
HAL Id: tel-00713174
https://theses.hal.science/tel-00713174v1

Submitted on 29 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methodology for knowledge-based engineering template
update : focus on decision support and instances update

Olivier Kuhn

To cite this version:
Olivier Kuhn. Methodology for knowledge-based engineering template update : focus on decision
support and instances update. Other [cs.OH]. Université Claude Bernard - Lyon I, 2010. English.
�NNT : 2010LYO10223�. �tel-00713174�

https://theses.hal.science/tel-00713174v1
https://hal.archives-ouvertes.fr

N◦ d’ordre Année 2010

❚❤ès❡ ❞❡ ❧✬❯♥✐✈❡rs✐té ❞❡ ▲②♦♥

Délivrée par
L’Université Claude Bernard Lyon 1

École Doctorale Informatique et Mathématiques Lyon

pour l’obtention du

❉✐♣❧ô♠❡ ❞❡ ❉♦❝t♦r❛t
Spécialité ✐♥❢♦r♠❛t✐q✉❡ (CNU 27)

(arrêté du 7 août 2006)

et soutenue publiquement le 22 octobre 2010
par

M. ❑✉❤♥ Olivier

Methodology for Knowledge-Based

Engineering Template Update

Focus on Decision Support and Instances Update

Directeurs de thèse: Pr Parisa Ghodous
Pr Pierre Collet

Composition du jury:

Rapporteur externe: Pr Yamine Ait-Ameur Professeur de l’Université de Poitier
Rapporteur externe: Pr Nhan Le Thanh Professeur de l’Université de Nice Sophia

Antipolis
Examinateur: Pr Yvon Gardan Professeur de l’Université de Reims
Examinateur: Pr Georg Rock Professeur de l’Université de Trier, Germany
Directeur de thèse: Pr Parisa Ghodous Professeur de l’Université Lyon 1
Co-directeur de thèse: Pr Pierre Collet Professeur de l’Université de Strasbourg
Membre invité: Dr Josip Stjepandic Responsable industriel, PROSTEP AG
Membre invité: Dr Thomas Dusch Responsable industriel, PROSTEP AG

To my parents, Francine and Bernard Kuhn. . .

∼ i ∼

Summary

The present Ph.D. thesis addresses the problem of knowledge-based engineering template update
in product design. The reuse of design knowledge has become a key asset for the company’s
competitiveness. Knowledge-based engineering templates allow to store best practices and know-
how via formulas, rules, scripts, etc. This design knowledge can then be reused by instantiating the
template. The instantiation results in the creation of an instance of the template in the specified
context.

In the scope of complex and large products, such as cars or aircrafts, the maintenance of
knowledge-based engineering templates is a challenging task. Several engineers from various disci-
plines work together and make evolve the templates in order to extend their capabilities or to fix
bugs. Furthermore, in some cases, the modifications applied to templates should be forwarded to
their instances in order that they benefit from the changes. These issues slow down the adoption
of template technologies at a large scale within companies. The objective of this work is to propose
an approach in order to support engineers in the template update related tasks.

In order to address these issues, a process supporting the template update related tasks is
defined. Then a framework is proposed that helps design engineers during the template update
process by providing a decision support system and a strategy for the update of template instances.
The former is a system designed to ease the collaboration between various experts in order to solve
template related problems. The latter aims at providing a sequence of updates to follow, in order
to forward the templates’ modifications to their instances. This sequence is computed with data
extracted from models and templates, which are stored in an ontology designed for this purpose.
The ontology is used to represent and to infer knowledge about templates, products and their
relations. This facilitates the construction of update sequences as it provides an efficient overview
of relationships, even implicit ones.

Keywords: Knowledge-Based Engineering, Knowledge Template, Update Strategy, Ontology,
Scheduling, Issue-Based Information System, Computer Supported Collaborative Work.

∼ iii ∼

Résumé

Les travaux de recherche présentés adressent des problèmes de mises à jour de knowledge-based
engineering templates dans le cadre de la conception de produits. La réutilisation de connaissances
de conception est devenue un avantage clé pour la compétitivité des entreprises. Le savoir faire
ainsi que les bonnes pratiques peuvent être stockés au sein de templates par le biais de formules,
règles, scripts, etc. Ces connaissances de conception peuvent alors être réutilisées en instanciant
le template. L’instanciation résulte en la création d’une instance du template dans le contexte
spécifié.

Dans le cadre de produit complexes et imposants tels que des voitures ou des avions, la mainte-
nance des templates est une tache ambitieuse. Plusieurs ingénieurs de diverses disciplines travaillent
ensemble et font évoluer les templates pour augmenter leurs aptitudes ou pour corriger des prob-
lèmes. De plus, dans certains cas, les modifications faites aux templates devraient être appliquées
à leurs instances à fin qu’elles puissent bénéficier de ces modifications. Ces problèmes ralentissent
l’adoption à grande envergure des templates au sein des entreprises. L’objectif de ce travail est de
proposer une approche à fin d’épauler les ingénieurs dans les tâches relatives à la mise à jour des
templates.

Pour traiter ces problèmes, un processus adressant les tâches relatives à la mise à jour des
templates est défini. Ensuite, un framework est proposé dans le but d’aider les ingénieurs de
conception au cours du processus de mise à jour, en fournissant un système d’aide à la décision
ainsi qu’une stratégie de mise à jour des instances. Le premier est un système conçu pour faciliter
la collaboration entre les différent experts dans le but de résoudre les problèmes liés aux templates.
Le second a pour but d’élaborer une séquence de mise à jour à fin d’appliquer les modifications du
template à ses instances. La séquence est calculée avec les données extraites à partir des modèles
CAD et des templates. Ces données sont stockées dans une ontologie conçue spécialement à cet
effet. L’ontologie est utilisée pour représenter et inférer des connaissances sur les templates, les
produits et leur relations. Cela facilite la construction des séquences de mises à jour en fournissant
une vue d’ensemble sur les relations entre documents, même implicites.

Mots clefs : Ingénierie à base de connaissances, Knowledge-based engineering template, Stratégie
de mise à jour, Ontologie, Ordonnancement, Système d’information pour l’aide aux processus de
décision, Travail collaboratif.

Discipline : Informatique

Laboratoire LIRIS – Laboratoire d’InfoRmatique en Image et Systèmes d’information – UMR 5205
– Université Claude Bernard Lyon 1
Bâtiment Nautibus, Campus de la Doua - 8, Bd Niels Bohr, 69622 Villeurbanne Cedex FRANCE

Laboratoire LSIIT – Laboratoire des Sciences de l’Image, de l’Informatique et de la Télédétection
– UMR 7005 – Université de Strasbourg
Pôle API - Bd Sébastien Brant, BP 10413, 67412 Illkirch Cedex FRANCE

∼ iv ∼

Acknowledgements

First of all, I owe my deepest gratitude to my academic advisors and tutors, Prof. Parisa Ghodous
and Prof. Pierre Collet, for their support, encouragements and advices. I appreciated to work
with them as well as the autonomy and freedom they gave me during these three years.

This thesis would not have been possible without the precious help and support from Dr Thomas
Dusch, who has been present all along this work and who has given me a lot of his time. The
discussion around my work with him have been very helpful. I want also to thank him for his
meticulous review of this manuscript.

I owe my deepest gratitude to PROSTEP AG and ANRT, which have funded and supported
this research during the three years this work lasted. I want also to show my gratitude to the
LIRIS and LSIIT laboratories and respectively the SOC and FDBT teams, which have welcomed
me in their facilities and provided the necessary equipments in order to allow me to work within
the best conditions.

I would like to thank Dr Josip Stjepandic, Dr Harald Liese and Lionel Antegnard from
PROSTEP AG, who initiated and supported this work and who guided me in the company.

I am deeply grateful to Prof. Yamine Ait Ameur and Prof. Nhan Le Thanh who accepted
the hard task of reviewing this manuscript, as well as to Prof. Yvon Gardan and Prof. Georg
Rock for having accepted to be members of the jury.

This manuscript is the result of three years of work but also of human relationships. So I say
“thank you” to Romain and Ogier with whom I successively shared the office and with whom I
exchanged a lot during one year and a half.
Besides these two “officemates,” I want to thank Thomas, Camille, Johnathan, Aurelie, Fred,
Arijit, Deepak, Emmanuel, Nicolas, Melia, Thorsten, Gunnar, Andreas, Moisés, Tri and those that
I forgot here for their good mood and the pleasant working atmosphere around them.
I am also grateful to the Doudou family, and to Fabien and Chlem for hosting me during my stays
in Lyon.

Last but not least, I thank my parents Francine and Bernard, for supporting me even if they
do not know exactly what I do and for giving me the chance to study. As they do not understand
English, I will also write “un grand merci à vous, maman et papa, pour tout ce qui vous avez fait
pour moi depuis près de 26 années.”

∼ v ∼

Table of Contents

I Introduction

General Introduction 3

Chapter 1: Knowledge Templates Update Problematic 7

1.1 Knowledge in product design . 8
1.1.1 Computer-aided design . 8
1.1.2 Knowledge-based engineering . 8
1.1.3 Applications of KBE . 11
1.1.4 Summary . 12

1.2 KBE templates . 13
1.2.1 Template concept . 13
1.2.2 Classification of template types . 16
1.2.3 Template instances . 17

1.3 Addressed template update issues . 18
1.3.1 Template evolution decision support . 18
1.3.2 Template updates propagation support . 19

1.4 Chapter summary . 20

II State of the art

Chapter 2: Knowledge Representation 23

2.1 Knowledge and computer systems . 24
2.2 Ontologies . 25

2.2.1 Definition . 25
2.2.2 Ontology engineering methodologies . 30
2.2.3 Ontology representation languages . 33

2.3 Semantic Web . 34
2.3.1 Definition . 34
2.3.2 Semantic web representation languages . 35
2.3.3 Web Ontology Language . 37

2.4 Ontologies in the product design field . 42
2.5 Chapter summary . 43

Chapter 3: Decision Support in Collaborative Environments 45

3.1 Computer supported concurrent engineering . 46
3.2 Decision making process support . 47

3.2.1 Definition . 48
3.2.2 Group decision support systems . 49
3.2.3 Design rationale . 50

3.3 Chapter summary . 51

∼ vii ∼

Chapter 4: Dependencies Management 53

4.1 Graphs theory . 54
4.2 Dependency graphs . 55

4.2.1 Definition . 55
4.2.2 Cycles . 56

4.3 Dependency management . 57
4.3.1 Cycles management . 57
4.3.2 Scheduling . 58
4.3.3 Graph visualisation . 59

4.4 Chapter summary . 60

Chapter 5: Knowledge-Based Engineering Templates 61

5.1 Template applications . 62
5.2 Template-based design process . 63
5.3 Template management . 65

5.3.1 Link management . 65
5.3.2 Update management . 66

5.4 Chapter summary . 67

III Case study

Chapter 6: Study of CATIA V5 71

6.1 Dassault Systèmes CATIA V5 . 72
6.1.1 CATIA presentation . 72
6.1.2 CATIA V5 . 72
6.1.3 Reasons for selecting the CATIA V5 system 73

6.2 Templates in CATIA V5 . 73
6.2.1 Technologies . 73
6.2.2 Instantiation of knowledge templates . 74
6.2.3 Templates update . 76

6.3 Links and relations . 76
6.3.1 Relations within documents . 76
6.3.2 Multi-Model Links . 77
6.3.3 Influences on models update . 81

6.4 CATIA V5 programming . 83
6.4.1 Application Programming Interfaces . 83
6.4.2 Limitations . 83

6.5 Chapter summary . 85
6.5.1 Study results . 85
6.5.2 Raised issues . 85
6.5.3 Conclusion . 86

IV Contributions

Chapter 7: Template Update Process 89

7.1 Introduction . 90
7.1.1 Addressed issues reminder . 90
7.1.2 Results of the state of the art analysis . 90
7.1.3 Approach . 90

7.2 Template update process . 91
7.2.1 Presentation of the process . 91
7.2.2 Collaborative issue solving . 91
7.2.3 Document analysis and ontological representation 91
7.2.4 Update sequence computation . 92

∼ viii ∼

7.2.5 Comparison with the existing update approaches 92
7.3 Chapter summary . 92

Chapter 8: Collaborative Template Issues Solving 93

8.1 Introduction . 94
8.2 Definition of the need . 94
8.3 Decision support system . 94

8.3.1 Selection of the framework . 94
8.3.2 Extension of the IBIS . 95

8.4 Template update . 96
8.5 Chapter summary . 96

Chapter 9: Ontology Definition for Knowledge Representation 99

9.1 Introduction . 100
9.2 Design of the ontology . 101

9.2.1 Design approach . 101
9.2.2 Definition of the domain and scope . 101
9.2.3 Reuse of existing ontologies . 102
9.2.4 Enumerate important terms . 103
9.2.5 Define classes and hierarchy . 104
9.2.6 Define classes relations and properties . 104
9.2.7 Define slots’ facets . 106
9.2.8 Instantiation of the ontology . 106

9.3 Presentation of the defined ontology . 106
9.3.1 Concepts overview . 106
9.3.2 Relations . 107
9.3.3 Rules . 107

9.4 Chapter summary . 109

Chapter 10: Update Sequence Computation 111

10.1 Problem definition . 112
10.1.1 Introduction . 112
10.1.2 Objectives . 112
10.1.3 Problem representation . 113

10.2 Tested approaches . 113
10.2.1 Introduction . 113
10.2.2 Topological sort . 113
10.2.3 Ranking . 118
10.2.4 Cycle handling . 123

10.3 PDM check-out aware sequence . 124
10.4 Proposed approaches for template instances update 125

10.4.1 Re-instantiation . 126
10.4.2 Apply local changes . 126
10.4.3 Rebuild the template instance content . 126
10.4.4 Comparison of the proposed methods . 126

10.5 Chapter summary . 127

V Application

Chapter 11: Methodology’s Tools 131

11.1 Introduction . 132
11.2 Collaborative issue solving . 132
11.3 CAD models and templates analysis . 133
11.4 Dependencies visualisation and sequence computation 133
11.5 Chapter summary . 134

∼ ix ∼

Chapter 12: Template Modification Scenario 135

12.1 Scenario presentation . 136
12.2 Application of the methodology . 136

12.2.1 Solution research . 136
12.2.2 Assemblies analysis . 138
12.2.3 Generation of the update sequence . 139
12.2.4 Instances replacement . 139

12.3 Chapter summary . 140

VI Final conclusion

Chapter 13: Conclusions and Perspectives 143

13.1 Contributions . 143
13.1.1 Theoretical contributions . 143
13.1.2 Practical contributions . 145

13.2 Perspectives . 145

Bibliography 147

Index 159

Appendices

Appendix A: XML Example 163

Appendix B: OWL DL 165

Appendix C: Indirect Instances 167

Appendix D: Three-Tier Architecture 169

Appendix E: XML Description of CAD Models 171

Appendix F: XML-Schema for CAD Models Description 175

∼ x ∼

List of Figures

1.1 Definition of knowledge [Milton, 2008]. 9
1.2 Design variants generated by parameter changes within CATIA V5 CAD system. . 9
1.3 KBE application life cycle as identified in MOKA1. 12
1.4 Benefits of KBE use on main design tasks [Skarka, 2007]. 13
1.5 Generic structure of a KBE template with data flow. 14
1.6 Adapter model/skeleton example within CATIA V5 showing KBE elements and some

inputs. 15
1.7 Knowledge template life cycle. 15
1.8 Template-based design phases represented by the rings with their corresponding tem-

plate types, levels of detail and external factors [Katzenbach et al., 2007]. 17
1.9 CAD template in its context with link flow [Arndt et al., 2006]. 17
1.10 Example of a template and three of its instances in a context. 18
1.11 Example of instances interweaving through the instantiation of a template containing

the instance of another template. 19

2.1 Example of vehicle taxonomy and ontology [Mizoguchi, 2003]. 26
2.2 Six-characteristics variables of an ontology [Hepp, 2007a] 29
2.3 The ontology engineering process presented by Gómez-Pérez et al. [2004]. 30
2.4 W3C Semantic Web stack 1. 35
2.5 Main semantic web languages with the corresponding year of first publication. . . . 36
2.6 RDF graph and its RDF/XML description representing Eric Miller [Shadbolt et al.,

2006]. 37
2.7 History and complexity of ontology representation languages [Nordmann, 2009]. . 42

3.1 Example of collaborative architecture based on Web Services using a blackboard as
central repository [Kuhn et al., 2008]. 47

3.2 Evolution of the design path according to the design decisions. 48
3.3 IBIS core structure showing relations between elements. 50

4.1 Example of directed and undirected graphs. 54
4.2 Dependency graph between variables from equation set 4.1. 56
4.3 Cycle in a graph. The dashed red arrows from a cycle. 56
4.4 Result of a topological sort on the dependency graph from figure 4.2. 58
4.5 Four-level hierarchy resulting from the application of Sugiyama et al. [1981]’s graph

layout algorithm on the graph presented in figure 4.2. 60

5.1 High level primitive modelling approach that allows to generate variants of a model
[La Rocca and van Tooren, 2005]. 63

5.2 Paradigm of the Design and Engineering Engine with the Multi-Model Generator
[La Rocca and van Tooren, 2009]. 64

5.3 Template-based V-model design process at Daimler AG [Katzenbach et al., 2007]. 64
5.4 Business process for template update proposed by Lukibanov [2005]. 67

6.1 Schema of direct and indirect instances of the template A. 75
6.2 Presentation of the two approaches for the instantiation of a KBE product template

within CATIA V5. 76
6.3 CATIA V5 aggregation and parent-child relations. 77

∼ xi ∼

7.1 Proposed global process for template update. 91

8.1 IBIS-based model for template update support. 95

9.1 EXPRESS-G schema representing the definition of a template in STEP. 103
9.2 Taxonomy of the designed ontology. 105
9.3 Extract of the ontology with the abstraction level and the CAD system concepts (here

CATIA V5). 106
9.4 Classification of the object properties within the ontology. 108

10.1 Template instance status evolution during its life cycle. 112
10.2 Documents and their DependenceLink corresponding to the clamp assembly shown

in figure 1.10(a). The CAD models were realised with CATIA V5. Green boxes are
CATProducts, orange boxes represent CATParts and blue boxes represent external
spreadsheets. 116

10.3 Sequence resulting from the algorithm 10.1 on the graph presented in figure 10.2 with
Skeleton 11 and Adapters as modified documents. 116

10.4 Update solution provided by an expert. 117
10.5 Algorithm 10.1 applied on non-connected graphs, with the main skeleton as modi-

fied document. 117
10.6 Example of an indirect instance that has to be removed from the sequence as it will

be overwritten by the containing template. Example taken from CATIA V5. Blue
arrows show Instance links (see table 6.1, page 78) and black arrows InstanceLocation
links (see section 9.2.6.1). 119

10.7 Sequence resulting from the algorithm 10.2 on the graph presented in figure 10.2 with
main skeleton as modified document. Arrows target the dependent documents. . 121

10.8 Example of resulting sequence obtained with the ranking algorithm on a problem
with templates and template instances. Dashed blue arrows represent Instance links
(see table 6.1, page 78), dashed black arrows are InstanceLocation links (see section
9.2.6.1). 121

10.9 Evolution of the time needed by the algorithm according to the number of modi-
fied documents within 96 documents. Values represent the mean and the standard
deviation on 10 runs. 123

10.10Evolution of the time needed by the algorithm according to the number of modi-
fied documents within 25 documents. Values represent the mean and the standard
deviation on 10 runs. 124

10.11Same result as presented in figure 10.8, but with smart the check-out information.
Documents that should be retrieved together are grouped within green rectangles. 125

11.1 Architecture of the developed software related to the data extraction, dependencies
visualisation tool and update sequence computation. 132

11.2 Screenshot of the dependencies visualisation software. 134

12.1 Overview of the content of the decision support system concerning the requirement
described in section 12.1. 137

12.2 Screenshot of the clamp, depicting the document that will be updated in order to add
the new functionality in purple. 138

12.3 Resulting update sequence with groups after the modification of two templates.
Dashed arrows are InstanceLocation links (see section 9.2.6.1) and blue arrows are
Instance links (see table 6.1, page 78). Rank 0 contains the modified documents.
Ranks 1 to 3 contain the documents to update. Groups marked 1, 2 and 3 show
documents that have to be checked-out together. 139

C.1 Example of direct (red arrow) and indirect (dashed red arrows) instances correspond-
ing to the assemblies presented in figure 1.10. 167

C.2 Order in which the instances of the top finger template should be updated. 168

∼ xii ∼

D.1 Schema representing a three-tier architecture. 169

E.1 Screenshot of a CAD model under CATIA V5. 171

∼ xiii ∼

List of Tables

1.1 Detail level classes of templates according to Arndt et al. [2006]. 16

2.1 OWL 1 sublanguages with DL equivalence and complexity. 41

3.1 CSCW 2x2 matrix. 46

6.1 CATIA V5 Multi-Model Links. 78
6.2 CATIA V5 documents types. 80
6.3 Multi-Model Link classification. 81
6.4 CATIA V5 link statuses. 81
6.5 Presentation of MMLs retrieval status via the CAA API. 84
6.6 Template and instance related information retrieval status with CAA. 85

10.1 Template instances replacement approaches comparison. 127

B.1 OWL DL descriptions, data ranges, properties, indivdiuals and data values [Hor-
rocks et al., 2003] . 165

B.2 OWL DL axioms and facts [Horrocks et al., 2003] 166

∼ xv ∼

List of Algorithms

4.1 Depth-first search . 55
10.1 Adapted iterative DFS-based topological sort for document update scheduling. . . . 114
10.2 Update sequence ranking algorithm . 120

∼ xvii ∼

Acronyms

AGPL GNU Affero General Public License
AM Applications Modules
API Application Programming Interface

CAD Computer Aided Design
CAE Computer Aided Engineering
CAM Computer Aided Manufacturing
CE Concurrent/Collaborative Engineering
CIFRE Conventions Industrielles de Formation par la REcherche
CSCW Computer Supported Collaborative Work

DAML DARPA Agent Markup Language
DAML-ONT DAML Ontology
DARPA Defense Advanced Research Project Agency
DEE Design and Engineering Engine
DFS Depth-First Search
DG Dependency Graph
DICE Distributed and Integrated Collaborative Engineering Design
DL Description Logic
DMU Digital Mock-Up
DR Design Rationale
DRIM Design Recommendation-Intent Model
DRL Decision Representation Language
DS Decision Support

FDBT Fouille de Données et Bioinformatique Théorique
FOL First-Order logic

HLP High-Level Primitive
HTML Hypertext Markup Language

IBIS Issue-Based Information System
IEEE Institute of Electrical and Electronics Engineers
IPP Intellectual Property Protection
IT Information Technology

KADS Knowledge Acquisition and Documentation Structuring
KBE Knowledge-Based Engineering
KBS Knowledge-Based System
KIF Knowledge Interchange Format
KR Knowledge Representation

LGPL Lesser General Public License
LIRIS Laboratoire d’InfoRmatique en Image et Systèmes d’information
LSIIT Laboratoire des Sciences de l’Image, de l’Informatique

et de la Télédétection

Continued on next page. . .

∼ xix ∼

MDO Multidisciplinary Design Optimisation
MIT Massachusetts Institute of Technology
MMG Multi-Model Generator
MML Multi-Models
MOKA Methodology and tools Oriented to KBE Applications

OIL Ontology Inference Layer
OLAP Online Analytical Processing
OWL Web Ontology Language

PDM Product Data Management
PwC PowerCopy

QOC Questions, Options and Criteria

RDF Resource Description Framework
RDFS Resource Description Framework Schema

SOA Services-Oriented Architecture
SOAP Simple Object Access Protocol
SOC Service Oriented Computing
SQWRL Semantic Query-Enhanced Web Rule Language
STEP Standard for the Exchange of Product model data
SUO WG Standard Upper Ontology Working Group
SW Semantic Web
SWRL Semantic Web Rule Language

UDDI Universal Description Discovery and Integration
UDF User-Defined Feature
UML Unified Modeling Language
URI Uniform Resource Identifier
UUID Universal Unique Identifier

W3C World Wide Web Consortium
WSDL Web Services Description Language
WWW World World Web

XML Extensible Markup Language

∼ xx ∼

PART I

Introduction

∼ 1 ∼

General Introduction

Context and objectives

N
owadays, high-end industries such as the automotive or aerospace industries are designing
products that are more and more complex and that integrate various disciplines in their

design. The increasing sophistication of products, short development cycles and heavy competition
lead to an increased complexity in the product development.

Since few decades ago, computers are used to assist designers in several tasks, such as design
(Computer-Aided Design), manufacturing (Computer-Aided Manufacturing) or analysis (Computer-
Aided Engineering). Computers have given the opportunity to create more complex products and
to face new challenges.

One of these challenges concerns the collaboration between designers. The life cycle of industrial
products is complex and involves several engineers with different knowledge and expertises, who
are engaged in different activities for, under circumstances, a multitude of years. Furthermore they
have different views on the product design according to their functional concerns. These views are
translated into different models of a product, which need to be accommodated in a comprehensive
description of the design product. Moreover these engineers can be located at different places of
the world. This has led to the emergence of collaborative platforms that allow several stakeholders
(or even teams) to work efficiently together on a project from distant places. In the design domain,
collaboration is essential in order to successfully release a product in time and with good quality.
However, the interaction between several engineers with different points of view is a source of
conflicts and misunderstandings due to, for instance, differences between domains vocabulary.

Besides collaboration, another key factor and challenge in modern product design is the ability
to reuse existing knowledge in design, products or processes. The standardisation and the use
of common parts and platforms is a key factor for efficiency in several high-end industries, such
as the automotive industry. Product diversification and the increase of the model range have
motivated new Information Technology (IT) tools and have impacted the product development
process. In this area, one major change during the last years is the emergence of Knowledge-Based
Engineering (KBE). KBE is a large field at the crossroads of Computer-Aided Design (CAD),
artificial intelligence and programming. KBE aims at facilitating the reuse of knowledge between
designs. It results in a speed-up of the design and thus leads to a reduction of product design time
and costs. From the various tools provided by KBE, this work is focussing on knowledge-based
engineering templates.

Knowledge or KBE templates are intelligent applications that aim at storing know-how and
facilitate its reuse. A knowledge template can be, for instance, a CAD model defined through KBE
elements like formulas or scripts, in order to create dynamic components that can adapt themselves
to various contexts. Templates are efficient solutions to share, for example, intelligent CAD models
between several assemblies like cars within a model range. KBE templates are a recent technology
that, in spite of their benefits, are currently used on a small scale by the industries. A hindrance
to their adoption concerns their maintenance.

The two major issues of this emerging technology were defined and investigated: the collabo-
rative search of design solutions for the update of a template, and the forwarding of the applied
modifications to the instances of templates, which are the result of the use of a template in an
assembly.

This work has been carried out in the scope of an industrial agreement for training through

∼ 3 ∼

research1 (CIFRE). This agreement resulted in a collaboration between PROSTEP AG2, a Ger-
man company and two French laboratories. On the one hand there is the Laboratory of Computer
Graphics, Images and Information Systems3 (LIRIS) located in Lyon, wherein I was part of the
Service Oriented Computing4 (SOC) team. On the other hand is the Image Sciences, Computer
Sciences and Remote Sensing Laboratory5 (LSIIT) based near Strasbourg in which I was a mem-
ber of the Data Mining and Theoretical BioInformatics6 (FDBT) team. During this work I was
supervised by Prof. Parisa Ghodous from the LIRIS laboratory and Prof. Pierre Collet from
the LSIIT. Dr. Thomas Dusch was the industrial supervisor.

Contributions

This work resulted in the elaboration of a framework for the template update. A methodology and
corresponding tools are presented in order to support defined tasks related to the template update.

A process has been defined in order to guide the users during the different steps of the methodol-
ogy. The process is decomposed into three main parts, which contain the three main contributions.

The first part of the process supports engineers when looking for a design solution about
the evolution of a template. For this purpose an argumentation-based decision support system is
proposed. This system provides a structured decision process. It also allows to store and document
the evolution of each template. This whole part eases the collaboration and allows to seamlessly
document the template evolution.

The second part of the process is designed to create a computer processable and understandable
representation of CAD documents and their relations. For this purpose an application ontology
has been defined in order to represent and infer knowledge about CAD models, documents and
their relationships. A software has been developed in order to extract information from CAD
documents. The extracted information is then used to instantiate the ontology. The content of
the ontology can be visualised in a tool that has been developed for this purpose. Thanks to the
ontology and reasoning, explicit and implicit knowledge about documents are gathered in a unique
location and can be used for many purposes.

In the third part, an algorithm has been designed in order to generate sequences of updates,
which support engineers when forwarding the modifications applied to a template. This algorithm
uses the knowledge present within the ontology for the computation of the sequence. The under-
lying CAD system is abstracted through generic concepts that are instantiated via inference on
the ontology. The computed sequences allow to process documents concurrently if the necessary
resources are available. Three approaches for the update of a template are also proposed. By using
the generated sequence, the time consuming task of defining the update strategy is automated and
thus the precious engineers’ time is saved for more value-adding tasks.

The CATIA V5 CAD system has been used along this work for the illustration and as a
foundation for the concrete applications. An analysis of this system has also be realised in the
scope of this work.

Organisation of the manuscript

This manuscript is divided into six parts, for a total of thirteen chapters.
The first part is an introduction of the work.

• Chapter one presents the scope of the research work, describes knowledge templates, which
are the main concepts addressed in this work, and introduces the studied issues.

1http://www.anrt.asso.fr/fr/espace_cifre/accueil.jsp?r=3&p=1
2http://www.prostep.com
3http://liris.cnrs.fr/?set_language=en&-C=
4http://liris.cnrs.fr/~soc/doku.php?id=current
5http://lsiit.u-strasbg.fr/
6https://lsiit-cnrs.unistra.fr/fdbt-en/index.php/Main_Page

∼ 4 ∼

http://www.anrt.asso.fr/fr/espace_cifre/accueil.jsp?r=3&p=1
http://www.prostep.com
http://liris.cnrs.fr/?set_language=en&-C=
http://liris.cnrs.fr/~soc/doku.php?id=current
http://lsiit.u-strasbg.fr/
https://lsiit-cnrs.unistra.fr/fdbt-en/index.php/Main_Page

The second part of the manuscript presents the state-of-the-art and related works.

• Chapter two presents different ways to represent knowledge. The focus is put on ontologies,
the methodologies that are used to design them and also the available representation lan-
guages. Among the ontology representation language, the Web Ontology Language has been
studied more extensively.
• Collaborative environments and decision support systems are presented in chapter three.
• Chapter four exposes some basics about graph theory, more especially about dependency

graphs, dependency management and related algorithms.
• Chapter five introduces the current research status and applications of knowledge templates.

Part three is dedicated to a case study.

• Chapter six presents a study of the CATIA V5 CAD system that has been realised. It
presents the template technologies, but also the links and relations within CATIA V5. A
section is also dedicated to the available APIs to manipulate this system and access to the
content of the CAD documents.

The contributions of this work are gathered in part four.

• Chapter seven provides an overview of the proposed approach to solve the templates update
related issues. The designed process of the global methodology is described. It also gives a
short introduction to each realised contribution.
• The proposed approach for collaborative issue solving is presented in chapter eight. In this

chapter the main concepts of the system are detailed as well as their use and benefits.
• Chapter nine addresses the designed ontology. The followed ontology design methodology

is presented as well as the result of each step of the methodology. Thereafter the resulting
ontology is presented.
• Chapter ten describes how the modifications forwarding problem is defined and how the

update sequences are computed. Two algorithms were tested in order to compute an update
sequence. An approach to smartly retrieve documents from Product Data Management
systems is also exposed. Finally three approaches for the actual template update task are
described and compared.

Part five presents the realised developments as well as a scenario wherein the methodology is
applied.

• Chapter eleven introduces the developed tools that support the methodology.
• Chapter twelve presents a scenario on which the methodology is applied and evaluated. In

this scenario a template requires an update. The process will be followed in order to find a
solution, apply it and forward the modifications to the instances of the modified templates.

Part six concludes the dissertation.

• Chapter thirteen summarises the realised work, explains the choices and points out the ex-
pected results from the application of this framework on real cases. Finally it opens perspec-
tives and specifies possible enhancements to this work.

∼ 5 ∼

Chapter 1

Knowledge Templates Update

Problematic

Contents

1.1 Knowledge in product design . 8

1.1.1 Computer-aided design . 8

1.1.2 Knowledge-based engineering . 8

1.1.2.1 Definition of knowledge . 8

1.1.2.2 Design automation . 9

1.1.2.3 Knowledge management . 10

1.1.2.4 Knowledge management methodologies in engineering design 11

1.1.3 Applications of KBE . 11

1.1.4 Summary . 12

1.2 KBE templates . 13

1.2.1 Template concept . 13

1.2.2 Classification of template types . 16

1.2.3 Template instances . 17

1.3 Addressed template update issues . 18

1.3.1 Template evolution decision support 18

1.3.2 Template updates propagation support 19

1.4 Chapter summary . 20

∼ 7 ∼

CHAPTER 1. KNOWLEDGE TEMPLATES UPDATE PROBLEMATIC

1.1 Knowledge in product design

1.1.1 Computer-aided design

Design is a creation process that in industry refers to the invention and development of a product
or a service. Computer-Aided Design (CAD) is the use of computer technologies and software to
assist persons in design activities, such as architecture, art or engineering. The engineering and
product design field are the focus of this work.

CAD software started being used in the industry during the 1970’s [Maculet and Daniel,
2004]. At this time CAD software were mainly two dimensional drawing tools. Their objective was
to replace the drawings on drafting tables. CAD software provide graphical tools and component
libraries that speed up the design. Furthermore they allow computer supported archiving of product
models. The next step was the three dimensions design software that were the outcome of the
increase of computers’ processing power and research work in computer science fields like 3D
computer graphics. This volume modelling was pushed by aerospace and automotive industries in
the 1980’s. Today in addition to the 3D design approach, most CAD systems are feature-based,
which means that the design is based on the combination of sketches and operations enriched with
a functionality (features), such as holes, chamfers, extrusion, rotation, etc. instead of primitives
that can be added or subtracted.

Besides CAD, other technologies related to product design have to be mentioned:

Computer-Aided Engineering (CAE) is a domain that embraces CAD. Its aim is to support engi-
neers in various tasks that include design, analysis, manufacturing, simulation, etc.

Computer-Aided Manufacturing (CAM) consists in assisting engineers in the manufacturing pro-
cess. McLean [1993] described it as “the use of computerized tools in the application of
scientific and engineering methods to the problem of design and implementation of manufac-
turing systems.” The common process is that CAD models are transferred to a CAM system
that allows the designer to define a sequence of manufacturing processes or instructions that
can be understood by numerically controlled machines.

Digital Mock-Up (DMU) aims at reducing the number of physical product mock-ups in early de-
sign phases by providing digital ones. The DMU technology allows the virtual simulation
of products and their components at a lower cost and lead to a reduced time to market
[Jackson, 2006].

Nowadays CAD software allow to integrate more than just geometrical concepts into the CAD
models. Within the two past decades, information about the product and its design intent, more
specifically knowledge, has been integrated and is now managed by design software. The use of
this knowledge has become popular in CAD and is referred to as Knowledge-Based Engineering.

1.1.2 Knowledge-based engineering

1.1.2.1 Definition of knowledge

In the literature various definitions of the term “knowledge” can be found. Some are philosophical
such as “justified true belief” from Plato. Others are more recent and were proposed in the scope
of knowledge-based systems. Frost [1986] defined knowledge as “the symbolic representation of
aspects of some named universe of discourse.” Milton [2008] proposed a more narrowed definition
that focuses on tasks and on the context where it is used. His definition is condensed in a sentence
that is presented in figure 1.1.

The Oxford English Dictionary’s definition of knowledge is defined by the three following state-
ments:

• The expertise and skills acquired by a person through experience or education: the theoretical
or practical understanding of a subject.

∼ 8 ∼

1.1. KNOWLEDGE IN PRODUCT DESIGN

Knowledge is the

ability
skill

expertise

to

manipulate
transform

create

data
information

ideas

to

perform skilfully
make decisions
solve problems

Figure 1.1 – Definition of knowledge [Milton, 2008].

• What is known in a particular field or in total: facts and information.
• Awareness or familiarity gained by experience of a fact or situation: “He denied all knowledge

of the incident.”

As you can see, there is no single agreed definition of knowledge.

In the design domain, the knowledge are the know-how and best practices. It usually comes
from the experience and is a strategic resource.

Knowledge-based Engineering (KBE) is a large field at the crossroads of Computer-Aided De-
sign, artificial intelligence and programming. It aims at the capture, the storage and the reuse/-
transfer of domain expert design knowledge, design intent, best practices and know-how. As the
engineering process becomes increasingly more complex and the competition requires shortened
time to market and cost reductions in developments, KBE has become usual for the design of com-
plex systems. Stokes [2001] defined KBE as “the use of advanced software techniques to capture
and reuse product and process knowledge in an integrated way.” To this definition, KBE can be
seen as the meeting of design automation and knowledge management.

1.1.2.2 Design automation

Automation is the action of making “a process in a factory or an office operated by machines or
computers, in order to reduce the amount of work done by humans and the time taken to do the
work.”1 In mechanical design, the increase of the product complexity during the last decades has led
to the automation of many tasks in manufacturing but also in design. In this domain, automation
is the combination of parametric design, formulas, rules, scripts and software programs. With
automation it is possible to create dynamic CAD models that react on parameter change and, for
instance, modifying the contained geometry. The process of generating geometry by using a set
of rules or algorithms is referred to as generative design [Phillips, 1997]. It allows to rapidly
and easily create various design variants. The figure 1.2 presents three different configurations of a
platform and its staircase created through automation. Nowadays automation aspects are included
in most CAD software.

(a) (b) (c)

Figure 1.2 – Design variants generated by parameter changes within CATIA V5 CAD system.

1Definition from Cambridge dictionary

∼ 9 ∼

CHAPTER 1. KNOWLEDGE TEMPLATES UPDATE PROBLEMATIC

However Prasad [2005] considered that some KBE applications are not “true” KBE applica-
tions. He pointed out five qualities that describe “true” KBE application:

Dynamic: data is updated based on input changes.

Generic: it can be adapted to various situations.

Generative: new geometry or bodies can be created automatically from old ones based on changes
in the input specifications.

High-level: a small amount of KBE code produces significant impact on objects.

Demand driven: the system is aware of the sequence in which the rules are triggered (the user has
not to worry about it).

Alvarado et al. [2007] talked about intelligent automation within companies. Intelligent au-
tomation is a trend in industrial automation that needs systems that are able to handle knowledge
and information more efficiently. This trend comes from numerous factors like competitive pres-
sure, reduced time, complexity, flexibility, etc. It has an impact on CAD systems, process control,
management, etc. and goes by knowledge management aspects. The application of intelligent
automation in design is considered as KBE.

1.1.2.3 Knowledge management

In the automotive and aeronautic fields, manufacturers have been faced to several changes in their
environment since several years. They have to adapt to the market where products become more
and more complex and innovative. At the same time the products’ time to market gets shorter and
the amount of data to handle keeps on growing. All these changes have brought about the age of
industrial automation where knowledge and know-how has become a key business asset [Alvarado
et al., 2007].

Knowledge Management is a topic that gathers techniques and tools in order to take advantage
of intellectual assets in the company [Grundstein, 2000]. It aims at identify relevant knowledge,
extract it, then store and represent it in a suitable way, and finally facilitate its reuse. Companies
introduce comprehensive knowledge management at the end of the 90’s for its various benefits:

• Prevent knowledge loss (retirement, turnover. . .)
• Facilitate knowledge sharing, transfer within the organisation
• Improve/support training
• Automate tasks
• Future knowledge reuse

Another aspect of knowledge management is the protection of this knowledge. As knowledge
has become a key asset, companies need to protect it and prevent knowledge leaks. Today, large
companies outsource parts of their production or development to companies that can be located
anywhere in the world. Within this collaborative environment, documents containing company’s
know-how are exchanged. This can lead to knowledge leaks or plagiarism. To prevent company’s
intellectual property from being “stolen,” it has to be protected. This is called Intellectual Property
Protection (IPP). It has become a hot topic within KBE field. Examples of IPP solutions are access
protection or knowledge filtering [Antegnard et al., 2006].

However knowledge management is a complex task, especially the capture of experts’ knowl-
edge. It is hard to acquire and formalise implicit, or also called tacit knowledge, which is knowledge
difficult to express as it can come from experience, know-how, intuition or automatisms. Ex-
plicit knowledge is, contrary to tacit knowledge, what can be written down, shared or expressed.
Polanyi [1967] calls “tacit knowing” as the fact that “we can know more that we can tell.” To
support knowledge management steps, some methodologies and tools were developed.

∼ 10 ∼

1.1. KNOWLEDGE IN PRODUCT DESIGN

1.1.2.4 Knowledge management methodologies in engineering design

In order to provide a structured way to identify, collect, structure and formalize engineering knowl-
edge, several methodologies where created. These methodologies provide tools and define processes
to guide and to allow the development of Knowledge-Based Systems (KBS). KBS are computer sys-
tems that can infer, explain or support decision by using artificial intelligence tools on knowledge.
The main challenge remains to efficiently capture and represent the information.

One of these methodologies is the Knowledge Acquisition and Documentation Structuring
(KADS) [Wielinga et al., 1992]. It is a knowledge acquisition methodology to support knowledge-
based systems development, whose origins are in the European ESPRIT project P1098a [ESPRIT].
CommonKADS [Schreiber et al., 1999] is a new methodology that has grown out of KADS and
that aims at covering the entire knowledge-based system life cycle.

Protégé-II [Musen et al., 1995] is a framework that supports KBS creation. It is composed
of two main tools, MAÎTRE that allows to browse and edit domain ontologies, and DASH that
generates a specific graphical knowledge acquisition tool. A library of problem-solving methods is
also provided in order to solve application tasks with the acquired knowledge.

Another available methodology is the Model-based and Incremental Knowledge Engineering
(MIKE) [Angele et al., 1998]. It is an incremental process that integrates a formal, a semi-formal
and an operational description formalism. The formal and executable model is specified with the
Knowledge Acquisition and Representation Language (KARL).

However these methodologies are considered as too generic to address KBE and, except Com-
monKADS, are not much used to build KBE applications. Thus more specific methodologies to
address KBE were developed. The leading KBE methodology is called MOKA which stands for
“Methodology and tools Oriented to KBE Applications.” MOKA [OLDHAM et al., 1998; Stokes,
2001] is the result of an European project, started in 1998 with a duration of 30 months, which
the main goal was to provide a methodology for developing and maintaining KBE applications.
It also aims at reducing the cost and time of developing KBE systems as well as to provide tools
to support the methodology. Figure 1.3 presents the life cycle of KBE as it was identified in the
MOKA methodology. The life cycle is composed of six phases:

1. Identify and define the requirements, aims, the scope, and knowledge sources for the KBE
system.

2. Estimate the costs, resources requirements and the project risks.
3. Capture and model knowledge from domain experts by using ICARE (Illustration, Con-

straints, Activities, Rules, and Entities) forms to create an informal model [ICARE forms].
4. Convert the knowledge into a formal model based on the MOKA Modelling Language which

is based on UML.
5. Develop software applications for the system based on the formal model.
6. Distribute and support the KBE system to end users.

More focussed on the storage, Liese [2003] proposed an object-oriented 3D-CAD representation
for design knowledge. Knowledge relative to the function, shape, behaviour and methods are
addressed. A matrix, called WA-RE matrix, organising in a hierarchy and classifying knowledge
types and knowledge representations has been defined. It is a central component of this approach
in order to represent each type of knowledge the right way. Then knowledge can then be stored into
CAD models and parametrised CAD models by using the different tools provided by the various
CAD software, in order to reuse knowledge.

1.1.3 Applications of KBE

Crabb [1998] has predicted that KBE will have as much importance in 2010 for companies as
CAD/CAM/CAE had in the 1990’s decade. The numerous applications that use and show the
benefits of KBE confirm this statement.

1http://web1.eng.coventry.ac.uk/moka/lifecycle.htm

∼ 11 ∼

http://web1.eng.coventry.ac.uk/moka/lifecycle.htm

CHAPTER 1. KNOWLEDGE TEMPLATES UPDATE PROBLEMATIC

Figure 1.3 – KBE application life cycle as identified in MOKA1.

Chapman and Pinfold [2001] presented a KBE system able to generate adequate models for
the analysis of CAD models. An application on “Body in White” was presented, which is the metal
sheet structure of a car, wherein finite elements analyses are undertaken to test the structure. By
generating adequate models, the KBE system avoids the duplication of models and speeds up the
response time after design changes. van der Elst and van Tooren [2008] presented a KBE
application coupled with optimisation that reduced the reassignment time of aircraft electrical wire
pins by 80%. This has been achieved through the reduction of recurring tasks.

More generally, KBE shows its advantages for reducing design time and thus saves time for
creative or innovative tasks, but also gives the possibility to generate an increased number of
design concepts with the same model. Figure 1.2 presents different configurations of a platform
and its corresponding staircase. Configuration (a) shows the platform at three meters height. In
configuration (b) the height is changed to two meters and also the type of the guardrail. From
configuration (b) to (c), the spacing between the steps has been increased, the angle of the stair
changed from 45◦ to 38◦ and the guardrail fixation was modified. Changing the configuration took
only a few seconds to be effective whereas designing a new platform or modifying an existing one
could take hours. Furthermore the validity of the models is checked by rules.

Figure 1.4 shows the theoretical influence of KBE on design tasks, where one can see that
routine design tasks take a shorter time. This time reduction profits to creative design and to
the reduction of global project duration. The efficiency of KBE is obviously depending on each
applications and their knowledge reuse possibilities.

KBE also allows to represent the multidisciplinary aspects of products [La Rocca and van
Tooren, 2005]. KBE started to be used in design but it has rapidly reached other fields like
manufacturing or analysis such as for the Finite Element Method [Kulon et al., 2006].

Thanks to KBE it is also possible to create intelligent CAD models in a generic way so they can
be used in various contexts. For instance, Skarka [2007] applied the MOKA methodology to ease
the creation of generative models in CATIA V5. MOKA’s forms were used to capture knowledge
whereas the formalisation and the packaging of the knowledge was realised within CATIA V5.

1.1.4 Summary

The main usage of KBE is to support and improve the design of complex mechanical systems by
automating repetitive and non-productive activities. It also allows to enhance the product quality
and to reduce time to market and costs. Hence KBE allows to take a competitive advantage [Gay,
2000]. This is achieved through the capture and the reuse of knowledge. Strength of KBE in
product development is provided by automation tools like scripts or rules, which bring intelligence
and a knowledge storage solution. By using automation, KBE also allows to easily generate various
design variants from a single model.

∼ 12 ∼

1.2. KBE TEMPLATES

Figure 1.4 – Benefits of KBE use on main design tasks [Skarka, 2007].

Sandberg [2003] listed benefits and drawback of KBE. The major benefit is the reduction
of the lead time for product development. The time reduction concerns products that own the
three following properties: high degree of similarity to reuse knowledge, large amount of design
configurations and large number of design processes that can be automated. Product optimisation
is also easier because better configurations can be found within a shorter time. The knowledge
captured within models reduces the risks related to staff turnover. The last listed benefit is re-
lated to the automation of repetitive work leading to an increase of time available for innovative
tasks. As drawback Sandberg [2003] pointed out the time needed to build correctly KBE mod-
els. The added value of resorting to KBE should be evaluated regarding the time needed for its
implementation. KBE should be avoided in some circumstances like when the design is too simple,
when technologies are continuously changing or when it is not possible to access or isolate product
knowledge [Stokes, 2001]. Regarding knowledge transfer efficiency, KBE users should still be able
to access the definition and not use KBE elements as “black boxes.”

As introduced in this section, KBE is a large domain that can not be comprehensively presented
here. In the scope of this work, the focus is oriented towards KBE templates, which are generative
and intelligent applications.

1.2 KBE templates

1.2.1 Template concept

Knowledge-based engineering templates are intelligent and generative applications that aim at
storing design knowledge and restore it in an easy, fast and convenient way. They have the capa-
bility to adapt themselves to a given context regarding some provided inputs from the context, in
order to fulfil a function, such as provide geometry or do some calculus. This is achieved thanks
to KBE elements, e.g., formulas, rules, scripts, etc. Templates can be considered as ready to use
models that can be referenced and used from libraries in the same way as CAD design features.
An example of KBE template could be a car wheel CAD model that takes as input the diameter,
the width and the type of rim. With one model it is possible to generate multiple wheels for one

∼ 13 ∼

CHAPTER 1. KNOWLEDGE TEMPLATES UPDATE PROBLEMATIC

or more cars with different configurations in a few seconds. In this way, future developments will
be faster and of a better quality as previous mistakes would be avoided.

The template concept is referred to by several terms in the literature: “High Level Primitives”
[La Rocca and van Tooren, 2005], “CAD/knowledge/KBE templates” [Alani, 2007; Arndt,
2007; Katzenbach et al., 2007] or simpler, “generative models” [Skarka, 2007]. All these des-
ignations are valid and it has been decided to refer to them as “KBE templates” as it is self
explanatory. The term “template” refers to a generic and reusable element like text processor doc-
ument template, which has a predefined and ready to use style. The acronym “KBE” defines the
domain of the template as well as its foundations. KBE templates are also referred to as knowledge
templates or simply templates in the rest of this manuscript.

The use of knowledge templates has been pushed by numerous factors. Templates are used
to store and reuse specific know-how or best practices within a company. This knowledge can
concern a component or a process. Production process related aspects can also be integrated
into the template. Another aspect is that templates can contain workarounds to specific design
problems that can appear in specific configuration. These workarounds can be triggered thanks
to rules and thus avoid engineers to fall into common issues. The templates mechanisms can also
be used to provide standardised models. The standardisation and the use of common parts and
platforms is a key factor for efficiency in the automotive industry [Dudenhöffer, 2000]. So one
template document can contain several standardised configurations of a part. This will simplify
the maintenance of the set of standard models of the same type as all variants will be gathered
within a single model.

Adapter

Publications

Functionality

Publications

Output

Publications

KBE Template

Inputs of the template

Outputs of the template

Figure 1.5 – Generic structure of a KBE template with data flow.

Figure 1.5 presents the generic structure of KBE templates. A template can be seen as a box
with inputs that are set during the instantiation process (detailed in section 1.2.3) and outputs.
The inputs and outputs can be of various types like geometry elements or parameters. Basically
the content of the template can be divided into three parts. First the “adapter” that gathers
the inputs of the template. The adapter model, which is also sometimes referred to as skeleton,
is composed of basic geometry elements (point, lines, planes. . .) that drives the “functionality”
part of the template. An example of an adapter model is depicted in figure 1.6, which presents
a skeleton driven by KBE elements and some geometrical inputs. The main components of a
template is the “functionality” part, which implements the function of the template, e.g., calculus
or geometry generation for a CAD template. It is driven by references on the adapter model and
thus morphs with it. The “output” part is an interface, which provides references to specified
elements within the functionality part. The template designer can expose important component or
data of the template, so they can be quickly identified be the template users. Data flow (arrows)
is based on “publications,” which are formal outputs. The aim of using publications is to provide
a named reference of an element within the document, that can be easily recognised and referred

∼ 14 ∼

1.2. KBE TEMPLATES

Figure 1.6 – Adapter model/skeleton example within CATIA V5 showing KBE elements and
some inputs.

to. So if the content of a document changes, the links between documents will not be broken as
the elements inside the document are not directly referred to. Figure 1.5 also shows that templates
have a hierarchical structure.

Templates are “living elements,” which evolve during their life cycle. Figure 1.7 shows the
various phase of a knowledge template life cycle. Templates are designed to fulfil a function. They
are an appropriate approach in order to integrate proven concepts into new products [Katzenbach
et al., 2007]. So the first step is to design the template structure and content in order to provide the
functionality. Once created, it is tested in order to fix any issue before putting it into production.
The package step aims at gathering template resources that are elements related to the template
design, such as testing contexts or the template’s documentation. Then comes the deployment step
where the template is made available to engineers who can use it in their design. The following
step concerns template maintenance. Templates can be updated for various purposes such as to fix

replace

with new

template?

Design Test

Package

Deploy

Maintain

Depreciate

Figure 1.7 – Knowledge template life cycle.

∼ 15 ∼

CHAPTER 1. KNOWLEDGE TEMPLATES UPDATE PROBLEMATIC

Table 1.1 – Detail level classes of templates according to Arndt et al. [2006].

Template class Detail level Examples
Function template 10% Automotive
Concept template

↓
Limousine, Cabriolet, SUV

Version template Class C, Class S
Model 100% Mercedes S 350

bugs or to fulfil new requirements. For each update a new version of the template is created. After
the update, the template goes one more time through the test and package phases before being
deployed. The last step of a template life cycle is its depreciation. Within this step, the template
is removed from production and may be replaced by a new one.

Before deploying a template, it has to be packaged. A template package contains the template
with a set of resources that are needed or used by the template during its life cycle. The package
contains tests resources like specific contexts used to validate the template, the template documen-
tation and scripts. Template resources can also be shared between several templates, for example,
the same validation script can be used by various templates.

1.2.2 Classification of template types

Design templates can be utilised for a broad range of CAE/CAD/CAM design tasks. This section
summarises the various template classifications found in the literature.

Arndt et al. [2007] defined three main template types. Geometrical templates or CAD tem-
plates that are parametric CAD models. Study templates that are CAx models for validation.
Downstream or process templates that are CAx models based on reliable computation and manu-
facturing principles.

Another classification proposed by Mbang [2008] focused on feature templates. Feature tem-
plates are small construction elements that have the same purpose as templates. These feature
templates are used to raise the detail level of models or other templates. Mbang [2008] differ-
entiated two categories of feature templates. First, functional features that are features having a
direct relationship with the design process, such as standardised holes or a flange. Second, forma-
tion features that are related to the forming process, e.g., flanges or corrugations. Both categories
are created according to the design process information stored in the template.

Arndt et al. [2006] introduced a classification according to the detail level of templates. This
concerns especially geometrical templates. They defined four classes that are presented in table
1.1. The higher level class, called function template, provides few details, but a basic product
structure and function elements. An automotive template with the position of the four wheels,
the engine position at the front, etc. is given as example. The concept templates provide a more
detailed version and variant of function concepts. For the car example, concept templates could
be a type of car, such as a cabriolet or a SUV. Finally there are the implementation templates.
They are assemblies or models that provide a high level of details, close to the complete geometry
representation.

Katzenbach et al. [2007] presented another view that makes the correspondence between
external factors and a template-based design phases (see figure 1.8). The concentric layers present
the template-based design phases with the corresponding template types. These template types are
close to those presented by Arndt et al. [2006]. The evolution of the phases goes from the outer
ring towards the center. The first phase at the periphery corresponds to the function-template.
Like the previous definition it is a model providing rough geometry. Then comes the concepts
template that includes specific characteristics. Study-templates are used to validate the functional
principles put in place in the previous phase. The part-template phase corresponds to a detailed
geometry based on the previous implemented concepts within the model. Like in table 1.1, the
degree of detail increases when going towards the centre. All over the figure are reported the
external factors that should be taken into account for each phase.

∼ 16 ∼

1.2. KBE TEMPLATES

Figure 1.8 – Template-based design phases represented by the rings with their corresponding
template types, levels of detail and external factors [Katzenbach et al., 2007].

The process of using a template is called instantiation and results in the creation of a template
instance.

1.2.3 Template instances

Instantiation is the process that consists in creating a copy of the template and of putting it into
a specific context. The context defines where the template is used. It can be an assembly, a part,
a process or even another template, where the latter would lead to template interweaving. During
the instantiation process the inputs of the template instance are assigned. Figure 1.9 presents the
structure resulting of the instantiation of a template. The result obtained is a template instance

Template Context

Concept

model

Publications

Design

specifications

Publications

Components

Publications

External

specifications

Adapter

model

Publications

Construction

Publications

Output

Publications

Template instance

Figure 1.9 – CAD template in its context with link flow [Arndt et al., 2006].

∼ 17 ∼

CHAPTER 1. KNOWLEDGE TEMPLATES UPDATE PROBLEMATIC

that receives input data from various sources, called “external specifications.” Data sources are
the concept model, which is a very high level model containing the global product structure. The
design specifications are related to the requirements, for example, the length of a part. Components
are other elements present in the context such as CAD parts. Once the instance is in the context
and the inputs are assigned, it adapts itself according to the inputs. The link flow represents how
the data is exchanged between the different parts. Thanks to KBE elements, such as formulas and
rules, the adapter model containing basic geometry will be configured. Then elements present in
the construction part will follow the modifications of the adapter model by reading data from the
published elements they refer to and this way, generate or adapt their geometry in the case of CAD
template instance.

Figure 1.10 illustrates the process. The figure 1.10(a) presents a clamp template, which was
designed with CATIA V5 that is a CAD software from Dassault Systèmes. The result of the
instantiation can be see in the figure 1.10(b). Three instances of the template can be seen that
are present in an assembly, which is here the context. The instances are holding a metal sheet and
present various configurations. Each instance has been created from the template in less than a
minute by giving as input the table surface and the clamping point.

(a) Example of KBE template in CATIA
V5 CAD software

(b) Three template instances from the same tem-
plate with various configurations holding a metal
sheet

Figure 1.10 – Example of a template and three of its instances in a context.

1.3 Addressed template update issues

In this dissertation issues related to template maintenance and update are investigated and solved.
In large and complex assemblies like those present in automotive or aerospace industries, the
number of templates and template instances can reach several thousands and even more. This
implies a huge effort to manage and maintain templates as they become even more complex by
incorporating new potential variants for future design [Katzenbach et al., 2007]. To support
engineers in template update management, two issues are addressed. First the decision support
regarding the template updates, second the update of the template’s instances.

1.3.1 Template evolution decision support

The template development is an incremental and collaborative process in which templates are
continuously refined. As shown in figure 1.7, knowledge templates follow an incremental process
during their life cycle. Templates undergo modifications in order to solve an issue or enhance the

∼ 18 ∼

1.3. ADDRESSED TEMPLATE UPDATE ISSUES

template. For instance, a reason of modification could be a bug report of the request for additional
capabilities.

The template update is a complex process. It involves various stakeholders whose goal is to
find the best solution to the reported issue or the feature request. The stakeholders have their own
point of view on the template design which can be related to a domain (like electrical requirements
or costs) or the template ease to use. Due to the heterogeneity of competence fields involved in the
design of a product, possible conflicts are evident and thus a trade-off has to be found. Finding
a solution to repair or to enhance the template while taking into account the various constraints
and aspects involved in its design is quite a complex task.

The situation of template update decision support in a collaborative and multi-disciplinary
environment is studied. The objective is to propose a solution that supports the decision process
and to provide new ideas that could enhance the template update task.

1.3.2 Template updates propagation support

A current problem when using templates is the synchronisation between the template definition and
its instances. That means that the latest modifications made to the template should be forwarded
to the instances. In this way instances can benefit of new functionalities and bug fixes. It also
facilitates the management of template instances as they will all have the same definition, i.e.
their content is the same as the content of the corresponding template. So template managers will
not have to handle several versions at the same time. Thus the consistency between the template
instances and their definition has to be assured.

However this synchronisation between templates and their instances is not fully handled by
current Product Data Management systems [Lukibanov, 2005]. Hence the modifications have to
be applied by hand to the instances of the template. When working with large assemblies that
can contain several thousands of template instances, finding a feasible strategy to update them
all is a challenging and time consuming task. The complexity of the interdependencies network
within KBE assemblies make this task even harder as the order in which instances are updated has
a significant impact on the result and might generate time consuming redundant updates. Hence
the establishment of the order in which the instances have to be updated is a difficult task that
requires a lot of time that can lead to errors. Moreover a template can contain instances from
other templates creating a complex interweaving that has to be taken into account. Figure 1.11
illustrates the instances interweaving and how it appends. Template A has two instances, one in
template B and the other in an instances of template B.

So the second addressed issue by this work concerns the forwarding of the template updates
to theirs instances. To efficiently achieve this task, engineers need an efficient methodology and
supporting tools.

Template A Template B

Instance of

template A

Product

Instance of template B

Instance of

template A

Instantiation

Instantiation

Instance

Instance

Figure 1.11 – Example of instances interweaving through the instantiation of a template contain-
ing the instance of another template.

∼ 19 ∼

CHAPTER 1. KNOWLEDGE TEMPLATES UPDATE PROBLEMATIC

1.4 Chapter summary

Knowledge-based engineering has revolutionised product design by bringing together knowledge
management and automation. This mixture has resulted in the enhancement of the quality of
products as well as the reduction of non-productive activities and of the global project duration.
These benefits goes by the capture, the storage and the restitution of design knowledge, which is
supported by KBE. KBE comprises various tools like rules, scripts and also knowledge templates.

Knowledge-based engineering templates are intelligent applications that are able to adapt them-
selves to a given context in order to fulfil a function and restore encapsulated knowledge. This
adaptability is achieved by using KBE elements. Several types of template are available, which
provide, for instance, geometry, calculus, processes, etc. The use of a template is called instan-
tiation. It results in the insertion of an instance, which is a copy of the template, in the target
context. The context could be an assembly or even another template. The use of KBE templates
allows to reduce time and costs as well as to improve the quality of newly designed products.

The work presented in this manuscript addresses the maintenance and more especially the up-
date of templates. As will be shown in the following chapters, few methodologies address template
maintenance. However their maintenance is a complex and time consuming task. The first ad-
dressed issue is to support the collaborative decision making of a solution to solve a template issue.
The second issue concerns the support of the propagation of the modifications made to a template
towards its instances.

The following chapters will first introduce the related work found in the literature. Then a study
case about template use is presented, in order to understand the real constraints and mechanisms
before presenting the proposed approach to solve these issues.

∼ 20 ∼

PART II

State of the art

∼ 21 ∼

Chapter 2

Knowledge Representation

Contents

2.1 Knowledge and computer systems . 24

2.2 Ontologies . 25

2.2.1 Definition . 25

2.2.1.1 Ontology components . 26

2.2.1.2 Ontology goals . 27

2.2.1.3 Types of ontologies . 27

2.2.1.4 Summary . 29

2.2.2 Ontology engineering methodologies 30

2.2.2.1 General guidelines . 30

2.2.2.2 Existing methodologies . 31

2.2.2.3 Methodologies comparison 33

2.2.3 Ontology representation languages . 33

2.3 Semantic Web . 34

2.3.1 Definition . 34

2.3.2 Semantic web representation languages 35

2.3.3 Web Ontology Language . 37

2.3.3.1 General description . 37

2.3.3.2 OWL and RDFS comparison 38

2.3.3.3 Reasoning . 38

2.3.3.4 Description logic expressiveness 39

2.3.3.5 OWL versions . 40

2.3.3.6 Semantic Web Rule Language 41

2.4 Ontologies in the product design field . 42

2.5 Chapter summary . 43

∼ 23 ∼

CHAPTER 2. KNOWLEDGE REPRESENTATION

2.1 Knowledge and computer systems

Since the 1950’s and the beginning of the researches in artificial intelligence (AI), humans wrote
computer programs able to solve algebra problems or prove logical theorems [Russell and Norvig,
2003]. Computers were able to “think.” This was achieved by integrating human knowledge into
the software.

During the last decades several knowledge technologies appeared [Milton, 2008]. They are
computer based technologies that are able to process formalised knowledge: identify important
knowledge, capture, integrate, represent, store, reason, and decide. Milton [2008] identified four
subject areas where knowledge and information technologies work together:

Knowledge management is a vast field that comprises methodologies with the purpose to manage,
identify, capture, and distribute knowledge within an organisation.

Knowledge engineering “is an engineering discipline that involves integrating knowledge into com-
puter systems in order to solve complex problems normally requiring a high level of human
expertise” [Feigenbaum and McCorduck, 1983]. This field includes specialities such as
data mining that consists in the extraction of unknown knowledge from databases, expert
systems, case-based reasoning that consists in solving new problems by identifying patterns
and rules from previous cases, software agents that are reactive, autonomous, social and
independent entities that can sense and act within an environment in order to realise a goal.

Knowledge-based engineering aims at supporting design engineering (see section 1.1.2).

Ontological engineering tackles the design and maintenance of ontologies. An ontology is a formal
representation of “what exists.” More details about ontologies are provided in section 2.2

All these domains are faced to the same problem, which is the knowledge representation (KR).
On the one hand, it is possible to represent objects, properties, facts, relations, causes and effects
and many other thing that can be classified as explicit knowledge. On the other hand, it is hard
to represent tacit knowledge. Polanyi [1967] defined “tacit knowing” as the fact that “we can
know more that we can tell.” For instance, in a chess game a player would avoid a particular move
because he feels that his piece would be too exposed. In order to solve problems, to support people
or to have an intelligent behaviour, machines require a wide range of knowledge on the context,
the environment or the world.

Davis et al. [1993] proposed five crucial roles for KR:

• KR is a surrogate of the thing itself in order to allow an entity to think and reason about it.
• KR is a set of ontological commitments, i.e., to focus on some parts of the world because the

complexity of the natural world is overwhelming.
• KR is a fragmentary theory of intelligent reasoning. It is a fragment because the represen-

tation incorporates only part of the belief that motivated it, and the intelligent reasoning is
related to what can be inferred.

• KR is a medium for efficient computation as the KR will be used by a computer. The
representation will have an impact on the computations.

• KR is a medium for human expression about the world. The recipient can be either the
machine or other people.

Woods [1975] provided a shorter definition of what a KR language should be: “A KR language
must unambiguously represent any interpretation of a sentence (logical adequacy), have a method
for translating from natural language to that representation, and must be usable for reasoning.”

From these definitions, major elements of a KR can be pointed out. It should be able to provide
a unambiguous representation of a part of the world for reasoning purposes. To go in this direction,
ontologies will now be presented.

∼ 24 ∼

2.2. ONTOLOGIES

2.2 Ontologies

2.2.1 Definition

Ontologies originally appeared in philosophy, where it defines the systematic account of Existence
or can be described as the study of being. The world Ontology comes from Greek where it means
“be” -onto- and “science, study” -logos. However the word appeared only during the 17th century.
Since then the discipline has evolved and came closer to cognitive sciences two decades ago [Psyché
et al., 2003].

The first mention of ontology in the computer sciences field was by McCarthy [1980] during
a work on ontologies in the philosophical meaning and the construction of logic theory of artificial
intelligence systems. He stated that logic-based intelligent systems designers should enumerate all
existing and build an ontology of the world. Nowadays one of the most popular definition of an
ontology in Artificial Intelligence is the one from Gruber [1993a]: “An ontology is a specification
of a conceptualisation. The term is borrowed from philosophy, where an Ontology is a systematic
account of Existence. For AI systems, what ’exists’ is that which can be represented.”

To understand this definition, the term “conceptualisation” is must be clear. According to
Andersen and Vasilakis [2007], “the world view is often conceived as a set of terms (such as
entities, attributes, and processes), their definitions and interrelationships; terms denote important
concepts (classes of objects) in the domain. This is referred to as a conceptualization.” Borst
[1997] stated that a conceptualisation is a structured interpretation of a part of the world that
people use to think and communicate about the world. He has also given an extension of Gruber’s
definition: “An ontology is a formal specification of a shared conceptualisation.” Borst [1997] def-
inition brings forward the collaborative aspect of ontologies which takes sense in a shared context.
When designing an ontology, there must be an agreement on the concepts to specify. Mizoguchi
[2003] proposed another definition, which focuses on the content. “An ontology consists of concepts,
hierarchical (is-a) organisation of them, relations among them (in addition to is-a and part-of),
axioms to formalise the definitions and relations.” It can be considered as the actual definition of
ontologies in the computer sciences.

When the word “ontology” became popular in the knowledge engineering community, Guarino
and Giaretta [1995] listed at least seven different interpretations of the term “ontology.” They
also proposed to weaken the definition from Gruber [1993a] to a “logical theory which gives an
explicit, partial account of a conceptualization” to point out that an ontology can not specify a
conceptual element in a comprehensive way. So Guarino and Giaretta [1995] noticed that there
are some possible misunderstanding. Hepp [2007a] evaluated the situation recently and noticed
that there is still a lot of inconsistency in the usage of the term “ontology.” He listed three aspects
that are the common roots of disagreement: what to model (the “true” structures or a consensus
on them), how to represent the ontology (is it necessary that an ontology is represented with a
formal logic) and if the ontology is the conceptual system or its specification.

Mizoguchi [2003] proposed several definitions of what an ontology is not. First an ontology is
not just a set of terms. A clear distinction should be made between terms/words and concepts. An
ontology is a theory of concepts and it doesn’t matter of how the concepts are called. A name is put
on each concept to make it human-readable. Ontologies have a hierarchical structure composed of
"is-a" relations like taxonomies. There is sometimes a confusion between ontologies and taxonomies.
A taxonomy is a classification in a hierarchical structure with subtype/supertype relationships. A
good taxonomy separates elements of a group (taxon) into mutually exclusive subgroups (taxa).
Figure 2.1(a) represents a vehicle taxonomy. This representation is not sufficient to understand
what a vehicle is. An ontology is more than a classification as it also represents attributes, relations,
functionalities, etc. Figure 2.1(b) presents an extract of a vehicle ontology. In an ontology more
concepts are available such as what machinery the vehicle has, its size, how many persons it can
carry. . . At least two things distinguish ontologies from taxonomies: ontologies have richer internal
structure and they are the result of some consensus.

Ontologies are not a knowledge representation [Mizoguchi, 2003]. An ontology gives a mean to
model the world and is independent of its representation. Ontologies are like conceptual schemas in

∼ 25 ∼

CHAPTER 2. KNOWLEDGE REPRESENTATION

Vehicle

- Ground vehicle

- Motor car

- Motor bike

- 4 or more wheel car

- Car

- Truck

- Train

- Ship

- Air craft

- . . .
(a) Vehicle taxonomy

Vehicle world

- Type

- Ground vehicle
- Ship
- Air craft

- Function

- To carry persons
- To protect persons

- Attribute

- Power
- Size

- Machinery

- Engine
- Body

- Traffic system
- . . .

(b) Vehicle world ontology

Figure 2.1 – Example of vehicle taxonomy and ontology [Mizoguchi, 2003].

data base systems [Gruber, 1993b]. Conceptual schemas give a logical description of shared data
so applications can interoperate without sharing the underlying data structure. In the same way,
ontologies define terms with which knowledge can be represented. Ontologies define the vocabulary
to compose coherent sentences, which can be understood by persons/applications committed to
the shared ontology.

2.2.1.1 Ontology components

As said before, ontologies are a mean to model a domain. To achieve this, ontologies are composed
of the following components [Andersen and Vasilakis, 2007; Gómez-Pérez, 1999; Gruber,
1993a]:

Concepts: Also called term or class of an ontology. A concept is used to encapsulated the meaning
of anything about which something is said (task, function, colour, feeling. . .). Concepts are
usually organised in taxonomy. Example of concepts could be Human and Animal.

Relation: Also called “slot” or “property.” They are defined by properties and represent possible
associations between two or several concepts of the domain. Connected-to and child-of are
examples of relations. Properties can also be used to describe features of the class like name
or age. A relation is described as a subset of the product of n sets: F : C1 × C2 × · · · × Cn.

Function: They are special cases of relations where the nth of the relationship is unique for the n−1
preceding. An example of a binary function is mother-of. A function is formally described
this way: F : C1 × C2 × · · · × Cn−1 7→ Cn

Axiom: They are used to model sentences that are always true. Axioms represent knowledge that
has to be accepted without proof. They allow to constraint the interpretation.

Instance: Also referred as individual. They are the representation of the elements of the domain.
Noy and McGuinness [2001] stated that an ontology with a set of individuals constitutes
a knowledge base.

∼ 26 ∼

2.2. ONTOLOGIES

2.2.1.2 Ontology goals

Emphasis on ontologies has begun in the 1990s. Ontologies in computer sciences have been devel-
oped mainly for the following reasons [Andersen and Vasilakis, 2007; Noy and McGuinness,
2001; Uschold and Gruninge, 1996]:

• For the reuse of domain knowledge: reusability.
• To share a common understanding in order to facilitate human-human, system-system and

human-system communications: interoperability.
• To have explicit domain assumptions: specification.

The reuse of a domain knowledge is time saving because it prevents the construction from
scratch of knowledge. It is common that some concepts are shared between different domains.
However developing an ontology implies an agreement on the concepts to specify in order to fa-
cilitate its sharing and reuse. Once an ontology is developed, it could be reused and extended in
another context in relation with the domain definition. So an ontology can be used by several
applications.

The exchange or share of information is quite difficult if the sender and the receiver doesn’t
share the same definition of a concept. For example in AI, when two agents want to communicate
they must use the same term for the same concept, otherwise they will not understand each other.
This aspect meets the definition of a common vocabulary. This vocabulary must be defined and,
in the case of AI, each agent must commit to the common ontology. This is a guarantee of a
consistency agreement on the concept to specify, but not completeness with respect to the theory
specified by an ontology [Gruber, 1993a].

Explicit assumptions allow to have concrete information to work with. It also facilitates the
evolution of the ontology as things are explicitly stated, and can be used to teach the domain to
persons unfamiliar with it.

2.2.1.3 Types of ontologies

The aim of this part is to give a state-of-the-art of existing ontology classifications to point out the
various types of ontologies.

Object of conceptualisation classification The most common classification is based on the
object of conceptualisation, e.g., what types of concepts to formalise [Psyché et al., 2003].

Knowledge representation ontologies [van Heijst et al., 1997]: They are used to formalise a knowl-
edge representation model. For example, Gruber’s Frame ontology [Gruber, 1993b] can be
cited. It gathers representation primitives used in frame-based languages: classes, relations,
functions. . .

Upper ontologies [Mizoguchi, 2003]: Upper ontologies are ontologies gathering high level cate-
gories. They result of the philosophers’ work when they tried to explain what exist in the
world. Example of upper ontologies would be Aristotle’s ten categories: substance, quantity,
quality, relation, place, time, position, state, action, and affection. Another example is is
C.S. Peirse [Sowa, 1995] firstness, secondness, and thirdness. Firstness is what can be de-
fined without assuming any other things, such as human, iron. . . . Secondness is what can be
defined in a certain context: that is defined with respect to a second but regardless of a third
like mother, director. . . . Thirdness gives the context to the things defined in secondness. For
instance school gives the context for director.
More recently, efforts to define a standard upper ontology have been undertaken by an IEEE
working group named Standard Upper Ontology Working Group (SUO WG). SUO WG has
been launched to develop a standard upper ontology to support computer applications [IEEE
P1600.1, 2003]. Several existing ontologies have been evaluated and are in competition to
be used as the foundations for a standard upper ontology for the computer science field.

∼ 27 ∼

CHAPTER 2. KNOWLEDGE REPRESENTATION

Abstract ontologies: Also called core ontologies, they incorporate general concepts, less abstract
than upper ontologies. They can be reused in various domains to specify more specific
concepts in each domain. Example of abstract ontologies are mereology [Hovda, 2009].

Task ontologies [Gómez-Pérez, 1999; Mizoguchi, 2003]: They provide a vocabulary for tasks in
a system, like scheduling, conception, selection and what is related to problem solving. Those
tasks may or may not be of the same domain. They usually provide terms describing how
to solve a problem such as generic names (plan, goal. . .), generic verbs (to select, to plan, to
assign. . .) and generic adjectives.

Domain ontologies: They model the vocabulary and the relationships about concepts within a
specific domain and enable the reuse of the ontology within this domain, e.g., medical, elec-
tronics, or mechanics [Gómez-Pérez, 1999].

Domain-task ontologies: The domain-task ontologies are reusable in a given domain but not across
domains [Gómez-Pérez, 1999]. An example in the education domain is the ontology of learn-
ing goals [Inaba et al., 2000], which describes goals of teachers and agents in the collaborative
learning field.

Application ontologies: They provide vocabulary for applications in a specified domain [Gómez-
Pérez, 1999]. They are less suited for reuse by other applications.
Bylander and Chandrasekaran [1988] stated that “Representing knowledge for the pur-
pose of solving some problem is strongly affected by the nature of the problem and the infer-
ence strategy to be applied to the problem.” A pessimistic interpretation of this quotation
could say that it is impossible to write a domain ontology which could be reused across many
applications because each application has specific tasks and methods. So Borst [1997] ar-
gued that although it is not possible/desirable to write a domain ontology for all tasks in a
domain, one ontology can be written that can be shared across several applications.

Weight classification Mizoguchi [2003] proposed a classification based on the weight of on-
tologies.

Light-weight ontologies: These ontologies are formal classification with relationships between con-
cepts. However the focus is not put on the rigorous definition of concepts. The aim of such
hierarchies are, for instance, to speed up search engines and therefore are very use dependant.

Heavy-weight ontologies: Heavy-weight ontologies define concepts more precisely by setting ad-
vance properties. An example of heavy-weight ontology is typically an upper ontology.

Granularity classification Psyché et al. [2003] proposed a classification based on the level of
details. A thin granularity embraces ontologies with a rich vocabulary and high level of details.
Large granularity ontologies correspond to ontologies that have weak level of detail. For instance,
upper ontologies have a large granularity.

Six-characteristic classification Hepp [2007a] proposed a classification regarding six charac-
teristics:

Expressiveness: The expressiveness concerns the formalism used to represent the ontology. The
higher the expressiveness is, the more sophisticated the reasoning over the ontology can be.
But the ontology will also be harder to produce and to understand for humans.

Size of the relevant community: Ontology properties are different depending on the number of ac-
tors concerned. An ontology designed for a large group should be well documented and of
limited size. Moreover the consensus process will be different and more complex.

Conceptual dynamics in the domain: This aspect reflects the change in the domain such as new
elements, definition changes. . . The more dynamism there is, the harder the maintenance of
the ontology will be.

Number of conceptual elements in the domain: This correspond to the size of the ontology. Smal-
ler ontologies are more popular and quickly adopted than larger ones [Hepp, 2007b].

∼ 28 ∼

2.2. ONTOLOGIES

Degree of subjectivity in a conceptualisation of the respective domain: Here is addressed how sub-
jective concepts in a domain are. For example food or religion domains are more prone to
subjective judgement than hard sciences as mathematics or computer sciences. Consensus
disagreements are more likely to append as the definition gets more precise.

Average size of the specification per element: This criterion influences the effort needed for achiev-
ing consensus and for coding the ontology. The specification can be more or less comprehen-
sive and for different types, e.g., first-order logic axioms, attributes.

This classification take into account several characteristics of an ontology. These characteristics
can be visualised on a radar chart in order to point out the strong and weak points of the ontology
(see figure 2.2). This classification allows to easily compare ontologies by showing them on the
same graph.

Vocabulary

Norraox/broader
relations

Formal taxonomies
Description logics

First-Order Logic

Higher Order Logics

Expressiveness

Size of the
relevant Community

Conceptual Dynamics
in the Domain

Degree of Subjectivity in
a Conceptualisation

of a domain

Average Size of
the Specification

per Element

Number of Conceptual
Elements in the Domain

Figure 2.2 – Six-characteristics variables of an ontology [Hepp, 2007a]

2.2.1.4 Summary

Ontologies have been a hot research topic in artificial intelligence. No consensus has been found
on the definition of the term “ontology,” hence several definitions coexist. During the last years,
ontologies started to be used in various domains. They allow to formalise and represent knowledge
about a part of the world or of a domain. The core elements of an ontology are the concepts and
the possible relations between these concepts. Ontologies are the result of a common agreement.

Major benefits of using ontologies are the capability to reuse knowledge among different ap-
plications. They allow to structure, standardise and specify domain assumptions. It is also a
communication mean between humans, but also between computational systems. Computational
systems can then manipulate the knowledge and even infer implicit facts.

Ontologies can be classified according to various criteria. The following citation summarises
well what has to be reminded about the ontology types:

“There are several types of ontologies, and each type fulfils a different role in the process
of building a domain model.”

[Studer et al., 1998]

∼ 29 ∼

CHAPTER 2. KNOWLEDGE REPRESENTATION

The design of an ontology is a difficult task. For this purpose, several methodologies have been
developed.

2.2.2 Ontology engineering methodologies

Ontology engineering can be defined as a set of tasks to build, maintain, reuse ontologies. Figure
2.3 presents the ontology engineering process as defined by Gómez-Pérez et al. [2004]. It is
decomposed into three main parts. First it has to be checked if it is worth developing the ontology.
Then there are several interactions to design the ontology. Finally the ontology can be used and has
to be maintained. However most methodologies focus on the design of the ontologies. According
to Mizoguchi and Ikeda [1997], the “ultimate” purpose of ontology engineering is “to provide a
basis of building models of all things in which computer science is interested.”

Figure 2.3 – The ontology engineering process presented by Gómez-Pérez et al. [2004].

Andersen and Vasilakis [2007] identified three basic steps in ontology engineering, which
are nearly the same as those encountered for knowledge management.

1. Knowledge acquisition: extract knowledge from various information sources.
2. Knowledge representation: Structure and formalise the knowledge using an ontology lan-

guage.
3. Knowledge use and reuse: allow search, navigation, reasoning, visualisation, etc. of the

knowledge.

2.2.2.1 General guidelines

In order to guide the design of an ontology, some rules and principles have been introduced by
several authors such as Arpìrez et al. [1998]; Gómez-Pérez [1999]; Psyché et al. [2003].

∼ 30 ∼

2.2. ONTOLOGIES

Clarity and objectivity: The ontology should provide the objective definition as well as the defini-
tion in natural language of the defined terms [Gruber, 1993a].

Completeness: A definition expressed by a necessary and sufficient condition is preferred over a
partial definition [Gruber, 1993a].

Coherence: In order to allow inferences that are consistent with the definition of the ontology
[Gruber, 1993a].

Maximise monotonic extendibility: The addition of new term should not impact existing concepts
and definition [Gruber, 1993a].

Minimal ontological commitments: Keep the ontology generic so parties committed to the ontology
can extend and specialise it freely.

Ontological distinction principle: Classes of an ontology should be disjoint. The criterion that
determines the core properties of a class is called the Identity Criterion [Borgo et al., 1996].

Diversification of hierarchies: The idea is to benefit from multiple inheritance mechanisms. So it
will be easier to define new classes and new concepts as they can be specified from existing
ones [Arpìrez et al., 1998].

Modularity: Minimise coupling dependencies, between modules [Bernaras et al., 1996].

Minimise the semantic distance between sibling concepts: Close or similar concepts should be de-
fined as subclasses of one class and should be defined using the same primitives [Arpìrez
et al., 1998].

Standardise names whenever possible: It is recommended to standardise names in order to facili-
tate ontology understanding [Arpìrez et al., 1998].

2.2.2.2 Existing methodologies

Psyché et al. [2003] listed about 29 ontology engineering methodologies. These methodologies
allow to build an ontology from the beginning, from the integration or fusion of other ontologies,
from re-engineering, from collaborative construction, and from the evaluation of existing ontologies.
In this section are presented the ontologies engineering methodologies that are considered as the
most significant according to this work.

One of the first ontology engineering methodology is the one proposed by Uschold and
Gruninge [1996]. At this time there was no available methodology. So they proposed to fill
this gap with a comprehensive methodology composed of the following steps:

• Identify the purpose and the scope: make clear the reasons why an ontology is being build
and its usage.
• Build the ontology.

– Capture: identify, define and agree on the key concepts and relations.
– Code: represent explicitly the conceptualisation of the previous phase.
– Integrate existing ontologies: adapt or reuse concepts of existing ontologies during both

previous steps.

• Evaluation: make a judgement about the ontology.
• Documentation: document the ontology in order to facilitate knowledge sharing.
• Guidelines for each phase.

– Clarity: document and clearly define concepts.
– Coherence: the ontology should be consistent.
– Extensibility: anticipate extension by providing conceptual foundations.

Bachimont [2000] presented a design methodology that is composed of three steps, corre-
sponding to the following three commitments.

1. Semantic commitment. Structure the taxonomy of concepts based on four principles:

• Closeness to its ancestor.

∼ 31 ∼

CHAPTER 2. KNOWLEDGE REPRESENTATION

• Different specification against ancestor (otherwise no use to define this concept).
• Closeness with concepts at the same level (brothers concepts)
• Different specifications against brother concepts.

2. Ontological commitment: specify concepts and their extension with formal semantic and
other concepts.

3. Computational commitment: select a formalism and define functions for computer systems.

The Ontology Development 101 [Noy and McGuinness, 2001] is a knowledge engineering
methodology designed to create ontologies. It is an iterative methodology, i.e., it starts with a
rough first pass on the ontology in order to then refine it. This methodology is also independent
from the representation language used. They have based their ontology on three fundamental rules
for ontology design:

1. There is not only one way to model a domain.
2. Ontology development is necessarily an iterative process.
3. Concepts should be close to objects and relations present in the domain.

The methodology is composed of seven steps that will be repeated:

1. Determine the domain and the scope of the ontology.
2. Consider reusing existing ontologies.
3. Enumerate important terms.
4. Define the classes and the class hierarchy.
5. Define the relations between classes.
6. Define the restrictions on the slots.
7. Create instances.

Denker [2003] proposed a method to build ontologies using the DAML+OIL representation
language and Protégé as the development tool. This method is quite simple. It is based on three
main steps: create a new ontology by defining the classes, properties, instances, restrictions and
boolean combinations, then load existing ontologies to reuse them, and save the resulting ontology.

METHONTOLOGY is a framework proposed by Fernandez et al. [1997]. It includes the
identification of the ontology development process, a prototype-based life cycle for the ontology
and the methodology itself. The identification phase describes the tasks to build the ontology.
The life cycle based on a prototype allows to identify the different steps an ontology goes by. The
methodology specifies the steps for the activities, the techniques used, and the evaluation method.

Another methodology has been proposed by Grüninger and Fox [1995]. It resulted from
the experience in the development of the TOVE1 project’s ontology [Grüninger and Fox, 1994].
This methodology is composed of six steps:

1. Capture of motivating scenarios: the development of the ontology is motivated by problems
or example.

2. Formulation of informal competency questions: question representing requirements about the
scenarios.

3. Specification of the terminology of the ontology within a formal language: extract terms from
the questions and use them as the basis for the ontology.

4. Formulation of formal competency questions using the terminology of the ontology: formalise
the questions.

5. Specify axioms in First-Order logic: specify and constraint the definition of terms.
6. Establish conditions for characterising the completeness of the ontology: define the conditions

under which the solutions to the questions are complete.

Bernaras et al. [1996] developed an approach to design ontologies during the KACTUS
project, which aimed at investigating how ontologies could support knowledge reuse in large tech-
nical systems. Their methodology is based on three steps:

1TOronto Virtual Enterprise

∼ 32 ∼

2.2. ONTOLOGIES

1. Specification of the application.
2. Preliminary design of the ontology from the specifications.
3. Ontology refinement.

The SENSUS methodology [Swartout et al., 1997] is a bit different from other methodologies.
SENSUS is an existing ontology composed of 50,000 high and medium level concepts organised as
a hierarchy. This ontology is used to create domain ontologies by:

1. Selection of terms from the domain. They will be the “seeds.”
2. The seeds terms are linked to the SENSUS ontology.
3. All concepts from the seeds to the root of the SENSUS hierarchy are included in the new

ontology.
4. Then the terms that could be relevant to the domain are added.
5. Finally terms are manually added according to the sub-trees of currently selected nodes.

After these steps, an extract of the SENSUS ontology is available that will be the new domain
ontology.

2.2.2.3 Methodologies comparison

Hakkarainen et al. [2005] made a comparison of ontology design methodologies between the
Ontology Development 101, Denker [2003] method and a method proposed by Knublauch
et al. [2003] in a tutorial for the 2nd International Semantic Web Conferences. The tutorial from
Knublauch et al. [2003] addresses the creation of ontologies with Protégé and presents briefly a
methodology composed of seven steps that are: determine the scope, consider reuse, enumerate
terms, define classes, define properties, create instances, classify ontology. Two evaluation methods
were used: a quality framework proposed by Su and Ilebrekke [2002] based on six criteria and
an application used to valuate each criterion. In both steps the Ontology Development 101 arrived
first. Furthermore it is the only one of the three evaluated ontologies that is language independent.

Fernández-López and Gómez-Pérez [2002] analysed some existing methodologies and
contrasted them with IEEE software development standards. This review covers the following
methodologies: the approach proposed by Uschold and Gruninge [1996], methodology from
Grüninger and Fox [1995], the KACTUS methodology [Bernaras et al., 1996], METHON-
TOLOGY [Fernandez et al., 1997] and the SENSUS methodology [Swartout et al., 1997]. The
conclusion they achieved is that the METHONTOLOGY is the most mature of them as it the most
complete according to their criteria and it has been used to build ontologies and applications.

To be able to represent and use an ontology, engineers need to selected a suitable representation
language.

2.2.3 Ontology representation languages

The representation of an ontology is a key factor for the adoption and the use of the ontology.
Ontologies can be expressed using natural language. However this is not suitable for computers
to understand and to perform reasoning on an ontology. For this purpose, specific languages have
been developed to store and to manipulate the ontology in a formal way.

As ontologies are used by computers, semi-formal languages and formal representation languages
will be presented. A semi-formal language has a vocabulary expressed in an explicitly defined
artificial language. Formal languages are expressed with an artificial language defined with a formal
semantic, proofs and theorems such as soundness and completeness [Uschold and Gruninge,
1996].

There are many ontology representation languages available. Many conceptual modellings exist
and are used as a basis for the representation languages. Thus representation languages can be
categorised.

∼ 33 ∼

CHAPTER 2. KNOWLEDGE REPRESENTATION

Frame-based languages Frame-based languages are composed of frames. A frame is “a data-
structure for representing a stereotyped situation, like being in a certain kind of living room,
or going to a child’s birthday party. Attached to each frame are several kinds of information”
[Minsky, 1974]. The frames can contains properties called “slots” or “attributes.” Ontology
representation languages based on the Frame concept are for example F-Logic, Ontology In-
ference Layer or Knowledge Machine. F-logic [Kifer et al., 1995], also called Frame-Logic,
consists in defining schema facts (classes, inheritance, relations. . .) such as man::person or
person[hasFather=»man], facts (instances. . .) like Thomas:man[hasBrother->Michael],
rules like FORALL X,Y X[hasSon-»Y] <- Y:man[hasHasFather->X], and finally queries, such
as FORALL X,Y <- X:woman[hasSon-»Y[hasFather->Thomas]].

First-Order Logic (FOL) based languages [Smullyan, 1995] . An ontology described using the
FOL is composed of declarative propositions, predicates and quantifiers. Knowledge Inter-
change Format (KIF) and CycL are two languages based on FOL. KIF is a formal language
designed for the exchange of knowledge between disparate computer software. Each computer
can have its own internal representation and resort to KIF just for the information exchange.
This language was defined within the Ontolingua project [Farquhar et al., 1997; Gruber,
1993b]. Its syntax is based on LISP and its semantic on the FOL. The CycL is a language
that has been developed in the scope of the Cyc project [Lenat et al., 1990]. The aim of this
project was to specify a large common-sense ontology for Artificial Intelligence. CycL is the
language used to represent the Cyc knowledge. Like KIF, CycL is based on FOL and LISP.

Semantic networks allow to represent knowledge as a graph that is the structure of meaning
[Lehmann, 1992]. The nodes represent conceptual units and the directed vertices represent
the relations between the units. The relations can be of any type, such as is-a, composed-of,
or parent-of relations. Each node and vertex has an attached meaning that allows to derive
implicit knowledge.

The Description Logics (DL) are another language to represent ontologies. At the contrary to
semantic networks, DLs are a knowledge representation language with a logic-based semantic.
The following sentence “A man that is married to a doctor and has at least 5 children, all of
whom are professors” can be represented with Description Logics: Human ∩ (¬Female) ∩
(∃married.Doctor) ∩ (≥ 5_has_Child) ∩ (∀hasChild.Professor) [Baader et al., 2007].
Reasoning as a central service proposed by DLs [Baader and Nutt, 2002]. DL-based
languages should come with reasoning procedures that are sound and complete with respect
to specified semantics. That means that all the sentences that can be inferred from the
ontology are true (soundness), and given an ontology, if there is a sentence that is true, then
such a sentence can be inferred (completeness) [Lenzerini et al., Year unknown]. The Web
Ontology Language is an example for an ontology representation language based on DL.

The Web Ontology Language takes also place within the Semantic Web representation lan-
guages. This representation language category is detailed in the following section because it rep-
resents an important and recent evolution in the ontology representation domain.

2.3 Semantic Web

2.3.1 Definition

The World World Web (WWW) [Berners-Lee, 1989] has become a huge network nowadays.
This network works on the Internet and is composed of pages accessible through a Web browser.
The pages are connected together via hypertext links. Hypertext links allow to link anything to
anything on the Web. The power of the WWW comes from its universality.

Today most of the content of the WWW is designed to be read by humans. The Web pages
are defined via the Hypertext Markup Language (HTML), which provides rendering information,
such as the structure of a page. Theses data for textual, structural, and graphical information is
understood and processed by computers, but intended for Human consumption [Baader et al.,

∼ 34 ∼

2.3. SEMANTIC WEB

2003]. The content of the Web pages is not designed for computer programs, they have no reliable
mean to process the semantics of the pages [Lee et al., 2001].

The Semantic Web (SW) [Lee et al., 2001] is an extension of the current Web in which the
information is given in a machine-understandable and well-defined meaning. It aims at creating
a structure for the meaningful content of Web pages, such that information can be shared and
processed by automated tools as well as by human users. These automatic tools are often referred
to as agents or Web agents. To provide these agents with understandable information, the content
of the page has to be annotated with metadata in a standardised and expressive language. To
make sure that different agents have a common understanding on the annotation terms, they
have to commit to the same ontology in which the terms are described. For this purpose several
representation languages have been developed.

2.3.2 Semantic web representation languages

Semantic Web representation languages are developed to allow computer systems to process mean-
ingful information. They present the information in a structured form. SW languages form a
hierarchy composed of various layers. Languages located in one layer take advantage of the capa-
bilities of the layers below. Figure 2.4 illustrates the hierarchy. The different layers with corre-
sponding SW languages can be seen. For instances the Resource Description Framework (RDF)
for data interchange and OWL for the ontology representation. As it will be seen later, OWL is
based on RDF-Schema (RDFS). The layers Rule, Unifying Logic, Proof, and Trust do not have
stabilised standard definition yet. However the figure presents the latest languages and not other
SW languages that were superseded.

Figure 2.4 – W3C Semantic Web stack 1.

Figure 2.5 gives an overview of the main semantic web representation languages. It shows the
date of first publication of each of them and it gives an overview on the evolution of the languages
in the SW domain.

Most recent SW representation languages are based on XML1 or have an XML representation.
1http://www.w3.org/2007/03/layerCake.png
1http://www.w3.org/TR/REC-xml/

∼ 35 ∼

http://www.w3.org/2007/03/layerCake.png
http://www.w3.org/TR/REC-xml/

CHAPTER 2. KNOWLEDGE REPRESENTATION

|

1989

|

1990

|

1991

|

1992

|

1993

|

1994

|

1995

|

1996

|

1997

|

1998

|

1999

|

2000

|

2001

|

2002

|

2003

|

2004

|

2005

|

2006

|

2007

|

2008

|

2009

HTML SHOE

XML

RDFS

DAML-ONT

OIL

DAML+OIL

OWL

SWRL

SPARQL

OWL2

Figure 2.5 – Main semantic web languages with the corresponding year of first publication.

XML, which stands for eXtensible Markup Language, allows to structure a document with “ele-
ments.” An element is delimited by tags. A tag begins with “<” and ends with “>.” XML provides
a syntax for hierarchically structured documents to facilitate the sharing of documents across dif-
ferent systems. It is an extensible language as it has no semantic constraints and everyone can
define his own tags. The structure of XML document can be constraint to match a given scheme.
For this purpose a W3C recommendation called XML Schema1 was published. It defines how the
XML document has to be structured. An example of XML document and schema is available in
appendix A.

However XML and XML schema are not sufficient to represent ontologies as they provide users
with no semantic meaning of the arbitrary structure. In fact they are tools that are used as
foundations for dedicated models such as the Resources Description Framework (RDF2). RDF is
a Frame-based based model for data interchange on the Web. This language has been originally
designed for describing Web pages and their resources. RDF has become a W3C recommenda-
tion in 1999. It incorporates the meaning by defining statements. Each statement is called a
“triple.” Triples are composed of a subject, a predicate or verb, and an object. RDF encodes
each information as an Uniform Resource Identifier (URI) in order to ensure that concepts have a
unique definition. The whole set of triples creates an oriented and labelled graph. RDF proposes
an XML-based syntax called RDF/XML. Figure 2.6 (a) illustrates a RDF graph representing a
person while figure 2.6 (b) shows its representation using RDF/XML. On both figures, one can see
the URIs used as unique identifiers. RDF names the relationship between things with an URI. Like
for XML, it is possible to structure RDF documents with RDF schema (RDFS). RDFS provides
a richer representation with basic ontological primitives like rdfs:Class or rdfs:subClassOf in
order to define a class hierarchy. It defines various concepts like classes, subclasses, domain and
range or properties, etc.

In 2000 the Defense Advanced Research Project Agency (DARPA) started a project to develop
a language and tools to facilitate the design of the Semantic Web. The program was called DARPA
Agent Markup Language (DAML). RDFS was a good starting point but has limited expressiveness
as it provides no cardinality, no exclusions between classes, etc. The aim of the project was to
provide a language to express more sophisticated class definitions and properties than RDFS. It
resulted in the development of the DAML-ONT language. For instance the DAML-ONT allows
to define equivalent properties or subproperties. However DAML-ONT suffers from an inadequate
semantic specification like RDFS [Horrocks et al., 2003].

The Ontology Inference Layer (OIL) is another ontology representation language [Fensel et al.,
2001]. It was developed approximately at the same time as DAML-ONT (mainly by European
researchers) with the same objectives as the DAML program. This language has been defined to
meet three requirements:

• It must be highly intuitive.
• It must have a well defined formal semantic with reasoning properties that ensues the com-

pleteness, correctness and efficiency.

1http://www.w3.org/XML/Schema
2http://www.w3.org/RDF/

∼ 36 ∼

http://www.w3.org/XML/Schema
http://www.w3.org/RDF/

2.3. SEMANTIC WEB

(a) RDF graph (b) RDF/XML representation

Figure 2.6 – RDF graph and its RDF/XML description representing Eric Miller [Shadbolt et al.,
2006].

• It must ensure interoperability by reusing existing Web languages.

OIL incorporates the essential modelling primitives of Frames, which is the notion of concepts
organised in a hierarchy, and attributes of the concepts. This allows OIL to be more intuitive as
the Frame concepts are similar to the object-oriented programming paradigm. OIL is also based on
the description logics in order to integrate formal semantic and to allow efficient reasoning. Finally
OIL is based on RDFS. This fulfils the third requirement, which is to reuse existing Web languages.
It was the first ontology language that combines elements from DL, RDFS, and Frames.

Quickly DAML and OIL working groups joined their efforts. It resulted in the merge of the two
languages and the creation of the DAML+OIL language [Connolly et al., 18 December 2001].
The frame structure representation was discarded and replaced by DL-style axioms, which are
easier to represent with RDF syntax. The integration into RDFS was also tightened. DAML+OIL
has been used as a basis for the development of the Web Ontology Language.

The W3C defined its own ontology language called the Web Ontology Language (OWL) [Smith
et al., 2004].

Some other ontology representation languages are available like XOL, SHOE or topic maps.
No further details on these languages will be provided as they have been superseded by newer and
more powerful languages like OWL.

2.3.3 Web Ontology Language

2.3.3.1 General description

The Web Ontology Language (OWL) [Smith et al., 2004] is a description language for representing
ontologies. Its aim is to facilitate the processing of the information content by computer systems
instead of just presenting the information. It is a W3C recommendation, i.e., a standard, for
the Semantic Web since 2004. OWL is a revision of the DAML+OIL language with the aim
of incorporating the lessons learned by the development, and the experiences with DAML+OIL.
Nowadays OWL represent the prevailing standard for ontology design [Andersen and Vasilakis,
2007]. In the scope of the Semantic Web, OWL has been designed to:

• provide an exact meaning to Web information.
• allow information from the web to be integrated by computers.
• allow computers to process Web information.

∼ 37 ∼

CHAPTER 2. KNOWLEDGE REPRESENTATION

Like DAML+OIL, OWL is an advanced and sophisticated language. Its development has been
influenced by Description Logics, the frames paradigm, XML and RDF. The semantic in OWL is
formalised by means of DL style model theory [Lenzerini et al., Year unknown]. Hence OWL has
more facilities to express the meaning and the semantics than XML, RDF, and RDF-S.

2.3.3.2 OWL and RDFS comparison

OWL is an extension of RDFS and provides a richer vocabulary for describing properties and
classes. By using the RDFS/XML representation OWL facilitates the exchanges between informa-
tion systems.

RDFS describes properties and classes of RDF resources. It provides language constructors
such as rdfs:domain,rdfs:range and rdfs:subClassOf. Horrocks et al. [2003] gave a short example
of a RDFS definition:

• declare classes like Country, Person, Student and Canadian.
• state that Student is a subclass of Person.
• state that Canada and England are both instances of the class Country.
• declare Nationality as a property relating the classes Person (its domain) and Country (its

range).
• state that age is a property, with Person as its domain and integer as its range.
• state that Peter is an instance of the class Canadian, and that his age has value 48.

Compared with RDFS, OWL is more expressive as it contains new features such as the class
definition, property types and also new concepts like equivalent classes and properties, equality,
difference, opposite, symmetry of two resources. OWL reuses some constructors from RDFS such
as rdfs:domain, rdfs:range and rdfs:subClassOf, and add new vocabulary for:

• logical relations: union, intersection, complement and disjunction.
• cardinality.
• richer properties typing.
• property characteristics (like symmetry and transitivity).
• enumerations.

OWL enables a better description of classes and properties by adding constraints on properties,
cardinality, enumerations, equivalence, union, etc. The RDF schema is not sufficient if deduction
from computers is expected. Horrocks et al. [2003] presented an OWL extension of the above
description made with RDFS, wherein the enriched semantic compared to RDFS can be seen:

• state that Country and Person are disjoint classes.
• state that Canada and England are distinct individuals.
• declare HasCitizen as the inverse property of Nationality.
• state that the class Stateless is defined precisely as those members of the class Person that

have no values for the property Nationality.
• state that the class MultipleNationals is defined precisely as those members of the class

Person that have at least 2 values for the property Nationality.
• state that the class Canadian is defined precisely as those members of the class Person that

have Canada as a value of the property Nationality.
• state that age is a functional property.

2.3.3.3 Reasoning

The OWL language is designed to support reasoning on the ontology.

The reasoning allows to to classify the ontology’s concepts and instances. The classification
is based on the subsumption. A concept C subsumes a concept D (C ⊆ D) when C contains all
individuals of D. If C ⊆ D and D ⊆ C both concepts are equivalent. For example

∼ 38 ∼

2.3. SEMANTIC WEB

• A bus driver is a person that drives a bus.
• A bus is a vehicle.
• A driver drives a vehicle.

From this definition it can be inferred that a bus driver drives a vehicle, so he must be a driver.

Instances are also subject to classification. Given the property hasPet that has the concept
Human as domain and Pet as range. If “Donald is the pet of Thomas,” it can be stated that:
Thomas has pet Donald, hence Thomas must be a Human, and Donald must be a Pet.

One objective of the reasoning is to check the consistency (satisfiability) of the ontology. To be
consistent an ontology should have no contradiction in its definition. To illustrate an inconsistent
concept, the following definitions can be used:

• Vegetarians do not eat animals.
• Cows are vegetarians.
• A mad cow is a cow.
• A mad cow eats sheeps’ brain.
• Sheeps are animals.

When checking the consistency of this definition, it can be stated that mad cows eat animals. Or
mad cows are cows and thus are vegetarian, thus they can not eat animals. So the definition of
mad cow is inconsistent with the definition of vegetarian.

Researchers are now focusing on the Web Ontology Language. Today OWL is considered as
the most suitable language for the Semantic Web and for the representation of ontologies thanks to
its expressiveness and reasoning capabilities. It is achieved because OWL is based on Description
Logics.

2.3.3.4 Description logic expressiveness

The Description Logics are a family of logic-based representation formalisms for knowledge. They
were designed as an extension to Frames [Gruber, 1993b]. They are also subsets of the First
Order Logic [Baader and Nutt, 2002].

Description Logic has sound (yield correct results), complete (yield all correct results) and
decidable (yield results in finite time) inference procedure. Contrary to databases, Description
Logic envelopes the Open World Assumption as the domain can be infinite. In the Open World
Assumption a lack of information does not mean a negative information like in databases. That
means that when an information is not specified as true, it can not be stated that it is false. The
opposite is the Closed World Assumption, in which missing or not know as true information is
considered as false.

The different Description Logics are named according to their expressiveness by a succession of
letters, for instance SHOIN. Each letter has its own signification.

AL: It means Attribute Language which can be considered as the base of other DL languages. It
allows the following syntax rules:

• D, C are concepts
• S, R are properties
• Atomic concept (A)
• Universal concept (⊤)
• Bottom concept (⊥)
• Atomic negation (¬A)
• Intersection (C ⊓D)
• Value restriction (∀R.C)
• Limited existential quantification (∃R.⊤)

FL−: It is a part of AL in which the atomic negation has been removed.

∼ 39 ∼

CHAPTER 2. KNOWLEDGE REPRESENTATION

FL0: Is is a part of FL− in which the existential quantification has been removed.

C: Complex concept negation (¬C, not only atomic like in AL).

S: Gather AL and C and add role transitivity (Trans(R)).

H: Role hierarchy, subsumption (R ⊆ S).

R: stands for complex role inclusions (R ◦ S ⊆ R, R ◦ S ⊆ S). It allows to express the fact that
each car contains an engine Car ⊑ ∃hasPart.Engine, an owner of a car is also an owner of
an engine, i.e., the following subsumption is implied ∃owns.Car ⊑ ∃owns.Engine.

Q: stands for qualifying number restrictions (6 n R.C, > n R.C, = n R.C), i.e., at least, at
most. For instance: Car v = 4 hasComponent.Wheel.

O: Nominals, enumerations ({a} or {a1, . . . , an}, one-of constructor).

I: Inverse property (R−).

N: Cardinality restrictions (6 n R, > n R, = n R).

F: Functional properties (6 1 R).

E: Full existential qualification.

U: Concept union.

(D): Use of datatype properties, data values or data types (concrete domain).

Different version of OWL are existing. Each of them provides a different level of expressiveness
and corresponding reasoning capabilities.

2.3.3.5 OWL versions

The first version of OWL has been released as a standard in 2004. OWL kept on evolving according
to users needs, tools and algorithm evolution, and new findings. Two major versions have been
identified, OWL 1 and OWL 2 that are standards, and an intermediate version called OWL 1.1.

OWL 1 The first version of OWL became a standard in 2004. This first version is now referred
to as OWL 1. It is composed of three increasingly expressive sublanguages OWL Lite, OWL DL,
and OWL Full [Bechhofer et al., 2004]. OWL Lite and OWL DL express a small subset of the
First Order Logic and assure the decidability of inferences whereas OWL Full provides a greater
expressive power and compatibility with RDFS.

OWL Lite has a very restricted expressive power but is easy to implement. It is designed for
users needing a classification hierarchy and simple constraints. Examples of restrictions are the
limitation to 0 or 1 of cardinality values, connectors and enumerations are forbidden. OWL Lite
has an expressive tie similar to SHIF(D) Description Logic and has a reasoning time in ExpTime.

OWL DL is named in correspondence to Description Logics. It extends OWL Lite. It enables
the highest degree of expressiveness while retaining computational completeness (i.e., the compu-
tation of all conclusions is guaranteed) and decidability (i.e., all conclusions can be computed in
a finite time). However this language has restrictions such as a class can be a subclass but not
an individual of another class. OWL DL is partly based on SHOIN(D) Description Logic, which
is more expressive than SHIF(D) but more difficult to reason with. So the time complexity for
reasoning is NExpTime. Appendix B presents the syntax of OWL DL.

OWL Full gives the maximum degree of expressiveness and freedom but without guarantees for
computational results. It contains OWL DL but provide a higher expressiveness making reasoning
undecidable. It is a real subset of RDFS where owl:Class is equivalent to rdfs:Class and
owl:Thing is the equivalent to rdfs:Resource. In OWL Full a class can be treated simultaneously
as a collection of individuals and as an individual in its own right. The table 2.1 summarises the
different sublanguages with the corresponding DL and complexity.

∼ 40 ∼

2.3. SEMANTIC WEB

Table 2.1 – OWL 1 sublanguages with DL equivalence and complexity.

Sublanguage Description Logic Complexity

OWL Lite SHIF(D) [Horrocks2003] ExpTime [Tobies2001]
OWL DL SHOIN(D) [Horrocks2003] NExpTime [Tobies2001]
OWL Full no DL equivalence not decidable, covers RDF-Schema [Horrocks2003]

OWL 1.1 OWL 1.1 [Grau et al., 2006; Patel-Schneider and Horrocks, 2006] has been
submitted on December 19th, 2006 and has not become a W3C recommendation. OWL 1.1 extends
OWL 1 with a small but useful set of features that have been requested by users. These are features
like additional property and qualified cardinality constructors, extended datatype support, simple
metamodelling, extended annotations, and extra syntactic sugar, which make some idioms easier
to write. OWL 1.1 corresponds to the SROIQ(D) logic by adding the R and Q expressiveness
to SHOIN(D) [Horrocks et al., 2006]. There is also other new points such as disjoint roles or
it allows the expression of “local reflexivity” for example to define the concept of “narcist” as
∃likes.Self .

OWL 2 OWL 2 became a W3C standard in October 2009 [OWL 2, 2009]. Like OWL 1.1,
OWL 2 corresponds to the SROIQ(D) logic and is referred to as OWL 2 DL. RDF graphs that are
considered as OWL 2 ontology are referred to as OWL 2 Full ontologies.

OWL 2 is composed of three profiles (sublanguages) that are OWL 2 EL, OWL 2 QL and OWL
2 RL, which offer important advantages in particular scenarios [Motik et al., 2009a]. Each of
three main profiles from OWL 2 are more restrictive than OWL DL but provide better reasoning
capabilities. In addition OWL 2 provides new representation syntaxes like the Manchester syn-
tax, which is easier to read, or the OWL/XML that is easier to process with XML tools. The
specifications of OWL 2 allow to classify OWL 1 Lite and OWL 1 DL as OWL 2 profiles too.

OWL 2 EL is suitable for ontologies with a very large number of classes and/or properties and
where expressive power can be traded for performances guarantee. It provides polynomial time
decision to check consistency, class expression subsumption and instance checking. OWL 2 QL
is particularly suitable for relatively lightweight ontologies with a large number of individuals, in
which data queries are useful or necessary. It provides answers to conjunctive queries in LogSpace

by using standard relational database technology. OWL 2 RL enables the implementation of
polynomial time reasoning algorithms by using rule-extended databases technologies. This profile
aims at applications that require scalable reasoning without sacrificing too much expressive power.

The figure 2.7 presents the evolution of the reasoning complexity of ontology representation
languages. One can clearly see on this graph that the current trend is to reduce the complexity of
the languages, even if it results in a reduction of the expressiveness of the language.

2.3.3.6 Semantic Web Rule Language

The Semantic Web Rule Language (SWRL) is the result of the combination of OWL DL and
a subset of the Rule Markup Language 1 ,i.e., Unary/Binary Datalog [Horrocks et al., 2004;
O’Connor et al., 2005]. SWRL allows users to write Horn-like rules expressed in terms of OWL
concepts to reason about OWL individuals. The rules can be used to infer new knowledge from ex-
isting OWL knowledge bases. This allows to fulfil the deductive reasoning lack of OWL [O’Connor
et al., 2005]. SWRL rules are saved as part of the ontology. In the W3C Semantic Web stack pre-
sented in figure 2.4 rules are located at the same level as OWL. SWRL is not a W3C standard
but has been submitted in May 2004. However it has been adopted by many research works and
is implemented in several reasoners.

SWRL rules are composed of an antecedent-consequent pair. The SWRL terminology defines
the antecedent as the “body” of the rule and the consequent as the “head.” The hand and body

1http://www.ruleml.org/

∼ 41 ∼

http://www.ruleml.org/

CHAPTER 2. KNOWLEDGE REPRESENTATION

Figure 2.7 – History and complexity of ontology representation languages [Nordmann, 2009].

are composed of a conjunction of one or more atoms. An example of a SWRL rule would be the
following:

hasParent(?x1,?x2) ∧ hasBrother(?x2,?x3) ⇒ hasUncle(?x1,?x3)

This would result in the creation of a new relation hasUncle between two individuals present in
the ontology if the first one has a parent who has the second one as brother.

SWRL rules provides more expressibility power to OWL, but at the price of decidability and
practical implementations [Parsia et al., 2005]. They work on individuals present in the ontology
and allow to deduce new knowledge.

It has to be noted that SWRL is monotonic and thus does not support negated atoms. Hence
the following rule is not possible because it would be invalidated if the person gets later a car
[O’Connor, 2009].

Person(?p) ∧ not hasCar(?p,?c) ⇒ CarlessPerson(?p)

2.4 Ontologies in the product design field

Ontologies have become more and more popular. They are now used in many application fields,
such as medical [Dieng-Kuntz et al., 2006], bioinformatic [Stevens et al., 2002] or knowledge
engineering [Maedche et al., 2003]. The engineering and design domains have also interest in
ontologies.

Cebrian-Tarrason and Vidal [2008] used an ontology to infer knowledge in product con-
ceptual design. Angele et al. [2007] presented an application in which an ontology is used to
represent the terminology and the complex dependencies between various car parts. The ontology
is also used as a mediator between data from different sources. The result is a software assistant
that helps engineers in the task of configuring test cars. Rules are used to validate some design
choices. For instance, they have designed a rule representing restrictions like “the engine power
must not exceed the power of the brakes” or “the devices connected to the battery must match the

∼ 42 ∼

2.5. CHAPTER SUMMARY

amperage of the used battery.” Ontologies are also used to enhance collaboration and resolve con-
flicts. Lima Dutra et al. [2010] provided an ontology-based architecture for collaborative design,
in which ontologies are used to detect and solve conflicts during the design.

Ontologies can also be used as a standardised representation between tools [Uschold and
Gruninge, 1996]. Standards are defined to be a shared understanding of a domain in order
to enhance interoperability. Within CAD domain there are several existing standards. One of
the most famous and most used is the ISO 10303, which is an international standard for the
product data exchange. This standard is also referred as the Standard for the Exchange of Product
model data (STEP) [ISO 10303, 1994]. Its aim is to allow a computer-interpretable system
independent description of product data throughout its life cycle in order to allow the exchange
of product data among different systems. This standard can be used to exchange data between
several types of systems such as CAD, PDM, CAE or CAM systems. The development of STEP
started in 1984. However the initial release of STEP as an international standard was ten years
later, in 1994. STEP has been design to address several domains that are mechanical and electrical
design, geometric dimensioning and tolerancing, analysis and manufacturing. It also include specific
information related to various industries applications such as automotive, aerospace, ship, process
plant, building construction and others. It also addresses the complete product life cycle, from the
design to the maintenance. It is organised in parts that are:

• Integrated resources
• Application protocols
• Abstract test suites
• Implementation methods
• Conformance tests

One of the most important elements of STEP is the part 42 that addresses the explicit representa-
tion of models. The data modelling language used by STEP is called EXPRESS, and is part of the
standard itself (ISO 10303-11). It also provides a graphical representation called EXPRESS-G.

Some persons consider STEP as an ontology. For example, Andersen and Vasilakis [2007]
stated that STEP can be considered as an ontology for the representation of product model infor-
mation. However STEP does not provide reasoning capabilities. EXPRESS includes the common
ideas present in ontology design, such as classes and instances by using entities, multiple inher-
itance, properties, etc. Andersen and Vasilakis [2007] proposed a CAD model information
ontology based on part 42 of STEP. This domain ontology formalises various aspects of digital
shapes and boundary representation of the geometry.

Ferreira da Silva [2007] defined and developed a tool to convert EXPRESS representations
to OWL. OWL is used here to find semantic correspondences between heterogeneous resources.
These resources are converted to OWL in order to take advantage of the reasoning capabilities.

However STEP has some limitations, even for product data exchange. STEP does not represent
the semantic and the design intent during the design of a product. But today, most CAD software
are feature based, i.e., the construction history of CAD model is stored. This history is lost when
using the STEP data exchange format. Abdul-Ghafour [2009] proposed an ontology-based
approach for product data exchange. This approach resorts to an OWL representation that also
represents design intents of the designers through the representation of the features used during
the design. The proposed ontology is called Common Design Features Ontology.

2.5 Chapter summary

Nowadays computers are used to store and manipulate knowledge. Knowledge has to be represented
in a formal way in order to allow computers to understand and to process it. This is the objective
of the Semantic Web.

The Semantic Web is an extension of the current Web in which the information is given in
a machine-understandable and well-defined meaning. It is composed of several standards and

∼ 43 ∼

CHAPTER 2. KNOWLEDGE REPRESENTATION

languages that allow to structure the knowledge. The most recent Semantic Web language is the
Web Ontology Language. The Web Ontology Language is a W3C standard designed to represent
ontologies in a formal way. It also allows reasoning thanks to Description Logics, on which the
Web Ontology Language is based. Reasoning allows the discovery of new knowledge, and the
classification and the consistency checking of the ontology.

Ontologies allow to define a domain by defining concepts and relations of this domain. They aim
at reusing the knowledge, facilitating communication and interoperability. Hence an ontology is the
result of a consensus. There are various types of ontologies, such as upper ontologies that gathers
high level concepts or application ontologies that provide a specific definition for an application in
a domain. The design of ontologies is a complex task. For this purpose several methodologies have
been developed in order to define, to design and to maintain ontologies. Ontologies are nowadays
used in numerous domains like medicine, artificial intelligence or product design.

∼ 44 ∼

Chapter 3

Decision Support in Collaborative

Environments

Contents

3.1 Computer supported concurrent engineering 46

3.2 Decision making process support . 47

3.2.1 Definition . 48

3.2.2 Group decision support systems . 49

3.2.3 Design rationale . 50

3.2.3.1 Frameworks . 50

3.2.3.2 Limitations . 51

3.3 Chapter summary . 51

∼ 45 ∼

CHAPTER 3. DECISION SUPPORT IN COLLABORATIVE ENVIRONMENTS

3.1 Computer supported concurrent engineering

Concurrent Engineering (CE) has been defined by Pennell et al. [1989] as “a systematic approach
to the integrated, concurrent design of products and their related processes, including, manufac-
turing and support. This approach is intended to cause the developers from the very outset to
consider all elements of the product life cycle, from conception to disposal, including cost, sched-
ule, quality and user requirements.” CE involves many persons or teams, usually from various
disciplines, which collaborate to reach a common goal. The particularity of CE is that tasks are
processed simultaneously.

The life cycle of industrial products is complex. Usually, it involves many persons with different
knowledge and expertises engaged in several activities for several years. Moreover these resources
can be located at different places. Collaborative engineering suits well to this schema. The use of
CE results in a reduction of the products’ time-to-market by reducing development cycles duration.
CE has also positive effects on the innovation as well as on product quality [Koufteros et al.,
2002]. In the design domain, collaboration is a key to successfully release a product in time and
with a better quality [Shen et al., 2008].

To efficiently apply CE, people need to cooperate, i.e., work together, exchange information,
etc. Nowadays cooperation at work is supported by computers. The use of computers to support
collaborative activities and their coordination is designated by the term Computer Supported
Cooperative Work (CSCW). CSCW appeared in the 1990’s and has emerged from four main
domains [Villemur, 2006]:

• Social sciences: people organisations, group efficiency. . .
• Artificial intelligence: cognitive sciences, semantic, scheduling. . .
• Human-computer interaction: development of multi users graphical user interface. . .
• Networking and distributed computing: data exchange and transfer, remote storage, dis-

tributed systems. . .

Software is playing an important role to facilitate collaboration. Software systems designed to
support CE are often referenced as collaborative systems. Ellis et al. [1991] defined collabora-
tive systems, also called groupware, as “computer-based systems that support groups of people
engaged in a common task (or goal) and that provide an interface to a shared environment.” The
notions of “common task” and “shared environment” are crucial within his definition. CSCW
systems embed tools that allow synchronous and/or asynchronous interactions between people lo-
cated at the same or different places. These interactions are synthesised by the CSCW matrix,
which is presented in table 3.1. Face-to-face interactions are for instance meeting rooms, in which
a beamer or a digital wall are available. Asynchronous interactions are continuous tasks, which are
supported via control version system, project workspace or bulletin board system. Synchronous
distributed interaction are video conference, telephone meeting, shared whiteboard, collaborative
editing tools. . . Asynchronous distributed interaction would be blackboards or e-mails. A compre-
hensive CSCW system should address all of the quadrants presented in the table 3.1.

Concurrent engineering has been the subject of many research activities [Ghodous et al., 2003;
Ghodous and Vandorpe, 2000; Sriram, 2002] that have resulted into different platforms em-
bedding several concepts, including data management and data exchange. The following solutions
are available for data communication during life cycle and application integration: data exchange
and data sharing. In data exchange, each participant builds his model independently, which will
then be exchanged thanks to standard formats and communication protocols. A well known col-
laborative engineering project using the data exchange schema is SHADE (SHAred Dependency

Table 3.1 – CSCW 2x2 matrix.

Same time Different time
Same place Face-to-face interaction Asynchronous interaction

Different places Synchronous distributed interaction Asynchronous distributed interaction

∼ 46 ∼

3.2. DECISION MAKING PROCESS SUPPORT

Figure 3.1 – Example of collaborative architecture based on Web Services using a blackboard as
central repository [Kuhn et al., 2008].

Engineering) [Olsen et al., 1995; Tenenbaum et al., 1993]. In the case of data sharing, a common
repository is used to store and share the design solutions. This repository is divided into several
areas and is accessible by to the participants. An example of a project using data sharing is DICE
[Sriram, 2002], which was developed at the MIT.

The current trend heads towards data sharing with a central repository as it reduces problems
such as data consistency and complexity of the design process [Ghodous et al., 2003]. To allow any
system to access these data, a platform independent protocol is needed. The most recent protocols
are oriented towards the Web technologies for a better interoperability between heterogeneous
systems [Dustdar et al., 2004; Hu et al., 2010; Kuhn et al., 2008; Lima Dutra et al., 2010].

Since the beginning of the decade, Web Services (WS) [Alonso et al., 2004; Web Services
Activity, 2002] are more and more used, especially by businesses, thanks to the availability of
standards like the Simple Object Access Protocol (SOAP), the Web Services Description Language
(WSDL) and the Universal Description Discovery and Integration (UDDI). These standards enable
great interoperability as SOAP and WSDL are XML-based formats. W3C defines a Web Service
as “a software system designed to support interoperable Machine to Machine interaction over a
network.” Web Services are especially used in Service-Oriented Architectures (SOA) where they
are loosely coupled and reusable. They provide very attractive characteristics for concurrent engi-
neering like their interoperability based on Web standards and their distributed architecture over
the network. Figure 3.1 presents an architecture of a Web Services-based collaborative platform in
which several stakeholders access the central repository through Web Services.

Concurrent engineering addresses all steps of product development. In the scope of this work,
the decision process and how computer can support the collaboration within this process are more
deeply studied.

3.2 Decision making process support

Decision support and design rationale are research fields that have been investigated for decades.
They aim at supporting decision making activities while keeping the path of the decisions, their
argumentation and alternatives through the design process. The most significant frameworks for
this work will be presented.

∼ 47 ∼

CHAPTER 3. DECISION SUPPORT IN COLLABORATIVE ENVIRONMENTS

3.2.1 Definition

Decision making is the process of making a choice. The evolution of a product design is composed
of a succession of design choices (see figure 3.2). At each step several solutions are possible and the
best of them has to be chosen according to given requirements and constraints in order to create a
high quality and/or low cost product. This goes by several decisions that have an impact on the
final product.

Problem
statement

Product

Design option

Design decision

Figure 3.2 – Evolution of the design path according to the design decisions.

A decision making process can be used for many purposes like the choice of the material for
a part as well as the selection of the expert that will provide an analysis report. The process of
making a decision can be decomposed into several steps. Simon [1977] stated that the decision
process is composed of three main stages:

1. The analysis of the problem (gather facts): intelligence stage.
2. The generation of solutions and alternatives: design stage.
3. Make decisions and implement: choice stage.

Bohanec [2001] proposed a more comprehensive list of actions composing the decision making
process:

1. Assessing the problem.
2. Collecting and verifying information.
3. Identifying the alternatives.
4. Anticipating the consequences of the decisions.
5. Making the choice using sound and logical judgement based on available information.
6. Informing others of decision and rationale.
7. Evaluating the situation.

Before making the choices, the possible consequences have to be measured. Then, once the decision
has been taken, it has to be communicated to concerned peoples and the new situation has to be
evaluated.

The decision making process can be enhanced by using information systems. Decision support
(DS) aims at helping people in making decisions by using computer-based systems [Bohanec,
2001]. DS overlaps various disciplines like:

Operations research, which aims at finding optimal solutions by exploring the solutions space. It
includes methods like combinatorial optimisation, Markov analysis, linear programming, etc.

Decision analysis, which includes decision trees, influence diagrams, etc.

Decisions support systems, which help decision makers to use data and models. It includes expert
systems, Online Analytical Processing (OLAP) and other business intelligence tools. Decision
support systems are already used for various tasks such as to design processes [Zha et al.,
2008] or to plan processes [Chitta et al., 2008].

Data warehouse, are repositories containing multiple heterogeneous data sources. It allows to
visualise data from different angles.

Groups decision support, which gather collaborative technologies. In the scope of a collaborative
environment, the interest was oriented towards group decision support systems.

∼ 48 ∼

3.2. DECISION MAKING PROCESS SUPPORT

3.2.2 Group decision support systems

The decision process may involve several viewpoints and thus lead to conflicts between stakeholders.
To solve these conflicts the best solution is negotiation. Several groups decision methods are
available [Alexander, 2002].

Nominal group technique consists in the notation of the individual ideas on a papers by each
participant. Then the ideas are all gathered on a whiteboard. Once all ideas are present, the
discussion can start. At the end each participant votes on each idea.

Delphi technique is like the nominal group technique but uses a survey tool. The participants do
not meet. It is an adequate solution for distributed asynchronous decision process.

Arbitration resorts to an outside arbitrator who will select the alternative he deems most appro-
priate in case no consensus have been found.

Issue-based information system is an argumentation-based framework for problem solving, in which
multiple stakeholders can participate.

The Issue-Based Information System (IBIS) [Kunz and Rittel, 1970] is one of the most in-
teresting group decision support systems. IBIS are “meant to support coordination and planning
of political decision processes. They guides the identification, structuring, and settling of issues
raised by problem-solving groups, and provides information pertinent to the discourse” [Kunz and
Rittel, 1970]. The IBIS was defined to find solutions to planning/organisational “wicked” prob-
lems. Rittel and Webber [1973] introduces “wicked” problems and specified ten characteristics
that describe them:

1. There is no definitive formulation of a wicked problem.
2. Wicked problems have no stopping rules.
3. Solution to wicked problem are not true-false, but good-badly.
4. There is no immediate and no ultimate test of a solution to a wicked problem.
5. Every solution to a wicked problem is a “one-shot operation” because there is no opportunity

to learn by trial-and-error, every attempt counts significantly.
6. Wicked problems do not have an enumerable (or an exhaustively describable) set of potential

solutions, nor is there a well-described set of permissible operations that may be incorporated
into the plan.

7. Every wicked problem is essentially unique.
8. Every wicked problem can be considered to be a symptom of another problem.
9. The existence of a discrepancy representing a wicked problem can be explained in numerous

ways. The choice of explanation determines the nature of the problem’s resolution.
10. The planner has no right to be wrong.

The search of solutions goes by a discussion between different stakeholders, who bring their exper-
tise and point of view on the resolution of the issues. The IBIS is an argumentation framework. It
supports distributed asynchronous decision processes and proposes a structure to the discourse that
helps the communication. It also allows to capture the different aspects of the problem from the
different participants’ points of view [Ebadi et al., 2009]. The structure of the IBIS is composed
of three main elements:

“Issue” raises a problem in form of a question. Any element of the IBIS can raise an issue/question.

“Position” is a possible solution or a part of a solution addressing an issue.

“Argument” is a statement that supports or rejects a position.

The result of the argumentation is the choice of one or several positions that will become the
solutions to the related problem. Figure 3.3 illustrates the IBIS structure with the presented
elements and their connections.

IBIS served as basis for several derivatives such as the Questions, Options and Criteria (QOC)
[MacLean et al., 1991]. Arndt [2007] also proposed an extension that is an ontology-based

∼ 49 ∼

CHAPTER 3. DECISION SUPPORT IN COLLABORATIVE ENVIRONMENTS

issue

position

argument pro issue

questions,

is suggested by

supports

argument against issue

questions,

is suggested byobjects to

issue

questions,

is suggested by

responds to

issue

generalise, spe-

cialise, questions

Figure 3.3 – IBIS core structure showing relations between elements.

method for decision support for product development. He proposed a knowledge model that is an
extension of the IBIS framework with an ontological representation. Some applications are also
presented such as for technology selection or process definition. A graphical version tool of the
IBIS was proposed by Conklin and Begeman [1988]. This tool was designed according to three
directives:

• provide support to computer-mediated collaborative work with remote participants.
• have a large information base that can be navigated easily.
• explore and capture the design history: decisions, rejections, trade-off analysis, etc. This can

be summarised as the rationale behind the design.

3.2.3 Design rationale

The aim of design Rationale (DR) [Moran and Carroll, 1996] is to represent and store the
argumentations, trade-offs, alternatives, choices (rejected or not), etc. behind design choices. It
provides an explanation of the reasons that have led to a particular design. In this way it is possible
to respond to what was thought when a decision has been taken. DR provides documentation on
past decision processes and design intents.

3.2.3.1 Frameworks

The first DR framework was the IBIS from Kunz and Rittel [1970]. However they did not
mention the “design rationale” term in their contribution. The design rationale aspects of IBIS has
been brought forward in a paper from Conklin and Begeman [1988] in which they presented
a graphical IBIS representation tool. The natural argumentation process proposed by the IBIS
stores many information regarding the decision process and its rationale.

Another example of DR framework is the Distributed and Integrated Collaborative Engineering
Design (DICE) [Sriram, 2002]. DICE is a collaborative platform project that includes design
rationale aspects with the Design Recommendation-Intent Model (DRIM) [Pena-Mora et al.,
1993]. DRIM was also inspired by the IBIS framework. It is mainly composed of “intents” that
refer to what is wanted to achieve, “recommendations” that satisfy the intent, “justifications” that
explain why a recommendation satisfies the intent, and the “context,” which is the information
generated during the design process.

The Decision Representation Language (DRL) [Lee, 1991] is also an IBIS-based DR tool. It
uses the structure of the IBIS but extends its possibilities and provides a semi-formal representation
and richer vocabulary. The main additions concern the relations between the various elements. For
instance it is possible to create a hierarchy by defining relations like Is-A-Part-Of(Object, Object) of
Is-A-Kind-Of(Object, Object). It also makes the distinction between issues and questions whereas

∼ 50 ∼

3.3. CHAPTER SUMMARY

no differentiation is made between them in the IBIS. DRL is used within the SIBYL system that
aims at supporting the decision making.

InfoRat [Burge and Brown, 2000] (Inference over Rationale) supports a designer by check-
ing the consistency and completeness of the DR. The completeness checks that the structure is
complete, for example, there are no existing decisions that have no arguments in their favour. It
also evaluates the choices by checking the selected decision has more arguments in its favour than
against it. InfoRat uses a subset of the elements present in DRL. One drawback presented by the
authors of InfoRat is that the acquisition of DR has to be done manually.

3.2.3.2 Limitations

Regli et al. [2000] pointed out in their survey that few DR tools are used in the industry. They
try to understand the reasons and the obstacles. They pointed out issues on three main aspects,
which are also present in knowledge management.

The first issues are related to the capture of the rationale. DR should few interfere with
engineers’ main tasks, e.g., it should not change its habits and the engineers should not feel having
additional work to do. Otherwise they will not find the time to use it. Hence an automatic
capture approach would reduce the necessity to manually add the rationale in the system. Having
a human centred approach will also have a positive impact on the system adoption. Furthermore
DR acquisition is application dependent, thus providing generic methods is not efficient and need
to be specialised in order to fit the application.

The second issue comes from the knowledge representation of DR. In IBIS-based systems,
arguments are often represented in natural language, which reduces the computer processing capa-
bilities. The future of DR systems is the representation of data in a computer understandable way.
This will allow computers to process the information and reason about the knowledge. Furthermore
the systems should be also to handle formal and informal knowledge.

Finally the DR system should provide an efficient way to retrieve captured information. Ra-
tionale retrieval is a complex task when the number of arguments in the system becomes large.
One can rapidly get lost in the cross-references. Users need synoptic overviews and efficient query
languages to access the data.

For these reasons, there are still reluctances from industries towards DR systems even if the
theoretical benefits are well stated. Many research work addressed and proposed DR system but
many improvements in the knowledge acquisition, representation, and retrieval are still needed
before a widespread acceptance by the industry.

3.3 Chapter summary

Collaborative design has become the standard approach for the conception of products. This
approach involves several stakeholders, having various expertises and viewpoints, to cooperate. It
allows to shorten time-to-market, to lower product design costs, and to enhance the product quality.
For this purpose collaborative platforms have been developed to support concurrent design.

The design is a succession of choices and decisions about the product. Decision making can
become complex due to the heterogeneity of the involved experts’ domains. In order to facilitate
the process of decision making, several methods and tools have been developed. The methods allow
each participant to propose his ideas and to support or to reject others. This approach helps to
reach a consensus on an issue about a product and its design. An example of approach would be
the Issue-Based Information System framework.

The decision making process is rich in information. A database containing the reasons behind
design choices can be build by storing the proposed solutions and arguments. Thanks to design
rationale the evolution of the design and decision can be documented. However design rationale
has difficulties to be accepted by the industry. It currently interferes to much with the design
process.

∼ 51 ∼

Chapter 4

Dependencies Management

Contents

4.1 Graphs theory . 54

4.2 Dependency graphs . 55

4.2.1 Definition . 55

4.2.2 Cycles . 56

4.3 Dependency management . 57

4.3.1 Cycles management . 57

4.3.2 Scheduling . 58

4.3.3 Graph visualisation . 59

4.4 Chapter summary . 60

∼ 53 ∼

CHAPTER 4. DEPENDENCIES MANAGEMENT

4.1 Graphs theory

The graph theory is the study of graphs [Gross and Yellen, 2003]. A graph is a mathematical
structure that allows to represent a set of objects and the relations between these objects. The
objects in a graph are represented by nodes, also called vertices or points. Nodes can be represented
graphically by points, by circles containing a label, etc. Relations between nodes are called edges
or lines. An edge connects two nodes and can be directed or undirected. A directed edge has
a direction, i.e., the connected nodes are ordered. It is not the case for undirected edges, e.g.,
considering two nodes a and b, a directed edge connecting a and b is different as a directed edge
connecting b and a. This type of relation is usually represented by an arrow. In the case of an
undirected edge, the same edge connects a to b and b to a. This relation is represented by a line.
An edge can also create a loop when a node is connected to itself. A graph composed of directed
edges is called a directed graph (or digraph) whereas a graph containing undirected edges is called
an undirected graph.

Figure 4.1 shows the representation of an undirected and a directed graph. The undirected
graph of figure 4.1(a) illustrates friendship between some people. The use of undirected edges
is relevant as the friendship can be considered as a symmetric relation. Figure 4.1(b) represents
members of a research team, in which some persons are supervised. Here the relation is asymmetric.

A graph can be mathematical defined by G = (V, E) such as:

V is a set of vertices, V = {v1, . . . , vn} with n = |G|, which is the order (number of vertices) of
the graph.

E is a set of edges, E = {e1, . . . , em} with m = ||G||, which is the number of edges of the graph.
An edge e is defied as e = (u, v) for a directed edge and e = {u, v} for an undirected edge,
where u, v ∈ V . To simplify the notation, an edge can also be represented by uv.

A path P is a non-empty graph that connects two vertices v0 and vk, such as P = (V, E),
with V = {v1, v2, . . . , vk} and E = {v0v1, v1v2, . . . , vk−1vk}. The length of the path is denoted k.
A path P can be referred to by its sequence of vertices, e.g., P = v0v1 . . . vk, or by calling P as
the path from v0 to vk. Some basic but useful algorithms to determine paths in a graph are the
Depth-first search (DFS) and the Breadth-first search [Knuth, 1997]. They can be used to find a
path between two nodes but also to find all nodes reachable from a vertex. Furthermore they have
many other applications in other graph related algorithms. The DFS algorithm (see algorithm
4.1) allows to determine if a nodes is reachable from another node in a graph. It uses a stack to
store nodes that have to be visited. Visited nodes are marked in order to avoid to visit them again
in the case of a cyclic graph. The algorithm finishes when there is no more nodes to visit. The
Breadth-first search uses the same algorithm except that it uses a queue instead of a stack. Hence
in the algorithm, as an ordered list is used as a stack, the Queue function of line 5, which takes the
last element of the list (the most recently added) has to be replaced by the Head function, which
takes the first element of the list.

Thomas

Michael Ogier

Sophie

MariePierre

(a) Undirected graph presenting people as node and
friendship as relation.

Romain

Céline Frédéric

Benjamin

LaurentJeff

(b) Directed graph representing members of a team
with supervisor-of relations.

Figure 4.1 – Example of directed and undirected graphs.

∼ 54 ∼

4.2. DEPENDENCY GRAPHS

Algorithm 4.1: Depth-first search
Result: True if the node is reachable from the starting node, false otherwise.

Input: A graph G (cyclic or acyclic, directed or non-directed).
Input: A node r ∈ G, which is the starting point for the search.
Input: A node f , which is searched.
Output: True or False.

begin1

list← ∅2

Append (r, list)3

while list 6= ∅ do4

currentNode← Queue(list)5

Mark (currentNode)6

if currentNode = f then7

return True8

else9

forall Unmarked child s of currentNode do10

Append (s, list)11

return False12

end13

Graph theory addresses various aspects of graphs, such as graph computer representation,
graph types, graph colouring, trees and graph dedicated algorithms [Diestel, 2005], etc. Graphs
are used in numerous domains and can represent various objects, relations and configurations. A
well known example of graph is the Web, in which resources are the nodes and hyperref links are
directed vertices [Broder et al., 2000]. In the scope of this work, graphs are used in order to
represent dependencies. This kind of graphs is called dependency graph.

4.2 Dependency graphs

4.2.1 Definition

Dependency graphs (DG) are directed graphs used to represent dependencies between objects, for
instance, an element A receives power from an element B. In a general context, DG are used for
scheduling purposes like in:

Software compilation wherein they are used to compute the order in which the documents have to
be compiled. They are also used by the compiler to optimise and improve the performance of
programs by analysing instruction parallelism, pipelining, and scheduling [Heffernan and
Wilken, 2005]. DG can also be used in order to remove dead code, which is code that can
not be reach or that affects a dead variable, by looking at the inputs and outputs of the
vertices that represent instructions.

Formula update and evaluation in spreadsheets resort to DG in order to compute the order in
which the cells have to be updated.

Dependencies management within various fields like package management or visualisation [Peur-
riere, 2006].

An example, based on the equation system 4.1, is proposed in order to illustrate dependency
graphs. This equation system generates dependencies between the different equations and variables.
The dependencies between variables can be represented with a dependency graph (see figure 4.2).
Each node represents a variable and each arrow has to be understood as the “source is dependent

∼ 55 ∼

CHAPTER 4. DEPENDENCIES MANAGEMENT

on the target,” e.g., A depends on C and D. Nodes without outgoing edges do not have any
dependencies.

A = C + D

B = A× F

C = F + π

D = E ÷ 3

E = x + 1

F = 42

(4.1)

A

B C

D

EF

Figure 4.2 – Dependency graph between variables from equation set 4.1.

In this example the dependency graph addresses equations, but the same representation can
be used for files, data, processes. . . This equation system and its corresponding graph will serve as
example in the rest of this chapter.

4.2.2 Cycles

When addressing dependencies, one special case has to be mentioned: the cycles. There is a cycle
in a graph when there exists a path that starts and ends at the same node. Graphs with at least
one cycle are referred to as cyclic graph, those without cycle as acyclic graphs. To illustrate cycles,
suppose that equation set 4.1 is modified by replacing the variant x by B. This results in a new
dependency from E towards B. A cycle is thus created as shown by the red dashed arrows in the
updated graph shown in figure 4.3. This case is problematic because in the case of an equation
system, it becomes impossible to solve it without setting the value of a variable involved in the
cycle because by transitivity, variables A, B, D, E are dependent on each other, e.g., A needs E to
be solved and E needs the value of A. Several algorithms are available to manipulate DG, such as
to detect cycles.

A

B C

D

EF

Figure 4.3 – Cycle in a graph. The dashed red arrows from a cycle.

∼ 56 ∼

4.3. DEPENDENCY MANAGEMENT

4.3 Dependency management

Most of the existing algorithms that address directed graph can be applied to DG. Some of them,
interesting for this work, will be presented.

4.3.1 Cycles management

As said previously, cycles can be problematic within DG, especially when it concerns dependencies
solving. There are two main types of approaches to detect cycles, one works on the graph, the
seconds works on a sequence of node that is obtained by the traversal of the graph.

In order to detect a sequence in a directed cyclic graph, a coloured DFS can be used [Knuth,
1998]. It uses three colours, usually white, grey and black. At the beginning all nodes are coloured
in white. Then a DFS is successively launched on whites nodes. When a node is encountered
during a DFS, it is coloured in grey. It will become black when all its descendants nodes have
been visited. A cycle is detected in the graph when a grey node is reached. The algorithm stops
when all nodes are coloured in black. For instance, this algorithm has been used to dynamically
avoid deadlocks in computer software by finding cycles in the resource allocation graph [Jula and
Candea, 2008].

The second presented approach allows to detect cycles in a sequence. The graph presented in
figure 4.2 can be used to generate various sequences depending on the starting node and the taken
path:

B, F

A, C, F

B, A, D, E, B, A, D, E, B, A (4.2)

When having a closer look at the sequence 4.2, a cycle can be identified: B, A, D, E, B, A, D, E, B, A.
In this case, the cycle can be exited by going from B to F .

An algorithm has been proposed by Floyd [1967] called the Floyd’s cycle-finding algorithm
or the “tortoise and the hare.” This algorithm allows to find cycles in sequences generated by a
function f : S 7→ S where S is a finite set of cardinality n. The sequence is constructed such as
the element xi+1 = f(xi). This algorithm resorts to only two pointers on the sequence called the
“tortoise” and the “hare.” The tortoise and hare pointers are respectively positioned on xi and
x2i, with i is the position in the sequence (i > 0). At the beginning i = 1 and at each step i is
increased by one. A cycle is detected when xi = x2i. The space complexity is constant (O(1)) as
only two pointers are used. The obtained sequence can be represented as a graph which looks like
the Greek letter ρ.

This algorithm can be applied to other graphs when generating the sequence of visited nodes
with a deterministic algorithm, which is the equivalent of the function f . In this case the sequence
will loop or end at a node without outbound edges. Now suppose that the sequence 4.2 has been
obtained by visiting the nodes starting from B and favouring the edges BA over BF and AD over
AC. When applying Floyd’s cycle-finding algorithm on the resulting sequence, a cycle is detected
for i = 4 as x4 = x8 = B.

In many cases, the cycles in a graph have to be removed in order to have an acyclic directed
graph. To remove a cycle, it is possible to remove an edge or a node involved in the cycle. In a
cyclic graph, the feedback arc/edge set is a set of vertices that contains at least one edge involved in
each cycle. Hence the removal of the edges present in this set results in an acyclic directed graph.
Defining the minimal feedback arc set is a NP-complete problem [Alon, 2006]. The feedback
vertex set is the equivalent set of feedback arc set but for vertices. It is also NP-complete [Festa
et al., 1999]. By removing edges of the feedback arc set or nodes from the feedback vertex set, a
directed acyclic graph is obtained.

∼ 57 ∼

CHAPTER 4. DEPENDENCIES MANAGEMENT

4.3.2 Scheduling

Dependency graphs can be used in order to represent and to schedule tasks, i.e., provide the order
in which the tasks have to be achieved to ensure that all dependencies of a tasks are completed
before beginning this tasks. That is when precedence constraints are present and a legal ordering
to performs tasks should be found. A task can be an update, a calculation, a project, etc.

The topological sort algorithm is a sort that linearly orders the nodes of an acyclic directed
graph. The result of a topological sort of a graph G is the linear ordering of vertices in V , such
as for all edges (u, v) ∈ E, u appears before v in the sequence. To illustrate this sort, it will be
applied on the graph representing the dependencies in equation system 4.1 (see figure 4.2). The
resulting ordered sequence, which is shown in the figure 4.4, is B, A, D, E, C, F . One can clearly
see that the disposition of the nodes has changed and they are positioned linearly and that all
the edges are now oriented from the left to the right. The topological sort does not guarantee the
uniqueness of the solution as other sequences are also valid results. For instances B, A, C, F, D, E

and B, A, C, D, E, F are both equivalent with the previous sequence.

AB CD E F

Figure 4.4 – Result of a topological sort on the dependency graph from figure 4.2.

The order, in which the equations have to be solved, is generated by the topological sort.
However the result has to be reversed to obtain the right order. Equation 4.3 presents the progress
of the resolution according to the reverse topological sort.

F = 42

C = F + π

= 42 + π

E = x + 1

D = E ÷ 3

= (x + 1)÷ 3

A = C + D

= 42 + π + (x + 1)÷ 3

B = A× F

= (42 + π + (x + 1)÷ 3)× 42

(4.3)

A topological sort can be obtained by using different algorithms. A first method to build the
sequence is to iterate on the two steps below until there is no more vertices in the graph [Kahn,
1962]:

1. Append all vertices without inbound edges into the sequence (because they have no depen-
dencies).

2. Remove the added vertices from the graph with their outgoing edges.

A second approach is to resort to a DFS. By appending to the sequence each completely visited
node, a topologically ordered sequence is obtained by taking the reverse of the DFS result.

The topological sort is an efficient tool to oder elements having dependencies between them.
Topological sort is available with a tool called “tsort” on Unix-like platforms and is also used within
compilation tools like Makefile.

∼ 58 ∼

4.3. DEPENDENCY MANAGEMENT

4.3.3 Graph visualisation

Graph visualisation and more especially graph layout is a complex problem combining flavours of
graph theory and computational geometry. The objective is to show a graph in a convenient way
in order to make it readable, easy to understand and to analyse. For this purpose, nodes have to
be placed in a such way that they are well spaced and that the edges cross as few as possible. The
interesting point is that, in some approaches, the layout is computed according to the relations
between the nodes.

A first approach is based on spring forces, also called force directed techniques [Eades, 1984].
The idea consists in forming a mechanical system by replacing the nodes by steel rings and each
edge by a spring. Springs have a defined natural length that will bring closer the connected
nodes. With a friction, the system energy decreases until it reaches a stable state. The resulting
layout from these algorithms is symmetric [Eades and Lin, 2000]. Another similar approach
has been proposed by Fruchterman and Reingold [1991]. Their layout algorithm uses two
principles: 1) vertices connected by an edge should be drawn near each other, and 2) vertices
should not be drawn too close to each other. They used an analogy, in which vertices are atomic
particles or celestial bodies. These bodies exert attractive and repulsive forces to each other, such
that neighbourhood vertices are attracted and all other nodes repel each other. The layout is
obtained when a minimum energy state is found by differential equations solving or a simulation
of the system. Other algorithms exist that use other approaches like the one implemented in a
tool called GIOTTO [Tamassia et al., 1988]. GIOTTO places edges and vertices on a grid by
using an algorithm composed of three phases: planarisation, orthogonalisation, and compaction.
Nevertheless these algorithms address mainly undirected graphs.

A method for drawing directed graphs has been presented by Sugiyama et al. [1981]. Digraphs
can be represented as a hierarchy in order to enhance their representation. The proposed algorithm
creates a hierarchy where nodes are placed into several levels. The algorithm is composed of four
phases:

1. Place the graph nodes in discrete levels according to the relations between nodes.
2. Order nodes within layers to avoid crossing edges.
3. Compute the coordinates of nodes.
4. Draw the hierarchy picture.

This method works with acyclic graphs. In the case of a cyclic graph, the nodes involved in the
cycle are merged and the graph becomes condensed. Some enhancement have been made to handle
cyclic graphs, such as to revere some edges to make it acyclic [Row et al., 1987].

The method from Sugiyama et al. [1981] builds a hierarchy composed of n levels, from a
directed and acyclic graph. The hierarchy is denoted G = (V, E, n, σ), where:

• V is a set of vertices such as V = V1 ∪ V2 ∪ · · · ∪ Vn (Vi ∩ Vj = ∅, i 6= j), where Vi is the set
of vertices of level i and n the height of the hierarchy.
• E is a set of edges, where each edge is unique.
• σ is a set of sequence σi for each Vi. σi is the sequence of vertices within Vi such as σi =

v1, v2, . . . , v|Vi| with |Vi| the number of vertices of Vi.

To create the hierarchy, each directed edge e = (source, target) has to satisfy the following condi-
tion:

e = (vi, vj) ∈ E, vi ∈ Vi and vj ∈ Vj satisfies i < j (4.4)

To illustrate the method, it has been applied to the graph resulting from equation set 4.1. It can
certainly be agreed that the current representation presented in figure 4.2 is not easy to read. The
new layout, which results from the presented algorithm from Sugiyama et al. [1981] is presented
in figure 4.5. It results in a four levels hierarchy. The organisation of the nodes facilitates the
understanding of the graph as the edges are not crossed and the vertices well positioned.

∼ 59 ∼

CHAPTER 4. DEPENDENCIES MANAGEMENT

A

B

CD

E F

Level 1

Level 2

Level 3

Level 4

Figure 4.5 – Four-level hierarchy resulting from the application of Sugiyama et al. [1981]’s graph
layout algorithm on the graph presented in figure 4.2.

4.4 Chapter summary

Graphs are powerful tools to represent objects and their relationships. They are used in numerous
domains and have been the subject of many research works. Thus several algorithms are now
available to handle graphs.

Directed graphs allow to represent dependencies between elements. These graphs, used for
this purpose, are called dependency graphs. Dependency graphs allow to schedule tasks by using
dedicated algorithms like the topological sort. This is particularly useful in domains wherein some
elements have to be processed before others, like in compilation or for the evaluation of formulas.
However to successfully schedule tasks, the graph should not contain any cycles. Cycles can be
detected via coloured depth-first search or by the “tortoise and the hare” algorithms. Then several
solutions are available to remove a cycle. For example it is possible to remove an edge involved in
a cycle or to inverse its direction.

Graph visualisation techniques propose algorithms to make graphs human readable by address-
ing layout issues. Layout algorithms use relations between nodes to efficiently position them. For
instance in force-directed techniques, a node is attracted by its connected nodes whereas it is re-
pulsed by other nodes. Other algorithms use relations to position nodes on levels so that the edges
all go towards the same direction.

∼ 60 ∼

Chapter 5

Knowledge-Based Engineering

Templates

Contents

5.1 Template applications . 62

5.2 Template-based design process . 63

5.3 Template management . 65

5.3.1 Link management . 65

5.3.2 Update management . 66

5.4 Chapter summary . 67

∼ 61 ∼

CHAPTER 5. KNOWLEDGE-BASED ENGINEERING TEMPLATES

5.1 Template applications

Knowledge-based engineering templates were introduced in chapter 1. They aim at storing design
knowledge for later reuse. In this section an overview of several template related research works is
given.

Nowadays customers are in focus of the product design, for instance, regarding the ergonomics
of the products or the customer’s needs. Mass customisation is “the producing goods and services
to meet individual customer’s needs with near mass production efficiency” [Tseng and Jiao,
2007]. The objective of mass customisation is to allow customers to get involved at a stage of the
design or the manufacturing in order to personalise the product. Computers play an important
role to successfully merge mass production and the flexibility of customisation in order to produce
custom output. However the product customisation reduces the productivity of mass production. A
higher level of productivity can be achieved by the use of templates and the enhancement of product
development processes [Cox et al., 2003]. Within product development, CAD templates provide
easily reconfigurable models. According to Cox et al. [2003], their instantiation time averages 3%
of the time needed to create the model. Furthermore the increase of product complexity encourages
the use of reconfigurable models and templates. The time spent in the design of a reconfigurable
model is regained by the reduction of later designs [Cox et al., 2003].

To illustrate that, Siddique and Boddu [2005] proposed a concrete example of mass customi-
sation framework. It allows to tailor products to the customer’s needs by integrating the client into
the design process. This is achieved by the use of parametrised templates. The customer configures
the product model via parameters and the result is shown in real time. They demonstrated the
framework on a bicycle frame customisation example.

Kamrani and Vijayan [2006] proposed a structure for the implementation of template-based
systems. The use of templates associated with computer-aided process planning shows a reduction
of the development time of new products. It also gives the designers a better understanding of the
costs of design changes with respect to the manufacturing.

The main goal of designing templates is to store and reuse knowledge. A key success factor is
to identify and capture the relevant knowledge. Skarka [2007] developed a methodology to con-
struct generative models, e.g., CAD templates. His approach is based on the MOKA methodology
[Stokes, 2001] (see section 1.1.2.4). They designed an OWL ontology for MOKA model records.
The formal knowledge representation is realised within the steps “4. Formalise” and “5. Package”
from MOKA, by using CATIA V5 and its KBE tools. The proposed methodology was developed
in order to propose a knowledge acquisition tool for the design of generative models within CA-
TIA V5. It was developed as at this time, there was no such tool. Regarding knowledge about
templates, Alani [2007] worked on the management of template design knowledge. He proposed a
template-based knowledge system and defined a knowledge model divided into four meta classes:
application, function, element, and process. Within these classes or categories the templates and
their elements are organised. The knowledge model is represented with OWL. It is coupled with
the CAD templates through web technologies like XML and HTML. XML is used to export the
template knowledge. The resulting XML file can then be imported and checked by a knowledge
designer before being committed to the ontology. Knowledge can also be transferred the other way
round, from the ontology to the CAD template via HTML pages. Thus the template can be defined
first in the CAD system or in the ontology. The approach proposed by Alani [2007] requires at
least two domain experts, one for the management of the ontology’s aspects and one for the CAD
system. Furthermore the representation between the both systems (ontology and CAD) needs to
have the same structure in order to be synchronised.

Resorting to knowledge templates has proven to be especially useful when having a large range
of complex products that share components having nearly the same geometry/functionalities. This
is the case within the aerospace and automotive industries. La Rocca and van Tooren [2005]
introduced High Level Primitives (HLP). HLP are parametric models that interact with the design
process by modifying inputs values. The definition they gave is “generic entities with a similar
functionality, shape and behaviour.” HLP should be able to fulfil functionalities such as generate
lift, hold a metal sheet or allow a person to reach a platform. Their definition is very close to the

∼ 62 ∼

5.2. TEMPLATE-BASED DESIGN PROCESS

Figure 5.1 – High level primitive modelling approach that allows to generate variants of a model
[La Rocca and van Tooren, 2005].

definition presented in this work. They present HLP as an efficient way to virtually manipulate
ideas and create rapidly various design solutions. HLP are defined in a parametric way so they
can morph themselves according to given inputs. Figure 5.1 shows their design approach with
HLP. With a reduced set of HLP (wing-trunk, fuselage-trunk, engine part and connection element)
they can generate a broad range of aircraft configurations. By tuning the parameters, the design
can be modified, the number of internal elements (spars, ribs, etc.) adapted or the topology
changed. These HLP can be generated and optimised via the Design and Engineering Engine
(DEE) [La Rocca and van Tooren, 2009; van Tooren and Rocca, 2008]. The DEE is
presented in figure 5.2. The main component is the Multi-Model Generator (MMG). It is a KBE
application that allows to generate several models for various analyses and computation systems.
The MMG receives its inputs from the initiator, which computes them from some requirements
given by the user. The outputs of the MMG are transferred to the “converger and evaluator.”
These outputs are the results of the various analyses on the generated models. The results are
checked to see if the generated design has converged. Otherwise new values are given to the MMG
and the loop goes on till it converges. Finally the converged solution is checked to see if it meets
the objectives. If this is the case, an optimised design solution according to the requirements is
achieved, otherwise it starts again with new initial parameters.

5.2 Template-based design process

The use of knowledge templates influences the design of products. In the previous section, the
Design and Engineering Engine that uses templates to design aircrafts bodies has been presented.
In this scope templates are used as building blocks that can take various shapes due to their KBE
parametric definition. These building blocks can then be combined together in order to generate
different aircraft configurations [La Rocca and van Tooren, 2005]. This allows to test rapidly
several design variants in the early design phases. The generated variants can be optimised via
Multidisciplinary Design Optimisation (MDO). MDO is a promising methodology in the scope
of complex product design. It aims at solving design problems involving several disciplines by
resorting to optimisation techniques. However this approach lacks of high-fidelity analysis tools
in order to reach a high level of automation [La Rocca and van Tooren, 2009]. Through
the currently developed DEE and the use of High Level Primitives (templates) they address the
automation issue with various analysis tools. The KBE templates are used to capture and to record
the knowledge to process and generate the geometry.

KBE templates and template-based construction processes have been research topics at Daimler
AG, an automotive company. The knowledge templates are integrated into the design process
[Arndt et al., 2006; Katzenbach et al., 2007]. Template products as well as template features

∼ 63 ∼

CHAPTER 5. KNOWLEDGE-BASED ENGINEERING TEMPLATES

Figure 5.2 – Paradigm of the Design and Engineering Engine with the Multi-Model Generator
[La Rocca and van Tooren, 2009].

Figure 5.3 – Template-based V-model design process at Daimler AG [Katzenbach et al., 2007].

∼ 64 ∼

5.3. TEMPLATE MANAGEMENT

are proposed to designers through libraries or catalogues [Mbang, 2008]. The design process using
templates follows a V-model as presented in figure 5.3. The V-model starts from layout definition
consisting of the basic structure, e.g., body-in-white of a car and powertrain. It is then refined
to provide details via the instantiation of templates, first assembly templates, then part templates
and finally feature templates for the detailing phase. Then the various parts are assembled to reach
the final design. During the V process, study templates are applied at several levels to evaluate
the design. Templates allow to standardise the design concepts and share them between several
products.

A study on the human factors regarding template use has been conducted by Katzenbach
et al. [2007] at Daimler AG. The objective was to evaluate the human factor in the adoption of
templates aiming at the standardisation of the process and to improve how templates are designed
in order to facilitate its acceptance. The study consisted in evaluating and analysing two teams
that had to realise two design tasks of different complexity by using templates. The outcome was
that the use of templates brings benefits in the case of complex design tasks. The resulting design
was better structured and was accomplished in a shorter time. The use of templates for the less
complex task resulted in a longer design. The reason behind is that well structuring the model
has a weaker impact and it takes more time to handle the templates than to structure the model’s
elements. The engineering design experience also influences the perception and the use of templates
because of their complexity. The study also pointed out the need for efficient visualisation tools
for relations and interdependencies between construction elements.

Mbang [2008] predicted that in the future engineers will not design products from scratch any-
more. Instead they will used templates that are pre-designed elements that can adapt themselves
to various contexts. Templates can have several levels of details to provide more or less flexibility.
Features can then be used as construction elements to provide the details. He also proposed an
approach to integrate Product, Process and Resources. This is achieved by using templates. In his
approach the templates are products or features that fulfil one or several functions. The process
aspects describes how the template will be manufactured. The resources aspect lists the necessary
tools and materials to realise the feature.

5.3 Template management

Knowledge templates are KBE applications that typically evolve continuously. This implies to
manage the versioning, the configurations of the templates, and other Product Data Management
issues. Furthermore a template can be composed of many elements that are interconnected. This
results in tight relationships that have also to be handled.

The use of templates results in the creation of several instances located in different contexts.
When the inputs of a template instance are set, it creates new relations between the instance and
elements present in the context. The management of the resulting links constitutes another highly
important aspect of template management [Katzenbach et al., 2007].

5.3.1 Link management

The use of KBE results in the creation of many relations between parameters, formulas, rules,
etc. The complexity increases when gathering several KBE applications. For instance more than
2500 links are present in a body-in-white template structure [Katzenbach et al., 2007]. Links
are tightly related to the structure of the application. In the generic structure of a template
presented in figure 1.5 on page 14, the link flow is well organised. The structure is clear and easy
to understand. The link management allows to divide complex structures into several template-
based structures, which can thereafter be reused in a more convenient way [Katzenbach et al.,
2007].

A result from the study of Katzenbach et al. [2007] on psychological human aspects is that
the complexity of the problem increases when the relations between elements are not easily ac-
cessible. Lukibanov [2005] suggested the use of ontologies to explicitly represent templates and

∼ 65 ∼

CHAPTER 5. KNOWLEDGE-BASED ENGINEERING TEMPLATES

their relations in order to facilitate the management of a large number of templates. In this way
engineers can visualise relations and input parameters of templates without resorting to a CAD
system. Katzenbach et al. [2007] pointed out that in the CATIA V5 CAD system, all links are
not directly visible and that there is a lack of link overview tools.

As previously stated, links are related to the structure of the templates and assemblies. The
creation of a link often corresponds to a design intent and thus has a meaning. Arndt [2007]
proposed a method using an ontology-based knowledge model in order to support product decision
making. In one of his applications, he specialised the knowledge model in order to integrate the
template link flow aspects, which are relations between templates and other documents. These
relations can also be documented with the design justifications. The aim is to provide information
to CAD template designers as well as to CAD template users and thus to allow to faster reach a
high degree of products maturity.

From the several works and studies presented above, it can be asserted that the focus on
link management aspects is strong. The number of links can quickly reach several thousands
in complex scenarios involving several knowledge templates and KBE elements. It results in a
relationship network that is complex to understand without the help of suitable tools. The relations
represent the structure of the model. Links visualisation is helpful to rapidly analyse the structure
of a template or the context of an instance. The relations generate dependencies between the
involved elements. When a template is modified, the data flow resulting from the modifications is
transmitted through the links. Hence the changes are likely to impact other elements. This is why
the update of templates has to be managed to avoid errors.

5.3.2 Update management

Templates are modified during their life cycle (see figure 1.7 at page 15). These modifications will
impact linked documents. However the update of the linked documents does not always consist in
the update of parameter values, but also in the modification of the geometry.

In some cases, the new template version resulting from the update has to be distributed, i.e.,
its instances should be updated too in order to benefit from the changes. The distribution of the
latest template versions would also reduce the number of different versions of the template that are
in use, which would facilitate the maintenance. However the update of a template instance may
impact the context wherein it is used, through the modification of the template inputs/outputs.
This aspect should also be taken into account when updating a template instance.

The update management addresses many issues. As mentioned previously, the number of
parameters and links within large KBE assemblies or templates can easily reach several thousands.
Template instances are subject to the same behaviour. Thus the maintenance of the whole is a
challenging task due to this large amount of data.

Few research work study template update. Lukibanov [2005] addressed the problem of tem-
plate management and more especially the update. He focused his work on the relations and links
between templates. His objective was to provide a tool that would assist engineers in the template
management. The approach he proposed was based on ontologies and focussed on the CATIA V5
CAD system. The ontologies allow to represent various kinds of relations that can exist within
and between templates. Thanks to the ontologies, relations can be managed outside the CAD
system for more flexibility, e.g., integrated within other tools, for example, in order to analyse
them. For that purpose he developed a tool that analyses CATIA V5 templates and maps them
to the knowledge model defined in the ontology. The input parameters and relations can then be
visualised and analysed in order to validate the template changes. He also proposed a business
process for template update, which is presented in figure 5.4. The first step of the process consists
in the development of the template. Then a loop starts, in which the engineer in charge of tem-
plate updates checks the dependencies by visualising the data in the ontology and then modifies
dependent templates as necessary. Once all the updates are completed, the ontology has to be
updated in order to include the recent modifications. The dependencies are then computed within
the ontology. This is a semi-automated task in which the engineers can resort to OntoWorks, an

∼ 66 ∼

5.4. CHAPTER SUMMARY

internal tool from Daimler AG based on Protégé 2000, in order to fix the mapping of parameters
in case of changed parameter name.

Figure 5.4 – Business process for template update proposed by Lukibanov [2005].

The approach proposed by Lukibanov [2005] allows to facilitate the management of templates
in a complex design environment, wherein a large number of templates are interconnected. However
template instances are not mentioned in his work. Thus there may be a limitation, which is that
only templates defined within another templates are addressed. His work seems to focus on the
definition of templates.

Regarding the ontological representation, the information extracted from the CAD models are
stored as classes within the ontology. However concrete objects, like the extracted data, should be
represented as instances of the defined ontology classes. Furthermore, this approach does not take
advantage of inference mechanisms, which is one of the main benefit of using ontologies.

5.4 Chapter summary

Knowledge templates technologies slowly start being used within companies. First companies were
the automotive and the aerospace industries, in which the complexity of the models requires the
reuse of knowledge to speed up the design. However the design process has to be adapted to
take advantages of the template technologies. In new design processes, templates are used as
building blocks, from the main concept models till the detailed products. This results in a variety
of template types according to their level of details.

The template-based design raises some issues, especially concerning the management of tem-
plates. The use of templates generates many dependencies towards others templates and docu-
ments. This results in the creation of links between documents. These links are fundamental to
understand the structure of KBE assemblies. Hence some approaches propose to gather, to repre-
sent and to document them. The dependencies generated by the links are also a key factor for the
template update. The modifications applied to a template have to be propagated and it has to be
ensued that no model related to an instance gets broken due to the update. For this purpose, an
efficient visualisation of the links is a mean to supervise the updates.

The investigations showed that current template management approaches are often narrowed
to the template definitions and do not take into account the instances. However template instances
are a current concern of template maintainers. Furthermore better support tools could be provided
to engineers in order to save time when doing tasks related to the template update, especially when
including the management of instances. The tasks before the update of a template are currently

∼ 67 ∼

CHAPTER 5. KNOWLEDGE-BASED ENGINEERING TEMPLATES

not addressed, for example, the collaborative process resulting to a design choice to upgrade the
template.

∼ 68 ∼

PART III

Case study

∼ 69 ∼

Chapter 6

Study of CATIA V5

Contents

6.1 Dassault Systèmes CATIA V5 . 72

6.1.1 CATIA presentation . 72

6.1.2 CATIA V5 . 72

6.1.3 Reasons for selecting the CATIA V5 system 73

6.2 Templates in CATIA V5 . 73

6.2.1 Technologies . 73

6.2.1.1 Dassault technology . 73

6.2.1.2 Document as template . 74

6.2.2 Instantiation of knowledge templates 74

6.2.2.1 Differences between templates’ definitions 74

6.2.2.2 Remarks about template instances 74

6.2.2.3 Instance’s content . 75

6.2.3 Templates update . 76

6.3 Links and relations . 76

6.3.1 Relations within documents . 76

6.3.2 Multi-Model Links . 77

6.3.2.1 CATIA V5 document types 80

6.3.2.2 Multi-Model Link types . 80

6.3.2.3 Link statuses . 81

6.3.3 Influences on models update . 81

6.3.3.1 Impact . 81

6.3.3.2 Cycles . 82

6.3.3.3 Links and templates . 82

6.4 CATIA V5 programming . 83

6.4.1 Application Programming Interfaces 83

6.4.1.1 Component Application Architecture 83

6.4.1.2 Automation . 83

6.4.1.3 Comparison . 83

6.4.2 Limitations . 83

6.4.2.1 Multi-Model Links . 84

6.4.2.2 Templates recognition . 84

6.5 Chapter summary . 85

6.5.1 Study results . 85

6.5.2 Raised issues . 85

6.5.3 Conclusion . 86

∼ 71 ∼

CHAPTER 6. STUDY OF CATIA V5

6.1 Dassault Systèmes CATIA V5

The purpose of this chapter is to present CATIA V5 CAD system. However it is not meant to be
a comprehensive description and not all components of CATIA V5 nor the design with CATIA V5
will be introduced. The focus is put on templates and links related aspects. In the scope of this
work the Release 19 of CATIA V5 was analysed.

6.1.1 CATIA presentation

CATIA is a 3D computer-aided design software initially designed by Dassault Aviation for its own
needs during the 1970’s. Its initial name was CATI. In 1981 CATI became CATIA and started
being maintained by an independent unit from Dassault Aviation called Dassault Systèmes (DS).
Since 1981 IBM is in charge of marketing and distribution of CATIA. In 1982 the first customers
of CATIA were automotive and aerospace industries like BMW, Dassault Aviation, Mercedes-Benz
or Snecma. Two years later the second version of CATIA came out: CATIA V2 that had a new
architecture and provided colour graphics. In 1988 CATIA V3 marked the migration of CATIA from
mainframe computers to UNIX. Following the acquisition of CADAM in 1992 by DS, CATIA V4
was released in 1993. It provides an increased openness and an innovative approach to mechanical
design. In 1999 the version 5 of CATIA was released, which is a complete rewrite of the software,
introduced a new user interface, feature-based design and Microsoft Windows support. The latest
version, CATIA V6 was released in 2008. With this version the support for Unix platforms was
discontinued and a tight integration with Product Lifecycle Management is provided.

CATIA is used in numerous domains like automotive, aerospace, ship building, architecture,
electricity or consumer goods design [Guennuni, 2008]. In the scope of this work, the version 5 of
CATIA was studied.

6.1.2 CATIA V5

The version 5 of CATIA is a Computer-Aided Design/Manufacturing/Engineering system. It is
composed of various workbenches, which are dedicated to specific tasks like part and assembly
design, drafting, finite elements analysis, digital mock-up, machining or knowledgeware. An im-
portant aspect of CATIA V5 is the features-based design. At the contrary to CATIA V4 in which
the geometry is defined via boolean operations, the geometric design in CATIA V5 is based on
parametric elements called features that are high level operations with functionalities. Braß
[2005] defined features as composed of (i) associative information: features can have parent/child
relations towards other features, e.g., a hole has a surface as parent element, (ii) mathematical
information: a feature has geometric and topology information, and (iii) attributes: a feature is
also defined by attributes like its colour, the length or the type of line. CATIA V5 allows para-
metric and associative design by the use of features. That means features can be easily modified
through the change of parameters’ value. The modification of the feature implies the update of
child features due to the association. This process is managed by the system and thus frees the
designer of managing dependencies. Hence he can focus on the design. Feature are an efficient way
to present the design intents of the designers. The feature based design results in a specification
tree that presents the evolution of the design (see figure 6.3(a)).

In the continuity of parametric design, CATIA V5 proposes a Knowledge-Based Engineering
(KBE) workbench. This workbench allows to store knowledge within models. It provides user
parameters, formulas that allow to dynamically compute the value of parameters, rules that contain
specific actions triggered according to defined conditions, and checks that provide a feedback to
the designer if the current configuration is valid according the given requirements. The KBE
workbench also provides the possibility to optimise parameters or to define knowledge templates.

CATIA V5 has his own proprietary file formats, which are, for instance, CATPart for a single
model or CATProduct for an assembly. However it can export and import models into other
formats, such as STEP or 3DXML. However the specification tree, and thus the design intents and
history, are lost during the export.

∼ 72 ∼

6.2. TEMPLATES IN CATIA V5

6.1.3 Reasons for selecting the CATIA V5 system

Today CATIA V5 has two main competitor systems that are NX (Siemens PLM software) and
Pro/ENGINEER from Parametric Technology Corporation. Furthermore a new version of CATIA
has been released recently.

Pro/ENGINEER is also a CAD/CAM/CAE solution. It was the first CAD software to provide
feature, parametric and associative-based design in the market. It has a modular structure that
allows to easily add new functionalities. For instance, the Pro/ENGINEER Expert Framework
provides KBE capabilities. NX is a suite of integrated CAD, CAM and CAE applications. It also
provides knowledge-based automation tools. However many automotive and aerospace industries
are using mainly CATIA V5. Thus it seemed the most relevant CAD system to investigate.

CATIA V6 is the latest CAx tool from Dassault Systèmes and the successor of CATA V5.
However CATIA V6 was not available at the beginning of this work. In the automotive and
aerospace industries, projects are complex and can last many years. It is rare that a company
switches or does a major upgrade of a software during a projet to prevent compatibility issues.
Thus CATIA V5 will most likely be used for another few years. Some companies have only
migrated recently from CATIA V4 to CATIA V5, about 10 years after its first release.

For both reasons CATIA software was selected instead of Pro/ENGINEER or NX for the
primary analysis.

6.2 Templates in CATIA V5

6.2.1 Technologies

Two main technical solutions to define and use templates with CATIA V5 have been identified.
The first is to resort to the knowledge workbenches. This solution was defined as the “Dassault
technology” to clearly differentiate it from the second approach that is more generic.

6.2.1.1 Dassault technology

The most convenient way to create and use templates within CATIA V5 is to resort to the ded-
icated CATIA workbenches: “Product Knowledge Template” and “Business Process Knowledge
Template.” There are three types of template that can be created within these workbenches:

The feature template is a construction element defined by the user. It allows to define advanced
features that are composed of other features, and geometrical and KBE elements. Two types
of feature templates are disposable: the PowerCopy (PwC) and the User-Defined Feature
(UDF). The difference between them is to be found in the instantiation result. The result of
the instantiation of a PwC is a white box whereas it is a black box for a UDF. More details
are given in section 6.2.2.

The document template is a complete model, which can be a single part or an assembly, that is
meant to be reused. Document templates can only be defined within geometrical models
that are stored in CATPart or CATProduct files. However a document template can contain
other documents that are external to the model like spreadsheets or drawings.

Business process template present the capability to design customised workbenches. In this way
specific process can be implemented and deployed within the company. It also enables the
creation of design and engineering task sequences that can be automated.

In the scope of this work only the feature and document templates have been investigated. Business
templates have been considered as out of the scope for several reasons. First the focus is put on
the design itself and the models, and not on the design process. Second according to received
feedback, business process knowledge templates are currently little used within companies. Thus
the “Product Knowledge Template” (PKT) workbench has been investigated.

∼ 73 ∼

CHAPTER 6. STUDY OF CATIA V5

A benefit from the PKT workbench is that it provides a wizard user interface to define and
use templates. To define a template, the user has to select the content of the template, and define
its inputs and possible outputs (called “publications” in CATIA V5). The definition of a template
creates a specific feature in the document. This feature represents and contains the template
definition. Hence a document template is a feature provided in a document, and not the document
itself.

Templates can be referenced and organised within libraries in order to facilitate the use of
templates. In CATIA V5 libraries are called “catalog.”

6.2.1.2 Document as template

Templates can also be defined and used without resorting to the template workbench from CATIA
V5. However this approach implies no automation in the process of template definition and use.
This approach has been referred as the use of a “document as template.” This corresponds to the
use of a CATPart or a CATProduct as a template, i.e., reuse this document via copy-paste for
example. An interesting point is that this concept can be extended to other types of documents if
they fit the template schema of figure 1.5. Unlike templates defined via the dedicated workbench,
here the template definition is the document and not a feature. That means that the organisation of
the document content is crucial to facilitate its instantiation because there is no explicit definition
and no wizard to guide the template user. Thus it is more practical to group all inputs in order to
identify them easily.

As the definition of a template is not explicit, its definition relies on the user who will, for
example, store the document in a folder gathering the templates or in a specific category of a
catalogue. This lack of explicit definition makes difficult the use of this approach to define feature
templates. For this reason, only documents are considered for the “document as template” concept.

6.2.2 Instantiation of knowledge templates

6.2.2.1 Differences between templates’ definitions

In the previous section, it has been seen that there are two ways of using templates. Either with
the dedicated knowledge template workbench or by using a standard document as a template.

With the knowledge template workbench, the user wishing to instantiate a template can do it
through an user interface dedicated for this purpose. The inputs of the template are then presented
and the user only needs to select the corresponding elements in the future context. The template
designer can define that all inputs are mandatory. A preview of the result of the instantiation is
also available to the user. When he validates, the process is complete, i.e., a copy of the template
has been put in the context (as well as on the file system) and the inputs are linked.

Without this workbench, all actions have to be done manually. First a copy of the template
document has to be made on the file system. The user has to take care with the UUID for the
files. UUID are unique identifiers given by CATIA when it creates a file. CATIA can not load two
files with the same UUID at the same time. The copied file has also to be renamed in the case
of multiple instantiations. Then the designer can load the new document in the context. Again
some conflicts can arise with the names. After that he has to find and to set the inputs of the
template manually. No information are given if all inputs are mandatory or not. Finally, in the
case an input of the template is published, the designer has to update the publication because it
gets broken when replacing the input.

6.2.2.2 Remarks about template instances

Both presented approaches create a template instance. A template instance has a separate life
cycle from its definition. Hence templates and instances can be modified independently.

∼ 74 ∼

6.2. TEMPLATES IN CATIA V5

An important noticed behaviour is that the way the template is defined (knowledge workbench
or document as template) has no impact on the resulting instance. That means that the way the
template has been defined and instantiated can not be distinguished by looking at the instance.
Actually it is also not possible to differentiate an instance from a standard CATIA document.
The instantiation process generates a standard document or standard features for PwC. After the
instantiation no relationship is maintained between the template and its instances. This is quite
problematic regarding template management. CATIA V5 provides no solution to track templates’
instances.

Two types of instances have been identified: the direct and the indirect instances. They are
resulting of different instantiation procedures. The direct instances are the instances described so
far. They result from the instantiation of a template. An indirect instances corresponds to the
result of the copy of a template instance included in another template. This leads to template
interweavings that are common but have to be addressed in order to avoid redundant updates.
Figure 6.1 illustrates both types of instances.

Template A Template B

Instance of

template A

Product

Instance of template B

Copy of

instance of

template A

Instantiation

Instantiation

Direct instance

Indirect instance

Figure 6.1 – Schema of direct and indirect instances of the template A.

6.2.2.3 Instance’s content

In section 6.2.1.1, two types of feature templates have been presented: the PowerCopies being white
boxes and the User-Defined Functions being black boxes. The difference is in the instantiation
result. The instantiation of a PwC adds the content and the structure of the feature template
(elements defining the template) to the design as well as to the specification tree. The PwC user
can thus see and modify the result. This is not possible with UDFs. UDF instantiation results
in a modification in the design like the PwC, but the content of the instance is hidden and not
accessible by the template user. The specification tree only presents one unique feature. Hence
UDFs can be used for intellectual property protection. Regarding document templates, there is no
such protection. Thus an external solution has to be used. A workaround would be to encapsulate
the knowledge within an UDF and instantiate it in the document template.

CATIA proposes two instantiation approaches for the documents contained in a product tem-
plate. Figure 6.2 illustrates them. The first one is like the one for template instances: the content
of the product template is also copied into the context. It results in the creation of a new document
that will be a copy (Doc Z and Z’ in figure 6.2(a)). The second one consists in a reference from the
template instance to the original document (Doc Z in figure 6.2(b)). Both approaches present their
pros and cons. The former, by making copies, allows to apply local modifications to the instances.
Nevertheless this diversity raises management issues. The latter facilitates the management of the
template and its instances as it avoids multiple copies of the document contained in the template.
But you can not make any modifications to any of the instances because they would also appear
in other template instances.

The first method, which creates a copy of the template, presents the best characteristics for
multiple instantiations.

∼ 75 ∼

CHAPTER 6. STUDY OF CATIA V5

Product

Doc A

Doc B
...

Template

instance

Doc Z’

Template

Doc Z
Copy

(a) The instantiation creates a copy of Doc Z, which
is the content of the template.

Product

Doc A

Doc B
...

Template

instance

Doc Z

Template

Doc Z

Reference

Copy

(b) The Doc Z’ is not copied and refers the original.

Figure 6.2 – Presentation of the two approaches for the instantiation of a KBE product template
within CATIA V5.

6.2.3 Templates update

CATIA V5 provides an update mechanism between linked documents. For instance, when the
value of an user parameter is modified, all related elements in or outside the document wherein
the parameter is defined are updated, i.e., the update is propagated through relations. In the case
of a major modification, this mechanism is not sufficient and the engineer will have to manually
update the related elements. Such a change could be a modification of the geometry or of the type
of an element. In this case, the engineer will have to analyse the relations. But CATIA V5 does
not provide a practical visualisation tool for relations. Only one assembly can be visualised at a
time with the “Desk. . . ” tool. The link types are shown in another location (Edit/Links) and only
the links from one document are available at a time.

However, as said previously, there is no explicit relation/link between a template and its in-
stances. Hence there is no synchronisation between them, they are independent from each other.
Furthermore the engineer can not easily find an instance of a template in the case he wants to
update it.

6.3 Links and relations

Links and relations play in general an important role for the update of models in an assembly. For
this reasons this area has been investigated in order to reveal what links and types of links are
present in CATIA V5 and what the individual impacts on the update of a model are. Guennuni
[2008] identified three types of relation within CATIA V5: parent-child relations, aggregations and
Multi-Models Links (MML). Thus all of them had to be investigated.

6.3.1 Relations within documents

Within a CATIA V5 document, there are two types of relations: parent-child and aggregation.
It concerns principally CATParts and CATProducts, which are the documents that contain the
design information.

An aggregation is a relation allowing to structure the design. It is a relation between two objects
meaning has or is composed of. Hence an element is composed of aggregates. However an aggregate
can only be aggregated to one object. For this reason the resulting structure is a hierarchy that
can be represented by a tree. Figure 6.3(a) shows the specification tree of a CATPart, which
typically presents the aggregation tree. The Vertical Blade part is composed of planes, a set of
parameters and a set of relations, knowledge template definition and the part body set. The part
body is composed of various features that can also be composed of features and so on. In the same
way, there is an aggregation between an assembly and the parts composing it.

∼ 76 ∼

6.3. LINKS AND RELATIONS

A parent-child relation is typically a dependency relation between two elements, in the way
that the child is dependent on the parent. So it is a directed relation. A parent can have several
children, as well as a child can have several parents. The resulting structure is a directed graph.
Figure 6.3(b) presents the parent-child view available in CATIA V5. Depicted are the parent/child
relations of the Pad.1 feature. Parents are located on the left of the analysed feature, children on
the right. The relations are represented by a line. One can see that the pad has two parents that
are its sketch and a user parameter. The modification of one of them will result in an update of
the pad. Thereafter the children of the pad have to be updated too.

(a) CATIA V5’s specification tree
of the Vertical Blade part, present-
ing its aggregated elements.

(b) Parent-child view for Pad.1 in CATIA V5. Parents are on the left,
children on the right of Pad.1.

Figure 6.3 – CATIA V5 aggregation and parent-child relations.

6.3.2 Multi-Model Links

The term Multi-Model Link (MML) is specific to CATIA V5. A MML represents a relation or a
link between two documents, which represents a dependency. The dependency can apply on many
objects like geometry, parameters or documents. The design when using elements from another
document in the scope of an assembly is referred to as contextual design or design in context. The
use of a model in an assembly creates what is called an “instance” in CATIA V5, which is different
of the template instance concept. A document can thus have several instances in an assembly. For
example, a screw could be defined in one document and have ten instances in an assembly.

In CATIA V5 all links are directed and unidirectional. The source of the link is the dependent
document and the target the dependency. As the links are unidirectional, the target document, in
which the dependency is located, is not aware of the existence of the link.

The precision “Multi-Model” has been added because in the previous version of CATIA (i.e.,
CATIA V4) there is only one document type. In CATIA V5 the design can be decomposed within
various documents, each of them having its purpose.

∼ 77 ∼

C
H

A
P

T
E

R
6

.
S

T
U

D
Y

O
F

C
A

T
IA

V
5

Table 6.1 – CATIA V5 Multi-Model Links.

Document type

MML name Source Target Description

Context CATPart CATProduct This link designates the context element for the design in context.
There can be only one context link going out from a part.

Import CATPart CATPart Link that references a geometrical element located in another doc-
ument. The creation of this link implies the creation of a context
link if no context is currently defined.

KWE_CONTEXTUAL CATPart or
CATProduct

CATPart or
CATProduct

Like an import link but addresses a published parameter in the
current context.

KWE_REFERENCE CATPart or
CATProduct

CATPart or
CATProduct

Created when a reference to an unpublished parameter is made,
or when referencing a published parameter out of the context.

Instance CATProduct CATPart or
CATProduct

Link targeting a document included in the assembly. There is a
link for each instance of the document in the assembly.

CCP CATPart CATPart This kind of link is created when some geometry is copied with
link, out of the scope of a context.

ViewLink CATDrawing CATPart or
CATProduct

Link from a view in a drawing to the document containing the
drawn element.

Attribute CATDrawing CATPart or
CATProduct or
CATDrawing

Link a text contained in a view of a CATDrawing to the described
geometry in the 3D model. It can also link two text in two CAT-
Drawing.

Feature component catalog CATPart or
CATProduct

Reference a template defined with the specific workbench (feature
of document) or a RuleBase, which is a set of rules.

File component catalog CATPart or
CATProduct

Reference a document from the catalogue.

Sub-Catalog catalog catalog Created when a catalogue refers another catalogue or a part of it.
Validation CATPart CATPart Link from a RuleBase, created with link from a catalogue, toward

the document containing the original RuleBase.

Continued on next page. . .

∼
78
∼

6
.3

.
L

IN
K

S
A

N
D

R
E

L
A

T
IO

N
S

Continued from previous page

Document type

MML name Source Target Description

Material CATPart CATMaterial Link to the material definition in the catalogue.
User Design Table CATPart or

CATProduct
external
spreadsheet

Link to a spreadsheet containing a set of possible configurations
for an object in a model.

Applicative Design Table CATPart external
spreadsheet

This link is created when an UDF using a spreadsheet is instan-
tiated. The link goes from the document wherein the UDF is
instantiated to the original spreadsheet.

Document Template Link CATProduct CATPart or
CATProduct

This link concerns Dassault document templates for pro-
duct/assembly templates. It designates a document included in
the template, from which a copy will be created (see figure 6.2(a)).
However all documents from a document template will be “in-
cluded” in the new context.

Doc CATAnalysis CATPart or
CATAnalysis-
Results or
CATAnalysis-
Computations

Link from an analysis to the documents analysed or resulting from
the analysis.

Assembly Feature Input CATProduct CATPart An assembly feature is a positioning feature within an assembly
that allows to place models according to some layout/pattern de-
fined in another document, for example, the RectPattern feature.
A link is created from the document containing the assembly fea-
ture towards the document in which the pattern is defined.

Shape CATProduct Geometry
document (V4
model, *.cgr. . .)

Link to the imported document.

∼
79
∼

CHAPTER 6. STUDY OF CATIA V5

Table 6.2 – CATIA V5 documents types.

File extension Description

CATPart Contains a model description composed of the geometry, KBE
elements, etc.

CATProduct Contains an assembly description. It can group other CATProd-
ucts but also CATParts and can contain KBE elements.

CATDrawing Contains 2D views on a part or a product.
catalog Allows to reference and organise parts, products, templates. . .
model CATIA V4 document.
CATProcess Corresponds to the machining workbench storage format for pro-

cess description.
CATMaterial Catalogue dedicated to material specifications.
CATAnalysis Contains an analysis, such as a structure analysis.
CATAnalysisResults

Both are used to store the results of CATAnalysis.
CATAnalysisComputations
CATScript File containing a script that can be executed by CATIA V5.

6.3.2.1 CATIA V5 document types

Ten document types related to CATIA V5 have been identified. They are listed by their file
extension in table 6.2.

6.3.2.2 Multi-Model Link types

In CATIA V5 there are 19 types of links that allow to create relations between documents. The list
is available in table 6.1. The table presents the links’ name as they are shown in CATIA V5, the
type of the source and target document of the corresponding MML link, and finally a description.

It can be noticed that most of the links have at least a CATPart or a CATProduct as source
or target. It seems obvious as the information, geometry as well as knowledge, is store in these
resources. Only one link that concerns templates has been identified (Document Template Link),
however it addresses only its definition. There is no link between templates and their instances.

Some classifications of MMLs have been proposed in the literature. However they do not ad-
dress all the identified link types, because all the types may not have been identified or new links
were introduced in more recent versions of CATIA V5. Braß [2005] classified MMLs according
to three points of view: the structure, the assembly, and the document viewpoint. The structure
point of view gathers links between documents involved in the product structure. It contains in-
stance and shape links. It corresponds to what they called “instance-to-instance” MML because
it is in the scope of a product context. The second is the assembly viewpoint that gathers links
present in the scope of relational design, such as import and KWE_CONTEXTUAL links. They
are referred to as “reference-to-instance” MML. Finally the document viewpoint gathers links be-
tween documents out of the scope of a product or external non-CAD documents, and is called
“reference-to-reference.” Guennuni [2008] reduced the classification to two types of links: the
“reference-to-instance” and the “reference-to-reference” links because MMLs are dependencies be-
tween documents. The information provided by CATIA V5 about existing links indicate either an
instance or a document as target. However, the source of any link is always a document because
it is the document that contains the information about the links, not the instance.

Thus the proposed classification presented in table 6.3 summarises the definition of the literature
merged with the realised analysis. The “reference-to-instance” category contains the links that refer
to an instance in the information given by CATIA V5. The others are categorised as “reference-to-
reference.” The three viewpoints are those from Braß [2005]. This classification provides a first
overview of the type of relations according to some of their specificities.

∼ 80 ∼

6.3. LINKS AND RELATIONS

Table 6.3 – Multi-Model Link classification.

Link category Viewpoint MMLs

Reference-to-instance Assembly Import, KWE_CONTEXTUAL

Reference-to-reference
Structure Instance, Shape, Sub-Catalog

Document Context, KWE_REFERENCE, CCP, ViewLink,
Attribute, Feature component, File component, Vali-
dation, Material, User Design Table, Applicative De-
sign Table, Document Template Link, Doc, Assem-
bly Features Input

Table 6.4 – CATIA V5 link statuses.

Status Description

Ok status Link working and used, document found and data synchronised.
Ghost link Link that remains in a document even if the linked data is not

available any more. However there is not enough information to
find the problem.

Synchronized Reference is found and synchronized but the link is not used, e.g.,
the source is disabled.

Not synchronized An update of the document is needed because the target of the
link has been modified.

Document not found The target document is not found at the specified location given
by the link.

Document not loaded Document existing and found but not loaded in the current ses-
sion.

Reference not found The document is found but the referred element in the document
of the link is not.

No status No status can be given on the link. For example, it is the case
when the context document is not loaded.

6.3.2.3 Link statuses

Links can be in several states called status. The status of a link depends on several aspects related
to the target. For example, the target document or feature can not be found or the synchronisation
following an update has not been done yet. The status of a link is available with the link information
of a document, i.e., in the “Edit/Links. . . ” menu. Table 6.4 presents the various statuses that
have been identified. The listing of link statuses provides an overview of some constraints that
have to be handled when relations between documents are treated.

6.3.3 Influences on models update

6.3.3.1 Impact

The influence of each link on the update process has also been analysed. The objective is to have
all documents up-to-date after a modification. As said previously, the links represent the relations
between documents and thus can generate dependencies. The dependencies have to be resolved
before propagating the update. This is well handled for the aggregation and parent-child relations
within models. Here the interest is focused on the MMLs regarding the update propagation.

All MMLs were analysed in order to see the behaviour when making a modification at the
source, then at the target of the link. Several behaviours can be pointed out. For links that target
the content of the document, a change to this content implies an update of the link source in
order to be up-to-date. This behaviour present an exception for Doc links as they also target the

∼ 81 ∼

CHAPTER 6. STUDY OF CATIA V5

result file from an analysis. Thus any modifications in the results have no impact on the analysis
itself. When a link targets only the document, like for an instance link, the modification of the
content does not impact the source. The update of the source becomes necessary when the target
document is not available anymore (removed, renamed or moved to another location).

The influence of the Multi-Model Links in the update process does not present any unexpected
behaviour. As said previously, the target of the link is not aware of the presence of a document
referencing it. Thus only the source can be impacted by a change.

6.3.3.2 Cycles

In section 4.2.2 has been exposed that cycles are problematic with reference to dependencies and
updates. Hence the CATIA V5 behaviour concerning the treatment of cycles has been investigated.

CATIA V5 prevents any cycle in the geometry by detecting cycles . A cycle would cause the
geometry of a model to be impossible to compute because the update will not be able to determine
from which element to start. This behaviour is located at the document level, which means that
even if there are no dependencies between the geometry, the import link creation is forbidden
between documents when generating a cycle.

However, CATIA V5 allows cycles between parameters and formulas. Three parts were created
in an assembly with a parameter px in each of them, where x is the number of the part. Then a
cycle has been created between these parameters via formulas, in order to make them all equal,
p1 = p2 = p3. Now all parameters share the same value and it is impossible to modify any of them
because they are fixed with the formula.

This behaviour does not present any problems so it was modified in order to create an evolving
cycle in order to test CATIA V5. One millimetre was added in the formula of part 3 such as
p3 = p2 + 1mm. Once the formula is validated, the value of p3 is updated. Then the first part
has to be updated because p1 = p3. Two behaviours have been noticed from CATIA V5 in this
situation depending on how the updates of the parts in the assembly is realised. The first approach
consists is asking CATIA V5 to update part 1, then part 2 as the value of p1 has changed and
p2 = p1 and so on with no end. The second one is to update the assembly containing the 3 parts
and see how CATIA V5 handles the cycle. Starting from a value p1 = p2 = p3 = 10mm then adding
1 millimetre as describe above, the following result is obtained: p1 = p2 = 4mm and p3 = 5mm and
the first document shows a sign telling that it is not up-to-date. When updating the assembly one
more time, the value of all parameters is incremented by three, and the first document needs to be
updated. From that can be deduced that CATIA V5 implements a cycle counter on the updates in
order to prevent infinite loops, but it does not warn the user of the presence of the cycle between
parameters.

There are two types of elements that can be imported from a CAD document by another:
geometry and parameters. The behaviour of the system was analysed when faced to imports
that create a cycle, because cycles cause major problems when dealing with updates. It has been
noticed that, on the one hand, CATIA V5 prevents cycles between the geometry by blocking the
link creation and warns the user. On the other hand, there is no such mechanism for parameter
referencing. It is possible to create cycles between several parts on parameters with formulas.
According to the resulting behaviour, CATIA V5 handles cycles with a counter, but it doesn’t
solve the problem. When the update stops, there is still at least one part that is not up-to-date.
Furthermore the user is not warned of the presence of a cycle.

6.3.3.3 Links and templates

Templates and their instances have been studied regarding the links. First a template has no
restriction concerning the link. All MMLs can be used in the design of the template or can
reference it depending of the type of the document. Thus they are subject to the same update
rules and procedures as with other documents. Then the fact that there is no link between a
template and its instances has to be emphasised. As an instance is a standard document, there is

∼ 82 ∼

6.4. CATIA V5 PROGRAMMING

no solution provided by CATIA V5 to find the instances of a template. Hence there is no update
procedure between a template and its instances: they have a separate life cycle.

6.4 CATIA V5 programming

Dassault Systèmes provides the facilities to program CATIA V5 with the help of two Application
Programming Interfaces (API). With these APIs it is possible to access, modify, delete and create
objects within CATIA V5.

6.4.1 Application Programming Interfaces

Two APIs are available: the automation API and the Component Application Architecture (CAA
V5) API.

6.4.1.1 Component Application Architecture

CAA V51 is a framework part of the foundations of CATIA V5. It allows to access and to extend
CATIA objects, as well as to create user interfaces within CATIA V5. This API is accessible via
C++ and Java languages. CAA allows to extends the functionalities of CATIA V5 and also to
create batch applications that do not need a CATIA V5 interactive session. However a specific
licence is required to use CAA V5.

6.4.1.2 Automation

The automation API is a subset of the CAA V5 API. It also provides a higher level API composed
of more complex functions. Hence it is lighter and simpler to use than the CAA API. The typical
use of the automation API is the creation of scripts. Scripts can be created within CATScript or
external applications with the Visual Basic language.

6.4.1.3 Comparison

CAA V5 is the most powerful API available for CATIA V5. It is also the most complex API to
develop with. It requires advanced programming skills. CAA suits well for complex applications
that require a comprehensive control of CATIA.

The automation API has been designed to easily and quickly develop small applications. Hence
it avoids the overhead of CAA when the task to fulfil is simple enough. This API allows to automate
certain process quickly and efficiently.

In the scope of this work, the CAA V5 API is used in order to manipulate CATIA V5 document
content because it provides a more comprehensive access to CATIA V5 objects than the automation
API.

6.4.2 Limitations

As presented in the previous section, CAA V5 is the foundation API of CATIA V5. Nevertheless
some restrictions are present and not all librairies of CATIA are accessible. In this section is
outlined the current status regarding the main concerns that are the MMLs and the templates.

1http://www.3ds.com/fr/products/caav5/welcome/

∼ 83 ∼

http://www.3ds.com/fr/products/caav5/welcome/

CHAPTER 6. STUDY OF CATIA V5

Table 6.5 – Presentation of MMLs retrieval status via the CAA API.

MML Retrieval status

Context OK. Needs the PX1 licence.
Import OK. Needs the PX1 licence. The target feature is

not directly provided. However it can be found by
analysing the specification tree.

KWE_CONTEXTUAL Idem as Import.
KWE_REFERENCE Can be retrieved if the source and target product are

loaded in the session. Needs the PX1 licence.
Instance OK.
CCP Idem as KWE_REFERENCE
ViewLink OK.
Attribute Not found.
Feature component OK.
File component OK.
Sub-Catalog OK.
Validation Not found.
Material Not found.
User Design Table OK.
Applicative Design Table OK. Needs PX1 licence.
Document Template Link Not found
Doc OK.
Assembly Feature Input Not found.
Shape OK.

6.4.2.1 Multi-Model Links

To be able to automatically retrieve the dependencies between documents, MMLs have to be
accessed via the CAA API. There is no central API that gives access to links present in a document
like provided by the interactive menu function “Edit/links. . . ” from CATIA V5. Thus each link
has been investigated on its own in order to retrieve them. However not all of them were found.
The table 6.5 presents the results of this investigations.

The majority of the MMLs have been found. Without solution are only three of them.
An important issue that has to be raised is that in the available links, the Import and the
KWE_CONTEXTUAL link can not be differentiated. Both are merged in the return value of
the CAA function. Furthermore the Document Template Link has not be successfully retrieved.
However this information is not crucial as it is only used by the instantiation process to determine
if a document in the template has to be copied or just referred.

6.4.2.2 Templates recognition

The information that can be gathered about templates and their instances has also been analysed.
Three aspects required to manage templates have been focused: (i) if a template can be identified,
(ii) if an instance can be distinguished from a normal document, and (iii) if an instance can be
matched with its template. Table 6.6 present the results of the investigation.

One can see that only the UDF fulfils the three aspects. For other template types, some
workarounds had to be elaborated.

∼ 84 ∼

6.5. CHAPTER SUMMARY

Table 6.6 – Template and instance related information retrieval status with CAA.

Template type Template recognition Instance recognition Instance tracking

PowerCopy Yes No No
User Defined Feature Yes Yes Yes
Document template Yes No No
Document as template No No No

6.5 Chapter summary

6.5.1 Study results

During the study of the CATIA V5 system two ways to use templates were identified: the dedicated
workbench of CATIA V5 and the use of a conventional CATIA V5 CATPart or CATProduct
document as a template. The former provides a comprehensive wizard to defined and instantiate
templates. It also allows the definition and the use of document templates as well as feature
templates, which are small construction elements. The latter does not provide any support and
thus results in more complicated tasks. For this reason, it is complex to use this approach to design
feature templates. When instantiating a document via both approaches, the resulting instances can
not be distinguished from each other because the result is the same. Direct and indirect instances
were also defined. Direct instance are resulting from the instantiation process. Indirect instances
are the result of the copy of a template instance contained within another template.

The parametric and associative design within CATIA V5 results in the creation of relations
between objects. The are the aggregations and parent-child relations inside a document and Multi-
Model Links between documents. These relations imply dependencies between the objects and thus
are a main concern for the update process. The propagation of the modifications is accomplished
on the basis of relations. Nineteen types of MMLs were identified. There is only one link that
concerns templates: the Document Template Link. It is involved in the definition of document
templates. So there is no link between a template and its instances. The behaviour of CATIA V5
when faced to link cycles has also been tested. CATIA V5 prevents any cycle in the geometry.
However it is possible to create cycles between parameters. CATIA V5 avoids infinite computation
by detecting the cycles and limiting the number of iteration to three. However the whole model
can not be updated as there will always be an element not up-to-date.

CATIA V5 provides two APIs to enable the automation via programming: the automation API
and the CAA V5 API. The former enables the fast development of scripts whereas the latter it more
powerful and complete but also more complex. The CAA API can be used to retrieve a majority
of the identified link types. Then the investigations addressed the identification of templates, their
instances and if there is a way to make the link between a template and its instances. Only the
UDF fulfils all of these three aspects, others are missing the instance identification and tracking.

6.5.2 Raised issues

In addition to the template issues, the limitations and the restrictions of the CAD system used to
implement templates have also to be faced.

First there is no comprehensive instance tracking, i.e., document template instances can not be
identified and the relation between a template and its instances can not be made. For a document
as template, there is even not a standardised definition for the template, in order to identify it.

Then there are the indirect instances that have to be handled in order to prevent redundant or
non-necessary updates (see appendix C).

Finally possible loops have to be managed as CATIA V5 does not prevent them, except in the
geometry (Import link). Furthermore the distinction between Import and KWE_CONTEXTUAL
links can not be made, which can be problematic.

∼ 85 ∼

CHAPTER 6. STUDY OF CATIA V5

6.5.3 Conclusion

The objective of this chapter was to analyse a CAD system in order to provide concrete solutions to
template issues that can be applied in real cases. The implementation of templates, the link types
and the programming capabilities raise new issues. They have to be taken into account before
designing the solution.

∼ 86 ∼

PART IV

Contributions

∼ 87 ∼

Chapter 7

Template Update Process

Contents

7.1 Introduction . 90

7.1.1 Addressed issues reminder . 90

7.1.2 Results of the state of the art analysis 90

7.1.3 Approach . 90

7.2 Template update process . 91

7.2.1 Presentation of the process . 91

7.2.2 Collaborative issue solving . 91

7.2.3 Document analysis and ontological representation 91

7.2.4 Update sequence computation . 92

7.2.5 Comparison with the existing update approaches 92

7.3 Chapter summary . 92

∼ 89 ∼

CHAPTER 7. TEMPLATE UPDATE PROCESS

7.1 Introduction

This chapter provides an overview on the template update process defined in this work, and intro-
duces the realised contributions, which is presented in the following chapters.

7.1.1 Addressed issues reminder

Template management is a huge problematic wherein it is very hard to address at the same time
all its aspects comprehensively. In the scope of this work, two main issues that concern the update
of knowledge templates were retained.

Knowledge templates may be complex applications that can involve several stakeholders and
viewpoints. The concurrent aspect of today’s product design can lead to possible conflicting ar-
gumentations. This is also the case in the scope of template updates, when a design solution has
to be found to solve an issue. For this purpose the decision process is taken into account by the
proposed approach.

The update of template instances is the second retained point. The modifications made to
a template need to be reflected to its instances in order to avoid having to manage numerous
desynchronised versions and fix possible bugs in instances. However when a template is used in
several assemblies, the high number of template instances generates difficulties concerning their
update. The order in which instances are updated impacts the result as well as the time spent
on this task. For this reason, an update strategy has to be elaborated to enhance the instance
updates.

7.1.2 Results of the state of the art analysis

Template management is a topic that has been little addressed in the past. However it is a brake
to the adoption of template technologies at a large scale by the industries.

Lukibanov [2005] addressed template management and proposed the use of ontologies to rep-
resent templates and their interrelations. Information about the templates can then be visualised
in order to validate the changes. Ontologies also allow to manage templates outside of the CAD
system, in this case CATIA V5. He also proposed a business process for template update.

Regarding the decision process, the Issue-Based Information System framework has been se-
lected because it presents interesting capabilities to address decision support. It allows a distributed
and asynchronous decision making process between several stakeholders. Furthermore it can be
used as a design rationale tool to store the argumentation that has led to a decision. However, de-
spite its recognised advantages, design rationale tools have difficulties to be accepted by companies
due to the difficulties to capture, represent and retrieve the knowledge efficiently.

Arndt [2007] proposed an ontology-based method for decision support with an application to
template management. His method allows to document the link flow from templates in order to
facilitate their use by engineers.

7.1.3 Approach

In order to solve the presented problems, theoretical aspects as well as concrete aspects through
CATIA V5 concerning knowledge templates were analysed first. Then existing related works in
the literature have been investigated. Based on these elements, a methodology has been designed
that embraces the template update and provides an approach to enhance the decision process and
the template instances update tasks. The methodology comes along with corresponding tools to
apply it.

The proposed methodology aims at supporting template maintainers in their task. The core el-
ements of the methodology is the template update process that provides the guidelines to efficiently
approach the template update issues.

∼ 90 ∼

7.2. TEMPLATE UPDATE PROCESS

7.2 Template update process

7.2.1 Presentation of the process

The defined template update process is presented in figure 7.1. It is composed of nine steps. Two of
them are located upstream from the template update phase represented in ovale and correspond to
the decision making process, the rest are downstream and address instances update. The defined
process covers template update tasks from the definition of the issue or the requirement implying
the template update, up to the update of the instances. The whole process can be divided into
three main parts identified (a), (b) and (c) in the figure 7.1. These parts will be described in the
following sections.

(a) (b)

(c)

Issue/Requirement

definition

Cooperative

issue solving
Template update Documents analysis

Update ontology

instances

Run inference engine
Compute

update sequence

Define and group

update tasks
Update template

instances

Document creation/modification/deletion

Start template instances update task

Figure 7.1 – Proposed global process for template update.

7.2.2 Collaborative issue solving

This section presents the part (a) from figure 7.1. This part is composed of three steps that are the
definition of the issue or requirement, the issue solving, and the update of the template. The aim of
this part is first to define the issue or requirement that would require a modification in a template.
Then a discussion starts between involved persons in order to find the best solution to the defined
issue. In this proposal, this is achieved by using a customised Issue-Based Information System.
The solution resulting from the consensus between stakeholders can then be implemented. No
tools or recommendations concerning the modification of the template are provided. The proposed
approach is meant to interfere as few as possible with the existing company procedures. The details
of this part are given in chapter 8.

7.2.3 Document analysis and ontological representation

This section presents the part (b) from figure 7.1. This part is composed of two steps: the analysis
of documents and the update of the instances present in an ontology that has been defined. The
documents that have to be analysed are the updated templates, but also other documents like CAD
models. In CATIA V5, CATProducts are the “master of the information” [Lukibanov, 2005].
The objective is to extract and gather information from documents in order to have an up-to-date
computer representation of them and also the relations between them. The data extracted from
the documents is used to instantiate an ontology. The ontology provides a formal and computer
understandable representation of the domain. Furthermore it allows reasoning in order to infer
new knowledge. With these information a sequence can be computed, representing the order in
which template instances have to be updated. The details of this part are given in chapter 9.

∼ 91 ∼

CHAPTER 7. TEMPLATE UPDATE PROCESS

7.2.4 Update sequence computation

This section presents the part (c) from figure 7.1. It is composed of four steps: the use of an
inference engine on the ontology, the computation of an update sequence, the definition of update
tasks and finally the update of the template instances. This part of the process is triggered when
the instances have to be updated, according to company criteria. The use of an inference engine
on the ontology allows to classify concepts, instances and relations. This allows to deduce implicit
knowledge according to the domain definition. All this knowledge, explicit and implicit, about the
documents is then used by an algorithm to compute an update sequence. This update sequence
is designated to support engineers in the template update task by providing the order in which
the updates have to be processed in order to avoid problems like redundant updates or missing an
update. The updates are then grouped into tasks in order to enhance the check-out/in of models
from the Product Data Management system. Finally, the update can be carried out following the
given sequence. The details of this part are given in chapter 10.

7.2.5 Comparison with the existing update approaches

Lukibanov [2005] proposed a process to update templates, which is depicted in figure 5.4 page 67.
Its first step is the modification of templates. Then the dependencies in the ontology are checked
and the dependent templates are then updated. Once the update is performed, the template
ontology is updated with the modification made in the templates.

If a comparison is made between the presented process with the update process from Luk-
ibanov [2005], many differences can be noticed. First a broader view on the template update
process is proposed as the decision making is addressed in addition. Second the ontology takes
advantage of an inference engine in order to deduce new knowledge, which allows to address easier
template instances. Finally an update sequence can be generated to support engineers and thus
reduce the time needed for the whole process.

7.3 Chapter summary

The purpose of this chapter was to introduce the proposed approach. The update templates process
is presented. The process acts upstream and downstream of the template update. It is designed
to infer as little as possible with the existing procedures within companies.

The process is composed of three main parts. The first part, which is located upstream of
the template update, concerns the search of solutions to a template issue, within a collaborative
environment. This part is the topic of chapter 8. In the presented process, an ontology is maintained
to represent templates, documents, and their relations. This corresponds to the second part and is
presented in chapter 9. The last part addresses the update of the template instances. In this part,
a sequence to follow in order to efficiently apply the update is built. Chapter 10 details this part.

∼ 92 ∼

Chapter 8

Collaborative Template Issues

Solving

Contents

8.1 Introduction . 94

8.2 Definition of the need . 94

8.3 Decision support system . 94

8.3.1 Selection of the framework . 94

8.3.2 Extension of the IBIS . 95

8.3.2.1 New concepts . 95

8.3.2.2 Benefits . 95

8.4 Template update . 96

8.5 Chapter summary . 96

∼ 93 ∼

CHAPTER 8. COLLABORATIVE TEMPLATE ISSUES SOLVING

8.1 Introduction

This chapter presents the first part of the template update methodology (see process depicted
in figure 7.1). Templates are updated in order to solve issues in their design or behaviour, or to
address new requirements. This implies to find a feasible solution for the evolution of the template.
However templates are designed in a collaborative context and thus involve several engineers with
different expertises. These engineers will also be involved during the decision making process
that leads to the selection of a solution for the template update. The objective is to support the
cooperative decision making process regarding template update in order to reduce its duration
while enhancing the collaboration and solution quality.

8.2 Definition of the need

Bugs as well as new requirements are the two major reasons for updating templates. Their definition
is an important step as the decision process will be based on this definition. However the definition
may evolve during time by the arrival of new information.

In all cases the definition has to clear and easily understandable in order to thereafter focus on
its solving. Once the definition of the need is made, it can be written into the decision support
system in order to start looking for solutions.

8.3 Decision support system

8.3.1 Selection of the framework

Decision support systems have been investigated in chapter 3. The IBIS framework aims at support-
ing the solving of “wicked” problems. This type of problem is defined in section 3.2.2. According
to the definition of “wicked” problems, it can be stated that the solving of template issues can be
considered as a “wicked” problem because it matches the characteristics described by Rittel and
Webber [1973]. For this reason, the Issue-Based Information System (IBIS) has been selected in
the scope of this work. The IBIS framework provides the necessary concepts to raise issues and
to allow stakeholders to propose their positions and opinions. In this way the discussions to find
solutions to a problem are structured, which supports a clear communication. Furthermore, the
framework also endorses the role of a design rationale solution by storing the argumentation and
the choices that have led to a design solution (see section 3.2.3).

The IBIS framework is a generic framework and thus is not dependent on a specific implemen-
tation. Hence a Web Ontology Language (OWL) ontology has been used to represent the IBIS
concepts. An IBIS concept is represented by an OWL concept. The instances of defined OWL
concepts will be created by the discussion’s participants. A major criteria for the selection of an on-
tology to represent the IBIS concepts are the capabilities to easily extend it with new concepts and
to integrate it with other ontologies. For example, at Daimler AG, several ontologies representing
car sub-subsystems have been developed, which were consolidated into a master vehicle ontology
[Lukibanov, 2005]. The aim is use and link the extended IBIS ontology with the ontology defined
in the next chapter, which contains concepts related to CAD and KBE.

In section 3.2.3.2 some limitations of design rationale and indirectly the IBIS framework have
been presented. However only the issue related to the capture of the rationale will be addressed
in the scope of this work. It would be a complex research work of its own to address and propose
solutions for all of them. The IBIS framework is rather extended to make it more specific to the
problem while trying to facilitate its adoption by users. For this purpose the IBIS framework has
been extended with new concepts related to the problem in order to store information specific to
the template update.

∼ 94 ∼

8.3. DECISION SUPPORT SYSTEM

8.3.2 Extension of the IBIS

8.3.2.1 New concepts

Figure 8.1 presents the proposed extended IBIS model, which was defined in the scope of this work.
The core elements from the original IBIS framework are represented by dashed boxes. The figure
focuses on new concepts and relations for more clarity (see figure 3.3 on page 50 for the original
structure of the IBIS framework). These elements allow stakeholders to propose and debate about a
template related issue or a new requirement. This model was extended to focus on the problematic.

Issue/Requirement/Question Position Argument

Node External element

Modifications

Choice

Planned Actual

respond to

raise +

−

refer

solve
involve

validate

Figure 8.1 – IBIS-based model for template update support.

First the subsumption capabilities of ontologies have been used to define a parent concept
called Node, which is an abstract concept, i.e., not meant to be instantiated. A relation has been
defined so references can be created from one node to another. In this way existing issues, ideas
or arguments can be referenced to support a discussion. It is a first step to reuse past experiences
explicitly and take advantage of design rationale. References can also be made on a new concept
called external element. It is a generic concept that represents what is not explicitly defined in the
ontology, such as documents that are an attachment for a given argument.

The second main addition concerns the choice of a solution and its impacts. A choice validates
one or more positions. This results in modifications, either in the template or in a related document
or context. After the validation, the planned modifications can be entered into the system in order
to guide the template maintainer by providing, for example, a summary. With the help of these
information, the template update can be accomplished without necessarily browsing the decision
making process. When the update is over, the actually applied changes should also be stored
for documentation purposes. A documentation of the encountered difficulties would be useful for
further modifications (lessons learned). The actual modifications are also intended to support
engineers in charge of modifying the template instances. Otherwise, without documentation, they
would have to analyse the modified template, which would require additional time. Again, being
able to reference external elements can be useful in this case.

8.3.2.2 Benefits

The benefits of the use of a customised IBIS-based system for the template update decision support
are numerous.

First an IBIS provides an argumentation tool for distributed and asynchronous collaboration
on decision making, as classified by the Computer Supported Concurrent Work matrix presented
in table 3.1 page 46. Engineers are provided with an adequate tool to work together in order
to rapidly solve template issues and find a consensus about solutions. As the decision process is
structured, the understanding of the various propositions and debates is facilitated.

∼ 95 ∼

CHAPTER 8. COLLABORATIVE TEMPLATE ISSUES SOLVING

The IBIS is also a design rationale tool. Thus the decision process is documented and stored
so that future issue solving can rely on past experiences. The reuse of past experiences is a key
factor to avoid mistakes and speed up the process.

The IBIS framework is self sufficient to support the decision process. However, in order to
extend its functionalities, concepts to support and to document the modifications have been added
to the system. The update of template instances is enhanced by adding a description of the planned
modifications resulting from the reached consensus. Engineers in charge of the instance updates
would be able to quickly start the update without having to analyse the decision process in order to
extract the relevant information. So it endorses also the role of a communication solution. Then,
after the modifications are made, they can be documented in the system. In this way the changes
are linked with the reasons and the arguments that have led to them. So modifications applied to
a template are justified.

Another benefit comes from the references to external documents, instances or concepts from
another ontology. The references allow the decision process to remain close to the actual facts by
referencing actual objects. So the questions, positions and arguments can be supported by facts or
resources.

The choice of OWL as representation language will allow further enhancements by using a
reasoner to search into the database as well as to classify the various instances. However this is
not proposed in this work but is presented as a perspective.

8.4 Template update

The template update is the step around which this work is articulated. However few interactions
are realised with this task in order to avoid having to modify existing processes or workflows within
companies.

The proposed approach aims at giving necessary descriptions to the template update phase
as an input. These description are resulting from the collaborative decision and will guide the
update task. Then company’s processes are used for the template update. Once the update task is
completed, the changes have to be reported in the system. This is meant to document the template
evolution, as well as to provide information for the people who will update the instances.

To summarise, the information contained in the system about an issue would be the issue
definition, its resolution process, the retained solution, and the planned and actual changes. Then
possible remarks or new issues resulting from the actual modifications can be added and the solving
process continues.

8.5 Chapter summary

In this chapter, an approach to support the decision process with the purpose of finding solutions
to template issues was presented. An Issue-Based Information System was used and extended to
allow template maintainers and engineers to collaborate in a distributed and asynchronous way. It
provides a structure to the dialog and thus eases and accelerates the decision process.

The framework has been extended with concepts related to the template update problematic.
However no design domain specific concepts were proposed in order to provide a high degree of
freedom to the companies. Thus they can use their own ontologies. By integrating them within the
decision process, the adoption of the tool by the users should be easier as the functionalities are
present in the same location and linked together. In this way the design rationale aspects of the
template update would be integrated into the system without requiring an additional task. The
design rationale stored by the Issue-Based Information System combined with the description of
the modifications is used to document the template evolution.

∼ 96 ∼

8.5. CHAPTER SUMMARY

The concepts of the framework are represented within an ontology. It can also be further
extended in order to cover new needs and to facilitate its integration with other ontologies. It also
present interesting reasoning capabilities for future work.

∼ 97 ∼

Chapter 9

Ontology Definition for Knowledge

Representation

Contents

9.1 Introduction . 100

9.2 Design of the ontology . 101

9.2.1 Design approach . 101

9.2.2 Definition of the domain and scope . 101

9.2.3 Reuse of existing ontologies . 102

9.2.4 Enumerate important terms . 103

9.2.5 Define classes and hierarchy . 104

9.2.6 Define classes relations and properties 104

9.2.6.1 Relations . 104

9.2.6.2 Data properties . 106

9.2.7 Define slots’ facets . 106

9.2.8 Instantiation of the ontology . 106

9.3 Presentation of the defined ontology . 106

9.3.1 Concepts overview . 106

9.3.2 Relations . 107

9.3.3 Rules . 107

9.4 Chapter summary . 109

∼ 99 ∼

CHAPTER 9. ONTOLOGY DEFINITION FOR KNOWLEDGE

REPRESENTATION

9.1 Introduction

In the previous chapter a decision support system for collaborative template issues solving was
presented. A short process composed of three steps was also introduced, from which the last step
is the update of the concerned template. Now the focus is put towards the updates of the instances
of modified templates in order to make them benefit of the latest modifications brought to their
corresponding template. The objective is to provide engineers in charge of the update of template
instances with a strategy for the update task, with the aim to facilitate and speed up this task.
To be able to define this strategy, an overview of the current status of the documents and their
relations is needed. Based on this overview an update sequence can be automatically computed to
guide the engineers.

In order to be able to support the instances update, several information are needed, i.e., a
computer understandable representation of templates, CAD models and their relations is required.
It will result in an overview that can be used by the engineers and processed by computers. The
use of such an overview is more convenient and faster than working directly with the documents.
For this purpose the templates and the CAD models have to be analysed in order to extract the
raw data. Raw data only represent explicit knowledge. Parts of the knowledge, called implicit
knowledge, are not directly available for computer use and must thus be inferred.

An ontology has been defined in order to represent a part of the knowledge template domain,
with the purpose to share its definition and support the template instances update problem solving.
The choice of an ontology has been made because it allows a formal representation of concepts,
which is well suited for computer processing such as for reasoning. The reasoning mechanisms
are able to infer implicit knowledge from the domain definition. Implicit knowledge could not be
extracted directly from documents’ raw data. For example during the analysis of CATIA V5, some
lacks were identified because of missing or non-accessible information like template instances as
presented in table 6.6 page 85. When all the raw data extracted from the documents is combined
and processed by ontology inference capabilities, it gets enriched and becomes knowledge about
the relationships.

The hierarchical nature of ontologies provides interesting characteristics for abstraction and
specialisation of concepts. Thus generic concepts can be defined that abstract CAD system specific
concepts. Instances of the CAD system specific concepts can thereafter be classified within these
generic concepts. In this way, data from heterogeneous systems can be integrated and manipulated
via the generic concepts.

Another advantage of using ontologies is that they can be managed independently from any
application. This reason has also been pointed out by Lukibanov [2005] for his modelling choice
in his approach for template update, which is presented in section 5.3.2. Ontologies are extensible
and scalable and can grow independently from an application [Andersen and Vasilakis, 2007].
Thus if new needs or requirements are discovered, they can be integrated into the ontology without
interfering with existing applications. The extensibility of ontologies is a key property to facilitate
the reuse/sharing of an ontology between applications.

According to the classification of ontologies available in section 2.2.1.3, the designed ontology
can be classified as an application ontology. It is designed for one specific application and in order
to address a specific problem. Thus it contains concepts that are little purpose to be used within
other contexts or domains. Nevertheless the ontology includes some concepts from the CAD and
KBE domain. Thus the ontology could be extended to address both of these domains and then
could be reused directly by other applications related to these domains.

The design of an ontology is a complex process that also impacts the application using the
ontology. For this purpose a methodology, from the ones listed in section 2.2.2, has been followed
in order to successfully achieve this crucial task.

∼ 100 ∼

9.2. DESIGN OF THE ONTOLOGY

9.2 Design of the ontology

9.2.1 Design approach

Andersen and Vasilakis [2007] stated that “it requires very good knowledge of the domain to be
modelled, the ability to conceptualize the underlying ideas and a good knowledge of the syntax of
the ontology language” in order to correctly express the knowledge model. Furthermore to design
an ontology, the use of an adequate ontology engineering methodology is recommended. In this
way the design can rely on researches and experiences in the ontology domain.

The Ontology Development 101 methodology is defined by their creators as a simple knowledge
engineering methodology. The engineering method includes the following seven steps:

1. Define the domain and the scope of the ontology.
2. Consider reusing exiting ontologies.
3. Enumerate important terms in the ontology.
4. Define the classes and the class hierarchy.
5. Define the properties of classes (slots).
6. Define the facets of the slots.
7. Create instances.

It is an iterative methodology. The ontology has to be maintained and evolves depending on new
needs, better understanding of the domain or with the feedback of its use. So these steps will be
repeated, in order to extend, revise or enhance the ontology according to the new information.

In section 2.2.2 methodologies to design ontologies have been presented. A quick comparison
between these methodologies based on the reviews in the literature is presented in section 2.2.2.3.
From these information, the Ontology Development 101 methodology from Noy and McGuinness
[2001] has been chosen for the reasons named below.

This methodology was chosen because of its lightness and the simplicity to use it. It is also
independent from the representation language so it provides the liberty to choose the adequate
representation language according to the needs or experience. The Ontology Development 101 was
also ranked first in the methodology comparison from Hakkarainen et al. [2005] and that has
also consolidated the choice of this methodology.

In order to know the representation and reasoning capabilities of the language and thus to
correctly express the model, the representation language for the ontology has been chosen before
starting the design of the ontology [Andersen and Vasilakis, 2007]. Bylander and Chan-
drasekaran [1988] stated that “representing knowledge for the purpose of solving some problem
is strongly affected by the nature of the problem and the inference strategy to be applied to the
problem.” The Web Ontology Language (OWL), which is presented in section 2.3.3, has been se-
lected. OWL is a standard, which is still evolving to provide better reasoning capabilities. Within
all OWL version, the OWL Lite and OWL DL are interesting because they guarantee compu-
tational completeness, which is not the case of OWL Full. They are also based on a subset of
Description Logics and many tools are available to work with OWL. The latest version is OWL 2.
However OWL 2 was not standardised when the design of the ontology began, thus it was not in
competition for the representation language selection.

So the Ontology Development 101 methodology [Noy and McGuinness, 2001] has been used
to design the OWL ontology used in the scope of this work. It is composed of seven iterative steps,
with each of them addressing a particular aspect of the ontology. The following section will go
by all the seven steps in order to present the process that has led to the ontology that is used to
compute update sequences.

9.2.2 Definition of the domain and scope

The definition of the domain and the scope of the ontology is a crucial step as it narrows the
knowledge to be represented to the essential. Otherwise the concepts defined in the ontology could

∼ 101 ∼

CHAPTER 9. ONTOLOGY DEFINITION FOR KNOWLEDGE

REPRESENTATION

spread within domains. The analysis and the definition of these domains would require time, which
would be lost in the case these concepts are not used.

According to the methodology, the definition of the scope and domain consists in answering the
following questions. These questions are used to limit the scope of the model. Nevertheless the
answers are subject to change during the evolution of the ontology.

What is the domain that the ontology will cover? The ontology is meant to represent
KBE templates, template instances and information about their relationships in the context of
CAD assemblies. However in the scope of this work, the KBE templates are limited to the product
design domain.

For what are we going to use the ontology? The ontology will be used by computer systems
to compute a sequence of updates for template instances. This sequence should support engineers
in their template instances update task, after some modifications have been made to a template.

For what type of questions the information in the ontology should provide answers?

These kinds of questions are also called “competency questions” [Grüninger and Fox, 1995].
Here is a non-comprehensive list of questions the ontology, used as a knowledge base, should be
able to answer in order to help solving the studied problem.

• What documents refer and are referred by a given document?
• What are the instances of a given template and where are they located?
• What are the inputs and outputs of a given template?
• What is the type of a given relation between two documents?
• What are the type, location and name of a document?

Who will use and maintain the ontology? The ontology is not meant to be used by a human
user directly. The objective is to provide a computer understandable and processable representation
to a computer software in charge of calculating an update sequence, which will then be used by
a human user. Thus computer scientists would be indirect users of the ontology, but direct users
will be software or engineers if they need to retrieve specific information.

Its maintenance will require some knowledge about ontology design. Hence it can be achieved
by design engineers with this competency, in order to extend the ontology with their domain or
application expertise.

Summary Through these questions a preliminary draft of the ontology and its usage can be
made. The first two questions pointed out the domain and scope of the ontology that are KBE
templates and the creation of an update sequence for template instances update. The content
of the ontology starts to be defined by giving answers to the competency questions. Finally the
definition of the users and maintainers provides an idea on some indirect requirements to facilitate
the manipulation of the ontology. In this case it has a weak impact as the persons accessing the
content of the ontology, users and maintainers, are from the same domain.

9.2.3 Reuse of existing ontologies

Existing ontologies can be either reused or can be considered during the design of a new ontology.
It allows to mainly save time even if a formalism translation is needed between the existing ontology
and the formalism chosen for the new ontology.

In the scope of this work only one work dealing with KBE templates by using an ontology
has been found. It has been undertaken by Lukibanov [2005] wherein an ontology is used for
template management. This work is presented in section 5.3.2. Unfortunately no publication of

∼ 102 ∼

9.2. DESIGN OF THE ONTOLOGY

Figure 9.1 – EXPRESS-G schema representing the definition of a template in STEP.

the ontology has been available, certainly due to intellectual property issues as it was the result of
industrial research work. Thus this work was complex to take into account due to the presented
circumstances and thus few elements have been reused.

There are few defined ontologies that are available within the CAD and KBE domains. However
many standards are available and can be used to define some parts of the ontology. One of the most
famous and used standard in the CAD domain is the Standard for the Exchange of Product Model
Data or STEP (see section 2.4). The focus has been put on this standard as it can be considered
as the larger and most complete in this domain. The aim of STEP is to describe product data
through the life cycle of a product and is used for product data exchange. However STEP does
not address KBE or KBE templates. So it is not suitable to use STEP in the scope of this work.
Nevertheless it can provide generic concepts about documents.

In the scope of this work, aspects related to documents and template identification were studied.
For this purpose diverse STEP Applications Modules (AM) were investigated. The AM 1722, which
is called “Part template,” aims at the identification of templates, its versions and definitions. Figure
9.1 shows the entity level defined in this AM with an EXPRESS-G diagram. In the scope of this
work the top part of the schema is particularly interesting. It can be seen that a template is a
specialisation of a STEP product. Thus it has versions and definitions. These concepts will be
reused for the definition of the ontology.

Other AMs are related to templates such as the 1717 or 1720. However they do not provide
relevant concept definitions for this work.

9.2.4 Enumerate important terms

Noy and McGuinness [2001] advised that concepts in an ontology should be very close to the
objects as an ontology is a model of the world, thus its concepts have to reflect the reality. For
this reason CATIA V5 has been analysed in chapter 6 as well as the template concepts that are in
the scope, in order to point out existing terms.

Terms that have been enumerated come from 4 locations: the original needs that have been
defined to update template instances, the state-of-the-art about KBE templates, the CATIA V5
analysis, and the STEP standard. Collected terms are presented in the following non-comprehensive

∼ 103 ∼

CHAPTER 9. ONTOLOGY DEFINITION FOR KNOWLEDGE

REPRESENTATION

list: (i) Already identified from the problem definition were terms like template, instance, depen-
dence, relation, input/output or update. (ii) Concerning the literature, terms like maintenance,
link, link management, assembly, or template type have been raised. (iii) CATIA V5’s terms re-
lated to documents types, MML and templates are also present in the list. (iv) Finally from the
STEP standard, terms to identify and version templates were included.

9.2.5 Define classes and hierarchy

According to the methodology the definition of the classes and the relations are two very close
steps because users usually define relations after having defined few concepts. In order to provide
a clear overview and to facilitate the understanding both steps have been treated separately.

Uschold and Gruninge [1996] identified three possibilities to develop a class hierarchy: the
top down, the bottom up and a combination of both approaches. The top down approach consists
in defining the more generic concepts first and then continuously refine them. The bottom up starts
from the most specific classes that are then grouped together under more general concepts. The
mixed approach consists in defining the most salient concepts and the generalising or specifying
them appropriately.

The third approach has been used. The listed terms in the previous section have to be filtered
in order to select the ones that will take place in the hierarchy. The construction of the hierarchy
was articulated around the Template and Instance concepts because they are the centre of interest.
At the same time foundation elements that are the CATIA V5 template concepts are present. The
objective was to link them together by specialisation and generalisation.

The resulting taxonomy is presented in figure 9.2 on page 105. It shows the retained classes
and their organisation.

9.2.6 Define classes relations and properties

9.2.6.1 Relations

Regarding the class relations (object properties), the focus has been put on the representation of
relations between documents. Each link identified within CATIA V5 was added as a relation.

Then like for concepts, relations have been classified. Table 6.1 on page 78 presents the various
links that have been identified within CATIA V5. As said previously each link does not have the
same impact or behaviour. For this purpose all links that are involved in the information flow and
the update propagation have been grouped under a parent relation called DependenceLink. In this
way the CAD system links are abstracted and there is only one link that has to be managed for
the dependencies.

In the scope of the addressed problem, a link has to be created in order to relate a template to
its instances. To be able to do this, a relation called InstanceLocation_link has been added and
will link a template definition to one of its corresponding instances.

More generally many links have been defined that are not available in CATIA V5. For instance
in CATIA V5 a Doc link can create a relation between an analysis and the analysed document as
well as a results file. Two new links have been introduced to distinguish them because the first one
is the input of the analysis, and the second is the output. The objective is to infer these links by
rules in order to add knowledge that is not explicitly available by the analysis of documents. In
this way the algorithm will be able to take advantage of this enriched representation to compute
update sequences.

Furthermore all inverse links were also defined in order to be able to navigate between documents
in both directions. This is necessary because CATIA V5 MML are unidirectional.

∼ 104 ∼

9
.2

.
D

E
S

IG
N

O
F

T
H

E
O

N
T

O
L

O
G

Y

Figure 9.2 – Taxonomy of the designed ontology.

∼
105
∼

CHAPTER 9. ONTOLOGY DEFINITION FOR KNOWLEDGE

REPRESENTATION

9.2.6.2 Data properties

Data properties can be considered as attributes of classes in object-oriented programming. They
are used to describe concepts like the colour of a car. In the scope of this work they were mainly
used to store document related attributes like the location or the name.

9.2.7 Define slots’ facets

The facet of a slot is the type of value it can take. For instance a data property that represents
the name of a document would be a string.

The facets are also used for object properties. An object property is a relation that has a source
that is called the “domain” and a target that is the “range.” The range and the domain are a class
or a class expression, e.g., the intersection or union of classes. The facets of the MML correspond
to the classes representing the source and target documents defined in the table 6.1.

The definition of the facets is important when defining a domain. It can be used by reasoner
engines to check the consistency of the definition as well as to classify instances.

9.2.8 Instantiation of the ontology

The instantiation of the ontology has been automated as it would be a huge and time consuming
task for a human. Thus it has been entrusted to a computer system that is in charge of the
analysis of the documents in order to extract the relevant information. Documents that are related
to templates, CAD models or documents that are source or links are analysed. Then all found
relations as well as the CAD system specific concepts are instantiated. It converts the raw data
extracted from documents into instances of corresponding classes and relations. The other concepts,
which are more generic, are meant to be inferred.

9.3 Presentation of the defined ontology

9.3.1 Concepts overview

The previous sections presented the approach followed to define the ontology. It was based on the
Ontology Development 101 methodology.

The resulting ontology has been implemented with the Web Ontology Language. It is composed
of three levels. Figure 9.3 illustrates these levels by showing a simplified extract of the ontology

Product

Version

Definition

Document

Instance_document Template_document

CATDocument

CATProductCATPart

Feature

Document_template_definition

of

of

has

is-a

is-a

is-a

is-a

has

Figure 9.3 – Extract of the ontology with the abstraction level and the CAD system concepts
(here CATIA V5).

∼ 106 ∼

9.3. PRESENTATION OF THE DEFINED ONTOLOGY

for a better understanding. The rectangles (blue) represent the highest level, which contains the
most generic concepts, here related to documents and were taken from the STEP standard. It can
be seen that a product is composed of versions that have definitions like presented in figure 9.1.
In the middle are the application related concepts, which are presented as ovales (orange). They
represent concepts necessary to solve the problem and provide the CAD system abstraction. Finally
the bottom level is the CAD system specific level, represented by rounded rectangles (green) in
figure 9.3. Here concepts from CATIA V5 are represented. A CATDocument can contain features,
such as a Document_template_definition feature. The concepts of the ontology correspond to
those presented in the taxonomy available in figure 9.2.

In section 9.2.8 has been said that only the CAD system specific concepts are instantiated and
thereafter the instance will be classified within the other concepts. Thus these other concepts need
to be defined according to the CAD system specific concepts. For instance, the concept called
Template_document has been defined (see figure 9.3). In CATIA V5 the definition of a template is
realised by a feature located inside a document, even for document templates. However it would be
more convenient to classify a document that contains such a definition as a Template_document,
because this piece of information is not explicit without accessing the document content. So the
Template_document concept has been defined as follows:

Template_document ≡ (CATPart ∪ CATProduct) ∩ ∃has.Document_template_definition

Other concepts were defined the same way, like the Template_container, which is a document
containing a template feature.

As said previously, there is no template instance concept in CATIA V5. However it is an
important concept in the scope of the problem solving. Thus it has to be inferred. Instances have
been defined as follows:

Instance_document ≡ (CATPart ∪ CATProduct) ∩ ∃has.No_template_definition

∩∃hasAttribute.TemplateID

This defined concept allows to classify an instance when it has a TemplateID, which is an unique
identifier placed in the template and that will be copied during the instantiation, and it does not
contain a template definition, in order to differentiate the instance from the template. In this
defined concept can be noticed that the negation present in the definition given in the previous
sentence is not present (“does not contain a template definition”). It has been expressed with the
No_template_definition concept. This is due to the open-world assumption of ontologies, which
was introduced in sections 2.3.3.4 and 2.3.3.6, wherein everything that is not explicitly stated is
considered as unknown and thus nothing can be inferred.

9.3.2 Relations

Besides concepts, relations are the second core elements of an ontology. Figure 9.4 presents a part
of the relations that have been defined. The relations have been classified and form a hierarchy. At
the top of the figure is the DependenceLink that gathers the CAD system specific links implying
a dependence between documents. This relation will be used by the algorithm in order to rank
the documents. The Contains property is a transitive property that allows to know all elements
contained in another, even recursively. Furthermore there are the links that are meant to represent
CATIA V5 links but also more generally to represent a relation between two documents. The
inverse links have been defined to enable the navigation in both direction between documents.
Then the template related links were also grouped together.

Inference engines take the object properties into account. However relations can not be defined
like concepts. Thus in order to enhance the inference possibility concerning relations, rules have
to be defined.

∼ 107 ∼

CHAPTER 9. ONTOLOGY DEFINITION FOR KNOWLEDGE

REPRESENTATION

Figure 9.4 – Classification of the object properties within the ontology.

9.3.3 Rules

Rules have been added within the definition of the ontology in order to support advanced inferences
with instances and relations. They are powerful tools that allow to increase the expressiveness of
OWL. Rules enable to draw conclusions from given facts on the schema antecedent-consequent.

In section 2.3.3.6 the Semantic Web Rule Language has been presented. It allows to use rules
in conjunction with OWL and thus allows to express more complex relations and definitions of
concepts and relations by involving several instances in the reasoning.

SWRL rules are used to enrich relations. The relation between a template and its instances
(InstanceLocation_link) is created between a template and its instances, which share the same ID
as the template, via the following rule:

Template_document(?t) ∧ hasTemplateID(?t,?id) ∧ TemplateID(?id)

∧ Instance_document(?i) ∧ hasTemplateID(?i,?id)

⇒ InstanceLocation_link(?t, ?i)

It was said in section 9.2.6.1 that two new links were defined to distinguish the input from
the output of a CATIA V5 analysis. This is necessary because a modification in the input of an
analysis would require to redo the work in order to update the results. This is realised by the two
following rules, based on the target document type:

∼ 108 ∼

9.4. CHAPTER SUMMARY

CATAnalysis(?a) ∧ Doc_link(?a,?t) ∧ Text(?t)

⇒ AnalysisOutput_link(?a,?t) ∧ AnalysisResult(?t)

CATAnalysis(?a) ∧ Doc_link(?a,?t) ∧ CATPart(?t)

⇒ AnalysisInput_link(?a,?t) ∧ AnalysisInput(?t)

9.4 Chapter summary

This chapter introduced an ontology that has been defined with the purpose to represent and infer
knowledge about documents. This knowledge will thereafter be used to support the generation of
update sequences.

The selection of an ontology rather than another representation has been made due to the formal
definition and reasoning capabilities provided by ontologies. Ontologies are used to represent a
domain or a part of a domain in a formalised way. The Web Ontology Language has been chosen
to develop the ontology. It is a W3C standard language for the ontology representation, which was
developed for the Semantic Web. It provides a formal representation based on Description Logics
and is supported by several reasoners. Furthermore the SWRL language can be used to define
rules, which will be applied on the ontology by the reasoning engine.

OWL reasoning capabilities provide several benefits. First it allows to check the consistency of
the definition of the represented domain. In this way the domain definition is guaranteed without
contradictions. Ontologies can also be used to infer new knowledge. For instance reasoners are
able to classify concepts but also instances of the ontology according to the domain definition.

In the instances update application, reasoning is used on the ontology in order to infer implicit
knowledge. The implicit knowledge can not be directly extracted from the CAD documents.
So reasoning allows to classify documents or to create new relations between documents. The
document classification is also used to abstract the CAD system and generalise this approach.

A methodology has been followed in order to design the ontology. The different steps have been
described as well as the undertaken actions and results. This has led to the definition of concepts,
relations and also rules that define the ontology.

There is a major difference between databases and ontologies that has to be taken into account
when defining an ontology. Ontologies are based on the open world assumption that means that
something that is not present in the knowledge base is not considered as false (see section 2.3.3.4).
This means that it has to be explicitly stated that an element does not exist. This was, for example,
the case for the identification of template instances.

Table 6.6 presented the different template implementation types identified in CATIA V5 with
their retrieval status. There were major issues concerning the identification and tracking of in-
stances as well as the identification of documents used as templates without an explicit template
definition from the dedicated CATIA V5 workbench. The concepts present in the ontology com-
bined with reasoning and the addition of information in the CAD models allow to classify these
documents and thus to solve these issues. Only the PowerCopies instances could not be addressed
due to the complexity to identify their instances because there are features and geometry that can
not be distinguished from the others. A solution would be to resort to pattern matching but this
was not investigated in the scope of this work.

The ontology contains about 40 classes, more than 60 relations and 5 rules. The expressiveness
of the designed ontology is equivalent to the SHI(D) Description Logic, which is a subset of OWL
Lite. The functional properties have not been used. According to table 2.1 (page 41) the reasoning
complexity time of the designed ontology is ExpTime.

The designed ontology is an application ontology, which has been developed for the specific
purpose of solving the template instances update issues. However it can be reused to develop
a visualisation tool, for example, the visualisation of all dependencies between documents. The
resulting ontology is of a reasonable size and thus would be simple to maintain and to evolve for
further applications.

∼ 109 ∼

CHAPTER 9. ONTOLOGY DEFINITION FOR KNOWLEDGE

REPRESENTATION

According to Noy and McGuinness [2001] the assessment of the ontology quality is realised
by using the ontology in the application it has been designed for. Next chapter will present the
algorithm that uses the ontology in order to compute sequences to guide engineers during the
template instances update task.

∼ 110 ∼

Chapter 10

Update Sequence Computation

Contents

10.1 Problem definition . 112

10.1.1 Introduction . 112

10.1.2 Objectives . 112

10.1.3 Problem representation . 113

10.2 Tested approaches . 113

10.2.1 Introduction . 113

10.2.2 Topological sort . 113

10.2.2.1 Concept and scope . 113

10.2.2.2 Algorithm . 114

10.2.2.3 Application and results . 115

10.2.2.4 Solution review . 115

10.2.3 Ranking . 118

10.2.3.1 Algorithm . 118

10.2.3.2 Results . 119

10.2.3.3 Complexity analysis . 122

10.2.4 Cycle handling . 123

10.3 PDM check-out aware sequence . 124

10.4 Proposed approaches for template instances update 125

10.4.1 Re-instantiation . 126

10.4.2 Apply local changes . 126

10.4.3 Rebuild the template instance content 126

10.4.4 Comparison of the proposed methods 126

10.5 Chapter summary . 127

∼ 111 ∼

CHAPTER 10. UPDATE SEQUENCE COMPUTATION

10.1 Problem definition

10.1.1 Introduction

An ontology that represents the knowledge about documents has been presented in the previous
chapter. It allows the inference of implicit knowledge from the explicit information extracted from
CAD models and templates. Documents can thus be classified as well as relations between them.
This is used as a solution to abstract the CAD system. New knowledge can also be discovered
according to the definition of the domain present in the ontology.

In the scope of this work the issue of KBE template instances update is addressed. The update
of instances is a complex and time consuming task as it requires a deep analysis of document
relationships to be able to update needed documents as well as not forgetting any of them. The
complexity of the network created by the documents and their relations make this task difficult for
engineers without supporting tools. For this reason an approach to support this task is proposed.
It is based on an algorithm that generates a sequence of documents that have to be processed in the
scope of the update. The knowledge present within the ontology is used by the update sequence
computation algorithm.

10.1.2 Objectives

The aim of the algorithm is to produce a sequence that avoids engineers the effort of finding which
documents have to be updated. Within large CAD assemblies, the number of documents can reach
several thousands. Furthermore templates can be used in an arbitrary number of assemblies. In a
such context the update of template instances is a challenging task.

The resulting sequence should provide a strategy to guide engineers during the update by
providing the order in which the documents have to be addressed in an automated way. The
computation of the sequence has to take into account several aspects and issues. For example the
direct and indirect instances presented in figure 6.1 (page 75), as well as to prevent redundant
instantiations, overwriting by wrong replacement order or to update an instance that must not be
updated because it is in a released status.

Template instances do not share the life cycle of their template as they become independent
documents through the instantiation. Hence the life cycle of template instances has also to be taken
into account during the sequence computation. Figure 10.1 presents the life cycle of a template
instance as its has been defined in this work. The first step, “In context,” represents the status
of an instance that has been put in the target context before the inputs are set. That means the
instance is present but has not adapted itself to the context. The “Instantiated” status represents
the instance adapted to the context and providing the functionality. It is the standard status of
a template. The instance can also be modified and customised by an engineer for many purposes,
such as to take into account specificities of the context. The figure 1.10(b) (page 18) illustrates such

In context Instantiated

ModifiedFrozen

Figure 10.1 – Template instance status evolution during its life cycle.

∼ 112 ∼

10.2. TESTED APPROACHES

a customisation wherein the instance on the right has been modified in order to avoid a collision
with the metal sheet. When a product is ready for manufacturing, its geometrical representation
must not be changed anymore. For this reason an instance can also be in a “Frozen” state, so it
should not be updated if the template definition changes.

10.1.3 Problem representation

The template instances update issue has been studied as a dependency management problem (see
section 4.3). Documents and relations form a graph that will be used as a data structure to solve
the problem. Within this graph, a node represents a document and an edge represents a link
between two documents. This is achieved through the ontology wherein the instances represent
documents and object properties the links. The instances can be classified under several concepts,
hence the nodes are typed.

The particularity of this approach is that nodes and edges are typed according to their classi-
fication made in the ontology by using inference engines. The algorithm will use generic concepts
for the node and edge types in order to not be dependent on the CAD system.

In order to compute a sequence according to the graph and ontology knowledge, two approaches
were tested based on dependency graphs, which have been presented in section 4.3.

10.2 Tested approaches

10.2.1 Introduction

In order to generate a sequence, the following principle has been applied: a template instance
or document can only be updated if and only if all documents it depends on are up-to-date. To
do that two algorithms were tested to generate what is called an update sequence: a topological
sort and a ranking algorithm. Both tested approaches work on dependency graphs and construct
sequences iteratively. However they have been adapted to take advantage of the knowledge about
documents that is stored in the ontology.

Both algorithms are interesting because they can work locally. They do not need to have and
work on the whole graph but rather explore it iteratively. This presents huge benefits when having
several thousands nodes that are not all subject to be involved in the sequence construction.

In section 4.2.2, it has been said that cycles are problematic when working with dependencies.
Thus a mechanism is necessary in order to prevent infinite loops. The detection of cycles in realised
during the construction of the sequence. The following section will first present the algorithms used
to compute update sequences, and thereafter the cycle handling approach. In this way the focus
is put on the update sequence construction.

10.2.2 Topological sort

10.2.2.1 Concept and scope

The topological sort has been introduced in section 4.3.2. It is a basic approach for job scheduling.
It allows to linearly order the jobs according to their dependencies by working on a directed acyclic
graph. This algorithm seemed to be a good starting point to solve the update issues.

The algorithm was studied on a subset of the template instances update problem. The aim
was to evaluate this approach on a smaller problem, which consists in the generation of an update
sequence for update between documents, without templates. When a document in an assembly
is modified, the changes may impact related documents, because of an external reference on a
parameter or geometry. Hence the related documents will require an update to take the changes
in the referred document into account.

∼ 113 ∼

CHAPTER 10. UPDATE SEQUENCE COMPUTATION

10.2.2.2 Algorithm

The adapted topological sort algorithm is presented in algorithm 10.1. It creates a sequence of
documents that have to be updated following some modifications in a document.

Algorithm 10.1: Adapted iterative DFS-based topological sort for document update schedul-
ing.

Result: Linear sequence of documents presenting the order in which they have to be
updated.

Input: A list modifiedElements of initially modified documents.
Input: The OWL ontology onto.
Output: An ordered list of documents res.

begin1

res← ∅2

dict← {} ; // Dictionary mapping a value to a list3

list← modifiedElements ; // List used as a stack4

while list 6= ∅ do5

elem← ReadTail(list)6

if not Contains(dict, elem) then7

// Get all dependent documents

children← GetLinkTargets(onto, elem, DependenceLink_inv)8

else9

// Retrieve the stored list of children

children← GetList(dict, elem)10

if children 6= ∅ then11

child← ExtractTail(children)12

if not Contains(res, child) then13

Append(child, list) ; // Becomes the next element to be visited14

Update(dict, elem, children) ; // Removes the child from the15

dictionary

else16

// If all children have been visited, the current node can be added

to the sequence, and removed from the stack

Append(ExtractTail(list), res)17

return res18

end19

The main differences between the proposed algorithm and the topological sort is that only a
part of the graph is taken into account. Not the whole graph created by documents and their
links is processed, only necessary elements based on the given modified documents, which are
starting nodes. The topological sort only takes a graph as input. In the adapted version, the list
of modified documents has been added to the inputs list. Hence the construction of the sequence
starts from defined nodes. The algorithm works also well if the input documents are located in
different connected components in the case of the graph is non-connected.

A topological sort can be obtained via different methods. The topological sort approach chosen
in this investigation is using of a customised DFS. The approach from Kahn [1962], wherein the
algorithm starts with the nodes without inbound edges, can not be applied because the algorithm
does not work on the whole graph. Thus there may be inbound edges that come from any documents
in the graph. Additional computation would be required in order to check if these inbound edges
are impacting the computation or if they can be removed. The most convenient implementation of
DFS is a recursive algorithm because it is easy to write and to understand. However in this case
an iterative version has been developed. It uses a stack to store the nodes that have to be visited.
This choice has been made to avoid performance issues [Lantzman, 2007]. The recursive version

∼ 114 ∼

10.2. TESTED APPROACHES

would necessary be less competitive as an object-oriented programming language has been used to
implement it. Hence the numerous calls to the recursive function may cause a call stack overflow
due to the numerous nodes to visit in depth. Furthermore the computational performance of the
iterative algorithm is better than the recursive one.

The post-order traversal needs to be used to create a topological sorted sequence. Thus docu-
ments are only added to the sequence once all their children have been visited. In order to fulfil this
requirement a dictionary, which maps an element to another one, has been used to store remain-
ing nodes’ children that have to be visited. This would be implicitly achieved with the recursive
version. The obtained sequence has to be inversed in order to obtain the update sequence that can
be used. Like the DFS, this algorithm presents a linear complexity of O(V + E), where V is then
number of vertices and E then number of edges.

Another particularity is that the algorithm resorts to the ontology defined in the previous
chapter (line 8). Hence a reference to the ontology has also been added to the inputs list. The
ontology can be navigated or queried through the reasoner in order to formulate more complicated
queries.

In this specific case, only the DependenceLink_inv are used. Thus only the documents that have
links that are classified as DependenceLink_inv are added to the sequence. Here the classification
capabilities of ontology with a reasoner are again useful in order to obtain inverse links as the links
are unidirectional. Thanks to the ontology combined with a reasoner, this task is achieved before
the sequence computation, thus the information can be directly used by the algorithm. It results
in a simple and easy to maintain algorithm that can handle various types of documents.

10.2.2.3 Application and results

As said previously, several solutions can be valid topological sort results. It is also the case in this
application because the ordering is based on the dependencies.

This approach has been tested on one assembly, which is the clamp presented in figure 1.10(a).
The clamp is an assembly composed of several documents and has been design with CATIA V5.
Figure 10.2 represents a dependency graph of the clamp assembly. In this graph there are three
types of document: (i) assembly documents that are in green, (ii) part documents that are in
orange, and (iii) spreadsheets in blue. The represented relations are DependenceLink. Thus the
document at the origin of the link refers to an element in the target document or in the document
itself.

Let us suppose that two documents were modified, the Adapters and the Skeleton 11. Hence
these documents are the inputs of the algorithm with the ontology instantiated from the automated
analysis of the assembly documents. Figure 10.3 presents the result obtained by using the algorithm
10.1. The solution is a sequence of five documents. Only the necessary documents are kept in the
solution. This sequence has to be read starting from the vertex without inbound edges (Skeleton

11) and then by following the arrows.

10.2.2.4 Solution review

The obtained solution is not satisfying if compared with a solution given by an expert about the
same problem (see figure 10.4).

In the solution provided by the expert two sequences are visible. These two sequences are inde-
pendent from each other because they are based on the analysis of two non-connected components
of the graph. Thus this solution is better as the two sequences could be processed concurrently
and is easier to understand than the previous solution.

The solution to generate such a sequence would be to detect non-connected components con-
taining an input document and apply the algorithm on them separately. However this approach
also shows some limitations. For example if the main skeleton document is modified, the se-
quence presented in figure 10.5 would be obtained. As you can see there is only one sequence
because it can not be decomposed into connected components. However this sequence, although

∼ 115 ∼

CHAPTER 10. UPDATE SEQUENCE COMPUTATION

Figure 10.2 – Documents and their DependenceLink corresponding to the clamp assembly shown
in figure 1.10(a). The CAD models were realised with CATIA V5. Green boxes are
CATProducts, orange boxes represent CATParts and blue boxes represent external
spreadsheets.

Figure 10.3 – Sequence resulting from the algorithm 10.1 on the graph presented in figure 10.2
with Skeleton 11 and Adapters as modified documents.

∼ 116 ∼

10.2. TESTED APPROACHES

Figure 10.4 – Update solution provided by an expert.

Figure 10.5 – Algorithm 10.1 applied on non-connected graphs, with the main skeleton as mod-
ified document.

∼ 117 ∼

CHAPTER 10. UPDATE SEQUENCE COMPUTATION

being correct, is still not satisfying because some documents can still be processed at the same
time. For instance, on the left of the picture are located the Vertical blade and the Double

riser that have no relations with the three documents on the right. Nevertheless they are present
in the same sequence.

Thus even on connected graphs, the algorithm based on the topological sort does not suit to the
needs. The linear arrangement of the sequence is a limitation in todays concurrent environment.
For this reason another approach has been tested in order to solve this issue.

10.2.3 Ranking

The evaluation of the topological sort showed that constructing update sequences based on depen-
dencies is a relevant approach. However it presents some limitations about the concurrency of the
updates as it only provides linear sequences. For this purpose another algorithm has been tested
which provides a ranking-based approach.

In addition to the previously tested approach, this approach takes both templates and instances
into account. Thus more complex mechanisms are involved.

10.2.3.1 Algorithm

The principle is to attribute an absolute rank rk, where k is the number of the rank (k ∈ N),
to each document involved by the update. The update of documents is meant to start from
documents at r0, to continue with r1, then r2 and so on. Documents located at the same rank
have no dependencies against each other, and thus can be processed concurrently. In order to
update documents located at a rank ri, all the documents they depend on have to be located in
a lower rank rj , such as j < i. This approach was adapted from the graph layout algorithm from
Sugiyama et al. [1981].

Algorithm 10.2 presents the developed ranking algorithm. The sequence is built from a list
of modified documents and the knowledge present in the ontology. The modified documents are
placed at r0. Modified documents are not necessarily templates, the algorithm also allows to
generate update sequences for normal CAD assemblies like the previously presented algorithm
does. Furthermore if a document contained in a template is updated, the procedure will consider
the template as modified and thus includes it in the computation in order to update its instances.

The approach is different from the topological sort. Here the aim is to build the sequence rank
after rank, i.e., breadthwise, instead of going into depth like with the DFS. The algorithm tries to
emulate the expert thinking by constructing the sequence iteratively. To achieve that, documents
having the current document as dependency are added in the next rank (lines 10-12). Adding them
into the next rank keeps them close to their dependency, and thus its presence at this rank is easily
understandable when reading the sequence. Once a rank is built, no documents can be added into
it. However some documents can be moved to a higher rank if another dependency is found later.
So only local operations and moves are realised.

When a template is updated, all its instances are added at a rank located after the rank of
the last element contained in the template (algorithm 10.2, line 26). In this way the content
of document templates are up-to-date and can thus safely be forwarded to the instances. If an
instance is in a “Frozen” state, it will not be updated, i.e., attributed a rank and not added to the
queue. Then as the instances have changed, related documents have to be checked, links rebuilt,
etc.

The ManageParentDocuments function adds necessary container documents (algorithm 10.2,
line 16). For example when a document template instance is present at a rank, the assembly con-
taining it should be located before the instance. So it will be loaded before doing a re-instantiation
of the template.

When a document template instance is analysed, a check is realised for feature template in-
stances within this document (algorithm 10.2, lines 18-19). If a template feature instance is present,

∼ 118 ∼

10.2. TESTED APPROACHES

Figure 10.6 – Example of an indirect instance that has to be removed from the sequence as
it will be overwritten by the containing template. Example taken from CATIA
V5. Blue arrows show Instance links (see table 6.1, page 78) and black arrows
InstanceLocation links (see section 9.2.6.1).

it has to be re-instantiated when it is not present in the document template. This means the tem-
plate feature has been instantiated in the document template instance, and thus that it will be
overwritten by the re-instantiation of the document template. To avoid loosing the feature instance,
it has to be re-instantiated in the new document template instance.

The CleanSequence function looks for indirect instances and remove them if necessary (algo-
rithm 10.2, line 30). They are removed if one of the documents that includes them is an instance
of a document template being updated. Figure 10.6 illustrates this situation. The Top Finger

Template has two instances, which are targeted by a dashed black arrow. These two instances
are located in two different assemblies, the blue arrows represent Instance links from CATIA V5.
However one of the two assemblies is a template and the other is one of its instances. Thus the
second instance from the Top Finger Template would be overwritten during the re-instnatiation
of the Top of the clamp1 document. So the second instance can be removed from the sequence
as it would result in an unnecessary update. The CleanSequence also modifies the sequence in
order to remove all empty ranks that may have appeared by the move of documents due to the
iterative approach.

10.2.3.2 Results

Figure 10.7 shows the result of the ranking algorithm with the skeleton as input, which is the
same as for figure 10.5. A sequence composed of four ranks is obtained. The three documents
located at rank 1 have no dependencies against each other and can thus be processed concurrently.
This is a valuable benefit from this approach. In addition, when comparing both sequences, the
second sequence is easier to understand due to the hierarchical representation.

∼ 119 ∼

CHAPTER 10. UPDATE SEQUENCE COMPUTATION

Algorithm 10.2: Update sequence ranking algorithm
Result: An ordered sequence of ranks. Each rank contains a list of documents to be

updated.

Input: A list modifiedElements of initially modified documents.
Input: The OWL ontology onto.
Output: A list containing lists of documents.

begin1

res← ∅ ; // List of documents with a corresponding rank2

modifiedTemplates← ∅3

list← modifiedElements4

foreach elem ∈ modifiedElements do5

SetRank(elem, res, 0)6

repeat7

while list 6= ∅ do8

elem← ExtractHead(list) ; // List used as a queue9

curRank ← GetRank(elem)10

children← GetLinkTargets(onto, elem, ”DependenceLink_inv”)11

SetRank(children, res, curRank + 1)12

Append(children, list)13

if elem ∈ (Template ∪ Template_container) then14

modifiedTemplates← elem15

ManageParentDocuments(elem, res)16

if IsInstanceDocument(elem, onto) then17

featureTemplateInstances←18

MoveFeatureTemplateInstance(onto, elem, res)

Append(featureTemplateInstances, list)19

// Look for template documents in which the current element could be

contained

parentTemplates← GetParentTemplates(onto, elem)20

Append(parentTemplates, modifiedTemplates)21

if modifiedTemplates 6= ∅ then22

// Process next modified template

template← ExtractHead(modifiedTemplates)23

if IsNotFrozen(template) then24

instances← GetTemplateInstances(onto, template)25

SetInstancesRank(res, template, instances, onto) // Add the instance26

after the rank of the last document contained in template

Append(instances, list)27

until modifiedTemplates = ∅28

// Transform the list of document with associated rank into a list of

ranks associated with a list of documents

ranks← OrderPerRanks(res)29

CleanSequence(onto, ranks)30

return ranks31

end32

∼ 120 ∼

10.2. TESTED APPROACHES

Figure 10.7 – Sequence resulting from the algorithm 10.2 on the graph presented in figure 10.2
with main skeleton as modified document. Arrows target the dependent docu-
ments.

Figure 10.8 – Example of resulting sequence obtained with the ranking algorithm on a problem
with templates and template instances. Dashed blue arrows represent Instance
links (see table 6.1, page 78), dashed black arrows are InstanceLocation links (see
section 9.2.6.1).

∼ 121 ∼

CHAPTER 10. UPDATE SEQUENCE COMPUTATION

Figure 10.8 gives another example of a rank-based sequence obtained with this algorithm, now
including templates and template instances in the set of documents. The set is composed of 96 doc-
uments, including 11 templates that are used in three different assemblies. The resulting sequence
is composed of five ranks, each rank containing one or more documents. At rank 0 are located
two documents, the Stirrup template.CATPart that is the originally modified document and the
Top of the clamp.CATProduct. The latter has been added at this rank because it contains an
instance of the modified document, so it has to be loaded in order to be able to re-instantiate
the template. However the Top of the clamp.CATProduct is also a template and its content has
been modified by the update of the Stirrup instance. Thus its instances have to be updated too.
There is only one instance that is present in the Clamp template.CATProduct. This document,
being a template too, has its instances added in the sequence in order to update them.

The algorithm was tested on several configurations with different modified documents as input.
The results were satisfying when tested, i.e., used to update template instances after the modifi-
cation of one or more templates and documents. The ranking approach gives a more concise and
structured view on documents to process than the topological sort. The documents are less spread,
which allows to easily understand which actions have to be undertaken. The notion of sequence to
designate the result of the algorithm is kept, however it concerns ranks instead of just documents.
As documents located at the same rank have no dependencies against each other, they can be
processed at the same time if the necessary resources are available.

10.2.3.3 Complexity analysis

In order to evaluate the computational performance of the ranking algorithm, it was analysed in
order to estimate its time complexity. The inputs are the ontology representing d documents and
their relations, and the list of m modified documents.

An analysis of the time needed by the algorithm has been performed, according to different
inputs. The evolution of the computation time according to the increase of the number of modified
documents given as input was analysed. The tests were realised on a Pentium M 1.8 GHz with 2
GB of memory.

Figure 10.9 shows the time evolution with an ontology representing 96 documents including 11
templates. A second ontology instantiated with 25 documents including 7 templates has been used
in figure 10.10. The modified documents were randomly selected at each run, in a first time within
all documents, then only from the set of templates.

In the first figure, the selection within all documents went until 30 documents, which represents
31.25% of the documents. It is already a high rate of modified documents. The selection within
the set of templates started from one template until eleven, which corresponds to all templates
available in this example. In the second figure both selection went from one to the highest number
of documents available.

When having only templates as input the algorithm takes more time in comparison to the
selection of any document. This is the result of the impact of added template instances. The
update of an instance implies the update of its dependent documents, which can be located in
different assemblies. Thus another region of the graph formed by the documents is analysed.
When picking documents randomly, several parts of the graph formed by the documents are also
analysed. However no other parts are added to the analysis.

It can also be seen that the standard deviation is reduced when the number of input documents
increases when using only templates as input. This means that the algorithm time becomes more
regular. The reason behind this behaviour is that when a certain amount of documents is updated,
nearly the whole graph will be explored. So the number of analysed documents stabilises. Thus less
computations are required as documents are already present in the sequence. The time variation
comes from the order in which documents are explored.

The larger test ontology that has been used is composed of less than 100 documents. This is
few compared to complex assemblies like cars. No larger testing ontologies were available. Thus
it would require the design of several assemblies and templates. However, from the two figures,

∼ 122 ∼

10.2. TESTED APPROACHES

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30

T
im

e
(m

s)

Number of modified documents

Random selection of modified documents within all documents
Random selection of modifed documents within templates

Figure 10.9 – Evolution of the time needed by the algorithm according to the number of modified
documents within 96 documents. Values represent the mean and the standard
deviation on 10 runs.

a trend can be seen concerning the time complexity of the algorithm according the number of
modified documents. The curves raise quickly at the beginning and thereafter slow down The
number of modified documents still has an impact on the time. The curves present a logarithmic
shape. Thus a complexity of O(d × ln(m)) could be expected from the evolution of the curves as
the time does not raise proportionally to the number of input documents and that the time raises
slower towards the end.

10.2.4 Cycle handling

The presented algorithms are inapplicable if the graph formed by documents and their dependencies
contains cycles. In section 6.3.3.2 CATIA V5 has been tested against cycle creation. It has resulted
that no cycles can be created within the geometry but that cycles are allowed between documents
through parameters. However it ends up with at least one documents not up-to-date. Nevertheless
it has to be taken into account that Import links and KWE_CONTEXTUAL links can not be
differentiated due to CAA API restrictions (see section 6.4.2.1). Thus a combination of both link
types can result in a loop between documents. So the approach needs to prevent infinite loops as
they are possible in the representation even if there is, in a practical way, no loop inside CATIA
V5 models. However this case is rare as the design leads to a hierarchy of documents with the
more detailed documents referencing to the ones from a higher level. Nevertheless a cycle detection
mechanism has been added for the case that this situation appears.

∼ 123 ∼

CHAPTER 10. UPDATE SEQUENCE COMPUTATION

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

T
im

e
(m

s)

Number of modified documents

Random selection of modified documents within all documents
Random selection of modifed documents within templates

Figure 10.10 – Evolution of the time needed by the algorithm according to the number of modified
documents within 25 documents. Values represent the mean and the standard
deviation on 10 runs.

In section 4.3.1 some approaches to detect and remove cycles on graph were presented. In the
scope of this work cycles have been detected by using an approach close to the one from Floyd
[1967], which is presented in section 4.3.1. The cycle detection can not be done in a static manner,
i.e., by analysing the whole ontology instances. This would be time consuming and would not tell
which relations should be removed in order to delete a cycle. Furthermore the definition of the
feedback edge set is a NP-hard problem to solve.

The detection of cycle is realised during the construction of the sequence. In this way the last
relation involved in the cycle could be removed in order to delete the cycle. If a document is moved
from a previous rank to the rank after which the current document is, a check is realised to see if
there is a cycle. That is, a path from the child to the current document is looked for. If such a path
is found, the depending document is not moved in order to break the cycle, which corresponds to
ignoring the dependency. The document that is not moved will thus not be up-to-date. Each such
case has to be solved by hand.

10.3 PDM check-out aware sequence

In order to update instances and other documents, they have to be retrieved from the Product Data
Management system (PDM). However the check-out of documents leads to a transfer of several
Gigabytes of data. Then the transfer has to be done back in the PDM system. In the previous

∼ 124 ∼

10.4. PROPOSED APPROACHES FOR TEMPLATE INSTANCES UPDATE

Figure 10.11 – Same result as presented in figure 10.8, but with smart the check-out information.
Documents that should be retrieved together are grouped within green rectangles.

section the resulting sequences from the ranking algorithm showed that documents present at the
same rank can be processed at the same time because they have no dependencies between them.
In certain cases, for example, when replacing several template instances in the same assembly, it
can be problematic to do the update of template instances at the same time. In order to update
them, the context has to be loaded. Or in this case they all share the same context, which thus has
to be loaded for each template instance. If done concurrently, the result of the instances update
would lead to a time consuming merge that should be avoided.

For this reason some documents should be retrieved together, which is called the smart PDM
check-out. It consists in grouping documents that should be checked-out together. In order to
provide this information to the engineers, documents that should be checked-out together are
marked in the sequence. When looking closer, a solution consists in checking out the minimal
assembly wherein documents are subject to be updated. The corresponding groups for the result
presented in figure 10.8 are visible in figure 10.11. Four groups were created corresponding to the
four assemblies present in the sequence. Documents located at the same rank and within the same
group can not be updated at the same time on remote computers. They have to be processed on
the computer were the group has been checked-out.

Once the last document from a group has been updated, the whole group can be checked-in into
the PDM system again. In the sequence presented in figure 10.11, the group 1 has to be retrieved
first in order to update the template instance. At the same time the group 2 can be checked-out
on another computer, however the instance of the Top of the clamp can only be replaced when
the group 1 has been checked-in in order to access the updated version of the template. Finally,
groups 3 and 4 can be processed concurrently on two separate computers.

10.4 Proposed approaches for template instances update

In the previous sections the approaches that allow to create sequences for the update of template
instances were introduced. Now based on the generated sequence, the instances have to be updated.
This section presents three solutions to perform this task.

∼ 125 ∼

CHAPTER 10. UPDATE SEQUENCE COMPUTATION

10.4.1 Re-instantiation

The first way to update an instance is to remove the old one and to instantiate the new template
definition in order to replace the old instance. This approach allows to replace an instance relatively
easily. No specific knowledge except the instantiation of a KBE template is required.

However this approach has several disadvantages. First the current configuration of the template
will be lost, e.g., user parameters that drive the design. Furthermore if some modifications to the
geometry have been done, they will also be lost. Links from and to this instance may also be
broken and have to be rebuilt.

A solution to address the loss of configuration would be to store the configuration and put them
back in the new instance. The storage of parameters and other KBE data is already achieved by
the ontology. The data are extracted during the analysis of documents.

10.4.2 Apply local changes

Another solution, which presents its advantages in the case of small modifications, is to directly
apply the changes made to the template on all its instances. In this way the instance document
remains the same. However this approach is highly dependent on the modifications made and
would be revealed as inappropriate in most of the cases.

The main advantages of this approach are that the local changes and configurations of the
instances are not lost. Obviously problems can arise when the modifications are conflicting with
the local changes. Another advantage would be that the links with and from other documents are
not broken as they are not necessarily modified. Furthermore in some CAD systems like CATIA
V5, documents contain an unique identifier (UUID). In some circumstances, this UUID must not be
changed due to PDM related issues, and the creation of a new document will lead to a new UUID.
With this solution the identifier would remain unchanged as only the content of the document is
changed and no new document is created. The problems of this approach are its complexity in
case of conflicts and its limitation to small changes.

10.4.3 Rebuild the template instance content

The third approach for the update of a template instance is a combination of the two previous
ones. It consists in keeping the same document but replacing all its content by the content of the
template. In this way this modification is seamless to the PDM system as the UUID is not changed.
Furthermore, as all the content is replaced, there are no conflicts to be expected. Nevertheless like
with the re-instantiation of the template, the configurations and local changes are lost. The larger
drawback is the complexity of this approach. It is not realisable by a human in reasonable time.
Thus this solution requires to be automated.

10.4.4 Comparison of the proposed methods

The three presented approaches are possible solutions to update a template instance. Engineers
in charge of the update will have to choose the most suitable solution. For this purpose they can
access the decision support system in order to see the actual modifications that were reported by
the template maintainer (see section 8.4). From these information he will be able to evaluate the
situation and choose the appropriate method.

Table 10.1 compares the three approaches according to the complexity of updating an instance,
if the unique identifier contained within an instance is kept, an estimation of the time needed
to update the instance, the estimation of the complexity to automate the approach, and if the
modifications made on the old instance are kept or are lost. The re-instantiation of the template
is the easiest and a fast way to update the instance. It could be relatively easy to automate
according to the CAD system automation capabilities. The second approach, which consists in
updating the instance by applying the modifications applied to the template, can be easy when

∼ 126 ∼

10.5. CHAPTER SUMMARY

Table 10.1 – Template instances replacement approaches comparison.

Complexity UUID Update time Automation complexity Changes

Re-instantiation Low New Fast Low Lost
Local changes Low to High Kept Fast to slow High Kept
Content copy High Kept Fast Medium Lost

there are few, non conflicting changes, but it can also reach a high degree of complexity when
the changes are numerous and conflicting with local modifications in the instance. Its automation
requires to identify the differences between the template and the instance, which can be complex.
Furthermore it requires a human intervention in case of conflicts. The update of the instance
content by reconstructing the content of the template seems to be a unsuitable solution without
automation. However it is a fast approach that allows to keep the UUID.

In practice, the re-instantiation is the recommended solution to update the template by hand.
However, when all these approaches are automated, the application of the modifications to the
instance would be recommended as both UUID and local changes are kept.

The automation of the update approaches is necessary when the number of instances is high.
However this aspects have not been addressed yet.

10.5 Chapter summary

This chapter has presented the tested approaches and algorithms developed in order to generate
a sequence of update for template instances. This sequence is aimed to support engineers in
charge of the template instances update. By following this sequence, the analysis of assemblies and
the location of the updated templates’ instances, which is a complex and time consuming task,
is avoided. This sequence also includes information for smart check-out of assemblies and CAD
models from Product Data Management systems. Finally three instance replacement approaches
were presented.

Two algorithms were tested to compute the update sequence. The first one is based on the
topological sort and allows to create a linear and ordered sequence of documents, so that all
dependencies of each document are located before this document. Thus the dependencies will be
up-to-date when updating each document. However this approach entails the drawback that the
resulting sequence is linear, and thus not suitable for today’s concurrent engineering. For this
reason a second algorithm has been developed based on ranks. An ordered sequence of ranks
is computed, where documents are placed within these ranks. The principle remains the same
as with the topological sort, i.e., the dependencies of a document have to be placed in former
ranks. Documents with the same rank have no dependencies between them so they can be updated
concurrently if the resources are available. In order to avoid conflicts and time consuming merges,
assemblies have to be checked-out together. This aspect has been taken into account in the sequence
by grouping documents that should be retrieved together.

These algorithms work with the instances from the ontology presented in chapter 9. This
ontology represents the documents and relations between these documents, the whole forming a
graph. The vertices and edges from this graph are typed according to the concepts of the ontology
in which the instance/relation they represent is classified. This allows to define generic concepts
and base the algorithms on these concepts. Thus the developed algorithms are CAD system
independent due to the use of an ontology.

Three approaches to update a template instance have been proposed. They all present various
advantages and drawbacks and the choice of the most suitable approach is case depending.

The following chapters will present the tools that implement the main parts of the whole
approach for the template instances update. A scenario is also presented to validate and evaluate
the approach based on the developed tools.

∼ 127 ∼

PART V

Application

∼ 129 ∼

Chapter 11

Methodology’s Tools

Contents

11.1 Introduction . 132

11.2 Collaborative issue solving . 132

11.3 CAD models and templates analysis . 133

11.4 Dependencies visualisation and sequence computation 133

11.5 Chapter summary . 134

∼ 131 ∼

CHAPTER 11. METHODOLOGY’S TOOLS

11.1 Introduction

The previous chapters have presented the propositions that address the template update related
issues. A process has been defined that includes: (i) the collaborative search of design solutions
for template issues or new requirements, (ii) an ontological representation of documents and their
relationships and (iii) an update sequence computation algorithm, using the ontology, in order to
support engineers during the update of template instances.

This chapter describes the different developed tools that support the methodology. The develop-
ments were focused on the update sequence computation. An overview of the current architecture
of the system is depicted in figure 11.1.

Two main systems were developed. The first system is presented on the left side of figure
11.1 and concerns the CAD system (here CATIA V5). The second system is composed of several
modules that allow: (i) the computation of update sequences, (ii) to visualise documents, their
relations and the update sequences, (iii) and to instantiate the Web Ontology Language (OWL)
ontology with the XML description of documents. The decision support tool is not depicted in the
architecture diagram because it has not been implemented yet.

Figure 11.1 – Architecture of the developed software related to the data extraction, dependencies
visualisation tool and update sequence computation.

11.2 Collaborative issue solving

An extension of the Issue-Based Information System, which is used to allow the collaborative
solving of template issues was presented in chapter 8. The concepts that were presented have
been defined within an OWL ontology. This ontology was created using Protégé 4 ontology editor
[Protégé 4].

The other parts of the decision support system are not implemented yet. The objective is to
design a three-tier architecture (see appendix D) with the ontology as data layer and Web Services
for the business logic layer (see figure 3.1 page 47). The presentation layer, which corresponds to

∼ 132 ∼

11.3. CAD MODELS AND TEMPLATES ANALYSIS

the user interface, can be implemented within heterogeneous applications and platforms thanks to
the Web Services. Thus the ontology could be integrated into existing systems, in order to ease
the adoption of the collaborative tool.

11.3 CAD models and templates analysis

In order to be able to instantiate the ontology presented in chapter 9, the data has to be extracted
from the CAD models. In the scope of this work the focus has been put on the CATIA V5 CAD
system. The C++ programming language and the CATIA V5 CAA API (see section 6.4.1.1 on
page 83) has been used to develop a batch application. The CATIA V5 CAA API is a commercial
product from Dassault Systèmes.

The developed application takes a list of documents to analyse as input and generates an XML
file describing the relevant content of each documents (see figure 11.1). An XML file has been chosen
as an intermediate file between the CAD models and the ontology for two reasons. First the best
APIs to manipulate an OWL ontology are available in JAVA and the document analysis application
is developed with C++. Thus a bridge is built between these two programming languages with
the XML file. Second is XML as a standard very present in the industry, whereas OWL requires
new expertises. Thus an intermediate file is present to facilitate the use of extracted information
by legacy systems. To create the XML file, the TinyXML parser has been used [Thomason]. It
is a small open source C++ XML parser available under the zlib/libpng license.

Currently all documents have to be analysed each time to update the ontology instances. How-
ever an incremental update would reduce the ontology update time.

An example of an XML description of a CAD model is provided in appendix E. The XML-
Schema corresponding to the output of the software is available in appendix F.

11.4 Dependencies visualisation and sequence computation

A visualisation software has been developed in order to provide engineers with an overview of
the ontology content, i.e., the represented documents and links (see figure 11.2). According to
Katzenbach et al. [2007] the visualisation of relationships is an asset during the design of a
product. The current version is specific to CATIA V5 and allows to visualise the various document
types and link types, which are both represented by different colours according to the type. In
order to facilitate the understanding, links can be filtered in order to be able to set the focus on
specific relations.

The update sequence computation algorithms have been included in the visualisation software.
The user selects the modified documents and then starts the computation. The sequence is there-
after shown in the same way as in figure 10.11 (page 125).

The visualisation software also includes the “Converter” that instantiates the OWL ontology
from the data present in the XML files.

This whole application has been developed with the JAVA programming language. The ma-
nipulation of the ontology is realised with the OWL API 2.2 [OWL API], which is available under
the GNU Lesser General Public License (LGPL). The latest version of the OWL API is used by
Protégé 4 in order to manipulate ontologies.

In order to infer knowledge in the ontology, two reasoners were tested: FaCT++ 1.2.3 [FaCT++]
available under the LGPL and Pellet [Pellet; Sirin et al., 2007] with a dual licensing: AGPL
for open source application, and an arranged alternative license for closed source and commercial
applications. One of the main differences between them, is that Pellet provides the support for
SWRL rules, which is not the case for FaCT++. Thus Pellet suits more in this application because
SWRL rules are used.

The graph visualisation is realised via JGraph 5.12.3.2, also available under the LGPL [JGraph
5].

∼ 133 ∼

CHAPTER 11. METHODOLOGY’S TOOLS

Figure 11.2 – Screenshot of the dependencies visualisation software.

11.5 Chapter summary

In the scope of this work several solutions were elaborated and resulted in several demonstrators.
The main software concern the CAD model analysis software and the dependencies visualisation
tool including the update sequence computation algorithm. They are all part of the global instance
update methodology.

An application has been developed that analyses CATIA V5 CAD models and writes the ex-
tracted data in an XML file. Data present in the XML file is then used to instantiate the ontology.
The instantiated ontology can be visualised by a visualisation tool that has also been developed.
It provides an overview of documents and their relationships. The same software also allows to
compute update sequences. Thus the user can directly compute and visualise update sequences
according to the modified documents.

The following chapter will present the application of the developed tools in the scope of a
scenario.

∼ 134 ∼

Chapter 12

Template Modification Scenario

Contents

12.1 Scenario presentation . 136

12.2 Application of the methodology . 136

12.2.1 Solution research . 136

12.2.1.1 Collaborative process . 136

12.2.1.2 Update of the template . 138

12.2.2 Assemblies analysis . 138

12.2.3 Generation of the update sequence . 139

12.2.4 Instances replacement . 139

12.3 Chapter summary . 140

∼ 135 ∼

CHAPTER 12. TEMPLATE MODIFICATION SCENARIO

12.1 Scenario presentation

In the previous chapter the developed tool that support the proposed methodology for template
update were presented. In order to demonstrate the approach, a scenario has been defined. This
scenario involves several templates that are used in different assemblies. The CAD models and
templates were designed using CATIA V5.

The scenario is composed of the following documents:

• 77 CATParts, with six of them that are document templates and one containing a User
Defined Function.

• Fourteen assemblies (CATProducts), with two of them being document templates.
• Two external spreadsheets (design tables).
• One CATIA V4 model.
• Two catalogues.

Figure 1.10 on page 18 presents two assemblies, the first being a clamp template and the second
a tooling station containing instances from the clamp template. The clamp template contains
instances of other templates (part and assembly templates), which creates indirect instances and
an interweaving of templates and instances. Both were issues to be addressed.

In order to illustrate the methodology, let us suppose the following case. An engineer is involved
in the design of a new tooling station. In order to avoid designing it from scratch, he wants to
resort to templates provided within a library, here a catalogue. The tooling station requires to
handle metal sheets. So he searches in the library for a template providing this functionality and
finds one template that fulfils the requirement, which is a clamp template. However when looking
into details, he realises that the clamp is only meant to fasten horizontal surfaces. So he raises
a new issue in the decision support system, which will become a new requirement for the clamp
template. The new requirement is to allow the clamp to fasten non-horizontal metal sheets.

12.2 Application of the methodology

12.2.1 Solution research

When the engineer has formulated the new requirement for the template, he can add it into the
adapted issue-based system. Then the decision process can start, involving several stakeholders: a
template maintainer (A), the engineer who has raised the new requirement (B), a person in charge
of the costs (C), and an electrical engineer (D). The schema of figure 12.1 illustrates the content
of the system at the end of the decision process. The letter in each box presents the participant
who has created the element.

12.2.1.1 Collaborative process

The requirement has been formulated as a question (“How to handle non-horizontal metal sheets?”)
and is visible at the top of the schema. The “issue” representing the question refers external
documents, which are the CAD model of the metal sheet and the metal sheet specifications. The
template maintainer proposed three solutions that can fulfil the new requirement. A first solution
would be to allow the rotation of the clamp head, a second is to fix the clamp on a dedicated inclined
support, and the third is to permanently modify the angle of the clamp head. Each stakeholder
can then contribute to by providing his own positions and arguments according to their point of
view. For example two possibilities in order to rotate the clamp are proposed, either use one or
two degrees of freedom for the rotation of the head of the clamp. This solution seemed the most
interesting for the engineer because a manufactured clamp would be reusable for various tooling
operations. However the upgrade of the template would require many investigations and analyses
and thus a lot of time. Hence the template maintainer questions on the period available to realise

∼ 136 ∼

1
2

.2
.

A
P

P
L

IC
A

T
IO

N
O

F
T

H
E

M
E

T
H

O
D

O
L

O
G

Y

Metal sheet too heavy

−

−

−

+

+ −

+
−

B: How to handle non-horizontal metal sheets?

A: Allow a rotation A: Add a support part to the clamp A: Modify the angle of the clamp

Metal sheet specifications

Metal sheet CAD model

B: High re-usability
+

A: How to rotate?

D: 2 degrees of freedom B: 1 degree of freedom

C: Costs A: Complexity

−

−−

D: Robustness

B: Modify clamping point height

B, C: New part to manufacture

A: No changes in template

C: Low costs B: No flexibility

A: When should it be available?

B: Assembly line starts in 2 months

A: Need a rapid update of the templateA: If more time, implement a manual rotation

Caption

Issue

Position

Supporting argument

Selected solution

External reference

Argument against

Figure 12.1 – Overview of the content of the decision support system concerning the requirement described in section 12.1.

∼
137
∼

CHAPTER 12. TEMPLATE MODIFICATION SCENARIO

the upgrade. Due to the short time period available to make the modifications, a more feasible
solution has been selected, which is to manufacture the clamp with a fixed angle.

Once the decision has been validated, the planned modifications can be defined. First a user
parameter will be defined in the clamp template in order to set the angle of the clamp. Then the
necessary CAD models have to be updated in order to take the new parameter into account. The
focus should be put towards the Vertical blade, which is the element at the centre of the clamp
(see purple CAD model in figure 12.2).

Figure 12.2 – Screenshot of the clamp, depicting the document that will be updated in order to
add the new functionality in purple.

12.2.1.2 Update of the template

Before updating the template, the maintainer can have a look at the specifications available in the
decision support system. This can be mandatory when the maintainer in charge of the update is
not the same as the one who has participated in the decision process. Thus he will be in possession
of the necessary information to achieve the update task.

The modifications concern the Vertical blade part within the Clamp template. However the
Vertical blade is also a template. Thus the solution is to update its definition too, in order to
take into account an angle.

So the actual modifications were made in the Vertical blade and the Clamp template. The
clamp receives a new parameter that has a default value and thus is not considered as a mandatory
input. Concerning the Vertical blade the geometry has been changed in order to take the new
parameter into account. These information are also stored in the system in order to keep track of
the evolution of both of the templates.

12.2.2 Assemblies analysis

In order to collect information about the templates, CAD models and their relationships, they
have to be analysed. For this purpose all documents that have to be analysed have to be listed in
a text file, one document with its full path per line. This text document is then given as argument
to the script in charge of the analysis. An XML file will be generated for each analysed document
(see appendix E for an example).

∼ 138 ∼

12.2. APPLICATION OF THE METHODOLOGY

Thereafter in the visualisation software, the OWL ontology has to be instantiated from the
generated XML files with the help of the “Converter” module. This is achieved by selecting the
instantiation item in the menu, and then selecting the generated XML files. Then the inference
engine, in this case Pellet, is used to classify the ontology and thus infer the necessary knowledge
for further processing. Finally the instanced ontology can be loaded for visualisation.

The graph formed by the clamp template and its related documents and templates are depicted
in figure 11.2 on page 134. Other assemblies are not presented within this graph in order to keep it
readable. Now that the templates have been updated, the instances and related documents require
to be updated in order to take the changes into account.

12.2.3 Generation of the update sequence

In order to determine which documents are impacted by the update of the two templates, the user
has to select the modified documents (in this case the Vertical blade and the Clamp template)
and start the sequence computation. The inference engine is run on the ontology and the ranking
algorithm is used. The obtained result is presented in figure 12.3. It has been computed in about
100 milliseconds on a Pentium M 1.8 GHz with 2 GB of RAM.

Figure 12.3 – Resulting update sequence with groups after the modification of two templates.
Dashed arrows are InstanceLocation links (see section 9.2.6.1) and blue arrows are
Instance links (see table 6.1, page 78). Rank 0 contains the modified documents.
Ranks 1 to 3 contain the documents to update. Groups marked 1, 2 and 3 show
documents that have to be checked-out together.

The resulting sequence is composed of 4 ranks. The modified documents are located at rank 0.
An instance of the Vertical blade template is included in the clamp as explained previously. Then
the Clamp template has three instances located in two assemblies. As you can see the Vertical

blade is only updated once even if it is also present in the instances of the Clamp template. The
indirect instances of this template will be updated by the update of the Clamp template instances.

Three groups were also created representing the documents that should be checked-out together
from the PDM system. They are numbered 1, 2 and 3.

12.2.4 Instances replacement

In order to forward the modifications to existing instances and update the related documents, the
sequence has to be followed rank after rank starting from rank 0. Rank 0 contains the updated
documents. An instance of the Vertical blade has to be updated in the Clamp template. Due
to the modifications of the geometry in the blade, its re-instantiation in the clamp template is
recommended (impact may not be predicted). For this purpose the group marked 1 has to be
checked-out.

∼ 139 ∼

CHAPTER 12. TEMPLATE MODIFICATION SCENARIO

Now that the Clamp template is up-to-date, its instances can be updated. So when looking at
rank 2, two assemblies are present, located in two different groups. Hence the groups 2 and 3 can
be checked-out on two different computers if the resources are available in order to address these
updates concurrently. In any cases, documents located at rank 2 have to be loaded first. When
done, the instances present at rank 3 can be updated. Here again the re-instantiation of the Clamp

template is the fastest approach to update the instances.

This case illustrates the usefulness of the groups, especially group 3 because it avoids possible
conflicting updates. As depicted on figure 12.3, the CELL assembly contains two instances of the
Clamp template. Thus if the two instances are re-instantiated concurrently by two engineers, the
CELL will be retrieved by each engineer who will update an instance. It will result in two CELL

assemblies with one updated instance in each. Thus both will have to be merged, in order to finally
have one CELL assembly with both template instances up-to-date.

Once the sequence has been traversed and the respective documents were updated, the result
has been positively verified by an expert that all documents requiring an update are up-to-date.

12.3 Chapter summary

This chapter presents a possible scenario on a small set of assemblies. It allows to illustrate and
demonstrate the proposed approach and tools. The steps of the process depicted in figure 7.1 are
gone through.

In this scenario a requirement is formulated, which will create a discussion in order to find a
solution. This decision process involves four persons concerned by the possible changes of a CAD
template: a template maintainer, the engineer who raised the requirement, a person in charge of the
costs and an electrical engineer. The solutions resulting from the consensus implies modifications in
two templates. The template maintainer in charge of the modifications is guided by the information
added in the decision support system after the solution validation. After the update of the template,
he stores back the realised changes. Then all the CAD models and templates have to be analysed
in order to create the ontology instances. The content of the ontology can be visualised and will
be used to compute an update sequence for the defined set of CAD documents. By following
the sequence, the necessary updates of documents can be achieved efficiently due to the fact that
(a) there are no redundant updates, (b) and no updates are missed out. Furthermore the time
saved by the automation of the update strategy definition can be used for other activities.

∼ 140 ∼

PART VI

Final conclusion

∼ 141 ∼

Chapter 13

Conclusions and Perspectives

N
owadays the reuse of knowledge during the design of complex products like cars or aircrafts is
a key success factor. Knowledge-based engineering aims at the capture, storage and reuse of

product related knowledge. Key KBE components are templates, which are intelligent components
that are able to adapt themselves to various contexts. During the last years, the use of knowledge
templates has become more accessible within companies, which leads to new issues.

The current issues that have been identified concern the update of templates. In the scope
of this work two main issues were addressed: the enhancement of the collaboration concerning
the solving of the cause implying the modification of a template, and the forwarding of realised
modifications to template instances. The complexity of both tasks comes from the collaborative
environment wherein several stakeholders are working concurrently on large assemblies. Thus
supporting methodologies and tools are beneficial to support and enhance engineers’ work in this
respect.

The aim of this work was to reduce the time and the effort needed to achieve some defined
tasks related to the update of KBE templates. The reduction of time and effort would lead to a
higher adoption of KBE templates within the industry, as well as a reduction of costs.

13.1 Contributions

In the scope of this three-year work, several contributions have been accomplished. The contribu-
tions are resulting from a multidisciplinary research work involving knowledge-based engineering,
decision support systems, knowledge representation, graph theory and computer sciences. All these
disciplines interact together in order to provide an original solution to the described issues.

The application area of this work is mainly the design of complex products. Due to the time
and quality constraints in this domain, repetitive and mundane tasks have to be reduced as much
as possible. The presented contributions propose a first step toward this objective. Moreover it
may facilitate the adoption of KBE templates, which are meant to reuse design knowledge and
thus save time, as well as enhance the quality of products. The adoption of the methodology would
raise the competitiveness of the company.

13.1.1 Theoretical contributions

A generic methodology that supports engineers in the tasks related to the template update has
been designed. The process defined in chapter 7 provides an overview on how the specific
steps of the proposed methodology have to be processed. The process allows to guide people
involved in the template update in order to successfully achieve defined related tasks. The
process covers the steps from the definition of the issue or the new requirement up to the
update of template instances. This involves the bookkeeping of a computer representation
of document knowledge and the computation of an update sequence to guide engineers in
the template instance update task. The process is not meant to be comprehensive - it could
be enhanced in order to address other template related issues. For example, the template
update phase can be further detailed because it was not directly addressed by this work.

A decision support system has been proposed that is an extension of the well known Issue-Based
Information System (IBIS) framework. It was specialised in order to help stakeholders find
an appropriate solution to a template issue or new requirement concerning a template. This

∼ 143 ∼

CHAPTER 13. CONCLUSIONS AND PERSPECTIVES

choice has been made because the IBIS also provides design rationale as the users’ contribu-
tions that have led to a decision are stored. Additional information concerning planned and
actual modifications are also stored in the system. Planned modifications aim at supporting
template maintainers. Actual modifications are stored for documentation purposes as well
as an aid for engineers who will have to update template instances. In this way they will
directly be informed of the realised modifications and will be able to choose the appropriate
approach for the corresponding instance update.
In addition to the collaboration aspects, the decision system also allows to document the
evolution of the templates as well as to provide a rationale behind the evolution. So these
information can be reused or referred to in further discussions. Thus within the same system,
pieces of information from the template life cycle are gathered. This type of system can be
used for other solving purposes than for template update. For this reason, an ontological
representation has been chosen in order to ease its evolution and integration with other
existing ontologies.

An ontology has been defined in order to have a computer understandable and processable repre-
sentation of documents and their relationships. This ontology is dedicated to be used for the
update sequence computation. The documents and their relationships have been represented
with the Web Ontology Language (OWL). OWL provides a formal representation as well as
reasoning mechanisms. Reasoning allows to infer new knowledge and to classify documents
under concepts that could not be explicitly retrieved from the analysis of CAD documents.
For example, in CATIA V5, no distinction is made between a template instance and a stan-
dard CAD document. Within the ontology, a document that is an instance will be explicitly
classified as a template instance via inference. Moreover three levels of concepts have been
defined in the ontology, each level corresponding to a different degree of abstraction. The
mid level presents concepts related to the template instance update problem. These concepts
are independent from the used CAD system. Then instances created from the analysis of
CAD documents will be classified within these concepts via inference.
The use of an ontology based on open standards is a good choice for the sustainability of
the system. Hence its maintenance, evolution as well as integration within other systems is
facilitated. For example, the ontology could also be reused and serve as a basis for building
a more comprehensive definition of the KBE domain, which can thereafter be used by other
applications. Furthermore as the computation of the algorithm is based on generic concepts
from the ontology, the addition of a new CAD system can be easily achieved by an update
of the ontology.

An algorithm has been elaborated, which constructs update sequences by using the knowledge
present in the ontology. The sequences are meant to guide the engineers when updating nec-
essary documents after the modification of one or more templates. A sequence is constructed
based on the dependencies between documents. It uses the CAD system independent con-
cepts defined in the ontology. In this way a unique algorithm is capable to address several
CAD systems. Thus the definition of the domain in the ontology plays an important role.
The algorithm creates a ranked sequence that allows to process parts of the sequence con-
currently, if the necessary resources are available. This appears to be important in today’s
world, where product design is a concurrent engineering task. Finally three approaches to
update instances have been proposed and compared, each presenting benefits and drawbacks
according to various criteria.
The update of template instances is a time consuming task. To accelerate this task, the
combination of an ontology and a ranking algorithm allows to generate update sequences.
The analysis and definition of the update strategy becomes automated and engineers can focus
on tasks with more added value. Furthermore it avoids incomplete updates or unnecessary
updates due to a bad update strategy.
Besides the forwarding of modifications, the update sequence can also be used when intending
to replace a template and all its instances by a different template. The template which should
be replaced has just to be considered as modified and the resulting sequence will present the
location of the instances in order to replace them with instances of the new template. More
generally, the same approach could be also used to estimate the impact of the modification

∼ 144 ∼

13.2. PERSPECTIVES

of elements within documents, for example, to compute the impact of the deletion of a
parameter.

13.1.2 Practical contributions

A C++ batch application that analyses and extracts relevant information from CATIA V5 doc-
uments has been developed using the CATIA V5 CAA API. It allows to analyse CATParts,
CATProducts, catalogues, CATDrawings and CATAnalysis in order to extract links, KBE
elements, and document and template related information. The extracted information is
stored within an XML file for each analysed document.

An OWL ontology has been created using Protégé 4. This ontology can be accessed, instan-
tiated and modified by using the OWL API. Thus it can easily be reused within different
applications.

A Java software has also been developed. It is composed of several modules:

• An XML to OWL converter, which allows to instantiate the ontology from the informa-
tion extracted from the CATIA V5 documents.

• An update sequence computation module, which uses the knowledge contained within
the ontology to generate update sequences for template instances. It allows to automate
this task so engineers can focus on value adding tasks.

• A visualisation tool, which allows to visualise the ontology content, i.e., documents
and their relations. The knowledge gathered within the ontology can be visualised as
graphs in order to provide an overview of the assemblies and their relationships. This
feature is interesting as it provides more information than the CAD system’s tools,
for example, CATIA V5 only allows to see links from one document at a time. Thus
engineers can resort to this overview in order to analyse and understand the relations
between documents, which results in a speed up of the design. Update sequences can
also be visualised with this module.

13.2 Perspectives

This work opens many perspectives concerning the enhancement and extension of the introduced
methodology and tools.

Further investigations could benefit from the availability of highly complex scenarios with tem-
plate usage (not given as far today). The realised tests were limited on an actual scenario that
does not have the same complexity as the set of documents by a car manufacturer. This would
allow to enhance evaluations on the scalability and robustness of the combination realised by the
ontology and the algorithm.

Then, the access to the decision system via Web Services has to be implemented. This will
provide a standard access that will allow to connect heterogeneous systems. The decision support
system currently provides generic concepts. It can thus be specialised to also address other issues
besides the solving of template problems. This can be easily achieved by adding the necessary con-
cepts. The ontological representation allows to define a hierarchy of concepts in order to specialise
the existing ones. Domain specific concepts could also be added in order to, for example, formalise
the ideas of the contributors. Another functionality that is currently missing is the search in past
decisions and the template documentation. This functionality could be added by using SQWRL
[O’Connor and Das, 2008], which is a query language for OWL. Furthermore, the addition of
case-based reasoning by using the information present in the decision support system may be worth
the investigation. Past decisions can thus be reused and then adapted to the new case.

Regarding the ontology designed to represent documents and their relations, it would be inter-
esting to investigate the potential benefits of using OWL 2, which was released end of 2009. The
possible benefits would be the smaller reasoning computational time. Thus larger ontologies with
more instances could be addressed and classified more quickly. The latest version of the OWL API

∼ 145 ∼

CHAPTER 13. CONCLUSIONS AND PERSPECTIVES

supports OWL 2, but also a new reasoner called HermiT [Motik et al., 2009b]. According to its
specifications and description, HermiT has a LGPL license, supports rules and includes a faster
calculus algorithm called “hypertableau.” Furthermore it would be a good substitute for the Pellet
reasoner due to its less restrictive license.

This ontology could also be extended from an application ontology to a domain ontology by
a more comprehensive definition of the KBE domain. Another extension direction would be to
specify concepts related to the functionalities of the templates, not only their implementation.
In this way the search for an adequate template would be more efficient than searching a simple
library, for example, by using the SQWRL language to answer semantic queries.

Other CAD system concepts should also be added to the ontology in order to extend the range
of supported systems. The latest CAD system from Dassault Systèmes, CATIA V6, should also
be investigated, in order to identify the differences concerning KBE templates. The addition of a
new CAD system in the ontology implies the development of a new tool to extract the data from
the documents in order to be able to instantiate the new concepts, and thus compute an update
sequence.

The visualisation of the ontology content can also be enhanced by the addition of a layout
algorithm, especially for the visualisation of large graphs, which make it difficult to represent and
to focus on relevant information. A solution would be to create a context aware layout algorithm
that shows only the necessary elements from the graph according to user’s preferences and the
current selection. An easy navigation system would add substantial value.

The representation of the update sequence can also be improved by adding an explicit action
to undertake for each document. Right now, the sequence only shows the documents and the order
in which they have to be processed. Thus, specific training or experience is required to understand
the implicit meaning of the boxes in the sequence.

To complete the reduction of repetitive and non-productive tasks related to the template update,
the update of instances has to be automated. Updating instances is certainly a time consuming
task, however in some cases it can be achieved by just one engineer. When addressing large
assemblies including several thousands of instances, the challenge becomes impossible. Thus the
automation of the replacement is required. However such an automation has to be developed for
each CAD system individually, which requires an excellent mastering of the different CAD system
APIs.

∼ 146 ∼

Bibliography

Abdul-Ghafour, S. Interopérabilité Sémantique Des Connaissances Des Modèles De Produits à
Base De Features. Ph.D. thesis, Université de Lyon, 2009.

Alani, L. I. A. M. Template-basierte Erfassung von Produktanforderungen in einem CAD System.
Ph.D. thesis, Technischen Universität Berlin, 2007.

Alexander, L. Decision support systems in the 21st century. SIGSOFT Softw. Eng. Notes,
27(5):pp. 104–104, 2002. ISSN 0163-5948. doi:http://doi.acm.org/10.1145/571681.571692.

Alon, N. Ranking tournaments. SIAM J. Discret. Math., 20(1):pp. 137–142, 2006. ISSN 0895-
4801. doi:http://dx.doi.org/10.1137/050623905.

Alonso, G., Casati, F., Kuno, H., and Machiraju, V. Web Services. Concepts, Architectures
and Applications. Springer-Verlag, 2004. ISBN 3-540-44008-9.

Alvarado, M., Sheremetov, L., Ban̋ares-Alcántara, R., and Cantú-Ortiz, F. Current
challenges and trends in intelligent computing and knowledge management in industry. Knowl-
edge and Information Systems, 12(2):pp. 117–127, 2007.

Andersen, O. A. and Vasilakis, G. Geometric Modelling, Numerical Simulation, and Opti-
mization, chapter Building an Ontology of CAD Model Information, pp. 11–40. Springer Berlin
Heidelberg, 2007. ISBN 978-3-540-68782-5 (Print) 978-3-540-68783-2 (Online). doi:10.1007/
978-3-540-68783-2_2. URL http://www.springerlink.com/content/qx4r21362gu59632/.

Angele, J., Erdmann, M., and Wenke, D. Ontology Management, volume 7 of Semantic
Web and Beyond, chapter Ontology-Based Knowledge Management In Automotive Engineering
Scenarios, pp. 245–264. Springer US, 2007.

Angele, J., Fensel, D., Landes, D., and Studer, R. Developing Knowledge-Based Systems
with MIKE. Automated Software Engineering, 5(4):pp. 389–418, 1998. ISSN 0928-8910. doi:
http://dx.doi.org/10.1023/A:1008653328901.

Antegnard, L., Liese, H., and Stjepandic, J. Intellectual property protection in concurrent
engineering domains. In Ghodous, P., Dieng-Kuntz, R., and Loureiro, G. (Editors),
Leading the Web in Concurrent Engineering, Next Generation Concurrent Engineering, volume
143 of Frontiers in Artificial Intelligence and Applications, pp. 338 – 345. IOS Press, 2006.

Arndt, H. Eine Ontologie-basierte Methode zur Entscheidungsunterstützung in der Produkten-
twicklung. Ph.D. thesis, Technische Universität Berlin, 2007.

Arndt, H., Haasis, S., and Rehner, H.-P. CATIA V5 Template zur Umsetzung von Standard-
konzepten. In Karosseriebautage Hamburg, Internationale Tagung, Vieweg Technology Forum
Verlag, 2006.

Arndt, H., Haasis, S., and Winterstein, R. Roll-out template-based engineering process. In
DaimlerChrysler AG, EDM Forum "Integration for Cooperation", 2007.

Arpìrez, J., Gómez-Pérez, A., Lozano, A., and Pinto, S. (ONTO)2 agent: an ontology-based
WWW broker to select ontologies. In Workshop on Applications of Ontologies and Problems
Solving Methods. ECAI’98, 1998.

∼ 147 ∼

http://www.springerlink.com/content/qx4r21362gu59632/

BIBLIOGRAPHY

Baader, F., Horrocks, I., and Sattler, U. Description logics as ontology languages for the
semantic web. In Festschrift in honor of Jürg Siekmann, Lecture Notes in Artificial Intelligence,
pp. 228–248. Springer-Verlag, 2003.

Baader, F., Horrocks, I., and Sattler, U. Handbook of Knowledge Representation, chapter
Description Logics. Elsevier, 2007.

Baader, F. and Nutt, W. Description Logic Handbook, chapter Basic Description Logics, pp.
47–100. Cambridge University Press, 2002.

Bachimont, B. Engagement sémantique et engagement ontologique : conception et réalisation. In
Ingénierie des connaissances. Évolution Récentes et nouveaux défis, pp. 205–323. Paris: Eyrolles,
Z. M. Charlet J., Kassel G., Bourgault D. edition, 2000.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-
Schneider, P. F., and Stein, L. A. OWL Web Ontology Language Reference, 2004. URL
http://www.w3.org/TR/owl-ref/.

Bernaras, A., Laresgoiti, I., and Corera, J. Building and reusing ontologies for electrical
network applications. In Wahlster, W. (Editor), Proceedings of the 12th European Conference
on Artificial Intelligence (ECAI 96): Budapest, Hungary: August 11-16, pp. 298–302. Wiley,
1996. ISBN 0471968099.

Berners-Lee, T. Information management: A proposal, 1989. URL http://www.w3.org/

History/1989/proposal.html.

Bohanec, M. What is decision support? In Škrjanc, M. and Mladenić, D. (Editors),
Proceedings of the 4th International Multi-conference Information Society 2001, volume A, pp.
86–89. Institut Jozef Stefan, Ljubljana, 2001. URL http://www-ai.ijs.si/MarkoBohanec/

WhatDS.pdf.

Borgo, S., Guarino, N., and Masolo, C. Stratified ontologies: the case of physical objects. In
Proceedings of the Workshop on Ontological Engineering, held in conjunction with ECAI96, pp.
5–15, 1996.

Borst, W. N. Construction Of Engineering Ontologies For Knowledge Sharing And Reuse. Ph.D.
thesis, Center for Telematica and Information Technology, University of Twente, NL, 1997.

Braß, E. Konstruieren mit CATIA V5. Methodik der parametrisch-assoziativen Flächenmodel-
lierung. Hanser Fachbuch, 2005. ISBN 3-446-41378-2.

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., and Wiener, J. Graph structure in the web. Comput. Netw., 33(1-6):pp.
309–320, 2000. ISSN 1389-1286. doi:http://dx.doi.org/10.1016/S1389-1286(00)00083-9.

Burge, J. and Brown, D. C. Reasoning with design rationale. In Artificial Intelligence in Design
’00, pp. 611–629. Kluwer Academic Publishers, 2000.

Bylander, T. and Chandrasekaran, B. Generic tasks in knowledge-based reasoning. The
right level of abstraction for knowledge acquisition. Knowledge Acquisition for Knowledge-Based
Systems, 1:pp. 65–77, 1988.

Cebrian-Tarrason, D. and Vidal, R. How an ontology can infer knowledge to be used in prod-
uct conceptual design. In Springer, B. (Editor), Computer-Aided Innovation (CAI), volume
277 of IFIP International Federation for Information Processing, pp. 57–68. Gaetano Cascini,
2008.

Chapman, C. B. and Pinfold, M. The application of a knowledge based engineering approach
to the rapid design and analysis of an automotive structure. Advances in Engineering Software,
32(12):pp. 903–912, 2001.

∼ 148 ∼

http://www.w3.org/TR/owl-ref/
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html
http://www-ai.ijs.si/MarkoBohanec/WhatDS.pdf
http://www-ai.ijs.si/MarkoBohanec/WhatDS.pdf

BIBLIOGRAPHY

Chitta, A., Shankar, K., and Jain, V. K. A decision support system for process planning.
Computers in Industry, 14(4):pp. 307–318, 2008.

Conklin, J. and Begeman, M. L. gIBIS: a hypertext tool for exploratory policy discussion. In
CSCW ’88: Proceedings of the 1988 ACM conference on Computer-supported cooperative work,
pp. 140–152. ACM, New York, NY, USA, 1988. ISBN 0-89791-282-9. doi:http://doi.acm.org/
10.1145/62266.62278.

Connolly, D., van Harmelen, F., Horrocks, I., McGuinness, D. L., Patel-Schneider,
P. F., and Stein, L. A. DAML+OIL reference description, 18 December 2001. URL http:

//www.w3.org/TR/daml+oil-reference.

Cox, J. J., Roach, G. M., and Teare, S. S. The Customer Centric Enterprise - Advances
in Mass Customization and Personalization, chapter Reconfigurable Models and Product Tem-
plates, pp. 183–208. Springer, 2003.

Crabb, H. C. The virtual engineer: 21st century product development. SME, 1998. ISBN 0-872-
63491-4.

Davis, R., Shrobe, H., and Szolowits, P. What is a knowledge representation?, 1993. URL
http://groups.csail.mit.edu/medg/ftp/psz/k-rep.html.

Denker, G. DAML+OIL plug-in for Protégé-2000, 2003. URL http://www.ai.sri.com/daml/

DAML+OIL-plugin/.

Dieng-Kuntz, R., Minier, D., Růžička, M., Corby, F., Corby, O., and Alamarguy, L.
Building and using a medical ontology for knowledge management and cooperative work in a
health care network. Computers in Biology and Medicine, 36(7-8):pp. 871–892, 2006.

Diestel, R. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-
Verlag, Heidelberg, third edition, 2005. URL http://vg00.met.vgwort.de/na/

ddfc84df913d6ef96f8f?l=http://www.math.uni-hamburg.de/home/diestel/books/graph.

theory/GraphTheoryIII.pdf.

Dudenhöffer, F. Plattform-effekte in der Fahrzeugindustrie. In Controlling, volume 3, pp.
145–151, 2000.

Dustdar, S., Gall, H., and Schmidt, R. Web services for groupware in distributed and mo-
bile collaboration. In 12th Euromicro Conference on Parallel, Distributed and Network-Based
Processing, pp. 241–247, 2004.

Eades, P. A heuristic for graph drawing. Congressus Numerantium, 42:pp. 149–160, 1984.

Eades, P. and Lin, X. Spring algorithms and symmetry. Theor. Comput. Sci., 240(2):pp. 379–405,
2000. ISSN 0304-3975. doi:http://dx.doi.org/10.1016/S0304-3975(99)00239-X.

Ebadi, T., Purvis, M., and Purvis, M. A collaborative Web-based issue based information
system (IBIS) framework. Technical report, Department of Information Science, University of
Otago, Dunedin, New Zealand, 2009.

Ellis, C. A., Gibbs, S. J., and Rein, G. Groupware: some issues and experiences. Commun.
ACM, 34(1):pp. 39–58, 1991. ISSN 0001-0782. doi:http://doi.acm.org/10.1145/99977.99987.

van der Elst, S. and van Tooren, M. Application of a knowledge engineering process to sup-
port engineering design application development. In Curran, R., Chou, S.-Y., and Trappey,
A. (Editors), Collaborative Product and Service Life Cycle Management for a Sustainable World,
volume 15 of ISPE International conference on Concurrent Engineering, pp. 417–431. Springer-
Verlag London, 2008.

ESPRIT, . URL http://cordis.europa.eu/esprit/home.html.

∼ 149 ∼

http://www.w3.org/TR/daml+oil-reference
http://www.w3.org/TR/daml+oil-reference
http://groups.csail.mit.edu/medg/ftp/psz/k-rep.html
http://www.ai.sri.com/daml/DAML+OIL-plugin/
http://www.ai.sri.com/daml/DAML+OIL-plugin/
http://vg00.met.vgwort.de/na/ddfc84df913d6ef96f8f?l=http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://vg00.met.vgwort.de/na/ddfc84df913d6ef96f8f?l=http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://vg00.met.vgwort.de/na/ddfc84df913d6ef96f8f?l=http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://cordis.europa.eu/esprit/home.html

BIBLIOGRAPHY

FaCT++, . URL http://code.google.com/p/factplusplus/. FaCT++ is a DL reasoner. It
supports OWL DL and (partially) OWL 2.

Farquhar, A., Fikes, R., and Rice, J. The ontolingua server: a tool for collaborative ontology
construction. Int. J. Hum.-Comput. Stud., 46(6):pp. 707–727, 1997.

Feigenbaum, E. and McCorduck, P. The fifth generation: artificial intelligence and Japan’s
computer challenge to the world. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1983. ISBN 0-201-11519-0.

Fensel, D., Horrocks, I., van Harmelen, F., McGuinness, D. L., and Patel-Schneider,
P. F. OIL: An Ontology Infrastructure for the Semantic Web. IEEE Intelligent Systems, 16(2),
2001.

Fernandez, M., Gomez-Perez, A., and Juristo, N. METHONTOLOGY: from ontological
art towards ontological engineering. In Proceedings of the AAAI97 Spring Symposium Series on
Ontological Engineering, pp. 33–40. Stanford, USA, 1997.

Fernández-López, M. and Gómez-Pérez, A. Overview and analysis of methodologies for
building ontologies. Knowl. Eng. Rev., 17(2):pp. 129–156, 2002. doi:http://dx.doi.org/10.1017/
S0269888902000462.

Ferreira da Silva, C. Découverte de correspondances sémantiques entre ressources hétérogénes
dans un environnement coopératif. Thèse de doctorat en informatique, Université Claude Bernard
Lyon 1, 2007. URL http://liris.cnrs.fr/publis/?id=3527.

Festa, P., Pardalos, P. M., Mauricio, and Resende, M. G. Feedback set problems. In
Handbook of Combinatorial Optimization, pp. 209–258. Kluwer Academic Publishers, 1999.

Floyd, R. W. Nondeterministic algorithms. J. ACM, 14(4):pp. 636–644, 1967. ISSN 0004-5411.
doi:http://doi.acm.org/10.1145/321420.321422.

Frost, R. A. Introduction to knowledge base systems. Macmillan Publishing Co., Inc., Indianapo-
lis, IN, USA, 1986. ISBN 0-029-48490-1.

Fruchterman, T. and Reingold, E. Graph drawing by force-directed placement. Software-
Practice and Experience, 21(11):pp. 1129–1164, 1991.

Gay, P. Achieving competitive advantage through knowledge-based engineering: A best practice
guide. Technical report, British Department of Trade and Industry, 2000.

Ghodous, P., Martinez., M., Hassas, S., and Pimont, S. Distributed architecture for design
activities. International Journal of IT in Architecture, Engineering and Construction, Chimay
J. Anumba, 2003.

Ghodous, P. and Vandorpe, D. (Editors). Advances in Concurrent Engineering. 7 th ISPE
International Conference on Concurrent Engineering : Research and Applications, CE2000, 2000.

Gómez-Pérez, A. Ontological engineering: a state of the art. In British Computer Society,
volume 2, pp. 33–43. Expert Update, 1999.

Gómez-Pérez, A., Fernández-López, M., and Corcho, O. Ontological Engineering: With
Examples from the Areas of Knowledge Management, E-Commerce and Semantic Web. Springer,
2004.

Grau, B. C., Horrocks, I., Parsia, B., Patel-Schneider, P., and Sattler, U. Next steps
for OWL. In Proceeding of OWLED-2006, 2006.

Gross, J. L. and Yellen, J. Handbook of Graph Theory (Discrete Mathematics and Its Applica-
tions). CRC Press, 1 edition, 2003. ISBN 1584880902. URL http://www.worldcat.org/isbn/

1584880902.

∼ 150 ∼

http://code.google.com/p/factplusplus/
http://liris.cnrs.fr/publis/?id=3527
http://www.worldcat.org/isbn/1584880902
http://www.worldcat.org/isbn/1584880902

BIBLIOGRAPHY

Gruber, T. Toward principles for the design of ontologies used for knowledge sharing. In Inter-
national Journal Human-Computer Studies, volume 43, pp. 907–928. Elsevier, 1993a.

Gruber, T. A translation approach to portable ontology specifications. Technical report, Knowl-
edge Systems Laboratory, Computer Science Department, Stanford University, 1993b.

Grundstein, M. Knowledge Management, Classic and Contemporary Works, chapter From cap-
italizing on Company Knowledge to Knowledge Management, pp. 261–287. The MIT Press,
Massachusetts, 2000.

Grüninger, M. and Fox, M. S. The role of competency questions in enterprise engineering. In
IFIP WG5.7 Workshop on Benchmarking - Theory and Practice, 1994.

Grüninger, M. and Fox, M. S. Methodology for the design and evaluation of ontologies. In
International Joint Conference on Artificial Intelligence (IJCQI95), Workshop on Basic Onto-
logical Issues in Knowledge Sharing, 1995.

Guarino, N. and Giaretta, P. Ontologies and Knowledge Bases: Towards a Terminological
Clarification. Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Shar-
ing, pp. 25–32, 1995. URL http://www.csee.umbc.edu/771/papers/KBKS95.pdf.Z.

Guennuni, I. E. Konzeption und Entwicklung eines modularen Software-Bausteins zur Extraktion
von Beziehungswissen aus CATIA V5. Master’s thesis, Hochschule Darmstadt, 2008.

Hakkarainen, S., Strasunskas, D., Hella, L., and Tuxen, S. Choosing appropriate method
guidelines for web-ontology building. In Conceptual Modeling - ER 2005, volume 3716 of Lecture
Notes in Computer Science, pp. 270–287. Springer Berlin / Heidelberg, 2005. ISBN 978-3-540-
29389-7. ISSN 0302-9743 (Print) 1611-3349 (Online). doi:10.1007/11568322_18. URL http:

//www.springerlink.com/content/p3r88922j8146737/.

Heffernan, M. and Wilken, K. Data-dependency graph transformations for instruction
scheduling. Journal of Scheduling, 8(5):pp. 427–451, 2005. ISSN 1094-6136 (Print) 1099-
1425 (Online). doi:10.1007/s10951-005-2862-8. URL http://www.springerlink.com/content/

tk0363gt5482j683/.

van Heijst, G., Schreiber, A. T., and Wielinga, B. J. Using explicit ontologies in KBS
development. Int. J. Hum.-Comput. Stud., 46(2–3):Academic Press, Inc., 1997.

Hepp, M. Ontologies: State of the art, business potential, and grand challenges. In Ontology
Management: Semantic Web, Semantic Web Services, and Business Applications, pp. 3–22.
Springer, 2007a.

Hepp, M. Possible ontologies: How reality constrains the development of relevant ontologies.
In IEEE Internet Computing, volume 11, pp. 90–96, 2007b. URL http://www.heppnetz.de/

files/IEEE-IC-PossibleOntologies-published.pdf.

Horrocks, I., Kutz, O., and Sattler, U. The even more irresistible SROIQ. In Proceeding
of the 10th International Conference on Principles of Knowledge Representation and Reasoning,
pp. 57–67, 2006.

Horrocks, I., Patel-Schneider, P., and van Harmelen, F. From SHIQ and RDF to OWL:
The making of a web ontology language. Journal of Web Semantics, 1(1):pp. 7–26, 2003. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.7039.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., and Dean,
M. SWRL: A Semantic Web Rule Language Combining OWL and RuleML, 2004. URL http:

//www.w3.org/Submission/SWRL/.

Hovda, P. What is classical mereology? Journal of Philosophical Logic, 38(1):pp. 55–82, 2009.
ISSN 0022-3611 (Print) 1573-0433 (Online). doi:10.1007/s10992-008-9092-4. URL http://www.

springerlink.com/content/76l18850p2325p16/.

∼ 151 ∼

http://www.csee.umbc.edu/771/papers/KBKS95.pdf.Z
http://www.springerlink.com/content/p3r88922j8146737/
http://www.springerlink.com/content/p3r88922j8146737/
http://www.springerlink.com/content/tk0363gt5482j683/
http://www.springerlink.com/content/tk0363gt5482j683/
http://www.heppnetz.de/files/IEEE-IC-PossibleOntologies-published.pdf
http://www.heppnetz.de/files/IEEE-IC-PossibleOntologies-published.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.7039
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
http://www.springerlink.com/content/76l18850p2325p16/
http://www.springerlink.com/content/76l18850p2325p16/

BIBLIOGRAPHY

Hu, Y., Zhou, X., and Li, C. Internet-based intelligent service-oriented system architecture
for collaborative product development. Computer Integrated Manufacturing, 23(2):pp. 113–125,
2010.

ICARE forms, . URL http://web1.eng.coventry.ac.uk/moka/informal.htm.

IEEE P1600.1. Standard upper ontology working group, 2003. URL http://suo.ieee.org/.

Inaba, A., Supnithi, T., Ikeda, M., Mizoguchi, R., and Toyoda, J. Learning goal ontology.
In ECAI2000 Workshop on Analysis and Modelling of Collaborative Learning interactions, pp.
23–30, 2000.

ISO 10303. Industrial automation systems and integration - Product data representation and
exchange, 1994. URL http://www.steptools.com/library/standard/.

Jackson, C. The transition from 2D drafting to 3D modeling benchmark report: Improving
engineering efficiency. Technical report, Aberdeen Group, 2006.

JGraph 5, . URL http://www.jgraph.com/jgraph5.html.

Jula, H. and Candea, G. A scalable, sound, eventually-complete algorithm for deadlock immu-
nity. In Runtime Verification, pp. 119–136. Springer, 2008.

Kahn, A. B. Topological sorting of large networks. Commun. ACM, 5(11):pp. 558–562, 1962.
ISSN 0001-0782. doi:http://doi.acm.org/10.1145/368996.369025.

Kamrani, A. and Vijayan, A. A methodology for integrated product development using
design and manufacturing templates. Journal of Manufacturing Technology Management,
17(5):Emerald Group Publishing Limited, 2006. URL http://www.emeraldinsight.com/

Insight/viewContentItem.do?contentType=Article&contentId=1742488.

Katzenbach, A., Bergholz, W., and Rolinger, A. Knowledge-based design - an integrated
approach. In Heidelberg, S. B. (Editor), The Future of Product Development, pp. 13–22, 2007.

Kifer, M., Lausen, G., and Wu, J. Logical foundations of object-oriented and frame-based
languages. J. ACM, 42(4):pp. 741–843, 1995.

Knublauch, H., Musen, M. A., and Noy, N. F. Editing OWL Ontologies with Protégé, 2003.

Knuth, D. E. Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison-
Wesley Professional, 3rd edition, 1997. ISBN 0201896834. URL http://www.amazon.com/

exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201896834.

Knuth, D. E. Art of Computer Programming, Volume 3: Sorting and Searching. Addison-
Wesley Professional, 2nd edition, 1998. ISBN 0201896850. URL http://www.amazon.com/

exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201896850.

Koufteros, X. A., Vonderembse, M. A., and Doll, W. J. Integrated product development
practices and competitive capabilities: the effects of uncertainty, equivocality, and platform
strategy. Journal of Operations Management, 20(4):pp. 331–355, 2002.

Kuhn, O., Dutra, M. L., Ghodous, P., Dusch, T., and Collet, P. Collaborative archi-
tecture based on Web-Services. In Curran, R., Chou, S.-Y., and Trappey, A. (Editors),
Collaborative Product and Service Life Cycle Management for a Sustainable World, volume 15 of
ISPE International conference on Concurrent Engineering, pp. 53–61. Springer-Verlag London,
2008.

Kulon, J., Broomhead, P., and Mynors, D. Applying knowledge-based engineering to tradi-
tional manufacturing design. The International Journal of Advanced Manufacturing Technolo-
gies, 30(9–10):pp. 945–951, 2006.

Kunz, W. and Rittel, H. Issues as elements of information systems. Working paper No. 131,
Studiengruppe für Systemforschung, Heidelberg, Germany, 1970.

∼ 152 ∼

http://web1.eng.coventry.ac.uk/moka/informal.htm
http://suo.ieee.org/
http://www.steptools.com/library/standard/
http://www.jgraph.com/jgraph5.html
http://www.emeraldinsight.com/Insight/viewContentItem.do?contentType=Article&contentId=1742488
http://www.emeraldinsight.com/Insight/viewContentItem.do?contentType=Article&contentId=1742488
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201896834
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201896834
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201896850
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201896850

BIBLIOGRAPHY

La Rocca, G. and van Tooren, M. Development of Design and Engineering Engines to support
multidisciplinary design and analysis of aircraft. In Delft Science in Design–A Congress on
Interdisciplinary Design, pp. 107–124. by Faculty of Architecture First edition, 2005.

La Rocca, G. and van Tooren, M. Knowledge-Based Engineering Approach to Support Aircraft
Multidisciplinary Design and Optimization. Journal of aircraft, 46(6):pp. 1875–1885, 2009.

Lantzman, E. Iterative vs. recursive approaches, 2007. URL http://blogs.microsoft.co.il/

blogs/eyal/archive/2007/11/05/iterative-vs-recursive-approaches.aspx.

Lee, J. Extending the potts and bruns model for recording design rationale. In ICSE ’91:
Proceedings of the 13th international conference on Software engineering, pp. 114–125. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1991. ISBN 0-89791-391-4.

Lee, T., Hendler, J., Lassila, O., et al. The semantic web. Scientific American, 284(5):pp.
34–43, 2001.

Lehmann, F. Semantic Networks in Artificial Intelligence. Elsevier Science Inc., New York, NY,
USA, 1992. ISBN 0080420125.

Lenat, D. B., Guha, R. V., Pittman, K., Pratt, D., and Shepherd, M. Cyc: toward
programs with common sense. Commun. ACM, 33(8):pp. 30–49, 1990. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/79173.79176.

Lenzerini, M., Milano, D., and Poggi, A. Ontology representation & reasoning. Techni-
cal report, Dipartimento di Informatica e Sistemistica Antonio Ruberti, Universit di Roma La
Sapienza, Roma, Italy, Year unknown.

Liese, H. Wissensbasierte 3D-CAD Repräsentation. Ph.D. thesis, Technische Universität Darm-
stadt, 2003.

Lima Dutra, M., Ghodous, P., Kuhn, O., and Minh, T. A Generic and Synchronous Ontology-
based Architecture for Collaborative Design. Concurrent Engineering, Research and Applica-
tions, 18(1):pp. 65–74, 2010. ISSN 1063 293X. URL http://liris.cnrs.fr/publis/?id=4569.

Lukibanov, O. Use of ontologies to support design activities at DaimlerChrysler. In 8th Inter-
national Protégé Conference, 2005.

MacLean, A., Young, R. M., Bellotti, V. M. E., and Moran, T. P. Questions, options,
and criteria: elements of design space analysis. Hum.-Comput. Interact., 6(3):pp. 201–250, 1991.
ISSN 0737-0024. doi:http://dx.doi.org/10.1207/s15327051hci0603\&4_2.

Maculet, R. and Daniel, M. Conception, modélisation géométrique et contraintes en CAO :
Une synthèse. Revue d’Intelligence Artificielle, 18(5–6):pp. 619–645, 2004.

Maedche, A., Motik, B., Stojanovic, L., Studer, R., and Volz, R. Ontologies for enterprise
knowledge management. IEEE Intelligent Systems, 18(2):pp. 26–33, 2003.

Mbang, S. Durchgängige Integration von Produktmodellierung, Prozessplannung und Produktion
am Beispiel Karosserie. In CAD - Produktdaten "Top Secret" ?!, 2008.

McCarthy. Circumscription – a form of non-monotonic reasoning. Artificial Intelligence,
5(13):pp. 27–39, 1980.

McLean, C. R. Computer-aided manufacturing system engineering. In APMS ’93: Proceedings
of the IFIP TC5/WG5.7 Fifth International Conference on Advances in Production Manage-
ment Systems, pp. 341–348. North-Holland Publishing Co., Amsterdam, The Netherlands, The
Netherlands, 1993. ISBN 0-444-81598-8. URL http://www.mel.nist.gov/msidlibrary/doc/

mclean93.pdf.

Milton, N. Knowledge Technologies. Polimetrica - International Scientific Publisher, 2008.

∼ 153 ∼

http://blogs.microsoft.co.il/blogs/eyal/archive/2007/11/05/iterative-vs-recursive-approaches.aspx
http://blogs.microsoft.co.il/blogs/eyal/archive/2007/11/05/iterative-vs-recursive-approaches.aspx
http://liris.cnrs.fr/publis/?id=4569
http://www.mel.nist.gov/msidlibrary/doc/mclean93.pdf
http://www.mel.nist.gov/msidlibrary/doc/mclean93.pdf

BIBLIOGRAPHY

Minsky, M. A framework for representing knowledge. AIM-306, 1974.

Mizoguchi, R. Tutorial on ontological engineering - part 1: Introduction to ontological engineer-
ing. volume 21, pp. 365–384. Ohmsha, Ldt, 2003.

Mizoguchi, R. and Ikeda, M. Towards ontology engineering. In Pacific Asian Conference on
Expert systems, pp. 259–266, 1997.

Moran, T. and Carroll, J. Design rationale: concepts, techniques, and use. L. Erlbaum
Associates Inc, 1996. ISBN 0-8058-1567-8.

Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A., and Lutz, C. OWL 2 Web
Ontology Language Profiles, 2009a. URL http://www.w3.org/TR/owl2-profiles/.

Motik, B., Shearer, R., and Horrocks, I. Hypertableau Reasoning for Description Logics.
Journal of Artificial Intelligence Research, 36(1):pp. 165–228, 2009b.

Musen, M., Gennari, J., Eriksson, H., Tu, S., and Puerta, A. PROTÉGÉ-II: Computer
support for development of intelligent systems from libraries of components. Medinfo, 8(Pt 1):pp.
766–770, 1995.

Nordmann, K. Standardization of ontologies, 2009. URL http://kore-nordmann.de/blog/

0089_standardization_of_ontologies.html.

Noy, N. and McGuinness, D. Ontology development 101: A guide to creating your first ontology.
Technical report, Stanford University, 2001.

O’Connor, M. The Semantic Web Rule Language. Protégé conference 2009 Tutorial, 2009.

O’Connor, M., Knublauch, H., Tu, S., Grosof, B., Dean, M., Grosso, W., and Musen,
M. Supporting Rule System Interoperability on the Semantic Web with SWRL. Fourth Inter-
national Semantic Web Conference, pp. 974–986, 2005.

O’Connor, M. J. and Das, A. K. SQWRL: A Query Language for OWL. In Hoekstra, R.
and Patel-Schneider, P. F. (Editors), OWLED, volume 529 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008. URL http://dblp.uni-trier.de/db/conf/semweb/owled2009.html#

OConnorD08.

OLDHAM, K., KNEEBONE, S., CALLOT, M., MURTON, A., and BRIMBLE, R. A
methodology and tools oriented to knowledge-based engineering applications. In Changing the
Ways We Work, Advances in Design and Manufacturing, volume 8, pp. 198–207, 1998.

Olsen, G., Cutkosky, M., Tenenbaum, J., and Gruber, T. Collaborative engineering based
on knowledge sharing agreements. Concurrent Engineering, 3(2):pp. 145–159, 1995.

OWL 2. Web ontology language document overview, 2009. URL http://www.w3.org/TR/

owl2-overview/.

OWL API, . URL http://owlapi.sourceforge.net/. The OWL API is a Java API and reference
implementation for creating, manipulating and serialising OWL Ontologies.

Parsia, B., Sirin, E., Grau, B., Ruckhaus, E., and Hewlett, D. Cautiously approaching
SWRL, 2005. URL http://www.mindswap.org/papers/CautiousSWRL.pdf.

Patel-Schneider, P. F. and Horrocks, I. OWL 1.1, 2006. URL http://www.w3.org/

Submission/owl11-overview/.

Pellet, . URL http://clarkparsia.com/pellet. Pellet is an OWL 2 reasoner. Pellet provides
standard and cutting-edge reasoning services for OWL ontologies.

Pena-Mora, F., Sriram, D., and Logcher, R. SHARED-DRIMS: SHARED design
recommendation-intent management system. Enabling technologies: Infrastructure for collab-
orative Enterprises, pp. 213–221, 1993.

∼ 154 ∼

http://www.w3.org/TR/owl2-profiles/
http://kore-nordmann.de/blog/0089_standardization_of_ontologies.html
http://kore-nordmann.de/blog/0089_standardization_of_ontologies.html
http://dblp.uni-trier.de/db/conf/semweb/owled2009.html#OConnorD08
http://dblp.uni-trier.de/db/conf/semweb/owled2009.html#OConnorD08
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://owlapi.sourceforge.net/
http://www.mindswap.org/papers/CautiousSWRL.pdf
http://www.w3.org/Submission/owl11-overview/
http://www.w3.org/Submission/owl11-overview/
http://clarkparsia.com/pellet

BIBLIOGRAPHY

Pennell, J., Winner, R., Bertrand, H., and Slusarczuk, M. Concurrent Engineering -
An overview for Autotestcon. In AUTOTESTCON’89- IEEE International Automatic Testing
Conference, Philadelphia, PA, pp. 88–99, 1989.

Peurriere, J.-L. Dependency graph, 2006. URL http://www.blender.org/development/

release-logs/blender-240/dependency-graph/.

Phillips, R. E. Dynamic objects for engineering automation. Commun. ACM, 40(5):pp. 59–65,
1997. ISSN 0001-0782. doi:http://doi.acm.org/10.1145/253769.253791.

Polanyi, M. The Tacit Dimension. Peter Smith Publisher Inc, 1967. ISBN 0844659991.

Prasad, B. What distinguishes KBE from automation, 2005. URL http://www.coe.org/

newsnet/Jun05/knowledge.cfm. Parker Aerospace, Irvine, CA.

Protégé 4, . URL http://protege.stanford.edu/. Developed by Stanford Center for Biomed-
ical Informatics Research at the Stanford University School of Medicine.

Psyché, V., Mendes, O., and Bourdeau, J. Apport de l’ingénierie ontologique aux envi-
ronnements de formation à distance. Journal of Sciences et Technologies de l’Information
et de la Communication pour l’Education et la Formation, 10, 2003. URL http://sticef.

univ-lemans.fr/.

Regli, W., Hu, X., Atwood, M., and Sun, W. A survey of design rationale systems:
Approaches, representation, capture and retrieval. Engineering with Computers, 16(3-4):pp.
209–235, 2000. ISSN 0177-0667 (Print) 1435-5663 (Online). doi:10.1007/PL00013715. URL
http://www.springerlink.com/content/w7ltxaufpay1rpwm/.

Rittel, H. W. J. and Webber, M. M. Dilemmas in a general theory of planning. Policy
Sciences, 4(2):pp. 155–169, 1973. doi:doi:10.1007/BF01405730. URL http://dx.doi.org/doi:

10.1007/BF01405730.

Row, L. A., Davis, M., Messinger, E., Meyer, C., Spirakis, C., and Tuan, A. A browser
for directed graphs. Softw. Pract. Exper., 17(1):pp. 61–76, 1987. ISSN 0038-0644. doi:http:
//dx.doi.org/10.1002/spe.4380170107.

Russell, S. J. and Norvig, P. Artificial Intelligence: A Modern Approach. Pearson Education,
2003. ISBN 0137903952. URL http://portal.acm.org/citation.cfm?id=773294.

Sandberg, M. Knowledge based engineering - in product development. Technical report,
Luleå Universtity of Technology, 2003.

Schreiber, G., Akkermans, H., and Anjewierden, A. Knowledge engineering and manage-
ment: the CommonKADS methodology. the MIT Press, 1999.

Shadbolt, N., Berners-Lee, T., and Hall, W. The Semantic Web Revisited. IEEE Intelligent
Systems, 21(3):pp. 96–101, 2006. ISSN 1541-1672. doi:http://dx.doi.org/10.1109/MIS.2006.62.

Shen, W., Hao, Q., and Li, W. Computer supported collaborative design: next term retrospec-
tive and perspective. Computers in Industry, 59(9):pp. 855–862, 2008.

Siddique, Z. and Boddu, K. A CAD template approach to support web-based customer centric
product design. Journal of Computing and Information Science in Engineering, 5(4):American
Society of Mechanical Engineers, 2005. URL http://scitation.aip.org/getabs/servlet/

GetabsServlet?prog=normal&id=JCISB6000005000004000381000001&idtype=cvips&gifs=

yes.

Simon, H. A. The New Science of Management Decision. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1977. ISBN 0136161367.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. Pellet: A practical OWL-DL
reasoner. In Software Engineering and the Semantic Web, volume 5, pp. 51–53, 2007.

∼ 155 ∼

http://www.blender.org/development/release-logs/blender-240/dependency-graph/
http://www.blender.org/development/release-logs/blender-240/dependency-graph/
http://www.coe.org/newsnet/Jun05/knowledge.cfm
http://www.coe.org/newsnet/Jun05/knowledge.cfm
http://protege.stanford.edu/
http://sticef.univ-lemans.fr/
http://sticef.univ-lemans.fr/
http://www.springerlink.com/content/w7ltxaufpay1rpwm/
http://dx.doi.org/doi:10.1007/BF01405730
http://dx.doi.org/doi:10.1007/BF01405730
http://portal.acm.org/citation.cfm?id=773294
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JCISB6000005000004000381000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JCISB6000005000004000381000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JCISB6000005000004000381000001&idtype=cvips&gifs=yes

BIBLIOGRAPHY

Skarka, W. Application of MOKA methodology in generative model creation using catia. Engi-
neering Applications of Artificial Intelligence, 20(5):pp. 677–699, 2007.

Smith, M. K., Welty, C., and McGuinness, D. L. OWL Web Ontology Language Guide,
2004. URL http://www.w3.org/TR/owl-guide/.

Smullyan, R. First-order logic. Dover Publications, 1995. ISBN 0-486-68370-2.

Sowa, J. Distinction, combination, and constraints. In IJCAI-95 Workshop on Basic Ontological
Issues in Knowledge Sharing, 1995.

Sriram, R. D. Distributed and Integrated Collaborative Engineering Design. Sarven, 2002. ISBN
0972506403.

Stevens, R., Goble, C., Horrocks, I., and Bechhofer, S. Building a bioinformatics ontology
using OIL. IEEE Transactions on Information Technology in Biomedicine, 6:pp. 135–141, 2002.

Stokes, M. Managing engineering knowledge. MOKA: Methodology for knowledge-based engineer-
ing applications. Professional Engineering Publishing, 2001.

Studer, R., Benjamins, V. R., and Fensel, D. Knowledge engineering: Principles and meth-
ods. In Data Knowledge Engineering, volume 25, pp. 161–197. Elsevier, 1998.

Su, X. and Ilebrekke, L. A comparative study of ontology languages and tools. In Advanced
Information Systems Engineering, volume 2348 of Lecture Notes in Computer Science, pp. 761–
765. Springer Berlin / Heidelberg, 2002. ISBN 978-3-540-43738-3. ISSN 0302-9743 (Print) 1611-
3349 (Online). doi:10.1007/3-540-47961-9_62. URL http://www.springerlink.com/content/

0pgul6j9yjhjdqrn/.

Sugiyama, K., Tagawa, S., and Toda, M. Methods for visual understanding of hierarchical
system structures. IEEE Transactions On Systems, Man, And Cybernetics, 11(2):pp. 109–125,
1981.

Swartout, B., Ramesh, P., Knight, K., and Russ, T. Toward distributed use of large-scale
ontologies. AAAI Symposium on Ontological Engineering, 25:pp. 161–197, 1997.

Tamassia, R., Battista, G. D., and Batini, C. Automatic graph drawing and readability of
diagrams. IEEE Transactions on Systems, Man and Cybernetics, 18:pp. 61–79, 1988.

Tenenbaum, J., Gruber, T., McGuire, J., Weber, D., and Olsen, G. SHADE: Technology
for knowledge-based collaborative engineering. Journal of Concurrent Engineering : Applications
and Research, 1(3):pp. 137–146, 1993.

Thomason, L., . URL http://www.grinninglizard.com/tinyxml/. TinyXML is a simple, small,
C++ XML parser that can be easily integrating into other programs.

van Tooren, M. and Rocca, G. L. Systems engineering and multi-disciplinary design opti-
mization. In Curran, R., Chou, S.-Y., and Trappey, A. (Editors), Collaborative Product
and Service Life Cycle Management for a Sustainable World, volume 15 of ISPE International
conference on Concurrent Engineering, pp. 401–415. Springer-Verlag London, 2008.

Tseng, M. M. and Jiao, J. Handbook of Industrial Engineering, Third Edition, chapter Mass
Customization, pp. 684–709. Wiley-Interscience, 2007. ISBN 0-471-33057-4.

Uschold, M. and Gruninge, M. Ontologies: Principles, methods and applications. In Knowledge
Engineering Review, volume 11, pp. 93–136. Cambridge University Press, 1996.

Villemur, T. Modèles et services logiciels pour le travail collaboratif, 2006. Habilitation à diriger
des recherches - Laboratoire d’analyse et d’architecture des systèmes du CNRS (LAAS).

Web Services Activity, 2002. URL http://www.w3.org/2002/ws/.

∼ 156 ∼

http://www.w3.org/TR/owl-guide/
http://www.springerlink.com/content/0pgul6j9yjhjdqrn/
http://www.springerlink.com/content/0pgul6j9yjhjdqrn/
http://www.grinninglizard.com/tinyxml/
http://www.w3.org/2002/ws/

BIBLIOGRAPHY

Wielinga, B., Schreiber, A., and Breuker, J. KADS: A modelling approach to knowledge
engineering. Knowledge acquisition, 4(1):p. 53, 1992.

Woods, W. A. What’s in a link: Foundation for semantic networks. In Bobrow, D. G. and
Collins, A. M. (Editors), Representation and Understanding: Studies in Cognitive Science,
pp. 35–82. Academic Press, London, 1975.

Zha, X. F., Sriram, R. D., Fernandez, M. G., and Mistree, F. Knowledge-intensive col-
laborative decision support for design processes: A hybrid decision support model and agent.
Computers in Industry, 59(9):pp. 905–922, 2008.

∼ 157 ∼

Index

A

Automation . 9

C

CATIA V5 . 72
CAA . 83
Cycle .82
Multi-Model Links. .80
PowerCopy . 73
Templates . 73
User Defined Feature 73

Computer-Aided Design . 8
Concurrent Engineering . 46

D

Decision support . 48, 94
Design rationale. .50

G

Graph . 54
Cycle . 56, 123
Dependence . 55
Depth first Search . 57
Topological sort 58, 113

I

Issue-Based Information System 49, 95

K

Knowledge
Definition . 8
Management . 10
Representation . 24

Knowledge-Based Engineering 9

O

Ontology. .25
Classification . 27
Methodology . 30, 101
Reasoning . 38
Representation language 33

S

Semantic Web . 35

T

Template
Classification . 16
Definition . 13
Instance . 17, 125
Instantiation. .17, 126

Update process . 66, 91

U

Update sequence . 115

W

Web Ontology Language
Definition . 37
Versions . 40

∼ 159 ∼

Appendices

∼ 161 ∼

Appendix A

XML Example

You can find below a short example of XML document1.

Source code A.1 – XML document generated by the application presented in section 11.3. It
describes the template presented in figure E.1.

<?xml version=" 1 .0 " encoding=" ISO−8859−1" ?>

<sh ipo rde r o rde r id=" 889923 "
xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−i n s t ance "
xsi :noNamespaceSchemaLocation=" sh ipo rde r . xsd ">
<orderperson>John Smith</ orderperson>
<sh ip to>

<name>Ola Nordmann</name>
<address>Langgt 23</ address>
<c i t y>4000 Stavanger</ c i t y>
<country>Norway</ country>

</ sh ip to>
<item>

<t i t l e>Empire Burlesque</ t i t l e>
<note>Spe c i a l Edi t ion</note>
<quant i ty>1</ quant i ty>
<pr i c e>10.90</ p r i c e>

</ item>
<item>

<t i t l e>Hide your heart</ t i t l e>
<quant i ty>1</ quant i ty>
<pr i c e>9.90</ p r i c e>

</ item>
</ sh ipo rde r>

The structure of XML document can be constraint to match a given scheme. For this purpose a
W3C recommendation called XML Schema2 was published. It defines how the XML document has
to be structured. For instances it defines that there can be any number of “items” elements with
the “maxOccurs” attribute. An XML schema corresponding to the above XML example would be:

Source code A.2 – XML document generated by the application presented in section 11.3. It
describes the template presented in figure E.1.

<?xml version=" 1 .0 " encoding=" ISO−8859−1" ?>
<xs:schema xmlns :xs=" h t tp : //www.w3 . org /2001/XMLSchema">

<xs : e l ement name=" sh ipo rde r ">
<xs:complexType>

<xs : s equence>
<xs : e l ement name=" orderperson " type=" x s : s t r i n g " />
<xs : e l ement name=" sh ip to ">

<xs:complexType>
<xs : s equence>

<xs : e l ement name="name" type=" x s : s t r i n g " />
<xs : e l ement name=" address " type=" x s : s t r i n g " />

1Available at http://www.w3schools.com/schema/schema_example.asp
2http://www.w3.org/XML/Schema

∼ 163 ∼

http://www.w3schools.com/schema/schema_example.asp
http://www.w3.org/XML/Schema

APPENDIX A. XML EXAMPLE

<xs : e l ement name=" c i t y " type=" x s : s t r i n g " />
<xs : e l ement name=" country " type=" x s : s t r i n g " />

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs : e l ement name=" item " maxOccurs=" unbounded ">

<xs:complexType>
<xs : s equence>

<xs : e l ement name=" t i t l e " type=" x s : s t r i n g " />
<xs : e l ement name=" note " type=" x s : s t r i n g " minOccurs=" 0 " />
<xs : e l ement name=" quant i ty " type=" x s : p o s i t i v e I n t e g e r " />
<xs : e l ement name=" p r i c e " type=" xs :dec ima l " />

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
</ xs : s equence>
<x s : a t t r i b u t e name=" orde r id " type=" x s : s t r i n g " use=" r equ i r ed " />

</xs:complexType>
</ xs : e l ement>
</xs:schema>

∼ 164 ∼

Appendix B

OWL DL

Table B.1 – OWL DL descriptions, data ranges, properties, indivdiuals and data values
[Horrocks et al., 2003]

Abstract Syntax DL syntax Semantic

Descriptions (C)
A (URI reference) A AI ⊆ ∆I

owl:Thing ⊤ owl:ThingI = ∆I

owl:Nothing ⊥ owl:NothingI = {}
intersectionOf(C1 . . . Cn) C1 ⊓ · · · ⊓ Cn (C1 ⊓ · · · ⊓ Cn)I = CI

1 ∩ · · · ∩ CI
n

unionOf(C1 . . . Cn) C1 ⊔ · · · ⊔ Cn (C1 ⊔ · · · ⊔ Cn)I = CI
1 ∪ · · · ∪ CI

n

complementOf (C) ¬C (¬C)I = ∆I\CI

oneOf(o1 . . . on) {o1, . . . , on} {o1, . . . , on}
I = {oI1, . . . , oIn }

restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I = { x | ∃y.〈x, y〉 ∈ RI and y ∈ CI}
restriction(R allValuesFrom (C)) ∀R.C (∀R.C)I = { x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
restriction(R hasValue(o)) R : o (∀R.o)I = { x | 〈x, oI〉 ∈ RI}
restriction(R minCardinality(n)) > n R (> n R)I = {x | ♯({y.〈x, y〉 ∈ RI}) > n}
restriction(R maxCardinality(n)) 6 n R (6 n R)I = {x | ♯({y.〈x, y〉 ∈ RI}) 6 n}
restriction(U someValuesFrom(D)) ∃U.D (∃U.D)I = { x | ∃y.〈x, y〉 ∈ UI and y ∈ DI}
restriction(U allValuesFrom (D)) ∀U.D (∀U.D)I = { x | ∀y.〈x, y〉 ∈ UI → y ∈ DI}
restriction(U hasValue(v)) U : v (∀U.v)I = { x | 〈x, oI〉 ∈ RI}
restriction(U minCardinality(n)) > n U (> n U)I = {x | ♯({y.〈x, y〉 ∈ UI}) > n}
restriction(U maxCardinality(n)) 6 n U (6 n U)I = {x | ♯({y.〈x, y〉 ∈ UI}) 6 n}

Data Range (D)
D (URI reference) D DD ⊆ ∆I

D

oneOf(v1 . . . vn) {v1, . . . , vn} {v1, . . . , vn}
I = {vI

1, . . . , vI
n}

Object Properties (R)
R (URI reference) R RI ⊆ ∆I ×∆I

R− (RI)− = (RI)−

Datatype Properties (U)
U (URI reference) U UI ⊆ ∆I ×∆I

D

Individuals (o)
o (URI reference) o oI ∈ ∆I

Data Values (v)
v (RDF literal) v vI = vD

∼ 165 ∼

APPENDIX B. OWL DL

Table B.2 – OWL DL axioms and facts [Horrocks et al., 2003]

Abstract Syntax DL Syntax Semantics

Class (A parial C1 . . . Cn) A ⊑ C1 ⊓ · · · ⊓ Cn AI ⊆ CI
1 ∩ · · · ∩ CI

n

Class (A complete C1 . . . Cn) A = C1 ⊓ · · · ⊓ Cn AI = CI
1 ∩ · · · ∩ CI

n

EnumerateClasses(A o1 . . . on) A = { o1, . . . , on} AI = { oI1, . . . , oIn}
SubClassOf(C1 C2) C1 ⊑ C2 CI

1 ⊆ CI
2

EquivalentClasses(C1 . . . Cn) C1 = · · · = Cn CI
1 = · · · = CI

n

DisjointClasses(C1 . . . Cn) Ci ⊓ Cj = ⊥, i 6= j CI
i ∩ CI

j = {}, i 6= j

Datatype(D) DI ⊂ ∆I

D

DatatypeProperty(U super(U1)...super(Un)) U ⊑ Ui UI ⊆ UI
i

domain(C1) ... domain(Cm) > 1U ⊑ Ci UI ⊆ CI
i ×∆I

D

range(D1) ... range(Dl) ⊤ ⊑ ∀U.Di UI ⊆ ∆I ×DI
i

[Functional] ⊤ ⊑6 1U UI is functional

SubPropertyOf(U1 U2) U1 ⊑ U2 UI
1 ⊆ UI

2

EquivalentPropertyOf(U1 . . . Un) U1 = · · · = Un UI
1 = · · · = UI

n

ObjectProperty(R super(R1)...super(Rn)) R ⊑ Ri RI ⊆ RI
i

domain(C1) ... domain(Cm) > 1R ⊑ Ci RI ⊆ CI
i ×∆I

range(D1) ... range(Cl) ⊤ ⊑ ∀R.Ci RI ⊆ ∆I × CI
i

[InverseOf(R0)] R = (−R0) RI = (RI
0)−

[Symmetric] R = (−R) RI = (RI)−

[Functional] ⊤ ⊑6 1R RI is functional

[InverseFunctional] ⊤ ⊑6 1R− (RI)− is functional

[Transitive] Tr(R) RI = (RI)+

SubPropertyOf(R1 R2) R1 ⊑ R2 RI
1 ⊆ RI

2

EquivalentPropertyOf(R1 . . . Rn) R1 = · · · = Rn RI
1 = · · · = RI

n

AnnotationProperty(S)

Individual (o type(C1)) ... type(Cn) o ∈ Ci oI ∈ CI
i

value (R1 o1)...value(Rn on) 〈o, oi〉 ∈ Ri 〈oI, oIi 〉 ∈ RI
i

value (U1 v1)...value(Un vn) 〈o, vi〉 ∈ Ui 〈oI, vI
i 〉 ∈ UI

i

SameIndividual(o1 . . . on) o1 = · · · = on oI1 = · · · = oIn
DifferentIndivials(o1 . . . on) oi 6= oj , i 6= j oIi 6= oIj , i 6= j

∼ 166 ∼

Appendix C

Indirect Instances

Figure C.1 illustrates direct and indirect instances in a real case, which corresponds to the assem-
blies shown in figure 1.10. Green boxes are templates, orange ones are standard parts and gray
boxes represent assemblies. The blue box is the main document from the assembly. Large gray
arrows represent the order in which the different models were designed. In this example the focus
is pour on the Top finger template. The red arrow represents its direct instances and dashed red
arrows the indirect instances.

Figure C.2 present the order in which the update of the instances of Top finger should be
done, in the case of its update. In this case the sequence shown by red arrows is the optimal one
because it minimises the number of updates. For example, if the instances present in the table

assembly are updated first, they may be overwritten by the instantiation of the Clamp. When the
indirect instance present in the Clamp template will be updated, it will result in a modification of
the Clamp template. Hence its instances, which are not explicitly shown in this figure, will also
have to be updated. They are located in the Table assembly and their update would overwrite
the Top finger instances that have already be processed. Furthermore by updating the Clamp

first, the designed ensure that the context is adapted to the new instance. The same reasoning has
to be made for the Top of the clamp.

Thus the update should follow the design order from the assemblies, by starting with the direct
instances.

Figure C.1 – Example of direct (red arrow) and indirect (dashed red arrows) instances corre-
sponding to the assemblies presented in figure 1.10.

∼ 167 ∼

APPENDIX C. INDIRECT INSTANCES

Figure C.2 – Order in which the instances of the top finger template should be updated.

∼ 168 ∼

Appendix D

Three-Tier Architecture

Three-tier architecture is a client-server architecture wherein the user interface, the logic layer and
the data storage layer are independent modules. They can thus be developed and maintained indi-
vidually. Any of these three components can be replaced by a new one because they communicate
together through well defined interfaces.

Figure D.1 illustrates this architecture. At the bottom of the schema is the data layer, which
is in charge of the storage. The storage can be realised by different technical solutions, such
as databases, text files or on a peer-to-peer network. In the middle, the business logic layer
provides the application’s functionalities and processing. At the top, the presentation layer displays
the information. This layer can be implemented by various technologies and on heterogeneous
devices and systems. The communication between the three modules is linear, that means that
the presentation layer does not communicate directly with the data layer.

Figure D.1 – Schema representing a three-tier architecture.

∼ 169 ∼

Appendix E

XML Description of CAD Models

The XML file resulting from the analysis of the CAD model and template presented in figure E.1
is available in the source code E.1.

Figure E.1 – Screenshot of a CAD model under CATIA V5.

Source code E.1 – XML document generated by the application presented in section 11.3. It
describes the template presented in figure E.1.

<ROOT>
<PRODUCTS>

<Product Name="PLMInfos ">
<MainProduct ItemName="C:\Dokumente␣und␣ E in s t e l l ungen \kuhn\

Desktop\THE␣ template ␣example\Trunk\Templates\ S t i r rup ␣ template
. CATPart" ItemType="CATPart" ItemVersion="&l t ; Vers ion> ;5& l t
; / Vers ion> ;& l t ; Re lease> ;19& l t ; / Re lease> ;& l t ; Serv icePack
> ;0& l t ; / ServicePack> ;& l t ; HotFix> ;0& l t ; / HotFix> ; "
DisplayName=" St i r rup ␣ template . CATPart" CN_PART_NUMBER="
St i r rup ␣1 " CN_REVISION=" " CN_DEFINITION=" " CN_NOMENCLATURE=" "
CN_DESCRIPTIONREF=" " CN_SOURCE="unknown" CN_VOLUME=" 134561 "

CN_MASS=" 0 ,134561 " CN_SURFACE=" 39781 ,2 " TemplateID=" 2a968271−

f 0d f −4a5a−afc8 −30c57c15 fc01 " Length=" 180mm" Height=" 40mm" />
</Product>

</PRODUCTS>
<PARTS>

∼ 171 ∼

APPENDIX E. XML DESCRIPTION OF CAD MODELS

<Part Name=" St i r rup ␣1 " InstanceName=" St i r rup ␣1 " StorageName="C:\
Dokumente␣und␣ E in s t e l l ungen \kuhn\Desktop\THE␣ template ␣example\
Trunk\Templates\ S t i r rup ␣ template . CATPart">
<Set Name="PartBody ">

<Feature Name="Pad . 1 " InternName="Pad . 1 " Type="Pad" />
<Feature Name=" Pocket . 2 " InternName=" Pocket . 2 " Type=" Pocket "

/>
<Feature Name=" Plane .12 " InternName="GSMPlane .12 " Type="

GSMPlane" />
<Feature Name=" Point . 1 " InternName="GSMPoint . 1 " Type="

GSMPoint " />
</Set>
<Set Name=" I s o l a t e d ␣External ␣ Re fe rences ">

<Feature Name=" Axis " InternName="GSMLine . 4 " Type="GSMLine" />
<Feature Name="R/L␣plane " InternName="GSMPlane .11 " Type="

GSMPlane" />
</Set>
<Publications>

<Publication Name=" St i r rup ␣Extremity " PublishedElement="
GSMPlane .12 " PublishedElementDisplayedName=" Plane .12 "
PublishedElementType="GSMPlane" />

<Publication Name=" St i r rup ␣Support " PublishedElement=" ?? " />
</Publications>
<Relations>

<Relation Name=" RelationExpFct . 9 " DisplayedName="Formula . 9 : ␣
PartBody\Pocket . 2\ Sketch .3\ O f f s e t .55\ O f f s e t=Height ␣␣+␣45
mm" body=" Height ␣␣+␣45mm">
<In>

<Param content=" 40 " path=" Height " />
</In>
<Out>

<Param content=" 85 " path=" St i r rup ␣1\PartBody\Pocket
. 2\ Sketch .3\ O f f s e t .55\ Of f s e t " />

</Out>
</Relation>
<Relation Name=" RelationExpFct . 10 " DisplayedName="Formula .10 :

␣PartBody\Pocket . 2\ F i r s tL im i t \Depth=Length␣␣−14mm␣+␣18mm"
body=" Length␣␣−14mm␣+␣18mm">

<In>
<Param content=" 180 " path=" Length " />

</In>
<Out>

<Param content=" 184 " path=" St i r rup ␣1\PartBody\Pocket
. 2\ F i r s tL im i t \Depth " />

</Out>
</Relation>
<Relation Name=" RelationExpFct . 11 " DisplayedName="Formula .11 :

␣PartBody\Pad .1\ Sketch .1\ O f f s e t .137\ Of f s e t=Height ␣ " body=
" Height ␣ ">
<In>

<Param content=" 40 " path=" Height " />
</In>
<Out>

<Param content=" 40 " path=" St i r rup ␣1\PartBody\Pad .1\
Sketch .1\ O f f s e t .137\ Of f s e t " />

</Out>
</Relation>
<Relation Name=" RelationExpFct . 12 " DisplayedName="Formula .12 :

␣PartBody\Pad .1\ Sketch .1\ O f f s e t .120\ Of f s e t=Length␣ " body=
" Length␣ ">
<In>

∼ 172 ∼

<Param content=" 180 " path=" Length " />
</In>
<Out>

<Param content=" 180 " path=" St i r rup ␣1\PartBody\Pad .1\
Sketch .1\ O f f s e t .120\ Of f s e t " />

</Out>
</Relation>

</Relations>
<Parameters>

<Set Name=" Parameters ">
<Param Name=" Length " Value=" 180mm" />
<Param Name=" Height " Value=" 40mm" />

</Set>
</Parameters>
<Templates>

<Documents>
<Template Name=" St i r rup ␣ template ">

<Input name="GSMLine . 4 " r o l e=" Axis " />
<Input name="GSMPlane .11 " r o l e="R/L␣plane " />
<Input name="LENGTH.2 " r o l e=" Length " />
<Input name="LENGTH.3 " r o l e=" Height " />

</Template>
</Documents>
<UDF />
<PwC />

</Templates>
<PLMInfos ItemName="C:\Dokumente␣und␣ E in s t e l l ungen \kuhn\Desktop\

THE␣ template ␣example\Trunk\Templates\ S t i r rup ␣ template . CATPart
" ItemType="CATPart" ItemVersion="&l t ; Vers ion> ;5& l t ; /
Vers ion> ;& l t ; Re lease> ;19& l t ; / Re lease> ;& l t ; Serv icePack&
gt ;0& l t ; / ServicePack> ;& l t ; HotFix> ;0& l t ; / HotFix> ; "
DisplayName=" St i r rup ␣ template . CATPart" CN_PART_NUMBER="
St i r rup ␣1 " CN_REVISION=" " CN_DEFINITION=" " CN_NOMENCLATURE=" "
CN_DESCRIPTIONREF=" " CN_SOURCE="unknown" CN_VOLUME=" 134561 "

CN_MASS=" 0 ,134561 " CN_SURFACE=" 39781 ,2 " TemplateID=" 2a968271−

f 0d f −4a5a−afc8 −30c57c15 fc01 " Length=" 180mm" Height=" 40mm" />
</Part>

</PARTS>
</ROOT>

∼ 173 ∼

Appendix F

XML-Schema for CAD Models

Description

Source code F.1 – XML-Schema corresponding to the XML output from the CAD document
analysis.

<?xml version=" 1 .0 " encoding="UTF−8" ?>
<xs:schema xmlns :xs=" h t tp : //www.w3 . org /2001/XMLSchema" elementFormDefault="

q u a l i f i e d ">
<xs:element name="ROOT">

<xs:complexType>
<xs:sequence>

<xs:element r e f="PRODUCTS" />
<xs:element r e f="PARTS" />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="PRODUCTS">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs=" unbounded " r e f=" Product " />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="PARTS">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs=" unbounded " r e f=" Part " />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name=" Product ">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs=" 0 " r e f="MainProduct " />
<xs:element minOccurs=" 0 " r e f=" Chi ldren " />
<xs:element minOccurs=" 0 " r e f="DocumentTemplate " />
<xs:element minOccurs=" 0 " r e f=" Re la t i ons " />
<xs:sequence minOccurs=" 0 ">

<xs:element r e f=" Const ra int s " />
<xs:element r e f="PLMInfos " />

</xs:sequence>
</xs:sequence>
<xs:attribute name=" InstanceName " />
<xs:attribute name="Name" use=" r equ i r ed " />
<xs:attribute name=" StorageName " />

</xs:complexType>
</xs:element>
<xs:element name="MainProduct ">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs=" unbounded " r e f=" Chi ldren " />
</xs:sequence>
<xs:attribute name="CN_DEFINITION" use=" r equ i r ed " />

∼ 175 ∼

APPENDIX F. XML-SCHEMA FOR CAD MODELS DESCRIPTION

<xs:attribute name="CN_DESCRIPTIONREF" use=" r equ i r ed " />
<xs:attribute name="CN_MASS" use=" r equ i r ed " />
<xs:attribute name="CN_NOMENCLATURE" use=" r equ i r ed " />
<xs:attribute name="CN_PART_NUMBER" use=" r equ i r ed " />
<xs:attribute name="CN_REVISION" use=" r equ i r ed " />
<xs:attribute name="CN_SOURCE" use=" r equ i r ed " type="xs:NCName" />
<xs:attribute name="CN_SURFACE" use=" r equ i r ed " type=" x s : i n t e g e r " />
<xs:attribute name="CN_VOLUME" use=" r equ i r ed " />
<xs:attribute name="DisplayName " use=" r equ i r ed " />
<xs:attribute name=" ItemName" use=" r equ i r ed " />
<xs:attribute name=" ItemType " use=" r equ i r ed " type="xs:NCName" />
<xs:attribute name=" ItemVersion " use=" r equ i r ed " />
<xs:attribute name="TemplateID " use=" r equ i r ed " />

</xs:complexType>
</xs:element>
<xs:element name="DocumentTemplate ">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs=" 0 " r e f=" Template " />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="Template ">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs=" unbounded " r e f=" Input " />
</xs:sequence>
<xs:attribute name="Name" use=" r equ i r ed " />

</xs:complexType>
</xs:element>
<xs:element name=" Input ">

<xs:complexType>
<xs:attribute name="name" use=" r equ i r ed " type="xs:NCName" />
<xs:attribute name=" r o l e " use=" r equ i r ed " type="xs:NCName" />

</xs:complexType>
</xs:element>
<xs:element name=" Const ra int s ">

<xs:complexType>
<xs:sequence minOccurs=" 0 ">

<xs:element maxOccurs=" unbounded " r e f=" Constra int " />
<xs:element maxOccurs=" unbounded " r e f=" Const ra intSet " />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=" Const ra intSet ">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs=" unbounded " r e f=" Constra int " />
</xs:sequence>
<xs:attribute name="Name" use=" r equ i r ed " />

</xs:complexType>
</xs:element>
<xs:element name=" Part ">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs=" 0 " maxOccurs=" unbounded " r e f=" Set " />
<xs:sequence minOccurs=" 0 ">

<xs:element r e f=" ImportLinks " />
<xs:element r e f=" ContextLinks " />

</xs:sequence>
<xs:element minOccurs=" 0 " r e f=" Pub l i c a t i on s " />

∼ 176 ∼

<xs:element minOccurs=" 0 " r e f=" ExtRef " />
<xs:element minOccurs=" 0 " r e f="ExtParam" />
<xs:element minOccurs=" 0 " r e f=" Re la t i ons " />
<xs:element minOccurs=" 0 " r e f=" Parameters " />
<xs:sequence minOccurs=" 0 ">

<xs:element r e f=" Templates " />
<xs:element r e f="PLMInfos " />

</xs:sequence>
</xs:sequence>
<xs:attribute name=" InstanceName " use=" r equ i r ed " />
<xs:attribute name="Name" use=" r equ i r ed " />
<xs:attribute name=" StorageName " use=" r equ i r ed " />

</xs:complexType>
</xs:element>
<xs:element name=" ImportLinks ">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs=" unbounded " r e f=" Link " />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name=" ContextLinks ">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs=" 0 " maxOccurs=" unbounded " r e f=" Link " />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name=" Pub l i c a t i on s ">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs=" unbounded " r e f=" Pub l i ca t i on " />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name=" Pub l i ca t i on ">

<xs:complexType>
<xs:attribute name="Name" use=" r equ i r ed " />
<xs:attribute name=" PublishedElement " use=" r equ i r ed " />
<xs:attribute name=" PublishedElementDisplayedName " />
<xs:attribute name=" PublishedElementType " type="xs:NCName" />

</xs:complexType>
</xs:element>
<xs:element name=" ExtRef ">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs=" unbounded " r e f=" r e f " />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name=" r e f ">

<xs:complexType>
<xs:attribute name="Name" use=" r equ i r ed " />
<xs:attribute name=" Target " />

</xs:complexType>
</xs:element>
<xs:element name="ExtParam">

<xs:complexType/>
</xs:element>
<xs:element name=" Parameters ">

<xs:complexType>

∼ 177 ∼

APPENDIX F. XML-SCHEMA FOR CAD MODELS DESCRIPTION

<xs:sequence>
<xs:element maxOccurs=" unbounded " r e f=" Set " />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=" Templates ">

<xs:complexType>
<xs:sequence>

<xs:element r e f="Documents " />
<xs:element r e f="UDF" />
<xs:element r e f="PwC" />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Documents ">

<xs:complexType/>
</xs:element>
<xs:element name="UDF">

<xs:complexType/>
</xs:element>
<xs:element name="PwC">

<xs:complexType/>
</xs:element>
<xs:element name=" Chi ldren ">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs=" 0 " maxOccurs=" unbounded " r e f=" Chi ldren " />
<xs:element minOccurs=" 0 " maxOccurs=" unbounded " r e f=" Part " />
<xs:element minOccurs=" 0 " r e f=" Product " />

</xs:sequence>
<xs:attribute name="BBVolume" />
<xs:attribute name="CN_DEFINITION" />
<xs:attribute name="CN_DESCRIPTIONREF" />
<xs:attribute name="CN_MASS" />
<xs:attribute name="CN_NOMENCLATURE" />
<xs:attribute name="CN_PART_NUMBER" />
<xs:attribute name="CN_REVISION" />
<xs:attribute name="CN_SOURCE" type="xs:NCName" />
<xs:attribute name="CN_SURFACE" />
<xs:attribute name="CN_VOLUME" />
<xs:attribute name="DisplayName " />
<xs:attribute name=" Height " type="xs:NMTOKEN" />
<xs:attribute name=" ItemName" />
<xs:attribute name=" ItemType " type="xs:NCName" />
<xs:attribute name=" ItemVersion " />
<xs:attribute name=" Length " type="xs:NMTOKEN" />
<xs:attribute name="Mass1 " />
<xs:attribute name=" Riser−Config " type=" x s : i n t e g e r " />
<xs:attribute name=" Rise r_conf ig " type="xs:NCName" />
<xs:attribute name=" Support_conf ig " type="xs:NCName" />
<xs:attribute name="TOOLING−CONFIGURATION" type="xs:NCName" />
<xs:attribute name="TemplateID " />
<xs:attribute name=" Thickness " type="xs:NMTOKEN" />
<xs:attribute name=" Thikness " type="xs:NMTOKEN" />
<xs:attribute name="Width " type="xs:NMTOKEN" />

</xs:complexType>
</xs:element>
<xs:element name=" Re la t i ons ">

<xs:complexType>
<xs:choice minOccurs=" 0 " maxOccurs=" unbounded ">

<xs:element r e f=" DesignTable " />

∼ 178 ∼

<xs:element r e f=" Re lat ion " />
</xs:choice>

</xs:complexType>
</xs:element>
<xs:element name=" DesignTable ">

<xs:complexType>
<xs:attribute name=" ConfigurationName " use=" r equ i r ed " />
<xs:attribute name=" Conf igurat ionValue " use=" r equ i r ed " type=" x s : i n t e g e r

" />
<xs:attribute name="CurrentVaue " use=" r equ i r ed " />
<xs:attribute name="DisplayName " use=" r equ i r ed " type="xs:NCName" />
<xs:attribute name="Name" use=" r equ i r ed " type="xs:NCName" />
<xs:attribute name=" SheetDocument " use=" r equ i r ed " />

</xs:complexType>
</xs:element>
<xs:element name=" Re lat ion ">

<xs:complexType>
<xs:sequence>

<xs:element r e f=" In " />
<xs:element r e f="Out " />

</xs:sequence>
<xs:attribute name="DisplayedName " />
<xs:attribute name="Name" use=" r equ i r ed " type="xs:NCName" />
<xs:attribute name=" body " use=" r equ i r ed " />

</xs:complexType>
</xs:element>
<xs:element name=" In ">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs=" unbounded " r e f="Param" />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="Out">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs=" 0 " maxOccurs=" unbounded " r e f="Param" />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name=" Constra int ">

<xs:complexType>
<xs:attribute name="Name" use=" r equ i r ed " type="xs:NCName" />
<xs:attribute name=" element1 " use=" r equ i r ed " />
<xs:attribute name=" element2 " />
<xs:attribute name=" s t a tu s " type="xs:NCName" />

</xs:complexType>
</xs:element>
<xs:element name="PLMInfos ">

<xs:complexType>
<xs:attribute name="BBVolume" />
<xs:attribute name="CN_DEFINITION" use=" r equ i r ed " />
<xs:attribute name="CN_DESCRIPTIONREF" use=" r equ i r ed " />
<xs:attribute name="CN_MASS" use=" r equ i r ed " />
<xs:attribute name="CN_NOMENCLATURE" use=" r equ i r ed " />
<xs:attribute name="CN_PART_NUMBER" use=" r equ i r ed " />
<xs:attribute name="CN_REVISION" use=" r equ i r ed " />
<xs:attribute name="CN_SOURCE" use=" r equ i r ed " type="xs:NCName" />
<xs:attribute name="CN_SURFACE" use=" r equ i r ed " />
<xs:attribute name="CN_VOLUME" use=" r equ i r ed " />
<xs:attribute name="DisplayName " use=" r equ i r ed " />

∼ 179 ∼

APPENDIX F. XML-SCHEMA FOR CAD MODELS DESCRIPTION

<xs:attribute name=" Height " type="xs:NMTOKEN" />
<xs:attribute name=" ItemName" use=" r equ i r ed " />
<xs:attribute name=" ItemType " use=" r equ i r ed " type="xs:NCName" />
<xs:attribute name=" ItemVersion " use=" r equ i r ed " />
<xs:attribute name=" Length " type="xs:NMTOKEN" />
<xs:attribute name="Mass1 " />
<xs:attribute name=" Riser−Config " type=" x s : i n t e g e r " />
<xs:attribute name=" Rise r_conf ig " type="xs:NCName" />
<xs:attribute name="TOOLING−CONFIGURATION" type="xs:NCName" />
<xs:attribute name="TemplateID " />
<xs:attribute name=" Thickness " type="xs:NMTOKEN" />
<xs:attribute name=" Thikness " type="xs:NMTOKEN" />
<xs:attribute name="Width " type="xs:NMTOKEN" />

</xs:complexType>
</xs:element>
<xs:element name=" Set ">

<xs:complexType>
<xs:choice>

<xs:element minOccurs=" 0 " maxOccurs=" unbounded " r e f=" Feature " />
<xs:element minOccurs=" 0 " maxOccurs=" unbounded " r e f="Param" />

</xs:choice>
<xs:attribute name="Name" use=" r equ i r ed " />

</xs:complexType>
</xs:element>
<xs:element name=" Feature ">

<xs:complexType>
<xs:attribute name=" InternName " use=" r equ i r ed " type="xs:NMTOKEN" />
<xs:attribute name="Name" use=" r equ i r ed " />
<xs:attribute name="Type " use=" r equ i r ed " type="xs:NCName" />

</xs:complexType>
</xs:element>
<xs:element name=" Link ">

<xs:complexType>
<xs:attribute name=" Target " use=" r equ i r ed " />

</xs:complexType>
</xs:element>
<xs:element name="Param">

<xs:complexType>
<xs:attribute name="Name" />
<xs:attribute name="Value " />
<xs:attribute name=" content " />
<xs:attribute name=" path " />

</xs:complexType>
</xs:element>

</xs:schema>

∼ 180 ∼

	I Introduction
	General Introduction
	1 Knowledge Templates Update Problematic
	1.1 Knowledge in product design
	1.1.1 Computer-aided design
	1.1.2 Knowledge-based engineering
	1.1.3 Applications of KBE
	1.1.4 Summary

	1.2 KBE templates
	1.2.1 Template concept
	1.2.2 Classification of template types
	1.2.3 Template instances

	1.3 Addressed template update issues
	1.3.1 Template evolution decision support
	1.3.2 Template updates propagation support

	1.4 Chapter summary

	II State of the art
	2 Knowledge Representation
	2.1 Knowledge and computer systems
	2.2 Ontologies
	2.2.1 Definition
	2.2.2 Ontology engineering methodologies
	2.2.3 Ontology representation languages

	2.3 Semantic Web
	2.3.1 Definition
	2.3.2 Semantic web representation languages
	2.3.3 Web Ontology Language

	2.4 Ontologies in the product design field
	2.5 Chapter summary

	3 Decision Support in Collaborative Environments
	3.1 Computer supported concurrent engineering
	3.2 Decision making process support
	3.2.1 Definition
	3.2.2 Group decision support systems
	3.2.3 Design rationale

	3.3 Chapter summary

	4 Dependencies Management
	4.1 Graphs theory
	4.2 Dependency graphs
	4.2.1 Definition
	4.2.2 Cycles

	4.3 Dependency management
	4.3.1 Cycles management
	4.3.2 Scheduling
	4.3.3 Graph visualisation

	4.4 Chapter summary

	5 Knowledge-Based Engineering Templates
	5.1 Template applications
	5.2 Template-based design process
	5.3 Template management
	5.3.1 Link management
	5.3.2 Update management

	5.4 Chapter summary

	III Case study
	6 Study of CATIA V5
	6.1 Dassault Systèmes CATIA V5
	6.1.1 CATIA presentation
	6.1.2 CATIA V5
	6.1.3 Reasons for selecting the CATIA V5 system

	6.2 Templates in CATIA V5
	6.2.1 Technologies
	6.2.2 Instantiation of knowledge templates
	6.2.3 Templates update

	6.3 Links and relations
	6.3.1 Relations within documents
	6.3.2 Multi-Model Links
	6.3.3 Influences on models update

	6.4 CATIA V5 programming
	6.4.1 Application Programming Interfaces
	6.4.2 Limitations

	6.5 Chapter summary
	6.5.1 Study results
	6.5.2 Raised issues
	6.5.3 Conclusion

	IV Contributions
	7 Template Update Process
	7.1 Introduction
	7.1.1 Addressed issues reminder
	7.1.2 Results of the state of the art analysis
	7.1.3 Approach

	7.2 Template update process
	7.2.1 Presentation of the process
	7.2.2 Collaborative issue solving
	7.2.3 Document analysis and ontological representation
	7.2.4 Update sequence computation
	7.2.5 Comparison with the existing update approaches

	7.3 Chapter summary

	8 Collaborative Template Issues Solving
	8.1 Introduction
	8.2 Definition of the need
	8.3 Decision support system
	8.3.1 Selection of the framework
	8.3.2 Extension of the IBIS

	8.4 Template update
	8.5 Chapter summary

	9 Ontology Definition for Knowledge Representation
	9.1 Introduction
	9.2 Design of the ontology
	9.2.1 Design approach
	9.2.2 Definition of the domain and scope
	9.2.3 Reuse of existing ontologies
	9.2.4 Enumerate important terms
	9.2.5 Define classes and hierarchy
	9.2.6 Define classes relations and properties
	9.2.7 Define slots' facets
	9.2.8 Instantiation of the ontology

	9.3 Presentation of the defined ontology
	9.3.1 Concepts overview
	9.3.2 Relations
	9.3.3 Rules

	9.4 Chapter summary

	10 Update Sequence Computation
	10.1 Problem definition
	10.1.1 Introduction
	10.1.2 Objectives
	10.1.3 Problem representation

	10.2 Tested approaches
	10.2.1 Introduction
	10.2.2 Topological sort
	10.2.3 Ranking
	10.2.4 Cycle handling

	10.3 PDM check-out aware sequence
	10.4 Proposed approaches for template instances update
	10.4.1 Re-instantiation
	10.4.2 Apply local changes
	10.4.3 Rebuild the template instance content
	10.4.4 Comparison of the proposed methods

	10.5 Chapter summary

	V Application
	11 Methodology's Tools
	11.1 Introduction
	11.2 Collaborative issue solving
	11.3 CAD models and templates analysis
	11.4 Dependencies visualisation and sequence computation
	11.5 Chapter summary

	12 Template Modification Scenario
	12.1 Scenario presentation
	12.2 Application of the methodology
	12.2.1 Solution research
	12.2.2 Assemblies analysis
	12.2.3 Generation of the update sequence
	12.2.4 Instances replacement

	12.3 Chapter summary

	VI Final conclusion
	13 Conclusions and Perspectives
	13.1 Contributions
	13.1.1 Theoretical contributions
	13.1.2 Practical contributions

	13.2 Perspectives

	Bibliography
	Index
	 Appendices
	A XML Example
	B OWL DL
	C Indirect Instances
	D Three-Tier Architecture
	E XML Description of CAD Models
	F XML-Schema for CAD Models Description

