Keywords: Multicore, MPSoC, manycore, asymmetric, multithreaded processors, embedded systems, dynamic applications, simulation v

Embedded systems are getting more complex and require more intensive processing capabilities. They must be able to adapt to the rapid evolution of the high-end embedded applications that are characterized by their high computation-intensive workloads (order of TOPS: Tera Operations Per Second), and their high level of parallelism. Moreover, since the dynamism of the applications is becoming more signicant, powerful computing solutions should be designed accordingly. By exploiting eciently the dynamism, the load will be balanced between the computing resources, which will improve greatly the overall performance.

To tackle the challenges of these future high-end massively-parallel dynamic embedded applications, we have designed the AHDAM architecture, which stands for "Asymmetric Homogeneous with Dynamic Allocator Manycore architecture". Its architecture permits to process applications with large data sets by eciently hiding the processors' stall time using multithreaded processors. Besides, it exploits the parallelism of the applications at multiple levels so that they would be accelerated eciently on dedicated resources, hence improving eciently the overall performance. AHDAM architecture tackles the dynamism of these applications by dynamically balancing the load between its computing resources using a central controller to increase their utilization rate.

The AHDAM architecture has been evaluated using a relevant embedded application from the telecommunication domain called "spectrum radio-sensing". With 136 cores running at 500 MHz, AHDAM architecture reaches a peak performance of 196 GOPS and meets the computation requirements of the application.

Résumé

Les systèmes embarqués sont omniprésents dans notre vie quotidienne. Un grand nombre de produits contiennent un ou plusieurs processeurs invisibles pour l'utilisateur dans un emballage sophistiqué. Ils eectuent des traitements complexes et communiquent avec l'environnement pour satisfaire les besoins des utilisateurs.

Les systèmes embarqués couvrent tous les aspects de la vie moderne et il y a de nombreux exemples de leur utilisation. Dans le domaine des télécommunications, il existe de nombreux systèmes embarqués, des commutateurs téléphoniques pour les réseaux jusqu'aux téléphones mobiles. Dans le domaine de l'électronique grand public, les systèmes embarqués sont utilisés dans les assistants numériques personnels (PDA), les lecteurs MP3, les consoles de jeux vidéo, les appareils photo numériques, les lecteurs de DVD, les GPS et les imprimantes. Cette liste est n'est pas exhaustive et il y a beaucoup d'autres exemples dans d'autres domaines comme les systèmes de transport, les équipements médicaux, les applications militaires, etc.

Les utilisateurs naux ne veulent pas seulement davantage de fonctionnalités et de meilleures performances, mais ils sont aussi intéressés par des dispositifs ayant le même niveau de performance, mais moins chers. Ainsi, on observe des convergences dans les marchés de l'électronique grand public. Les montres numériques et les pagers ont évolué vers les assistants numériques personnels (PDA) et les téléphones intelligents (Smartphones). De même, les ordinateurs de bureau et les portables convergent vers les netbooks qui utilisent le processeur Atom d'Intel et les processeurs ARM. Ces dispositifs demandent de plus en plus des capacités calculatoires pour un budget énergétique faible avec des contraintes thermiques strictes.

Pendant près de 40 ans, les innovations technologiques sont succédées dans le but de réduire les temps d'exécution des programmes exécutés par le processeur. Une technique s'est appuyée sur la réduction des dimensions des transistors, qui a conduit à une augmentation du nombre de composants intégrables sur une puce, permettant d'implanter des architectures plus complexes et une augmentation de la fréquence d'horloge du processeur, d'où une exécution plus rapide des instructions. Cependant, ce gain de performance est aujourd'hui limité par les problèmes énergétiques et de dissipation thermique. En plus, les systèmes embarqués fonctionnent avec un budget de puissance limitée et donc d'augmenter la fréquence du processeur pour améliorer la performance n'est plus une solution pour les concepteurs de système.

Heureusement, de nombreuses applications embarquées sont naturellement parallèles. Les applications sont parallélisées au niveau des tâches pour atteindre des performances supérieures. Il existe deux solutions pour s'attaquer au parallélisme de tâches (TLP).

La solution la plus simple pour exécuter plusieurs tâches consiste à utiliser un processeur "monothread" avec toutes les techniques déployées pour accélérer le traitement d'un seul ux d'instructions. Le système d'exploitation organise et répartit les threads sur le processeur pour donner l'impression qu'ils sont exécutés en parallèle. Cela peut être considéré comme une virtualisation des ressources d'exécution. Pour cette virtualisation, deux techniques d'accélération pour les processeurs monothreads sont largement utilisées. La première, appelée le parallélisme temporel, consiste à réduire le temps d'exécution en divisant l'exécution des instructions en plusieurs étapes successives avec un chevauchement dans l'exécution de plusieurs instructions. C'est ce qu'on Résumé appelle une exécution pipeline. La seconde, appelée le parallélisme spatial, repose sur la multiplication des ressources d'exécution. Dans ce type d'architectures, l'expression du parallélisme peut être explicite ou implicite. Le parallélisme est explicite lorsque le compilateur gère les dépendances de données et le ux de contrôle pour garantir l'exécution correcte du programme. Le contrôle est alors relativement simple et permet d'utiliser des fréquences d'horloge plus élevées ou de réduire les besoins énergétiques à performance donnée. Les architectures VLIW en sont l'exemple type. D'autre part, lorsque l'architecture traite dynamiquement tous les aléas d'exécution, le parallélisme est exploité de manière implicite. Ces architectures sont appelés superscalaires. Cette approche simplie la tâche du compilateur au prix d'une plus grande complexité du matériel: les mécanismes de spéculation, l'exécution dans le désordre et les prédictions de branchement ont un grand impact sur l'ecacité énergétique et l'ecacité transistor de l'architecture du processeur.

La deuxième solution consiste à multiplier le nombre de c÷urs pour exécuter les tâches en parallèle. L'avancement de la technologie des semi-conducteurs a permis aux fabricants de puces d'augmenter la puissance de calcul globale en intégrant des processeurs supplémentaires ou "c÷urs" sur la même puce, ce qui est la version moderne des multiprocesseurs. Ainsi, cette solution exploite le parallélisme au niveau des threads (TLP), où plusieurs threads peuvent être exécutés en parallèle sur plusieurs c÷urs. Dans le domaine des systèmes embarqués, ces architectures sont connues sous le terme MPSoC, qui signie Multi-Processor System-On-Chip.

Dans ce contexte, c'est une architecture MPSoC pour les systèmes embarqués qui est étudiée et évaluée dans cette thèse.

Les systèmes embarqués sont de plus en plus complexes et requièrent des besoins en puissance de calcul toujours plus importants. Ils doivent être capables de s'adapter à l'évolution rapide des applications qui requièrent un haut niveau de performance (ordre du TOPS: Téra-opérations par seconde) et de parallélisme. Notamment, les applications haut de gamme ont beaucoup de parallélisme au niveau de tâches (TLP) et de parallélisme au niveau des boucles (LLP). Par conséquent, les architectures MPSoC doivent cibler l'ère "manycore" an de répondre à ces besoins de calcul élevés. Les architectures multic÷urs doivent être ecace au niveau transistor et énergie, puisque la taille de la puce et le budget énergétiques sont limitées dans les systèmes embarqués. Ainsi, ils doivent être conçus avec un bon équilibre entre le nombre de c÷urs et la quantité de mémoire sur la puce. Les processeurs doivent être très ecaces en transistor et énergie. Il devrait n'y avoir aucune perte injustiée de l'énergie dans les ressources d'exécution avec des techniques telles que la spéculation. Dans de telles architectures multic÷urs complexes, il y a beaucoup de sources de latences qui provoquent des arrêts temporaires d'exécution des instructions, d'où une perte d'ecacité et d'énergie puisque les circuits continuent d'être alimentés pendant ces suspensions de fonctionnement. Dans ce contexte, les processeurs multithreads sont une solution intéressante à étudier.

Une caractéristique importante des applications embarquées de calculs intensifs est le dynamisme. Alors que certains algorithmes sont indépendants des données avec un ux de contrôle régulier, d'autres algorithmes sont très dépendants des données et leur temps d'exécution varie en fonction des données d'entrée, du contrôle de ux irrégulier, et de leur auto-adaptabilité aux environnements applicatifs. Par conséquent, l'architecture MPSoC devrait être très réactive par rapport aux besoins de calcul an d'augmenter le taux d'occupation d'exécution des ressources. Ainsi, il iv Résumé devrait permettre une répartition de charge globale et dynamique entre les ressources d'exécution.

Pour répondre aux besoins de ces applications de calcul intensif massivement parallèle et dynamique, nous proposons dans cette thèse l'architecture AHDAM qui signie architecture homogène asymétrique avec allocation dynamique ou bien Asymmetric Homogeneous with Dynamic Allocator Manycore architecture. Cette architecture a été conçue an de masquer ecacement la latence d'accès à la mémoire extérieure dont de nombreux accès sont nécessaires lors de la manipulation de grands volumes de données. Pour cela, des processeurs multitâches ont été utilisés. Par ailleurs, l'architecture AHDAM imbrique plusieurs niveaux de parallélisme an de tirer partie ecacement des diérentes formes de parallélisme des applications, et ainsi atteindre un haut niveau de performance. Enn, cette architecture utilise un contrôleur centralisé pour équilibrer la charge de calcul entre ses ressources de calcul an d'augmenter leur taux d'utilisation et d'exécuter ecacement les applications fortement dynamiques.

Le chapitre 1 présente le contexte de notre travail en se concentrant principalement sur les exigences des applications et des solutions architecturales existantes. Le cadre de notre étude sont les applications massivement parallèles et dynamiques pour l'embarqué. Ces applications sont très parallèles. Le parallélisme peut être extrait au niveau thread (TLP) et au niveau des boucles (LLP). Ainsi, une application peut avoir de nombreux threads qui peuvent être traitées en parallèle. Par conséquent, les architectures MPSoCs de type "manycore" sont des solutions naturelles pour ces applications. En outre, le dynamisme de ces applications nécessite une solution ecace pour gérer l'utilisation des ressources et équilibrer les charges dans le MPSoC an de maximiser la performance globale.

On identie trois grandes familles de MPSoCs pour les systèmes embarqués dans l'état de l'art: les MPSoC symétriques, les MPSoC asymétriques homogènes et les MPSoC asymétriques hétérogènes.

Les MPSoCs symétriques sont constitués de plusieurs processeurs homogènes qui exécutent à la fois la tâche de contrôle et les tâches de calculs. Les MPSoCs asymétriques sont constitués d'un (parfois plusieurs) processeur de contrôle centralisé ou hiérarchisé, et plusieurs processeurs homogènes ou hétérogènes pour les tâches de calcul. Dans notre contexte d'étude, les architectures MPSoC asymétriques homogènes sont la meilleure solution pour les applications dynamiques, puisqu'elle permet l'équilibrage de charge rapide et réactive entre les processeurs homogènes. Ces architectures ont une grande ecacité transistor et énergétique en raison de la séparation entre les processeurs de contrôle et de calcul.

En particulier, une architecture MPSoC asymétriques homogène, appelé SCMP, qui est la propriété du laboratoire du CEA LIST, sera utilisée dans le reste de cette thèse comme l'architecture de référence pour les expérimentations. SCMP est conçue pour traiter les applications embarquées avec un comportement dynamique en faisant migrer les threads entre les c÷urs de calcul en utilisant un contrôleur central.

Par ailleurs, et selon nos observations, les architectures MPSoC asymétriques homogènes ne répondent pas aux exigences des applications embarquées haut de gamme qui sont massivement parallèles. Tout d'abord, elles ne sont pas extensibles au niveau manycore parce que le contrôleur central est une source de contentions. Par exemple, SCMP peut supporter jusqu'à 32 c÷urs de calcul avant de connaître une dégradation des performances. Ensuite, les puces manycore ont un I am greatly indebted to many individuals for their advice and assistant in this PhD thesis journey.

I would like to thank Thierry COLLETTE (head of CEA LIST/DACLE department), Cécile MORILLON (assistant head of CEA LIST/DACLE department), Laurent LETELLIER (ex-head of LCE laboratory), and Raphaël DAVID (head of LCE laboratory), for warmly hosting me in the DACLE department and the LCE laboratory, in addition for providing me all the resources for the success of this work.

A special warm thank for Nicolas VENTROUX (PhD thesis supervisor, R&D engineer at CEA LIST), for trusting my capabilities and giving me this opportunity to work on this PhD topic. His motivation and dynamism for this work has infected me all along this successful journey. I thank you for your daily professional and personal advices. I really enjoyed working with you.

I am also grateful to Daniel ETIEMBLE (PhD thesis director, professor at Université Paris-Sud), for his great supervision and scientic guidance. I thank you for your kind advices, and especially for your fast responsiveness that unblocked me in several issues. I was honored to be supervised by a professor from your quality and I have learned a lot from your experience.

I would like also to express my gratitude to all my PhD defense jury members. In particular, I thank Olivier SENTIEYS (reviewer, professor at Université de Rennes) and Frédéric PETROT (reviewer, professor at Grenoble-INP), for taking the time to read my thesis report and for your interesting comments about my work. In addition, I thank Alain MERIGOT (president of the jury, professor at Université Paris-Sud) and Agnès FRITSCH (examiner, head of laboratory at Thales Communications France) for accepting to be in my PhD defense jury. These 3 years would never pass so fast and so smooth without the great support of my laboratory colleagues. I thank you all, one by one, for the great time we shared during and after the work. In particular, I would like to thank all the people who helped me to overcome all the technical problems related to my work, and also for our great discussions about my work. It is of great pleasure to continue this journey with you after the PhD.

A special thank to the department secretaries, in particular Annie, Sabrina, and Frédérique, for taking care with an ultimate speed and lovely smile all my administrative issues.

In these 3 years, I have met lot of friends at CEA from outside my laboratory to whom I am grateful. In particular, I am thinking of all the Lebanese colleagues from all the CEA departments. I thank you all for the beautiful moments we shared together. You were real quality friends.

Last but not least, a very special acknowledgment of love and gratitude to my family, the RIM's. Thank you my parents Elie and Denise, my brother Anthony and my sister Melissa, for your continuous love and support. It was the key for my success throughout the challenging years of my education. I also thank my wife's family, the KHATTAR's, for showing their ultimate care and sharing this joy with me.

Finally, there are no words that can express my feelings of gratitude to my wife Manar. Your big

Context of study

Embedded systems exist everywhere in our quotidian life. Almost every single product contains one or multiple processors hidden from the end user in a fascinating package. They are performing the computation and communication with the environment to bring the intelligence and satisfy the end user needs.

Embedded systems span all aspects of modern life and there are many examples of their use. In the telecommunication domain, there are numerous embedded systems from telephone switches for the network to mobile phones at the end-user. Computer networking uses dedicated routers and network bridges to route data. In the consumer electronics domain, embedded systems are employed in personal digital assistants (PDAs), MP3 players, videogame consoles, digital cameras, DVD players, GPS receivers, and printers. This list is exhaustive and there are much more examples that exist in other domains such as the transportation systems, medical equipments, military applications, etc... The end users no longer only wants more features and better performance, but are increasingly interested in devices with the same performance level at a lower price. Thus, consumer electronic markets, and therefore industries, started to converge. Digital watches and pagers evolved into powerful personal digital assistants (PDA) and smartphones. Similarly, desktop and laptop computers were recently reduced to netbooks that use Intel Atom and ARM processors. The resulting devices demand ever more computational capabilities at decreasing power budgets and within stricter thermal constraints [START_REF] Duranton | The HiPEAC Vision[END_REF].

During nearly 40 years, the technological innovations followed one another with the goal of reducing the processor execution times. One technique relied on shrinking the physical transistor integration, which led to an increase in the processor clock frequency, hence a faster instruction execution. However, this performance gain is limited today by the physical integration barriers. In addition, embedded systems function on a limited power budget and thus increasing the processor frequency to improve the performance is no longer a solution for system designers.

Fortunately, many embedded applications are parallel by nature. Applications are parallelized on the task level to reach higher performances. There exist 2 solutions to tackle to the task level parallelism (TLP).

The simplest solution to execute multiple tasks consists in using a monothreaded processor with all the techniques deployed to accelerate the processing of a single instruction ow. The operating system schedule and allocate the threads concurrently on the processor giving the impression that they are running in parallel. This can be thought of as virtualization of the execution resources. For this virtualization, two acceleration techniques for the monothreaded processors are largely used.

The rst one, called temporal parallelism, consists in reducing the execution time by dividing the instruction execution into several successive stages. This is referred to a pipeline execution. The second one, called space parallelism, relies on the multiplication of the execution resources. Expressing the parallelism in this type of architecture can be explicit or implicit. The parallelism is explicit when the compiler manages the data dependencies and the control ow in order to guarantee the availability of the resources. The control is then relatively simple and makes it possible to use higher clock frequencies. For instance, this is the case for the VLIW [START_REF] Fisher | Embedded Computing: A VLIW Approach to Architecture, Compilers, and Tools[END_REF][START_REF] Rau | The Cydra 5 departemental supercomputer: Design philosophies, decisions, and trade-os[END_REF] architectures. On the other hand, when the architecture deals dynamically with all these execution hazards, the parallelism is exploited in an implicit way. These architectures are called superscalar. The advantages of this approach are the simplicity of the parallelism description and its dynamic management during the execution. Nevertheless, the complexity of the speculation mechanisms, out-of-order executions and branch predictions has great impact on the energy eciency and transistor eciency of the processor architecture.

The second solution consists of multiplying the number of cores and executing the tasks in parallel. The advancement in semiconductor processing technology allowed chip manufacturers to increase the overall processing power by adding additional CPUs or "cores" to the microprocessor chip. Hence, this solution exploits the parallelism at the thread level (TLP), where multiple threads can be executed in parallel on multiple cores. These architectures are known as MPSoC, which stands for Multi-Processor System-On-Chip.

The context of study of this thesis will be the design of MPSoC architectures for the embedded systems.

that cause the cores to be stalled, thus wasting energy. In this context, multithreaded processors are an interesting solution to investigate.

An important feature of these embedded computation-intensive applications is the dynamism. While some algorithms are data independent with a regular control ow, other algorithms are highly data-dependent and their execution time vary with respect to their input data, their irregular control ow, and their auto-adaptability to the application environments. Therefore, the MPSoC architecture should be highly reactive with respect to the computation needs in order to increase the execution resources occupation rate. Thus, it should support global and dynamic load-balancing of threads between the execution resources.

Based on these observations, we will design a new manycore architecture that tackles the challenges of future high-end massively parallel dynamic applications. The manycore architecture is called AHDAM, which stands for Asymmetric Homogeneous with Dynamic Allocator Manycore architecture.

Outline of this report

Chapter 1 presents the context of our work by focusing mainly on the applications requirements and the existing architectural solutions. First, it highlights the performance requirements of future high-end massively-parallel dynamic embedded applications. Then, it presents a state of the art of the MPSoCs for embedded systems by providing a classication of the overall architectures' space that currently exist in the literature. Three big families are identied: Symmetric MPSoCs, Asymmetric Homogeneous MPSoCs, and Asymmetric Heterogeneous MPSoCs. The Asymmetric Homogeneous MPSoCs will be exploited since its characteristics can meet the future embedded applications constraints. An asymmetric homogeneous architecture consists of one (sometimes several) centralized or hierarchized control core, and several homogeneous cores for computing tasks. In particular, an asymmetric homogeneous MPSoC, called SCMP [START_REF] Ventroux | The SCMP architecture: A Heterogeneous Multiprocessor Systemon-Chip for Embedded Applications[END_REF], which is proprietary to CEA LIST laboratory, will be retained for the rest of this thesis as the architecture of reference for experimentations. SCMP is designed to process embedded applications with a dynamic behavior by migrating the threads between the cores using the central controller. Finally, and based on our observations, we will analyze why the currently existing asymmetric homogeneous MPSoC architectures do not meet the requirements of future high-end massively-parallel dynamic embedded applications, and what are the possible solutions. In particular, we will be interested in hardware multithreading as an ecient solution to increase the performance of the asymmetric homogeneous MPSoC architectures.

At the beginning, chapter 2 explores and analyzes the performance and eciency of hardware multithreaded processors in embedded systems. First of all, it provides a classication of the dierent types of multithreaded processors that exist in the literature. In particular, two multithreading techniques for single-issue cores will be retained: Interleaved multithreading (IMT) and Blocked multithreading (BMT). These multithreaded architectures should meet the embedded systems requirements and are suitable for manycore architectures. Then, we apply the two multithreading techniques on a small footprint monothreaded core at the RTL level (VHDL), and synthesize the 3 cores in 40 nm TSMC technology. In this way, we compare the area overhead of each multithreaded processor type (IMT and BMT) with respect to the monothreaded core. Finally, we compare the Introduction performance of the monothreaded, IMT, and BMT cores in a typical processor system conguration, and we show the characteristics of each processor type and under which conditions it should be used.

Then, chapter 3 explores the advantages/disadvantages of hardware multithreading in an asymmetric homogeneous MPSoC context (SCMP architecture). In order to conduct this exploration, we present the SESAM simulation framework, where the SCMP architecture is modeled. Then, we extend SESAM to support multithreaded processors. In particular, we have developed a new cycleaccurate multithreaded Instruction Set Simulator (ISS) in SystemC to model the IMT processor with 2 thread contexts (TC). After replacing the monothreaded processor by an IMT/BMT processor with 2 TCs, we used several benchmarks in order to know which multithreaded processor type suits best the SCMP architecture and to measure the transistor eciency of the new SCMP architecture with multithreaded processors. For this reason, two types of applications are used from the embedded domain: connected component labeling (control-ow) and WCDMA (dataow/streaming). In the control-ow execution model, the tasks are processed until completion, while in the dataow execution model, the tasks synchronize between each other on data, thus creating more processor stalls. Both execution models cover a large set of applications behavior. The benchmarking results show that multithreading boosts the performance of SCMP, however it does not reach the desired level to make it a transistor ecient solution. Chapter 3 concludes that SCMP has some limitations for tackling the requirements of the future massively-parallel dynamic applications. In particular, it was due to the scalability limitations to the manycore level and the lack of support for large data set sizes of applications that does not t in the on-chip memory.

To overcome these limitations, chapter 4 presents a new manycore architecture called AHDAM [START_REF] Bechara | AHDAM: an Asymmetric Homogeneous with Dynamic Allocator Manycore chip[END_REF]. AHDAM stands for Asymmetric Homogeneous with Dynamic Allocator Manycore architecture.

It is used as an accelerator for massively parallel dynamic applications by migrating the threads between the execution units using a central controller. In addition, it is designed to accelerate the execution of the loop codes, which often constitutes a large part of the overall application execution time. AHDAM architecture implements monothreaded and multithreaded cores to increase the cores utilization when necessary. AHDAM architecture is presented in details in this chapter.

In particular, its application system environment, its programming model, its architectural description and the functionalities of each hardware component, its execution model, and its maximum scalability, are presented in this chapter. Finally, chapter 5 evaluates the performance and transistor eciency of AHDAM architecture by using a relevant embedded application from Thales Communications France in the telecommunication domain called radio-sensing. This application has lots of computation requirements, lots of parallelism at the thread and loop levels, a large data set, and is dynamic. The radio-sensing application is parallelized and ported using the AHDAM programming model ow. We evaluate the transistor eciency of the architecture. In particular, we estimate the overall chip area in 40 nm technology for multiple chip congurations and we evaluate its performance by running the radio-sensing application on dierent chip congurations. The AHDAM architecture shows excellent results compared to the SCMP architecture. During the last decades, computing systems were designed according to the CMOS technology push resulting from Moore's Law, as well as the application pull from ever more demanding applications [START_REF] Duranton | The HiPEAC Vision[END_REF]. The emergence of new embedded applications for mobile, telecom, automotive, digital television, mobile communication, medical and multimedia domains, has fueled the demand for architectures with higher performances, more chip area and power eciency. These complex applications are usually characterized by their computation-intensive workloads, their high-level of parallelism, and their dynamism. The latter implies that the total application execution time can highly vary with respect to the input data, irregular control ow, and auto-adaptive applications.

Traditional high-performance superscalar general-purpose processors implement several architectural enhancement techniques such as out-of-order execution, branch prediction, and speculation, in order to exploit the instruction-level parallelism (ILP) of a sequential program. However, the ILP has reached its limits [START_REF] Wall | Limits of instruction-level parallelism[END_REF] and cannot be more exploited. To compensate the ILP limitation, chip manufacturers relied on increasing the clock frequency to provide free performance gain. Yet, a higher clock frequency implies more power dissipation. Therefore, superscalar processors have low transistor/energy eciency that render them not suitable for embedded systems applications. On the other hand, the advancement in semiconductor processing technology allowed chip manufacturers to increase the overall processing power by adding additional CPUs or "cores" to the microprocessor package. Hence, this coarse-grained solution consists of exploiting the parallelism Chapter 1. MPSoC architectures for dynamic applications in embedded systems at the thread level (TLP), where multiple threads can be executed in parallel on multiple cores or concurrently on hardware multithreaded cores. According to the authors in [START_REF] Wolf | Multiprocessor System-on-Chip (MPSoC) Technology[END_REF], all the microprocessor chip architectures for the embedded systems world are called MPSoC, which stands for Multi-Processor System-On-Chip.

MPSoCs consist of any number of processing cores greater than 1 connected to any number of IPs (Intellectual Property) through an interconnection network, all integrated in one microprocessor package. The interconnection network can be a simple bus or a complex Network-On-Chip (NoC). MPSoCs provide the necessary execution resources to exploit the Thread-Level Parallelism (TLP) of an application.

The embedded world has been the pioneer to realize the need of novel SoC architectures in order to meet the embedded systems applications requirements: high performance, low-power, small die area, real-time and multithreading execution. In the year 2000, the rst MPSoC was released for wireless base stations applications. It is the Lucent Daytona [3] with a chip size of 200 mm 2 in a 0.25 µm CMOS process. After that date, lots of MPSoC architectures have been designed for the embedded systems domain. This happened thanks to Moore's Law advances and the continuous demand for more performance and transistor/energy ecient solutions for embedded applications such as multimedia and graphics, telecommunication, embedded computer vision, networking, and military applications. On the other hand, general-purpose processors have followed the pace 1 year later with IBM POWER4 processor [START_REF] Tendler | POWER4 system microarchitecture[END_REF], the rst commercial 2 cores chip launched in 2001.

In this chapter, we will rst highlight the performance requirements of future dynamic embedded applications. Then, we will present a state of the art of the MPSoCs for embedded systems. At the beginning, we will explain the dierent MPSoC characteristics that identify each architecture. After, and based on these characteristics, we will provide a classication of the overall architectures' space that currently exist in the literature. We identify 3 big families: Symmetric MPSoCs, Asymmetric Homogeneous MPSoCs, and Asymmetric Heterogeneous MPSoCs. We will analyze and compare dierent architectural solutions in order to identify which characteristics can meet the future high-end massively-parallel embedded applications constraints. In particular, an asymmetric homogeneous MPSoC, called SCMP [START_REF] Ventroux | The SCMP architecture: A Heterogeneous Multiprocessor Systemon-Chip for Embedded Applications[END_REF], will be retained for the rest of this thesis as the architecture of reference for experimentations. SCMP is designed to process embedded applications with a dynamic behavior by migrating the threads between the cores using the central controller. Finally, and based on our observations, we will analyze why the currently existing asymmetric homogeneous MPSoC architectures do not meet the requirements of future embedded applications, and what are the possible solutions.

Dynamic applications in embedded systems

Throughout the history of computing systems, applications have been developed that demanded ever more performance, and this will not change in the foreseeable future. Recent innovative embedded systems applications such as domestic robots, future cars, telepresence, Human++ [START_REF] Pop | Human++: Wireless autonomous sensor technology for body area networks[END_REF], smart camera networks, realistic games, virtual reality, and cognitive radio systems, require extremely large amounts of processing power in the order of TOPS (Tera Operations Per Second). Figure 1.1 shows the computation requirements for several embedded application domains. Most of these embedded applications are parallel by nature. Therefore, an application can be 1.1. Dynamic applications in embedded systems Figure 1.1: Dierent embedded applications performance requirements grouped by application domain (GOPS: Giga Operations Per Second; TOPS: Tera Operations Per Second) [START_REF] Guerre | Approche hiérarchique pour la gestion dynamique des tâches et des communications dans les architectures massivement parallèles programmables[END_REF].

decomposed into multiple concurrent threads, where each thread or task is composed of a group of instructions. This coarse-grain parallelism is called Thread-Level Parallelism (TLP). A concurrent algorithm can perfectly well execute on a single core, but in that case will not exploit any parallelism. Thus, to exploit the Thread-Level Parallelism and reach higher performances, a multithreaded application should execute on a platform with multiple cores. In addition to ILP and TLP, there is the data-level parallelism (DLP). The DLP is expressed using special instruction set extensions (SSE, SSE2, SSE3, SSE4, AVX, Altivec, Neon) and executed by SIMD-like microprocessor architectures [START_REF] Tanenbaum | Structured Computer Organization[END_REF][START_REF] Hord | The Illiac-IV, The First Supercomputer[END_REF]. The DLP is expressed inside each thread.

A thread is composed of a group of instructions. Part of these instructions is executed one-time sequentially, and the other part is executed multiple times iteratively. The latter refers to program loop codes. In fact, most of the thread execution time is spent in loop codes. One technique of loop optimization is called loop parallelization [5]. It can be done automatically by compilers or manually by inserting parallel directives like OpenMP [106]. OpenMP is a method of parallelization (mainly for loops) whereby the master thread forks a specied number of slave threads, and a task is divided among them. Then, the threads run in parallel, with the runtime environment allocating threads to dierent cores. In this case, the loop region is considered as the parallel region. According to Amdahl's law [7], a program or thread is composed of a serial region S and a parallel region P . Let s be the execution time of the S region, p the execution time of the P region and n the number of cores, then the maximum possible acceleration obtained by parallelizing the loops of a thread is equal to:

A = (s + p) (s + p/n) (1.1)
In other words, whatever the number of cores is, the execution time of a program is always limited by its serial region. Thus, the parallel architecture must execute eectively the sequential operations. Nevertheless, Gustafson's law [START_REF] Gustafson | Re-evaluating Amdahl's law[END_REF] restrains the conclusions of Amdahl's law. He noticed that the parallel region is composed of loops that process the data. Thus, if the number of data to be processed increases, the contribution of the serial region reduces with the n number of cores Chapter 1. MPSoC architectures for dynamic applications in embedded systems used. Let a be the size of the parallel region allotted to each processor, the acceleration becomes:

A = (s + a • n) (s + a) (1.2)
Consequently, the more the size a is important, the more the acceleration tends towards the number of cores n, which is the maximum acceleration. Thus, the maximal parallelism can exceed the limit established by Amdahl's law if the quantity of data to be processed by each core is increased.

If the size of input data is known in advance, then optimal static thread partitioning can exist on a given MPSoC architecture. However, an important feature of future embedded computationintensive applications is the dynamism. Algorithms become highly data-dependent and their execution time depends on their input data, irregular control ow, and auto-adaptivity of the applications. Typical examples of dynamic algorithms are 3D rendering [START_REF] Mochocki | Signature-based workload estimation for mobile 3D graphics[END_REF], high denition (HD) H.264 video decoder [START_REF] Sjalander | A Look-Ahead Task Management Unit for Embedded Multi-Core Architectures[END_REF], and connected component labeling [START_REF] Chen | A Linear-Time Component-Labeling Algorithm Using Contour Tracing Technique[END_REF][START_REF] Lacassagne | Light speed labeling: ecient connected component labeling on RISC architectures[END_REF]. The computation time of the connected component labeling algorithm depends on the size and the number of handled objects. Figure 1.2 shows the execution time taken to analyze a complete video sequence with consecutive frame images. It is clear that this algorithm is highly data-dependent and the execution time varies up to 300% depending on the image content. Hence, the loop parallelism also varies according to Gustafson's law [START_REF] Gustafson | Re-evaluating Amdahl's law[END_REF].

For this type of applications, an optimal static partitioning on an MPSoC cannot exist since all the tasks processing times depend on the input data and cannot be known oine. [START_REF] Bertogna | Schedulability Analysis of Global Scheduling Algorithms on Multiprocessor Platforms[END_REF] shows that the solution consists in dynamically allocating tasks according to the availability of computing resources. Global scheduling maintains the system load-balanced and supports workload variations that cannot be known oine. Moreover, the preemption and migration of tasks balance the computation power between concurrent real-time processes. If a task has a higher priority level than another one, it must preempt the current task to guarantee its deadline. Besides, the preempted task must be able to migrate on another free computing resource to increase the performance of the architecture.

In summary, future high-end embedded applications are:

• Massively parallel with a high-degree of Thread-Level parallelism (TLP), generated from application decomposition and automatic/manual loop parallelization

• Dynamic with variable threads execution time Thus, MPSoC architectures should respond to the embedded applications requirements, as well as meet the embedded systems constraints (power, die area, reliability, etc...).

MPSoC architectures: state of the art

MPSoC design is the art of choosing the best system components that generate together the best performance with the best transistor/energy eciency. Thus, designers must take several design parameters into account, such as the number of cores and their types (monothreaded, multithreaded, VLIW, ISA, etc...), the interconnection networks type (bus, mesh, NoC, etc...), the memory system hierarchy, the choice of HW IP accelerators, the programmability, and even the integration technology (2D, 3D), that will all best meet the requirements of a specic embedded application. In fact, future embedded applications necessitate more and more computing power in the order of TOPS (Tera Operations Per Second) as was shown in Figure 1.1. The main reason for this high performance demand is to meet the high expectations of the end-user from his embedded device. This device runs several applications at the same time, and since most of the applications are real-time, this renders their behavior more dynamic and data-dependent.

MPSoC architectures: state of the art

So it is clear that depending on the application domain and requirements, there is no generalpurpose solution that can be ecient. This is why new optimized MPSoC architectures should be designed for each specic application domain. To have a grasp of the variety of architectures, it is sucient to have a look at surveys done in [START_REF] Wolf | Multiprocessor System-on-Chip (MPSoC) Technology[END_REF][START_REF] Blake | A survey of multicore processors[END_REF][START_REF] Karl Lip Faxén | Multicore computingthe state of the art[END_REF][START_REF] Sodan | Parallelism via Multithreaded and Multicore CPUs[END_REF], which list and compare most of the MPSoC architectures that exist in the literature. In the next sections, we will compare dierent MPSoC architectures' characteristics, then we will provide a classication for the overall MPSoC architectures' space based on the embedded systems requirements discussed in section 1.1, and nally we will conclude which solutions are relevant for future dynamic embedded applications.

Characteristics

MPSoC architectures have dierent properties that characterize them. We identify four properties: cores' organization (symmetric/asymmetric), cores' similarity (homogeneous/heterogeneous), cores' type (monothreaded/multithreaded), and memory organization (shared/distributed memory). Each property leads to dierent performances depending on its utilization context and em-Chapter 1. MPSoC architectures for dynamic applications in embedded systems bedded application requirements. In this part, we will explore the characteristics of each property.

Symmetric v/s Asymmetric

Symmetric architectures consist of homogeneous processing cores that execute both control and computing tasks. Thus, the same core allocates the next tasks to execute. The control is normally done through the intervention of the OS scheduler, whether periodically or in response to events. This implies that the computing tasks are always preempted by control tasks, which induces some noise in the execution behavior. In addition, the control tasks do not require lot of computing resources as the computing tasks. This means that the homogeneous cores are over-dimensioned for the control tasks, hence not transistor/energy ecient. However, symmetric architectures are scalable since there is no sources of centralization in the architecture that cause contention.

On the other hand, asymmetric architectures consist of one (sometimes several) centralized or hierarchized control core, and several homogeneous or heterogeneous cores for computing tasks. The control core handles the tasks scheduling and migration on the computing cores. Asymmetric architectures have usually an optimized architecture for control. This distinction between control and computing cores renders the asymmetric architecture more transistor/energy ecient than symmetric architecture. However, one main drawback of asymmetric architectures is their scalability. The centralized core is not able to handle more than a specic threshold number of computing cores due to reactivity reasons.

Homogeneous v/s Heterogeneous

If all computing cores are the same, then the MPSoC architecture is homogeneous, otherwise it is heterogeneous. By default, all symmetrical architectures are homogeneous. Most designs targeting desktops, laptops and servers are homogeneous, but in the embedded sphere, heterogeneity is more common. A homogeneous architecture has the advantage of being exible, and simpler to program, analyze and allocate resource than a heterogeneous architecture. In case of dynamic embedded applications, load balancing is easily done between the cores. In addition, it is application-independent since the core can execute any types of tasks. From a hardware point of view, it is simpler to design since it is build out of just one kind of component duplicated across the chip. This has a direct impact on increasing the MPSoC architecture's reliability and its chip's yield rate.

On the other hand, heterogeneity is the key factor for meeting the exact transistor and energy eciency constraints for a chip in a specic embedded application domain. This is why we tend to see more diverse MPSoC solutions in embedded systems area. However, software challenges (development time, portability, programming tools) for heterogeneous architectures are enormous. For instance, load balancing between heterogeneous core architectures through tasks migration is still a hot research topic.

Monothreaded v/s Multithreaded

A monothreaded core executes only one thread. Thus, the only parallelism it can exploit is the instruction-level parallelism (ILP) if it can exploit the so-called vectorization with SIMD instructions. ILP is extracted from a sequential program, oine by the compiler or online by the hardware. However, ILP found in a conventional instruction stream is limited. ILP studies that allow branch 1.2. MPSoC architectures: state of the art speculation for a single control ow have reported parallelism of around 7 instructions per cycle (IPC) with innite resources [START_REF] Lam | Limits of Control Flow on Parallelism[END_REF][START_REF] Wall | Limits of instruction-level parallelism[END_REF], and around 4 IPC with large sets of resources (e.g. 8 to 16 execution units) [START_REF] Butler | Single instruction stream parallelism is greater than two[END_REF]. Usually in embedded systems, the number of execution units is less than 8, which means the IPC is also lower. Furthermore, a monothreaded core is stalled for a signicant amount of time, up to 75% of time [START_REF] Kongetira | Niagara: A 32-Way Multithreaded Sparc Processor[END_REF], due to long latency events such as cache misses that cause access to the DDR2 memory. Therefore, monothreaded cores cannot exploit the totality of their execution resources on each execution cycle.

A possible solution to the low IPC is to exploit the thread-level parallelism (TLP) at the hardware level by using multithreaded cores [START_REF] Ungerer | Multithreaded Processors[END_REF]. A multithreaded core provides the necessary hardware resources to execute several threads concurrently within a single pipeline. Thus, all the threads share the core resources in order to maximize its utilization, hence the IPC rate. In addition, during a long latency event, a multithreaded core can hide this latency by executing instructions from another thread context. Therefore, sucient instructions need to be obtained to mask the long latencies and increase the pipeline utilization. All these advantages come at the expense of increasing the die area, which can range from 5% till 60%, depending on the core original complexity. More detailed explanations on the importance of multithreaded processors are described in chapter 2.

Shared memory v/s Distributed Memory

When comparing the memory organization of MPSoC architectures, we mainly refer to the L2 cache memory (to our knowledge, L3 cache memory is not used for embedded MPSoCs). The L1 cache memory is usually private for each core, and the L2 cache memory can be private per core or 'logically' shared between all the cores. The former refers to a distributed memory architecture, and the latter to a shared memory architecture. A shared memory eases the software programming of the architecture, since all the instructions/data are shared by all the cores. Inter-core communications and synchronizations are performed implicitly through the shared L2 cache memory. A special cache coherency unit guarantees the coherency between the private L1 cache memories and the shared L2 cache memory. However, the L2 cache memory access can be penalizing when there is a concurrency between all the cores while accessing the same memory region. A shared L2 memory improves the memory utilization, since each task can use all the available memory space. This means that the L2 cache memory size should be big enough in order to avoid frequent o-chip memory accesses. But, the fact that all the tasks are sharing the same memory space makes the execution time of the tasks not predictable. Finally, a shared memory facilitates load balancing and task migration between the cores.

On the other hand, a distributed memory with a private L1 and L2 cache memory per core is an interesting solution since it is simpler to implement. Communication between the cores is done explicitly through message passing. This solution is penalizing because of the time taken to build a message and the communication latency with a distant core that should pass by all the memory levels. Furthermore, the memory utilization is not optimal, because the memory resources demand of each task is dierent. Finally, in case of dynamic applications, load balancing is not a good option for distributed memory architectures, since all the task context should be moved from one private memory to the other. Chapter 1. MPSoC architectures for dynamic applications in embedded systems

Classication

In this section, we provide a classication of the MPSoC architectures for embedded systems that currently exist in the literature, which is shown in Figure 1.3. In the next parts, we will explore in more details the characteristics of these 3 categories, and then we conclude why the asymmetric homogeneous MPSoC category is an interesting solution for future dynamic embedded applications.

MPSoC architectures MPSoC architectures

Symmetric MPSoC architectures

Symmetric MPSoC architectures are homogeneous. Therefore, their main advantage is the smaller investment in HW and SW development times. First, HW designers can take advantage of the chip homogeneity and reuse the validation scripts for one core to revalidate all the chip functionality. This implies faster chip design and validation. Second, a symmetric MPSoC architecture is a wellknown architecture for the SW community, since it resembles to a SMP system. Software developers have developed lot of programs (applications, OSes, libraries) for SMP systems, which are rapidly portable to any SMP architecture. For example, the Linux SMP OS [82] can execute on ARM Cortex A9 [START_REF] Arm | Cortex A-9 Processor[END_REF] [83], Tilera Tile64 [142,[START_REF] Bell | TILE64 -Processor: A 64-Core SoC with Mesh Interconnect[END_REF], Intel 40-core SCC (Single-chip Cloud Computer) [START_REF] Howard | A 48-Core IA-32 Processor in 45 nm CMOS Using On-Die Message-Passing and DVFS for Performance and Power Scaling[END_REF], and MIPS 1004K [90], just by porting the low-level processor dependent code to the corresponding architecture. All the others OS modules, such as communication, scheduler, le handling, memory management, and others, are reused for all the architectures. This implies that legacy codes are easily portable to new SMP architectures with little investment in software development. For instance, a SW program running in a distributed network with MPI (Message Passing Interface) communication can be easily ported to a symmetric MPSoC with distributed memory. A typical example is the Intel SCC [START_REF]RCCE specication for Intel SCC[END_REF] and Tilera Tile64 [START_REF] Serres | Experiences with UPC on TILE-64 processor[END_REF]. In addition, programs with OpenMP support can be easily ported to a symmetric MPSoC with shared memory. A typical example is the ARM Cortex A9 MPCore [START_REF] Blume | Performance and Power Analysis of Parallelized Implementations on an MPCore Multiprocessor Platform[END_REF][START_REF] Deepak Shekhar | Parallelization of Face Detection Engine[END_REF], and MIPS 1004K [START_REF]Codesourcery[END_REF]. Moreover, the homogeneity of the architecture facilitates the thread migration between the cores, which is suitable for dynamic embedded applications. In summary, the symmetric MPSoC architecture is exible and can be easily adapted to any embedded application domain just by modifying the software program, which means faster time-to-market.

On the other hand, these advantages come at the expanse of the chip's transistor and energy eciency. The symmetric MPSoC chip is used in a specic embedded environment. The cores' architecture is normally over-dimensioned for control and computing, so that they meet the performance requirement of all the applications. In reality, some tasks need only a small portion of processing power where in fact they will be running on the over-dimensioned core, hence adding more die area and consuming more energy. For instance, the Intel SCC [START_REF]RCCE specication for Intel SCC[END_REF] integrates 48 Pentium class IA-32 cores [START_REF] Schutz | A 3.3V 0.6 mu;m BiCMOS superscalar microprocessor[END_REF], which are highly inecient for control tasks and most of the computing tasks. Another disadvantage is the architecture's reactivity. A SW OS takes lot of time to process a preemption event, since it must pass by several SW layers before a response can be sent. In addition, tasks scheduling is not deterministic, since it depends on the number of tasks to schedule and the number of cores.

The majority of the symmetric MPSoC architectures have monothreaded cores as can be seen Chapter 1. MPSoC architectures for dynamic applications in embedded systems clearly in Figure 1.3. In some situations, long latencies might occur that can stall the cores' pipeline up to 75% of its execution time [START_REF] Kongetira | Niagara: A 32-Way Multithreaded Sparc Processor[END_REF]. Typical sources of long latencies are cache misses that require access to o-chip main memory, tasks accessing shared resources such as I/O, tasks waiting for a HW IP to nish execution, and others. Some techniques might be implemented, such as thread level speculation (TLS) [START_REF] Gonzalez-Escribano | Speculative Parallelization[END_REF] and data prefetching [START_REF] Byna | A Taxonomy of Data Prefetching Mechanisms[END_REF] in order to lower the stall time. However, those techniques are not yet mature for embedded systems [START_REF] Renau | Energy-Ecient Thread-Level Speculation[END_REF][START_REF] Yao Guo | Energy-Ecient Hardware Data Prefetching[END_REF] because they are complex to implement and they consume lot of energy for possible useless computation. Therefore, HW architects tend to use multithreaded (MT) processors in order to mask those long latencies with instructions execution of other thread contexts, hence increasing the symmetric MPSoC architecture's eciency. For instance, the MIPS 1004K [90], NetLogic Microsystems XLR 732 [START_REF]XLR732 Processor[END_REF], ClearSpeed CSX700 [START_REF]CSX700 Processor[END_REF], and IBM PowerEN [START_REF] Brown | IBM Power Edge of Network Processor: A Wire-Speed System on a Chip[END_REF] are some commercial examples that were recently released. These architectures are suitable for applications that have sucient multithreaded workloads. For example, the ClearSpeed CSX700 is used as an accelerator for HPC applications, and MIPS 1004K is used in the EyeQ3 [START_REF] Mobileye | EyeQ2 and EyeQ3 vision system-on-chip[END_REF] chip for embedded vision applications, where both applications domain are multithreaded.

Asymmetric heterogeneous MPSoC architectures

Asymmetric heterogeneous MPSoC architectures consist of one or several central control core that handles multiple heterogeneous computing cores. In a specic embedded application domain, each computing core is designed to perform dedicated functions. Therefore, the computing cores are not over-dimensioned, which implies better transistor and energy eciencies. For instance, the Seiko-Epson inkjet printer Realoid SoC [124] incorporates 6 customized Tensilica Xtensa LX cores [START_REF]Xtensa LX processor[END_REF] and 1 NEC V850 control core, where each Tensilica core is customized for a unique step in the inkjet image processing chain. For mobile applications, energy eciency is a major issue because it determines the mobile terminal's autonomy. Several MPSoC architectures exist such as ST Nomadik [START_REF] Paganini | Nomadik: A Mobile Multimedia Application Processor Platform[END_REF], TI OMAP3430 [START_REF] Mair | A 65-nm Mobile Multimedia Applications Processor with an Adaptive Power Management Scheme to Compensate for Variations[END_REF], and Google Greendroid [START_REF] Goulding-Hotta | The GreenDroid Mobile Application Processor: An Architecture for Silicon's Dark Future[END_REF]. The latter is designed for an Android platform and incorporates several Conservative cores or C-cores [START_REF] Venkatesh | Conservation cores: reducing the energy of mature computations[END_REF], where each core is designed to accelerate a specic hotspot function in an application. Another embedded application example is the Advanced Driver Assistance Systems (ADAS), which are systems to help the car driver in its driving process. For these systems, Mobileye fabricates vision MPSoCs such as EyeQ [START_REF] Stein | A Computer Vision System on a Chip: a case study from the automotive domain[END_REF], EyeQ2 and EyeQ3 [START_REF] Mobileye | EyeQ2 and EyeQ3 vision system-on-chip[END_REF] families. Those architectures consist of one controller core and several custom HW IPs called Vision Computing Engines (VCEs). Each VCE has a specic role in the vision process application such as ltering, tracking, video codec, and others. All these MPSoC examples show the heterogeneity of the architectures, which render them more transistor/energy ecient for a particular application domain. For example, Intel's TCP/IP processor is two orders of magnitude more power-ecient when running a TCP/IP stack at the same performance as a Pentium-based processor [START_REF] Borkar | Microarchitecture and Design Challenges for Gigascale Integration[END_REF]. However, the main drawback of the asymmetric heterogeneous MPSoCs is their programmability and resources management. Since each new architecture consists of dierent types of cores and IPs, a signicant time on software portability and chip programming has to be invested. In addition, the heterogeneity of the computing cores makes it very dicult (until this date) for the control core to perform load balancing between the computing cores through task migrations.

There is not a big number of MPSoC architectures that utilizes MT processors. MT processors 1.2. MPSoC architectures: state of the art have been recently investigated, to increase the cores' eciency for asymmetric architectures. For example, the rst generation EyeQ chip used 2 monothreaded ARM946E cores. The cores suered from low pipeline utilization of only 0.32 IPC due to cache miss rates and bus contention bottlenecks.

In their next generation EyeQ2 chip, Mobileye HW designers decided to use the multithreaded MIPS 34K [START_REF]MIPS 34K[END_REF] cores with 4 HW thread contexts instead of the monothreaded ARM946E core. The core's IPC increased to 0.9, and the overall chip performance increased 6 times compared to EyeQ. This is because the multithreaded cores were able to overlap the long stall latencies by executing instructions from other thread contexts. Also, the high performance gain is due to increasing the processors' clock frequency from 110 MHz to 330 MHz.

Asymmetric homogeneous MPSoC

Asymmetric homogeneous MPSoC architectures consist of one or several central control core that handles multiple homogeneous computing cores. This solution combines the advantages of symmetric and asymmetric heterogeneous MPSoCs. A specialized core for the control renders the architecture more transistor/energy ecient than symmetric MPSoC. Furthermore, the various hardware abstraction layers, between the OS and the hardware, penalize performance and overall system reactivity. This generates critical sections during hardware/software communication. Use of dedicated hardware components for control is thus vital to the MPSoC architecture. For instance, the HW task scheduler of the Ne-XVP [START_REF] Hoogerbrugge | Transactions on high-performance embedded architectures and compilers III. chapter A multithreaded multicore system for embedded media processing[END_REF] chip from NXP Semiconductors takes around 15 cycles overhead. In addition, due to the increasing diversity of applications that an embedded system should be able to process, xed hardware solutions are more and more replaced by programmable solutions, pushing the exibility to software. Thus, asymmetric homogeneous MPSoCs are easily programmable and can function in a multi-application domain. For example, the IBM Cell chip [START_REF] Riley | Cell Broadband Engine processor: Design and implementation[END_REF], which is composed of one Power Processor Element (PPE) and multiple Synergistic Processing Elements (SPE) [START_REF] Gschwind | Synergistic Processing in Cell's Multicore Architecture[END_REF], is used in application domains such as gaming (PlayStation 3), video processing, blade server, home cinema, distributed computing and others. It is programmed using C language with multithreading support for dispatching software threads to the SPEs. The Plurality Hypercore chip [START_REF]Hypercore processor[END_REF] is used for real-time video processing, image rendering, software-dened radio, and packet processing application domains. Its programming model relies on a simple, Task Oriented Programming model, which is directly supported by hardware as opposed to the intermediation of an operating system layer. Moreover, the support for dynamic load-balancing depends on the memory architecture. The Cell has a distributed memory architecture, where each SPE has its local memory implemented as a software cache. In general, dynamic load-balancing and thread migration is inecient in a distributed memory architecture. On the other hand, an asymmetric homogeneous MPSoC with a shared memory is highly ecient for load-balancing. For instance, Plurality Hypercore [START_REF]Hypercore processor[END_REF], TOSHIBA Venezia [START_REF] Miyamori | Venezia: a Scalable Multicore Subsystem for Multimedia Applications[END_REF] and CEA LIST SCMP [START_REF] Ventroux | The SCMP architecture: A Heterogeneous Multiprocessor Systemon-Chip for Embedded Applications[END_REF], support dynamic load-balancing between all the homogeneous cores, which make them suitable for dynamic embedded applications.

One main disadvantage of asymmetric homogeneous MPSoC architectures is their scalability. The centralized control core suers from contentions when the number of computing cores increases, hence the scheduling overhead of the central core also increases. This means that the computing cores are stalled while waiting the scheduling decision of the control core. For instance, SCMP [START_REF] Ventroux | The SCMP architecture: A Heterogeneous Multiprocessor Systemon-Chip for Embedded Applications[END_REF] can support up to 32 computing cores before starting to suer from scheduling performances degradation. Plurality claims that Hypercore processor can support up to 256 cores [START_REF] Plurality | Plurality Ltd announces the worlds rst scalable 256 multicore processor for wireless infrastructure[END_REF], however there are no publicly available benchmarks that show the linearity of the performance gain. Ne-XVP [START_REF] Hoogerbrugge | Transactions on high-performance embedded architectures and compilers III. chapter A multithreaded multicore system for embedded media processing[END_REF] from NXP Semiconductors can support up to 16 computing cores.

Multithreaded processors are still rarely used in these types of architectures. We could identify 2 architectures that use MT computing cores: NXP Semiconductors Ne-XVP [START_REF] Hoogerbrugge | Transactions on high-performance embedded architectures and compilers III. chapter A multithreaded multicore system for embedded media processing[END_REF] and the ClearSpeed CSX600 [START_REF] Nishikawa | Performance Improvement Methodology for ClearSpeed's CSX600[END_REF]. The Ne-XVP architecture is 16 times more ecient in silicon area and power than o-the-shelf TriMedia TM3270, for applications such as H.264 decoding.

Synthesis

Each MPSoC family has its advantages and disadvantages. However, we should never dissociate an MPSoC architecture from the targeted embedded application domain. In this thesis, we are targeting future dynamic embedded applications as explained in section 1.1. These applications are massively parallel with a high-degree of Thread-Level parallelism (TLP) and dynamic with variable data-dependent thread execution time. In Table 1.1, we compare the 3 MPSoC families. Table 1.1: Characteristics comparison of the 3 MPSoC families: Symmetric, Asymmetric Homogeneous, Asymmetric Heterogeneous.

As can be observed from Table 1.1, the asymmetric homogeneous architecture bridges the gap between the symmetric and asymmetric heterogeneous MPSoCs families. It combines the ease of programmability and exibility from symmetric MPSoCs. Probably the most dicult thing for hardware designers as they move to MPSoC design is that they must worry about software design from the beginning. The hardware architect cannot simply create a machine that is hard to program, since the time gained to design the MPSoC will be rapidly lost by the software application development. In addition, asymmetric homogeneous MPSoC are transistor/energy ecient because of the separation between control and computing cores. And nally, the implementation of a central control core allows for fast dynamic load-balancing between the computing cores with a very small overhead.

All these characteristics lead us to choose the asymmetric homogeneous MPSoC as the best architecture design adapted for future dynamic embedded applications despite its scalability limitation. In particular, an asymmetric homogeneous MPSoC, called SCMP [START_REF] Ventroux | The SCMP architecture: A Heterogeneous Multiprocessor Systemon-Chip for Embedded Applications[END_REF], will be retained for the rest of this thesis as the architecture of reference for experimentations and will be explained in 1.3. SCMP: an asymmetric MPSoC more details in section 1.3. SCMP is designed to process embedded applications with a dynamic behavior. In addition, a solution to SCMP scalability limitation will be proposed in chapter 4.

SCMP: an asymmetric MPSoC

The SCMP architecture is an asymmetric homogeneous MPSoC architecture, which is proprietary of CEA LIST [START_REF] Ventroux | Contrôle en ligne des systèmes multiprocesseurs hétérogènes embarqués: élaboration et validation d'une architecture[END_REF]. SCMP stands for Scalable Chip MultiProcessor. It is designed as a computeintensive accelerator for tasks that are ineciently processed by the host cores such as dynamic applications. It is seen by the host CPU as a coprocessor, as shown in Figure 1.4. The software operating system (OS) running on the host CPU is commonly used for general-purpose processing or interface management. All control of intensive parallel processes with dynamic behavior must nevertheless be performed by an ecient control system. Therefore, in this context, an asymmetric architecture is the most adequate solution as was previously explained in section 1.2. In this section, we will present an overview of the SCMP architecture and its components, then we will explore in more details the programming and execution models of SCMP, and nally we will show a typical functionality processing example.

S S C C M M P P

CPU CPU (RT)OS

Main Main Main Main Memory Memory (DDR3) (DDR3)

System Interconnection System Interconnection Network Network

HW/SW Controller

IP IP

Processing and communication units based on control and data dependencies. Then, task allocation follows online global scheduling, which selects real-time tasks according to their dynamic priority, and minimizes overall execution time for non-real-time tasks. In addition, the central controller manages memory allocations and the exclusive sharing of physically distributed and logically shared memory system. It also prefetches tasks' code in these memories so that the beginning of the task execution does not suer from memory latencies. There exist two implementations for the central controller: hardware and programmable RTOS (real-time operating system). The HW-RTOS is called OSoC (Figure 1.6(a)), which stands for Operating System accelerator On Chip. It has RTOS specialized components implemented in hardware such as a scheduler unit. It is described in more details in [START_REF] Ventroux | Contrôle en ligne des systèmes multiprocesseurs hétérogènes embarqués: élaboration et validation d'une architecture[END_REF]. However, besides its high reactivity, the main disadvantage of OSoC is its programmability. In fact, each time we need to implement a new scheduling protocol, the hardware IPs should be modied in VHDL. Thus, a more exible implementation is the programmable RTOS, which is called CCP (Figure 1.6(b)). It consists of an optimized processor for control, such as AntX, which is a small RISC 5-stage pipeline core optimized for control and is proprietary of CEA LIST. Most of the RTOS functionalities are implemented in software. In this thesis, we will use the programmable central controller for our experimentations.

Processing Elements : A typical processing element or PE in SCMP is composed of 4 components: a Control Interface unit (CTRL_IF), an execution core, Translation Lookaside Buers (TLBs), and cache memories.

The CTRL_IF is the interface between the PE and the central controller. Through this interface, it receives tasks execution/preemption/stop demands from the central controller and updates its execution status for proper global scheduling.

The homogeneity and heterogeneity of the PEs is identied by its execution core. Heterogeneous cores have better chip area and power eciency for the SCMP system. Heterogeneity may be implemented either in software or hardware. It is possible to implement general-purpose or dedicated processors (DSP, VLIW, etc.), coarse-grained recongurable resources (ADRES [START_REF] Mei | Design Methodology for a Tightly Coupled VLIW/Recongurable Matrix Architecture:A Case Study[END_REF], DART [START_REF] David | Low Power Electronics Design[END_REF], XPP [START_REF] Baumgarte | PACT XPP -A Self-Recongurable Data Processing Architecture[END_REF], etc.), time-critical I/O controllers (video sensor, etc.), and dedicated or accelerated hardware components (DMA, IP). These dedicated units can take part in critical processes, for which no programmable or recongurable solution with sucient computing performances exists.

As mentioned earlier, each task is executed by a predened execution core. This implies there is no support for task migration and load-balancing between heterogeneous PEs. Thus, in this thesis, we will use a SCMP system with only homogeneous programmable execution cores as was discussed in section 1.2.3. Typical core architectures are MIPS1, MIPS32, LEON3, PowerPC, SPARC V8, and others.

In SCMP, each task has its own virtual address space in the memory. Therefore, each memory access from the execution core maps in the virtual address space of the task. To map the correct physical memory region, each PE has a TLB for instruction (I-TLB) and data (D-TLB) for virtual to physical memory translation. The TLBs are then connected to private L1 Instruction cache memory (I$) and Data cache memory (D$).

Memory system : The on-chip memory system is a 2-level memory hierarchy: a private L1 I$ and D$ for each PE, and a logically shared physically distributed L2 memory. They are connected by a data interconnection network that transfers the memory requests of all the PEs to the multibanked shared memory. The data interconnection network is a multibus. Initially, all the task codes are prefetched into the L2 memory. Data is also prefetched via DMA engines. Thus, there is no o-chip memory access during task execution on a PE. A special unit called MCMU (Memory Conguration and Management Unit) handles the memory conguration for the tasks. It divides the memory into pages. In addition, MCMU is responsible of managing the tasks' creation and deletion of dynamic data buers at runtime, and synchronizing their access with other tasks. There is one allocated memory space per data buer. A data buer identier is used by tasks to address them. Each task has a write exclusive access to a data buer. Since all tasks have an exclusive access to data buers, data coherency problems is eliminated without the need for specic coherency mechanisms. A data buer access request is a blocking demand, and another task can read the data buer when the owner task releases its right. Multiple readers are possible even if the memory latency will increase with the number of simultaneous accesses.

In section 1.3.2, we will describe in more details the functionality and interaction of these units.

Programming models

The programming model for the SCMP architecture is specically adapted to dynamic applications and global scheduling methods. The proposed programming model is based on the explicit separation of the control and the computing parts. As depicted in Figure 1.7, each application must be manually (the tool chain is still under development) parallelized and cut into dierent tasks, from which explicit execution dependencies are extracted. Thus, computing tasks and the control task are extracted from the application, so as each task is a standalone program. The greater the number of independent and parallel tasks that are extracted, the more the application can be accelerated at runtime. The control task is a Control Data Flow Graph (CDFG) extracted from the application (Petri Net representation), which represents all control and data dependencies between the computing tasks. The control task handles the computing task scheduling and other control functionalities, like synchronizations and shared resource management for instance. A specic and simple assembly language is used to describe this CDFG and must be manually written. In addition, a specic compilation tool is used for the binary generation from the CDFG. Once each application and thread has been divided into independent tasks, the code is cross-compiled for each task. For 1.3. SCMP: an asymmetric MPSoC heterogeneous computing resources, the generated code depends on execution core type.

Processing Elements

For the computing cores, a specic Hardware Abstraction Layer (HAL) is provided to manage all memory accesses and local synchronizations, as well as dynamic memory allocation and management capabilities. With these functions, it is possible to carry out local control synchronizations or to let the control manager taking all control decisions. Concurrent tasks can share data buers through local synchronizations handled by the MCMU (streaming execution model), or wait for the central controller decision before reading the input data (control ow execution model). Each task is dened by a task identier, which is used to communicate between the control and the computing parts.

In SCMP, two programming models are supported: a control-ow and a streaming programming model.

Control-ow programming model

The control-ow programming model allows the execution of a task when all the previous dependent tasks have nished their execution, and therefore have produced their intermediate results (Figure 1.8). The task execution order is described in the CDFG that is handled by the control unit. The task execution follows the run-to-completion model. Therefore, they cannot be preempted by data or control dependencies. During its execution, a task cannot access data buers not selected at the extraction step. Consequently, the control-ow programming model eliminates data coherency problems, thus there is no need for specic coherency mechanisms. This constitutes an important feature for embedded systems, since the MPSoC architecture is accordingly simplied.

Streaming programming model

In the streaming programming model, a task suspends/resumes its execution based on data availability from other tasks. It follows the streaming/dataow execution model as shown in Figure 1.9. When a data is produced by Task A, then Task B resumes its execution. When data is consumed by Task B, then it suspends its execution. Each task has the possibility to dynamically allocate or deallocate buers (or double buers) in the shared memory space through specic HAL functions. An allocated buer is released when a task asks for it and is the last consumer. A buer cannot be released at the end of the execution of the owner task. Dynamic right management of buers enables a dataow execution between the tasks and is handled by the MCMU.

SCMP processing example

As mentioned earlier, SCMP is used in the context of a co-processor for a host CPU. The host CPU can accelerate applications at runtime. It communicates with SCMP via the System Interconnection Network used in the system (Figure 1.4). It can ask for execution of a new application, stop or suspend it, or wake up a suspended application. Multiple applications and multiple instances of the same application can be executed and managed concurrently by SCMP. To execute a new application, the host CPU must load all necessary instructions or data for the application into SCMP local memory. When the transfer is completed, the CPU informs the central controller and sends an execution order. After execution of the application, an acknowledgement is sent to the CPU.

When the central controller receives an execution order of an application, its Petri Net CDFG representation is built into the central controller. Then, the central controller proceeds with the execution and conguration demands according to the application status. They contain all identiers of active tasks that can be executed and of coming active tasks that can be prefetched. Scheduling of all active tasks must then incorporate the tasks for the newly loaded application. If a non-congured task is ready and waiting for its execution, or a free resource is available, the central controller sends a conguration primitive to the Memory Management and Conguration Unit (MCMU).

Based on the task identier, the MCMU allocates a memory space for the context, the code and the stack of the task. Then, it loads the instruction code related to that task from the o-chip main instruction memory and initializes the context. Conguration of these local memories is sequential 1.4. Why these MPSoC architectures are not suitable? and takes place only once before execution of the task. Once the transfer is nished, the address of the selected memory along with the task identier is written into the MCMU.

After its conguration, the task is ready to be scheduled and dispatched by the central controller.

If there is a free PE, the central controller sends an execution demand to the selected PE. If the selected task has a higher priority over another task that uses the same type of PE, or a task running on a PE is stalled waiting for producer data (streaming execution model), the central controller sends a preemption demand to the selected PE. Then the task execution context is saved. Because all memories are shared, this execution context can be accessed by another PE, thus enabling easy task migration from one PE to another.

When a PE receives an execution request, it asks the MCMU for the translation address table of the task memory through the TLB. This table contains all translations of allocated pages for the context, the code and the stack. With these addresses the PE can begin executing the task. The distribution of such data management units among the PEs allows concurrent communications and data transfers between tasks. I/O controllers are used by the OSoC as other PEs. For example, a data transfer from a DMA implies moving external o-chip data to the task memory. Local transfers can take place, where necessary, via another PE to distribute large amounts of data among other local memories, thereby improving access memory parallelism. Because all data required to execute the task are ready and all synchronization has been completed at the task selection level, the execution then simply consists of processing the data from local memories and storing the result in a memory open to the other tasks.

Why these MPSoC architectures are not suitable?

In this chapter, we dened the context of our study: massively-parallel dynamic embedded applications. These applications are highly parallel. The parallelism can be extracted at the thread level (TLP) and at the loop level. So an application might have more than 1000 parallel threads to be processed in parallel. Therefore, manycore architectures are natural solutions for these applications.

In addition, the dynamism of those applications requires an ecient MPSoC solution to manage the resources occupation and balance the loads in order to maximize the overall throughput. In this case, we saw in section 1.2.2 that asymmetric MPSoC architectures are the best solution for fast and reactive load-balancing. They are also highly transistor and energy ecient because of the separation between control and computing cores. Finally, we concluded that asymmetric homogeneous MPSoCs are the best choice for these applications, since load-balancing cannot be done between heterogeneous cores. Thus, we have chosen SCMP as the architecture of reference for experimentations, and it was presented in section 1.3.

Besides, currently existing asymmetric homogeneous MPSoCs are not suitable for future massively-parallel dynamic applications. First of all, they are not scalable to the manycore level because the central controller is a source of resources contentions. For instance, SCMP can support up to 32 processing cores before experiencing performances degradation. So, they are not designed for the manycore era and this will be performance limiting. However, manycore chips have limited I/O pins in their chip package, hence limited bandwidth [START_REF] Batten | Building Manycore Processor-to-DRAM Bibliography Networks with Monolithic Silicon Photonics[END_REF]. This implies that the more trac will be exercised o-chip, the more the cores will be stalled on-chip, hence lower aggregate IPC. Thus, it will be advantageous to explore the benets of hardware multithreading for future manycore chips, in order to keep the core as busy as possible and increase the aggregate IPC. In particular, the homogeneous cores that constitute a manycore chip should be as small and ecient as possible [START_REF] Asanovic | The landscape of parallel computing research: a view from Berkeley[END_REF].

In summary, there exist two suggestions for improvements of the currently existing asymmetric homogeneous MPSoCs: scalability and hardware multithreading. In this thesis, we will rst investigate the advantages/disadvantages of hardware multithreading in SCMP architecture, and then we will propose a novel solution that will target the manycore era. This solution should tackle the challenges of future massively-parallel dynamic embedded applications. Traditional high-performance superscalar processors implement several architectural enhancement techniques such as out-of-order execution, branch prediction, and speculation, in order to exploit the instruction-level parallelism (ILP) of a single-thread sequential program. However, due to the limits of ILP [START_REF] Wall | Limits of instruction-level parallelism[END_REF], a more coarse-grained solution consists of exploiting the parallelism at the thread level (TLP), where multiple threads can be executed in parallel on multicore processors or concurrently on hardware multithreaded processors.

Embedded processors must have a die size in the order of few mm 2 and most consume in the order of few mW. Thus, they should support simple technology for exploiting ILP, such as pipelining or VLIW. Non-deterministic ILP boosting mechanisms, such as speculative scheduling, should be avoided. In this context, processing a single thread stream often leaves many functional units of the embedded processor underutilized, which wastes leakage power. To compensate the loss in singlethread performance and to increase the transistor/energy eciency of the embedded processor, designers are exploiting the parallelism at the thread level (TLP) through the implementation of embedded multithreaded processors [START_REF] Mips | Programming the MIPS32 R 34K Core Family[END_REF][START_REF]TriCore 2[END_REF][START_REF] Dimond | Application-specic customisation of multi-threaded soft processors[END_REF].

A hardware multithreaded processor [START_REF] Ungerer | Multithreaded Processors[END_REF] provides the hardware resources and mechanisms to execute several hardware threads on one processor core in order to increase its pipeline utilization, hence the application throughput. Unused instruction slots, which arise from pipelined execution of single-threaded programs by a monothreaded core, are lled by instructions of other threads within a multithreaded processor. The hardware threads compete for the shared resources and tolerate pipeline stalls due to long latency events, such as cache misses. These events can stall the pipeline up to 75% of its execution time [START_REF] Kongetira | Niagara: A 32-Way Multithreaded Sparc Processor[END_REF]. Thus, the main advantage of multithreaded processors over other types of processors is their ability to hide the latency within a thread (e.g. memory or execution latency).

Future manycore architectures tend to use small footprint RISC cores [START_REF] Asanovic | The landscape of parallel computing research: a view from Berkeley[END_REF] as basic processing elements. In this case, more processors can be integrated on a single die while keeping the aggregate cores' energy consumption under a tolerable threshold. Therefore, in our thesis study, we will consider a 5-stage pipeline, in-order, single-issue RISC core. Then, we will support this core with hardware multithreading.

In this chapter, we will explore and analyze the performance and eciency of multithreaded processors in embedded systems. First of all, we will provide a classication of the dierent types of multithreaded processors that exist in the literature. In particular, two multithreading techniques for single-issue cores will be retained: Interleaved multithreading (IMT) and Blocked multithreading (BMT). These multithreaded architectures should meet the embedded systems requirements and are suitable for manycore architectures. Then, we need to know the surface occupation of each multithreaded processor type (IMT and BMT), and its overhead with respect to the monothreaded core. Hence, we will apply the two multithreading techniques on a small footprint monothreaded core at the RTL level (VHDL), and synthesize all the 3 cores in 40 nm TSMC technology. Finally, we will compare the performance of the monothreaded, IMT, and BMT cores in a typical processor system conguration, and we show the characteristics of each processor type and under which conditions should be used.

Classication

There are lot of misconceptions when dening the term multithreaded processor. A processor can be regarded as a simple state machine. It contains a context and an execution core. The context stores the state of a process/thread in the program counter, data registers and status registers [START_REF] Byrd | Multithreaded processor architectures[END_REF]. The execution core performs computation on the stored state. Thus, the state of the process/thread being executed is advanced by the execution core over the time.

Given denitions for a thread context (TC) and an execution core, it becomes possible to classify dierent types of architecture by relating the number of contexts to the number of execution cores. This is shown in Figure 2.1.

The simplest arrangement is the monoprocessor. It has one context and one execution core (1/1). The multithreaded processor contains multiple contexts, sharing a single execution core (N/1, where N>1). And nally, the multiprocessor has groups of contexts and cores, with one or several contexts per core (M/N, where M ≥ N and N>1).

Thread context v/s Execution core

1/1 Monoprocessor

N/1

Multithreaded processor In section 1.2 of chapter 1, we already discussed multiprocessor architectures or MPSoCs that have monothreaded and multithreaded execution cores.

M/N Multiprocessor

In this section, we will focus our study on the multithreaded processor. In particular, we will explore the whole design space solution and focus mainly on characteristics that are relevant to the embedded systems requirements: explicit and scalar multithreaded cores will be retained for further analysis. Then, we will discuss two types of multithreading techniques for scalar cores: interleaved and blocked multithreading. Finally, we will present a cost-eectiveness model that will allow us to conclude which are the best multithreaded processor types that are adapted for the embedded systems.

Multithreaded processor design space

There exist 3 main characteristics that identify a multithreaded processor (Figure 2.2): parallelism type, execution core, and instruction issue.

Parallelism type

The parallelism type can be explicit or implicit. Explicit multithreading exploits the TLP (thread level parallelism) that are user-dened or OS-dened threads. In other words, threads should be explicitly identied and created in order to be executed by the multithreaded processor. On the other hand, implicit multithreading exploits the TLS (Thread level speculation) of a single-threaded program. Threads are dynamically generated by the processor from single-threaded programs using speculation such as the dynamic multithreading processor [6], trace processor [START_REF] Rotenberg | Trace processors[END_REF], and the speculative multithreaded processors [START_REF] Sohi | Speculative multithreaded processors[END_REF], or statically using compiler support such as the multiscalar processor [START_REF] Sohi | Multiscalar processors[END_REF] and superthreaded processor [START_REF] Tsai | The superthreaded processor architecture[END_REF].

Speculative execution is proposed to provide sucient instructions even before their control dependencies are resolved. It necessitates register renaming mechanism to allocate a virtual register space to each speculative instruction. The result is higher utilization and statistically better performance for single-threaded programs. Nevertheless, mis-speculations need to be discarded and all eects of the speculatively executed instructions must be disposed. This wastes both energy and execution time on the mis-speculated path. In terms of hardware cost, the number of functional units goes up linearly with the required degree of parallelism. Therefore, thread speculation is an interesting solution for general-purpose processors. However, it should be avoided for embedded systems for energy and die area constraints.

In embedded systems, simple techniques should be used to increase the performance. Thus, performance gained from thread level parallelism (explicit multithreading) should compensate the need for instruction level parallelism extraction using speculation (implicit multithreading).

Exection core

The execution core can be scalar or superscalar (Figure 2.3). The simplest processors are scalar processors. A scalar processor has one ALU (Arithmetic Logic Unit) and maybe one FPU (Floating-Point Unit). Thus, the maximum theoretical instruction issue is 1 instruction per cycle and the maximum ILP exploited is 1.

A superscalar execution core has multiple redundant functional units (ALU, FPU, multipliers, SIMD, etc...). A typical example is the PowerPC 970 [START_REF] Rohrer | PowerPC 970 in 130 nm and 90 nm technologies[END_REF], which has four ALUs, two FPUs, and two SIMD units. Multiple instructions from the same thread are issued to multiple functional units. In this case, the maximum theoretical IPC is equal to the maximal number of fetched instructions per clock cycle. However, since the ILP of a single thread is limited, functional units are under-utilized. To compensate this limitation and increase the pipeline utilization, superscalar processors tend to issue multiple instructions from multiple threads simultaneously at every clock A scalar execution core processes one thread and issues 1 instruction per cycle. On the other hand, a superscalar execution core processes one thread but issues n instructions per cycle depending on the number of functional units. The SMT is a superscalar execution core that processes m threads.

cycle. This type of architecture is called simultaneous multithreading (SMT) [START_REF] Tullsen | Simultaneous multithreading: Maximizing onchip parallelism[END_REF]. Most of the SMT architectures are found in the general-purpose domains such as IBM POWER5 [START_REF] Sinharoy | POWER5 system microarchitecture[END_REF], Intel Pentium4 HT [START_REF] Koufaty | Hyperthreading technology in the netburst microarchitecture[END_REF], Intel Atom [START_REF] Sutanthavibul | First Intel Low-Cost IA Atom-based System-On-Chip for Nettop/Netbook[END_REF], and Sun Microsystems UltraSPARC T1 [START_REF] Leon | The U1traSPARC T1: A Power-Ecient High-Throughput 32-Thread SPARC Processor[END_REF]. They tend to use large number of redundant functional units (around 8) and hardware threads, which increase the IPC rate but make the instruction issue/dispatcher unit and thread scheduler more complex [START_REF] El-Moursy | Highly Ecient Multi-Threaded Architecture[END_REF]. For instance, the IBM POWER5 [START_REF] Sinharoy | POWER5 system microarchitecture[END_REF] is a dual core 2-way SMT, 8-way superscalar processor, with a die area of 389 mm 2 in 130 nm technology. It is typically used in server architectures. For embedded systems, there exist some more optimized SMT architectures such as simultaneous thin-thread [START_REF] Won | Simultaneous thin-thread processors for low-power embedded systems[END_REF] and Responsive multithreaded architecture [START_REF] Yamasaki | Responsive Multithreaded Processor for distributed real-time control[END_REF]. They are 4-way superscalar processors with small dispatch queues [START_REF] Cai | Transaction level modeling: an overview[END_REF]. SMT processors are not suitable for embedded systems domain for 3 main reasons: 1) It is impossible to determine the WCET since instructions are scheduled dynamically 2) Large die area because of multiple functional units and registers 3) High power consumption.

Thus, scalar processors are more attractive for embedded systems integration and will be adapted for our further analysis. In the next section, we will show what the multithreading techniques for explicit scalar processors are.

Instruction issue

Finally, two types of instruction issue exist (Figure 2.4): interleaved and blocked.

Interleaved multithreading (IMT), also called switch-on-cycle or ne-grain multithreading, is a multithreading technique that issues an instruction from a dierent thread at every clock cycle using a round-robin scheduler, with zero context-switching overhead. The rst well-known architecture which uses IMT is the Denelcor HEP [START_REF] Janusz | on Parallel MIMD computation: HEP supercomputer and its applications[END_REF]. It supports up to 50 threads in hardware. Tera MTA [START_REF] Howard | Design of the Tera MTA integrated circuits[END_REF] is a derivative of the HEP with similar properties that supports 128 TCs. These architectures IMT issues an instruction from a dierent thread at every clock cycle with zero context-switching overhead. On the other hand, BMT allows a thread to run normally as in sequential mode before being switched out for long latency events. However, the context-switching has some penalty cycles.

do not use caches, and rely on having a large number of threads to hide the memory latency between successive instructions of a thread. At any point in time, each pipeline stage will contain an instruction from a dierent thread. Therefore, there is no need for a complex circuitry that handles pipeline interlocks (instruction, data, and control dependencies) since each thread can have just one instruction in the pipeline. Nevertheless, to support sucient parallelism, the number of active threads should be equal or greater to the number of pipeline stages, thus more hardware resources. For instance, MIPS 34K [START_REF] Mips | Programming the MIPS32 R 34K Core Family[END_REF], a recent IP for MPSoC integration, has a 9-stage pipeline and supports 9 TCs. SUN UltraSPARC T2 [START_REF] Shah | UltraSPARC T2: A highly-treaded, power-ecient[END_REF], a CMT processor used for server architectures, has a 6-stage pipeline for each core and supports 8 TCs. In the IMT, the performance of a single thread is degraded by 1/n, where n is the number of TCs. Thus, IMT architectures are useful for throughput oriented architectures. For example, in embedded systems, Eleven Engineering XInc [START_REF]XInC wireless multithreaded processor[END_REF][START_REF] Le Moullec | Power consumption estimation of the multi-threaded xinc processor[END_REF] and Ubicom MASI [2,[START_REF] Fotland | Ubicom's MASI Wireless Network Processor[END_REF] IMT processors are used in the wireless communication domain. Another researcher has developed an IMT MicroBlaze soft-IP for FPGAs [START_REF] Moussali | Microarchitectural Enhancements for Congurable Multi-Threaded Soft Processors[END_REF].

On the other hand, blocked multithreading (BMT), also called switch-on-event or coarse-grain multithreading, allows a thread to run normally as in sequential mode before being switched out for long latency events such as cache misses, failed synchronization [4], or wait for producer data in a streaming execution model. These events normally represent points in execution at which the processor would become idle for a long period of time. In such a case, it is useful to perform a context switch and execute instructions from another thread to ll the otherwise idle cycles. This is only eective when the context switch time is signicantly less than the idle period of the 2.1. Classication event causing the switch [START_REF] Boothe | Improved Multithreading Techniques for Hiding Communication Latency in Multiprocessors[END_REF]. The main advantage of BMT is that it requires a smaller number of TCs for multithreading to mask the long latency stalls, which means lower hardware cost than IMT. For instance, Inneon TriCore2 [START_REF]TriCore 2[END_REF][START_REF] Norden | A Multithreaded RISC/DSP Processor with High Speed Interconnect[END_REF] supports 2 TCs for a 6-stage pipeline, PRESTOR-1 [START_REF] Tanaka | PRESTOR-1: a processor extending multithreaded architecture[END_REF] supports 4 TCs for a 10-stage pipeline, and MulTEP [START_REF] Watcharawitch | MulTEP: MultiThreaded Embedded Processors[END_REF], which is based on Anaconda multithreaded processor [START_REF] Moore | Multithreaded Processor Design[END_REF], supports 2 TCs for a 5-stage pipeline. In addition, each thread can execute at full processor speed as in single-threaded mode. However, careful processor design choices must be taken to avoid starving other waiting thread contexts. For instance, if the BMT processor is well-dimensioned and the cache misses are almost negligible, this means there will be no context switches, hence other thread contexts will never execute and advance. Thus, for real-time embedded applications, TCs should have priorities to guarantee the response time. For instance, in TriCore 2, TC0 is the main thread and TC1 is a helper thread. Another drawback is the context switch penalty, which is dependent of the number of pipeline stages. In fact, for each thread context switch, the pipeline should be totally ushed and reset.

Examples of recent IMT and BMT processors that exist in embedded systems are shown in Figure 2.5. In the next section, we will present a cost-eectiveness model that will give us a relationship between the performance and the implementation cost of a multithreaded processor with respect to the number of TCs.

Multithreaded processor type

Cost-eectiveness model

A multithreaded processor is characterized by its number of TCs. The cost-eectiveness model is the relationship between the performance eciency and the total implementation cost (transistor count, power, design complexity, etc...) each TC adds to the multithreaded processor. The costeectiveness model (CE) is proposed by Culler [START_REF] Culler | Multithreading: Fundamental limits, potential gains, and alternatives[END_REF] and it is given by the following formula:

CE(n) = E(n) C(n) (2.1)
where E(n) is the processor eciency distribution given by:

E(n) = 1 - 1 n i=0 (r(n) l(n)) i . n! (n-i)! (2.2)
n is the degree of multithreading, r(n) is the mean service time distribution, and l(n) is the mean latency penalty distribution. and C(n) is the total implementation cost given by:

C(n) = C s + n.C t + C x C b (2.3)
n is the degree of multithreading, C s is the cost for a single threaded mechanism, C t is the incremental cost per thread, C x is the incremental cost of thread interactions, C b is the base cost of an equivalent single thread processor.

The processor eciency distribution E(n) of a multithreaded processor is proposed by Agarwal [4], and it is an extension of [START_REF] Hwang | Advanced Computer Architecture: Parallelism,Scalability,Programmability[END_REF]. The analytical model relies more on a dynamic execution model (scheduling) of the threads, hence service/workload distribution information is injected in the model. The service time intervals between context switches are distributed geometrically. A latency penalty is distributed exponentially. The processor eciency distribution is presented in equation 2.2.

Saturation point

Saturation region

Threshold TC Figure 2.6: Cost-eectiveness of a multithreaded processor when varying Ct [4].

In Figure 2.6, we plot the theoretical processor eciency model and the cost-eectiveness model versus the number of thread contexts n. There are two regions on this processor eciency graph: a linear region on the left and a saturation region on the right. The saturation point is reached when the service time of the processor completely conceals the latency. However, for the same number of TCs n, the cost-eectiveness model shows that when the cost per thread C t increases beyond 2.2. Implementation of a small footprint multithreaded processor for embedded systems a certain threshold number of TCs, the cost-eectiveness decreases. Therefore, it is necessary to support the multithreaded processor with a maximum number of TCs not exceeding a certain threshold in order to obtain the peak cost-eectiveness result.

Synthesis

In this section, we investigated the dierent types of multithreaded processors that exist in the literature. Based on our classication, explicit and scalar multithreaded processors are retained due to their simplicity for embedded systems requirements. Then, we saw that there are 2 types of multithreading techniques that can be adapted for scalar multithreaded processors: IMT and BMT. Both techniques have their advantages and disadvantages, but it is not yet clear for us which one has the best transistor eciency and which degree of multithreading is the best. Therefore, in the next section 2.2, we will develop an RTL model of a IMT and BMT core using a small 5-stage pipeline RISC. Based on the synthesis results, we will be able to choose the optimal number of thread contexts that t a very small multithreaded core for embedded systems.

Implementation of a small footprint multithreaded processor for embedded systems

We have seen so far (section 2.1) that explicit and scalar multithreaded processors t the embedded systems requirements. In addition, the degree of multithreading, or in other words the number of hardware TCs, should not exceed a certain threshold according to the cost-eectiveness model (section 2.1.2).

In this section, we will provide the answer on the degree of multithreading that is optimal for a small 5-stage pipeline RISC multithreaded core. First, we will present briey a 5-stage RISC monothreaded core called AntX. Then, we will extend this core to support IMT and BMT. Andnally, we will compare the transistor eciency of the IMT and BMT cores using the synthesis results in the 40 nm TSMC technology and the performance results of a simple bubble-sort application.

Monothreaded AntX

AntX is a scalar, in-order, 5-stage pipeline (IF,ID,EX,MEM,WB), monothreaded RISC core (Figure 2.7), developed by the Embedded Computing Laboratory at CEA LIST. It is a 32-bit architecture designed specically to be used as a low-cost control core in a MPSoC environment. Therefore, there are no complex units such as a branch predictor, FPUs, and multipliers. Its register le has 16 32-bit registers.

AntX has a GNU toolchain (antx-elf) that supports its ISA. The ISA has a variable instruction size (16/32 bit) in order to reduce the instruction memory footprint. So, some basic arithmetic/logic/comparison/jump instructions are coded in 16-bit, while other more complex instructions are coded in 32-bit. The Instruction Fetch (IF) unit fetches a 32-bit instruction from the memory and handles the aligned/unaligned instructions in a nite state machine (FSM).

The instruction ow in the pipeline resembles that of the MIPS-I R3000 described in [START_REF] Hennessy | Computer Architecture, Fourth Edition: A Quantitative Approach[END_REF]. One exception is that the jump/branch instructions are executed in the EX-stage instead of the IDstage. They use the ALU in order to calculate the new PC address, so the hardware cost of a Chapter 2. Multithreaded processors in embedded systems dedicated adder is avoided. Another dierence is that we disabled the delay slot instruction after a jump/branch instruction using the gcc compiler option '-fno-delayed'. The compiler inserts always a 'nop' instruction.

The control pipe unit is responsible for handling the data dependencies between the instructions in the dierent pipeline stages. For example, when an instruction in the ID-stage wants to read a data from a specic register, and that data is already calculated but not yet committed by the WB-stage, the control pipe will stall the pipeline until the data has been committed. To solve this problem, 'data forwarding' techniques between the pipeline stages are supported by AntX. Data forwarding eliminates most of the pipeline hazards (WAR, WAW, WAW). However, 1-cycle pipeline stall latency can still occur due to 2 reasons: branch instructions penalty (if taken-branch) and pipeline interlocks due to load/store instructions in the MEM-stage. The latter is due to memory access latency during a L1 cache hit when load/store instructions are in the MEM-stage. On the other hand, if the data is not present in the L1 cache (cache miss), then the waiting time is more than 1 clock cycle. In fact, those pipeline stalls will degrade the processor performance below the optimal IPC of 1.

Monothreaded AntX has been synthesized in 40 nm TSMC technology (low power, low threshold voltage, worst case) with a frequency of 300MHz. We used Design Compiler tool from Synopsys. The surface repartition of each module is shown in Figure 2.8. The overall core area is 11417 µm 2 , which is about 8.05 kilogates.

One clear observation is that the register le occupies a signicant portion of the low-cost monothreaded core, which is 38% of the total core area. In multithreaded processors, each TC has its own register le. Therefore, for a multithreaded AntX with 4 TCs, the new core area increase will be more than 100%. This implies there is a diminishing return advantage of implementing an embedded multithreaded processor with more than 2 TCs. This conclusion is also backed up by the design choice of MIPS 1004K [START_REF] Mips | Single Chip Coherent Multiprocessing: The Next Big Step in Performance for Embedded Applications[END_REF], which is a multiple multithreaded core and is synthesized for only 2 TCs per core. Thus, for the rest of our work, we chose multithreaded processors with 2 2.2. Implementation of a small footprint multithreaded processor for embedded systems TCs. In the next section, we will explore in more details the design choices for IMT and BMT.

Interleaved MT AntX

IMT is a multithreading technique that issues an instruction from a dierent thread at every clock cycle using a round-robin scheduler, with zero context-switching overhead. When one TC is blocked, the IMT tries to process instructions from the active TC at half the speed (see Figure 2.4). In this section, we will modify the monothreaded AntX RTL model described in section 2.2.1 in order to support interleaved multithreading with 2 hardware TCs [START_REF] Bechara | A small footprint interleaved multithreaded processor for embedded systems[END_REF]. In fact, for a 5-stage pipeline, 2 TCs are sucient to eliminate the stall conditions and data dependencies. AntX IMT with 2 TCs (TC1 and TC2) is shown in Figure 2.9.

The following are the main modications for extending the monothreaded AntX to IMT:

• Duplicating the register le and PC: each TC should have its own register le and PC in order to store and switch the context in zero time overhead.

• Duplicating control pipe: the control pipe module is used to manage the instruction ow and dependencies of a TC at each pipeline stage. Therefore, it controls the pipeline and validity of each stage. In IMT, two successive pipeline stages have instructions from dierent TC. Therefore, to support 2 TCs, either we have to modify the original control pipe (monothreaded version) or duplicate it. According to the synthesis results of the monothreaded AntX (Figure 2.8), the surface occupation of the control pipe is only 1%. Accordingly, from development and validation time perspectives, we duplicate the control pipe. In addition, a multiplexer is Figure 2.9: Interleaved multithreaded AntX [START_REF] Bechara | A small footprint interleaved multithreaded processor for embedded systems[END_REF].

added for each I/O signal belonging to the control pipe. This multiplexer switches between the 2 control pipes depending on the actual TC identier in the pipeline stage.

• Duplicating IF module: to manage two dierent TCs, the IF module can be modied or duplicated. The rst one involves modifying the fetch state machine and saving each TC state at each context switch, which incorporates more development and validation time. The second one is easier to implement, since the IF module is already validated. Furthermore, in terms of surface cost, the two solutions would be equivalent. Therefore, the second solution has been preferred. However, a small modication is required for each IF module to handle properly the instruction fetching: the state of the FSM should be delayed. This implies that the FSM depends on two rising edge clock cycles instead of one, since each TC is processed at half the speed.

• Augmenting the EX/MEM inter-stage register size: when a data cache miss occurs in the MEM stage for TC1, the pipeline is normally stalled waiting for the data, while TC2 instructions could have proceed their execution. Therefore, the EX/MEM register has been increased to save the EX/MEM state that corresponds to TC1 in order to be reloaded when TC1's data arrives. If the state is not saved, the MEM module would have the output from a wrong instruction, and the instruction that caused the data miss would be lost.

• Delaying signals: some signals have been delayed so they correspond to the right TC. For instance, the bypass PC signal from IF-stage to EX-stage and the execution ag signal from EX-stage are delayed by 1 cycle. Otherwise, the instruction execution ow would be incorrect.

In the next section, we will design the BMT AntX.

2.2. Implementation of a small footprint multithreaded processor for embedded systems

Blocked MT AntX

BMT is a multithreading technique that allows a thread to run normally as in sequential mode before being switched out for long latency events such as cache misses. In this section, we will modify the monothreaded AntX RTL model described in section 2. As we can notice, the BMT AntX resembles a lot to the monothreaded AntX. This is because one TC is processed in the pipeline at a time. Therefore, there is no need for duplicating the IF module and the control pipe, or adding extra registers and multiplexers. In fact, the main modications are related to handling and managing I/O signals coming from external modules such as L1 caches. This is because the functionality of the BMT is dependent on these signals. The following are the main modications for extending the monothreaded AntX to BMT:

• Duplicating the RF and PC registers: similarly to the IMT, each TC should have its own register le and PC in order to store and switch the context in zero time overhead. In reality, the context switch will take one cycle as we will explain in the next point.

• Adding a 'control blocked' module: the 'control blocked' module is the essential part of the BMT core. A cache memory access occurs at the IF-stage (I$) and MEM-stage (D$). Each request status is either a cache hit or miss that is read back by the 'control blocked' module. Internally, the 'control blocked' implements a Moore FSM that is triggered by the cache Chapter 2. Multithreaded processors in embedded systems memory request status as it is shown in Figure 2.11. Initially, and after the reset signal is low, it executes TC1 as long as there are no cache misses. When TC1 generates a cache miss, it goes to the context switch state that stores the appropriate PC value and re-initializes the internal register and FSM states of each pipeline stage to start TC2 processing. Then, TC2 executes as long as it hits in the cache. The BMT model implements a 'greedy' protocol, which means that TC1 has higher priority on TC2. Therefore, if the data of TC1 is returned from upper-level memories and TC2 is still executing, the latter is switched and TC1 resumes. On the other hand, if TC2 misses in the cache while TC1 has not yet its data, then the pipeline stalls and waits for one of TC's data to be returned. Finally, the 'blocked control' sends the appropriate instruction/data responses for the right context to the IF-stage, MEM-stage and RF.

• Synchronization between 'control blocked' and 'control pipe' modules: this is essential for proper communication between these 2 modules, especially during a context switch. In fact, the 'control blocked' module should inform the 'control pipe' module of the currently executing status of the TC in order to send the appropriate validation signals to each pipeline stage. In the BMT FSM in Figure 2.11, the context switch is actually one FSM state. Therefore, the context switch overhead in BMT costs one clock cycle. But the penalty due to context switching diers if this is due to I$ miss or D$ miss. For an I$ miss, we insert a bubble in IF stage that causes another one clock cycle of penalty. On the other hand, for a D$ miss at the MEM stage of the pipeline, the already fetched instructions in the pipeline have to be invalidated before fetching instruction from the other TC. Thus, context switching penalty causes 5 cycles (1 (CS) + 4).

In the next section, we will evaluate the performance and area of the IMT/BMT AntX using 2 hardware TCs in order to understand the characteristics of each multithreaded core type and conclude which one has the best transistor eciency.

Performance evaluation 2.3 Performance evaluation

In this section, we evaluate the transistor eciency of the monothreaded and multithreaded processors developed in the previous section. First, we provide synthesis results of each processor type, and a comparison between the surfaces. Then, we analyze the performance of each multithreaded processor by varying several parameters such as data cache size and L2 data memory latency. These parameters will inform us under which conditions a specic multithreaded processor is an interesting solution. Finally, given the synthesis and performance results, we compare the transistor eciency of each processor type and conclude.

Monothreaded v/s Multithreaded processors: area occupation

To evaluate the surface of each processor type, we use Design Compiler from Synopsys for ASIC synthesis. The IMT and BMT AntX RTL models have been developed in VHDL and synthesized in 40 nm TSMC technology (low power, low threshold voltage, worst case) with a frequency of 300MHz, similar to the monothreaded AntX. The surface repartition of IMT and BMT processor is shown in Figure 2.12(a) and 2.12(b) respectively. IMT AntX has an overall core area of 19772 µm 2 equivalent to 13.95 kilo gates. The IMT AntX has an augmentation of 73.4% in core area compared to the monothreaded AntX. This is mainly due to doubling the RF, PC, and IF modules, which is essential for proper IMT functioning. In addition, about 20 multiplexers (64 bits to 32 bits) have been added for IMT.

As for BMT, the overall core area is 18418 µm 2 equivalent to 12.99 kilo gates. BMT AntX has an augmentation of 61.3% in core area compared to the monothreaded AntX. This implies less surface occupation than IMT AntX.

On the other hand, by considering the area overhead for a complete processor system with L1 I$ and D$ memories, then the area overhead of a multithreaded processor with respect to a Chapter 2. Multithreaded processors in embedded systems monothreaded processor is reduced. The area of a processor system in µm 2 is given by equation 2.4: surf ace(P E_system) = surf ace(mono|M T) + surf ace(L1_I$) + surf ace(L1_D$)

(2.4)

The L1 cache memories area are estimated using CACTI 6.5 tool [START_REF] Muralimanohar | CACTI 6.0: A Tool to Model Large Caches[END_REF] from HP in 40 nm technology. The technology used by CACTI tool is based on ITRS roadmap [START_REF][END_REF], but it is not similar to TSMC technology. Therefore, the processor system is not synthesized with the same technology, but this gives us an idea of the relation between cache size and processor size. We estimate a direct-mapped cache memory ranging from 512-B to 4-KB. The estimated cache memory area and the corresponding area overhead of each MT system with respect to the same monothreaded system conguration are shown in Figure 2.13: Figure 2.13: MT processor area overhead with respect to the monothreaded processor. Each MT system has one L1 I$ and one D$ memory. We show 4 MT systems with dierent L1 cache sizes. The L1 cache areas are estimated using CACTI 6.5 tool in 40 nm technology and the processors are synthesized in 40 nm TSMC technology.

We can notice that a 4-KB direct mapped cache memory has a bigger size than all the multithreaded processors. This shows how small the processors' size we are using. For instance, for the IMT processor, its overhead ranges from 43% to 25% depending on the size of the cache memories. It is also clear that the overhead of the BMT system is smaller than the IMT system.

As a conclusion, BMT AntX processor has a less core area overhead than IMT AntX processor according to our synthesis results. The main reason is that the surface of the FSM blocked is smaller than the surface of all the multiplexers added for IMT. In addition, the instruction fetch module is doubled in IMT. In the next section, we will see the performances of each processor type in order to conclude on the transistor eciency of the IMT and BMT processors.

Monothreaded v/s Multithreaded processors: performance and transistor eciency

In this section, we use a typical processor system environment described in Figure 2.14. The processor-memory architecture is based on a Harvard architecture with separate L1 instruction cache (I$) and data cache (D$) busses. It implements a 2-level memory hierarchy with L1 I$ and D$ memories, connected with an AHB bus to an on-chip L2 instruction and data memories. The L2 memories contain all the instruction and data codes of the applications. The processor can be either monothreaded or IMT/BMT AntX with 2 TCs. For the IMT/BMT AntX, the L1$ memory is segmented per TC in order to limit cache interferences. Therefore, each TC has half the L1$ size compared to the monothreaded AntX. For this experiment, we consider a basic bubble-sort application for 600 elements. The application has lot of jump/branch instructions and data dependencies between instructions. We run 2 instances of the application with dierent elements sequentially on the monothreaded processor, and concurrently on the IMT/BMT processor. In this experiment, we vary 2 platform parameters for a better architecture exploration. First, the processor type can be chosen to be monothreaded, IMT or BMT. Second, the L1 D$ memory size can be set to 512-B, 1-KB, 2-KB, and 4-KB. This will generate dierent data cache miss rates as shown in Figure 2.15. The L1 I$ size is xed to 512 Byte, which is sucient for the bubble-sort application and generates only 0.07% of L1 I$ miss. A L1 cache hit takes 1 clock cycle, an access to L2 instruction memory due to L1 I$ miss takes 6 cycles, and an access to L2 data memory due to L1 D$ miss takes 7 cycles on average. L2 memory access time might vary few cycles (1-2 cycles) depending on the AHB arbiter. In this study, two platform parameters are varied: the data cache size (512-B, 1-KB, 2-KB, 4-KB) and the L2 data memory latency (7, 10, 20, 50 cycles). The rst parameter has an impact on the data cache miss rate, which increases the access to the L2 data memory. The access to the L2 data memory is aected by the second parameter during a 'load' instruction. For instance, as a rule of thumb, let us assume that an application contains 30% of load/store instructions that are equally divided; this implies that approximately 15% of the instruction codes are aected by the L2 data memory latency. By varying this parameter, we are modeling dierent memory technologies. Both parameters are important for exploring the importance of the multithreaded processor with respect to the monothreaded processor.

Chapter 2. Multithreaded processors in embedded systems

In Figure 2.16, we show the execution time in cycles for all the cache sizes and data memory latency. We decompose the total execution time into 4 components: eective execution time, branch instruction penalty time due to 'taken' branches, data dependencies stall time due to pipeline interlocks, and memory stalls time due to cache misses.

For a small memory data latency of 7 cycles (Figure 2.16(a)), the IMT processor overcomes the performance of the monothreaded processor for all the cache congurations. The performance gain varies between 14.4% and 21.5%. In fact, the performance gain highly depends on the percentage of data cache misses that each segmented cache generates. Each TC in IMT processor has half the cache size, hence it generates more cache misses and more pipeline stalls due to L2 memory access. Due to its interleaving property, the IMT tolerates the pipeline stalls generated by branch penalties and data dependencies between instructions. Their stall times are hidden completely by executing instructions from another TC, if it is active. It is clear that 2 TCs are sucient to hide all these latencies for a 5-stage pipeline processor. However, for BMT AntX, there is no gain at all. In fact, the memory stall latency is not high enough to compensate the context switching penalty, which is equal to 5 cycles for a D$ miss. Furthermore, BMT does not mask the stall latencies due to instruction dependencies and branch instructions. All these conditions make the BMT processor not an interesting solution for small memory access latencies.

However, when increasing the latency of the L2 data memory, more pipeline stalls due to data cache misses are generated. Thus, BMT processor is more performant under such conditions. For instance, for 20 cycles (Figure 2.16(c)), the BMT has a gain of 42.2% and 34.7% for 512-B and 1-KB L1 D$ memories, which overcomes the performance of the IMT for the same cache sizes. The same observations appear for 50 cycles of latency in Figure 2. 16(d). In fact, the BMT processor has enough stall latencies to mask and the penalties due to context switching are minimal. But, when the sizes of the D$ memory increases, it generates less cache misses for the monothreaded processor. It reaches almost 0% for a 4-KB L1 D$. On the other hand, the cache misses 13.4% for the multithreaded processor because of its segmented cache. Therefore, for all memory latencies and a big D$ size, we see little gain for IMT because it is still able to mask the other types of stalls, and no gain at all for BMT. Thus, any type of multithreaded processor is not recommended when Chapter 2. Multithreaded processors in embedded systems the cache misses are not high enough to generate enough memory stalls latencies. In fact, 2 TCs are not enough for hiding this high stall latency.

Finally, we compare the transistor eciency of the IMT/BMT processor with respect to the monothreaded processor. The processor-system area is the sum of the processor area and its L1 cache memories given in equation 2.5:

T ransistorEf f iciency = IP C surf ace(core) + surf ace(I$) + surf ace(D$) [µm 2]
(2.5)

We are mainly interested by the transistor eciency gain of the multithreaded processor with respect to the monothreaded, which is given in equation 2.6:

T ransistor Ef f iciency Gain(M T) = T ransistor Ef f iciency(M T) T ransistor Ef f iciency(M ono) -1 (2.6)
Figures 2.17 The transistor eciency results show that the monothreaded processor is more ecient than any multithreaded solution when there is a small memory access latency and not enough data cache misses (i.e. big cache size) that generate pipeline stalls. In the other cases, the BMT is more transistor ecient than the IMT processor, and can reach an eciency gain of 33% for a small cache size and high memory latencies.

Synthesis

In this chapter, we designed, based on a monothreaded AntX processor, two small footprint, scalar, in-order multithreaded processors for the embedded systems: Interleaved Multithreading (IMT) and Blocked Multithreading (BMT). The synthesis results in 40 nm TSMC technology showed that the register le occupies more than 38% of the overall core area, thus it is not area ecient to integrate more than 2 thread contexts (TC) per multithreaded processor. Therefore, we have chosen to implement a multithreaded processor with 2 TCs.

Both multithreaded processors were synthesized in 40 nm TSMC technology. The results shows that the IMT and BMT processors have 73.4% and 61.3% increase in core area than the monothreaded core. Thus, the BMT has a smaller area.

Finally, we compared the performances and transistor eciency of both MT cores using a bubble sort application, while varying the L1 data cache size and the data memory latency. The results show that there is no denitive conclusion on which type of processors is the best. In fact, there is a trade-o between the data cache memory size, the data memory latency, and the core area overhead. Choosing the best processor highly depends on the system designer specications and the application requirements. For instance, if peak performance is the main design parameter, then the multithreaded processors oer a good increase in performance for most of the memory congurations. However, if transistor eciency is a design constraint, then the results highly depend on the architecture parameters (processor, memory, caches, etc.). For instance, for small cache sizes that generate lot of memory accesses and for high memory latencies, the BMT processor is more performant and transistor ecient. We should note that in this experiment, we did not vary the L1 I$ size, hence there were no processor stalls due to instruction cache misses.

It is worth to note that our experiments are based on a very small-footprint processor core, which is almost the extreme case in processor design. However, if the initial processor core has more hardware blocks, hence a bigger area, then our conclusion regarding transistor eciency might change. For instance, for 40 nm technology, the ARM Cortex A5 and MIPS 24 KE have a core area of more than 250 µm 2 and 350 µm 2 respectively. These are more than 35 times larger than AntX monothreaded! In addition, by having a deeper pipeline and branch prediction units, pipeline stalls are more severe. For instance, in MIPS 24 KE, a branch misprediction costs 5 cycles. These new types of stalls are advantageous for the multithreaded processor. Another note to take into consideration is the application type. In our experiment, we used a very simple application that runs on the processors as standalone until completion. However, in more complex SoCs, the processors might be doing dierent types of processing that induces new types of stalls such as task synchronization, task allocation/deallocation, memory allocation, and others, which are not directly related to the actual application execution but are necessary for proper SoC functioning. In addition, the multithreaded application can have dierent types of threads: computation-intensive and I/O intensive. The latter is completely masked if it is scheduled on the same multithreaded processor with a computation-intensive task. For instance, the multithreaded MIPS 34K with 2 TCs is able to achieve 200% in audio throughput applications [START_REF] Toyoda | MIPS Multi-Threaded and Multi-core[END_REF] compared to the monothreaded MIPS 24KE for only 28% core area increase.

Based on this conclusion, we will explore in the next chapter the performance impact of the multithreaded processor by running more relevant benchmarks in an asymmetric MPSoC architecture: the SCMP architecture. Asymmetric homogeneous MPSoCs are an interesting solution for massively-parallel dynamic embedded applications due to their high reactivity and load-balancing between the homogenous cores. The separation between the control and computing cores makes the asymmetric architecture highly transistor and energy ecient. In order to tackle the requirements of future massively-parallel dynamic applications, the asymmetric homogenenous MPSoC should reach the manycore level. However, when integrating several cores on-chip, the architecture suers from limited bandwidth [START_REF] Batten | Building Manycore Processor-to-DRAM Bibliography Networks with Monolithic Silicon Photonics[END_REF] due to the limitation of the chip's package I/O pins. This implies that the more trac will be exercised o-chip, the more the cores will be stalled on-chip, hence lower aggregate IPC. Thus, it will be advantageous to explore the benets of hardware multithreading for future manycore chips, in order to keep the core as busy as possible and increase the aggregate IPC.

In chapter 2, we designed, based on a monothreaded AntX processor, two small footprint, scalar, in-order multithreaded processors for the embedded systems: Interleaved Multithreading Chapter 3. Multithreaded processors in asymmetric homogeneous MPSoC architectures (IMT) and Blocked Multithreading (BMT). We have shown that there is no denitive conclusion on which type of processors is the best, and that it all depends on the system designer specications and the application requirements. In this chapter, we use the SCMP architecture, which is an asymmetric homogenenous MPSoC, to explore the advantages/disadvantages of hardware multithreading. First of all, we present the simulation framework, called SESAM, where the SCMP architecture is modeled. Then, we extend SESAM to support multithreaded processors. In particular, we have developed a new cycle-accurate multithreaded Instruction Set Simulator (ISS) in SystemC to model the IMT processor with 2 TCs. After replacing the monothreaded processor by an IMT/BMT processor with 2 TCs, we conduct several benchmarks in order to measure the eciency of the SCMP architecture using multithreaded processors (MT_SCMP).

MPSoC Simulation environment

Designing an MPSoC architecture requires the evaluation of many dierent features (eective performance, used bandwidth, system overheads...), and the architect needs to explore dierent solutions in order to nd the best trade-o. In addition, he needs to validate specic synthesized components to tackle technological barriers. For these reasons, the whole burden lies on the MP-SoC simulators, which should be parameterizable, fast and accurate, easily modiable, support wide ranges of application specic IPs and easily integrate new ones. Simulating a whole MP-SoC platform needs to nd an adequate trade-o between simulation speed and timing accuracy. The Transactional Level Modeling (TLM) [START_REF] Ghenassia | Transaction-Level Modeling with Systemc: TLM Concepts and Applications for Embedded Systems[END_REF][START_REF] Cai | Transaction level modeling: an overview[END_REF] approach coupled with timed communications, is a solution that allows the exploration of MPSoCs that reects the accurate nal design [START_REF] Guerre | Approximate-Timed Transaction Level Modeling for MPSoC Exploration: a Network-on-Chip Case Study[END_REF]. Time information is necessary to evaluate performances and to study communication needs and bottlenecks.

MPSoCs' architectures can have homogeneous or heterogeneous processors, depending on the application requirements. Choosing the best processor among hundreds of available architectures, or even designing a new processor, requires the evaluation of many dierent features (pipeline structure, ISA description, register les, processor size...), and the architect needs to explore dierent solutions in order to nd the best trade-o. The processor Instruction Set Simulator (ISS), which role is very important, must have the following features: it should be parameterizable, fast and accurate, and be able to be integrated easily in the MPSoC simulation environment. The ISS mimics the behavior of a processor by executing the instructions of the target processor while running on a host computer. Depending on the abstraction level, it can be modeled at the functional or cycle-accurate level.

Lot of works have been published before on single-processor, multiprocessor and full-system simulators. In [START_REF] Yi | Simulation of computer architectures: simulators, benchmarks, methodologies, and recommendations[END_REF], the authors illustrate a wide range of simulators, mainly targeting generalpurpose computing. In a more recent work [START_REF] Cong | MC-Sim: An ecient simulation tool for MPSoC designs[END_REF], the authors presented an interesting classication of MPSoC simulators. For our knowledge, there is no published work on a simulator that supports asymmetric MPSoC architectures and allows their exploration. In this context, we used SESAM simulation environment [START_REF] Ventroux | SESAM: An MPSoC Simulation Environment for Dynamic Application Processing[END_REF][START_REF] Ventroux | SESAM extension for fast MPSoC architectural exploration and dynamic streaming applications[END_REF], which supports asymmetrical MPSoC architectures. SESAM is developed and proprietary to CEA LIST.

In this section, we present in details the SESAM simulation environment for asymmetric MP-SoC architectures, and we show how SCMP is modeled in this framework. Then, we show the 3.1. MPSoC Simulation environment dierent modications done to SESAM to support multithreaded processors, in particular the central scheduler and the processor system. Finally, we realize the need for a multithreaded ISS that will be developed in section 3.2.

SESAM: A Simulation Environment for Scalable Asymmetric Multiprocessing

SESAM is a tool that has been specically built to ease up the design and the exploration of asymmetric MPSoC architectures, which includes a centralized controller core that manages the tasks for dierent types of computing resources. The heterogeneity can be used to accelerate specic processing, but the task migration is not supported. The best trade-o between the homogeneity, which provides the exibility to execute dynamic applications, and the heterogeneity, which can speed-up the execution, can be dened in SESAM. Moreover, this tool enables the design of MPSoCs based on dierent execution models (control-ow + streaming), which can be mixed, to nd the best suitable architecture according to the application. It can be used to analyze and optimize the application parallelism, as well as control management policies. In addition, SESAM can support simultaneous multiple dierent applications and mix dierent abstraction levels, and can take part in a complete MPSoC design ow.

Framework

The SESAM framework is described with the SystemC description language [105, 54], and allows the MPSoC exploration at the TLM level with fast and cycle-accurate simulations. It supports cosimulation within the ModelSim environment [START_REF]Mentor. ModelSim[END_REF] and takes part in the MPSoC design ow, since all the components are described at dierent hardware abstraction levels. Besides, SESAM uses approximate-timed TLM with explicit time to provide a fast and accurate simulation of highly complex architectures that can reach up to 4 MIPS. This model, described in [START_REF] Guerre | Approximate-Timed Transaction Level Modeling for MPSoC Exploration: a Network-on-Chip Case Study[END_REF], allows the exploration of MPSoCs while reecting the accurate nal design. A 90 % accuracy is pointed up compared to a fully cycle-accurate simulator. Time information is necessary to evaluate performances and to study communication needs and bottlenecks. Thus, all provided blocks of the simulator are timed and the communications use a timed transactional protocol.

To ease the exploration of MPSoCs, all the components and system parameters are set at runtime from a parameter le without platform recompilation. It is possible to dene the memory map, the name of the applications that must be loaded, the number of processors and their type, the number of local memories and their size, the parameters of the instruction and data caches, memory latencies, network types and latencies, etc. More than 120 parameters can be modied. Moreover, each simulation brings more than 200 dierent platform statistics, that help the architect sizing the architecture. For example, SESAM collects the miss rate of the caches, the memory allocation history, the processor occupation rate, the number of preemptions, the time spent to load or save the task contexts, the eective used bandwidth of each network, etc. As depicted in Figure 3.1, a script can be used to automatically generate several simulations by varying dierent parameters in the parameter le. An Excel macro imports these statistics to study their impact on performances. Thus, the cache parameters, the network bandwidths, as well as the eective performance of the architecture, are ones among many features that can be evaluated to size and explore MPSoCs. architectures [START_REF] Ventroux | SESAM: An MPSoC Simulation Environment for Dynamic Application Processing[END_REF][START_REF] Ventroux | SESAM extension for fast MPSoC architectural exploration and dynamic streaming applications[END_REF].

… ##################################### # cache parameters # # set_size = associativity ("dm","2w","4w"...) # strategy = RANDOM, LRU # write_policy = WRITE_BACK, … # ###################################### #instruction cache
Because the exploration of many parameters can take a lot of simulation time, SESAM oers the possibility to automatically dispatch all the simulations to dierent host PCs. Each available PC core denes an available slot, which can be used to execute one simulation. The tool is structured around a dispatcher and a NFS server. Thus, SESAM can take benets of available PCs to automatically parallelize simulations and ease the exploration of architectures.

Debugging the architecture is possible with a specic GNU GDB [1] implementation. In the case of a dynamic task allocation modeling, it is not possible to know o-line where a task will be executed. Therefore, we built up a hierarchical GDB stub that is instantiated at the beginning of the simulation. A GDB instance, using the remote protocol, sends specic debug commands to dynamically carry out breakpoints, watchpoints, as well as step by step execution, on an MPSoC platform. This unique multiprocessor debugger allows the task debugging even with dynamic migration between the cores. Moreover, it is possible to simultaneously debug the platform and the code executed by the processing resources.

Infrastructure

As depicted in Figure 3.2, SESAM is structured as an asymmetrical MPSoC. It is based on a centralized Control Manager that manages the execution of tasks on processing elements. SESAM proposes the use of dierent components to design new MPSoCs. Other SystemC IPs can be designed and integrated into SESAM if they have a compatible TLM interface. The main elements are: the Memory Management Unit (MMU), the Code Loading Unit (CLU), Memories, a set of Instruction Set Simulators (ISS), a Direct Memory Access (DMA) unit, a Control Manager and Network-on-Chips (NoC).

The MMU is optional and can bring advanced capabilities to manage all the shared memory space, which is cut into pages. The whole page handler unit is physically distributed between the MMU and the local Translation Lookaside Buers (TLB) for each processing core. All the memory functions are available through the SESAM HAL. It is possible to dynamically allocate or deallocate buers. There is one allocated buer per data block. An identier is used for each data block to address them through the MMU, but it is still possible to use physical addresses. Dierent memory allocation strategies are available and can be implemented.

The CLU dynamically loads task codes from the external memory through a DMA access when it receives a conguration command from the Control Manager. Then, in a dynamic memory management context, it also has to update the MMU to provide the corresponding virtual to physical address translations. A context and a stack are automatically included for each task.

Dierent memory elements can be instantiated. The memory space can be implemented as dierent banks or a single memory. The former is logically private or shared, while the latter is only shared between the processors. Memory segments are protected and reserved for the Control Manager. Multiple readers are possible and all the requests are managed by the NoC.

The processors are designed with the ArchC ADL as processing resources with data and instruction cache memories, which are optional. The ArchC tool [START_REF] Bartholomeu | The ArchC Architecture Description Language and Tools[END_REF] generates functional or cycleaccurate monothreaded ISS in SystemC with a TLM interface [START_REF] Bechara | Towards a Parameterizable cycle-accurate ISS in ArchC[END_REF]. A new processor is designed in approximately 2 man-weeks, but it depends on the instruction set complexity. Its simulation speed can reach tens of Millions of simulated Instructions Per Second (MIPS). Dierent models are available (MIPS, PowerPC, SPARC), as well as a complete MIPS32 processor (with a FPU) at the functional level. Preemption and migration of tasks are possible services that are available through an interruption mechanism. It allows to switch the context of the processing unit, to save it, and to restore the context code from the executed task memory space.

A DMA is necessary to transfer data between the external data memory and the internal memory space. A DMA is a standard processing resource and takes part in the heterogeneity of the architecture. It is a fully-programmable unit that executes a cross-compiled task for its architecture. A 3-dimensional DMA is available. Transfer parameters can afterwards be dynamically modied by other tasks, to specify source and target addresses dened at run-time. Finally, it dynamically allocates the required memory space for the transfer.

The Control Manager can be either a fully programmable ISS, a hardware component, or a mix of both. With the ISS, dierent algorithms can be implemented. Thanks to the SESAM HAL and an interrupt management unit, the tasks are dynamically or statically executed on heterogeneous computing resources. In addition, a multi-application execution is supported by this HAL. A set of scheduling and allocating services in hardware or software can be easily integrated, modied Chapter 3. Multithreaded processors in asymmetric homogeneous MPSoC architectures and mixed. Besides, a complete hardware real-time operating system is available, named Operating System accelerator on Chip (OSoC). The OSoC supports dynamic and parallel migration, as well as preemption of tasks on multiple heterogeneous resources, under real-time and energy consumption constraints.

Many NoC topologies are supported by SESAM: a multibus, a mesh, a torus, a multistage and a ring network. These networks are detailed in [START_REF] Guerre | Approximate-Timed Transaction Level Modeling for MPSoC Exploration: a Network-on-Chip Case Study[END_REF]. All are modeled in approximate-timed TLM. Data exchanges are non-blocking and deterministic, regardless of the network load or the execution constraints. The multibus can connect all masters to all slaves, but does not allow master to master communications. In the mesh or the torus network, one master and several slaves are linked with a router. An XY routing and a wormhole technique are implemented. The multistage is an indirect fully connected network. It is divided into dierent stages composed of 4 input-output routers, and linked with a buttery topology. All masters are in one side and all slaves are on the other side. It uses also a wormhole technique to transfer packets. Finally, in a ring network, a message has to cross each router when it goes through a ring. A parameter can change the number of rings. But, each master can connect itself to only one ring. A ring is bi-directional. Besides, we use a fo with each memory to store memory accesses from computing resources. In order to accept simultaneous requests, two arbiters can be used: a FIFO or a fair round-robin policy. All communications are done at the transactional level and we can accurately estimate the time spent in every communication.

SCMP modeling

To demonstrate the SESAM's capabilities to model new asymmetric MPSoCs, we have used this framework to carry out the SCMP architecture, which is described in section 1.3. Platform parameters, such as latencies and constraints, are characterized by the Synopsys Design Compiler tool. As depicted in Figure 3.3, the architecture has three internal NoCs. The system NoC interconnects the external CPU, the external memories and the TLB dedicated to the application, with the core of the architecture. The CPU represents a host interface that allows the user to send on-line new commands to SCMP. For instance, it is possible to ask for the execution of new applications. The TLB Appli is used to store all the pointers of each task for each application in the external instruction memory. When the simulator starts, it automatically loads all the selected applications into this memory and update the TLB Appli.

The control NoC is used to connect the CCP (Central Controller Processor), which is the Control Manager, and all the processors resources through a control interface. In addition, processing resources can communicate with each other, and with the Memory Conguration and Management Unit. The MCMU aggregates the MMU and the CLU presented before. The data NoC is only used for communication between the processing resources and the local memories. It is a multi-bus network that connects all PEs and I/O controllers to all shared and banked memory resources.

The CCP prefetches tasks' code before its execution and manages all the dependencies between tasks. It determines the list of eligible tasks to be executed, based on control and data dependencies. It also manages exclusive accesses to shared resources, and non-deterministic processes. Then, task allocation follows online global scheduling, which selects real-time tasks according to their dynamic priority, and minimizes overall execution time for non real-time tasks.

SCMP supports two types of processing resources: DMA and processor. The DMA unit carries out input image transfers between the internal local memories and the external data memory. The processor executes the application C code and is modeled by a cycle-accurate or functional ISS. The ISS boots on a read-only memory, named system memory, that contains all the system code. When the initialization is done, it waits for the CCP requests. Currently, SESAM supports only monothreaded ISS architectures. In the next section, we will extend SESAM to support multithreaded processors.

Extending SESAM for multithreaded processors

Initially, SESAM is designed for handling monothreaded ISSes. When replacing the monothreaded ISS with a multithreaded ISS, some modications to SESAM should be conducted on the processor level and control manager level.

Processor level

It consists of multiple multithreaded cores. Each core is a scalar in-order processor. It can process multiple Thread Contexts (TC) concurrently, where each TC is a virtual processor. In this thesis, we consider the case of 2 TCs per multithreaded core, which is suitable for embedded systems requirements as was proven in chapter 2. A Local Thread Scheduler (LTS) synchronizes the execution of the tasks on multiple TCs according to the PE_MT's multithreading policy. Since it is a scalar in-order processor, only one instruction is allowed to be issued from one task at a time. For instance, an IMT core issues the instructions in a round-robin manner between the available TCs, while a BMT core switches between the instructions of the available TCs whenever one is stalled on a long latency event, such as a cache miss. Each TC state is sent to the centralized controller.

The TC state can be either running normally, blocked on a cache miss or I/O, or waiting for an execution demand. Based on these values, the controller has a more global view on all the cores' status and can perform the right scheduling decision. Each PE_MT has a shared TLB for all the TCs for proper virtual to physical address translation, and it is connected to a L1 Instruction memory cache (I$) and Data memory cache (D$). In our architecture, the L1$ is segmented per Chapter 3. Multithreaded processors in asymmetric homogeneous MPSoC architectures TC in order to limit cache interferences (see Figure 3.4).

Control Manager level

The objective of a thread scheduler is to keep busy all the underlying execution resources and balance the load between them. It holds the information of all the SW threads that can be executed on the processors in a runqueue. For the case of a multicore system and a SMP OS such as Linux SMP, the scheduler creates a runqueue per each core. Tasks are migrated periodically from one runqueue to another whenever a workload imbalance occurs. This works ne with monothreaded cores. However, for multithreaded cores, it is not clear which scheduling technique ts better: whether to assign one runqueue per multithreaded core (VSMP) or one runqueue per thread context (SMTC): the objective is the same, keeping all the multithreaded cores active. VSMP and SMTC are terminologies used by MIPS Technologies.

VSMP: VSMP or Virtual SMP is an OS scheduler architecture that creates one runqueue per core (see gure 3.5(a)). If there is one TC per core (monothreaded processor), the scheduler converges to normal SMP. But in case of multiple TCs per core (multithreaded processor), only one runqueue is assigned to all the TCs. Then, it is up to the LTS to guarantee an ecient dispatching of the tasks to the free TCs. The main advantage of VSMP is its rapid deployment. Only small modications to the SMP OS need to be done. However, the scheduler does not have a global view of the workload balance between the TCs and the cores, which might be penalizing in some cases.

Consider for example 2 PE_MTs with 4 TCs each, if PE_MT1 has 3 active TCs and PE_MT2 has 1 active TC, then the VSMP scheduler will treat both multithreaded processors equally, since both of them are active.

For static VSMP, a task is allocated on a runqueue based on its identier using the modulo operator. No tasks are allowed to migrate to other runqueues. As for dynamic VSMP, the scheduler scans the execution status of all the PE_MTs. If a multithreaded core is active and another one is free, it migrates a task from the active to the free runqueue. However, as stated earlier, the scheduling decision does not take into consideration the exact load of each PE_MT. SMTC: SMTC or Symmetric Multi-Thread-Context is an OS scheduler architecture that creates one runqueue per TC (see Figure 3.5(b)). The scheduler has a more global and correct view of the real physical hardware. Depending on the TC state, the scheduler is able to know which PE_MT is active and how much tasks are scheduled, which facilitates the global workload balancing. This will relieve the LTS from doing local task allocation and concentrate only on its scheduling policy (interleaved, blocked, etc...). Since more execution state informations are available, the scheduling time might take a little longer than in VSMP as we will see later in section 3.3.3.

For static SMTC, tasks are allocated on each TC runqueue based on its identier using the modulo operator, and no load balancing is allowed. This implies that the LTS has no local scheduling role, since the tasks are already predened where they will execute. This can be penalizing, since all the TCs are treated equally as a virtual processor which might lead to severe load imbalance. On the other hand, for dynamic SMTC scheduler, the native SMP scheduler code needs to be modied and rethought. At the beginning of a scheduling cycle, the controller receives the execution state of all the TCs. Then, it executes the scheduling algorithm which is decomposed into 3 main parts: sorting, allocation, and verication. The rst phase creates a sorting list of the tasks that are ready to be allocated and executed. The sorting decision depends on the task priority and execution state. For example, a blocked task is put at the end of the sorting list. Then, the rst NB_PE tasks are chosen to be allocated, where NB_PE is the maximum number of TCs available in the architecture. For instance, 4 PE_MTs with 2 TCs each have NB_PE equal to 8. The second phase allocates the tasks on the runqueue of each TC. Here, the scheduling algorithm has 2 dierent views of the asymmetric architecture: virtualized mode and non-virtualized mode. In the virtualized mode, the execution state of all the TCs of one PE_MT are grouped together in order to form a common architectural state of the PE_MT. A PE_MT is active if at least one TC is active, and an asymmetric MPSoC architecture is executing eciently if all the PE_MTs are active. Accordingly, ready tasks are allocated on the corresponding TCs runqueue that turns a PE_MT into active. If all the PE_MTs have at least one active TC and there are still ready tasks in the sorting list, then the scheduling algorithm 55 Chapter 3. Multithreaded processors in asymmetric homogeneous MPSoC architectures switches to the non-virtualized mode. In this case, a ready task is allocated on a runqueue of a free TC. The nal phase veries if the multithreaded processors are well-balanced. For example, consider a system of 2 PE_MTs with 4 TCs each, if PE_MT1 has 3 active TCs and PE_MT2 has 1 active TC, then the dynamic SMTC scheduler will allow the migration of tasks from runqueue TC2 of PE_MT1 to runqueue TC1 of PE_MT2. This scenario is not possible for the VSMP scheduler.

Currently, SESAM supports monothreaded ISS architectures. In order to model SCMP with multiple multithreaded processors, we need to support SESAM with a multithreaded ISS. Therefore, in the next section, we will develop a cycle-accurate multithreaded ISS that can be integrated in the SESAM framework.

A Multithreaded Instruction Set Simulator

The ISS emulates the behavior of a processor by executing the instructions of the target processor while running on a host computer. Depending on the abstraction level, it can be modeled at the functional or cycle-accurate level. The functional ISS model abstracts the internal hardware architecture of the processor (pipeline structure, register les...) and simulates only the ISA. Therefore, it can be available in the early phase of the MPSoC design for the application software development, where the simulation speed and the model development time are an important factor for a fast design space exploration. Despite all these advantages, many details are hidden by the functional ISS model, such as the pipeline stalls, branch/data hazards and other parameters, which tend to be non-negligible while sizing the architecture. Those parameters evaluate the accurate performance of the processor and the surrounding hardware blocks such as caches, busses, and TLBs.

The cycle-accurate ISS model simulates the processor at an abstraction level between the RTL and the functional model. It presents most of the architectural details that are necessary for processor dimensioning, in order to evaluate in advance its performance capabilities in the MPSoC design. All these advantages come at the expense of a slower simulation speed and a longer development time.

In order to mimics the behavior of the multithreaded processor developed in RTL (see section 2.2) and to capture all the pipeline dependencies, the ISS should be cycle-accurate. In addition, as we saw in section 2.2, there is a diminishing return from having more than 2 hardware thread contexts per multithreaded processor from a core area point of view.

In this section, we will build a cycle-accurate multithreaded ISS [START_REF] Bechara | A TLM-based Multithreaded Instruction Set Simulator for MPSoC Simulation Environment[END_REF] with 2 TCs based on multiple cycle-accurate monothreaded ISS [START_REF] Bechara | Towards a Parameterizable cycle-accurate ISS in ArchC[END_REF]. Based on a modied ArchC ADL [START_REF] Bechara | Towards a Parameterizable cycle-accurate ISS in ArchC[END_REF], we will build a cycle-accurate monothreaded ISS for a 5-stage RISC processor.This monothreaded ISS will be instantiated and encapsulated multiple times to build a cycle-accurate multithreaded ISS. The multithreaded ISS mimics the behavior of the IMT and BMT processors.

The requirements for ISS and ADL

As stated earlier, we have used SystemC as a simulation environment for MPSoC design space exploration. SystemC supports IP modeling using the Transaction-Level Modeling (TLM) protocol [START_REF] Ghenassia | Transaction-Level Modeling with Systemc: TLM Concepts and Applications for Embedded Systems[END_REF][START_REF] Cai | Transaction level modeling: an overview[END_REF]. TLM is a high-level approach to model digital systems where details of communication 56

A Multithreaded Instruction Set Simulator

among modules are separated from the details of the implementation of functional units or the communication architecture. Therefore, the multithreaded ISS should t into the SystemC and TLM environments, while providing fast simulation speed and high-accuracy level. So in this section, we investigate the reason to develop a new multithreaded ISS based on SystemC and the choice of the ADL environment.

Why a new ISS?

A SystemC/ISS co-simulation environment provides design exibility by being able to experiment with dierent types and numbers of processor architectures at the early design stages. This advantage has led researchers [START_REF] Boyer | Multiple Sim-pleScalar processors, with introspection, under SystemC[END_REF] to provide SystemC wrappers for traditional standalone ISS such as SimpleScalar [START_REF] Austin | SimpleScalar: an infrastructure for computer system modeling[END_REF]. Other works [START_REF] Benini | Legacy SystemC co-simulation of multi-processor systems-on-chip[END_REF][START_REF] Cordibella | A HW/SW co-simulation framework for the verication of multi-CPU systems[END_REF] used the same technique for integrating a non-native SystemC ISS into a SystemC/ISS co-simulation environment. However, the main drawback of the SystemC wrappers approach is the slow simulation speed (order of few KIPS) with respect to a standalone ISS (order of hundreds KIPS to MIPS).

On the other hand, standalone multithreaded simulators exist in the literature, mainly targerting SMT type of processors. For example, SSMT [START_REF] Madon | A Study of a Simultaneous Multithreaded Processor Implementation[END_REF], M-SIM [START_REF] Sharkey | M-Sim: A Flexible, Multithreaded Architectural Simulation Environment[END_REF] are SMT extensions on top of SimpleScalar. Other simulators, such as SESC [135] and Sam CMT Simulator kit [START_REF] Nussbaum | An overview of the sam cmt simulator kit[END_REF], support the simulation of chip multithreaded (CMT) processors. Despite of their exibility and parameters variability, these full-system simulators are standalone and require SystemC wrappers with TLM interfaces to be interfaced with other SystemC components.

To our knowledge, no IP-based multithreaded ISS in SystemC with TLM-based interfaces for MPSoC design space exploration exist in the literature. This is the reason why we had to develop a cycle-accurate multithreaded ISS in SystemC and TLM-based interfaces.

Which Architecture Description Language (ADL)?

The main part of an MPSoC simulator is the architecture description language (ADL), which generates an ISS at a specic level of abstraction. ADLs' modeling levels are classied into three categories: structural, behavioral, and mixed.

Structural or cycle-accurate ADLs describe the processor at a low abstraction level (RTL) with a detailed description of the hardware blocks and their interconnection. These tools, such as MIMOLA [START_REF] Leupers | Retargetable Code Generation based on Structural Processor Descriptions[END_REF], are mainly targeted for synthesis and not for design space exploration due to their slow simulation speed and lack of exibility.

On the contrary, behavioral or functional ADLs abstract the microarchitectural details of the processor and provide a model at the instruction set level. The low accuracy is compensated by the fast simulation speed. Many languages exist such as nML [START_REF] Fauth | Describing instruction set processors using nML[END_REF] and ISDL [START_REF] Hadjiyiannis | ISDL: An Instruction Set Description Language For Retargetability[END_REF].

Mixed ADLs are a trade-o solution between structural and behavioral ADLs. They combine the advantages of both the structural (accuracy) and behavioral (simulation speed) ADLs. It is the best abstraction layer for design space exploration. EXPRESSION [START_REF] Halambi | EXPRESSION: a language for architecture exploration through compiler/simulator retargetability[END_REF], MADL [START_REF] Qin | A formal concurrency model based architecture description language for synthesis of software development tools[END_REF], LISA [START_REF] Pees | LISAmachine description language for cycle-accurate models of programmable DSP architectures[END_REF], and ArchC [START_REF] Bartholomeu | The ArchC Architecture Description Language and Tools[END_REF] are examples of mixed ADLs. The last two will be discussed in this literature review since they are mostly used.

Chapter 3. Multithreaded processors in asymmetric homogeneous MPSoC architectures

LISA: LISA, which stands for Language for Instruction Set Architecture, is developed by the university of RWTH Aachen and is currently used in commercial tools for ARM and CoWare (LISATek). Processor models can be described in two main parts: resource and operation declarations (ISA). Depending on the abstraction level, the operations can be dened either as a complete instruction, or as a part of an instruction. For example, if the processor resources are modeled at the structural level (pipeline stages), then the instructions' behavior in each of the pipeline stages should be declared. Hardware synthesis is possible for structural processor models.

ArchC: A recent type of processor description language called ArchC [START_REF] Rigo | ArchC: a systemC-based architecture description language[END_REF] ArchC 2.0 [START_REF] Bartholomeu | The ArchC Architecture Description Language and Tools[END_REF] provides many advantages that lacked in its predecessor ArchC 1.6. First, it allows the simulator to be integrated and instantiated multiple times in a full SystemC platform, hence enabling a multiprocessor system simulation. And second, the simulator is wrapped by a TLM interface to allow processor interruptions and TLM communications with external modules. The main feature of ArchC is its ability to generate a cycle-accurate ISS with short development time. Only the behavioral description of the ISA requires an accurate description. The microarchitectural details are generated automatically according to the architecture resource description le. There exists also a graphical framework, called PDesigner [START_REF] Araujo | Platform designer: An approach for modeling multiprocessor platforms based on SystemC[END_REF], based on Eclipse and ArchC processor models, which allows the development and simulation of MPSoCs in SystemC in a friendly manner.

Since ArchC is an open-source language, we can modify the simulator generator to produce a processor with customized microarchitectural enhancements, which makes it a great tool for computer architecture research [START_REF] Rigo | Teaching computer architecture using an architecture description language[END_REF]. Therefore, ArchC is the ADL of choice for building our cycleaccurate ISS in SystemC. In the next subsections, we will explore in more details the generation of a monothreaded and multithreaded cycle-accurate ISS and our contributions/modications to the ArchC ADL to t our requirements. [START_REF] Yao Guo | Energy-Ecient Hardware Data Prefetching[END_REF]

A Multithreaded Instruction Set Simulator

Monothreaded cycle-accurate ISS model

ArchC supports several processor ISA models such as: MIPS-I, PowerPC, SPARC-V8 and ARM. All these models have a working functional ISS. However, the cycle-accurate ISS version generated by actsim is not supported for all the ISA models. In our work, we will adapt the MIPS-I R3000 [START_REF] Hennessy | Computer Architecture, Fourth Edition: A Quantitative Approach[END_REF][START_REF] Utting | Pipeline specication of a mips r3000 cpu[END_REF] cycle-accurate ISS model, which is described in more details in [START_REF] Bechara | Towards a Parameterizable cycle-accurate ISS in ArchC[END_REF]. The MIPS-I R3000 architecture is almost similar to AntX. It does not have a hardware FPU, thus the FPU instructions are emulated in software by using the compiler option 'msoft-oat'. First, we will start by an overview of the generated MIPS-I R3000 cycle-accurate ISS model, then we will show our modications to the actsim tool in order to support ArchC 2.0 specications.

Overview of the MIPS-I R3000:

The MIPS-I R3000 architecture is implemented as a classic 5-stage RISC processor (IF-ID-EX-MEM-WB) with 32 registers and an integer pipeline. The implemented MIPS-I ISA is similar to the optimized version described in [START_REF] Hennessy | Computer Architecture, Fourth Edition: A Quantitative Approach[END_REF]. The control instructions (jump and branch) are executed in the ID stage instead of the MEM stage, and follow the "predicted-not-taken" branch mechanism. Register forwarding is also deployed to allow instructions in the ID or EX stages to get the correct operand values from instructions that are further in the pipeline and did not commit yet. Both techniques reduce the number of pipeline stalls at the expense of adding more logics in the processor datapath. The cycle-accurate simulator is clearly almost similar to the actual processor architecture. The pipeline stages, inter-pipeline registers, register le, program counter (PC), and clock are all included in the simulator.

The actsim tool generates the cycle-accurate ISS and the decoder shown in

In our work, we utilize the latest available versions of actsim timed simulator generator architectures tool included in the ArchC 2.0 package, as well as the MIPS-I R3000 cycle-accurate model (r3000-v0.7.2-archc2.0beta3). Both tools are still in their beta versions as they contain some bugs. In other words, the advantages of ArchC 2.0 have not been integrated in the cycle-accurate simulator. Thus, the generated cycle-accurate ISS cannot be integrated in a multiprocessor simulation environment. Therefore, in the next section, we will modify the ArchC actsim tool in order to generate a cycle-accurate ISS compatible with ArchC 2.0 specications.

A cycle-accurate ISS support for ArchC 2.0:

For each pipeline stage, the initial actsim generates a corresponding SystemC module, which is implemented as a SC_METHOD sensitive to the main clock. Implementing the stages as a SC_METHOD works ne in a standalone architecture, with one processor and cache memory. However, the multiprocessor execution will be impossible since the processor model will always own the SystemC execution context. In order to integrate the model in a SoC platform and to communicate with other SystemC IPs, we modify the stages to implement an SC_THREAD module and SystemC wait() function. This solution does not block the other IP modules from executing at the same clock cycle as the processor. A pseudo-code for the EX-stage module is shown in Figure 3.8. To model the cycle-accurate pipeline correctly, the procedure is implemented as follows: each stage module executes a while loop, and synchronizes with SystemC wait(). Only the rst stage (IF) is sensitive to the main clock and to a synchronization signal (sync), while the others are sensitive 60

A Multithreaded Instruction Set Simulator

to an input sync sent from the previous stage. When a new clock signal (sc_clock) arrives, the IF-stage executes instruction i, and toggles the sync at its output. Then the ID-stage, which is sensitive to the sync from IF-stage, executes instruction i-1, and toggles its output sync. The same procedure repeats until WB-stage, which executes instruction i-4, and toggles the sync signal that is connected back to the IF-stage. Finally, the IF-stage updates the internal pipeline registers and wait() for the next clock cycle. Note that the pipeline registers are double buered for proper instruction execution in each stage. Figure 3.9 shows the modied R3000 cycle-accurate model that is generated by 'actsim'. The second modication done to the cycle-accurate simulator is the support of a TLM interface and an interruption mechanism. Since the functional simulator already implements the TLM interface, we reused the same code with some modications to the interruption mechanism. Thus, the ISS SystemC module implements 2 TLM I/O interfaces: the rst one receives interrupts from external sources such as a controller (sc_export), and the second one sends memory access requests to the memory (sc_port). The R3000 pipeline implements precise exceptions mechanism in order to avoid any type of pipeline anomalies [START_REF] Hennessy | Computer Architecture, Fourth Edition: A Quantitative Approach[END_REF]. So whenever an external interrupt occurs, the R3000 pipeline is ushed. The ushing mechanism occurs by inserting a 'trap' instruction in the IF-stage. The instructions in the pipeline nish their execution normally. When the 'trap' instruction reaches the WB-stage, it signals that the pipeline is now empty, and that the execution of the interrupt service routine is allowed. Then, the appropriate interrupt service routine is called depending on the interrupt type. For instance, we support 3 types of TLM interrupts: start a new task, preempt the current task with a new task, and stop the current task. The TLM interrupt protocol is a modied ArchC TLM protocol [START_REF] Rigo | ArchC: a systemC-based architecture description language[END_REF].

The performance evaluation of our cycle-accurate model necessitates the extraction of pipeline statistic values. Any degradation in the processor performance is mainly due to pipeline stalls. Those stalls arise from two types of sources: data dependencies (data and control hazards), and pipeline interlocks. The latter is due to long memory access latencies when load instructions are in the MEM stage and there is a data cache miss. In our model, we can measure the total number of pipeline stalls due to data dependencies and pipeline interlocks.

This cycle-accurate ISS can only execute one thread context (TC) at a time. The next paragraph describes the development of a multithreaded ISS, which is able to execute multiple threads at a time.

Multithreaded cycle-accurate ISS model

The multithreaded ISS [START_REF] Bechara | A TLM-based Multithreaded Instruction Set Simulator for MPSoC Simulation Environment[END_REF] is designed to be integrated in a typical processor system environment based on SystemC language. It keeps the same TLM I/O interfaces as the monothreaded ISS described in section 2.2.2 in order to look as one ISS/processor to the external world. The multithreaded ISS uses a modular cycle-accurate technique to mimic the behavior of a scalar multithreaded RISC. It encapsulates n pre-validated cycle-accurate ISS for the MIPS-I R3000, each corresponding to one TC. It receives TLM interrupt requests from an external module such as a hardware controller, and sends TLM memory access requests to the caches. Internally, a scheduler module synchronizes and schedules all the memory access requests of the n ISS. Figure 3.10 shows the internal structure of the multithreaded ISS model, denoted by PE_MT. Each R3000 ISSi in PE_MT simulates only the pipeline stages, which are described previously in Figure 3.9. The R3000 ISSi is generated automatically in ArchC using actsim tool as described in [START_REF] Bechara | Towards a Parameterizable cycle-accurate ISS in ArchC[END_REF], while the other block modules (scheduler, TLM demultiplexer) are developed in SystemC. For the controller, the PE_MT looks as n virtual processors. Each internal ISS is a TC;

therefore it has a unique id (vt_id). A vt_id parameter is added to the TLM protocol, so that every incoming and outcoming TLM packet can be tracked in the platform. All the external

A Multithreaded Instruction Set Simulator

interrupts are input to a 1-to-n TLM demultiplexer (labeled as D in Figure 3.10). It checks the vt_id of the TLM packet and then forwards it to the corresponding ISS. Then, the ISS handles the request, updates its internal state and executes the corresponding task. It generates two types of TLM memory requests: an instruction fetch from the IF-stage and a data memory access from the MEM-stage. The scheduler module receives TLM memory requests from the n ISS. It synchronizes and schedules the packets according to a pre-dened scheduling policy implemented as an FSM diagram. Then, it selects one of these packets at a time and transfers it to the cache memories. In order to facilitate the scheduling decisions of the scheduler, we provide 2 types of information as input to the multithreaded module:

1. The scheduling status (active/idle) of each ISS, which comes from the external controller using the can_be_scheduled_pe[n] input (sc_export TLM), where n designates the TC id.

2. The caches hit/miss input (sc_export TLM), which inform the scheduler of the status of each memory access request in the caches.

For scalar monothreaded processors, there exist 2 multithreading scheduling techniques: IMT and BMT. Each one has its own FSM diagram implemented in the scheduler. Due to the facility of their FSM representation and implementation, the IMT is implemented as a Mealy FSM and BMT as a Moore FSM. Therefore, to add a new multithreading technique, the designer just have to embed the FSM diagram code in the scheduler without modifying the other components. Note that the scheduler module is not clocked and is only synchronized by SystemC events. This is important when a functional ISS (not clocked) is used instead of a cycle-accurate ISS, which makes the scheduler more general.

In the next sections, we will describe in more details the implementation of an IMT and BMT multithreaded ISS with 2 TCs (n=2).

Interleaved multithreading ISS

An IMT processor executes an instruction from one active thread at a time in a round-robin way. Therefore, in any 2 consecutive pipeline stages, there is an instruction from a dierent TC. However, if one thread is stalled for a long latency event, then the whole pipeline is stalled.

To model this behavior using n separate ISS, the scheduler FSM should allow the execution of one ISS pipeline until completion, and then switch to another active ISS pipeline in zero cycles. During the pipeline execution cycle, it generates a maximum of 2 TLM cache memory requests, one from IF-stage and one from MEM-stage. The FSM switches the thread execution whenever an ISS pipeline is fully processed. Therefore, we dierentiate between an IF-stage and a MEM-stage TLM packet by adding a parameter to the TLM protocol. The FSM for the IMT model with 2 TCs, shown in Figure 3.11, is implemented as a Mealy FSM.

Since each ISS is cycle-accurate, small latency pipeline stalls due to data dependencies are captured by the ISS itself. As for the cache misses, they are modeled intuitively by the TLM interface blocking mechanism.

The sequential thread program execution on each ISS does not reect the actual behavior of the IMT pipeline. In fact, the execution speed of each thread should be divided by n and the pipeline stalls due to data dependencies should be eliminated. This is done by inserting n- As we can notice, by overlapping the pipeline stages of all the ISS ("dummy nop" are transparent), we get the pipeline behavior of a scalar IMT processor.

Finally, the scheduler should keep track of the scheduling status of each TC using the can_be_scheduled_pe[n] input signals from the controller. If one of the threads is scheduled/descheduled, then the scheduler informs the other ISS to adjust the number of "dummy nop" instructions. [START_REF] Hord | The Illiac-IV, The First Supercomputer[END_REF]

A Multithreaded Instruction Set Simulator

Blocked multithreading ISS

A BMT processor executes one thread as on a monoprocessor, and switches to another thread whenever a cache miss occurs. Thus, small latency pipeline stalls such as pipeline dependencies are not tolerated by this model. Therefore, a thread status is dened as:

1. ACTIVE: if Thread[i] is scheduled and executing properly without long latency events.

NOT ACTIVE: if Thread[i] is not scheduled by the controller or has a long latency event such

as a cache miss and TLB miss or is stalled on data synchronization with another Thread[i+1].

The scheduler FSM requires external signals from the caches (cache memories miss/hit signals shown in Figure 3.13) in order to perform its decision. In our work, we implement a "greedy" BMT protocol, where one main thread (R3000 ISS1) has a higher priority than the others (R3000 ISS2 to R3000 ISSn), thus its execution speed is not altered. This scenario considers that the low priority threads are helper threads. However, if there are not enough memory stall latencies, the "greedy" protocol may cause starvation to some helper threads. The FSM diagram for 2 TCs, shown in Figure 3.13, is implemented as a Moore FSM. Initially, Thread1 executes as long as there is a cache hit. Whenever there is a miss, Thread2 starts the execution and lls the stalling slot cycles of Thread1. When Thread1's data is returned, it resumes the execution. Otherwise, Thread2 continues the execution until there is a miss. Then the whole processor is stalled and waits for one of the threads' returned data in order to resume the execution, with a higher priority to Thread1 in case of a simultaneous response.

Opposed to the IMT model, the BMT model does not require any changes to the monothreaded ISS, such as "dummy nop" insertions and memory access packet distinction. The latter implies that the BMT model is sensitive to a long latency event, whether it comes from an IF-stage or MEM-stage packet.

In the next section, we will evaluate the performance of the multithreaded processors in SCMP architecture (MT_SCMP) in order to evaluate its eciency. Chapter 3. Multithreaded processors in asymmetric homogeneous MPSoC architectures

Performance evaluation

In this section, we will evaluate the MT_SCMP architecture, which is modeled in the SESAM simulation framework described in section 3.1 with multithreaded ISS described in section 3.2 as processing elements. We run two types of applications: control-ow and dataow, which are described in section 3.3.1. Then, we decide which multithreaded processor type (IMT v/s BMT) suits best for the asymmetric MPSoC requirements. We compare two global thread scheduling strategies (VSMP v/s SMTC) and choose the one that gives the best performance. The last two parts evaluate the transistor eciency of MT_SCMP and compare it to that of SCMP with monothreaded processors. First, we compare their area occupation, then their performances using both types of applications.

Applications description

As stated earlier, we evaluate the MT_SCMP with 2 types of applications: control-ow and streaming.

Control-ow: labeling algorithm

For the control-ow application, we have chosen an embedded application called ADAS (Advanced Driver Assistance Systems). It consists of a camera installed in a car that detects humans on the roads, in order to detect a pre-crash situation. This is a critical application for automotive systems and is particularly relevant to this study in terms of dynamism, parallelism and control dependencies.

In ADAS, one part of the obstacle detection process is the connected component labeling algorithm.

The labeling algorithm transforms a binary image into a symbolic image so that each connected component is uniquely labeled based on a given heuristic. It detects unconnected regions in binary images. Various algorithms have been proposed [START_REF] Horiba | Linear-time connected-component labeling based on sequential local operations[END_REF] [77], but we have chosen an algorithm using the contour tracing technique [START_REF] Chen | A Linear-Time Component-Labeling Algorithm Using Contour Tracing Technique[END_REF]. This very fast technique labels an image using only one single pass over the image. It can detect external and internal contours, and also identify and label the interior area for each component. The initial algorithm is parallelized by creating independent tasks with control dependencies explicitly represented in a CDFG as shown in Figure 3.14. Thus, the application follows the controlow programming model.

To get multiple independent tasks, we cut the image into sub-images and apply the algorithm on each sub-image. Then, we carry out successively a vertical and a horizontal fusion of labels in analyzing frontiers between sub-images, and nally we construct the corresponding tables between labels and change in parallel all labels into sub-images. As input images, we use a 128x128 pixel image, cut into 16 8x8 sub-images. This implies that the maximum parallelism is 16. The input images are a sequence of 3 images taken at dierent time intervals. They show 2 pedestrians crossing a road (Figure 3.15), and they are close to a car (order of 10 meters). The labeling algorithm is implemented on each image.

The computation requirement diers for the 3 images as shown in Figure 3.16. Pedestrian3 image takes about 3 times more processing than pedestrian1 image. Pedestrian1 image has 25% of its sub-images executing the labeling code, since the others are black sub-images (non-balanced workload). Similarly, pedestrian2 image has 50% (semi-balanced workload) and pedestrian3 has

Dataow: WCDMA

The dataow or streaming application is a complete WCDMA (Wideband Code Division Multiple Access) encoder and decoder [START_REF] Richardson | WCDMA Design Handbook[END_REF]. This communication technology is based on the use of Orthogonal Variable Spreading Factor (OVSF) to allow several transmitters to send information simultaneously over a single communication channel. This application uses a rake receiver with a data aided channel estimation method. Known pilot symbols are transmitted among data. The channel estimation algorithm operates on the received signal along with its stored symbols to generate an estimate of the transmission channel. The processing of pilot frames generates a dynamic behavior of the application, since this induces a variable execution length. Dierent blocks of the application are shown in Figure 3.17(a). The application is pipelined into 13 dierent tasks as shown in Figure 3.17(b). To maximize the concurrency between pipelined tasks, a double buer is used between each task. Thus, tasks can independently execute the next frame from the previous pipelined stage results.

Which multithreaded processor system?

In order to choose which multithreaded processor suits best for MT_SCMP, we run the labeling algorithm with pedestrian3 image (see Figure 3.15(c)). For the MT_SCMP conguration, we use one multithreaded processor, which can be either IMT or BMT with 2 TCs. We vary the L1 I$ and D$ size from 512-B to 8-KB. The L1 caches are direct-mapped with 16 Bytes/line. In fact, by xing the cache associativity and the number of words per line, we only compare IMT and BMT without any cache interference. For the labeling application, the parallel tasks executes almost the same code but with dierent data. Therefore, we segment the L1 caches per TC, and we give each TC the same amount of cache memory. This is the best cache architecture for this type of application. For instance, a L1 cache size of 1-KB means 1-KB for each TC. In Figure 3.18, we show the L1 I$ and D$ miss rate of the overall cache memory. The I$ and D$ miss rates vary from 15.5% to 0.91% and from 14.7% to 0.34% respectively. It is clear from the results that for cache sizes more than 8-KB, we would reach almost an ideal cache memory with no miss rate, which makes the multithreaded processor not an interesting solution. Therefore, we will limit our exploration to 8-KB.

In Figure 3.19(a), we compare the performances in execution cycles of the monothreaded, IMT and BMT processors. To better understand the sources of latencies, we decompose the total execution time into 6 parts: eective execution time when the processor is never stalled, stall time penalty due to I$ miss, stall time penalty due to D$ miss, pipeline stall due to data dependencies, context switch overhead in the case of BMT processor, and other sources of pipeline stalls that can come from a TLB miss, cache ush, MCMU processing, etc...These statistics can be revealed from our multithreaded ISS since it is cycle-accurate.

The results show clearly that the BMT processor overcomes the performance of IMT processor for all cache congurations. By varying the cache sizes, we vary the penalties due to cache misses. The statistics show that the monothreaded processor is stalled for a signicant portion of execution time because of I$ and D$ misses, which is almost 75% of the total time for 512-B. Under these conditions, the BMT processor is able to mask those cache miss latencies by executing instructions from another TC. And even if the context switch penalty is so high because there are lot of cache misses, the performance gained in BMT is still higher than the IMT. As shown in Figure 3.19(b), the BMT has a performance gain of 36% compared to the monothreaded processor, while the IMT has a gain of only 15.5%. As the size of the L1 caches increase, the cache miss rate decreases and so is the pipeline miss penalty. Therefore, the multithreaded processors does not have enough cache miss penalties to be masked, and their performance gain is reduced to 9.1% (BMT) and 5.3% (IMT) for the 8-KB L1$.

Thus, since the BMT has a better performance and a smaller area than IMT, it suits best for MT_SCMP and we will choose it for the future explorations. It is worth to note that the results taken in this section are dierent from that of section 2.3. In fact, in MT_SCMP, the sources of pipeline stalls and their weight are much higher than that of standalone AntX. This is why BMT performs better under MT_SCMP conditions than IMT for small memory access latencies.

Which global thread scheduling strategy? VSMP v/s SMTC

In this section, we analyze which global thread scheduling strategy suits best MT_SCMP [START_REF] Bechara | Comparison of dierent thread scheduling strategies for Asymmetric Chip MultiThreading architectures in embedded systems[END_REF]. For this reason, we run the labeling algorithm on 4 dierent types of scheduling strategies: VSMP static, VSMP dynamic, SMTC static and SMTC dynamic. We vary the workload by varying the input images shown in Figure 3.15. For all the experiments, the number of PE_MTs varies between 1 and 8, where each PE_MT has 2 TCs. The L1 I$ and D$ size is xed to 2-KB, which gives a cache miss rate around 10% for the connected component labeling application. In fact, since we implement the blocked multithreading policy, there should be sucient pipeline stalls (i.e. cache misses) in order to guarantee that all the TCs will execute, otherwise we risk resource starvation and some TCs will never have their share of execution.

Static v/s dynamic thread scheduling

In this experiment, we compare the static and dynamic algorithms of the VSMP and SMTC thread scheduling architectures. In Figure 3.20(a), we plot the number of cycles taken to execute the static and dynamic versions of VSMP for the 3 pedestrian images. The speedup is more signicant for 2 and 4 PE_MTs, which reaches 40% for the pedestrian1 image and goes down to 7% for pedestrian3 image. However, the execution time for 1 and 8 PE_MTs is similar for static and dynamic VSMP.

In fact, in VSMP, there is only one runqueue per PE_MT, which gives the same performance on 1 PE_MT for both static and dynamic algorithms. As for 8 PE_MTs, the VSMP algorithm allocates 2 tasks on each runqueue in the same way for static and dynamic algorithm, since the VSMP does not see the actual workload per PE_MT.

For the SMTC scheduler, the speedup between the static and dynamic versions is more signi-architectures cant than VSMP as shown in Figure 3.20(b). It reaches 51% for the pedestrian1 image. To understand better the reason for this large performance dierence, let's consider the case of SMTC static v/s dynamic in Figure 3.20(b) for pedestrian1 image 3.15(a) and 2 PE_MTs, where the speedup is 51%. The image is cut into 16 sub-images, and the labeling tasks of each sub-image are allocated rst horizontally then vertically. The sub-images identiers are set from 1 to 16 respectively. This means that tasks [T1,T5,T9,T13] contain pixels that need to be processed by the labeling algorithm, which implies more processing times. If PE_MT1{TC1,TC3} and PE_MT2{TC2,TC4}, then TC1=[T1,T5,T9,T13]; TC2=[T2,T6,T10,T14]; TC3=[T3,T7,T11,T15]; TC4=[T4,T8,T12,T16].

Thus we can clearly see that all the heavy computation tasks are assigned to TC1 runqueue for the static SMTC scheduler, which leverages the need of a dynamic scheduler. One other observation is the speedup for 1 and 8 PE_MTs cases. This can be explained by the fact that the dynamic SMTC scheduler is able to see the exact occupation rate of each TC and balance the workload between the runqueues so to take a full advantage of the multithreaded processors. For example, for the pedestrian1 image with 1 PE_MT{TC1,TC2}, all the heavy computing tasks are allocated on TC1 runqueue in the static SMTC version. This means that TC2 runqueue will be processed much faster than TC1, and the remaining tasks on TC1 will not be migrated in the static version, which is not the case in dynamic SMTC.

In summary, when we have a balanced workload as in the case of pedestrian3 image, the dierence between static and dynamic is not signicant (less than 10%). But in real-case scenarios, we expect on average a semi-balanced workload similar to pedestrian2 image.

VSMP v/s SMTC

In Figure 3.20(c), we compare the dynamic algorithm of VSMP and SMTC for the 3 pedestrian images. In all the congurations, the dynamic SMTC has a better performance than dynamic VSMP. The speedup varies between 1% and 11%. Again, the speedup is more important for non-balanced and semi-balanced workloads, and especially for the cases with large number of multithreaded processors (PE_MT = 8). In fact, when the number of multithreaded processors increases, the complexity of nding the optimal scheduling decision also increases. This is due to the fact that the scheduling decision for multiple multithreaded processors is dierent and more complex than monothreaded processors, which necessitates the need of an eective and reactive global thread scheduler for proper load balancing between the runqueues. Hence, dynamic SMTC gives superior performance on dynamic VSMP, and this dierence would be more important if the number of TCs per PE_MT is bigger than 2.

Scheduling overhead

Finally, in Figure 3.20(d), we compare the complexity of the 4 types of thread schedulers. The results show the average number of cycles taken to complete a scheduling tick. As expected, the static versions take less time to nish a scheduling tick compared to their corresponding dynamic versions. One clear observation is that the scheduling tick of the SMTC dynamic is much longer than VSMP dynamic, especially when the number of multithreaded processors increases (around 4000 clock cycles dierence for 8 PE_MTs). The dierence is expected to increase more when the number of TC per PE_MT is bigger. This result is not surprising, since the dynamic SMTC algorithm has one runqueue per TC, thus performing more tests in order to choose the best TC's runqueue to allocate the SW task. (see section 3.1.2). In fact, the SMTC has a complexity of O(NxM), while VSMP is O(N), where N is the number of multithreaded processors and M is the number of TCs per PE_MT. But, as we saw previously from the results, the scheduling overhead does not impact the performance, since in an asymmetric architecture, the global thread scheduler executes in parallel to the computation. On the other hand, in a symmetric approach, the scheduler executes on the same processor as the computation and hence needs to nish the scheduling tick as fast as possible. In summary, the dynamic SMTC global thread scheduling policy is retained for future exploration.

SCMP v/s MT_SCMP: chip area

In this section, we estimate SCMP and MT_SCMP areas. We want to know the overhead implied due to multithreading. For this reason, we estimate the area of the components that are aected by multithreading and contribute to increase the overall die area. For instance, the PE system Chapter 3. Multithreaded processors in asymmetric homogeneous MPSoC architectures (processor and caches) and the interconnection busses (control and data) are the key components that are aected by multithreading. Components such as CCP, on-chip memory and MCMU are not taken into consideration, since their area is the same for SCMP and MT_SCMP. In Figure 3.21, we show the area of the processors (Figure 3.21(a)), cache memories estimated with the CACTI 6.5 tool (Figure 3.21(b)), and the multibus interconnection network (Figure 3.21(c)). For the multibus, we do not consider the area of the wires, so it is only the synthesis results of the I/O ports, buers, and arbiter. The technology used by CACTI tool is based on ITRS roadmap [START_REF][END_REF], but it is not similar to TSMC technology. Therefore, the processor system is not synthesized with the same technology, but this gives us an idea of the relation between cache size and processor size. So, all these components are synthesized/estimated in 40 nm technology. Based on these components area values, we estimate SCMP and MT_SCMP areas. We vary the number of processors between 1 and 32, and the size of the caches between 1-KB and 32-KB. In Figure 3.22, we show the percentage increase of each SCMP system with respect to the reduced SCMP system: 1 monothreaded PE and 1-KB L1 cache memories.

We can notice that as the cache size increases, the dierence between SCMP and MT_SCMP systems is negligible. This is because we are using very small cores compared to big L1 cache sizes. Another observation is the importance and possible transistor eciency gain of MT_SCMP system. In fact, a MT_SCMP architecture with n multithreaded processors can process the same number of threads as a SCMP system with 2n monothreaded processors. The area overhead of the SCMP system is much bigger than that of MT_SCMP. So, if we show that the MT_SCMP system can give comparable performance to that of SCMP, then MT_SCMP is more transistor ecient. In the next section, we will examine the performance of both systems using two applications with dierent execution models.

SCMP v/s MT_SCMP: performance

In this section, we will compare the performance of SCMP and MT_SCMP architectures. We use

Performance evaluation

0% 5000% 10000% 15000% 20000% 25000% 30000% 35000% 40000% 45000% 50000% 1PE_512 1PE_2K 1PE_8K 1PE_32K 2PE_512 2PE_2K 2PE_8K 2PE_32K 4PE_512 4PE_2K 4PE_8K 4PE_32K 8PE_512 8PE_2K 8PE_8K 8PE_32K 16PE_512 16PE_2K 16PE_8K 16PE_32K 32PE_512 32PE_2K 32PE_8K 32PE_32K
Percentage area increase %increase of mono %increase of BMT Figure 3.22: Percentage area increase of SCMP with number of processors varying from 1 to 32 and L1 cache size varying from 1-KB to 32-KB. The processors can be monothreaded and BMT. The percentage area increase is compared with respect to the initial SCMP system: 1 monothreaded PE and 1-KB L1 cache memories.

rithm described earlier in section 3.3.1.1, has a control-ow execution model. The second one, the WCDMA application from the telecommunication domain (see section 3.3.1.2) has a streaming/dataow execution model. Each execution model has its own characteristics that induce dierent types of processor stalls as we will see in the following sections.

Control ow

In this experiment, we evaluate the performance and transistor eciency of MT_SCMP with respect to SCMP, by running a control-ow application, connected component labeling, with pedes-trian3 image (Figure 3.15(c)) as input. As depicted in Figure 3.14, this application has a maximum thread-level parallelism of 16. Therefore, since the multithreaded processor has 2 TCs, we vary the number of processors from 1 to 8. In addition, we vary the L1 I$ and D$ sizes from 512-B to 8-KB. In fact, for a cache size greater than 8-KB, the cache hit is almost 100% (see Figure 3.18), so there is no interest in implementing a multithreaded processor. The L1 caches implements the write-back + write-allocate cache coherence policy, since it generates less trac on the bus between the caches and the memory. In MT_SCMP, each TC has an equal size of cache. For instance, a 1PE_1K system means that each processor in SCMP has 1-KB of L1$ and each TC in MT_SCMP has 1-KB. So the L1 cache sizes in MT_SCMP is doubled. This keeps the same cache miss rate with respect to SCMP, thus it is easier to compare the performances. In Figure 3.23(a) and Figure 3.23(b), we compare the performances of SCMP and MT_SCMP respectively. We decompose the total execution time into 3 parts: eective execution time, CCP scheduling overhead, and synchronization overhead. The 'CCP scheduling overhead' is the time taken by the central controller CCP to schedule threads on the processors. The 'synchronization Chapter 3. Multithreaded processors in asymmetric homogeneous MPSoC architectures overhead' parameter is equal to zero in the control-ow application, since it is a run-to-completion execution model and no threads are synchronizing with each other. In addition to those parameters, we add the 'context switch penalty' for the MT_SCMP. This penalty is due to switching the TC and ushing the processor pipeline during a cache miss.

(a)

0.00E+00 The performance results show that the 'CCP scheduling overhead' is high when the number of processors is high for both systems. This is due to 2 reasons: the CCP takes longer time to complete a scheduling cycle when the number of processors is high, and there is no enough thread parallelism to occupy all the processors. As for MT_SCMP, we notice that the penalty due to context switching is high when the cache sizes are small. This is logical because there are more cache misses, hence more local thread context switches.

In Figure 3.23(c), we compare the performance of both systems and we plot the speedup of each system with respect to the initial SCMP system: 1 PE and L1$ size equal to 512 Bytes. We notice that MT_SCMP overcomes the performance of SCMP system. The speedup is higher when the cache misses are higher. However, when the cache misses are negligible, both SCMP and MT_SCMP have almost similar performances. Finally, we compare the transistor eciency of both systems with respect to the initial SCMP system (Figure 3.23(d)). The estimated area of each system is taken from section 3.3.4. The transistor eciency can be greater, equal or less than 1, which corresponds to supralinear, linear, and sublinear scalability. The latter can be referred as 'typical scalability'. For the majority of the systems, the transistor eciency is sublinear. We can notice that the transistor eciency of the SCMP system is higher than MT_SCMP for most of the system congurations.

To summarize, the MT_SCMP architecture gives better peak performance but lower transistor eciency than the SCMP architecture for the control-ow application. This is the case when MT_SCMP has a double L1 cache size than SCMP. However, if we consider that the L1 cache sizes are equal for both architectures, which means that each TC in MT_SCMP has a half cache size or in other words the PE has an equal cache size as that of SCMP, the results would be dierent as shown in Figure 3.24. By dividing the cache size of each TC, the number of cache misses is higher for MT_SCMP than for SCMP. As was shown previously in Figure 3.18, the cache miss rates does not have a linear increase/decrease by varying the cache size. This is why for some congurations (i.e: L1 D$ = 1-KB), the cache miss rate dierence between a SCMP and a MT_SCMP architecture is not signicant, therefore the MT_SCMP performs better. However, for most of the other cache congurations, the dierence is almost linear. Thus, even if the multithreaded processors in MT_SCMP are able to hide some of these latencies, they are not able to perform better than the SCMP architecture.

Chapter 3. Multithreaded processors in asymmetric homogeneous MPSoC architectures

This analysis is application dependent and might vary from one application to another depending on their L1 cache access behavior. In the next section, we will evaluate the performances of SCMP and MT_SCMP with respect to a streaming application.

Dataow

In this experiment, we evaluate the performance and transistor eciency of MT_SCMP with respect to SCMP, by running a streaming/dataow application described in section 3.3.1.2: Wideband Code Division Multiple Access (WCDMA).

For this experiment setup, we vary the number of processors from 1 to 8 and the L1 I$ and D$ sizes from 256-B to 4-KB. In fact, for a cache size greater than 4-KB, the cache hit is almost 100%, so there is no interest in implementing a multithreaded processor.

In Figure 3.25(a) and Figure 3.25(b), we compare the performances of SCMP and MT_SCMP respectively. In the streaming execution model, the 'synchronization overhead' parameter contributes to a non-negligible part of the overall execution time. Initially, we believed that this overhead can be hidden by using multithreaded processors instead of monothreaded. However, as Figure 3.25(b) shows, it still occupies almost the same percentage of the overall execution time. In fact, the CCP scheduler implements a dynamic thread scheduling. When a thread is stalled on a synchronization, the CCP scheduler is directly informed by the MCMU. Thus, if there are ready tasks in the scheduling queue, it preempts the stalled processor and executes an active task instead. The same execution behavior is also applied to MT_SCMP. Thus, the only real limitation is the application parallelism. If there are not enough task parallelism, then SCMP/MT_SCMP might suer from processor stalls due to synchronization overhead. This scenario occurs for the case of 8 processors.

In Figure 3.25(c), we compare the performance of both systems and we plot the speedup of each system with respect to the initial SCMP system: 1 PE and L1$ size equal to 256 Bytes. Similarly to the control-ow application, the MT_SCMP overcomes the performance of SCMP system. The speedup is higher when the cache misses are higher (small cache size). However, when the cache misses are negligible, both SCMP and MT_SCMP have almost similar performances. We notice also that for 8 processors, there is no dierence between the performances. In fact, for this conguration, the application has reached the maximum level of parallelism and the processors remain stalled most of the time.

Finally, we compare the transistor eciency of both systems with respect to the initial SCMP system (Figure 3.25(d)). The estimated area of each system is taken from section 3.3.4. For the majority of the systems, the transistor eciency is sublinear. We can notice that the transistor eciency of the SCMP system is higher than MT_SCMP for most of the system congurations.

To summarize, the MT_SCMP architecture gives better peak performance but lower transistor eciency than the SCMP architecture for the streaming/dataow application.

Synthesis

In this chapter, we explored the advantages/disadvantages of using multithreaded processors in an asymmetric MPSoC architecture: SCMP. For this reason, we developed a new multithreaded ISS in SystemC language and integrated it in SESAM, which is the simulation environment for SCMP. The new SCMP architecture with multiple multithreaded processors is called MT_SCMP. We conducted several benchmarks based on a control-ow and streaming applications in order to choose which multithreaded processor suits best for MT_SCMP (IMT v/s BMT), which global thread scheduling for multiple multithreaded processors gives the best performance (VSMP v/s SMTC), and which asymmetric MPSoC architecture is the most performant and transistor ecient (SCMP v/s MT_SCMP).

The results showed that the blocked multithreaded processor (BMT) and the SMTC scheduler suits best for MT_SCMP [START_REF] Bechara | Comparison of dierent thread scheduling strategies for Asymmetric Chip MultiThreading architectures in embedded systems[END_REF], and thus are adapted as xed system design parameters for this architecture. Finally, we compared the performances and transistor eciency of SCMP and MT_SCMP by running 2 types of applications: control-ow and streaming. In order to estimate both system surfaces, we used synthesis results in 40 nm TSMC technology for the processors and architectures the interconnection networks, and estimated the cache sizes using the CACTI 6.5 tool. To summarize the results, the MT_SCMP gave better peak performance, but less transistor eciency than SCMP. In fact, the performance of MT_SCMP highly depends on 5 main parameters: application thread-level parallelism, caches miss rate, caches miss latency, memory hierarchy, and global thread scheduling. The latter implies that for dynamic applications, a dynamic load balancing and scheduling gives the optimal performance. This is why SCMP is a highly ecient architecture. Whether to choose multithreaded processors for SCMP or not, depends on the system designer. If peak performance is a key parameter, then multithreaded processors are an interesting solution. However, for transistor eciency, monothreaded processors remain a more ecient solution.

The SCMP architecture is a transistor ecient architecture for dynamic embedded applications. However, for high-end massively-parallel dynamic embedded applications with large data sets, there are lot of parallelism at the thread level (TLP) and at the loop level (LLP) that should be exploited by the architecture. Thus, SCMP has the following limitations for such applications:

1. Scalability: SCMP is limited to 32 cores. In fact, the CCP is one source of resources contention and cannot handle eciently more than 32 cores. In addition, the surface of the multibus network increases a lot (order of 10 mm2 in 40 nm TSMC technology) for more than 128 I/O ports [START_REF] Guerre | Approche hiérarchique pour la gestion dynamique des tâches et des communications dans les architectures massivement parallèles programmables[END_REF], given that each core needs 3 I/O ports. Thus, SCMP does not meet the manycore requirements for embedded applications.

2. Extensibility: SCMP has a limited on-chip memory for data, which makes it not extensible for large data set applications.

3. Programmability: Data should be explicitly prefetched from the o-chip memory using dedicated DMA tasks prior to their utilization by computing tasks. The DMA tasks are identied and inserted oine in the application's CDFG. This lies a burden on the programming environment.

4. Parallelism: SCMP does not exploit parallelism at the loop level. Therefore, all the loop codes are executed sequentially on one PE.

In addition to those limitations, the SCMP architecture does not have enough stall latencies to be exploited by the multithreaded processors. In fact, SCMP has a dedicated central controller (CCP) that performs dynamic load-balancing whenever long latency stalls occur due to task synchronization. In this case, the task synchronization overhead will be the same for the monothreaded and multithreaded processor. Therefore, the only type of stall latencies that remain to be masked are the memory access latencies due to cache misses, which are very fast in SCMP architecture (less than 10 cycles).

Based on this conclusion, we will design in the next chapter a new manycore architecture that tackles the challenges of future high-end massively parallel dynamic applications called: AHDAM architecture. As we saw previously in chapter 1, a manycore architecture is a natural solution for future highend massively parallel embedded applications. Those applications are becoming more dynamic with a variable execution time. Thus, an asymmetric homogeneous MPSoC architecture handles eciently this dynamism by using a dedicated control core that performs dynamic load-balancing of the tasks between the processing resources.

In addition, we saw in chapter 3 that currently existing asymmetric homogoneous architectures, such as SCMP, are not scalable to the manycore level. Furthermore, the manycore architecture should support the processing of large data set sizes that cannot be known in advance and does not t in the on-chip memory. This implies a frequent access to the o-chip memory that stalls the processors and degrades the performance. For this reason, multithreaded processors could be one key element to increase the aggregate IPC of the chip with little die area overhead. Therefore, there is a need for new transistor and energy ecient manycore architectures that tackle the challenges of future massively-parallel dynamic embedded applications.

For all these requirements, we present a new manycore architecture called AHDAM [START_REF] Bechara | AHDAM: an Asymmetric Homogeneous with Dynamic Allocator Manycore chip[END_REF]. AH-DAM stands for Asymmetric Homogeneous with Dynamic Allocator Manycore architecture. It is used as an accelerator for massively parallel dynamic applications. In particular, it is designed to accelerate the execution of the loop codes, which often constitutes a large part of the overall application execution time.

In this chapter, we present in details the AHDAM architecture. First, we start by describing its applicative system environment in section 4.1 and its programming model in section 4.2. Then, we explain the overall architecture description and the motivations for each architectural choice in section 4.3. In particular, we motivate the design of the memory hierarchy architecture and the need for blocked multithreaded processors as key processing elements by conducting an analytical study. The functionalities and interoperabilites of the hardware components are described in details. Then, in section 4.4, we illustrate the AHDAM's execution model. One particularity is that the loops can be parallelized using OpenMP or any fork-join programming model, and then executed on special processing elements. Finally in section 4.5, we analyze the maximal scalability that the AHDAM architecture can reach by conduct a bandwidth analysis study.

System description

AHDAM is used as an accelerator component for high-end massively parallel dynamic embedded applications as shown in Depending on the computation requirements, it can be used as a shared accelerator for multiple host CPUs, or a private accelerator for each host CPU. The host CPU is running an operating system or bare-metal applications. Typical applications are from the cloud computing, database, and networking domains. During their runtime, the applications' codes and data are stored in multiple DDR3 memory banks. Those applications are massively-parallel, hence they require lot of 4.2. AHDAM programming model computation power that is highly ecient to be processed by AHDAM architecture. When a host CPU encounters a massively-parallel application, it sends an execution demand to AHDAM and wait for its acknowledgment. Then, the host CPU ooads the massively-parallel application to AHDAM. The application is already decomposed into concurrent tasks. The tasks are represented in a CDFG graph that shows their control dependencies, hence their activation sequence. AHDAM has sucient resources to process multithreaded tasks in parallel. In addition to the task level parallelism (TLP), it can increase the parallelism by exploiting the concurrency at the loop level (LLP). In fact, most of the application execution time is spent in loops.

In the next section, we will explore in more details the AHDAM programming model.

AHDAM programming model

The programming model for AHDAM architecture is specically adapted to dynamic applications and global scheduling methods. It is based on a streaming programming model. The chip's asymmetry is tackled on 2 levels: a ne-grain level and a coarse-grain level. The proposed programming model is based on the explicit separation of the control and the computing parts as shown in Figure 4.2. A sequential application is manually cut into independent tasks from which explicit execution dependencies are extracted (TLP). Then, the parallel application follows a second path where OpenMP pragmas are inserted at the beginning of possibly parallelized 'for-loop' blocks (ne-grain).

In fact, OpenMP [106] is a method of Single-Program-Multiple-Data (SPMD) parallelization, where each program contains one or more loop regions (LLP). The master thread forks a specied number of slave threads, and a task is divided among them. Then, the child threads run in parallel, with the runtime environment allocating threads to dierent cores. A possible solution to automate the application decomposition process and insertion of OpenMP pragmas is to use the PAR4ALL tool from HPC Project [108]. The PAR4ALL tool supports AHDAM HAL for proper tasks generation.

At this stage, the computing tasks and the control task are extracted from the application, so as each task is a standalone program. The greater the number of independent and parallel tasks that are extracted, the more the application can be accelerated at runtime, and the application pipeline balanced.

The control task is a Control Data Flow Graph (CDFG) extracted from the application (Petri Net representation), which represents all control and data dependencies between the computing tasks (coarse-grain). The control task handles the computing task scheduling, activations, and other control functionalities, like synchronizations and shared resource management for instance. A specic and simple assembly language is used to describe this CDFG and must be manually written or automatically generated by the PAR4ALL tool. A specic compilation tool is used for the binary generation from the CDFG.

For the computing tasks, a specic Hardware Abstraction Layer (HAL) is provided to manage all memory accesses and local synchronizations, as well as dynamic memory allocation and management capabilities. A special on-chip unit called MCMU (Memory Conguration and Management Unit) is responsible for handling these functionalities (more details in section 4.3.1). With these functions, it is possible to carry out local data synchronizations or to let the control manager taking all control decisions. Concurrent tasks can share data buers through local synchronizations handled by the MCMU (streaming execution model). Each task is dened by a task identier, which is used to 1. Scalability: SCMP is limited to 32 cores. In fact, the CCP is one source of resources contention and cannot handle eciently more than 32 cores. In addition, the surface of the multibus network increases a lot (order of 10 mm 2 in 40 nm TSMC technology) for more than 128 I/O ports [START_REF] Guerre | Approche hiérarchique pour la gestion dynamique des tâches et des communications dans les architectures massivement parallèles programmables[END_REF], given that each core needs 3 I/O ports. Thus, SCMP does not meet the manycore requirements for embedded applications.

2. Extensibility: SCMP has a limited on-chip memory for data, which makes it not extensible for large data set applications.

3. Programmability: Data should be explicitly prefetched from the o-chip memory using dedicated DMA tasks prior to their utilization by computing tasks. The DMA tasks are identied and inserted oine in the application's CDFG. This lies a burden on the programming environment.

4. Parallelism: SCMP does not exploit parallelism at the loop level. Therefore, all the loop codes are executed sequentially on one PE.

In this section, we present the AHDAM architecture. First, we describe the architecture and its main components. Then, we present the memory architecture and we build an analytical model for the processor-memory system to compare dierent memory hierarchies and the processor type. We show that the split-memory hierarchy adapted in AHDAM is more performant than other systems. Afterward, we explain the control unit and Tile unit roles and their interoperabilities. Also, by using a modied analytical model, we show that the blocked multithreaded processor with 2 TCs boosts the performance over the monothreaded processor. Finally, we conduct a bandwidth analysis study on dierent parts of the architecture and show the maximum scalability that AHDAM can reach.

Architecture description

In fact, the architecture's asymmetry is tackled on 2 levels: a coarse-grain level and a ne-grain level. The coarse-grain level represents the concurrent tasks in the CDFG application graph as was shown in section 4.2, while the ne-grain level represents the tasks' parallelized loop-region codes. The AHDAM architecture is shown in Figure 4.3.

AHDAM architecture is composed of 3 main parts: memory units, control unit, and computation units. The AHDAM architecture is an enhancement to the SCMP architecture, thus they share some similar functionalities. For instance, the control unit, tasks prefetching and the MCMU are the same. The latter has some added functionalities that will be explained later in this section. As for the dierences, AHDAM architecture has a dierent memory hierarchy and a dierent interpretation of the computation unit. In fact, the computation unit is represented as a Tile instead of a SCMP's PE. In addition, there are no DMA engines, since data load/store from external memory is implemented in the task code to easy the programmability. In the following sections, we will describe in more details the functionality of each unit.

Memory units

The AHDAM memory hierarchy is composed of separated L2 instruction memory and data cache memories. The instruction memory is a shared on-chip multi-banked SRAM memory that stores the codes of the tasks. The instruction memory size can be well dimensioned since it is designed for the worstcase size of the dierent sets of application codes that will be running on AHDAM simultaneously. In addition, the instruction memory is a shared memory, which is suitable for inter-tile task migration and load-balancing. The shared on-chip instruction memory is the last level of instruction memory. As we will see later, the execution model assumes that the instructions are already prefetched in the instruction memory. Besides, it is implemented as a multi-banked memory instead of a single-banked multiple Read/Write ports memory. To compare the area occupation of both types of memories, we use the CACTI 6.5 tool [START_REF] Muralimanohar | CACTI 6.0: A Tool to Model Large Caches[END_REF] in 40 nm technology and we vary the number of memory banks v/s the number of R/W ports for a 1-MB memory. The area occupation of each conguration is shown in Figure 4.4. It is clear that a multi-banked memory with 1 R/W port uses less area than one-bank memory with multiple R/W ports.

The multi-bank memory reduces the contentions per bank when multiple Tiles are accessing simultaneously the instruction memory. This happens when the instruction codes for the tasks are stored in dierent memory banks.

The Instruction interconnection network connects the M Tiles to the multi-banked instruction memory. It is a multibus. According to the author [START_REF] Guerre | Approche hiérarchique pour la gestion dynamique des tâches et des communications dans les architectures massivement parallèles programmables[END_REF], the multibus occupies less die area that other types of NoCs for small to medium interconnections, and has less energy consumption and memory access latency.

On the other hand, since we target applications with large data sets, we implement a L2 data cache memory instead of an on-chip SRAM memory as in SCMP. Cache memories have a bigger area and are less area/energy ecient than SRAM memories. But caches facilitates the programmability since the memory accesses to external DDR3 memory are transparent to the programmer and independent from the data set size. This eliminates the need for explicit data prefetching using DMA engines which hardens the task decomposition and synchronization as it happens with the IBM CELL processor [START_REF] Riley | Cell Broadband Engine processor: Design and implementation[END_REF] for instance. All the L2 data cache memories are connected to an on-chip DDR controller, which transfers the data memory access requests to the o-chip DDR3 memories. More details will be provided in section 4.3.1.3. A special unit called MCMU (Memory Conguration and Management Unit) handles the memory conguration for the tasks. It divides the memory into pages. In addition, MCMU is responsible of managing the tasks' creation and deletion of dynamic data buers at runtime, and synchronizing their access with other tasks. There is one allocated memory space per data buer. A data buer identier is used by tasks to address them. Each task has a write exclusive access to a data buer. Since all the tasks have an exclusive access to data buers, the data coherency problems are eliminated without the need for specic coherency mechanisms. A data buer access request is a blocking demand, and another task can read the data buer when the owner task releases its right. Multiple readers are possible even if the memory latency will increase with the number of simultaneous accesses.

Control unit

In AHDAM, the CCP (Central Controller Processor) controls the tasks prefetching and execution. It has similar properties to the SCMP's CCP as described in section 1.3.1. The CCP module is shown in Figure 1.6(b). The application CDFG is stored in dedicated internal memories. The CCP is a programmable solution that consists of an optimized processor for control called AntX (see section 2.2.1), which is a small RISC 5-stage, in-order, and scalar pipeline core. Thus, the RTOS Chapter 4. AHDAM: an Asymmetric Homogeneous with Dynamic Allocator Manycore architecture functionalities are implemented in software. The programmability feature of CCP allows us to implement a new and optimised scheduling algorithm in a small amount of time. In addition, the CCP has special interfaces for receiving/sending interruption demands to the computation units. The MPE is the Master PE that receives the execution of a coarse-grain task or master thread from the CCP. It is implemented as a monothreaded processor with sucient resources (ALUs, FPUs, etc...) for executing the tasks' serial regions. On the other hand, the LPE or Loop PE, is specialized in executing child threads that represent loop regions. The LPEs are implemented as blocked multithreaded VLIW processors with 2 hardware thread contexts (TC). In fact, the blocked multithreaded processor increases the LPE's utilization by masking the long access to the o-chip DDR3 memory that stalls the processors. In addition, the VLIW architecture [START_REF] Fisher | Embedded Computing: A VLIW Approach to Architecture, Compilers, and Tools[END_REF][START_REF] Rau | The Cydra 5 departemental supercomputer: Design philosophies, decisions, and trade-os[END_REF] is a transistor ecient solution that increases the LPE performance by exploiting the ILP of the loop tasks. Each MPE and LPE has a private L1 I$, L1 D$, and L2 D$. For the multithreaded LPE, the L1 I$ is shared by both TCs, while the L1 D$ is segmented per TC. In this way, we privilege the execution of 2 child threads from the same parent thread, while limiting their interferences on the data memory level. The Tile NoC, which is a set of multiple busses interconnecting all the units to each other and to the external world (control and memory busses), is responsible of forwarding the cores' request accesses to the corresponding external unit. However, for the memory data accesses, the requests are grouped by a special MUX/DEMUX unit that forwards the data request to the DDR controller, then to the o-chip DDR3 memory. The Tile NoC provides one serial connection of the Tile to the external world, which eases the implementation of the Control and Instruction busses.

In summary, AHDAM provides architectural solutions that give ideal conditions for massively parallel dynamic applications with OpenMP-like tasks such as:

• Two-level asymmetries: this tackles the dynamism of the applications on the task level and loop level. The former is handled by the CCP and the latter by the MPEs and LPEs. The CCP handles dynamically the load-balancing of the tasks between the Tiles. The LPEs implement a farming execution model to improve the scheduling process for irregular loops.

• Manycore: for providing sucient processing elements to execute the massively parallel tasks.

• Shared on-chip instruction memory: for fast inter-tile task migration and load balancing.

• Shared o-chip data memory: for supporting large data set applications that cannot t normally in the on-chip data memory.

• Shared inter-tiles LPEs: for handling variable tasks' computing requirements and increasing the overall resources occupation. It will be explained in more details in section 4.4.

• Multithreaded LPEs: for hiding the LPE pipeline stalls when accessing the o-chip DDR3 memory, hence increasing the pipeline utilization.

In the following sections, we motivate dierent architectural design choices. In particular, we construct an analytical model for the memory hierarchy. Two processing elements are considered: monothreaded and blocked multithreaded processors. We demonstrate why the L2 instruction and data memory are splitted, and the advantage of implementing the LPEs as blocked multithreaded processors.

Why splitting the L2 instruction and data memories?

There is always a compromise for choosing the best memory architecture. In our case, the compromise is the on-chip memory size v/s the processor performance. A good architecture design is achieved when the processor is able to achieve a high performance with the least required on-chip memory. The processor's CPI is one key metric to measure its performance. Therefore, we build an analytical model that calculates the monothreaded processor's CPI for dierent memory hierarchy architectures. We model 4 dierent types of processor-memory architectures: SCMP with 1-level cache memory and on-chip main memory, SCMP with 1-level cache memory and o-chip main memory, SCMP with 2-levels cache memory and o-chip main memory, AHDAM with 1-level instruction cache memory and on-chip instruction main memory and 2-levels data cache memory and o-chip data main memory. The 4 processor-memory systems are shown in Figure 4.5. The processor that is considered in this study is monothreaded, scalar, in-order, with a 5-stage pipeline. But this study can also apply for a VLIW processor.

The CPI formula for a processor is given by equation 4.1:

CP I = CP Ibase + (1 + %loads/stores) * StallCyclesP erM emoryAccess (4.1)
The CPI formula measures the average clock cycles to execute an instruction. The formula states that the CPI is the summation of the base CPI and the total number of memory accesses from the IF-stage and MEM-stage multiplied by the average number of stall cycles for each memory access (StallCyclesPerMemoryAccess). The base CPI is the CPI with an ideal memory of zero cycle access. Thus, the base CPI captures only the pipeline data and control dependencies stalls between the instructions. This number depends on the application code. But for case of simplicity, we consider that almost 10% of the instructions exhibit pipeline stalls for a 5-stage pipeline. Thus, CPIbase is equal to 1.1. Now, the remaining parameter to compute the CPI is the StallCyclesPerMemoryAccess. This parameter depends on the processor type, the memory hierarchy, the cache memories miss rates, and the access time between each memory stages. Let us consider the processor-memory system of Figure 4.5(a). In Table 4.1, we show the reasoning for calculating the StallCyclesPerMemoryAccess parameter using the probability theory. For each memory unit, we note its memory access time cost and the probability of accessing this memory throughout the execution. Therefore, for the monothreaded processor, if the number of memory units is n, then the number of cases is also n. The same reasoning applies for all the others processor-memory systems. Now, let us compare the CPI performance for the 4 systems. There are lot of architectural parameters that can be varied. But to facilitate the readability and the interpretation of the results, we will x the following parameters:

• CPIbase: as mentioned earlier, the base CPI with ideal memory is equal to 1.1 for a scalar The third column shows the probability of TC1 to access the corresponding memory unit.

and 5-stage pipeline.

• Percentage of load/store instructions: we assume a rule of thumb that 20% of an application instructions are load/store instructions (%loads/stores). This implies that the fraction of instruction fetches out of all memory accesses (%instructions) and the fraction of data accesses out of all memory accesses (%data) are around 83% and 17% respectively.

• Memory access time: we consider that a L1 cache memory access time (s1) is included in the CPIbase with no extra penalty, the access to the on-chip main memory and the L2 cache memory takes 10 cycles taking into consideration memory bank contentions, and the access to the o-chip main memory takes 50 cycles. Any small changes in the latency values do not alter our conclusions.

• L2 cache memory hit rate: the L2$ memory hit rate is xed to 80%, which is a reasonable number for most of the systems.

The only variable parameters are the L1 I$ and D$ hit rate, which vary from 80% to 100%. In Figure 4.6, we show the CPI for all the 4 processor-memory systems, while varying the L1 I$ and D$ hit rate.

We observe that the processor performance in the SCMP base memory architecture (Figure 4.6(a)) with an on-chip main memory has the lowest CPI, hence the best performance. However, this implies that SCMP should have enough on-chip memory to store all the applications codes and data, which is not suitable for large-data set applications. In the second system (Figure 4.6(b)), the chip has a limited on-chip cache memory, and then it accesses the o-chip main memory whenever a cache miss occurs. In this case, the on-chip memory size is minimal but the processor might suer from severe pipeline stalls due to the long o-chip memory access time. The CPI reaches 13 for the case of 80% L1 I$ and D$ hit rate. To limit the stall time penalty and increase the processor utilization, most manufacturers adapt a 2-levels on-chip cache memory. This model improves the processor's CPI as can be seen in Figure 4.6(c), but its performance is still lower than the base SCMP architecture. If we examine the key parameters that aect the overall performance, we observe that a typical application has 4/5 of instruction accesses and 1/5 of data accesses. The most design limiting factor is the variable data set size that varies a lot between the applications. Therefore, in AHDAM architecture, we integrate an on-chip instruction memory similar to that of SCMP and has fast access times. The data memory hierarchy is splitted from the instruction memory. Each processor has its private L1 D$ and L2 D$ on-chip memories, while the large data set is stored in an o-chip memory that is accesses during L2 D$ memory misses. As can be seen in Figure 4. 6(d), this model improves the processor utilization and has almost the same performance as the base SCMP architecture. In addition, the on-chip memory size is almost similar to the third system (Figure 4.5(c)), since the instruction memory size does not occupy lot of space compared to the data memory. Therefore, AHDAM memory architecture has the best compromise compared to the other 3 processor-memory systems. Table 4.2 summarizes our discussion. Table 4.2: Comparison between the 4 processor-memory systems. AHDAM memory hierarchy architecture has the best compromise between on-chip memory size and processor performance.

Why is the LPE a blocked multithreaded processor?

After we have dened AHDAM memory architecture in section 4.3.1, now we will examine the eect of replacing the monothreaded processor with a blocked multithreaded processor with 2 hardware TCs. For the BMT processor, the L1 instruction and data cache memories are segmented per TC as shown in Figure 4.7(a).

To build the analytical model for the BMT processor, we apply the same reasoning as for the monothreaded processor discussed in section 4.3.2. For case of simplicity, we will show the approach for the SCMP system with on-chip memory and with a BMT processor with 2 TCs (see Figure 4.7(b)). Table 4.3 shows the reasoning for calculating the StallCyclesPerMemoryAccess parameter for the BMT processor with 2 TCs (TC1 and TC2). Each TC can be in one of the memory units. So rst, we consider all the possible combinations between the memory units of both TCs. Then, for each combination, we choose which TC is allowed to execute depending the scheduling protocol, and we note the cost in cycles and the probability of accessing each memory unit. For a BMT processor with m TCs and a memory system with n units, the total number of possible combinations is n m .

Then, StallCyclesPerMemoryAccess for the BMT processor is calculated by summing the cost and the probability of all the memory units as shown in equation 4.3:

StallCyclesP erM emoryAccess = CostCycles * P (T C1) * P (T C2) (4.3)
We x the same parameters (CPIbase,Percentage of load/store instructions, Memory access time, L2 cache memory hit rate) as done previously in section 4.3.2, and we vary only the L1 I$ and D$ hit rate between 80% and 100%.

In It is clear from these results that the BMT processor increases the pipeline utilization by executing another TC while there are long waiting stall cycles, hence a lower CPI. The BMT processor with 2 TCs has a performance gain that reaches 175% (for 80% L1 cache hit rate) compared to the monothreaded PE for the AHDAM architecture. As the cache hit rate reaches 100%, we see in Figure 4.8(b) that there will be no performance gain. Therefore, there is a possibility to reduce the cache sizes, hence less on-chip memory die area and still guarantee a performance gain for the BMT processor. In summary, the LPE cores are BMT cores with 2 TCs instead of monothreaded cores in AHDAM.

Execution model

In this section, we describe a typical execution model sequence in the AHDAM architecture. At the beginning, AHDAM receives an application execution demand from an external host CPU through the System bus. The CCP handles the communication. It fetches the application task dependency graph (CDFG), stores it in its internal memory, and checks the next tasks ready to run to be pre-congured by the MCMU. When the MCMU receives a task pre-conguration demand from the CCP, it congures the shared instruction memory space and allocates the necessary free space, then it fetches the tasks instruction codes from the o-chip DDR3 memory using an internal DMA engine, and nally it creates internally the translation tables. At this stage, the CCP is ready to schedule and dispatch the next tasks to run on available computation units through the Control bus.

Each task has serial regions and parallel regions. The parallel regions can be the parallelized loop codes using a fork-join programming model such as OpenMP pragmas. For instance, let us consider the code example shown in Figure 4.9. It consists of 3 serial regions (S1,S2,S3) and 2 parallel regions (P1,P2). The thread execution is processed in 4 steps: 1) executing the serial region 2) forking the child threads 3) executing the child threads in parallel 4) joining the child improves the LPEs occupation rate. In addition, it optimizes the execution of irregular for-loops. In fact, some for-loops have dierent execution paths that render their execution highly variable as shown in parallel region P1 in Figure 4.9. This scheduling architecture resembles the SMTC (Symmetric Multi-Thread Context) scheduling model with the MPE playing the role of the global controller. This has been shown to be the best scheduling architecture for multiple multithreaded processors [START_REF] Bechara | Comparison of dierent thread scheduling strategies for Asymmetric Chip MultiThreading architectures in embedded systems[END_REF] (see section 3.3.3.1).

In AHDAM, we implement a fork-join model with synchronous scheduling: the master thread forks the child threads, then waits to join until all the child threads have nished their execution. Therefore, during the execution of the parallel child threads, the MPE is in a dormant mode and is not preemptable by the CCP. There are 2 advantages from using this execution model: 1) the LPEs have a full bandwidth to the memory and are not disturbed by the MPE execution 2) easier 'join' process. Join: When a child thread nishes execution, it sends a message to the corresponding Thread Context Pool, then ushes its L1 and L2 caches, which implement the write-back cache policy. Then, the Thread Context Pool decrements the counter that corresponds to the master thread.

When the counter reaches zero, all the child threads have nished their execution and the master thread is ready to join. Thus, the Thread Context Pool preempts the MPE. The MPE leaves the dormant mode, ushes its L1 and L2 caches, and continues the execution of the serial region (S2).

Scalability analysis

AHDAM architecture is designed for the manycore era. But what is the maximum number of cores that can be integrated before experiencing performance drawbacks? To answer this question, we need to analyze each architectural component that might limit AHDAM's scalability.

AHDAM architecture is designed to be scalable horizontally (M Tiles) and vertically (N LPEs). The horizontal scalability is bounded by the control bus bandwidth, the CCP reactivity, and the DDR3 controller bandwidth plus its maximum supported number of master interfaces. On the other hand, the vertical scalability is bounded by the DDR3 controller bandwidth allocated for each Tile and the MUX/DEMUX component. Thus, the maximum number of Tiles and LPEs is bounded by the minimal number of these 4 parameters. In the following sections, we will explore each parameter in details.

Control bus dimensioning

The control bus is the interconnection network where the tasks' execution requests are sent from the CCP to all the Tiles' MPE as shown in Figure 4.10.

Let us assume that the MPEs and CCP have a frequency of 500 MHz (T=2ns) and that the control bus is operating on 250 MHz, that is half the processor's frequency. This implies that a 32-bit MPE (4 Bytes) generates a peak bandwidth of 2 GBps and a 32-bit bus supports 1 GBps peak bandwidth. However, the CCP-MPE communicates normally during the start and the end of a task. And, each communication packet is equal to 64 Bytes, which are the information needed to start the execution of a task. So, the overall communication bandwidth depends heavily on the task granularity. Let us vary the task granularity from 0.01 to 100 µs. The maximum number of MPEs that can be supported by a 32/64/128-bit control bus are shown in These results show the optimal case (ideal bus arbiter) that renders the bus overdimensioned. In fact, there are more communications that happen through the control bus, such as MPE-MCMU communication. It is clear from this graph that the task granularity has a major impact on the control bus dimensioning, thus the maximum number of supported MPEs. It should be equal or greater to 5 µs in order to support more than 100 MPEs.

CCP reactivity

As stated earlier in section 1.2.2.3, the main drawback of asymmetric architectures is their scalability and the centralized core's reactivity. The centralized control core suers from contentions when 4.5. Scalability analysis the number of computing cores and application tasks increases, hence the scheduling overhead of the central core also increases as shown in Figure 4.12. This means that the computing cores are stalled while waiting the scheduling decision of the control core. As we can notice, the main factor for a high scheduling overhead is the number of tasks to be scheduled and not the number of cores. Particularly for SCMP, the author [START_REF] Ventroux | Contrôle en ligne des systèmes multiprocesseurs hétérogènes embarqués: élaboration et validation d'une architecture[END_REF] has shown that the tasks length should be equal or greater than 10 times the CCP scheduling tick length, in order to guarantee the cores' occupation rate to be greater than 85%. This means that for a CCP running at 500 MHz and an average CCP scheduling tick time of 10000 cycles, the scheduling time is equal to 20 µs. Thus, the minimal task length should be equal or greater to 200 µs (order of 10). Therefore, given the task length constraint and by matching it with the control bus bandwidth constraint in Figure 4.11, the control unit can support more than 1000 computing cores before starting to suer from performances degradation. In AHDAM, the CCP core is the same as in SCMP.

This implies that an asymmetric architecture with a central controller should support medium and coarse-grained tasks that have an execution time larger than the 10 times the CCP scheduling tick time. As for ne-grained tasks, they should have a dierent scheduling model, such as farming.

In AHDAM, we support coarse-grained tasks on the CCP-MPE level for task-level parallelism and ne-grained tasks on the MPE-LPE level for loop-level parallelism.

In summary, the control bus bandwidth and the CCP reactivity are notlimiting factors for the number of supported Tiles, since the tasks implemented on the CCP level are coarse-grained tasks. The DesignWare Universal DDR controller family consists of two high performance components, the Universal DDR Protocol Controller (uPCTL) and Universal DDR Memory Controller (uM-CTL). Both are capable of controlling JEDEC standard DDR2, DDR3, Mobile DDR and LPDDR2 SDRAMs. The uPCTL is a bridge between a system-on-chip (SoC) application bus and a PHY for a DDR SDRAM, such as the Synopsys DesignWare DDR PHYs (Physical interface). The uPCTL and the DDR PHY together handle the details of the DDR protocol, allowing the application to access memory via simple on-chip bus read/write requests. As for the uMCTL, it is a multi-port memory controller which accepts memory access requests from up to 32 application-side host ports. Therefore, the maximum number of supported Tiles is 32. In addition, this DDR3 Controller supports data rates up to 2133 MegaTransfer per second which is equivalent to 34.128 GBps for a 128-bit data bus. This conguration is for a 533 MHz controller clock. Given this bandwidth, each Tile is allocated approximately 1066.5 MBps. It is worth to note that some designers might share multiple Tiles per one host port at the expense of reducing the allocated bandwidth per Tile. This is a correct solution, but as we will see in section 4.5.4, it has a great impact on the vertical scalability of the architecture. Therefore, we privilege a simple system with one Tile per host port.

Vertical scalability

In this section, we will conduct a per Tile bandwidth analysis to know what is the maximum number of LPEs that can be integrated per Tile, or in other words the vertical scalability limitations. The MPE computation does not interfere with the LPEs, since we adapt a synchronous scheduling execution model as described later in section 4.4.

In AHDAM, the memory hierarchy is splitted between instruction and data. The instruction memory hierarchy does not constitute a source of bandwidth limitations, since the L1 I$ size can be over-dimensioned for the multiple classes of applications, thus it generates few cache misses. In addition, the instruction interconnection network is implemented as a multibus to limit simultaneous accesses to the same memory bank. So, the data memory hierachy (L1 D$, L2 D$, DDR3) is the source of vertical scalability limitations.

In our study, we assume the LPE is running at 500 MHz. Therefore, it generates a maximum of 500 MOPS, where each OPS (Operation Per Second) is a 32-bit operation. As a rule of thumb, 20% of these memory accesses are load/store instructions. Therefore, the L1 D$ receives 100 MOPS. Depending on the L1 D$ miss rate, the output throughput varies. For instance, let us assume the L1 D$ miss rate is 10% and the L1 block size is 16 Bytes. Thus, the output throughput that is input to the L2 D$ is equal to 160 MBps. The same reasoning applies for the L2 D$. We assume that the L2 D$ block size is equal to 64 Bytes. At the end, we divide the total allocated bandwidth per Tile by the LPE's L2 D$ output bandwidth, and we get the total number of LPEs that can be integrated in one Tile. The total allocated bandwidth per Tile depends on the number of Tiles. For instance, 32/16/8 Tiles have 1066.5/2133/4266 MBps respectively.

In Figure 4.14, we show the total number of LPEs for 32/16/8 Tiles. We vary the L1 D$ and L2 D$ miss rates between 20% and 1%.

The results show that the total number of LPEs heavily depend on the data cache miss rates. As a system engineer, we dimension the architecture for the worst-case scenario. In our case, we consider the worst-case to be for 20% miss rates for both data caches. Therefore, according to the bandwidth analysis, the maximum number of LPEs is 4/8/16 for 32/16/8 Tiles respectively. Of course, these numbers can be bigger if we are sure that the data cache miss rates will never exceed 20%.

Finally, the MUX/DEMUX unit should guarantee the exact reserved bandwidth for each LPE. Therefore, it is designed as a Time-division multiplexing (TDM) bus. TDM is used for circuit mode communication with a xed number of channels and constant bandwidth per channel. In a TDM bus, data or information arriving from an input line is put onto specic timeslots on a high-speed bus, where a recipient would listen to the bus and pick out only the signals for a certain timeslot. For case of simplicity, we implement a static TDM bus. However, a possible optimization is to implement a dynamic TDM bus, where the allocated bandwidth depends on the activity of each channel.

Discussion

In this chapter, we presented an asymmetric manycore architecture, called AHDAM, that tackles the challenges of future high-end massively parallel dynamic embedded applications. We presented in details its programming model and the functionality of all its components. In addition, we studied the scalability of this architecture and we deduced that it can support 136 processors (8 Tiles x 16 LPEs + 8 MPEs) depending on the application requirement.

In the next chapter, we will evaluate the performance of AHDAM architecture using a real-case application from the telecommunication domain: radio-sensing. In addition, we will compare it to the SCMP architecture.

An embedded application: Radio-sensing

The radio spectrum sensing application belongs to the telecommunication domain. This component, which can be found in cognitive radios, is developed by Thales Communications France (TCF) within the SCALOPES project.

We describe the application characteristics (purpose, features, scalability and parallelization opportunities) in section 5.1.1. Then, in section 5.1.2, we show how the task parallelism is extracted from the application using PAR4ALL tool.

Application description

The Spectrum Sensing is one of the main functions constituting a cognitive radio. A cognitive radio is a system characterized by the ability of a terminal to interact with its environment. It means that this terminal will have skills to sense its surrounding environment (sensing), to decide (cognitive manager) and to recongure (software radio) itself. For instance it will be able to detect the available frequencies and use them. Within this thesis, the application case that we will develop and study is more precisely the spectrum sensing step, which occurs at the physical layer as depicted in Figure 5.1: The spectrum sensing function [70] aims to detect the unused spectrums and to share them without interference with other users. In other words, the already used spectrums are detected in order to identify spectrum holes. This application is used in the spectrum monitoring devices and the electronic warfare devices. Usually, spectrum monitoring focuses at signal modulation parameters and amplitude and does not require real time constraints. Electronic Warfare searches for real-time output face to regular communication signal or signals available within an identication data base. The sensing function faces a number of challenges in terms of miniaturization, power consumption, and timing response. These constraints are even more severe for mobile terminals. Three main sensing techniques can be used within the scope of spectrum monitoring and sensing: Cooperative context (Data-aided techniques), Blind Context, Semi-Blind Context. In this application, we will 104 5.1. An embedded application: Radio-sensing limit the use case to a GSM sensing application (cooperative context).

The GSM sensing is composed of 3 main steps:

1. Digital signal pre-processing consisting in signal wideband ltering and in baseband transposition as well as in the signal channelization.

2. Processing of "each" channelized digital signal consisting in the parameter estimation and in the measurement at signal amplitude bandwidth modulation parameters.

3. Processing of "each" symbol consisting in the demodulation of the signal and in the measurement of the symbol stream code parameter.

The algorithm performing these 3 steps is decomposed into 8 operations. In this use case, we will limit the scope of the GSM sensing application use case to the rst three main operations, which constitute the front-end processing. This use case is characterized by a sequential processing made of basic and unoptimized operations (no feed-back, no FFT). It consists in a strong data ow and thus requires strong memory and computational components that can be shared between the operations. It also implies a management of the dynamic of the signal within the processing. Figure 5.2 tries to synthesize these three steps, their ow sizes and related complexities (for GSM wideband input signal at 40 MHz): This use case contains various parameters that can be modied. As consequence, it leads to scalability opportunities. Modifying them will impact the number of operations (complexity) as well as the ow size and thus will induce dierent resources (memory, processing units) usage. One of the rst obvious parameters on which we can have an inuence in this application is the frequency of the wideband input signal. Another parameter is the size of the buers that varies with respect to the duration length of the stored data. Indeed, all algorithms can be performed with limited duration buers. For instance, we can select buers sizes of 100 ms each second. As a consequence, it will limit the complexity and data ow size.

Trimaran consists of three components as shown in Figure 5.4: the OpenIMPACT compiler, the Elcor compiler, and the Simu simulator. The produced Lcode is optimized for ILP, but not for a specic machine. This code is then passed to the Elcor compiler, which is the VLIW compiler, along with a machine description (MDES) that species the target machine. Elcor compiles the code for the target machine, producing another IR called rebel. The Trimaran simulator known as Simu consumes the rebel code, executes the code, and gathers execution statistics.

The VLIW architecture has several conguration parameters. To simulate the VLIW in the AHDAM architecture context, we congured it to have a 3-way architecture with 2 ALUs, 1 FPU, a branch unit and 32 registers. The memory conguration reects the AHDAM memory hierarchy as seen by the LPE: each LPE has a private L1 I$ and D$, and a private L2 D$. Then, the L1 I$ is connected to an on-chip instruction memory with 10 cycles of access time, and the L2 D$ is connected to the o-chip DDR3 memory with access time of 50 cycles. The modeled architecture in Trimaran is shown in Figure 5.5.

Each task of the radio-sensing application is executed 2 times in the Trimaran simulator: the rst time with the serial and the parallel regions of the task and the second time with only the serial regions. The dierence between both execution times gives the total execution time of the parallel regions on a 3-way VLIW processor. We consider that the parallel regions are non-preemptable, which means that once they are allocated on a LPE, they should run until completion.

The VLIW processor implemented in Trimaran is monothreaded. So, in order to estimate the performance gain of a blocked multithreaded processor, we use our analytical model for BMT in AHDAM memory hierarchy that was described in section 4.3.3. We estimate the performance increase due to a BMT multithreaded processor with 2 TCs. We assume that each LPE is executing 2 child threads from the same parent task. The cache miss rates statistics are extracted from the 108 5.3. Performance evaluation Then, we inject the new performance results in SESAM simulator and we get the total execution time of all the tasks, where each task has its serial regions executed on a monothreaded MIPS32 processor and its parallel regions executed on a 3-way blocked multithreaded VLIW processor.

Our model assumes that the penalty due to forking and joining threads is negligible compared to the execution time of each thread.

We should note that the Trimaran simulator takes advantage of the host processor resources. For instance, the execution of the trigonometric operations such as sine/cosine are done very fast (fewer than 10 cycles), since they use the host CPU instructions and are executed directly on the microprocessor hardware (if the host CPU supports it). This is not the case of the MIPS simulator. Each sine/cosine function is emulated in software using a polynomial algorithm that takes more than 100 cycles depending on the input data. Therefore, to have a fair comparison between the MPE and LPE execution, we implement these functions in Trimaran as polynomial functions extracted from the generic libc.

Performance evaluation

In this section, we will evaluate the performance and transistor eciency of AHDAM architecture by running the radio-sensing application in 2 modes (see section 5.1): low-sensitivity and highsensitivity.

Chapter 5. Evaluation

The AHDAM architecture is congured with 8 Tiles and 4/8/16 LPEs per Tile. All the cores run at 500 MHz, thus the peak performance of AHDAM is 52 GOPS, 100 GOPS, and 196 GOPS respectively for the 3 congurations. The MPE has a 4-KB L1 I$ and an 8-KB L1 D$, while the LPE has a 1-KB L1 I$ and a 2-KB L1 D$ (1-KB per TC), and a 32-KB L2 D$. The on-chip instruction memory is equal to 1.5 MB, which is the total size of the tasks' instructions and stack memories. The necessary cache memory values are deduced from the proling results that are conducted on each parallel task in the radio-sensing application. The memory access to the on-chip instruction memory takes 10 cycles, as well as the L2 D$. For the o-chip DDR3 memory, the access time is 50 cycles.

First, we motivate the need for an asymmetric architecture for the radio-sensing application. Then, we evaluate the performance of AHDAM architecture with multithreaded and monothreaded LPEs, in order to see how the multithreading can boost the performance of AHDAM. In addition, we compare the performance of AHDAM architecture with SCMP architecture and with a monothreaded processor. Finally, we estimate AHDAM's area occupation in a 40 nm technology for 8 Tiles and 4/8/16 LPEs per Tile, and we evaluate the transistor eciency of AHDAM architecture.

Why an asymmetric architecture?

As mentioned earlier, the radio-sensing application is a dynamic application as shown in Figure 5.6 for the low-sensitivity version executed on SCMP with 8 processors. In particular, we vary the input data and we plot the total execution time of the application in Figure 5.6(a). There is a variation of 29% between the normal input data and data with all zeros. On the other hand, when plotting the average percentage of variation of each task execution time in Figure 5.6(b), we notice that there is a huge dierence between the variation of each task execution length with respect to the input data. For instance, task 14 varies 356% on average while 110 5.3. Performance evaluation task 10 varies only 0.2% on average. In fact, each task in the application has dierent computation requirements.

In addition to its dynamism, the radio-sensing application follows the streaming execution model. Thus, there are lots of synchronizations between the tasks that might cause the processors to stall. We execute the low-sensitivity version of the radio-sensing application on SCMP with a static and dynamic allocation of the tasks. In fact, the central controller of SCMP is similar to that of AHDAM, so the tasks scheduling and load balancing will be the same. In the static scheduler, the tasks are allocated to only one processor with no task migration. While for the dynamic scheduler, the tasks can be migrated between the processors for load-balancing. The results of the static v/s dynamic scheduling are shown in Figure 5 The results show that the dynamic scheduler is 2.4 times more performance than the static scheduler. For the static scheduler, the synchronization overhead constitutes more than 70% of the total execution time. However, for the dynamic scheduler, the central controller balances the load dynamically depending on the tasks execution state (active or stalled), thus it is able to nd more active tasks to be executed on all the processors. In fact, it is dicult to have an optimal static partitioning prior to the execution of the radio-sensing application because of its dynamism. This implies that the central controller in AHDAM is important for boosting the performance of dynamic applications.

AHDAM: with MT v/s without MT

For this experiment, we evaluate the impact of multithreaded processors on the AHDAM architecture by running the radio-sensing application in 2 modes: low-sensitivity and high-sensitivity. The LPE is implemented as either a monothreaded 3-way VLIW or a blocked multithreaded 3-way VLIW. In Figure 5.8, we plot the performance for the 3 AHDAM congurations with 4/8/16 LPEs per Tile, and for the low-sensitivity and high-sensitivity applications. The results show that for the high-sensitivity application, the impact of multithreading is much higher than that of low-sensitivity. In fact, the high-sensitivity application has a large data set 432 MB compared to the low-sensitivity 1,025 MB. This huge dierence has a large impact on the memory hierarchy performance. More data cache misses are generated, thus more accesses to the o-chip DDR3 memory. In this scenario, the blocked multithreaded VLIW processor is useful, since it is able to hide the memory access latency by executing another thread. The multithreaded VLIW has a performance gain of 39% on average for the 3 AHDAM congurations. On the other hand, for the low-sensitivity application, the small data set can t in the on-chip cache memories, thus there are no frequent accesses to the o-chip memory. Hence, the CPI of the monothreaded and multithreaded VLIW processor are almost identical. This explains the low performance gain due to multithreading, which is 10.5% on average for the 3 AHDAM congurations. Also note the dierence in performance gain the low-sensitivity application when varying the number of LPEs per Tile. This is due to the fact that more threads are executed per LPE, hence more cache contentions between the threads and more accesses to the next level of cache hierarchy. In this case, the multithreaded VLIW has a better performance (14% in the case of AHDAM (8x4)).

Performance evaluation

AHDAM v/s SCMP v/s monothreaded processor

In this section, we compare the performance of the AHDAM architecture with the SCMP architecture and with a monothreaded processor. The monothreaded processor system is a 1 MIPS32 24K processor with a FPU [START_REF]MIPS 24K[END_REF], and a sucient on-chip memory for data and instructions (432 MB). The memory access time to the on-chip memory is 10 cycles, as well as the L2$ memory. The processor has a 4-KB L1 I$ and an 8-KB L1 D$, and a 32-KB L2 D$. The SCMP system has 8 MIPS32 24K processors with a FPU. Each processor has a 4-KB L1 I$ and an 8-KB L1 D$, and a 32-KB L2 D$. Similarly to the monothreaded system, there are sucient on-chip memory for data and instructions, while the access time is 10 cycles. For the AHDAM architecture, we consider the 3 congurations that were explained previously in section 5.3. The LPEs are implemented as blocked multithreaded 3-way VLIWs.

The real-time deadline of the radio-sensing application is 6 seconds for both the low-sensitivity and high-sensitivity congurations, which corresponds to 3.10 9 cycles for a 500 MHz processor frequency.

The execution times of the low-sensitivity application on all these systems are shown in Figure 5.9. As we can notice in this gure, both the SCMP and AHDAM were able to meet the real-time requirements, while the monoprocessor was slightly above with an execution time of 7.84 seconds.

Chapter 5. Evaluation

The AHDAM(8x16) has a speedup of 126 compared to the monothreaded processor, while the SCMP(8) has only a speedup around 6. For this application requirement, the SCMP performance is sucient to get the required results since the computation requirements are low (328 MOPS).

However, when running the high-sensitivity application, the performance requirements are much higher as shown in Figure 5.10. The results show that none of the architectures is able to meet the real-time requirements under 6 seconds except AHDAM(8x16) architecture, which has a speedup of 574 compared to the monothreaded processor. In fact, the application has a lot of LLP and can be exploited eciently in AHDAM. Despite the theoretical peak performance of AHDAM(8x8) of 100 GOPS, it only reaches 75.8 GOPS for the high-sensitivity application.

In the next section, we will estimate the overall AHDAM area in 40 nm technology.

AHDAM: chip area estimation

At this stage, AHDAM architecture is not synthesized as a complete chip. However, we are able to estimate the area of the key components in AHDAM architecture in a 40 nm technology, such as the processors (CCP, MPE, LPE) and the memories (instruction memory, Thread Context pools, L1 cache memories, L2 cache memories). For the interconnection networks and busses, we synthesized them in a 40 nm technology and we assumed that the wires are placed above the processors and We can notice that the computing cores take 27% of the overall die area, which is quite a good number compared to recent MPSoC architectures. In fact, the key design parameter taken in AHDAM design is to reduce the size of the on-chip memory and integrate more ecient processors for computation. The interconnection networks occupy only 0.4% of the overall die area.

The AHDAM architecture can be used for dierent application requirements, having dierent needs in thread parallelism. Therefore, in Figure 5.12, we compare the area of dierent congurations of AHDAM architecture with 8 Tiles and 4/8/16 LPEs per Tile.

As depicted in this gure, the area dierence between AHDAM architecture with 136 cores and 40 cores is only 67% for more than 3 times the number of cores. Therefore, it would be advantageous to select an AHDAM architecture with a higher number of cores, hence a higher peak performance, for only a small increase in chip area.

Finally, we evaluate the impact of multithreaded VLIW on the overall AHDAM area. In Figure 5.13, we show the AHDAM architecture surface with monothreaded VLIWs and multithreaded VLIWs for 8 Tiles and 4/8/16 LPEs per Tile.

The estimated chip area results show that the multithreaded processors have a small impact on the overall chip area. It is only 2.8% more for AHDAM(8x4), while it reaches 7% for AHDAM(8x16). As we saw in section 5.3.2, the performance gain due to multithreading is much higher than the overall chip area increase, hence a high transistor eciency of the AHDAM architecture.

Discussion

In this chapter, we evaluated the performance of the AHDAM architecture with respect to a massively parallel application from the telecommunication domain called radio-sensing. The high- sensitivity conguration of this application is characterized by its large data set of 432 MB and its high computation requirement of 75.8 GOPS. In addition, 99.8% of its execution time is spent in loops that can be parallelized using OpenMP pragmas. AHDAM architecture is simulated using a combination of simulator tools such as SESAM and Trimaran, and using the analytical model of the BMT processor described in section 4.3.3.

Discussion

We conducted several experimentations that lead to interesting conclusions:

1. The asymmetric property of the AHDAM architecture is essential for the dynamic applications to increase their performance. The dynamic scheduling gave a speedup of 2.4 over the static scheduling for the radio-sensing application.

2. A multithreaded VLIW LPE boosts the performance of the AHDAM architecture for only a small area increase. For instance, the AHDAM(8x16) with multithreaded VLIWs gives a performance gain of 39% for only 7% area increase, as compared with monothreaded VLIWs.

Hence, multithreading is a transistor ecient solution for the AHDAM architecture.

3. The VLIW architecture signicantly increases the performance of the architecture since it exploits the ILP of the application with only a small area increase. This is why we tend to see VLIW architectures in lot of MPSoC solutions such as Tilera TILE64 [142,[START_REF] Bell | TILE64 -Processor: A 64-Core SoC with Mesh Interconnect[END_REF].

4.

Exploiting the loop-level parallelism in hardware boosts signicantly the performances, since a large portion of the execution time is spent in loops. 5. By splitting both instruction and data memories, and implementing a cache architecture for the data, we improved the programmability of the architecture. New applications are easily ported on AHDAM.

6. AHDAM architecture can eciently and eectively meet the performance requirements of future high-end massively parallel dynamic applications.

Conclusions and Perspectives

If you have a lemon, make Lemonade. To tackle the challenges of future high-end massively-parallel dynamic embedded applications, we have designed the AHDAM architecture, an asymmetric manycore architecture. Its architecture permits to process applications with large data sets by eciently hiding the processors' stall time using multithreaded processors. Besides, it exploits the parallelism of the applications at the thread and loop levels. AHDAM architecture tackles the dynamism of these applications by dynamically balancing the load between its execution resources using a central controller to increase their utilization rate.

Synthesis of this work

In chapter 1, we dened the context of our study: massively-parallel dynamic embedded applications. These applications are highly parallel. The parallelism can be extracted at the thread level (TLP) and at the loop level. So an application might have more than 1000 parallel threads to be processed in parallel. Therefore, manycore architectures are natural solutions for these applications. In addition, the dynamism of those applications requires an ecient MPSoC solution to manage the resources occupation and balance the loads in order to maximize the overall throughput. Asymmetric homogeneous MPSoC architectures are the best solution for fast and reactive load-balancing. They are also highly transistor and energy ecient because of the separation between control and computing cores. However, these architectures have shown some limitations that prevent them from being scalable to the manycore level and ecient for the long latency memory accesses. Therefore, we have chosen the SCMP architecture as the architecture of reference for experimentations, in order to propose a design improvement of its performance. In particular, we explored two types of architectural improvements: hardware multithreading and scalability.

First of all, we investigated the advantages/disadvantages of hardware multithreading for embedded systems in chapter 2. We started by designing two small footprints, scalar, in-order multithreaded processor for the embedded systems based on a monothreaded AntX processor: Interleaved Multithreading (IMT) and Blocked Multithreading (BMT). The synthesis results in a 40 nm TSMC technology showed that the register le occupies more than 38% of the overall core area, thus it is not area ecient to integrate more than 2 thread contexts (TC) per multithreaded processor. Therefore, we have chosen to implement a multithreaded processor with 2 TCs. Both multithreaded Conclusions and Perspectives processors were synthesized in a 40 nm TSMC technology. The results shows that the IMT and BMT processors have 73.4% and 61.3% increase in core area versus the monothreaded core. Thus, the BMT has a smaller area. Finally, we compared the performances and transistor eciency of both MT cores using a bubble sort application, while varying the L1 data cache size and the data memory latency. The results have shown that there is a trade-o between the data cache memory size, the data memory latency, and the core area overhead. Choosing the best processor highly depends on the system designer specications and the application requirements.

Based on this conclusion, we explored in chapter 3 the performance impact of the multithreaded processor in the SCMP architecture. For this reason, we developed a new multithreaded ISS in SystemC language and integrated it in SESAM, which is the simulation environment for SCMP. The new SCMP architecture with multiple multithreaded processors has been called MT_SCMP. We conducted several benchmarks based on control-ow and streaming applications in order to choose which multithreaded processor suits best for MT_SCMP (IMT v/s BMT), which global thread scheduling for multiple multithreaded processors gives the best performance (VSMP v/s SMTC), and which asymmetric MPSoC architecture is the most performing and transistor ecient (SCMP v/s MT_SCMP). The results have shown that the blocked multithreaded processor (BMT) and the SMTC scheduler suits best for MT_SCMP [START_REF] Bechara | Comparison of dierent thread scheduling strategies for Asymmetric Chip MultiThreading architectures in embedded systems[END_REF], and thus are adapted as xed system design parameters for this architecture. Finally, we compared the performances and transistor eciency of SCMP and MT_SCMP by running 2 types of embedded applications: connected component labeling (control-ow) and WCDMA streaming. The MT_SCMP had better peak performance, but less transistor eciency than SCMP. Whether to choose multithreaded processors for SCMP or not, depends on the system designer. If peak performance is a key parameter, then multithreaded processors are an interesting solution. However, for transistor eciency, monothreaded processors remain a more ecient solution. As for high-end massively-parallel dynamic embedded applications with large data sets, there are lots of parallelism at the thread level (TLP) and at the loop level (LLP) that should be exploited by the architecture. The SCMP architecture has shown scalability, extensibility, programmability, and parallelism limitations for such applications.

Therefore, we proposed a novel solution that target the manycore era in chapter 4. The proposed architecture is called AHDAM, which stands for Asymmetric Homogeneous with Dynamic Allocator Manycore architecture. AHDAM has been designed to tackle the challenges of future high-end massively parallel dynamic embedded applications. It is used as an on-chip accelerator and it exploits the parallelism at the thread level (TLP) and loop level (LLP). We presented in details its programming model and the functionality of all its components. In addition, we studied the scalability of this architecture and we deduced that it can support 136 processors depending on the application requirement; hence AHDAM has reached the manycore level. Finally in chapter 5, we evaluated the performance of AHDAM architecture with respect to a massively parallel dynamic application from the telecommunication domain called radio-sensing.

The high-sensitivity conguration of this application is characterized by its large data set of 432 MB, its high computation requirement of 75.8 GOPS, and its dynamism. In addition, 99.8% of its execution time is spent in loops that can be parallelized using OpenMP pragmas. AHDAM architecture was simulated using a combination of simulator tools such as SESAM and Trimaran, and using the analytical model of the BMT processor that we have developed. After we have conducted several experimentations, we concluded that the asymmetric property of the AHDAM architecture is essential for the dynamic applications to increase their performance. The dynamic scheduling gave a speedup of 2.4 over the static scheduling for the radio-sensing application. In addition, multithreading boosts the performance of AHDAM architecture and is a transistor ecient solution. Finally, AHDAM architecture is a powerful improvement over SCMP and can meet the performance requirements of future high-end massively parallel dynamic applications.

My PhD works and results contribute today to the CEA LIST roadmap and the LCE laboratory activities. However, there are still some important validations to the proposed architectural concepts in AHDAM architecture that should be done before industrializing the solution, and which we summarize them in the next section.

Perspectives Short term

Despite the evaluations we have conducted in this thesis, there are lots of proposed concepts in AHDAM architecture that still need explorations, developments and improvements. The short term perspectives can be divided into three main steps: development of a simulator, building a prototype, and comparison with other manycore architectures.

In the rst step, we need to develop a simulator for AHDAM, mainly an extension of the SESAM simulator environment. New components should be developed in SystemC that did not exist previously for the SCMP architecture, such as the L2 cache memory and its protocols, the Thread Control Pool and the TCP state scratchpad memories. In addition, a multithreaded VLIW ISS should be developed. Then, we need to encapsulate all the Tile's units in one module in order to look as one PE for the CCP, and validate all the Tile functionalities. In particular, the Tile NoC architecture should be investigated. Finally, the L2 instruction and data memories should be split.

After building the AHDAM simulator environment, the proposed runtime environment for forkjoin threads should be developed. This runtime is a critical part of the AHDAM functionality and the intra-Tile and inter-Tile management. The heuristic behind nding the optimal number of threads to be forked should be investigated in more details, since it is an important parameter for the overall loop-regions acceleration. In addition, the farming execution model should be validated. At this stage, we can experiment new features in global scheduling, such as the possibility to execute more than one task on each Tile by allowing the preemption of the MPEs and the LPEs in order to dynamically adapt the resources depending on the application requirements. Furthermore, new concepts of memory management can be tested, such as the dynamic allocation of data buers in the o-chip DDR3 memory, and implementing a data prefetcher from the DDR3 to the L2$ memories.

Having the AHDAM simulator and runtime environment in place, it would be interesting to continue the development of the automatic programming toolchain that we started in chapter 4. It could be based on the PAR4ALL tool. This will allow us to port any legacy code easily to AHDAM architecture.

The second main step consists of building a prototype of the AHDAM architecture on a hardware emulation board. This prototype will be the proof of concept of the architecture. Having such a test chip prototype, we can estimate to an accurate value the transistor and energy eciency of the AHDAM architecture as well as the multithreaded processors. In particular, we can render the AHDAM chip more energy ecient by exploring new load-balancing strategies inside each Tile and between the Tiles, and integrate the strategies in the runtime environment. Other energy ecient techniques such as DVFS can be implemented on FPGA, but it would be more accurate on a nal ASIC solution. We can image that each Tile is running on a dierent frequency level and can be controlled by the CCP depending on the application requirements.

Finally, the third main step consists in comparing AHDAM architecture with other relevant manycore solutions such as Tilera TILE64 [142,[START_REF] Bell | TILE64 -Processor: A 64-Core SoC with Mesh Interconnect[END_REF], ST Microelectronics P2012 [START_REF] Benini | Programming Heterogeneous Many-core platforms in Nanometer Technology: the P2012 experience[END_REF], and Kalray MPPA [START_REF]Multi-Purpose Processor Array: MPPA[END_REF]. For this reason, we need to port several relevant dynamic embedded applications from several domains that have lots of parallelism and computation requirements. These applications should run on all these chips and a fair comparison would be conducted. At this stage, we are ready to conduct a technological transfer of the AHDAM chip solution to industries and national/European projects. In particular, we can develop two versions of AHDAM chip: low-end and high-end. The rst version targets the embedded market, while the last one targets the server market, and especially cloud computing. What would dierentiate both chips is the number of Tiles, the number of LPEs per Tile, and the load-balancing strategies utilized in the chip that would target performance or energy eciency.

Long term

On the long term, there are several architectural improvements that we imagine for AHDAM architecture.

As the process technology improves, there are more concerns about the reliability of the AH-DAM architecture. AHDAM could be used in critical domains such as military, nuclear and space applications, where fault tolerance is a non-negligible architectural decision. We can imagine that AHDAM chip would be fault-tolerant on the Tile, MPE and LPE levels by integrating spare components.

In addition, as we are experiencing nowadays, there is a huge gap between the processor and memory speed. This does not seem to change in the future unless a new technological breakthrough has been found for the memory technologies. Assuming this is not the case, there should be an architectural solution for keeping the LPE multithreaded processors from stalling. One solution would be to increase the number of hardware threads per LPE. But as we saw previously in chapter 2, this is not a transistor ecient solution for small footprint processors, a new technique would be to use a N out of M static interleaving multithreading architectures. This technique implies that a multithreaded processor has N foreground threads (hardware thread contexts) and M virtual threads stored in a special scratchpad memory close to the multithreaded processor. In this way, we are increasing the number of supported child threads per LPE.

AHDAM chip is a manycore architecture. But as we saw in chapter 4, there are also limitations to the scalability of the architecture. One solution would be to integrate more DDR3 controllers onchip, thus increasing the number of Tiles. Another solution to the scalability problem is to consider AHDAM architecture as an optimized cluster in a multi-cluster environment. Then, by using a hierarchical solution, we can increase the number of cores dramatically (more than 1000 cores). At this stage, we could imagine that the AHDAM programming model is extended to support MPI communication between the dierent AHDAM clusters. Thus, AHDAM would support OpenMP + MPI.

Finally, the on-chip SRAM and cache memories can be stacked on top of the cores using a 3D

stacking technology [START_REF] Garrou | Handbook of 3D Integration: Technology and Applications of 3D Integrated Circuits[END_REF]. This would be a dramatic improvement to the chip size, since 73% of the chip estimated area is occupied by the cache and SRAM memories. Thus, more cores could be integrated and the memory access times would be faster. This will improve the performance of AHDAM chip and perhaps new architectural improvements should be proposed when using a 3D stacking technology.

83 4 . 3 103 5. 1

 431031 AHDAM architecture design . 84 4.3.1 Architecture description . 85 4.3.2 Why splitting the L2 instruction and data memories? 89 4.3.3 Why is the LPE a blocked multithreaded processor? 93 4.4 Execution model . 95 4.5 Scalability analysis . 97 4.5.1 Control bus dimensioning . 97 4.5.2 CCP reactivity . 98 4.5.3 DDR3 controller . 100 4.5.4 Vertical scalability . 101 4.6 Discussion . 102 Evaluation An embedded application: Radio-sensing . 104 5.1.1 Application description . 104 5.1.2 Task decomposition and parallelism . 106 5.2 Simulation environment . 107 5.3 Performance evaluation . 109 5.3.1 Why an asymmetric architecture? . 110 5.3.2 AHDAM: with MT v/s without MT . 112 5.3.3 AHDAM v/s SCMP v/s monothreaded processor 113 5.3.4 AHDAM: chip area estimation . 114 5.4 Discussion . 116 xiv Contents Conclusions and Perspectives Synthesis of my work . Perspectives . Short term . Long term .

84 4 . 3

 43 AHDAM architecture . 86 4.4 Estimated synthesis results of multi-banked memories 87 4.5 Processor-memory system architectures . 90 4.6 CPI performance of 4 dierent processor-memory system architectures 92 4.7 2 dierent processor-memory system architectures with a BMT processor 94 4.8 CPI performance of AHDAM with BMT processor compared to monothreaded processor . 95 4.9 A task code example of serial and parallel regions using OpenMP pragmas 96 4.10 AHDAM control bus connecting the CCP with M MPEs 98 4.11 Total number of MPEs supported by a 32/64/128-bit control bus 98 4.12 CCP scheduling tick length for variable number of PEs and tasks 99 4.13 DesignWare Universal DDR Memory Controller Block Diagram 100 4.14 Maximum number of LPEs per Tile for 32/16/8 Tiles 1025.1 Spectrum Sensing description . 104 5.2 Spectrum Sensing main steps, maximal ows and complexities 105 5.3 CDFG of the radio-sensing application . 106 5.4 Trimaran organization . 108 5.5 Trimaran conguration for modeling the LPE with AHDAM memory hierarchy . . 109 5.6 Dynamic behavior of the radio-sensing application 110 5.7 Static v/s dynamic scheduling on SCMP for the radio-sensing application 111 5.8 Performance of AHDAM architecture with LPE as monothreaded 3-way VLIW v/s multithreaded 3-way VLIW . 112 5.9 Performance of AHDAM v/s SCMP v/s mono for radio-sensing with low-sensitivity 113 5.10 Performance of AHDAM v/s SCMP v/s mono for radio-sensing with high-sensitivity 114 xviii List of Figures 5.11 AHDAM architecture surface repartition . 5.12 AHDAM architecture surface with 8 Tiles and 4/8/16 LPEs per Tile 5.13 AHDAM architecture surface with monothreaded VLIW and multithreaded VLIW for 8 Tiles and 4/8/16 LPEs per Tile . xix One thing is sure. We have to do something. We have to do the best we know how at the moment...If it doesn't turn out right, we can modify it as we go along. Franklin D.Roosevelt, president Contents Context of study . 1 Problematic . 2 Outline of this report . 3

1. 3 . 1

 31 Architecture overview . 17 1.3.2 Programming models . 20 1.3.3 SCMP processing example . 22 1.4 Why these MPSoC architectures are not suitable? 23

Figure 1 . 2 :

 12 Figure 1.2: Execution time of the connected component labeling algorithm on a video sequence with an Intel Pentium 4 Xeon processor (2.99 GHz) [151].

Figure 1 . 4 :Figure 1 . 5 :

 1415 Figure 1.4: SCMP system architecture: the host CPU dispatches massively parallel dynamic applications to SCMP for optimal transistor/energy ecient acceleration.

Figure 1 . 7 :

 17 Figure 1.7: SCMP programming model and an example of a typical CDFG control graph.

Figure 1 . 8 :

 18 Figure 1.8: Control-ow execution model. Reads and writes are non-blocking. Each arrow represents an interconnection through the data network between a Processing Element (PE) and a data buer stored in local memories (Mem). Dark arrows are read/write accesses, whereas gray arrows represent read-only accesses. Task execution requires only data produced by tasks that have nished their execution on a PE.

Figure 1 . 9 :

 19 Figure 1.9: Streaming execution model. Each arrow represents an interconnection through the data network between a Processing Element (PE) and a data stored in local memories (Mem). Dark arrows are read/write accesses, whereas gray arrows represent read-only accesses. Task execution begins as soon as intermediate data are ready. Local synchronization is aorded through a memory management unit.

Figure 2 . 1 :

 21 Figure 2.1: Thread context v/s execution cores: Monothreaded, Multithreaded, Multiprocessor.

Chapter 2 .Figure 2 . 2 :

 222 Figure 2.2: Multithreaded processor design space.

Figure 2 . 3 :

 23 Figure2.3: Multithreaded processor execution core: scalar, superscalar, SMT. A scalar execution core processes one thread and issues 1 instruction per cycle. On the other hand, a superscalar execution core processes one thread but issues n instructions per cycle depending on the number of functional units. The SMT is a superscalar execution core that processes m threads.

29 Chapter 2 .Figure 2 . 4 :

 29224 Figure2.4: Multithreaded instruction issue types compared with monothreaded: interleaved multithreading (IMT), blocked multithreading (BMT). IMT issues an instruction from a dierent thread at every clock cycle with zero context-switching overhead. On the other hand, BMT allows a thread to run normally as in sequential mode before being switched out for long latency events. However, the context-switching has some penalty cycles.

Figure 2 . 5 :

 25 Figure 2.5: Example of industrial and research interleaved and blocked multithreading processors.

Figure 2 . 7 :

 27 Figure 2.7: Monothreaded AntX.

Figure 2 . 8 :

 28 Figure 2.8: Surface repartition of dierent components in monothreaded AntX for 40 nm TSMC technology. Total area = 11417 µm 2 , Total number of gates = 8.05 kilogates.

 2.1 in order to support blocked multithreading with 2 hardware TCs. AntX BMT with 2 TCs (TC1 and TC2) is shown in Figure 2.10.

Figure 2 . 10 :

 210 Figure 2.10: Blocked multithreaded AntX.

Figure 2 . 11 :

 211 Figure 2.11: Blocked multithreaded AntX FSM for 2 thread contexts: TC1 and TC2. The FSM shows that the BMT processor has 4 execution states: executing TC1, executing TC2, context switching, and stall.

Figure 2 . 12 :

 212 Figure 2.12: Surface repartition of dierent components synthesized in 40 nm TSMC technology for a) IMT AntX: Total area = 19772 µm 2 , Total number of gates = 13.95 kilogates b) BMT AntX: Total area = 18418 µm 2 , Total number of gates = 12.99 kilogates.

Figure 2 . 14 :

 214 Figure 2.14: AntX hierarchical memory system: Only the data cache size parameter is varied from 512-B to 4-KB. The average memory access latency for the instruction and data memories are observed during application execution and depends on the AHB arbiter. If AntX is multithreaded, then the L1 I$ and D$ memories are segmented per TC, which means each TC has half the L1$ size compared to the monothreaded AntX.

Figure 2 . 15 :

 215 Figure 2.15: Data cache miss rates for monothreaded and IMT/BMT AntX while varying the cache size: 512-B, 1-KB, 2-KB, and 4-KB.

Figure 2 . 16 :

 216 Figure 2.16: Performance results in cycles of monothreaded v/s IMT/BMT AntX with a variable L2 data memory latency. The L1 D$ size varies from 512-B to 4-KB. L1 cache memories are segmented per TC for the IMT/BMT.

Figure 2 . 17 :

 217 Figures 2.17(a) and 2.17(b) show the transistor eciency gain of the IMT and BMT processor respectively.

 You are not what you think you are; but what you think, you are. Norman Vincent Peale, minister and author Contents 3.1 MPSoC Simulation environment . 48 3.1.1 SESAM: A Simulation Environment for Scalable Asymmetric Multiprocessing . 49 3.1.2 Extending SESAM for multithreaded processors 53 3.2 A Multithreaded Instruction Set Simulator 56 3.2.1 The requirements for ISS and ADL . 56 3.2.2 Monothreaded cycle-accurate ISS model . 59 3.2.3 Multithreaded cycle-accurate ISS model . 62 3.3 Performance evaluation . 66 3.3.1 Applications description . 66 3.3.2 Which multithreaded processor system? . 68 3.3.3 Which global thread scheduling strategy? VSMP v/s SMTC 71 3.3.4 SCMP v/s MT_SCMP: chip area . 73 3.3.5 SCMP v/s MT_SCMP: performance . 74 3.3.6 Synthesis . 78

Figure 3 . 2 :

 32 Figure 3.2: SESAM infrastructure [152, 153].

Figure 3 . 3 :

 33 Figure 3.3: SCMP infrastructure modeled in SESAM [152, 153].

Figure 3 . 4 :

 34 Figure 3.4: Abstraction view of SESAM with multiple multithreaded processors.

Figure 3

 3 Figure 3.5: a) VSMP scheduler architecture b) SMTC scheduler architecture [18].

Figure 3 . 6 :

 36 Figure 3.6: The ArchC simulator generator from architecture and ISA description les.

 Figure 3.7 from AC_ARCH and AC_ISA les.

Figure 3 . 7 :

 37 Figure 3.7: R3000 cycle-accurate model generation by actsim tool.

Figure 3 . 8 :

 38 Figure 3.8: Pseudo-code for the EX-stage module in ArchC 2.0.

Figure 3 . 9 :

 39 Figure 3.9: New R3000 cycle-accurate model for SoC simulator integration capabilities [15].

Figure 3 . 10 :

 310 Figure 3.10: Multithreaded ISS model [16].

Figure 3 . 11 :Figure 3 . 12 :

 311312 Figure 3.11: Interleaved multithreading scheduler FSM (Mealy machine).

Figure 3 . 13 :

 313 Figure 3.13: Blocked multithreading scheduler FSM using greedy protocol (Moore machine).

Figure 3 . 14 :

 314 Figure 3.14: CDFG of the connected component labeling algorithm used as input for the centralized control core. The labeling algorithm is decomposed into 16 parallel tasks, where each task performs the labeling algorithm independently on a sub-image.

Figure 3 . 67 Chapter 3 .Figure 3 . 16 :

 3673316 Figure 3.15: 3 images of 2 pedestrians crossing a road.

Figure 3 . 17 :

 317 Figure 3.17: WCDMA application and CDFG.

Figure 3 . 18 :

 318 Figure 3.18: L1 I$ and D$ miss rate for cache sizes between 512-B and 8-KB and for the connected component labeling application.

Figure 3 . 19 :

 319 Figure 3.19: Performance results of MT_SCMP with 1 processor: Monothreaded v/s IMT v/s BMT. The sizes of the L1 I$ and D$ are varied simultaneously between 512-B and 8-KB. The performance gain of each multithreaded processor with respect to the monothreaded is plotted in b).

Figure 3 . 20 :

 320 Figure 3.20: Performance comparison of the dierent thread scheduling strategies: a) VSMP static v/s dynamic. b) SMTC static v/s dynamic. c) VSMP dynamic v/s SMTC dynamic. d) Thread scheduler v/s number of clock cycles per scheduling tick. The speedup line in the rst 3 gures is the speedup with respect to the same conguration.

Figure 3 . 21 :

 321 Figure 3.21: Components area in 40 nm technology for a) AntX processor monothreaded and BMT (TSMC) b) L1 cache memory with 16 Byte line and direct-mapped (CACTI 6.5) c) Multibus interconnection network with variable number of I/O ports (TSMC).

Figure 3 . 23 :

 323 Figure 3.23: Performance of SCMP v/s MT_SCMP for control-ow (labeling) application. The number of processors is varied from 1 to 8 and the cache sizes from 512-B to 8-KB. The cache sizes is per TC. 1PE_1K means The performance is plotted in clock cycles a) SCMP system performance b) MT_SCMP system performance c) Comparison between SCMP and MT_SCMP performance and speedups d) Transistor eciency of SCMP and MT_SCMP with respect to initial system: 1 PE and 512 Byte cache size.

Figure 3 . 24 :

 324 Figure 3.24: Performance and speedup comparison between SCMP v/s MT_SCMP for control-ow (labeling) application. The number of processors is varied from 1 to 8 and the cache sizes from 1-KB to 8-KB. The cache sizes is per PE.

Figure 3 . 25 :

 325 Figure 3.25: Performance of SCMP v/s MT_SCMP for streaming (WCDMA) application. The number of processors is varied from 1 to 8 and the cache sizes from 256-B to 4-KB. The performance is plotted in clock cycles a) SCMP system performance b) MT_SCMP system performance c) Comparison between SCMP and MT_SCMP performance and speedups d) Transistor eciency of SCMP and MT_SCMP with respect to initial system: 1 PE and 256-B cache size.

 can make things bigger, more complex, and more violent. It takes a touch of genius, and a lot of courage, to move in the opposite direction. Albert Einstein, physicist Contents 4.1 System description . 82 4.2 AHDAM programming model . 83 4.3 AHDAM architecture design . 84 4.3.1 Architecture description . 85 4.3.2 Why splitting the L2 instruction and data memories? 89 4.3.3 Why is the LPE a blocked multithreaded processor? 93 4.4 Execution model . 95 4.5 Scalability analysis . 97 4.5.1 Control bus dimensioning . 97 4.5.2 CCP reactivity . 98 4.5.3 DDR3 controller . 100 4.5.4 Vertical scalability . 101 4.6 Discussion . 102

Figure 4 Figure 4 . 1 :

 441 Figure 4.1: AHDAM system environment: multiple host CPUs ooading massively-parallel applications to the AHDAM architecture. The large data set is stored in multiple o-chip DDR3 memories.

Figure 4 . 3 :

 43 Figure 4.3: The AHDAM architecture.

 or R/W portsMultibank with 1 R/W port per bank One-bank with multiple R/W ports

Figure 4 . 4 :

 44 Figure 4.4: Estimated surface of multi-banked memories with 1 R/W port v/s one-bank memory with multiple R/W ports for a 1-MB memory. We vary the number of banks and R/W ports from 1 to 32. The tool used is CACTI 6.5 in 40 nm technology. The surface in mm 2 is plotted as log-scale.

Chapter 4 .Figure 4 . 5 : 2 :

 4452 Figure 4.5: 4 dierent processor-memory system architectures.

90 4 . 3 .

 43 AHDAM architecture design a1 = %instructions x I$_L1_HitRate b1 = %data x D$_L1_HitRate c1 = %instructions x (1 -I$_L1_HitRate) + %data x (1 -D$_L1_HitRate)

Figure 4 . 6 :

 46 Figure 4.6: CPI performance of 4 dierent processor-memory system architectures. A smaller CPI is better.

Figure 4 .

 4 8(a), we show the CPI for the AHDAM architecture (see Figure4.7(a)) with a BMT processor and in Figure4.8(b) we compare its speedup with respect to the same system with a monothreaded PE.

 Figure 4.7: 2 dierent processor-memory system architectures with a BMT processor.

 Figure 4.8: CPI performance of AHDAM with BMT processor compared to monothreaded processor.

Figure 4 . 11 Figure 4 . 10 :Figure 4 . 11 :

 411410411 Figure 4.10: AHDAM control bus connecting the CCP with M MPEs.

Figure 4 . 12 :

 412 Figure 4.12: CCP scheduling tick length for variable number of PEs (1->32) and tasks (4->64). The application is the connection component labeling with variable levels of parallelism (4->64).

99 Chapter 4 .

 994 AHDAM: an Asymmetric Homogeneous with Dynamic Allocator Manycore architecture 4.5.3 DDR3 controller AHDAM has to exchange data with the outside world, mainly the DDR3 SDRAMs. To facilitate this communication, we integrate an on-chip DDR3 controller, where all the o-chip memory accesses should pass by. The Tile's memory accesses are serialized via the MUX/DEMUX unit, which is then connected to the DDR3 controller as a host port. For this study, we select the DesignWare Universal DDR Memory and Protocol Controller IP from Synopsys [137]. The DDR memory controller is shown in Figure 4.13.

Figure 4 . 13 :

 413 Figure 4.13: DesignWare Universal DDR Memory Controller Block Diagram (Synopsys courtesy).

100 4. 5 .

 1005 Scalability analysisIn summary, and based on the CCP reactivity, control bus, and DDR3 controller parameters, AHDAM architecture's maximum horizontal scalability is limited to 32 Tiles. In the next section, we will see what is the maximum vertical scalability, in other words the maximum number of LPEs per Tile.

Figure 4 . 14 :

 414 Figure 4.14: Maximum number of LPEs per Tile for 32/16/8 Tiles. The x-axis shows the L1 D$ miss rate, the z-axis shows the L2 D$ miss rate, and the y-axis (log scale) shows the total number of LPEs that can be integrated per Tile.

Figure 5 . 1 :

 51 Figure 5.1: Spectrum Sensing description (source EDA/CORSAMA consulting).

Figure 5 . 2 :

 52 Figure 5.2: Spectrum Sensing main steps, maximal ows and complexities.

Figure 5 . 4 :

 54 Figure 5.4: Trimaran organization: Trimaran uses OpenIMPACT to compile the original source code into an assembly intermediate representation (IR) called Lcode.The produced Lcode is optimized for ILP, but not for a specic machine. This code is then passed to the Elcor compiler, which is the VLIW compiler, along with a machine description (MDES) that species the target machine. Elcor compiles the code for the target machine, producing another IR called rebel. The Trimaran simulator known as Simu consumes the rebel code, executes the code, and gathers execution statistics.

Figure 5 . 5 :

 55 Figure 5.5: Trimaran conguration for modeling the LPE with AHDAM memory hierarchy.

Figure 5 . 6 :

 56 Figure 5.6: Dynamic behavior of the radio-sensing application a) Total application execution time while varying the input data b) Average percentage variation of each task execution length.

Figure 5 . 7 :

 57 Figure 5.7: Static v/s dynamic scheduling on SCMP for the radio-sensing application. The dynamic scheduling has a speedup of 2.4 over the static scheduling.

Figure 5 . 8 :

 58 Figure 5.8: Performance of AHDAM architecture with LPE as monothreaded 3-way VLIW v/s multithreaded 3-way VLIW. AHDAM architecture has 8 Tiles and 4/8/16 LPEs per Tile. Performance results and gain are shown for radio-sensing with a) high-sensitivity b) low-sensitivity.

Figure 5 . 9 :

 59 Figure 5.9: Performance of AHDAM v/s SCMP v/s mono for radio-sensing with low-sensitivity. AHDAM architecture has 8 Tiles and 4/8/16 LPEs per Tile. The SCMP architecture has 8 PEs. The real-time deadline of the application is 6 seconds, which corresponds to 3.10 9 cycles for 500 MHz processor frequency (much higher than the y-axis scale.

Figure 5 . 10 :

 510 Figure 5.10: Performance of AHDAM v/s SCMP v/s mono for radio-sensing with high-sensitivity. AHDAM architecture has 8 Tiles and 4/8/16 LPEs per Tile. The SCMP architecture has 8 PEs. The real-time deadline of the application is 6 seconds, which corresponds to 3.10 9 cycles for 500 MHz processor frequency.

Figure 5 . 11 :

 511 Figure 5.11: AHDAM architecture surface repartition in 40 nm technology for 8 Tiles and 16 LPEs per Tile. The total estimated area is equal to 53 mm 2 excluding the interconnection networks, the on-chip DDR3 controller and the MCMU.

Figure 5 . 12 :

 512 Figure 5.12: AHDAM architecture surface with 8 Tiles and 4/8/16 LPEs per Tile.

Figure 5 . 13 :

 513 Figure 5.13: AHDAM architecture surface with monothreaded VLIW and multithreaded VLIW for 8 Tiles and 4/8/16 LPEs per Tile.

 MPSoC Simulation environment . 48 3.1.1 SESAM: A Simulation Environment for Scalable Asymmetric Multiprocessing 49 3.1.2 Extending SESAM for multithreaded processors 53 3.2 A Multithreaded Instruction Set Simulator . 56 3.2.1 The requirements for ISS and ADL . 56 3.2.2 Monothreaded cycle-accurate ISS model . 59 3.2.3 Multithreaded cycle-accurate ISS model . 62 3.3 Performance evaluation . 66 3.3.1 Applications description . 66 3.3.2 Which multithreaded processor system? . 68 3.3.3 Which global thread scheduling strategy? VSMP v/s SMTC 71 3.3.4 SCMP v/s MT_SCMP: chip area . 73 3.3.5 SCMP v/s MT_SCMP: performance . 74 3.3.6 Synthesis . 78

	Contents
	Multithreaded processors in asymmetric homogeneous MPSoC architectures 47
	3.1

Introduction Context of study . AHDAM: an Asymmetric Homogeneous with Dynamic Allocator Manycore architecture 81 4.1 System description . 82 4.2 AHDAM programming model .

 1.1 Embedded applications performance . 1.2 Dynamic execution of the connected component labeling algorithm 1.3 MPSoC classication . 1.4 SCMP system architecture . 1.5 SCMP architecture .1.6 SCMP central controller . 1.7 SCMP programming model . 1.8 SCMP control-ow execution model . 1.9 SCMP streaming execution model .1 SESAM exploration tool and environment . 3.2 SESAM infrastructure . 3.3 SCMP infrastructure modeled in SESAM . 3.4 Abstraction view of SESAM with multiple multithreaded processors 3.5 VSMP v/s SMTC scheduler architecture . 3.6 ArchC simulator generator . 3.7 R3000 cycle-accurate model generation by actsim tool 3.8 Pseudo-code for the EX-stage module in ArchC 2.0 3.9 New R3000 cycle-accurate model for SoC simulator integration capabilities12 Interleaved multithreading pipeline representation 64 3.13 Blocked multithreading scheduler FSM . 65 3.14 CDFG of the connected component labeling algorithm 67 3.15 2 pedestrians crossing a road . 67 3.16 Dynamic behavior of the connected component labeling application 68 3.17 WCDMA application and CDFG . 69 3.18 L1 I$ and D$ miss rates for the connected component labeling application 70 3.19 Performance results of MT_SCMP with 1 processor: Monothreaded v/s IMT v/s BMT . 71 3.20 Performance comparison of the dierent thread scheduling strategies 73 3.21 Components area in 40 nm technology for dierent SCMP modules 74 3.22 Percentage area increase of SCMP with dierent number of processors 75 3.23 Performance of SCMP v/s MT_SCMP for control-ow (labeling) application . . . 76 3.24 Performance and speedup comparison between SCMP v/s MT_SCMP for controlow (labeling) application . 77 3.25 Performance of SCMP v/s MT_SCMP for streaming (WCDMA) application . . . 79 4.1 AHDAM system environment . 82 4.2 AHDAM programming model .

	List of Figures

2.1 Thread context v/s execution cores . 2.2 Multithreaded processor design space . 2.3 Multithreaded processor execution core . 2.4 Multithreaded instruction issue types . 2.5 Examples of IMT and BMT processors . 2.6 Cost-eectiveness of a multithreaded processor . 2.7 Monothreaded AntX . 2.8 Surface repartition for monothreaded AntX . 2.9 Interleaved multithreaded AntX . 2.10 Blocked multithreaded AntX . 2.11 Blocked multithreaded AntX FSM for 2 thread contexts 2.12 Surface repartition for IMT and BMT AntX . 2.13 IMT and BMT processor area overhead with respect to the monothreaded processor 2.14 AntX hierarchical memory system . 2.15 Data cache miss rates for monothreaded and IMT/BMT AntX 2.16 Performance results in cycles of monothreaded v/s IMT/BMT AntX 2.17 Transistor eciency gain of IMT/BMT AntX processor with respect to monothreaded AntX processor . 33.10 Multithreaded ISS model . 3.11 Interleaved multithreading scheduler FSM . 3

 Dynamic applications in embedded systems 6 1.2 MPSoC architectures: state of the art . 8 1.2.1 Characteristics . 9 1.2.2 Classication . 12 1.2.3 Synthesis . 16 1.3 SCMP: an asymmetric MPSoC . 17

	Chapter 1
	MPSoC architectures for dynamic
	applications in embedded systems
	A problem well stated is a problem half solved. Charles F. Kettering, inventor
	Contents
	1.1

Symmetrical Symmetrical Homogeneous Homogeneous Mono Mono S

	--ARM	Cortex A9 Cortex A9	MPCore MPCore	--ST	ERICSSON ERICSSON	U8500 U8500	--RENESAS	SH SH-X3	--AZUL	Vega2 Vega2	--CAVIUM	Octeon Octeon	CN5860 CN5860	--HP MPOC	--P.A.SEMI	PA6T PA6T	1682M 1682M	--TI	TMS320VC TMS320VC	5441 5441	--ST P2012	-

-Kalray D - core - MPC8641D core - Tile64 - Am2045 - INTELLASY S 24 - PC 102 - CALIF. DAVIS AsAP - Godson -INTEL 48- core SCC -FREESCALE MPC8641D -INTEL 80- core -TILERA Tile64 -AMBRIC Am2045 - INTELLASY S Seaforth 24 -PICOCHIP PC 102 -UNIV. CALIF. DAVIS AsAP -ICT Godson-T MT MT S - XLR 732 - 1004K -NETLOGIC XLR 732 -MIPS 1004K D -CLEARSPEED CSX700 - xSTream - XCORE XS1 - PowerEN -CLEARSPEED CSX700 -ST xSTream -XMOS XCORE XS1-G4 -IBM PowerEN Asymmetrical Asymmetrical Homogeneous Homogeneous Mono Mono S - SCMP - TEXAS TRIPS - CT3616 - PLURALITY Hypercore - Venezia -CEA LIST SCMP -UNIV. TEXAS TRIPS -CRADDLE CT3616 - PLURALITY Hypercore -TOSHIBA Venezia D -NXP Xetal - CELL - STREA M SP16 - IXP280 0 - IMAP -NXP Xetal-II -IBM CELL - STREA M SP16 -INTEL IXP280 0 -NEC IMAP MT MT S NXP Ne NXP Ne-XVP D CLEAR SPEED CSX600 CLEAR SPEED CSX600 Heterogeneous Heterogeneous Mono Mono S -TI OMAP34 30 - MOBILE YE - EMMA - DaVinci TMS320 DM6441 - RENESAS SH Navi3 - X420 MediaDS P - TOPSTRE AM TOPS - Realoid -TI OMAP34 30 - MOBILE YE EyeQ -NEC EMMA -TI DaVinci TMS320 DM6441 - RENESAS

	1.2. MPSoC architectures: state of the art									
	MPSoC architectures are classied based on their characteristics discussed in Section 1.2.1.
	First, they are divided into 2 main architectural families: Symmetric and Asymmetric. Then, each
	family is categorized by the similarity of the cores: Homogeneous and Heterogeneous. Afterward,
	two categories are distinguished depending on the computing core type: Monothreaded and Multi-
	threaded. And nally, MPSoC architectures are classied by their memory architecture, which can
	D D be a distributed memory or a shared memory.													
	MT MT	S	MOBI MOBI	LEYE LEYE	EyeQ2 EyeQ2	/3 /3	--	IBM/ IBM/	MICR MICR	OSOF OSOF	T T	Xbox Xbox	360 360				
		D	--ST	Nomadik Nomadik	--LSI	Domino Domino	--NXP	Nexperia Nexperia	--	STRETCH STRETCH	S6000 S6000	--	RENESAS RENESAS	SH SH-	Mobile Mobile	G1 G1	--	VODAPH VODAPH	ONE ONE	Tomaha Tomaha	wk wk	--	GOOGLE GOOGLE	GreenDr GreenDr	oid oid	--NXP	PNX5100 PNX5100	--INTEL	TIPP TIPP
																										SH-	Navi3	-AMD	X420	MediaDS	P	-	TOPSTRE	AM	TOPS	-EPSON	Realoid
	Figure 1.3: MPSoC classication into 3 big families: Symmetric, Asymmetric Homogeneous, Asymmetric Hetero-
	geneous.																											

 't do two things at once. I can't even do one thing at once. Classication . 26 2.1.1 Multithreaded processor design space . 27 2.1.2 Cost-eectiveness model . 31 2.1.3 Synthesis . 33

	Chapter 2
	Multithreaded processors in embedded
	systems
	Multitasking? I canHelena Bonham Carter, actress
	Contents
	2.1

2.2 Implementation of a small footprint multithreaded processor for embedded systems . 33 2.2.1 Monothreaded AntX . 33 2.2.2 Interleaved MT AntX . 35 2.2.3 Blocked MT AntX . 37 2.3 Performance evaluation . 39 2.3.1 Monothreaded v/s Multithreaded processors: area occupation 39 2.3.2 Monothreaded v/s Multithreaded processors: performance and transistor eciency . 41 2.3.3 Synthesis . 44

 is gaining special attention from the research communities[START_REF] Beltrame | ReSP: A non-intrusive Transaction-Level Reective MPSoC Simulation Platform for design space exploration[END_REF][START_REF] De Schultz | Automatically-retargetable model-driven tools for embedded code inspection in SoCs[END_REF][START_REF] Kavvadias | Elimination of Overhead Operations in Complex Loop Structures for Embedded Microprocessors[END_REF][START_REF] Viana | Exploring memory hierarchy with ArchC[END_REF]. ArchC 2.0 is an open-source Architecture Description Language (ADL), developed by the University of Campinas in Brazil. It generates a functional or cycle-accurate ISS in SystemC with its assembler, linker and debugger, from parsing two input les (see Figure3.6): the processor architecture resource description (AC_ARCH) and the ISA description (AC_ISA) les. The ISS is ready to be integrated with no eort in a complete SoC design based on SystemC. The functional and cycle-accurate processor models are generated by a separate simulator generator tool. For instance, actsim and acsim tools generate the cycleaccurate and functional simulators respectively.

	AC_ARCH	assembler simulator
	AC_ISA	linker
		debugger

 Manycore architecture

				CCP		TCP State			
						Control bus			
	Host CPU Host CPU	System bus	Mux / Demux	xN	Thread Context Pool	xM	Mux / Demux	xN	Tile NoC	Thread Context Pool
	DDR3				Tile1					TileM
			xM	Instruction interconnection network (Multibus)
			DDR3 CTRL	Mem	Mem Mem Mem Mem Mem Mem	Mem

 4.3.1.3 Computation unitsThe AHDAM architecture supports M Tiles. The CCP views a Tile as 1 computation unit. But actually, a Tile has one MPE and N LPEs. In addition, it has a 'special' scratchpad memory called Thread Context Pool that stores the thread contexts to be processed by the LPEs. The Thread Context Pool represents the tasks runqueue per Tile, thus AHDAM has M runqueues. Each runqueue can have one or more thread contexts, where each thread context holds the following information: start address, input arguments, parent thread identier, child thread identier, execution state, etc...The occupation status of all the Tiles' Thread Context Pool are updated in a special shared scratchpad memory unit called the TCP state. The TCP state is shared by all the Tiles.

Table 4 .

 4 1: Probability table showing the stall cycles per memory access of level 1 memory hierarchy with seperate I$ and D$ for a monothreaded PE. Each memory unit in the rst column has a penalty time in the second column.

Table 4 .

 4 3: Probability table showing the stall cycles per memory access of level 1 memory hierarchy with seperate and segmented I$ and D$ for a blocked multithreaded PE.

 .7.

	1.60E+09		
	1.40E+09		
	1.20E+09		
	1.00E+09	70.61%	
	8.00E+08		
	6.00E+08		41.43%
	4.00E+08		
	2.00E+08	29.37%	58.55%
	0.00E+00		
		Static	Dynamic
		Effective execution time	Synchronization overhead	Others

Cycles

Radio sensing: static v/s dynamic scheduling

 Warren Hinckle, journalist Contents Synthesis of my work . 119 Perspectives . 121 Short term . 121 Long term . 122

 GlossaryTLP Thread-Level Parallelism. iiiv, vii, 2,[START_REF]TriCore 2[END_REF][START_REF] Austin | SimpleScalar: an infrastructure for computer system modeling[END_REF][START_REF] Bechara | A TLM-based Multithreaded Instruction Set Simulator for MPSoC Simulation Environment[END_REF][START_REF] Blake | A survey of multicore processors[END_REF] 2527,[START_REF] Leon | The U1traSPARC T1: A Power-Ecient High-Throughput 32-Thread SPARC Processor[END_REF][START_REF]Linux on ARM[END_REF][START_REF] Norden | A Multithreaded RISC/DSP Processor with High Speed Interconnect[END_REF] 106,[START_REF] Rigo | Teaching computer architecture using an architecture description language[END_REF][START_REF] Riley | Cell Broadband Engine processor: Design and implementation[END_REF] 124 TLS Thread-Level Speculation. 14, 27, 124 TOPS Tera Operations Per Second. i, iv, 2, 6, 7, 9, 124 VHDL Very-High-Speed-Integrated-Circuits Hardware Description Language. vi, 3, 18, 26, 39, 124 VLIW Very Long Instruction Word. iv, vi, viii, xviii, xix, 2, 8, 19, 25, 88, 89, 107109, 112, 115118, 121, 124 VSMP Virtual Symmetric Multi-Processing. vii, xvii, 5456, 66, 7173, 79, 120, 124 WAR Write-After-Read. 34, 124 WAW Read-After-Write. 34, 124 WAW Write-After-Write. 34, 124 WB Write-Back. 33, 34, 59, 61, 124 WCDMA Wideband Code Division Multiple Access. vii, xviii, 4, 68, 69, 75, 78, 79, 120, 124 WCET Worst Case Execution Time. 29, 124

embedded applications that suit our requirements in terms of dynamism and parallelism. Each application has a dierent execution model. The rst one, the connected component labeling algo-

Acknowledgments

You can dream, create, design and build the most wonderful place in the world, but it requires people to make the dream a reality Walt Disney, lm producer Acknowledgments

Processing Elements

communicate between the control and the computing parts. A task suspends/resumes its execution based on data availability from other tasks. A data is allocated in a data buer. It follows the streaming/dataow execution model. When a data is produced by Task A, then Task B resumes its execution. When a data is consumed by Task B, then it suspends its execution. Each task has the possibility to dynamically allocate or deallocate buers (or double buers) in the shared memory space through specic HAL functions. An allocated buer is released when a task asks for it and is the last consumer. A buer cannot be released at the end of the execution of the owner task. A dynamic right management of buers enables a dataow execution between the tasks: it is handled by the MCMU.

Once each application and thread has been divided into independent tasks, the code is crosscompiled for each task. For heterogeneous computing resources, the generated code depends on the type of the execution core. In the next section, we will describe in details how the AHDAM architecture is designed.

AHDAM architecture design

AHDAM architecture is an improved version of the SCMP architecture. Our design choices are based on the benchmarking results conducted in chapter 3 on SCMP with multithreaded processors and the conclusion deduced in section 3.3.6. We identied the following limitations in the SCMP architecture: Fork: The MPE executes the serial region of the task (S1). When it encounters a loop region using OpenMP pragmas (P1), the MPE executes a scheduling algorithm that uses a heuristic to fork the exact number of child threads in the appropriate Tiles' Thread Context Pool. The scheduling algorithm is part of a modied OpenMP runtime. The heuristic determines the maximum number of parallel child threads required to execute the loop as fast as possible based on: 1) the data set size 2) the number of cycles to execute one loop iteration 3) the Tiles' Thread Context Pool occupation using the shared TCP State memory 4) the cost of forking threads in the local and other Tiles. If possible, the algorithm favors the local Thread Context Pool since the fork and join process are done faster by avoiding the access to multiple busses. However, in some cases, the local Thread Context Pool is full or not sucient while the ones in other Tiles are empty. Therefore, the local MPE has the possibility of forking the child threads in others Thread Context Pool by verifying their availability using the shared TCP state memory. This can be the case for the parallel region P2 in We presented in chapter 4 the AHDAM architecture, which is a novel asymmetric manycore architecture for future high-end massively parallel dynamic embedded applications. It has a centralized control core that performs dynamic load-balancing of the coarse-grained tasks (TLP) between multiple Tiles (up to 32). Each coarse-grain task contains loop regions that are parallelized using OpenMP pragmas (ne-grain task) and executed in parallel on multiple dedicated processors. Thus, AHDAM architecture exploits the parallelism at 2 levels: TLP and LLP.

In this chapter, we evaluate the performance and transistor eciency of AHDAM architecture by using a relevant embedded application. First, in section 5.1, we describe an application from the telecommunication domain called radio-sensing. This application has lots of computation requirements, lots of parallelism at the thread and loop levels, a large data set, and is dynamic. The radio-sensing application is parallelized and ported using AHDAM programming model ow. Then, in section 5.2, we show the simulation environment used to model and evaluate the AHDAM functionalities. And nally in section 5.3, we evaluate the transistor eciency of the architecture and the importance of an asymmetric architecture. We evaluate its performance by running the radio-sensing application on dierent chip congurations and we compare its performance with respect to the SCMP architecture and a monoprocessor solution. At the end, we estimate the overall chip area in a 40 nm technology for multiple chip congurations.

Task decomposition and parallelism

Initially, the radio sensing application is built to run sequentially on a monothreaded processor. The task level parallelism is explicitly expressed by inserting specic pragmas. Then, PAR4ALL cuts the application in a set of tasks according to these pragmas, generates communication primitives to implement a double buer streaming processing, and the corresponding CDFG control graph as shown in Figure 5.3. PAR4ALL identied 30 tasks that can run independently (TLP). Once independent tasks are generated, PAR4ALL identies netloops and inserts OpenMP pragmas. The loop parallelism (LLP) is detected at runtime depending on the resources occupation. Also some loops are irregular, which means a variable execution time between the child threads. We proled the application and we examined the hot spots in the code where most of the application time is spent. We noticed that 99.8% and 95% of the loop regions can be parallelized by OpenMP for the high-sensitivity and low-sensitivity respectively.

In addition, the application execution time varies with respect to the processed input data, hence its dynamism. In a real-case scenario, the application might be adaptively recongured to dierent execution modes, which implies dierent computation requirements.

In particular, the application could be launched in two dierent modes in order to t dierent 106 5.2. Simulation environment user QoS. As a result, we dened two execution modes:

• high sensitivity: or high accuracy with a buer of 100 ms every 1 second, 6 buers, and a sampling frequency of 102.4 MHz. This gives us a computation requirement of 75.8 GOPS, a data set of 432 MB, and a real-time deadline of 6 seconds.

• low sensitivity: or low accuracy with a buer of 1 ms every 1 second, 6 buers, and a sampling frequency of 25.6 MHz. This gives us a computation requirement of 328 MOPS, a data set of 1,025 MB, and a real-time deadline of 6 seconds.

The radio-sensing application needs 1.5 MB of instruction memory for storing all the task codes and stack memories. In a real case scenario, the application implements an adaptive reconguration to adjust the input parameters according to the requirements. Thus, it gives an execution behavior that is highly dynamic and with high/variable computation requirements.

In the next section, we will explain the simulation environment for the AHDAM architecture.

Simulation environment

AHDAM is a complex architecture that has several components with a special execution behavior, such as the Thread Context Pool memory and the multithreaded 3-way VLIW LPE for instance.

In addition, the fork-join process inside each Tile necessitates a new and optimized runtime. We do not have yet a complete simulator for the AHDAM architecture. However, by using a combination of currently existing simulators such as SESAM and Trimaran [START_REF] Middha | A Trimaran based framework for exploring the design space of VLIW ASIPs with coarse grain functional units[END_REF]144], and an analytical model for the AHDAM memory hierarchy architecture, we are able to estimate the AHDAM performance.

The simulation process of AHDAM architecture consists of simulating the serial regions on SESAM and the parallel regions on Trimaran. The performance gain due to multithreading is estimated using the analytical model for the AHDAM memory hierarchy with blocked multithreaded processors. Let us describe the step by step simulation process of AHDAM architecture for the radio-sensing application:

First of all, the radio-sensing application runs on the SESAM simulator that models the SCMP architecture with functional monothreaded MIPS32 ISSes. The monothreaded MIPS32 models the MPE processor. To evaluate the serial regions, we comment out the for-loops with OpenMP pragmas regions for all the tasks, or what we call a 'kernel', from the source code. Thus, the total execution time of each task is the exection time of the serial regions. The serial regions of the tasks are preemptive and can be migrated to other MPEs for dynamic load-balancing.

For the parallel regions, they should be executed on the LPE, which is a 3-way VLIW architecture. In SESAM, we do not have an ISS for a VLIW processor. This is why we use the Trimaran simulator 4.0 [START_REF] Middha | A Trimaran based framework for exploring the design space of VLIW ASIPs with coarse grain functional units[END_REF]144] to estimate their performance. Trimaran is an integrated compiler and simulation infrastructure for research in computer architecture and compiler optimizations. Trimaran is highly parameterizable, and can target a wide range of architectures that embody embedded processors, high-end VLIW processors, and multi-clustered architectures. Trimaran also facilitates the exploration of the architecture design space, and is well suited for the automatic synthesis of programmable application specic architectures. It allows for customization of all aspects of an architecture, including the datapath, control path, instruction set, interconnect, and instruction/data memory subsystems [144]. In our case, we use Trimaran to evaluate the VLIW processor.

Performance evaluation

caches during the place and route process, thus not occupying more chip area. In Table 5 For the 8x16 AHDAM architecture, there are 1 CCP implemented using the AntX processor, 8 MPEs implemented as MIPS24K with FPU [START_REF]MIPS 24K[END_REF], and 128 LPEs implemented as a 3-way blocked multithreaded VLIW with FPU. The CCP and the LPEs have a 1-KB L1 I$ and a 2-KB L1 D$, while the MPEs have a 4-KB L1 I$ and 8-KB L1 D$. Both the MPEs and the LPEs have a 32-KB L2 D$. Each Tile has a 32-KB scratchpad memory for the Thread Context Pool. Also, as mentioned earlier in section 5.1.1, the radio-sensing application necessitates 1.5 MB of on-chip instruction memory. The CCP, the LPE and the interconnection networks are synthesized in a 40 nm TSMC technology, while the MPE area value is taken from MIPS website [START_REF]MIPS 24K[END_REF] for a 40 nm TSMC technology. The cache memories and SRAM memories areas are estimated with the CACTI 6.5 tool. The technology used by CACTI tool is based on ITRS roadmap [START_REF][END_REF], but it is not similar to TSMC technology. Therefore, the processor system is not synthesized with the same technology, but this gives us an idea of the relation between the cache size and the processor size. So, all these components are synthesized/estimated in a 40 nm technology.

In Figure 5.11, we show the surface repartition of the 8x16 AHDAM architecture based on the 3 main components: processors, cache memories, SRAM memories, and interconnection networks. The total area is estimated to be around 53 mm 2 excluding the on-chip DDR3 controller, the MCMU, and the MUX/DEMUX units.