N
N

N

HAL

open science

Context dependency analysis in ubiquitous computing
Raheel Ali Baloch

» To cite this version:

Raheel Ali Baloch. Context dependency analysis in ubiquitous computing. Other [cs.OH]. Institut
National des Télécommunications, 2012. English. NNT: 2012TELE0004 . tel-00714129

HAL Id: tel-00714129
https://theses.hal.science/tel-00714129
Submitted on 3 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00714129
https://hal.archives-ouvertes.fr

UrPMC

SudParis

Im@il PARIS

Ecole Doctorale EDITE

Thése présentée pour I’obtention du diplome de
Docteur de Télécom & Management SudParis

Doctorat conjoint TMSP-UPMC

Spécialité : Informatique et Télécommunications

Par Raheel Ali Baloch

Context Dependency Analysis in Ubiquitous Computing

Soutenue le 17 Fev., 2012 devant le jury composé de :

Serge Garlatti Professeur a Télécom Bretagne Rapporteur
Xiaodi Huang Professeur a Charles Sturt Univ. Rapporteur

Amal El Fallah Seghrouchni | Professeur a Paris VI Examinateur
Yacine Ghamri-Doudane Professeur Associé 3 ENSIIE Examinateur
Emmanuel Bertin Docteur a Orange Labs Examinateur
Noel Crespi Professeur a Télécom SudParis Directeur de thése

These n° 2012TELE0004

Acknowledgements

I am indebted to my PhD supervisor, Dr. Noel Crespi, for his understanding of problems and
people, encouragement, optimism, and meticulous attention to all aspects of my research
work. Aside from guiding me through this thesis, he has given me valuable insight into the art
and science of problem solving. I would also like to acknowledge the generous support of

RS2M team at ITS.

On a more personal note, I would like to thank my family for always encouraging me to do
my best, and strive for excellence. I am grateful to my parents without whom this thesis
would never have been possible. Their encouragement and support enabled me to ultimately

achieve this milestone.

Abstract

To provide users with personalized adaptive services only using the accessible computing
resources in a cloud environment, context aware applications need to assimilate both the
accessed and derived context, i.e. a combination of more than one sensed data and
information in the environment. Context data dependency, dependency that arises between
the context data producer and consumer, may get introduced in a system due to numerous
reasons. But as the number of context dependencies for a service increases, the more complex
the system becomes to manage. The thesis addresses issues of how to identify context
dependencies, represent such context dependencies and then reduce them in a system. In the
first part of the thesis, we present two efficient approaches to determine context dependency
relations among various services in ubiquitous computing environment to help better analyse
the pervasive services. One approach is based on graph theory, and we have used the
topological sort to determine the context dependencies. The second approach is based on
solving constraint networks which determines whether an entity is affected when the state of a
certain other entity has its state changed, i.e. determining the dynamic nature of context
dependency. In the second part of the thesis, we present a mode for representation of context
dependencies within a system. Our model that represents context dependencies is based on
set theory and first-order predicate logic. The context dependency representation model also
represents alternative sources for context acquisition that can be utilized in a case in which the
preferred context producers are not available to service the desired context to the relevant
context consumer any more. Further, we try to reduce the context dependencies by presenting
the idea of profile context, which is based on the proposal of an open framework for context
acquisition, management and distribution. This heuristic approach is based on the idea of

utilizing mobile nodes in an ad hoc overlay network with more resources than the context

producer itself to store various contextual information under the banner of profile context, and
further, provide profile context instead of each context individually based on the queries the
nodes receive from the context consumers. Bringing together the context information and
context updates from various sources, support for context aware decisions can be
implemented efficiently in a mobile environment by addressing the issues of context

dependency using profile context.

Table of Contents

Context Dependency Analysis in Ubiquitous COMPULING.........cecveeerveeerieeeieieeeiieeeieeeee 1
ACKNOWIEAZEMENLS ..ot ettt e et eetee e enreeeenaeeesnseeenns 2
ADSTTACT ..o ettt ettt ettt et eaneas 3
Table OF CONENLS.eiiuiiiiiiiiieie ettt ettt et es 5
PUDIICATIONS ...ttt ettt et 9
LISt Of FIGUIES ...t ettt ettt e et e e et e e et e e e nseeesaseeennsee s 11
LSt OF TADIES ...ttt ettt st e 13
1. INEEOAUCTION ...ttt ettt 34
1.1 Back@round..........c.ooouiiiiiiiieiieeeeee et
1.2 IMIOTIVALION <.ttt ettt ettt et e sbte et e s e e
1.3 CONEIIDULIONS ...ttt ettt ettt ettt ettt e bt et seeeseeenneas
L4 OFANIZALION ..iovviiiiiieiieeiiieiie et eiee ettt et eetee st e esbeeesaeensaesaaeesseessseensaessseenseesssesnsaens
2. Context in Ubiquitous COMPULING........cccuteruieriieriieeieeiie e erite e eieeeeveeieeseeeennees 44
2.1 Background TEIMIScooviiiiiiiieiie ettt ettt et eeaee e
2.1.1 Ubiquitous COMPULINGccvieriieeiieiieeieesieeeieetee et eteeseteeseessaeeseessaeeseessneenseens
2.1.2 Context AWare COMPULINGcccuieriieriieriieiieeriieeieenteesteeieesaeesseesaeesseessneenseens
2.2 COMEEXL. .ttt et ettt ettt e b et e sae e s te e e e
2.3 CONLEXE AWATEINIESS ...ttt ettt ettt ettt ettt ettt e b et e e e sateenaeeeane
2.4 Context CateZOTIZATIONecueieiieeiieetieeiieeiteetee et e eteeeteestteebeesseessseessaeenbeeseessneeseens
2.4.1 Conceptual CategoriZatiONceevieeiieriieeiieiieeieerieeeteeiee e eseeeseeesseeseneeaeens
2.4.2 Measurement CategoriZatiONcceeriieriieriieniieeieeiee et eieeeteeteeeeeesseeseaeeeeens
2.5 Characteristics of Context INformationcoeoeeveriiniiniiieniiceeeeeeeees
B T B 3111 010) 1 H TSR

B T 1311 o 1<) o {11 AT

2.5.3 Alternative Representations.c.eeeuieeieerieniieniieeieeiee et eite et seeeneesiee e 58

2.6 Context ManagemENT...........eeeiiieiiiiieiiieeiiee ettt e st et eesiaeesanees 58
2.7 ConteXt AdAPLation.......cc.eeiiiiiiieiieeiieeie ettt ettt et e et ee et eeee b e snaeeaeen 60
2.8 Requirements & Challengesc..ccouiiiiriiiiiiiiiiiieieeeeeeeeee e 61
2.8.1 Ubiquitous Computing ReqUIIMENtSscccuereerueriiriirieniinieieeieseeieseeneeee 61
2.8.2 Context Aware Computing Requirmentsc..ceceveereriiniineniieneenenieneenens 62
2.9 Context DependenCy..........coiiiiiiiriieiiiiienieeie ettt e 63
2.9.1 Context Dependency AtITDULES.ccuerieriiriiriiiiiiieriieieee ettt 67
2.10 Dependency Managementc.eeeueerieeiieniieeiieniieeeeesiie et eiee s eieeseeebeesneeeeens 68
LIterature REVIEWcooiiiiiiiiiiiiie et e 70
3.1 State Of the ATT.....ooiiiee et et 70
3.2 Dependency In SYSTEMS.ccuuiiiiiiiiiiieiie et 75
33 Context MOAEIIINGcc.veeiiiiiieie et e 82
34 MoOdeling APPIOACKHES.cccuvieiiiieciieeciee ettt e e ere e e seaeeenree e 82
341 Key-Value MOACIS......c.ooiiiiiieiiieciie ettt esaveeeeaneeeas 82
3.4.2 Markup Scheme MOdeIS........cccuiiiiiiiiiiieciie e 83
3.4.3 Graphical MOEISccveieiiieeiiiecie ettt e e e re e e eanee e 84
3.4.4 Object Oriented MOAEIS........cccviiiiiieiiiieeiie et 85
3.4.5 Logic Based MOEIScooouiiieiiiiiiiiece ettt 85
3.4.6 Ontology Based MOdEISccceeeeiiiiiiiieiieecie e e 87
3.5 Context Provisioning ArChiteCtUIES........cccvieriuiieriieerieeeeiee e ereeeeree e 88
3.6 Distributed APProachiesoccuiieiiiieciie e e e 89
3.7 ACQUITING CONTEXE ...vviieiiieeiiieeiieecieeeeieeesteeerteeeiveeetaeesseeesseeessaaeessseeensseesnseesnnns 91
Finding Context Dependencies...........ccccuieriiieriieeriieeiee et 97
4.1 ConteXt DEPENAENCIESccuvveeiiieeiiieeiieeciee e eeee e e et e e e e eaeeesreeeenseeesnneeenneas 97

4.2 APPLICAtiON SCENATIO: ...eeviiiiiieiieeiiieiee ettt ettt et ettt eseaeebeesaaeenneennees 97

43 Determining Context Dependencies...........cccuierieriieiiienieeniienie et 103
4.4 Example Scenario: Meeting ROOMcocuiiiiiiiiiiiiiiiieccee e 106
4.5 Constraint Satisfaction Problemc.ccccoviiiiiiiiiiiiiiieccee 107
4.5.1 Formal Introduction of CSPApPProach..........ccoceviiviiiniiiiiiincciceec 107
4.6 Determining Dependencies and NP-Completeness...........ccceevervierieneeieneenennene. 110
4.7 Dependency Analysis and CSPcocoeriiiiiiiiiiiiiniieeece e 111
4.7.1 Dependency Analysis AlZOTIthm.........cccoviiiiiiiniiiiiccec 112
4.7.2 Complexity ANALYSIS ..c..ooveriiiiiiiiiiiieiietere et 114
Modelling Context Dependenciescoeeveriirieriiniineeieneeieeieseee e 116
5.1 Context Dependency Representaion.........coceevueeiiierieeniieniieieesee e 116
5.2 Context Modelling APProachoooeeiiiiiiiiiiiieeeeee e 118
53 Dependency Abstract Modelc.ooiiiiiiiiiiiiiiee e 119
5.3.1 Dependency Model ASSUMPLIONS.......c..eeeruviriiiieeiiieeeiieeeiieeereeeeneeesveeeeree e 119
54 Basic MOdel.......co.uiii s 120
5.5 Dependency Model of Ubiquitous SYSTEMSeeeevveeeruvieeiiiieeiieeciieeeieeeevee e e 120
5.5.1 ConteXt CONTIICE ...oouiiiiiiiiieiie ettt e 122
5.5.2 ConteXt ACQUISTHIONuvieeriiieeiiieeiieeeiieeeiteeetee e et e esreeesereeesbeeessseeensseeesnseesnneas 123
Reducing Context Dependencies..........cceeeueieriiieeniieeniieeeiee e 125
6.1 Requirements of Context Dependent ACCESScccvveerveeeiiieriiieeeiieeeiieeeiee e 125
6.2 Context Dependent AcCess DeSIN........ccccuiieriiieiiieeiie ettt 126
6.3 Properties of Context PrOAUCET...........cccuiiiiiiiiiiieeiieeeeee e 128
6.4 CoNtEXt ACUISTEIONvviieiiieeiieeeiteeeiteeeieeesieeesaeeestaeeetaeeeaaeesseeesnseeesnseeensseeennns 129
6.4.1 RDF-based Profile Contextccoouiiiiiiiiiiiiiieeecee e 133
6.4.2 Functions Requied in Profile Contextcccvveriiiiriieeiiieeieeee e 133

6.5 CoNtEXTUAL EVENTS ...cooiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et 135

6.5.1 Static CONEXL c.uviruriiiiieiiieie ettt sttt sb et 136
6.5.2 DyNamic COMLEXL.....ccuieiiiiiieiieeiieeie ettt ettt siee et eseeeeteesaeeebeeseeas 137
6.6 OVErlay NEtWOTKccviiiiiiiiieiiee ettt 138
6.7 Profile Context Management...........ccccecuerieriieienienieiiereeieeeeeie et 139
6.7.1 Profile CONtEXT....cc.uiiiiiiiiiiiiieiie ettt ettt et eiee e 139
6.7.2 ConteXt UPAatecc.eiviiiiiiiiiiiieiiciee et 141
6.7.3 Context Retrieval.........coooiiiiiiiiiiei e 142
6.8 EXAMPIE SCENATIO ..c..eiuiiiiiiiiiiiieitiitieec ettt 143
7 EValUationoc.oiiiiiii e et 145
7.1 Simulation Results And Formal Analysiscccccoeeviiriininiinieneiieniesceeceeee 145
7.2 LeSSONS LEATNT.....coiiiiiiiiieiiii ettt et 154
8 CONCIUSTION ...ttt et ettt ettt e et eenbee e 155
8.1 DISCUSSION ...ttt ettt ettt et et e et esae e e bt e saee et eesaaeenneenneas 155
8.2 FUture WOtkoooei e 156
8.3 CONCIUSTION ...ttt ettt ettt et e et e seeeeateens 157
Appendix: Mathematical Model...........cccooooiiiiiiiiiiiiiieceee e 160
RETCICIICES: ...ttt ettt ettt et eeas 166

Publications

R.A. Baloch, N. Crespi, "Managing Context Dependencies in Internet of Things," Journal of

Universal Computer Science. (under revision).

R.A. Baloch, and N. Crespi, “Profile context management in ubiquitous computing,”
International Journal of Ad Hoc and Ubiquitous Computing, Ed. Inderscience Publishers Ltd.

(accepted)

R.A. Baloch, and N. Crespi, “Service Dependency Analysis in Ubiquitous Environment,” in
International Workshop on Ubiquitous Service Platforms at IEEE International Conference

on Network Protocols, Kyoto, Japan, October 2010.

R.A. Baloch, and N. Crespi, “Formal Model for Analysis of Context Dependencies in
Ubiquitous Systems,” in Proc. 6" IEEE International Conference on Digital Information

Management, Ontario, Canada, pp. 431-436, July 2010.

R.A. Baloch, and N. Crespi, “Addressing context dependency using profile context in overlay
networks,” in Proc. 7th IEEE Consumer Communication and Networking Conference, Las

Vegas, United States, pp. 668-673, January 2010.

R.A. Baloch, I. Awan and G. Min, “A mathematical model for wireless channel allocation and
handoff schemes,” Special Issue on Performance Modelling and Evaluation of
Telecommunication Systems, Telecommunication Systems Journal, vol. 45, issue 4, pp. 275-

287, 2010.

R.A. Baloch, I. Awan and G. Min, “Analytical Models for Complete and Partial Channel
Allocation Schemes,” in Proc. IEEE PMECT, at 17th IEEE International Conference on
Computer Communications and Networks (ICCCN ‘08), Virgin Island, USA. pp. 702-707,

2008.

10

List of Figures

Figure 1 First order & higher order CONEXtcccueiiiiiiiiiiiiiiiiiee e 51
Figure 2 Context Producer and Context CONSUMETcocueeriiriiiniiiieeiieeieeee e 52
Figure 3Producer and consumer of Specific CONTEXLcovveiriiiiiiiniiiiiiiiceiceceeeceee e, 52
Figure 4 Types of Context Dependencyccovueiiiiiiiiiiiiiiiiieiceee e 65
Figure 5 Transitive DePendencCy.........cccccieriieriiiiiieiiieeie ettt seaeesaeeeaeereeeenas 66
Figure 6 Context Dependency Relationshipsccceeeciieiiiiiiieniieniieieciceeece e 78
Figure 7 MEEting SCENATTOeeuiiiiiiiiieiiie ettt ettt ettt e 106
Figure 8 System States and TranSitions...........evvererierienieeierieeie et 109
Figure 9 Implication Graphcooiiiiiiiiiiieieieee e 113
Figure 10 Dependency Graphi.........c.ccoocieeiieriiiiiieiiecie ettt ettt eee 114
Figure 11 Query-based Silo Frameworkc.coooeeviiiiiiiiiiiiiiiceeee e 130
Figure 12 Profile Context Management Framework based on Overlay Network................... 140
Figure 13 Profile Context in @ Cloud...........oooviiiiiiiiiiiieieeieeieceeee s 140
Figure 14 Sequence Diagram of Context Update..........ccceevvieiiiiiiiinieiiienieeieeieeeeee 142
Figure 15 Sequence Diagram of Context Retrieval...........cocovieiiiiiniiniiiiniicececee 143

Figure 16 Comparison between Queries generated using Device Context and Profile Context

.. 146
Figure 17 Comparison between Network Traffic generated for each device using Device

Context and Profile CONEXT.......cc.evuiriiriiiiiiiiiiieieeteetestee et 147
Figure 18 Mean Queue Length Comparison — Device and Profile Context Approaches....... 149

Figure 19 Context Request Dropping Probability Comparison — Device and Profile Context
F N 0] 8] (0T o] 1 TSRS 150

Figure 20 Context Request Blocking Probability — Device and Profile Context Approaches151

11

Figure 21 Context Nodes Utilization Comparison — Device and Profile Context Approaches

Figure 22 Average Waiting Time Comparison — Device and Profile Context Approaches...153
Figure 23 System Model — Partial Sharing Scheme.............cccccoooiiiiiiiiiiiii 160
Figure 24 Service Processing Flow Diagram — Partial Server Sharing Scheme..................... 161
Figure 25 Markov Chain of 2 Shared Servers, 1 Guard Server Each, Queue Size 1 — Complete

Sharing SCHEMIEc...oiuiiiiiiii ettt 162

12

List of Tables

Tableau 1 Conceptual Categorization Of CONLEXT.......c..eevvrieriiieeriiieeieeeiee e 56
Tableau 2 Variables and CONSTIAINScccueiiiiiiiiiiiiieeiieeieeee e 108
Tableau 3 Examples of context query and the application demands............ccceevevveeriirennnnnn. 136
Tableau 4 Examples of contextual events and the corresponding application responses....... 136
Tableau 5 INPut Parametersccuiiiiiiiiiiieeie ettt ettt e evee e eeneeeenaeeens 148

13

Resume

Pour fournir aux utilisateurs des services personnalisés d'adaptation en utilisant uniquement
les ressources informatiques accessibles dans un environnement de cloud computing, les
applications contexte, conscients besoin d'assimiler a la fois le contexte accessible et dérivés,
c'est a dire une combinaison de plus d'un senti données et d'informations dans
I'environnement. Contexte des données de dépendance, la dépendance qui se pose entre le
contexte des données du producteur et du consommateur, peut se présenter dans un systéme
en raison de nombreuses raisons. Mais comme le nombre de dépendances de contexte pour
une augmentation des services, la plus complexe, le systéme devient a gérer. La thése aborde
les questions de la fagon d'identifier les dépendances de contexte, représentent des
dépendances de contexte tels, puis les réduire dans un systéme. Dans la premiere partie de la
theése, nous présentons deux approches efficaces pour déterminer les relations de dépendance
entre les différents services du contexte dans l'environnement informatique ubiquitaire pour
aider a mieux analyser les services omniprésents. Une approche est basée sur la théorie des
graphes, et nous avons utilisé le tri topologique pour déterminer les dépendances de contexte.
La deuxieéme approche est basée sur la résolution des réseaux de contraintes qui détermine si
une entité est affectée lorsque 1'état d'une certaine entité¢ autre a changé son état, c.-a-
détermination de la nature dynamique de la dépendance contexte. Dans la deuxiéme partie de
la these, nous présentons un mode de représentation des dépendances de contexte au sein d'un
systeme. Notre modele qui représente les dépendances de contexte est basé sur la théorie des
ensembles et la logique des prédicats du premier ordre. Le mod¢le de représentation contexte
de dépendance représente également d'autres sources pour l'acquisition de contexte qui
peuvent étre utilisés dans une affaire dans laquelle les producteurs contexte privilégiées ne

sont pas disponibles pour desservir le contexte souhaité pour le consommateur un contexte

14

pertinent, pas plus. En outre, nous essayons de réduire les dépendances de contexte en
présentant 1'idée du contexte de profil, qui est basé sur la proposition d'un cadre ouvert pour
l'acquisition de contexte, la gestion et la distribution. Cette approche heuristique est basée sur
l'idée d'utiliser les nceuds mobiles dans un réseau ad hoc avec superposition de plus de
ressources que le producteur lui-méme contexte pour stocker diverses informations
contextuelles sous la banni¢re du contexte profil, et en outre, fournir le contexte profil au lieu
de chaque contexte individuellement sur la base sur les requétes des nceuds recoivent des
consommateurs contexte. Réunissant les informations de contexte et de mises a jour de
contexte a partir de diverses sources, le soutien aux décisions contexte, conscients peut étre
mis en ceuvre efficacement dans un environnement mobile en s'attaquant aux problemes de

dépendance en utilisant le contexte contexte profil.

1.1 Contexte

Applications contexte, conscients sont le fondement pour le monde d'aujourd’hui de
l'informatique omniprésente. Services et applications dans un environnement ubiquitaire ont a
interagir avec une variété de dispositifs mobiles, réseaux de communication et de capteurs
sans fil avec la variabilité de leur environnement d'exécution respectifs. Par conséquent, les
applications contexte, conscients doivent étre conscients de leur contexte en cours d'exécution
afin de réagir en conséquence a des scénarios d'exécution multiples. En outre, la
personnalisation des services dépend des applications contexte, conscients de réaliser la vision
de l'informatique omniprésente révé par Weiser (1991). Dans un environnement informatique
ubiquitaire, divers applications hétérogeénes et des dispositifs sont impliqués, la production et
la consommation de l'information rapide du contexte. Les données et informations de contexte
de nceuds de capteurs, qui sont disponibles dans des réseaux ad hoc, doivent étre utilisés par

les services de contexte, conscients et les applications. Les appareils mobiles sont également

15

quitter et de rejoindre des réseaux ad hoc a un rythme dynamique, ce qui rend les informations
de contexte hautement imprévisible dans la nature. Une telle nature toujours changeante
d'informations de contexte rend les applications plus complexes contexte, conscients de
développer, maintenir et a comprendre.
Le contexte est généralement fait référence aux attributs dans un environnement informatique
toujours dynamique dans lequel les divers aspects tels que 1'emplacement de 1'utilisateur, la
situation sociale et l'interaction avec d'autres ressources sont en alternance en permanence.
Peut-étre en raison de son approche plus générale, la définition fournie par Dey et Abowd
(1999) est le plus largement cité dans la communauté de la recherche: "Le contexte est toute
information qui peut étre utilisée pour caractériser la situation d'une entité." Une entité peut
étre définie comme «une personne, un lieu ou un objet qui est considéré comme pertinent
pour l'interaction entre un utilisateur et une application, y compris l'utilisateur et l'application
eux-mémes."

Avant 1980, il y avait déja quelques chercheurs qui ont pensé de I'informatique omniprésente,
mais il était en 1988 que l'idée révolutionnaire de l'informatique ubiquitaire intégré dans
I'environnement humain a été présenté¢ par Mark Weiser. Auparavant, il y avait peu de
recherches qui avaient touché a 1'idée de l'informatique ubiquitaire. Une telle recherche a été
appelé Human-Computer Interaction (HCI). HCI a été le plus proche de l'idée de
I'informatique omniprésente Weiser. Par exemple, HCI systetme amélioré les qualités de
'apprentissage et l'efficacité de 1'utilisation du systéme. En outre, la reconnaissance des gestes
de HCI est un concept important pour I'informatique ubiquitaire. De méme, il y avait le travail
assisté par ordinateur coopérative (TCAQ), le systéme de travail en ligne la participation des
personnes situées a plusieurs sites physiquement. Ces sujets de HCI étaient liés a l'idée de
l'informatique ubiquitaire Weiser (Brad, 1998).

Une autre recherche effectuée en 1995, appelé Things That Think (Media Lab, 2011a), par le

16

MIT Media Lab a étudié conceptions intelligentes pour l'interaction entre les appareils
ménagers et les utilisateurs a la perspective d'améliorer 1'ergonomie. Une autre recherche
connexe qui est encore en usage est appelé Radio-Frequency Identification (RFID)
transpondeur, qui a été construit a des fins de facilité d'utilisation et est maintenant une partie
essentielle de n'importe quel scénario systéme omniprésent impliquant emplacement d'un
objet. RFID a été initialement développé en 1940, mais perfectionné en 1973 (Landt, 2001).
Une autre technologie similaire, le code a barres, a été élaboré en début des années cinquante,
mais était seulement disponible dans le commerce dans les années 1980.

Une étape importante vers l'informatique omniprésente a été le développement de la premicre
génération de téléphones intelligents qui étaient en mesure de soutenir la non-communication
vocale. 11 a été adopté par les utilisateurs commerciaux avec succes en raison de l'avantage de
communiquer de n'importe ou, avec ou sans VOiX.
Capteurs de Berkeley et Centre de l'actionneur (BSAC, 2008) a été créé en 1986, et a pris
'avantage des capteurs »et actionneurs des technologies sortant de la PARC de Xerox. Dans
les années 1990, diverses technologies ont commencé a se interconnectés comme les
microcontrdleurs et les émetteurs-récepteurs deviennent plus petits, devenant ainsi le principal
composant de diverses technologies. En 1998, dans le cadre de SmartDust projet (SmartDust,
2008), les technologies de détection, des microcontrdleurs et des transceivers en bandes ISM
2 ont été en rapport avec les nceuds de capteurs sans fil, donnant ainsi un fond intéressant pour
le développement et la recherche pour les réseaux d'aujourd'hui de capteurs sans fil tels que
TinyOS (TinyOS, 2011), arbalete (Crossbow, 2008) et de poussiere (Dust, 2008). En outre, le
développement du systeme de positionnement global (GPS) de démarrer au kick applications
de localisation basés sur diverses, telles que dans les scénarios ou les gens utilisent le GPS
pour trouver leur emplacement actuel sur la carte pendant le voyage.

L'idée de Weiser peut également étre attribuée aux romans de science-fiction et des films.

17

Dans Ubik de Philip K. Dick, le roman 1969, I'écrivain a écrit sur un milieu riche avec des
technologies différentes aider les humains dans de multiples fagons. Dans le roman, la vie
humaine quotidienne a été exécuté par les machines nouvelles de lecture, le nettoyage des
robots et des portes de discussion. Le roman offre un bon reflet de I'avenir de l'informatique
ubiquitaire. Auteurs de fiction n'ont pas leurs propres idées bien différentes de celles de
Weiser. Ils ne savaient pas quoi que ce soit sur l'informatique omniprésente a partir d'un point
de vue technique, mais ils étaient capables d'écrire de tels romans qui se chevauchaient 1'idée
proposée par Weiser, par exemple en utilisant différents appareils électroménagers pour
communiquer avec l'utilisateur, de trouver un emplacement de I'utilisateur, etc Tous ces €crits
de fiction ont montré a ce moment-la fagon dont l'avenir pourrait ressembler a 'homme, et
maintenant il a commenceé a se produire dans notre vie.
1.2 Motivation

Chaque nouvelle technologie émergente doit faire face & de nombreux défis a atteindre le
succes et la confiance. Initialement, les défis sont seulement dans le développement du
prototype. Une fois le prototype fonctionne selon les normes requises et les chercheurs
pensent que maintenant le projet est sur le point d'atteindre un certain niveau de maturité qui
profitera a la collectivité dans le long terme, alors les défis a venir auxquels est confronté le
projet de rendre la technologie omniprésente sont connu sous le nom de grands défis. La
définition de grands défis a été formulée par le Comité du Royaume-Uni Centre de recherche
informatique (Grand Challenge, 2008). Les grands défis sont les suivants:
(I) Soutenu par la communauté scientifique

(Ii) L'ambition est bien plus grande que celle réalisée par une équipe de recherche unique
(li1) Défi s'adresse a révolutionner le projet a des produits de l'industrie préts.
Mais l'occasion grand défi pour la plupart des projets est rarement, car il est une tache énorme

pour mener le projet a une certaine maturité¢ de sorte qu'il peut alors révolutionner la vie de

18

I'homme. Pour des exemples, les grands défis peuvent étre la cartographie du génome humain
(accompli) ou d'unifier les théories pour les quatre types de forces en physique (objet d'une
enquéte).

The Ubiquitous Computing Grand Challenge (Chalmers, 2006) est I'un des actuellement neuf
de tels défis, basés sur la théorie et l'ingénierie de systémes ubiquitaires. D'une part, il
s'efforce d'atteindre idée de Weiser a cette époque et, d'autre part, 1'ingénierie et les questions
sociales qui sont axés sur des groupes de recherche différents. Il préserve également "la
théorie qui sous-tend la conception requise et l'analyse des systémes ubiquitaires qui sont
intrinséquement de grande envergure et complexes". Il ya quelques questions importantes qui
sont lides a l'informatique ubiquitaire du Grand Défi, comme "Combien d'ordinateurs allez-
vous utiliser, le port, ou avez installé sur votre corps, en 2020? Combien d'ordinateurs d'autres
seront-ils parler? Que vont-ils dire au sujet de vous, de faire pour vous, ou pour vous? (...)
Allons-nous étre capables de gérer ces systetmes a grande échelle, ou méme de les
comprendre? Comment les gens interagissent avec eux et comment cette nouvelle technologie
ne omniprésente sur la société? Comment peut non informatiques gens de configurer et de les
controler? Quels outils sont nécessaires pour la conception et I'analyse de ces adaptant
constamment et les systemes de 1'évolution? Quelles sont les théories nous aidera a
comprendre leur comportement? "(Chalmers, 2006). Les réponses a ces questions ne sont pas
simple. Il est nécessaire d'observer tous les aspects du Grand Challenge Ubiquitous
Computing afin de surmonter ces problémes de recherche. Les questions peuvent étre analysé
a travers trois perspectives distinctes: I'expérience, de l'ingénierie et théorique.
Expérience - le comportement des gens étude avec les systémes informatiques ubiquitaires, et
basé sur 1'étude tels que I'amélioration du systéme devrait étre plus orientée vers la perspective
socio-technique.

Ingénierie - Les solutions aux défis auxquels nous étions confrontés sont en raison de la

19

nature dynamique du systéme omniprésent. Chaque systéme est tributaire de la conception,
une infrastructure efficace et d'approche. Ces principes sont €galement applicables aux
systemes informatiques ubiquitaires. Ces systemes doivent avoir des modéeles efficaces et des
infrastructures bon réseau.

Théorique - étude analytique détaillée est toujours important que ce soit avant le
développement du systéme ou lors de la performance du systeme. Avec l'approche de la
recherche proprement dite, de nouvelles techniques, modeles et méthodes peuvent étre
utilisées dans le systeme pour le rendre plus efficace et de haute performance qui devrait
répondre aux normes requises des clients.
Outre ces perspectives, d'autres objectifs doivent également étre fixés, qui sont plus orientées
vers l'interaction individuelle et sociale. La bonne conception, I'utilisation de techniques et de
modeles, répondant aux exigences des individus et des sociétés et la recherche continue sera
remarquablement améliorer la croissance des systémes informatiques ubiquitaires.
Pour définir la dépendance dans le contexte des systémes ubiquitaires, il vaut mieux
d'expliquer avec une aide d'un petit exemple. La plupart des applications contexte, conscients
utiliser le contexte emplacement. Le contexte de localisation peut étre acquise a partir de
sources diverses. Les ressources communes dans les systéemes de contexte, conscients sont les
capteurs physiques, qui détectent la position de la personne dans la salle de par exemple
Global Positioning System (GPS), et par exemple le contexte dérivée si 1'ordinateur personnel
de la personne dans son bureau est actuellement en cours d'utilisation, il peut étre dérivé que
la personne dit, c'est dans son bureau. Ainsi, l'application contexte courant dépend de I'une de
ces sources d'acquérir contexte de position. Par conséquent, il existe la dépendance de
contexte entre l'application contexte, conscients a la recherche d'emplacement et le contexte
de la source fournissant le contexte emplacement. Si, pour une raison quelconque, la source

n'est pas disponible contexte, l'application peut demander contexte, conscients sources

20

contexte d'autres de fournir le contexte approprié. Donc, trouver la dépendance et la gestion
des dépendances contexte contexte pertinent est important pour le bon fonctionnement de
l'application contexte courant. Si une application contexte courant est dépendante de sources
multiples pour l'acquisition de contexte différents différents des données contextuelles, puis
un échec pour acquérir un quelconque de ceux des informations de contexte nécessaires peut
entrainer 1'échec d'une telle demande contexte courant. Donc, il est important de réduire la
dépendance contexte de l'application contexte courant sur les sources de contexte et les
producteurs qui ne sont pas suffisamment fiables pour offrir un service uniforme tel que
demand¢ par 'application.

Le processus d'acquisition contexte est un élément vital de tout systtme de contexte courant.
La plupart des approches de tenter d'acquérir le contexte de périphérique, par exemple, la
présence d'une personne dans la salle du capteur de position, au lieu du "contexte profil".
Profil contexte est le contexte agrégé a partir de sources diverses contexte qui donne une vue
d'ensemble plus du sujet, par exemple, le contexte de profil, qui nous dit que l'utilisateur est
occupé, peut étre acquis de I'agrégation de contexte de position, de nous dire que l'utilisateur
est dans le bureau, et contexte d'utilisation de son ordinateur personnel avec la ligne
téléphonique occupée. Chaque dispositif détenues par un utilisateur est contacté
individuellement dans le but d'acquérir des données pertinentes a la situation d'utilisateur dans
des approches communes, mais notre approche fournit un contexte global sur une demande en
vue de réduire les requétes de contexte pour les dispositifs a ressources limitées. Contexte
publié par un dispositif échoue individuellement pour capturer 1'image globale de la situation
actuelle de 1'utilisateur par rapport au contexte obtenu a partir de sources multiples qui sont au
courant de leur existence mutuelle, et peuvent fournir un contexte mieux l'utilisateur,
travaillant en collaboration entre eux. Contexte de l'utilisateur, dans notre approche, est

généralement dépendant de deux ou plusieurs dispositifs »détectés données, plutét que juste

21

un contexte de périphérique unique.
En dépit de leurs potentiels des applications répandues, le contexte des applications et des
services sont encore dans l'enfance parce que l'architecture d'acquisition contexte est fondée,
plus ou moins, sur requéte fondée sur le cadre du silo dans lequel un service ou une
application demande directement pour certain contexte a partir d'une source de contexte
individuel . Un tel cadre est sensible a de nombreuses questions; la plus commune d'entre eux
sont des performances goulets d'étranglement et une forte probabilité d'échec, car la gestion
des ressources non-efficacité du systéme. Si I'approche client-serveur est utilisé pour réaliser
un service de contexte courant, il peut étre facilement imaginé que les serveurs seront bientot
surchargé de requétes, influant sur leur performance. La nature dynamique de 1l'information a
traiter dans un environnement de cloud computing est énorme, et le nombre de requétes
augmente avec le temps que les utilisateurs plus rejoindre le réseau ad hoc demandant des
mises a jour constantes a partir de sources contexte pour les types de contexte tels que
I'emplacement.

Certaines applications simples contexte sensibiliser utiliser les données détectées qu'a partir
d'une source unique de prendre des décisions appropriées personnalisés pour l'utilisateur. La
plupart, cependant, d'utiliser les données détectées et informations de contexte transformés
provenant de sources multiples pour obtenir de plus amples renseignements contexte de haut
niveau. Cette contexte abstrait nécessite de multiples contexte de périphérique de bas niveau
qui sont regroupées et traitées de nombreuses fois pour obtenir un contexte abstrait niveau.
Pour fournir a l'utilisateur avec la plupart des prestations et des services personnalisés en
utilisant les ressources informatiques disponibles dans un réseau ad-hoc, les applications
contexte, conscients besoin de diffuser a la fois les informations de contexte accessibles et
dérivés dans le réseau.

Dérivé contexte est fondamentalement dépendant des données captées ou / et d'autres

22

informations contextuelles transformés. Le contexte peut se la dépendance intronisé dans un
systéme pour diverses raisons telles que l'erreur au moment du déploiement du systéme. Mais
cette question de coté, les dépendances contexte plus une application a, le plus complexe le
processus devient de développer et de maintenir une telle demande, car la défaillance d'un
contexte de dépendance de rendre la demande contexte, conscients inutiles, qui sont censés
étre trés sensible a la environnement utilisateur. En raison de la nature hautement dynamique
des dispositifs mobiles dans un réseau ad-hoc, les dépendances contexte de trop nombreux
peuvent gravement affecter la performance d'une application contexte courant. Réduire les
dépendances de contexte ou de fournir des sources alternatives contexte est crucial pour des
gains de performances dans les applications contexte, conscients.
1.3 Les contributions

La thése contribue a l'analyse, la représentation et la réduction des dépendances de contexte
dans un environnement informatique ubiquitaire. Aux fins d'analyse, deux approches sont
utilisées. Une approche basée sur la théorie des graphes détermine les dépendances le
contexte actuel, en utilisant I'algorithme de tri topologique. Il en résulte une complexité
temporelle linéaire en termes de Big O. L'autre approche adoptée pour trouver la nature de la
dépendance contexte est fondée sur les réseaux de contraintes. Mais jusqu'a présent, la nature
détermination des dépendances entre différentes variables dans un réseau de contraintes a été
considéré comme NP-complet. La thése a présenté une approche qui réduit l'analyse de la
dépendance en utilisant le réseau de contraintes a la complexité polynomiale, tant en termes
de complexité spatiale et temporelle.
La deuxieme contribution de cette thése est le modele de représentation pour les dépendances
de contexte dans un systeme. Il n'a pas ét€ un systéme de représentation du contexte qui a été
développé dans le seul but de représenter les dépendances de contexte, en général, et encore

moins, les dépendances transitives dans les systemes pervasifs. Le modele de représentation

23

contexte présenté dans cette thése est basée sur la logique des prédicats et la théorie des
ensembles. Le modele rend le processus de représenter les dépendances contexte assez facile
et intuitive. L'approche perspicace qui est adoptée dans I'élaboration du modele de
dépendance contexte rend l'analyse des dépendances contexte simples a comprendre en
termes de types de contexte et les sources de contexte, aux cotés de la prévoyance des sources
autre contexte qui peut é&tre utilisé par une application dépend du contexte.
Dans la troisiéme contribution de cette thése, une approche visant a réduire les dépendances
de contexte est présentée, qui visent a combiner 1'idée de contexte et le profil des réseaux de
recouvrement ainsi que dans le but de proposer un cadre ouvert pour l'acquisition de contexte
qui abordent également la question de la dépendance contexte. Cette approche permet a la
notion de «Le contexte est toujours disponible", basée sur la fonction de ce contexte de
l'utilisateur est accessible méme s'il est hors ligne ou ses appareils sont éteint. Cela est
possible parce que le contexte le profil distribue la derniére cadre d'un dispositif dans un
réseau de recouvrement a travers des noeuds super, et le contexte est mis a la disposition
méme apres que le dispositif a été mis a pied ou a quitté le réseau de recouvrement. Ainsi, une
application peut toujours accéder a la derniére mise a jour contexte de la surcouche réseau,
évitant résultante retard de l'appareil étant submergés par les demandes de contexte a partir
d'applications multiples contexte de consommation.
1.4 Organisation

La contribution de thése est organisée en trois sections principales: la recherche, la
représentation et la réduction des dépendances de contexte. Dans la premicre partie de la
thése, nous présentons une solution efficace pour trouver les dépendances valides dans un
environnement pervasif. Plus tard, nous présentons une approche représentation du contexte
pour représenter ces dépendances de contexte valide, et de leurs substituts. Dans la derniére

partie de la these, nous visons a réduire les dépendances de contexte dans un environnement

24

ad hoc en combinant 1'idée de contexte et le profil réseau de recouvrement ainsi que dans le
but de proposer un cadre ouvert pour l'acquisition de contexte. Cette approche permet a la
notion de «Le contexte est toujours disponible", basée sur la fonction que la "derni¢re" de
l'utilisateur contexte dans cet environnement est accessible, méme s'il est hors ligne ou ses
appareils sont éteint. Cela est possible parce que le contexte le profil conserve la dernicre
cadre du dispositif dans le réseau overlay, et est disponible méme apres que le dispositif a été
mis a pied. Ainsi, une application peut toujours accéder aux dernicres contexte, en évitant tout
retard qui en résulte de la dépendance contexte d'une source contexte qui n'est plus accessible.
Les chapitres de la thése sont organisées comme suit: Chapitre 2 donne les antécédents et les
définitions fondamentales de 1'informatique contexte courant; chapitre 3 revue de la littérature
de détails concernant le probléme de la recherche, le chapitre 4 présente les approches
congues pour déterminer les dépendances de contexte et de leur nature de la dépendance entre
différentes applications; Le chapitre 5 présente un modele de représentation contexte pour
représenter ces dépendances contexte, le chapitre 6 présente l'approche contexte profil en
détail dans le cadre de réseaux superposés pour réduire les dépendances de contexte; chapitre
7 utilise les résultats, basés sur des simulations et la modélisation mathématique, de mettre en
évidence les avantages de notre approche de réduction des contexte de dépendance, et le
chapitre 8 conclut la thése en mettant I'accent sur les travaux futurs qui est prévu. Dans le

chapitre suivant, l'arriere-plan de I'informatique contexte courant est détaillé.

2.1 Conditions d'arriere-plan

L'informatique ubiquitaire n'est pas un concept standard unique que tout le monde doit suivre.
Il peut changer en fonction de la pensée personnelle, et par conséquent, il a été appelé avec
beaucoup d'autres noms dans la littérature. Certains des noms alternatifs d'informatique

n"nong

omniprésente sont "pervasive computing", "l'informatique mobile distribuée", "informatique

25

mondiale», «l'Internet des objets», «informatique contexte courant”, "intelligence ambiante",
"wearable computing", "médias tangibles »,« physique informatique »,« everyware »,«
l'ordinateur a disparaitre "," technologie calme », etc Parce que des différentes facons de
penser l'informatique omniprésente aujourd’hui, la premiére idée de I'informatique
omniprésente présenté par Mark Weiser n'est pas exactement semblable a 1'établi un
aujourd'hui.

Everyware Greenfield (2006) fait le point que la référence a tous ces accents dont le nom
differe, «on se rappelle encore et encore de la parabole des six hommes aveugles décrivant un
¢léphant". Dans l'interprétation du livre, la parabole va comme ceci:
"Six anciens sages du village ont été invités a décrire la vraie nature de 1'animal qui avait été
porté devant eux; malheureusement, 1'age et les infirmités avaient réduit tous a une
dépendance a l'égard de la faculté de toucher. Un sage, tentatives et des échecs pour
envelopper ses bras autour de la circonférence de la jambe ridée massif de la béte, a répondu
que cela doit siirement étre parmi le plus puissant des arbres. Un autre discerné une grande
tortue dans la douceur courbe d'une défense, tandis qu'un autre, a la rencontre sinueuse de
I'éléphant, le tronc musculaire, pensait qu'il pouvait a peine ont été la manipulation rien
d'autre que le roi des serpents. Aucun des six, en fait, pourrait venir n'importe ou pres d'un
accord en ce qui concerne ce que c'était qu'ils éprouvent. "

Malgré les différentes versions de l'idée d'informatique omniprésente, 1'idée centrale est
toujours le méme que celui présenté par Wesier. Toutes ces variations dans le calcul
ubiquitaire offrent une bonne opportunité pour l'expansion des thémes de recherche et leurs
applications avec des vues et des objectifs différents. En raison des divers points de vue
présentés, il ya des noms différents décrivant l'informatique ubiquitaire, mais pour les
utilisateurs finaux ce n'est pas vraiment important. Comme les fonctionnalités de tous les

systémes ubiquitaires sont presque les mémes, donc les utilisateurs finaux peuvent ne

26

remarquerez aucune différence notamment en termes de définitions et pour eux toutes les
conceptions de systémes ubiquitaires, les noms, les fonctionnalités sont exactement les
mémes.

Cette section suivante décrit omniprésente et le contexte informatique courant. Il couvre
¢galement les développements et les défis rencontrés par l'informatique contexte courant.
2.1.1 Informatique ubiquitaire

L'informatique ubiquitaire est communément connu sous le nom informatique omniprésente.
L'omniprésent mot est défini comme «existant ou étant partout a la fois; constamment
rencontrées; répandue." Le concept principal de l'informatique omniprésente est que les
dispositifs informatiques différents sont interconnectés les uns avec les autres pour effectuer
des taches spécifiques, par exemple bureau de contrdle de la température lorsque I'utilisateur
est dans le bureau. La informatique ubiquitaire concentre son adaptation en fonction des
besoins et exigences des utilisateurs. Ces appareils eux-mémes de gérer automatiquement en
fonction des changements dans les besoins de l'utilisateur. Mark Weiser, le pionnier de
lI'informatique omniprésente, a déclaré: "les technologies les plus profondes sont celles qui
disparaissent, ils tissent eux-mémes dans le tissu de la vie quotidienne jusqu'a ce qu'ils se
confondent avec elle", Weiser (1991).

A partir des définitions ci-dessus, a la suite des caractéristiques importantes peuvent &tre
déduites de l'informatique ubiquitaire:

* Les appareils informatiques sont éparpillés un peu partout autour de nous, et ils sont
interconnectés les uns aux autres,

* [Is sont autonomes et ne nécessitent pas une attention continue active de l'utilisateur, et
* Ils deviennent invisibles en étant parfaitement intégré dans I'environnement.
Mark Weiser était contributeur majeur a I'idée de l'informatique omniprésente. Il était le chef

scientifique au Xerox Palo Alto Research Centre, et dans les années 1990 le PARC de Xerox

27

déja eu de nombreuses contributions a l'informatique moderne comme Ethernet et de calcul
distribué, le logiciel pour le poste de travail informatique personnelle, la programmation
orientée objet, etc En outre plusieurs nouvelles technologies telles que IPv6, etc ont été mis au
point par Xerox (1996). Weiser fut le génie de 1'innovation et visionnaire. Il a dirigé 1'équipe
de recherche de contribuer efficacement a des innovations dans le 21e siecle. Weiser et son
équipe sont considérés comme le premier a expliquer 'utilité¢ de la technologie informatique
du point de vue humain.
Phase I - L'ére Mainframe

Le mainframe terme "[rappels] la relation des gens avec des ordinateurs qui ont été la plupart
du temps gérés par des experts derriere des portes closes. Chaque fois qu'un ordinateur est une
ressource rare, et doit étre négocice et partagée avec d'autres, notre relation est celle de 1'ére
mainframe, "(Weiser, 1996) a savoir« de 1940 a 1980 environ. "
Phase II - L'ére de I'ordinateur personnel

"En 1984, le nombre de personnes utilisant des ordinateurs personnels a dépassé le nombre de
personnes utilisant les ordinateurs partagés. La relation personnelle est l'informatique
personnelle, voire intime, (...) et vous interagissez directement et profondément avec elle.
L'ordinateur personnel est le plus analogue a l'automobile -. Une spéciale, élément
relativement colteux, ce que (...) nécessite une attention considérable a exploiter »(Weiser,
1996)

Transition - L'Internet et l'informatique distribuée
«[Les gens] et leur information sont devenus interconnectés. [Le] Internet rassemble des
¢léments de I'ére mainframe et I'ére du PC. 1l est client-serveur informatique a une échelle
massive, avec des clients Web les PC et les serveurs Web des mainframes. "(Weiser, 1996)
L'informatique ubiquitaire n'est pas un nouveau concept ou une technologie, c'est une idée

d'amener toutes les technologies actuelles de travailler ensemble dans le méme

28

environnement. Par exemple, quelques années en arriere les téléphones mobiles étaient chers
et grands dans la taille, mais maintenant, ils ont évolué¢ dans des dispositifs plus minces et
plus petits. Ce concept peut également étre appliquée a l'informatique. Maintenant, les
serveurs de données sont grandes, mais a l'avenir, ils vont également évoluer dans les
ressources plus petites et efficaces comme les téléphones mobiles, et ne seront donc pouvoir
étre intégrés dans des dispositifs différents, comme les appareils ménagers et du matériel de
bureau, de les interconnecter entre eux et avec I'Internet . Une telle ¢re sera vraiment appelé
l'informatique omniprésente lorsque tous les appareils seront interconnectés ensemble.
Phase i - L'ere de l'informatique ubiquitaire
"[Cette] ere aura (...) les ordinateurs qui partagent chacun de nous. Certains d'entre eux (...)
nous pouvons accéder au cours de quelques minutes de navigation sur Internet. D'autres
seront intégrés dans les murs, les chaises, des vétements, les interrupteurs, les voitures-en
tout. [Ubicomp] se caractérise fondamentalement par la connexion des choses dans le monde
avec le calcul. Cette rencontre aura lieu sur des échelles beaucoup, y compris le microscope.
"(Weiser, 1996) et," activer le monde. Fournir des centaines de dispositifs informatiques sans
fil par personne et par bureau, de toutes les échelles (...). Cela a exigé de nouveaux travaux
dans les systemes d'exploitation, les interfaces utilisateur, les réseaux, sans fil, les écrans, et
de nombreux autres domaines. Il est invisible, partout I'informatique qui ne vivent pas sur un
dispositif personnel d'aucune sorte, mais il est dans le travail du bois partout. "(Weiser, 1991)
Les technologies qui sont utilisées aujourd'hui également en charge le concept de
lI'informatique omniprésente. Par exemple, IPv6 est congu pour accueillir des dispositifs
beaucoup plus que IPv4 pourrait. En étendant l'espace d'adressage en IPv6, il devient
maintenant une réalité pour se connecter de nombreux appareils plus petits comme les

microprocesseurs, les agents intelligents artificiels, etc raccordement de ces appareils plus

29

petits favorise l'informatique omniprésente comme aujourd'hui plus de périphériques peuvent
interagir et de partager 1'information avec l'autre que jamais.

Depuis, l'informatique ubiquitaire cherche a connecter différents périphériques afin de
partager l'information, il est donc absolument nécessaire pour un systetme a étre considéré
comme un systéme informatique ubiquitaire, de ne pas traiter une certaine technologie
séparément plutot toutes les technologies doivent étre interconnectées et reliées a Internet.
Aujourd'hui, il ya beaucoup de nouvelles applications de l'informatique omniprésente dans le
monde informatique moderne. Par exemple, les appareils mobiles de télécharger
automatiquement le dernier logiciel de rester a jour avec les derniéres fonctionnalités telles
que les applications sociales sur les téléphones intelligents. Un autre exemple pourrait étre le
lecteur de musique qui peut observer le choix de l'utilisateur de chansons et sur la base qui
permet de télécharger les dernieres chansons de telle sorte que l'utilisateur n'a pas a la
recherche de contenus liés nouvelle. En outre, des projets de recherche tels que DIYSE
essayons de développer un prototype de cuisine qui sera en mesure de télécharger les
nouvelles recettes en fonction des gotts culinaires de l'utilisateur. Ces systémes seront utiles
dans notre vie quotidienne parce que les utilisateurs n'ont pas a passer leur temps a la
recherche d'un contenu particulier et peuvent obtenir ce qu'ils désirent automatiquement par
les applications intelligentes en cours d'exécution en arriere-plan.
Ces quelques exemples donnent un bon apercu comment les systémes informatiques
ubiquitaires va ressembler dans l'avenir proche ou ils ont atteint une certaine maturité et ce
qui peut étre leurs avantages pour l'utilisateur final. Ce genre d'idées ne se concentre pas
seulement sur les performances de la technologie elle-méme mais aussi sur la fagon dont les
différentes technologies peuvent bénéficier les humains dans leurs tiches de la vie
quotidienne. Cela signifie l'interconnexion des appareils et leur utilisation a partir du point de

vue humain plutét que de simplement les performances des machines. Des systemes

30

informatiques ubiquitaires donnera une nouvelle dimension a la vie humaine. Les humains
pourront sauver leur temps qui a été précédemment utilisé¢ dans la recherche, effectuer des
taches complexes, etc Avec ce concept, les humains seront capables d'obtenir 1'information
rapidement et sans trop d'effort. En outre, dans l'avenir de l'informatique ubiquitaire
utilisation des systémes sera dans presque tous les appareils et les étres humains acceptent sa
présence avec le confort, parce que les humains peuvent ensuite utiliser leur temps précieux
pour mener a bien certaines tdches d'autres importants puisque le systéme informatique
ubiquitaire sera travaillé dans les coulisses de fournir les résultats nécessaires et des
adaptations en fonction de l'environnement utilisateur.
2.1.2 Informatique contexte, conscients Wikipedia (2005a) définit la sensibilité au contexte
comme un terme d'informatique qui est utilisé pour signifier «appareils qui ont des
informations sur les circonstances dans lesquelles elles opérent, et peut réagir en
conséquence." Cela signifie que les appareils ont un accés complet a l'information pertinente
et peut s'adapter a l'environnement changeant en profitant d'informations contextuelles
disponibles dans l'environnement, Chen & Kotz (2000)
Avant l'arrivée des applications contexte, conscients, les applications informatiques courantes
ont émis des hypothéses sur le contexte de l'utilisateur parce qu'ils n'étaient pas conscients
contexte, Lieberman et Selker (2000), mais maintenant, les applications peuvent détecter
contexte actuel de l'utilisateur et d'ajuster leur comportement en conséquence. Lieberman et
Selker (2000) affirment également que les applications contexte, conscients devrait se
concentrer sur l'utilisateur et contexte d'application, car avec une telle approche, l'interaction
avec l'utilisateur sera minime et les périphériques de surveiller automatiquement tout
I'environnement qui entoure l'utilisateur sans nécessiter la moindre attention directe de
l'utilisateur.

2.2 Contexte

31

Le contexte terme peut étre ouverte a des interprétations diverses dans différents domaines
d'application en fonction des applications informatiques qui utilisent le contexte. Selon Dey et
al. (2000a), le contexte est "toute information qui peut étre utilisée pour caractériser la
situation des entités (a savoir si une personne, un lieu ou un objet) qui sont jugées pertinentes
pour l'interaction entre un utilisateur et une application, y compris l'utilisateur et l'application
eux-mémes . "Cette définition est considérée comme un classique que des informations
concernant les différentes entités peuvent étre exprimées en tant que contexte. Selon
Winograd (2001), le contexte »est un terme opérationnel: quelque chose est cadre en raison de
la facon dont elle est utilisée dans l'interprétation, pas en raison de ses propriétés
intrinseques." Bien que, selon Coutaz et al. (2005), le contexte "n'est pas simplement I'état
d'un environnement prédéfini avec un ensemble fixe de ressources d'interaction. Il fait partie
d'un processus d'interaction avec un environnement en constante évolution composée de
reconfigurable, migrateur, distribués, et des ressources multi-échelles. "

Comme indiqué précédemment, la définition la plus commune du contexte est "toute
information qui peut étre utilisée pour caractériser la situation des entités" [Dey, 2000]. Dans
cette section, nous allons essayer de développer des données de contexte par rapport au
contexte de la souligner comme un aspect plus orienté traitement du contexte. Ainsi, toute
valeur détectée avec un supplément de méta-information, pour aider a l'interprétation d'une
telle valeur, doivent étre considérés comme des données contextuelles. La caractéristique
essentielle est l'interprétation de la valeur détectée pour obtenir des données de contexte.
Def. 1: ". Données de contexte est un élément d'information comprenant au moins une piece
de chaque valeur détectée correspondante, et des méta-informations a comprendre le sens de
la valeur détectée" piece telle de méta-informations peuvent étre une identité du capteur qui
est nécessaire pour comprendre une valeur, comme la température, tout dépend du niveau

d'abstraction. L'approche commune dans l'informatique ubiquitaire est de fusionner unité de

32

mesure appropriée a la valeur détectée qui peut étre facilement utilisé par des applications
diverses contexte conscients.

Def. 2: «La méta-information ne peut étre détectée et par conséquent doit étre fournie de
l'extérieur du systeme généralisé elle-méme." Exemple le plus trivial de la méta-information
est I'identité d'un objet qui fournit des informations concernant de domaine, la structure et le
but de celui-ci, fourni par un utilisateur ou une autre application. On peut en déduire que les
données de contexte peut étre représenté par un modele a étapes multiples dans lequel le
niveau le plus bas, les valeurs captées et leur premicre méta-informations existent sans aucune
relation existant entre eux. La valeur détectée et la méta-information sont fusionnés a un
niveau plus élevé pour obtenir des données de contexte de base ou "contexte du premier
ordre".

Def. 3: "valeur détectée et une méta-informations sont fusionnées pour obtenir des données de
contexte appelé contexte de premier ordre en une seule étape." Contexte du premier ordre
peut étre considéré comme un ensemble de données plus fiables contexte comparativement a
d'autres, la hausse des données de contexte ordre. La raison étant que tous les renseignements
requis pour la génération et la fusion des données de contexte a été recueilli par le contexte de
périphérique générant lui-méme. Par conséquent, il est en mesure de donner une mesure de
fiabilité élevé pour un tel contexte de premier ordre. Dans chacun des contextes ultérieurs
d'ordre supérieur qui sont générés a des niveaux plus élevés en obtenant des valeurs détectées
et méta-information exigent au moins un contexte de premier ordre. En outre, la génération du
contexte d'ordre supérieur en fusionnant contexte du premier ordre et plus méta-information
est un processus récursif.
Def. 4: "cadre supérieur commande est un ensemble de données de contexte obtenue par
fusion au moins un contexte du premier ordre ou d'ordre supérieur différente cadre avec la

valeur détectée avec, ou non, la méta-informations."

33

1.Introduction
1.1 Background

Context aware applications are the foundation for today’s world of pervasive computing.
Services and applications in a ubiquitous environment have to interact with a variety of
mobile devices, communication networks, and wireless sensors along with the variability of
their respective execution environment. Therefore, context aware applications should be
conscious of their running context in order to react accordingly to multiple execution
scenarios. Also, personalization of services depends upon context aware applications to
achieve the vision of ubiquitous computing dreamt by Weiser (1991). In a ubiquitous
computing environment, various heterogeneous applications and devices are involved,
generating and consuming context information rapidly. Data and context information from
sensor nodes, that are available in ad-hoc networks, need to be utilized by context aware
services and applications. Mobile devices are also leaving and joining ad-hoc networks at a
dynamic rate, making context information highly unpredictable in nature. Such an ever
changing nature of context information makes context aware applications more complex to
develop, maintain and comprehend.

Context is usually referred to the attributes in a continually dynamic computing
environment in which various aspects like the user’s location, social situation and interaction
with other resources are alternating constantly. May be because of its more general
approach, the definition provided by Dey and Abowd (1999) is most widely quoted in the
research community: "Context is any information that can be used to characterise the situation
of an entity." An entity can be defined as "a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and application

themselves."

34

Before 1980’s, there were already some researchers that have thought of ubiquitous
computing, but it was in 1988 that the revolutionary idea of ubiquitous computing embedded
in the human environment was presented by Mark Weiser. Previously, there were few
researches that had touched upon the idea of ubiquitous computing. One such research was
called Human-Computer Interaction (HCI). HCI was the closest to the idea of Weiser’s
ubiquitous computing. For example, HCI system improved qualities of learning and efficiency
of system use. Furthermore, the gesture recognition of HCI is an important concept for
ubiquitous computing. Similarly, there was the Computer-Supported Cooperative Work
(CSCW), the online work participation system for people situated at multiple sites physically.
These topics of HCI were related to the ubiquitous computing idea of Weiser (Brad, 1998).
Another research carried out in 1995, called Things That Think (Media Lab, 2011a), by MIT
Media Lab studied smart designs for the interaction between home appliances and the users
for the prospect of improving usability. Another related research that still is in use is called
Radio-Frequency Identification (RFID) transponder, which was built for usability purposes
and is now an essential part of any ubiquitous system scenario involving location of an object.
RFID was initially developed in 1940’s but perfected in 1973 (Landt, 2001). Another similar
technology, the barcode, was developed in early fifties but was only available commercially
in the 1980s.

A major step towards ubiquitous computing was the development of the first generation of
smart phones which were able to support non-voice communication. It was adopted by the
commercial users successfully because of the advantage of communicating from anywhere,
with or without voice.

Berkeley Sensors and Actuator Center (BSAC, 2008) was established in 1986, and took the
advantage of the sensors’ and actuators’ technologies coming out of the Xerox PARC. In

1990’s, various technologies started to get interconnected as microcontrollers and transceivers

35

get smaller, becoming the main component of various technologies. In 1998, as a part of
SmartDust project (SmartDust, 2008), the sensing technologies, microcontrollers and
transceivers in ISM bands 2 were connected with the wireless sensor nodes, thus giving an
interesting background for the development and research for today’s wireless sensor networks
such as TinyOS (TinyOS, 2011), Crossbow (Crossbow, 2008) and Dust (Dust, 2008).
Furthermore, the development of Global Positioning System (GPS) kick started various
location based applications, such as in scenarios where people use GPS to find their current
location on the map during travel.

The idea of Weiser can also be attributed to science fiction novels and movies. In Philip K.
Dick’s 1969 novel Ubik, the writer wrote about an environment rich with different
technologies helping humans in multiple ways. In the novel, the human everyday life was run
by the news-reading machines, clean-up robots and talking doors. The novel provides a good
reflection of the future of the ubiquitous computing. Fiction writers didn’t have their own
ideas much different than Weiser’s. They didn’t know anything about ubiquitous computing
from a technical perspective, yet they were able to write such novels that overlapped the idea
proposed by Weiser, for example using different home appliances to communicate with the
user, find a location of the user, etc. All these fiction writings showed at that time how the

human future could look like, and now it has started to happen in our lifetime.

1.2 Motivation

Every novel emerging technology has to face many challenges to achieve success and trust.
Initially, the challenges are only in developing the prototype. Once the prototype works
according to the required standards and the researchers think that now the project is about to
reach a certain level of maturity which will benefit the community in the long term, then the

upcoming challenges faced by the project to make the technology ubiquitous are known as

36

grand challenges. The definition of grand challenges was formulated by UK’s Computer
Research Committee (Grand Challenge, 2008). The grand challenges are:

(1) Backed by the scientific community

(i1) Ambition is far greater than achieved by a single research team

(ii1)) Challenge is directed at revolutionizing the project to industry ready products.
But the grand challenge opportunity for most projects comes rarely, as it is a huge task to
bring the project to a certain maturity level so that it can then revolutionize the human lives.
For examples, grand challenges can be the mapping the human genome (accomplished) or
unifying the theories for the four types of forces in physics (under investigation).
The Ubiquitous Computing Grand Challenge (Chalmers, 2006) is one of currently nine such
challenges, based on the theory and engineering of ubiquitous systems. On one hand, it strives
to achieve Weiser’s idea in this era and on the other hand, the engineering and the social
issues which are focused on by different research groups. It also preserves “the theory
required underpinning the design and analysis of ubiquitous systems which are intrinsically
large-scale and complex”. There are few important questions that are related to Ubiquitous
Computing Grand Challenge like “How many computers will you be using, wearing, or have
installed on your body, in 2020? How many other computers will they be talking to? What
will they be saying about you, doing for you, or to you? (...) Shall we be able to manage such
large-scale systems, or even understand them? How do people interact with them and how
does this new pervasive technology affect society? How can non-computing people configure
and control them? What tools are needed for design and analysis of these constantly adapting
and evolving systems? What theories will help us to understand their behaviour?” (Chalmers,
2006). The answers to these questions are not straight forward. There is a need to observe

every aspect of the Ubiquitous Computing Grand Challenge in order to overcome these

37

research problems. The questions can be analysed through three distinctive perspectives:
experience, engineering and theoretical.

Experience — Study people’s behaviour with the ubiquitous computing systems, and based on
such study improve the system that should be more directed towards socio-technical
perspective.

Engineering — Solutions to the challenges we faced are because of the dynamic nature of the
ubiquitous system. Every system is dependent on efficient design, infrastructure and
approach. These principles are also applicable to the ubiquitous computing systems. These
systems should have efficient designs, and good network infrastructure.

Theoretical — Detailed analytical study is always important either before the system
development or during the system performance. With proper research approach, new
techniques, models and methods can be used within the system to make it more efficient and
high performance that should meet the required standards of the customers.

Besides these perspectives, other goals should also be set that are more directed towards
individual and social interaction. The proper design, use of techniques and models, fulfilling
the requirements of individuals and societies and continuous research will remarkably
enhance the growth of ubiquitous computing systems.

To define context dependency in ubiquitous systems, it’s better to explain with a help of a
small example. Most context aware applications use location context. The location context
can be acquired from various sources. The common resources in context aware systems are
the physical sensors, which sense the location of the person in the room e.g. Global
Positioning System (GPS), and derived context e.g. if the personal computer of the person in
his office is currently being use, it can be derived that the said person is his in office. So, the
context aware application is dependent on one of these sources to acquire location context.

Therefore, there exists context dependency between the context aware application looking for

38

location context and the source providing the location context. If, for some reason, the context
source is not available, the context aware application can ask other context sources to provide
the relevant context. So, finding context dependency and managing relevant context
dependencies is important for the successful working of context aware application. If a
context aware application is dependent on multiple context sources for acquiring various
different contextual data, then a failure to acquire any one of those required context
information can result in the failure of such a context aware application. So, it’s important to
reduce context dependence of context aware application on context sources and producers
which are not reliable enough to provide consistent service as requested by the application.

The context acquisition process is a vital feature of any context aware system. Most
approaches try to acquire the device context, e.g. the presence of a person in the room from
the location sensor, instead of the “profile context”. Profile context is the aggregated context
from various context sources that gives an overall better picture of the subject, e.g. the profile
context, that tells us that the user is busy, can be acquired from aggregation of location
context, telling us that the user is in office, and usage context of his personal computer along
with the busy phone line. Each device owned by a user is contacted individually for the
purpose of acquiring data relevant to the user situation in common approaches but our
approach provides aggregated context on one request in order to reduce context queries for
the resource constrained devices. Context published by a device individually fails to capture
the overall current picture of user’s situation in comparison to context obtained from multiple
sources that are aware of their mutual existence, and can provide better user’s context,
working in collaboration among them. User context, in our approach, is usually dependent
upon two or more devices’ sensed data, rather than just a single device context.

Despite their potential widespread applications, context-based applications and services are

still in infancy because the context acquisition architecture is based, more or less, on query-

39

based silo framework in which a service or application directly asks for certain context from a
context source individually. Such a framework is susceptible to numerous issues; most
common of them are bottleneck performances and high probability of failure because of non-
efficient resource management of the system. If the server-client approach is employed to
realize a context aware service, it can be easily imagined that servers will soon be overloaded
with queries, affecting their performance. The dynamic nature of information to be dealt with
in a cloud computing environment is huge, and the numbers of queries increase with time as
more users join the ad hoc network asking for constant updates from context sources for
context types such as location.

Some simple context aware applications use sensed data only from a single source to make
appropriate personalized decisions for the user. Most, though, utilize sensed data and
processed context information from multiple sources to derive further high-level context
information. Such abstract context requires multiple low-level device context which are
aggregated and processed over many times to obtain an abstract-level context. To provide the
user with most benefits and personalized services using the available computing resources in
an ad-hoc networks, context aware applications need to disseminate both the accessed and
derived context information in the network.

Derived context is inherently dependent upon sensed data or/and other processed context
information. Context dependency may get inducted in a system due to various reasons such as
error at the time of system deployment. But that issue aside, the more context dependencies an
application has, the more complex the process becomes to develop and maintain such an
application because a failure of one context dependency will render the context aware
application useless, which are expected to be highly responsive to the user environment. Due
to highly dynamic nature of mobile devices in an ad-hoc network, too many context

dependencies can severely affect the performance of a context aware application. Reducing

40

context dependencies or providing alternative context sources is crucial for performance gains

in context aware applications.

1.3 Contributions

The thesis contributes to the analysis, representation and reduction of context dependencies
in a ubiquitous computing environment. For the analysis purpose, two approaches are used.
One approach based on graph theory determines present context dependencies by using
topological sort algorithm. This results in linear time complexity in terms of Big O. The other
approach adopted to find the nature of context dependency is based on constraint networks.
But until now, determining nature of dependencies among various variables in a constraint
network was considered NP-complete. The thesis presented an approach which reduces the
dependency analysis using constraint network to polynomial complexity, both in terms of
space and time complexities.

The second contribution of this thesis is the representation model for context dependencies
in a system. There hasn’t been a context representation system that was developed with the
sole purpose of representing context dependencies in general, let alone, the transitive
dependencies in pervasive systems. The context representation model presented in this thesis
is based on predicate logic and set theory. The model makes the process of representing
context dependencies quite easy and intuitive. The insightful approach that is adopted in
developing the context dependency model makes analysis of context dependencies
straightforward to understand in terms of context types and context sources, alongside with
the forethought of alternate context sources that can be used by a context dependent
application.

In the third contribution of this thesis, an approach to reduce context dependencies is
presented which aim to combine the idea of profile context and overlay networks together for

the purpose of proposing an open framework for context acquisition which also address the

41

issue of context dependency. This approach enables the notion “Context is always available”,
based on the feature that the user’s context is accessible even if he is offline or his devices are
switched-off. This is possible because profile context distributes the latest context of a device
in an overlay network through super nodes, and the context is made available even after the
device has been turned-off or has left the overlay network. Thus, an application can always
access last updated context from the overlay network, avoiding delay resultant of device being

overwhelmed by context requests from multiple context consuming applications.

1.4 Organization

The thesis contribution is arranged in three main sections: finding, representing and
reducing context dependencies. In the first part of the thesis, we present an efficient solution
to find valid dependencies in a pervasive environment. Later, we present a context
representation approach to represent these valid context dependencies and their alternatives.
In the later part of the thesis, we aim to reduce context dependencies in an ad hoc
environment by combining the idea of profile context and overlay network together for the
purpose of proposing an open framework for context acquisition. This approach enables the
notion “Context is always available”, based on the feature that the user’s “last” context in that
environment is accessible even if he is offline or his devices are switched-off. This is possible
because profile context keeps the latest context of the device in overlay network, and is
available even after the device has been turned-off. Thus, an application can always access
latest context, avoiding any delay resultant of context dependency on a context source which
is no more accessible.

The chapters of the thesis are organized as follows: Chapter 2 gives basic background and
definitions of context aware computing; Chapter 3 details literature review concerning the
research problem; Chapter 4 presents approaches devised to determine context dependencies

and their nature of dependence among different applications; Chapter 5 presents a context

42

representation model to depict these context dependencies; Chapter 6 introduces profile
context approach in detail in the setting of overlay networks to reduce context dependencies;
Chapter 7 uses results, based on simulations and mathematical modelling, to highlight the
advantages of our context dependency reduction approach; and Chapter 8 concludes the thesis
with focus on future work that is planned. In the next chapter, the background of the context

aware computing is detailed.

43

2.Context in Ubiquitous Computing
2.1 Background Terms

Ubiquitous computing is not a single standard concept that everyone has to follow. It can
change depending on the personal thinking, and therefore it has been called with many
alternate names in literature. Some of the alternative ubiquitous computing names are
“pervasive computing”, “mobile distributed computing”, “global computing”, “the Internet of
Things”, “context aware computing”, “ambient intelligence”, “wearable computing”,
“tangible media”, “physical computing”, “everyware”, “the disappearing computer”, “calm
technology” etc. Because of the different ways of thinking about ubiquitous computing today,
the first idea of ubiquitous computing presented by Mark Weiser is not exactly similar to the
established one today.

Greenfield’s Everyware (2006) makes the point that referring to all these differently named
emphases, “one gets reminded time and again of the parable of the six blind men describing
an elephant”. In the book’s interpretation, the parable goes like this:

“Six wise elders of the village were asked to describe the true nature of the animal that had
been brought before them; sadly, age and infirmity had reduced them all to a reliance on the
faculty of touch. One sage, trying and failing to wrap his arms around the wrinkled
circumference of the beast’s massive leg, replied that it must surely be among the mightiest of
trees. Another discerned a great turtle in the curving smoothness of a tusk, while yet another,
encountering the elephant’s sinuous, muscular trunk, thought he could hardly have been
handling anything other than the king of snakes. None of the six, in fact could come anywhere
close to agreement regarding what it was that they were experiencing.”

Despite different versions of ubiquitous computing idea, the central idea is still the same as

presented by Wesier. All these variations in the ubiquitous computing offer a good

opportunity for the expansion of the research topics and their applications with different views

44

and goals. Because of the various views presented, there are different names describing
ubiquitous computing but for the end users it doesn’t really matters. As the functionalities of
all the ubiquitous systems are almost the same, therefore the end users can’t notice any
particular difference in terms of definitions and for them all the ubiquitous system designs,
names, functionalities are exactly the same.

This next section describes ubiquitous and context aware computing. It also covers the

developments and challenges faced by context aware computing.

2.1.1 Ubiquitous Computing

Ubiquitous computing is commonly known as pervasive computing. The word ubiquitous is
defined as “existing or being everywhere at the same time; constantly encountered,
widespread.”’ The main concept of the ubiquitous computing is that different computing
devices are interconnected with each other to perform specific tasks, e.g. monitoring office
temperature when the user is in the office. The ubiquitous computing focuses its adaptation
based on the user needs and requirements. These devices manage themselves automatically
based on the changes in the requirements of the user. Mark Weiser, the pioneer of ubiquitous
computing, said “the most profound technologies are those that disappear, they weave
themselves into the fabric of everyday life until they are indistinguishable from it”, Weiser
(1991).

From the above definitions, following important characteristics can be inferred about
ubiquitous computing:

* The computing devices are scattered everywhere around us, and they are interconnected to
each other,
* They are autonomic and do not require continuous active attention from the user, and

* They become invisible by being seamlessly integrated into the environment.

'MerriamWebster Online Dictionary

45

Mark Weiser was major contributor to the idea of ubiquitous computing. He was the head
scientist at Xerox Palo Alto Research Centre, and in the 1990s the Xerox PARC already had
many contributions to the modern computing such as Ethernet and distributed computing, the
software for the personal computer workstation, object-oriented programming, etc.
Furthermore several new technologies like IPv6 etc. were developed by Xerox (1996). Weiser
was innovation genius and visionary. He led the research team to contribute effectively to the
innovations in the 21* Century. Weiser and his team are considered to be the first to explain
the usefulness of computer technology from the human perspective.

Phase I — The Mainframe Era

The term mainframe “[recalls] the relationship people had with computers that were mostly
run by experts behind closed doors. Anytime a computer is a scarce resource, and must be
negotiated and shared with others, our relationship is that of the mainframe era,” (Weiser,
1996) i.e. “from 1940 to about 1980.”

Phase Il — The Personal Computer Era

“In 1984 the number of people using personal computers surpassed the number of people
using shared computers. The personal computing relationship is personal, even intimate, (...)
and you interact directly and deeply with it. The personal computer is most analogous to the
automobile — a special, relatively expensive item,that (...) requires considerable attention to
operate.” (Weiser, 1996)

Transition — The Internet and Distributed Computing

“[People] and their information have become interconnected. [The] Internet brings together
elements of the mainframe era and the PC era. It is client-server computing on a massive
scale, with web clients the PCs and web servers the mainframes.” (Weiser, 1996)

Ubiquitous computing is not a new concept or a technology; it is an idea to bring all the

current technologies to work together in the same environment. For example, few years back

46

the mobile phones were expensive and big in size but now they have evolved into thinner and
smaller devices. This concept can also be applied to the computing. Now the data servers are
big but in future they will also evolve into smaller and efficient resources like mobile phones,
and therefore will be able to be integrated into different devices, like household appliances
and office equipment, to interconnect them together and also with the internet. Such an era
will be truly called ubiquitous computing when all the devices will be interconnected
together.

Phase III — The Ubiquitous Computing Era

“[This] era will have (...) computers sharing each of us. Some of these (...) we may access in
the course of a few minutes of Internet browsing. Others will be imbedded in walls, chairs,
clothing, light switches, cars—in everything. [Ubicomp] is fundamentally characterized by
the connection of things in the world with computation. This will take place at a many scales,
including the microscopic.” (Weiser, 1996) And, “activate the world. Provide hundreds of
wireless computing devices per person per office, of all scales (...). This has required new
work in operating systems, user interfaces, networks, wireless, displays, and many other
areas. It is invisible, everywhere computing that does not live on a personal device of any sort,
but is in the woodwork everywhere.” (Weiser, 1991)

The technologies that are being used today also support the concept of ubiquitous computing.
For example, IPv6 is designed to accommodate a lot more devices than IPv4 could. By
extending the address space in IPv6, it now becomes a reality to connect many smaller
devices like microprocessors, artificial intelligent agents, etc. Connecting such smaller
devices promotes ubiquitous computing as now more devices can interact and share the
information with each other than ever before.

Since, ubiquitous computing strives to connect different devices together to share the

information therefore, it is absolute necessary for a system to be considered a ubiquitous

47

computing system, to not treat a certain technology separately rather all technologies must be
interconnected and connected to the internet. Today, there are many new applications of
ubiquitous computing in modern computing world. For example, mobile devices
automatically download the latest software to remain update with latest features like social
apps on smart phones. Another example could be the music player that can observe the user’s
choice of songs and based on that can download the latest songs so that the user doesn’t has to
search for new related content. Furthermore, research projects like DIYSE are trying to
develop prototype kitchen that will be able to download the new recipes depending on the
user’s culinary taste. These systems will be helpful in our daily life because users don’t have
to spend their time on searching a particular content and can get what they desire
automatically by smart applications running in the background.

These few examples provide a good overview how the ubiquitous computing systems will
look like in the near future when they have reached a certain maturity and what can be their
benefits to the end user. Such kind of ideas focuses not only on the performance of the
technology itself but also on how different technologies can benefit humans in their daily life
tasks. This means interconnection of devices and their use from the human point of view
rather than just machines performance. Ubiquitous computing systems will give a new
dimension to human life. Humans will be able to save their time that was previously being
used in searching, doing complex tasks, etc. With this concept, humans will be able to get the
information quickly and without much effort. Furthermore, in future the ubiquitous computing
systems use will be in almost every device and the humans will accept its presence with
comfort, because humans can then utilize their valuable time to carry out some other
important tasks since ubiquitous computing system will be working behind the scenes to

provide the required results and adaptations according to the user environment.

2.1.2 Context Aware Computing

48

Wikipedia (2005a) defines context awareness as a computer science term which is used to
denote “devices that have information about the circumstances under which they operate, and
can react accordingly.” This means that the devices have complete access to the relevant
information and can adjust to the changing environment by taking advantage of contextual
information available in the environment, Chen & Kotz (2000)

Before the arrival of context aware applications, the common computer applications made
assumptions about the user’s context because they weren’t context aware, Lieberman &
Selker (2000), but now the applications can sense the user’s actual context and adjust their
behaviour accordingly. Lieberman & Selker (2000) also argue that the context aware
applications should focus on the user and application context because with such an approach,
the user interaction will be minimal and the devices will automatically monitor the entire

environment surrounding the user without requiring any direct attention from the user.

2.2 Context

The term Context can be open to various interpretations in different application domains
depending on the computer applications that utilize context. According to Dey et al. (2000a),
context is “any information that can be used to characterize the situation of entities (i.e.
whether a person, place or object) that are considered relevant to the interaction between a
user and an application, including the user and the application themselves.” This definition is
considered to be a conventional one as information regarding various entities can be
expressed as context. According to Winograd (2001), context “is an operational term:
something is context because of the way it is used in interpretation, not due to its inherent
properties.” While, according to Coutaz et al. (2005), context “is not simply the state of a
predefined environment with a fixed set of interaction resources. It’s part of a process of
interacting with an ever-changing environment composed of reconfigurable, migratory,

distributed, and multiscale resources.”

49

As previously stated, the most common definition of context is “any information that can
be used to characterize the situation of entities”’[Dey, 2000]. In this section, we will try to
elaborate on context data as compared to context to emphasize it as a more processing
oriented aspect of context. So, any sensed value along with an additional meta-information, to
help with the interpretation of such value, should be considered as context data. The vital
feature is the interpretation of the sensed value to achieve context data.

Def. 1: “context data is a piece of information comprising at least one piece each of sensed
value and corresponding meta-information to understand the meaning of sensed value.” Such
piece of meta-information can be an identity of the sensor that is required to understand a
value, such as temperature, all depending on the level of abstraction. The common approach
in ubiquitous computing is to merge appropriate measurement unit with the sensed value
which can be easily utilized by various context aware applications.

Def. 2: “Meta-information cannot be sensed and therefore must be provided from outside
the pervasive system itself.” Most trivial example of such meta-information is identity of an
object that provides information regarding domain, structure and purpose of it, provided by a
user or some other application. It can be inferred that context data can be represented by a
multiple stage model in which on the lowest level, the sensed values and their raw meta-
information exist without any existing relationship among them. The sensed value and meta-
information are merged at a higher level to obtain basic context data or “first order context”.

Def. 3: “sensed value and meta-information are merged together to obtain context data
called First Order Context in one step.” First order context can be thought of as a more
reliable context data comparatively to other, higher order context data. The reason being that
all the information required for the generation and merging of context data has been collected
by the context generating device itself. Therefore, it is in a position to give a high reliability

measure for such a first order context. In each of the subsequent higher order contexts that are

50

generated at higher levels by obtaining sensed values and meta-information require at least
one first order context. Furthermore, generation of higher order context by merging first order
context and additional meta-information is a recursive process.

Def. 4: “Higher order context is a context data obtained by merging at least one first order
context or different higher order context with sensed value along with, or not, its meta-

information.”

highar order

context
T K _—
| ™ T
F s "
& i "
| %\
{ LY
/ Y | higher order
P / _ %" | context
// f __.--"'- "._‘ — |,.
i b - \
o first arder L LY g
A = sl | LY b
; context o W \ 9
/ f- g o e N
4 - e el N kY
e - / - — ~— \ -_
I - ~— B g Y b ¥
e o — S, *
|sensﬂr dats ||ser-5:|r data | s5é meta-int urr"lath:-r-”rneia infommation j.. .

Figure 1 First order & higher order context

Figure 1 depicts an overview of context data generation steps. Every piece of context data
has an associated type assigned to it. This associated type helps to identify that corresponding
piece of context data as a result, produces a context class of the given context type.

Def. 5: “A context class gets induced by the context type associated with a particular piece
of context data. This context class has all the attributes of a piece of context data but without
any values assigned to those attributes.” In terms of object oriented design, a context class is a
prototype which defines a concrete instance, an object, of a piece of context data.

Def. 6: “A context object or instance is a piece of context data belonging to a certain
context class with values assigned to its attributes.” In a context aware application, two
context objects belonging to the same context class should be distinguishable from each other

by the values of some of their attributes. In pervasive systems, different entities interact with

51

each other by exchanging context data. An entity can either act as a provider or as a consumer

of a piece of context data.

| context 1 | | context 2| | n::t:ntext3|

consumer

producer

context 4 | | context 5|

Figure 2 Context Producer and Context Consumer

Def. 7: “An entity that provides a piece of context data is called producer. An entity that
uses a piece of context data is called consumer.” Multiple entities can use the same piece of
context data simultaneously. An entity can be a producer and a consumer at the same time,
but not of the same piece of context data. Example can be the derivation of a higher order
context from various pieces of context obtained from other entities and forwarding the higher
order context data to its consumers. But an entity can only act as a consumer or a producer of
a specific context data at any given time, not both. Otherwise, recursion occurs that can lead

to deadlocks in the processing of context data.

artefact 1

produces

| context
-

s ~_ I8 consumed by

|artefact 2| | artefact 3 | |artefact 4|

Figure 3Producer and consumer of specific context

Attributes of Context Data:

52

Context data have some general attributes that are available in the contextual
representation even if the values of the context data are different. Understanding these
attributes comprehensively will help the context aware applications by enabling them to better
utilize these context data. The attributes of context data are the relevance of context data,
validity of context data, reliability and history of context data. These four attributes can be
classified into two groups: absolute and relative attributes. The value of absolute attributes
can be evaluated independently, whereas the values of relative attributes need to be evaluated
relative to the running state of the context aware application along with other previous
versions of the same context data.

Relevance: The relevance of context data is dependent on factors like age and the distance
of the source where the context was generated [Schmidt, 1999; Schmidt, 2002]. If a context
data was generated a while ago, its relevance may be considered to be diminished relative to
the current running state of the pervasive system. The reason being that the value being
sensed at a sensor changes with time and context aware applications require latest sensed
value to adapt their behaviour according to the prevalent user scenario. Therefore, after some
time of being generated, the context data loses its benefit to the context consumer and is not
relevant to the context aware applications anymore. The context data itself does not change
over time, even though, its reliability has decreased. So, value of context data and its
relevance attribute are independent of each other. One has to note that the history of context
data is different from relevance of context data.

Reliability: In terms of trust, reliability is an important attribute because reliability of
context aware applications is directly dependent upon the reliability of context data they
operate on. It is essential to have a measure of reliability of context data so that context aware
applications can judge the reliability of context data as their success depends on it. Dey

(2002) introduced a way to handle ambiguous data by the process of mediation involving the

53

user. The user would rate the context data, but such an approach is only feasible for context
data present at the application layer. User’s input cannot be used for context data at lower
layers. This approach lacked an applicable solution because the context aware application
cannot wait for the user every time when there is new context data to operate on. This will
take too much time and won’t be context aware as such anymore due to regularly asking user
for the input. Therefore, there must be some reliability metric to provide consumer of context
data with added knowledge of assessing the context data without explicitly asking for the user
input. Similarly, the derived context data can only be as reliable as the context data that was
used to derive it. So, we can say that reliability of derived context data is dependent on the
input context data’s reliability. For this reason, higher order contexts are not more reliable
than the lower order context that has been used to generate them. Reliability belongs to the
group of absolute type attributes as the consumer of context data can directly use the
reliability measure available from the source as a basis of its decision to utilize such context
data or not.

History: the context data history attribute can be considered a dynamic attribute. If the
latest context data is not recognized and utilized by the consumer, context aware application
would most probably repeat the same action it took in the previous instance of time which
won’t be meeting the expectations of the user in terms of resource and time efficiency.

Validity: context data influences context aware applications, and therefore, need to be
validated before it can be utilized. Evaluation in terms of validity of context data can only
result in Boolean values: YES or NO. Validity attribute determines whether a piece of context

data can be used for processing in a reasonable manner by context aware application or not.

2.3 Context Awareness
The term Context awareness refers to the situation when applications use context obtained

from devices and sensors about the environment and the user, and then adapt their behaviour

54

accordingly. They can operate and adjust according to the changing environment. Generally,
the computers are only used to provide information required by the users. They don’t have
any concern what type of information the user has requested. With the help of context
awareness, the computer applications are able to know what the user’s needs and priorities
are. This all becomes possible by installing sensors, actuators and tiny computers that can
gather the user’s information and can create such environment that assist the user to retrieve
information more easily, Nixon et al. (2002). Today the most commonly used applications of

the context awareness are call forwarding, active badge systems, and office assistance, etc.

2.4 Context Categorization

It is easy to do context manipulation when there is homogeneous context information, but
if the context information is heterogeneous then there is a need to simplify the context in
order to manipulate it efficiently. For this purpose, context categorization is used through
which the heterogeneous context can be categorized, and thus simplifying the context
manipulation step.

There are two possible broad viewpoints regarding context categorization in the research
literature:
» Conceptual viewpoint — who, where, what occurs, when, what can be used, what can be
obtained, etc.
* Measurement viewpoint — what is the person’s location or room temperature or network

delay, etc?

2.4.1 Conceptual Categorization

The conceptual viewpoint is widely used and can be further categorized in to the following,

Gwizdka (2000):

55

e Internal Context: the state of the user
e External context: the state of the environment, Petrelli et al. (2000)
e Material Context: the location, device and available infrastructure
e Social Context: social aspects and personal traits
Descriptions of contextual agents and their relations among them are provided in Table I to

highlight the categorization of context.

Category Semantics Examples

User context Who? User’s Profiie: identifications. relation with others,
to do lists, etc

Physical context | Where? The Physical Environmeni: humadity. temperature,
noise level, ete

Network confext Where? Network Envirenment: connectivity. bandwadth.
protocol. etc

Activity context What occurs. when? What occurs, at what time: enier. go out. etc

Device context What can be used? The Prafile and activities of Devices:
wdentifications. location. battery hifetume. stc

Service context What can be obtained? The information on funciions which svstem can

provide: file format. display. etc

Tableau 1 Conceptual Categorization of Context

2.4.2 Measurement Categorization
Measurement context is about the observable values that are obtainable from sensors.

e Continuous Context

In continuous context, the values are changing continuously and needs to be measured
regularly to have an updated version of the context.
e Enumerative Context

Here the values of context are a set of discrete values and defined in a list or set. They
are based on set operations. A predicate calculus statement is used in describing context.

Our approach of context modelling is also based on predicate logic. For more diverse

? Categorization and Modelling of Quality in Context Information by M.A.

Razzaque, Simon Dobson and Paddy Nixon

56

information, these categories will assist the developers to efficiently manipulate the
context information in the given environment.
e State Context

In state context, there are a certain number of values that a context variable can take,
e.g. the presence of the user in the meeting room: either the user is in the meeting room or
is not in the meeting room, only two states in this example.
e Descriptive Context

This is based on the description statement of the context and for this reason, it uses

predicate calculus.

2.5 Characteristics of Context Information
To understand the nature of contextual information, it is imperative to realize the

characteristics of the context information in pervasive computing systems. These are:

2.5.1 Temporal

There are two ways, as just discussed before, to categorize context information: static or
dynamic. Static context describes the invariant aspects like date of birth, whereas dynamic
context describes the aspects that are changing frequently and often. To obtain the dynamic
context information sensors are used, whereas for acquiring static context information, users

provide inputs to the system or it can be obtained from the user profile.

2.5.2 Imperfect

Context information is imperfect because most context information is dynamic, and this
means that there is more probability of context information to contain errors as the sensed
data could be inconsistent, incomplete, etc. These errors can result due to contradictory
information or non-availability of complete information regarding the various contextual

aspects.

57

Another reason for occurrence of such errors is processing and updating of data. In dynamic
environment it is important to continuously update and process the information. Any delay
can lead to the incorrect information being forwarded to context consumers that isn’t relevant
to the user environment anymore.

Besides information update and processing delay, it is quite possible that the users, and
sensors, etc. have provided incorrect information. This can happen when the information is
retrieved indirectly from different types of context information, like extracting a person’s

activity from location data.

2.5.3 Alternative Representations

Sensors are the vital component of pervasive systems. They provide the raw contextual
information, but in doing so it is quite possible that some part of the data obtained from the
sensors is not useful or reliable anymore, and this could lead to poor performance for a
pervasive system. For example while locating the user, the sensors can provide the
coordinates of the building instead of the room the user is present, and therefore, such
information is not quite useful since the location of the user in terms of his presence in a
certain room is still not precise enough. Thus, it is important to overcome such issues to
obtain acceptable performance from the pervasive systems.

Furthermore, due to dynamic environment, it is quite possible that the requirements have
also changed over time, and therefore, the context model must be able to allow and support
multiple representations. This representation could be in different forms but must properly

represent the characteristics of the context comprehensively.

2.6 Context Management
Managing contextual information is essential because for the applications to run smoothly,
it is imperative that the retrieved information from the sensors and context producers must be

meaningful and properly formatted. But that is not always the case. There is a possibility that

58

the information received from the sensors is in low-level, machine language format. Thus,
making it impossible for the application to properly utilize that information in a timely
manner without first converting it into a more accessible representation.

In order to overcome the delay in processing low-level or different formats of the
information, a standard contextual model is essential. The model must provide standard
specification necessary for correct assumptions within the applications, and could be used
universally by the same set of applications or different ones.

Another important reason for using contextual modelling is the presence of application in
heterogeneous environments. In such environments, heterogeneous devices use heterogeneous
information sources and also share the information with each other. Therefore, to understand
the contextual information and efficiently provide the requested context, all the devices must
agree on certain protocol, and these protocols are provided by a common approach to
contextual modelling.

Different contextual information may have different requirements for modelling (Chen &
Kotz 2000). For example to locate the user, the location could be in latitude and longitude or
detailed information like street number, building number, and floor and room number. Thus
the same information can be retrieved in different formats, and therefore, modelling is
required to properly structure and understand the information. Becker & Diirr (2005) describe
the properties and requirements for modelling location as contextual information. Held,
Buchholz & Schill (2002) elaborates the requirements required for comprehensive context
representation that includes structured, interchangeable, composable/decomposable, uniform,
extensible, and standardized. To properly model the context, a fact based modelling language
was developed by McFadden, Henricksen & Indulska (2004) known as the Context Modelling

Language (CML).

59

Other approaches for contextual modelling are key value pairs as the data structure (Salber,
Dey & Abowd 1999, Schilit, Adams & Want 1994, Voelker & Bershad 1994, Maal3 1997),
markup scheme models, graphical models (McFadden, Henricksen & Indulska 2004), Petri
nets (Murthy & Krishnamurthy 2005), logic based models, ontology based models (Strang &
LinnhoffPopien 2004), relational representation, and situation abstraction (Henricksen &
Indulska 2004) to represent generic contextual information. Various approaches to modelling

are based on some object-modelling technique like UML.

2.7 Context Adaptation

In context adaptation, the contextual information is accessed by the context aware
consumer devices to use it for different applications. Context aware application adapts in two
ways. First, when a new context in available, the application adjust its characteristics
according to the context to fulfil the user requirement. Second, the application can notify the
concerned devices and applications regarding the availability of the updated context.

Adaptability in context aware systems is the essence. A change in the user’s surrounding
environment is inevitable but a quick, appropriate response make context aware applications
highly adaptive. To better understand the concept of adeptness, we must classify some
parameters before a context aware system is judged for its performance.
Why there is a change: This parameter focuses on the change. The change in the behaviour
of a context aware application is always attained to address user’s requirement. This can be
due to either that the user’s requirements have changed or the previous state and the behaviour
of the context aware application do not seems appropriate according to the user’s
expectations. It should also be taken into account that the requirements can be functional or
non-functional. Functional requirements capture the behaviour and response of a context
aware system. The non-functional requirements deals with the demands like performance,

time to respond, reliability, etc.

60

What does or does not change: This parameter asks what part of the context aware system
has changed to force it to adapt its behaviour.

When the change occurred: This parameter is presented to capture the moment in the
lifetime of a context aware application when the change in behaviour occurred. The change
does not have to occur at the runtime. The change can be dynamic or static.

Who manages the change: This parameter points out the mechanism to respond to a change
in requirement. It can be context aware system or the user itself. This involves the tasks of
monitoring the system to collect and evaluate relevant data, and then decide the outcome of
the process to take appropriate action.

Context adaptation usually involves techniques from the field of Artificial Intelligence.
The techniques commonly used are rule-based inference (Zhang 2004), expert systems
(Kwon, Yoo & Suh 2005) and machine learning (Dey, Hamid, Beckmann, Li & Hsu 2004).
Generally, it has been observed that rule-based inference and expert systems are less capable

to adapt to the context information than machine learning systems.

2.8 Requirements & Challenges
In the previous sections, we discussed in detail about the characteristics of ubiquitous and
context aware computing. In this section we try to describe the requirements and challenges

faced by such systems. Some of the requirements are discussed below:

2.8.1 Ubiquitous Computing Requirments

* Mobility. To fulfil the requests of the user, it is imperative that the location of the user must
be known and this can be done through the mobile devices. Such devices always remain with
the user, and therefore, if the user changes his position, the pervasive system will
automatically know the location and can adjust its behaviour accordingly. For the user
location, it is essential that the device must support mobility so that the user is not aware of

the technology by its absence (Satyanarayanan 2001).

61

* Scalability. In ubiquitous computing the devices are mostly for specific purposes and can
only be used on a small scale. To improve scalability, the devices must be compatible in
different environment without making any notable sacrifices. With such devices, more tasks
can be handled in limited resources.

* Invisibility. The applications must be capable of sensing the needs of the user and can
provide for it without user interaction with the system. Without any interaction, the context
aware applications should perform properly and adjust their behaviour quickly to match the
user’s needs.

* Minimum interaction. The context aware applications must have friendly interfaces and
should be smart enough so that user should feel comfortable interacting with them.

* Resource consumption (Want & Pering 2005). For efficient pervasive system, it is essential
that the devices and applications must be resource efficient. This means that the applications
must adopt strategies to discover and communicate contextual data using minimal resources,
and also provide an acceptable level of performance at the same time.

» Security and Privacy. Main security and privacy concerns are confidentiality, integrity,
accounting, availability, authentication, and security policies (Stajano 2002). For safety
purposes a well-defined security procedure is essential. This procedure must always be
followed by ensuring all the necessary steps to make the data secured properly. Other security

mechanism could be some cryptographic technique.

2.8.2 Context Aware Computing Requirments

There are some challenges faced by context aware computing which are discussed in detail
by Salber, Dey & Abowd (1999). These challenges are:
* Sensors are not like common devices. They are especially developed for specific purposes,

and therefore, they have certain uses and requirements. Examples of common sensors include

62

GPS, biosensors, RFID, etc. but such sensors are expensive to install. Thus, the ease in
availability and low cost of sensors is a challenge for context aware computing to overcome.

* The data acquired from the sensors could be in low level format or in a different format then
the one the application can process. It is vital to enhance the representation of the contextual
information so that it can be usefully employed by context aware applications.

» Heterogeneous environment always cause hurdles in proper management and sharing of
contextual information because in such environment different kinds of devices and
applications are interacting with each other, and the data acquired from the sensors is usually
different from the data format requirements of the applications. So, the issue of compatibility
in heterogeneous environment need to be addressed.

* Context aware computing system must be highly dynamic and sensitive. This means that it
should have the ability to detect and adjust to the changing environment in a timely fashion to
satisfy the user needs without any explicit intervention from the user.

» For context aware application, it is imperative to completely understand the user intent
because only then it will be able to adapt to the user requirements.

The above challenges need to be resolved because, in future, the importance of pervasive
systems will increase rapidly as sensors become cheaper to produce and deploy. To fulfil the

requirements of the users successfully, the above challenges have to be dealt with first.

2.9 Context Dependency

In the real world, there are two types of relationships between people or devices; one type
of relationship is obvious like the ownership of the devices, and then there is other one that is
less obvious like dependency in terms of acquiring service from a certain entity. Therefore,
the context information can be derived from more than one device or persons because any

activity can be a part of other activities and it is essential to know all the details to obtain

63

context information. Thus, it is right to say that each activity of information is derived from
some other activity and so on.

To further understand context dependency, consider the following scenario:

In the events section of her LinkedIn webpage, Alice finds out that one of her old friends,
Bob, from school years will be in town next day to attend a conference. As she checks his
LinkedIn profile, she thinks up of sending him an invite for a lunch. But she is unable to send
him an email as her current account doesn’t allow her such a luxury. A context-aware API
running in Bob’s LinkedIn profile suggests that his profile on another social networking site,
Orkut, can be viewed. She likes the suggestion and visits his profile. Looking for his contact
email, she is disappointed to find out that Bob has not made his email available to visitors
who are not already added to his friend’s list. So is the case with his scrapbook. If she just try
to add him to her friend’s list, it will be too late as who knows when Bob will be online before
he lefts the town. As she was thinking “what to do now?” the context-aware API on Bob’s
LinkedIn profile shows that, surprisingly, Bob has just come online and is available on his
mobile phone as he is using one of the mobile messenger clients. Alice sends an instant
message on Bob’s messenger through the in-browser chat window. Bob receives the message,
and instantly replies back. Alice invites Bob for the lunch after the conference ends next day,
but Bob is unsure whether he will be able to attend the lunch with her because of the packed
schedule, instead he proposes to get together for afternoon tea to which she gladly agrees.

In the above scenario, the context aware API is dependent upon various sources to obtain
availability of contact information of Bob. The context sources are his linkedin profile, his
orkut account and its scrapbook, and the mobile messenger client. So the potential context
dependency can exist among the context aware API and the three context sources. In the event
of the failure of context acquisition from the first two context sources, the third source was

able to provide the required context which indicates a valid context dependency.

64

Due to highly dynamic nature of mobile agents in an ad hoc environment, too much context
dependency can severely affect the performance of a ubiquitous system. With the increasing
number of participants in an ad-hoc network, context dependency induced issues need to be
handled efficiently. If the problem is not properly addressed, interdependence on low quality
context will increase, leading to poor decision making by context aware applications. There
can be two basic kinds of context dependencies, as shown in the Fig 4. In the first
dependency, a context of type A is being utilized by various applications to generate context
of types B and C. Highlighting the direction of the dependency, B as dependent and A as the
antecedent where B depends upon A, and a change in A implies a potential change in B. This
definition is very similar to the one given by Booch (1998). The bidirectional dependency, as
pointed out by Briand (1998), can be among more than two entities, N, where N > 2. In the
second, there is interdependence of context between the participating applications. This cyclic
context dependency can be a serious threat to smooth execution of a context aware system if it

gets introduced unintentionally.

Figure 4 Types of Context Dependency

Most simple scenario to depict context dependency is the availability of the user on his
mobile phone when he is in a meeting. In such a situation, user can be contacted on his mobile
phone through text message only to avoid distraction of voice calls. The decision to drop
voice calls is based on two contexts; user location, current time and calendar entry of the
meeting in his online Google Calendar. The mobile application is dependent upon these three
contextual data to make correct decision. If any one of the context is not acquired entirely or

even acquired late, the usefulness of such mobile application is not valid anymore.

65

In cyclic dependency there is mutual interdependence of context between the participants.
A simple example of cyclic dependency can be bandwidth adjustment for a certain
multimedia data transfer over a wireless channel. The mobile application monitors the
available bandwidth and then adjusts the quality of the video in transfer accordingly to
achieve smooth streaming for the end user. The base station detects the video streaming
requirements and adjusts the bandwidth, which in turn set in motion the whole process again.
Such a cyclic context dependency can be serious threat to an effective execution of a context
aware application. Any service that contacts another for context is acting as a client or more
specifically, a context consumer, and the service that provides the contextual data is acting as
a server or context producers in context aware application terminology. The developers must
be careful to avoid cyclic context dependency among participating context consumers and
producers. The chain of context requests introduced due to cyclic context dependency can
continue indefinitely until all the involved applications exhaust their resources. The
probability of circularity is particularly high when context services are designed
independently, because no single developer can predict all possible interaction among

services.

Figure 5 Transitive Dependency

In addition to two direct dependencies, Fig. 5 shows a transitive dependency between
A and C. A transitive dependency exists when two entities are dependent through one or more
than one intermediary nodes. Most transitive dependencies are generally not as significant as
direct dependencies. If a system is designed properly, it is likely that a majority of changes
will not have significant effect through transitive dependencies. In fact, UML (Unified

Modelling Language) does not even acknowledge transitive dependencies as actual

66

dependencies in software systems as pointed out by Jackson (2004); and stated by Fowler
(2001), if the dependency between two items is not direct, the items are presumed to be
mutually independent. But we still have to analyze the effects of transitive dependencies in
context aware systems more thoroughly.

Context dependency that change between entities quite frequently can affect the
performance of a pervasive system as the search for an appropriate context source has to be
initiated at each time when there is a change in the requirements of the dependent entity. If,
let’s assume, that entity X is dependent on entities Y and Z, but in the next iteration or time
slot, X is dependent on entity A and A is in turn dependent on Y then we can assume that the
context dependencies are unstable. When a context dependency change around frequently in
such a manner, it becomes difficult for the pervasive system to maintain an overall stable
state.

Our proposed approach in Chapter 4 tries to decompose complex and bidirectional
context dependencies into a binary, unidirectional relationships as it make analysis easier
where you have complex context dependencies broken down into various, simple
unidirectional context dependencies. Since, a bidirectional context dependency can be
represented with two unidirectional context dependencies between the same entities; we can

assume the 2(3) number of unidirectional context dependencies.

2.9.1 Context Dependency Attributes

An attempt at classifying dependencies, in general, has been made by Keller (2000) who
listed six parameters to describe any given dependency. However, we consider that most of
these attributes describe the entities themselves rather than elaborate on the relationship of
dependence among the entities.

To better understand context dependency, we have tried to list some important attributes

below. The attributes that we consider to better explain a context dependency are:

67

Impact: How can the entity’s functionality get affected by its failure to obtain context from its
context source? Few of all the possible values that can be assigned to this ‘impact’ attribute
are: none, unreliable, performance degradation, non-dependable, total failure.
Need: This attributes highlights what kind of context is required by the dependent from its
antecedent. This context dependency attribute will help to understand the context dependency
relation between two entities in term of the context exchange. Few of the possible values can
be the common context types like temperature, location, time, calendar entry, or an event.
Strength: The frequency of context provision from antecedent to dependent entity explains the
strength attribute of the context dependency. Whether the context is provided every time the
query is sent to the antecedent at a regular interval or the context is published to the dependent
entity as an update, all these falls under the strength attribute of context dependency.
Stability: Stability is a measure of the “continuity of the dependency’s vulnerability to
compromise or failure (sensitivity) over time. One way of looking at stability is to ask the
question: “When is the dependency fragile?” Possible values for this attribute are Extremely
Stable, Infrequent, Periodic, Certain Defined Times only, etc.” [Cox, 2001]

To our understanding, the above attributes are very much pertinent and applicable to

context dependencies in pervasive systems.

2.10 Dependency Management

Lot of studies are conducted and published in the research domain of information
integration in a multiple heterogeneous sources. The main purpose of integration is to provide
user a unified view of the environment. Integration combines different data stored in systems
and create a single outlook for all as presented by Batini (1986), Lenzerini (2002) and Rahm
(2001). In integration there are two main categories of issues: semantic and architectural.
Some of the issues are solving structural as well as semantic data conflicts, integrated vs.

federated and multi-database architectures, and integration methodologies at DB design time

68

vs. on-line gathering and filtering of information in Batini (1992), Bergamaschi (2001),
Chawathe (1994) and Ozsu (1991).

Context dependence of information and mobility can be described with different
perspectives:

e Its use in the design of information sources suited to mobile environments

e Advantages offered in accessing information, particularly in the user’s interest.
Information management methods using Distributed Hash Tables (DHTs) are proposed in
numerous studies such as Ratnasamy(2001), Stoica(2001) and Zhao(2002). The DHTs can
distribute the processing load by an efficient query routing. Techniques that construct a P2P
network based on the topics of contents or communication times between peers have also
been proposed by Bawa(2003) and Kwon(2002).
An important step in understanding effects of context dependency is to determine and model
these context dependencies, and develop mechanisms to reduce them or at least provide
alternative context sources that are closer to the dependent entities. Specifically, how it can be
determined whether and how a change in context at its context source affects a dependent
entity? What are the context types that form the basis of context dependency between the
antecedent and dependent? And what nature of problems a pervasive system can face due to
such context dependencies among entities? After monitoring the exchange or queries of
context types, analysis of context dependencies can be performed dynamically to predict
context dependency among different group of entities. The prediction can help the system to
reserve the resources in advance, and to meet those future demands efficiently. In the next

chapter, we present research works related to ubiquitous and context aware computing.

69

3. Literature Review

3.1 State of the Art

Today, the needs and demands of ubiquitous computing are growing rapidly and many users
want to get a high performing efficient system that could prove to be useful. To fulfil this
demand, researchers have speed up the development of the ubiquitous computing systems and
are developing various prototypes to observe the performance in real life (Rogers, 2006). As
new prototypes are being developed to achieve high performance and reliability, it shouldn’t
be neglected that today the customers are already using ubiquitous computing system but only
in very narrow, specific scenarios, for example, Octopus smart card (Octopus, 2008), a debit
RFID card that is used by about 17 million people in Hong Kong. It was developed in 1997
and because of its ease of use; it is now widely used for commercial and non-commercial
purposes. Another advantage of such a smart card is that it is connectionless. In Hon Kong,
around 95% of the adult population is using it, and many institutions and offices have adapted
an interface specifically to utilize the Octopus smart card.

Another similar example is that of a Sony FeliCa (Sony, 2008). It contains a storage capacity
of 64 KB compared to magnetic stripe card 125B. For near-field communication, its speed is
212 kbps in the range of 3-10 cm. With this speed a transaction will take 0.1s to complete.
The data storage helps the providers to add new services because the storage capacity is in the
form of operation system (directories, folders and files). If any provider wants to get access to
the storage, unique access rights are given and only a specific directory or folder is allocated
to the provider. No other provider can use that storage once it has been assigned to some other

provider. If any commercial transaction is being made with this card, all the transaction data is

70

stored on the card and with the service provider. The data on the card is encrypted with two-
way authentication and it has never been cracked and no data is lost yet.

The dream of ubiquitous computing is best described in Greenfield’s Everyware (2006):

“A ubiquitous city or U-city is a city or region with ubiquitous information technology. All
information systems are linked, and virtually everything is linked to an information system
through technologies such as wireless networking and RFID tags. The concept has received
most attention in South Korea, which is planning to build some 15 ubiquitous cities. The first
U-City, Hwaseong-Dongtan U-City, has been partially completed and operated in 2007. It
characterizes diverse U-Services that include U-Traffic, U-Parking, and U-Crime Prevention
service. (...) A ubiquitous city is where all major information systems (residential, medical,
business, governmental and the like) share data, and computers are built into the houses,
streets and office buildings.”

A Korean called Songdo City is known as U-city (O’Connell, 2005). The city was built from
the ground up and uses the RFID technology to manage the most of the public services. In
Songdo City, whenever a consumer throws a bottle in the recycle bin it is automatically
credited with the RFID technology. Similarly, the pressure sensing floors for the aged people
help to detect any fall and to send help quickly. Also, the cell phones that are used to record
health problems can provide detail description of the user’s health to the doctor. Furthermore,
with a unique smart card, the user can easily enter into his home and or use it to access
services at the subway and cinemas. Hence, till now, the Songdo City can be considered as the
most favourable city for the use of ubiquitous computing and has the capacity to exceed
expectations quickly in this technology.

From the above discussion, it is quite clear that in today’s life ubiquitous systems are
available but on small scales. The applications with main concept of ubiquitous computing are

still missing from our lives. To proper implement all the aspects of ubiquitous computing, it is

71

necessary that there should be an appropriate design pattern. Furthermore, standard interfaces
are required to interconnect devices with each other so that data sharing can be done smoothly
without any hindrance. Meeting these challenges is not easy and will require time and
resources to implement a real ubiquitous system.

Up till now, different examples have been stated to reflect the promising future of the
ubiquitous system, but it will be better to analyse whether it is possible to achieve high
standards of performance and efficiency. This can be accomplished by comparing the
performance of the actual and registered ubiquitous systems.

It is really important that the hardware of the ubiquitous system should be as small as possible
because to connect different devices together, hardware will be implanted in every device and
if the size of the hardware is too big, the commercial use of the system will no longer be
productive. Therefore, the size of the hardware should be around smaller scale and it is a
tough task for the researchers. Furthermore, the system should consume low power. This
means that all the interconnected devices should consume less power and can share more data
with each other than they do now at the moment. Another challenge is to make the devices
fast. The processors embedded into the devices should be fast enough to share the data, so that
the devices should take less time. In essence, for ubiquitous system to be successful, small
sized hardware, low power and fast processors should be of high importance.

For low power system, it is feasible to use wires because these are stable and take less power,
but the main problem is that when a system starts to become complex, as more and more
devices are interconnected with each other, then the wires will also start to grow and that
make the system design below standard. The one solution to this problem is to use wireless
communication. In this scenario, no wires will be used and all the devices will communicate
wirelessly through radio transceivers. But in such situation, the radio transceivers consume

more power. For example, in Telos wireless sensor node (Polastre, 2005), the active power

72

spent on the radio is 12 times more than the active power of microcontroller. Furthermore, if
the processing speeds are taken into account between the radio transceiver and
microcontroller (take again the Telos case, which sees a 250kbps radio transceiver versus a
16MHz microcontroller), the amount of energy consumed by the radio when receiving a
single bit, is same as the energy consumed by the processor for 800 instruction cycles.

Based on various studies, the characteristics of the ubiquitous computing system are
(Chalmers, 2006):

* Fluidity: long term structure evolution.

* Partial autonomy: the system will be self-adjustable. It means that the computing system
will observe the environment and based on that will make the modification. More innovation
and minimal developers’ involvement will be needed. Furthermore the system components
should guarantee long term reliability.

» Trustworthiness; all the devices are dependent on each other, and therefore no device or
system should be allowed to affect the information provided by the sensors.

* Scalability; the computing system can be of varying size depending on the environment and
need, for small projects small scale computing systems and vice versa.

Another important feature is the context that is directly related to the ubiquitous computing
system. Usual context queries are where one is, who one is with, what one is doing and what
resources are nearby. An important characteristic of ubiquitous computing system is its ability
to adapt to the environment. This is known as context awareness. In context awareness the
system acquire a measure of context and adapt to the context’s current values by observing
the entities currently involved in the environment. The measuring of context is accomplished
through sensing of human activities and surroundings and based on these the system adapts
itself. A common way to acquire context is service discovery: a process, in which entities

provide the hardware or software resources required by an entity’s application (e.g. the

73

nearest printer) are identified in the entity’s surroundings. In ubiquitous computing, the
service discovery protocols are designed in an ad-hoc fashion and follow logical topology. It
means that the protocols should be a type of infrastructure like those built-in environments
and also can run over the infrastructure like outdoor sites. This ad-hoc designing assist the
protocols to replace static configuration by open systems, i.e. imposing few boundaries to
system membership, instead allowing incoming entities a certain level of access.

When the system will start to take control of the situation in an environment, meaning self-
configuration, then it is not feasible for developers to reconfigure the system, because the
system has measured all the necessary factors in the environment and is now able to adapt
according to the changing environment. When the system is in full control then it could also
save the power utilization by updating the necessary software’s, only using the power during
the processing time, etc.

Besides these benefits one major concern that will affect the performance of ubiquitous
system is security. Due to ad-hoc nature of system, the security threats can be higher.
Scenarios presenting various types of security attacks from the Ubiquitous Computing Grand
Challenge manifesto (Chalmers, 2006) are:

“A ubiquitous application may involve collaborations between ad hoc groups of entities. It
may require migration or downloading of code, and may involve people moving and changing
the system configuration. New encounters occur, and there are complex issues in knowing
what entities to trust. Does a server trust an agent enough to allocate processing resource to it?
Does a device trust a neighbour to send message packets for onward routing?

(The latter could be a ‘denial of service attack,” aiming to deplete the device’s battery.) Does
a human using the UCS trust a host, a service, a device, or another human communicating and
collaborating through the system? Based upon predefined trust, recommendations, risk

evaluation and analysis of past interactions, an entity may derive new trust metrics and

74

authorization policies for what access it will permit to its resources, what services it should
refrain from using, or what security mechanisms (...) to use.”

It is also possible to mention the security risks with theories for ubiquitous computing. One
theory, “is to extend existing models, such as process calculi, to accommodate space and
mobility; promising candidates already exist, but difficulties of analysis still remain”
(Chalmers, 2006). Another theory could be, ‘awareness of context in a constantly changing
context, one added challenge is to come up with models and analyses for the entities’ context
acquisition, adaptation and information flow.

With the help of these theories, the system’s behaviour predication can be examined with
more accuracy, system adaption can be analysed with minimum problems and a set of
satisfying security policies can minimize the security risks. If all these can be achieved then it

will form the scientific foundation for ubiquitous systems prototype design.

3.2 Dependency In Systems

Most of the research work carried out in context awareness involves either provision of
frameworks for supporting abstract information in context aware systems, or modeling of
context information for the relevant context queries. We review the context modeling efforts
of these research directions in ubiquitous systems.

Most methodologies to service monitoring and analysis are concerned with the assessment
of contracts between service provider and service consumer as evident by the works of
Ameller (2008) and Flehmig (2006). Such approaches don’t work if the services are
composition of multiples services because composite services have vertical and horizontal
dependencies that need to be taken under consideration. The methodology presented by
Bodenstaff (2008) tries to monitor vertical dependencies in the system. The methodology is
limited in its approach for a comprehensive analysis of dependencies among composed

services because dependencies between two single services are not fully captured. The same

75

issue is with the COSMA approach of Ludwig (2008) that also monitors vertical dependencies
among the services but lack an approach to handle horizontal dependencies.

A formal context modeling approach is proposed by Harter (1999). It is based on object
modeling paradigm. The Entity-Relationship model is used as a basis for the language to
construct a conceptual model of context. The resultant context information is then stored in
relation database. The model presented by Gray (2001) is concerned with capturing meta-
information from the context, and then describes features like quality, correctness, source,
format, along with the transformation process it underwent for its current form from raw
sensed data.

The context service presented by Ebling (2001) called OWL maintains and provides, on
request, context information to its clients. Various context attributes like context history,
scalability, quality, access rights, etc. are handled in OWL. These models lack formal basis to
capture relevant context information like dependency.

Set theory is used by Stephen (2001) to define a context tuple of a certain size n, where n is
the number of different context sources present in the device. The variable present in the tuple
represent a value of certain context corresponding to a context source. The tuple contains an
extra variable which represents the time when the tuple was created. Context information is
schematically described by the set theory approach, but lacks any information about
dependency relations.

In most of the research literature, dependency analysis is treated fundamentally as a static
analysis problem to help better understand testing [De Lucia, 1996; Bates, 1993], debugging
[Agrawal, 1993], and maintenance [Gallagher, 1991] of computer systems. Directed graph
approach is proposed by Henricksen (2002) in which an entity is described by context
information modeled in the form of a directed graph. The nodes are used to represent entity

and attribute types, while the associations among them are arcs connecting the nodes. The

76

model is comparatively comprehensive as it can represent quality of context, and context
dependency relations but lack accuracy in dependency representation.

A distributed algorithm, called Genetic Relation of Contexts, (GRC), analyses

interdependence of context data in a decentralized environment in the work of Zimmer
(2006). GRC tries to solve the problem of cyclic context dependencies with an approach of
splitting and multiplication of context. Initial results are interesting, but the formal model for
context dependencies is still lacking.
Regarding the research work on the issue of scalability of context aggregation and
dissemination, Context Toolkit comes into mind by Dey (2000). It’s a classic project cited in
the state of the art that uses a distributed architecture for context distribution. Context Toolkit
uses the concept of widget that wrap up a context producer, e.g. a sensor, and the sensed data
can be acquired by querying the widget. Aggregators, working as a service, are made
available to applications that can get the commonly asked contextual data from them.

By selection and chaining process, suitable components from a system repository can be
used to construct a path from a data flow of contextual data from context sources to
applications as presented by Hong (2001) and Kiciman (2000). Depending on the resource
usage in the system, CANS, these components can be rearranged or even replaced by others if
the system manager has installed them in the component repository Fu (2001). These
approaches use pre-defined data flow paths among the applications and provide components
to cater the needs of the applications.

Predicting dependencies in a context aware system is a challenge that still needs to be
addressed. So far, there is not a single successful approach for predicting the dependency
relation among various entities in context aware systems. Even in software engineering, a
common approach is the assumption of dependencies among different software components

but even such an approach is unrealistic [Eckhardt, 1985; Knight, 1986; Littlewood, 1989]

71

Relationship Contexi-aware

- Relationship - -
as Multiplicty as Dopandoncy Relationship
R1
1 R cl
¢l /7 \¢2 (AT e[A2 | 2 oo
[A1 | A2
L A2 | o3 Aa

Ri- Relationship ci- Context information A - Adapation

Figure 6 Context Dependency Relationships

Context dependency defines the existing and potential relationships between different
entities. These dependencies can vary depending on the context of user. Rather than fixed
dependencies, new dependencies can be selected and defined as the context changes. Desmet
(2007) proposed an approach for context dependency modelling called Context Oriented
Domain (CODA) diagram which is an extension to Feature Diagrams [Kang, 1990]. Figure 6
shows how various adaptations are selected when context C1 and C2 are present in the
system. The context dependent adaptations are represented with rectangular boxes while
context independent behaviour that spawns the adaptation is represented by boxes with
rounded corners. When A1 and A2 adaptations are simultaneously applicable at a given time,
the dependency shows the system semantics. The analysis results not in a singular, fixed
dependency relationship R, but rather it is dependent on the context and can be R1, R2, ...,
RN respective to the C1, C2, ..., CN context. CODA attempts at solving dependency issues at
design level of the system by enhancing Feature Diagrams with context information and
respective dependence relationships between them. CODA also supports the idea of mutual
exclusion of context dependencies where two or more context adaptations cannot be valid at a
given time. The major drawback of CODA is that since it’s applicable at design level, the
dependencies are supposed to be static in nature and CODA is not equipped to handle any

change during system’s active lifetime.

78

To assess the structure of a computer system, Stevens (1974) & Hutchens (1985) presented
a common metric. The metrics pertains to a system in terms of data dependencies and
functional relationships called bindings, and clustering methods were used for the evaluation
of the extent of dependencies in a system. Selby (1991) studied data binding measures to
understand system failures. The study correlated high dependency between system modules to
increase number of defects.

The dependencies in a system that are not apparent are appropriately termed as “hidden
dependencies” [Yu, 2001]. Another relevant concept is called “ripple effect” [Black, 2001].
Ripple effect is the propagation of a change through various dependencies in a system. In
software engineering, a technique called program slicing is used to determine the software
modules that can get influenced by a change in value in the system at a given point in time
[Weiser, 1984]. Forward slice from a point shows which software modules that get influenced
from a change at that particular point, and backward slice from the same point shows which
software modules influence that particular module.

In [Goseva, 2001], there are three main classes of models for dependencies that can be found:
State-based Models: are described with the help of Markov Chains [Ross, 2000; Lyu, 1995].
Markov Chains are stochastic processes. At any given time, the current active dependency can
be described by simple states while more complex states in the Markov Chains can be used to
define all dependencies: active or passive. The Markov Chains are defined through
transitional probabilities from one state to another state with rate A:

Py = Plgoing o state j|leaving state)

Markov Chains have exponentially distributed states which mean that arrival at a specific
state only depends on the departure state and not the history of the previous states. To predict
dependency in a complex system requires higher-order Markov Chains with more than one

arrival rate. Some studies [Gokhale, 1998] pursue the path of discrete event simulation which

79

does provide an understanding of a complex system but less in comparison to analytical
models.

Path-based Models: are used to determine the dependency in terms of possible execution
path which are characterized by frequency of a path taken and its dependability of completing
the execution path. Work in such models is carried out by Shooman (1976), Krishnamurthy
(1997) and Yacoub (1999). These models apparently lack explicit handling of dependencies
which was properly addressed by approaches of Hamlet (2001), Kuball (1999) and May
(2002). Path based models are very close to classic reliability theory and this relation can very
well be utilized to advance dependency analysis in complex systems.

Additive Models: attempt to predict as accurate as possible the failure rate of a system
dependency by individually considering the failure rate of the involved components and
entities rather than considering the structure of the software modules. In (Xie, 1995), the
system failure rate As(t) at a given time is obtained by summation of failure rate Ait of

individual entities comprising the system through

Nelt) :Z,‘\f{m
=

The common observation regarding summation of individual failure rates of entities is that
this results in a conservative prediction in terms of system’s failure rate.

After studying various approaches, Gosova (2001) remarked that all such models assumed
dependencies to be non-existent, and even those who took a realistic view, the problems that
were addressed were narrow in solution and also the application of such results. However,
there are certain studies that specifically addressed dependencies among software and system
components. Calculating dependability of software components can be difficult even for
simplest of cases. Littelwood (2000) considered assessing the dependence reliability of a

software system with two components. The two components A and B were used to determine

80

dependency failure of the system given that PA = P(A Fails), PB = P(B Fails) and PAB =
P(Both A and B Fail). PAB implicitly denoted the dependency of the system. The Bayesian
approach was applied and when both PA and PB are assumed to be known, the “posterior”
probability of the system failure due to dependency failure becomes higher than the “prior”
probability. The reason being that if 1 — P(A) - P(B) + P(AB) gives the failure rate of the
system when no component failed, and if this probability is large, it can also be due to P(AB)
being large enough. Therefore, neither the previous approach of probability summations nor
this approach is applicable to the analysis of dependencies and their failure in computer
systems.

The idea of independent components developed and deployed in a system has been
investigated by Knight (1986) whose results have shown that “assuming independence should
be done with caution”. The study showed that the failure rate of systems dependencies was
much higher than was expected assuming independence nature of the involved entities.
Further studies have elaborated on the same assumption [Eckhardt, 1985; Littlewood, 1989].
Eckhardt (1985) precisely defined the dependence and independence of software components

with a score function, V(x), with x as an input,

Vig) =1 Randomly chosen component
= fails on input

where
{Vi(z) : 2 € Q}, {Va(z) : 2 € 0}, ..., {Valz) 1z € O}

are random variables, independently chosen.

81

3.3 Context Modelling
To assist the growth of context aware applications by facilitating the processes of
acquisition, management and dissemination of contextual data, an efficient and scalable
context model is required.
Modelling of contextual information is highly significant in order to capture the following
details for a pervasive system to work efficiently:
e relationship among different context types and the nature of such relationships
e to determine device capabilities and available resources
e for user profiling
e to determine application requirements
As contextual information is gathered, stored and used at various points in a pervasive
system, it is essential that the representation model should be applicable through all the

processes, and should be consistent.

3.4 Modeling Approaches

Here we present the most significant context modelling approaches. The classification of the
modelling schemes has been adopted by analysing the basic approaches they followed. Of
course, some of the context modelling schemes can be categorized into more than one

category because of the multiple approaches they have adopted.

3.4.1 Key-Value Models

Key-Value model context attributes with specific values of contextual information. As one
of the simplest model, key-value pairs the value of the context information e.g. room
temperature is provided to an application as a variable. Key-value model is a common
approach adopted by Schilit et al.(1994) and various other distributed frameworks (e.g.
Capeus by Samumowitz (2001)). The service discovery manager uses a matching algorithm
on the attributes given in a key-value structure and described by the services themselves e.g.

82

SLP, Jini, etc. by Strang (2003). The main advantage of key-value model is its simplicity and
such a model is easy to maintain and update but the drawback can be the lack of support to

enable context retrieval in an efficient manner.

3.4.2 Markup Scheme Models

Markup scheme models arrange contextual information in the form of hierarchical data
structure that consists of tags to store attributes and their content. The tags can be recursively
defined in terms of the content. Profiles are one of the common examples of markup scheme
models that are mostly based on Standard Generic Markup Language (SGML), which has
many offshoots, with XML as the most popular one. Most profiles are extension of the
standards like User Agent Profile (UAProf) and the Composite Capabilities / Preferences
Profile (CC/PP), that are based on XML and RDF. A profile is based on a two-level structure
where each profile has a certain number of components, and each component has a certain
number of attributes. The CC/PP specification doesn’t define the vocabulary for the
components and attributes which results in the vocabulary that isn’t not rich enough.

The Comprehensive Structured Context Profiles (CSCP) by Held et al. (2002) is an example
that doesn’t have any pre-defined static hierarchy unlike the CC/PP because it has the ability
to present profile information due the flexibility of RDF, and according to the position of
attributes in the profile, the attributes are deduced contextually. This reduces the need to
introduce attribute naming in the profile compared to CC/PP who requires such mechanism.
Another drawback of CC/PP is the lack of any mechanism to change the default values. A
flexible way to change the default values and merge them will help to produce more dynamic,
complete profiles.

It is non-intuitive in CC/PP to have complex contextual information presented because of
these constraints. This was also realised by an approach similar to the CSCP, called CC/PP

Context Extension, by Indulska et al.(2003), which extended the basic vocabulary of UAProf

83

and CC/PP. The extension dealt with introducing contextual attributes like location and also
certain types of dependencies and relations between the contextual data.

Apart from CC/PP approaches, there are various other markup schemes. Context
Configuration of Capra et al.’s (2001) reflective middleware, the Centaurus Capability
Markup Language (CCML) by Kagal (2001), ConteXtML by Ryan (1999) and the note-tags
of the stick-e notes system by Brown (1997) are the few examples.

One important approach among these is Pervasive Profile Description Language (PPDL) by
Chtcherbina (2003) that is based on XML and allows context dependencies when defined with
relationship patterns. But the approach suffers because of the scalability issue as the language
is not comprehensive enough to accommodate large number of contextual data. It also hasn’t
evolved as its design structure hasn’t been made accessible to researchers from public

domain.

3.4.3 Graphical Models

Unified Modeling Language (UML) is commonly used in software industry to model
software application, especially the graphical component of UML, the UML Diagrams.

An extension to Object-Role Modeling (ORM) of Halpin (2001) is provided by Henricksen
et al. (2003). The ‘fact’ is the basic modelling notion in ORM, and the modelling in any
domain with the help of ORM requires the process of indentifying appropriate types of the
facts. The extension provided by Henricksen (2003) to ORM allows facts to be categorized
based on their types, along with their source. These facts can be categorized as static or
dynamic, determined by the nature of the entities from which they are obtained from. If the
fact types are categorized based on the source entities being dynamic, then the sources can be
further categorized into derived or sensed types. The time stamp is also incorporated in the
model to maintain the history of the facts. An interesting extension to ORM is the fact

dependencies, trying to represent relationships between various facts, trying to map the effect

84

of change in one fact on another fact. The relationship was named “dependsON” relation. It
has also been used to model context in the work of Bauer (2003) in which an air traffic

management system’s contextual features are modelled with UML.

3.4.4 Object Oriented Models

The advantages of object oriented approach, reuse and information hiding, are the
motivation common to various context models. Object oriented approach provides the tools to
deal with the problems that arise due to the dynamic nature of the contextual information in a
pervasive system. The interfaces are provided to have access to the information. Cues, by
Schmidt (2001) developed as the result of TEA project (1998) and Schmidt (1999), are one of
the prominent example of object oriented modelling in context aware systems. The cues act as
an interface: they take a value of a sensor at a time and provide a corresponding value to that
input, thus hiding the details. A similar approach is adopted by the GUIDE project, presented
by Cheverst (1999). Encapsulation is utilized to hide the details of contextual data aggregation
and fusion while maintaining scalability.

Another object oriented approach is used to represent contextual information, proposed by
Bouzy and Cazenave (1997), in computer Go as they justified that the advantages of reuse and
inheritance in object oriented approach are that “to define the smallest number of properties,
functions and rules [..] in order to simplify knowledge representation in very complex

domains and systems”.

3.4.5 Logic Based Models

Logic based context models have a formal approach to representation of contextual
information. Contextual information is represented as facts and rules in a logic based model.
A fact can be derived from existing facts in the system by the application of the pre-defined

rules.

85

One of the first logic based context modelling approaches has been researched and
published as Formalizing Context in early 1993 by McCarthy and his group at Stanford
University. McCarthy introduced contexts as abstract mathematical entities with properties
useful in artificial intelligence. He prevented, emphatically, to give a definition of what
context is. Instead he tried to give a formalization recipe which allows for simple axioms for
common sense phenomena, e.g. axioms for static blocks worlds situations, to be lifted to
context involving fewer assumptions, e.g. contexts in which situations change. Thus lifting
rules, which relate the truth in one context to the truth in another context, are an important
part of the model itself. The basic relation in this approach is ist(c, p), which asserts that the it
proposition p is true in the context c. This allows for formulas such as cO:
ist(contextof(“Sherlock Holmes stories”), “Holmes is a detective”), where c0 is considered to
be an outer context. McCarthy’s model already supports the concept of inheritance.

Another early representative of this kind of approach is the Extended Situation Theory by
Akman and Surav (1997). As the name implies, it extends the Situation Theory which has
been proposed by Barwise and Perry (1983). Barwise and Perry tried to cover model-theoretic
semantics of natural language in a formal logic system. Akman and Surav extended this
system to model the context with situation types which are ordinary situations, and thus, first-
class objects of situation theory. The variety of different contexts is addressed in form of rules
and presuppositions related to a particular point of view. They represent the facts related to a
particular context with parameter-free expressions supported by the situation type which
corresponds to the context.

A similar approach is the Sensed Context Model proposed by Gray and Salber (2001). They
use first-order predicate logic as a formal representation of contextual propositions and

relations.

86

Ranganathan et al., (2002) proposed a context model named called ConChat, based on
Boolean algebra first-order predicate calculus. Conchat covers the various types of available
contextual information and also supports operations like conjunction and disjunction of
contextual data. First-order expressions can be created involving context, allowing to write

different rules, and evaluate queries.

3.4.6 Ontology Based Models

Ontologies are based on the idea of specifying concepts and the relationships among them,
mentioned by Grubber (1993) and Uschold (1996). They are used to describe information
along with the relevant relations. One of the premiere approaches to model context with the
help of ontlogies was proposed by Otzturk (1997). Their work was related to the analysis of
psychological studies to determine differences between recognition and recall in different
contextual settings. The study concluded the need of combining and normalizing the
knowledge, belonging to diverse domains.

Aspect-Scale-Context Information (ASC) model by Strang (2003) is another approach based
on ontology. It uses ontologies to describe core concepts along with the sub concepts and
related facts as presented by Bruijn (2003). The knowledge is put through an evaluation
process by ontology reasoners. The model was implemented through selective application of
ontology languages which later formed the basis of Context Ontology Language (CoOL) from
Strang (2003a, 2003b). Apart from being used in service interoperability in the web domain, it
is also used to enable context awareness in different applications in a distributed service
framework.

The approach called CONON by Wang (2004) is based on ontology capabilities of
knowledge sharing and its reuse. It concentrates on context classification, representation and
its reasoning with the help of inference engines. The strength of such models is based on

structure level as observed by Strang (2004).

87

Another approach called CoBrA by Chen (2003) is based on ontologies. A set of ontologies
concepts are provided by this approach to identify people, places and various other different
objects according to their context. The approach provides runtime support for context aware

applications as it uses a broker-based agent architecture.

3.5 Context Provisioning Architectures
The interconnection of everything in the society is mainly dependent on the availability of the
context information. Valuable context information can enhance the reliability and
performance of context aware systems. But to achieve such performance it is important to
retrieve correct context information. The main question is how to retrieve such information?
Today large percentage of the researches conducted for provision of sensor
information is mainly focused on middle-ware solutions. By using middleware solutions, the
researches come across different challenges that are summarized by (Hadim, 2006). Some of
the challenges include scalability, security and privacy, openness and ease of use. These
challenges are still not being overcome by researchers. Researches like (Levis, 2002) were
considered to be non-flexible with regards to heterogeneity. For heterogeneity, different
approaches are developed like Mires, that is for subscribe interface to provide sensor
information in direct support of context.
Some early researches like MobiLife Project (Floreen, 2005) focused on decoupling context
information systems and wireless sensor networks by using abstraction for the sensors so that
applications have single interface.
One of the approaches such as SenseWeb project (Kansal, 2007) is focused on shared sensing.
This approach uses centralized server clusters for provisioning of data storage through web
services and public services. With its use, the mashups deriving application sensor data from
GeoDB can be possible. GeoDB is a centralized SQL based indexing database. But SenseWeb

centralization means that it is scalable, and this characteristic raises issue whether SenseWeb

88

is capable enough that it can handle the demand required for large scale provisioning systems.
This scalability also raises issues in database implementations. The issues like query response
times with increase in data storage, have to be considered. These types of challenges have
direct effect on the performance of a system (Bonnet, 2001) and it becomes difficult to solve
the sensor data provisioning and querying problem through database solutions.

MobiScope (Abdelzahar, 2007) is an approach used for merging sensor information from
multiple sources to support dependent applications. But to make this happen, some
improvements were needed in the previous researches like CarTel project described by Hull
(2006). CarTel project hasn’t shown high performance with the sensor information as in real
time, it performance only improved with opportunistic delivery of information between sensor
sources and its centralized repositories. CarTel networks supports the applications based on
sensor information but these applications couldn’t be delivered based on present and changing
information. On the other hand, Mobiscopes are connected to the internet and remains
updated with the current sensor information. The information is access through the centralized
repositories because the sources were distributed and heterogeneous. This distribution and

heterogeneity also raises concern of scalability for the real time services and systems.

3.6 Distributed Approaches

For real-time access to the sensor information it is important that there should be a scalable
sharing on the Internet of Things. For this, numerous researches have been conducted to
support systems and technologies for scalable sharing and also the context aware applications
should be supported to handle different sensor information models. With the evolution of
Internet of Things the demand rise exponentially, thus to fulfil those demands dynamic yet
robust context-centric architectures must be developed by integrating user-services

relationships (Sundmaeker, 2010).

89

The increase in demand will surely require services to be organized in such manner that
support reasoning and knowledge gathering. To achieve this, context information must be
organized into different models. One such solution to organize the context information is
proposed in Mobilife by Klemettinen (2007). But this solution is completely dependent on the
DNS as web portals on the internet are consequently used. In this solution, DNS is used for
locating these web portals and applications. The use of Mobilife also raises different issues
like DNS availability due to DoS attacks and configuration errors. These issues are a big
drawback for Mobilife and provide a valid reason to focus research towards Distributed Hash
Table (DHT) alternatives (Pappas, 2006).

Solutions that are based on database distributions couldn’t guarantee high performance
because in order to maintain database among different wide area networks a reliable
communication must be present all the time and in real time this isn’t the case. Therefore, in
heterogeneous mobile scenarios the solution based on distribution of database are not
effective (Barbara, 1999). Another reason for low performance of such solutions is that during
the support of real-time data manipulation the relational database are highly inefficient and
because of that the sensor information can’t be retrieved properly in time.

The SOFIA project’s (Toninelli, 2009) main purpose is to create such spaces that can be used
by the context aware systems. This is done by middleware solution based on RDF ontologies.
The SOFIA project’s performance can also be improved by filtering the context based
information, through which the system can deliver the required services based on the current
context information. All this is done through the brokers that are used to break the context
information from ontologies and distribute this information to the end users. This project uses
relational databases for ontology persistence. This means that in real time scenarios that

performance will be decreased due to rational databases.

90

For the mobiles services, a project called SOCAM middleware (Gu, 2005) was developed. It
provides different solutions for creating context-aware mobile services. This is done through
the information that is organized into the models. But it is centralized and dependent on web
service portals on the Internet and thus vulnerable to DNS and scalability related issues.
Another project is Hydrogen Project (Hofer, 2003), implements multi-layered architecture
between information collection, management and usage, and uses middle-ware based on an
object oriented ontology. The advantage of this project is that is utilizes distributive approach,
this means that different devices can exchange information but only at a closed range. The
disadvantage is that only local location information can be shared and it doesn’t provide any
functionality for the distribution in regards to the provisioning of sensor information.
Furthermore, the problems faced by mobile environment also place restrictions on storage and
processing time of context information.

The approaches that are discussed above are not entirely perfect and may contain few
drawbacks especially in the real-time environment. For a model to be successful, it must be
expressive, scalable and dynamic and must not be dependent on the availability of web

service portals over the internet.

3.7 Acquiring Context

For interconnected devices it is important that the all the devices must know the location of
other devices so that proper communication route can be establish to retrieve the information.
Proximity-based discovery is important in regards to discovering nearby sensors for context
aware information (Hong, 2001). Since, context aware systems are not usually installed in
static environment, therefore it is not necessary that all the sensors are connected in advance
and the information can be retrieved by knowing the location of nearby sensors. Thus,

proximity-based discovery has important part to play in real time context aware systems.

91

Hong further argued that with improved wireless communication the sensors can be more
accessible through ad hoc manners.

Previous researches tried proximity estimation in seamless connectivity by utilizing sensors,
actuators etc. AmbieSense (Lech, 2005) is one of such researches that use embedded context
tags for proximity, seamless connectivity. These tags are embedded in public and private
spaces, lounges, restaurants, etc. By embedded tags in such places, the user can interact with
the tag to derive proximity to an artefact. This interaction helps to retrieve valuable context
information for spaces that are not covered by GPS due to different factors. But the
installation and location estimation of physical tag servers requires an additional layer of
complexity that function between the user and the required service.

In order to use proximity to hear nearby sensors, it is important that there should be a strong
ad hoc communication. Different projects are based on ad hoc communication that includes
Smart Its project by Holmquist (2001) and Bardram (2003). In these projects the devices are
embedded with sensors so that they should be located within context proximity. But these
projects also require hardware implementation, and in addition these projects are unable to
directly utilize the context information from other sources which give rise to scalability issue.
Ad hoc communication is an important feature, but to retrieve the context properly from the
sources is also equally important and remains an integral part of certain projects like
Senseweb (Kansal, 2007) and SENSEI (Presser, 2009). SENSEI project shows low
performance in dynamic environment; this means that the discovery of nearby sensor requires
explicit modelling of the user-sensor relationships. As these projects work well in static
environment, this again raises the problem of scalability that is important to deal with in real
time environment.

Till now proximity in regards to location is being discussed, but Schmidt (1999) argued that

besides location, proximity should also be used as some other dimension. The context aware

92

applications shouldn’t only be based on location but also examine the expressions of the
context. Proximity as location is already in use by mobile applications and services therefore,
there is a need to find new ways to express context proximity. The new dimensions of context
proximity can be explored through modelling of context information by involving all possible
dimensions. These could also include similarities among the devices.

In the context aware environment, if a person is moving his mobile device will continuously
try to define the current location context and will try to forward it in response to queries from
various services. During the move, the person will be exposed to many information points that
will be used to inform about the current context information. All the information required by
various applications is provided by the context aware system by analysing the current context
of the person. In order to get the required information, it is important to discover information
points. There are some researches like Holmquist (2001) and Bardram (2003) that provide a
solution to the issue of discovering information points. In such solution, the devices are
connected to the points around the city and also in contact with the person’s mobile. But in
order to implement such solution, additional installation of hardware is required. These
solutions have certain advantages like overcoming the problem of GPS dead-spots, but for
this user has to position him within spatial proximity of the device to initiate proximity
sensing to the architecture. By positioning in the proximity a connection between the user and
the devices will be established and then the access to the information points can be provided.
When the number of users starts to increase, then it would become very difficult to
synchronize all the users at the same time with this architecture. Thus, to create an efficient
system it is important that the context can be easily retrieved in the heterogeneous
environment and the interaction between the user and the architecture must be kept minimal.
As stated above, the user has to be within the proximity of the sensors for information and this

could be achieved by different location techniques, the most popular one GPS. But different

93

location techniques have different limitations and that should be considered for proximity.
Schmidt (1999) and Salber (1999) offers context with location but there are other concepts
through which the person can be connected to the system. One such concept is proposed by
Presser (2009) which allows the person to connect to the system by static determination of the
information points connected to “presentity”. But the drawback of this proposal is that when
there is a large gathering in the city, like a concert, the user will have no access to the ad hoc
resources and it will only rely on the infrastructure, thus there is no option of modification or
flexibility in this proposal. This means that (Presser, 2009) doesn’t support dynamic
environment in real time.

Schmohl (2009) proposed an approach that derives context proximity over multiple
dimensions as a single value. Each dimension is mapped onto geographical map and the
location coordinates are calculated by the Euclidean distance. Schmohl assume that all the
dimensions are common on all presentities, and thus value can be derived accurately. Also in
(Schmohl, 2009) all the calculations are done through Euclidean distance and the scales of the
dimensions are ignored. In real time it becomes difficult to calculate distance that is not
comparable to the entities outside of presentities, which have the same attributes on the same
scales. Therefore, it is important to develop methodologies that are capable enough to
establish localized information points that could answer various queries. The solutions should
identify information resources within close proximity to a user’s context and thus can provide
context information application and services in the real time.

Databases are vital for storing information but only storing is not enough; data should be
arranged in such a manner that the important and relevant information can be located easily.
As with the evolution of the Internet of Things, the importance of databases is also rising,
because, a lot of information will be stored in them, and proper ranking and finding the

relevant information in time will become vital. In Internet of Things the information will not

94

be written in static documents rather the information could be modified after as soon as it is
created. This means that when the information will be created the system will be capable
enough to analyse it and at the same time can support the changes or share the experience
with other devices or with a user based on some context. Some of the examples include
sensors for temperature, humidity, lighting, internet connections and sensors for location,
traffic and air quality.

To retrieve the relevant information it is important that the relevant sensors must be available
and this is done through the availability of fixed information points. A user could be
connected to SENSEI architecture (Presser, 2009) but he will be provided with the physical
closest sensors in order to retrieve information like temperature value. Some approaches like
(Kansal, 2007) can also provide the user with different sensors according to his context but
these sensors will be centralized and thus their performance will be low in real time
environment. This problem can be resolved by providing more sensors to the user but these
sensors will be outside of the user domain because the sensors should be allocated based on
the user context. For example, if the user is in the room the attached sensor should only be for
temperature, lights, etc.

In context aware systems, multiple sensors are available to the applications so that they can
acquire the relevant context information from these sensors. With multiple sensors user will
be able to select the most suitable sensor for many applications like weather, temperature,
location, etc. This sensor selection could be done manually or automatically. This could be
based on the sensor ranking that could depend on the reputation and availability of the
sensors. Some sensors will have higher ranking to which the users are connected continuously
and are stable and accurate. The sensors that are temporarily placed in places like in buildings
for temperature measure will not be available to the user right away (Presser, 2009) because

such sensors will be first added to the profiles and then they are made available to the user for

95

context information and this is feasible in static environment but not in dynamic or real time
environment. Thus, it is important to identify the changing environment because with multiple
sensors, users are connected to different sensors and in such scenario sensor ranking plays a
vital role for the users to extract context information (Hong, 2001).

To retrieve the information in less time, it is necessary that the system can find the sensors
that are available at that specific time. Some approaches like (Elahi, 2009) are used to locate
those sensors for information retrieval. As these approaches are more focus on querying for
information retrieval, therefore they don’t have any valuable information about the sensor
itself. This means that the other users in the system are discarded and only the relevant user is
accessed for information retrieval. Ranking of information is always advantageous and
therefore is utilized in both centralized solutions and distributed solutions (Zhu, 2005).

One example of centralized solution is Google index, which has less than 10 billion of the
estimated 550 billion pages, on the relatively static Internet (Zhu, 2005). But with centralized
approach it will become difficult to rank the sensors in an Internet of Things environment
because it will also raise the issue of scalability. To solve the problems of ranking and
scalability, one solution is to increase the resources, but this will result in a huge investment
in the network and will also make the network more complex. If, in future, 50 billion devices
have to be connected together and with this solution it will be difficult to imagine the cost it
will take to implement new resources and how much complex the system will become.
Furthermore, the data computation will become extremely time consuming and will take lot of
resources. To overcome these problems, it is better to use distributive architectures rather than
centralized architectures.

In the next chapter, we present two approaches that attempt to determine context

dependencies in pervasive systems using time efficient methods.

96

4 Finding Context Dependencies
4.1 Context Dependencies

When the user has to interact with numerous applications and devices present in a pervasive
environment, the attention of the user becomes a rare commodity. It is unreasonable for a
context aware application to expect that a user may step in to manage and configure in such
an environment where applications and their interaction with the environment are
continuously changing. Context aware applications must be responsive enough to the
contextual changes around the user and themselves to not depend on user interference. They
can compensate for the lack of user interference by being more proactive and adjusting their
behaviour automatically in response to a change in user’s context.

As context information is obtained and derived from various diverse resources, such as
sensors providing temperature, it is fundamentally essential to collect sensed data efficiently
and make an effective sense of such raw data. So, collection and processing of sensed data
along with the efficient dissemination of contextual information to various context aware
applications is important for a successful context aware pervasive system.

In the section below, we present an example scenario where there is a practical requirement to

determine context dependency to provide time saving to the user.

4.2 Application Scenario:

The intention of this example scenario is to highlight the advantage of using the knowledge of
context dependencies related to space, or to be more precise the position of current context
within an indoor location, and the preference of the user. The foremost aim is to design a
solution to a supermarket shopping trip in which benefits can be obtained from the location of
the products available in the market, the position of the customers and their preferences along
with their shopping lists to achieve a hassle-free and efficient shopping experience for the

customers.

97

Knowing the position of the customers and the location of the various products on sale in the
supermarket is important to draw an itinerary for the customer to follow that can reduce the
time spent shopping for different products during sale season, and also help avoid the long
waiting time in the queues at the cash points. Such an application can be used to guide the
customers through shortest route and considering the position of other customers can also
guide the customer through paths that are not congested in various zones of the market.

There are innumerable occasions when the customer going for shopping in a large
supermarket has suffered from delays, exhaustion and frustration because of not knowing
beforehand where the various products are placed in the supermarket. Not only the long
queues at the cash registers are the cause for annoyance for the customers but also the
congestion in shopping alleys between the shelves when the customers are in hurry and want
to finish their shopping quickly. It is especially difficult for customers affected by
agoraphobia who cannot stand crowded places in supermarkets. Such customers can be helped
by using a context aware application that can guide them to avoid such scenarios by
combining the information related to other customers’ location and the shopping list of the
affected customer to provide him a more accurate and personalized information to have a nice
shopping trip and save him time too in the process.

The dependency analysis of this scenario setting is useful for various reasons. When a
customer goes for shopping, he prefers to buy frozen food at the end of his trip. He won’t buy
frozen food at the very beginning as he wants to preserve the freshness and taste of the frozen
food when he gets back home. So, here we have preference of dependency of buying frozen
food at other stuff. If we are already done shopping other items on the list apart from frozen
food, then we can proceed to buy frozen food at the mart. Therefore, frozen food is dependent
on the condition of first buying the non-frozen stuff present in the customer’s shopping list

available on his PDA or smart phone. Similarly, buying fresh meat from the butcher’s shop

98

needs to be also considered to define the dependencies. May be there is a long queue of
customers at the butcher’s counter and the customer could return later when there aren’t many
people waiting to be served. Also, most customers prefer to but meat at the end of their
shopping trip due to the reason of taking the meat fresh to their homes.
The context dependency analysis in this supermarket shopping scenario can be affected by the
following parameters:
- The number of customers currently present in the market for shopping, N. It is
important to know the number of people current number of people present in the

market on whole.

- The location of the customers. It is required for correct analysis to know the location
of the customers in the supermarket. The customers can be waiting at the cash register,
buying food at the frozen food mart, in the queue at the butcher’s shop, etc. So after
aggregating the positions of the customers, this location parameter can be used to
determine the context dependencies for the provision of an optimized shopping route

in that particular supermarket.

- Customer’ preferences and the contents of his shopping list on his PDA or smart
phone affect the context dependency analysis. What, when and from where to buy an
item are the questions that context dependency analysis can answer in order to have a

hassle-free shopping experience.

- The shopping list of other customers present in the supermarket, so that the context
dependencies can be updated in real-time to reflect an optimised route for each of the
customer according to his/her own shopping list and preferences. Also, the knowledge

of what customer has already bought can definitely help to provide better solution and

99

dependency analysis. It can also help to determine expected congestion at certain

aisles, or the long queues at the cash points.

- The number of items left at the shelves in the supermarket. If the product is on the
customer’s shopping list but there aren’t many items left on the shelves, then the item
will be given priority, meaning it will become independent of other items on the list

and need to be purchased before other items can be bought.

The high-level algorithm for such a solution is shown below:

Loop (at every # time interval)
et positions of M customers;
Determine possible congestions (using customers positions and remaining items on the
shopping lists);
if (new custormer enters)
Show optimised routefafter determining context dependency analysis);

end of Loop;

The solution will always be estimating the customer’s position, and the number of desired
items still left at the shelves with a frequency of iteration that can be adjusted depending
on the congestion in the supermarket.
And as shown in the algorithm, if a new customer enters the supermarket, the algorithms will
check for possible congestion, and if so, the optimised solution will be executed so that it

shows the new customer a non-congested path after analysing the context dependencies.

The initial point of the customer’s personalized itinerary will always be the spot where the
shopping cart is initially placed, and the path will change according to the congestion and the
items that are left at the shelves. When he gets his item, that instance in time will be his initial
point again, and then a new path will be calculated to his depending on the current number of
customers present in the supermarket. And successively the process goes on until he gets all

his items, and then the terminus point will be one of the several cash points with least number

100

of people in the waiting queue. At this point, the best path will be computed to the cash point

with less expected waiting time using topological sort algorithm.

When the customer has finished buying all that he wanted then there are two approaches in

this regard:

The customer can delete each item in his shopping list on his smart phone application

whenever he puts the item in his shopping cart.

RFID tags are getting common in our daily lives and it can be easily imagined that in
the near future, nearly all of the products will have some kind of RFID tags on them.
That wide spread network of RFID tags can be used in this scenario, where a RFID tag
reader can be placed in each shopping cart and so the system can know at any given
moment what the customer has placed in his shopping cart. This can help to keep the

shopping list updated on the smart phone without user interaction.

The above two are suitable solutions but the first one seems to be more user interactive so

there is a possibility that the customer can make some mistake in deleting an item from his

list, and also it appears that the second approach is the more context aware.

The possible outcomes from this scenario based on context dependency analysis are:

Minimize the time the customer spends in the supermarket buying groceries. This is
possible since the system have all the required context information to develop the path
for the user for the supermarket trip. If the system has all the necessary context
information available in time, then the shopping time can be greatly reduced compared

to the same scenario without context dependency analysis.

Personalization of the shopping service to preferences of any customer. The solution

has the required customer information and can take benefit of this, offering

101

personalized offers according to the customer’s interests on the smart phone

application.

- To enhance the supermarket experience of the customer by presenting various
information about the products, and guide the customer during the buying period

through the supermarket to buy the required items present in the shopping list.

- The context aware application can also help the supermarket administration with the

logistic process regarding the stocking of various products.

- For the comfort of the customers, more or less cash registers can be used depending on
the number of customers waiting to be served in the supermarket. Knowing the
information regarding the current customers and the congestion level, it can be
decided spontaneously whether more or less cash registers need to be opened for

servicing the customers.

- If the arrival of the customer at the cash register can be determined in advance through
context aware approach before arrival at the cash register, the payment process can be

swift, and the waiting times in the queue shorter.

- . Enhance the information of the supermarket about the customer’s actions and
preferred items. The supermarket can have all the information related to the shopping:
time required for each of the shopping trip, customers personalized paths, etc.
Supermarket can utilize such information to adjust their service for the customers and

deliver a better and an efficient shopping experience.

The scenario starts when the supermarket is opened in the morning and the scenario ends for
all customers when the supermarket in the evening. Apart from this duration, the scenario is

inoperative.

102

The shopping carts are placed at the entrance of the supermarket and when a customer arrives
at the supermarket, he can either carry a basket or get a shopping cart. If the customer prefers
to get a shopping cart, he has to detach it from the adjacent shopping cart which triggers the
logging in to the main system of the supermarket. If the customer is not already registered in
the supermarket system, he can register with a new username by providing some basic
information about himself. This process is needed in order to be able to use the context aware
system. When the customer login by a username and a password, the applications knows

where the shopping carts are located at any given time and who is using each one of them.

Once the customer has introduced his information, the system synchronizes the shopping list
from the customer’s smart phone or PDA. After that the system will determine the congestion

in the supermarket based on the customer’s location.

Finally the context aware system begins to calculate all information about all the items
shopping list and personalized paths to follow. It means that the context aware system only
tries to localize the shopping carts when they are detached from the other shopping carts and

the customer has logged in with his username and password.

The context aware system utilizes the shopping list to estimate the next item and the optimal
path to access it. This way, the context aware system takes into account all those items and
theirs location to determine the path that avoids congestion. Thus, makes the shopping

experience stress free for the customers.

4.3 Determining Context Dependencies

Since pervasive systems are characterized by the dynamic nature of the participating agents,
the context dependency order defined at the very start of an application may not be valid
anymore after the initialization of the system. We believe that determining the context

dependencies correctly can help to better understand the flow of context information. It can

103

also help to identify the most utilized context and the most critical context source which has
no substitute in the existing system state.

Given a ubiquitous system, we would like to find a consistent system state that is similar to
its previous version, but with more precisely identified context dependencies. To achieve this
goal, we need to determine the currently valid context dependencies first with the help of
graph theory, and reject the ones that are not applicable anymore.

To apply graph theory approach, we need to define some fundamental terms first. A
directed graph G = (V, E) consists of aset V= {1,2, ..., |V|} of nodesandasetE c VxV
of edges. A pair (v, w) € E is called an edge from v to w. We set n = [V| and e = |E|. A path
from v to w, where v, w € V is a sequence vy, Vi,, vk of nodes such that vop = v, vy, = w and
{ vi, vir1} € E for 0< 1 <k: k is the length of the path. There is always a path of length zero
from v to v. A cycle is a path of length greater than zero from v to v. A path is simple if v; #
vj for 0< 1 <j <k. If the path is simple then the cycle is simple too. The in-degree of a node v
is the number of edges ending in v, indegg (v) =| {w; (w, v)€ E}|. Similarly, the out-degree
of v is the number of edges starting in v, outdegg (v) = | {w; (w, v) € E}|, as shown by
Melhorn (1984).

Two methods for storing a graph are customary. In adjacency matrix, a graph G = (V, E) is

represented by a [V| x [V| Boolean matrix Ag = (a;) 1 <i,j<n With

ij

{1 if (i,j)eE

0 if(ij)2E

The storage requirement of this representation is clearly ® (n?).

In adjacency lists, a graph G = (V, E) is represented by n linear lists. The i-th list contains
all nodes j with (i,j)) € E. The headers of the n lists are stored in an array. The storage
requirement of this representation is O(n+e). The lists are not necessarily in sorted order, as

shown by Melhorn (1984).
104

Since 0 < e < n?, we conclude that the adjacency list representation is often much smaller
than the adjacency matrix representation and never much larger. Since most graphs which
come up in applications are sparse, i.e. € [I n?, therefore adjacency lists are preferred. It is a
fact that the choice of the representation can have a drastic influence on the time complexity
of graph algorithms.

To determine context dependencies of a given system, we use the topological sort’
algorithm to traverse the network. If there are any cyclic context dependencies present in the
system, the topological sort can point them out and describe an ordered list of nodes

illustrating the flow of context information.

Topological Sort Algorithm

1) Compute the in-degrees of all vertices of the given.
2) Find a vertex U with indegree 0 and store it in an ordered list
If there is no such vertex then there is a cycle

and the vertices cannot be ordered. Stop.
3} Remove U and all its edges (U.V) from the graph.
4) Update the indegrees of the remaining vertices.
5) Repeat steps 2 through 4 while there are vertices to be processed.

The complexity of topological sort is O(|E| + |V]),

where,

|V] is the total number of vertices, and

|E| is the total number of edges.

The operations needed to compute the in-degrees depend upon the representation that is
used to store the directed graph. If an adjacency list is used then it is O(|E|). In case of matrix
being employed to store the graph, then the complexity is O(\V\z). If the directed graph is

complete then O(|V[?), since |[E[=|V].

? http://en.wikipedia.org/wiki/Topological sort

105

In the remaining part of the chapter, we introduce another approach to determine nature of
the context dependencies using constraint networks. To help better explain the approach, we

present a simple scenario in the next section.

4.4 Example Scenario: Meeting Room

We present here a rather simple scenario that is used later in the chapter to highlight our the
advantage of our approach of constraint satisfaction problem. The scenario is concerned with
meeting room situation. During the duration of the meeting, it is considered highly
inappropriate to have someone’s mobile phone ringing. In our example scenario, the user has
a mobile phone with him at a meeting in his office. The context aware application determines
that the user is in the meeting after considering location (i.e. the meeting room), time, and
calendar entry about the meeting. If all these context readings indicate that the user is busy in
a meeting at the moment, the context aware application turns on the mute mode so that no one
gets disturbed by any incoming call. In addition to mute mode, the application also turns on
the mobile vibrator to alert the user of any incoming calls. The messages received through
SMS are handled in the same way as the incoming calls. Figure 7 explains the scenario with
the help of a decision tree. When the user leaves the meeting, the change in the context is
sensed by the context aware application and the mute mode is turned off along with the

mobile vibrator.

—{dle)——{Mute = Off}———(iobile Vibrator = Of)
(Meeting

Busy Mobile Vibrator = On)

Figure 7 Meeting Scenario

106

4.5 Constraint Satisfaction Problem

In this section, we present the theoretical and mathematical introduction of our work. An
introduction to constraint satisfaction problem (CSP) is presented, and then its formalization is
specifically explained with the help of the above mentioned example scenario to demonstrate
our algorithm. Later, the complexity of our designed algorithm to determine nature of context

dependencies is derived.

4.5.1 Formal Introduction of CSPApproach

To capture design decisions and the assumptions related to those decisions, we have used
CSP approach to serve as a model. The focal components that can be considered part of CSPs

are a constraint network with a finite domain, and a dominance relation.

a) Constraint Network (CN)

A CN is a set of variables and constraints that are interrelated and define the valid values for
the variables that satisfy the relevant constraints. A variable is used to represent each distinct
piece of information in a system. The value of each of the variable is assigned from a given,
finite domain. At any given instance of time, a subset of the domain of a variable comprises its
set of possible, valid values. The system's view of the available choices for that variable is
represented by such possible values. These possible values are always consistent with all the
current constraints. Apart from possible values, each variable may have an assigned value at
any given time which can be assigned by the user in the first place, or selected by the system
from the set of possible values. The assigned value remains until it becomes inconsistent with
the relevant constraints. Implicitly, a constraint defines the valid combinations of values for a
given set of variables. A simple constraint defines valid permutations of values for a set of n
variables. A 4-tuple is used to represent CN, (V, U, M, C). V = {v;, v,,..., v,} 1s a set of n
variables present in the system. U represents the universal set which contains all the possible

valid values for the variables in the set V. The mapping from variables from the set } to valid

107

values from the set U is represented by M. Constraints upon the variables are represented by a

finite set C.

Domain
Variables Values
Meeting Busy, Idle
Mute On, Off
Mobile Vibrator|On, Off

Constraints

Meeting = Busy => Mute = On

Meeting = Idle => Mute = Off

Mute = On => Mobile Vibrator = On
Mute = Off => Mobile Vibrator = Off]

Tableau 2 Variables and Constraints

A CN that is presented in Table 2 shows the variables, valid values and constraints derived
from the scenario. To specify the value of a variable when represented in a constraint, the term

binding is used.

b) Dominance Relation(DR)

A DR relates dependency among variables to achieve design rules’ annotation. From the
presented scenario, we can extract three pairs of DR, i.e. (meeting, mute), (meeting, vibrator,)
and (mute, vibrator) in which the two variables, mute and vibrator, are dependent on meeting,
and as such, have no reverse effect on the meeting variable. The dependency among the
variables can be formally defined as a relation (u,v)cVx/V, if v is dependent on u. Any change
to u which results in CN’s invalid state by negating any of the constraints, must force v to
adopt a new value which is minimally different from its current one to restore the CN to a
consistent, valid state by conforming to all the constraints. If S is the set of all solutions in a
constraint network then a solution to a constraint network is a mapping of all variables to valid

domain values vveV A s(v)eM such that all the constraints are met accordingly.

108

c) System States

A finite number of states are derived from the CN and the DR. The states provide solutions
to the CN, and the set aggregating such solutions is called S. If there is a solution s belonging
to S in the design decision, with v the variable who can take different values, and u is one of
the values in the solution that v can take, the transition function is represented as d(s, v, u).
Assigning value # to v must be handled in such a way that there is no violation in the initial
valid state. If there is a violation when assigning a value u to v, then the values of the other
variables in the initial state must also be altered to keep the system in a valid state. Updating
the value of the secondary variables must follow the DR. If a variable v’ must be changed to
achieve a valid state after v has got a new value, it must be ensured that v dominates v’. If (v’
v), then there is no need to update v’ as it’s the variable v that is the dependent on v’, and any

change to v will be considered void if v’ hasn’t changed its value.

Meeting = Busy

Meeting = Busy
MUte = Cin
Mobile Vibrator = On

Mesting = Idle
Mute = Off
Mobile Wibrator = Off

Meeting = Idle

Figure 8 System States and Transitions

109

A system’s states of meeting room scenario are shown in Figure 8. As the CN of this simple
scenario has only two possible valid solutions that satisfy the constraints, there are only two
valid states of the system. The system can be in either of the two states that we refer as busy
and idle. In busy state, the variables ‘meeting’, ‘mute’, and ‘mobile vibrator’ have values of
‘busy’, ‘on’, and ‘on’, respectively. Alternatively, the state can be in idle state in which the
variables ‘meeting’, ‘mute’, and ‘mobile vibrator’ have values of ‘idle’, ‘off’, and ‘off’,
respectively. The valid transition between the two states is the resultant of minimal change.
The variable ‘meeting’ is the dominant variable in the both of the DRs that we derived earlier.
So, the transition from one state to another requires change in the variable ‘meeting’ only.
Change in the value of variable ‘meeting’ requires the remaining variables to also adopt new
values to satisfy the constraints, and hence, both variables, individually, are dependent on

‘meeting’.

4.6 Determining Dependencies and NP-Completeness

According to Yokoo (1998), deriving dependency from a CN is NP-complete as CSP is NP-
Complete problem. The constraint in CSP is true if the values assigned to all the system’s
variables satisfy the constraint. Therefore, finding a solution to CSP is equivalent to searching
for an assignment of values to all variables such that all system’s constraints are satisfied. In
our approach, we convert the CSP into a dependency decision problem by using a given CN,
and two given variables, a and b, to determine whether there exists a dependence (a,b) between

the variables.

To proceed with our approach, a CN with two more variables V= V' U {a, b}, and two
additional domain values for the added variables, U = U U {true, false} is considered. A
corresponding constraint is also added to the CN, a=true=>b=true. The variables in CN can
have any values with the only restriction that the values should belong to the set of valid

domain values. But here we have added an extra constrain on a and b to have only the Boolean

110

values of either true or false, and the constraints also ensures that @ and b have the same value
in all solutions, thus any change to @ has a direct impact on the value of b to restore solution’s
validity. Since our approach is derived from CSP and the constraints of CN are subsets of the
CSP constraint set, if there is no solution to the CSP case that can be obtained in polynomial
time, then there is also no solution to the CN case, and therefore, it means determining
dependency is non-polynomial, too. It is explicit that if there is a solution to the CSP case in
the form of s, then there can be only two solutions to the constraint network case. One solution
is when the value of both the variables, a and b, is false, the particular solution called sy, and
the other solution when the variables have the value of frue with the solution labeled s;. As
there is only minimum difference between sy and s;, any change to a causes b to update its
domain value, it shows dependency of b on a, and if there is a solution to CSP case then a and
b have dependence relation. But since CSP is NP-Complete according to Yokoo (1998),

computing dependence relation is NP-Complete also.

4.7 Dependency Analysis and CSP

The CN can be successfully utilized to analyze dependencies on the conjecture that one
entity is dependent on another one, and a change in an entity can have an effect on the
dependent entity, which causes to alter the current state of the dependent entity. In such
scenarios, usually, the prime interest is to determine the influence. This observation helps to
abstract that a domain value of a variable in a constraint network can have only two
possibilities: current state and changed state. The reduction to two states significantly facilitate
in studying the modularity of pervasive systems, and the analysis of context dependencies

thoroughly.

Essentially, in our approach, we consider a CN where each domain can provide two values
to satisfy the variables, and every constraint involves two variables. Later, we will show that

determining dependencies is not NP-Complete by presenting a polynomial time algorithm

111

which is based on CN with the CN having properties just mentioned above. The two domain
values approach is the reason to the polynomial time solution to the computation of
dependency. Any CSP can be altered to another form with only having binary constraints as
mentioned by Bacchus (1998). Since the domain values in the CN can now have two states in
our approach, it can be appropriately stated that one state is true and the other one is false,
which makes the CN an instance of 2-SAT problems. Indeed, our approach is to treat this CN
as a 2-SAT instance as 2-SAT can be solved in polynomial time as proven by Aspvall (1979).
The easiest way to compute dependency relation is to search for all satisfying solutions and
then get a construct and then obtain the remaining solutions in polynomial time as shown by
Feder (1994). This seems rather tempting approach but soon, the state explosion problem
surface up, and since in the worst case scenario, there are exponentially large number of
solutions that makes this approach non workable for large domain space as predicted by Clarke
(2001). The subsequent section shows that our algorithm is independent of the number of

solutions, which help us to avoid the state explosion problem.

4.7.1 Dependency Analysis Algorithm

We continue with our earlier example scenario to explain our algorithm to determine
context dependencies. The approach we adopt is based on a graph structure generally employ
to solve conventional 2-CNF problems. This graph structure is called Implication Graph, and
we utilize it to construct another graph structure, called Dependency Graph. The Dependency

Graph is built to provide dependent variables’ pairs.

d) Implication Graph

In the first part of our approach, we develop an implication graph, as done by Clarke
(2001), which has two vertices for each of the variable in the constraint network as the domain
values in our case can only have Boolean values. We build this graph so that we can model the

constraints present in the constraint network. An implication graph is a non-symmetric directed

112

graph G (V, E) composed of vertex set V and directed edge set E. Each vertex in V represents
the truth states (i.e. either true or false) of a Boolean literal, and each directed edge from vertex

" In

u to vertex v represents the implication "If the literal u is true then the literal v is also true
Figure 9, the implication graph of the example scenario is shown where each constraint has

two vertices for corresponding Boolean values.

Figure 9 Implication Graph

e) Dependency Graph

In the second part of our approach, we develop a dependency graph using an implication
graph. In the implication graph, we have two edges, in the first instance, between the two
vertices, and two more edges for the other two corresponding vertices. We initiate the
construction of the dependency graph by following the rule in which we keep the edges
between the vertices if there is any dependency exist, otherwise if a vertices cannot influence
the other vertices then the edges are removed between such two vertices in the implication
graph. Formally, for two variables a and b, if (a, b) and (b, a) are not valid, we remove the
edges (a, b), (a’, b), (a, b’) and (a’, b’) from the implication graph .We repeat the rule for each

of the vertices, and at the end we have our dependency graph, as shown in Figure 10.

* http://en.wikipedia.org/wiki/Implication_graph

113

Meeting = Busy Mute = COf

Meeting = Busy Mabile “ibratar = O

hute = OM -|—d

Meeting = Idle Mute = OFF

Meeting = ldle

Mohile Wibrator = OFF

Mute = OFF

Figure 10 Dependency Graph
4.7.2 Complexity Analysis

For determining the complexity of our approach, we need to consider the running time
complexity of the two main components. Let # be the number of variables involved in the CSP,

and m be the number of constraints that need to be satisfied in the CSP.

1 Construction of Inplication Graph — Ofh+m)

2) Construction of Dependency Graph

a1 Selection of Dotninant Edges — Oykn)

by Femoval of [nvalid Edges — Ofin)

114

So, the overall time complexity to determine dependencies is O(n+m). The graphs
constructed in our approach also use space corresponding to given variables and constraints,
i.e. 2n nodes and 2m relation edges, resulting in both polynomial time and space complexity.

The chapter provides a dependency analysis approach based on constraint satisfaction
problem for the context aware ubiquitous services. Context aware services are usually
developed using context models and concepts that are informal, lack any clarity, mostly aimed
at a particular application domain. The dependency analysis may reveal a lot about
dependencies among ubiquitous services, and for each dependency some possible dependency
reduction strategy may exist that need to be studied in the future. But the question is how to
determine and manage all these dependencies, as new dependencies may get introduced due to
reduction of a previously existing dependency. As a consequence, some dependency reduction
approaches will introduce new dependencies, and some dependency reduction strategies will
introduce new possibilities to resolve certain context dependencies. The issue of constraint
solving to determine service dependency has got its complexity reduced from NP-complete to

polynomial time complexity through our approach.

The future work that we envision regarding our approach involves enhancing the
algorithm further by introducing dependency confirmation logic. The essential task will be to
evaluate the pervasive systems with high coupling and direct dependencies in comparison to
ones with low coupling and indirect dependencies.

A formal model is presented in the next chapter to model context dependency using

predicate logic and set theory.

115

5 Modelling Context Dependencies

5.1 Context Dependency Representaion
The rapid technological development in wireless networking and the emergence of a

variety of mobile embedded computing devices has resulted in the spread of the applications
of computing from work and office to more dynamic environments in our lives. This has led
to potentially phenomenal growth in the ubiquitous computing that uses small computing
devices; interconnected and continuously communicating with each other, helping the users in
carrying out tasks in their daily life. It is widely acknowledged that the success of pervasive
computing requires a change in the design of such applications as mentioned by Norman
(1998) and Henricksen (2001). The dynamic nature of the ubiquitous environment requires
pervasive applications to be capable of reacting appropriately to change in context in short
time, without user interaction. In order to meet such requirements, the pervasive systems need
to be highly responsive to a change in context.

Modelling of context dependencies is an important step in analysis. Characterization,
representation and followed by detailed analysis of context dependencies is essential to
accurately model a pervasive system. It is important to identify context dependency among
context-aware applications to determine the impact and extent of a change at a context source.
What is required to achieve such insights is a formal characterization of context dependencies.
Such formalization helps in a unified approach to context dependency analysis. In most of the
related research literature, it is implied that modelling context dependencies can be simply
achieved by a directed arc on a network graph where the context source and context consumer
are the nodes of the graph. The approach in this chapter attempts to formalize the definition
and characterization of a context dependency to better understand the effects of context

dependencies in a pervasive system in a more unified way.

116

Much of the research literature takes the definition of a general dependency between
modules for granted, and if any definitions are given, they vary widely among the few that we
have encountered. Few consider dependencies as a first-order logic formulas as constraints in
database terminology [Hall, 1997; Crestana-Jensen 2000; Thalheim, 1998]. Some studies have
presented higher order logic, like Prost (2000), while few are based on probabilistic approach
expressing dependencies as conditional probabilities among specific variables and only
consider dependencies as a statistical problem [Briand, 1998; Levinson, 2000;
Subrahamanian, 2000]. Still, most consider dependency a direct offshoot of client/server
approach [Rumbaugh, 1998; Yu, 1996] while few consider dependency as functional such as
[Keller, 2000] or as data dependency only [Papazoglou, 1997]. A detailed characterization of
dependency along with its various “dimensions” is presented in [Keller, 2000] in addition to
the work done in [Prost, 2000] that also took “type-based” approach to dependency analysis.

To understand context dependency, the thesis takes the Realist’s view [Hayes, 1994] where
the assumptions are that “a set can be a set of anything” and “the universe can be physical or
abstract or any mixture”. Allowing this perspective, an entity can be anything which is a
member of this set and can be modelled. This entity can be an object, a concept, a system, an
organization or anything. Another assumption is that the entities in such a set are not static;
they can change their state or adapt new behaviour. At this moment, there is no rush to define
a change; rather we just acknowledge that it exists. The change in an entity can be a part of its
nature or is influenced by some other entity outside itself. It is this second kind of nature is
under consideration in this thesis. Taking these assumptions a step further, it can be assumed
an existence of a relationship among various entities exists. This relation implies a potential
change. The change can propagate from one to one or one to many entities.

The current approaches to context modelling lack solutions regarding efficient context

dependency modelling that make it difficult to develop capable context aware systems. The

117

main areas that we reckon for lacking various features in context aware systems are the
context quality, diversity and dependency management. These have to be addressed to make
context aware applications more resource efficient.

Before addressing the issues of context dependency, a formal analysis of dependencies is
required to better understand the problem. Dependency analysis can help to choose sensible
sets of loosely-coupled context dependent applications, with only absolutely required context
dependencies or other context information. Context dependency analysis can help to
determine exactly which of the derived contexts rely on a context source, C, along with the
thorough nature of such dependencies. It must be determined which contexts are affected
directly and indirectly, if there is any change in C. If C is not available in the overlay network,
is there any other alternative context source, C,, which can be utilized to provide the
dependent context aware applications with relevant context information. The analysis can also
help to determine the context dependency of C itself on other contexts, and how it affects the
subsequent derived context if its derivation is delayed or even halted all together. The
complete context dependency analysis of a complex ubiquitous system determines the context
dependency hierarchy among the participating context aware applications and context
sources. It facilitates the breaking down of large complex systems into smaller, loosely-

coupled components whose complexity can be analyzed and managed more thoroughly.

5.2 Context Modelling Approach

Broadly, we can classify context modelling approaches in to two categories as presented by
Christos (2007):
- Context Theoretic Modelling: In such an approach, the information regarding physical
entities are fused together to represent context. The information regarding entities is
constantly changing due to the dynamic nature of the ubiquitous environment the context

aware systems operate in. There are two common ways to represent context in context

118

theoretic modelling approach. It can be situation centric, as the context can be derived from
the events involving the subject entities, or it can be activities themselves that can be utilized
to describe situational context.

- Context Conceptual Modelling: In such an approach, context information is described as
concepts and the relations among different concepts are modelled to give a better view of the
system and interactions in it. The conceptual modelling approach categorizes context based on
the “prevalent characteristics”. Context conceptual approach can also be further divided into
two alternatives. In one of the two approaches, conceptual graphs can be employed to
describe context information. Concepts are represented as vertices and the relationships
among them are represented with the corresponding edges. The second approach is based on
the sets of prepositions to describe context.

In the following section, we present a formal model for context dependency.

5.3 Dependency Abstract Model

Handling context dependency in ubiquitous systems is complex as it requires detailed
knowledge of the distributed system. The complication involves reasoning, regarding
approaches to context dependency issues, and algorithms that attempt to manipulate
dependencies efficiently. In such situations, a mathematical approach to the problem is
preferred for thorough analysis. Reducing context dependency to just Boolean expression is
tempting because of its easier and simple approach, but such a model conceals the structure of
the original problem. The proceeding section attempts to develop an alternate model sufficient

enough to capture context dependency along with retaining the structure of the system.

5.3.1 Dependency Model Assumptions

Our dependency model is based on the following assumptions:
— Mobile devices. A description of the current state of each of the mobile devices’

resources is known to the system so that such information can be utilized when considering

119

the solution to context dependency issue. Any slight change in the device resources may
influence the suggested optimal solution.

— Application and services. Applications are considered to be composed of several
dependent services. The state of services and their attributes need to be taken into
consideration in order to achieve a complete model of the system. The dependency resolution
is then attain by considering both the applications’ and services’ constraints.

— Users. Users may have preferences regarding the applications and services that need to be
loaded on to their devices for certain usage. Preference levels can also be utilized for the
selection of services or applications. Such user preference may influence the dependency

resolution process.

5.4 Basic Model
The targeted entities represented in this basic model are context types, context data
available from various sources, and the context dependencies among them. Context types are
denoted by CT,...; context nodes can be represented by Cly,...; and context dependencies
can be represented in the form Cy—{ Cyy,..., Cy,} which shows that a context node, Cy, is
dependent upon certain context nodes { Cyy, ..., Cy,} for gathering context information.
The state of an entire system can be represented as follows:
e (s the set of all the context types.
e Sis the set of all context nodes present in the system.
e D is the set of all dependencies.

Since, context aware systems are based on limited resources, C, S, and D are all finite sets.

5.5 Dependency Model of Ubiquitous Systems
The precedent abstract model is now being expanded to model context dependencies in

ubiquitous systems.

120

C is the set of all the context types, e.g. location, time, etc.

S 1s the universal set of all context nodes, Cy;, present in the ubiquitous system.
These context nodes can be of two types, either the node is generating context and is
called a Context Source, Cs, or the node is using context and is called a Context
Consumer, C¢. It should be noted that a context node can act as a context source and
a context consumer at the same time but not for the same context type. The context
source involved in producing a certain context type is indicated by Cs:CT;.
Similarly, when a context consumer is utilizing certain context type, it is denoted by
Cc:CT;. A context consumer is always utilizing at least one context type; otherwise
it is not the part of a context aware ubiquitous system. When a certain context
source is not being utilized in the ubiquitous system, it is indicated by Csy.

A context node, that is dependent upon some context information, can represent its
preferred choice in terms of context type and its context source that it is utilizing.
This representation is a function that maps the relationship between the context
consumer and the context source. If a context node is using context type, CTj,

obtained from a certain context source, then this relation is represented as:

Cyi = {CT;: Cs;}

A set is formed by adding dependencies to it that are the result of a context node
being dependent upon certain context types and their sources. For example, if a
context node, Cy, declares a dependency on a context type, C7;, which can be
obtained from three different context sources, Cs;, Cs», and Cs3, and Cg;z is itself
acting as a context consumer for context type, C7>, then this set of dependency is,

D(CN):{CT1Z CSI . CT]I CSZ , CT]Z Cs3 . Csj.'CTg}

121

The context dependency super set of the ubiquitous system can be defined as,

D= OD(CN,.) V CveS A n=|S|

i=1
where D is an empty set to start with.
e A context aware system satisfies a dependency, D, for a context node , Cy, if in the
current state:
Cy—{ Cui ..., Cnn} AV Cy; € D(Cy)
The above expression means that the dependencies of a context node are satisfied if
none of them is violated in the system, i.e.

Cy # {CTZ CS} lfCS & D(CN)
5.5.1 Context Conflict

Effectiveness of context applications is largely reliant on sensors’ reliability. There always
exists some amount of doubt regarding consistency of context aware systems that are
dependent upon device sensors for sensed inputs which are inherently uncertain or even
incomplete sometimes due to unreliable readings of the sensors. In ubiquitous system, it is
plausible to have conflicting contexts due to loss in data transfer, or erroneous sensor reading.
If such a case occurs, the context aware application will have to decide which one of the
context sources to trust. The trust preference can lead to complete screening out of the
suspected data among the conflicting context sources.

Consider context source, Cs;, to have the same context type as another context source, Csp,
serving a common context consumer but there seems to exist disparity among their values
when sensing or deriving the same attribute. The context application has to make a decision of
preferring one of the context sources to cater its contextual data requirements. If Cs; is
chosen, then Cs; along with Cs, have to be added to the dependency set for that context node.
For example, if a contest node, Cy, declares a dependency on a context type, C7;, which can
be obtained from two different context sources, Cs;, and Cs,, and Cy; is preferred, while Cg; is

122

itself acting as a context consumer for context sources, Cs;, and Csy; then this set of

dependency is,

D(Cn)={CT;: Cs;, CT;:Cs;z, Csz: Cs3, Cs2: Csq, CT1: Cs; A= Cso}

The set indicates that Cs, will not be utilized when Cg; is available, and the effectiveness of

the context aware application is dependent upon this condition.

5.5.2 Context Acquisition

A formal approach is mathematically a sound approach to model context dependency, along
with a way to determine valid context dependencies at run-time. To further extend the model;
in this section we present a solution to show the frequency of context requests. If the
frequency of a particular context-type’s requests are greater than a certain numerical threshold
in a given time period, we can say that the demand for that context-type is higher and it needs
to be made promptly available in the system to ensure the successful working of the
dependent context aware applications. In our model, we denote the frequency with symbols
‘R’, for rare requests, and ‘O’, for requests that are often communicated to the context source.
The following dependency set shows that the requests for C7; are not very often, and the node

that used to serve this request is rarely queried in this context:

D(CN):{CTji CS], CT]ZCSZ, ngl CSj, CSQ: CS4, CT[.‘ CS] A CSQ, CT[Z R}

One another important aspect in any context aware system is the policy adopted for the
distribution of contextual data. Many context aware services ask for a context from the source
whenever there is a need for one. This process is like any other query-response approach,
where the context consumer asks for a particular context from the context source according to
its needs. The other way a context consumer can acquire context is that it get itself subscribed

to the context changes. The context source sends the contextual data to the context consumers,

123

who have them subscribed to the context source, whenever there is an update in the context.

For the subscription approach, the dependency set will be as follows:

D(Cn)={CT;: Cs;1, CT;:Cs, Cs2: Cs3, Cso: Csy, CT1: Cs; A= Csa, CT: Rsup}

And for the query-response approach, the following dependency set is described:

D(Cn)={CT;: Cs;1, CT;:Cs;, Cs2: Cs3, Cso: Csy, CTy: Cs; A= Cs2, CT1: Roue}

The model of context dependency management that we developed is based on the set theory
and predicate logic. It can be categorized into context conceptual modelling. We faced hurdles
when representing context dependencies as they can be static or dynamic, sensed or inferred.
We acknowledge that our approach based on set theory and predicate logic cannot be
compared to Entity-Relationship Model and the class diagrams of UML, which are more
natural approaches to model systems, but our approach does succeed in representing
dependencies more logically.

The forthcoming chapter of the thesis present approach to reduce context dependencies, with
the help of profile context that we propose to reduce dependencies in an ad hoc overlay

network based pervasive system.

124

6 Reducing Context Dependencies

6.1 Requirements of Context Dependent Access

A mobility oriented ubiquitous environment provides unified contextual information and
format but also allows different context providers to get involved in the process. It is quite
possible that the information format is completely different from the other context providers’
data schema. The involvement of different context providers raises different problems like
translation, compatibility and coherence and thus when the user switches from one provider to
another these problems could cause delays and misconception, and hence must be addressed.

To overcome these problems the information management systems must allow users
different queries like, whether the unified information is independent of the specific context
provider and is it correct with respect to information schema.

To enhance the contextual information obtained from various sources, and then, make
sense of all such information about a single entity or user is one of the more demanding
requirements of any context model.

Because mobile communication is not ideal or free of errors therefore, its discontinuous
nature enhances the issues of compatibility and coherence. It is possible that the context is
provided by the same provider but still because of mobile communication environment the
same information is interrupted. Another issue is of adeptness.

In comparison to static distributed computing environment like local area network, the
ubiquitous computing is more vulnerable to problems discussed above and thus required
demanding information for integration. It is because different services providers are offering
their services and the context aware applications are able to access the context from these
different sources. Thus the problem arises when the context is not accurately reached to the

context aware applications when the user is at the overlap of two context aware services.

125

Therefore, to overcome this problem it is imperative that the application must feel that the
context is retrieved from only one source even if in the background different sources are
providing the context. Furthermore the problem of adeptness is more complex than in static
environment. In ubiquitous computing different factors like device features, interest, and

capability of integration are considered.

6.2 Context Dependent Access Design

Minimizing dependencies among different entities of a system is a well-recognized need.
[Huynh, 2007]. In the Open Distributed Processing (ODP) reference model of Blair (1998),
the idea of transparencies was presented which is a mechanism that allows hiding certain
complications during the development phase of distributed applications and platforms. One
example can be the location transparency, presented by Blair (1998) that hides the details
regarding the process of finding the location of distributed objects. Logical names are used to
find such objects rather than the physical addresses, giving more semblances to the design and
development process.

We based our context dependency reduction approach on this similar idea by hiding the
complexities of querying individual devices for context and presenting them as part of the
profile context. The important aspects of our approach are:

- The context requirements must be specified in a formal context modelling language
rather than a programming language to make context dependencies more visible for
system’s analysis.

- Our approach can help to gather context information from various heterogeneous
devices that are part of the same ad hoc network.

- Our context dependency reduction approach can be utilized with an interface that
allows the luxury of not knowing the exact physical details of each individual context

source.

126

- Our context dependency management approach is responsible for interpreting the
contextual dependencies to:

o Initialize a context dependency process when a new context source is
discovered by one of our previously mentioned approaches, select and create
that dependency in our formal model.

o During real time, keep looking for other sources of same contextual
information to have the information about the alternative sources present in the
system in case of failure of context acquisition from the current source.

o Reducing context dependencies by aggregating device contexts into a profile
context at one of the super nodes in an ad hoc network if the devices belong to
the same user.

When a context source leaves the system and its context is not accessible anymore, or
better quality context source becomes available, our approach tries to change the context
dependency. When the context consumer doesn’t require the context anymore, the
dependency between the context source and consumer is removed from the system.

The super node can help to store the information regarding the dependency among the
different agents in the ad hoc overlay network. The context retrieval can be either request
based or subscription based. The implementation of request based is simple as the system has
to service the context queries as they are executed, finding the relevant context information
and forwarding it to the context consumer. For the subscription based approach, the
dependency has to be stored in the super node of the overlay network. The mechanism is
followed on the basis of application specified subscription condition. It can be either periodic
updates or based on notification if there is change in the context information from the context

source or the context data is updated.

127

When a device context dependency is discovered in the system, our approach retrieves
the dependency and creates it as a component of profile context which serves to store that
particular device context at one of the super nodes. This super node with profile context then
act as a single point of contact for the applications to acquire the contextual information
pertaining to that user who is the owner of such device. The super node can provide the
context based on particular requests or as a periodic update, to the context consuming

application or service.

6.3 Properties of Context Producer

Some of the properties of context producers that present challenges to our approach to
reduce context dependencies are:
- Distributed: the context is provided by a multitude of various physically distributed context
producers and the problem that they represent is how to discover relevant, alternative context
producers and how to provide for the exchange of context information.
- Dynamic Availability: the context producers can physically enter or leave the system,
common especially in ad hoc networks, at their will. This creates a problem for context
consumers as they face uncertainty while asking for a particular context. Therefore, the
presence and availability of any context producer is not guaranteed in ubiquitous computing.
- Dynamic quality of context: As context is obtained from different sources, so the quality of
gathered context is dependent on the reliability and quality of sources that provided the
contextual data. Therefore, improving the efficiency and accuracy of context aware
applications require incorporating at least an aspect related to dynamic quality of the
contextual data.
- Heterogeneous context models: Same type of context can be provided by various context
producers but they might not have the same context model for storing and representing the

contextual information.

128

We have developed our context dependency reduction approach considering peer-to-
peer ad hoc networks. The plan is similar to the one in Capra (2001) which uses meta data for
transfer of context information. XML can help to structure the contextual information easily
and also making it easier for applications to access and process the contextual information.
Easy access to specific fields is the main advantage of XML based formats. An example XML
structure is shown. It shows the context information in regards to the scenario discussed
earlier in one of the previous chapters. The profile context is prepared at one of the super
nodes by aggregating device context in the format of XML.

<context type="location">
<status value="meeting room"/>

</context>

<context type="busy">
<status value="yes”/>

</context>

<context type="text">
<status value="ON”/>

</context>

<context type="voice call">
<status value="OFF”/>

</context>

6.4 Context Acquisition

The context acquisition process is a vital feature of any context aware system. Most
approaches try to acquire the device context instead of the “profile context”; each device
owned by a user is contacted individually for the purpose of acquiring data relevant to the
user situation. Context published by a device fails to capture the overall picture of user

situation in comparison to context obtained from multiple sources that are aware of their

129

mutual existence, and can provide better user context working in collaboration among them.
User context is usually dependent upon two or more devices’ context.

Despite their potential widespread applications, context-based services are still in infancy
because the context gathering architecture is based, more or less, on query-based silo
framework as shown in Figure 11. Such a framework is susceptible to numerous issues; most
common of them are bottleneck performances and high probability of failure because of
single point of contact. If the server-client approach is employed to realize a context aware
service, it can be easily imagined that servers will soon be overloaded with queries, affecting
their performance. The dynamic nature of information to be handled in a ubiquitous
computing environment is huge, and the numbers of queries increase with time as more users

join the network.

Context

® €2 Context
@®w g - -

Figure 11 Query-based Silo Framework

130

Problem with such architecture is that if there are N applications asking for the context
from the device, the device has to reply to N queries, which puts quite a lot of load on both
the network and the resources of the device itself. Current context sharing applications
provide user’s context but such context is device-specific only, as it fails to provide the whole
picture of the user situation. If an application needs to get the whole context of the user, it
needs to query every device currently in use of the person.

In this chapter, we aim to combine the idea of profile context and overlay network together
for the purpose of proposing an open framework for context acquisition which also address
the issue of context dependency. This approach enables the notion “Context is always
available”, based on the feature that the user’s context is accessible even if he is offline or his
devices are switched-off. This is possible because profile context keeps the latest context of
the device in overlay network, and is available even after the device has been turned-off.
Thus, an application can always access latest context avoiding delay resultant of context
dependency.

The design of our approach was driven by the following requirements:

- Adoption of a generic and flexible context model that could be dynamically deployed
in an ad hoc environment.

- Improved performance, allowing fast and resource efficient access or dissemination of
context information by reducing the intensive use of network and memory in resource
constrained mobile devices.

- Support for context-related communication, facilitating the use of context aware
services from different kinds of devices, operating systems and execution
environments.

In our proposed approach, principally there are three components that interact to create,

disseminate and consume context information in the form of profile context. These

131

components are context producer, context consumer and the context service. These
components are part of an ad hoc network acting as entities and are represented by
applications and devices that can be either mobile or not. The context provider is a network
entity that is responsible for sensing context information of certain type. It is most of the times
the generator of a raw, sensed data. The context consumer is an entity interested in a obtaining
a certain type of context information. A context consumer is usually a context aware
application that needs context data to perform its functions. The context service is accountable
for aggregating, storing and disseminating profile context information in answer to the
requests of context consumer.

The context service is assigned with certain responsibilities. The foremost responsibility of
context service is to aggregate context from different devices and sources owned by the same
user into a comprehensive profile context. Another responsibility of this context service is
provision of asynchronous communication which means that it helps to deliver context
information in the form of profile context to the context consumers. This context service is
running on super node and it adopts a publish/subscribe approach to handle subscriptions of
events based on context changes. The context service is also responsible for maintaining a
distributed hash table to help store the profile context information in the overlay network and
directs the requests to appropriate resource sufficient peer nodes in order to answer a query
regarding a specific profile context pertaining to a certain user.

We follow an XML-based profile context model for context handling, instead of an ontology-
based model, because, in our opinion, the ontology-based model requires resource hungry
engines for processing ontology which hinder context management on resource-limited
devices.

The deployment of such context service requires two main steps for the purpose of

communicating context information. They are context modelling and then processing that

132

context model. The premier stage consists of modelling the context information into profile
context using an XML-based approach. In an XML file, there are tags that identify user
identity, device identity, characteristics, attributes, context history, quality of context
attributes and the context information itself.
In the processing stage of the context model, the context service reads the XML file, and takes
the following tasks:
- Validates the syntax of the XML file
- Updates the profile context for storing in the new context information using distributed
hashing
When a developer of context aware application wants to utilize context information
available in the ad hoc network, he makes the application reads the contents of the XML file
with the help context model processing module to understand the semantics and meaning of
the context information. Context dependencies among different context entities are also

included in the XML file.

6.4.1 RDF-based Profile Context

A Resource Description Framework (RDF) is a knowledge representation language with
resources for modelling context information. Thus, we use RDF for describing Profile
Context. The RDF statement is usually represented as a triple, which contains a subject, a
predicate and an object node as shown. We have designed the base structure of the triples,
used in the Profile Context including the types of properties (representing a predicate node),
the range of values belonging to each property and the resource types that has been given
property called “domain” and “range” in the RDF Schema, respectively based on the set of

templates.

6.4.2 Functions Requied in Profile Context

The common functions required in the profile context are described here:

133

Context Aggregation
The communication between the context generator and the context service running on the
super node is based on the message exchange with an XML document on transport layer
protocol like SOAP. Since RDF is intended for static descriptions, no procedure exists for
dynamically updating triples in RDF. Thus, we therefore have to design a dynamic update
module in the profile context aggregation process. The input context data is described by
XML. An XML based input profile context is converted into an RDF based input profile
context using the style reformat module. Then, the profile context is updated using the profile
context update module. The style reformat module is described by eXtensible Stylesheet
Language (XSL). In the profile context update module, the required functions here are:

- adding triples

- updating literal values

- unifying the same representation of triples.
We intend to implement this update module on semantic web framework like Jena.
Querying
RDF Data Query Language (RDQL) is an SQL like query language especially designed for
RDF, which is designed in Jena. RDQL provides methods in which the application developers
can write the declarative statements of what should be retrieved under certain given
conditions. Thus, we can use RDQL to retrieve the target profile context or the values from
the profile context.
Notification
In real life scenarios, multiple applications run simultaneously and can access the RDF
statements in the profile context. Any modification in the profile context must be detected in

order to detect the change in that particular context. Then, the context service provides access

134

to updated context information when it receives the notification from the profile context
update module.
Privacy

Users are rightly concerned about privacy issues, which arise particularly in collecting and
exchanging context profiles over the ad hoc network. Correct profile context must be
exchanged with the context consumers in order to provide better context-aware applications.
So, there is a balance that needs to be achieved between allowing personal context access and
using context aware applications. In aggregating profile context from various sources, make
sure that the communication channels are secure. And in distributing profile context, effective

management is required to regarding the access rights to the profile context.

6.5 Contextual Events

Contextual events characterize notions about the surrounding environmental and
circumstances that a context aware application is concerned with. A context event is defined
in terms of the values of context attribute and the predicates.

Contextual events are the elementary components for constructing asynchronous
notifications, and helping to various adaptations in context aware applications. Since context
aware applications modify their behaviour in response to contextual changes that are usually
identified by a contextual event. A simple example of a context variation is the drop in energy
levels of a mobile device in an ad hoc network. The context aware application would be
conceived to respond to such a change by subscribing to the corresponding contextual event,
and thus avoiding the overhead of polling that it would have been needed to detect the change

in context.

135

Query Application Demands

Where is the user? Get the current location of the user if present in the

office building

How many people are present in the | Get the aggregate number of the people whose current

meeting? location matches with the meeting room

Tableau 3 Examples of context query and the application demands

To efficiently access and disseminate context information, the context service differentiates
between the static and dynamic parts of the context information. This approach helps to adjust
context evaluation and its distribution according to the characteristics of the context
information and the current execution environment. For each such part of context information,

the context service chooses the most suitable strategy for ensuring the availability of context

information.
Contextual Event Response
User has entered the office Turn on his desktop computer and play new received

messages on the telephone

User is moving in the office building | Update the user location in the office database

Tableau 4 Examples of contextual events and the corresponding application responses

6.5.1 Static Context

To improve access performance based on the context information, the context service should
deal dissimilar types of context data differently. The nature of the context information,
obtained after processing the XML file, lets the context service select the most appropriate
procedure to manage that certain context information. When a context service processes a

context update, it assigns it a category for context access. The context service uses such

136

context access category to adjust its behaviour at the runtime. Since static context information
that has an attribute which always has the same, constant value doesn’t need to be provided
multiple times to the context consumer, for example, the type of OS and its version that is
running on a device. When handling such kind of context, the context service provides and
updates this context attribute only the very first time when a context consumer requests such
context. Management of context information belonging to local and different domains is
another aspect of the task performed by the context service. Context information belonging to
local domain is provided by a device in the same network that communicates its execution
context like available memory. While on the other hand, context information belonging to a
non-local, alien domain is provided by an external context provider. Therefore, access to non-
local context information requires at least one hop in the ad hoc network. The context service
stores local context information belonging to local domain in a local instance of the context
repository i.e. peer node, which improves the performance for context information access

times.

6.5.2 Dynamic Context

Besides handling of the static context information, the context service can also supports
dynamic context. When a mobile device acting as a context consumer joins the overlay ad hoc
network and registers itself at the context service, it can then describe an explicit contract for
consuming certain context information from the context producers. These contracts are based
on the context consumer’s requirements regarding the details of the context information that is
asked for. Freshness of the context information can be an example of such a requirement
demanded from the context producers in the context information provision.

The approach is based on the peer-to-peer protocol used to exchange context between context
producers and context consumers over the ad hoc overlay network. In detail, it is an XML-

based application level approach that is aimed at providing dependable context information

137

among nodes that have joined the overlay network and also save resources on the resource
constrained mobile devices by providing aggregated context in the form of profile context.
The approach uses a naming scheme based on the format of universal resource identifiers
which identifies context information stored in the overlay network. The URIs easily enables
unique identification of context information. Moreover, with these URIs it is also possible to
relate to the available context information in a universal way which is both human and
machine readable.

Our approach forms profile context storage in the ad hoc network that uses a Distributed
Hash Table (DHT) to map URIs. The main advantage in using a DHT is that entries can be
found in O(log(N)) time. The context service enables the exchange of context between
context sources and context consumers with the use of the distributed lookup system. These
context sources and context consumers are formed and combined in a single endpoint on the
end devices which is a super node. The super node corresponds to a node in the DHT and in
particular, the super node enables context aware applications to use the context service for
distributing global context information between various entities in the ad hoc network and

within certain time limits.

6.6 Overlay Network

One promising approach for realizing efficient context retrieval framework can be overlay
network. An overlay network can efficiently manage network resources, and distribute both
the processing load and the network load evenly in comparison to a server-client system.
There have been many research efforts regarding information retrieval in an overlay network.

The context information of each device is acquired by the API on one of the super nodes in
the overlay network. The super node helps to store the information in the peer nodes along
with the context provided by the other devices own by the same user. The profile context is

stored in the XML format. Applications requiring user context can enquire one of the super

138

nodes for the address of the peer node storing the XML file in the overlay network. The
applications can also have them registered with a super node to receive the profile context
whenever it is updated, or when a device context is added to the profile context. There can be
other options apart from these two, e.g. the context is regularly provided to the application
after an already agreed upon time interval. The storage and distribution of context data is
handled by the APIs running on the super nodes. The list of subscribing applications, that
want to have context information forwarded to them, is maintained by the API on the super
node and notifications are sent to the relevant applications whenever the stored context is

updated in the overlay network.

6.7 Profile Context Management
Profile context is the main idea of this chapter, and this section will highlight its
management aspects, specifically how to manage profile context information in an overlay

network. But first, we define profile context itself.

6.7.1 Profile Context

Almost all of the research literature has viewed gathering context as a server-client problem
with context only being obtained from a single device, which can be appropriately called
device context. The idea of “profile context” is being promoted in this thesis which can be
rightly considered as a collection of context from various devices and sources whose context
information is related to a common single user, as shown in Figure 12. Such a context engulfs
all the context information efficiently from numerous resources, which can be then

successfully utilized to determine current situation of a user precisely.

139

+ Context

Update
@ €2 b
“ — —— O — Overlay Netwark
USER o

 Profile Context

Context API

Application

Figure 12 Profile Context Management Framework based on Overlay Network

[T —— Application

As mentioned before, profile context rather device specific context is utilized which

enables friends to see how they can reach the user. With the increasing dependency on Web

2.0, extension to include social networks to have access to profile context is a realistic option

as depicted in Figure 13. Cloud computing based services are on the rise which can be one of

the options in the future to replace overlay networks, eliminating scalability issues.

= .I ' Context
= Update

' Profile Context

Figure 13 Profile Context in a Cloud

myspace.com

Linked [}

a place for friends

... ul ‘E Thelod V]

®ecbo

140

Profile context can be formally defined as a finite set, Pc, of all the devices’ context
belonging to the owner of the profile. If each of the device context is represented by Dc;, and

there are N devices providing the user context, then

Pc={Dci, Dc2, Dcs... Deny (1)

The context information present in whole of the overlay network can represent profile
context of one or more than one users. The accumulated context, 4¢, can be represented as a
superset of all the profiles’ context in the overlay network. If there are M users in the overlay

network, then

Ac={Pci, Pc2, Pcs... Pcu} ()
6.7.2 Context Update

For the purpose of better understanding the context update process, a sequence diagram in
Fig. 14 is presented. There are two devices belonging to a user that act as the source of
context information. Each device publishes its context whenever there is a change in the
context. A super node in the overlay network running the context API is provided with the
device context. The API then forward the context update to a peer node using appropriate
hashing scheme. The peer node accepts and stores the context file. When another device
belonging to the same user publishes its context to the context API, it is forwarded to the
same peer node which stored the context of the user’s last device. The peer node aggregates
the context from the two devices into a single XML file. It should be noted that federated-
identity provides the mapping between different profiles of the same person obtained from

various devices.

141

Dlevice 1 Device 2 Context AP |on
=uper Mode
|UpdateCnntext | |

Feer Mode in
Dverlay Metwork

UpdateFrofileContext |

Figure 14 Sequence Diagram of Context Update

6.7.3 Context Retrieval

Context retrieval in an overlay network is quite simple in a sense that applications only

need to send their query to one of the super nodes that take care of context retrieval for the

respective applications. In the sequence diagram presented in Fig. 15, the application requests

the context of the user from the super node running context API. By using appropriate hash

function, the super node finds the address of the peer node storing the profile context. The

peer node is informed of the context request from the particular application. The profile

context of that particular user is then forwarded to the context requesting application.

There can be context dependent applications that have subscribed to receive context

information when an update occurs. In this case, the super node takes the responsibility of

multicast-like broadcast as it has more resources than a peer node, e.g. in terms of battery life,

network bandwidth, etc.

142

Application Context AP on Feer Mode in

Super Mode Cwerday Mebwark
|HequestCnntem-[usernani§)J_ |
u FequestFrofileContext{usemame app id]|
ProfileContext u
; T u
| |
| | |
| | |

Figure 15 Sequence Diagram of Context Retrieval

6.8 Example Scenario

We present here an example scenario that can elaborate the advantage of using overlay
network and profile context presented in our approach:

Bob is a medical doctor in the local hospital. He usually performs his duties in the emergency
ward where all kinds of accident patients arrive in the need of first aid. As he is the doctor in
charge of his team, he is required to be in contact with all of his team members. For this
purpose, he keeps his pager on him all the time during his work shift. In case of arrival of new
patient, he is paged on his pager. When Bob is busy with a patient, he sets the pager to busy
so that no one can disturb him when he is providing first aid. For his identification, he is
provided with an RFID readable badge. This badge can also be used to enter different rooms
of the ward after authenticating at the door. This updates the location of the doctor in the
central database. As the senior most doctor on the team, he is also required to sign medical
reports and prescriptions on the digital pad installed in majority of the rooms. Whenever,
there is a document that needs digital signatures of Bob, the context aware application looks
at the profile context of Bob. The profile context consists of current status of Bob in terms of

whether he is busy or not which is obtained from the pager status, and his current location that

143

is obtained from the last reading of his RFID readable identification badge. So, instead of
looking for context information individually, the context of Bob is provided to the context
aware application in the form of profile context. Thus, saving precious time of the doctors by
not interrupting them when they are busy, and the resources that aren’t much left on the
resource constrained mobile devices like pager.

In the next chapter, we present the evaluation of our model. For the evaluation purpose, we

did simulation and use mathematical modelling to formally analyse the results.

144

7 Evaluation

Ubiquitous systems have to deal with variability as context aware applications get deployed in
different execution environment with varying computing platforms. Changing nature of the
computing infrastructure and underlying communication, changes to the context source
induced due to mobility and altering computing resources ask for context aware applications
that are highly efficient at using resource constrained devices and responsive to the changes in
context around the user. Due to the pervasiveness of ubiquitous systems and its demands to
have adaptive behaviour, the performance analysis of context aware systems should be

considered in conjunction with context dependencies.

7.1 Simulation Results And Formal Analysis

Apart from simulation results, formal analysis has also been undertaken using queuing
theory models. In the simulation, the churn rate is assumed to be zero. As described earlier,
the churn rate is the rate at which the mobile nodes join or leave an overlay network. If the
churn rate is high, then the overlay network’s performance drops considerably as the context
information on the nodes, that are leaving the overlay network, needs to be copied or saved on
to other peer nodes. This aspect is the one drawback in overlay network. The packet drop rate
due to signal degradation is also set to zero, as the simulation was conducted to isolate the
difference between device context approach and profile context approach, rather than the
network communication. The simulation was developed in .NET programming environment.
For the purpose of evaluation, we have concentrated on the number of queries in the system,
each time when a service or application requires updated context. We have observed that our
proposed framework shows better performance when the services or applications sent queries
to all the devices owned by same user. If a query is aimed at only one of the devices, the
performance gains in terms of network traffic remains negligible as the aggregated context

factor in our approach does not come into play.

145

Replies Generated in Response to Queries

mDedce Context Approach m Profile Context Appraach

T 234 6 7 08 910112131412 1617 16819 20
Devices

Figure 16 Comparison between Queries generated using Device Context and Profile Context

Performance in terms of traffic generated as the result of queries is plotted in Fig. 16. The
number of users in the simulation was set at 10, and each user can simultaneously own up to 2
devices. Initially, when the overlay network is being populated by the introduction of users,
the performance of overlay network using profile context remains almost the same as that of
device context approach. The number of responses for profile context approach starts to divert
from device context approach when the user starts to have more than one device in their use.
This is due to the introduction of profile context consisting of multiple device contexts and
replaces individual, separate device context. Performance in terms of traffic generated when a
single user introduces more than one device in the network is plotted in Fig. 17. The number
of devices in the simulation was gradually incremented up to 10 devices. The responses for
profile context approach are significantly less than device context approach as the user has
more than one device in his use which allows the aggregation of contextual data from multiple

devices into a single profile context.

146

For further detailed performance comparison between the profile context approach and the
device context approach, we use a queuing theory model presented in Baloch (2010), and also
described in the Appendix, to present a more formal analysis. For the device context
approach, total context nodes are split into two groups; one group with 5 super nodes shared
among the two types of context requests, and the other part consists of context nodes with 2
separate context nodes each to service context requests related to context types I and II. The
contextual data requested belongs to different two types, which means there are two devices
acting as context sources, and each device can be accessed individually by further two

participating nodes in the system beside the 5 super nodes.

Metwork Traffic Generated PerDevice

@Device Context Approach mProfile Context Approach

28

20

15

10

MNetwork Traffic

1 Z 3 4 g B
DevicasPer Single User

Figure 17 Comparison between Network Traffic generated for each device using Device Context and
Profile Context

Profile context approach is evaluated by providing it with 5 super nodes shared among the
context requests without any distinction based on their context types as the contexts are
aggregated into profile context. There are also 4 peer nodes which are used to store profile
context without any distinction of being a context source or not. So the total nodes are 9 in

profile context approach, similar to the numbers in device context approach.

147

In our queuing model, Poisson arrivals for the two types of context request are assumed
with parameters A; and A,. The context requests’ service times are exponentially distributed
with means of 1/p; and 1/p, respectively. The buffer capacity at super nodes is limited to Q =

10. Fair queuing is implemented throughout the analysis.

Parameter Value
A 2.1-3.5
A2 2.5

0 4.0

2 4.7
Device Context Approach 9 nodes
Super Nodes 5
Separate Context Nodes 2 each
Profile Context Approach 9 nodes
Super Nodes 5
Shared Peer Nodes 4
Context Requests 6K

Tableau S Input Parameters

For the purpose of generating numerical results, the parameters listed in table 5 are used.
These input values were used because it was thought that they depict the real time scenario
more accurately. Initially, the simulation starts with medium context requests and then
gradually has to cope with higher load on the network.

The stated comparison results exhibit that the comparative increase in context requests
means queue length is less in the profile context approach than device context approach. The
graph of mean queue length in Figure 18 of profile context approach has increasing trend in

response to increased context requests traffic load. But in comparison to the device context

148

approach, the performance of the profile context approach is slightly better. This gain in
performance is due to the introduction of accumulated context in the profile context approach,

which is the main difference between the two schemes.

Mean Queue Length Comparison
‘lDevice Context Approach B Profile Cordext Approach

J00E-0R

250E00

200206

1.50E-06

Mean Queue Length

1.00E-06

500807

0.00E+00 +

21 2.2 23 2.4 25 2.6 2.7 28 29 30 31 A 33 34 3h
Lambda 1

Figure 18 Mean Queue Length Comparison — Device and Profile Context Approaches

149

Context Request Dropping Probability Comparison

B 0evice Context Approach BProfie Context Approach ‘

400E-15

JA0E-15 —

30015 —

250E-15 —

200E-15 —

150E-15 —

Context Request Dropping Probability

1.00E-15 —

| |
DDDEMD_M, L L m 'm W 1

202223 24 15 26 27 28 29 30 I 13 34 35

Lambda 1

Figure 19 Context Request Dropping Probability Comparison — Device and Profile Context Approaches

Separate context nodes are reserved peer nodes which don’t follow profile context approach
and keep their respective context updates separate from other context types. This might result
in increased context request blocking probability or context request dropping probability
depending on the availability of these peer nodes in the network at the time of context request.

As it can be observed in Figure 19, the context request dropping probability of device
context approach rises sharply due to rapid increase in context request load. Peer nodes can’t
serve any context request for which they don’t have the required context type, even if context
request has to be dropped or blocked due to timeout. Device context approach is easier to
implement but has the risk of underutilizing the network capacity, and increasing the blocking

probability of new context request generated in the network.

150

The results indicate that queue discipline also plays major role. The queue discipline in this

study is FIFO, first-in first-out, where no context request is given priority. If the performance

of the profile context approach has to be further improved for a certain types of context

request, then a prioritized queuing approach should be adopted.

Context Request Blocking Probability Comparison

O Device Context Approach B Profile Context Approach ‘

4.00E-15

J50E15

J.00E15

250E15

200E15

1.80E-15

Context Request Blocking Probability

1.00E-15

=

5.00E-18

0.00E+00 . e e e [T r.’_. ﬁ

2l 2.2 23 2.4 25 26 2.7 2.8 29
Lambda 1

Figure 20 Context Request Blocking Probability — Device and Profile Context Approaches

]

3.1

32

33

34

A5

In the profile context approach, the context request blocking probability slightly suffers to

compensate for context request dropping probability. Such an approach, coupled with a

queue, results in low context request dropping probability for the prioritized context requests,

and a low context request blocking probability for the remaining context requests. Figure 20

exhibits the performance of device context approach and profile context approach in regard to

context request blocking probability.

151

The context node utilization comparison is shown in Figure 21. The utilization of context
nodes is much more in profile context approach than in comparison to device context
approach because the context nodes in profile context nodes accumulate more than one
context types which allow different context requests to be fulfilled whenever there is a context

node available despite it being a different context type provider.

Context Nodes Utilization Comparison
@ 0eiice Context Approach MProfile Cantext Approach

Context Nodes Utilization

Lambda 1

Figure 21 Context Nodes Utilization Comparison — Device and Profile Context Approaches

152

Average Waiting Time Comparison
@Device Context Approach @Prafile Context Approach

J00E07

250607

200B07

Time

1.50E-07

ing

Wait

1.00E-07

5.00E-03

0.00E+400 -
21 2.2 263 2.4 25 20 27 28 23 3.0 31 3.2 33 34 35
Lambda 1

Figure 22 Average Waiting Time Comparison — Device and Profile Context Approaches

The context requests average waiting time comparison is shown in Figure 22. The
average waiting time of a context request is less in profile context approach than
comparatively to waiting times in device context approach because, as mentioned earlier, the
context nodes accumulate more than one context types which allow different context requests
to be fulfilled whenever there is a context node available despite it being a different context
type provider. So, the context request can get served by any context node in profile context
approach while the context request has to wait for a specific context node to be free to acquire

the particular context.

153

7.2 Lessons Learnt

The analysis of the mathematical model and simulation results show that profile
context approach exceeds the performance of device context approach. If we consider the
mean queue length comparison, the advantage of profile context is due to the multiple
requests being answered in the same reply back to the context requesting application as
aggregated context instead of device context. The provision of aggregated context in reply to
context request prevent the application to ask for device context individually, thus reducing
the number of requests, which in turns reduce the number of requests that have to be queued
up to get processed at one of the super nodes in ad hoc overlay network. Similarly, in context
request blocking probability comparison, the context requests don’t have to wait long in the
queue in profile context approach, and as the requests get serviced quickly, the new context
requests on arrival at one of the super node always get a place in the queue without facing the
prospect of drop out, more common in device context approach. The average waiting time for
context requests is slightly lower in profile context as comparison to device context as there
are multiple nodes that can provide the profile context whereas only a single node can provide
the device context, thus increasing the average waiting time for the requests in device context
approach. The context node utilization comparison shows that the utilization of context nodes
is more in profile context approach than device context approach as the context nodes in
profile context nodes accumulate more than one context types which allow different context
requests to be fulfilled. So, the overall analysis of the results clearly highlights the advantages
of profile context in terms of various parameters over device context.

In the final chapter, we discuss the various challenges that we still need to address. We
present the future direction and the steps that we intend to take in the coming months, and

finally conclude the thesis.

154

8 Conclusion

8.1 Discussion

The proposed context management framework is intended as an application of the concept
of profile context, and its acquisition and distribution in an overlay ad hoc network. As can be
imagined, the concept currently lacks solutions to various obstacles that are to be faced in a
practical implementation. One of the most prominent features of any context management
system is the provision of adequate user privacy and security of user’s data, and we concede
that our approach lack such assurances at the moment. The question of how to make sure that
only the relevant information from the profile context is disclosed to the service or application
remains to be addressed. If an application is only authorized to access a single device context,
there should be some mechanism to ensure that only that information is disclosed to the
application, not the whole context which comprises information from more than one device.

The issue of scalability is another hurdle that needs to be dealt with. The information
overflow due to high churn rate can clog up the performance of the overlay network. In my
opinion, the proposed framework is more than capable to handle context information with in a
considerable community of users. Stress testing of SCOPE still needs to be done to determine
its failure point in terms of the number of users in the overlay network. The increasing
wireless network bandwidth availability and the idea of cloud computing can combine to
provide a practical solution to the problem of scalability in the near future. Convergence of
flexibility of Web 2.0 and the reliability of network infrastructure can result in an interesting
future for context management approaches in terms of cloud computing.

The distributed nature of overlay networks provide improved robustness in terms of failures
by making the availability of context information possible over multiple peer nodes. It
provides the advantage of low latency and high resilience in regards to fault tolerance which

is an obvious advantage.

155

The goal is to propose an open platform for context management in a cloud environment,
and overlay networks have the advantage that permits both application users and developers
to design and implement their own context aware services. The end nodes can always
communicate with one another through overlay network, so robustness in overlay networks is
another attractive feature for the proposed system. The high connectivity of end nodes allows
effective sharing of context information in a distributed environment which usually lacks
centralized authority.

The proposed framework, as mentioned earlier, is a workable solution that already shows
with the help of results that it can provide sufficient gains in terms of reducing the additional
network load commonly associated with other client/server approaches. Further detailed study
is essentially required to assess the viability of the system in a more common, real life

situation with the help of a working prototype.

8.2 Future Work

For the near future, we intend to propose a workable solution to the privacy issue. One
approach can be directed in a way that an unauthorized application cannot access the context
information, through the introduction of authentication dialogue between the owner of the
context and one of the super nodes. This is a very crude solution, as it results in extra
information flow that we are trying to reduce in the first place. Introducing some privacy
features in XML can be a feasible solution.

The context acquisition system proposed in this thesis is to be maintained on a P2P service
platform called SCOPE that is being developed and improved by the RS2M team at Institute
Telecom SudParis. Its aim is to provide a distributed infrastructure with unified API that
enables development of miscellaneous P2P services on ad-hoc networks. The main motivation
is to provide an efficient overlay for P2P services over ad-hoc networks presented by Mani

(2009). The services framework is based on Bamboo open-sources which provide PASTRY

156

DHT services, as discussed by Mani (2007). Bamboo with its public name OpenDHT has
been deployed on Planetlab. Bamboo has also been developed to handle high churn as
mentioned by Rhea (2004). Churn rate means the continuous process of node arrival and
departure in an ad hoc network. It also uses proximity neighbour selection, according to Rhea
(2005).

Further testing in real environment is on our agenda, and I hope that the approach will be
able to perform at least as better as the current results have indicated. The evaluation will be
done with data-rich services on low wireless bandwidth, as is usually the case in ad hoc
networks. Enhancement of formal model of context dependency will also be aimed in near
future.

The future work that we envision in this dimension involves further refinement of the
current model to better understand the effects of direct and indirect context dependencies. The
important work will be to evaluate the systems with high data coupling and direct
dependencies in comparison to low data coupling and indirect dependencies. Not only there
are data dependencies in a pervasive system, but we do need to consider enhancements to the
model that can represent process dependencies as well. Concerning user preferences, the
future model also needs to be flexible enough to incorporate context dependencies that are not
performance based only.

Further, we plan enhancing the algorithm further by introducing dependency confirmation
logic. We further intend to undertake intensive prototype implementation to provide more

validation of our work.

8.3 Conclusion
The thesis provides a dependency analysis approach based on constraint satisfaction
problem for the context aware applications and services. Context aware services are usually

developed using context models and concepts that are informal, lack any clarity, mostly aimed

157

at a particular application domain. The dependency analysis may reveal a lot about
dependencies among such services, and for each dependency some possible dependency
reduction strategy may exist that need to be utilized. But the question is how to determine and
manage all these dependencies, as new dependencies may get introduced due to reduction of a
previously existing dependency. As a consequence, some dependency reduction approaches
will introduce new dependencies, and some dependency reduction strategies will introduce
new possibilities to resolve certain context dependencies. The issue of constraint solving to
determine service dependency has got its complexity reduced from NP-complete to polynomial
time complexity through our approach. Further, the thesis provides a formal model for the

context dependent ubiquitous systems.

In the last part, the thesis presents a context management framework that is based on the
idea of leveraging overlay network to efficiently manage profile context, making it available
at all times in the system, and in turn address the issue of context dependency. The approach
utilises overlay network paradigm in an innovative and unique way to optimize the
distribution and aggregation of users’ context information. Until now, context management
systems have presented various solutions that are mostly based on query-based centralised
architecture, but in this approach the user context is stored and distributed using an overlay
network. Availability of context due to overlay network reduces the risk of performance
bottlenecks introduced due to context dependency as in the approach, multiple context sources
are replicated in the environment reducing the dependency on a single context resource. The
simulation results and queuing model analysis have shown that the proposed context
management approach performs better in terms of different criteria. The proposed context
management framework is particularly aimed at devices and applications in a pervasive
environment where lack of resources restricts optimal performance, and the results have

supported the approach in this regard.

158

The work presented in the thesis is important in terms of finding solutions to problems that
hinder the widespread adoption of pervasive systems by main-stream application developers.
Finding the dependencies can be resource exhausting procedure and the ad hoc nature of the
mobile network make the procedure expensive in terms of resources and time for mobile
devices. The two approaches presented in this thesis aim to reduce the time and complexity of
finding dependencies among different mobile devices and applications.

So far, there hasn’t been a formal model that was developed with the sole purpose of
handling context dependencies in general, and specially, the transitive dependencies in
ubiquitous computing. The formal model, based on predicate logic and set theory, presented
in the thesis is makes the process of formalizing context dependencies quite easy. The
intuitive approach that is adopted in the model makes analysis of context dependencies easy
to achieve in terms of context types and context sources, along with the provision of alternate
context sources that can be used by a context consuming application.

The idea of Profile Context can be potentially the next big idea that social networks and
cloud computing applications may adopt in the near future. Asking for context from each,
individual device is not efficient in terms of network traffic, as shown by the analysis of
various parameters in the evaluation part. Asking for device context also results in wastage of
resources for mobile devices. The Profile Context gives comprehensive context about the user
rather than each individual context. This might help with the faster development of context
aware applications in the near future as the context consuming application won’t have to

process the device context to understand the context of the user.

159

Appendix: Mathematical Model

Dedicated servers help to improve the probability of successful service provision by
reserving a fixed or dynamically adjustable number of servers exclusively for specific type of
requests. N servers from the total of C servers are reserved for that certain type of service
request. The rest (C-N) servers are jointly shared among all types of service requests. If
certain requests of a context type are not many and the other context requests are increasing,
the fixed server assignment scheme can hurt the efficiency of the system. To combat this
inefficiency, some algorithms work on the idea of dynamic server allocation schemes. It
requires determining the optimum number of dedicated servers based on the knowledge of the
service request pattern of the system, and estimation of certain other factors.

In the partial sharing scheme, the servers are divided into distinct groups with each group

corresponding to a particular service request, along with the pool of shared servers.

é f-' >
>
i H -
A+
i Queue =

]
Pl

."ff. A l\‘\"x
- YN

=

E

Figure 23 System Model — Partial Sharing Scheme

Only guarded servers in a scheme is inefficient in use of resources if the predicted service
requests for a particular context type is greater than the actual service request demand. It has

been shown that a partial sharing scheme, comprising of both shared and guard servers,

160

provides better performance than both complete sharing and complete partitioning of servers,

over a range of offered loads in various service environments.

New Service
Request

Arrival

~" Any shared 3 Assign Server
server)
availahle?

Any
dedicated
server
available

Service Request

Figure 24 Service Processing Flow Diagram — Partial Server Sharing Scheme

Markov Model & its Solution:
The Markov model employed in this section is based on the combination of shared servers
and dedicated servers. There is some percentage of total servers which is reserved for

servicing requests belonging to specific types of classes.

161

Zug

- ..h‘-"h -“ h“"\ -
¢ LLifnid ¢ LLifino L0545
3 ; : : 24z

Jrmret Jrt

Figure 25 Markov Chain of 2 Shared Servers, 1 Guard Server Each, Queue Size 1 — Complete Sharing
Scheme

Each class has to compete for a server from a specific number of shared servers available in
the system. If all the shared servers are busy, then an idle server from reserved pool for that
class is provided to meet the server request.

This model is general and can be applied for any queue size and number of classes and their
respective servers. The particular example considered has queue size, 9 = 1, and the number
of shared servers for among the two types of classes is 2, i.e. S = 2. The number of dedicated
servers for each class in this model is set to one, i.e. 7G; = 1 and 7G;; = 1. Service requests
from both are assumed to be Poisson processes, with rate A, and 4., respectively. The server

holding time is assumed to be exponentially distributed for both classes; 1/, for class 1
arrivals and , , , . for class 2 arrivals. A generalized Markov model can be described by a two

dimensional Markov Chain with state (n;,n;,S;,S;; G;,Gi;), where n; and n;; are the total numbers

of service requests present in the system belonging to different classes. While S; and S;; are the

162

numbers of servers occupied by requests from each of the class. Similarly, G; and G;
represents the number of guarded servers which are being used by their respective classes.

The approach for this particular Markov model assumes that the request arrival processes
for the two classes are completely independent Poisson processes, and there is no correlation
among these two processes.

Considering the approach of the two Markov models discussed before, it can be safely
assumed that between any two adjacent states there is complete “flow in, flow out”
equilibrium without any effect on the other remaining neighboring states.

For the state occupancy probabilities P(n;,n;;,S;,Si; Gi,Gii), where n;+ n; < S+ G+ G; + O + 1,
the general equilibrium equation can be written as
P (ni, nii, Si, Sii,Gi,Gii) =

P(0,0,0,0,0,0) (Ai)™ (Aii)™ M: M
(Gi + Si) ! (Gi + S1) ™% (Gii 4+ Sii) ! (Gii +Giy) meirsuG

Where,
1 .
M = - if Gi + Si > 0,else 1 and
() ™
1 .
M = if Gii + 511> 0, else 1
(p2:2)

(Gi+S:1) ™™™ 1s 1 1f Gi+S:i = 0

(Gii+Sii) ™ 15 1 1f Gii+Sii = 0

c
Using the general rule that the sum of all probabilities is 1, i.e. ZP (i) =1, P(0,0,0,0,0,0) can
i=0

be expressed as,

P(0,0,0,0,0,0) =

L. i(0)™ Qui)™ MM) o
T\G +51) ! G +5)" (G +8u) ! (G)

where C <ST+ Gi+ Gii+ Q+ 1.

163

Proof by Induction

The Proposition is:

P (ni, nii, Si, Sii,Gi,Gii) =
P(0,0,0,0,0,0) (Ai)™ (Aiz) ™
(pi) " (Gi+Si) ! (Git+S1) ™% (uii) ™ (Gii+Sii) ! (Gii+Siq) e

is true for all n where n;+n; < Sr+ Gi+ G; + O + 1

The Base Case is:

The base case for n = 0, can easily be proved.

P(0,0,0,0,0,0) (A1) (Ai1)°
(1) °(0) ! (pi5)°(0) !

p(0,0,0,0,0,0)=

P(0,0,0,0,0,0) 1 x1
1 x1x1x1

— P(0,0,0,0,0,0)=

- P(0,0,0,0,0,0) = P(0,0,0,0,0,0)

Inductive Step is:

The inductive part is for states P(k;+1,k,+1,S;,Sii,Gi,Gii). The inductive parts for the
remaining states, P(k;+1,k,,S;,Sii,Gi,Gii) and P(k;,k;+1,S;,S5,Gi,Gij), can be proved similarly to
Guarded Server Scheme. Assuming that the derivation is true for n = k.

P (ki, kii, Si, Sii,Gi,Gii) =
P(0,0,0,0,0,0) (A1) ™ (Aii) ™
(1) (Gi+Si) P (Gi+Sa) ¥ (pa1) ™ (Gii+Si1) | (Gii+Sig) FHses

Now, the proof will be devised forn =k + 1.

164

P (ki+1, kii+1,Si+1, S:1i+1,Gi+1,Gii+1) =

P(0,0,0,0,0,0) ()" (i)
(/ul) (GG ! (GAS) T (‘LLu) (GASi) ! (GiatSiy) e

X

(A1) (Aii)
(1) (Gi+8Si+1) (Git+Si) (mii) (Gii+Sii+l) (Gii+Sii)

— P (ki+l, kii+l, Si+1, S1i+1,Gi+1,Gii+1) =
P (OI O/ O/ O, O, O) (}\i)kiﬂ (}\ii)kii+1
(,Ul) Ki+l (Gi+Si+]1) ! (Gi+51) Ki-Si-Gi+1 (,Uii) kit (Gii+Sii+1) ! (Gii+Sis) Kii-Gii-Gii+l

Hence proved that the derivation for this Markov model is true for all n where n; + n; < Sy +

Gi+Gii+Q+ 1.

165

References:

[Abdelzaher, 2007] Abdelzaher, T., Anokwa, Y., Boda, P., Burke, J., Estrin, D., Guibas, L.,
Kansal, A., Madden, S. and Reich, J. “Mobiscopes for Human Spaces,” in I[EEE Pervasive

Computing, 6(2):20-29, 2007.

[Agrawal, 1993] Agrawal, H., Demillo, R. and Spaord, E. “Debugging with Dynamic Slicing

and backtracking,” in Software Practice and Experience, vol.23, No.6, pp.589-616, 1993.

[Akman, 1997] Akman, V., and Surav, M. “The use of situation theory in context

modelling,” in Computational Intelligence 13, 3 (1997), 427-438, 1997.

[Ameller, 2008] Ameller, D. and Franch, X. “Service level agreement monitor (salmon),” in
Proceedings of the Seventh International Conference on Composition-Based Software

Systems (ICCBSS 2008), pp. 224-227, Washington, DC, USA. 2008.

[Anagnostopoulos, 2007] Anagnostopoulos, C., Tsounis, A., and Hadjiefthymiades, S.
“Context awareness in mobile computing environments,” in Wireless Personal

Communications, 42(3):445-464, 2007
[Aspvall, 1979] Aspvall, B., Plass, M., Tarjan, R. “A linear-time algorithm for testing the

truth of certain quantified boolean formulas,” in Information Processing Letters, 8 (3): 121—

123, 1979.

166

[Bacchus, 1998] Bacchus, F. and van Beek, P. “On the conversion between non-binary and
binary constraint satisfaction problems,” In Proc. of 15th AAAI Conference on Artificial

Intelligence, 1998.

[Bardram, 2003] Bardram, J. and Kjer, R. “Context-Aware User Authentication Supporting
Proximity-Based Login in Pervasive Computing,” in UbiComp: Ubiquitous Computing, pp.

107-123, 2003.

[Baloch, 2010] Baloch, R.A., Awan, I. and Min, G. “A mathematical model for wireless
channel allocation and handoff schemes,” in Special Issue on Performance Modelling and

Evaluation of Telecommunication Systems, Telecommunication Systems Journal, 2010.

[Barbara, 1999] Barbara, D. “Mobile computing and databases-a survey,” in IEEE

Transactions on Knowledge and Data Engineering, 11(1):108-117, 1999.

[Barwise, 1983] Barwise, J., and Perry, J. “Situations and Attitudes,” MIT Press, 1983

[Bates, 1993] Bates, S., and Horwitz, S. “Incremental Program Testing Using Program
Dependence Graphs,” in Conf. Record of the 20™ Annual ACM SIGPLAN-SIGACT, Sym. of
principles of Programming Languages, pp.384-396, ACM Press, 1993.

[Batini, 1986] Batini, C., Lenzerini, M. and Navathe, S. B. “A comparative analysis of

methodologies for database schema integration,” ACM Computer Survey, 18(4):323.364,

1986.

167

[Batini, 1992] Batini, C., Ceri, S. and Navathe, S. “Conceptual database design: an Entity-

relationship approach,” Benjamin-Cummings Publishing Co. Inc., 1992.

[Bauer, 2003] Bauer, J. “Identification and Modeling of Contexts for Different Information

Scenarios in Air Traffic,” Diplomarbeit, March 2003.

[Bawa, 2003] Bawa, M., Manku, G. and Raghavan, P. “SETS: Search Enhanced by Topic
Segmentation,” in Proc. 26th Annual ACM Conference on Research and Development in

Information Retrieval, pp. 306-313, 2003.

[Becker, 2005] Becker, C. and Diirr, F. “On location models for ubiquitous computing,” in

Personal and Ubiquitous Computing, 9: 2031, 2005.

[Bergamaschi, 2001] Bergamaschi, S., Castano, S., Vincini, M. and Beneventano, D.

“Semantic integration of heterogeneous information sources,” in Data Knowledge

Engineering, 36(3):215.249, 2001.

[Black, 2001] Black, S. “Computing ripple effect for software maintenance,” in Journal of

Software Maintenance and Evolution: Research and Practice, 13:263-279, 2001.

[Blair, 1998] Blair, G. and Stefani, J. “Open Distributed Processing and Multimedia,”

Addison-Wesley, 1998.

168

[Bodenstaff, 2008] Bodenstaff, L., Wombacher, A., Reichert, M., and Jaeger, M. C.
“Monitoring dependencies for SLAs: The mode4sla approach,” in IEEE SCC (1). IEEE

Computer Society, 2008.

[Bonnet, 2001] Bonnet, P., Gehrke, J., and Seshadri, P. “Towards sensor database systems,”

in Mobile Data Management, pages 3—14, 2001.

[Booch, 1998] Booch, G., Jacobson, 1., and Rumbaugh, J. “The Unified Modeling Language

User Guide,” Addison-Wesley, 1998.

[Bouzy, 1997] Bouzy, B., and Cazenave, T. “Using the Object Oriented Paradigm to Model

Context in Computer Go,” in Proceedings of Context’97, Rio, Brazil, 1997.

[Myers, 1998] Myers, B. “A Brief History of Human Computer Interaction Technology,” in

ACM Interactions, 5(2):44-54, 1998.

[Brown, 1997] Brown, P. J., Bovey, J. D., and Chen, X. “Context-aware Applications: from

the Laboratory to the Marketplace,” in IEEE Personal Communications 4, 5, 58—64, 1997.

[Briand, 1998] Briand, L. C., Wust, J., and Lounis, H. “Using Coupling Measurement for
Impact Analysis in Object Oriented Systems,” at IEEE International Conference on Software

Maintenance (ICSM98), Bethesda, MD, 1998.

[Capra, 2001] Capra, L., Emmerich, W. and Mascolo, C. “Reflective Middleware Solutions

for Context-Aware Application ,” in 3rd International Conference on Meta-level

169

Architectures and Separation of Crosscutting Concerns (Reflection 01), LNCS, September

2001.

[Chalmers, 2006] Chalmers, D., Chalmers, M., Crowcroft, J., Kwiatkowska, M. Milner, R.,
O’Neill, E., Rodden, T., Sassone, V., and Sloman, M. “Ubiquitous Computing Grand
Challenge: Manifesto,” http://www-
dse.doc.ic.ac.uk/Projects/UbiNet/GC/Manifesto/manifesto.pdf; version 4, 23-2-06; accessed

September 10, 2011.

[Chawathe, 1994] Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K.,
Papakonstantinou, Y., Ullman, J. and Widom, J. “The TSIMMIS project: Integration of
heterogeneous information sources,” in /6th Meeting of the Information Processing Society of

Japan, pp. 7.18, Tokyo, Japan, 1994.

[Chen, 2000] Chen, G. & Kotz, D. “A Survey of Context Aware Mobile Computing

Research,” Dartmouth Computer Science Technical Report TR2000381, 2000.

[Chen, 2003] Chen, H., Finin, T., and Joshi, A. “Using OWL in a Pervasive Computing

Broker,” in Proceedings of Workshop on Ontologies in Open Agent Systems (AAMAS 2003),

2003.

[Chen, 1976] Chen, P. “The entity-relationship model - toward a unified view of data,” in

ACM Transaction on Database Systems 1, 1, 9-36, March, 1976.

170

[Cheverst, 1999] Cheverst, K., Mitchell, K., and Davies, N. “Design of an object model for a

context sensitive tourist GUIDE,” in Computers and Graphics 23, 6 (1999), 883—-891, 1999.

[Chetcherbina, 2003] Chetcherbina, E., and Franz, M. “Peer-to-peer coordination framework
(p2pc): Enabler of mobile ad-hoc networking for medicine, business, and entertainment,” in
Proceedings of International Conference on Advances in Infrastructure for Electronic
Business, Education, Science, Medicine, and Mobile Technologies on the Internet

(SSGRR2003w), L’Aquila, Italy, 2003.

[Clarke, 2001] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. “Progress on the state

explosion problem in model checking,” in Informatics, pp. 176194, 2001.

[Coutaz, 2005] Coutaz, J., Crowley, J., Dobson, S., and Garlan, D. “Context is key,” in

Communications of the ACM, 48(3), 2005.

[Cox, 2001] Cox, L., Delugach, H., Skipper, D. “Dependency analysis using conceptual
graphs,” in Proceedings of the 9th International Conference on Conceptual Structures, ICCS,

2001.

[Crestana-Jensen, 2000] Crestana-Jensen, V. M. and Lee, A. J. “Consistent Schema Version
Removal: An Optimization Technique for Object Oriented Views,” in IEEE Transactions on

Knowledge and Data Engineering, vol. 12, pp. 261-280, 2000.

[Crossbow, 2008] Crossbow Technology. Crossbow, 2008. http://www.xbow.com/; accessed

October 20, 2011.

171

[De Bruijn, 2003] De Bruijn, J. « Using Ontologies — Enabling Knowledge Sharing and Reuse
on the Semantic Web,” Technical Report DERI-2003-10-29, Digital Enterprise Research

Institute (DERI), Austria, 2003.

[De Lucia, 1996] De Lucia, A., Fasolino, A. R., and Munro, M. “Understanding function
behaviors through program slicing,” in Proceedings of the Fourth Workshop on Program

Comprehension, Berlin, Germany, 1996.

[Desmet, 2007] Desmet, B., Vallejos, J., Costanza, P., and Meuter, W. D. “Context-oriented

domain analysis,” Lecture Notes in Computer Science, 2007.

[Dey, 1999] Dey, A. & Abowd, G. “Towards a Better Understanding of Context and Context-
Awareness,” in CHI "00: Workshop on the What, Who, Where, When, and How of Context-

Awareness, Georgia Institute of Technology, Atlanta, GA, USA, 1999.

[Dey, 2000] Dey, A. K. “Providing Architectural Support for Building Context-Aware

Applications,” PhD thesis, College of Computing, Georgia Institute of Technology, 2000.

[Dey, 2004] Dey, Anind K., Raffay Hamid, Chris Beckmann, Ian Li & Daniel Hsu.

“CAPpella: Programming by Demonstration of Context Aware Applications,” in CHI Letters,

2004.

172

[Dey, 2002] Dey, A. K., Mankoft, J., Abowd, G. D. and Carter, S. “Distributed Mediation of
Ambiguous Context in Aware Environments,” in Proceedings of the 15th Annual Symposium

on User Interface Software and Technology (UIST), Paris, France, pp. 121-130, 2002.

[Dick, 1969] Dick, P. Ubik. Gollancz S.F., 1969.

[Dust, 2008] Dust Networks. Dust Networks : Embedded Wireless Sensor Networking for
Monitoring and Control, 2008. http://www.dustnetworks.com/index.shtml; accessed October

21,2011.

[Ebling, 2001] Ebling, M., Hunt. G., and Lei, H., “Issues for Context Services for Pervasive

Computing,” in Workshop Middleware for Mobile Computing, Heidelberg, Germany, 2001.

[Eckhardt, 1985] Eckhardt, D. E. and Lee, L. D. “A theoretical basis for the analysis of

redundant software subject to coincident errors,” NASA tech. Memo 86369, 1985.

[Elahi, 2009] Elahi, B., Romer, K., Ostermaier, B., Fahrmair, M. and Kellerer, W. “Sensor
ranking: A primitive for efficient content-based sensor search,” in Proceedings of
International Conference on Information Processing in Sensor Networks, IPSN 2009, pages

217-228, 2009.

[TEA, 1998] Esprit project 26900. Technology for enabled awareness (tea), 1998.

[Feder, 1994] Feder, T., “Network flow and 2-satisfiability,” In Algorithmica, vol. 11, no. 3,

pp. 291-319, 1994

173

[Flehmig, 2006] Flehmig, M., Troeger, P., and Saar, A. “Design and integration of SLA
monitoring and negotiation capabilities,” in Adaptive Services Grid Deliverable DS5.11-7,

2006.

[Floreen, 2005] Floreen, P., Przybilski, M., Nurmi, P., Koolwaaij, J., Tarlano, A., Wagner,
M., Luther, M., Bataille, F., Boussard, M., Mrohs, B. and Others. “Towards a context

management framework for MobiLife,” in Proc. 14th IST Mobile & Wireless Summit, 2005.

[Fowler, 2001] Fowler, M. “Reducing coupling,” in IEEE Software, 18(4), 102-104, 2001.

[Fu, 2001] Fu, X., Shi, W., Akkerman, A. and Karamcheti. V. “CANS: Composable, adaptive

network services infrastructure,” in USITS 2001, San Francisco, California, 2001.

[Gallagher, 1991] Gallagher, K. B., and Lyle, J. R. “Using Program Slicing in Software
Maintenance,” in IEEE Transaction on Software Engineering, vol.17, No.8, pp.751-761,

1991.

[Gokhale, 1998] Gokhale, S., Lyu, M. and Trivedi, K. “Reliability simulation of component-
based software systems,” in Proceedings of the Ninth International Symposium on Software

Reliability Engineering (ISSRE’98), 192-201, 1998.

[Goseva-Popstojanova, 2001] Goseva-Popstojanova, K. and Trivedi, K. S. “How different
architecture based software reliability models are related?” in Performance Evaluation 45(2-

3), 179-204, 2001.

174

[Gray, 2001] Gray, P., Salber, D., “Modelling and using sensed context in the design of
interactive applications,” in 8th IFIP Conference on Engineering for Human-Computer

Interaction, Toronto, 2001.

[Greenfield, 2006] Greenfield, A. “Everyware: The Dawning Age of Ubiquitous Computing,”

New Riders Publishing, 2006.

[Gruber, 1993] Gruber, T. G. “A translation approach to portable ontologies,” in Knowledge

Acquisition 5, 2, 199-220, 1993.

[Gu, 2005] Gu, T., Pung, H.K. and Zhang, D.Q. “A service-oriented middleware for building
context-aware services,” in Journal of Network and Computer Applications, 28(1):1-18,

2005.

[Gwizdka, 2000] Gwizdka, J. “What’s in the Context,” in CHI2000 Workshop, 2000.

[Hadim, 2006] Hadim, S. and Mohamed, N. “Middleware: Middleware challenges and

approaches for wireless sensor networks,” IEEE Distributed Systems Online,7(3):1-1, 2006.

[Hall, 1997] Hall, R. S., Heimbigner, D., and Wolf, A. L. “Software deployment languages

and schema,” Dept. of Computer Science, University of Colorado CU-SERL-203-97, 1997.

[Halpin, 2001] Halpin, T. A. “Information Modeling and Relational Databases: From

Conceptual Analysis to Logical Design,” Morgan Kaufman Publishers, San Francisco, 2001.

175

[Hamlet, 2001] Hamlet, D., Mason, D., and Woit, D. “Theory of software reliability based on

components,” in International Conference on Software Engineering 23, 361-370, 2001.

[Harter, 1999] Harter, A., Steggles, P., Ward, A., and Webster, P., “The Anatomy of a
Context-Aware Application,” in Proceedings of Conference on Mobile Computing and

Networking (MOBICOM), 1999.

[Hayes, 1994]Hayes, P. “Aristotelian and Platonic Views of Knowledge Representations,” in
Second International Conference on Conceptual Structures (ICCS94), College Park, MD,

1994.

[Held, 2002] Held, A., Buchholz, S., & Schill, A. “Modeling of Context Information for
Pervasive Computing Applications,” in Sixth World Multiconference on Systemics,

Cybernetics and Informatics, SCI2002, Orlando, 2002.

[Henricksen, 2001] Henricksen, K., Indulska, J., Rakotonirainy, A. “Infrastructure for
pervasive computing: Challenges,” in Informatik 2001: Workshop on Pervasive Computing,

Vienna, 2001.

[Henricksen, 2002] Henricksen, K., Indulska, J., Rakotonirainy, A. “Modeling Context

Information in Pervasive Computing Systems,” in Proceedings of Pervasive, Zurich, 2002.

[Henricksen, 2003] Henricksen, K., Indulska, J., Rakotonirainy, A. “Generating Context

Management Infrastructure from High-Level Context Models,” in Proceedings of the 4"

176

International Conference on Mobile Data Management, (MDM2003), Melbourne, Australia,

pp. 1-6, 2003.

[Henricksen, 2004] Henricksen, K. and Indulska, J. “A Software Engineering Framework for
ContextAware Pervasive Computing,” in 2nd IEEE Conference on Pervasive Computing and

Communications (PerCom), Orlando, 2004.

[Hofer, 2003] Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J. and
Retschitzegger, W. “Context-awareness on mobile devices - the hydrogen approach,” in
Proceedings of the 36th Annual Hawaii International Conference on System Sciences, vol. 9,

2003.

[Holmquist, 2001] Holmquist, L., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M., and
Gellersen, H.W. “Smart-its friends: A technique for users to easily establish connections
between smart artefacts,” in Proceedings of Ubicomp. Ubiquitous Computing, pp. 116—122,

2001.

[Hong, 2001] Hong, J. I. and Landay, J. A. “An infrastructure approach to context-aware

computing,” in Human-Computer Interaction, 16(2&3), 2001.

[Hull, 2006] Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., Shih, E.,
Balakrishnan, H. and Madden, S. “CarTel: a distributed mobile sensor computing system,” in
Proceedings of the 4th international conference on Embedded networked sensor systems,

pages 125-138, 2006.

177

[Hutchens, 1985] Hutchens, D.H., and Basili, V.R. “System Structure Analysis: Clustering

with Data Bindings,” in IEEE Trans. Software Eng., vol. 11, no. 8, pp. 749-757, 1985.

[Huynh, 2007] Huynh, S., & Cai, Y. “An evolutionary approach to software modularity
analysis,” in Proceedings of the First International Workshop on Assessment of

Contemporary Modularization Techniques, Minneapolis, Minnesota, USA, 2007.

[Indulska, 2003] Indulska, J., Robinsona, R., Rakotonirainy, A., and Henricksen, K.
“Experiences in using cc/pp in context-aware systems,” in Proceedings of the 4th
International Conference on Mobile Data Management, (MDM2003), Melbourne, Australia,

2003.

[Jackson, 2004] Jackson, D. “Module dependences in software design,” in Radical
Innovations of Software and Systems Engineering in the Future: 9th International Workshop,

RISSEF 2002, Venice, Italy, pp. 198-203, 2004.

[Kagal, 2001] Kagal, L., Korolev, V., Chen, H., Joshi, A., and Finin, T. “Centaurus: A
framework for Intelligent Services in a Mobile Environment,” in Proc. Intl. Workshop on
Smart Appliances and Wearable Computing, Workshop at 21°" IEEE Intl. Conf. Distributed

Computing Systems, Phoenix, 2001.

[Kang, 1990] Kang, K., Cohen, S., Hess, J., Nowak, W., and Peterson, S. “Feature-Oriented

Domain Analysis (FODA) Feasibility Study,” 1990.

178

[Kansal, 2007] Kansal, A., Nath, S., Liu, J. and Zhao, F. “SenseWeb: An Infrastructure for

Shared Sensing,” in IEEE Multimedia, 14(4):8-13, 2007.

[Keller, 2000] Keller, A., Blumenthal, U., and Kar, G. “Classification and Computation of
Dependencies for Distributed Management,” in Proceedings of the Fifth International

Conference on Computers and Communications, (ISCC 2000), 2000.

[Kiciman, 2000] Kiciman, E. and Fox, A. “Using dynamic mediation to integrate COTS

entities in a ubiquitous computing environment,” in HUC 2000, Bristol, UK, 2000.

[Klemettinen, 2007] Klemettinen, M. “Enabling technologies for mobile services: the

MobiLife book,” Wiley, 2007.

[Knight, 1986] Knight, J. C. and N. G. Leveson “An experimental evaluation of the
assumption of independence in multiversion programming,” in IEEE Transactions on

Software Engineering 12(1), 96—-109, 1986.

[Krishnamurthy, 1997] Krishnamurthy, S. and Mathur, A. “On the estimation of reliability of
a software system using reliabilities of its components,” in Proceedings of the S8th

International Symposium on Software Reliability Engineering, (ISSRE’97), 146—155, 1997.

[Kuball, 1999] Kuball, S., May, J. and Hughes, G. “Building a system failure rate estimator

by identifying component failure rates,” in Proceedings of the 10th International Symposium

on Software Reliability Engineering, (ISSRE), 32—41, 1999.

179

[Kwon, 2002] Kwon, M. and Farmy, S., “Topology-Aware Overlay Networks for Group
Communication,” in Proc. 12th International Workshop on Network and Operating Systems

Support for Digital Audio and Video, pp. 127-136, 2002.

[Kwon, 2005] Kwon, Ohbyung, Keedong Yoo and Euiho Suh. “ ubiES: An Intelligent Expert
System for Proactive Services Deploying Ubiquitous Computing Technologies,” in 38th

Hawaii International Conference on System Sciences, 2005.

[Landt, 2001] Landt, J. “Shrouds of Time. The history of RFID,” an AIM (Association for

Automatic Identification and Data Capture Technologies) Publication, 2001.

[Lech, 2005] Lech, T. and Wienhofen, L. “ AmbieAgents: a scalable infrastructure for mobile

2

and context-aware information services,” in Proceedings of the Fourth International Joint

Conference on Autonomous Agents and Multi-Agent Systems, pp. 625-631, 2005.

[Lenzerini, 2002] Lenzerini, M. “Data integration: a theoretical perspective,” in Proceedings
of the 21" ACM IGMODSIGACT-SIGART Symposium on Principles of Database Systems, pp.

233.246, ACM Press, 2002.

[Levinson, 2000] Levinson, R. and Goodwin, A. R. “Explorations in Scientific Thinking: a
Systems Theoretic Approach: Chapter 2,” Scientific Thinking: a Systems Theoretic

Approach. Santa Cruz, CA, p. 65, 2000.

[Levis, 2002] Levis, P. and Culler, D. “Mate: A tiny virtual machine for sensor networks,” in

ACM SIGARCH Computer Architecture News, 30(5):85-95, 2002.

180

[Li, 2003] Li, J., Loo, B., Hellerstein, J., Kaashoek, M., Karger, D. and Morris, R. “On the
feasibility of peer-to-peer web indexing and search,” in Peer-to-Peer Systems II, pages 207—

215, 2003.

[Lieberman, 2000] Lieberman, H. and Selker, T. “Out of context: Computer Systems that

adapt to, and learn from, context,” in IBM Systems Journal, vol. 39 No.3/4, pp. 116, 2000.

[Littlewood, 1989] Littlewood, B. and D. R. Miller “Conceptual modeling of coincident
failures in multiversion software,” in IEEE Transactions on Software Engineering 15(12),

1596-1614, 1989.

[Littlewood, 2000] Littlewood, B., Popov, P. and Strigini, L. “Assessing the reliability of

9

diverse fault-tolerant systems,” in Proceedings of the INucE International Conference on

Control and Instrumentation in Nuclear Installations, 2000.

[Ludwig, 2008] Ludwig, A. and Franczyk, B. “Cosma an approach for managing slas in

composite services,” in Bouguettaya, A., Krueger, 1., and Margaria, T., editors, ICSOC 2008,

number 5364 in LNCS, page 626632. Springer-Verlag Berlin Heidelberg, 2008.

[Lyu, 1995] Lyu, M. R. (Ed.) “Handbook of Software Reliability Engineering,” IEEE

Computer Society Press, 1995.

181

[Maab, 1997] Maal, Henning. “Location aware mobile applications based on directory
services,” in Third Annual ACM/IEEE International Conference on Mobile Computing and

Networking, pp. 23-33, 1997.

[Mani, 2007] Mani, M., Seah, W., Crespi, N. “Efficient P2P service control overlay
construction to support IP Telephony services over ad hoc networks,” in Proceeding of IEEE

MASS, 2007.

[Mani, 2009] Mani, M., NGYUEN, A.M., Crespi, N. “What’s Up: P2P Spontaneous Social
Networking” in Proceeding of PERCOM 2009, IEEE International Conference on Pervasive

Computing and Communications, Galveston TX, USA, 2009.

[May, 2002] May, J. “Component-based software reliability analysis,” Technical report,

Department of Computer Science, University of Bristol, 2002.

[McCarthy, 1993] McCarthy, J. “Notes on formalizing contexts,” in Proceedings of the
Thirteenth International Joint Conference on Artificial Intelligence, San Mateo, California,

R. Bajcsy, Ed., Morgan Kaufmann, pp. 555-560, 1993.

[McFadden, 2004] McFadden, T. and Indulska, J. “Context Aware Environments for
Independent Living,” in 3rd National Conference of Emerging Researchers in Ageing (ERA),

Brisbane, Australia, 2004.

[Melhorn, 1984] Melhorn, K. Graph Algorithms and NP-Completeness in Data Structures and

Algorithms, Vol. II, Springer, 1984.

182

[Media Lab, 2011a] MIT Media Lab: Things That Think Consortium. Things That Think,

2011. http://ttt. media.mit.edu/; accessed October 12, 2011.

[Murthy, 2005] Murthy, V. and Krishnamurthy, E. “Contextual Information Management
Using Contract Based Workflow,” in 2nd Conference on Computing Frontiers, CF’05, Ischia,

Italy, 2005.

[Nixon, 2002] Nixon, P. Wang, F., Terzis, S. and Dobson, S. “Engineering context-aware
systems,” in Proceedings of the International Workshop on Engineering Context-Aware

Object-Oriented Systems and Environments, 2002.

[Norman, 1998] Norman, D. “The Invisible Computer,” MIT Press, Cambridge,

Massachusetts, 1998.

[O’Connell, 2005] O’Connell, P. “Korea’s High-Tech Utopia, Where Everything Is
Observed,”. http://www.nytimes.com/2005/10/05/technology/techspecial/05oconnell.html;

accessed September 28, 2011.

[Octopus, 2008] Octopus Cards Limited. (2008). Octopus.

http://www.octopuscards.com/enindex.jsp; accessed September 23, 2011.

[Otzturk, 1997] Otzturk, P., and Aamodt, A. “Towards a model of context for case-based
diagnostic problem solving,” in Proceedings of the Interdisciplinary Conference on Modeling

and Using Context, Rio de Janeiro, Brazil, pp. 198-208, 1997.

183

[Ozsu, 1991] Ozsu, M. and Valduriez, P. “Principles of distributed database systems,”

Prentice-Hall, Inc, 1991.

[Papazoglou, 1997] Papazoglou, M., Delis, A., Bouguettaya, A., and Haghjoo, M. “Class
Library Support for Workflow Environments and Applications,” in IEEE Transations on

Computer, vol. 46, pp. 673-686, 1997.

[Pappas, 2006] Pappas, V., Massey, D. and Terzis, A. “A comparative study of the DNS
design with DHT-based alternatives,” in Proceedings of 25th IEEE International Conference

on Computer Communications, pages 1-13, 2006.

[Petrelli, 2000] Petrelli, D., Not, E., Strapparava, C., Stock, O., and Zancanaro, M. “Modeling

Context is Like Taking Pictures,” in CHI2000 Workshop, 2000.

[Polastre, 2005] Polastre, J., Szewczyk, R. and Culler, D. “Telos: Enabling Ultra-Low Power
Wireless Research,” in Proceedings of Fourth International Symposium on Information

Processing in Sensor Networks(IPSN), pp. 364-369, 2005.

[Presser, 2009] Presser, M., Barnaghi, P.M., Eurich, M. and Villalonga, C. “The SENSEI
project: integrating the physical world with the digital world of the network of the future,” in

Communications Magazine, IEEE, 47(4):1-4, 2009.

[Prost, 2000] Prost, F. “A Static Calculus of Dependencies for the I-Cube,” in 15 th Annual

IEEE Symposium on Logic in Computer Science (LICS'00), Santa Barbara, CA, 2000.

184

[Rahm, 2001] Rahm, E. and Bernstein, P. “A survey of approaches to automatic schema

matching,” in The VLDB Journal, 10(4):334. 350, 2001.

[Ranganathan, 2002] Ranganathan, A., Campbell, R., Ravi, A. and Mahajan, A. “ConChat: A

Context-Aware Chat Program,” in IEEE Pervasive Computing. Vol.1,Iss.3, p51 =57, 2002.

[Ratnasamy, 2001] Ratnasamy, S., Francis, P., Handley, M., Karp, R. and Shenker, S. “A
Scalable Content-Addressable Network,” in Proc. ACM SIGCOMM 2001 Conference, pp.

161-172, 2001.

[Rhea, 2004] Rhea, S., Geels, D., Roscoe, T. and Kubiatowicz, J., “Handling Churn in a

DHT,” in Proceedings of USENIX, 2004.

[Rhea, 2005] Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S.,

Stoica, I. and Yu. H. “OpenDHT: A public DHT service and its uses,” in Proceedings of

SIGCOMM, 2005.

[Rogers, 2006] Rogers, Y. “Moving on from Weiser’s Vision of Calm Computing: Engaging

UbiComp Experiences,” In Ubicomp, pages 404—421, 2006.

[Ross, 2000] Ross, S. M. “Introduction to Probability Models,” 9th ed.. Academic Press,

2000.

185

[Rumbaugh, 1998] Rumbaugh, J., Jacobson, I., and Booch, G. “The Unified Modeling

Language Reference Manual,” Addison-Wesley, 1998.

[Ryan, 1999] Ryan, N. “ConteXtML: Exchanging Contextual Information between a Mobile
Client and the FieldNote Server,” Available at:

http://www.cs.kent.ac.uk/projects/mobicomp/fnc/Conte XtML.html, 1999.

[Salber, 1999] Salber, D., Dey, A. & Abowd, G. “The Context Toolkit: Aiding the

Development of Context Enabled Applications,” CHI’99, Pittsburgh, PA, USA, 1999.

[Samulowitz, 2001] Samulowitz, M., Michahelles, F., and Linnhoff-Popien, C. “Capeus: An
architecture for context-aware selection and execution of services,” In New Developments in
Distributed Applications and Interoperable Systems, Krakow, Poland, Kluwer Academic

Publishers, pp. 23-39, 2001.

[Satyanarayanan, 2001] Satyanarayanan, M. “Pervasive Computing: Vision and Challenges,”

IEEE Personal Communications, 2001.

[Selby, 1991] Selby, R.W. and Basili, V.R. “Analyzing Error-Prone System Structure,” in

IEEE Trans. Software Eng., vol. 17, no. 2, pp. 141-152, 1991.

[Schilit, 1994] Schilit, B. N., Adams, N. L., and Want, R. “Context-aware computing

applications,” in IEEE Workshop on Mobile Computing Systems and Applications, Santa

Cruz, CA, US, 1994.

186

[Schmidt, 2002] Schmidt, A. “Ubiquitous Computing — Computing in Context,” Ph.D.

dissertation, Lancaster University, 2002.

[Schmidt, 1999] Schmidt, A., Beigl, M., and Gellersen, H. “There is more to context than

location,” In Computers and Graphics 23, 6, 893-901, 1999.

[Schmidt, 2001] Schmidt, A., and Laerhoven, K. “How to Build Smart Appliances,” in IEEE

Personal Communications, 2001.

[Schmohl, 2009] Schmohl, R. and Baumgarten, U. “The Contextual Map-A Context Model
for Detecting Affinity between Contexts,” in Mobile Wireless Middleware, Operating

Systems, and Applications, pp. 171-184, 2009.

[Shooman, 1976] Shooman, M. L. “Structural models for software reliability prediction,” in

Proceedings of the 2nd International Conference on Software Engineering, 268-280, 1976.

[Sony, 2008] Sony Corporation. (2008). Sony Global — FeliCa. http://www.sony.net/

Products/felica/abt/dvs.html; accessed August 23, 2011.

[Stajano, 2002] Stajano, Frank. “Security for Ubiquitous Computing,” Wiley, 2002.

[Stephen, 2001] Stephen S. Yau, F. Karim. “Context-Sensitive Middleware for Real-time

Software in Ubiquitous Computing Environments,” in Proceedings of 4th IEEE International

Symposium on Object-Oriented Real-Time Distributed Computing, pp.163 —170, 2001.

187

[Stevens, 1974] Stevens, W.P., Myers, G.J., and Constantine, L.L. “Structure Design,” in IBM

Systems Journal, vol. 13, pp. 231-256, 1974.

[Stoica, 2001] Stoica, 1., Morris, R., Karger, D., Kaashoek, M.F. and Balakrishnan, H.,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications,” In Proc. ACM

SIGCOMM 2001 Conference, pp. 149-160, 2001.

[Strang, 2003] Strang, T. “Service Interoperability in Ubiquitous Computing Environments,”

PhD thesis, Ludwig-Maximilians-University Munich, 2003.

[Strang, 2003a] Strang, T., Linnhoff-Popien, C., and Frank, K. “Applications of a Context
Ontology Language,” in Proceedings of International Conference on Software,
Telecommunications and Computer Networks (SoftCom2003), (Split/Croatia, Venice/Italy,
Ancona/Italy, Dubrovnik/Croatia), D. Begusic and N. Rozic, Eds., Faculty of Electrical
Engineering, Mechanical Engineering and Naval Architecture, University of Split, Croatia,

pp. 14-18, 2003.

[Strang, 2003b] Strang, T., Linnhoff-Popien, C., and Frank, K. “CoOL: A Context Ontology
Language to enable Contextual Interoperability,” in LNCS 2893:Proceedings of 4th IFIP WG
6.1 International Conference on Distributed Applications and Interoperable Systems
(DAIS2003), (Paris/France), J.-B. Stefani, I. Dameure, and D. Hagimont, Eds., vol. 2893 of

Lecture Notes in Computer Science (LNCS), Springer Verlag, pp. 236247, 2003.

188

[Strang, 2004] Strang, T. and Linnhoff-Popien, C. “A Context Modeling Survey,” in First
International Workshop on Advanced Context Modelling, Reasoning and Management,

Ubicomp, 2004.

[Subrahamanian, 2000] Subrahamanian, V. S., Bonatti, P., Dix, J., Eiter, T. and Ozcan, F.

“Heterogeneous Agent Systems,” 1st ed. Cambridge, Mass: MIT Press, 2000.

[Sundmaeker, 2010] Sundmacker, H., Guillemin, P., Friess, P. and Woelffle, S. “Vision and
Challenges for Realising the Internet of Things,” Cluster of European Research Projects on

the Internet of Things (CERP-I0T), 2010.

[Thalheim, 1998] Thalheim, B. “Entity-Relationship Modeling: Foundations of Database

Technology,” Springer-Verlag, 1998.

[TinyOS] The Open TinyOS Community. TinyOS. http://www.tinyos.net/;accessed May 18,

2011.

[Toninelli, 2009] Toninelli, A., Pantsar-Syvaniemi, S., Bellavista, P. and Ovaska,
E.”Supporting context awareness in smart environments,” ACM Press, New York, USA,

2009.

[BSAC, 2008] University of California at Davis University of California at Berkeley. The

Berkeley Sensor and Actuator Center (BSAC), 2008. http://wwwbsac.eecs.berkeley.edu/;

accessed October 19, 2011.

189

[SmartDust, 2008] University of California at Berkeley: Robotics Lab. SmartDust.
Autonomous sensing and communication in a cubic millimeter, 2008.

http://robotics.eecs.berkeley.edu/ pister/SmartDust/; accessed October 19, 2011.

[Grand Challenge, 2008]JUK Computing Research Committee. Grand Challenges in
Computing Research, 2008. http://www.ukcrc.org.uk/grand challenges/ index.cfm; accessed

September 10, 2011.

[Uschold, 1996] Uschold, M., and Gruninger, M. “Ontologies: Principles, methods, and

applications,” in Knowledge Engineering Review 11, 2, 93—155, 1996.

[Voelker, 1994] Voelker, Geoffrey M. and Bershad, Brian N. “Mobisaic: An information
system for a mobile wireless computing environment,” in IEEE Workshop on Mobile

Computing Systems and Applications, pp. 185190, 1994.

[W3C, 2011a] W3C. Composite Capabilities / Preferences Profile (CC/PP).

http://www.w3.org/Mo- bile/CCPP.

[Wang, 2004] Wang, X. H., Zhang, D. Q., Gu, T., and Pung, H. K., “Ontology based Context

Modeling and Reasoning using OWL,” in Proceedings of CNDS, 2004.

[Want, 2005] Want, R. and Pering, T. “System Challenges for Ubiquitous & Pervasive

Computing,” in ICSE’05, 2005.

190

[WAPFORUM, 2011a] WAPFORUM. User Agent Profile (UAProf).

http://www.wapforum.org.

[Weiser, 1984] Weiser, M. “Program slicing,” in IEEE Trans. Software Eng., 10(4):352-357,

1984.

[Weiser, 1991] Weiser, M. “The computer for the 21st century,” in Scientific American, 265

(3):66-75, 1991.

[Weiser, 1996] Weiser, M. and Brown, J. “The Coming Age of Calm Technology,” 1996.
http://www.ubiq.com/ hypertext/weiser/acmfuture2endnote.htm; accessed September 12,
2011.

[Wikipedia, 2011a] Wikipedia. (2005). Context awareness.

http://en.wikipedia.org/wiki/Context_awareness. 22 JULY, 2011

[Winograd, 2001] Winograd, T. “Architecture for Context,” in Human Computer Interaction,

Vol. 16,pp401-419, 2001.

[Xerox, 1996] Xerox Palo Alto Research Center Press Release. “Xerox Names Computing
Pioneer As Chief Technologist For Palo Alto Research Center,”

http://www.ubiq.com/weiser/weiserannc.htm; accessed September 12, 2011.

[Xie, 1995] Xie, M. and Wohlin, C. “An additive reliability model for the analysis of modular
software failure data,” in Proceedings of the 6th International Symposium on Software

Reliability Engineering (ISSRE), pp. 188—194, 1995.

191

[Yacoub, 1999] Yacoub, S., Cukic, B. and Ammar, H. “Scenario-based reliability of analysis
of component-based software,” in Proceedings of the 10th International Symposium on

Software Reliability Engineering (ISSRE’99), 22-31, 1999.

[Yokoo, 1998] Yokoo, M., Durfee, E. H., Ishida, T. and Kuwabara, K., “The Distributed
constraint satisfaction problem: formalization and algorithms,” in IEEE Transactions on

Knowledge and Data Engineering 10(5), 673-685, 1998.

[Yu, 1996] Yu, E. S. K., Mylopoulos, J., and Lespérance, Y. “Al Models for Business

Process Reengineering,” in IEEE Expert, vol. 11, pp. 16-23, 1996.

[Yu, 2001] Yu, Z., and Rajlich, V. “Hidden dependencies in program comprehension and
change propagation,” in Proceedings of the 9th International Workshop on Program

Comprehension, Washington, DC, USA, IEEE Computer Society, 2001.

[Zhang, 2004] Zhang, Tao. “An Architecture for Building Customizable ContextAware

Applications by EndUsers,” in Pervasive 2004 Doctoral Colloquium, Austria, 2004.

[Zhao, 2002] Zhao, B.Y., Kubiatowicz, J.D. and Joseph, A.D., “Tapestry: A Fault-tolerant
Wide-area Application Infrastructure,” in ACM SIGCOMM Computer Communication

Review, vol. 32, No. 1, pp. 81, 2002.

[Zhu, 2005] Zhu, Y., Ye, S. and Li, X. “Distributed PageRank computation based on iterative

aggregation-disaggregation methods,” in Proceedings of the 14th ACM International

192

Conference on Information and Knowledge Management, pp. 578-585, New York, USA,

2005.

[Zimmer, 2004] Zimmer, T. “Towards a Better Understanding of Context Attributes,” in

PerCom Workshop, pp. 23-27, 2004.

[Zimmer, 2006] Zimmer, T., “Quality of Context: Handling Context Dependencies,” in

Proceedings of 2" International Workshop on Personalized Context Modeling and

Management for UbiComp Applications, California, USA, 2006.

193

