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Introduction

...et remarquant que cette vérité, je pense, donc je suis, était si
ferme et si assurée, que toutes les plus extravagantes suppositions
des sceptiques n’étaient pas capables de l’ébranler, je jugeai que
je pouvais la recevoir sans scrupule pour le premier principe de la
philosophie que je cherchais.

René Descartes, Discours de la méthode
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A Short History of Formal Logic

When René Descartes asserted the famous “I think, therefore I am” in his
Discourse on Method, his justification for this statement was that it “was so
firm and so assured that all the most extravagant suppositions of the sceptics
were unable to shake it”. This informal kind of reasoning, based mainly
on an intuitive notion of truth, on common sense and dialectics, had been
for centuries the foundation for argumentations in every field of what was
then called philosophy, a concept which included both natural and human
sciences. In particular, advances in algebra, analysis and mathematics in
general had been relying on an intuitive and well-accepted notion of proof.
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As a matter of fact, Descartes was an accomplished mathematician himself
and published, as an appendix to the Discourse on Method, his breakthrough
approach to analytic geometry which fostered the rise of cartesian coordinate
systems and calculus.

Over time, as mathematicians were working towards more and more
complex results, the issue was raised of whether the intuitive approach was
sufficient or whether a more formal language was required to describe math-
ematics and logical reasonings. As early as the end of the 17th century,
Leibniz wished for a calculus ratiocinator, a formal logical and algorithmic
language, which, in regard to modern computer science and proof theory, was
an incredibly insightful and pioneering concept. It was not before the end of
the 19th century that this idea started becoming reality, with the publica-
tion of Gottlob Frege’s Begriffsschrift in 1879, and the later Grundsgesetze
der Arithmetik in 1903. His work provided the first formal presentation of
first-order logic and even if it was proved inconsistent by Russell’s paradox,
his system was the basis of many a work on the foundations of mathematics
around the turn of the 20th century.

As the search for a novel foundation of mathematics led to the Zermelo-
Fraenkel theory, an ambitious program launched by David Hilbert aimed
at finding a consistent formal theory relying on a small number of well-
understood axioms and on the basis of which all mathematics could be
assembled. Kurt Gödel soon brought a negative answer to this ambition:
his first incompleteness theorem shows that there does not exist a consistent
system where all true properties are provable, as soon as a system embeds
non-trivial arithmetic reasoning. Nevertheless, Gödel’s discovery did not
completely put a stop to Hilbert’s program and later research focused on
finding consistent logical systems which were expressive enough to formalize
interesting fragments of mathematics.

In 1934, Gehrard Gentzen introduced the notion of sequent and proposed
the two sequent calculi LJ and LK, respectively for intuitionistic and classical
first-order logic. These calculi are expressed in terms of deduction rules
between sequents, for instance the following rule of LJ:

Γ, A ⊢ C Σ, B ⊢ C

Γ, Σ, A ∨B ⊢ C
(∨L)

means that if one can prove C from A and the assertions in Γ, and also
from B and the assertions in Σ, then C can be proved from A ∨ B and
the assertions in Γ and Σ. When read bottom-up, Gentzen’s rules can be
seen as instructions on how to construct a proof of the bottom statement.
This analogy is fundamental since it means the rules describe a way to
systematically search for a proof of a given statement, as long as there is
only a finite way of applying them for any statement. In the absence of
quantifiers, this condition is guaranteed by the fact that Gentzen’s calculi
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satisfy the cut-elimination property, i.e. that the following rule:

Γ ⊢ A Σ, A ⊢ B

Γ, Σ ⊢ B
(Cut)

also known as modus ponens, can be removed from the system without
reducing its expressiveness. In this regard, Gentzen’s sequent calculi repre-
sented an important breakthrough and has had an important impact on the
development of proof theory and automated deduction.

Towards Mechanized Reasoning

Automated Theorem Proving

With the development of computing systems, the second half of the 20th
century made it possible to finally put into practice deduction systems such
as Gentzen’s sequent calculi which had been studied in the first half of
the century. Although Church and Turing had independenly proved in the
1930s that first-order logic was not decidable, it remained to be seen whether
computers could nonetheless automatically prove interesting formulae.

The first major works in automated deduction were Newell, Simon and
Shaw’s Logic Theory machine in 1956 [NSS57] and Wang’s work [Wan60].
Both aimed at automatically proving a variety of first-order tautologies
found in Russell and Whitehead’s Principia Mathematica, but using quite
different approaches. The Logic Theory machine attempted to prove a state-
ment by following heuristics to perform a mix a backward and forward rea-
soning, thus becoming one of the first achievements in the field of artificial
intelligence. On the other hand, Wang followed an algorithmic approach and
based his procedure on sequent calculus, systematically exploring the possi-
ble proofs of a statement. Wang’s approach fared better than the Logic The-
ory machine and gave the tone to later automated theorem provers (ATP).

The 1960s saw the development of the DPLL procedure [DP60, DLL62]
to efficiently decide validity in propositional logic, and a major breakthrough
was initiated by John A. Robinson’s resolution rule [Rob65]. Resolution was
very popular, in particular for its ability to deal with first-order logic, and led
to the development of the logical programming language Prolog. Resolution
is still in use in many modern ATPs. In order to become more versatile,
automated deduction systems needed to go beyong propositional reasoning
and deal for instance with the frequently used equality predicate. To that
end, the paramodulation [RW69] rule was designed in order to achieve better
equational reasoning.

As interest in ATP systems grew, so did the number of potential ap-
plications and the variety of formulae to discharge. In particular, many
applications (notably software verification) required proving the validity of
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formulae in logics more constrained than first-order predicate logic with
equality: integer arithmetic often became essential, and other theories such
as arrays or bitvectors as well. To deal with these theories, an axiomatic
approach in a standard ATP is not satisfactory and specific decision pro-
cedures were developed instead. The last decade has seen a very active
development in the field of Satisfiability Modulo Theory (SMT) solvers, an
alternative category of automated deduction systems which started around
1980. These SMT solvers decide the satisfiability of formulae by combin-
ing a propositional solver with decision procedures dedicated to background
theories such as linear arithmetic. SMT solvers will be at the heart of our
dissertation and we present them in more detail in Chapter 1.

Interactive Theorem Proving

In parallel to the development of automated theorem proving, others started
using deductive systems in order to verify the validity of existing proofs. This
task was particularly amenable to mechanization since it was both tedious
and decidable. There were also some systems which were neither automated
theorem provers nor proof checkers, but somewhere in the middle. This
was the case of the Boyer-Moore prover, which was based on resolution
but allowed the user to give directives at different points during a proof.
We can consider that such a system is a proof checker since the “proof”
consists in the sequence of directives, but how complicated can proof steps
be if we are to qualify a system as a proof checker? A qualitative answer
to this question was given by de Bruijn’s criterion: the correctness of the
proof checker as a whole shall only depend on a very small, well-understood,
kernel. The Boyer-Moore prover, or any other automated theorem prover
for that matter, hardly satisfies this criterion, and systems which verify this
criterion have not been developed on top of techniques like resolution, but
on type theory.

Type theory was introduced by Russell and Whitehead in their Prin-
cipia Mathematica in order to avoid the inconsistency of Frege’s approach
as revealed by Russell’s paradox. Zermelo-Fraenkel’s set theory remained
(and still remains) the preferred logical foundation for mathematics, but
the interest in type theory was renewed by Church’s invention of λ-calculus
after it was discovered that there exists a strong correspondence between
the deduction rules in type theory and a typing system for λ-calculus. This
correspondance is known as the Curry-Howard isomorphism and allows one
to identifies programs to proofs, and types to propositions: if there exists a
ground λ-term t of type τ , then τ is a tautology and t is a proof of that tau-
tology. The characterization of proofs as programs denotes the constructive
nature of this formalism and it is not surprising that it is only describing
intuitionistic logic. A proof checker for such a system is therefore simply
a type-checker for λ-terms; in particular, it satisfies the de Bruijn criterion
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because it is quite reduced and is entirely described by a small set of typing
rules.

A limitation of type theory is that only formulae which correspond to
types of terms can be expressed in this framework, and simply-typed λ-
calculus is not very expressive in that regard. In order to express richer
properties, Martin-Löf proposed an intuitionistic type theory [ML75] richer
than Russell and Whitehead’s, insofar as it is possible to quantify over ob-
jects and types using a dependent product operator. By using dependent
types, it is possible to express properties quantified by objects and which
depend on the value of these objects, which makes it much more expressive
than simple type theory. Another important change is that since terms are
part of types, they can be reduced and therefore there is a natural notion of
computation in the logic. The Calculus of Constructions, due to Coquand
and Huet [CH88], can be seen as a higher-order extension of Martin-Löf’s
type theory.

The first proof checker based on type theory was Automath [dB94]: it
was developed in 1968 by de Bruijn and would take a full proof term and
verify it. Later came LCF, which relied on a proof language which had a
big impact in the field of programming languages since it is at the basis of
languages of the ML family. LCF had a revolutionary architecture which is
now common to all so-called LCF-style provers, like HOL [hol], and which
consists of a dedicated language of commands called tactics based on a small
set of elementary rules. LCF used abstract types to prevent theorems to be
built from other means than this reduced kernel. Because these systems
allow one to iteratively build a verified proof, they are called interactive
provers in contrast to automated provers.

Modern interactive provers based on type theory can be classified in two
different families. Like LCF, the first family uses type theory as a meta-logic
to justify basic inferences steps allowed by the prover. This family includes
provers such as Isabelle [Isa] or TweLF [PS99]. The other class of interactive
provers rely on a type theory and simply implement a typechecker for terms
in this theory. Among these systems, NuPrl [NuP] and Agda [BDN09] are
based on Martin-Löf’s type theory, while Lego [Leg], Matita [ACTZ07] and
Coq [Coq] are based on a variant of the Calculus of Constructions. Coq is
our interactive prover of choice in this thesis and we discuss its logic and its
architecture in much more detail in Chapter 4.

Combining Interactive and Automated Approaches

Modern interactive provers use very expressive logics based on type theory
and therefore allows for an intuitive formalization of mathematical concepts.
They can thus be used to formalize complex concepts and achieve complex
proofs, which are way beyond the capabilities of automated theorem provers.
Unfortunately, they can be very tedious to work with because proofs must
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be justified by small basic steps and therefore require much more detail
than even the most detailed pencil-and-paper proof. Moreover, in very big
proofs, it is often the case that there are just a few key arguments requiring
human thinking and the remaining of the proof is then simple enough to be
discharged by an automated prover.

This is therefore a natural idea to try and combine the interactive and au-
tomated approaches by using an automated prover to discharge easy enough
goals during an interactive proof. Unfortunately, automated provers, as we
explained, are complex systems which do not meet de Bruijn’s criterion and
therefore they cannot be embedded as such in an interactive prover without
compromising its kernel. There is actually concern over the correctness of
ATPs and SMT solvers considering the complexity of these systems and the
fact that they are being used for critical software or hardware verification.

There exists a category of systems which take a less sceptical stance than
the interactive provers cited above, and which dilutes the de Bruijn criterion.
Such systems include ACL2 [ACL] (the descendant of the Boyer-Moore the-
orem prover), the PVS specification and verification system [PVS], or the
Atelier B based on the B-Method [Abr96] (which has the particularity of
relying on set theory). These verification systems provide an expressive log-
ical language to formalize programs or mathematics and to write precise
specifications about these formalizations. They also provide an interactive
way of proving these properties in a manner similar to proof assistants, but
with the help of automated decision procedures. These tools are very pop-
ular because they allow one to write formal specifications while the proving
phase is assisted by automated provers and is therefore less tedious than
typical interactive provers.

For those systems which still want to keep a small trusted kernel and not
rely on automated provers directly, the integration of automated methods
is a real challenge. In order to be trusted by the interactive prover, the
automated prover must not only find a proof, it must explain its proof in
terms of the basic steps accepted by the proof checker. This explanation is
called a proof trace and since the steps accepted by the interactive prover
are so basic, instrumenting an automated prover to return proof traces suit-
able for the interactive prover is a complex task. It is usually done in two
steps, with the solver returning an intermediate proof trace which is further
transformed into an object suitable for the proof checker (that second phase
is called proof reconstruction).

Another way to proceed is to use the ability of the logic to embed compu-
tations, and more generally programs. Along with the ability of higher-order
logic to reflect itself [Har95, BM90], this feature makes it possible to use a
technique of proof by reflection. This consists in implementing a decision
procedure directly as a program in the logic, and using the correctness of
this implementation, prove formulae by a simple computation of the proce-
dure. We will make use of this method in this thesis and it will be explained
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in detail in Chapter 4

Contributions

We now present the contributions of this dissertation. We have seen that
interactive provers allow complex formalizations at the price of tedious proof
developments, while automated theorem provers do not require human in-
tervention but raise soundness issues. We are interested in the soundness of
the SMT solver Alt-Ergo and use the Coq proof assistant to formally verify
Alt-Ergo’s core components. This leads to the two following contributions.

A Formally Verified SMT Solver Kernel

Our first contribution in this work is to have formalized Alt-Ergo’s kernel
components and formally established the correctness of this formalization
in the Coq proof assistant. This kernel consists in a propositional solver
based on the DPLL procedure, extended with standard optimizations, along
with an original decision procedure combining the theory of equality on
uninterpreted functions with an arbitrary theory under certain conditions.
Because this procedure, called CC(X), is novel, it is all the more important
that it is proved sound and complete in a formal setting.

This formalization and verification of Alt-Ergo’s kernel dramatically in-
creases the trust that we can have in Alt-Ergo; in particular developing the
proof has helped us better understand some of the details of the algorithm
and make sure of the conditions where it could be applied. This is par-
ticularly interesting because Alt-Ergo is used to discharge proof obligations
coming from software verification systems, and must therefore be reliable.

A Reflexive Tactic for Automated Deduction

Our second contribution is to extend our Coq verification of Alt-Ergo’s kernel
in such a way that it is possible to use the underlying decision procedure as
a Coq tactic. We do not extend Coq’s trusted code base or perform proof
reconstruction from Alt-Ergo; instead, we formalize the kernel’s components
by writing an effective implementation in the Coq proof assistant. This
approach raises some issues since it amounts to reimplementing the solver’s
kernel in the context of the pure programming language contained in Coq’s
logic, and do it in such a way that it can be computed reasonably efficiently.
In order to be used to prove Coq’s formulae, we use the principle of proof by
reflection and therefore we have to define semantics of the concrete objects
manipulated by our algorithm which can be lifted to Coq’s own notion of
validity. Another critical point is the reification phase: the translation of
Coq’s formulae in concrete objects which represent them and on which the
algorithm can be applied.
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By following this approach, we develop a reflexive tactic which effectively
combines three useful theories: propositional logic, equality with uninter-
preted functions, and linear integer arithmetic. These three theories are
ubiquitous in usual Coq developments and such a tactic is the first which
can handle their combination. Indeed, many evolved tactics exist in Coq to
deal with some logical fragment but it is generally impossible to combine
them. Consequently, these existing tactics only work for formulae which are,
for instance, purely arithmetic, purely propositional, or purely equational.
Providing a tactic which actually combines these three fragments represents
a real contribution towards more automation in Coq.

Throughout this development, we also implement components which are
highly reusable and are not specific to our particular goal. For instance, we
provide a library for ordered types and generic data structures commonly
used in programming language. Such extensions are valuable to the Coq
community since existing reusable components help develop faster programs.
This is even more significant than in a standard programming language since
components developed in Coq must also come with specifications and proofs,
and thus are particularly time-consuming to reimplement.

Outline

This thesis is organized in two parts.
The first part is devoted to the mathematical formalization of Alt-Ergo’s

quantifer-free kernel. Chapter 1 presents the origin of SMT solvers and
the architecture of Alt-Ergo. In Chapter 2, we present a formalization of
the propositional solver at the heart of our SMT solver. This propositional
solver is based on a standard DPLL procedure, which we formalize as an
inference system. We also show how to extend this system to commonly
used optimizations such as conflict-driven clause learning, and also discuss
adaptations required for use in an SMT solver. Chapter 3 details Alt-Ergo’s
original combination scheme CC(X) used to perform congruence closure mod-
ulo a theory X. We also show how we extend this system in order to deal
with disequations.

The second part is devoted to the implementation of a Coq reflexive tac-
tic based on the formalization presented in the first part. Chapter 4 presents
the Coq proof assistant, its logic, its specificities, and the approach of proof
by reflection as well as other approaches for automating deduction in Coq.
Chapter 5 presents a Coq library of first-class containers which provides
common structures such as ordered types, finite sets and finite dictionaries,
and which are fundamental to implementations in later chapters. Chap-
ter 6 presents the Coq formalization of Alt-Ergo’s propositional solver and
how it can be instrumented into a reflexive tactic to automatically discharge
propositional tautologies. We address the issue of conversion to conjunctive



CONTENTS 9

normal form in Chapter 7, where we present how to adapt the propositional
solver in order to use a lazy conversion scheme. Chapter 8 presents the mod-
ifications which must be done in order to extend the propositional solver to
an SMT solver and in order to extend the tactic’s reification process to
equalities between terms on an arbitrary signature. We then formalize and
implement the combination scheme CC(X) in Chapter 9 and show how it can
be plugged in the propositional solver to extend the tactics to propositional
logic modulo equality. Chapter 10 finally presents the implementation of
the theory of linear arithmetic and how it can be used in our framework.

We conclude in Chapter 11 with a presentation of the whole system
implemented in Coq and its capabilities. We also address the various limi-
tations and possible extensions which we envision.
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CHAPTER 1

Solvers for Satisfiability Modulo Theories

Ce n’est pas quand il a découvert l’Amérique,
mais quand il a été sur le point de la découvrir,
que Colomb a été heureux.

Fiodor M. Dostoïevski, L’Idiot

Contents
1.1 Satisfiability Modulo Theories . . . . . . . . . . . 13

1.2 An SMT Solver Dedicated to Program Verification 15

1.2.1 Program Analysis and Software Verification . . . . 15

1.2.2 Alt-Ergo . . . . . . . . . . . . . . . . . . . . . . . . 17

This first chapter introduces and presents the Alt-Ergo tool, which is at
the basis of the formalizations we present in this document. Alt-Ergo belongs
to a family of tools called SMT solvers, where SMT stands for Satisfiability
Modulo Theories. Section 1.1 is devoted to an informal presentation of the
SMT decision problem and the field of SMT in general. In Section 1.2, we
then present Alt-Ergo and show how it is dedicated to a certain class of
problems that arise in program verification.

1.1 Satisfiability Modulo Theories

In the field of automated deduction systems, the two most popular subfields
are SAT solvers on one side, and general first-order automated theorem
provers (ATP) on the other side. Users of such deduction systems often want
to know the satisfiability, or equivalently the validity, of formulas in a logic
which is more expressive than propositional logic, but more restrained than
first-order logic. Typically, these users are interested in the satisfiability
of first-order formulae where some predicate or function symbols have a
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predetermined interpretation. For instance, the following formula:

x = 0 =⇒ f(2 + x) = f(2)

is not valid in general because 0, 2, + and even = can have nonstandard
interpretations, but these nonstandard models are of no interest and this
formula is indeed valid if the equality and arithmetic symbols have their
standard meaning. The interpretation of the predetermined symbols is often
called the background theory, and the problem of deciding the satisfiability
of a formula with respect to such a background theory is called satisfiability
modulo theory.

In order to deal with background theories in traditional automated de-
duction systems, one must somehow be able to impose the theory constraints
to the prover. This can be done in different ways whether one is considering
a generic ATP or a SAT solver.

The only way to force first-order automated theorem provers to only
consider models which are consistent with the background theory is to add
axioms to the formula which describe the theory. This is only possible when
the theory is axiomatizable, or more precisely finitely axiomatizable, i.e.
when there exists a finite set of first-order formulae which exactly describe
the theory. For instance, considering the fact that almost all ATPs deal
with equality adequately, the formula above can be proved valid by such
ATP simply by adding the following two axioms:

(i) ∀xyz, x + (y + z) = (x + y) + z

(ii) ∀x, x + 0 = x = 0 + x

which describe + as a monoid operation whose neutral element is 0. The
performance of dealing with interesting theories through such axiomatization
is often unacceptable, but more importantly, a great number of interesting
theories are not finitely axiomatizable. For instance, Tarski’s axiomatization
of real numbers [Tar46] cannot be expressed with a finite number of axioms,
neither can Presburger arithmetic [Pre29]. All the theories of inductive
datatypes with a finite number of constructors (such as finite trees [BRVs95]
for instance) are not finitely axiomatizable either, because second-order logic
is required to express the induction principle.

We have seen that some theories cannot be axiomatized in an ATP;
however, for many such theories, as those cited above, there exists decision
procedures for the satisfiability of quantifier-free formulae. Such decision
procedures have been actively studied in the last two decades and there is a
growing list of decision procedures for theories with practical applications.
The research on SMT has been concerned with the problem of integrating
these decision procedures in SAT solvers in order to solve the SMT prob-
lem for the corresponding theories. Early research on the problematic of
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incorporating decision procedures in formal provers was performed more
than thirty years ago by the likes of Shostak [Sho78, Sho79, Sho84], Nelson
and Oppen [NO79, NO80], and later by Boyer and Moore [BM88, BM90]
in their Boyer-Moore prover. The interest in SMT research rose again at
the end of the 1990s and has since been very active, both on theoretical
and practical aspects. SMT solvers have been developed in academia as
well as in the industry; an annual workshop brings together users and de-
velopers of the SMT community; a common pool of benchmarks has been
established [BST10] in order to measure the progress of the systems and a
competition [SMT] is organized in order to compare their relative strengths
and weaknesses. Techniques and systems from the SMT community are now
used in a variety of domains such as static checkers or verification systems
(this is the case for Alt-Ergo, see Section 1.2), model checkers (BLAST),
interactive theorem provers (HOL, PVS), etc.

There are two main approaches when designing an SMT solver, which
are known as the eager and the lazy approach. Alt-Ergo, like most other
systems, follows the lazy approach and we will present this architecture in
detail in the next section. Whereas lazy SMT solvers rely on the dynamic
combination of a SAT solver and a decision procedure for the theory literals,
eager SMT solvers try to express all the possible useful theory constraints
related to a formula and translate this formula in order to add all these
constraints and retain equisatisfiability. The translated formulae are then
passed on to a standard SAT solver. A survey with many details on modern
SMT techniques in both lazy and eager SMT solvers is available in [BSST09].

1.2 Alt-Ergo: an SMT Solver Dedicated to Pro-
gram Verification

We now present Alt-Ergo, an SMT solver dedicated to program verification.
Before we detail its architecture, we look into the context of program veri-
fication.

1.2.1 Program Analysis and Software Verification

There exists a broad range of techniques which aim at ensuring certain
properties (or, equivalently, avoiding certain run-time errors) in computing
systems. The main characteristics that allow one to classify these techniques
are whether they are automatic or human-driven, and whether they happen
at run-time (dynamic) or are performed statically. For instance, research on
programming languages leads to type systems which statically ensure that
all well-typed programs will verify some properties (basically the absence
of crash due to typing errors, but also the absence of null dereferencing
in languages like OCaml, C# or Haskell) while other languages (typically
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scripting languages like Python, PHP or JavaScript) only provide dynamic
type-checking.

In order to statically verify more complex properties of programs, for in-
stance detecting divisions by zero, out-of-bounds accesses, overflows and
other typical dangerous situations a program can encounter, techniques
like model-checking, abstract interpretation or static analysis can be used.
These techniques can be fully automated or simply semi-automated, but in
any case require typically much less manual effort than full formal verifica-
tion using proof assistants such as HOL, Isabelle or Coq. The amount of
manual work required usually depends on the complexity of the properties
that one wants to establish. Examples of these systems, called extended
static checkers, include Spec# [BRS05], ESC/Java [FLL+02] or SPARK.
The Whyplatform [Fil03, FM07] is a multi-language, multi-prover platform
for program verification, whose architecture is shown in Figure 1.1.

Annotated C programs JML-annotated Java programs

Caduceus Why program Krakatoa

Why

Interactive provers
(Coq, PVS,
Isabelle/HOL, etc.)

verification conditions

Automatic provers
(Alt-Ergo, Simplify,
Yices, Z3, CVC3, etc.)

Figure 1.1: Architecture of the Whyplatform

The platform revolves around Why, a verification condition generator
(VCG) which takes an annotated Whyprogram as input, analyzes it and re-
turns a set of logical formulae, called verification conditions or proof obliga-
tions (PO). The annotations in the input program express logical properties
on the program’s behaviour and the tool guarantees that it is sufficient to
verify that all the PO are valid in order to check that the logical properties
in the program are verified. The Whyplatform can then translate these ver-
ification conditions and dispatch them to a variety of provers, interactive or
automatic. Whyis used as an intermediate annotated language for verifying
programs in mainstream languages, namely C and Java, through separate
tools called Caduceus and Krakatoa. These tools perform language-specific
analysis, in particular they need to model their respective language’s features
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into the intermediate language. For example, let us consider the following
annotated C program:

/*@ ensures

@ \result >= x && \result >= y &&

@ (\result == x || \result == y)

@*/

int max(int x, int y) {

if (x > y) return x; else return y;

}

It defines a function max which computes the maximum of two integer ar-
guments. The special comments preceding the function are the annotations
that describe its behaviour: it states that the result of the function should
be greater or equal than both arguments and should be one of the two argu-
ments. Processing this program through the Whyplatform will yield proof
obligations corresponding to two branches of the conditional in the function:

∀xy : int, x > y =⇒ x ≥ x ∧ x ≥ y ∧ (x = x ∨ x = y)

∀xy : int, x 6> y =⇒ y ≥ x ∧ y ≥ y ∧ (y = x ∨ y = y)

which are trivially true and can be discharged by any automated prover
knowledgable about linear arithmetic. This is a very easy example, but such
program analysis often yields a great number of proof obligations, many of
which are quite easy. Therefore it is very important to be able to discharge
these obligations automatically as much as possible. The few very complex
obligations, if any, can be inspected by hand or in an interactive prover.

An automated theorem prover used at the back-end of such a program
verification plaform needs to be able to deal with quantifiers and with back-
ground theories corresponding to the various built-in datatypes of the source
languages, typically arithmetic, arrays, tuples, etc. This is why SMT solvers
like Z3 [dMB08], Yices [Yic] or CVC [BT07], i.e. those which can deal with
first-order logic in general, are tools of choice for such a task, and Alt-Ergo
was developed specifically for that purpose.

1.2.2 Alt-Ergo

In the context of program verification, we have seen that goals to be proved
are formulae of typed first-order logic with quantifiers and interpreted built-
in symbols for equalities, integer and/or floating point arithmetic, etc. Sorts
naturally arise from the usual datatypes of programming languages (as in-
tegers in our example above) and also from the user specifications. Annota-
tions in Why, for instance, are very expressive since they allow user-defined
types, symbols, functions and predicates. Whyalso has the particularity
of using polymorphic types [Pie02]: polymorphism is very convenient to
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define and reason about generic data structures like arrays or lists, and
also as a means to ensure separation in the memory model used by Ca-
duceus [HM07, TKN07].

Unfortunately, there are only a few SMT solvers under active develop-
ment which deal with quantifiers, but none of them can handle polymorphic
first-order logic natively. In order to use these provers, which are either un-
sorted or multisorted, the available solutions are to ignore types, trying to
guess the monomorphic instances which are needed for a given formula, or
using encodings, and all these solutions are quite unsatisfactory [CL07]. Alt-
Ergo fully supports polymorphic first-order logic and is therefore particularly
well-suited for the Whyplatform.

SMT parser Why parser

Typing

SAT-solver

Matching CC(X)

main loop

Decision

procedure

Figure 1.2: Architecture of Alt-Ergo

Alt-Ergo’s architecture is shown in Figure 1.2; it is highly modular and
this figure schematizes the relation between the different modules. On the
front end, Alt-Ergo accepts two different syntaxes: the standard SMT for-
mat defined in the SMT-LIB [BST10], and Why’s native format. For both
formats, an abstract syntax tree in the same internal datatype is produced
and then type-checked in polymorphic first-order logic. The formulae then
enter the main loop of the prover, which performs the proof search:

SAT-solver. The main part is a home-made SAT-solver with backjumping
which deals with the propositional part of the formulae. It also keeps
track of the lemmas (i.e. universally quantified hypotheses) of the
input problem and those that are generated during the execution.

Matching. The matching module is used to find terms that can be used
to instantiate the lemmas contained in the SAT solver; it proceeds
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modulo the equivalence classes in CC(X) and allows the SAT-solver to
derive ground sentences from the available lemmas.

CC(X). The CC(X) module handles the ground atoms assumed by the SAT-
solver: the SAT-solver sends atoms to this box, which in turn informs
the SAT-solver of what atoms are true or false. It combines the the-
ory of equality (i.e. uninterpreted symbols) with a theory X via a
congruence closure algorithm modulo X.

Decision Procedure. The decision procedure implements the reasoning
relative to the background theory X and is used by CC(X) in order to
construct equivalence classes modulo X.

Alt-Ergo is implemented in OCaml [Obj] and uses almost exclusively
functional data structures, except for the technique of hash-consing, which
is used extensively in order to ensure maximal sharing in the data structures
and to avoid the blow-up in size due to the conversion to conjunctive normal
form [FC06]. Its development was started in 2006 and its main loop is about
5000 lines of code, which is really small for an SMT prover. The small size
and modular architecture of Alt-Ergo make it easier to establish that the
prover is correct, and this last point has been a motivation (and a concern)
from the beginning.

In order to ensure its correctness, we present formalizations of the al-
gorithms at the heart of the most critical modules in Alt-Ergo. Chapter 2
deals with the SAT-solver module and formalizes the DPLL algorithm on
which Alt-Ergo’s SAT-solver is based, as well as various optimizations. Chap-
ter 3 is devoted to the CC(X) module and describes Alt-Ergo’s original con-
gruence closure algorithm modulo a background theory. The requirements
that the corresponding decision procedure must verify are also dealt with
in Chapter 3. We do not give any formalization for the matching mod-
ule: this module is indeed not critical for two reasons. First and foremost,
the matching mechanism cannot really be incorrect in the sense that any
possible lemma instantiations are correct, the matching mechanism is sup-
posed to efficiently determine useful instances, and useful instances only, but
too many instances can only cause inefficiencies. Second, first-order SMT
solvers cannot be complete in general on non-ground formulae, therefore
even if the matching mechanism misses all instances, the prover may just
be “more” incomplete than ideal, but again it is not a critical error. Now,
matching efficiently can be a difficult challenge and advances techniques
exist (see [MB07] for instance). Alt-Ergo uses a rather naïve approach but
some subtleties arise due to the polymorphic logic, as explained and detailed
in [BCCL08].



20



CHAPTER 2

Formalization of the Propositional Solver
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In this chapter, we present the formalization of the propositional solver
at the heart of Alt-Ergo. As explained in the previous chapter, this part
of the system is fundamental to any SMT solver and we want to guarantee
its correctness. Alt-Ergo’s propositional solver is a SAT solver based on
the traditional Davis-Putnam-Logemann-Loveland (DPLL) procedure and
we start in Section 2.1 by presenting this original DPLL procedure. We
also give our own formalization of this algorithm through a set of inference
rules and prove the correctness of our inference system. In Section 2.2, we
extend this system by successively adding non-chronological backtracking
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and a mechanism for learning new clauses from conflicts. We then go on to
discuss other typical optimizations of state-of-the-art SAT solvers which we
have not integrated into our system. In Section 2.3, we show how the SAT
solving procedure we have presented can be easily adapted in order to be
integrated to an SMT architecture.

2.1 DPLL: A SAT-Solving Procedure

2.1.1 The Satisfiability Problem

The satisfiability problem SAT is the problem of deciding whether the vari-
ables of a propositional (or boolean) formula can be assigned values in such
a way as to make the formula true. A formula for which such an assign-
ment exists is said to be satisfiable whereas a formula for which no suitable
assignment exists is said to be unsatisfiable. Of course, the unsatisfiability
problem is dual to the satisfiability one and both are equally difficult. It
is a well-known result, and one of the first historical results in complexity
theory, that the satisfiability problem is NP-complete [Coo71].

More formally, the formulae of propositional logic are defined as follows.
We assume a set L of propositional variables, also called atoms, and a for-
mula is any sentence which can be built using the usual logical connectives
and the atoms x in L:

F := x | ¬F | F ∨ F |F ∧ F | F → F | F ↔ F.

The SAT problem is traditionally presented with solely the conjunction ∧,
disjunction ∨ and negation ¬ operators, but any functionally complete set of
boolean operators can be used without changing the nature of the problem,
and we choose here to add the implication and equivalence connectives. A
formula reduced to an atom is said to be atomic. A literal is a variable or
the negation of a variable; it is called respectively a positive or a negative
literal. We will write the negation of literals in a slightly different manner
than the negation of formulae, namely l̄ will denote the negation of literal l.
A clause is a disjunction of literals and a formula is in conjunctive normal
form (CNF) if it is a conjunction of clauses, i.e. a conjunction of disjunction
of literals.

There are several ways to decide the satisfiability or unsatisfiability of
a boolean formula. The most naive way is to enumerate all possible as-
signments and check for each one if the formula becomes true or not; for n
variables in the formula, there are 2n assignments to try. Much better ways
have been developed over the years in order to avoid as much as possible
the exploration of this exponential search space. Some techniques such as
Binary Decision Diagrams [Bry92] can decide satisfiability for any boolean
formula, but the majority of modern SAT solvers are variants of the DPLL
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procedure and only operate on formulae in CNF. Before we deal in detail
with the DPLL procedure and some of its variants, let us recall that any
propositional formula can be converted into an equivalent formula in CNF,
using the well-known De Morgan rules. Therefore requiring that the for-
mulae be in CNF is not a restriction per se, and in the remainder of this
chapter we shall assume that formulae are in CNF. We will discuss the issue
of CNF conversion in great detail later in Chapter 7.

To conclude this introduction, here are several examples:

• the formula (x1∨(x3∧x1))↔ ¬(x2∨x3) is satisfiable, take for instance
x1 false, x2 true and x3 false;

• the formula (x1 ∨ x̄2) ∧ x2 ∧ x̄1 is in CNF and is unsatisfiable;

• for any positive integer n ∈ N∗, the formula

Hn =
n
∧

p=1

n−1
∨

i=1

xpi ∧
n−1
∧

i=1

n
∧

p=1

p−1
∧

q=1

(x̄pi ∨ x̄qi)

is unsatisfiable. It expresses the pigeon-hole principle, i.e. the fact
that n pigeons cannot be put in n−1 holes without two pigeons sharing
the same hole. The variable xpi stands for “pigeon p is in the hole i”,
the first part of the conjunct expresses the fact that all pigeons are
sheltered, while the second part prevents each hole from containing two
pigeons. Note that the formula is in conjunctive normal form. Generic
formulae like this one are very useful to benchmark or test a procedure
since the parameter can be changed at will; the unsatisfiability of the
pigeon-hole formula is notoriously difficult when n grows.

2.1.2 The DPLL Procedure

The Davis-Putnam-Logemann-Loveland procedure was proposed in two sem-
inal papers in the early 1960s in order to solve the satisfiability problem for
propositional formulae. In [DP60], Davis and Putnam first proposed a semi-
decision procedure for first-order logic which proceeded by enumerating all
propositional ground instances of a formula and checking the satisfiabil-
ity of each of these instances. The satisfiability check was performed by a
resolution-based procedure, i.e. the instance was simplified repeatedly by
using the following rule:

l ∨ C l̄ ∨D

C ∨D

which resolves two clauses in a single clause by eliminating a literal appearing
positively and negatively. This method led to a worst-case exponential blow-
up in the size of the formula and in order to avoid this, Davis, Logemann
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and Loveland then refined the satisfiability procedure in [DLL62], and what
is now known as DPLL.

The DPLL algorithm works on a CNF formula and runs by guessing truth
values for literals and the way in which it improves on a naive exhaustive
backtracking search is the eager use of the following rules:

Boolean constraints propagation. Once a truth value has been assigned
to a literal, the formula can be simplified accordingly: false literals
can be deleted from the clauses where they appear, and clauses that
contain true literals can be removed from the formula.

Unit propagation. A unit clause is a clause which only contains one lit-
eral. It is obvious that such a clause can only be satisfied by assigning
the adequate value to make that literal true. Such deterministic choices
of a truth value for a variable cuts out a large part of the exponential
search space and is thus very important for efficiency.

Pure literal elimination. A literal is pure if it only appears with the same
polarity in the whole formula. A pure literal can be assigned such that
all clauses that contain it are true, in other words, it is not constraining
the proof search and they can be eliminated systematically. Note that
this heuristics is not used anymore because the cost of detecting pure
literals exceeds the benefit of eliminating them in modern SAT solvers,
therefore we will not include this rule in our presentation.

In this fashion, the algorithm proceeds by successively assigning values to
the variables in the formula until one of the following occurs:

• the simplified formula is reduced to the empty conjunction ∅, which
means that the current assignment satisfies the formula; in other
words, the formula is satisfiable and the algorithm stops;

• one of the clauses in the problem is empty (also called a conflict clause)
and cannot be satisfied with the current assignment; in that case the
search backtracks and tries another assignment to some variable. If
this is not possible, the formula is unsatisfiable.

2.1.3 DPLL as an Inference System

We now present the DPLL procedure formally as a system of inference rules.
We use the following conventions for denoting formulas in CNF:

• the order in which literals are presented in a clause is irrelevant, as
well as the order of clauses in a CNF formula;

• we write l ∨ C for a clause containing the literal l, and we use set-
theoretic notation {l1, l2, l3} to denote the clause l1 ∨ l2 ∨ l3;
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• a formula in CNF is written C1, . . . , Cn where the Ci are the different
clauses of the formula, we use ∆ to range over such conjunctions of
clauses.

Red
Γ, l ⊢ ∆, C

Γ, l ⊢ ∆, l̄ ∨ C
Elim

Γ, l ⊢ ∆

Γ, l ⊢ ∆, l ∨ C
Assume

Γ, l ⊢ ∆

Γ ⊢ ∆, {l}

Conflict
Γ ⊢ ∆, ∅

Split
Γ, l ⊢ ∆ Γ, l̄ ⊢ ∆

Γ ⊢ ∆

Figure 2.1: An abstract presentation of DPLL

Our DPLL formalization is given in Figure 2.1 through five inference
rules. The state of the algorithm is described as a sequent Γ ⊢ ∆, where Γ is
the set of literals assumed to be true, and ∆ is the current formula. These
rules must be read bottom-up: the state under the bar is the state before
the application of the inference rule.

The first two rules perform the boolean constraints propagation as de-
scribed above. If a literal is supposed to be false (its negation belongs to
Γ), it can be eliminated from all clauses (Red); if a clause contains a true
literal, the entire clause can be removed (Elim). Assume implements the
unit propagation by assuming a literal in a unit clause. Split represents
the variable assignment and is the only branching rule: a literal is assumed
to be true on the left branch and false on the right branch. Finally, the
Conflict rule detects empty clauses and has no premises: it is the only
rule that ends the different branches of the proof search.

Starting with some sequent Γ ⊢ ∆, building a complete derivation with
these rules requires each branch to end with an application of the Conflict
rule. In other words, if there exists a derivation starting with Γ ⊢ ∆, there
is no satisfying assignment of the variables in ∆ such that all the variables
in Γ are true (we will say that such an assignment extends Γ). Reciprocally,
if there is no derivation for Γ ⊢ ∆, it means that there is a branch that
reduces to the empty set of clauses, i.e. that there is a way to extend Γ
while satisfying ∆. Now, given a formula in CNF ∆, the unsatisfiability of
∆ is equivalent to the existence of a derivation for the sequent ∅ ⊢ ∆, i.e.
starting with an empty partial assignment. We will prove these properties
in the next section.

Derivation system vs. Algorithm. The DPLL algorithm and its mod-
ern variants are traditionally presented in a procedural manner [DLL62,
MMZ+01], that is as deterministic algorithms (for instance as abstracted
real code or pseudo-code). We instead chose to present the algorithm as an
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abstract set of inference rules, in particular we do not specify how and when
rules should be applied.

This kind of presentation is more similar to Tinelli’s DPLL(T ) presen-
tation [Tin02]. In our opinion, the main advantage of this approach is that
we can manipulate the system without taking the details of a particular
implementation into account. Typically, we can prove the correctness of
our system regardless of a particular strategy of how rules should be ap-
plied, and the proofs will apply to any implementation based on the given
rules. It would have been possible to add more “constraints” to the system,
restricting which strategies are acceptable and which aren’t, by using side
conditions for some inference rules. For instance, the use of the splitting
rule Split could be modified like this:

Split’
Γ, l ⊢ ∆ Γ, l̄ ⊢ ∆

Γ ⊢ ∆
l, l̄ /∈ Γ
∃C ∈ ∆, l ∈ C

in order to constrain the rule to only be applied to an unassigned literal that
actually appears in the problem. There is not much benefit in doing that:
these side conditions are not used in the soundness proof of the system, and
they just constrain the completeness proof by forbidding some applications
of the rules. On the other hand, if one finds a very efficient strategy which,
for some reason, occasionally performs a useless split on an already assigned
literal, one could not use the system to justify the strategy. Also, if we add
some strategy to the rules, how much should we add exactly? It is reasonable
to think that the Conflict rule should be used as soon as possible, and
that boolean constraint and unit propagation should be performed eagerly
otherwise, with Split used as a last resort. This specific strategy could be
summarized in regular expression style as:

(Conflict?.(Red|Elim|Assume)*. Split’)*

but it is very restrictive and other reasonable alternatives or refinements
exist, such as:

(Conflict?.Assume*.Red*.Split’)*

Because there is no reason to favour one particular strategy, we chose to not
add any unnecessary constraint to our system in order to keep it as general
as possible. Some strategies may be complete, some may be incomplete1,
but all strategies will be correct as long as the system is sound.

In the second part of this document, when we will provide a formal
proof of this system in the Coq proof assistant and then derive some Coq
implementations, this approach will be of the utmost importance. It will

1When considering one particular strategy, its completeness should always be investi-
gated; the completeness of the system itself is just that there exists at least one complete
strategy, as we can see in the proofs page 27.
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allow us to prove the abstract system once and for all, and then prove the
correctness of the different strategies we will implement with respect to the
original system; in particular, this is a very useful way to factorize proofs.

2.1.4 Correctness Proofs for DPLL

We claimed in the previous section that the existence of a derivation of ∅ ⊢ ∆
in the system presented in Figure 2.1 is equivalent to the unsatisfiability of
the formula ∆. We will now prove this claim. There are actually two
separate parts to prove: the soundness of the system is the fact that only
unsatisfiable formulas have a derivation, whereas its completeness is the fact
that a derivation can be found for every unsatisfiable formula2.

We will actually prove slightly more general results, for any sequent
Γ ⊢ ∆, and the case with an empty assignment Γ will only be a particular
instance. We start with the definition of the semantic notion of model.

Definition 2.1.1 (Models). Given a set of atoms L, an L-model M is a
function L 7→ {⊤,⊥} which assigns a truth value (true ⊤, or false ⊥) to
every atom. We write M(x) for the truth value of atom x in the model M.

This notion of model is general and we will use it in the next chapter as
well. We will write model instead of L-model because the set of atoms is
clear from the context. For example, in the remainder of this chapter, L is
the set of propositional variables defined earlier.

We extend theM(x) notation to literals in a natural way: we writeM(l)
for the truth value of the literal l, namely M(x) if l is a positive literal x,
and the negation of M(x) if l is a negative literal x̄.

Definition 2.1.2 (Satisfiability). A set of clauses ∆ is satisfiable if and
only if there exists a model M such that for every clause C in ∆, there
exists a literal l ∈ C such that M(l) = ⊤. In that case, we write M |= ∆.
If there exists no such model M, ∆ is said to be unsatisfiable.

Because we will be dealing with models that are compatible with a partial
assignment Γ, we need a more general notion of satisfiability with respect
to a partial assignment, which we call compatibility.

Definition 2.1.3 (Submodel). A set of literals Γ is a submodel of a model
M, denoted Γ ⊆ M, if every literal l ∈ Γ is true in M. We also say that
M completes Γ.

Definition 2.1.4 (Compatibility). A set of literals Γ and a set of clauses
∆ are compatible if and only if there exists a model M completing Γ such
that M |= ∆. If there exists no such model, we say that Γ and ∆ are
incompatible.

2In our choice for naming the two implications soundness and completeness, we are
focusing on the unsatisfiability of a formula: if we were taking the dual point of view of
satisfiability instead, the soundness and completeness properties would be swapped.
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We can now prove the soundness of our DPLL derivation system.

Theorem 2.1.5 (Soundness of DPLL). Let Γ be a set of literals and ∆ a
set of clauses such that the sequent Γ ⊢ ∆ is derivable, then Γ and ∆ are
incompatible.

Proof. We proceed by structural induction on the derivation of Γ ⊢ ∆ and
by case analysis on the first rule applied:

(Conflict) The set of clauses ∆ contains the empty clause ∅, therefore there
cannot be a model M satisfying ∆ and Γ and ∆ are incompatible.

(Red) By induction hypothesis, there is no model M such that Γ, l ⊆ M
and M |= ∆, C. Suppose now that there is a model M completing Γ, l and
such that M |= ∆, l̄ ∨ C. In particular, M |= ∆ and there exists a literal
k in l̄ ∨ C such that M(k) = ⊤. Because M completes Γ, l, M(l) = ⊤ and
therefore k 6= l and k ∈ C. Thus,M |= C andM |= ∆, C, which contradicts
the induction hypothesis.

(Elim) Assume there is a model M completing Γ, l such that M |= ∆, l ∨
C. In particular, M |= ∆ and therefore Γ, l and ∆ are compatible, which
contradicts the induction hypothesis.

(Assume) Assume there is a modelM completing Γ such thatM |= ∆, {l}.
By definition, it must be the case that M(l) = ⊤. Thus, Γ, l is a submodel
ofM, and sinceM |= ∆, then Γ, l and ∆ are compatible, which contradicts
the induction hypothesis.

(Split) Assume there is a model M completing Γ such that M |= ∆. De-
pending on whetherM(l) is ⊤ or ⊥,M completes Γ, l or Γ, l̄. In either case,
this contradicts the induction hypothesis for one of the two branches.

Corollary 2.1.6. Let ∆ be a formula in conjunctive normal form. If ∅ ⊢ ∆
is derivable, ∆ is unsatisfiable.

Proof. By Theorem 2.1.5, ∆ and the empty assignment are incompatible.
Since the empty assignment is a submodel of every model, this means that
there are no models of ∆, in other words ∆ is unsatsfiable.

We now turn our attention to establishing the completeness of the deriva-
tion system, i.e. proving that a derivation can be found for any sequent
Γ ⊢ ∆ as soon as Γ and ∆ are incompatible. Such a proof actually con-
tains a strategy: it explicitly shows how to build a derivation for a given
incompatible sequent3. More precisely, any complete proof search strategy
using the rules in Figure 2.1 can be used as a skeleton for a completeness

3This claim only holds if the proof is constructive of course, which will be the case here
and for all our formal proofs in the Coq proof assistant later in Part 2. Our point here is
really to stress that there is a strong link between an actual proof search strategy and the
completeness proof.
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proof, and there are at least as many proofs as strategies. Easier strategies
make for easier proofs, therefore we will follow a very naive strategy for
constructing our proof.

Definition 2.1.7 (Well-formed assignments). A set of literals Γ is well-
formed if it does not contain both a literal l and its negation l̄.

Until now, we had not imposed any restriction on the partial assignment
Γ in a sequent. In order to prove completeness of the system however, we
need this notion of well-formedness. To see why, notice that according to
the definition of a submodel, only a well-formed Γ can be a submodel of
someM. Therefore, an ill-formed Γ is incompatible with any sets of clauses
∆, but we cannot expect to be able to build a derivation for such sequents:
consider x1, x̄1 ⊢ {x2} for instance. We will thus only prove completeness
for incompatible sequents with a well-formed assignment.

Lemma 2.1.8. Let Γ a well-formed set of literals and ∆ a set of clauses
incompatible with Γ, such that all literals appearing in ∆ are present either
positively or negatively in Γ. Then, there is a derivation of the sequent
Γ ⊢ ∆.

Proof. LetM be a model completing Γ. There exists such a model because
Γ is well-formed, and it suffices to arbitrarily complete Γ to all variables in
L not appearing in Γ. Now, because Γ is incompatible with ∆, there exists
a clause C in ∆ such that all literals in C are false inM. Since all variables
in ∆ are assigned positively or negatively in Γ, this means that for all literal
l ∈ C, l̄ ∈ Γ.

Therefore, we can apply Red as many times as there are literals in the
clause C, and we are left with a sequent containing the empty clause, to
which point we apply Conflict. We have built a derivation for Γ ⊢ ∆:

Γ ⊢ ∆, ∅
Conflict

···

Γ ⊢ ∆, {l2, . . . , ln}
Red

Γ ⊢ ∆, {l1, l2, . . . , ln}
Red

Theorem 2.1.9 (Completeness of DPLL). Let Γ a well-formed set of literals
and ∆ a set of clauses incompatible with Γ, then the sequent Γ ⊢ ∆ is
derivable.

Proof. Let L′ be the set of variables appearing in ∆ which are not assigned
(neither positively nor negatively) in Γ. Let us call these variables x1, . . . , xn.
Starting with Γ ⊢ ∆, we apply the Split rule as many times as necessary
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on all the xi in sequence, until we obtain 2n branches of the form Γ′ ⊢ ∆
where Γ′ ranges from Γ, x1, . . . , xn to Γ, x̄1, . . . , x̄n.

Γ, x1, . . . , xn ⊢ ∆ . . .
Split . . .

···

Γ, x1 ⊢ ∆
Split

Γ, x̄1, . . . , x̄n ⊢ ∆ . . .
Split

···

Γ, x̄1 ⊢ ∆
Split

Γ ⊢ ∆
Split

Let us consider one of the top sequent of the form Γ′ ⊢ ∆. Since Γ′ is a
superset of Γ and Γ and ∆ are incompatible, Γ′ and ∆ are incompatible.
By construction, since Γ is well-formed, so is Γ′ since we only split on each
variable once. Finally, all the variables that appear in ∆ are assigned in
Γ′, therefore we can apply Lemma 2.1.8 to the sequent Γ′ ⊢ ∆ and find a
derivation for this sequent.

By applying the lemma for each sequent at the top, we have built a full
derivation for the sequent Γ ⊢ ∆.

Corollary 2.1.10. Let ∆ be an unsatisfiable formula in conjunctive normal
form. The sequent ∅ ⊢ ∆ is derivable.

Proof. The empty set of literals ∅ is well-formed. Therefore, we can apply
Theorem 2.1.9 and ∅ ⊢ ∆ is derivable.

Final remarks. We have established the equivalence between the unsat-
isfiability of a formula and the existence of a derivation in our system from
Figure 2.1. Note that since we based the completeness proof on a very naive
strategy, it does not even use the Elim or Assume rule. Indeed, the system
formed by the rules Red, Conflict and Split is a correct and complete
inference system for the unsatisfiability of formulae in CNF. We added the
Elim rule because it may be desirable and it cannot be implemented with
the three basic rules; typically, most imperative implementations will not
perform elimination of true clauses explicitely during the proof search, but
some functional implementations may, in order to simplify the problem dur-
ing the proof search4. The Assume rule can actually be implemented using
the other rules:

...

Γ, l ⊢ ∆

Γ ⊢ ∆, {l}
Assume

⇐⇒

...

Γ, l ⊢ ∆

Γ, l ⊢ ∆, {l}
Elim

Γ, l̄ ⊢ ∆, ∅
Conflict

Γ, l̄ ⊢ ∆, {l}
Red

Γ ⊢ ∆, {l}
Split

4This will of course be the case for our implementation of this system in Coq, but it
is also the case in Alt-Ergo, therefore we need to include this rule to adequately describe
Alt-Ergo’s SAT solver.
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but we add it specifically because of its historical and practical importance.

2.2 Standard DPLL Optimizations

The system described in the previous section remains very naive, and modern
SAT solvers, though based on this original procedure, achieve much better
results thanks to numerous optimizations [ZM02, Fre95]. Some of these
optimizations have a heuristic nature, as they try to pick the most “relevant”
decision literals when applying the Split rule for instance. Others, on
the contrary, are purely algorithmic and aim at pruning parts of the proof
derivation in order to avoid repeating similar reasonings several times.

In this section, we will only focus on the latter kind of enhancements
(namely non-chronological backtracking and conflict clause learning), while
the others will be briefly addressed at the end of the chapter. In particular,
we will show how slight modifications of the system presented so far can
lead to sharp improvements.

2.2.1 Non-Chronological Backtracking

Principle. Non-chronological backtracking [SS96], also called backjump-
ing, consists in checking whether a literal introduced in the application of
Split was “useful” to the derivation of a conflict in the left branch of this
rule. In the case where l wasn’t used to establish the conflict, the system
can avoid checking the right branch of the rule since the same conflict could
be derived in that branch anyway. To illustrate this method, Figure 2.2
shows a run of DPLL on a particular example where variables are encoded
as integers:

4̄ ⊢ {}

3 ⊢ {4̄}, {4}
Assume

5̄ ⊢ {}

3̄ ⊢ {5̄}, {5}
Assume

2 ⊢ {3̄, 4̄}, {3̄, 4}, {3, 5}, {3, 5̄}
Split

...

2̄ ⊢ . . .

1 ⊢ {3̄, 4̄}, {3̄, 4}, {2, 3, 5}, {3, 5}, {3, 5̄}
Split

. . .

0 ⊢ {3̄, 4̄}, {1̄, 3̄, 4}, {2, 3, 5}, {3, 5}, {3, 5̄}
Split
. . .

∅ ⊢ {0̄, 3̄, 4̄}, {1̄, 3̄, 4}, {2, 3, 5}, {3, 5}, {3, 5̄}
Split

Figure 2.2: An example run of DPLL

Only the rules Assume and Split are actually represented, as we as-
sume that every possible boolean constraint propagation has been realized
between each application of these rules. Also, due to space constraints, only
the last added literal is shown in Γ. One can notice that in the branch where
2 has been assumed, conflicts arise from the interaction of the literals 3, 4
and 5. The same derivation certainly exists in the right branch where 2̄ was
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supposed instead of 2, and the proof search in this branch is therefore done
uselessly by DPLL.

Whereas some optimizations are based on heuristics and try to pick the
best candidates to split on in order to avoid cases like the one above as
much as possible, non-chronological backtracking permits to detect these
cases during the proof-search and recover from an earlier unfortunate literal
choice.

Changing the rules. In order to take this phenomenon into account,
the system has to be able to calculate which literals are responsible for
the conflicts in a given branch of a proof derivation. We do this by adding
dependency information to literals and clauses in a sequent. To that purpose,
we modify our DPLL system from Figure 2.1 in the following manner:

• the context Γ now contains annotated literals, i.e. pairs l[A] where l
is the literal added to the context and A is a set of literals (called its
dependencies) representing those literals who led to the introduction
of l in the context;

• each clause in ∆ is now also annotated by a set containing the literals
that played a role in its reduction;

• finally, sequents are now of the form Γ ⊢ ∆ : A where the new element
A is the set of literals used to establish the incompatibility of Γ and
∆. One can also view these sequents as an algorithm taking as input
Γ and ∆, and returning a set of literals A. We call A the conflict set
of the sequent Γ ⊢ ∆ : A.

Red
Γ, l[B] ⊢ ∆, C[B ∪ C] : A

Γ, l[B] ⊢ ∆, l̄ ∨ C[C] : A
Elim

Γ, l[B] ⊢ ∆ : A

Γ, l[B] ⊢ ∆, l ∨ C[C] : A

Conflict
Γ ⊢ ∆, ∅[A] : A

Assume
Γ, l[B] ⊢ ∆ : A

Γ ⊢ ∆, l[B] : A

Split
Γ, l[l] ⊢ ∆ : A Γ, l̄[A \ l] ⊢ ∆ : B

Γ ⊢ ∆ : B
l ∈ A

BJ
Γ, l[l] ⊢ ∆ : A

Γ ⊢ ∆ : A
l /∈ A

Figure 2.3: Inference rules for DPLL with backjumping
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The rules corresponding to this mechanism are detailed in Figure 2.3.
The five original rules are adapted from the first system, and a new one BJ
performs the backjumping. In the rules Red, Elim and Assume, annota-
tions are naturally passed over to clauses and literals: the dependencies of a
reduced clause are the dependencies of the literal used to reduce it plus those
of the original clause; the dependencies of a unit clause are propagated to
the corresponding literal; other dependencies do not change, including the
conflict sets. The conflict sets are actually assigned exclusively by the Con-
flict rule, which now returns, in the right-hand part of the sequent, the
set of literals that led to the empty clause. The Split rule is the one which
introduces new literals in the mix, and therefore introduces new dependen-
cies: a literal l assumed in a split only depends on itself. The right branch is
more involved: the negation l̄ depends on the conflict set of the left branch,
i.e. it is implied by the fact that no satisfying assignment was found in the
left branch, with l assumed. The conflict set of the whole split is the conflict
set returned by the second branch. Finally, the information brought by the
conflict set is used in the BJ rule in order to implement the backjumping
mechanism, by discarding the right branch of the split when the conflict set
does not contain the chosen literal l.

Now, if we take another look at the example of Figure 2.2, the derivation
where Split was applied with the literal 2 will now be an application of the
new BJ rule. This is represented in Figure 2.4, where A stands for the set
of literals {0, 1, 3} et B = A \ 3 = {0, 1}. Since A decorates the left branch
and does not contain 2, the right branch will not be explored.

4̄[0, 3] ⊢ {}[A] : A
Conflict

3[3] ⊢ {4̄}[0, 3], {4}[1, 3] : A
Assume

5̄[B] ⊢ {}[B] : B
Conflict

3̄[A] ⊢ {5̄}[A], {5}[A] : B
Assume

2[2] ⊢ {3̄, 4̄}[0], {3̄, 4}[1], {3, 5}[], {3, 5̄}[] : B
Split

1[1] ⊢ {3̄, 4̄}[0], {3̄, 4}[1], {2, 3, 5}[], {3, 5}[], {3, 5̄}[] : B
BJ

Figure 2.4: An example run of DPLL with backjumping

As a side remark about the inference system, notice that this time we
added some side conditions to the rules: the one for BJ is required for the
rule to be correct, but the one for Split could be removed safely. There is
just no reason to use Split where BJ could be used, therefore we added this
second side condition in order to make the two rules mutually exclusive.

2.2.2 Correctness of the Backjumping Mechanism

In order to prove correctness of the inference system with non-chronological
backtracking presented in the previous section, we will simulate derivations
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in this system with derivations in the system without backtracking. This
is one advantage of using a very generic presentation in Section 2.1: we
can prove further systems as refinements of the first one, ensuring some
factorization of the proofs. We start by showing a weakening property for
the derivation system without backjumping.

Lemma 2.2.1 (Weakening). Let Γ, Γ′ be two sets of literals such that Γ ⊆
Γ′, and ∆, ∆′ two sets of clauses such that ∆ ⊆ ∆′. Then, if Γ ⊢ ∆ is
derivable, so is Γ′ ⊢ ∆′.

Proof. The proof is really straightforward and proceeds by induction on the
derivation of Γ ⊢ ∆. By analyzing each possible rule, it is easy to check
that adding new clauses and literals does not change the applicability of the
rules. Note that it is a very natural property if we take the point of view
of unsatisfiability instead of derivability: if ∆ is incompatible with Γ, then
surely adding more clauses to ∆ will not help, and neither will adding more
constraints to Γ.

Definition 2.2.2 (Cutting dependencies). If Γ is a set of annotated literals
and A a set of literals, we write Γ|A for the set of literals which only depend
on literals in A:

Γ|A = {l | l[B] ∈ Γ,B ⊆ A}.

Similarly, if ∆ is a set of annotated clauses, we write ∆|A for the set of
clauses only depending on literals in A:

∆|A = {C |C[B] ∈ ∆,B ⊆ A}.

This cutting operation provides us with a translation from sequents with
dependencies to sequents without dependencies. We also write Γ|∗ and ∆|∗

for respectively the sets of literals in Γ and clauses in ∆, i.e. this is a special
case of cutting which just removes all annotations. Our proof is based on
a stability property: if Γ ⊢ ∆ : A is derivable, then Γ|A ⊢ ∆|A is derivable,
which gives a relation between derivations with backjumping and derivations
in the original DPLL system. In order to prove the stability, we need an
invariant on the annotations in Γ and ∆. To see why, consider the sequent
∅ ⊢ ∆, ∅[x1] : {x1} where ∆ is some set of clauses, it is trivially derivable;
if we cut this sequent with the set {x1}, the resulting sequent is ∅ ⊢ ∆
and is of course not derivable in general. To avoid such cases, we define
well-annotated sequents:

Definition 2.2.3 (Well-annotated). Let Γ be a set of annotated literals, ∆
a set of annotated clauses and A a set of literals. The sequent Γ ⊢ ∆ : A is
well-annotated if the following holds:

(i) ∀k[B] ∈ Γ, ∀l ∈ B, l[l] ∈ Γ
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(ii) ∀C[B] ∈ ∆, ∀l ∈ B, l[l] ∈ Γ

In other words, all literals l appearing in dependencies in Γ and ∆ must be
such that l[l] belongs to Γ. We call such literals decision literals.

Note that the definition of well-annotated sequents does not say anything
about the conflict set A and one may wonder if the literals in A should also
be decision literals or not. This is indeed a consequence of the derivability
of a well-annotated sequent.

Lemma 2.2.4. If Γ ⊢ ∆ : A is a derivable, well-annotated, sequent, then
for all literal l ∈ A, l[l] belongs to Γ.

Proof. We proceed by induction on the derivation of Γ ⊢ ∆ : A and case
analysis on the first rule applied.

(Conflict) When Conflict is used, ∅[A] belongs to ∆, and because the
sequent is well-annotated, all literals in A are decision literals.

(Red) If Red is used, the start of the derivation looks like this:

Γ, l[B] ⊢ ∆, C[B ∪ C] : A

Γ, l[B] ⊢ ∆, l̄ ∨ C[C] : A
Red

It is straightforward to check that the sequent Γ, l[B] ⊢ ∆, C[B ∪ C] : A is
well-annotated, and therefore we get the result by induction hypothesis.

(Elim) If Elim is used, the start of the derivation looks like this:

Γ, l[B] ⊢ ∆ : A

Γ, l[B] ⊢ ∆, l ∨ C[C] : A
Elim

We can apply the induction hypothesis because the premise sequent is well-
annotated and we obtain that all literals in A are decision literals.

(Assume) If Assume is used, the start of the derivation looks like this:

Γ, l[B] ⊢ ∆ : A

Γ ⊢ ∆, l[B] : A
Assume

Noting that Γ, l[B] ⊢ ∆ : A is well-annotated, we get by induction hypothesis
that any literal k in A is such that k[k] belongs to Γ, l[B]. Because l cannot
be in B, this means that k[k] belongs to Γ and we have the needed result.

(BJ) If BJ is used first, the start of the derivation looks like this:

Γ, l[l] ⊢ ∆ : A

Γ ⊢ ∆ : A
BJ

and we have the additional hypothesis that l /∈ A. Let k ∈ A, by induction
hypothesis we know that k[k] ∈ Γ, l[l]. Since k 6= l, we know that k[k] ∈ Γ.
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(Split) If Split is used first, the start of the derivation looks like this:

Γ, l[l] ⊢ ∆ : B Γ, l̄[B \ l] ⊢ ∆ : A

Γ ⊢ ∆ : A
Split

with the additional hypothesis that l ∈ B. We can apply the induction
hypothesis on the left branch, and we obtain that all literals k in B are such
that k[k] ∈ Γ, l[l]. Therefore, we know that all literals k in B \ l are such
that k[k] belongs to Γ, and thus that the sequent Γ, l̄[B \ l] ⊢ ∆ : A is well-
annotated. Hence, we can apply the induction hypothesis to this sequent
and we get that all literals in A are decision literals.

We now have enough to express the stability theorem.

Theorem 2.2.5 (Stability). Let Γ be a set of annotated literals, ∆ a set of
annotated clauses and A a set of literals such that Γ ⊢ ∆ : A is a derivable,
well-annotated, sequent. Then, there exists a derivation of Γ|A ⊢ ∆|A.

Proof. First, note that the statement mixes two different kind of derivations.
Because the syntactic nature of the sequent usually suffices to distinguish
between derivations in DPLL with and without backjumping, we do not
explicitely state which system we are using unless it is absolutely necessary.

The proof proceeds by a structural induction on the derivation of Γ ⊢ ∆ :
A and by case analysis on the first rule applied. Note that when applying
the induction hypothesis, we will not explicitely prove that the premise
sequents are well-annotated, the arguments are exactly the same as in the
above lemma.

(Conflict) When Conflict is used, the empty set belongs to ∆ and is
annotated with the conflict set A. Therefore, it also belongs to ∆|A and we
can apply Conflict to find a derivation of Γ|A ⊢ ∆|A.

(Red) If Red is used, the start of the derivation looks like this:

Γ, l[B] ⊢ ∆, C[B ∪ C] : A

Γ, l[B] ⊢ ∆, l̄ ∨ C[C] : A
Red

There are two cases to consider:

• if B ∪ C ⊆ A, then both B and C are subsets of A, and thus l, C
and l ∨ C are not removed when cutting the sequent. The induction
hypothesis gives us a derivation of Γ|A, l ⊢ ∆|A, C and by applying
Red we obtain a suitable derivation :

Γ|A, l ⊢ ∆|A, C

Γ|A, l ⊢ ∆|A, l̄ ∨ C
Red
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• if B ∪ C 6⊆ A, then the reduced clause C is cut from the top sequent,
and the induction hypothesis gives us a derivation of (Γ, l[B])|A ⊢ ∆|A.
Since ∆|A is included in (∆, C[C])|A, applying the weakening lemma
to the induction hypothesis gives us a derivation for (Γ, l[B])|A ⊢
(∆, C[C])|A.

(Elim) If Elim is used, the start of the derivation looks like this:

Γ, l[B] ⊢ ∆ : A

Γ, l[B] ⊢ ∆, l ∨ C[C] : A
Elim

The induction hypothesis gives us a derivation of (Γ, l[B])|A ⊢ ∆|A. By
weakening, we have a derivation of (Γ, l[B])|A ⊢ (∆, l ∨C[C])|A.

(Assume) If Assume is used, the start of the derivation looks like this:

Γ, l[B] ⊢ ∆ : A

Γ ⊢ ∆, l[B] : A
Assume

The unit clause and the literal l have the same dependencies B and therefore
they are both cut or both kept. In the first case, we need a derivation of
Γ|A ⊢ ∆|A and it is simply the induction hypothesis; in the latter case, we
can apply Assume to the cut sequent to retrieve the induction hypothesis:

Γ|A, l ⊢ ∆|A

Γ|A ⊢ ∆|A, {l}
Assume

(BJ) If BJ is used first, the start of the derivation looks like this:

Γ, l[l] ⊢ ∆ : A

Γ ⊢ ∆ : A
BJ

and we have the additional hypothesis that l /∈ A. After cutting, the top
and bottom sequents are the same and therefore we just need to apply the
induction hypothesis.

(Split) If Split is used first, the start of the derivation looks like this:

Γ, l[l] ⊢ ∆ : B Γ, l̄[B \ l] ⊢ ∆ : A

Γ ⊢ ∆ : A
Split

with the additional hypothesis that l ∈ B. The induction hypothesis on the
left branch gives us a derivation for the sequent Γ|B, l ⊢ ∆|B. There are two
cases to consider depending on what happens on the right branch:

• if B \ l 6⊆ A, the induction hypothesis on the right branch gives us a
derivation of Γ|A ⊢ ∆|A, which is exactly what we want;
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• if B \ l ⊆ A, the induction hypothesis on the right branch gives us a
derivation of Γ|A, l̄ ⊢ ∆|A. We would like to apply the Split rule, in
other words we would like to establish that Γ|A, l ⊢ ∆|A is derivable.
Unfortunately, the induction hypothesis on the left branch gives a
slightly different derivation, namely Γ|B, l ⊢ ∆|B. We prove Γ|A, l ⊢
∆|A from Γ|B, l ⊢ ∆|B by using the weakening property, i.e. we prove
that Γ|B ⊆ Γ|A and ∆|B ⊆ ∆|A. Let k ∈ Γ|B, there is k[C] ∈ Γ such
that C ⊆ B, we want to prove that k ∈ Γ|A, i.e. that C ⊆ A. Since
B\ l ⊆ A, it is equivalent with the fact that l 6∈ C. Because the sequent
on the right branch is well annotated, we know that all literals in C
are decision literals in Γ, l̄[B \ l], and therefore that l does not belong
to C. This proves that Γ|B ⊆ Γ|A and by the same argument, we can
prove that ∆|B ⊆ ∆|A. Therefore we have a derivation of Γ|A, l ⊢ ∆|A

and by using the rule Split, we can build the derivation we want:

Γ|A, l ⊢ ∆|A Γ|A, l̄ ⊢ ∆|A

Γ|A ⊢ ∆|A

Split

Theorem 2.2.6 (Soundness). Let Γ be a set of annotated literals, ∆ a set of
annotated clauses and A a conflict set such that Γ ⊢ ∆ : A is well-annotated
and derivable. Then, Γ|∗ and ∆|∗ are incompatible.

Proof. By the stability lemma, the sequent Γ|A ⊢ ∆|A is derivable, and
by weakening, this means that the sequent Γ|∗ ⊢ ∆|∗ is derivable as well.
We simply conclude by applying theorem 2.1.5, i.e. the soundness of the
derivation system without backjumping.

We finish these proofs by stating the particular case of soundness for an
empty assignment, which is the starting point of a procedure based on these
rules:

Corollary 2.2.7. Let ∆ be a formula in CNF. Let us annotate all clauses
in ∆ with an empty set of dependencies. Then, if ∅ ⊢ ∆ : A is derivable for
some A, ∆ is unsatisfiable.

Proof. By Theorem 2.2.6.

The completeness of the system with backjumping can be easily obtained
by showing that any derivation of a sequent Γ|∗ ⊢ ∆|∗ also leads to a deriva-
tion of Γ ⊢ ∆ : A for some A.

Lemma 2.2.8. Let Γ be a set of annotated literals and ∆ a set of annotated
clauses. If Γ|∗ ⊢ ∆|∗ is derivable, then there exists some conflict set A such
that Γ ⊢ ∆ : A is derivable.
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Proof. The proof proceeds by structural induction on the derivation of Γ|∗ ⊢
∆|∗ and by case analysis on the first rule used. Intuitively, each rule can be
mimied by the corresponding rule in the system with backjumping, simply
by adding the dependencies and the conflict sets. For instance, if the rule
used was Conflict, it has the following form:

Γ|∗ ⊢ ∆′
|∗, ∅

Conflict

where ∆ = ∆′, ∅[A] for some set of dependencies A. Thus, the empty clause
appears in ∆ annotated with A and therefore the following derivation is
possible:

Γ ⊢ ∆′, ∅[A] : A
Conflict

If instead the rule used was Red, the derivation has the following form:

Γ′
|∗, l ⊢ ∆′

|∗, C

Γ′
|∗, l ⊢ ∆′

|∗, l̄ ∨ C
Red

where Γ = Γ′, l[B] and ∆ = ∆′, l̄∨C[C] for some sets of dependencies B and
C. By applying the induction hypothesis to the sets Γ and ∆′, C[B ∪ C], we
know that there exists A such that Γ, l[B] ⊢ ∆, C[B ∪ C] : A is derivable.
Hence, we can build the following derivation:

Γ′, l[B] ⊢ ∆′, C[B ∪ C] : A

Γ′, l[B] ⊢ ∆′, l̄ ∨C[C] : A
Red

i.e. a derivation of Γ ⊢ ∆ : A. The rules Elim and Assume can be treated
similarly without any difficulty. The only interesting rule is the Split rule.
Suppose the derivation of Γ|∗ ⊢ ∆|∗ starts with the Split rule:

Γ|∗, l ⊢ ∆|∗ Γ|∗, l̄ ⊢ ∆|∗

Γ|∗ ⊢ ∆|∗

Split

We can apply the induction hypothesis to Γ, l[l], the clauses ∆ and the
derivation in the first branch and we get a derivation of Γ, l[l] ⊢ ∆ : A for
some conflict set A. Now if l ∈ A, we apply the induction hypothesis to
Γ, l̄[A \ l], the clauses ∆ and the second branch of the above derivation: we
get a derivation of Γ, l̄[A \ l] ⊢ ∆ : B for some set B, and we apply the split
rule in order to get a derivation of Γ ⊢ ∆ : B.

Γ, l[l] ⊢ ∆ : A Γ, l̄[A \ l] ⊢ ∆ : B

Γ ⊢ ∆ : B
Split
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If on the contrary l does not belong to A, we can simply apply the BJ rule
and take advantage of the backjumping mechanism:

Γ, l[l] ⊢ ∆ : A

Γ ⊢ ∆ : A
BJ

Using this lemma and the completeness of the DPLL system, we get the
completeness of the system with backjumping.

Theorem 2.2.9 (Completeness). Let ∆ be a formula in CNF with all
clauses annotated with empty dependencies. Then, if ∆|∗ is unsatisfiable,
there exists A such that ∅ ⊢ ∆ : A is derivable.

Proof. By the completeness of the derivation system without backjumping
(Corollary 2.1.10), there exists a derivation of ∅ ⊢ ∆|∗. We conclude by
Lemma 2.2.8.

2.2.3 Conflict-Driven Learning

Principle. Adding non-chronological backtracking has allowed our sys-
tem to avoid exploring some parts of the tree by analyzing the way earlier
conflicts were found, but it still does not take advantage of all the informa-
tion that is available. To realize this issue, consider the situation schematized
in Figure 2.5.

∅[0, 1, 3]

4̄ ⊢

3 ⊢

∅[0, 1]

5̄ ⊢

3̄ ⊢

2 ⊢ BJ

1 ⊢

∅[0, x]

7̄ ⊢

6 ⊢

1̄ ⊢

x ⊢

??

1 ⊢

...

1̄ ⊢

x̄ ⊢

0 ⊢

Figure 2.5: Example showing the insufficiency of backjumping

This figure shows the skeleton of a proof derivation (in the system of
Figure 2.3) which is somehow similar to the one shown in Figure 2.2. Only
the decision literals and the conflict sets at the leaves of the tree are repre-
sented. The difference between the derivation of Figure 2.4 and this one is
that, in the latter, a new literal x has been introduced by Split between the
introductions of 0 and 1. Now, 0 and 1 were precisely the two literals which
were leading to the conflicts, for after backjumping on 2, the dependencies
associated to the sequent were B = {0, 1}.
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In particular, this means that assuming both 0 and 1 will also lead to
a conflict in the branch marked with a question mark. Nevertheless, non-
chronological backtracking cannot help pruning this part of the tree since
the dependency information {0, 1} is lost as soon as the algorithm returns
“below” a node where one of these literals was introduced. In our case, when
returning from the branch where 1 was assumed, the new set of dependencies
is {0, x} and cannot anyway mention the literal 1: when backtracking to the
point where x was introduced, we lost the information that 0 and 1 do not
go along so well, and we can’t exploit it in the remaining part of the proof
search.

Changing the rules, again. In order to solve this problem, a possible
solution is to keep, along with the current set of dependencies, a set of
clauses called conflict clauses representing all the clauses that have already
been “learnt” during the proof search. On our example, we have learnt that
0 and 1 imply the empty clause, since ∅ is annotated with [0, 1]. This is
the information we keep in the conflict set on the right-hand side of the
sequent. More generally, every time we have a clause C annotated with
literals l1, . . . , ln, this means that l1 ∧ . . . ∧ ln implies C. The only such
relation that the system with backjumping remembers is the one that is
stored in the conflict set. When the solver returns to the branch on x, it will
lose this information so we want to make sure that it remembers that 0 ∧ 1
implies a conflict. Because 1 does not appear in the assignment anymore, it
cannot appear in the dependencies; in other words, when removing 1 from
the context, we want to change ∅[0, 1] to {1̄}[0]. More generally, we will
consider that conflict clauses are annotated clauses and define an operation
called “shifting”, noted Shift l, used to remove a literal l from a clause’s
annotations and move it to the clause itself. Shift l is a function applied to
a set of annotated clauses:

Shift l (∅) = ∅

Shift l ({C[A, l]} ∪ A) = {l̄ ∨ C[A]} ∪ Shift l (A)

Shift l ({C[A]} ∪ A) = {C[A]} ∪ Shift l (A) if l /∈ A

Sequents are now of the form Γ ⊢ ∆ : A,A where the new element
A is the set of conflict clauses. The rules are very similar to the one in
Figure 2.3 and only add the treatment of conflict clauses; they are presented
in Figure 2.6. Conflict clauses originate from the dependencies found in
Conflict, and Split takes care of adding l̄[A\l] to the set of conflict clauses
when the set of dependencies A contains l. The clauses are maintained by
all other rules, with the exception of Split and BJ, which apply Shiftl to
all conflict clauses found in the left branch, as suggested in the discussion
above. Finally, these clauses are used in the right branch of the Split rule
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in order to accelerate the search of a conflict in this branch. Actually, among
the clauses in Shift l(A), those who contain l̄ will be eliminated by Bcp, but
the other ones will possibly help in quickly establishing a conflict.

Red
Γ, l[B] ⊢ ∆, C[B ∪ C] : A,A

Γ, l[B] ⊢ ∆, l̄ ∨C[C] : A,A
Elim

Γ, l[B] ⊢ ∆ : A,A

Γ, l[B] ⊢ ∆, l ∨ C[C] : A,A

Conflict
Γ ⊢ ∆, ∅[A] : A, ∅

Assume
Γ, l[B] ⊢ ∆ : A,A

Γ ⊢ ∆, l[B] : A,A

Split
Γ, l[l] ⊢ ∆ : A,A Γ, l̄[A \ l] ⊢ ∆, Shift l (A) : B,B

Γ ⊢ ∆ : B, Shift l (A) ∪ {l̄[A \ l]} ∪ B
l ∈ A

BJ
Γ, l[l] ⊢ ∆ : A,A

Γ ⊢ ∆ : A, Shift l (A)
l /∈ A

Figure 2.6: Inference rules for DPLL with conflict clause learning

Correctness proofs. Unlike the previous derivation system presented in
Section 2.2.1, where we were able to derive the soundness and completeness
proofs of the backjumping mechanism from the proofs of the basic DPLL
system, this is not easily feasible for the system with conflict-driven clause
learning. The intuition behind this is that the first two systems had the
same proof derivations, with some parts being cut off by the backjumping
rule. With learning, clauses in a part of the tree can come from a conflict
obtained in a totally different part of the tree. Moreover, they cannot be
justified “locally” in the proof derivation, but are justified by the initial
problem at the root of the tree. Note that the completeness property can
still be established exactly like our first two systems, by ignoring the learnt
clauses and just building the naive derivation similar similar to what we
did in Section 2.2.2. The soundness proof is quite long and is given in
Appendix A. The soundness theorem is stated as follows:

Theorem 2.2.10 (Soundness). Let ∆ be a formula in CNF, with all clauses
annotated with empty dependencies. Then, if there exists a conflict set A
and some set of conflict clauses A such that ∅ ⊢ ∆ : A,A is derivable, ∆ is
unsatisfiable.

Proof. See Appendix A.
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2.2.4 Backjumping vs. Learning

We have just presented two different mechanisms for optimizing the DPLL
procedure: backjumping and conflict-driven clause learning. They are tradi-
tionally presented together as a single mechanism because the clause learning
mechanism supersedes the backjumping mechanism: as we explained above,
a conflict set A is indeed just a special case of conflict clause ∅[A]. Never-
theless, these two mechanisms are fundamentally different and it is one of
the specificities of our approach to present them separately.

To understand the important difference between backjumping and learn-
ing, we can look at the impact of each of these optimizations in comparison
to the basic DPLL. Backjumping enhances the proof search by trimming the
search tree and each use of of the backjumping rule strictly simplifies the
search. In constrast, conflict-driven clause learning proceeds by adding new
clauses to the problem which hopefully allow the system to derive conflicts
faster and accelerates the search. The cost of adding backjumping is simply
the cost of adding dependency analysis and is easily compensated by the
gain in efficiency due to the use of the BJ rule. On the contrary, the cost
of adding backtracking encompasses both dependency analysis and the fact
that the number of clauses in the problem can augment dramatically (up to
2n clauses where n is the number of variables in the problem). In practice,
there is no guarantee that learning will actually improve the efficiency of the
system on a given problem, it might well slow down the prover: this has a
lot to do with how well the implementation can cope with a great number
of clauses.

Therefore, the decision of whether or not clause learning should be used
in a given system depends on the context in which it is implemented and
used. In the context of software verification of programs annotated by hu-
mans, as explained in Section 1.2.1, the propositional complexity of proof
obligations derives mainly from the propositional complexity of annotations
and from the annotated functions’ structure, and is therefore quite limited.
Such formulae do not require state-of-the-art optimizations and Alt-Ergo’s
SAT-solver relies on the DPLL procedure with backjumping (because it is
always profitable) but without clause learning, because its effect is too un-
predictable and having too many useless clauses can be very detrimental to
the solver5.

2.3 From SAT to SMT

So far in this chapter, we have described a system to decide the unsatisfi-
ability of propositional formulae, but as explained in Chapter 1, when it is

5For instance, as explained in Section 1.2.2, the matching mechanism relies on the
terms available in the current clauses to derives new instances, therefore having too many
clauses can yield too many instances.
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used at the heart of an SMT solver like Alt-Ergo, the propositional atoms are
not variables but are typically terms with some interpreted function sym-
bols. This means that not all assignments are acceptable and we discuss in
this section how the rules seen so far can be easily adapted to account for
satisfiability modulo theories.

Definition 2.3.1. A theory is a set of models. If T is a theory, we call
its elements T -models. We say that a formula F is T -satisfiable (resp. T -
unsatisfiable) if there exists (resp. there does not exist) a T -model satisfying
the formula F .

As with models, the definition of a theory is quite general and we will
reuse it in the next chapter. Let us look at an example first. Let S be a
set of symbols, and assume the set of propositional atoms L is the set of
equations between elements of S, i.e. L = S × S. The sequent ∅ ⊢ {s1 =
s2}, {s2 = s3}, {s3 6= s1} is not derivable and therefore the set of clauses is
satisfiable, but any satisfying assignment maps s1 = s2 to ⊤, s2 = s3 to ⊤
and s3 = s1 to ⊥, which does not respect the “meaning”of equality. We are
actually only interested in the models which verify the following properties:

(i) ∀x ∈ S,M |= x = x

(ii) ∀xy ∈ S,M |= x = y →M |= y = x

(iii) ∀xyz ∈ S,M |= x = y →M |= y = z →M |= x = z

and the set of models which verify these properties is an example of a theory6

(which can be seen as the theory of equality on S). If we only consider the
models in this theory, the set of clauses above is unsatisfiable. To account
for this, we change the nature of partial assignments from a set of literals
to an abstract structure of environment.

Definition 2.3.2. An environment Γ is a structure which supports the two
following operations:

(i) the assumption of a literal l, which is a partial operation; we write Γ, l
when assuming l in Γ succeeds;

(ii) querying whether a literal l is true in the environment or not; we write
Γ ↓ l to denote that the literal l is true in Γ.

These two operations correspond to the two manners in which we use the
partial assignment in the different systems from Figures 2.1, 2.3 and 2.6. We

6In traditional model theory, where theories are defined as sets of formulae (or axioms),
these properties (i), (ii), (ii) could be seen as the axioms defining this theory. The presen-
tation as sets of models is equivalent and can be more natural when dealing with SMT:
the SMT solver does not know about the axioms of a theory T , but tries to construct a
T -model for an input formula.
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assume literals, i.e. add them to the environment, when we assign a value
to some literal, and we query the partial assignment for the state of a literal,
i.e. check whether a literal or its negation has already been assigned a value.
The assumption of a literal is a partial operation because the assumed literal
can be inconsistent with the current environment. It is then straightforward
to rewrite the rules with an environment in the left-hand side of the sequent
instead of a set of literals, for instance Figure 2.7 show how we adapt the
basic DPLL.

Red
Γ ⊢ ∆, C

Γ ⊢ ∆, l̄ ∨C
Γ ↓ l Elim

Γ ⊢ ∆

Γ ⊢ ∆, l ∨ C
Γ ↓ l

Assume
Γ, l ⊢ ∆

Γ ⊢ ∆, {l}
Conflict

Γ ⊢ ∆, ∅

Split
Γ, l ⊢ ∆ Γ, l̄ ⊢ ∆

Γ ⊢ ∆

Figure 2.7: DPLL with an environment

The Red and Elim rules now have a side condition to express that the
query in the environment must return true, and other rules do not change
syntactically. Note that because assumption must succeed, the rules As-
sume and Split, although they do not change syntactically, are slightly
more constrained than in the original presentation: in particular, it is now
impossible to build a derivation where Γ is not well-formed in the sense
of Definition 2.1.7 page 29, because a new literal cannot be assumed if it
contradicts a formerly assumed literal.

In an environment for some theory T , a literal can be true even if it (or its
negation) has not been assigned explicitely, because it can be a consequence
in T of the literals explicitely assumed in the environment. Conversely, a
literal can be false if it is inconsistent with the literals already assumed in
the environment. We write |Γ| for the set of literals explicitely assumed
in environment Γ. For instance, an environment for the theory of equality
above will typically perform the equivalence closure of the equalities assumed
and the query of x3 = x1 in the environment x1 = x2, x2 = x3 will return
true. More generally, in order to be suitable to decide satisfiability in some
theory T , an environment will have to verify some properties:

• for the system to be sound, the environment must be sound with re-
spect to the theory T , i.e. that if Γ ↓ l, l must be a consequence of all
the assumed literals:

∀l, Γ ↓ l → ∀M ∈ T ,M |= |Γ| →M(l) = ⊤
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• for the system to be complete, the environment must be complete with
respect to the theory T , in symbols:

∀l,∀M ∈ T ,M |= |Γ| →M(l) = ⊤ → Γ ↓ l

With such invariants, the correctness proofs are straightforward to adapt and
we can prove that the derivability of the sequent ∅ ⊢ ∆ is equivalent to the
T -satisfiability of the formula ∆. We will not detail how to precisely adapt
the correctness proofs of our DPLL derivation system here, the soundness
proof will be detailed formally later in Chapter 8.

An equivalent characterization of the existence of an environment struc-
ture suitable for a theory T is the existence of a decision procedure P for
the T -satisfiability of conjunctions of literals. Indeed, if such a procedure P
exists, the following operations define a suitable environment:

• an environment is simply a set of literals;

• the adding operation Γ, l simply adds l to the set Γ and uses P to check
that the new set of literals is not unsatisfiable; if it is, the assumption
does not succeed;

• to perform a query of l in Γ, use the procedure P to test the satis-
fiability of the set of literals Γ,¬l: if it is unsatisfiable, then l is a
consequence of the literals of Γ and Γ ↓ l holds; otherwise it does not
hold.

The latter characterization is slightly more convenient. For instance, this
method can be applied to the trivial theory of all models in order to retrieve
the DPLL procedure for pure propositional logic: the procedure P simply
checks whether both a literal and its negation are present in the conjunction.

SMT with dependencies. A natural question is whether it is also possi-
ble to adapt the backjumping and clause learning mechanisms to this SMT
architecture. In order to do so, environments must be able to deal with
annotations:

• the assumption of a literal should also take its dependencies as input:
we write Γ, l[B] for the assumption of l with dependencies B in Γ;

• when a query for a literal l succeeds, the environment should also
return a set of dependencies which justify that l is indeed true, which
we write Γ ↓ l[B].

The adaptations of the rules is then straightforward, and the rules with
backjumping are given in Figure 2.8 for instance. In practice, adding depen-
dency analysis to an environment based on a satisfiability procedure for some
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Red
Γ ⊢ ∆, C[B ∪ C] : A

Γ ⊢ ∆, l̄ ∨ C[C] : A
Γ ↓ l[B] Elim

Γ ⊢ ∆ : A

Γ ⊢ ∆, l ∨ C[C] : A
Γ ↓ l[B]

Conflict
Γ ⊢ ∆, ∅[A] : A

Assume
Γ, l[B] ⊢ ∆ : A

Γ ⊢ ∆, l[B] : A

Split
Γ, l[l] ⊢ ∆ : A Γ, l̄[A \ l] ⊢ ∆ : B

Γ ⊢ ∆ : B
l ∈ A

BJ
Γ, l[l] ⊢ ∆ : A

Γ ⊢ ∆ : A
l /∈ A

Figure 2.8: DPLL with backjumping and an environment

theory can be very challenging since the decision procedure must be instru-
mented in order to find the (possibly smallest) sets of literals which justify
its results. Examples of interesting results in this area of proof-producing
decision procedures are [NO05, dMRS05, RRT07]. Alt-Ergo implements a
coarse but effective dependency analysis in order to use backjumping, but
we have not implemented a proof producing procedure in Coq, and conse-
quently our Coq implementation does not use backjumping but stays with
the basic DPLL procedure (see Chapter 6).

2.4 Discussion

In this chapter, we have described the propositional solver at the heart of
Alt-Ergo as a system of inference rules. This algorithm is based on the
DPLL SAT solving procedure and we showed how to enhance the basic
system with a non-chronological backtracking mechanism, as well as conflict-
driven clause learning. These two mechanisms are ubiquitous in modern
implementations of DPLL-based SAT solvers.

2.4.1 State-of-the-Art SAT Solvers

Even with the backjumping and learning mechanisms, our DPLL system
does not qualify as a modern, state-of-the-art, SAT solver. Such SAT solvers
typically include a great number of different optimizations and heuristics
and can deal efficiently with industrial problems containing hundreds of
thousands of propositional variables (cf. [sat]).

We do not claim to achieve the sheer performance of these systems or to
be able to simulate their behaviour with our rule-based systems. Instead, our
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motivation is to apply this formalization to Alt-Ergo’s SAT solver in order
to accurately describe it, and Alt-Ergo uses a relatively basic SAT solving
procedure. In fact, Alt-Ergo is based on the system with backjumping but
does not use clause learning. Therefore, the rules we have presented so far
are sufficient to describe Alt-Ergo’s kernel. More generally speaking, they
are also a solid foundation on which to implement a SAT solver, and this is
what motivated us into adding conflict-driven clause learning. We now take
a quick look at other typical optimizations that are present in modern SAT
solvers, and discuss what kind of challenge they would represent.

Variable assignment. When applying the splitting rule, i.e. when arbi-
trarily trying to assign a variable either boolean value, some variable must
be chosen. As we emphasized at the start of Section 2.2.1, the performance
of the SAT solver is very sensitive to that particular choice. Different strate-
gies have been designed in order to pick variables in a sensible way: some
choose randomly, some try to maximize some measure (e.g. the number of
times a variable appears in a problem), some are much more involved and
perform very well in a great variety of problems, like the Variable State
Independent Decaying Sum (VSIDS) decision heuristic used in Chaff and
presented in [MMZ+01], which is used in conjunction with conflict-based
clause learning. The important thing about variable assignment choices is
that any strategy is correct and therefore there is almost nothing to prove
about it: soundness is granted, and completeness is guaranteed as long as
the strategy tries every variable sooner or later. This is why there is no
reason to mention such a strategy in our formalization; on the contrary, our
rules gives full freedom as far as the choice of a literal is concerned.

Two-watched literals. A SAT solver spends most of its time performing
boolean constraint propagation and trying to apply the unit rule. Modern
optimizations often employ a variant of a technique called two-watched lit-
erals [MMZ+01, Zha97], which consists in keeping a handle on two non-false
literals per clause at all time and only performing simplifications on these
literals, until it is not possible to find two such literals, which means the
corresponding clause is unitary or empty. Such a technique is very impor-
tant in practice but in our opinion, it is not a feature that requires a formal
description and proof, but rather it is a matter of implementation.

Restarts. Modern SAT solvers also rely on some way of restarting the
proof search at regular intervals, in order to explore the search space more
efficiently. A typical restart strategy for our system with clause learning
would be to stop search at some point and restart with an empty assignment,
but retaining some of the clauses learnt so far. That way, the search starts
in a “fresh” state, but with more information than the first time, hopefully
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avoiding bad variable choices in the future. Restarts cannot be simulated
with our rules, because this would require the initial state (or formula) to
be stored in the sequent, but once again the critical point about restarts is
whether the learnt clauses are correct, not the restart mechanism itself and
we decided not to adapt our rules to include restarts. Incidentally, there
exists a broad range of restart strategies, see [Hua07] for instance.

Conflict Analysis. In our inference rules, we described the conflicts found
during the proof search thanks to the literals in annotations. These liter-
als were what is known as decision literals, i.e. literals which were added
through a Split (or BJ) rule. There exists other ways to describe a con-
flict, and conflict analyses have been thoroughly studied because their effect
on the performance of a SAT solver is very significant (see [SS96, ZMM01]
for instance). In particular, [ZMM01] describes conflicts using an implica-
tion graph between assigned literals and their empirical results show that
literals which have some property in this graph (known as UIP, for Unique
Implication Point) lead to better conflict clauses than decision literals for
instance. Our system could be adapted to any conflict analysis by keep-
ing an implication graph instead of the simple annotations we have, but we
did not formalize that modification. In particular, such analyses are only
useful to improve the effect of conflict-driven clause learning, in the sense
that it generates conflict clauses which are maybe more pertinent, but it
does not improve on backjumping since a system with backjumping always
backtracks to the lowest possible literal in the proof tree. Note also that
unlike the preceding optimizations, the conflict analysis is critical and re-
quires an accurate formalization, since unsound clauses could be derived by
an inappropriate strategy.

2.4.2 Conclusion

The work closest to this approach originated with [Tin02] and is Nieuwen-
huis, Oliveras and Tinelli’s formalization of DPLL [NOT04]. Their system is
based on transition rules and describes a version of DPLL where side condi-
tions are expressed in an abstract manner. This allows them to encompass at
once a broad range of common optimizations and to easily reason about the
correctness of such techniques. In particular, unlike ours, their presentation
does not differentiate backjumping from clause learning, and we explained
above why we think that it is important to separate these two mechanisms.
The main downside of their approach is that its abstraction makes it harder
to derive a trustworthy implementation from the formalization. On the con-
trary, the gap between our system and the actual implementation is really
small: in particular, our rules describe exactly how to calculate dependencies
and conflict clauses.
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This is also a downside, of course, since our system is much less expres-
sive than the one in [NOT04]. Nevertheless, as we emphasized several times
in this chapter, we tried to remain as generic as possible. We do not have
any strategy to select decision literals, but adding heuristics to pick literals
in the Split rule would not impact our correctness proof. In our Coq imple-
mentation in Chapter 7, we will demonstrate how our system is independent
of the actual representation of formulas, and how to take advantage of this
to use techniques of efficient CNF conversion, such as maximal sharing of
sub-formulas using hash-consing.
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In Chapter 2, we presented how to handle propositional logic with the
DPLL procedure and its modern variants. We also hinted at the fact that
the same procedure could be used to deal with formulae where literals have
some interpretation, i.e. to decide the satisfiability of a formula modulo
some theory, as long as one is able to provide an environment which decides
entailment in this theory. This chapter is devoted to show how to build such
an environment for a certain class of theories. More precisely, we will show
how to build an environment for the combination of the theory of equal-
ity and any theory X which verifies certains properties, among which the
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existence of a particular function called a solver. This algorithm is param-
eterized by this theory X and will be called CC(X). In Section 3.1, we will
describe the problem of solving the theory of equality modulo another theory
and present the two main existing methods: the Nelson-Oppen combination
method on one hand, and Shostak’s algorithm on the other. In Section 3.2,
we present our algorithm CC(X) for the congruence closure modulo a theory
X and show how it differs and improves on the two existing methods. We
then prove that the algorithm is sound and complete for suitable theories.
Finally, we extend CC(X) in Section 3.4 in order to deal with disequations
instead of just equalities.

3.1 Combining Equality and Other Theories

3.1.1 Preliminaries

In order to define the theories we are interested in and to build their literals,
we need a term algebra. In the following, we assume a large, fixed, set Σ
of symbols and we suppose that each symbol comes with a non-negative
integer called its arity. We define the set of (ground) terms T inductively
as the smallest set which is closed for the following operation: if f ∈ Σ is
a symbol of arity n and t1, . . . , tn are some terms in T , then f(t1, . . . , tn)
belongs to T . In particular, our terms are untyped since we do not consider
any typing constraint for the construction of terms. The set of propositional
atoms that we are interested in in the remaining of this chapter is the set L
of all equalities u = v for some u, v ∈ T .

Definition 3.1.1. The theory of equality, written E, is defined by the fact
that = is a congruence relation, i.e. by the following axioms:

(Reflexivity) ∀t ∈ T , t = t

(Symmetry) ∀t, u ∈ T , t = u =⇒ u = t

(Transitivity) ∀t, u, v ∈ T , t = u =⇒ u = v =⇒ t = v

(Congruence) ∀f ∈ Σ,∀t1, u1 . . . , tn, un ∈ T ,
(∀i, ti = ui) =⇒ f(t1, . . . , tn) = f(u1, . . . , un)
The theory E (in the sense of Definition 2.3.1 page 44) is the set of models
for which these axioms hold.

The theory E is often called EUF, for Equality on Uninterpreted Func-
tions, and is obviously essential to deduction and verification systems. For
instance, problem divisions in the SMT competition [BST10] include a cat-
egory devoted to this theory (QF_UF) and other categories deal with the
combination of EUF and other theories such as bitvectors (QF_AUFBV),
difference logic (QF_UFIDL), arrays (QF_AUFLIA), etc.

Given a set of equalities E, the set of all equalities implied by the combi-
nation of E and the theory of equality is the congruence closure of E. If we
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consider E as a relation over terms, its congruence closure is also a relation
over terms and we write it =E. Formally, this means that given two terms
u and v:

u =E v ⇐⇒ ∀M ∈ E , M |= E =⇒ M |= u = v.

For example, if f and a are some symbols in Σ, and E is the set of equations
{a = f(f(f(a))), a = f(f(f(f(f(a)))))}, then a =E f(a).

The task of computing the congruence closure of a finite set of equations
has been addressed separately by Downey, Sethi and Tarjan [DST80], Nelson
and Oppen [NO80] and Shostak [Sho78] thirty years ago. Their procedures
all achieved worst-case complexity of O(n log(n)) and are formulated on
relations over vertices of a graph representing the terms of the problem.

In a solver like Alt-Ergo, we are not only dealing with uninterpreted
functions, but some symbols have a standard interpretation which should
be accounted for. The meaning of these symbols is given by one or several
theories. For instance, the following formula1:

k = 0 =⇒ s− a = a =⇒ f(s + k, 2 + 3) = f(a + a, 5) (3.1)

is valid in the union of E and the theory of linear arithmetic on rationals but
not in E alone. To decide the satisfiability of such formulae, the previous
algorithms for computing a congruence closure are not sufficient and one
needs a procedure for congruence closure modulo a theory.

3.1.2 The Nelson-Oppen Combination Method

The most widely used method to combine the theory of equality and other
theories was proposed by Nelson and Oppen [NO79]. Their method is ac-
tually more general in that it gives an algorithm to combine decision proce-
dures for different theories into a decision procedure for the union of these
theories.

Let T1, . . . ,Tn be n theories such that there exists satisfiability proce-
dures P1, . . . , Pn for each of these theories. Among other things, the Nelson-
Oppen method requires that theories use disjoint sets of interpreted symbols,
say Σ1, . . . , Σn. The algorithm proceeds by splitting a formula Φ into n sub-
formulae Φ1, . . . , Φn where Φi only uses abstraction variables2 and symbols
in Σi. It then dispatches each subformula Φi to the corresponding decision
procedure Pi. The different decision procedure only cooperate indirectly
by exchanging informations about the variables of the problem through the
dispatcher. This architecture is summarized in Figure 3.1.

The procedure can be summarized by the following steps:
1as is usually done, we write binary arithmetic symbols in infix notation.
2These abstraction variables are not strictly speaking variables but can also be con-

sidered as fresh constants. They are traditionally called variables in the literature about
Nelson-Oppen combination.
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Dispatcher

P1 P2
... Pn

x = y x = y x = y

Figure 3.1: Architecture of the Nelson-Oppen combination

1. (Variable abstraction) Split the formula Φ in a conjunction of pure
formulae Φ1, . . . , Φn which only share abstraction variables.

2. (Dispatching) Send each formula Φi to the corresponding procedure
Pi. If any returns unsatisfiable then the whole formula is unsatisfiable.

3. (Equality propagation) Gather all the equalities between variables
which have been found by the Pi during the previous step, and prop-
agate them to all theories. Return to step 2.

4. (End) When no contradiction has been found by any decision proce-
dure, and no more equalities between variables are found, Φ is satisfi-
able.

One can see that a key point in the method originally presented by Nel-
son and Oppen is that the Pi must return the equalities between variables
they find when they are run. Although critical for efficiency, this require-
ment is not theoretically mandatory. In a later presentation of this algo-
rithm [TH96], Tinelli and Harandi proposed a non-deterministic version of
the algorithm where the correct partition between the variables (what they
call an arrangement of the variables) is simply guessed. Since there are a
finite number of arrangements, an algorithm could proceed by trying all of
them.

It is clear that, provided that the unsatisfiability procedures P1, . . . , Pn

are correct, the formula is truly unsatisfiable when the procedure says so.
The converse however is not true in general: when all subproblems are
satisfiable in their respective theories, the conjunction is not necessarily
satisfiable in the union of theories. To be sound and complete, the Nelson-
Oppen procedure thus requires strong properties on the theories:

• The theories must be convex: this means that a conjunction of literals
should not entail a disjunction of equalities without entailing at least
one of the disjuncts. This restriction ensures that there is no need for
“splits” since the combination scheme cannot dispatch disjunctions of
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equalities. Although many theories of interest are indeed convex, the
convexity requirement is the biggest obstacle in practice (for instance,
the theories of arrays or linear arithmetic with inequalities are non-
convex).

• The theories must be stably infinite. This condition was formalized
in [TH96] and not in the original paper, and it expresses the fact that
all satisfiable formulae admit models with infinite cardinality. In par-
ticular, this excludes theories that specify finite types, e.g. booleans.

This general combination scheme has been applied to the issue of combin-
ing congruence closure and other theories. For instance we can use this
scheme with the theory E and linear rational arithmetic to solve our exam-
ple formula 3.1. The variable abstraction yields the following conjunction
of literals:

Φ1 : f(z1, z2) 6= f(z3, z4)

Φ2 : k = 0 ∧ s− a = a ∧ s + k = z1 ∧ 2 + 3 = z2 ∧ a + a = z3 ∧ 5 = z4

Φ1 and Φ2 are both satisfiable in their theory, but when analyzing Φ2 the
decision procedure for linear arithmetic reports that s = z1 = z3 and z2 = z4.
After propagation in Φ1, the congruence closure algorithm reports that Φ1

is unsatisfiable, and so is the original formula.
The Nelson-Oppen architecture or variants thereof are used in deduction

systems such as the Stanford Pascal Verifier [LGvH+79], Yices [Yic], Sim-
plify [DNS05], CVC3 [BT07] and Z3 [dMB08]. It is widely used because of
its generic nature and because it applies to many theories of interests.

3.1.3 The Shostak Combination Method

The Nelson-Oppen combination method is not devoted to the combination
of equality and another theory, but it is more generic than that. One con-
sequence is that E and the other theories play a totally symmetric role.
In [Sho84] Shostak proposed an alternative which is specifically devoted to
combining equality with another theory. Shostak’s procedure only works
on equational theories which have two special functions: a canonizer and a
solver. The canonizer is used to transform a term into a normal form with
respect to the theory, while the solver takes an equation and “solves” it into
an equivalent substitution, i.e. a list of equalities of the form x = t where x
is a variable in the original equation. We call these theories Shostak theories.

Congruence closure algorithms in [DST80, NO80, Sho78] proceed by
computing a canonical form for all terms, in particular using a union-find
structure; Shostak’s procedure does essentially the same thing but using
the canonizer and the solver of the theory T in order to build a canonical
form modulo T . The canonizer is used to normalize terms modulo T and the
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solver is used to propagate all the consequences of an equation into the union-
find structure. For instance, let us look at example 3.1 again. The theory of
linear rational arithmetic is a Shostak theory: the normal form for this the-
ory is a sum of ordered monomials with rational coefficients, and the solver
can be implemented with standard Gauss elimination. Solving the first two
equalities k = 0 and s− a = a yields the substitutions k 7→ 0 and s 7→ 2 ∗ a.
After substitution, the last equality becomes f(2∗a+0, 2+3) = f(a+a, 5),
and after canonization, it becomes f(2∗a, 5) = f(2∗a, 5) which is obviously
true.

The original presentation of Shostak’s procedure suffered multiple flaws,
in particular it is neither complete nor terminating. The procedure was
revamped and corrected first partially in [CLS96] by Cyrluk, Lincoln and
Shankar, and then completely in [RS01] by Rueß and Shankar. The formal-
ization and the proofs are much more involved than in the original presen-
tation, and Ford and Shankar later published [FS02] a formal proof of the
presentation in [RS01], done in PVS [PVS]. Proofs about combinations of
theories are notoriously difficult and error-prone, and such verified proofs
are rare and valuable.

3.1.4 Motivations

The restriction imposed on Shostak theories, i.e. the properties that must
hold for the canonizers and solvers, make them a smaller class than the
class of theories suitable for Nelson-Oppen. However, when it applies,
Shostak’s combination scheme improves on Nelson-Oppen’s architecture.
Indeed, Nelson-Oppen does not treat E in a special way, and all decision
procedures must perform their own equality propagation (typically using
union-find) which is costly. Shostak’s procedure regroups equality reasoning
in a single congruence closure algorithm, and factors all theory reasoning
in the canonizer and solver functions. We schematize this situation in Fig-
ure 3.2. Thanks to this better interaction with the traditional congruence
reasoning, the Shostak procedure seems to perform better than the Nelson-
Oppen procedure: comparing these two algorithms in practice is not easy
because they are usually part of bigger systems, but an informal comparison
reported in [CLS96] suggests a difference of about an order of magnitude.
Shostak’s algorithm is also simpler to implement than Nelson-Oppen be-
cause there is no exchange of equalities between the different procedures.

Although some of the disadvantages of the Nelson-Oppen scheme are
avoided by Shostak, his procedure has its own shortcomings. In particular,
the underlying decision procedures in Nelson-Oppen can be implemented in
any possible way, whereas a Shostak theory revolves around the term data
structure: it must be implemented with a term canonizer and a solver which
returns term substitutions. Altogether, canonizing, solving and substituting
are actions which require a lot of term manipulations and traversals. For
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Dispatcher

Equality

CC

UF

Arith

UF modulo

x = y x = y CC

UF UF modulo

Figure 3.2: Schematic comparison of the Nelson-Oppen (left) and Shostak
architecture (right).

most theories, this does not represent the way one would implement such
functions, and more efficient representations of the terms could be more
convenient. For instance, the term data structure is not adapted to linear
arithmetic manipulation, and solving and substituting can be implemented
much more efficiently with polynoms, i.e. an ad-hoc data structure. This is
the motivation for the algorithm we present in the remainder of this chapter:
a mechanism for congruence closure modulo a theory inspired by Shostak
but where abstract data representation is possible and encouraged.

3.2 CC(X): Congruence Closure Modulo X

In this section, we present the algorithm CC(X) (for congruence closure
modulo X) which combines the theory E with an arbitrary built-in theory X.
This algorithm uses abstract values as representatives allowing efficient data
structures for the implementation of solvers. We first define the class of the-
ories which are amenable for our algorithm, which we call solvable theories,
and then present CC(X) as a set of inference rules whose description is de-
tailed enough to truly reflect the actual implementation of the combination
mechanism in Alt-Ergo.

3.2.1 Solvable Theories

While solvers and canonizers of Shostak theories operate on terms directly,
solvable theories work on a certain setR, whose elements are called semantic
values. The main particularity is that we don’t know the exact structure
of these values, only that they are somehow constructed from interpreted
and uninterpreted (or foreign) parts. To compensate, we dispose of two
functions [·] and leaves which are reminiscent of the variable abstraction
mechanism found in the Nelson-Oppen method. The function [·], which we
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also call make, constructs a semantic value from a term; leaves extracts its
uninterpreted parts in an abstract form.

Definition 3.2.1. We call a solvable theory X a tuple (ΣX,R, X), where
ΣX ⊆ Σ is the set of function symbols interpreted by X, R is the set of
semantic values and X is an equational theory. In particular, X is a relation
over terms and therefore =

X
⊆ T × T denotes the congruence closure of the

relation X. Additionally, a solvable theory X has the following properties:

(i) There is a function [·] : T (Σ) → R to construct a semantic value out
of a term. For any set E of equations between terms we write [E] for
the set {[x] = [y] | x = y ∈ E} and similary for sequences of equations.

(ii) There is a function leaves : R→ P∗
f (R), where the elements of P∗

f (R)
are finite non-empty sets of semantic values. Intuitively, its role is to
return the set of maximal uninterpreted values a given semantic value
consists of3. Its behaviour is left undefined for now, but is constrained
by axioms given below.

(iii) There is a special value 1 ∈ R which we will use to denote the leaves
of pure terms’ representatives.

(iv) There is a function subst : R×R×R → R. Instead of subst(p, P, r)
we write r {p 7→ P}. The pair (p, P ) is called a substitution and
subst(p, P, r) is the application of the substitution (p, P ) to r.

(v) There is a function solve : R × R → (R × R)⊤,⊥ which takes an
equation between semantic values and returns either ⊤, ⊥ or an equa-
tion between semantic values (which must be seen as a substitution).
When the result is ⊤(resp. ⊥), we say that the equation is solved (resp.
unsolvable).

In the remaining of this paper, we simply call theory a solvable theory.
An example of such a theory is given in Section 3.2.3. We write ≡ the
equality in the set of semantic values, and it should not be confused with
term equality =.

In the following, for any set S, we write S∗ the set of finite sequences of
elements of S. If s ∈ S∗ is such a sequence and a is an element of S, we write
a; s for the sequence obtained by prepending a to s. The empty sequence is
denoted •. We will use sequences instead of sets in many places in order to
be able to describe the incrementality of our algorithm; we will however use
sequences as sets implicitly in places where order does not matter. As we
will often talk about successive substitutions, we define an auxiliary function
that does just that:

3Therefore, the leaves correspond to what are called the solvables part of an interpreted
term in [RS01].
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Definition 3.2.2. We define the partial function iter : (R×R)∗×R → R⊥

that applies solve and subst successively in the following way:

iter(•, r) = r

iter((r1, r2); S, r3) = r′
3 {p 7→ P} where

{

r′
i = iter(S, ri)

solve(r′
1, r′

2) = (p, P )

iter((r1, r2); S, r3) = r′
3 where

{

r′
i = iter(S, ri)

solve(r′
1, r′

2) = ⊤

iter((r1, r2); S, r3) = ⊥ where

{

r′
i = iter(S, ri)

solve(r′
1, r′

2) = ⊥

iter((r1, r2); S, r3) = ⊥ otherwise.

Thus, iter(S, r) successively solves all equations in S, applying the resulting
substitution (if any) to r and to the remaining equations along the way.
It returns ⊥ if and only if one of the equations was unsolvable. We now
use this notion of iterated substitution to define entailment in the set R of
semantic values.

Definition 3.2.3. Let E be a sequence of equations between semantic values,
and r1, r2 two semantic values. We write E |=X r1 = r2 to denote that the
sequence of equations E entail that r1 = r2, and we define it in the following
way:

E |=X r1 = r2
def
⇐⇒ iter(E, r1) ≡ iter(E, r2).

In particular, if iter(E, r1) and iter(E, r2) are ⊥, E |=X r1 = r2 holds.

In addition to definition 3.2.1, a theory X must fulfill the following ax-
ioms:

Axiom 3.2.4. For any r1, r2, p, P ∈ R,

(i) solve(r1, r2) = (p, P )⇒ r1 {p 7→ P} ≡ r2 {p 7→ P}

(i’) solve(r1, r2) = (p, P )⇒ p 6∈ leaves(P )

(ii) solve(r1, r2) = ⊤ ⇐⇒ r1 ≡ r2

(iii) solve(r1, r2) = ⊥ ⇐⇒ ∀(p, P ), r1 {p 7→ P} 6≡ r2 {p 7→ P}.

Axiom 3.2.5. For any set of term equations E and pair of terms u, v,

[E] |=X [u] = [v]⇒ u =
E,X

v,

where =
E,X

is the congruence closure of the equational theory defined by
E ∪ X.

Axiom 3.2.6. For any r, p, P ∈ R such that r 6≡ r{p 7→ P},

(i) p ∈ leaves(r)
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(ii) leaves(r{p 7→ P}) = (leaves(r) \ {p}) ∪ leaves(P ).

Axiom 3.2.7. For any pure term t, i.e. a term built exclusively from symbols
in ΣX, we have leaves([t]) = {1}.

Let us explain this a little bit. First of all, as we will see in section 3.2.2,
the algorithm establishes and maintains equivalence classes over semantic
values. Every equivalence class is labeled by an element of the set R; a
function ∆ : R → R is maintained which for each value returns its current
label. Together with the [.] function, this function can be used to maintain
equivalence classes over terms. The function solve is capable of solving an
equation between two elements of R, that is, it transforms an equation r1 =
r2 for r1, r2 ∈ R into the substitution (p, P ), with p, P ∈ R, where the value
p is now isolated. Axiom 3.2.4-(i) makes sure that such a substitution renders
equal the two semantic values r1 and r2, which are at the origin of this
substitution, and 3.2.4-(i’) enforces that the left-hand side of a substitution
cannot appear in the right-hand side4. The last two items in Axiom 3.2.4 are
straightforward and cover the cases where the equation is either solved or
unsolvable. We have equipped R with a notion of implication of equalities,
the relation |=X . Axiom 3.2.5 just states that, if some equations [E] between
semantic values imply an equation [u] = [v], then u =

E,X
v, that is, an

equality on the theory side implies an equality between corresponding terms.
Axiom 3.2.6 ensures that substituting p with P in a semantic value only has
effect if p is a leaf of this value, and that the new leaves after the substitution
are leaves coming from P . In this respect, leaves can be understood as the
“variables” of a semantic value. Finally, the last axiom describes why we
introduced a special value 1 in R: representatives of pure terms do not have
leaves per se, but it is convenient for the algorithm that the set leaves(r) be
non-empty for any semantic value r. To that purpose, we arbitrarily enforce
that leaves([t]) is the singleton {1} for any pure term t.

As a last remark, we have given the interface of a theory X in a slightly
less general fashion as was possible: depending on the theory, the function
solve may as well return a list of pairs (pi, Pi) with pi, Pi ∈ R. It becomes
clear why we call this a substitution: the pi can be seen as variables, that,
during the application of a substitution, are replaced by a certain semantic
value. However, for the example presented in the next section, solve always
returns a single pair, if it succeeds at all. Thus, we will stick with the simpler
forms of solve and subst in our presentation.

The following proposition is a simple, but useful, consequence of the
axioms stated above. It will be used in the soundness proof. It simply
states that, if semantic values constructed with [·] are equal, the original
terms were already equal with respect to X.

4This is a standard way of ensuring that the substitution is idempotent and that
applying it will remove all occurences of the left-hand side.
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Proposition 3.2.8. For any terms u, v ∈ T , [u] ≡ [v]⇒ u =
X

v.

Proof. This is simply axiom 3.2.5 with E the empty sequence.

Another, less trivial, consequence of the axioms and definitions above is that
if r′ has been obtained from r by iterated substitution, then the equations
at the origin of these substitutions imply the equality r′ ≡ r.

Proposition 3.2.9. For any S ∈ (R×R)∗ and any r ∈ R, we have S |=X

iter(S, r) = r where S is seen as a set on the left-hand side of |=X .

Proof. By definition, we need to show that iter(S, iter(S, r)) ≡ iter(S, r),
which can be seen as the idempotency of the iterated substitution. This is
of course a consequence of the idempotency of the substitutions returned by
solve (see Axiom 3.2.4-(i’)). We proceed by induction on the sequence of
equations S. If S is the empty sequence •, the goal becomes r ≡ r which is
trivially true.

Now, let us suppose that S |=X iter(S, r) = r and let r1, r2 be some
semantic values. We want to prove that (r1, r2); S |=X iter((r1, r2); S, r) =
r. If iter(S, r) is ⊥, then the result is obviously true; otherwise, iter(S, .)
is defined for all values and let r′ = iter(S, r), r′

1 = iter(S, r1) and r′
2 =

iter(S, r2). We proceed by case analysis on the result of solve(r′
1, r′

2):

⊥: iter((r1, r2); S, r) = ⊥ hence the result holds.

⊤: iter((r1, r2); S, r) ≡ iter(S, r) ≡ r′ and by induction hypothesis the
result holds.

(p, P ): by definition, (r1, r2); S |=X iter((r1, r2); S, r) = r is true if and only
if r′ {p 7→ P} {p 7→ P} ≡ r′ {p 7→ P}. By Axioms 3.2.4-(i’) and 3.2.6,
we know that p does not belong to leaves(r′ {p 7→ P}) and hence that
substituting {p 7→ P} in r′{p 7→ P} does not have any effect, which
proves the equality above.

In order to prove the completeness, we need to make a few more assump-
tions about the theory X, or rather about the interpretation of symbols in
ΣX.

Axiom 3.2.10. For each interpreted symbol f ∈ ΣX of arity n, we assume
there exists a function fX from Rn to R such that:

∀t1, . . . , tn ∈ T (Σ), [f(t1, . . . , tn)] ≡ fX([t1], . . . , [tn])

Note, though, that these functions need not be implemented for the algo-
rithm to work: only their existence matters to us, [.] could be computed in
any other conceivable way and our algorithm CC(X) will never need to use
one of these functions explicitly. The last axiom simply state that substitu-
tions happen at the leaves level of semantic values.
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Axiom 3.2.11. For any interpreted symbol f , given values r1, . . . , rn and
two semantic values p and P ,

fX(r1, . . . , rn){p 7→ P} ≡ fX(r1{p 7→ P}, . . . , rn{p 7→ P})

Together with Axiom 3.2.10, this last axiom indeed implies that substitution
“traverses” interpreted symbols.

3.2.2 The CC(X) Algorithm

The backtracking search underlying the architecture of a lazy SMT solver
enforces an incremental treatment of the set of ground equations maintained
by the solver. Indeed, for efficiency reasons, equations are given one by one
by the SAT solver to the decision procedures which prevents them from
realizing a global preliminary treatment, unless restarting the congruence
closure from scratch. Therefore, CC(X) is designed to be incremental and

deals with a sequence of equations u = v and queries u
?= v instead of a

given set of ground equations.
The algorithm works on tuples (configurations) 〈 Θ | Γ | ∆ | Φ 〉, where:

• Θ is the set of terms already encountered by the algorithm;

• Γ is a mapping from semantic values to sets of terms which intuitively
maps each semantic value to the terms that “use” it directly. This
structure is reminiscent of Tarjan et al.’s algorithm [DST80] but dif-
fers in the sense that it traverses interpreted symbols (as expressed
in Proposition 3.3.12 in Section 3.3). This information is used to effi-
ciently retrieve the terms which have to be considered for congruence;

• ∆ is a mapping from semantic values to semantic values maintaining
the equivalence classes over R as suggested in Section 3.2.1: it is a
structure that can tell us if two values are known to be equal (it can
be seen as the find function of a union-find data structure);

• Φ is a sequence of equations between terms that remain to be pro-
cessed.

There is a special kind of configurations written 〈 ⊥ | Φ 〉 to denote the
cases where CC(X) has reached an inconsistent state, i.e. the case where
some of the equations already treated are inconsistent with the theory.

Given a sequence E of equations and a query a
?= b for which we want

to solve the uniform word problem, CC(X) starts in an initial configuration

K0 = 〈 ∅ | Γ0 | ∆0 | E ; a
?= b 〉, where Γ0(r) = ∅ and ∆0(r) = r for all r ∈

R. In other words, no terms have been treated yet by the algorithm, and
the partition ∆0 corresponds to the physical equality ≡.

In Figure 3.3, we describe our algorithm CC(X) as six inference rules
operating on configurations. The semantic value ∆(r), for r ∈ R is also
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Congr
〈 Θ | Γ | ∆ | a = b ; Φ 〉

〈 Θ | Γ ⊎ Γ′ | ∆′ | Φ′ ; Φ 〉
a, b ∈ Θ, ∆[a] 6≡ ∆[b]

where,
(p, P ) = solve(∆[a], ∆[b])

Γ′ =
⋃

l∈leaves(P )

l 7→ Γ(l) ∪ Γ(p)

∀r ∈ R, ∆′(r) := ∆(r) {p 7→ P}

Φ′ =

{

f(~u) = f(~v)

∣

∣

∣

∣

∣

∆′[~u] ≡ ∆′[~v], f(~u) ∈ Γ(p)
f(~v) ∈ Γ(p) ∪

⋃

t∈Θ|p∈leaves(∆[t])

⋂

l∈leaves(∆′[t]) Γ(l)

}

Unsolv
〈 Θ | Γ | ∆ | a = b ; Φ 〉

〈 ⊥ | Φ 〉
a, b ∈ Θ, ∆[a] 6≡ ∆[b]

where ⊥ = solve(∆[a], ∆[b])

Remove
〈 Θ | Γ | ∆ | a = b ; Φ 〉

〈 Θ | Γ | ∆ | Φ 〉
a, b ∈ Θ, ∆[a] ≡ ∆[b]

Add
〈 Θ | Γ | ∆ | C[f(~a)] ; Φ 〉

〈 Θ ∪ {f(~a)} | Γ ⊎ Γ′ | ∆ | Φ′ ; C[f(~a)] ; Φ 〉

{

f(~a) 6∈ Θ
∀v ∈ ~a, v ∈ Θ

where C[f(~a)] denotes an equation or a query containing the term f(~a)

with























Γ′ =
⋃

l∈L∆(~a)

l 7→ Γ(l) ∪ {f(~a)}

Φ′ =







f(~a) = f(~b)

∣

∣

∣

∣

∣

∣

∆[~a] ≡ ∆[~b], f(~b) ∈
⋂

l∈L∆(~a)

Γ(l)







where L∆(~a) =
⋃

v∈~a leaves(∆[v])

Query
〈 Θ | Γ | ∆ | a

?= b ; Φ 〉

〈 Θ | Γ | ∆ | Φ 〉
a, b ∈ Θ, ∆[a] ≡ ∆[b]

Incons
〈 ⊥ | e ; Φ 〉

〈 ⊥ | Φ 〉
e equation or query

Figure 3.3: The rules of the congruence closure algorithm CC(X)
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called representative of r. When t is a term of T , we write ∆[t] as an
abbreviation for ∆([t]), which we call the representative of t. Figure 3.3
also uses several other abbreviations: we write ~u for u1, . . . , un, where n
is clear from the context; we also write ∆[~u] ≡ ∆[~v] for the equivalences
∆[u1] ≡ ∆[v1], . . . , ∆[un] ≡ ∆[vn]. If t ∈ Γ(r) for t ∈ T , r ∈ R, we also say
r is used by t, or t uses r.

We now have all the necessary elements to understand the rules. There
are actually only two of them, namely Congr and Add, which perform any
interesting tasks. The others are much simpler: Remove just checks if the
first equation in Φ is already known to be true (by the help of ∆), and, if
so, discards it. Query is analogous to Remove but deals with a query5.
The other two rules deal with inconsistent configurations: Unsolv takes an
unsolvable equation from the sequence of pending equations and returns the
inconsistent configuration; rule Incons expresses the fact that once a con-
figuration is inconsistent, all new equations can be ignored, and all queries
are true. Finally, note that the case where the first pending equation is
already solved is dealt with by the Remove rule, because Axiom 3.2.4-(ii)
ensures that solve(∆[a], ∆[b]) returns ⊤ if and only if ∆[a] ≡ ∆[b].

The rule Congr is much more complex. It deals with the first equation
in Φ, but only when it is neither solved nor unsolvable. This equation a = b
with a, b ∈ Θ is transformed into an equation in R, ∆[a] ≡ ∆[b], and then
solved in the theory X, which yields two semantic values p and P . The
value p is then substituted by P in all representatives. The map Γ is up-
dated according to this substitution: the terms that used p up to that point
now also use all the values l ∈ leaves(P ). Finally, a set Φ′ of new equations
is computed, and appended to the sequence Φ of the equations to be treated
(the order of the equations in Φ′ is irrelevant). The set Φ′ is computed in
the following way: the left hand side of any equation in Φ′ is a term that
used p, and the right hand side is either a term that used p, or a term that
used every l ∈ leaves(∆′(r)) for a value r such that p ∈ leaves(∆(r)). This
rather complicated condition ensures that only relevant terms are consid-
ered for congruence. As the name implies, the Congr rule will only add
equations of the form f(t1, . . . , tn) = f(t′

1, . . . , t′
n), where the corresponding

subterms are already known to be equal: ∆′[ti] ≡ ∆′[t′
i], 1 ≤ i ≤ n.

The rule Add is used when the first equation of Φ contains at least a
term f(~a) that has not yet been encountered by the algorithm (f(~a) /∈ Θ).
Its side condition ensures that all proper subterms of this term have been
added before; in other words, new terms are added recursively. The first
task that this rule performs is of course to update the map Γ by adding the

5Our system does not “return” any truth value for a query per se: it passes queries
that are true (using the Query rule) and is blocked at false queries.
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information that f(~a) uses all the leaves of its direct subterms. However, this
is not sufficient: we lose the completeness of the algorithm if no equation is
added during the application of an Add rule. Indeed, suppose for instance
that Φ is the sequence f(a) = t; a = b; f(b) = u. Then, we would fail to
prove that t = u since the equality a = b is processed too early. At this
point, f(b) has not been added yet to the structure Γ, thus preventing the
congruence equation f(a) = f(b) to be discovered in the Congr rule. For
this reason, the Add rule also performs congruence closure by looking for
equations involving the new term f(~a): this is the construction of the set
Φ′ of equations, where the restrictive side condition over f(~b) ensures that
only relevant terms are considered.

Soundness and completeness proofs of CC(X) are given in Section 3.3.
Since no new terms are generated during CC(X)’s execution, it is easy to
bound the number of times that the Congr rule and the Add rule can be
used. Let k be the number of terms (and subterms) in the input problem:
Add can be called at most k times and Congr at most k(k − 1)/2 times.
The number of steps in a CC(X) run is therefore quadratically bounded by
the input problem size.

3.2.3 Example: Rational Linear Arithmetic

In this section, we present the theoryA of linear arithmetic over the rationals
Q as an interesting example of instantiation of CC(X). This theory consists
of the following elements:

• The interpreted function symbols are +,−,× and all constants q ∈ Q.

• The semantic values are polynomials of the form

c0 +
n
∑

i=1

ci ri , ci ∈ Q , ri ∈ T , ci 6= 0.

From an implementation point of view, these polynomials can be rep-
resented as pairs where the left component represents c0 and the right
component is a map from foreign values (terms not handled by linear
arithmetic; these are surrounded by a box in this section, in order to
distinguish them from interpreted terms) to rationals that represents
the sum

∑n
i=1 ci ri . Note that in the semantic value above, + is not the

interpreted function symbol but just notation to separate the different
components of the polynomial.

• =
A

is just the usual equality of linear arithmetic over rationals.

The functions needed by the algorithm are defined as follows:

• The function [·] interprets the above function symbols as usual and
constructs polynomials accordingly.
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• The function leaves just returns the set of all the foreign values in the
polynomial:

leaves

(

c0 +
n
∑

i=1

ci ri

)

=
{

ri | 1 ≤ i ≤ n
}

.

• For the value r and the polynomials p1, p2, subst( r , p1, p2) replaces
the foreign value r by the polynomial p1 in p2, if r occurs in p2.

• For two polynomials p1, p2 ∈ R, solve(p1, p2) is simply the Gaussian
elimination algorithm that solves the equation p1 = p2 for a certain
foreign value occurring with different coefficients in p1 and p2.

If we admit the soundness of the [·] function and the Gauss algorithm
used in solve, the axioms that need to hold are true and A is indeed a
solvable theory.

We now want to show the execution of CC(X) by an example using this
theory of arithmetic. Consider therefore the set of equations

E = {g(x + k) = a, s = g(k), x = 0}

and we want to find out if the equation s = a follows from E. We will present
the equations of E to the algorithm in the same sequence as above. The
algorithm starts in the initial configuration K0 = 〈 ∅ | Γ0 | ∆0 | E ; s

?= a 〉,
as defined in section 3.2.2. In the following, components of the configura-
tion with the subscript i denote the state of the component after complete
treatment of the ith equation.

Before being able to treat the first equation g(x + k) = a using the
Congr rule, all the terms that appear in the equation have to be added
by the Add rule. This means in particular that the components Γ and Θ
are updated according to Fig. 3.3. No new equations are discovered, so Φ
and ∆ remain unchanged. Now we can apply the Congr rule to the first
equation g(x+k) = a. This yields an update of Γ and ∆, but no congruence
equations are discovered. Here is the configuration after the treatment of
the first equation:

Γ1 =
{

x 7→ {x + k, g(x + k)} , k 7→ {x + k, g(x + k)}
}

∪ Γ0

∆1 =
{

g(x + k) 7→ a , a 7→ a
}

∪ ∆0

The second equation is treated similarly: the terms s and g(k) are Added
and the representative of g(k) becomes s . These are the changes to the
structures Γ and ∆:

Γ2 =
{

k 7→ {x + k, g(x + k), g(k)}
}

∪ Γ1

∆2 =
{

g(k) 7→ s , s 7→ s
}

∪ ∆1
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The most interesting part is the treatment of the third equation, x = 0,
because we expect the equation g(x + k) = g(k) to be discovered. Other-
wise, the algorithm would be incomplete. Every term in the third equa-
tion has already been added, so we can directly apply the Congr rule.
solve(∆2 [x] , ∆2 [0]) returns the substitution (x, 0), which is applied to all
representatives. The value 0 is a pure arithmetic term, so leaves(0) returns
{1}. We obtain the following changes to Γ3 and ∆3:

Γ3 = {1 7→ {x + k, g(x + k)}} ∪ Γ2

∆3 =
{

x 7→ 0, x + k 7→ k
}

∪ ∆2

It is important to see that the representative of x + k has changed, even if
the term was not directly involved in the equation that was treated.

To discover new equations, the set Φ3 has to be calculated. To calculate
this set, we first collect the terms that use x:

Γ2( x ) = {x + k, g(x + k)} .

The elements of Γ2( x ) are potential left-hand sides of new equations. To
calculate the set of potential right-hand sides, we first construct the set
of values r corresponding to terms in Θ2 such that the representative of r
contains x:

{r | x ∈ leaves(∆2(r))} =
{

x , x + k
}

Now, for every value r in this set, we calculate leaves(∆3(r)) and construct
their intersection:

⋂

l∈leaves(0)

Γ2(l) = Γ2(1) = ∅

⋂

l∈leaves

(

k
)

Γ2(l) = {x + k, g(x + k), g(k)}

The union of the two sets and the set Γ2( x ) is the set of potential right-hand
sides {x + k, g(x + k), g(k)}. If we cross this set with the set Γ2( x ) and filter
the equations that are not congruent, we obtain three new equalities

Φ3 = x + k = x + k ; g(x + k) = g(x + k) ; g(x + k) = g(k) ; s
?= a.

The first two equations get immediately removed by the Remove rule. The
third one, by transitivity, delivers the desired equality which permits to
discharge the query s

?= a.
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3.3 Correctness Proofs

3.3.1 Soundness

We now proceed to prove the soundness of the algorithm. Let E be a set of
equations between terms of T and X a solvable theory as defined page 58. For
the proof, we need an additional information about the run of an algorithm,
which is not contained in a configuration: the set O of equations that have
already been treated in a Congr or Unsolv rule.

The first proposition shows that the equations that are already treated
are never contradicted by ∆.

Proposition 3.3.1. For any configuration 〈 Θ | Γ | ∆ | Φ 〉 and for all
t1, t2 ∈ T we have: t1 = t2 ∈ O ⇒ ∆[t1] ≡ ∆[t2].

Proof. The property is true for the initial configuration K0 since O is the
empty set. We proceed by induction on the derivation that led to the con-
figuration 〈 Θ | Γ | ∆ | Φ 〉 and by case analysis on the last rule used. The
cases of Remove, Query and Add are trivial since they change neither
O nor ∆. If the Congr rule is used, the new equation a = b is added to
O and ∆ is updated with the substitution (p, P ) = solve(∆[a], ∆[b]). Old
equations in O are equal in ∆ by induction hypothesis, and as for a = b, by
Axiom 3.2.4-(i), the new representatives of a and b are equal in the updated
∆.

The next proposition shows that ∆ coincides with the function iter,
applied to the equations that have already been treated.

Proposition 3.3.2. For any configuration 〈 Θ | Γ | ∆ | Φ 〉 and for all
t ∈ T we have ∆[t] = iter([O] , [t]).

Proof. It is straightforward to verify this property by induction on O and
by definition of iter.

Now that we have characterized the representative of a term t as the result
of iterated substitution, we can prove the next proposition. It states that the
evolution of the representative of a term is always justified by the equations
that have been treated:

Proposition 3.3.3. For any configuration 〈 Θ | Γ | ∆ | Φ 〉 and for all
t ∈ T we have [O] |=X ∆0[t] = ∆[t].

Proof. We have ∆0[t] = [t] and by Proposition 3.3.2, ∆[t] = iter([O], [t]).
Proposition 3.2.9 ensures that [O] |=X t = iter([O], [t]), hence the result.

We now turn to the main lemma: it basically states the soundness of ∆,
crucial for the soundness of the whole algorithm.
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Lemma 3.3.4. For any configuration 〈 Θ | Γ | ∆ | Φ 〉 and for all t1, t2 ∈ T ,
we have:

∆[t1] ≡ ∆[t2]⇒ t1 =
X,O

t2.

Proof. By applying Proposition 3.3.3 to t1 and t2, we get [O] |=X [t1] =
∆[t1] and [O] |=X [t2] = ∆[t2]. By transitivity, if ∆[t1] = ∆[t2], then
[O] |=X [t1] = [t2]. We now apply Axiom 3.2.5 and obtain t1 =

X,O
t2.

We are now ready to state the main soundness theorem: whenever two
terms have the same representative, they are equal w.r.t. the equational
theory defined by E and X, and every newly added equation is sound as
well. For the soundness of the algorithm, we are only interested in the first
statement, but we need the second to prove the first, and the statements
have to be proved in parallel by induction.

Theorem 3.3.5. For any configuration 〈 Θ | Γ | ∆ | Φ 〉, we have:

∀t1, t2 ∈ T : ∆[t1] ≡ ∆[t2] =⇒ t1 =
X,E

t2

∀t1, t2 ∈ T : t1 = t2 ∈ Φ =⇒ t1 =
X,E

t2.

Proof. We prove the two claims simultaneously by induction on the deriva-
tion and we are only interested in the application of the rules Congr, Re-
move, Add and Query. First, we observe that both claims are true for the
initial configuration K0: the second claim is trivial as Φ = E, and the first
claim is true because of proposition 3.2.8.

In the induction step, consider the last rule applied to the configuration
〈 Θ | Γ | ∆ | Φ 〉, and show that the claims still hold in the configuration
obtained by application of that rule. For the rules Remove and Query
this is actually trivial, as ∆ does not change and Φ does not get any new
equalities added. For the rule Add, the first claim is trivial, as ∆ remains
unchanged. The second claim is established as follows. If t1 = t2 ∈ Φ, we
can conclude by induction hypothesis. If t1 = t2 ∈ Φ′, then t1 ≡ f(~a) and
t2 ≡ f(~b), for f with arity n. The conditions in Figure 3.3 guarantee that
∆[~a] ≡ ∆[~b]. By the first claim, we can state that ai =

X,E
bi (1 ≤ i ≤ n) and

by the congruence property of =
X,E

we have f(~a) =
X,E

f(~b), which proves
the second claim.

We finally assume that the last rule applied was a Congr rule. To
prove the first claim, we assume ∆′[t1] ≡ ∆′[t2]. By lemma 3.3.4, we have
t1 =

X,O,a=b
t2. Now, a = b is obviously an element of the set {a = b} ∪Φ, so

that, by induction hypothesis, a =
X,E

b. By the induction hypothesis and
proposition 3.3.1, for any ai = bi ∈ O we have also ai =

X,E
bi. As =

X,E
is a

congruence relation, we can conclude t1 =
X,E

t2. The second claim can be
proved as in the case of the Add rule, by the aid of the first claim.
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Until now, we have only addressed the case of consistent configurations
and indeed Theorem 3.3.5 establishes the soundness of the ∆ map along
a derivation as long as the configuration remains consistent. We now deal
with inconsistent configurations: in order to be sound, we need to show that
as soon as a configuration becomes inconsistent, it must be the case that
the original set of equations E is inconsistent with X.

Theorem 3.3.6. If an inconsistent derivation 〈 ⊥ | Φ 〉 is derivable from
K0, then E and X are inconsistent. Consequently, a =

X,E
b for any terms

a and b.

Proof. When the configuration first becomes inconsistent, it must be by ap-
plication of the Unsolv rule. Thus, there is a configuration 〈 Θ | Γ | ∆ | a =
b; Φ 〉 derivable from K0 such that solve(∆[a], ∆[b]) returns ⊥. Let O be the
equalities treated up to that point. By the second part of Theorem 3.3.5,
we know that a =

X,E
b and that for all u = v ∈ O, u =

X,E
v.

Let t be any term, we want to show that iter(a = b; O, [t]) = ⊥. By
Proposition 3.3.2, iter(O, [a]) = ∆[a] and iter(O, [b]) = ∆[b]. Thus by
definition of iter and since solve(∆[a], ∆[b]) returns ⊥, iter(a = b; O, [t]) is
undefined. By applying this to any two terms t1 and t2, we can prove that
a = b; O |=X t1 = t2 and by Axiom 3.2.5, this means that t1 =

X,O,a=b
t2.

Because this last equality is true for any terms t1 and t2 and because
a = b and the equations in O are consequences of X and E, X and E are
inconsistent.

3.3.2 Completeness

We finally proceed to the completeness of the algorithm. In opposition to
the correctness proof, we are now interested in the fact that every possible
equation on the terms of the problem can be deduced by the algorithm,
and in particular we are interested in its termination. We will only con-
sider consistent configurations since inconsistent configurations cannot be
incomplete.

Termination and congruence closure of ∆

In the following, we assume a fixed problem Π consisting in the set of equa-
tions E and a query a

?= b; we denote the successive configurations by
〈 Θn | Γn | ∆n | Φn 〉 with n = 0 the initial configuration (as defined in Sec-

tion 3.2.2). Let TΠ be the set of terms and subterms that appear in E; a
?= b,

in particular, TΠ is closed by subterm. At any stage n in the algorithm, we
write On for the set of equations that have been treated by the algorithm
so far through the rule Congr or Remove.

The first property we are interested in is the fact that all the equations
inferred, and thus all the terms added, are only using terms from TΠ.

Proposition 3.3.7. For any n, Im(Γn) ⊆ TΠ, Φn ⊆ TΠ×TΠ and Θn ⊆ TΠ.
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Proof. Straightforward to verify by analyzing every rule.

Theorem 3.3.8 (Termination). The algorithm terminates on any input
problem Π.

Proof. To prove that this system terminates, it is sufficient to consider the
measure defined as (|TΠ \Θn|, |∆n/ ≡| , |Φn|), where the second component
represents the number of equivalence classes over TΠ in ∆n. To be precise,
the measure is only defined for consistent configurations but inconsistent
configurations can be considered as final (they just discard every equation
and query pending).

It is immediate to check that, used lexicographically, this measure de-
creases for every rule of the system. The first element of this measure
remains unchanged for all rules except Add, where it strictly decreases: in-
deed a new term is added to Φn and by Proposition 3.3.7, this new term
belongs to TΠ.

The second part measures the number of different equivalence classes in
∆n with respect to ≡. It is obvious that rules Remove and Query do not
alter this quantity. As for Congr, this quantity decreases strictly since two
elements that were different in ∆n are made equal in ∆n+1 by Axiom 3.2.4.

Finally, the third part of the measure is the number of equations and
queries that remain to be treated, and it is clear that rules Remove, Query
always remove one element from this set. To sum up, we have the following
table :

|TΠ \Θn| |∆n/ ≡ | |Φn|

Add < ≥ ≥

Congr = < ≥

Remove = = <

Query = = <

which proves the termination of the algorithm.

Now, we know that there exists a final configuration, for n = ω. At this
stage, all the equations from the original problem have been treated, and
every term in TΠ has been encountered :

Proposition 3.3.9. Oω ⊇ E.

Proof. Since Φ0 = Π and all these equations have been treated at the end,
it is obvious that Oω contains at least the equations in Π, i.e. E.

Corollary 3.3.10. At the end of the algorithm, Θω = TΠ.
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Proof. We already know by 3.3.7 that Θω is included in TΠ. By 3.3.9
and 3.3.7, all the left and right-hand sides of the equations/queries in Π
are in Θω. Since Θω is closed by subterm, it also contains TΠ, so it is equal
to TΠ.

Proposition 3.3.11. The function n 7→ Γn is nondecreasing, i.e. Γn(r) ⊆
Γn+1(r) for all r and n.

Proof. It is easy to check this property by looking at all the rules.

The following proposition gives the true “meaning” of the map Γn. It
shows that a term in Θn uses all the leaves of the representatives of its direct
subterms.

Proposition 3.3.12. For any term f(t1, . . . , tm) in Θn, if there exists i ≤ m
such that p ∈ leaves(∆n[ti]), then f(t1, . . . , tn) ∈ Γn(p).

Proof. The proof proceeds by induction on n. The result holds trivially for
the initial configuration since Θ0 is empty. If the result holds after n steps,
we proceed by case analysis on the rule used to get to the n+1-th step. The
rules Remove, Query do not change Θn, Γn or ∆n, so if one of these rules
is used the result still holds at n + 1. We detail both remaining rules :

Congr: Let f(t1, . . . , tm) ∈ Θn+1 = Θn, and i and p such that p ∈
leaves(∆n+1[ti]). If (v, R) is the substitution applied, by definition
of ∆n+1, p ∈ leaves(∆n[ti]{v 7→ R}). Now, we distinguish two cases :

• if p ∈ leaves(∆n[ti]), then by induction hypothesis, we know that
f(t1, . . . , tn) ∈ Γn(p), and thus f(t1, . . . , tn) ∈ Γn+1(p).

• if p /∈ leaves(∆n[ti]), then ∆n[ti] has been changed by the sub-
stitution and the axiom 3.2.6 tells us that v ∈ leaves(∆n[ti]) and
p ∈ leaves(R). Therefore, by applying the induction hypothesis
to v and the definition of Γn+1, we can conclude that :

f(t1, . . . , tn) ∈ Γn(v) ⊆ Γn(p) ∪ Γn(v) = Γn+1(p)

Add: If f(t1, . . . , tm) was already in Θn, then it is straightforward to check
that for all p ∈ leaves(∆n+1([ti])), p was already in ∆n[ti] and the
induction hypothesis together with the monotonicity of Γn gives us
the wanted result.

If f(t1, . . . , tm) is in fact the new term f(~a) added by the rule, then let
p ∈ leaves(∆n+1[ti]). Again, p was already in ∆n[ti] and since ti is a
direct subterm of the new added term f(~a), we have by definition that
f(~a) ∈ Γn+1(p) = Γn(p) ∪ {f(~a)}.
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The next proposition is the central property ensuring the completeness of
the algorithm, and states that ∆ω indeed represents a congruence relation.

Proposition 3.3.13. The restriction of ∆ω to TΠ is congruence-closed, i.e.

∀f(~a), f(~b) ∈ TΠ, ∆ω[~a] ≡ ∆ω[~b] ⇒ ∆ω[f(~a)] ≡ ∆ω[f(~b)].

Proof. Let k the smallest integer such that both f(~a) and f(~b) belong to
Θk. Because terms can only be added to Θ by the rule Add, we know
the rule applied at the previous step was Add. We can safely assume the
term added was f(~a), by switching ~a and ~b if necessary. If f(~a) and f(~b)
are equal, the result is obvious. Otherwise, f(~a) 6= f(~b) and f(~b) had been
added before and was in Θk−1. Now there are two cases, depending on
whether ∆k−1[~a] ≡ ∆k−1[~b] or not.

• if ∆k−1[~a] ≡ ∆k−1[~b], we will prove that f(~a) = f(~b) has been added
to Φk, that is to say we need to establish that :

∀i,∀l ∈ leaves(∆k−1[ai]), f(~b) ∈ Γk−1(l).

For any such i and l, we know that l is in leaves(∆k−1[ai]), and
therefore in leaves(∆k−1[bi]). By Proposition 3.3.12, this means that
f(~b) ∈ Γk−1(l), which is exactly what we wanted.

• if on the contrary, [~a] and [~b] were not equal in ∆k−1, then let j ≥ k be
the smallest integer such that ∆j[~a] ≡ ∆j [~b]. The rule applied at the
previous step must be Congr since only Congr changes ∆. Thus,
a substitution {p 7→ P} has made ∆j−1[~a] and ∆j−1[~b] equal: there
exists an i, such that

∆j−1[ai] 6≡ ∆j−1[bi] ∧ ∆j−1[ai]{p 7→ P} ≡ ∆j−1[bi]{p 7→ P}.

This means that at least one of these values, say ∆j−1[ai], has been
changed by the substitution and by Axiom 3.2.6, that p belongs to
leaves(∆j−1[ai]). Proposition 3.3.12 ensures that f(~a) ∈ Γj−1(p).

We still have to prove that f(~b) verifies the conditions in the rule
Congr, namely that:

f(~b) ∈ Γj−1(p) ∪
⋃

t|p∈leaves(∆j−1(t))

⋂

l∈leaves(∆j(t)) Γj−1(l).

Again, we distinguish two cases :

– if ∆j−1[bi] 6≡ ∆j[bi], then by the same argument as above for
f(~a), f(~b) ∈ Γj−1(p) and f(~b) has the desired property.
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– if ∆j−1[bi] ≡ ∆j[bi], then leaves(∆j [ai]) = leaves(∆j [bi]) =
leaves(∆j−1[bi]) and by applying Proposition 3.3.12 once again,
we deduce that for every l in leaves(∆j [ai]), f(~b) ∈ Γj−1(l). Since
p ∈ leaves(∆j−1[ai]), this means indeed that:

f(~b) ∈
⋃

t|p∈leaves(∆j−1(t))

⋂

l∈leaves(∆j(t)) Γj−1(l).

So far, we have established that the equation f(~a) = f(~b) has been
added when the rule Congr was applied at the step j − 1, and thus
that f(~a) = f(~b) belongs to Φj. At the end of the algorithm, this
equation must have been treated. Thus, by 3.3.1, we know that the
representatives of f(~a) and (~b) are equal in ∆ω.

The axioms 3.2.10 and 3.2.11 introduced in Section 3.2.1 are used to
prove that the ∆ω component of the final configuration is coherent with the
theory X, that is to say:

Proposition 3.3.14. Let f(t1, . . . , tn) a term in TΠ where f is an inter-
preted symbol. Then, ∆ω[f(t1, . . . , tn)] ≡ fX(∆ω[t1], . . . , ∆ω[tn]).

Proof. We will prove this result by proving it (by simple induction) for ∆n

for every N between 0 and the final configuration.
First, we observe that the result is true for the initial configuration, i.e.

∆0[f(t1, . . . , tm)] ≡ fX(∆0[t1], . . . , ∆0[tm]) because it directly follows from
Axiom 3.2.10 and the definition of ∆0.

Now, it is sufficient to show that if the equality holds for ∆n, it still
holds in ∆n+1. Since the only rule that changes ∆n is Congr, the result
is obvious for any other rule. In the case of a Congr rule, let p, P be the
substitution applied to ∆n :

∆n+1[f(t1, . . . , tm)] = ∆n[f(t1, . . . , tm)]{p 7→ P} by definition
≡ fX(∆n[t1], . . . , ∆n[tm]){p 7→ P} by induction
≡ fX(∆n[t1]{p 7→ P}, . . . , ∆n[tm]{p 7→ P}) by 3.2.11
≡ fX(∆n+1[t1], . . . , ∆n+1[tm]) by definition

which proves the result.

In other words, this property means that ∆ actually represents a union-
find structure modulo X, that is, it behaves correctly with respect to the
interpreted symbols.

Models and Structures

We now recall some usual definitions about structures and models on a
certain signature, which we will use to finish the completeness proof.

Definition 3.3.15. A Σ-structureM is defined as a tuple (|M|, (fM)f∈Σ)
where:
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• |M| is a set called the domain of M

• for each function symbol f ∈ Σ of arity n, fM is a function from |M|n

to |M| called the interpretation of f in M

Definition 3.3.16. Let M be a Σ-structure, t a term in T . The interpre-
tation of t in M, noted M(t), is recursively defined6 by:

∀f ∈ Σ, t1, . . . tn ∈ T ,M(f(t1, . . . , tn))
def
= fM(M(t1), . . . ,M(tn))

Σ-structures can now be used as models for our atoms, in the sense of
Definition 2.1.1 page 27. Recall that in this chapter, atoms are equations
between terms of T .

Definition 3.3.17. Let M be a Σ-structure, t, u terms in T . We say that
M is a model of t = u, written M |= t = u, if and only if M(t) ≡M(u).

Completeness

The completeness expresses the fact that if the query is entailed by the set
of equations E and the theory X, it is proved true by CC(X). In other words,
we need to prove that:

a =
X,E

b =⇒ ∆ω[a] ≡ ∆ω[b].

The first step of the proof is to build a Σ-structure M which models E
and =

X
, and such that the interpretation in M coincides with ∆ω on [a]

and [b].

Definition 3.3.18. Let M be the structure defined in the following way :

• the domain of M is the set R of semantic values

• for each symbol f ∈ Σ of arity n, we distinguish whether f is inter-
preted in X or not :

– if f ∈ ΣX, then fM def
= fX

– if f /∈ ΣX, and r1, . . . , rn ∈ R, then the idea is to use ∆ω wherever
we can :

fM(r1, . . . , rn)
def
= ∆ω[f(t1, . . . , tn)]

{

if f(t1, . . . , tn) ∈ TΠ

and ∀i, ri ≡ ∆ω[ti]

fM(r1, . . . , rn)
def
= 1 otherwise

Here, we use 1, but we could use any element in R, since we will
see that it does not matter how we define interpretations in this
case.

6the base case being 0-ary function symbols, i.e. constants.
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Proof. The very first thing we have to do is to prove that the definition we
just gave is indeed a definition. In the case where fM is defined in terms
of ∆ω, there may be several ways to pick the terms ti and we have to show
that the result does not depend on this choice. Let t1, . . . , tn, u1, . . . , un be
terms such that ∆ω[ti] ≡ ri ≡ ∆ω[ui] for all i. By Proposition 3.3.13, we
know that ∆ω[f(t1, . . . , tn)] ≡ ∆ω[f(u1, . . . , un)], which means exactly that
the definition of fM(r1, . . . , rn) does not depend on the choice of the ti.

Now that M is a well-defined Σ-structure, we will first show that on all
the terms in TΠ, the interpretation in M is exactly the function ∆ω[.].

Lemma 3.3.19. For any term t ∈ TΠ, M(t) ≡ ∆ω[t].

Proof. We proceed by structural induction on terms.
Let t = f(t1, . . . , tn) ∈ TΠ, we can apply the induction hypothesis to all

the ti because TΠ is closed by subterm. Thus, for all i, M(ti) ≡ ∆ω[ti].
Now, if f 6∈ ΣX,
M(f(t1, . . . , tn)) = fM(M(t1), . . . ,M(tn))

≡ fM(∆ω[t1], . . . , ∆ω[tn]) by IH
≡ ∆ω[f(t1, . . . , tn)] by definition of fM

If f ∈ ΣX , then
M(f(t1, . . . , tn)) = fM(M(t1), . . . ,M(tn))

≡ fM(∆ω[t1], . . . , ∆ω[tn]) by IH
≡ fX(∆ω[t1], . . . , ∆ω[tn]) by definition of fM

≡ ∆ω[f(t1, . . . , tn)] by 3.3.14 since f(t1, . . . , tn) ∈ TΠ

which concludes the proof.

Finally, we show that M is a model of =
X

and E, i.e. that it models all
equalities in the congruence closure of X and E.

Lemma 3.3.20. For all u, v ∈ T , u =
X,E

v =⇒ M |= u = v.

Proof. Since M is a structure whose domain R is the domain of semantic
values of X, and since the interpretation in M of every interpreted symbol
f is precisely its interpretation in X, namely fX, M is a model of =

X
.

Moreover, let t = u be an equation in E. Since t and u are in TΠ,
the preceding lemma tells us that M(t) ≡ ∆ω[t] and M(u) ≡ ∆ω[u]. By
proposition 3.3.9, we know that since t = u is in E, it has been treated at
the end and ∆ω[t] ≡ ∆ω[u]. Thus, M(t) ≡M(u) for any equation t = u in
E, and M |= E.

Theorem 3.3.21 (Completeness). ∀a, b ∈ T , a =
X,E

b =⇒ ∆ω[a] ≡ ∆ω[b].

Proof. By lemma 3.3.20, M is a model of E and =
X

. Therefore, since
a =

X,E
b, it must be the case that M is also a model of a = b, in other

words, that M(a) ≡M(b). Hence, by lemma 3.3.19, ∆ω[a] ≡ ∆ω[b].

We have established the completeness of CC(X).
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3.4 Adding Disequalities

In the previous sections, we have presented a new algorithm called CC(X)
which performs the congruence closure of a set of equations modulo a solv-
able theory X. In order to use such a system in an SMT solver, we need to
turn it into an environment suitable for the DPLL procedure, as described
in Section 2.3. The missing part in CC(X) as presented so far is that the
SAT solver will feed the environment with both positive and negative liter-
als, and query positive and negative literals as well. Therefore, we need to
adapt our system such that it is able to deal with disequalities as well and
we present such an extension in this section.

The modifications required to deal with disequalities can be roughly
summarized as follows:

(a) we must account for inputs of the form a 6= b where a and b are some
terms: the algorithm will store an extra relation N ⊆ T × T which
gathers all such constraints;

(b) there is a new way for the configurations to become inconsistent,
namely when treating an equation which contradicts the constraints
gathered in N : solving a (solvable) equation in Congr rule can merge
two terms in ∆ which are unequal according to N , and conversely,
adding a disequality constraint can contradict the current ∆;

(c) when dealing with a negative query a
?
6= b, we must determine whether

a and b can be equal or not: it is not sufficient to check the current
constraints N because merging a and b can lead to more equalities
(modulo X), one way to do so is to try and add the equation a = b
and test if the configuration becomes inconsistent.

Note that N must be an irreflexive, symmetric relation; adding the dise-
quality a 6= b to N yields the relation N ∪ {(a, b); (b, a)}. The N structure
can be implemented in a variety of ways, one possible way is to map terms
to the set of terms which are different. For modification (b), it is necessary
to check that the union-find ∆ and the relation N are not contradictory.

Definition 3.4.1. Let N ⊆ T × T a relation over terms and ∆ : R → R a
union-find on semantic values. We say that N and ∆ are coherent if:

∀a, b ∈ T , (a, b) ∈ N =⇒ ∆[a] 6≡ ∆[b]

We say that they are incoherent otherwise.

Because the relation N remains finite (since there are a finite number of
inputs after a finite number of steps), this coherence check can be imple-
mented without problem. Finally, in order to deal with modification (c),
we define a couple of notations: if K is a configuration, we write K ↑ if
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there is a derivation from K to an inconsistent configuration, and K ↓ if the
configuration remain consistent and all queries succeed.

We now present an extended set of inference rules which completes and
corrects the rules in Figure 3.3. Configurations are extended with the N
structure and are now written 〈 Θ | Γ | ∆ | N | Φ 〉 and the initial
configuration K0 is just as before with an empty N = ∅. The extended
inference system is given in Figure 3.4. The rules Remove, Unsolv, Add,
Query and Incons are left unchanged: the N structure is simply passed
from one configuration to the next. The Congr rule is modified so that
it only applies if the resulting union-find ∆′ is coherent with the set of
constraints; other than that it is left unchanged. The new rule IncohEq
takes care of the case when ∆′ and N are incoherent. There are three rules
left, all new with respect to Figure 3.3, and they all deal with disequalities.
Diff adds a new disequality constraint to the structure N , but only if
that does not contradict the current map ∆. If it does, then IncohDiff
applies and yields an inconsistent configuration. Finally, negative queries
are handled by QueryDiff, which only accepts a query a 6= b if adding the
equality a = b to the current configuration raises an inconsistency.

Adapting the proofs. It is straightforward to check that the proofs that
we did in Section 3.3 still hold (for the most part) for this extended system.
Indeed, the extended CC(X) deals with equalities (whether inputs or queries)
in exactly the same way as the original CC(X): the only difference lurks in
the fact that an equation can contradict some previous disequalities, i.e.
the IncohEq rule. Therefore the extended system can yield more inconsis-
tencies, but consistent configurations remain the same and therefore remain
correct and complete (as far as equalities are concerned). More formally, if
Π is the input problem, let us call E+ the set of input equations in Π and
E− the set of disequalities. We can reproduce the exact same reasoning that
led to Theorem 3.3.5 and deduce:

Theorem 3.4.2. For any configuration 〈 Θ | Γ | ∆ | N | Φ 〉, we have:

∀t1, t2 ∈ T : ∆[t1] ≡ ∆[t2] =⇒ t1 =
X,E+

t2

∀t1, t2 ∈ T : t1 = t2 ∈ Φ =⇒ t1 =
X,E+

t2.

Similary, the soundness of inconsistent CC(X) configurations, namely The-
orem 3.3.6, can be obtained by replacing E with the only positive inputs
E+:

Theorem 3.4.3. If an inconsistent derivation 〈 ⊥ | Φ 〉 is derivable from
K0 using Unsolv, then E+ and X are inconsistent. Consequently, the equa-
tion a =

X,E+
b folds for any terms a and b.

In order to complete the soundness proof for the extended system, we
need invariants on the N structure along the derivation: all constraints in
N must be consequences of the disequalities in E−.
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Congr
〈 Θ | Γ | ∆ | N | a = b ; Φ 〉

〈 Θ | Γ ⊎ Γ′ | ∆′ | N | Φ′ ; Φ 〉
a, b ∈ Θ, ∆[a] 6≡ ∆[b]

where
Γ′, ∆′ and Φ′ are computed as in the Congr rule in Figure 3.3
N and ∆′ are coherent

IncohEq
〈 Θ | Γ | ∆ | N | a = b ; Φ 〉

〈 ⊥ | Φ 〉
a, b ∈ Θ, ∆[a] 6≡ ∆[b]

where
Γ′, ∆′ and Φ′ are computed as in the Congr rule in Figure 3.3
N and ∆′ are incoherent

Diff
〈 Θ | Γ | ∆ | N | a 6= b ; Φ 〉

〈 Θ | Γ | ∆ | N ∪ {(a, b); (b, a)} | Φ 〉
a, b ∈ Θ, ∆[a] 6≡ ∆[b]

IncohDiff
〈 Θ | Γ | ∆ | N | a 6= b ; Φ 〉

〈 ⊥ | Φ 〉
a, b ∈ Θ, ∆[a] ≡ ∆[b]

Unsolv
〈 Θ | Γ | ∆ | N | a = b ; Φ 〉

〈 ⊥ | Φ 〉
a, b ∈ Θ, ∆[a] 6≡ ∆[b]

where ⊥ = solve(∆[a], ∆[b])

Remove
〈 Θ | Γ | ∆ | N | a = b ; Φ 〉

〈 Θ | Γ | ∆ | N | Φ 〉
a, b ∈ Θ, ∆[a] ≡ ∆[b]

Add
〈 Θ | Γ | ∆ | N | C[f(~a)] ; Φ 〉

〈 Θ ∪ {f(~a)} | Γ ⊎ Γ′ | ∆ | N | Φ′ ; C[f(~a)] ; Φ 〉

{

f(~a) 6∈ Θ
∀v ∈ ~a, v ∈ Θ

where Γ′ and Φ′ are computed as in the Add rule in Figure 3.3

Query
〈 Θ | Γ | ∆ | N | a

?= b ; Φ 〉

〈 Θ | Γ | ∆ | N | Φ 〉
a, b ∈ Θ, ∆[a] ≡ ∆[b]

QueryDiff
〈 Θ | Γ | ∆ | N | a

?
6= b ; Φ 〉

〈 Θ | Γ | ∆ | N | Φ 〉
a, b ∈ Θ, ∆[a] ≡ ∆[b]
〈 Θ | Γ | ∆ | N | a = b 〉 ↑

Incons
〈 ⊥ | e ; Φ 〉

〈 ⊥ | Φ 〉
e equation or query

Figure 3.4: The rules of CC(X) extended to deal with disequalities
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Proposition 3.4.4. If 〈 Θ | Γ | ∆ | N | Φ 〉 is derivable from K0, then all
terms (a, b) ∈ N are such that a 6= b or b 6= a belong to E−.

Proof. The proof is easy by induction on the derivation; only the Diff rule
adds elements to N , and no rule ever adds disequalities to the pending
inputs.

We can now prove the soundness of the system when it reaches inconsis-
tent configurations.

Proposition 3.4.5. If an inconsistent configuration 〈 ⊥ | Φ 〉 is derivable
from K0, then the union of E+, E− and X are inconsistent, i.e. there exists
no model M of E+, X such that all disequalities in E− are false in M.

Proof. By case analysis on the rule which made the configuration inconsis-
tent. The case of the Unsolv rule is given by Theorem 3.4.3: E+ and X
together are already inconsistent.

If IncohEq is used then N and ∆′ are incoherent. Therefore, there exists
u, v two terms such that (u, v) ∈ N and ∆[u] ≡ ∆[v]. By Theorem 3.4.2, we
know that u =

X,E+
v and by Proposition 3.4.4 that u 6= v or v 6= u belongs

to E−. Therefore, X, E+ is inconsistent with E−.
Finally, if IncohDiff is used then there is a 6= b ∈ E− such that

∆[a] ≡ ∆[b]. By Theorem 3.4.2, we know that a =
X,E+

b and therefore
X, E+ is inconsistent with E−.

This last proposition also gives us the soundness of the treatment of
negative queries, i.e. the soundness of the QueryDiff rule. Indeed, if
〈 Θ | Γ | ∆ | N | a = b 〉 ↑, then by Proposition 3.4.5, a = b, E+, X and E−

are inconsistent. Therefore if M models E+, X and E−, it is impossible
thatM |= a = b holds. In other words, a 6= b is indeed a consequence of the
inputs E and the theory X.

Now that we have established the soundness of the extended system, we
prove its completeness. We use the same notations as in Section 3.3, for the
fixed sequence of inputs E (which are split in equalities E+ and disequalities
E−). Once again we only deal with consistent configurations since inconsis-
tent configurations are necessarily complete. The completeness theorem is
expressed in two parts, one for positive queries and one for negative queries.

Theorem 3.4.6. Let a, b be two terms in T .

(i) Assume that ∀M,M |= E, X =⇒ M |= a = b.

Then, 〈 Θ0 | Γ0 | ∆0 | N0 | E; a
?= b 〉 ↓.

(ii) Assume that ∀M,M |= E, X =⇒ M |= a 6= b.

Then, 〈 Θ0 | Γ0 | ∆0 | N0 | E; a
?
6= b 〉 ↓.

Proof.
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(i) Let us assume that a = b is entailed by E, X. We want to prove that

〈 Θ0 | Γ0 | ∆0 | N0 | E; a
?= b 〉 ↓, and such a derivation can only end with

the Query rule therefore it is enough to prove that ∆ω[a] ≡ ∆ω[b].
We now build a special Σ-structure M in exactly the same way as we

did in Section 3.3, with domain R and such that it coincides with ∆ω every-
where possible. By Proposition 3.3.19, we know that for every term t in the
problem,M(t) ≡ ∆ω[t]. Adapting Lemma 3.3.20, we also know thatM is a
model of X, E+. Finally, let u, v ∈ E−: we know that E− has been treated
by a Diff rule, so (u, v) belongs to N . Because Nω and ∆ω are coherent,
this means that ∆ω[u] 6≡ ∆ω[v]. Thus,M is a model of E− as well and alto-
gether, M |= E, X. By hypothesis, this means that M |= a = b, that is to
say M(a) ≡M(b). Since a and b are terms of the problem, ∆ω[a] ≡ ∆ω[b].

(ii) We now assume that a 6= b is entailed by E, X. We want to prove that

〈 Θ0 | Γ0 | ∆0 | N0 | E; a
?
6= b 〉 ↓, and such a derivation can only end with

the QueryDiff rule therefore it is easy to see that it amounts to proving
that 〈 Θ0 | Γ0 | ∆0 | N0 | E; a = b 〉 ↑.

We proceed ab absurdo: if 〈 Θ0 | Γ0 | ∆0 | N0 | E; a = b 〉 does not
yield an inconsistent configuration, there is a final configuration with a map
that we denote ∆ω; we proceed as in the (i) part and build a Σ-structure
M such that M is a model of E, X and such that M(t) ≡ ∆ω[t] for all
terms t appearing in E; a = b. By hypothesis, we know that M |= a 6= b;
on the other hand, because a = b has been treated in ∆ω, it must be the
case that ∆ω[a] ≡ ∆ω[b], which means thatM |= a = b. We have reached a
contradiction.

3.5 Conclusion

We have presented a new algorithm CC(X) which combines the theory of
equality over uninterpreted function symbols with a solvable theory. Our
method is inspired by Shostak’s algorithm and its main novelty rests in the
use of abstract data structures for class representatives; this allows efficient
implementations of crucial operations. Our approach is also modular un-
like ad-hoc extensions of congruence closure [NO80, NO07], CC(X) can be
instantiated with an arbitrary solvable theory underlying the restrictions
described in Section 3.2.

We gave a useful example of a solvable theory in Section 3.2.3 with the
theory of linear rational arithmetic. The same theory can also be used to
deal with linear integer arithmetic, which does not have a solver, but it can
be incomplete. For instance, the formula:

∀xyz : Z, 2 ∗ x = z =⇒ 2 ∗ y 6= z + 1

cannot be established. Because such formulae are not frequent in program
verification in practice, Alt-Ergo basically uses the theory of rational arith-
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metic in order to deal with integers7. This illustrates one interesting feature
of the ability to use semantic values: this decision procedure for integers
can manipulate and construct semantic values which do not correspond to
terms, e.g. the constant polynom 1/2, which is not possible with Shostak’s
procedure. There are other theories of interest which happen to be solvable
theories and are implemented in Alt-Ergo: a theory of pairs (similar to the
theory given as an example by Shostak in [Sho84]) and a theory of finite
vectors.

Nevertheless, solvable theories are still a quite strongly constrained class
of theories. They are included in the class of Nelson-Oppen theories. They
are stably infinite because the semantic values of a solvable theory need to be
able to embed the set of all terms T (through the [.] function). In particular,
it is not possible to deal with a theory of finite types because CC(X) has a
coarse treatment of disequalities: a term a in N can be constrained to be dif-
ferent from arbitrarily many terms and CC(X) will not detect inconsistencies
due to an upper limit on the cardinality of a model. There are combina-
tion schemes which try to address cardinality constraints thoroughly: for
instance, Tinelli and Zarba [TZ03] proposed a combination scheme in which
any theory can be combined with a special kind of theory (shiny theories)
which have a function to compute cardinality constraints. Finally, Ranise,
Ringeissen and Tran proposed a combination scheme for a class of theories
strictly included between Nelson-Oppen and Shostak theories [RRT04].

7Alt-Ergo still tries to do some integer-specific reasoning: for instance, strict inequal-
ities a < b are transformed into large equalities a ≤ b − 1, thus using a fundamental
characteristic of integers.
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The second part of this document is devoted to the presentation of a
Coq formalization of the SMT techniques described in Part 1. We start in
this chapter by giving a detailed introduction to the Coq proof assistant
and the technique of proof by reflection. We first describe Coq’s underlying
logic and its general features in Section 4.1.1, before we detail the different
techniques for proof automation in Coq and in interactive provers in general
(Section 4.2). We finish with an outline of our reflexive SMT solver in
Section 4.3.
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4.1 Introduction to Coq

Coq is a proof assistant for higher-order logic whose development started in
the middle of the 1980’s, and which is now maintained and developed in the
TypiCal project [Typ]. We start by describing its logical language before we
deal with the proof assistant per se.

4.1.1 CIC: The Calculus of Inductive Constructions

The logical language on which Coq is based is an evolution of a calculus pro-
posed by T. Coquand and G. Huet in [CH88], the Calculus of Constructions
(CoC). This calculus is itself an extension of type theory and can be seen
as a combination of the principles of two successful type-theoretic frame-
works from the 1970’s, Martin-Löf’s Intuitionistic Theory of Types [ML75]
and Girard’s second-order λ-calculus Fω.

One of the main specificities of Martin-Löf’s theory is the dependent
product Π which allows one to quantify over both objects and types and
these dependent types allow one to express much more properties through
types than in standard simply-typed λ-calculus. Through the Curry-Howard
isomorphism, which identifies programs to proofs and types to logical propo-
sitions, this system can be used as a foundation of constructive mathematics.

In the CoC, λ-abstractions are typed with a dependent product noted
∀ using the following rule: if, for all x with type T , the term u has type
U , the term λx : T.u has type ∀x : T.U , where U can mention the variable
x. Therefore a product type ∀x : T.U can be read both as the type of a
dependent function, or as a universal quantification over objects of type T .
When U does not mention x, the product becomes non-dependent and is
written T → U , which can be read as a traditional function type or as a
logical implication.

Because of its higher-order nature, quantification in the CoC is not re-
stricted to terms and as a matter of fact, terms and types are not distin-
guished in the CoC. Therefore types themselves have types, and these “types
of types” are special terms called sorts: {Prop, Set, Typei,i∈N}. Now, the fact
that a term t has type T in the CoC can be seen in two dual ways: that t is
an object of type T , but also that t is a proof of proposition T . Of course,
not every type should be seen as a proposition, for instance basic datatypes
like integers and functions are traditional “program types”. The sorts above
are used to ensure a strict separation between informative types (data types,
programs) and logical types (propositions, proofs): the former category of
types have type Set, while the latter have type Prop. In particular, the
sorts Prop and Set differ by the fact that Prop alone is impredicative, i.e.
quantifying over propositions still yields a proposition1. Quantification over

1Early versions of Coq implemented an impredicative version of the sort Set, but it
was discovered to be inconsistent therefore Set has since been made predicative.
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Set yields more complex objects, whose type is Type0. In fact, both Prop
and Set themselves have type Type0, and the sorts Typei form a hierarchy of
sorts reminiscent of Martin-Löf’s universes Un, where each Typei has type
Typei+1, which allows one to define arbitrarily complex objects.

Another decisive feature of the CoC, which it inheritates from simply-
typed λ-calculus, is the fact that there is a natural notion of reduction of
terms. The rules of reduction in CoC form a confluent, strongly normalizing,
system and a very important typing rule allows one to take advantage of
this reduction: the conversion rule says that if a term t has type T , it also
has type T ′ as long as T ′ and T have the same normal form. This brings
computational reasoning in the typing system: some typing judgments can
now simply be verified by computing a normal form. For instance, if one
has a proof of P ((15 ∗ (75− 7))/12), it is also a proof of P (85), P (5 ∗ 17) or
P (100 − 15)2.

Finally, the CoC was extended with inductive definitions by T. Coquand
and C. Paulin [CP90, PM93], and then to coinductive definitions by E.
Giménez [Gim96] in what is now known as the Calculus of Inductive Con-
structions (CIC). Inductive definitions allow one to easily define datatypes
in an intuitive manner, what was essentially only possible through tedious
second-order encodings in the CoC. We demonstrate the use of inductive
definitions in the next section.

4.1.2 The Coq Proof Assistant

The Coq proof assistant is a system based on the CIC presented above: it
revolves around a small critical kernel whose role is to typecheck CIC terms.
If one is able to build a term t of type T , then one is guaranteed to have a
(constructive) proof of T . Depending on whether T is a proposition or not,
this shows that Coq can be used both to prove propositions and to write
pure functional programs. Coq is therefore really adapted to the task of
writing programs, specifications, and proofs that these programs verify their
specifications, all in one single system.

Inductive definitions. Coq users do not manipulate CIC terms directly;
instead Coq provides a specification language called Gallina and a set of
top-level commands called vernaculars. For instance, the datatype of Peano
integers can be defined by the following inductive definition:

Inductive nat : Set :=

| O : nat

| S : nat → nat.

In effect, this definition actually corresponds to four separate definitions:

2We suppose here that integers and arithmetic operations have been defined, we will
see in the next subsection how this can be done.
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• the definition of a type nat of type Set;

• two symbols, called the constructors of the inductive type nat: O of
type nat and S of type nat → nat;

• an induction principle nat_ind of type:

∀P : nat → Prop,

P 0 → (∀n : nat, P n → P (S n)) → ∀n : nat, P n.

This induction principle is a second-order formula expressing the traditional
induction principle used to prove properties by induction on integers. It
states that integers are exactly built by application of the constructors O

and S. Such an inductive definition also has two internal consequences (due
to the introduction of inductives in the CIC). The first one is that it is
possible to use pattern-matching to deconstruct a object of an inductive
type. For instance, we can define a “predecessor” function in the following
way:

Definition pred (n : nat) :=

match n with
| O ⇒ O (* -1 is not a nat *)

| S m ⇒ m
end.

The system checks that the pattern-matching is exhaustive, i.e. that all
constructors are accounted for. Syntatic extensions in Gallina make it pos-
sible to use complex, nested pattern constructs, as is usually done in func-
tional languages. The second consequence of the definition of an inductive
datatype is the ability to write recursive functions, i.e. fix-points on the
structure of an inductive type. For instance, we can define the addition
operation plus n m by induction on the structure of the first argument:

Fixpoint plus (n m : nat) {struct n} :=

match n with
| O ⇒ m
| S n′ ⇒ S (plus n′ m)

end.

This special kind of definition, using the Fixpoint keyword, is possible as
long as the recursive calls are performed on objects which are structurally
smaller than the original argument. In this case, n′ is obtained by destruct-
ing n and is therefore structurally smaller than n. This analysis ensures that
all functions defined in Coq are terminating, and this is one of the strongest
constraint in the language. When the structural condition is not verified,
there are alternative ways of defining recursive functions, we will see some
of these tricks in the following chapters. As a final remark, Coq allows the
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use of decimal representation to denote constant nat’s, for instance 4 stands
for S(S(S(S 0))).

Let’s add the logic. As we have seen in the last section, CIC is an
extension of λ-calculus, and does not contain built-in constructs for logical
reasoning besides universal quantification (and of course the Prop sort). It
is well-known that the usual connectives of first-order logic can be encoded
using second-order quantification, and inductive definitions can be used to
perform a similar encoding. For instance, the conjunction and A B of two
propositions is defined in the following way:

Inductive and (A B : Prop) : Prop :=

| conj : A → B → and A B

where “A ∧ B” := (and A B) : type_scope.

There is only one constructor, i.e. one way to build the conjunction and

A B, and unsurprisingly this is by giving proofs for A and B. The induction
principle generated:

and_ind : ∀A B P : Prop, (A → B → P) → and A B → P

is the usual second-order encoding of conjunction. The definition above also
introduces a syntactic notation for the conjunction and A B, namely the
traditional A ∧ B. Notations are a very convenient feature of Coq and com-
plex notations can be defined for user-defined constructs. The disjunction
of two propositions can be defined inductively in a similar manner, with two
constructors corresponding to either branch of the disjunction, and is noted
A ∨ B. The special propositions True and False are respectively defined
by an inductive type with a single trivial constructor, and by the empty
inductive type:

Inductive True : Prop := I.

Inductive False : Prop :=.

Note that the elimination principle for False is the ex falso quodlibet3 prin-
ciple ∀P : Prop, False → P. The negation of a proposition P is simply
defined as:

Definition not (P : Prop) := P → False.

and is denoted ˜P. Finally, the existential quantification is denoted ∃x : T, P

and is defined inductively as:

Inductive ex (A : Type) (P : A → Prop) : Prop :=

| ex_intro : ∀x : A, P x → ex P.

In particular, an axiom-free proof of ∃x : T, P must use ex_intro and
must provide a witness of type T which verifies P, which is the trademark of
an intuitionistic logic.

3From a false proposition, anything follows.
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Interactive proofs. Using the logical definitions above, we can express
propositions and try to prove them. As explained already, proving a propo-
sition P amounts to giving a term of type P. This method is not practical
except for the easiest propositions, for instance the term:

fun A : Prop ⇒ fun H : A ⇒ H

where fun is the Gallina syntax for λ-abstractions, is a proof of the propo-
sition ∀(A : Prop), A → A . To prove more complex properties, Coq
provides an interactive mode, called proof mode, that allows the user to
interactively construct proofs through the use of a language of commands
called tactics. In their simplest form, tactics mimic the application of tra-
ditional introduction and elimination rules in natural deduction systems, or
right and left rules in sequent calculi à la Gentzen. For instance, let us detail
a proof of a simple propositional tautology4:

Theorem or_not_and : ∀(A B : Prop), ˜A ∨ ˜B → ˜(A ∧ B).

Proof.

The Theorem command is one of the many available vernaculars (Lemma,
Property, ...) which introduces a new goal to prove. Coq switches to proof
mode and displays the current state. At every moment in proof mode, the
state is described by a sequence of subgoals, each subgoal being a list of
hypotheses and a conclusion to prove under these hypotheses. Only the
first subgoal is displayed by Coq, with the conclusion separated from the
hypotheses by a double bar. After starting the proof of the theorem above,
the current state is the following single subgoal5:

1 subgoal

=============================

∀(A B : Prop), ˜A ∨ ˜B → ˜(A ∧ B)

We start the proof by using the introduction rule for universal quantifi-
cation, four times. We write this using the intros tactic and explicitely
provide names for the introduced objects.

intros A B H N.

Note that the fourth introduction uses the fact that ˜(A ∧ B) is actually
defined as the implication A ∧ B → False . After applying this tactic,
the subgoal becomes:

4This theorem is intuitionistically valid but note that the converse of or_not_and is
not an intuitionistic tautology, but is only valid in classical logic.

5To distinguish proof states from Gallina and tactic inputs, we will always present
Coq’s output in proof mode in a framed box.



4.1 Introduction to Coq 91

1 subgoal

A : Prop
B : Prop
H : ˜ A ∨ ˜ B

N : A ∧ B

============================

False

We now perform eliminations of the conjunction N and disjunction H:
both eliminations can be performed with the same tactic, called destruct.
Destructing the conjunction with destruct N as [NA NB] yields two new
hypotheses NA : A and NB : B and does not change the conclusion. De-
structing the disjunction with destruct H yields two different subgoals
where hypothesis H is respectively a proof of ˜A and ˜B.

destruct N as [NA NB]. destruct H.

2 subgoals

A : Prop
B : Prop
H : ˜ A

NA : A

NB : B

============================

False

This first subgoal can be proved by eliminating the implication in H, in
other words by “applying” hypothesis H, which is done with the apply H

tactic. The remaining conclusion is A, which is true by hypothesis NA, and
the goal can be discharged with the tactic assumption.

apply H. assumption.

This clears the first subgoal and therefore the user is left with the second
subgoal to prove.

1 subgoal

A : Prop
B : Prop
H : ˜ B

NA : A

NB : B

============================

False

This one is proved in a similar manner, only this time the assumption
used will be NB.
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apply H. assumption.

Since all the subgoals have been proved, the proof is finished and the system
displays so:

Proof completed.

The last thing to do is to close the proof with the Qed command.

Qed.

or_not_and is defined.

This last step is not anecdotal: it checks that the term which was pro-
gressively constructed by the tactics indeed has the type of the theorem.
This mechanism ensures that tactics can be implemented without formal
restriction and that possible bugs in the tactics are “double-checked” at the
end of the proof by the kernel. Thus, only the kernel is critical for the
correctness of the proof assistant and it is important for such a system to
limit critical areas to the smallest possible part. As a matter of fact, there
are a great number of tactics, many of which are much more complex than
the ones presented here: the proof above could typically be performed by a
single tactic call. We will present such complex tactics and the techniques
behind them in detail below in Section 4.2.

Equality proofs. We now turn our attention to the treatment of equality
in the Coq proof assistant. As with logical connectives, equality is not
built-in in the CIC but is defined inductively by the following predicate:

Inductive eq (A : Type) (x : A) : A → Prop :=

| refl_equal : eq A x x.

and can be used with the usual = notation. The induction lemma associated
with this definition is the well-known Leibniz’s principle:

eq_ind : ∀(A : Type) (x : A) (P : A → Prop),

P x → ∀y : A, x = y → P y

and allows to replace a term x by an equal term y in any proposition P.
For this reason, this equality is often called Leibniz equality in Coq, in
particular in constrat to other setoid equalities which can be natural for
some types6. From the definition of eq and refl_equal, it may seem that
the only equalities which are provable in an empty context are of the form
x = x for some x, but this is where the conversion rule that we introduced
earlier comes into play: it can be used to prove that two terms which reduce
to the same term are equal. For instance, one can build a proof of 4 = 4

by considering refl_equal nat 4, but it turns out that the normal form

6Consider the type of propositions Prop and the equivalence relation ↔ for instance,
or function spaces and pointwise equality.
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of 2 + 2 = pred 5 is precisely 4 = 4, therefore by conversion refl_equal

nat 4 is a proof of 2 + 2 = pred 5. Most tactics in Coq perform modulo
some kind of conversion, and it is possible to simply apply refl_equal in
order to prove a definitional equality. The tactic reflexivity is precisely
a shortcut for this:

Remark p : pred (pred (12 + 35)) = 45.

Proof.
reflexivity.

Qed.

p is defined.

There are many tactics that explicitely perform some form of reduction
or normalization, Coq even provides a virtual machine [GL02] to quickly
reduce terms to their normal form; we will present these capabilities later.
Note that the reduction mechanism is not limited to terms in sort Set, it can
be used on any term in the CIC and in particular it is completely legitimate
to reduce propositional proofs. Nevertheless, it is often the case that we do
not want to compute through proofs:

• proof terms are often big and therefore slow to reduce;

• there is no point in reducing (or more generally observing) proof terms
because most of the time, we do not care what the proof of a propo-
sition looks like, but just that there exists a proof7.

In order to be able to separate between reducible terms and non-reducible
ones, Coq provides an opacity mechanism. When completing a proof with
Qed as we did earlier, we are also making the corresponding theorem opaque
and preventing that it be reduced in the future. In order to finish a proof
and keep it transparent, one can use the Defined command. We will see
in later chapters that a fine management of opacity can be critical for the
efficiency of an algorithm implemented in Coq. Note though, that proof
terms are never erased, even for opaque lemmas, and can still be inspected.
The fact that proof terms are kept is one feature of Coq which differentiates
it from many other provers like Isabelle or HOL, and this is why the size of
proof terms is problematic when automatically constructing proofs through
tactics (see Section 4.2).

Other features. There are many other features in the Coq proof assistant
that allow one to write formalizations or programs in a more natural or a
more convenient way. We will encounter some of them in the remaining of
this document, but we cannot give an exhaustive list. Some of the more
interesting capabilities are:

7This principle, called proof irrelevance, is not part of the CIC and therefore is not
enforced by Coq; it is consistent to add it as an axiom though.
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• a “batch-mode” executable coqc to compile files which can then be
loaded and imported into other files, which enables separate compila-
tion;

• a module system by J. Courant [Cou97] and J. Chrząszcz [Chr03]
similar to OCaml’s module system, which permits to write structured
programs and structured implementations, we will use it extensively
in the following chapters;

• an extraction mechanism developed originally by C. Paulin [PM89a,
PM89b] and then by P. Letouzey [Let03, Let08] which allows to ef-
fectively extract programs from specifications to OCaml or Haskell.
The distinction Prop/Set that we explained earlier is critical for this
mechanism, since extraction erases propositional contents and keeps
informative contents. In particular, this is the reason why Coq pre-
vents any object in Set to be constructed from destructing an object
in Prop;

• a system of coercions which allow a form of automatic subtyping
through the definition of coercions between types;

• a mechanism to deal with ad-hoc (setoid) equalities, and rewriting
of setoid equalities through functions declared as morphisms for such
equalities (initially developed by C. Sacerdoti Coen [Coe04] and reim-
plemented by M. Sozeau [Soz09]);

• a variety of external tools such as a documentation generator coqdoc, a
library validator coqchk, and an integrated development environment
CoqIDE.

4.2 Automation Techniques for Interactive Prov-
ing

In the last section, we have seen examples of simple tactics. Most realistic
proofs will use many more different and complex tactics, some of which
performing a lot of automated reasoning. In this section, we present a
survey of the different automation techniques available in a proof assistant
like Coq and the relevant existing tactics.

Note that interactive provers in general ensure their correctness by fol-
lowing the so-called LCF-style approach: every proof must be checked by
a small, trusted part of the system (in Coq’s case, the kernel). Thus, a
complex decision procedure inplemented in an interactive prover shall not
only decide if a formula is provable or not, but it must also generate an
actual proof object, which can be checked by the prover’s kernel. This is
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in contrast to a system like PVS, where a new decision procedure can be
added to the system as a “black box”.

4.2.1 Customized Tactics

The first technique that we present is perhaps the most recent in Coq’s
history, but it has the great advantage of not requiring any external tool or
special knowledge about the internal representation of CIC terms. It does
not require any proof reconstruction either, because it is based on the tactic
language. This technique uses a language called Ltac and developed by
D. Delahaye [Del00] which provides combinators for tactics, called tacticals,
allowing the definition of complex tactics inside the prover. We cannot list
all the tacticals exhaustively but we will present the most salient capabilities
of Ltac.

The base of the language is formed by combinators for chaining tac-
tics (;), repeating tactics (do, repeat), error catching (try) or throwing
(fail), branching (||, first), displaying terms, tactics and arbitrary mes-
sages (idtac), checking for progress or termination in a subgoal (progress,
solve). These tacticals already allow a lot of interesting combinations, for
instance the following:

Ltac dintros := repeat (intro; try (destruct 0)).

defines a new tactic dintros which does as many introductions as possible
(using repeat), and for each object introduced, tries to destruct it if it is
possible (destruct 0 refers to the last introduced hypothesis by its index,
thus with number 0). In our example proof in the last section, we could
have started the proof with that tactic in order to introduce and destruct
all hypotheses. Because both remaining subgoals can be proved by the
same apply H; assumption combination, we could use chaining and prove
the theorem in a single line:

Theorem or_not_and : ∀(A B : Prop), ˜A ∨ ˜B → ˜(A ∧ B).

Proof.
dintros; apply H; assumption.

Qed.

or_not_and is defined.

Even more interesting is the ability to manipulate terms in Ltac def-
initions: one can construct terms, reduce terms, deconstruct terms using
a pattern-matching construct. Pattern-matching can also be used against
the goal and the hypotheses, which makes it possible to write tactics that
perform different tasks according to the shape of the goal and the available
hypotheses. For instance, consider the following definition:

Ltac equal :=

match goal with
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| ⊢ ?x = ?x ⇒ reflexivity

| H : ?x = ?y ⊢ ?y = ?x ⇒
symmetry; assumption

| H : ?x = ?y, H’ : ?y = ?z ⊢ ?x = ?z ⇒
transitivity y; assumption

| ⊢ _ = _ ⇒ idtac “No proof found.”

| _ ⇒ fail “The goal is not an equality.”

end.

This tactic equal tries to prove an equality and proceeds by matching the
current goal, and then depending on the result performs the relevant action.
If the goal has the form x = x, it just applies reflexivity. The second and
third branch try to find, in the hypotheses, equalities related to the conclu-
sion and to apply respectively symmetry or transitivity. The next-to-last
branch just reports that the tactic did not succeed in proving the goal (but
does not fail), while the last branch raises a failure because the goal is not
an equality. This example gives a small idea of the expressivity of Ltac;
note in particular that the matching is non-linear since the same variable
can appear twice or more in a pattern, and must be matched to the same
term. Ltac is even higher-order because tactics can be parameterized by
tactics (and by parameterized tactics...) and can also be defined recursively.

Here are a few examples of complex tactics developed in Ltac in the Coq
standard library or in the community:

• in the Reals library, containing an axiomatization of reals, the spe-
cialized tactics discrR, prove_sup and Rcompute are built with Ltac;

• in the specification of OrderedType’s, i.e. types with a total decidable
order, there is a dedicated tactic order which tries to prove a goal using
total order and equivalence properties, it proceeds by saturating the
context with all possible consequences of the hypotheses until it finds
a contradiction; it is actually complete for that fragment;

• in the FSets library of finite sets (which we describe, as well as an alter-
native, in Chapter 5), A. Bohannon contributed a very complex tactic
fsetdec which discharges goals about set memberships and common
set operations;

• in his book [Chl], A. Chlipala gives many concrete examples of Ltac
usage, in particular his “swiss knife” tactic called crunch;

• A. Charguéraud proposes an extended set of tactics and tactic nota-
tions to help perform a variety of tasks [Cha].

Even if it has its own limitations and can be quite inefficient, Ltac is very
convenient because of its expressiveness and above all the fact that it does
not require an external tool or “hacking” in the Coq sources, which, as we
will see, is the biggest inconvenient of the other techniques.
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4.2.2 Built-In Procedures

The vast majority of tactics available in Coq are not defined in external
contributions or Ltac files, but are simply implemented in the Coq sources
and are compiled and shipped with the proof assistant. All atomic tactics
like intro and so on are actually built-in tactics and are implemented in the
OCaml sources with the remaining of the system, but there are also several
very useful tactics which do not perform atomic tasks, but a complex proof
search.

tauto. The tactic tauto by C. Muñoz [Mn94] implements a decision
procedure for intuitionistic propositional calculus based on Dyckhoff’s
contraction-free sequent calculi [Dyc92]: it automatically proves any
goal which is intuitionistically valid (e.g. our theorem or_not_and

could have been discharged by a simple call to tauto). It is also avail-
able as a simplifier called intuition which performs the same search
tree as tauto, clears as many branches as possible and returns the
simplified goals to the user, which can be very useful in practice.

omega. Another ubiquitous tactic in Coq is omega, which was imple-
mented by P. Crégut after a decision procedure by W. Pugh [Pug92].
It is a decision for Presburger arithmetic which automatically solves
quantifier-free formulae whose atoms are equalities, disequations or
inequalities on natural or relative integers. Though omega is theoreti-
cally incomplete, it rarely happens in practice and this tactic is used
a lot in any development dealing with arithmetic.

congruence. The congruence tactic was developed by P. Corbineau [Cor06]
and implements a decision procedure for the theory of equality mod-
ulo the theory of constructors (i.e. injectivity of constructors, and
discrimination of different constructors of the same datatypes). The
procedure tries to prove the goal if it is an equality and to derive a
discriminable (hence false) equality otherwise.

auto. The tactics auto and eauto perform an automatic backward proof
search in a manner very similar to Prolog. They use a database of
lemmas, called hints, as well as the hypotheses in the current context,
and try to apply them eagerly and find a chain of lemmas proving a
goal. auto is perhaps the most popular proof search tactic in Coq and
tactics that generate a lot of subgoals like induction or destruct are
often chained with auto.

There exists other built-in tactics which are not performing proof search per
se, but are nonetheless quite complicated and can replace a lot of tedious
manual manipulations, for instance the autorewrite or the inversion tac-
tics.
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The tactics above are therefore implemented in a standard programming
language and there is of course no restriction as to how they perform their
proof search. However, once they have found a proof (if any), they need to
construct a proof term because, like the other tactics, they are just used to
construct proof terms and are not trusted by the kernel. This reconstruction
phase can take different forms: tauto and auto, for instance, build a com-
plete proof term corresponding to the proof they have found ; omega and
congruence also reconstruct a term from the proof found but use a variety
of predefined ad-hoc lemmas in an attempt to simplify the reconstruction
and also to obtain smaller proof terms.

Note that, in the most recent versions of Coq (≥8.2) and OCaml (≥3.11.0),
it is possible to dynamically load ML plugins in a Coq session. Therefore,
one can implement such a built-in procedure as a plugin and it can be dis-
tributed and used without having to recompile everything along with the
Coq sources. Nevertheless, implementing one’s own decision procedure and
term reconstruction requires to use Coq as an API and therefore requires
some amount of knowledge about the internal representation of proofs, terms
and tactics. This is a much bigger effort than learning Ltac for instance.

4.2.3 External Tools

Another possible approach for the creation of an automation tactic is to
use an external state-of-the-art decision procedure. The proof reconstruc-
tion phase requires the external tool to be able to return proof traces of its
proof search, i.e. data which justifies the result claimed by the tool. Work
must then be done in the interactive prover in order to reconstruct a suit-
able proof object from the output of the external tool. For instance, Weber
and Amjad [WA09a] have successfully integrated two leading SAT solvers,
zChaff [MMZ+01] and MiniSat [ES04], with Higher Order Logic theorem
provers. Integrations of resolution-based provers have also been realized in
Coq [BHdN02, BDD07] and Isabelle [MQP06a]. The main advantage of this
approach is the ability to use a very efficient external tool. Its main short-
coming is that the tool must be able to produce proof traces, which is not
that common, and the reconstruction of a proof term from proof traces can
be quite difficult to perform efficiently (see for instance the considerations
in [WA09a]).

This approach is actually a special case of the previous one (Section 4.2.2),
since nothing prevents a built-in procedure from using an external tool un-
der the hood. It allows the use of faster, state-or-the-art procedures, but
the proof traces may not be very well adapted to the proof reconstruction
phase, whereas a procedure specifically developed for a given proof assistant
can lead to an easier (maybe even smaller) proof term.
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4.2.4 Traces and Reflection

The crux of the last two approaches, i.e. using a built-in procedure or an
external tool, is the reconstruction of a proof term from the proof search. A
built-in procedure could technically build a proof term directly during the
proof search but this is probably not the most efficient thing to do, most
procedures will go through some internal form of traces and reconstruct the
term at the last moment; users of external tools have no choice whatsoever
(unless the tool can output a Coq proof term directly, like Zenon [BDD07],
but this is very rare) and need to perform reconstruction from some proof
traces.

So far, we had implicitely assumed that the reconstruction was a meta
procedure (i.e. not expressed in the prover) that, given some trace π, would
create a CIC term t to be sent back to the prover for typechecking. In
that sense, the reconstruction acts as an oracle which gives an hopefully
adequate term to the prover. There is an alternative approach, which we
now present: the so-called proof by reflection [Bou97]. In this setting, the
reconstruction will be a function in the prover’s logic and we will use the
reduction mechanism and the conversion rule to execute this function during
typechecking.

Reflection. Suppose we have a datatype S, and a predicate P : S → Prop
on elements in this datatype. Suppose we have an oracle (the external pro-
cedure) which, given an s : S, will look for a proof of P s and, if any, will
return some proof traces to justify this result. We assume that the proof
traces can be represented by a datatype T in the prover, which is typically
the case. Now, in order to use the oracle’s proof traces in the prover, we
just need the following:

• a function check : S → T → bool implemented in the prover and
returning a boolean8 such that check s t checks if the trace t is a
good justification of the fact that s has property P;

• a proof, called a reflection principle, that the function check is correct:

check_correct : ∀(s : S) (t : T), check s t = true → P s.

The function check is similar to proof reconstruction but does not construct
anything, it just returns a boolean value to denote whether the traces were
adequate or not. The reflection principle then relates the computational be-
haviour of check to its propositional meaning and proves that it is sufficient
to check the result of check in order to verify the traces. Given a concrete
s and some traces t returned by the oracle, the proof of P s is simply:

8Booleans in Coq are just a type with two values true and false. It has sort Set and
should not be confused with the type of propositions Prop.
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(check_correct s t (refl_equal _ true)) : P s

where the call of refl_equal is used to force reduction and verification
that check s t indeed reduces to true. In comparison to standard proof
reconstruction, we note that:

• the proof term is not explicitely reconstructed; typically, part of the
work is performed by the check function, while remaining part is per-
formed in the proof of check_correct, and is therefore factorized once
and for all;

• the proof search will be faster because it does not have to reconstruct
a proof term afterwards, but this is compensated by the fact that
typechecking the proof now includes a computation;

• the size of the proof terms is now proportional to the size of the traces
(and the original object) whereas reconstructed proof terms can be
much bigger than the traces.

Levels of detail. Given one particular problem for which we would like to
use the reflection technique described above, a natural question which arises
is: what should the traces actually be like? There are indeed typically a
broad range of choices in the amount of detail that the traces should include.
To illustrate this fact, let us take a simple concrete example9: suppose that
we are interested in proving that some Peano integers are composite, i.e.
that they are not prime, using an external procedure. If for instance we are
interested in the number 91, here are some of the answers that we might get
from the procedure:

• Yes, 91 is composite.

• Yes, 91 is divisible by 7.

• Yes, 91 is divisible by 7 and the quotient is 13.

• Yes, 91 = 13 × 7, indeed 7 × 3 equals 21, carry the 2, 7 × 1 is 7, plus
2, makes 91.

Figure 4.1 schematizes this situation: it represents the possible proof
traces on a scale from the most detailed (on the left) to the less detailed
(on the right). The relevance of using reflection is in inverse proportion to
the level of detail of the traces: in the leftmost case, the external procedure
has produced a proof term and therefore there is no need for reflection at
all; conversely, in the rightmost case, the trace is empty and the check

function must do everything from scratch, which means that the external

9This example was drawn from G. Dowek’s excellent popular science book [Dow08].
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Figure 4.1: One problem, many solutions: a scale of proof traces

tool is basically useless and could be bypassed10. In the average cases, the
procedure returns pieces of information that the check function can verify:
try to divide 91 by 7 in one case, check that 7 by 13 is 91 in the other case.

In general, fine-grained traces make for an easier proof reconstruction but
require a substantial amount of work in the decision procedure, including
justifying steps that are often implicit in an efficient implementation. On the
other hand, coarse-grained traces make proof reconstruction much harder
since all implicit steps must be implemented in the proof assistant in the
reflection principle. Tactics which are somewhere between the two extreme
cases on this scale are usually called semi-reflexive and most tactics using
reflection fall in that category. Examples of this intermediate approach are
Corbineau and Contejean [CC05] and Contejean et al. [CCF+]’works on
integrations mixing traces and reflection. There also exists semi-reflexive
versions of the tauto tactic, called rtauto, and of omega, called romega.

Tactics which do not use an external procedure at all are called fully
reflexive. For instance, the tactics ring [GM05] and field [DM01], which
respectively solve expressions on ring and field structures, are built along this
reflection mechanism. The main advantage of the fully reflexive approach is
the size of the generated proof term, which only consists in one application
of the correctness property. The trade-off is that typechecking the proof
term includes executing the decision procedure, therefore reflection can be
used favourably in cases where the proof traces would not be comparatively
simpler than the proof search itself. For instance, suppose we were interested
in prime numbers instead of composite numbers: since there is no “simple”
justification that a number is prime, it would be a good idea to use a fully
reflexive procedure.

10One case where it would still be useful to run the external tool is when it runs at least
an order of magnitude faster than the reflexive function check. In such a case, it makes
sense to run the external procedure first, simply to know if it’s worth running the reflexive
one.
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Reification. Until now, we have only dealt with properties on a concrete
datatype, namely natural integers. In general, we might want to apply
the reflection technique to a more general class of formulae, for instance all
first-order formulae. This means the type S is now the sort of all propositions
Prop, and it becomes impossible to write a function check : S → T → bool

(remember that informative datatypes like bool cannot be constructed by
deconstructing propositional objects). In such a case, we need a concrete,
intermediate, representation of formula, i.e. an informative type form, along
with an interpretation function interp : form → Prop . The reflection
function and its correction lemma then become:

check : form → T → bool

check_correct : ∀(f : form) t, check f t = true → interp f

and in order to prove a formula F : Prop, the system cannot directly use the
reflection principle but must infer a concrete f : form such that interp f

= F, or interp f → F at the very least. The construction of this object f

cannot be expressed in the prover’s logic and is therefore a meta procedure;
it is called reification and must be performed by an external oracle11. In
particular, we will see in Chapter 6 that it introduces a “hole” which prevents
a reflexive procedure to be formally complete.

4.3 Towards a Reflexive SMT Kernel

We have just presented a variety of techniques to implement automation
tactics in the Coq proof assistant. Our goal is to integrate in Coq the kernel
of our SMT solver, as presented in Chapters 2 and 3, in order to provide
a tactic which effectively combines propositional, equality and arithmetic
reasoning. We chose to use the fully reflexive approach in order to achieve
this integration, for the following reasons.

First of all, as explained in Section 1.2, we are especially interested in
proving proof obligations which arise from analysis of annotated programs,
or more generally to discharge goals in usual Coq proofs. Our experience
with our own prover Alt-Ergo is that these formulas’ difficulty lies more in
finding the pertinent hypotheses and lemmas’ instances than in their propo-
sitional structure or the theory reasoning involved in their proofs. Con-
sequently, these problems become rather easy as soon as we know which
hypotheses and instances are sufficient for the proof, and we can thus solve
formulae in this ground fragment by pure reflection. Moreover, Coq is par-
ticularly well suited for this approach because its formalism includes a full
programming language, whose evaluation has been recently dramatically
improved by an optimized bytecode-based virtual machine.

11Thanks to their ability to construct, match and destruct terms, Ltac tactics can
typically be used to perform this reification step. This avoids, in principle at least, the
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Soundness lemma
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Figure 4.2: An overview of our reflexive tactic

Second, we are interested in a tactic that could be used by all Coq users,
and it should be available out-of-the-box with the system, without requiring
the installation of an external solver like Alt-Ergo. Also, such an external
dependency is a concern for maintainability since the proof reconstruction
mechanism will be very dependent of the exact format of the proof traces:
it would have to be kept up-to-date with the changes in the external tool,
and would have to be totally revamped in order to support another external
tool12.

Third, it is not easy to instrument an SMT solver to generate proof
traces, in particular in underlying decision procedures such as the congru-
ence closure algorithm and Fourier-Motzkin, and to choose the adequate
level of detail. Without any traces on the reasoning of underlying theories,
the reflection principle would become nearly has hard as the fully reflexive
procedure; with details on the reasoning of underlying theories, proof traces
and proof objects could get quite large and it would be a problem for a
prover like Coq which saves proof objects in typechecked files. With a fully
reflexive tactic, we ensure a proof term which is linear in the size of the goal.

Finally, we have formalized in Coq the algorithms and proofs presented
in Chapters 2 and 3 in order to formally verify these proofs, and it is nat-
ural to try and take advantage of this formalization in order to use these
algorithms in Coq using reflection. An overview of our reflexive tactic’s
architecture is given in Figure 4.2.

need any need for an external OCaml procedure.
12Although there is an ongoing effort in the SMT community to design a standard,

common, format for SMT proof traces, no such format has been adopted yet.
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Outline. The following chapters are devoted to the presentation of the
different parts of this Coq reflexive tactic. We start in Chapter 5 by defin-
ing a library of first-class finite sets and finite maps which is used intensively
in our development. Chapter 6 presents the propositional solver and Chap-
ter 7 extends it with an original lazy CNF conversion mechanism. The
extension to SMT and the development of the congruence closure algorithm
is described in Chapters 8 and 9. Finally, we show how to instantiate our
congruence closure with a theory of integer linear arithmetic in Chapter 10.
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As a programming language, it is natural to endows Coq with libraries of
generic data structures. Indeed, mainstream programming languages usually
come with libraries to manipulate these structures which are widely used:
lists, finite sets, association tables, etc. For instance, C++ programmers
can rely on the STL [SL95](Standard Template Library), whereas OCaml
programmers are provided with a fair number of modules (including lists,
queues, sets and maps, hashtables, ...) in the OCaml standard library. The
genericity of these data structures, that is, the fact that they can be used
to hold elements of any type, is ensured in different ways depending on
the programming language: polymorphism in languages of the ML family,
templates in C++ or generics in Java.

For their implementation to be efficient, some data structures require cer-
tain properties on the elements they can contain, such as a comparison or a
hash function. This kind of genericity, called ad-hoc polymorphism, is made
possible by the use of functors in OCaml and type classes in Haskell [WB89].
Even if these two paradigms can be used to solve a similar design issue,
they are fundamentally different and both have their advantages and their
shortcomings [WM06]. For a few years, Coq has featured a full-blown mod-
ule system similar to OCaml’s [Chr03] and P. Letouzey and J-C. Filliâtre
used it in order to develop a comprehensive library of finite sets and finite
maps [FL04], called FSets. Such structures are very important for develop-
ing our SMT solver kernel: in Part 1, we have used sets of literals, maps for
union-find structures, maps to sets of terms for the Γ data structure, etc.
We have used this FSets library in developing the tactic presented in this
document and have been confronted with issues which were inherent to the
module system. Since Coq has been recently enhanced with a type class
system based on dependent records [SO08], we decided to build on this new
functionality and reimplement the existing FSets library using type classes.
We present this library in detail in this chapter.

Section 5.1 quickly presents Coq’s type class system, as well as the prob-
lems which motivated our work. We then introduce the cornerstone of our
libary, ordered types, in Section 5.2, before describing the actual interfaces of
finite sets and dictionaries (Section 5.3). We follow by giving a few concrete
instantiations of these structures, before comparing in detail our library with
the modular version in Section 5.5.

5.1 Preliminaries and Motivations

5.1.1 Type Classes

In this section, we present Coq’s new type class system and its basic features.
For a more detailed and involved description, the interested reader can refer
to [SO08].
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A type class can be seen as a way to package a number of definitions
and properties together, much like a record1. Classes can be parameterized
by types or other constructions, and one can for instance define the class of
types which are equipped with a decidable equality in the following way:

Class decidable (A : Type) := {

eq : A → A → bool;

eq_dec : ∀xy, eq x y = true ↔ x = y
}.

This decidable class is parameterized by a type A and contains two fields:
a boolean equality on this type A and a proof that this equality test really
decides logical equality. Objects of type decidable T for a type T are called
instances and must be defined in a special way using the Instance keyword.
This is how we can define an instance for the type of booleans:

Definition bool_eq (x y : bool) := if x then y else negb y.

Property bool_eq_dec : ∀xy, bool_eq x y = true ↔ x = y.

Proof. .... Qed.

Instance bool_dec : decidable bool :=

{ eq := bool_eq; eq_dec := bool_eq_dec }.

An instance’s fields can also be initialized directly or proved interactively at
the time of the definition. Type classes reach their full potential with the
conjunction of two mechanisms:

• the ability to define objects parameterized by type classes and use
these objects without explicity providing these parameters;

• a mechanism for automatically inferring type class instances using all
instances already defined by the user.

For instance, one can prove the following lemma for any type which has an
instance of decidable2

Lemma decides_eq ‘{decidable A} :

∀(x y : A), x = y ∨ x 6= y.

Proof. .... Qed.

This lemma is parameterized by a type A and an instance of decidable

A, but both parameters are declared as implicit using the special {...}

delimiters. The backquote character ‘ is just a way to ask Coq to auto-
matically generalize the lemma on the fresh type A. When we subsequently
use this lemma by applying it to two terms of some type B, an instance of
decidable B is automatically searched and inferred using already defined

1suitably, Coq’s type classes are implemented using dependent records.
2bear in mind that Coq’s logic is intuitionistic, therefore this lemma really means that

equality on type A is decidable.
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instances. For instance, one can write the term decides_eq true false

which is well-typed and will implicitely and automatically use the bool_dec

instance provided above.
Automatically inferring instances becomes particularly useful when one

defines families of instances, or instances parameterized by other instances.
To give an example, we can write an instance for any product A × B given
instances for the types A and B.

Instance prod_dec ‘{decidable A, decidable B} :

decidable (A × B) := {

eq := fun x y ⇒ eq (fst x) (fst y) &&

eq (snd x) (snd y);

eq_dec := ...

}.

The system can then infer instances for any product of decidable types,
for example with bool_dec and prod_dec, an instance for the type bool ×
bool × bool can be used automatically:

Check (decides_eq (true, (false, true))

(false, (false, true))).

Let us conclude this introduction to type classes by noting that it is
possible to build hierarchies of classes, and a system of automatic coercions
guarantees that an instance of some class can be used as an instance of its
sub-classes. We will demonstrate this feature later in Section 5.2.

5.1.2 Motivations

In the light of the features provided by the type class system, we can ex-
plain the reasons why we turned to this system instead of using the already
available module-based FSets. These were the motivations in starting this
reimplementation of a containers library.
Automatic instantiation. In our development, we manipulate sets of
numerous different types, including sets of sets, and for each new element
type, we need to create a finite set module for this type. This creation must
be performed manually by applying the adequate functor to an ordered type
module (packing the element type and a comparison function together3).
Namely, given ordered type modules Int, IntPair, BoolList for integers,
pairs of integers and lists of booleans, one must write4:

Module IntSet := FSetList.Make Int.

Module IntPairSet := FSetList.Make IntPair.

Module BoolListSet := FSetList.Make BoolList.

3the corresponding signature is given in Section 5.2.1
4FSetList.Make is a functor creating a module of finite sets based on sorted lists.
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in order to be able to use sets on these three kinds of elements. This may
look like a lesser evil, but one quickly finds himself instantiating not only the
FSetList.Make functor, but also other functors creating useful properties
on ordered types and on finite sets, which are invaluable to start working
with the data structures created above.

Module IntFacts := OrderedType.OrderedTypeFacts Int.

Module IntSetEqProps := FSetEqProperties.EqProperties IntSet.

Module IntSetProps := IntSetEqProps.MP.

Module IntSetFacts := IntSetEqProps.MP.Dec.FM.

Module IntPairFacts := OrderedTypeFacts IntPair.

...

This sort of definitions, which every FSets user has encountered, rapidly
becomes tedious to read and maintain. Moreover, functor applications are
not free and it is not uncommon to spend a couple of seconds solely on
instantiating these various objects.
Overloading. Because the module system does not offer any overloading
mechanism5, one must refer to members of a module by qualifying their
names with the module’s name. In our example case, this means that every
usage of a function, a lemma or a type provided by these modules (IntSet,

IntPairSet, IntSetProps, ...) must be properly qualified. This quickly
makes proof scripts and definitions verbose and hardly readable. One often
ends up giving very short names to these modules (IS, IPS, ISP, ...)
and then the script loses in clarity what it gained in compactness. Through
the use of implicit type class arguments, the type class system does not
require such qualification of identifiers and provides a real overloading of
types and operators.
Performance and modularity. In order to ensure a good modularity
in our development, some parts of the system ought to be parameterized
by modules which, among other things, bring types and data structures on
these types. For instance, it is not uncommon for an OCaml programmer
to write signatures like this one:

(* some abstract type *)

type t

(* finite sets of elements of type t *)

module TS = Set.S with type elt = t

(* finite maps indexed by elements of type t *)

module TM = Map.S with type key = t

...

When parameterizing our development in a similar fashion in Coq, we
encountered a performance issue related to modules’ instantiation and type-
checking. In practice, the functors’ applications with such signatures were

5notations can help making up for the absence of overloading, but are limited and can
be fragile in general.
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taking unreasonable time: our topmost functor would require about 15 sec-
onds. Although this seemed to be an implementation issue6 rather than
a theoretical limit with modules, it can be a real showstopper for an ap-
plication based on modules, and type classes do not suffer from the same
limitation.
First-class values. To further stress the previous point, type class in-
stances in Coq are actually first-class values, and therefore the cost of an
instantiation is reduced to typechecking the argument (since it is really just
applying a function to an argument). This means that one could possi-
bly perform “interactive” instantiations of a procedure parameterized by
type classes. An example that arose in our work was that of a reflexive
tactic: such a tactic must be invoked interactively and each time, a new
instantiation of a parameterized procedure had to be made depending on
the context where the tactic was called. This kind of dynamic instantiation
is not possible with a functorized procedure since the instantiation time at
each invocation would be prohibitive.

Amongst these motivations, the first two are inherent to modules and
class types, whereas the last two are more specific to a given implementation,
in our case the Coq proof assistant v8.2. Although the third one was the
actual initial reason why we started using typeclasses, the first two points
proved important enough in practice to justify choosing one paradigm over
the other.

5.2 Ordered Types

To be implemented in an efficient way, structures of finite sets and finite
maps require that the elements be equipped with a total decidable order. In
this section we show how we formalize the class of such types.

5.2.1 OrderedType

An ordered type is a type which has an equality (an equivalence relation), a
strict order (a transitive irreflexive relation) and such that these relations are
decidable. Coq already provides a type class named Equivalence for equiv-
alence relations, as well as the notations x === y and x =/= y for equalities
and disequalities with respect to equivalence relations. We define the class
of strict orders modulo an equivalence relation. This class is parameterized
by the type of elements, the equivalence relation and the order relation:

Class StrictOrder {A} lt eq {Equivalence eq} := {

StrictOrder_Transitive :

∀(x y z : A), lt x y → lt y z → lt x z;

6in particular, using finite sets implemented as AVL trees instead of sorted lists would
multiply this time by four without apparent reason.
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StrictOrder_Irreflexive :

∀(x y : A), lt x y → x =/= y
}.

Note that only the order and equality are explicit arguments of this class.
We now look at the existing implementations of ordered types: the FSets

library brings two different signatures for ordered types, respectively in the
modules OrderedType (Figure 5.1) and OrderedTypeAlt (Figure 5.2).

Inductive Compare {A} lt eq x y :=

| LT : lt x y → Compare lt eq x y
| EQ : eq x y → Compare lt eq x y
| GT : lt y x → Compare lt eq x y.

Parameter t : Type.

Parameter eq : t → t → Prop.

Parameter lt : t → t → Prop.

(* equivalence axioms for eq *)

...

Axiom lt_trans : ∀xyz, lt x y → lt y z → lt x z.

Axiom lt_not_eq : ∀xy, lt x y → ˜ eq x y.

Parameter compare : ∀xy, Compare lt eq x y.

Figure 5.1: Existing OrderedType module

Inductive comparison := Lt | Eq | Gt.

Parameter t : Type.

Parameter compare : t → t → comparison.

Parameter compare_sym : ∀xy,

compare y x = match compare x y with
| Eq ⇒ Eq | Gt ⇒ Lt | Lt ⇒ Gt

end.

Parameter compare_trans :

∀cxyz, compare x y = c →
compare y z = c → compare x z = c.

Figure 5.2: Existing OrderedTypeAlt module

OrderedType brings a type t, an equivalence relation eq and a strict
order lt on t, as well as the corresponding properties. The decidability of
these relations is given by the compare function which is completely speci-
fied by its return type: the Compare inductive datatype. More precisely, the
compare function performs the comparison of two elements but also returns
a proof of the relation between these elements. This formalization is quite
convenient to use: in particular, when reasoning by case analysis on the com-
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parison between two elements, the hypotheses corresponding to each branch
are naturally added to the context. A possible inconvenient, however, is the
fact that the compare function is not purely computational, but informa-
tive, and it can become an issue and be a source of inefficiencies when it is
used very frequently in an algorithm. Alternatively, to ensure a separation
between computations and proofs, OrderedTypeAlt revolves around a pure
comparison function compare, whose return type comparison is the 3-value
type Lt | Eq | Gt. Unfortunately, this function’s specification through
properties of symmetry and transitivity is really tedious to reason with.

In order to keep the best of both alternatives, we choose a purely com-
putational comparison function, but specify it with the following inductive
definition:

Inductive compare_spec {A} eq lt (x y : A) :

comparison → Prop :=

| compare_spec_lt : lt x y → compare_spec eq lt x y Lt

| compare_spec_eq : eq x y → compare_spec eq lt x y Eq

| compare_spec_gt : lt y x → compare_spec eq lt x y Gt.

Unlike Compare, this inductive is not the return type of the comparison
function, but it relates each comparison value to the corresponding adequate
hypothesis. It is then enough to prove that all the function’s results belong
to this relation for the function to be correct: namely, for a function f of
type T → T→ comparison to be deciding some equality ≡ and order ≺ on
T, it is sufficient and necessary to have:

∀xy, compare_spec ≡ ≺ x y (f x y).

Using such a specification, we are now able to write the class OrderedType

of ordered types:

Class OrderedType (A : Type) := {

_eq : relation A;

_lt : relation A;

OT_Equivalence :> Equivalence _eq;

OT_StrictOrder :> StrictOrder _lt _eq;

compare : A → A → comparison;

compare_dec :

∀xy, compare_spec _eq _lt x y (compare x y)

}.

This class is parameterized by the type A of elements and contains the equal-
ity and strict order relations. Subclasses Equivalence and StrictOrder, in-
troduced by :>, are used to specify these relations. The last part is the com-
parison function and its specification, which are given as explained above.
This version is as easy to use as the original despite the purely computational
return type of compare. Indeed, in a context where compare a b appears,
it is enough to invoke the tactic destruct (compare_dec a b) in order to
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perform case analysis on this comparison: compare a b is then replaced in
each branch by its value (Eq, Lt or Gt) and the corresponding hypothesis is
added to the context. In this regard, the compare_spec inductive is similar
to the reflexive “views” of the SSReflect extension [GM08].7

Once the class for ordered types is defined, numerous useful lemmas (like
the fact that the order relation is a morphism for equality) and notations
are established and can be used for any ordered type. The following table
summarizes the available notations and the corresponding “views” for non-
propositional objects:

Notation Meaning View
x === y x equal to y

x =/= y x not equal to y

x <<< y x smaller than y

x >>> y x greater than y

x =?= y compare x y compare_dec

x == y true iff x =?= y returns Eq eq_dec

x << y true iff x =?= y returns Lt lt_dec

x >> y true iff x =?= y returns Gt gt_dec

5.2.2 Special Equalities

When writing a piece of code which is parameterized by an ordered type,
it is very frequent to require a certain type to be ordered with the con-
straint that the equality relation be some special equality, typically Leib-
niz equality. The module system allows one to express such a constraint
by specializing the signature: OrderedType with Definition eq := ....
Unfortunately, this kind of constraints cannot be expressed with type classes
unless the part we wish to specialize is a parameter of the type class and not
a field. To make the use of specific equalities possible, we introduce a spe-
cial class SpecificOrderedType, which is parameterized by the equivalence
relation, and also show that any instance of this class is also an instance of
OrderedType.

Class SpecificOrderedType (A : Type)

(eqA : relation A) (Equivalence A eqA) := {

SOT_lt : relation A;

SOT_StrictOrder : StrictOrder SOT_lt eqA;

SOT_compare : A → A → comparison;

SOT_compare_spec :

∀xy, compare_spec eqA SOT_lt x y (SOT_compare x y)

}.

7this discussion assumes Coq v8.2 ; Coq’s next version is going to introduce a mixed
signature taking advantage of type classes and a specification à la compare_spec, inspired
by this one.
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Instance SOT_as_OT ‘{SpecificOrderedType A eqA equivA} :

OrderedType A := {

_eq := eqA;

_lt := SOT_lt;

...

}.

We also add a notation UsualOrderedType to denote the particular and
yet frequent case where the wanted equality is Leibniz equality. These or-
dered types with specific equalities will come in handy when defining con-
tainers in Section 5.3.

5.2.3 Automatic Instances Generation

After classes, generic lemmas and definitions have been defined, we declare
instances of OrderedType for all basic types and usual type constructors.
When possible, we declare instances of UsualOrderedType, including for
type constructors8. The library provides instances for Peano integers, binary
integers (whether positive, natural or relative), rationals, booleans, lists,
products, sums and options. At this point, generic functions on ordered
types can therefore be used on all combinations of these types and type
constructors without manual intervention, thanks to the automatic inference
of type classes:

Goal ∀(x y : ((nat × bool) + (list Z × Q))), x === y.

To typecheck this goal, an instance of OrderedType is inferred for the type
of x and y. In particular, an effective comparison function is available to
compare elements of this type.

In practice however, a type like the one above will typically be defined
directly as a two-branch inductive:

Inductive t :=

| C1 : nat → bool → t
| C2 : list Z → Q → t.

The type classes system cannot automatically infer instances for such in-
ductive types, but we have implemented a new vernacular command in
OCaml which can handle such cases automatically. This command is in-
voked by Generate OrderedType <type>, takes an inductive type as ar-
gument and tries to generate the equality, the strict order relation, the
comparison function and all the mandatory proofs, before declaring the cor-
responding instance. To do that, it potentially uses other instances already
defined and available in the context. In the generated order relation, con-
structors are ordered arbitrarily, and parameters on a single constructor

8for instance, if A and B are ordered types for Leibniz equality, then so are their product
and their sum.
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are ordered lexicographically9 . For instance, when invoking the command
for the type t above, the following definitions are performed automatically :

Inductive t_eq : t → t → Prop :=

| t_eq_C1 : ∀(x1 y1 : nat) (x2 y2 : bool),

x1 === y1 → x2 === y2 → t_eq (C1 x1 x2) (C1 y1 y2)

| t_eq_C2 : ∀(x1 y1 : list Z) (x2 y2 : Q),

x1 === y1 → x2 === y2 → t_eq (C2 x1 x2) (C2 y1 y2).

Inductive t_lt : t → t → Prop :=

| t_lt_C1_1 : ∀(x1 y1 : nat) (x2 y2 : bool),

x1 <<< y1 → t_lt (C1 x1 x2) (C1 y1 y2)

| t_lt_C1_2 : ∀(x1 y1 : nat) (x2 y2 : bool),

x1 === y1 → x2 <<< y2 → t_lt (C1 x1 x2) (C1 y1 y2)

| t_lt_C1_C2 : ∀(x1 : nat) (x2 : bool) (y1 : list Z) (y2 : Q),

t_lt (C1 x1 x2) (C2 y1 y2)

| t_lt_C2_1 : ∀(x1 y1 : list Z) (x2 y2 : Q),

x1 <<< y1 → t_lt (C2 x1 x2) (C2 y1 y2)

| t_lt_C2_2 : ∀(x1 y1 : list Z) (x2 y2 : Q),

x1 === y1 → x2 <<< y2 → t_lt (C2 x1 x2) (C2 y1 y2)

and this comparison function is generated:

Definition t_cmp (x y : t) :=

match x with
| C1 x1 x2 ⇒

match y with
| C1 y1 y2 ⇒

match x1 =?= y1 with
| Eq ⇒ x2 =?= y2

| Lt ⇒ Lt

| Gt ⇒ Gt

end
| C2 _ _ ⇒ Lt

end
| C2 x1 x2 ⇒

match y with
| C1 _ _ ⇒ Gt

| C2 y1 y2 ⇒
match x1 =?= y1 with
| Eq ⇒ x2 =?= y2

9but note that the command should typically be used in cases where any well-defined
order relation is suitable, not unlike the Pervasives.compare polymorphic comparison in
OCaml.
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| Lt ⇒ Lt

| Gt ⇒ Gt

end
end

end.

We do not show the proofs and instances generated along with these defi-
nitions. Note that we used inductive predicates to define the equality and
order relations: there are other ways to generically define such relations (as
a function predicate for instance) but we chose to use inductives because
it makes proofs easier and shorter.10 It is important to keep the proofs as
short as possible since they can be quite large: in particular, the proof of
transitivity of t_lt grows in cubic proportion to the number of construc-
tors in t, and a call to Generate OrderedType can take several seconds on
a large type.

The Generate OrderedType command will work with all (mutually) re-
cursive inductive definitions, including uniform parameters, which makes it
a very useful addendum to the library. For instance, the following commands
demonstrate its use for automatically comparing strings of characters. An
instance is generated for the type ascii of 8-bit characters, and then for
the type string of strings, which uses ascii.

Generate OrderedType ascii.

Generate OrderedType string. (* string uses ascii *)

Eval vm_compute in (“long” =?= “small”).

(* this computation returns Lt *)

5.3 Finite Sets and Maps

The ordered types we described in Section 5.2 are a type class on which it
is possible to implement a few efficient structures of containers. The goal
of our library is to provide such structures, and we know present and define
the interface for finite sets in detail and also address finite maps.

5.3.1 Interfaces and Specifications

The class of the finite sets containing elements of an ordered type A is defined
in the following way:

10here is one way to see why inductive predicates make proofs shorter: suppose you
know t_eq x y for some x and y, inverting this hypothesis will yield the two possible
cases, one for each constructor in t_eq. With a non-inductive specification, one would
have to reason by analysis on x and y, which yields four cases: the two absurd cases must
be eliminated manually.
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Class FSet ‘{H : OrderedType A} := {

set : Type;

In : A → set → Prop;

empty : set;

mem : A → set → bool;

add : A → set → set;

...

FSet_OrderedType :>
SpecificOrderedType set (Equal_pw set A In) _

}.

Implicit Arguments set [[H] [FSet]].

This class is parameterized11 by a type A and an ordered type OrderedType

A. It brings the type set of all finite sets of elements of type A as well as
the various operations available on these sets. The field In is the mem-
bership predicate for these sets and is the only logical field in this class:
all operators are consequently specified in terms of this predicate. The field
FSet_OrderedType requires explanations: it guarantees that the type set is
itself an ordered type, what’s more an ordered type for a very specific equal-
ity; it does so by introducing a subclass SpecificOrderedType as described
in Section 5.2.2. This equality is the pointwise extension of the membership
predicate In, i.e. two sets are equal if they have the same elements, and it
is defined in the following way for any container type ctr and element type
elt:

Definition Equal_pw (ctr elt : Type)

(In : elt → ctr → Prop) (s s′ : ctr) : Prop :=

∀a : elt, In a s ↔ In a s′.

These definitions allow one to consider sets as ordered types (and in partic-
ular build sets of sets of sets of ...), for instance by writing s === empty.
They also ensure that this equality is convertible with the pointwise equal-
ity, which is the one used in the original FSets library. The last line of the
definition, right after the definition of the class, declares two arguments of
the set projection as implicit. More precisely, set normally expects three
arguments, the type of elements, an instance of OrderedType for this type,
and an instance of FSet: we declare that the type of elements should be
passed explicitely, but that the instances for ordered type and finite sets
will be inferred automatically. The consequence of this is that the type
of sets of elements of a type A can be denoted simply as set A. Given an
instance of FSet for an ordered type A, we can then manipulate sets of A

easily:

Definition add_all (x y z : A) (s : set A) :=

add x (add y (add z s)).

11this design choice, far from being benign, is discussed further in Section 5.5.
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In interactive proof manipulations, it is not advisable that the used instance
FSet be fully unveiled to the user, ie. that the projections set, add, etc, can
be reduced and reveal the actual implementations beneath. In particular,
one’s definitions and proofs should not depend on the actual set imple-
mentations but only on the interface and the provided specifications, which
guarantees an encapsulation of the actual implementation of the structures,
and the genericity of the code that uses the library. To that end, we make
the various fields of the FSet class opaque12:

Global Opaque set In empty mem add ... .

The FSet class only contains the computational interface for the finite
sets’ structure and not its specification. We made this choice in order to
separate operations and specifications for pragmatic reasons: definitions of
functions and algorithms only need the computational interface, which re-
mains relatively small, whereas proofs and only proofs will require the spec-
ifications. Before we define these specifications in detail, we can already
define a few generic predicates and notations on finite sets, among which
Equal s t for pointwise equality, Subset s t for the subset relation and
Empty s to denote the fact that the set s is empty. The available notations
are listed in Table 5.3.

s [=] t Equal s t

s [<=] t Subset s t

v ∈ s In v s

{} empty

{v} singleton v

{v ; s} add v s

{s ˜ v} remove v s

v in s mem v s

s ++ t union s t

s \ t diff s t

Figure 5.3: Available notations on finite sets

All the specifications for the FSet class could be packaged in a single large
class FSetSpecs parameterized by an FSet instance, but we instead choose
to specify each operation in a separate class. For instance, the specifications
for the fields empty and add are given by the following classes, and are
straightforward to understand:

Class FSetSpecs_empty ‘(FSet A) := {

empty_1 : Empty empty

12this does not prevent computations with the compute and vm_compute tactics, but
only the δ-conversions, i.e. the unfolding of definitions, which are performed by some
tactics.
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}.

Class FSetSpecs_add ‘(FSet A) := {

add_1 : ∀s x y, x === y → In y (add x s);

add_2 : ∀s x y, In y s → In y (add x s);

add_3 : ∀s x y, x =/= y → In y (add x s) → In y s
}.

We make this choice for two reasons. First, when writing proofs, it is very
common to ask the system about all lemmas available on some identifier,
say add, using the command SearchAbout add or one of its variants. If
all the specifications – about fifty – are bundled in a single class, this com-
mand will unfortunately display this class’s constructor and the elimination
principle associated with it, and both are very large objects. This is rather
unfortunate, and makes it almost useless in such cases. The other, more
general, reason for our choice is that it makes it possible to have proofs
only depend on what is really necessary. For instance, if some specific data
structure implementing finite sets does not feature all the sets operations
described in the interface, but one’s application does not use the missing op-
erations, one can still rely on our library and its generic interface since the
missing specifications will never be required. Pushing this even further, we
can imagine a development which does not involve any proof (such as a pro-
cedure used as an oracle for some larger algorithm), and would only use the
computational interface FSet. For those systems that require the interface
with full specifications, we define a superclass which embeds specifications
for all operations:

Class FSetSpecs ‘(F : FSet A) := {

FFSetSpecs_In :> FSetSpecs_In F;

FFSetSpecs_mem :> FSetSpecs_mem F;

FFSetSpecs_add :> FSetSpecs_add F;

...

}.

Together, this specification class and the interface class FSet correspond
exactly to the interface FSetInterface.S in the existing library.

Finite maps. In this paper, we only present the interface for finite sets in
order to remain concise, but the library also provides an interface for finite
maps. It is adapted from the standard library’s finite maps (FSets.FMaps) in
a similar way to what we just described for finite sets. In particular, the same
choices were made as far as the separation of operations and specifications,
and the splitting of specifications.
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5.3.2 A Library of Properties

The FSets library contains several modules of generic results and prop-
erties about finite sets: FSetFacts, FSetDecide, FSetProperties, and
FSetEqProperties. The task of adapting these modules to the typeclass-
based interface presented above was a first good way to check our interface
and its ease of use. We adapted all the aforementioned modules without
any major issue, the most delicate point certainly being FSetDecide and
its tactic fsetdec initially contributed by A. Bohannon and which performs
automatic reasoning on the theory of finite sets. One slight difference is that
the original tactic only dealt with one single type of sets at a time, while
our port of the tactic deals with all hypotheses related to sets at the same
time; this can lead to minor incompatibilities. As a whole, all lemmas and
properties keep the same name as in the original library, which minimizes
the amount of work necessary to port one’s code from the modular version
to the one we present here (cf. Section 5.5.3 for more details).

We have also added some properties in order to facilitate reasoning on
functions like mem, choose or min_elt, using inductive views to write their
specifications. For example, choose’s specification is available in the follow-
ing fashion:

Inductive choose_spec (s : set elt) :

option elt → Prop :=

| choose_spec_Some :

∀x (Hin : In x s), choose_spec (Some x)

| choose_Spec_None :

∀(Hempty : Empty s), choose_spec None.

Property choose_dec : ∀s, choose_spec (choose s).

and can be used very easily by doing case analysis on the result of choose_dec.
Higher-order iterators. Elements in a container are traditionally enumer-
ated using step-by-step iterators in imperative languages, and higher-order
iterators à la fold in functional languages. In FSets as well as in our library,
there is one such iterator function fold ; in our interface for elements of
type A, it appears as:

fold : ∀ {B : Type}, (A → B → B) → set → B → B

where the type B is the type of what is commonly called the accumula-
tor. The specification for this function is given in terms of the traditional
fold_left function on lists, and the function elements returning the list
of elements of a set:

fold_1 : ∀f s i,
fold f s i = fold_left (fun a e ⇒ f e a) (elements s) i

This indirect specification is really tedious to use because in order to reason
by induction on a finite set, it requires to express all the other hypotheses
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relative to s in terms of elements s and to proceed by induction on the
list of elements. Because fold is used a lot when programming with finite
sets, reasoning about fold is very frequent and the above procedure must be
done repeatedly. To avoid the tedious process of using fold_1, we designed
an induction principle for fold. The idea is that the induction principle lets
one prove an invariant over the accumulator by proving that the invariant
is true for the initial accumulator and is preserved with each iteration step.

fold_ind :

∀‘{OrderedType A} (B : Type) (P : B → Type)

(f : A → B → B) (i : B) (s : set A),

P i →
(∀(e : A) (a : B), In e s → P a → P (f e a)) →
P (fold f s i).

The preservation is expressed by the fact that if a has the invariant P and an
element e, belonging to the set s, is added to the accumulator, the resulting
accumulator f e a still verifies P. This principle is still rather weak, because
in general, one may need more information in order to properly express the
invariant and prove its preservation. For that reason we provide the following
stronger, more generic, induction principle:

fold_ind_gen :

∀‘{OrderedType A} (B : Type) (P : set A → B → Type)

(f : A → B → B) (i : B) (s : set A),

(∀(s s′ : set A) (a : B), s === s′ → P s a → P s′ a) →
P i →
(∀(e : A) (a : B) (vis : set A),

In e s → ˜In e vis → P vis a → P {e; vis} (f e a) →
P s (fold f s i).

In the latter principle, the invariant takes one extra argument, the set of
elements already visited by the iterator. There is one extra hypothesis to
make sure that the invariant is a morphism for pointwise equality, and in
the preservation step, the new element is such that it has not been visited
yet. The conclusion of the principle is that the invariant is verified for the
whole fold when all elements have been visited. For example, here is how to
write a filtering function13 on sets of integer using fold and then prove its
specification using fold_ind:

Definition filter_pos (s : set nat) :=

fold (fun e s ⇒ if e >> 0 then {e; s} else s) s {}.

Definition filter_pos_invariant (s acc : set nat) :=

∀e, In e acc ↔ In e s ∨ e >>> 0.

Theorem filter_pos_spec : ∀s, P s (filter_pos s).

13the generic filter function is actually part of the FSets interface, we do not use it
here in order to demonstrate fold.
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Proof.
intro s; unfold filter_pos.

apply fold_ind with (P := filter_pos_invariant).

...

Qed.

As a final note, these principles are available with our library but we first
developed them for the original FSets library, and therefore they are also
available for FSets starting with Coq v8.2.

5.4 Applications

5.4.1 Lists and AVL trees

The existing library FSets proposes two kind of implementations of sets
and finite maps, the ones based on sorted lists, and the others on balanced
binary search trees (AVL) [G. 62].

We have adapted the finite sets and maps based on sorted lists, as well
as those sorted on AVL trees. Let us detail for instance the case of finite
sets based on sorted lists. In practice, the implementation of sorted lists is
the same in the modular version and in our version, and they differ only
marginally14. The original development of sorted lists in the FSets library
is a functor parameterized by a module of signature OrderedType, whereas
the development for sorted lists in our version is parameterized by an in-
stance of the OrderedType class. This is achieved by using Coq’s sectioning
mechanism and the Context command which introduces instance variables
in a section:

Modular version

Module Make (X : OrderedType)

<: S with Module E := X.

Module E := X.

Definition elt := X.t.

...

End Make.

Type class version

Section Make.

Context ‘{OrderedType elt}.

...

End Make.

In the ‘{OrderedType elt} context, elt is a fresh type featuring a decid-
able order. The definitions in the section can then use elt as an ordered
type, and they are automatically generalized at the time the section is closed.

Once the definitions of sorted lists and their various operations, as well
as the adequate proofs, have been completed, we are only left with the task
of declaring the instances corresponding to the classes presented earlier in
Section 5.3.1. We can package all these definitions in a specific module

14it is thus natural to be concerned about the issue of code duplication between both
versions ; we discuss this point in Section 5.5.
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SetList, which doesn’t have to be imported by an external user, since only
the instances providing the interface are necessary. In the case of sorted
lists, which provide a structure of finite sets for any ordered type, we define
a generic instance of FSet parameterized by an ordered type:

Instance SetList_FSet ‘{Helt : OrderedType elt} :

FSet := {

set := SetList.set elt;

In := @SetList.In elt Helt;

empty := ...

}.

This definition really declares a whole family of instances, in other words
it gives a way to obtain a finite set structure for any ordered type elt.
Similarly, we can define a family of specifications for each of these structures
indexed by an ordered type elt:

Instance SetList_FSetSpecs ‘{Helt : OrderedType elt} :

FSetSpecs SetList_FSet := {

FFSetSpecs_In := ...;

FFSetSpecs_mem := ...;

...

}.

With these instances defined in a file (resp. module), it is enough to import
that file (resp. module) to be able to use finite sets on any ordered type.

5.4.2 Usage

The simplicity with which our library can be used is one of its main interests.
To work with finite sets, it is enough to import the module Sets which
exports the following functionalities:

• the notion of ordered type, along with a library of instances and results
about ordered types ;

• the generic instances for finite sets based on AVL trees, whose design
is completely similar to the one based on sorted lists ;

• the interfaces, specifications, notations and basic properties relative to
finite sets.

A first thing to note is that the library loads AVL trees by default instead of
sorted lists. This is justified by the fact that AVL are more efficient in general
and there is no penalty in terms of loading time with respect to sorted lists.
This is unlike the modular version where applying the AVL functors takes
much longer than applying the sorted lists’ version. A user who wishes to
use sorted lists instead of AVL trees can still load the adequate instances ;
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she could also manually specify what instance to use if the circumstances
demand it15. A module Maps also exists, which loads all the infrastructure
required to work with finite maps ; in particular, it loads the maps based
on AVL trees.

Once Sets has been imported, one can use all the generic definitions and
notations on sets, with the only restriction that they be applied to ordered
types. If, as is often the case, the necessary instances of OrderedType

can be automatically inferred as described in Section 5.2.3, then the use of
finite sets becomes totally transparent to the user, and becomes completely
similar to fully polymorphic structures such as lists. The following example
demonstrates the computation of a set of integers:

Require Import Sets.

Fixpoint fill n s :=

match n with
| O ⇒ s
| S n0 ⇒ fill n0 {n0; s}

end.

Eval vm_compute in mem 6 (fill 7 {42}).

(* this computation returns ’true’ *)

Finite sets for different types can coexist peacefully in the same context, in
the same functions ; in particular, thanks to the FSet_OrderedType field in
the FSet class (cf. 5.3.1), we can manipulate sets of sets:

Definition map_fill (s : set nat) : set (set nat) :=

fold (fun n S ⇒ {fill n {}; S}) s {}.

Eval vm_compute in cardinal (map_fill (fill 3 {})).

(* this computation returns 3 *)

Similarly easy is the use of lemmas from the library during proofs. For
instance, to apply the first part of the specification of the add operation,
called add_1, it is enough to apply the lemma directly and all implicit ar-
guments are correctly inferred:

Goal ∀(x : option nat) s, In x {x; s}.

Proof. intro; apply add_1; reflexivity. Qed.

To conclude that section, here is an example involving finite maps and
some of the notations associated to maps. The type of finite maps binding
keys of type key to values of type elt is written Map[key, elt]. The
notation s[k ← v] denotes the insertion (or the update) of a binding in
the map s, [] is the empty map and s[k] is the value associated to the key
k in s, if any.

15in such cases, the gain in verbosity compared to the modular version is reduced to
zero, but this explicit instantiation can almost always be avoided.
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Require Import Maps.

Fixpoint fill (s : Map[nat,nat]) (n : nat) :=

match n with
| O ⇒ s
| S n0 ⇒ fill s[n0 ← S n0] n0

end.

Eval vm_compute in (fill [] 7)[4].

(* this computation returns ’Some 5’ *)

The library is available for download at the following URL:
http://www.lri.fr/~lescuyer/Containers.fr.html.

5.5 Discussion

In this section, we take a closer look at the comparison between our library
and the existing one, and discuss a couple of choices and limitations in our
current implementation.

5.5.1 Performances

In order to compare the performances of our library with the module-based
implementation, we added a file called BenchMarks.v which tests the basic
functions over finite sets. The test consists in creating a set of integers from a
(pseudo-)randomly generated sequence, and in making various membership
tests in the resulting set. This process is repeated for sets based on type
classes and sets based on modules. The result is satisfying since, when the
comparison functions for the elements are the same16, the two alternatives
show the exact same performance.

To understand why the mere fact that the performances are similar is
satisfying, it is important to notice that the convenient and concise formu-
lation that comes from using type classes is actually made to the expense
of the terms’ size. Indeed, although the various type classes parameters are
implicit and are automatically filled in, one must not forget that these argu-
ments are present in the proof terms, and that the corresponding instances
must be passed on and reduced during the computations. For example, the
simple expression {1; {}} (or add 1 empty), which denotes the singleton
set containing 1, actually corresponds to the following sybilline expression:

16several comparison functions, for relative integers in particular, were not completely
computational in the existing library and because of that, were being five times slower
than the purely computational functions in our library. This does not denote any significa-
tive difference between modules and type classes, but rather underlines the importance
of having an interface which encourages one to write purely computational comparison
functions. We of course corrected the slow comparison functions from the existing library
before running our benchmarks.

http://www.lri.fr/~lescuyer/Containers.fr.html
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@add nat (@SOT_as_OT nat (@eq nat)

(@eq_equivalence nat) nat_OrderedType)

(@SetAVLInstance.SetAVL_FSet nat

(@SOT_as_OT nat (@eq nat)

(@eq_equivalence nat) nat_OrderedType))

1

(@empty nat

(@SOT_as_OT nat (@eq nat)

(@eq_equivalence nat) nat_OrderedType)

(@SetAVLInstance.SetAVL_FSet nat

(@SOT_as_OT nat (@eq nat)

(@eq_equivalence nat) nat_OrderedType)))

whereas the corresponding expression with modules would simply be:

NatSet.add 1 NatSet.empty.

To sum this up, functor applications are replaced by applications of extra
arguments in all set-related operations.

If the performances of the computations do not suffer from this hidden
complexity, this is unfortunately not the case for the time spent typechecking
these objects when compiling a file, or simply when manipulating them in an
interactive proof. We get back to this important point infra in Section 5.5.4.

5.5.2 Upgrade of Existing Code

The task of updating earlier versions of our tactic to this library represented
a good benchmark to judge how hard it was to adapt existing code, based
on FSets/FMaps, to our alternative library. The code base is indeed about
30 000 lines of Coq and used various different types of finite sets, including
sets of sets.

The conclusion of this experience was very positive since the modification
of our existing code went on without a significant issue. As a matter of fact,
because the names of operations and lemmas have been preserved between
the original library and ours, the modifications one has to make to one’s
existing code are almost automatic:

• for all modules verifying the signature OrderedType, define the corre-
sponding OrderedType instance17 or use the translation functors de-
scribed in the next section ;

• replace all occurences of set types like NatSet.t with set nat ;

• replace invocations of detruct compare in proof scripts by destruct

compare_dec ;

17this is only needed if the instance cannot be inferred automatically by the system, nor
generated with the Generate OrderedType.
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• “unqualify”all references to objects belonging to modules of finite sets
or properties over finite sets, for instance replace any qualified ref-
erence to NatSet.add, to the lemma NatSet.add_3 or to the tactic
NatSetDec.fsetdec by add, add_3 and fsetdec.

These modifications can be applied seamlessly and also make one’s code
more concise and more readable. Therefore, they should not deter one from
switching from one library to the other.

5.5.3 Code Sharing

When we presented the interfaces in Section 5.3 and the concrete implemen-
tations in Section 5.4, we emphasized how the library of generic properties
and the developments of lists and AVL trees were almost exactly the same in
our library and in the original one. Therefore, it is natural to wonder about
how we can avoid code duplication between the two versions: for obvious
reasons, it wouldn’t be satisfactory if the code remained duplicated.

In order to share most of that which is duplicated over the two versions
of the library, it is possible to only write the version based on type classes,
and then obtain the modular version with very little boilerplate. We show
this construction on the example of ordered types. Given the signature
OrderedType and the type class OrderedType as in Section 5.2, we can
build the following functor which translates an instance of OrderedType in
a module of signature OrderedType:

Module Type S.

Parameter t : Type.

Instance Ht : OrderedType t.
End S.

Module OT_to_FOT (Import X : S) <: OrderedType.

Definition t := t.
Definition eq : t → t → Prop := _eq.

Definition lt : t → t → Prop := _lt.

Definition eq_refl : ∀(x : t), eq x x :=

reflexivity.

Definition eq_sym : ∀(x y : t), eq x y → eq y x :=

symmetry.

...

Definition compare : ∀x y, Compare lt eq x y.

Proof. ... Qed.

End OT_to_FOT.

The signature S is just a way to package an ordered type with its instance
in a module. The functor itself is parameterized by a module of signature



128

S, in other words by an ordered type, and creates a module of signature
OrderedType for the type and relations passed in the parameter. The in-
stance and the definitions for a given ordered type t can therefore be defined
once and for all, and the user of the modular library can get the correspond-
ing module via this functor. It is interesting to note that one can also build
the converse translation, that is a functor parameterized by an OrderedType

module which returns a module of signature S containing the correspond-
ing instance. Of course, this translation has a lot less interest because it
requires the user to manually and explicitely define each instance he needs
by applying this functor, which is precisely what type classes are there to
avoid. The functor OT_to_FOT, on the contrary, is not more constraining to
use than the existing module-based system.

The sharing we obtain in this fashion can be generalized to other parts
of the system, for instance we could define a functor returning a module of
finite sets for a type A from an instance of FSet A. This way, we would only
have to duplicate the interfaces of the different parts of the system, all still
sharing the same concrete implementations. Our library features a module
called Bridge which contains such functors, albeit only for ordered types.

5.5.4 Designing the Interface

In Section 5.3.1, we chose to parameterize the FSet type class with the
(ordered) type of the elements. We could also have written the FSet class
without this parameter, in the following way:

Class FSet := {

set : ∀A {OrderedType A}, Type;

In : ∀‘{OrderedType A}, A → set A → Prop;

empty : ∀‘{OrderedType A}, set A;

...

}.

This class should be interepreted in a slightly different way from the one
defined in Section 5.3.1: the class itself is not parameterized by an ordered
type anymore, but each field is. Hence, an instance of this class provides
implementations of finite sets for any possible ordered type and not for a sin-
gle particular one. For instance, sorted lists and AVL trees, as presented in
Section 5.4.1, are potential instances of this class because they can be used
on any ordered type. This is in contrast to specific structures like Patricia
sets [OG98] which can only be used to form sets of binary integers. The
advantage of this alternative formalization is that one can use different in-
stances in the class definition itself, for instance we could add the traditional
map operation:

map : ∀‘{OrderedType A, OrderedType B},

(A → B) → set A → set B
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whereas this would neither be possible with our parameterized interface,
nor with the module system. It seems to us that this kind of benefits is less
important than the ability to deal with implementations that are specific to
certain element types (like integers), and therefore we decided to keep the
formalization where FSet is parameterized.

Unfortunately, this choice is not without consequences on the size of the
terms created using the library. We illustrated in Section 5.5.1 how implicit
type class arguments were leading to larger terms even though they were
hidden to the user. This effect gets amplified by the parameterization of
the FSet class: indeed, all operations in FSet are themselves parameterized
with the same arguments as the class itself, and these arguments appear
twice in the proof term for each operation. For instance, suppose F is a
generic instance of FSet and nat_OT has type OrderedType nat, then the
expression add 5 {} will actually become:

@add F nat nat_OT 5 (@empty F nat nat_OT)

if the class is not parameterized (second, rejected, alternative) whereas it
becomes:

@add nat nat_OT (F nat nat_OT) 5

(@empty nat nat_OT (F nat nat_OT))

when the class is parameterized (our original, retained, alternative). The
difference may seem insignificant but we have measured its effect with ac-
curacy on a development which uses finite sets extensively, and we found
out that the total size of proofs and definitions would grow by about 40%,
as well as the time devoted to type-checking the source files. The increase
in the size of terms and type-checking time is one of the only downsides of
using type classes, and it is really unfortunate that this gets amplified by
the (otherwise useful) parameterization of the FSet interface18. In practice,
the time we gained in functor’s instantiations still outweighed the time lost
because of the size of terms.

5.5.5 Type Classes and Modules

The work presented here is not a general criticism of modules compared to
type classes, let alone a criticism of the existing FSets library. As demon-
strated in [WM06], modules and type classes are not interchangeable and
each one can claim benefits over the other. In particular, modules allow a
good control of the namespace, unlike type classes. Modules are also very
well suited to splitting a large system in smaller parts with well defined in-
terfaces ; functors allow one to easily replace one part of such a system by

18it is interesting to note that the duplicated expressions, or parameters, appear as
siblings in the Coq terms and are thus typed in the same context. Therefore, some form
of memoization or hash-consing in the Coq type checker would surely cancel these negative
effects.
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another with the same interface and this can come in very handy to test
alternative algorithms or compare choices in a larger system.

However, we think that generic data structures like sets or maps are not
good candidates for a modular design since it is common to need several dif-
ferent instances of these structures at the same time, which raises the issues
mentioned in Section 5.1.2. For such cases, it seemed to us an interesting
experiment to try and take advantage of the new type class system in order
to provide alternative implementations of such structures.

5.6 Conclusion

We have presented a Coq library of finite sets and finite maps which repro-
duces much of the features of the existing FSets/FMaps library, but which is
based on the new type class system instead of the module system. Thanks
to the use of type classes, this library facilitates the use of these structures
and leads to faster, more concise development of algorithms in Coq. It also
avoids a couple of performance issues related to the module system. Existing
implementations which rely on the standard library can be easily adapted
to this version. We are convinced that such a library contributes greatly to
improving Coq as a programming language since it provides easy access to
standard, generic, commonly used data structures.



CHAPTER 6

A Reflexive SAT-Solver

Comment pouvez-vous identifier un doute avec certitude?
- A son ombre! L’ombre d’un doute, c’est bien connu.

Raymond Devos, A plus d’un titre
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We start the formalization of our reflexive tactic by the propositional
solver. In Chapter 1, we have emphasized how Alt-Ergo’s architecture is
modular and we will reproduce this modular architecture in our formaliza-
tion as well. In particular, the propositional solver, as described in Chap-
ter 2, can lead to a reflexive tactic for propositional logic, and this is what
we will describe in this chapter. In Section 6.1, we describe a Coq formaliza-
tion of this DPLL procedure and we prove its soundness and completeness.
We then use this procedure in Section 6.2 in order to build a reflexive tactic
solving propositional goals. We finish by showing how to use modularity
and define a better strategy in Section 6.3.
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6.1 Formalizing DPLL in Coq

In this section, we present a Coq formalization of the inference system pre-
sented in Section 2.1.3 page 25, for which we prove soundness and complete-
ness with respect to a notion of semantics for formulae.

6.1.1 Literals

We start by defining how literals shall be represented. To do so, we will
make use of Coq’s module system [Cou97, Chr03]. Coq module types allow
one to pack together types, functions and related axioms by keeping a high
level of abstraction. One can then create functors, i.e. modules which are
parameterized by other modules of a certain signature and which can then
be instantiated on any modules that match the expected signature.

Module Type LITERAL.

Parameter t : Set.

(* t is an ordered type *)

Instance t_OT : OrderedType t.
(* Negation function and its properties *)

Parameter mk_not : t → t.
Axiom mk_not_invol : ∀l, mk_not (mk_not l) === l.
Axiom mk_not_compat : ∀l l′, l === l′ ↔ mk_not l === mk_not l′.
...

(* Sets of literals, clauses and sets of clauses *)

Notation lset := (set t).

Notation clause := (set t).

Notation cset := (set clause).

End LITERAL.

Figure 6.1: A module type for literals

Therefore, in order to take advantage of Coq’s module system, we will
first define module types for literals and formulae, and we will then be able
to develop our decision procedure in a way that is independent of the actual
representation of the input. The signature at the base of our system is
the module type LITERAL of literals and is presented in Figure 6.1. This
module type provides a type t for literals, a function mk_not which builds
the negation of a literal and some axioms about this function (like the fact
that it is involutive). Literals also come with a decidable equality and a total
order, which are necessary to later define finite sets of literals: this is done by
requiring an instance of OrderedType t in the signature, as described in the
previous chapter. Note that there is no way to construct literals from scratch
with this signature, this is indeed not required by the DPLL procedure.
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Finally, the last part of the LITERAL signature introduces notations for sets
of literals and sets of sets of literals. We actually use two different notations,
namely lset and clause, to denote finite sets of literals. Although they
represent the same type, the reason we make that distinction is because
our intent is that they will represent different objects and will be used in
different places. Having different names ensures better maintenance and less
confusion1. Precisely, lset will be used to build partial assignments, i.e.
sets of literals that are considered to be true, whereas clause, as its name
suggests, will be used to represent clauses, i.e. disjunction of literals. The
last notation cset will be used to represent conjunctions of clauses, in other
words CNF formulae. Note that in defining these notations, we used the
fact that an instance for OrderedType for the type of literals was introduced
before (in order to build the sets of literals), and also that our containers
library ensures that sets of elements form an ordered type themselves (cf.
Section 5.3.1), thus allowing to build sets of sets of literals.

6.1.2 Semantics and Formulae

In the previous subsection, we defined module types for literals and we now
turn our attention to defining a notion of semantics, i.e. what it means for
a formula to be “true”. We cannot directly (nor do we want to) rely on the
prover’s notion of truth because we are dealing with abstract formulae and
not native Coq propositional formulae.

Once again we use Coq’s functorization system and define semantics as
a functor with respect to a module L of type LITERAL. The first thing we
need for semantics is a notion of model: in accordance with Definition 2.1.1
page 27, a model should be a function assigning a truth value to a literal.
We will simply define a model as any type which can be seeen as a function
from literals to propositional values:

Module Type SEM_INTERFACE (Import L : LITERAL).

Parameter model : Type.

Parameter model_as_fun : model → (L.t → Prop).

Coercion model_as_fun : model  Funclass.

...

End SEM_INTERFACE.

1In practice, we also took advantage of that distinction in order to use different finite
sets implementations for lset and clause, namely AVL trees for the former and ordered
lists for the latter, because they were used in a quite different manner in the algorithm:
partial assignments were mainly used with membership tests, while clauses were mainly
iterated upon. Therefore, the cost of keeping a balanced tree in order to obtain logarithmic
lookup time was not justified for clauses. In such a case, the notations lset and clause

represent different types. We simplify the presentation in this document, but note that
the fact that we had made that syntactic distinction between lset and clause from the
start made it much easier to use different implementations later on.
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The type model is left abstract and can be transformed into a function
from literals to propositional values using model_as_fun. The Coercion

declaration ensures that we can implicitely use a model as a function over
literals.

Not any function from literals to Prop can be considered as a model for
literals, it also has to verify some properties which we require by adding
some axioms to the signature:

Axiom morphism : ∀M l l′, l === l′ → (M l ↔ M l′).

Axiom consistent : ∀M l, M l → ˜(M (mk_not l)).

Axiom total : ∀M l, ˜˜(˜(M l) → M (mk_not l)).

The first one is technical and simply expresses that a model must be a
morphism for the equality on literals and is required because we did not
enforce equality on literals to be Leibniz equality. The other two axioms
denote the logical meaning of a model:

• consistent expresses that a model should not assign a true proposi-
tion to both a literal and its negation;

• total expresses that a model should be total, in the sense that given
any literal, itself or its negation should be true in the model. It is
stated with a double negation because Coq’s logic is intuitionistic and
we would not be able to prove this axiom without double negation for
the type of models we have in mind. For instance, suppose M l is some
propositional value ˜A, and as one can expect, M (mk_not l) is A; it is
not true in general in intuitionistic logic that ˜˜A → A and therefore
the model would not be necessarily “total” for literal l. By adding
the double negation, we make sure that this property is provable in
intuitionistic logic.

Note that together, total and consistent are equivalent to the prop-
erty ∀M l, ˜˜(M l ↔ ˜ M (mk_not l)), i.e. they express that the in-
terpretation of the negation of a literal l should be the negation of the
interpretation of l. Only the total part of this equivalence requires a
double-negation, hence we split this property in the two axioms above.

It is now straightforward to define what it means for a model to satisfy
a clause or a set of clauses, and when a formula in CNF is unsatisfiable:

Definition sat_clause (M : model) (C : clause) :=

∃l ∈ C, M l.
Definition sat_goal (M : model) (D : cset) :=

∀C ∈ D, sat_clause M C.

Definition unsatisfiable (D : cset) :=

∀(M : model), ˜sat_goal M D.

This gives us a notion of satisfiability for clauses and formulae, but we also
need to take the context of a sequent into account. As we did in the proofs
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of Chapter 2, we need a notion of how a set of literals can be a submodel of
some model:

Definition submodel (G : lset) (M : model) := ∀l ∈ G, M l.

Note that this definition of a submodel implies that G is a well-formed partial
assignment, in the sense that it does not contain both a literal and its
negation. From this notion of submodel naturally follows the definition of
incompatibility between a partial assignment and a set of clauses:

Definition incompatible (G : lset) (D : cset) :=

∀(M : model), submodel G M → ˜sat_goal M D.

We can now define a module type CNF for formulae, as shown in Fig-
ure 6.2. This signature provides a type formula for the concrete representa-
tion of formulae. Because the type of formulae will depend on some notion
of literals, the signature CNF also embeds a module L of signature LITERAL

through the Declare Module vernacular. Another module is required in
the interface, with the signature SEM_INTERFACE L, which brings a notion
of model and semantics for the module of literals L. Finally, an instance
of CNF instance shall provide a "CNF conversion" function called make that
takes a formula and returns a sets of clauses (as defined in the module of
literals). Such a formalization (having the module bringing its own abstract
type of formulae and conversion function) allows instances that only ac-
cept formulae that are already in CNF, and where make is just the identity
function for instance.

Module Type CNF.

Parameter formula : Set.

Declare Module L : LITERAL.

Declare Module Sem : SEM_INTERFACE L.

Parameter make : formula → L.cset.

End CNF.

Figure 6.2: A module type for formulae

6.1.3 Sequents and Derivations

We can now start the definition of a functor SAT parameterized by a module
F of type CNF and which will implement our SAT solving algorithm without
any knowledge about the actual representation of formulae or literals. The
development can only use elements that are defined in F’s signature and
this ensures modularity as well as reusability. The functor starts with the
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definition of sequents: a sequent, noted G ⊢ D, is simply a record with a
partial assignment G and a set of clauses D, as discussed in Section 2.1.3. For
conveniency, we “redefine” incompatibility for sequents using incompatibility
from the semantics module Sem.

Module SAT (Import F : CNF).

Import L.

Record sequent : Type := {G : lset; D : cset}.

Definition incompatible (S : sequent) :=

Sem.incompatible (G S) (D S).

...

End SAT.

The next step is the definition of the rules system presented in Fig. 2.1. We
use an inductive definition shown2 in Fig. 6.3 by enumerating all possible
ways a derivation can be built from a given sequent. We call this inductive
derivable and an object of type derivable (G ⊢ D) represents a proof
derivation of sequent G ⊢ D. Note that each constructor faithfully follows
from a rule of the original system. For instance, Assume describes unit
propagation, and Elim and Red together describe the two rules for boolean
constraint propagation.

Inductive derivable : sequent → Prop :=

| Conflict : ∀G D, ∅ ∈ D → derivable (G ⊢ D)

| Assume : ∀G D l, {l} ∈ D → derivable (G, l ⊢ D \ {l}) →
derivable (G ⊢ D)

| Elim : ∀G D l C, l ∈ G → l ∈ C → C ∈ D →
derivable (G ⊢ D \ {C}) → derivable (G ⊢ D)

| Red : ∀G D l C, l ∈ G → l̄ ∈ C → C ∈ D →
derivable (G ⊢ D \ C, C \ {l̄}) → derivable (G ⊢ D)

| Split : ∀G D l, derivable (G, l ⊢ D) → derivable (G, l̄ ⊢ D) →
derivable (G ⊢ D).

Figure 6.3: The inductive definition of the proof system

6.1.4 The Decision Procedure

Using the semantics we defined earlier, we can now proceed to prove the
fundamental theorems about our derivation system. First in line is the
soundness of the proof system:

2In this figure and in the following, we use mathematical notations for set-related
operations, rather than Coq’s concrete syntax, for the sake of readability.
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if there exists a derivation of the sequent ∅ ⊢ D, D is unsatisfiable

and as in the proofs in Chapter 2 we prove something more general than
this statement, using the notion of incompatibility that we just described:

Theorem soundness : ∀S, derivable S → incompatible S.

The special case where the context of sequent S is empty yields exactly the
above statement. This theorem can be proved by a structural induction on
the derivation of S following the arguments from Theorem 2.1.5, and the
Coq proof is not difficult (about 50 lines of tactics).

Conversely, the completeness of the algorithm could be expressed by the
following statement:

Theorem completeness :

∀S, wf_context (G S) → incompatible S → derivable S.

which corresponds to Theorem 2.1.9. There are at least two reasons why we
do not prove completeness in this particular form:

• We do not only want full equivalence between the notions of derivabil-
ity and incompatibility, but we also want a decision procedure, i.e. a
function capable of telling if a given formula is unsatisfiable or not.
Proving such a theorem of completeness would certainly give us an
equivalence between the derivability of a sequent and its incompati-
bility, thus bringing the problem of deciding satisfiability down to the
one of deciding derivability. However, deciding derivability amounts
to try and build a derivation for a given sequent if possible, and it is a
proof that actually encompasses the completeness theorem presented
above. Thus, we want to avoid doing the same job twice.

• We want to be able to use that procedure in Coq through the mecha-
nism of reflection, i.e. by actually computing the proof search in the
system. Of course, an intuitionistic completeness proof is construc-
tive and therefore can give a derivation, as an algorithm, but it is
well known that procedures with propositional contents cannot be ex-
ecuted as efficiently as purely computational functions, because in the
first case, proofs need to be replayed along with computations. Thus,
we do not want to encode the decision procedure as part of a general
completeness theorem.

For these reasons, we will build the decision procedure in two steps: first
we will program a function without propositional content to implement the
actual decision procedure, and then we will show that its results are correct.
This function will not return any “complex” information, but only Sat G if
it has found a partial model G, and Unsat otherwise:
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Inductive Res : Type :=

| Sat : lset → Res

| Unsat : Res.

The decision procedure per se can now be implemented as a recursive func-
tion returning such a result:

Fixpoint proof_search (G ⊢ D : sequent) n {struct n} : Res :=

match n with
| O ⇒ Sat ∅ (* Absurd case *)

| S n0 ⇒
if is_empty D then Sat G (* Model found! *)

else
if ∅ ∈ D then Unsat (* Rule Conflict *)

else ...

...

let l := pick D in (* Rule Split *)

match proof_search (G, l ⊢ D) n0 with
| Sat M ⇒ Sat M

| Unsat ⇒ proof_search (G, l̄ ⊢ D) n0

end
...

end.

Because the recursion is not structural, we use an extra integer argument
n, and we will later make sure that we call the function with an integer
large enough so that n never reaches 0 before the proof search is completed.
This short excerpt of the function proof_search shows that it proceeds by
trying to apply some rules one after another, one rule at a time, with a
given strategy. Here, the function first checks if the problem is empty, in
which case it returns the current context as a model; otherwise, it checks
if the empty clause is in the formula, in which case it returns Unsat. We
then skip some parts of the function, where we try to apply the rules for
elimination, reduction or unit propagation. The last part corresponds to the
Split constructor: some literal l is picked in the problem using the pick

function and the proof search is called recursively with the literal added to
the partial assignment, which corresponds to the left branch of the Split

rule. If this branch is satisfiable, the whole formula is satisfiable in the same
model. If it is unsatisfiable, we call the proof search again for the right
branch and return the result.

The first theorem about proof_search states that when it returns Unsat,
it indeed constructed a derivation on the way:

Theorem proof_unsat :

∀n S, proof_search S n = Unsat → derivable S.
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The proof follows the flow of the function and shows that each recursive call
that was made corresponds to a correct application of the derivation rules.
One may wonder why we didn’t construct this derivation in proof_search,
so as to return it with Unsat: the reason is that a derivation contains proofs
(in side conditions) and had we done so, our function would not have been
100% computational anymore.

The second theorem about proof_search is the one that encompasses
completeness: it states that if Sat M has been returned, it is indeed a model
of the formula and of the context3.

Theorem proof_sat :

∀n S M, µ(S) < n → wf_context (G S) →
proof_search S n = Sat M →
(G S) ⊆ M ∧ sat_goal M (D S).

A couple of remarks about this theorem are necessary:

• µ is a measure of a sequent that we have defined in Coq, and for which
we proved that it decreases for every recursive call in the algorithm.
We could have defined the function by a well-founded induction on this
measure, but it is computationally slightly more efficient to use the ex-
tra integer. This is a well-known technique to transform non-structural
inductions in structural inductions [BC04]. A suitable measure of a
sequent G ⊢ D here is the size of D plus the number of literals which
appear in D and are unbound (positively or negatively) in G. When
calling proof_search on a sequent S, a suitable integer is µ(S) + 1: it
is large enough for proof_sat to be applicable, in other words for the
procedure to be complete;

• we need an extra hypothesis that the context remains well-formed
(wf_context (G S)), which means that it doesn’t contain a literal and
its negation. This is not guaranteed by the derivation rules because
the side conditions were purposely very loose in order to allow any
kind of strategy. Here, it is our strategy that guarantees this invariant
is never broken, and this is part of the completeness proof.

Together with the soundness theorem, this shows that proof_search is a
decision procedure for unsatisfiability and we can now define this “top-level”
dpll function and prove the corresponding soundness theorem:

Definition dpll (f : formula) : Res :=

let S := ∅ ⊢ (make f) in

proof_search S (µ(S)+1).

3Technically, the set returned is not a model because it is only partial; it can be
completed into a model though, as long as it is a valid partial assignment, and we simplified
the actual details here since they seem cumbersome.
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Theorem dpll_correct :

∀f, dpll f = Unsat → Sem.incompatible ∅ (make f).

The definition of proof_search and the proofs of its properties require 700
lines of code.

6.2 Deriving a Reflexive Tactic

We now show how to use the procedure we have developed so far as a tactic
to solve goals in our proof assistant.

6.2.1 Reification

In order to use our SAT solver on Coq propositional formulae, we need to
instantiate the SAT functor. This raises the question of the actual represen-
tation of formulae and literals: we need to build modules of types LITERAL

and CNF that will represent Coq formulae.
A natural choice for the type of literals would be to directly use the

type Prop of propositions, but this is impossible because the type of literals
must be an OrderedType, and in particular we need to be able to decide if
two given propositions are equal or not. Indeed, consider the formula A ∧
˜A: we need to know that the propositional variable A is the same on both
sides to conclude that this formula is unsatisfiable. Since the only decidable
equality on sort Prop is the one that is always true, we cannot use Prop as
the type of literals.

Instead, we resort to Coq’s metalanguage Ltac, which we introduced
in Section 4.2.1. This language provides pattern-matching facility on Coq
terms, and thereby allows us to check the syntactic equality of proposi-
tional terms at a metalevel. We will use this language to build, for a given
propositional formula F, an abstract representation of F on which we will be
able to apply the algorithm. This process, called reification or sometimes
metaification, has been introduced earlier in Section 4.2.4.

Using Ltac, we first build a function get_vars which traverses a formula
F and retrieves a list of all the propositional variables of F. We define another
function list_to_map that turns such a list into a balanced map. This map
now contains all the propositional variables of F and provides an efficient
way to search for a particular variable into a map. The type of these maps
is called varmap and is defined as a parameterized binary tree:

Inductive varmap (A : Type) :=

| Empty_vm : A → varmap A

| Node_vm : A → varmap A → varmap A → varmap A.

For instance, if F is the following formula:

F: A ∧ (˜B ∨ (p A C)) ∧ (∀D, (p D D))
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the result of list_to_map (get_vars F) will be a map containing the vari-
ables A, B, (p A C) and ∀D, (p D D). In particular, the last variable is ab-
stracted because our propositional language does not include quantifiers.
Given this map, we are able to represent variables by their path in the map:
the type of paths is index and is defined as

Inductive index : Set :=

| Left_idx : index → index

| Right_idx : index → index

| End_idx : index.

As long as the varmap is built in a balanced way, the representation of
literals through indices is logarithmic in the total number of variables in the
formula. It is now straightforward to create the module LPROP of literals,
where a literal is just an index in the map and a boolean saying if it is
negated or not, and the mk_not function a simple inversion of this boolean:

Module LPROP <: LITERAL.

Definition t := index × bool.

Definition mk_not (p,b) : t := (p, negb b).

...

End LPROP.

We can move on to defining the corresponding types for formulae. We
will for now assume that we only deal with formulae in conjunctive normal
form, and we address the problem of conversion to CNF later in Chapter 7.
In Fig. 6.4, we show an excerpt of the module CNFPROP of type CNF, which
implements our type of formulae. Its literals are, of course, the literals of
the module LPROP we just defined. Formulae and clauses are defined in
a very natural way by two inductives: a formula is either a clause or a
conjunction of formulae; a clause is a literal or a disjunction of clauses. This
representation makes the function make converting a formula to a set of sets
of literals (not shown here) really straightforward.

The CNFPROP module is not finished yet since we also need to provide a
module of interface SEM_INTERFACE LPROP, i.e. semantics for the proposi-
tional literals. A natural model for literals is a map of type varmap Prop,
since it binds literals to their propositional value:

Module SEMPROP <: SEM_INTERFACE LPROP.

Definition model := varmap Prop.

Definition model_as_fun (v : model) (l : L.t) : Prop :=

match l with | (id, true) ⇒ lookup id v
| (id, false) ⇒ ˜(lookup id v) end.

...

End SEMPROP.

where lookup id v returns the proposition bound to id in the map v, and
the default proposition True if id is not bound in the map. The coercion
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Module CNFPROP <: CNF.

Module L := LPROP.

Inductive clause : Set :=

| COr : clause → clause → clause

| CLit : L.t → clause.

Inductive formula : Set :=

| FAnd : formula → formula → formula

| FClause : clause → formula.

...

End CNFPROP.

Figure 6.4: A module for propositional formulae

model_as_fun can be seen as a way to interpret literals in a varmap, and
we can interpret clauses and formulae using this interpretation of literals:

Fixpoint cinterp (v : model) (c : clause) : Prop :=

match c with
| CLit l → v l
| COr c1 c2 → cinterp v c1 ∨ cinterp v c2

end.

Fixpoint interp (v : model) (f : formula) : Prop :=

match f with
| FClause c → cinterp v c
| FAnd f1 f2 → interp v f1 ∧ interp v f2

end.

This interpretation function interp is such that interp v f interprets an
object f of type formula to its propositional counterpart in Coq, and is the
reverse operation of reification.

The last step of the reification process is to build a tactic in Ltac, that,
for a given formula F in Coq’s propositional language, builds an abstract
formula f of type formula and a map v such that interp v f = F. We
have already covered the construction of the map v. The construction of the
formula f is realized by a couple of recursive Ltac tactics which analyze the
head symbol of the current formula to construct the corresponding abstract
version. For instance, the top-level function matches conjuncts and goes like
this:

Ltac reify_formula F v :=

match constr:F with
| and ?F1 ?F2 ⇒

let f1 := reify_formula F1 v
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with f2 := reify_formula F2 v in

constr:(FAnd f1 f2)

| ?F ⇒
let c := reify_clause F v in constr:(FClause c)

end.

Now, if we go back to our previous example, and if we take this formula as
our current goal, we can use the tactics we just described to build a suitable
map, reify the goal in an abstract formula f, and replace the current goal
by the interpretation of f.

1 subgoal

=============================

A ∧ (˜ B ∨ (p A C)) ∧ (∀D : Prop, (p D D))

match goal with | ⊢ ?F ⇒
let varmap := list_to_map (get_vars F) in

let reif := reify_formula F varmap in

set (v := varmap); set (f := reif);

change (interp v f)

end.

1 subgoal

v := Node_vm Prop (...) (...) : varmap Prop
f := FAnd (FClause ...) (FAnd ... ...) : CNFPROP.formula

=============================

interp v f

In particular, the set tactics introduce the varmap and the reified for-
mula in the context, and the tactic change asks Coq to change the goal using
conversion: it computes interp v f and checks that it is indeed equal to
the original goal.

6.2.2 The Generic Tactic

At this point, in order to turn our development into a user-friendly tactic,
we still need to address a couple of issues.

Conversion to normal form. Before running the actual proof search,
a formula should be put in CNF. If it is not in CNF, then some subfor-
mulae will be abstracted (like the quantified part in our example above).
We address the issue of conversion to normal form in detail in Chapter 7,
where we propose an original way of performing this conversion in a lazy,
on-the-fly, fashion. For now, let us suppose that we use tacticals to convert
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formulae in the context, prior to applying the tactic. Coq provides a tac-
tic named autorewrite which performs automatic rewriting of expressions.
When fed with a set of (oriented) equalities describing a normalizing sys-
tem, autorewrite will transform an expression into its normal form with
respect to this system. Thus, we encode the conversion into CNF as a set of
rewriting rules4: linearizing implications, pushing negations to the atomic
variables, distributing disjunction over conjunction, etc.

Lifting the Semantics. We now have a reification mechanism which al-
lows us to transform propositional formulae in our Coq context into objects
of the form interp v f for some map v and concrete object f. In order to
obtain reflexive proofs, we still need to lift our notion of semantics on propo-
sitional literals LPROP.t and formulae CNFPROP.formula to Coq’s notion of
truth. Recall that we have defined models as varmaps containing proposi-
tional values. For each formula reified in a varmap v, there is a “canonical”
model, which is v itself. Indeed, if l is a literal representing a variable A of
type Prop in the map, this canonical model satisfies l if and only if there is
a proof of A. This result lifts to clauses and formulae, and we can prove this
adequation lemma:

Theorem adequation :

∀v (f : formula), interp v f → sat_goal v (make f).

This theorem can be read as : “if there is a proof of a formula F, then its
reified counterpart f is satisfiable”, and a satisfying model is the varmap in
which F was reified. Together with the soundness of the decision procedure,
this gives us the following fact:

Corollary validity : ∀v (f : formula),

dpll f = Unsat → ˜(interp v f).

Note how similar that theorem is to the check_correct theorem that we in-
troduced in Section 4.2.4, page 102. It is the reflection theorem for our dpll

procedure as it reflects the computational result of dpll (or equivalently
proof_search) to a propositional proof ˜(interp v f). In particular, the
conclusion of this reflection theorem is a negation, which shows that our
procedure can only proceed by refutation (since it checks that a formula is
unsatisfiable) of the context.

Wrapping up. We can now wrap everything up in a high-level tactic
unsat which performs the following steps:

1. introducing as many hypotheses from the goal to the context as possi-
ble, and building the conjunction F of all the hypotheses in the context,
changing the goal to False;

4In practice, we use several complementary rewriting systems, because for efficiency
reasons, some transformations must be done before others, e.g. rewriting of implications.
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2. converting F to CNF using rewriting as described above;

3. reifying F into a concrete formula f and a map v for interpreting vari-
ables;

4. changing F to interp v f using the conversion rule;

5. applying the validity theorem to v and f in order to bring the current
goal down to a proof of dpll f = Unsat;

6. asking Coq to compute this equality, thus triggering the actual proof
search;

7. if the procedure returns Unsat, the goal becomes Unsat = Unsat and
is thus trivially proved; if however the goal is Sat M = Unsat for some
M, then the context is not satisfiable, the tactic fails and prints out
the countermodel M, since it can be very useful to the user in order to
understand why the tactic did not succeed.

Users of classical logic assume the excluded-middle in their developments,
and therefore they can use the same mechanism to prove the validity of a
current goal F, by first applying double negation, introducing ˜F and trying
the unsat tactic on ˜F. We provide a tactic called valid that performs these
operations. The definitions and proofs for unsat and valid represent about
500 lines.

Examples. We finish this section by giving a small example of how the
tactic unsat can be used in practice. Suppose our goal is the following
propositional formula where variables A to D have type Prop:

1 subgoal

A : Prop
B : Prop
C : Prop
D : Prop
=============================

A ∧ (C ∨ ˜B ∧ (˜D → ˜A)) → D ∧ D ∧ ˜A

If we try to apply unsat to this goal, the tactic will try to show that the
left-hand side of the implication is unsatisfiable. Since it is not, the tactic
fails and prints out the countermodel shown below: indeed, one can easily
verify that this valuation makes the goal false.
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unsat.

The formula in not valid.

The following countermodel has been found :

D : true

B : false

A : true

We can use this countermodel to add complementary hypotheses to our
formula, for instance that B is true and A is false. By doing so, we see that
the unsat tactic now succeeds in about one tenth of a second:

1 subgoal

A : Prop
B : Prop
C : Prop
D : Prop
=============================

A ∧ (C ∨ ˜B ∧ (˜D → ˜A)) → B ∧ ˜A → D ∧ D ∧ ˜A

Time unsat.

Proof completed.

Finished transaction in 0. secs (0.108007u,0.s)

6.2.3 About Completeness

We have seen that, so far, only the soundness of our decision procedure
was useful in developing the reflexive tactic: it allowed us to establish the
reflection theorem validity. The soundness of the procedure formally guar-
antees that when our tactic succeeds, the goal was indeed valid. However,
our decision procedure was not only sound, but also complete, and we made
no use of the completeness theorem yet.

First of all, it is technically possible to use the completeness theorem in
a similar way to how we used the soundness theorem. We have seen how a
result of Unsat for the proof search reflects to a proof of (interp v f); we
could similarly reflect a result of Sat M to a proof that the conjunction of
all literals in M implies interp v f. In practice, if M contains literals which
interpret to propositions A1, A2, . . ., An, this would amount to adding a new
hypothesis of type:

compl : A1 → A2 → ... An → F

to the context, where F is the formula which reifies to f. In particular,
an hypothesis of type F is already in the context and therefore this new
hypothesis would be of no use. This is why we just output the counter
model to the user.
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Even without explicitely using the countermodel when the formula is
satisfiable, a legitimate concern is to know whether the tactic is “complete”
or not. Although the procedure is complete in the sense of the propositional
semantics defined in the SEM_INTERFACE procedure, this property does not
lift to Coq’s notion of truth; in other words, the formula F is not necessarily
satisfiable because the Ai do not necessary form a consistent conjunction:

• Coq’s logic is much richer than propositional logic and as one can
expect, the procedure can find a counter model with literals which are
inconsistent in general. For instance, it could add the literal ˜(0 =

0), or the two mutually exclusive literals ∀x, p x and ˜p t.

• More annoyingly, the procedure can fail because the reification in-
troduces an abstraction layer which cannot be formally proved. For
instance, if the reification of A ∧ ˜A is not performed adequately and
maps A to some variable l, and ˜A to some other variable l′, instead of
the negation of l, the procedure will determine that the formula can
be satisfied with {l; l′}.

Knowing when a procedure is complete can help understand the results
of a tactic; in particular, any unexpected failure shall be a consequence of
an unexpected behaviour of the reification process. Displaying the counter
model when the tactic fails is one way to let the user check if the formula is
indeed satisfiable, or if there is anything wrong in the model displayed. Nev-
ertheless, the reflexive tactic only formally relies on the soundness property,
and the reflexive approach can be used with semidecidable or undecidable
properties, as long as the procedure is sound. In the remaining of this doc-
ument, when presenting evolutions of this first reflexive tactic, we will only
address the issue of soundness.

6.3 A Better Strategy

The decision procedure proof_search presented in Section 6.1.4 is rather
coarse and applies the possible rules in turn, one after another. It is one of
the most basic possible strategy to build a derivation and we now implement
a much better strategy, which we use in practice. Once we have formalized
the derivation system and proved its soundness, we are indeed free to im-
plement any strategy and derive a reflexive tactic just as we did in the last
section. The module system can help us do that in a modular manner.

We define a module type DPLL, parameterized by a module of signature
CNF, which describes the interface that a procedure shall verify in order to
be usable in the reflexive tactic:

Module Type DPLL(Import F : CNF).

Inductive Res : Type :=
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| Sat : L.lset → Res

| Unsat : Res.

Parameter dpll : formula → Res.

Axiom dpll_correct :

∀f, dpll f = Unsat → Sem.incompatible ∅ (make f).

End DPLL.

The signature requires a Res datatype similar to the one we have seen above,
and a function dpll taking a formula and returning a Res, along with a
proof that it is correct. This function is the real proof search, and it is
straightforward to check that our functor SAT F presented in Section 6.1
has signature DPLL F. The whole development of the reflexive tactic can
then be implemented as a functor parameterized by such a module; it is not
parameterized by a CNF module though, since much of the development (the
reification, the tactic and the reflection theorem) depends on the particular
representation of literals and formulae. For instance, the development of the
tactic presented above for propositional literals is wrapped in the following
functor:

Module LoadTactic (Import D : DPLL CNFPROP).

...

Ltac unsat := ...

End LoadTactic.

This makes it easy to define several different strategies, generate a tactic for
each one and compare the tactics obtained for each of these strategies.

We implemented various strategies with their soundness proofs, but we
now quickly present our fastest strategy. Incidentally, this strategy is exactly
the same as the one used in Alt-Ergo. It is based on the following observation:
although the derivation and sequents are expressed in terms of sets of literals,
and sets of clauses, it is not mandatory that the procedure uses these data
structures, as long as it is possible to relate what the procedure does to
sequents and derivations. During the proof search, the partial assignments
are used exclusively for adding elements and membership tests, therefore an
efficient structure of finite sets (like AVL) seems adequate. On the other
hand, an efficient strategy for propagating boolean constraints on the sets
of clauses is to iterate on every clause, and every literal in every clause,
trying to eliminate and reduce as many clauses as possible. To perform such
a task, keeping clauses as AVLs or ordered lists is not required, and basic
lists can prove much more efficient. Therefore, in this strategy, the partial
assignment will have type lset and the set of clauses will have type list

(list L.t). Lists of literals and lists of lists of literals can be converted
back to clause and cset using the adequate functions:

Fixpoint l2s (l : list L.t) : clause :=
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match l with | nil ⇒ ∅ | a::q ⇒ {a; l2s q} end.

Fixpoint ll2s (l : list (list L.t)) : cset :=

match l with | nil ⇒ ∅ | a::q ⇒ {l2s a; ll2s q} end.

and the main recursive function in the strategy has the following type, and
its correctness lemma is expressed using ll2s:

Fixpoint proof_search (G : lset) (D : list (list L.t))

{struct n} (n : nat) : Res := ...

Theorem proof_search_unsat :

∀n G D, proof_search G D n = Unsat → derivable (G ⊢ ll2s D).

The strategy uses two auxiliary functions, reduce and bcp. Function reduce

is used to reduce a clause with respect to a given partial assignment as much
as possible:

Inductive redRes : Type :=

| redSome : list L.t → bool → redRes

| redNone : redRes.

Fixpoint reduce (C : list L.t) : redRes :=

match C with
| nil ⇒ redSome nil false

| l::C’ ⇒
if l ∈ G then redNone

else
match reduce C’ with
| redNone ⇒ redNone

| redSome Cred b ⇒
if mk_not l ∈ G then redSome Cred true

else redSome (l::Cred) b
end

end.

If it finds a true literal in the clause, it returns redNone denoting that the
clause can be eliminated from the problem. Otherwise, it returns the reduced
clause, with an extra boolean which is true iff the clause has changed. For
instance, here is one of the properties of reduce, namely its soundness when
it returns a clause:

Corollary reduce_correct : ∀C Cred bred,

reduce C = redSome Cred bred →
derivable (G ⊢ {l2s Cred; D}) →
derivable (G ⊢ {l2s C; D}).

Note how this statement can be read as an advanced inference rule, the
fact that we can prove it means that this rule is derivable from the basic
set of rules. The bcp function does the boolean constraint propagation on
the clauses of a problem. It proceeds with respect to a partial assignment
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by reducing all clauses (using reduce), assuming literals in unitary clauses
along the way.

Inductive bcpRes : Type :=

| bcpSome : lset → list (list L.t) → bool → bcpRes

| bcpNone : bcpRes.

Fixpoint bcp (G : lset) (D : list (list L.t)) : bcpRes :=

match D with
| nil ⇒ bcpSome G nil false (* no clauses *)

| C::D’ ⇒
match reduce G C with
| redNone ⇒ (* elim C *)

match bcp G D’ with
| bcpNone ⇒ bcpNone

| bcpSome G’ D’ _ ⇒ bcpSome G’ D’ true

end
| redSome nil bred ⇒ bcpNone (* conflict *)

| redSome (l::nil) _ ⇒ (* unit *)

match bcp (add l G) with
| bcpNone ⇒ bcpNone

| bcpSome G’ D’ _ ⇒ bcpSome G’ D’ true

end
| redSome Cred bred ⇒ (* reduce C *)

match bcp G D’ with
| bcpNone ⇒ bcpNone

| bcpSome G’ D’ b ⇒
bcpSome G’ (Cred::D’) (bred || b)

end
end

end.

It returns bcpNone if one of the clauses reduced to the empty clause along
the way, and bcpSome G’ D’ b otherwise, where G’ is the extended partial
assignment, D’ the simplified set of clauses and b a boolean true if and only
if there was any progress. For instances, here are some of the properties of
bcp which prove its soundness, and can be seen as derived inference rules:

Theorem bcp_correct : ∀D G Gext Dred b,

bcp G D = bcpSome Gext Dred b →
derivable (Gext ⊢ ll2s Dred) →
derivable (G ⊢ ll2s D).

Theorem bcp_unsat : ∀D G,

bcp G D = bcpNone → derivable (G ⊢ ll2s D).

Finally, the toplevel function proof_search just applies bcp repeatedly until
it returns bcpNone (in which case the problem is unsatisfiable) or until it
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does not progress any more, in which case it splits on a literal and searches
recursively in the left branch, and then in the right branch if no model was
found.

Fixpoint proof_search (G : lset) (D : list (list L.t))

(n : nat) {struct n} : Res :=

match n with
| O ⇒ Sat empty (* assert false *)

| S n0 ⇒
match bcp G D with

| bcpNone ⇒ Unsat (* conflict *)

| bcpSome newG newD b ⇒
match newD with

| nil ⇒ Sat newG (* empty *)

| _ ⇒
if b then (* progress *)

proof_search newG newD n0

else (* G = newG, D = newD *)

let l := pick D in

match proof_search {l; G} D n0 with
| Sat M ⇒ Sat M

| Unsat ⇒ proof_search {l̄; G} D n0

end
end

end
end.

With the various properties of bcp, we can establish the correctness of this
procedure and give it the expected signature DPLL F:

Definition dpll (f : formula) :=

let D0 := make f in

let L0 := List.map elements (elements D0) in

proof_search ∅ L0 (µ(D0)+1).

Theorem dpll_correct :

∀f, dpll f = Unsat → Sem.incompatible ∅ (make f).

6.4 Conclusion

We have presented a formalization of a propositional solver and its use as
a reflexive decision procedure for propositional logic. We have shown how
using the module system can be beneficial, just as in a usual programming
language. First, we were able to develop a procedure independent of the
actual representation of formulae, and we could use it to decide the satisfia-
bility of boolean logic without much pain, by defining the suitable CNFBOOL of
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CNF. We will use many more representations of literals in the next chapters.
Also, we can factorize the development of reification and of the top-level
tactic in a functor parameterized by the underlying procedure. This allows
us to easily develop different strategies and derive reflexive tactics for these
strategies.

The strategy that we presented in Section 6.3 is not the only possible,
nor the fastest possible of course. We have actually tried a fairly good
number of different strategies, but this one is particularly interesting for
two reasons: first it is precisely the strategy used by the Alt-Ergo theorem
prover, and therefore it was worth investigating its correctness; second, this
strategy can be adapted easily to the modifications which we will apply to
the general design of our propositional solver in the next chapters (adding a
lazy CNF conversion, and then generalized environments instead of partial
assignments), which was not the case of all the strategies we tried.

Of course, another way of improving the procedure is to use a more
refined inference system, such as the ones with backjumping or conflict-
driven clause learning presented in Chapter 2. We have formalized these
systems and their proofs in Coq, in the similar fashion to what we did in
this chapter, but we do not present them in this document. Our main reason
is that, even if they allow more efficient SAT solving tactics, we will not use
these optimizations in the more general setting of SMT solving which we
will describe in the following chapters, and we do not think describing these
systems here has much interest. The formalization and the proofs simply
follow the description in Section 2.2. For reference, we give in Appendix B
benchmarks comparing reflexive propositional procedures obtained with the
basic and optimized derivation systems and for various strategies.



CHAPTER 7

Dealing with CNF Conversion

Que la paresse soit un des péchés capitaux nous
fait douter des six autres.

Robert Sabatier
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In the previous chapter, we have designed a tactic based on a SAT solver
which can be used to decide the validity of propositional formulae in Con-
junctive Normal Form (CNF). In order for our tactic to be able to deal with
the full propositional fragment of Coq’s logic and be useful in practice, we
must perform a conversion into CNF before applying the procedure. This
conversion step can be critical for the efficiency of the whole system since it
can transform a rather easy problem into one that is much too hard for our
decision procedure. In the previous chapter, we relied on a simple rewriting
of Coq formulae prior to the reification process, but this is not a satisfac-
tory solution. A much better solution, which is used in Alt-Ergo as well as
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in other SMT solvers, is to rely on a lazy conversion mechanism such as
Simplify’s [DNS05]. Because this mechanism must be tightly coupled to the
decision procedure, this requires adapting the DPLL rules. It also rules out
the use of an external tool and takes advantage of our approach of proof by
full reflection.

In this chapter, we show how to adapt our fully certified standard DPLL
procedure in order to take a lazy conversion scheme into account. In Sec-
tion 7.1, we start by some preliminary considerations about CNF conversion
techniques. We describe our abstraction of the lazy CNF conversion method
in Section 7.2 as well as the necessary modifications to the DPLL procedure.
Section 7.3 then presents how the lazy CNF conversion can be efficiently im-
plemented in Coq. Finally, we compare our tactic with other methods in
Section 7.4 and argue about its advantages and how they could be useful in
other settings.

7.1 The CNF Conversion Issue

In order for a reflexive tactic based on a SAT solver to deal with the full
propositional fragment of Coq’s logic, it needs to be able to take any arbi-
trary formula in input and convert it into CNF, which is the only class of
formulae that the DPLL procedure can handle. Looking at Fig. 4.2 page 103
once again, which shows an overview of our reflexive tactic, there are two
possibilities as to where this CNF conversion can occur: on the Coq side
or on the abstract side, i.e. before or after the formula is reified into an
abstract Coq object.

When conversion is performed on the Coq side, every manipulation of the
formula is actually a logical rewriting step and ends up in the proof term.
Each rewriting step contains the whole context in which it is performed,
therefore each step is linear in the size of the whole formula. Moreover,
it is very slow in practice because the matching and rewriting mechanism,
which is used to rewrite the formula adequately, is not very efficient. Alto-
gether, this CNF conversion can yield really big proof terms on average-sized
formulae and it easily ends up taking much longer than the proof search it-
self. Performing the CNF conversion on the abstract side, however, can be
summarized in the following way:

• we implement a function conversion : formula → formula that
transforms an abstract formula as wanted;

• we show that for all formula F, conversion F is in CNF and is equiv-
alent (or at least equisatisfiable) to F itself.

This method ensures that CNF conversion takes a constant, thus neglectible,
size in the final proof term, and can be performed efficiently since it is
executed by Coq’s virtual machine.
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Once we decide to implement the CNF conversion as a function on ab-
stract formulae, there are different well-known techniques that can be con-
sidered and that we implemented.

1. The first possibility is to do a naive, traditional, CNF conversion that
uses de Morgan laws in order to push negations through the formula to
the atoms’ level, and distributes disjunctions over conjunctions until
the formula is in CNF. For instance, this method would transform the
formula A ∨ (B ∧ C) in (A ∨ B) ∧ (A ∨ C). It is well-known that the
resulting formula can be exponentially bigger than the original.

2. Another technique that avoids the exponential blow-up of the naive
conversion is to use Tseitin’s conversion [Tse68]. It adds intermediate
variables for subformulae and definitional clauses for these variables
such that the size of the resulting CNF formula is linear in the size of
the input. On the A ∨ (B ∧ C) formula above, this method returns
(A∨X)∧ (X̄ ∨B)∧ (X̄ ∨C)∧ (X ∨ B̄ ∨ C̄) where X is a new variable.

3. A refinement of the previous technique is to first convert the for-
mula to negation normal form and use Plaisted and Greenbaum’s
CNF conversion [PG86] to add half as many definitional clauses for
the Tseitin variables. In the above example, the resulting formula is
(A ∨X) ∧ (X̄ ∨B) ∧ (X̄ ∨ C).

The Need for Another CNF Conversion. The CNF conversion tech-
niques that we have considered so far remain unsatisfactory. The first one
can cause an exponential increase in the size of the formula, and the other
two add many new variables and clauses to the problem. All of them also
fail to preserve the high-level logical structure of the input formula, in that
sense they make the problem more difficult than it was originally. There has
been lots of work on more advanced CNF conversion techniques but their
implementation in Coq raises some issues. For instance, Plaisted and Green-
baum’s method was originally intended to preserve the structure of formulae,
but in order to do so, it requires that equal subformulae be shared. Other
optimization techniques [NRW98, dlT90] are based on renaming parts of the
subformula to increase the potential sharing. However, it is hard to imple-
ment such methods efficiently as a Coq function, i.e. in a pure applicative
setting with structural recursion. Even implementing and proving the stan-
dard Tseitin conversion proved to be much more challenging than one would
normally expect.

For the same reason, it is undeniable that our reflexive Coq decision pro-
cedure cannot reach the same level of sheer performance and tuning than
state-of-the-art SAT solvers, which means that we cannot afford a CNF con-
version that adds too many variables, disrupts the structure of the formula,
in a word that makes a given problem look harder than it actually is. Results
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presented in Section 7.4 show that this concern is justified. Constraints due
to CNF conversion also arise in Isabelle where formulae sent to the Metis
prover are limited to 64 clauses. In the description of their Simplify theorem
prover [DNS05], Nelson et al. describe a lazy CNF conversion method they
designed in order to prevent the performance loss due to Tseitin-style CNF
conversion. Their experience was that “introducing lazy CNF into Simplify
avoided such a host of performance problems that [..] it converted a prover
that didn’t work in one that did.” In the next sections of this chapter, we
describe how we formalized and integrated this lazy CNF conversion mech-
anism in our DPLL-based tactic. To our knowledge, this work represents
the first effort at a formal description and proof of this method.

7.2 A DPLL Procedure with Lazy CNF Conver-
sion

In this section, we formally describe how a DPLL procedure can be adapted
to deal with literals that represent arbitrary formulae.

7.2.1 Expandable Literals

In a Tseitin-style CNF conversion, new literals are added that represent sub-
formulae of the original formula. To denote this fact, clauses must be added
to the problem that link the new literals to the corresponding subformulae.
The idea behind lazy CNF conversion is that new literals should not merely
represent subformulae, but they should be the subformulae themselves. This
way, there would be no need for additional definitional clauses. Detlefs et
al. [DNS05] present things a bit differently, using a separate set of definitions
for new variables (which they call proxies), and make sure the definitions
of a given proxy variable are only added to the current context when this
variable is assigned a boolean value by the procedure. Our abstraction will
require less changes to the DPLL procedure.

In order for literals to be able to stand for arbitrary complex subformulae,
we extend the signature of literals given in Fig. 6.1 page 132 in the following
way:

Module Type EXPLITERAL.

(* Negation, OrderedType... as before *)

Include Type LITERAL.

(* Expansion *)

Parameter expand : t → list (list t).

...

End EXPLITERAL.

In other words, expandable literals always come with negation, comparison,
and various properties, which are copied from the LITERAL signature using
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the Include Type capability, but they have an additional expansion func-
tion, named expand, which takes a literal and returns a list of lists of literals,
in other words a CNF of literals. For a genuine literal which just stands for
itself, this list is simply the empty list. For another literal that stands for
a formula F , i.e. a proxy F , this function allows one to unfold this literal
and reveal the underlying structure of F . This underlying structure must be
expressed as a conjunction (list) of disjunctions (lists) of literals, but since
these literals are also expandable literals, they can stand for subformulae of
F themselves. Therefore, this CNF does not have to be the full conjunctive
normal form of F : expand can undress the logical structure of F one layer
at a time, using proxy literals to represent the direct subformulae of F . This
means that the CNF conversion of formula F can be performed step after
step, in a call-by-need fashion. In [DNS05], the expand function would be a
look-up in the set of proxy definitions.

As an example, let us consider the formula A ∨ (B ∧ C) once again.
A proxy literal for this formula could expand to its full CNF, namely the
list of lists [[A; B]; [A; C]]. But more interestingly, it may also reveal only
one layer at a time and expand to the simpler list [[A; X]], where X itself
expands to [[B]; [C]]. Note that this variable X is not a new variable in
the sense of Tseitin conversion, it is just a way to denote the unique literal
that expands to [[B]; [C]], and which therefore stands for the formula B ∧
C. This unicity will be the key to the structural sharing provided by this
method. In Section 7.3, we will describe how these expandable literals can be
implemented in such a way that common operations are reasonably efficient,
but for now let us see how the DPLL procedure should be adapted.

7.2.2 Adaptation of the DPLL Procedure

In order to use expandable literals in the DPLL procedure, we have to adapt
the inference rules presented in Fig. 2.1 page 25, which we later formalized
in Chapter 6. Let us consider a proxy literal f for a formula F . If this proxy
is assigned a true value at some point during the proof search, this means
that the formula F is assumed to be true. Therefore, something should
be added to the current problem that reflects this fact in order to preserve
the semantic soundness of the procedure. To this end, we use the expand

function on f in order to unveil the structure of F , and add the resulting
list of clauses expand(f) to the current problem.

The revised version of our inference rules system is given in Fig. 7.1. The
only modifications between this system and the one presented in Fig. 2.1
concern rules which change the current assignment Γ : Assume and Split.
When a literal l is assumed in the current context, it is expanded and the
resulting clauses are added to the current problem ∆. Intuitively, if l is a
proxy for F , expand(l) can be seen as “consequences” of F and must be
added in order to reflect the fact that F shall now be satisfied. Now, given
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Assume
Γ, l ⊢ ∆, expand(l)

Γ ⊢ ∆, l
Red

Γ, l ⊢ ∆, C

Γ, l ⊢ ∆, l̄ ∨ C

Elim
Γ, l ⊢ ∆

Γ, l ⊢ ∆, l ∨ C
Conflict

Γ ⊢ ∆, ∅

Split
Γ, l ⊢ ∆, expand(l) Γ, l̄ ⊢ ∆, expand(l̄)

Γ ⊢ ∆

Figure 7.1: The DPLL procedure adapted to expandable literals

an arbitrary formula F , instead of explicitely converting it into a CNF ∆F

and searching a derivation for ∅ ⊢ ∆F , it is enough to build a proxy literal lF
for F and attempt to find a derivation for ∅ ⊢ lF instead. This allows us to
use a DPLL decision procedure with the lazy conversion mechanism. Note
that correctness does not require proxy literals to be added to the current
assignment Γ; however, doing so has a dramatic effect on formulae that can
benefit from sharing, e.g. l∧¬l, where l stands for a big formula F : in that
case, adding the proxy literal l to the assignment will allow the elimination
of ¬l in one single step. Such formulae are not as anecdotal as they seem,
and we discuss this further in Section 7.4.2.

We spent most of Chapter 6 describing how to formalize DPLL’s ba-
sic inference system in Coq, proving its correctness and implementing a
computable strategy to use in a reflexive tactic. In order to adapt these
constructions to this new DPLL system with expandable literals, there are
quite a few changes that must be made, but there is nothing fundamentally
different in the method and the approach followed. Therefore we do not
detail these changes but the most important can be summarized as follows:

• the definition of derivable, the inductive inference system, must be
adapted as above with the expansion of assumed literals in Γ;

• proofs must be adapted, but are very close to the original proofs;
one of the main differences is that, in order to be well-formed, partial
assignments not only need to be consistent with the negation of literals,
but also with their expansion, which is guaranteed by the strategy
used;

• the semantics must be adapted so that models now account for proxy
literals: if a proxy for F is in a model M, then M must satisfy F; in other
words, models are exactly determined by their non-proxy literals;

• the proof search procedure must expand literals properly and its proofs
must be extended;
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• on the front-end, when the tactic fails, only non-proxy literals in the
countermodel are displayed to the user.

The most interesting and difficult point is how to adapt the implementation
of literals to expandable literals, and is the topic of the next section.

7.3 Implementing Lazy Literals in Coq

In this section, we show how to design a suitable literal module on which
we can instantiate the procedure we described in Section 7.2.2.

7.3.1 Raw Expandable Literals

Expandable literals are either standard propositional atoms, or proxies for
a more complex formula. Because a proxy shall be uniquely determined
by its expansion (in other words, proxies that expand to the same formula
stand for the same formula, and therefore should be equal), we choose to
directly represent proxies as their expansion. Also, the implementation of
expandable literals can be defined in a way that does not depend on the
representation of the actual non-proxy literals. In other words, we suppose
we are given a module L of traditional literals as defined in the previous
chapter, and we implement expandable literals as a functor parameterized
by L. This leads us to the following definition of raw expandable literals as
a Coq inductive type:

Module RAW (L : LITERAL).

Inductive t : Type :=

| Proxy (pos neg : list (list t))

| Lit (l : L.t).

...

End RAW.

Standard literals are represented by the Lit constructor which takes a literal
L.t as argument. More interestingly, the Proxy constructor expects two
arguments: the first one represents the formula that the proxy literal stands
for, while the other one corresponds to the expansion of its negation. We
proceed this way in order to be able to compute the negation of a literal in
constant time, whether it is a proxy or not. Thus, the second parameter of
Proxy should just be seen as a memoization of the negation function. As a
matter of fact, we can easily define the negation function:

Definition mk_not (l : t) : t :=

match l with
| Proxy pos neg ⇒ Proxy neg pos

| Lit l ⇒ Lit (L.mk_not l)
end.
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Negating a standard literal is just done via a call to L.mk_not, while negat-
ing a proxy amounts to swapping its arguments. This memoization of the
negation of a proxy literal is really critical for the efficiency of the method
because literals are negated many times over the course of the DPLL proof
search. In Section 7.3.3, we will show how these proxies are created in linear
time.

The implementation of the expansion function is straightforward and
requires no further comment:

Definition expand (l : t) : list (list t) :=

match l with
| Proxy pos _ ⇒ pos

| Lit _ ⇒ []

end.

We are left with implementing an instance of OrderedType for these literals.
For instance, the total comparison function goes like this :

Fixpoint compare (x y : t) : comparison :=

match x, y with
| Lit l, Lit l′ ⇒ l =?= l′

| Lit _, Proxy _ _ ⇒ Lt

| Proxy _ _, Lit _ ⇒ Gt

| Proxy xpos xneg, Proxy ypos yneg ⇒
compare_list_list compare xpos ypos

end.

Recall that the notation l =?= l’, introduced in Chapter 5, is the effec-
tive comparison of two elements l and l’; we can use it here because the
base literals’ module L brings an instance of OrderedType for L.t. In this
definition, compare_list_list recursively applies the comparison function
compare in a lexicographic manner to lists of lists of literals. The part that
is worth noticing is that we only compare proxies’ first component and we
skip the negated part. This of course ensures that the comparison of proxies
is linear in the size of the formula they stand for; had we compared the
second component as well, it would have been exponential in practice. The
issue with such optimizations is that we have to convince Coq that they
make sense, and the next section is devoted to that point.

7.3.2 Adding Invariants to Raw Literals

When implementing expandable literals in the previous section, we made a
strong implicit assumption about a proxy Proxy pos neg, namely that neg

was indeed containing the “negation” of pos. We need to give a formal mean-
ing to this sentence and to ensure this invariant is verified by all literals. It
is not only needed for semantical proofs about literals and the DPLL proce-
dure, but for the correctness of the simplest operations on literals, starting
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with comparisons. Indeed, considering the comparison function compare

presented above, it should verify the properties required by OrderedType

and by Literal in general, in particular the following should be true:

compare x y = Eq ↔ compare (mk_not x) (mk_not y) = Eq

for all literals x and y, since compare should return Eq if and only if its ar-
guments are equal, and negation should be a morphism for equality (axiom
mk_not_compat in signature LITERAL). Proving this property for standard
literals is straightforward, but as far as proxies are concerned, the fact that
the equality test returns true only tells us that the first component of the
proxies are equal: there is no guarantee whatsoever on the second compo-
nent. Therefore, this property is not provable as is and we need to add
some relation between the two components of a proxy. This relation also
ought to be symmetric since the mk_not function swaps the first and second
components and should of course preserve the invariant as well.

We are going to link the two components of a proxy literal by ensuring
that each one is the image of the other by an adequate function N . Intu-
itively, this function N must negate a conjunction of disjunction of literals
and return another conjunction of disjunction of literals; it can be recursively
defined in the following way

N ((
∨n

i=1 xi) ∧ C) =
∧n

i=1

∧

D∈N (C)(x̄i ∨D)

where the xi are literals and C is a CNF formula. Once this function is
implemented, we can define an inductive predicate that specifies well-formed
literals:

Inductive wf_lit : t → Prop :=

| wf_lit_lit : ∀l, wf_lit (Lit l)
| wf_lit_proxy : ∀pos neg, N pos = neg → N neg = pos →

(∀l t, l ∈ pos → t ∈ l → wf_lit t) →
(∀l t, l ∈ neg → t ∈ l → wf_lit t) →
wf_lit (Proxy pos neg).

The first constructor expresses that all atomic literals are well-formed. The
second one brings up requirements on proxy literals: not only should the
two components be each other’s image by N 1, but all literals appearing in
these expansions should recursively be well-formed. In particular, if two
proxies are well-formed, their second components are equal if and only if
their first components are equal, which means that we can establish the
needed properties about the comparison function.

Packing everything together. In Coq, one can use dependent types in
order to define a type of objects that meet certain specifications. We use this

1This constraints the form of possible proxies since N is not involutive in general.
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feature in our Coq development in order to define a module of well-formed
expandable literals. Using functors once again, we defined this module as
a functor parameterized by L : LITERAL which uses the RAW functor seen
above. In this functor, we define the type of literals as the dependent type
of raw literals packed with a proof that they are well-formed:

Module LLAZYFY (L : LITERAL) <: EXPLITERAL.

(* Imports all the raw definitions *)

Module Import RAW := RAW L.

Definition t : Type := {l | wf_lit l}.

...

End LLAZYFY.

We then have to redefine the required operations on literals. In most cases,
it is just a matter of “lifting” to well-formed literals the definition we made
for raw literals by showing that the operation preserves well-formedness. For
instance, the negation function is (re)defined this way:

Property wf_mk_not : ∀l, wf_lit l → wf_lit (mk_not l).

Proof. ..... Qed.

Definition mk_not (l : t) : t :=

exist (mk_not π1(l)) (wf_mk_not π1(l) π2(l)).

where π1 and π2 respectively access to the raw literal and its well-formedness
proof in a well-formed literal. We have presented a simplified version here
and the real development contains more invariants that are required through-
out various proofs about literals and their operations. In particular, in order
to enable the definition of recursive functions over the structure of expand-
able literals, or simply guarantee the termination of the proof search, we
had to add a notion of size of literals, along with proofs that the literals
appearing in the expansion of a proxy are smaller than the proxy itself. Al-
together, we obtain a module with the signature of literals as expected by
the DPLL procedure, and where every operation is totally certified.

7.3.3 Converting Formulae to Lazy Literals

Once we have a module implementing lazy literals as described above, we
are left with the task of constructing such literals out of an input formula.

First, note that we should not build arbitrary literals but only literals
that are well-formed. Therefore we have to make sure that the proxies we
build respect the invariants that we introduced in the last section. Assume
we want to build a proxy for a formula F = F1 ∨ F2 and we know how to
build proxies l1 and l2 for the formulae F1 and F2. A suitable proxy for F is
the one that expands positively to the list [[l1; l2]], and to the list [[l̄1]; [l̄2]]
negatively. We can check that these two lists are indeed each other’s image
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Proxy pos neg

X ≡ P {P} {P̄}

X ≡ F ∨G {F ∨G} {F̄}{Ḡ}

X ≡ F ∧G {F}{G} {F̄ ∨ Ḡ}

X ≡ (F → G) {F̄ ∨G} {F}{Ḡ}

X ≡ (F1 ∨ F2 ∨ . . . ∨ Fn) {F1 ∨ F2 ∨ . . . ∨ Fn} {F̄1}{F̄2} . . . {F̄n}

X ≡ (F1 ∧ F2 ∧ . . . ∧ Fn) {F1}{F2} . . . {Fn} {F̄1 ∨ F̄2 ∨ . . . ∨ F̄n}

Figure 7.2: Proxy construction for each logical connective

by N . In practice, we define a function constructing such a proxy and we
prove that its result is well-formed:

Definition mk_or_aux f g :=

Proxy [[f;g]] [[mk_not f];[mk_not g]].

Property wf_mk_or : ∀(l l′ : t), wf_lit (mk_or_aux l l′).

Proof. ..... Qed.

Definition mk_or f g : t :=

exist (mk_or_aux f g) (wf_mk_or f g).

The last command uses mk_or_aux and wf_mk_or to define a function that
creates a well-formed proxy literal for the disjunction of two well-formed
literals. We create such smart constructors for each logical connective: the
table in Fig. 7.2 sums up how proxies are constructed for the usual logical
connectives. Creating a proxy for an arbitrary formula is then only a matter
of recursively applying these smart constructors by following the structure
of the formula. We have implemented such a function named mk_form and
proved that for every formula F, mk_form F ↔ F. This theorem is very
important since it is the first step that must be done when applying the
tactic: it allows us to replace the current formula by a proxy before calling
the DPLL proof search. Note that the converted formula is equivalent to the
original because no new variables have been added, whereas with Tseitin-
like methods, the converted formula is only equisatisfiable. Note also that
the proxies constructed for F̄ ∨G and F → G are equal, and so are F ∨G
and G ∨ F for instance, therefore the proxy construction not only identifies
formulae that are syntactically equal, but also sometimes semantically.

Constructing proxies for N-ary operators. Figure 7.2 also contains
proxy definitions for n-ary versions of the ∧ and ∨ operators. We have
implemented an alternative version of the mk_form function above which
tries to add as few levels of proxies as possible. When constructing a proxy
for a disjunction (resp. conjunction), it tries to regroup all the disjunctive
(resp. conjunctive) top-level structure in one single proxy. In this setting,
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equivalences are interpreted either as conjunctions or as disjunctions2 in
order to minimize the number of proxies.

7.4 Results and Discussion

7.4.1 Benchmarks

tauto CNFC CNFA Tseitin Tseitin2 Lazy LazyN
hole3 – 0.72 0.06 0.24 0.21 0.06 0.05
hole4 – 3.1 0.23 3.5 6.8 0.32 0.21
hole5 – 10 2.7 80 – 1.9 1.8
deb5 83 – 0.04 0.15 0.10 0.09 0.03
deb10 – – 0.10 0.68 0.43 0.66 0.09
deb20 – – 0.35 4.5 2.5 7.5 0.35
equiv2 0.03 – 0.06 1.5 1.0 0.02 0.02
equiv5 61 – – – – 0.44 0.42
franzen10 0.25 16 0.05 0.05 0.03 0.02 0.02
franzen50 – – 0.40 1.4 0.80 0.34 0.35
schwicht20 0.48 – 0.12 0.43 0.23 0.10 0.10
schwicht50 8.8 – 0.60 4.3 2.2 0.57 0.7
partage – – – 13 19 0.04 0.06
partage2 – – – – – 0.12 0.11

Figure 7.3: Comparison of different tactics and CNF conversion methods.
Timings are given in seconds and – denote time-outs (>120s).

We benchmarked our tactic and the different CNF conversion methods
on valid and unsatisfiable formulae described by Dyckhoff [Dyc97]; for in-
stance holen stands for the pigeon-hole formula with n holes. We used two
extra special formulae in order to test sharing of subformulae : partage is
the formula hole3 ∧ ¬hole3, while partage2 is deb3 where atoms have been
replaced by pigeon-hole formulae with varying sizes. Results are summa-
rized in Fig. 7.3, where CNFC and CNFA are naive translations respectively
on the Coq side (i.e. with rewriting steps) and on the abstract side (i.e.
through a Coq function), Tseitin and Tseitin2 are the two variants of Tseitin
conversion described in Section 7.1. The last two columns, Lazy and LazyN,
are devoted to our lazy conversion, with only LazyN using proxies for n-ary
operators. On each line, the best timings are emphasized with bold type-
face. These results show that our tactic outperforms tauto in every single
case (see discussion below for differences between our tactic and tauto),
solving in less than a second goals that were beyond reach with the existing
tactic. About the different CNF conversions, it turns out that the Tseitin
conversion is almost always worse than the naive abstract CNF conversion

2The equivalence F ↔ G is logically equivalent to the conjunction (F → G)∧ (G → F )
and the disjunction (F ∧ G) ∨ (F̄ ∧ Ḡ).
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because of the extra clauses and variables. The lazy tactics always perform
at least as well as CNFA and in almost all cases they perform much better,
especially when some sharing is required.

7.4.2 Discussion and Limitations

Comparison with tauto/intuition. As explained in Chapter 4, the
tactic tauto is actually a customized version of the tactic intuition. When
it can’t solve a goal completely, intuition is able to take advantage of the
search-tree built by its decision procedure in order to simplify the current
goal in a set of (simpler) subgoals; tauto simply calls intuition and fails
if any subgoals are generated. Unlike intuition, our tactic is unable to
return a simplified goal when it cannot solve it completely, and in that sense
it can be considered as less powerful. However, intuition’s performance
often becomes an issue in practice3, therefore we are convinced that the two
tactics can prove really complementary in practice, with intuition being
used as a simplifier and unsat as a solver.

Classical reasoning in an intuitionistic setting. The DPLL procedure
is used to decide classical propositional logic whereas Coq’s logic is intu-
itionistic. In our development, we took great care in not using the excluded-
middle for our proofs so that Coq users who do not want to assume the
excluded-middle in their development can still use our tactic. The reason we
were able to do so lies in the observation that the formula ∀A.¬¬(A∨¬A) is
intuitionnistically provable: when the current goal is False, this lemma can
be applied to add an arbitrary number of ground instances of the excluded-
middle to the context. In other words, if a ground formula Φ is a classical
tautology, ¬¬Φ is an intuitionistic tautology4. Noticing that ¬¬¬Φ implies
¬Φ in intuitionistic logic, this means that if ¬Φ is classically valid, it is also
a tautology in intuitionistic logic. Because the DPLL procedure proceeds
by refuting the context Φ, i.e. proving ¬Φ, we can use it in intuitionsitic
reasoning even if it relies on classical reasoning.

In practice, the use of classical reasoning in our development is mainly
for the correctness of the Split rule and of the different CNF conversion
rules (e.g. F → G ≡ F̄ ∨ G). This led us to proving many intermediate
results and lemmas in double-negation style because they were depending on
some classical reasoning steps5, but the nice consequence is that our tactic

3As Coq users, we often let tauto run for a few seconds to try and make sure that
a goal is provable. When tauto succeeds, albeit not immediately, we then proceed to
manually prove the goal or simplify it in easier subgoals.

4This is not true for first-order formulae, because the formula ¬¬(∀A.A ∨ ¬A), where
the quantification lies below the double negation, is not intuitionnistically provable.

5Typically, see the characterization of the totality of a model on page 134, in the
semantics of formulae: we use ∀M l, ˜˜(˜(M l) → M (mk_not l)) instead of the sim-
pler ∀M l, ˜(M l) → M (mk_not l).
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produces intuitionistic refutation proofs and thus can really replace tauto

when the context becomes inconsistent. Users of classical reasoning can use
our tactic for classical validity by simply refuting the negation of the current
goal, as explained in Chapter 6.

Impact of sharing. The results presented above show that the number
of proxies has less effect on the performance than the sharing they provide.
Depending on the formula, it may not be the best idea to minimize the
number of proxies as LazyN does, because this minimizes the number of
subformulae that are shared. Once again, we can use our modular devel-
opment to provide these different alternatives as options to the user. We
wrote in Section 7.2.2 that adding proxies to the current assignment made
it possible to reduce a whole subformula of a problem in one single step,
and this is why sharing is beneficial. We gave the obvious, rather crafted,
example of l∧ l̄ where l is a big formula, but there is a less obvious and much
more frequent situation where it happens. Practical formalizations often in-
volve predicate definitions p(x1, . . . , xn) = Φ(x1, . . . , xn) where Φ can be a
big formula, p is then used as a shortcut for Φ throughout the proofs. Now,
when calling a DPLL procedure, one has to decide whether occurrences of
p should be considered as atoms or whether they should be unfolded to Φ.
There is no perfect strategy, since proofs sometimes depend on p being un-
folded and sometimes do not; there is a conservative strategy since always
unfolding p suffices, but it leads to performance losses if it wasn’t required.
Proxies make the DPLL procedure completely oblivious to such intermedi-
ate definitions, and this is a great asset when dealing with proof obligations
from program verification.

7.4.3 Application to Other Systems

The advantages of the CNF conversion that we have implemented go beyond
the scope of our tactic. It generally allows subformulae to be structurally
shared which can give a big performance boost to the procedure. Moreover,
in standard programming languages, proxies can be compared in constant
time by using hash-consing [FC06], which removes the main cost of using
lazy literals.

Lazy literals also provide a solution to a problem that is specific to
SMT solvers: definitional clauses due to Tseitin-style variables appearing in
contexts where they are not relevant can not only cause the DPLL procedure
to perform many useless splits, but they also add ground terms that can be
used to generate instances of lemmas. De Moura and Bjorner report on
this issue in [dMB07], where they use a notion of relevancy in order to only
consider definitional clauses at the right time. Lazy CNF conversion is a
solution to this issue, and it is the method we currently use in our own
prover Alt-Ergo.
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Finally, one may wonder whether this method can be adapted to state-
of-the-art decision procedures, including common optimizations like back-
jumping and conflict clause learning. Adapting such procedures can be done
in the same way that we adapted the basic DPLL and is really straightfor-
ward; an interesting question though is the potential impact that lazy CNF
conversion could have on the dependency analysis behind these optimiza-
tions. We have not thoroughly studied this question but our experience with
Alt-Ergo suggests that lazy CNF conversion remains a very good asset even
with a more optimized DPLL.

7.5 Conclusion

We have presented how our reflexive tactic for propositional logic presented
in the previous chapter can be adapted to use a lazy conversion scheme in
order to bring arbitary formulae into clausal form without deteriorating the
performance of the procedure. We use this method in Alt-Ergo and it is very
satisfactory to be able to formalize and verify it in the Coq proof assistant.
It also turns out that this method brings very good results in the reflexive
tactic as well and outperforms the other CNF conversion techniques that we
have tried.
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CHAPTER 8

From Propositional Logic to Theory Reasoning

L’Anglais est un praticien qui n’a pas de théories ;
l’Allemand, un théoricien qui applique ses théories ;
le Français, un théoricien qui ne les applique pas :
c’est ce qu’on appelle chez nous avoir du bon sens.

Antoine Detœuf (1902)
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In this chapter, we show how to extend our formalization of a reflexive
propositional tactic in order to introduce theory reasoning, as described in
Section 2.3. We start in Section 8.1 by adapting our DPLL formalization
and procedure to accept generalized environments instead of simple partial
assignments. Then, in Section 8.2, we address an issue which is specific to
Coq and our reflexive approach, namely the issue of reifying not only propo-
sitional variables but equalities between terms in an arbitrary signature, and
finally their semantics in Section 8.3.

169



170

8.1 A Generalized Environment for DPLL

8.1.1 Environments

In Section 2.3, we described how the DPLL procedure can be generalized by
replacing the partial assignment with a notion of environment, thus allow-
ing the procedure to be used to solve the SMT problem rather than just the
SAT problem. We now formalize this approach and start by the definition
of the signature of environments. Recall that we described environments in
Section 2.3 as data structures which provide assumption and query oper-
ations in order to add literals and check the truth value of a literal. Our
formalization of the signature of environments follows this description:

Module Type ENV_INTERFACE (Import F : CNF).

Parameter t : Type.

Parameter empty : t.
Parameter assume : L.t → t → Exception t.
Parameter query : L.t → t → bool.

Notation "e |= l" := (query l e = true).

...

End ENV_INTERFACE.

The signature, called ENV_INTERFACE, is parameterized by a module of sig-
nature CNF, as described in the previous chapter. It provides the type t of
environments and the two expected operations assume and query. It also
provides the empty environment empty, otherwise it would be impossible
to construct environments with that signature. We made the observation
in Section 2.3 that the assume operation was a partial operation: indeed,
adding a literal to the environment can make it inconsistent and in that case
it cannot return a valid environment. To account for this, the return type
of assume is Exception t, where Exception is just an “option” datatype
defined like this:

Inductive Exception (A : Type) :=

| Normal (env : A)

| Inconsistent.

The interface of environments also introduces a handy notation for queries,
namely e |= l to denote that the query of l in e returns true. To complete
ENV_INTERFACE, we need to add the necessary requirements on these opera-
tions, and in order to express these requirements, we need the set of literals
which were explicitely assumed in an environment:

Parameter assumed : t → L.lset.

Axiom assumed_empty : assumed empty === ∅.
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Axiom assumed_assume : ∀e l E,

assume l e = Normal E → assumed E === {l; assumed e}.

The function which returns this set is called assumed and is completely
specified by the assumed_empty and assumed_assume axioms. Now, we can
express the requirements for the environment to be sound:

Axiom query_true : ∀e l, e |= l →
(∀M, Sem.submodel (assumed e) M → M l).

Axiom assumed_inconsistent : ∀e l,
assume l e = Inconsistent → e |= L.mk_not l.

The first axiom is the soundness of the query operation and expresses that
if a query succeeds on l, it is indeed justified, in the sense that every model
of the literals added to the environment is a model of l. This axiom is
not sufficient and we add a second axiom for the soundness of the assume

operation: it states that assuming l only returns Inconsistent if l̄ is true
in the environment.

Strictly speaking, the signature we have written so far is sufficient to
describe sound environments, and as we explained in Section 6.2.3, we are
only interested in the soundness of our procedure when developing a reflexive
tactic. In practice, there is a part of the completeness of a procedure which
we want to address nonetheless, and that is termination. More precisely, we
need some reasonable completeness properties on our structure in order to
ensure that some functions will behave correctly1. Here are the main two
completeness properties which we require on environments:

Axiom query_assumed : ∀e l, l ∈ assumed e → e |= l.
Axiom query_monotonic :

∀e e′ l, assumed e ⊆ assumed e′ → e |= l → e′ |= l.

The first one ensures that assumed literals are true in the environment,
while the second guarantees that assuming more literals can only make more
literals true, not less.

8.1.2 A Simple Environment

We can give a simple example of an environment by encoding normal partial
assignments as a module of signature ENV_INTERFACE.

Module ENV (Import F : CNF) <: ENV_INTERFACE F.

Definition t := L.lset.

1Consider for instance the two versions of proof_search function described in Chap-
ter 6: they use a natural integer in order to ensure termination, but we want to be able
to call them with large enough integers in order to avoid unfinished computations. This
is a part of the completeness theorem which is not strictly necessary but which we want
to prove nonetheless, and it requires properties on the structures used: typically, once a
literal has been supposed and the problem has been simplified by BCP, this literal should
not appear anymore in the problem.
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Definition empty := ∅.
Definition assume l e :=

if mem (L.mk_not l) e then Inconsistent

else Normal {l; e}.

Definition query l e := mem l e.

Definition assumed e := e.

...

End ENV.

The definition of the operations are self-explanatory and all the required
properties are completely straightforward to prove. This environment can
be seen as a “default” environment which allows to solve SAT modulo the
trivial theory, i.e. satisfisability in propositional logic.

8.1.3 Adapting DPLL

With the signature of environments defined as above, we can adapt our
formalization of DPLL to use environments, as we did with inference rules
in Fig. 2.7 page 45. The functor SAT, which we introduced for the first
time in Section 6.1.3, is adapted by adding an environment module as new
parameter:

Module SAT (Import F : CNF)(Import E : ENV_INTERFACE F).

Record sequent : Type := { G : E.t; D : L.cset }.

Definition incompatible (S : sequent) : Prop :=

Sem.incompatible (assumed (G S)) (D S).

...

End SAT.

The functor SAT is now parameterized by a CNF module and an environ-
ment module E for that CNF module (interestingly, notice how signature of
parameters can depend on earlier parameters). The sequents are defined
accordingly with an environment E.t in place of a partial assignment. Note
how incompatibility of a sequent is rephrased using the set of literals as-
sumed in the environment. The derivability predicate of such sequents is
very similar to the one we have presented earlier; it is adapted as in Fig. 2.7
and starts like this:

Inductive derivable : sequent → Prop :=

| Conflict :

∀G D (i : ∅ ∈ D), derivable (G ⊢ D)

| Assume :

∀G D l G’, {l} ∈ D → assume l G = Normal G’ →
derivable (G’ ⊢ (L.expand l) ∪ (D \ {l})) →
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derivable (G ⊢ D)

| Elim :

∀G D l C, G |= l → l ∈ C → C ∈ D →
derivable (G ⊢ {D ˜ C}) →
derivable (G ⊢ D)

...

This excerpt shows that the Conflict rule does not change; more interest-
ingly, the Assume rule, in order to extend the partial assignment, uses assume

and can only be applied if the result of this assumption is not Inconsistent;
finally, the Elim rule tests the state of a literal in the current environment
by using query in order to eliminate a clause. The soundness proof of this
notion of derivability is stated in the exact same way:

Theorem soundness : ∀S, derivable S → incompatible S.

and is proved using the same reasonings, with the help of soundness proper-
ties from module E to replace earlier reasoning on partial assignments. The
new return type of the proof search procedure is now:

Inductive Res : Type :=

| Sat : E.t → Res

| Unsat.

where the countermodel in the Sat branch is an environment instead of a set
of literals. The proof search strategies which we have described in Chapter 6
can be adapted very easily:

• when testing the status of a literal in the current assignment (i.e.
environment), query must be used instead of set membership;

• when extending the current assignment with a literal, assume must be
used and the case where this assumption returns Inconsistent must
be treated properly.

We do not give more details on how the proof strategies, especially the
efficient strategy presented in Section 6.3, are adapted to environments.
Actual details can be quite tedious and verbose but are not particulary
difficult. In the end, modules suitable for generating a reflexive tactic need
to have the following DPLL signature:

Module Type DPLL (Import F : CNF)(E : ENV_INTERFACE F).

Inductive Res : Type :=

| Sat : E.t → Res

| Unsat.

Parameter dpll : formula → Res.

Axiom dpll_correct :
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∀f, dpll f = Unsat → Sem.incompatible ∅ (make f).

End DPLL.

which is really similar to the original DPLL interface. This emphasizes how
little has to be changed to adapt the development of the tactic itself: reifi-
cation and reflection theorems are unchanged, and the only modification is
that when the tactic fails, the countermodel is now an environment and not
simply a set of literals. The function assumed is used by the front-end to
retrieve the literals which were explicitely assumed during the proof search
and display them.

As a final remark, and a demonstration of the capabilities of the module
sytem, note how a functor D with this DPLL signature can be instantiated
with the basic environment functor ENV presented above in order to retrieve
a functor with the old DPLL signature (as in Chapter 6):

Module NewDPLLasOld (F : CNF)(D : DPLL).

Module OldE := ENV F.

Include (D F OldE).

End NewDPLLasOld.

This functor takes the uninstantiated functor D and applies it to a F of
signature CNF module and a basic environment for F. The result is included
in the result module.

8.2 Beyond Literals: Terms and Reification

In the second part of this chapter, we detail how to adapt the reification
process in order to go beyond simple propositional literals, which is a quite
complex task. Indeed, in Chapters 9 and 10, we will build an environment
for our DPLL reflexive tactic which will implement reasoning for the theory
of equality modulo linear arithmetic. Consequently, we need to be able to
reify formulae in the following grammar:

F := p | T = T | ¬F | F ∨ F | F ∧ F | F → F | F ↔ F

T := f(T, . . . , T )

where p represents propositional variables and f function symbols. Recip-
rocally, we need to be able to interpret these reified objects back to their
original counterparts, in a way similar to what we did with the interp func-
tion in Section 6.2.1. We already know how to reify propositional variables,
the usual logical connectives, and define their interpretation. Unfortunately,
the difficulty lies in the interpretation of terms and equalities: suppose we
reify terms to a concrete datatype term, we need a function interp_term

that interprets such an object back to the corresponding term, but what
should its type be? There is no way to give such function a simple type
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since its type depends on the input: for example, if 0 is reified into t0 :

term and true is reified into ttrue : term, interp_term t0 shall have
type nat and interp_term ttrue type bool. The only way to achieve this
is to use dependent types and have a function with a type of the form:

interp_term : ∀(t : term), type_of t

where type_of returns the expected type of the object corresponding to
a reified term. That being said, when interpreting a term of the form
f(T1, . . . , Tn), we need to interpret the Ti to concrete terms ti of various
types, and somehow apply the symbol f to these terms. The symbol f is
itself reified (as were propositional variables) and must be interpreted to a
concrete Coq entity which can be applied to the ti. Even if we can program
such functions using Coq’s rich type system, there is no guarantee that a
term corresponds to a well-typed concrete object and that its interpretation
will succeed, in other words that the reified symbols represent symbols with
the adequate types. To detect ill-formed reified terms, we need to be able
to compare expected types and actual types during the interpretation of
a term, and this is not possible if we use Coq’s types directly. Hence, in
order to be able to correctly reify terms with arbitrary types, we cannot
use a shallow embedding, i.e. only reifying terms, but we will use a deep
embedding of terms in the logic, i.e. reify both terms and their types.

8.2.1 Types

We will not reify all possible Coq types, in particular we only interpret non-
dependent products (“arrows”), the type Z of relative integers, and consider
all other types as atomic types, i.e. we reify them as variables, similarly to
what we did with propositional variables. We define the following inductive
datatype type for reified types:

Inductive type : Set :=

| typeCst (tidx : index)

| typeDefault

| typeArith

| typeArrow (_ _ : type).

The last two constructors correspond to the type of relative integers and to
arrow types. The role of typeDefault is to serve as a default datatype used
to make some functions total and which should not be used by the reification
process. Finally, typeCst is used for a reified atomic type. Note that we
again use an object of type index to denote a variable, which means that
we use a varmap to interpret a type into a Coq type:

Definition type_env := varmap Type.

Inductive dummy : Set := mk_dummy.

Section TInterp.
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Variable vtypes : type_env.

Fixpoint tinterp (t : type) : Type :=

match t with
| typeCst idx ⇒ varmap_find dummy idx vtypes

| typeDefault ⇒ dummy

| typeArith ⇒ Z

| typeArrow t1 t2 ⇒ (tinterp t1) → (tinterp t2)

end.

End TInterp.

We define type_env as the type of maps used to interpret reified types, i.e.
as varmap Type, and we also define a new type dummy which is specific to the
reification routine. The type interpretation function tinterp uses a map of
type type_env and is defined in a section2 where such a map is introduced.
It is straightforward and simply proceeds by induction on the structure of
the reified type, interprets arrows as arrows, integers as integers, and atomic
types in the map using varmap_find. The special type dummy is used as a
default, in particular when the lookup in the map fails; looking for dummy

in a reified formula is then a way to easily spot problems in the reification
process.

We also define an equality test for reified types, which would not have
been possible with Coq’s types:

Fixpoint tequal (t t′ : type) : bool := ....

Property tequal_1 : ∀t t′, tequal t t′ = true → t = t′.

Property tequal_2 : ∀t t′, t = t′ → tequal t t′ = true.

8.2.2 Symbols

In this subsection and in the following, we suppose we are in a Coq section
where a variable vtypes of type_env is defined, as above, and our definitions
will therefore be implicitely parameterized by vtypes. We use the notation
JtyK to denote tinterp ty vtypes, the interpretation of a reified type ty.

We do not interpret any symbols except arithmetic constants and arith-
metic operations. For other symbols, we need to proceed as with proposi-
tional variables and uninterpreted types, i.e. we need to store them in some
kind of map and use indices in the map to represent these symbols. The
problem is that symbols may have arbitrary types and therefore we cannot
store them in one particular varmap (these are homogeneous); instead, we
use, for each reified type, one varmap to store all symbols with that type,
and we store all these varmaps in a single “varmap of varmaps”. This leads
to a double indirection, and each symbol must be represented with two in-
dices: one to identify which varmap should be used, and the other to locate

2Coq’s sectioning mechanism allow one to introduce variables which are generalized at
the end of the section.
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the symbol in that particular varmap. The type of reified symbols is defined
as follows:

Inductive arithop : Set :=

| Plus | Minus | Opp | Mult.

Inductive symbol : Set :=

| Unint (ty_idx t_idx : index)

| Cst (z : Z)

| Op (op : arithop).

where uninterpreted symbols are encoded with a pair of indices, as explained
above. We now need to formally define the “varmap of varmaps” used to
interpret such symbols. Because the outer varmap needs to be homogeneous,
each of the inner varmaps must have the same type and therefore we use
the following dependent pair to denote the type of the inner varmaps:

Definition depvarmap := {ty : type & (JtyK × varmap JtyK)}.

Definition defvm : depvarmap :=

existT _ typeDefault (mk_dummy, Empty_vm).

Such a depvarmap is a dependent pair whose first element is a reified type
ty, and whose second element is a varmap containing values of type JtyK
and an extra value of the same type which will be used as a default. An
example of a depvarmap is given with the definition of defvm, a default
varmap for the default type. The environment used to interpret symbols,
called a term_env is then simply defined as:

Definition term_env := varmap depvarmap.

Variable v : term_env.

Note that term_env is a dependent type itself, since it implicitely depends
on vtypes in this context. We now also introduce a variable v : term_env

in the context and we can define the function which returns the (reified) type
of a symbol:

Definition lookup_type (f : symbol) : type :=

match f with
| Unint ty_idx _ ⇒

π1(varmap_find defvm ty_idx v)

| Cst _ ⇒ typeArith

| Op (Plus | Minus | Mult) ⇒
typeArrow typeArith (typeArrow typeArith typeArith)

| Op Opp ⇒ typeArrow typeArith typeArith

end.

The types of arithmetic constants and operations do not require explana-
tions, and the type of an uninterpreted symbol is found using its first index:
we find the corresponding depvarmap in v using varmap_find, and use its



178

first projection, i.e. the reified type. Now that we have this function, we
can define the interpretation of a symbol, which we call lookup:

Definition lookup (f : symbol) : Jlookup_type fK :=

match f with
| Unint ty_idx s_idx ⇒

let (d, vs) :=

π2(varmap_find defvm ty_idx v) in

varmap_find d s_idx vs

| Cst z ⇒ z
| Op Plus ⇒ Zplus | Op Minus ⇒ Zminus ...

end.

This function is dependently-typed and for all symbol f, returns an object
whose type is the interpretation of the reified type lookup_type f. The
interpretation of arithmetic symbols is straightforward, and as for uninter-
preted symbols, the depvarmap containing the symbol is retrieved using the
first index, its second component is retrieved with the projection π2 and the
second index is used to find the Coq value corresponding to the symbol in
the inner varmap. Note that the default passed to that second varmap_find

is the value stored along the inner varmap in the depvarmap. Coq is able to
verify that this function indeed returns an object of type Jlookup_type fK
for all f .

8.2.3 Terms

Once symbols are defined, the type of reified terms is simply:

Inductive term : Set :=

| app (f : symbol) (lt : list term).

The expected type of a reified term can be defined by the following recursive3

function:

Nested Fixpoint type_of (t : term) : type :=

match t with
| app f l ⇒ types_of l (lookup_type f)

end
with types_of (l : terms) (ret : type) : type :=

match l with
| nil ⇒ ret

| cons _ l ⇒
match ret with

| typeArrow _ t2 ⇒ types_of l t2

3This syntax for recursive functions is not standard: Coq normally does not allow
fixpoints through a nested inductive (in this case, list) to be written in the usual way; we
wrote an extension to allow this.
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| _ ⇒ typeDefault (* absurd *)

end
end.

This function finds the type of the term’s head symbol and removes the types
of its direct subterms in order to retrieve the type of the result. We now
want to define the interpretation of reified terms, but we can only compute
this interpretation if the reified terms are “well-typed”. Therefore, we will
compute the interpretation using an hypothesis that the reified term is well-
typed. We thus start by writing a function has_type t ty which returns
true if the reified term t has reified type ty:

Nested Fixpoint has_type (t : term) (ty : type) : bool :=

match t with
| app f l ⇒ have_type l (lookup_type f) ty

end
with have_type (l : terms) (ty res : type) : bool :=

match l with
| nil ⇒ tequal ty res

| cons t l ⇒
match ty with

| typeArrow t1 t2 ⇒ has_type t t1 &&& have_type l t2 res

| _ ⇒ false

end
end.

The intuitive meaning of the mutually recursive function have_type l ty

res is that it checks if a term of type ty can be applied to a list of argu-
ments l to yield type res. We can now implement the interpretation of a
reified term; this function takes a reified term t, a reified type ty and a
proof that has_type t ty = true, and returns an object of type JtyK. The
implementation of this function interp is quite complex and is presented
in Fig. 8.1. It uses a mutually recursive function interps which interprets
a list of terms l such that have_type l ty res = true for some types ty

and res, and passes them to an object of type JtyK to return an object of
type JresK.

We will not explain the implementation of interp in detail, but a couple
of points are worth noticing. Most importantly, it uses an advanced fea-
ture of the CIC, dependent elimination: it allows one to write case analysis
where the type in each branch depends on the value matched in the branch.
We use dependent elimination here in order to take advantage of the hy-
pothesis that the term is well-typed. For instance, in the body of interp,
the term t is matched against app f l and in that branch, the hypothe-
sis H of type has_type t ty = true becomes has_type (app f l) ty =

true, which by definition of has_type is also a hypothesis of have_type

l (lookup_type f) ty: this allows us to pass this hypothesis to interps
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Nested Fixpoint interp (t : term) (ty : type)

(H : has_type t ty = true) : JtyK :=

(match t as a
return has_type a ty = true → JtyK with

| app f l ⇒
fun H ⇒ interps l _ ty (lookup f) H

end) H

with interps (l : terms) (ty res : type) (f : JtyK)
(H : have_type l ty res = true) : JresK :=

(match l as a
return have_type a ty res = true → JresK with

| nil ⇒
fun H ⇒ eq_rect _ (fun x ⇒ JxK) f _ (tequal_1 _ _ H)

| cons t lt ⇒
(match ty as b
return JbK → have_type (t::lt) b res = true → JresK with

| typeArrow t1 t2 ⇒
fun f H ⇒

let H1 := proj1 (andb_prop _ _ H) in

let H2 := proj2 (andb_prop _ _ H) in

interps lt t2 res (f (interp t t1 H1)) H2

| _ ⇒
fun f ⇒ bdiscr JresK

end) f
end) H.

Figure 8.1: Interpretation of reified terms

along with lookup f, which has type Jlookup_type fK. Similar dependent
elimination in the body of interps allows us to dispatch absurd cases, for
instance.

The interpretation of terms with an arbitrary signature is not easy to
implement, and it can also be tedious to reason about. In particular, one
must be very cautious in order to avoid using the proof-irrelevance axiom
when reasoning about dependent constructs. We can prove a variety of
useful results on term interpretation, like the fact that a term can only have
one type (and if it exists, it is given by type_of), or the fact that the relation
interp_eq between terms defined by the equality of their interpretations is
a congruence relation. This relation is presented in Fig. 8.2. Note that
only well-typed terms with the same type can be compared with equality,
therefore in order to define an equality on all reified terms, we use the special
dom structure as the result of interpretation. In particular, we consider all ill-
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Inductive dom :=

| IllTyped

| Interpreted (ty : type) (v : JtyK).

Definition int (t : term) : dom :=

let ty := type_of t in

(match has_type t ty as a
return has_type t ty = a → dom with

| true ⇒ fun H ⇒ Interpreted ty (interp t ty H)

| false ⇒ fun _ ⇒ IllTyped

end) (refl_equal _).

Definition interp_eq (t t′ : term) := int t = int t′.

Figure 8.2: An equality relation on reified terms

typed terms to be equal (this is required by reflexivity), and an ill-typed term
is never equal to a well-typed term. This relation is clearly an equivalence
relation but the fact that it is congruent is a fundamental result since this
allows us to use interpretation of literals as a model for equalities on terms,
as we will see in Section 8.3. This is similar to the fact that we used the
interpretation of propositional variables as a model for propositional literals.

Note that this interpretation of equalities is the source of another dif-
ference with respect to pure propositional reification: consider two concrete
Coq terms T and U of the same type, and suppose t and u of type term

are their reified counterparts; then interp_eq t u is not convertible to T

= U because it reduces to an equality between elements of type dom. Nev-
ertheless, interp_eq t u is equivalent to T = U, and more generally, when
reifying formulae with equalities, the interpretation of the reified formula is
equivalent, but not convertible, to the original.

8.2.4 Implementation

We implemented this reification mechanism with Ltac as we did for propo-
sitional literals in Section 6.2.1, but it is genuinely more complex. More
precisely, reifying the formulae and equalities between terms required four
different passes (two for the reification of types, two for the symbols and
terms) and involved a great deal of advanced term matching. The resulting
tactic was much too slow to be used in practice: it is not reasonable to have
the reification process take longer than the proof search itself.

Therefore, we implemented an alternative version of the reification mech-
anism in OCaml, using Coq sources as an API. This requires manipulation
of the internal constructs of Coq but allows for a fast reification process.
The result is a tactic ergo_reify f reif v which takes a formula f in the
context, whose type must be a proposition, reifies it and introduces new
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objects in the context: the reified formula reif and the varmaps v for in-
terpreting the reified formula. For instance, reifying the formula final in
the following context:

1 subgoal

A : Prop
x : Z

f : Z → Z

final : A ∧ f x = 3

============================

False

ergo_reify final reif v.

will give the following reified formula, and the corresponding maps v:

1 subgoal

A : Prop
x : Z

f : Z → Z

final : A ∧ f x = 3

v := ...

reif := FAnd (FVar (Left_idx End_idx))

(FEq

(app

(Unint (Left_idx End_idx) End_idx)

((app (Unint End_idx End_idx) nil)::nil)

(app (Cst 3) nil))

============================

False

8.3 New Literals, New Semantics

The use of literals extended with equalities on terms prevents us from using
the modules for propositional literals LPROP and CNFPROP defined in Sec-
tion 6.2.1 and Fig. 6.4 page 142, which were only designed for propositional
variables. Thus we define a LITERAL module which embeds propositional
variables and equalities, and the corresponding semantics module.

Module LITINDEX <: LITERAL.

Inductive atom : Set :=

| Atom (a : index)

| Equation (u v : term).

Definition t := atom × bool.
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Definition mk_not (l : t) := (fst l, negb (snd l)).

...

End LITINDEX.

In this module called LITINDEX, literals are propositional variables (atoms)
or equalities between terms, along with their polarity. All the required prop-
erties are straightforward. Note that given this module of literals, we can
obtain a module of expandable literals suitable for our lazy CNF conversion
mechanism by using the LLAZIFY functor presented in Section 7.3.2. In order
to interpret these literals, we need a varmap for propositional literals, and
an environment for interpreting terms, i.e. a type_env and a correspond-
ing term_env, as we explained above. We pack everything in a varmaps

structure:

Record varmaps := {

varmaps_lits : varmap Prop;

varmaps_vty : type_env;

varmaps_vsy : term_env varmaps_vty

}.

and we can define the interpretation of a literal parameterized by such a
varmaps object:

Definition interp_atom (v : varmaps) (a : atom) : Prop :=

match a with
| Atom a ⇒ varmap_find True (varmaps_lits v) a
| Equation s1 s2 ⇒

interp_eq (varmaps_vty v) (varmaps_vsy v) s1 s2

end.

Definition interp (v : varmaps) (l : t) : Prop :=

match l with
| (a, true) ⇒ interp_atom v a
| (a, false) ⇒ ˜ interp_atom v a

end.

Note the use of interp_eq to interpret equalities. To define a semantics
module for these literals, we naturally simply take varmaps as our type of
models, and interpret a literal in a model using the interp function above:

Module SEM_INDEX <: SEM_INTERFACE LITINDEX.

Definition model := varmaps.

Definition model_as_fun : model → LITINDEX.t → Prop :=

LITINDEX.interp.

...

End SEM_INDEX.

The properties required on these models are quite straightforward, but the
interesting thing is that we can isolate the notion of model for equalities and
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prove that our notion of models indeed represent congruence relations:

Definition models_eq (M : model) a b := M (Equation a b, true).

Notation "M |= a = b" := (models_eq M a b).

Property models_eq_refl : ∀M a, M |= a = a.

Property models_eq_sym : ∀M a b, M |= a = b → M |= b = a.

...

These proofs rely on the fact that interp_eq is a congruence relation. We
can define a similar notion for disequalities, noted M |= a 6= b and prove
symmetry and antireflexivity for this relation. Finally, we add a notation
for semantic entailment of equalities, namely E ⊢ a = b to denote that all
models which satisfy the equations in E also model a = b:

Definition entails (E : list (term × term)) (a b : term) :=

∀M, (∀u v, In (a, b) E → M |= u = v) → M |= a = b.

Notation "E ⊢ a = b" := (entails E a b).

8.4 Conclusion

We have presented how to extend the formalized DPLL architecture seen in
the previous chapters to an SMT architecture by replacing the environment.
Thanks to the modular approach, the modifications are quite constrained
and do not interfere with the top-level tactic or the low-level notions of lit-
erals and CNF formulae. We have also shown how to extend the reification
to terms of arbitrary types, which is significantly harder than reifying ex-
pressions with constant types (propositional values for instance). The only
similar reification development which we are aware of is presented by P.
Corbineau in his thesis [Cor05] as an attempt at a semi-reflexive version
of the congruence tactic, but this version has not been retained in Coq.
We have also defined an interpretation for equalities of reified terms, which
represents a congruence relation on terms and can be used as a notion of
model in our semantics.
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The previous chapter was devoted to extending our DPLL architecture
from a SAT architecture to an SMT architecture, by replacing partial as-
signments with a more general notion of environments. In this chapter, we
implement an environment for the theory of equality modulo a theory X by
following our system CC(X) presented in Chapter 3. Section 9.1 presents the
formalization of solvable theories and we present the actual implementation
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of the CC(X) procedure in Section 9.2. We then show how to embed this im-
plementation in an environment suitable for DPLL in Section 9.3. Finally,
we conclude in Section 9.4 by showing a concrete application to the theory
of equality with uninterpreted functions.

9.1 Theories

We start our Coq formalization of CC(X) by its basis component: theories.
In Section 3.2.1, we described a theory as a collection of functions and later
added the properties that these functions had to verify. We proceed in a
similar manner here, and we start with the definition of the class of theories:

Class Theory := {

R : Type;

R_OT :> OrderedType R;

(* Operations *)

make : term → R;

one : R;

leaves : R → list R;

subst : R → R → R → R;

solve : R → R → Solution R

}.

In accordance with Definition 3.2.1 page 58, the class of theories provides
an (ordered) type R of semantic values and the expected operations. The
returned type of solve is a three-branch inductive:

Inductive Solution (R : Type) : Type :=

| Solved

| Unsolvable

| Subst (p : R) (P : R).

denoting the possible results of solving an equation. In order to describe the
specifications of a theory, we now suppose we work in a context with some
theory:

Section TheorySpecs.

Context ‘{Th: Theory}.

...

and any later reference to R, make, ... will refer to that theory. We start
by defining the iter function, which corresponds to the “iterated solving
function” of Definition 3.2.2:

Fixpoint iter (E : list (term × term)) : option (R → R) :=

match E with
| nil ⇒ Some (fun r ⇒ r)
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| (t1, t2)::E’ ⇒
match iter E’ with

| Some f ⇒
let r1 := f (make t1) in

let r2 := f (make t2) in

match solve r1 r2 with
| Solved ⇒ Some f
| Unsolvable ⇒ None

| Subst p P ⇒ Some (fun r ⇒ subst p P (f r))

end
| None ⇒ None

end
end.

The definition follows exactly the one we made on page 59, with the ex-
ception that iter iterates on equations between terms instead of semantic
values, but this choice is superficial and for convenience only. Note also
that iter return’s type is option (R -> R) and not R -> option R, thus
emphasizing that iter E r succeeds either for all r, or for none, and this
only depends on E. We can now formalize how a list of equations entails an
equation between semantic values:

Definition implyX (E : list (term × term)) (r1 r2 : R) :=

match iter E with
| Some uf ⇒ uf r1 === uf r2

| None ⇒ True

end.

which corresponds to Definition 3.2.3. With these definitions, we can prove
interesting properties, like the fact that implyX E is an equivalence rela-
tion which contains at least E, and is actually monotonic with respect to
E. In order to specify the properties that solve must verify, we define an
inductive relation solve_specs which links solve’s possible results and its
arguments1:

Inductive solve_specs (u v : R) : Solution R → Prop :=

| solve_specs_Solved :

u === v → solve_specs u v (Solved R)

| solve_specs_Unsolvable :

u =/= v → (∀E, implyX E u v → iter E = None) →
solve_specs u v (Unsolvable R)

| solve_specs_Subst :

∀p P, u =/= v → subst p P u === subst p P v →
p /∈ (leaves P) → solve_specs u v (Subst p P).

1It is similar to the way we specified the comparison function with the compare_spec

relation in Chapter 5 page 112.
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The various properties follow the Axioms 3.2.4 presented in Chapter 3. In
particular, solve u v should return Solved if and only if u === v holds.
Also, it should return Unsolvable if and only if the equation u = v can
only be entailed by an inconsistent set of equations.

We are now ready to formally write the specifications that a theory must
verify, we pack these specifications in the following class:

Class TheorySpecs := {

(* leaves is never empty *)

leaves_not_empty : ∀r, leaves r 6= nil;

(* properties of implyX *)

...

implyX_entails :

∀E u v, implyX E (make u) (make v) → E ⊢ u = v;

(* properties of solve *)

solve_dec : ∀u v, solve_specs u v (solve u v);

(* morphisms *)

...

}.

We see that leaves should never return an empty list, as in Definition 3.2.1,
and that solve should verify the specification defined in solve_specs. The
central property implyX_entails that we require on implyX is the one which
makes it consistent with the semantic notion of equality entailment and cor-
responds exactly to Axiom 3.2.5 page 59. By itself, it guarantees that make,
subst and solve are correctly describing the theory. Finally, there are a
few other requirements in TheorySpecs which we do not detail, in particu-
lar proofs that subst, leaves and solve are all morphisms for equality on
semantic values. We require less properties on theories than what we pre-
sented in Section 3.2.1, simply because we are only interested in soundness
for the reflexive tactic, and some properties were only useful to prove the
completeness of CC(X).

To conclude this presentation, we show how to define a module signature
for theories by packing together an instance of a theory implementation and
an instance of the corresponding specifications:

Module Type THEORY.

Instance Th : Theory.

Instance ThSpecs : TheorySpecs Th.

End THEORY.

Equality on Uninterpreted Functions. A simple basic case of a theory
is equality modulo the “empty” theory, i.e. the theory E of equality with
uninterpreted functions as defined in Definition 3.1.1 on page 52. We now
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define instances of Theory and TheorySpecs which implement this simple
theory.

Instance Empty_theory : Theory := {

R := term;

R_OT := term_OT;

make := fun t ⇒ t;
one := app (Op Plus) nil;

leaves := fun t ⇒ t::nil;

subst := fun p P r ⇒ if p == r then P else r;

solve := fun r1 r2 ⇒ if r1 == r2 then Solved _ else Subst r1 r2

}.

In this theory, the set of semantic values is simply term itself, and the make

function is just the identity. Any term will do for one (and we use an ill-
typed one) since it won’t be used with this theory, and the leaves of a term
t are simply t itself. The substitution subst p P simply maps p to P, and
leaves any other term unchanged. Finally, an equation u = v is solved if u

and v are equal, and yields the substitution pair Subst u v otherwise.
With these definitions, proving an instance of TheorySpecs is completely

straightforward and we obtain a module EmptyTheory for the theory of
equality on uninterpreted functions. Chapter 10 will be devoted to the
implementation of a more interesting theory, the theory of linear arithmetic.

9.2 Implementing Congruence Closure

The implementation of our CC(X) decision procedure for congruence clo-
sure modulo a theory is derived from the formal presentation we made in
Section 3.2.2. We do not describe a faithful formalization of the rules in
Figures 3.3 and 3.4 (cf. pages 63 and 79) with soundness and completeness
proofs, like we did for the SAT solver in Chapter 6, but an algorithm which
is derived from these rules2. This algorithm is parameterized by a Theory

as described in the previous section, and uses a variety of auxiliary data
structures which correspond to the different elements of CC(X) configura-
tions: the union-find ∆, the “use” relation Γ and a “diff” structure N to
hold disequalities. We start by describing how we implement these data
structures and their properties.

2We have actually implemented such a faithful Coq formalization of CC(X) as presented
in Chapter 3 with soundness and completeness proofs, thus the system has been formally
verified in Coq. However, that formalization is not adapted to usage in an efficient al-
gorithm: for instance, it uses the set of all terms of the problem to ensure termination,
which is not practical; another issue is the union-find ∆ and mapping Γ which are de-
scribed mathematically as total functions, but must be implemented as finite efficient
structures.
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9.2.1 Uf

The module Uf is a Coq file which implements a union-find structure of
mapping terms to semantic values. It is parameterized by an instance of
Theory, and uses the finite dictionaries of our containers library detailed in
Chapter 5:

Section WithTheory.

Context ‘{Th : Theory}.

Structure t := mk_t {

this :> Map[term, R];

canon : term → R

}.

...

End WithTheory.

The union-find structure is a record which contains a finite map from terms
to values of type R, i.e. to semantic values. The coercion in the declaration
of member this means that an object of type t can be used as if it was of
type Map[term, R] and the projection will be added implicitely. The extra
member canon is a function from terms to semantic values: it ensures that
the structure can be used incrementally. In order to understand this point,
recall that CC(X) configurations in Chapter 3 defined the union-find ∆ as
a function T → R from maps to terms; this ensured that when solving an
equation and applying a substitution in ∆ in the Congr rule, the substi-
tution was applied to all terms in T . Then, when “adding” a new term in
the Add rule, its representative in ∆ was already up-to-date with all the
equations already merged. In practice, we want to calculate representatives
progressively, storing them in the finite map this. We also store the full
function in canon so that we can correctly calculate its representative when
a new term is added to the structure. In other words, this can be seen as
a memoization of canon on all the terms already treated by the algorithm.
At the start of the algorithm, the canon function is simply make (as ∆0(t)
was defined as [t] in CC(X)), and it is straightforward to define the following
basic operations in Uf:

Definition empty : t := mk_t [] make.

Definition mem (m : t) (t : term) : R :=

match m[t] with | Some _ ⇒ true | None ⇒ false end.

Definition find (m : t) (t : term) : R :=

match m[t] with
| Some r ⇒ r
| None ⇒ canon m t

end.
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Coercion find : t  Funclass.

Definition congruent (m : t) (a b : term) : bool :=

m a == m b.

Definition add (m : t) (a : term) : t :=

match m[a] with
| Some _ ⇒ m
| None ⇒ mk_t (m[a ← canon m a]) (canon m)

end.

In particular, find m t returns the representative of term t in the structure
m (using canon if the term is not in the map), and the coercion lets us
write m t directly: congruent m a b tests whether two terms have the
same representative. Adding a term t to m leaves the structure unchanged
if t was already known, and adds it using canon otherwise.

The last operation is the most important and allows one to merge two
elements in the map:

Definition merge (m : t) (p P : R) : t :=

mk_t (map (subst p P) m) (fun t ⇒ subst p P (canon m t)).

Definition merge’ (m : t) (p P : R) : t × list term := ...

It merges p and P by applying the substitution subst p P to all terms in
the map, and to canon as well. We also provide an alternate version merge’

which also returns the list of terms in the map which were “touched” by
the merge, i.e. the terms whose representative changed. We will see in
Section 9.2.5 that this can be used to check for congruence equations faster
in the algorithm.

Invariants and properties. We make the functions above opaque in Uf,
which ensures encapsulation: outer modules using this structure cannot de-
pend on the particular implementation. Instead, we prove all the necessary
properties to reason on the functions above in the module Uf. The main
thing is that a union-find map is only well-formed if canon is consistent with
the map this; we express this invariant using the following class Wf:

Class Wf (m : t) := {

is_wf : ∀t, mem m t = true → m t === canon m t
}.

Instance Wf_empty : Wf empty.

Instance Wf_add ‘{Wf m} (a : term) : Wf (add m a).

Instance Wf_merge ‘{Wf m} (p P : R) : Wf (merge m p P).

The instances ensure that all the operations provided above preserve the
invariant Wf. We then specify the operations empty, add and merge in terms
of find. Some properties will only be true for a union-find which verifies
Wf; for instance the fact that add does not change the representatives:
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Property empty_find : ∀t, empty t = make t.
Property add_find : ∀m ‘{Wf m} a a′,

find (add m a) a′ === find m a′.

Property merge_find : ∀m p P t,
(merge m p P) t = subst p P (m t).

9.2.2 Use

The Use module implements a structure of finite maps from semantic values
to sets of terms, representing a mapping from semantic values to terms who
“use” this value (see the description of Γ in Section 3.2.2 page 62). Again it
uses our containers library:

Section WithTheory.

Context ‘{Th : Theory}.

Definition t := Map[R, set term].

Definition empty : t := [].

Definition find (m : t) (r : R) : set term :=

match m[r] with
| Some r ⇒ r
| None ⇒ ∅

end.

Coercion find : t  Funclass.

...

End WithTheory.

The structure is simply a finite map from R to finite sets of terms, and find

returns the set of terms associated to a value if any, and the empty set
otherwise. There are two operations to modify such a structure, one where
two values p and P are merged, and the other to add a new term fa to a list
of values la:

Definition merge (m : t) (p P : R) : t :=

match m[p] with
| None ⇒ m
| Some usedp ⇒

let lP := leaves P in

List.fold_left (fun m l ⇒
insert l usedp (union usedp) m) lP (remove p m)

end.

Definition add (m : t) (fa : term) (la : list R) : t :=

List.fold_left (fun m l ⇒ insert l {fa} (add fa) m) la m.
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Notice how merge m p P adds the terms in find m p to every value in
leaves P, which corresponds exactly to the update of Γ in the Congr
rule in Fig. 3.3. Both merge and add use the insert function provided by
containers: insert x d f m updates the value bound to x in m by applying
f, or uses d if x is unbound. It improves on the basic find-then-update by
only using a single traversal of the map.

We define two extra operations in Use which will be used later in the
algorithm:

Definition using_all (m : t) (lvs : list R) : set term :=

match lvs with
| nil ⇒ ∅
| x::ls ⇒

List.fold_left (fun acc y ⇒ acc ∩ (m y)) ls (m x)

end.

Definition terms_of (m : t) : set term :=

fold (fun _ v acc ⇒ v ∪ acc) m ∅.

using_all m lvs returns the set of terms which are used by all values in
lvs and is used to compute new congruence equations, while terms_of m

returns all terms appearing in the bindings in the map, and is used to ensure
the termination of the algorithm in Section 9.2.5.

Properties. Contrary to Uf.t, the objects of Use.t do not require a well-
formedness invariant. We again make the definitions in this module opaque
to ensure encapsulation, and prove several properties which are enough to
reason about the structure. It turns out that this structure has little effect
on the soundness of CC(X) (even though it could threaten its completeness),
so strictly speaking almost no properties are required. We prove basic in-
variants nonetheless, because the structure is reusable:

Property empty_find : ∀r, empty r = ∅.
Property terms_of_iff : ∀m t, t ∈ terms_of m ↔ ∃r, t ∈ m r.

...

9.2.3 Diff

The last structure which we present is implemented in the Diff module and
represents a set of disequalities. It does not depend on a theory but only on
the fact that terms are an ordered type, and uses a dictionary from terms
to set of terms to represent, for every term t, the set of terms which are
known to be different from t:

Section AnyOrderedType.

Context ‘{term_OT : OrderedType term}.
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Definition t := Map[term, set term].

Definition empty : t := [].

Definition neqs (d : t) (a : term) : set term :=

match d[a] with
| Some s ⇒ s
| None ⇒ ∅

end.

Definition are_diff (d : t) (a b : term) : bool :=

mem a (neqs d b).

Coercion are_diff : t  Funclass.

...

End AnyOrderedType.

The definition of empty is straightforward, and so is the function neqs which
simply returns the set of terms different from a given term. A diff structure
can be used as a boolean relation between terms using are_diff and the
corresponding coercion: if N as type t and a, b are two terms, N a b is true
if a and b are different in N. The final operation which we define allows one
to add a new disequality to the structure:

Definition separate (d : t) (a b : term) : t :=

insert a {b} (add b) (insert b {a} (add a) d).

When adding a disequality a 6= b, it simply adds each term to the other’s
bindings.

Invariants and properties. A diff structure is only well-formed if it is
symmetric, and we describe this invariant as a class, along with instances
that this invariant is preserved by empty and separate:

Class Wf (d : t) := {

is_wf : ∀a b, d a b = d b a
}.

Instance Wf_empty : Wf empty.

Instance Wf_separate ‘{Wf d} (a b : term) : Wf (separate d a b).

We then prove the specifications of the various operations using are_diff,
some of which will require a well-formedness invariant:

Remark are_diff_sym : ∀‘{Wf d} a b, d a b = d b a.

Property are_diff_empty : ∀a b, empty a b = false.

Corollary separate_monotonic : ∀d a b x y,

d x y = true → (separate d a b) x y = true.

Corollary are_diff_separate_1 : ∀d a b,
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(separate d a b) a b = true.

...

9.2.4 Raw Implementation of CC(X)

Our congruence closure procedure can be seen as a blackbox which imple-
ments two types of operations: it must process equalities and disequalities
which it receives in input, and it must answer queries about whether some
equality or disequality is true or not. This is similar but not exactly the same
as environments as defined in Section 8.1.1, because environments must pro-
cess all kinds of literals while CC(X) only deals with (dis)equalities. We can
summarize the interface of the procedure we describe in this section in the
following way:

Parameter t : Type.

Parameter empty : t.
Parameter assume : input → t → Exception t.
Parameter query : input → t → bool.

where the type input is simply defined as:

Inductive input : Set :=

| Equation (a b : term)

| Disequation (a b : term).

We define the procedure as a functor parameterized by a THEORY module,
i.e. a module which brings a Theory instance and its specifications (see
Section 9.1 above).

Module RAWCCX (Import T : THEORY).

Structure t : Type := mk_env {

G : Use.t;

D : Uf.t;

N : Diff.t;

F : list (term × term);

I : list input

}.

Definition empty : t :=

mk_env Use.empty Uf.empty Diff.empty nil nil.

...

A configuration of our algorithm is defined as a record with five fields, which
for the most part correspond to CC(X) configurations as defined in Chapter 3.
The first three fields correspond to Γ, ∆ and N and use the modules of data
structures presented above: G, the “use” structure, has type Use.t, D has
type Uf.t and N has type Diff.t. The field F partly corresponds to the
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Φ part of CC(X) configurations: it contains pending equalities which must
be processed, but it does not contain queries; indeed, contrarily to CC(X)
configurations, our procedure here will receive and process the queries one
at a time. Finally, field I has no counterpart in CC(X) configurations and
is needed here for the specifications: it stores the list of inputs which have
been assumed in the environment already. Note that CC(X) configurations
also contained the set of terms Θ which had been added, our configurations
do not and we will use the union-find D and the function Uf.mem to know
whether a term is new or not.

In order to define assume and query, we start by defining many auxiliary
functions; they precisely correspond to the inference rules for CC(X) and can
be read in parallel with Fig. 3.4 page 79.

Assuming disequalities. We start with assuming disequalities since it
is the easiest task. It is performed by the following function diff a b e

which assumes a disequality between a and b in configuration e:

Definition diff (a b : term) (e : t) : Exception t :=

if D e a == D e b then Inconsistent

else
let N’ := Diff.separate (N e) a b in

Normal (mk_env (G e) (D e) N’ (F e) (I e)).

When the two terms are equal in D e, it implements rule IncohDiff and
returns Inconsistent; otherwise, it implements the Diff rule and uses
Diff.separate to update the N field in e.

Assuming equalities. There are four rules which deal with adding equal-
ities: Congr, IncohEq, Unsolv and Remove. In particular, Congr is the
most complex rule and requires the computation of the new equations ob-
tained by congruence. This function is quite tedious and follows the math-
ematical definition, we just show its prototype:

Definition find_congr_equations

(D’ : Uf.t) (G : Use.t) (F : list (term × term))

(p : R) (touched : list term) : list (term × term) := ...

This function calculates the new congruence equations in D’, knowing that
the value which was substituted is p and that the terms whose represen-
tative changed are in touched. It prepends the resulting equations to F.
After applying a substitution in the union-find, we also need to check if it
has become incoherent with the diff structure or not, this is done by the
incoherent function:

Definition incoherent

(D : Uf.t) (N : Diff.t) (touched : list term) : bool :=
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lexists (fun t ⇒
exists_ (fun u ⇒ D t == D u) (Diff.neqs N t)) touched.

For every term whose representative changed, this checks if there exists a
term in its class which also belongs to its bindings in N. We can now write
the merge function, which assumes an equality a = b in a configuration:

Definition merge (a b : term) (e : t) : Exception t :=

let ’mk_env G D N F I := e in

if N a b then Inconsistent

else
let ra := D a in let rb := D b in

if ra == rb then Normal e
else

match solve ra rb with
| Unsolvable ⇒ Inconsistent

| Solved ⇒ Normal e
| Subst p P ⇒

let ’(D’, touched) := Uf.merge’ D p P in

if incoherent D’ N touched then Inconsistent

else
let G’ := Use.merge G p P in

let F’ := find_congr_equations D’ G F p touched in

Normal (mk_env G’ D’ N F’ I)

end.

If the two terms a and b are known to be different, the function returns
Inconsistent (rule IncohEq). Otherwise, it retrieves their representa-
tives ra and rb in D. If these are equal or the solver returns Solved, the
configuration is unchanged (rule Remove). If the equation is unsolvable,
rule Unsolv is applied. Otherwise, the substitution is applied to D using
Uf.merge’, and if the new union-find becomes incoherent, Inconsistent is
returned (rule IncohEq again). Otherwise, the new equations and the new
use structure are computed and the updated environment is returned.

Adding terms. In accordance with the rules’ side conditions, all our pre-
vious functions were implicitely assuming that the terms they were passed as
arguments had already been added to the environment. Adding new terms
is the task of the Add rule in the inference system, and must be done in
a bottom-top manner (i.e. subterms first). Also, adding terms may yield
new equalities by congruence, and similarly to above, we define a function
to compute these new equations:

Definition find_add_equations

(G : Use.t) (D : Uf.t) (F : list (term × term))

(fa : term) (lvs : list R) : list (term × term) := ...
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It computes the new equations as described in rule Add, using Use.using_all

in particular, and prepends them to F. We can now write the function
add_term fa e which recursively adds fa and all its subterms, as required,
to the configuration e.

Nested Fixpoint add_term (fa : term) (e : t) : t :=

if Uf.mem (D e) fa then e else
let ’app f la := fa in

match add_terms la e with
| mk_env G D N F I ⇒

let D’ := Uf.add D fa in

let lvs := lleaves D la in

let G’ := Use.add G fa lvs in

let F’ := find_add_equations G D F fa lvs in

mk_env G’ D’ N F’ I

end
with add_terms (la : list term) (e : t) : t :=

match la with
| nil ⇒ e
| a::qa ⇒ add_term a (add_terms qa e)

end.

where lleaves D la corresponds to what we wrote L∆(~a) in the Add rule.
It simply proceeds by adding subterms recursively, stops as soon as a term
has already been added, updates the different fields and the new equations
and returns the updated configuration.

Cleaning up pending equations. Before a query can be correctly ad-
dressed, the pending equations which were added before that query must be
processed. Until now, we have only added new equations to the field F of
the configuration, but we now explain how to process these equations. We
would like to simply iterate the merge function on these equations, until F

becomes empty. The issue with that is that merge can add new equations
itself, and therefore we have to ensure that this terminates. Because this
recursion is not structural, and because we don’t want to calculate an extra
integer bound as we did for the DPLL procedure in Chapter 6, we use yet
another method for defining non-structural recursive functions. Forest et
al. [BFPR06] provide a facility for defining a recursion with respect to a
well-founded relation on some of the arguments. The function is introduced
with the Function vernacular: it must be accompanied with a proof that
the chosen relation is well-founded, and that it decreases on recursive calls.

Function clean_up (e : t) {wf t_lt e} : Exception t :=

let ’mk_env G D N F I := e in

match F with
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| nil ⇒ Normal e
| (u,v)::F’ ⇒

match merge u v (mk_env G D N F’ I) with
| Normal e′ ⇒ clean_up e′

| Inconsistent ⇒ Inconsistent

end
end.

Proof.
...

Defined.

The function is called clean_up and applies merge repeatedly until there
are no more equations or until the configuration becomes inconsistent. It is
declared as a recursion by well-foundedness for a relation t_lt on configura-
tions, which we explain below. The proof that the recursive call is performed
on a smaller configuration for that relation has the following form:

Theorem merge_decreases :

∀e u v e′, merge u v e = Normal e′ →
t_lt e′ (mk_env (G e) (D e) (N e) ((u,v)::(F e)) (I e)).

and the proof that t_lt is well-founded:

Theorem t_lt_wf : well_founded t_lt.

where well_founded is part of the Coq standard library. Now there are two
thing to consider at this point, which are essential for the efficiency of the
procedure:

1. The proof merge_decreases must be provided at the definition of
the function, therefore it is important that it does not rely on im-
plicit invariants on the structure. Otherwise, this would compel us
to add these invariants to the type t of configuration (similarly to
how we added invariants to expandable literals using dependent types
in Section 7.3.2) and we would not be able to separate these func-
tions and some of their specifications, which would add a consider-
able overhead. We want to keep this procedure purely computational
and therefore it is very important that whatever invariant required
in merge_decreases be true by construction. We show how t_lt is
defined below, and why it decreases by construction during clean_up.

2. The second point is that functions defined by well-founded recursion
are actually normal structural inductions, albeit on a special inductive
type Acc which represents the fact that an element x of type A is
accessible for a relation R:

Inductive Acc {A} {R : A → A → Prop} (x: A) : Prop :=

| Acc_intro : (∀y:A, R y x → Acc y) → Acc x.
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Accessibility represents the absence of infinite descending chains for
relation R, in other words, any element y such that R y x holds is
also accessible and is structurally smaller than x. Well-founded re-
cursions are therefore just inductions on a proof of accessibility, and
well_founded R is actually just defined as ∀a:A, Acc a. There-
fore, for the computation to be effective, the proof of well-foundedness
of the relation, in our case t_lt, must be reduced3 until a construc-
tor Acc_intro appears, i.e. until it is in head normal form. This
computation of proofs can be costly as well, and therefore we use an-
other trick4 with consists in “guarding” the proof of well-foundedness
t_lt_wf with a large number of Acc_intro so that the proof is never
reduced in practice:

Fixpoint guard (n : nat) (wfR : well_founded t_lt)

{struct n} : well_founded t_lt :=

match n with
| 0 ⇒ wfR

| S n′ ⇒ fun x ⇒
Acc_intro x (fun y _ ⇒ guard n′ (guard n′ wfR) y)

end.

Definition guarded_wf_lt := guard 100 t_lt_wf.

This definition takes a proof of well-foundedness and guards it with
2100 constructors, which will be unveiled in a lazy manner during the
computation. We then use guarded_wf_lt to define clean_up instead
of t_lt_wf.

We finish this presentation of clean_up by detailing the relation t_lt. Since
clean_up only applies merge repeatedly, the number of terms added to the
union-find remains constant throughout the function. Therefore, one inter-
esting measure is the number of different equivalent classes in the union-find:
it strictly decreases as soon as the solver in merge returns a substitution. In
other cases, the number of classes is unchanged, but no equation is added
to F, therefore the number of pending equations strictly decreases in those
cases. Altogether, we define t_lt as the lexicographic product of the num-
ber of classes and the number of pending equations and we are able to prove
the t_lt_wf and merge_decreases lemmas.

Assumptions and queries. We can now define the top-level functions
assume and query of our congruence closure procedure.

3Hence the fact that our proof following the definition ends with Defined instead of
Qed.

4This method was introduced on the Coq-Club mailing list by B. Barras and G.
Gonthier as a way to use well-founded recursion even if the well-foundedness proof is
not constructive.
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Definition assume (i : input) (e : t) :=

match i with
| Equation a b ⇒

match merge a b (add_terms (a::b::nil) e) with
| Normal (mk_env G’ D’ N’ F’ I’) ⇒

clean_up (mk_env G’ D’ N’ F’ (i::I’))

| Inconsistent ⇒ Inconsistent

end
| Disequation a b ⇒

match clean_up (add_terms (a::b::nil) e) with
| Normal e′ ⇒

match diff a b e′ with
| Normal (mk_env G’ D’ N’ F’ I’) ⇒

Normal (mk_env G’ D’ N’ F’ (i::I’))

| Inconsistent ⇒ Inconsistent

end
| Inconsistent ⇒ Inconsistent

end
end.

For both equalities and disequalities, assume starts by adding the terms of
the input; it then dispatches the result either to merge or diff depending
on the nature of the input. Note the required use of clean_up after merge

and before diff.
The query function uses two auxiliary functions are_equal and are_diff

which respectively follow the rules Query and QueryDiff:

Definition are_equal (a b : term) (e : t) : bool :=

match clean_up (add_term b (add_term a e)) with
| Normal e′ ⇒ D e′ a == D e′ b
| Inconsistent ⇒ true

end.

Definition are_diff (a b : term) (e : t) : bool :=

match assume (Equation a b) e with
| Normal e′ ⇒ false

| Inconsistent ⇒ true

end.

Definition query (q : input) (e : t) : bool :=

match q with
| Equation a b ⇒ are_equal a b e
| Disequation a b ⇒ are_diff a b e

end.

Note that before testing the status of an equation between terms, the terms
must be added and the possible pending equations processed with clean_up.
Note also how assume is used to resolve a disequality query.
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9.2.5 Designing Invariants and Proofs

In order to establish the necessary proofs on the functions that we described
in the previous section, we first define an invariant which must hold on all
configurations during the proof search. Suppose we have a configuration
mk_env G D N F I, the following six conditions must be verified:

1. D must be well-formed, i.e. Uf.Wf D must hold (see Section 9.2.1).

2. N must be well-formed, i.e. Diff.Wf N must hold (see Section 9.2.3).

3. The representatives associated to terms in the union-find D must be
justified by the inputs, or more precisely by the equations in the inputs.
To express this, we write a function:

eqns_of : list input → list (term × term)

which filters the equations in a list of inputs. The property we want
to express corresponds to Proposition 3.3.2 on page 68 and states that
the representative of a term t is obtained by applying iter to all
equations already merged. We call this property coincides and define
it as follows:

Inductive coincides (D : Uf.t) (I : list input) : Prop :=

| mk_coincides : ∀eqns,

(∀p, In p (eqns_of I) → In p eqns) → (* i *)

(∀M, M |= (eqns_of I) → M |= eqns) → (* ii *)

(match iter eqns with (* iii *)

| Some f ⇒ ∀t, D t === f (make t)
| None ⇒ False

end) →
coincides D I.

When coincides D I holds, there exists a list of equations eqns which
(i) contain at least the equations in the inputs I, (ii) are semantically
justified by these input equations, (iii) verify Proposition 3.3.2. Note
that eqns plays the role of the set of equations merged O in Propo-
sition 3.3.2, it exists and is used in the proof, but doesn’t need to be
computed by the procedure.

4. The pending equations in F must be consequences of the inputs, which
corresponds to the second part of Theorem 3.3.5. We call this property
justify and define it as follows:

Inductive justify (D : Uf.t) : list (term × term) → Prop :=

| justify_nil : justify D nil

| justify_cons : ∀f lu lv F,
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congruent D lu lv = true → justify D F →
justify D ((app f lu, app f lv)::F).

When justify D F holds, it simply expresses that each equation in F

must be of the form f(~t) = f(~u) where ~t and ~u are congruent in D.

5. The differences stored in N must correspond exactly to the disequalities
in the inputs:

Definition Ncoincides (N : Diff.t) (I : list input) :=

∀a b, a ∈ Diff.neqs N b ↔
(In (Disequation a b) I ∨ In (Disequation b a) I).

6. The diff structure N must not be incoherent with the union-find D,
which we write coherent D N:

Definition coherent (D : Uf.t) (N : Diff.t) : Prop :=

∀a b, N a b = true → (Uf.mem D b = true ∧ D a =/= D b).

Note that coherent D N requires an extra property, which is that all
terms that appear in N must have been added to D. This justifies that
our algorithm only checks (in)coherence for the terms which have been
touched in the union-find (see definitions of merge and incoherent

above).

We can then define the class of well-formed configurations:

Class Wf (e : t) := {

Dwf :> Uf.Wf (D e);

Nwf :> Diff.Wf (N e);

Dcorrect : coincides (D e) (I e);

Fcorrect : justify (D e) (F e);

Ncorrect : Ncoincides (N e) (I e);

coherence : coherent (D e) (N e)

}.

which simply packs together all the properties described above. We then
proceed to prove all sorts of properties on the various functions of the pro-
cedure, including the fact that the functions which modify a configuration
preserve well-formedness under certain conditions. We use a very system-
atic and generic way to write the specifications of the different functions: we
write a logical view for each function, i.e. a logical relation which contains
the graph of the function and is precise enough to describe all the properties
we need on the function. For instance, the view associated to clean_up is
the following:

Inductive clean_up_spec (e : t) : Exception t → Prop :=

| clean_up_Inconsistent :
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(Wf e → ∀M, M |= (I e) → False) →
clean_up_spec e Inconsistent

| clean_up_Normal : ∀G0 D0

(Hclean_wf : Wf e → Wf (mk_env G0 D0 (N e) nil (I e)))

(Hclean_uf : ∀a b, D e a === D e b → D0 a === D0 b)

(Hclean_range : ∀t, Uf.mem (D e) t → Uf.mem D0 t)
(Hclean_congr : ∀a b, In (a, b) (F e) → D0 a === D0 b),

clean_up_spec e (Normal (mk_env G0 D0 (N e) nil (I e))).

Theorem clean_up_dec : ∀e, clean_up_spec e (clean_up e).

Proof. .... Qed.

In the Inconsistent case, we require that the inputs I e are unsatisfiable.
In the Normal case, the return type of the constructor shows that clean_up

only modifies the G and D fields, and clears the F field. Other properties
are named for clarity; for instance, Hclean_wf expresses the preservation of
well-formedness, Hclean_congr the fact that all formerly pending equations
are now merged in the union-find, etc. Subsequent reasoning on clean_up

can then be done by simply eliminating clean_up_dec5, and all relevant
properties are automatically added. We believe that when writing an al-
gorithm which involves many functions and sum types (like Exception or
bool), this approach has many benefits and scales well in comparison to
writing many ad-hoc lemmas for each function, in particular it avoids many
practical problems.

9.3 A CC(X) Environment for DPLL

The algorithm which we have presented in Section 9.2 does not qualify as
an environment for DPLL, as we defined in Chapter 8. Indeed, it only
deals with equalities or disequalities but not propositional atoms. Moreover,
the properties that we were able to established on the assume and query

functions in the previous section depended on the fact that the configuration
was well-formed. In this section, we start by deriving the functor from
the previous section in order to hide the well-formedness constraints, and
we then extend it into an environment by taking propositional atoms into
account.

9.3.1 CCX with Invariants

We use the same method which we presented on expandable literals in Chap-
ter 7: we use dependent pairs and the functor RAWCCX described in the pre-

5It is even possible to make clean_up opaque once clean_up_dec has been established,
since there is no need to use the definition if the specification is sufficient for one’s purpose.
Our experience is that it is good practice to always make these functions opaque when
possible, since this can speed up typechecking of subsequent proofs significantly.
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vious section to implement a CCX procedure which works on well-formed
configurations:

Module CCX (Import T : THEORY).

Module RAW := RAWCCX T.

Definition t := {e : RAW.t | RAW.Wf e}.

...

End CCX.

The definition of the various operations relies on the proofs of preservation
established in RAWCCX, and there is nothing complex about it. Similarly,
the specifications are lifted from the proofs established in RAWCCX. In the
end, this functor has the signature CCX_SIG, which is given for reference in
Fig. 9.1.

Module Type CCX_SIG.

Parameter t : Type.

Parameter empty : t.
Parameter assume : input → t → Exception t.
Parameter query : input → t → bool.

Parameter assumed : t → list input.

Module Specs.

Axiom assumed_empty : assumed empty = nil.

Axiom assumed_assume :

∀c i c′, assume i c = Normal c′ → assumed c′ = i::(assumed c).

Axiom assumed_inconsistent :

∀c i, assume i c = Inconsistent →
query (match i with

| Equation a b ⇒ Disequation a b
| Disequation a b ⇒ Equation a b

end) c = true.

Axiom query_true : ∀c i, query i c = true →
∀M, M |= assumed c → M (input_to_lit i).

Axiom query_assumed :

∀c i, In i (assumed c) → query i c = true.

End Specs.

End CCX_SIG.

Figure 9.1: The signature of the CCX blackbox.

9.3.2 A CCX-based Environment

We are now interested in developing an environment relying on our CCX im-
plementation, in order to use in our DPLL procedure. In Section 8.1.1, we
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presented the signature ENV_INTERFACE that such an environment must ver-
ify. It is actually parameterized by a module of formulae, i.e. of signature
CNF. The type of literals which we are interested in has been described in
Section 8.3 and is provided by the module LITINDEX which embeds both
propositional atoms and (dis)equalities. We now suppose we have a mod-
ule CNFLAZY of signature CNF which represents formulae whose literals are
expandable literals based on LITINDEX. We want to build an environment
for these formulae, in other words a module of signature ENV_INTERFACE

CNFLAZY.

Module ENVLAZY (CC : CCX_SIG) <: ENV_INTERFACE CNFLAZY.

Import CNFLAZY.

Record t := mk_t {

(* - uninterpreted atoms which have been assumed *)

env : set L.t;

(* - the CC environment *)

cc : CC.t

}.

Definition empty := mk_t ∅ CC.empty.

...

End ENVLAZY.

Our functor ENVLAZY is parameterized by a CC(X) procedure using the sig-
nature CCX_SIG seen above (in particular it does not know anything about
the notion of theory, this is internal to the CC module parameter). The type
of environments is a record which contains a CCX configuration CC.t on
one side, and a set of propositional atoms on the other side. The definitions
of the operations assume and query is fairly straightforward: depending on
whether a literal is an atom or an equality, it is added to the env part of
the environment or passed to the cc configuration using CC.assume; simi-
larly, the query of an atom is just a lookup in the set env, while the query
of an equality is performed using CC.query. Using the specification in the
CCX_SIG signature, we are able to prove all the required properties and give
our functor the expected interface.

9.4 Results

9.4.1 Example

As an example, let us consider the module EmptyTheory for the theory of
equality on uninterpreted functions which we described at the beginning of
this chapter. We can instantiate our CCX functor on this module to get a
procedure for simple congruence closure:

Module CCE := CCX EmptyTheory.
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We can then use this module to instantiate the ENVLAZY functor:

Module E := ENVLAZY CCE.

which can in turn be used to instantiate our SAT functor described in Sec-
tion 8.1.3:

Module DPLLE := SAT CNFLAZY E.

The resulting module is a DPLL procedure for expandable literals with
equalities and an environment that performs congruence closure: in other
words, it is a decision procedure for satisfiability modulo equality. Since
DPLLE has signature DPLL CNFLAZY E, it can be passed to a functor of sig-
nature LoadTactic similar to the one presented in Section 6.3 which contains
the reflection lemma and generates the unsat tactic for formulae in CNFLAZY:

Module TacE := LoadTactic DPLLE.

Ltac cc := TacE.unsat.

We can now prove a goal by reflection using the tactic cc:

1 subgoal

A : Type
f : A → A

x : A

H : f (f (f (f (f x)))) = x
H0 : f (f (f x)) = x
H1 : f x 6= x
============================

False

This goal is valid because it is well-known in mathematics that if x is a
fixpoint of the iterates fn and fm of some function f , it is also a fixpoint of
f |n−m|, and therefore of f gcd(m,n). The goal is discharged automatically in
about 10ms by the tactic:

cc.

Proof completed.

The reader may notice that this example does not really use propositional
reasoning, here is a similar goal which involves some propositional reasoning,
and succeeds in a hundredth of a second as well:
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1 subgoal

A : Type
f : A → A

x : A

y : A

H : f (f x) = y ∧ f (f (f y)) = x
H0 : f y = x ∨ f x = x
H1 : f x 6= x
============================

False

cc.

Proof completed.

9.4.2 Conclusion

To conclude this chapter, we have presented a Coq implementation of the
CC(X) combination method which we presented earlier in Chapter 3. We
have formalized the notion of solvable theories and implemented the proce-
dure as Coq functions. We then showed how to include this procedure in a
DPLL environment which handles propositional atoms other than equalities.
So doing, and using functors presented in previous chapters, we can derive
a tactic which decides the satisfiability of a formula modulo the theory of
equality on uninterpreted symbols. This tactic is similar to a combination of
the tactics tauto/intuition and congruence; however, it is fully reflexive,
implements the same algorithm as our SMT solver Alt-Ergo and is entirely
programmed and proved in Coq, with the exception of the reification mech-
anism which is performed in OCaml for the sake of efficiency.
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A Theory of Linear Arithmetic

Mentir à sa façon à soi, c’est presque mieux que
de dire la vérité à la façon des autres.
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In Section 3.2.3, we presented the theory of linear rational arithmetic
A as an interesting example of a solvable theory which we could plug into
our CC(X) system. We will now implement this theory for the CC(X) im-
plementation described in Chapter 9, and see how it can be used to decide
satisfiability modulo linear integer arithmetic in the Coq proof assistant.
In Section 10.1, we present an implementation of polynomials with rational
coefficients at the base of our theory, before describing the theory itself in
Section 10.2. We conclude in Section 10.3 by giving examples of use of the
tactic obtained with this theory.

10.1 Rational Polynomials

As explained in Section 3.2.3, a convenient representation of terms for the
theory of arithmetic is as a sum of monomials with rational coefficients. Be-
cause we are only dealing with linear arithmetic, we are only interested in

209
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rational polynomials of degree one, i.e. the monomials are actually reduced
to simple terms. The theory of arithmetic is actually independent of the
actual representation of polynomials and we now present a Coq implemen-
tation of rational polynomials.

10.1.1 Raw Polynomials

We define rational polynomials in a general manner, as parameterized by
an ordered type vars representing variables. We require that vars be an
ordered type in order to be able to use an efficient data structure to repre-
sent polynomials: we use a finite map from our containers library to map
variables to rational coefficients. This leads to the following poly definition:

Section WithVars.

Variable vars : Type.

Context ‘{vars_OT : OrderedType vars}.

Definition poly := Q × Map[vars, Q].

Definition P0 := (0, []).

Definition P1 := (1, []).

Definition embed (v : vars) : poly := (0, [][v ← 1]).

...

End WithVars.

A rational polynom is a pair of a constant rational coefficient and a finite
mapping from variables to rationals. We also give the definitions of the con-
stant zero polynom P0 and the monom embed v for any variable v. As other
basic examples, we can define various basic constructors for polynomials:

Definition mult (c : Q) (p : poly) : poly :=

if (c == 0) then P0

else (c × fst p, map (fun q ⇒ c × q) (snd p)).

Definition add_const (c : Q) (p : poly) : poly :=

(fst p + c, snd p).

to multiply a polynomial by a constant or add a constant to a polynomial.
A more interesting operation is addk P1 k P2 which returns the polynom
P1 + kP2:

Definition addk_m (p1 : Map[vars,Q])

(k : Q) (p2 : Map[vars,Q]) : Map[vars,Q]:=

map2 (fun oc1 oc2 ⇒
match oc1, oc2 with

| None, None ⇒ None

| Some q1, None ⇒ Some q1

| None, Some q2 ⇒ Some (k × q2)
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| Some q1, Some q2 ⇒
let q := q1 + k × q2 in

if q == 0 then None else Some q
end) p1 p2.

Definition addk (p1 : poly) (k : Q) (p2 : poly) : poly :=

if k==0 then p1

else (fst p1 + k × fst p2, addk_m (snd p1) k (snd p2)).

The auxiliary function addk_m uses the map2 function provided by contain-
ers: map2 f m1 m2 merges two maps m1 and m2 by iterating f over all keys
which appear in either map. The function f expects two options, represent-
ing the values bound to some key in each map or None if no such binding is
present, and returns an option: the value bound to that key in the resulting
map, or None if no binding should be added for that key. For instance, in
addk_m m p1 p2, if some variable is bound to q1 in p1 and q2 in p2, we
compute q := q1 + k * q2 and add it to the resulting map if it is non-zero.
addk simply uses addk_m to sum the maps of monomials, and calculates the
constant coefficient as well. Using the functions seen so far, we can define
the usual operations:

Definition add (p1 p2 : poly) : poly := addk p1 1 p2.

Definition sub (p1 p2 : poly) : poly := addk p1 (-1) p2.

Definition div (c : Q) (p : poly) : poly := mult (Qinv c) p.

In order to write the specifications of these rational polynoms, we de-
fine the function which returns the coefficient associated to a variable in a
polynom:

Definition coef_of (p : poly) (v : option vars) : Q :=

match v with
| Some v ⇒

match (snd p)[v] with Some q ⇒ q | None ⇒ 0 end
| None ⇒ fst p

end.

Coercion coef_of : poly  Funclass.

coef_of (Some v) returns the coefficient associated to variable v in the
polynom, while coef_of None returns its constant coefficient. We can see
polynoms as functions from option vars to rationals, and this gives us a
natural way to express the equality of polynoms:

Definition equiv (p1 p2 : poly) := ∀t, p1 t === p2 t.

This relation, which binds two polynoms which have the same coefficients,
is weaker than Leibniz equality but we can prove that it is an equivalence
relation on polynoms, and more importantly we can prove that all oper-
ations on polynoms (addition, multiplication, etc) are morphisms for this
operation. For instance, the following declaration:
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Instance add_equiv : Morphism (equiv =⇒ equiv =⇒ equiv) add.

Proof. ... Qed.

proves that add is a morphism for equiv. The morphism and rewriting
mechanism (whose implementation was revamped by M. Sozeau and is de-
scribed in [Soz09]) then typically allows one to rewrite add p1 p3 into add

p2 p3 using the “equality” equiv p1 p2.
We can write the specifications of the different operations using the char-

acterization of polynomials as functions from variables to rationals:

Property P0_co : ∀t, P0 t === 0.

Property embed_co :

∀v t, embed v t === if t == Some v then 1 else 0.

Property mult_co : ∀k a t, mult k a t === k × a t.
Property addk_co : ∀a k b t, addk a k b t === a t + k × b t.
...

10.1.2 Polynoms as OrderedType

In order to use the type poly as the type of semantic values in our theory,
we need to give an instance of OrderedType poly. Moreover, we do not
want any instance of OrderedType, we want an instance where the equality
relation is equiv. Indeed, if our implementation of the theory of arithmetic
is going to verify the specifications of TheorySpecs described in Section 9.1,
solve p q will have to return Solved if and only if p and q are equal for
the provided OrderedType instance (i.e. p === q). On the other hand,
if equiv p q holds, the two polynoms are strictly equivalent and therefore
solve p q will return Solved. In other words, the equality for which the
OrderedType instance is provided must coincide with the equiv relation
that we introduced above.

It turns out that our containers library provides a generic instance of
OrderedType Map[key,elt] as long as elt is itself an ordered type. Since
both vars and Q are ordered types, an instance can be automatically inferred
by the system for Map[vars, Q], and therefore for Q * Map[vars, Q], i.e.
poly. This instance is not for Leibniz equality, and it is not for equiv

either: the maps are considered equal if and only if both have the same
keys with equal bindings. This is a stronger equality than equiv because
two equivalent polynoms can differ by monomials with null coefficients: any
binding of a variable to 0 in the map has no effect on the relation equiv but
has effect on the equality inferred by the typeclass mechanism. However,
for polynoms without null coefficients, the two notions of equalities coincide.
Therefore, in order to use the available instance with equiv, we will equip
the type of raw polynomials poly with the invariant that all variables in the
map have non-zero coefficients. We define the class of polynomials which
verify these invariants:
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Class Wf (p : poly) := {

Wf_p : ∀v q, MapsTo v q (snd p) → q =/= 0

}.

We took care when implementing the operations on polynomials above to
avoid adding monomials with null coefficients, and as a consequence we
are able to prove that the basic constructors and operations preserve this
invariant:

Instance Wf_P0 : Wf P0 := ...

Instance Wf_embed (v : vars) : Wf (embed v) := ...

Instance Wf_mult (c : Q) ‘{Wf p} : Wf (mult c p) := ...

Instance Wf_addk ‘{Wf p1} k ‘{Wf p2} : Wf (addk p1 k p2) := ...

...

We now proceed as we did several times already, for expandable literals
in Section 7.3.2 and for the CC(X) configurations in Section 9.3.2: we pack all
the development above in a module RAW and define the type of polynomials
as a dependent pair of a raw polynomial and the Wf invariant:

Definition poly := {p : RAW.poly | RAW.Wf p}.

and we lift all operations on RAW.poly which preserve the invariant to this
type poly. We are now able to use the instance of OrderedType automati-
cally inferred to compare polynomials and prove that this is an instance for
equiv, we call this instance poly_OT.

To conclude the implementation of polynomials, we add extra operations
which are useful for the implementation of the theory in the next section.
We add these operations now because we want to make the definitions of
polynomials opaque in order to ensure both encapsulation and the fact that
the theory implementation is independent of the actual representation of
polynomials.

Definition is_const (p : poly) : option Q := ...

Definition leaves (p : poly) : list poly := ...

Definition extract (p : poly) : option vars := ...

Definition choose (p : poly) : option (vars × Q) := ...

is_const checks if a polynomial is constant, in which case it returns its
constant coefficient or not; leaves returns the list of variables in the poly-
nom; extract is the reverse operation of embed: if its argument is simply
a polynomial of the form embed t, it returns Some t, and None otherwise;
finally, choose p returns an unspecified monomial in p if possible.
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10.2 Theory of Integer Arithmetic

10.2.1 Implementation

We give the implementation of an instance of the class Theory for the theory
of linear integer arithmetic. This implementation is based on the rational
polynomials we just described, and we show below in Section 10.2.2 that
this implementation verifies the expected specifications.

Definition R := poly (vars := term).

Definition R0 : R := P0.

Definition R1 : R := P1.

After the definition of the type of semantic values R, we define the make

function used to convert a term into a semantic value. We show the full def-
inition in Fig. 10.1 for reference. It uses an auxiliary function mk_term such
that m_term coef p t constructs the polynomial for the term t multiplied
by coefficient coef and adds it to polynomial p. It recursively builds a poly-
nomial by analyzing the head symbol of its argument. When the symbol is
uninterpreted (or when the symbol is an arithmetic symbol but it is not used
with the correct arity), we simply add the term t as a monomial with coeffi-
cient coef. Most cases are self-explanatory, for instance when t has the form
app (Op Plus) (t1::t2::nil), we construct and add the polynomials for
t1 and t2 by calling mk_term coef (mk_term coef p t1) t2. The most
interesting case is the case of the multiplication symbol, which is particular
since it is only partially interpreted: since we are only dealing with linear
arithmetic, we only interpret multiplications by constants. Therefore, the
two arguments t1 and t2 are recursively transformed in polynomials and
we test whether the results are constant or not in order to adequately build
the resulting polynomial.

We define the special value one, arbitrarily, as R1, and implementing the
leaves function is simply done by retrieving the variables in the polynomial,
and returning one if there is none:1

Definition one : R := R1.

Definition leaves (p : R) :=

match leaves p with
| nil ⇒ one::nil

| l ⇒ l
end.

The last two functions required by a theory are the substitution application
and the solver. Using mathematical notations, the substitution of tj by P
in Σiqiti is simply qjP + Σi6=jqiti, the implementation of subst follows this:

1Remember that CC(X) requires that the leaves of a semantic value always be non-
empty.
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Fixpoint mk_term (coef : Q) (p : R) (t : term) : R :=

match t with
| app (Unint _ _) _ ⇒

add_monome t coef p
| app (Cst z) nil ⇒

add_const (coef × z) p
| app (Op Plus) (cons t1 (cons t2 nil)) ⇒

mk_term coef (mk_term coef p t1) t2

| app (Op Mult) (cons t1 (cons t2 nil)) ⇒
let p1 := mk_term 1 R0 t1 in

let p2 := mk_term 1 R0 t2 in

match is_const p1, is_const p2 with
| Some c1, Some c2 ⇒

add_const (coef × (c1 × c2)) p
| Some c1, None ⇒

addk p (c1 × coef) p2

| None, Some c2 ⇒
addk p (c2 × coef) p1

| None, None ⇒
add_monome t coef p

end
| app (Op Minus) (cons t1 (cons t2 nil)) ⇒

mk_term (Qopp coef) (mk_term coef p t1) t2

| app (Op Opp) (cons t1 nil) ⇒
mk_term (Qopp coef) p t1

| _ ⇒ add_monome t coef p
end.

Definition make (t : term) : R := mk_term 1 R0 t.

Figure 10.1: Construction of polynomials from terms

Definition subst (p P r : R) : R :=

match extract p with
| Some t ⇒ addk (cancel t r) (r (Some t)) P

| None ⇒ r
end.

In particular subst p P r only changes r if the pivot p is of the form embed

t for some term t. Now, in order to solve an equation between two polyno-
mials t and u, we proceed by case analysis on the form of t - u:

Definition solve (t u : R) : Solution R :=

let diff := sub t u in

match choose diff with
| None ⇒ (* constant *)

if diff None == 0 then Solved else Unsolvable

| Some (t, k) ⇒
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let P := mult (Qinv (Qopp k)) (cancel t diff) in

Subst (embed t) P

end.

If t - u is the constant polynom 0, the equation is Solved, and if it is
any non-zero constant, we return Unsolvable. Otherwise, it has the form
Σn

i=0 qiti and we return the substitution t0 7→ −
1
q0

Σn
i=1 qiti. Notice that

we use the fact that our polynomials do not contain monomials with null
coefficient as this guarantees us that q0 is not zero. This allows us to pick
any monomial to isolate and perform the Gauss elimination.

With all the above definitions implemented, we finish by declaring the
corresponding Theory instance:

Instance Arith_theory : Theory := {

R := R;

R_OT := poly_OT;

make := make;

one := one;

leaves := leaves;

subst := subst;

solve := solve

}.

10.2.2 Specifications

Once the instance Arith_theory is defined, we are left with proving that this
theory meets the required specifications described in the class TheorySpecs

(see page 188). Some properties are straightforward to establish: notably,
the fact that all operations are compatible with the equivalence relation
on polynomials, or that the leaves of a semantic value are never empty.
The others require considerable work: we first look at the specifications of
the solve function, and later at the property implyX_entails which links
theory reasoning and semantic entailment.

Specifications of solve. The solver which we have implemented above
must verify the specifications described in the inductive solve_specs pre-
sented on page 187. The case for Solved does not raise any issue; neither
does the case of a substitution Subst p P, where it is rather straightforward
to establish the required properties by a simple analysis of the definitions
of solve, subst and leaves. The only case which requires extra work
is Unsolvable, where we need to establish that if solve u v is unsolvable,
then any lists of equations E such that implyX E u v holds must be inconsis-
tent (i.e. iter E = None). We prove this by noticing interesting invariants
on iter E: we characterize all functions f : R → R for which there exists
E such that iter E = Some f, and we can prove that such functions f have
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interesting properties. In particular, they are compatible with equivalence of
polynomials, and are linear with respect to the operations on polynomials:

Section Iter.

Variable E : list (term × term).

Variable f : R → R.

Variable Hf : iter E = Some f.

...

Instance iter_m : Morphism (equiv =⇒ equiv) f.

Property iter_R0 : f R0 === R0.

Property iter_linear :

∀a k b, f (addk a k b) === addk (f a) k (f b).

...

Corollary iter_sub : ∀a b, f (sub a b) === sub (f a) (f b).

...

End Iter.

This linearity property is very interesting since it allows to express the inter-
action between a function returned by iter E and all the various polynomial
operations (e.g. substraction in iter_sub above). Using this, we can prove
the fundamental property that iter E is idempotent:

Corollary iter_idem :

∀E f, iter E = Some f → ∀r, f (f r) === f r.

We can also establish the soundness of solve when the equation is unsolv-
able: suppose implyX E u v and solve u v is unsolvable, we suppose iter

E is equal to some function f and establish a contradiction. By definition,
we know that f u === f v, which by linearity means that f (sub u v)

=== R0. Now using the definition of solve and the fact that it returned
Unsolvable, we know that sub u v is equal to some constant, non-zero,
polynomial q. By linearity again, this means that f (sub u v) is equal to
the constant polynom q, which cannot be R0 since q is non-zero. This way,
we can prove the following theorem of soundness for solve:

Theorem solve_dec : ∀u v, solve_specs u v (solve u v).

Specification of make. Let us recall the property which must be proved
if we want implyX to be semantically correct:

implyX_entails :

∀E u v, implyX E (make u) (make v) → E ⊢ u = v;

This is by far the most complex proof we have to establish on our theory,
because it requires linking the manipulations of polynomials performed by
our theory to the actual semantic notion of equality and entailment on terms.

First of all, note that when the list of equations E is empty, this property
reduces to:
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∀(u v : term), make u === make v → ∀M, M |= u = v.

which can be read as the semantic correctness of make. We start by proving
this lemma on make, and in order to do so, we need to justify the manipu-
lations performed in make: intuitively, the construction of the polynomials
is justified by properties such as the associativity and commutativity of
the symbol Op Plus on terms, its distributivity over Op Mult, etc. In other
words, we can justify the representation of terms as polynomials by using the
fact that terms and arithmetic symbols form a commutative ring structure.
More precisely, they do not form a ring structure for Leibniz equality (the
terms app (Op Plus) (u::v::nil) and app (Op Plus) (v::u::nil) are
not equal for instance), but for semantic equality in a certain model M. This
means that every model M defines a ring structure over terms.

In order to avoid performing a variety of ring-specific reasoning and ma-
nipulations manually, we can use the ring reflexive tactic available in Coq
(see [GM05]). Indeed, ring not only works on some predefined ring struc-
tures like booleans, integers or rationals, but it allows one to declare a new
ring structure. Therefore, let us assume a fixed model M and define a new
adequate ring structure. For the sake of clarity, we also introduce some
notations for arithmetic operations on terms: u [+] v will stand for app

(Op Plus) (u::v::nil), u [-] v for app (Op Minus) (u::v::nil), etc.
For any integer z, we also write [z] for the term app (Cst z) nil which
corresponds to this integer. We then prove that the type term with these op-
erations form a commutative ring structure with additive and multiplicative
neutrals being respectively [0] and [1]:

Theorem models_ring : Ring_theory.ring_theory

term [0] [1] [+] [×] [-] [opp] (models_eq M).

Add Ring models_eq_Ring : models_ring (abstract).

The last parameter to Ring_theory.ring_theory is the equivalence relation
for which the structure is a ring, and we chose semantic equality in the model
M2. We then registered this ad hoc ring structure to the system with Add

Ring. The tactic ring can then be used to discharge semantic equalities
which are consequences of ring roperties:

Goal ∀t t′, M |= t [+] t′ [-] [0] = t′ [+] t.
Proof. intros; ring. Qed.

Note that proving such a lemma directly would be very tedious, because we
would have to delve into the definition of models_eq, i.e. into the inter-
pretation of terms as presented in Chapter 8. As a side remark, it is not
surprising that proving our theory for linear integer arithmetic involves a

2Remember from Chapter 8 page 8.3 that M |= u = v is just a shortcut notation for
models_eq M u v.
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large part of common reasoning with the implementation of the ring tac-
tic. However, we cannot use ring’s implementation directly in our reflex-
ive procedure because its concrete objects are less refined than our tactic’s
concrete objects, i.e. terms. This prevents us from directly reusing their
development. Fortunately, we are able to use the fact that ring allows the
declaration of customized ring structures in order to avoid reimplementing
our own formalization of the theory of rings.

Now that we have ensured that ring reasoning about semantic equality
will be automated, we focus again on proving that if make u === make v

for some terms u and v, then M |= u = v. The intuition behind this is that
if u and v yield the same polynomial, then there exists some “canonical”
term t which can be obtained from u and v using ring properties. To that
purpose we define the “inverse” of make, i.e. a function term_of_R which
takes a polynomial R and returns a term corresponding to this polynomial.

Definition term_of_R (r : R) : term :=

[Qfloor (r None)] [+]

fold (fun v qv acc ⇒ [Qfloor qv] [×] v [+] acc)

(snd (π1 r)) [0].

In essence, when applied to a polynomial c + Σn
i=0 qiti, term_of_R returns

the term:

⌊c⌋[+]⌊q0⌋[∗]t0[+] . . . [+]⌊qn⌋[∗]tn

where ⌊c⌋ is the closest integer less or equal to rational c, and where the ti

are in increasing order. It is clear that the point of writing such a function
is that when combined with make, it acts as a term canonizer for our theory
of linear arithmetic. In particular, it constructs the same term for two
equivalent polynoms. One difficulty, which is visible in the definition of
term_of_R, is that our terms can only embed integer constants, whereas our
polynomials have rational coefficients. Therefore we use Qfloor to convert
rationals to integers in the definition, but many properties of term_of_R will
only hold when applied to polynomials with integer coefficients. To that end,
we define predicates isZ : Q -> Prop and isZpoly : R -> Prop:

Definition isZ (q : Q) : Prop := ...

Definition isZpoly (r : R) : Prop := ∀t, isZ (r t).

which identify rationals which are actually integers, and polynomials whose
coefficients are all integers. We can prove the main properties of term_of_R:

Property term_of_R_embed : ∀t, M |= term_of_R (embed t) = t.
Property term_of_R_addk : ∀p1 k p2,

isZpoly p1 → isZpoly p2 → isZ k →
M |= term_of_R (addk p1 k p2) =

term_of_R p1 [+] [Qfloor k] [×] term_of_R p2.
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The first property specifies term_of_R on uninterpreted terms, whereas the
second shows how it can be “distributed” over a linear combination of poly-
nomials with integer coefficients. By induction on a structure of a term and
definitions of make and mk_term, we can prove the fundamental result:

Property make_correct : ∀t, M |= term_of_R (make t) = t.

whose meaning is that the combination of term_of_R and make canonize
a term in one which is semantically equal. From this theorem and the
transitivity of equality follows the correctness of make:

Corollary make_entails : ∀t u, make t === make u → M |= t = u.

Specification of implyX. We prove implyX_entails by induction on the
list of equations E on which iter is applied. The theorem make_entails

which we just established represents the initialization step of this induc-
tion. In order to prove the induction step, we consider a set of equations
(a,b)::E and suppose the property holds for E. If iter E = None the result
is straightforward, but the interesting case arrives when iter E is some func-
tion f. In that case, by definition of iter, the result of iter ((a,b)::E)

depends on the result of solve (f (make a)) (f (make b)). The main
issue in this part of the proof is that our induction hypothesis has the form:

IH : ∀u v, f (make u) === f (make v) → E |= u = v

and therefore only characterizes f on polynomials of the form make t for
some term t, i.e. on polynomials with integer coefficients. In practice, we
have polynomials like f (make a) and f (make b) which are not necessarily
of that form because applying f yields rational coefficients in general. The
main difficulty of the proof is then to try and construct adequate terms on
which to apply the induction hypothesis. In that regard, the linearity and
idempotency of f play an important role. Another fundamental property is
the fact that for any polynomial P, there exists a “multiple” of P which has
integer coefficients, hence the following theorem:

Theorem find_multiple_poly : ∀(P : R),

∃m : Z, m =/= 0 ∧ isZpoly (mult m P) ∧
∃mP : term, make mP === mult m P.

This theorem gives the existence of a term mP such that make mP has integer
coefficients and is a multiple of P.

In order to give a better understanding of how we proceed in practice, we
detail the induction step when solve (f (make a)) (f (make b)) returns
Unsolvable (the case of a substitution Subst p P would be somewhat sim-
ilar, albeit much too complex to be detailed here). In this unsolvable case,
we need to prove (a,b)::E ⊢ u = v for any terms u and v. By definition
of solve, we know that there exists a constant polynomial q different from
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zero such that sub (f (make a)) (f (make b)) === q. Let m be an inte-
ger such that m * q is an integer c. We define the following terms u’ and
v’:

u′ := [m] [×] (a [-] b)

v′ := [c]

and we want to apply the induction hypothesis to these terms. To that
end, we need to prove that f (make u’) === f (make v’). By applying
properties of make and the linearity of f, we can prove that f (make u’) is
equal to mult m (sub (f (make a)) (f (make b))), hence equal to mult

m q and to make [c]. We can thus apply the induction hypothesis, and
we obtain that the semantic entailment E ⊢ u’ = v’ holds. Let us now
consider the set of equations (a,b)::E, since it includes E it also entails u’

= v’. But because it contains (a,b), we can replace a [-] b with [0] in
u’, and we finally obtain that (a,b)::E ⊢ [0] = [c]. This means that c

is null, which contradicts our hypothesis that q was different from zero and
ends the proof in that case. Proceeding similarly for the other cases, we
prove the correctness of implyX:

Theorem implyX_entails : ∀E u v,

implyX E (make u) (make v) → E ⊢ u = v.

Definition of ArithTheory. We finish this implementation by declaring
the module of signature THEORY for our theory of arithmetic, using the above
theorems in order to provide the instance for the specifications of the theory.

Module ArithTheory <: THEORY.

Definition Th := Arith_theory.

Instance ThSpecs : TheorySpecs Th := {

solve_dec := solve_dec;

implyX_entails := implyX_entails;

...

}.

End ArithTheory.

10.3 Results

10.3.1 Example

Proceeding exactly like we did in Section 9.4.1, we can instantiate our CCX

functor on the theory of linear integer arithmetic, obtain an environment for
DPLL and in fine a tactic which we call ergo and which combines proposi-
tional reasoning and the theory of equality on uninterpreted symbols modulo
linear integer arithmetic.
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Module CCA := CCX ArithTheory.

Module E := ENVLAZY CCA.

Module DPLLA := SAT CNFLAZY E.

Module TacA := LoadTactic DPLLA.

Ltac ergo := TacA.unsat.

We can try a simple example of a goal which mixes arithmetic reasoning
and equality:

1 subgoal

f : Z → Z

x : Z

y : Z

H : f (x - 1) - 1 = x + 1

H0 : f y + 1 = y - 1

H1 : y + 1 = x
============================

False

ergo.

Proof completed.

The goal is discharged by the ergo tactic in 5 hundredth of a second. We can
try a more complex example which requires some propositional reasoning as
well:

1 subgoal

f : Z → Z

t0 : Z

t1 : Z

t2 : Z

t3 : Z

a : Z

H : t1 = t0 + a
H0 : t2 = t1 + a
H1 : ˜ (t3 6= t2 + a ∨ 2 × a - 1 6= a)

H2 : f (f (f (t3 - 3))) = t0 ∨ f (t1 - 1) = t2 - 2

H3 : f (f t0) = t3 - 3

H4 : f t0 6= t0

============================

False

In this goal, the ti are such that ti - i is a constant, and the remaining
uses the same kind of equality and propositional reasoning than the sec-
ond example we presented in Section 9.4.1. It is a valid goal and can be
discharged in a tenth of a second by our tactic:
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ergo.

Proof completed.

10.3.2 Conclusion

In this chapter, we have presented a non trivial solvable theory implemented
in Coq and which can be used with the CCX framework presented in Chap-
ter 9: the theory of linear integer arithmetic. It represents terms as poly-
nomial with rational coefficients and solves equations using simple Gauss
elimination. The development of this theory, and in particular the seman-
tic proofs, are quite complex: it takes more than 4000 lines of definitions
and specifications as a whole. In comparison, the whole development of
CCX, including the proofs and the data structures Uf, Diff and Use, re-
quires “only” 3500 lines of Coq. When instantiating our framework with
this theory, we obtain a tactic which can automatically prove goals mixing
arithmetic, equality and propositional reasoning, which no other tactic (or
simple combination of tactics) could achieve so far.
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CHAPTER 11

Results and Analysis

La perfection, ce n’est pas de faire quelque chose
de grand et de beau, mais de faire ce que l’on fait
avec grandeur et beauté.

Swami Prajnanpad
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In this chapter, we summarize the results we have obtained in the sec-
ond part of this dissertation, and in particular the status of the reflexive
tactics we provide. In Section 11.1, we give an overview of the final state
of our implementation, and how the reflexive tactics can be used by Coq
users. In Section 11.2, we present benchmarks to compare our reflexive im-
plementation with existing Coq tactics. We address some of the limitations
of our implementation and how it could be extended in Section 11.3. We fi-
nally conclude in Section 11.4 by presenting other integrations of automated
provers, in particular SMT solvers, in interactive provers.
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11.1 Overview of the tactic

11.1.1 Implementation

In Chapters 4 through 10, we have presented the implementation of our
reflexive tactic in an iterative manner, we now give an overview of the com-
plete development and how it is available to a user of the Coq proof assistant.
The different files and their dependencies are represented in Fig. 11.1. This
figure is just given for reference, and we have grouped files in clusters de-
pending on their role; there are eight clusters in the figure corresponding
to the DPLL implementation, formulae and literals, the reification, the lazy
CNF conversion, CC(X), the theory of arithmetic, the toplevel tactic and
miscellaneous helper files used in our development. The total size of this
developement represents around 17000 lines of Coq and 1000 lines of extra
OCaml code. Note that we did not include the Containers extension, which
by itself represents 20000 lines of Coq and 1500 lines of OCaml. It does
not comprises either the extra DPLL strategies and CNF conversions which
we have presented earlier in this document, and which were implemented
mainly for comparison purposes and are not included with the final tactic;
they amount to more than 10000 lines of Coq.

This represents a quite substantial implementation, and to the best of
our knowledge, this effort represents the largest reflexive decision procedure
formalized and proved in the Coq proof assistant. It can be compared with
the sizes of implementations of other Coq reflexive or semi-reflexive tac-
tics which we have already presented: ring (3000 lines of Coq, 2000 lines
of OCaml), field (800 lines of Coq, 200 lines of OCaml), romega (2500
lines of Coq, 1500 lines of OCaml). Théry and Letouzey [LT00] also for-
malized and proved an alternative decision procedure for SAT solving, Stål-
marck’s algorithm (10000 lines of Coq, 1000 lines of OCaml). Largest Coq
developments are almost all libraries of generic definitions and results ded-
icated to some domain: C-CoRn [C-C](constructive mathematics, 85kloc),
PFF [PFF](floating-point programs, 50kloc), CoLoR [BK09](termination
proofs, 32kloc), SSReflect [GM08](Coq extension and group theory, 22kloc),
Coccinelle [coc](term algebras and unification, 20kloc). One notable excep-
tion is the certified C compiler CompCert [Ler09b, Ler09a], which is the
implementation and verification of a compiler for a substantial subset of
the C language. It is the largest program verified in Coq (45kloc), but
is only used after extraction and cannot be executed in Coq. In contrast
to CompCert, our work has two extra requirements which come from the
fact that we are implementing a reflexive tactic: it must be efficiently com-
putable in the proof assistant, and it cannot rely on any axiom, whereas
formalizations of external results or programs commonly use axioms like the
excluded-middle, proof irrelevance or functional extensionality.
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11.1.2 Usage

There is no need to understand how the tactic is built in order to use it. To
this end, we added an extra “top-level” module called AltErgo, not repre-
sented in Fig. 11.1, which contains all the necessary definitions and functor
applications. It introduces a special functor parameterized by a CNF repre-
sentation and an environment for DPLL, and which constructs everything
up to the two reflexive tactics unsat and valid based on the given envi-
ronment. While unsat proceeds by refuting the context in intuitionistic
logic, valid proves that the current goal is valid and thus relies on classi-
cal logic. In practice, valid first checks if the module Classical, which
is in the standard library and contains the excluded-middle and its classi-
cal consequences, has been imported by the user. If the excluded-middle
is not available, the tactic fails with a comprehensive error message, invit-
ing the user to use unsat instead or to explicitely require Classical. This
way, we ensure that the user does not use valid and rely on classical logic
inadvertently.

The AltErgo module uses the above functor to build tactics for the three
following environments:

• the purely propositional environment ENV presented in Section 8.1.2,
yielding a procedure solely based on DPLL;

• our CCX implementation instantiated on the empty theory Empty_theory

presented in Section 9.1, yielding a procedure for the satisfiability of
formulae modulo the theory E of equality with uninterpreted functions;

• an instantiation of CCX on the theory of linear integer arithmetic which
we presented in Chapter 10, yielding a procedure for the satisfiability of
formulae modulo the theory of equality and linear integer arithmetic.

The module introduces short names for all the possible tactics, so that
the user does not have to access the modules generated in AltErgo ex-
plicitely:

dpll/vdpll: pure propositional tactics based on DPLL

cc/vcc: DPLL modulo equality with uninterpreted functions

ergo/vergo: DPLL modulo equality and linear integer arithmetic

When prefixed with v, the tactic uses the classical version, and the intu-
itionistic otherwise. We also provide alternate versions of all these tactics
which use the lazy CNF conversion with n-ary connectives instead of binary
connectives (see Section 7.3.3). These tactics have the same names as above,
suffixed with an extra n; for instance, dplln is the pure propositional solver
using n-ary proxies. Altogether, AltErgo provides four tactics for each of
the three different different environments.
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In order to use any of the tactics described above, it is therefore sufficient
to import the module AltErgo:

Require Import AltErgo.

Theorem peirce : ∀A B, ((A → B) → A) → ˜A → False.

Proof. dpll. Qed.

peirce is defined.

The tactics we provide introduce all possible hypotheses from the goal,
but they do not perform any reduction or unfolding of constants automat-
ically, therefore it may be a good idea to simplify a goal with tactics like
simpl or cbv -[not] beforehand, in order to unveil the propositional struc-
ture hidden under some terms. For instance:

Require Import Classical List.

Lemma In_list : ∀a b c, a = b → In b ((b+1)::c::a::nil).

Proof.
vcc.

The formula in not valid.

The following countermodel has been found :

(In b (b + 1 :: c :: a :: nil)) : false

(a = b)

But if we simplify the formula in order to unfold the definition of the list
membership predicate In:

simpl.

1 subgoal

============================

∀a b c : Z, a = b → b + 1 = b ∨ c = b ∨ a = b ∨ False

vcc.

Proof completed.

Of course, in these last two goals, we could have used respectively ergo

and vergo, even though there was no equality reasoning in peirce and
no arithmetic involved in In_list. We only provide the special tactics
dpll/vdpll and cc/vcc because they can be slightly faster if the full power
of ergo is not required, especially dpll since it does not perform congruence
closure.

We finish this section by describing the typical proof term generated by
our tactic; we detail the full proof term of the lemma peirce above:
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peirce =1

fun (A B : Prop) (H : (A → B) → A) (H0 : ˜ A) ⇒2

False_rec False3

(let final := conj H0 H in4

let finalt := ˜ A ∧ ((A → B) → A) in5

let _varmap__v :=6

Node_vm True7

(Node_vm A Empty_vm Empty_vm)8

(Node_vm B Empty_vm Empty_vm) in9

let _vtypes__v := Empty_vm in10

let _vsymbols__v := Empty_vm in11

let vm := mk_varmaps _varmap__v _vtypes__v _vsymbols__v in12

let reif :=13

FAnd (FNot (FVar (Left_idx End_idx)))14

(FImp (FImp (FVar (Left_idx End_idx))15

(FVar (Right_idx End_idx)))16

(FVar (Left_idx End_idx))) in17

validity’ reif finalt vm18

(refl_equal Unsat<:dpll’ vm reif = Unsat)19

(refl_equal (Some finalt)<:binterp vm reif = Some finalt)20

final)21

: ∀A B : Prop, ((A → B) → A) → ˜ A → False22

After the introduction of hypotheses in line 2, the proof starts with False_rec

in line 3, which denotes that it is a proof by contradiction. Lines 4 and 5 ag-
gregates the hypotheses in a proof final of the formula finalt which must
be refutated. Lines 6 to 12 introduce the varmaps used in the reification,
in this case only the varmap for propositional variables is non-empty: it is
defined on lines 6-9 and contains the variables A and B. The reified version
reif of the formula is defined in lines 13-17, it simply follows the structure
of finalt and replaces the variables by their paths in the varmap. Finally,
the term ends with an application of the reflection lemma validity’ and
two of its arguments are actually equalities obtained by conversion. They
are the two computations required by the reflexive tactic: line 19 checks
that the call to the proof search dpll’ on the reified formula returns Unsat,
while line 20 checks that reif interprets to the formula finalt.

It is interesting to see how such a proof term scales with a larger goal:
the formula to prove is introduced once in finalt, the varmaps have a size
which is linear in the size of the formula, and so does the reified formula
reif (with a factor at most 2). Finally, the application lemma has constant
size (this is the reason why we introduce finalt as a local let-in), therefore
the whole proof term is linear in the size of the formula to prove, with a
reasonably small factor. Although the overhead due to reification can seem
quite heavy on simple formulae like peirce, it is actually neglectible on
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larger goals in comparison to a non-reflexive, step-by-step, proof.

11.2 Benchmarks

We now proceed to a quantitative analysis of the performance of our tactics
in comparison to the existing tactics. This analysis focuses on formulae that
can be proved by the considered tactics, i.e. we do not compare tactics
in terms of how (in)complete they are. For a more qualitative comparison
of the capabilities of the existing tactics, see Section 11.3 below. In or-
der to quantitatively compare different Coq tactics in an adequate manner,
we claim that there are three different measures which must be taken into
account:

• the time the tactic requires to prove the goal;

• the size of the proof generated by the tactic;

• the size of the tactic incantation.

Tactics are often compared only in regard of how fast they can prove a goal,
but we believe that all three of these measures are equally important. A
very slow tactic is almost useless of course, but a fast tactic which creates
enormous proof terms is barely more useful since it will slow down the
typechecking at Qed’s so much, and yield large compiled files which take
longer time to be imported. The last measure is here to emphasize that we
only consider completely automated tactics, i.e. a tactic which requires user
input constant in the size of the goal. For instance, a tactic requiring manual
reification, or CNF conversion, of the goal would not fulfil this condition.

11.2.1 Propositional Logic

We start by comparing our reflexive tactic for the fragment of pure proposi-
tional logic with tauto. We have already shown benchmarks in Chapter 7,
more precisely in Fig. 7.3 page 164, but here we also focus on the size of
generated proofs. In order to measure the size of proof terms, we wrote
a small extension which counts the number of nodes in the AST internal
representation of a proof term.

The results for several formulae are summarized in Table 11.1. We use
two different families of propositional tautologies in order these tests: the
first is the pigeon-hole formulae Hn defined in Chapter 2 page 23, and the
second is due to de Bruijn and states that among 2n+1 boolean variables set
in a circular list, at least two adjacent variables are equal. More precisely,
the de Bruijn formula with parameter n is defined as:

debn ≡ ∀x0 . . . x2n,
2n
∨

i=0

(xi ↔ xi+1 mod 2n)
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dplln tauto

V/C time (s) size time (s) size
H3 6/9 0.01 330 0.75 12110
H4 12/22 0.04 814 – –
H5 20/45 0.19 1684 – –
H6 30/81 1.27 3042 – –

deb5 11/22 0.02 372 20 67301
deb10 21/42 0.03 686 – –
deb15 31/62 0.04 1008 – –
deb20 41/82 0.06 1348 – –
deb100 201/402 0.50 7216 – –

Table 11.1: Comparison of tauto and dplln on propositional tautologies.
The V/C column gives the number of variables and clauses in each formula.
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Figure 11.2: Size and speed comparison of tauto and dplln on De Bruijn
formulae with varying sizes. The vertical scales for time and size are in
logarithmic scale.
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The figures in Table 11.1 confirm that our DPLL-based reflexive tactic is
orders of magnitude faster than tauto because the latter times out (or runs
out of available memory) for all but the easier formulae. An interesting
thing to notice is that the size of proof terms generated by dplln are indeed
linear in the size of the goal, and much smaller than proof terms generated
by tauto. Figure 11.2, which shows the variation of proof sizes for the debn

formulae as n increases, actually reveals that the proof size generated by
tauto grows exponentially in n although debn itself is linear in n.

11.2.2 Adding Equality

Our implementation provides the tactic cc and its variants which combine
propositional logic and equality with uninterpreted functions. The built-
in tactic congruence can prove goals which are true by pure congruence
closure; therefore we can start by comparing cc and congruence on goals
which do not require any propositional reasoning. To that end, we use the
formula FP (n, m, k) defined as follows:

FP (n, m, k) ≡ ∀fx, fn(x) = x→ fm(x) = x→ fk(x) = x

which is valid if and only if k is a multiple of gcd(n, m). The figures are
summarized in Table 11.2, where we tested both tactics for various values
of n, m and k.

cc congruence

time (s) size time (s) size
FP (5, 3, 1) 0.02 324 0.008 242
FP (9, 4, 1) 0.08 385 0.012 390
FP (13, 5, 1) 0.16 446 0.016 1475
FP (13, 12, 1) 0.39 537 0.004 192
FP (25, 2, 1) 1.0 551 0.016 2280
FP (25, 11, 1) 1.7 668 0.1 14848
FP (25, 13, 1) 0.36 694 0.02 1722
FP (25, 15, 5) 0.13 772 0.02 1944
FP (25, 24, 24) 5.0 1136 0.004 121

Table 11.2: Comparison of cc and congruence.

The results of this comparison show that congruence is significantly
faster than cc, while generating proof terms with reasonable size in most
cases. We can explain that by the fact that congruence uses a very efficient
congruence closure analysis and also reconstructs proof terms using ad-hoc
lemmas which keep the proof as short as possible. In contrast, our imple-
mentation of congruence closure is not specifically designed for this kind of
goals but is designed to be used as an environment by a DPLL procedure.
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In particular, it performs the whole congruence closure of the equalities it
is being passed: this explains why it does not behave well on special easy
cases of the form FP (n, n− 1, 1) or, even worse, FP (n, m, m). Consider for
instance what happens when dealing with FP (25, 24, 24): CC(X) is being
passed two equalities f25(x) = x and f24(x) = x, and this leads to many
new equalities, which are merged until all terms of the form fm(x) with
m ≤ 25 are equal to x in the union-find. Only then is CC(X) passed the
literal f24(x) 6= x which leads to a contradiction, and therefore it ends up
taking much longer than congruence which simply finds the obvious proof
without performing the whole congruence closure. One consequence of this
is that cc proves FP (n, m, k) in a time which does not depend on k; con-
versely, we see that the proof found by congruence can vary a lot depending
on the parameters, e.g. the proof for FP (25, 11, 1) is much larger than other
proofs for n = 25.

Note that the issue which the above discussion raises about our im-
plementation of CC(X) is specific to the Coq implementation: a standard
implementation would only merge all the pending equations during queries
in a lazy manner, as long as the query isn’t obviously true. This also em-
phasizes that one should prefer the dedicated built-in tactic congruence

over our tactics to deal with purely equational goals. It is more relevant
to look at how cc behaves on goals which require mixed propositional and
equational reasoning.

By using the fact that intuition can be “chained” with a tactic to be
applied to remaining branches in the proof search, we can use the tactic
intuition congruence to solve the same fragment as cc and its variants.
We use the two following generic formulae which depend on an integer pa-
rameter n:

Dn ≡

(

n−1
∧

i=0

(xi = yi ∧ yi = xi+1) ∨ (xi = zi ∧ zi = xi+1)

)

→ x0 = xn

Df
n ≡

(

n−1
∧

i=0

(xi = yi ∧ yi = f(xi+1)) ∨ (xi = zi ∧ zi = f(xi+1))

)

→ x0 = fn(xn)

Intuitively, Dn links every xi to xi+1 by transitivity using either yi or zi

at each step, while Df
n is similar but adds an application of some symbol

f at each step (therefore requires congruence reasoning, whereas strictly
speaking Dn only requires equivalence).

The figures are summarized in Table 11.3 and show that the two tac-
tics are rather similar. The combination of intuition and congruence is
slightly faster than cc, but it is especially faster on smaller goals (i.e. where
it doesn’t make much of a difference), whereas for bigger goals it suffers
from the fact that it creates very large proof terms, while proof terms of cc

remain linear in the input formula. For values of n larger than 9, intuition

congruence actually generates proofs that are several megabytes large and
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cc intuition congruence

time (s) size time (s) size
D3 0.08 1225 0.03 1986
D4 0.18 1772 0.07 5220
D5 0.40 2447 0.20 13134
D8 4.0 5400 3.9 181868
Df

3 0.12 1398 0.07 3001
Df

4 0.29 1997 0.16 8474
Df

5 0.66 2728 0.42 22467
Df

8 7.2 5873 6.0 342622

Table 11.3: Comparison of cc and intuition congruence.

where the time taken by the Qed (not included in our timings) is much larger
than the tactic application itself.

Therefore, even if our tactic is not fast in comparison to congruence,
when it involves propositional reasoning, combination of the existing tactics
suffer from the combined weaknesses of intuition and congruence: rela-
tively slow propositional reasoning and large proof terms. Because it is fully
reflexive, cc does not have such shortcomings.

11.2.3 Adding Arithmetic

We finally focus our quantitative comparison on goals which require reason-
ing with linear arithmetic, using the built-in tactic omega.

ergo omega

time (s) size time (s) size
F2 0.03 436 0.02 1037
F5 0.12 1073 0.19 6177
F10 0.48 2976 0.56 21727
F15 1.35 6259 1.68 41780
F20 3.14 11323 4.0 68895

Table 11.4: Comparison of ergo and omega.

As with equality, we start with formulae which do not involve any propo-
sitional reasoning to better isolate the behavior of omega in regard to the
ergo tactic. The results of these first tests are displayed in Table 11.4. They
use a family of formulae defined as:

Fn ≡

(

n
∧

i=2

xi = xi−1 + xi−2

)

→ x0 = 1→ x1 = 1→ xn = fibo(n)

where fibo(n) returns the n-th Fibonacci number. It is clear that the Fn
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are valid since they simply “unfold” the definition of the n-th Fibonacci
number is a conjunction of equalities. The results show that the two tactics
are really similar, with a slight edge of about 15% in favor of ergo, but it
does not show any significant difference between the tactics, although they
are based on completely different methods. Note that even if omega creates
proof terms which are much bigger than ergo, this is not as big an issue as
with tauto, since the proof terms created by omega still grow linearly (there
is an approximate factor of 7 with ergo).

ergo intuition omega

time (s) size time (s) size
D+

2 0.11 949 0.07 6428
D+

3 0.28 1458 0.18 18648
D+

4 0.68 2094 0.56 49509
D+

5 1.6 2856 1.6 123589
D+

6 3.7 3768 4.2 297549
D+

7 8.3 4846 11.9 698397

Table 11.5: Comparison of ergo and intuition omega.

We now combine propositional and arithmetical reasoning and compare
the behaviour of ergo and of the combination of tactics intuition omega.
To that end, we use a variation of the formulae Dn and Df

n which we used
to test equality reasoning earlier:

D+
n ≡

(

n−1
∧

i=0

(xi = yi ∧ yi = 1 + xi+1)) ∨ (xi = zi ∧ zi = 1 + xi+1)

)

→ x0 − n = xn

The results are summarized in Table 11.5 and show that although the com-
bination of intuition and omega is slightly faster for small values of n, the
situation is inversed as n increases, and this is also linked to the fact that
the size of the proof terms generated by the built-in tactic are growing very
large when n increases. In comparison, the performance of ergo remains
reasonable and its proof terms quite small.

11.3 Limits and Extensions

In this section, we investigate the limits of our implementation in regard to
existing tactics which deal with the same fragments. We also discuss whether
it would be possible to extend our development in order to go beyond these
limits, and how much work this would represent.
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11.3.1 Interpreted Predicate Symbols

The decision procedure which we implemented in Chapter 10 is used in
our tactic to deal with the theory of linear integer arithmetic. It is closely
related to the theory which is decided by the omega tactic (introduced Sec-
tion 4.2.2), with the important difference that our tactic is unable to treat
inequalities. This is a serious limitation in practice since many interesting
goals use inequalities; for instance, proof obligations coming from static pro-
gram verification with the Why platform often involve inequalities to avoid
out-of-bounds accesses or to express loop invariants.

Because of its practical significance, an extension of our implementation
to inequalities is certainly the first extension we would consider. We are
confident that this would be possible because Alt-Ergo uses the same core
algorithm and also manages inequalities. More generally, the implemen-
tation of CC(X) in Alt-Ergo is ahead of the formalization we presented in
Chapter 3: theories can interpret not only terms, but also atoms. In prac-
tice, theories have some interpreted predicate symbols, are being passed
relevant atoms during the proof search, and are queried for the status of in-
terpreted literals. There is some boilerplate which keeps these theory literals
in synchronization with the union-find in CC(X).

In the case of linear integer arithmetic, interpreted literals would be in-
equalities between polynomials and the theory can treat these literals by
implementing an incremental Fourier-Motzkin procedure or a simplex algo-
rithm. A Coq implementation would not be too difficult, but the proofs of
the whole system would have to be changed considerably. In particular, the
formalization of CC(X) (both on paper and in Coq) must first be extended
to account for interpreted literals.

11.3.2 Propositional Simplification

We have emphasized several times already that the intuition tactic, Coq’s
built-in intuitionistic propositional solver, can also be used as a proposi-
tional simplifier to explore the propositional structure of the formula and
clear as many branches as possible, yielding only the remaining cases. Our
tactic does not allow this, and simply either succeeds or fails with the first
countermodel found.

We could actually change our system so that it does not stop at the first
countermodel, but instead finds a complete set of satisfying assignments by
traversing the whole proof tree. It is similar to well-known variations of the
SAT problem such as MAX-SAT, the Maximum Satisfiability problem, or
#SAT, the problem of counting the number of satisfying assignments. We
give a possible adaptation of our basic DPLL inference system in Fig. 11.3.
Sequents are of the form M |Γ ⊢ ∆ where M is the set of countermodels
found in the derivation of that sequent. There is an extra rule Sat which
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Red
M |Γ, l ⊢ ∆, C

M |Γ, l ⊢ ∆, l̄ ∨ C
Elim

M |Γ, l ⊢ ∆

M |Γ, l ⊢ ∆, l ∨ C

Assume
M |Γ, l ⊢ ∆

M |Γ ⊢ ∆, {l}
Conflict

∅|Γ ⊢ ∆, ∅

Split
M |Γ, l ⊢ ∆ M ′|Γ, l̄ ⊢ ∆

M ∪M ′|Γ ⊢ ∆
Sat

{Γ}|Γ ⊢

Figure 11.3: Finding all satisfying assignments with DPLL

is used when the problem becomes empty and a countermodel is found, and
the unsatisfiability of a formula ∆ would be equivalent to the derivability of
∅| ∅ ⊢ ∆.

With a proof search returning all possible assignments, it is possible to
write a tactic based on this procedure which solves a goal if possible, and
otherwise replaces the goal by one subgoal per countermodel, each subgoal
representing the refutation of such countermodel. This would become even
more interesting with an extension to SMT, since the countermodel could
comprise the union-find computed by CC(X). Therefore, we can imagine that
in each subgoal, the terms of the problem would be canonized according
to the union-find corresponding to this subgoal. This would be a feature
similar to the command simplify available in PVS and which simplifies a
goal using decision procedures, and it would be entirely formalized in an
LCF-style prover like Coq. An interesting issue would arise because of the
way CC(X) uses semantical values to canonize terms: when we use the theory
of arithmetic, we do not actually have a term canonizer but a union-find on
polynomials, and the representative of a term can be a polynomial which
doesn’t correspond to a term. It is therefore not straightforward to forward
all relevant equalities from the union-find to the user’s formula.

11.3.3 Non-Linear Integer Arithmetic

We have shown in Section 10.2.2 how we used, in our proofs of the theory
of linear integer arithmetic, the reflexive tactic ring which is dedicated to
ring structures. One limitation of our theory is that it is restricted to linear
arithmetic and only interprets multiplication by constants. Although ring

does not solve Peano arithmetic, it does a bit more than our tactic as far
as non-linear arithmetic is concerned, because it deals with the full commu-
tative ring structure of the relative integers. In other words, in comparison
with our tactic, ring also uses the associativity and commutativity of the
multiplication symbol.



11.3 Limits and Extensions 241

We know that we cannot apply CC(X) with non-linear arithmetic since
it is an undecidable theory. Nonethess, a question which arises naturally is
whether it would be possible to add at least the associativity and commu-
tativity (AC) of multiplication so that the procedure in our tactic subsumes
ring. To that end, the type of polynomials which we used in our the-
ory of arithmetic would have to be changed slightly: monomials shall not
be reduced to a single variable anymore, but shall be extended to ordered
products of variables. For instance, 5 * x * y * z would be a monomial
with three variables. Solving equalities between such polynoms yields sub-
stitutions where the left-hand side is not reduced to a single variable, but to
an ordered product of variables. Such substitutions cannot simply be “ap-
plied” to other polynomials and that CC(X) is not because they be applied
easily and CC(X) is not adapted to such theories.

More generally, this issue is about the ability to define AC symbols in
CC(X) and have the procedure correctly compute the congruence closure
modulo AC. This is a complex modification to Alt-Ergo’s core procedure
which has been investigated and implemented by M. Iguernelala [CCI10].
The treatment of AC symbols is complex and typically requires dealing with
critical pairs, it cannot be implemented as a theory but must be intertwined
with CC(X). This extension of CC(X) is too complex to be easily applicable
to our Coq implementation.

11.3.4 Theory of Constructors

Our tactic performs congruence closure with uninterpreted functions and
therefore does not distinguish whether these function symbols are construc-
tors of inductive types or not. The congruence tactic, on the contrary, does
more than its name suggests: it not only performs congruence closure but
also reasons modulo the theory of constructors.

This theory is defined by the fact that constructors of an inductive type
are symbols which have two special properties: discriminability and injectiv-
ity. Discriminability means that terms starting with different constructors
of the same type are necessarily different, while injectivity means that each
constructor is injective with respect to its arguments. These properties are
not “meta” properties, in the sense that they are not explicitly added or
specifically checked by the system for each constructor; instead, they are a
consequence of the elimination principle which is provided at the definition
of the inductive. For example, let us define this simple two-branch inductive:

Inductive t := A (x : nat) | B.

We can write a discrimination lemma A 0 6= B explicitly:

Definition discrAB (H : A 0 = B) : False :=

let P := fun t ⇒
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match t with | A _ ⇒ True | B ⇒ False end in

@eq_ind t (A 0) P I B H.

discrAB is defined

It works by taking advantage of the elimination principle to define a
predicate P which is true for terms starting with constructor A, and false oth-
erwise. It is then easy to give a proof of P (A 0), and by using the equality A

0 = B, it becomes a proof of P B, i.e. False by conversion. Injectivity can
be obtained in a similar manner, and the built-in tactics discriminate and
injection automatically build the adequate discrimination and injection
terms when applied.

Since inductives are used extensively in Coq, in particular both for types
and predicates, these properties are used a lot in a typical development. We
would therefore be pleased if we could adapt our tactic to reason modulo the
theory of constructors. The adaptation of CC(X) to deal with this theory
is straightforward1: it suffices to consider a new kind of function symbol
CI

i , the i-th constructor of inductive I, and to add the discriminability and
injectivity rules to CC(X).

Inject
〈 Θ | Γ | ∆ | N | CI

i (t1, . . . , tn) = CI
i (u1, . . . , un) ; Φ 〉

〈 Θ | Γ | ∆ | N | t1 = u1 ; . . . ; tn = un ; Φ 〉

Discr
〈 Θ | Γ | ∆ | N | CI

i (t1, . . . , tn) = CI
j (u1, . . . , um) ; Φ 〉

〈 ⊥ | Φ 〉
i 6= j

Similar rules should be added to deal with constructors adequately when
assuming a disequation or treating a query. These modifications show that
it is easy to adapt CC(X) in order to deal with the theory of constructors.

It would be similarly straightforward to adapt our CC(X) implementa-
tion in Coq to use the theory of constructors. Unfortunately, we would be
unable to justify these modifications semantically, i.e. to prove the reflec-
tion lemma. The reason for this is that in order to justify, on the Coq
side, the manipulations we do with constructors of inductive types on the
reified side, we must be able to prove discrimination and injection lemmas.
We cannot prove these lemmas unless we know these reified constructors
correspond to an inductive (or coinductive) definition, but being an induc-
tive is not a property of the logic, it is a meta property which comes from
the ability to write elimination principle. In other words, there is no Coq
predicate IsInductive : Type → Prop which identifies inductive types.

1Note that this is a fundamental difference between the theory of constructors and the
– stronger – theory of algebraic datatypes. In the latter, we also have the fact a term
of an inductive type has the form Ci(x̄) for one of the constructors Ci of that type. In
contrat to the theory of constructors, this theory is not convex and cannot be dealt with
by CC(X).
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Therefore, even if we could reify constructors in a special way and treat the
theory of constructors in our implementation, we cannot semantically justify
this theory. In the best case, we could do that for a finite, predefined, num-
ber of concrete inductive types (option, bool, etc) which we could justify
individually, but there is no way to justify the theory of all constructors in
general. This can be seen as a limitation to the reflexive approach.

11.3.5 First-Order Logic

The last limitation which we investigate in the fact that we only deal with
quantifier-free formulae, and this is maybe what separates our tactic the
most from the actual Alt-Ergo theorem prover. In order to deal with first-
order logic, Alt-Ergo’s SAT solver alternates phases of proof search and of
generation of new formulae (called a matching phase). The proof search
simply follows the DPLL procedure which we have described in Chapter 2,
but when a countermodel is found a matching phase is launched: it uses all
the lemmas (i.e. the universally quantified literals) in the partial assignment
and instantiates them on terms of the problem. This adds new clauses to
the problem and the proof search is started again. Of course, this procedure
does not terminate, and the prover could keep on searching and adding new
instantiations forever so only a finite number of matching phases is allowed
in practice. Knowing this, there are two ways we could extend our tactic to
first-order logic:

1. The first way would be to use Alt-Ergo as an external oracle to guess
the ground instantiations which are sufficient to establish the unsat-
isfiability of the original first-order formula. In practice, this means
instrumenting Alt-Ergo so that, when it successfully proves a formula,
it also returns a trace of all lemma instantiations performed on the
way. The Coq tactic could start by calling Alt-Ergo on this formula
and retrieves the list of sufficient ground instantiations, apply these in-
stantiations in the Coq goal and then call the ground reflexive tactic.
The main advantage of this method is that we avoid having to extend
our Coq implementation and formalization to first-order logic, in par-
ticular we avoid having to reason about binders, which is notoriously
difficult [ACP+08, Cha09]. The main inconvenient is that we need an
external tool and therefore the tactic cannot simply be a Coq plugin.
Also, modifying Alt-Ergo in order to retrieve the ground instances must
not be done naively and this requires a dependency analysis as com-
plex as the one necessary to use backjumping with SMT and discussed
in Section 2.3.

2. The second way would simply be to continue using the fully reflexive
approach and extend our implementation presented in this dissertation
to first-order logic. Note that the modifications are restrained to the
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literals and the SAT solver, as the CC(X) environment will continue
to deal with ground atoms. The main difficulty lies in extending the
formalization of semantics and the reification process to embed quan-
tifiers and bound variables. The main advantage is that it would lead
to a much tighter integration than using the external oracle’s method.

11.4 Automation by Proof Reconstruction

We have explained in Chapter 4 that a common method to implement a
tactic for automated deduction without using full reflection is to use an ex-
ternal tool generating traces and reconstruct a Coq proof from those traces.
To conclude this chapter, we now recount existing integrations of automated
provers in interactive provers.

Until recently, examples of integrations of SMT solvers into interactive
provers were rather sparse and the most successful integrations were actu-
ally related to automated theorem provers of the TPTP family. The most
popular integration is Sledgehammer [MQP06b] by Paulson et al., an inte-
gration of three different ATPs in Isabelle/HOL [Isa]: Sledgehammer sends
goals to the E prover [Sch02], SPASS [WDF+09] and Vampire [PSS02], and
let these three tools work in the background. When a proof is found, it is
reconstructed into an Isabelle proof, via the Metis [Met] theorem prover.
Provers can run for a long time since the user can continue its proof while
they run in the background. Metis is used as an intermediate because it is
able to output proof traces based on six simple inference rules. This feature
was developed as part of an integration of Metis into HOL4 [GM93].

There have been also a few integrations of decision procedures inspired
by SMT solvers in interactive provers of the HOL family. Mclaughlin, Bar-
rett and Ge [MBG06] have described an integration of CVC Lite in HOL
Light for the fragment of quantifier-free formulae with equality on uninter-
preted functions, linear real arithmetic and arrays. This work was later ex-
tended [GB08] to quantifiers and linear integer arithmetic for CVC3 [BT07].
Fontaine et al. [FyMM+06] describe an integration of haRVey, an earlier ver-
sion of the VeriT SMT solver [BdODF09], in Isabelle/HOL. Their integration
encompasses quantifier-free first-order logic with equality on uninterpreted
functions, i.e. the exact scope of our cc/vcc tactics. This work was later
extended to quantified formulae in [HCF+07]. The most recent and most
complete integration was proposed by Weber and Böhme in [BW10]: they
present a reconstruction mechanism for proof traces of the Z3 SMT solver
into HOL. They put the emphasis on efficiency and their reconstruction
phase takes less time than the proof search in Z3 for most benchmarks in
the SMT-LIB, which is very encouraging. This work builds on earlier work
limited to SAT traces by Weber and Amjad [WA09b].

All the integrations presented so far have been made in provers of the
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HOL family; this can be explained by the fact that HOL and Isabelle are
better suited for proof reconstruction from an external solver than a proof
assistant like Coq. The main reason for that is that these HOL provers
build proofs using a small number of basic inference steps, encoded as ML
functions manipulating an abstract type of theorem thm. The soundness
of the system is ensured by typechecking the applications of these basic
combinators and by the fact that the type thm is abstract, thus can only
be manipulated using these basic steps. Therefore, a proof in these systems
corresponds more or less to proving that a formula has the type of a theorem,
and the proof itself, i.e. the chain of steps which led to the theorem object,
is verified on-the-fly and is not kept in memory. In contrast, we have seen
that in Coq one proceeds by constructing a full proof term for a theorem,
and the proof term is typechecked at the end, and is kept in memory to be
eventually reduced or re-checked (see [KW10] for a traduction of HOL proofs
to Coq proofs). The consequence of these observations is that Coq is much
more sensible to large proofs: first because its typechecking mechanism is
for a very rich logic and is much slower than HOL’s, second because the
whole proof is kept in a compiled Coq file. Therefore, proof reconstruction
of large traces in Coq is less efficient than in provers of the HOL family.

One way to counter this proof term issue is to rely on one of Coq’s
strongest asset, its ability to compute efficiently using the virtual machine.
In [AGST10], Armand et al. present a reconstruction of SAT traces in Coq,
which they have optimized to take advantage of faster reductions. They
indeed remark that Coq’s performance while typechecking and manipulating
large proof terms is unsatisfactory, and they compensate by modifying the
virtual machine in order to use imperative arrays to execute algorithms
described, in Coq, using functional arrays. This granted them a large speed-
up and they end up with timings similar to Weber and Amjad [WA09b].

Our work could also benefit from these imperative features introduced
in [AGST10]. In choosing to follow the fully reflexive approach in our work,
we have of course taken a radical path which bases everything on efficient
internal computations in the logic, and require neither proof reconstruction
nor large proof terms. Of course, the downside was that implementing the
kernel of an SMT solver in the proof assistant required a large complex
development, but our strategy also aimed at formalizing our algorithms since
they are used in an external SMT solver. When formalizing a fully reflexive
procedure, we actually certify that the procedure is correct, whereas when
verifying proof traces from an external tool, one is only formally checking
that one particular run of the solver is correct. This is therefore natural
that the fully reflexive approach be more complex to implement than proof
reconstruction, since it achieves a much stronger verification result.
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Conclusion

In this thesis, we have presented a formalization of the kernel of Alt-Ergo in
the Coq proof assistant and an implementation of a reflexive tactic based
on this formalization. This work uses SMT technology to bring more au-
tomation to an interactive prover, without sacrificing the correctness of the
prover or augmenting the trusted kernel. Our contribution is thus twofold:

1. We have comforted the trust that we have in our SMT solver by for-
mally proving the soundness of the components which are at Alt-Ergo’s
heart. In order to do this, we took advantage of the fact that Alt-
Ergo’s implementation is modular and that the propositional solver,
the congruence closure mechanism and the decision procedures for the
various background theories are implemented as separate components.
Although Alt-Ergo’s propositional solver relies on a well-known DPLL
procedure, our presentation based on inference rules is as general as
possible and at the same time remains very close to the actual im-
plementation. Therefore it is reasonably easy to reason about, but
the gap with the actual software is quite limited, even when adding
backjumping and conflict-driven clause learning. We also presented
our original algorithm CC(X) for combining the theory of equality on
uninterpreted functions with a solvable theory X. This work is inspired
by Shostak’s algorithm but allows underlying decision procedures to
use abstract data structures instead of terms. Under some conditions
on the theory X, we have formally proved the soundness and com-
pleteness of this algorithm in Coq. The proof is quite involved and it
is a real asset to have been able to formally verify such proof in an
interactive prover.

2. We have not only formalized and proved the correctness of Alt-Ergo’s
core components in Coq, but we have used these formalizations in a
reflexive manner to obtain a Coq tactic combining propositional logic,
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congruence closure and linear integer arithmetic. The main specificity
when formalizing an algorithm to use in a reflexive tactic is that it
must also be an executable implementation. To that end, we con-
tributed a library of first-class containers based on Coq’s type classes
mechanism and which allows easy intuitive use of basic data structures
in Coq programs. Another difficulty which is specific to the use of re-
flection is the reification process; in particular, we showed how to reify
terms in an arbitrary signature using dependently-typed interpreta-
tions. Following the modular structure of Alt-Ergo, we formalized the
different components separately and made extensive use of Coq’s own
module system to isolate the different parts of the system: formulae,
semantics, CNF conversion, strategies, theories, etc. This allowed us
to define clear interfaces between the different components, to write
the proofs in a modular manner, and thanks to encapsulation to imple-
ment and test different versions of some components (DPLL strategies,
DPLL environments, CNF conversion methods) and easily plug them
in the framework. On the front end, we use these different subcom-
ponents to provide twelve different versions of the reflexive tactic, all
obtained by different instantiations of the framework.

On a more general note, our work demonstrates that the fully reflexive ap-
proach can also be used for larger systems. In particular, Coq can be used as
a full-blown, albeit purely functional, programming language and the virtual
machine provides reasonably efficient computation of Coq programs. This
approach does not require the use of an external tool or proof reconstruction
and is therefore easier to maintain; moreover, the implemented procedure
is formally proved and it can also be extracted to a standard programming
language and become a certified solver.
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APPENDIX A

Correctness of Conflict-Driven Clause Learning

In this appendix, we prove the correctness of the inference system from Fig-
ure 2.6 page 42, i.e. a DPLL procedure optimized with non-chronological
bracktracking and conflict-driven clause learning. We have seen in Sec-
tion 2.2.3 that the completeness is straightforward because that system
“subsumes” the inference system with backjumping (see Figure 2.3 page 32),
which has been prove complete in Theorem 2.2.9, and we are therefore left
with proving the soundness.

Similarly to the soundness proof of the system with backjumping, we will
require our sequents to be well-annotated, i.e. that all literals appearing in
dependencies are decision literals.

Definition A.0.1 (Decision literals). Let Γ ⊢ ∆ : A,A a sequent. A literal
l is a decision literal if and only if l[l] ∈ Γ.

Definition A.0.2 (Well-annotated sequents). Let Γ ⊢ ∆ : A,A a sequent.
It is said to be well-annotated if the two following condtions hold:

(i) ∀l[B] ∈ Γ,∀k ∈ B, k is a decision literal;

(ii) ∀C[B] ∈ ∆,∀k ∈ B, k is a decision literal.

For the correctness proofs of the basic DPLL procedure, we proceeded
by proving a local invariant of soundness on the system: Theorem 2.1.5
page 2.1.5 tells that any time Γ ⊢ ∆ is derivable, then Γ and ∆ is incompat-
ible, and the soundness of the system per se is just the special case where
Γ is empty. Similarly, in our soundness proof of the system with backjump-
ing, we proceeded by proving a local stability lemma (see page 36) which
tells that any derivation of Γ ⊢ ∆ : A can be pruned into a derivation of
Γ|A ⊢ ∆|A. We claim that these lemmas are local properties of the respective
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derivation systems because they do not depend on whether they are part
of a larger derivation or not, and are essentially expressed without context.
Unfortunately, the system with clause learning cannot be proved by such
methods because when learnt clauses are explicitely added to the problem,
this is only justified by the fact that these clauses are consequences of the
original problem. Therefore, in order to convey their correctness, we need
to refer to the problem at the root of the tree. To that end, we define a
notion of subsumption between sequents and formulae.

Definition A.0.3 (Subsumption). Let Φ a formula in conjunctive normal
form, and Γ ⊢ ∆ : A,A a sequent. We say that this sequent subsumes the
formula Φ if the two following conditions hold:

(i) ∀l[B] ∈ Γ,∀M,B ⊆M =⇒ M |= Φ =⇒ M(l) = ⊤;

(ii) ∀C[B] ∈ ∆,∀M,B ⊆M =⇒ M |= Φ =⇒ M |= C.

In other words, subsumption means that if a literal (resp. a clause) is
annotated with some dependencies B in the sequent, then any model of Φ
which extends that set of dependencies B is a model of the literal (resp. the
clause).

We are now ready to prove the main lemma of our soundness proof,
it establishes an invariant of a derivable sequent: it states that if a well-
annotated derivable sequent subsumes a formula Φ, the clauses stored in
the right-hand side of the sequent (i.e. the conflict clause and the learnt
clauses) are consequences of Φ.

Lemma A.0.4 (Soudness of learnt clauses). Let Φ a formula in conjunc-
tive normal form, and Γ ⊢ ∆ : A,A a well-annotated, derivable sequent
subsuming Φ. Then,

(i) ∀M,A ⊆M =⇒ M 6|= Φ;

(i’) ∀l ∈ A, l is a decision literal;

(ii) ∀C[B] ∈ A ,∀M,B ⊆M =⇒ M |= Φ =⇒ M |= C;

(ii’) ∀C[B] ∈ A ,∀l ∈ B, l is a decision literal.

Proof. We have four different assertions to prove, we are actually only inter-
ested in (i) and (i’), which express that the conflict set is well-annotated and
is a consequence of Φ; (ii) and (ii’) are required in the proof to ensure that
all the sequents in induction hypotheses remain well-annotated and subsume
Φ; thus they must be proven in parallel.

The proof proceeds by structural induction on the derivation of the se-
quent, and by case analysis on the first rule applied.

(Conflict)

Conflict
Γ ⊢ ∆, ∅[A] : A, ∅



Correctness of Conflict-Driven Clause Learning 267

(ii) and (ii’) are obvious since A is empty. (i’) is true because the sequent
is well-annotated. We are left to prove (i), i.e. that no model of Φ extends
A. Since the sequent subsumes Φ, every model of Φ extending A is a model
of the empty clause, and therefore there is no such model.

(Elim)

Elim
Γ, l[B] ⊢ ∆ : A,A

Γ, l[B] ⊢ ∆, l ∨ C[C] : A,A

First of all, we can apply the induction hypothesis (IH) to the premise.
Indeed, it is straightforward to check that the premise is well-annotated (its
dependencies are included in the dependencies of the conclusion) and also
subsumes Φ (the partial model does not change, and one clause is removed).
Now, because the conflict set and the learnt clauses are the same in the
premise and the conclusion, all assertions are proved by IH.

(Red)

Red
Γ, l[B] ⊢ ∆, C[B ∪ C] : A,A

Γ, l[B] ⊢ ∆, l̄ ∨ C[C] : A,A

Again, we can apply the induction hypothesis (IH) to the premise. Indeed, it
is straightforward to check that the premise is well-annotated (its dependen-
cies are included in the dependencies of the conclusion) and also subsumes
Φ: if a model M of Φ extends B ∪ C, it extends both B and C and since
the conclusion subsumes Φ, we know that M models l and l̄ ∨ C, and thus
M |= C. Because the conflict set and the learnt clauses are the same in the
premise and the conclusion, all assertions are proved by IH.

(Assume)

Assume
Γ, l[B] ⊢ ∆ : A,A

Γ ⊢ ∆, l[B] : A,A

First note that the decision literals in the conclusion and the premise are
exactly the same, because the literal l added to the premise is itself annotated
with decision literals. Therefore, the premise is well-annotated and we can
apply the induction hypothesis (IH) since it also subsumes Φ: ifM models Φ
and extends B, it is a model of the singleton clause {l}, thereforeM(l) = ⊤.
Now, (i) and (ii) are true by IH-(i) and IH-(ii) since the right-hand side
of the sequent does not change, and (i’) and (ii’) are given by IH-(i’) and
IH-(ii’) because the decision literals are the same below and above the bar.

(BJ)

BJ
Γ, l[l] ⊢ ∆ : A,A

Γ ⊢ ∆ : A, Shiftl (A)
l /∈ A

The set of decision literals in the premise is the set of decision literals in
the conclusion augmented with literal l. In particular, the premise sequent
is well-annotated since the only new literal is l itself. Let us prove that it
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subsumes Φ: the clauses in ∆ are not a problem because they are in the
conclusion; the only new literal in Γ is l and since l is annotated with itself,
it is clear that any model extending {l} makes l true. Therefore, we apply
the induction hypothesis (IH) to the premise. Because the conflict set does
not change, (i) is given by IH-(i), and (i’) is also a consequence of IH-(i’)
because we know that l 6∈ A and l is the only decision literal missing in
the conclusion. Similarly, (ii’) follows from IH-(ii’) because by definition
of Shift, l does not appear in the dependencies in Shift l(A). We are left
with proving (ii): consider a clause C[B] in Shift l(A) , and a modelM of Φ
extending B, there are two cases to consider:

• if C[B] was already in A , then by IH-(ii), we have M |= C;

• otherwise, by definition of Shift, C = l̄ ∨ D for some D such that
D[l,B] belongs to A. If M(l) = ⊥, then M(l̄) = ⊤ and M |= C,
but if M(l) = ⊤, then M extends l,B and by IH-(ii), M |= D, hence
M |= C.

(Split)

Split
Γ, l[l] ⊢ ∆ : A,A Γ, l̄[A \ l] ⊢ ∆, Shift l (A) : B,B

Γ ⊢ ∆ : B, Shift l (A) ∪ {l̄[A \ l]} ∪ B
l ∈ A

With the same arguments than in the BJ rule, we can apply the induction
hypothesis (IH1) to the left premise of this rule. We prove that we can apply
it to the right branch as well.

First, the decision literals in the right premise are the same as the con-
clusion, which are the same as in the left premise except for l. By IH1-(i’),
the literals in A are decision literals in the left premise, therefore the literals
in A\ l are decision literals in the right premise, and the partial model in the
right premise is well-annotated. The clauses in ∆ are also well-annotated by
hypothesis because they are in the conclusion, and we are left with clauses
in Shift l(A): by IH1-(ii’), the dependencies of clauses in A are decision
literals in the left premise, and by definition of Shift, the dependencies in
Shift l(A) are just the same, with l removed. Therefore, the right sequent is
well-annotated.

In order to prove that the right premise subsumes Φ, the clauses in ∆
are not a issue and are consequences of Φ by hypothesis because they are in
the conclusion. For clauses in Shift l(A), we can reproduce the reasoning we
made in the BJ rule: let C[B] a clause in Shift l(A) , and M a model of Φ
extending B, there are two cases to consider:

• if C[B] was already in A , then by IH1-(ii), we have M |= C;

• otherwise, by definition of Shift, C = l̄ ∨ D for some D such that
D[l,B] belongs to A. If M(l) = ⊥, then M(l̄) = ⊤ and M |= C, but
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if M(l) = ⊤, then M extends l,B and by IH1-(ii), M |= D, hence
M |= C.

Therefore, we can apply the induction hypothesis (IH2) to the right
premise and we can now prove the four assertions we need. Since the decision
literals in the conclusion and the right premise are the same, (i’) is given by
IH2-(i’). Similarly, (ii’) is a consequence of IH2-(ii’) and of the fact that the
right premise is well-annotated. By IH2-(i), there is no model of Φ extending
B, which proves (i). Finally, let C[B] be a clause stored in the right-hand
side of the conclusion and M a model of Φ extending B, there are three
cases to consider:

• C[B] ∈ Shift l(A) : the clause appears in the right premise and because
the right premise subsumes Φ, we know that M models C;

• C[B] = l̄[A\l] : by IH1-(i), there is no model of Φ extendingA therefore
if M |= A \ l, M(l̄) is necessarily true;

• C[B] ∈ B : by IH2-(ii), we know that M models C.

This concludes the proof.

That lemma was all we needed in order to prove the soundness of our
inference system.

Theorem A.0.5 (Soudness). Let ∆ a formula in conjunctive normal form,
let us annotate all clauses in ∆ with an empty set of dependencies. Then, if
there exists A and A such that ∅ ⊢ ∆ : A,A is derivable, ∆ is unsatisfiable.

Proof. It is straightforward to check that ∅ ⊢ ∆ : A,A is a well-annotated
sequent which subsumes ∆. Therefore, we can apply Lemma A.0.4 with
Φ = ∆ and by (i’), we know that A = ∅ since it only contains decision
literals and Γ = ∅. Hence, (i) states that there does not exist a model of ∆
extending ∅, in other words that ∆ is unsatisfiable.
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APPENDIX B

Comparison of DPLL Strategies in Coq

Table B.1: Benchmarks for DPLL Strategies Comparison

V/C An As Al Bn Bs Br Cn Cr

aim-1 50/80 312 96 43 0.56 0.34 0.13 0.41 0.10
aim-2 50/80 31 10 3.5 0.13 0.07 0.02 0.10 0.02
aim-3 50/80 394 161 61 0.93 0.63 0.26 0.47 0.13
aim-4 50/80 103 40 11 0.08 0.05 0.02 0.07 0.02
aim-1 50/100 110 30 12 29 12 5.5 2.45 0.66
aim-2 50/100 42 9.4 5.1 3.6 0.67 0.28 0.58 0.14
aim-3 50/100 62 15 9.0 23 11 4.8 2.6 2.6
aim-4 50/100 26 6.3 3.0 0.4 0.16 0.07 0.4 0.06

phole 5 30/81 0.15 0.05 0.03 0.05 0.03 0.02 0.06 0.04
phole 6 42/133 1.8 0.51 0.20 0.37 0.20 0.09 0.56 0.32
phole 7 56/204 24.4 5.5 3.0 3.2 1.6 0.73 10 1.6
phole 8 72/297 353 74 39 27 13 5.7 NA 18.9
phole 9 90/415 5600 1080 710 257 125 52 NA 410
uuf501 50/218 NA NA NA 5280 775 398 4500 339
uuf752 75/325 NA NA NA 732 86 41.3 629 31.9

1 total time for 1000 instances
2 total time for 9 instances

In this appendix, we give a comparative test of different DPLL strate-
gies which we have implemented and proved in Coq, using the framework
described in Chapter 6. We benchmarked the strategies on several problems
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from the SATLIB library in DIMACS format1.
In order to be able to test large examples in reasonable time, so that

we can better compare the efficiency of different strategies, we did not test
these procedures using the Coq VM but, instead, we extracted the strategies
to OCaml and compiled the generated sources to native code. The figures
are summarized in Table B.1: each line represent a problem or a set of
problems, the V/C column gives the number of variables and clauses in the
corresponding formulae, and the next columns show the timings in seconds
for the various strategies.

The description of the various strategies represented in Table B.1 follows:

An: Basic DPLL with only one rule applied at each iteration. Rules are
tried in the following order: Conflict, Elim, Red, Assume puis
Split. This corresponds exactly to the first proof_search function
described in Section 6.1.4.

As: Basic DPLL with an eager strategy where all the possible BCP is per-
formed in one traversal of the problem. At each step, all the clauses
which become true are eliminated, others are reduced as much as pos-
sible, and unitary clauses are Assumed on the fly, which extends the
current partial assignment during BCP. When this process is finished,
Split is applied.

Al: Exactly the same strategy as As, but using lists and lists of lists instead
of sets and sets of sets to represent the right-hand side of sequents.
This is exactly the strategy presented in Section 6.3.

Bn: Similar to An but using DPLL with backjumping. One rule is applied
at each step and they are tried in the following order: Conflict,
Elim, Red, Assume then BJ if possible and finally Split.

Bs: DPLL with backjumping where all the BCP is performed in one traver-
sal of the clauses. The main difference with As and Al is that during
one round of BCP, unitary clauses are not assumed on the fly but are
returned separately. After each BCP, these unit literals are assumed
and another round of BCP is started until there is no progress. Then,
the rules BJ or Split are applied.

Br: Similar to Bs, but at each step, the BCP is performed only with respect
to the literals assumed at the previous round, because the clauses are
only reduced with respect to older literals. Similarly, when branching
with Bj or Split, only the new assumed literal is used for the next
round of BCP.

1The problems and their description/origin can be found at
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
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Cn: Similar to An and Bn but this time uses DPLL with backjumping and
conflict-driven clause learning. At each step one rule is applied, they
are tried in the following order: Conflict, Elim, Red, Assume then
BJ if possible and finally Split.

Cr: Similar to Br insofar as it only performs BCP with respect to most
recently assumed literals. Moreover, in the case of the Split rule, a
special Shiftl is used which filters all the clauses in which we should
have added l̄, since they would be eliminated in the right branch any-
way.
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