
HAL Id: tel-00713345
https://theses.hal.science/tel-00713345v1
Submitted on 30 Jun 2012 (v1), last revised 17 Jul 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QoS-CARE: A Reliable System for Preserving QoS
Contracts through Dynamic Reconfiguration

Gabriel Tamura

To cite this version:
Gabriel Tamura. QoS-CARE: A Reliable System for Preserving QoS Contracts through Dynamic
Reconfiguration. Software Engineering [cs.SE]. Université des Sciences et Technologie de Lille - Lille
I; Universidad de Los Andes, 2012. English. �NNT : �. �tel-00713345v1�

https://theses.hal.science/tel-00713345v1
https://hal.archives-ouvertes.fr

Dépt. de Formation Doctorale en Informatique Doctorado en Ingenieŕıa
UFR IEEA Depto. de Sistemas y Computación

QoS-CARE: A Reliable System for

Preserving QoS Contracts through

Dynamic Reconfiguration

PhD Thesis

presented and defended in public the 28th of May 2012

to obtain the Title of

Doctorat de l’Université de Lille 1 - Sciences et Technologies

and

Doctor en Ingenieŕıa de la Universidad de los Andes

(Specialty in Computer Science)

by

Gabriel Tamura

Composition of the Jury

President : Silvia Takahashi, University of Los Andes

Evaluators : Juan Francisco Dı́az, Universidad del Valle
Ernesto Exposito, Institut National des Sciences Appliquées (INSA)
Lionel Seinturier, Université de Lille I

Co-Advisor : Rubby Casallas, University of Los Andes

Co-Advisor : Laurence Duchien, Université de Lille I

Lab. d’Informatique Fondamentale de Lille – UMR USTL/CNRS 8022 – INRIA Lille Nord Europe

Mis en page avec la classe thloria.

Contents

List of Figures v

List of Tables vii

Part I Motivation and Context 5

Chapter 1 Introduction 7

1.1 Problem Statement and Addressed Challenges 9

1.2 Dissertation Goals and Scope . 11

1.3 Assumptions . 12

1.4 Contribution Overview . 12

1.4.1 Self-Adaptive Software Properties . 13

1.4.2 Formal Model . 15

1.4.3 SCA Architecture, Implementation and Evaluation 16

1.4.4 Relationship between Contributions and Goals 16

1.5 Publications Derived from this Dissertation . 17

1.6 Dissertation Organization . 19

1.7 Chapter Summary . 20

Chapter 2 Context and State-of-the-Art Background 23

2.1 Definitions of Terms . 24

2.2 Component-Based Software Engineering . 25

2.2.1 Component Models . 26

2.2.2 The Service Component Architecture (SCA) Specification 26

2.2.3 The FRASCATI SCA Implementation . 28

2.2.4 FRASCATI vs. Other Implementations: SCA Challenges 30

2.3 Quality of Service (QoS) Software Contracts . 30

i

Contents

2.3.1 QoS Contract Specification . 31

2.3.2 QoS Contract Management and Fulfillment 32

2.4 Self-Adaptive Software Systems . 34

2.4.1 Revisiting the MAPE-K and Feedback Loop Models 35

2.4.2 Other Models for Self-Adaptation in Software Systems 36

2.4.3 Particular Approaches for Self-Adaptation 38

2.5 Example Application Scenario: A Reliable Videoconference System 40

2.6 Chapter Summary . 42

Part II Contribution 43

Chapter 3 Quality-Driven Self-Adaptation Properties 45

3.1 Feedback vs. MAPE-K Loops: Evaluation Differences and Difficulties 46

3.2 Characterizing Dimensions for Self-Adaptive Software 48

3.3 Measuring Adaptation Properties . 50

3.3.1 Adaptation Properties Inherent to Self-Adaptive Software 50

3.3.2 Quality Attributes and Adaptation Goals on the Managed Application 52

3.3.3 Mapping Adaptation Properties to Quality Attributes 53

3.3.4 Towards Adaptation Metrics . 55

3.4 The Framework for Classifying Self-Adaptive Software Systems 57

3.5 Chapter Summary . 59

Chapter 4 A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration 61

4.1 Overview of the Formal Model in the Solution Strategy 64

4.2 E-Graph Modeling of QoS Contracts-Driven Reconfiguration 67

4.2.1 Extended Graphs: Base Definitions . 68

4.2.2 System Reflection Structure . 69

4.2.3 QoS Contracts Structure . 71

4.2.4 The Component-Based Structure Reconfiguration System 73

4.3 Finite State Machine Modeling of QoS Contracts States 76

4.3.1 An Initial Interpretation of QoS Contracts as FSMs 77

4.3.2 Reformulation of FSMs to Model QoS Contracts States 79

4.3.3 The Exception and Unstable States of Contract Unfulfillment 82

4.3.4 The QoSC_FSM Semantics . 83

4.3.5 Managing Multiple QoS Properties . 88

4.3.6 The QoS Contract-Preserving Reconfiguration System 90

4.4 Chapter Summary . 91

ii

Chapter 5 QOS-CARE: The Realization of Our Formal Model 93

5.1 Mapping Our Formal Model to the MAPE-K Loop Reference Model 95

5.2 QOS-CARE Architecture Overview . 96

5.3 Monitor . 98

5.3.1 Context Monitor . 98

5.3.2 Context Events Simulator . 99

5.4 Analyzer . 99

5.4.1 Event Analyzer . 99

5.5 Planner . 100

5.5.1 Reconfiguration Planner . 100

5.5.2 E-Graph Reconfiguration Engine . 101

5.6 Executor . 101

5.6.1 SCA Instrumentation . 101

5.7 Knowledge Manager . 102

5.7.1 QoS Contract Manager . 102

5.7.2 QoSC_FSMManager and Executor . 102

5.8 QOS-CARE as an SCA Layer for Preserving QoS Contracts 103

5.9 Implementation Details . 103

5.10 Chapter Summary . 106

Part III Validation 107

Chapter 6 Validation and Verification of QOS-CARE Properties 109

6.1 Reconfiguration Independence and Separation of Concerns 111

6.2 Reliability in the Context of Self-Reconfiguration 111

6.2.1 Reliability in Terms of Adaptation Properties 112

6.2.2 Design-time vs. Run-time Validation and Verification of Adaptation

Properties . 113

6.3 Short Settling-Time . 114

6.4 Reconfiguration Termination . 114

6.5 Robustness with Respect to Context Unpredictability 116

6.6 Component-Based Structural Conformance . 116

6.7 Atomicity of the Reconfiguration Process . 117

6.8 Chapter Summary . 117

Chapter 7 QOS-CARE Validation Scenarios 119

7.1 General Platform Configuration for Executing the Validation Scenarios 120

7.2 Application Scenario 1: A Reliable Mobile Videoconference System 121

iii

Contents

7.2.1 Reconfiguration Rules . 121

7.2.2 Runtime Verification of Reconfiguration Properties 123

7.2.3 Implementation Details . 127

7.3 Application Scenario 2: A Dynamic Twitter-Weather Mashup 128

7.3.1 Component-Based Application Structure 128

7.3.2 QoS Contract . 129

7.3.3 Reconfiguration Rules . 130

7.3.4 Reconfigured Application Structure . 133

7.3.5 Runtime Verification of Reconfiguration Properties 133

7.3.6 Implementation Details . 136

7.4 Analysis of QOS-CARE Limitations . 137

7.5 Chapter Summary . 138

Part IV Summary 141

Chapter 8 Conclusions and Future Work 143

8.1 Dissertation Summary . 143

8.1.1 Addressed Challenges and Goals . 143

8.1.2 Contributions . 144

8.2 Future Work . 146

8.2.1 Short-Term Opportunities . 146

8.2.2 Long-Term Opportunities . 147

Bibliography 149

iv

List of Figures

1.1 Mapping among dissertation challenges, goals and contributions 14
1.2 Dissertation overview and relationships among challenges, goals and contributions 21

2.1 The service component architecture model . 27
2.2 The FRASCATI SCA middleware stack . 29
2.3 Changing context situations vs. different QoS requirements to satisfy 35
2.4 The feedback-loop interpreted in the MAPE-K loop block diagram 36
2.5 The autonomic computing reference architecture (ACRA) 37
2.6 Use case diagram for the requirements of the RVCS example 41

3.1 The characterizing dimensions for SAS systems identified in the feedback loop . . 48

4.1 Example of service-component application . 64
4.2 Reconfiguration of the service-component application client 65
4.3 Service-component application reconfiguration as graph transformation 66
4.4 E-Graph definition illustration . 68
4.5 E-Graph morphism example . 69
4.6 E-Graph Component-Based Structure (CBS) illustration 70
4.7 Runtime application structure for the RVCS example 71
4.8 E-Graph CBS reflection structure for the RVCS example 71
4.9 Illustration of the QoS contract definition . 73
4.10 E-Graph QoS contract example on confidentiality 74
4.11 The E-Graph R_confidentChannel reconfiguration rule 75
4.12 E-Graph reconfigured reflection structure for the RVCS example 77
4.13 Reconfigured application structure for the RVCS example 77
4.14 Finite state machine for the QoS contract example on confidentiality 79
4.15 Finite state machine for a QoS contract on availability 79
4.16 Finite state machine for a QoS contract on throughput 80
4.17 A second FSM for the QoS contract on throughput 80
4.18 The QoSC_FSM δ transition function illustrated for the contract on confidentiality 87
4.19 State machine for the QoS contract-driven reconfiguration system 88

5.1 The MAPE-K loop block diagram adapted for the QOS-CARE reconfiguration loop 95
5.2 The QOS-CARE SCA-compliant architecture derived from the MAPE-K model . . 97
5.3 The FRASCATI reflection subsystem with remote invocation services 102
5.4 QOS-CARE as an added layer for preserving QoS contracts in FRASCATI 104

v

List of Figures

7.1 The R_clearChannel reconfiguration rule-set . 122
7.2 The reconfiguration rule-sets for the confidentiality contract 123
7.3 Termination analysis for the R_clearChannel reconfiguration rule-set 125
7.4 The Twitter-Weather SCA application . 129
7.5 The Twitter-Weather CBSAR structure in e-graphs 129
7.6 Reconfiguration rule for adding the GoogleWeather provider 131
7.7 Reconfiguration rule for changing to a “ready” weather information provider . . . 131
7.8 Reconfiguration rule for trying a previously unready weather information provider132
7.9 The Twitter-Weather SCA application reconfigured 133
7.10 The Twitter-Weather reconfigured CBSAR e-graph 134
7.11 Reconfiguration termination analysis for the Twitter-Weather application scenario 135

vi

List of Tables

2.1 QoS conditions and service-level objectives for the RVCS example 40

3.1 Classification of adaptation properties . 51
3.2 Mapping adaptation properties to quality attributes and factors 54
3.3 Characterizing dimensions applied to selected SAS approaches 58
3.4 Selected SAS systems characterization summary . 60

4.1 Context conditions and expected QoS levels for the RVCS example 65
4.2 QoS contract example on confidentiality for the RVCS application 74
4.3 QoS contract example on throughput . 80

5.1 QoSC_FSM basic operations distributed in the QOS-CARE reconfiguration loop . 96
5.2 QOS-CARE Implementation Details . 104

6.1 When and where QOS-CARE properties are validated and verified 113

7.1 RVCS settling-time benchmark scenarios and results 126
7.2 RVCS application example implementation details 127
7.3 QoS contract on service readiness . 130
7.4 Twitter-Weather mashup settling-time benchmark results 136
7.5 Twitter-Weather mashup application example implementation details 137

vii

List of Tables

viii

To Norha and
Jose Gabriel

to whom I owe moments,
more than just the time,

I used to finish this work.

1

2

Abstract

Ubiquitous software services are increasingly pervading the daily activities of common people. In
turn, this situation is increasing the users’ demands for highly dynamic capabilities of these services
to satisfy context-dependent requirements. In the last years, the engineering of self-adaptive software
has demonstrated its support for these capabilities and has achieved significant advances. However,
self-adaptation theories, models and mechanisms are further required to be trustworthy, extensible and
re-usable in order to be incorporated as common assets of the software engineering design process, when
appropriate. Most of the existing approaches focus only on one kind of these assets, usually an ad-hoc
mechanism, and moreover, the community lacks standardized properties to evaluate these mechanisms
in comparable ways.

To address these shortcomings, in this dissertation we develop and implement a formal model to
preserve Quality of Service (QoS) contracts in component-based software applications through dynamic
reconfiguration. Our contribution is twofold. First, we provide a comprehensive solution strategy that
ranges from a formal foundation that concedes trustworthiness to our proposal, to an experimental eval-
uation that grants practical feasibility to our work. Second, we identify and define properties inherent to
self-adaptive software systems that allow comparable assessment on them.

In our first contribution we identify four elements: the formal model, the architecture of the proposal,
its implementation, and its experimental evaluation. Our formal model is based on the feedback-loop model to
achieve reconfiguration autonomy. To obtain reliability, we build on a typed and attributed graph trans-
formation theory to define component-based application structures, QoS contracts and reconfiguration
rules. These definitions are typing structures that guarantee conformance of the corresponding instances.
We specify the dynamic reconfiguration operation with these operations. Our approach benefits from
graph transformation theorems to guarantee that the reconfiguration process is terminating, atomic, and
verifiable on the component-based well-formation rules. To cope with context unpredictability, we con-
ceive a finite state machine that manages states of both, contract fulfillment, and also unfulfillment. We
devise an architecture to realize our formal model, which creates and maintains a graph representation
of the managed application and the QoS contracts at runtime. Furthermore, this architecture bridges the
graph representation structure with the actual running application structure through a pair of functions
that maintain the coherence between these two structures. We encode this architecture as an SCA layer for
dynamic reconfiguration in an implementation, which we deploy and execute in FRASCATI, a multi-scale
SCA middleware. We undertake an experimental evaluation of our approach by applying a benchmark
on two plausible case studies. From the obtained results we conclude on the practical feasibility of our
proposal.

In the second contribution, we aim at filling-in the existing gap in the assessment of the MAPE-K
(Monitor, Analyzer, Planner, Executor and shared Knowledge) loop model, which was proposed with
no standard properties to compare among its different realizations. Based on an extensive survey of
research papers, we characterized common properties inherent to self-adaptive software and proposed
for them suitable mappings to metrics. Among the most important properties are the atomic adaptation,
the settling-time, the termination, the structural consistency, the robustness, the resource overshoot and
the stability. For the validation of our proposal, we analyzed and verified the corresponding conditions
for the first five of these properties.

With our first contribution, our aim is to advance the software engineering for self-adaptive software
systems by providing a comprehensive solution strategy built on a formal foundation. With our sec-
ond contribution we provide the basis to standardize self-adaptive software properties, useful for their
assessment.

Keywords: CBSE, SCA, QoS contracts, dynamic reconfiguration, self-adaptation properties.

Résumé
L’informatique ubiquitaire envahit de plus en plus nos activités quotidiennes. Cela a pour effet que nous
sommes de plus en plus demandeurs de services réagissant dynamiquement au contexte dans lequel
nous évoluons. Ces services doivent alors s’adapter à l’environnement dans lequel ils sont utilisés, si
possible de façon automatique. Ces dernières années, d’importantes avancées dans le développement
de systèmes auto-adaptables ont été faites et ont pu être intégrées dans les logiciels. Néanmoins, il est
nécessaire d’étudier des modèles formels et les outils associés pour définir au mieux l’auto-adaptation
en vue de garantir la fiabilité, l’extensibilité et la réutilisabilité de ces systèmes, ceci dans un objectif
de proposer des artefacts communs et bien définis pour les processus de conception de des applications
auto-adaptables. La plupart des approches existantes se concentrent sur l’un des artefacts de ces systèmes
auto-adaptables, habituellement sous forme d’un mécanisme ad-hoc. De plus, la communauté manque
de standards de comparaison permettant l’évaluation de ces mécanismes d’adaptation et leur fiabilité.

Dans cette thèse, pour faire face à ces problématiques, nous proposons un modèle formel permettant
de préserver la qualité de service (QoS pour Quality of Service en anglais) à l’aide de contrats dans des ap-
plications reconfigurables à base de composants à l’exécution. Notre contribution comprend deux parties.
Tout d’abord, nous proposons une solution complète allant de la définition d’un modèle formel de recon-
figuration d’un système auto-adaptable fiable jusqu’à l’expérimentation, en démontrant l’applicabilité de
l’approche dans une plate-forme à composants reconfigurables. Finalement, nous identifions et définis-
sons des propriétés propres aux logiciels auto-adaptables permettant de les évaluer et de les comparer.

Dans notre première contribution, nous identifions quatre éléments principaux : un modèle formel,
une architecture de l’approche, une implémentation, et une évaluation sur deux expériences. Notre mod-
èle formel définit unmodèle de boucle de contrôle autonome permettant des reconfigurations autonomes.
Le modèle propose des propriétés de fiabilité et se base sur la théorie de transformation des graphes typés
attribués. Nous utilisons ce type de graphes et de transformations pour définir la structure des applica-
tions à base de composants, les contrats de QoS, et les règles de reconfiguration. Ces éléments sont définis
par des structures typées qui garantissent que les instances correspondantes sont conformes au modèle.
De plus, nous spécifions un ensemble d’opérations pour la reconfiguration dynamique en utilisant ces
définitions. Notre approche bénéficie des théorèmes utilisés dans la transformation de graphes, pour
garantir que le processus de reconfiguration soit résiliable, atomique, et vérifiable avec les règles struc-
turelles définies dans les applications à base de composants. Pour faire face à l’imprévisibilité inhérente
au changement de contexte, nous définissons une machine à états finis que gère à la fois les contrats
qui sont respectés ainsi que ceux qui ne le sont pas. Nous développons une architecture pour mettre
en œuvre notre modèle formel par l’intermédiaire d’une représentation, au moment de l’exécution, de
l’application et des contrats de QoS associés sous forme de graphes. De plus, cette représentation permet
la mise en place d’une liaison causale entre les graphes et l’application dont la cohérence est maintenue
et garantie à l’aide de fonctions. Nous mettons en œuvre cette architecture sous la forme de composants
SCA (Service Component Architecture pour son acronyme en anglais) à l’aide du cadre logiciel FRASCATI,
une plate-forme intergicielle multi-échelle définie dans l’équipe ADAM. Finalement, nous présentons
une évaluation de notre expérience par un test de performance (benchmark) sur deux cas d’étude. Les
résultats obtenus nous permettent de conclure l’applicabilité de l’approche proposée.

Avec notre deuxième contribution, notre objectif est de faire face au manque actuel de méthodes de
vérification des instances du modèle de boucle de contrôle de type MAPE-K (Monitor, Analysis, Planning,
Execution et Knowledge par son acronyme en anglais). Ce modèle a été proposé sans qu’aucune propriété
standardisée ne soit définie et qui pourrait permettre la comparaison des réalisations de cette boucle de
contrôle. Nous avons identifié, à partir d’une étude bibliographique conséquente, un ensemble de pro-
priétés inhérentes aux systèmes auto-adaptables. Nous avons proposé un ensemble de propriétés asso-
ciées à cette étude. Parmi les propriétés identifiées les plus importantes, nous pouvons citer l’adaptation
atomique, le temps de configuration (settling-time), la terminaison, la cohérence structurelle, la robustesse,
le dépassement de ressources et la stabilité. Pour valider notre approche, nous avons analysé et vérifié
les hypothèses pour les cinq premières propriétés.

Avec notre première contribution, nous proposons des avancées dans le domaine de l’ingénierie logi-
cielle pour les applications auto-adaptables. Avec notre deuxième contribution, nous apportons des élé-
ments tangibles pour la standardisation des propriétés pour l’évaluation des systèmes auto-adaptables.

Mots-clés: CBSE, SCA, Contrats de QoS, reconfiguration dynamique, propriétés d’auto-adaptation.

Part I

Motivation and Context

5

Chapter 1
Introduction

Contents

1.1 Problem Statement and Addressed Challenges 9

1.2 Dissertation Goals and Scope . 11

1.3 Assumptions . 12

1.4 Contribution Overview . 12

1.4.1 Self-Adaptive Software Properties 13
1.4.2 Formal Model . 15
1.4.3 SCA Architecture, Implementation and Evaluation 16
1.4.4 Relationship between Contributions and Goals 16

1.5 Publications Derived from this Dissertation 17

1.6 Dissertation Organization . 19

1.7 Chapter Summary . 20

During the last years, software services have increasingly pervaded all aspects of everyday
life. The increasing possibilities of pervasive computing demands highly dynamic capabilities
on software to satisfy context-dependent requirements on varying conditions of system exe-
cution. Moreover, these dynamic capabilities are required to be trustworthy and performed
opportunely to be acceptable to users. Examples of these capabilities are found in businesses
following the Service Oriented Computing (SOC) paradigm [Papazoglou et al., 2007], in which
component-based services are continually discovered, (re)composed and consumed at runtime.
Component services re-composition varies according to changes in context conditions such as
those on network access points, user localization, dates, and even interests associated to given
locations (e.g. buying souvenirs in the airport on the date flying back home).

To address the problem implied by the aforementioned requirements on dynamic capabili-
ties for component-based services, we identify two key aspects. On one hand, Quality of Service
(QoS) contracts are a natural and effective way for capturing this kind of context-dependent re-
quirements [Beugnard et al., 1999, Keller and Ludwig, 2003, Collet et al., 2005, Krakowiak, 2009,
Tran and Tsuji, 2009]. On the other hand, over the last decade the engineering of Self-Adaptive
Software (SAS) has demonstrated significant advances for supporting dynamic capabilities to
satisfy context-dependent goals, such as self-configuration, self-healing, self-protection and self-
optimization [Kephart and Chess, 2003, Kramer and Magee, 2007, Salehie and Tahvildari, 2009].
In fact, these two aspects constitute fundamental pillars in the Components promise of soft-
ware development and evolution based on the assembly and composition of contract-compliant

7

Chapter 1. Introduction

software components. Yet in Component-Based Software Engineering (CBSE) —also called
Component-Based Development (CBD) [Szyperski, 1998, Heineman and Councill, 2001], and
Service Component Architecture (SCA) [Beisiegel et al., 2007a, Bell, 2008] these two aspects have
been considered with different purposes in multiple ways [McKinley et al., 2004, Zschaler, 2004,
Chang et al., 2006, Collet et al., 2007]. However, the Component paradigm still requires compre-
hensive and sound QoS contract-aware self-adaptation theories, models and mechanisms fur-
ther trustworthy, extensible and re-usable in order to realize its promise.

More specifically, in the CBSE1 vision, contracts play a fundamental role as they must cap-
ture the functional and extra-functional requirements given by users [Bachmann et al., 2000]. For
instance, once a QoS contract is negotiated and specified, a system is built to satisfy it by com-
posing components for the corresponding services. However, at any time during system ex-
ecution, the software that was configured to satisfy a contracted QoS level (e.g., guaranteeing
a throughput of 50 transactions per minute on non-promotion days) probably would not satisfy
other QoS levels to fulfill when the context conditions change (e.g., when promotion-days start
aroundChristmas or Thanksgiving, a throughput of 800 transactions perminute can be required,
and so on). Naturally, for every expected context situation, a different QoS level to fulfill must
be specified as part of the same contract. Moreover, these conditions and QoS levels can be mod-
ified by re-negotiations performed at run-time. Therefore, to maintain a QoS contract satisfied
(i.e., to preserve it) at run-time, it is necessary to monitor the system’s context changes and act
in response to them for fulfilling their corresponding QoS levels.

Guaranteeing the continuous satisfaction of functional and extra-functional contracts under
changing conditions of system execution is one of the main concerns of the engineering of
self-adaptive software systems. To address this concern, the Monitoring-Analysis-Planning-
Execution and shared Knowledge (MAPE-K or simply MAPE) model has been adopted as a
central concept, inspired by principles of control theory [Kephart and Chess, 2003]. Nonethe-
less, to advance in the realization of its vision, self-adaptation still requires to overcome the
following key challenges, among others: (i) the limitations of manually produced adaptation
plans to cope with the dynamic evolution of both context situations and software structures to
adapt; (ii) the blurred limits between adaptation mechanisms and managed applications that
obscure the analysis of their respective properties and advantages; (iii) the limited management
of uncertainty to cope with unexpected context changes; and (iv) the lack of standard properties
that limit comparable evaluation of adaptation mechanisms and their effectiveness to achieve
adaptation goals [Werner Dahm, 2010].

In this dissertationwe (i) provide a comprehensive solution strategy for QoS contracts preser-
vation in component-based software applications by dynamically reconfiguring their architec-
ture (i.e., by deploying/undeploying components, and wiring(binding)/unwiring(unbinding)
service interfaces); and (ii) identify and propose inherent properties to self-adaptive software
–adaptation properties, which can be used to standardize comparable assessment models for this
kind of systems. Our comprehensive solution strategy comprises four elements, focused in the
planner element of the MAPE-K loop model: a formal model, its realization as a software architec-
ture, the implementation of the software architecture as an SCA layer for dynamic reconfiguration
to preserve QoS contracts, and an experimental evaluation of this implementation.

The details concerning the problem addressed by this dissertation and our contributions
derived from the obtained solution are presented in the remainder of this chapter, as follows.
Section 1.1 explains the problem statement, addressed challenges and corresponding research
questions. Sections 1.2 and 1.3 present, respectively, the dissertation goals and the assumptions
on which we conceive our work. Sections 1.4 and 1.5 respectively present our contributions and

1In the following, we use the acronyms CBSE, CBD, and SCA interchangeably.

8

1.1. Problem Statement and Addressed Challenges

derived publications, illustrating also the relationship between the contributions and the disser-
tation goals. Finally, Section 1.6 explains how the remainder of this dissertation is organized.

1.1 Problem Statement and Addressed Challenges

Considering the context analyzed in the previous section, which intersects component-based
software engineering, QoS software contracts, and the engineering of self-adaptive software
(SAS) systems, we state the main problem addressed by this dissertation as follows:

Given an arbitrary component-based software application and a corresponding QoS contract,
preserve the continuous satisfaction of the QoS contract in the software application through
its dynamic reconfiguration. The preservation of the QoS contract service level obligations
must be performed autonomously at runtime, and especially under varying conditions of
the software application execution. The preservation operation itself, that is the dynamic
reconfiguration, must be able to be parameterized with rule-based strategies for preserving
the contracted QoS properties. Most importantly, this reconfiguration operation must be
formally guaranteed in inherent properties of self-adaptive software that ensure its reliability.

Addressed Challenges

As this problem statement is very general, we constrain it with the key challenges identified
previously. Moreover, these challenges help us to identify specific research questions that drive
the search for the solution. We first state the challenge related to the SAS properties, as the others
are related to it, as follows:

C1: Adaptation mechanisms should be evaluated through comparable and clearly defined
standard properties. In addition, the improvement, and even the combination of these
mechanisms should be based on the assessment of these properties.

C2: Reconfiguration plans to preserve QoS contracts must be generated automatically and dy-
namically from parameterized reconfiguration rules defined by users. These plans must
consider both the current context conditions and the evolved managed application state
against the QoS contract specification. Reliability reconfiguration properties must be guar-
anteed.

C3: There must exist a clear separation of concerns between the reconfiguration mechanism
and the managed software application (i.e, the application subject to the QoS contract),
and moreover, between their corresponding properties. Additionally, the elements of the
feedback loop model, underlying the MAPE model, must be explicit in the adaptation
mechanism.

C4: Uncertainty must be managed robustly with respect to the unpredictability of context
changes faced by the managed application, as well as the parameterized reconfiguration
rules in the reconfiguration mechanism.

C5: The realization of the reconfiguration mechanism for preserving QoS contracts must be
feasible as a software architecture and implementation. This implementation must be exe-
cutable by existing component runtime platforms with reasonable performance.

To identify the first challenge, we analyze the origins of the MAPE loop model, extensively
used in the engineering of self-adaptive systems. Despite the MAPE loop was inspired by the

9

Chapter 1. Introduction

feedback loop reference model from control theory, this inspiration considered neither the prop-
erties nor the evaluation mechanisms that there exists to assess the corresponding feedback loop
instantiations. As a result, self-adaptive software systems use the MAPE loop as a model for
its architecture, but nonetheless, even when most of the properties and evaluation mechanisms
used for feedback loops are applicable to this kind of software systems by their own nature,
they are not used frequently [Salehie and Tahvildari, 2009, Cheng et al., 2009b, Grassi et al., 2009,
Kaddoum et al., 2010, Andersson et al., 2009, Villegas et al., 2011b].

Concerning the second challenge, from the components perspective and following CBSE
foundations [Szyperski, 1998, Heineman and Councill, 2001], planners for addressing QoS
contracts are traditionally designed bottom-up (i.e., contracts are responsibility of sin-
gle components) and adaptation plans coded by hand [Collet et al., 2005, Léger et al., 2010,
Delaval and Rutten, 2010]. However, as software services are composed of several components,
the QoS properties of these services depend on the joint work of these components. Hence, plan-
ners must devise context-aware reconfiguration plans that reliably manage an arbitrary number
of components with their wiring and bindings, considering all differences between the actual
vs. the next configuration states, as a whole [Zeng et al., 2004a]. Thus, writing reconfiguration
plans by hand is a difficult and error-prone task that should be performed automatically and
guaranteeing critical properties.

For the third challenge, as largely analyzed by [Müller et al., 2008] and [Cheng et al., 2009a]
among others, the lack of separation of concerns and explicitness of feedback-loop elements in
self-adaptive software systems renders their adaptation mechanisms as non-reusable and un-
analyzable in their specific properties and advantages. One cause for this problem is the inter-
twined exploitation of the same realization techniques on both the self-adaptation controller and
the managed application, thus blurring their respective properties and limits.

Concerning the fourth challenge, the unpredictable nature of context changes and events
that a self-adaptive software must face in its operation is a critical problem still to be
solved [Cheng et al., 2009a, de Lemos et al., 2012]. Most of the adaptationmechanisms focus only
on a set of foreseen context changes that can affect the operation of their managed systems of
interest. However, a robust adaptationmechanismmust also manage unforeseen context events,
guaranteeing that the properties of the system will remain unaltered even if the managed appli-
cation system state differs from the expected state. In this setting, an accurate estimation of the
safe operational region where the system operates without reaching undesirable states is crucial
for the robustness of self-adaptive systems [Meng, 2000, Dowling and Cahill, 2004].

Finally, the fifth challenge is identified in the necessity of evaluating the feasibility and
(re)usability of the proposed solution in terms of its actual implementation and performance
execution in existing component runtime platforms. Even though many of the proposed solu-
tions (formal or empirical) present implementations, their performance is evaluated by execut-
ing them as standalone tools, and for specific managed applications. That is, they are usually
not applied in actual component runtime platforms, nor as a generic support independent of the
managed application.

Research Questions

It is worth noting two points with respect to the stated challenges. First, as previously men-
tioned, the self-adaptive software community has no standard properties defined to evaluate
this kind of systems, therefore it is necessary to first identify and define them. Second, even
with these challenges, the addressed problem is still of considerable size and several interesting
research questions arise around it. Thus, in the context of the problem and challenges stated, we
identify the following research questions to be addressed in this dissertation:

10

1.2. Dissertation Goals and Scope

• What properties are inherent and most significant to mechanisms realizing software self-
adaptation?

• Among these properties, which are the most critical for a reconfiguration mechanism to
autonomously and reliably preserve QoS contracts?

• How to model and specify QoS contracts to manage and reason precisely about them?

• How to detect when a QoS contract has been violated?

• How to identify the managed application components that need to be reconfigured? How
to reconfigure these components and into what?

• What states are needed to control adequately the operation of a managed application sub-
ject to satisfy a QoS contract?

• How to manage context uncertainty in QoS contracts, which are context-dependent by
their own nature?

• How to achieve a clear separation of concerns between the managed application and the
adaptation mechanism, and their corresponding properties?

1.2 Dissertation Goals and Scope

In this section we establish the scope for our solution to the addressed problem by establishing
the general and specific goals pursued by this dissertation. Despite choosing specific objectives
will not allow us to answer a broader set of related research questions, it will more importantly
limit the scope of our work and focus us on finding appropriate solutions for a specific set of
them.

Our final aim in this dissertation is to advance in the engineering and assessment of self-
adaptive software (SAS) systems through two main goals: (i) characterize inherent properties to
SAS systems; and (ii) provide a comprehensive solution for QoS contracts preservation through
dynamic reconfiguration, built on a formal foundation. The motivation for having a formal
model is to be able to certify desirable properties on the reconfiguration mechanism, as far as
possible, or otherwise, at least that the model admits formal analysis on these properties. We
refine these two main goals by adopting one specific goal for each of the challenges stated pre-
viously, as follows:

G1: Identify and define key properties inherent to software self-adaptation. These properties,
such as those for guaranteeing reliability, should serve as candidates for standardization
and common basis to evaluate self-adaptation mechanisms.

G2: Develop a formal model for the dynamic and reliable reconfiguration mechanism to pre-
serve QoS contracts in component-based software. This implies for the model to (i) derive
reconfiguration plans from high-level reconfiguration rules whenever the contracts are (in
risk of) not being fulfilled; and (ii) guarantee critical properties for the reconfiguration
reliability.

G3: Maintain a clear separation of concerns between the reconfiguration mechanism and the
managed software application, as well as between their corresponding properties. This
includes to make the elements of the feedback loop model explicit in the reconfiguration
mechanism.

11

Chapter 1. Introduction

G4: Guarantee robustness in the reconfiguration mechanism with respect to possible and fore-
seeable situations associated to the management of the unpredictable nature of context.
Specifically, to manage context events and conditions, faced by the managed application,
that are handled neither by the user-defined event types nor reconfiguration rules in the
QoS contracts.

G5: Determine the practical feasibility of the formal based reconfiguration mechanism. We
consider it important to analyze and evaluate not only the feasibility of the proposed
model in terms of its implementation and performance in plausible scenarios, but also
in other practical aspects, such as its (re)usability.

1.3 Assumptions

To fulfill the goals presented in the previous section, we conceive our solution to the problem
stated in this dissertation on the following assumptions:

A1: The relationship between specific software design patterns and software quality at-
tributes, given that it has been strongly argued that particular design patterns deter-
mine specific levels of software quality attributes [Shaw and Garlan, 1996, Bass et al., 2003,
Kruchten et al., 2006, Buschmann et al., 2007, Clements and Shaw, 2009]. Several cata-
logs of such design patterns have been published in this sense [Ramachandran, 2002,
Zeng et al., 2004b, Kircher and Jain, 2004, Krakowiak, 2009, Dougherty et al., 2009].

A2: The theory of assume-guarantee [Inverardi et al., 2009]: as the problem stated requires
rule-based solutions, we assume that the user defining the QoS contracts is knowledge-
able of design patterns that address the concerned QoS attributes. Even more, that the
user will make correct application of these relationships to encode corresponding strate-
gies in the reconfiguration rules. This assumption, combined with assumption A1, should
be enough to conclude on the plausible efficacy of reconfiguration rules to preserve the
continued fulfillment of QoS contracts.

A3: The existence of SCA-compliant [Beisiegel et al., 2007a] component-based runtime plat-
forms with effective capabilities of introspection and dynamic reconfiguration of the ex-
ecuted application. These capabilities must be available at least in a form of reconfigura-
tion primitives that can be dynamically invoked. Currently, we only know of FRASCATI

[Seinturier et al., 2009] as one of such SCA runtime platforms with the enumerated charac-
teristics effectively implemented.

1.4 Contribution Overview

We abstract our contribution in two main parts. In the first, we identify and define inher-
ent properties of self-adaptive software (SAS) systems. These properties have been presented
and proposed to the SAS community to initiate open discussion for the analysis on their def-
initions, adoption and standardization. In the second, we provide a comprehensive solution
to this dissertation’s stated problem that addresses autonomous and reliable reconfiguration
of component-based software to preserve QoS contracts under varying conditions of execu-
tion. This solution, whose realization we call QOS-CARE (QoS Contract-Aware Reconfigura-
tion systEm), starts with a formal foundation that supports the trustworthiness of our approach,
and ends with its implementation and experimental evaluation. This implementation and its

12

1.4. Contribution Overview

positive evaluation results determine the practical feasibility, applicability and (re)usability of
our reconfiguration system. We have presented the results of this part of our contributions
in [Tamura et al., 2011a], [Tamura et al., 2011b], [Tamura et al., 2012], and [Villegas et al., 2012];
while the corresponding to the first, in [Villegas et al., 2011b] and [de Lemos et al., 2012].

In the first part, we distinguish one General Contribution (GC) from the characterization of
SAS properties (thus labeled GC.PC), and one corresponding specific contribution (PC.1). In the
second part, we have three general contributions: two from the formal model (GC.FM1 and
GC.FM2), and one from the architecture, implementation and evaluation (GC.AIE); and dis-
tributed in them, six specific contributions (FM1.1, FM1.2, FM1.3, FM2.1, AIE.1, AIE.2). We
describe and organize these contributions in the following subsections, and outline them in Fig.
1.1. In this figure, nonetheless, we include also the dissertation challenges and goals to illustrate
their respective relationships.

1.4.1 Self-Adaptive Software Properties

In this part of our contribution, we address the lack of standard properties inherent to self-
adaptive software, which should be used for comparable assessment, improvement, and com-
position of different adaptation mechanisms. For this, we start considering the properties
defined in control theory [Meng, 2000, Hellerstein et al., 2004, Jacklin et al., 2004], of course re-
interpreting them for self-adaptive software. Then, we complement them with others from
representative research works in the SAS community. Furthermore, to make these properties
concretely measurable, we analyze common adaptation goals and their relationship to quality
attributes and corresponding metrics. The general and specific contributions of this part are the
following:

GC.PC: Properties inherent to self-adaptive software systems characterized and proposed for standard-
ization. Among the most important properties that we characterize are atomic adaptation,
short settling-time, termination, consistency, robustness to context unpredictability, small
overshoot, and stability. In particular, for the validation of our reconfiguration system we
analyze the first five of these properties, defined as follows:

i. Short settling-time: the time taken by the adaptation mechanism for performing the
reconfiguration must be acceptable, considering the application domain. Depending
on the adaptation goal, this property can be equivalent to the Mean Time to Repair
(MTTR), the most critical factor determining availability and reliability.

ii. Termination: the application of the reconfiguration rules in the managed application
and the corresponding derivation of the reconfiguration plan from this application
(i.e., the reconfiguration process) are guaranteed to terminate.

iii. Atomicity: the reconfiguration is completed as a whole and successfully, or it fails and
is rollbacked completely. Additionally, this property enforces robustness, preventing
the managed application to reach undesirable and unsafe execution states.

iv. Structural consistency: the preservation of structural integrity constraints, defined
by known specifications (e.g., SCA structural conformance rules), on the managed
application after each reconfiguration. This property is critical also to avoid undesired
states caused by faulty user-defined reconfiguration rules.

v. Robustness to context unpredictability: deviations of the managed application state
from the expected ones, or from unexpected context conditions (including e.g., QoS
contract specifications), do not alter the properties of the reconfiguration mechanism.

The specific contribution corresponding to this general contribution is the following:

13

C
ha
pt
er

1.
In
tr
od
u
ct
io
n

Figure 1.1: Mapping among dissertation challenges, goals and contributions

14

1.4. Contribution Overview

PC.1: SAS inherent properties identified and defined. These properties were presented to
the SAS community in papers and discussed in conference events, initiating their
analysis towards their standardization.

1.4.2 Formal Model

We conceive our formal model for QoS contracts preservation through dynamic recon-
figuration by combining two formal systems: the theory of Finite State Machines (FSM)
[Hopcroft et al., 2006] and the Typed Attributed Graph (called e-graphs) Transformation System
(TAGTS) theory [Ehrig et al., 2009]. More precisely, even though this combination is inspired
by the MAPE loop [Kephart and Chess, 2003] to achieve reconfiguration autonomy in response
to context changes that violate QoS contracts, we use these two formal systems to specifically
model the MAPE Planner element. The general and specific contributions of our formal model
are:

GC.FM1: E-Graph (TAGTS) based model for reliable preservation of QoS contracts through dynamic
reconfiguration. To obtain reconfiguration reliability in our model, we build on the TAGTS
theory to define the structure of component-based applications, QoS contracts and recon-
figuration rules. We use these formal definitions as typing structures to guarantee confor-
mance of the corresponding instances, and to specify the dynamic reconfiguration opera-
tion with them. Consistently with respect to the current context conditions, the (evolved)
managed application state and the QoS contract specification, our model generates recon-
figuration plans from the application of parameterized reconfiguration rules defined by
users. That is, we abstract the component-based software reconfiguration operation as
e-graph transformations; then, we apply the obtained reconfiguration plan to reconfig-
ure the managed application structure. This e-graph based reconfiguration model benefits
from existing TAGTS theorems and results, allowing us to guarantee atomicity, reconfig-
uration termination and well-formation of component-based software applications. The
corresponding specific contributions are:

FM1.1: Unified e-graph and machine processable specifications for (i) component-based
structures (CBS); (ii) QoS contracts to be satisfied; and (iii) reconfiguration rules (to
encode design patterns).

FM1.2: Automatic derivation of reliable reconfiguration plans from rule-based e-graph trans-
formations. This includes functions to obtain the e-graph CBS from the actual run-
ning component-based managed application, and to instrument e-graph transforma-
tion operations back into the managed application. The implemented functions are
executed at runtime.

FM1.3: Independent and reusable reconfiguration mechanism modeled using e-graphs as an
abstract and neutral representation for the component-based managed application.
The reconfiguration mechanism is clearly separated from the managed software ap-
plication, as well as their corresponding properties. Furthermore, the relevant ele-
ments of the MAPE-loop model are explicit in the reconfiguration mechanism.

GC.FM2: FSM based model for autonomous and robust management of QoS contract states. To achieve
robustness with respect to the unpredictable nature of context and its implications on the
managed application states, we design an FSM that generalizes both the desired and the
non-desired states and transitions with respect to QoS contract fulfillment. That is, we
derive all reachable states of a managed application execution facing all types of context
events and conditions from the user-defined QoS contracts. Thus, this FSM allows us to

15

Chapter 1. Introduction

precisely analyze, reason and deal with these states and transitions, whether specified or
not by the user-defined event types and reconfiguration rules. The safe operational region
of the managed application, with respect to the reconfiguration mechanism, is confined
to the FSM states for which the QoS contract conditions, rules and context events were
effectively foreseen by the user. In this way, we guarantee the property of robustness
with respect to context unpredictability, as defined previously. The corresponding specific
contribution is:

FM2.1: Characterization of generic QoS contracts states (fulfillment, violation and exception)
and transitions, automatically managed at runtime by the FSM based model. This
includes the management of (i) context events not corresponding to the user-specified
QoS contract event types; and (ii) the inefficacy (or non-existence) of user-specified
reconfiguration rules to cope with the violation of contracted context conditions.

1.4.3 SCA Architecture, Implementation and Evaluation

To realize our formal model, we devise an SCA architecture that creates and maintains a graph
representation of the controlled managed application and corresponding QoS contract at run-
time. Furthermore, this architecture bridges the e-graph representation structure with the actual
running application structure by implementing a pair of functions that maintain the coherence
between these two structures. These functions are implementations of the corresponding spec-
ifications that result from the specific contribution FM1.2 (cf. Section 1.4.2). We conceive this
architecture as an SCA layer for dynamic reconfiguration to preserve QoS contracts, and imple-
mented, deployed and executed it in FRASCATI2, a flexible and multi-scale SCA middleware
[Seinturier et al., 2009]. We use our proof-of-concept implementation of this architecture to pre-
serve QoS contracts in two plausible application scenarios, and perform an experimental evalu-
ation of its performance by executing it in FRASCATI. From the obtained results we confirm the
practical feasibility and (re)usability of our reconfiguration system. The concrete general and
specific contributions of this part are:

GC.AIE: Formal model (GC.FM1 and GC.FM2) realized and evaluated as an SCA layer for dynamic
reconfiguration.

AIE.1: SCA layer architecture for dynamic reconfiguration to preserve QoS contracts de-
signed and implemented maintaining the formal model properties.

AIE.2: Formal model’s proof-of-concept implementation experimentally evaluated in a real
SCA runtime platform; practical feasibility and (re)usability of the reconfiguration
system confirmed.

1.4.4 Relationship between Contributions and Goals

The first part of our contribution addresses our first main goal, that is, to identify, define and
propose inherent properties to SAS systems as a common basis to evaluate this kind of software
systems. Correspondingly, the second part of our contribution addresses our second statedmain
goal, that is to advance the software engineering for SAS systems by providing a comprehensive
solution to preserve QoS contracts in component-based software, based on a formal foundation.

Besides providing an autonomous and reliable SCA layer for dynamic reconfiguration to
preserve QoS contracts, QOS-CARE also supports software-evolution architects in the reliability
and efficacy analysis of parameterized reconfiguration rules. The SCA-compliant architecture of

2We used FRASCATI v. 1.4 fixing some bugs found in the execution of reconfiguration primitives

16

1.5. Publications Derived from this Dissertation

QOS-CARE explicitly differentiates each of the MAPE-loop elements, maintaining a clear sep-
aration of concerns between the reconfiguration mechanism and the managed application. Our
modeled planner uses a top-down strategy to address QoS properties allowing the user to en-
code known design patterns in reconfiguration rules and synthesizing dynamically reconfigura-
tion plans from the application of rules through pattern-matching. From the SCA point of view,
QOS-CARE is a complementary layer for software component platforms that provides the capa-
bility to preserve QoS contracts for the software executed with them. Nonetheless, QOS-CARE
achieves independence of managed applications, and evenmore, of component platforms them-
selves, in grace of the mentioned separation of concerns. Additionally, this independence allows
us to characterize QOS-CARE comparatively to other adaptation mechanisms with respect to
their possibilities of composition or combination, thus leveraging their combined properties in
increasingly wider and more complex settings.

Concerning the adaptation properties, in this dissertation we consider the reliability
of the reconfiguration process defined as the continuity of (agreed) expected service
[Avizienis et al., 2004]. Moreover, we define the reliability of QOS-CARE in terms of the
five properties enunciated previously: short settling-time, termination, atomicity, SCA struc-
tural conformance and robustness with respect to context unpredictability. Following
[Candea et al., 2004] and [Hellerstein et al., 2004], we interpret the reconfiguration settling-time
as the mean-time to recover (MTTR) metric. Particularly applied to self-reconfigurable sys-
tems, settling-time also determines the acceptability of the reconfiguration time, which nat-
urally must be evaluated empirically. SCA structural conformance is a property that must
be verified at runtime on the managed application to ensure that its structure conforms to
the structural integrity constraints defined in the SCA specification after each reconfiguration
[Beisiegel et al., 2007a, Léger et al., 2010]. For the properties of termination and atomicity, we
show formally that they are guaranteed by our formal model. Finally, by considering reliability
in the sense of being able to be trusted but also measurable, QOS-CARE can be configured to
provide system evolution architects with empirical assessments of the MTTR for particular ap-
plication domains. This empirical assessment, combined with the other properties, can serve as
a basic figure of the extent of the confidence that users can have on our reconfiguration system
for different managed applications and scenarios. The experiments performedwith QOS-CARE
integrated in a real SCA implementation and running a reasonable software application (i) con-
stitute an additional proof of our formal model soundness; (ii) allow us to conclude positively
on the evaluation of its reliability; and (iii) determine its practical feasibility and (re)usability.

More importantly, in our opinion, the adaptation properties that we propose for standardiza-
tion help to leverage the benefits of self-adaptation, not only for its wider adoption in industry,
but also for the software engineering discipline itself. In the first aspect, for instance, these prop-
erties and associated metrics allow users not only to measure but also to compare and improve
the reliability and trustworthiness of different adaptation mechanisms. In the second aspect,
the corresponding measurements on these properties and metrics could provide dependabil-
ity insights to incorporate these mechanisms in the partial automation of the maintenance and
evolution phases of software life cycles.

1.5 Publications Derived from this Dissertation

The results produced in the development of this dissertation have been published in interna-
tional journals, symposiums, book chapters and workshops, as follows.

17

Chapter 1. Introduction

International Refereed Journals

• Gabriel Tamura, Rubby Casallas, Anthony Cleve, and Laurence Duchien. QoS-CARE: A
Formal System for Reliable QoS Contract Preservation in Component-based Software. Journal
Science of Computer Programming (Special Issue in Formal Aspects of Component Soft-
ware), 2012. (In Evaluation) [Tamura et al., 2011b].

Book Chapters

• Rogerio de Lemos, Holger Giese, Hausi Müller, Mary Shaw, Jesper Andersson, Lu-
ciano Baresi, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Ron Desmarais,
Schahram Dustdar, Gregor Engels, Kurt Geihs, Karl M. Goeschka, Alessandra Gorla, Vin-
cenzo Grassi, Paola Inverardi, Gabor Karsai, Jeff Kramer, Marin Litoiu, Antonia Lopes,
Jeff Magee, Sam Malek, Serge Mankovskii, Raffaela Mirandola, John Mylopoulos, Oscar
Nierstrasz, Mauro Pezzè, Christian Prehofer, Wilhelm Schäfer, Rick Schlichting, Bradley
Schmerl, Dennis B. Smith, João P. Sousa, Gabriel Tamura, Ladan Tahvildari, Norha M.
Villegas, Thomas Vogel, Danny Weyns, Kenny Wong, and Jochen Wuttke. Software Engi-
neering for Self-Adaptive Systems: A Second Research Roadmap. In: Software Engineering for
Self-Adaptive Systems 2, 2012. (In Press) – This paper is a revised and extended version of
the one published in the Dagstuhl 10431 Seminar Proceedings as [de Lemos et al., 2012].

• Gabriel Tamura, Norha M. Villegas, Hausi A. Müller, João P. Sousa, Basil Becker, Mauro
Pezzè, Gabor Karsai, Serge Mankovskii, Wilhelm Schäfer, Ladan Tahvildari, and Kenny
Wong. Towards Practical Runtime Verification and Validation of Self-Adaptive Software Systems.
In: Software Engineering for Self-Adaptive Systems 2, 2012. (In Press) [Tamura et al., 2012].

• Norha M. Villegas, Gabriel Tamura, Hausi A. Müller, Laurence Duchien, and Ruby Casal-
las. DYNAMICO: A Reference Model for Governing Control Objectives and Context Relevance in
Self-Adaptive Software Systems. In: Software Engineering for Self-Adaptive Systems 2, 2012.
(In Press) [Villegas et al., 2012].

International Symposiums

• Norha Villegas, Hausi Müller, Gabriel Tamura, Laurence Duchien, and Rubby Casallas.
A Framework for Evaluating Quality-Driven Self-Adaptive Software Systems. Procs. of 6th
Intl. Symposium on Software Engineering for Adaptive and Self-Managing Systems, 2011
[Villegas et al., 2011b].

International Workshops

• Gabriel Tamura, Rubby Casallas, Anthony Cleve, and Laurence Duchien. QoS Contract-
Aware Reconfiguration of Component Architectures Using E-Graphs. Procs. of 7th Intl.
Workshop on Formal Aspects of Component Software, 2010. This paper was selected
also for publication on the LNCS Vol. 6921 – Formal Aspects of Component Soft-
ware [Tamura et al., 2011a].

Electronic Magazines

• Gabriel Tamura and Anthony Cleve. A Comparison of Taxonomies for Model Transfor-
mation Languages. In: Paradigma – Revista Electrónica en Construcción de Software,
2010 [Tamura and Cleve, 2010].

18

1.6. Dissertation Organization

1.6 Dissertation Organization

The remainder of this dissertation is organized as follows.

Chapter 2: Context and State-of-the-Art Background. The problem we address in this dis-
sertation intersects the engineering of self-adaptive software (SAS) systems, component-based
software (CBSE/CBD/SCA) and QoS software contracts. Hence, in this chapter we present a
background on the state of the art of these topics with their related research challenges, key
concepts, and definitions of terms, as understood in this dissertation.

Part II: Contribution

Chapter 3: Quality-Driven Self-Adaptation Properties. In this chapter we define the proper-
ties that we identify as inherent to self-adaptive software (i.e., adaptation properties) and should
be used for comparable assessment of adaptation mechanisms. We distill these properties from
a survey of representative self-adaptive software research works. Additionally, to make these
properties measurable, we analyze common adaptation goals, and their relationship to quality
attributes and corresponding metrics. From these properties, in the following chapters we select
a subset that coherently supports the fulfillment of the reliability and robustness goals of this
dissertation.

Chapter 4: A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration. In this
chapter we present our formal model for autonomous and reliable preservation of QoS contracts
through dynamic reconfiguration, targeting component-based software. On one side, we give
E-Graph definitions for component-based software structures, QoS contracts and reconfigura-
tion rules to specify our formal reconfiguration system to reliably preserve QoS contracts. On
the other side, we present the FSM based model for autonomous and robust specification of
transitions between the managed application states, characterized with respect to QoS contracts
fulfillment and unfulfillment. We show how do we combine these two structures for our formal
model to be autonomous and reliable.

Chapter 5: QOS-CARE: The Realization of Our Formal Model. The SCA specification is
commonly implemented as a middleware of stacked layers of pervasive functionalities and ser-
vices for executing component-based software applications. In this chapter we present the ar-
chitecture, design decisions, and implementation of QOS-CARE, the realization of our formal
model. In the context of the SCA stack, we conceive QOS-CARE as an additional platform-
independent SCA layer for dynamic reconfiguration to preserve QoS contracts in component-
based software applications, maintaining the properties of the formal model.

Part III: Validation

Chapter 6: Validation and Verification of QOS-CARE Properties. In the development of our
reconfiguration system we benefit from properties and definitions of both Typed Attributed
Graph (E-Graphs) Transformation systems and FSM theories. In this chapter we analyze these
properties and interpret them in the context of a selected subset of the adaptation properties pre-
sented in Chapter 3. We also illustrate the significance of these properties for guaranteeing the
reliability and robustness of our model for dynamic reconfiguration to preserve QoS contracts.

These properties are the short settling-time, the reconfiguration termination, the atomicity,
the SCA structural conformance, and the robustness with respect to context unpredictability.
For the settling-time we use a benchmark for measuring the Mean-Time to Reconfigure (MTTR).
SCA structural conformance and robustness to context unpredictability are verified at runtime

19

Chapter 1. Introduction

as part of the reconfiguration process, supported by our formal model: the first, by the SCA
constraints on the e-graph representation of the managed application, meanwhile the second
by checking the types of context events, and the efficacy and existence of reconfiguration rules.
Atomicity and reconfiguration termination are guaranteed as a result of theoretical properties of
our formal model.

Chapter 7: QOS-CARE Validation Scenarios. In this chapter, in addition to the validation
and verification of QOS-CARE’s properties presented in Chapter 6, we also evaluate the ap-
plicability and performance (i.e., the mean-time to reconfigure, MTTR) of our reconfiguration
system. We base this empirical evaluation on a set of experiments performed by using QOS-
CARE to preserve QoS contracts in two validation scenarios, executed with the FRASCATI SCA
runtime platform. For each of these scenarios, we describe the component-based software appli-
cation, the respective QoS contract, reconfiguration rules, and the obtained experimental data.
For the particular reconfiguration rule-sets we analyze the termination and SCA structural con-
formance conditions, whereas for the experimental results, the mean-time to reconfigure. We
then conclude on the practical feasibility, (re)usability and applicability of our reconfiguration
system.

Part IV: Summary

Chapter 8: Conclusions and Future Work. In this chapter we summarize the work presented
in this dissertation. We highlight our contributions analyzing our overall approach in its advan-
tages, and discussing also its limitations. Additionally, we distinguish the limitations that, in
our opinion, deserve attention as worth of future research work.

1.7 Chapter Summary

In this chapter we have presented the problem statement, addressed challenges, goals, assump-
tions and a contributions overview of this dissertation. On one side, from the problem statement
we identified and derived the dissertation addressed challenges. For each of these challenges we
adopted one goal, as established in Section 1.2. On the other side, we presented the relationship
of fulfillment between our contributions and the stated goals in Section 1.4.4. We also illustrated
our assumptions as independent suppositions and inspirational foundations on which we build
our reconfiguration system for preserving QoS contracts in component-based software. All of
these elements with their respective relationships, which summarize the addressed problem,
motivation and contributions of this dissertation, were outlined in Fig. 1.1.

Figure 1.2 abstracts, in the form of a conceptual map, the dissertation overview and the
relationships among its challenges, goals and contributions.

20

1.7.
C
hapter

S
u
m
m
ary

Figure 1.2: Dissertation overview and relationships among challenges, goals and contributions

21

Chapter 1. Introduction

22

Chapter 2
Context and State-of-the-Art Background

Contents

2.1 Definitions of Terms . 24

2.2 Component-Based Software Engineering 25

2.2.1 Component Models . 26

2.2.2 The Service Component Architecture (SCA) Specification 26

2.2.3 The FRASCATI SCA Implementation 28

2.2.4 FRASCATI vs. Other Implementations: SCA Challenges 30

2.3 Quality of Service (QoS) Software Contracts 30

2.3.1 QoS Contract Specification . 31

2.3.2 QoS Contract Management and Fulfillment 32

2.4 Self-Adaptive Software Systems . 34

2.4.1 Revisiting the MAPE-K and Feedback Loop Models 35

2.4.2 Other Models for Self-Adaptation in Software Systems 36

2.4.3 Particular Approaches for Self-Adaptation 38

2.5 Example Application Scenario: A Reliable Videoconference System . . . 40

2.6 Chapter Summary . 42

The problem we address in this dissertation intersects the engineering of component-based
software systems3, Quality of Service (QoS) software contracts, and self-adaptive software (SAS)
systems. Hence, in this chapter we present the fundamental concepts of each of these three
research areas, their current main concerns, key research challenges, approaches and associated
technologies to solve them, as related to the scope of this dissertation.

Therefore, in Section 2.1 we present the key concepts on which these research areas are devel-
oped, giving our own definitions or interpretations when appropriate. In Section 2.2 we present
the foundational concepts of the Component paradigm for software development, and describe
representative run-time component platforms with their respective limitations. In Section 2.3 we
analyze the different ways of how QoS software contracts have been specified, processed and
used in software systems, as well as the strategies utilized for guaranteeing them. In Section 2.4
we present the fundamental concepts of autonomic computing and its foundational ideas and

3Also known as Component-Based Development (CBD), Component-Based Software Engineering (CBSE) and
Service Component Architecture (SCA), we use these terms interchangeably.

23

Chapter 2. Context and State-of-the-Art Background

characteristics, namely, self-adaptation, self-healing, self-optimization, and self-protecting. In
Section 2.5 we introduce the application scenario that we use along this dissertation to illustrate
the definitions of our formal model, and its implementation as an SCA-compliant reconfigura-
tion mechanism.

2.1 Definitions of Terms

In this section we present a list of terms used along this dissertation with their respective defini-
tions, including our own interpretations when appropriate. Most of these definitions are based
on the references listed in the Bibliography section, and theMerriamWebster Dictionary (Online
version available in http://www.merriam-webster.com/dictionary). In particular, the
definitions for autonomic computing terms are mainly based on [IBM Corporation, 2006].

CBD/CBSE/SCA: Component-Based software Development/Component-Based Software En-
gineering/Service Component Architecture. These acronyms are used to refer to the
paradigm of software development based on software components [Szyperski, 1998,
Heineman and Councill, 2001].

SAS: Self-Adaptive Software system. A software system with the capability of modifying itself
at runtime in response to changes in its execution environment. These changes include re-
source availability variations, modifications on the user needs, intrusions, and faults. The
purpose of the adaptation is to preserve a satisfactory operation under different context sit-
uationswith no (or limited) human intervention [Cheng et al., 2009a, de Lemos et al., 2012].
SAS are composed of two parts: (i) the adaptation mechanism, and (ii) the managed soft-
ware application.

Adaptation mechanism: (also reconfiguration mechanism) the mechanism (theoretical model or
software artifact) that performs (in abstract or concrete form) the dynamic adaptation or re-
configuration of the managed software application [Cheng et al., 2009a, de Lemos et al., 2012].
In a self-adaptive software system, the adaptation mechanism is the counterpart of the man-
aged software application.

Managed software application: (also managed application, managed system, target application)
term used for the software application to be adapted or reconfigured in a self-adaptive
software system [Hellerstein et al., 2004, Villegas et al., 2012]. In these systems, themanaged
application is the counterpart of the adaptation mechanism. In the context of this dissertation,
the managed application is also the software application subject to the QoS contract to be
satisfied, especially under changing context conditions of its execution.

Dynamic reconfiguration: the operation that modifies, at runtime, the configuration of a soft-
ware application. If this operation is performed by the same software system, it is called
self-reconfiguration. From the software architecture point of view, this means to modify
the structural description of the application, given, for instance, in an Architecture De-
scription Language (ADL). In the Component paradigm, the configuration of a software
application is expressed in terms of its composites, components, exposed properties, wires
and bindings [McKinley et al., 2004, Seinturier et al., 2012].

MAPE-K loop reference model: (also MAPE loop) a reference model proposed by
IBM to guide the design of self-managing and self-adaptive software systems
[Kephart and Chess, 2003]. Inspired by the feedback-loop model from control the-
ory, this model defines a reference structure for these kinds of adaptive software systems,

24

2.2. Component-Based Software Engineering

as composed of five elements: Monitor, Analyzer, Planner, Executor and Knowledge
manager. For each element, it assigns specific functionalities and information flow aimed
at autonomously controlling a given managed software application.

Quality of Service (QoS) contract: the precise specification of the expected levels of opera-
tion (QoS levels) that must be guaranteed on a given QoS attribute (e.g., confiden-
tiality, availability, performance) by a managed software application [Collet et al., 2005,
Jureta et al., 2009, Tran and Tsuji, 2009]. These QoS levels must be specified for each of the
different context conditions to be faced by the managed application in its execution. The
continuous satisfaction of a QoS contract (i.e., its preservation) implies to satisfy each of
these QoS levels that the user expects, under each of the corresponding varying conditions
of system execution.

Reliability (classic definition): the continuity of expected service delivery. Any deviation
from the service delivery in the way it is agreed is considered a reliability violation
[Avizienis et al., 2004]. Reliability has been traditionally measured in relation to the re-
sponse that a system exhibits to its own failures, that is, in the sense of system trust-
worthiness [Reussner et al., 2003, Candea et al., 2004, Yacoub et al., 2004, Filieri et al., 2010,
Huang et al., 2011].

Reliability (our definition): the continuity of expected QoS-levels fulfillment in software applica-
tion services when facing not only natural context changes, but also unexpected anoma-
lous situations (e.g., faulty reconfiguration rules given by users).

Target application: (also target software application) synonym of managed software application.

Target system: term used in the control engineering domain for the system to be controlled (e.g.,
usually a physical plant for an industrial process) [Ogata, 1996, Hellerstein et al., 2004]. In
the SAS domain, target system corresponds to the managed (software) application or target
(software) application.

2.2 Component-Based Software Engineering

In the last ten years, the Component paradigm for building software systems has evolved based
on a fundamental vision of the software component as a contract or obligations-responsible
software artifact.

In this paradigm, software units are encapsulated in components. A component is a gray-box
software artifact with well-defined services (or interfaces), and exposed properties. A compo-
nent required service can be satisfied by a provided service offered by another component, as far
as these services implement the same interface. To exchange information among them, com-
ponents communicate either by wiring required- to provided-services directly, or by binding
them to communication protocols such as SOAP, RMI, JMS or REST. Components can contain
other components hierarchically (thus called composite structures) and, ideally, can be imple-
mented using different programming languages. Another claimed advantage is that defining
a precise set of contractual obligations allows components to be independently developed and
deployed, guaranteeing that, if they realize their responsibilities, they can interact in expected
ways [Szyperski, 1998, Bachmann et al., 2000, Heineman and Councill, 2001].

In light of this vision, the Component paradigm has been used for engineering software sys-
tems in a wide variety of forms. These forms include building systems from contract-compliant

25

Chapter 2. Context and State-of-the-Art Background

components, to abstracting reflection mechanisms at the component-level (i.e., composite, com-
ponent, interface, binding) to support the adaptation of self-managing software systems at run-
time. Nonetheless, although significant research has been conducted on guaranteeing functional
and extra-functional contracts by software components systems, the autonomous preservation
of QoS contracts under varying conditions of execution is known as a research problem still to
be solved. We analyze this in the next sections.

2.2.1 Component Models

To realize the Component paradigm’s vision and promises, several component models have
been developed and implemented, each with a different syntax, but all of them sharing the same
basic concepts. Examples of these models that several years ago transitioned into the industry
are OMG’s CORBA Component Model (CCM4), Oracle’s (formerly SUN) Enterprise Java Beans
(EJBs5), Microsoft’s Component Object Model (COM, DCOM and variants6). For the graphi-
cal representation (i.e., the syntax), most of these models follow the OMG’s UML component
diagram specification7. An important variation of flat component models was introduced by
hierarchical ones, such as the presented in FRACTAL [Bruneton et al., 2006]. Hierarchical compo-
nent models address scalability and abstraction issues by allowing components to be defined as
composed of other components, sharing of components (e.g., to model shared resources), and
providing reflection capabilities. In fact, reflection is the most important requirement not only
for self-monitoring but also for dynamic reconfiguration. However, despite the many important
achievements, concerning the autonomous preservation of QoS contracts these models have not
completed their evolution to realize the initial vision of the Component paradigm.

2.2.2 The Service Component Architecture (SCA) Specification

More recently, several IT providers joined efforts and formed the so-called Open Service Ori-
ented Architecture (OSOA) Collaboration with the purpose of defining a language-independent
programming model for building and executing Service Oriented Architecture (SOA) dis-
tributed applications. In this way, the specifications given by the first component models, which
were proposed by some of the OSOA founders, served as a base to develop the Service Com-
ponent Architecture (SCA) set of specifications. Hence, these specifications adhere to the previ-
ously enunciated component-based definitions and principles.

The SCA core specification, which is the component assembly language, defines a model that
is also independent of Interface Definition Languages (IDLs), communication protocols, and
non-functional properties [Beisiegel et al., 2007a]8. Thus, SCA is aimed at leveraging the wide
range of existing technologies for implementing software components and its services (e.g., Java,
Python, Scala, and PHP), and for connecting them (through e.g., Web services, SOAP, REST, RPC,
and RMI). In Fig. 2.1 we illustrate the SCA notation in its graphical (left), and XML-based assem-
bly language (right) representations. In this figure, the TWApplication composite is composed
of two components, GoogleW (Google Weather information provider) and Weather . From this
latter, the application composite promotes (i.e., makes externally visible) the wfinder provided
service (labeled (A) in the figure), and the twitter (B) required service. As illustrated in the
assembly definition, this service is bound to the Twitter REST service (C)9 used for retrieving

4http://www.omg.org/spec/CCM/4.0/PDF/06-04-01.pdf
5http://www.oracle.com/technetwork/java/ejb-141389.html
6http://www.microsoft.com/com/default.mspx
7http://www.omg.org/spec/UML/2.2/Superstructure
8http://www.oasis-opencsa.org
9http://twitter.com

26

2.2. Component-Based Software Engineering

the location of the user specified in the userId exposed property, from the Twitter profile. The
GoogleW component uses this information to retrieve the weather conditions in this location
through the weather provided service (D).

Figure 2.1: The SCA notation in its graphical (left), and XML-based (right) representations. Compo-
nents provide services (through interfaces) that can be required by others. Connections from required to
provided services (interfaces) specify the corresponding service invocations.

The SCA specification has been implemented by several IT vendors and research projects, as
described in the OpenSOA site10. Examples of these implementations are IBM’s Rational Ap-
plication Developer/WebSphere Application Server for SCA11, Oracle’s SOA/EDA12, Apache’s
Tuscany13, Fabric314 and FRASCATI15, among others.

This specification is currently maintained by OASIS16, who adopted it for formal stan-
dardization under the name of Open Composite Services Architecture (Open CSA). Ad-
ditionally, SCA has been identified as the foundation for yet other promising computing
paradigms, such as the Service Oriented Computing [Papazoglou et al., 2007] and Cloud Com-
puting [Merle et al., 2011].

Support for Non-Functional Requirements

As related to the goal of this dissertation, the SCA specification supports non-functional require-
ments (e.g., security, transaction, logging) on services through policy sets. These are defined by
the SCA Policy Framework [Beisiegel et al., 2007b].

The Policy Framework is defined in two levels. The first, called the abstract level, defines
policy intents as high-level language constructs for expressing non-functional requirements for
component services. Services with this kind of requirements are annotated with tags in order to
declare the corresponding policies. For instance, a policy intent can specify that a given service

10http://www.osoa.org/display/Main/Implementation+Examples+and+Tools
11http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/sca
12http://www.oracle.com/us/technologies/soa/index.html
13https://cwiki.apache.org/TUSCANY/sca-java-2x-releases.html
14http://www.fabric3.org
15https://wiki.ow2.org/frascati
16http://www.oasis-opencsa.org

27

Chapter 2. Context and State-of-the-Art Background

requires of authentication prior to its use (e.g., with the @Authentication tag). As this is an
abstract specification, a low level configuration must be also specified to solve platform-specific
details at deployment time.

The second level, called the concrete policy, specifies the low-level configuration. This con-
figuration is used at deployment time by mapping intents to specific policy choices. In the
example of authentication, the concrete policy set could specify the options and preferences for
using different authentication methods, such as Kerberos, MD5, and Diameter. At deployment
time, the SCA implementation is responsible for enforcing the policies, for instance allowing the
selection of one of the specified alternatives in a policy set.

Intents and policy sets may be applied to services (interaction policies), as well as to compo-
nent implementations (implementation policies). However, although this mechanism is a first
step to address non-functional properties in components and their services, it has some limita-
tions. In particular, it was not designed to fulfill varying QoS-level objectives autonomously,
that is, in response to the dynamic system execution’s changing conditions. These requirements
are addressed by the engineering of context-aware and self-adaptive software systems, which
we discuss in Section 2.4.

2.2.3 The FRASCATI SCA Implementation

FRASCATI is an open source and multi-scale implementation of the SCA specification for de-
veloping and executing distributed SCA applications. In the form of a middleware software
stack, it adds reflection capabilities to the standard SCA functionalities. Thus, these capabilities
of introspection and primitive reconfiguration (i.e., adding/removing components, wires, and
bindings) can be exploited as pervasive services by any SCA application executed in FRASCATI

[Seinturier et al., 2009, Seinturier et al., 2012].
As illustrated in Fig. 2.2, the FRASCATI architecture is an SCA stack with four layered levels:

1. The Kernel Level (in the bottom part of the figure) is based on the FRACTAL component
model [Bruneton et al., 2006]. This is a lightweight and open component framework that im-
plements the notion of component by exploiting dependency injection, introspection and prim-
itive reconfiguration capabilities. The model is inspired on the ideas of software architecture
[Shaw and Garlan, 1996], and distributed, re-configurable and reflective systems [Smith, 1984].

In particular, the reflection capabilities of the model provides meta-level operations over the
components structure using control interfaces. These operations support the dynamic reconfig-
uration of components and their interconnections at run-time.

2. The Personality Level. As illustrated in the figure, the personality level adds to the def-
inition of kernel components one controller part and two interceptor parts (one for the pro-
vided and another for the required interfaces). The interceptors can be used to modify or extend
the behavior of service invocations, whereas the controller allows the configuration of differ-
ent “facets” of the personality, for instance in terms of specific component life-cycles or bind-
ing management. Component life-cycle management includes starting and stopping its execu-
tion according to the defined component instance models (e.g., STATELESS, CONVERSATION,
COMPOSITE, and REQUEST).

This level also enables the use of primitive reconfiguration as a common functionality of the
component platform through the controller interfaces, thus extending the SCA specification.

3. The Run-time Level. This level is responsible for instantiating and executing the SCA com-
posites and components in the runtime platform. In the figure, we illustrate the main com-
posites that comprise this level, as related to the goals of this dissertation. On one hand, the

28

2.2. Component-Based Software Engineering

Figure 2.2: The FRASCATI SCA middleware stack (adapted from [Seinturier et al., 2012]).

DescriptionParser , PersonalityFactory , and AssemblyFactory are the components
in charge of the instantiation phase for executing SCA applications. The DescriptionParser
loads and checks the user-defined file that specifies the SCA application composites (i.e., the
composite descriptor file) and creates the respective run-time application structure. These de-
scriptor files must conform to the SCA assembly specification. However, despite of being com-
pliant to the SCA specification, the user can include in these files any of the FRASCATI exten-
sions, that is, components and services with functionalities that are not part of the SCA specifi-
cation, such as new binding types. The AssemblyFactory creates the component assemblies
that correspond to the run-time model created by the DescriptionParser , including com-
ponents, properties, implementations, services, interfaces, wires, and binding. Similarly, the
PersonalityFactory adds the controller and interceptor parts to each component, according
to the descriptor file specification, such as specific non-functional (e.g., authentication, logging)
requirements.

On the other hand, the CompositeManager , as its name implies, manages the internal rep-
resentation of the executed application as SCA elements, at run-time. It also provides the in-
trospection services (through the Introspection component and services), not only for the
executed applications, but also for all of the FRASCATI SCA implementation components and
services. The Introspection component also provides access to the FScriptEngine com-

29

Chapter 2. Context and State-of-the-Art Background

ponent, the reconfiguration-primitives execution engine.

4. The Non-Functional Level. This level corresponds to the implementation and support of
the SCA Policy Framework specification [Beisiegel et al., 2007b]. As introduced previously, this
specification provides basic support for fulfilling non-functional requirements in the executed
applications. This support is realized through annotations in the composite descriptor files. For
instance, the @Confidentiality , @Integrity , and @Authentication annotations can be
used to implement confidentiality, integrity and authentication functions in service invocations,
respectively.

FRASCATI implements the corresponding non-functional services using interception mech-
anisms, where each policy is associated with exactly one component (or composite).

2.2.4 FRASCATI vs. Other Implementations: SCA Challenges

Concerning the capabilities of introspection and primitive reconfiguration (the most relevant
characteristics for the goals of this dissertation) and performance, FRASCATI has been evalu-
ated positively over some of the most representative SCA implementations, such as Apache
Tuscany17, and Fabric318 [Seinturier et al., 2009, Romero, 2011]. Other important SCA imple-
mentations, such as IBM’s WebSphere Application Server V8 for SCA19, does not implement
dynamic reconfiguration capabilities yet, even though these characteristics are planned in the
product road-map [Bentancour et al., 2011].

However, even with the additional characteristics that FRASCATI offers over the SCA spec-
ification and other implementations, it still has the SCA limitations of policy sets for the au-
tonomous and dynamic fulfillment of varying QoS-level objectives under system execution’s
changing conditions. In particular, [Papazoglou et al., 2007] identified the need for dynamic re-
configuration capabilities in SCA and component platforms as one of themain challenges for ser-
vice foundations in the Service Oriented Computing paradigm. [Seinturier et al., 2012] presents
a partial answer to this challenge, providing FRASCATI with capabilities for primitive reconfigu-
ration. In this dissertation we address the challenge of dynamic reconfiguration at a larger scale,
that is, to satisfy high-level objectives (e.g., QoS-level objectives) performed in an autonomous
and reliable way.

2.3 Quality of Service (QoS) Software Contracts

Software systems must satisfy functional and extra-functional requirements. Quality of Service
(QoS) requirements—such as those on performance, availability, confidentiality, and reliability—
are classified among the latter. As their verification usually requires of information gathered
from the system operation (i.e., at run-time), QoS requirements are also known as operational
quality requirements [Beugnard et al., 1999, Bosch, 2000].

In the last years, ubiquitous software services (e.g., Web, REST, RPC, RMI and other remotely
available services) have gradually pervaded all aspects of everyday life. The subsequent pro-
liferation and massive use of these services, individually or combined among them and with
traditional ones (e.g., Web mashups and wrapped legacy applications), challenge the satisfac-
tion of their QoS requirements at run-time. In effect, when confronted with their dependencies
on the dynamic nature of context, new and highly dynamic requirements appear for these ser-
vices. These new requirements, such as having to fulfill changing QoS levels under different

17https://cwiki.apache.org/TUSCANY/sca-java-2x-releases.html
18http://www.fabric3.org
19http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/sca

30

2.3. Quality of Service (QoS) Software Contracts

context situations, further exacerbate the problem of guaranteeing the expected quality of these
services, especially under varying conditions of system execution. Additionally, these dynamic
capabilities are also expected to be performed in a reliable way, in order to be trustworthy and
acceptable by users.

QoS contracts constitute a natural and effective means for specifying these operational-
quality and context-dependent requirements. These contracts are subject to re-negotiation, and
thus, must bemanaged at runtime [Beugnard et al., 1999, Krakowiak, 2009, Tran and Tsuji, 2009].
QoS contracts should define expected levels of operation (QoS levels) to be satisfied by a software
application. These QoS levels should be specified for each of the different context conditions to
be faced by the software application during its execution. Thus, the continuous satisfaction of a
QoS contract (i.e., its preservation) implies to monitor each of these QoS levels at run-time, but
also to restore their satisfaction (e.g., using guaranteeing actions) whenever they are violated
(e.g., when the respective context conditions change).

Several specifications [Frølund and Koistinen, 1998, Keller and Ludwig, 2003], lan-
guages [Röttger and Zschaler, 2003, Becker, 2008], models [ISO, 2001, Collet et al., 2005,
Chang and Collet, 2007b, Lee et al., 2009, Comuzzi and Pernici, 2009], and formal seman-
tics [Braga et al., 2009, Cansado et al., 2010], among others, have been proposed to specify,
model and support the characteristic attributes of QoS contracts, the relationship among QoS
provisions and requirements, and enforcement mechanisms. However, despite these many
advances, the development of a sound theory to preserve QoS contracts in component-based
systems still remains as an open challenge, as we analyze in the next sections.

2.3.1 QoS Contract Specification

Most of the QoS contract specifications, models and languages consider the characteris-
tics identified by Frølund and Koistinen in their proposed QML (QoS Modeling Language)
[Frølund and Koistinen, 1998]. This language specifies QoS properties, and respective condi-
tions on them, as requirements for individual software components to be addressed at design
time. For this, QML establishes a fixed vocabulary associated to different QoS properties and
allows to define contract types, similar to structured types of common programming languages.
CQML, CQML+, as well as other variations of QML, also address QoS contracts specifications
to be used at design time and identifies several additional characteristics to QML for speci-
fying QoS contracts. One of such additions is the relationships among the QoS provisions
(i.e., obligation and CPU-memory-network resource dependencies among contract satisfaction)
[Röttger and Zschaler, 2003, Becker, 2008]. Nevertheless, these languages have some limitations.
First, they have nomeans for specifying different QoS levels to be monitored and fulfilled at run-
time for a given QoS property. Second, even though some of these approaches derive alternative
specifications for the runtime representation of QoS properties, their semantics is not formally
specified. Thus, they leave the problem of dynamic fulfillment of the QoS contracts for the run-
time platform system.

On the services side, the Web Service Level Agreement (WSLA) specification
[Keller and Ludwig, 2003] focuses on defining a syntactic structure for conditions express-
ing Service Level Agreements (SLAs). Data gathered from monitor probes in the managed
service implementation is fed into this structure to be transformed, evaluated, and produce
context events, if relevant. The WSLA also allows to define a guaranteeing action to be executed
in response to events notifying the violation of SLAs [Ludwig et al., 2003]. However, the
semantics of these actions is defined informally, and limited to operations such as chained
event notification, not addressing directly how to reconfigure the services to restore the contract
satisfaction.

31

Chapter 2. Context and State-of-the-Art Background

The model proposed by Jureta et al. integrates several previous quality models for software
services and refines the specification of units and gathered data transformation. It also refines
the modeling of dependency and priority between quality metrics [Jureta et al., 2009]. Despite
the syntax of the specification model is formalized, as in the case of the WSLA guaranteeing
actions, the lack of a formal semantics limits the automated verification and reasoning on con-
tracted quality properties.

Challenges Identified on Contract Specification

The main challenges identified with respect to QoS contract specification are the following:

• The expression of the QoS contract itself, given that it must specify (i) the different con-
textual conditions on the contracted QoS property; (ii) the corresponding guaranteeing
actions to be performed in case of the QoS contract violation; and (iii) the responsibilities
of the software elements intervening in the contract-preservation process. In particular, a
QoS contract should specify the monitoring and guaranteeing elements for the contracted
properties.

• Even though contract specification addresses only the contract definition, having a precise
semantics is also necessary, not only for automating the monitoring and verification of the
QoS levels to be satisfied, but also for reasoning on the process of maintaining the QoS
properties fulfilled, thus enabling the possibility of restoring the system to a consistent
state.

2.3.2 QoS Contract Management and Fulfillment

Regarding software contract management in general, several approaches have been proposed
since the first ideas on functional contracts introduced by Floyd and Hoare [Floyd, 1967,
Hoare, 1969]. In the object-oriented paradigm for software development, one of the most in-
fluential of those approaches is the Design by Contract Theory introduced in the Eiffel program-
ming language [Meyer, 1992]. Based on a characterization of the different conditions used in the
so-called defensive programming, Meyer formulated systematic rules to guarantee routines to
satisfy their functional contracts. By using assertions as integral parts of the source code to be
verified at runtime, routines are made self-monitoring from compile-time. The violation of an
assertion, such as a class invariant, is automatically managed by the standard rescue clause. In
this clause, the programmer must handle appropriately the causes of the assertion violation in
order to restore a program’s consistent state.

At least in abstract, most of the approaches addressing the fulfillment of contracted QoS
levels follow the rescue clause strategy implemented in Eiffel. As illustrated in the previous sec-
tions, QoS contracts must define expected QoS levels to be satisfied by a software application.
Whenever any of these QoS levels are reported as (in risk of being) violated by the correspond-
ing monitor, guaranteeing actions are applied to restore the contract satisfaction (or prevent its
violation). In this sense, QoS contract satisfaction is, in general, a form of property preserva-
tion. For example, the approach of Delaval et al., based on the Fractal component platform,
focuses on the property of safety [Delaval and Rutten, 2010]. Inspired by control theory, their
approach synthesizes static reconfiguration controllers from a contract specification. However,
the reconfiguration transition function must be written by the user, for every transition on every
state. Another approach, aiming at preserving system structural properties in software reconfig-
uration is the proposed by Hnětynka and Plášil in [Hnětynka and Plášil, 2006].Their approach
limits the system reconfigurations to those matching three specific reconfiguration patterns that

32

2.3. Quality of Service (QoS) Software Contracts

precisely model the conditions of dynamic reconfigurations that avoid the introduction of sys-
tem architecture inconsistencies.

Chang et al. proposed ConFract, a contracting system for hierarchical components
that supports self-healing and self-protection, by combining contracts with feedback loops
[Chang et al., 2006]. Their approach focuses on modeling contracts as runtime objects to sup-
port different negotiation policies in order to restore the validity of contracts by adapting com-
ponents and the contracts themselves. Contract violations must be managed with ad hoc code
written by the user. ConFract contracts are specified in an OCL-like language as preconditions,
postconditions and invariants, whose scope is limited to components and interfaces.

Addressing the fulfillment of system-wide contracts on extra-functional properties, Chang
et al. focus on the problem of combining low-level properties of individual components to ob-
tain system-level properties to support contract negotiation [Chang and Collet, 2007a]. Their
approach identifies compositional patterns for combining non-functional properties. However,
their system-wide properties must be computable as a function of the properties of the software
components involved. Thus, with this approach it is not possible to consider the dependencies
and interactions neither among the components themselves of the managed application, nor
among the system and the execution context, nor the dependencies on system usage.

Bucchiarone et al. and Ehrig et al. used graph transformations for analyzing and verifying
specific self-healing properties at design time [Bucchiarone et al., 2009, Ehrig et al., 2010]. Their
proposal use a fixed set of particular transformation rules to be applied in response to system
failures. Thus, from the application of these rules the self-healing properties are derived and
proved.

On the formal semantics side, Cansado et al. defined behavioral contracts based on a la-
beled transition system as a formalism to unify behavioral adaptation based on property com-
posability and interface adaptability [Cansado et al., 2010]. With this formalism, they focus on
determining if a service re-composition can be performed, based on the possibilities to adapt
the provided and required interfaces of a different provided and requires services, even if these
interfaces are syntactically different.

Braga et al. formalized the semantics of a QoS contract language using operational calculus
rules driven by a state machine [Braga et al., 2009]. To guarantee the satisfaction of QoS con-
straints on the resulting states, they translate QoS specifications to the Maude model checking
tool. The given formal semantics also considers actual monitored context conditions in its tran-
sitions, and its guaranteeing actions are based on changing the compromised service by another
that address the cause of the violation. The proposed reconfiguration by this approach, as well
as the analyzed previously, is nonetheless limited to interface re-wiring of services.

Fiadeiro and Lopes presented a formalization of dynamic reconfiguration of business pro-
cess workflows in terms of service discovery, binding, and orchestration operations for the SOA
domain [Fiadeiro and Lopes, 2010]. For each level of abstraction, they use different formalisms
(linear-time logic, graphs, partial algebras and state machines, although the latter is not detailed)
to model the structural and behavioral corresponding aspects. The formalization is then pro-
posed as a semantic domain with a corresponding operational semantics that enables ADLs to
be extended with dynamic reconfiguration operations. However, these approaches assume that
their reconfiguration strategies can always find services to satisfy the contracts, independently
of the occurrence of unexpected context situations.

Challenges Identified on Contract Management and Fulfillment

Themain challenges identified from these approaches, with respect to QoS contract management
and fulfillment, are the following:

33

Chapter 2. Context and State-of-the-Art Background

• From the components perspective and following its foundations [Szyperski, 1998,
Heineman and Councill, 2001], the strategies for addressing QoS contracts are tradition-
ally bottom-up. That is, contracts as a whole rely on some function that evaluates the
system QoS levels depending on explicitly identified responsibilities of single compo-
nents [Collet et al., 2005, Léger et al., 2010, Delaval and Rutten, 2010]. However, as soft-
ware services are composed of several components, their QoS properties do not result
exclusively from the joint work of their constituting components, but also from their
interactions with the underlying operating system and, more importantly, from their
execution context. Hence, QoS contract preservation requires context-aware strategies
that dynamically and reliably manage subsets of components and their interrelation-
ships, as a whole, considering their differences between the software application states
[Zeng et al., 2004a, Yang et al., 2009].

• Several strategies can be used as guaranteeing actions to address each expected QoS level
on a QoS property. These strategies have been provided by different disciplines (e.g., those
related to performance, reliability, availability and security), and constitute a rich knowl-
edge base to be exploited. Nonetheless, due to their diversity of presentation in syntax and
semantics, it is difficult to manage them uniformly, thus existing approaches use them as
fixed subsets [Barbacci et al., 1995, Buschmann et al., 2007].

• The treatment of QoS contracts have traditionally focused on what contracts must specify
and accomplish, that is, on guaranteeing QoS obligations. Nonetheless, given the unpre-
dictable and complex nature of context, and that QoS properties depend on it, QoS con-
tracts are required to be managed robustly. Robustness is necessary to maintain the con-
sistency between the contract states and the states of the software subject to the contract
conditions over time, even if the software state deviates from the expected ones. In some
sense, this is related to the importance of addressing also what contracts leave as unspeci-
fied, in order to face context uncertainty. For instance, a relevant question in this setting is:
what should a component run-time system do, and in which state should it leave the exe-
cuted software systemwhen facing an unspecified context situation that is already disturb-
ing the QoS contract satisfaction? We call this requirement robustness with respect to context
unpredictability, as identified similarly in [Murray et al., 2003, Goldsby and Cheng, 2008]

2.4 Self-Adaptive Software Systems

Self-adaptive software systems evaluate their own behavior at run-time and reconfig-
ure themselves whenever they are no longer satisfying their requirements [Shaw, 1994,
Oreizy et al., 1999]. As illustrated in Fig. 2.3, the system requirements satisfaction (e.g., con-
tracted QoS levels) can be disrupted at run-time by changing conditions of execution (i.e.,
context changes), such as operational environment variations, user needs modifications, and
system intrusions or faults. To maintain its requirements satisfied, the system must be re-
configured, for instance, by augmenting or changing the system components and services, in
order to continually optimize, protect, or recover itself [Cheng et al., 2009a, Taylor et al., 2009,
Tamura et al., 2011a].

Over the past century, the feedback-loop model defined in control theory has been used
as a reference in multiple fields of engineering with substantial advances, for instance in the
automation of industrial processes [Ogata, 1996]. Inspired by this model, IBM researchers
defined the autonomic element as a building block for developing self-managing and self-
adaptive software systems, in the form of the so-calledMonitoring-Analysis-Planning-Execution
and shared Knowledge (MAPE-K, or simply MAPE) loop. The purpose of this model is

34

2.4. Self-Adaptive Software Systems

Figure 2.3: Changing context situations vs. different QoS requirements to satisfy.

to develop autonomous controlling mechanisms to regulate the satisfaction of dynamic re-
quirements, specifically in software systems [Kephart and Chess, 2003, Hellerstein et al., 2004,
IBM Corporation, 2006].

In the two past Dagstuhl Seminars on Software Engineering for Self-Adaptive Systems20,
three challenging aspects were selected as critical for advancing and leveraging the engineer-
ing of self-adaptation in software systems: (i) the visibility of the feedback loop (followed as
a reference model) in the system design; (ii) the management of context uncertainty; and (iii)
assurances and properties [Cheng et al., 2009a, de Lemos et al., 2012]. In the following sections
we analyze the foundational principles of the engineering of self-adaptive software systems and
their main challenges, as related to the goals of this dissertation.

2.4.1 Revisiting the MAPE-K and Feedback Loop Models

In Fig. 2.4 we illustrate our interpretation of the MAPE-K loop in terms of the feedback-loop
block diagram. To autonomously satisfy the regulation of its requirements (cf. reference control
inputs in the figure), which vary with context changes, a Monitor gathers information from the
internal and the external contexts. This information, in the form of control symptoms, is analyzed
by the Analyzer , which compares them to the reference control input, yielding a control error.
Based on this difference, the Planner element computes control actions to be instrumented by
the Executor in the managed software system. A Knowledge Manager manages relevant
information, such as adaptation policies, thresholds, and rules, shared by the other MAPE-K
loop elements. The measured control data can also be affected by context disturbances caused, for
instance, by the system adaptation itself [Hellerstein et al., 2004, Villegas et al., 2012].
The elements and functionalities of the MAPE-K loop, as applied for regulating the satisfaction
of contracted QoS levels, are the following [Kephart and Chess, 2003, IBM Corporation, 2006]:

Monitor. Monitoring elements are responsible for sensing changes in both, the managed ap-
plication’s internal variables corresponding to QoS properties (i.e., measured QoS data), and also
the external context (i.e., measured from outside the managed application). Monitors must notify
relevant context events to the analyzer, based on these changes. Relevant context events are those
related to the specified in the system requirements (e.g., in QoS contracts).

Analyzer. The analyzer, based on the high-level requirements to fulfill, and the context events
notified by monitors, determines whether an adaptation must be triggered. This would occur,

20http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=10431

35

Chapter 2. Context and State-of-the-Art Background

Figure 2.4: The feedback-loop interpreted in the MAPE-K loop block diagram.

for instance, when the events notify about changes that violate the expected QoS level (i.e. ref-
erence control inputs). Context analyzers can be based on either, multi-event or single-event
pattern matchers, as discussed in [Luckham, 2001] and [Hermosillo et al., 2010]. Multi-event
matchers produce complex events based on single events that accumulate over time. These
single events are produced by single-event matchers, which identify partial matches in the flow
of the monitored events.

Planner. Once notified with a reconfiguration event from the context analyzer, the planner
selects a strategy to fulfill the new requirements, using the shared Knowledge base. From the
application of the selected strategy, it computes the necessary control actions to be instrumented
in the managed software system. An important difference between the feedback and the MAPE
loops is that, in the first, the control actions are continuous signals for physical actuators (e.g.,
resistors andmotors), whereas in the second, theymust be sequences of discrete operations (thus
called reconfiguration plans). These discrete operations are then interpreted by the executor.

Executor. Upon reception of a reconfiguration plan, the executor interprets each of the opera-
tions specified in the plan and instruments them in the managed software system. This implies
to translate or adequate the reconfiguration actions to the characteristics of the particular com-
ponent runtime platform used to execute the managed software system.

(Reconfiguration) Knowledge manager. The reconfiguration knowledge manager makes ex-
plicit the relevant knowledge about the managed software application configuration, and how
to perform its re-configuration at runtime. In a feedback loop, the adaptation controller encodes
fundamental knowledge about the properties of the physical plant or target system to control in
the so-called system transfer function. Based on this mathematical model of the target system
response to context disturbances, adaptation controllers can be guaranteed on adaptation prop-
erties, such as the short settling-time, the stability, the accuracy, and the small resource-overshoot
[Ogata, 1996, Hellerstein et al., 2004]. In contrast to physical systems, built from materials with
well known standard properties such as conductance, capacitance, and heat conduction, soft-
ware systems are developed with software components with no standardized properties. Thus,
in the case of the MAPE loop (i.e., in the software systems domain), the knowledge base, pro-
vided by the adaptation designer, must supply the lack of information about the properties of
the managed software application, in order to make adequate decisions for its adaptation.

2.4.2 Other Models for Self-Adaptation in Software Systems

Since the introduction of the MAPE loop, several researchers have proposed other mod-
els applying the feedback-loop concept for engineering self-adaptive software (SAS) systems

36

2.4. Self-Adaptive Software Systems

[Salehie and Tahvildari, 2009]. In this section we analyze some of the most representative of
them, in light of the visibility of feedback-loop elements as one of the main concerns identified
by the research community on software engineering for self-adaptive and managing software
systems (SEAMS) [Cheng et al., 2009a, de Lemos et al., 2012].

Visibility of Feedback-Loop Elements

The importance of maintaining the feedback-loop elements (and the feedback-loop itself) as vis-
ible in the design of software systems for controlling adaptation processes has been identified in
several research works.

For instance, Shaw presented a design model that emphasizes on decoupling the feedback-
loop elements (i.e., comparison, plan correction, and effect correction), and identifies the impor-
tance of the execution context to guide adaptation processes [Shaw, 1994]. Similarly, Müller et
al. and Giese et al. analyzed the benefits of specifying the feedback loops and their major com-
ponents explicitly and independently, as well as the necessity of making explicit the interactions
among the feedback-loop elements. The first also emphasizes on the importance of maintaining
these elements explicit from analysis and design to implementation [Müller et al., 2008], whereas
the second argues for the management of the context complexity, and the interactions among
multiple feedback loops when more than one is necessary [Giese et al., 2009].

In the same way, the autonomic computing reference architecture (ACRA) makes the feed-
back loops in autonomic systems explicit [IBM Corporation, 2006]. The ACRA’s reference ar-
chitecture provides a guide to organize and orchestrate an autonomic system in a three-layer
hierarchy of structured building blocks composed of autonomic managers (i.e., MAPE loops),
knowledge sources and manageability endpoints (management interfaces), as illustrated in Fig.
2.5.

Figure 2.5: The autonomic computing reference architecture (ACRA, [IBM Corporation, 2006]).

Kramer and Magee proposed a three-layer reference architecture for self-managed systems.

37

Chapter 2. Context and State-of-the-Art Background

These layers correspond to goal management, change management, and component manage-
ment, with independent time scales of control [Kramer and Magee, 2007]. Based on Gat’s three-
layer architecture [Gat, 1998], the component layer reconfigures software components and en-
sures application consistency. The change management layer, handling decentralized config-
uration management, copes with inconsistent views of the system state with the goal of re-
establishing a satisfactory stable state. Finally, the goal management layer addresses planning
to achieve high-level goals. Similarly, Litoiu et al. define three levels of autonomic management
for provisioning, application tuning, and component tuning [Litoiu et al., 2005].

Yet other schemes for controlling adaptation of software systems is organizing multiple con-
trol loops in the form of a hierarchy, and even distributing the MAPE-loop elements in different
machines. Examples of these decentralization variants and extensions are the proposed by Vro-
mant et al. and Weyns et al. Their decentralized architectural models combine the MAPE-loop
elements in all possible ways, providing guidance to design decentralized adaptation controllers
whose elements are physically distributed [Vromant et al., 2011, Weyns et al., 2010].

Nonetheless, despite ACRA and the MAPE loop helps to improve the visibility of feed-
back loops, the internal components of each control-loop and the control-loop itself still remain
hidden inside the autonomic manager. Certainly, the specification of the autonomic manager
provided in the IBM architectural blueprint for autonomic computing characterizes the man-
ager as a component that implements an intelligent control loop [IBM Corporation, 2006]. Moreover,
even when the ACRA architecture drivers are clearly the feedback loops in the form of auto-
nomic managers, their internal elements (i.e., the elements of the MAPE loop) are highly cou-
pled. Therefore, even though the multiple feedback loops defined in an ACRA-based model
can be distributed for instance to improve the system scalability, this distribution is limited
by the autonomic manager boundaries. Furthermore, Müller et al. as well as Kramer and
Magee analyze that even though feedback loops have been recognized as fundamental de-
sign elements for self-adaptation, their visibility is usually hidden in the related approaches.
In many cases, the self-adaptation mechanisms are intertwined with the managed applica-
tions, rendering them as hard to reuse and manipulate, and more importantly, as unanalyzable
and non-comparable in their inherent properties [Kramer and Magee, 2007, Müller et al., 2008,
Müller et al., 2009, Villegas et al., 2011b].

2.4.3 Particular Approaches for Self-Adaptation

Afirst example of concrete implementations is Rainbow, the adaptive framework for implement-
ing self-healing software systems developed by Garlan et al. [Garlan et al., 2003]. This project an-
alyzed the use of software architectural models at runtime as the basis for reflection and dynamic
adaptation, and its architecture maps directly to the feedback control architecture proposed by
Shaw [Shaw, 1994, Müller et al., 2008].

Solomon et al. proposed a real-time adaptive control approach for autonomic computing en-
vironments [Solomon et al., 2007]. Their adaptive control is based on a multi-layer architecture
similar to ACRA, where the two upper layers correspond to the autonomic system adaptation
and the autonomic system layers respectively, and the lowest layer corresponds to the man-
aged infrastructure. The autonomic system adaptation layer adapts the autonomic system layer
whenever the management objectives are not achieved.

In the self-organizing systems community, Caprarescu and Petcu proposed a decentralized
autonomic manager composed of many independent lightweight feedback loops implemented
as agents, where each agent is an implementation of a MAPE loop [Caprarescu and Petcu, 2009].
Control objectives in this approach are specified as policies, where each feedback loop agent
uses just one policy that is shared among all the agents organized in the same group. At the

38

2.4. Self-Adaptive Software Systems

architectural level, this approach is based on the three layers proposed by Kramer and Magee
[Kramer and Magee, 2007].

Self-Adaptation Assurances and Properties

Self-adaptation has been proposed as a strategy to maintain or improve the continued sat-
isfaction of functional and extra-functional requirements under changing conditions of sys-
tem execution. With this general purpose, it has been used to achieve different higher-
level self-* goals, such as self-healing, self-recovering, self-protecting, and self-managing.
For instance, [Candea et al., 2004, Sicard et al., 2008, Cardellini et al., 2009] (and in some extent
[Garlan et al., 2004, Cheng et al., 2009b]) address availability and reliability through self-healing
and self-repairing strategies. In these approaches, based on the dependency between availabil-
ity and the mean time to recover (MTTR) from system failures, the MTTR is used to evaluate
the continuity of agreed service (i.e., the reliability). By obtaining experimental measurements
of the MTTR under different scenarios for a given application, they offer the respective results
as a guarantee for the (average) response time that the adaptation mechanism takes to recover
from a failure.

Other strategies used to guarantee reliability are the proposed by Léger et al. and Delaval
et al. Based on the Fractal component platform [Bruneton et al., 2006]21, the first defines relia-
bility for system reconfiguration as the preservation of the structural constraints defined in the
Fractal component model, while preserving system availability [Léger et al., 2010]. To guarantee
reliable reconfigurations, they extended the Fractal’s FPath/FScript navigation and reflection
textual languages with transactional (Atomicity, structural Consistency, Isolation and Durability
–ACID) properties. The second work addresses safety. Inspired by control theory, their ap-
proach synthesizes static reconfiguration controllers, correct by construction. This synthesis is
performed from a contract specification given by the user, which determine all possible appli-
cation states. For each of the transitions from every state to the others, the user must write a
function for computing the application reconfiguration [Delaval and Rutten, 2010].

Nonetheless, despite the significant advances achieved in self-adaptation, guaranteeing the
satisfaction of self-* goals requires of standardized methods and properties to verify their ac-
complishment [Salehie and Tahvildari, 2009]. More importantly, self-adaptation assurances and
properties have been identified as one of the most challenging current barriers for the wide
adoption of self-adaptive software, and leveraging the benefits of the engineering of this kind of
systems [Werner Dahm, 2010, Villegas et al., 2011b, de Lemos et al., 2012].

Management of Context Uncertainty

Self-adaptive software systems are continuously confronted with context changes, which are,
naturally, the main reasons for their adaptation. As a result, this kind of systems must be pre-
pared to manage unexpected changes that occur in their execution context.

To cope with these unexpected changes, Murray et al. analyzed the use of feed-
back loops as an explicit strategy to address robustness with respect to context uncertainty
[Murray et al., 2003]. In addition, Cheng et al. and de Lemos et al. identified context uncertainty
as one of the most challenging problems faced by context-aware software systems, given its
complex and dynamic nature [Cheng et al., 2009a, de Lemos et al., 2012]. In this respect, the ap-
proach by Goldsby and Cheng models dynamically adaptive systems (DAS) as state machines,
with transitions as system reconfigurations [Goldsby and Cheng, 2008]. Inspired by the adapt-
ability of living organisms, they model systems using UML diagrams that satisfy functional and

21http://fractal.ow2.org

39

Chapter 2. Context and State-of-the-Art Background

non-functional invariants. Based on these diagrams, and by applying digital evolution tech-
niques, they dynamically generate not only one, but several target states for a given transition,
and then assist the user to select the target system with the most appropriate QoS provisions.
Thus, they address context uncertainty by generating several possible target systems with qual-
itatively different QoS characteristics, which satisfy the user specified QoS invariants, and leav-
ing the crucial decision of what to do to the user.

Lin et al. analyzed the intrinsic uncertain nature of context as the practical impossibil-
ity of modeling it completely, accurately, and consistently, even in short intervals of time
[Lin et al., 2009]. Thus, to avoid human intervention, which implies long interruptions on
the system execution because of the difficulty in deciding which action to choose as the next
step, they refine context management to specific context situations. More specifically, they use
Bayesian networks, learning techniques, andmonitoring refinement to address the context infor-
mation incompleteness problem. In this way, their approach fill-in missing context information
with aggregated values such as mean values and statistical values on historical data.

Given that the environment may change in unexpected ways, the system may adapt in such
a way that was not foreseeable at design or configuration time. However, most of the self-
adaptive proposals assume that their approaches can always cope well with the context changes
(unexpected or not), and produce the desired results. In this respect, as identified by Cheng
et-al. Müller et-al. and de Lemos et-al., the main challenge for adaptation mechanisms is to
manage context uncertainty, guaranteeing not only that the adaptation process and its results
are reliable, but also that it can cope with context situations unforeseen by the system evolution
designer [Cheng et al., 2009a, Müller et al., 2009, de Lemos et al., 2012].

2.5 Example Application Scenario: A Reliable Videoconference Sys-

tem

To better understand the requirements for dynamic and self-reconfiguration implied by the con-
tinued satisfaction of QoS contracts, we use a simplified version of a reliable mobile videocon-
ference system (RVCS) as application example.

The RVCS system manages corporate videoconference meetings and provides services to
users for registering and attending virtually to these meetings. A meeting is conducted by a
presenter, who exposes a given matter to a group of attendants. The presentation audio and
video is transmitted to the virtual attendants, which can ask questions via chat. The quality of
these services are subject to a QoS contract that guarantees expected QoS level obligations on
two QoS properties, namely, confidentiality and availability. Table 2.1 illustrates, for these two
properties, the expected QoS levels under the possible context conditions the application can
confront in its execution. Thus, software clients are expected to be responsible for maintaining
the services to the user in a “smart” way, satisfying the requirements illustrated in Fig. 2.6.

Table 2.1: QoS contractual conditions and corresponding Service-Level Objectives for:
(a) Confidentiality (based on corporate network access) (b) Availability (based on bandwidth in kbit/s)

Context Condition
Service Level

Context Condition
Service Level

Objective Objective
C1: Intranet Connection Clear Channel C4: Bandwidth ≤ 12 Call on Hold
C2: Extranet Connection Confident Channel C5: 12 < Bandwidth ≤ 128 Voice Call
C3: No Netw. Connection Local Cache C6: 128 < Bandwidth Voice&Video Call

As confidentiality is a concern for this system, connections from the intranet are consid-

40

2.5. Example Application Scenario: A Reliable Videoconference System

ered secure, thus clear communication channels can be used. From the extranet, confidential
channels are required to be configured automatically, whereas in case of no connection, a lo-
cal cache structure should be used. If the user goes into a low-bandwidth area, the application
must reconfigure itself to drop the bi-directional video signals. As illustrated in the figure, a
QoS Reliability Management element is needed to assume the responsibility of reconfiguring the
application structure to address the QoS contract violation in each case (taking into account the
application’s actual state) in a transparent way.

Note that addressing these requirements statically (e.g., with if-then clauses) would not be
satisfactory. First, the videoconference transmission and reception requires to be handled in dif-
ferent machines (i.e., server and client for each virtual attendant), being their respective contexts
not necessarily the same. This difference would introduce synchronization and decision issues
between the code in the twomachines. Second, newQoS levels introduced as a result of contract
re-negotiation could not be managed.

Figure 2.6: Use case diagram for the requirements of the RVCS example.

In this example, availability and confidentiality are QoS properties interpreted following
[Barbacci et al., 1995]. That is, the software application must ensure (i) the continued service
of active videoconferences; and (ii) the confidentiality on videoconference transmissions, spe-
cially under changing conditions of the application execution. On these two QoS properties,
the contractual interest is on establishing the minimum levels for service acceptability (QoS-level
objectives), under the possible (foreseen) context conditions of execution.

Initially, assume the mobile user joins a video conference from her office at the corporate
building through an intranet WiFi access-point. In this state, as the contractual condition C1 in
Table 2.1a requires a clear-channel communication configuration, the application is expected to
configure itself to satisfy that condition. A second application state is reached when the user
moves from her office to outside of the company building, thus connecting through any of the
available extranet wireless access-points, such as GSM or UMTS. This change of context, notified
by a context event condition, signals an imminent violation of the confidentiality contract that
was being fulfilled by the actual application configuration. In this situation, according to condi-
tionC2, a confidential-channel configuration on themobile is required. The expected application
behavior is then to reconfigure itself in response to this change, in a transparent way. It could,
for instance, adopt one of the strategies for secure multimedia transport like those defined by
[Ramachandran, 2002] or [Zeng et al., 2004b], thus preserving the contract. The corresponding
contrary reconfiguration would apply whenever the user moves back to an access-point cov-
ered by the intranet. If there are several available network access-points, a cost function should
be used to choose the cheapest one. Finally, whenever there is no network connection by any
access-point, the call must be put on hold awaiting for automatic reconnection, just expressing
that this is preferable to the alternative of dropping the service. Similar scenarios would occur
for each of the videoconference virtual attendants.

41

Chapter 2. Context and State-of-the-Art Background

2.6 Chapter Summary

In this chapter we have presented the concepts and foundations of the engineering of
component-based software systems, QoS software contracts, and self-adaptive software (SAS)
systems. As the three research areas involved in the development of this dissertation, we have
also analyzed their current main concerns and key research challenges. For this, we have ex-
plored some of the models, approaches, and associated technologies that have been proposed to
address the analyzed concerns, as well as papers that not only survey the respective states of the
art, but also discuss their challenges for the near future.

We summarize the most important identified challenges, which correspond to the challenges
addressed by this dissertation at different levels, as follows:

• In component-based software engineering:
i. The preservation of QoS contracts, defined as the autonomous and dynamic fulfill-

ment of their QoS-level objectives under changing conditions of system execution.
ii. The reliable and high-level dynamic reconfiguration capabilities to satisfy high-level

objectives (e.g., QoS-level objectives).
• In QoS software contracts:

i. The precise definition (i.e., syntax and semantics) of QoS contracts to specify the dif-
ferent QoS levels to fulfill, context conditions, and guaranteeing actions, as well as
the distribution of responsibilities among the elements intervening in the contract-
preservation process.

ii. The development or use of context-aware strategies, able to be parameterized, to
manage subsets of components and their interrelationships to address specific QoS
properties.

iii. The robust management of contract states and the states of the software application
subject to the contract conditions, with respect to context unpredictability.

• In self-adaptive software systems:
i. The separation of concerns between the managed software application, and the adap-

tation mechanism. This is another way of expressing the necessity of maintaining the
feedback loops and their internal components explicit in the design of self-adaptive
software systems. Besides obtaining the benefit of reuse, the separation of concerns
allows the adaptation mechanisms to be analyzable and comparable in their inherent
properties.

ii. The identification and definition of standardized properties and assessment methods
to verify and guarantee the satisfaction of self-adaptation goals.

iii. The management of context uncertainty, guaranteeing not only that the adaptation
process and its results are reliable, but also that it can cope with context situations
unforeseen by the user.

In the next chapter, we address the challenge of identifying and defining standardized prop-
erties inherent to self-adaptive software systems. These properties are identified from a frame-
work that we define to characterize and evaluate adaptationmechanisms. The definition of these
properties, which is our first main contribution in this dissertation, is fundamental to better un-
derstand our model for preserving QoS contracts through reliable dynamic reconfiguration, our
second main contribution. The development of this model addresses the other identified chal-
lenges.

42

Part II

Contribution

43

Chapter 3
Quality-Driven Self-Adaptation
Properties

Contents

3.1 Feedback vs. MAPE-K Loops: Evaluation Differences and Difficulties . 46

3.2 Characterizing Dimensions for Self-Adaptive Software 48

3.3 Measuring Adaptation Properties . 50

3.3.1 Adaptation Properties Inherent to Self-Adaptive Software 50

3.3.2 Quality Attributes and Adaptation Goals on theManaged Application 52

3.3.3 Mapping Adaptation Properties to Quality Attributes 53

3.3.4 Towards Adaptation Metrics . 55

3.4 The Framework for Classifying Self-Adaptive Software Systems 57

3.5 Chapter Summary . 59

In this dissertation we address two main goals. The first is to define adaptation properties, that
is, properties that we identify as inherent to self-adaptive software (SAS), as a common basis
to evaluate this kind of systems. The second is to preserve QoS contracts in component-based
software, using dynamic reconfiguration with formal guarantees on the reliability of this recon-
figuration. Even though the first goal has possibly a wider scope than the second in a general
context, the SAS properties defined in this chapter are most significant in this dissertation for
supporting the reliability guarantees pursued by the second goal. Thus, in the following chap-
ters we analyze and express these reliability guarantees in terms of a subset of the properties
defined in this chapter. The properties in this subset are selected such that they coherently and
adequately fulfill the enunciated reliability guarantees.

The motivation for identifying and defining the SAS properties is originated from the
extensive analysis of research publications on self-adaptive software performed along the
development of this dissertation. From this analysis we could determine that adaptation
properties and corresponding metrics are usually not identified nor explicitly addressed as
such [Salehie and Tahvildari, 2009, Cheng et al., 2009b, Grassi et al., 2009, Andersson et al., 2009,
Kaddoum et al., 2010, Villegas et al., 2011b]. What is more important, even when most of these
works were based on the same model, the MAPE loop, they were evaluated based on non-
comparable and non-standard basis. Although these evaluations are independently valuable by
themselves, they do not offer enough support to further improve neither each of the particular

45

Chapter 3. Quality-Driven Self-Adaptation Properties

approaches with respect to others, nor the engineering of SAS systems, on common criteria. Fur-
thermore, without this common criteria, it is practically impossible to combine these approaches
to face the increasingly wider and more complex requirements on self-adaptation.

In this chapter we present our contribution to help solve this problem, which is a framework
to classify and compare SAS systems. Our framework comprises a set of characterizing dimen-
sions, a list of adaptation properties, and respective mappings from these properties to quality
attributes. We develop this framework based on an analysis of the MAPE-K model—a software
reconstruction of the feedback loop reference model from control theory—for two reasons: (i)
the MAPE-K model is the most commonly used model to realize adaptation mechanisms for
software systems; and (ii) feedback loops (the MAPE-K model precursors) and SAS systems
share their essential nature. Both use specific mechanisms to instrument a given target system
(or, in the SAS domain, a managed software application), aimed at achieving and controlling de-
sired states on it. The required instrumentation is performed by applying computed actions (or
transducing signals) based on information gathered from the target system itself.

To develop our framework, in Section 3.1 we first recall the properties used in control the-
ory to assess feedback loops, and the difficulties for applying them to evaluate self-adaptive
software systems. In this analysis we also consider the evaluation methods used in software en-
gineering with the same purpose. In Section 3.2 we specify a set of dimensions that characterize
self-adaptive software. These dimensions are useful not only to identify the inherent properties
of SAS systems –our adaptation properties, but also for clarifying their definitions, given that these
properties result from the relationships among these dimensions. In Section 3.3 we identify and
define our proposed adaptation properties and analyze their relationships to common adapta-
tion goals and quality attributes that have been used in representative works in this research
area. In Section 3.4 we define our framework to classify and compare self-adaptive software
systems. We also illustrate its application by using it to classify some of the aforementioned
representative works on software self-adaptation.

Finally, it is worth noting that instead of addressing the dissertation problem directly, in this
chapter we focus on an intermediate level between the stated problem and its solution space.
This intermediate level helps to qualify acceptable solutions for the general problem of soft-
ware self-adaptation. In this sense, in this dissertation our evaluation framework also proves
its usefulness offering us the possibility of selecting a coherent subset of the defined adaptation
properties to guarantee the reliability of the required solution.

Correspondences in this Chapter: Addressed Challenge(s): C1 –Adaptationmechanisms should
be evaluated and improved through comparable andwell-defined standard properties. Goal(s):
G1 –Characterize key properties inherent to software self-adaptation as a common basis to
evaluate self-adaptation mechanisms. General contribution(s): GC.PC –Properties inherent to
self-adaptive software systems characterized and proposed for standardization. Specific contri-
bution(s): PC.1 –SAS inherent properties identified and defined.

3.1 Feedback vs. MAPE-K Loops: Evaluation Differences and Diffi-

culties

We started the preliminary phase of our analysis on assessment of SAS systems with over 80
research papers published during the past decade. From this set, more than one half were
filtered-out mainly because either they presented very generic proposals with non-measurable
properties for their evaluation, or they did not include enough information in the papers for our

46

3.1. Feedback vs. MAPE-K Loops: Evaluation Differences and Difficulties

characterization purposes. From the analysis of the remaining papers, it is still worth noting the
difficulty to identify properties that can be used to evaluate comparatively common character-
istics of different self-adaptive approaches. Nonetheless, several important advances have been
made based on feedback loops from control theory, the MAPE loop, and the recognized impor-
tance of quality attributes as a basis for understanding and improving adaptive processes. We
summarize the most relevant differences between the evaluation of feedback loops and MAPE
loops, and the corresponding difficulties to apply the properties in the first to evaluate instances
of the second, as follows.

First, as we mentioned before, even though control theory has standard properties to evalu-
ate a controller (i.e., short Settling-time, Accuracy, Stability and small resource Overshoot –the
so called SASO properties [Hellerstein et al., 2004]), these properties present several difficulties
when applied to SAS systems. One difficulty is the difference on the nature of the elements
used in control theory vs. those used in self-adaptive software. In control theory, these ele-
ments are physical, independent, and self-responding entities with mechanical and chemical
properties; whereas in SAS, they are CPU-consuming, logical entities, with no standard prop-
erties defined. This physical dimension even establishes a clear and unsurpassable boundary
between the controller and the system to be controlled (target system) in control theory. In the
case of SAS systems, this corresponds to the limits between the adaptation mechanism and the
managed software application, which can be even indistinguishable, as evidenced in many of
the analyzed approaches. A second difficulty is that for a wide variety of systems, feedback loop
controllers can be built with predictive models for the target system’s behavior. To achieve this,
continuous mathematics is used to characterize the target system response to known inputs.
Software systems in general are, in contrast, nonlinear systems with multiple discrete variables
whose behavior results very difficult to model in the same way [Hellerstein et al., 2009]. A third
difficulty is that SAS systems require additional properties for their assessment, given the dis-
crete nature of software. For instance, in contrast to the continuous signals computed to con-
trol the temperature of a plant, a sequence of discrete operations must be produced to modify
the architecture of a managed software application. For this particular case, properties such as
atomicity and termination of the adaptation process (including the sequence of reconfiguration
operations) become necessary and critical. Therefore, the properties used to evaluate feedback
loops must be reinterpreted to be used for self-adaptive software, being this a non-trivial task.
These difficulties exacerbate the already mentioned problem regarding the lack of explicitness
targeting specific adaptation properties, and solving them effectively could take the next two
decades, according to [Werner Dahm, 2010].

Second, the lack of explicitness for addressing adaptation properties as a goal to be measured
in the analyzed approaches results in a lack of evaluation methods and metrics for these prop-
erties and for the adaptation mechanisms themselves. For instance, even though most of the an-
alyzed proposals are motivated by specific adaptation goals (e.g., self-healing, self-configuring,
self-protection), they focus only on the mechanism of self-adaptation, not measuring explicitly
their properties. Some of these proposals measure the achievement of adaptation goals by eval-
uating diverse metrics, but not through comparable adaptation properties. This situation could
be reversed by designing mechanisms for self-adaptation with measurable properties explicitly
specified from the beginning. For some verifiable properties, this can be obtained by developing
or using formal models as a basis for self-adaptation mechanisms, such as the one we present in
this dissertation.

Third, having neither properties, nor evaluation methods precisely defined makes it very
difficult to compare, reason and improve on the particular achievements of the engineering of
self-adaptive software. For instance, from our analysis it was impossible to identify any measur-
able relationship between the adaptation goals and the evaluation of the adaptation strategies,

47

Chapter 3. Quality-Driven Self-Adaptation Properties

on common comparable basis.
In light of these differences and difficulties, and consistently with the stated goals of this dis-

sertation, in the following sectionswe limit ourselves to define a set of properties that we identify
as inherent to SAS systems. The definition of these properties is based on the identification of
common characteristics found in the aforementioned research papers. We re-synthesize these
common characteristics as characterizing dimensions for SAS systems. From these dimensions
and their relationships we extract the adaptation properties, which constitute the foundation
for our framework for classifying SAS systems. Additionally, these properties should provide a
common basis to evaluate adaptation mechanisms for this kind of systems.

3.2 Characterizing Dimensions for Self-Adaptive Software

In this section we propose six dimensions to characterize self-adaptive software (SAS) systems.
For each of the characterizing dimensions, whichwe identified from the analysis of the feedback-
loop block diagram presented in Fig. 3.1, we consider a list of standardized classification op-
tions. These options resulted from the combination of attributes used in control theory, as well
as others proposed by recognized authoritative sources (e.g., the SEI), and from the analyzed
papers. We also consider factors that affect them and metrics for their evaluation.

Figure 3.1: The characterizing dimensions for SAS systems identified in the feedback-loop diagram.

Adaptation goals. Although not explicit in the figure, these are themain reasons for the system
or approach to be self-adaptive. Adaptation goals are usually defined through (a) one or more of
the self-* (e.g., self-configuring, self-healing, self-protecting, self-optimizing and self-managing)
goals; (b) the preservation of specific quality of service (QoS) properties; and (c) the regulation
of functional or non-functional requirements.

Reference control input. The concrete and specific set of values and corresponding types that
are used to specify the state to be achieved and maintained in the managed application by the
adaptation mechanism, under changing conditions of system execution. Reference inputs are
specified as (a) single reference values (e.g., a physically or logically measurable attribute); (b)
some form of contract (e.g., quality of service (QoS), service level agreements (SLA), or service
level objectives (SLO); (c) goal-policy-actions; (d) constraints defining computational states (ac-
cording to the particular proposed definition of state); (e) expected values of utility functions;
and even (f) functional requirements (e.g., logical expressions as invariants or assertions, regu-
lar expressions).

Measured control data. The set of values and corresponding types that are measured in the
managed application. Naturally, as these measurements must be compared to the reference
inputs to evaluate whether the desired state has been achieved, it should be possible to find

48

3.2. Characterizing Dimensions for Self-Adaptive Software

relationships between these inputs and outputs. Furthermore, we consider two aspects on the
measured outputs: how they are specified and how monitored. For the specification, the iden-
tified options are: (a) continuous domains for single variables or signals; (b) logical expressions
or conditions for contract states; and (c) conditions expressing states of system malfunction. For
monitoring, the options are (a) measurements on physical properties from physical devices (e.g.,
CPU temperature); (b) measurements on logical properties of computational elements (e.g., re-
quest processing time in software or CPU load in hardware); and (c) measurements on external
context conditions (e.g., user localization or weather conditions).

Control actions. These are characterized by the nature of the required actions to control or
modify themanaged application, determining the output to be produced by the adaptation plan-
ner. This output is applied to (or instrumented in) the managed application to have an expected
effect on it. The nature of these outputs is related to the extent of the intrusiveness of the adap-
tation mechanism with respect to the managed application. It also defines the extent in which
the adaptation mechanism exploits the knowledge about either the structure or the behavior of
the managed application in the adaptation process. Finally, these control actions can be coded
by hand at design-time or synthesized dynamically at run-time. The computed control actions
can be (a) continuous signals that affect the behavior of the managed application; (b) discrete
operations affecting the computing infrastructure executing the managed application (e.g., host
system’s buffer allocation and re-sizing operations; modification of process scheduling in the
CPU); (c) discrete operations that affect the processes of the managed application directly (e.g.,
processes-level service invocation, process execution operations—start/halt/resume, sleep/re-
spawn/priority modification of processes); and (d) discrete operations affecting the managed
system software architecture (e.g., software architecture reconfiguration operations).

System structure. Self-adaptive systems have twowell-defined subsystems (although possibly
indistinguishable): (i) the adaptation mechanism (or controller) and (ii) the managed applica-
tion. One reason for analyzing adaptation mechanism and managed application structures is to
identify whether a given approach implements the adaptation mechanism embedded within the
managed application. Another reason is to identify the effect that the separation of concerns in
these two subsystems has in the achievement of the adaptation goal. The analyzed approaches
can be grouped into two sets: (i) those modeling the structure of the managed application to in-
fluence its behavior by modifying its structure; and (ii) those modeling the managed application
behavior to influence it directly. The identified options for the adaptation mechanism structure
are variations of the MAPE-K loop with either behavioral or structural models of the managed
application: (a) single feedback control, that is, a MAPE-K structure with a fixed adaptation
mechanism (e.g., a fixed set of transfer functions as a behavior model of the managed applica-
tion) [Hellerstein et al., 2004]; (b) adaptive control: a MAPE structure extended with managed
application reference or identification models of behavior (e.g., tunable parameters of controller
for adaptive controllers: model reference adaptive control (MRAC) ormodel identification adap-
tive control (MIAC)) [Narendra and Balakrishnan, 1997, Dumont and Huzmezan, 2002]; and (c)
reconfigurable control: MAPE-K structure with modifiable algorithm for the adaptation mecha-
nism (e.g., rule-based parameterized reconfiguration mechanism). For the managed application
structure, the identified options are: (a) non-modifiable structure (e.g., monolithic system); and
(b) modifiable structure with/without reflection capabilities (e.g., reconfigurable software com-
ponents architecture). It is worth noting that not all options for the system structure can be
combined with any options for the computed control actions. For instance, discrete operations
affecting the computing infrastructure executing the managed application could be used to im-
prove the performance of a monolithic system, whereas discrete operations for affecting this
kind of software architecture in the managed application would not make any sense.

49

Chapter 3. Quality-Driven Self-Adaptation Properties

Adaptation properties. By adaptation property we mean a characteristic that is inherent to
adaptation mechanisms of self-adaptive systems. That is, an adaptation property can be an spe-
cific attribute of the adaptation mechanism whose values satisfy given constraints, or a charac-
teristic response to a known stimulus in a given context. Adaptation properties can be verified
or measured in any adaptation mechanism. However, it is worth emphasizing the difference
between adaptation properties and properties of managed applications. While the first apply
to all adaptation mechanisms in general, the latter correspond to particular properties derived
from the explicit requirements given by the user for a specific managed application, such as
specific QoS properties. For instance, the settling time (i.e., the mean-time to perform the adap-
tation) can be measured in all adaptation mechanisms; however, guaranteeing the confidentiality
in all communications from the extranet is a particular property that applies only to a specific
managed application by effect of a requirement given by the user. Nonetheless, it is worth not-
ing that despite in this dissertation we address the preservation of contracted QoS properties
in managed software applications, our strategy to guarantee this preservation is through self-
reconfiguration. Thus, we also must address the enforcement of adaptation properties.

The identified adaptation properties (i.e., the inherent properties for adaptation mechanisms)
are (a) stability; (b) accuracy; (c) short settling-time; (d) small resources overshoot; (e) robustness
(with respect to context unpredictability); (f) termination; (g) atomicity; (h) consistency (in the
overall system structure and behavior); (i) scalability; and (j) security. We present our consoli-
dated definitions for these properties in the next section.

3.3 Measuring Adaptation Properties

We classify the adaptation properties identified in the previous section according to how and
where they are observed22, as illustrated in Table 3.1. Concerning how they are observed, some
of these properties can be measured or verified using static verification techniques while others
require dynamic verification and run-time monitoring. With respect to where, these properties
can be measured or verified on the managed application or on the adaptation mechanism. On
one hand, some properties to evaluate the adaptation mechanism are observable on the adap-
tation mechanism itself, or on both the adaptation mechanism and the managed application;
however, most properties can only be observed on the managed application. On the other hand,
the user-defined QoS properties for the managed application are observable only on the man-
aged application. In both cases, the environment (context) that can affect the behavior of the
adaptation mechanism and the managed application is a factor worth of consideration.

Based on these observations, our model for evaluating self-adaptive software systems, de-
spite focusing on the inherent properties of adaptation mechanisms, must also consider, in some
cases, the evaluation of quality attributes on the managed application.

3.3.1 Adaptation Properties Inherent to Self-Adaptive Software

In this section we present our consolidated definitions for the properties that we identified as
inherent to SAS systems in the previous section. The first four, called the SASO properties, cor-
respond to our reinterpretations of the properties used in control theory to evaluate feedback
loops [Hellerstein et al., 2004]. The remaining properties were synthesized from the analyzed
papers. Citations included in each property definition refer either to papers where the property

22A property is observable in a given point or element of a system (i.e., the adaptation mechanism or the managed
application), with respect towhere the property is measurable or verifiable, independent of whose element the property
is.

50

3.3. Measuring Adaptation Properties

Table 3.1: Classification of adaptation properties according to how and where they are observed

Property Where the
Adaptation Verification Property is
Property Mechanism Observed

Stability Dynamic Managed Application
Accuracy Dynamic Managed Application

Short Settling Time Dynamic Both
Small Overshoot Dynamic Managed Application

Robustness Dynamic Adaptation Mechanism
Termination Static Adaptation Mechanism
Atomicity Static Adaptation Mechanism
Consistency Both Managed Application
Scalability Dynamic Both
Security Dynamic Both

was defined or to examples of adaptive systems where the property is observed or measured in
the adaptation process.

Stability. The degree in that the adaptation process will converge toward the control objective
(i.e., the reference control input). An unstable adaptation will indefinitely repeat the adapta-
tion (controlling) action with the risk of not improving or even degrade the managed applica-
tion to unacceptable or dangerous levels. In a stable system, responses to a bounded input are
bounded to a desirable range [Lu et al., 2000,Meng, 2000, Appleby et al., 2001, Parekh et al., 2002,
Floch et al., 2006].

Accuracy. This property is essential to ensure that adaptation goals are met precisely, within
given tolerances. Accuracy must be measured in terms of how close the managed applica-
tion approximates to the desired state (i.e., to the reference input values) [Cardellini et al., 2009,
Solomon et al., 2010].

Short settling time. The time required for the adaptive system to achieve the desired state. The
settling time represents how fast the system adapts or reaches the desired state, being it impos-
sible to define it in absolute terms for all application domains. Long settling times can cause the
system to reach unstable states. Thus, despite the acceptability of its measurement depends on
the application domain, it must be short enough to avoid other undesirable effects. This property
is commonly referred to as reaction time, and also Mean Time to Repair (MTTR), the most criti-
cal factor determining availability and reliability. [Lu et al., 2000, Meng, 2000, Candea et al., 2004,
Hellerstein et al., 2004, Kumar et al., 2007].

Small resources overshoot. The utilization of computational resources during the adaptation
process to achieve the adaptation goal must be as small as possible. Managing resources over-
shoot is important to avoid also system unstability. This property expresses how well the adap-
tation performs under given conditions in terms of a balance among the amount of resources
used in excess to achieve a shorter settling-time before reaching a stable state [Lu et al., 2000,
Appleby et al., 2001, Parekh et al., 2002, Candea et al., 2004, Kumar et al., 2007].

Robustness with respect to context unpredictability. The managed software application
services must remain unaltered even if the managed application state differs from the ex-
pected state in some measured way. Also, the adaptation process is robust if the adapta-
tion mechanism is able to operate within desired limits even under unforeseen context con-
ditions [Dowling and Cahill, 2004, Meng, 2000].

51

Chapter 3. Quality-Driven Self-Adaptation Properties

Termination (of the adaptation process). In software engineering approaches, theMAPE plan-
ner typically produces an adaptation plan as a list of discrete controlling actions to modify the
managed application. The termination property guarantees that this list is finite and its execu-
tion will finish, independently of the final state reached by the managed application. Termina-
tion is also referred to as deadlock-free execution, meaning that, for instance, a reconfigurable
adaptation process must avoid adaptation rules with deadlocks among them [Ehrig et al., 2010].

Atomicity. In the same context of termination (i.e., software engineering approaches), either the
system is adapted and the adaptation process finishes successfully or it is not finished and the
adaptation process aborts. If an adaptation process fails or aborts, the system is returned to its
previous consistent state [Léger et al., 2010].

Consistency. This property aims at ensuring the structural and behavioral integrity of the
managed application after performing adaptation processes. For instance, when an adapta-
tion plan is based on dynamic reconfiguration of software architecture, consistency concerns
are to guarantee sound interface wiring and bindings between components (e.g., component-
based structural conformance) and to ensure that when a component is replaced dynamically
by another one, the execution must continue without affecting the function of the affected
component. These conditions help protect the application from reaching inconsistent states
as a result of, for instance, dynamic reconfigurations based on faulty reconfiguration code or
rules [Mukhija and Glinz, 2005, Léger et al., 2010].

Scalability. The capability of an adaptation mechanism to support increasing demands of pro-
cessing capabilities with sustained performance by using additional computing resources. For
instance, scalability is an important property for the adaptation mechanism when it must eval-
uate an excessive increased number of conditions when analyzing context. As computational
efficiency is relevant for guaranteeing performance in the adaptation mechanism, in this case
scalability is required to avoid the degradation of any of the operations of the overall sys-
tem [Appleby et al., 2001, Dowling and Cahill, 2004, Floch et al., 2006].

Security. In a secure adaptation process, not only the managed application but also the
data and components shared with the adaptation mechanism are required to be pro-
tected from disclosure (confidentiality), modification (integrity), and destruction (availabil-
ity) [Barbacci et al., 1995].

3.3.2 Quality Attributes and Adaptation Goals on the Managed Application

Besides evaluating adaptation properties, a consistent evaluation of self-adaptive software sys-
tems should involve the motivation for building them, that is, their adaptation goals. In general,
the adaptation can be motivated by the need of continued satisfaction of functional and regu-
lation of non-functional requirements under changing context conditions of execution. Never-
theless, given the goals of this dissertation in the context exposed in the previous section, we
focus our analysis on software systems whose adaptation goals are motivated by QoS concerns.
Additionally, characteristics of self-adaptive systems such as self-configuring, self-healing or
self-optimizing, can be mapped to quality attributes. For instance, following this idea, Salehie
and Tahvildari discussed the relationships between autonomic characteristics and quality fac-
tors such as the relationship between self-healing and reliability [Salehie and Tahvildari, 2009].
Furthermore, given that adaptation properties sometimes are observed in the managed applica-
tion, we can use quality attributes to evaluate these properties, while evaluating also managed
applications.

52

3.3. Measuring Adaptation Properties

In this section we present consolidated definitions of quality attributes that we identified in
the analyzed papers, in the context of [Barbacci et al., 1995]. We include corresponding citations
of the analyzed contributions that address them. More importantly, based on these quality at-
tributes, in the following section we propose a mapping from adaptation properties to quality
factors as a level of indirection for evaluating adaptation properties that are not directly measur-
able or observable on the adaptation mechanism, but on the managed application.

Performance. Characterizes attributes related to the performance of the services delivered by
the managed application, such as timeliness and resource consumption. Timeliness refers to re-
sponsiveness, that is, the time required for the application to respond to a specific event or the
event processing rate in an interval of time. Resource consumption refers to the added over-
head associated to the delivery of a given service, for instance in terms of memory or CPU
use. Identified factors that affect performance are latency (the time the application takes to
respond to a specific event [Cardellini et al., 2009, Garlan et al., 2004, Mukhija and Glinz, 2005]);
throughput (the number of events that can be completed in a given time interval –also called
processing rate [Parekh et al., 2002, Dowling and Cahill, 2004, White, 2005, Kumar et al., 2007,
Solomon et al., 2010]); and capacity (a measure of the amount of work the system can per-
form [Parekh et al., 2002, Dowling and Cahill, 2004, Kumar et al., 2007]).

Dependability. Defines the level of reliance that can justifiably be placed on the
services the managed application delivers. Adaptation goals related to depend-
ability are availability (readiness for usage [Appleby et al., 2001, Candea et al., 2004,
White, 2005, Sicard et al., 2008, Léger et al., 2010, Baresi and Guinea, 2011]); reliability (con-
tinuity of service [Floch et al., 2006, Kumar et al., 2007, Sicard et al., 2008, Léger et al., 2010,
Baresi and Guinea, 2011, Ehrig et al., 2010]); maintainability (capacity to self-repair and
evolve [Appleby et al., 2001, Candea et al., 2004, Floch et al., 2006, Sicard et al., 2008]); safety
(from a dependability point of view, non-occurrence of catastrophic consequences from an exter-
nal perspective (e.g., on the environment) [Baresi and Guinea, 2011]); confidentiality (immune
to unauthorized disclosure of information); integrity (non-improper alterations of the system
structure, data and behavior [Baresi and Guinea, 2011]).

Security. The selected concerns of the security attribute are confidentiality (protection from
disclosure); integrity (protection from unauthorized modification); and availability (protection
from destruction [Baresi and Guinea, 2011]).

Safety. The level of reliance that can justifiably be placed on the managed application as no
generator of accidents. Safety is concerned with the occurrence of accidents, defined in terms
of external consequences. The taxonomy presented in [Barbacci et al., 1995] includes two indi-
cators of critical systems for safety: interaction complexity and coupling strength. In particular,
interaction complexity is the extent to which the behavior of one component can affect the be-
havior of other components. The mentioned taxonomy presents detailed definitions for these
two indicators.

3.3.3 Mapping Adaptation Properties to Quality Attributes

We present our mapping from adaptation properties to quality attributes and factors in Table 3.2.
As we mentioned before, these quality attributes are referred to both the adaptation mechanism
and the managed application, but nonetheless, are aimed at evaluating adaptation properties.
For instance, the adaptation property of consistency must be verified dynamically (at run-time)
in the managed application, using the quality attribute of dependability, through its quality factor
of integrity.

53

Chapter 3. Quality-Driven Self-Adaptation Properties

Table 3.2: Mapping adaptation properties to quality attributes and factors
Adaptation Property Quality Attributes Quality Factors

Stability

Performance
Latency
Throughput
Capacity

Dependability
Safety
Integrity

Security Integrity

Accuracy Performance
Latency
Throughput

Settling Time Performance
Latency
Throughput

Small Overshoot Performance
Capacity
Resource consumption

Robustness
Dependability

Availability
Reliability

Safety
Interaction Complexity
Coupling Strength

Termination Dependability
Reliability
Integrity

Consistency Dependability
Maintainability
Integrity

Scalability Performance
Latency
Throughput
Capacity

Security Security
Confidentiality
Integrity
Availability

With respect to stability, Océano, the dynamic resource allocation system that supports SLAs
for peak loads with an order of magnitude of difference, addresses stability based on depend-
ability (i.e., availability and maintainability), and performance (i.e., throughput and capacity—
scalability) [Appleby et al., 2001]. In a similar way, the adaptation mechanism proposed by
Parekh et al. to guarantee desirable performance levels (i.e., throughput and capacity) also
addresses stability as an adaptation property [Parekh et al., 2002]. Parekh et al. applied an in-
tegral control technique to construct a transfer function that models the system and the way
the behavior of the managed application is affected by the adaptation mechanism. Baresi and
Guinea also addressed stability by proposing a self-recovery system where service oriented ar-
chitecture (SOA) business processes recover from disruptions of functional and non-functional
requirements to avoid catastrophic events (safety) and improper system state alterations (in-
tegrity), guaranteeing readiness for service (availability) and correctness of service (reliabil-
ity) [Baresi and Guinea, 2011].

Concerning accuracy, the MOSES framework proposed by Cardellini et al. uses adaptation
policies in the form of directives to select the best implementation of the composite service ac-
cording to a given scenario [Cardellini et al., 2009]. MOSES adapts chains of service composi-
tions based on service selection using a multiple service strategy. It has been tested with multi-
ple adaptation goals to observe the behavior of the adaptation strategy in terms of its accuracy
(i.e., how close the managed application reaches the adaptation goal). Solomon et al. also ad-
dress accuracy in their self-optimizing mechanism for business processes [Solomon et al., 2010].
They used a simulation model to anticipate performance levels and make decisions about the

54

3.3. Measuring Adaptation Properties

adaptation process. For this, a tuning algorithm keeps the simulation model accurate. This
algorithm compensates for the measurement of actual service time to increase the accuracy of
simulations by modeling errors, probabilities and inter-arrival times. Then, it obtains the best
estimate for these data such that the square root of the difference between the simulated and
measured metrics is minimized.

Regarding settling time, Appleby et al. measure this property in terms of the time re-
quired for deploying a new processing node including the installation and reconfiguration of
all applications and data repositories in Océano [Appleby et al., 2001]. Similarly, White eval-
uated settling time in terms of the average response time required for autonomic EJBs to
adapt [White, 2005]. Candea’s approach, on another side, applied a recursive strategy that re-
duces mean time to repair (MTTR) by means of recovering minimal subsets of failed system
components. If localized and minimal recovery is not enough, progressively larger subsets are
recovered [Candea et al., 2004].

With respect to the last SASO property, the control-based approach by Parekh et al. addresses
small overshoot by avoiding control values (e.g., MAXUSERS) to be set to values that exceed
their predicted ranges. They used root-locus analysis based on empirical studies on the transfer
function properties to predict the valid values of the maximum number of users to guarantee
SLOs. Then, the valid range of values is divided into three regions in order to decide when the
control values reach undesirable levels [Parekh et al., 2002].

Dowling and Cahill address Robustness in their self-management approach for balancing sys-
tem load [Dowling and Cahill, 2004]. They aimed at realizing a robust adaptationmechanism by
implementing it via decentralized agents that mitigate the negative effects of centralized points
of failure.

For verifying termination, dynamic and static mechanisms can be used. Ehrig et al. proposed
a self-healing mechanism for a traffic light system to guarantee continuity of service (reliability)
by self-recovering from predicted failures (integrity) [Ehrig et al., 2010]. They addressed termi-
nation by statically checking that self-healing rules are deadlock-free, in such a way that the
self-repairing mechanism never inter-blocks traffic lights in the same road intersection.

The scalability property is analyzed in the K-Components system [Dowling and Cahill, 2004].
To manage it, this approach defines agents with local rules to support self-management and
evolving capabilities. Another approach where scalability is addressed as an adaptation prop-
erty is Madam, the middleware proposed by Floch et al. for enabling model-based adaptation
in mobile applications [Floch et al., 2006]. Scalability is a concern in Madam for several reasons.
First, its reasoning approach might result in a combinatorial explosion if all possible variants are
evaluated; second, the performance of the systemmight be affected when reasoning on a set of a
concurrently running applications competing for the same set of resources. Madam proposes an
adaptation mechanism where each component (e.g., the adaptation mechanism) can be replaced
at run-time to experiment with different analysis approaches for managing scalability.

The security adaptation property was not addressed by any of the analyzed self-adaptive
systems. Thus, our proposed definition of security as a quality attribute and its corresponding
quality factors to evaluate security corresponds to the given in [Barbacci et al., 1995]. As pre-
sented in Table 3.1, security of the adaptation mechanism should be evaluated independently of
the managed application. This is because ensuring security at the managed application does not
guarantee security in the adaptation mechanism.

3.3.4 Towards Adaptation Metrics

Adaptation metrics provide concrete means for evaluating adaptation mechanisms with respect
to particular adaptation properties. To identify relevant metrics, we characterize factors that af-

55

Chapter 3. Quality-Driven Self-Adaptation Properties

fect the evaluation of quality attributes such as resource usage, throughput, response time, pro-
cessing rate, mean time to failure, and mean time to repair [Barbacci et al., 1995, Lu et al., 2000].
These factors are essential when considering the metrics to evaluate properties on both the adap-
tation mechanism and the managed application [Reinecke et al., 2010].

Cardellini et al. evaluated performance and reliability in MOSES using the following met-
rics: expected response time (Ru) (the average time needed to fulfill a request for a composite
service); expected execution cost (Cu) (the average price to be paid for a user invocation of
the composite service); and expected reliability (Du) (the logarithm of the probability that the
composite service completes its task for a user request [Cardellini et al., 2009]).

Appleby et al. measured dependability (e.g., availability) and performance factors (e.g., scal-
ability in terms of throughput and capacity) in Océano using the following metrics: active con-
nections per server (the average number of active connections per normalized server across a
domain); overall response time (the average time for requests to a given domain to be pro-
cessed); output bandwidth (the average number of outbound bytes per second per normalized
server for a given domain); database response time (average time for requests to a given domain
to be processed by the back-end database); throttle rate (T) (a percentage of connections disal-
lowed to pass through Océano on a customer domain); admission rate (the complement of the
domain throttle rate (1−T)); and active servers (the number of active normalized-servers which
service a given customer domain [Appleby et al., 2001]).

Average response time is a common metric used to evaluate performance in several adap-
tive approaches, such as the framework to develop autonomic EJB applications proposed
by White [White, 2005]. Another example is K-Components, which optimizes system per-
formance based on a load balancing function on every adaptation contract that uses a cost
function to calculate its internal load cost and the ability of its neighbors to handle the
load [Dowling and Cahill, 2004]. This cost function is defined as the sum of the advertised load
cost and internal cost of the component (i.e., calculated as the estimated cost to handle a partic-
ular load type).

Parekh et al., in their control-based approach to achieve performance service level objectives,
used the length of the queue of the in-progress client requests as the metric to control the of-
fered load (the load imposed on the server by client requests) [Parekh et al., 2002]. Baresi and
Guinea also proposed a metric to control reliability on the adaptation of BPEL business pro-
cesses [Baresi and Guinea, 2011], based on the number of times a specific method responds to
within two minutes over the total number of invocations. Moreover, they defined a KPI based
on this metric, such that reliability must be greater that 95% over the previous two hours of
operation.

Kumar et al. defined a business value KPI in terms of factors, such as the priority of the
user accessing the information, the time of day the information is being accessed, and other
aspects that determine how critical the information is to the enterprise [Kumar et al., 2007].
For this, they used a utility function as a combination of factors such as: utility(egj−k) =
f(

∑

dni, min(bni), bgj−k), where i|eni ∈ M(egj−k). The business utility of each edge (egj−k),
which represents data streams between operators that perform data transformations, is a func-
tion on the delay dni, the available bandwidth bni of the intervening network edges eni, and the
required bandwidth bgj−k of the edge egj−k.

Candea et al. evaluated availability in terms of mean time to recover
(MTTR) [Candea et al., 2004]. For this, they defined two metrics: availability (A =
MTTF/(MTTF +MTTR)) and downtime of unavailability (U = MTTR/(MTTF +MTTR)),
where MTTF is the mean time for a system or subsystem to fail (i.e., the reciprocal of reli-
ability), MTTR is the mean time to recover, and A is a number between 0 and 1. U can be
approximated to MTTR/MTTF when MTTF is much larger than MTTR. Similarly, Sicard et

56

3.4. The Framework for Classifying Self-Adaptive Software Systems

al. defined a metric for availability in terms of MTTR [Sicard et al., 2008].
So far, we have analyzed severalmetrics that have been used formeasuring adaptationmech-

anisms in different proposals. However, although the identified list of metrics constitute an im-
portant base for measuring adaptation properties, it is worth noting that these metrics do not
cover the complete list of the adaptation properties.

3.4 The Framework for Classifying Self-Adaptive Software Systems

Our framework to classify and compare self-adaptive software systems consists of the six char-
acterizing dimensions and the ten adaptation properties defined previously, with their corre-
sponding mappings to quality attributes.

Applying the Characterizing Dimensions

We analyzed the selected representative research papers on SAS approaches following the classi-
fication options discussed previously for the characterizing dimensions of our evaluation frame-
work. From this analysis we obtain the results presented in Table 3.3. Moreover, based on this
analysis we further summarize this characterization in Table 3.4, and discuss its most salient
points as follows.

The analyzed approaches range from pure control theory to pure software engineering-
based approaches, with several hybrid approaches between them. In the approaches based
on control theory, control actions are continuous signals that affect behavioral parameters of
the managed application. The structure of the managed application in these approaches is
generally non-modifiable, while its behavior is modeled usually with continuous mathemat-
ics [Parekh et al., 2002]. In contrast, software engineering-based approaches are characterized
by computing sequences of discrete control actions (i.e., adaptation plans) that modify the soft-
ware architecture of the managed application. In these approaches the adaptation is sup-
ported by a model of the managed application structure and corresponding reflection ca-
pabilities [Appleby et al., 2001, Dowling and Cahill, 2004, Floch et al., 2006, Garlan et al., 2004,
Kumar et al., 2007, Léger et al., 2010, Mukhija and Glinz, 2005, Sicard et al., 2008]. In hybrid
adaptive systems, control actions are generally discrete operations that affect either the com-
puting infrastructure executing the managed application, or the set of (operating system
level) processes comprising it. In some of these cases, the structure of the managed applica-
tion is even non-modifiable [Baresi and Guinea, 2011, Candea et al., 2004, Cardellini et al., 2009,
Ehrig et al., 2010,White, 2005]. In some others, such as the proposed in [Solomon et al., 2010], pa-
rameters for dynamic predictive models are dynamically tuned, based on simulations, but the
analysis to decide whether to adapt it is based on a continuous model of its behavior. Although
discrete control actions to affect the architecture of the managed application are implied, the
paper does not explain how these are produced. This kind of approaches, which mix strategies
in varied ways, further expand the classification spectrum for hybrid approaches. Concerning
when these controlling actions (or adaptation plans) are produced, in most of the cases they are
produced statically (e.g, coded by hand at design-time).

Concerning the reference control inputs (i.e., the target objective states to be reached by the
adaptation mechanism), most approaches use some abstracted form of logical conditions, such
as contracts, or expected values on utility functions. These specifications correspondingly de-
termine the measured outputs on the managed application. All approaches that explicitly ad-
dressed monitoring on these outputs, specify monitor probes on logical attributes of the man-
aged application elements (internal context), while two of them take the external context into
account [Kumar et al., 2007, Mukhija and Glinz, 2005]. Regarding the adaptation mechanism

57

Chapter 3. Quality-Driven Self-Adaptation Properties

Table 3.3: Characterizing dimensions applied to selected SAS approaches
Approach Adaptation

Goal
Reference
Inputs

Measured
Outputs

Control
Actions

System
Structure

Adaptation
Properties

Appleby et al.
Océano, 2001

Self-manag.
Self-optim.

Contracts:
SLAs

SLOs/Logical
properties of
computational
elements

Discrete
operations
affecting the
comput.
infrastructure

Adaptive
ctrl./Modif.
struct.reflect.

Stab., settl. time,
small overshoot,
scalab./Scalab.,
Dependability:
availab., maintain.

Baresi and
Guinea, 2010

Self-recov. Contracts:
SLAs, funct.
req.

SLOs/Logic.
prop. of
comput. elem.

Discrete oper.
managed
applic. process

Adaptive
ctrl./Non-
modif.struct.

Controller: None/
Behav., Dependab:
safety, integrity,
availab., reliab.

Candea et al.
Microreboots,
2004

Self-recov. Contracts:
SLOs-QoS

Malfunct. cond.
/Logic.prop. of
comput. elem.

Discrete oper.
managed
applic. process

Adaptive
ctrl./Modif.
struct.reflect.

Overshoot, settl.
time/Dependab:
availability

Cardellini et
al. MOSES,
2009

QoS preser. Contracts:
QoS

SLOs/Logic.
properties of
comput. elem.

Discrete oper.
managed
applic. process

Reconfig.
ctrl./Modif.
struct.reflect.

Accuracy/ Perform.:
latency,
Depend.:reliab., cost

Dowling and
Cahill.
K-Comp.,
2004

Self-manag. Contracts:
SLOs-QoS

SLOs/Logic.
properties of
comput. elem.

Discrete oper.
managed
applic. soft.
architecture

Reconfig.
ctrl./Modif.
struct.reflect.

Robust., scalab./
Performance:
througp., capac.

Ehrig et al.,
2010

Self-healing Goal actions Malfunct.
condit./Logic.
properties of
comput. elem.

Discrete oper.
managed
applic. process

Adaptive
ctrl./Non-
modifiable
structure

Termination/
Dependab:reliab.

Floch et al.
MADAM,
2006

QoS preser.
Self-config.

Contracts:
SLAs-SLOs-
QoS

SLOs/Logic.
properties of
comput. elem.

Discrete oper.
managed
applic. soft.
architecture

Adaptive
ctrl./Modif.
structure
reflection

Scalab/Dependab:
reliab., maintain.

Garlan et al.
Rainbow, 2004

Self-repair. Contracts:
SLAs-SLOs-
QoS

SLOs/Logic.
properties of
comput. elem.

Discrete oper.
managed appl.
soft. arch.

Adaptive
ctrl./Modif.
struct.reflect.

None for the
controller/Perform:
latency

Kumar et al.
MWare, 2007

Self-manag.
Self-config.
Self-optim.

Contracts:
QoS; policy
actions

SLOs/Logic.
properties of
comput. elem.
ext. context

Discrete oper.
managed
applic. soft.
architecture

Adaptive
ctrl./Modif.
structure
reflection

Settl. time,
overshoot/
Performance:
through., capac.

Léger et al.,
2010

QoS preser.
Self-config.

Constraints:
comput.
states

Malfunct.
condit./Logic.
properties of
comput. elem.

Discrete oper.
managed
applic. soft.
architecture

Reconfig.
ctrl./Modif.
struct.reflect.

Consist.: atomic.,
isol., durab./
Dependab.:availab.,
reliability

Mukhija and
Glinz CASA,
2005

QoS preser.
Self-config.

Contracts:
QoS

SLOs/Logic.
properties of
comput. elem.
ext. context

Discrete oper.
managed
applic. soft.
architecture

Reconfig.
ctrl./Modif.
structure
reflection

Consistency/
Performance

Parekh et al.,
2002

QoS preser. Single
reference
value

SLOs/Logic.
properties of
comput. elem.

Continuous
signals
behavioral
properties

Feedback ctrl./
Non-
modif.struct.
math.model

Stab., overshoot/
Performance:
throughput, capacity

Sicard et al.,
2008

Self-manag.
self-healing

Constraints:
comput.
states

Not explicit
monitoring

Discrete oper.
managed
applic. soft.
architecture

Feedback
ctrl./Modif.
structure
reflection

None for the
controller/
Dependab.: reliab.,
avail.

Solomon et al.,
2010

Self-optim. Business
KPIs

KPIs/Logic.
properties of
comput. elem.

Not addressed
(simulation
model)

Adaptive ctrl./
Modif.
structure
reflection

Accuracy/
Performance

White.
Autonomic
JBeans, 2005

Self-manag.
Self-healing
Self-protect.

Contracts:
SLOs-QoS

SLOs/Logic.
properties of
comput. elem.

Discrete oper.
managed
applic. process

Adaptive ctrl./
Non-modif.
structure

Settl. time/
Perform.:through.,
Depend.: availab.

58

3.5. Chapter Summary

structure, all approaches, except [Parekh et al., 2002] and [Sicard et al., 2008] that implement a
simple feedback loop, implement either adaptive or reconfigurable control mechanisms.

3.5 Chapter Summary

Self-adaptation has increasingly become a fundamental concern in the engineering of software
systems. On one side, it is a factor to reduce the high costs of software maintenance and evo-
lution; on the other side, it used to regulate the satisfaction of functional and extra-functional
requirements under changing conditions of system execution. Even though adaptation mech-
anisms have been widely investigated in the engineering of dynamic software systems, their
application to actual problems in industry is still limited due to a lack of methods for validation
and verification of the complex and nonlinear software systems.

In this chapter we analyzed a representative subset of research works on self-adaptive soft-
ware (SAS) proposals. From this analysis, we identified a divergent and difficult-to-compare set
of methods to assess this kind of systems. Some validation mechanisms discussed in these ap-
proaches are limited to the performance evaluation of the managed application, even when the
adaptation goal is not related to this quality attribute. Nonetheless, we were able to consolidate
the definitions for a set of identified properties inherent to SAS systems, and proposed a map-
ping from them to quality attributes. We also discussed how these properties help to leverage
the benefits of self-adaptation in a variety of ways. For instance, one important application of
them is in the realization of characteristics such as the reliability and trustworthiness of this kind
of autonomous systems.

Finally, in our opinion, the framework for classifying and comparing SAS systems that we
defined in this chapter constitutes a starting point for discussing on our proposed adaptation
properties. These properties, as inherent to SAS systems, provide a common basis to assess
adaptation mechanisms specially when this assessment has comparative, improvement, or even
mix-and-match combination purposes.

In the next chapter, we present the formal definitions that constitute the foundation of our
model for dynamic reconfiguration to preserve QoS contracts. We also use the videoconference
system of our example scenario introduced in the previous chapter to illustrate these defini-
tions.

59

Chapter 3. Quality-Driven Self-Adaptation Properties

Table 3.4: Selected SAS systems characterization summary
Characteristic Count [List of Approaches]

Spectrum Classification
Control Engineering 1 [Parekh et al., 2002]

Hybrid 5 [Baresi and Guinea, 2011, Candea et al., 2004,
Cardellini et al., 2009, Ehrig et al., 2010, White, 2005]

Hybrid-Software 1 [Solomon et al., 2010]
Software Engineering 9 [Appleby et al., 2001, Dowling and Cahill, 2004,

Floch et al., 2006, Garlan et al., 2004, Kumar et al., 2007,
Léger et al., 2010, Mukhija and Glinz, 2005, Sicard et al., 2008]
Monitoring Mechanisms

Monitor internal context 13
Monitor external context 2 [Kumar et al., 2007, Mukhija and Glinz, 2005]

Not specified 1 [Sicard et al., 2008]
Adaptation Mechanism Structure

Feedback control 2 [Parekh et al., 2002, Sicard et al., 2008]
Adaptive control 9 [Appleby et al., 2001, Baresi and Guinea, 2011,

Candea et al., 2004, Ehrig et al., 2010, Floch et al., 2006,
Garlan et al., 2004, Kumar et al., 2007, Solomon et al., 2010,
White, 2005]

Reconfigurable control 5 [Cardellini et al., 2009, Dowling and Cahill, 2004,
Léger et al., 2010, Mukhija and Glinz, 2005]

Managed Application Structure
Non-modifiable 4 [Baresi and Guinea, 2011, Ehrig et al., 2010,

Parekh et al., 2002, White, 2005]
Modifiable with reflection 12 [Appleby et al., 2001, Candea et al., 2004,

Cardellini et al., 2009, Dowling and Cahill, 2004,
Floch et al., 2006, Garlan et al., 2004, Kumar et al., 2007,
Léger et al., 2010, Mukhija and Glinz, 2005, Sicard et al., 2008,
Solomon et al., 2010]
Adaptation Properties

Settling time 4 [Appleby et al., 2001, Candea et al., 2004, Kumar et al., 2007,
White, 2005]

Small overshoot 4 [Appleby et al., 2001, Candea et al., 2004, Kumar et al., 2007,
Parekh et al., 2002]

Scalability 3 [Appleby et al., 2001, Dowling and Cahill, 2004,
Floch et al., 2006]

Stability 2 [Appleby et al., 2001, Parekh et al., 2002]
Accuracy 2 [Cardellini et al., 2009, Solomon et al., 2010]

Termination 1 [Ehrig et al., 2010]
Atomicity 1 [Léger et al., 2010]
Consistency 3 [Léger et al., 2010, Mukhija and Glinz, 2005]
Robustness 1 [Dowling and Cahill, 2004]
Security 0

Quality Attributes
Performance 10 [Appleby et al., 2001, Cardellini et al., 2009,

Dowling and Cahill, 2004, Floch et al., 2006,
Garlan et al., 2004, Kumar et al., 2007,
Mukhija and Glinz, 2005, Parekh et al., 2002,
Solomon et al., 2010, White, 2005]

Dependability 7 [Appleby et al., 2001, Baresi and Guinea, 2011,
Candea et al., 2004, Cardellini et al., 2009, Ehrig et al., 2010,
Floch et al., 2006, White, 2005]

60

Chapter 4
A Formal Model for QoS
Contracts-Preserving Reliable
Reconfiguration

Contents

4.1 Overview of the Formal Model in the Solution Strategy 64

4.2 E-Graph Modeling of QoS Contracts-Driven Reconfiguration 67

4.2.1 Extended Graphs: Base Definitions 68

4.2.2 System Reflection Structure . 69

4.2.3 QoS Contracts Structure . 71

4.2.4 The Component-Based Structure Reconfiguration System 73

4.3 Finite State Machine Modeling of QoS Contracts States 76

4.3.1 An Initial Interpretation of QoS Contracts as FSMs 77

4.3.2 Reformulation of FSMs to Model QoS Contracts States 79

4.3.3 The Exception and Unstable States of Contract Unfulfillment 82

4.3.4 The QoSC_FSM Semantics . 83

4.3.5 Managing Multiple QoS Properties 88

4.3.6 The QoS Contract-Preserving Reconfiguration System 90

4.4 Chapter Summary . 91

In this chapter we present our formal model for reliable preservation of QoS contracts in
component-based software applications. To accomplish this, we model the dynamic reconfigu-
ration of these software applications as an action associated to the notification of events that (po-
tentially) violate their contracted QoS levels of operation on changing execution conditions. We
conceive this formalization as a sound foundation for software applications to be autonomously
responsible for their QoS contracts, as envisioned in Component-Based Software Engineering
(CBSE) [Szyperski, 1998, Heineman and Councill, 2001].

To develop our model we consider the principles and concerns analyzed and explored
by the Software Engineering for Adaptive and Self-Managing Systems research community—
SEAMS—in [Cheng et al., 2009a] and [de Lemos et al., 2012]. These are mainly related to the sep-
aration of concerns between managed applications and adaptation mechanisms, the explicitness

61

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

of feedback-loop elements in the self-adaptive system architecture, the enforcement of adapta-
tion properties, and the management of context unpredictability.

In our vision, QoS contracts establish minimum expected levels of operation (QoS levels) that
must be satisfied and preserved by a managed software application. These QoS levels are spec-
ified for each of the different context conditions to be faced by the managed application in its
execution. Thus, the continuous satisfaction of a QoS contract (i.e., its preservation) implies to
satisfy each of these QoS levels that the user expects, under each of the corresponding vary-
ing conditions of execution. At runtime, once these conditions actually occur in the execution
context of the managed application, the respective QoS levels must be monitored, and their ful-
fillment, enforced.

Hence, these QoS levels, expressed as first-order logic predicates, can be seen as
context-dependent “system invariants”, following the concept of program invariants given by
[Hoare, 1969] (i.e., predicates that are true in the context of a specific sequence of instructions).
In other words, these expected QoS levels defined by users in QoS contracts specify particu-
lar properties (context-dependent system invariants) required to be continuously satisfied by
managed applications as context conditions change. Examples of these properties are context-
dependent conditions on throughput, response time, confidentiality, and readiness of the man-
aged application services.

However, guaranteeing the continuous and trustworthy satisfaction of these user-defined
properties through self-reconfiguration is a challenging problem. On one hand, producing re-
configuration plans to satisfy these properties, traditionally coded by hand at design-time for
specific context conditions and application states, is a difficult and error-prone task. The diffi-
culty is not only in tracking the different elements to deploy/undeploy and (re)wire/unwire,
but in coding these plans to match the different evolved managed application states, specially
under varying execution conditions. On the other hand, in contrast to the particular QoS prop-
erties required by the user for a managed application, the properties to be certified for the re-
configuration mechanism should be the inherent properties that characterize the own nature of
self-adaptive software systems. These are the adaptation properties that we defined in the previous
chapter, which should be intrinsic in the reconfiguration mechanism.

In light of these problems, in this chapter we address two fundamental challenges:
(i) To devise context-aware reconfiguration mechanisms that continuously operate to fulfill

user-defined QoS levels under varying conditions of execution, by applying user-defined recon-
figuration rules. The reconfiguration mechanism must manage a number of components with
their interrelationships, considering all differences between the actual vs. the next configuration
states. It is worth noting that part of this challenge is that both, the required QoS properties
and also the reconfiguration rules must be defined by the user, in QoS contracts. Nonetheless,
as a consequence, the effectiveness of achieving the respective QoS levels is determined by the
effectiveness and adequacy of the user-defined reconfiguration rules. This requires from the re-
configuration mechanism to address questions such as what would happen if the user (e.g., a
software evolution architect) mistakenly provides irrelevant rules for guaranteeing a given QoS
level? would the system loop endlessly applying these rules, never fulfilling the target QoS
level besides wasting computing resources? would the user be notified about this anomalous
situation? Moreover, QoS contracts must be preserved in continuous reconfiguration loops at
runtime, starting and ending in actual running software applications, and also considering dy-
namic changes in contracts.

(ii) To guarantee the reliability as an inherent characteristic of the reconfiguration mecha-
nism, independently of the managed application’s QoS properties specified in contracts, and
transparently to the end-user. We define this reliability in terms of the adaptation properties of
atomicity, termination, short settling-time, structural consistency, and robustness with respect to

62

context unpredictability, that we characterized previously. It is worth noting that even though
we defer the proofs showing that our reconfiguration mechanism guarantees these properties
to Chapter 6, we address this challenge specifically by using formal models that adequately
support them.

Therefore, to address these challenges, we build our formal model as follows. On one hand,
our choice of Typed Attributed Graph (called e-graphs) Transformation System theory (TAGTS)
[Ehrig et al., 2009] to model software structure configuration and its dynamic re-configuration
allows us to exploit design-patterns at runtime. We use these patterns in reconfiguration loops to
fulfill the expected QoS levels at runtime—just as they are used for the same purpose at design
time—while the software reconfiguration benefits from graph transformation properties. Design
patterns embody sets of components whose joint operation, as a whole, determine the QoS levels
of the services in which they participate. On the other hand, we extend Finite State Machines
(FSM) [Hopcroft et al., 2006] to govern these reconfiguration loops, not only to manage contract
fulfillment and unfulfillment states, but also to maintain the association of these states to the
actual running-software state, under the current context situation.

This chapter is organized as follows. In Section 4.1 we give an overview of the strategy
that we follow in our formal model to continuously fulfill QoS levels under varying execution
conditions. In Sections 4.2 and 4.3 we respectively present our e-graph based model for reliable
reconfiguration and FSM based robust management of QoS contracts and managed application
states. Finally, it is worth clarifying that while this chapter presents our formal model, in the next
chapters we explain how do we realize it, and analyze its corresponding adaptation properties.

Correspondences in this Chapter: Addressed Challenge(s): C2; C3; C4 –Reconfiguration plans
to preserve QoS contracts must be generated automatically and dynamically from parameter-
ized reconfiguration rules defined by users; The reconfiguration mechanism must be clearly
separated from the target software application, as well as their corresponding properties; Un-
certainty must bemanaged robustly with respect to the unpredictability of context events faced
by the target application, as well as the parameterized reconfiguration rules in the reconfigu-
ration mechanism. Goal(s): G2, G3, G4 –Develop a formal model for the dynamic and reliable
reconfiguration mechanism to preserve QoS contracts in component-based software; Maintain
a clear separation of concerns between the reconfiguration mechanism and the target software
application, as well as between their corresponding properties; Guarantee robustness in the
reconfiguration mechanism with respect to possible and foreseeable situations associated to
the management of the unpredictable nature of context. General contribution(s): GC.FM1,
GC.FM2 –E-Graph (TAGTS) based model for reliable preservation of QoS contracts through
self-reconfiguration; FSM based model for autonomous and robust management of QoS con-
tracts states. Specific contribution(s): FM1.1, FM1.2, FM1.3, FM2.1 –Unified e-graph andmachine
processable specifications for (i) component-based structures (CBS), (ii) QoS contracts to be
satisfied, and (iii) reconfiguration rules; Automatic derivation of reliable reconfiguration plans
from e-graph transformations; Independent and reusable reconfiguration mechanismmodeled
using e-graphs as an abstract and neutral representation for the component-based target appli-
cation; Characterization of generic QoS contracts states (fulfillment, violation and exception)
and transitions, automatically managed at runtime by the FSM based model.

63

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

4.1 Overview of the Formal Model in the Solution Strategy

As we analyzed in Section 2.2, service-component platforms execute software applications that
provide software services through interfaces implemented by software components subject to
QoS contracts. Typically, QoS contracts specify context-dependent QoS levels on a QoS prop-
erty, such as the confidentiality, illustrated in Table 4.1(a)23. This contract specifies three QoS
levels for the confidentiality attribute to be guaranteed to the user under given context condi-
tions. The first row in the table specifies that whenever connected from an intranet-serviced
area, the user can expect to have a clear-channel communication for the corporate videoconfer-
ence services; meanwhile the second, that whenever she moves to an extranet-serviced area, she
can expect a secure-channel, dynamically configured in a transparent way for her. It is worth
noting that in this simple example the contract could be renegotiated to have finer-grained con-
fidentiality requirements. For instance, instead of simply specifying a confidential channel for
extranet connections, we could require 64bit ciphering for extranet UMTS connections, while
1024bit for extranet WiFi connections.

A simplified service-component videoconference application subject to this contract is illus-
trated in Fig. 4.1 running in the context of a corporate building, that is, being able to register in
and attend a videoconference using a clear channel connection.

Figure 4.1: Simplified service-component videoconference application in the context of the corporate
building. Components provide services (through interfaces) that can be required by others. Connections
from required to provided services (interfaces) specify the corresponding services invocations. In par-
ticular, (A) highlights the RMI service AttendVConference provided by the Server component for a user to
attend a videoconference. This service is invoked by the Client component through (B) the joinVConference
service of the NetworkAdapter component.

In this initial situation the software application is of course fulfilling the agreed QoS contract,
as specified by the QoS level Clear Channel under the context condition C1:Intranet Connection in
the first row of the table representing the contract.

However, when the user goes to the parking lot to wait for transportation to the airport,
the videoconference application client confronts a new context condition. This new condition,
which is identified as C2 in the table representing the contract, is signaled by the change of the
network access point (entering an extranet-serviced area) thus requiring the use of a Confident
Channel, as specified in the contract. In this situation, the software application is expected to
perform an autonomous and transparent reconfiguration to fulfill the new contractual condition

23This QoS contract was introduced in our example scenario. However, we reproduce it here for readability.

64

4.1. Overview of the Formal Model in the Solution Strategy

Table 4.1: Context conditions and corresponding QoS levels for:
(a) Confidentiality (based on corporate network access) (b) Availability (based on bandwidth in kbit/s)

Context Condition
Service Level

Context Condition
Service Level

Objective Objective
C1: Intranet Connection Clear Channel C4: Bandwidth ≤ 12 Call on Hold
C2: Extranet Connection Confident Channel C5: 12 < Bandwidth ≤ 128 Voice Call
C3: No Netw. Connection Local Cache C6: 128 < Bandwidth VoiceVideo Call

under C2, before compromising the current QoS level of C1, as illustrated in Fig. 4.2. In effect, in
the lower part of this figure we can observe the deployment of EnDeCipher components on the
corresponding client and server sides. This component symmetrically enciphers and deciphers
the transmitted data, guaranteeing a confident communication channel.

Figure 4.2: Reconfiguration of the service-component application client. When the service-component
application client is (1) notified by a change of context condition entering an extranet-serviced area, the
user expectation is (2) a self-reconfiguration to preserve the QoS contract.

Nonetheless, as we analyzed in previous chapters, a still open and major challenge for
component platforms is the autonomous and reliable preservation of QoS contracts at run-
time under varying execution conditions, as illustrated in the example. Our strategy to solve
this problem is to use (i) e-graphs to model the architecture of service-component software ap-
plications, reconfiguration rules, and QoS contracts; and (ii) finite state machines to control
the states of contract fulfillment and unfulfillment on the software application. We perform
a state transition whenever a context event arrives notifying of changes in context conditions

65

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

Figure 4.3: Service-component application reconfiguration as graph transformation.

that may violate the current QoS level. Given that states correspond to structural configura-
tions of the software application represented in e-graphs, a state transition is a graph transfor-
mation operation based on graph rewriting rules. To specify each of these rules, we encode
design patterns in its left and right hand sides, benefiting from the well known relationships
between these patterns and software QoS properties [Shaw and Garlan, 1996, Bass et al., 2003,
Kruchten et al., 2006, Buschmann et al., 2007, Clements and Shaw, 2009, Ramachandran, 2002,
Zeng et al., 2004b, Kircher and Jain, 2004, Krakowiak, 2009, Dougherty et al., 2009]. That is, left-
hand sides are used to identify software substructures in managed applications by graph-based
pattern matching. Corresponding right-hand sides specify the target structures into which the
identified application substructure must be reconfigured, by graph transformation. In the illus-
trated example, we use a rule that reconfigures the application structure when moving from an
intranet to an extranet-serviced area. Even though we defer the illustration of this reconfigura-
tion rule to the next section, we anticipate that this rule uses a clear-channel structure pattern
as its left-hand side, and a confident-channel structure pattern as its right-hand side. Thus, the
effect of applying this rule in a software application is to transform its clear communication
channels that match the rule left-hand side, into confident communication channels.

What we consider most important in our approach, in contrast to other formal based ap-
proaches, is that we carefully ground the objective of our formal modeling on actual running

66

4.2. E-Graph Modeling of QoS Contracts-Driven Reconfiguration

software systems. That is, based on the service-component architecture (SCA) specification
and the introspection capabilities of component platforms, we provide a function that synthe-
sizes our corresponding e-graph representation. In fact, we actually invoke this function from
the component platform in order to apply our formal model on the running state of service-
component applications (marked (2) in Fig. 4.3). Thus, we dynamically reconfigure the soft-
ware application structure by first performing a graph transformation on its e-graph repre-
sentation (marked (3) in the figure). Only if the resulting graph structure successfully passes
the verification checks, such as the structural components/connectors conformance, we instru-
ment the reconfiguration modifications in the actual running software application (marked (4)
in the figure). For this instrumentation we require at least the provision of reconfiguration
primitives by the component platform, such as those provided by the FRASCATI middleware
[Seinturier et al., 2009], which we use in this work. The adaptation processes, which begin and
end in the actual service-component software application executed by the component platform,
are governed by the finite state machine representing the contracted QoS levels.

Finally, formal models entail benefits that non-formal models are unable to confer. In our
case, we base our model on e-graphs and finite state machines to formally guarantee the reli-
ability of the adaptation process in terms of adaptation properties, as defined in the previous
section. A second important benefit is that we are able to define a clear semantics for our ap-
proach, from which algorithms can be derived, preserving the formal model properties.

4.2 E-Graph Modeling of QoS Contracts-Driven Reconfiguration

Our Assumption A1 enunciated in Section 1.3 recalled the determining relationship between
software design patterns and specific software QoS levels. We use this relationship as the cor-
nerstone of our strategy to preserve QoS contracts through dynamic reconfiguration as follows:

i. QoS contracts comprise different QoS levels for corresponding context conditions on spe-
cific software quality attributes;

ii. specific design patterns, known to address the quality attributes implied by QoS contracts,
can be encoded in left and right hand sides of reconfiguration rules, depending on the
desired effects;

iii. left-hand sides are used to identify actual managed application substructures associated
to actual QoS levels;

iv. corresponding right-hand sides specify the target substructures into which the identified
managed application substructure must be reconfigured, whenever a context change oc-
curs;

v. reconfiguration rules specify the mappings between left and right-hand sides, and more
specifically, which components to introduce, which to remove, and how to (re)connect
them;

vi. for each QoS level to be achieved, the user (e.g., a system evolution architect who had
previously negotiated the contract with the client) specifies the respective reconfiguration
rules.

In essence, these statements correspond to a rule-based graph transformation problem, if we
represent the structure of managed applications as graphs, and reconfiguration rules as graph-
rewriting rules. To identify design patterns (encoded as graphs in left-hand sides) in actual
managed applications, we use graph-based pattern matching. Then, we transform the managed
application structures into target design-pattern structures using a reconfiguration system built

67

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

on a graph transformation system. This process is driven by a QoS contract definition (and cor-
responding semantics in extended state machines) that we tailored for our graph-based model.
From this process and considering the actual evolved structure of the managed application and
the current context conditions, we dynamically synthesize reconfiguration plans from the appli-
cation of the reconfiguration rules.

Moreover, for a CBD24 system to be responsible for its QoS contracts automatically, it re-
quires (i) to have a structural representation of itself at the component level (i.e., to be reflective)
[Cheng et al., 2009a]; (ii) to have a representation of the contracted QoS levels under the different
context conditions; (iii) to be self-monitoring, that is, to identify and notify events on the QoS
level violations; and (iv) to apply the dynamic reconfiguration in response to events notifying
imminent violation of QoS levels, as specified in the QoS contracts.

Based on the previous considerations, we build our e-graph based model for reconfigur-
ing component-based applications on the TAGTS theory developed by [Taentzer, 2004] and
[Ehrig et al., 2009], as follows. In Section 4.2.1 we recall the base definitions of e-graphs given
in [Ehrig et al., 2009]. Based on the e-graph as a unified formalism, we give our definitions for
component-based software reflection structure and QoS contracts respectively in Sections 4.2.2
and 4.2.3. Finally, in Section 4.2.4 we present our component-based structure reconfiguration
system. Along these sections, we exemplify how these constructs support software reflection
and QoS contracts preservation through self-reconfiguration.

4.2.1 Extended Graphs: Base Definitions

Definition 4.1 (E-Graph). An E-Graph is a tuple (V1, V2, E1, E2, E3, (sourcei, targeti)i=1,2,3), where

• V1, V2 are sets of graph and data nodes, respectively;

• E1, E2, E3 are sets of edges (graph, node attribution and edge attribution, respectively);

• source1 : E1 → V1; source2 : E2 → V1; source3 : E3 → E1 are the source functions for the
edges; and

• target1 : E1 → V1; target2 : E2 → V2; target3 : E3 → V2 are the target functions for the
edges.

An e-graph (typed attributed graph) extends the usual definition of a base graph,
(V1, E1, source1, target1), with (i) V2, the set of attribution nodes; (ii) E2 and E3, the sets of at-
tribution edges; and (iii) the corresponding source and target functions for E2 and E3, used to
associate the attributes for V1 and E1, respectively, to V2, as depicted in Fig. 4.4.

Figure 4.4: E-Graph definition illustration.

Definition 4.2 (E-Graphmorphism). An e-graph morphism f between e-graphsG andH , f : G → H ,
is a tuple (fV1

, fV2
, fE1

, fE2
, fE3

) where fVi
: GVi

→ HVi
and fEj

: GEj
→ HEj

for i = 1, 2, j =
1, 2, 3, such that f commutes with all source and target functions25).

24In the following, we use CBD, CBSE and SCA interchangeably.
25E-Graphs combined with E-Graph morphisms form the category EGraphs. See [Ehrig et al., 2009] for more de-

tails on this.

68

4.2. E-Graph Modeling of QoS Contracts-Driven Reconfiguration

Figure 4.5: E-Graph morphism example between e-graphs G and H , f : G → H . E-graph morphisms
are used as typing relationships between e-graphs.

4.2.2 System Reflection Structure

For a software system to self-reconfigure at runtime, it is required to be reflective. That is, it
must be able to identify and keep track of its individual elements that are to be involved in
reconfiguration operations [Cheng et al., 2009a]. We base our representation of system reflection
structure on the component-based structure definition.

Definition 4.3 (Component-Based Structure –CBS). The component-based structure, CBS, is the
tuple (G, DSig), where:

• DSig is a data signature over the disjoint union Integer+String + IfcSignature+ IfcRole+
IntPair where IfcRole = {Provided, Required} and IntPair = Integer× Integer, with the
usual CBD interpretations;

• G is the e-graph (V1, V2, E1, E2, E3, (sourcei, targeti)i=1,2,3) such that:

– V1 = {Component, Interface, Binding};

– V2 = Integer + String + IfcSignature + IfcRole + IntPair;

– E1 = {ifcp, ifcr, provided, required};

– E2 = {cname, iname, role, signat, c_QoSProvision, i_QoSProvision, ct_QoSProvision,
cmultiplicity, imultiplicity, bmultiplicity};

– E3 = {ifcpmult, ifcrmult, pmult, rmult};

– source1 = {(ifcp, Component), (ifcr, Component), (provided, Binding), (required, Binding)};

– target1 = {(ifcp, Interface), (ifcr, Interface), (provided, Interface), (required, Interface)};

– source2 = {(cname, Component), (iname, Interface), (role, Interface), (signat, Interface),
(c_QoSProvision, Component), (i_QoSProvision, Interface), (ct_QoSProvision, Binding),
(cmultiplicity, Component), (imultiplicity, Interface), (bmultiplicity, Binding)};

– target2 = {(cname, String), (iname, String), (role, IfcRole), (signat, IfcSignature),
(c_QoSProvision, String), (i_QoSProvision, String), (ct_QoSProvision, String),
(cmultiplicity, Integer), (imultiplicity, Integer), (bmultiplicity, Integer)};

– source3 = {(ifcpmult, ifc), (ifcrmult, ifc), (pmult, provided), (rmult, required)}; and

– target3 = {(ifcpmult, IntPair), (ifcrmult, IntPair), (pmult, IntPair), (rmult, IntPair)}.

The Component-Based Structure is an e-graph where graph nodes represent the usual CBD’s
component, interface, interface type and binding elements. Composites (i.e., aggregates of com-
ponents) are abstracted as components, as we address structural reconfiguration at the system

69

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

Figure 4.6: E-Graph Component-Based Structure (CBS) illustration. The Integer type, mult and multiplic-
ity attributes, for multiplicity constraints, are represented implicitly in the usual (short) notation.

level. Graph edges correspond to the relationships among these elements. Data nodes repre-
sent types of attributes meanwhile the data edges, the typing relationships. *_QoSProvision are
special attributes to annotate components, interfaces and bindings to express their provision of
particular QoS capabilities, such as secure network connections or scalable processing possibili-
ties.

Definition 4.4 (Component-Based Software Application Reflection –CBSAR). Given S the com-
putational state of a running component-based software application, its corresponding Component-Based
Software Application Reflection (CBSAR) state, ℜS , is defined as ℜS = (G, fS , t), where G is the e-
graph that represents S through the one-to-one function fS : S → G, and t is an e-graph morphism
t : G → CBS.

That is, being S the representation of the state of the managed application components, in-
terfaces and bindings, as maintained in SCA runtime component platforms, ℜS encapsulates its
corresponding e-graph representation. The purpose of fS is to map the component application
structure to the e-graph domain, in which the reconfiguration is to be operated. This defini-
tion is crucial for the practical applicability of our proposal, given that it allows the straight-
forward definition of fS , based on the component platform introspection capabilities. Once the
abstract representation is reconfigured, we use f−1

S to perform the reconfiguration in the ac-
tual runtime component-based application. The feasibility of fS results from Def. 4.3 (CBS)
and the e-graph morphism t. ℜS .Component denotes the set of components in ℜS , that is,
ℜS .Component = {c | c ∈ GV1

∧ tV1
(c) = Component} (analogously for the other CBSAR el-

ements).

Example 4.1 (Videoconference Component-Based Structure and Reflection). Figure 4.7 illustrates
the runtime component-based application structure of our RVCS example scenario introduced in Section
2.5 (page 40) when configured to be connected from the intranet (i.e., with a clear-channel connection).
The components in this figure are represented in Fig. 4.8 as exactly the videoconference client (V CClient)
with its network adapter component (NetAdapter) and the server (V CServer). The other elements
represent their interfaces (vccReceive, vccSend and so on), and respective bindings. The NetAdapter
component, providing a network connection, is responsible for maintaining a ClearChannel connection,
as expressed by its c_QoSProvision attribute.

70

4.2. E-Graph Modeling of QoS Contracts-Driven Reconfiguration

Figure 4.7: Runtime application structure for the RVCS example with a clear channel connection.

Figure 4.8: E-Graph CBS reflection structure for the RVCS example.

4.2.3 QoS Contracts Structure

Conceptually, a QoS contract specifies expected QoS levels for a given application ser-
vice or functionality, under different context conditions. These QoS levels become obli-
gations that can be seen as the guarantees offered by a system or service provider to
its users [Beugnard et al., 1999, Keller and Ludwig, 2003, Collet et al., 2005, Krakowiak, 2009,
Tran and Tsuji, 2009], whenever the respective context conditions occur at runtime. Thus, a
QoS contract is an invariant to be preserved by a system, for instance, by restoring it in case
of its violation. The evaluation of the invariant validity must be performed at runtime, given
that it depends on measurements from the actual context of execution, such as response time,
throughput, and security level on network access location. Therefore, the QoS conditions must
be permanently monitored and the system must act upon their violation in order to have the
possibility of restoring it opportunely.

For a software system to address the violation of its QoS contracts, it must incorporate and
manage these contracts internally. Given that we use e-graphs to define the formal model of
component-based system structure as a realization of system reflection, we follow the same idea
to define QoS contracts as a manageable part of the software system.

71

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

Definition 4.5 (QoS Contract –QoSC). Given QoSDSig the usual data signature over the disjoint
union Integer + String + Boolean + Predicate + IntPair, where IntPair = Integer × Integer
with the usual interpretations, a QoS contract is a tuple (C, ct), where

• C is an e-graph representing a contract instance, subject to

• ct, an e-graph morphism ct : C → QoSC, where QoSC is the e-graph definition for typing QoS
contracts, QoSC = (V1, V2, E1, E2, E3, (sourcei, targeti)i=1,2,3) such that

– V1 = {QoSContract, QoSProperty, QoSMonitor, QoSGuarantor, SLOObligation,
QoSRuleSet};

– V2 = Integer + String + Boolean + Predicate + IntPair;

– E1 = {property, obligation, monitor, guarantor, ruleSet};

– E2 = {gname, pname, mname, rname, SLOPredicate, contextCondition, isActive,
contextEvType, QoSCmult, QoSPmult, QoSMmult, QoSGmult, SLOOmult, QoSRmult};

– E3 = {pmult, omult, mmult, gmult, rmult};

– source1 = {(property, QoSContract), (obligation, QoSProperty), (monitor, QoSProperty),
(guarantor, QoSProperty), (ruleSet, SLOObligation)};

– target1 = {(property, QoSProperty), (obligation, SLOObligation), (monitor, QoSMonitor),
(guarantor, QoSGuarantor), (ruleSet, QoSRuleSet)};

– source2 = {(gname, QoSGuarantor), (pname, QoSProperty), (mname, QoSMonitor),
(rname, QoSRuleSet), (SLOPredicate, SLOObligation), (contextCondition,
SLOObligation), (isActive, SLOObligation), (contextEvType, SLOObligation),
(QoSCmult, QoSContract), (QoSPmult, QoSProperty), (QoSMmult, QoSMonitor),
(QoSGmult, QoSGuarantor), (SLOmult, SLOObligation), (QoSRmult, QoSRuleSet)};

– target2 = {(gname, String), (pname, String), (mname, String), (rname, String),
(SLOPredicate, Predicate), (contextCondition, Predicate), (isActive, Boolean),
(contextEvType, String), (QoSCmult, Integer), (QoSPmult, Integer),
(QoSMmult, Integer), (QoSGmult, Integer), (SLOmult, Integer), (QoSRmult, Integer)};

– source3 = {(pmult, property), (omult, obligation), (mmult, monitor), (gmult, guarantor),
(rmult, ruleSet)}; and

– target3 = {(pmult, IntPair), (omult, IntPair), (mmult, IntPair), (gmult, IntPair),
(rmult, IntPair)}.

Our QoS contract definition comprises a set of QoSProperties. Each QoS property has a set of
QoS-level obligations (SLOObligation). Each SLO obligation has (i) the QoS level (SLOPredicate)
to be fulfilled under (ii) a corresponding context condition (contextCondition); (iii) a non-empty
guaranteeing reconfiguration rule-set (QoSRuleSet) to apply upon notification of events that be-
long to (iv) the respective non-empty set of triggering context events (defining the type contex-
tEvType); and (v) a flag to mark its status (isActive). Different QoS levels naturally imply disjunc-
tive context conditions, and also disjunctive sets of triggering context events. The QoSGuarantor
refers to a system element distinguished among those with the responsibility of fulfilling the
SLO obligations, while the QoSMonitor, to the one that notifies the respective context events.

This definition involves the coherent assignment of responsibilities for the coordinated oper-
ation of the elements required to perform a software reconfiguration [Kephart and Chess, 2003].
That is, monitoring elements notify context events, signaling a new context condition (con-
textCondition). For this new condition, the contract specifies a respective QoS level to be ful-
filled (SLOObligation) and a guaranteeing rule-set (QoSRuleSet). This rule-set is used to perform
the reconfiguration of the component-based structure application representation (CBSAR) of the
actual running system.

72

4.2. E-Graph Modeling of QoS Contracts-Driven Reconfiguration

Graph node

Data node

Graph edge

Data edge

Legend

Figure 4.9: Illustration of our E-Graph based QoS contract definition. The Integer type, mult and multi-
plicity attributes, for multiplicity constraints, are presented implicitly in the usual (short) notation.

By using the same formalism to define QoS contracts as a manageable part of the system,
QoS contracts themselves are enabled to be dynamically reconfigured, if necessary. This can be
performed using the same mechanism used to reconfigure the managed application. However,
for this to be automated, this would require additional mechanisms such as a second feedback-
loop to perform the adaptation of these contracts, given the definition of higher-level goals, as
defined in [Kramer and Magee, 2009] or [Villegas et al., 2012].

Example 4.2 (QoS Contract on Confidentiality). We previously presented the confidentiality require-
ments for the videoconference software system in our application scenario. These requirements are syn-
thesized in table 4.2, which specifies the expected QoS levels to be guaranteed by this application under
different context conditions, signaled by respective context events. It also specifies the guaranteeing re-
configuration rule-sets to be applied to fulfill the respective QoS levels. The first row (labeled 1) establishes
that whenever the client connects from an intranet-serviced area (i.e., notified by “from_intranet” context
events) she should expect a QoS level corresponding to a clear channel communication (“clearChannel”).
The corresponding guaranteeing rule-set, defined by a software evolution architect once negotiated the
QoS levels with the client, is named “R_clearChannel”. The reconfiguration rules (as defined in the next
section) in this rule-set must be given by the user in such a way that they address the specified QoS levels.
The interpretation is similar for the other two rows.

The NetAdapter component is specified as the QoSGuarantor, and an AccessPointProbe on this com-
ponent as the QoSMonitor for the confidentiality QoS property. This monitor is used by the reconfigura-
tion mechanism to continuously check the changes in the context conditions and violations of the actual
QoS level. The e-graph representation for this contract is given in Fig. 4.10.

4.2.4 The Component-Based Structure Reconfiguration System

Having formalized the structural parts of a managed software application in terms of e-graphs,
we define our software reconfiguration system by extending typed attributed graph transforma-
tion systems. Our reconfiguration system is supported by our definitions of component-based
structure, application reflection, QoS contract, and the following on reconfiguration rules.

Definition 4.6 (CBS Reconfiguration Rule –CBSRR). A component-based structure reconfiguration

rule, CBSRR, is a tuple (L, K, R, l, r, lt, kt, rt), abbreviated CBSRR = (L
l
←− K

r
−→ R), where

L (left hand side), K (left-right gluing), and R (right hand side) are e-graphs related through graph
morphisms l, r. CBSRR denotes a graph-rewriting rule transforming L into R. The graph morphisms

73

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

Table 4.2: QoS contract example on confidentiality for the RVCS application

Videoconference Application Obligations

Context Events Expected QoS Level Guaranteeing Rule Set

1: from_intranet clearChannel R_clearChannel
2: from_extranet confidentChannel R_confidentChannel
3: no_network_conn localCache R_localCache

Assignment of Responsibilities
- System Guarantor: System.NetAdaptera

- Context Monitor: System.NetAdapter_AccessPointProbeb

a The software application component providing the network connection under the required
QoS conditions.

b The designated component responsible for checking changes on the access points used by the
application network connection, and corresponding confidentiality violations.

Figure 4.10: E-Graph QoS contract example on confidentiality for the RVCS.

lt : L → CBS, kt : K → CBS and rt : R → CBS ensure that the rule elements involve only
component-based structures. CBSRR rules are said to reconfigure L into R.

Conceptually, a reconfiguration rule encodes a strategy to address a particular QoS level on
a QoS property. This kind of strategies have been analyzed and proposed in different computer
science knowledge areas, having been encoded in design patterns. For example, Ramachandran
and Dougherty et al. present comprehensive catalogs of security design-patterns at the architec-
tural, design and implementation levels for enabling valid communications in transparent ways;
all otherwise invalid communication, whether unauthorized, unauthenticated, unexpected, un-
invited, or unwanted being blocked [Ramachandran, 2002, Dougherty et al., 2009]. Krakowiak
and Buschmann et al., present availability and performance design-patterns for distributed systems
[Krakowiak, 2009, Buschmann et al., 2007]. Hence, system evolution architects can take advan-

74

4.2. E-Graph Modeling of QoS Contracts-Driven Reconfiguration

tage of known design patterns that address this kind of conditions on QoS properties to encode
them in the left and right hand sides of reconfiguration rules. All left-hand sides of rules in a
rule-set are named after that rule-set name. Different left hand sides for a similar right hand side
in a rule-set are possible as far as they have no termination conflicts, as we show in Section 6.4).

Example 4.3 (Reconfiguration rule). The QoS contract on confidentiality for our videoconference ex-
ample specifies a guaranteeing set of reconfiguration rules, R_confidentChannel, to be applied when the
user moves to an extranet-serviced area and the contract is in risk of being violated. Figure 4.11 illus-
trates the rule, in that set, that applies when the user is moving from the intranet. The left-hand side
(LHS) of the rule is used by pattern-matching to find a component that supports a ClearChannel (by its
c.QoSProvision attribute). The right-hand side (RHS) specifies that (i) the matched components by the
LHS must be kept with their corresponding interface bindings, except those identified with indexes 4 and
5 (“4:Binding” and “5:Binding”); (ii) the new (highlighted) elements must be configured and deployed
to provide a tunneled (i.e., confident) channel; (iii) the new leftmost interfaces must be connected to the
previously existing ones, indexed with 2 and 3, and those indexed with 4 and 5 must be reconnected
to the new rightmost interfaces, respectively; and (iv) the c_QoSProvision attribute must be updated as
provisioning a SecureChannel. For readability reasons, the left-right gluing K and graph morphisms
l, r, lt, kt, rt are omitted in this figure; K, l, r would correlate each of the corresponding non-highlighted
elements in the RHS with their LHS counterparts.

Figure 4.11: The E-Graph R_confidentChannel reconfiguration rule.

Negative Application Conditions. Left-hand sides (LHSs) of reconfiguration rules are called
“application conditions” as they specify the necessary conditions that a managed application
structure must fulfill for a rule to be applied. Checking these conditions means to find a match
of the LHS in the system structure. However, reconfiguration rules can (optionally) have one
or more negative application conditions (NACs) to specify conditions that avoid their application.

Each NAC is specified in a rule (L
l
←− K

r
−→ R) by associating its LHS L with an e-graph N

through a respective graph morphism n : L → N . To apply a rule with NACs, no match must
exist of its NACs in the system structure. That is, a NAC is satisfied through a match m : L → G
if it is not possible to find a total morphism t : N → G such that any two graph objects mapped
to one another by u are mapped to the same object in the system graph G. More formally, there
must exist no total morphism t : N → G such that t ◦ u = m.

75

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

Definition 4.7 (CBS Reconfiguration System –CBSRS). The component-based structure reconfigura-
tion system, CBSRS, is a tuple (DSig, CBS,ℜS , P), whereDSig is the data type signature fromDef. 4.3
(CBS); CBS the component-based structure definition; ℜS the reflection structure of the managed appli-
cation to reconfigure in its actual running state; and P a set of reconfiguration rules, with CBS, ℜS , and
P according to Def. 4.3, 4.4, and 4.6, respectively, for:

1. (What and Where to reconfigure) The rule-set P is applied to the managed application reflection
structure ℜS = (G, fS , t) by graph-based pattern matching. That is, for each reconfiguration

rule p = (L
l
←− K

r
−→ R) in P , we determine whether there exists a match of p in ℜS . For

this, we define the boolean match(p,ℜS) function, which returns True if there exists a morphism
m : L → G (called a matching of the left-hand side of p, L, in G), and False otherwise. This
matching determines the CBS potential elements to be reconfigured.

2. (How to reconfigure) We call a direct reconfiguration G
p,m
⇒ H the application of the e-graph trans-

formation of G into H, as specified by the reconfiguration rule p, according to Def. 4.6.

3. (One-step CBS reconfiguration) Finally, the CBS reconfiguration is performed through the
reconfig(ℜS , P) operation. That is, the sequence of direct transformations ℜS = G0 ⇒ G1 ⇒

. . . ⇒ Gn = ℜ′

S , writtenℜS
∗

⇒ ℜ′

S , is performed until no more rules in P can be applied, obtaining
a newmanaged application reflection structure,ℜ′

S . We guarantee that this sequence is terminating
at configuration time by checking the parameterized reconfiguration rules for termination conflicts,
as we show in Section 6.4. From the implied operations in the sequence of transformations, a whole,
correct-by-construction reconfiguration plan is synthesized.

Example 4.4 (Managed application reconfiguration). After applying the reconfiguration rule of Ex-
ample 4.3, we obtain the reconfigured application structure illustrated in Fig. 4.12. This new struc-
ture fulfills the QoS level (i.e., confidentChannel) for the new context condition (i.e., network connection
fromExtranet), as specified in the contract. In this figure, the components that were added and deployed by
the applied reconfiguration rule are highlighted. Correspondingly, Fig. 4.13 illustrates the reconfigured
runtime application structure in component-based notation.

Finally, it is worth noting in our reconfiguration system (CBSRS) that our QoS Contract def-
inition involves all the required elements to address the questions when, what, where and how
to reconfigure a managed software application to preserve its contracts. In this section we an-
swered in detail the latter three questions. In the next section we precise our answer to the when
question by formally modeling the semantics of our QoS contract definition using finite-state
machines. As we introduced previously, the reconfiguration cycles, whose goal is the preserva-
tion of QoS contracts, start and end in actual running managed software applications, triggered
by context events.

4.3 Finite State Machine Modeling of QoS Contracts States

A Finite State Machine (FSM) is specified by a set of states and transitions among them, being
useful for modeling the global operation of a software system in terms of its states with respect to
a particular aspect of interest [Hopcroft et al., 2006]. We use FSMs to (i) model the QoS contracts
states and transitions, not only for the (QoS levels) states of contract fulfillment, but also for
the states of contract unfulfillment; (ii) maintain the consistent association of these contract states
with running-software states; and (iii) control QoS contract-preserving reconfiguration cycles
according to context changes. In this way, FSMs add to our model robustness with respect to
context unpredictability.

76

4.3. Finite State Machine Modeling of QoS Contracts States

Figure 4.12: E-Graph reconfigured reflection structure for the RVCS example.

Figure 4.13: Reconfigured application structure for the RVCS example.

4.3.1 An Initial Interpretation of QoS Contracts as FSMs

Our definition of QoS contract (QoSC, Def. 4.5 on page 72) comprises a set of QoS properties
(through its property attribute). Each property has a set of obligations (obligation), where each
obligation specifies:

• a QoS-level objective (SLOPredicate) to be fulfilled under
• a specific context condition (i.e., contextCondition), whose occurrence is signaled by
• a type for the context events that notify of changes to this context condition (i.e., contextEv-
Type); and

• a set of guaranteeing reconfiguration rules (i.e., ruleSet) to reconfigure the managed appli-
cation, with the expected effect of fulfilling the corresponding QoS level.

On the other side, an FSM is a 5-tuple 〈STATES, start, ACCEPT, Σ, δ〉, where

• STATES is a finite set of states (the QoS levels specified in the contract),
• start ∈ STATES is the contract state that corresponds to the managed software applica-

77

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

tion state when initially executed,
• ACCEPT ⊆ STATES is a set of accepting states (in our caseACCEPT = STATES, given

that all contract states are acceptable finishing states for the execution of managed software
applications),

• Σ is a finite input alphabet (the set of context events to signal context changes, thus implying
changes of QoS levels), and

• δ : STATES × Σ → STATES is the transition function.

Thus, from the relationship between these two structures, QoSCs and FSMs, it is easy to obtain
Algorithm 4.1 to map a QoS contract into the corresponding FSM.

Algorithm 4.1 FSM_from_QoS_Contract_First_Version
Input: qosContract : QoSC /* QoSC from Def. 4.5 */
Output: fsm : tuple〈STATES, start, ACCEPT, Σ, δ〉
1: fsm.STATES ← { }
2: fsm.Σ ← { }
3: fsm.δ ← { }
4: for all qosProp ∈ qosContract.C.property do
5: for all sloOblig ∈ qosProp.obligation do
6: curstate ← make_indexed_state(sloOblig.SLOPredicate)
7: fsm.STATES ← fsm.STATES ∪ {curstate}/* build all the FSM states */
8: fsm.Σ ← fsm.Σ ∪ sloOblig.contextEvType /* and the FSM events */
9: end for

/* Then define the FSM transitions among the states: */
10: for all sloOblig ∈ qosProp.obligation do
11: curstate ← get_indexed_state(fsm.STATES, sloOblig.SLOPredicate)
12: for all event ∈ sloOblig.contextEvType do
13: for all eachstate ∈ fsm.STATES} do /* Including the curstate */
14: fsm.δ ← fsm.δ ∪ {(〈eachstate, event〉, curstate)}
15: end for
16: end for
17: end for
18: end for
19: fsm.ACCEPT ← fsm.STATES
20: return fsm

This algorithm produces correct-by-construction FSMswith respect to the QoS contract spec-
ification. However, we can distinguish between two different kinds of context conditions that
can be included in QoS contracts: (i) context conditions that may occur freely, independent of
any other context conditions; and (ii) context conditions whose occurrences depend on the oc-
currence of other context conditions. We present instances of the first case in Example 4.5, while
the cases corresponding to the second case are analyzed in the next section.

Example 4.5 (Straight FSM representation of QoS contracts). Applying Algorithm 4.1 to the con-
tract example on confidentiality illustrated previously, we obtain the FSM presented in Fig. 4.14. In this
figure, states represent QoS levels to be fulfilled by the videoconference application (i.e., clear channel
structure, corresponding to the application state to be configured when connected from the intranet; con-
fident channel structure, to be configured when connected from the extranet; and local cache structure
when having no network connection). On each state, monitors notify context events correspondingly
of connection types fromIntranet, fromExtranet, and noNetwork. It is worth noting the correspondence
between the QoS levels specified in the contract and the FSM states, as well as how the transitions ex-
press the possibilities for the user to move indistinctly from any place to another at anytime, being these

78

4.3. Finite State Machine Modeling of QoS Contracts States

places either in intranet or extranet-serviced areas, or even having no access at all to any network. That
is, the occurrence of any of these conditions are independent of the occurrences of the others. We observe
a similar situation for the FSM representation of a contract on availability illustrated in Fig. 4.15. In
this case, monitors notify context events on bandwidth (bw) changes (i.e., events correspondingly of types
bw_lte_12 (i.e., bw ≤ 12), bw_between_12_128 (i.e. 12 < bw < 128) and bw_gte_128 (i.e. bw ≥ 128)).

Figure 4.14: Finite state machine representation for the QoS contract example on confidentiality.

Figure 4.15: Finite state machine representation for a QoS contract on availability.

4.3.2 Reformulation of FSMs to Model QoS Contracts States

In this section we illustrate and analyze the cases corresponding to the QoS context conditions
whose occurrences depend on the occurrence of other context conditions. The following exam-
ple illustrates one of such cases.

Example 4.6 (FSM representation of a QoS contract on throughput). Table 4.3 illustrates a con-
tract example for software services whose minimum throughput rates depend on calendar dates, such as
the monthly payment of taxes on sales26. Given that people typically pay these services in the last (in-
creasingly) few days of the month, the software applications implementing these services must support
correspondingly the expected high increments in service load for these days. Thus, for the first 15 days
of the month (row 1 of the table), the expected throughput is of 100 transactions per minute, whereas for
the last 4 days it is of 900 transactions per minute (row 4). Figure 4.16 presents the corresponding FSM
obtained with our algorithm.

It is worth noting that for the cases of context conditions with inter-dependencies, our algo-
rithm produces superfluous transitions. For instance, in the first state “T100/min” the transition
corresponding to the event of changing to day 24—day24 labeled (A) in Fig. 4.16—is clearly su-
perfluous. In this state (i.e., between days 1 and 15), the event changing to day 24 will not occur
before the occurrence of events changing to days 16 to 23, which are already specified by their

26For simplicity reasons, we only consider the conditions and transitions for 31-day months.

79

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

Table 4.3: QoS contract example on throughput

Videoconference Application Obligations

Context Events Service Level Objective Guaranteeing Rule Set

1: day1, day2_15 T100/min R_baseConfig
2: day16, day17_23 T150/min R_1.5xbaseConfig
3: day24, day25_27 T300/min R_3xbaseConfig
4: day28, day29_31 T900/min R_9xbaseConfig

Assignment of Responsibilities
- System Guarantor: System.TaxProcessora

- Context Monitor: System.OSService.DateT imeProbeb

a The software application component responsible for processing tax requests, provi-
sioned with capabilities for supporting scalable throughput.

b The designated component for monitoring changes on calendar dates.

Figure 4.16: Finite state machine obtained applying Algorithm 4.1 to the contract example on through-
put.

respective transitions. In contrast, Fig. 4.17 presents the FSM version without such superfluous
transitions. These superfluous transitions are avoided by considering the dependencies among
context conditions. Thus, these dependencies determine the transitions among states.

Figure 4.17: A second FSM for the QoS contract on throughput, without superfluous transitions.

Moreover, from a more detailed examination of the definition of FSMs and our Algorithm
4.1, we identify other problems worth of improving the FSM realization of our QoS contracts.

80

4.3. Finite State Machine Modeling of QoS Contracts States

First, in this initial interpretation, context events must be specified explicitly to label each tran-
sition between states. This imposes very strict constraints for the identification and specifica-
tion of transition triggers—and the transition function (δ) itself—that can lead to a considerable
number of transitions [Harel, 1987] yet, in some cases, superfluous transitions. Second, the re-
configuration rules are not considered in the FSMs, thus a different invocation mechanism is
needed for their execution in the FSM. Even modifying the FSM to support entry/exit actions
as in the event-condition-action strategies [Colombo et al., 2006], the application of our recon-
figuration rule sets would require additional mechanisms, as event-condition-action strategies
specify only one action per event-condition. Third, the objective of QoS contracts is to specify
expected QoS levels on software services, thus they specify only states of fulfillment with their
corresponding transitions. Hence, to cope with robustness, we need to consider also the possi-
ble unexpected and undesirable states that could be reached by the managed application when
facing context conditions that were not foreseen by the user (e.g., a software evolution architect).
More importantly, in light of this required robustness, the superfluous transitions generated by
our algorithm become possible sources of additional unexpected and undesirable states, which
should be avoided.

Nonetheless, realizing these improvements is a challenging task as some of the improve-
ments depend on the others, and even more, the improvement of some may imply to worsen
the others. For instance, adding unexpected and undesirable states would imply to specify all
of the exact context events and conditions that may cause these states, which is of course con-
tradictory to the problem of transitions explosion. Yet another solution could be to use “wild
card” events. However, this would also imply that our algorithm would have to generate tran-
sitions from every state of contract fulfillment to each of the undesirable states, with the added
difficulty of specifying the semantics of each wild card event in the transitions.

Therefore, our solution is to take advantage of our component-based reconfiguration system
based on e-graphs (CBSRS, Def. 4.7 on page 76) that we defined previously, as a more powerful
way of specifying the FSM transitions. For this, we (i) parameterize the FSM with our CBSRS,
(ii) add five auxiliary functions, and (iii) replace the transition function (δ) of the original FSM
definition, as follows.

Definition 4.8 (QoS-Contract FSM –QoSC_FSM). A QoSC_FSM is the tuple
〈STATES, ACCEPT, Σ, Γ, Ψ, κ, η, ρ, π, CBSRS, δ〉, where

• STATES is the finite set of expected QoS levels to fulfill. As these levels are expressed as predicates,
we label each state with the corresponding indexed predicate.

• ACCEPT ⊆ STATES is the set of states of contract fulfillment. The final managed application
state, once finished its execution, should correspond to one of these states.

• Σ (the controlled context events alphabet) is the finite set of context events specified by the user
to notify changes of QoS levels, thus requiring the managed application to be reconfigured. In
contrast, we distinguish this set from ΣU , the set of all possible context events that can be reported
from context monitors.

• Γ is the set of guaranteeing rules, specified according to our definition of CBS reconfiguration rules
(Def. 4.6). These rules specify how to perform reconfigurations (i.e., transitions) between the graph
representations of running-software states.

• Ψ : STATES → PREDICATE maps each target state with the predicate (i.e., QoS level) to be
fulfilled on it. PREDICATE is the set of well-formed first-order logic formulae.

• κ : STATES → PREDICATE maps each target state with the corresponding context condition
that holds on it.

• η : STATES → P(Σ) maps each target state with the type of the context events that trigger

81

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

transitions to it. P(Σ) is the power set (i.e., the set of all subsets) of Σ.

• ρ : STATES → P(Γ) maps each target state to the guaranteeing reconfiguration rule-set to fulfill
its QoS-level objective. P(Γ) is the power set of Γ.

• π : STATES → QoSProperty maps each target state to the QoS property in which it is defined.
QoSProperty is the finite set of QoS properties for which the user specifies context events, QoS
levels, and reconfiguration rules.

• CBSRS is the component-based structure reconfiguration system (from Def. 4.7, p. 76).

• δ : CBSAR×Σ×∆U → STATES is the transition function, where CBSAR is the Component-
Based Structure Application Reflection definition (Def. 4.4), and ∆U is a reference to the universal
execution context space of software applications. That is, we leave this universal context space
intentionally unspecified in this definition, given the practical impossibility of formalizing it, even
in an abstract form. Any abstraction would imply a partial representation of the context of execution
of any software system, which, at some point would turn to be incomplete and formally unsound.
Instead, having it as a reference to an abstract and external construct allows us to refer to its
particular instances when evaluating the reconfigured managed application by sensing, directly or
indirectly, the actual managed application’s context of execution, which is more realistic and feasible
than formalizing it.

In the following sections we illustrate how this new definition of state machine, in the context
of our e-graph based QoS-driven reconfiguration model, solves the aforementioned problems,
including the management of unexpected and undesirable states. The inclusion of these states
accounts to address robustness, according to the goals of this dissertation.

4.3.3 The Exception and Unstable States of Contract Unfulfillment

Our previous interpretation of QoS contracts is based on the QoS-level objectives to fulfill, mean-
ing that up to this point our model considers only the states of contract fulfillment. To address
robustness facing situations unforeseen by the user and derived from unexpected context situ-
ations, we identify two states of contract unfulfillment. These states, to be added to the states of
contract fulfillment in their automatic derivation from QoS contracts, are the following:

• The exception state, modeling the specific situations in which the user specifies either:

– an incomplete set of reconfiguration rules (i.e., no rule matches a given managed
application state or context condition); or

– a (set of) reconfiguration rule(s) whose application results in a managed application
that violates the component-based integrity constraints; or

– a set of context events excluding others that actually occur in the application execu-
tion context.

• The unstable state, which models the situation in which the specified rules are not relevant
or not enough to achieve the fulfillment of a given QoS level.

The value of these states, besides the user not having to worry about robustness issues such
as specifying undesirable states and transitions, is that we can define the formal semantics of
these states and transitions. In this way, different types of operational actions to warn the user
at runtime about the corresponding anomalous situations can be associated to these states, for
instance after a repeated number of occurrences.

82

4.3. Finite State Machine Modeling of QoS Contracts States

4.3.4 The QoSC_FSM Semantics

So far, we have given a new definition of FSMs—QoSC_FSMs—tailored for our model of QoS
contract-driven and e-graph based reconfiguration system. Based on this definition and our
previous considerations, we refine our previous algorithm to obtain Algorithm 4.2, which adds
the states of contract unfulfillment to the set of states, and defines the mappings for the added
auxiliary functions. This algorithm produces correct-by-construction FSMs with respect to QoS
contract specifications considering conditions with and without inter-dependencies. However,
the mapping between QoS contracts and QoSC_FSMs given by our new algorithm constitutes
only the structural part of the QoSC_FSM semantics. Thus, in this section we complete the
dynamic part of this semantics by defining δ, the transition function.

Algorithm 4.2 FSM_from_QoS_Contract_Definitive_Version
Input: qosContract : QoSC /* QoSC from Def. 4.5 */
Output: qfsm : 〈STATES, start, ACCEPT, Σ,Γ,Ψ, κ, η, ρ, π, CBSRS〉 /* QoSC_FSM, Def. 4.8 */
1: Initialize STATES, Σ,Γ,Ψ, κ, η, ρ, π with { }
2: for all qosProp ∈ qosContract.C.property do
3: for all sloOblig ∈ qosProp.obligation do
4: curState ← make_indexed_state(sloOblig.SLOPredicate)
5: qfsm.STATES ← qfsm.STATES ∪ {curState}/* build all the FSM states */
6: qfsm.Σ ← qfsm.Σ ∪ sloOblig.contextEvType /* the FSM events */
7: qfsm.Γ ← qfsm.Γ ∪ sloOblig.ruleSet /* and the FSM reconfiguration rules */
8: qfsm.Ψ ← qfsm.Ψ ∪ {(curstate, sloOblig.SLOPredicate)}/* represented predicate */
9: qfsm.κ ← qfsm.κ ∪ {(curstate, sloOblig.contextCondition)}/* context condition */

/* Then, for the FSM transitions: index and associate: */
10: eventSet ← make_indexed_set(sloOblig.contextEvType) /* the events */
11: ruleSet ← make_indexed_set(sloOblig.ruleSet) /* and associated ruleSet */
12: qfsm.η ← qfsm.η ∪ {(curstate, eventSet)}
13: qfsm.ρ ← qfsm.ρ ∪ {(curstate, ruleSet)}
14: qfsm.π ← qfsm.π ∪ {(curstate, qosProp)}
15: end for
16: end for
17: qfsm.ACCEPT ← qfsm.STATES
18: exceptionState ← make_indexed_state(Exception)
19: qfsm.STATES ← qfsm.STATES ∪ {exceptionState}
20: unstableState ← make_indexed_state(Unstable)
21: qfsm.STATES ← qfsm.STATES ∪ {unstableState}
22: return qfsm

Intuitive Semantics

To informally illustrate the semantics of QoSC_FSM states and transitions we use the contract
example on confidentiality (cf. Example 4.2 on page 73), specifically when the videoconference
system receives the event of entering into an extranet-serviced area.

Asmentioned before, a QoSC_FSM controls the QoS levels in its contracted states of both, ful-
fillment and unfulfillment. However, we must emphasize that the final objective of QoSC_FSMs
is to maintain, as far as possible, the managed software application in the states that correspond
to those of QoS contract fulfillment. This is a major responsibility of the transition function, of
course, supported by the auxiliary functions that we included in our redefined FSM, and spe-
cially the reconfiguration rules given by the user. Hence, the states of fulfillment to be reached
acquire a predominant importance in the definition of our transition function. That is, indepen-
dently of the current state of the managed software application, what is most important in a

83

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

transition triggered by a new context condition is that the managed software application ends
fulfilling the QoS-level objective that corresponds to the new condition. However, if reaching a
fulfillment state is not possible, our model determines the respective causes to notify the user,
and leaves the system in a corresponding state of unfulfillment, as explained before.

In light of this, we recall that our component-based structure reconfiguration system, CBSRS
from Def. 4.7, specifies precisely how to reach a fulfillment state from any of the possible man-
aged application states, using graph-based pattern matching and graph transformation with the
rules given by the user. This is achieved through the guaranteeing rule-set associated to each
of the QoSC_FSM states. All rules in a rule-set are specified in left-hand and right-hand sides
(LHS and RHS respectively), according to Def. 4.6, as follows. On one side, the RHSs of all
rules in a same rule-set encodes a design pattern (possibly the same) to be “implanted” in the
target system to fulfill the expected QoS level. On another side, corresponding LHSs encode the
specific patterns that represent the different relevant source states that can present the managed
application when it is notified with context changes.

In the case of our example on confidentiality, entering into an extranet-serviced area implies
the corresponding QoS level to be fulfilled, thus requiring a confidential channel. Additionally,
the contract specifies two other possible context conditions entailing different QoS levels: having
a network access from an intranet, and having no network access at all. Hence, the guaranteeing
rule-set associated to this QoS level must have two rules. The LHS of the first rule encodes the
minimum pattern to be identified in the state of the managed application when it is connected
from the intranet, that is, having a clear channel network connection. This pattern specifies the
minimum characterizing elements to identify it in a managed application structure, which are
in this case the components responsible for maintaining the network connection and the corre-
sponding c_QoSProvision attribute, as we illustrated previously (cf. Fig. 4.11). Correspondingly,
the LHS of the second rule encodes the pattern representing the state of the managed application
when having no network access, that is, having a local cache. The RHS of these two rules en-
codes a pattern to deploy and interconnect components that encipher/decipher the transmitted
data, thus implementing a confidential channel and fulfilling the target QoS level, as illustrated
in the same figure.

QoSC_FSM Added Functions

To support the definition of our δ transition function we added five auxiliary functions to the
QoSC_FSM structure: Ψ, κ, η, ρ and π. According to their definitions, η : STATES → P(Σ)
can be used to identify the set of triggering events that cause a transition to a given state; Ψ :
STATES → PREDICATE to identify the predicate expressing the QoS level that must be
fulfilled in a given state; and ρ : STATES → P(Γ) to retrieve the reconfiguration rule-set
to fulfill the QoS level associated to a given state. Concerning π and κ, as we use them for
managing multiple QoS properties in a QoS contract, and performing operational verification of
context conditions in the formal model implementation, we defer their explanation to Sections
4.3.5 and 5.4.1, respectively.

The mappings for Ψ, κ, η, ρ, and π are automatically obtained from QoS contract specifica-
tions, resulting from lines 2 to 16 of our Algorithm 4.2. For the example of the contract on confi-
dentiality, corresponding to the QoS level to be achieved when moving to an extranet-serviced
area, the mappings are the following27:

• Ψ(clearChannel) 7→ ”clearChannel”

27Despite any names could be used, we chose very representative ones to make the examples straightforward to
read.

84

4.3. Finite State Machine Modeling of QoS Contracts States

• η(clearChannel) 7→ from_intranet, with from_intranet = {FromIntranet}

• ρ(clearChannel) 7→ R_clearChannel

• Ψ(confidentChannel) 7→ ”confidentChannel”

• η(confidentChannel) 7→ from_extranet, with from_extranet = {FromExtranet}

• ρ(confidentChannel) 7→ R_confidentChannel

• Ψ(localCache) 7→ ”localCache”

• η(localCache) 7→ no_network_conn, with no_network_conn = {NoNetwork}

• ρ(localCache) 7→ R_localCache

Here we present the values returned by Ψ, which represent predicates, as strings. These
predicates are evaluated in the execution of the reconfigured managed application under the
actual context of execution by the function evalInContext. The values returned by this function
are (F)ulfilled and (U)nfulfilled. The purpose of evalInContext is to verify, by sensing the ex-
ecution context at its invocation time, whether the predicate that corresponds to a given QoS
level is satisfied (returning F), or not (returning U). In this example, Ψ(confidentChannel),
which is mapped to the predicate ”confidentChannel”, would be evaluated by sensing if the
(re)configured application fulfills the predicate “confidentChannel (i.e., the transmitted data
is wrapped in a ciphered packet). In the previous example on throughput (cf. Example 4.6),
Ψ(T100/min) is mapped to ”T100/min”, which would be evaluated by sensing if the predicate
“T100/min” is satisfied or not (i.e., the application is performing 100 transactions per minute at
the invocation time). This function is fundamental in our model, given that it is not obvious that
these conditions will hold after performing a reconfiguration.

In the context of our example, assume that we have a QoSC_FSM with the
functions defined as presented above, obtained with our Algorithm 4.2. We
also would have Σ = {FromIntranet, FromExtranet, NoNetwork} and Γ =
{R_clearChannel, R_confidentChannel, R_localCache}. When the current state of the
managed application is connected from the intranet and changes to an extranet-serviced area, it
receives the event e = FromExtranet, and, of course, e ∈ Σ holds. Then, in this situation we
have:

• e ∈ η(confidentChannel) holds, given η(confidentChannel) 7→ from_extranet,
from_extranet = {FromExtranet}, and e = FromExtranet.

• The next target state s corresponding to the context condition signaled by event e is given
by ∃s : s ∈ STATES | e ∈ η(s), that is, s = confidentChannel.

• The QoS level to fulfill in this target state s is Ψ(∃s : s ∈ STATES | e ∈ η(s)), that is,
Ψ(confidentChannel) 7→ ”confidentChannel”.

• The rule-set to apply to reach this target state s is ρ(∃s : s ∈ STATES | e ∈ η(s)), that is,
ρ(confidentChannel) 7→ R_confidentChannel.

Generalized Conditions for the Transitions to the QoSC_FSM Target States

Based on the previous definitions and the explanation of the QoSC_FSM structure, we can no-
tably generalize the transition conditions to the states of contract fulfillment. For this, besides
evalInContext, we recall the CBSRS boolean functions match and reconfig that we defined with it.
match(r,ℜS) returns true if there exists a match of rule r inℜS , and false otherwise. Having a re-
configuration rule-set γ such that r ∈ γ and match(r,ℜS), reconfig(ℜS , γ) uses γ to reconfigure
ℜS , a managed application reflection structure. If the reconfiguration succeeds, that is, the rule-
set produces a managed application reflection structure that conforms to the component-based
structural constraints, the function returns true; otherwise, it returns false.

85

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

Thus, the general condition for the transitions to contract fulfillment states, given the context
event e, on the running-software application reflection stateℜS , and under the execution context
∆, is:

e ∈ Σ ⊼ ∃s, r : s ∈ STATES, r ∈ Γ | r ∈ ρ(s | e ∈ η(s))
[

match(r,ℜS)⊼
reconfig(ℜS , ρ(s | e ∈ η(s))) ⊼ evalInContext(Ψ(s | e ∈ η(s)), ∆) = F

] (4.1)

We read this condition as follows:

• given the occurrence of event e (i.e., a new context situation is present), considered among
the set of valid context events Σ, and

• there exists a target state s to be reached in the new context signaled by e (i.e., s | e ∈ η(s)),
• and a reconfiguration rule r in the rule-set to guarantee the fulfillment of the target state s

(i.e., r ∈ ρ(s | e ∈ η(s))) such that we can find a match of r in the current graph structure of
the managed application ℜS),

• and after successfully reconfiguring the managed application reflection structure with the
respective rule-set (reconfig(ℜS , ρ(s | e ∈ η(s)))), the evaluation of the QoS level to be
fulfilled in the target state is F (Fulfilled), that is, evalInContext(Ψ(s | e ∈ η(s)), ∆) = F .

It is worth noting that the existence of matching rules in the managed application upon a
change in context conditions necessarily implies a reconfiguration. We use the symbols ⊼ and
⊻ for the consecutive logical conjunction and disjunction, respectively. Consecutive expressions
operated with the ⊼ (⊻) operator are evaluated from left to right and stops in the first one that
evaluates to false (true), if any, being it an operational version of logical conjunction (disjunction)
used in the theory of abstract syntax-directed translation [Aho and Ullman, 1972].

In condition (4.1) we recall the predominance of target states over source states that we em-
phasized previously. Thus, for each of the target states, which correspond to the contractual QoS
levels to be fulfilled, we only need to specify the conditions required by the respective incoming
transitions. The justification for this is that we use the LHSs of reconfiguration rule-sets as part
of the condition for the incoming transition to be satisfied in the match operation. In this way, as
previously explained in the informal semantics presentation, in the generalized condition (4.1)
we capture the transitions that the user may specify coming from any of the possible source
states (i.e., all other QoS levels specified in the contract).

Moreover, we follow the same strategy for the aforementioned added states of contract un-
fulfillment (Unstable and Exception). For the transitions to these two states we need similar con-
ditions, keeping in mind that those states result from anomalous situations encountered when
trying to reach fulfillment states. These conditions correspond to the robustness requirements
given in Sect. 4.3.3. Hence, the condition to reach the unstable state is the same as (4.1), except
that the QoS level to be fulfilled in the target state is not achieved (i.e, the QoS-level predicate
is evaluated as (U)nfulfilled), meaning that the rules given by the user are not relevant or not
sufficient to achieve the fulfillment of the QoS level:

e ∈ Σ ⊼ ∃s, r : s ∈ STATES, r ∈ Γ | r ∈ ρ(s | e ∈ η(s))
[

match(r,ℜS)⊼
reconfig(ℜS , ρ(s | e ∈ η(s))) ⊼ evalInContext(Ψ(s | e ∈ η(s)), ∆) = U

] (4.2)

For the exception state we have three disjoint conditions. The first expresses that the user gave an
incomplete set of reconfiguration rules (i.e., no rule matches a given application state or context
condition: ∀r : r ∈ ρ(s | e ∈ η(s))

[

¬match(r,ℜS)
]

); the second, that an event occured but it is not
in the set of context events specified by the user as valid (e ∈ ΣU \Σ); whereas the third, that the
application of some of the rules given by the user violate the structural integrity constraints of

86

4.3. Finite State Machine Modeling of QoS Contracts States

component-based software (i.e., ¬reconfig(ℜS , ρ(s | e ∈ η(s)))):

e ∈ Σ ⊼ ∃s : s ∈ STATES | ∀r : r ∈ ρ(s | e ∈ η(s))
[

¬match(r,ℜS)
]

∨
(e ∈ ΣU \ Σ)∨
(

e ∈ Σ ⊼ ∃s, r : s ∈ STATES, r ∈ Γ | r ∈ ρ(s | e ∈ η(s))
[

match(r,ℜS)⊼
¬reconfig(ℜS , ρ(s | e ∈ η(s)))

])

(4.3)

Definition of the Transition Function

From the previous illustration, it is easy to observe that the same condition (4.1) expresses cor-
rectly the transition requirements that target the three states of contract fulfillment of the con-
fidentiality example, as illustrated in Fig. 4.18. In this figure, the output state of δ, that is,
δ(ℜS , e,∆), depends on the actual managed application reflection state (ℜS : CBSAR), the con-
text event received (e ∈ Σ), and the context of execution (∆).

Clear

Channel

e ∈ Σ ⊼ ∃s, r : s ∈ STATES, r ∈ Γ | r ∈ ρ(s | e ∈ η(s))
[

match(r,ℜS)⊼

reconfig(ℜS , ρ(s | e ∈ η(s))) ⊼ evalInContext(Ψ(s | e ∈ η(s)), ∆) = F
]

Confident

Channel

e ∈ Σ ⊼ ∃s, r : s ∈ STATES, r ∈ Γ | r ∈ ρ(s | e ∈ η(s))
[

match(r,ℜS)⊼

reconfig(ℜS , ρ(s | e ∈ η(s))) ⊼ evalInContext(Ψ(s | e ∈ η(s)), ∆) = F
]

Local

Cache

e ∈ Σ ⊼ ∃s, r : s ∈ STATES, r ∈ Γ | r ∈ ρ(s | e ∈ η(s))
[

match(r,ℜS)⊼

reconfig(ℜS , ρ(s | e ∈ η(s))) ⊼ evalInContext(Ψ(s | e ∈ η(s)), ∆) = F
]

Unfulfilled

Unstable

e ∈ Σ ⊼ ∃s, r : s ∈ STATES, r ∈ Γ | r ∈ ρ(s | e ∈ η(s))
[

match(r,ℜS)⊼

reconfig(ℜS , ρ(s | e ∈ η(s))) ⊼ evalInContext(Ψ(s | e ∈ η(s)), ∆) = U
]

Unfulfilled

Exception

e ∈ ΣU \ Σ

e ∈ Σ ⊼ ∃s, r : s ∈ STATES, r ∈ Γ | r ∈ ρ(s | e ∈ η(s))
[

match(r,ℜS)⊼

¬reconfig(ℜS , ρ(s | e ∈ η(s)))
]

e ∈ Σ ⊼ ∃s : s ∈ STATES | ∀r : r ∈ ρ(s | e ∈ η(s))
[

¬match(r,ℜS)
]

Figure 4.18: The QoSC_FSM transition function illustrated for the contract on confidentiality.

Based on this, we can abstract all the FSM fulfillment states as one “Contract Fulfillment”
state to simplify the presentation of QoSC_FSMs without loss of generality28. In this way, our
model of QoS contract preservation becomes the state-machine depicted in Fig. 4.19. In this fig-
ure, three possible transitions, corresponding to the generalized transition conditions (4.1), (4.2)
and (4.3), may occur: (A) RECONF-FULFILL; (B) RECONF-UNFULFILL; and (C) EXCEPTION.

28The abstraction of the “fulfillment” state can be seen as a superstate in the sense of Harel statecharts, in which
substates can transition internally without affecting other states in the statechart. Harel statecharts are used to im-
prove the legibility of finite-state machine representations [Harel, 1988]. Besides concurrency, this formalism models
clustering, hierarchy and history with an excessively complex semantics, none of this required in our model.

87

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

Figure 4.19: State machine for the QoS contract-preserving reconfiguration system. By design, the sys-
tem starts in a contract-fulfilled state. Changes in the actual context condition trigger transitions (i.e.,
software reconfigurations).

Considering the previous observations and this figure, we give the definition of our
QoSC_FSM transition function for each of the three generalized target states, Fulfilled, Unsta-
ble, and Exception, and corresponding generalized transition conditions, as follows.

Definition 4.9 (QoSC_FSM Transition Function). The transition function δ : CBSAR×Σ×∆U →
STATES (cf. Def. 4.8) defines output states depending on the actual managed application reflection
state (ℜS), a context event (e) received from context monitors, and the execution context (∆):

δ(ℜS , e,∆) =

Fulfilled∗ if e ∈ Σ ⊼ ∃s, r : s ∈ STATES, r ∈ Γ | r ∈ ρ(s | e ∈ η(s))
[

match(r,ℜS)⊼

reconfig(ℜS , ρ(s | e ∈ η(s))) ⊼ evalInContext(Ψ(s | e ∈ η(s)),∆) = F
]

Unstable if e ∈ Σ ⊼ ∃s, r : s ∈ STATES, r ∈ Γ | r ∈ ρ(s | e ∈ η(s))
[

match(r,ℜS)⊼

reconfig(ℜS , ρ(s | e ∈ η(s))) ⊼ evalInContext(Ψ(s | e ∈ η(s)),∆) = U
]

Exception if e ∈ Σ ⊼ ∃s : s ∈ STATES | ∀r : r ∈ ρ(s | e ∈ η(s))
[

¬match(r,ℜS)
]

⊻
(

e ∈ Σ ⊼ ∃s, r : s ∈ STATES, r ∈ Γ | r ∈ ρ(s | e ∈ η(s))
[

match(r,ℜS)⊼

¬reconfig(ℜS , ρ(s | e ∈ η(s)))
])

⊻
(

e ∈ ΣU \ Σ
)

For the target Fulfilled∗ state, s | e ∈ η(s) is the actual QoS-level state of fulfillment, while
Ψ(s | e ∈ η(s)) the corresponding QoS-level predicate to be satisfied. ΣU , as defined previously,
is the set of all possible context events that can be reported from context monitors.

4.3.5 Managing Multiple QoS Properties

In the previous sections we explained how our formal model supports the reconfiguration pro-
cess for preserving different QoS levels of a same QoS property. However, our QoS contract
definition allows the user to specify several QoS properties in the same QoS contract instance,
and our semantics also copes well with these multiple properties. Thanks to the fact that QoS
properties are orthogonal in software applications, specific design patterns can be applied inde-
pendently on these applications to determine their QoS properties. In this section we illustrate

88

4.3. Finite State Machine Modeling of QoS Contracts States

how our model preserves multiple QoS properties specified in a same QoS contract. For this,
we take advantage of the well separated specification of QoS properties established by our QoS
contract definition, in terms of the corresponding disjoint QoS levels, triggering context events
and reconfiguration rule-sets. Nonetheless, according to Algorithm 4.2, our QoSC_FSM seman-
tics produces an FSM for each QoS property specification in the contract. Thus, at runtime, we
need to track the current state on each of its different constituting FSMs. We characterize the
execution state of the QoSC_FSM as a binary relation (i.e., a vector) between QoS properties and
respective QoS levels.

Definition 4.10 (QoSC_FSM Execution State –QES). Given a QoS contract QoSC, the QoSC_FSM
execution state is the tuple 〈CURSTATE,ℜS〉, where:

• CURSTATE is the binary relation QoSC.property×(QoSC.property.obligation.SLOPredicate∪
{Exception, Unstable}) such that each QoS property appears exactly once in these pairs, related
either to one of its corresponding QoS levels, or to the exception or unstable state; and

• ℜS is the reflection structure of the managed application (CBSAR).

That is, CURSTATE is defined by the set of pairs (QoS-property, QoS-level) for each QoS
property in the contract. Each pair relates a QoS property either to its current QoS level state,
if this is fulfilled by the managed application, or to the exception or unstable state, if unful-
filled. For the videoconference system of our application scenario, the contract specifies two
properties with their respective QoS levels: confidentiality and availability (cf. Table 2.1, p. 40).
Thus, when initially executed from an intranet-serviced area, the QoSC_FSM execution state
is CURSTATE = {(Confidentiality, clearChannel), (Availability, voiceV ideo)}. That is, the
managed software application is initially fulfilling (i) the QoS level clearChannel; and (ii) the
QoS level voiceV ideo.

Concerning the transitions, given that context events are notified individually by context
monitors on specific context variables, a specific context event has direct effect on one specific
QoS property. Hence, each QoSC_FSM transition is caused by the transition of exactly one of
its QoS properties. Additionally, in light of multiple QoS properties, we observe that ℜS must
be computed at runtime on every state change. This observation is based on the fact that the
managed application can evolve dynamically from state to state on different properties, thus its
structure is not necessarily the same for a same execution state. Even though we could com-
pute statically all possible combinations of states, this would constitute a different semantics,
unnecessarily more complex and, besides, unpractical. First, this semantics would have to con-
sider the combination of each QoS level of a QoS property with all other QoS levels of all other
properties. Each of these combinations should be associated with the corresponding managed
application structure, resulting in a combinatorial explosion of combined states whose transi-
tions and triggering context events would be very intricate to specify and maintain. Second,
this contract semantics would have to resolve how to manage states of contract unfulfillment.
Third, even if it could include the states of contract unfulfillment, this would further complicate
the state transitions specification. Finally and most importantly, in contrast to our semantics,
this alternative semantics would not allow dynamic re-negotiation of contracts and QoS levels
at runtime (cf. Section 5.7.2, p. 102).

Algorithm 4.3 illustrates the QoSC_FSM execution control block, which is executed in re-
sponse to reconfiguration context events.

Line 1 reconfigures ℜS and performs the state transition using the δ function. Line 2 up-
dates the QoSC_FSM execution vector state (i.e., CURSTATE) on the property affected by e (i.e.,
π(s | e ∈ qfsm.η(s))), with the state returned by δ. We use the notation qes.CURSTATE[p] ← s
to express that the QoS property p is associated with s in the relation CURSTATE.

For our example, the values for π are:

89

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

Algorithm 4.3 QoSC_FSM transition executor
Input: e : ΣU , qes : QES, qfsm : QoSC_FSM /* QES from Def. 4.10, QoSC_FSM from Def. 4.8 */
Output: qes transitioned on the property affected by e, using δ (Def. 4.9)
1: S′ ← δ(qes.ℜS , e, qfsm.∆)
2: qes.CURSTATE[π(s | e ∈ qfsm.η(s))] ← S′

3: if S′ = Exception then /* a reconfiguration problem occurred (e.g., ℜS may be inconsistent) */
4: qes.ℜS ← getCBSAR() /* recover the previous state of ℜS */
5: end if
6: return qes

• π = {(clearChannel, Confidentiality), (confidentChannel, Confidentiality),
(localCache, Confidentiality),
(voiceV ideo, Availability), (voiceOnly, Availability), (holdCall, Availability)}

Hence, the context change to an extranet-serviced area makes the current execution state (i.e.,
CURSTATE = {(Confidentiality, clearChannel), (Availability, voiceV ideo)}) to transition
into CURSTATE = {(Confidentiality, confidentChannel), (Availability, voiceV ideo)}.

However, given that the reconfiguration operates on ℜS and verifies its component-based
structural conformance before instrumenting the respective changes in the managed applica-
tion,ℜS is left inconsistent when this verification fails (i.e., the transition resulted in the Exception
state). In this case, line 4 recovers the previous state of ℜS from the running managed applica-
tion. An example of this case would result from the application of a faulty reconfiguration rule
given by the user.

Finally, as the reconfiguration depends on the matching operation between reconfiguration
rules and the managed application reflection structure, maintaining ℜS updated allows further
reconfiguration cycles in the managed application. In effect, even if it reaches an Exception state,
as the managed application is left unmodified by the reconfiguration mechanism, this is not an
impediment for its services to continue with their operation, although in a contract unfulfillment
state. On the next context event, as ℜS reflects the current state of the managed application, and
thanks to our generalized conditions for transitions to target states, a reconfiguration cycle can
be performed with no special considerations.

4.3.6 The QoS Contract-Preserving Reconfiguration System

As we mentioned previously, the final objective of the previous definitions is the autonomous
and reliable preservation of QoS contracts under varying context conditions. This contract
preservation is defined in terms of continuous reconfiguration cycles that start and end in actual
running managed software applications, triggered by context changes. To complete the real-
ization of our QoSC_FSM as the semantics of our QoS contract definition, we define our QoS
contract-preserving reconfiguration system, based on the previous definitions.

Definition 4.11 (QoS Contract-Preserving Reconfiguration System –QoSCRS). The QoS contract-
preserving reconfiguration system, QoSCRS, is the tuple 〈ℜS , QoSC, CBSRS,QoSC_FSM〉, where ℜS

is the reflection structure of the actual managed application subject to the contract QoSC; CBSRS the
component-based reconfiguration system; and QoSC_FSM the state-machine for QoSC, all of them ac-
cording to their respective definitions. On this tuple, we define a QoS contract-preserving reconfiguration
cycle as:

1. (When to reconfigure) A managed software application reconfiguration is triggered whenever the
QoSMonitor specified in the contract, QoSC.monitor, notifies a context event e that challenges the
fulfillment of the current QoS level.

90

4.4. Chapter Summary

2. (What, Where and How to reconfigure) From the contract representation QoSC_FSM and based
on the context event e received, the affected QoS property (i.e., π(s | e ∈ η(s))) is identified. Then
δ, the transition function is invoked, identifying the target state to be reached under the new con-
text situation (i.e., s | e ∈ η(s)). Also, the corresponding QoS-level predicate and guaranteeing
reconfiguration rule-set for this state are retrieved (i.e., Ψ(s | e ∈ η(s)) and ρ(s | e ∈ η(s)), respec-
tively). With this, a state transition in the managed application reflection structure is induced, thus

performing a reconfiguration ℜS
∗

⇒ ℜ′

S using the component-based reconfiguration system (i.e.,
reconfig(ℜS , ρ(s | e ∈ η(s)))). From this, a reconfiguration plan is synthesized (cf. Def. 4.7).

3. (Pre-update checks) Once obtained ℜ′

S , the component-based structural conformance check is per-
formed on it. We specify the corresponding conditions in Sect. 6.6. The verification of these con-
ditions is performed in the reconfig function, and hence, their violation would lead to a contract
unfulfillment state (with the respective notification to the user).

4. (Managed-application reconfiguration update) If the new managed application reflection structure
ℜ′

S satisfies the pre-update checks, the synthesized reconfiguration plan is applied to the running
managed application, supported by f−1

S (cf. Def. 4.4). Otherwise, the managed application is left
without modifications, and the user notified. In any case, both, the contract state and the running-
software state are updated in consequence, in the QoSC_FSM execution state. In this way, the
atomicity property is guaranteed, as detailed in Section 6.7.

Given the generic conditions that we established in the semantics of ourQoSC_FSM incoming
transitions for target states, the user must only specify the QoS levels (i.e., the FSM states) with
the required guaranteeing reconfiguration rules (i.e, the incoming transitions for the specified
states). That is, the user may select the source states of the transitions by encoding the patterns
associated to these states in the LHS of the reconfiguration rules. In particular, to have a sym-
metric transition between a pair of states S and T , one of the reconfiguration rules used to reach
S from T would have to be the inverse of the one used to reach T from S.

In this way, our QoS Contract-Preserving Reconfiguration System copes equally well with
contracts having context conditions with and without inter-dependencies.

4.4 Chapter Summary

In this chapter we have presented our formal model for preserving QoS contracts at runtime
through reliable and autonomous reconfiguration. We built this model by giving formal defini-
tions for component-based software reflection, QoS contracts, and reconfiguration rules as typed
attributed graphs. With these definitions as building blocks, we define our component-based
structure reconfiguration system (CBSRS) as an extension of graph transformation systems. To
achieve autonomous reconfiguration, our model is inspired by the MAPE-loop reference model.

Even thoughwe conceive ourmodel as a formal foundation for the planner component of the
MAPE loop, it also involves functionalities of the monitor, analyzer and executor components.
In this respect, the QoS contract is our most important definition, as it specifies not only the
expected responsibilities for each of the MAPE-loop components, but also the information ele-
ments that they require to accomplish the assigned responsibilities. In light of this, we define the
semantics of our QoS contracts by extending the definition of finite state machines –QoSC_FSMs,
in which states represent expected QoS levels and transitions are performed based on software
reconfiguration operations. For this semantics, we generalized the conditions for transitions to
contract states of both, fulfillment and unfulfillment, thus being robust with respect to context
unpredictability.

91

Chapter 4. A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration

As a result, our claim is that we use (formal) models at runtime to reliably reconfigure soft-
ware applications for preserving its QoS contracts. More precisely, with our model we demon-
strate the feasibility of exploiting design patterns at runtime in reconfiguration loops to fulfill
expected QoS levels associated to specific context conditions, while benefiting from graph trans-
formation properties in the reconfiguration process. For this, we encode design patterns in left
and right-hand sides of reconfiguration rules, given their determining influence on QoS proper-
ties. Moreover, the generalized conditions for the transitions used in the QoSC_FSM transition
function, together with the definition of the QoSC_FSM Execution State, allows our model to
manage multiple QoS properties defined in a same contract. For this, our model maintains the
association of the current contractual state with the running software application through its
reflection structure. This association is maintained in such a way that even in exception states
the delivery of the managed application services is not interrupted, although in a contract un-
fulfillment state. Thus, our model preserves the continuity of expected QoS levels as far as
the user provides adequate and relevant QoS contract specifications, which include triggering
context events and reconfiguration rules. However, if the contract specification does not satisfy
these conditions, our model does not interfere with the managed application execution, as it was
developed. Nonetheless, in these cases our model consistently detects the causes for reaching
unstable and exception states, and notifies the user about the corresponding anomalous situa-
tions.

Concerning its applicability, our formal model can be used to develop and implement rule-
based self-reconfiguring software systems in automated and reliable ways, enabling them to be
responsible for their QoS contracts. With these systems, a user can define her own reconfigu-
ration rules while freeing her of being aware of the details of the specific procedure to apply
them. For this, and as a result of the formal definition of the QoS contract, component-based
systems must be self-monitoring. To this respect, proposals addressing QoS properties usually
detect and manage contract violation either at a coarse-grained, system resource level or at the
fined-grained component interfaces level. Our approach is an intermediate proposal, as it takes
into account the software components, but at the architecture level. Thus, the conditions on
QoS properties that we can preserve must be measurable from system components, and the
corrective actions in response to their violation are also at the component-based architecture
reconfiguration.

Finally, our formal model enforces the management of a clear separation of concerns, not
only between the managed application and the reconfiguration mechanism, but also between their
corresponding properties. Besides allowing us to analyze adaptation properties independently
from QoS properties, this separation of concerns concedes our model platform independence
and reusability.

In the next chapters we realize this formal model as a service component-based (SCA) archi-
tecture and implementation, analyze its corresponding properties, and illustrate its applicability
in two application scenarios.

92

Chapter 5
QOS-CARE: The Realization of Our
Formal Model

Contents

5.1 Mapping Our Formal Model to the MAPE-K Loop Reference Model . . . 95

5.2 QOS-CARE Architecture Overview . 96

5.3 Monitor . 98

5.3.1 Context Monitor . 98

5.3.2 Context Events Simulator . 99

5.4 Analyzer . 99

5.4.1 Event Analyzer . 99

5.5 Planner . 100

5.5.1 Reconfiguration Planner . 100

5.5.2 E-Graph Reconfiguration Engine . 101

5.6 Executor . 101

5.6.1 SCA Instrumentation . 101

5.7 Knowledge Manager . 102

5.7.1 QoS Contract Manager . 102

5.7.2 QoSC_FSM Manager and Executor 102

5.8 QOS-CARE as an SCA Layer for Preserving QoS Contracts 103

5.9 Implementation Details . 103

5.10 Chapter Summary . 106

In this chapter we present QOS-CARE, the realization of our formal model for dynamic re-
configuration to preserve QoS contracts. To realize this model, we map our formal definitions
given in the previous chapter into the MAPE-loop model elements. From this mapping, we de-
rive the SCA components and services that comprise the QOS-CARE software architecture. In
addition, we analyze and explain the design decisions necessary to implement this architecture,
and complement the illustration given previously of how QOS-CARE is applied to the video-
conference system of our example scenario, thus preserving its QoS contracts. The source code
and design documentation of QOS-CARE is currently maintained in the INRIA GForge project
repository https://gforge.inria.fr/projects/scesame .

93

Chapter 5. QOS-CARE: The Realization of Our Formal Model

To be coherent with our formal model, our design decisions for its implementation must not
only be based on it, but also take into account the principles and concerns analyzed and explored
by the Software Engineering for Adaptive and Self-Managing Systems (SEAMS) research com-
munity, as analyzed in Section 2.4. In the context of this chapter, these principles and concerns
are related to the separation of concerns between managed applications and adaptation mech-
anisms, the explicitness of feedback-loop elements in the self-adaptive system architecture, and
the enforcement of adaptation properties. However, defining a sound mapping from our for-
mal model to a software design and respective implementation that preserves the formal model
properties while satisfying the aforementioned principles and concerns is not a trivial problem.

First, our model comprises formal definitions based on typed attributed graphs, graph trans-
formation, and extended state machines for modeling software structures and controlling their
reconfiguration. To be useful, but also manageable, these definitions must be precise, yet ab-
stracted from implementation details. Thus, a straight implementation from these definitions
in software units using automated (or formal) methods does not necessarily guarantee, for in-
stance, the explicitness of the MAPE-loop elements in the system architecture and implemen-
tation. In fact, despite that the MAPE loop is followed as a reference model in the design of
many self-adaptive approaches, its elements are finally not explicit in their implementations. As
a result, the reusability of their adaptation mechanisms is limited, as well as the possibilities for
analyzing their adaptation properties independently from the managed application ones.

Second, we abstract important low-level operational actions in our formal model, which
complement and refine its characteristics and properties. These operational actions and respec-
tive data structures also require a careful mapping to the MAPE-loop elements. Examples of
these actions are the notification of anomalous reconfiguration situations to the user; counting
the consecutive transitions to the unstable state before notifying the user, by inducing a tran-
sition to the exception state; and queuing context events if they are notified in the course of a
reconfiguration operation.

In light of this, the challenge we address in this chapter is the realization of our formal
model for preserving QoS contracts as a software architecture and respective implementation,
maintaining the formal model properties, and following recognized design principles for self-
adaptive software systems. Moreover, this implementation must be integrable with, and exe-
cuted by existing component runtime platforms, implying that, ideally, our software architecture
should conform to component specifications such as the SCA.

To address this challenge, in Section 5.1 we define a mapping from the elements of our for-
mal model to the elements of the MAPE-loop reference model. This mapping is fundamental to
enforce the explicitness of the MAPE-loop model elements in our implementation, and maintain
the separation of concerns between the reconfigurationmechanism and themanaged application
at the implementation level. Based on this mapping, in Section 5.2 we derive an SCA-compliant
architecture and present an overview of it, illustrating the relationships among its main com-
ponents. Then, in Sections 5.3 to 5.7 we detail each of this architecture components with their
assigned formal model definitions as their functionalities. For each case, we also specify their
respective provided and required services, including the operational actions that complement
these functionalities. Having explained our architecture components and functionalities, in Sec-
tion 5.8 we present the way we conceive this realization as an additional layer for SCA mid-
dleware stacks to dynamically reconfigure component-based applications to preserve their QoS
contracts. Finally, in Section 5.9 we present relevant details if the implementation

Correspondences in this Chapter: Addressed Challenge(s): To realize the formal model for
preserving QoS contracts as a software design and respective implementation, maintaining the
properties of the formal model, and following recognized design principles for self-adaptive

94

5.1. Mapping Our Formal Model to the MAPE-K Loop Reference Model

software systems. The implementation must be executable in component runtime platforms.
Goal(s): G5 –Determine the practical feasibility of the formal based reconfiguration mechanism
implementation to preserve QoS contracts. General contribution(s): GC.AIE –Formal model
(GC.FM1 and GC.FM2) realized and evaluated as an SCA layer for dynamic reconfiguration.
Specific contribution(s): AIE.1 –SCA layer architecture for dynamic reconfiguration to preserve
QoS contracts designed and implemented maintaining the formal model properties.

5.1 Mapping Our Formal Model to the MAPE-K Loop Reference

Model

In previous chapters we (i) explained the MAPE-loop elements (i.e., Monitor, Analyzer, Planner,
Executor and Knowledge manager) with their functionalities (cf. Section 2.4); based on this, (ii)
identified and defined the characterizing dimensions of self-adaptive software (SAS) systems,
and derived adaptation properties from this characterization (cf. Chapter 3); and (iii) presented
the formal foundations for the Planner element, including particularly the QoS contract defini-
tion with its respective semantics, the central element of our reconfiguration system (cf. Chapter
4). However, even though our model is a formal foundation mainly for the Planner, the impor-
tance of this QoS contract definition –and its semantics– is that it entails responsibilities for all of
the MAPE-loop elements. We identify these responsibilities in the QoS contract semantics, that
is, the QoSC_FSM definition.

Therefore, in Fig. 5.1 we present our interpretation of how the MAPE-loop model makes
explicit the monitoring, analysis, planning, execution, and knowledge management functions
that are implicit in the feedback-loop block diagram.

Figure 5.1: The MAPE-K loop block diagram adapted for the QOS-CARE reconfiguration loop.

Our interpretation of the feedback-loop elements and their functionalities is as follows.

Monitor. Monitoring elements are responsible for sensing variables corresponding to QoS
properties from both, the managed application (i.e., measured QoS data in the figure), and also
its external context (i.e., not measured from the managed application). Monitors notify context
events to the analyzer, based on these measured values.

Analyzer. The analyzer, based on the expected QoS-level to fulfill according to the context events
notified by monitors, determines whether a reconfiguration must be triggered. For this, the
analyzer must verify the conditions to trigger a reconfiguration, such as the relevance of the
events reported from the monitors, as specified by the triggering context event types declared in
the QoS contract.

95

Chapter 5. QOS-CARE: The Realization of Our Formal Model

Planner. Once notified with a reconfiguration event from the context analyzer, the planner
performs a reconfiguration on the e-graph representation of the managed application using the
reconfiguration rule set associated to the QoS level to fulfill. The reconfiguration rules encode
design patterns that address different QoS levels for a given QoS property and corresponding to
specific context events. From this reconfiguration operation the planner synthesizes a reconfig-
uration plan as a list of primitive reconfiguration instructions.

Executor. Upon reception of a reconfiguration plan, the executor instruments it in the compo-
nent runtime platform. This implies to translate or adequate the reconfiguration instructions to
the characteristics of the particular component runtime platform in use. In our case, as QOS-
CARE currently uses FRASCATI as the component runtime platform, we adequate the list of
reconfiguration instructions to its reconfiguration primitives execution engine, FSCRIPT.

(Reconfiguration) Knowledge manager. A reconfiguration knowledge manager makes the
relevant knowledge about the managed software application configuration and how to re-
configure it at runtime explicit, making this information available to the other MAPE-loop ele-
ments. In QOS-CARE, this knowledge is given by the user in QoS contracts in terms of context
events, QoS levels to fulfill, and respective reconfiguration rules. As explained in the previous
chapter, this information is encoded in the QoSC_FSM definition (cf. Def. 4.8, p. 81).

Following this interpretation, in Table 5.1 we present the mapping from theQoSC_FSM basic
operations to the elements of the MAPE-loop reference model. That is, this mapping distributes
the QoSC_FSM responsibilities in the elements of the QOS-CARE reconfiguration loop.

Table 5.1: QoSC_FSM basic operations distributed in the QOS-CARE reconfiguration loop

QOS-CARE
QoSC_FSM Formal Model OperationsReconfiguration

Loop Element

Monitor −evalInContext : PREDICATE × ∆U → {F,U}

Analyzer
− (uses) match : CBSRR × CBSAR → Boolean
− (uses) evalInContext : PREDICATE × ∆U → {F,U}

Planner
−reconfig : CBSAR × P(Γ) → Boolean
−match : CBSRR × CBSAR → Boolean

Executor
−getCBSAR : → CBSAR
−execReconfP lan : INSTRUCTION∗ → Boolean

Reconfiguration
Knowledge
Manager

−Ψ : STATES → PREDICATE
−κ : STATES → PREDICATE
−η : STATES → P(Σ)
−ρ : STATES → P(Γ)
−π : STATES → QoSProperty

5.2 QOS-CARE Architecture Overview

From the previous mapping, in this section we identify the SCA components required to provide
the assigned responsibilities from the formal model. We structure these components as an SCA-
compliant architecture, and present an overview of them illustrating their interrelationships. We
group these SCA components by each of the MAPE-loop elements as follows.

96

5.2. QOS-CARE Architecture Overview

• Monitor

– Context Monitor

– Context Events Simulator

• Analyzer

– Event Analyzer

• Planner

– Reconfiguration Planner

– E-Graph Reconfiguration Engine

• Executor

– SCA Instrumentation

• (Reconfiguration) Knowledge Manager

– QoS Contract Manager

– QoSC_FSM Manager and Executor

Figure 5.2 illustrates the components of the QOS-CARE’s SCA architecture with their ex-
posed properties, and provided and required services. These components are shown grouped
by the MAPE-loop elements (labeled M, A, P, E and K, respectively) and consider the assigned
operations from our formal model as their services.

Figure 5.2: The QOS-CARE SCA-compliant architecture derived from our adapted MAPE-K model.

This architecture, which is also an SCA executable specification, exposes two properties: a
QoS contract, and the component-based software application that must satisfy this contract.
To configure the whole system execution’s initial state, the component runtime platform (e.g.,
FRASCATI) loads and executes QOS-CARE. TheQoSC_FSMManager component of QOS-CARE

97

Chapter 5. QOS-CARE: The Realization of Our Formal Model

instructs FRASCATI to load the specified managed application; then, it loads the QoS contract
and generates the QoSC_FSM state machine from this contract using the translateToQoSC_FSM
service from the QoSContractManager. Afterwards, using the getCBSAR service from SCAInstru-
mentation, it obtains the SCA representation of themanaged application from the FRASCATI run-
time component container, and produces the corresponding e-graph component-based structure
application reflection (i.e., CBSAR). With this structure and the initial QoS levels specified for
each QoS property in the contract, the QoSC_FSMManager component initializes the QoSC_FSM
Execution State (cf. QES, Def. 4.10, p. 89).

Once configured the initial QOS-CARE execution state, the managed application execution
is started. Concurrently, the QoSC_FSMManager has the main responsibility for controlling the
operations to preserve the satisfaction of the specified QoS contract, following the previously
describedMAPE-loop data and control flow. Nonetheless, it is worth noting that in the feedback-
loop and the MAPE-loop models, the reconfiguration flows directly from the analyzer to the
planner, and from this to the executor elements. In our architecture, the QoSC_FSMManager,
a component derived from the MAPE-loop knowledge manager element, intervenes in these
two points. In the first, to provide the process with the appropriate information in order to
perform the expected reconfiguration according to the given context situation. This information,
specified in the contract, corresponds to the affected QoS property, the target state to transition
into, the QoS level to fulfill in it, and the reconfiguration rules to apply. In the second, to verify
the SCA conformance of the reconfigured e-graph (i.e., the CBSAR) and update the QoSC_FSM
execution state (QES).

Finally, being SCA-compliant, the QOS-CARE architecture components can be replacedwith
functionally equivalent ones with no considerable effort. In the following sections we describe
each of the QOS-CARE architecture components, their services, and the interactions among
them, grouped by the MAPE-loop elements. Nonetheless, it is worth emphasizing that, even
though the goal of this dissertation is the preservation of QoS contracts, our strategy to achieve
it is through dynamic reconfiguration. Therefore, this focuses our research work on the recon-
figuration operation itself, that is, the Planner element of the MAPE loop. For the other elements
we basically describe their required responsibilities, following our QoS contract definition.

5.3 Monitor

5.3.1 Context Monitor

In our contract definition (cf. Def. 4.5, p. 72), expected QoS levels and corresponding context
conditions for different QoS properties are specified as predicates, whereas context event types
as sets. These predicates involve variables that measure specific characteristics of the context
conditions that determine the specified QoS levels. Context monitors gather these QoS mea-
surements either directly or from monitor probes (also called context sensors) from the execution
context and the managed application. Whenever the changes in the context modify a given con-
text condition, the respective context monitor, specified in the QoS contract through the attribute
QoSMonitor, must notify the corresponding context event to the analyzer.

A second requirement for context monitors is that they must implement the evalInContext :
PREDICATE × ∆U → {F, U} function, as specified in the previous chapter. This function
must be the regular way of verifying whether a given condition (predicate) holds in the current
(internal or external) context of the managed application.

Thus, context monitoring elements, as specified in our QoS contract and formal model defini-
tion, refer to components in the managed application that must (i) notify corresponding context
events, as described previously; and (ii) implement the evalInContext function. These require-

98

5.4. Analyzer

ments are expressed in the ContextMonitorIfc interface, which must be implemented by context
monitors to be used in QOS-CARE (cf. ContextMonitor in Fig. 5.2). Moreover, it is worth noting
that it would be easy to modify the evalInContext interface and implementation to count consec-
utive invocations resulting in an unfulfilled condition. If this count reaches a limit, the transition
function could perform a transition to a special state inhibiting further CPU-consuming recon-
figuration processes that use the same ineffective reconfiguration rules.

Alternatively, if the component runtime platform implements the specified SCA capabil-
ities for intercepting service invocations, QOS-CARE could benefit from this characteristic.
However, despite FRASCATI implements this characteristic using Aspect Oriented Program-
ming (AOP) as described by Seinturier in [Seinturier et al., 2009], the automatic generation
of monitor probes would require a more detailed specification, in addition to our reference
to the context monitor component in the managed application. Automated monitor probe
generation using AOP is a problem already solved, as reported in the PhD dissertation of
González [González, 2011], whereas the automatic deployment of monitoring elements in dy-
namic monitoring infrastructures has been addressed in the research work of Villegas et al.
[Villegas et al., 2011a].

5.3.2 Context Events Simulator

Given that QOS-CARE focuses on the Planner element of the MAPE loop, we designed this
component (cf. ContextEvSimulator in Fig. 5.2) with two objectives. First, to act in replacement
of the components that actually should monitor contexts events in the execution environment,
for testing or simulation purposes. Second, to perform “expected reliability” simulations in the
spirit of the stimulus-response model, once QOS-CARE is configured with a managed applica-
tion and QoS contract. These simulations would allow a system evolution architect to

i. verify the adequacy and efficacy of reconfiguration rules with respect to their SCA struc-
tural conformance and contracted QoS levels under given (simulated) context conditions;

ii. have average measurements on reconfiguration settling-times (i.e., mean-time to recon-
figure, or MTTR);

iii. adjust and complete negotiable QoS contracts (i.e., sets of context events and event types
to be monitored and analyzed, corresponding context conditions, QoS-level objectives
and reconfiguration rules); and

iv. analyze the response under characterized context situations of given managed applica-
tions, for instance by using an event generator with a given probability distribution func-
tion.

This component also implements the ContextMonitorIfc interface. Thus, it can be replaced
easily with actual context monitor components for final deployments. The evalInContext function
must be implemented according to the simulation conditions and objectives.

5.4 Analyzer

5.4.1 Event Analyzer

In QOS-CARE, the event analyzer (cf. EventAnalyzer in Fig. 5.2) is responsible for determining
whether a reconfigurationmust be triggered, based on events notified by context monitors. Even
though QOS-CARE allows the user to specify complex events to be notified by context monitors
and, accordingly, complex reconfiguration rules to address the corresponding complex context
situations, our formal model and design decisions encourage the use of single events.

99

Chapter 5. QOS-CARE: The Realization of Our Formal Model

First, the most basic and effective form of adaptation-triggering event is produced by single-
variable context monitors measuring and evaluating one characteristic as a single value at a
time. In effect, if multiple sensed values are processed (e.g., summed, correlated and operated in
other ways) by higher-level context monitors and event analyzers to generate aggregated events,
their impact is also on multiple contracted QoS properties. As a result, these aggregated events
as such are typically useless because tracing their cause-effect relationships with the affected
QoS properties and context situations is very difficult, as reported in [Yang et al., 2009]. Besides,
the respective reconfiguration rules are also of high complexity, being error-prone to code and
maintain [Luckham, 2001].

Second, proper event processing must provide the ability of disaggregating aggregated
events, tracing the relationships of causality between the aggregated event and its low-level
single events. This allows to have more simple and manageable strategies that directly and
specifically address the causes for single events that affect particular QoS properties.

However, we assume that these complex event processing functionalities, used to correlate
and associate transient and multiple unstable events into “definitive” events, can be integrated
into our event analyzer. This addresses problems such as the oscillation or unstable changes
between different context situations in very short periods of time. Nonetheless, this problem
is addressed in research works relating complex event processing and self-adaptation, such as
[Hermosillo et al., 2010], and is beyond the scope of this dissertation.

Based on the previous analysis and assumptions, and given that QoS properties of managed
software applications are orthogonal among them, our event analyzer implementation uses a
consumer/producer event queue to process one event at a time. Reconfiguration events notified
from context monitors (i.e., the producers) are fed into this queue, while the event analyzer
sends them to the QoSC_FSMManager component (i.e., the consumer) to processes them when
no reconfiguration processes are in course. However, in this setting it is possible for an event
in the queue to become obsolete, that is, its corresponding context condition is no longer valid
in the moment of its processing. For this, the event analyzer uses the evalInContext function on
the context condition (i.e., using the QoSC_FSM’s κ auxiliary function) that corresponds to the
event in question to verify if such event is still relevant to trigger a reconfiguration. In this way,
no reconfiguration events are ignored, while preventing the interruption of any reconfiguration
process in course. This also contributes to manage undesirable oscillating events.

Finally, to determine if a reconfiguration must be triggered, this component uses the match
function, factorizing it out from the QoSC_FSM transition function, and checks if the notified
events are among the specified by the user (i.e., e ∈ Σ).

5.5 Planner

5.5.1 Reconfiguration Planner

This component (cf. ReconfigurationPlanner in Fig. 5.2) is the central element of QOS-CARE,
as it implements the fundamental definitions of our formal model’s reconfiguration system, in
particular the reconfig : CBSAR × P(Γ) → Boolean and match : CBSRR × CBSAR →
Boolean operations. Thus, we conceive it as a rule-based graph-transformation system tailored
for the domain of QoS contract preservation.

Receiving the e-graph representation of the managed application (i.e., a CBSAR) and the re-
configuration rule-set for guaranteeing a given QoS level, the reconfig operation (i) performs the
reconfiguration in the managed application’s e-graph representation; and (ii) synthesizes the
plan to reconfigure the actual running target application as a list of primitive reconfiguration
instructions, from the performed e-graph transformation operations. The instructions used in

100

5.6. Executor

the reconfiguration plan are mappable to any set of SCA primitive operations for adding and
removing components and interface wiring and bindings. To ensure the continued and con-
sistent operation of the implied services, SCA primitives for stopping (re-starting) the affected
components are included in the reconfiguration plan.

From the managed application point of view, the reconfiguration rule’s left and right hand
sides partially express, respectively, the current and next configuration states of their compo-
nents, interfaces and bindings. Thus, the graph-based pattern matching of the rules against the
managed application is the primary operation that enables the synthesis of basic blocks of in-
structions fromwhich the whole reconfiguration plan is produced. This pattern matching is also
the base for the match function.

Despite the ReconfigurationPlanner component is responsible for maintaining the defined
structures in the QOS-CARE e-graph definition, it is designed to use existing e-graph recon-
figuration engines to perform the reconfig and match operations.

5.5.2 E-Graph Reconfiguration Engine

The E-Graph Reconfiguration Engine component (cf. EGraphEngine in Fig. 5.2) is the responsible
for providing the actual services implementing the reconfig andmatch operations, either by itself,
or embodying an existing e-graph reconfiguration engine. In the latter case, this component
adapts the corresponding QOS-CARE structures to the defined by the reconfiguration engine
used, and vice versa.

In our current implementation, for the e-graph pattern matching, transformation and syn-
thesis of the reconfiguration plan, we are using a modified version of the Attributed Graph
Grammar open source system (AGG, [Taentzer, 2004]).

5.6 Executor

5.6.1 SCA Instrumentation

Instrumentation makes reference to two functions: (i) the gathering of information from the
managed application; and (ii) the possibility to modify it. In QOS-CARE, the SCA instrumen-
tation component (cf. SCAInstrumentation in Fig. 5.2) provides the operations getCBSAR : →
CBSAR and execReconfP lan : INSTRUCTION∗ → Boolean to accomplish these functions.
Thus, specific implementations of this component allows QOS-CARE to interact with any SCA-
compliant runtime platform with basic reflection and reconfiguration capabilities.

The getCBSAR operation provides the functionality of retrieving the SCA structure of the
managed application, as maintained by the component runtime platform executing it. execRe-
confPlan receives a list of instructions as a reconfiguration plan, and translates them to the par-
ticular reconfiguration primitives specified by the component runtime platform in use. In the
case of the implementation of this component for the FRASCATI platform, this operation trans-
lates the reconfiguration instructions to FSCRIPT, the FRASCATI’s reconfiguration primitives
execution engine.

For the design of this component we considered the self-adaptation necessities in ubiquitous,
distributed and mobile devices and applications, as well as the computing-power requirements
of component platforms and their reconfiguration operations. In order to allow distributed re-
configuration and balance the computational power requirements, we modified the reflection
interfaces in FRASCATI to be accessible as remote services, as illustrated in Fig. 5.3. In this
way, FRASCATI can be deployed in each required machine with RemoteIntrospection services,
accessible both locally and remotely.

101

Chapter 5. QOS-CARE: The Realization of Our Formal Model

Figure 5.3: The FRASCATI reflection subsystem with remote invocation services.

5.7 Knowledge Manager

5.7.1 QoS Contract Manager

The QoS contract manager (cf. QoSContractManager in Fig. 5.2) is responsible for the following
functionalities:

i. load the QoS contract to be satisfied;

ii. translate it to the QoSC_FSM structure using Algorithm 4.2; and

iii. initialize the QoSC_FSM execution state.

Having these functionalities in this component allows QOS-CARE to have different and
independent representations (i.e., file formats) for QoS contracts. Currently, we support XML
and AGG file definitions.

Given that all of the QoS contract attributes are translated to theQoSC_FSM, this component
remains unused until the contract is renegotiated, as explained in the following section.

5.7.2 QoSC_FSM Manager and Executor

The QoSC_FSM manager and executor component (cf. QoSC_FSMManager in Fig. 5.2) is the
main QOS-CARE’s orchestrating element. It has all the relevant knowledge to answer what,
how, and when to reconfigure a given managed software application. This knowledge is
obtained from the QoS contract specification, which is translated into the QoSC_FSM defini-
tion, using the QoSContractManager component. Then, this knowledge is made available by
the QoSC_FSMManager to the other MAPE-loop elements through corresponding services (not
shown in the figure for readability reasons).

The QoSC_FSMManager component provides the following services:

• reconfig : ΣU → Boolean implements Algorithm 4.3 (i.e., theQoSC_FSM transition execu-
tor) and applies it upon a reconfiguration request caused by a context event notification.

• The QoSC_FSM auxiliary functions, to obtain respectively:

– Ψ : STATES → PREDICATE: the QoS level to fulfill on the target state;

– κ : STATES → PREDICATE: the corresponding context condition;

102

5.8. QOS-CARE as an SCA Layer for Preserving QoS Contracts

– η : STATES → P(Σ): the type of the context events that trigger transitions to the
target state;

– ρ : STATES → P(Γ): the guaranteeing reconfiguration rule-set to fulfill the QoS-
level objective;

– π : STATES → QoSProperty: the affected QoS property.

• The QoSC_FSM transition function δ : CBSAR × Σ × ∆U → STATES, which uses the
previous functions and actual managed application’s e-graph reflection structure (i.e., ℜS)
to request the ReconfigurationPlanner to perform a reconfiguration. After successfully per-
forming the pre-update checks, it invokes the execReconfPlan service of the SCAInstrumenta-
tion component to instrument the reconfiguration plan in the managed application.

In summary, this component uses the QoS contract information as knowledge to determine
the reconfiguration rules to be applied in the managed application in order to satisfy the QoS-
level objective to fulfill when context conditions change.

5.8 QOS-CARE as an SCA Layer for Preserving QoS Contracts

Having presented the architecture of QOS-CARE, in this section we illustrate how does it fit as
an additional layer in the FRASCATI’s middleware stack to preserve QoS contracts in executed
applications.

Middleware is defined as the software (macro)layer that lies between software applications
and the operating system across a distributed computing system [Krakowiak, 2009]. As a form
of operating system extension, its purpose is to provide common programming abstractions
as generic functions to software applications, such as transparent remote method invocations
(i.e., independent of network protocols), logging of operations, and data translation for service
interoperability (i.e., independent of syntax and format).

In Fig. 5.4 we recall the FRASCATI’s four layer middleware stack, introduced in Section
2.2.3. In this stack, each layer adds specific functionalities or capabilities to the ones below it.
The personality layer adds service interception, and life-cycle management capabilities to the
components defined in the kernel layer. The run-time layer, responsible for managing the com-
ponents container, provides functionalities for loading and checking application composites. It
also adds introspection and primitive reconfiguration capabilities to query about the compo-
nents and their interfaces and services, and to add and remove them at run-time. Finally, the
non-functional layer adds basic support for non-functional requirements to the executed appli-
cations.

As illustrated in the figure, we add QOS-CARE as a fifth layer of FRASCATI, an SCA mid-
dleware implementation, to preserve QoS contracts in its executed applications. In effect, driven
by a contract specification, and exploiting the functionalities of the four layers below it, QOS-
CARE provides autonomous and reliable reconfiguration services to maintain fulfilled the ex-
pected QoS levels under the respective contexts conditions.

5.9 Implementation Details

In this section we provide some implementation details underlying the QOS-CARE architecture
components in terms of its classes, physical lines of code (LOC), and density (i.e., LOCs per
class). Although we wrote most of the code in Java, we also used the C programming language
for some functionalities. Nonetheless, since the portions of C code are small compared to the

103

Chapter 5. QOS-CARE: The Realization of Our Formal Model

Figure 5.4: QOS-CARE as a layer for preserving QoS contracts in the FRASCATI middleware stack.

rest of the implementation in Java, we sum their lines of code without loss of accuracy. Table 5.2
presents a summary of these implementation details.

Table 5.2: QOS-CARE Implementation Details
QOS-CARE

Components
Classes and
Interfaces

LOC
LOC/
Class

Reconfiguration
Loop Element

Common Core 0 25a 2,618a 104

Monitor 2 6 1,287 214

Analyzer 1 2 380 190

Planner 2 4 1,721 430

Executor 2 3 426 142

Reconfiguration
2 14 2,846 203

Knowledge Manager

Total 9 54a 9,278a 171
a Includes modules and files in C, Yacc and Lex.

As illustrated in this table, we group these details by the elements of the MAPE-loop model
adapted for the QOS-CARE reconfiguration loop (cf. Section 5.1), as follows.

Common Core. This package comprises the QOS-CARE’s core data structures and respective
operations that we use to integrate the functionalities of its other components. The common core

104

5.9. Implementation Details

has:

• 18 Java classes for implementing:
– The QOS-CARE definition for the SCA component assembly specification: we use
this definition as a pivot to translate the particular SCA platform implementation
representation (e.g., the implemented in FRASCATI) of the managed application to
our e-graph representation. This definition is necessary to maintain the QOS-CARE
independence of different SCA implementations.

– Context management basic definitions: provide general event types for the events to
be notified by context monitors to context analyzers.

– Utilities: provides functionalities for the generation and loading of reconfiguration
plans, and logging and execution of other auxiliary operations.

• 7 modules in C, and file specifications in Yacc and Flex compiler/interpreter construction
tools to generate the runtime evaluator of predicates (i.e., QoS levels and context condi-
tions).

Monitor. We group in this package the basic definition of monitoring elements responsible for
sensing QoS properties (one Java interface), and the context-events simulator (5 Java classes).
The interface for monitors declares the evalInContext, sense and notifyContextEventmethod signa-
tures. The context-events simulator implements:

• A function for generating context events. Although it is possible to implement functions
with different probability distributions, to evaluate the settling time (cf. Chapter 7) we
implemented a uniform distribution function to stress the system with a uniform load.

• A queue for storing and processing the generated context events.

Analyzer. This package uses the functionalities of the QoSC_FSMManager to retrieve the con-
tract information and determine whether a context event must be added to the queue of recon-
figuration events. Based on the status of this queue and the current context conditions, the event
analyzer notifies the QoSC_FSMManager with the next reconfiguration event. As illustrated in
Table 5.2, this package is the smallest one, with 380 lines of code distributed in one Java interface
and one Java class implementing one component.

Planner. This package includes one Java interface and 3 Java classes to implement the follow-
ing functionalities:

• In the reconfiguration planner: the bridging operations for:

– Loading the typing structures for component-based software applications and QoS
contract specifications (including the e-graph based reconfiguration rules), and their
corresponding instances.

– Invoking thematch and reconfig operations, translating the respective parameters from
the QOS-CARE definitions to the ones of the e-graph specific implementation used.

– Generating the reconfiguration plan from the e-graph transformation operations, us-
ing the code generation data structure from the QOS-CARE common core.

• In the e-graph engine: this component encapsulates the e-graph (i.e., typed attributed
graph) implementation. In the current implementation of QOS-CARE, we use a modi-
fied version of the Attributed Graph Grammar (AGG) system29, which implements the
required graph definitions, including the match and reconfig operations as specified in the
previous chapter.

29http://user.cs.tu-berlin.de/~gragra/agg/

105

Chapter 5. QOS-CARE: The Realization of Our Formal Model

Executor. This package implements the executor functionalities with one Java interface and
two Java classes. The interface defines the SCA instrumentation methods for (i) obtaining the
SCA representation of the managed application, and (ii) executing the reconfiguration plan. In
the current implementation of QOS-CARE we provide two SCA instrumentation components
with the same implementation, the first for local access, and the second for remote instrumenta-
tion access.

(Reconfiguration) Knowledge manager. This package contains 3 Java interfaces and 11 Java
classes, which implement the data structures and functionalities for:

• TheQoSC_FSM structure, into which the whole QoS contract is translated from its e-graph
representation, using Algorithm 4.2. This includes the reconfiguration rules and the map-
pings for the QoSC_FSM auxiliary functions.

• The execution vector state of QoSC_FSM, and its transition executor function, to control
the managed application state with respect to the contracted conditions.

5.10 Chapter Summary

In this chapter we have presented the architecture of QOS-CARE, the most significant decisions
we made for its design, and some details of its implementation.

Concerning the contributions of this chapter, we summarize them as follows. We showed
the implementation feasibility of our formal model by developing it as an SCA software de-
sign and respective implementation. This implementation not only follows our formal model
definitions, but also satisfies important principles established by the software engineering for
self-adaptive systems community. Instead of directly deriving or implementing the formal defi-
nitions into software units, we first mapped these definitions to theMAPE-loopmodel elements.
Then, from this mapping, we synthesized in SCA components the functionalities and services
required to satisfy the formal definitions. Thus, the MAPE-loop elements are explicitly iden-
tifiable as the SCA components comprising the adaptation mechanism, effectively allowing to
manage a clear separation of concerns between it and the managed software application. As a
result, while retaining our formal model definitions, the adaptation mechanism implementation
can be independently (re)used and integrated with different component runtime platforms, and
moreover, evaluated and analyzed separately in its adaptation properties.

In this setting, it is worth noting that the use of classical formal development methods for de-
riving certified software implementations of our formal model would be limited. As explained
before, using these methods would not guarantee the aforementioned principles established by
the software engineering for self-adaptive systems community. To solve this problem we would
need a tailored formal method of software development to satisfy domain-specific software en-
gineering principles and requirements (e.g. for self-adaptive systems). Naturally, this problem
should be addressed by the formal development and programming methods community in con-
junction with the MODELS@runtime and the SEAMS communities.

Finally, instrumenting the reconfiguration operations that result from our graph-based re-
configuration system requires capabilities of introspection and dynamic reconfiguration in the
actual running software application, not easy to implement. However, the component-based
development paradigm propose the more general strategy of managing these capabilities, not
at the application level nor at the operating system level, but at an intermediate level, namely,
the middleware level. QOS-CARE benefits from this intermediate level, which is the component
runtime platform, and finds its place in it in the form of an added layer.

In the next chapter we analyze the reliability of our formal model and its implementation.
We define this reliability in terms of five of the adaptation properties introduced in Chapter 3.

106

Part III

Validation

107

Chapter 6
Validation and Verification of
QOS-CARE Properties

Contents

6.1 Reconfiguration Independence and Separation of Concerns 111

6.2 Reliability in the Context of Self-Reconfiguration 111

6.2.1 Reliability in Terms of Adaptation Properties 112

6.2.2 Design-time vs. Run-time Validation and Verification of Adaptation
Properties . 113

6.3 Short Settling-Time . 114

6.4 Reconfiguration Termination . 114

6.5 Robustness with Respect to Context Unpredictability 116

6.6 Component-Based Structural Conformance 116

6.7 Atomicity of the Reconfiguration Process 117

6.8 Chapter Summary . 117

In the previous chapters we have presented the formal definitions that constitute our model
for preserving QoS contracts, as well as its corresponding realization as a service component
architecture. In this chapter we present the validation and verification of the properties that
result from these formal definitions and the design decisions we made for their realization.

As in many approaches to realize self-adaptive software (SAS) systems, we assume that
given a software application subject to expected QoS levels under specific context conditions,
the software application must be unavoidably reconfigured whenever the context condition
changes, implying the fulfillment of a different QoS level. The objective of this reconfiguration
is, of course, to fulfill the QoS level that corresponds to the new context condition. However, we
consider also of fundamental importance that this reconfiguration be guaranteed in its reliability
in order to avoid compromising the application of the user-defined reconfiguration rules. This is
important because our model guarantees the continuity of agreed services delivery as far as the
user provides relevant and adequate reconfiguration rules to cope with context changes. Thus,
this reliability aims at ensuring the continuity of service delivery while fulfilling the contracted
QoS levels, specially under changing context conditions. This implies that the reconfiguration
process must also be robust with respect to context unpredictability, managing not only states

109

Chapter 6. Validation and Verification of QOS-CARE Properties

and conditions of contract fulfillment, but also of unfulfillment, as explained in the previous
chapters.

Consequently, in this chapter we address the specific challenge of guaranteeing the reliabil-
ity of the software reconfiguration process to preserve QoS contracts. For this, we first refine the
classic definition of reliability in light of adaptation properties related to fundamental problems
that self-adaptation poses to software systems, and then we show how dowe validate and verify
these properties. These properties are the short settling-time, the reconfiguration termination,
the robustness with respect to context unpredictability, the component-based (SCA) structural
conformance, and the reconfiguration atomicity. The importance of these properties is that they
guarantee that reconfiguration processes (i) finish; (ii) when finished, the resulting e-graph soft-
ware structure is fully component-based conformant; (iii) once successfully verified, the actual
running software state is updated with the reconfiguration changes (being this an atomic pro-
cess); and (iv) the final running-software state is in a controlled contract state, being this a state of
either, QoS level fulfillment, if all reconfiguration steps were performed successfully, or contract
unfulfillment, in any other case.

Concerning when and where can we validate and verify the aforementioned properties, and
to what extent, we address the following questions:

i. What properties can be exclusively verified at design time (executing neither the man-
aged system nor the reconfiguration mechanism)?

ii. What properties can be exclusively verified or tested at runtime?

iii. What properties can be verified or tested either at design time or at runtime?

iv. What properties can be exclusively verified or tested in the managed system?

v. What properties can be exclusively verified or tested in the reconfiguration mechanism?

vi. What properties can be verified or tested either in the managed system or in the recon-
figuration mechanism?

This chapter is organized as follows. In Section 6.1 we illustrate how our formal model en-
forces independence and separation of concerns between reconfiguration mechanisms andman-
aged software applications. In Section 6.2 we establish our definition of reliability in terms of
adaptation properties. In Sections 6.3 to 6.7 we present the definitions for each of the addressed
properties and how our model guarantees them.

Correspondences in this Chapter: Addressed Challenge(s): C3; C4 –The reconfiguration mech-
anismmust be clearly separated from the managed software application, as well as their corre-
sponding properties; Uncertainty must be managed robustly with respect to the unpredictabil-
ity of context events faced by the managed application, as well as the parameterized reconfigu-
ration rules in the reconfiguration mechanism. Goal(s): G3, G4, G5 –Maintain a clear separation
of concerns between the reconfiguration mechanism and the managed software application, as
well as between their corresponding properties; Guarantee robustness in the reconfiguration
mechanism with respect to possible and foreseeable situations associated to the management
of the unpredictable nature of context; Determine the practical feasibility of the formal based
reconfiguration mechanism. General contribution(s): GC.AIE –Formal model (GC.FM1 and
GC.FM2) realized and evaluated as an SCA layer for dynamic reconfiguration. Specific contri-
bution(s): AIE.2 –Formal model’s proof-of-concept implementation experimentally evaluated
in a real SCA platform; practical feasibility and (re)usability of reconfiguration mechanism de-
termined.

110

6.1. Reconfiguration Independence and Separation of Concerns

6.1 Reconfiguration Independence and Separation of Concerns

Self-adaptive software (SAS) systems are composed of two well identified parts: the adapta-
tion (i.e, reconfiguration) mechanism and the managed software application to be adapted (i.e,
reconfigured). However, as analyzed in Section 2.4, the lack of explicitness and visibility of
feedback-loops in most SAS systems renders their adaptation mechanisms as non-reusable and
unanalyzable in their respective properties and real advantages. One of the main causes for
this problem is the intertwined exploitation of different realization techniques on both the self-
adaptation controller and the managed application, thus blurring their respective limits.

In the case of our formal model to preserve QoS contracts in managed software applications,
the reconfiguration strategy is built on e-graph models. The e-graph representation of running
managed applications establishes precise limits between the reconfiguration mechanism and
the managed application, and moreover, of the component platform that executes them. Fur-
thermore, this representation, combined with our e-graph modeling of QoS contracts, allows
us to manage a clear separation of concerns between our reconfiguration mechanism and the
managed software application, and their corresponding properties. The key factor to achieve
this independence and separation of concerns is the indirect relationship between QoSProvision
attributes and reconfiguration rules (cf. Def. 4.3, 4.4 and 4.6). We use QoSProvision attributes to
identify the managed application elements that are potential reconfiguration objectives. These
elements can refer to components, interfaces and bindings in both, the managed application
reflection structure, and left and right hand sides of reconfiguration rules. Thus, the relation-
ships between the left-hand sides of these rules and managed applications are to be discovered
at runtime by pattern-matching operations. As a result, these indirect relationships introduce a
level of indirection that allows the decoupling of our reconfiguration mechanism from the man-
aged application. In turn, this decoupling explicitly enforces the clear separation of concerns
between the contractual QoS properties on the managed application and the properties of our
reconfiguration mechanism.

A second factor supporting the independence and reusability of the reconfiguration mecha-
nism based on our formal model is the central role of our QoS contract definition as our model’s
coherence enforcer with respect to the QoS properties of interest (cf. Def. 4.5 and 4.7). This co-
herence, related to context attributes, supports the collaborative and coordinated work among
ourmodel elements, but also between themodel itself and themonitoring, analysis and executor
MAPE-loop elements. In this way, our contract definition serves several objectives: (i) it speci-
fies QoS obligations of a managed application to its users; (ii) it establishes the responsibilities
for our planner’s internal components to fulfill these obligations; and (iii) it declares the respon-
sibilities for the monitor, analyzer and executor elements that would be required by our model
to complete a MAPE-loop in a final deployment.

6.2 Reliability in the Context of Self-Reconfiguration

A first consideration to tackle when addressing self-reconfiguration reliability is the definition
of reliability itself. This is explained because despite the several definitions with the different
meanings that have been used for it, self-adaptation as a research area requires its own definition
for this characteristic [Villegas et al., 2011b].

In the context of dependable computing, [Avizienis et al., 2004] presented a thorough set of
characterized definitions for dependability, its related sub-properties, threats, and means for
their achievement. In particular, they defined reliability as the continuity of (agreed) expected
service delivery, and identified the (fallible) determination of possible causes of failures in ser-
vice delivery as a non-obvious problem. Nonetheless, they defined failure as any deviation

111

Chapter 6. Validation and Verification of QOS-CARE Properties

from the service delivery in the way it is agreed; and failure modes as the different manifesta-
tions of these deviations. In the same line, reliability has been traditionally measured in re-
lation to the response that a system exhibits to its own failures, that is, in the sense of system
trustworthiness [Reussner et al., 2003, Candea et al., 2004, Yacoub et al., 2004, Filieri et al., 2010,
Huang et al., 2011]. These definitions are in agreement with those given by the ISO/IEC 9126,
the standard for the evaluation of software quality, and the Software Engineering Institute (SEI),
that is, the capability of software to maintain its level of performance under stated conditions for a stated
period of time [Barbacci et al., 1995, ISO, 2001].

In contrast to these definitions, the engineering of self-adaptive software systems
is directly concerned with goals such as self-healing, self-recovery and self-protection
[Salehie and Tahvildari, 2009]. These goals clearly address the causes for foreseeable failures
in a direct way, just as failure modes are considered when designing evaluation tests for relia-
bility. Furthermore, in our case the continuous fulfillment of expected quality of service (QoS)
levels may be interrupted or violated not only as a consequence of unexpected system failures,
but also of natural changes in the context conditions of system execution. Thus, one question
naturally arises: is a self-healing or self-recovery system automatically (fully) reliable? since
the answer is of course negative, we further refine this question to argue that in the context
of self-adaptive software, some characteristics, such as the reliability, must be reconsidered. In
particular, we must consider the causes that affect the reliability in at least three cases: in the
managed application, (i) for the cases directly covered by self-* goals; but also (ii) for the un-
covered cases; and (iii) in the adaptation (reconfiguration) process itself. These cases should be
considered not only for classifying the aforementioned failure modes, but more importantly, for
considering context changes as another cause for disrupting the continuity of agreed services in
their expected levels. Therefore, according to the goals pursued by this dissertation, we define
and evaluate the reliability as the continuity of expected QoS levels fulfillment in software application
services when facing not only natural context changes, but also unexpected anomalous situations (e.g.,
faulty reconfiguration rules given by users).

A second consideration for our definition of reliability aims at assessing it consistently. Given
that our model is inspired by the MAPE loop –a reinterpretation of the feedback-loop, a consis-
tent set of properties to evaluate its reliability would be a corresponding set of reinterpreted
properties used to evaluate feedback-loops. Hence, we define the reliability of our reconfigura-
tion system in terms of five of the adaptation properties that we characterized in Chapter 3. We
selected these properties as they consistently fulfill the enunciated considerations for reliability
in self-reconfiguring software systems, as defined in the following section.

6.2.1 Reliability in Terms of Adaptation Properties

We define the selected adaptation properties that characterize our concept of reliability as fol-
lows:

i. Short settling-time: the time that the reconfiguration mechanism takes for performing the
self-reconfiguration must be acceptable considering the application domain. Thus, defin-
ing settling-time in absolute terms is not only unpractical, but also unfeasible for all ap-
plication domains. This property, originally defined by control theory for feedback-loops,
is equivalent in our case to the Mean Time to Reconfigure (MTTR), the most critical factor
determining reliability, as measured quantitatively, according to the previous definitions.

ii. Reconfiguration termination: the process performed for reconfiguring the managed soft-
ware application to preserve the QoS contract is guaranteed to terminate. This property is
derived from the short settling-time and complements it when applied in the domain of

112

6.2. Reliability in the Context of Self-Reconfiguration

software systems. In contrast to physical target systems controlled by computing contin-
uous mathematical functions, the structural reconfiguration of software systems requires
sequences of discrete operations to be applied on them. Thus, although not required in
classical feedback-loops for physical target systems, termination is a fundamental prop-
erty for the reconfiguration control of software systems.

iii. Robustness with respect to context unpredictability: the delivery of the managed software
application services must remain unaltered even if the managed application state differs
from the expected (contracted) state in some measured way. In this definition, the states
are those determined by the context. Also, the reconfiguration process is robust if the re-
configuration mechanism is able to operate consistently (within desired limits) even under
unforeseen context conditions. This implies to manage both, context events notified by
context monitors but unforeseen by the user, as well as the inefficacy or non-existence of
user-defined reconfiguration rules to fulfill specific QoS levels. Thus, qualitatively, robust-
ness is the most critical factor for reliability.

iv. SCA structural conformance (structural consistency): the conformance of the managed
application with respect to the structural integrity constraints defined by the component-
based (SCA) specification is preserved after each reconfiguration. This property is critical
to avoid failures caused by faulty reconfiguration rules defined by users, thus contributing
to enforce reliability but also robustness.

v. Atomic reconfiguration: the reconfiguration is completed wholly and successfully, or it
fails and the software system is left in its previous consistent state. This property is crit-
ical to enforce consistency and robustness, preventing the managed application to reach
undesirable and inconsistent states.

6.2.2 Design-time vs. Run-time Validation and Verification of Adaptation Proper-
ties

In the following table we summarize when (design-time vs. run-time) and where (reconfigura-
tion mechanism vs. managed application) do we validate and verify the previously defined
properties.

Table 6.1: When and where QOS-CARE properties are validated and verified
Design-time V&V Run-time V&V

Reconfiguration Mechanism
• Atomicity • Settling-time
• Robustness • Termination

Managed Application (Not Applicable)
• SCA Structural
Conformance

Atomicity and robustness are properties validated in the reconfiguration mechanism as a re-
sult of our formal model, being its conditions sufficient to be verified at design-time. In contrast,
to be sufficient, the necessary conditions for guaranteeing the properties of termination and SCA
structural conformance, shown in our formal model, require to be verified at run-time on their
actual corresponding instances. That is, on the reconfiguration rules given by the user in the case
of termination (i.e., in the reconfiguration mechanism); and on the actual e-graph representation
of the running software system in the case of SCA structural conformance (i.e., in the managed
software application). We measure the settling-time experimentally by averaging it at runtime
using performance benchmarks on the reconfiguration mechanism for our application domain,
as a reasonable guarantee for the expected MTTR.

113

Chapter 6. Validation and Verification of QOS-CARE Properties

Even though termination can be argued to be verified at design-time, two considerations
led us to verify it at run-time. First, in contrast to the conditions for atomicity and robustness,
which hold for any QoS contract, the termination conditions depend on the set of reconfigura-
tion rules. That is, these conditions must be verified on each set of parameterized rules, which
are part of QoS contracts. Second, even if verifying these conditions for a particular contract
and reconfiguration rules is considered design-time, new QoS levels introduced as a result of
contract re-negotiation definitively require this verification to be performed at run-time. Similar
reasoning applies for the SCA structural conformance property.

In the following sections we show how our formal model and its realization guarantee the
aforementioned properties for the reconfiguration mechanism, even if the property is verified in
the managed application, as we analyzed in Chapter 3.

6.3 Short Settling-Time

The aforementioned definition of reliability given by Avizienis et al. as continuity of (agreed) ex-
pected service makes the short settling-time in self-reconfiguration systems as the most critical
factor determining it when evaluated quantitatively. In effect, minimizing the reconfiguration
settling-time implies to maximize the continuity of the managed application services with the
expected (contracted) QoS levels. However, it is worth emphasizing that the definition of Avizie-
nis et al., as well as other classic definitions of reliability, focus on system failures as the main
causes for interrupting or deviating the services delivery in their agreed conditions. In contrast,
we focus mainly on context changes as the primary causes for these interruptions or deviations,
and faulty QoS contract specifications (e.g., context events and reconfiguration rules) given by
users, as secondary ones. Furthermore, we identify these deviations as sources for failures, and
associate them as necessary conditions to the verification of robustness with respect to context
unpredictability.

We measure the settling-time as the mean time to reconfigure (MTTR) metric by actually
executing QOS-CARE to reconfigure a given managed application subject to a particular QoS
contract, in order to provide realistic estimations for the user to determine its adequacy and
acceptability. To obtain the measurements required to compute the MTTR we use the Context
Events Simulator of our reconfigurationmechanism to perform “expected reliability” simulations
as explained in Section 5.3.2.

In particular, in Sections 7.2.2 and 7.3.5 we analyze the MTTR measurements obtained for
the two application scenarios that we use to validate the applicability and practical feasibility
of QOS-CARE. This analysis shows the adequacy and acceptability of the obtained settling-
times for the respective application domains (i.e., mobile client-server software applications and
Internet mashup applications).

6.4 Reconfiguration Termination

Heckel et al. and Ehrig et al., among others, showed several graph transformation theo-
rems and results as valid also for typed attributed graph transformation systems (TAGTS) in
[Heckel et al., 2002], [Ehrig et al., 2004], and [Ehrig et al., 2009]. They carefully discuss the condi-
tions on which these theorems and results are based, as well as their implications for the local
confluence, confluence and termination properties of this kind of graph-transformation systems.

In this section, we focus on the termination conditions of our component-based structure
reconfiguration system (CBSRS). We show that its most critical CBS reconfiguration step (i.e.,

114

6.4. Reconfiguration Termination

G0

∗

⇒ Gn in CBSRS, Def. 4.7) is reducible to a typed attributed graph transformation system, as
follows.

Theorem 6.1 (Reducibility of the CBS Reconfiguration Step). Let CBSRS be a component-based
structure reconfiguration system according to Def. 4.7. Every CBS reconfiguration step in CBSRS is
reducible to a typed attributed graph transformation system, TAGTS.

Proof. According to Def. 4.7, a CBSRS is a tuple (DSig, CBS,ℜS , P). Of these elements, during
theCBS reconfiguration step (i.e.,G0

∗

⇒ Gn), the data signature,DSig, the component-based struc-
ture definition, CBS, and the set of reconfiguration rules P remain unchanged. Therefore, in a
CBS reconfiguration step these elements can be omitted, depending only on the system reflection
structure, ℜS , and the set of reconfiguration rules, P . Additionally, given that

1. a Component-Based Structure Application Reflection (CBSAR, Def. 4.4) is a tuple (G, fS , t),
where G is the e-graph that represents the software application S through the one-to-one
function fS : S → G, and t an e-graph morphism t : G → CBS, hence in the CBS reconfig-
uration step fS is also unchanged; and

2. a typed attributed graph is a tuple (AG, u), where AG is an attributed graph over a data
signature TAGDSig, and u is an attributed graph morphism, u : AG → ATG, where ATG
is a type graph; and

3. a component-based reconfiguration rule, p, according to Def. 4.6, is a tuple

(L, K, R, l, r, lt, kt, rt), p = (L
l
←− K

r
−→ R), with lt : L → CBS, kt : K → CBS and

rt : R → CBS; and

4. the typed attributed graph transformation rules are graph rewriting productions q =

(X
x
←− Y

y
−→ Z), X, Y, Z graphs; and

5. both, the system reflection structure CBS and the typed attributed graphs are based on the
same e-graph definition,

then, every CBS reconfiguration step can be reduced to a typed attributed graph transformation
system, TAGTS, by making TAGDSIG = DSig, AG = G and ATG = CBS. The TAGTS
set of transformation rules can be defined as the set of component-based reconfiguration rules
without the lt, kt, rt morphisms, given that, once defined the component-based reconfiguration
rules, these morphisms are also fixed.

As a result, the theorems that are valid for the TAGTS are also valid for our reconfiguration
system. In particular, we benefit from termination theorems and results on conditions that graph
transformation rules must hold for this property. We apply these conditions specifically for
our QoS-contracts preservation domain following the criteria for layered TAGTS established in
[Taentzer, 2004, Ehrig et al., 2005, Bruggink, 2008, Bucchiarone et al., 2009, Ehrig et al., 2009]. By
checking these conditions we determine whether the CBS reconfiguration step, parameterized
with the user-defined reconfiguration rule-sets in our reconfiguration system, is terminating.
In other words, once parameterized with a specific set of rules, the reconfiguration system can
identify termination conflicts in the rules. The absence of these conflicts determines that the
process of rule application is guaranteed to finish.

Ensuring reconfiguration termination, besides contributing to the continuity of service deliv-
ery fulfillment with the expected QoS levels under varying context conditions, frees a software
evolution architect of (i) being aware of rule dependencies that may cause deadlocks or infinite
loops in the reconfiguration process; and (ii) coding the specific procedures for applying the
reconfiguration rules and perform the reconfiguration itself.

115

Chapter 6. Validation and Verification of QOS-CARE Properties

6.5 Robustness with Respect to Context Unpredictability

Our definition of robustness with respect to context unpredictability requires guaranteeing the
delivery of the agreedmanaged software application services on any of themanaged application
states, that is, even in states that differs from the expected ones. These states are those defined
in the QoS contract with respect to the context situations, as specified by the user. Therefore, to
prove that QOS-CARE guarantees robustness, it is sufficient to show that our model considers
and controls all possible states that a managed software application can reach in its execution
with respect to the QoS contract to satisfy (i.e., for both, the foreseen context situations to be
faced by the managed application, and also for those unforeseen by the user).

Our proof is as follows. In Section 4.3.4 we defined our QoS contract semantics in terms of an
extended state machine, theQoSC_FSM. This semantics interprets the QoS levels defined in con-
tracts as states with conditions to be fulfilled using reconfiguration rules in the corresponding
transitions. Our semantics also adds two states of contract unfulfillment to this interpretation,
namely, the states of exception and unstability. Finally, this semantics defines the transition con-
ditions for these two states as the complement of the generalized conditions for the transitions
to the contract fulfillment states, as expressed in the definition of the δ transition function (cf.
Def 4.9).

In other words, the expected states for managed applications are the states corresponding
to the QoS levels defined by the user in QoS contracts. These QoS levels are specified for each
of the context conditions that the managed application can confront in its execution, as fore-
seen by the user. However, given the unpredictable nature of context changes (e.g., unexpected
amounts of users virtually attending a video-streamed music concert or the final match of the
soccer world-cup), it is easy to presume that the user can underestimate them. Of course, this
situation originates the possibility for the managed application to reach unexpected and unde-
sirable states, caused by context changes mistakenly omitted by the user. Nonetheless, even in
these states the managed application is under controlled states that are automatically generated
by our model.

In this way, our model considers all possible states with their respective transitions that a
managed software application can reach in its execution, with respect to context (i.e., as specified
in QoS contracts). Hence, we can conclude that the robustness conditions are validated in our
QoS contract semantics, as part of our reconfiguration mechanism.

6.6 Component-Based Structural Conformance

Component-based structural conformance is defined as the conformance that the managed ap-
plication structure must have with respect to the structural integrity constraints given by the
service component architecture (SCA) specification. This property prevents that malformed ap-
plication structures, caused for instance by faulty reconfiguration rules, will cause severe execu-
tion exceptions or faults. We define this property as follows.

Definition 6.1 (Full CB-Structural Conformance). A runtime system reflection structure, ℜS , is fully
CB-structural conformant if it is a component-based structure (i.e., there exists a graph morphism t :
ℜS → CBS), and the following structural integrity conditions hold:

1. ∀b1, b2
(

(b1, b2 ∈ ℜS .Binding ∧ b1.provided = b2.provided ∧ b1.required =
b2.required) =⇒ b1 = b2

)

: every binding must connect different pairs of provided-required
interfaces.

2. ∀b∃i, j
(

b ∈ ℜS .Binding ∧ i, j ∈ ℜS .Interface ∧ i 6= j ∧ b.provided = i ∧ b.required =

116

6.7. Atomicity of the Reconfiguration Process

j ∧ i.signat = j.signat
)

: each binding connects different interfaces that, nonetheless, have the
same signature.

3. ∀i(i ∈ ℜS .Interface =⇒ ∃c(c ∈ ℜS .Component ∧ (c.ifcp = i ∨ c.ifcr = i))): every
interface must belong to one component.

4. ∀i∃c
(

(i ∈ ℜS .Interface∧ c ∈ ℜS .Component∧ c.ifcr = i) =⇒ ∃b, j, d(b ∈ ℜS .Binding∧
b.required = i ∧ b.provided = j ∧ j ∈ ℜS .Interface ∧ d ∈ ℜS .Component ∧ d.ifcp =
j ∧ c 6= d)

)

: all interfaces required by a component must be bound to interfaces provided by
another component.

The verifiability of full CB-structural compliance naturally results from Def. 4.3 and 4.4. In
particular, in Sections 7.2.2 and 7.3.5 we verify that the specified conditions are satisfied by the
reconfiguration rules of the two application scenarios presented in the next chapter to validate
the applicability of QOS-CARE.

6.7 Atomicity of the Reconfiguration Process

Our definition for the atomicity property on self-adaptive software systems states that, either the
reconfiguration process finishes successfully and the system is reconfigured, or it fails and the
system preserves its (previous) configuration and state. Our proof showing that this property
holds in QOS-CARE is as follows.

Our strategy to apply design patterns to preserve QoS contracts is based on component-
based software reconfiguration. Nonetheless, following steps 1 and 2 of our QoS Contract-
Preserving Reconfiguration System (cf. Def. 4.11), we first perform the reconfiguration on a graph
model of the actual managed application and obtain a reconfiguration plan (cf. Def. 4.7). In step
3 the reconfigured graph model is verified in its Full CB-Structural Conformance, and in step 4
the actual managed application is reconfigured by instrumenting the reconfiguration plan in it.
Thus, if the reconfiguration process performed in our model succeeds, we assume that it finishes
satisfactorily instrumented in the managed application (as assumed in the robustness property).
Otherwise, if any of the previous steps fails, the actual managed application is not instrumented
with the reconfiguration plan, thus left unmodified.

Therefore, given that QOS-CARE performs a reconfiguration in the actual running managed
application only if all of its steps succeeds, it is easy to conclude that QOS-CARE guarantees the
atomicity of the reconfiguration process.

6.8 Chapter Summary

In this chapter we have presented the validation of the atomicity and robustness properties, the
conditions to verify the reconfiguration termination and SCA structural conformance, and how
to measure and determine the acceptability of the settling-time. These are the five adaptation
properties we used to define the reliability of our formal model for preserving QoS contracts, its
derived SCA architecture, and respective implementation.

To achieve this, we first analyzed the classic definitions of reliability and identified that self-
adaptive software systems already address some of the concerns implied by these definitions;
conversely, these definitions omit other important considerations that must be addressed when
evaluating the reliability of this kind of systems. For instance, one of these considerations is that
natural context changes must be included as another possible cause for disrupting the continuity
of agreed services delivery. Thus, reliability definitions require to be refined and reconsidered
in order to be applied to self-reconfiguring software systems. Second, based on this analysis,

117

Chapter 6. Validation and Verification of QOS-CARE Properties

and the adaptation properties defined in Chapter 3, we selected five of these properties that
consistently fulfill the considerations required for assessing the reliability of this kind of systems.

In light of this, the motivation for developing a formal model gains more relevance. We
needed a formal basis to guarantee desirable properties on the reconfiguration mechanism, as
far as possible, or at least, to provide it with a formalism that admits formal analysis on these
properties. In our opinion, it is not only important to develop reconfiguration mechanisms
based on novel adaptation strategies, but also that these mechanisms be guaranteed in terms of
standard and comparable properties. In the case of this dissertation, we guarantee the reliability
of the software reconfiguration process to preserve QoS contracts by means of validating and
verifying the enunciated adaptation properties. We also classified these properties based on
when (i.e., design-time vs. run-time) and where (i.e., reconfiguration mechanism vs. managed
software application) can they be validated and verified.

In the next chapter, we complement the validation and verification of these properties by
using QOS-CARE to preserve QoS contracts in two different application scenarios. In particular,
we analyze the QOS-CARE mean-time to reconfigure (MTTR) for each of these two application
scenarios, and verify the respective conditions for termination and full-structural conformance
on their reconfiguration rule-sets.

118

Chapter 7
QOS-CARE Validation Scenarios

Contents

7.1 General Platform Configuration for Executing the Validation Scenarios . 120

7.2 Application Scenario 1: A Reliable Mobile Videoconference System . . . 121

7.2.1 Reconfiguration Rules . 121
7.2.2 Runtime Verification of Reconfiguration Properties 123
7.2.3 Implementation Details . 127

7.3 Application Scenario 2: A Dynamic Twitter-Weather Mashup 128

7.3.1 Component-Based Application Structure 128
7.3.2 QoS Contract . 129
7.3.3 Reconfiguration Rules . 130
7.3.4 Reconfigured Application Structure 133
7.3.5 Runtime Verification of Reconfiguration Properties 133
7.3.6 Implementation Details . 136

7.4 Analysis of QOS-CARE Limitations . 137

7.5 Chapter Summary . 138

In the previous chapter we presented the validation and verification of QOS-CARE’s formal
properties. In this chapter we complement this validation and verification by applying QOS-
CARE to preserve QoS contracts in two different application scenarios, and executing them
with the FRASCATI runtime platform. We also evaluate the applicability and performance (i.e.,
the mean-time to reconfigure, MTTR) of our formal model and its realization by executing a
benchmark defined as a set of experiments on these two application scenarios.

The first validation scenario corresponds to a completed version of the example used through
this document to illustrate the formal definitions of our reconfiguration mechanism. This is a
mobile videoconference system subject to a QoS contract guaranteeing the availability and con-
fidentiality of the videoconference services under different context situations. The second is a
simple Web mashup application that dynamically composes and orchestrates the location ser-
vice of the Twitter30 social network with a weather web service from different available weather
information providers, such as Google31, Yahoo32, and WebServiceX33. Based on the satisfaction

30https://dev.twitter.com/docs/api
31http://code.google.com/p/java-weather-api
32http://weather.yahooapis.com/forecastrss
33http://www.webservicex.net/ws/WSDetails.aspx?CATID= 12&WSID=56

119

Chapter 7. QOS-CARE Validation Scenarios

of a contract on the QoS property of readiness (cf. [Avizienis et al., 2004]) on the weather service,
the availability of the weather-for-a-twitter-user service application is guaranteed.

For each of these scenarios, we illustrate the QoS contract requirements to be satisfied by
the respective component-based software applications, and present the experimental measure-
ments gathered from their execution. For the particular reconfiguration rule-sets we analyze
the termination and SCA structural conformance conditions, whereas for the experimental re-
sults, the mean-time to reconfigure as well as the QOS-CARE overhead in the corresponding
SCA runtime system. In other words, we also complete our analysis and validation of QOS-
CARE’s reliability as defined in the previous chapter, that is, in terms of the adaptation prop-
erties of atomicity, robustness, short settling-time, termination, and CB-structural conformance.
Nonetheless, we focus our analysis on the last three properties, recalling from the previous chap-
ter that for the first two we gave sufficient conditions that we proved as a result of our formal
model. Additionally, we incorporated the conditions necessary to verify the full CB-structural
conformance at runtime as part of the reconfig operation, while we can verify the ones for ter-
mination at loading time. For this, we benefit from the respective AGG graph-transformation
component functionalities.

The importance of this experimental evaluation, besides illustrating how to complete the
validation and verification of QOS-CARE properties for particular applications, is that its results
allow us to confirm the practical feasibility, applicability, and (re)usability of our reconfiguration
mechanism and its formalmodel. Moreover, the application scenarios illustrate the potentialities
of QOS-CARE as a complement to SCA and Service Oriented Computing (SOC) platforms to
enable service component applications to satisfy their QoS contracts.

This chapter is organized as follows. In Section 7.1 we describe the hardware and operat-
ing software systems configuration used for executing the application scenarios and evaluation
experiments. In Sections 7.2 and 7.3 we respectively present each of the QOS-CARE applica-
tion scenarios, analyzing the termination and SCA structural conformance conditions, and the
experimental data on the mean-time to reconfigure. In Section 7.4 we analyze and discuss limi-
tations of QOS-CARE in contrast to its advantages as an SCA layer for preserving QoS contracts
in component runtime platforms. Finally, we conclude with Section 7.5.

Correspondences in this Chapter: Addressed Challenge(s): C5 –The realization of the recon-
figuration mechanism for preserving QoS contracts must be feasible as a software architecture
and implementation. This implementation must be executable by existing component run-
time platforms with reasonable performance. Goal(s): G5 –Determine the practical feasibility
of the formal based reconfiguration mechanism to preserve QoS contracts. General contribu-
tion(s): GC.AIE –Formal model (GC.FM1 and GC.FM2) realized and evaluated as an SCA
layer for dynamic reconfiguration. Specific contribution(s): AIE.1; AIE.2 –SCA layer architecture
for dynamic reconfiguration to preserve QoS contracts designed and implemented maintain-
ing the formal model properties. Formal model’s proof-of-concept implementation experimen-
tally evaluated in a real SCA platform; practical feasibility and (re)usability of reconfiguration
mechanism determined.

7.1 General Platform Configuration for Executing the Validation Sce-

narios

To execute QOS-CARE with its validation scenarios and evaluation experiments we set sev-
eral platform configurations. The hardware and software used in these configurations (sin-

120

7.2. Application Scenario 1: A Reliable Mobile Videoconference System

gle and multi-machines) was based on Intel i3@2.4Ghz processors with 4Gb of RAM running
GNU/Linux Fedora 15 with non-relevant services and applications shut down. For the SCA
platform we used FRASCATI 1.4 with Java 1.6.0_23 allocated with 128MB of RAM.

The main purpose of these configurations is, of course, to measure the performance of our
reconfiguration mechanism, and determine its suitability and adequacy as an additional layer to
preserve QoS contracts in SCAmiddleware stacks. We measure this performance in terms of the
reconfiguration settling-time property, and the added overhead caused by this additional SCA
layer in the component runtime system. To obtain the respective measurements we designed a
small benchmark consisting of several experiments, and repeated them 10,000 times on each of
the application scenarios, as we illustrate in the following sections.

7.2 Application Scenario 1: A Reliable Mobile Videoconference Sys-

tem

Trough this dissertationwe have used a reliablemobile videoconference software system (RVCS)
to illustrate the definitions of our formal model, as follows:

i. In Section 2.5, p. 40, we described the RVCS application scenario and its requirements.
The RVCS system manages videoconference meetings and provides services to users for
registering and virtually attending to these meetings. As confidentiality is a concern for
this system, connections from the intranet are considered secure, thus clear communica-
tion channels can be used. From the extranet, confidential channels are required to be
configured, whereas in case of no connection, a local cache structure. With this applica-
tion scenario we also illustrated the challenges that the uninterrupted satisfaction of QoS
contracts implies for self-reconfiguring software systems.

ii. In Section 4.2.2, p. 69, we presented a simplified component-based software application
that satisfies the given requirements, both as an SCA software architecture and also rep-
resented as an e-graph.

iii. In Sections 4.2.3, p. 71, and 4.3.1, p. 77, we explained the QoS contract specification that
regulates the provision and delivery of the RVCS services, and the corresponding formal
semantics of this contract, respectively.

iv. In Section 4.2.4, p. 73, we presented a reconfiguration rule from the R_confidentChannel
rule-set in the specified QoS contract.

v. In Example 4.4, p. 76, we illustrated the corresponding reconfigured software system that
results from the application of this rule-set.

In the following sections we complete the reconfiguration rule-set for the given QoS contract,
and analyze the conditions necessary to verify the full CB-structural conformance, the reconfig-
uration termination, and determine the acceptability of the reconfiguration settling-time for this
application scenario.

7.2.1 Reconfiguration Rules

As presented previously, in this contract we have three QoS levels corresponding to con-
text conditions defined by the network access point used by the software client at every
moment of its execution, that is, if the user is connected from an intranet-serviced area,
an extranet-serviced area, or has no network access at all. Thus, these conditions deter-
mine the communications structure of the managed application to guarantee the confiden-
tiality of the transmitted information, following the corresponding design patterns defined in

121

Chapter 7. QOS-CARE Validation Scenarios

[Ramachandran, 2002, Dougherty et al., 2009]: a clear channel when connected from the intranet;
a ciphered channel when from the extranet; and a local cache when having no network access.
We present these reconfiguration rule-sets in the following sections.

Rules for Changing to an Intranet-Serviced Area

Given that the user can move freely among locations with any of the enunciated context condi-
tions, the reconfiguration rules specified to configure a clear channel (i.e., when moving to an
intranet-serviced area) must consider the transitions from any of the two other configurations.
Thus, in Fig. 7.1 we present the rule-set to apply when the user moves to an intranet-serviced
area from both, an extranet-serviced area (cf. extra2intra rule in the top of the figure) and an
area having no network access at all (cf. nonet2intra rule in the bottom of the figure).

Figure 7.1: The R_clearChannel reconfiguration rule-set.

The local cache design-pattern we used specifies two main components (cf. LocalCache in
the client-side and UserCache in the server-side, bottom rule of the figure) to cope with com-
munication interruptions. The first provides the asynchronous resume service to be used by
the second, once the communication is re-established. In complement, the second provides the
synch service to be used by the resume service to synchronize the interactions from both sides,
which were saved locally upon the communication interruption, for post-processing. Even

122

7.2. Application Scenario 1: A Reliable Mobile Videoconference System

though the client- and server-side components must be labeled accordingly in the reconfigu-
ration rules, we have omitted them in these figures for legibility reasons.

Rules for Changing to Extranet-Serviced and Unreachable-Network Areas

From the previously illustrated rules, it is worth noting that in each rule we can invert its
LHS and RHS to obtain the rule that specifies the opposite transition between the same pair
of states. Moreover, it is easy to observe that we have chosen carefully the same key elements
in the LHSs and RHSs (i.e., the 2:Interface , 3:Interface , 4:Binding and 5:Binding)
as pivots for these reconfiguration rules. Thus, the reconfiguration rule-sets to be applied for
changing to extranet-serviced areas and unreachable-network areas (i.e., R_confidentChannel and
R_localCache) can be specified from the previously specified rules, by inverting and exchanging
their LHSs and RHSs, that is, with LHS = RHS = {intranet, extranet, noNetwork}, as arranged
in Fig. 7.2 (e.g., the rule extranet-to-intranet is formed with LHS = extranet and RHS =
intranet).

Figure 7.2: The reconfiguration rule-sets for the confidentiality contract.

Similar to the illustrated reconfiguration rule-set for configuring a clear channel, the corre-
sponding rule-sets to apply when the user moves into an extranet-serviced area, and into an area
with no network access, are composed of two reconfiguration rules. These rules correspond to
each of the two other possible configurations, as evidenced in the figure, that is, all the states
have two incoming transitions (i.e., two reconfiguration rules).

7.2.2 Runtime Verification of Reconfiguration Properties

Component-Based Structural Conformance

As explained in previous chapters, we incorporated the verification of the full CB-structural
conformance conditions specified in Section 6.6 in the reconfig operation. Thus, this verification is
performed at runtime after every reconfiguration of the component-based managed application.
Nevertheless, we can verify these conditions by analyzing the reconfiguration rules illustrated
previously for this application scenario, as follows.

i. The reconfiguration rule-sets R_clearChannel, R_confidentChannel, and R_localCache are
built from the LHSs and RHSs specified in the previous section, that is, with LHS = RHS
= {intranet, extranet, noNetwork}. Thus, it is sufficient to analyze the full CB-structural
conformance conditions on these e-graphs.

ii. All of these e-graphs share the same key elements for the reconfiguration operation, and
these elements are used consistently in all of the LHSs and RHSs. These elements are
the 2:Interface , 3:Interface , 4:Binding and 5:Binding , and they invariably
enclose the intermediate elements to be reconfigured.

123

Chapter 7. QOS-CARE Validation Scenarios

iii. All of the reconfiguration rules either add or delete connected elements that are enclosed
by these key elements.

iv. As far as we apply these rules to full CB-structural conforming structures, it is easy to
verify that the performed reconfigurations do not alter this property on them.

Reconfiguration Termination

In Section 6.4 we showed that our formal model for dynamic reconfiguration can be reduced
to a typed attributed graph transformation system (TAGTS). Hence, our formal model inherits
the TAGTS formal properties, including the termination conditions for layered graph transfor-
mation systems (LGTS). The Attributed Graph Grammar system (AGG) implements this lay-
ered strategy of graph transformation, being this strategy a generalization of our QoSC_FSM
ρ : STATES → P(Γ) auxiliary function. The reconfiguration rule-sets R_clearChannel,
R_confidentChannel, and R_localCache are just particular names for this function, applied to the
respective states.

While we use ρ to apply only the reconfiguration rule-set that is specific to fulfill the QoS
level corresponding to the target state to be reached under the changed context condition, we
use AGG’s LGTS to determine whether the rules in a given rule-set must be grouped to be
applied in different layers. AGG not only incorporates the enunciated termination conditions
in the respective verification on the reconfiguration rule-sets, but also generates the layers to
re-group the reconfiguration rules, if necessary.

Thus, for the verification of the termination conditions specified in Section 6.4 for the given
reconfiguration rule-sets of this application scenario, we use the corresponding functionality
of the AGG system on each of these rule-sets. As illustrated in Fig. 7.3, the two rules in the
reconfiguration rule-set R_clearChannel, to be applied when changing to an intranet-serviced
area, satisfy the termination conditions and can be used in the same layer. The analysis also
illustrates the elements of the rules that present conflicts as classified in the creation and deletion
layers (middle and bottom parts of the figure, respectively). In this case, no termination conflicts
were detected, as all elements could be classified in the same layer.

We performed the same analysis for the two other reconfiguration rule-sets,
R_confidentChannel and R_localCache, with the same results.

Settling Time

Compared to the other four, the settling-time is a different kind of property because it must be
analyzed and measured completely by experimentation at runtime.

To obtain the MTTR measurement as accurately as possible, it must be performed under
controlled situations, that is, without any disturbances (e.g., with no added CPU load of other
processes, and no superfluous operating system services), and repeated several times under sim-
ilar conditions. To achieve this, we followed the general conditions established in Section 7.1,
and executed every experiment by repeating the evaluated operation 10,000 times. Then, we av-
eraged the results in the same evaluation program. We repeated these 10,000-times experiments
several times, under the same conditions, that is, only varying the day and time of execution,
obtaining consistent results (i.e., differences of 2-3 milliseconds among the averages).

In addition, to evaluate the reconfiguration settling-time for this particular application sce-
nario, we designed a benchmark with different configurations and evaluation objectives. To
obtain basic measurements, the configurations comprise only one client vs. the videoconference
server. As illustrated in Table 7.1, the benchmark focuses on themean-time to reconfigure several
RVCS deployment variations, that is, either executing the client and server in the same machine,

124

7.2. Application Scenario 1: A Reliable Mobile Videoconference System

Figure 7.3: Termination analysis for the R_clearChannel reconfiguration rule-set.

or in different machines; and thus, communicating them either directly, or over a loopback, or
yet over a 11-hops Internet connection. The measured times were taken from the execution of
the reconfiguration mechanism in the client with the reconfiguration rules presented previously.

The first row of the table presents the time for the most expensive SCA primitive reconfig-
uration operation: loading a component. Naturally, this operation depends on the size of the
component, and the operation required to deploy the component bytecode and composite in the
target machine (e.g., if the component files are stored locally or they must be transmitted over
an Internet connection).

The second row indicates that applying a one-rule reconfiguration in the e-graph represen-
tation and the verification of full SCA conformance conditions takes 68ms. Rows 3 to 5 illustrate
the total MTTR for reconfiguring the RVCS’s clear channel configuration into a ciphered chan-
nel one. Using a local (i.e., direct) interface takes 624ms., whereas 640ms. for a remote REST
interface over a loop-back in the same machine, and 876ms. instrumenting the reconfiguration
over an Internet connection. The difference between the reconfiguration at the e-graph level vs.
the SCA level is that in the latter QOS-CARE must interact with the actual software application,

125

Chapter 7. QOS-CARE Validation Scenarios

Table 7.1: RVCS settling-time benchmark scenarios and results

Evaluation Objective in Configured Scenario Time (msec.)

Local component loading/unloading (5395 bytes)a 41
E-Graph transformation (one rule applicationb) 68

Local reconfiguration (total MTTR local interface)a 624
“Remote” reconfiguration (total MTTR over loopback)a 640
Remote reconfiguration (total MTTR over Internet)c 876

QOS-CARE overhead (simulating 1 dummy event/3sec.)a 3
a One client vs. server in the same machine.
b Rule for changing to a “confident channel” from a “clear channel” configuration.
c Instrumented over a ~4Mbps, 11 hops Internet connection.

while it is in execution. Thus, instrumenting the reconfiguration plan at the SCA level requires to
stop/re-start the execution of the intervened components before/after performing the reconfig-
uration changes. Finally, the measured overhead of QOS-CARE in this application scenario is
of 3ms.

To take the measured times, we used FRASCATI to execute QOS-CARE and the RVCS sys-
tem from its initial configuration, as explained in Chapter 4. We configured the Context Events
Simulator component of QOS-CARE to generate simulated reconfiguration events notifying
changes in the user’s network access, from intranet- to extranet-serviced areas. To obtain mea-
surable times, a second event is simulated for QOS-CARE to apply the inverse of the same rule.
These two events are then cyclicly repeated for the desired number of times.

The reconfiguration script generated by the Planner component to be applied for changing to
the confident channel involves the following steps:

i. deploy and load the EnDeCipher component for enciphering/deciphering the transmitted
messages, once the user moves from the intranet to the extranet;

ii. add it into the client composite;
iii. un-promote the client reference to the chat server service;
iv. re-wire the client reference to the EnDeCipher component; and
v. promote the EnDeCipher reference to the chat server service in the client composite.

Qualitative Analysis

In our opinion, the measured MTTRs (e.g., the settling-time of 876ms. over an Internet connec-
tion) are acceptable enough, compared to existing mobile and remote (e.g., over Internet) ser-
vices latency. Moreover, considering that the confidentiality is guaranteed while ensuring the
continuity of the service at the negligible overhead of 3ms., this settling-time is a very affordable
cost in time.

In light of this, the obtained MTTRs for this application scenario confirm the practical feasi-
bility of using QOS-CARE as a platform-independent SCA layer for preserving QoS contracts
in component-based software applications through dynamic reconfiguration. In addition to the
possibility of being used in any SCA platform, QOS-CARE enforces the separation of concerns
between the managed application and the reconfiguration mechanism, and their correspond-
ing properties. First, the QoS contracts are specified independently of the managed application.
Second, except for the monitor probes, the managed application does not require of any mod-
ification for the reconfiguration mechanism to make it preserve its QoS contract. Third, the

126

7.2. Application Scenario 1: A Reliable Mobile Videoconference System

MAPEmodel elements remain explicit in the QOS-CARE’s SCA architecture, which enables not
only their distribution in several machines, but also facilitates their replacement. Finally, this
independence and separation of concerns allow us to analyze the reconfiguration mechanism’s
adaptation properties. In particular, we have successfully completed the validation and verifi-
cation of five of these adaptation properties (i.e., properties inherent to self-adaptive software)
in QOS-CARE.

7.2.3 Implementation Details

In this section we present some implementation details of the analyzed application example
in terms of its components, classes, physical lines of code (LOC), and density (i.e., LOCs per
class). This application example is based on a plain old Java object (POJO) implementation of a
videoconference system developed independently of this dissertation34, following the respective
requirements introduced in Section 2.5. As summarized in Table 7.2, the application example is
composed of 7 SCA components, which are implemented with 9 Java interfaces and 140 Java
classes, and reusing the monitor interface from QOS-CARE.

Table 7.2: RVCS application example implementation details
RVCS

Components
Classes and
Interfaces

LOC
LOC/
ClassApplication Example

Monitoring Elements 1 1 84 84

Application Logica 6 148 23,799 160

Total 7 149 23,883 160
a Reconfiguration applied only to the use cases subject to the QoS contract on
confidentiality.

To preserve the QoS contract on confidentiality in this application with QOS-CARE, we
needed first to group and encapsulate its Java classes in SCA components, and publish its func-
tionalities as RMI and Web services. Then, for the specific tasks for preserving the contract, we
developed:

• One monitoring component (84 LOC), to notify QOS-CARE about context changes in the
network access (i.e., from intranet, from extranet, and no network), signaling an imminent
violation of the contracted QoS levels.

• 6 application-logic components (116 LOC for packaging the POJO classes in 3 composite
files).

Hence, apart from the QoS contract specification (including the 6 reconfiguration rules), the
net development work for preserving the contract on the application example amounts to the
monitoring component, that is, 84 LOC (i.e., 0.4% of the total). This represents a very low amount
of work compared to the total application size, considering that all of our remaining work was
devoted to enable the application to be executed in an SCA runtime platform (i.e., in FRASCATI).
Naturally, integrating the monitor probe in the managed application required to understand the
application code (in this case, in the network adapter component), even though this monitoring
could be performed at the operating system level.

34http://gforge.icesi.edu.co/gf/project/seams

127

Chapter 7. QOS-CARE Validation Scenarios

7.3 Application Scenario 2: A Dynamic Twitter-Weather Mashup

This application scenario illustrates how QOS-CARE can be used to create a
weather-for-a-twitter-user service as a web mashup application. This application dy-
namically composes and orchestrates the location service of a Twitter user (i.e., the city/country
as stored in the user’s profile) with a weather web service from different available weather
information providers, such as Google, Yahoo, and WebServiceX. The use of QOS-CARE to
preserve a contract on the QoS property of readiness on the weather service serves as a guarantee
for the availability of the mashup application. As characterized by [Avizienis et al., 2004],
service readiness measures immediate availability in the sense of immediate response. In
contrast, continuous availability (or simply, availability) measures the continuity of a service
uninterruptedly, after it has initially (and partially) answered service requests.

That is, the idea of the QoS contract is to guarantee, for the service user, the weather con-
ditions report from any of the weather information sources that she has registered in the ap-
plication or in the contract, and shows its readiness to provide it. Moreover, these weather
information sources can be added at runtime as contract re-negotiations.

7.3.1 Component-Based Application Structure

The component-based application structure of our solution is partially based on two FRASCATI

examples that provide components and services for two basic functionalities35:

• twitter: for a given user, retrieves and decodes all of her public profile information. This
includes her registered city and country.

• weather: retrieves the weather conditions on a given location as a
pair city-country, using the WSDL weather information service from
http://www.webservicex.net/globalweather.asmx .

For our solution, we modified and reused the core components of these two examples to
compose their mentioned services as illustrated in Fig. 7.4. For a given user (the userId ex-
posed property in the figure), the Twitter-Weather Mashup component (TWMashup) requests
the user profile from Twitter, and uses the XML Twitter profile decoder component (Decoder)
to obtain the registered location as a city-country pair. Given that existing weather informa-
tion providers have different interfaces and method signatures to deliver the weather informa-
tion, we also replaced the weather service interfaces with generic ones for using the existing
services independently of their particular definitions. The Weather Orchestrator component
(WeatherOrchestrator) is responsible for providing the generic weather service (through the
provided interface named WeatherSCAService), initially only from the Internet WebServiceX
provider, through the WSXWeather component. This component is responsible for translat-
ing the generic weather request and respective response to the particular WebServiceX interface
specification and requirements.

The corresponding component-based structure application reflection (CBSAR) defined in e-
graphs is illustrated in Fig. 7.5, omitting the Decoder component, the interface names, and the
Internet service bindings for legibility reasons.

35 http://websvn.ow2.org/listing.php?repname=frascati& path=%2Ftags%2Ffrascati%2F
frascati-1.4%2Fexamples%2Ftwitter and http://websvn.ow2.org/listing.php?repname=
frascati&path=%2Ftags%2Ffrascati%2Ffrascati-1.4%2Fe xamples%2Fweather

128

7.3. Application Scenario 2: A Dynamic Twitter-Weather Mashup

Figure 7.4: The Twitter-Weather SCA application.

Figure 7.5: The Twitter-Weather CBSAR structure in e-graphs.

7.3.2 QoS Contract

Public web-services for providing weather information are massively used for different pur-
poses, being it common to find them as non-available, or more precisely, unready to respond
weather requests. To cope with this problem, we define a contract on the readiness of weather
service providers, as illustrated in Table 7.3. On one side, line 1 in this table specifies that when-
ever occurs the context event weatherProviderTimeOut (e.g., the current weather information
provider presents a service unreadiness), QOS-CARE must apply the R_ChangeWeatherProvider
reconfiguration rules. These rules change the weather information provider in order to fulfill
the corresponding QoS level. On the other side, line 2 offers the possibility of having rules to
add new weather information providers, triggered by the newWeatherProviders event (e.g., as a
result of a contract renegotiation). The R_AddWeatherProviders rule-set deploy the required ad-
ditional components to use the new weather information providers at runtime. Of course, in
this case the user must supply the corresponding component implementations for translating

129

Chapter 7. QOS-CARE Validation Scenarios

the weather request/response to/from these new providers to be able to use them with the re-
spective reconfiguration rules. At runtime, these components are dynamically deployed at the
first time of the corresponding rule application.

Table 7.3: QoS contract on service readiness

Twitter-Weather Mashup Readiness Obligations

Context Events QoS-Level Objective Guaranteeing Rule Set
1: weatherProviderT imeOut weatherProviderReady R_ChangeWeatherProvider
2: newWeatherProviders weatherProvidersAdded R_AddWeatherProviders

Assignment of Responsibilities
- System Guarantor: System.WeatherOrchestratora

- Context Monitor: System.WeatherT imeOutProbeb

a The application component responsible for resolving weather requests.
b The designated component for monitoring time-outs on requests to the external weather information
providers.

For the weather service readiness, in this contract we opt for specifying only one QoS level
to fulfill. Even though we could specify a more refined set of context conditions with their
respective QoS levels and reconfiguration rule-sets to choose a weather information provider
based on more complex criteria, we prefer to maintain the contract simple enough to illustrate
other potentialities of QOS-CARE not yet explored as an SCA layer for driving the dynamic
reconfiguration of component-based applications, as follows in the next sections.

7.3.3 Reconfiguration Rules

As presented previously, this contract comprises two reconfiguration rule-sets. The first is for
performing the change of weather information provider among the registered ones, while the
second for introducing new weather information providers. Although it is possible to perform
both tasks in a same rule, this is not desirable. First, the rules for introducing new weather in-
formation providers require to be specific in the particular attributes that characterize the new
weather service. Second, the rules for changing of weather information provider must be gen-
eral enough to use any of the registered ones, independent of their particularities. Third, by
separating the tasks in these two different kinds of rules we maintain the simplicity, modularity,
and maintainability of each of them.

Rules for Adding New Weather Information Providers

The structure of rules for introducing new weather information providers is exemplified by the
rule illustrated in Fig. 7.6, which adds the Google weather information provider. Given that
the left-hand side (LHS) of the rule is empty (i.e., it holds in any CBSAR e-graph), the negative
application condition (NAC) of the rule simply prevents of applying the rule more than one
time. The right-hand side (RHS) of the rule introduces the components, interfaces and wiring
required for accessing the service of the new weather information provider. We omit in this
figure details such as the attribute specifying the Java implementation of the GoogleWeather
component, for legibility reasons.

130

7.3. Application Scenario 2: A Dynamic Twitter-Weather Mashup

Figure 7.6: Reconfiguration rule for adding the GoogleWeather provider.

Rules for Changing of Weather Information Provider

For the reconfiguration rules that actually perform the change of weather information provider,
we use simplified design patterns from [Buschmann et al., 2007] that follow a strategy of re-
source redundancy to address availability problems. Assuming the same cost/benefit of using
any of the registered providers, we use a non-deterministic choice among them. However, we
split the strategy in two rules, and apply them in alternative rounds, one after the other.

Figure 7.7: Reconfiguration rule for changing to a “ready” weather information provider.

The first rule, illustrated in Fig. 7.7, tries to find a match of its LHS in the managed applica-
tion for the following elements:

i. the binding responsible for provisioning the weather information provider, that is,
the binding with index 736. In the figure, this is 7:Binding having attribute
15:ct_QoSProvision with value ”WeatherProvider” . This binding is bound
to the provided weather interface 2:Interface of 1:Component , whose attribute
17:c_QoSProvision thus has value ”BoundW” ; and

ii. an existing component for accessing a “ready” weather information provider, that is, the
component with index 4 (cf. 4:Component thus having attribute 18:c_QoSProvision
with value ”ReadyW” , and a provided weather interface 5:Interface in the figure).

36Recall that these indexes are used to associate LHSwith RHS elements; they are not used for thematch operations.

131

Chapter 7. QOS-CARE Validation Scenarios

If this match is found, the RHS of the rule re-binds the provided attribute of the identified
7:Binding from interface 2:Interface of the ”BoundW” weather information provider com-
ponent, to the 5:Interface of the ”ReadyW” one. Additionally, the rule marks the previous
”BoundW” as ”UnreadyW” , and updates the previous ”ReadyW” as the currently ”BoundW” .
This means that the previous weather provider, given that it did not respond to a request, thus
is marked as unready.

The second rule, illustrated in Fig. 7.8, performs a similar reconfiguration but interchanging
the matching ”ReadyW” by ”UnreadyW” in the LHSs, and vice versa in the RHSs. This means
that this rule retries on weather information providers that were marked as unready by the
previous rule, in the previous round.

Figure 7.8: Reconfiguration rule for trying a previously unready weather information provider.

Generated Script for Changing of Weather Information Provider

From the application of the illustrated reconfiguration rule for changing to the Google
weather information provider, a corresponding reconfiguration plan is generated. The
SCAInstrumentation component (cf. Section 5.6.1, p. 101) translates this reconfiguration
plan into the FSCRIPT script illustrated in Algorithm 7.1 (the names of the variables are modi-
fied for readability).

Algorithm 7.1 FScript script for changing to the Google weather information provider.
1: orchestrator = $domain/scadescendant::WeatherOrchestr ator;
2: weatherRef = $orchestrator/scareference::weatherMngr;
3: wProviderComp = $domain/scadescendant::GoogleWeather;
4: wProviderSvc = $wProviderComp/scaservice::weather;
5: wsxw = $domain/scadescendant::WSXWeather;
6: wsxwSvc = $wsxw/scaservice::weather;
7: set-state($orchestrator, "STOPPED");
8: remove-scawire($weatherRef,$wsxwSvc);
9: add-scawire($weatherRef,$wProviderSvc);
10: set-state($orchestrator, "STARTED");

In this script, the FRASCATI’s FPATH navigation language is used to retrieve the SCA man-
aged application components. The meta-variable $domain in line 1 serves as a reference to

132

7.3. Application Scenario 2: A Dynamic Twitter-Weather Mashup

the SCA contained composites and components managed by FRASCATI. scadescendant ,
scaservice and scareference are navigation language elements used to retrieve the re-
spective SCA elements from these components. Lines 1-2 define the variables orchestrator
and weatherRef as the WeatherOrchestrator component and its weatherMngr required
interface, respectively. Analogously, lines 3-6 define the corresponding variables for the
current weather provider (GoogleWeather) component and its weather provided inter-
face, as well as the next “ready” weather provider (WSXWeather). Line 7 deactivates the
WeatherOrchestrator component to perform the change of provider reference in lines 8 and
9. Finally, line 10 re-activates the WeatherOrchestrator component to resume its execution.

7.3.4 Reconfigured Application Structure

With the previously illustrated rules, QOS-CARE dynamically reconfigures the managed
mashup application, not only to use different existing weather information providers, but also
to add new ones, both at runtime.

Figures 7.9 and 7.10 respectively illustrate the SCA and CBSAR e-graph representations of
the reconfigured mashup application after applying the rules for adding the Google and Yahoo
weather information providers, as well as the change of corresponding provider. In this case,
the Google weather information provider was chosen.

Figure 7.9: The Twitter-Weather SCA application reconfigured.

7.3.5 Runtime Verification of Reconfiguration Properties

Component-Based Structural Conformance

To verify the full CB-structural conformance conditions specified in Section 6.6 for the given re-
configuration rules of this application scenario, we observe the same remarks for the previous

133

Chapter 7. QOS-CARE Validation Scenarios

Figure 7.10: The Twitter-Weather reconfigured CBSAR e-graph corresponding to Fig. 7.9.

application scenario (cf. Section 7.2.2). Additionally, we can verify these conditions by examin-
ing the reconfiguration rules illustrated previously for this application scenario, as follows.

i. For the rules to add new weather information providers, it is enough to verify that their
right-hand side (RHS) structures satisfy, by themselves, the enunciated conditions. This
is given that the respective left-hand sides are empty, and thus, no existing structures,
already full CB-conforming, are modified.

ii. Concerning the two rules that perform the change of weather information provider, the
only structural modification introduced by the rule RHS is the rebinding from one inter-
face to another, both of which have the same structure. These two rules are structurally
equivalent, thus they do not alter the CB-conformance of the existing structures to be
reconfigured.

Reconfiguration Termination

For the verification of the termination conditions specified in Section 6.4 for the given reconfig-
uration rules of this application scenario, we follow the same procedure used for the previous
application scenario (see the discussion in Section 7.2.2).

That is, we use the layered graph transformation strategy (LGTS) used in AGG in conjunc-
tion with our QoSC_FSM’s ρ : STATES → P(Γ) auxiliary function. We use ρ to apply the
reconfiguration rule-set that is specific to change the weather information provider, and AGG’s
LGTS to verify the termination conditions on its two rules. If these conditions are not satisfied,
AGG also generates the layers to re-group the reconfiguration rules. The resulting analysis is
illustrated in Fig. 7.11.

According to this analysis, the rules ChgWeatherProv_1 and ChgWeatherProv_2 satisfy
the termination conditions by separating them in two layers, 1 and 2 (cf. top part of the figure).

134

7.3. Application Scenario 2: A Dynamic Twitter-Weather Mashup

Figure 7.11: Reconfiguration termination analysis for the Twitter-Weather application scenario.

The analysis also illustrates the elements of the rules in conflict and that would be in the creation
and deletion layers (middle and bottom parts of the figure, respectively). Comparing the two
rules it is easy to observe that the conflicting element is the binding to the provided weather
interface (marked as in layer 3 in the figure). This interface is deleted from the current weather
information provider, and created for the ready one in both rules. The analysis indicating that
it is necessary to separate the two rules is in agreement with our design decision to apply these
rules in different rounds, which is equivalent to classify and apply them in different AGG layers,
thus satisfying the termination conditions.

Settling Time

We disaggregate the benchmark for measuring the reconfiguration settling-time for the change
of weather information provider as illustrated in Table 7.4. We took these average measure-
ments from the execution of the previously illustrated reconfiguration rules, using the same
experimentation criteria established for the previous application scenario (cf. settling-time in

135

Chapter 7. QOS-CARE Validation Scenarios

Section 7.2.2).
The first row of the table indicates that the time for transforming the actual SCA representa-

tion, maintained by the FRASCATI runtime middleware, to the e-graph representation is 15ms.
This is very similar to the time it takes for applying a one-rule reconfiguration in the e-graph
representation and the verification of full SCA conformance conditions, 14ms. The script trans-
mission over the loop-back TCP/IP stack is the most costly operation, with 81ms, while the
actual execution of the FSCRIPT reconfiguration script takes 47ms. The measured overhead of
QOS-CARE in this application scenario is the same as the measured in the videoconference
scenario.

Table 7.4: Twitter-Weather mashup settling-time benchmark results

Evaluation Objective in Configured Scenario Time (msec.)

E-Graph from FRASCATI’s SCA domain translation 15
E-Graph transformation (one rule applicationa) 14
FSCRIPT script transmission (473 bytes, 15 lines)b 81
FRASCATI’s FSCRIPT reconfiguration execution 47

Total Mean-Time to Reconfigure (MTTR)b 157
QOS-CARE overhead (simulating 1 dummy event/3sec.) 3
a Rule for changing to a “ready” weather information provider.
b Through a REST reconfiguration service over a loop-back TCP/IP connection.

Despite we could use the FSCRIPT execution engine’s API to avoid the cost of sending the
reconfiguration script, at least partially, having the REST reconfiguration service offers multiple
possibilities for implementing different distributed reconfiguration schemes.

In the particular case of this application scenario, we judge the total settling-time of 157ms.
as very acceptable given the goal of the QoS contract on readiness (i.e., contributing to the ser-
vice availability). Interpreting the mean-time to reconfigure as the mean-time to recover (from
failures), QOS-CARE represents considerable savings in time and cost in the automated man-
agement of software applications, especially when compared with the performance of a human
performing the same task. In other words, this application scenario illustrates how QOS-CARE
can be used to implement software systems with self-managed capabilities by satisfying their
QoS contracts.

Moreover, even though the implied reconfigurations are very simple, the obtained dynamic
capabilities constitute a reliable foundation for the Service Oriented Computing (SOC) and Ser-
vice Oriented Architecture (SOA) paradigms.

7.3.6 Implementation Details

In this section we present some implementation details of the analyzed application example in
terms of its components, classes, physical lines of code (LOC), and density (i.e., LOCs per class).
As summarized in Table 7.5, this application example is composed of 5 SCA components, im-
plemented with 3 Java interfaces and 22 Java classes, reusing the QOS-CARE monitor interface.

As previously explained, for this application example we reused two FRASCATI examples.
To obtain the Web mashup application, we unified the interface for invoking the weather ser-
vices from different weather information providers, and developed:

• One monitoring component (63 LOC), to notify QOS-CARE about a weather service un-
readiness from the currently used weather information provider.

136

7.4. Analysis of QOS-CARE Limitations

Table 7.5: Twitter-Weather mashup application example implementation details
Twitter-Weather Mashup

Components
Classes and
Interfaces

LOC
LOC/
ClassApplication Example

Monitoring Elements 1 1 63 63

Application Logica 4 24 1,512 63

Total 5 25 1,575 63
a Including only one weather information provider, and WSDL generated classes and
interfaces.

• 3 application-logic components: one for orchestrating the weather service invocations
among the different registered weather information providers (composite file of 87 total
LOC); and two for implementing additional weather information providers, namely, for
the Google and Yahoo ones (35 LOC average per composite file).

Therefore, apart from the QoS contract specification on the application readiness (including
the 4 reconfiguration rules), the net development work for preserving the contract on the ap-
plication example amounts to the monitoring component, that is, 63 LOC (i.e., 4% of the total),
and the implementation of the additional weather information providers (58 LOC in average for
each, 3.6% of the total). Given that all of our remaining work was devoted to augment the ap-
plication logic and its own functionalities, this represents a very low amount of work compared
to the total application size.

7.4 Analysis of QOS-CARE Limitations

In this section we present the limitations of QOS-CARE that we have identified from our own
experience using it in the presented application scenarios.

Automated Interface Adaptation

As we have illustrated in both of the presented application scenarios, our mechanism for dy-
namic reconfiguration allows reconfiguration rules to dynamically deploy and un-deploy com-
ponents with different services and functionalities. Nonetheless, although the reconfiguration
rules can specify how to reconfigure the managed application to use these new services, the user
still needs to develop or provide the actual implementation of the implied component to exploit
the corresponding functionality. In some cases, such as the RVCS application, it is foreseeable
the kind of components to be required by reconfiguration rules. However, in some others, such
as the Internet mashup application, it is not possible to anticipate the particular interface speci-
fication that a service provider will use to implement a particular service. Thus, to leverage the
QOS-CARE capabilities for dynamic reconfiguration it is necessary to have automated mecha-
nisms to translate from implementations of one interface to another, or to standardize the inter-
faces for given services.

Unfortunately, this is a well known unsolved challenge shared with the research community
on Component-Based Software Engineering.

Guaranteeing Additional Adaptation Properties

The main goal of this dissertation is the preservation of QoS contracts with reliable reconfigura-
tion mechanisms. Given that our strategy to preserve QoS contracts is based on the application

137

Chapter 7. QOS-CARE Validation Scenarios

of design-patterns through dynamic reconfiguration, we defined the reliability in terms of five
properties inherent to reconfiguration (i.e., adaptation) software systems. These properties are a
subset of the adaptation properties that we identified and defined as part of this dissertation for
this kind of systems.

Even though we identified, validated, and verified the conditions required to guarantee each
of these five properties, it would be desirable to guarantee several other of the adaptation prop-
erties. However, according to the U.S. Air Force Science & Technology vision for the next fu-
ture [Werner Dahm, 2010], developing mechanisms that guarantee these adaptation properties
in general will take the research community on self-adaptive software systems and control en-
gineering at least the next decade, if not more.

7.5 Chapter Summary

In this chapter we have presented two application scenarios for QOS-CARE: a reliable videocon-
ference system (RVCS) and a dynamic Internet mashup application. We used these case studies
to (i) validate the applicability and practical feasibility of our formal model and its realization
as an SCA architecture and implementation, and (ii) show how do we complete the validation
and verification of the conditions that characterize the adaptation properties through which we
defined the reliability of the reconfiguration mechanism. Given the different application do-
mains of the two application scenarios, being them complementary, we could evaluate different
aspects of QOS-CARE with them.

Quantitative Results

The obtainedMTTR results in both application scenarios are significant as indicative of the QOS-
CARE’s reliability, as measured quantitatively. On one hand, the reconfiguration settling-times
are small, even when instrumented over an Internet connection, being them acceptable for the
corresponding application domains. Nonetheless, depending on the scenario, several perfor-
mance improvements can be obtained. For instance, it would be possible to send the reconfig-
uration scripts (and deploy new components) only on their first use, instead of sending them
again (and removing them) each time, and just deactivate them for ulterior invocation or reuse.
On the other hand, compared to the response times of existing Internet services, the overhead
introduced by QOS-CARE while running the managed application in FRASCATIis negligible.

As a result, the experimental evaluation performed with these application scenarios confirm
the applicability and practical feasibility of using QOS-CARE as a platform-independent SCA
layer for preserving QoS contracts in component-based software applications.

Qualitative Results

As thoroughly explained, QOS-CARE enforces the separation of concerns between themanaged
application and the reconfiguration mechanism, and their corresponding properties. In both
application scenarios we were able to:

• Specify the QoS contracts independently of the managed applications.

• Except for the monitor probes, the managed applications did not require of any modifi-
cations for the reconfiguration mechanism to operate on them in order to preserve their
respective QoS contracts.

• The reconfiguration mechanism (i.e., QOS-CARE) remains explicitly separated from the
managed application, andmoreover, it is executed as a completely independent composite

138

7.5. Chapter Summary

in FRASCATI.

• Finally, this independence and separation of concerns allowed us to analyze the reliability
adaptation properties of our reconfiguration mechanism. In particular, we successfully
completed the validation and verification of the five adaptation properties with which we
defined the reliability of QOS-CARE.

139

Chapter 7. QOS-CARE Validation Scenarios

140

Part IV

Summary

141

Chapter 8
Conclusions and Future Work

Contents

8.1 Dissertation Summary . 143

8.1.1 Addressed Challenges and Goals . 143

8.1.2 Contributions . 144

8.2 Future Work . 146

8.2.1 Short-Term Opportunities . 146

8.2.2 Long-Term Opportunities . 147

In this concluding chapter we present an overview of this dissertation by summarizing the
main challenges and goals addressed, and the corresponding achieved contributions. Finally,
we discuss some further research opportunities opened by our research work.

8.1 Dissertation Summary

8.1.1 Addressed Challenges and Goals

Over the last years, software services have gained ubiquity and proliferated dramatically, giv-
ing rise to a new software industry promoted by the possibilities of their massive use and their
pervasiveness in all aspects of everyday life. The proliferation and massive use of these ser-
vices, individually or combined among them and with traditional ones (e.g., Web mashups and
wrapped legacy applications), presents new challenges and requirements for the software en-
gineering community. These new requirements, such as having to fulfill changing QoS levels
under different context situations, further exacerbate the problem of guaranteeing the expected
quality of these services at runtime. In effect, as introduced in Chapter 1, the most salient chal-
lenges for this new industry arise from the dependencies that these services’ QoS properties
have on the dynamic nature of context. In this dissertation we have addressed the following:

C1: The definition of adaptation properties (i.e., properties inherent to self-adaptive software
(SAS)) as a common basis to evaluate, compare, improve, and even combine reconfigura-
tion mechanisms. We also used these properties to guarantee the reliability of our recon-
figuration mechanism.

C2: The reliable and autonomous preservation of QoS contracts through dynamic reconfigu-
ration under varying conditions of system execution. As this corresponds to a problem of

143

Chapter 8. Conclusions and Future Work

self-reconfiguration, this requires to define a reconfiguration mechanism that manages the
dynamic evolution of both, context situations, and the software structures to reconfigure.

C3: The clear separation of concerns between the reconfiguration mechanism and the man-
aged software application, as well as their corresponding properties, from architecture to
implementation. Moreover, the elements of the MAPE-K model must also be explicit and
visible in the reconfiguration mechanism.

C4: The management of context uncertainty, as reconfiguration mechanisms should be robust
with respect to (i) the unpredictability of context changes to be faced by the managed
application; and (ii) the user-defined strategies (e.g., reconfiguration rules to be parame-
terized in the reconfiguration mechanism) to address the context changes to be faced by
the managed system.

C5: The feasible and seamless integration of the implemented reconfiguration mechanism
with existing component runtime platforms, for preserving QoS contracts in the executed
component-based software applications.

In light of these challenges, we pursued two main goals: (i) characterize inherent proper-
ties to SAS systems; and (ii) provide a comprehensive solution for QoS contracts preservation
through dynamic reconfiguration, built on a formal foundation. We refined these twomain goals
by adopting one specific goal for each of the challenges stated previously, as follows:

G1: Identify and define key properties inherent to software self-adaptation.

G2: Develop a formal model for the dynamic and reliable reconfiguration mechanism to pre-
serve QoS contracts in component-based software.

G3: Maintain a clear separation of concerns between the reconfiguration mechanism and the
managed software application, as well as between their corresponding properties.

G4: Guarantee robustness in the reconfiguration mechanism with respect to context unpre-
dictability.

G5: Determine the practical feasibility and reusability of the formal based reconfiguration
mechanism.

In the following section, we discuss our achieved contributions with respect to these goals
and challenges.

8.1.2 Contributions

We classify the contributions achieved in this dissertation in two parts, according to our two
main goals. In the first part, corresponding to the first challenge and main goal presented in
the previous section, we characterized inherent properties of self-adaptive software (SAS) systems.
Besides useful to evaluate adaptation mechanisms in standardized and comparable ways, these
properties can be used to improve and combine these mechanisms. We characterized these
properties from an extensive analysis of research papers and proposals of SAS systems, in which
we identified that the engineering of this kind of systems has no standard properties to evaluate
them. However, by its own nature, SAS adaptation mechanisms are essentially feedback loops
as defined in control theory, and thus, they should be evaluated using the standard properties
used to evaluate feedback loops, re-interpreted for the software domain.

144

8.1. Dissertation Summary

In the second part, corresponding to the last four challenges and our second main goal, we
have followed a comprehensive strategy to obtain QOS-CARE, a reliable and robust reconfig-
uration mechanism to preserve QoS contracts in component-based software applications. This
strategy is composed of four aspects, focused in the planner element of theMAPE-K loopmodel:
a formal model, its realization as a software architecture, the implementation of this architecture, and
its corresponding experimental evaluation. By following this strategy, we effectively use (formal)
models at runtime to reliably and robustly reconfigure software applications for preserving their
QoS contracts. More specifically, we have shown the feasibility of exploiting design patterns at
runtime in reconfiguration loops to fulfill expected QoS levels associated to specific context con-
ditions. For this, we encode appropriate design patterns in left and right-hand sides of reconfig-
uration rules, given their determining influence on QoS properties and their levels of fulfillment.
Finally, we realized our formal model as a component-based software architecture and its im-
plementation, QOS-CARE, which can be used as an additional layer of SCAmiddleware stacks.
We validated and verified the reliability of QOS-CARE in terms of five adaptation properties,
and also evaluated it experimentally through its use in two application scenarios.

We detail the concrete achieved contributions as follows.

Formal Model. We conceived our formal model for QoS contracts preservation through dy-
namic reconfiguration by combining two formal systems: the theory of Finite State Machines
(FSM) and the Typed Attributed Graph (called e-graphs) Transformation System (TAGTS) the-
ory. On one hand, inspired by theMAPE-loopmodel, we extended the classic definition of FSMs
to specify the semantics of QoS contracts in order to achieve reconfiguration autonomy in re-
sponse to context changes that notify (imminent) contract violations. We manage robustness with
respect to context changes unpredictability bymodeling (i) not only the states of contract fulfillment,
but also those of unfulfillment; and (ii) the reconfiguration of the managed application as state
transitions. On the other hand, we modeled the reconfiguration operation as such by extending
a TAGTS in order to exploit its capabilities of graph-based pattern-matching and transformation
in the application of design patterns in our reconfiguration rules. We benefit from TAGTS formal
properties to obtain reconfiguration reliability, as expressed in terms of the adaptation properties
of termination, atomicity, and structural conformance. In this way, we complement the natu-
ral expressive power of TAGTS to specify reconfiguration rules for component-based software
structures, with the one of FSMs for controlling context-driven and state-based systems.

By using this formal model to specify and develop our reconfiguration mechanism, we es-
tablish clear limits between it and the managed software application, and their corresponding
properties. As a result, our reconfiguration mechanism is independent also from component
runtime platforms, and reusable on any of them.

QOS-CARE Architecture, Implementation and Evaluation. We realized our formal model
through a component-based software architecture and its respective implementation that cre-
ates and maintains an e-graph representation of the managed application and its corresponding
QoS contract at runtime. More specifically, our implementation bridges the actual running ap-
plication structure with the e-graph representation structure by using a pair of functions that
maintain the coherence between these two structures. These functions are implementations of
the corresponding specifications that result from the formal definitions given in Section 4.2.2.
Moreover, as these functions allow the reconfiguration mechanism to be executed as decoupled
from the component runtime platform, they determine the feasible and seamless integration of
QOS-CARE with existing component platforms. In this sense, we conceived QOS-CARE as an
SCA layer for dynamic reconfiguration to preserve QoS contracts in component-based software
applications. In addition, the relevant elements of the MAPE-loop model remain explicit in its
implementation.

145

Chapter 8. Conclusions and Future Work

To experimentally evaluate the performance of QOS-CARE, we configured it to be deployed
and executed in FRASCATI, a multi-scale implementation of the SCA specification, to preserve
QoS contracts in two application scenarios. Then, we designed and executed a benchmark to
evaluate the mean-time to reconfigure (MTTR) and the overhead of QOS-CARE, by using this
configuration on several use-cases of these application scenarios. From the obtained results,
we confirmed the practical feasibility and (re)usability of our reconfiguration system, besides
constituting an additional test for our formal model’s soundness.

Adaptation Properties. In this part of our contribution, we developed a framework to classify
and compare SAS systems. This framework defines a set of characterizing dimensions, a list of
adaptation properties (mentioned previously), and respective mappings from these properties
to quality attributes. We applied this framework in several representative research works on
the engineering of self-adaptive software to refine the identified adaptation properties. The
resulting properties, as inherent to SAS systems, provide a common basis to assess adaptation
mechanisms, especially when this assessment has comparative, improvement, or even mix-and-
match combination purposes. More importantly, in our opinion, this contribution constitutes
a fundamental step towards the standardization of comparable assessment methods for SAS
systems, based on well defined adaptation properties.

As applied to this dissertation, the most important properties that we characterized are the
atomicity, the short settling-time, the termination, the structural consistency, and the robust-
ness with respect to context unpredictability. We validated the reliability of our reconfiguration
mechanism in terms of these properties.

8.2 Future Work

We close this dissertation with the identification and analysis of some further research opportu-
nities opened by our research work.

8.2.1 Short-Term Opportunities

For the short-term, we consider the following opportunities:

Graphical and syntax-directed editors for reconfiguration rules. Graphs are widely recog-
nized for their graphical notation to express software structures. We have used e-graphs
(typed attributed graphs) for modeling component-based software structures and also the corre-
sponding reconfiguration rules to exploit their graph visual presentations, graph-based pattern-
matching and transformation capabilities. Despite the editors that we employed to specify the
e-graph reconfiguration rules for the application scenarios are graphical and usable, it would be
better to have an editor with a concrete syntax closer to a known components model (e.g., SCA)
notation. This editor should be developed, based on an appropriate DSL, with automated tools
to assist the user in the specification of reconfiguration rules. From the notation defined by this
DSL, it could translate these rules into the e-graph notation.

Improved performance for mobile devices. For the reconfiguration settling-time, we ob-
tained acceptable MTTR measurements for the two validation scenarios that we implemented
as managed software applications, while verifying the preservation of the respective QoS con-
tracts. However, it is worth noting that the reconfiguration settling-times were obtained in high
computing-power devices. To be deployed inmoremodest devices, such as smart-phones, QOS-
CARE should be optimized to improve significantly these measurements. This would imply, of

146

8.2. Future Work

course, to improve also the execution performance of the component runtime platforms to be
used.

Scalability limits. A critical aspect for the adoption of our model is to evaluate its scalabil-
ity. Although the results of our implementation’s performance evaluation were acceptable, this
evaluation was based on two relatively small application scenarios (6 components and 87 im-
plementation classes in average), with simple yet plausible reconfiguration rules. Thus, to es-
timate the QOS-CARE scalability limits we would need to evaluate its performance (i.e., CPU
and memory consumption) with larger application scenarios and more complex reconfiguration
rules.

8.2.2 Long-Term Opportunities

As worth of future work in the long-term, we consider the following three aspects of our contri-
bution.

Leveraging design-patterns at runtime. Since we have demonstrated the feasibility of exploit-
ing design patterns at runtime to preserve QoS contracts using a structure-based strategy with
QOS-CARE, we have opened the possibility of exploiting them at runtime also for other pur-
poses. For instance, in contrast to our structure-based strategy but nonetheless exploiting it,
design patterns at runtime could help to understand and develop quantitative behavior-based
models of QoS properties on software systems. These formalized behavior models, as the sys-
tem transfer function models built in control theory with self-tuning capabilities, could be used
to predict characteristic responses of software systems to given context changes, such as a sud-
den large increment of service requests. This is a fundamental challenge to achieve stability and
efficient resource use in self-adaptive software systems.

Improving robustness to context uncertainty. The states of contract unfulfillment managed by
QOS-CARE constitutes only one step towards understanding how to achieve general robustness
to context uncertainty and its related problems in self-adaptation. In addition, and related to
these states, our characterization of dependency relationships amongQoS contract conditions given
in Section 4.3.2 should help to understand how to address the differences between mutually
independent and inter-dependent contract conditions. Nonetheless, further analysis of context may
reveal other relationships yet to be characterized for improving our robust preservation of QoS
contracts.

Guaranteeing additional adaptation properties. One of the main goals of this dissertation is
the preservation of QoS contracts with reliable reconfiguration mechanisms. Given that our
strategy to preserve QoS contracts is based on the application of design patterns through dy-
namic reconfiguration, we defined the reliability in terms of five properties inherent to adaptive
software systems. These properties are a subset of the adaptation properties that we identified
and defined as part of this dissertation for this kind of systems. Even though we identified,
validated, and verified the conditions required to guarantee these five properties for the two ap-
plication scenarios, one of the most interesting opportunities for further research opened by this
work is the development of a generalized formal framework to guarantee other of the adaptation
properties that we characterized.

147

Chapter 8. Conclusions and Future Work

148

Bibliography

[Aho and Ullman, 1972] Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation,
and compiling. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1972. 86

[Andersson et al., 2009] Jesper Andersson, Rogério de Lemos, Sam Malek, and Danny Weyns.
Modeling Dimensions of Self-Adaptive Software Systems. In Betty Cheng, Rogério de Lemos,
Holger Giese, Paola Inverardi, and Jeff Magee, editors, Software Engineering for Self-Adaptive
Systems, volume 5525 of LNCS, pages 27–47. Springer-Verlag, 2009. 10, 45

[Appleby et al., 2001] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Krish-
nakumar, D. P. Pazel, J. Pershing, and B. Rochwerger. Océano - sla based management of
a computing utility. In Procs. of 7th IFIP/IEEE Intl. Symp. on Integrated Network Management,
pages 855–868, 2001. 51, 52, 53, 54, 55, 56, 57, 60

[Avizienis et al., 2004] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE Trans-
actions on Dependable and Secure Computing, 1:11–33, January 2004. 17, 25, 111, 120, 128

[Bachmann et al., 2000] Felix Bachmann, Len Bass, Charles Buhman, Santiago Comella-Dorda,
Fred Long, John Robert, Robert Seacord, and Kurt Wallnau. Technical Concepts of
Component-Based Software Engineering. Volume 2. Technical Report CMU/SEI-2000-TR-
008, CMU/SEI, 2000. 8, 25

[Barbacci et al., 1995] Mario Barbacci, Mark H. Klein, Thomas A. Longstaff, and Charles B. We-
instock. Quality attributes. Technical Report CMU/SEI-95-TR-021, CMU/SEI, 1995. 34, 41,
52, 53, 55, 56, 112

[Baresi and Guinea, 2011] Luciano Baresi and Sam Guinea. Self-Supervising BPEL Processes.
IEEE Trans. on Software Engineering, 37:247–263, March 2011. 53, 54, 56, 57, 60

[Bass et al., 2003] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley, Reading, Mass, second edition, 2003. 12, 66

[Becker, 2008] Steffen Becker. Quality of Service Modeling Language. In Irene Eusgeld, Felix
Freiling, and Ralf Reussner, editors, Dependability Metrics, volume 4909 of Lecture Notes in
Computer Science, pages 43–47. Springer Berlin / Heidelberg, 2008. 31

[Beisiegel et al., 2007a] Michael Beisiegel, Henning Blohm, Dave Booz, Mike Edwards, Oisin
Hurley, et al. Service component architecture, assembly model specification. Specification
Version 1.0, Open Service Oriented Architecture Collaboration, 2007. 8, 12, 17, 26

149

Bibliography

[Beisiegel et al., 2007b] Michael Beisiegel, Dave Booz, Ching-Yun Chao, Mike Edwards, et al. Sca
policy framework. Specification Version 1.0, Open Service Oriented Architecture Collabora-
tion, 2007. 27, 30

[Bell, 2008] Michael Bell. Service-Oriented Modeling: Service Analysis, Design, and Architecture.
Wiley Publishing, 2008. 8

[Bentancour et al., 2011] Martin Bentancour, Libor Cada, Jing Wen Cui, Marcio d’Amico, Ural
Emekci, Sebastian Kapciak, Jennifer Ricciuti, and Margaret Ticknor. WebSphere Application
Server V8: Administration and Configuration Guide. Technical report, IBM Corporation,
2011. 30

[Beugnard et al., 1999] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien
Watkins. Making Components Contract Aware. IEEE Computer, 32(7):38–45, 1999. 7, 30,
31, 71

[Bosch, 2000] Jan Bosch. Design and Use of Software Architectures: Adopting and Evolving a Product-
Line Approach. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000. 30

[Braga et al., 2009] Christiano Braga, Fabricio Chalub, and Alexandre Sztajnberg. A formal se-
mantics for a quality of service contract language. Electronic Notes of Theoretical Computer
Science, 203(7):103–120, 2009. 31, 33

[Bruggink, 2008] H.J. Sander Bruggink. Towards a Systematic Method for Proving Termination
of Graph Transformation Systems. Electronic Notes Theoretical Computer Science, 213:23–38,
May 2008. 115

[Bruneton et al., 2006] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The Fractal Component Model and its Support in Java: Experiences
with Auto-Adaptive and Reconfigurable Systems. Software Practice & Experience, 36(11-
12):1257–1284, 2006. 26, 28, 39

[Bucchiarone et al., 2009] Antonio Bucchiarone, Patrizio Pelliccione, Charlie Vattani, and Olga
Runge. Self-repairing systems modeling and verification using agg. In IEEE/IFIP WIC-
SA/ECSA, pages 181–190. IEEE, 2009. 33, 115

[Buschmann et al., 2007] Frank Buschmann, Kevlin Henney, and Douglas Schmidt. Pattern-
Oriented Software Architecture: A Pattern Language for Distributed Computing (Wiley Software
Patterns Series). John Wiley & Sons, 2007. 12, 34, 66, 74, 131

[Candea et al., 2004] George Candea, James Cutler, and Armando Fox. Improving Availability
with Recursive Microreboots: A Soft-State System Case Study. Performance Evaluation Journal,
56(1-3):213 – 248, 2004. 17, 25, 39, 51, 53, 55, 56, 57, 60, 112

[Cansado et al., 2010] Antonio Cansado, Carlos Canal, Gwen Salaün, and Javier Cubo. A formal
framework for structural reconfiguration of components under behavioural adaptation. Procs.
of the 6th Intl. Workshop FACS 2009. ENTCS, 263(1):95 – 110, 2010. 31, 33

[Caprarescu and Petcu, 2009] BogdanAlexandru Caprarescu andDana Petcu. A self-organizing
feedback loop for autonomic computing. Future Computing, Service Computation, Cognitive,
Adaptive, Content, Patterns, Computation World, 0:126–131, 2009. 38

150

[Cardellini et al., 2009] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Francesco
Lo Presti, and Raffaela Mirandola. QoS-Driven Runtime Adaptation of Service Oriented Ar-
chitectures. In Procs. of 7th Joint Meeting European Software Engineering Conf. and ACM Symp.
on Foundations of Software Engineering, ESEC/FSE ’09, pages 131–140. ACM, 2009. 39, 51, 53,
54, 56, 57, 60

[Chang and Collet, 2007a] Hervé Chang and Philippe Collet. Compositional patterns of non-
functional properties for contract negotiation. JSW, 2(2):52–63, 2007. 33

[Chang and Collet, 2007b] Hervé Chang and Philippe Collet. Patterns for integrating and ex-
ploiting some non-functional properties in hierarchical software components. In Procs. of 14th
IEEE Intl. Conference and Workshops on the ECBS’07, pages 83–92. IEEE Computer Society, 2007.
31

[Chang et al., 2006] Hervé Chang, Philippe Collet, Alain Ozanne, and Nicolas Rivierre. From
components to autonomic elements using negotiable contracts. In 3rd Intl. Conf. ATC, volume
4158 of LNCS, pages 78–89, 2006. 8, 33

[Cheng et al., 2009a] Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff
Magee, Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna
Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vin-
cenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam Malek, Raf-
faela Mirandola, Hausi A. Müller, Sooyong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli,
Danny Weyns, and Jon Whittle. Software Engineering for Self-Adaptive Systems: A Research
Roadmap. In Software Engineering for Self-Adaptive Systems, LNCS, pages 1–26. Springer-
Verlag, 2009. 10, 24, 34, 35, 37, 39, 40, 61, 68, 69

[Cheng et al., 2009b] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. Evaluating the
Effectiveness of the Rainbow Self-Adaptive System. In Procs. of 2009 ICSEWorkshop on Software
Engineering for Adaptive and Self-Managing Systems, pages 132–141. IEEE Computer Society,
2009. 10, 39, 45

[Clements and Shaw, 2009] Paul Clements and Mary Shaw. The Golden Age of Software Archi-
tecture Revisited. IEEE Softw., 26:70–72, July 2009. 12, 66

[Collet et al., 2005] Philippe Collet, Roger Rousseau, Thierry Coupaye, and Nicolas Rivierre. A
Contracting System for Hierarchical Components. In Procs. of 8th Intl. Symp. of Component-
Based Software Engineering, volume 3489 of LNCS, pages 187–202. Springer, 2005. 7, 10, 25, 31,
34, 71

[Collet et al., 2007] Philippe Collet, Jacques Malenfant, Alain Ozanne, and Nicolas Rivierre.
Composite contract enforcement in hierarchical component systems. In 6th Intl. Symp. on
Software Composition (SC), volume 4829 of LNCS, pages 18–33, 2007. 8

[Colombo et al., 2006] Massimiliano Colombo, Elisabetta Di Nitto, and Marco Mauri. SCENE:
A Service Composition Execution Environment Supporting Dynamic Changes Disciplined
Through Rules. In Asit Dan and Winfried Lamersdorf, editors, Intl. Conf. on Service-Oriented
Computing, volume 4294 of LNCS, pages 191–202. Springer, 2006. 81

[Comuzzi and Pernici, 2009] Marco Comuzzi and Barbara Pernici. A framework for qos-based
web service contracting. ACM Trans. on the Web, 3(3):1–52, 2009. 31

151

Bibliography

[de Lemos et al., 2012] Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jesper
Andersson, Luciano Baresi, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Ron Des-
marais, Schahram Dustdar, Gregor Engels, Kurt Geihs, Karl M. Goeschka, Alessandra Gorla,
Vincenzo Grassi, Paola Inverardi, Gabor Karsai, Jeff Kramer, Marin Litoiu, Antonia Lopes,
Jeff Magee, SamMalek, Serge Mankovskii, Raffaela Mirandola, JohnMylopoulos, Oscar Nier-
strasz, Mauro Pezzè, Christian Prehofer, Wilhelm Schäfer, Rick Schlichting, Bradley Schmerl,
Dennis B. Smith, João P. Sousa, Gabriel Tamura, Ladan Tahvildari, NorhaM. Villegas, Thomas
Vogel, Danny Weyns, Kenny Wong, and Jochen Wuttke. Software Engineering for Self-
Adaptive Systems: A Second Research Roadmap. In Rogério de Lemos, Holger Giese, Hausi
Müller, and Mary Shaw, editors, Software Engineering for Self-Adaptive Systems 2, volume 7475
of LNCS. Springer, 2012. 10, 13, 18, 24, 35, 37, 39, 40, 61

[Delaval and Rutten, 2010] Gwenaël Delaval and Éric Rutten. Reactive Model-Based Control
of Reconfiguration in the Fractal Component-Based Model. In Procs. of 13th Intl. Symp.
Component-Based Software Engineering, volume 6092, pages 93–112, 2010. 10, 32, 34, 39

[Dougherty et al., 2009] Chad Dougherty, Kirk Sayre, Robert C. Seacord, David Svoboda, and
Kazuya Togashi. Secure Design Patterns. Technical Report CMU/SEI-2009-TR-010, CMU/-
SEI, CERT Program, 2009. 12, 66, 74, 122

[Dowling and Cahill, 2004] Jim Dowling and Vinny Cahill. Self-managed decentralised systems
using k-components and collaborative reinforcement learning. In Procs. of 1st ACM SIGSOFT
Workshop on Self-Managed Systems, WOSS ’04, pages 39–43, New York, NY, USA, 2004. ACM.
10, 51, 52, 53, 55, 56, 57, 60

[Dumont and Huzmezan, 2002] G.A. Dumont andM. Huzmezan. Concepts, methods and tech-
niques in adaptive control. In The 2002 American Control Conference, volume 2, pages 1137 –
1150. IEEE, 2002. 49

[Ehrig et al., 2004] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental theory
for typed attributed graph transformation. In Proc. of ICGT’04, volume 3256 of LNCS, pages
161–177. Springer, 2004. 114

[Ehrig et al., 2005] Hartmut Ehrig, Karsten Ehrig, Juan de Lara, Gabriele Taentzer, Dániel Varró,
and Szilvia Varró-Gyapay. Termination Criteria for Model Transformation. In Procs. of 8th
Intl. Conf. Fundamental Approaches to Software Engineering, volume 3442 of LNCS, pages 49–63.
Springer, 2005. 115

[Ehrig et al., 2009] H. Ehrig, K. Ehrig, U. Prange, andG. Taentzer. Fundamentals of Algebraic Graph
Transformation. Springer-Verlag, 2009. 15, 63, 68, 114, 115

[Ehrig et al., 2010] Hartmut Ehrig, Claudia Ermel, Olga Runge, Antonio Bucchiarone, and Pa-
trizio Pelliccione. Formal analysis and verification of self-healing systems. In Procs. of 13th
Intl. Conf. Fundamental Approaches to Software Engineering, volume 6013 of LNCS, pages 139–
153. Springer, 2010. 33, 52, 53, 55, 57, 60

[Fiadeiro and Lopes, 2010] José Luiz Fiadeiro and Antónia Lopes. A model for dynamic recon-
figuration in service-oriented architectures. In Proceedings of the 4th European conference on
Software architecture, ECSA’10, pages 70–85, Berlin, Heidelberg, 2010. Springer-Verlag. 33

[Filieri et al., 2010] Antonio Filieri, Carlo Ghezzi, Vincenzo Grassi, and Raffaela Mirandola. Re-
liability Analysis of Component-Based Systems with Multiple Failure Modes. In Procs. of 13th

152

Intl. Symp. Component-Based Software Engineering, volume 6092, pages 1–20. Springer, 2010. 25,
112

[Floch et al., 2006] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil Lund,
and Eli Gjorven. Using Architecture Models for Runtime Adaptability. IEEE Software, 23:62–
70, March 2006. 51, 52, 53, 55, 57, 60

[Floyd, 1967] Robert Floyd. Assigning Meaning to Programs. In Proc. of Symposium on Applied
Mathematics, volume 19, pages 19–32. A.M.S., 1967. 32

[Frølund and Koistinen, 1998] Svend Frølund and Jari Koistinen. Quality of services specifica-
tion in distributed object systems design. In Procs. of 4th Conf. on Object-Oriented Technologies
and Systems, volume 4, pages 179–202. USENIX Association, 1998. 31

[Garlan et al., 2003] David Garlan, Shang-Wen Cheng, and Bradley Schmerl. Increasing system
dependability through architecture-based self-repair. Lecture Notes in Computer Science, 2677,
2003. 38

[Garlan et al., 2004] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and
Peter Steenkiste. Rainbow: Architecture-based self-adaptation with reusable infrastructure.
IEEE Computer, 37:46–54, 2004. 39, 53, 57, 60

[Gat, 1998] Erann Gat. On Three-Layer Architectures. In Artificial Intelligence and Mobile Robots,
pages 1–11. MIT Press, 1998. 38

[Giese et al., 2009] H. Giese, Y. Brun, J. DiMarzo Serugendo, C. Gacek, H.M. Kienle, H.A.Müller,
M. Pezzè, and M. Shaw. Engineering self-adaptive and self-managing systems. LNCS 5527,
Springer-Verlag, pages 47–69, 2009. 37

[Goldsby and Cheng, 2008] Heather J. Goldsby and Betty H. Cheng. Automatically generating
behavioral models of adaptive systems to address uncertainty. In Proceedings of the 11th in-
ternational conference on Model Driven Engineering Languages and Systems, MoDELS ’08, pages
568–583. Springer-Verlag, 2008. 34, 39

[González, 2011] Oscar González. Monitoring and Analysis of Workflow Applications: A Domain-
Specific Language Approach. PhD thesis, Universidad de los Andes and Vrije Universiteit Brus-
sel, 2011. 99

[Grassi et al., 2009] Vincenzo Grassi, Raffaela Mirandola, and Enrico Randazzo. Model-Driven
Assessment of QoS-Aware Self-Adaptation. In Betty Cheng, Rogério de Lemos, Holger Giese,
Paola Inverardi, and Jeff Magee, editors, Software Engineering for Self-Adaptive Systems, volume
5525 of LNCS, pages 201–222. Springer-Verlag, 2009. 10, 45

[Harel, 1987] David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231–274, June 1987. 81

[Harel, 1988] David Harel. On visual formalisms. Communications of the ACM, 31:514–530, May
1988. 87

[Heckel et al., 2002] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Confluence of
typed attributed graph transformation systems. In Proceedings of the First International Confer-
ence on Graph Transformation, ICGT ’02, pages 161–176. Springer-Verlag, 2002. 114

153

Bibliography

[Heineman and Councill, 2001] George T. Heineman and William T. Councill, editors.
Component-Based Software Engineering: Putting the Pieces Together. Addison-Wesley Longman,
2001. 8, 10, 24, 25, 34, 61

[Hellerstein et al., 2004] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury.
Feedback Control of Computing Systems. IEEE Press, John Wiley & Sons, 2004. 13, 17, 24, 25, 35,
36, 47, 49, 50, 51

[Hellerstein et al., 2009] Joseph L. Hellerstein, Sharad Singhal, and Qian Wang. Research Chal-
lenges in Control Engineering of Computing Systems. IEEE Transactions on Network and Service
Management, 6(4):206–211, 2009. 47

[Hermosillo et al., 2010] Gabriel Hermosillo, Lionel Seinturier, and Laurence Duchien. Using
Complex Event Processing for Dynamic Business Process Adaptation. In Procs. of 7th Intl.
Conf. on Services Computing, SCC, pages 466–473. IEEE CS, July 2010. 36, 100

[Hnětynka and Plášil, 2006] Petr Hnětynka and František Plášil. Dynamic reconfiguration and
access to services in hierarchical component models. In Procs. of 2006 Intl. Symposium on
Component-Based Software Engineering, volume 4063 of LNCS, pages 352–359. Springer-Verlag,
2006. 32

[Hoare, 1969] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969. 32, 62

[Hopcroft et al., 2006] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2006. 15, 63, 76

[Huang et al., 2011] Gang Huang, Weihu Wang, Tiancheng Liu, and Hong Mei. Simulation-
based Analysis of Middleware Service Impact on System Reliability: Experiment on Java Ap-
plication Server. Journal of Systems and Software, pages 1–11, 2011. 25, 112

[IBM Corporation, 2006] IBM Corporation. An Architectural Blueprint for Autonomic Comput-
ing. Technical report, IBM Corporation, June 2006. 24, 35, 37, 38

[Inverardi et al., 2009] Paola Inverardi, Patrizio Pelliccione, and Massimo Tivoli. Towards an
assume-guarantee theory for adaptable systems. In Procs. of 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, pages 106–115. IEEE Computer Society,
2009. 12

[ISO, 2001] The ISO. ISO/IEC 9126-1:2001 Software Engineering - Product Quality - Part 1:
Quality Model. Standard, International Organization for Standardization (ISO), 2001. 31, 112

[Jacklin et al., 2004] Stephen A. Jacklin, Michael R. Lowry, Johann M. Schumann, Pramod P.
Gupta, John T. Bosworth, Eddie Zavala, and John W. Kelly. Verification, Validation, and
Certification Challenges for Adaptive Flight-Critical Control System Software. In Procs. of
American Institute of Aeronautics and Astronautics AIAA Guidance Navigation and Control Confer-
ence and Exhibit. American Institute of Aeronautics and Astronautics, 2004. 13

[Jureta et al., 2009] Ivan J. Jureta, Caroline Herssens, and Stéphane Faulkner. A comprehensive
quality model for service-oriented systems. Software Quality Control, 17:65–98, March 2009.
25, 32

154

[Kaddoum et al., 2010] Elsy Kaddoum, Claudia Raibulet, Jean-Pierre Georgé, Gauthier Picard,
and Marie-Pierre Gleizes. Criteria for the evaluation of self-* systems. In Procs. of 2010 ICSE
Workshop on Software Engineering for Adaptive and Self-Managing Systems, SEAMS’10, pages 29–
38. ACM, 2010. 10, 45

[Keller and Ludwig, 2003] Alexander Keller and Heiko Ludwig. The WSLA Framework: Spec-
ifying and Monitoring Service Level Agreements for Web Services. Journal of Networking and
Systems Management, 11(1):57–81, 2003. 7, 31, 71

[Kephart and Chess, 2003] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic
Computing. IEEE Computer, 36(1):41–50, 2003. 7, 8, 15, 24, 35, 72

[Kircher and Jain, 2004] Michael Kircher and Prashant Jain. Pattern-Oriented Software Architec-
ture: Patterns for Resource Management. John Wiley & Sons, 2004. 12, 66

[Krakowiak, 2009] Sacha Krakowiak. Middleware Architecture with Patterns and Frameworks.
http://sardes.inrialpes.fr/~krakowia/MW-Book, 2009. 7, 12, 31, 66, 71, 74, 103

[Kramer and Magee, 2007] Jeff Kramer and Jeff Magee. Self-managed systems: an architectural
challenge. In FOSE ’07: 2007 Future of Software Engineering, pages 259–268. IEEE CS, 2007. 7,
38, 39

[Kramer and Magee, 2009] Jeff Kramer and Jeff Magee. A rigorous architectural approach to
adaptive software engineering. J. Computer Science Technology, 24(2):183–188, 2009. 73

[Kruchten et al., 2006] Philippe Kruchten, Henk Obbink, and Judith Stafford. The Past, Present,
and Future for Software Architecture. IEEE Software, 23:22–30, March 2006. 12, 66

[Kumar et al., 2007] Vibhore Kumar, Brian F. Cooper, Zhongtang Cai, Greg Eisenhauer, and
Karsten Schwan. Middleware for enterprise scale data stream management using utility-
driven self-adaptive information flows. Cluster Computing, 10:443–455, December 2007. 51,
53, 56, 57, 60

[Lee et al., 2009] Jae Yoo Lee, Jung Woo Lee, Du Wan Cheun, and Soo Dong Kim. A Quality
Model for Evaluating Software-as-a-Service in Cloud Computing. In Procs. of 7th ACIS Intl.
Conf. on Software Engineering Research, Management and Applications, SERA ’09, pages 261–266.
IEEE Computer Society, 2009. 31

[Léger et al., 2010] Marc Léger, Thomas Ledoux, and Thierry Coupaye. Reliable Dynamic Re-
configurations in a Reflective Component Model. In Procs. of 13th Intl. Symp. of Component-
Based Software Engineering, volume 6092 of LNCS, pages 74–92. Springer, 2010. 10, 17, 34, 39,
52, 53, 57, 60

[Lin et al., 2009] Xiangtao Lin, Bo Cheng, and Junliang Chen. A situation-aware approach for
dealing with uncertain context-aware paradigm. In Procs. of 28th IEEE Conf. on Global Telecom-
munications, GLOBECOM’09, pages 1880–1885. IEEE Press, 2009. 40

[Litoiu et al., 2005] Marin Litoiu, Murray Woodside, and Tao Zheng. Hierarchical Model-Based
Autonomic Control of Software Systems. In Procs. of 2005 Workshop on Design and Evolution of
Autonomic Application Software, DEAS ’05, pages 1–7. ACM, 2005. 38

[Lu et al., 2000] Chenyang Lu, John A. Stankovic, Tarek F. Abdelzaher, Gang Tao, Sang H. Son,
and Michael Marley. Performance specifications and metrics for adaptive real-time systems.
In Real-Time Systems Symposium, 2000. 51, 56

155

Bibliography

[Luckham, 2001] David C. Luckham. The Power of Events: An Introduction to Complex Event Pro-
cessing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing, Boston, MA,
USA, 2001. 36, 100

[Ludwig et al., 2003] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P. King, and Richard
Franck. Web Service Level Agreement (WSLA) Language Specification, 2003. IBM Available
Specification. 31

[McKinley et al., 2004] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty
H. C. Cheng. Composing Adaptive Software. Computer, 37(7):56–64, 2004. 8, 24

[Meng, 2000] Alex C. Meng. On evaluating self-adaptive software. In Procs. of 1st Intl. Workshop
on Self-Adaptive Software, IWSAS’ 2000, pages 65–74. Springer-Verlag New York, Inc., 2000. 10,
13, 51

[Merle et al., 2011] PhilippeMerle, Romain Rouvoy, and Lionel Seinturier. A Reflective Platform
for Highly Adaptive Multi-Cloud Systems. In 10th Intl. Workshop on Adaptive and Reflective
Middleware, ARM’2011 at the 12th ACM/IFIP/USENIX Intl. Middleware Conference, pages
1–7, 2011. 27

[Meyer, 1992] BertrandMeyer. Applying "Design by Contract". Computer, 25(10):40–51, 1992. 32

[Mukhija and Glinz, 2005] ArunMukhija andMartin Glinz. Runtime adaptation of applications
through dynamic recomposition of components. In Proc. of 18th International Conference on
Architecture of Computing Systems, 2005. 52, 53, 57, 60

[Müller et al., 2008] Hausi Müller, Mauro Pezzè, and Mary Shaw. Visibility of Control in Adap-
tive Systems. In Procs. of 2nd Intl. Workshop on Ultra-Large-Scale Software-Intensive Systems,
ULSSIS’08, pages 23–26. ACM, 2008. 10, 37, 38

[Müller et al., 2009] Hausi A. Müller, Holger M. Kienle, and Ulrike Stege. Autonomic Comput-
ing: Now you see it, now you don’t—Design and evolution of autonomic software systems.
LNCS, 5413:32–54, 2009. 38, 40

[Murray et al., 2003] Richard M. Murray, Karl J. Ȧström, Stephen P. Boyd, Roger W. Brockett,
and Gunter Stein. Future Directions in Control in an Information Rich World. IEEE Control
Systems, 23:20–33, 2003. 34, 39

[Narendra and Balakrishnan, 1997] Kumpati S. Narendra and Jeyendran Balakrishnan. Adap-
tive control using multiple models. IEEE Transactions on Automatic Control, 42:171–187, 1997.
49

[Ogata, 1996] Katsuhiko Ogata. Modern Control Engineering. Prentice Hall, 3 edition, 1996. 25,
34, 36

[Oreizy et al., 1999] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner,
Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander L.
Wolf. An architecture-based approach to self-adaptive software. IEEE Intelligent Systems,
14(3):54–62, 1999. 34

[Papazoglou et al., 2007] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank
Leymann. Service-oriented computing: State of the art and research challenges. Computer,
40:38–45, November 2007. 7, 27, 30

156

[Parekh et al., 2002] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus. Us-
ing control theory to achieve service level objectives in performance management. Real-Time
Syst., 23:127–141, July 2002. 51, 53, 54, 55, 56, 57, 59, 60

[Ramachandran, 2002] Jay Ramachandran. Designing Security Architecture Solutions. John Wiley
& Sons, Inc., 2002. 12, 41, 66, 74, 122

[Reinecke et al., 2010] Philipp Reinecke, Katinka Wolter, and Aad van Moorsel. Evaluating the
adaptivity of computing systems. Performance Evaluation, 67(8):676 – 693, 2010. Special Issue
on Software and Performance. 56

[Reussner et al., 2003] Ralf H. Reussner, Heinz W. Schmidt, and Iman H. Poernomo. Reliabil-
ity Prediction for Component-Based Software Architectures. Journal of Systems and Software,
66:241–252, June 2003. 25, 112

[Romero, 2011] Daniel Romero. Context as a Resource: A Service-Oriented Approach for Context-
Awareness. Phd thesis, University of Science and Technology of Lille, July 2011. 30

[Röttger and Zschaler, 2003] Simone Röttger and Steffen Zschaler. CQML+: Enhancements to
CQML. In Procs. of 1st Intl. Workshop on Quality of Service in Component-Based Software Engi-
neering, pages 43–56. Cépaduès-Éditions, 2003. 31

[Salehie and Tahvildari, 2009] Mazeiar Salehie and Ladan Tahvildari. Self-aDaptive Software:
Landscape and Research Challenges. ACM Transactions on Autonomous and Adaptive Systems,
4:14:1–14:42, May 2009. 7, 10, 37, 39, 45, 52, 112

[Seinturier et al., 2009] Lionel Seinturier, Philippe Merle, Damien Fournier, Nicolas Dolet, Vale-
rio Schiavoni, and Jean-Bernard Stefani. Reconfigurable SCA Applications with the FraSCAti
Platform. In Procs. of 6th Intl. Conf. on Services Computing, SCC’09, pages 268–275. IEEE, 2009.
12, 16, 28, 30, 67, 99

[Seinturier et al., 2012] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, and J.-B. Ste-
fani. A component-based middleware platform for reconfigurable service-oriented architec-
tures. Software: Practice and Experience (SPE), pages 1–26, 2012. 24, 28, 29, 30

[Shaw and Garlan, 1996] Mary Shaw and David Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, Upper Saddle River, NJ, 1996. 12, 28, 66

[Shaw, 1994] Mary Shaw. Beyond objects: A software design paradigm based on process con-
trol. Technical report, Carnegie Mellon University, 1994. 34, 37, 38

[Sicard et al., 2008] Sylvain Sicard, Fabienne Boyer, and Noel De Palma. Using Components for
Architecture-Based Management: the Self-Repair Case. In Procs. of 30th Intl. Conf. on Software
Engineering, ICSE’08, pages 101–110. ACM, 2008. 39, 53, 57, 59, 60

[Smith, 1984] Brian Cantwell Smith. Reflection and Semantics in LISP. In Procs. of 11th ACM
SIGACT-SIGPLAN Symp. on Principles of Programming Languages, POPL ’84, pages 23–35.
ACM, 1984. 28

[Solomon et al., 2007] Bogdan Solomon, Dan Ionescu, Marin Litoiu, and Mircea Mihaescu. A
real-time adaptive control of autonomic computing environments. In Procs. of 17th Annual
Intl. Conf. of the Centre for Advanced Studies Research, CASCON 2007, pages 124–136, 2007. 38

157

Bibliography

[Solomon et al., 2010] Andrei Solomon, Marin Litoiu, Jay Benayon, and Alex Lau. Business pro-
cess adaptation on a tracked simulation model. In Procs. of 2010 Conf. of the Center for Advanced
Studies on Collaborative Research, CASCON ’10, pages 184–198. ACM, 2010. 51, 53, 54, 57, 60

[Szyperski, 1998] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
ACM Press/Addison-Wesley, 1998. 8, 10, 24, 25, 34, 61

[Taentzer, 2004] Gabriele Taentzer. AGG: A Graph Transformation Environment for Modeling
and Validation of Software. In Procs. of 2003 Applications of Graph Transformations with Industrial
Relevance, volume 3062 of LNCS, pages 446–453. Springer-Verlag, 2004. 68, 101, 115

[Tamura and Cleve, 2010] Gabriel Tamura and Anthony Cleve. A Comparison of Taxonomies
for Model Transformation Languages. Paradigma – Revista Electrónica en Construcción de Soft-
ware, 4(1):1–14, 2010. 18

[Tamura et al., 2011a] G. Tamura, R. Casallas, A. Cleve, and L. Duchien. QoS Contract-Aware
Reconfiguration of Component Architectures Using E-Graphs. In Procs. of 7th Intl. Workshop
on Formal Aspects of Component Software, volume 6921 of LNCS, pages 34–52. Springer, 2011.
13, 18, 34

[Tamura et al., 2011b] Gabriel Tamura, Rubby Casallas, Anthony Cleve, and Laurence Duchien.
Realizing QoS Contracts-Preservation through Dynamic Reconfiguration Based on Formal
Models. Journal Science of Computer Programming (SCP), pages 1–30, 2011. Article In Evalua-
tion. 13, 18

[Tamura et al., 2012] Gabriel Tamura, Norha M. Villegas, Hausi A. Müller, João P. Sousa, Basil
Becker, Mauro Pezzè, Gabor Karsai, Serge Mankovskii, Wilhelm Schäfer, Ladan Tahvildari,
and Kenny Wong. Towards Practical Runtime Verification and Validation of Self-Adaptive
Software Systems. In Software Engineering for Self-Adaptive Systems 2, volume 7475 of LNCS.
Springer, 2012. 13, 18

[Taylor et al., 2009] Richard N. Taylor, Nenad Medvidovic, and Peyman Oreizy. Architectural
styles for runtime software adaptation. In WICSA/ECSA’09, pages 171–180. IEEE, 2009. 34

[Tran and Tsuji, 2009] Vuong Xuan Tran and Hidekazu Tsuji. A Survey and Analysis on Seman-
tics in QoS for Web Services. In Intl. Conf. on Advanced Information Networking and Apps., pages
379–385. IEEE, 2009. 7, 25, 31, 71

[Villegas et al., 2011a] Norha Villegas, Hausi Müller, and Gabriel Tamura. Optimizing Run-
Time SOA Governance through Context-Driven SLAs and Dynamic Monitoring. In Procs.
of IEEE Intl. Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Sys-
tems (MESOCA 2011), pages 1–10. IEEE, 2011. 99

[Villegas et al., 2011b] Norha Villegas, Hausi Müller, Gabriel Tamura, Laurence Duchien, and
Rubby Casallas. A Framework for Evaluating Quality-Driven Self-Adaptive Software Sys-
tems. In Procs. of 6th Intl. Symp. on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS, pages 80–89. ACM, 2011. 10, 13, 18, 38, 39, 45, 111

[Villegas et al., 2012] Norha M. Villegas, Gabriel Tamura, Hausi A. Müller, Laurence Duchien,
and Rubby Casallas. DYNAMICO: A Reference Model for Governing Control Objectives and
Context Relevance in Self-Adaptive Software Systems. In Software Engineering for Self-Adaptive
Systems 2, volume 7475 of LNCS. Springer, 2012. 13, 18, 24, 35, 73

158

[Vromant et al., 2011] Pieter Vromant, Danny Weyns, Sam Malek, and Jesper Andersson. On
Interacting Control Loops in Self-Adaptive Systems. In Procs. of 6th Intl. Symposium on Software
Engineering for Adaptive and Self-Managing Systems, (SEAMS 2011), pages 202–207. ACM, 2011.
38

[Werner Dahm, 2010] Werner Dahm. Technology Horizons: a Vision for Air Force Science &
Technology During 2010-2030. Technical report, U.S. Air Force, May 2010. 8, 39, 47, 138

[Weyns et al., 2010] Danny Weyns, Sam Malek, and Jesper Andersson. On Decentralized Self-
Adaptation: Lessons from the Trenches and Challenges for the Future. In Procs. of 2010 ICSE
Workshop on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2010, pages
84–93. ACM, 2010. 38

[White, 2005] Jules White. Simplifying autonomic enterprise java bean applications via model-
driven development: a case study. In The Journal of Software and System Modeling, pages 601–
615, 2005. 53, 55, 56, 57, 60

[Yacoub et al., 2004] S. Yacoub, B. Cukic, and H.H. Ammar. A Scenario-based Reliability Analy-
sis Approach for Component-based Software. IEEE Transactions on Reliability, 53(4):465 – 480,
dec. 2004. 25, 112

[Yang et al., 2009] Jie Yang, Gang Huang, Wenhui Zhu, Xiaofeng Cui, and Hong Mei. Quality
attribute tradeoff through adaptive architectures at runtime. Journal of Systems and Software,
82:319–332, February 2009. 34, 100

[Zeng et al., 2004a] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas,
Jayant Kalagnanam, and Henry Chang. QoS-Aware Middleware for Web Services Compo-
sition. IEEE Transactions on Software Engineeering, 30:311–327, May 2004. 10, 34

[Zeng et al., 2004b] Wenjun Zeng, Xinhua Zhuang, and Junqiang Lan. Network Friendly Media
Security: Rationales, Solutions, andOpen Issues. In Procs. of 2004 Intl. Conf. on Image Processing
(ICIP), pages 565–568. IEEE, 2004. 12, 41, 66

[Zschaler, 2004] Steffen Zschaler. Semantic concepts for the specification of non-functional prop-
erties of component-based software. In Procs. of 26th Intl. Conf. on Software Engineering, pages
51–53. IEEE Computer Society, 2004. 8

159

	Couverture
	Contents
	List of Figures
	List of Tables
	Dédicace
	Abstract
	Résumé
	Part I Motivation and Context
	Chapter 1 Introduction
	1.1 Problem Statement and Addressed Challenges
	1.2 Dissertation Goals and Scope
	1.3 Assumptions
	1.4 Contribution Overview
	1.4.1 Self-Adaptive Software Properties
	1.4.2 Formal Model
	1.4.3 SCA Architecture, Implementation and Evaluation
	1.4.4 Relationship between Contributions and Goals

	1.5 Publications Derived from this Dissertation
	1.6 Dissertation Organization
	1.7 Chapter Summary

	Chapter 2 Context and State-of-the-Art Background
	2.1 Definitions of Terms
	2.2 Component-Based Software Engineering
	2.2.1 Component Models
	2.2.2 The Service Component Architecture (SCA) Specification
	2.2.3 The FraSCAti SCA Implementation
	2.2.4 FraSCAti vs. Other Implementations: SCA Challenges

	2.3 Quality of Service (QoS) Software Contracts
	2.3.1 QoS Contract Specification
	2.3.2 QoS Contract Management and Fulfillment

	2.4 Self-Adaptive Software Systems
	2.4.1 Revisiting the MAPE-K and Feedback Loop Models
	2.4.2 Other Models for Self-Adaptation in Software Systems
	2.4.3 Particular Approaches for Self-Adaptation

	2.5 Example Application Scenario: A Reliable Videoconference System
	2.6 Chapter Summary

	Part II Contribution
	Chapter 3 Quality-Driven Self-Adaptation Properties
	3.1 Feedback vs. MAPE-K Loops: Evaluation Differences and Difficulties
	3.2 Characterizing Dimensions for Self-Adaptive Software
	3.3 Measuring Adaptation Properties
	3.3.1 Adaptation Properties Inherent to Self-Adaptive Software
	3.3.2 Quality Attributes and Adaptation Goals on the Managed Application
	3.3.3 Mapping Adaptation Properties to Quality Attributes
	3.3.4 Towards Adaptation Metrics

	3.4 The Framework for Classifying Self-Adaptive Software Systems
	3.5 Chapter Summary

	Chapter 4 A Formal Model for QoS Contracts-Preserving Reliable Reconfiguration
	4.1 Overview of the Formal Model in the Solution Strategy
	4.2 E-Graph Modeling of QoS Contracts-Driven Reconfiguration
	4.2.1 Extended Graphs: Base Definitions
	4.2.2 System Reflection Structure
	4.2.3 QoS Contracts Structure
	4.2.4 The Component-Based Structure Reconfiguration System

	4.3 Finite State Machine Modeling of QoS Contracts States
	4.3.1 An Initial Interpretation of QoS Contracts as FSMs
	4.3.2 Reformulation of FSMs to Model QoS Contracts States
	4.3.3 The Exception and Unstable States of Contract Unfulfillment
	4.3.4 The QoSC_FSM Semantics
	4.3.5 Managing Multiple QoS Properties
	4.3.6 The QoS Contract-Preserving Reconfiguration System

	4.4 Chapter Summary

	Chapter 5 QoS-CARE: The Realization of Our Formal Model
	5.1 Mapping Our Formal Model to the MAPE-K Loop Reference Model
	5.2 QoS-CARE Architecture Overview
	5.3 Monitor
	5.3.1 Context Monitor
	5.3.2 Context Events Simulator

	5.4 Analyzer
	5.4.1 Event Analyzer

	5.5 Planner
	5.5.1 Reconfiguration Planner
	5.5.2 E-Graph Reconfiguration Engine

	5.6 Executor
	5.6.1 SCA Instrumentation

	5.7 Knowledge Manager
	5.7.1 QoS Contract Manager
	5.7.2 QoSC_FSM Manager and Executor

	5.8 QoS-CARE as an SCA Layer for Preserving QoS Contracts
	5.9 Implementation Details
	5.10 Chapter Summary

	Part III Validation
	Chapter 6 Validation and Verification of QoS-CARE Properties
	6.1 Reconfiguration Independence and Separation of Concerns
	6.2 Reliability in the Context of Self-Reconfiguration
	6.2.1 Reliability in Terms of Adaptation Properties
	6.2.2 Design-time vs. Run-time Validation and Verification of Adaptation Properties

	6.3 Short Settling-Time
	6.4 Reconfiguration Termination
	6.5 Robustness with Respect to Context Unpredictability
	6.6 Component-Based Structural Conformance
	6.7 Atomicity of the Reconfiguration Process
	6.8 Chapter Summary

	Chapter 7 QoS-CARE Validation Scenarios
	7.1 General Platform Configuration for Executing the Validation Scenarios
	7.2 Application Scenario 1: A Reliable Mobile Videoconference System
	7.2.1 Reconfiguration Rules
	7.2.2 Runtime Verification of Reconfiguration Properties
	7.2.3 Implementation Details

	7.3 Application Scenario 2: A Dynamic Twitter-Weather Mashup
	7.3.1 Component-Based Application Structure
	7.3.2 QoS Contract
	7.3.3 Reconfiguration Rules
	7.3.4 Reconfigured Application Structure
	7.3.5 Runtime Verification of Reconfiguration Properties
	7.3.6 Implementation Details

	7.4 Analysis of QoS-CARE Limitations
	7.5 Chapter Summary

	Part IV Summary
	Chapter 8 Conclusions and Future Work
	8.1 Dissertation Summary
	8.1.1 Addressed Challenges and Goals
	8.1.2 Contributions

	8.2 Future Work
	8.2.1 Short-Term Opportunities
	8.2.2 Long-Term Opportunities

	Bibliography

