/sn and [Ny — Zx| < |Yk|/$n. Thus, we
have

" " 9
f <Zk + fk) —f (Zk + ?“) = f(Z) (X” - ) f (232)Xk _T(NR)Y

n Sn Sn 252
X, Y 1 X2 Y2
- f(Z “on _on (T 2k Tk
iz (3 Sn)+2f<k>(3% g
f”( K = f"(Z) Xi T (NR) = 1 (Ze) Y
2 s2 2 s2

= h+L+13—14

By independence of the random variables Xy, Yy, Zg, and E{X} =E{Y} =0, E{X}?} =
E {YkQ} = 0"%, the expectation of I + I5 is null and the remainder is I3 — I4. Since f € C%(,
for any £ > 0, there exists § > 0 such that |z — s| < then |f"(2) — f"(s)| < e. It follows
that

I3 — 14 <2 Hf"||oo (XPgx, 56501 T Y L{va|6s01) + (Xk: +Y7).

Thus, the upper bound of E {f (Zk + f—f) —f (Zk: + %)} is

3z 1o (E{XR1gx, 50801 ) + EAYE Ly 50s03 1) + ( (X} +E{Y7}).

Taking the sum on k =1,2,...,n, we have
1 n
1| < Hf"Hoo;2 > (E{XRIx0 0501} T E{YP Ly 56501 }) + €
" k=1

For n — oo, the proof of this theorem will be completed if we show that (Y3,),>1 also
satisfies Lindeberg’s condition ({2.5]).

For any £k =1,2,...,n, we have

E{Y (v, |56} } = ORE {Y ]1{|y|>5m}} < o E {YZH{Y>5M}} :
73

where 0; = r&ax{ak} and Y ~ N(0,1).
n

Again, taking the sum on k = 1,2,...,n, we have

"kl

= ZE{YkH{|Yk|>5S 1< IE{Y {|Yl>m}}. (2.6)

And, the last one, since

1 — 1 1
S Y E{XAxpan} 2 SE{ Xm0 ) 2 5 (0F - E{XP1(x 100 })
TL _ n n
. 1 o\ 2
> gled-r- () -
n n
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by Lindeberg ’s condition 1j of (Xy)n>1, for n — 0o, we have lim sup(22)? < §2 for any
n—oco
6 > 0. Thus, lim z—] = 0. Finally, in 1) for n — oo we have

n—oo °n

1
lim — > E{Y2 1y 565} = 0.

n—oo
" k=1

2.3 Central limit theorem for martingales

We begin with Billingsley’s theorem for stationary martingale.

2.3.1 Stationary Martingale Central Limit theorem

Theorem 2.3.1. (Billingsley, 1961) Suppose the sequence of (Xp)n>1 be stationary and
ergodic such that Var {X1} = E{X?} is finite and

E{Xn/Xl,...,anl} == 0, a.s. (27)

n
ZXk tends to the normal distribution with mean 0 and

1

Then the distribution of 7

n
k=1

variance E{X?}.

Proof. To prove this theorem, we may assume the process is represented in the way of
Billingsley [4]. Let € be the Cartesian product of a sequence of copies of the real line,
indexed by the integers n = 0,£1, £2,.... Let X,, be the coordinate variables, let B be the
Borel field generated by them, and let P be the probability measure on B with the finite
dimensional distributions prescribed by the original process. Let F,, = o(Xp, Xpn-1,...)

then by (12.7)
E{X,/Fn-1} =0, a.s. (2.8)
forn=0,+1,42,....
Let 02 = B{X2/F,_1} and let 0 = E{o2} = E{X?}. If T is the shift operator then
02 = T"o3. Since the hypothesis of the sequence of (X,),>1 then T is ergodic, it follows
by the ergodic theorem that

R 2
nh_)n(r)lo - Zak =0°, a.s. (2.9)
k=1
Let ¢2 =02 4 ...+ 02, put my = min{n : ¢> >t} for t > 0, let ¢; be the number such
that 0 < ¢ <1 and qfnt_l + ctaglt =t, and finally, let Z; = X1 + ... + Xp,—1 + e X,
We see that my is well defined and so other variables by the following lemma

Lemma 2.3.1. Fort > 0 and m; defined as above, then
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i) Ift < oo then my < oc.
SIS ~
i) Jim my = oo
Proof. For t < oo, suppose that m; = oco. Then we have m; — 1 = oo, (2.9) shows that

qfntfl = oo. It follows that qfnﬁl > t. This is a contradiction, hence, m; < oco. This
proved 7).

2
For ¢ — oo, suppose my < N < oo then s?\, < o0. By 1} sup%” < oo. Hence,
n

q]2v < oo and so q?nt < ‘]12\/ < t. This is a contradiction, hence, m; = oo. This proved
i1). O

Furthermore, we have the second lemma for m;.

Lemma 2.3.2. As above, m; = min{n : g> >t} for t > 0, then we have
t
lim — = o (2.10)

Proof. For any § > 0, we have

qu_%<%<i<%_
mye mye my myg my

By (2.9) and lemma this lemma would be proved if we can show that

2
lim 2% = 0. (2.11)

n—oo n

Applying lemma [3.4.7], then for any £ > 0
o0 2 o0 2 2
o o 1 o
Pq—2 > = P{2>ny < -E{X?) =",
; { n E} ; { € n} T e { 1} €

By Borel Cantelli 's lemma, one has % < ¢ a.s for n large enough which completes
(2.11)). O

About Z;, it will plays an important part in our proof because we in the sequel can
show that )
— 7, —2 5 N(0,1) as t — co. (2.12)

Vit

And hence, the proof of the theorem will then be completed by showing that

n
> Xi— Zyg
k=1

To prove (2.13)), we will use (2.10) and Kolmogorov’s inequality for martingales. This is
adapted from Billingsley (1961). From (2.10)), given € > 0, choose ng such that if n > ng

then m
2 -
P{ —- —072‘ >53} <e
no

> s} =0, Ve>0. (2.13)

n—-+00

lim P {n_1/2
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it follows that
P {|m,,2 —n| > 53n02} < e.

¢
8} <e —I—]P’{ max
a<t<b
- 7 lk=a

If n > ng then

P {n_1/2 ”
k=1

ZXk_chrQ > ZXk Zgn

1/2}
3

where a = n — [5 naQ] and b=n+ [53n02]. By Kolmogorov’s inequality for martingales

ZX }Sié (X2} < 8eo?.

max
a<t<b

We have thus proved that

P {n_1/2

if n > ng, and we finish the proof of ([2.13]).
The remainder is to prove (2.12]), we define new variables by

n
> Xy = Zno

k=1

> 5} < (1+80%)e

Xk = Xk]l{mt>k} + Xkctﬂ{mt:k}. (214)
For m; > k, that means g7 = Ele 0? < t implies {m; > k} is Fj_j-measurable. Sim-
ilarly, {m; > k — 1} is Fj_j-measurable and {m; < k} is the complement of {m; > k}
is also Fj_i-measurable; it follows that {m; =k} = {m; >k —1}N{m; <k} is Fp_1-

e
measurable, and hence ¢;1{,,—x) is Fr_1-measurable since ¢; = ! Z’;fl on {m; = k}.
k
Therefore, if &,% =E {)N(,%/}"k_l}, then we have
G2 = oxlpmesky + GOl iy (2.15)

and so

i&,ﬁ = (2.16)

k=1
except on a set of measure zero. Moreover, we also have E {X k /]—"k_l} =0,a.s.

Adjoin to the space random variables &1, o, . .., each normally distributed with mean
0 and variance 1, which are independent of each other and of the Borel field B. If we put
new variables

X1+ Xo+ .o+ Xpy + Gni1bntr + Gnaanyr + . )

77n=\2<

then n, = Zt, for any n > m;. Moreover, since E {ng/B} =0, E {770/8} = Zak =1,

Vi =

then 7y has the standard normal distribution because of the independence of (&;);>;. For
any function f € C,% we set
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00 =e{1 (z) - fw | =SB U@ - Sy @D
k=1
If we put
W, = \}E (Xl + X0+ 4+ X1 + Gn1bnst + Ongobnga + - )

then by Taylor’s expansions, we have

125 1 1
fow) = FWe)+ f/ (W)t 12X + §f”(Mk)t "X}
_1/2~ 1 1~
flmer) = JOWe) + [ (Wit™2on8s + 5 " (Nt 576
for some M}, and Ny, such that | My —Wy| < \Xk]/\/f and | Ny —W4| < |61&k|/V/t. Therefore
we have the following calculation

1

P = Flme) = FOV) - (Xe—0ae) + 3/ (MOXE + o 1 (N)FE

Vit
M 1, Y
= P (R s + g8 ) (57 - 168
b (PO = 7 0V0) KE = 3 (7/(N) = 100) o€}
= h+DL+13—14 (2.18)
We have
E{h} = E{E{L/&,B}}
1 /-
= E {\/i <Xk: - 5’k§kz> E {f/(Wk)/fk,B}} .
If we put
1 /-~ - -
Wl = = (X1+X2+...+Xk_1)
and 1
Wi = 7i (Okr1&k+1 + Opy28kt2 + -+ -)
then

F W) = (W + W§)

and the law of W} knowing {&k, B} is Fj_1—measurable, the law of W2 knowing {&, B}
0o k
1 . 1 o\ .
~N (O, n sz_:H U?) ~N (O, 1-— n ; a%) is also Fj_1—measurable. They follow that
E {f’(Wk)/ﬁk, B} is Fj_1—measurable. And hence

E{L} = E{;%E{(Xk_&kfk)E{f/(Wk)/fkaB}/Fk1}}
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- oLtz o) ]
0.

Similarly, we have also

1

{gE{rm (32 - 52¢2) r6.. 5}

— 5 {y; (%2 - 53) ("W).}

= E{;E{<X§ —Uk k)E{f” Wy /gkaB}/}—k 1}}
1

. E{%E{f (Wi) /. BYE{ (X7 - 57}) /i 1}}
.

E{l,} = E

o~

And the remainder is I3 — Iy. Since f € C%, for any € > 0, there exists § > 0 such that
|z — s| < d then |f"(z) — f"(s)|] < e. It follows that

m g ~242 € (w2 o 5242
13 = Lal < I oo s XiLg %, 5508} + Tk€k 5,6 050v2) T 55 (Xk + kak) :
Thus, the upper bound of E{(f(nx) — f(nk—-1))} is

17| E { {Xk]l{‘ka(;\[}/]:k 1} {&iiiﬂ{msmm}}}

+eE {;E {X/Fea ) +E {62@%}} :

Taking the sum on k =1,2,..., we have

N——

- f(no)}‘

> (o {881 sy 7t} + {0 i}
e {515} +ote] |

1 [E {Xiz]l{mpa\/i}/fk—l} +E {5ifzﬂ{|5kgk\>5\/$}” }
e {3 e {xma) it

[E {Xz]l{|)~(k|>5\/i}/]:k_l} +E {&£§%R{|5k§1|>6ﬁ}” }

() = ]E{f QEZ

IA
=
3
NE

IA
=
3

+e.
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Since Y ;1 5,3 = t, the integrand in last expression is bounded by 2. Therefore, for t — oo,
by the dominated convergence theorem, the proof of (2.12)) will be completed if we show
that

1 & .
EZﬂz{X,fJl{pzkbé\/z}/fk,l} 0 (2.19)
k=1
and
1 S ~2¢2
;ZE{%@R{W&DM}} ) (2.20)
k=1

by using ergodicity, stationarity of (X,),>1 and lemma m
Proof of . For u > 0, then ¢t > u for ¢ large enough. And, for any £k =1,2,...,n,

we have

. 1 2 . 1 2
hmsup;ZE{Xkﬂ{\Xkb&\/{f}/}-k—l} < thUPgZE{Xkﬂ{\Xkba\/ﬁ}/]:k—l}'
k=1 k=1

t—o0 t—o0
(2.21)
If follows from the ergodic theorem that
1 2 _ 2
Jm S E X sy T} B s} 222
=1

From ([2.10) and (2.22)), we have that the left hand member of (2.21]) is bounded by

o 2K {X%n{‘Xlwﬁ}}

For u — oo, this bound goes to 0 by the dominated convergence theorem, the left hand

member of (2.21)) is 0 a.s.
Proof of . Similarly, for v > 0, then ¢ > v for ¢ large enough. And, for any
k=1,2,...,n, we have

. 1 ¢ ~2¢2 . RS 2¢2
lim sup i ZE {kal ﬂ{|5k£1|>5\/17}} < lim sup n ZE {kal ﬂ{|0k€1\>5\/17}} . (2.23)
k=1 k=1

t—o00 t—o00

If follows from the ergodic theorem that

1 242 242
Jm o SRR ooy} ) = BT e oy ) (2.24)
=1
From ([2.10) and ([2.24)), we have that the left hand member of (2.23)) is bounded by

oE {0%631{\0151\%5\5}}

For v — oo, this bound goes to 0 by the dominated convergence theorem, the left hand
member of (2.23)) is 0 a.s. Thus, the integrand on the right in (2.19) goes to 0 a.s., which

completes the proof of (2.12)).
O
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2.3.2 Martingale Central Limit Theorem

Let (Xp)n>0 be a sequence of random variables defined over the probability space
(QAP), B=o0(X,,n=0,1,23,...) and F, = o(X,,Xn_1,...). Assume that the
partial sums of X,, define a martingale: X, is F,-measurable and E {X,/F,-1} = 0 for

n>1 Puts2 =3 E{X?).
k=1

Theorem 2.3.2. Assume that the following limits hold almost surely (a.s.)

I 2
lim 2 ;E {XP/Fia} =1, (2.25)
and
I 2
nlinéo%%;E{Xﬂﬂkasn}/ﬂ—l} =0 (2.26)

1 n
then the distribution of — E Xy, tends to the standard normal law N (0,1) when n — co.
Sn
k=1

Remark 2.3.1. In 1971, in [§] Brown proved Theorem where conditions ,
hold in probability but we use with almost surely convergence.

Before proving Theorem we need two lemmas as follows

Lemma 2.3.3. The conditions , mn Theorem hold in L'.
Proof. Put
1 n
Gn = > E{X}/Fra} -1
k=1

By (2.25), G, — 0 a.s. Decompositing G,, = G} — G,,. Since, G,, > —1 for any n
then 0 < G, < 1 and follows that E{G,, } — 0 by the dominated convergence theorem.
Moreover, E{G,} = 0, implies E{G}'} = E{G,, }, for any n > 1, then
. + _ . — .
lim E{G} = lim E{G, } =0.

Therefore
; ; +
lim E{|G,[} < lim E{G] + G} =0

and hence G, — 0 in L. In the other hand, by putting

];E { X1 x, 5080}/ Fr1}

Hn = n 5
kZ E{X?/Fi-1}
=1
1 n
K, = S*QZE{Xizﬂ{\kasn}/ﬂq}

k=1
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we obtain K, = (1 + Gy)H, for any n. By condition ({2.26)),
lim K, = lim (1+G,)H, =0 as.

n—oo n—oo

and since G,, — 0 a.s. by ([2.25), we deduce that H, — 0 a.s.

Moreover 0 < H, < 1, by the dominated convergence theorem then follows that
E{H,} — 0 as n — oo. Finally,

E{K,} =E{Hn} + E{GHn} <E{H,} +E{Gn} — 0 asn — cc.
Hence, K, — 0 in L. O

(18

Lemma 2.3.4. lim 3721 =
n—oo k

E{X?} = oo.

1

Proof. Assume lim s2 = M? < oo, then there exists N > 0 such that
n—o0

s% > M?* — M?/3. (2.27)
By (2.26)
Y E{X{yxsomy/Fr-1} =0, as.
k=1

This implies E {X]z]l{|Xk|>6M}/]:k—1} = 0 a.s. and follows that E {X,f]l{|xk|>5M}} =0 for
any k > 1 and for any § > 0. Therefore,

N

sv = > _E{X{x <omn } < No*M>. (2.28)
k=1
Choose § =1/ 2vV'N, " and 1D give a contradiction ! ]

Proof of Theorem Let 0f = E{X,f/fk_l} and let ¢2 = o} + ... + o2,
put m; = min{n : ¢2 > t} for t > 0, let ¢; be the number such that 0 < ¢; < 1 and
qrznt,l + cta%% =t, and finally, let Z; = X7 + ...+ X, -1 + ct X, . We see that my is well
defined and so other variables by the following lemma

Lemma 2.3.5. Fort > 0 and m; defined as above, then
i) Ift < oo then my < oc.
i) tliglo my = 00.

Proof. For t < oo, suppose that m; = oco. By lemma we have s2 .1 = 00, 1'

m
implies qfnt_l = oo. It follows that q?nt_l > t. This is a contradiction, hence, m; < oo.

This proved 7).

2
For t — oo, suppose my < N < oo then s?\, < oco. By (2.25), lim % = 1 implies
n—oo °n
2
supZ—g < oo. Hence, qj2v < oo and so q,%% < q]2V < t. This is a contradiction, hence,
n n
my = 0o. This proved ii). O
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Furthermore, we have the second lemma for my

Lemma 2.3.6. We recall my = min{n : ¢2 >t} fort > 0 then we have

t
lim —— = 1. (2.29)
t—o0 Smt

Proof. We have

2 2 2 2 2 2
qmt O-mt _ qmt _O-mt < qmt—l < < t > < th

2 2 2 =2 2 = 2
Sins Siny Siny Sty Siny Siny

By (2.25) and lemma this lemma would be proved if we can show that

0.2
lim 2 = 0. (2.30)
n—oo Sz

For any ¢ > 0, we have

1 & 1
572 ZE {Xglﬂxkbé‘g"}/fk*l} Z ?E {X721]l{|Xn|>6sn}/~Fn—1}
" k=1 n
o2 1
T 2 %E { X211 x0 <650}/ Fn1}
2
On 2
> -

n

By (2.26)), for n — oo, we have lim sup Z—g% < 62 for any 6 > 0. Thus, we obtain the desired
n—oo "

result. O]

About rv’s Z;, it plays an important role in our proof because in the sequel we can

show that )
—z 2 N(0,1) as t — oo. (2.31)

Vit

And hence, the proof of the theorem will be completed by showing that
1 n
g p{ LSz,

k=1
To prove (2.32), we will use (2.29) and Kolmogorov’s inequality for martingales. From
(12.29), given € > 0, choose ng such that if n > ng then

IP{ >€3}<€

> 5} =0, Ve>D0. (2.32)

2
S,
2 -1
Sn

that means
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If n > ng then

n

ZXk—m

e

< max
a<t<b

> >

J €5 }

wherea =n +mg2 — ‘n — ms%‘ andb=n+mg + ‘n — mS%‘. By Kolmogorov’s inequality

for martingales
3 2
7"L

>

> — 1 <e¢ 4
T

>€}§5€

P< max
a<t<b

We have thus proved that
1
p {
Sn

for n > ng, and we finish the proof of (2.32)).

Zg

< be.

The remainder is to prove (2.31]), we define new variables by

Xk = Xk]l{mt>k} + Xkct]l{mt:k} (2.33)
Similar arguments as in preceeding section, if &,3 =E {f(g [ Fr—1 }, then we have
&l% = O-l?:ﬂ{mz>k} + C?O'l%ﬂ{mt=k} (2'34>
and so
o0
> 6h= (2.35)
k=1
except on a set of measure zero. Moreover, we also have E {X’ K/ -7‘—1@71} =0,a.s.
Adjoin to the space random variables &1, &9, ..., each normally distributed with mean

0 and variance 1, which are independent of each other and of the Borel field B. If we put

new variables
!
™=

(Xl +Xo+ ..o+ X+ Gns1&ns1 + Gnp2bngo + - )

then n, = %Zt, for n > my. Moreover, since E {ny/B} =0, E{nd/B} = 137,52 =1,

then 7 has the standard normal distribution.
Write
1
Vi

For any function f € C,%, put

W, =

i0) =8{1 (52) - o)} = gE{fwk) -

60

(5(1 + X4+ X1+ Fng1€ntt + Gngonia + - ) .
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and then using the same method in the preceding section, we also have

wol = [e{r(52) -]
1" [l oo {1 i [E {Xlgﬂ{|f<k|>5\/z}/]:k—l} +E{6i£iﬂ{|@gk>m}}}}

IN

2o {5 [ {smma ) )

< N lE {ti{E{Xﬁ{mMﬁ}/}—k1}+E{5i§%ﬂ{|a—k£1|>5\/€}}}}

1

—_

+e.

Since Y ;1 5’,3 = t, the integrand in last expression is bounded by 2. Therefore, for t — oo,
by the dominated convergence theorem, the proof of (2.31]) will be completed if we show

that

%ZE{XE]I{WH»\/Z}/?/@A} —0 (2.37)
k=1
and
t ZE {”kgll{mglba\/}} (2.38)

by using , and lemma
Proof of (-) We have

1 & - 1M
thE{Xlz]l{f(k>6\/f}/fk1} < thE{X]%H{le>5Smt—1}/]:kl}
—1 —

me—1

2
Srn.—1 1
< et Y B{ X g, ) i
mi—l =
S T
t s
By (2.29) and (2.26)), we have
82 1 1 m¢—1
: me—1 2 _
and
2 2
lim % .
t—oo T 3127%

Hence, we obtain (2.37)).

2

Proof of (2.38). Let by = 15%2%)% {(\T/ki} we have thrélos% =0 forany 1 < k < my. By
2.29), lim — = lim Tk _ = 0 implies lim b; = 0. Therefore
" =00 \f t—00 Sy, t—00
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IN

, 1 22
lim sup n Z E {%51 ﬂ{|ak§1\>5x/%}}
k=1

t—o00

] 1 22
hmsup;ZE{kalﬂ{|£1\>6b§l}}
k=1

. RS ~242
timsup S AL 56,1507 |
k=1

t—00

IN

t—o00
2
. Smt 2
lim sup =" {gl 1{\51|>5b:1}} . (2.39)

t—o00

IN

. . . . . . -1 . 2 . .
Since tliglo by = 0 implies tlggo b;” = o0, then h?’i}ilipE{fl]l{IEl‘>5bt—l}} = 0 which
completes the proof of (2.38).
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Chapter 3

Central limit theorem for Markov
chain started at a point

This chapter is devoted to obtain CLT for Markov chain started at a point based on
martingale approximation.

We begin with Hopf Mazimal Ergodic Theorem.

3.1 Hopf Maximal Ergodic Theorem

We recall (X,,),>0 be a stationary Markov chain defined on a probability space (€2, A, P)
with p-initial distribution and (X, B) be the state space. A stochastic kernel P such that

Pf(Xi) = E{f(Xs1)/ Xk} for k>0 (3.1)

with f be a bounded, measurable function on the state space.

In the sequel, we will denote

k
Sef = > P,
1=0
Spf = OrglgécnSkf
S*f = supSif.
k

We will establish the ergodic theorem for operator P under measure u. Firstly, we need
the following theorem regarded as Maximal Ergodic Theorem

Theorem 3.1.1. (Mazximal Ergodic Theorem) For any f € L'(u), we have

/ fdu>o0. (3.2)
5% >0
Proof. For a € R, set at = max{a,0}. For any a,b € R then

max{a,a + b} = a + max{b,0} =a +b".
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3.1. HOPF MAXIMAL ERGODIC THEOREM

For two functions g, h € L'(p)
{ P (max{g,h}) = P(g+ (h—9)") = P(g) + P((h—g9)") = P(g)

P (max{g,h}) = P(h+ (g —h)") = P(h) + P((g — h)") = P(h)

then
P (max{g, h}) > max{P(g), P(h)}.
And hence,
P(g") = P (max [0, g}) > max{P(0), P(9)} = max{0, P(g)} = [P(9)]" .
Consider
n+1 '
Spof = O<II£1<aT>Z<+lSkf:max{f,f—i-Pf,...,f—i-ZP’f}
== i=1

f + max {O,O%%Xn P(Skf)} = f + max {P(O),r}g%ch(Skf)}
f+P <max{0, max Skf}) = f+ P (max{0, S} f})
F+Psn].

Set E, = {S;f > 0}. Since

ININ

Snf <F+P[Snaf)T]<F+PSHHT]

then

/ Spfdp <
Bn

A\
—
~
o

=
+
—
s
W
*
=
_t
&
=
IN
Se—_
K,}
a
=
+
B
Y
A
=
_t
s
=

A\
—
—
QL

=
_|._
—
)
=
+
Q.
=
[l
—
\
QL
=
+
—
a2
&ﬁ
QL
=

E" R En En
It follows that,

/fduZOforanynZO.
En

For n — oo, we obtain [ f du > 0 with S*f = sup,, Si.f.
S5 >0

Corollary 3.1.1. For any function f € L'(u) then

/ fdu > ap{M*f > a},

M* f>a

with M* f = sup,, |k—}r15kf\.
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3.1. HOPF MAXIMAL ERGODIC THEOREM

Proof. By preceding theorem,

[ G-ad= [ pde-anrg w020
M*(f—a)>0 M*(f—a)>0
and we get then
fdu>ap{M*f>a}.
M*f>a

O]

Definition 3.1.1. A Markov chain (X,)n>1 is ergodic if Ph = h for some h € L*(u1) then
h is constant.

Theorem 3.1.2. (Hopf’s Ergodic Theorem) If the chains (Xy)n>1 is ergodic then for
any g € L' ()

li = .S.
kggokJrlSkg /gdu,uas
Proof. Denote
1
Mg = d h = lim inf M,
9= g Sk and b= lim it Mg

We decompose the proof into two steps:

Step 1. We consider the case 0 < g < 1. Firstly, we show that h is a constant. For any
¢ >0, P(inf/<; Myg) < inf,< M Pg by Fatou’s lemma. For ¢ — oo, we have

I—o0 <k k+1

< lim inf (M <h
< Jim inf(Myg) <

1 1
Ph < lim inf(M,Pg) < lim inf { M, —— pktlg_ _—
hS i i (Pg) < fim ot { Mg + I

Since 0 < 1 — g < 1, we have also: P(1 —h) <1— h and so, Ph > h. Hence, Ph = h and
then h is constant by the ergodicity of the chains (X;,)n>1.

F:{h—/gd,u—i—5<0}
5= fur{si (o famns<)} <o),

We will show that F' C E and then p {F} = 0. We have

For any € > 0, set

and

h (:l — 1' i f (]Z

. 1
= Hlifk:—i—lsk <g—/gdu+5)

If h — [ gdp+ e < 0 then infy Sy (g — [gdp+ 6) < 0. Hence, F C E. Moreover,
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3.1. HOPF MAXIMAL ERGODIC THEOREM

E:{iréf{Sk(g—fgdu+s)} <O}:{81;p{5k(fgdu—g—5)} >0}.

By theorem [3.1.1} we have [ ([ gdp —e — g) dp > 0. It follows that
E

Z(/gd“_*f)d“Z/Egduz!gdﬂ

and then ([ gdp —¢) p{E} > [ gdu. Since h is a constant, u{F} equals either 0 or 1. If
F

p{F} =1 then p{E} = 1since F C E. Therefore [ gdu < [gdp—e, Ve > 0. Thisis a
F
contradiction! Hence, p{F} = 0. And for e = 0, h > [ gdpu, p a.s. We obtain

lim inf
k—oo k k+1

Srg > /g dup, 1 a.s. (3.4)

Similarly, since 0 <1 — g < 1 we have

1
kE+1

Sk(l—g)=1- Skg

kE+1

then
1

k+

Skg=1-

k1 5k =9)

and so

1 1
lim s =1— lim inf l—g)<1— [(1—g)du= [ gdpu. .
kggobt;pkHSkg Jim in k+15k( g) < /( g)dp /g pe (3.5)

Combine (3.4) and (3.5)), we obtain

. 1
lim inf

> > 1
Sk(g) > /g dp > i sup 1Skg

Hence,

lim

1
= [ gdp.
i ySio = fadn

Step 2. For any g € L'(p), there exists M > 0 such that |g| < M pu a.s.
Set [ = ﬁ(g + M), then 0 < f < 1. Applying Step 1, we have also

. 1
lim st = [ du was
and hence
Rk = /gd“’ pa-s
We finish the proof. O
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3.2. CENTRAL LIMIT THEOREM FOR STATIONARY MARKOV CHAIN

Corollary 3.1.2. For any f € L'(u) such that [ f du =0 then
pfIMf| >0} =0,
with M f = kli)n;OMkf
Proof. For any ¢ > 0 there exists g € L>(u) such that ||g — f||1 <e. We have
Mf=Mg+M(f—g)
then
M < g1+ 007 =) < | [ g du] + 077 =) < 4077~ )
For any a > 0, by corollary

If-gh
a—¢& a— &

pIM fl >a} < p{M*|f —g|>a—¢c} <

For ¢ — 0,
p{IMf| > a} = 0.

For a — 0,
u{|Mf| > 0} = 0.

3.2 Central limit theorem for stationary Markov chain

Suppose that (X,,),>0 is stationary Markov chain with v-initial stationary distribution
and P is the transition probability of the chain. Define the operator II on the space
L>®(v ®v) by

ITh(Xk) = E{h( Xy, Xpi1)/ Xk} - (3.6)

We consider again the theorem of Gordin-Lifshitz (1978).
Theorem 3.2.1. For any f € L?(v), set g = Pf — f then we have

n—1
1 D
NG kgog(Xk) —— N (0, O’Z) as n — 0o

where 03 = [ f2dv — [(Pf)?dv.
Proof. Firstly, we decompose g(X}) as follows

9(Xx) = Pf(Xe) — f(Xir1) + f(Xig1) — f(Xi)

and then taking the sum on £k =0,...,n—1

|
—

n—1 n

LSy = LS PAXG) — F(Xa)] +

1
> > e (X0 = £ (X))

e
Il
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3.2. CENTRAL LIMIT THEOREM FOR STATIONARY MARKOV CHAIN

1 — 1
NG ;Mk + NG [f(Xn) — f(X0)]

where My, = Pf(Xy—1) — f(Xk).

To prove this theorem, we have to prove that

LZn:]\/[/rC L>/\f(0,a§) asmn — oo (3.7)
ViiS
and
1113207[ f(Xn) — f(Xo)] =0in L2 (3.8)

Set F,, = 0(Xo, X1, ..., Xn), we see that M, is F,,-measurable and E{M,,/F,—1} =0
for any n > 1. We will show that the partial sums of M, is a martingale with respect to F,
which satisfies the condition of Brown’s theorem for martingale (theorem chapter 2)
and the remainder ﬁ [f(X,) — f(Xo)] is negligible. This method is also called “martingale

approximation” followed by several authors. For the most of this thesis, Brown’s theorem
mentions to theorem 2.3.21

Since f € L%(v), it is easy to see that (3.8)) holds. So, it remains to prove (3.7). By

setting
n
S, = Z M,
k=1

for any n > 1, then S,, be a martingale with respect to J,, since
E{Spn+1/Fn} =Sn + E{M,+1/Fn} = Sn

In order to prove (3.7)), by Brown’s theorem for martingale, we claim that

I = lim — 2 ZE{Mk/.Fk 1} =1, (3.9)
and the second one
L= lim — 2 ;E{Mk1{|Mk|>5sn}/]-"k 1}=0, V6>0 (3.10)

where s2 Z E{M?}.
Proof of @) For each k > 1, one has
E{M;/Fi-1} = PfA(Xp-1) = (P (Xp-1) = $(Xp-1).

where 1) = Pf? — (Pf)?, and
n n n—1
> e (a0t) - {3 w (a5} - e - )
k=1 k=1 k=0
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3.2. CENTRAL LIMIT THEOREM FOR STATIONARY MARKOV CHAIN

n—1
— ]Z;/[Pf?—(Pf)?] dZ/:n/de.

The law of large number for stationary (Y;, = ¢¥(Xy))n>0 ensures that

n n—1
.1 .1
Y}EI;OEZE{MIE/IIC—I} = nll—{%oﬁzd)(Xk) =E{¢(Xo)}
k=1 k=0
= /¢du, in L.
We have thus proved
LS o)
7 2 (X
I, = lim —*=0 Jodv
n—o00 %3% f”l/} dv
and we finished the proof of (3.9).
Proof of . Fix M > 0, put
Ym = lhy,

where hM(:c,y) = [Pf(ﬁ) - f(y)]2 ﬂ{|Pf(x)—f(y)|>§M}‘ One has

n—1

k=0

N
lim — ZE{le]lﬂMkp(sM}/]:k—l}
k=1

n—oo n

= / Uardv.

Since h_)m Sp = 400, there exists N > 0 such that for any n > N then s, > M. And
o

n
therefore,

n

1
> E{Mlg]l{\Mkb&sn}/}—k—l}gsj > E{MP1gagson0y/Fo1}

1 n
87
" k=N+1 " k=N+1

for any n > N. For n — oo, we obtain

n
Jim 30 B AMELas>sar}/ Fer )

< B f1/)MdV
= P) -
lim 2z fﬂJdV

n—oo ™

I

Since A}gnm J ¥adv =0, then

n

. 1 '
s s2 ZE {M’gﬂ{\Mkbésn}/]:kﬂ} =0in L'

n—oo
" k=1
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and we finished the proof of (3.10]).
Finally, by Brown’s theorem (theorem [2.3.2) for martingale

1 n
— S M, 2= N (0,1)
Sn =

it follows that "
1 D
T 2 M ——— N (0,05)
k=1

since s, = gg/n. O

3.3 Rewrite the preceding proof for the framework of shift

We recall here (X,,)n>0 be a stationary Markov chain defined on a probability space
(Q, A,P) with v-initial distribution, P is a transition probability and (X, B) be the state
space.

We construct a preserving-measure system (]RN ,B,P,,0) by

c: RN — RN
r > ox,

such that (ox), = Tp41-
Define

P {zo € Ao,..., 2, € A} = /V(dazo)/P(a:O,dxl) . / P(zy—o,dxr—1)P(xr—1,Ay)
Ao Al Arfl

Define 7, be the projection onto the nth coordinate of RY

o RN — R
r > TpT = Ty.

Since (), has the same joint distribution on RN as (Xn)n on Q, then (m o 0™),, has the
same joint distribution on RY as (X,), on Q. In the sequel of this section and the next

one, we will assume that Q = RN and X, = mp o o*.

For any f € L?(v), let g = Pf — f. We have

n—1 n
;529%) = \}EZMkJr\/lﬁ[f(Xn)—f(Xo)] (3.11)
k=0 k=1

where My = Pf(Xi_1) — f(Xk).

Now, we want to show that (M}),>1 satisfies the condition of Brown’s theorem. Set
Fn =0(Xo, X1,...,X,), we see that M, is F,,-measurable and E {M,,/F,_1} = 0 for any
n > 1. It remains to check coditions (3.9)) and (3.10) in the preceding section.
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n
Proof of . Set s2 = Y E{M}?}. We have
k=1

2
Sn

n—1
{ZE{Mk/Tk } = ZE{PfZ(Xk) — (PfX(X))}
1 -
- [Pf2—(Pf)*dv=n [ ¢dP,, (3.12)
S/ /

where ¢ = [P(f2) — (Pf)?] mo
For each £k =1,2,...

E{M}/Fr1}

P(f*)(Xg—1) = (P)*(Xp-1)
Pf*(mgoo™ ) — (Pf)*(mg oo™
= [P(fZ) — (Pf)2] Ty © okt

%

Taking the sum on k =1,2, ..

)

n n—1
S E{M}/Fi} =) doo”.
k=1 k=0

For n — oo, to treat this limit, we use the ergodic theorem with ¢ be measure preserving
transformation. To do that, we must show that ¢ € L'(v), i.e [ |¢|dv < co. One has

[1s1ae, = [1[Pr =P m| de, - / [Ps2 — (P12 av
/\Pf2\du+/|(Pf)2}dyg/deu+/Pf2du<oo.

IN

By ergodic theorem )
ne
nli_)ngoikzogi)oak = /qdePy. (3.13)
Combine and then I; = 1 which completes the proof of .
Proof of . Fix M > 0, put
on(x) = hp(x),
with hg(2,y) = [Pf(@) = F(0))* 1 ps(e)— )| >snry- One has

1 n—1
Jim - kz:lE {MZVar, 550y / Frr ) = Jim. . Z oM (Xi) = E{om(Xo)}
= /qudy vV a.s.
Since lim s, = +oo, there exists N > 0 such that for any n > N then s, > M. And
n—oo
therefore,

n

1 — 1
2 Z ]E{M’?]'{‘Mk|>55n}/fk_1}§87 > E{Marsonry/ Fror}
5n =N+ " E=N+1
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3.4. CENTRAL LIMIT THEOREM FOR MARKOV CHAIN STARTED AT A POINT

for any n > N. For n — oo, we obtain

3

im L 2
nh—>oo " IE{Mk]l{|Mk\>5M}/‘Fk—1}

_ f(Z)MdV

n—oo ™

I, <

Since ]V}im J ¢amdv = 0, then I = 0, which completes the proof of ([3.10)).
—00

3.4 Central limit theorem for Markov chain started at a point

Suppose (X, )n>0 be a sequence of ergodic stationary Markov chain. In section we
supposed that there is a transition probability P such that

Pf(Xy) = E{f(Xpt1)/Xr}

and there exist a probability measure v is P—invariant. Now, we consider here the case
Xo = g fixed. Let f € L?(v), set g = f — Pf. Using martingale approximation method,

n—1

we claim that S, = > g(Xj) be also asymptotic normality.
k=0

We construct a preserving-measure system (R” , B, Py, 0)

oc: RZ —5 RZ
x +— oz,

such that (ox), = zp4+1. Define
Pmo{xo S Ao, oIy € Ar} = (5:50 (A[)) /P((l)o, da:l) R / P(CUT_Q, da;r_l)P(a:r_l, AT)
Ay Arq
where d,, be the unit mass concentrated at xg
o 1 if x9€ A
920 (o) _{ 0 if wo¢ Ao
Define 7, be the projection onto the nth coordinate of RZ

T RE — R
T TR = Ty

Since (7,)n has the same joint distribution on R? as (X,), on €, so (mg o 0™), has the
same joint distribution on R” as (X,),, on Q.

Theorem 3.4.1. For any f € L?(v), set g = Pf — f then we have

n—1
1 D
NG kgzog(Xk) — N (0,03) asn — oo

where 03 = [ f2dv — [(Pf)?dv.
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Proof. Decomposing g(Xj) as the preceding section, we obtain also

1 n—1 1 n—1 1
— X = — Pf(Xy) — f(X — [f(Xn) — f(X
\/ﬁk:og( k) \/ﬁl;(][ J(Xg) = S( k+1)]+\/ﬁ[f( ) = f(Xo)]
= ) Mt [F(X0) — (o)
h=1
by putting My = Pf(X-1) — f(Xk).
Proposition 3.4.1. We have
Tim in[f(Xn)— F(Xo) =0, P, a.a. (3.14)

Proof. To prove this proposition, we need the following lemma:

oo
Lemma 3.4.1. For any g € L*(1) and g > 0, then Z,u{g >n} < /g dp.

n=1

Since this lemma is basic, we skip the proof here to concentrate on the proposition. By
lemma [3.4.7] then for any £ > 0

ZPV{foa” >5} = ZIP’,,{z >n} < 2/f2 dP,
n=1 \/ﬁ n=1 < €
By Borel Cantelli ’s lemma, we obtain
P, < i ! " =0
VAl 0 e =0,

and hence,

1
lim —=foo” =0, P,a.a
n—o00 1/N

This implies

O
Proposition 3.4.2. For n — oo, the following asymptotic normality holds
— Y My —— N (0,07) (3.15)

\/ﬁ k=1

Proof. Set F,, = 0(Xo, X1,...,X,), we see that M, is F,-measurable. We will show that
the partial sums of M,, is a martingale with respect to F,, which satisfies the condition of
Brown ’s Theorem.

It is easy to check that E;  {M,/Fn—1} = 0 for any n > 1 and hence the partial sums
of M, is a martingale with respect to F,,. The next step, we will treat the following
statements:
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1
L :71113;052;1@% {MZ)Fr1} =1, (3.16)
" k=1
and
L= lim — . E., { M} = 5
Q_nilﬂogl; 2o AMRL ity 5080}/ Fre1} =0, ¥6>0 (3.17)

n
where 52 = Y E,, {M,f} Since (Xp)n>0 is @ Markov chain, the conditional expectation

k=1
in (3.16) and (3.17)) does not depend on x. It will be denoted by E {e/Fj_1} in the sequel.
Proof of . Let begin with the calculator of s2

Sp = ;Em (M} = By {E(MZ/Fi)}

k=1
n—1 n—1
= ZEIO {sz(Xk) - (Pf)2(Xk)} = ZEQTO {[Pf2 - (Pf)2] ] Oak}
k=0 k=0
n—1 n—1
= X Ea oot} =3 Plula)
k=0 k=0

where ¢ = [Pf2 — (Pf)2] o = Ymo.
For each k =1,2,...,n

E{M;/Fra} = PfH(Xp) = (P (Xi-)
Pf(mooa® 1) = (Pf)*(moo™ )

Q

— ¢ o O'k_l.
It follows that
. n—1 % . 1 n—1 5
eS0T AL s,
I = - = P =Toap, = L Fvear
lim. k;} Pkyp o lim 1 kzo Pk o mg v

which completes the proof of (3.16]).
Proof of . Fix M > 0, put

on(x) = Hhp(x),

where the function p;(x,y) is defined by

hat(z,y) = [PF(@) = FO) 1P fa)— )50}

One has
1 n 1 n—1
Jim — ; E{M;Lqas, 500y /Fha} = Jim ;0 ¢nr(Xy) = E{dn(Xo)}
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= /ngdu, va.s

Since lim s, = 400, there exists N > 0 such that ¥n > N then s, > M. And therefore,
n—o0

n n

1 2 1 2
o) Z E {MLgas,, 50503/ Fe-1} < = Z E{ M{Lgns >s00y/ Fr—1}
" k=N+1 " k=N+1

for any n > N. For n — 0o, we obtain

lim 1 3 E{M21 _
nl—>ngo”kz::1 { k {|Mk|>5M}/‘Fk 1} _ f(bMdV
[ ¢dP,

Iy

2

. S
lim =z
n—oo

Since ]V}im /q{)MdV = 0, then Iy = 0, which completes the proof of |)
—00

Finally, by Brown’s theorem for martingale

iZMk — 2 L N(0,1)

S
" k=1

it follows that
LS M2 N (0.0)
\/ﬁ k=1

since s, = gg/n.
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Chapter 4

Central limit theorem for Random
walk in Random environment based
on martingale approximation

4.1 Introduction

4.1.1 Random environment and random walks

Let (©2,.A,P) be a probability space. The definition of a Random walk in Random
environment involves two ingredients:

e The environment which is randomly chosen but remains fixed throughout the time
evolution.

e The random walk whose transition probability are determined by the environment.

The space () is interpreted as the space of environments. For each w € ), we define the
random walk in the environment w as the (time-homogeneous) Markov chain {X,,n =
0,1,2,...} on Z% with certain (random) transition probabilites

p(x,y,w) = Pw{Xl = y/XO = .%'} (4'1)

The probability measure P, that determines the distribution of the random walk in a given
environment w. In the case the random walk with the initial condition Xg = =,

P*{Xy =z} = 1. (4.2)

The probability measure P¥, indicates the distribution of the random walk in a given envi-
ronment w with the initial position of the walk is referred to as the Quenched law.

By averaging the Quenched probability P, further, with respect to the environment dis-
tribution, we obtain the Annealed measure P* =P x P¥, which determines the probability
law of the random walk in random environment

Pr(4) = [ BL(A)P() = E{FL(A)}. (4.3)
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Expectation with respect to the Annealed measure P* will be denoted by E”.

Remark 4.1.1. If some property A of the random walk in random environment holds
almost surely with respect to the Quenched law P, for almost all environments, then this
property is also true with probability one under the Annealed law P*.

In the sequel of this chapter, it is devoted to the Quenched version. We will establish
the Quenched CLT for reversible random walk in random environment in one dimension.
Our proof is to use martingale approximation for the random walk.

4.1.2 Presentation of the model-dimension one
4.1.2.1 Site randomnes

Let (,.A,P) be a probability space. One chooses i.i.d. variables p(z,w), = € Z, with
value in [0, 1], ¢(z,w) = 1 — p(z,w), and for a given realization w of the environment , one
considers a Markov chain X,, on Z, which has probability p(z,w) of jumping to the right
neighbor x + 1 and ¢(z,w) of jumping to the left neighbor x — 1, given it is located in x.
This is the so-called random walk in random environment in one dimension.

4.1.2.2 Bond randomness

One now chooses i.i.d. variables ¢y z41(w), € Z, with value in (0,400), and for a
given realization w of the environment , X,, is a Markov chain on Z, performing jumps to
nearest neighbors with a transition kernel determined by

Cz,x+1(w)
C:vfl,x(w) + C:r,a:Jrl(W) .

pla,w) = (4.4)

The quantity c; z+1(w) is the so-called conductance of the edge between {x,z + 1} in the
environment "w".
4.1.3 The environment viewed from the particle

The basic idea is to focus on the evolution of the environment viewed from the current
position of the walk. More specifically in the case of bond randomness, for 0 < a < b < o0,

o O = [a,b]Y with C = {{z,2 4 1},z € Z}, the set of nearest neighbor bonds on Z,
endowed with the canonical product o-field B.

e P: a product measure on (2, making the canonical coordinates i.i.d.

e T% x € 7, the canonical translations on {2 :
(TYw)({z,z+1}) =w{z+y,z+y+1}). (4.5)

o Pz € Z, the canonical law of the Markov chain on Z with transition probability

described by (4.4) with c; g41(w) = w ({z, 2 + 1}).
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4.2. CLT FOR REVERSIBLE RANDOM WALKS IN RANDOM ENVIRONMENT

The environment viewed from the particle is the w-value process
Ty =T%"w, n>0. (4.6)
Under PY, w € Q, @, is a Markov chain with state space Q and transition kernel:

Pf(w) = p(0,w) f(Tw) + q(0,w) f(T™'w) (4.7)

with f bounded measurable on ).

4.2 CLT for Reversible Random Walks in Random environ-
ment

Let (2,4, 1) be a probability space and T is an invertible measure preserving trans-
formation on €2 which is ergodic. More precisely, T acts on €2 by

T: Qx7Z —
(w, k) — Trw,

which is joint measurable and satisfies
e For any k,h € Z : TFth = T*Th and TOw = w.
e T preserves the measure p : pu(T*A) = p(A) for any k € Z.
e T is ergodic: If TFA = A (up to null sets) for some k € Z then u(A) =0 or 1.

For k € Z, we define a conductivity of the edge between {k,k + 1} is ¢(T*w) and
{k,k — 1} is ¢(T*"'w), which ¢ be a positive measurable function on Q. We refer to w as
an environment since each w in ) determines a conductivity for all edges of Z. The space
Q) is interpreted as the space of environments.

Fix w € , we consider a random walk (X,,),>0 on Z which X, = 0 and its transition
probability p(w, k, h) given by
c(T*w) c(TF1w)
k. k+1)= """ and skyk—1) = ————

p(w’ ) + ) E(Tk(JJ) an p(wa ) ) E(TkW) )
where ¢(w) = c(w) + ¢(T~'w). The set of possible jumps will be denoted by A = {—1,1}
and for y € A we abbreviate p(w;0,y) = p(w;y). These random walks are reversible since
(T w)p(w; x,y) = ¢(TYw)p(w; y, z) for all adjacent vertices x,y in Z.

(4.8)

We note that random walk X,, depend on the property of function c¢. In the sequel
of this chapter, we will establish the Quenched CLT for (X,,)n>0. The method is to use
martingale approximation. It is also adapted from Kozlov ([31], 1985) and Daniel Boivin

(7], 1993).
Theorem 4.2.1. For almost all environment w,

&—2—%/\/(0,02) asn — 0o

vn
if ¢ and ¢t € L'(p), where 0% = U% dufcd,u}_l.
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4.2. CLT FOR REVERSIBLE RANDOM WALKS IN RANDOM ENVIRONMENT

To prove this theorem, we define a real additive 1-cocycle of the action T be a real

measurable function
F: OQxz2 — R

(w,k) — F(w,k),

such that
F(w,k+h) = F(w,k) + F(T*w, h)
and .
Flw,1) = o(w)
F(w,0) = 0
By the definition of F', one has
k-1
Z c(Tliw) if k=1
Fw, k) = 0 if k=

and by the pointwise ergodic theorem

. Flw,m) [1
n%gnoo — = / Ed,u, Wwa.aw. (4.9)
It follows that T 1 d“F (w,m) ~ m. Therefore, we will decompose X,, as follows
Xn 1 F(w,Xp) 1 1
— = — | Xn — ——F(w, Xy) | . 4.10
Vi Tl ve v\ KT g (410

Set M,, = F(w, X;). Fix w € Q and let F,, = o(Xo,...,X,), we point out (My),>0 is a
martingale with respect to F,, and X, — ﬁ

Furthermore, we claim that % be asymptotic normality.

F(w, X,,) defines a cocycle of nul expectation.

Proposition 4.2.1. For almost environment w,

M, 1d
L>./\/‘<0,fcﬂ> as n — +oo.
m

Proof. We shall show that (M,,),>o sastifies the conditions of Brown’s theorem for mar-

tingale (theorem [2.3.2]).
Fix w € Q, let Y,, = M, — M,_; for any n > 1, then M, = > | Y; since My =
F(w,0) =0. One has

Ew {Yn/fn—l} - Ew {(Mn - Mn—l)/Xn—l = k}
1 ¢ 1 c(TF1w)

= 1) = oy )

=0
c(Tkw) ¢
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4.2. CLT FOR REVERSIBLE RANDOM WALKS IN RANDOM ENVIRONMENT

then (M,),>0 is a martingale with respect to F,. Let s2 Z E, {Yz} By Brown’s
theorem, the proposition 1| will be proved if the following condltlons hold:

L = 1111_%05—221[5 {(YV?/Fia} =1, (4.11)
and
I = lim — 2 ZE (Y21 (vi 588,/ Fic1} =0 (4.12)
for any § > 0.

Proof of . We introduce the left shift o : QN — QN such that V& = (w;) € QN
then (0@); = wiy1. The shift o is a measure preserving on QY.

Let us build for any probability measure v on  a probability measure P, on QY by
P, (@) = v(wo) @ Puy (wr,w2, .. .).
The projection onto the nth coordinate of QN is defined by
e OV — Q
W o MW = Wy
One has

1 c
2 k
Eu {R2/Xi =k} = g AT+

1 1 1
- (c(Tkw) + C(Tklw)) E(Tkw)
= ¢(T"w)

1 1 1
where ¢ = (c + c(T—1)> = Hence,

1 - 2/ _ 1 - 2 /v 1 z Xi

We want to use Birkhoff’s ergodic theorem to treat the limit of the right hand side in
4.13). To to this, we have to show that (7% w) _  with initial law dv(w) = fc( dp(w)

be a stationary ergodic Markov chain.

n>0

Consider the process of the environment viewed from the particle (W), )p>0 on Q defined
by

W, = T*"w and Wy = w (4.14)
then it is a Markov chain with the transition probabilities
c(w
PAW,=Tw)/War =)} = 52,
c(T~'w)
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c(w)
[ edu
Pypw) = E{op(W1)/Wo = w}

and the initial distribution dv(w) = dp(w). The transition operator of this chain is

B c 4 (T w)
= WIS + T ) (1.15)
with ¢ be a bounded measurable function on 2.
Lemma 4.2.1. (Wy,)n>0 is a stationary, ergodic Markov chain.
Proof. One has
E, {v(W1)} = E,{E((W1)/Wo)} )
_ ol .Sy ot _¢
- /(w TS 4 yortal >fcdudu
_ oT oot o T (T 1)t
= /w ch_d du-l—/d} T - ¢(T fédudu
= /w d,u—l—/w c
= 71 _—
[ ol > } e
= /wdy.
which shows that the chain is stationary.
For the ergodicity of the chain, we suppose Py(w) = ¢(w), Vw € § then
B c 4 e(T7 w)
Y(w) = y(Tw)_(w) + (T W)W' (4.16)
We claim that 1 is a constant. Put
/ S efw D(TYew) — (W) dv
yEA
then Q(w) = 0. Indeed, we have
Qw) = /Z p(w; V3 (TYw) dVQ/Z Y(TYw)h(w)dv
yeA yeA
/Z V2 (w)dv
yeA
= [ ST (T -2 [ @i+ [ i)
yeA

Since

AT Y)p(T Ywiy) = eT 'w)p(T ™ w; 1) + &(Tw)p(Tw; —1)
yEA
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4.2. CLT FOR REVERSIBLE RANDOM WALKS IN RANDOM ENVIRONMENT

then Q(w) = 0. By the hypothesis ¢ > 0, one obtains (T%w) = 1(w) v a.e. And, by the
ergodicity of TY, y # 0 then 1 is a constant. Hence, (W),),>0 is ergodic. We have thus

proved that (WW,,),>0 is a stationary ergodic Markov chain in 2. O
Therefore, the formula (4.13]) can be written as
1 n
2 _ i—1
J;H;O;ZE )7} = J;H;O;Zso ) = im0 emolo™)
(2
= /((p o WO)de IP’V a.e.
by Birkhoff’s ergodic theorem since W, is ergodic. And then,
L 2
nlggonZE {Y7?/Fica} = /Lpdy va.ew.
Moreover,
i ik — _ — _
do B = LS (0] = i 3R (08 )
— i i _
= nlgngo - Z;P o(w) /(pdl/ (4.17)
1=
by Hopf’s ergodic theorem. Therefore,
1 n
n Z Ew {}/1'2/]:1'71}
I = lim —=1 T =1, vae w
n—oo 732
n-n
which completes the proof of (4.11)).
O

Proof of . Fix M > 0, one has

Eo {Y? 1y, 500y / Xio1 = k}

B 12 o(Tkw) 1 2 o(TF1w)
- <c(Tkw)) R{C(Tkw)»wf} (TFw )+(C(Tk_1w)) H{C(Tk—l_lw)»w} o(TFw)

1 1 1

- <C(TkW)]]_{L(TkW>>6M} c(Tk= 1w)ﬂ{ﬁ>5M} Tkw)

= ou(Thw)
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Hence,

ol =

1

T}E&EZE (Y21 yisony/Fimr} = lim *ZSDM (T )_/QOMdVa

v a.e. w by the above similar way. Since lim s, = +o00, there exists N > 0 such that for
n—oo
any n > N then s, > M. And therefore,

1 — L
52 Z B {Y7 Lyiio0s,)/ Fict} < 2 Z E {Y Ly, sonmy /Fie1}
5 ; =N

ni=N

for any n > N. For n — oo, we obtain

nh_{go* ZE {Y21(visony/Fiz1}
I, < = /gpMdu.

lim ==
n

n—0o0

Since /gonu — 0 as M — 400, then Is = 0 which completes the proof of (4.12).

O
The proposition is then followed since by (4.17)) one has
2
m S _ (et !
nh_}ngo n o /wdy_/<c + C(T1)> Edy
B / 1, 1 1
N ¢ oT7)) [edu a
J zdp
Jedp
O

1
eps ; 2
Proposition 4.2.2. nhm —f (Xn — 7f% IuF(w,Xn)> =01 L~.

Proof. By the pointwise ergodic theorem

F(w,h 1
lim (@, h) :/d,u, I a.e.
h c

h—o00

1
then for any e such that 0 < e < /d,u, there exists M(g) > 0 such that for any |X,| >
c

M () we have
F(w, Xp) 1
@A) Zu] < e
LR [l <
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4.2. CLT FOR REVERSIBLE RANDOM WALKS IN RANDOM ENVIRONMENT

It follows that

Fw, Xn)| | F(w, Xn) £
| Xn| — T < T — Xn| < 1| Xa| (4.18)
S cdu S cdu Jcd
and hence,
Xl [1- € - F(w, X,)
" J sdp J el
implies that
X < c |F(w, X)) (4.19)
S T\ Jdp ([ 2du—e) )7 T |

Combining (4.18)) and (4.19), one has

F(w, Xp) € €
- e, n < 7’Xn‘ < ‘F(W7X’n)|
J zdn S edu (f tdp- ([ tdp - ff))
for any |X,| > M (e).
Put .,
F
o = wp FEH)
m<are) [ gdp
One has
Flw, X,
(“’1’ ) _x,| < max =X, |; M(e) + H(e)
J cdn cdp

IA
=
o
i

VAN

=

&
————

2
. . ,\* M)+ HEP
N < {(fidﬂ.(fidus) \/ﬁ> ' n }

2
. M\? | M)+ HE)P
: (fidﬂ'(fidu—6)> <W> i n '

Therefore,

) . 2| B {ME) + HEP)
AU (fidu'(fidu—€)> Ew{(ﬁ) }+ n ‘
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Since ,
M, 1d
ik, d (M) L Sede
n—00 \/ﬁ f cdu
and ¢ as small as we need, we have lim, ., E, {Ng} = 0. We finished the proof of
proposition [£.2.2] and theorem [1.2.T] is then followed. O
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Chapter 5

Central limit theorem for reversible
Random walk in Random
environment based on moments and
analogue for continuous time

The main aim of this chapter is to introduce a new way to obtain again the Quenched
CLT for reversible Random walk in Random environment in the preceding chapter without
using any martingale. More precisely, for a given realization w of the environment, we
consider Poisson’s equation (P, — I)g = f and then use the pointwise ergodic theorem
to treat the limit of the solutions, the CLT will be establish by the convergence of the
moments. In particular, there is an analogue for Markov process with continuous time and
discrete space.

5.1 Random walk in random environment

Consider, on the Z network, a random stationary sequence of conductances, defined
on a probability space (2,4, u), an invertible pu—preserving transformation 7' which is
also ergodic, and a random variable ¢ > 0. The space (2 is interpreted as the space of
environments.

For a fixed environment w € €2, the conductances of the edges [k, k + 1] is ¢(T*w) and
[k, k—1]is c(TF'w).

Let ¢ = ¢c+coT~ 1. We introduce the random walk (Xn)n>0 on Z with initial condition
Xo = 0 and Markov ’s operator f — P, f defined by

PLf(k) = E(lew) [T ) f = 1) + (TR f( + 1)) (5.1)

In the sequel of this section, theorem we will establish a Quenched central limit
theorem for random walk (X,,),>0. The method is to use the pointwise ergodic theorem
and without using any martingale.
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5.1. RANDOM WALK IN RANDOM ENVIRONMENT

Theorem 5.1.1. For almost all environment w,

Xn D 2
%—>N(0,0’) as n — +oo

if ¢ and c=' € L'(u) and where 0 = U% dp [ ¢ d,u}fl,

Remark 5.1.1. If c or c' ¢ L™ (u) then % — 0 as n — 400 (Depauw and Derrien

177).

Consider a standard normal distribution Z ~ A (0, 1), for each £ = 1,2,3,..., one has

0 if (=2k—1
e _
E{Z}_{ CHLif =2k

By the method of moments which was introduced in [3] (Billingsley’s book: "Probability
and measure", theorem 30.2, page 390), to prove theorem we have to show that for
almost all environment w

- X, \* . 0 if (=2k-—1
nETooE“{(a\/ﬁ) }_E{Z}_{ CRL f =2k

k!2k

for each £ = 1,2,3,.... In the sequel, we will use the pointwise ergodic theorem to treat
these limits. It is adapted from Depauw and Derrien [12].

Theorem 5.1.2. (Depauw and Derrien, [12]) For almost all environments w, we have

2
lim E, {X”} = o2 (5.2)
n

n—-+0o

Proof. Fix w € 2. We consider a function f; > 0, defined on Z, such that (P, — I)fi =1
and f1(0) =0 . For example, we can take

m—1 4
> C(Tléw) Y e(TPw), if m>1

/=0 s=1
fi(m) = ; if m=
YL S, if m< -1
= C w), if m<—
= T o

It is easy to check that the function f; satisfies
(Py—I)fi(m) =1, Vme€Z.
Replace m by X,, and take the expectation
E,{(P, —Dfi(X,)}=1, ¥n>0.
This is equivalent to

Eo {fi(Xnt1)} —Eu {f1i(Xn)} =1, Vn>0.
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5.1. RANDOM WALK IN RANDOM ENVIRONMENT

Since E,, {f1(X0)} = Ew {f1(0)} = 0, we will obtain
E,{fi(Xn)}=n, VYn>0. (5.3)

The formula (5.3]) can be rewritten as

X,) X2
Ew{f1§(% ) X n} =1

and note that if lim,, / ;(1?) exists then so lim,_, 1. E, {X—’QL}

n
The next step we will compute the limit of film) by using the pointwise ergodic theorem.

m2
We need the following lemma in the proof:

Lemma 5.1.1. Let uy, and v, be two sequences of positive real numbers and let Uy, be a
partial sum Uy, = >, ug. Assume that

1
lim —U,=u and lim v, =v (5.4)
n—oo n n— o0

then for each a € N

. 1 & uv
T}LHQOW;K gy = (5.5)
Proof. Firstly consider the case a = 0, we will show that
1 n
nh_}rrgo - Z UpVp = U. (5.6)
/=1
One has
1 < 1< 1 «
—Zuzw—uv < |- up(ve —v)| + —Z(W—u)v
n n n
/=1 (=1 =1
1 < 1<
< = wly—v| 4w —Zw—u
n n
/=1 /=1
< €

for any € > 0 when n large enough which completes (5.6)).
Now assume that (5.5) is true for a > 0, we claim that it holds also for o + 1 that is

. I & ot uv
nl;rlgo ot ;E ugve = — oy (5.7)

Put W, = >, (“usvs, using Abel’s transformation

1 & R 1
a+1 _
=1

/=1 =
= —Il + 12.
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5.1. RANDOM WALK IN RANDOM ENVIRONMENT

By the assumption lim,, o Io = lim, #Wn = a+1, and one has

-1
uv uv 1 < 1 uv
- — potl _ ottt -
1 (O[-|—1)(O[+2’ — naJrQZ gaJrl a+1‘+na+2; Oé+2 a+1
< €

for any € > 0 when n large enough since limp o0 —arz D opy 1gatl — fol z2Hdr = a+2 It

follows that lim,,_,o [1 = m And hence,
y o+l uv wouv
reroo na+2; Y T G D@t atl atz
which completes (5.7)). O

Lemma 5.1.2. With f defined as above, we have

. 1 _ -2
m1—1>I:I|:100 3 /Q d,u/cd,u o~ (5.8)

Proof. Consider firstly the case m > 0. Applying lemma for up, = ﬁ’ vy =
% Z£:1 ¢(T*w) and o = 1, one has

_ fum) 1~ 1 /1
Jm =t Z e;w“) =5 fzan [ an
[ ufen
Similarly, one has the same result for the case m < 0. O

From lemma for any € > 0, there exists M > 0 such that for any m > M then

m? B
fi(m)
Now we combine (5.3)) and (5.9)) to prove theorem Put

X2 X,
Ky =E, {nﬂ{|xn|>M}} —Ey {02f1(n )]1{|Xn|>M}} ;

X2 X,
Ky =E, {nﬂ{|xn|<M}} —E, {02 fl(n )]1{|xn|<M}}

For n large enough
X 2 f1(Xn)
K| = Ew{(fl(Xn) Y )  L{1xa> M)

X2 Xn
= E{ k) 7 = )1{'X"'>M}}<E/ ’

2 <e/2. (5.9)
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since fi(m) > 0 for any m € Z, and

1
K| = ‘nEw{(X§a2f1<Xn)) L{ixal<my}

1
EEM {1X2 = o f1(Xn)| Lxj<nry b < €/2-

X2
Ew{n} —0?
n

2
for n large enough. Since ¢ is as small as we need, then lim E, {%} =2

IA

It follows that

= [Ki+ Ka| < |Ki| + |Ks| <e

n—-+00
O
Theorem 5.1.3. For almost all environments w, we have
. AN N CLO I
Jm e { (n> = o ? (5.10)

for each k > 1.

This is the generalization of theorem [5.1.2

Proof. We will use the similar method in theorem to prove theorem [5.1.3

Fix w € Q. We consider a sequence of functions f; > 0, defined on Z, such that
(Py — I)fx+1 = fr, fx(0) = 0 and f; is defined as above. For instance, we can take for
kE>1

folm) = 1 VmeZ
( m—1 Vi
c(Tlfw) Yo e(TPw)fo(s), if m>1
=0 s=1
N1 (m) = 0, if -0
—m 1
Z:l (T ") ;5<T78w)f0(—8), if m<-1
( m—1 V4
)y c(Tlfw) Ye(Tw)fi(s), if m>1
=0 s=1
fom) = 0, if m=0
—m 1
= (T —5), < -1
\ Egl o™ w) s=1 C( w)fl( S) Zf m
m—1 Vi
Z:O c(Tlfw) 2—21 e(Tow) fr—1(s), if m=>1
fr(m) = 0, if m=
—m -1

It is easy to check that
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Replace m by X,, and take the expectation

EW{(PM_I)fk(Xn)}:Ew {fk—l(Xn)}a Vn > 0.

It follows that

Eo {fe(Xnt1)} = Bo {fi(Xn)} + B {fi-1(Xn)}, Vn=0.

Lemma 5.1.3. With n large enough and for each k > 1, then

nk

B {filXa)} ~ 7. (5.11)

Proof. 1t is obvious to work with k£ = 1.
Assume that it is true with k£ > 1, we claim that it is also with k£ + 1. That means: if

k
E. {fe(Xa)} ~ 77

then

nk+1

B {fe+1(Xn)} ~ k+ 1)

Since
Eo {fe+1(Xn)} = Eo{fir1(Xp-1)} +Eo {fe(Xn-1)} Vn=>1.

" (i —1)k
>

i=1

with n large enough.
Using the fact

- 1
v k+1
» if~——n (5.12)
P k+1
for each £ > 1 when n large enough then
(n _ 1)k+1 nk+1
E Xn)} ~ ~ :
O
The formula (5.11]) can be rewritten as
o[BG X1
Yl X2k nk k!
and note that if lim,,,— oo ff}g’,:) exists then so lim,_, o Ey, {ﬁ—’?}
The next step we will compute the limit of % by using the pointwise ergodic theorem

and lemma [5.1.1]
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Lemma 5.1.4. For each k > 1, with fi, defined as above then

o fw(m) 2%
L N 5 TR (5:13)

Proof. This limit is true for £k = 1 (lemma [5.1.2)).
Assume that (5.13)) is also true for k > 1, we claim that it holds for k + 1, that is

fear(m) ML g
Mo 26 = (k4 )17 ‘ (5.14)

Consider firstly the case m > 0. Applying lemma for us = ¢(T*w), vs = S%fk(s) and
o = 2k, one has

¢ ¢
1 : 1 2% (s y_L
lim oy Z w)fi(s) = Am e > 5T w) 5 fr(5)

{—~+o00
— s=1

Again, applying lemmal|5.1.1| for uj = - L, )= z2k1+1 Z£:1 (Tw) fr(s) and o = 2k + 1,

(Ttw)’
one has
-1 l
foks1(m) 1%
LS V77w R S (B % (T Zlc
= S
1 Mzl ekt 0 S
= mLHEOO 201 ;O (Ttw) P2+ Z
_ 2+ o2(k+1)
(2(k+ 1)
Similarly, one has the same result for the case m < 0. O

From lemma for any € > 0, there exists M > 0 such that for any m > M then

m?2k 1

fe(m) G
Now we combine (5.11]) and (5.15)) to prove theorem [5.1.3] Put

X2k Jr(Xn)
K3 =E, {M1{|Xn|>M}} —E, { ]{;C H{Xn|>M}}

Xar Jr(Xn)
Ky =B, {nk]lﬂXnKM}} —Eo { 7ROy Il{Xn<M}}

By lemma and lemma when n large enough, we have

E{<f:<(;; ) ck> e )ﬂ{'xnbM}H

93

<e/2. (5.15)
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X2k 1| fru(Xn)
- E“{fk<xn>‘@ nk 1{'X"'>M}}
< ¢/2
since function f; > 0, and
1 1
(Kl = | pBe g (Xn _afk(Xn) Lx, <)
1

IN

nk

o\ k
e f(X 1

for n large enough. Since ¢ is as small as we need, then we obtain the result

. x2\" (2K)! o,
nETOOE“{(n> } T R2R

1
—E, {‘Xﬁk _ Ckfk(Xn)’ ]l{|Xn|§M}} <2

It follows that

~ K3+ Ky| < K3+ |Kyf <e

O
Theorem 5.1.4. For almost all environments w, we have
. Xn

Proof. Fix w € Q2.

We consider a function g;, defined on Z, satisfying (P, — I)g1 = 0 and ¢1(0) = 0. For
instance, we can take

m—1 1 )
ZZ:O TTw)’ if m2>1
g1(m) = 0, if m=0
—m
1 .
_g; oy W oms -1

It is easy to check that
(Pw_l)gl(m):07 Vm € Z

then
(Po—1g1(Xpn) =0, Vn>0

and take the expectation
Ey {Pog1(Xn)} — Ey{g1(Xn)} =0, Vn >0,

and so
Eu {g1(Xnt1)} —Eu{g1(Xn)} =0, Vn>0.
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It follows that
E,{g1(Xn)} =Eu{1(X0)} =0, Vn>0. (5.17)

The formula (5.17) can be rewritten as

ol 2

exists then so lim,, 400 E, {%}

and note that if lim,,, s %

The pointwise ergodic theorem ensures that

lim
m—00 m

/ dp = Dy. (5.18)

Therefore, for any ¢ > 0, there exists M > 0 such that for any |m| > M then

g1(m)
-1 . Aq
Dim ’ =€ (5.19)

Now we combine ((5.17)) and (5.19) to prove theorem Put

1 1 91( n)

Ko = K, {\}ﬁXnﬂﬂxnbM}} {\fé)ﬂﬂxuw}} :

For n large enough we have

1 gl(Xn)
|K5|: Ew{n<Xn_ D, >1{|Xn|§M}}‘<€
and
Kol = |E L (x, — 90y
1Kol = [Ewy—= (X =5 {1Xn|>M}
1 91(Xn)
= {\/ﬁ <1 ~ XDy )X 1{'Xn'>M}H
| X0 X2
< < — 5.
< €Ew{\/ﬁ <eyE, -

It follows that

X, X2
Ey§—=¢| = |K5 + Kg| < |Ks5| + |Kg| <e+eq/E,q—
Vvn n

for n large enough. By theorem [5.1.2]

X2
lim Ew{n}:o2<oo
n——+o00 n

and € is as small as we need, then we obtain lim [E, {%} =0. ]

n——+oo
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Theorem 5.1.5. For almost all environments w, we have

im E, { <f§%)2kl} —0 (5.20)

for each k > 1.

Proof. Fix w € Q.

We consider a sequence of functions g, defined on Z, satistying (P, — I)gg+1 = gx for
any k > 1 and ¢ is defined as above. For instance, we can take for k > 1

m—1 YA
ZZ c(:rléw) Zlé(TSW)Qk(S), if m>1
=0 sS=
gk+1(m) = 07 Zf m=20
—m /—1
2. c(lew) > (T w)gr(—s), if m< -1
=1 s=1

Then we have
(Po — I)gky1(m) = gr.(m), Vm € Z.

Replace m by X,, and take the expectation

Ew {ngk-i-l(Xn)} - Ew {gk—l—l(Xn)} = Ew {gk(Xn)} ) vn >0

and so
Ey {gk+1(Xn+1)} = Eu {gk+1(Xn) } + Ew {gx(Xn)}, Vn >0.

Lemma 5.1.5. With functions g;, defined as above
Eu,{gx(Xn)} =0, VYn>0 (5.21)

for each k > 1.

Proof. Tt is true with k = 1. Suppose it is also true with £ > 1, that means
Ey, {9x(Xn)} =0, VYn>0

we want to show that
Ew {gk+1(Xn)} = 07 Vn Z 0.

We have

Ey {gk+1(Xnt1)} = Eo{grr1(Xn)} + Ew {gr(Xn)}
= B {gi (X)) = . = By {gr1 (Xo)} = 0.
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The formula (5.21]) can be rewritten as

2k—1
Ew gk(Q*z(nl) % XTL — O
Xt (V)

2k—1
and note that if lim,, . % exists then so lim,_, 1 E, { (%) }
™)

The next step we will compute the limit of 2% 2(,6 7 by using the pointwise ergodic theorem

and lemma [5.1.1]

Lemma 5.1.6. For each k > 1 and gy, defined as above, we have

P O o P

Proof. This limit is true for k£ =1 (5.18)).
Assume that (5.22)) is also true for k > 1, we claim that it holds for k + 1, that is

gk+1( ) B 2k / 1 k+1 / k

Consider firstly the case m > 0. Applying lemma for us = ¢(T4w), vs = S%#,qu(s)
and o = 2k — 1, one has

l
. 1 _
i S = i e 3 e s
s=1
2k 11 g
pu— d d .
()! U “] [/Q “}
Again, applying lemma |5.1.1| for uj, = ﬁ, v, = Pik Z§:1 ¢(T w)gr(s) and « = 2k, one
has
¢
lim grei(m) lim Z Z T°w)gk(s)
e 2T T e m2k+1 Tf wW)9k\S
s:l
1 m— 1 2k 1 L
_ : (TS
= Am Z o(T%w) ngZC (T*w)gn(s
s=1
= — —d dup| .
2k + 1) UQ ¢ ’“‘] UQ “]

Similarly, one has the same result for the case m < 0. O

From lemma for any € > 0, there exists M > 0 such that for any |m| > M then

gr(m)
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Now we combine ((5.21]) and (5.24) to prove theorem Put

_ = _ 1L gr(Xn)
K7_Ew{(\/ﬁ)2k1Xn 1{|Xn|§M}} Ew{(\/ﬁ)zkl Dy LiXal<h)

Ks =K, {(\/ﬁ)%—lX?l 1]1{|Xn|>M}} _Ew{(\/ﬁ)%—l Dy XM} (-

For n large enough we have

1 ok—1  9k(Xn)
‘K?‘ = |E, {(\/ﬁ)%—l (Xn — Tk ﬂ{\Xn\SM} <e
and

AN
m
=
€
—N—
_
SJE
N————
'
T
——
AN
(L)
_
=
S
—
N
3|98
N————
)
T
——

It follows that

o\ 2k 2\ 21
Ew{(”) }|=|K7+K8|§\K7|+K8\<6+6 Ew{(”) }
Vn "

for n large enough. By theorem [5.1.3

X2\ %! 202k -1
. “An _ o e\ev T (2k—1)
i B { < n > (2k — 1)122k—17

2k—1
and ¢ is as small as we need, then we obtain the result lim [E, { (&) } = 0. ]

n—-+0o00 Vn

Finally, for each £ =1,2,3,... we obtain

b B ) (X a . 0 if £=2k—1
noee N\ [T Bhe* if  0=2k

And hence, for almost all environment w

—

&#N(O,tﬂ) asn — +oo

NG

which completes the proof of theorem [5.1.1
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5.2. MARKOV PROCESS WITH DISCRETE SPACE

5.2 Markov process with discrete space
We consider Markov process (X¢),.p on Z with Xo = 0, the generator infinitesimal
Lof(k) = e(TF'w) f(k — 1) + e(TFw) f(k + 1) — &(T*w) f (K), (5.25)

In the sequel of this section, theorem we will establish a central limit theorem for
Markov process (X;),cg- We will use also an analogue method in section 5.1.

Theorem 5.2.1. For almost environment w,

)\2#/\/(0,02) as t — +o0

if cl € LY(p) and where 0®> =2 [[ L du ]_1.
Proof. As in theorem to prove theorem we have to show that for almost all

environment w
N X\l [ 0 if t=2k-1
e RV A B B

for each ¢ = 1,2,3,.... In the sequel, we will use also the pointwise ergodic theorem to
treat these limits.

Theorem 5.2.2. For almost all environments w, we have
X2
lim T, {t} =02 (5.26)

Proof. Fix w € €.

We consider a function f; > 0, defined on Z, such that L, fi = 1 and f1(0) = 0. For
example, we can take

m—1
Y4 .
EE:O (T7w)’ if m2>1
fi(m) = 0, if m=0
o, . -
Zary W oms-l

It is easy to check that Ly fi(m) =1 for any m € Z.

Lemma 5.2.1. With function f1 defined as above, we have .

E,{fi(X)} =t (5.27)

for any t > 0.
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5.2. MARKOV PROCESS WITH DISCRETE SPACE

Proof. Put hy(t) = E, {f1(X¢)} then

L,fi(Xy) = lmE, Eo (f1(Xigs)/ Xe) — f1(Xe)
s—0 s
fl(Xt-‘rs) — fl(Xt)
s
— lim hi(t+s) — hi(t) H)
s—0 S

Since Ly, f1(X¢) = 1 then b (t) = 1, Vt implies hq (t) = t+c¢, Vt. Since h1(0) = E,, {f1(Xo)} =
0 implies ¢ = 0, and hence h;(t) = E, {f1(X})} = t. -

= limE, {

s—0

The formula (5.27)) can be rewritten as

E, {fl(Xt) X X'?} =
X? t

2
and note that if lim,, ! ;(;n) exists then so lim,_, 1 E, {%}

The next step we will compute the limit of Lg”) by using the pointwise ergodic theorem

and lemma [5.1.11 "
Lemma 5.2.2. With function f1 defined as above

T GO (5.28)

m—r+oo Tn2 B

Proof. Consider firstly the case m > 0. Applying lemma for uy = m, vp =1 and
« =1, one has

e f1m) S p 1 / L

1m == m —5 = — — .

m——+00 m2 m—+00 m2 =0 C(wa) 2 0cC H

Similarly, one has the same result for the case m < 0. O

From lemma for any € > 0, there exists M > 0 such that for any m > M then

m2

fi(m)
Now we combine ((5.27)) and (5.29) to prove theorem Put

X? X
Hl = EUJ {;1{|Xt|>M}} - ]EW {U2fl(t t) ]]'{|Xt|>M}}

<e/2. (5.29)

t

= { (e =) HF e
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X? 2 f[1(X4)
H, = E, {tﬂﬂxtgm} - Ey {0 Lipxi<ary ¢

For ¢ large enough
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-

< €/2

X;
J1(Xy)

J1(Xe) 1 }
 Lx>

since f1 > 0, and

1
|Ho| = ’tEw {(x? = f1(x)) l{XtISM}}’ <e/2

E, {)?’2} —o?

for t large enough. Since ¢ is as small as we need, then tlir+n E, {&} =02 O
— 400

It follows that
= |Hy + Ho| < |Hi| + |Ha| < &

Theorem 5.2.3. For almost all environments w, we have

. X2\ 2R o
()} -2

for any k > 1.

Proof. Fix w € Q.

We consider a sequence of functions fi > 0, defined on Z, such that L, fr = fi—1,
fx(0) = 0 and f; is defined as above. For example, we can take

folm) = 1 VmeZ
( m—1
¢ .
Z ampfols), if mz1
z; (T-%w) fo(=s) if m< -1
( m—1 1 Vi
Tty 2 Jre-ils), if  om =1
£=0 s=1
—m -1

c(TlZw) 21 fe—1(=s), if m< -1

Then it is easy to check that L, fir(m) = fr—1(m) for any m € Z.

Lemma 5.2.3. For each k > 1, then

k
B, (X0} = o (531)

for any t > 0.
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Proof. 1t is obvious to work with £ = 1. Assume that it is true with k£ > 1, we claim that
it is also with k£ 4+ 1. That means: if

tk
B (X)) = b
then tk+1

Put hi(t) = E, {fx(X¢)} for k£ > 1 then

Eo (fir1(Xets) /[ Xt) — fror1(Xe)

wak—i—l(Xt) = limE,
s—0 S
— lmE, Srr1(Xegs) — fra (Xo)
s—0 S
~ lim hi1(t + 8) — hi4a(t)
- 57)() S
= hipya(t).
Since L, fi(Xt) = %k, then hj_,(t) = %,Vt implies hy41(t) = (le:f), + c. Since hi4+1(0) =
Ey {fx+1(Xo)} = 0 implies ¢ = 0 and hence hy41(t) = % O

The formula (5.31)) can be rewritten as

X X2k 1
E, Te(Xt) Sl G
X2 tk k!

Y fe(m) ; xz\*
and note that if lim,,, s on exists then so lim, 1 E, n .

(

The next step we will compute the limit of Ji ) by using the pointwise ergodic theorem

and lemma 5. 111
Lemma 5.2.4. For each k > 1,

fr(m) 2 o
i = g = 5

Proof. This limit is true for k = 1 (lemma[5.2.2)).
Assume that (| - is also true for k > 1, we claim that it holds for k + 1, that is

fera(m) — 2MN i
o 2D~ 20k 1)1 ‘ (5:33)

Consider firstly the case m > 0. Applying lemma for us = 1, vg = 52% fr(s) and
o = 2k, one has

1 2"
po 1 o 2% 5%,
oo PR ; Jr(s) oo 72T €2k+1 Z 52k fk (Qk +1)!
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Again, applying lemma [5.1.1| for uj = m, vy = Z%% Z£:1 fr(s) and o = 2k + 1, one
has
I fokr1(m) I 1 mz_:l 1 i:f (5)
m%lr}rloo m2(k+1) mHHJrrloo m?2(k+1) = C(wa) i kRS
= S=
1 Ml ek 0 S
= mgrﬂw m2(k+1) ;; o(Tw) (2k+1 21 fr(s)
= s=
_ 2 e
(2(k+ 1))
Similarly, one has the same result for the case m < 0. O

From lemma for any € > 0, there exists M > 0 such that for any |m| > M then

2k

m 1
— - = <g/2. 5.34
fr(m)  Fy / (5:34)
Now we conbine (5.31]) and (5.34) to prove theorem Put

X2k Ju(Xt)
Hy =E, {t’;ﬂ{xth}} — Ko, {MHUX»M}}

X2 fi(Xe)
Hy =K., {tkl{XJSM}} — K, { (R E, X<

For ¢t large enough

X" 1 fr(Xe)
‘HB‘ = Ew{<fk;(Xt) - Fk) tk ﬂ{|Xt\>M}
X 1| fi(Xe)
= Ew{ (X)) Bt x>a)
< €/2
since fr > 0, and
1 o1
‘H4‘ = * E, Xt — kak<Xt) ]l{IthgM} < 8/2.

It follows that

= |Hs + Hy| < [Hs| + |Hy| <e

(7))o

. : . x2\* (2k)! ok
for t large enough. Since € is as small as we need, then lim E, (Tf) = pro. U
t—+o00 :

Theorem 5.2.4. For almost all environments w, we have

lim E, {Xt} ~0 (5.35)



5.2. MARKOV PROCESS WITH DISCRETE SPACE

Proof. Fix w € €.

We consider a function g;, defined on Z, satisfying L,g1 = 0 and ¢1(0) = 0. For
instance, we can take

m—1

Zg(] C(Tlew)a if m2>1
g1(m) = 0, if m=0

—m
- Y qrryy i m< -1
(=1

Put QI(t) - Ew {gl (Xt)}7 then

Logi(Xy) = lmE, B (91(Xtys)/Xt) — go(Xt)

s—0 S

— lmE, {gl(Xt+s) — g91(X¢) }
s—0 S
s—0 S

Since Ly,g1(X;) = 0 then ¢} (t) = 0, V¢ implies q1(¢t) = ¢, Vt. Since ¢1(0) = E, {g1(Xo)} =0
implies ¢ = 0, and hence

Eu {91(Xe)} = au(t) = 0. (5.36)
The formula (5.36]) can be rewritten as

ot )

exists then lim,,_, 1 E, {%} exists.

and note that if lim,,, s

g1(m)

The pointwise ergodic theorem ensures that

lim u(m) :/1d,LL:G1

m—oo M

Therefore, for any ¢ > 0, there exists M > 0 such that for any |m| > M then

gi(m)
Gim

— 1’ <e. (5.37)

We now combine ((5.36) and (5.37]) to prove theorem Put

1 1 g1(Xy) }
Hs =E,{ —=X;1 —Eu{ —=——1gx,
5 {\/E t {IthM}} {\/E G, {IX¢|<M}
and 1 1 (X))
gi1{A¢
Hes =E,{ —X;1 —E,q— 1 .
We have

|Hs| =

1 X
E, {ﬁ (Xt - glélt)) l{IXt|<M}H <€

104



5.2. MARKOV PROCESS WITH DISCRETE SPACE

and

|He| =

1 g1(Xy)
E,d—(1- X,1
10 (- %) ¥t

2
EEW{W}§€ Ew{Xt}
t t

for t large enough. It follows that

IN

E, § &t |Hs + Hg| < |Hs| + |Hg| < e +¢4/E X7
W \/i 5 6] > 5 6 W t

for t large enough. By theorem [5.2.2 tli+m E, {XTE} = 02 < 00 and ¢ is as small as we
—+00

need, then we obtain lim E, {&} = 0. O
t——+o0 Vit

Theorem 5.2.5. For almost all environments w, we have

. X\ 1)
| E, — = .
i, {<ﬁ) 0 (5:39)

Proof. Fix w € Q. We consider a sequence of functions gi, defined on Z, satisfying
Lygr+1 = gk, Vk > 1 and g; is defined as above. For instance, we can take

for each k > 1.

m—1 1 4 ]
Z o(Tw) Z gk(s), if m=>1
=0 s=1
gk+1(m) - 07 ’Lf m =0
—-m 1 /-1 )
Z (T w) gk(_s)a Zf m < —1
(=1 s=1
Lemma 5.2.5. For each k > 1, then
Ee, {gx(X:)} =0 (5.39)

for any t > 0.

Proof. 1t is obvious to work with £ = 1. Assume that it is true with &k > 1, we claim that
it is also with k£ + 1. That means: if

Eu {gr(X)} =0
then
By {gk+1(Xe)} = 0.
Similarly, put gx(t) = E,, {gr(X¢)} for & > 1then

Eo (grt+1(Xits)/Xt) — gp1(Xe) }

ngk+1(Xt) = ll_rg(l)Ew{
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— lmE, {gk+1(Xt+S) — ng(Xt)}

s—0 S
Q1 (t+8) — qrya(t) /
lim, 5 Qg1 (1)

Since Lwgr(X¢) = 0 then g (t) = 0, for any ¢ implies gx41(t) = c (constant). Since
qx(0) = E, {9x(X0)} = 0 implies ¢ = 0, and hence qx(t) = E,, {gx(X:)} = 0, for any ¢t. [

The formula (5.39)) can be rewritten as
E 9r(Xt) Xt2 -l 1
“ ] X2 X (\/Z)%*l =7

2k—1
and note that if lim,,,— oo gfg(,:f)l exists then so lim,_, - Ey { (ﬁ) }

NG

The next step we will compute the limit of AQTZ) by using the pointwise ergodic theorem

and lemma 5111 "

Lemma 5.2.6. For each k > 1 one has

i 207 1 /ld k—G (5.40)
mgnoo m2k—1 o (2]@‘— 1)' QC a N k .

Proof. This limit is true for k = 1.
Assume that (5.40) is also true for k£ > 1, we claim that it holds for k + 1, that is

TSI GO [/Qidurﬂ. (5.41)

m=4oo m2k+1 (2k + 1)!

Consider firstly the case m > 0. Applying lemma [5.1.1| for us = 1, v5 = s%%gk(s) and
a =2k — 1, one has

V4 l
; 1 - 1 1 ok—1_ 1
Eilgrnoo KT]C ; gk(S) N ZETOO ng ; s S2k_lgk(s)
k
1 1
= — || =d
(2k)! UQ c “]

Again, applying lemma [5.1.1{ for uj, = ﬁ, vy = 32% Z§:1 gr(s) and o = 2k, one has

(’I’I’L) 1 m—1 1 l
lim L gy ] ng(s)
1

m—+oo mZk+1 m—+oo m2k+t1 c(Thw

_ 1 |
- m1—1>r-ll-loo m2k+1 % o(Ttw) 12k Z 91 (s)

bl

Similarly, one has the same result for the case m < 0. O
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From lemma for any € > 0, there exists M > 0 such that for any |m| > M then

gk(m)
We now combine ([5.39)) and (5.42)) to prove theorem Put
1 2%h—1 1 gr(Xy)
H7 =R, {(\/,g)%_lxt 1{|Xt|SM}} — B, { VPTG s
and
1 2%—1 1 ge(Xy)
Hy =E, { (\/g)zk—lXt ]l{IXt|>M}} - K, { (\/g)zk—l Gy Lyx, > M3y (-
We have . (X))
2k—1  9r At
and
1 gr(Xy) 2%k—1
|Hs| = E“{(\/E)qu <1_ ka_le X Lgx > my
2k—1 g\ 2k—1
N

for t large enough. It follows that

X, 2D X2 2k—1
E, — = |H Hg| < |H H E, —
{(ﬂ) ‘ 7+ 8’_’ 7|+| 8‘<€+€ r

for t large enough. By theorem [5.2.3| one has

2k—1
lim E X—f = (2(2k — 1))! o2(2k=1)
oo |\t (2k — 1)12(F-1)

(2k—1)
) } =0. O
Finally, for each £ =1,2,3,... we obtain

o E X \* 0 if (=2k—1
m ) = .
1o Vi G2k if  £=2k

And hence, for almost all environment w
X D
Vi

which completes the proof of theorem

and € is as small as we need, then lim [E, {(
t—+o00

Sl

./\/(0,02) ast — +00
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Chapter 6

Einstein’s relation for reversible
diffusions 1n a random environment
1n one dimension

This chapter is devoted to consider reversible diffusions in a random environment in
one dimension and prove the Einstein’s relation for this model. It says that the derivative
at 0 of the effective velocity under an additional local drift equals the diffusivity of the
model without drift (theorem . This equality was used by Einstein to measure the
Avogadro number. Our method here is to solve the Poisson’s equation (P, —I)g = f which
introduced in the preceding chapter, and then use the pointwise ergodic theorem to treat
the limit of the solutions to obtain the desired result.

6.1 Introduction

Consider again, on the Z network, a random stationary sequence of conductances,
defined on a probability space (€2, A, 1), an invertible p—preserving transformation 7" which
is also ergodic, and a positive measurable function ¢ on 2. The space € is interpreted as
the space of environments.

For a fixed environment w € €2 and a fixed number X # 0, the conductances of the edges
[k, k+1] is e*c(T*w) and [k, k — 1] is e e(T*"'w). The number X is called the "drift" of
the model.

We consider Markov process (Xt),5( on Z with Xo = 0, the generator infinitesimal
Lawf(k) = e (T w) f(k = 1) + e*e(Trw) f(k + 1) = m(T ) f(k),  (6.1)
where 7 = e*c + e *co T L.

Definition 6.1.1. The Quenched diffusivity of a diffusion process X; without drift is de-
fined by
1
Y= lim -E,{X7} (6.2)

t—+oo t
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Remark 6.1.1. When the model without drift A\ = 0, in the preceding chapter theorems
[5.1.9 and|5.2.2 show that for almost all environment w

o 1 2 _ 2
Y= lim -E, {XP} =0 (6.3)
where
([ idufc du]_l ifc, ct € LY (p) and X,, is a random walk.
2
g =

2 U% du] - if ¢ € LY (p) and Xy is a Markov process with time continuous.

Definition 6.1.2. The Quenched effective drift of a diffusion process X; in Z is defined by

o1
dy(N) = tileroo ;Ek,w {X¢}. (6.4)
Remark 6.1.2. When the model without drift A = 0, then d,(0) = lim;— 4o %Ew {X:}=0
with the same condition of function c¢ in remark [6.1.1 It was defined in the preceding
chapter (theorems|5.1.4| and |5.2.4).

Theorem 6.1.1. (Einstein’s relation) The function X — dy,(\) has a derivative at
A = 0 which satisfies
- dw(N)
1
A50 A

=Y =0 (6.5)

if ¢, ¢t € L%(p) for a random walk and ¢~ € L'(p) for a Markov process with time
continuous respectively.

This theorem will be proved into two cases:
e For Random walk in Random environment with a drift, we have theorem [6.2.1
e For Markov processes in Random environment with a drift, we have theorem [6.3.1

We will see in the proof of these theorems that d, () is defined a.s and doesn’t depend
on w. So, it will be denoted by d(\) in the sequel.

Remark 6.1.3. About Einstein’s relation for reversible diffusions in random environment,
there is a paper of Gantert, Mathieu, Piatnitski [19] recently. They used independence’s
assumption in the environment.

6.2 Random walk in Random environment with a drift

We introduce the random walk (X,),>0 on Z with initial condition Xy = 0 and
Markov’s operator f +—— Py, f defined by

P/\,wf(k) =

= ) e Ne(THw) (I = 1) + Xe(Thw) f(k +1)] (6.6)
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Theorem 6.2.1. For almost all environment w,
d(A) 1
N . 7 7 R
ifc, et € L3 (p).

Proof. This theorem is proved by Theorems [6.2.2] and [6.2.3] O

Theorem 6.2.2. For almost all environment w and for A >0

0 1 X, 11!
lim ——= = lim — lim Ey,{— % = d ~d ) 6.8
AE& A Ag{ﬁ/\ngn A {n} [/QC 'u/Qc M] (68)

Proof. Fix w € Q. We consider a functions f), defined on Z, such that (Py, —I)fy =1
and f)(0) = 0. For example, we can take

m—1 YA

EZ armen 2 m(TPw)el DA if  m>1
=0 s§=—00

Z c(Tlfw) e Z m(Tw)e DA if m < —1

S=—00
It is easy to check that (P, — I)f\(m) =1 for any m € Z. Replacing m by X,, and take
the expectation, one has
E)\M {f)\(Xn)} =n Vn > 0. (6.9)
The formula can be rewritten as

Ew{ X, xn}_l

and note that if lim,,,— oo w

exists then so lim,_, o0 K, {%}

The next step we will compute the limit of w by using the pointwise ergodic theorem.
We need the following lemma in the proof:

Lemma 6.2.1. Let (an)n>0 be a sequence of positive real numbers and let A, be a partial
n

1
sum A, = Zai, Assume that lim —A, = L then

n—oo n

+oo

ZagpZ < 400 (6.10)
=0
and
“+o0o
D aglp’ < o0 (6.11)
=0
where 0 < p < 1. Furthermore
li = L. 6.12
R S 012
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Proof. 1t is clear that (6.10) is followed by (6.11]).
Proof of . Applying Abel’s lemma we have

n n—1
> atp’ = > A (W —(t+ l)p”l) + Apnp”
=0 =0

n—1 n—1
= (1=p)> Ap" =" Agp"™ + Aunp™.
=0 =0

+oo “+00
1
Since lim —A,, = L then lim A,np" =0, g Aglp® and E Agp™ converge by D’Alembert
n—oo

nee =0 £=0

criterion, which prove (6.11)).

Furthermore, for any € > 0 there exists N > 0 such that for any n > N we have
1
'An I
n

< e and lim A,p" = 0. Therefore
n—oo

+oo
(1=p)> ap’ L
(=0

=0 £=0
o
— (1—p)22(/2€ 1L)N
=0 P
N-1 A[ 1 o0
< (1-p)? E—L‘Epz—i—(l p)QZEpE(L—L—&-s)
=0 P {=N
N—-1
Ay 1
< (1-p)? Z—pL‘EpZ—F(l—p)L—f—E
=0

for p — 17, (6.12) is followed.
O

and by the pointwise ergodic theorem

1
In the sequel, we always assume that p = —+
e

+00
=N n(T7Fw) = / 7 du. Therefore if we put Hy(w) = \/EZW(T_kw)pk, lemma |6.2.1
k=0 Q@ k=0
shows that H)(w) < 400 and

lim (1 — e ?)Hy(w) = lim (1 — p)Hy(w) = /Qw dp. (6.13)

A—0F p—1—
Lemma 6.2.2. With function f defined as above, we have

lim Jalm) = ﬂd,u =L,. (6.14)

m—too M Q C

Proof. By the definition of function fy, for m > 0

fa(m)

1 m—1 ¢ l m—1 l
m - m

s 3 T

§=—00 =0

=0
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14

m—1

1 s, ¢
m;c ps_Z_:OOWT oT".
Replacing £ — s by k we obtain
f( 1231 fz (T *w) Tg_lmzzlfﬁoT@(w)
m (T m = c

By Cauchy-Schwarz’s inequality, we have

+oo
Hi(w) < fpp Z (T Fw)p”
k=0

H2dy < —F /7T2d,u.
/Q A (1-p)% Jo

H
Since 7 € L?(u) then Hy € L?(u1), and hence by Holder’s inequality A e L(u). Tt follows
c
that

then

1 H H
lim Salm) = lim — Z LoTw) = | Pdu
m——+00 m m——+o0 M — C o C
by pointwise ergodic theorem. Similarly, for m < 0
- —t
fa(m) 1L ot _
m - —mZC(T_fw)\/ﬁ Z (7w
/=1 §=—00
1 &1 =
—s—{
J— C(Tfew)\fp Z (T w)p™
/=1 §=—00
1 —-m 1 —/
+4 —s—0 —¢
= — — NG Z (T w)p oT
m = (T~ w) [ P
Replacing s + ¢ by —k we obtain
- 400 m
fa(m) IR “k, Nk o 1 Hy
m —-m ; c(T—tw) \/ﬁkzoﬂ( )P o —m = ¢ ° ()

_ falm) LR Hy oy /H)\
1 L= 1 — E —oT = [ —=du=L,.
im im e (w) L 1 A

m——0o0 m m—-+oo M 7
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For any € > 0, by (/6.14) there exists M > 0 such that for any |m| > M then
‘1 fa(m)

1 . 6.15
e R T (6.15)

We now combine and to compute the limit of E {%} Put

X, 1 H(Xs

n
A
I3 =Eyu {n]l{|Xn|>M}} —Exw {L,\ n L x>0
then
1 f)\(Xn)
A
‘II‘ = ‘nEA,w Xn — Ly ]]-{|Xn|SM}
1 f)\(Xn)
< nEm{ Ko = = | Lxal<mn
<
and
1 f/\(Xn) Xn
A
‘Iz ‘ = |Exw { <1 I, X, Tﬂ{anbM}

X2
< € E)\M {;}
n

for n large enough. It follows that

X, 1 X2
Eaw {n} -1 |= B+ B < ||+ |1B| <2+ [Ere {712} (6.16)

2
for n large enough. We see that if lim, o Ej {%} exists then so lim,, o0 Ey {%}

Proposition 6.2.1. For almost all environment w,

X2 1
lim E) {g} = 3 (6.17)
n—oo n [L)\]

Proof. We consider a function gy > 0, defined on Z, such that (Py, — I)gx = f) and
gA(0) = 0. For example, we can take

m—1 Vi
Y e 2 m(TPw)e® T (), if  m>1
=0 S$=—00
—m s
> c(Tlew) 2 S m(Tow)e® DAL (s), if m< -1
=1 s=—00
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then (Py—1)gx(m) = fa(m) for any m € Z. Replacing m by X,, and take the expectation,

one has
n(n—1)

Exw {oa(Xa)} = ",

The formula (6.18]) can be rewritten as

om0 X3 1
Y1 X2 n? 2

Vn > 0. (6.18)

2
and note that if lim,,_ o % exists then so lim,, 1 o [, {%}

The next step we will compute the limit of %ZL) by using the lemmas [6.2.1| and [6.2.2
m

Lemma 6.2.3. With function g defined as above

1m14——2:fmg? (6.19)

1 m—1 pg 0
G = — VP m(T°w)p™° fA(s),
m?2 — c(Ttw) s;w
1 m—1 pg ¢
L = — p ) m(T w)p™" fa(s),
m2 % C(wa)\fsz:;
1 m—1 pg )4
6 = L VB w(Tow)p s
m?2 — c(Ttw) —
By the definition of function gy, we have gA(T) =& + &. We will prove that
m
mgTw f1 =0 (6.20)
and )
. _ 1 2
im &= L. (6.21)
0
By (6.11) and Slgglof)‘is) = L) then Z m(T°w)p~ % fr(s) is bounded which completes
s=—00
6.20)).
Proof of (6.21). Replacing ¢ — s by k we obtain
1 m—1 1 ¢ 1 m—1 1 /-1
- Tow)p'™%s = — T F )™t — &
€3 m2 C(Tgw)\/ﬁ 7'('( w)p 8 m2 Z c(wa)\/ﬁ ﬂ-( w)p ( )
=0 s=1 =0 k=0
1 m—1 ) -1 1 m—1 \/15 /-1
m? — c(Ttw) \/ﬁkz_oﬂ( wlp| o m? prd c(Ttw) kZ:OW( w)kp
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/-1
Since \/ﬁz (T *w)kp” is bounded by (6.11)) then
k=0
- LS VP [ ¢
mgquoo m2 ez—% c(Ttw) k_07r(T whkp™| 0T =0.

~
—_

On the other hand, since lim /p Y #(T *w)p* = Hy(w) then

L—+00 —o
-1
li — T *w)p* — H =0.
L SUD O \/ﬁk_oﬂ( w)p Aw)
And hence,
, = AN
L = Mmoo TR eTHw) (m> =50
. . fas) : 1 _
Moreover, since lim “—— = Ly then lim sup — |f\(s) —sLy| = 0. It follows that
5§—00 S m——+oo s<m m
li = i Ly = (L2
i b2 = lim Sl =5 L)
which completes ((6.21)).
Similarly, we get also the same result for the case m < 0. O

By lemma for any &’ > 0, there exists M’ > 0 such that for any |m| > M’ then

2
m /
- <€'/2.
ga(m)  [Ly]?
Put
=g, Xy E 2_ &)y
DT Tz Tl T e T () Il
X; 2 ga(Xn)
A n A n
Hy = Eae {m“{'xn'w’}} ~ B { L n(n—1) H{X">M’}}
then
1 29:(X 2
Al 2 2 g (Xn) n
1 20\(X,)  n? ‘ }
< SEhL] X2 - 1 :
— nQ A, {’ [L)\]2 n(n _ 1) {|Xn|<M'}
< /2
and

] -
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(50 ()

< €/2

for n large enough since g(m) > 0 for any m € Z. It follows that

X2 1
s {5) 1
n (L]

for n large enough. O

- ‘IIﬁJFHQ‘ < ‘Hﬁ‘ + ’Hé\‘ <¢

n2

Xn 1
e {3 -1 -
Finally, by (6.13) one has
-2 __—2) -1
lim —d()\) = lim (1—e )[/ (1—e )H)‘d,u]
Q

A=0t A A—0+ A

We have thus proved that lim,, . Ej {X—g} = 1 From (6.16 , we obtain

Theorem 6.2.3. For almost all environment w and for A <0

AN 1 X, / / 1 1!
lim ——~ = lim < lim By, <{ =24 = dp [ =du| . 6.22
)\i)r(()l* A /\iﬁ[)l* A n1_>m A { n } |: Q cap QcC H ( )

Proof. The proof of this theorem is very similar to theorem which modifies functions
f and gy, defined on Z, as follows

i o ewz T(T)e® N if w1
fa(m) = B o, i m=0

—m

Z c(Tlfw) 2€>\ Z ( )e(2s+1))\7 Zf m < —1

and
Z T(’ yeZn Z (T w)e 28+1))\f (s), if m=1
gr(m) = 0, if m=0
—m +oo
C(lew) 2N S w(Tow)e@s DA f(s), if m < —1
(=1 s=—
where w is fixed. O
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Remark 6.2.1. We have proved that for A # 0 and for almost all w

. X\
nh_)n(r)lo Ex . {n} =d(\) (6.23)
and
lim E Xl d(\)? 6.24
Jam B (5 = A (024
This implies that for w a.s
Xn
on P, d(A) asn — o0 (6.25)
n

where — is denoted as the convergence in probability.

6.3 Markov processes in Random environment with a drift

We consider Markov process (X¢),.p on Z with Xo = 0, the generator infinitesimal
Lywf (k) = e e(T* ) f(k = 1) + e*e(T*w) f(k + 1) — n(T*w) f (K), (6.26)
where 7 = e*c + e Aco T

Theorem 6.3.1. For almost all environment w,

Cd) 1 X, 1 17t
lim —= = lim — lim E — =2 —d, 2
M50 A B0 Xt A’w{t} [/Qc ‘u] (6:27)
if 7l e Li(p).
Proof. This theorem is proved by Theorems and O
Theorem 6.3.2. For almost all environment w and for A > 0
codu() T X (U
1 = lim — lim Ey < — p = -d . 6.28
AS0F A P, WSl { t } [ /Q c M} (6.28)

Proof. Fix w € ). We consider a functions fy, defined on Z, such that Ly, f\ = 1 and
f2(0) = 0. For example, we can take

m—1 L
Z C(T[$)€2Z>‘ Z 6(2571))\’ if m=1
=0

s=—00
fa(m) = 0, if m=20
—m —/
- Z C(lew) e Z 6(2871))\7 Zf m < —1
(=1 §=—00

It is easy to check that Ly, fi(m) = 1 for any m € Z. Replacing m by X; and take the
expectation, one has
Exw {n(Xy)} =t Vt>0. (6.29)
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The formula (6.29)) can be rewritten as

N X
Ew{ X, Xt}_l

and note that if lim,,,— oo w

exists then so limy_, 400 Ey, {%}

The next step we will compute the limit of w by using the pointwise ergodic theorem.

1
Lemma 6.3.1. Put p = —x and function fy defined as above, one has
e

1
fm 20 VP (6.30)
m—too M 1—p Jgc

Proof. By the definition of function f), for m > 0

f (m) 1 m—1 pg L 1 m—1 1 L
A = -5 _ (—s
T w2 a2 P D i VP 2 P
£=0 s=—00 =0 s§=—00
_ lm_l 1 \/ﬁiopk— P lm_l 1
- ¢ 1 ¢
m c(Tt*w) — 1—pm c(Tt*w)

and hence by pointwise ergodic theorem (6.30)) is followed.

Similarly for m < 0 we will obtain the desired result. O
For any £ > 0, by (/6.30)) there exists M > 0 such that for any |m| > M then

1 fa(m)

L)\ m

- 1‘ <e. (6.31)

We now combine (]6.29[) and Q6.31D to compute the limit of Ey ,, {%} Put

X 1 (X,
I =Ex {ttﬂ{xtKM}} —Exw {fk( 2 1{|xt|<M}} )

Ly, t
X 1 (X
Ig\ =E\w {tt:ﬂ'{Xt|>M}} —Exw {L/\ (t 2 ]l{lXt|>M}}
then
1 X
2] = [ { [xo- 2E2] tiien
1 fa(Xe)
< %E)\,w {’Xt - Ly ]l{|Xt\SM}
< €
and

7| -

I (X)) Xe
Em{(l—h X, ) ¢t
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X¢
< 9 E)\’w {tQ}

for ¢ large enough. It follows that
X 1
Exwd —p— — 6.32
w4 (632

2
for t large enough. We see that if lim;_, o Ey {%} exists then so limy_y o0 Ey o {%}
Proposition 6.3.1. For almost all environment w,

. X? 1
tilinoo EA’w {tz} N

(LA

X2
— |+ | < ||+ |B] <c+e IE,\{t;}

(6.33)

Proof. We consider a function gy > 0, defined on Z, such that Ly ,gx = fx and g»(0) = 0.
For example, we can take

m—1 Vi
p2 e 2 eFTAR(s),  if m>1
=0 S=—00
m i
=Y @t X ePTAA(s), if m< -1
(=1 §=—00

then Ly ,g(m) = f(m) for any m € Z. Replacing m by X; and take the expectation, one
has

2

Exw{9(Xy)} = 5 vt > 0. (6.34)

The formula (6.34]) can be rewritten as

X))  X? 1
X; t 2
and note that if lim,,

gx(m)
m2

exists then so lim,_, 1 E, {%}
The next step we will compute the limit of %
and lemma [5.1.11

by using the pointwise ergodic theorem
Lemma 6.3.2. With function g defined as above

5 (6.35)
Proof. Consider the case m > 0. Put
= o 0 .
DD C(T%)\/ﬁsgoop fas),
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m—1 l
1 Pt s
m—1 )4
1 ot s
b = m2 c(Ttw) \/ﬁz,o *
=0 s=1
. . ga(m) ;
By the definition of function gy, we have o E &1 + &. We will prove that
lim g = (6.36)
and 1
. _ 1 2
IR @37
fr(s) y
By (6.11]) and li_>m A = L) then Z p°fa(s) is bounded which completes ((6.36)).
S o S .
Proof of (6.37). Replacing ¢ — s by k we obtain
1 m—1 1 4 1 m—1 1 /-1
{—s k
= — = — (—k
&3 m2 C(Tew)\/ﬁzp 5= 2 Z C(Tew)\/ﬁzp ( )
=0 s=1 =0 k=0
m—1 /-1 m—1 -1
1 l PR N i
= — - — kp®.
nE 2 iy VPP~ nE D ity 2k
=0 k=0 =0 k=0
/—1

/-1
Since \/ﬁz 7(T~*w)kp* is bounded by (6.11)) and lim \/,BZ pF = VP then by lemma
AR Pt 1—p

one has

1 (1 1
lim 53:/ fduﬁsz)\
0cC l—p 2

1
Moreover, since lim s = L) then lim sup — |fa(s) —sLy| = 0. It follows that
m

s—o0 8§ M—00 gy,

. . Lo 2
mgr—rl-loo 52 - mgr—rl-loo §3L)\ - 5 [LA]

which completes (6.37)).

Similarly, we get also the same result for the case m < 0. O

For any ¢ > 0, by (6.35]) there exists M’ > 0 such that for any m > M’ then

m2

S| < €2 (6.38)

g)\(m) [LA]

We now combine (6.34) and (6.38) to compute limy 4o Ex,, { 3F }. Put

X7 2 g\(Xy)
I} =Exq {tﬂ{lxtEM'}} ~Eaw { TR
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X2 2 ga(Xy)
IIZ)\ == ]E)\,w {t;]]'{|Xt|>M’}} - E)\’W { T]]'{‘Xt|>M,}

(L]
then
1 291 (X1)
II’\‘ = =R, { | x2— 1 ,
‘ 1 t2 A, {|: t [L)\]2 {IX¢e|<M’}
1 2gx(X4)
< ZEy\o < X2 - 1 )
= t2 )\7 { t [L)\]2 {|Xt|SM}
< €/2
and
X? 2 g\(Xy)
IIA‘ S N (e 1 ,
‘ 2 A, {( t2 [L)\]2 t2 {lXt|>M}

X7 2

g)\(Xt) [L)\]Q

X,
< E,\,w{g/\( t)

< /2

]]-{|Xt|>M’}}

for n large enough. It follows that

X? 1
E s 20 G
/\’w{ t2 } [Ly)?

for n large enough. O

- ‘Hl* +H2’\‘ < ‘1@‘ + ‘113) <¢

We have thus proved that lim; o Ey {)f—;} = [Li]Q. From (6.32)) we obtain

s {3} ] | o] e

Finally
. d(N) et —e? 1 17! / 1.7t
lim — = lim —— —d =2 —d .
ALnoaJr A ,\ggl+ A /Qc a QcC a

O
Theorem 6.3.3. For almost all environment w and for A < 0
. d()\) N Xy / 1 -1
lim —* = lim — lim E — =2 —d . 6.39
A0- A Am0- A e A’w{ t qc ¥ (6.39)

Proof. The proof of this theorem is very similar to theorem [6.2.2] which modifies functions
[ and gy, defined on Z, as follows

= s=/
falm) = 0, if m=
> C(wa) B S Co e LI |
/=1 =/
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and :
m— +00
= X e L s, if m2
il +oo
> s X eBT(s), if m< -1
£=1 s=—/
where w is fixed. .

Remark 6.3.1. We have proved that for A # 0 and for almost all w

. Xy
R {t} = ) (6.40)
and
lim E 53 = d(\)? 6.41
Jim By =d) (6.41)

with d(A) = (e* —e™) [, ld,u]_l. This implies that for w a.s
X¢ p
— ——d(\) ast— +o0 (6.42)

where -2 is denoted as the convergence in probability.
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(zlossaire

P{A} : probability of an event A

E{X} : mathematical expectation of random variable X

D e
e — : converges in distribution

W a.s : almost surely under measure p

o 1 o indicator function.
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