B. 'un-réseau, 25 I.12 Processus de définition de la forme générale de la structure BIE du réseau s10d2 avec une excitation par une source ponctuelle à 18 GHz positionnée à la position (x, y) = (0, 0) ; Nous partons d'une structure BIE métallique s10d2 de taille finie (n x × n y = 19 × 19) initiale (a) De la forme carrée (a), la moitié des tiges ont été enlevées pour tomber sur une forme «losange» (b), p.28

.. Idée-générale-du-contrôle-de-l-'anisotropie-par-des-défauts-localisés, 33 I.17 Conditions de passage de deux milieux : du milieu vide (isofréquence en bleu) au milieu BIE s10d2 (isofréquence en rouge) à 18 GHz avec l'interface définie selon l'axe-y (ou k y à l'espace de phases), p.33

L. Détermination-de, onde ; (a) définition de |k y limBIE | de la structure BIE s10d2 à la fréquence, f = 18GHz ; (b) définition de |k ylimouv | pour une ouverture de largeur a ; (c) |k y limBIE | en fonction de la fréquence (en noir) et de la largeur d'ouverture du guide d'onde a (en rouge), p.39

B. Sensibilité-du-positionnement-du-cornet, cartographie du champ électrique à 18 GHz avec le cornet d'antenne sectorale défini placé à différentes distances , d interf ace, p.42

.. Schéma-de-principe-de-reconfigurabilité-de-défauts-perturbateurs, 43 I.27 Choix stratégiques des défauts lacunaires : zoom sur la première rangée des tiges, p.44

. Schéma-de-principe-de-reconfigurabilité-de-défauts-lacunaires...., 44 I.29 Principes de reconfigurabilité par modification de la permittivité sur l'ensemble du réseau, BIE, p.46

D. Exemple-de, et (b) linéaire dans un réseau BIE et la création de modes permis, p.49

.. Dispositif-expérimental-d-'un-multiplexeur-À-base-de-défauts-contrôlables-par-plasmas, 54 I.40 Illustration de la configuration permettant la déviation du faisceau collimaté [12] constitué de tiges diélectriques (disque noir et disque rouge, et des tubes de plasmas, p.54

. .. Schéma-de-principe-de-reconfigurabilité-de-plasmas-compensateurs, 57 I.43 Obtention d'une distribution du champ quasi-identique entre un plasma et un réflecteur métallique parfait en décalant l'interface de ? compensateur, p.58

?. .. |?|-exp, ? = ? ? ? j? ?? en fonction des ratios C 1 = ?/? et C 2 = ? pe, II.2 Variation de la permittivité relative du plasma, p.69

.. .. Ghz, ±s) ont été remplacées par des tiges de diamètre, d, et de coefficient de réflexion variables ? = |?| exp (j?) 74 II.7 cartographie du champ 2D pour la configuration avec 2 plasmas compensateurs , simulée sous ANSOFT-HFSS à la fréquence f = 18 GHz, Résultats de simulation 2D à 18 GHz pour la configuration où les tiges métalliques situées à 75 II.8 Conditions nécessaires pour la reconfigurabilité par plasma compensateur à 18, p.77

.. Contrainte-sur-la-hauteur-nécessaire-du-plasma, 78 II.10 Dispositif expérimental dans son ensemble : constitué de l'enceinte à vide (A), de l'alimentation en gaz (B), du système de pompage (C) et de la source d'ondes (D) prévue pour des mesures hyperfréquences dans le chapitre suivant 79 II.11 Rendement quantique de la photocathode de la caméra CCD, p.81

I. Mesure-de-température-dans-le-néon-pour and B. De, Torr par mesure d'intensité relative de la bande OH dans un système MCSD à la sortie de la CBL (cf. §II.5) 87 II.15 Schéma simplifié des dispositifs expérimentaux de mesures de spectroscopie [107] 88 II.16 Variation de la vitesse de dérive des électrons en fonction du champ électrique réduit pour différents gaz issu, 90 II.17 Variation de la fréquence de collision réduites en fonction du champ réduit pour différents gaz de décharges . . . . . . . . . . . . . . . . . . . . . . . . 91 II.18 Schéma de circuit des deux systèmes de microdécharges employés . . . . . 94, p.760

M. Caractéristique and .. , Hélium à une pression de 600 torr, le diamètre du trou est de 800 µm, l'épaisseur du diélectrique de 200 µm, et la résistance à la cathode est de R C = 200 k?. La figure de droite est un zoom sur la partie à très bas courant, p.96

.. De-la-décharge-«pointe-pointe», 120 II.45 Caractéristique des courant-tension d'une décharge pointe-pointe dans N e? Xe(1%) avec p × h A1?A2 = 1080 Torr 121 II.46 Variation du champ réduit de la décharge pointe-pointe calculé par la régression linéaire de la courbe tension-distance pour différents, II.44 Configuration

B. Maquette-finale-de-la-structure, 136 III.3 Dimensions du cornet d'émission employé, p.137

B. Schéma-de-la-ligne-À-fente-À, D. Ac, and R. , disques de part et d'autre de la ligne) . 158 IV.2 Vues longitudinale et transversale du dispositif montrant l'alimentation, p.159

.. Bie-en-espace-libre, 162 IV.7 Illustration du contrôle de l'ultra-réfraction avec un dipôle placé dans un plasma (en rose) d'indice n compris entre 0 et 1, pp.2-3

C. Tableau, X 2 ?, v ? = 0) considérées pour la mesure de la température du gaz [1] L. Rayleigh. On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure, Philosophical Magazine, vol.2, issue.24, pp.145-159

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Molding the Flow of Light, 2008.

Y. Rahmat-samii and F. Yang, Applications of EBG in Low Profile Antenna Designs: What Have We Learned?, Metamaterials and plasmonics : Fundamentals, Modelling, Applications, 2008.
DOI : 10.1007/978-1-4020-9407-1_8

V. G. Veselago and E. E. Narimanov, The left hand of brightness: past, present and future of negative index materials, Nature Materials, vol.81, issue.10, pp.759-762
DOI : 10.1038/nmat1746

G. Viktor and . Veselago, The electrodynamics of substances with simultaneously negative values of ? and µ, Soviet Physics Uspekhi, vol.10, issue.4, p.509, 1968.

A. Priou, Matériaux composites en électromagnétisme, p.1165

M. Farhat, S. Guenneau, and S. Enoch, Ultrabroadband Elastic Cloaking in Thin Plates, Physical Review Letters, vol.103, issue.2, p.24301, 2009.
DOI : 10.1103/PhysRevLett.103.024301

URL : https://hal.archives-ouvertes.fr/hal-00468905

P. De-maagt, R. Gonzalo, Y. C. Vardaxoglou, and J. Baracco, Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications . Antennas and Propagation, IEEE Transactions on, issue.10, pp.512667-2677, 2003.

H. Ibach and H. Lüth, Solid State Physics : An Introduction to Principles of Materials Science, 2009.

N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1976.

C. Nayak, Solid State Physics

S. Varault, Modélisation et études expérimentales de structures à bande interdite électromagnétique reconfigurables intégrant des capillaires plasmas pour applications micro-onde, 2011.

G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques. Annales scientifiques de l'École Normale Supérieure, pp.47-88, 1883.

F. Bloch, über die quantenmechanik der elektronen in kristallgittern Zeitschrift für Physik A Hadrons and Nuclei, pp.555-600, 1929.

B. Lombardet, L. A. Dunbar, R. Ferrini, and R. Houdré, Fourier analysis of Bloch wave propagation in photonic crystals, Journal of the Optical Society of America B, vol.22, issue.6, pp.1179-1190, 2005.
DOI : 10.1364/JOSAB.22.001179

K. Sakoda, Optical properties of photonic crystals, 2005.
DOI : 10.1007/978-3-662-14324-7

P. Yeh, Electromagnetic propagation in birefringent layered media, Journal of the Optical Society of America, vol.69, issue.5, pp.742-756, 1979.
DOI : 10.1364/JOSA.69.000742

R. S. Chu and T. Tamir, Group velocity in space-time periodic media, Electronics Letters, vol.7, issue.14, pp.410-412, 1971.
DOI : 10.1049/el:19710278

N. Kato, The flow of X-rays and materials waves in ideally perfect single crystals, Acta Crystallographica, vol.11, issue.12, pp.885-887, 1958.
DOI : 10.1107/S0365110X58002498

P. P. Ewald, Group velocity and phase velocity in X-ray crystal optics, Acta Crystallographica, vol.11, issue.12, pp.888-891, 1958.
DOI : 10.1107/S0365110X58002504

S. Enoch, G. Tayeb, and D. Maystre, Numerical evidence of ultrarefractive optics in photonic crystals, Optics Communications, vol.161, issue.4-6, pp.171-176, 1999.
DOI : 10.1016/S0030-4018(99)00035-8

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura et al., Superprism phenomena in photonic crystals, Physical Review B, vol.58, issue.16, pp.10096-10099, 1998.
DOI : 10.1103/PhysRevB.58.R10096

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura et al., Self-collimating phenomena in photonic crystals, Applied Physics Letters, vol.74, issue.9, pp.1212-1214, 1999.
DOI : 10.1063/1.123502

B. Gralak, S. Enoch, and G. Tayeb, Anomalous refractive properties of photonic crystals, Journal of the Optical Society of America A, vol.17, issue.6, pp.1012-1020, 2000.
DOI : 10.1364/JOSAA.17.001012

URL : https://hal.archives-ouvertes.fr/hal-00081690

T. Baba, Slow light in photonic crystals, Nature Photonics, vol.14, issue.8, pp.465-473, 2008.
DOI : 10.1038/nphoton.2008.146

O. Jiun-haw-chu, C. P. Voskoboynikov, and . Lee, Slow light in photonic crystals, Low Dimensional Structures and Devices Conference, pp.282-284, 2005.

M. Jeffrey, J. Shainline, and . Xu, Slow light and band gaps inmetallodielectric cylinder arrays, Opt. Express, vol.17, issue.11, pp.8879-8891, 2009.

S. Foteinopoulou and C. M. Soukoulis, Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects, Physical Review B, vol.72, issue.16, p.165112, 2005.
DOI : 10.1103/PhysRevB.72.165112

G. Guida, A. De-lustrac, and A. Priou, An Introduction to Photonic Band Gap (PBG) Materials, Progress In Electromagnetics Research, vol.41, pp.1-20, 2003.
DOI : 10.2528/PIER02010801

J. Pendry, Calculating photonic band structure, Journal of Physics: Condensed Matter, vol.8, issue.9, p.1085, 1996.
DOI : 10.1088/0953-8984/8/9/003

K. S. Yee, Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media, IEEE Trans. on Antennas and Propagation, vol.14, issue.3, pp.302-307, 1966.

A. Taflove, The Finite-Difference Time-Domain Method, 1995.

H. Y. Yang, Finite difference analysis of 2-d photonic crystals. Microwave Theory and Techniques, IEEE Transactions on, vol.44, issue.12, pp.2688-2695, 1996.

E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, Simulation of photonic band gaps in metal rod lattices for microwave applications, Journal of Applied Physics, vol.91, issue.3, pp.960-968, 2002.
DOI : 10.1063/1.1426247

H. Boutayeb, Analysis and Design of a High-Gain Antenna Based on Metallic Crystals, Journal of Electromagnetic Waves and Applications, vol.51, issue.1, pp.599-614, 2006.
DOI : 10.1163/156939306776137755

URL : https://hal.archives-ouvertes.fr/hal-00149260

M. Soumia, Étude théorique et expérimentale des matériaux à bandes interdites photoniques bidimensionnels (BIP 2D) en Micro-Ondes : Application à l'ultraréfraction, 2005.

J. B. Pendry and A. Mackinnon, Calculation of photon dispersion relations, Physical Review Letters, vol.69, issue.19, pp.2772-2775, 1992.
DOI : 10.1103/PhysRevLett.69.2772

D. Felbacq, D. Maystre, and G. Tayeb, Localization of Light by a Set of Parallel Cylinders, Journal of Modern Optics, vol.42, issue.2, pp.473-482, 1995.
DOI : 10.1103/PhysRevLett.67.3380

F. De-daran, V. Vigneras-lefebvre, and J. P. Parneix, Modeling of electromagnetic waves scattered by a system of spherical particles, IEEE Transactions on Magnetics, vol.31, issue.3, pp.311598-1601, 1995.
DOI : 10.1109/20.376338

D. Maystre, Electromagnetic study of photonic band gaps, Pure and Applied Optics: Journal of the European Optical Society Part A, vol.3, issue.6, p.975, 1994.
DOI : 10.1088/0963-9659/3/6/005

D. Maystre, Photonic crystal diffraction gratings, Optics Express, vol.8, issue.3, pp.209-216, 2001.
DOI : 10.1364/OE.8.000209

Y. Merle, Étude de la dispersion éctromagnétique dans les matériaux périodiques diélectriques bidimensionnels, 2003.

P. Kovacs and Z. Raida, Dispersion analysis of planar metallo-dielectric EBG structures in Ansoft HFSS, Microwaves, Radar and Wireless Communications 17th International Conference on, pp.1-4, 2008.

R. Remski, Analysis of photonic bandgap surfaces using Ansoft HFSS, Microwave Journal, vol.43, issue.9, pp.190-198, 2000.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Extremely Low Frequency Plasmons in Metallic Mesostructures, Physical Review Letters, vol.76, issue.25, pp.4773-4776, 1996.
DOI : 10.1103/PhysRevLett.76.4773

E. Moreno, L. Martín-moreno, F. J. García, and . Vidal, Efficient coupling of light into and out of a photonic crystal waveguide via surface modes, Photonics and Nanostructures -Fundamentals and Applications, pp.97-102, 2004.
DOI : 10.1016/j.photonics.2004.07.009

G. Lunet, Radôme actif utilisant des matériaux et structures à propriétés électromagnétiques contrôlées, 2009.

J. Sanz-fernañandndez, G. Goussetis, and R. Cheung, Tunable 2D electromagnetic band-gap (EBG) structures based on micro-electro-mechanical systems (MEMS) for THz frequencies, Antennas and Propagation Society International Symposium (APSURSI), pp.1-4, 2010.

M. F. Karim, A. Q. Liu, A. Alphones, and A. B. Yu, A Novel Reconfigurable Filter Using Periodic Structures, 2006 IEEE MTT-S International Microwave Symposium Digest, pp.943-946, 2006.
DOI : 10.1109/MWSYM.2006.249872

H. Boutayeb, K. Mahdjoubi, A. Tarot, and T. Denidni, Controllable conformal electromagnetic band gap antenna for base station, 2004 10th International Symposium on Antenna Technology and Applied Electromagnetics and URSI Conference, 2004.
DOI : 10.1109/ANTEM.2004.7860586

URL : https://hal.archives-ouvertes.fr/hal-00133827

S. Chandran and J. C. Vardaxoglou, Performance of two single-layer frequency-selective surfaces as spatial filters. Microwave and Optical Technology Letters, pp.339-342, 1993.

P. Ratajczak, P. Brachat, and J. M. Fargeas, An adaptive beam steering antenna for mobile communications, 2006 IEEE Antennas and Propagation Society International Symposium, pp.418-421, 2006.
DOI : 10.1109/APS.2006.1710547

A. De-lustrac, F. Gadot, S. Cabaret, J. Lourtioz, T. Brillat et al., Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths, Applied Physics Letters, vol.75, issue.11, pp.751625-1627, 1999.
DOI : 10.1063/1.124775

A. De-lustrac, T. Brillat, F. Gadot, and E. Akmansoy, The use of controllable photonic band gap (CPBG) materials : An antenna application, Optical and Quantum Electronics, vol.34, issue.1/3, pp.265-2771013346002839, 1023.
DOI : 10.1023/A:1013346002839

A. De-lustrac, F. Gadot, E. Akmansoy, and T. Brillat, High-directivity planar antenna using controllable photonic bandgap material at microwave frequencies, Applied Physics Letters, vol.78, issue.26, pp.784196-4198, 2001.
DOI : 10.1063/1.1382853

A. Djermoun, A. De-lustrac, J. M. Lourtioz, F. Gadot, and E. Akmansoy, Negative refraction device with electrically controllable permittivity and negative permeability, Electronics Letters, vol.42, issue.4, pp.223-225, 2006.
DOI : 10.1049/el:20064335

H. Chen, . Bae-ian, L. Wu, T. M. Ran, J. A. Grzegorczyk et al., Controllable left-handed metamaterial and its application to a steerable antenna, Applied Physics Letters, vol.89, issue.5, pp.53509-053509, 2006.
DOI : 10.1063/1.2335382

G. Poislane, P. Pouliguen, K. Mahdjoubi, L. Desclos, and C. Terret, Active metallic photonic band-gap materials (mpbg) : experimental results on beam shaper. Antennas and Propagation, IEEE Transactions on, vol.48, issue.1, pp.117-119, 2000.

M. Grégory-poislane, Antenne et matériaux à bande interdite photonique, 1999.

M. F. Karim, A. Liu, A. Alphones, X. J. Zhang, and A. B. Yu, CPW band-stop filter using unloaded and loaded EBG structures. Microwaves, Antennas and Propagation, IEE Proceedings, pp.434-440, 2005.
DOI : 10.1049/ip-map:20050096

E. Fourn, A. Pothier, C. Champeaux, P. Tristant, A. Catherinot et al., Mems switchable interdigital coplanar filter. Microwave Theory and Techniques, IEEE Transactions on, vol.51, issue.1, pp.320-324, 2003.
DOI : 10.1109/tmtt.2002.806517

S. Alon, Y. Barlevy, and . Rahmat-samii, Control of resonant bandwidth in frequency-selective surfaces by tilting the periodic elements. Microwave and Optical Technology Letters, pp.114-117, 1999.

M. Gabriel and . Rebeiz, RF MEMS switches : status of the technology, TRANSDU- CERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, pp.1726-1729, 2003.

G. M. Kraus, C. L. Goldsmith, C. D. Nordquist, C. W. Dyck, P. S. Finnegan et al., A widely tunable RF MEMS end-coupled filter, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535), pp.429-432, 2004.
DOI : 10.1109/MWSYM.2004.1336001

K. Busch and S. John, Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum, Physical Review Letters, vol.83, issue.5, pp.967-970, 1999.
DOI : 10.1103/PhysRevLett.83.967

S. W. Leonard, J. P. Mondia, H. M. Van-driel, O. Toader, S. John et al., Tunable two-dimensional photonic crystals using liquid crystal infiltration, Physical Review B, vol.61, issue.4, pp.2389-2392, 2000.
DOI : 10.1103/PhysRevB.61.R2389

G. Alagappan, X. W. Sun, P. Shum, M. B. Yu, and M. T. Doan, One-dimensional anisotropic photonic crystal with a tunable bandgap, Journal of the Optical Society of America B, vol.23, issue.1, pp.159-167, 2006.
DOI : 10.1364/JOSAB.23.000159

I. Del-villar, I. Matias, F. Arregui, and R. Claus, Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters, Optics Express, vol.11, issue.5, pp.430-436, 2003.
DOI : 10.1364/OE.11.000430

C. Liu and L. Chen, Tunable Photonic Crystal Waveguide Coupler With Nematic Liquid Crystals, IEEE Photonics Technology Letters, vol.16, issue.8, pp.161849-1851, 2004.
DOI : 10.1109/LPT.2004.831267

P. Baron, Q. Tan, V. Paeder, A. Cosentino, M. Roussey et al., Switchable photonic crystal cavity by liquid crystal infiltration, Journal of the European Optical Society: Rapid Publications, vol.5, p.10057, 2010.
DOI : 10.2971/jeos.2010.10057

L. P. Amosova, V. N. Vasilév, N. L. Ivanova, and E. A. Konshina, Ways of increasing the response rate of electrically controlled optical devices based on nematic liquid crystals, Journal of Optical Technology, vol.77, issue.2, pp.79-87, 2010.
DOI : 10.1364/JOT.77.000079

S. Gevorgian, Ferroelectrics in Microwave Devices, Circuits and Systems : Physics, Modeling, Fabrication and Measurements (Engineering Materials and Processes ), 2009.
DOI : 10.1007/978-1-84882-507-9

D. Kim, M. Kim, and S. Kim, A microstrip phase shifter using ferroelectric electromagnetic bandgap ground plane, Antennas and Propagation Society International Symposium, pp.1175-1178, 2004.

D. Kuylenstierna, A. Vorobiev, G. Subramanyam, and S. Gevorgian, Tunable electromagnetic bandgap structures based on ferroelectric films, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450), pp.879-882, 2003.
DOI : 10.1109/APS.2003.1220412

D. Damjanovic, Hysteresis in piezoelectric and ferroelectric materials The Science of Hysteresis, pp.337-463, 2006.

C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, Optical Response of High-Dielectric-Constant Perovskite-Related Oxide, Science, vol.293, issue.5530, pp.293673-676, 2001.
DOI : 10.1126/science.1061655

C. S. Tsai, J. Su, and C. C. Lee, Wideband electronically tunable microwave bandstop filters using iron film-gallium arsenide waveguide structure, IEEE Transactions on Magnetics, vol.35, issue.5, pp.3178-3180, 1999.
DOI : 10.1109/20.801120

J. W. Wang, S. D. Yoon, V. G. Harris, C. Vittoria, and N. X. Sun, Integrated metal magnetic film coupled line circulators for monolithic microwaveintegrated circuits, Electronics Letters, vol.43, issue.1, pp.49-50, 2007.

J. S. Zhang, R. L. Zhang, Q. Hu, R. H. Fan, and R. W. Peng, Tunable microwave multiband filters based on a waveguide with antiferromagnetic and dielectric sandwiches, Journal of Applied Physics, vol.109, issue.7, pp.7-305, 2011.
DOI : 10.1063/1.3535440

H. Hojo and A. Mase, Dispersion Relation of Electromagnetic Waves in One-Dimensional Plasma Photonic Crystals, Journal of Plasma and Fusion Research, vol.80, issue.2, pp.89-90, 2004.
DOI : 10.1585/jspf.80.89

O. Sakai, T. Sakaguchi, and K. Tachibana, Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas, Applied Physics Letters, vol.87, issue.24, p.241505, 2005.
DOI : 10.1063/1.2147709

O. Sakai, T. Sakaguchi, Y. Ito, and K. Tachibana, Interaction and control of millimetre-waves with microplasma arrays, Plasma Physics and Controlled Fusion, vol.47, issue.12B, pp.47-617, 2005.
DOI : 10.1088/0741-3335/47/12B/S45

O. Sakai, T. Sakaguchi, and K. Tachibana, Plasma Photonic Crystals in Two-Dimensional Arrays of Microplasmas, Contributions to Plasma Physics, vol.34, issue.1-2, pp.96-97, 2007.
DOI : 10.1002/ctpp.200710014

O. Sakai, T. Sakaguchi, and K. Tachibana, Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves, Journal of Applied Physics, vol.101, issue.7, p.73304, 2007.
DOI : 10.1063/1.2713939

O. Sakai and K. Tachibana, Properties of Electromagnetic Wave Propagation Emerging in 2-D Periodic Plasma Structures, IEEE Transactions on Plasma Science, vol.35, issue.5
DOI : 10.1109/TPS.2007.906133

T. Sakaguchi, O. Sakai, and K. Tachibana, Photonic bands in two-dimensional microplasma arrays. II. Band gaps observed in millimeter and subterahertz ranges, Journal of Applied Physics, vol.101, issue.7, p.73305, 2007.
DOI : 10.1063/1.2713940

O. Sakai and K. Tachibana, Generations and applications of atmospheric pressure glow discharge by integration of microplasmas, Journal of Physics : Conference Series, p.12015, 2007.
DOI : 10.1088/1742-6596/86/1/012015

O. Sakai, T. Shimomura, and K. Tachibana, Negative refractive index designed in a periodic composite of lossy microplasmas and microresonators, Physics of Plasmas, vol.17, issue.12, p.123504, 2010.
DOI : 10.1063/1.3524561

O. Sakai, Transition between positive and negative permittivity in field-dependent metamaterial, Journal of Applied Physics, vol.109, issue.8, p.84914, 2011.
DOI : 10.1063/1.3574921

T. Anderson, I. Alexeff, J. Raynolds, E. Farshi, S. Parameswaran et al., Plasma frequency selective surfaces. Plasma Science, IEEE Transactions on, vol.35, issue.2, pp.407-415, 2007.

S. Varault, B. Gabard, J. Sokoloff, and S. Bolioli, Plasmabased localized defect for switchable coupling applications, Applied Physics Letters, issue.13, p.98134103, 2011.

I. Langmuir, Oscillations in Ionized Gases, Proc. Nat. Acad. Sci. USA, pp.627-637, 1928.
DOI : 10.1073/pnas.14.8.627

J. Freidberg, Plasma Physics and Fusion Energy, 2007.
DOI : 10.1017/CBO9780511755705

B. Lehnert, Minimum temperature and power effect of cosmical plasmas interacting with neutral gas, Cosmic Electrodynamics, vol.1, issue.1, pp.397-410397, 1970.

S. Ramo, J. R. Whinnery, and T. Van-duzer, Field and waves in communication electronics, 1994.

W. Rotman, Plasma simulation by artificial dielectrics and parallel-plate media. Antennas and Propagation, IRE Transactions on, vol.10, issue.1, pp.82-95, 1962.

J. , J. Greffet, and . Électromagnétisme, École Supérieure d'Optique, 1984.

K. H. Schoenbach, A. El-habachi, M. M. Moselhy, W. Shi, and R. H. Stark, Microhollow cathode discharge excimer lamps, Physics of Plasmas, vol.7, issue.5, pp.2186-2191, 2000.
DOI : 10.1063/1.874039

H. Robert, K. H. Stark, and . Schoenbach, Direct current glow discharges in atmospheric air, Applied Physics Letters, vol.74, issue.25, pp.3770-3772, 1999.

H. Robert, K. H. Stark, and . Schoenbach, Direct current high-pressure glow discharges, Journal of Applied Physics, vol.85, issue.4, pp.2075-2080, 1999.

A. H. Mohamed, R. Block, and K. H. Schoenbach, Direct current glow discharges in atmospheric air, IEEE Transactions on Plasma Science, vol.30, issue.1, pp.182-183, 2002.
DOI : 10.1109/TPS.2002.1003984

G. Hagelaar and L. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Science and Technology, vol.14, issue.4, p.722, 2005.
DOI : 10.1088/0963-0252/14/4/011

G. Hagelaar, BOLSIG+ : electron Boltzmann equation solver, 2008.

N. Konjevic, Plasma broadening and shifting of non-hydrogenic spectral lines: present status and applications, Physics Reports, vol.316, issue.6, pp.339-401, 1999.
DOI : 10.1016/S0370-1573(98)00132-X

V. I. Arkhipenko, S. M. Zgirovskii, N. Konjevic, M. M. Kuraica, and L. V. Simonchik, Diagnostics of the cathode drop region of glow discharge at atmospheric pressure by the helium and hydrogen line profiles, Journal of Applied Spectroscopy, vol.67, issue.5, pp.910-918, 2000.
DOI : 10.1023/A:1004184304825

G. H. Dieke and H. M. Crosswhite, The ultraviolet bands of OH Fundamental data, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.2, issue.2, pp.97-199, 1962.
DOI : 10.1016/0022-4073(62)90061-4

S. Pellerin, J. Cormier, . Richard, J. Musiol, and . Chapelle, A spectroscopic diagnostic method using UV OH band spectrum, Journal of Physics D: Applied Physics, vol.29, issue.3, p.726, 1996.
DOI : 10.1088/0022-3727/29/3/034

V. I. Arkhipenko, A. A. Kirillov, L. V. Simonchik, and S. M. Zgirovskii, Determination of gas temperature in cathode fall of the self-sustained normal atmospheric pressure dc glow discharge, International Conference on Phenomena in Ionized Gases [26th] Held in Greifswald, pp.57-58, 2003.

J. A. Coxon, (???????????3) states of OH, Canadian Journal of Physics, vol.58, issue.7, pp.933-949, 1980.
DOI : 10.1139/p80-129

L. Chidsey and D. R. Crosley, Calculated rotational transition probabilities for the A???X system of OH, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.23, issue.2, p.197, 1980.
DOI : 10.1016/0022-4073(80)90006-0

Y. Petrovich and R. , Gas Discharge Physics, 1991.

W. S. Boyle and F. E. Haworth, Glow-to-Arc Transition, Physical Review, vol.101, issue.3, pp.935-938, 1956.
DOI : 10.1103/PhysRev.101.935

. Th, X. Callegari, A. Aubert, J. P. Rousseau, L. C. Boeuf et al., Microhollow cathode sustained discharges : comparative studies in micro-and equivalent macrocell geometries. The European Physical Journal D -Atomic, Molecular, Optical and Plasma Physics, pp.581-587, 1140.

K. H. Schoenbach, R. Verhappen, T. Tessnow, F. E. Peterkin, and W. W. Byszewski, Microhollow cathode discharges, Applied Physics Letters, vol.68, issue.1, pp.13-15, 1996.
DOI : 10.1063/1.116739

A. El-habachi and K. H. Schoenbach, Emission of excimer radiation from direct current, high-pressure hollow cathode discharges, Applied Physics Letters, vol.72, issue.1, pp.22-24, 1998.
DOI : 10.1063/1.120634

R. Block, M. Laroussi, F. Leipold, and K. H. Schoenbach, Optical diagnostics for non-thermal high pressure discharges, Proc. 14th Int. Symp. Plasma Chemistry, pp.945-950, 1999.

M. Moselhy, I. Petzenhauser, K. Frank, and . Schoenbach, Excimer emission from microhollow cathode argon discharges, Journal of Physics D: Applied Physics, vol.36, issue.23, p.2922, 2003.
DOI : 10.1088/0022-3727/36/23/009

R. Foest, M. Schmidt, and K. Becker, Microplasmas, an emerging field of low-temperature plasma science and technology, International Journal of Mass Spectrometry, vol.248, issue.3, pp.87-102, 2006.
DOI : 10.1016/j.ijms.2005.11.010

M. Miclea, . Kunze, . Heitmann, . Florek, K. Franzke et al., Diagnostics and application of the microhollow cathode discharge as an analytical plasma, Journal of Physics D: Applied Physics, vol.38, issue.11, p.381709, 2005.
DOI : 10.1088/0022-3727/38/11/011

L. D. Biborosch, O. Bilwatsch, S. Ish-shalom, E. Dewald, U. Ernst et al., Microdischarges with plane cathodes, Applied Physics Letters, vol.75, issue.25, pp.753926-3928, 1999.
DOI : 10.1063/1.125496

B. Lee, H. Rahaman, K. Frank, L. Mares, and D. Biborosch, Properties of the mhcsd in xenon, 2007.

T. Dufour, Etude expérimentale et simulation des micro-plasmas générés dans les micro-cathodes creuses, 2009.

X. Aubert, Etude expérimentale de microplasmas, 2008.

C. Penache, M. Miclea, A. Bräuning-demian, O. Hohn, S. Schössler et al., Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy, Plasma Sources Science and Technology, vol.11, issue.4, p.476, 2002.
DOI : 10.1088/0963-0252/11/4/314

C. Lazzaroni, Etude théorique et expérimentale d'une micro décharge à cathode creuse à pression intermédiaire dans l'argon, 2010.

V. Puech, Microplasmas : Physics and application to the production of singlet oxygen O 2 (a 1 ? g ) The European Physical, Journal -Applied Physics, vol.42, issue.01, pp.17-23, 2008.

B. Du, S. Mohr, D. Luggenhölscher, and U. Czarnetzki, An atmospheric pressure self-pulsing micro thin-cathode discharge, Journal of Physics D: Applied Physics, vol.44, issue.12, p.125204, 2011.
DOI : 10.1088/0022-3727/44/12/125204

URL : https://hal.archives-ouvertes.fr/hal-00604888

V. I. Arkhipenko, A. A. Kirillov, . Th, Y. A. Callegari, L. V. Sofronau et al., Non-Self-Sustained Atmospheric Pressure Glow Discharges Maintained by the DC Helium Glow Discharge, IEEE Transactions on Plasma Science, vol.37, issue.6, pp.740-749, 2009.
DOI : 10.1109/TPS.2009.2012512

K. Makasheva, . Serrano, J. Hagelaar, L. Boeuf, and . Pitchford, A better understanding of microcathode sustained discharges, Plasma Physics and Controlled Fusion, vol.49, issue.12B, pp.49-233, 2007.
DOI : 10.1088/0741-3335/49/12B/S21

P. Lebrun and L. Tavian, The technology of superfluid helium, CAS -CERN Accelerator School on Superconductivity and Cryogenics for Accelerators and Detectors, pp.8-17, 2002.

E. Muñoz-serrano, G. Hagelaar, . Th, J. P. Callegari, L. C. Boeuf et al., Properties of plasmas generated in microdischarges, Plasma Physics and Controlled Fusion, vol.48, issue.12B, pp.48-391, 2006.
DOI : 10.1088/0741-3335/48/12B/S36

N. Dyatko, Y. Ionikh, I. Kochetov, D. Marinov, A. Meshchanov et al., Experimental and theoretical study of the transition between diffuse and contracted forms of the glow discharge in argon, Journal of Physics D: Applied Physics, vol.41, issue.5, p.41055204, 2008.
DOI : 10.1088/0022-3727/41/5/055204

I. A. Shkurenkov, Y. A. Mankelevich, and T. V. Rakhimova, Simulation of diffuse, constricted-stratified, and constricted modes of a dc discharge in argon: Hysteresis transition between diffuse and constricted-stratified modes, Physical Review E, vol.79, issue.4, p.46406, 2009.
DOI : 10.1103/PhysRevE.79.046406

B. Yu, . Golubovskii, . Nekuchaev, D. Gorchakov, and . Uhrlandt, Contraction of the positive column of discharges in noble gases, Plasma Sources Science and Technology, vol.20, issue.5, p.53002, 2011.

K. Makasheva, G. J. Hagelaar, J. Boeuf, T. Callegari, and L. C. Pitchford, Ignition of Microcathode Sustained Discharge, IEEE Transactions on Plasma Science, vol.36, issue.4, pp.1236-1237, 2008.
DOI : 10.1109/TPS.2008.924516

W. Mark, D. B. Kiehlbauch, and . Graves, Temperature resolved modeling of plasma abatement of perfluorinated compounds, Journal of Applied Physics, vol.89, issue.4, pp.2047-2057, 2001.

A. Micheal, A. J. Liebermann, and . Lichtenberg, Principles of plasma diischarges and materials processing, 2005.

J. Eric, D. B. Tonnis, and . Graves, Neutral gas temperatures measured within a high-density, inductively coupled plasma abatement device, Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and Films, vol.20, issue.5, pp.1787-1795, 2002.

C. Laux, T. Spence, C. Kruger, and R. Zare, Optical diagnostics of atmospheric pressure air plasmas, Plasma Sources Science and Technology, vol.12, issue.2, p.125, 2003.
DOI : 10.1088/0963-0252/12/2/301

D. Staack, B. Farouk, A. Gutsol, and A. Fridman, Characterization of a dc atmospheric pressure normal glow discharge, Plasma Sources Science and Technology, vol.14, issue.4, p.700, 2005.
DOI : 10.1088/0963-0252/14/4/009

D. Staack, B. Farouk, A. Gutsol, and A. Fridman, DC normal glow discharges in atmospheric pressure atomic and molecular gases, Plasma Sources Science and Technology, vol.17, issue.2, p.25013, 2008.
DOI : 10.1088/0963-0252/17/2/025013

V. Arkhipenko, A. Kirillov, A. Ya, L. Safronau, S. Simonchik et al., Self-sustained dc atmospheric pressure normal glow discharge in helium: from microamps to amps, Plasma Sources Science and Technology, vol.18, issue.4, p.45013, 2009.
DOI : 10.1088/0963-0252/18/4/045013

P. Mezei, . Cserfalvi, . Jánossy, H. Szöcs, and . Kim, Similarity laws for glow discharges with cathodes of metal and an electrolyte, Journal of Physics D: Applied Physics, vol.31, issue.20, p.312818, 1998.
DOI : 10.1088/0022-3727/31/20/016

Z. Machala, E. Marode, C. O. Laux, and C. H. Kruger, Dc glow discharges in atmospheric pressure air, Journal of Advanced Oxidation Technologies, vol.7, issue.2, 2004.
DOI : 10.1515/jaots-2004-0206

URL : https://hal.archives-ouvertes.fr/hal-00116911

T. Kaneda, T. Kubota, and J. Chang, The Axial Electric Field of a Positive Column in a Capillary Discharge Tube, Japanese Journal of Applied Physics, vol.28, issue.Part 1, No. 5, pp.947-948, 1989.
DOI : 10.1143/JJAP.28.947

N. Dyatko, Y. Ionikh, A. Meshchanov, A. Napartovich, and K. Barzilovich, Specific features of the current-voltage characteristics of diffuse glow discharges in Ar:N2 mixtures, Plasma Physics Reports, vol.36, issue.12, pp.1040-1064, 1134.
DOI : 10.1134/S1063780X10120056

Y. Takeishi, Auger Ejection of Electrons from Barium Oxide by Inert Gas Ions and the Cathode Fall in the Normal Glow Discharges, Journal of the Physical Society of Japan, vol.11, issue.6, pp.676-689, 1956.
DOI : 10.1143/JPSJ.11.676

V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. Petrov, Dusty plasmas, Physics-Uspekhi, vol.47, issue.5, pp.447-492, 2004.
DOI : 10.1070/PU2004v047n05ABEH001689

N. Boisbouvier, A double layer EBG structure for slot-line printed devices, IEEE Antennas and Propagation Society Symposium, 2004., pp.3553-3556, 2004.
DOI : 10.1109/APS.2004.1330113

URL : https://hal.archives-ouvertes.fr/hal-00838256

A. Kallel, J. Sokoloff, . Th, J. Callegari, and . Lo, Structure planaire á bande interdite électromagnétique reconfigurable par plasmas, 2012.

A. Ibañez, L. , C. Del, and R. Bocio, EBG at microwave frequency range : Bragg and/or resonant effect ? Microwave and Optical Technology Letters, pp.383-385, 2004.

P. Combes, Micro-ondes 1. Lignes, guides et cavités. Dunod, 1996.