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Notations
There are several notations used in the manuscript. Those notations are listed below

F R : the set of real numbers

F Sets are denoted by blackboard bold characters. ex : A;B;C; :::

F The vectors and vector functions are written in bold characters. ex : f : Rm !

R
n;x 2 Rm

F [x] : the interval of possible values of the variable x:

F x+; x� : respectively upper and lower bound of the interval [x]

F [x] = ([x1]; ::; [xn]) : the box of possible values of the vector variable x 2 R
n:

F [f ] : the inclusion function of the function f

F [A] : the box enclosing the set A.

F S : Solution set of a CSP

F Sq : q-relaxed solution set of a relaxed CSP

F IR : set of all the intervals of R

F IRn : set of all the boxes of Rn

F P (Rn) : set of all subsets of Rn

F T : the sort transform

F LP(E) : the set of lattice polynomials de�ned on the lattice E.

F
�!
LP(E) : the set of nested lattice polynomials de�ned on the lattice E.

F Accumulators are denoted using calligraphic characters. ex : A;B;X ;Y :::
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Chapter 1

Introduction

1.1 Localization of underwater robots

For an intelligent robot to be able to interact properly with its environment, it has to

know in one hand the environment and in the other hand its state in that environment.

Using several sensors and knowing the map of the environment, localization algorithms

allow to compute the position and orientation of the robot. Since the appearance of GPS,

the problem of localization has been practically solved on the ground. GPS doesn�t work

underwater since high frequency electromagnetic waves don�t propagate in that envir-

onment. However, the number of undersea operations increases signi�cantly every year.

This is due to the development of �elds such as exploitation of resources (e.g. deep-

water o¤-shore structure inspection), oceanography, biology, wreck exploration, security

(e.g. port protection), military (e.g. minesweeping, mine-laying). As a consequence,

there is an increasing need for underwater robots considering the dangerousness of those

operations. The current type of vehicles used during those operations are remotely op-

erated vehicles (ROVs). The ROVs are connected to the control station through an

umbilical cable used for energy and communication as a consequence they require an

important infrastructure (especially for deep-water models). The alternative is to use

autonomous underwater vehicles also called AUVs for those tasks (See [Veres et al., 2008]

for AUV designs). AUVs do not need any umbilical cable. On the other hand, since

the communication with the control center is limited, AUVs has to be intelligent and

rely on advanced algorithms such as localization, SLAM (simultaneous localization and

mapping), image processing and path planning. The AUV also needs to be able to

autonomously return home after the mission [Baccou and Jouvencel, 2002]. Many ap-

proaches have been proposed to address those problems such as probabilistic methods

[Thrun et al., 2005] [Clérentin et al., 2008]. In this manuscript, probabilistic methods are

not presented. This thesis focuses on the improvements made to set-membership methods

23
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and particularly methods using interval computations. The problem of robot localization

using set membership methods have been addressed by many authors [Meizel et al., 1996]

[Halbwachs and Meizel, 1996] [Gning, 2006] [Kie¤er, 1999] in the case where the problem

is linear or not and also [Caiti et al., 2002] when the robot is underwater. In situations

where strong nonlinearities are involved, interval computations has been shown to be

useful (see, e.g., [Meizel et al., 2002], where the �rst localization of an actual robot has

been solved with interval methods). The principle is that both input data and robots

position are represented by their respective belonging sets. Constraints between the po-

sition of the robot and the sensor observations are used to contract the actual position

set i.e. reduce its size thus increasing the estimates precision. Another strong point

of set membership methods is the ability to deal with outliers [Jaulin and Walter, 2002]

[Jaulin et al., 1996]. As an example, this property has been used to improve the loc-

alization in the city using a GPS sensor which data is usually corrupted by multipath

[Drevelle and Bonnifait, 2009]. Those methods were also used for robust to outliers un-

derwater robot localization [Jaulin, 2009].

In this PhD thesis, we focused on how to better deal with outliers when their number is

unknown and may vary with time. We also present other contributions to set membership

theory such as contractors theory. The usefulness of most of those contributions is shown

through di¤erent localization problem examples.

1.2 Approach to solve the localization problem

Any localization problem involves four main concepts being the environment, the map

of the environment, the pose (position and orientation) and the measurements of the

environment. For each measurement of the environment is associated an equation (or set

of equations) linking the map, the pose and the measurement. As such, the problem of

localization can be formulated as a constraint satisfaction problem or CSP. A CSP can be

seen as a set of equations (or constraints) involving variables to be determined (In the case

of localization, the position of the robot is such a variable). Each of these variable is known

to belong to a known set called domain or search space. In our case, each constraint can

be considered as a representation of the information on the position of the robot compiling

the data from both the measurement and the map. The more constraints there are, the

more information there is about the position of the robot and the better is its estimation.

The solution of a CSP is the set of points (positions) which satisfy all the constraints.

To solve the CSP one have to assume that all sensor measurements are correct. The

main sensor used for localization is a sector scan sonar. Very often, the sensor doesn�t

provide correct measurements i.e. the measurements of the real environment doesn�t

correspond to the theoretical measurement of a model sensor in a model environment

represented by the map. We call this measurement an outlier. An outlier may be due to
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either sensor electrical failure or a phenomenon not taken into account when modeling the

environment (unaccounted objects which are detected by the sensor, physical phenomena

such as multiple echoes in the case of sonar ...). A localization problem when there are

outliers in the data is then cast into a set of equation where not all the equations have

to be satis�ed i.e. a CSP where not all the constraints have to be satis�ed. We call this

problem a relaxed constraint satisfaction problem or relaxed CSP. The number of outliers

in the data used for example for localization is a priori unknown and may vary with time.

A better characterization of the solution of a relaxed CSP allow thus to deal better with

those outliers. Characterizing and �nding the solution of a relaxed CSP is one of the

major contributions to the PhD thesis.

One of the hurdles to overcome to solve localization problems is the representation of the

map. In case of structured environments, it is possible to represent the map by a set of

parametered objects such as segments, polygons, curves. In case of unstructured maps

such as seashore or lake borders, the idea is to represent the map (which actually is a set)

in the form of a binary image where pixels of interest (black for example) represents the set

of points of the map. The point is then to be able to use the binary image representation

in CSP or relaxed CSP computer solvers. One of the set membership approaches to

solve CSPs is to use an algorithmic representation of the constraints called contractors.

If the constraint de�nes a set of points which satisfy (or not) the constraint then the

associated contractor enables to compute an approximation of that set on a computer.

The contractors can be then combined to create a unique contractor allowing to compute

the solution set. In case of localization problem we have a set of constraints (one for each

measurement). Each one of those constraints can actually be decomposed into several

constraints. One of those constraints is the "belong to the map" constraint. The second

major contribution to the thesis was to de�ne the contractor associated to the constraint

"belong to the map". That contractor is called the image contractor.

In a nutshell, using the newly developed tools, we propose an approach enabling robust

to outliers robot localization in any unstructured environment.

1.3 Contributions

This is the list of all the contributions to set membership theory. During the PhD thesis,

we worked on how to characterize the solution of a relaxed constraint satisfaction problem

i.e. a CSP where some of the constraints can be let unsatis�ed (See section 2.2 for the

de�nition). A localization problem when there are outliers in the data can be cast into

a relaxed CSP. The number of outliers in the data used for example for localization is

a priori unknown and may vary with time. A better characterization of the solution of

a relaxed CSP allow thus to deal better with those outliers. This theory is presented in
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chapter 2.

The �rst contribution in this context is to represent the solution of a relaxed CSP in the

form of a polynomial with set valued coe¢cients also called set polynomial. Each coe¢-

cient of this polynomial is the set of elements satisfying a speci�c number of constraints

which actually corresponds to the degree of that coe¢cient in the polynomial. This idea

is developed in section 2.5.

The second contribution in the same context is an alternative representation of the solu-

tion of a relaxed CSP. We de�ne a function called accumulator which for each element

returns the number of constraints it satis�es. In the manuscript, we highlight the links

between accumulators and fuzzy logic [Klir and Yuan, 1995] [Nguyen and Walker, 2005]

[Zadeh, 1965] and the generalized Hough transform [Bovik, 2000]. The accumulators are

introduced in section 2.6.

Both set polynomials and accumulators have interesting properties with regards to distrib-

uted computations. The fusion of the information is performed by polynomial product

in the case of set polynomials and sum in the case of accumulators. The Set polyno-

mial and accumulator based relaxed CSP solvers are implemented using interval analysis

[Kearfott and Kreinovich, 1996] [Jaulin et al., 2001] and contractor theory [Jaulin et al., 2001]

[Chabert and Jaulin, 2009a] which are explained in chapters 3 and 4 respectively. The

implementation of set polynomials and accumulators is explained in a separate chapter

(chapter 5). The idea is to separate the mathematical theory from the implementation

which might not be unique. An implementation of the set polynomials is explained in

section 5.1. An implementation of the accumulators is explained in section 5.2.

The third contribution is the de�nition of the image contractor. Contractors are al-

gorithmic entities used to compute an approximation (in the form of subpavings) of the

set they represent. The image contractor is the contractor associated to the set de�ned

by black (or white) pixels on a binary image. The image contractor allows to represent

hardly parametrable sets such as maps in the context of localization. The image contractor

can also be used to approximate complex contractors which require heavy computations.

All we need is to generate the image ("take the picture") of the set associated to the

constraint we need to use. The image contractor is introduced in section 4.8.

The fourth contribution also deals with contractors and provides theorems allowing to

construct minimal contractors from other minimal contractors. The �rst theorem claims

that the union of minimal contractors is also minimal. The second theorem claims that the

transform of a minimal contractor (central symmetry, some axial symmetries, homothetie)

is also minimal. As such it is possible to construct a complex minimal contractor from

simple minimal contractors through transformations and unions. The di¤erent contribu-

tions to contractor theory are explained in chapter 4.

The �nal contribution is the application of the image contractor and relaxed CSP solving
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techniques on a real case of localization of an underwater robot. A Particle Filtering

method [Maurelli et al., 2008] has also been used on the same dataset. A comparison

between set membership methods and Particle Filtering techniques is presented along

with the application. The application is presented in chapter 6.

Being a robotician, I couldn�t omit to also talk about the robots we worked on. The

last chapters 7 and 8 presents respectively the autonomous underwater vehicles (AUV)

developed in our school and the other robots we worked on such as autonomous surface

vehicles (ASV) and autonomous ground vehicles (AGV).
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Chapter 2

Solution characterization for relaxed

constraint satisfaction problems

2.1 Introduction

This chapter presents several methods to represent the solution of a relaxed constraint

satisfaction problem or relaxed CSP (See de�nition 2.2). A relaxed CSP can usually

be represented by a set of equations (also called constraints) which involve an unknown

variable to be determined. This variable belongs to a particular set called domain or search

space. In this chapter we try to characterize the elements of the search space which satisfy

only a part of the constraints. The �rst method introduced in [Jaulin, 2009] consists on

searching for the set of elements satisfying at least a speci�c number of constraints. This

method is explained in section 2.4.

The second method to deal with the relaxed CSPs can be seen as an extension of the pre-

vious method. The degree of satisfaction of an element of the search space is the number

of constraints it satis�es. Instead on focusing on the set of elements having a particular

degree of satisfaction, the idea is to consider all the sets for all degrees of satisfaction. The

contribution here is to consider a polynomial with set valued coe¢cients which coe¢cients

are those sets. The degree of each coe¢cient corresponds to the degree of satisfaction of

the elements in that set coe¢cient. The choice of polynomial notation allow to take be-

ne�t from the polynomial arithmetics. The �rst bene�t is a simple representation of the

solution of the relaxed CSP in the form of a product of monomials. The second bene�t is

the possibility represent the solution of a distributed relaxed CSP. A relaxed CSP is dis-

tributed when the constraints are not immediately available at the same time and place.

A lattice is a partially ordered set closed under least upper and greatest lower bounds (see

[Davey and Priestley, 2002], for more details). The set of all subsets of Rn has a lattice

structure. As such, the concept of set polynomials is generalized to lattice polynomials
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where the coe¢cient belong to a lattice. The lattice polynomials are explained in section

2.5.

This chapter introduces another representation of the solution of a relaxed CSP in the

form of a function called accumulator. For each element, the accumulator function re-

turns the degree of satisfaction of that element (number of constraints it satis�es). The

characteristic function of a set is the function returning 1 for elements belonging to that

set and 0 otherwise. The accumulator provides a simple representation of the solution

of the relaxed CSP is the form of a sum of the characteristic functions of the set as-

sociated to the constraints in the relaxed CSP. The accumulators can also be used to

represent the solution of distributed relaxed CSPs. The accumulator theory is close to

fuzzy logic [Klir and Yuan, 1995] [Nguyen and Walker, 2005] [Zadeh, 1965] and the gen-

eralized Hough transform [Bovik, 2000]. This link is also explained in this chapter. The

accumulators are explained in Section 2.6.

2.2 Relaxed constraint satisfaction problem

In this section, the relaxed constraint satisfaction problem or relaxed CSP as well as

the classical CSP are de�ned. The relaxed CSP�s domains (see de�nitions below) are

represented using Rn boxes. The boxes are used only for that purpose in this chapter.

The boxes are rede�ned in chapter 3 in the context of interval analysis which is used to

implement relaxed CSP solvers.

2.2.1 Intervals and boxes

Interval : An interval is a connected and closed subset of R. If x is a real variable we

denote by [x] the interval containing this variable. [x] is called the domain of x. An

interval has an upper and lower bound which we will note as follows [x] = [x�; x+]. IR is

the set of all the real intervals. IN is the set of natural number intervals. w([x]) = x+�x�

is called width of [x].

Example 1 ;; f�1g; [�1; 1]; [�1;1];R are intervals.

Box : A box of Rn is de�ned by a Cartesian product of intervals. A box can be also

considered as an interval vector. If x = (x1; ::; xn) 2 R
n is a real variable vector we denote

by [x] = ([x1]; ::; [xn]) the box containing this variable.

Example 2 [1; 3]� [2; 4] is a box of R2:
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2.2.2 CSP and relaxed CSP

A constraint satisfaction problem (or CSP) is de�ned by a set of constraints C1; ::; Cn, a

vector of variables x = (x1; ::; xm) and the domain (or search space) D = D1� ::�Dm of

possible values of x. Originally the CSPs were de�ned on discrete domains [Clowes, 1971]

[Waltz, 1975]. Later, CSPs were extended to continuous domains [Cleary, 1987] [Davis, 1987]

[Hyvönen, 1992] [Sam-Haroud, 1995]. During the PhD thesis, we only considered continu-

ous CSP where the domain D is a box of Rm. Since the domain D is a box we changed

its notation to [x] = ([x1]; ::; [xn]).

The constraints are linear or nonlinear equations or inequalities

gi : R
m ! R; hi : R

m ! R

Ci : gi(x) � 0; i = 1; ::; k

Ci : hi(x) = 0; i = k + 1; ::; n:

x 2 [x];

(2.1)

A more general notation can be used to represent such a CSP

fi : R
m ! R

pi

Ci : fi(x) 2 [yi];

x 2 [x]; [yi] 2 IR
pi ; i 2 f1; ::; ng:

(2.2)

where [yi] are known real number boxes.

The CSP can also be denoted in an even more compact form

f :Rm ! R
n

f(x) 2 [y];x 2 [x]; [y] 2 IRn:
(2.3)

where [y] is a known real number box.

All those notations are equivalent and are used in the manuscript depending on the

situation. Searching for the solution of a CSP is to search for the set of elements x 2 [x]

which satisfy all the constraints. In some cases there are no such elements. A CSP where

not all the constraints are necessarily satis�ed is called a Relaxed Constraint Satisfaction

Problem or Relaxed CSP.

2.3 Extended summary

This section explains the di¤erent approaches to represent the solution of a relaxed CSP

in a shortened form highlighting the most important results. Reading this section is

not necessary to understand the latter part of the manuscript. The purpose is
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for the reader to be able to see the whole theory in a condensed form without being lost

in the details. Each time a result is presented, a reference to the section and subsection

where the result is explained in more details is provided. Consider the following relaxed

CSP
fi : R

m ! R
pi

Ci : fi(x) 2 [yi];

x 2 [x]; [yi] 2 IR
pi ; i 2 f1; ::; ng:

(2.4)

In order to solve this problem, the �rst method introduced in [Jaulin, 2009] consists on

searching for the set Sq of elements satisfying all of the constraints fC1; ::; Cng relaxing q 2

f1; ::; ng of them. This means that up to q constraints can be not satis�ed or inconsistent.

This also means that Sq is also the set of points which satisfy at least n� q constraints.

Note that there is an equivalence between the formulations "relaxing q constraints" and

"satisfying n�q constraints". The �rst one is usually used when the number of constraints

to be relaxed (or inconsistent constraints) is low. Such is the case of the localization

problem, which can be set into a relaxed CSP, where the inconsistent constraints are

caused by outliers in sensor data with a ratio inferior to 30%. The set Sq is de�ned by

Sq = fx 2 [x];9K � f1; ::; ng; card(K) =n� q;8i 2 K; fi(x) 2 [yi]; [yi] 2 IR
pig: (2.5)

Denote by Xi the set of elements satisfying the constraint Ci

Xi = fx 2 R
m; fi(x) 2 [yi]g; [yi] 2 IR

pi ; i 2 f1; ::; ng: (2.6)

The sets Xi play an important role in the characterization of the di¤erent solutions of the

relaxed CSP. For example, the set of point satisfying all the constraints (the solution of

the CSP) is the intersection of the Xi sets. As for the solution set Sq of the relaxed CSP

assuming q inconsistent constraints is de�ned by the q-relaxed intersection of the Xi sets

(See subsection 2.4.3). The q-relaxed intersection of the Xi denoted

fqg\

i2f1;::;ng

Xi is the set

of point belonging to at least n� q sets among Xi sets. As such

Sq =

fqg\

i2f1;::;ng

Xi = fx 2 R
m;9K � f1; ::; ng; card(K) =n� q;8i 2 K;x 2 Xig: (2.7)

In the case of localization of a robot, the real number of inconsistent constraints qreal is

usually unknown and may vary with time. It is sometimes possible to assume a maximum

number of inconsistent constraints qmax. We consider Sqmax being the solution of the

problem. The solution set Sqmax is a guaranteed solution i.e. the real position is certainly

in Sqmax as long as the real number of outliers qreal is lower than qmax. This approach is

explained in more detail in section 2.4. Note that, since qreal < qmax, we have Sqreal � Sqmax
which means that the solution set Sqmax is overestimated.
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One of the contributions to the PhD thesis was to try to �nd a new representation of

the solution of a relaxed CSP and avoid such overestimation. The approach consists on

considering all the solution sets Sq for all possible values of q. As such, before coming up

with the polynomial representation, the �rst mathematical representation of the solution

of a relaxed CSP was in the form of a vector of sets (Sn�1; ::;S0). To characterize this

vector we considered a transform denoted T which we called the sort transform such as

the vector (Sn�1; ::;S0) is the transform of the vector of sets (X1; ::;Xn) de�ned in 2.6. We

have

(Sn�1; ::;S0) = T (X1; ::;Xn): (2.8)

The sort transform T is actually introduced in subsection 2.5.3. The name of the sort

transform comes from the fact that the output vector of sets is sorted with descending

order relatively to the � order i.e. S0 � ::: � Sn�1. The sort transform provides a formula

for each solution set Sq; q 2 f1; ::; ng which corresponds to the q-relaxed intersection of

the Xi; i 2 f1; :; ng sets.

The representation of the solution of a relaxed CSP in form of a vector of sets (Sn�1; ::;S0)

may seem lacking since each element of the vector Sq is computed separately using the sort

transform formula (q-relaxed intersection). Basically the sort transform doesn�t provide

a unique formulation involving all of the Xi; i 2 f1; :; ng sets which allow to obtain the

Sq; q 2 f0; ::; n�1g sets. The solution we propose is to use polynomial representation. The

idea is to consider polynomials with set valued coe¢cients also called set polynomials. We

consider a polynomial called solution set polynomial which coe¢cients are the elements

of the vector (Sn�1; ::;S0) such as the degree of the coe¢cient corresponds to the number

of constraints which are satis�ed by the elements in that set coe¢cient. Denote by X�(s)

this polynomial

X�(s) =

nX

k=0

Sn�ks
k: (2.9)

The purpose of using polynomial representation is to take advantage of the set polynomial

arithmetics (sum, product) to represent the sort transform with a unique formulation. The

product and sum of set polynomials is similar to the product and sum of real polynomials

just that the product " � " of two coe¢cients is replaced by their intersection " \ " and

the sum "+" of two coe¢cients is replaced by their union "[". Consider the polynomial

Y �(s) =

nY

k=1

(Xks+ R
m) (2.10)

By expanding the polynomial Y �(s) we �nd that

nY

k=1

(Xks+ R
m) =

nX

k=0

Sn�ks
k: (2.11)
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As such, the sort transform T has an equivalent polynomial formulation considering a

product of the set monomials (Xks + R
m); k 2 f1; ::; ng also called the polynomial sort

transform of the Xi; i 2 f1; :; ng sets.

Remark 1 A possible interpretation of the monomials Xis + R
m; i 2 f1; ::; ng is to rep-

resent the binary information "{belongs to Xi; belongs to R
m (no information)}". The

polynomial variable s is associated to the information "belongs to Xi". This means that

considering a product of monomials (equation (2.10)), the more sets Xi an element x

belongs to, the higher is the degree of the coe¢cient to which x will belong to in X�(s).

Figure 2.1: Example of solution representation of a one dimensionnal relaxed CSP

Figure 2.1, represents the solution sets Sq; q 2 f0; ::; n� 1g for a one dimensional relaxed

CSP with the unknown x 2 R. The x-axis corresponds to the unknown x 2 R of the

CSP. The solution sets Sq; q 2 f0; ::; n� 1g are represented in bold gray in di¤erent levels

represented by the k-axis. The k-axis corresponds to the number of constraints which

are satis�ed by elements in the set represented at that level. The set represented on level

k (the set satisfying k constraints) is Sn�k (the solution set relaxing n � k constraints).

Denote by qreal the number of inconsistent constraints (which is unknown) and qmax the

estimated maximal number of inconsistent constraints (used for the previous method).

Sqreal and Sqmax are represented on the Figure 2.1. Note that Sqreal � Sqmax .

Another advantage of the polynomial notation is to represent the fusion of solutions of two

independent relaxed CSPs sharing the same variable x using the product of their solution

set polynomials. This property is useful for distributed computations. Considering two

relaxed CSPs, the �rst one labeled RCSP_A which solution set polynomial is A�(s) and
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the second one labeled RCSP_B which solution set polynomial is B�(s). Denote by

X�(s) the solution of the relaxed CSP involving the constraints of both RCSP_A and

RCSP_B. We have

X�(s) = A�(s) �B�(s): (2.12)

The set of all subsets of Rn has a lattice structure [Davey and Priestley, 2002]. A lattice is

a partially ordered set closed under least upper and greatest lower bounds. Set polynomials

are generalized to lattice polynomials where the coe¢cient belong to a lattice. Lattice

polynomials are introduced in subsection 2.5.4. We also generalize the set sort transform

into the lattice sort transform de�ned in 2.5.3.

Section 2.6 introduces another possible representation of the solution of a relaxed CSP

in the form of a function A : Rm ! R
n also called accumulator which for each element

x 2 [x] associates the number of constraints it satis�es

A(x) = Card(fi 2 f1; ::; ng; fi(x) 2 [yi]; [yi] 2 IR
pig): (2.13)

The accumulator can also be de�ned using the characteristic function denoted � of a

constraint C : f(x) 2 [y]; f : Rm ! R
p; [y] � Rp de�ned by

�
�(C)(x) = 1 if f(x) 2 [y]

�(C)(x) = 0 otherwise.
(2.14)

In fact, the accumulator A is the sum of the characteristic functions of all the constraints

of the relaxed CSP

A(x) =
X

i2f1;::;ng

�(Ci)(x): (2.15)

This last property justi�es the name "accumulator". Figure 2.2, represent an accumulator

A as a solution representation of a one dimensional relaxed CSP with n constraints. The

variable x 2 R (one dimension) is represented on the x-axis and the k-axis corresponds

to the number of constraints which are satis�ed by x. Denote by qreal the number of

constraints that are inconsistent (not satis�ed) and qmax the estimated maximal number

of inconsistent constraints. Sqreal and Sqmax are represented on the Figure 2.2. Note that

to obtain Sq; q 2 f1; ::; ng one have to solve the equation A(x) � n� q:

The advantage of this representation is an even simpler fusion of solutions of two re-

laxed CSPs sharing the same variable x. Considering two relaxed CSPs, the �rst one

labeled RCSP_X which is associated to the accumulator X and the second one labeled

RCSP_Y which is associated to the accumulator Y. Denote by A the accumulator as-

sociated to the relaxed CSP involving the constraints of both RCSP_X and RCSP_Y .

We have

A = X + Y : (2.16)
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Figure 2.2: Using an accumulator to represent the solution of a one dimensionnal relaxed

CSP

This property enables an even simpler distributed computations.

The accumulator theory is close to both fuzzy logic as well as generalized Hough Trans-

form. This similarity is explained in section 2.6.

The computer implementation of set polynomials and accumulators based solvers are ex-

plained in a di¤erent chapter which is chapter 5. The purpose is to separate mathematical

theory from the implementation which might not be unique.

2.4 Representing the solution of a relaxed CSP when

the number of constraints to be relaxed is �xed

2.4.1 Introduction

The method explained in this section is used to represent a solution of a relaxed CSP

de�ned in section 2.2. This method was actually introduced in [Jaulin, 2009]. In case of

a relaxed CSP, it is supposed that not all of the constraints are necessarily satis�ed. The

idea is to seek the set of points Sq satisfying all the constraints but at most q of them. At

most q constraints are thus allowed to be inconsistent with the other constraints. Before

proposing a solution for the relaxed CSP, we explain in subsection 2.4.2 how to obtain the

solution of a classical continuous CSP since both methods are similar. Subsection 2.4.3

de�nes a special set intersection called the q-relaxed intersection which is the set of points

which belong to all the intersected sets but q of them. The q-relaxed intersection is then
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used to de�ne the solution of a relaxed CSP as seen in subsection 2.4.4. Subsection 2.4.5

give an application for boat localization using compass angle measurements of lighthouses

to show the viability of the approach.

2.4.2 Solving a CSP

In this subsection we �rst try to characterize the solution of a CSP. This subsection

helps understanding relaxed CSP resolution since both methods are similar. Consider the

following CSP
fi : R

m ! R
pi

Ci : fi(x) 2 [yi];

x 2 [x]; [yi] 2 IR
pi ; i 2 f1; ::; ng:

(2.17)

A solution of the CSP is an element x of the search space (domain) [x] which satis�es all

the constraints simultaneously. Usually, we search for the set S of all the elements which

are solution of the CSP

S = fx 2 [x];8i 2 f1; ::; ng; fi(x) 2 [yi]; [yi] 2 IR
pig: (2.18)

In a set membership context, the CSP can be formulated as a set inversion problem

[Jaulin et al., 2001] where

S = f�1([y]); (2.19)

where [y] = ([y1]; ::; [yn]) and f = (f1; ::; fn).

The solution of the CSP also can be characterized by an intersection of sets. Denote by

Xi the set of points x which satisfy the constraint Ci : fi(x) 2 [yi] i.e.

Xi = fx 2 R
m; fi(x) 2 [yi]; [yi] 2 IR

pig = f�1i ([yi]); i 2 f1; ::; ng: (2.20)

The sets Xi play an important role in the characterization of the di¤erent solutions of the

relaxed CSP. In the context of CSP resolution, we have

S =
\

i2f1;::;ng

Xi: (2.21)

Example 3 Consider x = (x1; x2) 2 R
2 and the following set of constraints involving x

C1 : x1 � x2 = 0

C2 : x
2
1 + x

2
2 < 25

C3 : x
2
1 + x

2
2 > 9

C4 : x1 � x2 < 0

(2.22)
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Those constraints can also be denoted

C1 : x1 � x2 2 f0g

C2 : x
2
1 + x

2
2 2 [0; 25]

C3 : x
2
1 + x

2
2 2 [9;1]

C4 : x1 � x2 2 [�1; 0]

(2.23)

Figures 2.3.a, 2.3.b, 2.3.c, 2.3.d show the sets of the elements which satisfy the constraints

C1; C2; C3 and C4 respectively. The solution set of the CSP de�ned by the constraints

fC1; C2; C3g is shown in Figure 2.3.e. This solution set is the intersection of the solution

sets represented in Figures 2.3.a, 2.3.b and 2.3.c. The CSP de�ned by the constraints

fC1; C2; C3; C4g doesn�t admit any solution. In the latter case, it might be interesting to

consider solving the relaxed CSP de�ned by the constraints fC1; C2; C3; C4g.

Figure 2.3: Solutions of the CSP for di¤erent sets of constraints

2.4.3 The q-relaxed intersection and union

The q-relaxed intersection

As seen in subsection 2.4.2, the solution of the CSP can be written as an intersection of

the sets de�ned in (2.20). In case of a relaxed CSP, there is not necessarily any element

in the search space satisfying all of the constraints. In the case of partial satisfaction, the

intersection of the Xi sets de�ned in (2.20) yields an empty set. The idea is to de�ne a

special intersection called q-relaxed intersection which enables the characterization of the

solution set of a relaxed CSP. The q-relaxed intersection is the set of points which belongs

to all the intersected sets but at most q of them.

De�nition 1 The q-relaxed intersection (see [Jaulin, 2009]) of n sets X1; ::;Xn also de-

noted by

fqg\

i2f1;::;ng

Xn is the set of points x 2 R
m belonging to all the sets X1; ::;Xn but at
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most q of them which is also de�ned by

fqg\

i2f1;::;ng

Xi = fx 2 R
m;9K � f1; ::; ng; card(K) =n� q;8i 2 K;x 2 Xig: (2.24)

It is possible to rewrite the de�nition of the q-relaxed intersection using intersections and

unions of the input sets Xi; i 2 f1::ng. This new formulation also called the disjunctive

form of the relaxed intersection is used for demonstrations in section 2.5.

De�nition 2 The q-intersection of fX1; ::;Xng is the set of all elements (union) which

belong to an intersection of a subset of fX1; ::;Xng of n� q elements.

8q 2 f1; ::; ng;

fqg\

i2f1;::;ng

Xi =
[

K�f1;::;ng;card(K)=n�q

 
\

k2K

Xk

!

: (2.25)

Example 4 Figure 2.4 illustrates the q-relaxed intersection of sets X1;X2;X3;X4 and X5.

We have
f0g\

i2f0;::;5g

Xi =
T

i2f1;::;5g

Xi = ;

f2g\

i2f0;::;5g

Xi = X3 \ X4 \ X5 (hatched set in Fig. 2.4)

f5g\

i2f0;::;5g

Xi =
S

i2f1;::;5g

Xi:

(2.26)

The q-relaxed union

The q relaxed intersection of n sets de�nes the set of points belonging to all the sets but

at most q of them. At the same time, it also de�nes the set of points belonging to at

least n � q sets. In this subsubsection we de�ne the q relaxed union of n sets, denoted

by
fqgS
, which de�nes the set of points belonging to at least q sets. See the mathematical

de�nition below

fqg[

i2f1;::;ng

Xi = fx 2 R
m;9K � f1; ::; ng; card(K) =q;8i 2 K;x 2 Xig: (2.27)

The relaxed union can also be rewritten using the disjunctive form

8q 2 f1; ::; ng;

fqg[

i2f1;::;ng

Xi =
[

K�f1;::;ng;card(K)=q

 
\

k2K

Xk

!

(2.28)

39



40 Chapter 2. Solution characterization for relaxed constraint satisfaction

problems

Figure 2.4: Illustration of the q-relaxed intersection of 5 sets. The hatched set corresponds

to the 2-relaxed intersection.

Note that

8q 2 f1; ::; ng;

fqg[

i2f1;::;ng

Xi =

fn�qg\

i2f1;::;ng

Xi (2.29)

The relaxed union and the relaxed intersection can be used in an equivalent manner.

However, the concept of the relaxed intersection was invented before the concept of the

relaxed union. Except the following theorem, rather than the relaxed union, we will use

the relaxed intersection.

The q-relaxed union of unions of disjoint sets

Here is described a property of the q-relaxed union which is useful to handle sets com-

posed of unions of disjoint sets. An example of such sets are periodic sets such as sets

used to represent angles (see sectors in [Ramdani, 2005] for a possible representation of

such complex sets). The set representing an angle is periodic since two real numbers

with di¤erent values can represent the same angle if their value modulo 2� is the same.

It is possible to prove that any interval representing an angle can be represented as a

union of two disjoint intervals over the interval [0; 2�]. The following theorem is a small

contribution to this thesis.

Theorem 1 The q relaxed union of n sets composed of a �nite union of disjoint subsets

is the q relaxed union of all the subsets taken separately.
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proof. Consider n sets denoted Xi � R
m. For each set Xi it is possible to consider a

partition denoted fXi1; ::;Xipig. To simplify the proof consider

8i 2 f1; ::; ng;9m 2 N; pi = m:

We prove that
fqg[

i2f1;::;ng

Xi =

fqg[

i2f1;::;ng;j2f1;::;mg

Xij (2.30)

Considering the de�nition 2.27 of the q-relaxed union of the Xi sets and by replacing Xi
by the union of the sets of its partition

fqgS

i2f1;::;ng

Xi =
fqgS

i2f1;::;ng

 
S

j2f1;::;mg

Xij

!

= fx 2 Rm;9K � f1; ::; ng; card(K) =q;8i 2 K;x 2
S

j2f1;::;mg

Xijg:
(2.31)

Given i 2 f1; ::; ng; the sets Xij; j 2 f1; ::;mg are disjoint as such

fqgS

i2f1;::;ng

Xi = fx 2 Rm;9K � f1; ::; ng; card(K) =q;8i 2 K;9!j 2 f1; ::;mg;x 2 Xijg

= fx 2 Rm;9K � f1; ::; ng�f1; ::;mg; card(K) =q; 8(i; j) 2 K;x 2 Xijg;

def
=

fqgS

i2f1;::;ng;j2f1;::;mg

Xij

(2.32)

Remark 2 The theorem is valid for sets which can be represented as a union of dis-

joint boxes or intervals. As a consequence, this theorem simpli�es the implementation of

algorithms for the relaxed union/intersection for those kind of sets.

2.4.4 Solving a relaxed CSP using q-relaxed intersection

The example 3 in subsection 2.4.2 showed that sometimes a CSP doesn�t admit solution

which means there is no element in the search space satisfying all the constraints. The idea

which has been introduced in [Jaulin, 2009] is to search for the set of elements satisfying

all the constraints but at most q of them

Sq = fx 2 [x];9K � f1; ::; ng; card(K) =n� q;8i 2 K; fi(x) 2 [yi]; [yi] 2 IR
pig: (2.33)
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In the subsection 2.4.2, we saw that the solution set S of a CSP can be characterized by

the intersection of the Xi sets de�ned in 2.20. When the CSP doesn�t admit any solution

the intersection of the Xi sets is empty. In the case of a relaxed CSP, it is also possible

to express Sq using the Xi sets

Sq = fx 2 R
m;9K � f1; ::; ng; card(K) =n� q;8i 2 K;x 2 Xig; (2.34)

which leads to the following equation using the q-relaxed intersection (see de�nition 1)

Sq =

fqg\

i2f1;::;ng

Xi:

The number of constraints to be relaxed q, which corresponds to the number of incon-

sistent or not satis�ed constraints, is usually unknown but quite often q is bounded and

never go beyond a maximum number qmax. The solution of the relaxed CSP becomes

Sqmax =

fqmaxg\

i2f1;::;ng

Xi: (2.35)

Remark 3 This solution is guaranteed as long as the assumption about the number of

outliers (q < qmax) is respected.

2.4.5 Example of localization with outliers

To show the motivation of solving the problem of relaxed CSP, this subsection presents

a simple example of the localization of a boat using compass measurements of landmarks

such as lighthouses. In Figure 2.5 the captain of a boat is trying to �nd boats position

(x; y) by measuring the angle with respect to the magnetic north of four lighthouses

A;B;C and D. Each lighthouse i has a known position (xi; yi) and the measured angle

is �i:

Unexpectedly, the lighthouseD has been moved from its old positionD�. Since the captain

is using an old map, he has mistaken the position of the lighthouse D thus creating an

outlier in the measurements. The position of the boat is constrained by the following

equations

Ci : (xi � x) � sin(�i)� (yi � y) � cos(�i) = 0; i 2 fA;B;C;Dg (2.36)

For each constraint one can compute the set of compatible positions of the boat. If �i is

measured precisely, this set of points is the line passing by the lighthouse and making an

angle �i with the south-north axis. Those lines are represented in Figure 2.5. If all the
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Figure 2.5: Localization of a boat using compass measurements of landmarks

measurements were correct, the position of the boat would be the intersection of those

lines. In case of an outlier, it is not possible to obtain the position since those lines doesn�t

intersect in one point as seen in Figure 2.5. The right position is obtained by seeking the

intersection of 3 lines among the 4 lines obtained by the measurements i.e. the 1-relaxed

intersection of those lines.

2.5 Representing the solution of a relaxed CSP using

set polynomials

2.5.1 Introduction

The previous section presented how to compute the solution set Sqmax of a relaxed CSP

assuming that the number of inconsistent constraints is always inferior to qmax. In the

context of localization, inconsistent constraints comes from outliers in sensor data. It is

not easy to know exactly the number of those outliers which may also vary with time. As

such, the estimated maximum of inconsistent constraints (in the localization case outliers

in the data) qmax may be easily overestimated. In this case, the solution set Sqmax is

also overestimated. One of the contributions to the PhD thesis was to try to �nd a

new representation of the solution of a relaxed CSP and avoid such overestimation. The
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approach consists on considering all the solution sets Sq for all possible values of q i.e.

the vector of sets (Sn�1; ::;S0).

The �rst approach is to consider that this vector of sets is the result of a transform called

the sort transform of the vector of sets of elements satisfying one constraint from the

relaxed CSP at a time (the Xi sets de�ned in (2.20)). The sort transform provides a

formula for each of the solution sets Sq; q 2 f0; ::; n � 1g but doesn�t provide a unique

formulation of the solution as a whole.

The idea is to consider polynomials with set valued coe¢cients also called set polynomials.

We consider a polynomial called solution set polynomial which coe¢cients are the elements

of the vector (Sn�1; ::;S0) such as the degree of the coe¢cient corresponds to the number

of constraints which are satis�ed by the elements in that set coe¢cient. The purpose of

using polynomial representation is to take advantage of the set polynomial arithmetics

(sum, product) to represent the sort transform with a unique formulation as a product of

monomials.

Because the set of all subsets of Rm has lattice structure, all the theory is generalized to

lattices. Lattices are de�ned in subsection 2.5.2. The sort transform of vectors de�ned

on lattices is de�ned in subsection 2.5.3. Lattice polynomials i.e. polynomials with lattice

valued coe¢cients are de�ned in subsection 2.5.4. The use of set polynomials to represent

the solution of a relaxed CSP is de�ned in subsection 2.5.5. Another advantage of the

polynomial representation is to represent the possibility of distributed computations of a

relaxed CSP. This concept is presented in subsection 2.5.6. Set polynomials based solvers

are implemented in section 5.1 of chapter 5.

2.5.2 Lattices

A lattice (E;�) is a partially ordered set closed under least upper and greatest lower

bounds (see [Davey and Priestley, 2002], for more details). The least upper bound (or

supremum) of x and y is called the join and is denoted by x_y. The greatest lower bound

(or in�mum) is called the meet and is written as x^y. A bounded lattice has a maximum

(or top) and minimum (or bottom) element which is denoted > and ? respectively.

Example 5 The set P (Rm) of all subsets of Rm is a lattice with respect to the inclusion

�.

For two elements A;B 2 P (Rm) we have

A ^B = A \B

A _B = A [B

P (Rm) maximum and minimum are Rm and ; respectively.
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Example 6 Figure 2.6 shows an example of a Hasse diagram which is used to represent

�nite lattices. The elements of the lattice are the vertices of the diagram. The order of

two elements is de�ned by their respective height in the diagram.

Figure 2.6: Finite lattice example

Consider a lattice (E;�).

De�nition 3 A vector y 2 En is sorted in descending order if

8i 2 f1; ::; n� 1g; yi+1 � yi: (2.37)

2.5.3 Sort transform

This subsection de�nes the sort transform which sorts a vector of elements in descending

order (see 2.37). The sort transform of lattice elements is inspired from the sort transform

of elements of a totally ordered set (such as the set of real numbers R). Consider a totally

ordered set (E;�). Denote by T : En ! E
n the sort transform.

Proposition 2 Consider a vector x 2 En. Denote by y 2 En the sorted vector in des-

cending order of x i.e. y = T (x). The ith element of the sorted vector y 2 En is the

smallest element among all the maxima of any i element sub-vector of x. This can be

expressed by the following formula

8i 2 f1; ::; ng; (2.38)

yi =
_

K�f1;::;ng;card(K)=i

 
^

k2K

xk

!

:
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Example 7 Consider the set of real numbers ordered by the usual � relation. For two

elements x; y 2 R we have

x ^ y = min(x; y) (2.39)

x _ y = max(x; y)

We have

T (3; 5; 2) = (3 _ 5 _ 2; (3 _ 5) ^ (3 _ 2) ^ (5 _ 2); 3 ^ 5 ^ 2) (2.40)

= (5; 3; 2):

The sort transform T can be extended to cases when order is not necessarily total. The

sorted vector can be obtained using the same formula (2.38). Consider a lattice (E;�).

Proposition 3 Consider x 2 En and y 2 En such as y = T (x): The vector y is sorted

in descending order (see 2.37).

proof. For i 2 f1; ::; n� 1g we prove yi+1 � yi

We have

8Ii+1 � f1; ::; ng; Card(Ii+1) = i+ 1;9Ii � f1; ::; ng; Card(Ii) = i; Ii � Ii+1:

We have ^

k2Ii+1

xk �
^

k2Ii

xk (2.41)

On the other hand
^

k2Ii

xk �
_

K�f1;::;ng;card(K)=i

 
^

k2K

xk

!

(2.42)

As a consequence

8Ii+1 � f1; ::; ng; Card(Ii+1) = i+ 1;
^

k2Ii+1

xk �
_

K�f1;::;ng;card(K)=i

 
^

k2K

xk

!

(2.43)

Thus
_

K�f1;::;ng;card(K)=i+1

 
^

k2K

xk

!

�
_

K�f1;::;ng;card(K)=i

 
^

k2K

xk

!

(2.44)
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Remark 4 In the case of elements de�ned on a lattice, the elements of the sorted vector

y and input vector x do not necessarily remain the same

Example 8 Consider a �nite lattice (E;�) which Hasse diagram is represented in Figure

2.7. The Figures 2.7.a and 2.7.b shows a vector (x1; x2; x3; x4) 2 E (black dots) and the

corresponding sorted vector (y1; y2; y3; y4) = T ((x1; x2; x3; x4)):(gray circles)

Figure 2.7: Applying the sort function to 4 points

In case of the lattice (P (Rm);�) of sets ordered by the � relation, the transform T is

de�ned as follows
T : (P(Rm))n ! (P(Rm))n

(X1; ::;Xn) 7! (Y1; ::;Yn)

where

8i 2 f1; ::; ng; (2.45)

Yi =
[

K�f1;::;ng;card(K)=i

 
\

k2K

Xk

!

=

fn�ig\

k2f1;::;n)

Xk (see de�nition 2)

where
fqgT

i2f1;::;n)

Xi is the q-relaxed intersection de�ned in section 2.4.3.

Example 9 Consider the lattice (P (R2);�) of sets ordered by the � relation and a vector

of 6 sets (X1; ::;X6) � R
2 � ::: � R2 represented in Figure 2.8.a. Denote by (Y1; ::Y6) �

R
2� :::�R2 the result of the sort transform of the vector (X1; ::X6). The sorted vector is

represented on Figure 2.8.b. Note that Y5 = ; and Y6 =
\

i2f1;::;6g

Xi = ;. Later on in the

manuscript the sorted vector is represented in a more compact form shown in Figure 2.9

where all the Yi sets are superimposed.
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Figure 2.8: Illustration of the sort transform of six sets

Figure 2.9: Compact illustration of the sort transform of 6 sets
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Proposition 4 The sort transform is idempotent

T E T (x) = T (x): (2.46)

proof. Considering a vector y 2 En sorted in descending order, we prove that

T (y) = y:

Consider I =f1; ::; ig. Since y is sorted
^

k2I

yk = yi: (2.47)

We have

8K � f1; ::; ng; card(K) = i;K 6= I;9j 2 K; j 2 fi+ 1; ::; ng; (2.48)

since y is sorted and i < j

yj � yi: (2.49)

On the other hand ^

k2K

yk � yj; (2.50)

thus ^

k2K

yk � yi; (2.51)

�nally

yi =
_

K�f1;::;ng;card(K)=i

 
^

k2K

yk

!

: (2.52)

2.5.4 Lattice polynomials

The previous subsection introduced the lattice sort transform which enables to sort ele-

ments of a lattice even tough the order is not total. The sort transform provides a formula

(2.38 ) for each element of the sorted output vector function of the elements of the input

vector. This subsection introduces polynomials with lattice valued coe¢cients also called

lattice polynomials. In this subsection we want to show that polynomial representation is

better suited to represent the sort transform in a more compact and unique formulation

taking bene�t from polynomial arithmetics. In this subsection, �rst, the sum and product

of two polynomials are de�ned. Those two operations are necessary to represent the sort

transform as using the product of speci�c monomials. The polynomials are used in our

context to represent the solution of a relaxed CSP. In order to enable the exploitation of

the solution, the image by a function of a lattice polynomial is de�ned. Finally, the last

topic is about the algebraic structure of the set of lattice polynomials.
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De�nition 4 A lattice polynomial of degree n is a polynomial with the unknown s where

the coe¢cients x = (x0; ::; xn) are de�ned on a lattice. The polynomial is denoted

X(s) =

nX

i=0

xis
i: (2.53)

Denote by LP(E) the set of lattice polynomials which coe¢cients are de�ned on the lattice

E.

We decided a notation convention saying that X(s) is the lattice polynomial associated

to the vector of coe¢cients x.

Example 10 In the lattice of subsets of R, (P (R);�) consider the following polynomial

X(s) = [�2; 3]s3 + [1;1]s2 + [2; 4]s+ [5; 8]: (2.54)

The product of two lattice polynomials is a lattice polynomial and follows the same rules

as the product of real polynomials. The sum of coe¢cients " + " corresponds to " _ "

operator and its product " � " corresponds to the " ^ "operator.

Example 11 Consider A(s) and B(s) two monomials

(a1s+ a0) � (b1s+ b0) = (a1 � b1)s
2 + (a1 � b0 + a0 � b1)s+ a0 � b0 (2.55)

= (a1 ^ b1)s
2 + (a1 ^ b0) _ (a0 ^ b1)s+ a0 ^ b0:

The sum of two lattice polynomials is a lattice polynomial and follows the same rules as

the sum of real polynomials. The sum of coe¢cients " + " corresponds to " _ " operator.

Example 12 Consider A(s) and B(s) two monomials

(a1s+ a0) + (b1s+ b0) = (a1 + b1)s+ (a0 + b0) (2.56)

= (a1 _ b1)s+ a0 _ b0:

De�nition 5 A lattice polynomial X�(s) is nested if the coe¢cient vector x� is sorted

in descending order and x�0 = >. We also consider the polynomial ? as being nested.

Denote by
�!
LP(E) the set of nested polynomials which coe¢cients are de�ned on the lattice

E.

Example 13 In (P (R);�) consider the following nested polynomial

X�(s) = [2; 3]s3 + [1; 4]s2 + [�1;1]s+ R: (2.57)
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De�nition 6 Consider x 2 En and the polynomial X�(s) de�ned by

X�(s) =
nY

i=1

(xis+>) =
nX

i=1

x�i s
i +>: (2.58)

X�(s) is called the polynomial sort transform of x.

Proposition 5 The polynomial X�(s) is nested.

proof. This proposition is proven using recursive approach. We have 8x 2 E; xs + > is

nested. For n 2 N, Suppose that 8x 2 En; X�(s) is nested. Consider x 2 En+1. Denote

by

Y (s) =

nY

i=1

(xis+>):

We have

X�(s) = Y (s)�(xn+1s+>):

To simplify the demonstration 8i > n we assume that yi = ? and 8i < 0 we assume that

yi = >. We have

8i 2 f1; ::n+ 1gx�i = yi _ (yi�1 ^ xn+1):

Since Y (s) is nested

8i 2 f1; ::n+ 1g; yi � yi�1;

thus

yi�1 ^ xn+1 � yi�2 ^ xn+1;

thus

yi _ (yi�1 ^ xn+1) � yi�1 _ (yi�2 ^ xn+1) i.e. x
�
i � x�i�1:

X�(s) is thus nested.

Proposition 6 Denote by y 2 En the vector of coe¢cient of X�(s) which order is greater

or equal than 1 i.e. y = (x�1; ::; x
�
n)

We have

y =T (x); (2.59)

where T is the sort transform de�ned in Section 2.5.3.
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proof. X�(s) is a product of monomials. Using the de�nition of the multiplication of real

polynomials (replacing > by 1 in the case of multiplication since > is the neutral element

for ^) it is possible to expand X�(s). We �nd that

x�i =
X

K�f1;::;ng;card(K)=i

 
Y

k2K

xk

!

; i 2 f1; ::; ng: (2.60)

By replacing the sum and product by _ and ^ respectively we �nd that

yi = x�i =
_

K�f1;::;ng;card(K)=i

 
^

k2K

xk

!

; i 2 f1; ::; ng; (2.61)

which corresponds to the de�nition of the sort transform (see equation (2.38)).

This proves that the polynomial representation is well suited to represent the result as well

as the nature of the sort transform. For each vector x 2 En is associated the polynomial

sort transform X�(s) =
nQ

i=1

(xis+>):

Proposition 7 Consider a 2 En and b 2 Em and c 2 Em+n such as c = (a1; ::; an; b1; ::; bm):

Denote by A�(s); B�(s) and C�(s) their respective polynomial sort transform

We have

C�(s) = A�(s) �B�(s) (2.62)

proof. Using the polynomial sort transform formula (see de�nition (6))

C�(s) =

m+nY

i=1

(cis+>) =
nY

i=1

(ais+>) �
mY

i=1

(bis+>) = A�(s) �B�(s) (2.63)

Remark 5 This proposition is important computation wise. In fact, the computation of

the polynomial sort transform can be split into multiple computations of smaller degree

polynomials then merged into one polynomial through multiplication. This proposition can

be useful in distributed computations of relaxed CSPs as shown in subsection 2.5.5.

A nested polynomial actually represents a solution of a relaxed CSP as seen in subsection

2.5.5. It is sometimes useful to compute its image by a function to be able to exploit

the solution. As an example, in the context of localization of a robot (which can be

cast into a relaxed CSP), the calculated position of the robot can be represented using
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a set polynomial. Suppose the robot measures a relative position of an object in the

environment using a sensor such as a camera. It is possible to deduce the set polynomial

corresponding to the absolute position of that object in the environment using translation

function.

De�nition 7 The image by a function of a En lattice polynomial X(s) by a function

f : E! E is a lattice polynomial denoted f(X)(s) de�ned by

f(X)(s) =
nX

i=0

f(xi)s
i: (2.64)

Proposition 8 In case of the lattice of subsets of Rm, (P (Rm);�), the image by a

function of a nested polynomial is also nested

proof. Considering two sets A;B � Rm such as A � B we have f(A) � f(B).

Finally, the last part of this subsection introduces the algebraic structures of the set of

lattice polynomials and the set of nested lattice polynomials.

Theorem 9 Consider a lattice E. If (E;+; �;?;>) is a dioïd then the set of lattice

polynomials (LP(E);+; �;?;>) is also a dioïd.

proof. Consider a dioïd (E;+; �;?;>). Consider three polynomials A;B;C 2 LP(E).

Part I: (LP(E);+;?) is a commutative monoïd :

Closure: Denote by X = A+B

8k 2 N; xk = ak + bk ) 8k 2 N; xk 2 E)X 2 LP(E): (2.65)

Associativity: Denote by X = (A+B) + C and Y = A+ (B + C)

8k 2 N; xk = (ak + bk) + ck = ak + (bk + ck) = yk ) X = Y: (2.66)

Commutativity : Denote by X = A+B and Y = B + A

8k 2 N; xk = ak + bk = bk + ak = yk ) X = Y: (2.67)

Identity element :

A+? = ?+ A = ?+ a0 + a1s+ ::: = a0 + a1s+ ::: = A: (2.68)
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Part II: (LP(E); �;>) is a monoïd :

Closure: Denote by X = A �B

8k 2 N; xk =
X

i+j=k

ai � bj ) 8k 2 N; xk 2 E)X 2 LP(E): (2.69)

Associativity: Denote by X = (A �B) � C and Y = A � (B � C)

8k 2 N;

xk =
P

i+j=k

  
P

p+q=i

ap � bq

!

� cj

!

=
P

p+q+j=k

(ap � bq) � cj

=
P

i+p+q=k

ai � (bp � cq)

=
P

i+j=k

 

ai �

 
P

p+q=j

bp � cq

!!

= yk:

(2.70)

Identity element :

> � A = > � a0 +> � a1s+ ::: = a0 + a1s+ ::: = A: (2.71)

A � > = A aswell.

Part III : disributivity of � over +.

Denote by X = A � (B + C) and Y = A �B + A � C

xk =
P

i+j=k

ai � (bj + cj)

=
P

i+j=k

(ai � bj + ai � cj)

=
P

i+j=k

ai � bj +
P

i+j=k

ai � cj

= yk

(2.72)

Similarily we prove

(A+B) � C = A � C +B � C

? annihilates LP(E) with respect to multiplication

? � A = ? � a0 +? � a1s+ ::: = ?+?s+ ::: = ?: (2.73)

A � ? = ? aswell.

The order � on LP(E): we choose the product order derived from the order � of E
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Example 14 8m 2 N�; (P (Rm);[;\; ;;Rm) is a dioïd as such the set of polynomials

with set valued coe¢cients is also a dioïd.

The set of nested lattice polynomials
�!
LP has an algebraic structure which we try to

characterize below.

Corollary 10 Any nested polynomial Y (s) of the degree n is the polynomial sort trans-

form of at least one vector x 2 En

proof. Denote by x 2 En the vector of coe¢cient of Y (s) which order is greater or equal

than 1. Since the transform is idempotent we have x =T (x) i.e.

Y (s) = X�(s): (2.74)

Corollary 11 The multiplication " � " and sum " + " are binary operations in the set of

nested lattice polynomials
�!
LP.

proof. Consider two nested polynomials A(s) and B(s).

The sum " + " is a binary operation : Consider C(s) = A(s) + B(s). We have

ci = ai _ bi.

Since ai+1 � ai and bi+1 � bi then ai+1 _ bi+1 � ai _ bi then ci+1 � ci

Besides c0 = a0 _ b0 = > _> = >:

As such A(s) +B(s) is a nested polynomial

The product " � " is a binary operation : Consider D(s) = A(s) �B(s):

Based on corollary 10 we have A(s) =
Qn

i=1(ais+>) and B(s) =
Qn

i=1(bis+>).

Thus D(s) =
Qn

i=1(ais+>) �
Qn

i=1(bis+>)

The last proposition ensures that D(s) is also nested.

Corollary 12 Consider a lattice E. If (E;+; �;?;>) is a dioïd then the set of nested

lattice polynomials (
�!
LP(E);+; �;?;>) is a subdioïd of (LP(E);+; �;?;>).

proof. The theorem 9 ensures that (LP(E);+; �;?;>) is a dioïd. Since (+; �) are opera-

tions in
�!
LP(E) (as shown in 11) then (

�!
LP(E);+; �;?;>) is a subdioïd of (LP(E);+; �;?;>)

(see [Hardouin, 2004])
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2.5.5 Using set polynomials to represent the solution of a re-

laxed CSP

Consider the following relaxed CSP

fi : R
m ! R

pi

Ci : fi(x) 2 [yi];

x 2 [x]; [yi] 2 IR
pi ; i 2 f1; ::; ng:

(2.75)

Section 2.4 proposes a solution for the relaxed CSP when it is possible to assume the

number q of inconsistent constraints (or outliers) in a relaxed CSP. The solution is the set

Sq of elements satisfying all the constraints but at most q of them. When q is unknown

and may vary with time, the idea is to consider all the possible sets Sq; q 2 f0; ::; n� 1g.

Denote by Xi the set of points x which satisfy the constraint Ci : fi(x) 2 [yi] i.e.

Xi = fx 2 R
m; fi(x) 2 [yi]; [yi] 2 IR

pig = f�1i ([yi]); i 2 f1; ::; ng: (2.76)

The Xi sets are elementary in the de�nition of the solution of a relaxed CSP. As seen in

subsection 2.4.4, Sq; q 2 f0; ::; n � 1g can be obtained using the q-relaxed intersection of

the Xi sets

Sq =

fqg\

i2f1;::;ng

Xi (2.77)

As seen in the equation (2.45), the equation (2.77) corresponds to the expression of the

sort transform of the Xi sets in the case of the lattice (P (Rm);�). In other words, the

solution of the relaxed CSP is the vector (Sn�1; ::;S0) which can be obtained by sorting

the vector (X1; ::;Xn) using the sort transform T

(Sn�1; ::;S0) = T (X1; ::;Xn) (2.78)

As seen in subsection 2.5.4, the polynomial representation is better suited to represent

the sort transform. The purpose of using polynomial representation is to take advantage

of the set polynomial arithmetics (sum, product) to represent the sort transform with a

unique formulation. The product and sum of set polynomials is similar to the product

and sum of real polynomials just that the product " � " of two coe¢cients is replaced by

their intersection "\" and the sum "+" of two coe¢cients is replaced by their union "[".

As such, the sort transform T has an equivalent polynomial formulation considering a

product of the set monomials (Xks + R
m); k 2 f1; ::; ng. This formulation (see de�nition

6) is called the polynomial sort transform of the Xi; i 2 f1; :; ng sets. We obtain the

following set polynomial

X�(s) =

nY

k=1

(Xks+ R
m) =

nX

k=0

Sn�ks
k: (2.79)
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The polynomial X�(s) is also called solution set polynomial of the relaxed CSP since

its coe¢cients are the Sq; q 2 f0; ::; n � 1g sets. The non empty set coe¢cient with the

highest degree is the set of elements satisfying most of the constraints. This set, which is

the smallest of all of them, can be considered as the best solution set of the relaxed CSP.

On the other hand, keeping the whole polynomial can be justi�ed in case of distributed

computing as seen in the next subsection.

Remark 6 A possible interpretation of the polynomials Xis + R
m; i 2 f1; ::; ng is to

represent the binary information "{belongs to Xi; belongs to R
m (no information)}".

The polynomial variable s is associated to the information "belongs to Xi". This means

that considering a product of those polynomials (equation (2.79)), the more sets Xi an

element x belongs to, the higher is the degree of the coe¢cient to which x belongs to in

X�(s).

2.5.6 Solving distributed relaxed CSPs

In robotics, the constraints generally come from sensor data. Sensor data are not always

available at the same time or the same place (ex: in the case of robot swarm or in

case of an evolving process). The purpose is to solve the relaxed CSP involving all of the

constraints despite the fact that the constraints are distributed (not available immediately

at the same place/time of computation). The idea is to consider several smaller relaxed

CSPs formed by subsets of available constraints then merge the resulting solutions into

one. The di¤erent solutions are represented using set polynomials and the merging is

obtained using polynomial arithmetics. This allow distributed computations which are

more adapted to distributed systems.

Consider two relaxed CSP labeled RCSP_A and RCSP_B involving the same vari-

able x 2 R
m and constrained respectively with the set of constraints fC1; ::; Crg and

fCr+1; ::; Cng. Consider

Xi = fx 2 R
m; fi(x) 2 [yi]; [yi] 2 IR

pig = f�1i ([yi]); i 2 f1; ::; ng: (2.80)

Denote by X�
A(s) and X

�
B(s) the solution set polynomials of respectively the relaxed CSP

RCSP_A and the relaxed CSP RCSP_B

X�
A(s) =

Qr

i=1(Xis+>)

X�
B(s) =

Qn

i=r+1(Xis+>):
(2.81)

Denote by X�
S(s) the solution set polynomials of the relaxed CSP involving the variable

x 2 Rm and constrained by all the constraints Ci; i 2 f1; ::; ng. If the constraints were
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not distributed, X�
S(s) could be obtained using the polynomial sort transform

X�
S(s) =

nY

i=1

(Xis+>); (2.82)

but since the constraints are distributed, the polynomial X�
S(s) can be obtained by mul-

tiplying the polynomials X�
A(s) and X

�
B(s) using proposition 7 without having to recom-

pute the product of monomials from scratch

X�
S(s) = X�

A(s) �X
�
B(s) (2.83)

2.5.7 Conclusion

In this chapter a new way to represent a solution of a relaxed CSP was presented. The

idea is to use set polynomials which coe¢cients are the set of points satisfying the number

of constraints corresponding to the degree of that coe¢cient. It is important to note that

the polynomial notation is just a representation which help to understand constraint

relaxation process. The data structures and algorithms used to implement and compute

set polynomials are explained in section 5.1 of chapter 5.

2.6 Representing the solution of a relaxed CSP using

accumulators

2.6.1 Introduction

This section presents an alternative possibility to represent the solution of a relaxed CSP

using a function called accumulator. For each element x in the variable domain of the

CSP, an accumulator function returns the number of constraints that the element x satis-

�es. The accumulator representation allows simpler distributed computations. Subsection

2.6.2 de�nes the accumulator and explains how it is used to represent the solution of a

relaxed CSP. Subsection 2.6.4 talks about the connection between accumulators and fuzzy

logic. Subsection 2.6.5 talks about the link between accumulators and generalized Hough

Transform. The accumulators related data structures and algorithms are explained in

section 5.2 of chapter 5.

2.6.2 The accumulator

An accumulator is an alternative possibility to represent the solution of a relaxed CSP.

First, this subsection gives two equivalent de�nitions of an accumulator. The �rst de�n-
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ition emphasizes the link between the accumulator and the relaxed CSP as a whole. In

this de�nition, the accumulator is a function which returns the number of constraints

satis�ed by each element of the search space. The second de�nition emphasizes on how

to obtain the accumulator from constraints in the relaxed CSP. In the second de�nition

the accumulator is the sum of the characteristic functions of the sets associated to the

constraints in the relaxed CSP. Next, this subsection explains how can the accumulator

be used to characterize the solution of a relaxed CSP. The accumulator is used in our

context to represent the solution of a localization problem which can be cast into a relaxed

CSP. In order to enable the exploitation of the solution, the image by a function of an

accumulator is de�ned.

De�nition 8 (Accumulator 1) Consider the relaxed CSP

fi : R
m ! R

pi

Ci : fi(x) 2 [yi];

x 2 [x]; [yi] 2 IR
pi ; i 2 f1; ::; ng:

(2.84)

An accumulator is a function A : Rm ! N which for each element x 2 D associates the

number of constraints it satis�es

A(x) = Card(fi 2 f1; ::; ng; fi(x) 2 [yi]; [yi] 2 IR
pig): (2.85)

De�nition 9 The characteristic function � of the constraint C : f(x) 2 [yi]; f : R
m !

R
p; [yi] � R

p is de�ned by

�
�(C)(x) = 1 if f(x) 2 [yi]

�(C)(x) = 0 otherwise.
(2.86)

De�nition 10 (Accumulator 2) Consider the relaxed CSP de�ned in (2.84). We de�ne

the accumulator associated to this CSP as a function A : Rm ! N such as

A(x) =
X

i2f1;::;ng:

�(Ci)(x): (2.87)

Remark 7 The name accumulator comes from the sum relation in (2.87).

Remark 8 In this formulation we consider only hard constraints which are necessarily to

be either satis�ed or not and what we seek is to compute the degree of satisfaction for each

element of the search space. On the other hand, soft constraints [Benhamou and Ceberio, 2003]

assume that constraints doesn�t all have the same importance and have di¤erent weights

associated to it. In our case, we associate a weight equal to 1 for all constraints. In the

case of soft constraints a weight could be associated to the characteristic function of the

constraint so that the de�nition of the accumulator would stay the same.
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The solution of the CSP can be written

S = fx 2 [x];A(x) = ng: (2.88)

The solution set of a relaxed CSP assuming that at most q constraints are inconsistent

can be written

Sq = fx 2 [x];A(x) � n� qg: (2.89)

The solution set of elements satisfying the most of the constraints in the relaxed CSP also

called Max-CSP (Solved in [Normand et al., 2010]) can be written

Smax = fx 2 [x];A(x) = max(A(x);x 2 R
m)g:

An accumulator actually represents a solution of a relaxed CSP. It is sometimes useful to

compute the image of this accumulator by a function to be able to exploit the solution.

As an example, in the context of localization of a robot (which can be cast into a relaxed

CSP), the calculated position of the robot can be represented using an accumulator.

Suppose the robot measures a relative position of an object in the environment using a

sensor such as a camera. It is possible to deduce the accumulator corresponding to the

absolute position of that object in the environment using translation function.

De�nition 11 The image by a bijective function f of an accumulator A is an accumu-

lator denoted by f(A) such as

f(A)(x) = A(f�1(x)) (2.90)

2.6.3 Solving distributed relaxed CSPs

In robotics, the constraints generally come from sensor data. Sensor data are not always

available at the same time or the same place (ex: in the case of robot swarm or in case of an

evolving process). The purpose is to solve the relaxed CSP involving all of the constraints

despite the fact that the constraints are distributed (not available immediately at the

same place/time of computation). The idea is to consider several smaller relaxed CSPs

formed by subsets of available constraints then merge the resulting solutions into one.

The di¤erent solutions of those relaxed CSPs are represented using accumulators and the

merging is obtained by summing those accumulators. This allow distributed computations

which are more adapted to distributed systems.

De�nition 12 The sum of two accumulators A;B is an accumulator denoted A+B such

as

8x 2 Rm; (A+ B)(x) = A(x) + B(x) (2.91)
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Proposition 13 If A;B are the accumulators associated to the relaxed CSPs de�ned by

the set of constraints fC1; :::; Crg and fCr+1; :::; Cng respectively and involving the same

variable x 2 Rm then A + B is the accumulator associated to the relaxed CSP de�ned by

the set of constraints fC1; :::; Cng.

proof. Directly inferred from de�nition 10.

Remark 9 In practice, each accumulator can be stored as a grayscale image and be easily

shared between distributed entities.

2.6.4 Connection to fuzzy logic

It is possible to normalize an accumulator obtaining a function �(x) ranged between 0

and 1 corresponding to the proportion of the number of satis�ed constraints to the total

number of constraints. �(x) can be interpreted as a membership degree (in the sense of

constraint satisfaction) and the function � as a membership function is the sense o¤ fuzzy

logic [Klir and Yuan, 1995] [Nguyen and Walker, 2005] [Zadeh, 1965]. The set of all the

values which satisfy at least (1� ")th fraction of the constraints is the set of all values x

for which �(x) � 1� ". In fuzzy terms, this set is known as an B-cut of the original fuzzy

set corresponding to B = 1� ". Fuzzy sets are just an interpretation, however there is an

analogy between accumulators and fuzzy sets which can actually help in computations by

using known algorithms for processing fuzzy data. See the article [Sliwka et al., 2011a]

for more details.

2.6.5 Connection to the generalized Hough transform

There is a resemblance between this formalism and the formalism of the generalized

Hough transform [Bovik, 2000]. In fact, the generalized Hough Transform is used in image

processing to detect shapes de�ned by unique function f and parameterized with a vector

of parameters p on a binary image. The binary image can be represented by a vector Y

corresponding to the coordinates of the pixel of interest (black or white depending on the

convention). The idea is to compute an accumulator � for discrete values of the parameter

p such as

�(p) = cardfy 2 Y; f(p;y) = 0g: (2.92)

As an example, in case of a circle detection which is parametered by its center (p1; p2)

and the radius p3, for each pixel y = (y1; y2) we have

f(p;y) = (y1 � p1)
2 + (y2 � p2)

2 � p23: (2.93)
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In our case we are more general since we deal with a set of di¤erent constraints (fi(p) 2

[yi]; [yi] 2 IR
pi ; i 2 f1; ::; ng) instead of a unique type of parameterized constraints

f(p;y) = 0;y 2 Y. Besides, instead of using discrete values using interval values guar-

antees the result. Note that set membership methods have already been used in shape

detection algorithms [Jaulin and Bazeille, 2009].

2.6.6 Conclusion

In this chapter an alternative representation of the solution of relaxed CSP has been

presented. The idea is to use a function called an accumulator which for each element

in the variable domain returns the number of constraints it satis�es. It is important

to note that an accumulator is just a representation which help to understand constraint

relaxation process. The accumulators related data structures and algorithms are explained

in section 5.2 of chapter 5. The perspective in the research of the accumulators is to explore

their similarity to image processing algorithms such as the generalized Hough transform

and other �elds such as fuzzy logic as well as p-boxes [Ferson et al., 2003].
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Chapter 3

Interval analysis

3.1 Introduction

In this PhD thesis we use set membership methods to solve the localization problem.

Basically, the solution of the problem (the position of the robot) is characterized by a set

or a set of sets (set polynomials). Since the solution is computed using a computer it is

necessary to have a representation of the sets on a computer. There are many possible

approximation of a set S on a computer. A 2D example is shown in Figure 3.1. It is

possible to use ellipsoids [Durieu et al., 1996] (Fig 3.1.(a)) or zonotopes [Combastel, 2005]

(Fig 3.1.(b)). We choose to use boxes (Fig 3.1.(c)).

Figure 3.1: The di¤erent possible approximations of a set S by parametred sets (ellipsoids,

zonotopes, boxes)

The use of boxes is part of a theory called interval analysis explained in more details

in this chapter. Remark that the zonotopes and ellipsoids are a better approximation
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of the set S than a box. On the other hand, the use of boxes simplify basic operations

on sets such as intersection,union or image by a function hence our choice. Interval

analysis was introduced when the �rst electronic computers were developed in the mid-

20th century. Digital computations started to be widely used in science and engineering

to solve mathematical problems. It was probably at that time that scientists realized that

it is often impossible to obtain exact results and that it would be practical to bound the

errors. Thus, scientists like Moore [Moore, 1959] and Warmus [Warmus, 1956] created

solid bases for interval analysis. Today, interval analysis is not only used to handle errors

but to solve many problems in which sets are involved. Interval analysis is very similar to

the real analysis, the main di¤erence is that the variables are represented by an interval

and not real punctual numbers.

It is also possible to extend the concept of intervals to more complex sets and consider

functions intervals (also called Tubes) [Le Bars et al., 2011] or intervals of sets or subpav-

ings as seen in [Jaulin, 2011]. Figure 3.2 illustrates those new intervals.

Figure 3.2: Other types of intervals : function intervals and set intervals

3.2 De�nitions and notations

De�nition 13 (Interval) An interval is a connected and closed subset of R. If x is

a real variable we denote by [x] the interval containing this variable. [x] is called the

domain of x. An interval has an upper and lower bound which we will note as follows

[x] = [x�; x+]. IR is the set of all the real intervals. IN is the set of natural number

intervals. w([x]) = x+ � x� is called width of [x].

Example 15 ;; f�1g; [�1; 1]; [�1;1];R are intervals.

De�nition 14 (Box) A box of Rn is de�ned by a Cartesian product of intervals. A box

can be also considered as an interval vector. If x = (x1; ::; xn) 2 R
n is a real variable vector

we denote by [x] = ([x1]; ::; [xn]) the box containing this variable ([Jaulin et al., 2001])
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Example 16 [1; 3]� [2; 4] is a box of R2

3.3 Binary operations

As it is the case for real analysis, it is possible to de�ne di¤erent operations on intervals

such as sum or product. If � 2 f+;�; �; =;max;ming, where � is the product, and if

[x] and [y] are two intervals, we de�ne

[x] � [y] , [fx � y j x 2 [x]; y 2 [y]g] : (3.1)

Therefore,

[x�; x+] + [y�; y+] = [x� + y�; x+ + y+]

[x�; x+] � [y�; y+] = [min(x�y�; x+y�; x�y+; x+y+);

max(x�y�; x+y�; x�y+; x+y+)]

f1g=[x�; x+] = [min( 1
x�
; 1
x+
);max( 1

x�
; 1
x+
)]

max ([x�; x+]; [y�; y+]) = [max(x�; y�);max(x+; y+)]:

(3.2)

Remark 10 Note All those operations are commutative and associative.

Since f1g � [x] = [x] then

[x]=[y] = ([x] � f1g)=[y] = [x] � (f1g=[y]): (3.3)

Example 17 Here are some examples of results of binary operations on intervals

[�2; 5] + [1; 3] = [�1; 8];

[�2; 5]:[1; 3] = [�3; 15];

[�2; 5]=[1; 3] = [�2
3
; 5];

min ([�2; 5]; [1; 3]) = [�2; 3]:

(3.4)

A more complex one

([1; 2] + [�3; 4]) � [5; 6] = [�2; 6] � [5; 6] = [�12; 36]: (3.5)

3.4 Elementary functions

If f 2 fcos; sin;
p
(); ()2 ; log; exp; : : :g; is an elementary function from R to R, we de�ne

its interval extension as

f ([x]) , [ff(x) j x 2 [x]g] : (3.6)
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Example 18 Here are some examples of the interval evaluation of elementary functions

sin ([0; �]) = [0; 1]; sqr ([�2; 3]) = [�2; 3]2 = [0; 9];

abs ([�5; 1]) = [0; 5]; sqrt ([�13; 4]) =
p
[�13; 4] = [0; 2];

exp ([0; 1]) = [1; e]:

(3.7)

3.5 Inclusion functions

It is possible to evaluate any kind of function. In order to make an evaluation of the

resulting interval/box by a function, interval functions called inclusion functions are used.

De�nition 15 Let f be a function from R
n to Rm. The interval function [f ] from IR

n to

IR
m, is an inclusion function of f if

8 [x] 2 IRn; f([x]) � [f ] ([x]): (3.8)

De�nition 16 The inclusion function [f ] is minimal if for each input box [x] the output

box is the smallest possible box enclosing all the values of f on [x] i.e.

8 [x] 2 IRn; [f ] ([x]) = min
�
([y] 2 IRn; f([x]) � [y]): (3.9)

There are many ways to obtain an inclusion function. One of them is the natural inclusion

function that applies to functions which are a �nite composition of operators +;�; �; =

and elementary functions (sin; cos; exp; ln;_n; :::).

Consider such a function denoted by

f : Rn ! R
m

(x1; ::; xn) 7! f(x1; ::; xn):
(3.10)

The natural inclusion function [f ] is obtained by replacing each real variable xi by an

interval variable [xi] and each operator or function by its interval counterpart. [f ] is not

always minimal. There are many other ways to create an better approximation inclusion

function as centered inclusion functions or Tailor inclusion functions [Jaulin et al., 2001].

Example 19 Consider

f : R! R

x 7! x2 + 2x+ 1:
(3.11)
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For each formal expression of the same function f corresponds a di¤erent natural inclusion

function. Consider three formal expressions of f

f1(x) = x2 + 2x+ 1

f2(x) = (x+ 1) � (x+ 1)

f3(x) = (x+ 1)
2

(3.12)

Evaluating those functions for [x] = [�2; 2] give di¤erent results for each function.

[f1]([x]) = [x]
2 + 2[x] + 1 = [0; 4] + [�4; 4] + 1 = [�3; 9]

[f2]([x]) = ([x] + 1) � ([x] + 1) = [�1; 3] � [�1; 3] = [�3; 9]

[f3]([x]) = ([x] + 1)
2 = [�1; 3]2 = [0; 9]:

(3.13)

The inclusion function [f ] approximates the image set f([x]) by a box [f ] ([x]). This box

contains elements which are not necessarily an image of the function. As such, composing

multiple inclusion functions leads to an overestimation of the output box. This is called

the wrapping e¤ect. This e¤ect becomes apparent when considering [f ] E [f�1] as an

inclusion function of f E f�1. Figure 3.3 shows an example of such attempt where f is the

plane rotation by a �
4
angle. Remark that [f ] E [f�1]([x]) is a lot larger than [x] although

f E f�1 = I (identity).

Figure 3.3: Wrapping e¤ect caused by �
4
rotation function

3.6 Operations on boxes

3.6.1 Union and intersection

Union : Since we work with boxes and not with union of boxes, we de�ne t the box

union operator de�ned in IRn. Consider three boxes A;B;C 2 IRn such as C = A t B.

C is the smallest box containing both A and B [Hyvönen, 1992][Jaulin et al., 2001].
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Intersection : The intersection of boxes in Rn is the same that the one applied to Rn

subsets and is denoted \.

3.6.2 Relaxed intersection of boxes

Section 2.4 introduced the relaxed intersection of sets and its uses to de�ne the solution

of a relaxed CSP. In this subsection, the relaxed intersection of boxes is presented. The

relaxed intersection of boxes is used in di¤erent algorithms such as RSIVIA [Jaulin, 2009]

to implement the relaxed intersection of sets. A polynomial-time algorithm to compute

the relaxed intersection of boxes is described in this subsection.

Relaxed intersection of intervals

The relaxed intersection of boxes is based on the relaxed intersection of intervals. Consider

p intervals [x1]; ::; [xp]: Denote by [x] the result of q-relaxed intersection of those intervals

[x] =

fqg\

i2f1;::;pg

[xi]: (3.14)

Consider b the vector of bounds of all the intervals [xi] which are sorted in ascending order.

Consider a function � which tells if bound is a lower or upper bound of the corresponding

interval such as if bj is the bound of the interval [xi] then

�(bj) = 1 if bj = x�i

�(bj) = �1 if bj = x+i :

For each bound bj we associate a weight sj de�ned by

sj =
X

i2f1;::;jg

�(bi):

We have

x+ = max
j2f2;::;2pg

(bj; sj�1 � q)

x� = min
j2f1;::;2pg

(bj; sj � q)

Example 20 Figure 3.4 shows two cases of 1-relaxed intersection of 4 intervals. In the

(b) case, the result of the 1-relaxed intersection is two disjointed intervals but since we

work with single intervals, the algorithm returns the union of those two intervals.
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Figure 3.4: Example of a 1-relaxed intersection of 4 intervals

Reducing the relaxed intersection of boxes to relaxed intersection of intervals

Consider the boxes [x1]; :::; [xp] 2 IR
n. Denote by [x] the result of the q-relaxed intersec-

tion of those boxes.

[x] =

fqg\

i2f1;::;pg

[xi] (3.15)

The basic method is to deduce the boxes intersection from the intersection of the intervals

for each dimension k 2 f1; ::; ng of the boxes.

[xk] =

fqg\

i2f1;::;pg

[xik] (3.16)

Example 21 Figure 3.5 illustrates a 1-relaxed intersection of 4 boxes [x1]; [x2]; [x3] and

[x4] using the algorithm described before. The actual result of the 1-relaxed intersection is

the hatched part of the solution given by the algorithm. This pessimism is due to the fact

of considering one dimension at a time. In practice, this pessimism doesn�t a¤ect much

the computation time.
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70 Chapter 3. Interval analysis

Figure 3.5: Illustration of the relaxed intersection algorithm using 4 boxes

3.7 Subpavings

Any set S � Rn can be approximated by a box or a set of non overlapping boxes also called

a subpaving. The more boxes there are in the subpaving the more the approximation can be

precise. Figure 3.6 shows the di¤erent possible approximations of a set S in form of a disc

using subpavings. The box in sub-�gure (a) is enclosing the set S. The subpaving in the

sub-�gure (b) is a regular subpaving and the one in the sub-�gure (c) is called an irregular

subpaving. Set membership CSP Solvers (such as SIVIA or contractor based algorithms

used in QUIMPER Software [Chabert and Jaulin, 2009a]) generate subpavings as a mean

to represent the solution of a CSP. It is possible to adapt set membership solvers to solve

relaxed CSPs by actually creating adapted contractors. The next chapter introduces

contractors which are an algorithmic entity used in some of those CSP solvers.

3.8 Conclusion

This chapter introduced the interval analysis theory which enables to represent the uncer-

tainty in the form of intervals. If a calculus involves uncertain variables, by using intervals
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Figure 3.6: Using boxes to approximate sets

instead of real variables it is possible to propagate the uncertainty over all the variables

involved in the calculus. Another use for interval analysis is to provide tools to represent

and compute an approximation of any subset of Rn. The Rn sets are approximated using

subpavings (a set of boxes). Subpavings can be computed using solvers such as SIVIA (Set

Inversion Via Interval Analysis) or contractor based solvers. The next chapter introduces

those contractors.
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Chapter 4

Contractors

4.1 Introduction

One of the set membership approaches to solve CSPs is to use an algorithmic represent-

ation of the constraints called contractors. If a constraint in the CSP de�nes a set of

points which satisfy (or not) that constraint then the associated contractor enables to

compute an approximation of that set on a computer. The contractors associated to set

of constraints in CSP can be then combined to create a unique contractor allowing to

compute the solution set of that CSP.

This chapter �rst de�nes the contractors and introduces some of their key properties. A

contractor C is minimal if there is no better contracting contractor for the set associated to

C. Section 4.6 introduces one of the contributions in the form of two theorems allowing to

construct minimal contractors from other minimal contractors. The �rst theorem claims

that the union of minimal contractors is also minimal. The second theorem claims that the

transform of a minimal contractor (central symmetry, some axial symmetries, homothetie)

is also minimal. As such it is possible to construct a complex minimal contractor from

simple minimal contractors through transformations and unions. Section 4.7 presents

applications of those two theorems.

Section 4.8 introduces another contribution to the contractor theory which is the image

contractor. The image contractor is the contractor associated to the set de�ned by black

(or white) pixels on a binary image. The image contractor allows to represent hardly

parametrable sets such as maps in the context of localization. The image contractor can

also be used to approximate complex contractors which require heavy computations. This

section also presents an application of the image contractor for the localization in a city

without GPS positioning.
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74 Chapter 4. Contractors

4.2 De�nition

Figure 4.1: Three cases of contraction of a box [x]

A contractor C [Jaulin et al., 2001] [Chabert and Jaulin, 2009a] is an algorithmic entity

used to represent a speci�c set denoted set(C). It is basically an operator applied on a

box which shrinks it so that no point belonging to both set(C) and the initial box �nd

itself outside the box after shrinking. More precisely,

De�nition 17 The operator C : IRn ! IR
n is a contractor if

(i) 8[x] 2 IRn; C([x]) � [x] (contractance)

(ii) (x 2 [x]; C(fxg) = fxg)) x 2 C([x])(consistency)

(iii) C(fxg) = ; , (9" > 0;8[x] � B(x; "); C([x]) = ;) (convergence)

where B(x; ") is the ball which the center is x and the radius is ".

A box [x] is said to be "insensitive" to the contractor C if C([x]) = [x]: The property (i)

ensures that by applying a contractor, a box can only get smaller. The property (ii) means

that every box will keep, after contraction, all the elements x which are "insensitive"

to the contractor. Lastly, (iii) ensures us that the set of the elements "sensitive" to

the contractor forms an "open set" while the set of the elements "insensitive" to the

contractor is "closed". The set associated to a contractor C is the set of all the singletons

"insensitive" to C i.e

set(C) = fx 2 Rn; C(fxg) = fxgg
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Figure 4.1 shows the action of a contractor which set of insensitive points is a disk from

R
2. A contractor can be seen as a way to represent a subset of Rn: Contractors are used in

computer algorithms as a mean to manipulate sets in an easy way and allow to make inter-

section, union or set inversion. A Software called QUIMPER [Chabert and Jaulin, 2009a]

was speci�cally designed to implement contractor computations.

We consider the following properties of contractors

C is monotonic if [x] � [y]) C([x]) � C([y])

C is minimal if 8[x] 2 IRn; C([x]) = [[x] \ set(C)]

C is idempotent if 8[x] 2 IRn; C(C([x])) = C([x]):

(4.1)

The minimality of a contractor is explained in more details in section 4.6.

4.3 From constraints to contractors

If a constraint (see 2.2) is the mathematical de�nition of the set then the contractor is

the algorithm which enables to compute an approximation of the set in form of subpaving

(see section 3.7).

Example 22 Consider a constraint x = (x; y) 2 [x]; ax + by + c = 0 where a; b; c 2 R

are known constants. Figure 4.2 shows a contractor C associated to that constraint. The

input boxes are represented in light gray and the contracted boxes are represented in dark

gray.

Figure 4.2: The contractor associated to the "on the line" constraint

Associated to appropriate solvers it is possible to generate subpavings representing a

particular set de�ned by a constraint (see Figure 4.3.(a),(b)) or a set of constraints (as

seen in Figure 4.3.(c)).
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Figure 4.3: An example of subpavings generated using contractor based solvers

4.4 Operations on contractors and related theorems

The contractors are subject to the following operations:

intersection (C1 \ C2)([x])
def
= C1([x]) \ C2([x])

union (C1 t C2)([x])
def
= C1([x]) t C2([x])

composition (C1 E C2)([x])
def
= C1(C2([x]))

repetition C1
1

def
= C1 E C1 E C1 E :::

repeated intersection C1 u C2
def
= (C1 \ C2)

1

repeated multiple intersection
Q

i2f1;::;ng

Ci
def
= (C1 \ ::: \ Cn)

1

(4.2)

Remark 11 Note that contrarily to the others operations (\;[;u;t), the composition is

not commutative (i.e., C1EC2 6= C2EC1). Figure 4.4 shows an example of the composition

of two line contractors which is not commutative. [x] is represented in light gray while

Ci E Cj([x]) is represented in dark gray.

We de�ne also more complex operations which are useful in solving relaxed CSPs

q-relaxed intersection
fqgT

i2f1;::;ng

Ci
def
=

F

K�f1;::;ng;Card(K)=n�q

�
T

i2K

Ci

�

q-relaxed composition
fqgJ
(Cn; ::; C1)

def
=

F

i
n�q

>::>i1

fi1;::;in�qg�f1;::;ng

Ci
n�q

E ::: E Ci1

repeated q-relaxed intersection
fqgQ

i2f1;::;ng

Ci
def
=

 
fqgT

i2f1;::;ng

Ci

!1
:

(4.3)
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Figure 4.4: The composition of contractors is not commutative

Note that

8[x];
G

K�f1;::;ng;Card(K)=n�q

 
\

i2K

Ci([x])

!

=

fqg\

i2f1;::;ng

Ci([x]): (4.4)

where
fqgT

i2f1;::;ng

is the q-relaxed intersection of boxes de�ned in subsection 2.4.3.

Theorem 14 Consider C1 and C2 two monotonic contractors. We have

C1 � C2 ) C11 � C12 (4.5)

proof. Consider n 2 N for which

Cn1 � Cn2 : (4.6)

For n = 1 the statement is veri�ed.

Since C1 is monotonic we have

Cn+11 = C1 E C
n
1 � C1 E C

n
2 : (4.7)

Since C1 � C2 we have

C1 E C
n
2 � C2 E C

n
2 = Cn+12 : (4.8)

The statement is then veri�ed for all n 2 N.

Theorem 15 (L. Jaulin�s theorem of unique repetition) Consider C1 and C2 two

monotonic contractors (not necessarily idempotent) then

(C11 \ C
1
2 )

1 = (C1 \ C2)
1

or C11 u C
1
2 = C1 u C2 (i)

(C11 E C
1
2 )

1 = (C1 E C2)
1 : (ii)

(4.9)
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proof. (i) Consider two monotonic contractors C1 and C2. We have

(C1 \ C2)
1 = (C1 \ C2) E (C1 \ C2)

1

= (C1 E (C1 \ C2)
1) \ (C2 E (C1 \ C2)

1) :
(4.10)

which means that
C1 E (C1 \ C2)

1 = (C1 \ C2)
1

C2 E (C1 \ C2)
1 = (C1 \ C2)

1 :
(4.11)

otherwise it would lead to an inconsistency ((C1 \ C2)
1 strictly included in itself).

We deduce that

(C11 \ C
1
2 )

1 E (C1 \ C2)
1 = (C1 \ C2)

1 : (4.12)

On the other hand since the contractors are monotonic then

(C11 \ C
1
2 )

1 E (C1 \ C2)
1 � (C11 \ C

1
2 )

1 : (4.13)

From (4.12) and (4.13) we infer that

(C1 \ C2)
1 � (C11 \ C

1
2 )

1 : (4.14)

The other inclusion is deduced from theorem 14. Since

C11 \ C
1
2 � C1 \ C2: (4.15)

and the contractors are monotonic, we have

(C11 \ C
1
2 )

1 � (C1 \ C2)
1 : (4.16)

The proof of (ii) is very similar to the proof of (i).

Example 23 Given three contractors C1; ::; C3 we have

((C11 u C
1
2 ) E C

1
3 )

1 = ((C1 \ C2) E C3)
1 : (4.17)

Remark 12 Remark that this theorem allows to save some computation resources when

implementing contractors on computers since there are less contractor evaluations to be

made.

Remark 13 Note that the unique repetition property is not valid for the union t of

contractors. Only the inclusion is guaranteed

(C11 t C
1
2 )

1 � (C1 t C2)
1 : (4.18)
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Figure 4.5: An example where the theorem of unique repetition is not viable for the t

operator.

Example 24 Figure 4.5 shows an example which con�rms what is said in the remark.

Consider three contractors Ca; Cb and Cd which sets are represented on the Figure. Denote

by
C1 = Cd E Ca
C2 = Cd E Cb:

(4.19)

Note that

8 [x] 2 Rm;8k 2 N; (C1 t C2)
k ([x]) = [x]:

We have

(C11 t C
1
2 )

1 6= (C1 t C2)
1

Theorem 16 Consider C1 and C2 two contractors. We have

(C1 E C2)
1 = C1 u C2: (4.20)

proof. Consider [x] 2 IRm Denote by

[y] = (C1 E C2)
1 ([x])

[z] = (C1 u C2) ([x]) :
(4.21)

We have (C1 E C2) ([y]) = [y] as such C2 ([y]) = [y] and C1 ([y]) = [y].
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As such

(C1 u C2) ([y]) = [y] : (4.22)

The contractor (C1 u C2) is idempotent. Theorem 4.3 in [Jaulin et al., 2001], which is

actually a special case of the Knaster�Tarski theorem [Tarski, 1955], says that an idem-

potent contractor C converges to the largest box [a] included in the box it contracts [x]

such as C ([a]) = [a]. This means that [y] � [z].

On the other hand we have (C1 \ C2) ([z]) = [z] as such C2 ([z]) = [z] and C1 ([z]) = [z].

As such

(C1 E C2) ([z]) = [z] : (4.23)

The contractor (C1 E C2) is idempotent. Using the same theorem, we prove that [z] � [y]

and conclude that [y] = [z] i.e.

(C1 E C2)
1 ([x]) = (C1 u C2) ([x]) : (4.24)

Theorem 17 The union of two idempotent and monotonic contractors is also idempotent

i.e. given two idempotent and monotonic contractors C1 and C2 we have

(C1 t C2)
2 = C1 t C2: (4.25)

proof. Consider [x] 2 IRm denote by [y] = (C1 t C2) ([x]). We have

(C1 t C2)
2 ([x]) = C1 ((C1 t C2) ([x])) t C2 ((C1 t C2) ([x]))

= C1 ([y]) t C2 ([y]) :
(4.26)

Theorem 4.3 in [Jaulin et al., 2001], which is actually a special case of the Knaster�Tarski

theorem [Tarski, 1955], says that an idempotent contractor C converges to the largest box

[z] included in the box it contracts [x] such as C ([z]) = [z] which means that 8 [y] ; [z] �

[y] � [x]) C ([y]) = [z].

Since C1 ([x]) � [y] and C2 ([x]) � [y] we have C1 ([y]) = C1 ([x]) and C2 ([y]) = C2 ([x]).

As such

(C1 t C2)
2 ([x]) = C1 ([x]) t C2 ([x]) = C1 t C2 ([x]) : (4.27)

Proposition 18 Consider n monotonic contractors C1; ::; Cn. We have
 

fqgT

i2f1;::;ng

Ci

!1
=

 
F

K�f1;::;ng;Card(K)=n�q

�
Q

i2K

Ci

�!1
(i)

=
F

K�f1;::;ng;Card(K)=n�q

�
Q

i2K

Ci

�
: (ii)

(4.28)
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proof. The equation 4.28.(i) comes from the theorem of unique repetition 15. The equa-

tion 4.28.(ii) comes from the theorem.17.

The last proposition is used in the implementation of contractor polynomials (not yet

de�ned) used in subsection 5.1.

Proposition 19 Consider the contractors C1 ; ::; Cn. We have

fqgY

i2f1;::;ng

Ci �

0

@
fqgK
(Cn; ::; C1)

1

A

1

: (4.29)

proof. We have

fqgQ

i2f1;::;ng

Ci:
def
=

F

in�q>::>i1
fi1;::;in�qg�f1;::;ng

�
Cin�q u ::: u Ci1

�
(i)

=
F

in�q>::>i1
fi1;::;in�qg�f1;::;ng

�
Ci

n�q
E ::: E Ci1

�1
(ii)

=

0

B
@

F

in�q>::>i1
fi1;::;in�qg�f1;::;ng

�
Ci

n�q
E ::: E Ci1

�1
1

C
A

1

(iii)

�

0

B
@

F

in�q>::>i1
fi1;::;in�qg�f1;::;ng

Ci
n�q

E ::: E Ci1

1

C
A

1

(iv)

�

 
fqgJ
(Cn; ::; C1)

!1
(v)

(4.30)

For (i) see the de�nition of the repeated relaxed intersection. Line (ii) is a consequence

of the theorem 16. Line (iii) is a consequence of the theorem 17. In line (iv), we only

have inclusion since the theorem of unique repetition (theorem 15) doesn�t work for the

t operator as seen in remark 13. The last line (iv) uses the de�nition of the relaxed

composition.

Proposition 20 Given two contractors C1 and C2 then if C1 is monotonic then

C1 E C2 � C1 \ C2: (4.31)

proof. Consider [x] 2 IRm. Since C2 ([x]) � [x] and C1 is monotonic

(C1 E C2) ([x]) � C1 ([x]) : (4.32)
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On the other hand C1 is a contractor so

(C1 E C2) ([x]) � C2 ([x]) : (4.33)

Thus

(C1 E C2) ([x]) � C1 ([x]) \ C2 ([x]) : (4.34)

Proposition 21 If the contractors C1; ::; Cn are monotonic then

fqgK
(Cn; ::; C1) �

fqg\

i2f1;::;ng

Ci: (4.35)

proof. Given two contractors C1 and C2 then if C1 is monotonic then

C1 E C2 � C1 \ C2: (see proposition 20) (4.36)

This property can be generalized (recursively) to any number of contractors. As such

G

in�q>::>i1
fi1;::;in�qg�f1;::;ng

Cin�q E ::: E Ci1 �
G

in�q>::>i1
fi1;::;in�qg�f1;::;ng

Cin�q \ ::: \ Ci1 =

fqg\

i2f1;::;ng

Ci: (4.37)

This last proposition proves that relaxed composition is more e¢cient than relaxed inter-

section of contractors. However, relaxed composition requires more computations than

the relaxed intersection . An O(n2) algorithm for the relaxed composition is presented in

subsection 5.1.3. An O(n log(n)) algorithm for the q-relaxed intersection of boxes (here

boxes contracted by the contractors) is presented in subsection 3.6.2)

4.5 Contractors composition

Composition and repetition of contractors can be bene�cial to the process of contraction.

This phenomenon, also called constraint propagation, allow sometimes to solve CSPs

without bisecting the search space.

Example 25 In Figure 4.6 we make successive composition of the line contractors C1
and C2 i.e. C1 EC2 EC1 E :::([x]) = (C1 EC2)

n([x]). After many iterations, we converge to

the intersection of the two lines which actually corresponds to set(C1 E C2) in this case.
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Figure 4.6: Composition and repetition of contractors

4.6 Theorems on minimality of contractors

4.6.1 Introduction

It is useful to have minimal contractors to speed up contractor computations. There

are many methods to obtain minimal contractors in speci�c situations. As an example,

[Chabert and Jaulin, 2009b] presents a method to construct an optimal contractor for any

monotonic continuous functions. This section presents two theorems allowing to construct

minimal contractors from other minimal contractors through union and/or transforma-

tion (such as translation, homothetie...) of contractors. The application of those two

theorems is to construct complex minimal contractors having geometrical properties such

as symmetry or repetition and is presented in section 4.7.

4.6.2 De�nition

If A is a subset of Rn denote by [A] the smallest, with respect to the norm �, box of Rn

containing this set i.e.

[A] = min
�
([x] 2 IRn;A �[x]): (4.38)

De�nition 18 A contractor C is minimal if it returns the smallest box enclosing all the

insensible points of the contractor (set(C)) i.e.

8[x] 2 IRn; C([x]) = [set(C) \ [x]]: (4.39)
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4.6.3 Union of two minimal contractors

One of the contributions to the PhD thesis is a theorem claiming that the union of

two minimal contractors is also minimal. Before proving the theorem, there are several

properties which have to be introduced.

Lemma 22 The operator [] is idempotent i.e. for A � Rn

[[A]] = [A]: (4.40)

Lemma 23 The operator [] is monotonic i.e. for A;B � Rn

A � B) [A] � [B] :

Lemma 24 Given two sets A;B � Rn we have

[A [ B] = [[A] [ [B]]: (4.41)

proof. We have

[A] � [A [ B]

[B] � [A [ B]:

Since the union is monotonic we have

[A] [ [B] � [A [ B]; (4.42)

and since [] is monotonic and idempotent we have

[[A] [ [B]] � [[A [ B]] = [A [ B]: (4.43)

In other hand
A � [A]

B � [B]:
(4.44)

as a consequence since [ is monotonic

A [ B � [A] [ [B]; (4.45)

and since [] is monotonic we have

[A [ B] � [[A] [ [B]] : (4.46)
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Lemma 25 For two contractors C1; C2

set(C1 t C2) = set(C1) [ set(C2): (4.47)

proof. Consider x 2 R

x 2 set(C1 t C2) , C1 t C2(fxg) = fxg

, [C1(fxg) [ C2(fxg)] = fxg

, C1(fxg) [ C2(fxg) = fxg

, C1(fxg) = fxg or C2(fxg) = fxg

, x 2 set(C1) [ set(C2):

Theorem 26 The union of two minimal contractors C1; C2 is minimal

proof. Consider C1 and C2 minimal contractors. We prove that (C1[C2)([x]) = [set(C1t

C2) \ [x]]. We have

(C1 t C2)([x])
def
= [C1([x]) [ C2([x])]: (4.48)

Since C1 and C2 are minimal

(C1 t C2)([x]) = [[set(C1) \ [x]] [ [set(C2) \ [x])]]: (4.49)

Using lemma 24 and lemma 25 we �nd that

(C1 t C2)([x]) = [set(C1) \ [x] [ set(C2) \ [x])]

= [(set(C1) [ set(C2)) \ [x]]:

= [(set(C1 t C2)) \ [x]]:

(4.50)

4.6.4 Transformation of minimal contractors

This subsection introduces another contribution to this PhD thesis which is the concept

of transformation of contractors (such as translation, homothetie...). The purpose is to

de�ne a set of transformations which preserve the minimality of a contractor. Such trans-

formation allow to construct new minimal contractors from other minimal contractors.

De�nition 19 Consider f : Rn ! R
n a continuous bijective function, C a contractor.

Consider the transform T such as

T (f ; C) = [f ] E C E [f�1]: (4.51)

this transform is called the f-transform of the contractor C.
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Remark 14 T (f ; C) is not necessary a contractor.

Proposition 27 If 8[x] 2 IRn; [f ]([x]) = f([x]) and [f�1]([x]) = f�1([x]) then T (f ; C)

is a contractor and set(T (f ; C)) = f(set(C)). In that case it is possible to simplify the

de�nition of the transform by putting

T (f ; C) = f E C E f�1: (4.52)

proof. Contractance

8[x] 2 IRn; C([x]) � [x] ) C(f�1([x])) � f�1([x])

) C(f�1([x])) � f�1([x])

) f(C(f�1([x]))) � f(f�1([x]))

) T (f ; C)([x]) � [x]:

(4.53)

Consistency

x 2 [x]; T (f; C)(fxg) = fxg ) f E C E f�1(fxg) = fxg

) C(f�1(fxg)) = f�1(fxg)

) f�1(fxg) 2 C(f�1([x]))

) fxg 2 f(C(f�1([x])))

) x 2 T (f; C)([x]):

(4.54)

Convergence

x 2 Rn; T (f; C)(fxg) = ; ) C(f�1(fxg)) = ;

) 9" > 0;8[y] � B(f�1(x); "); C([y]) = ;

) 9B > 0; B(x; B) � f(B(f�1(x); ") (since f is continuous)

) 8[x] � B(x; B); f�1([x]) � B(f�1(x); ")) C(f�1([x])) = ;

) f(C(f�1([x]))) = ;

) T (f; C)([x]) = ;:
(4.55)

T (f; C) contractor set is f(set(C))

x 2 Rn; T (f; C)(fxg) = fxg , f E C E f�1(fxg) = fxg

, C(f�1(fxg)) = f�1(fxg)

, f�1(fxg) 2 set(C)

, fxg 2 f(set(C)):

(4.56)

Remark 15 If [f ]([x]) = f([x]) and [f�1]([x]) = f�1([x]) then [f ]E [f�1] = [I]. This means

that [f ] is not inducing any wrapping e¤ect (see section 3.5). In the case of 2D contractors,

central symmetry, some axial symmetries, translation, homothetic transformation fall into

that category
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Example 26 An example of OY axis axial symmetry transformation is represented in

Figure 4.7. The corresponding transformation function is

f : R2 ! R
2

(x; y) 7! (�x; y):
(4.57)

Figure 4.7: Creating the symmetric contractor

Lemma 28 If 8[x] 2 IRn; [f ]([x]) = f([x]) and [f�1]([x]) = f�1([x]) then given two sets

A;B � Rn

[f(A) \ f(B)] = f([A \ B]): (4.58)

proof. We �rst prove [f(A) \ f(B)] � f([A \ B] then we prove the other inclusion. We

have

A \ B � [A \ B] : (4.59)

Thus

f(A \ B) � f( [A \ B]): (4.60)

Since f is bijective

f(A \ B) = f(A) \ f(B): (4.61)
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Thus we prove

f(A) \ f(B) � f([A \ B]: (4.62)

Thus

[f(A) \ f(B)] � f([A \ B]: (4.63)

We use this last result to prove the other inclusion. We have

�
f�1 E f(A) \ f�1 E f(B)

�
� f�1([f(A) \ f(B)]): (4.64)

Thus

[A \ B] � f�1([f(A) \ f(B)]): (4.65)

Finally

f([A \ B]) � [f(A) \ f(B)] : (4.66)

Theorem 29 If 8[x] 2 IRn; [f ]([x]) = f([x]) and [f�1]([x]) = f�1([x]) then if C is min-

imal then T (f ; C) is minimal.

proof. Since C is minimal

T (f ; C)([x]) = f(C(f�1([x])))

= f([set(C) \ f�1([x])]):
(4.67)

Using lemma 28 we conclude that T (f ; C)([x]) is minimal since

T (f ; C)([x]) = [f(set(C)) \ f E f�1([x])]

= [f(set(C)) \ [x]]:
(4.68)

4.7 Constructing minimal contractors using geomet-

rical properties of their set

4.7.1 Introduction

Sometimes the contractors have some geometrical properties (symmetry, repeating pat-

terns...) which can be used to simplify their implementation. In fact, theorem 29 ensures
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that some particular transformations of contractors conserve their minimality. Besides,

theorem 26 ensures that one can construct a minimal contractor as a union of minimal

contractors. Thus one can construct an in�nite number of complex minimal contract-

ors based on simple initial minimal contractors called core contractors. New contractors

are obtained from the core contractors through transformations such as symmetries, ho-

mothecies and translations and the union of those contractors de�nes the new contractor.

Figure 4.8 shows the construction of a snow contractor. The sub-�gures (a) and (e)

represents the core contractors sets. Those contractors have to be minimal. The �rst

part of the �ake represented in sub-�gures (d) is obtained using the core contractor in

sub-�gure (a) through symmetry (sub-�gure (b)), then translation (sub-�gure (c)) then a

serie of di¤erent symmetries. The �ake (sub-�gure (g)) is obtained using the union of the

parts obtained from both core contractors (sub-�gure (d) and sub-�gure (f)). Finally, the

snow contractor is obtained by translating and resizing the �ake contractor (homothetic

transformations). The snow contractor is minimal.

Figure 4.8: Snow contractor construction from two core contractors

4.7.2 Constructing the sinus contractor

Figure 4.9: Construction of the sinus contractor using its geometrical properties
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A more concrete application is the construction of the sinus contractor using its sym-

metry properties is represented in Figure 4.9. Consider a fragment of the sinus function

de�ned on the interval [��
2
; �
2
] (see sub-�gure (a)) . A minimal contractor C[��

2
;�
2
] can

be de�ned on this interval since the function is monotonic [Chabert and Jaulin, 2009b].

The contractor C[��
2
;�
2
] is the core contractor which will be used to construct the sinus

contractor denoted Csin corresponding to the sinus function de�ned on R. First we use

the fact that on the period [��
2
; 3�
2
]; the sinus function is symmetric with respect to the

axis � de�ned by the equation x = �
2
(as seen in sub-�gure (b)). Next we use "translation

by 2k�; k 2 Z" functions to construct Csin.

Consider the contractor C[�
2
; 3�
2
] corresponding to the part of sinus de�ned on the interval

[�
2
; 3�
2
] . Consider the symmetry transformation

f��symmetry : R
2 ! R

2

(x; y) 7! (�x+ �; y);
(4.69)

Denote by C[�
2
; 3�
2
] the symmetric of the contractor C[��

2
;�
2
]

C[�
2
; 3�
2
] = T (f��symmetry; C[��

2
;�
2
]): (4.70)

The contractor C[��
2
; 3�
2
] corresponding to the part of sinus de�ned on the whole period

[��
2
; 3�
2
] is the union of the minimal contractors C[��

2
;�
2
] and C[�

2
; 3�
2
] and thus it is minimal

too.

C[��
2
; 3�
2
] = C[��

2
;�
2
] t C[�

2
; 3�
2
]: (4.71)

Sinus function is 2� periodic. Consider the following 2k�-translation function

f2k� : R
2 ! R

2

(x; y) 7! (x+ 2k�; y):
(4.72)

Denote by C[��
2
+2k�; 3�

2
+2k�] the contractor corresponding to the part of sinus de�ned on

the period [��
2
+ 2k�; 3�

2
+ 2k�]: One have

C[��
2
+2k�; 3�

2
+2k�] = T (f2k�; C[��

2
; 3�
2
]): (4.73)

The sinus contractor Csin which corresponds to the sinus function de�ned on whole R is

then de�ned by

Csin =
G

k2Z

C[��
2
+2k�; 3�

2
+2k�]: (4.74)

Finally, the sinus contractor can be expressed as unions and transformations of the core

contractor C[��
2
;�
2
] using this compact formula

Csin =
G

k2Z

T (f2k�; T (f��symmetry; C[��
2
;�
2
]) t C[��

2
;�
2
]): (4.75)
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Proposition. Csin is the sinus contractor and it is minimal by construction.

proof. Direct result of the theorems 26 and 29.

4.7.3 Constructing the argument contractor

Introduction

The argument contractor Carg is the contractor related to the constraint linking the angle

� and the argument of a vector ~u(x; y)

� = arg(~u): (4.76)

The argument contractor is important in robotics since many sensors give angle measure-

ments. The camera can give the view angle of some objects, some acoustic or electromag-

netic sensors can point the direction of a source of acoustic/electromagnetic waves such

as beacons. The argument contractor is the basic contractor in algorithms such as SLAM

(Simultaneous Localization And Mapping) with punctual landmarks [Le Bars et al., 2010]

[Joly, 2010] [Porta, 2005].

Construction using symmetries and translations

The argument contractor Carg has the following geometrical properties

F ~y axis symmetry

arg(x; y) = � � arg(�x; y): (4.77)

F ~x axis symmetry

arg(x; y) = � arg(x;�y): (4.78)

F 2k� periodicity

the associated transformation functions are respectively

fy : R
3 ! R

3

(x; y; �) 7! (�x; y; � � �)

fx : R
3 ! R

3

(x; y; �) 7! (x;�y;��)

f2k� : R
3 ! R

3

(x; y; �) 7! (x; y; � + 2k�):

(4.79)
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92 Chapter 4. Contractors

Consider the core contractor Carg_root corresponding to the part of arg function de�ned

on R+ � R+ � [0; �
2
] i.e. the contractor associated to the following set

set(Carg_root) = f(x; y; �) 2 R
3; arg(x; y) 2 [0;

�

2
]g: (4.80)

The ~y axis symmetry extends the set associated to the of the resulting contractor to

R� R+ � [0; �]:

The ~x axis symmetry extends the set associated to the of the resulting contractor to

R� R� [��; �]:

Finally the 2k� periodicity extends the set associated to the of the resulting contractor

to R3 by doing translations of the contractor de�ned on R� R� [��; �]:

Thus what we obtain is the argument Carg:de�ned by the following formula

Carg =
F

k2Z

T (f2k�; C3)

C3 = T (fx; C2) t C2
C2 = T (fy; Carg_root) t Carg_root;

(4.81)

or in a more compact form

Carg =
G

k2Z

T (f2k�; T (fx; T (fy; Carg_root) t Carg_root) t T (fy; Carg_root) t Carg_root): (4.82)

The contractor Carg is minimal by construction.

The core contractor

The core of the contractor of the argument contractor Carg_root is de�ned on R
+ �R+ �

[0; �
2
].Denote by ([xc]; [yc]; [�c]) = Carg_root(([x]; [y]; [�])) we have

[xc] =
[y]

[tan]([�])

[yc] = [x] � [tan] ([�])

[�c] = [arctan] (
[y]
[x]
);

(4.83)

where [tan] and [arctan] are the inclusion functions of tan and arctan respectively. A

representative case of contraction using Carg_root is represented on Figure 4.10.

Remark 16 Since Carg_root is de�ned on the domain R
+ � R+ � [0+; �

2
], in the interval

computations over that domain we suppose 1
0
= +1. Since [y]

[x]
is not de�ned for ([x]; [y]) =

(f0g; f0g), we suppose that

8� 2 [0+;
�

2
]; Carg_root((f0g; f0g; [�])) = (f0g; f0g; [�]): (4.84)
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Figure 4.10: Example of contraction using the argument contractor where both the angle

� and the vector (x; y) are contracted

Remark 17 The construction of the argument contractor using unions and transform-

ations of the core contractor is useful to avoid too many special cases such as those in

Remark 16 which would be numerous and redundant if the approach wasn�t used. (Special

cases are one of the most common source of program bugs).

4.8 The image contractor

4.8.1 Introduction

There are cases where a set is hard to be modeled in terms of set of equations. Figure

4.11 shows an example of such a set. In robotics, this is the case of maps of unstructured

environments. In fact, structured maps such as buildings are easily represented as a set

of line segments or polynomials while it is complicated to model irregular environments

like sea shore or road maps.

This section introduces a contractor C which set of insensitive points set(C) is represented

using a binary image. The new contractor is called the image contractor and is the second

main contribution to the PhD thesis. For more simplicity, the image contractor is �rst

de�ned for continuous 2D binary image. The image contractor is meant to be used in for

example localization algorithms (to represent maps). The image contractor needs then

to be implemented on a computer. We de�ne the discrete form of the image contractor

(de�ned for 2D discrete images) in subsection 4.8.5. The discrete image contractor only

contracts discrete boxes (natural number boxes). Subsection 4.8.6 explains how to use

the discrete image contractor to contract real number boxes. The case where the image
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Figure 4.11: Example of a set di¢cult to model with equations

is higher dimension can be easily derived from the 2D case.

4.8.2 Continuous image contractor

In this part, the image contractor is de�ned using a continuous binary image in R2.

Consider a continuous binary image de�ned by

f : R2 ! f0; 1g: (4.85)

We consider the 1-valued pixels as the pixels of interest and they are colored in black or

gray. The 0-valued pixels are left white.

Remark 18 Note that f is the characteristic function of the set S represented on the

binary image.

De�nition 20 The image contractor C associated to the image de�ned by the function

f is the minimal contractor which set of insensitive points is

set(C) = fx 2 R2; f(x) = 1g: (4.86)

Figure 4.12 shows the action of the image contractor.
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Figure 4.12: Example of contraction using the image contractor

4.8.3 Inclusion test

Consider the function �

� : IR2 ! R;

[x] 7!
R
(x;y)2[x]

f(x; y)dxdy:
(4.87)

The function � characterizes the quantity of 1-valued pixels in a box [x]. As an example, if

�([x]) = 0 means that there are no 1-valued pixels in the box [x]. As such the function �,

is used to build an inclusion function for the constraint associated to the set represented

on the image.

Consider the function  

 : R2 ! R

x 7!
R x1
0

R x2
0
f(x; y)dxdy:

(4.88)

The  function associates for each pixel x the quantity of 1-valued pixels in the box

([0; x1]; [0; x2]). As such, the  function de�nes a continuous grayscale image which is

called the  -transform of the binary image. The pixels x 2 R2 such as  (x) = 0 are

colored in white and the higher the value of j (x)j, the darker is the color of the pixel.

Figure 4.13 shows the  -transform (on the right) of a binary image (on the left). Note that

the origin (0; 0) is the left upper corner of the image since that is the common convention

for images.
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Figure 4.13: Example of a binary image and the corresponding  transform

The function � can be obtained from  :

�([x]) =  (x+1 ; x
+
2 )�  (x�1 ; x

+
2 )�  (x+1 ; x

�
2 ) +  (x

�
1 ; x

�
2 ): (4.89)

Figure 4.14: De�ning an inclusion function using the � function (on the left) and its

application in the SIVIA algorithm (on the right)

In practice, the idea is to compute the  -transform only once and store the result in

computers memory as a grayscale image for example. As a result � can be evaluated

almost instantly for every box. The function � can be used to de�ne the inclusion function

necessary for the SIVIA (Set Inversion Via Interval Analysis) algorithm as seen in Figure

4.14. Considering a box [x] � R2
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F If �([x]) = 0 then the box doesn�t contain any 1-valued pixels i.e. [x] is outside of

the set de�ned by the binary image.

F If �([x]) 6= 0 then the box contains some 1-valued pixels i.e. [x] intersects with the

set de�ned by the binary image.

F If �([x]) = w([x1]) �w([x2]) then all the points in the box are 1-valued pixels i.e. [x]

is included in set de�ned by the binary image.

Figure 4.14 also shows the subpaving generated of SIVIA algorithm using image constraint

inclusion function.

4.8.4 Contraction algorithm

Denote by C the image contractor. Consider [x] 2 IR2 and C([x]) = [y]: We have

y�1 = max(x 2 [x1]; �([x
�
1 ; x]� [x2]) = 0)

y+1 = min(x 2 [x1]; �([x; x
+
1 ]� [x2]) = 0)

y�2 = max(x 2 [x2]; �([x1]� [x
�
2 ; x]) = 0)

y+2 = min(x 2 [x2]; �([x1]� [x; x
+
2 ]) = 0):

(4.90)

The min and max can be computed using dichotomy which has logarithmic complex-

ity. Figure 4.15 illustrates the dichotomy used to compute y�1 . The box on which the

dichotomy is applied is the box [x�1 ; x]� [x2] where x is the unknown.

4.8.5 Discrete form of the image contractor

Binary images which can be manipulated on a computer usually are discrete and bounded.

Consider then a discrete binary image with the width w and the height h. This image

can be described by the following discrete function

fd : f1; ::; wg � f1; ::; hg ! f0; 1g: (4.91)

The de�nition of the discrete contractor Cd([n]) is the same as in the continuous case

except that the contracted boxes are natural number boxes in the image workspace ([n] 2

IN). See Figure 4.16 (on the left) for an example of contraction using this contractor.

In discrete case the function  d is de�ned as follows

 d : f1; ::; wg � f1; ::; hg ! N

 d(n) =
Pmin(n1;w)

i=1

Pmin(n2;h)
j=1 fd(i; j):

(4.92)
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Figure 4.15: Computing one bound of C([x]) using dichotomy

In discrete case, the function �d is de�ned by

�d : IN
2 ! N

�d([n]) =  d(n
+
1 ; n

+
2 )�  d(n

�
1 ; n

+
2 )�  d(n

+
1 ; n

�
2 ) +  d(n

�
1 ; n

�
2 ):

(4.93)

The contractor Cd can be constructed using dichotomy same as the continuous contractor

de�ned in 4.8.4.

4.8.6 Using the discrete image contractor in continuous prob-

lems

Only the discrete image contractor can be implemented on a computer. However, the

problems we solve require continuous (R2) contractors. This subsection presents a method

to overcome this problem. Consider a discrete image and denote by Rd the image work-

space. The binary image is actually used to represent a set Sd (the map in the case of

localization) de�ned in a speci�c workspace RS as seen in Figure 4.16. The set Sd has to

be bounded (since the image is bounded). Denote by C the contractor which set of insens-

itive points is set(C) = Sd. Denote by Cd the image contractor associated to the discrete

image represented in the Rd workspace. The contractor Cd contracts in the Rd workspace
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Figure 4.16: Example of contraction using a discrete image contractor (on the left) and

how to use this new contractor to approximate a continuous image contractor (on the

right)

and is de�ned as seen in subsection 4.8.5. The idea is to �nd an expression linking C and

Cd. The key is to �nd the transformation function between the real workspace RS and

the discrete workspace Rd.

Remark 19 The set Sd can be seen as the approximation of a usually unknown set S

corresponding to the real constraint we search to characterize (In Figure 4.16 it is the

question mark). It is like "taking a picture" of the set S using a digital camera. On

the other hand, even if S is known, because the image contractor is fast, it is sometimes

useful to transform complex and resource consuming contractors into image contractors.

The �rst drawback is the loss of precision because of the approximation. The second

drawback is the increase in storage space required for the  -transform which increases the

more the precision of the approximation ( i.e. the number of pixels) is high.

Note that the workspace Rd is vertically �ipped with regards to the workspace Rs because

of image index convention. Consider a real box [x] 2 IR2 to be contracted in the RS
workspace. Consider the homothetic transformation h : IR2 ! IR

2 such as h([x0]) =

[1; w]� [1; h]. Consider the box discretization function d : IR2 ! IN
2 which for each box

of IR2 returns the smallest natural number box enclosing the real number box. Finally,

consider the �ip function v : IN2 ! IN
2 which vertically �ips a natural box in the image

workspace (The expression is v([n]) = ([n1]; h+ 1� [n2]); [n] 2 IN
2). We have

C([x]) = [x] \ h�1(v�1(Cd(v(d(h([x])))))): (4.94)
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4.8.7 Application for the localization of a vehicle in the city

without GPS

The example in Figure 4.17 illustrates a possible application of the image contractor when

dealing with a map M of a road represented as a binary image. In the example a vehicle

moves on city roads represented in black. It is possible to measure the speed vk of the

vehicle (by looking at the speed panel or hacking the CAN bus) and the orientation �k of

the vehicle using a magnetic compass. The position (xk; yk) of the robot is characterized

by discrete-time dynamic equations

�
xk+1
yk+1

�
=

�
xk + vk � cos(�k) � dt

yk + vk � sin(�k) � dt

�
:

The initial position is supposed to be known. Sub-Figure 4.17.(a) represents the solution

of the equations above (the reconstructed trajectory) in the form of a serie of boxes. Since

speed and orientation measurements are subject to noise, the position estimation error

diverges. Sub-Figure 4.17.(b) represents the solution of the equations above considering

an additional constraint 8k; (xk; yk) 2M i.e. "the vehicle is on the road" constraint. This

constraint is implemented on the computer using the image contractor. The position

estimation error is bounded as seen in Sub-Figure 4.17.(b).

It is possible to solve more complex problems where initial position is unknown (global

localization) and/or the compass measurements are replaced by gyroscope measurements

(rotation speed) using this method.

Figure 4.17: Localization in the city using odometry and compass only
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4.8.8 Conclusion

The image contractor is a new way to represent constraints and contractors. The ad-

vantage is that the contractor formalism allows the image contractor to be used along

classic contractors this extending the possibilities of contractor solvers. The advantage

of the method is the high speed of execution which is also similar for all image contract-

ors of same size. The main disadvantage is the storage space required for storing the

 -transform which exponentially increases with the dimension of the constraint. There

are then many prospects of research such as the compression of the  -transform.
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Chapter 5

Relaxed CSP computer solvers

5.1 Implementation of set polynomials based solvers

5.1.1 Introduction

Section 2.5 introduced the concept of set polynomials and their use in representing the

solution of a relaxed CSP. The coe¢cients of a set polynomial are continuous sets which

cannot be directly represented on a computer. Contractors, as seen in 4, are algorithmic

entities which can represent a particular set. Given a contractor, an appropriate algorithm

(such as branch and prune algorithm) can be used to compute a subpaving enclosing the

set associated to the contractor. The idea introduced in this chapter is to use contractors

as coe¢cients of the polynomial instead of sets thus de�ning a contractor polynomial.

Taking bene�t of contractor arithmetics, it is possible to de�ne the sort transform of a

vector of contractors in the same way that in the case of sets. This chapter also introduces

a recursive algorithm based on polynomial arithmetics to solve a relaxed CSP when the

solution is punctual. The solution is represented in the form of a box polynomial. An

example is provided to show the viability of the approach.

5.1.2 Contractor polynomials

A possible implementation for set polynomials de�ned in section 2.5 are polynomials with

contractor valued coe¢cients also called contractor polynomials. The set of contractors

has a lattice structure (see [Chabert and Jaulin, 2009a]).

F The order is the inclusion " � " such as

C1 � C2 , 8[x]; C1([x]) � C2([x]): (5.1)
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F The supremum is obtained through contractor union t and the in�nimum is ob-

tained through the repeated intersection u

F The contractor set maximum is the identity contractor which is denoted c> and the

contractor set minimum is the contractor which returns an empty set for all boxes

denoted by c?

8[x] 2 IRm; C> ([x]) = [x] ; C? ([x]) = ;:

It is thus possible to de�ne contractor polynomials on this lattice as seen in subsection

2.5.4 taking bene�t of all the properties de�ned in the subsection. As such, the sort

transform is also de�ned. Consider the contractor vector C = (C1; ::; Cn). Consider the

polynomial sort transform (see de�nition 6) of this vector

C�(s) =

nY

k=1

(Cks+ c
>): (5.2)

Using polynomial arithmetics, the polynomial C�(s) can be expanded into

C�(s) =
nP

k=1

 
P

K�f1;::;ng;Card(K)=k

�
Q

i2K

Ci

�!

sk + C> (i)

=
nP

k=1

 
F

K�f1;::;ng;Card(K)=k

�
Q

i2K

Ci

�!

sk + C> (ii)

=
nP

k=1

 
fn�kgQ

i2f1;::;ng

Ci

!

sk + C>: (iii)

(5.3)

where
fqgQ

i2f1;::;ng

Ci is the repeated q-relaxed intersection of contractors (see de�nition (4.2)).

Line (i) is the polynomial expansion. In line (ii), the "�" and "+" operations are replaced

by " u " and " t "respectively. In line (iii), proposition 18 is used. Consider the relaxed

CSP de�ned by the constraints associated to the contractors C = (C1; ::; Cn). Consider

X�(s) the solution set polynomial of the relaxed CSP (see subsection 2.5.5)

X�(s) =

nX

k=0

Sn�ks
k: (5.4)

The contractor polynomial C�(s), which we can call the solution contractor polynomial,

is a nested contractor polynomial where the kth coe¢cient C�k represents the contractor

associated to the kth coe¢cient of the solution set polynomial X�(s). Using contractor

based solvers such as the branch and prune algorithm it is possible to generate a subpaving

enclosing each of the coe¢cients Sq; q 2 f0; ::; n� 1g. The following subsection proposes

a another practical algorithm to obtain an approximation of the polynomial C�(s).
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5.1.3 Computing the solution contractor polynomial

This subsection proposes three methods which enables to compute an approximation of

the contractor polynomial C�(s) associated to the solution set polynomial of a relaxed

CSP. Denote by C�(1)(s) and C
�
(2)(s) and C

�
(3)(s) the polynomials which will be used to

approximate the polynomial C�(s).

First approximation

The repeated intersection u of contractors means that the intersection \ of contractors

should normally be repeated an in�nite number of times. In practice, the intersection is

repeated a �nite number of times. The �rst contractor polynomial C�(1)(s) =
nP

k=1

C�(1)ks
k+

C> is de�ned such as

C�(1)k =

0

@
fn�kg\

i2f1;::;ng

Ci

1

A

p

: (5.5)

where
fqgT

i2f1;::;ng

Ci is the q-relaxed intersection of contractors and p is usually chosen so that

there is no notable di¤erence between that contractor for p and p � 1. The contractor

polynomial C�(1)(s) converges to the polynomial C
�(s) when p ! 1 (see proposition 18

in section 4.4).

Second approximation

There are other ways to approximate the contractor polynomial C�(s). The idea is to

replace the repeated intersection "u" of contractors by the composition "E" of contractors.

The set of contractors provided with the operations " E " and " t " is not a lattice.

Despite the loss of lattice structure, it is still possible to keep the de�nition of the sort

transform and polynomial arithmetics unchanged. Considering a vector of contractors

C = (C1; ::; Cn), the corresponding polynomial sort transform is denoted

C(1�)(s) =
Y

i2f1;::;ng

(Cis+ c
>) = (Cns+ c

>)E:::E(C1s+ c
>) =

nX

k=1

C
(1�)
k sk + C>: (5.6)

Note that by expanding the C(1�)(s) polynomial we obtain

C
(1�)
k =

G

ik>::>i1
fi1;::;ikg�f1;::;ng

C
(1�)
ik

E ::: E C
(1�)
i1

=

fn�kgK
(Cn; ::; C1

): (5.7)
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where
fqgJ
(Cn; ::; C1

) is the q-relaxed composition of contractors.

As seen in proposition 21 in section 4.4, the contractor
fqgJ
(Cn; ::; C1

) is a better contractor

than the q-relaxed intersection of contractors
fqgT

k2f1;::;ng

Ck. The next subsubsection intro-

duces an algorithm used to compute of the polynomial C(1�)(s) and as a consequence,

compute the relaxed composition of contractors.

This leads to the second possible approximation of C� (s) which is the contractor polyno-

mial C�(2)(s) =
nP

k=1

C�(2)ks
k + C> de�ned by

C�(2)k =

0

@
fn�kgK

(Cn; ::; C1
)

1

A

p

: (5.8)

where p is usually chosen so that there is no notable di¤erence between that contractor

for p and p� 1. The contractor polynomial C�2(s) when p!1 converges to a contractor

polynomial which encloses the polynomial C�(s) (see proposition 19 in section 4.4).

Third approximation

In the two previous approximations, the coe¢cients of the polynomial C�(1)(s) and C
�
(2)(s)

were not fully obtained using polynomial arithmetics. The question would be how repres-

ent the repetition necessary for convergence using polynomial arithmetics. The approach

presented here is not very e¢cient in terms of computation complexity but provides an

example of the use of polynomial arithmetics which could inspire future research on new

algorithms. For the new algorithm, the idea is to consider the polynomial sort transform

of the contractor vector C(p) = (C1; ::; Cn; :::; C1; ::; Cn)| {z }
p times

denoted by

C(p�)(s)=
Y

k2f1;::;ng

(Cks+ c
>) =

p�nX

k=1

C
(p�)
k si + C>: (5.9)

C(p�)(s) is a polynomial of the degree p �n. The third possible approximation of C� (s) is

the contractor polynomial C�(3)(s) =
nP

k=1

C�(3)ks
k + C> such as

8k 2 f1; ::; ng; C�(3)k = C
(p�)
k�p : (5.10)

Proposition 30 The contractor polynomial C�3(s) is enclosing the contractor polynomial

C� (s) i.e.

8p 2 N�;8k 2 f1; ::; ng; C�k � C�(3)k: (5.11)

106



5.1. Implementation of set polynomials based solvers 107

proof. We have
C(p�)(s) =

�
C(1�)(s)

�p

=

�
nP

k=1

C
(1�)
k sk + C>

�p
:

(5.12)

By doing polynomial expansion we deduce that

8k 2 f1; ::; ng; C
(p�)
k�p =

�
C
(1�)
k

�p
+ Crest: (5.13)

where Crest is a contractor which also results from the expansion but is not important for

the demonstration.

As such �
C
(1�)
k

�p
� C

(p�)
k�p : (5.14)

On the other hand, using proposition 19 we �nd that

�
C
(1�)
k

�1
= C�k : (5.15)

As such

8k 2 f1; ::; ng; C�k � C
(p�)
k�p : (5.16)

As such we proved C�(3)(s) is a valid approximation of C
�(s) however the convergence was

not proved. One of the prospects of the research is to check if the contractor polynomial

C�(3)(s) converges to the polynomial C
�(s) de�ned in 5.3 when p!1 i.e.

lim
p!1

(C
(p�)
k�p ) = C�k : (5.17)

As for now only a demonstration example is provided in the next subsubsections.

Algorithm for the relaxed composition of contractors

In this subsubsection, we illustrate the fact that an evaluation of a contractor polynomial

naturally leads to an algorithm allowing to compute the relaxed composition of contract-

ors. Consider the polynomial C(1�)(s) de�ned in subsubsection 5.1.3. We remind that

C(1�)(s)=(Cns+ C
>)E:::E(C1s+ C

>): (5.18)

The result of contractor computations are usually stored in form of boxes. Naturally,

the result of computations using contractor polynomials are stored in the form of box
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polynomials i.e. polynomials with box valued coe¢cients. For a given initial box [x] 2 Rn,

the evaluation of the contractor polynomial C(1�)(s) is the box polynomial denoted by

C(1�)(s)([x]) such as

C(1�)(s)([x]) =

nX

i=0

C
(1�)
i ([x])si + [x]: (5.19)

De�nition 21 Consider a box polynomial denoted by [X](s)

[X](s) =

nX

i=0

[xi]s
i: (5.20)

The contraction of a box polynomial by a contractor C is de�ned by

C([X](s)) =

nX

i=0

C([xi])s
i: (5.21)

The following recursive formulation shows how to obtain the box polynomial C(1�)(s)([x]).

Proposition 31 Consider the box polynomial [Xn](s) constructed using the following re-

cursive formula (the Horner scheme)

[Xk+1](s) = Ck+1([Xk](s)) � s+ [Xk](s): (5.22)

such as the initial condition is

[X0](s) = [x]: (5.23)

The box polynomial [Xn] (s) is the evaluation of the contractor polynomial C
(1�)(s) i.e.

[Xn] (s) = C(1�)(s)([x]): (5.24)

proof. By construction. It is just the evaluation of the polynomial C(1�)(s) using the non

expanded form (equation 5.18).

Remark 20 Computing the box polynomial [Xn] (s) requires
n(n+1)
2

contraction operations

and n(n�1)
2

box union operations hence the O(n2) complexity of the algorithm.

Figure 5.1 illustrates the recursive relation for interval polynomials.
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Figure 5.1: One dimensional example of recursive evaluation of the contractor polynomial

sort transform using interval polynomials

5.1.4 Finding line intersection

This subsection illustrates the application of the recursive formulation de�ned in the

previous subsection to �nd the intersection of lines. Consider n lines l1; ::; ln where q

among them doesn�t intersect in the same place. We call those lines outlier lines. The

purpose is to �nd the point where most of the lines intersect. Denote by C1; ::; Cn the

contractors which sets of insensitive points are the points of the lines l1; ::; ln respectively. If

there are no outlier lines (q = 0), the problem can be solved using constraint propagation

by doing repeated composition of the contractors C1; ::; Cn (See subsection 4.5). This

composition can be represented by a contractor C which contracts the input box into the

point of intersection of the lines. The contractor C is de�ned by

C = (C1 E :: E Cn)
1: (5.25)

In the case of outlier lines this method would return an empty set. As seen in subsection

5.1.2, the contractors C1; ::; Cn are used to de�ne the contractor polynomial C�(s) which

represent the solution of the problem. Subsection 5.1.3 presented di¤erent methods to

compute an approximation of the contractor polynomial C�(s). The two �rst methods uses

the relaxed intersection of contractors and the relaxed composition of contractors to de�ne

the coe¢cients of the two approximating contractor polynomials C�(1)(s) and C
�
(2)(s). The

last method is based on contractor polynomial arithmetics to compute the approximating

contractor polynomial C�(3)(s). In the example, the evaluation of the polynomials C
�
(1)(s)

and C�(3)(s) and the associated C
(p�)(s) are presented for di¤erent values of p (repetition

factor). Figure 5.2 illustrates a computer evaluation of those polynomials with 20 lines

where 7 of them are not passing through the same point. The sub-�gures 5.2.(a),(b),(c)

and (d) represents the lines as well as the box polynomials in di¤erent cases (the darker

the box the higher the degree of the box coe¢cient). The sub-�gures 5.2. (a�),(b�),(c�)

and (d�) represent the interval polynomials corresponding to the projection of the box
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polynomials on the horizontal axis. Here, the vertical axis represents the degree of the

interval coe¢cient. The purpose of the projection is to be able to easily see the appearance

of the solution (in the form of a peak). Sub-�gure 5.2.(a) illustrates the resulting box

polynomial C�(3)(s)([x]) for p = 1 (no repetition). The white box represents the box

corresponding to the (n� q)th coe¢cient of the polynomial. This white box contains

the guaranteed solution. Note that the white box is still large at this point. Sub-�gure

5.2.(b) illustrates the polynomial C(p�)(s)([x]) for p = 10. Sub-�gure 5.2.(c) illustrates the

polynomial Ĉ�(s)([x]) for p = 10. Sub-�gure 5.2.(c) illustrates the polynomial C�(1)(s)([x])

for p = 30. Remark that when p = 10 (p = 30 for C�(1)(s) since the method is less e¢cient)

there is a clear peak appearing in the polynomial. This peak corresponds to the point

where the intersection of most of the lines takes place. The white box also converges to

that point of intersection. Having a peak doesn�t ensure that there is a solution in the

boxes of the peak but it can be used as a motivation to verify the peak box with other

guaranteed methods. Remark that there is no notable di¤erence between C�(1)(s)([x]) and

C�(3)(s)([x]) when p is high:

Figure 5.2: Finding the point where most lines intersect using box polynomials

5.1.5 Conclusion

This section proposed an example of implementation of set polynomials using contractor

polynomials. An algorithm used to evaluate this contractor polynomial was presented.

This algorithm allows to solve relaxed CSP with punctual solutions where the number of

inconsistent constraints is unknown. To characterize larger more complex sets, the idea,

which is one of the prospects in the research of this PhD thesis, is to create an algorithm

similar to the branch and prune algorithm using box polynomials instead of boxes. The

110



5.2. Implementation of the accumulators 111

bisection of a box polynomial (i.e. of all its coe¢cients) would be done along the same

axis corresponding to the bisection of the box coe¢cient with the highest degree.

5.2 Implementation of the accumulators

5.2.1 Introduction

This section presents an implementation of the accumulator �rstly introduced in section

2.6. The accumulator represents the solution of a relaxed CSP in form of a function which

for each element from the search space (domain of the relaxed CSP) returns the number

of constraints it satis�es. In order to implement the accumulator on the computer, the

idea is to discretize that function. The search space is discretized by using a subpaving

in the form of a grid. Each box of this subpaving is characterized by two numbers

being the maximum and minimum number of constraints satis�ed by an element of this

box. Subsection 5.2.2 explains this implementation. Subsection 5.2.3 presents a possible

application of the accumulators for the localization of a robot using range measurements

to known landmarks.

5.2.2 Discrete accumulator

This subsection describes how to implement a continuous accumulator on a computer.

Consider the relaxed CSP

fi : R
m ! R

pi

Ci : fi(x) 2 [yi]

x 2 [x0] ; [yi] � R
pi ; i 2 f1; ::; ng:

(5.26)

Denote by A : X ! N the solution accumulator associated to this relaxed CSP (as

explained in section 2.6). The main idea is to discretize the search space [x0] into a

subpaving (see 3.7). Each box [x] � [x0] of this subpaving is to be characterized by two

numbers being the maximum and minimum of constraints that are satis�ed by an element

of the box. Denote by [A] the inclusion function of A. The natural number interval

[A]([x]) bounds are respectively the maximum and minimum of constraints satis�ed by

any element in [x]

[A]([x]) = [min
x2[x]

(A(x));max
x2[x]

(A(x))] = [[A]([x])�; [A]([x])+]: (5.27)

In practice rather than computing [A]([x]) it is simpler to compute an approximation

denoted [A�]([x]) which uses the inclusion tests associated to the constraints in the relaxed
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CSP such as

[A�] ([x])+ = Card(fi 2 f1; ::; ng; [fi]([x]) \ [yi] 6= ;; [yi] 2 IR
pig);

and

[A�] ([x])� = Card(fi 2 f1; ::; ng; [fi]([x]) � [yi]; [yi] 2 IR
pig): (5.28)

The following proposition validates this approximation.

Proposition 32 Given a box [x] 2 Rm,

[A]([x]) � [A�] ([x]): (5.29)

proof. Consider x 2 [x] satisfying [A]([x])+ constraints of the relaxed CSP in (5.26)

9x 2 [x] ;9K � f1; ::; ng; Card(K) = [A]([x])+;8k 2 K; fk(x) 2 [yk]; (5.30)

as a consequence

9K � f1; ::; ng; Card(K) = [A]([x])+;8k 2 K; [fk]([x]) \ [yk] 6= ;; (5.31)

thus

[A]([x])+ � [A�] ([x])+: (5.32)

On the other hand

9K � f1; ::; ng; Card(K) = [A�] ([x])�;8k 2 K; [fk]([x]) � [yk]; (5.33)

thus

9K � f1; ::; ng; Card(K) = [A�] ([x])�;8k 2 K;8x 2 [x] ; [fk] (x) 2 [yk]; (5.34)

this means that all the elements in [x] satisfy at least [A�] ([x])� constraints. Since

[A]([x])� is the minimum number of constraints satis�ed by an element of [x] it can�t be

lower than [A�] ([x])�.

[A�] ([x])� � [A]([x])�: (5.35)

De�nition 22 Consider a non-empty box [a] 2 R
m and a vector of natural numbers

s = (s1; ::; sm) 2 N
m. A grid of boxes denoted Grid([a]; s) is a subpaving in the form of

a matrix of the size s of Rm boxes such as each box touches the neighboring box in the

matrix (two boxes are touching if their intersection contains a singleton interval). This

leads to the following expression of the grid

Grid([a]; s) = f([a�1 +
w([a1])
s1

� (i1 � 1); a
�
1 +

w([a1])
s1

� i1]; ::

; [a�m +
w([am])
sm

� (im � 1); a
�
m +

w([am])
sm

� im])

; ik 2 f1; ::; skg; k 2 f1; ::;mg)g:

(5.36)
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Figure 5.3: Illustration of the interval solution accumulator which contains the solution

accumulator

The continuous accumulator A can then be discretized using a subpaving in form of a

grid Grid([a]; s); s 2 Nm; [a] � Rm. Each box [x] of the grid is weighted with two natural

numbers corresponding to the bounds of the interval [A�]([x]). The interval [A�]([x]) is

computed on a computer for each box of the grid and stored in computer�s memory.

De�nition 23 The function [A�] which associates to each box [x] of a gridGrid([x0] ; s); s 2

N
m the natural numbers [A�] ([x])� and [A�] ([x])+ is called the interval solution accumu-

lator of the relaxed CSP (5.26).

Remark 21 The use of the grid is to simplify computer implementation. It is possible to

use any kind of weighted subpaving.

Figure 5.3 illustrates the approximation of a one dimensional accumulator A (correspond-

ing to a hypothetical one dimensional relaxed CSP) using the interval solution accumulator

[A�] evaluated on a subpaving in form of a grid.

For a box [y] 2 [x0] which does not belong to the grid, it is possible to evaluate [A
�]([y])

based on the previously computed intervals [A�] ([x]) for [x] 2 Grid([x0] ; s) (stored on

computer�s memory in form of a grayscale image) without having to redo the inclusion

tests for [y]. Basically

[A�]([y])+ = max([A�] ([x])+; [x] 2 Grid([x0] ; s); [x] \ [y] 6= ;)

[A�]([y])� = min([A�] ([x])�; [x] 2 Grid([x0] ; s); [x] \ [y] 6= ;):
(5.37)
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In our applications, we usually only compute the upper bound [A�] ([x])+ of [A�] ([x]) for

all the boxes [x] of the grid. In the case of localization, the position we seek is a small

set. As such, [A�] ([x])� usually gives a poor estimation of [A] ([x])� when the box [x] is

large.

The image by a function of an accumulator is important to enable the exploitation of

the solution of the relaxed CSP. In the case of localization, the image by a function of a

discrete accumulator is used to either deduce the global position of detected objects from

robots position or to deduce the next position of the robot using its evolution function.

De�nition 24 Consider the discrete solution accumulator [A�] associated to a grid of

boxes Grid([x0] ; s); s 2 N
m. The image by a function f :Rm ! R

m of [A�] is a discrete

accumulator denoted f([A�]) associated to the grid Grid([f ] ([x0]); s) de�ned by

8 [x] 2 Grid([f ] ([x0]); s); f([A
�])([x]) = [A�] (f�1([x])): (5.38)

A 2D accumulator can be stored on a computer as a grayscale image and a 3D accumulator

can be stored as a video. This makes this type of accumulators easy to implement on

a computer. Besides, several algorithms for image/video compression could be used to

compress an accumulator so that it would take less space resources.

5.2.3 Application to localization

Problem

Consider a robot de�ned by a point R(x; y) and N marks de�ned by Mi(xi; yi) in a 2D

workspace. With appropriate sensors, the robot measures the distance di to the marks.

Some of the measurements are outliers. In the example shown on Figure 5.4 d4, the

measurement of distance to M4, is an outlier. Each measurement di constrains the robot

to stay on a circle centered inMi with the radius di. This leads to the following constraint

Ci : (x� xi)
2 + (y � yi)

2 � d2i = 0: (5.39)

Remark 22 A minimum of 3 correct measurements are needed for proper localization.

In that case, the points have to be non collinear.

Simulation results

Consider a set of 3 distance measurements f[d1]; [d2]; [d3]g where 1 of them is an outlier.

As seen in remark 22, it is impossible to localize the robot with such data. Those three

114



5.2. Implementation of the accumulators 115

Figure 5.4: Localization using goniometric data

measurements lead to a relaxed CSP de�ned by 3 constraints fC1; C2; C3g as seen in

(5.39). Denote by A1 the solution accumulator corresponding to this �rst relaxed CSP.

The discrete approximation of the accumulator A1 (see subsection 5.2.2) is a 2D discrete

accumulator and can be represented on a grayscale image represented in Figure 5.5. The

�gure also represents the true position of the robot marked by a big cross and the detected

marks marked with small crosses. Remark that there are 3 di¤erent maxima corresponding

to 3 potential positions of the robot.

Figure 5.5: The accumulator A1 corresponding to the case of 3 distance measurements

with 1 outlier

Consider another set of 4 distance measurements from another source f[d4]; [d5]; [d6]; [d7]g

where 2 of them are outliers. As seen in remark 22, it is impossible to localize the robot
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with such data. Those four measurements lead to a relaxed CSP de�ned by 4 constraints

fC4; C5; C6; C7g as seen in (5.39). Denote byA2 the solution accumulator corresponding to

this second relaxed CSP. The discrete approximation of the accumulator A2 is represented

on Figure 5.6. The Figure also represents the true position of the robot marked by a big

cross and the detected marks marked with small crosses. Remark that there are several

di¤erent maxima corresponding to the potential positions of the robot.

Figure 5.6: The accumulator A2 corresponding to the case of 4 distance measurements

with 2 outliers

Consider the accumulator A which is the sum of the accumulators A1 and A2.

A = A1 +A2: (5.40)

The accumulator A actually corresponds to the solution accumulator for the relaxed CSP

de�ned by the constraints fC1; C2; C3; C4; C5; C6; C7g. The accumulator A is the solution

of the localization problem considering all the 7 measurements. The accumulator A is

the result of the sum of the discrete forms of the accumulators A1 and A2 and its discrete

form is represented in Figure 5.7. Note that the accumulator A is not computed from

scratch. Remark that now, since 4 measurements are correct, there is only one maxima

and it is possible to localize the robot hence the usefulness of the approach.

Remark 23 The accumulators A;A1;A2 can be computed on di¤erent machines. Be-

sides, the accumulators A1 and A2 can be stored as compressed grayscale images and

easily exchanged between machines. As a consequence, the approach is useful for distrib-

uted computing of problems with outliers.
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Figure 5.7: The sum of both accumulators A1 and A2 leads an accumualtor A corres-

ponding to solution of the problem of localization considering all the measurements.

5.2.4 Conclusion and perspectives

In this section a possible implementation of the accumulator was presented. The idea was

to discretize the domain of the relaxed CSP in form of a grid. Each box of the grid is

characterized by an interval de�ning the maximum and minimum of constraints satis�ed

by an element in the box. The representation of the solution in the form of accumulators

allows distributed computations. An application of accumulators was presented in the

case of robot localization using distributed computations.
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Chapter 6

Application to the localization of

autonomous underwater vehicles

6.1 Introduction

In this part, an application of the set membership methods described in this thesis

is presented. The algorithms were tested on a dataset derived from experiments car-

ried out in a marina located in the Costa Brava (Spain) with Girona university AUV

[Ribas et al., 2008]. A comparison between set membership methods and Particle Filter-

ing methods is also presented. The comparison was made in collaboration with Heriott

Watt University in Edinburgh.

The same algorithms are used on our school�s underwater robot Sauc�isse since its sensors

are the same as Girona AUV. The purpose of the robot Sauc�isse is to participate to

a competition of autonomous underwater vehicles called SAUC�E. The robot and the

competition are presented in the last part of the manuscript.

6.2 The experiment

The localization experiment to be considered here has been designed in order to illustrate

a method for underwater SLAM (see [Ribas et al., 2008]). The data was gathered during

an extensive survey of a abandoned marina in the Costa Brava (Spain). Girona university

Ictineu AUV gathered a data set along a 600m trajectory which included a small loop

around the principal water tank and a 200m straight path through an outgoing canal.

The data set included measurements from the Imaging Sonar (a Tritech Miniking), DVL -

Doppler Velocity Log - (a SonTek Argonaut) and MRU - Motion Reference Unit - sensors
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(Xsens MTi). For validation purposes, the vehicle was operated close to the surface

attached to a GPS equipped buoy used for registering the real trajectory (ground truth).

Figure 6.1: Girona University AUV Ictineu

6.3 Using an imaging sonar

Before talking about solving the problem of localization, we will talk about the most

important sensor to perform this task which is the imaging sonar. The operating principle

of a imaging sonar is represented in Figure 6.2. A real image sonar taken in a rectangular

pool is represented in Figure 6.3. The sector scan sonar contains a rotating head which

contains a directional ultrasonic transmitter and receiver (the transmitter and receiver are

very often one component made using a piezoelectric material). For each angle step of the

head rotation, the transmitter emits an short burst of an ultrasonic wave. The wave then

re�ects on the eventual obstacles in water (walls, �sh, divers, water surface, bubbles....)

those echoes are then received by the receiver with a certain amplitude. This data can be

represented in a time/amplitude workspace as seen in Figure 6.2. The farther the obstacle

the longer it takes to the echo to return to the receiver. On the other hand, the bigger the

object, the bigger the amplitude of the echo. So usually, we keep echoes with an amplitude

superior to a speci�c threshold. The distance to an object is proportional to the time

it takes to receive the echo caused of by the object. As a consequence, what we obtain

in the end is a set of distance intervals f[d0]; ::; [dn]g corresponding to highly re�ecting

objects. In Figure 6.2, the interval [d1] corresponds to the distance to the �rst re�ecting

object which is the wall. The interval [d2] corresponds to the echo of the second. This
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type of measurement is due to multiple rebounds of the acoustic wave and is considered

as an outlier in our computations. Sometimes the object which to be detected is out of

range (too far or too close). [d0] and [d3] represent the domains of distance to eventual

highly re�ecting objects which are "invisible" to the sonar.

Figure 6.2: The principle of sonar functionning

In order to localize in the Marina, what we are interested in are the echoes due to the

walls. All the other echoes will be considered as outliers. Figure 6.4 shows a sample of

sonar data, the dots show where the sonar beam found an obstacle which is most of the

case the wall from the marina. The long segments mean that obstacles are out of range

i.e. beyond 50m. As one can see, the data is noisy and contains a lot of outliers.

Figure 6.3: Real sonar image taken in a rectangular pool
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Figure 6.4: 360E scan of the marina using sector scan sonar

6.4 Setting the problem into a system of equations

A dynamic system such as an underwater robot can usually be characterized by discrete-

time dynamic equations

fk : R
m ! R

m;gk : R
m ! R

`

xk+1 = fk(xk)

yk = gk(xk):

(6.1)

where xk is the state of the system, yk is the output vector, fk is the evolution function

and gk the observation function. The input of the system is enclosed in the expression

of fk . The noise (due to model imperfection) is neglected to simplify the di¤erent for-

mulations. In our case, xk is the robots pose, fk characterizes robots dynamics, yk is the

measurement vector (here sonar distance to �rst obstacle measurements). yk and xk are

related by the observation function gk which express in our case geometrical relations

between the position, the measurements and the map. Denote by [yk] the box containing

the measurement yk. Using state equation in (6.1), the problem of estimation of xk can

be cast into the following constraint satisfaction problem
8
>>>>><

>>>>>:

gk(xk) = yk
gk�1 E f

�1
k�1(xk) = yk�1

:::

gk�n�1 E f
�1
k�n�1 E ::: E f

�1
k�1(xk) = yk�n

xk 2 R
m;yi 2 [yi]; i 2 fk � n; ::; kg:

(6.2)

In this CSP, we assume that the state xk (position of the robot) at the time step k is

a priori completely unknown (prior domain of membership is Rm). In the localization
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jargon, this corresponds to the global localization. It is possible to exploit the fact that

the current state of the system depends of its previous state since

fk : R
m ! R

m

xk = fk�1(xk�1):
(6.3)

Denote by Xk�1 the solution set of the CSP corresponding to the problem of estimation

of xk�1 using set membership methods. We have

xk 2 [fk�1]([Xk�1]): (6.4)

Consider the CSP
8
>>>>><

>>>>>:

gk(xk) = yk
gk�1 E f

�1
k�1(xk) = yk�1

:::

gk�n�1 E f
�1
k�n�1 E ::: E f

�1
k�1(xk) = yk�n

xk 2 [fk�1]([Xk�1]);yi 2 [yi]; i 2 fk � n; ::; kg:

(6.5)

In this CSP, we assume that the prior domain of membership of the state xk depends

on the domain of xk�1 which is supposed to be computed. In the localization jargon,

this corresponds to the dynamic localization. The purpose is to reduce the size of the

search space and as a consequence reduce the computation time for the same precision

requirements.

6.5 Robots equations

6.5.1 Evolution function

Robot�s evolution can be characterized by the following di¤erential equation

_x =

0

@
_x

_y
_�

1

A =

0

@
v � cos(�)

v � sin(�)
_�

1

A :

Using Euler discretization we obtain

xk+1 = xk + vk cos(�k)dt

yk+1 = yk + vk sin(�k)dt

�k+1 = �k + !kdt;

(6.6)
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where (xk; yk; �k) is the state of the robot, vk is its speed, �k is its orientation and !k is

the rotation speed at time step k.

�k is obtained using magnetic compass and vk is obtained using DVL (Doppler Velocity

Log) data and the rotation speed _�k can be obtained using the inertial unit gyroscope.

6.5.2 Map

We consider the map M as set of points which corresponds to the walls of the Marina.

The map is stored in a binary image as the one see in Figure 6.5.(b). In fact, as seen

in section about image contractors 4.8 set membership methods allow to manipulate non

parameterized sets by representing them in the form of binary images. Basically, the

binary image corresponds to a pixelization of the characteristic function of that set. For

our algorithm, we �rst took a satellite image from Google Maps (Sub-�gure 6.5.(a)). Then

we obtained the binary image by using edge detection and manually �ltering the result

(Sub-�gure 6.5.(b)). Then we computed the  -transform of the binary image (Sub-�gure

6.5.(c)) which is necessary to de�ne both image contractor and image inclusion function

(as seen in section 4.8). Sub-�gure 6.5.(d) shows the subpaving corresponding to the

result using SIVIA Solver [Jaulin and Walter, 1993].

6.5.3 Observation function

We consider the map M as set of points which corresponds to the walls of the Marina.

With the sonar we measure the distance dk to �rst obstacle - here marina walls - along

a vector de�ned by the sensor angle Bk relative to the robot (see Figure 6.6). There is

a geometrical relationship between the position and the measurement which leads to the

following observation function

dk = dist(xk; yk; �k;M): (6.7)

Where dist(xk; yk; �k;M) corresponds to the constraint distance to obstacle. Denote by

Mk = (xk; yk) the position of the robot, H = (xmap; ymap) a slack variable. This variable

represents the points of the map which are supposed to be detected by the sonar. This

constraint dist(xk; yk; �k;M) can be decomposed into a set of simpler constraints.

C1 : kMk �Hk = dk
C2 : arg(H�Mk) = Bk + �k
C3 : H 2M:

(6.8)

where C1 represents the constraint on the measured distance, C2 represents the constrains

on the absolute angle of the sonar beam, C3 represents the constraint H belongs to the

map. Note that C3 is implemented using the image contractor.
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Figure 6.5: The di¤erent steps to compute and use the image contractor

6.6 Results

Figure 6.7 shows a comparison between the reference GPS trajectory (in black - for those

having colored image) and the Dead Reckoning trajectory (in blue) which is obtained by

merging DVL (Doppler Velocity Log) and MRU (Motion Reference Unit) data. We can

observe that Dead Reckoning trajectory su¤ers from an appreciable drift even causing

it to go outside the canal. The trajectory computed using set membership approach is

represented in Figure 6.8. The algorithm returns the trajectory as a set of boxes (in pink)

but we usually take the center of the box as the actual position (in red). The computed

trajectory follows the GPS trajectory.
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Figure 6.6: Sonar data interpretation

6.7 Comparison with Particle Filtering method

6.7.1 Results

In order to compare set membership methods and Particle Filtering (�rst introduced in

[Gordon et al., 1993]), together with Dr. Francesco Maurelli from Heriott Watt univer-

sity in Edinburgh, Scotland, we used our respective methods to deal with the Marina

dataset. Figure 6.9 represents the result of localization using Particle Filtering. In the

Particle Filter formalism, the position is represented by a cloud of weighted particles.

Basically, particles are then �ltered leaving those which are the most consistent with the

measurements (in probabilistic terms). The number of particles is left constant by do-

ing resampling (reproducing the particles with the highest weight). The next step is the

prediction of the next position for each particle (since the robot moves). Those di¤erent

steps (resampling, prediction and update through measurement) are repeated and the

trajectory is reconstructed.

6.7.2 Considerations of the two techniques

Both techniques have been proven reliable and are proven to be valid for AUV localization

in a man-made underwater environment. It is important to stress that both techniques

can work only when the sonar sensor measures are distinctive enough, like marinas and

underwater structures. Both do not work well in open sea, if the environment is featureless.

Although radically di¤erent in the mathematical background, both techniques have com-

126



6.7. Comparison with Particle Filtering method 127

Figure 6.7: Comparing GPS and Dead Reckoning trajectories

Figure 6.8: Comparing GPS and set membership methods trajectories

mon points. Both methods do not make any assumption on the initial position. They

are therefore able to perform global localization and not just position tracking. Both

algorithms are very robust against outliers in the sonar measures. Having an estimation

of the AUV motion is helpful in both methods, but it is not necessary. However, for

environments which are not very distinctive, it is almost an essential information. In the

�eld trial discussed, it is the case of the corridor. In that area the sensor measure would

always return similar values, and an estimation of the motion is therefore necessary.

Both methods can be easily parallelized. The computation of the simulated sensor measure

from each particle represents the most expensive part for the Particle Filter algorithm.

However, each particle is independent and its associated sensor measure can be computed

in parallel. The simulated sensor measures could also be precomputed for all possible
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Figure 6.9: A 2D plot of the environment, with the particles, plotted for all the

timestamps, the DGPS trajectory (blue), the dead reckoning trajectory (red), the un-

certainty ellipse from the dead reckoning, and the trajectory inferred by the particles

(green). 600 particles are spread over an area of 10,368 square meters.
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position, and the information retrieved with an hash table, thus speeding up the process.

Again, the weight calculation for each particle can be computed in parallel. As for the

set membership approach, the search space which is initially represented by a box is

usually divided into smaller boxes which can be processed separately. The process of

characterization of each box i.e. the process of associating the number of consistent

measurements with a position box is in fact independent for every box.

Both algorithms are able to recover from wrong convergence and inconsistent situations.

The particle �lter approach is able to recover dynamically, i.e. without changing state

of the algorithm. Through the resampling step, a portion of random particles is gener-

ated, thus allowing a wide exploration of the environment and the recover from a wrong

convergence. The Set Membership approach can detect inconsistent situations and per-

form again global localization, called from the authors static recovery. The algorithm

state changes to global localization and, when a convergence is reached, changes back to

position tracking.

Particle Filter Techniques can handle non Gaussian and non linear processes. Set Mem-

bership Techniques can also handle non linear processes. Set Membership Techniques are

not a probabilistic methods. Those methods require assumption on the membership of

the variables of the problem. If the assumptions are correct so is the solution. Knowing

the probabilistic distribution of a variable can be useful to make assumptions on its mem-

bership. As an example, consider a variable x following a Gaussian distribution and x0 a

measurement of this variable. It is possible to assume that the real value of x variable is

included in the 99% likelihood interval [x0 � 3�; x0 + 3�]. Note that the 1% case where

that assumption is not true the measurement x0 can be considered as an outlier and is

taken into account by the algorithm.

A clear disadvantage for both methods is represented by the computational requirements.

However they are both feasible for real-time execution and they have been used integrated

in the AUV architecture. The �eld trials in the Marina took about 1 hour to be performed.

The Particle Filter algorithm has been tested postprocessing the data, with 31 minutes

needed on Matlab, on a Core2 2.2 GHz. The Set Membership approach was implemented

using C/C++ and needed 1hour 10minutes to execute on one core of a Centrino duo

T2500 at 2GHz.

6.8 Conclusion

This part presented an application of set membership methods to the localization of an

autonomous robot. The localization problem can be cast into a relaxed CSP. The di¤erent

methods used for the resolution of the relaxed CSP are introduced in chapter 2 has been

used to compute the trajectory of the robot. The image contractor presented in Section
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4.8 has been used to represent the map of the environment.
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Chapter 7

Autonomous underwater robotics at

ENSTA-Bretagne

7.1 Introduction

Since 2007, the engineering school I work in ENSTA-Bretagne (ex-ENSIETA) (Ecole Na-

tionale Supérieure de Techniques Avancées) participates to SAUC-E (Student Autonom-

ous Underwater Challenge - Europe). The team is composed of a professor, PhD students,

1st and 2nd year students and trainees. Some of us were there as students and are now

continuing to work on underwater robots as PhD students. This is indeed important to

keep the technology from one year to another. We have thus built two low-cost robots

SARDINE and SAUC�ISSE (see Figure 7.1) that will be presented in this paper. The

�rst robot, named SAUC�ISSE, is presented on the left of Figure 7.1. The second robot

(almost a clone of SAUCISSE), named SARDINE, has also been built in order to study

the feasibility of underwater robot collaboration. Our main achievement is that we did

not change the overall design of our robot for three years which proves its robustness.

This might be due to our approach in building robots. In our robotics club we try in fact

to follow three principles. The �rst is the KISS (Keep It Simple Stupid) principle since

only simple things survive. The second is to always try to participate in a competition

since it boosts the group motivation. The last principle is to use Commercial O¤-The-

Shelf components as much as possible since it enhances the quality and reproducibility

of the hardware. Our motivation is �rst being able to contribute in the development of

new technologies for underwater robots. The second is to be able to meet other people

doing the same and thus exchanging ideas and advancing even further. One of the main

problems encountered is to design or �nd solutions for software architecture suitable for

robots.

In this paper, we will �rst detail the physical architecture (mechanical and electronic) of
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our robots. Then, we will explain how we will make each robot autonomous by de�n-

ing missions and introducing some of our algorithms. Next we will talk about software

architecture. Finally, we will conclude with a small paragraph on swarm robotics.

Figure 7.1: Sauc�isse (on the left) and Sardine (on the right)

7.2 SAUCE Competition

7.2.1 Introduction

In 2010 and 2011, the competition is held in the NURC (NATO Underwater Research

Center) in La Spezia in Italy. Unlike before, the robots will have to evolve in a port in

sea water which complicates the detection of underwater targets.

7.2.2 Tasks to perform during the mission

The AUV must perform a series of tasks autonomously, with no control, guidance, or

communication from a person,or from any o¤-board computer including the GPS system.

Each AUV will be tracked via acoustic positioning system in the form of a beacon placed

on each of the vehicles.

Task 1 : Validation gate

Move from launch/release point and submerge. The team can choose to initiate an

autonomous mission from either Start 1 or Start 2 point. If Start 1 is chosen and the

next task is completed the team would be awarded 100 extra points. Pass through the
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validation gate4 � without contacting any part of the �structure�. The gate will be con-

structed of 2 orange buoys on a rope, 4 m apart (lights5 will be added to the ropes to aid

the competitors). Failure to successfully negotiate the validation gate will result in the

run being terminated.

Task 2 : Perform the �underwater structure� inspection

Figure 7.2: The pipeline to be inspected

The structure will be constructed of 0.5 m diameter by 1.5 m cylinders to form a pipeline

and are shown in Figure 7.2. The structure will be consisting of cylinders but they will

not form a straight pipeline but other irregular structure. The structure will be placed on

the bottom but will be moved during the competition. The task is follow the stationary

structure while maintaining a 0.5 m stand-o¤ distance from it.

Task 3 : Free a mid-water target

A mid-water target will be tethered to the ground by a light rope - a �shing line with 1

mm diameter, 5 kg tension. The vehicles are required to �nd the

target, go around it � perform obstacle avoidance manoeuvre, return to the initial ap-

proach heading (at that point 50 % of Task 3 will be completed) and then part (cut/melt/etc.)

the rope tether between the mid-water target and another orange buoy (located about 1

m from the �oor). At that point second 50% of Task 3 will be completed. The target will

133



134 Chapter 7. Autonomous underwater robotics at ENSTA-Bretagne

Figure 7.3: Mid-water target to be freed

be a soft re�ective object (both acoustically and optically). The buoy is spherical and

colored as shown in Figure 7.3.

Task 4 : Make a wall survey

The wall will be ~10 m from the mid-water target. The objective is to maintain a position

> 2m from the wall for the duration of the survey. The wall will not be straight.

Task 5 : Mobile object tracking

Perform tracking (below) of the moving NURC�s ASV which will move (slowly) in the

competition area. An acoustic pinger will be placed at the center point of ASV about 1.5

m below it. The teams might choose to follow the ASV by either 1) detecting the pinger

signal or 2) looking up with an on-board sensor. Completing the task by both methods

will result in bonus of 200 points.

Task 6 : Surface in the surfacing zone

Surface in the surfacing zone � the surfacing zone location will be sent from the NURC�s

ASV via an acoustic signal (20 � 24 kHz). A compact modem will be given to each of

teams. The teams will be required to accommodate the modem, provide power to it and
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write software to be able to receive modem commands per Interface Control Document

(ICD) written by NURC (will be available on the competition web). The surfacing zone

must

be attempted last.

Required task

Each team will produce a log �le of the mission within around 10 minutes of the end of the

run. The format of the log �le will be a comma separated ASCII �le of the format: Time,

position, action, a comment between simple quotes. (SSSSS,XXX.x,YYY.y,ZZZ.z,AA.aa).

Logged data will be plotted by plotting routine written by the organizing committee. This

will be used to score the log �le. For ASV tracking task the additional �le of range and

bearing data from the AUV to the pinger will need to be provided.

7.3 Physical description

7.3.1 External architecture

Figure 7.4: Sauc�isse mechanical design

The main body of SAUC�ISSE (Figure 7.4) is made with an aluminum tube. The alu-

minum has been chosen due to its amagnetism (important since a magnetic compass is
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used) and its resistance to corrosion. The robot is 70 cm long to ease its transportation

and reduce its weight. The corresponding space is su¢cient to enclose all the needed

devices. The diameter of the tube has been chosen to 17 cm to be able to put an embed-

ded computer (such as an EEE-PC or a PC/104). The propulsion is produced by three

thrusters STB150 from SEABOTIX, an American manufacturer specialized in ROVs (Re-

mote Operated Vehicles). Each propeller produces approximately a force of +�7 N (or
+
�0.7

Kg). The two lateral thrusters control the speed and the direction of the robot. The roll

and pitch are not controlled by thrusters since the robot is stable thanks to a weighted

keel. This stability is a consequence of the fact that the volume center is above the gravity

center. The keel also supports the sonar and the vertical thruster (Figure 1). The vertical

thruster is used to adjust the depth of the robot. To save money, we made the choice

of a single vertical propeller (which is unusual), and thus we had to �x it just below the

tube. Unfortunately, when the robot sinks, the water �ux is directed toward the tube

which brakes down its performances: the corresponding force is now +
�3N (instead of

+
�7N).

However, the buoyancy of the AUV is inside the interval [0; 2] N, and thus, the vertical

propeller is e¢cient enough to make the AUV sinking or �oating. Additionally, we have

a system to adjust the overall ballast of the submarine: breakthrough mass lead can be

added on 4 threaded rods placed in the four corners of the submarine so we can reach the

limit zone of buoyancy. As a result we just need a propelling force very weak to make

the submarine go under the surface, and when the vertical engine is shut down, it goes

itself to the surface. The water tightness of each tube is made by two aluminum covers

(see Figure 2). Waterproof connectors (Switchcraft and Bulgin Buccaneer) are placed on

the covers for connections with sensors and actuators of the robot. The water tightness

is provided by three stainless fastener screws. The �xation of the screws is done with a

pawn center. The extraction of the covers is done with three extraction screws. The front

cover of the SARDINE has a window to enable the use of a webcam directly in the tube.

All the waterproof connectors are on the back cover which should only be opened rarely,

as changing the batteries and switch on the EeePC/PC 104 can be done via the front

cover only.

7.3.2 Internal architecture

Rails (Figure 7.5) with glue for aluminum enable us to drag a 6mm thick Plexiglas plaque

which is the main support base for the internal electronic devices of SAUC�ISSE. Below

the plaque, another sliding support contains the batteries (Ni-MH). We can therefore

readily access the batteries without having to touch any of the other electronic devices.

These are put above the main Plexiglas plaque.
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Figure 7.5: Sauc�isse internal architecture

7.4 Electronics

7.4.1 Thruster control

Servo controllers Robbe Rokraft send powered PWM (Pulse Width Modulation) signals to

the thrusters. These PWM correspond to a power ampli�cation of other powerless PWM

signals generated by an interface module (Labjack UE9) placed between the computer

and the servo controllers. The Labjack UE9 is a professional USB device that provides

several IO pins to connect to electronic devices.

7.4.2 Computer

The embedded computer of SAUC�ISSE is a PC/104 from EUROTECH with a Pentium

M 1.4 GHz CPU and 512 MB of RAM. The operating system and the programs are

stored on a hard drive 2.5 of 320 GB. Moreover, 8 USB, 1 Ethernet, 2 RS232 and 1

VGA ports provide all we need to connect external devices and to communicate with the

computer. The PC is powered directly from 12 or 24 V batteries thanks to a power supply

module compliant with the PC/104 standard that provides regulated 3.3, 5 and +
�12. The

embedded computer of SARDINE is an ASUS EeePC T91MT. It is cheaper than the

PC/104, thin and has an integrated battery allowing autonomy of up to 5 hours, (up to

3 hours with all the sensors connected) with almost the same technical characteristics

(CPU, RAM. . .). It just needs a USB hub to connect to all needed devices.
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Figure 7.6: Electronics architecture

7.4.3 Sensors

vision

To detect the objects (targets, pipeline ...) SARDINE has standard webcams Logitech

Quickcam Pro 9000, put directly in the tube behind the front window. It gets pictures

up to a very high resolution (1600x1200). Moreover, the common defaults in webcam

pictures such as distortions and light or color problems are automatically handled by its

integrated �lter. Their integrated microphone could eventually be used to communicate

with the robot with audible sounds. For SAUC�ISSE, we bought analog waterproof cam-

eras ALLWAN AL-2121 that are connected to the embedded computer via audio-video to

USB converters from Grabbino.

Depth

To get the depth of the submarines, we use a professional pressure sensor Keller PAA33X

connected to the computer with a RS485 to USB converter. The sensor is �xed perman-

ently on the back cover.
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Inertial Measurement Unit

An IMU (Inertial Measurement Unit) Xsens MTi is used to get the orientation of the robot.

It has a Kalman �lter that uses magnetic data and gyroscopes to get an estimation of

the orientation even in case of magnetic disturbances. It is connected to the embedded

computer via a RS232 to USB converter. An MTi-G (the same, but with a GPS) is used

in SARDINE.

Sonar

The sonar, MiniKing imaging sonar from Tritech, is used to get the position of the robot in

the pool. . It is also connected to the embedded computer via a RS232 to USB converter.

Figure 5 in the part about localization algorithms shows an example of sonar data.

Power supply

The power supply of SAUC�ISSE is divided into two parts. The power cards feeding the

propellers are powered by a 12 V battery. The PC/104, the wireless access point (via the

5 V provided by the power supply PC/104 module) and the sonar are powered by a 24

V battery. All the other devices (pressure sensor, IMU, Labjack, webcams.) are powered

via the USB ports of the computer. SARDINE has only one 12 V battery to power its

thrusters, all the other devices are powered by the integrated battery of the EeePC, via

the 5 V of its USB ports.

7.5 Communication

The ability to communicate with the robot when it is underwater is important since it

allows having a feedback and eventually taking over the AUV in case of a problem. The

problem is that electromagnetic waves don�t pass through water. Despite acoustic waves

being able to do so, acoustic communication is expensive and have low data transfer rate

(several KB/s) which is not suitable for video transfer. During the tests of the AUV

and data acquisition, many competitors choose to put an umbilical wire on their vehicle

like in ROVs. Doing so requires a long cable which may hinder AUV movements and

also requires a person to do cable management. In our case, since the depth of sinking

is low, we build a buoy which is connected to the robot through an Ethernet cable and

spreads the WIFI signal on the surface as seen in Figure 7.7.a. During the competition

(see Figure 7.7.b), we use a shorter antennae which allows teleoperation when the robot is

on the surface since it is forbidden to communicate with the robot when it is underwater.

139



140 Chapter 7. Autonomous underwater robotics at ENSTA-Bretagne

A wireless access point DWL G700AP in combination with an external antenna of 1

m enables the robot to communicate with human operators when it is near the water

surface. If the robot needs to be controlled at higher depths, the antenna is put on a

buoy connected to the submarine with a wire of up to 5 m (using SMB Bulgin Buccaneer

waterproof connectors with a RG174 cable).

Figure 7.7: Communication with the robot

7.6 Autonomy and mission planning

We have several methods to do the competition tasks: some are interesting because they

are simple to �nd or implement, some are a good compromise between simplicity, reliabil-

ity and accuracy, some are useful in case a sensor is not available for any reason (hardware

failure, perturbations...), other are challenging and could have an academic interest. Some

of the methods allow controlling the movement of the robot; others allow enhancing the

perception of the robot as computer vision algorithms or localization algorithms.

7.6.1 Basic movements and regulations

From the point of view of the control part of the submarine, we can consider all the

competition tasks as a succession and combination between a depth, orientation and

distance regulations.
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Depth regulation

Due to the very slow dynamics of the robot, the depth regulation algorithm is very simple:

it is a three state controller. If the submarine is below the desired depth, the vertical

thruster is turned on at its maximal speed. If the submarine is near the desired depth, it

is o¤. If the submarine is above, the thruster is turned on in the other direction. Depth

regulation requires a depth sensor which is actually our pressure sensor.

Orientation regulation

Using two lateral thrusters we are able to perform orientation regulation by doing a control

loop using heading measurements from the MTi. Even if sophisticated controllers can be

applied to control such a nonlinear system [Fantoni and Lozano, ], we have chosen to

implement a simple PID (Proportional-Integral-Derivative) control law.

Distance and speed regulation

We use experimental methods to determine the dynamics of the robot (speed at di¤erent

values of thrust, time to reach the maximum speed, time to stop after shutting down the

thrusters . . . ). By mastering the dynamics of our robot we are able to be quite precise

even controlling the robot in an open loop.

Another simpler method is to record reference line trajectories (1m, 2m, 3m. . . .) and

replay them to compose the desired trajectory. This method also proves to be very

accurate if the water has no current.

7.6.2 Higher level algorithms

Localization algorithms

We use the same localization algorithm that was validated using data from Girona Uni-

versity. The robot is now capable to localize itself in real-time and follow a trajectory

de�ned by waypoints. Figure 7.8 shows a trajectory of the SAUC�ISSE robot computed

in real-time during pipeline inspection during the training session. We were the �rst team

to discover the curved shape of the pipeline.
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Figure 7.8: Localization of the SAUC�ISSE robot during he SAUC�E competition

Computer vision

As for computer vision, we are able to use many di¤erent methods. One of them is color

detection in marine environments. In sea water, red color is more absorbed than blue color

that is why if we put an orange buoy in water, its color will become bluer the farther

we go. However, despite this color modi�cation we can tell if the object was originally

orange by using a formula which states that there are classes of equivalent colors (see

[Bazeille, 2008]). Figure 6 illustrates the functioning of this formula.

We can also perform

F Simple shape detection (lines, circles, rectangles, assembly of those elements...) us-

ing Hough Transform (see [Russ, 2002] [Bovik, 2000]) or its interval equivalent [Jaulin and Bazeille, 2009]

useful for pipeline and ball detection.

F Optical �ow algorithm [Shi and Tomasi, 1994] which consist in detecting the same

points of interest in two consecutive images allowing for example to compute the speed

of the robot using a downward looking camera (sea �oor have to be visible).
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Figure 7.9: Detecting objects by its color taking color absorbtion into consideration

7.7 Autonomy through script

Higher level actions such as going to a point speci�ed by coordinates, following a tra-

jectory, searching for the submarine buoy, hitting the submarine buoy, wall following. . .

can be performed by applying the algorithms using sensor data and then executing basic

movements according to the result of those algorithms. Those actions are implemented in

the intelligent program of the robot (using C/C++). The global mission that the robot

has to execute during the competition will be a succession of such actions. The global

mission is not speci�ed in the program but it is the user who writes those speci�cations in

form of a script. This enables to change the mission quickly without having to recompile

the program. Figure 7.10 illustrates an example of such script.

7.8 Software architecture

Having good software architecture is critical if one want a functioning robot. In fact, such

architecture allows to have a source code which is

F Clear and understandable: Each year the SAUC�E competition members change.

That is why the faster new members can master the code the more time they will have

to improve it.

F Modular: Having a modular code allow splitting the job of coding on many people.

1 Man � 1 Module.

F Easy to modify and evolve

F Practical to use: user friendly Human-Machine Interface, Log �les. . . .

Figure 7.11 shows an overview of our software architecture.
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Figure 7.10: Mission execution script

7.9 Robot swarm

Since 2010 we started the project of using several collaborating robots to accomplish tasks

autonomously. The idea is to build many robots which are not necessary hardware clones

but rather complementary. As an example we could have a robot using only sonar and

another one using only cameras. Why collaborating? Imagine you have to park your car

in a very narrow space. The job would be a lot easier if you had the help of a friend who

would be your �eye�. In 2010 edition of SAUC�E we built the new robot SARDINE which

is a camera robot which �rst purpose was to �lm our �rst submarine SAUC�ISSE. The

use of a swarm of complementary robots has another major advantage. In case of failure

of one of the robots, we can still continue the mission using the remaining robots while

we would be in pinch if we had only one highly advanced robot that doesn�t work. This

situation actually happened to us during the competition quali�cations where SAUC�ISSE

failed due to power supply problems. If we didn�t have the other robot, we wouldn�t have

quali�ed.

7.10 Conclusion

In this chapter we showed an example of autonomous underwater robot design. The

�nal design is the fruit of many years of experience but also thanks to the existence of
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Figure 7.11: Sauc�isse software architecture

competitions such as SAUC�E without which our robots might never have existed.
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Chapter 8

Other robotics activities at

ENSTA-Bretagne

During this PhD thesis I was involved in many robotic activities. First, I was part of

the robotics club which purpose is to popularize robotics within the student body. In the

club, we make several presentations, propose projects, make introductionary courses in

control, image processing. We develop underwater, sailing, mobile and �ying robots. The

mobile robots (see Figure 8.1 on the left) are developed in the context of the CAROTTE

(CArtographie par ROboT d�un TErritoire) Challenge (as open candidate). The purpose

is to make a swarm of robots which purpose is to explore an unknown indoor environment

(see Figure 8.1 on the right) and return its map and the location of speci�c objects of

interest. The robot might be hindered by obstacles (visible/transparent), smokescreens

and traps. In the future, we ought to participate in the EuroBot competition.

Underwater robotics aside, one of the robotic �eld we were more implicated in was the

autonomous sailing robotics. The objective of the project is to build autonomous sailing

Figure 8.1: Mobile robots for CAROTTE Challenge.
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Figure 8.2: The autonomous sailboat "Breizh Spirit" and the �rst challenge : crossing

Brest harbour.

robots which purpose is long last navigation on the ocean. The main motivation for

developing such robots was to participate in the MicroTransat challenge which purpose

is to cross the Atlantic ocean in complete autonomy. The robot must send its position

(through satellite communication) every 24 hours so that the judges can validate the

crossing. The robot must be small and light and safe (visible the day and the night by

both vision and radar).

I participated to the realization of the �rst prototype "Breizh Spirit" represented on the

left of Figure 8.2 with which we crossed the Brest Harbour. The GPS trace is represented

on the right of Figure 8.2. Three conference publications were published during the project

[Sliwka et al., 2009][Sliwka et al., 2011b][Xiao et al., 2011].

Being implicated in the robotics club was a valuable experience in all di¤erent aspects be

it technical (mechanics, electronics, computer science), logistic ( organizing robot tests,

buying the di¤erent components, organizing club activities), human (interacting with

students, teachers and administrative body, management, politics) and so on.
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Conclusion

This PhD thesis introduced several methods to deal with relaxed constraint satisfaction

problems i.e. CSP where not all the constraints have to necessarily be satis�ed. Several

contributions to contractor theory were also presented. One of them is the image con-

tractor which enables to represent hardly parametrable sets (such as maps or shore lines).

The image contractor allows to include constraints such as "a point belong to the map"

in a CSP/relaxed CSP formalism. The image contractor uses a special transform of the

binary image called the  -transform which is computed once and stored on the computer

in the form of a grayscale image. The main drawback of using an image contractor is

the storage space used for the  -transform which exponentially grows with the dimension

of the contractor. Compressing the  -transform would be one of the prospects of the

research.

The methods described above has been used in the context of underwater robot localiz-

ation. The localization problem when there are outliers can be cast into a relaxed CSP

where the position of the robot is the unknown. Relaxed CSP solvers de�ned in the ma-

nuscript are used to compute the position of the robot. On the other hand, the map of

the environment is represented using a binary image from which the image contractor is

build. In a nutshell, using the newly developed tools, we propose an approach enabling

robust to outliers robot localization in any unstructured environment.

The solution of a relaxed CSP can be represented in two forms. The �rst form of the

solution of a relaxed CSP is a polynomial with set valued coe¢cients otherly known as

set polynomials. This form takes bene�t from polynomial arithmetics to describe the re-

laxation process i.e. how to obtain the solution set polynomial from the set of constraints

in the relaxed CSP. This representation of the solution allows to make distributed com-

putations. The result of distributed relaxed CSP computations which are in the form of

set polynomials is the product of those set polynomials.

The second form of the solution of a relaxed CSP is a function called accumulator which
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returns the number of constraints satis�ed by an element of the search space of the relaxed

CSP. This representation of the solution also allows to make distributed computations.

The result of distributed relaxed CSP computations which are in the form of accumulators

is the sum of those accumulators.

The accumulators and set polynomials based solvers are also explained in this manuscript.

There is still a lot of room to optimize and develop those solvers. As an example, the solver

based on set polynomials is only developed when the real solution can be approximated by

a single box polynomial (it is the case of punctual solutions). In the case of more complex

sets, algorithms inspired from the branch and prune algorithm which uses box polynomials

instead of simple boxes could be de�ned. In the case of solvers based on accumulators,

the search space is discretized in the form of a grid of boxes and accumulator�s inclusion

function is evaluated for each box of the grid. The result is stored on the computer.

The drawback of this method is the memory usage to store the discretized accumulator

function especially when the dimension is high. A possible idea to overcome this problem

would be to use weighted regular subpaving instead of a grid of boxes to discretize the

search space.

Finally, the methods presented here were used to solve several localization problems but

could be used to solve more challenging problems such as SLAM problems which have

high dimension. Three years might appear long for a PhD thesis but as one can say eating

whets the appetite. That said, the more you explore the more leads you �nd, and the

more leads you �nd the more you need to explore. But everything has to come to an end.

THE END
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Chapitre 1

R sum en langue fran aise de la

th se

1.1 Localisation de robots sous-marins

Pour qu�un robot autonome puisse interagir proprement avec son milieu, ce dernier doit

connaitre d�une part l�environnement dans lequel il évolue et d�autre part son état dans

cet environnement. En particulier, un robot doit savoir où il est pour savoir où il doit aller.

Utilisant plusieurs capteurs et connaissant la carte de l�environnement, le robot calcule sa

position et son orientation avec des algorithmes de localisation plus ou moins complexes.

Depuis l�apparition du GPS, le probl me de la localisation a été pratiquement résolu pour

les robots terrestres. Le GPS ne fonctionne pas sous l�eau car les ondes électromagnétiques

haute fréquence ne s�y propagent pas bien. Toutefois, le nombre d�opérations sous-marines

augmenter de mani re signi�cative chaque année. Cela est dû au développement des do-

maines tels que l�exploitation des ressources (par exemple l�inspection des structures o¤-

shore en eau profonde ), l�océanographie, la biologie, l�exploration des épaves, la sécurité

(la surveillance des ports) et le domaine militaire (le déminage, la pose de mines). Compte

tenu de la dangerosité de ces opérations, il y a un besoin croissant de robots sous-marins.

Pour e¤ectuer ces missions, on a souvent recours des véhicules téléopérés aussi appelés

ROVs (Remotely Operated Vehicles). Les ROVs sont connectés la station de contr le

par le biais d�un c ble ombilical utilisé pour la transmission d�énergie et la communica-

tion. Ils nécessitent donc une infrastructure importante (surtout pour les mod les haute

profondeur).

L�alternative est d�utiliser des véhicules sous-marins autonomes aussi appelés AUV (Au-

tonomous Underwater Vehicle) (Voir [Veres et al., 2008] pour des designs d�AUV). Les

AUVs n�ont besoin d�aucun c ble ombilical. Cependant, cela rends la communication

avec le centre de contr le est limité et notamment il est impossible de transmettre de
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l�image. La téléopération d�un AUV devenant di¢cile, ce dernier doit tre intelligent et

s�appuyer sur des algorithmes avancés tels que la localisation, le SLAM (localisation et

cartographie simultanées), traitement d�image et la plani�cation de trajectoire. L�AUV

(d�habitude trés cher) doit également tre en mesure de rentrer la base de fa on autonome

apr s la mission [Baccou and Jouvencel, 2002]. De nombreuses approches ont été propo-

sées pour résoudre ces probl mes. Il y a les méthodes probabilistes [Thrun et al., 2005]

[Clérentin et al., 2008]. Dans ce manuscrit, les méthodes probabilistes ne sont pas pré-

sentées. En e¤et, ce manuscrit se focalise sur les améliorations apportées aux méthodes

ensemblistes et en particulier sur les méthodes utilisant le calcul par intervalles.

Le probl me de la localisation du robot en utilisant les méthodes ensemblistes ont été abor-

dés par de nombreux auteurs [Meizel et al., 1996] [Halbwachs and Meizel, 1996] [Gning, 2006]

[Kie¤er, 1999] dans le cas où le probl me est linéaire ou non et aussi [Caiti et al., 2002]

lorsque le robot est sous l�eau. Le calcul par intervalle se montre bien utile pour ré-

soudre des probl mes fortement non-linéaires ( voir, par exemple, [Meizel et al., 2002],

où la premi re localisation d�un robot réel a été résolu avec des méthodes d�intervalle).

Le principe est que les données sur l�environnement (issus des capteurs) ainsi que l�état

du robot (position, orientation) sont représentés par des domaines d�appartenance. Les

contraintes (équations) entre ces di¤érentes variables permettent de réduire la taille du do-

maine d�appartenance l�état du robot ainsi augmentant la précision de la localisation. Un

autre point fort des méthodes ensemblistes c�est la prise en compte des données aberrantes

[Jaulin and Walter, 2002] [Jaulin et al., 1996]. titre d�exemple, cette propriété a été uti-

lisée pour améliorer la localisation en ville l�aide d�un capteur GPS dont les données

sont généralement corrompus par les trajets multiples [Drevelle and Bonnifait, 2009]. Ces

méthodes ont également été utilisés pour la localisation robustes par rapport aux données

aberrantes de robots sous-marins [Jaulin, 2009].

Dans cette th se, nous nous sommes focalisé sur le traitement des données aberrantes

lorsque leur nombre est inconnu et peut varier avec le temps. Nous présentons égale-

ment d�autres contributions aux méthodes ensemblistes et particuli rement la théorie des

contracteurs. L�utilité de la plupart de ces contributions est montré travers de di¤érents

exemples de probl mes de localisation.

1.2 L approche utilis e pour r soudre le probl me de

localisation

Tout probl me de localisation implique quatre concepts étant l�environnement, la carte de

l�environnement, la pose (position et orientation) et les mesures de l�environnement. Pour

chaque mesure de l�environnement est associée une équation (ou un ensemble d�équations)

reliant la carte, la pose et la mesure. Ainsi, le probl me de la localisation peut tre formulé

8
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comme un probl me de satisfaction de contraintes ou CSP. Un CSP peut tre vu comme un

ensemble d�équations (ou contraintes) impliquant des variables déterminer (dans le cas

de la localisation, la position du robot est une telle variable). Chacune de ces variables est

connue pour appartenir un ensemble connu appelé domaine ou l�espace de recherche.

Dans notre cas, chaque contrainte peut tre considérée comme une représentation de

l�information sur la position du robot. Cette information est une compilation des mesures

que l�on fait de l�environnement et la connaissance que l�on a de cet environnement (La

carte). Plus il y a de contraintes, plus il y a d�informations sur la pose du robot et

meilleur est son estimation. La solution d�un CSP est l�ensemble des points (poses) qui

satisfont toutes les contraintes. Ceci implique que toutes les mesures sont consistantes (non

aberrantes). Une mesure de l�environnement réel est consistante si celle ci correspond

la mesure théorique d�un capteur mod le dans l�environnement (mod le) représenté par

la carte.

Le capteur principal utilisé pour la localisation de notre sous-marin est un sonar secto-

riel. Ce capteur donne souvent des mesures aberrantes. Une telle mesure peut tre dû

une défaillance électrique du capteur ou d�un phénom ne non pris en compte lors de la

modélisation de l�environnement (objets non prévus qui sont détectées par le sonar, des

phénom nes physiques tels que des échos multiples ...).

Un probl me de localisation avec données aberrantes peut tre mis sous la forme de ce

que nous appelons un CSP relaxé c�est dire un CSP où pas toutes les contraintes doivent

tre satisfaites. Le nombre de données aberrantes dans un jeu de mesures utilisés pour la

localisation est a priori inconnu et peut varier avec le temps. Une meilleure caractérisa-

tion de la solution d�un CSP relaxé permet une meilleur prise en compte de ces valeurs

aberrantes. La caractérisation et le calcul de la solution d�un CSP relaxé est l�une des

contributions majeures cette th se.

Un des obstacles surmonter pour résoudre les probl mes de localisation est la représen-

tation de la carte. En cas d�environnements structurés, il est possible de représenter la

carte par un ensemble d�objets paramétrés tels que des segments, polygones, courbes. En

cas d�environnements non structurées où en partie structurées tels que des cartes marines

ou des cartes routi res, l�idée est de représenter la carte (qui est en fait un ensemble de

points) sous la forme d�une image binaire où les pixels d�intér t (noir par exemple) repré-

sentent l�ensemble des points de la carte. Un des contributions majeurs de la th se était

d�incorporer une telle représentation de la carte dans le formalisme d�un CSP ou d�un

CSP relaxé.

Dans ce manuscrit, nous proposons donc une approche permettant la localisation du

robot robuste par rapport aux données aberrantes et dans le cas ou la carte peut tre non

structurée.

9
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1.3 Contributions

Cette section résume les contributions de la th se.

1.3.1 Repr sentation d une solution d un CSP relax

Durant la th se, nous avons travaillé sur la fa on de caractériser la solution d�un probl me

de satisfaction de contraintes relaxé savoir un CSP où certaines des contraintes peuvent

tre laissées insatisfaites (Voir la sous-section 1.3.1 pour la dé�nition).

Intervalles et boites

Intervalle : Un intervalle réel est un sous-ensemble connexe et fermé de R. Si x est un

réel, on notera par [x] l�intervalle qui contient cette variable. [x] est appelé domaine de

x. Un intervalle [x] a des bornes inférieure et supérieures notées respectivement par x�

et x+. IR est l�ensemble de tous les intervalles réels. IN est l�ensemble des intervalles de

nombres entiers. w([x]) = x+ � x� est appelé longueur de [x].

Exemple 1 ;; f�1g; [�1; 1]; [�1;1];R sont des intervalles de R.

Intervalle vectoriel ou boite : une boite de Rn est un produit cartésien d�intervalles.

Une boite peut tre aussi considérée comme un vecteur d�intervalles ou aussi d�un intervalle

de vecteurs. Si x = (x1; ::; xn) 2 R
n est un vecteur de réels on note par [x] = ([x1]; ::; [xn])

la boite qui contient cette variable.

Exemple 2 [1; 3]� [2; 4] est une boite de R2:

Il existe une arithmétique similaire l�arithmétique des réels mais s�appliquant aux inter-

valles appelée arithmétique intervalle. Grace cette arithmétique, il est possible d�e¤ectuer

des opérations binaires (sommes, produits,...) sur des intervalles ainsi que calculer l�image

par une fonction d�un ou plusieurs intervalles.

L�arithmétique par intervalle est bien adapté des calculs sur ordinateur. En e¤et, celle

ci a été développée dans les années 50 pour faire des calculs en prenant en compte les

incertitudes sur les variables utilisés. Pour cette th se, l�arithmétique par intervalle est

utilisée pour implémenter des algorithmes de résolution de CSP relaxés.

Il est possible d�étendre la notion d�intervalles des ensembles plus complexes comme

les intervalle de fonctions [Le Bars et al., 2011] ou les intervalles d�ensembles ou de sous-

pavages [Jaulin, 2011].
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Figure 1.1 � Exemple d�une boite

Figure 1.2 � Autres types d�intervalles

11



12 Chapitre 1. R sum en langue fran aise de la th se

CSPs et CSPs relax s

Un probl me de satisfaction de contraintes (ou CSP) est dé�ni par un ensemble de

contraintes C1; ::; Cn, un vecteur de variables x = (x1; ::; xm) et un domaine (ou espace

de recherche) D = D1 � :: � Dm de toutes les valeurs possibles de x. A l�origine, les

CSPs ont été étudiés pour les domaines discrets [Clowes, 1971] [Waltz, 1975]. Plus tard,

l�étude des CSPs a été étendue pour les domaines continus [Cleary, 1987] [Davis, 1987]

[Hyvönen, 1992] [Sam-Haroud, 1995]. Pendant cette th se, nous avons considéré que les

CSPs continus ou D est une boite de Rm. Pour cela nous changeons la notations de D en

[x] = ([x1]; ::; [xn]).

Les contraintes sont des equations linéaires ou non linéaires

gi : R
m ! R; hi : R

m ! R

Ci : gi(x) � 0; i = 1; ::; k

Ci : hi(x) = 0; i = k + 1; ::; n:

x 2 [x];

(1.1)

Une notation plus générales peut tre utilisée pour représenter un tel CSP

fi : R
m ! R

pi

Ci : fi(x) 2 [yi];

x 2 [x]; [yi] 2 IR
pi ; i 2 f1; ::; ng:

(1.2)

ou [yi] sont des intervalles réels connus.

Le CSP peut tre noté sous un forme encore plus compacte

f :Rm ! R
n

f(x) 2 [y];x 2 [x]; [y] 2 IRn:
(1.3)

ou [y] est une boite connue de Rn.

Toutes ces notations sont équivalentes et sont utilisées dans le manuscrit.selon la situa-

tion. Chercher la solution d�un CSP est de chercher l�ensemble d�éléments x 2 [x] qui

satisfont toutes les contraintes. Parfois, un tel élément n�existe pas. Un CSP ou toutes les

contraintes ne sont pas nécessairement satisfaites est appelé un probl me de satisfaction

de contraintes relax ou CSP relax .

Relaxer un nombre �xe de contraintes

Une premi re méthode de résolution d�un CSP relaxé a été introduite dans [Jaulin, 2009] et

consiste chercher l�ensemble Sq d�éléments qui satisfont toutes les contraintes fC1; ::; Cng

12



1.3. Contributions 13

sauf (en relaxant) q 2 f1; ::; ng d�entre elles. Cela signi�e que jusqu� q contraintes peuvent

ne pas tre satisfaites. Cela signi�e également que Sq est aussi l�ensemble des points qui

satisfont au moins n � q contraintes. Notez qu�il ya une équivalence entre les formula-

tions "relaxer q contraintes" et "satisfaire n � q contraintes . La premi re formulation

est généralement utilisée lorsque le nombre de contraintes relaxer (ou des contraintes

inconsistentes) est faible. Tel est le cas du CSP relaxé correspondant au probl me de loca-

lisation. Dans ce cas, les contraintes inconsistentes sont causées par des valeurs aberrantes

dans les mesures du capteur qui ont un ratio inférieur 30%. L�ensemble Sq est exprimé

par la formule suivante

Sq = fx 2 [x];9K � f1; ::; ng; card(K) =n� q;8i 2 K; fi(x) 2 [yi]; [yi] 2 IR
pig: (1.4)

On note Xi l�ensemble des éléments qui satisfont la contrainte Ci

Xi = fx 2 R
m; fi(x) 2 [yi]g; [yi] 2 IR

pi ; i 2 f1; ::; ng: (1.5)

Les ensembles Xi jouent un r le important dans la caractérisation des di¤érentes solutions

du CSP relaxé. Par exemple, l�ensemble des points satisfaisant toutes les contraintes (la

solution du CSP) est l�ensemble des points qui appartiennent tous les ensembles Xi et

donc l�intersection des ensembles Xi. De la m me mani re, l�ensemble Sq est dé�ni comme

étant une intersection spéciale appelée intersection relaxée des ensembles Xi. L�intersec-

tion relaxée des ensembles Xi; i 2 f1; ::; ng notée

fqg\

i2f1;::;ng

Xi est l�ensemble des points qui

appartiennent tous les ensembles sauf q d�entre eux. Ainsi

Sq =

fqg\

i2f1;::;ng

Xi = fx 2 R
m;9K � f1; ::; ng; card(K) =n� q;8i 2 K;x 2 Xig: (1.6)

Exemple 3 La Figure 1.3 illustre la q-intersection de 5 ensembles X1; ::;X5. on a

f0g\

i2f0;::;5g

Xi =
T

i2f1;::;5g

Xi = ;

f2g\

i2f0;::;5g

Xi = X3 \ X4 \ X5 (la partie hachur e dans Fig. 1.3)

f5g\

i2f0;::;5g

Xi =
S

i2f1;::;5g

Xi:

(1.7)

Dans le cas de la localisation d�un robot, le nombre réel des contraintes inconsistantes

qreal, du a des données aberrantes , est généralement inconnu et peut varier avec le temps.

13



14 Chapitre 1. R sum en langue fran aise de la th se

Figure 1.3 � Illustration de l�intersection q-relaxée de 5 ensembles. L�ensemble hachuré

correspond l�intersection 2-relaxée

Il est parfois possible de supposer un nombre maximum de contraintes inconsistantes qmax.

Nous considérons Sqmax la solution du probl me en supposant que le nombre de contraintes

non satisfaites ne dépasse pas qmax . L�ensemble Sqmax est une solution garantie savoir

la position réelle du robot se trouve certainement dans Sqmax tant que le nombre réel

des valeurs aberrantes qreal est inférieur qmax. Notez que, puisque qreal < qmax, nous avons

Sqreal � Sqmax ce qui signi�e que l�ensemble solution Sqmax est surestimé. Les formulations de

la solution d�un CSP relaxé exliqué dans les sous-sous sections suivantes font abstraction

de ce probl me.

Le tri d ensembles et la notation polynomiale

L�une des contributions la th se de doctorat a été d�essayer de trouver une nouvelle

représentation de la solution d�un CSP relaxé. L�approche consiste considérer tous les

ensembles de la solution Sq pour toutes les valeurs possibles de q. La premi re repré-

sentation mathématique de la solution d�un CSP relaxé est donc un vecteur d�ensembles

(Sn�1; ::;S0). Pour caractériser ce vecteur nous avons considéré une transformée notée T

que nous avons appelé le tri d�ensembles tel que le vecteur (Sn�1; ::;S0) soit la transformée

du vecteur d�ensembles (X1; ::;Xn) dé�nis dans (1.5). On a

(Sn�1; ::;S0) = T (X1; ::;Xn): (1.8)

Exemple 4 Consid rons un vecteur d�ensembles (X1; ::;X6) � R
2 � ::: � R2 represent

sur la Figure 15.a. On note par by (Y1; ::Y6) � R
2� :::�R2 le r sultat du tri ensembliste

du vecteur (X1; ::X6). Le vecteur tri est repr senter sur la Figure 1.4.b. On remarque que

14



1.3. Contributions 15

Y5 = ; et Y6 =
\

i2f1;::;6g

Xi = ;.

Figure 1.4 � Illustration du tri de 6 ensembles

L�appellation tri ensembliste de la transformée T vient du fait que le vecteur de sortie est

trié par ordre décroissant par rapport l�ordre d�inclusion � c�est dire S0 � ::: � Sn�1.

A�n d�obtenir le vecteur trié, il existe un formule pour chaque ensemble de solutions

Sq; q 2 f1; ::; ng qui comme nous l�avons déja dit correspond l�intersection q-relaxée des

ensembles Xi; i 2 f1; :; ng.

Dans ce manuscrit, nous montrons qu�il y a une mani re plus compacte de représenter le

tri ensembliste ainsi que la solution dans une m me formule. La solution que nous propo-

sons est d�utiliser une représentation polynomiale. L�idée est de considérer les polyn mes

avec des coe¢cients sous forme d�ensembles qu�on appelle les polyn mes ensemblistes. La

solution du CSP relaxé sera représenté sous la forme d�un polyn me ensembliste dont les

coe¢cients sont les éléments du vecteur (Sn�1; ::;S0) tels que le degré du coe¢cient corres-

pond au nombre de contraintes qui sont satisfaits par les éléments de chaque coe¢cients.

Notons X�(s) ce polyn me.

X�(s) =
nX

k=0

Sn�ks
k: (1.9)

Le but de l�utilisation de la représentation polynomiale est de pro�ter de l�arithmétique

des polyn mes (somme, produit) pour représenter le tri ensembliste avec une formulation

unique. Le produit et la somme de polyn mes ensemblistes est similaire au produit et

la somme de polyn mes réels la di¤érence que le produit " � " de deux coe¢cients est

remplacé par leur intersection " \ "et la somme " + " de deux coe¢cients est remplacée

15



16 Chapitre 1. R sum en langue fran aise de la th se

par leur union " [ ". On consid re le polyn me suivant

Y �(s) =
nY

k=1

(Xks+ R
m) (1.10)

où Xi; i 2 f1; ::; ng sont les ensembles dé�nis dans (1.5). En développant ce poly me on

peut prouver que
nY

k=1

(Xks+ R
m) =

nX

k=0

Sn�ks
k: (1.11)

Ainsi, le tri ensembliste T a une formulation polynomial equivalente sous la forme d�un

produit de mon mes (Xks+R
m); k 2 f1; ::; ng qu�on appelera le tri ensembliste polynomial

du vecteur (X1; ::;Xn).

Remarque 1 ne interpr tation possible des mon mes Xis + R
m; i 2 f1; ::; ng est de

repr senter les informations binaires "{appartient Xi, appartient R
m (aucune infor-

mation)}". La variable s du polyn me est associ e l�information "appartient Xi". Cela

signi�e que, sachant que X�(s) est un produit de mon mes ( quation (1.11)), plus grand

est le nombre d�ensembles Xi auxquels un l ment x appartient, plus lev est le degr du

coe¢cient du polyn me X�(s) auquel x peut appartenir.

Figure 1.5 � Exemple de représentation d�un polyn me ensembliste solution d�un CSP

une dimension

la Figure 1.5, représente le polyn me ensembliste solution d�un CSP relaxé dont l�inconnue

x est une dimension. La solution est représentée sous forme d�intervalles "empilés" les

16



1.3. Contributions 17

uns sur les autres. Plus un coe¢cient intervall est haut, plus son degré dans le polyn me

est grand. L�axe k correspond donc au nombre de contraintes qui sont satisfaites par les

elements du coe¢cient placé ce niveau. l�axe x designe les valeurs possibles que peut

prendre la variable x. On note par qreal le nombre réel de données aberrantes et qmax
l�estimation qu�on fait de ce nombre. On remarque que Sqreal � Sqmax .

L�ensemble des sous-ensembles deRn a une structure de treillis [Davey and Priestley, 2002].

Un treillis est un ensemble partiellement ordonné fermée où toute paire d�éléments a une

borne supérieure et une borne inférieure. Durant la th se, l�étude des polyn mes en-

semblistes a été généralisée par l�étude des polyn mes sur un treillis où les coe¢cients

appartiennent un treillis.

Pour conclure, une représentation de solution sous forme de polyn me ensembliste nous

permet donner une solution d�un CSP relaxé indépendamment du nombre de contraintes

non satisfaites ce qui était le résultat voulu. L�implémentation des polyn mes ensemblistes

est détaillée dans le manuscrit de th se.

Les accumulateurs

Il existe un représentation alternative de la solution d�un CSP relaxé sous la forme d�une

fonction A : Rm ! R
n appelée accumulateur qui pour chaque élément x 2 [x] associe le

nombre de contraintes qu�il satisfait

A(x) = Card(fi 2 f1; ::; ng; fi(x) 2 [yi]; [yi] 2 IR
pig): (1.12)

L�accumulateur peut aussi tre dé�ni en utilisant la fonction caractéristique � d�une

contrainte C : f(x) 2 [y]; f : Rm ! R
p; [y] � Rp qui est dé�nie par

�
�(C)(x) = 1 si f(x) 2 [y]

�(C)(x) = 0 sinon.
(1.13)

En fait, l�accumulateur A est la somme des fonctions caractéristiques de toutes les contraintes

du CSP relaxé.

A(x) =
X

i2f1;::;ng

�(Ci)(x): (1.14)

Cette derni re propriété justi�e le nom de "accumulateur". La Figure 1.6, représente

un accumulateur A en tant que solution d�un CSP une dimension avec n contraintes.

La variable x 2 R est représentée sur l�axe des x et l�axe k correspond au nombre de

contraintes qui sont satisfaits par x. On note par qreal le nombre réel de données aberrantes

et qmax l�estimation qu�on fait de ce nombre. Les ensembles Sqrealet Sqmax sont représentés

sur la Figure 1.6. On note que

8q 2 f1; ::; ng;Sq = fx 2 R;A(x) � n� qg: (1.15)

17



18 Chapitre 1. R sum en langue fran aise de la th se

Figure 1.6 � L�utilisation d�un accumulateur pour représenter la solution d�un CSP une

dimension

La théorie des accumulateurs est proche de celle de la logique �oue ou la transformée de

Hough généralisée. Pour conclure, une représentation de solution sous forme d�un accu-

mulateur nous permet d�avoir une solution d�un CSP relaxé indépendante du nombre de

contraintes non satisfaites ce qui était le résultat voulu. L�implémentation des accumula-

teurs est détaillée dans le manuscrit de th se.

1.3.2 Les sous-pavages

Tout ensemble S � R
n peut tre approché par une bo te ou un ensemble de bo tes qui

ne se chevauchent pas ou sous-pavage. Plus il y a de boites dans un sous-pavage plus

l�approximation de S peut tre précise. Figure 1.7 montre les di¤érentes approximations

possibles avec un sous-pavage d�un ensemble S sous forme d�un disque. Dans la sous-

�gure (a) la boite englobe l�ensemble S. Cette boite est aussi notée [S]. Le sous-pavage

dans la sous-�gure (b) est un sous-pavage r gulier et celui de la sous-�gure (c) est appelée

une sous-pavage non r gulier. Les solveurs ensemblistes de CSPs (tels que les algorithmes

SIVIA ou un des solveurs basés sur les contracteurs utilisées dans les logiciels QUIMPER

[Chabert and Jaulin, 2009]) gén rent un sous-pavages qui représente la solution d�un CSP.

Il est possible d�adapter solveurs ensemblistes a�n de résoudre des CSPs relaxés en créant

des contracteurs adaptés. Le paragraphe suivant présente les contracteurs.

18
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Figure 1.7 � Utilisation des sous-pavages pour approximer les ensembles

1.3.3 Les contracteurs

Si une contrainte est la dé�nition mathématique de l�ensemble, alors le contracteur est

l�algorithme qui permet de calculer une approximation de cet ensemble sous la forme d�un

sous-pavage.

Exemple 5 Consid rons une contrainte x = (x; y) 2 [x]; ax + by + c = 0 o a; b; c 2 R

sont des constantes connues. La Figure 1.8 montre l�action d�un contracteur associ

cette contrainte. Les bo tes initiales sont repr sent es en gris clair et les boites r sultantes

des contractions sont repr sent s en gris fonc .

Figure 1.8 � Le contracteur associé la contrainte " tre sur la droite"

Associées des solveurs approprié, il est possible de générer des sous-pavages représentant

un ensemble particulier dé�ni par une contrainte (voir Figure 1.9.(a),(b)) ou un ensemble

de contraintes (comme on le voit dans la �gure Figure 1.9.(c)).

19



20 Chapitre 1. R sum en langue fran aise de la th se

Figure 1.9 � Un exemple de sous-pavage générés par solveurs basés sur les contracteurs

1.3.4 Le contracteur sur l image

Une majeure contribution la th se est la dé�nition d�un contracteur sur l�image. Ce

nouveau contracteur est le contracteur associé l�ensemble dé�ni par les pixels noirs (ou

blanc) d�une image binaire. Le contracteur sur l�image permet de représenter des ensembles

di¢cile paramétrer comme les cartes dans le contexte de la localisation. Le contracteur

sur l�image peut également tre utilisé pour approcher des contracteurs complexes qui

nécessiteraient des calculs lourds. La Figure 1.10 montre un exemple de création ainsi que

d�utilisation d�un contracteur sur l�image. Dans le contexte de localisation, nous avons

besoin de modéliser la carte de l�environnement. D�abords, nous avons pris une image

satellitaire de Google Maps (Voir sous-�gure 1.10.(a)). Ensuite, nous avons extrait une

image binaire en appliquant un algorithme de traitement d�image pour la détection de

contours (Sous-�gure 1.10.(b)). L�idée est de calculer un transformée de cette image qui est

l�intégrale de cette derni re sous la forme d�une image de niveau de gris représentée dans

la �gure sous-�gure 1.10.(c)). Cette transformée permet de déduire trés facilement une

fonction d�inclusion ainsi que le contracteur associé l�ensemble représenté sur l�image.

La sous-�gure 1.10.(d) montre un sous-pavage correspondant au résultat de l�algorithme

SIVIA [Jaulin and Walter, 1993] associé la contrainte "appartenir la carte" qui fait

appel la fonction d�inclusion sur l�image. Nous remarquons que le sous-pavage correspond

bien la carte.

1.3.5 Une application pour la localization d un robot sous-marin

Pendant la th se, nous avons comparé notre méthode de localisation avec la méthode

de localisation utilisant le �ltrage particulaire en collaboration avec l�université Heriott

Watt. Les deux méthodes on été testé sur le m me jeu de données prises dans une ma-

rina abandonnée par un robot sous-marin espagnol de l�université de Girone. La Figure

1.11 montre le résultat des deux méthodes. La sous-�gure de gauche trace la trajectoire

calculée par les méthodes ensemblistes et la trajectoire de référence. On que celle-ci sont
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Figure 1.10 � Les di¤érentes étapes de l�implémentation de la contrainte sur l�image

confondues. Dans, la sous-�gure de droite, la trajectoire calculée par le �ltre particulaire

est aussi confondue avec la trajectoire GPS. Cette sous-�gure montre en plus la trajectoire

calculée par le "dead reckoning" (estimation aveugle) qui diverge est n�est pas exploitable.

Les deux méthodes arrivent localiser le robot et e¤ectuent le calcul en temps réel (c�est

dire la m me allure qu�arrivent les données sur le sous-marin.

1.4 Conclusion

Dans ce résumé de th se nous avons présenté bri vement les contributions majeures de

la th se. Ces contributions permettent d�e¤ectuer une localisation robustes, grace aux

méthodes de résolution des CSPs relaxés, dans des environnements structurés ou pas

gr ce au contracteur sur l�image. Ce moyen de localisation a été testé sur un jeu de

données prise par un robot sous-marin dans des conditions réelles.
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Figure 1.11 � Les résultats des di¤érents algorithmes de localisation. Méthode ensembliste

gauche et �ltrage particulaire droite.
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Title : Using set membership methods for robust underwater robot localization 
Keywords: Robust localization, relaxed CSP, outliers, set polynomials, accumulators, image contractor 
Abstract: For an intelligent robot to be able to properly interact with its environment, it has to know in one hand the 
environment and in the other hand its state in that environment. In particular, a robot must know where it is to know where it has 
to go. Since the appearance of GPS, the problem of localization has been practically solved on the ground. GPS doesn't work 
underwater since high frequency electromagnetic waves don’t propagate in that environment. However, the number of undersea 
operations increases significantly every year. In our school, we develop an autonomous underwater vehicle to test the 
underwater localization systems. The main sensor we use is an imaging sonar. An imaging sonar is an acoustic sensor which 
detects acoustically reflective objects. For example, the sonar can be used to detect the walls of a port. The measurements from 
the sonar are often corrupted with outliers. An outlier may be due to an electrical failure of the sensor or a phenomenon not 
taken into account when modeling the environment. The number of outliers is often unknown and varies with time. The aim of 
this thesis was to solve the localization problem using such data. The localization problem can be formulated as a constraint 
satisfaction problem (CSP). A CSP is basically a system of equations (constraints). Here, the unknown is the pose of the robot. 
For each measurement we obtain a constraint involving the pose, a measurement and the environment (the map). The classical 
solution of a CSP is the set of points (poses) that satisfy all constraints. However, because of outliers, such points may not exist. 
The new problem is to find a solution to a CSP when only part of constraints is satisfied. We call this problem a relaxed CSP. A 
major contribution to the thesis was to find several representations of the solution of a relaxed CSP as well as algorithms to 
compute these solutions. The first representation is in the form of a polynomial with set valued coefficients also called a set 
polynomial. Each coefficient is the set of points that satisfy the number of constraints equal to the degree of the coefficient in the 
polynomial. Such representation allows the use of polynomial arithmetic to calculate the solution polynomial. A second 
representation is in the form of a function, called accumulator, which for each element of the search space returns the number of 
constraints it satisfies. One of the hurdles to overcome to solve localization problems is the representation of the map. In case of 
structured environments, it is possible to represent the map by a set of parameterized objects such as segments, polygons, 
curves. In case of unstructured maps such as seashore or lake borders, the idea is to represent the map (which actually is a set) in 
the form of a binary image where pixels of interest (black for example) represent the set of points of the map. Another major 
contribution to the thesis was to be able to use the binary image representation in CSP or relaxed CSP computer solvers in the 
form of a contractor called the image contractor. The usefulness of those two contributions is illustrated on a real case example 
of localization of an underwater robot in an abandoned marina. The thesis contains many other contributions to set membership 
methods and the contractor theory. 

Titre : Méthodes ensemblistes pour une localisation robuste de robots sous-marins 
Mots Clés: Localisation robuste, CSP relaxé, données aberrantes, polynômes ensemblistes, accumulateurs, contracteur sur 
l’image 
Résumé: Pour qu'un robot autonome puisse interagir proprement avec son milieu, ce dernier doit connaitre d'une part 
l'environnement dans lequel il évolue et d'autre part son état dans cet environnement. En particulier, un robot doit savoir où il est 
pour savoir où il doit aller. Depuis l'apparition du GPS, le problème de la localisation a été pratiquement résolu pour les robots 
terrestres. Le GPS ne fonctionne pas sous l'eau. Toutefois, le nombre d'opérations sous-marines augmente de manière 
significative chaque année. Dans notre école, nous développons un robot sous-marin pour tester des systèmes de localisation 
sous-marins. Le capteur principal que nous utilisons est un sonar sectoriel. Un sonar est un capteur acoustique qui positionne les 
objets acoustiquement réfléchissant. Par exemple, le sonar peut être utilisé pour détecter les parois d’un port. Ce capteur donne 
souvent des mesures aberrantes. Une telle mesure peut être due à une défaillance électrique du capteur ou d'un phénomène non 
pris en compte lors de la modélisation de l'environnement. Le nombre de mesures aberrantes est souvent inconnu et varie avec le 
temps. Le but de la thèse est de résoudre le problème de localisation avec de telles données. Un problème de localisation peut 
être formulé en tant que problème de satisfaction de contraintes (CSP en anglais). Un CSP est en gros un système d’équations 
(contraintes). Ici, l’inconnu est la pose du robot. Pour chaque mesure on obtient une contrainte reliant la pose, la mesure et 
l’environnement. La solution classique d'un CSP est l'ensemble des points (poses) qui satisfont toutes les contraintes. Toutefois, 
a cause des données aberrantes de tels points peuvent ne pas exister. Le nouveau problème consiste à trouver une solution d’un 
CSP lorsque une partie seulement de contraintes est satisfaite. Nous appelons ce problème un CSP relaxé. Une des contributions 
majeures à la thèse était de trouver plusieurs représentations de la solution d’un CSP relaxé ainsi que les algorithmes qui 
permettent de calculer ces solutions. La première représentation est sous la forme d’un polynôme dont les coefficients sont des 
ensembles que nous appelons polynômes ensemblistes. Chaque coefficient correspond à l’ensemble des points qui satisfont le 
nombre de contraintes égal au degré du coefficient dans le polynôme. Une telle représentation permet d’utiliser l’arithmétique 
des polynômes pour calculer le polynôme solution. Une deuxième représentation est sous la forme d’une fonction, qu’on appelle 
accumulateur, qui pour chaque élément de l’espace de recherche retourne le nombre de contraintes satisfaites. Un des obstacles 
à surmonter pour résoudre les problèmes de localisation est la représentation de la carte. En cas d'environnements structurés, il 
est possible de représenter la carte par un ensemble d'objets paramétrés tels que des segments, polygones ou des courbes. En cas 
d'environnements non structurées où en partie structurées tels que des cartes marines ou des cartes routières, l'idée est de 
représenter la carte (qui est en fait un ensemble de points) sous la forme d'une image binaire où les pixels d'intérêt (noir par 
exemple) représentent l'ensemble des points de la carte. Une des contributions majeures de la thèse était d'incorporer une telle 
représentation de la carte dans le formalisme d'un CSP ou d'un CSP relaxé sous la forme d’un contracteur appelé le contracteur 
sur l’image. L’utilité de ces deux contributions est montrée par un exemple de localisation d’un vrai robot dans une marina 
abandonnée. La thèse contient plusieurs autres contributions aux méthodes ensemblistes et la théorie des contracteurs. 
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