Accession name	Versailles identification number	City	Country	Cluster nucléaire (Simon et al., 2011)	Cytotype (référence)	
Db-1	132 AV	Tenne/Ts.	Germany	4b	J (NG)	
Wil-1	72 AV	Vilnius	Lithuania	4c	J (NG)	
N13	266 AV	Konchezero	Russia	la	J (Moison et al., 2010)	
Kondara	190 AV	Kondara		1b	S (Moison et al., 2010)	
Hodja-Obi-Garm	203 AV	Khodga-Obi-Garm		1b	S (Moison et al., 2010)	
Sorbo	238 AV	Sorbo		1b	F (Moison et al., 2010)	
Hodja-Obi-Garm bis	270 AV	Hodga-Obi-Gann	Tadiikistan	1b	S (Moison et al., 2010)	
Neo-3	539 AV	Neo Chebder		1b	I (NG)	
Neo-6	540 AV	Neo-Shandara		1b	I (Moison et al., 2010)	
Shahdara	271 AV	Shahdara		1b	I (NG)	
9481B	261 AV	Kazakhstan		la	I (Moison et al., 2010)	
Kz-9	403 AV		Kazakhstan	This	I (NG)	
Kz-1	402 AV	Atasu		1a	J (NG)	
Kas-2	555 AV	Kashmir	Inde	la	H (Moison et al., 2010)	
Lenk2-1	584 AV	Lankaran-Lenk	Azerbadjan	la	M (Moison et al., 2010)	
Kar-1	531 AV			1b	I (Moison et al., 2010)	
Kar-2	Karakol	Karakol river		1b	I (NG)	
Sus-1	533 AV	Susamyr		1b	I (NG)	
Dja-1	534 AV	Djarly	Kyrgyzstan	1b	I (NG)	
Dja-5	535 AV	1		1b	I (NG)	
Zal-1	536 AV	Zalisky		1b	I (NG)	
Zal-3	537 AV	1		1b	I (NG)	
Кут-1	538 AV	Kyrgyzata		16	I (NG)	
Mr-0	148 AV	Monterosso		2b	AN (Moison et al., 2010)	
Etna-2	703 AV	14.5	Italy	2b	nd	
Etna-1	702 AV	Mt Etna		2Ъ	nd	

Tableau C1 : description des accessions d'Arabidopsis thaliana utilisées lors de la thèse (d'après *http://dbsgap.versailles.inra.fr/vnat/)* Dans la dernière colonne, NG : résultat obtenu par ce travail ; nd : non déterminé.

ABCHI E Sala

Nom du marqueur	Position (Col-0)	Séquence de l'amorce «Forward» (5'->3')	Séquence de l'amorce «Reverse» (5'->3')	Origine
CIW1	18,37	ACATTTTCTCAATCCTTACTC	GAGAGCTTCTTTATTTGTGAT	base MSAT
MSAT1.18748	18,75	TTATATACCATTCTCGTCGTGTTA	GCAAAAATGAAATGTTAAGGC	CW
MSAT 1.197642	19,76	CTCATCCCTCCGACCTATCA	TCATCTCCTGATCTACCCTTTG	NG
MSAT1.19860A	19,86	CACGGCCCATTAGTGTTCTT	GAGAATGCAGAAGCACTGACA	NG
MSAT1.20097	20,10	ATGCTAGATAGATTTTTAGATG	TATTACAAGGTGAGTTTTATCA	CW
MSAT 1.20495A	20,49	GGGTTGCAAGTCGTCAAGTT	TGGCCCTCAGTTTTTCATTT	NG
NGA128	20,63	GGTCTGTTGATGTCGTAAGTCG	ATCTTGAAACCTTTAGGGAGGG	base MSAT
MSAT1.20849	20,84	GCATAGGAGTGTGATGGGTTTT	TTTGCCTACCTTGGAAGCAC	NG
MSAT1.21035	21,03	GGTGGGGATAAGTATGTGCATT	TGGATATCGCAGACAACAGC	NG
MSAT1.21231	21,22	TCCAAATGGAAAAACATCTCC	TTGTGAACCCTTGTGATGGA	NG
MSAT1.21235	21,23	CTTTTACAAGAGTTGGGAGTTAAGA	TCTCCACACAATCCCATCAA	NG
MSAT1.21456	21,45	AATGCCCATGGCTTTTATGT	GCATTTGGGTCCAATTTGATA	NG
MSAT1.21673	21,67	TGATTTTGTTCATTCGTTGAAA	CGAATCGGGAAACCAATAAT	NG
MSAT1.22002	22,00	AGTCCACGGCCAAAGAAGTT	TTCGCCCTCACGTTCTTTAT	NG
MSAT1.22118	22,11	TTTTGGGGACTTACTGTTAGTTTTG	CAATGAAAAGTTGGCAGACG	NG
MSAT1.22301	22,30	ACCCGATCTATGGTGGTTCA	GCAACAAAAATTGGACATGG	NG
ATHGENEA	22,40	ACCATGCATAGCTTAAACTTCTT	ACATAACCACAAATAGGGGTG	base MSAT
F5I14	24,37	CTGCCTGAAATTGTCGAAAC	GGCATCACAGTTCTGATTCC	base MSAT

Tableau C2 : oligonucléotides utilisés pour amplifier les MSAT localisés au sud du chromosome 1 Ces couples d'amorces amplifient des marqueurs MSAT polymorphes entre les allèles parentaux Sha et Mr-0. Dans la dernière colonne, base MSAT : collection de marqueurs développés pour amplifier des MSAT chez *A. thaliana* (la collection est mise à jour quotidiennement par les équipes de la SGAP) ; NG : Nicolas Gobron ; CW : Cezary Waszczak.

Nom de l'amorce	Position (Col-0)	Séquence de l'amorce «Forward» (5'->3')	Séquence de l'amorce «Reverse» (5'->3')	Origine
MSAT3.02052	2,05	AAGGTTACTCTTATCGTTTAT	GGTTTCAACTTAGACGTTT	base MSAT
MSAT3.19	8,81	TAATTCGATCCAATTGACAT	TGGCTTGGCACAAAC	base MSAT
MSAT3.2	9,06	AAGGTACGGCGGTGGATATTG	CGGGGATTTCTTCTTCCTGTG	base MSAT
MSAT3.32	11,21	GCACTTGCAGCTTAACTT	CGTGACTGTCAAACCG	base MSAT
MSAT3.58	18,66	GGTTGAAACTCTATGGTAT	CGCATTTCTTGATTTACTA	base MSAT
MSAT 3.18762A	18,76	CACACAACCTTGGCTTAGGA	AGTTGGGAAAGTTGTGGTTGA	NG
MSAT 3.187764	18,77	TTCTTGCAACAACAAAAAGGA	GGGCGTTACAAGAGAATGGA	NG
F24M12-TGF	19,07	GTTCTCTGCATTCCACACATACTCT	CTTGGGTATTCTGAAGAGCATAAAT	base MSAT
MSAT 3.19208A	19,21	TGGGCCACTCTGTATTGTCA	TAGGCTTGCAGATTGGTTCA	NG
MSAT 3.19575A	19,57	TGTTCAAAACCTGCATGGAA	GAAGGCAAGGCATTGTTTTACT	NG
MSAT 3.19789A	19,79	CGGTGTCTTCAACCTGCTATT	AAGCAGGACCAACCAAGAAA	NG
MSAT 3.199222	19,92	ACGCGATAAAAAGGTCACCA	TAACGATCGCCTCGTGATTT	NG
MSAT 3.19974A	19,97	AGCGGAGGAAGGAGATGATT	CGGTTTATTCAGTTATGGTTGC	NG
MSAT3.20078	20,08	GTATTTTCATCCCTACTCTCT	GATGCTTCAGTTCATTCTGG	CW
MSAT3.20329A	20,32	CCTAACTTTCGTCTCCCAACC	TTCAGGGACAAGTCTGAGAGG	NG
MSAT 3.203778	20,38	CATTCTCTGCACGCGAGTTA	ACGTGTCACTCGTTCATTCG	NG
MSAT3.20405	20,41	AGGAGGAGGAAGTTGCAGTA	GAGAGAAAGATGAAAGAGACCT	CW
MSAT3.20435	20,43	TCCACTCTTGTTCGTGTATTTC	CATTATTTAGTGTCTCGTATCGTA	CW
MSAT3.28	20,47	TACAAGTCATAATAGAGGC	GGGTTTAGCATTTAGC	base MSAT
MSAT3.206422	20,64	CGGACTCATGACGACAGTCT	ACGCGTGTGTCCCATAACTT	NG
MSAT3.206563	20,65	CAAATCCATCTTCCCACCAC	CCTCCCCAACTGATCCTTTT	NG
MSAT3.18	21,39	TACCTCAAAAGAGCAAACA	TCATACCTACATATTGCCCT	base MSAT
ATHFUS6	22,64	TCGTTACACTGGCTTGCTTG	TTCCTTGATCAGATTTGGTCG	base MSAT
MSAT3.22714	22,71	TGAAGCTCGTCTTCGTTTTT	TGACGACTTTGGAAATTGAAA	EW
MSAT3.22953	22,95	GAGATGGGCAGAGACAAAAA	AACAATCAATGCATCAGCAA	EW
MSAT3.23007	23,00	AAAAGCGTGATTGTGTTGTG	TGGAATGTTCCATCTTCAACT	EW
MSAT3.23388	23,39	GCGTACAAAAATGGGCAAAA	GAGATTTTCCTTGCTCAATTCC	base MSAT
MSAT3.70	23,45	CACCCATAGACACACAACC	TCAAAACCTCCAACCATAC	base MSAT

Tableau C3 : oligonucléotides utilisés pour amplifier les MSAT localisés au sud du chromosome 3 Ces couples d'amorces amplifient des marqueurs MSAT polymorphes entre les allèles parentaux Sha et Mr-0. Dans la dernière colonne, base MSAT : collection de marqueurs développés pour amplifier des MSAT chez *A. thaliana* (la collection est mise à jour quotidiennement par les équipes de la SGAP) ; NG : Nicolas Gobron ; CW : Cezary Waszczak. EW : Estelle Wenes.

Nom de l'amorce	Position en M	Séquence de l'amorce (5'->3')			
CIW1.1F	10.07	TGGGTAAAAGATGACCGAGTCT			
CIW1.1R	18,37	AACCCCCACTTTTACTTCTCAT			
ATHGENEA.F	22.40	ACCATGCATAGCTTAAACTTCTT			
ATHGENEA.R	22,40	ACATAACCACAAATAGGGGTG			
MSAT3.19974A.2-L	10.07	ATTCCCTCTCCCGTTTCGT			
MSAT3.19974A.2-R	19,97	TCGGTTTATTCAGTTATGGTTGC			
MSAT3.206422.3-L	20.62	ACTITCGCTAATACTGAATCCAA			
MSAT3.206422.3-R	20,62	ACGCGTGTGTCCCATAACTT			

Tableau C4 : oligonucléotides utilisés pour amplifier les MSAT en multiplex

a – couples d'amorces utilisés pour amplifier deux MSAT du chromosome 1

 $b-couples\ d'amorces\ utilisés\ pour\ amplifier\ deux\ MSAT\ du\ chromosome\ 3$

Nom de l'amorce	Séquence de l'amorce (5'->3')	Enzyme de restriction
At3g62440L20	CGCCTGCACAACGATAGTAA	4-1
At3g62440U20	GGATCGGATCAGCAATCTTC	ACI
At3g62560L21	CAGTGGTGAAACTGGTGAGGC	01-1
At3g62560U21	ATGTTCCTGGTGGATTGGTTC	Cial
At3g62590L20	CTCTCGGATGGTTGCAGAAT	Vhal
At3g62590U20	t3g62590U20 CAACCCTGCTGTTGCTTACA	
At3g62620L20	TTGGCTTGGAGAATGAAACC	01407
At3g62620U20	TCCATGGAAGACACAGCTCA	BSp14071
At3g62700L20	CTCTTGAACCAATGCAGCAA	Cool
At3g62700U20	TTCGAAGGAACCGTAAGGAG	Sspi
At3g62790L21	TGTTTGACGAGTAGCCAAAGG	Dual
At3g62790U20	CTGGATGGATTTCAGCGAAT	Drai

Tableau C5 : oligonucléotides utilisés pour amplifier les marqueurs CAPS au sud du chromosome 3

Dans la première colonne, le nom de l'amorce contient le nom du gène où un polymorphisme SNP existe entre les allèles Sha et Mr-0. Ce polymorphisme est exploité grâce aux enzymes de restriction indiquées dans la dernière colonne.

b

Nom de l'amorce	Séquence de l'amorce (5'->3')
IV-3b	GCAATCTACCGGGAAGAACA
IV-5a	TTCATCGCTTAGCTGTGCTG
V-4b	CAAGCCCGCTAAAGTAGTGC
V-6a	AAGATCCAACAACCCGTGAG
VI-5b	ATGTCCAGAGAGGGACATCG
VI-7a	CTGCCATGTTTCCATCATTG
VII-6b	GGATTTACGAGCTGGGATCA
VII-8a	GATAATCACAAGGCCGAGCTA
VIII-7b	CCTTAACCTGTCCGTGCCTA
VIII-9a	GAAAGACCACGCTTGAGGAG
IX-10a	TGTCGCTGTGGAGATCAAAG
IX-8b	TGCCAATTTTCAAACCATCA
X10-b	TCAAGCTTTTGCACCTTGTG
.X-9h	CGCGCTAAAGACATCATCAA

Tableau C6 : oligonucléotides utilisés pour amplifier lesfragments de 6000 à 8000 pb au sud du chromosome 3Les chiffres romains dans la première colonne correspondent auxnuméros des fragments amplifiés d'après la figure B18.

Nom de l'amorce	Séquence de l'amorce (5'->3')
KAtL22	TAACTCAACGGTAGAGTACTCG
MatKAtU22	AGCGTTTCGTAATTAGTGAACT
ndhFU25	GTCGGAAAAAGGAGAAGTCCAACTC
rbcLAtU22	TGAAATTATCCGTGAAGCTTGC
accDAtL22	CATATATAAAACGGTCTTGACT
rpl32L25	CGCTTTTTCGAGATAGAAGTACGTT
trnVL23	CTCTTTTACCGAGCAGGTCTACG
ndhCU23	AAATGCCAAAACAGGAATAGCAC

Tableau C7 : oligonucléotides utilisés pour amplifier les régions intergéniques du génome chloroplastique D'après Moison et al., 2010.

Nom de l'amorce	Séquence de l'amorce (5'->3')	Utilisation				
Atmt:11944U21	GTCCAAAGAGCGCAGACTAGC	Amplification de la région nad5-rm26 region pour détecter l'événement de recombinaison Rec1				
Atmt:13775L21	CATGGGATATGATCACAAGAG	Amplification de la région nad5-rrn26 region pour détecter l'événement de recombinaison Rec1				
Atmt:16606U21	CTACCGATTTCCCACTGACTA	Amplification de la région nad5-rm26 region pour détecter l'événement de recombinaison Rec2				
Atmt18571L21	AACCACTTTTCATTCAGGAGC	Amplification de la région nad5-rrn26 region pour détecter l'événement de recombinaison Rec2				
Atmt240858U21	GTTTGTTTTCGCTCTGCTTGT	Amplification de la région ccmC				
Atmt241468L21	AAGGAAAGTGGCTCAAAACGC	Amplification de la région ccmC				
Atmt:278985U21	GCTGCTATCGGTATTGGAAAC	Amplification du réarrangement atp9-cox3				
Atmt:217884L21	GTATTAAACCTTCCCCTCCAC	Amplification du réarrangement atp9-cox3				
Atmt:297337U21	CCGGAAAGACCACCTATTTGT	Amplification spécifique du gène atp6-2				
Atmt:298263L21	GGGTACGGGCGCTCTATCATT	Amplification spécifique du gène atp6-2				
Atmt:24147U20	CTATTCCCATGTTCCGATCT	Amplification de la région intergénique nad9-rpl16				
Atmt:25290L20	CGAAGAAATGGTAAGATATG	Amplification de la région intergénique nad9-rpl16				
Atmt:130231U20	GAGAAATAAGTGGCTCACGA	Amplification de la région intergénique atp8-orf107c				
Atmt:131105L21	CAATTCCATCTTTGATACTCC	Amplification de la région intergénique atp8-orf107c				
Atmt:39529U21	GAATAGCTATCCCGTCGTACT	Amplification de la région flanquante en aval de la région cox2				
Atmt:40354L21	TGTCTACGAAGCTCCGCTCCC	Amplification de la région flanquante en aval de la région cox2				
Atmt:209506U17	ATTTTGGTTTCACCACG	Amplification de orf107d				
Atmt209769L21	GTCAAAATAGATCCTGGTGTG	Amplification de orf107d				
Atmt:301020U20	GATATCCCTGGCACAACAGA	Amplification de orf111b				
Atmt:301254L19	TTTCTCGATTAAATGCCTG	Amplification de orf111b				
Atmt:207558U20	CTTTTATTCCTAGGTGGCTT	Amplification de orf120				
Atmt:207849L21	GTGGACTTCCCAAGACTTTCA	Amplification de orf120				
Atmt:16965U19	CTCTTACGGTCATCTATAT	Amplification de orf131				
Atmt:17187L17	GATCAACCATTTGGTGA	Amplification de orf131				
Atmt:203703U18	ATATCTATCAACGCCTGA	Amplification de orf240a				
Atmt:204244L21	ATTTGGAGAGTACACGGAAAC	Amplification de orf240a				
Atmt:279543U21	CGTTTCCCGTTTCAATCTTAT	Amplification de orf262				
Atmt:280150L20	GCGAGCTGTTCCGAAGTTGC	Amplification de orf262				
Atmt:16959U19	AAATGCCTCTTACGGTCAT	Amplification de orf315				
Atmt:17436L16	CCCTGTTGGTACCTCC	Amplification de orf315				

Tableau C8 : oligonucléotides utilisés pour typer l'ADN mitochondrial

Ces couples d'amorces ont été mis au point par Moison et al., 2010.

Nom de l'amorce Séquence de l'amorce (5'->3')		Informations			
Atmt:28529U21 (=U')	CCAGTGGTCTTCTAGCGTTAG	DOD an éclérico de la consistent cituée como con2 et acto200			
Atmt:29430L21 (=L')	GTCAATCCGGCCCGAGACGCA	PCR specifique de la copie trnk situee entre rps3 et ccb206			
Atmt:204001U21 (=U)	GCCCCCAAACAAAATGTATTA	DOD an faife un de la consiste de la consiste d'arte de la constante de la constan			
Atmt:204831L21 (=L)	GTGATGCCCTTCCTGATTAAA	PCR specifique de la copie trnk situee entre l'orf240a et l'orf120			

Tableau C9 : oligonucléotides utilisés pour amplifier spécifiquement chaque copie du gène trnK du génome mitochondrial d'*A.thaliana*

Ces couples d'amorces ont été dessinés par Françoise Budar. La position de ces oligonucléotides sur le génome mitochondrial d'Arabidopsis est indiquée dans la figure B27.

Chr1

								-	
Nom du marqueur	T1G11	MSAT1.14	C1W1	2 1	MSAT1.	.4 🛛 🔊	IGA128	MSA	AT1.13
Position du marqueur (en Mb)	1,24	5,02	9,62		14,16		20,63	25	5,83
Chr2			_		_				
Nom du margueur	MSAT2.5	MSAT 2.28	MSAT	2.17	CZS	OD 2	MSAT 2	2.10	MSAT2.22
Position du marqueur (en Mb)	0,21	6,41	10,	73	12	,02	18,0	2	19,63
Chr3									
Nom du margueur	MSAT3.0205	2 MSAT3.	32 🛛	MSAT	3.58	MSA	Т3.70		
Position du marqueur (en Mb)	2,05	11,21		18,6	66	23	3,45		
Chr4									
Nom du margueur	MSAT4.0098	6 MSAT4.3	35	C1W	7	MSAT	4.14		
Position du marqueur (en Mb)	0,98	7,55		11,52	2	15,2	21		
Chr5									
Nom du marqueur	ATHCTR1A	NGA	\76	Μ	ISAT 5.8	3 N	ASAT5.20	037	MSAT5.19
Position du marqueur (en Mb)	0,98	10,	42		17,16		20,03		25,92

a- Noms et les positions des marqueurs utilisés pour le génotypage, par chromosome.

b- Représentation graphique des résultats de génotypage. Le pourcentage d'individus hétérozygotes aux marqueurs analysés, est indiqué pour l'ensemble de la population (N=188) en vert ; pour les plantes fertiles (N= 134) en bleu ; pour les plantes stériles (N= 54) en rose. Les cercles rouges entourent les résultats s'écartant significativement (α =0,05) de la proportion attendue.

a

a

Chr1

U E							
Nom du marqueur	T1G11	NGA63	CIW12	MSAT 1.4	CIW 1	NGA128	MSAT1.13
Position du marqueur (en Mb)	1,24	3,22	9,62	14,2	18,37	20,63	25,83

Chr2

Nom du marqueur	MSAT 2.5	MSAT 2.28	MSAT 2.17	CZSOD 2	MSAT 2.10	MSAT 2.22
Position du marqueur (en Mb)	0,21	6,41	10,73	12,02	18,02	19,63

Chr3

Nom du marqueur	MSAT 3.0205	MSAT 3.32	MSAT 3.58	MSAT 3.2043	MSAT 3.70
Position du marqueur (en Mb)	2,05	11,21	18,66	20,43	23,45

Chr4

Nom du marqueur	MSAT 4.0098	MSAT 4.35	C1W7	MSAT 4.18	MSAT 4.14
Position du marqueur (en Mb)	0,98	7,55	11,52	11,97	15,21

Chr5

b

	NGA 158	ICE1	MSAT 5.1261	MSAT 5.8	MSAT 5.2003	MSAT 5.19
Nom du marqueur Position du marqueur (en Mb)	1,7	5,4	12,61	17,16	20,03	25,92

Figure B2 : analyse de la population F2-63RV

a. Noms et les positions des marqueurs utilisés pour le génotypage, par chromosome.

b. Représentation graphique des résultats de génotypage. Le pourcentage de chaque génotype est indiqué (Mr-0 : bleu, Sha : vert, hétérozygote : rose) pour chaque marqueur selon la position physique.

Figure B3 : introgression des allèles Mr-0 mainteneurs de stérilité mâle Plan de croisement utilisé pour introgresser les allèles Mr-0 mainteneurs de stérilité dans un fond génétique Sha : trois rétrocroisements par le parent récurrent Sha ont permis de produire trois populations « rétrocroisement maternel » (nommées RM1, RM2 et RM3). Dans la RM3, les individus stériles ont, en théorie, les deux locus mainteneurs de stérilité à l'état hétérozygote et se trouvent dans un fond nucléaire et cytoplasmique très majoritairement Sha. Chaque boîte correspond à un génotype. Les cinq barres verticales dans le rectangle blanc représentent les 5 chromosomes. La couleur du fond de chaque boîte indique le cytotype. En rouge : génotype Mr-0; en jaune, génotype Sha; en marron : génotype hétérozygote. Le phénotype de chaque plante est également indiqué : F = fertile, bleu et S = stérile, rose.

Figure B4 : fixations des allèles Mr-0 à l'état homozygote au locus ch1 ou au locus ch3.

(a) Pour créer une population « fixation Mr-0 au locus ch1 », deux individus hétérozygotes au locus ch1 ont été sélectionnés dans la population « rétrocroisement maternel n°3 » (RM3-A) : l'un des individus est stérile (S), car hétérozygote aux locus ch1 et ch3, et l'autre est fertile (F) car Sha au locus ch3. La descendance de ce croisement, appelée population « fixation Mr-0 au locus ch1 » contient donc des individus Mr-0 au locus ch1 et hétérozygote ou Sha au locus ch3 : ces individus (identifiés par * dans la figure) seront utilisés comme parents femelles et comme parents mâles respectivement pour générer des populations de cartographie au locus ch3.

(b) La même stratégie a été effectuée afin d'éviter la ségrégation du locus ch3 mainteneur de stérilité lors de la recherche de recombinants au locus ch1. Les individus sélectionnés dans la population « fixation Mr-0 au locus ch3 » pour produire des populations de cartographie pour le locus ch1 sont identifiés par ° dans la figure. Chaque boîte correspond à un génotype. Les cinq barres verticales dans le rectangle blanc représentent les 5 chromosomes. La couleur du fond de chaque boîte indique le cytotype. En rouge : génotype Mr-0 ; en jaune, génotype Sha ; en marron : génotype hétérozygote. Le phénotype de chaque plante est également indiqué : F = fertile, bleu et S = stérile, rose.

Population RM3-A Chromosome 1

Chromosome 3

Nom du marqueur Position physique (Mb)	CIW1 18,37	NGA128 20,63	ATHGENEA 22,40	MSAT3.58 18.66	MSAT3.20435 20,43	ATHFUS6 22,64	MSAT3.23388 23,39	MSAT3.70 23,45
Nombre d'individus Sha	44	47	49	44	43	44	46	41
Nombre d'individus He	38	40	41	44	44	45	42	46
Total	82	87	90	88	87	89	88	87
Chi2 génotypes (1 ·1)	0,44	0,56	0,71	0,00	0,01	0,01	0,18	0,29
Chi2 allèles (3 :1)	0,29	0,38	0,47	0,00	0,01	0,01	0,12	0,19

b

Population RM3-B	Chro	omosome	1		Chromosome 3					
Nom du marqueur Position physique (Mb)	CIW1 18,37	NGA128 20,63	ATHGENEA 22,40	MSAT3.58 18.66	MSAT3.20435 20,43	ATHFUS6 22,64	MSAT3.23388 23,39	MSAT3.70 23,45		
Nombre d'individus Sha	143	143	99	113	121	99	117	127		
Nombre d'individus He	101	105	73	121	127	109	114	129		
Total	244	248	172	234	248	208	231	256		
Chi2 génotypes (1 :1)	7,23	5,82	3,93	0,27	0,15	0,48	0,04	0,02		
Chi2 allèles (3 :1)	4,82	3,88	2,62	0,18	0,10	0,32	0,03	0,01		

Tableau B1 : ségrégation des marqueurs dans les populations RM3-A et RM3-B

Les tableaux indiquent, pour les populations RM3-A (a) et RM3-B (b), le nom et la position physique des marqueurs génotypés et les effectifs d'individus hétérozygotes et Sha dans ces populations. Les valeurs de Chi2 ont été calculées, pour chaque marqueur, pour la répartition des génotypes dans la population (attendue à 1 :1) et la transmission des allèles parentaux (attendue à 3 :1). Les valeurs de Chi2 significatives (α =0,05) sont indiquées en rouge.

Nom du marqueur Position physique (Mb)	CIW1 18,37	NGA128 20,63		MSAT3.58 18.66	MSAT3.20435 20,43
Nombre d'individus Sha	22	16		38	38
Nombre d'individus He	39	39		37	40
Nombre d'individus Mr-0	20	23		0	0
Total	79	78		75	78
Chi2 allèles (1 :1)	0,099	1,256	Chi2 allèles (3/4 :1/4)	0,009	0,034
Chi2 génotypes (1/2 :1/4 :1/2)	0,21	1,256	Chi2 génotypes (1 :1)	0,013	0,051

b

Nom du marqueur	CIW1	NGA128		MSAT3.20435
Position physique (Mb)	18,37	20,63		20,43
Nombre d'individus Sha	26	15		72
Nombre d'individus He	43	48		19
Nombre d'individus Mr-0	19	28		0
Total	88	91		91
Chi2 allèles (1 :1)	1,114	3,714	Chi2 allèles (3/4 :1/4)	20,579
Chi2 génotypes (1/2 :1/4 :1/2)	1.159	3.989	Chi2 génotypes (1 :1)	30.868

Tableau B2 : ségrégation des marqueurs dans les populations « fixation Mr-0 au ch1 »

CIW1

18.37

48

42

0

90

0,267

0,4

NGA128

20,63

47

42

0

89

0,187

0,281

(a) Population issue du croisement « RM3-A CC3 x RM3-A CA4 ». (b) Population » issue du croisement « RM3-A CG4 x RM3-A CH10 ». Les tableaux indiquent le nom et la position physique des marqueurs génotypés et les effectifs d'individus de chaque génotype à chaque marqueur dans ces populations. Les valeurs de Chi2 ont été calculées, pour chaque marqueur, pour la répartition des génotypes dans la population et la transmission des allèles parentaux. Les proportions attendues dans chaque cas sont indiquées entre parenthèses. Les valeurs de Chi2 significatives (a=0,05) sont indiquées en rouge.

Chi2 allèles (1:1)

Chi2 génotypes (1/2 :1/4 :1/2)

MSAT3.58

18.66

8

46 32

86

13,395

13.814

MSAT3.20435

20,43

5 41

38

84

25,929

25.978

b

Total

Nom du marqueur	CIW1	NGA128		MSAT3.20435
Position physique (Mb)	18,37	20,63		20,43
Nombre d'individus Sha	55	43		7
Nombre d'individus He	37	42		53
Nombre d'individus Mr-0	0	0		28
Total	92	85		88
Chi2 allèles (3/4 : 1/4)	2,348	0,008	Chi2 allèles (1 :1)	10,023
Chi2 génotypes (1 : 1)	3.522	0.012	Chi2 génotypes (1/2 :1/4 :1/2)	13,705

Tableau B3 : ségrégation des marqueurs dans les populations « fixation Mr-0 au ch3 »

(a) Population issue du croisement « RM3-A CB2 X RM3-A CF8 ». (b) Population issue du croisement « RM3-A CH8 X RM3-A CG5 ». Les tableaux indiquent le nom et la position physique des marqueurs génotypés et les effectifs d'individus de chaque génotype à chaque marqueur dans ces populations. Les valeurs de Chi2 ont été calculées, pour chaque marqueur, pour la répartition des génotypes dans la population et la transmission des allèles parentaux. Les proportions attendues dans chaque cas sont indiquées entre parenthèses. Les valeurs de Chi2 significatives (a=0,05) sont indiquées en rouge.

a

Nom du marqueur Position physique (Mb)

Nombre d'individus Sha

Nombre d'individus He

Chi2 allèles (3/4 : 1/4)

Chi2 génotypes (1 : 1)

Nombre d'individus Mr-0

	PC1	PC1.1	PC1.2
Nombre d'individus stériles	36	39	37
Nombre d'individus fertiles	54	45	47
Chi2 (1:1)	7,201	0,428	1,190

Tableau B4 : ségrégation des phénotypes dans les populations de cartographie du locus ch1

Le Chi2 a été calculé pour une proportion égale de plantes stériles et fertiles, attendue dans ces populations. La valeur du Chi2 significative (α =0,05) est indiquée en rouge.

	PC1	PC1.1	PC1.2
Nom du marqueur	CIW1	CIW1	CIW1
Nombre d'individus Sha	304	133	268
Nombre d'individus He	303	123	250
Chi2 génotypes (1 :1)	0,003	0,724	1,223

Tableau B5 : ségrégation du marqueur CIW1 dans les populations de cartographie du locus ch1

Le Chi2 a été calculé pour une proportion égale de plantes hétérozygotes et Sha, attendue dans ces populations.

	PC3	PC3.1	PC3.2	PC3.3	PC3.4	PC3.5	PC3.6
Nombre d'individus stériles	47	45	46	16	13	12	29
Nombre d'individus fertiles	35	39	45	53	70	75	43
Chi2 génotypes (1:1)	3,51	0,85	0,022	39,681	78,289	91,241	5,444
	PC3.7	PC3.8	PC3.9	PC3.10	PC3.11	PC3.12	PC3.13
Nombre d'individus stériles	PC3.7	PC3.8 35	PC3.9	PC3.10 32	PC3.11 46	PC3.12	PC3.13
Nombre d'individus stériles Nombre d'individus fertiles	PC3.7 46 31	PC3.8 35 33	PC3.9 41 42	PC3.10 32 34	PC3.11 46 28	PC3.12 11 63	PC3.13 3 61

Tableau B6 : ségrégation des phénotypes dans les populations de cartographie du locus ch3

Le Chi2 a été calculé pour une proportion égale de plantes stériles et fertiles, attendue dans ces populations. Les valeurs du Chi2 significatives (α =0,05) sont indiquées en rouge.

	PC3	PC3.1	PC3.2	PC3.3	PC3.4	PC3.5	PC3.6
Nom du marqueur	MSAT3.20435	MSAT3.206422	MSAT3.206422	MSAT3.70	MSAT3.70	MSAT3.70	MSAT3.23031
Nombre d'individus Sha	267	378	456	250	489	245	234
Nombre d'individus He	217	394	429	237	492	243	224
Chi2 génotypes (1:1)	5.2	0,837	1,647	0,347	0,009	0,008	0,218
	PC3.7	PC3.8	PC3.9	PC3.10	PC3.11	PC3.12	PC3.13
Nom du marqueur	MSAT3.23388	MSAT3.23031	MSAT3.23007	MSAT3.23007	MSAT3.23388	MSAT3.23388	MSAT3.23388
Nombre d'individus Sha	77	189	60	84	179	149	77
Nombre d'individus He	73	192	64	61	173	160	82
Chi2 génotypes (1:1)	0,106	0,023	0,129	3,64	0,102	0,392	0,159

Tableau B7 : ségrégation d'un marqueur dans les populations de cartographie du locus ch3

Le Chi2 a été calculé pour une proportion égale de plantes hétérozygotes et Sha, attendue dans ces populations La valeur du Chi2 significative (α =0,05) est indiquée en rouge.

Accession name	Versailles identification number	Country of origin	Locality of origin	F1 ShaxAcc	F1 AccxSha	Croisements	Cluster (Simon et al., 2011)
Mr-0	148 AV	Italy	Monterosso	S	F	MDT 06	2b
Etna-2	703 AV	Italy	Mt. Etna	S	F	NG juin11	2b
Etna-1	702 AV	Italy	Mt. Etna	Létalité	Létalité	NG juin11	2b

Tableau B8 : caractéristiques des accessions 702AV, 703AV et Mr-0

Ces accessions (colonnes 1 et 2) ont été utilisées comme parents lors des croisements réciproques avec Sha. Les croisements ont été réalisés par Mylène Durant-Tardif (MDT) et par moi-même (NG). Les phénotypes des F1 obtenues par les croisements Sha x Accession (Acc) et Acc x Sha sont indiqués dans les colonnes 5 et 6 respectivement. S = Stérile et F = fertile. Les trois accessions appartiennent au cluster nucléaire 2b (figure B24) d'après Simon et al. (2011).

Nom de l'accession	Numéro d'identifiaction Versailles	Chlorotype	Cluster nucléaire (Simon et al., 2011)	Ville	Pays	Croisements	F1 AcexMr-0	F1 Mr-0xAce
Db-1	132 AV	J	4b	Tenne/Ts.	Germany	CW	F	F
Wil-1	72 AV	J	4e	Vilnius	Lithuania	CW	F	F
N13	266 AV	J	1a	Konchezero	Russia	CW	F	F
Kas-2	555 AV	H x	1a	Kashmir	Inde	NG	F	F
Kondara	190 AV	S _x	1b	Kondara	Tadjikistan	NG	F	F
Hodja-Obi-Garm	203 AV	8	1b	Khodga-Obi-Garm	Tadjikistan	CW	F	F
Sorbo	238 AV	F x	1b	Sorbo	Tadjikistan	NG	F	F
Hodja-Obi-Garm bis	270 AV	S x	1b	Hodga-Obi-Garm	Tadjikistan	NG	F	F
Neo-6	540 AV	U	1b	Neo-Shahdara	Tadjikistan	CW	F	F
Kz-9	403 AV	I x	1a	Atasu	Kazakhstan	NG	F	F
Kz-1	402 AV	J x	1a	Atasu	Kazakhstan	NG	F	F
Lenk2-1	584 AV	M ^x	1a	Lankaran-Lenk	Azerbadjan	NG	F	F
9481B	261 AV	I	1a	Kazakhstan	Kazakhstan	CW	S	F
Kar-1	531 AV	I x	1b	Karakol river	Kyrgyzstan	NG	S	F
Kar-2	532 AV	I x	1b	Karakol river	Kyrgyzstan	NG	S	F
Sus-1	533 AV	I x	1b	Susamyr	Kyrgyzstan	NG	S	F
Dja-1	534 AV	I x	1b	Djarly	Kyrgyzstan	NG	S	F
Dja-5	535 AV	I x	1b	Djarly	Kyrgyzstan	NG	S	F
Zal-1	536 AV	I	1b	Zalisky	Kyrgyzstan	NG	S	F
Zal-3	537 AV	I x	1b	Zalisky	Kyrgyzstan	NG	S	F
Kyr-1	538 AV	I ^x	1b	Kyrgyzata	Kyrgyzstan	NG	S	F
Neo-3	539 AV	I	1b	Neo-Shahdara	Tadjikistan	CW	S	F
Shahdara	271 AV	I ^x	1b	Shakdara River	Tadjikistan	CW	S	F

Tableau B9 : résultats des croisements réciproques de différentes accessions avec Mr-0

Les noms et N° dans la collection de Versailles des accessions utilisées en croisements avec Mr-0 sont indiqués dans les deux premières colonnes. La colonne 3 indique le chlorotype de l'accession (les petites croix indiquent les accessions dont j'ai défini les chlorotypes; les autres chlorotypes ont été définis par Moison et al (2010). La colonne 4 précise le cluster nucléaire (d'après Simon et al, 2011) auquel appartient l'accession. Les colonnes 5 et 6 précisent leur origine géographique. La colonne 7 indique l'auteur du croisement : Nicolas Gobron, (NG) ou Cezary Waszczak (CW). Les colonnes 8 et 9 indiquent le phénotype de la F1 produite avec Mr-0 en utilisant celle-ci comme père ou comme mère, respectivement. F= fertile; S= stérile.

	Nom du site	ndhFrpl634	ndhFrpl674	MatKK645	MatKK843	ndhCtrnV318	ndhCtrnV322	ndhCtrnV373	ndhCtrnV569/572	ndhCtrnV631	ndhCtrnV679.1/679.7	ndhCtrnV733	ndhCtrnV858	rbcLaccD91	rbcLaccD251	rbcLaccD615
	Polymorphisme	SN	SN	DE	SN	SN	SN	SN	DE	SN	IN	SN	SN	SN	SN	SN
	0 (référence)	G	Т	Т	Α	Α	т	A	GAAA	С		G	A	С	т	Α
	1	С	А	-	т	т	G	С		G	TAAATTA	т	т	т	С	G
Chlorotype	Nº d'accession	ndhFrpl634	ndhFrpl674	MatKK645	MatKK843	ndhCtrnV318	ndhCtrnV322	ndhCtrnV373	ndhCtrnV569/572	ndhCtrnV631	ndhCtrnV679.1/679.7	ndhCtrnV733	ndhCtrnV858	rbcLaccD91	rbcLaccD251	rbcLaccD615
	236AV	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1
	271AV	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1
	532AV	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1
	534AV	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1
	535AV	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1
	536AV	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1
- I	537AV	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1
	539AV	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1
	261AV	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1
	533AV	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1
	538AV	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1
	531AV	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1
	403AV	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1
	402AV	0	1	0	0	0	1	0	0	0	0	1	0	0	1	1
Ы	266AV	0	1	0	0	0	1	0	0	0	0	1	0	0	1	1
•	72AV	0	1	0	0	0	1	0	0	0	0	1	0	0	1	1
	132AV	0	1	0	0	0	1	0	0	0	0	1	0	0	1	1
M	584AV	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0
U	540AV	0	1	0	0	0	1	1	1	0	0	1	0	0	1	1
	190AV	0	1	0	1	0	1	1	1	0	0	1	0	0	1	1
S	203AV	0	1	0	1	0	1	1	1	0	0	1	0	0	1	1
	270AV	0	1	0	1	0	1	1	1	0	0	1	0	0	1	1
C	238AV	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
н	555AV	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0

Tableau B10 : polymorphisme observé dans l'ADN chloroplastique des accessions d'Arabidopsis thaliana étudiées

Le tableau B10 présente, pour 15 sites chloroplastiques, le polymorphisme de référence (0) et le polymorphisme observé (1) chez certaines accessions. Les polymorphismes peuvent être de type « substitution » (SN), « délétion » (DE) ou « insertion » (IN). Les sites polymorphes du tableau 1 (cf introduction) ont été testés sur les accessions d'*A. thaliana* inductrices (IDS, en rose) et non-inductrices (NIDS, en bleu clair) de stérilité ; Seuls les sites polymorphes dans ce panel d'accessions sont montrés ici.

AV code	Chlorotype	nad5-rrn26 Recl	nad5-rrn26 Recil	nad9/ rpl16	cox2	atp8- orf107c	atp6-2	atp9- cox3	CcmC	orf315	orf131	orf26S2	orf111b	orf 240a	orf 120	orf107d
72AV	J	1	0	1	2	1	1	1	2	SS	SS	1	1	1	1	1
132AV	J	1	0	1	2	1	0	1	2	nd	0	0	0	1	1	1
186AV	Α	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
183AV	AH	1	1	1	2	1	1	0	2	1	1	1	1	1	1	1
403AV		1	1	1	2	1	0	1	2	1	1	0	0	1	0	0
236AV		1	1	1	2	1	0	1	2	1	1	0	0	0	0	0
271AV		1	1	1	2	1	0	1	2	1	1	0	0	0	1	0
532AV		1	1	1	2	1	0	1	2	1	1	0	0	0	1	0
533AV		1	1	1	2	1	0	1	2	1	1	0	0	0	nd	0
534AV		1	1	1	2	1	0	1	2	1	1	0	0	0	nd	0
535AV		1	1	1	2	1	0	1	2	1	1	0	0	0	1	0
536AV		1	1	1	2	1	0	1	2	1	1	0	0	0	nd	0
538AV		1	1	1	2	1	0	1	2	1	1	0	0	0	nd	0
539AV		1	nd	1	2	1	0	1	2	1	1	0	SS	0	1	0
261AV	I	1	1	1	2	1	0	1	2	1	1	0	SS	0	0	0

Tableau B11 : résultats du polymorphisme observé dans l'ADN mitochondrial des accessions d'A. thaliana

Les 15 marqueurs du tableau 2 (cf introduction) ont été utilisés pour observer le polymorphisme mitochondrial de 15 accessions IDS (en rose) ou NIDS (en bleu clair). SS : sublimons ; nd : non déterminé ; 0 = pas d'amplification ; 1 = amplification profil 1 ; 2 = amplification profil 2 (les profils sont disponibles dans Moison et *al.* 2010).

Figure B5 : production de populations de cartographie indépendantes

(a) Production des populations de cartographie PC3 adaptées à la cartographie du locus ch3. Les parents proviennent des croisements réalisés pour fixer le locus ch1 (figure B4a).

(b) Production des populations de cartographie PC1 à partir d'individus de la population « Fixation Mr-0 au locus ch3 » (figure B4b). Chaque boîte correspond à un génotype. Les cinq barres verticales dans le rectangle blanc représentent les 5 chromosomes. La couleur du fond de chaque boîte indique le cytotype. En rouge : génotype Mr-0 ; en jaune, génotype Sha ; en marron : génotype hétérozygote. Le phénotype de chaque plante est également indiqué : F = fertile, bleu et S = stérile, rose.

Figure B6 : caractéristiques des populations de cartographie du locus ch3 et génotypes des parents de ces populations

a. Caractéristiques des populations de cartographie PC3.

b Représentation des génotypes des parents de populations de cartographie du locus ch3. Les traits verticaux représentent la position des marqueurs utilisés pour génotyper ces plantes. Leurs noms et positions physiques sur le chromosome 3 sont indiqués au-dessus et au-dessous. En jaune, génotype Sha; en marron : génotype hétérozygote. Deux types de parent femelle (type 1 ou type 2) sont distingués selon l'étendue de la zone d'hétérozygotie au chromosome 3.

Figure B7 : caractéristiques des populations de cartographie du locus ch1 et génotypes des parents de ces populations

a Caractéristiques des populations de cartographie.

b Représentation des génotypes des parents de populations de cartographie du locus ch1. Les traits verticaux représentent la position des marqueurs utilisés pour génotyper ces plantes. Leurs noms et positions physiques sur le chromosome 1 sont indiqués. En jaune, génotype Sha; en marron : génotype hétérozygote. Deux types de parent femelle (type 1 ou type 2) sont distingués selon l'étendue de la zone d'hétérozygotie au chromosome 1.

CIW1 + NGA128 + ATHGENEA

Figure B8 : liaison du génotype aux marqueurs encadrant ch1 avec les phénotypes de stérilité (S) et de fertilité (F)

Pour chacune des populations de cartographie, le diagramme représente la distribution (en %) des plantes de la plaque phénotypée selon leur phénotype (stérile, S ou fertile, F) et leur génotype aux trois marqueurs génotypés. Les plantes recombinantes entre deux marqueurs n'ont pas été prises en compte pour cette analyse. Les effectifs concernés sont indiqués au-dessus de chaque diagramme.

Figure B9 : génotypes des recombinants identifiés dans la PC1 (a) et la PC1.1 (b).

La colonne de gauche indique le phénotype des recombinants (F = fertile et S = stérile) et la colonne de droite indique le nombre de recombinants pour un génotype donné. Les traits verticaux représentent la position des marqueurs utilisés pour génotyper ces plantes. Leurs noms et positions physiques sur le chromosome 1 sont indiqués. En jaune, génotype Sha; en marron : génotype hétérozygote. Le cadre vert représente l'intervalle génétique contenant le locus ch1, défini par les recombinants stériles. Il existe des recombinants fertiles en contradiction avec cette localisation génétique. Ils sont indiqués par des points rouges.

La colonne de gauche indique le phénotype des recombinants (F = fertile et S = stérile) et la colonne de droite indique le nombre de recombinants pour un génotype donné. Les traits verticaux représentent la position des marqueurs utilisés pour génotyper ces plantes. Leurs noms et positions physiques sur le chromosome 1 sont indiqués. En jaune, génotype Sha; en marron : génotype hétérozygote. Les cadres verts indiquent les locus ch1A et ch1B déduits de l'analyse de cette population. Les génotypes recombinants utilisés pour tester l'hypothèse des deux locus sont indiqués. Type bêta : hétérozygotes au locus ch1A et Sha au locus ch1A et hétérozygote au locus ch1B.

Figure B11 : génotypes des descendants issus des croisements entre recombinants PC1.2.

(a) Croisement RecPC1.2 n°39 X RecPC1.2 n°54. (b) Croisement RecPC1.2 n°46 X RecPC1.2 n°52. Pour les génotypes des parents, la colonne de gauche indique si l'individu a été utilisé comme parent mâle ou comme parent femelle ; la colonne de droite indique le numéro de la plante et le type alpha ou bêta de la plante. Dans la descendance des croisements, la colonne de gauche indique le phénotype des descendants (F = fertile et S = stérile) et la colonne de droite indique le nombre de descendants pour un génotype donné. Les traits verticaux représentent la position des marqueurs utilisés pour génotyper ces plantes. Leurs noms et positions physiques sur le chromosome 1 sont indiqués. En jaune, génotype Sha ; en marron : génotype hétérozygote. Les plantes dont le phénotype est contradictoire avec les résultats de la PC1.2 sont indiquées par des points rouges.

Figure B12 : génotypage d'une population issue du croisement RecPC1.2 n°52 X RecPC1.2 n°48

Pour les génotypes des parents, la colonne de gauche indique si l'individu a été utilisé comme parent mâle ou comme parent femelle ; la colonne de droite indique le numéro de la plante et le type alpha ou bêta de la plante. Dans la descendance des croisements, la colonne de gauche indique le phénotype des descendants (F = fertile et S = stérile) et la colonne de droite indique le nombre de descendants pour un génotype donné. Les traits verticaux représentent la position des marqueurs utilisés pour génotyper ces plantes. Leurs noms et positions physiques sur le chromosome 1 sont indiqués. En jaune, génotype Sha ; en marron : génotype hétérozygote. Il existe des recombinants en contradiction avec la localisation génétique du locus ch3 définie dans les figures B9 et B10. Ils sont indiqués par des points rouges.

Figure B13 : ségrégation des allèles parentaux dans des descendances d'autofécondation de plantes hétérozygotes au chromosome 1

Pour chaque plante dont la descendance a été analysée (a à h), le diagramme décrit son génotype dans la région considérée au chromosome 1. Le nom de la plante mère est indiqué à droite. Les traits verticaux représentent la position des marqueurs utilisés pour génotyper ces plantes. Leurs noms et positions physiques sur le chromosome 1 sont indiqués. En jaune, génotype Sha ; en marron : génotype hétérozygote. La ségrégation du ou des marqueurs dans la descendance d'autofécondation de chaque plante est indiquée dans le tableau sous chaque diagramme. Les Chi2 ont été calculés, pour chaque marqueur, pour la répartition des génotypes et des allèles dans la population. Les proportions attendues dans chaque cas sont indiquées entre parenthèses. Les valeurs de Chi2 significatives (α =0,05) sont indiquées en rouge et les valeurs de Chi2 non significatives (α =0,05) sont indiquées en vert.

Corrélation Phénotype/Génotype dans la PC3.1 Effectif: 80 individus

Corrélation Phénotype/Génotype dans la PC3 Effectif: 83 individus

Corrélation Phénotype/Génotype dans la PC3.2 Effectif: 89 individus

Corrélation Phénotype/Génotype dans la PC3.4 Effectif: 74 individus 45.95 43,24 6 9.46 1,35 Sha et F Sha et S He et F He et S

MSAT 3.21869 + MSAT3.70

Corrélation Phénotype/Génotype dans la PC3.5

Effectif: 66 individus

Corrélation Phénotype/Génotype dans la PC3.8

MSAT3.23007 + MSAT3.23388

Effectif: 65 individus

Corrélation Phénotype/Génotype dans la PC3.9

Effectif: 65 individus

tel-00713647, version 1 - 2 Jul 2012 80 70 60

Figure B14 : liaison du génotype aux marqueurs encadrant ch3 avec les phénotypes de stérilité (S) et de fertilité (F)

Pour chacune des populations de cartographie, le diagramme représente la distribution (en %) des plantes de la plaque phénotypée selon leur phénotype (stérile, S ou fertile, F) et leur génotype aux deux marqueurs génotypés. Les plantes recombinantes entre deux marqueurs n'ont pas été prises en compte pour cette analyse. Les effectifs concernés sont indiqués au-dessus de chaque diagramme

La colonne de gauche indique le phénotype des recombinants (F = fertile , S = stérile et? = phénotype incertain) et la colonne de droite indique le nombre de recombinants pour un génotype donné. Les traits verticaux représentent la position des marqueurs utilisés pour génotyper ces plantes. En jaune, génotype Sha; en marron : génotype hétérozygote. Le carré vert représente l'intervalle (contenant le locus ch3) encadré par les recombinants stériles. Les % de plantes hors-types observés dans l'échantillon phénotype de chaque population sont indiqués. Il existe des recombinants fertiles en contradiction avec la localisation génétique du locus ch3 encadré par les recombinants stériles : ils sont indiqués par des points rouges.

Figure B16 : cartographie fine du mainteneur de stérilité au locus ch3 à l'aide de marqueurs CAPS.

Génotypes des recombinants dans l'intervalle MSAT3.23072 et MSAT3.23289. La colonne de gauche indique le phénotype des recombinants (F = fertile, S = stérile et ? = phénotype incertain) et la colonne de droite indique le nombre et l'origine des recombinants pour un génotype donné. Les traits verticaux représentent la position des marqueurs utilisés. En jaune, génotype Sha; en marron: génotype hétérozygote. Le crochet vert indique la position du locus ch3 [CAPSAt3g62560-CAPSAt3g62700].

Figure B17 : vérification de la conservation de la région génomique [At3g62560-At3g62700].

10 couples d'amorces ont été dessinés pour amplifier par PCR, chez Col-0, Sha et Mr-0, des fragments de 6000 à 8000 pb dans cet intervalle. Les résultats pour les trois accessions sont présentés dans le tableau et les positions des 10 fragments chez Col-0 sont représentées sur le schéma.

M Sha Mr-0 H20 M Sha Mr-0 H20 Sha Mr-0 H20

Figure B18 : gel d'électrophorèse des produits PCR amplifiant les fragments IV à X de l'ADN Sha et Mr-0 Les ADNs génomiques des accessions parentales ont été amplifiés avec des amorces dessinées pour amplifier les fragments de la figure B17. Ils ont été séparés par électrophorèse sur un gel d'agarose 1%. M : échelle (1kb DNA ladder Fermentas). Les produits d'amplification des fragments IV à X sont présentés ici.

Figure B19 : gel d'électrophorèse de confirmation des produits PCR amplifiant le fragment VIII de l'ADN Sha et Mr-0

Les ADNs génomiques des accessions parentales ont été amplifiés avec des amorces dessinées pour la région VIII et les produits d'amplification séparés par électrophorèse sur un gel d'agarose 1%. 1 : Sha ; 2 : Mr-0 ; 3 : H₂0 ; M : échelle (1kb DNA ladder Fermentas). Le produit d'amplification obtenu à partir de l'ADN Sha (>10 000 pb) est plus grand que celui obtenu avec l'ADN Mr-0 (6000 pb -8000 pb).

	Čhromo	some 1	Chromosome 3		
Nom du marqueur	MSAT1.21231	ATHGENEA	MSAT3.23072	MSAT3.23289	
Position du marqueur	21,23 Mb	22,40 Mb	23,07 Mb	23,28 Mb	
Type 1	Sha	Sha	Sha	Sha	
Type 2	He	He	He	He	

b

a

Type 1

Type 2

Figure B20 : caractérisation phénotypique de l'incompatibilité nucléo-cytoplasmique Sha/Mr-0

- a- Génotypage des plantes observées au locus mainteneurs de stérilité. Sha: homozygote Shahdara; He: hétérozygote.
- b- Hampes florales des plantes matures.
- c- Anthères colorées à l'Alexander. Les grains de pollen sont colorés en rouge s'ils sont viables ou en bleuvert s'ils sont non viables. L'agrandissement d'une zone du champ est montré en encart. Les rares grains de pollen colorés en rouge visibles dans les anthères des plantes de type 2 sont signalés par des flèches.

С

Stade pollen jeune

Stade pollen mûr

Figure B21 : observations cytologiques d'anthères de plantes des types 1 et 2 au cours du développement du pollen

Les anthères en développement, d'individus de type 1 et de type 2, ont été colorées à l'iodure de propidium et observées au microscope confocal. Deux stades de développement des anthères, un stade précoce (pollen jeune) et un stade tardif (pollen mûr), ont été choisis. L'iodure de propidium colore particulièrement l'ADN, faisant apparaître les noyaux, et les parois cellulaires. Un marquage ponctué (mp) est visible au niveau du tapis de l'anthère. Epiderme (ep), assise mécanique (am), tapis (t), grain de pollen (p).

tel-00713647, version 1 - 2 Jul 2012

		Chro	Chromosome 3			
	CIW1	MSAT1.19860	MSAT1.21231	ATHGENEA	MSAT3.23072	MSAT3.23289
	18,37 Mb	19,86 Mb	21,23 Mb	22,40 Mb	23,07 Mb	23,28 Mb
Type 3	He	He	He	He	Sha	Sha
Type 4	Mr-0	Mr-0	Mr-0	Mr-0	Sha	Sha

b

Туре 3

Figure B22 : caractérisation phénotypique du distorteur de ségrégation du chromosome 1

- a- Génotypage des plantes observées au locus mainteneurs de stérilité. Sha : homozygote Shahdara ; He : hétérozygote.
- b- Hampes florales des plantes matures.
- c- Anthères colorées à l'Alexander. Les grains de pollen sont colorés en rouge s'ils sont viables ou en bleu-vert s'ils sont non viables. L'agrandissement d'une zone du champ est montré en encart. Les grains de pollen colorés en bleu-vert visibles dans les anthères des plantes de type 3 sont signalés par des flèches.

a		Chron	Chromosome 3			
	CIW1	MSAT1.19860	MSAT1.21231	ATHGENEA	MSAT3.23072	MSAT3.23289
	18,37 Mb	19,86 Mb	21,23 Mb	22,40 Mb	23,07 Mb	23,28 Mb
Type 5	Sha	Sha	Sha	Sha	He	He

Figure B23 : caractérisation phénotypique du distorteur de ségrégation du chromosome 3

- a- Génotypage des plantes observées au locus mainteneurs de stérilité. Sha: homozygote Shahdara; He : hétérozygote.
- b- Hampes florales des plantes matures.

b

c

c- Anthères colorées à l'Alexander. Les grains de pollen sont colorés en rouge s'ils sont viables ou en bleu-vert s'ils sont non viables. L'agrandissement d'une zone du champ est montré en encart. Les grains de pollen colorés en bleu-vert visibles dans les anthères des plantes de type 5 sont signalés par une flèche.

Zoom des clusters 1 et 2 de Simon et al. (2011) : Les positions des accessions Sha et Mr-0 dans les clusters 1b et 2b respectivement sont indiquées par des flèches. Les autres accessions pertinentes pour la thèse sont indiquées par des croix.

F1 Sha x 703AV

Figure B25 : phénotype des F1 obtenues par des croisements réciproques entre Sha et les accessions 702AV et 703AV

a- Plantules F1 issues de croisements réciproques entre Sha et 702AV environ 10 jours après semis.

b- Plantes F1 issues de croisements réciproques entre Sha et 703AV.

b

а

Chr1

Nom du marqueur	CIW12	NGA128
Position du marqueur (en Mb)	9,62	20,63

Chr	2
-----	---

Nom du marqueur	MSAT 2.003	MSAT 2.22
Position du marqueur (en Mb)	0,30	19,63

Chr3

Nom du marqueur	MSAT 3.0205	MSAT 3.1	MSAT 3.65
Position du marqueur (en Mb)	2,05	12,17	19,84

ICE3

16,14

ATHGENEA

22,40

MSAT1.13

25,83

Chr4

	MSAT 4.35	MSAT 4.15
Nom du marqueur	7 5 5	15 30
Position du margueur (en Mb)	7,55	15,50

Г

Chr5

tel-00713647, version 1 - 2 Jul 2012

	NGA 158
Nom du marqueur Position du marqueur (en Mb)	1,7

Figure B26 : analyse de la population « rétrocroisement maternel 1 » (RM1) du croisement Sha X 703AV

a- Noms et les positions des marqueurs utilisés pour le génotypage, par chromosome.

b- Représentation graphique des résultats de génotypage. Le pourcentage d'individus hétérozygotes aux marqueur analysés, est indiqué pour l'ensemble de la population en bleu ; pour les plantes fertiles en rouge; pour les plante stériles en vert. Les cercles rouges entourent les résultats s'écartant significativement (α =0,05) de la proportion attendue.

Effectif =	181	in	dix	rid	n

Figure B27 : environnement génétique autour des deux copies trnK dans l'ADNmt de C24

(a) zoom de la région génétique de l'ADNmt de C24 contenant la copie trnK, amplifiée par les amorces L' (5' à 29430 pb) et U' (5' à 28529 pb) représentées par des flèches, et située entre les gènes nad9 et ccb206. Les gènes et les ORFs sont schématisés en rouge et la copie du trnK, en bleu. (b) zoom de la région génétique de l'ADNmt de C24 contenant la copie trnK liée à l'orf240a, entre les gènes nad4 et cox3. Les gènes et les ORFs sont schématisés en rouge et l'une des copies du trnK, en bleu (amplifiée par les amorces L (5' à 204831 pb) et U (5' à 204001 pb) représentées par des flèches). L'orf240a, encadré en rouge, constitue le marqueur discriminant spécifiquement les cytoplasmes NIDS (tableau B11).

Ι

Π

enzyme	Sonde <i>trnK</i>	Sonde <i>orf122c</i>
<i>Bam</i> HI	12 kb* + 3,4 kb	12 kb*
EcoRI	8,7 kb* + 13,3 kb	8,7 kb*
HindIII	5,9 kb* + 5 kb	5,9 kb*
SpeI	1,2 kb + 1,5 kb + 6,5 kb + 7,1 kb	7,2 kb

Figure B29 : southern blot obtenus avec des sondes mitochondriales

I/ L'ADN de Sha (1) et de 403AV (2) a été digéré par des enzymes de restriction dont les noms sont indiqués sur la figure. Les fragments d'ADN digéré ont été séparés par électrophorèse en gel d'agarose, transférés sur membrane et hybridés avec une sonde *trnK* (a) et une sonde *orf122c* (b). Ces southerns ont été réalisés par F. Budar.

II/ Tableau des tailles attendues en hybridation (figure 29) d'après la séquence de référence. Les fragments notés d'un * sont les mêmes pour les deux sondes. Les fragments en **gras** sont ceux qui ne sont pas retrouvés ou ne sont pas à la taille attendue chez Sha.

Combinaisons	Références (C24 et Col-0)	NIDS	IDS
L+U	Bande à 830pb	Bande à 830pb	Bande à 830pb
L'+U'	Bande à 901pb	Bande à 901pb	Bande à 901pb
L+U'	Bande à environ 900pb	Bande à environ 900pb	Pas d'amplification
L'+U	Bande majoritaire à 900pb	Bande majoritaire à 900pb	Bande majoritaire à 550pb

Tableau B12 : résumé des amplifications par PCR obtenus en utilisant les amorces *trnK* Résultats des amplifications par PCR en utilisant des combinaisons d'amorces utilisées pour amplifier les deux copies *trnK* à partir d'ADN d'accessions inductrices de stérilité (IDS) et non inductrices de stérilité (NIDS). La position des amorces sur le génome mitochondrial de C24 est indiquée dans la figure B27.

Figure B28 : marqueur « TrnK » spécifique des accessions IDS

Photo de gel 1% obtenu en utilisant les amorces L'+U. 1 : Col-0, 2 : 403AV, 3 : 534AV et 4 : Sha. Les accessions 1 et 2 sont NIDS et les accessions 3 et 4 sont IDS. M : échelle (50 pb DNA ladder Fermentas).

Figure B31 : gel d'électrophorèse de produits PCR mitochondriaux amplifiés et digérés à partir d'ADNt de Sha et 403AV

L'ADN total de Sha et 403AV a été digéré avec les enzymes indiquées puis les fragments de digestion ont été circularisés et amplifiés avec des amorces mitochondriales en amont de la région génomique qui diffère entre Sha et 403AV. 1 : Sha L+, 2 : Sha L-, 3 : 403AV L+, 4 : 403AV L-. L+ = ligation, L- = pas de ligation. Cette expérience a été réalisée par F. Budar.

BamHI	Sha	bande à 1,5 kb
	403AV	2 bandes à 7 kb et 3,5 kb
HindIII	Sha	Bande à 1,3 kb
	403AV	Bande à 2,7 kb
EcoRI	Sha	Bande à 6 kb
	403AV	Bande à 4 kb
Spel	Sha	Banda à 3 7 kh
	403AV	Bande a 2,7 kb

Tableau B13: résumé des résultats de la figure B31 Les profils moléculaires mitochondriaux obtenus diffèrent entre Sha et 403AV avec les *enzymes BamHI, HimdII* et *EcoRI*. et sont identiques avec l'enzyme *SpeI*. tel-00713647, version 1 - 2 Jul 2012

5 / Analyse de la région d'intérêt non ADN mitochondrial conservée entre l'ADNmt de Sha et de 403AV 1 / Digestion par des enzymes de restriction de l'ADNmt 4 / Séquençage de la région d'intérêt non conservée entre l'ADNmt de Sha et de 403AV 2 / Circularisation des produits de digestion 3 / Amplification par PCR des produits circularisés avec des amorces spécifiques (flèches) dessinées dans les régions conservées (entre Sha et 403AV, en gris) qui encadrent la région d'intérêt non conservées (en bleu).

Figure B30 : stratégie utilisée pour analyser la région d'ADNmt d'intérêt, non conservée entre Sha et 403AV

Cette stratégie a été réalisée à partir d'ADN de Sha et de 403AV.

Figure B32 : structure de la région génomique de l'orf117Sha

a- Shéma représentatif de la région mitochondriale d'intérêt chez C24, 403AV et Sha.

b- Alignement des séquences en acides aminés de ORF117Sha et ORF108. La séquence ORF117Sha a été blastée sur NCBI : 58% de cette séquence est identique à celle d'ORF108 (*Brassica juncea*) et ces deux ORF ont 71% de similarité.

Figure B33 : gel d'électrophorèse de produits PCR de l'*orf117Sha* à partir de l'ADNt des accessions d'*Arabidopsis thaliana*

La légende des numéros est indiquée dans le tableau B14. Tous les produits d'amplification ont une taille d'environ 400pb.

N°	Accession	Amplification
1	271AV	OK
2	531AV	OK
3	532AV	OK
4	533AV	OK
5	534AV	OK
6	535AV	OK
7	536AV	OK
8	537AV	OK
9	538AV	OK
10	539AV	OK
11	540AV	Faible amplification
12	403AV	Pas d'amplification
13	271AV	OK
14	402AV	Pas d'amplification
15	261AV	OK
16	266AV	Pas d'amplification
17	270AV	Pas d'amplification
18	Sha	OK
19	H20	Pas d'amplification

Tableau B14 : résumé des résultats de la figure B33

L'*orf117Sha* est spécifiquement amplifié chez les accessions IDS (en rose). En bleu, les accessions NIDS.

Figure B34 : gels d'électrophorèse de produits cRT-PCR

Les couples d'amorces dessinés par Marie Verzaux, permettant d'amplifier les extrémités de 26 transcrits mitochondriaux ont été utilisés sur de l'ADN provenant de 4 types d'individus issus d'une population RM4. Les gènes ciblés dans chaque amplification sont indiqués en dessous des gels. Les génotypes des individus sont ceux de type 1 (Sha au sud des chromosomes 1 et 3), type 2 (He au sud des chromosomes 1 et 3), type 3 (He au sud du chromosome 1 et Sha au sud du chromosome 3) et type 5 (Sha au sud du chromosome 1 et He au sud du chromosome 3) définis dans le chapitre II (indiqués au dessus des gels). Pour chaque profil obtenu, le puits 0 contient le contrôle H20.