J. Lipnick, S. Phillips, and T. , Molecular mechanisms of late normal tissue injury

H. Rodemann and M. Blaese, Responses of Normal Cells to Ionizing Radiation, Seminars in Radiation Oncology, vol.17, issue.2, pp.81-88, 2007.
DOI : 10.1016/j.semradonc.2006.11.005

E. Travis, Genetic Susceptibility To Late Normal Tissue Injury, Seminars in Radiation Oncology, vol.17, issue.2, pp.149-155, 2007.
DOI : 10.1016/j.semradonc.2006.11.011

D. Pohlers, J. Brenmoehl, and I. Loffler, TGF-?? and fibrosis in different organs ??? molecular pathway imprints, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1792, issue.8, pp.746-56, 2009.
DOI : 10.1016/j.bbadis.2009.06.004

URL : https://hal.archives-ouvertes.fr/hal-00506515

S. Delanian, C. Chatel, R. Porcher, J. Depondt, and J. Lefaix, Complete Restoration of Refractory Mandibular Osteoradionecrosis by Prolonged Treatment with a Pentoxifylline-Tocopherol-Clodronate Combination (PENTOCLO): A??Phase II Trial, International Journal of Radiation Oncology*Biology*Physics, vol.80, issue.3, pp.832-841, 2011.
DOI : 10.1016/j.ijrobp.2010.03.029

S. Delanian, J. Lefaix, T. Maisonobe, F. Salachas, and P. Pradat, Significant clinical improvement in radiation-induced lumbosacral polyradiculopathy by a treatment combining pentoxifylline, tocopherol, and clodronate (Pentoclo), Journal of the Neurological Sciences, vol.275, issue.1-2, pp.164-170, 2008.
DOI : 10.1016/j.jns.2008.08.004

E. Cohen, A. Irving, W. Drobyski, J. Klein, J. Passweg et al., Captopril to Mitigate Chronic Renal Failure After Hematopoietic Stem Cell Transplantation: A Randomized Controlled Trial, International Journal of Radiation Oncology*Biology*Physics, vol.70, issue.5, pp.1546-51, 2008.
DOI : 10.1016/j.ijrobp.2007.08.041

V. Haydont, C. Bourgier, and M. Vozenin-brotons, Rho/ROCK pathway as a molecular target for modulation of intestinal radiation-induced toxicity, The British Journal of Radiology, vol.80, issue.special_issue_1, pp.532-540, 2007.
DOI : 10.1259/bjr/58514380

V. Haydont, B. Riser, J. Aigueperse, and M. Vozenin-brotons, Specific signals involved in the long-term maintenance of radiation-induced fibrogenic differentiation: a role for CCN2 and low concentration of TGF-??1, AJP: Cell Physiology, vol.294, issue.6, 2008.
DOI : 10.1152/ajpcell.90626.2007

C. Bourgier, Inhibition of Rho kinase modulates radiation induced fibrogenic phenotype in intestinal smooth muscle cells through alteration of the cytoskeleton and connective tissue growth factor expression, Gut, vol.54, issue.3, pp.336-343, 2005.
DOI : 10.1136/gut.2004.051169

M. C. Vozenin-brotons, Fibrogenic signals in patients with radiation enteritis are associated with increased connective tissue growth factor expression, International Journal of Radiation Oncology*Biology*Physics, vol.56, issue.2, pp.561-572, 2003.
DOI : 10.1016/S0360-3016(02)04601-1

V. Haydont, C. Bourgier, and M. Pocard, Pravastatin Inhibits the Rho/CCN2/Extracellular Matrix Cascade in Human Fibrosis Explants and Improves Radiation-Induced Intestinal Fibrosis in Rats, Clinical Cancer Research, vol.13, issue.18, pp.5331-5371, 2007.
DOI : 10.1158/1078-0432.CCR-07-0625

J. Wang, M. Boerma, Q. Fu, A. Kulkarni, L. Fink et al., Simvastatin Ameliorates Radiation Enteropathy Development After Localized, Fractionated Irradiation by a Protein C-Independent Mechanism, International Journal of Radiation Oncology*Biology*Physics, vol.68, issue.5, pp.1483-90, 2007.
DOI : 10.1016/j.ijrobp.2007.03.036

V. Monceau, N. Pasinetti, C. Schupp, F. Pouzoulet, P. Opolon et al., Modulation of the Rho/ROCK Pathway in Heart and Lung after Thorax Irradiation Reveals Targets to Improve Normal Tissue Toxicity, Current Drug Targets, vol.11, issue.11, pp.1395-1404, 2010.
DOI : 10.2174/1389450111009011395

T. Moriyama and K. Nagatoya, The Rho-ROCK system as a new therapeutic target for preventing interstitial fibrosis, Drug News & Perspectives, vol.17, issue.1, pp.29-34, 2004.
DOI : 10.1358/dnp.2004.17.1.829023

V. Haydont, O. Gilliot, and S. Rivera, Successful Mitigation of Delayed Intestinal Radiation Injury Using Pravastatin is not Associated with Acute Injury Improvement or Tumor Protection, International Journal of Radiation Oncology*Biology*Physics, vol.68, issue.5
DOI : 10.1016/j.ijrobp.2007.03.044

M. Gaugler, V. Vereycken-holler, C. Squiban, M. Vandamme, M. Vozenin-brotons et al., Pravastatin Limits Endothelial Activation after Irradiation and Decreases the Resulting Inflammatory and Thrombotic Responses, Radiation Research, vol.163, issue.5, pp.479-87, 2005.
DOI : 10.1667/RR3302

V. Holler, V. Buard, M. Gaugler, O. Guipaud, C. Baudelin et al., Pravastatin Limits Radiation-Induced Vascular Dysfunction in the Skin, Journal of Investigative Dermatology, vol.129, issue.5, pp.1280-91, 2009.
DOI : 10.1038/jid.2008.360

M. Yamashita, F. Otsuka, and T. Mukai, Simvastatin antagonizes tumor necrosis factor-?? inhibition of bone morphogenetic proteins-2-induced osteoblast differentiation by regulating Smad signaling and Ras/Rho-mitogen-activated protein kinase pathway, Journal of Endocrinology, vol.196, issue.3, pp.601-614, 2008.
DOI : 10.1677/JOE-07-0532

L. Ries, M. Eisner, C. Kosary, R. Haken, and M. Martel, Guest editor's introduction to QUANTEC: a users guide, Cancer Statistics Review Int J Radiat Oncol Biol Phys, vol.76, pp.1-2, 1975.

E. Basch, The Missing Voice of Patients in Drug-Safety Reporting, New England Journal of Medicine, vol.362, issue.10, pp.865-874, 2010.
DOI : 10.1056/NEJMp0911494

J. Andreyev, Gastrointestinal complications of pelvic radiotherapy: are they of any importance?, Gut, vol.54, issue.8, pp.1051-1055, 2005.
DOI : 10.1136/gut.2004.062596

B. Movsas, B. Vikram, and M. Hauer-jensen, Decreasing the Adverse Effects of Cancer Therapy: National Cancer Institute Guidance for the Clinical Development of Radiation Injury Mitigators, Clinical Cancer Research, vol.17, issue.2, pp.222-230, 2011.
DOI : 10.1158/1078-0432.CCR-10-1402

E. Travis, Organizational response of normal tissues to irradiation, Seminars in Radiation Oncology, vol.11, issue.3, pp.184-197, 2001.
DOI : 10.1053/srao.2001.25243

W. Hendry and J. , Consequential late effects in normal tissues Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology, Radiother Oncol Bentzen SM Nat Rev Cancer, vol.6, pp.223-254, 2006.

S. Delanian and J. Lefaix, Current Management for Late Normal Tissue Injury: Radiation-Induced Fibrosis and Necrosis, Seminars in Radiation Oncology, vol.17, issue.2, pp.99-107, 2007.
DOI : 10.1016/j.semradonc.2006.11.006

S. Delanian, J. Lefaix, and T. Wynn, Mature bone necrosis: from recent pathophysiological aspects to a new therapeutic action [in French] Pulmonary fibrosis: pathogenesis, etiology and regulation, Cancer Radiother Mucosal Immunol, vol.62, issue.2, pp.1-9103, 2002.

U. Zagai, E. Dadfar, J. Lundahl, P. Venge, and C. Skold, Eosinophil Cationic Protein Stimulates TGF-??1 Release by Human Lung Fibroblasts In Vitro, Inflammation, vol.27, issue.5, pp.153-160, 2007.
DOI : 10.1007/s10753-007-9032-4

C. Agostini and C. Gurrieri, Chemokine/Cytokine Cocktail in Idiopathic Pulmonary Fibrosis, Proceedings of the American Thoracic Society, vol.3, issue.4, pp.357-363, 2006.
DOI : 10.1513/pats.200601-010TK

K. Kadler, A. Hill, and E. Canty-laird, Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators, Current Opinion in Cell Biology, vol.20, issue.5, pp.495-501, 2008.
DOI : 10.1016/j.ceb.2008.06.008

V. Thannickal and J. Horowitz, Evolving Concepts of Apoptosis in Idiopathic Pulmonary Fibrosis, Proceedings of the American Thoracic Society, vol.3, issue.4, pp.350-356, 2006.
DOI : 10.1513/pats.200601-001TK

S. Gill and W. Parks, Metalloproteinases and their inhibitors: Regulators of wound healing, The International Journal of Biochemistry & Cell Biology, vol.40, issue.6-7
DOI : 10.1016/j.biocel.2007.10.024

C. Fattman, Apoptosis in Pulmonary Fibrosis: Too Much or Not Enough?, Antioxidants & Redox Signaling, vol.10, issue.2, pp.379-385, 2008.
DOI : 10.1089/ars.2007.1907

R. Weichselbaum, Radiation's outer limits, Nature Medicine, vol.13, issue.5, pp.477-478, 2005.
DOI : 10.1016/S0360-3016(01)02731-6

J. Purdy, DOSE TO NORMAL TISSUES OUTSIDE THE RADIATION THERAPY PATIENT???S TREATED VOLUME: A REVIEW OF DIFFERENT RADIATION THERAPY TECHNIQUES, Health Physics, vol.95, issue.5, pp.666-76, 2008.
DOI : 10.1097/01.HP.0000326342.47348.06

G. Luxton, S. Hancock, and A. Boyer, Dosimetry and radiobiologic model comparison of IMRT and 3D conformal radiotherapy in treatment of carcinoma of the prostate, International Journal of Radiation Oncology*Biology*Physics, vol.59, issue.1, pp.267-84, 2004.
DOI : 10.1016/j.ijrobp.2004.01.024

B. Chera, C. Rodriguez, C. Morris, D. Louis, D. Yeung et al., Dosimetric Comparison of Three Different Involved Nodal Irradiation Techniques for Stage II Hodgkin's Lymphoma Patients: Conventional Radiotherapy, Intensity-Modulated Radiotherapy, and Three-Dimensional Proton Radiotherapy, International Journal of Radiation Oncology*Biology*Physics, vol.75, issue.4, pp.1173-80, 2009.
DOI : 10.1016/j.ijrobp.2008.12.048

J. Ashman, M. Zelefsky, M. Hunt, S. Leibel, and Z. Fuks, Whole pelvic radiotherapy for prostate cancer using 3D conformal and intensity-modulated radiotherapy, International Journal of Radiation Oncology*Biology*Physics, vol.63, issue.3, pp.765-71, 2005.
DOI : 10.1016/j.ijrobp.2005.02.050

L. Tuomikoski, J. Collan, and J. Keyriläinen, Adaptive radiotherapy in muscle invasive urinary bladder cancer ??? An effective method to reduce the irradiated bowel volume, Radiotherapy and Oncology, vol.99, issue.1, pp.61-67, 2011.
DOI : 10.1016/j.radonc.2011.02.011

L. Cozzi, K. Dinshaw, S. Shrivastava, and U. Mahantshetty, A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy, Radiotherapy and Oncology, vol.89, issue.2, pp.180-91, 2008.
DOI : 10.1016/j.radonc.2008.06.013

H. Murshed, H. Liu, Z. Liao, and J. Barker, Dose and volume reduction for normal lung using intensity-modulated radiotherapy for advanced-stage non???small-cell lung cancer, International Journal of Radiation Oncology*Biology*Physics, vol.58, issue.4, pp.1258-67921, 2004.
DOI : 10.1016/j.ijrobp.2003.09.086

A. , C. L. Weber, D. Kurtz, J. Miralbell, and R. , Potential role of intensity-modulated photons and protons in the treatment of the breast and regional nodes, Int J Radiat Oncol Biol Phys, vol.55, issue.3, pp.785-92, 2003.

G. Nicolini, S. Ghosh-laskar, S. Shrivastava, and S. Banerjee, Volumetric Modulation Arc Radiotherapy With Flattening Filter-Free Beams Compared With Static Gantry IMRT and 3D Conformal Radiotherapy for Advanced Esophageal Cancer: A Feasibility Study Radioprotectors and mitigators of radiation-induced normal tissue injury, Int J Radiat Oncol Biol Oncologist, vol.15, issue.4, pp.360-71, 2010.

J. Williams, C. Johnston, and J. Finkelstein, Treatment for radiation-induced pulmonary late effects: spoiled for choice or looking in the wrong direction? Curr Drug Targets, 2010.

J. Carver, American Society of Clinical Oncology Clinical Evidence Review on the Ongoing Care of Adult Cancer Survivors: Cardiac and Pulmonary Late Effects, Journal of Clinical Oncology, vol.25, issue.25, pp.3991-4008, 2007.
DOI : 10.1200/JCO.2007.10.9777

P. Rubin, J. Finkelstein, and D. Shapiro, Molecular biology mechanisms in the radiation induction of pulmonary injury syndromes: Interrelationship between the alveolar macrophage and the septal fibroblast, International Journal of Radiation Oncology*Biology*Physics, vol.24, issue.1, pp.93-101, 1992.
DOI : 10.1016/0360-3016(92)91027-K

K. Yang, Matrix-Metallo-Proteinases and their tissue inhibitors in radiation-induced lung injury, International Journal of Radiation Biology, vol.276, issue.10, pp.665-676, 2007.
DOI : 10.1378/chest.117.3.684

C. Linard, A. Ropenga, and M. Vozenin-brotons, Abdominal irradiation increases inflammatory cytokine expression and activates NF-??B in rat ileal muscularis layer, American Journal of Physiology - Gastrointestinal and Liver Physiology, vol.285, issue.3, pp.556-565, 2003.
DOI : 10.1152/ajpgi.00094.2003

G. Gabbiani, G. Ryan, and G. Majno, Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction, Experientia, vol.48, issue.Suppl. 5, pp.549-550, 1971.
DOI : 10.1007/BF02147594

G. R. Grotendorst, Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation, The FASEB Journal, vol.18, issue.3, pp.469-479, 2004.
DOI : 10.1096/fj.03-0699com

B. Hinz, Formation and Function of the Myofibroblast during Tissue Repair, Journal of Investigative Dermatology, vol.127, issue.3, pp.526-563, 2007.
DOI : 10.1038/sj.jid.5700613

A. Desmouliere, I. Darby, and G. Gabbiani, Normal and Pathologic Soft Tissue Remodeling: Role of the Myofibroblast, with Special Emphasis on Liver and Kidney Fibrosis, Laboratory Investigation, vol.40, issue.12, pp.1689-707, 2003.
DOI : 10.1016/S0899-9007(96)00389-9

H. Lan, Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells, Current Opinion in Nephrology and Hypertension, vol.12, issue.1, pp.25-34, 2003.
DOI : 10.1097/00041552-200301000-00005

J. Virag and C. Murry, Myofibroblast and Endothelial Cell Proliferation during Murine Myocardial Infarct Repair, The American Journal of Pathology, vol.163, issue.6, pp.2433-2473, 2003.
DOI : 10.1016/S0002-9440(10)63598-5

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892355

R. Brown, S. Ambler, M. Mitchell, and C. Long, THE CARDIAC FIBROBLAST: Therapeutic Target in Myocardial Remodeling and Failure, Annual Review of Pharmacology and Toxicology, vol.45, issue.1, pp.657-87, 2005.
DOI : 10.1146/annurev.pharmtox.45.120403.095802

S. Phan, The Myofibroblast in Pulmonary Fibrosis*, Chest, vol.122, issue.6, 2002.
DOI : 10.1378/chest.122.6_suppl.286S

V. Thannickal, G. Toews, E. White, J. Lynch, . Iii et al., Mechanisms of Pulmonary Fibrosis, Annual Review of Medicine, vol.55, issue.1, pp.395-417, 2004.
DOI : 10.1146/annurev.med.55.091902.103810

D. Wever, O. Mareel, and M. , Role of tissue stroma in cancer cell invasion, The Journal of Pathology, vol.80, issue.4, pp.429-476, 2003.
DOI : 10.1002/path.1398

A. Desmouliere, C. Guyot, and G. Gabbiani, The stroma reaction myofibroblast: a key player in the control of tumor cell behavior, The International Journal of Developmental Biology, vol.48, issue.5-6, pp.509-526, 2004.
DOI : 10.1387/ijdb.041802ad

A. Shieh, H. Rozansky, B. Hinz, and M. Swartz, Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res, Feb, vol.171, issue.3, pp.790-800, 2011.

A. Postlethwaite, H. Shigemitsu, and S. Kanangat, Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic sclerosis, Current Opinion in Rheumatology, vol.16, issue.6, pp.733-738, 2004.
DOI : 10.1097/01.bor.0000139310.77347.9c

E. Herzog and R. Bucala, Fibrocytes in health and disease, Experimental Hematology, vol.38, issue.7, pp.548-556, 2010.
DOI : 10.1016/j.exphem.2010.03.004

A. Bellini and S. Mattoli, The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses, Laboratory Investigation, vol.283, issue.9, pp.858-870, 2007.
DOI : 10.1038/labinvest.3700654

J. Thiery, H. Acloque, R. Huang, and M. Nieto, Epithelial-Mesenchymal Transitions in Development and Disease, Cell, vol.139, issue.5, pp.871-890, 2009.
DOI : 10.1016/j.cell.2009.11.007

J. Thiery and J. Sleeman, Complex networks orchestrate epithelial???mesenchymal transitions, Nature Reviews Molecular Cell Biology, vol.117, issue.2, pp.131-142, 2006.
DOI : 10.1038/nrm1835

R. Kalluri and E. Neilson, Epithelial-mesenchymal transition and its implications for fibrosis, Journal of Clinical Investigation, vol.112, issue.12, pp.1776-1784, 2003.
DOI : 10.1172/JCI200320530

S. Piera-velazquez, Z. Li, and S. Jimenez, Role of Endothelial-Mesenchymal Transition (EndoMT) in the Pathogenesis of Fibrotic Disorders, The American Journal of Pathology, vol.179, issue.3, pp.1074-80, 2011.
DOI : 10.1016/j.ajpath.2011.06.001

G. Bamias, C. Martin, M. Mishina, W. Ross, J. Rivera-nieves et al., Proinflammatory effects of TH2 cytokines in a murine model of chronic small intestinal inflammation, Gastroenterology, vol.128, issue.3, pp.654-666, 2005.
DOI : 10.1053/j.gastro.2004.11.053

R. Strieter and M. Keane, Innate immunity dictates cytokine polarization relevant to the development of pulmonary fibrosis, Journal of Clinical Investigation, vol.114, issue.2, pp.165-168, 2004.
DOI : 10.1172/JCI22398

T. Wynn, Fibrotic disease and the TH1/TH2 paradigm, Nature Reviews Immunology, vol.162, issue.8, pp.583-594, 2004.
DOI : 10.1038/383787a0

O. Rodningen, A. Borresen-dale, J. Alsner, T. Hastie, and J. Overgaard, Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis, Radiotherapy and Oncology, vol.86, issue.3, pp.314-320, 2008.
DOI : 10.1016/j.radonc.2007.09.013

A. Lemay and C. Haston, Radiation-Induced Lung Response of AcB/BcA Recombinant Congenic Mice, Radiation Research, vol.170, issue.3, pp.299-306, 2008.
DOI : 10.1667/RR1319.1

B. Wynn, Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis, pp.245-57, 2010.

S. Ueha, F. Shand, and K. Matsushima, Cellular and Molecular Mechanisms of Chronic Inflammation-Associated Organ Fibrosis, Frontiers in Immunology, vol.3, p.71, 2012.
DOI : 10.3389/fimmu.2012.00071

C. Johnston, J. Williams, P. Okunieff, and J. Finkelstein, Radiation-Induced Pulmonary Fibrosis: Examination of Chemokine and Chemokine Receptor Families, Radiation Research, vol.157, issue.3, pp.256-265, 2002.
DOI : 10.1667/0033-7587(2002)157[0256:RIPFEO]2.0.CO;2

Z. He, H. Zhang, C. Yang, Y. Zhou, Y. Zhou et al., The interaction between different types of activated RAW 264.7 cells and macrophage inflammatory protein-1 alpha, Radiation Oncology, vol.6, issue.1, p.86, 2011.
DOI : 10.1080/0955300031000076894

G. Sempowski, M. Beckmann, S. Derdak, and R. Phipps, Subsets of murine lung fibroblasts express membrane-bound and soluble IL-4 receptors. Role of IL-4 in enhancing fibroblast proliferation and collagen synthesis, J. Immunol, vol.152, pp.3606-3614, 1994.

K. Takatsu and H. Nakajima, IL-5 and eosinophilia, Current Opinion in Immunology, vol.20, issue.3, pp.288-294, 2008.
DOI : 10.1016/j.coi.2008.04.001

R. Reiman, Interleukin-5 (IL-5) Augments the Progression of Liver Fibrosis by Regulating IL-13 Activity, Infection and Immunity, vol.74, issue.3, pp.1471-1479, 2006.
DOI : 10.1128/IAI.74.3.1471-1479.2006

Y. Tomimori, Involvement of mast cell chymase in bleomycin-induced pulmonary fibrosis in mice, European Journal of Pharmacology, vol.478, issue.2-3, pp.179-185, 2003.
DOI : 10.1016/j.ejphar.2003.08.050

M. Kaviratne, IL-13 Activates a Mechanism of Tissue Fibrosis That Is Completely TGF-?? Independent, The Journal of Immunology, vol.173, issue.6, pp.4020-4029, 2004.
DOI : 10.4049/jimmunol.173.6.4020

C. Linard, C. Marquette, J. Mathieu, A. Pennequin, D. Clarençon et al., Acute induction of inflammatory cytokine expression after gamma-irradiation in the rat: effect of an NFkappaB inhibitor, Int J Radiat Oncol Biol Phys Feb, vol.158, issue.2, pp.427-461, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00405247

C. Linard, F. Billiard, and M. Benderitter, Intestinal Irradiation and Fibrosis in a Th1-Deficient Environment, International Journal of Radiation Oncology*Biology*Physics, vol.84, issue.1, 2012.
DOI : 10.1016/j.ijrobp.2011.11.027

K. Blirando, F. Milliat, I. Martelly, J. Sabourin, M. Benderitter et al., Mast Cells Are an Essential Component of Human Radiation Proctitis and Contribute to Experimental Colorectal Damage in Mice, The American Journal of Pathology, vol.178, issue.2, pp.640-51, 2011.
DOI : 10.1016/j.ajpath.2010.10.003

P. Hamet, V. Hadrava, U. Kruppa, and J. Tremblay, Transforming growth factor beta 1 expression and effect in aortic smooth muscle cells from spontaneously hypertensive rats., Hypertension, vol.17, issue.6_Pt_2, pp.896-901, 1991.
DOI : 10.1161/01.HYP.17.6.896

J. Massagué, TGF-?? SIGNAL TRANSDUCTION, Annual Review of Biochemistry, vol.67, issue.1, pp.753-91, 1998.
DOI : 10.1146/annurev.biochem.67.1.753

P. Makkar, R. Metpally, S. Sangadala, and B. Reddy, Modeling and analysis of MH1 domain of Smads and their interaction with promoter DNA sequence motif, Journal of Molecular Graphics and Modelling, vol.27, issue.7, pp.803-815, 2009.
DOI : 10.1016/j.jmgm.2008.12.003

S. Hahn, M. Schutte, A. Hoque, C. Moskaluk, L. Da-costa et al., DPC4, a candidate tumor suppressor gene at human chromosome 18q21, Science, vol.1271, issue.5247, pp.350-353, 1996.

F. Strutz, TGF-??1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2), Kidney International, vol.59, issue.2, pp.579-592, 2001.
DOI : 10.1046/j.1523-1755.2001.059002579.x

C. Szardening-kirchner, L. Konrad, E. Hauck, S. Haag, O. Eickelberg et al., Upregulation of mRNA expression of MCP-1 by TGF-??1 in fibroblast cells from Peyronie???s disease, World Journal of Urology, vol.92, issue.7, pp.123-153, 2009.
DOI : 10.1007/s00345-008-0320-x

G. Lakos, Targeted Disruption of TGF-??/Smad3 Signaling Modulates Skin Fibrosis in a Mouse Model of Scleroderma, The American Journal of Pathology, vol.165, issue.1, pp.203-217, 2004.
DOI : 10.1016/S0002-9440(10)63289-0

K. Inazaki, Smad3 deficiency attenuates renal fibrosis, inflammation,and apoptosis after unilateral ureteral obstruction, Kidney International, vol.66, issue.2, pp.597-604, 2004.
DOI : 10.1111/j.1523-1755.2004.00779.x

URL : http://doi.org/10.1111/j.1523-1755.2004.00779.x

P. Bonniaud, Smad3 Null Mice Develop Airspace Enlargement and Are Resistant to TGF-??-Mediated Pulmonary Fibrosis, The Journal of Immunology, vol.173, issue.3, pp.2099-2108, 2004.
DOI : 10.4049/jimmunol.173.3.2099

J. Zhao, Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice, American Journal of Physiology - Lung Cellular and Molecular Physiology, vol.282, issue.3
DOI : 10.1152/ajplung.00151.2001

P. Bork, The modular architecture of a new family of growth regulators related to connective tissue growth factor, FEBS Letters, vol.84, issue.2, pp.125-130, 1993.
DOI : 10.1016/0014-5793(93)80155-N

V. Haydont, Induction of CTGF by TGF-??1 in normal and radiation enteritis human smooth muscle cells: Smad/Rho balance and therapeutic perspectives, Radiotherapy and Oncology, vol.76, issue.2, pp.219-225, 2005.
DOI : 10.1016/j.radonc.2005.06.029

A. Leask, A. Holmes, C. Black, and D. Abraham, Connective tissue growth factor gene regulation. Requirements for its induction by transforming growth factor-beta 2 in fibroblasts

P. Leoni, O. Blanc-brude, D. Wembridge, and G. Laurent, Thrombin is a potent inducer of connective tissue growth factor production via proteolytic activation of protease-activated receptor-1, Epub 2003 Feb 5. 110 Chambers RC, pp.13008-1535584, 2000.

A. Leask, Signaling in fibrosis: targeting the TGF beta, endothelin-1 and CCN2 axis in scleroderma, Front Biosci, vol.1, pp.115-137, 2009.

L. , Y. K. Uzuki, and M. , Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF, Eur Respir J, vol.17, pp.1220-1227, 2001.

P. Bonniaud, G. Martin, P. Margetts, K. Ask, J. Robertson et al., Connective tissue growth factor is crucial to inducing a profibrotic environment in "fibrosis-resistant

S. Sonnylal, X. Shi-wen, P. Leoni, K. Naff, V. Pelt et al., Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis Arthritis Rheum, 2010.

S. Adler, S. Schwartz, M. Williams, C. Arauz-pacheco, W. Bolton et al., Phase 1 Study of Anti-CTGF Monoclonal Antibody in Patients with Diabetes and Microalbuminuria, Clinical Journal of the American Society of Nephrology, vol.5, issue.8, pp.1420-1428, 2010.
DOI : 10.2215/CJN.09321209

M. Schwartz, G. Fritz, and B. Kaina, Rho signalling at a glance Rho GTPases: promising cellular targets for novel anticancer drugs):1. 119 Buchsbaum RJ. Rho activation at a glance, J Cell Sci. Curr Cancer Drug Targets. J Cell Sci, vol.117, issue.120, p.54571149, 2004.

P. Mchenry and T. Vargo-gogola, Pleiotropic functions of Rho GTPase signaling: a Trojan horse or Achilles' heel for breast cancer treatment? Curr Drug Targets, 2010.

A. Jaffe and A. Hall, RHO GTPASES: Biochemistry and Biology, Annual Review of Cell and Developmental Biology, vol.21, issue.1, pp.247-269, 2005.
DOI : 10.1146/annurev.cellbio.21.020604.150721

Q. Zhou, C. Gensch, and J. Liao, Rho-associated coiled-coil-forming kinases (ROCKs): potential targets for the treatment of atherosclerosis and vascular disease, Trends in Pharmacological Sciences, vol.32, issue.3, pp.167-73, 2011.
DOI : 10.1016/j.tips.2010.12.006

C. Bourgier, Inhibition of Rho kinase modulates radiation induced fibrogenic phenotype in intestinal smooth muscle cells through alteration of the cytoskeleton and connective tissue growth factor expression, Gut, vol.54, issue.3, pp.336-343, 2005.
DOI : 10.1136/gut.2004.051169

A. Graness, K. Giehl, and M. Goppelt-struebe, Differential involvement of the integrin-linked kinase (ILK) in RhoA-dependent rearrangement of F-actin fibers and induction of connective tissue growth factor (CTGF), Cellular Signalling, vol.18, issue.4, pp.433-440, 2006.
DOI : 10.1016/j.cellsig.2005.05.011

B. Mueller, H. Mack, and N. Teusch, Rho kinase, a promising drug target for neurological disorders, Nature Reviews Drug Discovery, vol.128, issue.5, pp.387-398, 2005.
DOI : 10.1046/j.1523-1755.2002.00328.x

H. Shimokawa and A. Takeshita, Rho-Kinase Is an Important Therapeutic Target in Cardiovascular Medicine, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.9, pp.1767-1775, 2005.
DOI : 10.1161/01.ATV.0000176193.83629.c8

T. Moriyama and K. Nagatoya, The Rho-ROCK system as a new therapeutic target for preventing interstitial fibrosis. Drug News Perspect, pp.29-34, 2004.

A. Akhmetshina, C. Dees, M. Pileckyte, and G. Szucs, Rho-associated kinases are crucial for myofibroblast differentiation and production of extracellular matrix in scleroderma fibroblasts, Arthritis & Rheumatism, vol.170, issue.8, pp.2553-64, 2008.
DOI : 10.1002/art.23677

T. Cox and J. Erler, Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech, pp.165-78, 2011.

J. Erler and V. Weaver, Three-dimensional context regulation of metastasis, Clinical & Experimental Metastasis, vol.102, issue.8, pp.35-49, 2009.
DOI : 10.1007/s10585-008-9209-8

M. J. Paszek, V. M. Weaver, L. Kass, J. T. Erler, M. Dembo et al., The tension mounts: mechanics meets morphogenesis and malignancy Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis, J. Mammary Gland Biol. Neoplasia Int. J. Biochem. Cell Biol, vol.9, pp.325-342, 1987.

J. Mott and Z. Werb, Regulation of matrix biology by matrix metalloproteinases, Current Opinion in Cell Biology, vol.16, issue.5, pp.558-564, 2004.
DOI : 10.1016/j.ceb.2004.07.010

T. A. Wynn, Common and unique mechanism regulate fibrosis in various fibroproliferative diseases " . Review series introduction. The journal of clinical investigation, pp.524-529, 2007.

R. Issa, X. Zhou, C. M. Constandinou, and J. Fallowfield, Spontaneous recovery from micronodular cirrhosis: Evidence for incomplete resolution associated with matrix cross-linking???, Gastroenterology, vol.126, issue.7, pp.1795-1808, 2004.
DOI : 10.1053/j.gastro.2004.03.009

M. Gueders, J. Foidart, A. Noel, and D. Cataldo, Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: Potential implications in asthma and other lung diseases, European Journal of Pharmacology, vol.533, issue.1-3, pp.1-3133, 2006.
DOI : 10.1016/j.ejphar.2005.12.082

J. Werb and Z. , Regulation of matrix biology by matrix metalloproteinases, Curr. Opin. Cell Biol, vol.16, pp.558-564, 2004.

V. Quesada, G. Ordonez, and L. Sanchez, The Degradome database: mammalian proteases and diseases of proteolysis, Nucleic Acids Research, vol.37, issue.Database, pp.239-282, 2009.
DOI : 10.1093/nar/gkn570

F. Murphy, R. Issa, X. Zhou, S. Ratnarajah, H. Nagase et al., Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibilità of liver fibrosis MMP-2: expression, activation and inhibition, J Biol Chem Enzyme Protein, vol.277, issue.49, pp.11069-11076, 1996.

E. Mocchegiani, R. Giacconi, and L. Costarelli, Metalloproteases/anti-metalloproteases imbalance in chronic obstructive pulmonary disease, Current Opinion in Pulmonary Medicine, vol.17, issue.1, pp.11-20, 2011.
DOI : 10.1097/01.mcp.0000410743.98087.12

K. Kessenbrock, V. Plaks, Z. Werb, H. Sato, T. Takino et al., Matrix metalloproteinases: regulators of the tumor microenvironment. Cell A matrix metalloproteinase expressed on the surface of invasive tumour cells Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease, Review. Nature Biochem Pharmacol, vol.141, issue.752, pp.52-67, 1994.

B. Pasternak and P. Aspenberg, Metalloproteinases and their inhibitors???diagnostic and therapeutic opportunities in orthopedics, Acta Orthopaedica, vol.36, issue.5, pp.693-703, 2009.
DOI : 10.1002/art.23721

D. Cataldo, M. Gueders, N. Rocks, N. Sounni, B. Evrard et al., Pathogenic role of matrix metalloproteases and their inhibitors in asthma and chronic obstructive pulmonary disease and therapeutic relevance of matrix metalloproteases inhibitors, Cell Mol Biol, vol.49, issue.6, pp.875-84, 2003.

M. Arthur and I. Fibrogenesis, Metalloproteinases and their inhibitors in liver fibrosis YR Expression and regulation of tissue inhibitor of metalloproteinase-1 and matrix metalloproteinases by intestinal myofibroblasts in inflammatory bowel disease, Am J Physiol Gastrointest Liver Physiol. Review. 147 McKaig BC Am J Pathol, vol.279162, issue.24, pp.245-91355, 2000.

N. Hovdenak, J. Wang, C. Sung, T. Kelly, L. Fajardo et al., Clinical significance of increased gelatinolytic activity in the rectal mucosa during external beam radiation therapy of prostate cancer, International Journal of Radiation Oncology*Biology*Physics, vol.53, issue.4, pp.919-946, 2002.
DOI : 10.1016/S0360-3016(02)02808-0

C. Strup-perrot, D. Mathé, C. Linard, D. Violot, F. Milliat et al., Global gene expression profiles reveal an increase in mRNA levels of collagens, MMPs, and TIMPs in late radiation enteritis, AJP: Gastrointestinal and Liver Physiology, vol.287, issue.4, 2004.
DOI : 10.1152/ajpgi.00088.2004

J. Tian, M. J. Pecaut, J. M. Slater, and D. S. Gridley, Spaceflight modulates expression of extracellular matrix, adhesion, and profibrotic molecules in mouse lung, Journal of Applied Physiology, vol.108, issue.1, pp.162-171, 2010.
DOI : 10.1152/japplphysiol.00730.2009

C. Park, M. Park, H. Kwak, and H. Lee, Ionizing Radiation Enhances Matrix Metalloproteinase-2 Secretion and Invasion of Glioma Cells through Src/Epidermal Growth Factor Receptor-Mediated p38/Akt and Phosphatidylinositol 3-Kinase/Akt Signaling Pathways, Cancer Research, vol.66, issue.17, pp.8511-8519, 2006.
DOI : 10.1158/0008-5472.CAN-05-4340

C. Strup-perrot, M. Vozenin-brotons, M. Vandamme, M. Benderitter, and D. Mathe, Expression and activation of MMP -2, -3, -9, -14 are induced in rat colon after abdominal X-irradiation, Scandinavian Journal of Gastroenterology, vol.284, issue.1
DOI : 10.1016/S0016-5085(99)70339-2

J. Moulder, Pharmacological intervention to prevent or ameliorate chronic radiation injuries, Seminars in Radiation Oncology, vol.13, issue.1, pp.73-84, 2003.
DOI : 10.1053/srao.2003.50007

J. Lefaix, S. Delanian, J. Leplat, Y. Tricaud, M. Martin et al., Successful treatment of radiation-induced fibrosis using and Mn-SOD: An experimental study, International Journal of Radiation Oncology*Biology*Physics, vol.35, issue.2, pp.305-317, 1996.
DOI : 10.1016/0360-3016(96)00061-2

M. Vozenin-brotons, V. Sivan, N. Gault, C. Renard, C. Geffrotin et al., Antifibrotic action of Cu/Zn SOD is mediated by TGF-??1 repression and phenotypic reversion of myofibroblasts, Free Radical Biology and Medicine, vol.30, issue.1, pp.30-42, 2001.
DOI : 10.1016/S0891-5849(00)00431-7

J. Moulder and E. Cohen, Future Strategies for Mitigation and Treatment of Chronic Radiation-Induced Normal Tissue Injury, Seminars in Radiation Oncology, vol.17, issue.2, pp.141-148, 2007.
DOI : 10.1016/j.semradonc.2006.11.010

C. Samlaska and E. Winfield, Pentoxifylline, Journal of the American Academy of Dermatology, vol.30, issue.4, pp.603-621, 1994.
DOI : 10.1016/S0190-9622(94)70069-9

S. Delanian, C. Chatel, R. Porcher, J. Depondt, and J. Lefaix, Complete Restoration of Refractory Mandibular Osteoradionecrosis by Prolonged Treatment with a Pentoxifylline-Tocopherol-Clodronate Combination (PENTOCLO): A??Phase II Trial, International Journal of Radiation Oncology*Biology*Physics, vol.80, issue.3, pp.832-841, 2011.
DOI : 10.1016/j.ijrobp.2010.03.029

A. Datta, C. Scotton, and R. Chambers, Novel therapeutic approaches for pulmonary fibrosis, British Journal of Pharmacology, vol.99, issue.1
DOI : 10.1111/j.1476-5381.2011.01247.x

C. Avivi-green, M. Singal, and W. Vogel, Discoidin Domain Receptor 1???deficient Mice Are Resistant to Bleomycin-induced Lung Fibrosis, American Journal of Respiratory and Critical Care Medicine, vol.174, issue.4, pp.420-427, 2006.
DOI : 10.1164/rccm.200603-333OC

L. Ding, Z. Wu, T. Liu, M. Ullenbruch, J. Liu et al., Activation of stem cell factor/c-kit signaling pathway in pulmonary fibrosis Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis, ): A3536. 162 Daniels CE, pp.1308-1316, 2004.

Y. Aono, Y. Nishioka, M. Inayama, M. Ugai, J. Kishi et al., Imatinib as a Novel Antifibrotic Agent in Bleomycin-induced Pulmonary Fibrosis in Mice, American Journal of Respiratory and Critical Care Medicine, vol.171, issue.11, pp.1279-1285, 2005.
DOI : 10.1164/rccm.200404-531OC

C. Daniels, J. Lasky, A. Limper, K. Mieras, E. Gabor et al., Imatinib Treatment for Idiopathic Pulmonary Fibrosis, American Journal of Respiratory and Critical Care Medicine, vol.181, issue.6, pp.604-610, 2010.
DOI : 10.1164/rccm.200906-0964OC

M. Jasi?ska-stroschein, J. Owczarek, I. Wejman, and D. Orszulak-michalak, Novel mechanistic and clinical implications concerning the safety of statin discontinuation, Pharmacological Reports, vol.63, issue.4, pp.867-79, 2011.
DOI : 10.1016/S1734-1140(11)70602-8

G. Fritz and B. Kaina, Rho GTPases: promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets, Feb, vol.6, issue.1, pp.1-14, 2006.
DOI : 10.2174/156800906775471752

U. Laufs and J. Liao, Targeting Rho in Cardiovascular Disease, Circulation Research, vol.87, issue.7, pp.526-528, 2000.
DOI : 10.1161/01.RES.87.7.526

L. Wang, L. Xue, H. Yan, J. Li, and Y. Lu, Effects of ROCK inhibitor, Y-27632, on adhesion and mobility in esophageal squamous cell cancer cells, Molecular Biology Reports, vol.15, issue.4, pp.1971-1978, 2010.
DOI : 10.1007/s11033-009-9645-9

M. Nakajima, K. Hayashi, Y. Egi, and K. Katayama, Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma, Cancer Chemotherapy and Pharmacology, vol.52, issue.4, 2003.
DOI : 10.1007/s00280-003-0641-9

M. Nakajima, K. Hayashi, K. Katayama, and Y. Amano, Wf-536 prevents tumor metastasis by inhibiting both tumor motility and angiogenic actions, European Journal of Pharmacology, vol.459, issue.2-3, pp.2-3113, 2003.
DOI : 10.1016/S0014-2999(02)02869-8

M. Beuge, J. Prakash, and M. Lacombe, Increased liver uptake and reduced hepatic stellate cell activation with a cell-specific conjugate of the Rho-kinase inhibitor, 27632.

Y. Shimizu, K. Dobashi, K. Iizuka, T. Horie, K. Suzuki et al., Contribution of Small GTPase Rho and Its Target Protein ROCK in a Murine Model of Lung Fibrosis, American Journal of Respiratory and Critical Care Medicine, vol.163, issue.1, pp.210-217, 2001.
DOI : 10.1164/ajrccm.163.1.2001089

S. Carruthers and M. Wallington, Total body irradiation and pneumonitis risk: a review of outcomes, British Journal of Cancer, vol.46, pp.2080-2084, 2004.
DOI : 10.1016/0959-8049(93)90287-P

A. Yamaguchi and Y. , Analysis of dose distribution for heavily exposed workers in the first criticality accident in Japan, Radiat Res, vol.159, pp.535-542, 2003.

D. Brigstock, Connective tissue growth factor (CCN2, CTGF) and organ fibrosis: lessons from transgenic animals, Journal of Cell Communication and Signaling, vol.73, issue.1, 2009.
DOI : 10.1007/s12079-009-0071-5

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821473

A. Panek, M. Posch, N. Alenina, S. Ghadge, B. Erdmann et al., Connective tissue growth factor overexpression in cardiomyocytes promotes cardiac hypertrophy and protection against pressure overload Rocks: multifunctional kinases in cell behaviour, PLoS ONE Nat Rev Mol Cell Biol Review, vol.44, issue.6, pp.446-56, 2003.

J. Greenwood, L. Steinman, S. Zamvil, M. Gassel, H. Hidaka et al., Statin therapy and autoimmune disease: from protein prenylation to immunomodulation Protein kinase A in complex with Rho-kinase inhibitors Y-27632, Fasudil, and H-1152P: structural basis of selectivity, Nat Rev Immunol. Structure, vol.611, issue.512, pp.358-701595, 2003.

J. Williams, E. Hernady, C. Johnston, C. Reed, B. Fenton et al., Effect of Administration of Lovastatin on the Development of Late Pulmonary Effects after Whole-Lung Irradiation in a Murine Model, Radiation Research, vol.161, issue.5, p.560, 2004.
DOI : 10.1667/RR3168

J. Horowitz, I. Ajayi, P. Kulasekaran, and D. Rogers, Survivin expression induced by endothelin-1 promotes myofibroblast resistance to apoptosis, The International Journal of Biochemistry & Cell Biology, vol.44, issue.1, 2012.
DOI : 10.1016/j.biocel.2011.10.011

M. Boerma, Q. Fu, J. Wang, D. Loose, A. Bartolozzi et al., Comparative gene expression profiling in three primary human cell lines after treatment with a novel inhibitor of Rho kinase or atorvastatin Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis, Blood Coagul Fibrinolysis Faseb J, vol.1920, p.916, 2006.

A. Liu, G. Cerniglia, E. Bernhard, and G. Prendergast, RhoB is required to mediate apoptosis in neoplastically transformed cells after DNA damage, Proceedings of the National Academy of Sciences, vol.98, issue.11, p.6192, 2001.
DOI : 10.1073/pnas.111137198

I. Ader, C. Toulas, F. Dalenc, C. Delmas, J. Bonnet et al., RhoB controls the 24???kDa FGF-2-induced radioresistance in HeLa cells by preventing post-mitotic cell death, Oncogene, vol.21, issue.39, p.5998, 2002.
DOI : 10.1038/sj.onc.1205746

Z. Luan, A. Chase, and A. Newby, Statins Inhibit Secretion of Metalloproteinases-1, -2, -3, and -9 From Vascular Smooth Muscle Cells and Macrophages, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.23, issue.5, pp.769-775, 2003.
DOI : 10.1161/01.ATV.0000068646.76823.AE

L. Vincent, W. Chen, L. Hong, F. Mirshahi, Z. Mishal et al., Inhibition of endothelial cell migration by cerivastatin, an HMG-CoA reductase inhibitor: contribution to its anti-angiogenic effect, FEBS Letters, vol.86, issue.3, pp.159-166, 2001.
DOI : 10.1016/S0014-5793(01)02337-7

M. Crisby, G. Nordin-fredriksson, P. Shah, J. Yano, J. Zhu et al., Pravastatin Treatment Increases Collagen Content and Decreases Lipid Content, Inflammation, Metalloproteinases, and Cell Death in Human Carotid Plaques : Implications for Plaque Stabilization, Circulation, vol.103, issue.7, pp.926-933, 2001.
DOI : 10.1161/01.CIR.103.7.926

K. Molloy, M. Thompson, E. Schwalbe, P. Bell, A. Naylor et al., Comparison of levels of matrix metalloproteinases, tissue inhibitor of metalloproteinases, interleukins, and tissue necrosis factor in carotid endarterectomy specimens from patients on versus not on statins preoperatively, The American Journal of Cardiology, vol.94, issue.1, pp.144-146, 2004.
DOI : 10.1016/j.amjcard.2004.03.050

D. Taras, J. Blanc, A. Rullier, N. Dugot-senant, I. Laurendeau et al., Pravastatin reduces lung metastasis of rat hepatocellular carcinoma via a coordinated decrease of MMP expression and activity, Journal of Hepatology, vol.46, issue.1, pp.69-76, 2007.
DOI : 10.1016/j.jhep.2006.06.015

G. Butler, M. Butler, S. Atkinson, H. Will, T. Tamura et al., The TIMP2 Membrane Type 1 Metalloproteinase "Receptor" Regulates the Concentration and Efficient Activation of Progelatinase A: A KINETIC STUDY, Journal of Biological Chemistry, vol.273, issue.2, pp.871-880, 1998.
DOI : 10.1074/jbc.273.2.871

Y. Han, Matrix metalloproteinases, the pros and cons, in liver fibrosis, Journal of Gastroenterology and Hepatology, vol.17, issue.s3, pp.88-91, 2006.
DOI : 10.1074/jbc.M111490200

J. Horowitz, D. Rogers, V. Sharma, R. Vittal, E. White et al., Combinatorial activation of FAK and AKT by transforming growth factor-??1 confers an anoikis-resistant phenotype to myofibroblasts, Cellular Signalling, vol.19, issue.4, pp.761-771, 2007.
DOI : 10.1016/j.cellsig.2006.10.001

R. Greenberg, A. Bernstein, M. Benezra, I. Gelman, L. Taliana et al., FAKdependent regulation of myofibroblast differentiation [Erratum appeared in FASEB J, FASEB J, vol.20, issue.20, pp.1573-1006, 2006.

Y. Abe, M. Murano, N. Murano, E. Morita, T. Inoue et al., Simvastatin Attenuates Intestinal Fibrosis Independent of the Anti-Inflammatory Effect by Promoting Fibroblast/Myofibroblast Apoptosis in the Regeneration/Healing Process from TNBS-Induced Colitis, Digestive Diseases and Sciences, vol.93, issue.2, pp.335-4419, 2002.
DOI : 10.1007/s10620-011-1879-4

M. Selman, V. Ruiz, S. Cabrera, L. Segura, R. Ramírez et al., TIMP-1, -2, -3, and -4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment?, Am J Physiol Lung Cell Mol Physiol, vol.279, issue.3, pp.562-74, 2000.

R. Kalluri and E. Neilson, Epithelial-mesenchymal transition and its implications for fibrosis, Journal of Clinical Investigation, vol.112, issue.12, pp.1776-1784, 2003.
DOI : 10.1172/JCI200320530

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC297008

Y. Teng, M. Zeisberg, and R. Kalluri, Transcriptional regulation of epithelial-mesenchymal transition, Journal of Clinical Investigation, vol.117, issue.2, pp.304-306, 2007.
DOI : 10.1172/JCI31200

M. Fractional-shorteningjensen, J. Wang, and J. Denham, ] Weichselbaum R. Radiation's outer limits Bowel injury: current and evolving management strategies, 4+/-7.3** Ejection fraction, pp.31-32, 2003.

M. Anscher, C. Bourgier, M. Vozenin-brotons, and R. Arriagada, The Irreversibility of Radiation-Induced Fibrosis: Fact or Folklore?, Journal of Clinical Oncology, vol.23, issue.34, pp.8551-8553, 2005.
DOI : 10.1200/JCO.2005.03.6194

V. Haydont, B. Riser, and J. Aigueperse, Specific signals involved in the long-term maintenance of radiation-induced fibrogenic differentiation: a role for CCN2 and low concentration of TGF {beta}1 Pravastatin Inhibits the Rho/CCN2/extracellular matrix cascade in human fibrosis explants and improves radiation-induced intestinal fibrosis in rats, Am J Physiol Clin Cancer Res, vol.294, issue.13, pp.1332-1373, 2007.

J. Wang, M. Boerma, and Q. Fu, Simvastatin Ameliorates Radiation Enteropathy Development After Localized, Fractionated Irradiation by a Protein C-Independent Mechanism, International Journal of Radiation Oncology*Biology*Physics, vol.68, issue.5, pp.1483-90, 2007.
DOI : 10.1016/j.ijrobp.2007.03.036

V. Haydont, O. Gilliot, and S. Rivera, Successful Mitigation of Delayed Intestinal Radiation Injury Using Pravastatin is not Associated with Acute Injury Improvement or Tumor Protection, International Journal of Radiation Oncology*Biology*Physics, vol.68, issue.5, pp.1471-82, 2007.
DOI : 10.1016/j.ijrobp.2007.03.044

A. Ridley, D. Sahn, A. Demaria, and J. Kisslo, Rho GTPases and cell migration Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements, Problems in echocardiographic volume determinations: echocardiographicangiographic correlations in the presence of absence of asynergy, pp.2713-2735, 1978.

M. Vozenin-brotons, F. Milliat, and J. Sabourin, Fibrogenic signals in patients with radiation enteritis are associated with increased connective tissue growth factor expression, International Journal of Radiation Oncology*Biology*Physics, vol.56, issue.2, pp.7-11, 1976.
DOI : 10.1016/S0360-3016(02)04601-1

D. Preston, Y. Shimizu, and D. Pierce, Solid cancer and noncancer disease mortality: 1950-1997 Noncancer disease incidence in atomic bomb survivors Radiation dose and long term risk of cardiac pathology following radiotherapy and anthracyclin for a childhood cancer [16] Joiner MCE, Van der Kogel AE. Basic clinical radiobiology 4th edition Contribution of small GTPase Rho and its target protein rock in a murine model of lung fibrosis Coronary heart disease after radiotherapy for peptic ulcer disease, Radiopathology of Organs and Tissues. Heidelberg Verlag Trott KR. Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data, pp.381-407, 1958.

K. Jackson, S. Majka, and H. Wang, Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells Concise review: stem cells, myocardial regeneration, and methodological artifacts Microarray analysis of gene expression profiles of cardiac myocytes and fibroblasts after mechanical stress, ionising or ultraviolet radiation, J Clin Investig Stem Cells BMC Genom Cardiovasc Res, vol.10722232425, issue.67, pp.1395-402, 2001.

S. Wenzel, Y. Abdallah, and S. Helmig, Contribution of PI 3-kinase isoforms to angiotensin II- and ??-adrenoceptor-mediated signalling pathways in cardiomyocytes???, Cardiovascular Research, vol.71, issue.2, pp.352-62, 2005.
DOI : 10.1016/j.cardiores.2006.02.004

A. Parlakian, C. Charvet, and B. Escoubet, Temporally controlled onset of dilated cardiomyopathy through disruption of the SRF gene in adult heart Loss of cardiac microRNAmediated regulation leads to dilated cardiomyopathy and heart failure, Circulation Circ Res, vol.11230, issue.105, pp.2930-2939, 2005.

G. Gomez, J. Park, and A. Panahon, Heart size and function after radiation therapy to the mediastinum in patients with Hodgkin's disease Prevention and treatment of functional and structural radiation injury in the rat heart by pentoxifylline and alpha-tocopherol Inhibition of Rho kinase modulates radiation induced fibrogenic phenotype in intestinal smooth muscle cells through alteration of the cytoskeleton and connective tissue growth factor expression, Cancer Treatment Reports Int J Radiat Oncol Biol Phys Gut, vol.6733, issue.54, pp.1099-103, 1983.

V. Haydont, D. Mathe, and C. Bourgier, Induction of CTGF by TGF-beta1 in normal and radiation enteritis human smooth muscle cells: Smad/Rho balance and therapeutic perspectives [34] Brigstock DR. Connective tissue growth factor (CCN2, CTGF) and organ fibrosis: lessons from transgenic animals Connective tissue growth factor overexpression in cardiomyocytes promotes cardiac hypertrophy and protection against pressure overload, Radiother Oncol J Cell Commun Signaling PLoS ONE, vol.7635, issue.4, pp.219-251, 2005.

S. Wu, A. Platteau, and S. Chen, Conditional Over-expression of Connective Tissue Growth Factor Disrupts Postnatal Lung Development Rocks: multifunctional kinases in cell behaviour Gene expression profile in human late radiation enteritis obtained by high-density cDNA array hybridization Rho/ROCK pathway as a molecular target for modulation of intestinal radiation-induced toxicity Oxygen activates the Rho/Rho-kinase pathway and induces RhoB and ROCK-1 expression in human and rabbit ductus arteriosus by increasing mitochondria-derived reactive oxygen species: a newly recognized mechanism for sustaining ductal constriction, Am J Respiratory Cell Mol Biol Nat Rev Mol Cell Biol Radiat Res Br J Radiol Circulation, vol.42373841, issue.115, pp.552-63, 2003.

J. Greenwood, L. Steinman, S. Zamvil, C. Breitenlechner, M. Gassel et al., Statin therapy and autoimmune disease: from protein prenylation to immunomodulation Protein kinase A in complex with Rho-kinase inhibitors Y-27632, Fasudil, and H- 1152P: structural basis of selectivity Rho kinases in cardiovascular of physiology and pathophysiology Physiological role of ROCKs in the cardiovascular system, Nat Rev Immunol Structure (Camb) Circ Res Am J Physiol, vol.64445, issue.290, pp.358-70, 2003.

S. Hamid, H. Bower, G. Baxter, J. Williams, E. Hernady et al., irreversible injury in reperfused myocardium Effect of administration of lovastatin on the development of late pulmonary effects after whole-lung irradiation in a murine model Comparative gene expression profiling in three primary human cell lines after treatment with a novel inhibitor of Rho kinase or atorvastatin Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis, Am J Physiol Heart Circ Physiol Radiat Res Blood Coagul Fibrinolysis FASEB J Proc Natl Acad Sci, vol.2924950, issue.98, pp.2598-606, 2001.

I. Ader, C. Toulas, and F. Dalenc, RhoB controls the 24???kDa FGF-2-induced radioresistance in HeLa cells by preventing post-mitotic cell death, Oncogene, vol.21, issue.39, pp.5998-6006, 2002.
DOI : 10.1038/sj.onc.1205746

J. Milia, F. Teyssier, and F. Dalenc, Farnesylated RhoB inhibits radiation-induced mitotic cell death and controls radiation-induced centrosome overduplication, Cell Death and Differentiation, vol.4, issue.5, pp.492-501, 2005.
DOI : 10.1038/sj.cdd.4401586