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Abstract

One of the main requirements in many signal processing applications is to have a “meaningful
representation” in which signal’s characteristics are readily apparent. For example, for recognition,
the representation should highlight salient features; for denoising, it should efficiently separate
signal and noise; and for compression, it should capture a large part of signal using only a few
coefficients. Interestingly, despite these seemingly different goals, good performance of signal
processing applications generally has roots in the appropriateness of the adopted representations.

Representing a signal involves the design of a set of elementary generating signals, or a
dictionary of atoms, which is used to decompose the signal. For many years, dictionary design
has been pursued by many researchers for various fields of applications: Fourier transform
was proposed to solve the heat equation; Radon transform was created for the reconstruction
problem; wavelet transform was developed for piece-wise smooth, one-dimensional signals with a
finite number of discontinuities; and contourlet transform was designed to efficiently represent
two-dimensional signals made of smooth regions separated by smooth boundaries, etc.

For the developed dictionaries up to the present time, they can be roughly classified into two
families: mathematical models of the data and sets of realizations of the data. Dictionaries of the
first family are characterized by analytical formulations, which can sometimes be fast implemented.
The representation coefficients of a signal in one dictionary are obtained by performing signal
transform. Dictionaries of the second family, which are often general overcomplete, deliver greater
flexibility and the ability to adapt to specific signal data. They are the results of much more recent
dictionary designing approaches where dictionaries are learned from data for their representation.

The existence of many dictionaries naturally leads to the problem of selecting the most appro-
priate one for the representation of signals in a certain situation. The selected dictionary should
have distinguished and beneficial properties which are preferable in the targeted applications.
Speaking differently, it is the actual application that controls the selection of dictionary, not
the reverse. In the framework of this thesis, three types of dictionaries, which correspond to
three types of transforms/representations, will be studied for their applicability in some image
analysis and pattern recognition tasks. They are the Radon transform, unit disk-based moments,
and sparse representation. The Radon transform and unit disk-based moments are for invariant
pattern recognition problems, whereas sparse representation for image denoising, separation, and
classification problems.

This thesis contains a number of theoretical contributions which are accompanied by numerous
validating experimental results. For the Radon transform, it discusses possible directions that
can be followed to define invariant pattern descriptors, leading to the proposal of two descriptors
that are totally invariant to rotation, scaling, and translation. For unit disk-based moments, it
presents a unified view on strategies that have been used to define unit disk-based orthogonal
moments, leading to the proposal of four generic polar harmonic moments and strategies for their
fast computation. For sparse representation, it uses sparsity-based techniques for denoising and
separation of graphical document images and proposes a representation framework that balances
the three criteria sparsity, reconstruction error, and discrimination power for classification.

Keywords: image representation, Radon transform, unit disk-based moment, sparse representa-
tion, invariant pattern recognition, image denoising, image separation, classification.
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Chapter 1

General Introduction

The process of sampling a signal for its representation in digital systems leads to a sum of
Kronecker delta functions which are convenient for display but mostly inefficient for analysis
and recognition tasks. For this reason, one of the main requirements in many signal processing
applications is to have a “meaningful representation” in which signal’s characteristics are readily
apparent. For example,

- for recognition: the representation should highlight salient features,

- for denoising: it should efficiently separate signal and noise,

- for compression: it should capture a large part of signal using only a few coefficients.

Interestingly, despite these seemingly different goals, good performance of signal processing
applications generally has roots in the appropriateness of the adopted representation.

Representing a signal involves the design of a set of elementary generating signals, or a
dictionary of atoms, which is used to decompose the signal. For many years, dictionary design
has been pursued by many researchers for various fields of applications: Fourier transform was
proposed to solve the heat equation; Radon transform was created for the reconstruction problem;
wavelet transform was developed for piece-wise smooth, one-dimensional (1D) signals with a
finite number of discontinuities; and contourlet transform was designed to efficiently represent
two-dimensional (2D) signals made of smooth regions separated by smooth boundaries, etc. For
the developed dictionaries up to the present time, they can be roughly classified into two families:
mathematical models of the data and sets of realizations of the data.

Dictionaries of the first family are characterized by analytical formulations. The representation
coefficients of a signal in one dictionary are obtained by performing signal transform [179], which
can sometimes be fast implemented. When the dictionary forms a basis, these coefficients are
unique and a signal is then represented as a linear combination of dictionary atoms. In this case,
the synthesis operator of the transform is defined as the dictionary (for the orthogonal case)
or as the dictionary inverse (for the bi-orthogonal case). However, in spite of the mathematical
simplicity that explains their dominance for many years, orthogonal and bi-orthogonal dictionaries
have weakness in their expressiveness due to the uniqueness of the representation coefficients.
This main limitation has led to the recent development of analytical overcomplete dictionaries
[123], which have more atoms than (bi-)orthogonal dictionaries and eventually promise to “better
represent” a wider range of signal phenomena for various applications.

Dictionaries of the second family, which are often general overcomplete dictionaries, deliver
greater flexibility and the ability to adapt to specific signal data. They are the results of much
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Chapter 1. General Introduction

more recent dictionary designing approaches where dictionaries are learned from data for their
representation. Due to the unavoidable learning process, this line of approaches is strongly
influenced by the latest advances in computational algebra and optimization algorithms. The
main advantage of learned dictionaries is that they lead to results which are comparable and
sometimes superior to the state-of-the-art in many practical signal processing applications.
However, the cost of these approaches, as in the case of the Karhunen–Loève transform [171], is
dictionaries with unknown inner structure or fast implementation that often prevents them from
being used in time-critical applications.

The existence of many dictionaries naturally leads to the problem of selecting the most
appropriate one for the representation of signals in a certain situation since there exists no
dictionary that fits all purposes. The selected dictionary should have distinguished and beneficial
properties which are preferable in the targeted applications. Speaking differently, it is the actual
application that controls the selection of dictionary, not the reverse. In the framework of this
thesis, three types of dictionaries, which correspond to three types of transforms/representations,
will be studied for their applicability in some image analysis and pattern recognition tasks. They
are the Radon transform, unit disk-based moments, and sparse representation. Radon transform
and unit disk-based moments are for invariant pattern recognition problems, whereas sparse
representation for image denoising, separation, and general classification problems.

1.1 Invariant representation

The problem of recognizing patterns that undergo geometric transformations like rotation, scaling,
and translation (RST) is an important topic in pattern recognition and is the goal of many
research works. A number of approaches were proposed for this problem and they can be classified
into three main lines: brute force, normalization, and invariant features. Brute force approaches
are the most trivial ones, using “complete” training datasets; for each pattern category, the
training dataset contains all its RST-transformed versions. This line of approaches has inherent
limitations in both storage requirement and time complexity that make it practically inapplicable.
Normalization of patterns is a solution for the reduction of the size of training datasets. The burden
of the encoded RST transformation parameters in input patterns is alleviated by normalizing them
regarding their orientation, size, and position. However, despite its efficiency in the recognition
stage, normalization involves difficult inverse problems that are often ill-conditioned or ill-posed,
leading to unreliable normalization results. Approaches using invariant features are based on
the idea of describing each pattern by a set of measurable quantities that are insensitive to RST
transformations while providing enough discrimination power for recognition. Mathematically
speaking, if f is a pattern and g is another pattern described as g = O(f), where O is an RST
transformation operator, then the invariant I is a functional which satisfies I(f) = I (O(f)).

Many pattern descriptors were proposed in the literature for the extraction of pattern’s
invariant features using techniques that allow operator O to be rotation, scaling, translation,
or their combination [233, 244]. Translation and scaling invariance could be obtained by using
the Fourier [98] and Mellin [19] transforms respectively; rotation invariance by computing the
harmonic expansion [99] or performing the discrete Fourier transform on the circular slices of the
pattern represented in the polar space [243], etc. However, the task of combining several techniques
to make operator O a full RST transformation while guaranteeing the discrimination power of
the extracted invariant features is challenging and has attracted attention of many researchers.
Most of the existing methods do not allow operator O to be a full RST transformation, they
usually require normalization for the unavailability of any of RST transformations in operator O.
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1.1. Invariant representation

For example, methods based on the theory of moments [213] usually normalize an input pattern
regarding its centroid position and size: the pattern’s centroid is required to coincide with the
origin of the coordinate system and the longest distance from this centroid to a pattern point is
set to a fixed value. These normalizations usually introduce errors, are sensitive to noise, and
thus induce inaccuracy in the later recognition/matching process [113].

However, the existence of many pattern descriptors, each may or may not be fully invariant
to RST transformations, suggests that each descriptor is particularly more suitable for certain
applications and not to the others. For example, in situations where invariance to full RST
transformations is not a must, fully RST-invariant descriptors are usually not employed. This
is because, in general, invariance to any geometric transformation has to be paid by a loss of
information. A notable example of information loss is the removal of phase from Fourier transform
data in order to have translation invariance [166]. In situations where patterns are acquired from
a constrained environment (i.e., from a fixed location and of a fixed size), moments could thus
be computed directly from these patterns without the need of aforementioned normalizations.
The extracted moments, if used only for this type of patterns, are naturally invariant to scaling
and translation. In the sequel of this thesis, several invariant descriptors will be proposed by
exploiting patterns in the two domains: Radon transform and unit disk-based moments.

1.1.1 Radon transform

The Radon transform is named after Johann Radon (1887–1956), an Austrian mathematician
who wrote a classic paper in 1917 (its English translation is [181]) on the problem of determining
a 2D function from the knowledge of its line integrals. This problem, which is actually the
inverse problem of Radon transform, arises in widely diverse fields which include medical imaging,
astronomy, crystallography, electron microscopy, geophysics, optics, and material science where
the general problem of unfolding the internal structure of an object by its projections is known
as the problem of reconstruction from projections. Previously, Radon transform was known by
very few engineers and scientists who worked directly on this reconstruction problem in one of
the major areas of applications. Nowadays, it is widely known by working scientists in medicine,
engineering, physical science, and mathematics. A good introduction of Radon transform and
some of its applications could be found in the monograph by Stanley R. Deans [51] (or [52] for
the more concise and recently updated version).

The Radon transform of a 2D function is an integral transform which consists of integrals
over straight lines in R

2. From the mathematical viewpoint, the Radon transform of a function
is “projections” of that function onto a space formed by elementary functions, each is a straight
line in R

2. However, from the perspective of signal decomposition, the set of these straight lines
can be viewed as an “analysis” dictionary in which the representation of a signal is equivalent to
its Radon transform. Since line-based atoms have analytical form, it can be concluded that this
dictionary of lines belongs to the first family of analytical dictionaries.

The distinct characteristic of Radon transform is that it is one of some rare transforms that
have geometric interpretation in the spatial domain. The other transforms of this group are the
generalized Hough transform [10], trace transform [112], and geometric transform [134] which
replace line integrals by integrals over more complex domains like circles, squares, closed contours,
or even replace integrals by other functionals. The simplicity of line integrals has led to a wide
adoption of Radon transform in image analysis and computer vision communities, sometimes
under the name of Hough transform [97]. Typical applications are line and curve detection
[66], texture analysis [107], and deblurring [44], etc. In pattern recognition, several invariant
descriptors were proposed based on Radon transform. These descriptors are different from the
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others in the sense that Radon transform is used to create an intermediate representation upon
which invariant features are extracted from for the purpose of indexing/matching. There are
some reasons for the utilization of Radon transform:

- It is a rich transform with one-to-many mapping, each pattern point lies on a set of lines
in the spatial domain and contributes a curve to the transform data.

- It is a lossless transform, patterns can be reconstructed accurately by the inverse Radon
transform.

- It has reasonably low complexity, requiring only O(N2 logN) operations for an input
pattern image of size N ×N .

- It has useful properties concerning RST transformations applied on patterns.

Among the above reasons, the final one is of paramount importance for invariant pattern
recognition problems. By applying Radon transform on an RST-transformed pattern, the trans-
formation parameters are encoded in the radial (for translation and scaling) and angular (for
rotation) slices of the obtained transform data respectively. The exploitation of this encoded
information in order to define Radon transform-based descriptors that are totally invariant to
RST transformations will be presented in Chapter 2.

1.1.2 Image moments

In mathematics, moments are, loosely speaking, scalar quantities that are used to characterize
functions and to capture their significant features. They have been used for centuries in statistics to
measure quantitatively the shape of a probability density function [171]. For example, the “second
moment” is widely used to measure the “width” of a distribution in one dimension or the shape
of a distribution in higher dimensions. Other moments describe other aspects of a distribution
such as the mean, variance, skewness, peakiness, etc. The mathematical concept of moments
has a close relationship with its physical counterparts which are, however, often represented
somewhat differently. As an example, in classic rigid-body mechanics, the second moment is used
to measure the body’s mass distribution, which has no link with the aforementioned width of a
distribution.

Moments were introduced to the image processing and pattern recognition communities
almost 50 years ago by Ming-Kuei Hu [100]. Similar to Radon transform, from the mathematical
viewpoint, moments of a function are “projections” of that function onto a space formed by
elementary functions which are not necessarily orthogonal. From the perspective of signal
decomposition, the set of all these elementary functions can also be viewed as an “analysis”
dictionary which belongs to the first family of analytical dictionaries. It is well-known that image
moments are useful to describe objects after segmentation and they play a very important role
in defining invariant features in pattern recognition problems. An image moment is defined as a
certain particular weighted average of the image pixels’ intensities, where the weighting function
is 2D and characterized by a kernel function. In certain situations, functions of such moments,
usually chosen to have some attractive properties or interpretations, are also called moments.

Various sets of image moments which differ in the sets of kernel functions were proposed. The
most common and simplest choice for the kernel functions is the standard separable polynomials
xpyq (p, q ∈ Z

+) of geometric moments mpq. Similar to the concept of moments in mathematics
and physics, geometric moments of low orders also have intuitive meaning: m00 is the pattern’s
“mass” (the total sum of pixels’ intensities); m10

m00
and m10

m00
define the pattern’s centroid position;
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m20 and m02 describe the pattern’s distributions of mass with respect to the axes, etc. In
addition, by means of the Weierstrass approximation theorem [193, Theorem 7.26], the set of
kernel functions {xpyq : p, q ∈ Z

+} is complete. Combining this fact with the uniqueness and
existence theorems [158] of moments of a piece-wise continuous and bounded intensity function
f :

- uniqueness: the moment sequence {mpq} is uniquely determined by f ,

- existence: the moments of all orders exist and finite,

any pattern can be characterized by its geometric moments. However, the application of geometric
moments in pattern recognition problems is limited because of the non-orthogonality in {xpyq :
p, q ∈ Z

+} [213] and the complexity in deriving invariant features from mpq (see [100] for an
example). Non-orthogonality causes information redundancy in mpq, which in turn leads to
difficulty in image reconstruction and low accuracy in pattern recognition.

In theory, polynomial sequences of the same degree are equivalent since they generate the
same functional space. For this reason, moments generated from a certain set of kernel functions
can be expressed by moments generated from any other set of kernel functions. By means of the
Taylor series, moments of any type are thus equivalent to geometric moments. Nevertheless, in
practice, different moments have different issues on invariance properties, numerical stability,
computational complexity, and robustness to noise, etc. The quest for moments that “partially”
resolve these issues has led to the proposals of many moments to date. They include complex
moments [1], Legendre & Zernike moments [213], rotational moments [215], Tchebichef moments
[156], just to name a few. A recent comprehensive survey on image moments is available in [82].

Originating from statistical science, the dictionary, or set of kernel functions by convention,
used to compute moments is traditionally composed of polynomials of various orders. This
historical standpoint has prevented the Fourier transform from being classified as a moment-
computing method since Fourier basis is composed of harmonic functions. This restriction on the
definition of kernel functions, however, has been violated when moments are brought to image
processing, pattern recognition, and related fields. Typical examples are unit disk-based moments,
which are usually used to define features for rotation-invariant pattern recognition problems. As
will be seen in Section 3.1.1, it is necessary for these moments to employ complex exponential
functions to define the angular kernels. In this line, Chapter 3 will present four classes of image
moments that are defined on the unit disk using harmonic functions. These unit disk-based
moments inherit the simplicity in deriving rotation-invariant features and, on the other hand,
have some distinct characteristics that could make them more suitable for certain applications.

1.2 Sparse representation

The problem of representing signals sparsely in a dictionary [147], or sparse coding of signals,
has recently attracted attention of many researchers from various fields of applications due
to the potential use of sparsity-based representation to solve many challenging scientific prob-
lems concerning signals, e.g., compression, restoration/denoising, separation, and classification.
Concretely, sparse coding of a signal consists of representing it as a linear combination of a
few atoms from a given dictionary [29]. From this viewpoint, the sparse representation of a
complex signal is only feasible when the dictionary, whose atoms can be defined as signals which
ensemble generate the signal space, is overcomplete. Besides overcompleteness, the dictionary
usually has no other constraint, it could be derived from an analytical transform or learned from
data. The flexibility in defining dictionaries makes sparse representation different from the more

5



Chapter 1. General Introduction

traditional representations, such as the aforementioned Radon transform and image moments
where dictionaries are pre-defined and deterministic. This flexibility in dictionary design leads to
the ability to

- compactly represent a large class of signals for compression,

- adapt to signal’s morphological content for restoration/denoising,

- decompose a complex signal into separate sources for separation,

- capture signal’s salient features for classification.

Looking back in history, sparsity could be considered as another form of Occam’s razor
[216], a principle attributed to the logician and Franciscan friar William of Ockham (1288–1348),
which states that “Entities should not be multiplied unnecessarily”1. This principle has been
used to justify many theories in physics (uncertainty theory in quantum mechanics), biology
(evolutionary mechanism), science (heuristic argument), statistics (complexity penalization), etc.
This principle, in fact, has been adopted or reinvented by many scientists throughout history, as
in Gottfried Wilhelm Leibniz’s identity of observables or in Ernst Mach’s principle of economy.
Nowadays, the most common and useful statement of the principle for scientists is

When you have two competing theories that make exactly the same predictions, the
simpler one is the better.

In spite of a long history, the significance of sparsity in vision has only become clear gradually
over the last half century. The work of Horace Barlow in 1950s [13] led to one of the most
important principles in sensory coding efficiency, which pointed out that the visual cortex must
be a massive sparsifying engine. More specifically, it was recognized that 106 or more bits per
second which arrive at the cortex is reduced to only dozens of bits per second by the time the
information flow reaches the innermost abstract representation of the visual field. David H. Hubel
and Torsten N. Wiesel then showed in their work [102] that the visual cortex employs multiscale
and multidirection basis functions, much like what are now called wavelets, and thresholding
devices which allow to ignore small wavelet coefficients and thereby sparsify them. Effective
computational tools of the above theories were only available by the mid 1980s following the work
of Peter J. Burt and Edward H. Adelson on pyramidal filter banks [31] and Ingrid Daubechies on
wavelets [47]. It was finally found by the early 1990s that wavelets and their derivatives X-lets
lead to sparse representation of much multimedia content (e.g., images, videos, sounds).

Studies in mammalian vision system [164] also gave a strong support to sparse representation.
The receptive fields of simple cells in mammalian primary visual cortex can be characterized as
being spatially localized, oriented, and bandpass (i.e., selective to structure at different scales),
comparable to the basis functions of wavelet transforms, and having a strategy for producing a
sparse distribution of output activity in response to natural images. Bruno A. Olshausen and
David J. Field [165] validated this theory by considering the problem of efficient coding of natural
images. They showed that when the dictionary is overcomplete and non-orthogonal, a coding
strategy that maximizes sparseness (i.e., a small number of code elements are non-zero) will
select only atoms that are necessary for representing a given input.

Due to the recent advances in optimization theory and numerical computation, finding a
sparse representation of a signal in a given overcomplete dictionary becomes better-behaved and
much more practical than it was supposed just a decade ago. In parallel with this development,

1Its original Latin form is “Pluralitas non est ponenda sine neccesitate”.
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it has been found that many important tasks dealing with media content can now be viewed as
finding sparse representations in given dictionaries. For example, the media encoding standard
JPEG and its successor, JPEG-2000, both are based on the notion of transform encoding that
leads to a sparse representation. The more feasibility in finding sparse solutions, combined
with the new insight into existing tasks, has fostered the adoption of sparse representation to
solve many difficult problems in signal and image processing as reported in recently published
two monographs [70, 207] or a special issue in Proceedings of the IEEE [12]. Chapter 4 will
briefly review the sparse modeling framework and then apply sparse representation for document
image processing and image classification. More explicitly, sparse representation will be used for
removing noise that concentrates along graphical contours and for extracting text components
from graphical document images. In addition, the current sparsifying frameworks will be modified
to make the representation more suitable for classification tasks.

1.3 Thesis contributions

This thesis presents the research works on image representations for some image analysis and
pattern recognition problems. It pursues both invariant and sparse representations introduced in
the previous sections and makes the following main contributions:

Chapter 2 – Radon transform-based representation: This chapter provides a unified
view on possible directions that can be followed to define invariant pattern descriptors using the
Radon transform. It proves theoretically that the Radon transform has the property of suppressing
additive white/“salt & pepper” noise. It generalizes an existing Radon transform-based descriptor,
the R-signature, to have the generic R-signature that is totally invariant to RST transformations.
It proposes to apply the 1D Fourier–Mellin and Fourier transforms on the radial and angular slices
of the Radon transform data respectively to have the RFM descriptor that is totally invariant
to RST transformations. It shows that the two proposed invariant pattern descriptors lead to
superior experimental results over comparison descriptors in terms of retrieval rate on grayscale
and binary noisy pattern datasets.

Chapter 3 – Unit disk-based representation: This chapter presents a unified view on
strategies that have been used to define unit disk-based orthogonal moments. It introduces four
generic harmonic radial kernels which correspond to four sets of generic polar harmonic moments
and take existing sets of polar harmonic moments as special cases. It proves theoretically that the
sets of generic polar harmonic kernels are complete in the Hilbert space of all square-integrable
continuous complex-valued functions on the unit disk. It proposes several strategies for fast
computation of polar harmonic kernels/moments based on the recursive computation of complex
exponential and trigonometric functions. It shows experimentally that, when compared with
existing moments of similar nature, the proposed generic polar harmonic moments are superior
in terms of computational complexity and comparable in terms of representation capability and
discrimination power.

Chapter 4 – Sparse representation: This chapter proposes to use sparse representation of
images for the three following main problems.

- Denoising : It uses the synthesis operator of curvelet transform as the dictionary in a sparse
representation framework for directional denoising. It demonstrates both theoretically and
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experientially that the information about the level of edge noise has a linear relationship
with the only framework’s parameter. It shows that the proposed sparsity-based denoising
method leads to superior performance over comparison methods on edge noise removal in
bilevel graphical document images.

- Separation: It applies an existing sparsity-based separation technique using two appropri-
ately chosen discriminative overcomplete dictionaries, each one gives sparse representation
over one type of images and non-sparse representation over the other, for the classical
problem of extracting text components from graphical document images. It proposes some
heuristic rules to group text components into text strings in post-processing steps. It shows
experimentally that the proposed sparsity-based text extraction method leads to better
performance than the current benchmark.

- Classification: It proposes a new discriminative sparse coding method by adding a discrimi-
native term to the conventional sparse representation framework, resulting in a model that
is a controlled trade-off between sparsity, fidelity to the data, and discrimination power. It
uses an information theoretic-based criterion, called minimum message length, to select the
optimal statistical model. It shows that the proposed method leads to superior classification
performance over comparison methods on the two common handwritten and face datasets.
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Chapter 2. Radon Transform-based Invariant Pattern Representation

Figure 2.1: Geometric illustration of the Radon transform of a 2D function f . The Radon
transform is a mapping from the spatial space (x, y) to the parameter space (θ, ρ) and can be
mathematically represented by a line integral of f along all the lines L(θ, ρ) parameterized by
(θ, ρ) represented in the spatial space (x, y).

2.1 The Radon transform

This section provides some basics of the Radon transform, started with its definition and its
derived beneficial properties. A discussion on the robustness of the Radon transform to additive
white/“salt & pepper” noise and on its efficient implementation strategies is also given. The
inspiration for the derivation of RST invariants from the Radon transform of a pattern is provided
along with a detailed review on related works. All these aspects are followed by a sketch of
contributions that will be presented in this chapter.

2.1.1 Definition

Let f be a 2D function and L(θ, ρ) be a straight line in R
2 represented by

L(θ, ρ) = {(x, y) ∈ R
2 : x cos θ + y sin θ = ρ},

where θ is the angle L(θ, ρ) makes with the y axis and ρ is the distance from the origin to L(θ, ρ).
The Radon transform [51] of f , denoted by Rf , is a function defined on the space of lines L(θ, ρ)
(θ, ρ ∈ R) by the line integral along each line:

Rf (θ, ρ) =

∫

L(θ,ρ)
f(x, y) dxdy =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(ρ− x cos θ − y sin θ) dxdy. (2.1)

In the field of shape analysis and recognition, the function f is constrained to the following
particular definition:

f(x, y) =

{

1 if x ∈ D

0 otherwise,

where D is the domain of the binary shape represented by f . In the illustration of the Radon
transform in Fig. 2.1, the shaded region represents the region D. The value of the line integral in
Eq. (2.1) is equal to the length of the intersection between the line L and the shaded region.
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2.1. The Radon transform

2.1.2 Properties

The Radon transform has some properties that are beneficial for invariant pattern recognition
problems as outlined below:

P1 linearity : The Radon transform is linear.

R(f+g)(θ, ρ) = Rf (θ, ρ) +Rg(θ, ρ).

P2 periodicity : The Radon transform of f is periodic in the variable θ with period 2π.

Rf (θ, ρ) = Rf (θ + 2kπ, ρ), ∀k ∈ Z.

P3 semi-symmetry : The Radon transform of f is semi-symmetric.

Rf (θ, ρ) = Rf (θ ± π,−ρ).

P4 translation: A translation of f by a vector ~u = (x0, y0) results in a shift in the variable
ρ of Rf by a distance d = x0 cos θ+ y0 sin θ that is equal to the length of the projection
of ~u onto the line x cos θ + y sin θ = ρ.

Rf (θ, ρ) → Rf (θ, ρ− x0 cos θ − y0 sin θ).

P5 rotation: A rotation of f by an angle θ0 implies a circular shift in the variable θ of Rf

by a distance θ0.
Rf (θ, ρ) → Rf (θ + θ0, ρ).

P6 scaling : A scaling of f by a factor α results in scalings in the variable ρ and the amplitude
of Rf by the factors α and 1

α respectively.

Rf (θ, ρ) →
1

α
Rf (θ, αρ).

Thus, by applying the Radon transform on an RST-transformed pattern, the RST transfor-
mation parameters are encoded in the slices of the obtained transform data [94]:

- radial slices (i.e., constant-θ slices) encode the translation and scaling parameters,

- angular slices (i.e., constant-ρ slices) encode the rotation parameter.

Current techniques usually exploit this encoded information to define invariant pattern descriptors.
Fig. 2.2 illustrates the invariance properties of the Radon transform. The top row contains two
original pattern images I1 and I2 (Figs. 2.2a and 2.2b) and the RST-transformed versions I3,
I4, I5 (Figs. 2.2c–2.2e) of I2. The second row shows the Radon transforms of these five pattern
images. It is observed that the Radon transforms of I1 and I2 are totally different while there
exists resemblance between the Radon transforms of I2, I3, I4, and I5 due to the aforementioned
properties P4–P6. It is observed that

- scaling (I2 → I3) becomes a homogeneous compression in the radial slices,

- rotation (I3 → I4) becomes a constant shift in the angular slices,

- and translation (I4 → I5) becomes a sinusoidal shift in the radial slices.

11
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(a) I1 (b) I2 (c) I3 (d) I4 (e) I5

(f) RI1(θ, ρ) (g) RI2(θ, ρ) (h) RI3(θ, ρ) (i) RI4(θ, ρ) (j) RI5(θ, ρ)

Figure 2.2: Illustration of the invariance properties of the Radon transform. The first row contains
two original pattern images I1 and I2 and the RST-transformed versions I3, I4, and I5 of I2.
The second row shows the Radon transforms of these five pattern images. The intensity of these
images has been rescaled to fit the display range.

2.1.3 Robustness to noise

The Radon transform over a circular domain was proven to be robust to additive white noise
[107]. In this subsection, similar results on additive white/“salt & pepper” noise are developed
for a rectangular domain. This naturally leads to the robustness of pattern descriptors defined
based on the Radon transform to additive noise.

Additive white noise: Suppose the pattern f is corrupted by additive white noise η with
zero mean and variance σ2 to be f̂(x, y) = f(x, y) + η(x, y), the Radon transform of the noisy
pattern f̂ is obtained by applying the linearity property (P1) of the Radon transform:

Rf̂ (θ, ρ) = Rf (θ, ρ) +Rη(θ, ρ).

Recall that the Radon transform, as illustrated in Fig. 2.1, is defined as line integrals of f along
all the lines in the spatial domain. In the continuous domain, the Radon transform of additive
white noise, Rη, is proportional to the mean value of the noise, which means Rη(θ, ρ) = 0, or

Rf̂ (θ, ρ) = Rf (θ, ρ). (2.2)

The ideal additive white noise, therefore, has no effect on the Radon transform in the continuous
domain. However, in practice, the patterns represented and processed in digital systems are not
continuous functions but their sampled and quantized versions; Eq. (2.2) therefore does not hold.

Suppose f is in the form of a sampled 2D signal of size m× n (0 ≤ x ≤ m, 0 ≤ y ≤ n) whose
pixels’ values are random variables with mean µ and variance σ2. The computation of the Radon
transform of f is assumed to follow the definition, that is the values of f along each line L(θ, ρ)
are summed up, as shown in Fig. 2.3. The contribution of each pixel i to the sum is proportional
to the length of its intersection with L(θ, ρ). The sum of f along all the lines L(θ, ·) having the

12



2.1. The Radon transform

Figure 2.3: Illustration of the computation of the Radon transform by definition: for each value
of θ, the function f is projected onto an axis ρ which makes an angle θ with the x axis. The
projection makes itself a radial slice, Rf (θ, ·), in the Radon transform of f .

same direction θ can also be interpreted as the projection of f onto an axis ρ that makes an
angle θ with the x axis. This projection is the radial slice Rf (θ, ·) in the Radon transform of f .

To study this projection, let θ = const and denoting nρ = AB, then the sum of the pixel
values pρ = Rf (θ, ρ) for each line L(θ, ρ) has mean nρµ and variance nρσ

2. The average of the
expected value of p2ρ is

Ep =
1

2Nρ

∫ Nρ

−Nρ+1
E{p2ρ} dρ =

1

2Nρ

∫ Nρ

−Nρ+1
nρσ

2 dρ+
1

2Nρ

∫ Nρ

−Nρ+1
n2
ρµ

2 dρ. (2.3)

In the above equation, the integral
∫ Nρ

−Nρ+1 nρ dρ represents the area of f and is equal to the

number of pixels in f , which is mn. Then, by denoting A(θ) =
∫ Nρ

−Nρ+1 n
2
ρ dρ, Eq. (2.3) is simplified

as

Ep =
mnσ2

2Nρ
+

A(θ)µ2

2Nρ
. (2.4)

For the pattern image f corrupted by additive white noise η, assuming that f has mean µs

and variance σ2
s and that η(x, y) has mean µn = 0 and variance σ2

n, then Es =
mnσ2

s

2Nρ
+ A(θ)µ2

s

2Nρ

and En = mnσ2
n

2Nρ
. The signal-to-noise ratios (SNR) of f̂ and its projection along the direction θ,

Rf̂ (θ, ·), are

SNRimage =
σ2
s + µ2

s

σ2
n

,

SNRproj(θ) =
Es

En
=

mnσ2
s +A(θ)µ2

s

mnσ2
n

=
σ2
s +

A(θ)
mn µ2

s

σ2
n

,

or

SNRproj(θ) = SNRimage +

(

A(θ)

mn
− 1

)

µ2
s

σ2
n

. (2.5)
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Figure 2.4: The values of the multiplicative factor, A(θ)
mn , at different projection directions and

different pattern sizes. A(θ)
mn gets its maximum at θ = 90 (degree), which corresponds to the

direction of the longer side, and its minimum near θ = 0 (degree). The values of A(θ)
mn relate

directly to the noise-suppressing ability of the Radon transform through Eqs. (2.6) and (2.7).

The SNR is increased by a quantity
(

A(θ)
mn − 1

)

µ2
s

σ2
n

after projecting f̂ along the direction θ. As the

value of A(θ) depends on both θ, m and n, the multiplicative factor
(

A(θ)
mn − 1

)

is not constant.

Moreover, the value of A(θ)
mn is relatively “large” because A(θ) =

∫ Nρ

−Nρ+1 n
2
ρ dρ is one-order larger

than mn =
∫ Nρ

−Nρ+1 nρ dρ. Eq. (2.5) can then be rewritten as

SNRproj(θ) ≃ SNRimage +
A(θ)

mn
× µ2

s

σ2
n

. (2.6)

Since A(θ)
mn × µ2

s

σ2
n

is positive and has a large value, which corresponds to a larger increase in the

value of SNR after projection, the above equation means that the Radon transform is very robust
to additive white noise. Fig. 2.4 depicts the values of A(θ)

mn for a range of θ from 0 to 180 (degree)

using input pattern images of different sizes. Notice from the figure that the value of A(θ)
mn depends

on both the projection direction θ and the actual size of f . It gets its maximum in the direction
of the longer side and its minimum near the direction of the shorter side of f :

min
θ

A(θ)

mn
≃ min(m,n),

max
θ

A(θ)

mn
= max(m,n).

Additive “salt & pepper” noise: In the field of shape analysis and recognition, f is con-
strained to have binary values of 0 or 1 and the additive noise to f is in the form of “salt &
pepper” noise, instead of white noise. To model this type of noise, let D and d be the percentage
of pixels in f̂ occupied by the shape region and flipped by the noise respectively. Then

µs = D, σ2
s = D −D2,

µn = d(1− 2D), σ2
n = d− d2(1− 2D)2.
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Using Eq. (2.4), the SNRs of f̂ and its projection along the direction θ, Rf̂ (θ, ·), are

SNRimage =
σ2
s + µ2

s

σ2
n + µ2

n

=
D

d
,

SNRproj(θ) =
mnσ2

s +A(θ)µ2
s

mnσ2
n +A(θ)µ2

n

=
D −D2 + A(θ)

mn D2

d− d2(1− 2D)2 + A(θ)
mn d2(1− 2D)2

=
D

d
×

1 +D
(

A(θ)
mn − 1

)

1 + d(1− 2D)2
(

A(θ)
mn − 1

) ,

or

SNRproj(θ)

SNRimage

=
1 +D

(

A(θ)
mn − 1

)

1 + d(1− 2D)2
(

A(θ)
mn − 1

) . (2.7)

It is clear that
SNRproj(θ)

SNRimage
depends on the size of the input noisy pattern f̂ , the projection direction

θ, the percentage of shape region D, and the level of noise d. In order to estimate an explicit

minimum value of
SNRproj(θ)

SNRimage
, assuming that D ∈ [0.3, 0.7] and d ∈ [0, 0.2]. These are practically

reasonable assumptions since the binary shape usually occupies around half of the pattern area

(D = 0.5) and the pattern is not too noisy2. Due to the inverse proportion of
SNRproj(θ)

SNRimage
to d,

SNRproj(θ)

SNRimage
gets its minimum value at max d = 0.2. Moreover at d = 0.2, since

SNRproj(θ)

SNRimage
decreases

as D goes away from the point D = 0.5, the minimum value of
SNRproj(θ)

SNRimage
, at a specific value of

A(θ)
mn , is reached at minD = 0.3. The depiction of the values of

SNRproj(θ)

SNRimage
for the case A(θ)

mn = 100

over the domain D ∈ [0.3, 0.7] and d ∈ [0, 0.2] is given in Fig. 2.5a.

Fixing D = 0.3 and d = 0.2, the dependance of
SNRproj(θ)

SNRimage
on A(θ)

mn is further given in Fig. 2.5b.

It is evident that
SNRproj(θ)

SNRimage
> 1, meaning the projection in the Radon transform has the property

of suppressing additive “salt & pepper” noise. Additionally,
SNRproj(θ)

SNRimage
increases with the increase

in A(θ)
mn from 4.1667 at A(θ)

mn = 20 (a very small pattern) to its maximum value

lim
A(θ)
mn

→∞

SNRproj(θ)

SNRimage

=
D

d(1− 2D)2
= 9.375

at A(θ)
mn = ∞. This observation implies a better suppression of additive “salt & pepper” noise in

the projections of larger-sized patterns.

2.1.4 Implementation

The Radon transform as defined in Eq. (2.1) is continuous by nature; it should be adapted
to discrete data in order to be used in digital systems. A seminal algorithm for the discrete
Radon transform was proposed in [20] utilizing projections along straight lines to compute an
approximation to the Radon transform, requiring O(N4) operations for a pattern image of size

2The highest level of “salt & pepper” noise used in experiments is d = 0.1, meaning 10% of the pixels is flipped
(the dataset in the rightmost column of Fig. 2.26b).
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Figure 2.5: (a) The values of
SNRproj

SNRimage
over the domain {(D, d) : 0.3 ≤ D ≤ 0.7; 0 ≤ d ≤ 0.2}

for the case A(θ)
mn = 100.

SNRproj

SNRimage
reaches its minimum value at one of the four corners of the

plotting range. (b) The dependance of the values of
SNRproj

SNRimage
on A(θ)

mn for the minimum case, i.e.,

(D, d) = (0.3, 0.2).

N ×N . This approach was extended in [115] by constructing a discrete Radon transform that has
an exact relationship with the continuous Radon transform. This algorithm, however, still has an
unfavorable computational complexity of O(N3). A reduction in the computational complexity
could be obtained by summing pixels’ values along a set of aptly chosen discrete lines that are
complete in slope and intercept [28, 89]. These approaches require only O(N2 logN) operations
and, in addition, an iterative algorithm has been developed from them to recover the original
pattern with desired accuracy [180].

The same complexity of O(N2 logN) could also be achieved by interpreting the Radon
transform through the 2D Fourier transform by means of the projection-slice theorem, which
states that the 1D radial slice of the Radon transform data and the 1D radial slice of the 2D
Fourier transform data make a 1D Fourier transform pair:

FRf (θ,·)(ξ) =
∫ ∞

−∞

(∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(ρ− x cos θ − y sin θ) dxdy

)

e−iρξ dρ

=

∫ ∞

−∞

∫ ∞

−∞
f(x, y) e−i(x cos θ+y sin θ)ξ dxdy

= Ff (ξ cos θ, ξ sin θ). (2.8)

Naturally, the discrete Radon transform [7] relies on the discrete version of the projection-slice
theorem, which associates it with the pseudo-polar Fourier transform [6].

A more comprehensive survey on discrete Radon transform approaches could be found in [38]
with O(N2 logN) is the lowest complexity to date. Thus, whenever only the Radon transform is
concerned, any implementation requiring O(N2 logN) operations should be applicable. However,
when there is a possibility of fusing the Radon transform with another transform as in the case
of the RFM descriptor in Section 2.3, a lucid choice of implementation strategy may lead to
some computational benefit.
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2.1. The Radon transform

Table 2.1: The influence of geometric transformations (rotation, scaling, and translation) on the
Radon transform of a pattern f , summarized from properties P4− P6 of the Radon transform
in Subsection 2.1.2.

Geometric
transformation

Influenced
slice

Change in
position

Change in
magnitude

Rotation θ Circular shift ×
Scaling ρ Scaling

√

Translation ρ Shift ×

2.1.5 Related works

Pattern descriptors defined based on the Radon transform usually exploit its beneficial properties
to be invariant to rotation, scaling, translation, or their combinations. It is pertinent to mention
that the influences of each transformation on the Radon transform data are quite separated
from those of other transformations as given in Table 2.1: rotation on the angular slices and
scaling/translation on the radial slices. For this reason, strategies used to define invariant
descriptors of a pattern from its Radon transform thus need to overcome these residual influences.
Different strategies have led to different descriptors, each may or may not be totally invariant
to RST transformations; and normalization comes as a natural solution to fulfill the lack of
invariance to any geometric transformation.

R-transform and R-signature: A pioneer work in this direction is the R-transform, which
gives rise to the R-signature [211], obtained by using an integral function and then the discrete
Fourier transform on the radial and angular slices of the Radon transform data respectively. The
R-transform of a 2D function f has the following definition:

Rf2(θ) =

∫ ∞

−∞
R2

f (θ, ρ) dρ. (2.9)

The integration computed on the radial slices of the Radon transform data of f makes Rf2

invariant to translation and scaling, except for a multiplicative factor 1
α3 resulting from the

scaling factor α in f , and periodic with period π. Furthermore, in order to have a representation
that is totally invariant to RST transformations, the magnitude of the discrete Fourier transform
of the discretized Rf2 normalized by the DC component has been used:

FRf2(k) =

∣

∣

∣

∣

∣

∑N−1
n=0 Rf2(θn) e

− 2πi
N

kn

∑N−1
n=0 Rf2(θn)

∣

∣

∣

∣

∣

, k = 0, 1, . . . , N − 1.

In this way, the conventional R-signature of f is originally defined as

[FRf2(1), FRf2(2), . . . , FRf2(N − 1)] . (2.10)

Φ-signature: Similar to the R-signature, the Φ-signature [159] is computed by using an integral
function on the angular slices of the Radon transform data to get rotation invariance. The Φ-
signature of a 2D function f has the following definition:

Φf (ρ) =

∫ 2π

0
Rf (θ, ρ) dθ.
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The integration computed on the angular slices of the Radon transform data of f makes Φf

invariant to rotation. Invariance to translation and scaling is made possible by normalizations.
However, the required normalizations concerning pattern’s position and size prevent the Φ-
signature from being applied to noisy patterns.

HRT descriptor: A histogram of the Radon transform was also proposed in [210]. In this
work, the intensity values over each radial slice of the Radon transform data are put into bins,
regardless of their radial positions, in order to have a representation that is invariant to scaling
and translation. The HRT descriptor of a 2D function f has the following definition:

HRTf (θ, γ) =
|{ρ : γ = Rf (θ, ρ)}|

|{ρ}| ,

where |X| denotes the cardinality of a set X. The main weakness of this approach is the need to
compute the “rotational distance” between the 2D HRT descriptors of f and g as

dist(f, g) = min
α∈[0,π)

‖HRTf − HRTα
g ‖2

where

HRTα
g (θ, γ) = HRTg(θ + α, γ)

in order to overcome the problem of rotation. The computation of this distance requires circular-
shifting of a 2D matrix along the angular axis for all possible values of α. The resulting process
is then prohibitively slow.

R2DFM descriptor: There was an effort in [227] to apply the 2D Fourier–Mellin transform
[199] on the Radon transform data to get invariance to rotation and scaling. In this approach,
Mellin transform and harmonic expansion are applied on the radial and angular slices of the
Radon transform data respectively as

R2DFMf (s, k) =

∫ ∞

0

∫ 2π

0
Rf (θ, ρ) ρ

s−1 e−ikθ dθdρ,

where s = σ + iτ with σ = const. The magnitude of R2DFMf is then invariant to rotation and
scaling due to the invariance property of the Mellin transform and harmonic expansion. The
required normalization to have translation invariance is the main weakness of this approach and
hence prevents it from being applied to noisy patterns.

RCF descriptor: A set of spectral and structural features, called Radon composite features,
has also been extracted from the Radon transform data for pattern description [42]. The features
in this set are extracted in the ways that makes them invariant to translation. In this set, the
“degree of uniformity” is essentially the R-transform that was proposed in [211] and the “longest
line” defined as

ξf (θ) = max
ρ

Rf (θ, ρ)

is the information encoded in the generic R-signature described in this chapter. Normalization is
used to make this set of features invariant to scaling. However, and more importantly, this set of
features is not invariant to rotation and consequently, in the matching step, these features need
to be rotated to all possible angles corresponding to potential pattern’s orientations in order to
compute patterns’ similarity. Long matching time may prevent the application of this approach
in real systems.
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Table 2.2: Strategies used by each approach to overcome the residual influences of RST transfor-
mations on the radial and angular slices of the Radon transform of a pattern f . The symbol “×”
denotes the lack of invariance to the corresponding geometric transformation and normalization
should be used when necessary.

Descriptor Rotation Scaling Translation

R-signature [211] DFT Integration Integration

Φ-signature [159] Integration × ×
HRT [210] × Histogram Histogram

R2DFM [227] Fourier series Mellin trans. ×
RCF [42] × × Max, Integration, Fourier trans.

RWF [40] DFT × ×

RWF descriptor: Recently, a rotation-invariant descriptor was proposed in [40] by using the
dual-tree complex wavelet and discrete Fourier transforms on the radial and angular slices of the
Radon transform data respectively. Invariance to rotation is due to the discrete Fourier transform
and invariance to translation and scaling is obtained from normalizations. The dual-tree complex
wavelet transform selects shift-invariant features in a multi-resolution way. Again, being invariant
only to rotation limits the applicability of this approach since it cannot be used, for example, for
noisy patterns.

The others: Another direction in using the Radon transform for pattern description is to extract
features directly from the Radon transform data, similar to the way the Hough transform [66] is
used. For example, pattern primitives in edge form are detected from the Radon transform data
and represented analytically in [129]. Moreover, their spatial relations can be made explicit [127]
and these lead to a taxonomy of primitives for their characterization [128]. This approach, however,
is quite limited since it requires that the edge primitives have analytical form. Generalizations of
the Radon transform, called the trace and geometric transforms, were also proposed and used
for pattern description [112, 134] by using functionals other than integral and by extending the
functional domain from lines to regions delimited by closed contours. However, the application of
these generalizations is restricted due to high computational complexity.

Table 2.2 summarizes the strategies used by each approach to overcome the residual influences
of RST transformations on the radial and angular slices of the Radon transform of a pattern f .
Among existing Radon transform-based approaches, only the R-signature is totally invariant to
RST transformations by definition, all other approaches need to resort to normalizations for the
lack of invariance to any geometric transformation. Additionally, even though R-signature has a
low discrimination power because of the information loss in the compression process from the
Radon transform data to a 1D signature, among the Radon transform-based pattern descriptors,
R-signature is the most popular because of its simplicity and has been successfully applied to
several applications (e.g., symbol recognition [184], activity recognition [204, 228], and orientation
estimation [95]).

It is not difficult to see that the basic idea of the R-transform is the use of an integration to
overcome the residual influences that remain in the radial slices of the Radon transform data
caused by scaling and translation (properties P4 and P6). For any 1D function g and its scaled
and then shifted version h defined as h(x) = g(αx− x0), their integrations:
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∂ρ
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RI3(θ, ρ) (d) ∂
∂ρ

RI4(θ, ρ) (e) ∂
∂ρ

RI5(θ, ρ)

Figure 2.6: The partial derivatives of the Radon transform data in the second row of Fig. 2.2
with respect to the variable ρ. For differentiation, the coefficient κ1(α) in Eq. (2.12) takes the
form 1

α , which depends solely on α. The intensity of these images has been rescaled to fit the
display range.

∫ ∞

−∞
h(x) dx =

1

α

∫ ∞

−∞
g(x) dx

differ by a multiplicative factor that depends solely on the scaling parameter α. This factor could
be easily removed by normalization in a later processing step. This strategy could actually be
extended to any operator O2 satisfying:

O2(h(·)) = κ2(α)O2(g(·)), (2.11)

where κ2(α) is a coefficient depending only on α. Possible other choices for O2 could be the 1D
Fourier–Mellin transform (to be discussed in Section 2.3), histogram, and some measures like
maxima, median, etc.

In addition to the integral operator, a square operator is also employed in the definition of
the R-transform to avoid the singularities (to be discussed in Subsection 2.2.4) while preserving
properties P4 and P6 of the Radon transform. This operator in turn could also be replaced by
any operator O1 satisfying:

O1(h(x)) = κ1(α)O1

(

1

α
g(αx− x0)

)

, (2.12)

where κ1(α) is a coefficient depending solely on α. Some other operators like exponentiation,
differentiation could also be used for O1. As an example, Fig. 2.6 shows the results obtained
by using differentiation of the Radon transform data in the second row of Fig. 2.2 with respect
to the variable ρ. It is clear that differentiation retains properties P4 and P6 of the Radon
transform and, at the same time, accentuates small variation in the Radon transform data due
to sampling/quantization and additive noise.

Coming from R-transform to R-signature requires the use of the discrete Fourier transform,
of which the main purpose is to get invariance to rotation. As a rotation in the spatial domain
corresponds to a circular shift in the Radon transform data along the angular axis, discrete Fourier
transform could be replaced by any operator O3 that is invariant to circular shift. Denoting {xn}
and {yn} (n = 0, 1, . . . , N − 1) are two sequences of complex numbers with {yn} is obtained by
circular-shifting {xn} by m indices, then O3 should satisfy:

O3

(

{xn}
)

= κ3(m)O3

(

{yn}
)

, (2.13)
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2.1. The Radon transform

Table 2.3: Operators employed for the proposed generic R-signature and RFM descriptor. The
combined operator O12 = O2 ◦ O1 is applied on the radial slices whereas the operator O3 is
applied on the angular slices of the Radon transform data.

Operator The generic R-signature The RFM descriptor

O1 Exponentiation Identity function

O2 Integration 1D Fourier–Mellin transform

O3 Discrete Fourier transform Discrete Fourier transform

where κ3(m) is a function depending only on the shifting distance m. Besides discrete Fourier
transform, some other operators like Fourier series or inverse discrete-time Fourier transform
could also be used for O3.

If there exists two operators O1 and O2 that satisfy Eqs. (2.12) and (2.11) respectively, the
combined operator O12 = O2 ◦O1, when applied on the radial slices of the Radon transform data,
will overcome the residual influences caused by scaling and translation. The operator O12, when
used in combination with the operator O3 that satisfies Eq. (2.13) as O123 = O3 ◦ O2 ◦ O1, will
result in a pattern descriptor that is totally invariant to RST transformations. In this manner,
finding an appropriate set of operators {O1,O2,O3} is the main challenge for any attempt to
define an invariant pattern descriptor using the Radon transform. Despite the existence of several
choices for O1, O2, and O3, the remaining of this chapter is devoted to the two invariant pattern
descriptors, the generic R-signature and the RFM descriptor, that correspond to the two specific
choices of {O1,O2,O3} given in Table 2.3.

2.1.6 Contributions

In pursuing the formulation of invariant pattern descriptors defined based on the Radon transform,
this chapter makes the following main contributions:

- It provides a unified view on possible directions that can be followed to define invariant
pattern descriptors using the Radon transform.

- It proves theoretically that the Radon transform has the property of suppressing additive
white/“salt & pepper” noise.

- It generalizes an existing Radon transform-based descriptor, the R-signature, to have the
generic R-signature that is totally invariant to RST transformations.

- It proposes to apply the 1D Fourier–Mellin and Fourier transforms on the radial and angular
slices of the Radon image respectively to have the RFM descriptor that is totally invariant
to RST transformations.

- It shows that the two proposed invariant pattern descriptors lead to superior experimental
results over comparison descriptors in terms of retrieval rate on grayscale and binary noisy
pattern datasets.

The remainder of this chapter is organized as follows. The definition and theoretical analysis
of the generic R-signature and RFM descriptor are presented in Sections 2.2 and 2.3 respectively.
Experimental results are given in Section 2.4 and finally conclusions are drawn in Section 2.5.
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f0 f1 f2 f3

f4 f5 f6 f7

Figure 2.7: Eight shape images obtained by segmenting the distance transform of the image
I2 in Fig. 2.2b at eight equi-distant levels. The conventional R-transforms of these shape
images are computed and combined in order to increase the discrimination power for shape
recognition/matching.

2.2 The generic R-signature

The R-signature defined in Eq. (2.10), originally proposed for invariant shape representation,
has been extended in [211] by computing FRfi2, where fi (i = 0, 1, . . . , 7) are derived from a
shape f by segmenting its distance transform [24] at eight equi-distant levels. This extension
leads to an increase in the discrimination power of the R-signature because the derived shapes
fi preserve the topology of f and, when i increases, the level of deformation decreases. As an
example, the shape images obtained by segmenting the distance transform of the image I2 in Fig.
2.2b are illustrated in Fig. 2.7. This extension, however, works only with silhouette shapes and it
is difficult to use it with noisy patterns.

Another extension, which is orthogonal to the extension described above, is proposed in this
section by generalizing the R-transform in Eq. (2.9) to further increase the discrimination power.
It will be shown that the R-transform is just a special case of a class of transforms, members of
which share beneficial properties for pattern representation and matching. This section provides
the definition of this class of transforms, the geometric interpretation in the spatial domain, and
the beneficial properties of the signatures defined based on these transforms. Furthermore, a
discussion on the meaningful domain of these generic transform/signature is also carried out,
along with theoretical arguments on their robustness to additive noise and their ability to encode
dominant directions of patterns.

2.2.1 Definition

The generalization of the R-transform described below uses an exponentiation for O1 and an
integration for O2. These choices of operators result in a generic transform that has many
beneficial properties and superior performance over existing methods. For a 2D function f and
m ∈ R, the generic R-transform of f , denoted as Rfm, is defined as
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2.2. The generic R-signature

Rfm(θ) =

∫ ∞

−∞
Rm

f (θ, ρ) dρ. (2.14)

Evidently, by setting m = 2, Rfm in the above equation becomes Rf2 in Eq. (2.9). The utilization
of the exponent m as a parameter makes Rfm a generic version of Rf2. Furthermore, by varying
the value of m, a class of transforms is obtained and this in turn results in a class of signatures. The
derivation of the generic R-signature, FRfm, from Rfm follows strictly Eq. (2.10) in Subsection
2.1.5.

2.2.2 Geometric interpretation

Recall that the value of Rf (θ, ρ) is the result of a line integral of f along the line L(θ, ρ)
parameterized by (θ, ρ). Consequently, the generic R-transform defined based on Rf by computing
an integral over the variable ρ has some geometric interpretations as follows.

The generic R-transform of f , Rfm, in Eq. (2.14) is basically an integral of Rm
f computed

over the variable ρ of the Radon transform data. In other words, this integral is computed by
using the results of line integrals along all the lines parameterized by a fixed value of θ and
different values of ρ. Sharing the same value of θ means that these lines are parallel in the spatial
domain (as depicted in Fig. 2.8) and Rfm(θ) encodes the spatial information of the pattern f in
the direction making an angle θ with the y axis. Encoding f at different directions is possible
by varying θ to have Rfm and Rfm could then be interpreted as containing the encoded spatial
information of f at all directions.

The role of the exponent m in Eq. (2.14), besides setting up a class of transforms, is to
make Rfm discriminative at different values of m by exploiting the variation in the constant-θ
slices of Rf , which in turn is the variation in the accumulations of f along all parallel lines Li

making an angle θ with the y axis (for a binary shape f , it is the variation in the lengths of the
intersections of f with all parallel lines Li). Evidently, at m = 2, Rfm has the same interpretation
and discrimination power as those of the conventional R-transform. The interest here lies in
large m at which Rfm has the capability to encode the dominant direction or the “longest line”
that will be demonstrated in Subsection 2.2.5. In addition, due to the singularity at m = 1 (to
be discussed Subsection 2.2.4), it is anticipated that the generic R-transform will have a higher
discrimination power when the value of m goes farther from 1. Inversely, when m < 1, Rfm

weights more on shorter lines.

2.2.3 Properties

The generic R-transform defined in Eq. (2.14) has some beneficial properties as follows:

- Periodicity : The generic R-transform of f is periodic in the θ coordinate with period π.
Using property P3 of the Radon transform:

Rfm(θ) =

∫ ∞

−∞
Rm

f (θ, ρ) dρ =

∫ ∞

−∞
Rm

f (θ ± π,−ρ) dρ = −
∫ −∞

∞
Rm

f (θ ± π, υ) dυ

=

∫ ∞

−∞
Rm

f (θ ± π, υ) dυ = Rfm(θ ± π),

where υ = −ρ.
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Figure 2.8: Geometric illustration of the generic R-transform of a function f . Depicted in the
figure is the set of all parallel lines L(θ, ·) used to compute the value of Rfm(θ) the formula in Eq.
(2.14). Rfm(θ) contains the encoded spatial information of the pattern in the direction making
an angle θ with the y axis.

- Translation: The generic R-transform of f is invariant to translation. Assuming that f is
translated by a vector ~u = (x0, y0), using property P4 of the Radon transform:

Rf ′m(θ) =

∫ ∞

−∞
Rm

f ′(θ, ρ) dρ =

∫ ∞

−∞
Rm

f (θ, ρ− x0 cos θ − y0 sin θ) dρ

=

∫ ∞

−∞
Rm

f (θ, υ) dυ = Rfm(θ),

where υ = ρ− x0 cos θ − y0 sin θ.

- Rotation: A rotation of f by an angle θ0 implies a circular shift of Rfm by a distance θ0.
Assuming that f is rotated by an angle θ0, using property P5 of the Radon transform:

Rf ′m(θ) =

∫ ∞

−∞
Rm

f ′(θ, ρ) dρ =

∫ ∞

−∞
Rm

f (θ + θ0, ρ) dρ = Rfm(θ + θ0).

- Scaling : A scaling of f by a factor α results in a scaling in the amplitude of Rfm by a factor
1

αm+1 . Assuming that f is scaled by a factor α, using property P6 of the Radon transform:

Rf ′m(θ) =

∫ ∞

−∞
Rm

f ′(θ, ρ) dρ =

∫ ∞

−∞

1

αm
Rm

f (θ, αρ) dρ

=
1

αm+1

∫ ∞

−∞
Rm

f (θ, υ) dυ =
1

αm+1
Rfm(θ), (2.15)

where υ = αρ.

From these properties, it is straightforward that the generic R-signature FRfm of f defined
based on the generic R-transform Rfm of f as in Eq. (2.10) in Subsection 2.1.5 is totally invariant
to RST transformations. Illustration of the properties concerning RST transformations of the
generic R-transform is given in Fig. 2.9 using patterns in the top row of Fig. 2.2. The value of
RIkm with k = 1 → 5 has been normalized by the area they make with the θ axis,

∫ π
0 RIkm(θ) dθ,

for better viewing. The two patterns I1 and I2 in Figs. 2.2a, 2.2b are not similar and as a
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Figure 2.9: Illustration of the invariance properties of the generic R-transform using patterns in
the top row of Fig. 2.2 with the exponent m = 0 → 6. The generic R-transform is invariant to
translation and scaling, and converts a rotation in the spatial domain into a circular shift in the
generic R-transform by a distance equal to the rotation angle.

consequence RI1m and RI2m in Figs. 2.9a and 2.9b have different surfaces. The patterns I3, I4,
and I5 in Figs. 2.2c–2.2e are transformed versions of the pattern I2 in Fig. 2.2b then RI3m, RI4m,
and RI5m in Figs. 2.9c–2.9e have surfaces that are similar to that of RI2m in Fig. 2.9b. In addition,
it is evident from the figure that the generic R-transform is invariant to scaling (RI2m ≃ RI3m)
and translation (RI4m ≃ RI5m). It converts a rotation in the spatial domain into a circular shift
in the generic R-transform by a distance equal to the rotation angle (RI3m → RI4m).

A quantitative evaluation of the invariance properties of the generic R-transform is given
in Fig. 2.10 using the normalized cross-correlation between three possible pairs of the generic
R-transforms RI1m, RI2m, and RI5m from Fig. 2.9. Normalized cross-correlation is selected for
the sake of overcoming the constant multiplicative factor 1

αm+1 in Eq. (2.15) and the remaining
rotation. To overcome the rotation parameter, at a specific value of m, the correlation is calculated
for all possible rotation angles, meaning that one of the two generic R-transforms is circular-shifted
by 180 possible distances from 0 to 179 with increment of 1 before computing the correlation.
Denoting ϕ as the shifting distance, the correlation between RIim and RIjm at ϕ is defined as

Cijm(ϕ) = corr
(

RIim, Rϕ
Ijm

)

,

where Rϕ
Ijm

(θ) = RIjm(θ+ϕ) and corr(A,B) is the normalized cross-correlation function between
two input vectors A and B of length n calculated using the following formula:

corr(A,B) =

∑n
i=1(Ai − Ā)(Bi − B̄)

√

(
∑n

i=1(Ai − Ā)2
) (
∑n

i=1(Bi − B̄)2
)

,

where Ā and B̄ are the mean values of A and B respectively.
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Figure 2.10: The normalized cross-correlation between the three possible pairs of the generic
R-transforms RI1m, RI2m, and RI5m from Fig. 2.9. For each pair of generic R-transforms and at
a specific value of m, 180 correlation values are calculated after circular-shifting one of the two
generic R-transforms by 180 possible distances from 0 to 179 with increment of 1.

The three surfaces Cijm that correspond to the three possible pairs of three generic R-
transforms have some distinct characteristics. Firstly, they all have two constant bars at m = 0, 1
due to the singularities of the generic R-transform at m = 0, 1 (to be discussed in Subsection
2.2.4). Secondly, at a specific value of m, the maximum value of C25m is almost 1 while those
of C12m and C15m are always less than 0.67. It thus can be concluded that Cijm is peaky only
when the two patterns Ii and Ij are similar. The non-peaky and peaky maxima exhibit the
discrimination power of the proposed descriptor and the maximum of nearly 1 means, in this
case, that the generic R-transform is invariant to translation and scaling. Moreover, the value of
ϕ that corresponds to the peak in Cijm denotes the difference in orientation (in degree) between
the two patterns Ii and Ij .

2.2.4 The domain of m

The generic R-transform defined in Eq. (2.14) theoretically produces a class of transforms having
an infinite number of members obtained by varying the value of the exponent m. However, in
reality, the domain of reasonable values of m is limited, not all the space R, due to the existence
of singularities in the generic R-transform and the sensitivity of the generic R-transform to
sampling/quantization and additive noise.

Singularities

The generic R-transform has two singularities at m = 0 and m = 1:

Rf0(θ) =

∫ ∞

−∞
R0

f (θ, ρ) dρ = ρmax − ρmin = const,

Rf1(θ) =

∫ ∞

−∞
R1

f (θ, ρ) dρ =

∞
∫

−∞

∞
∫

−∞

f(x, y) dxdy = m00 = const,

where m00 is the zeroth-order moment of f . Rf0 and Rf1 hence contain no discriminative
information about f , except for scaling when m = 1, and thus should not be used to represent
patterns for the purpose of recognition/matching. Additionally, when m reaches +∞, as the
cumulative sum of f along a line L(θ, ρ) is most of the time greater than 1, then
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Figure 2.11: Illustration of the sensitivity of the generic R-transform to sampling and quantization
using an analytical triangle J1 and its sampled and quantized version J2 of size 100 × 100. A
larger value of m will result in a larger difference between RJ1m and RJ2m, meaning a more
severe deformation in RJ2m.

lim
m→+∞

Rfm(θ) = lim
m→+∞

∫ ∞

−∞
Rm

f (θ, ρ) dρ = +∞.

Even though m = ∞ has no practical meaning, the above equation implies that in practice m
cannot take an excessive large value. Furthermore, negative value of m should also be avoided due
to the sensitivity of negative power function to very small values. More precisely, at the pattern’s
furthest point from the pattern centroid’s position, the intersection between the tangent line
L(θ⋆, ρ⋆) and the pattern f has infinitesimal length, inducing a very small value in Rf (θ

⋆, ρ⋆).
Taking negative power of this value produces a very large value and is sometimes out of the
representing capability of digital systems.

Sensitivity to sampling/quantization and additive noise

By definition, the Radon transform is essentially the projection of the pattern f along all the lines
in the spatial domain. Due to this projection, the Radon transform has the ability to suppress
variation in the pattern. However, as the generic R-transform is defined based on exponentiation,
the remaining variation in the Radon transform data due to noise will result in variation in Rfm

at different levels according to the value of the exponent m. A too large value of m will cause
a high variation in Rfm and make it very different from the ideal analytical one. The heavily
deformed Rfm due to noise will make the representation inappropriate for recognition/matching.

Sampling and quantization could be considered as processes that add noise to the original
patterns. In this sense, the patterns processed in digital systems are noisy and the variation
in their Radon transforms is unavoidable. Fig. 2.11 illustrates the sensitivity of the generic
R-transform to sampling and quantization. The pattern image J2 of size 100× 100 in Fig. 2.11b
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Figure 2.12: The dependence on the noise level σ and the exponent m of the average difference
between the generic R-transform of a noise-free pattern and those of its noisy versions. (a)
Samples of noisy pattern images generated from the pattern J2 in Fig. 2.11b. (b) The average
difference between the generic R-transforms, εRJ2

(m,σ).

is a sampled and quantized version of an analytical triangle J1 in Fig. 2.11a. The values of RJkm

with k = 1 and 2 in Figs. 2.11c and 2.11d have been normalized by the area they make with the
θ axis,

∫ π
0 RJkm(θ) dθ, for better viewing. The difference in the normalized values of the generic

R-transform of J1 and J2, |RJ2m −RJ1m|, in Fig. 2.11e shows clearly that a larger value of m
will result in a larger difference, meaning a more severe deformation in RJ2m.

As the noise resulting from sampling and quantization is relatively small that may not
demonstrate well the sensitivity of the generic R-transform to additive noise in general. A study
has been carried out using noisy patterns generated from J2 in Fig. 2.11b by adding white
noise of different variances σ2 to it. At each value of σ, 100 noisy images are generated for the
computation of the average difference between the generic R-transform of J2 and those of these
noisy patterns:

εRJ2
(m,σ) =

1

|Nσ|
∑

J2i∈Nσ

∫

|RJ2m(θ)−RJ2im(θ)| dθ,

where Nσ is the subset of noisy images generated from J2 having the same variance σ2. Samples
of noisy pattern images generated from J2 are given in Fig. 2.12a and the values of εRJ2

(m,σ) are
plotted in Fig. 2.12b over a range of m and σ. It is observed that εRJ2

(m,σ) increases with both
σ and m, meaning that a larger value of σ and/or m will result in a more severe deformation
in RJ2m. However, the increasing trend of εRJ2

(m,σ) due to σ is different from that due to m:
εRJ2

(m,σ) tends to increase linearly with σ but exponentially with m. It is thus anticipated
that the degradation in performance of the generic R-signature in invariant pattern recognition
problems due to additive noise is linear with σ and exponential with m.

2.2.5 Robustness to noise

The Radon transform has been proven to be robust to additive noise due to the use of an integral
function along straight lines in the spatial domain. For the case of the generic R-transform, the
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use of exponentiation in its definition in Eq. (2.14) destroys the linearity and the uncorrelation
between signal and noise. This in turn excludes the possibility of analyzing signal and noise
separately and hinders the formulation of SNRR, i.e., the SNR of the generic R-transform.
Nevertheless, the following arguments give some intuition on the sensitivity of SNRR to the
exponent m.

Assuming that m > 1 and f is a scalar signal contaminated by noise η, the SNR before and
after exponentiation are

SNRb =
f2

η2
and SNRa =

f2

((f + η)m − fm)2

respectively. It is not difficult to see that

SNRa

SNRb
=

η2

((f + η)m − fm)2

decreases exponentially with the increase in m or, in other words, the decrease in SNR due to
exponentiation depends exponentially on the exponent m. In the case of the generic R-transform,
the integral after exponentiation has a smoothing property which alleviates the problem, especially
for large-sized images, similar to the smoothing property of the Radon transform’s projection
discussed in Subsection 2.1.3. However, the compensation is relatively small that the decrease in
SNR still exists when m is reasonably large. This observation leads to a conclusion that a larger
value of m will result in a smaller value in SNRR. An experimental support for this conclusion
can be observed from Fig. 2.12b where the average difference εRJ2

(m,σ) increases exponentially
with m.

Apart from the above observation, the robustness to noise of the generic R-signature has
its roots not only from the noise-suppressing property of the Radon transform but also from
the ability of the generic R-transform to encode the dominant directions of patterns. Due to
the exponentiation insides the integral in Eq. (2.14), the contribution of Ψf (θ) = Rf (θ, ρ

⋆) with
ρ⋆ = argmaxρRf (θ, ρ) to Rfm(θ) increases as m increases, and furthermore

lim
m→+∞

Ψm
f (θ)

Rfm(θ)
= 1. (2.16)

This means that, at a reasonable large value of m, Rfm(θ) represents the highest accumulation
of f along all the parallel lines that makes an angle θ with the y axis, which is similar to the
“longest line” feature proposed in [42]. The highest accumulation profiles ΨI1 and ΨI2 of the
patterns I1 and I2 in Figs. 2.2a and 2.2b) (normalized by maxθ ΨI1(θ) and maxθ ΨI2(θ) for better
viewing) are plotted in Figs. 2.13a and 2.13e respectively.

Similarly, by denoting R̄fm(θ) =
Rfm(θ)

Rfm(θ⋆
fm

) where θ⋆fm = argmaxθ Rfm(θ) as the normalization

of Rfm(θ), it is evident that R̄fm(θ) with θ 6= θ⋆fm decreases exponentially with the increase in
m, and

lim
m→+∞

R̄fm(θ) = lim
m→+∞

Rfm(θ)

Rfm(θ⋆fm)
= δθθ⋆

fm
, (2.17)

where δθθ⋆
fm

= [θ = θ⋆fm] is the Kronecker delta function. Thus, when m is reasonably large,

the function R̄fm encodes only the direction θ⋆fm, called the principle direction. Combining Eqs.

(2.16) and (2.17) leads to a conclusion that R̄fm(θ⋆fm) corresponds to the highest accumulation
of f along all the lines in the spatial domain at a reasonable large value of m.
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Figure 2.13: Illustration of the ability of the generic R-transform to encode pattern’s dominant
directions using two patterns I1 and I2 in Figs. 2.2a and 2.2b respectively. ΨIi (first column)
represent the highest accumulations of Ii along all the parallel lines that make an angle θ with
the y axis and θ⋆Iim (third column) represent the ridges in the surfaces of R̄Iim (second column).
The fourth column shows the one and three dominant directions of I1 and I2 that correspond to
the one and three ridges in R̄I1m and R̄I2m respectively.

In real applications, Eqs. (2.16) and (2.17) do not hold since m does not have a large enough
value due to the sensitivity of the generic R-transform to quantization/sampling and additive
noise as discussed in Subsection 2.2.4. However, there is an evolution in the profile of R̄fm as
m increases, transforming a constant function (m = 0, 1) into the Kronecker delta function
(m = ∞). During this process, the information encoded by R̄fm also changes, roughly from all
directions to a single direction θ⋆fm. The interpretation here is that the dominant directions of f
are encoded at different levels, depending on m. Illustration of this evolution is given in Figs.
2.13b and 2.13f containing the plots of R̄I1m and R̄I2m. The traces of the ridges in R̄I1m and
R̄I2m are plotted in blue lines and the values of θ⋆I1m and θ⋆I2m are denoted by red asterisks in
Figs. 2.13c and 2.13g respectively. It is observed that the one and three ridges in the surfaces of
R̄I1m and R̄I2m correspond to the one and three local maxima of ΨI1 and ΨI2 in Figs. 2.13a and
2.13e, which in turn represent the one and three dominant directions of I1 and I2, as shown in
Figs. 2.13d and 2.13h respectively. For the pattern I1, as there exists only one ridge, the principal
direction always coincides with that ridge. In the case of the pattern I2, as m increases, the roles
of the three maxima in R̄I2m interchange along with a change in the principal direction from
ridge 3 to ridge 1 at m = 7. However, the dominant directions are still reflected in the surface of
R̄I2m as the local maxima of its three ridges.

When the pattern f is contaminated by additive noise to be f̂ , due to the noise-suppressing
property of the Radon transform and the sensitivity of the generic R-transform to m, the
difference in the dominant directions of f and f̂ is negligible when m is not too large. For this
reason, R̄fm and the generic R-signature can be used to estimate the orientation of patterns and
to recognize noisy patterns respectively when m is not too large. Combining this observation
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SNR = 16 SNR = 8 SNR = 4 SNR = 2 SNR = 1 SNR = 0.5

Figure 2.14: Example pattern images of different SNR from the datasets OriA (top row) and OriB
(bottom row) for principal direction estimation using the generic R-transform. These patterns are
generated by adding white noise to the two patterns I1 and I2 in Figs. 2.2a and 2.2b respectively.

with the dependance of the discrimination power of the generic R-transform on m that has been
discussed in Subsection 2.2.2, it can be concluded here that the selected value of m is a compromise
between two contradicting desires: a larger value is preferred for a higher discrimination power
whereas a smaller one is for noise robustness. These theoretical analysis and observations will be
supported by experimental evidence in Section 2.4.

The principal directions of patterns

The stability of the estimated principal directions of patterns by the generic R-transform to
additive noise has been evaluated on the two datasets OriA and OriB of noisy images generated
from the two patterns I1 and I2 in Figs. 2.2a and 2.2b respectively by adding white noise to
them. These two patterns have been chosen because they are representatives of two classes of
patterns: I1 belongs to the “easy” class while I2 belongs to the “difficult” class. The difficulty
with I2 is due to the existence of the three ridges in the plot of R̄I2m in Fig. 2.13f. Let SNR be
the signal-to-noise ratio defined as

SNR =

∑

x,y f
2(x, y)

∑

x,y η
2(x, y)

,

where f is the noise-free pattern and η is the added white noise. Each dataset contains 600 noisy
patterns of six possible values of SNR = {0.5, 1, 2, 4, 8, 16}, meaning 100 patterns for each SNR.
Example pattern images of different SNR from these two datasets are given in Fig. 2.14: top
row for OriA and bottom row for OriB. The generic R-transforms of the noise-free patterns I1,
I2 and all the noisy patterns in OriA and OriB have been computed along with their principal
directions θ⋆fm for evaluation.

The adopted evaluation criterion is the average difference between the estimated principal
directions of all noisy patterns of the same SNR in one dataset and that of their corresponding
noise-free pattern as

εθ(m) =
1

|Nk|
∑

fi∈Nk

|θ⋆fm − θ⋆fim| with k ∈ {0.5, 1, 2, 4, 8, 16},
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Figure 2.15: The average difference in the estimated principal directions εθ(m) between a noise-
free pattern and its noisy versions of different SNR of the two datasets OriA (a) and OriB (b).
A small value of εθ(m) means that the principal directions estimated by the generic R-transform
are very stable under noise perturbation.

where f is a noise-free pattern and Nk is the subset of all noisy patterns generated from f having
SNR = k. This criteria measures statistically the effect of additive white noise on the accuracy of
the estimated principal directions at different noise levels and at different exponents m. Shown
in Fig. 2.15 are the plots of the computed εθ(m) at different SNR for the two datasets OriA and
OriB, it is observed that:

- OriA: The values of εθ(m) shown in Fig. 2.15a are generally small (εθ(m) < 2◦ for m < 30),
demonstrating the stability of the estimated principal direction θ⋆I1m. Additionally, the
values of εθ(m) increase with the increase in m and high accuracy (εθ(m) < 0.5◦) is obtained
when m ≃ 2 for all SNR. Explanation for this, besides the noise-suppressing property of
the Radon transform, comes from the “averaging” phenomena in Eq. (2.14) when m is
small, allowing the accumulations of f along all the parallel lines that make an angle θ
with the y axis to participate in R̄fm(θ) and thus further reducing the effect of additive
white noise. When m increases, this “averaging” phenomena gradually disappears as the
role of Rf (θ, ρ

⋆) in R̄fm(θ) gradually dominates.

- OriB : The values of εθ(m) shown in Fig. 2.15b have a different trend from those of εθ(m)
in Fig. 2.15a; εθ(m) has its peak at m = 7 for almost all SNR. This is due to the existence
of the three ridges in the plot of R̄I2m in Fig. 2.13f: the role of encoding the principal
direction of the pattern I2 changes from ridge 3 to ridge 1 at m = 7 (shown in Fig. 2.13g)
whereas, in the presence of additive noise, the changing point is not always at m = 7.
Additionally, as seen in Fig. 2.13f, the ridge encoding the principal direction at each value of
m does not have a decisive role, the two remaining ridges always have inference, making the
estimated principal direction vulnerable to additive noise and resulting in a large value of
εθ(m) ≃ 12◦ when SNR = 0.5. However, when the noise is weak (SNR ≥ 2), high accuracy
is still obtained (for example, εθ(m) < 2◦ at m = 30).

The above observations lead to a conclusion that the estimated principal directions of patterns
by the generic R-transform are very stable under noise perturbation, and by a simple extension,
similar conclusion for the dominant directions of patterns could also be reached. They provide
experimental evidence for the theoretical arguments at the beginning of this subsection.
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2.3 The RMF descriptor

Besides the generic R-signature that has been presented in the previous section, this section
presents another invariant pattern descriptor defined based on the Radon transform, called the
RFM descriptor. The basic idea here is the use of the 1D Fourier–Mellin transform, which is
a combination of the Fourier and Mellin transforms, to overcome the residual influences that
remain in the radial slices of the Radon transform data. This section provides the formulation of
the 1D Fourier–Mellin transform and then defines the RFM descriptor. A reasonably fast and
accurate implementation of the Mellin transform is also given afterwards.

2.3.1 The Fourier transform

Let f be a 1D function. The Fourier transform [98] of f , denoted by Ff , is a function defined for
every real number ξ by

Ff (ξ) =

∫ ∞

−∞
f(x)e−i2πξx dx. (2.18)

It is well-known that the Fourier transform possesses a shift or translation invariance property.
Consider a function g, which is a version of f shifted by a distance x0, then

g(x) = f(x− x0),

Fg(ξ) =

∫ ∞

−∞
g(x)e−i2πξx dx = e−i2πξx0Ff (ξ).

Taking the magnitude of the two sides of the above equation results in

|Fg(ξ)| = |Ff (ξ)|,

or the magnitude of the Fourier transform of a 1D function is invariant to translation.

The discrete version of Eq. (2.18) defined for a sequence of numbers {f(n) : n = 0, . . . , N −1}
has the following definition:

DFf (k) =
N−1
∑

n=0

f(n) e−
2πi
N

kn, k = 0, . . . , N − 1.

Similar to the continuous counterpart, the discrete Fourier transform possesses a circular-shift
invariance property: a circular shift in the input {f(n)} corresponds to multiplying the output
DFf by a linear phase. Let {g(n)} be a sequence obtained by circular-shifting {f(n)} by a
distance n0, then

g(n) = f(n− n0),

DFg(k) = e−
2πi
N

kn0 DFf (k).

Taking the magnitude of the two sides of the above equation results in

|DFg(k)| = |DFf (k)|,

or the magnitude of the discrete Fourier transform of a 1D function is invariant to circular shift.
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2.3.2 The Mellin transform

Let f be a 1D function. The Mellin transform [19] of f , denoted by Mf , is a function defined by

Mf (s) =

∫ ∞

0
f(x)xs−1 dx, (2.19)

where s = σ + iτ . The real part σ of s is a constant chosen such that the integral in Eq. (2.19)
converges. The imaginary part τ of s is the transform variable. Consider a function g, which is a
scaling of f by a factor α (α > 0), then

g(x) = f(αx),

Mg(s) =

∫ ∞

0
g(x)xs−1 dx = α−sMf (s).

Taking the magnitude of the two sides of the above equation results in

|Mg(s)| = α−σ|Mf (s)|.

Thus, except for a constant multiplicative factor α−σ, the magnitude of the Mellin transform is
scale invariant. The remaining scaling factor can be easily eliminated by normalization or it can
be used to find the relative scale between two functions.

2.3.3 The 1D Fourier–Mellin transform

Combinations of the Fourier and Mellin transforms were proposed in the literature to have signal
representations that do not vary with rotation/scaling or translation/scaling. For 2D signals, they
are first converted from Cartesian coordinates into polar coordinates then Fourier and Mellin
transforms are performed independently on the circular and radial slices of the converted signals
respectively [37, 199]. In this way, the magnitude of the obtained representation is invariant to
rotation and scaling. For 1D signals, Fourier and Mellin transforms are performed in sequence
directly on the signals [3, 248] to have a signal representation whose magnitude is invariant to
translation and scaling.

Consider the Fourier transform of a 1D function g which is a scaled and then shifted version
of f by a factor α and a distance x0 respectively, then

g(x) = f(αx− x0),

Fg(ξ) =

∫ ∞

−∞
f(αx− x0)e

−i2πξx dx.

By denoting y = αx− x0:

Fg(ξ) =
1

α
e−i2π ξ

α
x0

∫ ∞

−∞
f(y)e−i2π ξ

α
y dy =

1

α
e−i2π ξ

α
x0 Ff

(

ξ

α

)

.

Taking the magnitude of the two sides of the above equation results in

|Fg(ξ)| =
1

α

∣

∣

∣

∣

Ff

(

ξ

α

)∣

∣

∣

∣

. (2.20)
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The translation parameter x0 has disappeared and the remaining scaling parameter α could
be eliminated by applying the Mellin transform on both sides of Eq. (2.20):

M|Fg |(s) =
∫ ∞

0

1

α

∣

∣

∣

∣

Ff

(

ξ

α

)∣

∣

∣

∣

ξs−1 dξ = αs−1M|Ff |(s),

or

∣

∣M|Fg |(s)
∣

∣ = ασ−1
∣

∣

∣M|Ff |(s)
∣

∣

∣ .

Therefore, by defining

MFf (s) =
∣

∣

∣M|Ff |(s)
∣

∣

∣ =

∣

∣

∣

∣

∫ ∞

0

∣

∣

∣

∣

∫ ∞

−∞
f(x)e−i2πξx dx

∣

∣

∣

∣

ξs−1 dξ

∣

∣

∣

∣

, (2.21)

as the combined 1D Fourier–Mellin transform of a function f , MFf , is invariant to translation
and scaling, except for a constant multiplicative factor.

2.3.4 The proposed RFM descriptor

Attractive invariance properties of the Radon and 1D Fourier–Mellin transforms lead to the
proposal of a novel region-based pattern descriptor, called the RFM descriptor. The proposed
descriptor of an image I, RFMI , is computed by

RFMI(k, s) =

∣

∣

∣

∣

∣

DFMFRI
(k, s)

DFMFRI
(0, s)

∣

∣

∣

∣

∣

.

Step 1: The Radon transform performed on the image I: RI .

Step 2: The 1D Fourier–Mellin transform performed on the radial slices of the obtained Radon
transform data: MFRI

.

Step 3: The magnitude of the discrete Fourier transform performed on the angular slices of the
obtained, discretized Fourier–Mellin transform data normalized by the DC component.

Invariance properties of the proposed RFM descriptor described above are proven as follows.

Properties. The proposed RFM descriptor is invariant to translation, rotation, and scaling.

Proof. Let J be the image obtained by scaling, rotating, and translating an image I using
transformation parameters α, θ0, and ~u = (x0, y0) respectively. Properties P4–6 of the Radon
transform imply

RJ(θ, ρ) =
1

α
RI(θ + θ0, αρ− d), (2.22)

where d = x0 cos(θ + θ0) + y0 sin(θ + θ0) is the shifting distance depending on θ. The above
equation indicates that, except for a constant multiplicative factor 1

α , each constant-θ slice RJ (θ, ·)
of the Radon transform of J can be obtained by scaling and translating the constant-(θ + θ0)
slice RI(θ + θ0, ·) of the Radon transform of I by a factor α and a distance d respectively.

Applying the 1D Fourier–Mellin transform on RJ(θ, ·) and RI(θ + θ0, ·) and using the
transform’s invariance property, Eq. (2.22) becomes

MFRJ
(θ, s) = ασ−2MFRI

(θ + θ0, s).
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By varying the values of θ and s, the two transform data, MFRJ
and MFRI

, are obtained.
Moreover, except for a constant multiplicative factor ασ−2, MFRJ

can be directly obtained by
circular-shifting MFRI

along the angular axis by a distance −θ0. Applying the discrete Fourier
transform on the angular slices of the Fourier–Mellin transform data, MFRJ

and MFRI
, then

ignoring the phase information in the coefficients leads to

∣

∣

∣
DFMFRJ

(k, s)
∣

∣

∣
= ασ−2

∣

∣

∣
DFMFRI

(k, s)
∣

∣

∣
. (2.23)

This equation demonstrates that, except for a constant multiplicative factor ασ−2, the proposed
descriptor computed on a scaled, rotated, and translated version J of an image I is exactly the
same as the descriptor computed on the original image I. The remaining factor ασ−2, however,

can be easily eliminated by a normalization step using the DC component as

∣

∣

∣

∣

DFMFRI
(k,s)

DFMFRI
(0,s)

∣

∣

∣

∣

or it

can be used to determine the relative scale between any two patterns of the same category.

Calculating the proposed RFM descriptor as described above does not require any nor-
malization regarding the size, position, or orientation of the input patterns, it only requires
a normalization in the intensity of the computed descriptor. As a consequence, the proposed
descriptor is totally invariant to RST transformations.

2.3.5 Mellin transform implementation

The Mellin transform defined in Eq. (2.19) has a very attractive property of scaling invariance
and it can be implemented optically by using an optical scale invariant correlator [37]. However,
there are reported problems with its implementation in today’s digital systems [55]. Traditionally,
the Mellin transform is implemented by changing variables x = ey:

Mf (s) =

∫ ∞

0
f(x)xs−1 dx =

∫ ∞

0
f(x)xσ−1eiτ lnx dx =

∫ ∞

−∞
[f(ey)eσy] eiτy dy.

This is, by definition, the Fourier transform of the distorted function g with g(y) = f(ey) weighted
by eσy. For sampled data, the discrete (fast) Mellin transform is implemented through FFT by
re-sampling the data exponentially. Exponential sampling means interpolating the data to make
them uniformly sampled in the y domain [50]. This process introduces errors into the transform
and accentuates the low frequency components. Additionally, if f is sampled at the Nyquist rate
and N is the number of data samples in the x domain then the number of the required data
samples in the y domain will be M = N lnN [190]. Likewise, when f is nonzero at x = 0, g is
nonzero at y = −∞ and the implementation is not realizable. In this case, the Mellin transform
can be approximated by using a correction term defined based on the value of f(0) [190].

Another problem is on the application of the combined Fourier–Mellin transform in Subsection
2.3.3 for feature extraction, despite its invariance to scaling and translation. The problem is the
obscurity of the discriminative information contained in the input function [109]. Possible reasons
for this problem are the discard of the phase information from the output of the Fourier and
Mellin transforms and the accentuation of low frequency components. Moreover, since FFT is
applied on the radial slices of the Radon transform data, the DC component is always nonzero
and it in turn is the value of the Mellin transform’s input function f at x = 0.

To avoid these problems, an alternative implementation of the Mellin transform proposed in
[248], which is called the direct Mellin transform, is adopted for this work. Assuming that f is in
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the form of sampled data with the sampling period T and the number of samples N , expanding
Eq. (2.19) gives

Mf (s) =

∫ T

0
f(x)xs−1 dx+

∫ 2T

T
f(x)xs−1 dx+ · · ·+

∫ NT

(N−1)T
f(x)xs−1 dx. (2.24)

The value of f is assumed to be piecewise constant in any interval T , then

sMf (s) = f(0)xs |10 + f(T )xs |21 + · · ·+ f((N − 1)T )xs |NN−1 .

Denoting f(iT ) = fi+1, ∆k = fk − fk−1 and, without loss of generality, assuming that T = 1 and
fN = 0, the above equation becomes

sMf (s) = f1x
s |10 + f2x

s |21 + · · ·+ fNxs |NN−1 =

N−1
∑

k=1

ks (fk − fk+1) =

N−1
∑

k=1

ks∆k, (2.25)

or equivalently by using s = σ + iτ :

(σ + iτ)Mf (σ + iτ) =

N−1
∑

k=1

kσ+iτ∆k. (2.26)

Because kσ+iτ = e(σ+iτ) ln k is bounded for any fixed constant value of σ, the right hand side of
Eq. (2.26) is bounded, meaning that |Mf (s)| converges to zero when |s| increases. This indicates
the low-pass filtering characteristic of the Mellin transform.

For a set of si = σ + iτi (i = 1, . . . ,m) with τi are the arbitrary spectral components, and
denoting ksi = φi,k, Eq. (2.25) can be rewritten in matrix form as











s1Mf (s1)
s2Mf (s2)

...
smMf (sm)











=











φ1,1 φ1,2 · · · φ1,N−1

φ2,1 φ2,2 · · · φ2,N−1
...

...
. . .

...
φm,1 φm,2 · · · φm,N−1





















∆1

∆2
...

∆N−1











. (2.27)

The direct Mellin transform, as defined in Eq. (2.24), is an exact implementation of the Mellin
transform for sampled data and has the following properties:

- It requires neither exponential re-sampling nor a correction term.

- Only the differences in the values of adjacent data points are used for computing the
transform.

- The coefficients φi,k in Eq. (2.27) can be computed off-line and stored. For each specific
value of si, the number of stored coefficients for direct Mellin transform is N whereas the
number of stored coefficients for fast Mellin transform is N lnN .

- Computing siMf (si) consists of only an inner product of two vectors, one of which has
been pre-computed and stored and the other could be easily obtained from the input data
by a simple subtraction. For this reason, Eq. (2.27) is very fast in implementation.
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(a) MFRI1
(θ, s) (b) MFRI2

(θ, s) (c) MFRI3
(θ, s) (d) MFRI4

(θ, s) (e) MFRI5
(θ, s)

Figure 2.16: Illustration of the invariance properties of the 1D Fourier–Mellin transform. These
images are obtained by performing the 1D Fourier–Mellin transform on the Radon transform
data in the second row of Fig. 2.2 using 150 values of τ ranging from 2.0 to 16.9 with increment
of 0.1. The intensity of these images has been rescaled to fit the display range.

In order to eliminate the low-pass filtering characteristic of the direct Mellin transform, a
modification is carried out by removing the s = (σ + iτ) factor in Eq. (2.26). The resulting
transform is called the modified direct Mellin transform, denoted by MM, as follows:

MMf (s) = sMf (s) =

N−1
∑

k=1

ks∆k.

In the time domain, the modified direct Mellin transform is defined as

MMf (s) = s

∫ ∞

0
f(x)xs−1 dx.

It is easy to verify that the modified direct Mellin transform maintains the scaling invariance
property and the combined Fourier-modified direct Mellin transform, defined as

MFf (s) =
∣

∣

∣MM|Ff |(s)
∣

∣

∣ =

∣

∣

∣

∣

s

∫ ∞

0
|Ff |xs−1 dx

∣

∣

∣

∣

, (2.28)

is invariant to both translation and scaling. Therefore, the 1D Fourier–Mellin transform used in
the definition of the RFM descriptor in Subsection 2.3.4 is henceforth defined as in Eq. (2.28),
instead of Eq. (2.21), and implemented through Eq. (2.27).

To qualitatively illustrate the invariance properties of MFRI
, Fig. 2.16 provides the images

obtained by performing the 1D Fourier–Mellin transform on the Radon transform data in the
second row of Fig. 2.2 using 150 values of τ ranging from 2.0 to 16.9 with increment of 0.1. It
should be noted here that, due to the periodicity and semi-symmetry properties of the Radon
transform (P2–3), the effective range of θ used in the computation is [0, π) (rad) or [0, 180)
(degree). The two patterns I1 and I2 in Figs. 2.2a and 2.2b are not similar and, as a consequence,
MFRI1

and MFRI2
in Figs. 2.16a and 2.16b have different surfaces. The patterns I3, I4, and I5

in Figs. 2.2c–2.2e are transformed versions of the pattern I2 in Fig. 2.2b then MFRI3
, MFRI4

,
and MFRI5

in Figs. 2.16c–2.16e have surfaces that are similar to that of MFRI2
(θ, s) in Fig.

2.16b. The images in Figs. 2.16b–2.16e demonstrate clearly the scaling and translation invariance
properties of the 1D Fourier–Mellin transform:

- be invariant to scaling and translation;

- converts a rotation in the pattern into a circular shift in the angular axis of the Fourier–
Mellin transform data.
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Figure 2.17: The normalized cross-correlation between all possible pairs of Fourier–Mellin trans-
form data from Fig. 2.16. For each pair of patterns, 180 correlation values are calculated by
circular-shifting one of the two Fourier–Mellin transform data along the angular axis by 180
possible values from 0 to 179 with increment of 1.

A quantitative evaluation of the invariance properties of the Fourier–Mellin transform is
given in Fig. 2.17 using the normalized cross-correlation between all possible pairs of MFRIi

and MFRIj
with Ii and Ij (i, j = 1, 2, . . . , 5; i 6= j) are from the first row of Fig. 2.2. Normalized

cross-correlation is selected for the sake of overcoming the constant multiplicative factor ασ−2

in Eq. (2.23) and the residual influence caused by rotation that remains in the angular axis of
the Fourier–Mellin transform data. The correlation is calculated for all possible rotation angles,
meaning that one of the two Fourier–Mellin transform data is circular-shifted along the angular
axis by 180 possible values from 0 to 179 with increment of 1. Denoting ϕ as the shifting distance,
the correlation between the Fourier-Mellin transforms MFRIi

and MFRIj
of the two patterns

Ii and Ij at ϕ is defined as

Cij(ϕ) = corr2
(

MFRIi
,MFϕ

RIj

)

, (2.29)

where MFϕ
RIj

(θ, s) = MFRIj
(θ + ϕ, s) and corr2(A,B) is the normalized cross-correlation

between the two 2D input data A and B of size m× n calculated using the following formula:

corr2(A,B) =

∑m
i=1

∑n
j=1(Aij − Ā)(Bij − B̄)

√

(

∑m
i=1

∑n
j=1(Aij − Ā)2

)(

∑m
i=1

∑n
j=1(Bij − B̄)2

)

,

where Ā and B̄ are the mean values of A and B respectively.

The 10 curves Cij that correspond to the 10 possible pairs of five Fourier–Mellin transform
data have two different patterns. It is observed that Cij is peaky only when the two patterns Ii
and Ij are similar (i, j = 2, 3, 4, 5). The maximum values of Cij are 0.6200, 0.6236, 0.6239, 0.6239,
0.9962, 0.9943, 0.9943, 0.9970, 0.9970, 1.0000 respectively from left to right, top to bottom. The
non-peaky and peaky maxima exhibit the discrimination power of the proposed RFM descriptor
and the maximum of nearly 1 means that the Fourier–Mellin transform data is invariant to
translation and scaling. The value of ϕ∗ that corresponds to the peak in Cij denotes the difference
in orientation (in degree) between the corresponding two patterns Ii and Ij .
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Chapter 2. Radon Transform-based Invariant Pattern Representation

2.4 Experimental results

In order to demonstrate the effectiveness of the proposed generic R-signature and RFM descriptor,
three experiments on grayscale and binary image datasets were carried out. The robustness of the
proposed descriptors to additive white noise is first demonstrated by using two sets of datasets
generated by adding white noise of different levels to images of 26 Latin characters and to images
from the COIL-20 dataset [161]. Secondly, the proposed descriptors are computed on a set of
datasets generated by adding “salt & pepper” noise of different levels to images from the UMD
Logo dataset [58]. The aim of the second experiment is to demonstrate the robustness to “salt
& pepper” noise of the proposed descriptors. Finally, the proposed descriptors are computed
on the reference Shapes216 dataset [198] to evaluate their robustness to shape’s occlusion and
deformation. Thus, the first experiment deals with grayscale patterns and the last two ones with
binary patterns.

The proposed descriptors are compared with angular radial transform (ART) [22], generic
Fourier descriptor (GFD) [243], Zernike moments [116], and Radon 2D Fourier–Mellin transform
(R2DFM) [227]. All comparison descriptors need normalizations in order to be invariant to
RST transformations and, additionally, the R2DFM descriptor is also defined based on the
Radon transform. These descriptors are selected because they are commonly used and have good
reported performance. The two issues that relate to the comparison, similarity measure and
evaluation criterion, are addressed as follows.

Similarity measure

For any two patterns f and g represented invariantly by I(f) and I(g) respectively, where I is an
invariant operator taking either the generic R-signature or the RFM descriptor as its definition.
The measure of similarity between f and g is defined as the ℓ2-norm distance between their
descriptors as

dist(f, g) = ‖I(f)− I(g)‖2. (2.30)

Providing the availability of I(f) and I(g), the computation of dist(f, g) is simple and fast,
permitting the generic R-signature and RFM descriptor to be used in pattern matching problems
with large-sized datasets. More sophisticated distances like the weighted Euclidean distance [116]
could be used to reduce the dominance of some of the coefficients in the generic R-signature and
RFM descriptor. However, since small-valued coefficients usually correspond to high-frequency
components, meaning that they are more sensitive to additive noise and sampling/quantization
effect, balancing the coefficient contributions thus reduces the performance of these descriptors
in noisy environment. The performance degradation that results from coefficient weighting was
observed from some preliminary experiments. Moreover, due to the orthogonality in the basis
of the discrete Fourier transform, there is no correlation among the coefficients of the generic
R-signature and RFM descriptor and thus the Mahalanobis distance [141], if employed, reduces
to the weighted Euclidean distance.

Evaluation criterion

The criterion used for comparison among descriptors is the precision–recall curve defined in
information retrieval context [8]. Denoting for a given query model,

- retrieved images as all images that are returned by a matching process and

- relevant images as all images in the dataset that are in the same category with the query,
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2.4. Experimental results

(a) Noise-free images

SNR = 16 SNR = 8 SNR = 4 SNR = 2 SNR = 1 SNR = 0.5

(b) Samples of noisy images

Figure 2.18: (a) Images of 26 Latin characters of size 64× 64 in Arial bold font used to generate
the six alphabet datasets. (b) Sample images from the six alphabet datasets generated from the
first four character images with six possible values of SNR = {16, 8, 4, 2, 1, 0.5}.

then, precision is defined as the fraction of retrieved images that are relevant to the search:

Precision =
|{relevant images} ∩ {retrieved images}|

|{retrieved images}| ,

and recall is defined as the percent of all relevant images that is returned by the search:

Recall =
|{relevant images} ∩ {retrieved images}|

|{relevant images}| .

In computing the precision–recall curve for each dataset in the experiment, each of the
images in the dataset is used as a query model to which all the images in the dataset are
compared/matched with. The matching is realized by using the similarity measure defined in Eq.
(2.30). The obtained matching results are then sorted, or ranked, for the determination of the
nth nearest matches for each query model.

2.4.1 Grayscale pattern recognition

The performance of the proposed R-signature and RFM descriptor is first evaluated on grayscale
noisy images to demonstrate their robustness to additive white noise. Two experiments were
carried out on two different sets of datasets:

- ExpA: The first set of six alphabet datasets was generated from images of 26 Latin characters
shown in Fig. 2.18a. Each of these six datasets has 260 images of 26 categories, each category
contains 10 images.

- ExpB : The second set of six object datasets was generated from 20 object images from the
COIL-20 dataset [161] shown in Fig. 2.19a. Each of these six datasets has 220 images of 20
categories, each category contains 11 images.

The main characteristic that differentiates ExpA and ExpB, besides the semantic content of
their images, is the number of intensity levels in the original noise-free images: character images
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Chapter 2. Radon Transform-based Invariant Pattern Representation

(a) Noise-free images

SNR = 16 SNR = 8 SNR = 4 SNR = 2 SNR = 1 SNR = 0.5

(b) Samples of noisy images

Figure 2.19: (a) Twenty object images from the COIL-20 dataset used to generate the six object
datasets. (b) Sample images from the six object datasets generated from the four object images
with six possible values of SNR = {16, 8, 4, 2, 1, 0.5}.

have only two-level intensity whereas object images have multi-level intensity. Noisy grayscale
images were generated from the corresponding noise-free images by randomly scaling, rotating,
translating, and then adding white noise to them. The value of SNR for each dataset is kept
constant and, in each experiment, SNR has six possible values, {0.5, 1, 2, 4, 8, 16}, that correspond
to the six datasets. Some sample images from the six datasets in ExpA and ExpB are given in
Figs. 2.18b and 2.19b respectively.

Figs. 2.20/2.21 provide the precision–recall curves obtained by using the generic R-signature
computed on the six character/object datasets of ExpA/ExpB. In each sub-figure and at a specific
value of m in the horizontal axis, there is a precision–recall curve with recall and precision rates
illustrated as the ordinate and the color of the grid points having abscissa m. It is observed
that the performance of the generic R-signature varies according to m. As m increases from 0.2
to 10 and except for the singularity at m = 1, the precision–recall curve, when plotted in the
traditional 2D Cartesian coordinate system with recall and precision rates as the abscissa and
ordinate respectively, goes upwards till a certain value of m and then downwards, meaning an
increase and then a decrease in performance of the generic R-signature. In general, the peak in
performance is obtained at m ≃ 5 and m ≃ 3.2 for ExpA and ExpB respectively, leading to a
conclusion that the selected value of m to have the best performance is robust to the level of
noise. As m increases,

- The increase in performance when m is “small” agrees with the increase in the discrimina-
tion power of the generic R-signature, which results from exploiting the variation in the
accumulations of patterns along all parallel lines, as discussed in Subsection 2.2.2;

- The decrease in performance when m is “large” agrees with the discussion on the sensitivity
of the generic R-signature to additive noise in Subsection 2.2.5.

In addition, as SNR increases, the performance of the generic R-signature generally deteriorates
at each value of m, agreeing with the dependance of the generic R-signature on noise level
presented in Subsection 2.2.4. However, the deterioration speed is slower at m ≃ 5 and m ≃ 3.2

42



2.4. Experimental results

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

 

m

 

re
c
a

ll

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

(a) SNR = 16

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

 

m

 

re
c
a

ll

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

(b) SNR = 8

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

 

m

 

re
c
a

ll

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

(c) SNR = 4

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

 

m

 

re
c
a

ll

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

(d) SNR = 2

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

 

m

 

re
c
a

ll

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

(e) SNR = 1

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

 

m

 

re
c
a

ll

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

(f) SNR = 0.5

Figure 2.20: Precision–recall curves of the generic R-signature on the six alphabet datasets at
different values of m. In each sub-figure and at a specific value of m in the horizontal axis, there
is a precision–recall curve with recall and precision rates illustrated as the ordinate and the color
of the grid points having abscissa m.
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(f) SNR = 0.5

Figure 2.21: Precision–recall curves of the generic R-signature on the six object datasets at
different values of m. In each sub-figure and at a specific value of m in the horizontal axis, there
is a precision–recall curve with recall and precision rates illustrated as the ordinate and the color
of the grid points having abscissa m.
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Chapter 2. Radon Transform-based Invariant Pattern Representation

for ExpA and ExpB, meaning that the generic R-signature is robust to additive white noise. This
experimental evidence agrees with the theoretical arguments on the robustness of the Radon
transform to additive white noise presented in Subsection 2.1.3.

Due to the existence of a class of R-signatures, their combination was also investigated to see
if it leads to any possible increase in performance. For simplicity and for the reasons that will be
clear later, two R-signatures of exponents m1 and m2 have been combined as

FRIm1m2 =
[

FRIm1 , FRIm2

]

to be used as the invariant descriptor for the pattern I. Figs. 2.22/2.23 provide the accuracy
obtained by using the combined R-signature, FRIm1m2 , on the six character/object datasets of
ExpA/ExpB. In each sub-figure and at specific values of m1 and m2 in the horizontal and vertical
axes, the accuracy is illustrated as the color of the grid point (m1,m2). It can be seen that the
color patterns of these sub-figures are symmetric with respect to the minor diagonal and a change
in (m1,m2) generally leads to a change in the color, meaning that the performance of FRIm1m2

varies according to (m1,m2). Since m1 and m2 are interchangeable and should be different to
avoid duplicates, it is required that m1 < m2. The peak in performance is then obtained at
(m1,m2) ≃ (2.6, 5.2) and (m1,m2) ≃ (2.4, 3.8) for ExpA and ExpB respectively. Note from these
values of m1 and m2 that one is smaller and the other is larger than m ≃ 5 and m ≃ 3.2 for ExpA
and ExpB. These relations among the selected values of exponents have the following possible
explanations:

- m1 and m2 should be separated enough to make use of the difference in the discriminative
information contained in FRIm1 and FRIm2 .

- m1 and m2 should be close to m so that FRIm1 and FRIm2 individually a has high
discrimination power, similar to that of FRIm.

Comparison of the proposed generic R-signature and RFM descriptor with ART, GFD,
Zernike, and R2DFM descriptors on these noisy datasets was performed and the obtained results
are given in Figs. 2.24 and 2.25 respectively. In this comparison, besides the conventional value
at m = 2, the value of the exponent m was selected to reflect the relatively best performance of
the generic R-signature on ExpA (m = 5) and ExpB (m = 3.2). It is observed from these sets of
sub-figures that:

- ART, GFD, Zernike, and R2DFM descriptors are not robust to additive white noise at all,
their performance is similarly poor at different levels of noise.

- There is a substantial increase in the performance of the generic R-signature from that
of the conventional R-signature (m = 2) when an appropriate value of the exponent m is
used.

- As SNR decreases (i.e., the images get noisier), the precision–recall curves of the generic
R-signature and RFM descriptor generally move downwards. Their comparable and good
performances are nearly perfect when the noise is weak (SNR = 16, 8, 4), demonstrating
their robustness to additive white noise.

- The combined R-signature does perform better than the single one. However, the increase
in performance is very small and negligible.
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Figure 2.22: The accuracy of the generic R-signature on the six alphabet datasets at different
values of (m1,m2). In each sub-figure and at specific values of (m1,m2), the accuracy is denoted
as the color of the grid point having abscissa m1 and ordinate m2.
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Figure 2.23: The accuracy of the generic R-signature on the six object datasets at different values
of (m1,m2). In each sub-figure and at specific values of (m1,m2), the accuracy is denoted as the
color of the grid point having abscissa m1 and ordinate m2.
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Figure 2.24: Precision–recall curves of comparison descriptors on the six alphabet datasets. ART,
GFD, Zernike, and R2DFM descriptors are not robust to additive white noise, their curves are
similarly poor at different values of SNR. The generic R-signature and RFM descriptor are robust
to additive white noise, their curves generally move downwards as SNR decreases.
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Figure 2.25: Precision–recall curves of comparison descriptors on the six object datasets. ART,
GFD, Zernike, and R2DFM descriptors are not robust to additive white noise, their curves are
similarly poor at different values of SNR. The generic R-signature and RFM descriptor are robust
to additive white noise, their curves generally move downwards as SNR decreases.
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It thus can be concluded that the proposed generic R-signature and RFM descriptor have
comparable performances and are more robust to additive white noise than the comparison ART,
GFD, Zernike, and R2DFM descriptors on grayscale noisy datasets. This provides empirical
evidence for the analytical results developed in Subsections 2.1.3 and 2.2.5. The disappointing
increase in performance that results from combination of R-signatures can be explained by their
“similar nature” in describing patterns. The only difference among R-signatures is the difference
in the value of the exponent m, meaning a difference in the exploitation of the variation in
the accumulations of patterns along all parallel lines (Subsection 2.2.2). This conclusion can
also be generalized that even the combined R-signature is composed of more R-signatures, the
performance increase is still not noteworthy. Moreover, poor performance of ART, GFD, Zernike,
and R2DFM descriptors has its root in the required normalizations in their computation and
can be explained as

- To have invariance to translation, the origin of the polar coordinate system needs to be
located at the centroid of the pattern. In the presence of noise, the position of the centroid
is shifted arbitrarily according to the actual noise.

- To have invariance to scaling, the radial coordinates of all pattern’s points are normalized
by the distance from the origin of the polar coordinate system to the farthest point. In
the presence of noise, this farthest point might not belong to the actual pattern but to the
noise.

Furthermore, it is also evident from the two sets of experiments that the performance of
the generic R-signature and RFM descriptor is better on ExpB than on ExpA at each noise
level, leading to a conclusion that the proposed descriptors perform better on multi-level than on
two-level grayscale pattern images. Possible explanation for this comes from the Radon transform
data: multi-level pattern images tend to have more variation in their Radon transform than
two-level ones. In addition, recall from Subsection 2.2.2 that the role of m is to exploit the
variation in the accumulations of patterns along all parallel lines with more a variation usually
leads to a higher discrimination power. Thus at the same value of m, the generic R-signature
of multi-level pattern images contains more discrimination power than that of two-level ones.
Similar explanation can also be used for the RFM descriptor.

2.4.2 Binary pattern recognition

Noisy datasets

The robustness of the proposed generic R-signature and RFM descriptor to additive “salt &
pepper” noise is demonstrated by using a set of six logo datasets generated from the first 25 logo
images of the UMD Logo dataset [58] shown in Fig. 2.26a. Each of these six logo datasets has
275 images of 25 categories, each category contains 11 images generated by randomly scaling,
rotating, translating, and then adding “salt & pepper” noise to the corresponding noise-free logo
images. Let d be the percentage of pixels flipped by the noise, the value of d for each generated
dataset is kept constant and has one of the six possible values, ranging from 0 to 0.1 with
increment of 0.02, that correspond to the six datasets. The first dataset with d = 0 is actually a
noise-free dataset; its use is intended for checking the invariance properties of the proposed and
comparison descriptors. The values of d of the other five noisy datasets make up an arithmetic
progression with a common difference of 0.02. These five datasets are, therefore, used to evaluate
the robustness of the proposed and comparison descriptors at incrementing levels of additive
“salt & pepper” noise. Some sample images from the six datasets are given in Fig. 2.26b.
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(a) Noise-free images

d = 0 d = 0.02 d = 0.04 d = 0.06 d = 0.08 d = 0.1

(b) Samples of noisy images

Figure 2.26: (a) Twenty-five logo images from the UMD Logo dataset used to generate the six
logo datasets. (b) Sample images from the six logo datasets generated from the first four logo
images with six possible values of d = {0, 0.02, 0.04, 0.06, 0.08, 0.1}.

Fig. 2.27 provides the precision–recall curves obtained by using the generic R-signature on
the six logo datasets. The evolution of these curves according to m has a similar trend with
that on the six alphabet/object datasets in Figs. 2.20/2.21. That is, except for the singularity at
m = 1, an increase then a decrease in performance are observed as m increases, agreeing with
the discussions in Subsections 2.2.2 and 2.2.5 respectively. The peak in performance is obtained
at m ≃ 11. In addition, as d increases, the performance of the generic R-signature generally
deteriorates at each value of m, agreeing with the dependance of the generic R-signature on noise
level presented in Subsection 2.2.4. However, the deterioration speed is slow at m ≃ 11, meaning
that the generic R-signature is robust to additive “salt & pepper” noise. This experimental
evidence agrees with the theoretical arguments on the robustness of the Radon transform to
additive “salt & pepper” noise presented in Subsection 2.1.3

The accuracy obtained by using the combined R-signature, FRIm1m2 , on the six logo datasets
is given in Fig. 2.28. Similar to the accuracy plots in Figs. 2.22 and 2.23, it can be seen that the
color patterns of these sub-figures are symmetric with respect to the minor diagonal; and a change
in (m1,m2) generally leads to a change in the color, meaning that the performance of FRIm1m2

varies according to (m1,m2). The peak in performance is obtained at (m1,m2) ≃ (5.5, 11.5). It
should be noted again from these values of m1 and m2 that one is smaller and the other is larger
than m ≃ 11.

The proposed generic R-signature/RFM descriptor are again compared with ART, GFD,
Zernike, and R2DFM descriptors using these six datasets and the computed precision–recall
curves of these descriptors are depicted in Fig. 2.29. In this comparison, the value of m is fixed
at 11. For the noise-free dataset with d = 0 (Fig. 2.29a), all descriptors have ideal performance,
demonstrating the total invariance to RST transformations of the proposed descriptors. When
d 6= 0 (Fig. 2.29b–2.29f), deterioration appears in the performance of all descriptors and their
precision–recall curves move downwards. However, the impact of d on precision-recall curves
differs from one descriptor to another. Among all the descriptors, the proposed descriptors have
the best performance for all the five noisy datasets while ART and Zernike descriptors have
similarly worse performance. It is also observed that:

- As d increases, the curves of all descriptors generally move downwards.
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Figure 2.27: Precision–recall curves of the generic R-signature on the six logo datasets at different
values of m. In each sub-figure and at a specific value of m in the horizontal axis, there is a
precision–recall curve with recall and precision rates illustrated as the ordinate and the color of
the grid points having abscissa m.
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Figure 2.28: The accuracy of the generic R-signature on the six logo datasets at different values
of (m1,m2). In each sub-figure and at specific values of (m1,m2), the accuracy is denoted as the
color of the grid point having abscissa m1 and ordinate m2.
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Figure 2.29: Precision–recall curves of comparison descriptors on the six logo datasets. For the
noise-free dataset d = 0 (a), all pattern descriptors have ideal performance. When d 6= 0 (b)–(f),
deterioration appears in the performance of all descriptors and their curves move downwards.
However, the impact of d on those curves differs from one descriptor to another.

- ART and Zernike descriptors are not robust to “salt & pepper” noise at all, their performance
is similarly poor for different levels of noise.

- GFD has more resistance to “salt & pepper” noise than ART and Zernike because its curves
are pushed away from the ideal curves (when d = 0) a distance which increases along with
the increase in d. However, the resistance of GFD is weaker than that of descriptors defined
based on the Radon transform.

- Among the three Radon transform-based descriptors, the shifts in the curves of the generic
R-signature and RFM descriptor are comparable and are more regular than that of R2DFM.

- There is a substantial increase in the performance of the generic R-signature from that
of the conventional R-signature (m = 2) when an appropriate value of the exponent m is
used.

- The increase in performance obtained by combining R-signatures is small and negligible.

The above observations lead to a conclusion that the proposed generic R-signature and RFM
descriptor have comparable performances and are more robust to additive “salt & pepper” noise
than the comparison ART, GFD, Zernike, and R2DFM descriptors on binary noisy datasets.
This provides empirical evidence for the analytical results developed in Subsections 2.1.3 and
2.2.5. Explanations for a small increase in performance due to combination of R-signatures and
the poor performance of ART, GFD, Zernike, and R2DFM descriptors on binary noisy datasets
are similar to those given in the previous subsection on grayscale noisy datasets.
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Figure 2.30: Sample shape images from the Shapes216 dataset. There are 18 shape categories and
each category contains 12 shapes (shown in the figure are four shapes for each category), each of
these shapes cannot be obtained by RST transforming any other shape from the same category.

Occlusion and deformation dataset

The performance of the proposed generic R-signature and RFM descriptor on occlusion and
deformation shapes was evaluated using the reference Shapes216 dataset [198]. This dataset is
composed of 18 shape categories with 12 samples per category, each of these shapes cannot be
obtained by RST transforming any other shape from the same category. Some sample shapes
from the Shapes216 dataset are shown Fig. 2.30.

Fig. 2.31a provides the precision–recall curves obtained by using the generic R-signature on
the Shapes216 dataset. The evolution of these curves according to m has a similar trend with that
on the six alphabet, object, and logo datasets given in Figs. 2.20, 2.21, and 2.27 respectively. That
is, except for the singularity at m = 1, an increase then a decrease in performance are observed
as m increases, agreeing with the discussions in Subsections 2.2.2 and 2.2.5 respectively. However,
even though the performance peak at m ≃ 3.2 is noticeable, the variation in the performance of
the generic R-signature due to m is small. This phenomenon does not exist on noisy datasets
in previous experiments. It is thus can be concluded that the generalization of the R-signature
has a little impact on occlusion and deformation shapes. Similarly, the accuracy obtained by
using the combined R-signature, FRIm1m2 , on the Shapes216 dataset in Fig. 2.31b has almost a
constant color, meaning similar performances of the combined R-signatures at different values of
(m1,m2).

Comparison of the proposed generic R-signature and RFM descriptor with commonly used
descriptors in this direction was carried out and the obtained results are given in Fig. 2.31c.
In this comparison, m = 3.2 and (m1,m2) = (0.2, 1.8). It can be seen that the performance
of the RFM descriptor outperforms that of the generic R-signature and is comparable to the
performances of ART, GFD, Zernike, and R2DFM descriptors. Moreover, it is clear that the
categorizations by the proposed descriptors are not as good as that given in [198] where the
precision of each nearest match for all categories are reported as (100, 100, 100, 100, 99, 97, 99, 96,
96, 95, 91, 80). However, it should be noted here that the proposed descriptors are not intended
nor designed to work solely with binary patterns as in [198]. They are designed, instead, to work
also with grayscale patterns under RST transformations allowing a certain level of additive noise,
which methods such as the one in [198] cannot work with.

2.5 Conclusions

In this chapter, the Radon transform has been used to represent patterns invariantly by employing
its beneficial properties concerning RST transformations. By applying the Radon transform
on an RST-transformed pattern, the transformation parameters are encoded in the radial (for
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Figure 2.31: Experimental results on the Shapes216 dataset: (a) Precision–recall curves of the
generic R-signature at different values of m. (b) The accuracy of the generic R-signature at
different values of (m1,m2). (c) Precision–recall curves of comparison descriptors.

translation and scaling) and angular (for rotation) slices of the obtained Radon transform
data. The residual influences of RST transformations on the Radon transform of a pattern
could be overcome by using appropriate transforms, of which different choices lead to different
descriptors. This chapter has unified the view on possible directions that can be followed to
define invariant pattern descriptors based on the Radon transform. It further proposed two novel
pattern descriptors that are totally invariant to RST transformations:

- The generic R-signature is obtained by using an integration and then an exponentiation
on the radial slices, followed by the discrete Fourier transform on the angular slices of
the Radon transform data. This definition brings in a class of descriptors that has the
beneficial properties of the conventional R-signature while spatially describing patterns at
all directions and at different levels. This generalization gives more flexibility in definition
and, more importantly, the generic R-signature has been proven to be robust to additive
noise. It has been demonstrated that the generic R-signature is superior to existing invariant
pattern descriptors in terms of retrieval rate on grayscale and binary noisy datasets.

- The RFM descriptor is obtained by applying the 1D Fourier–Mellin and discrete Fourier
transforms on the radial and angular slices of the Radon transform data respectively. It has
been proven to be invariant to rotation, scaling, and translation, without the need of any
normalization step. The computation of the RFM descriptor is reasonably fast and correct,
based mainly on the fusion of the Radon and Fourier transforms and on a modification of
the Mellin transform. It has been shown to be robust to additive noise both theoretically
and experimentally. It has also been demonstrated that the RFM descriptor is superior
to existing invariant pattern descriptors in terms of retrieval rate on grayscale and binary
noisy datasets.

Additionally, the Radon transform has been proven theoretically to have the property of
suppressing additive white/“salt & pepper” noise. This is due to the use of an integral function
which accumulates pattern’s intensity values along straight lines in the spatial domain. These
theoretical arguments have been consolidated by experimental results where the proposed generic
R-signature and RFM descriptor outperform the commonly used pattern descriptors. However,
on an occlusion and deformation dataset, RFM descriptor has comparable performance with
comparison descriptors whereas poor performance has been observed from the generic R-signature.

For the generic R-signature, the proper value of the exponent m, the only parameter of
the generalization which has been proven to be robust to the level of noise, depends on the
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semantic content of images and is constrained by the two contradicting desires: a larger value is
preferred for a higher discrimination power whereas a smaller one is for noise robustness. Since
the discrimination power results from exploiting variation in the accumulations of patterns along
all parallel lines, it is anticipated that a pattern that has less variation in the spatial domain will
require a larger value of m for best performance. Evidence is m ≃ 3.2, 5, 11 for the three types of
datasets used in experiments: object, alphabet, and logo. Moreover, due to the blunt maxima in
the accuracy curve of the generic R-signature, a small deviation of the selected value of m from
the best choice has almost no effect on the performance.

Complexity consideration

From the definition of the generic R-signature in Subsection 2.2.1, its calculation could be
separated into three steps: Radon transform, generic R-transform, and discrete Fourier transform.
The Radon transform requires O(N2 logN) operations for a pattern image of size N ×N . For
1D digital data of M samples, the discrete Fourier transform can be implemented using the FFT
algorithm requiring O(M logM) operations and the remaining generic R-transform requires O(M)
operations. Apparently, there is no increase in the computational complexity when generalizing
the R-signature. The generic R-signature maintains the simplicity of the conventional R-signature
proposed in [211], meaning a simple and reasonably fast computation.

Similarly, from the definition of the RFM descriptor in Subsection 2.3.4, its calculation could
also be separated into three steps: Radon transform, 1D Fourier–Mellin transform, and discrete
Fourier transform. For 1D digital data of M samples, the Mellin transform can be implemented
using Eq. (2.27) requiring O(M) operations. Thus, by definition, the complexity of the RFM
descriptor is similar to that of the generic R-signature. However, due to the interpretation of
the Radon transform by means of the Fourier transform in Eq. (2.8), a computational reduction
is possible by fusing these two transforms. If Radon transform is implemented via 2D Fourier
transform, due to the successive applications of inverse and forward Fourier transforms, performing
the 1D Fourier–Mellin transform on each radial slice of the Radon transform data is equivalent
to directly performing the Mellin transform on the corresponding 1D radial slice of the 2D
Fourier transform data. This equivalence results in a computational reduction with no change in
complexity. For this reason, when the RFM descriptor is chosen to be implemented through 2D
Fourier transform, attention to this fusion should be paid for computational benefit.
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3.1 Unit disk-based orthogonal moments

This section provides some basics on the orthogonal moments that are defined on the unit disk:
the general definition by means of the inner product and the conditions for them to be orthogonal
and “invariant in form” with respect to rotations. A detailed review on existing formulations
of unit disk-based orthogonal moments based on polynomials, eigenfunctions, and harmonic
functions is also given. All these aspects are followed by a sketch of contributions that will be
presented in this chapter.

3.1.1 Definition

Consider the Hilbert space H of square-integrable continuous complex-valued functions on the
unit disk D = {(x, y) ∈ R

2 : x2 + y2 ≤ 1}. The theory of image moments over the unit disk is
built on the following definition of the inner product 〈f, V 〉 of two functions f and V ∈ H:

〈f, V 〉 =
∫∫

D

f(x, y)V ∗(x, y) dxdy,

where the asterisk ∗ denotes the complex conjugate. The direct geometric interpretation of 〈f, V 〉
is that it is the projection of f onto V or, in other words, 〈f, V 〉 is the information of f that is
contained in V .

When a set of functions {Vnm : (n,m) ∈ Z
2} is available, {〈f, Vnm〉} is the representation of

f in the subspace formed by all linear combinations of {Vnm} and {〈f, Vnm〉} can further be used
as a set of features for the analysis and recognition of f . In this way, {Vnm} is usually called the
set of decomposing kernels and, for any square-integrable continuous complex-valued function
f ∈ H, {Hnm = 〈f, Vnm〉} is the set of its corresponding moments. Since there exists an infinite
number of sets of kernels, it is natural to require the set {Vnm} to have some “structures” that
lead to certain beneficial properties in {Hnm}. The two common preferences in image analysis
and pattern recognition are invariance in form with respect to rotations about the origin and
orthogonality.

Invariance in form

Invariance in form with respect to rotations about the origin is a “must” structure if the moments
Hnm are going to be used in rotation-invariant pattern recognition problems. By such invariance,
any rotation in the spatial domain by an angle φ as

[

x′

y′

]

=

[

cosφ sinφ
− sinφ cosφ

] [

x
y

]

is equivalent to a transformation of each kernel Vnm into a kernel of the same form. In other
words, Vnm should satisfies the following relation:

Vnm(x′, y′) = G(φ)Vnm(x, y),

where G is a periodic continuous function with period 2π and G(0) = 1. The following theorem
imposes constraints on possible explicit forms of Vnm.

Theorem 3.1. A kernel Vnm will be invariant in form with respect to rotations of axes about
the origin x = y = 0 if and only if, when expressed in polar coordinates (r, θ), it is of the form

Vnm(r cos θ, r sin θ) = Rn(r)Am(θ), (3.1)
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3.1. Unit disk-based orthogonal moments

with Am(θ) = eimθ (i =
√
−1) and Rn(r) could be of any form.

Proof. Refer to [21] for details.

The possibility to decompose a kernel Vnm into a radial kernel Rn and an angular kernel Am

due to invariance in form simplifies the definition of the set of decomposing kernels. For example,
rotational moments (RM) [215] and complex moments (CM) [1] are defined using Rn(r) = rn;
the continuous generic Fourier descriptor (GFD) [243] employs ei2πnr for Rn(r); and angular
radial transform (ART) [22] uses harmonic functions for Rn(r) as

Rn(r) =

{

1, n = 0

cos(πnr), n 6= 0.

It is not difficult to see that the obtained kernels Vnm of RM, CM, GFD, and ART are not
orthogonal and, as a result, information redundancy exists in the moments Hnm, leading to
difficulties in image reconstruction and low accuracy in pattern recognition, etc. Undoubtedly,
orthogonality between kernels Vnm comes as a natural solution to these problems. The preference
for orthogonality, which will be discussed below, will impose another constraint, besides Am(θ) =
eimθ, on the radial kernels Rn.

Orthogonality

Orthogonality occurs when any two kernels Vnm and Vn′m′ from the set of decomposing kernels
are uncorrelated or they are “perpendicular” in geometric term, resulting in no redundancy in
the two corresponding moments. The orthogonality condition over the unit disk can be written
in the form

〈Vnm, Vn′m′〉 =
∫∫

x2+y2≤1

Vnm(x, y)V ∗
n′m′(x, y) dxdy = δnn′δmm′ ,

where δij = [i = j] is the Kronecker delta function. Due to the possible decomposition of a kernel
into its radial and angular components, the above equation becomes

〈Vnm, Vn′m′〉 =
∫ 2π

0

∫ 1

0
Rn(r)Am(θ)R∗

n′(r)A∗
m′(θ) r drdθ

=

∫ 1

0
Rn(r)R

∗
n′(r) r dr

∫ 2π

0
Am(θ)A∗

m′(θ) dθ.

In addition, from the orthogonality between angular kernels:

∫ 2π

0
Am(θ)A∗

m′(θ) dθ =

∫ 2π

0
eimθe−im′θ dθ = 2πδmm′ ,

the remaining condition on the radial kernels is

∫ 1

0
Rn(r)R

∗
n′(r) r dr =

1

2π
δnn′ . (3.2)

The above equation is the regulating condition for the definition of a set of radial kernels
Rn in order to have orthogonality between kernels Vnm. It will be seen in the next subsection
that there exists an infinity of such sets of radial kernels and, therefore, the number of sets of
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Chapter 3. Image Analysis by Generic Polar Harmonic Transforms

kernels Vnm which are orthogonal over the unit disk is also infinite. However, despite the fact
that several different forms of kernels Vnm have been used to define different orthogonal moments
over the unit disk, a fixed form of the angular kernels Am(θ) = eimθ due to Theorem 3.1 means
that the difference between existing methods lies only in the definition of the radial kernels Rn.
The following subsection provides an insight into the derivation/definition of Rn of existing unit
disk-based orthogonal moments.

3.1.2 Related works

There exists several proposed methods that have their radial kernels satisfying the condition in Eq.
(3.2) and they can be roughly classified into three groups. The first employs Jacobi polynomials
of order n for Rn by orthogonalizing sequences of polynomial functions or by directly using
existing orthogonal polynomials for Rn. The second employs the eigenfunctions of the Laplacian
or Hamiltonian for Vnm. And the last uses harmonic functions for Rn, taking advantage of their
orthogonality. Members of each group are to be briefly visited in the following by providing
their radial kernels’ derivation strategies, of which more detailed procedures are available in the
corresponding reference.

Shifted Jacobi polynomials

Zernike moments (ZM) [242] and pseudo-Zernike moments (PZM) [21]: For a fixed value of
the angular order m, the radial kernels Rnm of ZM and Pnm of PZM are defined to be the
polynomials of order n that arise out from Gram–Schmidt orthogonalization of the polynomial
sequences {r|m|, r|m|+2, r|m|+4, r|m|+6, . . .} and {r|m|, r|m|+1, r|m|+2, r|m|+3, . . .} respectively with
the weighting function r over the range 0 ≤ r ≤ 1. It was shown that Rnm have the following
explicit definition:

Rnm(r) =

n−|m|
2
∑

k=0

(−1)k
(−1)k (n− k)!

k!
(

n+|m|
2 − k

)

!
(

n−|m|
2 − k

)

!
rn−2k,

where n ∈ N and m ∈ Z satisfying n− |m| = even and |m| ≤ n. The explicit definition of Pnm is

Pnm(r) =

n−|m|
∑

k=0

(−1)k
(2n+ 1− k)!

k! (n+ |m|+ 1− k)! (n− |m| − k)!
rn−k,

where n ∈ N and m ∈ Z satisfying |m| ≤ n. Then, it is straightforward that

∫ 1

0
Rnm(r)R∗

n′m(r) r dr =
1

2n+ 2
δnn′ ,

∫ 1

0
Pnm(r)P ∗

n′m(r) r dr =
1

2n+ 2
δnn′ .

Orthogonal Fourier–Mellin moments (OFMM) [200]: Similar to ZM and PZM, the radial ker-
nels of OFMM are obtained by changing the polynomial sequence to be orthogonalized to be
{1, r, r2, r3, . . .}. It is also not difficult to arrive at the following definition of the radial kernels
Qn of OFMM with n ∈ N:

Qn(r) =
n
∑

k=0

(−1)n+k (n+ k + 1)!

(n− k)! k! (k + 1)!
rk.
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3.1. Unit disk-based orthogonal moments

Note that Qn do not depend on the angular order m and satisfy the following identity:

∫ 1

0
Qn(r)Q

∗
n′(r) r dr =

1

2n+ 2
δnn′ .

Chebyshev–Fourier moments (CHFM) [178]: The radial kernels Rn of CHFM are defined based on
the shifted Chebyshev polynomials of the second kind U⋆

n [120] of the same order. By definition,

U⋆
n are themselves orthogonal with the weighting function w defined as w(r) = (r − r2)

1
2 over

the range 0 ≤ r ≤ 1:

∫ 1

0
U⋆
n(r)

[

U⋆
n′(r)

]∗
w(r) dr =

π

8
δnn′ .

By defining Rn as

Rn(r) =

√

8w(r)

πr
U⋆
n(r)

=

√

8

π

(

1− r

r

) 1
4

⌊n
2
⌋

∑

k=0

(−1)k
(n− k)!

k! (n− 2k)!
(4r − 2)n−2k,

it is straightforward that

∫ 1

0
Rn(r)R

∗
n′(r) r dr = δnn′ .

Pseudo Jacobi–Fourier moments (PJFM) [4]: Similar to CHFM, the radial kernels Rn of PJFM
are defined based on the shifted Jacobi polynomials Gn (to be discussed later) of the same order
using the following explicit definition:

Rn(r) =

[

2n+ 4

(n+ 3)(n+ 1)

(

r − r2
)

] 1
2

n
∑

k=0

(−1)n+k (n+ k + 3)!

(n− k)! k! (k + 2)!
rk,

which leads to the following identity:

∫ 1

0
Rn(r)R

∗
n′(r) r dr = δnn′ .

Shifted Jacobi polynomials [21]: It has been demonstrated recently that all the above polynomial-
based radial kernels turn out to be special cases of the shifted Jacobi polynomials Gn which
are obtained by orthogonalizing the polynomial sequence {1, r, r2, r3, . . .} with a more general
weighting function w defined as

w(p, q, r) = rq−1(1− r)p−q, (q > 0, p− q > −1)

over the range 0 ≤ r ≤ 1 [177]. The explicit definition of Gn is

Gn(p, q, r) =
n! (q − 1)!

(p+ n− 1)!

n
∑

k=0

(−1)k
(p+ n+ k − 1)!

(n− k)! k! (q + k − 1)!
rk

= (−1)n
n! (q − 1)!

(n+ q − 1)!
P (p−q,q−1)
n (2r − 1),
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where P
(α,β)
n denote the Jacobi polynomials [120]. The orthogonality property is governed by

∫ 1

0
Gn(p, q, r)Gn′(p, q, r)w(p, q, r) dr = bn(p, q)δnn′ ,

where

bn(p, q) =
n!
[

(q − 1)!
]2
(p− q + n)!

(q + n− 1)! (p+ n− 1)! (p+ 2n)
·

It is evident that for each (p, q) with q > 0 and p− q > −1, the polynomials J
(p,q)
n defined as

J
(p,q)
n (r) =

√

w(r)
rbn(p,q)

Gn(p, q, r) can be used as radial kernels since they satisfy the condition in

Eq. (3.2) as

∫ 1

0
J (p,q)
n (r)

[

J
(p,q)
n′ (r)

]∗
r dr = δnn′ .

By varying the value of p and/or q, an infinite number of sets of radial kernels {J (p,q)
n : n ∈ N} is

obtained, meaning that the number of sets of orthogonal kernels {V (p,q)
nm : n ∈ N,m ∈ Z} having

the following definition

V (p,q)
nm (r cos θ, r sin θ) = J (p,q)

n (r)Am(θ)

is also infinite. For example, the aforementioned polynomial-based radial kernels are obtained
with the following values of p and q:

- ZM: p = m+ 1, q = m+ 1

- PZM: p = 2m+ 2, q = 2m+ 2

- OFMM: p = 2, q = 2

- CHFM: p = 2, q = 3
2

- PJFM: p = 4, q = 3.

Explicit relations between the radial kernels of existing polynomial-based moments and the
shifted Jacobi polynomials Gn are given in Table 3.1. Polynomial-based orthogonal moments have
been used extensively in image analysis and pattern recognition and many successful applications
have been reported. This is due in part to the long-history reputation of Zernike polynomials
in optics and in part to their early adoption for the representation of images. However, despite
their popularity and the ease of defining a new set of kernels from scratch by properly choosing
the values of p and q, this group of orthogonal moments involves computation of factorial terms,
resulting in high computational complexity and numerical instability which often limit their
practical usefulness.

Eigenfunctions

Helmholtz equation: A set of orthogonal kernels on the unit disk could be obtained by defining
them as the set of eigenfunctions of the Laplacian ∇2 on the same domain, similar to the
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3.1. Unit disk-based orthogonal moments

Table 3.1: Relations between the radial kernels of existing polynomial-based moments and the
shifted Jacobi polynomials Gn. Each of the existing polynomial-based radial kernels is a special
case of Gn obtained by properly setting the values of the two parameters.

Method Relationship

ZM Rnm(r) = (−1)
1
2
(n−m)

(1
2(n+m)
1
2(n−m)

)

rmG 1
2
(n−m)(m+ 1,m+ 1, r2)

PZM Pnm(r) = (−1)n−m

(

n+m− 1

n−m

)

rmGn−m(2m+ 2, 2m+ 2, r)

OFMM Qn(r) = (−1)n(n+ 1)Gn(2, 2, r)

CHFM Rn(r) = (−1)n
√

8
π

(

1−r
r

)
1
4 (n+ 1)Gn

(

2, 32 , r + 1
)

PJFM Jn(r) = (−1)n
(

2n+4
(n+3)(n+1)(r − r2)

) 1
2 (n+3)!

2n! Gn(4, 3, r)

interpretation of Fourier basis as the set of eigenfunctions of ∇2 on a rectangular domain. In this
way, the general solution to the Helmholtz equation ∇2V + λ2V = 0 in polar coordinates,

∂2V

∂r2
+

1

r

∂V

∂r
+

1

r2
∂2V

∂θ2
+ λ2V = 0,

needs to be obtained. By using the separable form V (r cos θ, r sin θ) = R(r)A(θ), this equation is
then separated into

∂2A

∂θ2
+m2A = 0,

r2
∂2R

∂r2
+ r

∂R

∂r
+
(

λ2r2 −m2
)

R = 0,

using the separation constant m. The solutions to these equations are

Am(θ) = eimθ,

Rnm(r) = αJm(λnmr) + βYm(λnmr),

where m ∈ Z to ensure the 2π periodicity in Am; Jm and Ym are the mth order Bessel functions
of the first and second kinds respectively [27]; α and β are constant multipliers. Since Ym is
singular at r = 0, a nonsingular requirement of R at the origin leaves

Rnm(r) = Jm(λnmr).

Being the eigenfunctions of the Laplacian, Bessel functions of the first kind possess the
following orthogonality property:

∫ ∞

0
Jm(λnmr)Jm(λn′mr) r dr =

1

λnm
δnn′ .

However, a unit disk domain means that r ∈ [0, 1] and the above integral becomes

∫ 1

0
Jm(λnmr)Jm(λn′mr) r dr
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=

{

1
λ2
nm−λ2

n′m

[λnmJm(λnm)J ′
m(λn′m)− λn′mJm(λn′m)J ′

m(λnm)] , λnm 6= λn′m

1
2

[

J2
m(λnm)− Jm−1(λnm)Jm+1(λnm)

]

, λnm = λn′m.
(3.3)

Imposing the orthogonality condition on the right-hand side of the above equation leads to

λnmJm(λnm)J ′
m(λn′m)− λn′mJm(λn′m)J ′

m(λnm) = 0,

and different forms of solutions to this equation will result in different orthogonal moments [226].
In the literature, for the purpose of simplicity, only two trivial forms of solutions resulting from
two different boundary conditions have been used:

- Dirichlet boundary condition: Jm(λnm) = 0, ∀n (i.e., λnm should be the nth positive zero
of Jm), then

1

2

[

J2
m(λnm)− Jm−1(λnm)Jm+1(λnm)

]

=
J2
m+1(λnm)

2
·

This condition was first employed in [91] for the proposal of Fourier–Bessel modes (FBM).
A slightly modification by fixing m = const in the radial kernels leads to Bessel–Fourier
moments (BFM) [235].

- Neumann boundary condition: J ′
m(λnm) = 0, ∀n (i.e., λnm should be the nth positive zero

of J ′
m), then

1

2

[

J2
m(λnm)− Jm−1(λnm)Jm+1(λnm)

]

=

{

1
2 , m = 0, n = 1
1
2

(

1− m2

λ2
nm

)

J2
m(λnm), otherwise.

This condition was used in [222] for the proposal of disk–harmonic coefficients (DHC).

Obviously, each of these two boundary conditions implies a specific behavior of the kernels
Vnm at the unit disk boundary: Dirichlet condition requires that Vnm have zero value, whereas
Neumann condition means that Vnm have zero slope in the radial direction. Due to these identical
restrictions on all Vnm, any linear combination of these kernels will result in a function having
the same behavior at the disk boundary, that is zero value or zero slope in the radial direction
according to the employed boundary condition. The orthogonal set {Vnm} resulting from any of
these two boundary conditions is thus theoretically incomplete, it cannot completely represent
many functions on the unit disk. It is easy to find a function that lies outside the function space
formed by any of these two sets of kernels.

Stationary Schrödinger equation: By replacing the Laplacian ∇2 with the simplified Hamilto-
nian Ĥ = −1

2∇2+ 1
2r

2, solutions to the corresponding stationary Schrödinger equation ĤV = EV
are pairwise orthogonal and thus could also be used for the definition of an orthogonal set. In
Cartesian coordinates, these solutions are defined based on the Hermite polynomials [120], leading
to the Hermite transform [149]. In polar coordinates, the equation becomes

∂2V

∂r2
+

1

r

∂V

∂r
+

1

r2
∂2V

∂θ2
+
(

− r2 + 2E
)

V = 0,

and they could also be solved by using the separable form V (r cos θ, r sin θ) = R(r)A(θ) as

∂2A

∂θ2
+m2A = 0,
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r2
∂2R

∂r2
+ r

∂R

∂r
+
(

− r4 + 2Er2 −m2
)

R = 0,

using the separation constant m. The solution to the angular equation is

Am(θ) = eimθ,

where m ∈ Z to ensure the 2π periodicity in Am. For the radial equation, applying a change of
variables ξ = r2 results in

ξ
∂2R

∂ξ2
+

∂R

∂ξ
+

(

−ξ

4
+

E

2
− m2

4ξ

)

R = 0.

This is the differential equation for the Gauss–Laguerre functions defined at ξ as e−
ξ
2 ξ

|m|
2 L

(m)
n (ξ),

where L
(m)
n denote the associated Laguerre polynomials [120] and E = 2n+m+ 1 denote the

eigenvalues of energy. Gauss–Laguerre functions are known to possess the following orthogonality
property:

∫ ∞

0
e−ξ ξ|m|L(m)

n (ξ)L
(m)
n′ (ξ) dξ =

(n+ |m|)!
n!

δnn′ .

In this way, the radial kernels Rnm could be defined as

Rnm(r) =

(

n!

π(n+ |m|)!

)1
2

e−
r2

2 r|m|L|m|
n (r2)

and it is straightforward to have

∫ ∞

0
Rnm(r)R∗

n′m(r) r dr =
1

2π
δnn′ .

However, unlike Bessel functions in Eq. (3.3), the integral
∫ 1
0 Rnm(r)R∗

n′m(r) r dr cannot be
expressed in a closed form. This obstacle prevents the use of Rnm to define a set of kernels
whose members are orthogonal over the unit disk. Instead, Vnm(r cos θ, r sin θ) = Rnm(r)Am(θ)
are orthogonal over the infinite-radius disk and hence using {Vnm} to represent a function whose
domain is a closed region is not optimal. This is because the value of Vnm on the region out of the
function’s domain (i.e., the unit disk) are not used. Nevertheless, due to the use of the Gaussian

e−
r2

2 , the energy of Rnm concentrates near the origin. Scaling the radial axis by a factor β is a
common practice used to control this concentration for better representation of objects, Rnm

then have the following definition

Rnmβ(r) =
1

β|m|+1

(

n!

π(n+ |m|)!

)1
2

e
− r2

2β2 r|m|L|m|
n

(

r2

β2

)

.

Originated from physical problems, the above formula of Rnmβ was first used in image processing
for the definition of polar Hermite transform [150] and then for the construction of Laguerre–
Gauss pyramid [105]. It was reiterated in [18, 152] in the effort to define shapelets for astronomical
images.
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Harmonic functions

It is well-known in Fourier analysis that the set of complex exponential functions {ei2πnr : n ∈ Z}
forms an orthonormal basis for the Hilbert space H of square-integrable continuous complex-valued
functions on the unit interval [0, 1] due to

∫ 1

0
ei2πnre−i2πn′r dr = δnn′ (3.4)

and the Riesz–Fischer theorem, which states that a measurable function on [0, 1] is square-
integrable if and only if the corresponding Fourier series converges in the space L2([0, 1]).
Similarly, the set of trigonometric functions {1, cos(2πnr), sin(2πnr) : n ∈ Z+} also forms an
orthogonal basis for H due to the following integral identities:

∫ 1

0
cos(2πnr) dr = 0, (3.5)

∫ 1

0
sin(2πnr) dr = 0, (3.6)

∫ 1

0
cos(2πnr) cos(2πn′r) dr =

1

2
δnn′ , (3.7)

∫ 1

0
sin(2πnr) sin(2πn′r) dr =

1

2
δnn′ , (3.8)

∫ 1

0
cos(2πnr) sin(2πn′r) dr = 0. (3.9)

The integrands in Eqs. (3.4)–(3.9) are “similar in form” with that in Eq. (3.2), except for the
absence of the weighting term r, which prevents a direct use of harmonic functions as radial
kernels. This obstacle was overcome

- by eliminating r using a multiplicative factor 1√
r

in the radial kernels to define radial

harmonic Fourier moments (RHFM) [187]:

Rn(r) =
1√
r











1, n = 0√
2 sin(π(n+ 1)r), n > 0 & n odd√
2 cos(πnr), n > 0 & n even

(3.10)

- or by moving r into the variable of integration dr to be 1
2dr

2 to define polar harmonic
transforms in three different forms [239]. Polar complex exponential transform (PCET):

Rn(r) = ei2πnr
2
, (3.11)

polar cosine transform (PCT):

RC
n (r) =

{

1, n = 0√
2 cos(πnr2), n > 0

(3.12)

and polar sine transform (PST):

RS
n(r) =

√
2 sin(πnr2), n > 0. (3.13)
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It is easy to verify that the radial kernels of RHFM and PCET in Eqs. (3.10) and (3.11)
satisfy the orthogonality condition in Eq. (3.2) and thus their sets of kernels are orthogonal
over the unit disk. For the cases of PCT and PST, their radial kernels in Eqs. (3.12) and (3.13)
do not directly satisfy the orthogonality condition in Eq. (3.2). However, if a function h to be
decomposed by RC

n or RS
n is defined on [−1, 1] instead of [0, 1] as usual, the orthogonal basis for h

using trigonometric functions then becomes {1, cos(πnr), sin(πnr) : n ∈ Z+}. In addition, if h is
an even function in the case of PCT and an odd function in the case of PST, the decomposition
of h using trigonometric functions simplifies to

- For the case of PCT (even function):

∫ 1

−1
h(r) dr = 2

∫ 1

0
h(r) dr,

∫ 1

−1
h(r) cos(πnr) dr = 2

∫ 1

0
h(r) cos(πnr) dr,

∫ 1

−1
h(r) sin(πnr) dr = 0.

- For the case of PST (odd function):

∫ 1

−1
h(r) dr = 0,

∫ 1

−1
h(r) cos(πnr) dr = 0,

∫ 1

−1
h(r) sin(πnr) dr = 2

∫ 1

0
h(r) sin(πnr) dr.

These simplifications explain for the definitions of RC
n and RC

n in Eqs. (3.12) and (3.13) respectively
(i.e., RC

n uses only the constant and cosine functions whereas RS
n uses only the sine functions).

Since f(r cos θ, r sin θ) is only defined in the polar domain [0, 1]× [0, 2π), which corresponds to
a unit disk in the Cartesian coordinate system, the above even/odd conditions are satisfied by
implicitly defining f(r cos θ, r sin θ) in the domain [−1, 0) × [0, 2π). In other words, the radial
kernels of PCT and PST also satisfy the orthogonality condition.

It should also be noted that, the radial kernel of RHFM in Eq. (3.10) is actually equivalent to
1√
r
ei2πnr in terms of representation, similar to the equivalence between different forms of Fourier

series (namely trigonometric and complex exponential functions). The resemblance between
the complex exponential form of RHFM’s radial kernel and PCET’s radial kernel provokes a
suspicion that they are actually special cases of a generic radial kernel defined based on complex
exponential functions. Similar observation also leads to three generic radial kernels defined based
on trigonometric functions. Explicit forms of all four generic radial kernels will be derived in
the remaining of this chapter, along with discussions on their beneficial properties and their
implementation strategies.

3.1.3 Contributions

In pursuing the derivation of moments that are orthogonal over the unit disk using harmonic
functions, this chapter makes the following main contributions:
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- It provides a unified view on strategies that have been used to define unit disk-based
orthogonal moments.

- It introduces four generic harmonic radial kernels which correspond to four sets generic of
polar harmonic moments and take existing sets of polar harmonic moments as special cases.

- It proves theoretically that the sets of generic polar harmonic kernels are complete in the
Hilbert space of all square-integrable continuous complex-valued functions on the unit disk.

- It proposes several strategies for fast computation of polar harmonic kernels/moments
based on recursive computation of complex exponential and trigonometric functions.

- It shows experimentally that, when compared with existing moments of similar nature, the
proposed polar harmonic moments are superior in terms of computational complexity and
comparable in terms of representation capability and discrimination power.

The remainder of this chapter is organized as follows. Section 3.2 derives the formulas for the
generic polar harmonic moments along with a proof on the completeness of their corresponding
kernels. Beneficial properties of these moments are presented in Section 3.3 and strategies for
their fast computation are then discussed in Section 3.4. Experimental results are given in Section
3.5, and finally conclusions are drawn in Section 3.6.

3.2 The generic polar harmonic transforms

This section presents generic definitions of the polar harmonic transforms along with a discussion
on the completeness of the corresponding sets of orthogonal decomposing kernels. A formulation
to extend these generic transforms for three-dimensional (3D) patterns is also given.

3.2.1 Definition

In order to formulate the generalization, assuming that the harmonic radial kernel has the generic
exponential form Rns(r) = κ(r) ei2πnr

s
, where s ∈ R and κ is a real function. Then

∫ 1

0
Rns(r)R

∗
n′s(r) r dr =

∫ 1

0
κ2(r) ei2πnr

s

e−i2πn′rsr dr.

Since drs = srs−1dr = srs−2rdr,

∫ 1

0
Rns(r)R

∗
n′s(r) r dr =

∫ 1

0
κ2(r) ei2πnr

s

e−i2πn′rs 1

srs−2
drs.

By letting κ2(r)
srs−2 = const =C,

∫ 1

0
Rns(r)R

∗
n′s(r) r dr =

∫ 1

0
C ei2πnr

s

e−i2πn′rsdrs = Cδnn′ .

In order to have orthonormality between kernels, it follows from Eq. (3.2) that C = 1
2π . Then

κ(r) =
√

srs−2

2π and Rns(r) has the following actual definition:

Rns(r) =

√

srs−2

2π
ei2πnr

s

, (3.14)
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which leads to

Vnms(x, y) = Vnms(r cos θ, r sin θ) = Rns(r)Am(θ) =

√

srs−2

2π
ei2πnr

s

eimθ. (3.15)

The generic polar complex exponential transform (GPCET) is consequently defined as

Hnms =

∫∫

x2+y2≤1

f(x, y)V ∗
nm(x, y) dxdy

=

∫ 2π

0

∫ 1

0
f(r cos θ, r sin θ)

√

srs−2

2π
e−i2πnrse−imθ r drdθ. (3.16)

By taking s in the above definition as a parameter, Rns is a true generalization of the harmonic
radial kernel of PCET [239]: Rns(r) in Eq. (3.14) becomes Rn(r) in Eq. (3.11) when s = 2, except
for a constant multiplicative factor 1√

π
. A class of harmonic radial kernels is obtained by changing

the value of s; and members of this class share beneficial properties to image representation
and pattern recognition. However, each member possesses distinctive characteristics, determined
by the actual value of s, that make it more suitable for some particular applications. Some
beneficial properties of GPCET will be presented theoretically in Section 3.3 and supported by
experimental evidence in Section 3.5. Illustration of the phases of GPCET kernels using four
different values of s = 0.5, 1, 2, 4 for {(n,m) ∈ Z

2 : 0 ≤ n,m ≤ 3} is given in Fig. 3.1. The phase
of Vnms, unlike those of the kernels defined based on polynomials or special functions, is the sum
of the phases of Rns and Am, producing a Swiss roll pattern in the phase image when n 6= 0 or
m 6= 0. The difference between these phase images lies in the circular slices due to the values of
n, m, and s:

- an increase in n results in a Swiss roll made from a thinner and longer cake.

- an increase in m increases the number of cake layers.

- a change in s corresponds to a change in the uniformity in the thickness of each layer.

In addition to the generic harmonic radial kernel of GPCET defined in Eq. (3.14), there exist
three other generic harmonic radial kernels as generalizations of the harmonic radial kernels
of RHFM

(

RH
ns

)

[187], PCT
(

RC
ns

)

, and PST
(

RS
ns

)

[239]. The formulations of these generic
harmonic radial kernels follow strictly the procedure which has been used for Rns. It is thus not
difficult to have

RH
ns(r) =

√

srs−2

2π











1, n = 0√
2 sin(π(n+ 1)rs), n > 0 & n odd√
2 cos(πnrs), n > 0 & n even

(3.17)

RC
ns(r) =

√

srs−2

2π

{

1, n = 0√
2 cos(πnrs), n > 0

(3.18)

RS
ns(r) =

√

srs−2

2π

√
2 sin(πnrs), n > 0. (3.19)

These three generic harmonic radial kernels in turn correspond to three generic transforms:
the generic radial harmonic Fourier moments (GRHFM), the generic polar cosine transform
(GPCT), and the generic polar sine transform (GPST).
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Figure 3.1: 2D views of the phases of GPCET kernels Vnms in Eq. (3.15) using four different
values of s = 0.5, 1, 2, 4 for {(n,m) ∈ Z

2 : 0 ≤ n,m ≤ 3}. In each sub-figure (for a specific value
of s), the row and column indices indicate the values of n and m respectively.

- GRHFM is actually a variant of GPCET in terms of representation, similar to the equivalence
between different forms of Fourier series. It becomes RHFM in Eq. (3.10) when s = 1,
except for a constant multiplicative factor 1√

2π
.

- GPCT/GPST arise naturally from GRHFM when the function to be represented by RH
ns

is considered as half of an even/odd periodic function. Again, GPCT/GPST become
PCT/PST in Eqs. (3.12)/(3.13) when s = 2, except for a constant multiplicative factor 1√

π
.

Illustration of the real parts of GRHFM, GPCT, and GPST kernels using four different values
of s = 0.5, 1, 2, 4 for {(n,m) ∈ Z

2 : 0 ≤ n,m ≤ 2} (GRHFM, GPCT) or {(n,m) ∈ Z
2 : 1 ≤ n ≤
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3, 0 ≤ m ≤ 2} (GPST) is given in Fig. 3.2. The phases of these example kernels are not used
for illustration here due to the zero-valued phase in the generic harmonic radial kernels defined
in Eqs. (3.17)–(3.19). The phases of V H

nms, V
C
nms, and V S

nms are actually the phase of Am(θ) and,
if employed for illustration, look identical. By fixing the values of (n,m) and for each kernel
type, a variation in the value of s corresponds to a variation in the values of the harmonic radial
kernels. This variation in turn results in a variation in the values of the real parts of kernels.
However, this variation behaves like a deformation in the surface plots of the real parts of kernels
and causes a variation in the color patterns as observed from the figure. Moreover, from Eqs.
(3.17)–(3.19), it is straightforward that

RH
ns(r) =







RC
ns(r), n even

RS
ns(r), n odd

⇒ V H
nms(x, y) =







V C
nms(x, y), n even

V S
nms(x, y), n odd.

These relations make the first and last three columns of Fig. 3.2a identical to the first and
last three columns of Fig. 3.2b. In a similar manner, the three middle columns of Fig. 3.2a are
identical to the three middle columns of Fig. 3.2c.

Orthogonal sets

At a specific value of s, 〈Vnms, Vn′m′s〉 = δnn′δmm′ means that

Bs = {Vnms : n,m ∈ Z}

forms a set of orthonormal kernels on the unit disk. Similarly, there exist three other sets of
orthonormal kernels on the unit disk at a specific value of s as follows:

BH
s = {V H

nms : n ∈ N,m ∈ Z},

BC
s = {V C

nms : n ∈ N,m ∈ Z},

BS
s = {V S

nms : n ∈ Z+,m ∈ Z},

where

V H
nms(x, y) = V H

nms(r cos θ, r sin θ) = RH
ns(r) e

imθ,

V C
nms(x, y) = V C

nms(r cos θ, r sin θ) = RC
ns(r) e

imθ,

V S
nms(x, y) = V S

nms(r cos θ, r sin θ) = RS
ns(r) e

imθ.

Bs, BH
s , BC

s , and BS
s each can be used as the set of decomposing orthonormal kernels for GPCET,

GRHFM, GPCT, and GPST respectively and thus their completeness is an important issue that
needs consideration. The completeness issue will be discussed in the next subsection.

In spite of the relations between GPCET, GRHFM, GPCT, and GPST, at the same value of s,
each transform captures different image information. This is due to the difference between Fourier
(complex exponential and trigonometric), cosine, and sine series. This difference will be evident
from the experimental results that will be given in Section 3.5. Nevertheless, in the remaining
of this chapter, theoretical discussions will mainly focus on GPCET with an occasional foray
into GRHFM, GPCT, and GPST only when necessary. This is to avoid unnecessary repetition
since GRHFM, GPCT, and GPST essentially have many properties that are identical to those
of GPCET. In addition, if not explicitly mentioned, the parameter s has a fixed value in the
remaining discussions.
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Figure 3.2: 2D views of the real parts of GRHFM, GPCT, and GPST kernels in Eqs. (3.17)–(3.19)
respectively using four different values of s = 0.5, 1, 2, 4 for {(n,m) ∈ Z

2 : 0 ≤ n,m ≤ 2}
(GRHFM, GPCT) or {(n,m) ∈ Z

2 : 1 ≤ n ≤ 3, 0 ≤ m ≤ 2} (GPST). In each row (for a specific
kernel type and a specific value of s), the images are indexed horizontally by (n,m).
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3.2. The generic polar harmonic transforms

3.2.2 Completeness of Bs

A set of orthogonal kernels is called complete in a Hilbert space H of functions if its linear span
is dense in H. The completeness of an orthogonal set in H is hence related to the ability of the
set to represent functions in H. For the case of Bs:

- H is defined as the space of all square-integrable continuous complex-valued functions on
the unit disk L2(x2 + y2 ≤ 1).

- Being complete makes Bs an orthonormal basis for H, meaning that every function f ∈ H
can be represented as an infinite linear combination of the kernels Vnms (n,m ∈ Z) in Bs as

fs(x, y) =

∞
∑

n=−∞

∞
∑

m=−∞
HnmsVnms(x, y) (3.20)

(this equation will be proven in Subsection 3.3.5). In addition, due to the Parseval’s identity

∑

(n,m)∈Z2

|Hnms|2 =
∫∫

x2+y2≤1

|f(x, y)|2 dxdy, (3.21)

GPCET moments Hnms are bounded if and only if f is square-integrable over the unit
disk. The above identity is in fact stronger than the Bessel’s inequality claimed in [239, Eq.
(8)], where the loose inequality is replaced by an equality.

In this subsection, the completeness of Bs in H is established by means of GPCET’s interpre-
tation through Fourier series by rewriting Eq. (3.16) as

Hnms =

∫ 2π

0

[

∫ 1

0
f(r cos θ, r sin θ)

√

srs−2

2π
e−i2πnrsr dr

]

e−imθ dθ

=

∫ 2π

0

[ ∫ 1

0

f(r cos θ, r sin θ)√
2πsrs−2

e−i2πnrs drs
]

e−imθ dθ

=
1

2π

∫ 2π

0

[ ∫ 1

0
g(r′, θ) e−i2πnr′dr′

]

e−imθdθ, (3.22)

where r′= rs and

g(r′, θ) =

√

2π

s

(

r′
)

2−s
2s f

(

s
√
r′ cos θ,

s
√
r′ sin θ

)

. (3.23)

In this way, g is a 2D function defined in a Cartesian coordinate system with r and θ-axes are the
horizontal and vertical axes respectively. GPCET moments Hnms of a function f ∈ H are then
2D Fourier coefficients of g formulated as above: first 1D Fourier expansion on the radial slices,
then followed by 1D Fourier expansion on the angular slices. This interpretation has transformed
the completeness issue of Bs in H into the convergence issue of 2D Fourier series, leading to the
following two questions:

- The convergence of partial sums of 2D Fourier series of functions? Almost everywhere
convergence of “polygonal partial sums” of 2D Fourier series of a function in L2([0, 1]×[0, 2π))
is established by Theorem 3.2.
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- The square-integrability of g? The necessary and sufficient conditions for the square-
integrability of g over the domain [0, 1]× [0, 2π) are established in Theorem 3.3.

Theorem 3.2. Let P be an open polygonal region in R
2 containing the origin. Set λP =

{(λx, λy) : (x, y) ∈ P} for λ > 0. Then for

f ∼
∞
∑

n,m=−∞
f̂(n,m) ei(2πnx+my)

in L2([0, 1]× [0, 2π)), where f̂(n,m) are the Fourier coefficients of f computed as

f̂(n,m) =
1

2π

∫ 2π

0

[ ∫ 1

0
f(x, y) e−i2πnx dx

]

e−imydy.

Then

f(x, y) = lim
λ→∞

∑

n,m∈λP
f̂(n,m) ei(2πnx+my)

almost everywhere.

Proof. Refer to [77] for details.

Theorem 3.3. The function g defined in Eq. (3.23) is in L2([0, 1]× [0, 2π)) if and only if f is
in L2(x2 + y2 ≤ 1).

Proof. From the definition of g:
∫ 2π

0

∫ 1

0
|g(r′, θ)|2 dr′dθ =

∫ 2π

0

∫ 1

0

2π

s

(

r′
)

2−s
s
∣

∣f
(

s
√
r′ cos θ,

s
√
r′ sin θ

)∣

∣

2
dr′dθ.

By changing the variable r = s
√
r′ → r′ = rs and dr′ = srs−1dr, the above equation becomes

∫ 2π

0

∫ 1

0
|g(r′, θ)|2 dr′dθ =

∫ 2π

0

∫ 1

0

2π

s
r2−s|f(r cos θ, r sin θ)|2srs−1 drsdθ

= 2π

∫ 2π

0

∫ 1

0
|f(r cos θ, r sin θ)|2 r drdθ

= 2π

∫∫

x2+y2≤1

|f(x, y)|2 dxdy.

Thus, it is straightforward that
∫ 2π

0

∫ 1

0
|g(r′, θ)|2 dr′dθ < ∞ ⇔

∫∫

x2+y2≤1

|f(x, y)|2 dxdy < ∞

and the theorem is proven.

Combining Eq. (3.22) and Theorems 3.2, 3.3, it can be concluded that the set Bs = {Vnms :
n,m ∈ Z} is complete in the Hilbert space H of all square-integrable continuous complex-valued
functions on the unit disk L2(x2 + y2 ≤ 1). As a result, Bs can be used as an orthonormal basis
for H and writing f as in Eq. (3.20) is safe, meaning that the partial sums converge to the image
function. In the literature, there exists no such conclusion for other sets of orthogonal kernels on
the unit disk that are defined based on Jacobi polynomials or eigenfunctions. Eq. (3.20) has been
extensively used by many authors without judgement on the completeness of the orthogonal sets.
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3.2. The generic polar harmonic transforms

3.2.3 Extension to 3D

GPCET could be easily extended for 3D patterns, similar to the extension of Zernike moments
to 3D [35, 162], by replacing the complex exponential function in the circular kernel with a
spherical harmonic [114] and then modifying the harmonic radial kernel Rns defined in Eq. (3.14)
to fulfill the requirement of orthonormality over the unit sphere. Denoting (r, θ, ϕ) as the radius,
inclination, and azimuth of a spherical coordinate system respectively (Fig. 3.3), the spherical
harmonic of degree ℓ and order m, Ymℓ, is defined as

Ymℓ(θ, ϕ) =

√

(2ℓ+ 1)(ℓ−m)!

4π(ℓ+m)!
Pmℓ(cos θ) e

imϕ,

with ℓ ∈ N0, m ∈ Z, |m| ≤ ℓ, and Pmℓ denotes the associated Legendre functions [68]. Making
use of the orthonormality of Ymℓ:

〈Ymℓ, Ym′ℓ′〉 =
∫ 2π

ϕ=0

∫ π

θ=0
Ymℓ(θ, ϕ)Y

∗
m′ℓ′(θ, ϕ) dΩ = δmm′δℓℓ′ ,

where Ω represents the solid angle with

dΩ = sin θ dθdϕ, (3.24)

if the generic 3D kernel Vnmℓs is defined as

Vnmℓs(x, y, z) = Vnmℓs(r sin θ cosϕ, s sin θ sinϕ, r cosϕ) =
1√
r
Rns(r)Ymℓ(θ, ϕ)

then

〈Vnmℓs, Vn′m′ℓ′s〉 =
∫∫∫

x2+y2+z2≤1

Vnmℓs(x, y, z)V
∗
n′m′ℓ′s(x, y, z) dxdydz

=

∫ 1

0

∫ 2π

ϕ=0

∫ π

θ=0

1√
r
Rns(r)Ymℓ(θ, ϕ)

1√
r
R∗

n′s(r)Y
∗
m′ℓ′(θ, ϕ) r

2 dΩdr

=

∫ 1

0
Rns(r)R

∗
n′s(r) r dr

∫ 2π

ϕ=0

∫ π

θ=0
Ymℓ(θ, ϕ)Y

∗
m′ℓ′(θ, ϕ) dΩ

= δnn′δmm′δℓℓ′ ,

meaning that {Vnmℓs : n,m ∈ Z, ℓ ∈ N0, |m| ≤ ℓ} forms a set of orthonormal kernels on the
unit sphere (x2 + y2 + z2 ≤ 1). Orthonormality implies that there is no redundancy in the
representation of 3D patterns. Moreover, it should be noted here that Vnmℓs is again a generic
3D kernel with the parameter s, taking the kernel proposed in [202] as a special case (s = 1).

For a 3D pattern f confined to the unit sphere, its 3D GPCET moments Hnmℓs can be
computed using the following formula:

Hnmℓs =

∫∫∫

x2+y2+z2≤1

f(x, y, z)V ∗
nmℓs(x, y, z) dxdydz

=

∫ 1

0

∫ 2π

ϕ=0

∫ π

θ=0
f(r sin θ cosϕ, s sin θ sinϕ, r cosϕ)

1√
r
R∗

ns(r)Y
∗
mℓ(θ, ϕ) r

2 dΩdr.
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Chapter 3. Image Analysis by Generic Polar Harmonic Transforms

Figure 3.3: Illustration of the 3D Cartesian (x, y, z) and spherical (r, θ, ϕ) coordinate systems.
Shown on the right are the forward and backward coordinate transformations between Cartesian
and spherical coordinates of a point P : Cartesian → spherical (top right) and spherical →
Cartesian (bottom right).

The construction of 3D invariants [137] from {Hnmℓs} may follow the approaches discussed in
Subsection 3.3.2 with minor adaptation. The obtained 3D moments and invariants may then find
applications in 3D object recognition, registration, segmentation, etc.

There exists another direction to extend existing 2D moments to 3D by using the complex
exponential functions for the two angular directions, i.e., inclination and azimuth [189]. Even
though this extension may be used to define rotation-invariant features of 3D patterns, it does not
result in 3D kernels that are orthogonal over the unit sphere, since there is no way to overcome
the remaining weighting function sin θ in the differential solid angle in Eq. (3.24). The lack of
orthogonality between decomposing kernels means information redundancy in the computed
values of moments and thus is not preferred in many situations.

3.3 Properties

GPCET moments share similar properties with other unit disk-based orthogonal moments due
to their similar nature. This similarity accounts for the possible use of GPCET moments to
define rotation invariants, to estimate the rotation angle, and to reconstruct the original image
functions. In addition, as a direct result of the definition of the generic harmonic radial kernel,
GPCET moments possess distinct properties concerning their relation with rotational moments
and the distributions of the zeros of their radial kernels. Each of the aforementioned properties
will be discussed in detail in this section.

3.3.1 Relation with rotational moments

Since the harmonic radial kernels of GPCET can be expressed in terms of the radial kernels of
RM [215] based on Taylor series of exponential functions, ez =

∑∞
k=0

zk

k! , GPCET moments can
be expressed through RM moments as

Hnms =

∫ 2π

0

∫ 1

0
f(r cos θ, r sin θ)

√

srs−2

2π
e−i2πnrse−imθ r drdθ
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=

∫ 2π

0

∫ 1

0
f(r cos θ, r sin θ)

√

srs−2

2π

∞
∑

k=0

(−i2πnrs)k

k!
e−imθ r drdθ

=
∞
∑

k=0

(−i2πn)k
√
s

k!
√
2π

∫ 2π

0

∫ 1

0
f(r cos θ, r sin θ) rsk+

s
2
−1e−imθ r drdθ

=
∞
∑

k=0

(−i2πn)k
√
s

k!
√
2π

D(sk+ s
2
−1)m,

where

Dnm =

∫ 2π

0

∫ 1

0
f(r cos θ, r sin θ) rne−imθr drdθ (3.25)

are RM moments. Each GPCET moment Hnms is hence an infinite linear combination of RM
moments of orders sk + s

2 − 1 ∈ R and m ∈ Z. In the theory of image moments, real-valued
orders are rarely used and it is a common practice to use integer-valued orders. However, in the
case of RM moments, integer ordering is not a strict requirement for its radial kernels because
orthogonality of the kernels will never be reached. For this reason, the order n of the kernel in
Eq. (3.25) can have an arbitrary value. On the contrary, it should be noted here that the order n
of the kernel in Eq. (3.15) must be integer-valued to ensure the orthogonality of GPCET kernels.

3.3.2 Rotation invariance

GPCET moments of patterns have an inherent property of rotation invariance. Let f ′ be the
function obtained by rotating clockwise f an angle φ (0 ≤ φ < 2π) about the origin of the
Cartesian coordinate system, then

[

x′

y′

]

=

[

cosφ sinφ
− sinφ cosφ

] [

x
y

]

,

or f ′(r cos θ, r sin θ) = f
(

r cos(θ − φ), r sin(θ − φ)
)

in polar coordinates. GPCET moments of f ′,
H ′

nms, are related to those of f , Hnms, by

H ′
nms =

∫ 2π

0

∫ 1

0
f ′(r cos θ, r sin θ)R∗

ns(r) e
−imθ r drdθ

=

∫ 2π

0

∫ 1

0
f
(

r cos(θ − φ), r sin(θ − φ)
)

R∗
ns(r) e

−imθ r drdθ

=

∫ 2π

0

∫ 1

0
f(r cos θ′, r sin θ′)R∗

ns(r) e
−im(θ′+φ) r drdθ′,

= e−imφHnms, (3.26)

where θ′ = θ − φ. The above equation is the basis for the derivation of rotation invariants from
GPCET moments.

Since a rotation in the spatial domain only influences the phase of GPCET moments, any
approach to the construction of rotation invariants from GPCET moments should be based on a
proper kind of phase cancelation. The classical method is to overcome the exponential factor
e−imφ by a magnitude operator as

|H ′
nms| = |Hnms|, (3.27)
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or similarly H ′
nms

[

H ′
nms

]∗
= HnmsH

∗
nms. However, these simple forms of rotation invariants have

been known to discard too much information from patterns: by taking the magnitude only, some
useful information is missed [166] and the resulting invariants do not generate a complete set
of invariants. For this problem, a more complex formulation [81], where phase cancelation is
achieved by multiplication of a number of appropriate moment powers, could be employed due
to the following theorem.

Theorem 3.4. Let N ≥ 1 and ni,mi, ki ∈ Z (i = 1, . . . , N) such that

N
∑

i=1

kimi = 0. (3.28)

Then, any product Is defined as

Is =
N
∏

i=1

Hki
nimis (3.29)

is invariant to rotation.

Proof. The invariant I ′s of the function f ′, a rotated version of f by an angle φ, is computed by
definition as

I ′s =
N
∏

i=1

H ′ki
nimis =

N
∏

i=1

e−ikimiφHki
nimis = e−iφ

∑N
i=1 kimi

N
∏

i=1

Hki
nimis =

N
∏

i=1

Hki
nimis = Is,

which is the corresponding invariant of f .

It is evident that the magnitude operator in Eq. (3.27) is a special case of the invariant in
Eq. (3.29). The magnitude operator is obtained when N = 2, k1 = k2 = 1, n1 = −n2 = n, and
m1 = −m2 = m:

Is = HnmsH−n−ms = HnmsH
∗
nms = |Hnms|2,

due to

H−n−ms =

∫ 2π

0

∫ 1

0
f(r cos θ, r sin θ)

√

srs−2

2π
ei2πnr

s

eimθ r drdθ

=

[

∫ 2π

0

∫ 1

0
f(r cos θ, r sin θ)

√

srs−2

2π
e−i2πnrse−imθ r drdθ

]∗

= H∗
nms.

The invariant Is is in general complex-valued. If real-valued features are preferred, the real and
imaginary parts (or equivalently the magnitude and phase) of Is can be used instead. In addition,
Theorem 3.4 allows the construction of an infinite number of invariants for any order of moments.
Let Is = {Is1, . . . , Isk : k ∈ Z+} be the set of all rotation invariants being computed using Eq.
(3.29), it is evident that only few members of Is are mutually independent. Here naturally comes
the problem of constructing a complete set of independent invariants, i.e., a basis of invariants,
by means of which all other invariants can be generated using only multiplication, exponentiation
with an integer exponent, and complex conjugation. The following theorem serves as a guideline
for the construction of a basis of invariants up to a given order.
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Theorem 3.5. Let consider GPCET moments up to the order ℓ ≥ 2 and a set of rotation
invariants BI

s constructed as follows:

BI
s = {Ψnms = Hnms

(

H∗
n0m0s

)m
: |n|+ |m| ≤ ℓ}, (3.30)

where m0 = −1, n0 is an arbitrary index such that |n0| ≤ ℓ− 1, and Hn0m0s 6= 0. Then BI
s is a

basis for all rotation invariants created from the moments up to the order ℓ.

Proof. It is clear that Ψnms is a rotation invariant of the form in Eq. (3.29) since the condition in
Eq. (3.28) is satisfied. There are hence two remaining issues to be addressed in order to prove that
BI
s is a basis for all rotation invariants: the completeness and the independence of its members.

- Completeness of BI
s : Let Is be an arbitrary member of Is, then Is =

∏N
i=1H

ki
nimis with

∑N
i=1 kimi = 0, or

(

H∗
n0m0s

)

∑N
i=1 kimi = 1. Is can be rewritten as

Is =
(

H∗
n0m0s

)

∑N
i=1 kimi

N
∏

i=1

Hki
nimis =

N
∏

i=1

[

Hnimis

(

H∗
n0m0s

)mi

]ki
=

N
∏

i=1

Ψki
nimis.

This equation means that Is can be represented by members of BI
s or, in other words, BI

s

as defined in Eq. (3.30) is a complete basis for Is.

- Independence of BI
s : Assuming that members of BI

s are dependent, i.e., there exists Ψnms ∈
BI
s such that it depends on BI

s \Ψnms. From the independence of GPCET kernels and (or
equivalently the independence of GPCET moments themselves), it follows that n = n0

and m = m0. Without loss of generality, assuming that Ψn0m0s depends on {Ψpiqis ∈
BI
s \Ψn0m0s : i = 1, . . . , N} as

Ψn0m0s =

N ′
∏

i=1

Ψki
piqis

N
∏

i=N ′+1

(

Ψ∗
piqis

)ki ,

where ki ∈ Z, or

Hn0m0s

(

H∗
n0m0s

)m0 =

N ′
∏

i=1

Hki
piqis

N ′
∏

i=1

(

H∗
n0m0s

)qiki
N
∏

i=N ′+1

(

H∗
piqis

)ki
N
∏

i=N ′+1

Hqiki
n0m0s.

Equating the exponents of GPCET moments on both sides while taking into account their
mutual independence leads to











∑N
i=N ′+1 qiki = 1

∑N ′

i=1 qiki = m0

ki = 0, i = 1, . . . , N

This system of equations has no solution, meaning that the initial assumption on the
dependence of the members of BI

s does not hold. It thus can be concluded here that the
members of BI

s are independent.

Being complete and having independent members make BI
s a basis for all rotation invariants of

the form in Eq. (3.29). The theorem is proven.
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3.3.3 Rotation angle estimation

The relative rotation angle between two similar patterns remains in the phase of GPCET moments
and could be eliminated in the definition of rotation invariants in the previous subsection. This
angle, on the other hand, could also be estimated by directly using the phase information of
GPCET moments. By using Eq. (3.26), the phase shift Θnms of the GPCET moment of order
(n,m) resulting from a rotation in the spatial domain by an angle φ is

Θnms = arg

(

H ′
nms

Hnms

)

= mφ. (3.31)

From this equation, the estimated rotation angle of order (n,m) can be simply obtained as

φ̂nms =
Θnms

m
. (3.32)

However, since 0 ≤ φ < 2π then 0 ≤ Θnms < 2mπ according to Eq. (3.31) whereas the actual
measurable value of Θnms is in the range [0, 2π). In this case, the ideal phase shift Θnms is a
combination of the measurable phase shift Φnms (0 ≤ Φnms < 2π) and an integer multiple of 2π:

Θnms = Φnms + 2kπ, k = 0, . . . ,m− 1.

Eq. (3.32) may then yield m solutions that correspond to m possible values of k:

φ̂nms =
Φnms

m
+

2kπ

m
, k = 0, . . . ,m− 1. (3.33)

It is evident that only one of these m solutions corresponds to the correct rotation angle
φ and there is a need for a proper value for k. A probabilistic approach, which has been used
for rotation angle estimation using Zernike moments [117], can be employed here for GPCET
moments. The probability density function of the estimated rotation angle φ̂s is defined as

P (φ̂s) =
∑

n

∑

m

ξnmsP (φ̂nms), 0 ≤ φ̂s < 2π,

where ξnms is a weighting factor and P (φ̂nms) is the value of the probability density function of
the rotation angle estimated by the GPCET moment of order (n,m). ξnms is usually chosen to
be proportional to |Hnms| since a moment of a higher magnitude should be affected relatively
less by noise. P (φ̂nms) is originally defined as a convolution of an impulse chain with a scaled
Gaussian kernel:

P (φ̂nms) =
1

m

m−1
∑

k=0

δ

{

φ̂nms −
(

Φnms

m
+

2kπ

m

)}

∗ 1√
2πσ2

e−
φ̂2nms
2σ2 ,

where σ = π
4m . Finally, the rotation angle is estimated by

φ̂s = argmax
φ̂s

P (φ̂s).

Similar formulation to the above was also proposed recently [43]. The method does not employ
a probabilistic framework, it instead computes φ̂s iteratively based on Eq. (3.33). In case of
additive noise and/or unintentional image variations (i.e., image distortion caused by re-sampling
and re-quantization after rotation or even elastic distortion), a more accurate estimation method
[188], which casts the rotation angle estimation as an optimization problem, could also be
employed for GPCET moments.
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Table 3.2: The numbers of zeros of the nth-order radial kernels of existing unit disk-based
orthogonal moments in the interval (0, 1) (exclusive of r = 0 and r = 1 if available).

Method Number of zeros Method Number of zeros

ZM n−m
2 BFM n

PZM n−m DHC n

OFMM n GPCET 2n

CHFM n GRHFM n

PJFM n GPCT n

FBM n GPST n− 1

3.3.4 Zeros of Rns

The number of zeros of a radial kernel corresponds to the capability of the moment in representing
high-frequency components in patterns. For the case of GPCET, Rns is defined based on complex
exponential function and can be rewritten in the following form:

Rns(r) =

√

srs−2

2π

[

cos(2πnrs) + i sin(2πnrs)
]

.

The two equations

real(Rns(r)) = 0,

image(Rns(r)) = 0,

which result from Rns(r) = 0 each has 2n distinct roots in the interval (0, 1). For a better
perception of how large this number is, Table 3.2 provides the numbers of zeros of the nth-order
radial kernels of existing unit disk-based orthogonal moments. It is observed that, except for ZM,
PZM, and GPCET, the nth-order radial kernels of all other methods have approximately n zeros.
For the case of GPCET, its number is almost double whereas, for ZM and PZM, their numbers
depend on the angular order m. In order to have the same number of zeros n0 as other methods,
the orders of the radial kernels of ZM and PZM have to be 2n0 +m and n0 +m respectively,
much greater than that of GPCET, which is only n0

2 .
In addition to the quantity, the distribution of zeros is also an important property of a radial

kernel since it relates to the information suppression problem [1]. Suppression is the situation
when the computed values of moments put emphasis on certain regions and neglect the rest. When
the essential discriminative information is distributed uniformly in the spatial domain, unfair
emphasis of the extracted moments on certain regions has been shown to have a negative impact
on the discrimination quality. On the contrary, when the essential discriminative information
only exists in certain regions, it is preferable to move the emphasis towards those regions. In the
case of GPCET, the distribution of zeros of its radial kernels can be controlled by the parameter
s. This is the distinctive property of GPCET that existing methods do not have, they only have
fixed distributions of zeros that depend on the definitions of their radial kernels.

When s = 1, the zeros of Rn1 are distributed uniformly, meaning a uniform emphasis over
the unit disk. The more deviation of the value of s from 1 is, the more “biased” to the inner
(when s < 1) or outer (when s > 1) regions of the unit disk the distribution of zeros is, which in
turn corresponds to the more emphasis on the inner or outer regions of patterns respectively.
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The suppression can thus be controlled for particular purposes as demonstrated later in the
experimental section. Evidence for the observations on the quantity and distribution of zeros
of Rns is given in Fig. 3.4 containing the plots of real(Rns(r)) and image(Rns(r)) of orders
n = 0, 1, . . . , 4 at s = 0.5, 1, 2, 4. It is clear from the figure that the real and imaginary parts of
GPCET radial kernel of order n each has 2n zeros in the interval (0, 1). Moreover, the distribution
of these zeros is biased towards 0 at s = 0.5, uniform at s = 1, and biased towards 1 at s = 2, 4.

3.3.5 Image reconstruction

Since the kernels of GPCET form an orthonormal basis on the unit disk, the following theorem
states that GPCET expansion gives the best L2 approximation to a function among all infinite
linear combinations of similar GPCET kernels.

Theorem 3.6. If f is in L2(x2+y2 ≤ 1) and S is a subset of Z2, for any set of complex numbers
{αnm : (n,m) ∈ S}, then

∥

∥

∥

∥

f(x, y)−
∑

(n,m)∈S
HnmsVnms(x, y)

∥

∥

∥

∥

≤
∥

∥

∥

∥

f(x, y)−
∑

(n,m)∈S
αnmVnms(x, y)

∥

∥

∥

∥

.

Furthermore, equality holds only when αnm = Hnms.

Proof. Refer to [194, Theorem 4.14] for details.

Another way of stating Theorem 3.6 is that the orthogonal projection of f onto the subspace
of L2(x2 + y2 ≤ 1) spanned by {Vnms : (n,m) ∈ S ⊂ Z

2} is

f̂s(x, y) =
∑

(n,m)∈S
HnmsVnms(x, y), (3.34)

and f̂s is interpreted as the reconstruction of f from the set of corresponding moments {Hnms :
(n,m) ∈ S}. It is straightforward here that, due to the completeness of Bs, Eq. (3.34) becomes
Eq. (3.20) when S = Z

2. In other words, any function can be expressed as an infinite linear
combination of the GPCET kernels. It is owning to this result that writing f as in Eq. (3.20) is
safe. The reconstruction error is then

ǫ2s =

∫∫

x2+y2≤1

[

f(x, y)− f̂s(x, y)
]2

dxdy

=

∫∫

x2+y2≤1

[

∑

(n,m)∈Z2\S
HnmsVnms(x, y)

]2

dxdy =
∑

(n,m)∈Z2\S
H2

nms, (3.35)

and the Parseval’s identity in Eq. (3.21) is obtained naturally when S = ∅.

3.4 Implementation

In practice, the images processed in digital systems are not defined in a continuous domain but a
grid of pixels over which the image functions have constant values. Accordingly, the formula for
computing GPCET moments in Eq. (3.16) needs to be discretized in a proper way. Depending
on the actual discretization, there may, or may not, exist fast implementation of GPCET,
relying on the existence of any inherent structure in the computation. This section discusses the
discretization and implementation strategies for the computation of GPCET moments, followed
by a discussion on their numerical stability.
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(b) s = 1
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(c) s = 2
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(d) s = 4

Figure 3.4: Real and imaginary parts of GPCET radial kernels of orders n = 0, 1, . . . , 4 at
s = 0.5, 1, 2, 4. These sub-figures demonstrate clearly that the real and imaginary parts of
GPCET radial kernel of order n each has 2n zeros in the interval (0, 1). The distribution of these
zeros is uniform when s = 1 and biased towards 0 or 1 depending on whether s < 1 or s > 1.
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(a) Square image (b) Circular image

Figure 3.5: Square-to-disk transformation of an image of size 16× 16: (a) the input square image,
(b) the transformed circular image. Each pixel in the square image is transformed into a circular
trapezoid (the area enclosed within two radii and two concentric disks) in the circular image.
The values of the circular image are piecewise-constant over circular trapezoids.

3.4.1 Discrete approximation

The continuous integration in Eq. (3.16) needs to be approximated in two separate ways: in the
domain of the integration (geometrically) and in the values of GPCET kernels (numerically).
More precisely, for geometric approximation, a lattice of pixels is selected to cover the unit disk
and, for numerical approximation, a value is assigned to each GPCET kernel over a pixel region.

Geometric approximation

Geometric approximation is required to linearly map a rectangular grid of pixels onto a continuous
and circular domain of the unit disk since an exact mapping is impossible due to their different
geometric natures. There exist several strategies for this type of approximation, each has its own
advantages and disadvantages:

- Square-to-disk [157]: The first strategy is to transform the square domain of an input
image into a disk as illustrated in Fig. 3.5 where the circular color ring is obtained by
transforming the square color ring. The result of this transformation is a circular image
having piecewise-constant values over circular trapezoids. This allows a direct and exact
computation of moments of the circular image using Eq. (3.16) by means of variable
separation. However, this advantage has to be paid by the rotation-invariance property of
the computed moments. From the two color rings shown in the figure, it is not difficult to
see that a spatial rotation in the square image does not correspond to a spatial rotation
in the circular image, and vice versa. In addition, if moments are computed from the
circular image, they reflect the content of the circular image, not the input square image.
These disadvantages have obviously limited the use of this strategy in invariant patterns
recognition problems.
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(a) Incircle (b) Circumcircle

Figure 3.6: Lattice-point approximations of a circular region of an image of 32 × 32 pixels
using incircle (a) and circumcircle (b). There are four types of pixels according to the relative
intersection between the image and the disk: (1) white: pixels that have no overlap with the disk
(2) blue or (3) cyan: pixels that partially intersect the disk and have their centers lying outside
or inside the disk respectively (4) yellow : pixels that lie entirely inside the disk.

- Incircle [135]: The second strategy is based on the idea of putting the disk inside the
image’s rectangular domain as illustrated in Fig. 3.6a. In this way, almost all the circular
region is employed. However, some image pixels lie outside the circular region (the white
pixels) and are not included in the computation of GPCET moments. This exclusion will
cause information loss when the image is to be reconstructed by using Eq. (3.20). Moreover,
using incircle also leads to the consideration of image pixels that lie at the disk boundary
(the blue and cyan pixels). Conventionally, pixels that have their centers lying outside
the circular region (the blue pixels) are treated like the white pixels (i.e., not used in the
computation process). Using the remaining cyan pixels means that there exists an inherent
error, called geometric error in the literature, in the computation of GPCET moments
because each cyan pixel has a part lying outside the circular region. The impact of this
type of error on the computed moments depends heavily on the behavior of the radial
kernels around the point r = 1. This impact thus varies according to the actual moment
and the order n.

- Circumcircle [45]: Another strategy is to circumscribe the image’s rectangular domain by a
disk as illustrated in Fig. 3.6b to overcome the disadvantages of the above incircle strategy.
This strategy has the advantage of being able to map all the image’s rectangular domain
onto the unit disk; there is no pixel or part of pixel loss and thus all information contained
in the image is used in the computation of GPCET moments. The geometric error thus
does not exist in the computed GPCET moments. However, the maximum effective mapped
region is only 2

π the whole disk due to the unused four white segments, making this type
of approximation less powerful in terms of representation capability. As a result, when
compared to the aforementioned incircle strategy, this strategy requires a higher order of
GPCET moments in order to reconstruct images of similar quality. This is because of the
scaling process to have a smaller image that can be fitted inside the unit disk: image details
that can be reconstructed effectively at a certain order by using incircle require a higher
order when circumcircle is used. The ratio between these orders is approximately equal to
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the scaling factor, that is
√
2.

In this work, in order to demonstrate the ability of GPCET in representing image functions
inside the unit disk, the second strategy using an incircle is employed for geometric approximation.
Let f be the digital image of size M × N , the domain [0,M ] × [0, N ] of f is mapped onto
[−1, 1]× [−1, 1] by

i −→ 2i−M

M
= i∆x− 1, 0 ≤ i ≤ M (3.36)

j −→ 2j −N

N
= j∆y − 1, 0 ≤ j ≤ N (3.37)

where ∆x = 2
M and ∆y = 2

N . Furthermore, in order to avoid the geometric error, only the image
pixels that lie entirely inside the unit disk (the yellow pixels) are used in the computation process.
The values of the image function over the intersection regions between the disk and the blue/cyan
pixels are then assumed to be 0. This assumption alleviates the need to evaluate the GPCET
kernels over these regions and makes the computation of GPCET moments over the yellow-pixel
region exact. In addition, this assumption also does not affect the computation steps that will be
described in the sequel.

Numerical approximation

Numerical approximation arises naturally when GPCET moments are computed from the
approximated lattice of pixels over the unit disk. Let [i, j] denotes one pixel region in the domain
of f having a constant value f [i, j], its mapped region in the unit disk is

[

xi − ∆x
2 , xi +

∆x
2

]

×
[

yj − ∆y
2 , yj +

∆y
2

]

, where (xi, yj) are the coordinates of the mapped region’s center. The condition

for this mapped region to be labeled with yellow color is that its four corners lie inside the unit
disk. Mathematically, the set C of pixels satisfying this condition is defined as

C =

{

[i, j] :

(

xi −
∆x

2

)2

+

(

yj −
∆y

2

)2

≤ 1,

(

xi −
∆x

2

)2

+

(

yj +
∆y

2

)2

≤ 1, . . .

(

xi +
∆x

2

)2

+

(

yj +
∆y

2

)2

≤ 1,

(

xi +
∆x

2

)2

+

(

yj −
∆y

2

)2

≤ 1

}

. (3.38)

The discrete version of the integration in Eq. (3.16) is then a discrete sum indexed by pixels
having their mapped regions lying entirely inside the unit disk:

Hnms =
∑

[i,j]∈C
f [i, j]hnms[i, j], (3.39)

where the factor

hnms[i, j] =

∫ xi+
∆x
2

xi−∆x
2

∫ yj+
∆y
2

yj−∆y
2

V ∗
nms(x, y) dxdy (3.40)

represents the contribution of V ∗
nms over a region of size ∆x ×∆y representing the pixel [i, j]

(see Fig. 3.7a). Since Vnms is originally defined by the polar coordinates as in Eq. (3.1), whereas
hnms[i, j] is to be evaluated by the Cartesian coordinates, the evaluation of hnms[i, j] in practice
usually relies on numerical integration techniques. There exist many such techniques that can
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be employed for the approximate evaluation of hnms[i, j], of which the simplest is the rectangle
formula (scheme M1 in Fig. 3.7b):

hnms[i, j] ≃ V ∗
nms(xi, yj)∆x∆y. (3.41)

This approximation assumes that the value of Vnms over the mapped region of the pixel [i, j]
is constant and equal to its value at the central point (xi, yj). The order of approximation error
in this case is O

(

(∆x∆y)2
)

, i.e., depending on the area of the mapped region. Therefore, a more
accurate approximation could be obtained by “pseudo” up-sampling the pixel [i, j] then using Eq.
(3.41) on each up-sampled pixel (L = 3× 3 up-sampling is shown in the scheme M2 in Fig. 3.7b).
Other approaches use the L-dimensional cubature formulas [75] defined as

hnms[i, j] ≃
L
∑

k=1

wkV
∗
nms(uk, vk)∆x∆y,

where {(uk, vk) : 1 ≤ k ≤ L} and {wk : 1 ≤ k ≤ L} are a set of design points that belong to the
mapped region representing the pixel [i, j] and a set of the corresponding weights respectively.
As an example, a five-dimensional cubature formula (scheme M3 in Fig. 3.7b) has the following
definition:

hnms[i, j] ≃
1

3

[

−V ∗
nms(xi, yj) + V ∗

nms

(

xi +
∆x

4
, yj

)

+ V ∗
nms

(

xi −
∆x

4
, yj

)

. . .

+V ∗
nms

(

xi, yj +
∆x

4

)

+ V ∗
nms

(

xi, yj −
∆x

4

)]

∆x∆y.

The order of approximation error now reduces to O
(

(∆x∆y)L+1
)

and, obviously, higher accuracy
is obtained when a larger value of L is used. Note that the gain in accuracy has to be paid by
an increase in complexity, which is not always preferred in real applications. In this work, for
simplicity and for the purpose of comparison, the scheme M1 in Fig. 3.7b is used as a common
ground for the computation of hnms[i, j] in GPCET and comparison methods.

The above approximation error in computing hnms[i, j] is often called numerical error in the
literature. The impact of this type of error on the computed moments depends heavily on the
behavior of Vnms over the mapped region representing each pixel and thus varies according to
the actual moment and the orders n,m. For the case of GPCET, the radial and angular kernels
that constitute Vnms are defined based on complex exponential functions and oscillate within
their respective intervals, [0, 1] and [0, 2π). This means that the value of Vnms will oscillate at
a higher frequency as n and/or m increase. Moreover, since the aforementioned approximation
schemes are based on the sampled values of Vnms, the computed moments are susceptible to
information loss if Vnms has been under-sampled. This is because, in practice, the number of
sampling points is fixed and determined by the size of the input image. For this reason, when a
moment of a too high order n or m is considered, a fixed sampling of Vnms becomes insufficient.

There actually exist some proposed approaches trying to eliminate numerical error by avoiding
direct approximation of hnms[i, j] over each mapped region representing the pixel [i, j]. Some stick
to the Cartesian space and perform the integration in Eq. (3.40) analytically after converting
Vnms from being defined by polar coordinates to being defined by Cartesian ones [121, 230].
This is made possible by the relationship between Zernike and geometric kernels [215] or by
piecewise polynomial interpolation of Vnms. Another approach [236] gets rid of the integration in
Eq. (3.40) and computes the moments in polar space by using bicubic interpolation to convert
the digital image f from being defined as a piecewise constant function in the Cartesian space to
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(a) Vnms over the mapped region (b) Approximation schemes

Figure 3.7: (a) Illustration of the value of Vnms over the mapped region of size ∆x×∆y in the
unit disk representing the pixel [i, j]. (b) Some example approximation schemes for numerical
integration of 2D functions over a square region: rectangle formula (M1), up-sampling then
rectangle formula (M2), and five-dimensional cubature formula (M3). The red dots represent
the positions where the value of Vnms is sampled.

being defined by polar coordinates. In this manner, the accurate computation of moments can
be carried out in the polar space. Recently, optimization techniques have been used to improve
the orthogonality of the approximated discrete kernels for more accurate image reconstruction
[136]. However, these approaches to eliminate numerical error are much more computationally
expensive than the above approximation schemes because interpolation makes any recurrence
relation between radial kernels invalid and optimization requires iterative evaluations. Moreover,
these approaches also introduce new error into the computed moments due to the interpolation
or optimization process. For these reasons, in this work, these approaches are not employed to
compute moments of harmonic function-based and comparison methods.

3.4.2 Computational complexity

Let S = {(n,m) : n,m ∈ Z} be a countable set of orders of GPCET moments and assuming that
the rectangle rule is employed to compute hnms[i, j], then the number of kernels to be computed
is equal to |S|, the cardinality of S. Direct computation of moments using Eq. (3.39), which
requires the computation of hnms[i, j] and then the evaluation of a discrete sum, is excessively
time-consuming, especially when |S| is relatively large and/or the input image has high resolution.
Since computation can be divided into three separate stages (radial kernels, angular kernels, and
discrete sum), many strategies were proposed trying to reduce the computational complexity of
one of these stages and they can be roughly classified into two groups: recursion and symmetry.

- Recursion: The radial kernels defined based on Jacobi polynomials often use some factorials
in their definitions. Since directly computing these factorials is time consuming, most of the
time taken for the computation of moments is due to the computation of radial kernels. For
this reason, strategies were proposed for fast computation of Jacobi polynomial-based radial
kernels using their recurrence relations as in [169] and references therein. Different forms
of relations result in different implementations, each may be suitable for some particular
situations. For example, the method in [118] is useful for computing Zernike moments of
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different orders n and the same repetition m whereas the q-recursive method [45] is more
effective in cases where Zernike moments of a fixed order n and different repetitions m are
needed.

- Symmetry : Symmetrical points of a point P1 across the y-axis, the origin, the x-axis and
the line y = x in the Cartesian coordinate system have the same radial and related angular
coordinates as those of P1. These relations between the polar coordinates of symmetrical
points result in the same radial and related angular kernel values. As a result, geometrical
symmetry in the distribution of pixels inside the unit disk has been utilized to reduce the
need of computing the radial and angular kernels for all pixels inside the unit disk to pixels
in one of the eight sectors [103]. Due to its geometrical nature, this strategy can be used
in combination with any existing strategy for fast computation of radial kernels based on
recurrence relations to further reduce the computational complexity.

Because the GPCET radial and angular kernels are defined based on complex exponential
functions, existing recursive strategies proposed for the computation of Jacobi polynomial-based
radial kernels are not applicable. However, since the geometrical symmetry holds for any kernel
of the type in Eq. (3.1), it can be employed to compute GPCET moments. The remaining of this
subsection will describe in more detail this geometrical symmetry for completeness along with the
proposed strategies for fast computation of harmonic function-based radial and angular kernels
based on their different forms of recurrence relations. These proposed strategies can again be
combined with the symmetry-based strategy for a multiplication of computational gains obtained
by the two combining strategies.

In the literature, there does exist another approach for fast computation of ART moments
[122]. In this approach, piecewise polynomial interpolation has been used to approximate ART
kernels by geometric kernels, which allow fast computation by using vertical lines and the discrete
Green theorem [176], reducing the complexity from O(N2) to O(N) for an image of size N ×N .
Certainly, the proposed approach can also be employed for other types of moments defined over
the unit disk. However, that approach can only be applied for binary images since it is based on
the concept of left-hand and right-hand boundaries. This requisite for the existence of boundaries
is the main hindrance that limits the application of methods based on the discrete Green theorem
to general pattern images.

Geometrical symmetry

Assuming that P1 is a point in the Cartesian coordinate system, its symmetrical points P2 − P4

and Q1−Q4 are illustrated in Fig. 3.8. The Cartesian and polar coordinates of these symmetrical
points, in relation with those of P1, are easily obtained and given in Table 3.3. It is evident that
the distances from the origin to all points are the same, meaning that these points have the same
radial coordinate r and hence the same radial kernel value Rns(r). The angular coordinates of
these symmetrical points can be expressed via θ, the angular coordinate of P1, leading to the
possibility of expressing the angular kernel values of these symmetrical points via that of P1 by
resorting to the following identities:

eim
π
2 =























1, m = 4k

i, m = 4k + 1

−1, m = 4k + 2

−i, m = 4k + 3

k ∈ Z,
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Figure 3.8: Symmetrical points P2 − P4 of a point P1 inside the unit disk across the y-axis,
the origin, and the x-axis respectively. Similarly, Q2 − Q4 are symmetrical points of Q1, the
symmetrical point of P1 across the line y = x. These points have the same radial coordinate as
that of P1 whereas their angular coordinates are related to that of P1 by relations given in the
last column of Table 3.3.

e−imθ = A∗
m(θ).

Using the angular coordinates of the points P1−P4 and Q1−Q4 given in Table 3.3, it is thus
not difficult to have the following relations between the angular kernels of symmetrical points
and that of the original point P1:

Am(P1) = eimθ

Am(P2) = eim(π−θ) = eimπ e−imθ =

{

A∗
m(P1), m = 2k

−A∗
m(P1), m = 2k + 1

Am(P3) = eim(π+θ) = eimπ eimθ =

{

Am(P1), m = 2k

−Am(P1), m = 2k + 1

Am(P4) = e−imθ = A∗
m(P1)

Am(Q1) = eim(
π
2
−θ) = eim

π
2 e−imθ =























A∗
m(P1), m = 4k

iA∗
m(P1), m = 4k + 1

−A∗
m(P1), m = 4k + 2

−iA∗
m(P1), m = 4k + 3

Am(Q2) = eim(
π
2
+θ) = eimπ e−im(π

2
−θ) =

{

A∗
m(Q1), m = 2k

−A∗
m(Q1), m = 2k + 1

Am(Q3) = eim(−
π
2
−θ) = e−imπ eim(

π
2
−θ) =

{

Am(Q1), m = 2k

−Am(Q1), m = 2k + 1

Am(Q4) = eim(−
π
2
+θ) = e−im(π

2
−θ) = A∗

m(Q1).

The significance of these identities is that once the angular kernel value of when of these eight
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Table 3.3: Cartesian and polar coordinates of the symmetrical points of a point P1. The coordinates
of symmetrical points are expressed via those of P1: Cartesian (x, y) and polar (r, θ).

Symmetrical
point

Symmetrical
axis

Cartesian
coordinates

Radial
coordinate

Angular
coordinate

P1 (x, y) r θ

P2 y-axis (−x, y) r π − θ

P3 origin (−x,−y) r π + θ

P4 x-axis (x,−y) r −θ

Q1 y = x (y, x) r π
2 − θ

Q2 y = x, y-axis (−y, x) r π
2 + θ

Q3 y = x, origin (−y,−x) r −π
2 − θ

Q4 y = x, x-axis (y,−x) r −π
2 + θ

points is available, that of the remaining seven points can be obtained easily by using complex
conjugation, additive inverse, and multiplication by i. This observation has been exploited to
restrict the computation of angular kernels to only one of the eight sectors S1 − S8, instead of
the whole unit disk region. Without loss of generality, assuming that S1 (0 ≤ y ≤ x) is going to
be used as the computing sector, Euler’s formula allows a rewrite of the angular kernels of P1:

Am(θ) = eimθ = cos (mθ) + i sin (mθ).

Eq. (3.39) can then be rewritten as

Hnms ≃
∑

[i,j]∈C
f [i, j]V ∗

nms(xi, yj)∆x∆y

=
∑

[i,j]∈C
f [i, j]R∗

ns(rij)A
∗
m(θij)∆x∆y

=
∑

0≤yj≤xi,[i,j]∈C
R∗

ns(rij)
[

Ar
m(θij)− iAi

m(θij)
]

∆x∆y

where (rij , θij) are the polar coordinates of the mapped region’s center (xi, yj); A
r
m and Ai

m have
the following definitions:

Ar
m(θ) =























[

f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8
]

cos(mθ), m = 4k
[

f1 − f4 − f5 + f8
]

cos(mθ) +
[

f2 − f3 − f6 + f7
]

sin(mθ), m = 4k + 1
[

f1 − f2 − f3 + f4 + f5 − f6 − f7 + f8
]

cos(mθ), m = 4k + 2
[

f1 − f4 − f5 + f8
]

cos(mθ) +
[

− f2 + f3 + f6 − f7
]

sin(mθ), m = 4k + 3

(3.42)

Ai
m(θ) =























[

f1 − f2 + f3 − f4 + f5 − f6 + f7 − f8
]

sin(mθ), m = 4k
[

f1 + f4 − f5 − f8
]

sin(mθ) +
[

f2 + f3 − f6 − f7
]

cos(mθ), m = 4k + 1
[

f1 + f2 − f3 − f4 + f5 + f6 − f7 − f8
]

sin(mθ), m = 4k + 2
[

f1 + f4 − f5 − f8
]

sin(mθ) +
[

− f2 − f3 + f6 + f7
]

cos(mθ), m = 4k + 3

(3.43)
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with f1 is the value of the image function at the point (r, θ) in sector S1 and fk (k = 2, . . . , 8) are
those of symmetrical points in the remaining seven sectors. It is clear that if the multiplicative
factors of trigonometric functions cosine and sine in Eqs. (3.42) and (3.43) are pre-computed
and stored, then evaluating

[

Ar
m(θij)− iAi

m(θij)
]

and f [i, j]A∗
m(θij) requires almost the same

computing resource. In other words, the symmetry-based strategy leads to a reduction in
computational complexity by approximately 1

8 . The efficiency of this strategy for computing unit
disk-based moments has been verified by experiments in some previous works [103]. A further
extension of this strategy for 3D patterns was also proposed recently in [238].

Recursive computation of complex exponential functions

In GPCET, both the radial and angular kernels are defined based on complex exponential functions.
Direct computation of complex exponential functions is time-consuming and often constitutes a
dominant part of the computation of GPCET moments due to its O(log2n) complexity, where n
refers to the number of precision digits at which the function is to be evaluated [25]. The overall
complexity may become excessively high when

- a large number of moments is needed, or

- the image has high resolution, or

- a high-precision computation is required.

Since these requirements are common in real applications, the existence of strategies for fast
computation of kernels is vital for the applicability of GPCET. Fortunately, due to the following
recursive definition of exponentiation:

base case: ei0α = 1,

inductive clause: eikα = ei(k−1)α eiα, k, α ∈ Z,

the complex exponential functions in the definitions of GPCET radial and angular kernels can
be computed recursively as

ei2πnr
s

= ei2π(n−1)rsei2πr
s

, (3.44)

eimθ = ei(m−1)θ eiθ,

using the base cases ei2π0r
s
= 1 and ei0θ = 1 respectively.

Assuming that

{

√

srs−2

2π , ei2πr
s
, eiθ

}

has been pre-computed and stored for polar coordinates

(r, θ) of all the mapped pixel regions’ centers, the following recurrence relations of Rns and Am:

Rns(r) =

√

srs−2

2π
ei2πnr

s

= R(n−1)s(r) e
i2πrs , (3.45)

Am(θ) = eimθ = Am−1(θ) e
iθ, (3.46)

lead to their recursive computation with the base cases R0s(r) =
√

srs−2

2π and A0(θ) = 1

respectively. Obviously, computing Rns from R(n−1)s and Am from Am−1 each requires only one
multiplication, which is very fast when compared to exponentiation, leading to fast computation of
Vnms. Moreover, these forms of recurrence relations are simpler than those that were discovered for
Jacobi polynomial-based radial kernels [45]. By using Eq. (3.45), only one recursive computational

90



3.4. Implementation

Figure 3.9: Computation of GPCET radial kernels Rns and angular kernels Am based on recursive
computation of complex exponential functions in Eqs. (3.45) and (3.46) respectively. Computing
Rns from R(n−1)s and Am from Am−1 each requires only one multiplication, leading to fast
computation of Vnms.

thread is sufficient to reach every GPCET radial kernels, whereas many threads would be required
to cover all Jacobi polynomial-based radial kernels. The computation flows of GPCET radial
kernels Rns and angular kernels Am are illustrated in Fig. 3.9. It is evident that the method
proposed here is much faster than the one mentioned in [239] where exponentiation is required
to compute complex exponential radial and angular kernels.

The above proposed recursive computation of GPCET radial and angular kernels could be
employed for extremely fast computation of GPCET moments when the order set S composes a
square region in Z

2 and takes the origin as its center:

S = {(n,m) : n,m ∈ Z
2, |n|, |m| ≤ K},

where K is a positive integer. By using the computational flow depicted in Fig. 3.10a, computing
a GPCET moment thus requires only three multiplications, two for getting Vnms and one for
multiplying Vnms by f , followed by a discrete sum of the obtained results over all the pixels
[i, j] ∈ C defined in Eq. (3.39).

To further boost the computation speed, instead of letting the computational flow to visit all
(n,m) ∈ S in the four quadrants in the Cartesian space, it is sufficient to visit only (n,m) ∈ S
in one quadrant (n,m > 0) as illustrated in Fig. 3.10b. This is possible due to the following
relations:

R−ns(r) = R∗
ns(r),

A−m(θ) = A∗
m(θ).

Thus, whenever Rns and Am are available, computing the four related GPCET kernels, for which
eight multiplications should be needed if the computational flow in Fig. 3.10a is used, requires
only two multiplications and three conjugations:

Vnms(x, y) = Rns(r)Am(θ),

V−nms(x, y) = R∗
ns(r)Am(θ),

V−n−ms(x, y) = V ∗
nms(x, y),

Vn−ms(x, y) = V ∗
−nms(x, y),

leading to a 8
3 -time reduction in the number of multiplications.

In some situations where there is enough memory to store all the radial kernels Rns (|n| ≤ K)
and angular kernels Am (|m| ≤ K), then pre-computing their values may lead to a further
reduction in computational complexity by using the computational flow in Fig. 3.11. It is clear
that the total number of multiplications required to update the values of Rn or Am using Eqs.
(3.45) or (3.46) for all the kernels Vnms (0 ≤ n,m ≤ K) is (K +1)2 − 1 whereas pre-computation
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(a) Four quadrants (b) One quadrant

Figure 3.10: Computation flows of GPCET kernels starting from the order (0, 0). At each step,
one of the orders n and m changes its value by adding 1 or −1, depending on the current direction
of the flow. Computing each kernel Vnms thus requires two multiplications, one for computing
Rns or Am using Eqs. (3.45) or (3.46), depending on whether the value of n or m has just been
changed, and the other for multiplying Rns by Am to get Vnms.

needs only 2K multiplications. In addition, besides the memory requirement, this strategy has
another disadvantage concerning the data accessing time. The pre-computed values of all Rns

(or Am) have to be stored in a matrix Rs (or A) indexed by r and n (or θ and m). When the
kernel Vnms needs to be computed, the values in the nth column of Rs and mth column of A
are retrieved and these added steps may slow down the overall computation process. However,
since this strategy can be applied to all unit-disk based moments, it will not be evaluated in the
experimental section.

In real situations, the less demanding computation of GPCET kernels leads to the possibility
of increasing the number of GPCET moments without changing the system throughput. This
increase is equivalent to an increase in the number of features or, more importantly, an increase
in the number of pattern classes the system can discriminate. Another by-product of this less
demanding computation is the reduction in storage space requirement. In methods based on
orthogonal polynomials, to avoid the repetitive expensive computation of kernels, the common
practice is to pre-compute and store them. For example, if K moments are needed then the K
corresponding kernels need to be stored. In the case of GPCET, there merely needs to store the

set

{

√

srs−2

2π , ei2πr
s
, eiθ

}

for polar coordinates (r, θ) of all the mapped regions’ centers, regardless

the required number of moments K since the kernel of any order can be computed without much
cumbersome. This, of course, leads to a reduction in storage space requirement by 2K

3 .

Computation of trigonometric functions

Unlike those of GPCET, the radial kernels of GRHFM, GPCT, and GPST are defined based
on trigonometric cosine and sine functions. It is well-known that cosine and sine functions are
equivalent to complex exponential function in terms of computation complexity due to the
following identities:
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Figure 3.11: Computation of GPCET kernels Vnms from the pre-computed and stored values of
the radial kernels Rns and angular kernels Am (0 ≤ n,m ≤ K). Pre-computation of Rns and Am

needs only 2K multiplications, whereas their step-by-step updates using Eqs. (3.45) or (3.46)
require a total of (K + 1)2 − 1 multiplications.

cos(πnrs) = Re{eiπnrs} =
eiπnr

s
+ e−iπnrs

2
,

sin(πnrs) = Im{eiπnrs} =
eiπnr

s − e−iπnrs

2i
.

By using the above identities, the formulation of recursive computation of radial and angular
kernels of GPCET can also be employed for fast computation of radial kernels of GRHFM, GPCT,
and GPST. In other words, implementations of GRHFM, GPCT, and GPST can resort to that
of GPCET for low computational complexity. In this way, all the aforementioned computational
gains claimed for GPCET moments by using recursive computation are also valid for GRHFM,
GPCT, and GPST moments.

Apart from relying on complex exponential functions, cosine and sine functions could also be
fast computed by using the following recurrence relations:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x), for n ≥ 1, (3.47)

and

U0(x) = 1

U1(x) = 2x

Un+1(x) = 2xUn(x)− Un−1(x), for n ≥ 1 (3.48)

with

Tn(cos(πr
s)) = cos(πnrs),

Un(cos(πr
s)) =

sin(π(n+ 1)rs)

sin(πrs)
⇒ sin(πnrs) = Un−1(cos(πr

s)) sin(πrs),
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Figure 3.12: Computation of GRHFM, GPCT, and GPST radial kernels based on recursive
computation of cosine and sine functions by means of Chebyshev polynomials in Eqs. (3.47) and
(3.48) respectively. Computing cos(πnrs) and sin(πnrs) each requires only one multiplication
and one substraction, leading to fast computation of V H

nms, V
C
nms, and V S

nms.

where Tn and Un are the Chebyshev polynomials of the first and second kinds respectively [120].
Accordingly, the computations of cos(πnrs) and sin(πnrs) can also be carried out recursively
with the base cases {1, cos(πrs)} for Eq. (3.47) and {1, 2 cos(πrs)} for Eq. (3.48), providing that
2 cos(πrs) and sin(πrs) are available throughout the computation processes. The computation
flows of GRHFM, GPCT, and GPST radial kernels are illustrated in Fig. 3.12. It is clear that
computing cos(πnrs) and sin(πnrs) each requires only one multiplication and one substraction,
which is almost equivalent to one multiplication required to compute ei2πnr

s
as in Eq. (3.44).

Before closing this subsection on computational complexity, it should be noted here that
the above proposed methods for recursive and fast computation of complex exponential and
trigonometric functions can also be employed for ART [22] and GFD [243] since their radial
kernels are also defined based on harmonic functions. In addition, since the methods proposed
in this subsection are orthogonal to the one based on geometrical symmetry, their combination
will, in theory, multiply the computational gains obtained by the two combining methods. This
observation will have experimental evidence in Section 3.5.

3.4.3 Numerical stability

Accuracy is another concern when moments are computed numerically in digital systems. Since
moments are originally defined by using a double continuous integral over a unit disk domain,
the discrete approximation of the integral will incur error in the computation. Another type of
error comes from the digital nature of computing systems where numbers can only be correctly
represented in a certain range and to a certain precision. These two types of errors will be
discussed in detail in this subsection.

Approximation error

The two types of discrete approximations discussed in Subsection 3.4.1 naturally correspond
to two types of approximation errors [135]: geometric error and numerical error. Geometric
error occurs when the domain of integration does not exactly cover the unit disk due to the
geometric difference between circular and rectangular domains. This type of error, however, could
be “avoided” if only the pixels that lie entirely inside the unit disk are used and the values of the
image function over the remaining regions of the unit disk are assumed to be 0. This means that
the computed moments only reflect the values of the yellow pixels in Fig. 3.6. Since this strategy
will be used to compute the moments of harmonic function-based and comparison methods,
geometric error hence does not exist.

Numerical error arises when hnms[i, j] in Eq. (3.40) is computed by a numerical integration
technique. Because the numerically computed value of hnms[i, j] is just an approximation to its
analytical value, this type of error cannot be avoided in any way if moments are computed by

94



3.4. Implementation

numerical approximation. The magnitude of this type of error, however, could be reduced if only
a highly accurate numerical integration technique is employed (e.g., “pseudo” sub-sampling or
cubature). Due to Eqs. (3.36) and (3.37), it is clear that the impact of numerical error on the
computed moments depends on the image size: a smaller-sized image has a greater error, and
vice versa. The impact of numerical error on all unit disk-based moments will be demonstrated
experimentally by means of reconstruction error in the experimental section.

Representation error

In today’s numerical computing systems, a real number is in general approximately represented
in floating-point format in order to allow reasonable storage requirement and relatively quick
calculations. The typical number that can be represented exactly is of the form

Significand × baseexponent,

where significand denotes a signed digit string of a given length in a given base and exponent
is a signed integer which modifies the magnitude of the number. Since computing systems are
binary in nature, floating-point numbers are normalized for representation as

±(1 + f)× 2e,

where f is the fraction or mantissa (0 ≤ f < 1) and e is the exponent. In 32-bit systems, under
the IEEE 754 standard, double precision floating numbers use two storage locations, or 64 bits,
to store the value of f , e, and the number’s sign: 52 bits for f , 11 bits for e+ 1023, and 1 bit for
the sign. A double number v thus can only be represented with the relative accuracy of one-half
the machine epsilon, or 1

2 × eps = 1
2 × 2−52 ≃ 1.1102× 10−16. This means that, when represented

in the ordinary decimal numeral system, only the first 15 left-most digits of v are significant. In
addition, due to the limited range of e, the absolute values of double numbers are also limited in
the range 2−1022 ÷ (2− eps) 21023, or approximately 2.2251× 10−308 ÷ 1.7977× 10308. This finite
set of double numbers with finite precision leads to the phenomena of underflow, overflow, and
roundoff in computing systems. Due to their nature, it has been known in the literature that
Jacobi polynomial-based methods suffer from all three types of errors [170] as pointed out below:

- Underflow error occurs when a computed quantity has a value under the range of its data
type. Jacobi polynomial-based methods has this type of error due to the use of powers of r
in their definition. At the radial coordinate close to zero r = 0.001, r102 = 1.0000× 10−306

and r103 = 1.0000 × 10−309 then any computation that involves r to the power greater
than 102 will cause underflow error. Obviously, this type of error depends on the size of
images: a larger-sized image starts to have this error at a smaller order n. As an example,
for an input image of size 1024 × 1024, the smallest value of r in the computation is
1
2 × 1

1024 = 2−11 = 4.8828× 10−4, then underflow error starts to occur at n = 93 onwards
for all Jacobi polynomial-based methods.

- Overflow error occurs when a computed quantity has a value above the range of its data
type. Jacobi polynomial-based methods has this type of error due to the use of factorial in
their definition. Since 170! = 7.2574× 10306 and 171! = 1.2410× 10309, any computation
that involves factorial of a number greater than 170 will cause overflow error. From the
definitions of radial polynomials, it is straightforward to verify that ZM, PZM, OFMM,
CHFM, and PJFM start to have this type of error at n = 171, 85, 85, 171, and 84 onwards
respectively.
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Table 3.4: The radial orders of Jacobi polynomial-based methods from which underflow, overflow,
and roundoff errors start to occur in 32-bit computing systems. These methods have the same
order for underflow error and different orders for overflow and roundoff errors.

Error type ZM PZM OFMM CHFM PJFM

Underflow3 93 93 93 93 93

Overflow 171 85 85 171 84

Roundoff4 46 23 23 79 21

- Roundoff error is the difference between the approximation of a number and its exact
(i.e., correct) value. Because of the finite precision in computing systems, this type of
error occurs in almost all numerical computation steps. However, different from the other
methods, Jacobi polynomial-based methods face the problem of excessively large coefficients
in the definitions of radial polynomials. These coefficients are sometimes larger than 252

and thus, for the commonly 15-digit precision, computing radial kernels produces error of
the order of unity or larger. It is not difficult to determine the orders from which Jacobi
polynomial-based methods have this type of error; they are n = 46, 23, 23, 79, and 21 for
ZM, PZM, OFMM, CHFM, and PJFM respectively.

For all Jacobi polynomial-based methods, the starting orders for each type of error are summarized
in Table 3.4. Due to their distinct definitions, different methods have different orders for overflow
and roundoff errors. For underflow error, Jacobi polynomial-based methods have the same order
because of the same polynomial order in their radial kernels of the same order. It can be seen
that, among these three types of errors, roundoff error occurs at the smallest order for all
Jacobi polynomial-based methods. As a result, the roundoff error is the main concern in moment
computation.

From the above definitions of three types of representation errors, it appears that eigenfunction-
based and harmonic function-based methods do not suffer from underflow and overflow errors,
they do have roundoff error because of the nature of numerical computing systems. However, the
impact of roundoff error on their computed moments is not as severe as that on the computed
moments of Jacobi polynomial-based methods because of the non-existence of large-valued
coefficients in their radial kernel definitions. As will be shown experimentally in the next section,
this impact causes serious problems in Jacobi polynomial-based methods. Nevertheless, any of
the aforementioned error types is undesirable since it alters the computed moments, compromises
the orthogonality of moments/kernels, and finally corrupts the application’s performance.

3.5 Experimental results

The effectiveness of the proposed harmonic function-based moments will be demonstrated in
comparison with existing moments of the same nature, i.e., unit disk-based orthogonal moments,
through three types of experiments: computational complexity, representation capability, and
discrimination power. The first one evaluates how fast the computation of harmonic function-based
kernels/moments is, using the proposed recursive schemes in combination with and without the
geometrical symmetry-based method. The second type of experiments deals with the capability

3For an input image of size 1024× 1024.
4Roundoff error of the order of unity.
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Table 3.5: The constraints on the moment orders (n,m) of comparison methods for a fixed value
of K in the experiments on computational complexity. All (n,m) satisfying these conditions are
used in the computation and the elapsed times are averaged out over all feasible orders.

Method Order range

ZM |m| ≤ n ≤ K, n− |m| = even

PZM |m| ≤ n ≤ K

OFMM/CHFM/PJFM 0 ≤ |m|, n ≤ K

FBM/BFM/DHC 0 ≤ |m|, n ≤ K

GPCET |m|, |n| ≤ K

GRHFM |m| ≤ K, 0 ≤ n ≤ 2K

GPCT 0 ≤ |m|, n ≤ K

GPST |m| ≤ K, 1 ≤ n ≤ K

of harmonic function-based moments in representing image functions and this is done via image
reconstruction. The third type of experiments is on the applicability of harmonic function-based
moments in rotation-invariant pattern recognition problems at different levels of noise.

3.5.1 Computational complexity

The computational complexity is evaluated in terms of the elapsed time taken to compute the
kernels/moments of comparison methods from an image of size 128× 128. For this image, the
incircle in Fig. 3.6a contains 12596 yellow pixels. Experiments are performed on a PC with a
2.33GHz CPU, 4GB RAM running Linux kernel 2.6.38; MATLAB version 7.7 (R2008b) is used
as the programming environment. Let K be some integer constant, all the kernels/moments
of orders (n,m) of each method that satisfy the conditions in Table 3.5 are computed and the
averaged elapsed time over all feasible orders is taken as the kernel/moment computation time
at that value of K. The value of K is varied in the range 0 ≤ K ≤ 20 in all experiments on
computational complexity in order to study the trends in the dependance of kernel/moment
computation time on the maximal kernel/moment order K. In addition, for more reliable results,
all the running times indicated in this subsection are averaged over 100 trials.

Direct computation: Fig. 3.13 provides the computation times per kernel in milliseconds of
all unit disk-based orthogonal moments. The kernels are computed using their corresponding
definitions, no recursive strategy is used. It is observed from the figure that

- Jacobi polynomial-based methods (ZM, PZM, OFMM, CHFM, PJFM) have kernel compu-
tation times that increase almost linearly with the increase in K, meaning that longer times
are needed to compute kernels of higher orders. This is because of the evaluation of factorials
of larger integers and of the computation of more additive terms in the final summations.
Among these methods, OFMM and PJFM have the highest and similar complexity while
ZM has the lowest. This relative complexity ranking of these methods is consistent with
the ranking in the number of multiplications required to compute their radial kernels.

- Eigenfunction-based methods (FBM, BFM, DHC) require the longest times to compute
their kernels over comparison methods. Among these methods, FBM and DHC have the
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Figure 3.13: Kernel computation times of comparison methods by direct computation at different
values of K. For each method and at a specific value of K, the kernel orders used in the
computation should satisfy the conditions described in Table 3.5 and the averaged elapsed time
over all feasible orders is taken as the kernel computation time.

same complexity whereas that of BFM is slightly less. The reasons for these observations are
threefold. Firstly, these methods initially need to find the zeros of (or the derivative of) Bessel
functions in order to define their radial kernels. Secondly, there exists no approximation
that allows fast computation for Bessel functions. And finally, FBM and DHC use Bessel
functions of different orders while BFM only uses a fixed-order Bessel function. In these
experiments, the evaluation of Bessel functions is facilitated by the MATLAB built-in
function besselj.

- Harmonic function-based methods (GPCET, GRHFM, GPCT, GPST) each requires an
almost-constant time to compute its kernels of different orders. This is because a change in
the kernel orders corresponds only to a change in the input to the complex exponential
function (GPCET) or cosine/sine functions (GRHFM, GPCT, GPST) and, as a result, does
not affect the kernel computation time. Moreover, the kernel computation times of these
methods are nearly the same since exponential, cosine, and sine functions are equivalent in
terms of computational complexity [25].

From the above observations, it can be concluded that the simple, resembling, and relating
definitions of harmonic function-based kernels have resulted in an almost-constant kernel compu-
tation time, regardless of the maximal kernel order K. This makes a strong contrast with Jacobi
polynomial-based and eigenfunction-based methods where a higher kernel order means a longer
kernel computation time. As a consequence, harmonic function-based methods should be the
preferred methods in terms of computational complexity when kernel/moments of high orders
are needed.

Recursive computation: The proposed recursive strategies for fast computation of GPCET
kernels are also evaluated and compared with those for fast computation of ZM kernels. The
reason for comparing only to ZM is twofold: the lack of benchmarks on fast computation strategies
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Figure 3.14: (a) ZM’s and GPCET’s kernel computation times at different values of K using
the q-recursive and different recursive strategies for the computation of complex exponential
functions described in Subsection 3.4.2. (b) GPCET’s moment computation times at different
values of K without and with geometrical symmetry.

for other methods and the popularity of recursive strategies for ZM in the literature. In this
comparison, ZM kernels are computed using the current state-of-the-art q-recursive strategy [45].
The comparison results are given in Fig. 3.14a where the legends recursiveFour and recursiveOne
denote recursive computation of GPCET kernels using the computational flows in Figs. 3.10a
and 3.10b respectively. It is observed that:

- ZM kernel computation time by q-recursive increases in the range K = 0 → 5 and gradually
decreases when K > 5. This is because the q-recursive strategy, which requires the pre-
computation of the radial kernels Rnn(r) and Rnn−2(r) for each order n, is applicable
only when K ≥ 4 and is profitable when K ≥ 6. Moreover, as n increases, more radial
kernels are to be computed by recursion and thus the proportion of directly computed
radial kernels decreases. This finally leads to a decrease in the averaged computation time
of radial kernels as n increases.

- Using recursiveFour and recursiveOne to compute GPCET kernels leads to an almost-
constant computation time regardless of the maximal kernel order K and recursiveOne
is almost two-time faster than recursiveFour. The only exception is at K = 1 where the
computation time suddenly drops. This is because MATLAB optimizes by simply copying
the pre-computed values of eiθ into A1(θ) since A0(θ) = 1, instead of the more complex
multiplication. A constant computation time is due to the fact that the recurrence relations
in Eqs. (3.45) and (3.46) do not depend on the kernel orders and there is no need for the
pre-computation of GPCET radial kernel of any order as in the ZM’s q-recursive strategy.
The “purely” recursive computation of radial and angular kernels is a distinct characteristic
of harmonic function-based methods.

Taking recursiveOne as the selected strategy for recursive fast computation of GPCET kernels,
recursive computation of GPCET kernels by recursiveOne is, on average, approximately 10-time
faster than direct computation of GPCET kernels and five-time faster than recursive computation
of ZM kernels by q-recursive. Furthermore, due to the equivalence in computational complexity
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(a) Vector character images

(b) 16× 16 (c) 32× 32 (d) 64× 64

(e) 128× 128 (f) 256× 256 (g) 512× 512

Figure 3.15: (a) The vector character images used to generate the six character datasets for the
reconstruction experiments by sampling them to have the sizes of 16 × 16, 32 × 32, 64 × 64,
128× 128, 256× 256, 512× 512, and then quantizing them to bilevels. (b)–(g) Some sampled and
quantized images from the six datasets.

of harmonic function-based kernels/moments as demonstrated in Subsection 3.4.2, harmonic
function-based methods are promising replacements of ZM in image analysis applications where
low computational complexity is an important method-selection criteria.

In computing GPCET moments, recursiveOne could be combined with the strategy based
on geometrical symmetry [103] to further reduce the moment computation time. Fig. 3.14b
provides the average elapsed times to compute one GPCET moment using recursiveOne without
and with geometrical symmetry (symGeo). It is observed that, on average, the combination is
seven-time faster than using recursiveOne alone, leading to a reduction in the computation time
per moment from 0.4406 to 0.0634 milliseconds at K = 20. These results clearly demonstrate
that the strategies for fast computation of GPCET moments based on recursive computation of
complex exponential functions and on geometrical symmetry are orthogonal. Combining them
definitely leads to a multiplication of the computational gains obtained individually by the two
strategies.

Finally, it should also be noted here that the value of the parameter s only slightly affects
the computation of GPCET kernels/moments by direct computation and does not affect at all
the proposed recursive computation strategies. This is because s has no role in the recurrence
relations in Eqs. (3.45) and (3.46) even though it appears in the definition of Rns(r). As a result,
all the conclusions drawn above hold for every s.

3.5.2 Representation capability and numerical stability

The capability of harmonic function-based moments in representing image functions is demon-
strated via image reconstruction. In the following experiments, a set of six character datasets has
been generated by sampling 26 vector images of Latin characters in Arial bold font (shown in Fig.
3.15a) to have the sizes of 16× 16, 32× 32, 64× 64, 128× 128, 256× 256, 512× 512, and then
quantizing them to bilevels. Images in each of these six datasets are of the same size with some
samples are given in Fig. 3.15b–3.15g for the six datasets. The purpose of using datasets of images
of different sizes generated from the same source is to investigate the influence of approximation
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error discussed in Subsection 3.4.3 on the computed moments of comparison methods. The
representation error, which exists in Jacobi polynomial-based methods, will become apparent
when moments of high-enough radial orders are involved. Some samples of reconstructed images
from the character image “E” of size 64 × 64 by harmonic function-based methods (GPCET,
GPCT, GPST) are given in Fig. 3.16; those by Jacobi polynomial-based (ZM, PZM, OFMM,
CHFM, PJFM) and eigenfunction-based (FBM, BFM, DHC) methods are given in Fig. 3.17. In
each sub-figure and at each value of K, all moment orders (n,m) satisfying the conditions in
Table 3.5 are used for the reconstruction. These conditions are selected so that the moments
that capture the lowest-frequency information are used first for the reconstruction. It can be
seen from these sub-figures that

- Generally, as more moments are used in the reconstruction process, the reconstructed
images get closer to the original ones. However, in the cases of PZM, OFMM, and PJFM,
the quality of their reconstructed images deteriorates quickly at K = 23, 23, and 21 onwards
respectively. Similar phenomena also exist in other Jacobi polynomial-based methods but
at higher values of K (46 for ZM and 79 for CHFM).

- Harmonic function-based methods have difficulty in reconstructing the inner region of the
images when s = 2, 4 with more difficulty at s = 4. On the contrary, they have difficulty
with the images’ outer region when s = 0.5. This is the experimental evidence for the
information suppression problem caused by the biased distributions of zeros that has been
discussed in Subsection 3.3.4.

- Among harmonic function-based methods and at a specific value of s, GPCET has better
reconstructed images when K is small. At large values of K, images reconstructed by
GPCT/GPST are closest/farthest to the original images at the corresponding values of K.
This means that GPCT/GPST require the smallest/largest numbers of moments in order
to reconstruct images of similar quality. These superiority/inferiority of GPCT/GPST can
be easily observed at boundary regions where r ≃ 0 and r ≃ 1.

- Harmonic function-based and eigenfunction-based methods capture the image information,
especially the edges, better than Jacobi polynomial-based methods.

It thus can be concluded here that the more deviation the value of s from 1 is, the more difficulty
harmonic function-based methods will have to reconstruct the inner (when s > 1) or the outer
(when s < 1) region of images. Conversely, harmonic function-based methods can reconstruct
quickly the inner or outer region of images when s < 1 or s > 1 respectively. In other words, the
parameter s could be used to control the representation capability of harmonic function-based
methods: more emphasis could be placed on certain image regions of interest.

The gauge of reconstruction capability is measured by how well the reconstructed image is
in terms of its similarity to the ground-truth one. For this purpose, the reconstruction error
between an image and its reconstructed version defined in Eq. (3.35) is considered to be a good
measure. In order to compute this measure, a finite set of moments is first calculated and, from
this set of moments, images are then reconstructed using Eq. (3.34). Since this process involves
the computation of moment kernels in both the decomposition and then reconstruction steps, this
measure can additionally be utilized for the investigation of the numerical stability of comparison
methods. Let S(K) be the order set containing all (n,m) that satisfy the conditions stated
in Table 3.5 at a specific value of K, Table 3.6 provides the cardinality of S(K), |S(K)|, of
comparison methods. For an image function f defined over the unit disk region, its reconstructed
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Figure 3.16: Some samples of reconstructed images from the character image “E” of size 64× 64
by harmonic function-based methods at s = 0.5, 1, 2, 4 for K = 0, 1, . . . , 29 (GPCET, GPCT)
and K = 1, 2, . . . , 30 (GPST) (from left to right, top to bottom).
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(a) ZM

(b) PZM

(c) OFMM

(d) CHFM

(e) PJFM

(f) FBM

(g) BFM

(h) DHC

Figure 3.17: Some samples of reconstructed images from the character image “E” of size 64× 64
by Jacobi polynomial-based (ZM, PZM, OFMM, CHFM, PJFM) and eigenfunction-based (FBM,
BFM, DHC) methods for K = 0, 1, . . . , 29 (from left to right, top to bottom).
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Table 3.6: The cardinality of the order set S(K) = {(n,m) : n,m ∈ Z}, |S(K)|, of comparison
methods having (n,m) satisfy the conditions stated in Table 3.5 at a specific value of K. All the
moments of orders (n,m) ∈ S(K) are used to reconstruct the original images.

Method |S(K)|

ZM (K+1)(K+2)
2

PZM (K + 1)2

OFMM/CHFM/PJFM (K + 1)(2K + 1)

FBM/BFM/DHC (K + 1)(2K + 1)

GPCET (2K + 1)2

GRHFM (2K + 1)2

GPCT (K + 1)(2K + 1)

GPST K(2K + 1)

version by using all moments of orders (n,m) ∈ S(K) is denoted as f̂K
s . The reconstruction error,

normalized by the total image energy, is then defined as

ǭ2s(K) =

∫∫

x2+y2≤1

[

f(x, y)− f̂K
s (x, y)

]2
dxdy

∫∫

x2+y2≤1

f2(x, y) dxdy
.

When a set of images is going to be used for the evaluation of representation capability, the
above measure is slightly modified and called the mean-square reconstruction error MSRE [215],
which has the following definition:

MSRE(K) =

E

{

∫∫

x2+y2≤1

[

f(x, y)− f̂K
s (x, y)

]2
dxdy

}

E

{

∫∫

x2+y2≤1

f2(x, y) dxdy

} ,

where E{·} is the expectation in ensemble averaging. In digital computing systems, MSRE(K) is
numerically approximated by the following formula:

MSRE(K) =

E

{

∑

[i,j]∈C

(

f [i, j]−
∑

(n,m)∈S(K)Hnmshnms[i, j]
)2
}

E

{

∑

[i,j]∈C

(

f [i, j]
)2
} ·

It is straightforward that, theoretically, 0 ≤ MSRE(K) ≤ 1 and the lower (upper) bounds of
MSRE(K) are reached when |S(K)| reaches its limits (|S(K)| = 0 or |S(K)| = ∞). However,
because of the existence of approximation/representation errors and the unreachable theoretical
point |S(K)| = ∞, the statement 0 ≤ MSRE(K) ≤ 1 does not hold anymore; instead, one can
only assert that MSRE(K) > 0. In this experiment, a smaller value of MSRE(K) means that
the reconstructed image f̂K

s is more similar to f or, in other words, a better reconstruction. In
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addition, due to Eq. (3.35), MSRE(K) should have a smaller value when more moments are used
in the reconstruction process, regardless of their orders.

MSRE curves of harmonic function-based methods on the six character datasets and at
different values of s, from 0.1 to 6 with increment of 0.1, are given in Figs. 3.18–3.21. In each of
the sub-figures and at a specific value of s in the horizontal axis, there is an MSRE curve with
the values of |S(K)| and MSRE(K) illustrated as the ordinate and the color of the grid points
having abscissa s. The values of MSRE(K) which are outside the color display range [0, 1] will
be assigned the red color. A red color in MSRE(K) clearly means that the reconstructed image
f̂K
s does not reflect at all f . It is observed from the color patterns of the sub-figures that

- The color patterns of GPCET are exactly the same as those of GRHFM for all the six
character datasets, meaning that the reconstructed images by GPCET and GRHFM are the
same. This provides experimental evidence for the equivalence between the radial kernels
of GPCET and GRHFM that has been disclosed in Subsection 3.2.1. For the purpose
of representation and/or compression, GPCET and GRHFM moments can thus be used
interchangeably without any gain or loss in performance. For this reason, in the remaining
of this subsection on representation capability and numerical stability, GPCET can be used
on behalf of GRHFM in discussions and comparisons with other methods.

- Among GPCET, GPCT, and GPST, a closer resemblance between the color patterns of
GPCET and those of GPCT is observed. Moreover, at a specific image size and at the same
values of s and |S(K)|, MSRE(K) generally has its highest and lowest values in the case
of GPST and GPCT respectively. This means that, in general, among harmonic function-
based methods, GPCT has the highest representation capability whereas GPST has the
lowest. It should be noted that similar observations are observed in other applications:
for compression, cosine functions are much efficient than complex exponential and sine
functions; for differential equations, the cosines express a particular choice of boundary
conditions.

- For each of the harmonic function-based methods and at a specific value of s, increasing
the image size leads to a decrease in the value of MSRE(K) at the same |S(K)|, meaning
that the reconstructed image f̂K

s is more similar to f . The difference between the values of
MSRE(K) at different image sizes indicates the existence of approximation error in the
computed moments and this provides experimental evidence for the impact of image size
on this type of error that has been discussed in Subsection 3.4.3: a smaller image size leads
to a higher approximation error, and vice versa. However, the small difference in MSRE(K)
between image sizes of 256× 256 and 512× 512 suggests that the impact of approximation
error becomes negligible for large-sized images.

- For each of the harmonic function-based methods and at a specific image size, changing the
value of s also leads to a change in the value of MSRE(K) at the same |S(K)|. The value
of MSRE(K) decreases slowly when s has a too small or a too large value. This is due to
the negligence of the extracted moments on certain regions of the images as discussed in

Subsection 3.3.4. Additionally, when s < 2,
√

srs−2

2π =
√

s
2πr2−s and there exists a problem

of numerical instability due to the existence of the term r in the denominator of the radial
kernels of harmonic function-based methods. The existence of r in the denominator causes
very high kernel values near the origin.

For better visualization and for the purpose of comparison, Fig. 3.22 provides MSRE curves
of harmonic function-based methods (GPCET, GPCT, GPST) at selected values of s = 0.5, 1, 2, 4
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(d) 128× 128
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Figure 3.18: MSRE curves of GPCET on the six character datasets and at different values of s.
In each sub-figure and at a specific value of s in the horizontal axis, there is an MSRE curve
with the values of |S(K)| and MSRE(K) illustrated as the ordinate and the color of the grid
points having abscissa s.
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Figure 3.19: MSRE curves of GRHFM on the six character datasets at different values of s. In
each sub-figure and at a specific value of s in the horizontal axis, there is an MSRE curve with
the values of |S(K)| and MSRE(K) illustrated as the ordinate and the color of the grid points
having abscissa s.
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Figure 3.20: MSRE curves of GPCT on the six character datasets at different values of s. In
each sub-figure and at a specific value of s in the horizontal axis, there is an MSRE curve with
the values of |S(K)| and MSRE(K) illustrated as the ordinate and the color of the grid points
having abscissa s.
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Figure 3.21: MSRE curves of GPST on the six character datasets at different values of s. In
each sub-figure and at a specific value of s in the horizontal axis, there is an MSRE curve with
the values of |S(K)| and MSRE(K) illustrated as the ordinate and the color of the grid points
having abscissa s.

107



Chapter 3. Image Analysis by Generic Polar Harmonic Transforms

plotted in the traditional 2D Cartesian coordinate system with |S(K)| and MSRE(K) illustrated
as the abscissa and ordinate respectively. From the six sub-figures that correspond to the six
character datasets, all the above observations on harmonic function-based methods can be verified
with relative ease.

Comparison of GPCET with Jacobi polynomial-based and eigenfunction-based methods using
MSRE curves computed from the six character datasets is given in Fig. 3.23. It can be seen from
the sub-figures that

- For all methods, approximation error causes MSRE(K) at the same |S(K)| to have a
higher value at a smaller image size, similar to the phenomenon observed in the comparison
among harmonic function-based methods carried out above. This provides experimental
evidence for the theoretical arguments on this type of error discussed in Subsection 3.4.3:
a smaller image size leads to a higher approximation error, and vice versa. However, the
small difference in MSRE(K) between image sizes of 256× 256 and 512× 512 suggests that
the impact of approximation error becomes negligible for large-sized images.

- Numerical stability of Jacobi polynomial-based methods breaks down when K is increased
up to certain values. The rapid deterioration in the images reconstructed by Jacobi
polynomial-based methods observed in Fig. 3.17 is exhibited here by the sudden upturns in
their corresponding MSRE curves at K = 46, 21, 23, and 23 for ZM, PZM, OFMM, and
PJFH respectively. The MSRE curve of CHFM breaks down later at K = 79 (not shown
in the figure). These phenomena conform with the theoretical arguments on representation
error discussed in Subsection 3.4.3: the starting values of K that cause deterioration here
are equal to the starting radial orders that cause roundoff error of the order of unity in
Jacobi polynomial-based methods (Table 3.4).

- For large-sized images, except for GPCET (s = 4) and the sudden upturns of Jacobi
polynomial-based methods, all comparison methods have similar performances with the
lowest curves come from eigenfunction-based methods. For small-sized images, ZM has the
highest representation capability, followed by GPCET (s = 4).

From the experiments carried out in this subsection, it is now clear that approximation and
representation errors each affects the computed moments in a different way. Approximation
error causes a slightly change in the computed moments. On the contrary, a sudden upturn in
the MSRE curve caused by representation error means that the computed moments from that
point are totally unreliable and they should not be used in other applications, such as image
compression or pattern recognition.

3.5.3 Pattern recognition

Experiments have been designed to gauge the applicability of harmonic function-based moments
in rotation-invariant pattern recognition problems at different levels of additive noise. The
experimental images are from the COREL photograph dataset [225]: 100 images are selected,
cropped, and scaled to a standard size of 128× 128. These 100 images are the training images,
their computed moments are taken as the ground-truth for comparison with those of the testing
images. Some samples of these training images are given in Fig. 3.24. For these images, only the
pixels [i, j] ∈ C with C defined in Eq. (3.38) keep their original intensity values. The remaining
pixels, which are irrelevant to the experiments since they are not entirely lying inside the incircle,
have their intensity values set to zero.
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Figure 3.22: MSRE curves of harmonic function-based methods (GPCET, GPCT, GPST) at
s = 0.5, 1, 2, 4 on the six character datasets (to be continued on the next page).
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Figure 3.22: MSRE curves of harmonic function-based methods (GPCET, GPCT, GPST) at
s = 0.5, 1, 2, 4 on the six character datasets.
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Figure 3.23: MSRE curves of GPCET at s = 0.5, 1, 2, 4, Jacobi polynomial-based (ZM, PZM,
OFMM, CHFM, PJFM), and eigenfunction-based (FBM, BFM, DHC) methods on the six
character datasets (to be continued on the next page).

111



Chapter 3. Image Analysis by Generic Polar Harmonic Transforms

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

|S(K)|

M
R

S
E

(K
)

 

 
GPCET−0.5

GPCET−1

GPCET−2

GPCET−4

ZM

PZM

OFMM

CHFM

PJFM

FBM

BFM

DHC

(d) 128× 128

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

|S(K)|

M
R

S
E

(K
)

 

 
GPCET−0.5

GPCET−1

GPCET−2

GPCET−4

ZM

PZM

OFMM

CHFM

PJFM

FBM

BFM

DHC

(e) 256× 256

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

|S(K)|

M
R

S
E

(K
)

 

 
GPCET−0.5

GPCET−1

GPCET−2

GPCET−4

ZM

PZM

OFMM

CHFM

PJFM

FBM

BFM

DHC

(f) 512× 512

Figure 3.23: MSRE curves of GPCET at s = 0.5, 1, 2, 4, Jacobi polynomial-based (ZM, PZM,
OFMM, CHFM, PJFM), and eigenfunction-based (FBM, BFM, DHC) methods on the six
character datasets.
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Figure 3.24: Ten sample images out of 100 images from the COREL photograph dataset used in
the rotation-invariant pattern recognition experiments. These images are used as the models to
generate testing images by rotating and then adding noise of different levels to them.

The testing images are generated from the training images by rotating them with rotation
angles φ = 0◦, 30◦, . . . , 330◦ and then contaminating them with Gaussian white noise of variances
σ2 = 0.00, 0.05, 0.10, 0.15, 0.205. Furthermore, in order to investigate the role of the parameter
s in the recognition performance, three different testing datasets are generated separately by
restricting the noise to be added to the whole image (NoiseAll), the inner region (NoiseInner), and
the outer region (NoiseOuter). The inner and outer regions ensemble form the whole unit-disk
region and the boundary between them is the circle of radius 0.5 (i.e., 32 in pixel unit) having
the same center with the image. In this way, for each training image, a total of 12× 5× 3 = 180
testing images are generated from it, making a total of 100× 180 = 18× 103 images needed to
be classified according to their computed moments. As an example, sample testing images of
variance σ2 = 0.1 at rotation angles φ = 0◦, 30◦, . . . , 150◦ from the three different testing datasets
(NoiseAll, NoiseInner, and NoiseOuter) that are generated from a single training image are given
in Fig. 3.25.

For the purpose of classification, each image of the training and testing datasets is represented
by a feature vector, which is the magnitude of its computed moments. Classification is then
carried out based on the ℓ2-norm distances (defined in Eq. (2.30)) between the feature vector of
the testing image and those of all training images. It is quite obvious that when the testing images
are not contaminated by noise, all the methods (i.e., unit-disk based moments) theoretically
produce 100% classification rate on rotation-invariant pattern recognition problems. However, due
to the digital nature of the imagery (sampling and quantization errors) and digital computation
(approximation and representation errors), moments computed in digital systems are not truly
invariant [214]. For this reason and in order to investigate the impact of the size of the feature
vector on the classification rate, a set of K values has been used on each dataset as follows:

- NoiseAll: K = 3, 6, 9, 12, 15,

- NoiseInner: K = 1, 2, 3, 4, 5,

- NoiseOuter: K = 2, 4, 6, 8, 10.

The reason for using a different set of K values on each dataset is the difference in the amount of
discriminative information that remains in the images after contaminating them with Gaussian
white noise. In the presence of noise, the larger the image region contaminated by noise is, the

5The variances are normalized values, corresponding to image’s intensity values ranging from 0 to 1.
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Figure 3.25: Sample noisy images of variance σ2 = 0.1 at rotation angles φ = 0◦, 30◦, . . . , 150◦

(left to right) from the three different testing datasets. Top row : noise is added to the whole
image (NoiseAll). Middle row : noise in the image’s inner region (NoiseInner). Bottom row : noise
in the image’s outer region (NoiseOuter).

less the discriminative information remains in the image. It is thus straightforward that, in order
to maintain the same classification performance on the three testing datasets, K should take the
largest value on NoiseAll and the smallest value on NoiseInner.

The classification rates for harmonic function-based methods (GPCET, GRHFM, GPCT,
GPST) at s = 0.5, 1, 2, 4 on NoiseAll, NoiseInner, and NoiseOuter datasets using their corre-
sponding sets of K values are given in Tables 3.7, 3.8, and 3.9 respectively. From these tables, it
can be observed for all harmonic function-based methods that

- When the testing images get noisier, meaning an increase in σ2, the classification rates on
the same dataset and at the corresponding values of K decrease.

- The classification rates at the corresponding noise levels σ2 and on the same dataset
increase along with the increase in K, or, in other words, increase when more moments are
employed in the feature vector.

- On NoiseAll, at the corresponding values of K and σ2, the classification rates of GRHFM,
GPCT, GPST have their peaks at s = 1 and decrease as s goes away from 1. However, the
classification rate of GPCET does not have a clear trend, it seems to have its minimum
value at s = 2 and increases as s goes away from 2.

- On NoiseOuter and NoiseInner, as s increases from 0.5 to 4 and at the corresponding values
of K and σ2, the classification rate decreases on NoiseOuter and increases on NoiseInner.

- On average, at the corresponding values of K and σ2 and on the same dataset, GRHFM
has the best classification performance.

The change in classification performance due to changes in the values of σ2 and/or K is
predictable. Additionally, the dependance of performance on the value of s could be explained by
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the theoretical arguments in Subsection 3.3.4. The peak performances of harmonic function-based
methods on NoiseInner/NoiseOuter at s = 4/s = 0.5 are due to the bias of the distributions of
zeros of their radial kernels towards r = 1/r = 0 at s = 4/s = 0.5. This means the discriminative
information contained in the computed moments is from the outer/inner region of the images
where the noise is not present. Similarly, the peak performances on NoiseAll of GRHFM, GPCT,
and GPST at s = 1 are due to the uniform distributions of zeros of their radial kernels over
0 ≤ r ≤ 1 at s = 1. The abnormal trend observed from the classification rates of GPCET could
be explained by the complex nature of its radial kernels. Although the zeros of their real and
imaginary parts are clearly defined, GPCET radial kernels themselves do not have zeros due to
the employed complex exponential functions. The dominance of GRHFM over the other harmonic
function-based methods has the following explanations:

- GRHFM has been shown to be a variant of GPCET in terms of representation, similar
to the equivalence between different forms of Fourier series. However, the trigonometric
function-based radial kernels of GRHFM do not contain phase information, unlike the
exponential function-based radial kernels of GPCET. Accordingly, GRHFM suffers less
from the loss of phase information [116] when a magnitude operator is used to compute
rotation-invariant feature vectors, resulting in its better performance over GPCET.

- GPCT and GPST are respectively defined based on the cosine and sine series, which are
the so-called half-range expansions of a function. They are special cases of the Fourier
series, arising naturally when attempting to decompose even/odd functions. Due to this
interpretation, many of the properties of cosine and sine series are less elegant and more
involved than the corresponding ones of the Fourier series [240] and this may explain for
the inferiority of GPCT and GPST to GRHFM in terms of classification rate.

Taking GRHFM as the representative of harmonic function-based methods, comparison of
GRHFM at s = 0.5, 1, 2, 4 with non-orthogonal (ART, GFD, RM), Jacobi polynomial-based
(ZM, PZM, OFMM, CHFM, PJFM), and eigenfunction-based (FBM, BFM, DHC) methods on
NoiseAll, NoiseInner, and NoiseOuter datasets are given in Tables 3.10, 3.11, and 3.12 respectively.
Besides similar trends in the dependance of the classification rates on the values of K and σ2, it
can also be seen from these tables that

- Non-orthogonal methods have smaller classification rates than those of orthogonal ones on
the three testing datasets at the corresponding values of K and σ2. These inferior results
demonstrate clearly that non-orthogonal methods are less effective than orthogonal ones.

- Jacobi polynomial-based methods have lower performance than that of GRHFM at its
peaks (i.e., s = 1 on NoiseAll, s = 4 on NoiseInner, and s = 0.5 on NoiseOuter) at the
corresponding values of K and σ2 and on the same dataset, except for OFMM on NoiseAll.

- Eigenfunction-based methods perform better than GRHFM on NoiseAll (s = 1) when the
value of K is large enough (i.e., K ≥ 6). They perform worse than GRHFM on NoiseInner
(s = 4) and have comparable performance with GRHFM on NoiseOuter (s = 0.5).

From the experiments carried out in this subsection, it now can be concluded that harmonic
function-based moments could be used to define region-based feature vectors in rotation-invariant
pattern recognition problems. They outperform non-orthogonal and Jacobi polynomial-based
moments and have comparable performances with those of eigenfunction-based moments on
the carefully-designed experimental datasets. Moreover, the decisive role of s in the recognition
performance, as theoretically argued in Subsection 3.3.4, has also been confirmed experimentally.
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3.6 Conclusions

In this chapter, the generalizations of existing unit disk-based orthogonal moments using harmonic
functions have been pursued with the radial kernels are defined based on

- GPCET: Fourier series using complex exponential functions.

- GRHFM: Fourier series using trigonometric functions.

- GPCT: cosine series.

- GPST: sine series.

The sets of orthogonal kernels of harmonic function-based moments have been proven to be
complete in a Hilbert space of square-integrable continuous complex-valued functions. Moreover,
the use of a parameter s in the definition results in four classes of moments that have beneficial
properties of the original moments (PCET, RHFM, PCT, and PST) while giving more flexibility
in their definitions. This flexibility has been demonstrated to be useful both theoretically and
experimentally in some particular applications, especially in image compression and pattern
recognition problems.

The simple, resembling, and relating definitions of harmonic function-based kernels have
resulted in an almost-constant kernel computation time, regardless of the maximal kernel order.
This makes a strong contrast with Jacobi polynomial-based and eigenfunction-based methods
where a higher order means a longer kernel computation time. Recursive strategies for fast
computation of harmonic function-based kernels have also been proposed by exploiting the
recurrence relations between harmonic functions, leading to a method that is approximately
10-time faster than direct computation. When compared with the current state-of-the-art strategy
for fast computation of ZM kernels, the proposed method is also approximately five-time faster.
Moreover, combination of the proposed method with the method based on geometrical symmetry
leads to a multiplication of the computational gains obtained individually by the two combining
methods.

In terms of representation capability, like all other methods, harmonic function-based methods
suffer from approximation error and, unlike Jacobi polynomial-based methods, do not suffer
from representation error. As a result, the numerical instability that is common in Jacobi
polynomial-based methods does not exist in harmonic function-based methods. Apart from this
numerical instability, the representation capabilities of all unit disk-based orthogonal moments
are comparable. However, the ability to control the representation capability according to
image regions by changing the value of s draws a distinction between harmonic function-based
methods and the others. Based on this ability, it is possible to have a faster reconstruction of the
image function in certain image regions of interest, leading to potential applications in image
compression.

Finally, in rotation-invariant pattern recognition problems, harmonic function-based methods
have been shown to generally perform better than non-orthogonal and Jacobi polynomial-based
methods while having comparable performance with that of eigenfunction-based methods. For
this reason, harmonic function-based moments could be used to define region-based feature
vectors in rotation-invariant pattern recognition problems. Moreover, the decisive role of s in
the recognition performance has been confirmed experimentally and s can be used to place
emphasis of the feature vector to be extracted on certain image regions that contain discriminative
information, leading to potential applications in pattern recognition. This ability is also a distinct
characteristic of harmonic function-based methods that the others do not have.
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Table 3.7: Classification rates of harmonic function-based methods (GPCET, GRHFM, GPCT, GPST) at s = 0.5, 1, 2, 4 on NoiseAll
dataset under different levels of Gaussian noise σ2 = 0.00, 0.05, 0.10, 0.15, 0.20 and at different values of K = 3, 6, 9, 12, 15.

K σ2 GPCET GRHFM GPCT GPST
s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4

3

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 98.00 98.00 97.08 96.08 98.00 97.92 97.75 97.00 96.92 97.67 96.75 94.67 95.75 96.58 95.67 87.92
0.10 87.67 81.67 75.25 78.00 86.58 87.08 81.58 81.83 75.67 83.83 75.08 75.92 72.58 78.75 70.50 70.17
0.15 57.00 56.00 47.75 49.42 59.50 65.42 56.50 50.42 46.33 53.75 46.67 47.00 45.33 50.75 42.00 41.33
0.20 34.75 35.08 27.67 28.25 38.42 41.25 33.25 32.08 28.33 33.08 27.42 28.33 28.17 32.00 22.08 23.00

6

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 98.00 98.00 98.00 97.92 98.00 98.00 98.00 97.92 98.00 98.00 98.00 97.92 98.17 98.00 98.00 96.00
0.10 93.42 91.83 84.42 86.17 92.75 92.50 88.25 88.83 88.67 91.08 87.42 86.50 90.58 91.92 87.83 82.92
0.15 73.33 68.17 60.50 66.67 74.00 76.25 67.42 65.83 62.25 71.17 63.58 62.67 67.92 73.25 62.50 64.67
0.20 43.67 42.17 37.33 43.33 45.58 49.50 44.83 43.83 37.42 42.92 39.92 38.50 42.83 46.92 38.00 40.58

9

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.33 98.00 98.00 96.83
0.10 94.33 93.08 88.33 89.50 94.00 93.25 91.42 90.17 91.58 92.33 91.17 88.08 93.33 92.67 91.58 86.92
0.15 79.92 77.17 67.92 73.83 79.50 81.33 72.83 74.00 69.83 77.33 70.92 69.83 74.58 80.00 71.25 72.42
0.20 50.83 49.00 44.42 50.50 51.50 56.75 52.58 51.00 45.42 49.25 48.17 46.25 46.92 52.33 46.42 48.75

12

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 98.08 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.50 98.00 98.00 97.00
0.10 95.00 94.58 90.33 89.75 95.00 94.58 93.25 91.42 93.00 93.17 92.58 89.58 95.33 93.25 92.92 88.17
0.15 84.17 80.58 72.58 76.67 83.42 84.75 76.25 78.00 76.08 81.08 75.50 73.58 79.08 83.50 74.08 74.67
0.20 57.17 55.33 50.75 58.08 58.42 62.33 57.67 57.08 49.83 54.75 53.42 50.75 51.67 58.25 51.83 52.42

15

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 98.17 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.00 98.75 98.00 98.00 97.08
0.10 96.17 95.67 92.00 90.75 95.58 95.33 94.25 92.25 94.25 93.92 93.33 90.17 96.00 93.83 93.25 88.83
0.15 86.92 83.08 75.92 79.08 85.75 86.50 79.67 79.58 78.50 83.58 78.33 76.42 82.17 85.33 76.83 76.33
0.20 61.67 60.00 55.58 62.25 63.33 66.17 61.17 62.33 52.92 59.00 57.92 56.17 56.25 61.92 55.67 55.83
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Table 3.8: Classification rates of harmonic function-based methods (GPCET, GRHFM, GPCT, GPST) at s = 0.5, 1, 2, 4 on NoiseInner
dataset under different levels of Gaussian noise σ2 = 0.00, 0.05, 0.10, 0.15, 0.20 and at different values of K = 1, 2, 3, 4, 5.

K σ2 GPCET GRHFM GPCT GPST
s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4

1

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.33 98.67 99.33 97.33
0.05 91.50 92.58 97.33 99.08 94.00 97.67 97.67 99.00 86.42 86.00 87.75 98.67 7.58 16.67 43.83 83.08
0.10 75.08 77.42 84.83 97.58 79.08 83.00 91.83 98.92 63.50 69.58 70.50 92.08 4.50 8.67 28.58 73.25
0.15 63.08 66.50 76.50 95.17 67.50 71.08 82.83 97.33 45.50 53.08 57.33 84.67 3.42 6.08 21.00 66.67
0.20 52.00 56.33 67.08 93.50 56.17 61.75 69.42 94.83 37.33 44.00 48.33 79.33 3.33 4.83 17.58 63.33

2

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 99.83 98.92 100.00 100.00 99.25 99.75 100.00 100.00 99.00 99.67 100.00 100.00 93.67 98.58 100.00 100.00
0.10 96.75 96.50 99.00 100.00 96.17 98.67 100.00 100.00 89.75 96.33 97.83 100.00 76.00 87.17 99.50 100.00
0.15 91.92 92.92 98.50 100.00 92.25 94.67 98.42 100.00 80.67 89.67 94.42 100.00 62.67 77.17 94.67 100.00
0.20 86.00 88.50 93.75 100.00 86.17 90.50 94.92 99.83 70.08 81.25 87.67 99.50 49.75 65.67 92.83 100.00

3

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 100.00 100.00 100.00 100.00 99.58 99.92 100.00 100.00 99.58 99.75 100.00 100.00 99.00 99.17 100.00 100.00
0.10 98.83 98.83 99.08 100.00 98.50 98.92 100.00 100.00 97.17 98.83 100.00 100.00 93.58 98.58 100.00 100.00
0.15 96.58 96.83 99.00 100.00 97.08 97.25 99.17 100.00 92.92 97.17 98.75 100.00 82.00 91.92 100.00 100.00
0.20 95.75 95.92 98.42 100.00 93.92 95.33 98.58 99.92 84.67 92.33 97.83 99.83 70.08 88.25 99.92 100.00

4

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 100.00 100.00 100.00 100.00 99.67 99.83 100.00 100.00 99.67 99.75 100.00 100.00 99.00 99.33 100.00 100.00
0.10 99.00 98.92 99.75 100.00 98.67 99.00 100.00 100.00 98.25 99.00 100.00 100.00 95.50 98.83 100.00 100.00
0.15 97.42 97.17 99.00 100.00 97.92 97.67 100.00 100.00 96.42 98.00 99.75 100.00 90.83 95.50 100.00 100.00
0.20 96.75 96.92 98.83 100.00 96.92 96.92 99.42 99.83 92.17 97.00 98.33 99.08 83.67 93.92 99.58 100.00

5

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 100.00 100.00 100.00 100.00 99.92 100.00 100.00 100.00 99.92 100.00 100.00 100.00 99.00 99.92 100.00 100.00
0.10 99.00 99.00 100.00 100.00 98.92 99.00 100.00 100.00 98.58 99.00 100.00 100.00 97.17 99.00 100.00 100.00
0.15 97.58 97.58 99.42 100.00 98.00 98.00 100.00 100.00 97.42 98.25 100.00 100.00 93.17 97.75 100.00 100.00
0.20 97.08 97.08 98.92 100.00 98.00 97.17 99.58 99.92 95.50 97.33 99.17 99.17 88.00 96.08 99.50 100.00
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Table 3.9: Classification rates of harmonic function-based methods (GPCET, GRHFM, GPCT, GPST) at s = 0.5, 1, 2, 4 on NoiseOuter
dataset under different levels of Gaussian noise σ2 = 0.00, 0.05, 0.10, 0.15, 0.20 and at different values of K = 2, 4, 6, 8, 10.

K σ2 GPCET GRHFM GPCT GPST
s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4 s=0.5 s=1 s=2 s=4

2

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 98.00 97.17 97.08 94.25 97.42 98.08 96.08 94.08 94.33 95.08 92.92 93.25 95.67 92.58 80.17 79.58
0.10 95.42 86.25 75.58 75.83 92.92 91.00 82.58 79.08 76.83 85.83 72.17 70.08 79.25 69.75 53.17 47.42
0.15 79.67 73.00 57.42 46.17 82.75 78.33 65.25 52.92 57.67 64.08 55.83 45.42 64.33 46.67 32.17 25.08
0.20 65.75 59.58 42.83 29.50 67.92 65.25 52.25 34.92 46.58 51.00 40.08 31.08 49.00 33.92 20.92 16.33

4

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 99.00 98.83 98.00 97.92 98.42 99.00 98.00 97.92 98.00 98.83 98.00 97.42 98.33 98.17 97.17 94.67
0.10 98.00 96.75 89.42 87.25 96.42 95.08 90.83 88.58 94.17 93.33 88.50 85.67 95.92 94.17 87.42 78.75
0.15 94.42 88.33 77.00 68.33 92.33 89.33 79.33 71.67 83.33 85.17 73.33 68.17 87.08 85.75 69.50 56.83
0.20 83.25 75.50 62.83 48.25 82.50 79.42 67.33 52.00 69.50 71.08 61.92 48.75 76.33 75.83 52.33 34.50

6

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 99.00 99.00 98.00 98.00 98.92 99.00 98.00 98.00 98.00 99.00 98.00 98.00 99.00 99.00 98.00 96.67
0.10 98.00 98.00 93.25 89.33 98.00 97.58 94.67 89.92 96.75 95.08 93.00 88.83 97.00 96.17 91.58 84.42
0.15 95.17 91.17 83.75 77.17 93.08 92.00 85.08 79.42 88.92 90.67 82.25 77.50 92.25 90.83 79.00 68.50
0.20 90.50 82.67 70.75 58.58 88.17 84.58 73.42 61.25 77.75 80.00 69.42 57.42 86.83 84.08 62.33 45.67

8

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 99.50 99.00 98.00 98.00 99.25 99.00 98.00 98.00 98.42 99.00 98.00 98.00 99.50 99.00 98.00 96.83
0.10 98.00 98.00 95.00 89.92 98.00 97.92 96.50 90.58 97.75 96.92 95.83 89.50 97.00 97.00 92.67 86.50
0.15 95.42 92.58 85.67 82.00 94.08 92.08 87.33 82.92 91.42 91.83 85.00 81.83 95.50 93.08 83.75 73.75
0.20 91.33 86.17 74.83 65.00 88.92 87.08 77.50 67.50 81.33 84.67 74.08 64.25 88.67 86.17 68.42 52.25

10

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 99.58 99.00 98.00 98.00 99.42 99.00 98.00 98.00 98.58 99.00 98.00 98.00 100.00 99.00 98.00 97.00
0.10 98.00 98.00 96.50 90.17 98.00 97.92 97.17 91.00 98.00 97.42 96.50 90.00 97.00 97.50 93.50 88.00
0.15 95.58 93.08 87.25 83.58 94.50 92.17 88.50 84.17 92.25 91.92 86.33 83.75 95.92 93.17 85.17 76.00
0.20 91.75 87.67 78.17 70.42 89.67 88.67 79.92 72.33 83.58 86.92 76.42 69.33 91.08 88.00 73.50 58.00
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Table 3.10: Classification rates of GRHFM at s = 0.5, 1, 2, 4, non-orthogonal (ART, GFD, RM), Jacobi polynomial-based (ZM, PZM,
OFMM, CHFM, PJFM), and eigenfunction-based (FBM, BFM, DHC) methods on NoiseAll dataset under different levels of Gaussian
noise σ2 = 0.00, 0.05, 0.10, 0.15, 0.20 and at different values of K = 3, 6, 9, 12, 15.

K σ2 GRHFM
ART GFD RM ZM PZM OFMM CHFM PJFM FBM BFM DHC

s=0.5 s=1 s=2 s=4

3

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 98.00 97.92 97.75 97.00 96.75 97.92 79.25 78.67 93.83 97.42 97.92 96.50 97.33 97.92 96.42
0.10 86.58 87.08 81.58 81.83 79.92 83.50 39.17 43.92 68.00 77.00 78.50 79.58 87.67 84.42 83.50
0.15 59.50 65.42 56.50 50.42 51.50 54.50 19.33 20.42 43.00 55.50 53.67 55.92 66.58 65.67 55.25
0.20 38.42 41.25 33.25 32.08 28.67 31.92 11.17 9.67 26.08 36.83 31.67 32.50 42.33 39.67 34.83

6

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 98.00 98.00 98.00 97.92 98.00 98.00 93.08 97.58 98.00 98.00 98.00 98.00 98.25 98.00 98.00
0.10 92.75 92.50 88.25 88.83 89.75 91.83 63.50 84.58 90.58 92.83 89.75 89.08 94.50 94.42 93.33
0.15 74.00 76.25 67.42 65.83 68.58 67.42 36.00 56.75 67.75 73.83 67.42 67.00 81.67 82.83 75.67
0.20 45.58 49.50 44.83 43.83 44.75 41.67 20.67 35.00 44.33 54.00 42.00 44.58 57.42 56.83 52.92

9

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 98.00 98.00 98.00 98.00 98.00 98.00 95.50 97.92 98.00 98.00 98.00 98.00 99.00 98.00 98.00
0.10 94.00 93.25 91.42 90.17 92.17 93.67 71.75 90.50 93.08 94.83 91.67 91.17 95.67 95.50 94.25
0.15 79.50 81.33 72.83 74.00 75.83 74.92 45.00 72.08 77.17 81.67 73.33 74.42 85.92 86.33 83.42
0.20 51.50 56.75 52.58 51.00 50.17 49.17 26.17 44.83 55.58 64.33 48.08 49.08 68.33 67.17 64.42

12

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 98.00 98.00 98.00 98.00 98.00 98.00 97.25 98.00 98.00 98.08 98.00 98.00 99.00 98.00 98.00
0.10 95.00 94.58 93.25 91.42 93.33 94.17 77.08 93.33 93.92 96.00 92.67 92.25 96.50 96.08 95.50
0.15 83.42 84.75 76.25 78.00 77.58 79.00 48.83 77.67 81.75 86.08 77.42 77.83 90.17 91.25 88.67
0.20 58.42 62.33 57.67 57.08 54.33 53.83 28.92 56.08 63.42 71.75 54.58 54.17 74.42 76.08 71.42

15

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 98.00 98.00 98.00 98.00 98.00 98.00 97.50 98.00 98.00 98.25 98.00 98.00 99.00 98.25 98.25
0.10 95.58 95.33 94.25 92.25 94.08 94.42 79.67 94.50 94.42 96.42 93.50 92.92 97.58 96.50 95.92
0.15 85.75 86.50 79.67 79.58 80.33 81.42 51.75 81.08 85.08 89.67 80.00 80.75 92.75 93.00 91.33
0.20 63.33 66.17 61.17 62.33 58.75 57.83 30.83 60.83 67.33 75.67 58.17 57.17 79.75 81.50 76.17
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Table 3.11: Classification rates of GRHFM at s = 0.5, 1, 2, 4, non-orthogonal (ART, GFD, RM), Jacobi polynomial-based (ZM, PZM,
OFMM, CHFM, PJFM), and eigenfunction-based (FBM, BFM, DHC) methods on NoiseInner dataset under different levels of Gaussian
noise σ2 = 0.00, 0.05, 0.10, 0.15, 0.20 and at different values of K = 1, 2, 3, 4, 5.

K σ2 GRHFM
ART GFD RM ZM PZM OFMM CHFM PJFM FBM BFM DHC

s=0.5 s=1 s=2 s=4

1

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 95.67 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 94.00 97.67 97.67 99.00 91.83 97.08 93.83 43.08 72.42 83.08 85.58 86.92 83.25 85.08 88.17
0.10 79.08 83.00 91.83 98.92 75.08 84.08 72.17 28.00 50.92 63.08 69.33 61.25 64.58 62.92 66.75
0.15 67.50 71.08 82.83 97.33 64.58 74.58 57.00 21.75 40.00 50.50 53.33 45.67 48.25 47.92 51.75
0.20 56.17 61.75 69.42 94.83 56.58 67.17 47.83 18.83 34.00 40.17 45.00 38.00 39.25 36.92 42.17

2

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 99.25 99.75 100.00 100.00 100.00 100.00 100.00 93.00 98.08 100.00 99.58 99.75 99.25 99.25 100.00
0.10 96.17 98.67 100.00 100.00 98.67 99.67 97.33 82.75 91.75 97.00 95.92 97.83 93.75 93.58 98.92
0.15 92.25 94.67 98.42 100.00 94.50 97.67 93.25 73.50 84.75 92.25 88.00 92.00 88.67 88.42 95.33
0.20 86.17 90.50 94.92 99.83 92.67 95.58 87.08 64.17 76.50 85.50 80.67 84.50 83.33 84.00 89.25

3

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 99.58 99.92 100.00 100.00 100.00 100.00 100.00 98.25 100.00 100.00 99.58 100.00 99.33 99.83 100.00
0.10 98.50 98.92 100.00 100.00 99.00 100.00 100.00 95.00 99.33 100.00 98.83 99.00 98.25 99.00 99.92
0.15 97.08 97.25 99.17 100.00 98.83 99.00 99.33 87.75 95.92 96.50 97.58 97.75 95.25 95.42 98.67
0.20 93.92 95.33 98.58 99.92 97.75 98.08 97.58 80.25 91.25 91.83 93.33 95.50 93.25 91.33 96.58

4

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 99.67 99.83 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.67 100.00 100.00 100.00 100.00
0.10 98.67 99.00 100.00 100.00 100.00 100.00 100.00 96.83 99.92 100.00 99.00 99.00 98.67 99.00 100.00
0.15 97.92 97.67 100.00 100.00 99.00 99.00 99.75 93.67 98.42 98.67 98.00 98.33 97.25 97.83 100.00
0.20 96.92 96.92 99.42 99.83 98.58 98.92 99.00 91.25 96.58 96.17 96.58 97.08 96.25 95.50 99.08

5

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 99.92 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.10 98.92 99.00 100.00 100.00 100.00 100.00 100.00 99.25 100.00 100.00 99.00 99.00 99.00 99.00 100.00
0.15 98.00 98.00 100.00 100.00 99.00 99.17 99.83 97.25 99.33 99.00 98.00 98.75 97.75 98.33 100.00
0.20 98.00 97.17 99.58 99.92 98.75 99.00 99.00 94.00 98.58 97.33 97.42 97.00 97.00 96.50 99.92121
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Table 3.12: Classification rates of GRHFM at s = 0.5, 1, 2, 4, non-orthogonal (ART, GFD, RM), Jacobi polynomial-based (ZM, PZM,
OFMM, CHFM, PJFM), and eigenfunction-based (FBM, BFM, DHC) methods on NoiseOuter dataset under different levels of Gaussian
noise σ2 = 0.00, 0.05, 0.10, 0.15, 0.20 and at different values of K = 2, 4, 6, 8, 10.

K σ2 GRHFM
ART GFD RM ZM PZM OFMM CHFM PJFM FBM BFM DHC

s=0.5 s=1 s=2 s=4

2

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 97.42 98.08 96.08 94.08 91.42 96.08 70.75 59.50 87.17 93.00 93.83 93.67 98.08 95.25 96.33
0.10 92.92 91.00 82.58 79.08 74.00 81.33 37.00 21.42 62.17 76.42 79.17 81.42 89.33 85.17 84.00
0.15 82.75 78.33 65.25 52.92 52.75 63.08 21.58 9.83 41.58 64.33 64.17 63.58 76.08 73.00 61.75
0.20 67.92 65.25 52.25 34.92 32.50 46.00 15.08 7.42 28.67 50.83 51.67 51.33 58.25 57.08 46.92

4

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 98.42 99.00 98.00 97.92 97.92 98.00 91.83 92.58 98.00 98.00 98.25 98.00 99.67 98.17 98.00
0.10 96.42 95.08 90.83 88.58 87.58 91.33 66.00 77.08 91.67 92.92 92.83 92.92 96.92 95.83 95.17
0.15 92.33 89.33 79.33 71.67 73.17 77.58 37.75 57.17 74.08 81.50 84.08 83.17 94.00 88.92 86.25
0.20 82.50 79.42 67.33 52.00 56.75 58.42 20.50 38.17 60.75 73.75 70.08 68.58 86.58 79.92 76.25

6

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 98.92 99.00 98.00 98.00 98.00 98.00 95.08 98.00 98.08 98.25 99.00 98.00 100.00 99.08 99.67
0.10 98.00 97.58 94.67 89.92 92.58 94.08 74.08 89.42 94.83 96.92 94.00 94.25 98.67 97.92 97.00
0.15 93.08 92.00 85.08 79.42 81.67 84.42 47.42 75.83 87.33 88.00 88.00 88.00 95.50 93.75 91.33
0.20 88.17 84.58 73.42 61.25 63.33 65.00 30.58 57.33 76.00 79.25 76.92 77.17 91.92 88.08 84.50

8

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 99.25 99.00 98.00 98.00 98.00 98.00 96.17 98.00 99.17 99.00 99.00 98.00 100.00 100.00 100.00
0.10 98.00 97.92 96.50 90.58 94.25 95.75 81.42 93.25 96.50 97.33 96.17 95.58 98.92 98.00 97.75
0.15 94.08 92.08 87.33 82.92 85.25 86.00 52.42 84.42 89.42 89.50 90.08 89.75 96.67 94.67 93.50
0.20 88.92 87.08 77.50 67.50 69.50 68.83 35.25 71.33 82.17 83.92 80.67 81.33 93.17 90.67 87.42

10

0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.05 99.42 99.00 98.00 98.00 98.00 98.00 97.50 98.33 99.83 99.42 99.00 98.00 100.00 100.00 100.00
0.10 98.00 97.92 97.17 91.00 95.17 96.67 84.33 96.17 97.42 97.83 97.58 97.42 99.00 98.00 98.08
0.15 94.50 92.17 88.50 84.17 85.92 87.58 56.08 87.50 91.33 92.17 91.25 90.67 97.17 95.17 94.50
0.20 89.67 88.67 79.92 72.33 73.67 72.17 38.83 77.08 84.17 86.42 84.75 82.50 94.75 92.75 88.58
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Chapter 4. Sparse Representation for Image Analysis and Recognition

4.1 Sparse modeling of signals/images

This section presents some basics of a sparse signal/image modeling framework. It is started
with a mathematical formulation of sparse representation, then by a justification for the use of
ℓ1 regularization in the framework. The Bayesian interpretation of the framework is also given
along with different strategies for the design of dictionaries. All these aspects are followed by a
sketch of contributions that will be presented in this chapter.

4.1.1 Mathematical formulation

Let f be an input image of size w × h which is cast as a vector x ∈ R
m (m = wh) by stacking

its columns; let D ∈ R
m×p be an overcomplete dictionary with m < p. The linear system of

equations Dα = x with α ∈ R
p is under-determined since it has more unknowns than equations.

This system of equations has either no solution, if x is not in the span of the columns of D,
or otherwise infinitely many solutions. Assuming that D is a full-rank matrix, i.e., its columns
span the entire space R

m, additional criteria are needed if a well-defined solution α is desired.
The common approach is to introduce a regularization term J in order to give preference to a
particular solution that has desirable properties, with a smaller value mean a better solution.
The preferred solution α could then be obtained by solving the following optimization problem:

(PJ) : min
α

J(α) subject to x = Dα.

When J is a strictly convex function, it is well-known that (PJ) has a unique solution. In the
literature, the most common choice for J is the squared Euclidean norm defined by J(α) =
J2(α) = ‖α‖22. (PJ) then becomes (P2) as

(P2) : min
α

‖α‖22 subject to x = Dα.

(P2) defined as above is in fact a variant of the Tikhonov regularization problem [218], it has a
unique closed-form solution α̂2, the so-called minimum-norm solution, which is given explicitly
by

α̂2 = DT
(

DDT
)−1

x.

Due to the above closed-form and unique solution α̂2, J2 has been used extensively in various
fields of applications. The interpretation here is that α̂2 has the smallest energy among all
solutions of (P2) since the squared ℓ2-norm is a measure of energy. However, in many cases, the
smallest energy is a misleading notion that calls for more appropriate choices for J . In image
processing, it is now well-established that J should be a measure of sparsity in order to promote
sparsity in the solution of (PJ). The simplest and most intuitive measure of sparsity of a vector
α is the number of non-zero elements in α defined by the ℓ0-norm as6

‖α‖0 = #{j : αj 6= 0}. (4.1)

A vector α is often said to be sparse if there are “few” non-zero elements in α, or ‖α‖0 ≪ p.
Consider now the problem (P0) obtained from (PJ) by using J(α) = J0(α) = ‖α‖0. Finding

the sparse solution α̂0 of (P0) is equivalent to solving the following ℓ0 optimization problem:

(P0) : min
α

‖α‖0 subject to x = Dα.

6ℓ0-norm is in fact not a norm as defined in mathematics because it does not satisfy the positive homogeneity
and triangle inequality conditions. Nevertheless, for the sake of convenience, the term norm is used for this function.
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4.1. Sparse modeling of signals/images

Superficially, the sparsity-minimizing problem (P0) looks like the energy-minimizing problem (P2)
but there are some startling differences between them. The solution α̂2 of (P2) is always unique
and can be obtained easily by using now-standard tools from computational linear algebra. Solving
(P0) for ‖α‖0, however, poses many challenges that have roots in the discrete and discontinuous
nature of the ℓ0-norm. (P0) is a classical problem of combinatorial search with exhaustive search
complexity is exponential in p. Indeed, it was proven that (P0) is, in general, NP-hard [160].
Suboptimal solutions of (P0) can be found by greedy algorithms like matching pursuit (MP) [146],
orthogonal matching pursuit (OMP) [172], or convex relaxation techniques like FOCUSS [88],
basis pursuit (BP) [41]. As an example, BP proposes to use J(α) = J1(α) = ‖α‖1 and solve the
following ℓ1 optimization problem:

(P1) : min
α

‖α‖1 subject to x = Dα.

This problem is intermediate between (P0) and (P2): it is a convex problem that is, in some sense,
closest to (P0). Interestingly, results in [59] show that if the solution α̂0 of (P0) is sufficiently
sparse, it is equal to the solution α̂1 of (P1). Moreover, it was also proven that the solution of
(P1) is more stable than that of (P0) in the sense that small variations in x result in more similar
active sets (i.e., the selected atoms from D).

When the condition x = Dα is relaxed by x = Dα+ z, where z ∈ R
p is a noise term with

‖z‖22 ≤ ǫ to account for the possible inclusion of small dense noise in the input signal or to allow
small error in the representation, (P1) now transforms into the following basis pursuit denoising
problem (BPDN):

(P ǫ
1) : min

α

‖α‖1 subject to ‖x−Dα‖22 ≤ ǫ. (4.2)

(P ǫ
1) is a convex optimization problem, its solution can be found by minimizing the corresponding

Lagrangian function as

(Qλ
1) : min

α

1

2
‖x−Dα‖22 + λ‖α‖1, (4.3)

where the parameter λ is the Lagrange multiplier that depends on ǫ, it balances the sparseness
in α and the reconstruction error in x−Dα. In statistics, (Qλ

1) is known as the LASSO problem
[217] and has been well-studied by optimization specialists, leading to many practical methods
for solving it. For large-scale applications, the following special purpose optimizers are frequently
used: iterative reweighed least square [48], iterative shrinkage-thresholding [16], and least angle
regression [69]. Nevertheless, when the dictionary D is not derived from an analytical transform
that has fast implementation, due to high computational complexity, small image patches of size
below w × h = 32× 32 are usually used in the optimization process, instead of the whole image.

It should be noted that, sometimes, a more generic form of (Qλ
1) defined as

min
α

1

2
f(α) + λΩ(α)

is also used, where f : Rp → R is a convex differentiable function that describes the fidelity
of the representation Dα to the empirical data x and Ω : Rp → R is a sparsity-promoting
function which is typically non-smooth and non-Euclidean. However, the more flexibility in the
above formulation has to be paid by the more complexity in the algorithm that solves it. In the
remaining of this chapter, unless explicitly specified as in Section 4.4, the sparse representation
is obtained as the solution of (Qλ

1).
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(a) q = 0 (b) q = 0.5 (c) q = 1 (d) q = 2 (e) q = 4

Figure 4.1: Illustration of the level sets (contours of constant value) of |α1|q + |α2|q for some
selected values of q. The open ball of ℓq-norm is convex when q ≥ 1, strictly convex when q > 1,
and concave when q < 1.

4.1.2 The ℓ1 regularization

In order to justify the choice of ℓ1-norm for J , consider the following problem:

(P ǫ
q ) : min

α

‖α‖qq subject to ‖x−Dα‖22 ≤ ǫ

where

‖α‖q =





m
∑

j=1

|αj |q




1/q

, (q > 0)

is the ℓq-norm7 and ‖α‖0 is defined as in Eq. (4.1). It is straightforward that ‖α‖qq is convex
when q ≥ 1, strictly convex when q > 1, and concave when q < 1. Illustration of the convexity
of ‖α‖qq for the case p = 2 is shown in Fig. 4.1 for some selected values of q. In addition, the

constraint ‖x−Dα‖22 ≤ ǫ defines a feasible set centered at the least square estimate αLS. When
this set does not contain the origin, the solution of (P ǫ

q ) should be sought at the set’s boundary.
Now consider the set

Sk
q = {α : ‖α‖qq ≤ k ∈ R}.

Sk
q is a “ball” containing all the vectors that have length (in terms of ℓq-norm) less than or equal

to q
√
k. By geometric intuition and at a specific value of q, S0

q contains only the origin and an
increase in the value of k is equivalent to an increase in the size of the ball. Since solution of (P ǫ

q )

exists if and only if Sk
q intersects the feasible set, solving (P ǫ

q ) could be done by “blowing” the

ball Sk
q until it first touches the feasible set. The characterization of such a tangency point is

determined by the “shape” of Sk
q , which is in turn determined by the value of q. When q ≤ 1, the

concavity (q < 1) or non-strict convexity (q = 1) of Sk
q makes the tangency point lie at one of

the ball’s corners. Since corners usually take place on the axes, some coordinates of the tangency
point are zeros or, in other words, the set of coordinates is likely to be sparse. On the contrary,
when q > 1, the strict convexity of Sk

q does not require the tangency point to be at the ball’s
corners, meaning that the set of coordinates is not sparse.

Fig. 4.2 depicts the solution of (P ǫ
q ) at q = 1, 2 for the case p = 2. The feasible sets are

plotted as shaded cyan regions and have elliptical contours centered at αLS. The target functions

7Note that, when q < 1, ℓq-norm is not a norm because it does not satisfy the triangle inequality condition.
Nevertheless, for the sake of convenience, the term norm is used for this function.
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(a) q = 1 (b) q = 2

Figure 4.2: Illustration of the solution of (P ǫ
q ) for q = 1 (left) and q = 2 (right) for the case p = 2.

Shown in the figure are the feasible sets and level sets of the target functions: the shaded cyan
regions are the constraint regions ‖x −Dα‖22 ≤ ǫ, while the red contours are the level sets of
|α1|+ |α2| (left) and α2

1 + α2
2 (right).

are |α1|+ |α2| and α2
1 + α2

2 for q = 1 and q = 2 respectively. The solutions are defined as the
points where the level sets of these target functions, diamonds and disks respectively, hit the
elliptical contours during the blowing process. Unlike the disk, the diamond has corners and if
the solution occurs at a corner, it has one coordinate equal to zero. When p > 2, the diamond
becomes a rhomboid that has many corners, flat edges and faces. Accordingly, there are many
more opportunities for the solution’s coordinates to be zero.

Putting things together, it is clear that, among ‖α‖qq, ‖α‖1 is the only norm that has both
properties: sparsity-promoting and convex. While sparsity is the target of the representation,
convexity is the preferred property for practical implementation. Moreover, from the above
analysis, it can be seen that sparsity-promotion and convexity are the two contradicting properties:
a convex set Sk

q is likely to result in a non-sparse solution, and vice versa. Note that this
observation is valid not only for ℓq regularization but also for other regularization functions. The
only compromise between sparsity-promotion and convexity occurs in the case J1(α) = ‖α‖1
and this justifies for the popular use of ℓ1-norm as the sparse regularization.

4.1.3 Bayesian interpretation

Besides the intuitive interpretation of obtaining a sparse representation that, at the same time,
minimizes the reconstruction error, the problem (Qλ

1) in Eq. (4.3) has an equivalence in Bayesian
decision framework [232]. Assuming that x is generated by the following model:

x = Dα+ z, (4.4)

where z is the additive white Gaussian noise (AWGN) distributed as

p(x|α;σ) =
(

2πσ2
)−m

2 exp

(

− 1

2σ2
‖x−Dα‖22

)

.

The prior distribution of α is also assumed to be the generalized Gaussian distribution:

p(α;β) =
q

2βΓ
(

1
q

) exp



−
p
∑

j=1

∣

∣

∣

∣

αj

β

∣

∣

∣

∣

q


 ,
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(a) Image “stream” (b) 8× 8 DCT dictionary (c) Coefficient distributions

Figure 4.3: Distributions of the coefficients of the 512× 512 image “stream” (a) using a standard
8× 8 DCT dictionary (b). Empirical distributions of the coefficients (c) associated to 64 DCT
atoms have heavy tails that are similar to those of the Laplacian distribution.

where Γ(·) denotes the Gamma function. When q ∈ [0, 1], this prior is known to encourage
sparsity in many situations because of its heavy tails and a sharp peak at zero. Given this prior,
the maximum a posteriori (MAP) solution to Eq. (4.4) is formulated as

αMAP = argmax
α

p(α|x;σ, β) = argmin
α

(

− log p(x|α;σ)− log p(α;β)
)

= argmin
α

(

1

2
‖x−Dα‖22 + λ‖α‖qq

)

, (4.5)

with λ = σ2

βq . It is clear that when q = 1, the generalized Gaussian distribution becomes the

Laplacian distribution and the above optimization problem is equivalent to (Qλ
1). In the literature,

Laplacian distribution has been the dominant choice that balances simplicity in the model and
fidelity to the empirical data [125]. As an experimental evidence, Fig. 4.3c shows the histograms
of the DCT coefficients using a standard 8×8 DCT dictionary given in Fig. 4.3b. The image used
in the experiment is the popular 512× 512 “stream” picture shown in Fig. 4.3a. Experimental
results like in Fig. 4.3c indicate that the histograms resemble Laplacian distributions when the
Kolmogorov–Smirnov goodness-of-fit test is used [186].

4.1.4 Dictionary design

The ability of (Qλ
1) in Eq. (4.3) to guarantee a good representation and a sparse solution depends

not only on the signal or the algorithm that solves it, but also on the overcomplete dictionary. For
a certain algorithm used on a specific class of signals, it is observed that different dictionaries lead
to different representation performance and/or sparsity in the solution. There exist dictionaries
that more likely lead to sparse solutions than the others because they contain atoms that explain
better the underlying phenomena in the signals. Dictionary design thus deals with the problem
of finding “optimal” dictionaries for different classes of signals in different applications. In the
literature, there are two main classes of dictionaries: one is based on analytical transforms and
the other is based on learning methods in order to adapt dictionaries to signals.

Analytical dictionaries

Dictionaries defined based on analytical transforms have pre-defined analytical atoms which are,
in general, inflexible in representing signals. However, one of the main advantages of analytical
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4.1. Sparse modeling of signals/images

(a) Wavelets (b) Wavelet alignment (c) Curvelets (d) Curvelet alignment

Figure 4.4: Some undecimated wavelets/curvelets and their alignment with a contour. Wavelets
have square supports and require many coefficients to capture a smooth contour. Curvelets have
elongated supports and can effectively represent a smooth contour with fewer coefficients.

dictionaries over learned ones that partially explains for their existence is that they are usually
accompanied by fast implicit implementations. In addition, developments in computational
harmonic analysis within the last decade have led to the proposal of a number of transforms,
each of which gives sparse representation to a certain class of signals. Notable examples are the
curvelet transform and the undecimated wavelet transform: the first allows an almost optimal
sparse representation of components with singularities along smooth curves whereas the second
gives sparse representation to textual components. Since these two transforms are going to be
used in this chapter, a brief review on their characteristics is given below. Some samples of
undecimated wavelets and curvelets and their alignment with a contour are depicted in Fig. 4.4.

Undecimated wavelet transform (UWT) is the undecimated version of the orthogonal
wavelet transform (OWT) obtained by skipping the decimation step. It is designed to overcome
the lack of shift-invariance property in OWT. UWT can be represented as a transformation
matrix which has more columns than rows. The redundancy factor (i.e., the ratio between
the number of columns to the number of rows) is 3J + 1, where J is the number of scales in
the decomposition. UWT is expected to give sparse representation to isotropic features and
non-sparse representation to highly anisotropic features. The “à trous” algorithm [201] provides
an efficient way to implement forward and inverse UWT.

Curvelet transform is an extension of the wavelet transform to represent images which are
smooth apart from singularities along smooth curves, similar to the interpretation that wavelet
transform is an extension of the Fourier transform to represent 1D piece-wise smooth signals
with a finite number of discontinuities. It has been shown that curvelets constructed as in [33]
are multi-scale, multi-directional, and elongated. They define a tight frame in L2

(

R
2
)

, obey
the parabolic scaling relation (width = length2), and exhibit an oscillating behavior in the
direction perpendicular to their orientation. A curvelet frame can be used as an overcomplete
dictionary with a redundancy factor of 16J +1. The curvelet transform is expected to give sparse
representation to anisotropic structures, and smooth curves and edges of different lengths.

Learned dictionaries

Dictionary learning for natural images under the sparsity assumption was first proposed in [164].
The method aims at maximizing the likelihood (ML) that natural images have efficient, sparse
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representations in an overcomplete dictionary. Mathematically speaking, for a given signal x, the
goal of learning is to find the overcomplete dictionary D∗ such that

D∗ = argmax
D

log p(x|D) (4.6)

= argmax
D

log

∫

α

p(x|D,α)p(α) dα.

In order to solve the above difficult optimization problem, two main assumptions were introduced.
First, the coefficients αi are independent and each has a Laplacian distribution, which nicely fits
the probability distribution of αi when the decomposition is sparse. The second assumption is
that the reconstruction error x−Dα can be modeled as the additive white Gaussian noise. Under
these assumptions, the problem in Eq. (4.6) transforms into the following energy minimization
problem:

D∗ = argmin
D,α

E(x,α|D)

= argmin
D,α

1

2
‖x−Dα‖22 + λ‖α‖1,

where the energy function is defined as E(x,α|D) = − log p(x|D,α)p(α). When a set of n signals
X = [x1, · · · ,xn] is used to learn the dictionary D, the above problem becomes

(Dλ
1 ) : min

D,A

1

2
‖X−DA‖2F +

n
∑

i=1

λ‖αi‖1, (4.7)

where A = [α1, · · · ,αn] and ‖·‖F denotes the Frobenius norm which has the following definition:

‖A‖F =





m
∑

i=1

n
∑

j=1

|αij |2




1/2

.

Note that it is necessary to bound the columns di (i = 1, . . . , p) of the dictionary D such as
‖di‖22 = 1 to prevent D from being arbitrarily large. This is because the term DA is invariant
by multiplying D by a diagonal matrix on the right and then multiplying A by its inverse on
the left. Moreover, the dictionary learning problem (Dλ

1 ) in Eq. (4.7) could also be viewed as a
matrix factorization problem using ℓ1 regularization where the matrix X is factorized into the
two matrices D and A. In the literature, (Dλ

1 ) is usually solved by alternating between two steps:

- Sparse coding : D is kept constant, the energy function is minimized with respect to A.

- Dictionary update: A is kept constant, the energy function is minimized with respect to D.

The algorithm alternates between sparse coding and dictionary update until convergence. Different
dictionary learning methods use different strategies to perform these two steps, of which the
sparse coding step is essentially the problem (Qλ

1) in Eq. (4.3). For example, the original method
in [164] uses convex optimization for sparse coding and gradient descent for dictionary update.
The method of optimal direction (MOD) [74] uses OMP for space coding and introduces a
closed-form solution for dictionary update. The majorization method is used in [237] to minimize
the energy function in both sparse coding and dictionary update steps.
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Figure 4.5: The overcomplete dictionary of 8× 8 atoms learned from the image “stream” in Fig.
4.3a. The 512× 512 image is used to generate a large dataset of 255025 image patches of size
8× 8. The parameter λ has a value of 0.1 in the learning process.

Fast online learning algorithm was recently proposed in [142]. The method is different from the
others in the sense that it does not use the whole training data at each iteration. Instead, it uses
a subset of the training data for the optimization problem (Dλ

1 ) in Eq. (4.7) and then augments
the subset with new training samples to compute a new solution using the previous solution
as initialization. The online algorithm iterates until all training data are used. This strategy
thus alleviates the expensive computation when the training data is large and is appropriate for
dynamic systems where data evolve over time.

Another family of dictionary learning techniques is based on vector quantization (VQ) by
means of K-means clustering. The VQ approach for dictionary learning was first proposed in [197]
for MP-based video coding using the implicit assumption that each image patch can be represented
by a single atom with the corresponding coefficient equal to one. This assumption reduces the
learning procedure to K-means clustering. Dictionary update is done by first grouping patches to
minimize their distance to a given atom, and then by updating the atom to minimize the overall
distance in the group of patches. A generalization of the K-means for dictionary learning, called
the K-SVD algorithm, was proposed in [2] by not using the single-atom assumption. The method
instead uses OMP for sparse coding and singular value decomposition (SVD) for updating each
atom sequentially. The update step is thus a generalized K-means algorithm since each patch
can be represented by a set of atoms with different weights.

The overcomplete dictionary of 8× 8 atoms learned from the image “stream” in Fig. 4.3a is
given in Fig. 4.5. It can be observed that the learned dictionary contains many atoms that are
localized, oriented, and bandpass. This type of atoms represents well the oriented edges in images.
In addition, the dictionary also consists of some atoms that are center-surround and grating,
which better approximate textures in images. Dictionary learning thus results in atoms which
identify the most important building blocks in natural images. As a result, learned dictionaries
usually lead to state-of-the-art results in many practical signal processing applications.

4.1.5 Contributions

In employing sparse modeling in some image processing and classification tasks, this chapter
makes the following main contributions:

- Denoising : It uses the synthesis operator of curvelet transform as the dictionary of a sparse
representation framework for directional denoising. It demonstrates both theoretically and
experimentally that the information about the level of edge noise has a linear relationship
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with the only framework’s parameter. It shows that the proposed sparsity-based denoising
method leads to superior performance over comparison methods on edge noise removal in
bilevel graphical document images.

- Separation: It applies an existing sparsity-based separation technique using two appro-
priately chosen discriminative overcomplete dictionaries, each gives sparse representation
over one type of images and non-sparse representation over the other, for the classical
problem of extracting text components from graphical document images. It proposes some
heuristic rules to group text components into text strings in the post-processing step. It
shows experimentally that the proposed sparsity-based text extraction method leads to
better performance than the current benchmark.

- Classification: It proposes a new discriminative sparse coding method by adding a discrimi-
native term to the conventional sparse representation framework, resulting in a model that
is a controlled trade-off between sparsity, fidelity to the data, and discrimination power. It
uses an information theoretic-based criterion, called minimum message length, to select the
optimal statistical model. It shows that the proposed method leads to superior classification
performance over comparison methods on the two common handwritten and face datasets.

The remainder of this chapter is organized as follows. The directional denoising framework for
edge noise removal is presented in Section 4.2. Section 4.3 discusses the sparsity-based extraction
of text components from graphical document images. The MML-based discriminative sparse
modeling is introduced in Section 4.4. Finally conclusions are drawn in Section 4.5.

4.2 Graphical document image denoising

The scanning and binarization processes that produce binary document images introduce noise
that concentrates on the edges of the image objects [14]. This edge noise has influence on later
steps in the chain of automatic document processing. It could affect feature measurement in
recognition, reduce image redundancy in compression, and distort skeletons in vectorization. For
accurate analysis and recognition of document images, edge noise needs to be removed. This
section proposes to use a sparsity-based method, which relies on an image degradation model, to
remove noise in graphical document images. The relationship between the approach’s parameter
and the degradation model’s parameter is investigated and the performance of the proposed
approach is compared with those of existing methods on carefully designed datasets.

4.2.1 Image degradation model

A scanner model provides a theoretical platform for the analysis of the document image acquisition
process and it is usually based on the physics in this process. The scanner model that is described
below is a portion of the model presented in [9] and is schematically described in Fig. 4.6. In
this model, it is assumed that, when a spatially continuous image o is converted to digital form
using either a digital camera or a document scanner, the value of each pixel in the scanned image
before quantization, s[i, j], depends on the light collected at the corresponding discrete sensor.
This collected light in turn depends on the reflectance in the original image in the neighborhood
around that sensor, that is a function of the optics and the sensors. The contribution of the
source reflectance to the sensor value is usually described by a function of the distance from the
sensor center, called the point spread function (PSF). Thus, the signal value that is received at
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Figure 4.6: The scanner model used to determine the value of the pixel [i, j] centered on each
sensor element. It is modeled as a multi-stage process whose steps include convolving with a
point spread function (PSF), sampling, adding noise, and thresholding.

each sensing element (i, j) is modeled as

s[i, j] =

∫∫

PSF(xi − u, yj − v, w) o(u, v) dudv.

In order to model the noise that would occur during the acquisition process, it is generally
assumed that additive white Gaussian noise (AWGN) n of standard deviation σnoise is added to
these values as

a[i, j] = s[i, j] + n[i, j].

Moreover, since document and graphical images are usually processed in bilevel, the noisy image
is then thresholded, usually with a global threshold Θ, as

f [i, j] =

{

1, a[i, j] ≥ Θ

0, a[i, j] < Θ.

While the AWGN is evenly distributed over the whole grayscale image, the effect of AWGN after
thresholding is concentrated along the edges. The process of turning a smooth edge into a rough
one and the analysis of this rough edge are discussed as follows.

Edge without noise

In graphical document images, the image content contains large regions of white (0) background,
with foreground image features displayed in black (1). When documents are scanned in grayscale,
the edges change from step functions to functions sloped in the shape of the edge spread function
(ESF), which is the cumulative marginal of the PSF. The changes in edge functions in turn cause
changes in the edge locations after thresholding [15]. For a PSF parameterized by a width w, the
amplitude of the ESF is

s(x) = ESF
( x

w

)

·

An example of an ESF is shown in Fig. 4.7a. When there is no noise, the edge location after
thresholding occurs where the amplitude is equal to the threshold Θ and would be at the location
x = −δc, where

δc = −wESF−1 (Θ) .

The shift δc in edge location that depends on s and Θ in Fig. 4.7a is depicted in Fig. 4.7b.
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(a) Original and blurred step functions (b) Thresholded signal

(c) Original and blurred step functions with noise (d) Thresholded signal with noise

Figure 4.7: (a) Edge after blurring with a generic PSF of width w. (b) When no noise is added,
the thresholding produces the edge shift δc. (c) Blurred edge with added noise. (d) The uncertain
boundary region, shown shaded, is the NS region.

Edge with noise and noise spread

When additive noise n is considered, the edge intensity after blurring, a, will fluctuate around s
as illustrated in Fig. 4.7c. This fluctuation results in a small region near the edge of the step
function where the value of the pixel could be above or below the threshold. So, after thresholding,
the thresholded signal has a noisy edge that may exist at any position in that region. The breadth
of the region around the edge where the noise affects the image is defined as noise spread (NS)
(Fig. 4.7d). It has been shown recently in [153] that NS is not just dependent on the standard
deviation σnoise of AWGN but also on the width w of PSF, which determines the slope of the
grayscale edges, and the level of the binarization threshold Θ through the relation

NS =

√
2π · σnoise · w

LSF(ESF−1(Θ))
,

where LSF is the line spread function, or one-dimensional PSF.

Some examples of edges with noise are shown in Fig. 4.8. The additive noise’s standard
deviation σnoise is kept fixed in the three images in Figs. 4.8a–4.8c. Images with a common σnoise
are conventionally thought of as having the same noise level. However, it can be seen that these
images have edges with distinctly different amounts of perceptual noise. While σnoise is constant,
NS increases and images appear more noisy in an amount proportional to the NS’s value. In Fig.
4.8d, a significantly larger NS is shown and its effect on the edge can be easily observed. Notice
how there are generally two rows of pixels affected by the additive noise when NS = 2.0. In this
manner, NS provides a measure that, on the one hand, can numerically quantify the amount of
edge noise and, on the other hand, relates to the noise visually observed on bilevel images.

Relationship between NS and Hamming distance

The real benefit of determining NS of a scanned object is that NS provides an effective measure
of how noisy the bilevel object is. However, for two bilevel images of the same size, the Hamming
distance [93], which is defined as the number of substitutions required to change one image into
the other, is often used as a measure of difference between them. It is very useful and hence

134



4.2. Graphical document image denoising

(a) σnoise = 0.05,NS = 0.2, w = 0.64,Θ = 0.5 (b) σnoise = 0.05,NS = 0.4, w = 1.27,Θ = 0.5

(c) σnoise = 0.05,NS = 0.6, w = 1.90,Θ = 0.5 (d) σnoise = 0.10,NS = 2.0, w = 3.16,Θ = 0.5

Figure 4.8: Illustrations of edges with varying amounts of NS. (a)–(c) While the noise standard
deviation is the same for each image, NSs are different. (d) NS qualitatively describes how many
edge rows are affected.

usually used for the analysis of noise in bilevel images when the noise-free template is known.
The formula that relates the expected Hamming distance E{H} to NS for straight edges has
been developed in [153] to be

E{H} =
NS · ρ
π

, (4.8)

where ρ is a constant equal to the length of the edge segment. The above equation shows that
Hamming distance is directly proportional to NS, leading to the possibility of using NS as a
predictor of the Hamming distance between a degraded image and the predicted noise-free image,
and vice versa. In addition to the theoretical result in Eq. (4.8), experiments were also carried
out to validate this linear relationship between NS and the expected Hamming distance.

NS’s ability to provide a quantitative measure that also qualitatively describes the amount of
noise and its linear relationship with the Hamming distance provide a potential that NS could
be used as an input to a denoising algorithm that works on bilevel images, in a similar fashion to
how the standard deviation of the AWGN is often used as an input to denoising algorithms that
work on grayscale images.

4.2.2 Related works

Let the noisy image f be the result of scanning, followed by global thresholding, a noise-free
input image f0 of size w×h, it contains edge noise of a certain NS. Denoising f is viewed as
an estimation problem, i.e., one needs to find an estimated image f̂ from f which is close to
f0 and, at the same time, has some preferred properties like contour smoothness for graphical
document images. Many methods exist for removing noise from digital images [30], each has its
own properties that make it suitable for some particular situations. The aim of this subsection is
thus not to give a long list of existing methods but to review some relevant ones to the problem
of noise removal from bilevel graphical document images based on the preferred criteria of image
recovery and contour smoothness.

Bilevel image denoising: For bilevel document images, the most famous and frequently used
denoising methods are contour smoothing using chain codes, median filtering, morphological
operators, and kFill filtering. Contour smoothing based on chain codes [241] replaces a chain
code sequence by a simpler sequence, usually a shorter one that corresponds to the shortest path.
The simplicity in the code is enforced by minimizing the total change in the code sequence, which
is in turn done by recursively replacing two consecutive changes by a single one. Even though
this method can produce a smooth contour from a jagged one, it cannot be performed on an
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(a) A noisy image

Type C

Type A

Type B

(b) Contour alignment

Figure 4.9: Geometric illustration of directional denoising using curvelets: (a) an example noisy
graphical document image; (b) three types of alignment of curvelets with a noisy graphics contour,
only curvelets of type C capture the graphics contour and have significant magnitude.

image such as the one shown in Fig. 4.9a where the noisy pixels are not only distributed along
the contours but over the whole image region.

The main idea of median filtering [5] is to run through the image pixel by pixel, replacing
each pixel’s value with the median of neighboring pixels’ values. Due to its nature, median
filtering is particularly effective at removing outliers, such as “salt & pepper” noise or noise
whose probability density has heavier tails than the Gaussian. Morphological operators [148] like
erosion, dilation, and their combinations, i.e. opening and closing, have their root in set and
lattice theories. The popularity and efficiency of the simple morphological openings and closings
to suppress positive and negative impulse noise have theoretical supports. The kFill algorithm
[163] is designed to remove “salt & pepper” noise iteratively while maintaining readability of text
by using a filter that retains text corners. The value of the parameter k of the kFill algorithm
can be chosen adaptively based on text size and image resolution.

Among the aforementioned denoising methods, median filtering, morphological operators,
and kFill filtering perform isotropically and geometrically local smoothing and thus may not
be sufficient for denoising tasks that need directional smoothing or contour preservation. These
methods are known to be unable to preserve fine image details and may unintentionally remove
thin lines and corners. This is because they are general-purpose denoising methods which are
not designed specifically for edge noise and do not exploit the directional information in their
operations. Contours denoised by these methods are jagged and sometimes shifted from their
original positions. Another shortcoming of existing binary image denoising methods is that they
do not take into account the information about the level of noise that exists in the binarized
document images. Denoising is performed in a “blind”, non-adaptive way.

Total variation denoising: Noise removal by minimizing the total variation (TV)

TV(f) =

∫

|∇f(~x)| d~x =
∑

i,j

√

|fi+1,j − fi,j |2 + |fi,j+1 − fi,j |2

of an image f while preserving some “fit” to the original measured data was first proposed in
[192]. The method is based on the principle that an image with excessive and possibly spurious
details has a high TV, that is the integral of the absolute gradient of the image is high. According
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to this principle, the problem of noise removal from a noisy image f based on TV could be posed
as the following optimization problem:

f̂ = argmin
y

TV(y) subject to ‖y − f‖2 ≤ ǫTV, (4.9)

where the parameter ǫTV, which is related to the estimated noise level, determines the sharpness
or smoothness of the restored image f̂ . It has been proven in [208] that, for general texture
images, this noise removal method has an edge-preserving property which is better than simple
methods such as linear smoothing or median filtering, which reduce noise but at the same time
smooth away edges. However, the edge-preserving effects of TV regularization is somewhat local;
that is the effect on one edge in the image have little or no correlation with the effect on the
others. This local property results in the inability of TV-based denoising methods to exploit the
global long contours that exist in graphical document images in order to produce smooth ones.

Anisotropic diffusion: In image processing, anisotropic diffusion aims at suppressing image
noise without removing significant parts of the image content. It is motivated by minimizing the
energy functional of an image f defined by

Ef =
1

2

∫

Ω
g
(

||∇f(x)||2
)

dx,

where g is a real-valued function and the gradient descent is defined as

∂f

∂t
= −∇Ef = div(g′

(

||∇f(x)||2
)

∇f).

Thus by letting c = g′, the anisotropic diffusion equation becomes

∂f

∂t
= div (c(x, y, t)∇f) = ∇c · ∇f + c(x, y, t)∆f,

where ∆ denotes the Laplacian, ∇ denotes the gradient, and div(·) is the divergence operator.

In the original formulation presented in [173], the diffusion coefficient c(x, y, t), which controls
the rate of diffusion, was proposed to be

c (||∇f ||) = e−(||∇f ||/K)2 , or

c (||∇f ||) = 1

1 +
(

||∇f ||
K

)2 ,

where K is a constant that controls the sensitivity to edges. The filter is in fact isotropic but
depends on the image content in the way that it approximates an impulse function close to
edges and other image’s structures that need to be preserved over different levels of the resulting
scale-space. A more general formulation allows the filter to adapt locally to be truly anisotropic
near linear structures such as edges or lines; the filter has an orientation similar to that of
the structure such that it is elongated along the structure and narrow across. Such a method
is referred to as coherence enhancing diffusion [231]. As a consequence, the resulting images
preserve linear structures while at the same time smoothing is made along these structures.
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√

2λ
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√
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(a) Hard-thresholding

λ

−λ

(b) Soft-thresholding

Figure 4.10: Illustrations of the hard-thresholding and soft-thresholding operators. O is a function
of the input t for a fixed λ. The black dotted curves are the function O(·, 0) (no regularization),
whereas the red plain curves correspond to O(·, λ).

Orthogonal wavelet denoising: Wavelet-based image denoising has been used widely and
its success is due to the tendency of images to have a compact representation in the wavelet
transform domain [182]. The efficiency of image approximation using a small subset of wavelets
has also led to the adoption of wavelet transform in JPEG-2000 image compression and coding
systems. In denoising problems, it is legitimate to assume that only a few large wavelet coefficients
contain information about the images while small coefficients are attributed to the noise. Thus,
the common procedure in wavelet-based denoising methods is to first apply the discrete wavelet
transform (DWT) (analysis operator T) to the noisy image f , then apply a nonlinear estimation
rule O to the transform coefficients, and finally compute the inverse DWT (synthesis operator
TT = T−1) to get an estimate f̂ of the noisy image f . This procedure can be described
symbolically as

f̂ = TTO(Tf). (4.10)

This approach was already proven to be very successful on both practical and theoretical
sides [108]. Many thresholding or shrinkage rules were proposed for the operator O with hard-
thresholding and soft-thresholding are certainly the most well-knowns. For the 1D variable t,
these thresholding operators are defined as follows.

- Hard-thresholding [229] consists of setting to zero all coefficients whose magnitudes are less
than a value (Fig. 4.10a):

O(t, λ) =

{

t, |t| ≥
√
2λ

0, otherwise.
(4.11)

- Soft-thresholding [61] is defined as the kill–or–shrink rule with the coefficients above a
value are shrunk toward the origin (Fig. 4.10b):

O(t, λ) = sign(t)(|t| − λ)+, (4.12)

where (·)+ = max(·, 0).

Noise modeling: It can be easily seen that most of the denoising methods mentioned above
are parametric and they require knowledge of noise to set their parameters in order to have good
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performance. For example, TV denoising needs to set the value for ǫTV; multiscale denoising
has to do the same for λ. The knowledge of noise is thus a crucial factor in applying denoising
methods. In practical situation, the noise level is usually obtained from image noise models [23],
which are built from the knowledge of noise generation processes or from some measured values.
For the aforementioned edge noise which can be measured quantitatively and represented by NS,
the availability of NS could pave the way for the design of a new method to remove edge noise.

The following subsection describes a new parametric method for edge noise removal in
bilevel graphical document images exploiting the directional information of graphics contours.
Information about the level of edge noise, which is represented by NS, is used as an input to the
denoising process in order to have good performance. Directional denoising is facilitated by using
a sparse representation framework. This is done by promoting sparse representation of graphical
document images in an overcomplete dictionary using a basis pursuit denoising algorithm with
curvelets as the dictionary. The images reconstructed from their sparse representations are
grayscale ones, which can be simply thresholded to obtain the final bilevel denoised images.

4.2.3 Sparsity-based edge noise removal

Let x0, x, and x̂ ∈ Rp (p = wh) be the vectors generated by stacking the columns of f0, f , and
f̂ respectively then x = x0 + z, where z ∈ Rp stands for the unknown additive edge noise. This
subsection is devoted to the finding of x̂ from x by combining the recent ideas of directional
representation and sparse representation in order to achieve the two preferred criteria of image
recovery and contour smoothness. Contour smoothness is guaranteed by the use of a curvelet
dictionary whereas image recovery is by a fidelity constraint in the sparsity framework.

Multiscale directional denoising

Although applications of wavelets in image processing have become increasingly popular, it is
well-established that traditional wavelets are only good at representing point singularities since
they ignore the geometric properties of structures and do not exploit the regularity of edges.
The images denoised by using traditional wavelets usually have unfavorable blocky artifacts. For
these reasons, wavelet-based denoising becomes inefficient for geometric line-like features and
surface singularities.

To overcome the missing directional selectivity of conventional 2D DWTs, there have been
several developments of wavelet frames in recent years. Steerable wavelets [84], Gabor wavelets
[131], brushlets [155], beamlets [60], ridgelets [56], curvelets [33], contourlets [57], shearlets [92],
wave atoms [54], surflets [39] were proposed independently with a common goal: better representing
directional features in images. Among these X-lets, curvelets have the highest publicity and have
found applications in several domains [140]. In the 2D case, the curvelet transform allows an
almost optimal sparse representation of objects with singularities along smooth curves. For a
smooth object f with piecewise C2 singularities, the best N -term approximation f̂N of f , which is
a linear combination of only N elements of the curvelet frame, obeys ‖f − f̂N‖2 ≤ CN−2(logN)3,
while for wavelets the decay rate is only N−1.

The curvelet transform has a property that the coefficients of those curvelets whose essential
supports do not overlap with or overlap with but are not tangent to edges are small and negligible.
For example, in Fig. 4.9b, coefficients of curvelets of types A and B are negligible, most of the
energy of the graphics is localized in just a few coefficients of curvelets of type C. In other words,
curvelet transform produces a sparse representation of objects, most of the energy of the objects
is localized in just a few coefficients of curvelets which overlap and are nearly tangent to the
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object contours. Based on this property, the application of curvelet transform for denoising
images is straightforward, it could be simply done by hard-thresholding curvelet coefficients as
in Eq. (4.11) [205]. In addition, the images reconstructed by curvelets exhibit higher perceptual
quality than those by wavelets. They have visually sharper and, in particular, higher-quality
recovery of edges and of linear/curvilinear features.

Thresholding as solving an optimization problem

Assuming that denoising is performed by using Eq. (4.10) where T is unitary like in the case of
DWT. Consider the following optimization problem:

α̂ = argmin
α

1

2
‖x−Dα‖22 + λ‖α‖qq (4.13)

which needs to be solved to obtain an estimated image x̂ = TT α̂ where D = TT = T−1. Due to
the unitarity of T, it is straightforward that

‖x−Dα‖22 = ‖x− TTα‖22 = ‖Tx−α‖22,

and the aforementioned optimization problem translates into

α̂ = argmin
α

1

2
‖β −α‖22 + λ‖α‖qq, (4.14)

where β = Tx is the transform of the noisy image x. Since both ‖β−α‖22 and ‖α‖qq are separable,
the above problem decouples into a set of p independent problems of the form

α̂i = argmin
αi

1

2
|βi − αi|22 + λ|αi|qq, i = 1, 2, . . . , p. (4.15)

It is not difficult to demonstrate that the unique closed-form solutions to these problems in the
two notable cases q = 0 and q = 1 are actually the two thresholding operators defined in Eqs.
(4.11) and (4.12) respectively with αi = O(βi, λ). Thus, for the cases of orthonormal transforms,
thresholding-based denoising could be viewed as solving an optimization problem of the form in
Eq. (4.13) with q = 0, 1 for hard-thresholding and soft-thresholding operators respectively.

Basis pursuit denoising

The thresholding operators defined in Eqs. (4.11) and (4.12) are the exact solutions to the
optimization problem in Eq. (4.13) for the two cases q = 0 and q = 1 only if D is unitary.
When a redundant transform like the curvelet transform is used, the corresponding overcomplete
dictionary D has more columns than rows and thus is non-unitary (DDT = I but DTD 6= I
where I is the identity matrix). The problem in Eq. (4.13) does not have a simple and closed-form
solution, even in the two notable cases q = 0 and q = 1. This is because the presence of the
non-unitary matrix D destroys the separability that allows solving the relatively easy problem in
Eq. (4.15) instead of the more demanding problem in Eq. (4.14).

However, for the graphical document image denoising problem, the formulation in Eq. (4.13)
at q = 1 is still adopted with the overcomplete dictionary D being defined as the synthesis
operator of the curvelet transform in order to obtain smooth graphical contours. Moreover, for
the purpose of facilitating the investigation of the dependence of the framework parameter on
the noise level, the optimization problem is rewritten as

α̂ = argmin
α

‖α‖1 subject to ‖x−Dα‖2 ≤ ǫ, (4.16)
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Figure 4.11: The distribution of the magnitudes of the 5000 largest coefficients of the noisy
image in Fig. 4.9a obtained from curvelet transform and BPDN with ǫ = 48. It can be seen that
small-valued coefficients resulting from curvelet transform are zeroed out by BPDN.

where ǫ is the precision parameter that depends on z. Note that the above problem is a slightly
modified version of the BPDN problem defined in Eq. (4.2) where the squared Euclidean norm is
replaced by the Euclidean norm. This modification, however, does not change the nature of the
problem because the value of ǫ could also be changed accordingly:

‖x−Dα‖2 ≤ ǫ ⇔ ‖x−Dα‖22 ≤ ǫ2.

From this observation, solutions of the problem in Eq. (4.16) could be found by using methods
designed for BPDN that have been discussed in Subsection 4.1.1. Interestingly, it was shown that
the simple shrinkage could be interpreted as the first iteration of an algorithm that solves BPDN
[72]. By solving the problem in Eq. (4.16), the estimated image x̂ could be obtained from the
sparse reconstruction as x̂ = Dα̂. Since x̂ is reconstructed from curvelets contained in D, it is of
course in grayscale; it could finally be converted to bilevel by a simple thresholding operation as
x̃ = T (x̂) where T is the thresholding operator.

In the above BPDN problem, the ℓ1-norm is used instead of a more general ℓq-norm to avoid
the NP-hard problem [49] when q = 0, non-convexity when q < 1, non-sparse and over-fitting
solutions when q > 1. In addition, a sparse solution, which guarantees directional denoising
by curvelets, is still obtained if the solution of the following ℓ0-norm optimization problem is
sufficiently sparse [59]:

α̂ = argmin
α

‖α‖0 subject to ‖x−Dα‖2 ≤ ǫ.

As the overcomplete dictionary D is constructed from curvelets and the images to be processed
contain mainly graphical contours, this requirement is easily satisfied. Illustration of the distribu-
tion of the magnitudes of the 5000 largest curvelet coefficients of the image in Fig. 4.9a obtained
from curvelet transform and BPDN is given in Fig. 4.11. It is observed that BPDN results in
a sparse representation, many elements of α̂ have almost zero value. The sparsity in α̂ is, in
some respects, better than that in the coefficients resulting from the curvelet transform DTx. In
addition, the shape of the distribution of α̂ resembles that of a Laplacian distribution and this
agrees with the Bayesian formulation of sparse coding presented in Subsection 4.1.3.
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It should also be noted that the problem in Eq. (4.16) and the one in Eq. (4.9) are similar,
they are both minimization problems with a fidelity constraint. The main difference between
them is that TV denoising pursues an estimation that is sparse in the spatial domain (sparse
gradient) whereas BPDN denoising has a desire for sparsity in the transform domain. Fusing TV
with BPDN was proposed in [34] and it amounts to solving

α̂ = argmin
α

TV(α) subject to ‖x−Dα‖2 ≤ ǫ.

However, as the gradient of α is not clearly defined, imposing piece-wise smoothness in α by TV
regularization in this way usually produces images with non-deterministic artifacts.

The precision parameter ǫ

The BPDN problem in Eq. (4.16) has a non-zero precision parameter ǫ that describes the
desired fidelity of the reconstructed image x̂ to the noisy image x. It is the only parameter,
besides the selected dictionary D, that controls the performance of the denoising algorithm. It is
straightforward that when ǫ = 0, the BPDN problem reduces to a simple curvelet transform:

x = Dα̂ −→ α̂ = DTx

and one easily has x = x̂ = x̃. As the value of ǫ increases, the measure of sparsity ‖α̂‖1 of the
solution α̂ must monotonically increase since the feasible set of solutions S = {α : ‖x−Dα‖2 ≤ ǫ}
gets wider, taking the feasible set of solutions at a smaller ǫ as a subset:

ǫ1 < ǫ2 −→ S1 ⊂ S2.

A sparser solution means a better alignment of curvelets with graphics contours, which conse-
quently increases the denoising performance. However, when ǫ has a reasonably large value, the
solution α̂ of the BPDN problem may be overly sparse in terms of ℓ1-norm and the estimated
image x̂ gets overly blurred. In addition, due to the thresholding operation to get the binary
image x̃, deformation in x̃ will appear. Illustration of the influence of the value of ǫ on the
estimated images using the noisy image in Fig. 4.9a at ǫ = 30, 40, 50, 60 is given in Fig. 4.12. It
can be seen that for both thresholding operations, namely a thresholding using a fixed threshold
of 0.5 or using Otsu’s threshold [167]:

- A small value of ǫ = 30 results in insufficient blurring in the estimated images. The binarized
images still have noise along the contours.

- A large value of ǫ = 60 causes over blurring in the estimated images. Deformation can be
observed in the binarized images.

The selected value of ǫ should thus depend on the level of noise that exists in the images. In
the literature, there exists no work that discusses in detail the dependance of ǫ on an image’s noise
level. For zero-mean white and homogeneous Gaussian noise with a known standard-deviation
σ, the value of ǫ is usually chosen as cnσ2, with 0.5 ≤ c ≤ 1.5 [70, Chapter 14]. For graphical
document images, the theory of edge noise presented in Subsection 4.2.1 sheds light on this
problem by the established linear relationship between NS and the expected Hamming distance
as given in Eq. (4.8). It is thus fair to conjecture that the relation ǫ(NS) should also be linear
and is of the form ǫ = kNS. This is because ‖x− T (Dα) ‖2 is essentially the Hamming distance
between the binary denoised image x̃ and its corresponding noisy one x. The linear relationship
between ǫ and NS will have experimental evidence in the following section.
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(a) ǫ = 30 (b) ǫ = 40 (c) ǫ = 50 (d) ǫ = 60

(e) ǫ = 30 (f) ǫ = 40 (g) ǫ = 50 (h) ǫ = 60

(i) ǫ = 30 (j) ǫ = 40 (k) ǫ = 50 (l) ǫ = 60

Figure 4.12: Influence of the value of ǫ on the estimated images using the noisy image in Fig.
4.9a at ǫ = 30, 40, 50, 60. Top row : estimated images in grayscale, middle row : bilevel denoised
images using a fixed threshold of 0.5, bottom row : bilevel denoised images using Otsu’s threshold.

4.2.4 Experimental results

In order to demonstrate the effectiveness of denoising bilevel graphical document images using
BPDN with curvelets as the overcomplete dictionary D, two types of experiments have been
carried out: one for the validation of the linear relationship between the parameter ǫ and NS;
the other for the demonstration of the superiority of the proposed method over comparison
ones in terms of image recovery and contour smoothness. While the use of image recovery is
straightforward, contour smoothness is adopted to quantitatively compare the capability of
comparison methods to produce denoised images of good visual quality.

The relation ǫ(NS)

A dataset SetA containing 40 noisy images has been generated from a ground-truth and noise-free
image “symbol017.bmp” to be used as the testing dataset. “symbol017.bmp” is a graphical symbol
image of size 256×256 taken from the GREC2005 database [65], its noisy version is given in Fig.
4.15b. SetA is divided into four subsets, each contains 10 noisy images that correspond to 10
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Figure 4.13: Determination of the value of the precision parameter ǫ in Eq. (4.16): (a) its optimal
value ǫ∗ is determined by means of image recovery; (b) the linear relationship between ǫ∗ and NS
for the four experimental subsets.

values of NS ranging from 0.2 to 2.0 with increments of 0.2. Assuming that the parameter ǫ of
BPDN in Eq. (4.16) takes the value ǫ∗ that corresponds to the peak in denoising performance in
terms of a measure of fidelity between x̃ and x0, it is now the relation ǫ∗(NS) that needs to be
established experimentally. The measure of fidelity, denoted by γx̃,x0 , employed in this work is
the normalized cross-correlation between 2D data as defined in Eq. (2.29).

Illustration of the determination of ǫ∗ by means of γx̃,x0(ǫ) is given in Fig. 4.13a where the
noisy image in Fig. 4.15b with NS = 2.0 is taken as the input image. To compute the values of
γx̃,x0(ǫ) at each possible value of ǫ, the ℓ1-optimization problem in Eq. (4.16) is solved for α̂ and
then the value of the bilevel denoised image x̃ = T (x̂) = T (Dα̂) can be easily obtained. The
plot of γx̃,x0(ǫ) in the case of a fixed thresholding of 0.5 has its maximum value of 0.9439 at
ǫ∗ = 48. This means that if the input noisy image has NS = 2.0, ǫ in Eq. (4.16) should take the
value 48 in order to have the “best” denoising performance. It should be noted here that, due to
the blunt maxima in γx̃,x0 , a small deviation of the selected value of ǫ form ǫ∗ has almost no
effect on the performance of the proposed method.

After determining the value of ǫ∗ for each image of a certain NS in SetA, the relation ǫ∗(NS)
is established for each of the four subsets of SetA. These four relations are then plotted separately
in Fig. 4.13b. It can be seen that an image of a higher NS requires a larger value of ǫ∗ for optimal
performance. In addition, ǫ∗ has a nearly linear relationship with NS for all the four subsets.
Moreover, a narrow band formed by ǫ∗(NS) means that the standard deviation of ǫ is reasonably
small. Combining with the blunt maxima in γx̃,x0 , it thus can be concluded that the performance
of the proposed method is guaranteed to be almost optimal if its only parameter ǫ is estimated
from the relation ǫ∗(NS).

Comparison with existing methods

The performance of the proposed method for denoising bilevel graphical document images using
BPDN with curvelets as the overcomplete dictionary D has been evaluated on two datasets. The
first one is SetA as described in the previous experiment. The second one, SetB, is generated from
four ground-truth and noise-free graphical symbol images “symbol016.bmp”, “symbol017.bmp”,
“symbol024.bmp”, and “symbol081.bmp” also from the GREC2005 database. The noisy versions
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(a) NS = 0.8 (b) NS = 1.2 (c) NS = 1.6 (d) NS = 2.0

(e) NS = 0.8 (f) NS = 1.2 (g) NS = 1.6 (h) NS = 2.0

(i) NS = 0.8 (j) NS = 1.2 (k) NS = 1.6 (l) NS = 2.0

Figure 4.14: Some samples of noisy images from the dataset SetA at different values of NS and
the corresponding denoised images obtained by using the proposed method. Top row : original
noisy images, middle row : estimated images in grayscale, bottom row : denoised images in binary.

of the four ground-truth images used to generate SetB are given in Figs. 4.15a–4.15d. These
images are selected for these experiments due to the existence of all possible graphics contour
directions and various configurations of contours that may cause difficulties in denoising. For
each ground-truth image, five noisy images have been generated that correspond to five values of
NS = 0.2, 0.6, 1.0, 1.5, 2.0 and SetB thus has a total of 20 noisy images.

Figs. 4.14 and 4.15 provide examples of denoised graphical symbols by the proposed method
for SetA and SetB respectively with ǫ = ǫ∗ for each case in order to have optimal performance.
In these figures, the original noisy images of NS = 0.8, 1.2, 1.6, 2.0 for SetA and NS = 2.0 for
SetB are given in the first row. The corresponding estimated images in grayscale are given in the
middle row. Evidence of directional denoising along noisy contours exists in the corresponding
estimated images in grayscale: edge noise is smoothed out in the direction that is perpendicular
to the noisy contours. This is like the images have been filtered locally along the noisy contours
by anisotropic filters, each has its direction coincident with the local direction of the nearest
contour. Due to this directional filtering phenomena, the denoised images in binary using a fixed
threshold of 0.5 in the bottom row are clean and have smooth contours.
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(a) symbol016: x (b) symbol017: x (c) symbol024: x (d) symbol081: x

(e) symbol016: x̂ (f) symbol017: x̂ (g) symbol024: x̂ (h) symbol081: x̂

(i) symbol016: x̃ (j) symbol017: x̃ (k) symbol024: x̃ (l) symbol081: x̃

Figure 4.15: Some samples of noisy images from the dataset SetB at NS = 2.0 and the cor-
responding denoised images obtained by using the proposed method. Top row : original noisy
images, middle row : estimated images in grayscale, bottom row : denoised images in binary.

To demonstrate the effectiveness of the proposed method, comparison with the following
frequently used methods has been carried out:

- Median filtering using a 3×3 neighborhood, kFill filtering with the parameter k = 3, closing
then opening using a 3×3 structuring element, and opening then closing using a 3×3
structuring element.

- Total variation: ǫTV takes the value ǫ∗TV that corresponds to optimal performance in terms
of normalized cross-correlation. The selection of ǫTV is similar to the selection of ǫ in the
proposed method.

- Shrinkage: hard-thresholding of curvelet coefficients with one threshold value λjl is used
for all curvelets of scale j and angle l. λjl is computed by applying a forward curvelet
transform on an image containing a delta function at its center.

- Diffusion: iterative applications of anisotropic diffusion and coherence enhancing diffusion
in sequence with parameters determined by experience.
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4.2. Graphical document image denoising

(a) KFill (b) Median (c) Close-Opening (d) Open-Closing

(e) Total variation (f) Shrinkage (g) Diffusion (h) Sparsity

Figure 4.16: Samples of denoised images from comparison methods using an image of NS = 2.0
from the dataset SetA. Shrinkage, diffusion, and sparsity-based methods produce images of good
visual quality, whereas the other methods result in images that have ragged edges.

The criteria used for comparison are the ability to recover the original images (measured by the
normalized cross-correlation between the denoised and the ground-truth images as defined in Eq.
(2.29)) and the raggedness of the graphics contours (a moving average of the raggedness measure
defined in [104]). The proposed method and all other comparison methods are each applied to
each image in datasets SetA and SetB and then normalized cross-correlation and raggedness
are measured for each resulting denoised image. Samples of denoised images from comparison
methods using an image of NS = 2.0 from the dataset SetA are given in Fig. 4.16. It can be seen
that shrinkage, diffusion, and sparsity-based methods produce denoised images of good visual
quality. However, the diffusion method has more difficulties in restoring the sharp corners of the
contours. The images resulting from kFill filtering, median filtering, morphology-based methods,
and total variation have ragged edges and bad visual quality with the worst images resulting
from morphology-based methods.

The performance of each method per noise level on one dataset is defined as the average
performance over all the noisy images of the same noise level in that dataset. The comparison
results are shown in Fig. 4.17 for these two criteria over a range of noise levels (left column
for SetA and right column for SetB). It is observed that as the noise level (NS) increases, the
ability to recover the original images decreases and the contour raggedness of the denoised images
increases for all methods. The performance of kFill filtering, morphology-based methods, and
total variation are similarly bad with open-closing breaks down when the noise level is reasonably
high (NS > 1). Median filtering has its performance in the middle and top performance belongs
to shrinkage, diffusion, and sparsity-based methods. The decrease in the image recovery and
increase in the contour raggedness of these three best methods are nearly constant and are the
smallest among all methods for both datasets. Nevertheless, the diffusion method has slightly
worse performance than those of shrinkage and sparsity. Moreover, sparsity outperforms shrinkage
when the noise level is small and moderate (NS < 1.5) and their performance are comparable
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(a) SetA: Image recovery
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(b) SetB: Image recovery
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(c) SetA: Contour raggedness
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(d) SetB: Contour raggedness

Figure 4.17: Performance evaluation of the proposed and comparison denoising methods in terms
of image recovery (top row) and contour raggedness (bottom) on the two experimental datasets
SetA (left column) and SetB (right column).

when the noise level is high (NS ≥ 1.5). The proposed method thus usually results in denoised
images of best recovery with smoothest contours at all values of NS. It should also be noted
from the comparison results that for noisier images, in terms of image recovery and contour
raggedness, the proposed method produces the most significant improvements.

4.3 Text/graphics separation

Besides the denoising problem that has been addressed in the previous section, another main
problem in document image processing that could be tackled by sparse coding is the extraction
of text components from graphical document image. This section revisits the problem and views
it as a blind source separation problem in signal processing with text and graphics components
have different morphological characteristics. Based on this new perspective, a new sparse-based
solution for the text extraction problem is proposed; its performance is then compared with the
previous benchmark.

4.3.1 The text extraction problem

Text extraction from graphical document images is a major problem in document image analysis
in which one document input image that contains both text and graphics is processed to produce
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two output images, one containing text and the other containing graphics. The importance of text
extraction is due to the possible existence of text’s semantic meaning, which could be obtained
from the extracted text by using an optical character recognition (OCR) engine and a linguistic
tool, and, more importantly, could facilitate the interpretation of scanned graphical documents.
For this reason, a reliable text extraction method is required to make it usable in automatic
document processing systems. At present, applications of such text extraction algorithm are
automatic processing of texture documents and architectural/engineering drawings, automatic
reading of postal addresses and flexible forms, etc. Basically, graphics components contained in
document images are of various types according to each specific application domain but generally
they are lines, curves, polygons, circles. Meanwhile, text components consist of characters and
digits which form words and phrases to annotate the graphics. Extraction of text components is
a challenging problem because of the following reasons:

- Graphical components like lines can be of any length, thickness, and orientation. Circles,
polygons can be filled or unfilled. Text components can vary in font styles and sizes.

- There may exist touching between text components and touching, crossing between text
and graphics components. Text strings are usually intermingled with graphics and can have
any orientation.

- Excluding the pre-processing steps to enhance image quality, text extraction is mostly the
first step in the chain of document analysis with limited knowledge about the presence of
high-level objects in the images.

4.3.2 Related works

Several methods were proposed to tackle the problem of text extraction from graphics-containing
documents and they can be roughly classified into three main families according to their nature:

- Morphological analysis: Constrained run-length algorithm (CRLA) [223] is one of the first
and best known methods based on morphological filtering to detect long vertical and
horizontal text strings. It essentially consists of morphological closing operations using
horizontal and vertical structuring elements of specified length. Although CRLA and
its improvement [126] are very efficient for textual documents, its use in graphics-rich
documents [124, 138] is limited because text could be wrongly labeled as graphics.

- Connected component analysis : A well-known approach [80] based on connected component
analysis uses some heuristic rules regarding area, dimension ratio and collinearity of
connected components to separate text from graphics. Simplicity and scalability are the
strength of this approach, making it widely used. However, the weakness of this approach is
the inability to directly separate text which touches graphics. An effort [219] to overcome this
problem achieves some improvements for graphics-rich document images by incorporating
some more heuristic rules.

- Multi-resolution analysis: Multi-resolution approach was first proposed in [53] for mail
pieces and then adapted to map in [212]. It relies on the assumption that at a certain
coarse level of the image pyramid, a text line looks like a long component; and at the next
finer level it looks like a regular sequence of transitions. However, when text and graphics
components lie closely or touch, this approach induces wrong detection results.
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Generally, the aforementioned approaches cannot work with the difficult case of touching
between text and graphics components. Several works were proposed to tackle the touching
problem, each of them belongs to one of the following two families:

- Touching lines detection: The common strategy to separate text from graphics is by
detecting and then removing touching lines, assuming that lines can be detected easily. For
example, Hough transform is used in [86] to detect vertical and horizontal lines in form
structure recognition; slant lines in engineering drawings are detected by first stretching
the document to certain angles and then tracing black pixels horizontally and vertically
[138]; linear shapes in simple maps are located by employing directional morphological
filtering [139]; vectorization is used in [64, 209] to detect and remove graphics components.

- Local statistics : Another direction is based on the local discriminative statistics of text and
graphics primitives. Dimensioning text components are detected in [63] based on the presence
of neighboring already-detected graphics primitives, such as bars, arcs, and arrowheads
[62]. The method in [36] uses a skeletonized version of a map and consider short and long
skeleton segments as skeletons of text and graphics components respectively. A recently
proposed method [246] generates local consecutive segments (LCSs) and distinguishes LCSs
of text from those of graphics by means of some statistical measures.

Each of the aforementioned methods that deals with touching is initially designed for a specific
application; it is not robust and almost inapplicable to graphical images of the others. For
example, with a graphics-rich and complex engineering document image showed in Fig. 4.18a,
none of the above methods provides reliable results, giving rise to a demand for a new proposal.
The method proposed in this section extracts text components in a totally different way from
existing ones. A document image x that contains text and graphics components is henceforth
considered as a 2D signal, which is the mixture of two separate 2D signals of the same size as

x = xt + xg,

where xt and xg contain text and graphics components respectively. The problem of text extraction
is now seen as the inverse problem of recovering xt and xg from x, which essentially has the
same nature as the blind source separation problem in multi-dimensional signal processing [111].

In order to solve this problem, the morphological component analysis (MCA) algorithm
proposed in [206], which allows the separation of morphologically different features in an image,
has been employed. MCA-based separation is facilitated by promoting sparse representation
of these features in two appropriately chosen dictionaries, each leads to sparse representation
over one feature and non-sparse representation over the other. Having done in this way, some
post-processing steps could be needed to extract text strings from xt; this is done with the help
of some heuristic rules proposed in this section based on the discriminative characteristics of
text components. The proposed method is robust to touching between text and graphics. It can
extract text components that are in any form, have any font style/size, and are placed anywhere
with any orientation in the documents.

4.3.3 Morphological component analysis

The MCA method is a further development of the framework represented in Section 4.1 to deal
with the problem of separating an image content into semantic parts. MCA has been shown to
be very useful for decomposing images into texture and piece-wise smooth (cartoon) parts or
for inpainting applications [71, 76]. It was also adopted in [168] for the segmentation of text
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from complex background. The application of MCA to a new application domain, text/graphics
separation, is presented in this subsection. The representation is followed by some post-processing
steps proposed uniquely for this type of applications in the next subsection.

Let a signal x ∈ R
p be a linear combination of two parts as x = x1 + x2 where x1 and x2

represent two “different” types of signals. Assuming that there exist two overcomplete dictionaries
D1, D2 ∈ R

p×K that satisfy the following two conditions:

- Solving (for i = 1, 2)

min
αi

‖αi‖1 subject to xi = Diαi, (4.17)

leads to a sparse representation α̂i of xi in Di.

- Solving (for i 6= j)
min
αi

‖αi‖1 subject to xi = Djαi, (4.18)

leads to a non-sparse representation α̂i of xi in Dj .

In this manner, the two dictionaries D1 and D2 are said to be discriminative in the sense of
sparse representation to different content types, x1 and x2. MCA method thus proposes to solve
the following optimization problem:

min
α1,α2

(‖α1‖0 + ‖α2‖0) subject to x = D1α1 +D2α2,

which can be converted to:

min
α1,α2

(‖α1‖1 + ‖α2‖1 + λ‖x−D1α1 −D2α2‖2) . (4.19)

Solving the optimization problem in Eq. (4.19) gives α̂1 and α̂2, the sparse representation of
x1 and x2 in D1 and D2 respectively, meaning that the original signal x has been separated
into two parts x̂1 = D1α̂1 and x̂2 = D2α̂2, which are in turn the approximations of x1 and x2

respectively. For this problem structure, the block-coordinate relaxation (BCR) method [196],
which was developed based on the shrinkage method [61], provides fast numerical computation.
BCR only uses matrix-vector multiplications with the unitary transforms and their inverses.

The success of MCA is guaranteed if the two conditions stated in Eqs. (4.17) and (4.18) are
satisfied. Thus, selecting two appropriate dictionaries D1 and D2 is an essential step in applying
MCA for signal separation. For numerical reasons, D1 and D2 should also have fast forward
and inverse implementations. The approach here is to choose these dictionaries from existing
transforms based on experience: curvelets are used as the dictionary for graphics components
and undecimated wavelets as the dictionary for text components.

Text image extraction

Supposed that an input document image x can be decomposed into two images of the same size
as x = xt + xg, where xt and xg contain text and graphics components respectively. Applying
MCA on x with undecimated wavelets and curvelets as the two overcomplete dictionaries will
result in x̂t and x̂g, which are approximations of xt and xg respectively. As an explicit example,
let x be the graphical image in Fig. 4.18a, then the separated text and graphics images x̂t and
x̂g are given in Figs. 4.18b and 4.18c respectively. It is observed from these figures that, by
using MCA, text and graphics components are not totally separated. This phenomenon has the
following two possible explanations:
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(a) Original image x (b) Text image x̂t (c) Graphics image x̂g

(d) Binarized text image (e) Cleaned binarized text image (f) Area Voronoi diagram

Figure 4.18: Text extraction using morphological component analysis and some post-processing
steps applied on the obtained text image: (a)→(b) and (c) by MCA, (b)→(d) by adaptive
thresholding, (d)→(e) by removal of small components, (e)→(f) by distance transform.

- There exists an overlap between the two chosen dictionaries, both can represent the
low-frequency contents efficiently and hence both consider these contents as theirs.

- Some graphics (like arrowheads, short curve segments) have morphological characteristics
that are similar to those of text components. They are thus more likely to be represented by
the dictionary defined from undecimated wavelets and thus may appear in the text image.

Since these ambiguities come from both the chosen dictionaries D1 and D2 (the overlap
between them) and the input graphical document images themselves (the similarity between
features), they cannot be totally avoided by using dictionaries that are optimized for these
text/graphics separation task, regardless of the nature of dictionaries (e.g., pre-defined or
learned). Nevertheless, in order to minimize the effect of these ambiguities in the final results,
some post-processing steps presented in the next subsection are proposed to combine the extracted
text components into text strings.

4.3.4 Grouping text components into text strings

In order to be able to group text components, the text image outputted from MCA (Fig. 4.18b) is
first converted to binary by adaptive thresholding [87] (Fig. 4.18d) and then cleaned by removing
small connected components (Fig. 4.18e). During this process, it is acknowledged that small
text components like ‘·’, ‘:’ are also removed due to their small size. These small components,
however, can be easily retrieved later, as shown later in the experimental subsection, because they
are located the text zones. The remaining connected components in Fig. 4.18e are not all text
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components, they may be parts of graphics, and hence an algorithm to group text components
into text strings is required for a successful extraction. For this type of problems, algorithms
based on Hough transform performed on the centroid of connected components [80, 219] can
be used. However, to be robust, the grouping algorithm should be dependent on the style of
text that exists in graphical document images. A new efficient method is proposed here to group
text components in straight fonts with a belief that a large part of text in graphical document
images is typeset in straight font style. The grouping criteria come from heuristics based on text
components’ properties: neighborhood, inter-distance, orientation, and overlap.

Neighborhood

Text components that belong to one text string need to be neighbors continuously. The neigh-
borhood between connected components is determined by means of an area Voronoi diagram
[96] (Fig. 4.18f shows the area Voronoi diagram of the binarized image in Fig. 4.18d). In this
diagram, each connected component is represented by one Voronoi region that contains points
that are closer to that connected component than to any other. Based on this definition and the
natural perception of neighborhood, two connected components are said to be neighbors if their
representing Voronoi regions are adjacent.

Inter-distance

Neighboring text components in one text string should have “close” position and their actual
distance should depend on the font size. From this observation, the inter-distance dist(gi, gj)
between two neighboring text components gi and gj , defined as the shortest distance between
the two points in their regions as

dist(gi, gj) = min
p∈gi,q∈gj

dist(p, q),

should satisfy the condition

dist(gi, gj) < Tdmax{h(gi), h(gj)},

where h(g) denotes the height of the component g. The value of Td is determined by experience
and is equal to 1.2.

Orientation

Text components that belong to one text string need to have similar orientation. Due to the lack
of a universal method for orientation estimation, the determination of the orientation of connected
components resorts to both the definition of minimum-area enclosing rectangle (MAER) [83]
and R-transform in Eq. (2.9). Generally, MAER (green rectangles in Fig. 4.19a) can be used to
determine the orientation of most characters, however, it fails with some characters like ‘A’, ‘r’,
‘J’, etc. For these characters, R-transform comes as a solution by exploiting their geometrical
properties.

- For characters that have a dominant stroke like ‘r’, ‘J’, ‘l’, their R-transforms have a
dominant peak that corresponds to the orientation of the dominant stroke. The problem
of orientation estimation now becomes a much more simpler problem of finding the peak
position in the R-transform. As an example, Fig. 4.19b shows the R-transform of the
character ‘r’ in Fig. 4.19a. The enclosing rectangles that have orientations determined by
means of the maxima of R-transforms are plotted in blue in Fig. 4.19a.
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(a) Enclosing rectangles of some characters
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(c) R-transform of ‘A’

Figure 4.19: Determination of text components’ orientations by using the minimum-area enclosing
rectangle and the R-transform. (a) MAERs are in green while rectangles determined from the
R-transform by means of its maxima and correlation are in blue and red respectively. (b)–(c) the
R-transforms of the two characters ‘r’ and ‘A’.

- For symmetric characters like ‘A’, ‘x’, ‘V’, their R-transforms are symmetric in the angular
variable. Due to this property, the orientations of these characters are determined by finding
the angular points that cut their R-transforms into two vectors of the same length having
the highest correlation. As an example, Fig. 4.19c shows the R-transform of the character
‘A’ in Fig. 4.19a. The enclosing rectangles that have orientations determined by means of
correlation between two halves of the R-transforms are plotted in red in Fig. 4.19a.

Let [oi1, oi2, oi3] be the three orientations of a connected component gi determined by the
three aforementioned methods (MAER, the maxima and correlation of the R-transform). The
difference in orientation between two connected components gi and gj is defined as

Oij = min
1≤m,n≤3

|oim − ojn|.

From this definition, two neighboring connected components gi and gj need to have Oij ≤ To to
be considered as belonging to one text string. The value of To is determined by experience and is
equal to 0.15 (radian).

Overlap

The two neighboring text components gi and gj of a text string need to overlap to a certain
degree along their common orientation, which is defined as the orientation of the bisector tij of
the angle formed by the two lines that have the same orientations as those of gi and gj (see Fig.
4.20). Let [ai, bi] and [aj , bj ] be the orthogonal projections of gi and gj onto tij respectively, the
degree of overlap of two connected components gi and gj is defined as

Lij =
max{min(bi − aj , bj − ai), 0}

min(bi − ai, bj − aj)
· (4.20)
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tij

ai
biaj
bj

Figure 4.20: Determination of the overlap between two neighboring text components. The overlap
is measured by using the their projections onto the bisector of the angle formed by the two lines
that have the same orientations as their.

The numerator of Eq. (4.20) is interpreted as the length of the overlapping segment whereas the
denominator is the shorter projection of the two connected components gi and gj onto tij . Thus
two neighboring components gi and gj need to satisfy Lij ≥ Tl to be considered as belonging to
one text string. The value of Tl is determined by experience and is equal to 0.75.

4.3.5 Experimental results

In order to demonstrate the effectiveness of the proposed method for text extraction from
graphical document images, experiments have been carried out on the dataset used in [219],
which contains five graphical document images of different types as shown in the first column
of Fig. 4.21. The corresponding text images in grayscale obtained by applying MCA using
undecimated wavelets and curvelets as the two overcomplete dictionaries for text and graphics
components respectively are given in the second column of Fig. 4.21. From these text images, it
is observed that:

- Text components appear in good shape and they can be perceived readily. This means that
text components are properly represented by undecimated wavelets as intended.

- Graphics with more global morphological characteristics (e.g., long lines, curves) do not
appear in text images, meaning that they are properly represented by curvelets as intended.

- Some parts of graphics which have local morphological characteristics like those of text still
remain in text images. These graphics parts are undesirably represented by undecimated
wavelets.

It thus can be concluded from these observations that the adopted MCA cannot totally separate
text and graphics components; post-processing steps are required to minimize the effect of the
remaining ambiguities on the final results.

The third column of Fig. 4.21 gives the binarized images of those in the second column
after removing small connected components (composed of less than 50 pixels). The obtained
results demonstrate clearly that text/graphics separation using MCA overcomes the touching
problem between text and graphics and is invariant to different font styles, sizes, and orientations.
A quantitative evaluation of the proposed method on the five experimental images is given
in Table 4.1 with the recall rate of text components is used as the evaluation measure. The
column #Texts indicates the number of text components that exist in each graphical document
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(a) Image 1: Original image (b) Image 1: Text image (c) Image 1: Binarized text image

(d) Image 2: Original image (e) Image 2: Text image (f) Image 2: Binarized text image

(g) Image 3: Original image (h) Image 3: Text image (i) Image 3: Binarized text image

(j) Image 4: Original image (k) Image 4: Text image (l) Image 4: Binarized text image

(m) Image 5: Original image (n) Image 5: Text image (o) Image 5: Binarized text image

Figure 4.21: Experimental results on text/graphics separation using sparse representation carried
out on the dataset used in [219]. Original graphical document images are shown in the left column
with the grayscale and binarized text images in the middle and right columns respectively.
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Table 4.1: Performance evaluation of the proposed text extraction method in terms of recall rate
of text components using the previous benchmark’s dataset. Recall rate is computed separately
for each graphical document image.

Images #Texts Tombre et al. [219] Proposed method

1 53 49 (92.4%) 53 (100%)

2 78 59 (75.6%) 62 (79.5%)

3 78 68 (87.2%) 75 (96.2%)

4 106 92 (86.8%) 104 (98.1%)

5 21 1 (4.8%) 21 (100%)

image. For comparison purpose, results of the previous benchmark [219] are given in the column
Tombre et al. whereas results of the proposed method are in the column Proposed method.
It can be seen that the proposed MCA-based text/graphics separation leads to a sharp increase
in the recall rates for all the images, even in the “difficult” case Image 5 in Fig. 4.21m.

The technique to group text components in straight fonts into text strings has also been
evaluated on the three input images, one of which is from the dataset used in [219], showed in
the first row of Fig. 4.22. The grouped text strings are enclosed by red rectangles in the three
corresponding images in the second row. By using the heuristic criteria proposed in Subsection
4.3.4, most of the text strings containing different characters/numbers and of different orientations
have been successfully grouped. The only exception is the string ‘PTT(0.60)’ in Image 6 where
only a portion of it, ‘PTT(0’, is successfully grouped. The reasons for this are the touching
between ‘6’ and ‘0’ that changes the computed orientation and the embedment of ‘)’ in a line.
Additionally, it should be noted that, in Fig. 4.22d, the enclosing rectangles of grouped text
strings are not drawn on Fig. 4.18e, but on Fig. 4.18d. The purpose of doing this is to retrieve
all the small text components like ‘·’, ‘:’ that lie inside these enclosing rectangles and have been
removed previously. This simple strategy turns out to be useful in guaranteeing a successful
extraction of all text components.

4.4 Sparse representation for classification

It is recently well-established that sparse signal models with dictionaries learned from data
as in Eq. (4.7) are well suited for restoration tasks; the reported results are comparable to or
even surpass the state-of-the-art in many practical signal/image processing applications. This
section aims at using sparse representation for classification tasks. As the learned dictionary D
is specifically tuned to the training data X, a direct use of sparse representation usually does
not lead to satisfactory classification results. This issue is resolved in this section by adding a
discrimination term into the sparse model discussed in Section 4.1.

4.4.1 Reconstructive vs. discriminative models

In the literature, regardless of sparsity, there are two main lines of methods for classification
problems: reconstruction-based methods and discrimination-based methods. These two types
of methods have broad applications in classification and the difference between them has been
widely investigated. It is known that:
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(a) Image 1: Original image (b) Image 6: Original image (c) Image 7: Original image

(d) Image 1: Text strings (e) Image 6: Text strings (f) Image 7: Text strings

Figure 4.22: Experimental results on grouping text components in straight fonts into text strings
using the criteria proposed in Subsection 4.3.4. The grouped text components in the binarized
text images in the bottom row are enclosed by red rectangles.

- Reconstructive methods, such as principle component analysis (PCA) [110] and independent
component analysis (ICA) [46], generate representations that enable sufficient reconstruction
of signals.

- Discriminative methods, such as linear discriminant analysis (LDA) [67, Chapter 5], produce
representations that aim at maximizing the separation of signals from different classes.

- Discriminative methods often outperform the reconstructive ones in classification [17, 151].

The comparison between these two types of methods, however, assumes that the signals
being classified are ideal (i.e., noiseless), complete (without missing data), and free of outliers.
When this assumption does not hold, discriminative methods suffer more from signal corruptions
because they contain insufficient information in order to successfully deal with corrupted data. In
other words, for optimal classification performance, the representations provided by discriminative
methods do not need to contain sufficient information for signal reconstruction while sufficient
reconstruction is necessary for removing noise, recovering missing data, and detecting outliers.
Evidence of performance degradation of discriminative methods on corrupted signals could be
found in the examples in [78]. On the contrary, reconstructive methods could address these
problems with some degree of success. For example, sparse representation has been shown to
achieve the state-of-the-art performance in image denoising [72, 145] and in recovering missing
pixels (i.e., image inpainting) [76]; PCA method with effective sub-sampling is able to detect
and exclude outliers for the subsequent LDA analysis [133].
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The above discussion leads to a conclusion that reconstructive and discriminative information
are the two contradicting desires in signal representation: an increase in discrimination power
usually has to be paid by a decrease in robustness to corrupted data, and vice versa. This
observation motivates the design of a new signal representation that combines the advantages of
both reconstructive and discriminative methods to address the problem of robust classification
when the obtained signals are corrupted. The combination should result in a representation that
contains discriminative information for classification, crucial information for signal reconstruction.
In addition, sparsity is also a preferable criterion in order to have a compact representation that
agrees with the Occam’s razor. It should be noted here that the idea of combining discriminative
and reconstructive criteria in signal representation was proposed in the machine learning com-
munity, where feature extraction is modified to include generative information to improve the
robustness to noise in the training step [78].

4.4.2 Related works

From the first marriage of discrimination and reconstruction under a sparse modeling framework
in [101], a number of works on using sparse representation for classification tasks were recently
reported and they can be roughly classified into three main classes: sparse representation-based
classification (SRC), dictionary learning-based classification (DLC), and discriminative sparse
coding (DSC).

Sparse representation-based classification: This type of approaches directly uses training
data as the dictionaries for sparse coding and classification. It is based on the assumption that
the samples from each class form a subspace embedded in a high-dimensional signal space. As a
result, by promoting sparse representation in a dictionary formed by all samples, each sample in
the union of subspaces will be represented mainly by data points of the same class [73].

In order to formulate the above idea mathematically, let D = [D1,D2, . . . ,DC ] be the set
of all training samples, where Dc with c = 1, . . . , C is the set of training samples from class c.
Given a new testing sample x, its sparse representation α̂ in D could be obtained by solving
(Qλ

1) in Eq. (4.3). The classification is then performed as

identity(x) = argmin
c

Rc, (4.21)

where Rc = ‖x−Dcα̂c‖2 is the reconstruction error associated with class c and α̂c is the part of
α̂ that corresponds to Dc (i.e., α̂ =

[

α̂1; α̂2; . . . ; α̂C
]

). This type of approaches was successfully
used for face recognition [234] and motion segmentation [185] where the above assumption holds.

Dictionary learning-based classification: In cases where the above assumption on subspace
does not hold, the dictionary Dc for each class c could be learned from the training data by
solving (Dλ

1 ) in Eq. (4.7) and the reconstruction errors are again used for classification. This is
essentially the strategy employed in [174, 203] for texture classification. However, the learned
dictionaries are not suitable for classification tasks since they are only learned to faithfully
represent the training samples. This issue was addressed in [143] for texture segmentation and
scene analysis by using the idea that a dictionary Dc associated to a class c should be “good”
at reconstructing this class and, at the same time, “bad” for the same purpose with the other
classes. A discriminative reconstruction constraint by using the classical softmax discriminative
cost function is added to the dictionary learning model in order to have discrimination when the
classification scheme in Eq. (4.21) is used. However, the resulting dictionary learning model is
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Algorithm 1 Simultaneous orthogonal matching pursuit (SOMP)

Input: a dictionary D =
[

d1 d2 . . . dp

]

, a data matrix X, the number of coefficients K
Output: a set ΛK containing K indices, a residual matrix RK

1: Initialize: the residual R0 = X, the index set Λ0 = ∅, the iteration counter k = 1
2: while k < K do
3: Find the index of the best-approximating atom: λk = argmaxi

∥

∥RT
k−1di

∥

∥

1
4: Update the index set: Λk = Λk−1 ∪ {λk}
5: Determine the orthogonal projection: Pk = DΛk

(

DT
Λk

DΛk

)−1
DT

Λk

6: Calculate the new residual: Rk = X−PkX
7: Increment the counter: k = k + 1
8: end while

not convex and does not explore the discrimination capability of sparse coding coefficients. A
more recent method in [183] uses an incoherence promoting term to make dictionaries associated
with different classes to be as independent as possible.

Another direction is to learn a common dictionary shared by all classes, as well as a classifier
of the coding coefficients for classification. Samples are classified by using the coding coefficients
as the feature vector since the shared dictionary results in only a single reconstruction error.
For example, the method in [144] jointly learns a single dictionary and a function adapted to
the classification task for digit recognition and texture classification. Similarly, a joint learning
and dictionary reconstruction method with consideration of the linear classifier performance
was proposed in [175] for object and face recognition. Based on this method and the K-SVD
algorithm, a method called discriminative K-SVD was proposed in [245] for face recognition.

Discriminative sparse coding: The last type of approaches pursues sparsity-based classifi-
cation in the framework of dimensionality reduction where signals are projected onto a common
subspace of fewer dimensions before getting classified. The purpose here is not only discrimination
but also compact representations for compression and/or coding applications. This is in strong
contrast with the above two types of approaches where the primary purpose is to have a high
classification rate, regardless of the dimension of the coefficient vectors.

In order to have a common dictionary of a fixed number of atoms for all data samples, an
algorithm for simultaneous sparse approximation called simultaneous orthogonal matching pursuit
(SOMP) [220] (listed in Algorithm 1) is usually used. SOMP is a generalization of OMP to the
case of joint signal compression and it can be extended to dimensionality reduction. It is a greedy
algorithm that extracts a subset of atoms from the dictionary D such that all the data samples
in X are simultaneously approximated. The basic idea of SOMP is to select in each iteration k
an atom from D that best matches all the columns in the residual matrix Rk−1, which is the
difference between X and its projection onto the subspace formed by the already selected atoms.
The atom selection process in SOMP is, however, unsupervised for reconstruction purpose.

Supervised atom selection (SAS) was proposed separately in [119] and [191] by modifying
Step 3 in Algorithm 1 to include an additional term for discrimination purpose as

λk = argmax
i

∥

∥RT
k−1di

∥

∥

1
+ λJ(di),

where J(·) is the cost function that captures the separability of different classes. The definition of
J(·) is inspired by LDA to be the quotient between the ℓ2-norm of within-class and between-class
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scatter matrices, similar to the definition of the discriminative term in [101]. Due to the use of J(·)
in the atom selection process, it is expected that the resulting SAS coefficients are discriminative,
leading to better classification results.

Different from SAS, a novel discriminative sparse coding method is proposed in the remaining
of this section by including a discrimination term in a statistical modeling framework. More
formally, let the training data X be denoted by Ω, a statistical model M is then estimated to
have the best posterior probability maxM p(M/Ω) ∝ p(Ω/M)p(M). The model is formed from
the dictionary atoms and priors: sparsity and discrimination can be expressed though priors
p(M), whereas reconstruction error through the likelihood p(Ω/M). This representation depends
on the dictionary and its cardinality; a high cardinality improves at least the reconstruction error,
but the number of coefficients increases. The optimal model thus ensures a trade-off between the
model complexity and the reconstruction error. The representation is then seen as the estimation
of the k-order statistical model Mk formed by the first k basis members and priors such that
maxMk

p(Mk/Ω) ∝ p(Ω/Mk)p(Mk). This model selection problem can be tackled by Bayesian
approaches, information theoretic approaches, or variational approaches. In the next subsection,
the minimum message length (MML) principle [224] is used for the selection of the optimal
statistical model.

4.4.3 MML-based sparse modeling

The optimal statistical model is proposed to be derived according to MML. Compared to other
information theoretic-based criteria, MML has good performance in the cases of Gamma, Dirichlet,
and Gaussian distributions. In order to make explicit the quantization effects of priors, the
posterior probability density function can be approximated by [26]

p (Mk/Ω) ≃
f (Ω/Mk)h (Mk)

√

|F (Mk)| e
Nk
2 (1+log 1

12)
,

where f (Ω/Mk) is the likelihood, h (Mk) the prior of the model, |F (Mk)| the determinant of
the Fisher information matrix [132], and Nk the number of model parameters. The MML-based
model can be seen as minus the logarithm of posterior and is written as

MMLΩ (Mk) = − log f (Ω/Mk)− log h (Mk) +
1

2
log |F (Mk) |+

Nk

2

(

1 + log
1

12

)

. (4.22)

Let the number of classes is C, the whole statistical model Mk of order k (i.e., the dictionary
D is composed of k atoms di with i = 1, . . . , k) is formed by the C class models M c

k , where c =
1, . . . , C. Assuming that all class models have the same order to make easier the implementation
of management tasks, the development of each term in the above equation will be given in
sequence as follows.

Likelihood

For the likelihood, assuming a zero-mean Gaussian distribution in the reconstruction error, the
likelihood for all classes Ωc (c = 1, . . . , C) is defined as

f (Ω/Mk) =
C
∏

c=1

fc (Ω/M
c
k) =

C
∏

c=1

∏

x∈Ωc

(

2πσ2
)

−m
2 exp

(

− 1

2σ2
‖x−Dαc‖22

)
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or

− log f (Ω/Mk) =
mCNx

2
log (2π) +mCNx log σ +

1

2σ2

C
∑

c=1

∑

x∈Ωc

‖x−Dαc‖22, (4.23)

where Mk =
(

M1
k , . . . ,M

C
k , σ

)

with M c
k = αc = (αc

1, . . . , α
c
k) is the statical model of order k, Nx

the number of images in each class, and m the dimension of x. The model Mk is thus completely
defined by Nk = kC + 1 parameters.

Priors

In the above likelihood, σ is the scaling parameter while αc for c = 1, . . . , C are location
parameters. Since a prior knowledge about the scale parameter has no influence on location
parameters and a prior knowledge about the location parameters of one class have no influence
on the location parameters of another class, it is legitimate to assume that

h (Mk) = h (σ)

C
∏

c=1

h (αc) = h (σ)

C
∏

c=1

k
∏

i=1

h (αc
i ) , (4.24)

where the factorization h (αc) =
∏k

i=1 h (α
c
i ) means that atoms in the dictionary D are indepen-

dent. This requirement is behind the ICA algorithm to ensure both the independence of features
and the reduction of high order redundancy. Since the scaling parameter σ is positive, its prior is
proposed to be the inverse Gamma distribution:

h (σ) =
κγ

Γ (γ)
σ−γ−1e−

κ
σ , (4.25)

where κ and γ are hyper-parameters that control the shape of the distribution. For discrimination
purpose, ideally the dot product of two coefficient vectors αc and αl of any two different classes
c and l is zero. The prior of the location parameter αc is then proposed to be

h (αc) = h1 (α
c)h2 (α

c) , (4.26)

where h1 (α
c) is for sparsity and h2 (α

c) for discrimination.

- h1 (α
c) must be a highly peaked distribution with long and heavy tails such as the

generalized Gaussian distribution

h1 (α
c
i ) =

q

2βΓ
(

1
q

) exp

(

−
∣

∣

∣

∣

αc
i

β

∣

∣

∣

∣

q)

, (4.27)

where q and β are hyper-parameters with q > 0 is inversely proportional to the decreasing
rate of the peak.

- h2 (α
c) must be high when the dot product of vectors is low, or

h2 (α
c) =

∏

l 6=c

1√
2πι

exp

(

−
(

αc ·αl
)2

2ι2

)

, (4.28)

where ι is a hyper-parameter.
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Thanks to the hyper-parameters, the resulting representation will be a controlled trade-off
between sparsity, reconstruction error, and discrimination power. From Eqs. (4.24)–(4.28), the
resulting prior of the model is

h (Mk) =
κγ

Γ (γ)
σ−γ−1e−

κ
σ

C
∏

c=1

k
∏

i=1

q

2βΓ
(

1
q

) exp

(

−
∣

∣

∣

∣

αc
i

β

∣

∣

∣

∣

q) C
∏

c=1

∏

l 6=c

1√
2πι

exp

(

−
(

αc ·αl
)2

2ι2

)

or

− log h (Mk) = − log h (σ)−
C
∑

c=1

k
∑

i=1

log h (αc
i ) (4.29)

= − log
κγ

Γ (γ)
+ (γ + 1) log σ +

κ

σ
− kC log

q

2βΓ
(

1
q

) +
C
∑

c=1

k
∑

i=1

∣

∣

∣

∣

αc
i

β

∣

∣

∣

∣

q

+
C (C − 1)

2
log (2π) + C (C − 1) log ι+

1

2ι2

C
∑

c=1

∑

l 6=c

(

αc ·αl
)2

.

It should be noted that several existing approaches can be deduced by setting q = 2.

Fisher information

The independency assumption employed for priors can also be used for Fisher information, which
can then be approximated by

F (Mk) = F (σ)
C
∏

c=1

F (M c
k) = F (σ)

C
∏

c=1

k
∏

i=1

F (αc
i ) . (4.30)

The development of each multiplicative term in the above equation is done by using the definition
of Fisher information as follows.

- For the scale parameter σ:

−∂2 log f (Ω/Mk)

∂σ2
= −mCNx

σ2
+

3

σ4

C
∑

c=1

∑

x∈Ωc

‖x−Dαc‖22.

Since each element of x−Dαc is approximated as a zero-mean Gaussian noise with unknown
variance σ2 then

F (σ) = E

[

−∂2 log f (Ω/Mk)

∂σ2

∣

∣

∣

∣

σ

]

= −mCNx

σ2
+

3

σ4
mCNxσ

2 =
2mCNx

σ2
· (4.31)

- For the location parameters αc:

−∂2 log f (Ω/Mk)

∂(αc
i )

2 =
1

σ2

∑

x∈Ωc

‖di‖22 ,

then

F (αc
i ) = E

[

−∂2 log f (Ω/Mk)

∂(αc
i )

2

∣

∣

∣

∣

∣

αc
i

]

=
1

σ2

∑

x∈Ωc

‖di‖22 =
Nx

σ2
(4.32)

since ‖di‖22 = 1.
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From Eqs. (4.30)–(4.32), the resulting Fisher information of the model is

F (Mk) =
2mCNx

σ2

C
∏

c=1

k
∏

i=1

Nx

σ2

or
1

2
log |F (Mk) | =

1

2
log (2mC)− (kC + 1) log σ +

kC + 1

2
logNx. (4.33)

Message length of the model

By substituting relevant terms in Eqs. (4.23), (4.29), and (4.33) into Eq. (4.22), the message
length of the model of order k is

MMLΩ (Mk) =
mCNx

2
log (2π) +mCNx log σ +

1

2σ2

C
∑

c=1

∑

x∈Ωc

‖x−Dαc‖22

− log
κγ

Γ (γ)
+ (γ + 1) log σ +

κ

σ
− kC log

q

2βΓ
(

1
q

) +

C
∑

c=1

k
∑

i=1

∣

∣

∣

∣

αc
i

β

∣

∣

∣

∣

q

+
C (C − 1)

2
log (2π) + C (C − 1) log ι+

1

2ι2

C
∑

c=1

∑

l 6=c

(

αc ·αl
)2

+
1

2
log (2mC)− (kC + 1) log σ +

kC + 1

2
logNx

+
kC + 1

2

(

1 + log
1

12

)

.

In this model, all the hyper-parameters are assumed to be known and the estimation of the
coefficient vectors αc (c = 1, . . . , C) assumes the knowledge of D. At a fixed dictionary D of k
atoms, it can easily seen that the message length depends only on the following function:

gΩ (Mk,D) =
1

2σ2

C
∑

c=1

∑

x∈Ωc

‖x−Dαc‖22 +
C
∑

c=1

k
∑

i=1

∣

∣

∣

∣

αc
i

β

∣

∣

∣

∣

q

+
1

2ι2

C
∑

c=1

∑

l 6=c

(

αc ·αl
)2

, (4.34)

which contains three terms that correspond to reconstruction error, sparsity, and discrimination
power. This dependance means that the minimum message length of the model of order k can be
obtained by minimizing gΩ (Mk,D) or, equivalently:

min
α

1,...,αC





1

2σ2

C
∑

c=1

∑

x∈Ωc

‖x−Dαc‖22 +
C
∑

c=1

k
∑

i=1

∣

∣

∣

∣

αc
i

β

∣

∣

∣

∣

q

+
1

2ι2

C
∑

c=1

∑

l 6=c

(

αc ·αl
)2



 .

Note that the three hyper-parameters σ, β, and ι control the contribution of each of the three
terms in the model. In addition, as the above problem reduces to the problem in Eq. (4.5) when
C = 1, the proposed model can be interpreted as an extension of the conventional sparse model
to images of different classes with a preference on the separability of their representation.
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Estimation algorithm

In order to minimize gΩ (Mk,D) in Eq. (4.34), let q = 1 to make the optimization problem
convex while, at the same time, having a highly peaked distribution with long and heavy tails for
sparsity (Subsection 4.1.2). The coefficient vectors for all classes, αc (c = 1, . . . , C), are estimated
iteratively using a coordinate descent algorithm. The coordinate descent algorithm for solving
(Qλ

1) in Eq. (4.3) was first proposed in [85] where the objective function is optimized (exactly or
approximately) with respect to one coefficient at a time while all others are kept fixed. For the
case of gΩ (Mk,D), its derivative with respect to coefficient i of class c, αc

i , is

∂gΩ (Mk,D)

∂αc
i

= − 1

σ2

∑

x∈Ωc

dT
i (x−Dαc) +

1

β
sign(αc

i ) +
2

ι2
αc
i

∑

l 6=c

(

αl
i

)2
(4.35)

= − 1

σ2

∑

x∈Ωc

[

dT
i

(

x−
∑

j 6=i

αc
jdj

)

− αc
i

]

+
1

β
sign(αc

i ) +
2

ι2
αc
i

∑

l 6=c

(

αl
i

)2

= − 1

σ2

∑

x∈Ωc

dT
i

(

x−
∑

j 6=i

αc
jdj

)

+
1

β
sign(αc

i ) + αc
i

(

Nx

σ2
+

2

ι2

∑

l 6=c

(

αl
i

)2
)

.

It is not difficult to see that the solution of ∂gΩ(Mk,D)
∂αc

i
= 0 could be obtained by using the

soft-thresholding operator in Eq. (4.12):

αc
i = O(t, λ) = sign(t)(|t| − λ)+, (4.36)

where

t =

(

Nx

σ2
+

2

ι2

∑

l 6=c

(

αl
i

)2
)−1

× 1

σ2

∑

x∈Ωc

dT
i

(

x−
∑

j 6=i

αc
jdj

)

,

λ =

(

Nx

σ2
+

2

ι2

∑

l 6=c

(

αl
i

)2
)−1

× 1

β
·

This solution is used as the re-estimated value for αc
i until convergence in the estimated values

of all the coefficients are reached. A summary of the MML-based sparse modeling is given in
Algorithm 2.

4.4.4 Dictionary design

For general classification problems, the dictionary D should be generic. In the following ex-
periments, D is constructed by applying geometric transformations to a generating mother
function φ [79]. A geometric transformation U is defined as a combination of the following three
transformations:

- Translation by ~b = (b1, b2): U(~b) moves the generating function across the image

U(~b)φ(x, y) = φ(x− b1, y − b2).

- Rotation by θ: U(θ) rotates the generating function by an angle θ

U(θ)φ(x, y) = φ (cos(θ)x+ sin(θ)y, cos(θ)y − sin(θ)x).
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Algorithm 2 Minimum message length (MML)

Input: a dictionary D =
[

d1 d2 . . . dp

]

, a data matrix X, kmin, kmax, hyper-parameters
Output: a statistical model Mk∗ , the dictionary DΛk∗

1: Initialize: k = kmin

2: while k < kmax do
3: Determine the index set Λk: use SOMP in Algorithm 1

4: Compute the representation of X in DΛk
: A =

(

DT
Λk

DΛk

)−1
DT

Λk
X

5: Compute initial value for αc: average the representations in DΛk
of all x ∈ Ωc

6: while convergence has not been reached do
7: Re-estimate αc by using Eq. (4.36)
8: end while
9: Compute the message length MMLΩ (Mk): use Eq. (4.35)

10: Increment the counter: k = k + 1
11: end while
12: Determine the minimum message length: Mk∗ = argminMk

MMLΩ (Mk)

- Anisotropic scaling by ~a = (a1, a2): U(~a) scales the generating function in the two directions
using two separate scaling factors

U(~a)φ(x, y) = φ

(

x

a1
,
y

a2

)

.

By letting γ = {~b, θ,~a}, the atom obtained from φ that corresponds to γ is

U(γ)φ(x, y) = φ(x′, y′),

with

x′ =
cos(θ)(x− b1) + sin(θ)(y − b2)

a1
,

y′ =
cos(θ)(y − b2)− sin(θ)(x− b1)

a2
.

Let Γ be the set of all γ used in the construction, the dictionary is then defined as

D = {U(γ)φ : γ ∈ Γ}.

D constructed as above is a structured dictionary that allows efficient coding since each atom in
D can be fully described by the corresponding transformation parameters γ when φ is known.
Moreover, the generating mother function φ should be selected in such a way that some preferred
geometric properties exist in dictionary atoms. The following experiments uses three structured
dictionaries that are generated from the following φ:

- Gaussian function:

φ(x, y) =
1√
π
exp

(

−
(

x2 + y2
))

.
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Figure 4.23: Sample atoms from the Gaussian (top row), AnR (middle row), and Gabor (bottom)
dictionaries at various scales and orientations. Atoms in each column have the same set of
geometric transformation parameters γ = {~b = 0, θ,~a}.

- Anisotropic refinement (AnR) function:

φ(x, y) =
2√
3π

(4x2 − 2) exp
(

−
(

x2 + y2
))

.

- Gabor function:

φ(x, y) = cos(2πx) exp
(

−
(

x2 + y2
))

.

In order to have an overcomplete dictionary that spans the Hilbert space of the data of
interest, the transformation parameters should be carefully sampled. The sampling of these
parameters typically determines the dictionary size and therefore its redundancy. It is here
proposed to use

- all possible pixel locations for the position shift ~b,

- 10 uniformly sampled values in [0, π] for the rotation angle θ,

- and five logarithmically equi-distributed scales in [1, N/4] for the scaling factors a1 and a2,
where N is the image size.

Sample atoms from the constructed Gaussian, AnR, and Gabor dictionaries are shown in Fig.
4.23. The depicted atoms at various scales and orientations are centered on the images (~b = 0).

4.4.5 Experimental results

This subsection presents some validating experiments for the proposed discriminative sparse
coding method based on the MML principle. It is started with the experimental setup, then the
dependance of performance on the selected dictionary. The trade-off between approximation and
classification is also mentioned, followed by an evaluation of the classification performance of the
proposed method on common datasets. This is done in comparison with some other methods of
similar nature.

Setup

Assuming that a common dictionary D and coefficient vectors for all classes, αc (c = 1, . . . , C),
have been learned from the training data by using Algorithm 2. Each testing sample x is then
classified by maximization of posterior probability as follows:

identity(x) = argmax
c

fc (x/M
c
k)h (α

c)
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(a) Handwritten digit (b) ORL face

Figure 4.24: Sample images from the two datasets used in the experiments. Handwritten digit
dataset has 390 images of 10 classes; in each class, 10 images is for training and the 29 remaining
images for testing. ORL face dataset has 400 images of 40 subjects; for each subject, half of the
images is for training and the remaining half for testing.

= argmin
c





1

2σ2
‖x−Dαc‖22 +

1

β
‖αc‖1 +

∑

l 6=c

(

αc ·αl
)2

2ι2



·

The proposed method is compared with several variants of part-based dimensionality reduction
methods such as principle component analysis (PCA) [221], non-negative matrix factorization
(NMF) [130], and simultaneous orthogonal matching pursuit (SOMP). For these comparison
methods, both the training and testing samples are projected onto the subspace formed by k
basis vectors (represented ensemble by W) that have been learned from the training samples
accordingly (i.e., W = DΛk

for SOMP). In particular, the projection of a sample x onto W is
given by

α =
(

WTW
)−1

WTx.

The representing coefficient vector αc for each class is calculated by averaging the coefficient
vectors over all the training samples of that class. The classification is performed in the reduced
space by nearest neighbor classifier (kNN with k = 1). Each testing sample is then classified
and assigned the label of its nearest neighbor among all the representing coefficient vectors. The
performance is measured in terms of classification error rate, which is the percentage of the
testing samples that have been misclassified. The following datasets are used in the experiments:

- Handwritten digit image dataset that is publicly available8 contains binary images of
handwritten digits 0–9, each class has 39 different samples of size 20× 16. Some sample
digit images are shown in Fig. 4.24a. The training set is composed of 10 randomly-selected
different images per class and the testing set uses the remaining 29 images.

- ORL face dataset [195] contains facial images of 40 individuals, each has 10 different images
of slightly different lighting conditions, facial expressions (smiling/non smiling), and poses.

8http://www.cs.nyu.edu/~roweis/data/binaryalphadigs.mat
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Figure 4.25: Classification performance of SOMP using one of the three dictionaries (Gaussian,
AnR, and Gabor) on the handwritten digit (a) and ORL face (b) datasets. AnR dictionary is
superior to Gaussian and Gabor dictionaries for both datasets.

Facial images of two sample subjects are illustrated in Fig. 4.24b. The size of each image is
down-sampled to 28× 23 for computational efficiency. The training set is composed of five
randomly-selected different images per subject and the testing set uses the remaining 5
images.

Due to the small number of training and testing samples per class for both handwritten digit and
ORL face datasets, for more reliable results, the following experimental results are the average
across 10 random realizations of the training/testing sets.

Dictionary choice

The impact of the dictionary on the classification performance is investigated by comparing the
effectiveness of the three generating functions described above (i.e., Gaussian, AnR, and Gabor).
SOMP features on both digit and face datasets are extracted and then classified in the reduced
space of dimensions k = 10, 20, . . . , 100. Fig. 4.25a and 4.25b depict the classification error rates
obtained from the three dictionaries for the two datasets. It can be seen from the figures that the
dictionary built from AnR functions results in superior performance over dictionaries built from
Gaussian and Gabor functions for both datasets. This is likely due to the fact that AnR atoms,
which have oscillation in the direction that is perpendicular to their orientation, are good at
representing piecewise constant images like binary digit data. In addition, the slightly oscillating
atoms of AnR dictionary can capture the edge-like details like eyes, mouth in the face images.
The bad performance of Gabor dictionary may be because its atoms are overly oscillating. On
the contrary, the lack of oscillation in Gaussian atoms explains for their inefficiency in capturing
edge-like features and, consequently, for the bad performance of Gaussian dictionary. In the
following experiments, AnR dictionary is therefore chosen as the dictionary for both digit and
face datasets.

Approximation vs. classification

This experiment demonstrates the approximation–classification trade-off, which is driven by
the relative values of the three hyper-parameters σ, β, and ι in Eq. (4.34). Fig. 4.26 illustrates
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Figure 4.26: Approximation–classification trade-off with MML algorithm on the handwritten
digit (a) and ORL face (b) datasets. For each dataset, the values of σ and β are fixed while that
of ι is varied as depicted in the figures: (a) σ = 0.1, β = 5; (b) σ = 0.1, β = 10.

the classification error rate versus the approximation error for both digit and face data. In this
experiment, the dimension of the reduced space is fixed to k = 40. In addition, for each dataset,
the values of σ and β are fixed while that of ι is varied as

- Handwritten digit dataset (Fig. 4.26a): σ = 0.1, β = 5, and ι ∈ [0.4, 2].

- ORL face dataset (Fig. 4.26b): σ = 0.1, β = 10, and ι ∈ [2.5, 7].

The approximation error is measured via the squared Euclidean norm of the residual matrix,
i.e.,

∑C
c=1

∑

x∈Ωc
‖x−Dαc‖22. It can be seen that, for both datasets, increasing ι leads to an

increase in the approximation error and, at the same time, a decrease in the classification error
rate. This demonstrates clearly the trade-off between approximation and classification in the
proposed discriminative sparse coding method. A higher discrimination power has to be paid by
lower representation power, and vice versa. Note that, for the approximation error in Figs. 4.26a
or Fig. 4.26b, the variation in its value due to ι is quite small when compared to its average
value. This is because the proposed method uses only a single coefficient vector αc for each class.
A single αc cannot capture the variation among all the samples of the class it represents.

Classification performance

The proposed MML-based discriminative sparse coding method is compared with PCA, NMF,
and SOMP in terms of classification performance. These methods are selected for comparison
because they provide a low-rank approximation of the data and they are closely related to the
proposed method (e.g., dimensionality reduction). Some samples of the basis functions obtained
from PCA, NMF, and SOMP are given in Fig. 4.27 for the digit (top row) and face (bottom
row) datasets. It can be observed from the figures that the basis functions obtained from PCA in
Figs. 4.27a and 4.27d are of global support, whereas those from SOMP using the AnR dictionary
in Figs. 4.27c and 4.27f are spatially localized. For the case of NMF, the basis functions are
spatially localized for the digit dataset (Fig. 4.27b) and seem to be of global support for the face
dataset (Fig. 4.27e).
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(a) Digit: PCA (b) Digit: NMF (c) Digit: SOMP (AnR)

(d) Face: PCA (e) Face: NMF (f) Face: SOM (AnR)

Figure 4.27: Recovered basis functions from the handwritten digit (top row) and ORL face
(bottom row) datasets: PCA (left column), NMF (middle column), SOMP (right column). For
SOMP, AnR dictionary is used for both digit and face data.

The comparison is carried out in the reduced space of dimension k = 10, 20, . . . , 100. In
this classification experiment, for each value of k, the classification performance is reported in
terms of average error rate across 10 random realizations of the training/testing sets for both
handwritten digit and ORL face datasets. For this type of experiments, the emphasis is on the
classification performance then hype-parameters are selected such that overall best classification
performance is obtained:

- Handwritten digit dataset: σ = 0.1, β = 5, and ι = 1.

- ORL face dataset: σ = 0.1, β = 10, and ι = 10.

Fig. 4.28 depicts the average classification error rates at different values of the dimension k
of the reduced space for the digit and face recognition task. The proposed method is denoted by
MML in the figure. It can be observed that:

- When the dimension of the reduced space is small (k < 20), PCA results in the best
performance. This can be explained by the global support of PCA basis functions since
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Figure 4.28: Classification performance of comparison methods on the handwritten digit (a) and
ORL face (b) datasets. The average classification error rate of MML is smaller than that of PCA,
NMF, and SOMP for a range of dimension k.

they can better capture important features of digit and face samples at low-dimensional
space.

- In general, the performance of all methods increases with the increase in the dimension k,
meaning that the discrimination power also increases with k. However, the performance of
NMF and SOMP in the digit dataset degrades when k > 50. This is due to the inefficiency
of spatially localized basis functions to high variation in the digit samples.

- Adding a discriminative term to the existing sparse coding method (SOMP) leads to
an increase in classification performance. A high increase can be seen for the digit data,
especially when the dimension of the reduced space is large (k ≥ 50).

- In general, the proposed method is superior to all comparison methods. The average
classification error rate of MML is smaller than that of PCA, NMF, and SOMP for a range
of dimension k.

4.5 Conclusions

In this chapter, sparsity-based representation of signals/images has been presented, starting by
a mathematical formulation, then by a justification for the use of the ℓ1 regularization. The
Bayesian interpretation of the framework is also given along with different strategies for the
design of dictionaries, both analytical and learned from data. By promoting sparsity in the
representation, important features of signals/images are usually captured by dictionary atoms and
this explains for the superior performance of sparsity-based methods in some image processing
tasks. Three separate problems (denoising, separation, and classification) have been tackled in
this chapter by using sparse representation.

For denoising, basis pursuit denoising with dictionary being defined based on curvelets has
been employed for directional denoising along graphics contours. Noise spread (NS), the output
of a degradation model for graphical document images, is used as the input parameter to select
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the precision parameter ǫ of the method. It has been shown both theoretically and experimentally
that the proper value of ǫ turns out to have a nearly linear relationship with NS. In addition, the
proposed method has been demonstrated to be superior to existing denoising methods in terms
of image restoration and contour raggedness. It should be noted here that comparison using the
recovery criterion is only feasible when the ground-truth images are available. Thus in this work,
as a proof of concept and for the ease of evaluation, the experimental noisy images are generated
from ground-truth images. To make the method applicable, in real applications, the value of NS
can be estimated directly from the input images [153].

For separation, the text extraction problem has been viewed as a blind source separation
problem in signal processing with text and graphics components having different morphological
characteristics. Two discriminative dictionaries based on undecimated wavelets and curvelets are
used to represent text and graphics components respectively. This is based on the observation that
undecimated wavelets (curvelets) are good at representing text (graphics) components and bad
at representing graphics (text) components. Morphological component analysis is employed for
the promotion of sparse representation of text and graphics components in these two dictionaries.
It has been shown that the proposed method has high recall rate of text components, overcomes
the problem of text/graphics touching, and outperforms the previous benchmark. Moreover, a
new technique to group text components in straight fonts into text strings has proven to be
efficient.

Finally, for classification, a new discriminative sparse coding method has been proposed by
modifying the conventional sparse representation framework to add a discriminative term to the
model. The resulting model is a controlled trade-off between sparsity, fidelity to the data, and
discrimination power. Classification is pursued in the framework of dimensionality reduction
where signals are projected onto a common subspace of fewer dimensions before getting classified.
The purpose here is not only discrimination but also compact representations for compression
and/or coding applications. The model selection problem is tackled by using an information
theoretic-based criterion (the minimum message length principle). Experimental results validate
the ability to control the trade-off between approximation and classification. Moreover, the
proposed method leads to superior classification performance over comparison methods of similar
nature on the two common handwritten and face datasets.
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Chapter 5

General Conclusion

This thesis has addressed the problem of how to represent images efficiently using dictionaries of
atoms for different image processing and pattern recognition tasks. It focuses on the three specific
types of dictionaries by means of the Radon transform, unit disk-based moments, and sparse
representation. The intrinsic properties of each dictionary type have been discussed and are
summarized in Table 5.1, where dictionaries of Radon transform and unit disk-based moments
are analytical whereas those of sparse representation could be analytical or learned from data.

- Analytical dictionaries are characterized by mathematical models of the data. The analytical
formulations lead to the existence of structure inside dictionaries. This structure sometimes
results in fast implementations or other preferable properties such as orthogonality.

- Learned dictionaries are actually sets of realizations of the data. The learning procedure
makes these dictionaries adapt to the target data. However, this adaptive property has
to be paid by the loss of internal dictionary structure, which leads to the lack of fast
implementation and orthogonality for this type of dictionaries.

Each type of dictionaries has been shown to be suitable for certain applications: Radon transform
and unit disk-based moments for invariant recognition; sparse representation for denoising,
separation, and classification. In the following, a short summary of the contents/contributions
presented in this thesis regarding these three types of dictionaries is given. This is followed by a
short list of open problems that can be used for future extensions.

5.1 Radon transform

The Radon transform has been used to represent patterns invariantly by employing its beneficial
properties concerning RST transformations. Chapter 2 has proven theoretically that Radon
transform has the property of suppressing additive white/“salt & pepper” noise. In addition, it
has unified the view on possible directions for the proposal of Radon transform-based invariant
pattern descriptors, leading to two novel pattern descriptors that are totally invariant to RST
transformations:

- The generic R-signature is obtained by using an integration and then an exponentiation
on the radial slices, followed by the discrete Fourier transform on the angular slices of
the Radon transform data. This definition brings in a class of descriptors that has the
beneficial properties of the conventional R-signature while spatially describing patterns at
all directions and at different levels. This generalization gives more flexibility in definition
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Table 5.1: Qualitative comparison between analytical and learned dictionaries. Dictionaries by
means of Radon transform and unit disk-based moments are analytical whereas those by means
of sparse representation could be analytical or learned from data.

Dictionaries Structure Fast computation Adaptability Invertibility Orthogonality

Analytical X X/× × X/× X/×
Learned × × X X ×

and, more importantly, the generic R-signature has been proven to be robust to additive
noise. It has been demonstrated that the generic R-signature is superior to existing invariant
pattern descriptors in terms of retrieval rate on grayscale and binary noisy datasets.

- The RFM descriptor is obtained by applying the 1D Fourier–Mellin and discrete Fourier
transforms on the radial and angular slices of the Radon transform data respectively. It has
been proven to be invariant to rotation, scaling, and translation, without the need of any
normalization step. The computation of the RFM descriptor is reasonably fast and correct,
based mainly on the fusion of the Radon and Fourier transforms and on a modification
of the Mellin transform. It is shown to be robust to additive noise both theoretically and
experimentally. It has also been demonstrated that the RFM descriptor is superior to
existing invariant pattern descriptors in terms of retrieval rate on grayscale and binary
noisy datasets.

5.2 Unit disk-based moments

The generalizations of existing unit disk-based orthogonal moments using harmonic functions
have been pursued in Chapter 3 where the radial kernels are defined based on: Fourier series using
complex exponential functions (GPCET); Fourier series using trigonometric functions (GRHFM);
cosine series (GPCT); and sine series (GPST). The sets of orthogonal kernels of harmonic
function-based moments have been proven to be complete in a Hilbert space of square-integrable
continuous complex-valued functions. Moreover, the use of a parameter s in the definition results
in four classes of moments that have beneficial properties of the original moments (PCET, RHFM,
PCT, and PST) while giving more flexibility in their definitions. The usefulness of harmonic
function-based moments have been demonstrated through three types of experiments:

- Complexity : The simple, resembling, and relating definitions of harmonic function-based
kernels have resulted in an almost-constant kernel computation time, regardless of the
maximal kernel order. This makes a strong contrast with Jacobi polynomial-based and
eigenfunction-based methods where a higher order means a longer kernel computation time.
Recursive strategies for fast computation of harmonic function-based kernels have also been
proposed by exploiting the recurrence relations between harmonic functions, leading to a
method that is approximately 10-time faster than direct computation and five-time faster
than the current state-of-the-art strategy for fast computation of ZM kernels.

- Representation: Harmonic function-based methods suffer from approximation error but
not from representation error. The numerical instability thus does not exist in harmonic
function-based methods. Moreover, the ability to control the representation capability
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according to image regions by changing the value of s draws a distinction between harmonic
function-based methods and the others. Based on this ability, it is possible to have a faster
reconstruction of the image function in certain image regions of interest, leading to potential
applications in image compression.

- Discrimination: Harmonic function-based methods have been shown to generally perform
better than non-orthogonal and Jacobi polynomial-based methods while having compara-
ble performance with that of eigenfunction-based methods in rotation-invariant pattern
recognition problems. Moreover, the decisive role of s in the recognition performance has
been confirmed experimentally and s can be used to place emphasis of the feature vector
to be extracted on certain image regions that contain discriminative information, leading
to potential applications in pattern recognition.

5.3 Sparse representation

Sparsity-based representation of signals/images has been presented in Chapter 4, starting by
a mathematical formulation, then by a justification for the use of the ℓ1 regularization. The
Bayesian interpretation of the framework is also given along with different strategies for the
design of dictionaries, both analytical and learned from data. By promoting sparsity in the
representation, important features of signals/images are usually captured by dictionary atoms and
this explains for the superior performance of sparsity-based methods in some image processing
tasks. Three separate problems (denoising, separation, and classification) have been tackled in
this chapter by using sparse representation.

- Denoising : Basis pursuit denoising with dictionary being defined based on curvelets has been
employed for directional denoising along graphics contours. Noise spread (NS), the output
of a degradation model for graphical document images, is used as the input parameter to
select the precision parameter ǫ of the method. It has been shown both theoretically and
experimentally that the proper value of ǫ turns out to have a nearly linear relationship with
NS. In addition, the proposed method has been demonstrated to be superior to existing
denoising methods in terms of image restoration and contour raggedness.

- Separation: The text extraction problem has been viewed as a blind source separation
problem in signal processing with text and graphics components having different morpho-
logical characteristics. Two discriminative dictionaries based on undecimated wavelets and
curvelets are used to represent text and graphics components respectively. Morphological
component analysis is employed for the promotion of sparse representation of text and
graphics components in these two dictionaries. It has been shown that the proposed method
has high recall rate of text components, overcomes the problem of text/graphics touch-
ing, and outperforms the previous benchmark. Moreover, a new technique to group text
components in straight fonts into text strings has proven to be efficient.

- Classification: A new discriminative sparse coding method has been proposed by modifying
the conventional sparse representation framework to add a discriminative term to the model.
The resulting model is a controlled trade-off between sparsity, fidelity to the data, and
discrimination power. Classification is pursued in the framework of dimensionality reduction
where signals are projected onto a common subspace of fewer dimensions before getting
classified. The model selection problem is tackled by using the minimum message length
principle. The ability to control the trade-off between approximation and classification
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has been validated by experiments. Moreover, the proposed method leads to superior
classification performance over comparison methods of similar nature on common datasets.

5.4 Perspectives

Several issues that arise naturally from the contents of this thesis could be used as the topics
for future research. While some could be addressed by straightforward extensions, the others
require a considerable amount of research work before explicit conclusions can be reached. In the
following, a short list of open problems is given along with some initial discussions/suggestions.

1. The ability of the generic R-transform to encode patterns’ dominant directions as discussed
in Subsection 2.2.5 allows it to be employed for some other pattern recognition problems?
Intuitively, the generic R-transform could be used for applications that require the estimation
of patterns’ orientation. For example, a preliminary investigation on character orientation
estimation using the conventional R-transform (m = 2) has been carried out in [95]. In
addition, it is anticipated that the freedom in choosing the value of the exponent m will
open up some potential applications for the generic R-transform like shape orientation
estimation [247], texture analysis [106], and document image skew correction [154], etc.

2. The extension of Radon transform and harmonic function-based moments to 3D? Theoreti-
cal development of 3D harmonic function-based moments has been presented in Subsection
3.2.3. For 3D Radon transform, the formula in Eq. (2.1) should be slightly changed by
replacing line integrals in 2D with plane integrals in 3D. In order to use these representations
for different applications, such as invariant 3D pattern recognition, properties of these
representations have to be made explicit a priori. For example, similar to the 2D case, the
3D Radon transform has some geometrical interpretations of the transform data that could
be used for the measurement of shape properties [32].

3. The extension of the MML-based sparse modeling framework by letting the dictionary to be
learned from data, instead of being pre-defined using generating mother functions such as
Gaussian, AnR, or Gabor in Subsection 4.4.4? A dictionary learned from data means that
it may be more adapted to the data and may lead to better performance, similar to the
performance gain in restoration tasks due to dictionary learning. However, it should also be
noted that the possible performance gain has to be paid by a loss of dictionary structure,
which in turn results in the following two issues: the non-existence of fast implementation
for the framework’s computation procedures and the inapplicability of the framework to
coding problems.

4. Combining invariance with sparsity in a unifying representation for sparsity-based invariant
pattern recognition? Obviously, the most trivial solution for this problem is the brute
force approach, in which the dictionary is composed of some generating atoms and all
their RST-transformed versions. This approach has inherent limitations in both storage
requirement and time complexity. A recently proposed solution uses normalizations before
the sparse coding step in order to get invariance to RST transformations [11]. However,
the adopted normalizations lead to issues that are similar to those due to normalizations
in classical invariant pattern recognition. For this combination problem, learning both
dictionary and the RST-transformed versions of its atoms directly from images as in [90]
could be a good suggestion.
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Résumé

La pertinence d’une application de traitement de signal relève notamment du choix d’une
“représentation adéquate”. Par exemple, pour la reconnaissance de formes, la représentation doit
mettre en évidence les propriétés salientes d’un signal; en débruitage, permettre de séparer le
signal du bruit; ou encore en compression, de synthétiser fidèlement le signal d’entrée à l’aide d’un
nombre réduit de coefficients. Bien que les finalités de ces quelques traitements soient distinctes,
il apparait clairement que le choix de la représentation impacte sur les performances obtenues.

La représentation d’un signal implique la conception d’un ensemble génératif de signaux
élémentaires, aussi appelé dictionnaire ou atomes, utilisé pour décomposer ce signal. Pendant de
nombreuses années, la conception de dictionnaire a suscité un vif intérêt des chercheurs dans des
domaines applicatifs variés: la transformée de Fourier a été employée pour résoudre l’équation de
la chaleur; celle de Radon pour les problèmes de reconstruction; la transformée en ondelette a été
introduite pour des signaux monodimensionnels présentant un nombre fini de discontinuités; la
transformée en contourlet a été conçue pour représenter efficacement les signaux bidimensionnels
composées de régions d’intensité homogène, à frontières lisses, etc.

Jusqu’à présent, les dictionnaires existants peuvent être regroupés en deux familles d’approches:
celles s’appuyant sur des modèles mathématiques de données et celles concernant l’ensemble de
réalisations des données. Les dictionnaires de la première famille sont caractérisés par une formu-
lation analytique. Les coefficients obtenus dans de telles représentations d’un signal correspondent
à une transformée du signal, qui peuvent parfois être implémentée rapidement. Les dictionnaires
de la seconde famille, qui sont fréquemment des dictionnaires surcomplets, offrent une grande
flexibilité et permettent d’être adaptés aux traitements de données spécifiques. Ils sont le fruit
de travaux plus récents pour lesquels les dictionnaires sont générés à partir des données en vue
de la représentation de ces dernières.

L’existence d’une multitude de dictionnaires conduit naturellement au problème de la sélection
du meilleur d’entre eux pour la représentation de signaux dans un cadre applicatif donné. Ce
choix doit être effectué en vertu des spécificités bénéfiques validées par les applications envisagées.
En d’autres termes, c’est l’usage qui conduit à privilégier un dictionnaire. Dans ce manuscrit,
trois types de dictionnaire, correspondant à autant de types de transformées/représentations,
sont étudiés en vue de leur utilisation en analyse d’images et en reconnaissance de formes.
Ces dictionnaires sont la transformée de Radon, les moments basés sur le disque unitaire et
les représentations parcimonieuses. Les deux premiers dictionnaires sont employés pour la
reconnaissance de formes invariantes tandis que la représentation parcimonieuse l’est pour des
problèmes de débruitage, de séparation des sources d’information et de classification.

Cette thèse présentent des contributions théoriques validées par de nombreux résultats
expérimentaux. Concernant la transformée de Radon, des pistes sont proposées afin d’obtenir
des descripteurs de formes invariants, et conduisent à définir deux descripteurs invariants aux
rotations, l’échelle et la translation. Concernant les moments basés sur le disque unitaire, nous
formalisons les stratégies conduisant à l’obtention de moments orthogonaux. C’est ainsi que
quatre moments harmoniques polaires génériques et des stratégies pour leurs calculs rapides sont
introduits. Enfin, concernant les représentations parcimonieuses, nous proposons et validons un
formalisme de représentation permettant de combiner les trois critères suivant : la parcimonie,
l’erreur de reconstruction ainsi que le pouvoir discriminant en classification.

Mots-clés: représentation de l’image, transformée de Radon, moments basés sur le disque
unitaire, représentation parcimonieuses, reconnaissance de formes invariantes, débruitage d’images,
séparation d’images, classification.
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