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Résumé

Cette thèse traite de la valorisation de produits dérivés du prix de l'électricité, et s'incrit

dans le domaine des mathématiques �nancières. Dans la première partie, nous nous inté-

ressons à la valorisation par absence d'opportunité d'arbitrage de portefeuilles incluant la

possibilité de transformation d'actifs par le biais d'un système de production, cela sur des

marchés présentant des coûts de transaction proportionnels. Faisant appel à cette théo-

rie spéci�que, nous proposons un concept alternatif d'absence d'opportunité d'arbitrage

pour une fonction de production et étendons certains résultats de Rásonyi [Rásonyi 10]

à temps discret. Cela nous permet de démontrer la propriété fondamentale de fermeture

pour l'ensemble des portefeuilles atteignables de ce type, ainsi que des corollaires comme

l'existence d'un portefeuille optimal ou un théorème de sur-réplication. Nous continuons

l'approche avec fonction de production en temps discret en étendant la modélisation à un

marché en temps continu avec ou sans frictions. Cette approche s'inspire grandement du

cadre théorique proposé par Denis et Kabanov [Denis 11b]. Cela permet aussi de déduire

la propriété de fermeture et la caractérisation des actifs réplicables.

Dans le seconde partie, nous nous concentrons sur des problématiques de valorisation de

produits dérivés sur électricité. Dans un premier temps nous présentons une classe de mo-

dèles faisant apparaitre un lien structurel entre le coût de production d'électricité et les

matières premières nécessaires à sa production. En formulant spéci�quement la fonction

des prix des commodités et du niveau de la demande, on obtient une formule explicite pour

le prix de l'électricité spot. Le passage par une mesure martingale spéci�que au traitement

des incomplétudes de marchés, permet d'obtenir un certain prix d'absence d'opportunité

d'arbitrage pour les contrats futures sur électricité minimisant le risque quadratique de

couverture. Nous spéci�ons alors le modèle pour obtenir des formules analytiques et pro-

posons des méthodes de calibration et d'estimation statistique des paramètres dans le cas

où le prix spot dépend de deux combustibles. Dans un second temps, nous abordons par

des méthodes de contrôle stochastique initiées par Bouchard, Elie et Touzi [Bouchard 09]

le problème de la prime de risque associée à un produit dérivé de contrat futures non

disponible. Utilisant des résultats de dualité déjà existant, nous étendons l'application nu-

mérique au cas d'un marché semi-complet. Notre point de vue se concentre essentiellement

sur la représentation sous forme d'espérance de la fonction valeur du problème.





Abstract

This Ph.D. dissertation deals with the pricing of derivatives on electricity price. It belongs

to the �eld of Arbitrage Pricing Theory and �nancial mathematics.

The �rst part is a theoretical extension of Arbitrage Pricing Theory : we assess the pro-

blem of pricing European contingent claims when the �nancial agent has the possibility

to transform assets by means of production possibilities. We propose a speci�c concept of

arbitrage for such portfolios and extend some results of Rásonyi [Rásonyi 10] in discrete

time for markets with proportional transaction costs. This allows to show the closedness

property and corollaries such as portfolio optimization problem or a super-hedging theo-

rem. We then study such portfolios with �nancial possibilities in continuous time, with or

without frictions. This framework is mostly motivated by Denis & Kabanov [Denis 11b].

We prove here the same closedness result and the super-replication theorem as corollary.

We apply these results to the pricing of futures contract on electricity.

The second part is dedicated to applications of expectation representation in the treatment

of incompleteness of �nancial markets, with a focus on electricity derivative pricing. We

start with the presentation of a class of models allowing to link the electricity spot price

with its production cost by a structural relationship. We specify a two combustibles model

with possible breakdown. It provides explicit formulae allowing to �t several pattern of

electricity spot prices, by means of the demand level and commodity prices. Using the

minimal martingale method of Föllmer and Schweizer [Föllmer 91], we are able to explicit

an arbitrage price and a hedging strategy for futures contracts minimizing a quadratic risk

criterion. We then specify the model to obtain explicit formulae and propose calibration

and statistical estimation of parameters in a two combustibles model. We address in a se-

cond time the question of the risk premium associated to the holding of a European option

upon a non-yet available electricity futures contract. We essentially apply the ideas of Bou-

chard and al. [Bouchard 09] to the semi-complete market framework de�ned by Becherer

[Becherer 01] and propose numerical procedures to obtain the risk premium associated to

a contingent claim and a given loss function.
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Introduction

Cette thèse a pour objectif de présenter quelques problématiques de �nance concernant

les marchés dérégulés d'électricité traitées par les mathématiques �nancières. Elle est

composée de deux volets relativement indépendants concernant les techniques utilisées,

précédés d'un chapitre introductif. La première partie est à caractère théorique et repré-

sente un développement particulier de la théorie de valorisation par absence d'opportunité

d'arbitrage pour un agent ayant des capacités de production. La seconde partie regroupe

deux applications du calcul stochastique à la valorisation de contrat futures et d'option

sur ces contrats respectivement. Bien que faisant appel à des approches di�érentes, ces

deux applications, et la première partie, ont en commun l'utilisation de mesures martin-

gales équivalentes pour la valorisation dans le cadre de marché incomplet. Pour introduire

ces deux parties, nous commençons par décrire les marchés d'électricité et leurs particu-

larité, ainsi que les di�érentes approches utilisées jusque là pour résoudre les problèmes

abordés ou similaires.

Les marchés dérégulés d'électricité

Un risque �nancier récent

La dérégulation des marchés d'électricité est un phénomène récent et mondialement ob-

servé, démarré par le Chili au début des années 1980 sous la forme d'un système com-

pétitif de production d'électricité basé sur les prix marginaux. A l'instar du Chili, un

mouvement général de dissolution des monopoles industriels apparait, avec notamment

la séparation des activités de transmission et de distribution d'une part et des activités

de production ou de vente d'autre part. Aujourd'hui, il existe un éventail considérable

de marchés de gros organisés autour de regroupements. Citons les plus connus : PJM

(Pennsylvani-New Jersey-Maryland) aux États-Unis d'Amérique, Nordpool en Scandina-

vie (Danemark, Suède, Finlande, Estonie et Norvège) ou EPEX en centre Europe (France,

Allemagne, Autriche et Suisse). L'objectif prioritaire de la dérégulation est d'atteindre un

1



équilibre compétitif permettant une optimalité économique de l'allocation des ressources.

L'introduction de la compétition dans ce secteur introduit pour ses acteurs de nouvelles

sources de risque. Les prix sont désormais variables et �xés par le marché. La complexité

de l'industrie électrique impliquant déjà de nombreuses sources de risque (endogènes et

exogènes), les marchés de l'électricité ont rapidement fait émergé un besoin de gestion

globale des risques �nanciers et industriels. Cette gestion des risques est dévenue priori-

taire pour les participants à un marché dérégulé. Aujourd'hui, les participants historiques

(les producteurs) ont été rejoints par de nouveaux investisseurs. En e�et, le risque prix

de l'électricité est devenu une opportunité de diversi�cation des risques pour des in-

vestisseurs institutionnels. La possession d'une centrale électrique apparait alors comme

un actif avantageux au sein d'un portefeuille �nancier 2. Les investissements dans le do-

maine énergétique croissant rapidement, la place centrale de l'électricité dans les marchés

d'énergie attire irrémédiablement l'intérêt des banques et fonds d'investissements pour

les produits �nanciers ou les entreprises du domaine électrique.

Les marchés d'électricité ont de nombreuses di�érences avec les marchés de commodités

habituels (matières premières) ou les marchés actions. C'est pourtant pour ces derniers

que les mathématiques �nancières ont permis des avancées techniques importantes. Nous

allons voir ici quelles sont ces di�érences et ce qu'elles impliquent sur les moyens appli-

cables aux marchés pour la gestion des risques.

Les caractéristiques de l'électricité

L'électricité désigne dans le langage courant l'énergie électrique. Sans rentrer dans les dé-

tails du processus de production physique, rappelons que l'électricité est un phénomène

physique utilisé comme transporteur d'énergie électromagnétique. Celle-ci peut être pro-

duite par la transformation de di�érentes sources initiales d'énergie :

� l'énergie potentielle mécanique, que nous obtenons par la retenue des eaux d'un barage

(centrales hydro-électriques),

� l'énergie cinétique (éoliennes),

� l'énergie potentielle chimique, qui est contenue dans diverses matières premières et

transformée en énergie thermique (centrales nucléaires et thermiques). Cette dernière

ressource retiendra toute notre attention dans ce qui suit.

L'électricité est le moyen le plus rapide et le plus pratique pour transporter de l'énergie

dans les pays ayant développé les infrastructures nécessaires. Le stockage de l'énergie

2. Entre 2003 et 2004, Goldman Sachs a fait l'acquisition de plus de 30 centrales pour un montant

supérieur à 4 milliards de dollars dans deux états des États-Unis d'Amérique.
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électro-magnétique nécessite des moyens technologiques sans commune mesure avec les

quantités produites à l'échelle des marchés. Elle peut être reconvertie en une autre forme

d'énergie, mais à très fort coût et faible rendement. Cela implique que l'électricité ne

peut être, une fois produite, considérée comme un bien consommable ou revendable à

loisir dans un futur proche ou éloigné. Ce fait implique un changement de paradigme si

nous souhaitons appliquer les méthodes de �nance mathématique car la possession d'un

actif est nécessaire pour la gestion du risque de son prix, cf. [Vehvilainen 02].

Un second corollaire découle de ce qui précède. De la quasi-immédiateté et de la commo-

dité de sa fourniture, il apparait que la demande d'électricité est essentiellement motivée

par son usage. Le prix d'achat devient alors un critère secondaire de consommation :

la demande est localement inélastique aux variations de prix. La considérer comme une

source exogène de risque dans des modèles de prix permet alors parfois des calculs ex-

plicites, voir notamment [Barlow 02]. La demande d'électricité procède par un soutirage

d'énergie disponible sur un réseau ouvert aux consommateurs. Comme l'électricité n'est

pas stockable, la production doit correspondre à la demande de manière continue. D'autre

part les réseaux de distribution d'électricité étant le seul moyen de transport de cette

énergie, les marchés d'électricité sont des regroupements géographiquement localisés. La

fourniture dépend donc de la répartition des noeuds de distribution physiques. Les prix

peuvent ainsi varier d'une aire géographique à une autre selon les moyens de productions

localement existant.

Les prix d'électricité sont ainsi in�uencés par de nombreux facteurs physiques de pro-

duction, mais également par l'organisation du marché. Dans une économie régulée ou sur

un marché, le prix de l'électricité est �xé en fonction du coût de production, et d'une

règle de prix marginal local : Le fournisseur d'électricité calcule un prix virtuel pour une

unité supplémentaire d'énergie à un noeud du réseau et utilise cet incrément du coût de

production comme prix de vente. Ainsi, le coût de production est normalement amorti.

Cette règle initiera au Chapitre 4 la construction d'un modèle structurel de prix.

L'impact sur les prix

Ces préliminaires sur le sous-jacent permettent de mettre en lumière les particularités

des marchés d'électricité, par opposition aux autres marchés. En premier lieu, l'équilibre

entre o�re et demande ne pouvant être parfaitement et instantanément ajustés par la pro-

duction, le marché spot désigne en réalité la �xation du prix pour le lendemain. Comme

la fourniture d'électricité se fait sous la forme d'une puissance et se vend sous forme

d'énergie, l'électricité est vendue sur des périodes de temps, dont la granularité minimale
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est l'heure. Le prix spot de l'électricité est donc un prix �xé pour le lendemain sur des

tranches horaires. La continuité du prix spot est donc une construction conceptuelle.

La �xation des prix dépend de la demande et du coût de production marginal au niveau

de cette demande. La demande elle même dépendant de facteurs qu'il est raisonnable

de considérer comme saisonniers et stationnaires (température, activité économique), les

prix Spot re�ètent ces propriétés. Le coût de production pouvant varier grandement d'une

centrale de production à une autre, il n'est pas impossible d'observer sur le marché des

phénomènes de très grande variation temporaire des prix. Ces sauts dénommés pics de

prix, ainsi que la grande volatilité du prix Spot, représentent des di�cultés supplémen-

taires pour une représentation mathématique �dèle du processus de prix.

La liste de ces particularités peut être retrouvée dans [Burger 04] ou [Coulon 09a]. Ces

caractéristiques ont fait l'objet de nombreuses tentatives de modélisation stochastique.

L'introduction d'une composante déterministe pour appréhender la saisonnalité des prix

a été faite entre autres par [Lucia 02] ou [Cartea 05]. La modélisation des pics de prix ou

la stationnarité à long terme ont été étudiées dans [Burger 04, Cartea 05] et [Benth 07a] à

titre d'exemple. Ces caractéristiques sont désormais des critères de pertinence des modèles

proposés dans la littérature. Nous jugerons de la pertinence du modèle du Chapitre 4 à

l'aune de ces critères.

Les contrats �nanciers assurant la livraison d'une quantité �xée d'énergie pour une date

future obéissent également à la règle de la granularité. Ces contrats dit futures ou forward

(si négociés de gré à gré) sont en fait des contrats de type swap [Deng 06] couvrant des

périodes �xées de temps. Ces périodes sont liées naturellement au calendrier qui guide

l'activité économique : elles décrivent les semaines, les mois, les trimestres ou les années

du calendrier grégorien. A�n d'assurer une liquidité su�sante pour ses participants, le

marché est organisé pour ne proposer qu'une partie des périodes possibles, en fonction de

la taille de celle-ci et de son éloignement dans le temps. Encore une fois, l'impossibilité de

stocker le sous-jacent empêche de reconstituer une structure par terme par des arguments

d'arbitrage usuels. L'étude de ce problème fait l'objet du chapitre 5.

En�n, le besoin de contrats couvrant des risques spéci�ques a fait apparaitre des pro-

duits dérivés de toute sorte, cf. [Deng 06] ou les monographies [Clewlow 00, Pilipovic 97].

Citons les options d'achat et de vente sur contrat Futures, dont la valorisation et la cou-

verture partielle sont abordées dans le chapitre 5. Notons aussi l'exemple des contrats

spread, dont les contributions de cette thèse ont en partie permis la valorisation, cf.

[Aid 10].
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Valorisation des produits dérivés sur le marché d'électricité

La théorie de valorisation par absence d'opportunité d'arbitrage

La théorie d'évaluation des actifs contingents par absence d'opportunité d'arbitrage, ou

APT (pour Arbitrage Pricing Theory), permet, à partir d'une règle économique interdi-

sant les pro�ls sans risques, de déduire le ou les prix justes d'un produit dérivé. Celle-ci

est développée de façon sommaire dans le chapitre 1 pour en introduire les résultats essen-

tiels. Une des conditions fondamentales à l'application de cette théorie est la description

de l'ensemble des portefeuilles réalisables. Les résultats de cette théorie sont en e�et va-

lables, et permettent la valorisation de produits dérivés, seulement si le sous-jacent est

échangeable. Ce n'est toutefois pas le cas concernant le prix spot de l'électricité.

De façon informelle, il n'existe pas d'arbitrage s'il existe une probabilité sous laquelle le

processus de prix est une martingale. En marché incomplet, cette probabilité peut ne pas

être unique. Ici, quand bien même le prix de l'électricité n'autoriserait aucune probabilité

équivalente martingale, aucun arbitrage n'est possible à partir d'un portefeuille constitué

d'électricité. Le marché n'est donc même pas incomplet au sens habituel du terme !

Il n'est toutefois pas vrai qu'aucun contrôle n'est possible sur l'électricité. Un producteur

peut en e�et mettre en place une stratégie �nancière avec un portefeuille de matières

premières nécessaires à la production d'électricité d'une part, et par le contrôle de sa

production d'autre part. Dans la première partie de cette thèse, nous proposons une ex-

tension paramétrique de l'APT pour les producteurs d'électricité a�n de leur permettre

la valorisation de produits �nanciers sur l'électricité. Cette condition est paramétrique

parce qu'il n'existe pas de condition économique naturelle équivalente à l'absence d'op-

portunité d'arbitrage pour un producteur. Il faut donc interdire d'une certaine manière,

a priori, la possibilité de certains pro�ts.

Dans la première partie, nous introduisons donc di�érentes formes d'une condition éco-

nomique imposée au producteur d'électricité, dont le portefeuille est préalablement dé�ni

comme un ensemble d'actifs �nanciers échangeables sur un marché ou transformables se-

lon une fonction de production donnée. Dans le chapitre deux, nous explorons de manière

assez exhaustive la modélisation en temps discret avec coûts de transaction proportion-

nels. Dans le troisième chapitre, nous proposons un critère de valorisation pour une classe

générale de modèles de marché �nancier.

Notre contribution est donc la suivante. Nous montrons mathématiquement que l'en-

semble des richesses terminales atteignables par les portefeuilles précédement décrits est

un ensemble fermé si la condition économique additionnelle est supposée. Cette pro-
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priété permet de proposer, dans le cas discret, une formulation duale de la condition

économique. Dans les cas discrets et continus, nous obtenons une formulation duale pour

l'appartenance d'une variable aléatoire à l'ensemble des richesses terminales atteignables.

Ce théorème permet de déterminer quelle est la richesse initiale avec laquelle faire un

portefeuille d'investissement-production qui permet de couvrir une option donnée. Nous

illustrons ce résultat par des exemples. Nous dé�nissons un système de production élec-

trique contrôlable et proposons le prix de couverture d'un contrat futures sur l'électricité

pour le possesseur de ce système de production.

Modèles structurels de valorisation

La littérature en mathématiques �nancières portant sur la valorisation de produits déri-

vés de l'électricité est vaste, répondant à des besoins spéci�ques : prévision, couverture

de risque, gestion optimale de production. Il est courant, cf. [Ventosa 05, Coulon 09b]

ou [Carmona 11], de diviser la littérature en trois directions distinctes : la modélisa-

tion stochastique des prix sous forme réduite, la modélisation par fondamentaux et la

modélisation structurelle.

La première direction s'attache à une modélisation endogène et synthétique du prix

de l'électricité spot [Lucia 02, Benth 04, Cartea 05, Benth 07a, Benth 07b, Geman 02]

ou des contrats futures [Lucia 02, Fleten 03, Kiesel 09]. Ces modèles permettent par

l'estimation historique des paramètres ou par la calibration selon des données de marché

d'extraire l'information des observations de prix pour simuler des trajectoires avec un

réalisme certain et détecter des tendances. L'étude porte éventuellement sur la corrélation

des prix d'électricité avec d'autres commodités, cf. [Frikhal 10].

La deuxième direction, à l'opposé, a pour objet la modélisation des moyens de productions

et des contraintes physiques sur le système. Cette direction est moins répandue dans

la littérature mais beaucoup plus utilisée dans l'industrie énergétique, qui dispose de

nombreuses données sur la production. On citera la monographie [Kallrath 09] sur le

sujet. Le réalisme fonctionnel de ces modèles contrebalance une complexité qui empêche

bien souvent les calculs explicites. L'objectif de ces modèle est en e�et la simulation du

système électrique étudié pour des visées prédictives en gestion de production.

La troisième direction est une synthèse des deux premières. A l'instar de Barlow [Barlow 02],

un grand nombre de modèles a été proposé, utilisant la demande d'électricité comme fac-

teur de risque exogène et l'introduisant dans des modèles de production plus ou moins

complexes, cf. [Eydeland 99], [Burger 04] ou [Cartea 08]. En introduisant des actifs échan-

geables dans le processus de production, voir notamment [Coulon 09b] ou très récemment
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[Carmona 11], il est possible d'obtenir des formules explicites de relation entre le prix

d'électricité et les prix des commodités nécessaires à la production.

C'est cette approche que nous développons dans le premier chapitre de la seconde partie

de cette thèse. En partant d'un modèle structurel qui utilise des informations publiques

sur les capacités de production pour un marché donné, des prix de marché des commo-

dités et la demande d'électricité, nous proposons un modèle de prix Spot de l'électricité

possédant quelques particularités recherchées (pics, périodicité, clusters de volatilité).

L'ensemble des directions de modélisation ont pour point commun de permettre la si-

mulation des prix d'électricité à partir de facteurs exogènes ou non. La valorisation et

la couverture des produits dérivés par le biais de ces modèles n'est toutefois pas l'ob-

jectif principal. Seuls les modèles faisant apparaitre des relations simples entre le prix

de l'électricité et ceux d'autres actifs �nanciers permettent éventuellement d'inférer des

stratégies de couverture.

L'approche proposée dans le chapitre 4 est d'utiliser une mesure de valorisation spéci�que

introduite dans le cadre de marché incomplet par Föllmer et Schweizer [Föllmer 91].

Nous réintroduisons alors la valorisation par espérance, et calculons le prix des contrats

futures en relation avec le prix Spot. Cette méthode réutilisée dans [Aid 10] permet alors

la valorisation de produits dérivés sur électricité non pas dans le cadre d'une couverture

parfaite, mais celle donnée par la mesure de valorisation qui correspond à la minimisation

du risque quadratique local.

Dans ce chapitre, notre contribution est la spéci�cation de ce modèle sur l'exemple du

marché français. Nous proposons des méthodes d'estimation statistique usuelles pour le

modèle proposé, puis de calibration à partir des prix de contrat futures.

Incomplétude du marché à terme

Comme nous l'apercevons, l'impossibilité de stocker l'électricité empêche d'utiliser les mé-

thodes classiques de valorisation �nancière. Les relations d'arbitrage supprimées, l'étude

de la structure par terme de l'électricité pose également des barrières qu'il n'est pas

envisageable de franchir avec les méthodes usuelles.

Du au manque de �nesse dans l'information sur la structure par terme, nous appelons

ce problème celui de la granularité de la courbe de prix futures. Ce problème a été assez

peu étudié dans la littérature, bien que sa considération soit précoce dans l'industrie

électrique. Citons [Verschuere 03] dans le cas qui nous intéresse, à savoir le problème de

couverture sur le marché à terme, et [Lindell 09] pour la considération de ce problème à
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des �ns de reconstitution de la structure par terme à granularité horaire.

Notre problématique dans le chapitre 5 est la gestion du risque lié à la possession d'une

option sur un contrat futures non encore apparu. Pour traiter ce cadre de marché in-

complet, nous proposons d'aborder le problème en terme de prime de risque liée à une

fonction de perte. C'est ainsi l'occasion d'utiliser l'approche de cible stochastique en es-

pérance introduite par [Bouchard 09]. Nous reprenons notamment avec une très légère

généralisation l'application proposée dans cet article a�n de proposer une stratégie de

couverture du risque utilisant le contrat futures de granularité supérieure disponible.

Dans la modélisation proposée, la forme d'incomplétude du marché est très spéci�que.

Elle correspond fortement à la dé�nition donnée par Becherer [Becherer 01] de marché

semi-complet : le marché composé des actifs disponibles est complet, c'est à dire qu'il

est possible de couvrir parfaitement toute option ayant pour sous-jacent un actif dispo-

nible sur le marché. L'approche par cible stochastique étant une approche directe, nous

montrons que s'il est possible de se ramener par une espérance conditionnelle à un pro-

blème en marché complet, alors le problème peut être traité ensuite par une méthode

de dualité exhibant la probabilité équivalente martingale. Le cadre de marché complet

a e�ectivement été exploré de cette façon dans [Bouchard 09]. Par cette procédure, on

exhibe de manière non arbitraire une mesure de probabilité équivalente martingale de

marché, laissant toutefois le risque extérieur au marché évalué sous la probabilité his-

torique. Dans l'idée, nous faisons alors le lien avec la mesure minimale de Föllmer et

Schweizer introduite dans le chapitre précédent.

Pour �nir, notre approche nous conduit à étudier une cible stochastique intermédiaire

qui peut être non-explicite et nécessiter une résolution numérique. Grâce au principe

de programmation dynamique, nous conservons un problème sous forme d'EDP non-

linéaire. Nous proposons alors une résolution numérique de cette EDP par des méthodes

de Monte-Carlo et des processus tangents. La représentation de Feynman-Kac de l'EDP

linéaire est associée à une méthode de point �xe utilisant les processus tangents pour le

calcul des dérivés et du contrôle optimal. Bien que non formalisée, cette méthode s'avère

e�cace et ouvre une nouvelle piste de recherche dans la résolution numérique d'équations

de type HJB.
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Technical introduction

This thesis intends to treat some �nancial pricing problems on deregulated electricity

markets. By means of the theory of �nancial mathematics, we attempt to formulate va-

rious approaches of electricity futures contracts pricing. This thesis is divided in two

parts. The �rst part investigates Arbitrage Pricing Theory with an emphasis on the ma-

thematical development of �nancial markets with proportional transaction costs. In this

part, we propose an economical condition allowing an investor with production possibili-

ties to price and hedge derivatives on his production and the �nancial market. We extend

the fundamental results of Arbitrage Pricing Theory to that case. The second part of this

thesis is composed of two chapters developing speci�c models of electricity futures prices

for hedging purposes. The �rst one proposes a structural model of electricity spot prices.

This allows to evaluate futures prices formation and hedging by alternative assets. The

second one treats the incompleteness of the term structure of electricity prices. We focus

on the control of loss on a derivative product upon unknown futures prices. The common

ground is the exhibition of a speci�c equivalent martingale measure for pricing purposes.

We also use the related expectation operators for explicit or numerical resolution.

Arbitrage pricing with production possibilities

In the �rst part, we consider the situation of an investor with production possibilities.

This is essentially motivated by the economical assumption that electricity is a non-

storable good. It consequently forbids to consider �nancial portfolios based on electricity

spot price. Since electricity markets are still mostly constituted of electricity producers,

it is viable to take the approach of an electricity provider. This is a micro economical

point of view where the electricity spot price is exogenous to the agent.

We consider the set X of portfolio strategies under a general form

Vt = ξt +Rt(βt)
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where ξt will denote a usual self-�nancing portfolio composed of �nancial assets, and

Rt(βt) is the net return of production controlled by a process β. The return function

Rt will thus transform a consumed quantity of assets β into a new position Rt(βt).

It is formally a generalization to general orders of �nancial (selling or buying) orders,

when they are introduced in an elementary way (see [Bouchard 06] and [De Vallière 07]

for a useful formulation in the incomplete information case in markets with proportional

transaction costs). We oppose here the linear structure of �nancial orders to the non-linear

general structure of industrial transformation. A direct problem appears immediately :

production returns are not bounded with an economical assumption such as the absence

of arbitrage on a �nancial market. This raises two natural questions. The �rst one is

how to de�ne an economical assumption similar to the no-arbitrage condition and the

second one questions the possible assumptions on the production function in order to

have fundamental properties for X under this new condition.

After introducing the fundamental results of Arbitrage Pricing Theory in chapter 1,

we consider in the second chapter of this part the latter questions in a speci�c market

setting. The material dimension of production incites us to express the manipulated

quantity of assets in units. This is indeed done in the particular treatment of markets with

proportional transaction costs. It started with [Kabanov 02] and has been repeatedly used

after that, see the monograph [Kabanov 09] for a complete presentation. This costs are

widespread on every type of �nancial market. Moreover, the linearity of all the considered

objects in this framework underlines the mathematical treatment of non-linearity we

introduce with production possibilities. The introduction of non-linearity actually follows

[Bouchard 05] where the authors introduce a non-linear industrial asset. In the latter,

the robust no-arbitrage condition of [Schachermayer 04] is extended to non-linear assets

in order to prove the closedness property of the set of attainable terminal wealth, and

then to have existence in the portfolio optimization problem. The dual characterization

of the robust no-arbitrage condition in the non-linear context has recently been done in

[Pennanen 10] for illiquidity matters. All these studies were done in the discrete time

setting, allowing to handle very general conditions on the non-linear framework. See

also Kabanov and Kijima [Kabanov 06] and the references therein for the particular

consideration of industrial investment.

The main distinction between our work and the above research is that we do not consider

industrial assets in the latter sense. Contrary to pure �nancial assets, industrial assets

cannot be short-sold. Moreover, they produce at each period a (random) return, labelled

in terms of pure �nancial assets, which depend on the current inventory in industrial as-
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sets. This model is well-adapted to industrial investment problems but not to production

issues, since the production regime does not appear as a control. What we propose is

a general framework of investment-production possibilities. The investment possibilities

are given by a model of a �nancial market and/or possible �nancial strategies. The pro-

duction possibilities are given by an endomorphism R on the set of assets in the �nancial

market. The production asset can transform some asset into others, with possible random

factors (prices, failures).

The contribution of the second chapter is then a re-edition of the closedness property

and its corollaries for this class of models. The main novelty is that we do not use

the robust no-arbitrage condition any more, as in [Pennanen 10]. As we said, there is no

economical justi�cation for the absence of sure pro�ts for a producer selling its production

on a market. We thus introduce an extended version of the no sure pro�t condition of

[Rásonyi 10] for linear production function, which can be used to allow limited pro�ts for

a general production function. This condition of absence of arbitrage of the second kind

is particularly well suited to our extension, and avoid to prove the closedness property at

�rst. We thus propose a dual characterization of this condition (a fundamental theorem

of asset pricing) with a direct proof, and then we prove the key property of closedness for

the set of terminal attainable wealth. We then explore, as corollaries, the super-hedging

theorem under many additional assumptions and the portfolio optimization problem.

The extension of this class of models to continuous time or frictionless market is the object

of Chapter 3. In this chapter, we want to propose a very general and �exible condition

for investor-producers such as before. For this purpose, we propose an abstract �nancial

setting which includes the main classes of �nancial models : frictionless markets with

general semimartingales [Schachermayer 04], càdlàg price processes subject to strictly

positive proportional transaction costs [Campi 06] and discrete time markets with convex

transaction costs [Pennanen 10]. The attempt to model a great variety of situations draws

its inspiration from [Denis 11b] and [Denis 11c]. By focusing on the production condition

only, we can propose a general �nancial setting where the no-arbitrage condition of the

�nancial market is expressed by its dual formulation, namely, the existence of a martingale

de�ator. We provide examples of applications in order to ensure that the general model

suits to applications.

The counterpart of a general �nancial setting is that we have to impose strong conditions

on the production. First of all, we reduce to the case of a discrete time control on

the portfolio process. Although it keeps a realistic value, we were not able to extend

the discrete time framework to a continuous or impulse-control setting of production
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possibilities. We comment this question in the chapter. Then, the production function

has to be concave and bounded. The concavity assumption is a direct consequence of

the available convergence theorems for sequences of random objects in the continuous

time setting, see Theorems 1.2.3 and 1.2.4 in chapter 1. It ensures the convexity of the

set, which is a fundamental assumption in the theory. The boundedness assumption is

introduced in order to keep the admissibility property of portfolios. In continuous time,

this property is essential as we rely on the concept of Fatou-closure of considered sets,

from which it is possible to obtain the weak* topology closure, see Theorem 1.2.7 below.

In chapter 3, we propose a �exible parametric condition on production pro�ts. It is also

based on the no sure pro�t condition fashion, and allows for variations in its expression.

Under this condition, we extend the closedness property of the set of possible �nancial

terminal positions to positions allowing production pro�ts. The corollary, which is of

central interest here, is the super-hedging theorem. As in the previous chapter, we provide

an application to an electricity producer willing to price an electricity futures contract .

Speci�c pricing measures for electricity derivatives hedging

The second part of this thesis includes two chapters, both being application of �nancial

mathematics to electricity futures contracts. Chapter 4 presents a structural model of

electricity Spot price depending on storable assets used in the production in order to

obtain futures prices under some speci�c risk neutral measure. Chapter 5 is an application

of the stochastic target approach to the risk premium associated to the holding of an

option upon a non-tradable futures contract.

A structural model of electricity prices

The objective of this chapter is to present a model for electricity spot prices and the

corresponding forward contracts, which relies on the underlying market of fuels, thus

avoiding the electricity non-storability restriction. The structural aspect of our model

comes from the fact that the electricity spot prices depend on the dynamics of the elec-

tricity demand at any instant, and on the random available capacity of each production

means. Our model explains, in a stylized fact, how the prices of di�erent fuels together

with the demand combine to produce electricity prices. This modelling methodology al-

lows one to transfer to electricity prices the risk-neutral probabilities of the market of

fuels and, under the hypothesis of independence between demand and outages on one

hand, and prices of fuels on the other hand, it provides a regression-type relation bet-
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ween electricity forward prices and fuels forward prices. Moreover, the model produces,

by nature, the well-known peaks observed on electricity market data. In our model, spikes

occur when the producer has to switch from one technology to another. Numerical tests

performed on a very crude approximation of the French electricity market using only two

fuels (gas and oil) provide an illustration of the potential interest of this model.

Considering the electricity spot market, we start from an aggregated bid-ask equilibrium

of a competitive market. As a fundamental assumption, see Barlow's model [Barlow 02]

for a complete explanation, we will assume that the demand is inelastic. The direct conse-

quence is that the electricity spot price on the market is only related to the aggregated

o�er function where the level of production is �xed by the demand variable. The electri-

city spot price Pt will depend on several other random variables St (commodity prices,

generation capacity, failure,...) and will be seen as a general function of the demand :

Pt = f(Dt, St)

Since this demand is a non-tradable risk factor, the considered market will be incom-

plete. There are two well-known consequences. First of all, this implies that the perfect

replication of contingent claims is not possible (at least at a reasonable price). Secondly,

standard results in Arbitrage Pricing Theory assess that the set of equivalent martingale

measures is not reduced to a singleton. This implies an in�nite number of no-arbitrage

prices for a claim. This is where we introduce the so-called minimal martingale mea-

sure. This speci�c measure was �rst introduced by Föllmer and Schweizer [Föllmer 91] to

partially hedge any claim in incomplete market. In our context, it will be used to price

widespread contracts on electricity : forward and futures contracts.

Under this probability measure, the asset price process for fuels is a martingale, whereas

the dynamics for Demand and the failure probabilities remain the same. This is a speci�c

incomplete market setting where the market composed of tradable assets is supposed to

be complete. This market is then augmented to satisfy the representation of risks induced

by the model.

In this chapter, our contribution stands in the explicitness of a simple structural mo-

del with two combustibles, estimation of production parameters with public data and

parameters calibration with futures prices. In this fashion, we exhaust the exploitation

of the model and provide di�erent guidelines for further enhancement. Indeed, the pro-

posed model obtains interesting new results and o�ers many perspectives for further

developments. We see three di�erent areas to explore. First, the supposed competitive

equilibrium on the spot market could be changed to take into account possible strategic
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bidding. This feature could provide a measure to the possible deviation of forward elec-

tricity prices from their equilibrium due to frictions on the spot. Second, the spot market

could be extended to a multizonal framework to take into account the fact that electricity

is exchanged between di�erent countries and that a spot price is formed in each country.

Finally, the relation linking forward electricity prices to forward fuels prices could be

extended to a wider class of contingent claims. This point has been investigated recently

in [Aid 10] for the pricing of spread options. We hope to develop these other points in

future papers.

Controlling loss with a cascading strategy on electricity Futures contracts

In chapter 5, we face a speci�c source of unhedgeable risk, given by the apparition of

a futures price at an intermediary date between the present and the term of an option

based upon this precise contract. We decide to adopt here the approach of [Bouchard 09] :

the stochastic target with a target in expectation. By this bias, we try to control in

expectation a risk criterion given by a threshold.

The stochastic target is a control problem where the terminal condition T is given and the

objective is to �nd the viability set before T . It has been initiated by Soner and Touzi

[Soner 02a, Soner 02b] for target reaching in the almost sure sense. In [Bouchard 09],

Bouchard, Elie and Touzi generalized the approach to targets in expectation, in order

to provide a stochastic control formulation of the quantile hedging problem. It also has

been extended in several directions : for jump-di�usion processes in [Bouchard 02] and

[Moreau 11], for the obstacle version in [Bouchard 10] and the general semimartingale

framework with constraints in [Bouchard 11a]. Signi�cantly, the equivalence with a stan-

dard control problem has been noticed in [Bouchard 12]. We actually use this property

in our context.

In chapter 5, we follow the application provided in [Bouchard 09], with minor modi�ca-

tions. We indeed use a speci�c model for the apparition of the new futures contract that

comes close to the de�nition of semi-complete market, see [Becherer 01]. This setting al-

lows, by using a conditional expectation, to retrieve a complete market setting and thus

use the approach of [Bouchard 09] with full power. This allows to provide an interme-

diary target and a new problem under the standard form. However, the main drawback

is that this condition is not explicit in most cases. This is why we propose a heuristic

method for solving numerically non-linear PDEs based on probabilistic methods. Since

we try to fully exploit the expectation formulation of the value function of the problem,

we propose a mixed method based on the Feynman-Kac representation of a linear PDE
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and tangent processes in order to obtain partial derivatives. A �xed point algorithm is

used to �nd the optimal control. The method appears to be very e�cient since it avoids

the curse of dimensionality of the PDE.

The contributions are thus the following. Theoretically, we provide the extension of the

complete market solution of loss control �rst given in [Bouchard 09] to speci�c incomplete

markets based on risk factors independent to the market and arriving at deterministic

times. In practice, we provide a numerical method for the general resolution of the non-

linear PDE associated to the stochastic target problem. We also apply this method to the

initial problem of controlling loss on a portfolio endowed with an option on a non-existing

contract.
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Chapitre 1

Arbitrage Pricing Theory and

fundamental results

This introductory chapter is motivated by self countenance of the thesis. We �rst recall

the purpose of Arbitrage Pricing Theory. We follow two monographs of reference, which

are [Delbaen 06] and [Kabanov 09]. One can �nd a good historical introduction of this

theory in Part 1 of the �rst book and Chapter 2 of the second one. We focus on the

special case of markets with proportional transaction costs, which underlies the �rst part

of the thesis, and a speci�c martingale measure in incomplete markets which is of use

in Chapter 4 and in relation with semi-complete markets introduced in Chapter 5. In a

second time, we introduce the fundamental results of Measure Theory, Probability and

Arbitrage Pricing Theory on which we rely repeatedly in the Thesis.

Speci�c notations

These notations concern the whole thesis. Speci�c notations are introduced in the context

if needed.

Unless otherwise speci�ed, any element x ∈ Rd will be viewed as a column vector with

entries xi, i ≤ d, and transposition is denoted by x′ so that x′y stands for the natural

scalar product. We write Md to denote the set of square matrices M of dimension d with

entries M ij , i, j ≤ d. The identity matrix is denoted by Id. As usual, Rd+ and Rd− stand

for [0,∞)d and (−∞, 0]d. The closure of a set Θ ⊂ Rn is denoted by Θ̄, n ≥ 1. We write

cone(Θ) (resp. conv(Θ)) to denote the cone (resp. convex cone) generated by Θ. Given

a �ltration F on a probability space (Ω,F ,P) and a set-valued F-measurable family

A = (At)t≤T , we denote by L0(A,F) the set of adapted processes X = (Xt)t≤T such that
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Xt ∈ At P− a.s. for all t ≤ T . For a σ-algebra G and a G-measurable random set A, we

write L0(A,G) for the collection of G-measurable random variables that take values in A

P − a.s. We similarly de�ne the notations Lp(A,G) for p ∈ N ∪ {∞}, and simply write

Lp if A and G are clearly given by the context. Unless otherwise speci�ed, inequalities

between random variables or inclusion between random sets have to be understood in

the a.s. sense.

1.1 Arbitrage Pricing Theory

Arbitrage Pricing Theory has for purpose to seek pricing rules for �nancial instruments

based on an economical assumption made on the �nancial market. In nuce, it intends

to derive the existence of a fair pricing rule from a mathematical formulation of the

absence of arbitrage on the �nancial market. Formally, when the �nancial market prices

are represented by a process S, the no-arbitrage property for this market holds if and

only if there exists a stochastic de�ator, i.e., a strictly positive martingale ρ such that

the process Z := ρS is a martingale. The process Z can then be seen as the market

price of assets with which agents shall price derivative products. It is the core of mathe-

matical applications to �nance. This result is commonly expressed by the existence of a

measure equivalent to the historical probability under which price processes are (local)

martingales. It allows an incredible amount of applications to derivative pricing and risk

hedging, the most commonly known being the seminal and pathbreaking paper of Black

and Scholes [Black 76].

The theoretical side of this branch of applied mathematics is focused on such a rule,

trying to link martingale theory to no-arbitrage arguments. It is almost all contained in

one result known as the Fundamental Theorem of Asset Pricing (FTAP). By introducing

several imperfections in the market, or portfolios constraints, in order to improve the

model representation of the economical reality, several variants of the FTAP can be

expressed. This was �rst established for the discrete time and �nite probability space

framework by Harrison & Pliska [Harrison 81]. Starting from results of Harrisson & Kreps

[Harrison 79], extension to the in�nite probability space is proved by Dalang, Morton and

Willinger [Dalang 90]. Then follows a long line of contributions, see [Delbaen 06] and the

references therein.

Let us denote by X(T ) the set of possible terminal wealth that is attainable with self-

�nancing portfolios starting with a zero wealth. A no arbitrage condition expresses a

condition on the possible outcomes of X(T ). For example, if X(T ) is composed of real
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outcomes, the no-arbitrage condition of the �rst kind can informally be written as :

NA : X(T ) ∩ R+ = {0} .

The FTAP thus expresses an equivalence between such a mathematical expression and a

dual condition providing the martingale de�ator ρ of the previous paragraph. When there

exists a unique process ρ, the market is said to be complete. In general, the martingale

de�ator ρ is not unique, due to some frictions. It encompass the case of transaction costs,

or unavailable assets or information.

1.1.1 The proportional transaction costs framework

A speci�c and recent branch of the theory is the study of �nancial markets subject to

transaction costs. Transaction costs are market frictions that can be observed on all

�nancial markets. The di�erence between a bid price and the ask price, which can be

indi�erently credited to transaction costs or liquidity matters, fundamentally changes

the way to model �nancial strategies. Take the case of proportional transaction costs.

Commonly, a �nancial portfolio V is represented by a stochastic integral with respect to

the asset price S, where the integrand ν represents the strategy (the amount of money

put in the risky asset). When the agent is subject to proportional transaction costs λ on

buying and selling orders, the portfolio shall be written

Vt = x+

∫ t

0
νsdSs −

∫ t

0
λSsd|ν|s .

Therefore, strictly positive proportional transaction costs force the strategy to be a �nite

variation process, whereas frictionless markets allow for a quadratic variation process ν.

The set of portfolio processes is totally di�erent from the frictionless case, and so is X(T ).

A geometrical representation, introduced by Kabanov [Kabanov 99] for currency mar-

kets, has emerged as consequence. It follows from the observation that with proportional

transaction costs, the expression of the wealth is sensitive to the numéraire in which it is

expressed. Therefore, it is more convenient to express exchange rates between currencies,

or assets, and holdings in quantity of assets, than to reduce to a single wealth value,

which is virtual if the exchange rates evolve through time. By directing the exchange

rate from an asset to another, we are also able to make a distinction between bid ans

ask prices, and to introduce random proportional transaction costs. We introduce then

the following notations. If the market contains d assets, we denote by πij the quantity of

asset i necessary to obtain one unit of asset j. πij is an adapted random process. It will
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be reintroduced in the introduction of the next chapter. Formally, it allows to de�ne a

random region of the space Rd :

Kt(ω) := conv
(
πij(ω)ei − ej , ei ; i, j ≤ d

)
, (1.1.1)

where ei stands for the i-th unit vector of Rd de�ned by eki = 1i=k. This region is a

random closed convex cone indexed by t. It denotes the solvency region, i.e., the set of

possible portfolio positions that can be modi�ed by an allowed transaction in order to be

non-negative in every component (every asset holding). In the literature, this geometrical

object has almost replaced the notion of price. Indeed, portfolio modi�cations are made

by transfers of assets which are represented by vectors in −Kt. It induces a geometrical

vision that allows to use tools from convex analysis that we present in the Section 1.2.

We refer to Kabanov and Safarian [Kabanov 09] for a wide overview of models with

proportional transaction costs.

In markets with transaction costs, there are two possible expressions of arbitrage. One

is the possibility to reach a solvent wealth non equivalent to zero (i.e. in
∫
KT ) with a

portfolio starting with a null wealth. The other is the possibility to reach a solvent position

(i.e. in KT ) with a portfolio starting from an insolvent position (not in K0). Whereas

the �rst one is a direct adaptation of the no-arbitrage condition in the frictionless case,

the second one is more speci�c. This condition has been introduced by [Rásonyi 10] and

is the object of study of the �rst part of the Thesis.

Let (Ω,F ,F = (Ft)t∈T,P) be a discrete time �ltered stochastic basis, with T := {0, 1, . . . , T}.
We introduce a F-adapted process Kt which values are closed subsets of Rd, and which

is de�ned by equation 1.1.1 above for all t ∈ T. We also de�ne its polar cone

K∗t (ω) :=
{
y ∈ Rd+ : xy ≥ 0 ∀x ∈ Kt(ω)

}
and assume that intK∗t 6= ∅ P-almost surely. This condition is called e�cient frictions

and is assumed in the largest part of Chapter 2. It means that there are strictly positive

transaction costs on every possible transfer. We then de�ne

Xt(T ) :=

{
T∑
s=t

ξs : ξs ∈ L0(−Ks,Fs) for t ≤ s ≤ T

}

the set of terminal attainable wealth with a self-�nancing portfolio starting with a null

wealth at time t. The no-arbitrage condition of second kind (called no sure gain in

liquiditation value in [Rásonyi 10]) reads as follows.
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De�nition 1.1.1. There is no arbitrage of the second kind if for all 0 ≤ t ≤ T , ξ ∈
L0(Rd,Ft) and V ∈ Xt(T ),

ξ + V ∈ L0(KT ,FT ) =⇒ ξ ∈ L0(Kt,Ft) .

This de�nition is partially recalled in Chapter 2. Part 1 relies heavily on this de�nition

of Arbitrage and we will see that it is possible to extend this de�nition or transform it

in the study of investment-production portfolios.

1.1.2 Equivalent martingale measures and incomplete market

As said before, the set of equivalent martingale measures is not unique in incomplete

market. There is not a unique martingale de�ator ρ such that Z := ρS is a martingale.

Therefore, several pricing rules implies several no-arbitrage prices. In a frictionless mar-

ket, the process ρ takes the form of a change of probability measure. Thus, in incomplete

market, there are several probability measures Q, equivalent to the initial measure of

the model, under which the process S is a (local) martingale. The following introductory

sections recall implicit assumptions in Chapters 4 and 5.

The minimal martingale measure

This section intends to introduce the minimal martingale measure of Föllmer & Schweizer

[Föllmer 91]. This measure is central in Chapter 4. We will also make the link with

the semi-complete market setting, which is a special case of incomplete market. This

paragraph is inspired from Schweizer [Schweizer 95, Schweizer 01].

Let (Ω,F ,P) be a probability space equipped with a �ltration F := (Ft)0≤t≤T satisfying

the usual assumptions (right-continuity and completeness), with T > 0 �nite. Let S be

a F-adapted Rd-valued càdlàg process.

De�nition 1.1.2. A real-valued process ρ is a martingale density for S if ρ is a local

P-martingale with ρ0 = 1 P− a.s. and such that ρS is a local P-martingale.

In the above de�nition (taken from [Schweizer 95]), it is always possible to take a càdlàg

version of ρ. If S admits a martingale density ρ which is strictly positive (which is called

a strict martingale density), then S is a P-semimartingale.

De�nition 1.1.3. A Rd-valued P-semimartingale S satis�es the structure condition (SC)

if it admits a canonical decomposition

S = S0 +M +A
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withM ∈M2
loc(P), Ai �

〈
M i
〉
� B with Ai having predictable densities θi for i = 1 . . . d

and some given càdlàg increasing process B null at 0, and there exists λ ∈ L2
loc(M) such

that [
d
〈
M i,M j

〉
t

dBt

]
1≤i,j≤d

· λt =

[
θit
d
〈
M i
〉
t

dBt

]
1≤i≤d

.

It is always possible to �nd a process B as above. Schweizer [Schweizer 95] showed the

following characterization of martingale densities.

Theorem 1.1.1. Assume that S satis�es (SC). Then ρ ∈M2
loc(P) is a martingale density

for S if and only if ρ satis�es the stochastic di�erential equation

ρt = 1−
∫ t

0
ρs−λsdMs +Rt 0 ≤ t ≤ T

for some R ∈M2
0,loc(P) strongly orthogonal to M i for i = 1 . . . d.

The natural interpretation is to see ρ as a change of measure. In the above theorem, one

can take in particular R = 0, and ρ̂ := E
(
−
∫
λ · dM

)
is thus the density of a measure

Qmin � P with respect to P. If ρ̂ is a martingale, then Qmin is called the minimal

local martingale measure for S. If in addition we suppose that ρ̂ is square-integrable,

Qmin is called the minimal martingale measure for S. This probability measure satis�es

several criteria which are not detailed here. We provide here a su�cient condition for

the uniqueness of Qmin (Theorem 7 in [Schweizer 95]). It also justi�es the appellation of

minimal measure.

Theorem 1.1.2. Assume that S is continuous. Then it admits a strict martingale density

if and only if S satis�es (SC). In that case, if

H(Qmin|P) := EQmin
[
log

dQ
dP

∣∣∣∣
F

]
< +∞,

then Qmin is the unique minimizer of
{
H(Q|P)− 1

2E
Q [〈∫ λ · dM〉

T

]}
over all non nega-

tive Q� P such that dQ
dP

∣∣∣
Ft

is a martingale density for S satisfying EQ [〈∫ λ · dM〉
T

]
<

+∞.

It is thus possible to identify the minimal (local) martingale measure given this criterion.

In Chapter 4, we directly propose the equivalent martingale measure Qmin for the asset

prices S. It appears from the above construction that in the �nancial setting, the minimal

martingale measure a�ects the dynamics of the price S (which depends on the process
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M) but let unchanged the orthogonal part in F . This property is commented in Chapter

4. Note that if
〈∫

λ · dM
〉
T
is deterministic, Qmin is also the unique minimizer of

D(Q,P) :=

(
Var

[
dQ
dP

])1/2

over all equivalent local martingale measures Q of P with dQ
dP ∈ L

2(R∗+,P). This is the

case in the proposed model in Chapter 4.

The semi-complete market framework

Now, we bene�t from the above notations to introduce the semi-complete market frame-

work. This concept is used in Chapter 5. In his Thesis, Becherer [Becherer 01] de�nes

a semi-complete market model as a complete �nancial sub-market and additional inde-

pendent sources of risk. In what follows, we take the de�nitions from [Bouchard 11b].

Let us de�ne the �ltration FSt := σ {Ss : 0 ≤ s ≤ t}. We assume without loss of gene-

rality that (FSt )0≤t≤T is completed and right-continuous. The �ltration (FSt )t is thus a

sub�ltration of F, representing the information coming from the �nancial market.

De�nition 1.1.4. The �nancial market is complete if

EQ [H] = EQ′ [H] for all Q,Q′ ∈M(P) and all H ∈ L∞(R,FST ) .

Considering the above de�nitions, De�nition 1.1.4 implies that for any martingale den-

sities ρ and ρ′ for S being true martingales, we have that

E
[
ρt|FSt

]
= E

[
ρ′t|FSt

]
.

We �nish this section by quickly saying that the minimal martingale measure appears in

the semi-complete market setting in portfolio optimization problems, see [Becherer 01]

and [Bouchard 11b].

1.2 Fundamental results

Arbitrage Pricing Theory has o�ered great improvements in the general theory of sto-

chastic processes. The questions it raises involves many tools from convex analysis and

topology. We start with the leading example of the theory, which is that the FTAP often

relies on the Hahn-Banach selection theorem. We propose here the geometrical version

of Hahn-Banach theorem one can �nd in [Brezis 83]. It will be used in Part 1.
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Theorem 1.2.1 (Hahn-Banach selection theorem). Let A ⊂ E and B ⊂ E be two non-

empty disjoint convex subset of E, a topological vector space. Suppose that A is closed

and B is compact. Then there exists a closed hyperplane which separate A and B in the

strict sense.

In the theory, the martingale de�ator ZT will play the role of the hyperplane generator,

and A will denote the set of terminal attainable wealth of self �nancing portfolios. It

will be associated to Theorem 1.2.8 to be applied to random sets. Nevertheless, we need

the closedness property of this set to apply the theorem. This is where Arbitrage Pricing

Theory provides enhancements.

1.2.1 Convergence lemmata

Let us �rst introduce a fundamental result [Komlós 67].

Theorem 1.2.2 (Komlos theorem). Let (ξn)n≥1 be a sequence of random variables on

(Ω,F ,P) bounded in L1, i.e., with supn E [|ξn|] <∞. Then there exists a random variable

ξ ∈ L1 and a subsequence (ξnk)k≥1 Césaro convergent to ξ a.s., that is, k−1
∑k

i=1 ξ
ni →

ξ a.s. Moreover, the subsequence (ξn) can be chosen in such a way that any further

subsequence is also Césaro convergent to ξ a.s.

A fundamental result as a generalization of Komlos Theorem is due to Delbaen and

Schachermayer [Delbaen 94].

Theorem 1.2.3. Let (ξn)n≥1 be a sequence of positive random variables. Then there

exists a sequence ηn ∈ conv {ξm,m ≥ n} and a random variable η with values in [0,∞]

such that ηn → η a.s.

The notation conv is used to de�ne a closed convex set generated by the given elements.

This theorem has recently been extended by Campi and Schachermayer [Campi 06] to

be applied to �nite variation predictable processes de�ned on a �nite time interval [0, T ]

and a �ltered probability space (Ω,F ,F,P).

Theorem 1.2.4 (Campi-Schachermayer theorem). Let V n be a sequence of �nite varia-

tion, predictable processes such that the corresponding sequence (VarT(Vn))n≥1 is bounded

in L1 under some probability Q ∼ P. then there exists a sequenceWn ∈ conv {V m,m ≥ n}
such that Wn converges for a.e. ω for every t ∈ [0, T ] to a �nite variation predictable

process W 0.

Here, VarT(V) denotes the total absolute variation of the process V on [0, T ]. This theo-

rem is the essence to prove the closedness property of the set of attainable claims.
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Let us introduce a last convergence result which is a simple property one can �nd in

[Kabanov 04].

Theorem 1.2.5. Let ηn ∈ L0 taking values in Rd be such that η̄ := lim infn |ηn| < ∞.

Then there are ηn(k) ∈ L0 such that for all ω, the sequence ηn(k)(ω)(ω) is a convergent

subsequence of the sequence ηn(ω).

This result can be turned over in order to prove that for an unbounded sequence, we can

�nd a subsequence converging to in�nity almost surely.

1.2.2 Fatou-convergence

All these convergence results are used to demonstrate a certain type of closedness property

for a set of random variables. In Arbitrage Pricing Theory in continuous time, we use

the speci�c notion of Fatou-convergence.

De�nition 1.2.1. A sequence in L0 is said to be Fatou-convergent if it is uniformly boun-

ded by below (in some speci�c sense if it is in a multidimensional space) and convergent

almost surely.

This concept allows to de�ne naturally the Fatou-closedness concept. This concept is

useful for a proper de�nition of closure for subset of L0. The last set being in�nite

dimensional, it is not locally convex, which is the basis assumption for bipolar theorems.

Fatou-closedness allows to easily obtain a closedness result in L∞. This comes from the

so-called Krein-Smulian Theorem (see Proposition 5.5.1 in [Kabanov 09]) :

Theorem 1.2.6 (Krein-Smulian theorem). Let A ⊂ L∞ be a convex set. Then

A is weak∗closed⇔ A ∩ {ξ : ‖ξ‖∞ < κ} is closed in probability for every κ.

If A is a subset of L0 taking values in Rd and such that any elements of A are bounded

by below, we have the following link between A and L∞ :

Theorem 1.2.7. If A is Fatou-closed, then the set A ∩ L∞ is weak∗ closed.

This theorem is the central tool to have applications of the FTAP, such as the super-

replication theorem. It allows to apply Theorem 1.2.1.

1.2.3 Measurable selection

All the above results would only belong to the theory of convex analysis and topology

if there was no random part in the manipulated objects. The central result we need
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to cite here is a measurable selection argument, which can be found in a raw form in

([Dellacherie 78], III-45) and under a more convenient form in [Kabanov 09]. It is a special

case of the Jankov-von Neumann Theorem, see Th 18.22 in [Aliprantis 06].

Theorem 1.2.8. Let (Ω,F ,P) be a complete probability space, let (E, E) be a Borel space

and let Γ ⊂ Ω × E be an element of the σ-algebra F ⊗ E. Then the projection PrΓ of

Γ onto Ω is an element of F , and there exists an E-valued random variable ξ such that

ξ(ω) ∈ Γω for all non-empty ω-sections Γω of Γ.

Another lemma will be of great interest. It is has been rediscovered by Rásonyi [Rásonyi 08]

to develop the concept of arbitrage of second kind in markets with proportional transac-

tion costs with new tools. We recall this lemma since the results of Rásonyi [Rásonyi 08,

Rásonyi 10] are central to this part of the thesis. In the following, B1 denotes the unit

ball of Rd.

Lemma 1.2.1. Let G ⊂ H ⊂ F be σ-algebras. Let C ⊂ B1 be a H-measurable ran-

dom convex compact set. Then, there exists a G-measurable random convex compact set

E [C|G] ⊂ B1 satisfying

L0(E [C|G] ,G) = {E [ϑ|G] : ϑ ∈ L0(C,H)}.

In the above de�nition, L0(E [C|G] ,G) denotes the set of G-measurable random variables

in L0 taking values in E [C|G] almost surely.

In Chapter 5, we also use a measurable selection theorem for optimization problems. Let

(X,B(X)) and (Y,B(Y )) be two Borel spaces and let u be a bounded real-valued function

on X × Y . We are interested in a measurable map f : X 7→ Y such that

u(x, f(x)) ≥ sup
y∈D(x)

u(x, y)− ε

for some ε > 0, where D ⊂ X × Y and D(x) is the x-section of D. We appeal here to

Theorem 3.1 and Corollary 3.1 in [Rieder 78] in the case of Example 2.4 in the latter.

For a de�nition of a selection class, see [Rieder 78].

Theorem 1.2.9. Let L be a selection class for (B(X),B(Y ). Assume that D ∈ L and

{(x, y) ∈ D : u(x, y) ≥ c} ∈ L for all c ∈ R. Then for all ε > 0, there exists a measurable

map f : X 7→ Y such that for all x ∈ pD, f(x) ∈ D(x) and

u(x, f(x)) ≥

{
supy∈D(x) u(x, y)− ε if supy∈D(x) u(x, y) < +∞
1/ε if supy∈D(x) u(x, y) = +∞

.

Moreover, the map x 7→ supy∈D(x) u(x, y) is measurable.
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Chapitre 2

No marginal arbitrage for high

production regime in discrete time

2.1 Introduction

As explained in the introduction, we are motivated by applications in optimal hedging

of electricity derivatives for electricity producers. Electricity producers sell derivative

contracts that allow them to buy electricity at di�erent periods and at a price �xed in

advance. In practice, the producer can deliver the required quantities of electricity either

by producing it or by buying it on the spot market. He can also try to cover himself

through future contracts, but the granularity of the available maturities on the market

is in general insu�cient.

It is a typical situation where a �nancial agent can manage a portfolio by either trading

on a �nancial market or by producing a good himself. Such models have already been

studied in the literature, in particular by Bouchard and Pham [Bouchard 05] who dis-

cussed the questions of no-arbitrage, super-hedging and expected utility maximization in

a discrete time model with proportional transaction costs, see also Kabanov and Kijima

[Kabanov 06] and the references therein.

As in Bouchard and Pham [Bouchard 05], we work in a discrete time model with pro-

portional transaction costs. Although it does not need to be explicit in the model, we

have in mind that the assets are divided in two classes : the pure �nancial assets and

the ones that are used for production purposes. Both can be traded in the market but

some of them can be consumed in order to produce other assets. For instance, coal can

be traded on the market but is also used to produce electricity that can then be sold so
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as to provide currencies. The quantity used for production on the time period [t, t+ 1] is

chosen at time t. It gets out of the portfolio and enters a production process. Depending

on the quantity used, a (random) return enters the portfolio at time t+ 1. Therefore, the

main di�erence with Bouchard and Pham [Bouchard 05] is that we explicitly decide at

each time what should be the regime of production, rather than letting it be determined

just by inventories.

Obviously, both approaches could be combined. We refrain from doing this in this chapter

in order to isolate the e�ect of our production model and to avoid too many unnecessary

complexities.

As in [Bouchard 05], we �rst discuss the absence of arbitrage opportunity and its dual

characterization. In [Bouchard 05], the authors adapt the notion of robust no-arbitrage in-

troduced by Schachermayer [Schachermayer 04]. It essentially means that there is still no-

arbitrage even if transaction costs are slightly reduced and production returns are slightly

increased. In the last section of this chapter, we adapt the arguments of [Bouchard 05]

to our context, and prove that there is no di�culty to do so. However, we prefer to

adopt along the chapter the (more natural) notion of no-arbitrage of second kind, which

was recently introduced in the context of �nancial markets with transactions costs by

Rásonyi [Rásonyi 10] under the name of no-sure gain in liquidation value, see also Denis

and Kabanov [Denis 11b] for a continuous time version. It says that we cannot turn a

position which is not solvent at time t into a position which is a.s. solvent at a later time

T by trading on the market. In models without transaction costs, this corresponds to the

usual notion of no-arbitrage.

Another di�erence with Bouchard and Pham [Bouchard 05] is that we allow for reaso-

nable arbitrages due to the production possibilities. Here, reasonable means that it may

be possible to have a.s. positive net returns for low production regimes. However, they

should be limited in the sense that marginal arbitrages for high production regimes are

not possible. The way we model this consists in assuming that the production function

β → R(β) admits an a�ne upper bound β → c+ Lβ, which is somehow sharp for large

values of β, and that the linear model in which R is replaced by L admits no arbitrage

of second kind. In the case where each component of R is concave, we have in mind

that it should hold for L such limα→∞R(αβ)/α = Lβ (whenever it makes sense), i.e.

no-arbitrage holds in a marginal way for large regimes β. From the economic point of

view, this means that gains can be made from the production in reasonable situations,

but that it becomes (marginally) risky when the regime of production is pushed too high.

Note that our approach is di�erent from the notions of no marginal and no scalable
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arbitrage studied in Pennanen and Penner [Pennanen 10] in the context of market models

with convex trading cost functions, see also Pennanen [Pennanen 11] and the references

therein. The di�erences will be highlighted in Remark 2.2.4 below.

From the mathematical point of view, it allows to reduce at �rst to a linear model for

which a nice dual formulation of the no-arbitrage condition is available, in the sense that

the set of dual variables can be fully described in terms of martingales evolving in appro-

priate sets. This is not the case for non-linear models, compare with [Bouchard 05]. They

are constructed by following the arguments of Rásonyi [Rásonyi 10] which do not require

to prove the closedness of the set of attainable claims a-priori. Once they are construc-

ted, one can then show that the set of attainable claims is indeed closed in probability in

the linear and in the original models. As usual this leads to a dual formulation of these

sets, and can also be used to prove existence for expected utility maximization problems,

which, in particular, opens the door to the study of indi�erence prices.

We refer to Kabanov and Safarian [Kabanov 09] for a wide overview of models with

proportional transaction costs. See also Pennanen and Penner [Pennanen 10] and Rásonyi

[Rásonyi 08] for some more recent results in discrete time.

The rest of the chapter is organized as follows. We �rst describe our model, state the

dual characterization of our no-arbitrage condition and important closedness properties in

Section 2.2. Section 2.3 discusses applications to super-hedging and utility maximization

problems. We then develop a model corresponding to this framework directly inspired

from the �rst part of the thesis. The proofs are collected in Section 2.5. In order to

ensure exhaustion, we propose as an additional section to study the robust no-arbitrage

condition for our model and the necessary closedness property of the set of attainable

claims under this condition.

2.2 De�nitions and main results

2.2.1 Model description

From now on we denote by T ∈ N\ {0} a �xed time horizon and set T := {0, 1, . . . , T}.
The complete �ltration of the investor, F = (Ft)t∈T, is supported by a probability space

(Ω,F ,P). We assume that FT = F and that F0 is trivial.

As in [Schachermayer 04], we model exchange prices by an adapted process π = (πt)t∈T

taking values in the set Md of square d-dimensional matrices, for some d ≥ 1, satisfying
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the following conditions for all t ≤ T and i, j, k ≤ d :

(i) πijt > 0, (ii) πiit = 1, (iii) πijt π
jk
t ≥ πikt . (2.2.1)

Here, πijt should be interpreted as the number of units of asset i required to obtain one

unit of asset j at time t. The conditions (i) and (ii) need no comment. The third condition

is also natural, it means that it is always cheaper to buy directly units of asset k from

units of asset i rather then going through the asset j. Note that, combined with (ii), it

implies that πijt π
ji
t ≥ 1, which means that the ask price is always greater than the bid

price. The case where πijt π
ji
t = 1 corresponds to the situation where the ask and bid

prices are the same, i.e. there is no friction.

All over this paper, we shall consider the so-called e�cient friction case :

Assumption 2.2.1. πijt π
ji
t > 1 for all i 6= j ≤ d and t ∈ T.

It means that ask prices are always strictly greater than bid prices.

As in [Kabanov 02] and [Kabanov 03], we model portfolios as d-dimensional processes,

each component i corresponding to the number of units of asset i held. The composition

of a portfolio holding Vt at time t can be changed by acting on the �nancial market. If ξt
denotes the net number of additional units of each asset in the portfolio after trading at

time t, it should satisfy the standard self-�nancing condition. In our context, this means

that ξt ∈ −Kt, whenever we allow to throw away a non-negative number of the holdings,

where, for each ω ∈ Ω,

Kt(ω) := conv
(
πij(ω)ei − ej , ei ; i, j ≤ d

)
, (2.2.2)

where ei stands for the i-th unit vector of Rd de�ned by eki = 1i=k.

Note that Vt ∈ Kt means that there exists ξt ∈ −Kt such that Vt+ξt = 0. This explains

why Kt is usually referred to as the solvency cone, i.e. the set of positions that can be

turned into positions with non-negative entries by immediately trading on the market.

As in Bouchard and Pham [Bouchard 05], we also allow for production. In [Bouchard 05],

the production regime depends only on the inventories in some production assets. Here,

we consider a di�erent approach based on a full control of the production regimes. Namely,

we consider a family of random maps (Rt)t∈T from Rd+ into Rd which corresponds to

production functions. It turns βt units of assets taken from the portfolio at time t into

Rt+1(βt) additional units of assets in the portfolio at time t+1. For the moment, we

only assume that Rt+1 is Ft+1 measurable, in the sense that Rt+1(β) ∈ L0(Rd,Ft+1)
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for all β ∈ L0(Rd+,Ft). The control βt can be associated to a regime of production.

Componentwise, the greater βt gets, the more the producer is putting into the production

system.

All together, a strategy is a pair of adapted processes

(ξ, β) ∈ A0 := L0((−K)× Rd+,F),

i.e. such that (ξt, βt) ∈ L0((−Kt)×Rd+,Ft) for all 0 ≤ t ≤ T . The corresponding portfolio
process, starting from 0, can be written as V ξ,β = (V ξ,β

t )t∈T where

V ξ,β
t :=

t∑
s=0

(ξs − βs+Rs(βs−1)1s≥1) . (2.2.3)

Remark 2.2.1. Observe that we do not impose constraints on portfolio processes. In

particular, one can consume some asset for production purposes although we do not

hold them. This means that one can borrow some units of assets to use them in the

production system. As usual additional convex constraints could be introduced without

much di�culty.

In the following, we shall denote by

XRt (T ) :=

{
T∑
s=t

ξs − βs+Rs(βs−1)1s≥t+1 , (ξ, β) ∈ A0

}
, t ≤ T , (2.2.4)

the set of portfolio holdings that are attainable at time T by trading from time t with a

zero initial holding.

Remark 2.2.2. The sequence of random cones K = (Kt)t∈T is de�ned here through the

bid-ask process π. However, it should be clear that all our analysis would remain true

in a more abstract framework. Namely, one could only consider that K is a sequence of

closed convex cones such that Kt is Ft-measurable, Rd+ ⊂ Kt and Kt ∩ (−Kt) = {0} for
all t ≤ T .

2.2.2 The no-arbitrage condition

In a model without production, i.e.R ≡ 0, it was recently proposed by Rásonyi [Rásonyi 10]

to consider the following no-arbitrage of second kind condition, also called no-sure gain

in liquidation value, NGV in short :

NA20 : (ζ+X0
t (T )) ∩ L0(KT ,F) 6= {0} ⇒ ζ ∈ L0(Kt,F), for all ζ ∈ L0(Rd,Ft) and

t ≤ T .
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It means that we cannot end-up at time T with a solvable position without taking any

risk if the initial position was not already solvable.

In this paper, we shall impose a similar condition on the pure �nancial part of the model,

i.e. there is no-arbitrage of second kind for strategies of the form (ξ, 0) ∈ A0. Contrary

to [Bouchard 05], we do not exclude arbitrages coming from the production whenever

the production regime is small. We only exclude marginal arbitrages for high regimes of

production in the following sense :

De�nition 2.2.1. 1. Given L ∈ L0(Md,F), we say that there is no arbitrage of second

kind for the linear production map L, in short NA2L holds, if

(i) ζ − β + Lt+1β ∈ L0(Kt+1,Ft+1)⇒ ζ ∈ Kt,

(ii) −β + Lt+1β ∈ L0(Kt+1,Ft+1)⇒ β = 0,

for all (ζ, β) ∈ L0(Rd × Rd+,Ft) and t < T .

2. We say that there is no marginal arbitrage of second kind for high production regimes,

in short NMA2 holds, if there exists (c, L) ∈ L0(Rd,F) × L0(Md,F) such that NA2L

holds and

ct+1 + Lt+1β −Rt+1(β) ∈ L0(Kt+1,Ft+1) for all β ∈ L0(Rd+,Ft) and t < T . (2.2.5)

The condition (2.2.5) means that the production function Rt admits an a�ne upper-

bound. In most production models, the map Rt is concave (component by component)

and therefore typically admits such a bound. In (i) and (ii), we focus on the production

model where R is replaced with the linear map associated to L. The fact that we consider

the production map β 7→ Lt+1β instead of β 7→ ct+1+Lt+1β coincides with the idea that

we only want to avoid arbitrages for high production regimes : for large values of |Lt+1β|,
|ct+1| becomes negligible.

For L ≡ 0, the condition (i) is equivalent to the NGV condition of [Rásonyi 10], this

follows from a simple induction under the standing Assumption 2.2.1 above. Our version

is a simple extension to the production-investement model. The condition (i) means that,

even if we produce, we cannot have for sure a solvable position at time t+1 if the position

was not already solvable at time t. The condition (ii) means that producing may lead to

net losses.

In the following, unless otherwise speci�ed, we shall consider (c, L) has given once for all,

and such that (2.2.5) is satis�ed (whenever NMA2 holds). We shall refer to the linear

model as the one where R is replaced by β 7→ Lβ.

Remark 2.2.3. If esssup{|Rt+1(β)|, β ∈ L0(Rd+,F)} ∈ L∞ for all t < T , then one can

choose L ≡ 0. In this case, NMA2 coincides with the NGV condition of [Rásonyi 10]
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on the pure �nancial part, i.e. the no-arbitrage condition is set only on strategies of the

form (ξ, 0). This will have some consequence in Chapter 3.

We conclude this section with a remark that highlights the di�erences between the no-

tion of no marginal arbitrage for high production regimes introduced here and the (see-

mingly close) notions of no marginal arbitrage and no scalable arbitrage discussed in

[Pennanen 11].

Remark 2.2.4. 1. In [Pennanen 11], see also the references therein, the author discusses

the notion of no marginal arbitrage in the context of discrete time models with stock

prices depending in a convex way of the quantity to buy/sell. In the terminology of this

paper, a marginal arbitrage has to be understood as an arbitrage obtained when trading

the marginal price process associated to in�nitesimal trades. In our context, where the

non-linearity only comes from the production map R, this would (essentially) correspond

to an arbitrage obtained for in�nitesimal values of β, i.e. marginally around β = 0. Here,

we also consider arbitrages that can happen marginally, but, as explained above, as a

�surplus� around large regimes/values of β and not around 0. This explain why we use the

terminology of marginal arbitrage for high production regimes. This clearly di�erentiate

the two (very) di�erent notions.

2. In [Pennanen 11], the author also discusses the notion of no scalable arbitrage. It

expresses the fact that an arbitrage cannot be arbitrarily scaled by a positive scalar. In

our setting, the no scalable arbitrage condition would read :⋂
α>0

αXR0 (T ) ∩ L0(Rd+,F) = {0}.

For real valued concave maps R satisfying R(0) = 0, the no scalable arbitrage condition

(essentially) means that the usual no-arbitrage condition holds when considering the

production map β 7→ ∇R(∞)β, whenever we can give a sense to the gradient ∇R and

it admits a limit at in�nity. In this case, with L := ∇R(∞) in NMA2 , we see that (at

least formally) our no marginal arbitrage of second kind condition for high production

regimes, could be viewed as a no scalable arbitrage of second kind condition.

This is not the case in general. Apart from technicalities (for instance, we do not assume

here any concavity, except for the super-hedging theorems of Section 2.3.1), the main

reason is that we are not interested by arbitrages that are scalable but by arbitrages that

can appear marginally as a �surplus� given that the production regime is already high.

To illustrate this, let us consider a very simple (degenerate) two dimensional model with

two periods t = 0, 1. We take π12
t = 2 and π21

t = 1 for t = 0, 1, R1
1(β) = −c̄+ L̄1β

1 and

R2 = 0 where c̄ > 0 is a constant and P
[
L̄1 = 1

]
= 0. This model satis�es (2.2.5) with
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c1 = (−c̄, 0), L11
1 = L̄1, L

ij
1 = 0 for (i, j) 6= (1, 1). In this model, direct computations

show that a claim of the form g = (λg(L̄1−1), 0), with λg > 0, is scalable, i.e. belongs to

∩α>0αX
R
0 (T ), if and only if, for each α > 0, one can �nd β1α

0 ∈ R+ and γα ∈ L0(R+,F1)

such that β1α
0 = λg/α+(c̄+γα)/(L̄1−1). Because c̄ > 0 and γα has to take non-negative

values, this is not possible, except in the case where L̄1 is not random (otherwise β1,α
0

would be a random variable as opposed to a real number). This shows that such claims

are not scalable (in general) in the sense that they do not belong to ∩α>0αX
R
0 (T ). Hence,

the no scalable arbitrage condition does not (in general) say anything on such claims,

while our NMA2 condition says exactly that they cannot belong to L0(R2
+,F1) \ {0}.

2.2.3 Dual characterization of the no-arbitrage condition and closed-

ness properties

Before we state our main results, let us introduce some additional notations and de�ni-

tions.

We �rst de�ne the positive dual cone process K∗ = (K∗t )t∈T associated to K by

K∗t (ω) :=
{
z ∈ Rd : x′z ≥ 0 for all x ∈ Kt(ω)

}
, ω ∈ Ω .

For t ≤ τ ≤ T , we denote byMτ
t (intK∗) the set of martingales Z with positive compo-

nents satisfying Zs ∈ L0(intK∗s ,Fs) for all t ≤ s ≤ τ .
Elements ofMT

t (intK∗) were called strictly consistent price systems, on [t, T ], in [Schachermayer 04].

They have the standard interpretation to be associated to a system of prices in a �ctitious

market without transaction costs that admits a martingale measure, and such that the

relative prices evolve in the interior of the corresponding bid-ask intervals of the original

model induced by π, i.e. are more favorable for the �nancial agent. Indeed, one easily

checks that

K∗t (ω) :=
{
z ∈ Rd+ : zj ≤ ziπijt (ω) for all i 6= j ≤ d

}
. (2.2.6)

Otherwise stated, given Z ∈ MT
t (intK∗), the process Z̄, de�ned by Z̄is := Zis/Z

1
s for

t ≤ s ≤ T , i.e. where the �rst asset is taken as a numéraire, is a martingale on [t, T ] under

the measure Q induced by the conditional density process (Z1
s/Z

1
t )t≤s≤T and satis�es

Z̄js/Z̄is < πijs for t ≤ s ≤ T .

Remark 2.2.5. Note that the Assumption 2.2.1 above implies that, and is actually

equivalent to, intK∗t 6= ∅ for all t ≤ T . This follows from (2.2.6).

Altogether, elements ofMT
0 (intK∗) play a similar role as equivalent martingale measures

in frictionless markets, see e.g. [Schachermayer 04] and the references therein. In parti-
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cular, it was shown in [Rásonyi 10] that, for L ≡ 0, the no-arbitrage condition NA20 is

equivalent to :

PCE0 : for each 0 ≤ t ≤ T andX ∈ L1(intK∗t ,Ft), there exists a process Z ∈MT
t (intK∗)

satisfying Zt = X.

This not only means that the no-arbitrage condition NA20 implies the existence of a

strictly consistent price system, but that strictly consistent price systems de�ned on any

subinterval [t, τ ] can also be extended consistently on [t, T ] : for Z ∈ Mτ
t (intK∗), one

can �nd a strictly consistent price system Z̃ ∈MT
t (intK∗) such that Z̃ = Z on [t, τ ].

Such a property is obvious in frictionless markets but in general not true in our multiva-

riate setting where the geometry of the cones (K∗t )t∈T is non-trivial.

In our production-investment setting, such price systems should also take into account

the production function. When it is linear, given by the random matrix process L, the cost

in units at time t of a return (in units) Lt+1β at time t+1 is β ∈ L0(Rd+,Ft). Otherwise
stated, one can build the position (Lt+1− Id)β at time t+ 1 from a zero holding at time

t. For the price system Z̄ and the associated pricing measure Q, see the discussion above,

the value at time t of this return is EQ[Z̄ ′t+1(Lt+1 − Id)β | Ft]. If the �ctitious price

system is strictly more favorable than the original one, one should actually be able to

choose it in such a way that EQ[Z̄ ′t+1(Lt+1 − Id)β | Ft] < 0 for all β ∈ L0(Rd+,Ft) \ {0}.

The above discussion leads to the introduction of the set Lτt (intRd−) of martingales Z

on [t, τ ] with positive components satisfying E
[
|Z ′s+1(Ls+1 − Id)| | Fs

]
< ∞ as well as

E
[
Z ′s+1(Ls+1 − Id) | Fs

]
∈ intRd− for all t ≤ s < τ , t ≤ τ ≤ T P− a.s.

Our �rst main result extends the property NA20 ⇔ PCE0 to NA2L ⇔ PCEL where

PCEL : for each 0 ≤ t ≤ T and X ∈ L1(intK∗t ,Ft), there exists a process Z ∈

MT
t (intK∗) ∩ LTt (intRd−) satisfying Zt = X.

Theorem 2.2.1. NA2L ⇔ PCEL.

Remark 2.2.6. Note that the property PCEL allows one to construct (in theory) all

the elements of MT
0 (intK∗) ∩ LT0 (intRd−) by a simple forward induction. First, one can

start with any Z0 ∈ intK∗0 . Assuming that a given Z ∈Mt
0(intK∗)∩Lt0(intRd−) has been

constructed, one can then choose any random variables Zt+1 ∈ L0(intK∗t+1,Ft+1) such

that E [Zt+1 | Ft] = Zt and E
[
Z ′t+1(Lt+1 − Id) | Ft

]
∈ intRd−. This corresponds to simple

linear inequalities. When Ω is �nite, the set of such random variables can be described

explicitly.

By similar arguments as developed in Lemma 12 in [Campi 06], the existence of Z ∈
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MT
0 (intK∗)∩LT0 (intRd−) then allows to provide a L1 upper-bound on strategies (ξ, β) ∈

A0 satisfying V
ξ,β
T +κ ∈ KT for some κ ∈ Rd. However, because no integrability condition

is imposed a-priori on c, it requires the additional assumption :

∃ Ž ∈MT
0 (intK∗) ∩ LT0 (intRd−) s.t. E

[
|Ž ′T ct|

]
<∞ ∀ 0 < t ≤ T . (2.2.7)

Lemma 2.2.1. Assume that (2.2.7) holds. Then, there exists Q ∼ P and a constant

α ≥ 0, such that, for all κ ∈ Rd and (ξ, β) ∈ A0 satisfying V ξ,β
T +κ ∈ KT , one has :

EQ

 ∑
0≤t≤T

(|ξt|+|βt|)

 ≤ α (E [ŽTCT0 ]+Ž ′0κ
)

where

CTt :=

T∑
s=t+1

cs , t < T . (2.2.8)

Remark 2.2.7. Given (ξ, β) ∈ A0, let us denote by

Vξ,βt :=

t∑
s=0

(ξs − βs + Lsβs−11s≥1) . (2.2.9)

In view of Theorem 2.2.1, applying Lemma 2.2.1 to the case R(β) = 0 + Lβ, i.e. c = 0,

leads to the following corollary : Assume that NA2L holds. Then, there exists Q ∼ P,
Z0 ∈ intK∗0 and a constant α ≥ 0 such that, for all κ ∈ Rd and (ξ, β) ∈ A0 satisfying

Vξ,βT +κ ∈ KT , one has :

EQ

 ∑
0≤t≤T

(|ξt|+|βt|)

 ≤ αZ ′0κ .
The last remark combined with Komlos Lemma readily implies that the sets

XLt (T ) :=

{
T∑
s=t

(ξs − βs+Ls(βs−1)1s≥t+1) , (ξ, β) ∈ A0

}
,

are Fatou-closed, in the sense that the limit in probability of sequences of elements

(gn)n≥1 ⊂ XLt (T ) satisfying gn + κ ∈ KT for all n ≥ 1 belongs to XLt (T ) as well. Under

(2.2.7), a similar result could be easily proved by appealing to Lemma 2.2.1 for the sets

XRt (T ), recall (2.2.4), under the following upper-semicontinuity assumption :

Assumption 2.2.2. We assume that for all β0 ∈ Rd+ andt ≤ T ,

lim sup
β∈Rd+,β→β0

Rt(β)−Rt(β0) ∈ −Kt .
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where the limsup is taken component by component. Such Fatou-closure properties are

well-enough for applications, however it requires (2.2.7). In order to deal with the general

case, i.e. when (2.2.7) may not hold, we shall need to use more sophisticated arguments,

which actually allow to show the following stronger closedness property.

Theorem 2.2.2. XL0 (T ) is closed in probability under NA2L. The same holds for XR0 (T )

under NMA2 and Assumption 2.2.2.

2.3 Applications

2.3.1 Super-hedging theorems

As usual, the closedness property allows to provide dual formulations for the set of

attainable claims. We �rst formulate it in the linear model. In this section, we de-

note by MT
0 (K∗) the set of martingales Z satisfying Zs ∈ L0(K∗s ,Fs) for all s ≤

T , and by LT0 (Rd−) the set of martingales Z with non-negative components satisfying

E
[
|Z ′s+1(Ls+1 − Id)| | Fs

]
<∞ and E

[
Z ′s+1(Ls+1 − Id) | Fs

]
∈ Rd− for all s < T .

Proposition 2.3.1. Assume that NA2L holds and let V ∈ L0(Rd,F) be such that

V+κ ∈ L0(KT ,F) for some κ ∈ Rd. Then the following assertions are equivalent :

(i) V ∈ XL0 (T ),

(ii) E [Z ′TV ] ≤ 0 for all Z ∈MT
0 (K∗) ∩ LT0 (Rd−),

(iii) E [Z ′TV ] ≤ 0 for all Z ∈MT
0 (intK∗) ∩ LT0 (intRd−).

In the original non-linear model, an abstract dual formulation is also available. Howe-

ver, due to the non-linearity of the set of attainable terminal claims, it requires the

introduction of the following support function :

αR(Z) := sup
{
E
[
Z ′TV

]
, V ∈ XR0b(T )

}
, Z ∈MT

0 (K∗) ,

where

XR0b(T ) :=
{
V ∈ XR0 (T ) s.t. V+κ ∈ KT for some κ ∈ Rd

}
.

Remark 2.3.1. 1. It will be clear from the proof in Section 2.5.2, see (2.5.6) with ε = 0,

that αR(Z) ≤ E
[
Z ′TC

T
0

]
for all Z ∈MT

0 (K∗) ∩ LT0 (Rd−), whenever the last term is well-

de�ned, which is in particular the case if ct is essentially bounded from below, component

by component, for each t ≤ T .
2. Let αL be de�ned as αR in the case R(β) = 0 +Lβ. Since 0 ∈ XL0 (T ), we have αL ≥ 0.

On the other hand, 1. applied to R(β) = 0 + Lβ, i.e. c = 0, implies that αL(Z) ≤ 0 for

all Z ∈MT
0 (K∗) ∩ LT0 (Rd−). Hence, αL(Z) = 0 for all Z ∈MT

0 (K∗) ∩ LT0 (Rd−).

37



Moreover, as usual, we shall need the set XR0 (T ) to be convex, which is easily checked

under the additional assumption (R)(a) below. We will also need that bounded strategies

lead to L1-bounded from below terminal wealth values. We therefore impose the following

conditions.

Assumption 2.3.1. We assume the following :

(a) For all α ∈ L0([0, 1],F), β1, β2 ∈ L0(Rd+,F) and t ≤ T , we have

αRt(β1)+(1− α)Rt(β2)−Rt(αβ1+(1− α)β2) ∈ −Kt .

(b) For all t ≤ T and β ∈ L∞(Rd+,F), R−t (β) ∈ L1(Rd,F) where we used the notation

R− := (max{−Ri, 0})i≤d.

Remark 2.3.2. The technical Assumption 2.3.1(b) is by no means restrictive. One can

for instance reduce to it whenever there exists a deterministic map ψ : Rd+ 7→ [1,∞)

such that esssup{|R−t (β)|/ψ(β), t ≤ T, β ∈ Rd+} =: η ∈ L0(R+,F). Indeed, in this case,

it su�ces to replace the original probability measure P by P̃ ∼ P de�ned by dP̃/dP =

e−η/E [e−η]. Since P̃ ∼ P , this does not a�ect the conditions NA2L, Assumption 2.2.2

and Assumption 2.3.1(a).

Proposition 2.3.2. Assume that NMA2 , Assumption 2.2.2 and Assumption 2.3.1

hold. Fix V ∈ L0(Rd,F) such that V + κ ∈ L0(KT ,F), for some κ ∈ Rd, and consider

the following assertions :

(i) V ∈ XR0 (T ),

(ii) E [Z ′TV ] ≤ αR(Z) for all Z ∈MT
0 (K∗),

(iii) E [Z ′TV ] ≤ αR(Z) for all Z ∈MT
0 (intK∗).

Then, (i)⇔ (ii)⇒ (iii). If moreover there exists Z ∈ MT
0 (intK∗) such that αR(Z) < ∞,

then (iii)⇒ (ii).

In the case where the linear map L coincides with the asymptotic behavior of R.

Assumption 2.3.2. We assume that for all β ∈ Rd+ and t ≤ T ,

lim
η→∞

Rt(ηβ)/η = Ltβ .

one can restrict to elements in LT0 (Rd−) (resp. LT0 (intRd−)) in the above dual formulations.

Proposition 2.3.3. Let the conditions of Proposition 2.3.2 hold. Assume further that

Assumption 2.3.2 is satis�ed. Fix V ∈ L0(Rd,F) such that V +κ ∈ L0(KT ,F), for some

κ ∈ Rd, and consider the following assertions :
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(i) V ∈ XR0 (T ),

(ii) E [Z ′TV ] ≤ αR(Z) for all Z ∈MT
0 (K∗) ∩ LT0 (Rd−),

(iii) E [Z ′TV ] ≤ αR(Z) for all Z ∈MT
0 (intK∗) ∩ LT0 (intRd−).

Then, (i)⇔ (ii)⇒ (iii). If moreover there exists Z ∈ MT
0 (intK∗) ∩ LT0 (intRd−) such that

αR(Z) <∞, then (iii)⇒ (ii).

Remark 2.3.3. It follows from Remark 2.3.1 that (i)⇔ (ii)⇔ (iii) in Propositions 2.3.2

and 2.3.3 whenever assumption (2.2.7) holds. It is the case under NMA2 whenever c is

essentially bounded.

2.3.2 Utility maximization

In order to avoid technical di�culties, we shall only discuss here the case of a (possibly)

random utility function de�ned on Rd and essentially bounded from above. More general

cases could be discussed by following the line of arguments of [Bouchard 05].

We therefore let U be a P − a.s.-upper semi-continuous concave random map from Rd

to [−∞, 1] such that U(V ) = −∞ on {V /∈ KT } for V ∈ L0(Rd,F). Given an initial

holding x0 ∈ Rd, we assume that

U(x0) :=
{
V ∈ XR0 (T ) : E [|U(x0+V )|] <∞

}
6= ∅.

Then, existence holds for the associated expected utility maximization problem whenever

Assumption 2.2.2, Assumption 2.3.1 and NMA2 hold, and there exists Z ∈MT
0 (intK∗)

such that αR(Z) < ∞. The latter being a consequence of NMA2 when c is essentially

bounded, recall Remark 2.3.1 and Theorem 2.2.1.

Proposition 2.3.4. Assume that Assumption 2.2.2, Assumption 2.3.1 andNMA2 hold,

and that αR(Z) <∞ for some Z ∈MT
0 (intK∗). Assume further that U(x0) 6= ∅. Then,

there exists V (x0) ∈ XR0 (T ) such that

E [U(x0+V (x0))] = sup
V ∈U(x0)

E [U(x0+V )] .

2.4 Example : an electricity generation pricing and hedging

model

Let us consider a market model where the agent produces electricity which can then

be sold on the spot market. For ease of presentation, we only consider the case where

the production takes place in a single monetary zone, say Euro, but the model might

be extended to several currencies. The market consists in three assets : the �rst one is
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cash, the second one is coal and the last one is fuel. We assume througouth this section

that conditions (2.2.1) and Assumption 2.2.1 hold. Allowed self-�nanced strategies ξ are

described by the bid-ask process (πij)1≤i,j≤3 for that market. The agent can use coal

or fuel for production purpose, but can also buy a one period ahead delivery contract

to small local electricity producers. Given a regime βt, the producer obtains a return

r1
t+1(βt) labeled in cash at time t + 1, depending on the electricity spot price. Since he

does not produce coal or fuel, there is no return in these two assets. As a consequence,

the production function Rt+1 has the form (r1
t+1, 0, 0), and is a random Ft+1-measurable

function.

Remark 2.4.1. If r1
t is P − a.s. concave and non-decreasing, then r1

t (αβ)/α admits

P− a.s. a limit L1
t (β) as α→∞, where the map β 7→ L1

t (β) is P− a.s. linear. It follows

that Rt(αβ)/α admits a limit as α → ∞ with can be associated to a random matrix Lt

of dimension 3. Moreover, we clearly can �nd ct ∈ L0(Rd,Ft) such that (2.2.5) holds.

2.4.1 The model of electricity generation

We consider now a speci�c model of such a situation. We denote by β2
t (resp. β

3
t ) denotes

the number of units of coal (resp. fuel) sent to power plants using coal (resp. fuel) at time

t. Hereafter coal and fuel are called technologies 2 and 3. The agent has ni ≥ 1 power

plants that use the technology i = 2, 3. The k-th power plant that uses the technology i

has a maximal capacity ∆ik
t+1 ∈ L0(R+∪{∞},Ft+1) for the time period [t, t+ 1], i = 2, 3

and k = 1, . . . , ni. The case ∆ik
t+1 = ∞ means that there is no limit on the number

of quantities that can be treated. Each of them convert one unit of raw material sent

to the plant at time t into qikt+1 ∈ L0(R+,Ft+1) MWh of energy that are sold on the

spot market at a price Pt+1 ∈ L0(R,Ft+1). The factor qikt+1 is called the heat rate of

the k-th power plant, which uses the technology i. The randomness of ∆ik
t+1 and qikt+1

allows for instance to model possible break-downs or speci�c unexpected problems in the

production process. For ease of presentation, we assume that the producer has an idea

on which power plant is more e�cient than the other and uses in priority the ones that

are more e�cient. Without loss of generality, we can assume that the power plant 1 is

the more e�cient, the power plant 2 is the second more e�cient one and so on, namely

qikt+1 ≥ q
i(k+1)
t+1 P− a.s. for all k ∈ [1, ni − 1], i = 2, 3 and t < T . (2.4.1)

The production function r1i associated to the technology i = 1, 2 is thus given by

r1i
t+1(βi) = Pt+1

ni∑
k=1

(
qikt+1 min{βi − ∆̄ik

t+1; ∆ik
t+1}+

)
−

ni∑
k=1

γikt+11{{βi≥∆̄ik
t+1}}
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where ∆̄ik
t+1 := 1{k≥2}

∑
1=`<k ∆i`

t+1 denotes the maximal capacity of the best k−1 plants,

y+ denotes the positive part of a real number y, and γikt+1 ∈ L0(R+,Ft+1) stands for a

(possibly random) �xed cost associated to the k-th power plant (e.g. a starting costs for

power plants that need to be switched on).

We denote by β1
t the amount of cash used at time t to buy one period ahead delivery

contracts to small local electricity producers. The price of these contracts at time t is

ft ∈ L0((0,∞),Ft) per MWh. Thus, consuming β1
t units of cash at time t produces

r11
t+1(β1

t ) :=
st+1

ft
β1
t

units of cash at time t + 1, once MWh have been sold on the spot market at the spot

price Pt+1.

Altogether, the production map is given by

Rt+1(βt) =

(
r1
t+1(βt) :=

3∑
i=1

r1i
t+1(βit), 0, 0

)
. (2.4.2)

Note that r1
t+1 is not concave, except if γik = 0 for all i, k, and st+1 ≥ 0, which may not

be the case on the electricity spot market. However, Rt+1 satis�es (2.2.5) with L de�ned

by

L11
t+1 := st+1/ft , L

1i
t+1 := 1{{kit<∞}}Pt+1l

ikit
t+1 for i = 2, 3, and Ljit+1 := 0 for j 6= 1 ,

where

kit := min{k ≤ ni : ∆ik
t+1 =∞} ,

with the usual convention min ∅ =∞. The above choice of L is the smallest possible one

(component by component) under (2.4.1). As for the minimal possible c (component by

component) such that (2.2.5) holds, it takes the form ct+1 = (c1
t+1, 0, 0) with

c1
t+1 = max

β∈R3
+

(
r1
t+1(β)−

3∑
i=1

L1i
t+1β

i

)
,

which is P− a.s. �nite.

2.4.2 The no-arbitrage condition

By the previous results, condition (ii) of NA2L is satis�ed if and only if, for all t ≤ T −1

and βt ∈ L0(R3
+,Ft),

3∑
i=1

(
L1i
t+1 − π1i

t+1

)
βit ≥ 0 ⇒ βt = 0
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which is equivalent to

P [Pt+1 < ft|Ft] > 0 and P
[
1{{kit<∞}}Pt+1q

ikit
t+1 < π1i

t+1|Ft
]
> 0 for i = 2, 3.

Assuming that the above condition is satis�ed, then (i) of NA2L is equivalent to the

existence of an element Z ∈MT
0 (intK∗)∩LT0 (intRd−). Let Q ∼ P be de�ned by dQ/dP =

Z1
T and Z̄ := Z/Z1. As in [Kabanov 02], [Schachermayer 04] and [Rásonyi 10], the fact

that Z ∈ MT
0 (intK∗) is equivalent to Z̄i/Z̄j < πji for all i 6= j, and each Z̄i is a Q-

martingale, i = 2, 3. The new condition Z ∈ LT0 (intRd−) is equivalent to EQ[st+1 | Ft] < ft

and EQ[1{{kit<∞}}st+1l
ikit
t+1−Z̄it+1 | Ft] = EQ[1{{kit<∞}}st+1l

ikit
t+1 | Ft]−Z̄it < 0 for i = 2, 3.

Note that Assumption 2.2.2 trivially holds in this example, so that Theorem 2.2.2 implies

that XR0 (T ) is closed in probability whenever the above conditions are satis�ed.

2.5 Proofs

2.5.1 No-arbitrage of second kind in the linear model and (K,L)-strictly

consistent price systems

In this section, we �rst prove that the no-arbitrage of second kind assumption NA2L

implies the existence of an element Z ∈MT
0 (intK∗) ∩ LT0 (intRd−), which we call (K,L)-

strictly consistent price system.

The arguments used in the proof of Proposition 2.5.1 below are inspired by [Rásonyi 10],

up to non-trivial modi�cations. This proposition readily implies that NA2L ⇒ PCEL

up to an obvious induction argument.

Proposition 2.5.1. Assume thatNA2L holds. Then, for all t < T and X ∈ L1(intK∗t ,Ft),
there exists Z ∈ L1(intK∗t+1,Ft+1) such that X = E [Z | Ft],
E [|Z ′(Lt+1 − Id)| | Ft] <∞ and E [Z ′(Lt+1 − Id) | Ft] ∈ intRd−.

Proof We �x t < T . For ease of notation, we set Mt+1 := Lt+1 − Id. We next de�ne

γt+1 := e−
∑
i,j≤d |M

ij
t+1| and M̄t+1 := γt+1Mt+1. Clearly, M̄t+1 is essentially bounded.

1. We �rst show that intRd− ⊂ cone(intE [Θ|Ft]) =: H, where

Θ :=
{
M̄ ′t+1y+r, (y, r) ∈ (K∗t+1 ∩B1)× [0, 1]d

}
,

recall that B1 is the unit ball of Rd. For later use, observe that, since M̄t+1 is essentially

bounded, Lemma 1.2.1 in Chapter 1 applies to Θ up to an obvious scaling argument.

If intRd− 6⊂ H, then Rd− 6⊂ H on a set A ∈ Ft with P [A] > 0. For each ω ∈ A, H̄(ω) being

a closed convex cone, we can then �nd p(ω) ∈ Rd− and β(ω) ∈ Rd such that

p(ω)′β(ω) < 0 ≤ q′β(ω) for all q ∈ H̄(ω) for ω ∈ A . (2.5.1)
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By the measurable selection argument of Theorem 1.2.8, one can assume that p and β

are Ft-measurable. The right-hand side of (2.5.1), Lemma 1.2.1 and the fact that K∗t+1

is a cone then imply that

(Y ′M̄t+1+ρ′)β1A ≥ 0 for all (Y, ρ) ∈ L∞(K∗t+1 × Rd+,Ft+1),

which leads to β1A ∈ Rd+ and M̄t+1β1A ∈ Kt+1. Since Kt+1 is a cone, the later implies

Mt+1β1A ∈ Kt+1. In view of NA2L, this implies that β1A = 0, which contradicts the

left-hand side of (2.5.1).

2. We next show that there exists Ỹ ∈ L∞(intK∗t+1,Ft+1) such that E
[
Ỹ ′M̄t+1 | Ft

]
∈

intRd−.
To see this, �x η ∈ L∞(intRd−,Ft) and Z ∈ L∞(intK∗t+1,Ft+1). Set Z̄ := E

[
Z ′M̄t+1 | Ft

]
.

We can then �nd ε ∈ L∞((0, 1],Ft) such that η − εZ̄ ∈ L∞(intRd−,Ft). In view of step

1 and Lemma 1.2.1, there exists (Y, ρ) ∈ L∞(K∗t+1 × Rd+,Ft+1) and α ∈ L0(intR+,Ft)
such that η − εZ̄ = αE

[
Y ′M̄t+1+ρ | Ft

]
or, equivalently,

η − αE [ρ | Ft] = E
[
(αY+εZ)′M̄t+1 | Ft

]
.

Clearly, η− αE [ρ | Ft] ∈ intRd− and αY+εZ ∈ L0(intK∗t+1,Ft+1). The required result is

thus obtained for Ỹ := (αY+εZ)/(1+α).

3. We now show that K∗t × {0} ⊂ cone(E [Γ|Ft]) =: E where

Γ :=
{

(γt+1y, M̄
′
t+1y+r), (y, r) ∈ (K∗t+1 ∩B1)× [0, 1]d

}
.

Since E [Γ|Ft] is a.s. convex and compact, see Lemma 1.2.1, it follows that E is P− a.s.

convex and closed. Thus, if K∗t × {0} 6⊂ E on a set A ∈ Ft, with P [A] > 0, the same

arguments as in step 1 imply that we can �nd (p, 0) ∈ L0(K∗t × {0},Ft) and (ζ, β) ∈
L0(Rd × Rd,Ft) such that

p′ζ < 0 on A and 0 ≤ Y ′(γt+1ζ+M̄t+1β)+ρ′β for all (Y, ρ) ∈ L∞(K∗t+1 × Rd+,Ft+1) .

The right-hand side implies that β ∈ Rd+ and γt+1ζ+M̄t+1β = γt+1 (ζ+Mt+1β) ∈ Kt+1,

and therefore ζ+Mt+1β ∈ Kt+1. In view of NA2L, this implies that ζ ∈ Kt, thus leading

to a contradiction with the left-hand side, since p ∈ K∗t .
4. We can now conclude the proof. Fix X ∈ L1(intK∗t ,Ft), let Ỹ be as in step 2 and �x

ε ∈ L1((0, 1],Ft) such that X̃ := X− εE
[
γt+1Ỹ | Ft

]
∈ L1(K∗t ,Ft). It then follows from

step 3 and Lemma 1.2.1 that we can �nd Y ∈ L∞(K∗t+1,Ft+1) and α ∈ L0(R+,Ft)
such that X̃ = E [γt+1αY | Ft] and E [γt+1αY

′Mt+1 | Ft] ∈ Rd−. This implies that

X = E [Z | Ft] and E [Z ′Mt+1 | Ft] ∈ intRd− where Z := γt+1(αY+εỸ ) ∈ intK∗t+1. Since
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X ∈ L1 and K∗ ⊂ Rd+, we must have Z ∈ L1. Moreover, Ỹ , Y and γt+1Mt+1 = M̄t+1

are essentially bounded, while α and ε are Ft-measurable, so that E [|Z ′Mt+1| | Ft] <∞
P− a.s. This shows the required result. 2

It remains to prove the opposite inclusion of Theorem 2.2.1.

Proposition 2.5.2. PCEL ⇒ NA2L.

Proof We �x t < T .

1. We �rst assume that we can �nd (ζ, β) ∈ L∞(Rd × Rd+,Ft) satisfying

ζ − β + Lt+1β ∈ Kt+1, (2.5.2)

and such that ζ /∈ Kt on a set A ∈ Ft of positive measure. This implies that we can �nd

Zt ∈ L1(intK∗t ,Ft) such that

Z ′tζ < 0 on A . (2.5.3)

In view of PCEL, we can then �nd Zt+1 ∈ L1(intK∗t+1,Ft+1) such that E [Zt+1|Ft] =

Zt, E
[
|Z ′t+1(Lt+1 − Id)| | Ft

]
< ∞ and E

[
Z ′t+1(Lt+1 − Id)|Ft

]
∈ intRd−. By (2.5.2), we

have Z ′t+1ζ + Z ′t+1(Lt+1 − Id)β ≥ 0 which, by taking conditional expectations, leads to

Z ′tζ + E
[
Z ′t+1(Lt+1 − Id)|Ft

]
β ≥ 0. Since E

[
Z ′t+1(Lt+1 − Id)|Ft

]
∈ intRd− and β ∈ Rd+,

this leads to a contradiction with (2.5.3).

2. We now assume that β ∈ L0(Rd+,Ft) is such that (Lt+1 − Id)β ∈ Kt+1. For Zt+1

de�ned as above, we obtain Z ′t+1(Lt+1− Id)β ≥ 0 while E
[
Z ′t+1(Lt+1 − Id)|Ft

]
∈ intRd−.

This implies that β = 0. 2

2.5.2 The closedness properties

In this section, we prove that the set XL0 (T ) is closed in probability whenever there exists

a (K,L)-strictly consistent price system, i.e.MT
0 (intK∗)∩LT0 (intRd−) 6= ∅, and that the

same holds for XR0 (T ) under the additional Assumption 2.2.2. In view of Theorem 2.2.1,

Theorem 2.2.2 is a direct consequence of Corollary 2.5.1 below. We start with the proof

of the key Lemma 2.2.1 which will be later applied to the linear case R(β) = 0 + Lβ.

Proof of Lemma 2.2.1. Fix Ž such that (2.2.7) holds. In this proof, we set Mt+1 :=

Lt+1 − Id and Z̄t := E
[
Ž ′t+1Mt+1|Ft

]
, for t < T , in order to alleviate notations. We �rst

observe that (Žt, Z̄t) ∈ intK∗t × intRd− implies :

Ž ′tξ ≤ −ε|ξ| and Z̄ ′tβ ≤ −ε|β| for all (ξ, β) ∈ L0((−Kt)× Rd+,Ft) , t ≤ T , (2.5.4)

for some ε ∈ L0((0, 1),F), compare with Lemma 11 in [Campi 06].

44



We next deduce from (2.2.3)-(2.2.5) that

V ξ,β
T = XT where Xt :=

∑
s≤t

ξs+ζs+(cs+Msβs−1)1{s≥1} for some ζ ∈ L0(−K,F).

(2.5.5)

Since XT+κ = V ξ,β
T +κ ∈ KT , we have Ž ′TXT ≥ −Ž ′Tκ so that E

[
Ž ′TXT |FT−1

]
is well-

de�ned since ŽT ∈ L1. It then follows from the martingale property of Ž, (2.5.4), (2.2.7)

and (2.5.5) that

−Ž ′T−1κ ≤ E
[
Ž ′TXT |FT−1

]
≤ Ž ′T−1XT−1+E

[
Ž ′TC

T
T−1 − ε (|ξT |+|ζT |+|βT−1|) |FT−1

]
,

where CTT−1 is de�ned in (2.2.8). Iterating this procedure leads to

− Ž ′0κ ≤ E
[
Ž ′TXT

]
≤ E

ŽTCT0 − ε ∑
0≤t≤T

(
|ξt|+|ζt|+|βt−1|1{t≥1}

) (2.5.6)

which implies the required result for Q ∼ P de�ned by dQ/dP := εα with α := 1/E [ε]. 2

We can now prove the closedness properties.

Corollary 2.5.1. Assume that there exists Z ∈MT
0 (intK∗) ∩LT0 (intRd−). Then, XL0 (T )

is closed in probability. If moreover Assumption 2.2.2 is satis�ed, then the same holds for

XR0 (T ).

Proof We use an induction argument which combines technics �rst introduced in

[Kabanov 04] and Lemma 2.2.1 applied to the linear case R(β) = 0 + Lβ.

1. We �rst check that XRT (T ) is closed in probability, recall (2.2.4). Indeed, let (gn)n≥1 ⊂
XRT (T ) be such that gn → g ∈ L0(Rd,F) P − a.s. as n → ∞. Let (ξnT , β

n
T )n≥1 ∈

L0((−KT )× Rd+,FT ) be such that ξnT − βnT = gn for all n ≥ 1 and set

E := {lim inf
n→∞

|βnT | <∞} .

We claim that E = Ω. Indeed, letting (ξ̄nT , β̄
n
T ) := (ξnT , β

n
T )/(1 + |βnT |)1{Ec}, we obtain

ξ̄nT = 1{Ec}gn/(1 + |βnT |) + β̄nT . In view of Lemma 1.2.5 in Chapter 1 we can assume,

after possibly passing to an FT -measurable subsequence, that 1{Ec}gn/(1+ |βnT |)+ β̄nT →
β̄T ∈ L0(Rd+,FT ) P− a.s. as n→∞, with |β̄T | = 1 on Ec. On the other hand ξ̄nT1{Ec} ∈
−KT1{Ec} P − a.s. Since −KT ∩ Rd+ = {0}, this leads to a contradiction. It follows

that lim infn→∞ |βnT | < ∞ P − a.s. The closedness property of XRT (T ) then follows from

Lemma 1.2.5 again. The fact that XLT (T ) is closed in probability follows from the same

arguments.
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2. We now �x t < T , assume that XRt+1(T ) and XLt+1(T ) are closed in probability and

deduce that the same holds for XRt (T ). The corresponding result for XLt (T ) is obviously

obtained by considering the special case where R(β) = 0 + Lβ.

Let (gn)n≥1 ⊂ XRt (T ) and (ξn, βn)n≥1 ⊂ A0 be such that

V ξn,βn

T = gn for all n ≥ 1 . (2.5.7)

We assume that

gn → g ∈ L0(Rd,F) P− a.s. as n→∞ .

In view of (2.2.5), we can �nd (V n)n≥1 ⊂ XLt+1(T ) such that

ξnt + (Lt+1 − Id)βnt + CTt + V n = gn ,

where CTt has been de�ned in (2.2.8). Set αn := 1 + |ξnt | + |βnt |. We claim that E :=

{lim infn→∞ αn <∞} has probability one. Indeed, the previous equality implies that

ξ̄nt + (Lt+1 − Id)β̄nt + V̄ n = 1{Ec}
(
gn − CTt

)
/αn

where (ξ̄nt , β̄
n
t ) := 1{Ec}(ξ

n
t , β

n
t )/αn ∈ L0((−Kt) × Rd+,Ft) and V̄ n := 1{Ec}V

n/αn ∈
XLt+1(T ). Moreover, Lemma 1.2.5 implies that, after possibly passing to an Ft-measurable

subsequence, (ξ̄nt , β̄
n
t )→ (ξ̄t, β̄t) P−a.s. as n→∞ for some (ξ̄t, β̄t) ∈ L0((−Kt)×Rd+,Ft)

such that (ξ̄t, β̄t) 6= 0 on Ec. Since XLt+1(T ) is closed in probability, it follows that

V̄ n = 1{Ec}
(
gn − CTt

)
/αn−ξ̄nt −(Lt+1−Id)β̄nt → −ξ̄t−(Lt+1−Id)β̄t ∈ XLt+1(T ) as n→∞ .

We can then �nd (ξ, β) ∈ A0 such that

ξ̄t + (Lt+1 − Id)β̄t +
∑

t+1≤s≤T
ξs + (Ls+11{s+1≤T} − Id)βs = 0 .

We can now appeal to Lemma 1.2.5 applied to the case R(β) = 0 + Lβ to deduce

that EQ [|ξ̄t|+|β̄t|] ≤ 0 , for some Q ∼ P. Since (ξ̄t, β̄t) 6= 0 on Ec, this implies that

P [Ec] = 0, and therefore lim infn→∞ αn <∞ P−a.s. Using Theorem 1.2.5, one can then

assume, after possibly passing to an Ft-measurable random subsequence, that (ξnt , β
n
t )n≥1

converges P−a.s. to some (ξt, βt) ∈ L0((−Kt)×Rd+,Ft), for all t ≤ T . Using Assumption

2.2.2 and d iterative applications of Lemma 1.2.5, we can then �nd an Ft+1-measurable

subsequence (σ(n))n≥1 such that Rt+1(β
σ(n)
t )→ Rt+1(βt) + ζt+1 P− a.s. as n→∞ with

ζt+1 ∈ L0(−Kt+1,Ft+1). It then follows from (2.5.7) that∑
t+1≤s≤T

(
ξσ(n)
s +Rs+1(βσ(n)

s )1{s+1≤T} − βσ(n)
s

)
→ g−ζt+1−(ξt +Rt+1(βt)− βt) P−a.s.

We conclude by using the fact that the left-hand side term belongs to XRt+1(T ) which is

closed in probability by assumption. 2
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2.5.3 Super-hedging theorems

We now turn to the proof of the super-hedging theorems, Propositions 2.3.1, 2.3.2 and

2.3.3. The result of Proposition 2.3.1 is a consequence of Proposition 2.3.3 and Remark

2.3.1. The fact that (i) ⇒ (ii) ⇒ (iii) in Propositions 2.3.2 and 2.3.3 is obvious. In the

following, we prove that (iii)⇒ (i) in Propositions 2.3.2 and 2.3.3 under the corresponding

additional assumptions. The fact that (ii) ⇒ (i) is obtained by similar, actually shorter,

arguments which are fully contained in what follows.

Proof of (iii) ⇒ (i) in Proposition 2.3.2 : For ease of notations, we write M for

L− Id.
Fix V ∈ L0(Rd,F) such that V + κ ∈ KT for some κ ∈ Rd, and assume that E [Z ′TV ] ≤
αR(Z) for all Z ∈ MT

0 (intK∗), but that V /∈ XR0b(T ). Then, XR0b(T ) being closed in

probability by Theorem 2.2.2, it follows that, for k large enough (after possibly passing

to a subsequence), V k := V 1{|V |≤k} − κ1{|V |>k} does not belong to XR0b(T ) either but

satis�es

E
[
Z ′TV

k
]
≤ E

[
Z ′TV

]
≤ αR(Z) for all Z ∈MT

0 (intK∗). (2.5.8)

Since XR0 (T ) is closed in probability, XR0 (T )∩L1(Rd,F) is closed in L1(Rd,F). The later

being convex under Assumption 2.3.1(a), we deduce from the Hahn-Banach theorem (see

Theorem 1.2.1 in Chapter 1) that we can �nd Y ∈ L∞(Rd,F) and r ∈ R such that

E
[
Y ′X

]
≤ r < E

[
Y ′V k

]
for all X ∈ XR0 (T ) ∩ L1(Rd,F) .

Set ZYt := E [Y |Ft]. Recalling that R(0)− ∈ L1 under Assumption 2.3.1(b), we deduce

that any element of the form

X = ξ +
∑

0<t≤T
(Rit(0) ∧ 1)i≤d , ξ ∈ L1(−Ks,Fs) for some s ≤ T,

belongs to XR0 (T ) ∩ L1(Rd,F). This easily leads to ZYs ∈ K∗s for s ≤ T . Fix Z̃ ∈
MT

0 (intK∗), such that αR(Z̃) < ∞, which is possible by assumption, and ε ∈ (0, 1), so

that Ž := εZ̃+(1− ε)ZY ∈MT
0 (intK∗) and

E
[
Ž ′TX

]
≤ (1− ε)r+εαR(Z̃) < E

[
Ž ′TV

k
]
∀ X ∈ XR0 (T ) ∩ L∞(Rd,F). (2.5.9)

In order to conclude the proof, it su�ces to show that

αR(Z) = sup
{
E
[
Z ′TX

]
, X ∈ XR0 (T ) ∩ L∞(Rd,F)

}
, Z ∈MT

0 (K∗) , (2.5.10)

which, combined with (2.5.9), would imply that αR(Ž) < E
[
Ž ′TV

k
]
, thus leading to a

contradiction to (2.5.8) since Ž ∈MT
0 (intK∗).
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To see that the above claim holds, �rst observe that, forX ∈ XR0 (T ) such thatX+ρ ∈ KT

for some ρ ∈ Rd, one can always construct an essentially bounded sequence, Xn :=

X1{|X|≤n} − ρ1{|X|>n} for n ≥ 1, which converges P− a.s. to X. Using Fatou's Lemma,

one then obtains lim infn→∞ E [Z ′TX
n] ≥ E [Z ′TX] for all Z ∈ MT

0 (K∗). Moreover,

X+ρ ∈ KT implies X − Xn ∈ KT so that Xn ∈ XR0 (T ) for all n ≥ 1. This proves

(2.5.10). 2

Proof of (iii) ⇒ (i) in Proposition 2.3.3 : It su�ces to repeat the argument of the

above proof with Z̃ ∈ LT0 (intRd−), which is possible by assumption, and to show that one

can choose ZY such that E
[
ZYt
′
(Lt+1 − Id)|Ft

]
∈ Rd− for all t ≤ T . To see this, recall

from the above arguments that ZY is a martingale and that it satis�es

E
[
ZYT
′
X
]
≤ r for all X ∈ XR0 (T ) ∩ L1(Rd,F) ,

for some r ∈ R. It then follows from Assumption 2.3.1(b) that

E

[
ZYT
′∑
t<T

(Rit+1(βt) ∧ n− βit)i≤d

]
≤ r for all β ∈ L∞(Rd+,F) and n ≥ 1 .

Since ZYT has non-negative components, as an element ofK∗T ⊂ Rd+ P−a.s., the monotone

convergence theorem implies that

E

[
ZYT
′∑
t<T

(Rt+1(βt)− βt)

]
≤ r for all β ∈ L∞(Rd+,F) .

In particular, Assumption 2.3.1(b) and the above imply that ZYT
′∑

1≤t≤T Rt(0) ∈ L1

and that for any s ≤ T − 1

E
[
ZYs+1

′
(R0

s+1(βs)− βs)
]

+` ≤ r for all βs ∈ L∞(Rd+,Fs) , (2.5.11)

where

R0 := R−R(0) and ` := E

ZYT ′ ∑
1≤t≤T

Rt(0)

 .

Using the �rst assertion in Assumption 2.3.1, we then deduce that, for η ≥ 1 and βs ∈
L∞(Rd+,Fs),

Rs+1(βs)− η−1Rs+1(ηβ)− (1− η−1)Rs+1(0)

= Rs+1(η−1ηβs+(1− η−1)0)− η−1Rs+1(ηβ)− (1− η−1)Rs+1(0) ∈ Ks+1 .
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This shows that, for all βs ∈ L∞(Rd+,Fs), the sequence (ZYs+1
′
R0
s+1(nβs)/n)n≥1 is non-

increasing and that, by (2.5.11),

E
[
ZYs+1

′
(R0

s+1(nβs)/n− βs)
]
≤ (r − `)/n .

Sending n → ∞, using the monotone convergence theorem and recalling Assumption

2.3.2 leads to

E
[
ZYs+1

′
(Ls+1βs − βs)

]
≤ 0 .

By arbitrariness of βs ∈ L∞(Rd+,Fs), this readily implies that E
[
ZYs+1

′
(Ls+1 − Id)|Fs

]
∈

Rd−. 2

2.5.4 Utility maximization

Proof of Proposition 2.3.4. Let (V n)n≥1 be a maximizing sequence. Since U(V ) =

−∞ on {V /∈ KT }, it must satisfy V n+x0 ∈ KT for all n ≥ 1. It then follows from

the de�nition of αR and our assumptions that there exists Z ∈ MT
0 (intK∗) such that

E [Z ′T (V n + x0)] ≤ αR(Z) + Z ′0x0 <∞ for all n ≥ 1.

Since ZT ∈ intK∗T and V n + x0 ∈ KT , for all n ≥ 1, we can �nd ε ∈ L0((0, 1],FT ) such

that

E [ε|V n + x0|] ≤ αR(Z) + Z ′0x0 <∞ for all n ≥ 1 ,

compare with Lemma 11 in [Campi 06]. By Komlos Lemma, see Theorem 1.2.2 in Chapter

1, one can then �nd a sequence (Ṽ n)n≥1 such that Ṽ n ∈ conv(V k, k ≥ n) for all n ≥ 1,

and (Ṽ n)n≥1 converges P − a.s. to some V (x0) ∈ L0(Rd,F). Since XR0 (T ) is convex

under Assumption 2.3.1(a), (Ṽ n)n≥1 ⊂ XR0 (T ). Since XR0 (T ) is closed in probability, see

Theorem 2.2.2, we have V (x0) ∈ XR0 (T ). Moreover, the random map U being P − a.s.

concave, (Ṽ n)n≥1 is also a maximizing sequence. Since U(x0+Ṽ n)+ ≤ 1 for each n ≥ 1,

we �nally deduce from Fatou's Lemma and the P− a.s. upper semi-continuity of U that

sup
V ∈U(x0)

E [U(x0+V )] = lim sup
n→∞

E
[
U(x0+Ṽ n)

]
≤ E [U(x0+V (x0))] .

2

2.6 Absence of arbitrage of the �rst kind

2.6.1 Additional notations and fundamental theorem of asset pricing

As explained in the introduction, there is a strong distinction between arbitrage of the

�rst kind and of the second kind in markets with transaction costs. For a pure �nancial
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market with proportional transaction costs, the intuitive condition of absence of arbi-

trages of the �rst kind was widely studied. It takes a rather standard form, close to the

one used on markets without transaction costs :

X0
0(T ) ∩ L0(Rd+,F) = {0} .

The robust no-arbitrage condition, introduced byW. schachermayer in [Schachermayer 04],

is the only one to imply, without additional assumption, the closedness of the set of at-

tainable claims. The concept has been extended to industrial investment possibilities in

[Bouchard 05] in a natural way : there is no arbitrage if we slightly reduce transaction

costs and if we increase the return on production. In this section, we will apply our

concept of marginal arbitrage for high production regimes within the framework of the

robust no-arbitrage condition of [Bouchard 05]. However, our condition will be slightly

weaker, see Remark 2.6.1 below.

We justify this extension for the following reasons. The robust no-arbitrage condition,

NAr(K,L) for short, is equivalent to a weaker condition than PCEL. It is only equiva-

lent to the existence of a (K,L)-strictly consistent price system, compare with PCEL.

Another strong di�erence with the previous condition is that we can relax Assumption

2.2.1, see section 2.1 above, which allows to incorporate frictionless markets as well.

For sake of clarity, we introduce additional notations. We use the same model as the one

described in section 2.1 except that we do not need Assumption 2.2.1 to hold. For later

use, let us denote K0 the set-valued process de�ned by K0
t := Kt ∩ (−Kt), t ≤ T . We

now emphasize the dependence of XLt (T ) on the process π of exchange prices by writing

Xπ,Lt (T ) instead of XLt (T ). From now on, K (resp. K̃) will be the set-valued process

generated by π (resp. π̃) as in de�nition (2.2.2) above. Wet set Π the set of exchange

prices satisfying (2.2.1).

De�nition 2.6.1. 1. We say that there is no marginal robust arbitrage for high produc-

tion regimes, in short NMAr holds, if there exists (c, L) ∈ L∞(Rd ×Md,F) such that

NAr(π, L) and equation (2.2.5) hold.

2. We say that NAr(π, L) holds if (π, L) ∈ Π×Md is dominated by some (π̃, L̃) ∈ Π×Md

such that

Xπ̃,L̃0 (T ) ∩ L0(Rd+) = {0} (2.6.1)

3. A sequence (π, L) ∈ Π×Md is dominated by (π̃, L̃) ∈ Π×Md if for each t ∈ T :

(a) Kt\K0
t ⊂ ri(K̃t) and Kt ⊂ K̃t,

(b) (L̃t − Lt)β ∈ ri(Kt) for all β ∈ Rd+\ {0}.
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Remark 2.6.1. 1. In the above de�nition, condition (a) can be replaced by the equivalent

following condition :

(a') π̃ij ≤ πij for all i, j = 1, · · · , d and π̃ij = πij on {πijπji = 1}.
The latter means that the classical condition (2.6.1) is veri�ed for a model where we

slightly reduce transaction costs which are not already null. The relaxation of Assumption

2.2.1 allows that possibility.

2. Note that in [Bouchard 05], the above domination is directly applied to the non-linear

production function R but the robust no-arbitrage de�nition is quite the same. In our

de�nition, contrary to [Bouchard 05], we forbid arbitrages for the asymptotic linear model,

but we allow for reasonable arbitrages for low production regimes, see comments in section

2.2 above.

The result of this section is that the above no-arbitrage condition can be characterized

by the existence of a (K,L)-strictly consistent price system.

Theorem 2.6.1. NAr(K,L) ⇔ MT
0 (ri(K∗)) ∩ LT0 (intRd−) 6= ∅ .

As a by-product, we shall show that the set Xπ,L0 (T ) is closed in probability and therefore

Fatou-closed. By the same arguments as those of sections 4.3 and 4.4, we have the super-

hedging theorem and existence in the utility maximization problem, see section 3 above.

2.6.2 Proof of the theorem

In order to prove the theorem, we �rst show the following closedness property.

Proposition 2.6.1. XK,L0 (T ) is closed in probability under NAr(K,L).

The proof follows closely the argument of Lemma 5.4 in [Bouchard 05]. Theorem 2.6.1

then derives from similar arguments to those of [Kabanov 03]. We basically recall ideas

of the proof of Corollary 2.5.1 in the previous section.

Proof of Proposition 2.6.1 It is obvious that Xπ,LT (T ) is closed since KT is a.s. closed.

We use an induction argument and show that Xπ,Lt (T ) is closed in probability whenever

Xπ,Lt+1(T ) is, t < T . Let (V ξn,βn

T )n≥1 ⊂ Xπ,Lt (T ) be a sequence that converges P− a.s. for

t < T , with (ξn, βn) ∈ A0 for all n ≥ 1. Set ηn := |ξnt |+|βnt |. Since {lim infn→∞ η
n <

+∞} ∈ Ft we can argue separately on that set and its complementary by considering a

strategy conditionally to that partition.

1. On {lim infn→∞ η
n < +∞}, we can assume, by possibly passing to a Ft-measurable

random subsequence (see Lemma 1.2.5 in Chapter 1), that (ξnt , β
n
t )n≥1 converges P−a.s.
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in L0((−Kt)× Rd+,Ft). By de�nition, we can also write

V ξn,βn

T ∈ ξnt − βnt + Lt+1β
n
t + Xπ,Lt+1(T ) .

Since XK,Lt+1 (T ) is closed in probability, the required result follows.

2. On {limn→∞ η
n = +∞}, we set (ξ̃n, β̃n) := (1 + ηn)−1(ξn, βn). The new sequence is

essentially bounded so that one can assume again that (ξ̃nt , β̃
n
t )n≥1 converges P− a.s. to

some (ξ̃t, β̃t) ∈ L0((−Kt)×Rd+,Ft). Since V
ξn,βn

T converges P− a.s. and the dynamics is

linear in the control (ξn, βn), we obtain

V ξ̃,β̃
T = 0 (2.6.2)

We claim that ξ̃t ∈ K0
t and β̃t = 0. Indeed, assume to the contrary that ξ̃t /∈ K0

t on

some set B ∈ Ft with P [B] > 0. Then, we can �nd ε ∈ L0(Rd+\ {0} ,Ft) such that ε 6= 0

on B and ε = 0 elsewhere and such that ξt + ε ∈ −K̃t, see condition 3.(a) of De�nition

2.6.1 above. By de�ning ξ̃′ through ξ̃′s = ξ̃s + ε1s=t, t ≤ s ≤ T , we get V ξ̃′,β̃
T = ε which

contradicts condition (2.6.1). Since (L̃t+1−Lt+1)Rd+\ {0} ⊂ ri(K̃t+1), the latter property

is also violated if β̃t 6= 0. Eventually, we have ξ̃t ∈ K0
t and β̃t = 0. Then, we can �nd a

partition of d disjoint sets Γi ∈ Ft with Γi ⊂
{

(ξ̃t)
i 6= 0

}
for i = 1 · · · d. We set

(ξ̌n, β̌n) := (ξn, βn)−
d∑
i=1

1Γi

ξn,it

ξ̃it
(ξ̃, β̃) .

Since ξ̃s ∈ Ks, one can easily check that ξ̌ns ∈ −Ks for t ≤ s ≤ T . Moreover equation

(2.6.2) implies that V ξ̌n,βn

T = V ξn,βn

T . Note that ξ̌n,i = 0 on Γi. By repeating this argument

a �nite number of times, we �nally end up with the situation where (ξ̌n, βn) converges

P− a.s. 2

We now turn to the proof of Theorem 2.6.1.

Proof of Theorem 2.6.1 First note that we can de�ne the process of exchanges π̄ :=
1
2(π + π̃) and the linear production function L̄ := 1

2(L + L̃) such that (π̄, L̄) dominates

(π, L) and NAr(π̄, L̄) holds. We denote K̄ the set-valued process generated by π̄ as in

equation (2.2.2).

1. Assume NAr(π̄, L̄). Put X1
t (T ) := Xπ̄,L̄t (T ) ∩ L1(Rd,FT ) and note that X1

t (T ) is

closed and convex, see Proposition 2.6.1. Since Xπ̄L̄t (T ) ⊂ Xπ̃,L̃t (T ), condition (2.6.1)

holds for (π̄, L̄) so the Hahn-Banach separation theorem allows us to �nd, for every φ ∈
L1(Rd+\ {0} ,FT ), ηφ ∈ L∞(Rd,FT ) such that E

[
η′φVT

]
< E

[
η′φφ

]
for all VT ∈ X1

t (T ).

Since (ξ1t=T , 0) is an admissible strategy for ξ ∈ −K̄T , ηφ ∈ L0(K̄∗T ,FT ) for any φ.

By the argument in proofs of Lemma 4 and Corollary 1 in [Kabanov 03], we can �nd
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η such that E [η′VT ] ≤ 0 for all VT ∈ X1
t (T ) with η 6= 0 P − a.s. Set Zs = E [η|Fs]. Z

is a martingale and L1(−K̄s,Fs) ⊂ X1
t (T ) for s ≥ t implies that Zs ∈ K̄∗s ⊂ ri(K∗s ).

As (L̄s+1 − Id)βs ∈ X1
t (T ) for t ≤ s < T and every βs ∈ L∞(Rd+,Fs) we then have,

by taking conditional expectation, E
[
Z ′s+1(L̄s+1 − Id)βs|Fs

]
≤ 0. Since L̄ dominates L,

E
[
Z ′s+1(Ls+1 − Id)βs|Fs

]
< 0 for βs 6= 0. Thus Z ∈MT

t (ri(K∗)) ∩ LTt (intRd−).

2. Let Z ∈MT
0 (ri(K∗)) ∩ LT0 (int(Rd−)) and, for all t ≤ T , set

K̃t(ω) :=
{
x ∈ Rd : (Zt(ω))′x ≥ 0

}
.

As Zt ∈ ri(K∗t ) we have Kt ⊂ K̃t and Kt\K0
t ⊂ ri(K̃t), for all 0 ≤ t ≤ T . Since

E [Z ′t(Lt − Id)|Ft−1] ∈ intRd−, we can �nd L̃t such that (L̃t − Lt)Rd+ ⊂ ri(Kt) and since

Lt − I is a cone, E
[
Z ′t(L̃t − Id)|Ft−1

]
∈ intRd−, for all 1 ≤ t ≤ T . Take now η := V ξ,β

T ∈

XK̃,L̃0 ∩ L0(Rd+,F). Then V ξ′,β
T = 0 with ξ′ de�ned through ξ′t = ξt − η1t=T ∈ −K̃t. By

taking conditional expectation of Z ′TV
ξ′,β
T , we get

E

[
T∑
t=0

Z ′tξ
′
t + 1t<TE

[
Z ′t+1(L̃t+1 − Id)|Ft

]
βt

]
= 0.

Since 1t<TE
[
Z ′t+1(L̃t+1 − Id)|Ft

]
βt ≤ 0 and Zt ∈ ri(K∗t ) for 0 ≤ t ≤ T , we immediately

have ξ′t ∈ K̃0
t . This implies η ∈ −KT and property (2.6.1). 2
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Chapitre 3

Conditional sure pro�t condition in

continuous time

3.1 Introduction

This present chapter intends to push forward the study in Chapter 2 by extending the

framework to continuous time market models. As in Chapter 2, the reasoning is the fol-

lowing. In the framework of purely �nancial portfolios, Arbitrage Pricing Theory ensures

by a no-arbitrage condition a closedness property for the set of attainable terminal wealth

for self �nancing portfolios. This key property has direct applications. It provides a dual

formulation, expressed by the existence of an equivalent martingale measure for pricing

purposes, see Chapter 1. In our particular framework, if the �nancial market runs as

usual, production is not bound up with any particular economical condition : it is an

idiosyncratic action of the agent. We thus propose in this chapter a general parametric

constraint upon the production possibilities of the agent in order to apply arbitrage pri-

cing techniques. In practice, the additional condition is calibrated to market data and

the producer's activity. In theory, this condition implies the closedness property of the

set of attainable terminal positions, as it is sought in the purely �nancial case. This

property allows to display many �nancial techniques, such as risk measures or portfolio

optimization. The purpose of this note is to demonstrate and apply the undermentioned

super-replication theorem for the investor-producer. Let XR0 (T ) denote the set of possible

portfolio outcomes at time T that the investor-producer can reach starting from 0 at time

0. Let M be the set of pricing measures for the �nancial market model, we thus show

afterwards the following result :
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Theorem 3.1.1. Let H be a contingent claim (see De�nition 3.2.2 shortly after). Then

H ∈ XR0 (T ) ⇐⇒ E
[
Z ′TH

]
≤ αR0 (Z), ∀Z ∈M

where αR0 (Z) := sup
{
E [Z ′TVT ] : VT ∈ XR0 (T )

}
is the support function of Z ∈ M on

XR0 (T ).

The above theorem has a usual interpretation. A (properly de�ned) contingent claim

is super replicable with a strategy starting from nothing at time 0 if and only if the

expectation with respect to a pricing measure Z ∈ M always veri�es a given bounding

condition. The chapter is thus structured around that theorem as follows. In Section

3.2, we introduce properly the objects XR0 (T ), M and H. In Section 3.3, we propose

the economical condition under which Theorem 3.1.1 holds. In Section 3.4, we give an

application of Theorem 3.1.1. Section 3.5 is dedicated to the proof of Theorem 3.1.1.

We shall make a few distinctions with the last chapter. In the latter, we propose to extend

the no-arbitrage of second kind condition of Rásonyi [Rásonyi 10] to portfolios augmen-

ted by a linear production system. A condition for general production functions has then

been introduced using the extended condition in order to allow marginal arbitrages for

reasonable levels of production. In the present chapter, we propose an alternative condi-

tion which has a close economical interpretation : the conditional sure pro�t condition.

Contrary to the no marginal arbitrage condition of Chapter 2, it deals directly with ge-

neral production possibilities and avoids to introduce a linear production system. This

is the contribution of Section 3.3. We also focus on investors-producers with speci�c

means of production. Production possibilities are in discrete time as before but we addi-

tionally assume concavity and boundedness of the production function. In counterpart,

our framework encompasses continuous time �nancial market models with and without

transaction costs. This is the contribution of Section 3.2. The contribution of Section 3.4

is to apply Theorem 3.1.1 in situation. We put a price on a power futures contract for

an electricity producer endowed with a simple mean of production.

3.2 The framework

We �rst introduce the �nancial possibilities of the agent. We consider an abstract setting

allowing to deal with a very large class of market models. This is mainly inspired by

[Denis 11b]. To illustrate our framework, we provide two examples in Section 3.2.4. We

then introduce production possibilities for the investor.

Preamble. Let (Ω,F ,F = (Ft)t∈[0,T ],P) be a continuous-time �ltered stochastic basis

on a �nite time interval [0, T ] satisfying the usual conditions. We assume without loss of
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generality that F0 is trivial and FT− = FT . For any 0 ≤ t ≤ T , let T denote the family

of stopping times taking values in [0, T ] P-almost surely. From now on, we consider a pair

of set-valued F-adapted process K and K∗ such that Kt(ω) is a proper convex closed

cone of Rd including Rd+ for all t ∈ [0, T ] P− a.s. The process K∗ is de�ned by

K∗t (ω) :=
{
y ∈ Rd+ : xy ≥ 0, ∀x ∈ Kt(ω)

}
. (3.2.1)

Since Kt(ω) is proper, its dual K∗t (ω) 6= {0} for all t ∈ [0, T ] P− a.s. In the literature on

markets with transaction costs, Kt usually stands for the solvency region at time t, and

−Kt for the set of possible trades at time t, see [Kabanov 09] and the reference therein.

In practice, K and K∗ are given by the market model we consider, see the examples of

Sections 3.2.4 and 3.4. We use here the process K to introduce a partial order on Rd at
any stopping time in T .

De�nition 3.2.1. Let τ ∈ T . For (ξ, κ) ∈ L0(R2d,Fτ ), ξ �τ −κ if and only if ξ + κ ∈
L0(Kτ ,Fτ ).

De�nition 3.2.2. A contingent claim is a random variable H ∈ L0(Rd,FT ) such that

H �T −κ for some κ ∈ Rd+.

3.2.1 The set of �nancial positions

We consider a �nancial market on [0, T ] with d assets. The market also includes the prices

of commodity entering the production process, e.g., fuel or raw materials. The agent we

consider has the possibility to trade on this market by starting a portfolio strategy at

any time ρ ∈ T . The �nancial possibilities of the agent are then represented by a family

of sets of wealth processes denoted (X0
ρ)ρ∈T . The superscript 0 stands for no production,

or pure �nancial.

De�nition 3.2.3. For any ρ ∈ T , the set X0
ρ is a set of F-adapted d-dimensional processes

ξ de�ned on [0, T ] such that ξt = 0 P − a.s. for all t ∈ [0, ρ). We denote by X0
ρ(T ) :={

ξT : ξ ∈ X0
ρ

}
the corresponding set of attainable �nancial positions at time T .

We do not give more details on what a �nancial strategy is. In all the considered examples,

it will denote a self �nancing portfolio value as commonly de�ned in Arbitrage Pricing

Theory. The multidimensional setting is justi�ed by models of �nancial portfolios in

markets with proportional transaction costs, see [Kabanov 09]. In that case, portfolio

are expressed in physical units of assets. Just note that we implicitly assume that the

initial wealth of the agent does not in�uence his �nancial possibilities, so that a portfolio

generically starts with a null wealth in our setting.
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Assumption 3.2.1. For any ρ ∈ T , the set X0
ρ(T ) has the following properties :

(i) Convexity : X0
ρ(T ) is a convex subset of L0(Rd,FT ) containing 0.

(ii) Liquidation possibilities : X0
ρ(T )− L∞(Ks,Fs) ⊆ X0

ρ(T ), ∀s ∈ [ρ, T ] P− a.s.

(iii) Concatenation : X0
ρ(T ) =

{
ξσ + ζT : (ξ, ζ) ∈ X0

ρ × X0
σ, for any σ ∈ T s.t. σ ≥ ρ

}
.

The convexity property holds in most of market models, see [Kabanov 09]. Assumption

3.2.1.(ii) means that whatever the �nancial position of the agent is, it is always possible

for him to throw away a non-negative quantity of assets at any time, or to do an arbitrarily

large transfer of assets allowed by the cone −Ks. This last possibility is again made for

models of markets with convex transaction costs. Finally, the concatenation property

also holds in most of market models and sets the additive structure of portfolio processes

over time. Note that Assumption (3.2.1) (i) and (iii) imply that X0
ρ(T ) ⊂ X0

τ (T ) for any

(ρ, τ) ∈ T 2 such that ρ ≥ τ .

3.2.2 Absence of arbitrage in the �nancial market

As for any investor on a �nancial market, we assume that our investor-producer can-

not �nd an arbitrage opportunity. We elaborate below this condition by relying on the

core result of Arbitrage Pricing Theory, which resides in the following fact, see Chapter

1. Formally, when the �nancial market prices are represented by a process S, the no-

arbitrage property for the market holds if and only if there exists a stochastic de�ator,

i.e., a strictly positive martingale Γ such that the process Z := ΓS is a martingale. The

process Z can then be seen as the shadow price or fair price of assets. We assume that

such a process Z exists by introducing the following

De�nition 3.2.4. Let M be the set of F-adapted martingales Z on [0, T ] taking values

in K∗, with strictly positive components, such that

sup
{
E
[
Z ′T ξT

]
: ξ ∈ X0

0 and ∃κ ∈ Rd+ such that ∀τ ∈ T , ξτ �τ −κ
}
< +∞ . (3.2.2)

In condition (3.2.2), we apply the pricing measure Z to the subset of X0
0(T ) comprising

�nancial wealth processes with a �nite credit line κ. We need this basic concept of port-

folio admissibility to de�neM properly. We will extend admissibility of wealth processes

in the next section. De�nition 3.2.4 needs more comment. If the set X0
0(T ) is a cone,

the left hand of (3.2.2) is null for any Z ∈ M, according to Assumption 3.2.1 (i). In

the general non conical case, see Section 3.2.4, the support function in equation (3.2.2)

might be positive, justifying the more general condition. If it is equal to 0 then, for any

Z ∈M and any ξ ∈ X0
0 with a �nite credit line, according to Assumption 3.2.1 (iii), Z ′ξ
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is a supermartingale. We then meet the common no arbitrage condition, see especially

Section 3.2.4 below. We thus express absence of arbitrage on the �nancial market by the

following assumption.

Assumption 3.2.2. M 6= ∅.

Note that de�ningM as above is tailor-made for separation arguments, see the proof of

Theorem 3.1.1 and comments following Theorem 1.2.1.

3.2.3 Admissible portfolios and closedness property

If d = 1, a �nancial position ξt is naturally solvable if ξt ≥ 0 P−a.s. In the general

setting with d ≥ 1, we use the partial order on Rd induced by the process K. De�-

ning solvency allows to de�ne admissibility which is central in continuous time : the

closedness property concerns the subset of X0
0(T ) constituted of admissible portfolios,

see [Delbaen 94, Campi 06, Denis 11b, Denis 11a] and the various de�nitions provided

therein. From a �nancial point of view, it imposes realistic constraints on portfolios

and avoids doubling strategies. Here, we use a de�nition close to the one proposed in

[Campi 06].

De�nition 3.2.5. For some constant vector κ ∈ Rd+, a portfolio ξ ∈ X0
0 is said to be

κ-admissible if Z ′τξτ ≥ −Z ′τκ for all τ ∈ T and all Z ∈M, and ξT �T −κ.

Given M 6= ∅, the concept of admissibility allows to consider a wider class of terminal

wealths than those considered in equation (3.2.2). According to De�nition 3.2.4, a wealth

process ξ is κ-admissible in the sense of De�nition 3.2.5 if ξ veri�es ξτ �τ −κ for all τ ∈ T
and some κ ∈ Rd+. The reciprocal is not always true, and is the object of the so-called

B assumption investigated in [Denis 11b]. We can �nally de�ne the set of admissible

elements of X0
t :

De�nition 3.2.6. We de�ne X0
t,adm :=

{
ξ ∈ X0

t , ξ is κ-admissible for some κ ∈ Rd+
}
,

and X0
t,adm(T ) :=

{
ξT : ξ ∈ X0

t,adm

}
.

The closedness property will be assigned to the sets X0
t,adm(T ), and is conveyed under

the following technical and standing assumption :

Assumption 3.2.3. For t ∈ [0, T ], let (ξn)n≥1 ⊂ X0
t,adm be a sequence of admissible

portfolios such that ξnT �T −κ for some κ ∈ Rd+ and all n ≥ 1. Then there exists a

sequence (ζn)n≥1 ⊂ X0
t,adm constructed as a convex combination (with strictly positive

weights) of (ξn)n≥1, i.e., ζ
n ∈ conv(ξk)k≥n, such that ζnT converges a.s. to some ζ∞T ∈

X0
t (T ) with n.
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The above assumption calls for the notion of Fatou-convergence. Recall that a sequence

of random variables is Fatou-convergent if it is bounded by below and almost surely

convergent. According to Assumption 3.2.1 (i), X0
t,adm(T ) is a convex set, which ensures

that the new sequence lies in the set. In Arbitrage Pricing Theory, the Fatou-closedness

of X0
0,adm(T ) often relies on a convergence lemma. Schachermayer [Schachermayer 92]

introduced the version of Komlos Lemma provided by Theorem 1.2.2 in Chapter 1, and

which is fundamental in [Delbaen 94], while Campi and Schachermayer [Campi 06] pro-

posed another version for markets with proportional transaction costs, see Theorem 1.2.4

in Chapter 1. Assumption 3.2.3 expresses a synthesis of this result, see Sections 3.2.4 and

3.4 for applications.

3.2.4 Illustration of the framework by examples of �nancial markets

We illustrate here the theoretical framework. We treat two examples, based on [Delbaen 94,

Delbaen 95] and [Pennanen 10, Kabanov 03] respectively. In section 3.4, we also apply

our results to a continuous time market with càdlàg price processes and proportional

transaction costs, as studied in [Campi 06].

A multidimensional frictionless market in continuous time

Consider a �ltered stochastic basis (Ω,F ,F,P) on [0, T ], satisfying the usual assumptions.

Let S be a locally bounded (0,∞)d-valued F-adapted càdlàg semimartingale, representing

the price process of d risky assets. We suppose the existence of a non risky asset which

is taken constant on [0, T ] without loss of generality. Let Θ be the set of F-predictable
S-integrable processes and Π the set of F-predictable increasing processes on [0, T ]. We

de�ne, for all ρ ∈ T

X0
ρ :=

{
ξ = (ξ1, 0, . . . , 0) : ξ1

s =

∫ s

ρ
ϑu.dSu − (`s − `ρ−) : (ϑ, `) ∈ Θ×Π, s ∈ [ρ, T ]

}
.

Observe that the set X0
ρ(T ) is a convex cone of random variables taking values in R ×

{0}d−1 P− a.s.. It also contains 0. The set Θ de�nes the �nancial strategies. The set Π

represents possible liquidation or consumption in the portfolio. The introduction of the

latter ensures Assumption (3.2.1) (ii), but does not infer on the mathematical treatment

of [Delbaen 94] where Π is not considered. The set X0
0(T ) also veri�es Assumption (3.2.1)

(i) and (iii).

In this context, Delbaen and Schachermayer introduced the No Free Lunch with Vani-

shing Risk condition (NFLVR) and proved that it is equivalent to

Q := {Q ∼ P such that S is a Q− local martingale} 6= ∅ (Theorem 1.1 in [Delbaen 94]) .

60



To relate the NFLVR condition to De�nition 3.2.4, we de�neM as the set of P-equivalent
local martingale measure processes dQ

dP

∣∣∣
F.

for Q ∈ Q. If S is a locally bounded martingale,

elements of X0
0 are local supermartingales. We now apply De�nition 3.2.5 of admissibility.

We take without ambiguity K̂ = K̂∗ = Rd+. As a consequence, a portfolio ξ ∈ X0
0,adm is κ-

admissible only if ξ1
t ≥ −κ for all t ∈ [0, T ], and we retrieve the de�nition of admissibility

of [Delbaen 94]. Therefore, any admissible portfolio is a true supermartingale under Q ∈
Q.

By Theorem 4.2 in [Delbaen 94], NFLVR implies that the subset X0,?
0,adm(T ) of X0

0,adm(T )

composed of wealths with no consumption, i.e., with `T = 0, is Fatou-closed. The

proof uses the following convergence property : for any 1-admissible sequence ξn ∈ X0,?
0

(de�ned similarly by portofolio processes without consumption), it is possible to �nd

ζn ∈ conv(ξk)k≥n such that ζn converges in the semimartingale topology (Lemmata

4.10 and 4.11 in [Delbaen 94]). Hence, ζnT Fatou-converges in X0,?
0 (T ). This can be easily

extended to X0,?
τ (T ) for any τ ∈ T and for any bound of admissibility. In this case, De-

�nition 3.2.5 and the martingale property of ξ1 imply uniform admissibility in the sense

of [Delbaen 94]. Assumption 3.2.3 then holds in this context. The closedness property

extends to X0
0,adm(T ) without di�culty by applying Proposition 3.4 in [?] with the actual

de�nition of admissibility.

A physical market with convex transaction costs in discrete time

Let (ti)0≤i≤N ⊂ [0, T ] be an increasing sequence of deterministic times with tN = T .

Let us consider the discrete �ltration G := (Fti)0≤i≤N . Here, the market is model-

led by a G-adapted sequence C = (Cti)0≤i≤N of closed-valued mappings Cti : Ω 7→
Rd with Rd− ⊂ Cti(ω) and Cti(ω) convex for every 0 ≤ i ≤ N and ω ∈ Ω. We

de�ne the recession cones C∞t (ω) =
⋂
α>0 αCt(ω) and their dual cones C∞,∗t (ω) ={

y ∈ Rd : xy ≥ 0, ∀x ∈ C∞t (ω)
}
, see also [Pennanen 10] for a freestanding de�nition

This setting has been introduced in [Pennanen 10] to model markets with convex tran-

saction costs, such as currency markets with illiquidity costs, in discrete time. Every

�nancial position is labelled in physical units of the d assets, and the sets Cti denote the

possible self �nancing changes of position at time ti, so that

X0
ti(T ) :=

{
N∑
k=i

ξtk : ξtk ∈ L
0(Ctk ,Ftk), ∀i ≤ k ≤ N

}
for all 0 ≤ i ≤ N .

In this context, Assumption 3.2.1 trivially holds. If Cti(ω) is a cone in Rd for all 0 ≤ i ≤ N
and ω ∈ Ω, i.e., C = C∞, we retrieve a market with proportional transaction costs as
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described in [Kabanov 03]. In the latter, Kabanov and al. show that the Fundamental

Theorem of Asset Pricing can be expressed with respect to the robust no-arbitrage pro-

perty, see [Kabanov 03] for a de�nition. This condition is equivalent to the existence of a

martingale process Z such that Zti ∈ L∞(ri(C∞,∗ti
),Fti), where ri(C

∞,∗
ti

) denotes the re-

lative interior of C∞,∗ti
. The super replication theorem, see Lemma 3.3.2 in [Kabanov 09],

allowsM given by De�nition 3.2.4 to be characterized by such elements Z. In that case,

the reader can see that C∞ replaces our conventional cone process K.

As mentioned in [Pennanen 10], the case of general convex transaction costs leads to two

possible de�nitions of arbitrage. One of them is based on the recession cone. Following the

terminology of [Pennanen 10], the market represented by C satis�es the robust no-scalable

arbitrage property if C∞ satis�es the robust no-arbitrage property. This de�nition implies

that arbitrages might exist, but they are limited for elements of X0
0(T ) and even not

possible for the recession cone. Pennanen and Penner [Pennanen 10] proved that the

set X0
0(T ) is closed in probability under this condition. Hence, it is Fatou-closed. The

convergence result used in this context is a di�erent argument than the one of Assumption

3.2.3. However, the latter can be applied, see Chapter 2 in which Assumption 3.2.3 has

been applied in a very similar context. The notion of admissibility can also be avoided

in the discrete time case.

3.2.5 Addition of production possibilities

The previous introduction of a �nancial market comes from the possibility to interpret the

available assets on the market as raw material or saleable goods for a producer. Therefore,

we model the production as a function transforming a consumption of the d assets in a

new wealth in Rd. Other observations from the situation of an electricity provider lead

to our upcoming setting. On a deregulated electricity market, power is provided with

respect to an hourly time grid. Production control can thus be fairly approximated by a

discrete time framework. We also introduce a delay in the control, as a physical constraint

in the production process. See [Kallrath 09] for a monograph illustrating these concerns.

De�nition 3.2.7. Let (ti)0≤i≤N ⊂ [0, T ] be a deterministic collection of strictly increa-

sing times. We then de�ne a production regime as an element β in B, where

B :=
{

(βti)0≤i<N : βti ∈ L0(Rd+,Fti), 0 ≤ i < N
}
.

A production function is then a collection of maps R := (Rti)0<i≤N such that for 0 <

i ≤ N , Rti is a Fti-measurable map from Rd+ to Rd, so that Rti(βti−1) ∈ L0(Rd,Fti) for

βti−1 ∈ L0(Rd+,Fti−1).
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Without loss of generality, it is also possible to consider an increasing sequence of stopping

times in T instead of the (ti)0≤i≤N . The set B can also be de�ned via sequences (βti)0≤i<N

such that βti takes values in a convex closed subset of Rd+. The proofs in section 3.5 would

be identical and we refrain from doing this. Notice also that it has no mathematical cost

to consider separate times of injection and times of production, i.e., a non-decreasing

sequence {t0, s0, t1, s1, . . . , tN , sN} ⊂ [0, T ] with ti < si, (ti)0≤i<N and (si)0<i≤N allowing

to de�ne B and R respectively. As invoked in the introduction, we add fundamental

assumptions on the production function.

Assumption 3.2.4. The production function has the three following properties :

(i) Concavity : for all 0 < i ≤ N , for all (β1, β2) ∈ L0(R2d
+ ,Fti−1) and λ ∈ L0([0, 1],Fti−1),

Rti(λβ
1+(1− λ)β2)− λRti(β1)− (1− λ)Rti(β

2) ∈ Rd+ P− a.s.

(ii) Boundedness : there exists a constant K ∈ Rd+ such that for all 0 < i ≤ N ,

K− |Rti(β)− β| ∈ Rd+ P− a.s. , for all β ∈ Rd+ .

(iii) Continuity : For any 0 < i ≤ N , we have that lim
βn→β0

Rti(β
n) = Rti(β

0) .

These assumptions are fundamental for the continuous time setting. Assumption 3.2.4 (i)

keeps the convexity property for the set XR0 (T ), see Proposition 3.5.1 in the proofs section.

Assumption 3.2.4 (ii) does not only ensure the admissibility of investment-production

portfolios when we add production. From the economical point of view, it a�rms that

the net production income is bounded, which forbids in�nite pro�ts. It thus provides a

realistic framework for physical production systems. Finally, Assumption 3.2.4.(iii) is a

technical assumption in order to use Assumption 3.2.3. It is only needed to ensures upper

semicontinuity on the boundary of Rd+, since continuity comes from (i) inside the domain.

See Theorem 2.2.2 in Chapter 2, where convexity is not needed and upper semicontinuity

is su�cient. Notice that concavity and the upper bound K for the production incomes

are given with respect to Rd+ and not K. This is a useful artefact in the proofs, but also

a meaningful expression of a physical bound of production, which has nothing to do with

a �nancial model.

With Assumption 3.2.4, it is possible to fairly approximate a generation asset, see Section

3.4.

De�nition 3.2.8. The set of investment-production wealth processes starting at time t

is denoted XRt and is given by{
V : Vs := ξs +

N∑
i=1

Rti(βti−11{ti−1≥t})1{ti≤s} − βti−11{t≤ti−1≤s}, (ξ, β) ∈ X0
t,adm × B

}
.
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The set of terminal possible outcomes for the investor-producer is given by XRt (T ) :={
VT : V ∈ XRt

}
.

The agent manages his production system as follows. Assume that he starts an investment-

production strategy at time t. On one hand, he performs a �nancial strategy given by

ξ ∈ X0
t,adm. On the other hand, he can decide to put a quantity of assets βti−1 at time ti

into the production system if ti−1 ≥ t. The latter returns a position Rti(βti−1) labelled

in assets at time ti. At this time, the agent also decides the regime of production βti for

the next step of time, and so on until time reaches tN .

The generalization to continuous time controls raises mathematical di�culties. When

coming to a continuous time control, we have to make a distinction between the conti-

nuous and the discontinuous part of the control, i.e., between a regime of production as

a rate and an instantaneous consumption of assets put in the production system. This

natural distinction has already been observed for liquidity matters in �nancial markets,

see [Cetin 06]. This implies a separate treatment of consumption in the function R. With

a continuous control and as in [Cetin 06] the production becomes a linear function of

that control, which is very restrictive and similar to the polyhedral cone setting of mar-

kets with proportional transaction costs. With a discontinuous control, non linearity can

appear but we face two di�culties. If the number of discontinuities is bounded, it is easy

to see that the set of controls is not convex. On the contrary, if it is not bounded, the

set is not closed. This problem typically appears in impulse control problems and is not

easy to overcome, see Chapter 7 in [Oksendal 05]. We ought to focus on that di�culty

in future research.

3.3 The conditional sure pro�t condition

In the situation of our agent, even if we accept no arbitrage on the �nancial market, there

is no economical justi�cation for the interdiction of pro�ts coming from the production.

This is the reason why the concept of no marginal arbitrage for high production regime

has been introduced in Chapter 2 (NMA for short). The NMA condition expresses the

possibility to make sure pro�ts coming from the production possibilities, but that mar-

ginally tend to zero if the production regime β is pushed toward in�nity. This condition

relied on an a�ne bound for the production function, introducing then an auxiliary linear

production function for which sure pro�ts are forbidden. We propose another parametric

condition based on the idea of possibly making solvable pro�ts for a small regime of pro-

duction. It is stronger than NMA under Assumption 3.2.4, see Remark 2.2.3 in Chapter

2, but we express directly the new condition with the production function.
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De�nition 3.3.1. We say that there are only conditional sure pro�ts for the production

function R, CSP(R) holds for short, if there exists C > 0 such that for all 0 ≤ k < N

and for all (ξ, β) ∈ X0
tk,adm

× B we have :

ξT +

N−1∑
i=k

Rti+1(βti)− βti �T
N−1∑
i=k

Rti+1(0) P− a.s. =⇒ ‖βti‖ ≤ C for k ≤ i < N .

The condition CSP(R) thus reads as follows. Since we do not specify portfolios by an

initial holding, we can focus on portfolios starting at any time before T with any initial

position. If the agent starts an investment-production strategy at an intermediary date

t ∈ (tk−1, tk] for some k (whatever his initial position is at t), then he can start his

production at index k. The condition CSP(R) assess that he can do better than the

strategy (0, 0) ∈ X0
0 × B only if the regime of production is bounded by C. On a purely

�nancial market, a possible interpretation of the absence of arbitrage is that there is

no strategy better than the null strategy P − a.s. CSP(R) is a transposition of this

interpretation to production-investment portfolios, where doing nothing means that the

agent is subject to �xed costs expressed by R(0). There is no argument against the

possibility for an industrial producer to make sure pro�ts, if we put apart the �xed cost

of his installation. It is however unrealistic to assume that his production system is not

subject to some risks if the regime of production is pushed too high. A comprehensive

economical interpretation is available in the previous chapter.

The terminology CSP(R) refers to the no sure pro�t property introduced by Rasonyi

[Rásonyi 10] (which became the no sure gain in liquidation value condition in the �nal

version), since it is formulated in a very similar way and expresses the interdiction for sure

pro�t if some condition is not ful�lled. The CSP(R) property is indeed very �exible. It is

possible to change the condition �‖βti‖ ≤ C for k ≤ i ≤ N � by any restriction implying

that :

�There exists a value ci ∈ (0,+∞) such that ‖βti‖ 6= ci for all 0 ≤ i < N �.

This can convey the condition that the regime of production shall be null or greater than a

threshold to allow pro�ts, or observe a more precise condition on its components as long as

it also constrains the norm of β. Posing CSP(R) implies that the closedness property on

the �nancial market alone transmits to the market with production possibilities. Theorem

3.1.1 given in introduction then follows as a corollary to the following proposition.

Proposition 3.3.1. The set XR0 (T ) is Fatou-closed under CSP(R).
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Notice that CSP(R) does not have to hold for a speci�c value of C. As a consequence,

Theorem 3.1.1 does not depend on the form of CSP(R). This reduces the importance of

the chosen form for the condition, since the super-replication price is independent from

it.

3.4 Application to the pricing of a power future contract

We illustrate Theorem 3.1.1 by an application to an electricity producer endowed with a

generation system converting a raw material, e.g. fuel, into electricity and who has the

possibility to trade that asset on a market. We address here the question of a possible

price of a term contract a producer can propose on power when he takes into account

his generation asset. We assume that the �nancial market is submitted to proportional

transaction costs. For this reason, we place ourselves in the �nancial framework developed

by Campi and Schachermayer [Campi 06].

3.4.1 The �nancial market

We consider a �nancial market on [0, T ] composed of two assets, cash and fuel, which are

indexed by 1 and 2 respectively. The market is represented by a so-called bid-ask process

π, see [Campi 06] for a general de�nition.

Assumption 3.4.1. The process π = (π12
t , π

21
t )t is a (0,+∞)2-valued F-adapted càdlàg

process verifying e�cient frictions, i.e.,

π12
t × π21

t > 1 for all t ∈ [0, T ] P− a.s.

Here π12
t denotes at time t the quantity of cash necessary to obtain and (π21

t )−1 denotes

the quantity of cash that can be obtained by selling one unit of fuel. The e�cient frictions

assumption conveys the presence of positive transaction costs. The process π generates

a set-valued random process which de�nes the solvency region :

Kt(ω) := cone(e1, e2, π12
t (ω)e1 − e2, π21

t (ω)e2 − e1) ∀(t, ω) ∈ [0, T ]× Ω .

Here (e1, e2) is the canonical base of R2. The process K is F-adapted and closed convex

cone-valued. It provides the partial order on R2 of De�nition 3.2.1.

Assumption 3.4.2. Every ξ ∈ X0
0 is a làdlàg R2-valued F-predictable process with �nite

variation verifying, for every (σ, τ) ∈ T 2
[0,T ] with σ < τ ,

(ξτ − ξσ)(ω) ∈ conv

 ⋃
σ(ω)≤u≤τ(ω)

−Ku(ω)

 ,
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the bar denoting the closure in Rd.

Assumption 3.4.2 implies Assumption 3.2.1. Admissible portfolios are de�ned via De�ni-

tions 3.2.5 and 3.2.1.

Corollary 3.4.1. Every Z ∈M is a R2
+-valued martingale verifying (π21

t )−1 ≤ Z1
t /Z

2
t ≤

π12
t P− a.s. and :

� for all σ ∈ T , (π21
σ )−1 < Z1

σ/Z
2
σ < π12

σ ;

� for all predictable σ ∈ T , (π21
σ−)−1 < Z1

σ−/Z
2
σ− < π12

σ− .

Proof The market model is conical, so that α0
0(Z) := sup

{
E [Z ′TVT ] : V ∈ X0

0,adm

}
=

0, for all Z ∈M. The fact that De�nition 3.2.4 corresponds to these elements Z follows

from the construction of K and is a part of the proof of Theorem 4.1 in [Campi 06]. 2

Under the assumption thatM 6= ∅, Zξ is a supermartingale for all Z ∈M and admissible

ξ ∈ X0
0, see Lemma 2.8 in [Campi 06]. Finally, Assumption 3.2.3 is given by Proposition

3.4 in [Campi 06]. For a comprehensive introduction of all these objects, we refer to

[Campi 06].

3.4.2 The generation asset

We suppose that the agent possesses a thermal plant allowing to produce electricity out

of fuel on a �xed period of time. The electricity spot price is determined per hour, so

that we de�ne the calendar of production as (ti)0≤i≤N ⊂ [0, T ], where N represents the

number of generation actions for each hour of the �xed period. At time ti, the agent

puts a quantity βti = (β1
ti , β

2
ti) of assets in the plant. The production system transforms

at time ti+1 the quantity β2
ti of fuel, given a �xed heat rate qi+1 ∈ R+, into a quantity

qi+1β
2
ti of electricity (in MWh). The producer has a limited capacity of injection of fuel

given by a threshold ∆i+1 ∈ L∞(R+,Fti+1). This implies that any additional quantity

over ∆i+1 of fuel injected in the process will be redirected to storage facilities, i.e., as

fuel in the portfolio. The electricity is immediately sold on the market via the hourly

spot price. On most of electricity markets, the spot price is legally bounded. It can also

happen to be negative. It is thus given by Pi+1 ∈ L∞(R,Fti+1). For a given time ti+1,

the agent is subject to a �xed cost γi+1 in cash. The agent also faces a cost in fuel in

order to maintain the plant activity. This is given by a supposedly non-positive increasing

concave function ci+1 on [0,∆i+1] such that c′i+1(∆i+1) ≥ 1, where c′i+1 represents the

left derivative. Altogether, we propose the following.

Assumption 3.4.3. The production function is given by

Rti+1(βti) = (R1
ti+1

(βti), R
2
ti+1

(βti))
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for 0 ≤ i < N , where{
R1
ti+1

((β1
ti , β

2
ti)) = Pi+1qi+1 min(β2

ti ,∆i+1)− γi+1 + β1
ti

R2
ti+1

((β1
ti , β

2
ti)) = ci+1(min(β2

ti ,∆i+1)) + max(β2
ti −∆i+1, 0)

.

We can constraint β1
ti to be null at every time ti without any loss of generality. Indeed

Rti(βti−1)− βti−1 does not depend on β1
ti−1

for any i.

Corollary 3.4.2. Assumption 3.2.4 holds under Assumption 3.4.3.

Proof For each i, Rti+1 veri�es Assumption 3.2.4 (ii) :

|R1
ti+1

((β1
ti , β

2
ti))− β

1
ti | ≤ |Pi+1qi+1∆i+1|+ |γi+1| ∈ L∞(R,Fti+1)

and

|R2
ti+1

((β1
ti , β

2
ti))− β

2
ti | ≤ max(|ci+1(0)|, |ci+1(∆i+1)−∆i+1|) ∈ L∞(R+,Fti+1) .

Notice that since ci+1 is concave with c′i+1(∆i+1) ≥ 1, the function R2
ti+1

is clearly

concave. The function R is then concave in each component with respect to the usual

order, so that Assumption 3.2.4 (i) holds with the partial order induced by K. It is also

continuous, so that Assumption 3.2.4 (iii) holds. 2

3.4.3 Super replication price of a power futures contract

We now �x a condition provided by the agent in order to apply De�nition 3.3.1. For

example suppose that the agent knows at time ti that by producing under a typical

regime C (a given threshold of fuel to put in his system) and selling the production at

the market price, he can refund the quantity of fuel needed to produce. It is a conceivable

phenomenon on the electricity spot market. Since the electricity spot price is actually an

increasing function of the total amount of electricity produced by the participants, the

agent can sell a small quantity of electricity at high price if the total production is high.

He can then partially or totally recover his �xed cost and even make sure pro�t. The

constant C can depend on external factors of the model, such as the level of aggregated

demand of electricity.

Assumption 3.4.4. We assume that there exists C > 0 such that

R1
ti+1

(β2
ti) + γi+1 ≥ (π12

ti+1
)−1(R2

ti+1
(β2
ti)− β

2
ti − ci+1(0)) P− a.s. =⇒ β2

ti ≤ C (3.4.1)
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Assumption 3.4.4 compares the marginal return provided by selling produced energy

to the cost of production converted into cash. It is a reformulation of CSP(R) in the

transaction costs framework : here, an immediate transfer ξti+1 of quantity R1
ti+1

(β2
ti) of

asset 1 brought in asset 2 gives ξti+1 + Rti+1(βti) � Rti+1(0). Thus, CSP(R) condition

holds under Assumption 3.4.4. The latter implies that the set XR0,adm(T ) is Fatou-closed,

so that we can apply Theorem 3.1.1.

Now we consider the following contingent claim. We denote by F (x) the price of a power

futures contract with physical delivery. Buying this contract at time 0 provides a �xed

power x (in MW) for N consecutive hours of a �xed period. Here, the N hours correspond

to the (ti)1≤i≤N . Theorem 3.1.1 can be immediately applied to obtain the price at which

the investor-producer can sell the contract.

Corollary 3.4.3. The price of the futures contract for the investor-producer is given by

F (x) = sup
Z∈M

(
1

Z1
0

E

[
N∑
i=1

Z1
tiPix

]
− αR0 (Z)

)

where the support function αR0 (Z) is de�ned by

sup
β∈B

E

[
N∑
i=1

Z1
ti

(
Piqi min(β2

ti−1
,∆i)− γi

)
+ Z2

ti

(
ci(min(β2

ti−1
,∆i))−min(β2

ti−1
,∆i)

)]
.

Theorem 3.1.1 then ensures the existence of a wealth process, involving a �nancial stra-

tegy starting with wealth F (x) and production activities, such that his terminal position

is solvent P− a.s..

3.5 Proofs

3.5.1 Proof of Proposition 3.3.1

We de�ne a collection of sets

X̃kt :=

{
V :

Vs := ξs +
∑k

i=1RtN+1−i(βtN−i)1{tN+1−i≤s} − βtN−i1{tN−i≤s},
for some (ξ, β) ∈ X0

t,adm × B

}

and X̃kt (T ) :=
{
VT : V ∈ X̃kt

}
for t ∈ [0, T ] and 0 ≤ k ≤ N , with the convention that

0∑
i=1

RtN+1−i(βtN−i)− βtN−i = 0 .
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Note thus that X̃0
t (T ) corresponds precisely to the set X0

t,adm(T ). We are conducted by

the following guideline. According to Assumption 3.2.3, X̃0
tN

(T ) is Fatou closed. We then

proceed by induction in two steps : we �rst show that X̃ktN−(k+1)
(T ) is closed if X̃ktN−k(T )

is closed. Then we prove that X̃k+1
tN−(k+1)

(T ) is closed if X̃ktN−(k+1)
(T ) is closed.

Proposition 3.5.1. For all 0 ≤ k ≤ N , the set X̃ktN−k(T ) is convex.

Proof This is a consequence of Assumption 3.2.4 (i). Indeed take (ξ1, β1) and (ξ2, β2)

in X0
tN−k,adm

×B and λ ∈ [0, 1]. Take (κ1, κ2) ∈ R2d
+ the respective bounds of admissibility

for ξ1 and ξ2. Note that λξ1 + (1 − λ)ξ2 is clearly (λκ1 + (1 − λ)κ2)-admissible since

K is a cone-valued process. By Assumption 3.2.4 (i), there exists (`tN+1−i)1≤i≤k with

`tN+1−i ∈ L0(Rd−,FtN+1−i) such that for 1 ≤ i ≤ k,

RtN+1−i(λβ
1
tN−i + (1− λ)β2

tN−i) + `tN+1−i = λRtN+1−i(β
1
tN−i) + (1− λ)RtN+1−i(β

2
tN−i) .

Notice that Rd− ⊂ Kt for any t ∈ [0, T ], so that `tN+1−i ∈ L0(−KtN+1−i ,FtN+1−i). We

will use this fact throughout the proof. Notice also that, according to Assumption 3.2.4

(ii), each `tN+1−i is bounded by below by 2K for 1 ≤ i ≤ k, where K is the bound

of net production incomes. By relation (3.2.1) and the above fact, λξ1
T + (1 − λ)ξ2

T +∑k
i=1 `tN+1−i ∈ X0

tN−k,adm
(T ). Assembling the parts gives the proposition. 2

Proposition 3.5.2. If X̃ktN−k(T ) is Fatou-closed, then the same holds for X̃ktN−(k+1)
(T ).

Proof Let (V n
T )n≥1 ⊂ X̃ktN−(k+1)

(T ) be a sequence such that V n
T Fatou-converges to some

V 0
T . Let (ξn)n≥1 ⊂ X0

tN−(k+1),adm
and (βntN−i)1≤i≤k,n≥1 with (βntN−i)n≥1 ⊂ L0(Rd+,FtN−i)

for 1 ≤ i ≤ k, and κ ∈ Rd+, such that

V n
T = ξnT +

k∑
i=1

RtN+1−i(β
n
tN−i)− β

n
tN−i �T −κ ∀n ≥ 1 .

According to Assumption 3.2.4 (ii), and since Rd+ ⊂ KT , we have that for any n ≥ 1,

−kK �T
k∑
i=1

RtN+1−i(β
n
tN−i)− β

n
tN−i =: V̂ n

T ∈ X̃ktN−k(T ) .

Due to Assumption 3.2.4 (ii) also, we have that ξnT �T −(κ+kK) for all n ≥ 1. According

to Assumption 3.2.3, we can then �nd a sequence of convex combinations ξ̃n of ξn,

ξ̃n ∈ conv(ξm)m≥n, such that ξ̃nT Fatou-converges to some ξ̃0
T ∈ X0

tN−(k+1),adm
(T ). The

convergence of ξ̃nT implies, by using the same convex weights, that there exists a sequence

(Ṽ n
T )n≥1 of convex combinations of V̂ m

T , m ≥ n, converging P − a.s. to some Ṽ 0
T . By
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Proposition 3.5.1 above, the sequence (Ṽ n
T )n≥1 lies in X̃ktN−k(T ). Recall that it is also

bounded by below. Since X̃ktN−k(T ) is Fatou-closed, Ṽ 0
T ∈ X̃ktN−k(T ) and moreover, Ṽ 0

T is

of the form
∑k

i=1RtN+1−i(β
0
tN−i) − β

0
tN−i + `0tN+1−i for some β0 ∈ B and (`0tN+1−i)1≤i≤k

with `0tN+1−i ∈ L
∞(−KtN+1−i ,FtN+1−i) for 1 ≤ i ≤ k. This is due to Assumption 3.2.4

(i)-(ii). If we let (λm)m≥n be the above convex weights, we can always write for 1 ≤ i ≤ k
and n ≥ 1∑
m≥n

λm

(
RtN+1−i(β

m
tN−i)− β

m
tN−i

)
= RtN+1−i(

∑
m≥n

λmβ
m
tN−i)−

∑
m≥n

λmβ
m
tN−i + `ntN+1−i .

The sets L0(−KtN+1−i ,FtN+1−i) and L
0(Rd+,FtN−i) are closed convex cones for 1 ≤ i ≤ k,

so that `ntN+1−i and
∑

m≥n λmβ
m
tN−i and their possible limits stay in those sets respecti-

vely. From the boundedness condition of Assumption 3.2.4 (ii), the vectors `ntN+1−i are

uniformly bounded by below by 2K for any 1 ≤ i ≤ k and n ≥ 1, and so are `0tN+1−i for

1 ≤ i ≤ k. According to (3.2.1), ξ̃nT +
∑k

i=1 `
0
tN+1−i ∈ X0

tN−(k+1),adm
(T ). We then have

that ξ̃nT + Ṽ N
T converges to ξ̃0

T + Ṽ 0
T = V 0

T ∈ X̃ktN−(k+1)
(T ). 2

Proposition 3.5.3. If X̃ktN−(k+1)
(T ) is Fatou-closed, then the same holds for X̃k+1

tN−(k+1)
(T ).

Proof Let (V n
T )n≥1 ⊂ X̃k+1

tN−(k+1)
(T ) such that there exists κ ∈ Rd+ verifying V n

T �T −κ
for n ≥ 1, and V n

T converges P−a.s. toward VT ∈ L0(Rd,FT ) when n goes to in�nity. We

let (V̄ n
T , β̄

n)n≥1 ⊂ X̃ktN−(k+1)
(T )×L0(Rd+,FtN−(k+1)

) be such that V n
T = V̄ n

T +RtN−k(β̄n)−
β̄n. De�ne ηn = |β̄n| and the FtN−(k+1)

-measurable set E := {lim supn→∞ η
n < +∞}. We

consider two cases.

1. First assume that E = Ω. Then (β̄n)n≥1 is P − a.s. uniformly bounded. According

to Theorem 1.2.5 of Chapter 1, we can �nd a FtN−(k+1)
-measurable random subsequence

of (β̄n)n≥1, still indexed by n for sake of clarity, which converges P − a.s. to some β̄0 ∈
L∞(Rd+,FtN−(k+1)

). By Assumption 3.2.4 (iii), RtN−k(β̄n) converges to RtN−k(β̄0), Recall

that V̄ n
T � −κ−K for n ≥ 1. Since it is P-almost surely convergent to VT −RtN−k(β̄0) +

β̄0 =: V̄ 0
T and that X̃ktN−(k+1)

(T ) is Fatou-closed, the limit V̄ 0
T lies in that set. This implies

that VT ∈ X̃k+1
tN−(k+1)

(T ).

2. Assume now that P [Ec] > 0. Since Ec is FtN−(k+1)
-measurable, we argue conditionally

to that set and suppose without loss of generality that Ec = Ω. We then know that

there exists a FtN−(k+1)
-measurable subsequence of (ηn)n≥1 converging P-almost surely

to in�nity with n by an argument similar to the one of Theorem 1.2.5. We overwrite n

by the index of this subsequence. We write V n
T as follows :

V n
T = ξnT +RtN−k(βntN−(k+1)

)− βntN−(k+1)
+

k∑
i=1

RtN+1−i(β
n
tN−i)− β

n
tN−i , (3.5.1)
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with (ξn)n≥1 ⊂ X0
tN−(k+1),adm

and (βntN−i)1≤i≤k+1,n≥1 with (βntN−i)n≥1 ⊂ L0(Rd+,FtN−i)
for 1 ≤ i ≤ k+ 1, and with the natural convention that for all n ≥ 1, βntN−(k+1)

= β̄n. We

then de�ne

(Ṽ n
T , ξ̃

n
T , β̃

n
tN−(k+1)

, . . . , β̃ntN ) :=
2‖C‖
1 + ηn

(V n
T , ξ

n
T , β

n
tN−(k+1)

, . . . , βntN ) . (3.5.2)

Now that (β̃ntN−(k+1)
)n≥1 is a bounded sequence, we can extract a random subsequence,

still indexed by n, such that (β̃ntN−(k+1)
)n≥1 converges P − a.s. toward some β0

tN−(k+1)
in

L0(Rd+,FtN−(k+1)
) . Notice for later that ‖β̃ntN−(k+1)

‖ converges to ‖β0
tN−(k+1)

‖ = 2‖C‖. It
is clear that Assumption 3.2.4 (i) allows to write

2‖C‖
1 + ηn

(
RtN+1−i(β

n
tN−i)− β

n
tN−i

)
=

RtN+1−i(β̃
n
tN−i)− β̃

n
tN−i −

(
1− 2‖C‖

1 + ηn

)
RtN+1−i(0) + `ntN+1−i ,

(3.5.3)

with (`ntN+1−i)n≥1 ⊂ L∞(−KtN+1−i ,FtN+1−i) for 1 ≤ i ≤ k + 1. Note that, according to

Assumption 3.2.4 (iii), the particular case i = k + 1 gives

lim
n↑∞

RtN−k(β̃ntN−(k+1)
)− β̃ntN−(k+1)

= RtN−k(β0
tN−(k+1)

)− β0
tN−(k+1)

. (3.5.4)

The general case i ≤ k follows from Assumption 3.2.4 (ii) applied to equation (3.5.3) :

the left hand term converges to 0 and (1− 2‖C‖
1+ηn ) converges to 1, so that

lim
n↑∞

RtN+1−i(β̃
n
tN−i)− β̃

n
tN−i + `ntN+1−i = RtN+1−i(0) . (3.5.5)

By construction of the subsequence, the convexity of X0
tN−(k+1),adm

(T ) and the belonging

of 0 to that set, ξ̃nT ∈ X0
tN−(k+1),adm

(T ). By using property of Assumption 3.2.1 (ii) and

since the sequence (`ntN+1−i)n≥1 is uniformly bounded for any 1 ≤ i ≤ k + 1, see proof of

Proposition 3.5.2 above, we de�ne

V̂ n
T := ξ̃nT + `ntN−k +

k∑
i=1

(
RtN+1−i(β̃

n
tN−i)− β̃

n
tN−i + `ntN+1−i

)
∈ X̃ktN−(k+1)

(T ) ,

which converges by de�nition and equations (3.5.4) and (3.5.5) to V̂ 0
T such that

V̂ 0
T +RtN−k(β0

tN−(k+1)
)− β0

tN−(k+1)
�T

k+1∑
i=1

RtN+1−i(0) . (3.5.6)

Notice also that by Assumption 3.2.4 (ii), for all n ≥ 1

V̂ n
T = Ṽ n

T −RtN−k(β̃ntN−(k+1)
)+β̃ntN−(k+1)

+

k+1∑
i=1

(
1− 2‖C‖

1 + ηn

)
RtN+1−i(0) �T −(κ+(k+1)K) .
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By Fatou-closedness of X̃ktN−(k+1)
(T ), we �nally obtain that V̂ 0

T + RtN−k(β0
tN−(k+1)

) −
β0
tN−(k+1)

∈ X̃k+1
tN−(k+1)

(T ). By equation (3.5.6) and CSP(R), ‖β0
tN−(k+1)

‖ ≤ C but by

construction, ‖β0
tN−(k+1)

‖ = 2‖C‖, so that we fall on a contradiction. The case 2. is not

possible. 2

Remark that the �exibility of the CSP(R) condition is re�ected in the construction in

equation (3.5.2) used in the last lines of the proof of Proposition 3.5.3. The choice of

a good norm for β̃ can indeed vary according to the condition we aim at. Following

Propositions 3.5.2 and 3.5.3, X̃k+1
tN−(k+1)

(T ) is Fatou-closed if X̃ktN−k(T ) is Fatou-closed.

Proposition 3.5.2 is used a last time to pass from the closedness of X̃Nt0 (T ) to the closedness

of XR0 (T ).

3.5.2 Proof of Theorem 3.1.1

Proof The �⇒� sense is obvious. To prove the �⇐� sense, we take H ∈ L0(Rd,FT )

such that H � −κ for some κ ∈ Rd+ and such that E [ZH] ≤ αR0 (Z) for all Z ∈ M
and H /∈ XR0 (T ), and work toward a contradiction. Let (Hn)n≥1 be the sequence de�ned

by Hn := H1{‖H‖≤n} − κ1{‖H‖>n}. By Proposition 3.3.1, XR0 (T ) is Fatou-closed, so by

Theorem 1.2.7 in Chapter 1, XR0 (T ) ∩ L∞(Rd,FT ) is weak*-closed. Since H /∈ XR0 (T ),

there exists k large enough such that Hk /∈ XR0 (T )∩L∞(Rd,FT ) but, because any Z ∈M
has positive components, still satis�es

E
[
Z ′TH

k
]
≤ αR0 (Z) := sup

{
E
[
Z ′TVT

]
: VT ∈ XR0 (T )

}
for all Z ∈M. (3.5.7)

By Proposition 3.5.1, the set XR0 (T ) is convex, so that we deduce from the Hahn-Banach

theorem that we can �nd z ∈ L1(Rd,FT ) such that

sup
{
E
[
z′VT

]
: VT ∈ XR0 (T ) ∩ L∞(Rd,FT )

}
< E

[
z′Hk

]
< +∞. (3.5.8)

We de�ne Z̃ by Z̃t = E [z|Ft]. By using the same argument as in the end of the proof of

Proposition 2.3.2 in the previous chapter, we have that XR0 (T ) ∩L∞(Rd,FT ) is dense in

XR0 (T ) and so that the left hand term of equation (3.5.8) is precisely αR0 (Z̃). The process

Z̃ is a non negative martingale and since(
XR0 (T )− L∞(Kt,Ft)

)
⊂
(
XR0 (T ) ∩ L∞(Rd,FT )

)
∀t ∈ [0, T ] ,

we have Z̃t ∈ L1(K∗t ,Ft). The contrary would make the left term of equation (3.5.8)

equal to +∞ for suitable sequences (ξm)m≥1 ⊂ XR0 (see the proof of Proposition 2.3.2 in
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Chapter 2). By using the same arguments as above, and since X0
0,adm(T ) is Fatou-closed

too, we have that X0
0,adm(T ) ∩ L∞(Rd,FT ) is dense in X0

0,adm(T ) . This implies that

α0
0(Z̃) := sup

{
E
[
Z̃ ′TVT

]
: VT ∈ X0

0,adm(T )
}

= sup
{
E
[
Z̃ ′TVT

]
: VT ∈ X0

0,adm(T ) ∩ L∞(Rd,FT )
}

≥ sup
{
E
[
Z̃ ′TVT

]
: V ∈ X0

0 and Vτ �τ −κ for all τ ∈ T , for some κ ∈ Rd+
}

Moreover, according to Assumption 3.2.4 (ii), ξT +
∑N

i=1Rti(0) ∈ XR0 (T ) ∩ L∞(Rd,FT )

for any ξT ∈ X0
0,ad 1

2

(T ) ∩ L∞(Rd,FT ), so that

α0
0(Z̃)−NZ̃ ′0K ≤ α0

0(Z̃) + E

[
Z̃ ′T

N∑
i=1

Rti(0)

]
≤ sup

{
E
[
z′VT

]
: VT ∈ XR0 (T ) ∩ L∞(Rd,FT )

}
and then α0

0(Z̃) is �nite according to equation (3.5.8). Take Z ∈ M. Then there exists

ε > 0 small enough such that, by taking Ž = εZ + (1− ε)Z̃,

αR0 (Ž) ≤ εαR0 (Z) + (1− ε)αR0 (Z̃) < εE
[
Z ′TH

k
]

+ (1− ε)E
[
Z̃ ′TH

k
]

= E
[
Ž ′TH

k
]
.

It is easy to see that Ž ∈M, so that the above inequality contradicts (3.5.7). 2
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Conclusion of Part 1

Producers still being the majority of participants of a deregulated electricity market, it

seems fair to study their situation, and integrate the �nancial possibilities to production

outcomes. This is why, in the �rst part of the thesis, we propose to extend arbitrage

pricing methodology to an agent having production possibilities.

In Chapter 2, we proposed an exhausted framework, in discrete time, of �nancial market

with proportional transaction costs for an agent with delayed production control. The

production function is rather general in that case. We provide a parametric economical

condition which forbids marginal pro�ts asymptotically. Associated with the no-arbitrage

of second kind condition, it provides a fundamental theorem of asset pricing based on

measurable selection arguments. The closedness property of the set of terminal wealth

is thus not needed and is a corollary of the FTAP. Consequent results are provided

for applications : we prove several versions of the super-hedging theorem and provide

existence in a simple utility maximization problem.

Chapter 3 represents an attempt of extension of this work. Considering a general pro-

duction function (unbounded, not concave) seems di�cult since continuous time models

of �nancial markets mostly rely on Fatou-convergence in convex sets. We then consider

a proper �nancial market model which encompasses most known models, and then add

concave production possibilities at discrete time dates. The provided economical condi-

tion is more �exible than the previous one, so that it can hold without much di�culty.

Note that, as in the �rst case, the economical condition does not impact the super-hedging

theorem, which relies on the closedness property and the martingale selector only.

This theoretical approach is an autonomous proposition for the construction of a pricing

rule for speci�c agents. Even though it conveys a very large class of models, the results

are rather di�cult to put in practice for an electricity provider. The second part of the

Thesis proposes a more practical approach of this problem.
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Première partie

Risk pricing and hedging in

electricity market





Abstract

The objective of this part is to present two applications of mathematical

�nance to Electricity derivative pricing. Both chapters propose a treatment of

market incompleteness by means of a speci�c martingale measure. The �rst

one is an attempt to model electricity spot prices and the corresponding for-

ward contracts by relying on the underlying fuels markets, thus avoiding the

electricity non-storability restriction. The structural aspect of the model and

the source of incompleteness come from the fact that the electricity spot prices

depend on the dynamics of electricity demand and random available capacity

of each production mean, which are unhedgeable risk factors. We then use the

minimal martingale measure of Föllmer and Schweizer [Föllmer 91] to obtain

explicit formulae, and we �nally propose calibration and estimation proce-

dures, with results on French market data. The second chapter is a practical

application of the stochastic target approach with target in expectation intro-

duced in [Bouchard 09]. It is called up to overpass the problem of granularity

of the Electricity prices term structure, introduced as a half-complete market

setting. Along the lines of the original paper, we use the convex conjugate of

the value function to highlight an explicit formulation based on an equivalent

martingale measure. For the general semi-complete market case, we propose

a numerical solution of the problem and apply it to the pricing and hedging

of an European option on non-existent futures contract.

Keywords : electricity prices ; martingale measure ; structural model ; incomplete mar-

ket ; forward contracts ; stochastic target ; Monte Carlo simulation ; risk measure.

Note

The content of chapter 4 is based on an article written in collaboration with René Aïd,

Luciano Campi and Nizar Touzi and published in The International Journal Of Theo-

retical and Applied Finance (Vol. 12, No. 7, pp. 925-947) in 2009. The second chapter

of this part is partially inspired by a paper in preparation with Ludovic Moreau, Nadia

Oudjane and Alexandre Tamisier.





Chapitre 4

A structural risk-neutral model of

electricity prices

4.1 Introduction

In securities markets, the following relationship between spot and forward prices of a

given security holds :

F (t, T ) = Ste
r(T−t), t ≤ T.

As usual, T is the maturity of the forward contract, St is the spot price at t and r is the

interest rate which is assumed constant for simplicity. We also assumed no dividends. The

no-arbitrage arguments usually used to prove such an equality lie heavily upon the fact

that securities are storable with zero costs. For storable commodities (oil, soy beans, sil-

ver...), the former relation has been extended by including storage costs and and an unob-

servable variable, the convenience yield (see Schwartz [Schwartz 97], [Routledge 00], and

Geman [Geman 07], sec. 3.7). But, when one considers electricity markets (see Burger and

al. [Burger 08] or Geman and Roncoroni [Geman 02] for an exhaustive description), such

a property does not hold anymore : Once purchased, the electricity has to be consumed, so

that the above relation does not make sense. This remark has long been recognized in elec-

tricity markets literature (see, e.g., Clewlow & Strickland [Clewlow 00]) but has not pre-

vented the development of many electricity spot price models in the Black & Scholes fra-

mework [Benth 03, Benth 07a, Benth 07b, Benth 08, Burger 04, Cartea 05, Eydeland 02]

(see Benth [Benth 07b] or [Ventosa 05] for a survey of the literature).

Nevertheless, the fact that electricity is not a storable good is not enough to claim

that no relation holds between spot and forward prices and that no arbitrage relations

constraint the term structure of the electricity prices, except the constraints coming from
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overlaping forward contracts. Indeed, one could argue that even if electricity cannot be

stored, the fuels that are used to produce electricity can. To see that this observation

leads to constraints on the term structure of electricity prices, let us consider a �ctitious

economy in which power is produced by a single technology - coal thermal units with the

same e�ciency - and that the electricity spot market is competitive. Then, the electricity

price should satisfy the following relation :

Fe(t, T ) = qcFc(t, T ), t ≤ T,

where the subscript e stands for electricity, c stands for coal, and qc denotes the heat

rate. If there is t < T such that Fe(t, T ) > qcFc(t, T ), then one can at time t sell a

forward on electricity at Fe(t, T ) and buy qc coal forward at Fc(t, T ) and, at time T , sell

qc coal at Sc(T ), buy electricity at Se(T ) = qcSc(T ). One can check that this strategy

provides a positive bene�t. Moreover, the opposite relation can be obtained by a similar

arbitrage. Here, in this �ctitious economy, the important feature is not that electricity

can be produced by coal, but that the relation between spot prices of coal and electricity

is known. Furthermore, it extends directly to the forward prices.

In real economies, similar no-arbitrage relations between electricity and fuels prices can

not be identi�ed so easily. The reason for this is that electricity can be produced out

of many technologies with many di�erent e�ciency levels : Coal plants more or less

ancient, fuel plants, nuclear plants, hydro, solar and windfarms, and so on. Generally,

the electricity spot prices is considered to be the day-ahead hourly markets. At that

time horizon, any producer will perform an ordering of its production means on the basis

of their production costs. This operation is refered to a unit commitment problem and

one can �nd a huge literature on this optimization problem in power systems literature

(see Batut and Renaud [Batut 92] and Dentcheva et al. [Dentcheva 97] for examples).

Depending on the market fuels prices and on the state of power system (demand, outages,

in�ows, wind and so forth), this ordering may vary through time. Hence, when the forward

contract is being signed, the ordering at the contract maturity is not known.

The objective of this chapter is to build a model for electricity spot prices and the corres-

ponding forward contracts, which relies on the underlying fuels markets, thus avoiding

the non-storability restriction. The structural aspect of our model comes from the fact

that the electricity spot prices depend on the dynamic of the electricity demand at the

maturity T , and on the random available capacity of each production means. Our model

allows to explain, in a stylized fact, how the di�erent fuels prices together with the de-

mand combine to produce electricity prices. This modeling methodology allows to transfer
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to electricity prices the risk-neutral probabilities of the fuels market, under a certain inde-

pendence hypothesis (see Assumption 4.2.2). Moreover, the model produces, by nature,

the well-known peaks observed on electricity market data. In our model, spikes occur

when the producer has to switch from one technology to the next lowest cost available

one. And, the dynamics of the demand process explains this switching process. Then, one

easily understands that the spikes result from a high level of the demand process which

forces the producer to use a more expensive technology.

Our model is close to Barlow's model [Barlow 02], since the electricity spot price is

de�ned as an equilibrium between demand and production. But, in our model, the stack

curve is described by the di�erent available capacities and not a single parametrized

curve. Moreover, this model shares some ideas with Fleten and Lemming forward curve

reconstruction method [Fleten 03]. But, whereas the authors methodology relies on an

external structural model provided by the SINTEF, our methodology does not require

such inputs.

This chapter is structured in the following way : Section 4.2 is devoted to the description

of the model ; Section 4.4 describes the relation between the futures prices ; Section 4.5

presents the model on a case with only two fuels ; Section 4.6 presents numerical results

showing the potential of the model on the two technologies case of the preceeding section ;

and, Section 4.7 provides some research perspectives and recent improvements.

4.2 The Model

Let (Ω,F ,P) be a probability space su�ciently rich to support all the processes we will

introduce throughout this paper. Let (W 0,W ) be an (n+1)-dimensional standard Wiener

process with W = (W 1, . . . ,Wn), n ≥ 1. In the sequel, we will distinguish between the

�ltration F0 = (F0
t ) generated by W 0 and the �ltration FW = (FWt ) generated by the

n-dimensional Wiener process W .

4.2.1 Commodities market

We consider a market where agents can trade n ≥ 1 commodities and purchase electricity.

We consider only commodities that can be used to produce electricity. For i = 1, . . . n,

Sit denotes the price of the quantity of commodity i necessary to produce 1 KWh of

electricity and is assumed to follow the following SDE :

dSit = Sit

µitdt+

n∑
j=1

σijt dW
j
t

 , t ≥ 0, (4.2.1)
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where µi and σij are FW -adapted processes suitably integrable (see Assumption 4.2.1).

We also assume that the market contains a riskless asset with price process

S0
t = e

∫ t
0 rudu, t ≥ 0,

where the instantaneous interest rate (rt)t≥0 is an FW -adapted non-negative process such

that
∫ t

0 rudu is �nite a.s. for every t ≥ 0. As a consequence, (rt) is independent of the

Brownian motion W 0. We will frequently used the notation X̃t := Xt/S
0
t for any pro-

cess (Xt). We make the following standard assumption (see, e.g. Karatzas [Karatzas 97],

Section 5.6).

Assumption 4.2.1. The volatility matrix σt = (σijt )1≤i,j≤n is invertible and both ma-

trices σ and σ−1 are bounded uniformly on [0, T ∗]× Ω. Finally, let θ denote the market

price of risk, i.e.

θt := σ−1
t [µt − rt1n], t ≥ 0,

where 1n is the n-dimensional vector with all unit entries. We assume that such a process

θ satis�es the so-called Novikov condition

E

[
exp

{
1

2

∫ T ∗

0
||θt||2dt

}]
<∞ a.s.

Remark 4.2.1. Imposing the Novikov condition on the commodities market price of risk

ensures that the minimal martingale measure we will use for pricing in Section 4.4 is

well de�ned. The reader is referred to Section 5.6 in Karatzas's book [Karatzas 97].

4.2.2 Market demand for electricity

We model the electricity market demand by a real-valued continuous processD = (Dt)t≥0

adapted to the �ltration F0 = (F0
t ) generated by the Brownian motion W 0. Observe

that, under our assumptions, the processes Si (i = 0, . . . , n) are independent under P of

the demand process D. To be more precise, the process D models the whole electricity

demand of a given geographical area (e.g. U.K., Switzerland, Italy and so on). With that

respect, it must be strictly positive. Nevertheless, in Section 4.6 where empirical analysis

is performed, to reduce the number of possible technologies, it is more convenient to use

a residual demand. A residual demand is the whole demand less the production of some

generation assets (like nuclear power, run of the river hydrolic plants, wind farms). It is

clear that the residual demand can be negative.
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4.2.3 Electricity spot prices

We denote by Pt the electricity spot price at time t. At any time t, the electricity producer

can choose among the n commodities which is the most convenient to produce electricity

at that particular moment and the electricity spot price will be proportional to the spot

price of the chosen commodity. We recall that the proportionality constant is already

included in the de�nition of each Si so that, if at time t the producer chooses commodity

i then Pt = Sit , 1 ≤ i ≤ n.

How does the electricity producer choose the most convenient commodity to use ? For each

i = 1, . . . , n, we denote ∆i
t > 0 the given capacity of the i-th technology for electricity

production at time t. (∆i
t) is a stochastic process de�ned on (Ω,F ,P) and assumed

independent of (W 0,W ). We denote F∆ = (F∆
t ) its �ltration. Moreover, we assume

that each ∆i
t takes values in [mi,Mi] where 0 ≤ mi < Mi are the minimal and the

maximal capacity of i-th technology, both values being known to the producer. In reality,

the producer �lls capacity constraints, so as to deal with demand variability, security

conditions and failures risk. Thus, in order to represent capacity management and partial

technology failures, the production capacity is considered as a stochastic process on its

own �ltration.

For every given (t, ω) ∈ R+ × Ω, the producer performs an ordering of the commodities

from the cheapest to the most expensive. The ordered commodities prices are denoted

by

S
(1)
t (ω) ≤ · · · ≤ S(n)

t (ω).

This order induces a permutation over the index set {1, . . . , n} denoted by

πt = {πt(1), . . . , πt(n)} .

Notice that πt de�ned an FW -adapted stochastic process, and we follow the usual pro-

babilistic notation omitting its dependence on ω. Given a commodities order πt at time

t, we set

Iπtk (t) :=

[
k−1∑
i=1

∆
πt(i)
t ,

k∑
i=1

∆
πt(i)
t

)
, 1 ≤ k ≤ n,

with the convention
∑0

i=1 ≡ 0.

For the the sake of simplicity, we will assume from now on that the electricity market is

competitive and we will not take into account the short term constraints on generation

assets as well as start-up costs. Hence, the electricity spot price is equal the cost of the

last production unit used in the stack curve (marginal unit). Thus, if the market demand
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at time t for electricity Dt belongs to the interval Iπtk (t), the last unit of electricity

is produced by means of technology πt(k), when available. Otherwise, it is produced

with the next one with respect to the time-t order πt. This translates into the following

formula :

Pt =
n∑
i=1

S
(i)
t 1{Dt∈Iπti (t)}, t ≥ 0. (4.2.2)

Let T ∗ > 0 be a given �nite horizon, in the sequel we will work on the �nite time interval

[0, T ∗]. Typically, all maturities and delivery dates of forward contracts we will consider

in the sequel, will always belong to the time interval [0, T ∗].

Assumption 4.2.2. Let Ft = F0
t ∨FWt ∨F∆

t , t ∈ [0, T ∗], be the market �ltration. There

exists an equivalent probability measure Q ∼ P de�ned on FT ∗, such that the discounted

commodities prices S̃ = (S̃1, . . . , S̃n) (i.e. without electricity) are local Q-martingales

with respect to (Ft).

This hypothesis is equivalent to assuming absence of arbitrage in the fuels market [Delbaen 94].

Notice that we are not making this assumption on the electricity market, as announced

in the introduction. Thanks to relation (4.2.2), any electricity derivative can be viewed

as a basket option on fuels. Hence, Assumption 4.2.2 allows us to properly apply the

usual risk neutral machinery to price electricity derivatives.

4.3 The choice of an equivalent martingale measure

The market of commodities and electricity is clearly incomplete, due to the presence

of additional unhedgeable randomness source W 0 driving electricity demand's dynamics

D. Thus, in order to price derivatives on electricity we have to choose an equivalent

martingale measure among in�nitely many to use as a pricing measure. One possible

choice is the following. Let Q := Qmin denote the minimal martingale measure introduced

in Chapter 1, initially proposed by Föllmer and Schweizer [Föllmer 91], i.e.

dQ
dP

= exp

{
−
∫ T ∗

0
θ′udWu −

1

2

∫ T ∗

0
||θu||2du

}
(4.3.1)

where we recall that θt = σ−1
t (µt − rt1n) is the market price of risk for the commodities

market (S1, . . . , Sn). This form follows Theorem 1.1.1 in Chapter 1 Notice that, due to

Assumption 4.2.1, such a measure is well de�ned, i.e. (4.3.1) de�nes a probability measure

on FT ∗ , which is equivalent to the objective measure P.
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Remark 4.3.1. It can be easily checked that under Q the laws of processes W 0 and

∆i (1 ≤ i ≤ n) are the same as under the objective probability P and the independence

between the �ltrations F0, F∆ and FW is preserved under Q.

A justi�cation for that particular choice of pricing measure, along the lines of Remark

4.3.1, is that Q minimizes the relative entropy H(.|P) de�ned by

H(P′|P) =

∫
Ω
log(

dP′

dP
)dP′ .

One can then see Q as the closest equivalent martingale measure for S̃ to the objective

measure P, given this criteria. This recall Theorem 1.1.2 in Chapter 1 along with the

comments in the corresponding section.

The measure Q will be used as pricing measure in the rest of the chapter. This is a

core assumption. Indeed, if one refers to [Schweizer 01], such a measure Q is related to

locally risk minimization procedure, in the sense that, given a contingent claim H with

some maturity T ∗ > 0, EQ[exp(−
∫ T

0 rsds)H] is the minimum price allowing an agent

to approximately (and locally in L2) hedge the claim. Namely, (H0, φ) is a local risk

minimization strategy if and only if H admits a Föllmer-Schweizer decomposition

H = H0 +

∫ T ∗

0
φ′tdS̃t + LHT

where LH is a P-martingale bounded in L2(P) orthogonal to S. This strategy is in fact

uniquely determined and de�ned by the minimal martingale measure (see Theorem 3.14 in

[Föllmer 91]). The expectation of H under Q is one of the in�nitely possible no-arbitrage

prices of H, but it is precisely the initial wealth allowing to hedge the hedgeable part of

H, i.e. the part depending on commodities.

Under such a probability Q, commodities prices Si, 1 ≤ i ≤ n, satisfy the SDEs

dSit = Sit

rtdt+
d∑
j=1

σi,jt dW̃
j
t

 , Si0 > 0,

whose solutions are given by

Sit = Si0 exp

{∫ t

0

(
ru −

1

2
||σiu||2

)
du+

∫ t

0
σi′udW̃u

}
, t ≥ 0,

where W̃ = (W̃ 1, . . . , W̃ d) is a n-dimensional Brownian motion under Q, and σi =

(σi,1, . . . , σi,n).

Remark 4.3.2. Notice that including storage costs ci and convenience yields δi changes

only the drifts coe�cients in commodities dynamics from rt to rt + ci − δi.
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4.4 Electricity forward prices

We now consider a so-called forward contract on electricity with maturity T1 > 0 and

delivery period [T1, T2] for T1 < T2 ≤ T ∗, i.e. a contract de�ned by the payo�

(T2 − T1)−1

∫ T2

T1

PTdT (4.4.1)

at the maturity T1, whose time-t price Ft(T1, T2) is to be paid at T1.

The following observation is crucial : according to formula 4.2.2, the payo� (4.4.1) can

be expressed in terms of the fuels prices, so that in our model the forward contract on

electricity can be viewed as a forward contract on fuels and since the classical no-arbitrage

theory makes sense on the fuels market, it can also be used to price electricity derivatives

such as (4.4.1). In other terms, our production-based structural model relating electricity

and fuels prices allows us to transfer the whole no-arbitrage classical approach from fuels

to electricity market, so overcoming the non-storability issue.

By Assumption 4.2.2 and classical result on forward pricing (see [Björk 04], Chapter 26),

it immediately follows that :

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

EQ
t

[
e−

∫ T
t ruduPT

]
EQ
t

[
e−

∫ T
t rudu

] dT, (4.4.2)

EQ
t denoting the conditional Q-expectation given market's �ltration Ft, for t ≥ 0.

Let T ∈ [T1, T2]. It is convenient for the next calculations to introduce the forward

measure QT de�ned by the density

dQT

dQ
:=

e−
∫ T
t rudu

Bt(T )
on FWT ,

where

Bt(T ) := EQ
t

[
e−

∫ T
t rudu

]
is the time-t price of a zero-coupon bond with maturity T . Then :

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

EQT [PT |Ft] dT (4.4.3)

=

n∑
i=1

1

T2 − T1

∫ T2

T1

EQT
[
S

(i)
T 1{DT∈IπTi (T )}|Ft

]
dT. (4.4.4)

We denote by Πn the set of all permutations over the index set {1, . . . , n}. Let π ∈ Πn

be a given non-random permutation. Under the assumption Sit ∈ L1(Qt) for any t ≥ 0
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and 1 ≤ i ≤ n, we can de�ne the following changes of probability on FWT :

dQi
T

dQT
=

SiT
EQT [SiT ]

, 1 ≤ i ≤ n, T ≤ T ∗.

Proposition 4.4.1. If our model assumptions hold and if SiT ∈ L1(QT ) for all T ∈
[T1, T2] and 1 ≤ i ≤ n, we have

Ft(T1, T2) =
1

T2 − T1

n∑
i=1

∑
π∈Πn

∫ T2

T1

F
π(i)
t (T )Qπ(i)

T [πT = π|FWt ]QT [DT ∈ Iπi (T )|F0,∆
t ]dT,

(4.4.5)

for t ∈ [0, T1], where F it (T ) denotes the price at time t of forward contract on the i-th

commodity with maturity T and F0,∆
t is the natural �ltration generated by both W 0 and

∆.

Proof Notice �rst that

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

Ft(T )dT,

where Ft(T ) = EQT [PT |Ft] can be interpreted as the t-price of a forward contract with

maturity T and instantaneous delivery at maturity. By the de�nition of electricity forward

price Ft(T ), we have

Ft(T ) =
n∑
i=1

EQT
[
S

(i)
T 1{DT∈IπTi (T )}|Ft

]
=

n∑
i=1

∑
π∈Πn

EQT
[
S
π(i)
T 1{DT∈Iπi (T )}1{πT=π}|Ft

]
.

If we use the mutual (conditional) independence between W , W 0 and ∆ as in Re-

mark 4.3.1, we get

Ft(T ) =

n∑
i=1

∑
π∈Πn

EQT
[
S
π(i)
T 1{πT=π}|FWt

]
QT [DT ∈ Iπi (T )|F0,∆

t ].

Using the change of probability dQπ(i)
T /dQT yields

EQT
[
S
π(i)
T 1{πT=π}|FWt

]
= F

π(i)
t (T )Qπ(i)

T [πT = π|FWt ],

so giving, after integrating between T1 and T2 and dividing by T2 − T1, the announced

formula. 2
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The main formula (4.4.5) provides a formal expression to the current intuition of electri-

city market players that the forward prices are expected to be equal to a weighted average

of forward fuels prices. Such weights are determined by the crossing of the expected de-

mand with the expected stack curve of technologies. We will see in Section 4.6 that this

model is able to explain the spikes of electricity. Nonetheless, we can already observe

that the main formula reproduces the stylized fact that the paths of electricity forward

prices are much smoother than those of spot prices. This is due to the averaging e�ect of

the conditional expectation on the indicator functions appearing in formula (4.2.2), even

in the degenerate case when the delivery period reduces to a singleton.

In the next section, we will perform some explicit computations of the conditional proba-

bilities involved in the previous formula for electricity forward prices, under more speci�c

assumptions on prices and demand dynamics.

4.5 A model with two technologies and constant coe�cients

In order to push further the explicit calculations, we assume now that the combustibles

volatilities are constant, i.e. σi,jt = σi,j for some constant numbers σi,j > 0, 1 ≤ i, j ≤ n,
and that the interest rate is constant rt = r > 0. Under the latter simpli�cation, the

forward-neutral measures QT all coincide with the minimal martingale measure Q =

Qmin. Similar closed-form expressions can be obtained by assuming a Gaussian Heath-

Jarrow-Morton model for the yield curve. Let us assume from now on that only two

technologies are available, i.e. n = 2.

4.5.1 Dynamics of capacity processes ∆i

In order to get explicit formulae for forward prices we have to specify the dynamics

of capacity processes ∆i for the i-th technology. We assume that the probability space

(Ω,F ,P) supports four (independent) standard Poisson processes N1,u
t , N1,d

t , N2,u
t and

N2,d
t with constant intensities λu1 , λ

d
1, λ

u
2 , λ

d
2 > 0 and we assume that each ∆i follows

d∆i
t = (mi −Mi)1{(∆i

t=Mi)}dN
i,d
t + (Mi −mi)1{(∆i

t=mi)}dN
i,u
t , ∆i

0 = Mi . (4.5.1)

Remark 4.5.1. Basically we are assuming that each capacity i can take only two values

Mi > mi and it switches frommi toMi (resp. fromMi tomi) when the process N i,u (resp.

N i,d) jumps. Each capacity evolves independently of each other. At t = 0 both technologies

have maximal capacity Mi. The fact that the intensities of upside and downside jumps of

∆i are not necessarily equal introduces a skewness in the probability of being at capacity

Mi or mi.
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Let T be any time in the delivery period [T1, T2]. First observe that, since ∆ is inde-

pendent of W 0 and its law is invariant under the probability change from P to Q = QT

as in Remark 4.3.1, we have QT [∆
π(1)
T = x1|F0,∆

t ] = P[∆
π(1)
T = x1|∆t] as well as

QT [∆
π(1)
T = x1,∆

π(2)
T = x2|F0,∆

t ] = P[∆
π(1)
T = x1,∆

π(2)
T = x2|∆t]

for x1 ∈ {m1,M1} and x2 ∈ {m2,M2}.
As a consequence of the previous assumption on the dynamics of capacities ∆i, the

conditional probabilities QT [DT ∈ Iπk (T )|F0,∆
t ] appearing in the main formula (4.4.5)

can be decomposed as follows

QT [DT ∈ Iπ1 (T )|F0,∆
t ] =QT

[
DT ≤ ∆

π(1)
T |F0,∆

t

]
=P[∆

π(1)
T = m1|F∆

t ]QT

[
DT ≤ m1|F0

t

]
+ P[∆

π(1)
T = M1|F∆

t ]QT

[
DT ≤M1|F0

t

]
.

A similar decomposition for QT [DT ∈ Iπ2 (T )|F0,∆
t ] holds too. It is clear now that the

building blocks appearing in such formulae are the probabilities P[∆k
T = x|∆k

t ] and

QT

[
DT ≤ y|F0

t

]
.

Proposition 4.5.1. We have the following :

P[∆k
T = Mk|∆k

t = Mk] =
λdk

λdk + λuk
(1− e−(λdk+λuk)(T−t)), k = 1, 2 . (4.5.2)

Proof For the sake of simplicity, we will drop in the proof the index k from the notation,

that is we will write ∆T for ∆k
T , M for Mk, and so on.

Let τd be the last jump time of the process Nd
t before T , i.e. τd = sup{t ∈ [0, T ] :

∆Nd
t = 1} with the convention that sup ∅ = 0. Notice that on the event {τd > 0} we have

{∆T = m} = {Nu
τd

= Nu
T }. On the other hand, on the set {τd = 0} the process ∆ has no

jump downwards over the time interval [0, T ], so that P(∆T = m, τd = 0|∆0 = M) = 0.

Using the independence between Nd and Nu and the stationarity of Nu, one has

P[∆T = m|∆0 = M ] =E[P(Nu
τd = Nu

T |τd)1{τd>0}]

=E[P(Nu
T−τd = 0|T − τd)1{T−τd<T}]

=E[e−λ
u(T−τd)1{T−τd<T}].

By the time-reversal property of the standard Poisson process, the process (Nd
T−Nd

(T−t)−)t≥0

as the same law as (Nd
t )t≥0. Then the random variable T−τd has the same law as T d1 ∧T ,
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where T d1 is the �rst jump time of (Nd
t )t≥0. We recall that T1 has exponential law with

parameter λd. Thus we have

P[∆T = m|∆0 = M ] =E[e−λ
u(T d1 ∧T )1{T d1<T}] = E[e−λ

uT d1 1{T d1<T}]

=
λd

λd + λu
(1− e−(λd+λu)T )

The result of the proposition follows by stationarity. 2

Using the same arguments one can retrieve immediately P[∆k
T = x|F∆

t ] for x = Mk,mk

and k = 1, 2.

4.5.2 Dynamics of the electricity demand D

We also assume that the residual demand is de�ned by the a mean-reverting Ornstein-

Uhlenbeck process.

dDt = a(b(t)−Dt)dt+ δdW 0
t , D0 ∈ R . (4.5.3)

It is well-known that this process has a positive probability to be negative. Nonetheless,

in the empirical study, it will be applied to a residual demand, which can be negative (see

Section 4.2). Parameters a and δ are supposed to be strictly positive constants, and we

de�ne a long-term mean b(t) which can vary with time, to incorporate annual seasonal

e�ects as in [Barlow 02] :

b(t) = b0 + b1 cos(2πt− b2)− 2π

a
sin(2πt− b2) ,

where b0, b1 and b2 are (positive) constants. We set b̃(t) = b0 + b1 cos(2πt − b2). In our

case, we obtain explicit formulae for Q[DT ≤ x1|F0
t ] and Q[x1 < DT ≤ x1 + x2|F0

t ], for

any 0 ≤ t ≤ T and x1, x2 ∈ R, given by

Q[DT ≤ x1|F0
t ] =Φ

x1 − b̃(T )− (Dt − b̃(t))e−a(T−t)

δ
√

1
2a

(
1− e−2a(T−t)

)
 (4.5.4)

Q[x1 < DT ≤ x1 + x2|F0
t ] =Q[DT ≤ x1 + x2|F0

t ]−Q[DT ≤ x1|F0
t ] (4.5.5)

where Φ denotes the cumulative distribution function of an N (0, 1) random variable.
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4.5.3 Forward prices

Let T ∈ [T1, T2]. The next step consists in computing the law of the couple (S1
T , S

2
T )

under each probability Qπ(i)
T for any permutation π ∈ Π2 and any i = 1, 2, in order to get

an explicit expression for the conditional probability QT [πT = π|FWt ] = Q[πT = π|FWt ]

appearing in formula (4.4.5). It can be easily done in this setting by using multidimen-

sional Girsanov's theorem (see, e.g., Karatzas and Shreve's book [Karatzas 91], Theorem

5.1 in Chapter 3). Indeed, if we denote σi the 2-dimensional vector (σi,1, σi,2) and we set

Zit :=
dQi

T

dQ

∣∣∣∣
FWt

,

we get that

Zit = exp

{
σi · W̃t −

1

2
||σi||2t

}
, t ∈ [0, T ].

A simple application of Girsanov's theorem provides the following Qi
T -dynamics of each

price process Sj for j = 1, 2 :

Sjt = Sj0 exp

{(
r − 1

2
||σj ||2 + σj · σi

)
t+ σj · Ŵt

}
, t ∈ [0, T ],

where Ŵ = (Ŵ 1, Ŵ 2) is a 2-dimensional Brownian motion under Qi
T . Altogether, pre-

vious computations ensure the following result :

Proposition 4.5.2. Let T2 > T1 > 0. Under our model assumptions, the price at time

t of an electricity forward contract with maturity T1 and delivery period [T1, T2], denoted

by Ft(T1, T2), is given by the following formula :

Ft(T1, T2) =
∑
π∈Π2

1

T2 − T1

∫ T2

T1

(A1(t, T ) +A2(t, T ))dT, (4.5.6)

where

A1(t, T ) :=
∑

{x1=mπ(1),Mπ(1)}

F
π(1)
t (T )Qπ(1)

T [πT = π|FWt ]P[∆
π(1)
T = x1|∆t]Q[DT ≤ x1|F0

t ]

A2(t, T ) :=
∑

{x1=mπ(1),Mπ(1);

x2=mπ(2),Mπ(2)}

F
π(2)
t (T )Qπ(2)

T [πT = π|FWt ]P[∆
π(1)
T = x1,∆

π(2)
T = x2|∆t]

×Q[x1 < DT ≤ x1 + x2|F0
t ]

where, for any π ∈ Π2 and i = 1, 2, the conditional probabilities Q[DT ≤ x1|F0
t ] and

Q[x1 < DT ≤ x1 + x2|F0
t ] are given by (4.5.4) and (4.5.5), and

Qπ(i)
T [πT = π|FWt ] = 1− Φ(m(t)/γ(t)),
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where m(t) and γ(t) are de�ned as follows :

m(t) = ln
S
π(1)
t

S
π(2)
t

−
(

1

2
||σπ(1) − σπ(2)||2 − (σπ(1) − σπ(2)) · σπ(i)

)
(T − t)

γ2(t) =||σπ(1) − σπ(2)||2(T − t).

Proof It su�ces to combine the di�erent formulae obtained in this section and observe

that for any π ∈ Π2 and i = 1, 2 we have

Qπ(i)
T [πT = π|F0

t ] = Qπ(i)
T [S

π(1)
T ≤ Sπ(2)

T |FWT ] = Qπ(i)
T [X ≤ 0|FWt ]

where X := ln(S
π(1)
T /S

π(2)
T ). Under Qπ(i)

T ,

X = ln
S
π(1)
t

S
π(2)
t

+

2∑
j=1

(σπ(1),j − σπ(2),j)(Ŵ j
T − Ŵ

j
t )

−
2∑
j=1

(
1

2
((σπ(1),j)2 − (σπ(2),j)2)− (σπ(1),j − σπ(2),j)σπ(i),j

)
(T − t).

Thus, conditioned to FWt , the random variable X is normal with mean m(t) and variance

γ2(t), where

m(t) = ln
S
π(1)
t

S
π(2)
t

−
2∑
j=1

(
1

2
((σπ(1),j)2 − (σπ(2),j)2)− (σπ(1),j − σπ(2),j)σπ(i),j

)
(T − t)

and

γ2(t) =

2∑
j=1

(σπ(1),j − σπ(2),j)2(T − t).

Notice that only the mean m(t) depends on π(i). Finally, we have

Qπ(i)
T [πT = π|FWt ] =Qπ(i)

T [X ≤ 0|FWt ]

=Qπ(i)
T [(X −m(t))/γ(t) ≤ −m(t)/γ(t)|FWt ]

=Φ(−m(t)/γ(t)) = 1− Φ(m(t)/γ(t)),

where Φ is the c.d.f. of a standard gaussian random variable. 2

4.6 Numerical results

To provide a coherent and tractable framework for numerical examples, we follow the

two fuels model of the previous section and we push further the simpli�cation.
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4.6.1 Data choice

We test the model on the French deregulated power market. The data cover the period

going from January, 1st, 2007 to December, 31st, 2008. For the demand process, we used

the data provided by the French TSO, RTE 1, on its web site. The hourly demand can be

retrieved. The two technologies we have chosen are natural gas plants and fuel combustion

turbines. They are known to frequently determine the spot price during peaking hours,

since they are the most expensive ones. Moreover, a decomposition of the production is

provided by RTE for each type of generation asset (nuclear, hydrolic plants, coal and gas,

fuels, peak). Hence, it allowed us to deduce the residual demand addressed to gas and

fuels technologies by substracting the nuclear and hydrolic production to the demand.

Since these two technologies are setting the price during peaking hour, we focused our

analysis on one particular hour of the day. We have chosen the 12th hour, which is

usualy the �rst peaking hour of the day (the next one being 19th hour). The electricity

spot and futures prices are provided by EEX French Power Futures Market, previously

Powernext. The CO2 prices are provided by PointCarbon data. For fuels and gas prices,

we used Platt's data. Gas prices are quoted in GBP and fuels prices en USD. We used

the daily exchange rate to convert USD to EUR.

4.6.2 Reconstruction of S1
t and S2

t

In our model, we need to rebuild the spot prices of the two technologies S1
t and S2

t . To

tackle with the problem of aggregating the numerous gas and fuel power plants into only

two technologies, we used the information provided by the French Ministry of Industry

on electricity production costs 2. It gives an average heat rate for each techology. We

use also an average emission rate for CO2 emissions of each technology. Furthermore,

for fuel power plants production costs, one need to take into account the transportation

cost from ARA zone the location of the plants. We used an average �xed cost. Thus, we

obtain the following expressions for the prices of the two technologies.{
S1
t = 101.08 · Sgt + 0.49 · Sco2

t

S2
t = 0.38 · Sft + 0.88 · Sco2

t + 13.44

where Sg, Sf and Sco2 denote respectively gas price (AC/therm) and fuel and carbon

emission prices (AC/ton).

1. RTE : www.rte-france.fr
2. Ministère de l'Industrie et des Finances, www.energie.mine�.gouv.fr/energie/electric/f1e_elec.htm,

see �Les coûts de référence de la production électrique�
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Remark 4.6.1. One can observe on historical data that the ordering between the two

technologies never changes. Fuel combustion turbines are known to be more expensive

than gas plants. If the technologies prices follow the dynamics given by (4.2.1), the pro-

bability to have di�erent orders π(t) ∈ Π can be positive. Nevertheless, for a reasonable

choice of parameters, this probability can be made su�ciently small. Hence, we make the

approximation that ∀t,P(S1
t < S2

t ) = 1.

4.6.3 Estimation of electricity demand

We recall that the demand process is not a�ected by the minimal martingale measure,

and that its respective �ltration is independent of prices evolution. Thus, it is perfectly

consistent to conduct a statistical estimation of the demand dynamics. The demand pro-

cess given by expression (4.5.3) is then estimated via the Maximum Likelihood Principle.

Let's remind that the demand process is given by :

Dt = b̃(t) +Xt = b0 + b1 cos(2πt− b2) +Xt

where Xt is an Ornstein Uhlenbeck process with a known Likelihood expression (see

[Ait-Sahalia 02], sec. 5). For a discrete sample (Dt1 , . . . , Dtn) observed at �xed times

with a constant time grid δ := (ti − ti−1), i = 1 . . . n, an expression of the Likelihood is

given by

L(b0, b1, b2, a, δ,Dt1 , . . . , Dtn) =
1

(
√

2πv)n
exp

(
− 1

2v

∑n−1
i=1

(
(Dti+1 − b̃(ti+1))− ea∆t(Dti − b̃(ti))

)2)
,

where v = δ2 e2a∆t−1
2a and b̃(t) is de�ned above. We numerically maximize this expression

to obtain an estimation for the set of parameters. We then test the hypothesis that each

parameter is null and �nally obtain the set given in Table 4.1. The parameter b̂2 is not

signi�cantly di�erent from 0 with threshold 99 %, thus it is �xed null.

b̂0 b̂1 b̂2 â δ̂

4814 905 0 87.55 17256

Table 4.1 � Parameters estimation for the demand process.
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Figure 4.1 � Midday daily demand (day-ahead peakload demand from 01/01/2007 to

31/12/2008, RTE) and simulation with �tted parameters. Coordinates=(time in days, demand

in MW). In black line, we showed the long trend b̃(t).

4.6.4 Estimation of capacity process

For two technologies, the implementation of formula (4.2.2) is very simple. We de�ne the

following variables :

R1 = min(D+
t ,∆

1
t ), R2 = min((Dt −∆1

t )
+,∆2

t ),

where Dt is here the sum of residual demands for the two technologies. The electricity

spot price is de�ned by the following rule : If R2 is positive, then we take P = S2, and if

it is null, P = S1. However, in our context of a raw approximation of the electricity spot

market, the application of this rule to estimate the capacity process ∆1 and ∆2 would

lead to the opinion that only the second technology (the most expensive one) is being

used. Hence, to take into account all the complexity of the short-term bidding process

involving production constraints (start-up cost, ramp constraints, minimal runtime...), we

introduce a threshold ∆̄1 such that the price is given by the second technology althought

R1 = ∆̄1 < ∆1.

Noting that the inequality on R1 is equivalent to R2 > (∆1 − ∆̄1), the threshold ∆̄1 is
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obtained by solving the following program :

min
x>0

n∑
i=1

R
(
Pti − S1

ti1
{
R2
ti
≤x

} − S2
ti1

{
R2
ti
>x

}).
The function R is a risk criterion : we tested two cases, the L1 and the L2 norms. The

absolute error (L1) showed a global minimum and the quadratic error (L2) showed a

local minimum on a reasonable interval (very high price peaks disturb the convergence).

Thus, we use the L1 criterion to determine that the intermediate parameter ∆1 − ∆̄1

equals 610 MW. Eventually, we have new values for (Dt − ∆1
t )1{Dt>∆1

t} and since we

know exactly when Pt = Sit , for i = 1, 2, the computation of values taken by the model

on historical data is straightforward (see Figure 4.2).

Figure 4.2 � Midday daily prices and model �tted on historical data (POWERNEXT R© day-

ahead peakload prices from 01/01/2007 to 31/12/2008). Coordinates=(time in days, prices in

euros).

Finally, we can estimate parameters for the capacity process ∆1
t as Dt = R1

t + R2
t is

available. Theoretically, capacity thresholds mi and Mi are structural and are known to

producers. But, since they vary over time due to maintenance scheduling and weather

conditions, we estimate their constant counterparts. Moreover, we had to deal with the

fact that in our model ∆1 does take two values. Thus, we proceeded in two steps. First,

we �ltered the data to de�ne a ∆1
t taking only two values. Second, we estimated on that

�ltered time serie the free parameters λu1 and λd1.

The capacity process ∆1 is partially hidden, since it is observed only if Dt > ∆1
t . Thus,

we suppose that we observe data at discrete times ti, and we calibrate the capacity
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levels by minimizing the quadratic error between the series (∆1
ti1

{
Dti>∆1

ti

})i=1...n and

two constant values, taking into account the two following structural constraints :

M1 ≥ sup
t∈[0,T ],Dt≤∆1

t

Dt ; m1 ≥ inf
t∈[0,T ],Dt>∆1

t

Dt.

Solving this calibration problem, we deduce the transformed serie ∆̃1 which takes two

values :

∆̃ti = m11{|∆ti−m1|<|∆ti−M1|} +M11{|∆ti−m1|≥|∆ti−M1|}, i = 1 . . . n.

On that series, we estimate λu1 and λd1 by observing the series (∆̃1
ti1

{
Dti>∆̃1

ti

})i=1...n. We

denote (tk(i))i=1...n the subgrid of the discrete times where tk(i) is the last time before ti
when we observe (∆1

ti)i=1...n. Then, by the Bayes rule and the independence between Dt

and ∆̃1
t , the probability Q

[
∆̃1
ti = x|Dti > ∆̃1

ti , ∆̃
1
tk(i)

]
for i = 1 . . . n is :

Qi [x] := Q
[
∆̃1
ti = x|Dti > ∆̃ti , ∆̃

1
tk(i)

]
=

P
[
∆̃1
ti = x|∆̃1

tk(i)

]
Q [Dti > x]

Q
[
Dti > ∆̃1

ti
|∆̃1

tk(i)

] .

If follows that :

Qi [x] ≡
P
[
∆̃1
ti = x|∆̃1

tk(i)

]
Q [Dti > x]

P
[
∆̃1
ti

= M1|∆̃1
tk(i)

]
Q [Dti > M1] + P

[
∆̃1
ti

= m1|∆̃1
tk(i)

]
Q [Dti > m1]

.

An expression of the Likelihood for the given sample is :

L(λu1 , λ
d
1, ∆̃t1 , . . . , ∆̃tn , Dt1 , . . . , Dtn) =∏n

i=1

(
Qi [x]

1{
∆̃1
ti

=x

}
(1−Qi [x])

(1−1{
∆̃1
ti

=x

}))1{
Dti

>∆̃1
ti

}
.

We maximize this expression to obtain intensity parameters. The parameters values of

the capacity process are summarized in Table 4.2. We notice that λu1 > λd1 means that

P[∆̃1
T = M1] > P[∆̃1

T = m1] for a su�ciently long maturity T .

M1 (MW) m1 (MW) λu1 (y−1) λd1 (y−1)

5708 4292 34.78 24.89

Table 4.2 � Parameters for the capacity process. Unit in parenthesis.
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4.6.5 A comparison with a naive econometric model

To evaluate the bene�t of adding the demand and production capacity to the modeling

process, we compare it to a simple econometric approach. We propose the alternative

linear model :

Pt = α0 + α1S
1
t + α2S

2
t + εt, (4.6.1)

where εt is a Gaussian white noise. And, we compare the linear model (4.6.1) with our

structural model where we added free linear parameters and also a Gaussian noise to

facilitate the comparison :

Pt = β0 +
∑
i=1,2

βiS
i
t1{Dt∈Iπti (t)} + εt.

In both cases, we estimated the parameters using a quadratic loss minimization. The

Table 4.3 as well as Figure 4.3 shows that there is a positive gain to add demand and

production capacity dynamics to the electricity spot price modeling.

Price Corr MaxE MAE MSE MPE

Linear model 0.756 406.96 18.35 919.53 23.734%

Structural Model 0.702 385.23 17.54 786.20 23.956%

Table 4.3 � Model comparison. Corr := correlation with historical price ; MaxE := maximum

error ; MAE := mean absolute error ; MSE := mean square error ; MPE=Mean percentage error.

Errors are calculated w.r.t. historical data (POWERNEXT R© day-ahead prices from 01/01/2007

to 31/12/2008).

4.6.6 Forward prices computation

Following the approximation given in Remark 4.6.1, in our two technologies case, the

expression (4.4.5) writes :

Ft(T1, T2) =

1

T2 − T1

∫ T2

T1

∑
x1=m1,M1

P[∆1
T = x1|∆t]

(
F 2
t (T ) + (F 1

t (T )− F 2
t (T ))(Q[DT ≤ x1|F0

t ])
)
dT.

(4.6.2)

100



Figure 4.3 � Prices and econometric estimation of our model and a linear model

(POWERNEXT R© day-ahead prices from 01/01/2007 to 31/12/2008). Coordinates=(time in

days, prices in euros).

We do not have forward prices F it (T ) at our disposal but only swap prices, i.e., values of
1

T2−T1

∫ T2

T1
F it (T )dT for delivery periods [T1, T2]. Nevertheless, we make the approximation

that :

F it (T ) ≈ 1

T2 − T1

∫ T2

T1

F it (T )dT, T ∈ [T1, T2] .

This approximation can be considered rough for forward gas prices, since the spot market

has daily granularity ; but, for fuel prices, it is quite reasonable since spot prices are

limited to a value per month.

We calibrate the spot price model on the former period, till June 2008, and then back-test

it on future prices from July 2008 to February 2009. On that su�ciently wide interval, we

can focus on two assets : the two quarters ahead and three quarter ahead futures, covering

Spring 2009 (April, May, June) and Summer 2009 (July, August and September). The

results are illustrated on Figure 4.4 and Figure 4.5. We observe that, as expected, the

predicted price overestimates the real price. Indeed, we estimated the model on high peak

hours of each day, which is over the mean price most of the time. However we observe

strong correlation between predicted and historical price as shown in Table 4.4.
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Figure 4.4 � Forward prices : model anticipations and market data (POWERNEXT R©

Future prices on peak load from 01/07/2008 to 27/02/2009, 169 obs.). Left = Spring

2009 ; right = Summer 2009. Coordinates=(time in days, prices in Euro).

Figure 4.5 � Forward yields : model anticipations and market data (POWERNEXT R©

Future yields on peak load from 01/07/2008 to 27/02/2009, 169 obs.). Up = Spring 2009 ;

down = Summer 2009. Coordinates=(time in days, yields in percentage).
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Asset Corr E [∆Ft(T1, T2)] V [∆Ft(T1, T2)] ME MSE MPE

Spring 09 0.958 -0.582 (-0.403) 2.409 (1.840) 49.624 851.981 28.297%

Summer 09 0.939 -0.505 (-0.402) 2.174 (2.014) 30.928 213.484 12.695%

Table 4.4 � Model anticipations results. Corr = correlation with historical price ; E = yield

mean (in parenthesis the real asset value) ; V = yield variance ; ME = maximum price error ;

MAE = mean absolute error ; MSE = mean squared error ; MPE = mean percentage error. Errors

are calculated w.r.t. historical data.

4.6.7 Calibration on forward prices

The model gives two relations between power price and commodities prices. As we esti-

mated the parameters on spot prices, we can now do the same on forward prices. Using

formula (4.6.2), and under the previous assumptions on the prices F it (T ), i = 1, 2, the

model can be calibrated directly on forward prices. However, given the great number of

parameters, we must assess that a part of them is already known to solve the identi-

�cation problem : The capacity levels M1 and m1, and the parameters of the demand

process Dt are now �xed. Thus, the probability P
[
∆1
T = x|∆t

]
for x = m1,M1, which

is integrated on the period [T1, T2], is the only free variable. The goal is to calibrate

numerically this variable on the following expression :

Ft(T1, T2) = f1(λ,∆t, Dt)F
1
t (T1, T2) + (1− f1(λ,∆t, Dt))F

2
t (T1, T2)

where

f1(λ,∆t, Dt) =
∑

x=m1,M1

1

T2 − T1

∫ T2

T1

P
[
∆1
T = x|∆1

t

]
Q [DT = x|Dt] dT.

These expressions depend on ∆t and Dt via the formulae (4.5.4) and (4.5.2). Thus,

f1(λ,∆t, Dt) actually depends on t in an explicit manner. We can make a few ap-

proximations for an easier computation. Indeed, calibration is made di�cult due to

the fact that e−(λd1+λu1 )(T−t) is very small when T � t. Hence, if T � t or the pa-

rameter λ (relation (4.5.2)) and the parameter a (relation (4.5.4)) are large enough,

we can make the following approximations : P [∆T = x|∆t] ∼= limT↑∞ P [∆T = x] and

Q [DT > x|Dt] ∼= limT↑∞Q [DT > x]. Then, the calibration is equivalent to a linear mo-

del estimation under constraints, whose coe�cients are f1(λ) and 1− f1(λ).

Under that approximation, we obtain P [∆T = M1] and P [∆T = m], which give the ex-

pected failure probabilities for the cheapest technology on the delivery period [T1, T2].

The computation gives a sound result for calibration on Summer 2009 Future price

(P [∆T = M1] = 0.865), but not for Spring 2009 Future, which is clearly overestimated.
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We explain this drawback by the fact that we used the two most expensive technologies

to price electricity.

4.6.8 Spot price simulations

This structural model can be easily improved to provide simulation trajectories with high

spikes. If the residual demand Dt is negative, it corresponds to the case when nuclear

power is being the marginal unit of the system. Its cost is well-known to be constant over

time (∼= 15AC/MWh). On the hother hand, if the residual demand Dt exceeds the total

capacity ∆1
t +∆2

t of our two technologies, it corresponds to situations when electricity has

to be imported. In the French market, which is a structural exporter, it corresponds to

tension on the system and electricity is bought at high cost. This high cost is arbitrarily

�xed to a constant value (500AC/MWh). In order to simulate the commodities prices,

we quickly estimate on our �rst sample of data (January 2007 to December 2008) the

multivariate di�usion process given by the relation (4.2.1). The Figure 4.6.8 shows that

this simple device makes visible price spikes.

Figure 4.6 � Spot price simulation. Parameters calibrated on the period 01/2007 - 12/2008.

We use two thresholds for very high price peaks (when Dt > 8500MWh, the price is �xed to

500AC) and low demand prices (when Dt < 0MWh, the price is �xed to 15AC). The process is

simulated on 780 points (3 years). Coordinates=(time in days,price in Euro).
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4.7 Conclusion and perspectives

Going back to the supposed storable fuels, the model presented in this part provides

a possible solution to the question of the suitable risk-neutral probability for electri-

city prices dynamics. This �rst model should be considered more like a methodology

than a de�nitive model for electricity spot and forward prices. Indeed, it has recently

been improved in [Aid 10] to incorporate several features. We provide here some of this

improvements in order to illustrate the potential.

The scarcity function

First of all, the authors introduce a scarcity function depending on available total capacity

Cmaxt −Dt =
∑n

i=1 ∆i
t −Dt :

g : x 7−→ min(M,
γ

xα
)1{x>0} +Mx≤0

where γ, M and α are positive parameters. Obviously, M represents the maximum price

on the market and (γ, α) are parameters of speed to achieve this bound. This function

aims at indicate the tension in the system due to scarcity, since margin capacity seems to

be a better state variable to capture electricity prices spikes than demand, see [Cartea 08].

The price is then a�ected in the following way :

Pt = g(Cmaxt −Dt)

n∑
i=1

S
(i)
t 1{Dt∈Iπtk (t)} .

After an estimation procedure, the authors show a real improvment in �tting historical

data. It has also been taken into account in partial derivatives of the price with respect

to capacity evolution.

Electricity Future as hedging instrument

The main result of the paper is the use of electricity products available on the futures

market in order to price and hedge commonly exchanged derivatives, i.e., spread options

and European options on electricity forwards, that depends on electricity and fuel prices,

but also the demand level. Prices are computed under the minimal EMM Qmin, and

will correspond to the initial wealth allowing for approximately replicate an option in

a local risk minimization sense. The hedging strategy is composed of forward contracts

on electricity and forward contracts on fuel. In order to develop the expressions, it is

necessary to use the Galtchouk-Kunita-Watanabe decomposition of the claim H under
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Q :

H = EQ[H] +

∫ T

0
ξ′tdFt(T

∗) +

∫ T

0
ξe
′
t dF

e
t (T∗) + LHT

where LHT is the terminal value of a Q-martingale orthogonal to F (T ∗) and F e(T ∗),

representing the unhedgeable risk. This allows to obtain the hedging strategy (ξ, ξe) and

numerical results, and conclude on an important pattern of hedging results :

� Far from maturity T ∗ (until two weeks before it), the partial hedge is very good. Indeed

for large values of T ∗ − t, some coe�cients are almost constants. Then the electricity

futures are only driven by the commodities, and behave like a basket of assets.

� Close to maturity, the partial hedge is almost useless. The demand starts to drive

electricity prices, and the unhedgeable risk becomes overwhelming.

Conclusion of Chapter 4

We conclude this part by expecting that this direction of research will be continued, since

it presents very rich preliminary results and carries out many expectations.

First, the spot price model now �ts well the very speci�c patterns of electricity spot

prices. Then, the calibration of the model and the statistical estimation of its parameters

do not raise great di�culties. Finally, the methodology is very general, and allows for a

wide number of variations : one can change the supposed competitive market equilibrium

on the spot market to take into account strategic bidding, or extend the spot model to

a multizonal framework, where electricity is exchanged between di�erent market places

with di�erent spot prices.

Several other directions can be drawn from here. In spite of some re�nements in the

dynamics, forward prices and even option prices are quasi-explicitly computable. As it

has been investigated in [Aid 10], this model can be used to price and hedge contingent

claims on electricity. Since it is based on an aggregated generation behaviour with respect

to commodities, the model can also enable to assess the problem of optimal timing of

investment in generation assets. We hope that many of these points will be investigated

in the future.
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Chapitre 5

Hedging electricity options with

controlled loss

5.1 Introduction

This chapter is dedicated to a pricing problem in electricity future markets. We consider

the situation of an agent endowed with a �nancial derivative on a futures which is not

yet quoted. This situation is of practical concern for traders on realistic power futures

markets. As long as electricity is assumed to be non-storable, the term structure of

electricity prices cannot be derived from arbitrage arguments. In order to ensure su�cient

liquidity for futures contracts (hereafter, futures), only a small but meaningful number of

maturities and delivery periods are available for market participants. Futures are indeed

contracts that deliver a certain amount of energy for a �xed remote date, but also over a

speci�c time period. They are more commonly referred as swap contracts in the �nancial

literature, see [Benth 07b]. It is thus possible to hold an option on such a contract which

has not yet appeared in the market.

In practice, an intuitive way for hedging the option is to deploy a cross-hedging strategy

with quoted assets, see [Verschuere 03, Eichhorn 05, Lindell 09]. Since futures are classical

�nancial assets, we are allowed to put in place a dynamic strategy with them. Moreover,

we will see in Section 5.4.1 that arbitrage arguments are still valid by a game of covering

periods between contracts. Hence, we will introduce a simple model which takes into

account a structural correlation for two futures prices, and an additional independent risk

factor. Two observations then emerge. The �rst one is that it is possible to apply arbitrage

pricing methods to existing contracts, and suppose reasonably that the resulting sub-

market is complete. The second one is that the independent risk factor is unhedgeable,
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and that the initial problem implies an incomplete market setting. We will thus introduce

a special case of incompleteness denoted semi-completeness, in reference to [Becherer 01].

As in the previous chapter, the incomplete market setting is the occasion to introduce a

pricing criterion. Following [Föllmer 00], we want to put in place a strategy which tole-

rates a given threshold of loss. For this purpose, we use the stochastic target formulation

of [Bouchard 09]. By this way, we try to determine the risk premium associated to a �xed

level of expected loss. In the complete market setting, Bouchard and al. [Bouchard 09]

provide an explicit formulation of the risk premium in a Markovian setting. By using the

historical probability setting, the stochastic target approach with controlled expected

loss will naturally takes into account the exogenous risk factor in the expectation. With

this face-lifting phenomena, we will be able to retrieve the complete market setting from

the semi-complete one.

As a preliminary, we provide a slight generalization of the quantile hedging problem

provided in [Bouchard 09] to controlled loss. This is a simple rewriting which partially

follows [Moreau 11, Bouchard 11a]. Our contribution then holds in three steps. We �rst

provide a reformulation of the explicit results of [Bouchard 09] in the semi-complete

market setting. We then propose a general numerical algorithm for stochastic target

problems based on probabilistic formulation of the control and the associated PDE. We

�nally apply our results to the �nancial problem described above.

The rest of the chapter is guided as follows. Section 5.2 introduces the theory of sto-

chastic target with expectation criterion. We recall the general results of [Bouchard 09]

for a loss function, and provide the explicit formulation with the previously described

generalization in Section 5.2.2. In Section 5.3, we introduce the semi-complete setting as

an extension of the complete market case target problem. Since our resolution leads to

a numerical problem, we introduce in Section 5.3.2 the numerical algorithm to solve the

target problem in a very general form. Section 5.4 proposes the model and the application

of the previous methods to the evaluation of risk induced by the holding of a European

option on a not-yet-quoted futures.

5.2 The stochastic target problem with controlled loss

This section intends to reformulate the central results of Bouchard and al. [Bouchard 09],

and their applications in section 4 of the latter, with some modi�cations that one can

�nd in [Moreau 11] and [Bouchard 11a]. In [Bouchard 09], the authors developed in a

rather synthetic and powerful way an application of the stochastic target problem with

controlled loss to quantile hedging. After introducing the problem and notations, we
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reformulate the application to a general loss function in a complete market setting.

5.2.1 General framework

State space and control

Let T be a �nite horizon and Ω = C([0, T ];Rd) be the space of continuous paths on

[0, T ]. Let P be the Wiener measure on Ω and W the canonical process Wt(ω) = ωt.

The process W is a d-dimensional Brownian motion de�ned on a complete probability

space (Ω,F ,P). We denote by F = {Ft, 0 ≤ t ≤ T} the P-augmentation of the �ltration

generated by W . For every t ∈ [0, T ], we set Ft := (F ts)s≥0, where F ts is the completion of

σ(Wr −Wt, t ≤ r ≤ s ∨ t) by null sets of F . We introduce a family U of F-progressively
measurable processes ν ∈ L2([0, T ] × Ω) taking values in U , a bounded closed subset

of Rd. We �x a constant κ ≥ 0, and we denote Z := (0,∞) × [−κ,∞). For t ∈ [0, T ],

z := (x, y) ∈ Z and ν ∈ U , we de�ne Zνt,z := (Xν
t,x, Y

ν
t,z) as the (0,∞)d×R-valued unique

strong solution of the stochastic di�erential equation :{
dXν

t,x(r) = µ(Xν
t,x(r), νr)dr + σ(Xν

t,x(r), νr)dWr

dY ν
t,x,y(r) = µY (Zνt,z(r), νr)dr + σY (Zνt,z(r), νr) · dWr

, t ≤ r ≤ T,

satisfying the initial condition Zνt,z(t) = (Xν
t,x(t), Y ν

t,z(t)) = (x, y) . Here, we assume that

(µY , σY ) : Rd × R× U → R× Rd and (µ, σ) : Rd × U → Rd ×Md

are locally Lipschitz functions satisfying

|µY (z, u)|+ |µ(x, u)|+ |σY (z, u)|+ |σ(x, u)| ≤ K(z)(1 + |u|)

for a locally bounded map K.

For a �xed time t ∈ [0, T ] and z ∈ Z, we now reduce the set of studied controls to

Ut,z ⊂ U composed of Ft-progressively measurable controls ν such that

Y ν
t,x,y(r) ≥ −κ ∀r ∈ [t, T ] .

This means that Zνt,z(s) ∈ Z for all s ∈ [t, T ] and ν ∈ Ut,z.
In our context, Xν

t,x(.) is the price process of d risky assets, Y ν
t,z(.) is the value of a

�nancial portfolio process, given under a rather general form. Note that the price process

X is possibly in�uenced by the control ν. The set Ut,z denotes the set of controls ν

independent from the state space before t and satisfying a �nite credit line κ for Y ν
t,x,y

at any considered time until the terminal date T .
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The target problem

We introduce a loss function, given by Ψ : Rd+ × R −→ R−, which is assumed to verify

Assumption 5.2.1. We assume the following :

(i) the map y 7→ Ψ(x, y) is non decreasing, and right continuous for all x ∈ Rd+ ;

(ii) the map z 7→ Ψ(z) is uppersemicontinuous on Z.

(iii) Ψ has a polynomial growth, i.e., there exists C > 0 and k ∈ N such that

|Ψ(z)| ≤ C(1 + |z|k) , ∀z ∈ (0,∞)d × R ; (5.2.1)

(iv) for any (t, z) ∈ [0, T ]× Z and any ν ∈ Ut,z, E
[
|Ψ(Zνt,z(T ))|2

]
<∞ ;

(v) 0 ∈ E := conv(Ψ(Z)) ⊂ R−. (E is the closed convex hull of the image of Ψ.)

See [Bouchard 09, Moreau 11, Bouchard 11a] for a detailed use of these assumptions.

We will sometimes write Ψ(x, y) for Ψ(z), and abusing of this notation, we denote by

p 7→ Ψ−1(x, p) := inf {y ≥ −κ : Ψ(x, y) ≥ p} the general inverse function in y. We then

denote by �Ψ−1 the convex hull of Ψ−1 in p, meaning the greatest convex function in p

under Ψ−1. By the convexity property, p 7→ �Ψ−1(x, p) is continuous on int(E).

De�nition 5.2.1. Given initial condition of the state process (t, x) and a threshold p ≤ 0,

the value function of the stochastic target problem with controlled loss is de�ned by

v(t, x, p) := inf
{
y ≥ −κ : E

[
Ψ(Zνt,z(T ))

]
≥ p for some ν ∈ Ut,z

}
. (5.2.2)

The problem consists in �nding, at each date t and for the state of the market x, the

minimal amount of wealth ensuring to reach, in expectation, a given risk criterion at

terminal date T . This criterion limit is de�ned by a threshold p. The key idea for solving

this problem is to augment the dimension of the state process to retrieve a stochastic

target problem in the conventional form �rst provided by [Soner 02a]. It is based on the

martingale representation theorem in the Brownian motion framework. We introduce the

stochastic process Pαt,p verifying the following SDE :

Pαt,p(s) = p+

∫ s

t
Pt,p(u)αu · dWu, ∀t ≤ s ≤ T (5.2.3)

where α is an additional control. We introduce for this purpose, and for a �xed (t, p) ∈
[0, T ] × R−, the set At,p of Ft-progressively measurable processes α taking values in Rd

such that αPαt,p ∈ L2([0, T ] × Ω) and that Pαt,p is a square integrable martingale taking

values in E. Proposition 3.1 in [Bouchard 09] then states that we are able to write

v(t, x, p) = inf
{
y ≥ −κ : Ψ(Zνt,z(T )) ≥ Pαt,p(T ) for some (ν, α) ∈ Ut,z ×At,p

}
.

(5.2.4)

110



Remark 5.2.1. To retrieve the target in probability, we shall replace the loss function

by Ψ(x, y) = −1{y<G(x)}, where G(Xν
t,x(T )) is a given contingent claim. Then, for p ∈

[−1, 0],

v(t, x, p) = inf
{
y ≥ −κ : P

[
Y ν
t,x,y(T ) ≥ G(Xν

t,x(T ))
]
≥ 1 + p for some ν ∈ Ut

}
.

In this case, the process Pαt,p lives in [0, 1], which also introduces new boundary conditions

for p ∈ {0, 1}. In our setting, Pαt,p evolves in R−, providing only one endpoint to study.

Viscosity property

The mathematical di�culty comes from the fact that the control (ν, α) takes values in

Ū := U ×Rd. Whereas the set U is taken bounded to provide a regular control problem,

the addition of α leads inevitably to an unbounded domain. This leads to a singular

stochastic target problem, which is tackled with the introduction of semi-limit relaxation

of the dynamic programming equation. In the stochastic target problem without state

constraint, Soner and Touzi [Soner 02a] introduced the geometric dynamic programming

principle (GDPP) allowing to derive the PDE characterization. It has been extended in

the general case in [Bouchard 10]. Here, note that if α ∈ L2([0, T ]×Ω) is an unbounded

control leading to Ψ(Zνt,z(T )) ≥ Pαt,p(T ), it is always possible to �nd ᾱ ∈ At,p verifying

the same property. This is provided by

Lemma 5.2.1. Fix (t, z, p) ∈ [0, T ] × Z × R−. Assume that there exists ν ∈ Ut,z and a

Ft-progressively measurable process α taking values in Rd such that Ψ(Zνt,z(T )) ≥ Pαt,p(T )

P− a.s.. Then there exists ᾱ ∈ At,p such that Ψ(Zνt,z(T )) ≥ P ᾱt,p(T ) P− a.s.

Proof According to dynamics (5.2.3), Pαt,p is a submartingale. Thus, E
[
Ψ(Zνt,z(T ))

]
≥

p. According to Assumption 5.2.1.(iii), the martingale representation theorem implies the

existence of a square-integrable martingale P ᾱt,p, with P
ᾱ
t,p(t) = p and

Ψ(Zνt,z(T ))− P ᾱt,p(T ) = E
[
Ψ(Zνt,z(T ))

]
− p ≥ 0 P− a.s.

Since E ⊂ R−, we can choose it to follow dynamics (5.2.3). This implies that ᾱ is a

real-valued Ft-progressively measurable process such that ᾱP ᾱt,p ∈ L2([0, T ] × Ω), and

ᾱ ∈ At,p. 2

Lemma 5.2.1 echoes Standing Assumption 4 and Remark 6 in [Bouchard 11a]. This sta-

tement is missing in [Bouchard 09] and necessary to use the GDPP. We provide one side

of the principle used to derive the supersolution.
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Theorem 5.2.1. (GDP1) Fix (t, z, p) ∈ [0, T ]× Z× R− such that y > v(t, x, p) and a

family of stopping times {θν,α : (ν, α) ∈ Ut,z ×At,p}. Then there exists (ν, α) ∈ Ut,z ×
At,p such that Y ν

t,x,y(θ
ν,α) ≥ v(θν,α, Xν

t,x(θν,α), Pαt,p(θ
ν,α)) and Y ν

t,x,y(s∧ θν,α) ≥ −κ for all

s ∈ [t, T ] P− a.s.

In what follows, we introduce only the supersolution property for v∗. We de�ne the latter

function by

v∗(t, x, p) := lim inf
B3(t′,x′,p′)→(t,x,p)

v(t′, x′, p′)

where B denotes an open subset of [0, T ] × (0,∞)d × R− with (t, x, p) ∈ cl(B). Notice

that v∗ is �nite under the following

Assumption 5.2.2. We assume that v is locally bounded on [0, T )× (0,∞)d × R−.

Recall that Ū := U × Rd. For (u, a) ∈ Ū , set

µ̄(x, u) :=

(
µ(x, u)

0

)
, σ̄(x, p, u, a) :=

(
σ(x, u)

aT p

)

Since Ū is unbounded, we introduce F̄ ∗(Θ) := lim sup
ε↘0,Θ′→Θ

F̄ε(Θ
′) where, for ε ≥ 0 and

Θ = (x, p, y, q, A) ∈ Rd+ × R− × R× Rd+1 × Sd+1,

F̄ε(Θ) := sup
(u,a)∈N̄ε(Θ)

{
µY (z, u)− µ̄(x, u) · q − 1

2
Tr
[
σ̄σ̄T (x, p, u, a)A

]}
(5.2.5)

and

N̄ε(Θ) :=
{

(u, a) ∈ Ū : |σY (z, u)− σ̄(x, p, u, a)T q| ≤ ε
}
.

We adopt the convention sup ∅ = −∞ and F̄ ∗ϕ = F̄ ∗(x, p, ϕ(x, p), Dϕ(t, x), Hϕ(t, x))

with Dϕ and Hϕ being the gradient and Hessian matrix of a function ϕ respectively. We

hence formulate the supersolution property of Theorem 2 in [Bouchard 11a]. Note that

the constraint v ≥ −κ only appears in the subsolution property. This implies that we

retrieve the formulation of Theorem 2.1 and Corollary 3.1 in [Bouchard 09].

Theorem 5.2.2. The function v∗ is a viscosity supersolution of −∂ϕ
∂t + F̄ ∗ϕ ≥ 0 on

[0, T )× (0,∞)d × (−∞, 0).

For the supersolution property on the terminal boundary, we introduce

N̄(x, p, y, q) :=
{
|σY (z, u)− σ̄(x, p, u, a)T q| : (u, a) ∈ Ū

}
and the operator δ̄(x, p, y, q) := dist(0, N̄c) − dist(0, N̄) together with its upper-semi-

continuous envelop δ̄∗. We write δ̄∗ϕ(x, p) = δ̄∗(x, p, ϕ(x, p), Dϕ(x, p)) for a function ϕ
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of (x, p). The latter operator is introduced to deal with the possible discontinuities of v.

We are able now to recall the viscosity property of v∗ at the terminal condition originally

given by Theorem 2.2 of [Bouchard 09]. See also [Moreau 11] for the jump-di�usion case

with Ψ de�ned as above. In our case however, the controls in Ut,z are bounded so that the

coe�cients of Zνt,z are Lipschitz continuous uniformly in the control variable. This implies,

together with Assumption 5.2.1.(iii), that Proposition 3.2.(i) in [Moreau 11] holds. We

can then write

Theorem 5.2.3. The function (x, p) ∈ (0,∞)d × (−∞, 0) 7→ v∗(T, x, p) is a viscosity

supersolution of min
{

(v∗(T, .)−�Ψ−1)1{F̄ ∗v∗(T,.)<∞}, δ̄
∗v∗(T, .)

}
≥ 0 on (0,∞)d ×

(−∞, 0) .

The condition F̄ ∗v∗(T, .) <∞ is useless in most examples, but is still necessary in general

since α is unbounded.

For the state constraint p = 0, we have by de�nition

V (t, x) := v(t, x, 0) = inf
{
y ≥ −κ : Ψ(Zνt,z(T )) = 0 for some ν ∈ Ut,z

}
. (5.2.6)

and as above, the boundary condition has to be stated in general under a weak form. We

introduce

V∗(t, x) := lim inf
B3(t′,x′)→(t,x)

v(t′, x′, 0) and F ∗(Θ) := lim sup
ε↘0,Θ′→Θ

Fε(Θ
′)

where, for Θ = (x, y, q, A) ∈ Rd+ ×R×Rd × Sd and ε ≥ 0, Fε(Θ) is the operator de�ned

by

Fε(Θ) := sup

{
µY (z, u)− µ(x, u) · q − 1

2
Tr
[
σσT (x, u)A

]
: u ∈ Nε(x, y, q)

}
with Nε(x, y, q) :=

{
u ∈ U : |σY (z, u)− σ(x, u)T q| ≤ ε

}
. We also rede�ne in the same

way δ∗ by replacing σ̄ with σ. We still abuse notation by writing F ∗ϕ(x) instead of

F ∗(x, ϕ(x), Dϕ(x), Hϕ(x)) for a function ϕ of x. We invoke Theorem 3.1 of [Bouchard 09]

in our case. Note that the boundary condition of Proposition 3.2.(i) in [Moreau 11] is

still valid for p = 0.

Theorem 5.2.4. Assume that for all compact subset A ⊂ Rd+× [−κ,∞)×Rd×Sd, there
exists C > 0 such that Fε(Θ) ≤ C(1 + ε2) for all ε ≥ and all Θ ∈ A. Then V∗ is a

viscosity supersolution of{
−∂tV∗ + F ∗V∗ ≥ 0 on [0, T )× (0,∞)d

min
{

(V∗ −�Ψ−1(., 0))1{F ∗V∗<∞}, δ
∗V∗
}
≥ 0 on {T} × (0,∞)d
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By de�nition (5.2.6) v∗(., 0) ≤ V ∗, the upper star standing for the upper-semicontinuous

version. Under a comparison assumption, V ∗ = V∗ = v∗(., 0) = v∗(., 0), see Theorem 3.1

in [Bouchard 09]. The above PDE characterization thus holds for v(., 0) and the operator

Fε can be seen as the simpli�cation of F̄ε with p = 0.

5.2.2 The complete market case

In the speci�c case of complete market, we are able, via Fenchel duality arguments, to

provide a quasi-explicit solution to (5.2.2). This has been done for the quantile hedging

problem in [Bouchard 09], and we adapt the exact same arguments to the loss problem.

The proof is given in Section 5.6 for self-countenance of the thesis. We consider the

following dynamics :{
dXt,x(r) = µ(r,Xt,x(r))dr + σ(r,Xt,x(r))dWr

dY ν
t,x,y(r) = νr · dXt,x(r)

, t ≤ r ≤ T, (5.2.7)

where µ and σ are Lipschitz continuous functions. This implies that µY (z, u) = uµ(x)

and σY (z, u) = uσ(x) are uniformly Lipschitz in u ∈ U and de�ne a unique strong

solution for Y ν
t,z. Here, Xt,x is the actualized price process of d risky assets, not a�ected

by the control ν, and Y ν
t,z is the actualized value of a self-�nancing portfolio which is

composed at each instant s of νis shares of the i-th risky asset, for 1 ≤ i ≤ d. The

actualization implies the usual reduction of the interest rate to zero. In order to avoid

arbitrage possibilities, we assume that σ(t, x) is invertible for all (t, x) ∈ [0, T ]×R+ and

by denoting θ(t, x) = σ−1(t, x)µ(t, x), we assume

sup
(t,x)∈[0,T ]×R+

|θ(t, x)| <∞ .

De�nition 5.2.2. We denote by Qt,x the P-equivalent martingale measure de�ned by

dQt,x

dP
= exp

{
−
∫ T

t
θ(s,Xt,x(s)) · dWs −

1

2

∫ T

t
|θ(s,Xt,x(s))|2ds

}
.

According to Assumption 5.2.1.(iii) and (v), the stochastic target problem V (t, x) corres-

ponds to the super-hedging problem in complete market of a contingent claim Ψ−1(Xt,x(T ), 0).

Note that if moreover x 7→ Ψ−1(x, 0) is a Lipschitz continuous payo� function, V is also

continuous and given by V (t, x) = EQt,x
[
Ψ−1(Xt,x(T ), 0)

]
. In the general case, according

to Theorem 5.2.4, V∗ is a supersolution on [0, T )× (0,∞)d of the Black-Scholes equation

−∂ϕ
∂t

(t, x)− 1

2
Tr
[
σσ′Hϕ(t, x)

]
≥ 0 .

Following the application provided in [Bouchard 09], we are able to explicitly compute

v(t, x, p) for p < 0.
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Corollary 5.2.1. For (t, x, p) ∈ [0, T ) × (0,∞)d × int(E), the problem (5.2.2) has a

regular solution given by

v(t, x, p) = EQt,x [�Ψ−1(Xt,x(T ), J(Xt,x(T ), Qt,x,q̄(T )))
]

where J(x, q) := arg sup
p∈R−

{
pq −�Ψ−1(x, p)

}
and Qt,x,q̄ is a strong solution of :

Qt,x,q̄(t) = q̄ and dQt,x,q̄(s) = Qt,x,q̄(s)θ(s,Xt,x(s))dW
Qt,x
s

with WQt,x = W +
∫ .
t θ(s,Xt,x(s))ds and q̄ such that EQt,x [J(Xt,x(T ), Qt,x,q̄(T )] = p .

Proof is provided in Section 5.6. With additional assumptions, it is possible to retrieve

the �nancial strategy ν by using the Itô representation of v provided by Corollary 5.2.1.

Fix (t, x, p) ∈ [0, T ]× (0,∞)d × int(E) and q(t, x, p) =: q̄ ∈ (0,∞) as in Corollary 5.2.1.

Since (Xt,x, Qt,x,q̄) is a F-Markovian process,

v(t, x, p) = EQt,x [�Ψ−1(Xt,x(T ), J(Xt,x(T ), Q0,x,q̄(T )))|Ft
]

=: v̄(x, q̄) .

Since (Xt,x, Qt,x,q̄) is a martingale under Qt,x, by assuming v̄ is regular and applying Itô's

formula,

dv̄(x, q̄) =
∂v̄

∂x
(x, q̄)dXt,x(t) +

∂v̄

∂q
(x, q̄)dQt,x,q̄(t) .

Now expressing dWQt,x
s with respect to dXt,x(s), we obtain

dv̄(x, q̄) =

(
∂v̄

∂x
+ σ−1θQ0,x,q̄(t)

∂v̄

∂q

)
(x, q̄)dXt,x(t)

which allows to deduce the optimal dynamic strategy.

Remark 5.2.2. The formula in Corollary 5.2.1 can take a more explicit form in nu-

merous cases. Consider a convex non-decreasing non-negative loss function ` on R with

polynomial growth and a Lipschitz continuous payo� function g. We introduce

(x, y) 7→ Ψ(x, y) := −` (g(x)− y) .

This case contains our approach in the application of Section 5.4. It corresponds to the ap-

preciation of losses induced by the holding of an European option with payo� g(Xt,x(T )).

In that case, Assumption 5.2.1 holds and if the inverse of ` can be properly de�ned, it is

convex and di�erentiable in p, providing the form Ψ−1(x, p) := g(x)− `−1(−p). We can

thus replace J(x, q) by (∂`
−1

∂p )−1(q). In that case, Corollary 5.2.1 reveals a more explicit

form, with the hedging price of the claim EQt,x [g(Xt,x(T ))] and an additional term invol-

ving only the variable p. This term corresponds to the penalty term in the dual expression

of the acceptance set of a risk measure, see [Föllmer 06], if ` can be considered as one.
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5.3 Extension to the semi-complete market framework

The above problem is a formulation in the stochastic control theory of a question raised

by Föllmer and Leukert in [Föllmer 00] in �nancial mathematics. While the approach of

Föllmer and Leukert encompasses a general semimartingale setting in incomplete market,

we were compelled in the last section with Markovian price processes in a complete

market. In the stochastic target formulation, the incomplete market framework cannot be

expressed as the non-uniqueness of equivalent martingale measures. By avoiding arbitrage

pricing arguments, we also avoid a general formulation of incomplete market. However,

it is always possible to express the target problem with non-hedgeable sources of risk

or state constraints. It appears that in some explicit cases of incompleteness, such as

random volatility, it is not possible to retrieve the linear PDE for the convex conjugate

of v. There, a direct approach must be undertaken, appealing to comparison arguments.

We can nevertheless extend the problem (5.2.2) to very speci�c incomplete market cases.

In this section, we adapt and extend in a simple way the stochastic target problem in

order to solve the loss hedging problem on electricity futures. We try to provide a general

setting, since other examples seem to bene�t from this framework. We start with the

theoretical extension to a certain type of non-Brownian �ltrations. In a second time, we

propose a purely numerical resolution of the non-linear PDE.

5.3.1 The semi-complete market framework

Notations and problem

Recall that Ω = C([0, T ],Rd) is the space of continuous paths, P is the Wiener measure

on Ω and Wt(ω) = ωt. The �ltrations F and Ft, for t ∈ [0, T ], are de�ned as before. We

consider an additional space (Ωλ,G,Pλ), and a random variable Λ ∈ L1(L,G) where L is

a metric separable subset of Rk for k ∈ N. We then consider the product space

(Ω̃, F̃ , P̃) := (Ω× Ωλ,F × G,P× Pλ) .

We �x a time t0 ∈ [0, T ]. We then construct an augmented �ltration F̃ := (F̃t)t on Ω̃,

such that F̃t = Ft∨
{
∅,Ωλ

}
on [0, t0) and F̃t = Ft∨G on [t0, T ]. As in the previous case,

we de�ne F̃t the �ltration generated by the increments from t of the Brownian motion

and the realisation of the variable Λ. We write it as

F̃ ts := σ {Wr −Wt : t ≤ r ≤ s ∨ t} ∨ σ {Λ if s ≥ t0 > t} , 0 ≤ t ≤ T .

For each (t, z) ∈ [0, T ]×Z, we naturally extend Ut,z (resp. At,p) to the set Ũt,z (resp. Ãt,p)
of F̃t-adapted controls ν (resp. controls α). We assume that Z ν̃t,z satis�es dynamics (5.2.7)
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where ν ∈ Ut,z is replaced by ν̃ ∈ Ũt,z. We also assume that |θ(t, x)| is uniformly bounded

in (t, x), implying that the market represented by Xt,x is complete. We introduce an

extended loss function Ψ̃ : Rd+ × R× L −→ R− which veri�es

Assumption 5.3.1. We assume that

(i) the map z 7→ Ψ̃(z, λ) veri�es Assumption 5.2.1 uniformly in λ ∈ L, ;
(ii) for any (t, z, λ) ∈ [0, T ] × Z × L, the map ν̃ ∈ L2([0, T ] × Ω) 7→ Ψ̃(Z ν̃t,z(T ), λ)) is

lower-semicontinuous (in L2(R−,FT )) ;

(iii) for any (t, z) ∈ [0, T ]× Z, E
[
|Ψ̃(Z ν̃t,z(T ),Λ)|

]
is bounded uniformly in ν̃ ∈ Ut,z ;

(iv) 0 ∈ Ẽ(λ) := conv(Ψ̃((0,∞)d, [−κ,∞), λ)) for all λ ∈ L.

Note that Assumption 5.3.1.(ii) holds if y 7→ Ψ̃(x, y, λ) is continuous. Indeed, the map

ν̃ 7→ Z ν̃t,z(T ) is continuous and Ψ̃ is right-continuous and non-decreasing in y according

to Assumption 5.3.1.(i). We denote Ψ̃−1 the general inverse in y, �Ψ̃−1 the convex hull

of Ψ̃−1 in p and Ẽ := conv(Ψ̃((0,∞)d, [−κ,∞), L)).

The extension of problem (5.2.2) to the semi-complete market framework can then be

formulated depending of the date t. When t ≥ t0, the event {Λ = λ} is known and the

projection of Ω× {Λ = λ} on Ω corresponds to the Brownian framework. Every control

in Ũt,z has a Ft-progressively measurable version in Ut,z. The geometric dynamic pro-

gramming principle of Theorem 5.2.1 holds and, conditionally to {Λ = λ}, the �nancial
market is complete so that we can apply the results of Section 5.2.2. If t ≥ t0, there is

thus no ambiguity. For t < t0, this cannot be written as well. By construction, we have

that formally F̃s = Fs for 0 ≤ s ≤ t, but we do not have F̃t = Ft. This does not a�ect
the right to apply the GDPP, but the market is no longer complete. We then write

De�nition 5.3.1. For any (t, x, p, λ) ∈ [t0, T ]× (0,∞)d×R−×L, the value function of

the semi-complete market problem is

ṽ(t, x, p, λ) := inf
{
y ≥ −κ : E

[
Ψ̃(Zνt,z(T ), λ)

]
≥ p for some ν ∈ Ut,z

}
. (5.3.1)

For any (t, x, p, λ) ∈ [0, t0)× (0,∞)d ×R− ×L , the value function of the semi-complete

market problem is

ṽ(t, x, p) := inf
{
y ≥ −κ : E

[
Ψ̃(Z ν̃t,z(T ),Λ)

]
≥ p for some ν̃ ∈ Ũt

}
(5.3.2)

where Λ is the F̃t0-measurable random variable de�ned previously.

Two problems appear with formulation (5.3.2), First, the problem reduction based on

Proposition 3.1 in [Bouchard 09] shall be done with respect to the �ltration F̃ and the
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new process Pαt,p then jumps at time t0. The problem falls in the framework of [Moreau 11]

where explicitness is considerably more di�cult to reach. Second, the new optimal control

ν̃ is to be taken in L2([0, T ] × Ω̃) which closely depends on both the law of Λ and the

dependence of Ψ̃ in λ. Hereafter, we provide a reduced formulation of the problem for

t < t0 in order to retrieve the complete market framework. To motivate the general

framework, we illustrate the previous framework by a simple example.

Example 5.3.1 (Insurancial risk). Take t0 = T . Consider a variable Λ taking values

in {0, 1}. In this simple setting, Λ can represent an idiosyncratic risk as mortality or

longevity.s Let us denote g a Lipschitz continuous payo� function and the loss function

Ψ(x, y) = −(g(x)− y)1{g(x)>y}1{Λ=1}

which corresponds to the simple loss due to the holding of a contingent claim with payo�

g(Xt,x(T )), but conditionally to the event {Λ = 1}. The hedging portfolio Y ν̃
t,x,y will thus

depend on the values taken by Λ. The objective is then to evaluate the risk associated to

each situation and, according to Pλ[Λ = 0] and Pλ[Λ = 1], propose the minimal capital y

necessary to satisfy the level p of loss in expectation.

This situation can be considered for one client and multiplied in order to provide a fra-

mework for insurancial risk premium valuation. If the clients i are characterized by a

variable Λi independent of the Λj, j 6= i, it is tempting to use a diversi�cation rule and

apply the law of large numbers to obtain a mean price for every client. In our context, we

can directly use the law of Λ := (Λ1, . . . ,Λn) for a �nite n ∈ N and provide a premium

for a �nite number of clients without using asymptotic reasoning. For a recent view on

diversi�cation in insurance with �nancial hedging, see [Bouchard 11b].

Intermediary condition and piecewise problem

To overcome the di�culty, we are guided by the following �nancial argument. Considering

(t, y) ∈ [0, t0) × [−κ,∞) and a strategy ν ∈ Ut,z, we arrive at time t0 to the wealth

Y ν
t,x,y(t0). At the apparition of the exogenous risk factor Λ, the portfolio Y ν

t,x,y(t0) can

be greater or smaller than ṽ(t0, Xt,x(t0), Pαt,p(t0), λ) for some α ∈ At,p, depending on

the value λ taken by Λ. In any case, the optimal behaviour is to maximize the value of

E
[
Ψ̃(Xt,x(T ), Y ν̃

Y νt,x,y,p(t0)(T ), λ)
]
with an optimal control ν̃ ∈ Ut0,Zνt,z(t0). We thus pass

from a stochastic target problem to an optimal control formulation, and both are carried

out in the Brownian framework. We introduce the following face-lifted target function

Ξ(z) :=

∫
Ωλ

sup
ν∈Ut0,z

E
[
Ψ̃(Zνt0,z(T ),Λ(ωλ)

]
dPλ(ωλ) (5.3.3)
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which is a Borel-measurable well-de�ned deterministic function.

The following result provides, in a weak form, the equivalence between the ill-formulation

of equation (5.3.2) and the formulation of equation (5.3.4).

Proposition 5.3.1. We set w the function de�ned by

w(t, x, p) := inf
{
y ≥ −κ : E

[
Ξ(Zνt,z(t0))

]
≥ p for some ν ∈ Ut,z

}
(5.3.4)

for (t, x, p) ∈ [0, t0)× (0,∞)× (−∞, 0). Then,

1. For (t, x, p) ∈ [0, t0)× (0,∞)× (−∞, 0), we have w(t, x, p) ≤ ṽ(t, x, p) .

2.(a) Assume that λ 7→ Ψ̃(x, y, λ) is continuous on L for any (x, y) ∈ Z. Then for any

δ > 0 and (t, x, p) ∈ [0, t0)× (0,∞)d × (−∞, 0), we have

ṽ(t, x, p− δ) ≤ w(t, x, p) . (5.3.5)

2.(b) Assume that Λ takes a countable number of values. Then for any δ > 0 and

(t, x, p) ∈ [0, t0)× (0,∞)d × (−∞, 0), equation (5.3.5) holds.

Proof is given in Section 5.6. If the value function ṽ is left-continuous in p, the equality

holds. With this proposition, we are able to use the dynamic programming equation

on [0, t0) with the terminal condition given by Ξ at time t0, and controls ν having

a Ft-progressively measurable version. Following Proposition 5.3.1, one switch from a

stochastic target problem on [t, t0) to an optimal control problem at time t0. In fact, it is

possible to link the optimal control problem on [t0, T ] to a stochastic target formulation

by an equivalence result given in [Bouchard 12].

Lemma 5.3.1. Let us introduce the function

ṽ−1(t0, x, y, λ) := sup {p : ṽ(t0, x, p, λ) ≤ y} . (5.3.6)

for (x, y, λ) ∈ Z× L. Then Ξ(x, y) =
∫

Ωλ ṽ
−1(t0, x, y,Λ(ωλ))dPλ(ωλ).

Proof This is a direct application of Lemma 2.1 in [Bouchard 12]. 2

One can easily extend the above framework to a �nite sequence of deterministic times

(ti)i≤m. As we retrieve a problem in a standard form, we can apply recursively Proposition

5.3.1. The problem, as above, becomes a piecewise stochastic target problem, with a new

condition on each interval [ti, ti+1], 1 ≤ i ≤ m. This framework can be applied to random

changes such as dividends. We can also easily extend the approach we will follow for the

granularity problem in the electricity futures market.

The above formulation holds for p < 0. The case p = 0 case is secondary in our context,

and we appeal to [Moreau 11] for details in that framework.
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Remark 5.3.1. Let us justify the semi-complete market terminology. According to for-

mulation (5.3.4), the intermediary target does not depend any more on the variable Λ.

If we consider Λ as an external risk factor unlinked to the market, then the setting of

this section has the explicitly interpretation of keeping the �nancial market complete and

to allow for the construction of Section 5.2.2. In the general probability space (Ω̃, F̃ , P̃),

there are several P̃-equivalent martingale measures. The hidden assumption is thus that

for any P̃-equivalent martingale measures Q∗ and Q′, E [dQ∗/dP|FT ] = E [dQ′/dP|FT ] ,

see Remarks 2.2, 2.3 in [Bouchard 11b].

5.3.2 Numerical resolution of the Stochastic Target problem

The function Ξ given in Proposition 5.3.1 is not explicit in most cases. The expectation

formulation of Corollary 5.2.1 could then be exploited via a numerical approximation

of Ξ and its derivatives. In the case when Ξ possesses the su�cient properties to apply

Corollary 5.2.1, we obtain directly the value function and the dynamic strategy. If these

properties no not hold, we are obliged to tackle the problem via another approach.

This is why in this section, we propose another approach which consists in solving the

non linear PDE (5.2.5). This latter approach is more expensive in term of computation

time than the numerical approximation of Corollary 5.2.1, but it has the advantage to

be more general and applicable to a wide range of control problems. We propose here a

Monte Carlo method based on Howard �xed point algorithm, see [Bokanowski 09], and

the expectation formulation provided by the Feynman-Kac formula.

Expectation formulation

Following Proposition 5.3.1, it is still possible to apply Theorems 5.2.2 and 5.2.3, and

obtain a viscosity property of the value function w for t ∈ [0, t0). In this section, we

will apply a formal reasoning with extra simpli�cations. We assume for sake of simplicity

that W is a one dimension Brownian Motion, so that d = 1, σ(s, x) = σ > 0 and

µ(s, x) = µ ∈ R for all (s, x) ∈ [t, t0] × R+. The following strong assumptions allow to

work directly on the value function w. The approach via test functions and the general

framework in which the following holds true is clearly beyond the scope of this study.

Assumption 5.3.2. We assume here that

(i) the function w is in C1,2,2([0, t0)× (0,∞)d × R−) ;

(ii) the function (x, p) 7→ Ξ−1(x, p) is convex in p and de�ned and C1,3 on (0,∞)d×R− ;
(iii) there exists (ν∗, α∗) ∈ Ũt×Ãt such that the supremum is reached in equation (5.2.5).
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Let us explain more Assumption 5.3.2.(iii). It appears that (ν∗, α∗) ∈ N̄0(t, x, p, y,Dw,Hw)

implies that, for some control α ∈ At,p and processes (Xt,x, P
α
t,p) taking the value (x′, p′)

at time t′ ∈ [t, T ], the process α∗ at time t′ shall take the value

a∗ = (p
∂2w

∂p2
)−1

(
θ
∂w

∂p
− σx ∂w

∂x∂p

)
(t′, x′, p′) , (5.3.7)

See the proof of Corollary 5.2.1 for details. Coming back to the non-linear PDE (5.2.5),

w is thus assumed to be a regular solution on [0, t0)× (0,∞)d × (−∞, 0) of −
∂w

∂t
− 1

2
x2σ2∂

2w

∂x2
− α∗p(xσ ∂

2w

∂x∂p
− θ∂w

∂p
)− 1

2
α∗2p2∂

2w

∂p2
= 0 ,

w(t0, x, p) = Ξ−1(x, p) .
(5.3.8)

Without going into the details of comparison given in Section 5.2.2, we can formally

express w(t, x, p) in terms of a conditional expectation by means of the Feynman-Kac

formula :

w(t, x, p) = E[Ξ−1(Xt,x(t0), Pα
∗

t,x,p(t0))] . (5.3.9)

with dynamics{
dXt,x(s) = Xt,x(s)σ(s,Xt,x(s))dW (s)

dPα
∗

t,p (s) = Pt,p(s)α
∗(s)(dW (s) + θ(s,Xt,x(s))ds) .

(5.3.10)

The idea is then to use formulation (5.3.9) together with tangent process techniques to

provide the di�erent derivatives appearing in formula (5.3.7) This makes appear a �xed

point which is exploited in the following discrete version of the control problem.

Discrete time approximated problem

Let us consider a regular mesh (t =: τ0, τ1, · · · , τN := t0), with δ := τk+1 − τk. Let

α̃N−1
k := (α̃q)q=k,··· ,N−1 be a sequence of real valued functions de�ned on R+ × R−. We

de�ne an associated sequence of random variables (X̃k, P̃
α̃k−1

0
k )0≤k≤N such that

X̃k = Xτ0,x(τk)

P̃
α̃k−1

0
k = P̃

α̃k−2
0

k−1 exp
{
α̃k−1

((
θ − 1

2 α̃k−1

)
δ +

(
Wτk −Wτk−1

))}
P̃τ0 = p ,

(5.3.11)

where to simplify notations we have omitted to state explicitly the following relation

α̃k−1 = α̃k−1

(
X̃k−1, P̃

α̃k−2
0

k−1

)
. Observe in particular that (X̃, P̃ ) is a Markov chain. In the

general case where σ and θ are functions de�ned on [0, T ] × (0,∞)d, one will replace

121



dynamics (5.3.11) with an Euler scheme of dynamic (5.3.10), and shall do the following

computations in regard of the new dynamics. We skip that technical part here.

Consider now the value function w̃ of the problem (5.2.4) under dynamics (5.3.11). With

the latter notations, the terminal condition writes w̃(τN , x, p) := w(τN , x, p) = Ξ−1(x, p) .

According to Assumption 5.3.2, its partial derivatives are properly de�ned. Assume that

formulation (5.3.9) holds too for this new problem, for some τk ≤ τN and a control

process α∗ of the form

α∗(s) =
∑

k≤q<N
α̂q1τq≤s<τq+1 , τk ≤ s ≤ τN , (5.3.12)

where α̂q are real-valued functions. We can then write the alternative value function as

a conditional expectation as follows

w̃(τk, x, p) := E[w̃(τN , X̃τk,x(τN ), P̃
α̂N−1
k−1

τk,p (τN ))] . (5.3.13)

Recall that α̂q is a function of (x, p) for k ≤ q < N . The question is thus how to determine

the value function w̃ at time τk−1. A theoretical analysis ensuring the convergence of w̃

toward w with δ going to 0 is beyond the scope of the present work.

One step optimization

In this paragraph, we �x k ≤ N and we suppose that the functions ∂w̃
∂p (τk, .), ∂2w̃

∂x∂p(τk, .),

and ∂2w̃
∂p2 (τk, .) are known and well-de�ned on R+ × R−. We introduce the real valued

functions W k
p, W k

xp and W k
pp de�ned on R+ × R− by

W
k
p(.) = p

∂w̃

∂p
(τk, .) , W

k
xp(.) = xp

∂2w̃

∂x∂p
(τk, .) and W

k
pp(.) = p2∂

2w̃

∂p2
(τk, .) . (5.3.14)

De�nition 5.3.2. Let α̃k−1 be a real-valued function on R+×R−, we introduce a Markov

kernel operatorM
α̃k−1

k as follows. For any bounded measurable function ϕ : R+×R− → R,
we set the conditional expectation transition kernel

(x, p) 7→ (M
α̃k−1

k ϕ)(x, p) =

∫
M

α̃k−1

k (x, p, du)ϕ(u) ,

such that (M
α̃k−1

k ϕ)(x, p) = E
[
ϕ
(
X̃τk−1,x(τk), P

α̃k1
τk−1,p(τk)

)]
. (For any such test function

ϕ, note that (M
α̃k−1

k ϕ) is again a bounded measurable function.)

According to equation (5.3.13) and dynamics (5.3.11), the optimal function α̂k−1 shall

verify

w̃(τk−1, x, p) = M
α̂k−1

k w̃(τk, .)(x, p)
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Additionally, using an Envelope argument and a tangent process approach (see [Broadie 96])

one can informally obtain

p
∂w̃

∂p
(τk−1, x, p) = M

α̂k−1

k W
k
p(x, p)

xp
∂2w̃

∂x∂p
(τk−1, x, p) = M

α̂k−1

k W
k
xp(x, p) (5.3.15)

pp
∂2w̃

∂p2
(τk−1, x, p) = M

α̂k−1

k W
k
pp(x, p)

Following formulation (5.3.7), we are now in position to de�ne an operator Tk on functions

α̃k−1 on R+ × R− which associates a real valued function de�ned on R+ × R− :

Tk(α̃k−1) =
M

α̃k−1

k

(
θW

k
p − σW

k
xp

)
M

α̃k−1

k W
k
pp

. (5.3.16)

The operator is related to (5.3.7) by the following relation. If equation (5.3.12) holds at

time τk−1, then α̂k−1 de�nes a �xed point for Tk, i.e.,

Tk(α̂k−1) = α̂k−1 . (5.3.17)

To ensure the convergence of a �xed point algorithm, we shall verify the contraction

properties of the operator Tk. We propose to illustrate this property below under some

speci�c su�cient assumptions. The study of minimal assumptions for the property to

hold is beyond the scope of this analysis.

Property 5.3.1. Assume that the functions W
k
p, W

k
xp, W

k
pp are bounded functions. As-

sume that |W k
pp(x, p)| > ε for all (x, p) ∈ R+ × R− and some ε > 0. Assume moreover

that the functions

W
k
ppp(x, p) := p3∂

3w̃

∂p3
(τk, x, p) and W

k
xpp(x, p) := xp2 ∂3w̃

∂x∂p2
(τk, x, p)

are bounded. Let α̃k−1 and α̃′k−1 be two bounded real valued functions on R+×R−. Then
there exists Ā > 0 such that

‖Tk(α̃k−1)− Tk(α̃′k−1)‖∞ ≤
√
δĀ‖α̃k−1 − α̃′k−1‖∞ .

Proof Notice that for all bounded function α, the real Tk(α)(x, p) does not depend on

the whole function α but only on α(x, p). We thus can de�ne a real valued function Rk
de�ned on R such that for all function α,

Rk(α(x, p)) := Tk(α)(x, p) . (5.3.18)
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Di�erentiating Rk we obtain

dRk
dα

(α(x, p)) =

√
δ
[
θAp + (θ − 2Tk(α))App − Tk(α)Appp − σ(Axp +Axpp)

]
Mα
k
∂2w̃
∂p2 (τk, .)

(x, p)

(5.3.19)

where, for ε =
Wτk
−Wτk−1√
δ

− (θ + α)
√
δ, we introduced the functions

Ap = Mα
k εW

k
p, Axp = Mα

k εW
k
xp, App = Mα

k εW
k
pp, Axpp = Mα

k εW
k
xpp , Appp = Mα

k εW
k
ppp .

Using Cauchy-Schwartz inequality and the fact that the various derivatives are uni-

formly bounded, we can bound uniformly in (x, p) the real valued functions Ap, Axp,

App, Axpp and Appp. This is also the case for Tk(α). Then, there exists a positive function

(x, p) 7→ A(x, p) such that R′(α(x, p)) < ε−1
√
δA(x, p). Since the derivatives of w̃(τk, .)

are uniformly bounded in (x, p), the function A is bounded and there exists a �nite

positive constant Ā ≥ A(x, p) such that

‖Tk(α̃k−1)− Tk(α̃′k−1)‖∞ ≤ sup
(x,p)∈(0,∞)×R−

|Rk(α̃k−1(x, p))−Rk(α̃′k−1(x, p))|

≤
√
δA(x, p) |α̃k−1(x, p)− α̃′k−1(x, p)|

≤
√
δĀ‖α̃k−1 − α̃′k−1‖∞ .

We thus deduce the contraction property for T in the L∞ norm. 2

Algorithm

We apply this technique recursively until k = 0, in order to obtain a piecewise constant

time continuous process de�ned along (5.3.12). We �rst have the partial derivatives of

w̃(τN , .) from the terminal condition. In the generic case k < N , computing the partial

derivatives of w(τk, .) requires to compute conditional expectation represented by the

kernel operator Mα
k in order to obtain (5.3.16). This is done by a regression approach on

a �xed grid given by (X̃k,i, P̃
αk−1

k,i )i=1,···M
k=1,··· ,n of M trajectories simulated independently for

a given choice of (αk−1)k=1...N .

The computation of the optimal control of equation (5.3.12) is made backward since

(5.3.13) is assumed to hold on [τk, τN ] for a given k. Assume that an approximation of

the functions (α̂0, · · · , α̂N−1) satisfying the �xed point (5.3.17), denoted (α̃0, · · · , α̃N−1)

shall found for a tolerance parameter ε > 0. We provide an initialization of αk−1, say

−θ, at any step 0 < k ≤ N . The program consists in starting with step A(N − 1) in the

following algorithm :
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A(k) : SET a := αk ; GOTO B(k, a) ;

B(k, a) : 1. SET a′ := Tk+1(a) ;

2. IF |a′ − a| ≤ ε
THEN SET α̃k := a′.

IF k = 0 THEN STOP ;

ELSE GOTO A(k − 1) ;

ELSE GOTO B(k, a′) ;

By using a cumulated approximation for the function w(τk, .) and its derivatives, the nu-

merical error grows rapidly with the number of steps n. On the contrary, the convergence

of α̂ towards α∗ and the error due to the discrete time approximation is controlled with

δ. To validate the algorithm we proceed in Section 5.5.2 to a comparison between the

explicit formula of Corollary 5.2.1 and the value provided by the algorithm.

5.4 Application to a cascading strategy for controlling loss

on electricity Futures market

We develop here an application of the latter work. Following commodity markets, ma-

turities and delivery periods are based on calendar dates, meaning that delivery starts

on Monday for week period, the �rst day of a month for month or quarter-long delivery

periods and the �rst day of the year for year futures. Therefore, the availability of a fu-

tures depends on its delivery period and the remoteness of its maturity, as illustrated on

Figure 5.1. It is referred in the industry as a cascading rule or the granularity problem of

the term structure. When a period splits and the related contracts appear, an arbitrage

structure is taken in consideration in order to �x prices. We explain this structure and

introduce hereafter a simple model which takes it into account. We then apply the above

results to this situation.

5.4.1 Model and structural correlation

We consider the situation of an agent which is endowed with an option, a payo� function

on a monthly period futures with expiration at time T . The option is de�ned by a

function g which is Lipschitz continuous. This underlying asset XMi for 1 ≤ i ≤ 3

(in Euro per MWh) appears at time t0 ∈ [0, T ], and before its apparition, the quarterly

period futures with price XQ covering the same period is available on [0, t0]. Here, i takes

value between 1 and 3 for the respective �rst, second and last month of the quarter. In
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Figure 5.1 � Cascading rule of futures price decomposition on the French EEX Power Deriva-

tives Market.

reality, the contracts are quoted together for a certain time, so that, in the case that the

three months of the quarter are available, the following structural relation holds at each

time during the period of common quotation :

XQ(t) =
1∑3

i=1Ni

3∑
i=1

NiX
Mi(t) .

Here, Ni is the number of hours in the period covered by contract XMi . This fact induces

a structural correlation between monthly and quarterly futures prices, and motivates the

following model.

We know focus on a particular monthly period asset and avoid the notation i. We consider

the complete �ltered space (Ω̃, F̃ , F̃, P̃). Let us assume that the prices have the following

dynamics :
XQ
t,xQ

(r) = xQ +

∫ r

0
µQXt,x(s)ds+

∫ r

0
σQXt,x(s)dWQ

s for all r ∈ [0, T ]

XM
t0,xM

(r) = xM +

∫ r

t0

µMXt,x(s)ds+

∫ r

t0

σMXt,x(s)dWM
s for all r ∈ [t0, T ]

(5.4.1)

where (WQ,WM ) is a F̃-adapted Brownian motion with possible correlation. We also

assume without loss of generality that (µQ, σQ) = (µM , σM ) =: (µ, σ) ∈ R× (0,∞). We

consider the portfolio as de�ned in Section 5.2.2. We also consider the problem of partial

lower moment loss, where Ψ is de�ned by

Ψ(x, y) = − 1

n
((g(x)− y)1{g(x)≥y})

n
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for n ∈ N∗. The problem is then to �nd the smallest initial capital y at time t such that

E
[
− 1

n

(
g(Xt0,xM (T ))− Y ν

t,x,y(T )
)n
1{(g(Xt0,xM (T ))≥Y νt,x,y(T )})|(Xt0,xM (t), X0,xQ(t))

]
≥ p

for some p ≤ 0 and some control ν̃ ∈ Ũt. It is clear that xM is supposed to be a

measurable only after t0, so that the problem is not well-posed, at least before t0. It

is easy to notice that the dynamics can be reduced to a one dimension problem by

the following reasoning. On the period [t0, T ], the monthly asset is available, and the

market is considered to be completed. We can then adapt the notations to retrieve the

semi-complete setting. Consider the new Brownian motion W de�ned on [0, T ] by W :=

(WQ
.∧t0 + (WM −WQ)t∨t0), and the �ltration F de�ned by Ft := σ(Ws, 0 ≤ s ≤ t). We

then de�ne the F-adapted price process X by

X0,x(t) = xQ +

∫ t

0
µX0,xQ(s)ds+

∫ t

0
σX0,xQ(s)dWs , t ∈ [0, T ]

with x = xQ. We then introduce the random variable

Λ :=
XM
t0,xM

(t0)

XQ
0,xQ

(t0)
=

xM
X0,xQ(t0)

and the σ-algebra G := σ (Λ). The price process X can then be seen as the price of

the quarterly futures on [0, t0], and for a given value λ taken by Λ, λX is the process

describing the price of the monthly futures on [t0, T ]. The variable Λ can be seen as

a shaping factor, giving a weight for the impact of the average price of electricity on

the considered monthly period M into the quarterly period Q. If the considered month

contains Ni hours and the two other months contain Nj and Nk hours respectively, and

if we assume that the electricity price is always non negative, we have for t ≥ t0

0 ≤ XM
t,xM

(t) ≤ Ni +Nj +Nk

Ni
XQ
t,xQ

(t) ,

justifying the following

Assumption 5.4.1. We assume that Λ takes it values in L := [0, Lmax] with Lmax :=
Ni+Nj+Nk

Ni
, and that G is independent of Ft0.

From now on, we assume that Ni = Nj = Nk so that Lmax = 3. It is clear that by

de�ning the �ltration F̃ by F̃t = Ft on [0, t0) and F̃t = Ft ∨ G for t ∈ [t0, T ], we retrieve

the information :

F̃t := σ(XQ
0,xQ

(s ∧ t0), XM
t0,xM

(s)1{s≥t0}, 0 ≤ s ≤ t), 0 ≤ t ≤ T .
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We can �nally write Ψ̃(x, y, λ) = Ψ(λx, y) and Problem 5.3.1 becomes the following

pricing problem with controlled loss :

ṽ(0, xQ, p) = inf
{
y ∈ R : ∃ν ∈ Ut s.t.

E
[
− 1
n

(
g(ΛX0,xQ(T ))− Y ν

0,xQ,y
(T )
)n

1{
(g(ΛX0,xQ

(T ))≥Y ν0,xQ,y(T ))
}] ≥ p} .

5.4.2 The complete market case for t ≥ t0

For t ≥ t0, the problem has an explicit solution provided by Corollary 5.2.1. It is easy to

see that once Λ is known (taking the value λ), the quarterly period asset XQ is useless

on this period. Corollary 5.2.1 then rewrites as so.

Corollary 5.4.1. For all (t, x, p, λ) ∈ [t0, T ]× (0,∞)× R× L,

ṽ(t, x, p, λ) = EQt,x [g(λX0,xQ(T ))|X0,xQ(t) = x
]
− (−np)1/n exp

{
θ2

2(n− 1)
(T − t)

}
.

For sake of simplicity, we introduce the complete market valuation function (t, x) 7→
C(t, x) and x 7→ C0(x) such that

C(t, x) = EQt,x [g(Xt0,xM (T ))|XM
t0,xM

(t) = x] , and C0(x) = C(t0, x) . (5.4.2)

Since g is a Lipschitz continuous function, C ∈ C1,2([t0, T ] × (0,∞)d). According to

Corollary 5.4.1, the partial derivatives of ṽ exist. We thus recall the expressions of the

optimal controls α∗ and ν∗ in terms of the derivatives of ṽ, see the proof of Corollary

5.2.1 : 
α∗(t, x, p) =

(
∂2ṽ

∂p2

)−1(
θ
∂ṽ

∂p
− xσ ∂2ṽ

∂x∂p

)
(t, x, p)

ν∗(t, x, p) =

(
∂ṽ

∂x
+

α

xσ

∂ṽ

∂p

)
(t, x, p)

(5.4.3)

According to this formula, it is possible to compute the partial derivatives of ṽ with
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respect to the ones of C. We have :

∂ṽ

∂t
(t, x, p) =

∂C

∂t
(t, x) +

θ2

2(n− 1)
exp

{
θ2

2(n−1)(T − t)
}

∂ṽ

∂x
(t, x, p) =

∂C

∂x
(t, x)

∂2ṽ

∂x2
(t, x, p) =

∂2C

∂x2
(t, x)

∂ṽ

∂p
(t, x, p) = exp

{
1−n
n log(−np) + θ2

2(n−1)(T − t)
}
.

One can then notice that the sensibility with respect to the asset price is the same as in

the Black-Scholes framework. Comparing to equation (5.4.3), the strategy in the complete

market case consists in superhedging g(λXt,x(T )) and superhedging the threshold Pαt,p(T )

with a correcting term.

5.4.3 Numerical procedure for t = t0

The intermediary condition

According to the results of Section 5.3.1, we have to compute the face-lifted function Ξ

at time t0. For a �xed value λ ∈ L, we obtain an explicit formula for ṽ−1
0 (x, y, λ) de�ned

in equation (5.3.6),

ṽ−1
0 (x, y, λ) = − 1

n
(C0(λx)− y)n exp

{
− θ2n

2(n− 1)
(T − t0)

}
1{C0(x)≥y} ,

but for a general expression of the law of Λ, we have to compute numerically the value

of Ξ at time t0 :

Ξ(x, y) = exp

{
− θ2n

2(n− 1)
(T − t0)

}∫
Ωλ
− 1

n

(
C0(Λ(ωλ)x)−y

)n
1{C0(Λ(ωλ)x)≥y}dP

λ(ωλ) .

(5.4.4)

Following Proposition 5.3.1 and equation (5.3.8), we need to compute the inverse of

the above function and its partial derivatives. The value w(t−0 , x, p) is precisely given

by w(t−0 , x, p) = Ξ−1(x, p). Let us introduce the real valued functions jk and j∆
k for
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k ∈ {n− 1, n− 2} such that for any positive real values x and p,
jk(x, p) =

∫
Ωλ

(
C0(Λ(ωλ)x)− Ξ−1(x, p)

)k
+
dPλ(ωλ)

j∆
k (x, p) =

∫
Ωλ

Λ(ωλ)
∂C0

∂x
(Λ(ωλ)x)

(
C0(Λ(ωλ)x)− Ξ−1(x, p)

)k
+
dPλ(ωλ) .

(5.4.5)

By simple calculations, we obtain the following expressions for the derivatives of the

intermediary condition Ξ−1 :

∂Ξ−1

∂x
(x, p) =

j∆
n−1

jn−1
(x, p)

∂Ξ−1

∂p
(x, p) = − exp

{
θ2n

2(n− 1)
(T − t0)

}
1

jn−1
(x, p)

∂2Ξ−1

∂p2
(x, p) =

[
(n− 1)

jn−2

jn−1

(
∂Ξ−1

∂p

)2
]

(x, p)

∂2Ξ−1

∂x∂p
(x, p) =

[
(n− 1)

∂Ξ−1

∂p

(
j∆
n−1jn−2 − j∆

n−2jn−1

)(
jn−1

)2
]

(x, p) .

By computing numerically the functions jk and j∆
k for k ∈ {n− 1, n− 2}, we are able

to obtain the above derivatives. Once we obtain these functions, we apply the numerical

procedure of Section 5.3.2 to obtain w(t, x, p) for t < t0.

Controls and threshold Pαt,p(t0)

Injecting these expressions in equations (5.4.3), we deduce the following formula for the

optimal controls of our stochastic target problem at time t0 :
α∗(t0, x, p) =

θ

n− 1

j2
n−1

jn−2
(t0, x, p) exp

{
− θ2n

2(n− 1)
(T − t0)

}

ν∗(t0, x, p) =
j∆
n−2

jn−2
(t0, x, p) +

θ

xσ(n− 1)

jn−1

jn−2
(t0, x, p) .

(5.4.6)

The resulting strategy is obtained by averaging, among the possible values taken by Λ,

the a posteriori (knowing Λ = λ) optimal strategies, i.e. λ∆0(λx), weighted by a measure

of the associated risk given by the probability measure

Rx,p(ωλ)dPλ(ωλ) =
(C0(Λ(ωλ)x)− Ξ−1(x, p))n−2

+

jn−2(x, p)
dPλ(ωλ) .
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In other words, if λ corresponds to a risky situation (w.r.t. to the loss function), then

the corresponding a posteriori strategy λ∆0(λx) will be highly weighted, whereas if λ

corresponds to a riskless situation then the corresponding a posteriori optimal strategy

λ∆0(λx) will weakly (or not at all) contribute to the a priori optimal strategy (for which

the event {Λ = λ} is unknown).

We can also derive the dynamic of Pt−0 ,p at the time of the jump using the following

condition

ṽ(t0, x, Pt−0 ,p
(t0), λ) = ṽ(t−0 , x, p) ,

v(t0, λx, Pt−0 ,p
(t0)) = C(t0, λx)− (−nPt−0 ,p(t0))1/ne

θ2

2(n−1)
(T−t0)

,

which yields

− Pt−0 ,p(t0) =
1

n
e
− n

2(n−1)
θ2(T−t0) (

C(t0, λx)− v(t−0 , x, p)
)n

+
. (5.4.7)

5.4.4 The Black-Scholes benchmark

To evaluate the performance of the novel approach, we introduce a simple benchmark

based on the Black-Scholes strategy. We consider the following trading strategy. Before

the apparition of the month futures, the agent can naively use an estimation of the futures

price at time t < t0, which is given by

X(t) := E
[
ΛX0,xQ(t0)|F̃t

]
= λ̄X0,xQ(t)e(µ−σ

2

2
)(t0−t) ,

where λ̄ =
∫

Ωλ Λ(ωλ)dPλ(ωλ). If the price of the appearing asset indeed takes this value,

then it su�ces to constitute a portfolio starting with value C0(λ̄X0,xQ(t0)) at time t0 and

apply the super-hedging strategy to cancel the risk of the claim g(λ̄X0,xQ(T )). Then, the

Black-Scholes price of a contingent claim g(ΛX0,xQ(T )) is given by EQ0,xQ [g(λ̄X0,xQ(T ))].

Before t0, the agent uses the quarter asset to hedge the option, and since we assume that

the market represented by X0,xQ is complete on [0, t0), the agent reaches almost surely

the wealth EQ0,xQ [g(λ̄X0,xQ(T ))|X0,xQ(t0)] at time t0.

In the call option case where g(x) = (x−K)+ for some K > 0, it is easy to retrieve with

the above methodology the Black-Scholes price of the option at time t0, here CBS :

CBS(t,XM ,K) := EQt,x0 [(XM (T )−K)+|XM
t0,xM

(t) = x0]

= EQt,x0 [(λ̄X0,xQ(T )−K)+|X0,xQ(t) = x0/λ̄]

= λ̄EQt,x0 [(X0,xQ(T )−K/λ̄)+|X0,xQ(t) = x0/λ̄]

= λ̄CBS(t,XQ,K/λ̄) .
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The delta-hedging strategy on the quarter contract follows immediately.

If the value of λ falls out, the agent still proceeds to the delta-hedging strategy and

propagates his misestimation till time T . The theoretical terminal hedging error is thus

given by :

εT = C(t0λ̄x)− C(t0, λx) (5.4.8)

By averaging the value λ, the agent naively expects to average his losses around 0. This

is however not true since the super-hedging price of the claim is not a linear function of

the asset price.

5.5 Numerical results

5.5.1 Parameters estimation and sources of error

To provide a realistic framework, we refer to historical data. This allows to propose a

model for L and Λ, and values for parameters (µ, σ).

The available data designate daily quotations of futures contracts prices on the French

Power Market. Market data are provided by EEX, and represent here a period from

October 2004 to March 2001, i.e., 78 Month delivery futures during their whole quotation

period and the respective Quarter contracts covering them. Each Month contract has a

di�erent lifetime depending on its order in the quarter. Indeed, every month contract

appears at least 3 months ahead but, by absence of arbitrage opportunity, the last month

appears with the second one. We present here some statistical characteristics of Λ =

XM (t0)/XQ(t0), and the parameters of the dynamics of equation (5.4.1). The parameters

µ and σ are computed on the aggregated returns of month futures and quarter futures.

with µ including the actualization since we assumed that the interest rate is null.

E [λ] V[λ] µ σ n

1.0012 0.081 0 0.28 2

Table 5.1 � Parameters estimation

To estimate the law of Λ we �rst notice that we are looking for a probability law on a

bounded interval. We then assume the following.

Assumption 5.5.1. The law of Λ is given by 1
3Λ ∼ β(a, b), with (a, b) = (114, 227).

We estimate the parameters on realizations and we provide on Figure 5.2 the non-

parametric historical density and the estimated parametric density.
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Figure 5.2 � Kernel density estimation versus parametrized Beta law.

We �rst shall evaluate if we can signi�cantly compare the two approaches. In order to

do so, wes study the possible sources of error, both on real and simulated data, in the

applied hedging strategy. This has another implicit motivation : we argue that a wrong

estimation of Λ can impact signi�cantly the hedging error if we proceed to the naive

delta-hedging strategy. This preliminary task takes the following form.

We consider the hedging of a call option of payo� g(λXt,xM (T )) = (λXt,xM (T ) −K)+,

with three possible values of K. We apply the Black-Scholes strategy with di�erent prior

estimations of Λ. We assume that the trader can make an error of 50% around the

real value in the worst case. We thus use the same time grid as data format for price

simulations. We also provide the hedging error of the Black-Scholes strategy for the same

number of simulations as provided by data series, and for a greater number of trajectories.

By comparing hedging error on real data and similar simulated trajectories we test the

model error with respect to real price dynamics. If this error is small, we make the compa-

rison of hedging error between a small and a great number of simulations, providing the

error which is due to lack of data. Finally, for a great number of simulations of dynamics

(5.4.1), the hedging error should reasonably converge to the error of discretization of

the Black-Scholes strategy. We then compare the hedging error of the simulated discrete

strategy with the theoretical hedging error given by equation (5.4.8). We sum up the

results in Figure 5.3.
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(a) K = 0, 8X(t0)

(b) K = X(t0)

(c) K = 1.2X(t0)

Figure 5.3 � Cumulated errors from the estimation (εT , blue), discrete strategy (dotted), lack

of price trajectories (black) and di�erence between model and real dynamics (red) for 3 strikes

K. Error is given in Euros (to compare with the initial Black-Scholes price).
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5.5.2 Numerical validation

In this paragraph, we are interested in testing the performance of the algorithm described

above in a simple case where an exact benchmark solution is known. We consider the

problem of controlled loss in the complete market framework, with the solution given by

Corollary 5.4.1. Recall that we obtain the following explicit expression for the martingale

Pαt,p initialized at time t ≥ t0 and the function v for any s ∈ [t, T ), v(s,Xt,x(s), Pαt,x(s)) = C(s,Xt,x(s))− (−nPαt,p(s))1/n exp
{

θ2

2(n−1)(T − s)
}

Pαt,p(s) = p
(
Xt,x(s)

x

)− n
n−1

µ

σ2
exp

{
n2(θ2−µ)
2(n−1) (s− t)

}
,

(5.5.1)

where C(s, x) denotes the Black-Scholes value at time s ∈ [t, T ) of the call option matu-

ring at time T knowing that the underlying asset price X(s) = x. Observe that Pαt,p(s)

can be expressed as a function of Xt,x(s) i.e. Pt,p(s) = p(t, s,Xt,x(s)). Hence we ana-

lyse the performance of our algorithm by observing its ability to approximate the one

dimensional real valued function us such that

us(x) = v(s, x, p(t, s, x)) . (5.5.2)

In our simulations, we consider the following parameters.

T − t x K p σ̂ µ̂

20/250 50 52.5 -0.1 0.28 0.1

Table 5.2 � Parameters for simulation and explicit solution. Time is given in trading years

(250 days), x and strike K in Euro, and p in Euro2, σ and µ in annual percentage.

We have performed our algorithm with M = 105 particles to estimate at each step of

time the conditional expectations and a time discretization mesh τ0 = 0, · · · τk, · · · τn = T

with a time step δ = τk+1 − τk = 1/250. In our tests, it appeared that the �xed point

algorithm implemented at each step of time has always converged in no more than three

iterations, for any precision ε > 0. We have represented on Figure 5.4 the value of us(x)

with respect to x computed by the explicit formula and the numerical algorithm. We

also provide the value of the control ν at the initial date to illustrate the convergence of

derivatives too.
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(a) Value function x 7→ us(x) with p = −0, 1 Euros and t = k.

(b) Optimal strategy x 7→ ν(t, x, p) for p = −0, 1 Euros and t = k.

Figure 5.4 � Comparison between our numerical approach and the solution provided by the

explicit formula of (5.2.1).
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5.5.3 Comparison for a call option with simulations

We consider the loss approach (hereafter denoted shortfall risk, or SR) and the benchmark

strategy (hereafter Black-Scholes, or BS) upon a call option. The aim of this section is to

compare in simulations the performances of the Naive hedging provided by Black-Scholes

delta-hedging assuming that P̃[Λ = λ̄] = 1 against the performances of the shortfall risk

taking into account the uncertainty on Λ and allowing for a limited expected loss p in

the hedging strategy. For each approach, we implement the associated hedging strategy

on i.i.d. Mhedge = 10000 simulated price paths. For each path we compute both hedging

errors. Then we compute by Monte Carlo approximation (on these i.i.d. Mhedge = 10000

simulations) the expected loss associated to the Black-Scholes approach and the shortfall

risk hedge. Of course, in our experiments, the trading strategies are not implemented

continuously but at each trading day. As a consequence, the resulting hedging errors

may di�er from the theoretical time continuous setting.

� For the option, we compare several strike possibilities : K = ρλ̄xQ with

ρ ∈ {0.85; 0.9; 0.95; 1; 1.05, 1.1; 1.15; 1.2} .

� The loss function is the partial moment loss function of Section 5.4.1 with n = 2, i.e.,

Ψ̃(x, y, λ) = −1

2
[((λx−K)+ − y)+]2

and the threshold p varies enough to evaluate its impact.

� The variable Λ is given by a law β(a, b) with the parameters (a, b) of Section 5.5.1.

� The Black-Scholes strategy is here given with the a priori known expectation, i.e.,

λ̄ =
∫

Ωλ Λ(ωλ)dPλ(ωλ).

� We use the same time grid as real data : strategies are daily frequent. We simulate the

strategy on 10000 trajectories.

We take the square root of the obtained error in order to express it in euros. This justi�es

the terminology shortfall, which is a monetary homogeneous quantity. Figure 5.5 sums

up the simulations and compares, for the di�erent values of K, the value function in

function of p. Figure 5.6 provides a comparison between the two approaches for another

criterion : the conditional Value-at-Risk, or expected shortfall.
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(a) K = 0, 85X(t0) (b) K = 0, 90X(t0)

(c) K = 0, 95X(t0) (d) K = X(t0)

(e) K = 1, 05X(t0) (f) K = 1, 10X(t0)

(g) K = 1, 15X(t0) (h) K = 1, 15X(t0)

Figure 5.5 � Initial capital w.r.t. the associated Shortfall Risk of the Black-Scholes strategy

(blue) and the Shortfall strategy (red) computed on Mhedge = 10000 simulated trajectories with

95 % con�dence interval (in dotted lines). Six strikes K.
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(a) K = 0, 85X(t0) (b) K = 0, 90X(t0)

(c) K = 0, 95X(t0) (d) K = X(t0)

(e) K = 1, 05X(t0) (f) K = 1, 10X(t0)

(g) K = 1, 15X(t0) (h) K = 1, 15X(t0)

Figure 5.6 � CVaR value w.r.t. the quantile level of the the Black-Scholes strategy (blue) and

the Shortfall strategy (red) computed on Mhedge = 10000 trajectories. Six strikes K
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5.6 Proofs

5.6.1 Proof of Corollary 5.2.1

Proof We introduce the Legendre-Fenchel transform of v∗ in p :

u(t, x, q) := sup
p∈R−

{pq − v∗(t, x, p)} ∀(t, x, p) ∈ [0, T ]× Rd+ × R+ (5.6.1)

The function q 7→ u(., q) is convex and upper-semicontinuous on [0, T ]× (0,∞)d× (0,∞).

Let ϕ be a smooth function with bounded derivatives, such that (t0, x0, q0) is a local

maximizer of u− ϕ with (u− ϕ)(t0, x0, q0) = 0. The function q 7→ ϕ(., q) is convex, but

as in the proof of section 4 in [Bouchard 09], a standard penalization of ϕ shows that we

can take without loss of generality ϕ strictly convex with quadratic growth.

The Legendre-Fenchel transform of ϕ with respect to q,

ϕ̃(t, x, p) := sup
q∈R+

{qp− ϕ(t, x, q)}

is then a strictly convex function of p and smooth on its domain. According to (5.6.1)

and the quadratic growth of ϕ, there exists p0 ∈ R− such that for the �xed q0,

p0q0 − v∗(t0, x0, p0) = u(t0, x0, q0) = ϕ(t0, x0, q0) = sup
p∈R−

{pq0 − ϕ̃(t0, x0, p)}

which, by taking the left and right sides of the above equation, implies that (t0, x0, p0)

is a local minimizer of v∗ − ϕ̃ and (v∗ − ϕ̃)(t0, x0, p0) = 0. It comes from the above

de�nition that p0 = J(t0, x0, q0) where q 7→ J(., q) is the inverse of q 7→ ∂ϕ̃
∂p (., q),

which exists by strict monotony of the last function. Since the volatility σ is invertible,

N̄0(x0, p0,
∂ϕ̃
∂x (t0, x0, p0), ∂ϕ̃∂p (t0, x0, p0)) 6= ∅ and is composed of elements of the form([

(σT )−1(σT
∂ϕ̃

∂x
+ ap

∂ϕ̃

∂p
)

]
(t0, x0, p0), a

)
, a ∈ R .

According to Theorem 5.2.2, ϕ̃ is thus a supersolution in (t0, x0, p0) to the dynamic

programming equation :

− ∂ϕ̃

∂t
− 1

2
Tr
[
σσT

∂2ϕ̃

∂x2

]
− inf
a∈R

{
−ap0(θ(x0)

∂ϕ̃

∂p
− σ(x0)

∂2ϕ̃

∂p∂x
) +

1

2
(ap0)2∂

2ϕ̃

∂p2

}
≥ 0

(5.6.2)

where we recall that θ(x0) = σ−1µ(x0). Note that in the special case p0 = 0, we re-

trieve the Black-Scholes equation. This is also a consequence of Theorem 5.2.4. Since
∂2ϕ̃
∂p2 (t0, x0, p0) > 0, the in�mum in the above equation is reached for

a = −

(
σ ∂2ϕ̃
∂p∂x − θ

∂ϕ̃
∂p

)
p0

∂2ϕ̃
∂p2

(t0, x0, p0) , (5.6.3)
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providing at point (t0, x0, p0)

−∂ϕ̃
∂t
− 1

2
Tr
[
σσT

∂2ϕ̃

∂x2

]
+

(
θ ∂ϕ̃∂p − σ

∂2ϕ̃
∂p∂x

)2
2∂

2ϕ̃
∂p2

≥ 0 .

Now observe that, according to (5.6.1),
∂ϕ̃

∂p
= q,

∂ϕ̃

∂t
= −∂ϕ

∂t
,
∂ϕ̃

∂x
= −∂ϕ

∂x
,
∂2ϕ̃

∂x2
= −∂

2ϕ

∂x2
+

( ∂
2ϕ

∂x∂q )T ∂2ϕ
∂x∂q

∂2ϕ
∂q2

,
∂2ϕ̃

∂p2
=
∂q2

∂2ϕ
and

∂2ϕ̃

∂p∂x
= −

∂2ϕ
∂x∂q

∂2ϕ
∂q2

, so that ϕ now veri�es at (t0, x0, q0) :

− ∂ϕ

∂t
− σθ ∂

2ϕ

∂x∂q
− 1

2
(Tr
[
σσT

∂2ϕ

∂x2

]
+ |θ|2q2∂

2ϕ

∂q2
) ≤ 0 . (5.6.4)

This implies that u is a viscosity subsolution of (5.6.4) on [0, T )× (0,∞)d × (0,∞). The

terminal condition is given by the de�nition of u and Theorem 5.2.3 :

u(T, x, q) = sup
p∈R−

{pq − v∗(T, x, p)} = sup
p∈R−

{
pq −�Ψ−1(x, p)

}
=: U(x, q)

Let ū be the function de�ned by

ū(t, x, q) = EQt,x [U(Xt,x(T ), Qt,x,q(T ))]

for {
Xt,x(s) = x+

∫ s
t σ(Xt,x(u))dW

Qt,x
u

Qt,x,q(s) = q +
∫ s
t Qt,x,q(u)θ(Xt,x(u)) · dWQt,x

u

, s ∈ [t, T ]

where Qt,x is a P-equivalent measure such that dP/dQt,x = Qt,x,1. According to the

Feynman-Kac formula, ū is a supersolution to equation (5.6.4). Let use de�ne

J(x, q) = arg sup
p∈R−

{
pq −�Ψ−1(x, p)

}
.

Notice that since Ψ is non-decreasing in y but bounded by above, and that q > 0,

p 7→ pq − �Ψ−1(x, p) is coercive and J(x, q) is well-de�ned. One can also see that the

image of J(x, (0,∞)) is (−∞, 0) for any x ∈ (0,∞)d. Notice also that since �Ψ−1(x, p) is

di�erentiable in p on int(E), J corresponds to the inverse of ∂�Ψ−1

∂p in (x, q). According

to what was just said, we can then introduce the function q̄(t, x, p) for which

EQt,x [J(Xt,x(T ), Qt,x,q̄(t,x,p)(T ))Qt,x,1(T )
]

= p .
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Therefore, we have

v(t, x, p) ≥ v∗(t, x, p)
≥ supq>0 {qp− ū(t, x, q)}
≥ pq̄(t, x, p)− EQt,x

[
U(Xt,x(T ), Qt,x,q̄(t,x,p)(T ))

]
≥ q̄(t, x, p)(p− EQt,x

[
J(Xt,x(T ), Qt,x,q̄(t,x,p))Qt,x,1

]
)

+EQt,x
[
�Ψ−1(Xt,x(T ), J(Xt,x(T ), Qt,x,q̄(t,x,p)))

]
≥ EQt,x

[
�Ψ−1(Xt,x(T ), J(Xt,x(T ), Qt,x,q̄(t,x,p)))

]
=: y(t, x, p) .

By the martingale representation theorem, there exists ν ∈ Ut such that

Y ν
t,x,y(t,x,p)(T ) = �Ψ−1(Xt,x(T ), J(Xt,x(T ), Qt,x,q̄(t,x,p)(T )))

which implies that

E
[
Ψ(Xt,x(T ), Y ν

t,x,y(T ))
]
≥ E

[
J(Xt,x(T ), Qt,x,q̄(t,x,p)))

]
= EQt,x [J(Xt,x(T ), Qt,x,q̄(t,x,p))Qt,x,1

]
= p

and therefore, y(t, x, p) ≥ v(t, x, p). 2

5.6.2 Proof of Proposition 5.3.1

W start with an application of the fundamental measurable selection theorem, see Example

2.4 in [Rieder 78] and Theorem 1.2.9 in Chapter 1.

Theorem 5.6.1. Fix (z, λ) ∈ Z×L. Fix ε > 0. Then there exists a measurable function

z 7→ νλ(z) on Z such that νλ(z) ∈ Ut0,z and

E
[
Ψ̃(Z

νλ(z)
t0,z

(T ), λ)
]
≥ sup

ν̃∈Ut0,z
E
[
Ψ̃(Z ν̃t0,z(T ), λ)

]
− ε ∀z ∈ Z .

Proof The set L2([0, T ]× Ω1) being a separable metric space, the class

L :=

{
C ∈ B(Z)⊗ B(U) :

(a) C(x) is complete for x ∈ pC and

(b) p(C ∩ Z×K) ∈ B(Z) for all compactum K ∈ U

}

is a selection class for (B(Z),B(U)), where pC := {ν ∈ U : (z, ν) ∈ C} and C(z) :=

{ν ∈ U : (z, ν) ∈ C} for all set C ⊂ Z × U . We thus prove below assumptions (i) and

(ii) f Corollary 3.2 in [Rieder 78] to obtain the desired result.

(i). De�ne D := {(z, ν) : z ∈ Z, ν ∈ Ut0,z}. De�ne Ut0 the subset of U composed of Ft0-
progressively measurable processes. Note that U being closed, Ut0 is closed in L2([t0, T ]×
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Ω1). According to dynamics 5.2.7, the map ν 7→ Zνt0,z(s) is continuous for any t ≤ s ≤ T
and any z ∈ Z. For a �xed s ∈ [t, T ], the setK(z, s) :=

{
ν ∈ Ut0 : Zνt0,z(s) ≥ −κ

}
is then

closed in U . The countable intersection
⋂
s∈[t0,T ]∩QK(z, s) is also closed. By continuity

of Zνt,z(.), Ut0,z =
⋂
s∈[t0,T ]∩QK(z, s) so that Ut0,z is a closed subset of L2([t0, T ]×Ω1) for

all z ∈ Z. By the Riesz-Fischer theorem, it is complete as a closed subspace of a complete

space, and (a) holds for D. Since Z does not depend on Ut0,z for any z ∈ Z, (b) holds for

D. Thus, D ∈ L.
(ii). For c ∈ R, de�ne Uc :=

{
(z, ν) ∈ D : E

[
Ψ̃(Zνt,z(T ), λ)

]
≥ c
}
. Fix z ∈ pUc.

Then Uc(z) :=
{
ν ∈ Ut0,z : E

[
Ψ̃(Zνt,z(T ), λ)

]
≥ c
}
is closed according to Assumption

5.3.1.(ii). As for D, Uc(z) is complete and (a) holds for Uc. For any compact K ∈ Ut0 , the
set
{
z ∈ Z : E

[
Ψ̃(Zνt,z(T ), λ

]
≥ c for some ν ∈ Ut0,z ∩K

}
is a Borel set, and (b) holds

for Uc. This comes from the fact that z 7→ Ψ̃(Zνt,z(T ), λ) is upper-semicontinuous for any

(ν, λ) ∈ Ut0 × L, recall Assumption 5.2.1.(i) and (ii). We thus have that Uc ∈ L for any

c ∈ R. 2

We now come to the proof of Proposition 5.3.1.

Proof Along the proof, for (t, x, p) ∈ [0, t0)× (0,∞)d × R−, we denote

A(t, x, p) :=
{
y ≥ −κ : ∃ν̃ ∈ Ũt,z s.t. E

[
Ψ̃(Z ν̃t,x,y(T ),Λ)

]
≥ p
}

and

B(t, x, p) :=
{
y ≥ −κ : ∃ν ∈ Ut,z s.t. E

[
Ξ(Zνt,x,y(t0))

]
≥ p
}

with

Ξ(z) :=

∫
Ωλ

sup
ν∈Ut0,z

E
[
Ψ̃(Zνt0,z(T ),Λ(ωλ))|Ft0

]
dPλ(ωλ) .

Fix (t, x, p) ∈ [0, t0) × (0,∞)d × R−. We denote Ω0 := {(ωs∧t0)0≤s≤T : ω ∈ Ω} and

Ω1 := {(ωs − ωs∧t0)0≤s≤T : ω ∈ Ω} the respective spaces of trajectories on [t, t0] and

the trajectories on [t0, T ] shifted to 0 at t0. According to the properties of the Brownian

paths, one can rewrite a natural bijection between ω̃ ∈ Ω̃ and (ω0, ωλ, ω1) ∈ Ω0×Ωλ×Ω1.

If we consider the space (Ω̃, F̃ tT ,P), we then naturally change it for the space (Ω0×Ωλ×
Ω1,F tt0 ⊗ G ⊗F

t0
T ,P

0 × Pλ × P1), where P0,Pλ and P1 denote the marginal laws on each

probability subspace.

1. Take now y ∈ A(t, x, p). Then there exists ν̃ ∈ Ũt,z such that E
[
Ψ̃(Z ν̃t,z(T ),Λ)

]
≥ p.

Notice that (Z ν̃t,z, ν̃) is F̃t-progressively measurable and Ψ̃(Z ν̃t,x,y(T ),Λ) is F̃ tT -measurable.

This means that (Z ν̃t,z, ν̃)(ω0, ωλ, ω1)(s) = (Z ν̃t,z, ν̃)(ω0)(s) for any s ∈ [t, t0). The notation

hods at time t0 for Z by continuity. According to the above change of notations, and by
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the �ow property (see [Soner 02a] for details) we can write

E
[
Ψ̃(Z ν̃t,x,y(T ),Λ)

]
=

∫∫∫
Ω0×Ωλ×Ω1

Ψ̃(Z
ν̃(ω0,ωλ,ω1)
t,x,y (ω1)(T ),Λ(ωλ))dP0(ω0)dPλ(ωλ)dP1(ω1)

=

∫∫∫
Ω0×Ωλ×Ω1

Ψ̃(Z
ν̃(ω0,ωλ,ω1)

t0,Z
ν̃(ω0)
t,x,y (ω0)(t0)

(ω1)(T ),Λ(ωλ))dP0(ω0)dPλ(ωλ)dP1(ω1) .

Note that we omit the dependence of Z in ωλ for s ∈ [t0, T ], which holds only via ν̃. For

any �xed (ω0, ωλ) ∈ Ω0×Ωλ, the control ν̃(ω0, ωλ, .)(.) is a Ft0-progressively measurable

process in L2([t0, T ] × Ω1). Thus, ν̃(ω0, ωλ, .) belongs to Ut0,Z ν̃t,z(ω0)(t0) for a.e. ω
0, since

Z
ν(ω0,ωλ,.)
t,z (s) ≥ −κ for a.e. ωλ ∈ Ωλ and s ∈ [t0, T ]. This implies that for a �xed ω0,∫

Ω1

Ψ̃(Z
ν̃(ω0,ωλ,ω1)

t0,Z
ν̃(ω0)
t,x,y (ω0)(t0)

(ω1)(T ),Λ(ωλ))dP1(ω1)

≤ sup
ν∈U

t0,Z
ν̃
t,z(ω0)(t0)

∫
Ω1

Ψ̃(Z
ν(ω1)

t0,Z
ν̃(ω0)
t,x,y (ω0)(t0)

(ω1)(T ),Λ(ωλ))dP1(ω1)

and by integrating on Ωλ,∫
Ωλ

∫
Ω1

Ψ̃(Z
ν̃(ω0,ωλ,ω1)

t0,Z
ν̃(ω0)
t,x,y (ω0)(t0)

(ω1)(T ),Λ(ωλ))dP1(ω1)dPλ(ωλ)

≤
∫

Ωλ
sup

ν∈U
t0,Z

ν̃
t,z(ω0)(t0)

∫
Ω1

Ψ̃(Z
ν(ω1)

t0,Z
ν̃(ω0)
t,x,y (ω0)(t0)

(ω1)(T ),Λ(ωλ))dP1(ω1)dPλ(ωλ)

= Ξ(Z
ν̃(ω0)
t,x,y (ω0)(t0)) .

Recalling that E
[
Ψ̃(Z ν̃t,z(T ),Λ)

]
≥ p, we integrate on Ω0 the above result and rewrite

it as E
[
Ξ(Z ν̃t,x,y(t0))

]
≥ p with ν̃ ∈ Ũt. The control ν̃ has a Ft-progressively measurable

version in Ut, such that Z ν̃t,x,y(t0) = Zνt,x,y(t0) P0-a.s. Thus y ∈ B(t, x, p), meaning that

w(t, x, p) ≤ ṽ(t, x, p).

2.(a). Take now y ∈ B(t, x, p). There exists (ν, α) ∈ Ut,z ×At,p such that

Ξ(Zνt,z(t0)) ≥ Pαt,p(t0) P0 − a.s.

Fix λ ∈ L. According to Theorem 5.6.1 above, there exists a Ft0-measurable selector νλ

of Z, such that νλ(z) ∈ Ut0,z and νλ ∈ L2([t0, T ]× Ω1), such that

E
[
Ψ̃(Zν

λ

t0,Zνt,z(t0)(T ), λ)|Ft0
]
≥ sup

ν̂∈Ut0,Zνt,z(t0)

E
[
Ψ̃(Z ν̂t0,Zνt,z(t0)(T ), λ)|Ft0

]
− ε .

We then proceed as in the proof of Theorem 2.4 in [Bouchard 11c]. By continuity of Ψ̃ in

λ, and following Lemma 2.1 in [Bouchard 11c], there exists an open ball B(λ) of centre
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λ and radius η > 0 (which size depends on λ and ε) in L such that

sup
ν̂∈Ut0,Zνt,z(t0)

E
[
Ψ̃(Z ν̂t0,Zνt,z(t0)(T ), λ′)|Ft0

]
≤ sup

ν̂∈Ut0,Zνt,z(t0)

E
[
Ψ̃(Z ν̂t0,Zνt,z(t0)(T ), λ)|Ft0

]
+ ε

and

E
[
Ψ̃(Zν

λ

t0,Zνt,z(t0)(T ), λ′)|Ft0
]
≥ E

[
Ψ̃(Zν

λ

t0,Zνt,z(t0)(T ), λ)|Ft0
]
− ε

for all λ′ ∈ B(λ). The set {B(λ) : λ ∈ L} forms an open cover of L. Since L is metric

separable, it has the Lindelöf property, and there exists a countable sequence (λi)i≥1 ⊂ L
such that {B(λi)}i≥1 forms a cover of L. We set νi := νλi , Bi := B(λi) and a measurable

partition (Ci)i≥1 of
⋃
i≥1Bi de�ned by

C1 := B1 and Ci+1 := Bi+1\ ∪1≤j≤i Bi, i ≥ 1 .

Since Ci ⊂ B(λi), we have for all λ′ ∈ Ci :

E
[
Ψ̃(Zν

i

t0,Zνt,z(t0)(T ), λ′)|Ft0
]
≥ sup

ν̂∈Ut0,Zνt,z(t0)

E
[
Ψ̃(Z ν̂t0,Zνt,z(t0)(T ), λ′)|Ft0

]
− 3ε .

Now let Γi := {Λ ∈ Ci} ⊂ Ωλ be a F̃t0-measurable set for any i ≥ 1, and Γ(k) :=⋃
1≤i≤k Γi for any k ∈ N. Since Ci∩Ck = ∅ for all i 6= j, Γi∩Γj = ∅ for all i 6= j. We then

consider for all k ∈ N the control ν(k) =
∑k

i=1 νi1Γi . Note that ν(k) is in L2([t0, T ]×Ω1)

and thus ν(k) ∈ Ũt0,Zνt,z(t0) for every �xed k. We then have

E
[
Ψ̃(Z

ν(k)
t0,Zνt,x,y(t0)(T ),Λ)|Ft0

]
1Γ(k) ≥ sup

ν̂∈Ut0,Zνt,z(t0)

E
[
Ψ̃(Z ν̂t0,Zνt,z(t0)(T ),Λ)|Ft0

]
1Γ(k) − 3ε .

According to Assumption 5.3.1.(i) and (iii), usual estimates provide (for any λ ∈ L)

E
[
Ψ̃(Z

ν(k)
t0,Zνt,z(t0)(T ), λ)|Ft0

]
≥ E

[
Ψ̃(Xt,x,−κ, λ)|Ft0

]
≥ −C(1 + (|x|+ κ)k)

for some C > 0. Then, limk Γ(k) = Ωλ implies that there exists k large enough such that

−ε ≤
∫

Ωλ
E
[
Ψ̃(Z

ν(k)
t0,Zνt,z(t0)(T ),Λ(ωλ)|Ft0

]
1Ωλ\Γ(k)(ω

λ)dPλ(ωλ) ≤ 0 P0-a.s.

This implies that for the same k,

E
[
Ψ̃(Z

ν(k)
t0,Zνt,x,y(t0)(T ),Λ)|Ft0

]
≥ E

[
Ψ̃(Z

ν(k)
t0,Zνt,x,y(t0)(T ),Λ)1Γ(k)|Ft0

]
− ε P0-a.s.

≥ Ξ(Zνt,x,y(t0))− 4ε P0-a.s.

≥ Pαt,p(t0)− 4ε P0-a.s.
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We clearly can �nd α′ ∈ At such that Pαt,p(t0) − 4ε ≥ Pα
′

t,p−4ε(t0), P0-a.s. The control

ν̃ := ν1[t,t0)+ν(k)1[t0,T ] is in Ũt by the concatenation property and thus Z
ν(k)
t0,Zνt,x,y(t0)(T ) =

Z ν̃t,x,y(T ) by the �ow property. Taking the expectation of the above inequality provides

E
[
Ψ̃(Z ν̃t,x,y(T ),Λ)

]
≥ E

[
Pα
′

t,p−4ε(t0)
]

= p− 4ε P− a.s.

Thus y ∈ A(t, x, p− 4ε), meaning that w(t, x, p) ≥ ṽ(t, x, p− 4ε) (with arbitrary ε > 0).

2.(b). We follow the proof of 2.(a). except that we directly have the countable sequence

(λi)i≥1 without the covering argument. 2
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Conclusion of Part 2

By their fundamental characteristics, deregulated electricity markets forbid the classic

Black-Scholes approach or any variation based on a complete market setting in order to

price and hedge price risk.

In Chapter 4, we have seen that futures contract are not bonded only to the Spot price

of electricity together with arbitrage arguments. It is essential to consider a complex and

structural link between electricity prices and associated raw material prices. The struc-

tural model that we propose allows for semi-explicit formulation of forward prices and,

by a fair approximation, of futures contract prices. In counterpart, it involves estimation

and calibration of the electricity supply curve with data that are not purely �nancial.

Followed by [Aid 10] and [Carmona 11], this class of model appears to be promising for

derivative pricing purposes.

In Chapter 5, we consider futures as �nancial assets, but we avoid to reconstruct the

term structure with arbitrage arguments, as in [Fleten 03] and [Hinz 05]. We face here

the structural impossibility to reconstruct missing contracts which are used as the un-

derlying for derivative claims. This incomplete market setting is tackled via a stochas-

tic control approach. We propose a numerical application of the stochastic target with

controlled loss approach, using complete market methods to obtain semi-explicit expec-

tation formulations. The approach proved its e�ciency on simulated and real data. It

appears that our framework can be used for other �nancial problems. We also introduced

a high performance method for the resolution of the non-linear PDE associated to the

control problem. This heuristic method shall be deeply studied in a forthcoming future.

Giving a loss function and a threshold, the stochastic target approach is, not surprisingly,

an e�cient strategy in the described situation. Fixing p as the expected loss produced

with the Black-Scholes strategy, we reduce the initial wealth needed to satisfy this crite-

rion. From an equivalent point of view, it signi�cantly reduces the given criterion if we

start with the same wealth as in the naive Black-Scholes case. The resulting price of risk

is also robust in the sense that, if we compare the two strategy in regard of a second risk

measure (the conditional Value-at-Risk), we also have better performance.
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Résumé :
Cette thèse traite de la valorisation de produits dérivés du prix de l'électricité. Dans la première 
partie, nous nous intéressons à la valorisation par absence d'opportunité d'arbitrage de portefeuilles 
incluant la possibilité de transformation d'actifs par le biais d'un système de production, sur des 
marchés en temps discret avec coûts de transaction proportionnels. Nous proposons une condition 
qui  nous  permet  de  démontrer  la  propriété  fondamentale  de  fermeture  pour  l'ensemble  des 
portefeuilles  atteignables,  et  donc l'existence  d'un  portefeuille  optimal  ou  un  théorème de  sur-
réplication. Nous continuons l'approche avec fonction de production en temps discret sur un marché 
en temps continu avec ou sans frictions. Dans le seconde partie, nous présentons une classe de 
modèles faisant apparaître un lien structurel entre le coût de production d'électricité et les matières 
premières  nécessaires  à  sa  production.  Nous  obtenons  une  formule  explicite  pour  le  prix  de 
l'électricité  spot,  puis  la  mesure  martingale   minimale  fournit  un prix pour  les  contrats  futures 
minimisant  le  risque  quadratique  de  couverture.  Nous  spécifions  le  modèle  pour  obtenir  des 
formules analytiques et des méthodes de calibration et d'estimation statistique des paramètres dans 
le  cas  où  le  prix  spot  dépend  de  deux  combustibles.  Dans  un  second  temps,  nous  suivons  la  
méthodologie initiée par Bouchard et  al.  (2009) pour l'évaluation de la prime de risque liée à un 
produit dérivé sur futures non disponible. Utilisant des résultats de dualité, nous étendons l'étude au 
cas d'un marché semi-complet, en proposant une réduction du problème et une méthode numérique 
pour traiter l'EDP non linéaire.

Abstract:
This Ph.D. dissertation deals with the pricing of derivatives on electricity price. The first part is a  
theoretical  extension  of  Arbitrage Pricing  Theory:  we assess  the problem of  pricing contingent 
claims when the financial  agent has the possibility to transform assets  by means of production 
possibilities. We propose a specific concept of arbitrage for such portfolios in discrete time for 
markets with proportional transaction costs. This allows to show the closedness property, portfolio 
optimization problem or a super-hedging theorem. We then study such portfolios with financial 
possibilities in continuous time, with or without frictions. We apply these results to the pricing of 
futures contract on electricity. In the second part we introduce a class of models allowing to link the 
electricity  spot  price  with  its  production  cost  by  a  structural  relationship.  We  specify  a  two 
combustibles model with possible breakdown. It provides explicit formulae allowing to fit several 
pattern of electricity spot prices. Using the minimal martingale measure, we explicit an arbitrage 
price for futures contracts minimizing a quadratic risk criterion. We then specify the model to obtain 
explicit  formulae,  calibration methods and statistical  estimation of parameters.  We address in a 
second time the question of the risk premium associated to the holding of a European option upon a 
non-yet available futures contract. We essentially apply the ideas of Bouchard and al. (2009) to the 
semi-complete market framework and propose numerical procedures to obtain the risk premium 
associated to a given loss function.
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