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Abstract

A quarter of century after Barendregt’s main book, a wealth of interesting problems
about models and theories of the untyped λ-calculus are still open. In this thesis
we will be mainly interested in the main semantics of λ-calculus (i.e., the Scott-
continuous, the stable, and the strongly stable semantics) but we will also define and
study two new kinds of semantics: the relational and the indecomposable semantics.

Models of the untyped λ-calculus may be defined either as reflexive objects in
Cartesian closed categories (categorical models) or as combinatory algebras satisfying
the five axioms of Curry and the Meyer-Scott axiom (λ-models).

Concerning categorical models we will see that each of them can be presented
as a λ-model, even when the underlying category does not have enough points, and
we will provide sufficient conditions for categorical models living in arbitrary cpo-
enriched Cartesian closed categories to have H∗ as equational theory. We will build
a categorical model living in a non-concrete Cartesian closed category of sets and
relations (relational semantics) which satisfies these conditions, and we will prove
that the associated λ-model enjoys some algebraic properties which make it suitable
for modelling non-deterministic extensions of λ-calculus.

Concerning combinatory algebras, we will prove that they satisfy a generalization
of Stone representation theorem stating that every combinatory algebra is isomor-
phic to a weak Boolean product of directly indecomposable combinatory algebras.
We will investigate the semantics of λ-calculus whose models are directly indecom-
posable as combinatory algebras (the indecomposable semantics) and we will show
that this semantics is large enough to include all the main semantics and all the
term models of semi-sensible λ-theories, and that it is however largely incomplete.

Finally, we will investigate the problem of whether there exists a non-syntactical
model of λ-calculus belonging to the main semantics which has an r.e. (recursively
enumerable) order or equational theory. This is a natural generalization of Honsell-
Ronchi Della Rocca’s longstanding open problem about the existence of a Scott-
continuous model of λβ or λβη. Then, we introduce an appropriate notion of effective
model of λ-calculus, which covers in particular all the models individually introduced
in the literature, and we prove that no order theory of an effective model can be r.e.;
from this it follows that its equational theory cannot be λβ or λβη. Then, we show
that no effective model living in the stable or strongly stable semantics has an r.e.
equational theory. Concerning Scott-continuous semantics, we prove that no order
theory of a graph model can be r.e. and that many effective graph models do not
have an r.e. equational theory.





Résumé

Dans cette thèse on s’intéresse surtout aux sémantiques principales du λ-calcul
(c’est-à-dire la sémantique continue de Scott, la sémantique stable, et la sémantique
fortement stable) mais on introduit et étudie aussi deux nouvelles sémantiques: la
sémantique relationnelle et la sémantique indécomposable.

Les modèles du λ-calcul pur peuvent être définis soit comme des objets réflexifs
dans des catégories Cartésiennes fermées (modèles catégoriques) soit comme des
algèbres combinatoires satisfaisant les cinq axiomes de Curry et l’axiome de Meyer-
Scott (λ-modèles).

En ce qui concerne les modèles catégoriques, on montre que tout modèle catégo-
rique peut être présenté comme un λ-modèle, même si la ccc (catégorie Cartésienne
fermée) sous-jacente n’a pas assez de points, et on donne des conditions suffisantes
pour qu’un modèle catégorique vivant dans une ccc “cpo-enriched” arbitraire ait H∗

pour théorie équationnelle. On construit un modèle catégorique qui vit dans une
ccc d’ensembles et relations (sémantique relationnelle) et qui satisfait ces conditions.
De plus, on montre que le λ-modèle associé possède des propriétés algébriques qui
le rendent apte à modéliser des extensions non-déterministes du λ-calcul.

En ce qui concerne les algèbres combinatoires, on montre qu’elles satisfont une
généralisation du Théorème de Représentation de Stone qui dit que toute algèbre
combinatoire est isomorphe à un produit Booléen faible d’algèbres combinatoires
directement indécomposables. On étudie la sémantique du λ-calcul dont les modèles
sont directement indécomposable comme algèbres combinatoires (sémantique indé-
composable); on prouve en particulier que cette sémantique est assez générale pour
inclure d’une part les trois sémantiques principales et d’autre part les modèles de
termes de toutes les λ-théories semi-sensibles. Par contre, on montre aussi qu’elle
est largement incomplète.

Finalement, on étudie la question de l’existence d’un modèle non-syntaxique
du λ-calcul appartenant aux sémantiques principales et ayant une théorie équa-
tionnelle ou inéquationnelle r.e. (récursivement énumérable). Cette question est
une généralisation naturelle du problème de Honsell et Ronchi Della Rocca (ouvert
depuis plus que vingt ans) concernant l’existence d’un modèle continu de λβ ou λβη.
On introduit une notion adéquate de modèles effectifs du λ-calcul, qui couvre en
particulier tous les modèles qui ont été introduits individuellement en littérature,
et on prouve que la théorie inéquationnelle d’un modèle effectif n’est jamais r.e.; en



conséquence sa théorie équationnelle ne peut pas être λβ ou λβη. On montre aussi
que la théorie équationnelle d’un modèle effectif vivant dans la sémantique stable
ou fortement stable n’est jamais r.e. En ce qui concerne la sémantique continue
de Scott, on démontre que la théorie inéquationnelle d’un modèle de graphe n’est
jamais r.e. et qu’il existe beaucoup de modèles de graphes effectifs qui ont une théorie
équationnelle qui n’est pas r.e.



Sommario

In questa tesi ci interessiamo soprattutto alle semantiche principali del λ-calcolo
(ovvero la semantica continua di Scott, la semantica stabile, e la semantica forte-
mente stabile) ma introduciamo e studiamo anche due nuove semantiche: la seman-
tica relazionale e la semantica indecomponibile.

I modelli del λ-calcolo puro possono essere definiti o come oggetti riflessivi in
categorie Cartesiane chiuse (modelli categorici) oppure come algebre combinatorie
che soddisfano i cinque assiomi di Curry e l’assioma di Meyer-Scott (λ-modelli).

Per quanto concerne i modelli categorici, mostriamo che tutti i modelli categorici
possono essere presentati come un λ-modello, anche se la ccc (categoria Cartesiana
chiusa) soggiacente non ha abbastanza punti, e forniamo delle condizioni sufficienti
a garantire che un modello categorico che vive in una categoria “cpo-enriched” ar-
bitraria abbia H∗ come teoria equazionale. Costruiamo un modello categorico che
vive in una ccc di insiemi e relazioni (semantica relazionale) e che soddisfa queste
condizioni. Inoltre, mostriamo che il λ-modello associato possiede delle proprietà
algebriche che lo rendono adatto a modellare delle estensioni non-deterministiche
del λ-calcolo.

Per quanto concerne le algebre combinatorie, mostriamo che soddisfano una gen-
eralizzazione del Teorema di Rappresentazione di Stone che dice che ogni algebra
combinatoria è isomorfa a un prodotto Booleano debole di algebre combinatorie
direttamente indecomponibili. Quindi, studiamo la semantica del λ-calcolo i cui
modelli sono direttamente indecomponibili come algebre combinatorie (semantica
indecomponibile) e dimostriamo che questa semantica è abbastanza generale da in-
cludere sia le tre semantiche principali sia i modelli dei termini di tutte le λ-teorie
semi-sensibili. Ciò nonostante, questa semantica risulta essere anche ampiamente
incompleta.

In seguito, investighiamo il problema dell’esistenza di un modello non sintat-
tico del λ-calcolo che appartenga alle semantiche principali e che abbia una teoria
equazionale o disequazionale r.e. (ricorsivamente enumerabile). Questo problema è
una generalizzazione naturale del problema di Honsell e Ronchi Della Rocca (aperto
da più di vent’anni) concernente l’esistenza di un modello continuo di λβ o λβη.
Introduciamo una nozione adeguata di modello effettivo del λ-calcolo, che copre in
particolare tutti i modelli che sono stati introdotti individualmente in letteratura,
e dimostriamo che la teoria disequazionale di un modello effettivo non è mai r.e.;



come conseguenza otteniamo che la sua teoria equazionale non può essere λβ o λβη.
Dimostriamo anche che la teoria equazionale di un modello effettivo che vive nella
semantica stabile o fortemente stabile non è mai r.e. Per quanto concerne la seman-
tica continua di Scott, dimostriamo che la teoria equazionale di un modello di grafo
non è mai r.e. e che esistono molti modelli di grafo effettivi che hanno una teoria
equazionale che non è r.e.
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Preface

The work presented in this thesis is partially based on some previously published
papers, thus much credit for the technical contents and the underlying ideas goes to
my co-authors.

In more detail, the construction described in the first part of Chapter 2 for tur-
ning any categorical model into a λ-model, as well as the definition of the relational
model of λ-calculus described in Chapter 3, are the fruits of joint research with An-
tonio Bucciarelli and Thomas Ehrhard. This material appeared in the Proceedings
of the 16th EACSL Annual Conference on Computer Science and Logic (CSL’07)
[27]. However, our presentation in Chapter 2 of the above mentioned construction is
slightly different; in particular, the proof of Lemma 2.2.5 given in [27] relied unnec-
essarily on Lemma 2.2.9 (for constraints of space), whilst here we give the correct
argumentation. The proof of the fact that the equational theory of every extensional
well stratifiable ⊥-model living in arbitrary cpo-enriched Cartesian closed categories
is H∗ (and that this is true for the relational model of Chapter 3) is new.

The contents of Chapter 4 were obtained as the result of joint research with my
supervisor Antonino Salibra and appeared in the proceedings of the 21st Annual
IEEE Symposium on Logic in Computer Science (LICS’06) [78]. At the end of the
chapter, a new result about the size of the incompleteness of the indecomposable
semantics (Theorem 4.4.16) is presented.

The contents of Chapter 5 and 6 were obtained as the result of joint research
with my supervisors Antonino Salibra and Chantal Berline. A preliminary version
of this work appeared in the Proceedings of the 16th EACSL Annual Conference on
Computer Science and Logic (CSL’07) [15]. In these two chapters there are more
proofs, explanations and examples. Chapter 6 contains also some deeper results
(Theorem 6.4.11 and its corollaries).

The following figure roughly indicates the interdependence of the chapters. Since
all chapters depend on Chapter 1, which contains the common preliminaries, it has
been splitted into subsections.

1.3 // 2 // 3

1.1 // 1.2

<<zzzzzzzz

""DD
DD

DD
DD

4

1.4 //

>>}}}}}}}}
// 5 // 6

It turns out that there are three “independent” paths corresponding to three main
topics:



vi Preface

1) In Chapter 2 and 3 we set the mathematical framework for dealing with
models living in non-concrete semantics and we build an example of a model living
in a Cartesian closed category of sets and relations which does not have enough
points;

2) In Chapter 4 we generalize the Stone representation theorem to combinatory
algebras and we investigate the semantics of λ-calculus given in terms of indecom-
posable λ-models;

3) In Chapter 5 we provide some mathematical tools for studying the class of
graph models, and in Chapter 6 we investigate, using techniques of recursion theory,
the question of whether a model belonging to the Scott-continuous semantics, or one
of its refinements, can have a recursively enumerable order or equational theory.

We have chosen to discuss these subjects in this order, because we prefer to move
- globally - from the completely abstract notion of categorical interpretation, which is
needed to work in non-concrete categories, towards the more concrete interpretation
function used in the main semantics.

However, the reader interested only in, say, results about models living in Scott-
continuous semantics or in one of its refinements, can perform a local reading skip-
ping Section 1.3 and using the ad hoc definitions of Section 1.4.
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The untyped λ-calculus was introduced around 1930 by Church [33, 34] as the kernel
of an investigation in the formal foundations of mathematics and logic. Although
λ-calculus is a very basic language (which is sufficient, however, to represent all the
computable functions), the analysis of its models and theories constitutes a very
complex subject of study.

In this discussion we (mainly) use techniques of category theory, universal algebra
and recursion theory to shed new light on the known semantics of λ-calculus and on
the λ-theories which can be represented in these semantics.

Models and theories of λ-calculus

λ-theories are, by definition, equational extensions of the untyped λ-calculus which
are closed under derivation; more precisely: a λ-theory is a congruence on λ-terms
which contains αβ-conversion (λβ); extensional λ-theories are those which contain
αβη-conversion (λβη). λ-theories arise by syntactical or semantic considerations. In-
deed, a λ-theory may correspond to a possible operational (observational) semantics
of λ-calculus, as well as it may be induced by a model of λ-calculus through the ker-
nel congruence relation of the interpretation function. Although researchers have,
till recently, mainly focused their interest on a limited number of them, the set of
λ-theories constitutes a very rich, interesting and complex mathematical structure
(see [8, 13, 14]), whose cardinality is 2ℵ0 .

Models of λ-calculus. In 1969, Scott found the first model of λ-calculus (D∞)
in the category of complete lattices and Scott continuous functions. The question of
what is a model of λ-calculus has been investigated by several researchers, but only
at the end of the seventies they were able to provide general definitions. Throughout
this thesis we will work mainly with two notions of model of λ-calculus: the former
is category-theoretic and the latter is algebraic. From the categorical point of view,
a model of λ-calculus is a reflexive object in a Cartesian closed category (categorical
model). From the algebraic point of view, it is a combinatory algebra satisfying the
five axioms of Curry, and the Meyer-Scott axiom (λ-model).

The main semantics. After Scott’s D∞, a large number of mathematical
models of λ-calculus, arising from syntax-free constructions, have been introduced
in various categories of domains and were classified into semantics according to the
nature of their representable functions, see e.g. [8, 13, 89]. The Scott-continuous
semantics [95] is given in the category whose objects are complete partial orders
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and morphisms are Scott continuous functions. The stable semantics (Berry [17])
and the strongly stable semantics (Bucciarelli-Ehrhard [25]) are refinements of the
Scott-continuous semantics, introduced to capture the notion of “sequential” Scott
continuous function. By “the main semantics” we will understand one of these and,
for brevity, we will respectively call the models living inside: continuous, stable and
strongly stable models. In each of these semantics all the models come equipped
with a partial order, and some of them, called webbed models, are built from lower
level structures called “webs”. The simplest class of webbed models is the class
of graph models, which was isolated in the seventies by Plotkin, Scott and Engeler
within the Scott-continuous semantics.

Non-concrete semantics of λ-calculus

In this thesis we will be mainly interested in models of λ-calculus living in the main
semantics. However, in Chapter 3 we will build and study a categorical model D

living in a Cartesian closed category of sets and relations. It turns out that D has
not enough points.

If we choose as definition of model of λ-calculus the notion of λ-model, we could
be reluctant to consider D as a real model, since the only known construction for
turning a categorical model into a λ-model asks for reflexive objects having enough
points (see, e.g., [8, Ch. 5]). In Chapter 2 we will see that this does not constitute
a problem: we will indeed give an alternative construction which works in greater
generality and allows us to present any categorical model as a λ-model. We will also
provide sufficient conditions for categorical models living in arbitrary cpo-enriched
Cartesian closed categories to have H∗ as equational theory, where H∗ is the maximal
consistent sensible λ-theory, and we will see that our model D fulfils these conditions.

The last part of Chapter 3 is devoted to prove that the λ-model associated with D

by our construction satisfies interesting algebraic properties, which make it suitable
for modelling non-deterministic extensions of λ-calculus.

The indecomposable semantics

In Chapter 4 we will show that the Stone representation theorem for Boolean al-
gebras admits a generalization to combinatory algebras: any combinatory algebra
is isomorphic to a weak Boolean product of directly indecomposable combinatory
algebras (i.e., algebras which cannot be decomposed as the Cartesian product of two
non-trivial algebras).

We will investigate the semantics of λ-calculus given in terms of models which
are directly indecomposable as combinatory algebras (and called the indecomposable
semantics, for short). We will prove that the indecomposable semantics encompasses
all the main semantics, as well as the term models of all semi-sensible λ-theories.
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However, the indecomposable semantics is incomplete, and this incompleteness is as
large as possible, indeed we will see that: (i) there exists a continuum of pairwise
incompatible λ-theories which are omitted by the indecomposable semantics; (ii)
for every recursively enumerable (r.e., for short) λ-theory T there are 2ℵ0 λ-theories
including T and forming an interval, which are omitted by the indecomposable
semantics. In particular, this gives a new and elegant uniform proof of the fact that
the Scott-continuous, the stable, and the strongly stable semantics are (largely)
incomplete.

Finally, we will show that each of the main semantics represents a set of λ-
theories which is not closed under finite intersection, so that it cannot constitute a
sublattice of the lattice of all λ-theories.

A longstanding open problem, and developments

The question of the existence of a continuous model or, more generally, of a non-
syntactical model of λβ (or λβη) was proposed by Honsell and Ronchi Della Rocca
in the eighties. It is still open, but generated a wealth of interesting research and
results (see, e.g., [13, 14]).

In 1995, Di Gianantonio, Honsell and Plotkin succeeded to build an extensional
model of λβη living in some “weakly continuous” semantics [46]. However, the
construction of this model starts from the term model of λβη, and hence it cannot
be seen as having a purely non-syntactical presentation. Furthermore, the problem
of whether there exists a model of λβ or λβη living in one of the main semantics
remains completely open. Nevertheless, the authors showed in the same paper that
the set of λ-theories of extensional continuous models had a least element.

Hence, it became natural to ask whether, given a (uniform) class of models of λ-
calculus, there is a minimum λ-theory represented in it; a question which was raised
in [13]. Bucciarelli and Salibra showed [29, 30] that the answer is also positive for
the class of graph models, and that the least graph theory (i.e., theory of a graph
model) is different from λβ. At the moment the problem remains open for the other
classes.

(Concrete) Effective models versus r.e. λ-theories

In Chapter 6 we will investigate the problem of whether the equational theory of
a non-syntactical model of λ-calculus can be r.e. (note that this is a generalization
of Honsell-Ronchi Della Rocca’s open question since λβ and λβη are r.e.). As far as
we know, this problem was first raised in [14], where it is conjectured that no graph
model can have an r.e. equational theory, but we expect that this could indeed
be true for all models living in the main semantics. Since all these models are
partially ordered, and since their equational theory is easily expressible from their
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order theory, we will also address the analogue problem for order theories.
Moreover, we find it natural to concentrate on models with built-in effectivity

properties. It seems indeed reasonable to think that, if these models do not even
succeed to have an r.e. theory, then the other ones have no chance to succeed, and
we will give deeper arguments in Section 6.1. Hence, starting from the known notion
of an effective domain, we introduce an appropriate notion of an effective model of
λ-calculus which covers in particular all the models individually introduced in the
literature.

We prove that the order theory of an effective model is never r.e.; from this
it follows that its equational theory cannot be λβ or λβη. Then, we show that no
effective model living in the stable or in the strongly stable semantics has an r.e.
equational theory. Concerning Scott-continuous semantics, we investigate the class
of effective graph models, and make it precise when the results hold for wide classes
of effective webbed models.

Graph models: a case of study

In order to attack difficult open problems as those stated above, it is often convenient
to focus the attention, first, on the class of graph models. Indeed, for all webbed
models it is possible to infer properties of the models by analyzing the structure of
their web, and graph models have the simplest kind of web. Moreover, the class of
graph models is very rich, since it represents 2ℵ0 pairwise distinct (non extensional)
λ-theories.

In Chapter 5 we will recall a free completion process for building (the web of) a
graph model starting from a “partial web”, and we will develop some mathematical
tools for studying the framework of partial webs. These tools will be fruitfully used
to prove that there exists a minimum graph theory and that graph models enjoy
a kind of Löwenheim Skolem theorem: every equational/order graph theory is the
theory of a graph model having a countable web.

In the last part of Chapter 6 we will investigate the question of whether a graph
theory can be r.e. We will prove that no order graph theory can be r.e., and that
there exists an effective graph model whose equational/order theory is the minimum
one. We will also characterize various classes of effective graph models whose equa-
tional theory cannot be r.e. and we will mention when the results can be extended
to some other classes of webbed models.
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Set theory

◆ set of natural numbers 2
card(X) cardinality of X 2
P(X) collection of all subsets of X (powerset of X) 2
Pf(X), X∗ collection of all finite subsets of X 2
X ⊆f Y X is a finite subset of Y 2
dom(f) domain of f 2
rg(f) range of f 2
graph(f) graph of f 2
f+(X) image of X via f 2
f−(X) inverse image of X via f 2
f−1 partial inverse of an injective f 2
tr(f) trace of f 15
Tr(f) trace of f on prime algebraic domains 16
Trs stable trace of f 18
f ∩ g graph(f ∩ g) = graph(f) ∩ graph(g) 2
f ∪ g graph(f ∪ g) = graph(f) ∪ graph(g) 2
Aut(S) group of automorphisms of S 2
[] empty multiset 2
m = [a1, a2, . . .] multiset whose elements are a1, a2, . . . 2
m1 ⊎m2 multiset union of m1,m2 2
Mf(X) set of finite multisets over X 2
σ = (m1,m2, . . .) ◆-indexed sequence of multisets 2
σi i-th element of σ 2
Mf(X)(ω) set of quasi-finite ◆-indexed sequences of Mf(X) 2
∗ unique inhabitant of Mf(∅)

(ω) 2

Recursion theory

ϕn partial recursive function of index n 2
Wn domain of ϕn 2
Ec complement of E w.r.t. ◆ (i.e., ◆− E) 3
#∗(−) encoding of ◆∗ 3
#(−,−) encoding of ◆× ◆ 3
#〈−,−〉 encoding of ◆∗ × ◆ 3
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Algebras

A ,B,C algebras 50
Con(A ) set of congruences of A 50
∇A top element of Con(A ) 50
∆A bottom element of Con(A ) 50
ϑ(a, b) least congruence relating a and b 50
ϑ1 × ϑ2 product congruence of ϑ1, ϑ2 50
A × B direct product of A ,B 50
A ∼= B A is isomorphic to B 50
A ≤ Πi∈IBi subdirect product 50
IE(A ) set of idempotent elements of A 54
CE(A ) set of central elements of A 55
fe decomposition operator determined by e 55

(ϑe, ϑe) complementary factor congruences determined by e 56

Domain theory and orders

D partially ordered set 3
⊑D partial order on D 3
⊥D bottom element of D 3⊔
A least upper bound of A 3

u ⊔ v least upper bound of {u, v} 3
u ⊓ v gratest lower bound of {u, v} 4
K(D) set of compact elements of D 3
Pr(D) set of prime elements of D 4
S(D) set of all initial segments of (D,�) 16
Scoh(D) set of all coherent initial segments of (D,�,¨) 16
F(D) set of all filters of (D,�) 16
D⊥ flat domain built on a set D 4
[s, s′] closed interval between s, s′ 4
]s, s′[ open interval between s, s′ 4

Category theory

C locally small Cartesian closed category 4
C(A,B) set of morphisms from A to B 4
⊑(A,B) partial order on C(A,B) 5
⊥(A,B) least element of C(A,B) 5
CPO category of cpo’s 38
ED category of effective domains 82
EDID category of effective DI-domains 83
EDIDcoh category of effective DI-domains with coherences 83
Rel category of sets and relations 40
MRel Kleisly category of Rel using Mf(−) 40
A×B categorical product 5
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A&B categorical product in MRel 40
π1, π2 projections 5
〈f, g〉 mediating arrow of a product 5
f × g arrow between product objects 5
[A⇒ B] exponential object 5
ev evaluation morphism 5
Λ Curry’s morphism 5
✶ terminal object 5
!A unique morphism in C(A,✶) 5
U = (U,Ap, λ) reflexive object of a ccc 9
|M |I categorical interpretation of M in I 10
Πi∈IAi I-indexed categorical product of (Ai)i∈I 5
AI I-indexed categorical product of copies of A 5
πIx projection on the x-th component of AI 5
ΠI
J shorthand for 〈πIx〉x∈J 5

Ad(f) set of adequate pairs of f 21
domf(f) finitary domain of f 21
Cf(U

Var, U), AU set of finitary morphisms in C(UVar, U) 21
|M |Var categorical interpretation of M in Var 28
M ⊑U N means |M |Var ⊑ |N |Var 31
M =U N means |M |Var = |N |Var 31

λ-calculus

Var set of variables of λ-calculus 6
Λ set of λ terms 6
Λo set of closed λ-terms 6
Λ(D) set of λ-terms with parameters in D 14
Λo(D) set of closed λ-terms with parameters in D 14
ΛT −easy set of T -easy λ-terms 9
FV(M) set of free variables of M 6
~x sequence of variables (x1, . . . , xn) 43
I ≡ λx.x 6
1 ≡ λxy.xy 6
T,K ≡ λxy.x 6
F ≡ λxy.y 6
δ ≡ λx.xx 6
Ω ≡ δδ ≡ (λx.xx)(λx.xx) 6
Ω3 ≡ (λx.xxx)(λx.xxx) 17
U set of all unsolvable λ-terms 7
C[ξ1, . . . , ξn] context having ξ1, . . . , ξn as algebraic variables 6
C[−] context having just one algebraic variable 6
M →R N , (M ։R N) M R-reduces to N (in 0 or several steps) 6
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⊥ constant indicating divergence 30
ck label 30
Λlab

⊥ set of λ-terms with possible occurrences of ⊥ and ck’s 30

Λ⊥ set of λ-terms with possible occurrences of ⊥ 31
ω-reduction ⊥M →ω ⊥, λx.⊥ →ω ⊥ 31
γ-reduction c0(λx.M)N →γ c0(M [⊥/x]),

ck+1(λx.M)N →γ ck(M [ckN/x]) 32
ǫ-reduction ck⊥ →ǫ ⊥, ck(cnM) →ǫ cmin(k,m)M 32
L complete labelling 33
L1 ⊑lab L2 L1(N) ≤ L2(N) for all subterms N of M 34
ML completely labelled λ⊥-term corresponding to L 33
M term obtained from M by erasing all labels 35
M [k] unique βω-normal form such that BT(M [k]) = BTk(M) 36
A(M) set of all direct approximants of M 34

Böhm trees

BT(M) Böhm tree of M 7
BTk(M) Böhm tree of M pruned at depth k 36
BT set of Böhm trees 7
⊆BT partial order on Böhm trees 7
M ⊑BT N BT(M) ⊆BT BT(N) 7
M ⊑η,∞ N BT(N) is a (possibly infinite) η-expansion of BT(M) 7
M -η N ∃M ′, N ′ such that M ⊑η,∞ M ′ ⊑BT N

′ ⊒η,∞ N 8
M =η N M -η N -η M 8

Lambda theories

λT lattice of λ-theories 8
λβ least λ-theory 6
λβη least extensional λ-theory 6
M =T N, stands for M = N ∈ T 8
T ⊢M = N stands for M = N ∈ T 8
[M ]T T -equivalence class of M 8
V/T quotient space of V modulo T 8
H minimum sensible λ-theory 9
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1
Preliminaries

By relieving the brain of all unnecessary work, a good nota-
tion sets it free to concentrate on more advanced problems,
and in effect increases the mental power of the race.
(Alfred North Whitehead)

S
ince this thesis spans several fields (logic, category theory, algebra and recur-
sion theory), which may each have their own vocabularies, it may be useful
to recall some basic terminology. We will generally use the notation of Baren-

dregt’s classic work [8] for λ-calculus and combinatory logic and that of Burris and
Sankappanavar [31] for universal algebra. Our main reference for category theory
is [5], for recursion theory is [81] and for domain theory is [4]. Occasionally, some
elementary notions of topology [64] are needed.

This chapter is organized as follows: in Section 1.1 we introduce the notations
we will use for set theory, recursion theory, domain theory and category theory; in
Section 1.2 we briefly recall the syntax of λ-calculus and the definition of λ-theory;
Section 1.3 is devoted to introduce the main notions of model of λ-calculus and to
analyze the relations between them; in Section 1.4 we present the “main semantics”
of λ-calculus, namely, the Scott-continuous semantics and its refinements: the stable
and the strongly stable semantics.

Finally, we briefly describe the classes of webbed models, living in these seman-
tics, which are interesting for our purposes: 1. for the Scott-continuous semantics:
the classes of K-models (introduced by Krivine in [72]), of pcs-models (see [13]),
and filter models1 [37]; 2. for the stable semantics: Girard’s reflexive coherences (G-
models); 3. for the strongly stable semantics: Ehrhard’s reflexive hypercoherences
(H-models). The terminology of K-, G-, H- models, that we will use freely here, as
well as the informal terminology of “webbed models”, was introduced in [13].

1 We will investigate the class of Scott’s information systems [94] (a class of continuous webbed
models containing the K-, pcs- and filter models) in further works, since here we want to keep
technicalities at the lowest possible level.
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1.1 Generalities

1.1.1 Sets, functions and groups of automorphisms

We will denote by ◆ the set of natural numbers. Given a set X, we denote by P(X)
(resp. Pf(X)) the collection of all subsets (resp. finite subsets) of X and by card(X)
the cardinality of X. A less heavy notation for Pf(X) will be X∗. Finally, we let
X ⊆f Y mean that X is a finite subset of Y .

For any function f we write dom(f) for the domain of f , rg(f) for its range,
graph(f) for its graph, and f↾X for its restriction to a subsetX ⊆ dom(f). We define
the image and the inverse image of X via f respectively as f+(X) = {f(x) : x ∈ X}
and f−(X) = {x : f(x) ∈ X}. The partial inverse of an injective function f , denoted
by f−1, is defined as follows: dom(f−1) = rg(f) and f−1(x) = y if f(y) = x.

Let f, g be two partial functions, then: f and g are called compatible if f(x) =
g(x) for all x ∈ dom(f) ∩ dom(g); we write f ∩ g for the function whose graph is
graph(f) ∩ graph(g); if f, g are compatible, then f ∪ g denotes the function whose
graph is graph(f) ∪ graph(g).

Given any mathematical structure S having a carrier set S, we denote by Aut(S)
the group of automorphisms of S. For all s ∈ S the orbit O(s) (with respect to
Aut(S)) is defined by O(s) = {θ(s) : θ ∈ Aut(S)}. A structure S is finite modulo
Aut(S) if the number of orbits of S (with respect to Aut(S)) is finite.

1.1.2 Multisets and sequences

Let X be a set. A multiset m over X can be defined as an unordered list m =
[a1, a2, . . .] with repetitions such that every ai belongs to X. In particular, [] denotes
the empty multiset. For each a ∈ X the multiplicity of a in m is the number of
occurrences of a in m. If m is a multiset over X, then its support is the set of
elements of X belonging to m. A multiset m is called finite if it is a finite list. The
set of all finite multisets over X will be denoted by Mf(X).

Given two multisets m1 = [a1, a2, . . .] and m2 = [b1, b2, . . .] the multiset union of
m1,m2 is defined by m1 ⊎m2 = [a1, b1, a2, b2, . . .].

An ◆-indexed sequence σ = (m1,m2, . . .) of multisets is quasi-finite if mi = []
holds for all but a finite number of indices i. We write σi for the i-th element of σ.
If X is a set, we denote by Mf(X)(ω) the set of all quasi-finite ◆-indexed sequences
of finite multisets over X. We write ∗ for the ◆-indexed family of empty multisets,
in other words ∗ is the only inhabitant of Mf(∅)

(ω).

1.1.3 Recursion theory

We write ϕn : ◆ → ◆ for the partial recursive function of index n and we indicate
by Wn the domain of ϕn.
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A set E ⊆ ◆ is recursively enumerable (r.e., for short) if it is the domain of a
partial recursive function. The complement Ec of an r.e. set E is called co-r.e.

If both E and Ec are r.e., then E is called decidable. Note that the collection of
all r.e. (co-r.e.) sets is closed under finite union and finite intersection.

We say that ν is an encoding of a countable set X if ν : X → ◆ is bijective. A
numeration of a set X is a function νX : ◆→ X which is total and onto. Note that
(the inverse of) an encoding is a special case of numeration.

Given two numerations νX and νY of X and Y respectively, we say that a partial
recursive function ϕ tracks f : X → Y with respect to νX , νY if the following
diagram commutes:

◆
ϕ //

νX

��

◆

νY

��
X

f
// Y

A partial function f : X → Y is said computable (with respect to νX , νY ) if there
exists a partial recursive function ϕ tracking f with respect to νX , νY . A set Y ⊆ X
is r.e. (resp. co-r.e.) with respect to νX if the set ν−X(Y ) is r.e. (resp. co-r.e.).

Hereafter we suppose that a computable encoding #(−,−) : ◆2 → ◆ for the pairs
has been fixed. Moreover, we fix an encoding #∗ : ◆∗ → ◆ which is effective in the
sense that the relations m ∈ #−1

∗ (n) and m = card(#−1
∗ (n)) are decidable in (m,n).

Finally, we define a map #〈−,−〉 : ◆∗ × ◆→ ◆ as follows: #〈a, n〉 = #(#∗(a), n).
We recall here a basic property of recursion theory which will be often used in

Chapter 6.

Remark 1.1.1. The property of being r.e. is preserved under (images and) inverse
images via partial recursive functions.

1.1.4 Partial orderings and cpo’s

Let (D,⊑D) be a partially ordered set (poset , for short). When there is no ambiguity
we write D instead of (D,⊑D). Two elements u and v of D are: comparable if either
u ⊑D v or v ⊑D u; incomparable if they are not comparable; compatible if they have
an upper bound, i.e., if there exists z such that u ⊑D z and v ⊑D z.

Let A ⊆ D be a set. A is upward (resp. downward) closed if v ∈ A and v ⊑D u
(resp. u ⊑D v) imply u ∈ A. The set A is directed if, for all u, v ∈ A, there exists
z ∈ A such that u ⊑D z and v ⊑D z.

A poset D is a complete partial order (cpo, for short) if it has a least element ⊥D

and every directed set A ⊆ D admits a least upper bound
⊔
A. A cpo is bounded

complete if u ⊔ v exists, for all compatible u, v.
An element d ∈ D is called compact if for every directed A ⊆ D we have that

d ⊑D

⊔
A implies d ⊑D v for some v ∈ A. We write K(D) for the collection

of compact elements of D. A compact element p 6= ⊥D of D is prime if, for all
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compatible u, v ∈ D, we have that p ⊑D u⊔ v implies p ⊑D u or p ⊑D v. We denote
by Pr(D) the set of prime elements of D.

A cpo D is algebraic if for every u ∈ D the set {d ∈ K(D) : d ⊑D u} is directed
and u is its least upper bound. A cpo D is prime algebraic if for all u ∈ D we have
u =

⊔
{p ∈ Pr(D) : p ⊑D u}. An algebraic cpo D is called ω-algebraic if the set of

its compact elements is countable.
A bounded complete algebraic cpo is called a Scott domain.

Example 1.1.2. The simplest examples of prime algebraic Scott domains are the
flat domains and the powerset domains. If D is a set and ⊥ an element not belonging
to D, the flat domain D⊥ is, by definition, the poset (D,⊑D) such that D = D∪{⊥}
and for all u, v ∈ D we have u ⊑D v if, and only if, u = ⊥ or u = v. All elements of
D − {⊥} are prime. Concerning the full powerset domain (P(D),⊆), the compact
elements are the finite subsets of D and the prime elements are the singleton sets.
If D is countable, then D⊥ and P(D) are ω-algebraic (and prime).

1.1.5 Lattices

A lattice is a poset S = (S,⊑) such that any two elements s, s′ ∈ S have a least
upper bound s ⊔ s′ and a greatest lower bound s ⊓ s′ which are respectively called,
in this context, join and meet . Then, ⊑ is definable from the meet or the join. A
lattice is complete if any A ⊆ S has a least upper bound (then all A’s have also
a greatest lower bound); in particular a complete lattice has a top and a bottom
element.

The interval notation will have the obvious meaning; for example, given s, s′ ∈ S,
we let [s, s′] = {s′′ ∈ S : s ⊑ s′′ ⊑ s′} and [s, s′[ = [s, s′] − {s′}.

Given a lattice S, and S ′ ⊆ S we recall that: S ′ is a chain of S if it is totally
ordered by ⊑, and S ′ is discrete in case its elements are pairwise incomparable. S ′

is dense in S if card(S ′) ≥ 2 and for all distinct s, s′ ∈ S ′ with s ⊑ s′ we have that
]s, s′[ ∩ S ′ is non-empty, and S itself is a dense lattice if S is dense in S. Finally,
we will call S ′ an antichain of S if it does not contain the top element and the only
possible common upper bound of two distinct s, s′ ∈ S ′ is the top element.

Following the terminology of [14], we say that a lattice S is c-high (resp. c-wide,
c-broad), where c is a cardinal, if S has a chain (resp. a discrete subset, an antichain)
of cardinality c. In particular, if S is c-broad, then it is also c-wide. Moreover, if S
is complete and the set S is dense in S, then S is 2ℵ0-high.

1.1.6 Cartesian closed categories

In the following, C is a locally small2 Cartesian closed category (ccc, for short) and
A,B,C are arbitrary objects of C.

2 This means that C(A, B) is a set (called homset) for all objects A, B.
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We denote by A×B the categorical product of A and B, and by π1 ∈ C(A×B,A),
π2 ∈ C(A × B,B) the associated projections . Given a pair of arrows f ∈ C(C,A)
and g ∈ C(C,B), 〈f, g〉 ∈ C(C,A×B) is the unique arrow such that π1 ◦ 〈f, g〉 = f
and π2 ◦ 〈f, g〉 = g.

We will write [A⇒ B] for the exponential object and evAB ∈ C([A⇒ B]×A,B)
for the evaluation morphism relative to A,B. Whenever A,B are clear from the
context we will simply call it ev.

Moreover, for all objects A,B,C and arrow f ∈ C(C × A,B) we denote by
Λ(f) ∈ C(C, [A ⇒ B]) the unique morphism such that evAB ◦ 〈Λ(f) ◦ π1, π2〉 = f .
Finally, ✶ is the terminal object and !A is the only morphism in C(A,✶).

We recall that in every ccc the following equalities hold:

(pair) 〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉 Λ(f) ◦ g = Λ(f ◦ (g × Id)) (Curry)
(beta) ev ◦ 〈Λ(f), g〉 = f ◦ 〈Id, g〉 Λ(ev) = Id (Id-Curry)

where f1 × f2 is the product map defined by 〈f1 ◦ π1, f2 ◦ π2〉.
Given a set I and a family (Ai)i∈I of objects of C, we denote the I-indexed

product of (Ai)i∈I by Πi∈IAi. If the object Πi∈IAi exists in the category C for all
families (Ai)i∈I such that card(I) ≤ ℵ0, then we say that C has countable products .

Let us fix now an object A. For all sets I, we write AI for the I-indexed product
of an adequate number of copies of A, πIi ∈ C(AI , A) for the projection on the i-th
component, and ΠI

J , where J ⊆ I, for 〈πIi 〉i∈J ∈ C(AI , AJ).

Remark 1.1.3. For all sets I, J such that I ⊆ J we have:

(i) πJi = πIi ◦ ΠJ
I for all i ∈ I,

(ii) Π
J∪{i}
I∪{i} = ΠJ

I × Id for all i /∈ J ∪ I.

We say that the ccc C has enough points if, for all objects A,B and morphisms
f, g ∈ C(A,B), whenever f 6= g, there exists a morphism h ∈ C(✶, A) such that
f ◦ h 6= g ◦ h. Similarly, an object A has enough points if the above property holds
for all f, g ∈ C(A,A).

The ccc C is cpo-enriched if every homset is a cpo (C(A,B),⊑(A,B),⊥(A,B)),
composition is continuous (see Subsection 1.4.2 later on), pairing and currying are
monotonic, and the following strictness conditions hold:

(l-strict) ⊥ ◦ f = ⊥, ev ◦ 〈⊥, f〉 = ⊥ (ev-strict).

Lemma 1.1.4. [4, Lemma 6.1.3] In a cpo-enriched ccc pairing and currying are
continuous.

1.2 The untyped λ-calculus

1.2.1 λ-terms

The two primitive notions of the λ-calculus are application, the operation of applying
a function to an argument, and lambda abstraction, the process of forming a function
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from the “expression” defining it.
The set Λ of λ-terms over a countable set Var of variables is constructed as usual:

every variable is a λ-term; if M and N are λ-terms, then so are (MN) and λx.M
for each variable x. Concerning specific λ-terms we set:

I ≡ λx.x, 1 ≡ λxy.xy, T ≡ λxy.x, F ≡ λxy.y,
S ≡ λxyz.xz(yz), δ ≡ (λx.xx), Ω ≡ δδ,

the symbol ≡ denotes syntactical equality. A more traditional notation for T, when
it is not viewed as a boolean, is K.

An occurrence of a variable x in a λ-term is bound if it lies within the scope of
a lambda abstraction λx; otherwise it is called free. The set of free variables of M
is denoted by FV(M). A λ-term without free variables is said to be closed . The set
of closed λ-terms will be denoted by Λo.

We denote by M [N/x] the result of substituting the λ-term N for all free occur-
rences of x in M subject to the usual proviso about renaming bound variables in M
to avoid capture of free variables in N .

The basic axioms of λ-calculus are the following (here M and N are arbitrary
λ-terms and x, y are variables):

(α) λx.M = λy.M [y/x], for any variable y that does not occur free in M ;

(β) (λx.M)N = M [N/x].

The rules for deriving equations from instances of (α) and (β) are the usual ones
from equational calculus asserting that equality is a congruence for application and
abstraction.

Extensional λ-calculus adds another axiom, which equates all the λ-terms having
the same extensional behaviour:

(η) λx.Mx = M , where x does not occur free in M .

If two λ-terms are provably equal using the rule (α) we say that they are α-
convertible or α-equivalent (and similarly for (β) and (η)). Throughout this thesis
we will identify all α-convertible λ-terms. We will denote β-conversion by λβ and
βη-conversion by λβη. By applying the rules (β) and (η) only from left to right we
obtain, respectively, the β-, η-reduction. In general, given an R-reduction rule, we
write M →R N (resp. M ։R N) if M reduces to N in one step (resp. zero or several
steps) of R-reduction.

Contexts are terms with some occurrences of algebraic variables (also called
“holes”), denoted by ξi. A context is inductively defined as follows: ξi is a context,
x is a context for every variable x, if C1 and C2 are contexts then so are C1C2 and
λx.C1 for each variable x. If M1, . . . ,Mn are λ-terms we will write C[M1, . . . ,Mn]
for the context C[ξ1, . . . , ξn] where all the occurrences of ξi have been simultaneously
replaced by Mi. When n = 1 we simply write C[−] instead of C[ξ1].
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A λ-term M is a head normal form (hnf , for short) if M ≡ λx1 . . . xn.yM1 · · ·Mk

for some n, k ≥ 0. The principal hnf of a λ-term M is the hnf obtained from M
by head reduction [8, Def. 8.3.10]. Given two hnf’s M ≡ λx1 . . . xn.yM1 · · ·Mk and
N ≡ λx1 . . . xn′ .y′N1 · · ·Nk′ we say that they are equivalent if y is free/bound in M
whenever y′ is in N , y ≡ y′ and k − n = k′ − n′.

A λ-term M is called solvable if it is β-convertible to a hnf, otherwise M is called
unsolvable. We will denote by U the set of all unsolvable λ-terms.

Two closed λ-terms M and N are separable if there exists S ∈ Λo such that
SM = T and SN = F. Otherwise they are inseparable. There exist simple criteria
implying separability or inseparability.

Proposition 1.2.1. (Böhm) [8, Lemma 10.4.1, Thm. 10.4.2]

(i) Two hnf’s are separable or equivalent (as hnf’s),

(ii) two normal λ-terms are separable or η-equivalent.

1.2.2 Böhm trees

The Böhm tree BT(M) of a λ-term M is a finite or infinite labelled tree. If M is
unsolvable, then BT(M) = ⊥, that is, BT(M) is a tree with a unique node labelled
by ⊥. If M is solvable and λx1 . . . xn.yM1 · · ·Mk is its principal hnf, then:

BT(M) = λx1 . . . xn.y

mmmmmmm
QQQQQQQ

BT(M1) · · · BT(Mk)

We call BT the set of all Böhm trees. Given t, t′ ∈ BT we define t ⊆BT t′ if,
and only if, t results from t′ by cutting off some subtrees. It is easy to verify that
(BT,⊆BT ) is an ω-algebraic cpo. The relation ⊆BT is transferred on λ-terms by
setting M ⊑BT N if BT(M) ⊆BT BT(N).

Moreover, we write M ⊑η,∞ N if BT(N) is a (possibly infinite) η-expansion of
BT(M) (see [8, Def. 10.2.10]). For example, let us consider J ≡ Θ(λjxy.x(jy)),
where Θ is Turing’s fixpoint combinator [104]. Then x ⊑η,∞ Jx (see [8, Ex. 10.2.9]),
since

Jx =λβ
λz0.x(Jz0) =λβ

λz0.x(λz1.z0(Jz1))
=λβ

λz0.x(λz1.z0(λz2.z1(Jz2))) =λβ
. . .

Thus, the Böhm tree of Jx is the following:

BT(Jx) = λz0.x

λz1.z0

λz2.z1

...
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Using ⊑η,∞, we can define another relation on λ-terms which will be useful in Sub-
section 2.3.8. For all M,N ∈ Λ we set M -η N if there exist M ′, N ′ such that
M ⊑η,∞ M ′ ⊑BT N

′ ⊒η,∞ N . Let us provide an example of this situation:

λx.x
��

� GG
G

⊑η,∞ λx.x
tt

t GG
G

⊑BT λx.x
tt

t GG
G

⊒η,∞ λx.x
tt

t ??
?

x ⊥ λz.x λz0.x ⊥ λz.x λz0.x y λz.x λz0.x y x

z λz1.z0 z λz1.z0 z λz1.z0

λz2.z1 λz2.z1 λz2.z1

...
...

...

Finally, we write M ≃η N for M -η N -η M . In the next section we will see an
alternative characterization of ≃η in terms of a λ-theory called H∗.

1.2.3 The lattice of λ-theories

A λ-theory is a congruence on Λ, with respect to the operators of lambda abstraction
and application, which contains λβ; it can also be seen as a (special) set of equations
between λ-terms. A λ-theory T is consistent if T 6= Λ × Λ, and extensional if it
contains the equation I = 1 or, equivalently, if λβη ⊆ T .

The set of all λ-theories is naturally equipped with a structure of complete lattice,
hereafter denoted by λT , with meet defined as set-theoretical intersection. The join
of two λ-theories T and S is the least equivalence relation including T ∪S. It is clear
that λβ is the least element of λT , while the unique inconsistent λ-theory Λ×Λ is
the top element of λT . Moreover, λβη is the least extensional λ-theory. It is well
known that λT is 2ℵ0-high and 2ℵ0-broad (hence, 2ℵ0-wide) [8, Ch. 16.3, 17.1].

Two λ-theories T , T ′ are incompatible if their join is the inconsistent λ-theory.
Hence an antichain of λT is a set of λ-theories which are pairwise incompatible.

The λ-theory generated (or axiomatized) by a set of equations is the least λ-
theory containing it.

As a matter of notation, both T ⊢M = N and M =T N stand for M = N ∈ T ,
[M ]T denotes the T -equivalence class of M and if V ⊆ Λ we write V/T for the
quotient set of V modulo T .

Given a λ-theory T , we say that T is:

• recursively enumerable (r.e., for short) if the set of Gödel numbers of all pairs
of T -equivalent λ-terms is r.e.,

• semi-sensible if it contains no equations of the form S = U where S is solvable
and U unsolvable,

• sensible if it contains all the equations between unsolvable λ-terms.
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The λ-theory H, generated by equating all the unsolvable λ-terms, is consistent by
[8, Thm. 16.1.3]. H admits a unique maximal consistent extension [8, Thm. 16.2.6]
H∗, which is an extensional λ-theory and can be characterized as follows:

M =H∗ N ⇐⇒ M ≃η N see [8, Thm. 16.2.7].

A λ-theory T is semi-sensible if, and only if, T ⊆ H∗ and it is sensible if, and only
if, H ⊆ T (see Section 10.2 and Section 16.2 in [8]). Consistent sensible λ-theories
are semi-sensible and never r.e. [8, Sec. 17.1].

The λ-theory BT , generated by equating all λ-terms with the same Böhm tree,
is sensible, non-extensional and distinct from H and H∗, so that H ( BT ( H∗.

We recall here some results about the “size” of various subsets of λT which have
been shown either in [8] or in [16].

Theorem 1.2.2. (Barendregt [8, Ch. 16.3, 17.1])

(i) The set of all r.e. λ-theories is dense in λT , so λT is 2ℵ0-high, more generally:

(i’) If T ,S are r.e. λ-theories, then the interval [T ,S] is 2ℵ0-high.

(ii) The set of all sensible λ-theories is 2ℵ0-high and 2ℵ0-wide.

Theorem 1.2.3. (Berline and Salibra [16]) There exists an r.e. λ-theory T such
that [T [ = {S : T ⊆ S} is moreover 2ℵ0-broad.

For proving Theorem 1.2.2 the notion of T -easy term is useful.
A λ-term U is T -easy when, for every fixed closed λ-term M , the λ-theory

generated by T ∪ {U = M} is consistent [8, Prop. 15.3.9]. If U is λβ-easy, then we
simply say that U is easy .

As a matter of notation, we denote by ΛT −easy the set of all T -easy terms. It is
clear that ΛT −easy ⊆ U . Moreover, if T is r.e. then ΛT −easy 6= ∅ by [8, Prop. 17.1.9].

1.3 Models of the untyped λ-calculus

For our purposes it will be convenient to work mainly with two notions of model
of λ-calculus. The former is connected with category theory (categorical models [8,
Sec. 5.5]) and the latter is related to combinatory algebras (λ-models [8, Sec. 5.2]).
Sometimes, we will also use a third notion of model (environment λ-models), which
is an alternative description of λ-models and is convenient when dealing with the
interpretation of λ-terms in a λ-model. The notions of categorical model and of
λ-model are also tightly linked as we will see in Subsection 1.3.5 and in Section 2.2.

1.3.1 Categorical models

A categorical model of λ-calculus is a reflexive object of a Cartesian closed category
C, i.e., a triple U = (U,Ap, λ) such that U is an object of C, and λ ∈ C([U ⇒ U ], U)
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and Ap ∈ C(U, [U ⇒ U ]) satisfy Ap ◦ λ = Id[U⇒U ]. In this case we write [U ⇒ U ] ⊳

U and we say that (Ap, λ) is a retraction pair . When moreover λ ◦ Ap = IdU , the
model U is called extensional .

Given a λ-term M and a subset I ⊆ Var, we say that I is adequate for M if I
contains all the free variables of M . We simply say that I is adequate whenever M
is clear from the context.

Let U = (U,Ap, λ) be a categorical model. For all M ∈ Λ and for all adequate
I ⊆f Var, the interpretation of M (in I) is a morphism |M |I ∈ C(U I , U) defined by
structural induction on M as follows:

• If M ≡ x, then |x|I = πIx;

• If M ≡ NP , then by inductive hypothesis we have defined |N |I , |P |I ∈
C(U I , U). Hence, we set |NP |I = ev ◦ 〈Ap ◦ |N |I , |P |I〉 ∈ C(U I , U);

• IfM ≡ λx.N , by inductive hypothesis we have defined |N |I∪{x} ∈ C(U I∪{x}, U)
where we suppose that x does not belong to I. Thus, we set |λx.N |I =
λ ◦ Λ(|N |I∪{x});

We refer to [8, Ch. 5] for the proof of the soundness of this definition and of the fact
that, if M and N are β-equivalent, then |M |I = |N |I for every I ⊆f Var adequate
for M and N . The reflexive object U is extensional, if and only if, |M |I = |N |I
holds whenever M and N are βη-equivalent.

When C is a concrete3 category having enough points, the categorical interpre-
tation admits a simpler presentation, which will be recalled in Subsection 1.4.1.

1.3.2 Combinatory logic and combinatory algebras

Combinatory logic is a formalism for writing expressions which denote functions.
Combinators are designed to perform the same tasks as λ-terms, but without using
bound variables. Schönfinkel and Curry discovered that a formal system of combi-
nators, having almost the same expressive power of the λ-calculus, can be based on
only two primitive combinators k and s [93, 40].

The terms of combinatory logic, namely combinatory terms, are defined by in-
duction as follows: every variable x is a combinatory term; the constants k and s are
combinatory terms; if A,B are combinatory terms, then also AB is a combinatory
term. The constants k and s are called basic combinators ; the derived combinators
i, ε, t, f are defined respectively as i ≡ skk, ε ≡ s(ki), t ≡ k and f ≡ ki.

An applicative structure is an algebra with a binary operation · which we call
application. We may write it infix as s · t, or even drop it entirely and write st.

3 Roughly speaking, a concrete category is a category whose objects are sets (possibly carrying
some additional structure) and whose morphisms are (special) functions.
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As usual, application associates to the left; hence xyz means (xy)z. An applicative
structure A = (A, ·) is extensional if the following axiom holds:

∀x∀y(∀z(xz = yz) ⇒ x = y).

A combinatory algebra is an algebra C = (C, ·,k, s) where (C, ·) is an applicative
structure and k, s are two distinguished elements of C such that kxy = x and
sxyz = xz(yz) for all x, y, z ∈ C. Combinatory terms can be interpreted into
combinatory algebras; in particular k and s are interpreted by k and s, respectively.
Hence hereafter, to lighten the notation, we omit the underlinings and write k, s also
to denote the constants. It is easy to check that every combinatory algebra satisfies
the identities ix = x, εxy = xy, txy = x and fxy = y. See [40], for a full treatment.

Let C = (C, ·,k, s) and C ′ = (C ′, ·′,k′, s′) be two combinatory algebras. A
function Ψ : C → C ′ is a morphism from C to C ′ if Ψ(u · v) = Ψ(u) ·′ Ψ(v) and
Ψ(k) = k′, Ψ(s) = s′; it is an isomorphism if Ψ is, moreover, a bijection.

We say that c ∈ C represents the function f : C → C (and that f is representable
by c) if cz = f(z) for all z ∈ C. We will call c, d ∈ C extensionally equal when they
represent the same function in C . For example c and εc are always extensionally
equal.

For each variable x one can perform a transformation λ∗x of combinatory terms
as follows: λ∗x.x = i. Let t be a combinatory term different from x. If x does
not occur in t, we define λ∗x.t = kt. Otherwise, t is of the form rs where r and
s are combinatory terms, at least one of which contains x; in this case we define
λ∗x.t = s(λ∗x.r)(λ∗x.s). It is well known that x does not occur in λ∗x.t and that,
for every combinatory algebra C and combinatory term u, we have:

C |= (λ∗x.t)u = t[u/x],

where the combinatory term t[u/x] is obtained by substituting u for x in t. With
the help of λ∗ it is possible to translate any λ-term into a combinatory term and
then to interpret it in any combinatory algebra C .

If t is a combinatory term and x1, x2 . . . , xn (with n ≥ 2) are variables then
λ∗x1x2 . . . xn.t is defined by induction as follows: λ∗x1x2 . . . xn.t ≡ λ∗x1.(λ

∗x2 . . . xn.t).
For two combinatory terms t and u, we define the pair [t, u] ≡ λ∗z.ztu and, for

every sequence t1, . . . , tn (with n ≥ 3), we define [t1, . . . , tn] ≡ [t1, [t2, . . . , tn]].

1.3.3 λ-models

The axioms of the subclass of combinatory algebras which define λ-models were
expressly chosen to make coherent the definition of the interpretation of λ-terms
(see [8, Def. 5.2.7]).

A combinatory algebra C satisfying the five combinatory axioms of Curry [8,
Thm. 5.2.5] is called a λ-algebra; C is a λ-model if, moreover, it satisfies the Meyer-
Scott axiom (also known as “weak extensionality”):

∀x∀y(∀z(xz = yz) ⇒ εx = εy).
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The combinator ε becomes an inner choice operator, that makes coherent the inter-
pretation of a lambda abstraction. Indeed, given any c, the element εc is in the same
equivalence class as c with respect to extensional equality; and, by the Meyer-Scott
axiom, εc = εd for every d extensionally equal to c.

Given two λ-models C ,C ′, a function Ψ : C → C ′ is a morphism from C to C ′ if
it is a morphism of combinatory algebras; Ψ is an isomorphism if it is, furthermore,
bijective.

1.3.4 Environment λ-models

The first-order definition of λ-models has the advantage that it gives a model theo-
retic status to the models of λ-calculus, but it has the disadvantage that the inter-
pretation of λ-terms is awkward and difficult to handle in practice.

For this reason it will be sometimes convenient to view λ-models as “environment
λ-models4” which have been introduced by Hindley and Longo in [56].

Given a set C, an environment with values in C is a total function ρ : Var → C,
where Var is the set of variables of λ-calculus. For every x ∈ Var and c ∈ C we
denote by ρ[x := c] the environment ρ′ which coincides with ρ, except on x, where
ρ′ takes the value c. We let EnvC be the set of environments with values in C.

An environment λ-model is a pair S = (A , ❬−❪) where, A is an applicative
structure and the map ❬−❪ : Λ × EnvA → A satisfies the following conditions:

(i) ❬x❪ρ = ρ(x),

(ii) ❬PQ❪ρ = ❬P ❪ρ · ❬Q❪ρ,

(iii) ❬λx.P ❪ρ · a = ❬P ❪ρ[x:=a],

(iv) ρ↾FV(M)= ρ′↾FV(M)⇒ ❬M❪ρ = ❬M❪ρ′ ,

(v) ∀a ∈ A, ❬M❪ρ[x:=a] = ❬N❪ρ[x:=a] ⇒ ❬λx.M❪ρ = ❬λx.N❪ρ.

Barendregt has proved in [8, Thm. 5.3.6] that the category of environment λ-
algebras (i.e., environment λ-models possibly not satisfying the condition (v) above),
and that of λ-algebras are isomorphic. Moreover, environment λ-models correspond
exactly to λ-models under this isomorphism (and also the corresponding notions
of interpretation coincide). Hence, in the following, we will also use ❬−❪ for the
interpretation of λ-terms in a λ-model.

1.3.5 Equivalence between categorical models and λ-models

The notions of λ-model and of categorical model are equivalent in the following
sense (see, e.g., [8, Ch. 5] and [5, Sec. 9.5]). Given a λ-model C = (C, ·,k, s) we
may build a ccc in which C is a reflexive object having enough points; conversely if

4 They are also known in the literature as syntactical λ-models.
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U = (U,Ap, λ) is a reflexive object having enough points in a ccc C, then the set
C(✶, U) can be endowed with a structure of λ-model.

If the reflexive object U does not have enough points then, in general, C(✶, U)
cannot be turned into a λ-model, but only into a λ-algebra. In Section 2.2 we will
show that this apparent mismatch can be avoided by changing C(✶, U) for another
set of morphisms with codomain U .

It is of course important that our construction, as well as the classical one,
preserves the equalities between (the denotations of) the λ-terms, in the sense that
two λ-terms having the same interpretation in a categorical model will have the
same interpretation in the associated λ-model and vice versa.

1.3.6 λ-theories of λ-models

Given a λ-model C , the equational theory of C is defined by:

Th(C ) = {M = N : ❬M❪ρ = ❬N❪ρ for all ρ ∈ EnvC}.

The λ-model C is called trivial if card(C) = 1, which is equivalent to saying that
Th(C ) is inconsistent, and is called sensible (resp. semi-sensible) if Th(C ) is. In
the sequel we will of course only be interested in non-trivial λ-models.

The term model MT of a λ-theory T (viewed as a λ-model) consists of the set of
the equivalence classes of λ-terms modulo T together with the operation of applica-
tion on the equivalence classes (see [8, Def. 5.2.11]) and the obvious interpretations
of k and s. By [8, Cor. 5.2.13(ii)] MT is a λ-model which represents the λ-theory
T . In the following, we will say that a model of λ-calculus is syntactical if its con-
struction depends on the syntax of λ-calculus; in particular, all term models are
syntactical.

We define various notions of representability of λ-theories in classes of models.

Definition 1.3.1. Given a class ❈ of λ-models and a λ-theory T , we say that:

(i) ❈ represents T if there is some C ∈ ❈ such that Th(C ) = T .

(ii) ❈ omits T if ❈ does not represent T .

(iii) ❈ is complete for S ⊆ λT if ❈ represents all the elements of S.

(iv) ❈ is incomplete if it omits a consistent λ-theory.

We will denote by λ❈ the set of λ-theories which are represented in ❈.

A partially ordered λ-model is a pair (C ,⊑) where C is a λ-model and ⊑ is a
partial order on C which makes the application operator of C monotonic.

Every partially ordered λ-model (C ,⊑) induces not only an equational theory
but also an order theory, called the order theory of C , which is defined as follows:

Th⊑(C ) = {M ⊑ N : ❬M❪ρ ⊑ ❬N❪ρ for all ρ ∈ EnvC}.

Since the equational theories are the most frequently considered, we will often call
them simply “λ-theories”.
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1.4 The main semantics

The models of λ-calculus are classified into “semantics”, according to the nature
of the morphisms of their underlying categories. In this section we give a sketchy
presentation of the three “main semantics”: the Scott-continuous semantics [95],
the stable semantics [17, 18, 51] and the strongly stable semantics [25]; the last
two are strengthenings of the Scott-continuous semantics. No more details on these
semantics than what is stated in this section should be necessary for reading this
thesis and, if necessary, [13] contains a more detailed presentation.

We will call the models living inside these semantics: continuous5, stable and
strongly stable models. All these semantics are structurally and equationally rich:
in particular, in each of them it is possible to build up 2ℵ0 models having pairwise
distinct, and even incomparable, λ-theories.

1.4.1 Simplifications when working in the main semantics

The main semantics correspond to Cartesian closed categories whose objects are
cpo’s, possibly satisfying some constraints, and morphisms are (special) monotonous
functions between these cpo’s. Under these hypotheses the λ-terms can be inter-
preted in a categorical model M = (D,Ap, λ) as elements of D, instead of mor-
phisms, by using environments with values in D.

Note that EnvD, ordered pointwise, is a cpo whose bottom element is the envi-
ronment ρ⊥ mapping everybody to ⊥D. Note also that ρ ∈ EnvD is compact if, and
only if, rg(ρ) ⊆ K(D) and ρ(x) 6= ⊥D only for a finite number of x ∈ Var.

The interpretation |M | : EnvD → D of a λ-term M in D (relatively to M ) is
defined by structural induction on M , as follows:

• |x|ρ = ρ(x),

• |MN |ρ = Ap(|M |ρ)(|N |ρ),

• |λx.M |ρ = λ(d ∈ D 7→ |M |ρ[x:=d]).

This interpretation function generalizes to terms with parameters in D (where an
element of D is interpreted by itself) and to Λ⊥ by setting |⊥|ρ = ⊥D for all ρ ∈
EnvD. The set of all open (resp. closed) terms with parameters in D is denoted by
Λ(D) (resp. Λo(D)). If M ∈ Λo(D) we write |M | instead of |M |ρ since, clearly, |M |ρ
only depends on the value of ρ on the free variables of M ; in particular |M | = |M |ρ⊥ .
In case of ambiguity we denote by |M |M the interpretation of M ∈ Λo(D) in M .

In this framework, the equivalence claimed in Subsection 1.3.5 between the ca-
tegorical and the algebraic notions of model of λ-calculus becomes very simple.

5 Note that, for many authors, a “continuous model” is a model satisfying a (weak) Approxi-
mation Theorem (see, e.g., [8, Sec. 19.3]). Here, it is just a shorthand for “a model living in the
Scott-continuous semantics”.
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Every categorical model M = (D,Ap, λ) can be viewed as the combinatory algebra
C = (D, ·,k, s) where · is an alternative notation for Ap and k, s are, respectively,
the interpretation of K,S in M . It is also easy to check that the interpretations of
λ-terms in M and in C coincide, i.e., |M |ρ = ❬M❪ρ for all M ∈ Λ and ρ ∈ EnvD.

Convention 1.4.1. In this context, no confusion can arise if we call the categorical
models simply “models” and we keep “λ-models” for the combinatory algebras.

Moreover, D is a cpo where ⊑D is compatible with application and abstrac-
tion, hence every M = (D,Ap, λ) is a partially ordered model. We will prove in
Section 4.4.3 that all the λ-models living in the main semantics are simple (combi-
natory) algebras. Hence all the morphisms between them are embeddings, that is to
say, inclusions up to isomorphisms. Concerning isomorphism, we have:

Theorem 1.4.2. Let M = (D,Ap, λ),M ′ = (D′,Ap′, λ′) be two models living in
the main semantics, C ,C ′ be the corresponding λ-models, and Ψ : D → D′ be a
bijection. The following assertions are equivalent:

(i) Ψ is an isomorphism between C and C ′,

(ii) for all M ∈ Λo, Ψ(|M |M ) = |M |M
′
.

We will hence also speak in this case of an isomorphism between the models M

and M ′, and of an automorphism, when M = M ′ (and hence C = C ′).
The next remark is clear from the definition of the equational theory of a model,

and it is also consequence of Theorem 1.4.2.

Remark 1.4.3. If M and M ′ are isomorphic models, then Th(M ) = Th(M ′).

It has been noticed (see, e.g., [13]) that all the usual models living in the main
semantics admit a uniform presentation as “webbed models”. Roughly speaking, a
webbed model is a model such that (D,⊑D) is a subdomain of (P(D),⊆) for some
set D. One of the major interests of working with classes of webbed models is that
recursive equations on domains are replaced by simple set-theoretical (recursive)
equations on their web.

1.4.2 Scott-continuous semantics

Scott-continuous semantics corresponds to the category whose objects are cpo’s
and morphisms are Scott-continuous functions. Given two cpo’s D,D′ a function
f : D → D′ is Scott-continuous if it is monotonous and f(

⊔
A) =

⊔
f+(A) for

all non-empty directed A ⊆ D. We will denote by [D → D′] the set of all Scott
continuous functions from D into D′ considered as a cpo by pointwise ordering. If
D,D′ are Scott domains then [D → D′] is a Scott domain.

For each function f ∈ [D → D′], we define the trace of f as tr(f) = {(d, e) ∈
K(D) ×K(D′) : e ⊑D′ f(d)}. If D′ is prime algebraic it is more interesting to work
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with Tr(f) = {(d, p) ∈ K(D)×Pr(D′) : p ⊑D′ f(d)}. Hence, if D,D′ = (P(D),⊆),
as it will be the case for graph models, we can use Tr(f) = {(a, α) ∈ D∗ ×D : α ∈
f(a)}.

The classes of webbed models living in Scott-continuous semantics which are
interesting for our purposes are, using the terminology of [13]: graph models, K-
models [72], pcs-models [13] and filter models [38]. In this thesis we are mainly
interested in graph models, first because they constitute the simplest (but very
rich) class of continuous models, and second because all the other classes of webbed
models can be seen as variations of this one. Hence, in the next subsection we will
provide a more detailed description of graph models.

We just recall now some basic facts about the other classes of continuous webbed
models we are interested in.

The class of K-models, isolated by Krivine [72], contains all graph models and
also extensional models, such as, e.g., Scott’s D∞. The domain underlying a K-
model is the complete lattice (S(D),⊆), where S(D) is the set of all the initial
segments of some preordered set (D,�). Note that graph models can be seen as
K-models having a trivial preorder on D, indeed in this case S(D) = P(D).

The class of pcs-models, introduced by Berline in [13], is the simplest class in-
cluding all K-models and allowing us to work outside the framework of complete
lattices. The domain underlying a pcs-model is (Scoh(D),⊆) where Scoh(D) de-
notes the set of all coherent initial segments of some preordered set with coherences
(D,�,¨). All binary prime algebraic domains can be described in such a way.

The class of filter models was defined by Coppo et al. in [38], but the first
examples of filter models were given in [39, 9]. Here, the underlying domain is of
the form (F(D),⊆) where F(D) is the set of all filters of a preordered set (D,�).
Note that the usual definition of filter models (see, e.g., [37]) entails that they are
semi-extensional, in the sense that they are asked to satisfy a condition equivalent
to λ ◦ Ap ≤ IdD. Semi-extensionality makes easier the proof theoretic study of the
models when viewed as “intersection type assignment systems” [44] but excludes,
for instance, all graph models.

Definition of graph models

The class of graph models belongs to Scott-continuous semantics, it is the simplest
class of models of the untyped λ-calculus; nevertheless it is very rich. All known
classes of webbed models can be presented as variations of this class (see [13]), and,
even more, as variations of the simplest graph model, which is Engeler’s model E

(Example 5.1.12(i)). Moreover E is, from far, the simplest of all non-syntactical
models. Historically, the first graph model was Plotkin and Scott’s Pω [85, 96],
and it was followed soon by E [47, 89]. The word graph refers to the fact that the
continuous functions are encoded in the model via (a sufficient fragment of) their
graphs, namely their traces, as recalled below. For more details we refer to [13], and
to [14] which is a recent survey of the known properties of this class.
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Definition 1.4.4. A total pair G is a pair (G, iG) where G is an infinite set and
iG : G∗ ×G→ G is an injective total function.

Definition 1.4.5. The graph model generated by the total pair G is the reflexive
cpo G = ((P(G),⊆), λG,ApG), where λ

G = i+G ◦ Tr and ApG is a left inverse of λ
G.

More precisely:

(i) λ
G(f) = {iG(a, α) : a ∈ G∗ and α ∈ f(a)},

(ii) ApG(X)(Y ) = {α ∈ G : (∃a ⊆f Y ) iG(a, α) ∈ X}.

In particular, the function iG encodes the trace of the Scott continuous function
f : P(G) → P(G) by λ

G(f) ⊆ G. The total pair G = (G, iG) is called the “web” of
the model. Hereafter, unless otherwise specified, we suppose that a graph model G

has a web denoted by G.
It is easy to check that, in the case of a graph model G , the interpretation

|M |G : EnvP(G) → P(G) of M ∈ Λ becomes:

• |x|Gρ = ρ(x),

• |MN |Gρ = {α ∈ G : (∃a ⊆f |N |Gρ ) iG(a, α) ∈ |M |Gρ },

• |λx.M |Gρ = {iG(a, α) : a ∈ G∗ and α ∈ |M |Gρ[x:=a]}.

Example 1.4.6. Given a graph model G :
|I|G ≡ |λx.x|G = {iG(a, α) : a ∈ G∗ and α ∈ a},
|T|G ≡ |λxy.x|G = {iG(a, iG(b, α)) : a, b ∈ G∗ and α ∈ a},
|F|G ≡ |λxy.y|G = {iG(a, iG(b, α)) : a, b ∈ G∗ and α ∈ b}.

Concerning |Ω|G we only use the following characterization (the details of the
proof are, for example, worked out in [16, Lemma 4]).

Lemma 1.4.7. If G is a graph model, then

|Ω|G ≡ |δδ|G = {α : (∃a ⊆ |δ|G ) iG(a, α) ∈ a}.

In the following “graph theory” will abbreviate “λ-theory of a graph model”.

Proposition 1.4.8. For all graph models G , Th(G ) 6= λβ, λβη.

Indeed, it was long ago noticed that no graph model could be extensional, and
recently noticed in [29] that |Ω3|

G ⊆ |1Ω3|
G , where Ω3 ≡ (λx.xxx)(λx.xxx), holds

in all graph models G (because |Ω3|
G ⊆ rg(iG)). Hence, Selinger’s result [99, Cor. 4]

stating that in any partially ordered model whose theory is λβ or λβη the interpre-
tations of closed λ-terms are discretely ordered, implies that the theory of a graph
model cannot be λβ, λβη.

Nevertheless, graph models represent a wealth of different λ-theories, as pointed
out in the following proposition.

Proposition 1.4.9. (Berline and Salibra [16]) The set of graph theories is 2ℵ0-broad
(and hence, 2ℵ0-wide [66]).
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1.4.3 Stable and strongly stable semantics

The stable semantics and the strongly stable semantics are refinements of Scott-
continuous semantics which were successively introduced respectively by Berry [17,
18] and Ehrhard [25], mainly for proving some properties of typed λ-calculi with
a flavour of sequentiality [87, 17, 18, 21]. For this thesis it is enough to know the
following. In this framework, the objects are particular Scott domains called DI-
domains (resp. DI-domains with coherences) where, in particular, u⊓v is defined for
all pairs (u, v) of compatible elements. The morphisms are, respectively, the stable
and strongly stable functions between such domains.

A function between DI-domains is stable if it is Scott continuous and furthermore
commutes with “infs of compatible elements”. A strongly stable function between
DI-domains with coherence, is a stable function preserving coherence. The relevant
order on the corresponding cpo’s of functions, respectively [D →s D] and [D →ss D]
is, in both cases, Berry’s order ≤s which is defined as follows:

f ≤s g if, and only if, ∀x∀y (x ⊑D y ⇒ f(x) = f(y) ⊓ g(x)).

The following basic properties of Berry’s order are easy to check.

Remark 1.4.10.

(i) f ≤s g implies that f is pointwise smaller than g,

(ii) f ≤s g and g constant imply f constant.

As soon as we are working with stable functions, the following alternative notion
of trace makes sense: Trs(f) is defined in the same way as Tr(f) in Section 1.4.2 but
retains only the pairs (d, e) of compact elements satisfying: d is minimal such that
e ⊑D f(d); and similarly with the pairs (a, α) if D is furthermore a prime algebraic
cpo. For example, if D = (P(D),⊆), for some set D, then Tr(IdD) = {(a, α) : α ∈
a ∈ D∗} while Trs(IdD) = {({α}, α) : α ∈ D}.

The classes of webbed models which have been considered inside these semantics
are: Girard’s G-models (reflexive coherences) for the stable semantics and Ehrhard’s
H-models (reflexive hypercoherences) for the strongly stable semantics.

Compared to the models studied so far, the interpretation of terms in G- and
H- models is more economical, because the encoding of (strongly) stable functions
is done via a more economical notion of trace. Another advantage of these classes is
that we have extensional models without having to introduce a preorder. The price
to pay is first that we have to check for the minimality condition, and second that
the definition of the class of webs of H-models is much more complicate than for
graph or even for G- models.
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Working outside concrete categories

Haskell Curry may be surprised to hear that he has spent a
lifetime doing fundamental work in category theory.
(Joachim Lambek, from [73])

I
n denotational semantics, ccc’s without enough points arise naturally when mor-
phisms are not functions, as e.g., sequential algorithms [21] or strategies in var-
ious categories of games [3, 61]. In this chapter we show that any categorical

model of λ-calculus can be presented as a λ-model, even when the underlying ca-
tegory has not enough points. We also provide sufficient conditions for categorical
models living in cpo-enriched ccc’s to have H∗ as equational theory. In the next
chapter, we will build a rather simple categorical model having not enough points
and satisfying these conditions.

2.1 Introduction

The first non-syntactical model of the untyped λ-calculus, namely D∞, has been
constructed by Scott [95] in 1969, but only at the end of the seventies researchers
were able to provide general definitions of a model of λ-calculus (e.g., Barendregt
[7, 8], Lambek [73], Berry [19, 20], Hindley and Longo [56], Meyer [80] and Scott
[98]). We refer the reader to [8, 36, 19] for more details.

Barendregt, inspired by proof theoretical considerations such as ω-incompleteness
[86], proposed as models of λ-calculus both the class of λ-algebras and that of λ-
models. All the other notions of model coincide essentially with λ-models, except
for categorical models which have been proved equivalent to λ-algebras.

More specifically, given a λ-model, it is always possible to define a ccc where it can
be viewed as a reflexive object with enough points [5, Sec. 9.5]. On the other side, by
applying a construction due to Koymans [71] and based on work of Scott, arbitrary
reflexive objects in ccc’s give rise to λ-algebras and to all of them. Moreover, using
this method, it turns out that the λ-models are exactly those λ-algebras that come
from reflexive objects with enough points.

The class of λ-algebras is not sound for λ-theories since, with the failure of the
Meyer-Scott axiom, it can happen for two non β-convertible λ-terms M,N that
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(under the interpretation) M = N but λx.M 6= λx.N . Nevertheless, λ-algebras
can be viewed as desirable since they satisfy all the provable equations of λ-calculus
(i.e., if M =λβ

N , then A |= M = N holds for every λ-algebra A) and since
they constitute an equational class. Hence, Koymans had only as aim to provide
λ-algebras. But this led to a common belief that only the reflexive objects having
enough points can give rise to λ-models!

We will show in the first part of this chapter that this belief is not true, and
prove that there exists a simple method for turning any reflexive object U of a ccc
into a λ-model. Using this method, we can easily switch from the categorical to
the algebraic interpretation of λ-terms and vice versa. We notice that the resulting
λ-model is isomorphic to the λ-model obtained by freely adjoining the variables
of λ-calculus as indeterminates to the λ-algebra associated with U by Koymans’
construction.

It is well known that there exist several models of λ-calculus having as equational
theory H∗, the unique maximal consistent sensible λ-theory [8, 53, 45]. The most
general result in this context is in Gouy’s thesis [53]. Gouy introduces a notion of
“regular ccc” and characterizes a class of models, all living in regular ccc’s, which can
be suitably stratified (using stratification is an original idea of Hyland [59]) yielding
H∗ as equational theory. Regular ccc’s are concrete by definition. For instance the
Scott-continuous, stable and strongly stable semantics are regular. In the second
part of the chapter we generalize Gouy’s result in order to cover also models living
in non-concrete (but cpo-enriched) ccc’s. This generalization is necessary to cover
the categorical model we will build in the next chapter.

2.2 From ccc’s to λ-models

We will prove that any reflexive object of an arbitrary ccc gives rise to a λ-model,
when choosing appropriately the underlying combinatory algebra. Before going
further, let us remark that our construction does not give anything new for the
categories which do have enough points. Moreover, there is no absolute need of
considering the combinatory algebra associated with a categorical model, in order
to study the λ-theory thereof: it is often a matter of taste whether to use categorical
or algebraic approaches. For example, in [45] and [65], the authors provide reflex-
ive objects in categories of games (hence without enough points) and prove that
the induced λ-theories are H∗ and BT , respectively. What we are proposing here
is simply an algebraic counterpart of any categorical model, which satisfies weak
extensionality.

We briefly recall below the classic construction due to Koymans [71] of the λ-
algebra associated with a reflexive object and show how we can obtain a λ-model
getting rid of the “enough points” hypothesis.
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2.2.1 The crucial point of the construction

Given any reflexive object U of a ccc C, Koymans’ construction takes as com-
binatory algebra associated with U the set C(✶, U) equipped with the following
application operator: a • b = ev ◦ 〈Ap ◦ a, b〉. This combinatory algebra1 is, in
general, only a λ-algebra; it is a λ-model if, and only if, U has enough points.

Hence, the choice of C(✶, U), although canonical, it is not appropriate if we
want to provide a λ-model in all cases. We will prove in the next subsection that
a suitable choice for the carrier set of the combinatory algebra associated with U

is the set Cf(U
Var, U) of those morphisms in C(UVar, U) only depending on a finite

number of “arguments”.
Speaking of UVar asks for countable products in C, a hypothesis which usually

holds in practice. Nevertheless, we can also get rid of this additional hypothesis;
the price to pay is to take a quotient over ∪I⊆fVarC(U I , U), instead of Cf(U

Var, U).
This approach is sketched in Subsection 2.2.3.

2.2.2 From reflexive objects to λ-models

The aim is here to turn a (fixed) categorical model U = (U,Ap, λ), living in a ccc
C with countable products, into a λ-model CU .

This construction is performed in two steps: (i) we define an environment λ-
model SU associated with U , (ii) we use the correspondence between environment
λ-models and λ-models recalled in Subsection 1.3.4 to obtain CU .

The associated applicative structure

The categorical interpretation of a λ-term can be viewed as a morphism in C(UVar, U)
only depending on a finite number of variables. In order to capture this informal
idea, we now focus our attention on the “finitary” morphisms in C(UVar, U).

Definition 2.2.1. A morphism f ∈ C(UVar, U) is finitary if there exist a finite set
J of variables, and a morphism fJ ∈ C(UJ , U) such that f = fJ ◦ ΠVar

J .

Notation 2.2.2. The set of all finitary morphisms will be denoted by Cf(U
Var, U).

Of course, a finitary morphism can be decomposed in many different ways, and
there exists a minimum set of variables on which it depends. Hence, for all f ∈
Cf(U

Var, U), we let:

- Ad(f) = {(fJ , J) : J ⊆f Var, f = fJ ◦ΠVar
J } be the set of adequate pairs of f ,

- domf(f) = ∩(fJ ,J)∈Ad(f)J be the finitary domain of f .

1 Indeed, it is possible to prove that there exist two morphisms in C(✶, U) which play the roles
of k and s.
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The set C(UVar, U) can be naturally seen as an applicative structure whose
application is defined by a • b = ev ◦ 〈Ap ◦ a, b〉. This operation preserves the
property of being finitary, hence the set of finitary morphisms is closed under this
operation. Indeed, given f, g ∈ Cf(U

Var, U), it is easy to verify that:

- f • g ∈ Cf(U
Var, U),

- if (fJ , J) ∈ Ad(f) and (gI , I) ∈ Ad(g), then ((fJ ◦ΠJ∪I
J ) • (gI ◦ΠJ∪I

I ), J ∪ I) ∈
Ad(f • g),

- domf(f • g) = domf(f) ∪ domf(g).

Therefore, we can choose the set Cf(U
Var, U) of finitary morphisms together with

the operation • as applicative structure associated with U .

Definition 2.2.3. The applicative structure AU = (AU , •) associated with the ca-
tegorical model U is defined by:

- AU = Cf(U
Var, U),

- a • b = ev ◦ 〈Ap ◦ a, b〉.

We are going to show that AU gives rise to an environment λ-model SU , which is
extensional precisely when U is an extensional categorical model (i.e., λ◦Ap = IdU).
We first prove some basic properties of the categorical interpretation which are
necessary to ensure that our definition of SU will be sound. Roughly speaking, we
show that the value of |M |I only depends on the subset FV(M) ⊆ I.

Some properties of the interpretation

As a matter of notation, given a set I ⊆ Var and an environment ρ ∈ EnvAU
, we

denote by ρI the morphism 〈ρ(x)〉x∈I ∈ C(UVar, U I).

Lemma 2.2.4. Let M be a λ-term and I be adequate for M . For all J ⊆f Var such
that I ⊆ J we have:

(i) ΠJ
I ◦ ρ

J = ρI , for every ρ ∈ EnvAU
,

(ii) |M |J = |M |I ◦ ΠJ
I .

Proof. (i) From the definition of ΠJ
I given in Subsection 1.1.6 we have that ΠJ

I ◦ρ
J =

〈πJx 〉x∈I ◦ ρ
J . By applying the axiom (pair) this is equal to 〈πJx ◦ ρ

J〉x∈I which is, by
definition of πJx , exactly 〈ρ(x)〉x∈I = ρI .
(ii) By induction over the structure of M .
If M ≡ x then |x|J = πJx which is equal, by Remark 1.1.3(i), to πIx ◦ΠJ

I = |x|I ◦ΠJ
I .

If M ≡ NP , then

|NP |J = ev ◦ 〈Ap ◦ |N |J , |P |J〉 by def. of |−|J
= ev ◦ 〈Ap ◦ |N |I ◦ ΠJ

I , |P |I ◦ ΠJ
I 〉 by I.H.

= ev ◦ 〈Ap ◦ |N |I , |P |I〉 ◦ ΠJ
I by (pair)

= |NP |I ◦ ΠJ
I by def. of |−|I
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If M ≡ λx.N , then

|λx.N |J = λ ◦ Λ(|N |J∪{x}) by def. of |−|J
= λ ◦ Λ(|N |I∪{x} ◦ Π

J∪{x}
I∪{x} ) by I.H.

= λ ◦ Λ(|N |I∪{x} ◦ (ΠJ
I × Id)) by Rem. 1.1.3(ii)

= λ ◦ Λ(|N |I∪{x}) ◦ ΠJ
I by (Curry)

= |λx.N |I ◦ ΠJ
I by def. of |−|I . �

Lemma 2.2.5. Let M ∈ Λ and ρ ∈ EnvAU
. For all J1, J2 ⊆f Var adequate for M ,

we have that |M |J1
◦ ρJ1 = |M |J2

◦ ρJ2.

Proof. Let us consider a set I ⊆f Var such that J1 ⊆ I and J2 ⊆ I.

|M |J1
◦ ρJ1 = |M |J1

◦ ΠI
J1
◦ ρI by Lemma 2.2.4(i)

= |M |I ◦ ρ
I by Lemma 2.2.4(ii)

= |M |J2
◦ ΠI

J2
◦ ρI by Lemma 2.2.4(ii)

= |M |J2
◦ ρJ2 by Lemma 2.2.4(i) �

The associated environment λ-model

As a consequence of Lemma 2.2.5, the following definition is sound.

Definition 2.2.6. Let us set SU = (AU , ❬−❪), where:

- AU = (AU , •) is the applicative structure associated with U by Definition 2.2.3,

- ❬−❪ : Λ × EnvAU
→ AU is defined by ❬M❪ρ = |M |I ◦ ρ

I for some adequate I.

We are going to show that the structure SU is an environment λ-model (The-
orem 2.2.12). In order to prove this result we need to define both an “updating”
morphism ηz and a canonical injection ιJ,x, and to prove some technical lemmata.
We start defining ηz ∈ C(UVar ×U,UVar) whose intuitive behaviour is to replace the
z-th component of UVar by a new value which is obtained applying π2.

Definition 2.2.7. For all z ∈ Var, we define componentwise a morphism ηz ∈
C(UVar × U,UVar) as follows:

ηxz =

{
π2 if x ≡ z,
πVar
x ◦ π1 otherwise,

where π1 ∈ C(UVar × U,UVar) and π2 ∈ C(UVar × U,U) are the projections.

Remark 2.2.8. From the definition of ηz, the following equalities hold:

(i) πVar
x ◦ ηx = π2,

(ii) πVar
y ◦ ηx = πVar

y ◦ π1 if x 6≡ y.
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The following lemma is essential for showing that, under the interpretation in
SU , M = N implies λx.M = λx.N .

Lemma 2.2.9. Let f1, . . . , fn ∈ Cf(U
Var, U). For all z ∈ Var, if z /∈ ∪k≤ndomf(fk),

then:

(〈f1, . . . , fn〉 × Id) = 〈〈f1, . . . , fn〉, π
Var
z 〉 ◦ ηz, (2.1)

i.e., the following diagram commutes:

UVar
〈Id,πVar

z 〉 // UVar × U
〈f1,...,fn〉×Id // Un × U

UVar × U

ηz

OO

Id

88ppppppppppp

Proof. By (pair) and Remark 2.2.8(i) we obtain that:

〈〈f1, . . . , fn〉, π
Var
z 〉 ◦ ηz = 〈〈f1, . . . , fn〉 ◦ ηz, π2〉.

Hence, it is sufficient to prove that 〈f1, . . . , fn〉 ◦ ηz = 〈f1, . . . , fn〉 ◦ π1. Since every
fk is finitary and z /∈ domf(fk) there exist (f ′

1, J1) ∈ Ad(f1), . . . , (f
′
n, Jn) ∈ Ad(fn)

such that z /∈ ∪k≤nJk. We conclude the proof as follows.

〈f1, . . . , fn〉 ◦ ηz =
= 〈f ′

1 ◦ ΠVar
J1
, . . . , f ′

n ◦ ΠVar
Jn

〉 ◦ ηz since fk = f ′
k ◦ ΠVar

Jk

= 〈f ′
1 ◦ ΠVar

J1
◦ ηz, . . . , f

′
n ◦ ΠVar

Jn
◦ ηz〉 by (pair)

= 〈f ′
1 ◦ ΠVar

J1
◦ π1, . . . , f

′
n ◦ ΠVar

Jn
◦ π1〉 by Rem. 2.2.8(ii) since z /∈ ∪k≤nJk

= 〈f1 ◦ π1, . . . , fn ◦ π1〉 since fk = f ′
k ◦ ΠVar

Jk

= 〈f1, . . . , fn〉 ◦ π1 by (pair) �

We define now a “canonical” injection ιJ,x ∈ C(UJ∪{x}, UVar) in such a way that,
for all J ⊆f Var and x /∈ J , we have:

ΠVar
J∪{x} ◦ ιJ,x = IdUJ∪{x} . (2.2)

Definition 2.2.10. For all x ∈ Var and J ⊆f Var we define componentwise a
morphism ιJ,x ∈ C(UJ∪{x}, UVar) as follows:

ιzJ,x =

{
π
J∪{x}
z if z ∈ J ∪ {x},

λ ◦ Λ(IdU)◦!UJ∪{x} otherwise.

Of course, it is easy to verify that Property (2.2) is guaranteed by the above
definition. We claim that the choice of λ◦Λ(IdU)◦!UJ∪{x} is canonical since λ◦Λ(IdU)
is nothing else than the point of U corresponding to IdU under the morphism λ.
However, this fact does not play any role in the following proof.
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Lemma 2.2.11. Let f ∈ Cf(U
Var, U) and (fJ , J) ∈ Ad(f). Then for all x /∈ J , we

have:
f × Id = 〈f, πVar

x 〉 ◦ ιJ,x ◦ (ΠVar
J × Id)

i.e., the following diagram commutes:

UVar × U

f×Id
,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

ΠVar
J ×Id

// UJ × U ≃ UJ∪{x}
ιJ,x // UVar

〈f,πVar
x 〉

��
U × U

Proof. Since by hypothesis f = fJ ◦ΠVar
J , this is equivalent to ask that the following

diagram commutes, and this is obvious by (2.2) since 〈ΠVar
J , πVar

x 〉 = ΠVar
J∪{x}.

UVar × U
ΠVar

J ×Id
// UJ × U ≃ UJ∪{x}

fJ×Id

((QQQQQQQQQQQQ

ιJ,x // UVar

〈ΠVar
J ,πVar

x 〉

%%JJJJJJJJJJ

U × U UJ∪{x}
fJ×Id
oo

We are now able to prove the promised theorem stating that the structure SU

associated with U by Definition 2.2.6 is actually an environment λ-model.

Theorem 2.2.12. Let U be a categorical model living in a ccc C with countable
product. Then:

1) SU is an environment λ-model,

2) SU is extensional if, and only if, U is extensional.

Proof. 1) We prove that SU satisfies the conditions (i) − (v) of the definition of
environment λ-model recalled in Subsection 1.3.4. In each item we let I ⊆f Var be
any set adequate for the λ-term in the left hand sight of the equality.
(i) ❬z❪ρ = |z|I ◦ ρ

I = πIz ◦ ρ
I = ρ(z).

(ii) ❬PQ❪ρ = |PQ|I ◦ ρ
I by def. of ❬−❪

= (|P |I • |Q|I) ◦ ρ
I by def. of •

= ev ◦ 〈Ap ◦ |P |I , |Q|I〉 ◦ ρ
I by (pair)

= ev ◦ 〈Ap ◦ |P |I ◦ ρ
I , |Q|I ◦ ρ

I〉 by def. of • and ❬−❪
= ❬P ❪ρ • ❬Q❪ρ

(iii) ❬λx.P ❪ρ • a = (|λx.P |I ◦ ρ
I) • a by def. of ❬−❪ρ

= ev ◦ 〈Ap ◦ (|λx.P |I ◦ ρ
I), a〉 by def. of •

= ev ◦ 〈Ap ◦ λ ◦ Λ(|P |I∪{x}) ◦ ρ
I , a〉 by def. of |−|I

= ev ◦ 〈Λ(|P |I∪{x}) ◦ ρ
I , a〉 since Ap ◦ λ = Id[U⇒U ]

= ev ◦ 〈Λ(|P |I∪{x} ◦ (ρI × Id)), a〉 by (Curry)
= |P |I∪{x} ◦ (ρI × Id) ◦ 〈Id, a〉 by (beta)
= |P |I∪{x} ◦ 〈ρ

I , a〉 by (pair)
= ❬P ❪ρ[x:=a] by def. of ❬−❪ρ
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(iv) Obvious since, by Lemma 2.2.5, ❬M❪ρ = |M |FV(M) ◦ ρ
FV(M).

(v) ❬λz.M❪ρ = |λz.M |I ◦ ρ
I by def. of ❬−❪

= λ ◦ Λ(|M |I∪{z}) ◦ ρ
I by def. of |−|I

= λ ◦ Λ(|M |I∪{z} ◦ (ρI × Id)) by (Curry).
Since ρ(x) is finitary for all x ∈ I, we can suppose by α-conversion that z /∈
∪x∈Idomf(ρ(x)). Hence we can apply Lemma 2.2.9 and obtain:

λ ◦ Λ(|M |I∪{z} ◦ (ρI × Id)) = λ ◦ Λ(|M |I∪{z} ◦ 〈ρ
I , πVar

z 〉 ◦ ηz) by Lemma 2.2.9
= λ ◦ Λ(❬M❪ρ[z:=πVar

z ] ◦ ηz) by def. of ❬−❪

Since, by hypothesis, ❬M❪ρ[z:=a] = ❬N❪ρ[z:=a] for every a ∈ AU this also holds for
a = πz, hence λ ◦ Λ(❬M❪ρ[z:=πz ] ◦ ηz) = λ ◦ Λ(❬N❪ρ[z:=πz ] ◦ ηz). It is, now, routine to
check that λ ◦ Λ(❬N❪ρ[z:=πz ] ◦ ηz) = ❬λz.N❪ρ.
2) (⇒) Let x ∈ Var. Since πVar

x is finitary we have that πVar
x ∈ AU . For all a ∈ AU

we have:

(λ ◦ Ap ◦ πVar
x ) • a = ev ◦ 〈Ap ◦ λ ◦ Ap ◦ πVar

x , a〉 by def. of •
= ev ◦ 〈Ap ◦ πVar

x , a〉 by Ap ◦ λ = IdU⇒U

= πVar
x • a by def. of •

If SU is extensional, this implies λ◦Ap◦πVar
x = πVar

x . Since πVar
x is an epimorphism,

we get λ ◦ Ap = IdU .
(⇐) Let a, b ∈ AU , then there exist (aJ , J) ∈ Ad(a) and (bI , I) ∈ Ad(b) such
that I = J . Let us set φ = ιJ,x ◦ (ΠVar

J × Id) where x /∈ J and ιJ,x is defined
in Definition 2.2.10. Suppose that for all c ∈ AU we have (a • c = b • c) then, in
particular, ev◦〈Ap ◦ a, πVar

x 〉 = ev◦〈Ap ◦ b, πVar
x 〉 and this implies that 〈Ap ◦ a, πVar

x 〉◦
φ = 〈Ap ◦ b, πVar

x 〉 ◦ φ. By applying Lemma 2.2.11, we get 〈Ap ◦ a, πVar
x 〉 ◦ φ =

(Ap ◦ a) × Id and 〈Ap ◦ b, πVar
x 〉 ◦ φ = (Ap ◦ b) × Id. Then Ap ◦ a = Ap ◦ b which

implies λ ◦ Ap ◦ a = λ ◦ Ap ◦ b. We conclude since λ ◦ Ap = IdU .

Note that, by using a particular environment ρ̂, it is possible to “recover” the
categorical interpretation |M |I from the interpretation ❬M❪ρ in the environment
λ-model. Let us fix the environment ρ̂(x) = πVar

x for all x ∈ Var, then we have that:

❬M❪ρ̂ = |M |I ◦ ΠVar
I ,

i.e., ❬M❪ρ̂ is the morphism |M |I “viewed” as an element of C(UVar, U).

The associated λ-model

The second step of our construction is very simple. Indeed, it is easy to check that the
λ-model corresponding to the environment λ-model SU = ((Cf(U

Var, U), •), ❬−❪)
under the correspondence of Subsection 1.3.4 is exactly

CU = (Cf(U
Var, U), •, ❬K❪, ❬S❪).

Of course, the categorical model U and the λ-model CU have the same equational
theory. Moreover, if U does have enough points, then the λ-model associated with
U by Koymans’ construction embeds canonically into CU .
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2.2.3 Working without countable products

The construction provided in the previous section works if the underlying category
C has countable products. We remark, once again, that this hypothesis is not really
restrictive since all the categories used in the literature in order to obtain models
of λ-calculus satisfy this requirement. Nevertheless, the discussions on the relation
between categorical and algebraic models of λ-calculus in [73, 74, 101] can help us to
get rid of this additional hypothesis. We give here the basic ideas of this approach.

In [101], Selinger implicitly suggests that every λ-algebra A can be embedded
into a λ-model A [Var], which is obtained from A by freely adjoining the variables
of λ-calculus as indeterminates (see also the discussion of C-monoids in [74]). More
precisely he shows that, under the interpretation in A [x1, . . . , xn], M = N implies
λx.M = λx.N as soon as M,N are λ-terms with free variables among x1, . . . , xn.
Moreover, if A is the λ-algebra associated with a categorical model U by Koymans’
construction, then for all I ⊆f Var the free extension A [I] is isomorphic (in the
category of combinatory algebras and homomorphisms between them) to C(U I , U)
endowed with the natural structure of combinatory algebra.

Since there exist canonical homomorphisms A [I] 7→ A [J ] and C(U I , U) 7→
C(UJ , U) which are one-to-one if I ⊆ J ⊆f Var, we can construct the inductive limit
of both Pf(Var)-indexed diagrams. From one side we obtain a λ-model isomorphic
to A [Var] and from the other side we get A′ =

⋃
I⊆fVar C(U I , U)/∼, where ∼ is the

equivalence relation defined as follows: if f ∈ C(UJ , U) and g ∈ C(U I , U), then

f ∼ g if, and only if, f ◦ ΠI∪J
J = g ◦ ΠI∪J

I .

The above isomorphism is obviously preserved at the limit; hence A′, endowed with
the natural application operator on the equivalence classes, is also a λ-model. This
approach, although less simple and natural, also works in case the underlying cate-
gory C does not have countable products. Finally, it is easy to check that if C does
have countable products then the λ-model A′ is isomorphic to CU .

2.3 Well stratifiable categorical models

The λ-theory H∗ was first introduced by Hyland [59] and Wadsworth [108], who
proved (independently) that Th(D∞) = H∗ (see also [8, Thm. 19.2.9]). This proof
has been extended by Gouy in [53] with the aim of showing that also the stable ana-
logue of D∞ had H∗ as equational theory. However, Gouy’s result is more powerful
and covers all “well stratifiable extensional ⊥-models” living in “regular” Cartesian
closed categories. The definition of regular ccc given in [53] is general enough for in-
cluding the Scott-continuous, stable and strongly stable semantics. However, all re-
gular ccc’s have (possibly special) cpo’s as objects and (possibly special) continuous
functions as morphisms, hence only concrete categories can be regular. Concerning
models without enough points, Di Gianantonio et al. provided in [45] a similar proof,
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but it works only for non-concrete categories of games. In Franco’s phd thesis [49] it
is claimed that the proof in [45] can be generalized to all well stratifiable extensional
⊥-models, but the proof is omitted and the hypotheses which are listed there seem
too weak to obtain [49, Thm. 5.23].

In this section we will generalize Gouy’s proof to all (possibly non-concrete) cpo-
enriched ccc’s. All syntactic notions and results we will use were already present in
the literature, whilst the semantic results are our own contribution.

2.3.1 Outline of the proof

The structure of our proof and the techniques we will use are quite classic. The idea
is that we want to find a class of models (as large as possible) satisfying a (strong)
Approximation Theorem. More precisely, we want to be able to characterize the
interpretation of a λ-term M as the least upper bound of the interpretations of its
approximants. These approximants are particular terms of an auxiliary calculus,
due to Wadsworth and called labelled λ⊥-calculus , which is strongly normalizable
and Church-Rosser.

Then, we define the “well stratifiable ⊥-models”, we show that they model also
Wadsworth’s calculus and satisfy the Approximation Theorem. As a consequence,
we get that every well stratifiable ⊥-model U satisfies Th(U ) ⊇ BT ; in particular,
U is sensible. Finally we prove, under the additional hypothesis that U is exten-
sional, that Th(U ) = H∗ (using the characterization of H∗ given in terms of Böhm
trees; cf. Subsection 1.2.3).

2.3.2 A more uniform interpretation of λ-terms

The fact that λ-terms are interpreted in different homsets C(U I , U) depending on
the choice of I ⊆f Var, is tedious to treat when dealing with the equalities induced
by a model. Fortunately, if the underlying category has countable products we are
able to interpret all λ-terms in the homset C(UVar, U) just slightly modifying the
definition of interpretation. Indeed, given M ∈ Λ we can define |M |Var ∈ C(UVar, U)
by structural induction on M , as follows:

• |x|Var = πVar
x ,

• |NP |Var = |N |Var • |P |Var,

• |λx.N |Var = λ ◦ Λ(|N |Var ◦ ηx),

where ηx ∈ C(UVar × U,UVar) is the “updating” morphism of Definition 2.2.7. In
the next proposition we show that it is possible to characterize the interpretation
❬−❪ of the λ-model CU associated with U in terms of |−|Var.

Proposition 2.3.1. Let CU be the λ-model associated with U . For all M ∈ Λ and
ρ ∈ EnvAU

we have ❬M❪ρ = |M |Var ◦ ρ
Var.
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Proof. Once recalled that ❬M❪ρ = |M |I ◦ ρ
I for any adequate I ⊆f Var, we proceed

by induction on M . The only non-trivial case is M ≡ λx.N :

❬λx.N❪ρ = |λx.N |I ◦ ρ
I for some adequate I

= Ap ◦ Λ(|N |I∪{x} ◦ (ρI × Id)) by def. of |−|I plus (Curry)
= Ap ◦ Λ(|N |I∪{x} ◦ 〈ρ

I , πVar
x 〉 ◦ ηx) by Lemma 2.2.9

= Ap ◦ Λ(|N |I∪{x} ◦ (ρ[x := πVar
x ])I∪{x} ◦ ηx) by def. of ρ[x := πVar

x ]
= Ap ◦ Λ(|N |Var ◦ (ρ[x := πVar

x ])Var ◦ ηx) by I.H.

Since easy calculations provide (ρ[x := πVar
x ])Var◦ηx = ηx◦(ρ

Var×Id), we can conclude
the proof as follows: Ap ◦ Λ(|N |Var ◦ (ρ[x := πVar

x ])Var ◦ ηx) = Ap ◦ Λ(|N |Var ◦ ηx ◦
(ρVar × Id)) = Ap ◦ Λ(|N |Var ◦ ηx) ◦ ρ

Var = |λx.N |Var ◦ ρ
Var.

Hence, for the sake of simplicity, we will work in ccc’s having countable products.
We remark once again that this is just a simplification: all the work done in this
section could be adapted to cover also categorical models living in ccc’s without
countable products but the statements and the proofs would be significantly more
technical.

2.3.3 Stratifiable models in cpo-enriched ccc’s

The classic method for proving that the theory of a categorical model is H∗ re-
quires that the λ-terms are interpreted as elements of a cpo and that the morphisms
involved in the definition of the interpretation are continuous functions. Thus, work-
ing possibly outside concrete categories, it becomes natural to consider categorical
models living in cpo-enriched ccc’s. We recall that, roughly speaking, a ccc C is cpo-
enriched if every homset C(A,B) has a structure of cpo: (C(A,B),⊑(A,B),⊥(A,B)).
See Subsection 1.1.6 for more details.

From now on, and until the end of the chapter, we consider a fixed (non-trivial)
categorical model U = (U,Ap, λ) living in a cpo-enriched ccc C having countable
products and we work with the interpretation function defined in the previous
subsection.

As an easy consequence of Lemma 1.1.4 we get the following corollary.

Corollary 2.3.2. The operations • and λ ◦ Λ(− ◦ ηx) are continuous.

To lighten the notation we will write ⊑ and ⊥ respectively for ⊑(UVar,U) and ⊥(UVar,U).

Definition 2.3.3. The model U is a ⊥-model if the following two conditions are
satisfied:

(i) ⊥ • a = ⊥ for all a ∈ C(UVar, U),

(ii) λ ◦ Λ(⊥(UVar×U,U)) = ⊥.



30 2. Working outside concrete categories

Stratifications of models are done by using special morphisms, acting at the level
of C(U,U) and called projections .

Definition 2.3.4. Given an object U of a category C, a morphism p ∈ C(U,U) is
a projection from U to U if p ⊑(U,U) IdU and p ◦ p = p.

From now on, we also fix a family (pk)k∈◆ of projections from U to U such that
(pk)k∈◆ is increasing with respect to ⊑(U,U) and ⊔k∈◆pk = IdU .

Notation 2.3.5. Given a morphism a ∈ C(UVar, U) we write ak for pk ◦ a.

Since the pk’s are increasing, ⊔k∈◆pk = IdU , and composition is continuous, we
have for every morphism a ∈ C(UVar, U):

ak ⊑ a, (2.3)

a = ⊔k∈◆ak. (2.4)

Definition 2.3.6. The model U is called:

(i) stratified (by (pk)k∈◆) if ak+1 • b = (a • bk)k;

(ii) well stratified (by (pk)k∈◆) if, moreover, a0 • b = (a • ⊥)0.

Of course, the fact that U is a (well) stratified model depends on the family
(pk)k∈◆ we are considering. Hence, it is natural and convenient to introduce the
notion of (well) stratifiable model.

Definition 2.3.7. The model U is stratifiable (well stratifiable) if there exists a
family (pk)k∈◆ making U stratified (well stratified).

The aim of this section is in fact to prove that every extensional well stratifiable
⊥-model has H∗ as equational theory.

2.3.4 Interpreting the labelled λ⊥-terms in U

We recall now the definition of the labelled λ⊥-calculus (see [108] or [8, Sec. 14.1]).
As usual, we consider a set C = {ck : k ∈ ◆} of constants called labels , together
with a constant ⊥ to indicate lack of information. The set Λlab

⊥ of labelled λ⊥-terms
is inductively defined as follows:

• ⊥ ∈ Λlab
⊥ ;

• x ∈ Λlab
⊥ , for every variable x;

• if M,N ∈ Λlab
⊥ then MN ∈ Λlab

⊥ ;

• if M ∈ Λlab
⊥ then λx.M ∈ Λlab

⊥ , for every variable x;
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• if M ∈ Λlab
⊥ then ckM ∈ Λlab

⊥ , for every label ck ∈ C.

We will denote by Λ⊥ the subset of Λlab
⊥ consisting of those terms that do not

contain any label; note that Λ ( Λ⊥ ( Λlab
⊥ .

We recall, from Subsection 2.3.3, that we work with a fixed categorical model
U living in a cpo-enriched category C having countable products, as well as an
increasing sequence (pk)k∈◆ of projections such that ⊔k∈◆pk = IdU .

The labelled λ⊥-terms can be interpreted in U , the intuitive meaning of ckM is
the k-th projection applied to the meaning ofM . Hence, we define the interpretation
function as the unique extension of the interpretation function of λ-terms such that:

• |⊥|Var = ⊥,

• |ckM |Var = pk ◦ |M |Var = (|M |Var)k, for all M ∈ Λlab
⊥ and k ∈ ◆.

Since the ccc C is cpo-enriched, all labelled λ⊥-terms are interpreted in the cpo
(C(UVar, U),⊑,⊥). Hence, we can transfer this ordering, and the corresponding
equality, on Λlab

⊥ as follows.

Definition 2.3.8. For all M,N ∈ Λlab
⊥ we set:

• M ⊑U N if and only if |M |Var ⊑ |N |Var,

• M =U N if and only if M ⊑U N and N ⊑U M .

It is straightforward to check that both ⊑U and =U are contextual.
The notion of substitution can be extended to Λlab

⊥ by setting: ⊥[M/x] = ⊥ and

(ckM)[N/x] = ck(M [N/x]) for all M,N ∈ Λlab
⊥ . We now show that U is sound for

the β-conversion extended to Λlab
⊥ .

Lemma 2.3.9. For all M,N ∈ Λlab
⊥ we have:

(λx.M)N =U M [N/x].

Proof. It is well known (cf. [8, Prop. 5.5.5]) that (λx.M)N =U M [N/x] still holds
for λ-calculi extended with constants c, if |c|Var = u◦!UVar for some u ∈ C(✶, U).
Hence, this lemma holds since the interpretation defined above it is equal to the one
obtained by setting: |ck|Var = λ ◦ Λ(pk)◦!UVar and |⊥|Var = ⊥(✶,U)◦!UVar .

2.3.5 Modelling the labelled λ⊥-calculus

We now introduce the reduction rules on labelled λ⊥-terms which generate the
labelled λ⊥-calculus.

Definition 2.3.10.

• The ω-reduction is defined by:
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– ⊥M →ω ⊥,

– λx.⊥ →ω ⊥.

• The γ-reduction is defined by:

– c0(λx.M)N →γ c0(M [⊥/x]),

– ck+1(λx.M)N →γ ck(M [ckN/x]).

• The ǫ-reduction is defined by:

– ck⊥ →ǫ ⊥,

– ck(cnM) →ǫ cmin(k,m)M .

The calculus on Λlab
⊥ generated by the ω-, γ-, ǫ-reductions is called labelled λ⊥-

calculus . Note that the β-reduction is not considered here. The main properties of
this calculus are summarized in the next theorem.

Theorem 2.3.11. [8, Thm. 14.1.12 and 14.2.3] The labelled λ⊥-calculus is strongly
normalizable and Church Rosser.

We now show that the interpretation of a labelled λ⊥-term, in a well stratified
⊥-model, is invariant along its ω-, ǫ-, γ-reduction paths.

Proposition 2.3.12. If U is a well stratified ⊥-model, then for all M,N ∈ Λlab
⊥ :

(i) ⊥M =U ⊥,

(ii) λx.⊥ =U ⊥,

(iii) ck⊥ =U ⊥,

(iv) cn(cmM) =U cmin(n,m)M ,

(v) (c0λx.M)N =U c0(M [⊥/x]),

(vi) (ck+1λx.M)N =U ck(M [ckN/x]).

Proof. (i) |⊥M |Var = |⊥|Var • |M |Var = ⊥ • |M |Var. Hence, the result follows from
Definition 2.3.3(i).
(ii) |λx.⊥|Var = λ ◦ Λ(|⊥|Var ◦ ηx) = λ ◦ Λ(⊥ ◦ ηx). Using the strictness condition
(l-strict) this is equal to λ ◦ Λ(⊥(UVar×U,U)), which is ⊥ by Definition 2.3.3(ii). On
the other side |⊥|Var = ⊥ always by definition.
(iii) |ck⊥|Var = ⊥k, hence by Inequality (2.3) and Equation (2.4) we obtain ⊥k ⊑
⊔k∈◆⊥k = ⊥. The other inequality is clear.
(iv) |cn(cmM)|Var = pn ◦ pm ◦ |M |Var. By Lemma 1.1.4, and since the sequence
(pk)k∈◆ is increasing and every pk ⊑(U,U) IdU we obtain pn ◦ pm = pmin(n,m).
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(v) |(c0λx.M)N |Var = (|λx.M |Var)0 • |N |Var by def. of | − |Var

= (|λx.M |Var • ⊥)0 by Def. 2.3.6(ii)
= |c0((λx.M)⊥)|Var by def. of | − |Var

= |c0(M [⊥/x])|Var by Lemma 2.3.9.

(vi) |(ck+1λx.M)N |Var = (|λx.M |Var)k+1 • |N |Var by def. of | − |Var

= (|λx.M |Var • (|N |Var)k)k by Def. 2.3.6(i)
= |ck((λx.M)(ckN))|Var by def. of | − |Var

= |ck(M [ckN/x])|Var by Lemma 2.3.9. �

As a consequence of the above proposition we get that every well stratifiable
⊥-model is also a model of the labelled λ⊥-calculus. In other words, the following
corollary holds.

Corollary 2.3.13. If U is a well stratified ⊥-model, then for all M,N ∈ Λlab
⊥ ,

M =ωγǫ N implies M =U N .

Proof. The result follows from Proposition 2.3.12, since the relation =U is contex-
tual.

2.3.6 Completely labelled λ⊥-terms

We are now interested in studying the properties of those labelled λ⊥-terms M
which are completely labelled. Roughly speaking, this means that every subterm of
M “has” a label.

Definition 2.3.14. The set of completely labelled λ⊥-terms is defined by induction:
ck⊥ is a completely labelled λ⊥-term, for every k; ckx is a completely labelled λ⊥-
term, for every x and k; if M,N ∈ Λlab

⊥ are completely labelled then also ck(MN)
and ck(λx.M) are completely labelled for every x and k.

Note that every completely labelled λ⊥-term is β-normal, since every lambda
abstraction is “blocked” by a ck.

Definition 2.3.15. A complete labelling L of a term M ∈ Λ⊥ is a map which
assigns to each subterm of M a natural number.

Notation 2.3.16. Given a term M ∈ Λ⊥ and a complete labelling L of M , we
denote by ML the resulting completely labelled λ⊥-term. In other words, ML is the
term defined by induction on the subterms of M as follows:

- ⊥L = cL(⊥)⊥,

- xL = cL(x)x,

- (NP )L = cL(NP )(N
LPL),

- (λx.N)L = cL(λx.N)(λx.N
L).



34 2. Working outside concrete categories

It is easy to check that the set of all complete labellings of M is directed with
respect to the following partial ordering: L1 ⊑lab L2 if, and only if, for each subterm
N of M we have L1(N) ≤ L2(N). By structural induction on the subterms of M
one proves that L1 ⊑lab L2 implies ML1 ⊑U ML2 . Therefore, the set of ML such
that L is a complete labelling of M , is also directed with respect to ⊑U .

Lemma 2.3.17. If U is a well stratified ⊥-model, then for all M ∈ Λ⊥ we have:

|M |Var = ⊔L|M
L|Var.

Proof. By straightforward induction on M , using a = ⊔k∈◆ak (Equation 2.4) and
Corollary 2.3.2.

2.3.7 The Approximation Theorem and applications

Approximation theorems are an important tool in the analysis of the λ-theories in-
duced by the models of λ-calculus. In this section we provide an Approximation
Theorem for the class of well stratified ⊥-models: we show that the interpretation
of a λ-term in a well stratified ⊥-model U is the least upper bound of the interpre-
tations of its direct approximants. From this it follows first that Th(U ) is sensible,
and second that BT ⊆ Th(U ).

Definition 2.3.18. Let M,N ∈ Λ⊥, then:

(i) N is an approximant of M if there exist a context C[ξ1, . . . , ξk] over Λ⊥,
with k ≥ 0, and M1, . . . ,Mk ∈ Λ⊥ such that N ≡ C[⊥, . . . ,⊥] and M ≡
C[M1, . . . ,Mk];

(ii) N is an approximate normal form (app-nf, for short) of M if, furthermore, it
is βω-normal.

Given M ∈ Λ, we define the set A(M) of all direct approximants of M as follows:

A(M) = {W ∈ Λ⊥ : ∃N, (M ։β N) and W is an app-nf of N}.

Remark 2.3.19. The set A(M) admits an alternative characterization:

• A(M) = {⊥} if M is unsolvable.

• Otherwise, M has a principal hnf λx1 . . . xn.xM1 · · ·Mk and A(M) = {⊥} ∪
{λx1 . . . xn.xW1 · · ·Wk : Wi ∈ A(Mi)}.

The proof of the following lemma is straightforward once recalled that, if N ∈
A(M), then M results (up to β-conversion) from N by replacing some ⊥ in N by
other terms.

Lemma 2.3.20. If U is a well stratifiable ⊥-model and M ∈ Λ, then for all N ∈
A(M) we have N ⊑U M .
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Notation 2.3.21. Given M ∈ Λlab
⊥ we will denote by M ∈ Λ⊥ the term obtained

from M by erasing all labels.

Lemma 2.3.22. For all M ∈ Λlab
⊥ , we have that M ⊑U M .

Proof. By Inequality (2.3) we have (|M |Var)k ⊑ |M |Var, and this implies ckM ⊑U M .
We conclude the proof since ⊑U is contextual.

The following syntactic property, which is borrowed from [53] (but it is also a
consequence of the results present in [8, Sec. 14.3]), will be used for proving the
Approximation Theorem.

Proposition 2.3.23. [53, Prop. 1.9] Let M ∈ Λ and L be a complete labelling of
M . If nf(ML) is the ωγǫ-normal form of ML, then nf(ML) ∈ A(M).

We prove now the Approximation Theorem for well stratified ⊥-models.

Theorem 2.3.24. (Approximation Theorem) If U is a well stratified ⊥-model, then
for all M ∈ Λ:

|M |Var =
⊔

A(M),

where
⊔
A(M) =

⊔
{|W |Var : W ∈ A(M)}.

Proof. Let L be a complete labelling for M . We know from Theorem 2.3.11 that
the labelled λ⊥-calculus is Church Rosser and strongly normalizable, hence there
exists a unique ωǫγ-normal form of ML. We denote this normal form by nf(ML).
Since ML ։ǫγω nf(ML), and U is a model of the labelled λ⊥-calculus (Corol-
lary 2.3.13), we have ML =U nf(ML). Moreover, Proposition 2.3.23 implies that
nf(ML) ∈ A(M) and hence nf(ML) ⊑U nf(ML) by Lemma 2.3.22. This implies
that |nf(ML)|Var ⊑

⊔
A(M). Since L is an arbitrary complete labelling for M , we

have:
|M |Var = ⊔L|M

L|Var (by Lemma 2.3.17)
= ⊔L|nf(ML)|Var

⊑
⊔

A(M).

The opposite inequality is clear.

Corollary 2.3.25. M ∈ Λ is unsolvable ⇐⇒ M =U ⊥.

Proof. (⇒) If M is unsolvable, then Remark 2.3.19 implies that A(M) = {⊥}.
Hence, M =U ⊥ by Theorem 2.3.24.
(⇐) If M is solvable, then by [8, Thm. 8.3.14] there exist N1, . . . , Nk ∈ Λ, with
k ≥ 0, such that MN1 · · ·Nk =U I. Since U is a ⊥-model, M =U ⊥ would imply
I =U ⊥ (by Definition 2.3.3(i)) and U would be trivial. Contradiction.

Corollary 2.3.26. If U is a well stratifiable ⊥-model, then Th(U ) is sensible.

We show now that the notion of Böhm tree can be also generalized to terms in Λ⊥.
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Definition 2.3.27. For all M ∈ Λ⊥ we write BT(M) for the Böhm tree of the
λ-term obtained by substituting Ω for all occurrences of ⊥ in M . Vice versa, for all
M ∈ Λ we denote by M [k] ∈ Λ⊥ the (unique) βω-normal form such that BT(M [k]) =
BTk(M) (where BTk(M) is the Böhm tree of M pruned at level k).

It is straightforward to check that, for every λ-term M , M [k] ∈ A(M). Vice
versa, the following proposition is a consequence of the Approximation Theorem.

Proposition 2.3.28. If U is a well stratifiable ⊥-model, then for all M ∈ Λ:

|M |Var = ⊔k∈◆|M
[k]|Var.

Proof. For all W ∈ A(M), there exists a k ∈ ◆ such that all the nodes in BT(W )
have depth less than k. Thus W ⊑BT M [k] and W ⊑U M [k] by Theorem 2.3.24.
Hence, the result follows.

Corollary 2.3.29. If N ⊑BT M then N ⊑U M .

Proof. If N ⊑BT M then for all k ∈ ◆ we have N [k] ⊑BT M . By Lemma 2.3.20
N [k] ⊑U M . Thus |N |Var = ⊔k∈◆|N

[k]|Var ⊑ |M |Var by Proposition 2.3.28.

As a direct consequence we get the following result.

Theorem 2.3.30. If U is a well stratifiable ⊥-model, then BT ⊆ Th(U ).

2.3.8 A class of models of H∗

We recall that the λ-theory H∗ can be characterized in terms of Böhm trees as
follows:

M =H∗ N ⇐⇒ M ≃η N cf. Subsection 1.2.3. (2.5)

The definition of ≃η has been recalled in Subsection 1.2.2, together with those of
⊑BT , ⊑η,∞, -η. However, for proving that Th(U ) = H∗, the following alternative
characterization of ⊑η,∞ will be useful.

Theorem 2.3.31. [8, Lemma 10.2.26] The following conditions are equivalent:

• M ⊑η,∞ N ,

• for all k ∈ ◆ there exists Pk ∈ Λ such that Pk ։η M , and P
[k]
k = N [k].

We need now some technical lemmata.

Lemma 2.3.32. If U is an extensional well stratified ⊥-model then, for all M ∈ Λ⊥

and x ∈ Var, x ⊑η,∞ M implies cnx ⊑U M for all n ∈ ◆.
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Proof. From [8, Def. 10.2.10], we can assume that M ≡ λy1 . . . ym.xM1 · · ·Mm with
yi ⊑η,∞ Mi. The proof is done by induction on n.
If n = 0, then:

c0x =U λy1 . . . ym.c0xy1 · · · ym since U is extensional,
=U λy1 . . . ym.c0(x⊥)y2 · · · ym since U is well stratified (Def. 2.3.6(ii)),
...

...
...

=U λy1 . . . ym.c0(x⊥ · · ·⊥) since U is well stratified (Def. 2.3.6(ii)),
⊑U λy1 . . . ym.x⊥ · · ·⊥ by Lemma 2.3.22,
⊑U λy1 . . . ym.xM1 · · ·Mm by ⊥ ⊑U Mi.

If n > 0, then

cnx =U λy1 . . . ym.cnxy1 · · · ym since U is extensional,
=U λy1 . . . ym.cn−1(x(cn−1y1))y2 . . . ym since U is stratified (Def. 2.3.6(i)),
...

...
...

=U λy1 . . . ym.cn−m(x(cn−1y1) · · · (cn−mym)) since U is stratified (Def. 2.3.6(i)).

Recalling that yi ⊑η,∞ Mi, we have:

λy1 . . . ym.cn−m(x(cn−1y1) · · · (cn−mym))
⊑U λy1 . . . ym.cn−m(xM1 · · ·Mm) since cn−iyi ⊑U Mi by I.H.,
⊑U λy1 . . . ym.xM1 · · ·Mm by Lemma 2.3.22. �

Lemma 2.3.33. Let U be an extensional well stratified ⊥-model and M,N,W ∈
Λ⊥. If W is a βω-normal form such that W ⊑BT M and M ⊑η,∞ N , then W ⊑U N .

Proof. The proof is done by induction on the structure of W .
If W ≡ ⊥, then it is trivial.
If W ≡ x then also M ≡ x and the result follows from Lemma 2.3.32 since |x|Var =
⊔n∈◆(|x|Var)n.
If W ≡ λx1 . . . xm.yW1 · · ·Wr, then M =λβ λx1 . . . xm.yM1 · · ·Mr and every Wi is a
βω-normal form such that Wi ⊑BT Mi (for i ≤ r). By M ⊑η,∞ N , we can assume
that N =λβη

λx1 . . . xm+s.yN1 · · ·Nr+s, with xm+k ⊑η,∞ Nr+k (for 1 ≤ k ≤ s) and
Mi ⊑η,∞ Ni (for i ≤ r). From xm+k ⊑η,∞ Nr+k we obtain, using the previous lemma,
that xm+k ⊑U Nr+k. Moreover, since Wi ⊑BT Mi ⊑η,∞ Ni, the induction hypothesis
implies Wi ⊑U Ni. Hence, we can conclude that W ⊑U N .

Lemma 2.3.34. If U is an extensional well stratifiable ⊥-model then for all M,N ∈
Λ we have:

(i) M ⊑η,∞ N implies M =U N ,

(ii) M -η N implies M ⊑U N .
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Proof. (i) Let us suppose that M ⊑η,∞ N . Since all W ∈ A(M) are βω-normal
forms such that W ⊑BT M , the Approximation Theorem and Lemma 2.3.33 imply
that M ⊑U N . We prove now that also N ⊑U M holds. By the characterization of
⊑η,∞ given in Theorem 2.3.31 we know that for all k ∈ ◆ there exists a λ-term Pk
such that Pk ։η M and P

[k]
k = N [k]. Since every P

[k]
k ∈ A(Pk), we have P

[k]
k ⊑U Pk;

also, from the extensionality of U , Pk =U M . Thus, by Proposition 2.3.28, we have
|N |Var = ⊔k∈◆|N

[k]|Var = ⊔k∈◆|P
[k]
k |Var ⊑ |M |Var. This implies that N ⊑U M .

(ii) Suppose now that M -η N . By definition, there exist two λ-terms M ′ and
N ′ such that M ⊑η,∞ M ′ ⊑BT N

′ ⊒η,∞ N . We conclude as follows: M =U M ′ by
(i), M ′ ⊑U N ′ by Theorem 2.3.30, and N ′ =U N , again by (i).

Theorem 2.3.35. If U is a well stratifiable extensional ⊥-model living in a cpo-
enriched ccc (having countable products), then Th(U ) = H∗.

Proof. By Lemma 2.3.34(ii) we have that M ≃η N implies M =U N . Then, by the
characterization (2.5), it follows that Th(U ) ⊇ H∗. We conclude since H∗ is the
maximal sensible consistent λ-theory.

2.4 Conclusions

For historical reasons, most of the work on models of λ-calculus, and its extensions,
has been carried out in subcategories of CPO. A posteriori, we can propose two
motivations: (i) because of the seminal work of Scott, the Scott continuity of mor-
phisms has been seen as the natural way of allowing the existence of reflexive objects;
(ii) the classic result relating algebraic and categorical models of λ-calculus asks for
reflexive objects with enough points.

In this chapter we have shown that any categorical model can be presented as a
λ-model, even when the underlying category does not have enough points. We have
defined a notion of well stratified ⊥-model in general cpo-enriched ccc’s and showed
that every well stratified ⊥-model living in such a category has H∗ as equational
theory.

It remains to be proved that, working outside concrete categories, we can get
new interesting classes of models. A first step in this direction is done in the next
chapter, where we build an extensional model in a category of sets and relations
which has not enough points.
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A relational model of λ-calculus

It is an ongoing natural question, from a category theo-
retic perspective, to see the various models of the untyped
λ-calculus as reflexive objects in natural cartesian closed
categories. [. . . ] Our analysis of the Engeler model is that
it naturally arises from a category without enough points.
(Martin Hyland et al., from [60])

I
n this section we build a simple example of a categorical model D living in
a ccc without enough points: the Kleisli-category of the comonad Mf(−) of
“finite multisets” over the category Rel of sets and relations. In [60], Hyland

et al. define in this ccc a relational version, based on Mf(−), of graph models and
provide, as a paradigmatic example, the analogue of Engeler’s model E . Our model
D is extensional and its construction is similar to that of Scott’s D∞ when built as a
K-model, but simpler, and we will also prove that Th(D) = Th(D∞) = H∗; hence,
D can be viewed as a relational version of D∞.

Finally, we will present some algebraic properties of the λ-model CD obtained
from the categorical model D by applying the construction described in the previous
chapter, which make it suitable for modelling non-deterministic extensions of the
untyped λ-calculus.

3.1 Introduction

Having described, in the previous chapter, a general construction for extracting a
λ-model from a reflexive object (possibly without enough points) of a ccc, we build
here a simple example to which this construction can be applied.

In denotational semantics, ccc’s without enough points may arise naturally when
morphisms are not functions, like for instance sequential algorithms [21] or strategies
in various categories of games [3, 61], and carry more “intensional” information than
usual. The original motivation for these constructions was to obtain a semantic
characterization of sequentiality, in the simply typed case.

A framework simpler than game semantics where reflexive objects cannot have
enough points is the following. Given the category Rel of sets and relations, consider
the comonad Mf(−) of “finite multisets”. MRel, the Kleisli category of Mf(−), is
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a ccc which has been studied in particular as a semantic framework for linear logic
[52, 4, 26]. Here, we study MRel as a relational semantics of λ-calculus.

An even simpler framework, based on Rel, would be provided by taking the
functor “finite sets” instead of the comonad “finite multisets”. The point is that
the former is not a comonad. Nevertheless, a ccc may eventually be obtained in this
case too, via a “quasi Kleisli” construction [60]. Interestingly, from the perspective
of the work done in this chapter, these Kleisli categories over Rel are advocated
in [60] as the “natural” categories in which standard models of the λ-calculus like
Engeler’s model E , and graph models in general, should be considered.

In Section 3.3 we define a relational version, in MRel, of another classical model:
Scott’s D∞. The construction of this reflexive object D is performed by an iterated
completion process similar to the one for obtaining graph models from partial pairs
(which will be recalled in Subsection 5.1.4). However, D happens to be trivially
extensional. In fact, we will prove that Th(D) = H∗: this follows directly from the
last result of Section 2.3 once observed that D is a well stratifiable ⊥-model and
MRel a cpo-enriched ccc.

Finally, in Section 3.4 we show that the λ-model CD associated with D by the
construction described above has a rich algebraic structure. In particular, we de-
fine two operations of sum and product which are left distributive with respect to
application and give to CD a structure of commutative semiring. This opens the
way to the interpretation of conjunctive-disjunctive λ-calculi (see, e.g., [43]) in this
relational framework.

3.2 A ccc of sets and relations

It is quite well known [52, 4, 60, 26] that, by endowing the monoidal closed ca-
tegory Rel of sets and relations with a suitable comonad, one gets a ccc via the
co-Kleisli construction. In this section we present the ccc MRel obtained by using
the comonad Mf(−), without explicitly going through the monoidal structure of
Rel. As we will see below, the categorical product in MRel is the disjoint union,
hence we prefer to slightly modify the classic notation to avoid confusion.

Notation 3.2.1. We denote the categorical product in MRel by & instead of ×.
The symbol × is kept to denote the usual set-theoretical Cartesian product.

Let us define directly the category MRel as follows:

• The objects of MRel are all the sets.

• Given two sets S and T , a morphism from S to T is a relation from Mf(S) to
T , in other words, MRel(S, T ) = P(Mf(S) × T ).

• The identity morphism of S is the relation:

IdS = {([a], a) : a ∈ S} ∈ MRel(S, S) .
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• Given two morphisms s ∈ MRel(S, T ) and t ∈ MRel(T, U), we define:
t ◦ s = {(m, c) : ∃k ≥ 0, ∃(m1, b1), . . . , (mk, bk) ∈ s such that

m = m1 ⊎ . . . ⊎mk and ([b1, . . . , bk], c) ∈ t}.

It is easy to check that this composition law is associative, and that the identity
morphisms defined above are neutral for this composition.

Theorem 3.2.2. The category MRel is Cartesian closed and has countable pro-
ducts.

Proof. The terminal object ✶ is the empty set ∅, and the unique element of MRel(S, ∅)
is the empty relation.

Given two sets S1 and S2, their categorical product S1 &S2 in MRel is their
disjoint union:

S1 &S2 = ({1} × S1) ∪ ({2} × S2)

and the projections π1, π2 are given by:

πi = {([(i, a)], a) : a ∈ Si} ∈ MRel(S1 &S2, Si), for i = 1, 2.

It is easy to check that this is actually the categorical product of S1 and S2 in
MRel; given s ∈ MRel(U, S1) and t ∈ MRel(U, S2), the corresponding morphism
〈s, t〉 ∈ MRel(U, S1 &S2) is given by:

〈s, t〉 = {(m, (1, a)) : (m, a) ∈ s} ∪ {(m, (2, b)) : (m, b) ∈ t} .

This definition extends to arbitrary I-indexed families (Si)i∈I of sets in the obvious
way: ˘

i∈I Si = ∪i∈I({i} × Si),
πi = {([(i, a)], a) : a ∈ Si} ∈ MRel(

˘
i∈I Si, Si), for i ∈ I.

In particular, MRel has countable products.
Notice now that there exists a canonical bijection between Mf(S1) × Mf(S2)

and Mf(S1 & S2) which maps the pair ([a1, . . . , ap], [b1, . . . , bq]) to the multiset
[(1, a1), . . . , (1, ap), (2, b1), . . . , (2, bq)]. We will confuse this bijection with an equal-
ity, hence we will still denote by (m1,m2) the corresponding element of Mf(S1 &S2).

Given two objects S and T , the exponential object [S ⇒ T ] is Mf(S) × T and
the evaluation morphism is given by:

evST = {(([(m, b)],m), b) : m ∈ Mf(S) and b ∈ T} ∈ MRel([S ⇒ T ]&S, T ) .

Again, it is easy to check that in this way we defined an exponentiation. Indeed,
given any set U and any morphism s ∈ MRel(U & S, T ), there is exactly one
morphism Λ(s) ∈ MRel(U, [S ⇒ T ]) such that:

evST ◦ (Λ(s) × IdS) = s.

where Λ(s) = {(p, (m, b)) : ((p,m), b) ∈ s}.
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Here, the points of an object S, i.e. the elements of MRel(✶, S), are the relations
between Mf(∅) and S, and hence, up to isomorphism, the subsets of S.

In the next section we will present an extensional model of λ-calculus which
lives in MRel, although MRel which is “strongly” non-extensional in the sense
expressed by the following theorem. The existence of such a model contradicts a
common belief.

Theorem 3.2.3. No object U 6= ✶ of MRel has enough points.

Proof. We can always find t1, t2 ∈ MRel(U,U) such that t1 6= t2 and, for all s ∈
MRel(✶, U), t1◦s = t2◦s. Recall that, by definition of composition, t1◦s = {([], b) :
∃a1, . . . , an ∈ U ([], ai) ∈ s ([a1, . . . , an], b) ∈ t1} ∈ MRel(✶, U), and similarly for
t2 ◦ s. Hence it is sufficient to choose t1 = {(m1, b)} and t2 = {(m2, b)} such that
m1,m2 are different multisets with the same support.

Corollary 3.2.4. MRel has not enough points

3.3 An extensional relational model of λ-calculus

In this section we build a reflexive object D in MRel, which is extensional by
construction.

3.3.1 Constructing an extensional reflexive object.

We build a family of sets (Dn)n∈◆ as follows1:

• D0 = ∅,

• Dn+1 = Mf(Dn)
(ω).

Since the operation S 7→ Mf(S)(ω) is monotonic on sets, and since D0 ⊆ D1, we
have Dn ⊆ Dn+1 for all n ∈ ◆. Finally, we set D = ∪n∈◆Dn.

So we have D0 = ∅ and D1 = {∗} = {([], [], . . . )}. The elements of D2 are quasi-
finite sequences of multisets over a singleton, i.e., quasi-finite sequences of natural
numbers. More generally, an element of D can be represented as a finite tree which
alternates two kinds of layers:

• ordered nodes (the quasi-finite sequences), where immediate subtrees are in-
dexed by distinct natural numbers,

• unordered nodes where subtrees are organised in a non-empty multiset.

1 We could more generally start from a set A of “atoms” and take: D0 = ∅, Dn+1 = Mf(Dn)(ω)×
A. Our model D corresponds to take as A any singleton. We did not check yet whether D would
remain extensional if card(A) ≥ 2.
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In order to define an isomorphism in MRel between D and [D ⇒ D] = Mf(D)×
D it is enough to remark that every element σ ∈ D is canonically associated with the
pair (σ0, (σ1, σ2, . . .)) and vice versa. Given σ ∈ D and m ∈ Mf(D), we write m :: σ
for the element τ ∈ D such that τ1 = m and τi+1 = σi. This defines a bijection
between Mf(D) ×D and D, and hence an isomorphism in MRel as follows:

Proposition 3.3.1. The triple D = (D,Ap, λ) where:

• λ = {([(m,σ)],m :: σ) : m ∈ Mf(D), σ ∈ D} ∈ MRel([D ⇒ D], D),

• Ap = {([m :: σ], (m,σ)) : m ∈ Mf(D), σ ∈ D} ∈ MRel(D, [D ⇒ D]),

is an extensional categorical model of λ-calculus.

Proof. It is trivial that λ ◦ Ap = IdD and Ap ◦ λ = Id[D⇒D].

Since D is such that D ∼= [D ⇒ D] and MRel has countable products, the
construction given in Subsection 2.2.2 provides first an applicative structure AD =
(MRelf(D

Var, D), •), and second an associated (environment) λ-model SD = (AD , ❬−❪)
which is extensional by Theorem 2.2.12(2).

3.3.2 Interpreting untyped λ-calculus in D

In Subsection 1.3.1, we have recalled how we can interpret a λ-term in any reflexive
object of a ccc. We provide the result of the corresponding computation, when it is
performed in D .

Given a λ-term M and a sequence2 ~x of length n containing all the free variables
of M , the interpretation |M |~x is an element of MRel(Dn, D), where Dn = D &
. . . & D, i.e., |M |~x ⊆ Mf(D)n ×D. |M |~x is defined by structural induction on M .

• |xi|~x = {(([], . . . , [], [σ], [], . . . , []), σ) : σ ∈ D}, where the only non-empty mul-
tiset occurs in the i-th position.

• |NP |~x = {((m1, . . . ,mn), σ) : ∃k ∈ ◆
∃(mj

1, . . . ,m
j
n) ∈ Mf(D)n for j = 0, . . . , k

∃σ1, . . . , σk ∈ D such that
mi = m0

i ⊎ . . . ⊎m
k
i for i = 1, . . . , n

((m0
1, . . . ,m

0
n), [σ1, . . . , σk] :: σ) ∈ |N |~x

((mj
1, . . . ,m

j
n), σj) ∈ |P |~x for j = 1, . . . , k}

• |λz.P |~x = {((m1, . . . ,mn),m :: σ) : ((m1, . . . ,mn,m), σ) ∈ |P |~x,z}, where we
assume that z does not occur in ~x.

Note that if M ∈ Λo then |M | ⊆ D. If M is moreover solvable and M =λβ

λx1 . . . xn.xiM1 · · ·Mk (n, k ≥ 0), then |M | 6= ∅. Indeed, it is easy to check that
[] :: · · · :: [] :: [∗] :: ∗ ∈ |M | (where [∗] is precedeed by i− 1 occurrences of []).

2 It is convenient, here, to use sequences instead of sets of variables. This allows us to simplify
the presentation of the interpretation.
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3.3.3 The equational theory of D is H∗

The first question naturally arising when a new model of λ-calculus is introduced
concerns its equational theory. Not surprisingly, it turns out that the λ-theory
induced by D is H∗. From Theorem 2.3.35 it is enough to check that MRel is a
cpo-enriched ccc and that D is a well stratifiable ⊥-model.

Theorem 3.3.2. The ccc MRel is cpo-enriched.

Proof. It is clear that, for all sets S, T , the homset (MRel(S, T ),⊆, ∅) is a cpo, that
composition is continuous, and pairing and currying are monotonic. Finally, it is
easy to check that the strictness conditions hold.

Theorem 3.3.3. D is a well stratifiable ⊥-model.

Proof. By definition of Ap and λ it is straigthforward to check that ∅ • a = ∅,
for all a ∈ MRel(DVar, D), and that λ ◦ Λ(∅) = ∅, hence D is a ⊥-model. Let
now pn = {([σ], σ) : σ ∈ Dn}, where (Dn)n∈◆ is as in Subsection 3.3.1. Since
(Dn)n∈◆ is increasing also (pn)n∈◆ is, and furthermore ⊔n∈◆pn = {([σ], σ) : σ ∈
D} = IdD. Then, easy calculations show that D enjoys conditions (i) and (ii) of
Definition 2.3.6.

Corollary 3.3.4. Th(D) = H∗.

Proof. By Theorem 2.3.35.

3.4 Modelling non-determinism via D

In this section we show that the λ-model CD is suitable for modelling non-determinism.
A variety of non-deterministic and parallel operators have been introduced by sev-
eral authors with different aims [1, 2, 24, 55, 82]. Here, we focus our attention on the
non-deterministic extensions of λ-calculus Λ(+) and Λ(+,||), respectively introduced
by de’Liguoro and Piperno in [42] and Dezani et al. in [43].

Recall that CD = (AD , •, ❬K❪, ❬S❪), where AD = MRelf(D
Var, D). For mod-

elling non-determinism, we are going to define two operations of sum and product,
respectively denoted by ⊕ and ⊙, on AD . In order to show easily that these ope-
rations are well defined, we provide a characterization of the finitary morphisms in
MRel(DVar, D).

Proposition 3.4.1. f ∈ MRelf(D
Var, D) whenever there exists J ⊆f Var such that

for all ((mx1
, . . . ,mxn

, . . .), σ) ∈ f we have mxi
= [] for every xi 6∈ J .

Proof. Straightforward.
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3.4.1 Non-deterministic choice

We define a first binary operation on AD , denoted by ⊕, which can be thought of
as non-deterministic choice.

Definition 3.4.2. For all a, b ∈ MRelf(D
Var, D) we set a⊕ b = a ∪ b.

From Proposition 3.4.1, it is clear that MRelf(D
Var, D) is closed under ⊕.

De’Liguoro and Piperno proposed, as underlying structure of the models of the
non-deterministic λ-calculus Λ(+), the notion of semilinear applicative structure.

Definition 3.4.3. (de’Liguoro and Piperno [42]) A semilinear applicative structure
is a pair ((A, ·),+) such that:

(i) (A, ·) is an applicative structure.

(ii) + : A2 → A is an idempotent, commutative and associative operation.

(iii) ∀x, y, z ∈ A (x+ y) · z = (x · z) + (y · z).

Straightforwardly, the operation ⊕ makes the applicative structure (AD , •) asso-
ciated with D semilinear.

Proposition 3.4.4. ((AD , •),⊕) is a semilinear applicative structure.

The interpretation mapping of an environment λ-model can now be extended
to the non-deterministic λ-calculus Λ(+) of [42], by stipulating that ❬M ⊕ N❪ρ =
❬M❪ρ ⊕ ❬N❪ρ. Hence, we get that (AD ,⊕, ❬−❪) is an extensional environment λ-
model of Λ(+) in the sense of [42].

3.4.2 Parallel composition

We define another binary operation on AD , denoted by ⊙, which can be thought of
as parallel composition.

Definition 3.4.5.

• Given σ, τ ∈ D, we set σ ⊙ τ = (σ1 ⊎ τ1, . . . , σn ⊎ τn, . . .).

• Given a, b ∈ AD , we set a⊙ b = {(m1 ⊎m2, σ ⊙ τ) : (m1, σ) ∈ a, (m2, τ) ∈ b}.

Once again, from Proposition 3.4.1 it follows that AD is closed under ⊙. Note
that AD , equipped with ⊙, is not a semilinear applicative structure, simply because
the operator ⊙ is not idempotent. Nevertheless, right distributivity of • with respect
to ⊙ holds, as expressed in the following proposition whose proof is straightforward.

Proposition 3.4.6. For all a, b, c ∈ AD , (a⊙ b) • c = (a • c) ⊙ (b • c).
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(AD ,⊕, 0) and (AD ,⊙, 1) are commutative monoids, where 0 = ∅ and 1 =
{([], ∗)}. Moreover, 0 annihilates ⊙, and multiplication distributes over addition.
Summing up, we have:

Proposition 3.4.7.

(i) (AD ,⊕,⊙, 0, 1) is a commutative semiring.

(ii) • is right distributive over ⊕ and ⊙.

(iii) ⊕ is idempotent.

In order to interpret conjunctive-disjunctive λ-calculi, endowed with both “non-
deterministic choice” and “parallel composition”, a notion of λ-lattice have been
introduced in [43]. It is interesting to notice that our structure (AD ,⊆, •,⊕,⊙) does
not give rise to a real λ-lattice, essentially because ⊙ is not idempotent. Roughly
speaking, this means that in the model CD of the conjunctive-disjunctive λ-calculus
❬M ||M❪ 6= ❬M❪. In other words, this model is “resource sensible”.

3.5 Conclusions and further works

We have proved that MRel is a cpo-enriched ccc having countable products. We
have built an extensional reflexive object D of MRel, and applied the construction
described in the previous chapter to obtain a λ-model CD . We have noticed that,
by construction, D is a well-stratified ⊥-model. Hence, Th(D) = Th(D∞) = H∗ by
Theorem 2.3.35. Therefore, D may be considered as a relational version of Scott’s
D∞.

Finally, we have shown that CD has a quite rich algebraic structure, which make
it suitable for modelling non-determinism. We aim to investigate in the future full
abstraction results for must/may semantics in CD .



4
The indecomposable semantics

Algebra is the intellectual instrument which has been cre-
ated for rendering clear the quantitative aspects of the
world.
(Alfred North Whitehead)

S
tone representation theorem, which is one of the milestones of universal al-
gebra, states that every Boolean algebra is isomorphic to a Boolean product
of direct indecomposable Boolean algebras (i.e., of algebras which cannot be

decomposed as the Cartesian product of two other non-trivial algebras). We recover
the usual formulation of Stone representation theorem since there exists a unique
directly indecomposable Boolean algebra, namely the Boolean algebra of truth va-
lues.

Using central elements, which play here the role of idempotent elements in rings,
we will show that combinatory algebras satisfy a similar theorem: every combinatory
algebra can be decomposed as a weak Boolean product of directly indecomposable
algebras which constitute, then, the “building blocks” in the variety of combinatory
algebras. The notion of directly indecomposable combinatory algebra appears to be
so relevant that we find it even interesting to speak of the “indecomposable seman-
tics” to denote the class of models of λ-calculus which are directly indecomposable
as combinatory algebras. This semantics is very general since, as we will see, it
encompasses the Scott-continuous, the stable and the strongly stable semantics, as
well as the term models of all semi-sensible λ-theories.

We will also show that “being an indecomposable combinatory algebra” can be
expressed by a universal formula, and this property will be then fruitfully applied
for proving that the indecomposable semantics, although so general, is (largely)
incomplete. More precisely, we will prove that it omits a set of λ-theories which is
2ℵ0-broad and also contains countably many 2ℵ0-high intervals.

This gives in particular a new and uniform proof of the large incompleteness of
the three main semantics.
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4.1 Introduction

The λ-calculus is not a genuine equational theory since the variable-binding proper-
ties of lambda abstraction prevent variables in λ-calculus from playing the role of
real algebraic variables. Consequently the general methods that have been develo-
ped in universal algebra are not directly applicable.

Algebraic reformulations of λ-calculus. There have been several attempts
to reformulate λ-calculus as a purely algebraic theory.

The earliest, and best known, algebraic models are the λ-models that we pre-
sented in Subsection 1.3.3. They are special combinatory algebras which provide a
first-order, but not equational, characterization of the models of λ-calculus.

Much more recently, Pigozzi and Salibra proposed the Lambda Abstraction Al-
gebras as an alternative first-order description of the models of λ-calculus [84,
90]. Lambda Abstraction Algebras form an equational class and allow to keep the
lambda-notation and, hence, all the functional intuitions.

Negative algebraic results. Combinatory algebras are considered algebraically
pathological since they are never commutative, associative, finite or recursive [8,
Prop. 5.1.15]. Moreover, Salibra and Lusin [76] showed that only trivial lattice iden-
tities are satisfied by all congruence lattices of combinatory algebras. Thus, it is
not possible to apply the results developed in universal algebra (see [31, 79]) in the
last thirty years which connect the lattice identities satisfied by all the congruence
lattices of algebras belonging to a variety with Mal’cev conditions.

A positive result: a representation theorem for combinatory algebras.
One of the milestones of modern algebra is the Stone representation theorem for
Boolean algebras. This result was first generalized by Pierce to commutative rings
with unit and next by Comer to the class of algebras with Boolean factor congruences
(see [35, 63, 83]). By applying a theorem due to Vaggione [106], we show that
Comer’s generalization holds for combinatory algebras: any combinatory algebra
is isomorphic to a weak Boolean product of directly indecomposable combinatory
algebras (i.e., algebras which cannot be decomposed as the Cartesian product of two
other non-trivial algebras). This can be expressed as follows in terms of sheaves:
every combinatory algebra is isomorphic to the algebra of global sections of a sheaf
of indecomposable combinatory algebras over a Boolean space.

The proof of the representation theorem for combinatory algebras is based on the
fact that every combinatory algebra has central elements, i.e., elements which induce
a direct decomposition of the algebra as the Cartesian product of two other combi-
natory algebras, just like idempotent elements in rings or complemented elements
in bounded distributive lattices.

We show that the central elements of a combinatory algebra constitute a Boolean
algebra, whose Boolean operations can moreover be internally defined by suitable
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combinators. This result suggests a connection between propositional classic logic
and combinatory logic; what is the real meaning of this connection remains to be
investigated.

The indecomposable semantics. We investigate the class of all models of
λ-calculus, which are directly indecomposable as combinatory algebras (indecom-
posable semantics, for short). We show that the indecomposable semantics includes
the Scott-continuous, the stable and the strongly stable semantics, as well as the
term models of all semi-sensible λ-theories.

However, we also prove that the indecomposable semantics is incomplete, and
that this incompleteness is, also, as large as possible: (i) there exists a continuum of
pairwise incompatible λ-theories which are omitted by the indecomposable semantics
(ii) for every recursively enumerable λ-theory T there is a continuum of λ-theories
including T , and forming an interval, which are omitted by the indecomposable
semantics. This gives a new and uniform proof of the large incompleteness of each
of the main semantics.

In one of the last results of this chapter we show that the set of λ-theories rep-
resentable in each of the classic semantics of λ-calculus is not closed under finite
intersection, in particular it is not a sublattice of λT .

An historical excursus on the previous incompleteness results. It was al-
ready known that the main semantics are equationally incomplete: they do not even
match the most natural operational semantics of λ-calculus. The problem of the
equational completeness was negatively solved by Honsell and Ronchi Della Rocca
[58] for the Scott-continuous semantics, by Bastonero and Gouy [11, 53] for the sta-
ble semantics and by Bastonero [10] for H-models. In [91, 92] Salibra proved that
the “monotonous semantics” (i.e., the class of all λ-models involving monotonicity
with respect to some partial order and having a bottom element) is incomplete, thus
giving a first uniform proof of incompleteness encompassing the three main seman-
tics.

Outline of the chapter. This chapter is organized as follows: In Section 4.2 we
review the basic definitions of universal algebra which are involved in the rest of the
chapter. In particular, we recall the formal definitions of a Boolean product. The
Stone representation theorem for combinatory algebras is presented in Section 4.3.
Section 4.4 is devoted to the equational incompleteness of the indecomposable se-
mantics.

4.2 Algebras and Boolean products

In this section we briefly recall the concepts of universal algebra which will be useful
in the sequel.
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4.2.1 Algebras

Definition 4.2.1. A congruence ϑ on an algebra A is an equivalence relation which
is compatible with the basic operations of A .

We will denote by Con(A ) the set of congruences of A . Since a congruence ϑ
on A can be viewed as a subset of A×A, (Con(A ),⊆) is a complete lattice (meet
is set-theoretical intersection).

The lattice (Con(A ),⊆) contains a top and a bottom element:

∇A = A× A
∆A = {(a, a) : a ∈ A}.

A congruence ϑ on A is called trivial if it is equal to ∇A or ∆A .

Notation 4.2.2. Given a, b ∈ A we write ϑ(a, b) for the least congruence relating a
and b.

Given two congruences σ and τ on the algebra A , we can form their relative
product :

τ ◦ σ = {(a, c) : ∃b ∈ A aσbτc}.

It is easy to check that τ ◦ σ is still a compatible relation on A , but not necessarily
a congruence (transitivity or symmetry could fail).

Definition 4.2.3. An algebra A is simple when its only congruences are ∆A and
∇A .

Given two algebras A ,B, we denote by A × B their (direct) product and we
let A ∼= B mean that they are isomorphic. Recall that the product congruence of
ϑ1 ∈ Con(A ) and ϑ2 ∈ Con(B) is the congruence ϑ1 × ϑ2 on A × B defined by:
(b, c) ϑ1 × ϑ2 (b′, c′) if, and only if, b ϑ1 b

′ and c ϑ2 c
′.

An algebra is trivial if its underlying set is a singleton.

Definition 4.2.4. An algebra A is directly decomposable if there exist two non-
trivial algebras B,C such that A ∼= B × C .

Definition 4.2.5. An algebra A is a subdirect product of the algebras (Bi)i∈I ,
written A ≤ Πi∈IBi, if there exists an embedding f of A into the direct product
Πi∈IBi such that the projection πi ◦ f : A → Bi is onto for every i ∈ I.

Definition 4.2.6. A non-empty class ❑ of algebras of the same similarity type is:

(i) a variety if it is closed under subalgebras, homomorphic images and direct
products,

(ii) an equational class if it is axiomatizable by a set of equations.

Birkhoff proved in [23] (see also [79, Thm. 4.131]) that conditions (i) and (ii) in
the above definition are equivalent.
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4.2.2 Factor congruences

Definition 4.2.7. A congruence ϑ on an algebra A is a factor congruence if there
exists another congruence ϑ such that ϑ∩ ϑ = ∆A and ϑ ◦ ϑ = ∇A . In this case we
call (ϑ, ϑ) a pair of complementary factor congruences.

It is easy to check that the homomorphism f : A → A /ϑ × A /ϑ defined by
f(x) = (x/ϑ, x/ϑ) is:

• injective if and only if ϑ ∩ ϑ = ∆A ,

• onto if and only if ϑ ◦ ϑ = ∇A if and only if ϑ ◦ ϑ = ∇A .

Hence, (ϑ, ϑ) is a pair of complementary factor congruences of A if, and only if,
A ∼= B × C , where B ∼= A /ϑ and C ∼= A /ϑ.

So, the existence of factor congruences is just another way of saying “this algebra
is a direct product of simpler algebras”.

The set of factor congruences of A is not, in general, a sublattice of Con(A ).
∆A and ∇A are the trivial factor congruences, corresponding to A ∼= 1 × A ; of
course, 1 is isomorphic to A /∇A and A is isomorphic to A /∆A .

Lemma 4.2.8. An algebra A is directly indecomposable when A admits only the
two trivial factor congruences (∆A and ∇A ).

Clearly, every simple algebra is directly indecomposable, while there are algebras
which are directly indecomposable but not simple: they have congruences, which
however do not split the algebra up neatly as a Cartesian product.

4.2.3 Decomposition operators

Factor congruences can be characterized in terms of certain algebra homomorphisms
called decomposition operators as follows (see [79, Def. 4.32] for more details).

Definition 4.2.9. A decomposition operation for an algebra A is a function f :
A× A→ A such that

• f(x, x) = x;

• f(f(x, y), z) = f(x, z) = f(x, f(y, z));

• f is an algebra homomorphism from A × A into A .

There exists a bijective correspondence between pairs of complementary factor
congruences and decomposition operations, and thus, between decomposition ope-
rations and factorizations like A ∼= B × C .
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Proposition 4.2.10. Given a decomposition operator f the binary relations ϑ and
ϑ defined by:

x ϑ y if, and only if, f(x, y) = y,

x ϑ y if, and only if, f(x, y) = x,

form a pair of complementary factor congruences. Conversely, given a pair (ϑ, ϑ)
of complementary factor congruences, the map f defined by:

f(x, y) = u if, and only if, x ϑ u ϑ y, (4.1)

is a decomposition operation.

Proof. The proof is easy (see [79, Thm. 4.33] for more details). Note that the
definition of f is sound because of the following remark.

Remark 4.2.11. If (ϑ, ϑ) is a pair of complementary factor congruences, then for
all x and y there is just one element u such that x ϑ u ϑ y.

4.2.4 Boolean and factorable congruences

Definition 4.2.12. An algebra has Boolean factor congruences if its factor congru-
ences form a Boolean sublattice of the congruence lattice.

Definition 4.2.13. A variety ❈ of algebras has factorable congruences if for every
A ,B ∈ ❈ we have Con(A × B) ∼= Con(A ) × Con(B).

Lemma 4.2.14. (Bigelow and Burris [22, Cor. 1.4]) If a variety ❈ has factorable
congruences, then every A ∈ ❈ has Boolean factor congruences.

Most known examples of varieties in which all algebras have Boolean factor
congruences are those with factorable congruences. This is the case of combinatory
algebras as we will show in the next lemma.

Recall that the combinators t, f have been defined in Subsection 1.3.2.

Lemma 4.2.15. For all combinatory algebras A ,B we have that Con(A × B) ∼=
Con(A ) × Con(B).

Proof. Let A ,B be combinatory algebras; it is clear that, up to isomorphism,
Con(A ) × Con(B) ⊆ Con(A × B). Conversely, let ϑ ∈ Con(A × B). The “pro-
jections” ϑ1, ϑ2 of ϑ are the binary relations on A and B, respectively, defined as
follows:

a1ϑ1a2 ⇐⇒ ∃b1, b2 ∈ B such that (a1, b1) ϑ (a2, b2),
b1ϑ2b2 ⇐⇒ ∃a1, a2 ∈ A such that (a1, b1) ϑ (a2, b2).

It is obvious that ϑ ⊆ ϑ1 × ϑ2. We now prove the opposite inclusion. Suppose that
(a1, b1) ϑ1 × ϑ2 (a2, b2) for some a1, a2 ∈ A and b1, b2 ∈ B. Then, by definition of
ϑ1 × ϑ2, we have that a1ϑ1a2 and b1ϑ2b2. Hence, there exist a3, a4 ∈ A, b3, b4 ∈ B
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such that (a1, b3) ϑ (a2, b4) and (a3, b1) ϑ (a4, b2). Since (t, f) ϑ (t, f) and ϑ is a
compatible relation, we get:

(a1, b1) = (ta1a3, fb3b1) ϑ (ta2a4, fb4b2) = (a2, b2).

Thus we get ϑ = ϑ1×ϑ2. It is easy to check that ϑ1, ϑ2 are reflexive, symmetric and
compatible with application. We now show that ϑ1 is also transitive. Let a1ϑ1a2ϑ1a3,
then there exist b1, b2, b3, b4 such that (a1, b1) ϑ (a2, b2) and (a2, b3) ϑ (a3, b4); from
the symmetry of ϑ we have also (a3, b4) ϑ (a2, b3). Since (t, f) ϑ (t, f) and ϑ is a
compatible relation, we get:

(a1, b4) = (ta1a3, fb1b4) ϑ (ta2a2, fb2b3) = (a2, b3).

Finally, from (a1, b4) ϑ (a2, b3) and (a2, b3) ϑ (a3, b4) we get (a1, b4) ϑ (a3, b4) and,
hence, a1ϑ1a3; thus ϑ1 ∈ Con(A ). An analogous reasoning gives ϑ2 ∈ Con(B).
From this it is easy to conclude that Con(A × B) ∼= Con(A ) × Con(B).

Corollary 4.2.16. All combinatory algebras have Boolean factor congruences.

4.2.5 Boolean product

The Boolean product construction allows us to transfer numerous fascinating prop-
erties of Boolean algebras into other varieties of algebras (see [31, Ch. IV]). Actu-
ally, this construction has been presented for several years as “the algebra of global
sections of sheaves of algebras over Boolean spaces” (see [35, 63]); however, these
notions were unnecessarily complex and we prefer to adopt here the following equiva-
lent presentation (see [32]). We recall that a Boolean space is a compact, Hausdorff
and totally disconnected topological space.

Definition 4.2.17. A weak Boolean product of a family (Ai)i∈I of algebras is a
subdirect product A ≤ Πi∈IAi, where I can be endowed with a Boolean space topology
such that:

(i) the set {i ∈ I : ai = bi} is open for all a, b ∈ A, and

(ii) if a, b ∈ A and N is a clopen subset of I, then the element c, defined by ci = ai
for every i ∈ N and ci = bi for every i ∈ I −N , belongs to A.

Definition 4.2.18. A Boolean product is a weak Boolean product such that the set
{i ∈ I : ai = bi} is clopen for all a, b ∈ A.

In the next section we will see that every combinatory algebra admits a weak
Boolean product representation, whilst there exist combinatory algebras which can-
not be decomposed as a Boolean product of algebras.
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4.3 The Stone representation theorem for combi-

natory algebras

In this section we show that combinatory algebras satisfy a theorem which is similar
to the Stone representation theorem for Boolean algebras.

4.3.1 The classical Stone and Pierce theorem

The Stone representation theorem for Boolean rings (the observation that Boolean
algebras could be regarded as rings is due to Stone) admits a generalization, due to
Pierce, to commutative rings with unit (see [83] and [63, Ch. V]). To help the reader
to get familiar with the argument, we outline now Pierce’s construction.

Let A = (A,+, ·, 0, 1) be a commutative ring with unit, and let IE(A ) = {a ∈
A : a · a = a} be the set of its idempotent elements . One defines a structure of
Boolean algebra on IE(A ) as follows. For all a, b ∈ IE(A ):

• a ∧ b = a · b;

• a− = 1 − a.

Then it is possible to show that for every a ∈ IE(A ), a 6= 0, 1 induces a pair
(ϑ(a, 1), ϑ(a, 0)) of non-trivial complementary factor congruences. In other words,
the ring A can be decomposed in a non-trivial way as A ∼= A /ϑ(a, 1)×A /ϑ(a, 0).
If IE(A ) = {0, 1}, then A is directly indecomposable. Then Pierce’s theorem for
commutative rings with unit can be stated as follows:

“Every commutative ring with unit is isomorphic to a Boolean product of directly
indecomposable rings.”

If A is a Boolean ring, we get the Stone representation theorem for Boolean algebras,
because the ring of truth values is the unique directly indecomposable Boolean ring.

The remaining part of this section is devoted to provide the statement and the
proof of the representation theorem for combinatory algebras.

4.3.2 The Boolean algebra of central elements

Combinatory logic and λ-calculus internalize many important things (computability,
for example). “To be directly decomposable” is another internalizable property of
these formalisms, as it will be shown in this subsection.

The combinators t and f , representing the booleans true and false, correspond to
the constants 0 and 1 in a commutative ring with unit. More generally, the central
elements of a combinatory algebra, as defined below, correspond to the idempotent
elements of a ring. The notion of central element was introduced by Vaggione
in universal algebra [105]. Here we give a new characterization which works for
combinatory algebras.
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Definition 4.3.1. Let C = (C, ·,k, s) be a combinatory algebra. We say that an
element e ∈ C is central when it satisfies the following equations, where x, y, z, t
range over C:

(i) exx = x.

(ii) e(exy)z = exz = ex(eyz).

(iii) e(xy)(zt) = exz(eyt).

(iv) e = etf .

Such a characterization works more generally for all varieties of algebras for
which there are two constants 0, 1 and a term u(x, y, z) such that u(x, y, 1) = x and
u(x, y, 0) = y (for combinatory algebras one takes 1 ≡ t, 0 ≡ f and u(x, y, z) ≡ zyx).
Note that this is also the case for Lemma 4.2.15 above and Proposition 4.3.3 below.

Notation 4.3.2. CE(C ) denotes the set of central elements of C .

Every combinatory algebra admits at least two central elements: t and f . Now we
show that central elements, similarly as idempotent elements in a ring, decompose a
combinatory algebra C as a Cartesian product: if e ∈ CE(C ), then C ∼= C /ϑ(e, t)×
C /ϑ(e, f). This will be shown in the next proposition via decomposition operators.

Proposition 4.3.3. There is a (natural) bijective correspondence between central
elements and decomposition operators (resp. pairs of complementary factor congru-
ences).

Proof. Given a central element e we obtain a decomposition operator by taking
fe(x, y) = exy. It is a simple exercise to show that axioms (i)-(iii) of a central
element make fe a decomposition operator.

Conversely, given a decomposition operator f , we show that the element f(t, f) is
central. From Remark 4.2.11 we have that f(t, f) is the unique element u satisfying
t ϑ u ϑ f , where (ϑ, ϑ) is the pair of complementary factor congruences associ-
ated with the decomposition operator f . Since ϑ and ϑ are compatible equivalence
relations, it follows that for all x, y:

txy ϑ f(t, f)xy ϑ fxy,

which implies x ϑ f(t, f)xy ϑ y. Since, by definition, f(x, y) is the unique element
satisfying x ϑ f(x, y) ϑ y, we obtain:

f(x, y) = f(t, f)xy. (4.2)

Finally, the identities defining f as decomposition operator make f(t, f) a central
element.

We now check that these correspondences form the two sides of a bijection. If e
is central, then the central element fe(t, f) is equal to e, because fe(t, f) = etf = e
by Definition 4.3.1(iv). If f is a decomposition operator, then by (4.2) we have that
ff(t,f)(x, y) = f(t, f)xy = f(x, y) for all x, y.
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Summing up, by Proposition 4.3.3 and Proposition 4.2.10 (together with [79,
Thm. 4.33]) we get the following theorem.

Theorem 4.3.4. Given a combinatory algebra C , the following conditions are equiv-
alent:

(i) C is directly indecomposable,

(ii) C has no non-trivial pair of complementary factor congruences,

(iii) CE(C ) = {t, f}.

For every central element e, we denote respectively by fe and by (ϑe, ϑe) the de-
composition operator and the pair of complementary factor congruences determined
by e.

Corollary 4.3.5. If e is central, then we have:

(i) x ϑe exy ϑe y.

(ii) x ϑe y if and only if exy = y, and x ϑe y if and only if exy = x.

(iii) ϑe = ϑ(e, t) and ϑe = ϑ(e, f).

We now show that the partial ordering between central elements, defined by:

d ≤ e if, and only if, ϑd ⊆ ϑe (4.3)

is a Boolean ordering and the meet operation and the complementation are internally
representable by the combinators λ∗xy.xty and λ∗x.xft respectively (recall that λ∗ is
defined in Subsection 1.3.2); it is clear that the combinators t and f are respectively
the bottom element and the top element of this ordering.

Theorem 4.3.6. Let C be a combinatory algebra. Then the algebra E (C ) =
(CE(C ),∧,− ) of central elements of C , defined by

e ∧ d = etd; e− = eft,

is a Boolean algebra, which is isomorphic to the Boolean algebra of factor congru-
ences.

Proof. By Corollary 4.2.16 C has Boolean factor congruences. It follows that the
partial ordering on central elements, defined in (4.3), is a Boolean ordering. There
only remains to show that, for all central elements d, e, the elements e− = eft and
e ∧ d = etd are central and are respectively associated with the pairs (ϑe, ϑe) and
(ϑe ∩ ϑd, ϑe ∨ ϑd) of complementary factor congruences (recall that (ϑe, ϑe) is the
pair of complementary factor congruences associated with the central element e).

We check the details for eft. By Corollary 4.3.5(i) we have that eft is the
unique element u such that t ϑe u ϑe f . By (4.1) in Subsection 4.2.2 this means
that eft = g(t, f) for the decomposition operator g associated with the pair (ϑe, ϑe)
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of complementary factor congruences. We have the conclusion that eft is central
associated with the pair (ϑe, ϑe) as in the proof of Proposition 4.3.3.

We now consider e ∧ d = etd. First of all, we show that etd = dte. By Corol-
lary 4.3.5(i) we have that t ϑe etd ϑe d, while t ϑe dte ϑe d can be obtained as
follows:

t = dtt by Definition 4.3.1(i),
dtt ϑe dte by tϑee,

dte ϑe dtf by eϑef ,
dtf = d by Definition 4.3.1(iv).

Since by Remark 4.2.11 there is a unique element u such that t ϑe u ϑe d, then
we have the conclusion dte = etd. We now show that etd is the central element
associated with the factor congruence ϑe ∩ ϑd, i.e.,

t (ϑe ∩ ϑd) etd (ϑe ∨ ϑd) f .

From dte = etd we easily get that t ϑe etd and t ϑd etd, that is, t (ϑe ∩ ϑd) etd.
Finally, by Corollary 4.3.5, we have: etd ϑe d = dtf ϑd f , i.e., etd (ϑe ∨ ϑd) f .

We now provide the promised representation theorem. If I is a maximal ideal of
the Boolean algebra CE(A ), then ϑI denotes the congruence on A defined by:

x (ϑI) y if, and only if, x ϑe y for some e ∈ I.

By a Pierce variety (see [106] for the general definition) we mean here a variety of
algebras for which there are two constants 0, 1 and a term u(x, y, z, v) such that the
following identities hold: u(x, y, 0, 1) = x and u(x, y, 1, 0) = y.

Obviously, the variety of combinatory algebras is a Pierce Variety: it is sufficient
to take 1 ≡ t, 0 ≡ f and u(x, y, z, v) ≡ zyx.

Theorem 4.3.7. (Representation Theorem for combinatory algebras) Let C =
(C, ·,k, s) be a combinatory algebra and X be the Boolean space of maximal ideals
of the Boolean algebra E (C ) of central elements. Then, for all I ∈ X the quotient
algebra C /ϑI is directly indecomposable and the map

f : C → ΠI∈X(C/ϑI),

defined by
f(x) = (x/ϑI : I ∈ X),

gives a weak Boolean product representation of C .

Proof. By Corollary 4.2.16 the factor congruences of C constitute a Boolean sublat-
tice of Con(C ). Then by [35] f gives a weak Boolean product representation of C .
The quotient algebras C /ϑI are directly indecomposable by [106, Thm. 8], because
combinatory algebras form a Pierce variety.
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Note that, in general, it is not possible to obtain a (non-weak) Boolean pro-
duct representation of a combinatory algebra. This follows from Lemma 4.2.15
and two results due to Vaggione [105] and Plotkin-Simpson [100, Lemma 3.14].
Vaggione has shown that, if a variety has factorable congruences and every member
of the variety can be represented as a Boolean product of directly indecomposable
algebras, then the variety is a discriminator variety (see [31] for the terminology).
Discriminator varieties satisfy very strong algebraic properties, in particular they
are congruence permutable (i.e., in each algebra the join of two congruences is just
their composition). Plotkin and Simpson have shown that this last property is
inconsistent with combinatory logic, hence by Lemma 4.2.15 and Vaggione’s theorem
not all combinatory algebras have a Boolean product representation.

4.4 The indecomposable semantics

The representation theorem of combinatory algebras can be roughly summarized as
follows: the directly indecomposable combinatory algebras are the “building blocks”
in the variety of combinatory algebras. Then it is natural to investigate the class
of models of λ-calculus, which are directly indecomposable as combinatory algebras
(indecomposable semantics, for short).

In this section we show that the indecomposable semantics includes: the Scott-
continuous, stable and strongly stable semantics, as well as the term models of all
semi-sensible λ-theories. In spite of this richness, in the last results of this chapter we
show that the indecomposable semantics is incomplete, and that this incompleteness
is as large as possible: the set of λ-theories which are omitted by the indecomposable
semantics is 2ℵ0-broad, and moreover contains countably many 2ℵ0-high intervals.

Finally, we will show that the set of λ-theories induced by each of the main
semantics is not closed under finite intersection, and hence it is not a sublattice of
λT .

4.4.1 Internalizing “indecomposable”

We have shown that any factor congruence could be internally represented by a cen-
tral element, and in particular that a combinatory algebra is directly indecomposable
if, and only if, CE(C ) = {t, f}. We now deduce from this that “being a directly
indecomposable combinatory algebra” can be expressed by a universal formula.

Let us define the following combinatory terms:

• z ≡ λ∗e.[λ∗x.exx, λ∗xyz.e(exy)z, λ∗xyz.exz, λ∗xyzu.e(xy)(zu), etf ];

• u ≡ λ∗e.[λ∗x.x, λ∗xyz.exz, λ∗xyz.ex(eyz), λ∗xyzu.exz(eyu), e].

Proposition 4.4.1. The class ❈❆DI of the directly indecomposable combinatory
algebras is a universal class (i.e., it can be axiomatized by universal sentences).
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Proof. By Definition 4.3.1 we have that e is central if, and only if, the equation
ze = ue holds. Hence, the class ❈❆DI can be axiomatized by the following universal
formula φ:

φ ≡ ∀e((ze = ue⇒ e = t ∨ e = f) ∧ ¬(t = f)).

Corollary 4.4.2. The class ❈❆DI of the directly indecomposable combinatory alge-
bras is closed under subalgebras and ultraproducts.

4.4.2 Incompleteness of the indecomposable semantics

The closure of the class of directly indecomposable combinatory algebras under
subalgebras is the key trick in the proof of the algebraic incompleteness theorem.
Recall that MT denotes the term model of a λ-theory T .

Lemma 4.4.3. Given a λ-theory T the following conditions are equivalent:

(i) MT has a non-trivial central element.

(ii) MT is directly decomposable.

(iii) All λ-models C such that Th(C ) = T are directly decomposable.

(iii’) The indecomposable semantics omits T .

Proof. (i ⇐⇒ ii): By Proposition 4.3.3.
(ii ⇐⇒ iii): follows from Corollary 4.4.2, since Th(C ) = T if, and only if, MT

is isomorphic to a subalgebra of C .
(iii ⇐⇒ iii’): By Definition 1.3.1.

In every λ-model the interpretations of the combinators t and f coincide with
those of the λ-terms T ≡ λxy.x and F ≡ λxy.y. It follows that T and F can cover
the role of trivial central elements in every λ-model.

Lemma 4.4.4. Let Q ∈ Λo and TT, TF be two consistent λ-theories such that TT ⊢
Q = T and TF ⊢ Q = F. Then, for T = TT ∩ TF, [Q]T is a non-trivial central
element of MT .

Proof. Since [T]TT
and [F]TF

are central elements in MTT
and MTF

respectively, the
λ-theory T contains all equations (i) − (iv) of Definition 4.3.1 for e = Q, making
[Q]T a central element of MT . Moreover, [Q]T is non-trivial since T 6⊢ Q = T and
T 6⊢ Q = F.

Theorem 4.4.5. The indecomposable semantics is incomplete.

Proof. By Lemma 4.4.3 it is sufficient to produce a λ-theory T such that MT has
a non-trivial central element. Since Ω is an easy term, there exist two consistent
λ-theories TT, TF such that TT ⊢ Ω = T and TF ⊢ Ω = F . Obviously, the λ-theory
T = TT ∩ TF is consistent. Then, we conclude by Lemma 4.4.4 that [Ω]T is a
non-trivial central element of MT .
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In the following theorem we show that, although the indecomposable semantics
is incomplete, it is large enough to represent all semi-sensible λ-theories.

Lemma 4.4.6. Let T be a consistent λ-theory and e be a non-trivial central element
of MT . Then, every λ-term U belonging to the equivalence class e is unsolvable.

Proof. By Corollary 4.3.5 the congruences ϑe = ϑ(e, [T ]T ) and ϑe = ϑ(e, [F ]T ) on
MT are non-trivial. Then, for every λ-term U ∈ e, the λ-theories TF and TT,
generated respectively by T ∪ {F = U} and T ∪ {T = U}, are consistent. Assume,
by the way of contradiction, that U is solvable. Then, U should be simultaneously
equivalent (as hnf) to F and to T . Contradiction.

Theorem 4.4.7. The indecomposable semantics represents all semi-sensible λ-the-
ories.

Proof. Let T be a semi-sensible λ-theory. Assume, by the way of contradiction,
that MT has a non-trivial central element e (cf. Lemma 4.4.3). Then, MT satisfies
exx = x (see Definition 4.3.1). Let U ∈ Λo such that U ∈ e, then T ⊢ Uxx = x. By
Lemma 4.4.6, U is unsolvable. Thus, the unsolvable λ-term Uxx is provably equal
in T to the solvable λ-term x, which contradicts the semi-sensibility of T .

4.4.3 Continuous, stable and strongly stable semantics

In the next proposition we show that all λ-models living in the main semantics are
simple algebras. We recall that an algebra is simple when it has just the two trivial
congruences, and is hence directly indecomposable.

Proposition 4.4.8.

(i) All λ-models living in the Scott-continuous semantics are simple combinatory
algebras.

(ii) All λ-models living in the stable or strongly stable semantics are simple com-
binatory algebras.

Proof. Let us consider a λ-model C = (D, ·,k, s).
(i) Suppose that C is a continuous λ-model. It is easy to check that, for all

b, c ∈ D, the function gb,c defined by

gb,c(x) =

{
c if x 6⊑D b,
⊥ otherwise,

is Scott continuous. Let ϑ be a congruence on C and suppose that there exist a, d
such that a ϑ d with a 6= d. We have a 6⊑D d or d 6⊑D a. Suppose, without loss
of generality, that we are in the first case. Since the continuous function gd,c is
representable in the model (for all c), we have: ⊥ = gd,c(a) ϑ gd,c(d) = c, hence cϑ⊥.
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By the arbitrariness of c we get that ϑ is trivial, so that C is simple. Note that gd,c
is neither stable nor strongly stable hence it cannot be used for proving item (ii).

(ii) Suppose that C is a (strongly) stable λ-model. Consider two elements a, b ∈
D such that a 6= b. We have a 6⊑D b or b 6⊑D a. Suppose, without loss of generality,
that we are in the first case. Then there is a compact element d of C such that
d ⊑D a and d 6⊑D b. The step function fd,c defined by :

fd,c(x) =

{
c if d ⊑D x,
⊥ otherwise,

is stable (strongly stable) for every element c. This function fd,c can be used to
show that every congruence on C is trivial as in the proof of item (i).

As a consequence of Proposition 4.4.8, we get, in a uniform way, the incomplete-
ness for the main semantics of λ-calculus. We will see later on that this incomplete-
ness is very large.

Corollary 4.4.9. The Scott-continuous, the stable and the strongly stable semantics
are incomplete.

Proof. By Proposition 4.4.8 and Theorem 4.4.5.

Recall that, given a class ❈ of λ-models, λ❈ denotes the set of λ-theories which
are represented in ❈. In the remaining part of this subsection we show that, for
each of the classic semantics of λ-calculus, the set λ❈ is not closed under finite
intersection, so that it is not a sublattice of the lattice λT of λ-theories.

Theorem 4.4.10. Let ❈ be a class of directly indecomposable models of λ-calculus.
If there are two consistent λ-theories TT, TF ∈ λ❈ such that

TT ⊢ Ω = T ; TF ⊢ Ω = F ,

then λ❈ is not closed under finite intersection, so it is not a sublattice of λT .

Proof. Let T = TT ∩ TF. By Lemma 4.4.4, [Ω]T is a non-trivial central element of
MT . It follows that T /∈ λ❈.

Corollary 4.4.11. Let ❈ be one of the following semantics: graph semantics, G-
semantics, H-semantics, filter semantics, Scott-continuous semantics, stable seman-
tics, strongly stable semantics. Then λ❈ is not a sublattice of λT .

Proof. Semantic proofs that Ω is an easy term were given (see [13]) for the graph,
G- and H- semantics (and hence still hold for all the larger classes). Then the
conclusion follows from Theorem 4.4.10, and Proposition 4.4.8.
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4.4.4 Concerning the number of decomposable and inde-
composable λ-models

From the work done in the previous subsection, it is moreover easy to conclude that
there is a wealth of directly indecomposable λ-models inducing different λ-theories.

Theorem 4.4.12. Let ■◆❉ be the indecomposable semantics, then λ■◆❉ is 2ℵ0-high
and 2ℵ0-broad (hence, 2ℵ0-wide).

Proof. We know from Theorem 4.4.7 that λ■◆❉ contains the interval [λβ,H
∗], which

is 2ℵ0-high by Theorem 1.2.2(ii). Moreover, Proposition 4.4.8(i) implies that λ■◆❉
also contains the set of all graph theories which is, by Proposition 1.4.9, 2ℵ0-broad.

Now, we show that also the incompleteness of the indecomposable semantics is
as large as possible.

First of all we need some results about λ-theories. The proof of the following
lemma is similar to that of [8, Prop. 17.1.9], where the case k = 1 (due to Visser) is
shown, and it is omitted.

Lemma 4.4.13. Suppose T is an r.e. λ-theory and fix arbitrary λ-terms Mi, Ni for
1 ≤ i ≤ k such that T 6⊢Mi = Ni for all i ≤ k. Then there is a T -easy term M ∈ Λo

such that

T ∪ {M = P} 6⊢Mi = Ni, for all i ≤ k and all closed terms P .

Then the following theorems are corollaries of the algebraic incompleteness the-
orem.

Theorem 4.4.14. Let T be an r.e. λ-theory. Then, the interval [T [ = {S : T ⊆
S} contains a subinterval [S1,S2] = {S : S1 ⊆ S ⊆ S2} satisfying the following
conditions:

• S1 and S2 are distinct r.e. λ-theories,

• every S ∈ [S1,S2] is omitted by the indecomposable semantics,

• card([S1,S2]) = 2ℵ0.

Proof. Since T is r.e. we know that there exists a T -easy λ-term Q. In particular
T 6⊢ Q = T and T 6⊢ Q = F .

Let S1 = TT ∩ TF, where TT, TF are the consistent λ-theories generated respec-
tively by T ∪ {Q = T } and T ∪ {Q = F }. Obviously, the λ-theory S1 is consistent,
r.e. and contains T . By Lemma 4.4.4, [Q]S1

is a non-trivial central element of MS1
.

We apply Lemma 4.4.13 to the λ-theory S1 and to the equations Q = T and
Q = F . We get an S1-easy term R ∈ Λo such that S1 ∪ {R = P} 6⊢ Q = T and
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S1 ∪ {R = P} 6⊢ Q = F , for all λ-terms P ∈ Λo. Let S2 = S1 ∪ {R = I}. Since R is
S1-easy, we have that S2 is a proper extension of S1.

The term model MS2
of S2 is a homomorphic image of the term model MS1

of
S1, then every equation satisfied by MS1

is also satisfied by MS2
. In particular, the

equations expressing that Q is a central element. Finally, [Q]S2
is non-trivial as a

central element because S2 6⊢ Q = T and S2 6⊢ Q = F .
Hence, for every λ-theory S such that S1 ⊆ S ⊆ S2 the equivalence class of Q is

non-trivial central element of the term model of S.
We get the conclusion of the theorem because card([S1,S2]) = 2ℵ0 by Theo-

rem 1.2.2(i′).

Remark 4.4.15. From Lemma 4.4.3 it follows that all the λ-models C such that
Th(C ) belongs to the interval [S1,S2] above, are directly decomposable.

Theorem 4.4.16. Let ❉❊❈ be the class of all directly decomposable λ-models. Then
λ❉❊❈ is:

(i) 2ℵ0-broad.

(ii) 2ℵ0-high, and even contains countably many “pairwise incompatible” 2ℵ0-high
intervals.

Proof. (i) Let Un ≡ Ω(λx1 . . . xn.I) and k ≡ λxy.xk(y) be the k-th Church’s numeral.
Given a permutation σ of the set of Church’s numerals, we write Tσ,Sσ for the λ-
theories respectively generated by:

ET

σ = {U0 = T} ∪ {Un = σ(n− 1) : n ≥ 1},
EF

σ = {U0 = F} ∪ {Un = σ(n− 1) : n ≥ 1}.

Obviously, no equation in ET

σ (resp. EF

σ ) is consequence of the other ones. From
[16, Thm. 22] we get that Tσ,Sσ are consistent and hence, by Lemma 4.4.4, we have
that the equivalence class of U0 is a non-trivial central element of MTσ∩Sσ

. Thus,
Tσ ∩ Sσ ∈ λ❉❊❈ by Lemma 4.4.3.

If σ1, σ2 are two distinct permutations of the set of Church’s numerals, then
Tσ1

∩Sσ1
and Tσ2

∩Sσ2
are incompatible, because it is inconsistent to equate n = m

for every n 6= m.
Hence, (i) follows since there exist 2ℵ0 permutations σ of the set of Church’s

numerals which give rise to pairwise incompatible λ-theories Tσ ∩ Sσ ∈ λ❉❊❈.
(ii) Let σ be a permutation of the Church’s numerals and Tσ,Sσ be as in the

proof of (i). Suppose that σ is computable, then both Tσ and Sσ are r.e. λ-theories,
hence also Tσ ∩ Sσ ∈ λ❉❊❈ is r.e. Thus, by Theorem 4.4.14 the interval [Tσ ∩ Sσ[
contains an interval of 2ℵ0 λ-theories belonging to λ❉❊❈.

The theorem follows since there exist countably many computable permutations
σ.

Corollary 4.4.17. The indecomposable semantics omits a set of λ-theories which
is 2ℵ0-broad, 2ℵ0-high, and even contains countably many “pairwise incompatible”
2ℵ0-high intervals.
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Corollary 4.4.18. The Scott-continuous, the stable and the strongly stable seman-
tics omit a set of λ-theories which is 2ℵ0-broad, 2ℵ0-high, and even contains countably
many “pairwise incompatible” 2ℵ0-high intervals.

4.5 Conclusions and further works

We generalized the Stone representation theorem to combinatory algebras showing
that every combinatory algebra can be decomposed as a weak product of directly
indecomposable combinatory algebras. We showed that the semantics of λ-calculus
given in terms of directly indecomposable λ-models, although huge enough to include
all the main semantics, is hugely incomplete. This gives a strong, uniform and
elegant proof of the incompleteness of the continuous, stable and strongly-stable
semantics.

A related question is whether there exists a partially ordered λ-model which
admits a non-trivial decomposition. Of course, in this case, there is no reason why
the decomposition operators introduced in this chapter should decompose the λ-
model respecting the associated ordering. Hence, it would be interesting to find new
kinds of decompositions which take into account also the partial order. On the other
hand, the result of incompleteness in [92], stating that any semantics of λ-calculus
given in terms of partial orderings with a bottom element is incomplete, removed
the belief that partial orderings were intrinsic to λ-models. It is an open problem to
find new Cartesian closed categories, where the partial orderings play no role and
where the reflexive objects are directly indecomposable as combinatory algebras.

Moreover, it would be interesting to find other relations on λ-theories which are
more informative than set-theoretical inclusion. A recent proposal, due to Hyland1

is the following. Recall that the Karubi envelope of a λ-model C [8, Def. 5.5.11],
denoted here by Ret(C ), is the category having as objects the elements a ∈ C
satisfying a ◦ a = a and as arrows the elements f ∈ C such that a ◦ f ◦ b = f .
Scott has shown in [97] that Ret(C ) is a Cartesian closed category in which I is a
reflexive object and Koymans [71] proved that Th(I) = Th(C ). Hyland’s suggestion
is to define a preorder on λ-theories as follows:

S � T if there exists a reflexive object R in Ret(MT ) such that Th(R) = S.

We will investigate in the future whether this relation can be fruitfully used to relate
models and theories of λ-calculus.

12007, J.M.E. Hyland. Personal communication.
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Towards a model theory

for graph models

Given a class of models in a given semantics, is there a
minimal theory represented in it? [. . . ] Can the size of the
web affect the equational theory of a model?
(Chantal Berline, from [13])

E
ven thought the models of λ-calculus have been object of study of many
researchers since 1969, we still lack general results of model theory for them.
However, for the classes of webbed models, it is possible to infer properties

of the models by analyzing the structure of their web. Here, we focus our attention
on the simplest kind of webbed models: the graph models.

In this chapter we recall a simple completion process due to Longo [75], which
allows to build (the web of) a graph model starting from a “partial web”, called
partial pair. Moreover, we provide some notions and results which are useful for
studying the framework of partial pairs, and we show that they can be fruitfully
applied for proving that: (i) there exists a minimum order graph theory (for equa-
tional graph theories this was proved in [29, 30]); (ii) every equational/order graph
theory is the theory of a graph model having a countable web.

This last result proves that graph models enjoy a kind of (downwards) Löwenheim-
Skolem theorem, and it answers positively Question 3 in [13, Sec. 6.3] for the class
of graph models.

5.1 Partial pairs

The definition of graph models (and hence of total pairs) has been recalled in Sub-
section 1.4.2. We need now to develop the wider framework of partial pairs. We
will see that from each partial pair we can “freely generate” a graph model (see
Definition 5.1.8, below).
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5.1.1 Definition and ordering of partial pairs

Definition 5.1.1. A partial pair A is a pair (A, jA) where A is an arbitrary set
and jA : A∗ × A→ A is a partial (possibly total) injection.

A partial pair A is finite if A is finite, and it is total if jA is total. The simplest
examples of partial pairs are (A, ∅), where ∅ denotes the empty function, and (∅, ∅)
which is called the trivial or the empty partial pair. In the sequel the letters A,B, C
will always denote partial pairs.

Definition 5.1.2. We say that A is a subpair of B, and we write A ⊑ B, if:

• A ⊆ B and

• jA(a, α) = jB(a, α) for all (a, α) ∈ dom(jA).

The set of subpairs of A will be denoted by Sub(A).

It is easy to check that, for all partial pairs A, (Sub(A),⊑) is a DI-domain.
Moreover, given a family (Ak)k∈K of partial pairs belonging to Sub(A) we have that
⊔k∈KAk = (∪k∈KAk,∪k∈KjAk

).

5.1.2 Interpretation with respect to a partial pair

Definition 5.1.3. An A-environment is a function ρ : Var → P(A).

To lighten the notation we will denote by EnvA, instead of EnvP(A), the set of
all A-environments.

The definition of the partial interpretation |M |Aρ of a λ-term M with respect to
a partial pair A, generalizes in the obvious way the one given in Subsection 1.4.2
for graph models. For all ρ ∈ EnvA we let:

• |x|Aρ = ρ(x),

• |PQ|Aρ = {α : (∃a ⊆f |Q|
A
ρ )[(a, α) ∈ dom(jA) and jA(a, α) ∈ |P |Aρ ]},

• |λx.N |Aρ = {jA(a, α) : (a, α) ∈ dom(jA) and α ∈ |N |Aρ[x:=a] }.

Note that, if G is a graph model with web G, then |M |Gρ = |M |Gρ for every λ-term
M and G-environment ρ. Remark also that, if A is not total, β-equivalent λ-terms
do not necessarily have the same interpretation.

As a matter of notation, given ρ ∈ EnvA, σ ∈ EnvB and a set C, we write:

• σ = ρ ∩ C if σ(x) = ρ(x) ∩ C for every variable x, and

• ρ ⊆ σ if ρ(x) ⊆ σ(x) for every variable x.
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We provide now two lemmata on the partial interpretation of λ-terms with re-
spect to partial pairs. The idea behind Lemma 5.1.5 below is that, for a fixed
M ∈ Λ, the function from Sub(A) × EnvA to P(A) mapping (B, ρ) 7→ |M |Bρ∩B is
continuous.

Lemma 5.1.4. If A ⊑ B, then |M |Aρ ⊆ |M |Bσ for all ρ ∈ EnvA and σ ∈ EnvB such
that ρ ⊆ σ.

Proof. By straigthforward induction on the structure of M .

Lemma 5.1.5. Let M ∈ Λ, B be a partial pair and ρ ∈ EnvB. Suppose α ∈ |M |Bρ
then there exists a finite pair A ⊑ B such that α ∈ |M |Aρ∩A.

Proof. The proof is by induction on M .
If M ≡ x, then α ∈ ρ(x), so that we define A = ({α}, ∅).
If M ≡ PQ, then there is a finite set a = {α1, . . . , αn}, for some n ≥ 0, such

that (a, α) ∈ dom(jB), jB(a, α) ∈ |P |Bρ and a ⊆ |Q|Bρ . By the induction hypothesis

there exist finite subpairs A1, . . . ,An+1 of B such that jB(a, α) ∈ |P |An+1

ρ∩An+1
and

αk ∈ |Q|Ak

ρ∩Ak
for k = 1, . . . , n. We define A ⊑ B as ⊔k=0,...,n+1Ak where A0 =

(a ∪ {α}, jB↾{(a,α)}). From Lemma 5.1.4 it follows the conclusion.
If M ≡ λx.N , then α = jB(b, β) for some b and β such that (b, β) ∈ dom(jB)

and β ∈ |N |Bρ[x:=b]. By the induction hypothesis there exists a finite pair C ⊑ B such

that β ∈ |N |Cρ[x:=b]∩C . We define A ⊑ B as C ⊔ (b ∪ {α, β}, jB↾{(b,β)}). Then we have

that C ⊑ A and ρ[x := b] ∩ C ⊆ ρ[x := b] ∩ A. From β ∈ |N |Cρ[x:=b]∩C and from

Lemma 5.1.4 it follows that β ∈ |N |Aρ[x:=b]∩A = |N |A(ρ∩A)[x:=b]. Then we conclude that

α = jA(b, β) ∈ |λx.N |Aρ∩A.

5.1.3 Morphisms between partial pairs

Definition 5.1.6. A total function θ : A → B is a morphism from A to B if, for
all (a, α) ∈ A∗ × A, we have:

(a, α) ∈ dom(jA) =⇒ [(θ+(a), θ(α)) ∈ dom(jB) and θ(jA(a, α)) = jB(θ+(a), θ(α))]

and it is an endomorphism if, moreover, A = B.

Note that an isomorphism between A and B is a bijection θ : A → B such that
both θ and θ−1 are morphisms; if, moreover, A = B then θ is an automorphism.

This notion of morphism is in some way a generalization of the notion of subpair
given in Subsection 5.1.1. Indeed, it is easy to verify that we have A ⊑ B exactly
when the inclusion mapping ι : A→ B is a morphism.

As a matter of notation:

• Hom(A,B) denotes the set of morphisms from A to B,
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• Iso(A,B) denotes the set of isomorphisms between A and B,

• Aut(A) denotes the group of automorphisms of A,

Moreover, θ : A → B will be an alternative notation for θ ∈ Hom(A,B).

Lemma 5.1.7. Let φ ∈ Hom(A,B) and ρ ∈ EnvA. Then:

(i) φ+(|M |Aρ ) ⊆ |M |Bφ+◦ρ

(ii) φ+(|M |Aρ ) = |M |Bφ+◦ρ if φ ∈ Iso(A,B).

Proof. (i) By straightforward induction on M one proves that, for all α ∈ φ+(|M |Aρ ),
we have φ(α) ∈ |M |Bφ+◦ρ.

(ii) By (i) it is enough to prove that |M |Bφ+◦ρ ⊆ φ+(|M |Aρ ). Let ψ = φ−1; then

φ+ ◦ ψ+ = Id. Thus |M |Bφ+◦ρ = φ+(ψ+(|M |Bφ+◦ρ)) ⊆ φ+(|M |Aψ+◦φ+◦ρ) = φ+(|M |Aρ ),
the inclusion follows by (i).

As a consequence of Lemma 5.1.7(ii) we have that if φ ∈ Iso(A,B), with A,B
total, then φ+ is an isomorphism of λ-models.

On the contrary, if φ is only a morphism of pairs, then φ+ cannot be a morphism
of combinatory algebras. Indeed, it is easy to check that φ+(|K|A) ( |K|B if φ is
not surjective and φ+(|MN |A) ( φ+(|M |A) · φ+(|N |A) if φ is not injective.

5.1.4 Graph-completions of partial pairs

There are two known processes for building a graph model satisfying some additional
requirements. Both consist in completing a partial pair A into a total pair. The free
completion1, which is due to Longo [75] and mimics the construction of Engeler’s
model E , is a constructive way for building, canonically and as freely as possible, a
total pair A from a partial pair A. This construction opens the possibility to induce
some properties of the graph model with web A from A.

The other completion process, called forcing completion or simply “forcing”,
originates in [6]. Baeten and Boerboom built out of a partial pair (G, ∅), for all
M ∈ Λo, a graph model G with web (G, iMG ) such that |Ω|G = |M |G , thus proving
semantically that Ω is easy. This technique is, in general, non constructive. Forcing
was generalized in [16], where it is shown, in particular, that we can go far beyond
Λo. In this thesis forcing will only have an auxiliary role allowing us to produce
examples; hence “completion” will mean “free completion” unless otherwise stated.

Let us recall now the formal definition of free completion.

1 This is the terminology used, e.g., in [13, 14]. Free completion is also termed canonical

completion [30] and Engeler completion [28, 29].
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Definition 5.1.8. Let A = (A, jA) be a partial pair. The free completion of A is
the total pair A = (A, iĀ), where A = ∪n∈◆An, with A0 = A, An+1 = A ∪ ((A∗

n ×
An) − dom(jA)) and iĀ is defined by:

iĀ(a, α) =

{
jA(a, α) if (a, α) ∈ dom(jA),
(a, α) otherwise.

An element of A has rank 0, whilst an element α ∈ A−A has rank n if α ∈ An−An−1.

Actually this completion construction requires that ((A∗ × A) − dom(jA)) ∩
rg(jA) = ∅, otherwise iĀ would not be injective, hence we will always suppose
that no element of A is a pair. This is not restrictive because partial pairs can be
considered up to isomorphism.

Notation 5.1.9. In the sequel, GA will denote the graph model whose web is A, and
it will be said freely generated by A.

Then, we note that the graph model G(∅,∅) freely generated by the trivial pair is
trivial. Hence, we will always suppose in the sequel that the partial pairs we are
considering are non trivial.

Of course, not all graph models have a web which can be obtained as a free
completion of a (proper) partial pair. In particular there is a recent result, which is
recalled below, stating that the free completion process only generates semi-sensible
graph models.

Theorem 5.1.10. (Bucciarelli and Salibra [30, Thm. 29])
If A is a partial pair which is not total then GA is semi-sensible.

Remark 5.1.11. Let A,B be two partial pairs. If A ⊑ B ⊑ A then A = B and
hence GA = GB.

Example 5.1.12. By definition:

(i) the Engeler’s model E is freely generated by A = (A, ∅), where A is a non-
empty set. Thus, in fact, we have a family of graph models EA;

(ii) the graph-Scott models are freely generated by A = (A, jA), where jA(∅, α) = α
for all α ∈ A;

(iii) the graph-Park models are freely generated by A = (A, jA), where jA({α}, α) =
α for all α ∈ A;

(iv) the mixed-Scott-Park graph models are freely generated by A = (A, jA) where
jA(∅, α) = α for all α ∈ Q, jA({β}, β) = β for all β ∈ R and Q,R form a
non-trivial partition of A.

Remark 5.1.13. (Longo [75]) The model Pω is isomorphic to the graph-Scott model
of a pair A = ({0}, jA) where jA(∅, 0) = 0.
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Theorem 5.1.14.

(i) (Kerth [66, 69]) There exist 2ℵ0 graph models of the form GA, with distinct
theories, among which ℵ0 are freely generated by finite pairs.

(ii) (Kerth [68] plus David [41]) The same is true for sensible graph models.

Lemma 5.1.15.

(i) For all θ ∈ Hom(A,B) there is a unique θ̄ ∈ Hom(A,B) such that θ̄↾A= θ.

(ii) If θ ∈ Iso(A,B), then θ̄ ∈ Iso(A,B).

Proof. The definition of θ̄ and the verification of the first point are by straightforward
induction on the rank of the elements of A. It is also easy to check that if θ is an
isomorphism then θ̄−1 is the inverse of θ̄.

A morphism θ : A → B does not induce, in general, a morphism of models except
when θ is an isomorphism. In other words, the next corollary holds.

Corollary 5.1.16. Let θ ∈ Iso(A,B), then:

(i) θ̄+ ∈ Iso(GA,GB),

(ii) Th⊑(GA) = Th⊑(GB).

(iii) Th(GA) = Th(GB).

Proof. (i) By Lemma 5.1.7 and Lemma 5.1.15.
(ii) By (i) and Remark 1.4.3.
(iii) From (ii).

Proposition 5.1.17. Let G be a graph model with web G, and suppose α ∈ |M |G −
|N |G for some M,N ∈ Λo. Then there exists a finite A ⊑ G such that: for all pairs
C ⊒ A, if there is a morphism θ : C → G such that θ(α) = α, then α ∈ |M |C − |N |C.

Proof. By Lemma 5.1.5 there is a finite pair A such that α ∈ |M |A. By Lemma 5.1.4
we have α ∈ |M |C. Now, if α ∈ |N |C then, by Lemma 5.1.7, α = θ(α) ∈ |N |G , which
is a contradiction.

Corollary 5.1.18. Let G be a graph model, and suppose α ∈ |M |G −|N |G for some
M,N ∈ Λo. Then there exists a finite A ⊑ G such that, for all pairs B satisfying
A ⊑ B ⊑ G, we have:

(i) α ∈ |M |B − |N |B and

(ii) α ∈ |M |GB − |N |GB .
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5.1.5 Retracts

Definition 5.1.19. Given two partial pairs A and B we say that A is a retract of
B, and we write A ⊳ B, if there are morphims e ∈ Hom(A,B) and π ∈ Hom(B,A)
such that π ◦ e = IdA. In this case we will also write (e, π) : A ⊳ B.

Notation 5.1.20. Given two graph models G ,G ′ we write G ⊳ G ′ if G is a retract
of G ′.

From Lemma 5.1.15(i), and the fact that the identity IdA is the only endomor-
phism of A whose restriction to A is IdA, we get the following lemma.

Lemma 5.1.21. Let A,B be two partial pairs, then A ⊳ B implies A ⊳ B.

Proposition 5.1.22. If G ⊳ G ′ then Th⊑(G ′) ⊆ Th⊑(G ) and Th(G ′) ⊆ Th(G ).

Proof. Let (e, π) : G ⊳ G ′. It is enough to prove that for all M,N ∈ Λo, if α ∈
|M |G − |N |G then θ(α) ∈ |M |G

′
− |N |G

′
. Now, by applying Lemma 5.1.7 twice,

θ(α) ∈ |M |G
′
and θ(α) ∈ |N |G

′
would imply α = θ′(θ(α)) ∈ |N |G .

Example 5.1.23. Given the Engeler’s model EA freely generated by A = (A, ∅) and
the graph-Scott model PA freely generated by A′ = (A, jA), we have:

(a) A ⊑ A′ but not A ⊑ A′ ⊑ A,

(b) (∅, α) ∈ A− A′,

(c) Th(EA) = Th(PA) = BT [75],

(d) Th⊑(EA) ( Th⊑(PA) [75, Prop. 2.8],

(e) I ⊑ 1 ∈ Th⊑(PA) − Th⊑(EA) (easy),

(f) α ∈ |λx.I|PA − |λx.I|EA and (∅, α) ∈ |λx.I|EA − |λx.I|PA.

5.2 The minimum order and equational graph the-

ories

In [29, 30], Bucciarelli and Salibra defined a notion of “weak product” for graph
models. In this paper we prefer to call this construction gluing since it does not
enjoy the categorical properties of a weak product.

Definition 5.2.1. The gluing ♦k∈KGk of a family (Gk)k∈K of graph models with
pairwise disjoint webs is the graph model freely generated by the partial pair ⊔k∈KGk;
its web is denoted by ♦k∈KGk instead of ⊔k∈KGk.
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Note that the gluing is commutative and associative up to isomorphism of graph
models. More generally, for any family (Gk)k∈K of graph models, ♦k∈KGk will denote
any gluing of isomorphic copies of the Gk’s with pairwise disjoint webs.

Lemma 5.2.2. Let (Gk)k∈K, be a family of graph models such that Gk = GAk
for

some family (Ak)k∈K of pairwise disjoint partial pairs. Then ♦k∈KGk = GA, where
A = ⊔k∈KAk.

Proof. By Remark 5.1.11 since, clearly, ⊔k∈KAk ⊑ ⊔k∈KAk ⊑ ⊔k∈KAk, and ⊔k∈KAk =
⊔k∈KGk by definition.

Proposition 5.2.3. (Bucciarelli and Salibra [28, Prop. 2])
Let (Gk)k∈K be a family of graph models and G = ♦k∈KGk, then:

(i) |M |Gk = |M |G ∩Gk for any M ∈ Λo, hence:

(ii) Th⊑(G ) ⊆ Th⊑(Gk),

(iii) Th(G ) ⊆ Th(Gk).

The existence of a minimum equational graph theory has been shown by Buccia-
relli and Salibra in [29, 30]. By slightly modifying their proof, we are able to prove
that there exists also a graph model whose order theory (and hence equational the-
ory) is the minimum one.

Theorem 5.2.4. There exists a graph model whose order/equational theory is the
minimum order/equational graph theory.

Proof. Let (Ak)k∈◆ be a family of pairwise disjoint finite partial pairs such that all
other finite pairs are isomorphic to at least one Ak. We now take G = ♦k∈KGk,
where Gk = GAk

. By Lemma 5.2.2, G = GA where A = ⊔k∈◆Ak.
We now prove that the order theory, and hence also the equational theory, of G

is the minimum one. Let e be an inequality which fails in some graph model. By
Corollary 5.1.18(ii) e fails in some GB where B is some finite pair, hence it fails in
some Gk. Thus, by Proposition 5.2.3(ii), e fails in G .

Recall that the minimum equational graph theory cannot be λβ or λβη by Propo-
sition 1.4.8.

5.3 A Löwenheim-Skolem theorem for graph mo-

dels

In this section we prove a kind of downwards Löwenheim-Skolem theorem for graph
models: every equational/order graph theory is the theory of a graph model having
a countable web. This result positively answers Question 3 in [13, Sec. 6.3] for the
class of graph models. Note that applying the classical Löwenheim-Skolem theorem
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to a graph model G , viewed as a combinatory algebra C , would only give a countable
elementary substructure C ′ of C . Such a C ′ does not correspond to any graph model
since there exists no countable graph model.

The class of total subpairs of a total pair G is closed under (finite or infinite)
intersections and increasing unions.

Definition 5.3.1. If A ⊑ G is a partial pair, then the total subpair of G generated
by A is defined as the intersection of all the total pairs G ′ such that A ⊑ G ′ ⊑ G.

Theorem 5.3.2. (Löwenheim-Skolem Theorem for graph models)
For all graph models G there exists a graph model G ′ with a countable web G ′ ⊑ G
such that Th⊑(G ′) = Th⊑(G ), and hence such that Th(G ′) = Th(G ).

Proof. We will define an increasing sequence of countable subpairs An of G, and
take for G ′ the total subpair of G generated by A = ⊔n∈◆An.

We start defining A0. Let I be the countable set of inequalities between closed
λ-terms which fail in G . Let e ∈ I. By Corollary 5.1.18(i) there exists a finite partial
pair Ae ⊑ G such that e fails in every partial pair B satisfying Ae ⊑ B ⊑ G. Then
we define A0 = ⊔e∈IAe ⊑ G. Assume now that An has been defined, and we define
An+1 as follows. Let G ′

n be the graph model whose web G ′
n is the total subpair of G

generated by An. For each inequality e = M ⊑ N which holds in G and fails in G ′
n,

we consider the set Le = {α ∈ G′
n : α ∈ |M |G

′
n − |N |G

′
n}. Let α ∈ Le. Since G ′

n ⊑ G
and α ∈ |M |G

′
n , then by Lemma 5.1.4 we have that α ∈ |M |G . By |M |G ⊆ |N |G

we also obtain α ∈ |N |G . By Lemma 5.1.5 there exists a partial pair Cα,e ⊑ G such
that α ∈ |N |Cα,e . We define An+1 as the union of the partial pair An and the partial
pairs Cα,e for every α ∈ Le.

As announced, we take for G ′ the total subpair of G generated by A = ⊔n∈◆An.
By construction we have, for every inequality e which fails in G : Ae ⊑ G ′

n ⊑ G ′ ⊑ G.
Now, Th⊑(G ′) ⊆ Th⊑(G ) follows from Corollary 5.1.18(i) and from the choice of
Ae.

Suppose now, by contradiction, that there exists an inequality M ⊑ N which
fails in G ′ but not in G . Then there is an α ∈ |M |G

′
− |N |G

′
. By Corollary 5.1.18(i)

there is a finite partial pair B ⊑ G ′ satisfying the following condition: for every
partial pair C such that B ⊑ C ⊑ G ′, we have α ∈ |M |C − |N |C. Since B is finite, we
have that B ⊑ G ′

n for some n. This implies that α ∈ |M |G
′
n −|N |G

′
n . By construction

of G ′
n+1 we have that α ∈ |N |G

′
n+1 ; this implies α ∈ |N |G

′
. Contradiction.

5.4 Conclusions

In this chapter we have developed several mathematical tools for studying the frame-
work of partial pairs. These tools have been fruitfully used here for proving the
existence of a minimum order graph theory, and a Löwenheim-Skolem theorem for
graph models, and they will have other interesting consequences in the next chapter.
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A concluding remark is that an alternative proof of Theorem 5.3.2 could be given
by using the Löwenheim-Skolem theorem for weak monadic second order structures.
Moreover, using this approach, it is possible to provide a tool generic enough for
treating simultaneously all the several classes of webbed models studied in the liter-
ature changing, when necessary, weak monadic second order logic for another logic.

We will keep this development for a later work: providing all the details here
would add several pages, by forcing us to introduce the various adequate logics and
enter more deeply in the definitions and particularities of the stable and strongly
stable semantics and of the diverse classes.



6
Effective models of λ-calculus

Is there a continuously complete CPO model of the λ-
calculus whose theory is precisely λβ or λβη? I asked my-
self this question in 1983. In 1984, on different occasions
I asked it to Dana Scott and Gordon Plotkin. Both told me
that they had already thought about it.
(Furio Honsell, from [57])

A
longstanding open problem is whether there exists a non-syntactical conti-
nuous model of the untyped λ-calculus whose equational theory is exactly
the least (least extensional) λ-theory λβ (λβη). In this chapter we investi-

gate the more general question of whether the equational/order theory of a model
of the untyped λ-calculus living in one of the main semantics can be recursively
enumerable. We introduce a notion of effective model of λ-calculus, which covers in
particular all the models individually introduced in the literature. We prove that
the order theory of an effective model is never r.e.; from this it follows that its equa-
tional theory cannot be λβ or λβη. Then, we show that no effective model living
in the stable or strongly stable semantics has an r.e. equational theory. Concerning
Scott-continuous semantics, we investigate the class of graph models and prove that
no order graph theory can be r.e., and that there exists an effective graph model
whose equational/order theory is the minimum one.

6.1 Introduction

6.1.1 Description of the problem

The initial problem. The question of the existence of a non-syntactical continuous
model of λβ or λβη was proposed by Honsell and Ronchi Della Rocca in 1984 (see
[58]). This problem, which is still open, generated a wealth of interesting research
and results (surveyed first in [13] and later on in [14]). Here, we briefly recall what
is relevant for the present work.

The first results. In 1995, Di Gianantonio, Honsell and Plotkin succeeded
to build an extensional model of λβη living in a weakly continuous semantics [46].
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However, the construction of this model (as an inverse limit) starts from the term
model of λβη, and hence involves the syntax of λ-calculus. Furthermore the problem
of whether there exists a model of λβ or λβη living in one of the main semantics
remains completely open. Nevertheless, the authors showed in the same paper that
the set of extensional λ-theories induced by Scott-continuous models has a least
element. At the same time Selinger proved that if an ordered model has theory λβ
or λβη then the order is discrete on the interpretations of λ-terms [102].

First extension: the minimality problem. In view of [46], it became nat-
ural to ask whether, given a (uniform) class of models of λ-calculus, there was a
minimum λ-theory represented in it; a question which was raised in [13]. Bucciarelli
and Salibra showed [29, 30] that the answer is also positive for the class of graph
models, and that the least graph theory was different from λβ. At the moment the
problem remains open for the other classes.

Each class of models represents and omits many λ-theories. Ten years
ago, it was proved that, in each of the known (uniform) classes ❈ of models living
in one of the main semantics, it is possible to build 2ℵ0 models inducing pairwise
distinct λ-theories [69, 70]. More recently, it has been proved in [92] that there are
2ℵ0 λ-theories which are omitted by all the above mentioned ❈’s, among which ℵ0

are finitely axiomatizable.
From these results, and since there are only ℵ0 recursively enumerable λ-theories,

it follows that each class ❈ represents 2ℵ0 non r.e. λ-theories and omits ℵ0 r.e. λ-
theories. Note also that there are only very few λ-theories of non-syntactical models
which are known to admit an alternative description (e.g., via syntactical conside-
rations), and that all happen to coincide either with the λ-theory BT of Böhm trees
[8], or some variations of it, and hence are non r.e. Thus we find natural to ask the
following question.

Can a non-syntactical model have an r.e. theory? This problem was
first raised in [14], where it is conjectured that no graph model can have an r.e.
theory. But we expect that this could indeed be true for all models living in the
Scott-continuous semantics, and its refinements (but of course not in its weakenings,
because of [46]). Here we extend officially this conjecture.

Conjecture 1. No λ-calculus model living in Scott-continuous semantics or one of
its refinements has an r.e. equational theory.

6.1.2 Methodology

1) Look also at order theories. Since all the models we are interested in are partially
ordered, and since, in this case, the equational theory Th(M ) is easily expressible
from its order theory Th⊑(M ) (in particular if Th⊑(M ) is r.e. then also Th(M ) is
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r.e.) we will also address the analogue problem for order theories.
2) Look at models with built-in effectivity properties. There are two reasons for

this. First, it seems reasonable to think that, if effective models do not even succeed
to have an r.e. theory, then it is unlikely that the other ones may succeed. Second,
because effective (webbed) models, in our sense, are omni-present in the continuous,
stable and strongly stable semantics; by this we mean that they are omnipresent in
the literature! Starting from the known notion of an effective domain, we introduce
an appropriate notion of an effective model of λ-calculus and we study the main
properties of these models1. Note that, in the absolute, effective models happen
to be rare, since each (uniform) class ❈ of models represents 2ℵ0 λ-theories, but
contains only ℵ0 non-isomorphic effective models! However, and this is a third a
posteriori reason to work with them, it happens that they can be used to prove
properties of non effective models (Theorem 3 below is the first example we know
of such a result).

3) A previous result obtained for typed λ-calculus also justifies the above metho-
dology. Indeed, it was proved in [12] that there exists a (webbed) model of Girard’s
system F , living in the Scott-continuous semantics, whose λ-theory is λβη, and whose
construction does not involve the syntax of λ-calculus. Furthermore, this model can
easily be checked to be “effective” in the same spirit as in the present work (see
[12, App. C] for a sketchy presentation of the model). Note that this model has no
analogue in the stable semantics.

4) Look at the class of graph models. Studying graph models illustrates the spirit
of the tools we aim at developing, while keeping technicalities at the lowest possible
level.

5) Mention when the results extend to some other class(es) of webbed models,
and when they do not (sometimes we do not know). All these classes indeed appear
to be (more or less) sophisticated variations of graph models. We will not work
out the details, since this would lead us too far, and would be teadious, with no
special added interest. We rather aim at searching for generic tools, when possible,
in further work.

6.1.3 Main results of the chapter

Main results I: Effective models. The central technical device here is Visser’s
result [107] stating that the complements of β-closed r.e. sets of λ-terms enjoy the
finite intersection property (Theorem 6.2.4). We will be able to prove the following.

Theorem 1. Let M be an effective model of λ-calculus. Then:

(i) Th⊑(M ) is not r.e.

1 As far as we know, only Giannini and Longo [50] have introduced a notion of an effective
model; moreover their definition is ad hoc for two particular models (Scott’s Pω and Plotkin’s
Tω) and their results depend on the fact that these models have a very special (and well known)
common theory.
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(ii) Th(M ) 6= λβ, λβη.

(iii) If ⊥ is λ-definable then Th(M ) is not r.e., more generally:

(iv) If there is a λ-term M such that in M there are only finitely many λ-definable
elements below the interpretation of M then Th(M ) is not r.e.

Concerning the existence of a non-syntactical effective model with an r.e. equa-
tional theory, we are able to give a definite answer for all (effective) stable and
strongly stable models:

Theorem 2. No effective model living in the stable or in the strongly stable seman-
tics has an r.e. equational theory.

Concerning Scott-continuous semantics, the problem looks much more difficult
and we concentrate on the class of graph models.

Main results II. Graph models.

Theorem 3. If G is a graph model then Th⊑(G ) is not r.e.

We emphasize that Theorem 3, which happens to be a consequence of Theorem
5 below, plus the work on effective models, concerns all the graph models and not
only the effective ones. Concerning the equational theories of graph models we only
give below, as Theorem 4, the more flashy example of the results we will prove in
Subsection 6.4.3. The stronger versions are however natural, and needed for covering
all the traditional models (for example the Engeler’s model is covered by Theorem 4
only if it is generated from a finite set of atoms, while it is well known that its theory
is BT , independently of the number of its atoms).

Theorem 4. If G is a graph model which is freely generated by a finite pair, then
Th(G ) is not r.e.

Theorem 5. There exists an effective graph model whose equational/order theory
is minimal among all theories of graph models.

A few more specific conjectures for Scott-continuous semantics. Thus,
concerning effective models, Conjecture 1 is solved for the two refinements of Scott-
continuous semantics which are mainly considered in the literature, but for Scott-
continuous semantics it remains open, as well as its two following instances (from
the weaker to the stronger conjecture).

Conjecture 2. The minimal equational graph theory is non r.e.

Conjecture 3. All effective graph models have non r.e. theories.

Conjecture 4. All effective models living in the Scott-continuous semantics have
non r.e. theories
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6.2 Recursion in λ-calculus

We now recall the main properties of recursion theory concerning λ-calculus that
will be applied in the following sections.

From now on, we fix an effective bijective numeration νΛ : ◆→ Λ of the set of
λ-terms.

6.2.1 Co-r.e. sets of λ-terms

Definition 6.2.1. A set O ⊆ Λ is r.e. ( co-r.e.) if it is r.e. (co-r.e.) with respect to
νΛ; it is trivial if either O = ∅ or O = Λ.

If T is a λ-theory, then an r.e. (co-r.e.) set of λ-terms closed under =T will be
called a T -r.e. (T -co-r.e.) set. When T = λβ we simply speak of β-r.e. (β-co-r.e.)
sets. The following theorem is due to Scott.

Theorem 6.2.2. (Scott [8, Thm. 6.6.2]) A set of λ-terms which is both β-r.e. and
β-co-r.e. is trivial.

Definition 6.2.3. A family (Xi)i∈I of sets has the FIP (finite intersection property)
if Xi1 ∩ · · · ∩Xin 6= ∅ for all i1, . . . , in ∈ I.

In [107] Visser has shown that the topology on Λ generated by the β-co-r.e.
sets of λ-terms is hyperconnected (see also [8, Ch. 17]), i.e., the intersection of two
non-empty open sets is non-empty. In other words, the following theorem holds.

Theorem 6.2.4. (Visser [107]) The family of all non-empty β-co-r.e. subsets of Λ
has the FIP.

As shown in the next lemma, the set U of all unsolvable λ-terms constitutes an
interesting example of β-co-r.e. set.

Lemma 6.2.5.

(i) U is β-co-r.e.; moreover, given a λ-theory T :

(ii) U is T -co-r.e. if, and only if, T is semi-sensible.

Proof. (i) Indeed, U is co-r.e. and β-closed.
(ii) By definition of semi-sensibility, U is closed under =T exactly when T is semi-
sensible.

From this lemma and from Theorem 6.2.4 we easily get the following remark.

Remark 6.2.6. Every non-empty β-co-r.e. set O of λ-terms contains a non-empty
β-co-r.e. set V of unsolvable λ-terms. Indeed, it is sufficient to choose V = O ∩ U .
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Lemma 6.2.7. Let T be an r.e. λ-theory and O be a non-empty set of λ-terms. If
O is β-co-r.e., then either O/T is infinite or T is inconsistent.

Proof. Let V be the T -closure of O, and O′ = Λ− V . If T is r.e. and O/T is finite,
then V is r.e. and hence O′ is β-co-r.e. Since O′ ∩ O = ∅, O′ must be empty by
Theorem 6.2.4. Hence V = Λ, and Λ/T is finite. Hence T is inconsistent.

6.2.2 Effective domains

The notion of computability recalled in Subsection 1.1.3 cannot be directly applied
to domains. A trivial reason is that many domains of interest are uncountable.
Now, ω-algebraic domains are conceived as the completion of a countable set of
concrete elements (the compact elements) and computations on an element in the
completion are determined by the way the computations act on its approximations
(the compact elements below it). The theory of computability on domains reflects
this idea in the sense that a domain is effective when an effective numeration of its
compact elements is provided.

All the material developed in this subsection can be found in [103, Ch. 10]; its
adaptation to DI-domains and DI-domains with coherences can be found in [54].

Definition of effective domains

Definition 6.2.8. A triple D = (D,⊑D, d) is called an effective domain if (D,⊑D)
is a Scott domain and d : ◆→ K(D) is a numeration of K(D) such that:

(i) the relation “dm and dn have an upper bound” is decidable in (m,n),

(ii) the relation “dn = dm ⊔ dk” is decidable in (m,n, k).

Note that it is equivalent to replace (ii) by (ii)’: “the join operator restricted to
pairs of compact elements is total recursive and the equality relation is decidable on
compact elements”. Note also that dm ⊑D dn is decidable in (m,n) as it is equivalent
to dn = dm ⊔ dn.

As usual, when there is no ambiguity, we denote by D the effective domain
(D,⊑D, d).

Notation 6.2.9. For all v ∈ D we set v̂ = {n : dn ⊑D v}.

Definition 6.2.10. An element v of an effective domain D is said r.e. (decidable)
if the set v̂ is r.e. (decidable).

In the literature, r.e. elements of effective domains are called “computable”,
“recursive” or “effective” elements, while our decidable elements were apparently
not addressed. We choose the alternative terminology of “r.e. elements” for the
following two reasons: (1) it is more coherent with the usual terminology for elements
of P(◆) (see Example 6.2.13); (2) it makes clear the difference between r.e. elements
and decidable elements of D.
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Notation 6.2.11. Dr.e. (Ddec) denotes the set of the r.e. (decidable) elements of the
effective domain D.

Note that K(D) ⊆ Ddec ⊆ Dr.e. and that, in general, Dr.e. and Ddec are not cpo’s.

Example 6.2.12. Given an effective numeration of a countable set D, the flat
domain D⊥ is effective and all its elements are decidable since they are compact. In
particular Λ⊥ is effective for the following numeration:

νΛ⊥
(n) =

{
⊥ if n = 0,
νΛ(n− 1) if n > 0.

where νΛ has been defined at the beginning of Section 6.2.

Example 6.2.13. The key example of an effective domain is (P(◆),⊆, d) where d
is some standard bijective numeration d : ◆ → ◆∗ of the finite subsets of ◆. Here
the r.e. (decidable) elements are the r.e. (decidable) sets.

Characterizations of r.e. continuous functions

Given two effective domains D and D′ it is essentially straightforward to obtain, in
a canonical way, a numeration ν[D→D′] of the compact elements of [D → D′] (the
details can be found in [103, Ch. 10, Thm. 3.6]).

This numeration gives [D → D′] a structure of effective domain. Thus, we
already know when a function f : D → D′ is an r.e. element of [D → D′] (i.e., when
f ∈ [D → D′]r.e.). However, we also have the intuition that a continuous function
should be r.e. if its values on r.e. elements can be effectively approximated. The
next proposition gives two other characterizations of r.e. continuous functions which
capture this idea.

Proposition 6.2.14. Let (D,⊑D, d) and (D′,⊑D′ , d′) be two effective domains. For
all functions f : D → D′, the following conditions are equivalent:

(a) f ∈ [D → D′]r.e.,

(b) the relation d′m ⊑D′ f(dn) is r.e. in (m,n),

(c) {(m,n) : (dm, d
′
n) ∈ Tr(f)} is r.e.

and the same holds when “decidable” replaces “r.e.”.

The proof is easy; of course (c) is just a reformulation of (b). We refer to [103,
Ch. 10, Prop. 3.7] for more details (at least in the r.e. case).



82 6. Effective models of λ-calculus

Adequate numerations of Dr.e.

We are now interested in defining a numeration of Dr.e. amenable to the effective
numeration of K(D). The natural surjection ζ ′ : ◆ → Dr.e. defined by ζ ′(n) = v if
and only if Wn = v̂ is not a numeration in general, since it can be partial. This
partiality would create technical difficulties. However, using standard techniques of
recursion theory, it is not difficult to get in a uniform way a total numeration ζD of
Dr.e. [103, Ch. 10, Thm. 4.4]. Moreover, in the sequel, we will need some further
constraints on ζD, whose satisfiability is guaranteed by the following proposition.

Proposition 6.2.15. For every effective domain D, there exists a total numeration
ζD : ◆→ Dr.e. such that:

(i) dn ⊑D ζDm is r.e. in (m,n),

(ii) the inclusion mapping ι : K(D) → Dr.e. is computable with respect to d, ζD.

A numeration ζD of Dr.e. is called adequate if it fulfills the conditions (i) and (ii)
of Proposition 6.2.15.

Example 6.2.16. The usual map n 7→ Wn is an adequate numeration of the r.e.
elements of the effective domain (P(◆),⊆, d). From Proposition 6.2.14 it follows
that a Scott continuous function f : P(◆) → P(◆) is r.e. if, and only if, its trace
Tr(f) = {(a, n) ∈ ◆∗ × ◆ : n ∈ f(a)} is an r.e. set.

Lemma 6.2.17. [103, Ch. 10, Cor. 4.12] For all adequate numerations ζD, ζ ′D there
is a total recursive function ϕ : ◆→ ◆ such that ζD = ζ ′D ◦ ϕ.

Hereafter we will always suppose that ζD is an adequate numeration of Dr.e..
Adequate numerations allow us to provide another characterization of r.e. continuous
functions which highlights the connection with the classical notion of computability.
Note that, as a consequence of Lemma 6.2.17, the following theorem is independent
of the choice of ζD, ζD

′
.

Theorem 6.2.18. Let D,D′ be effective domains, then a continuous function f :
D → D′ is r.e. in its effective domain if, and only if, its restriction f↾: Dr.e. → D′r.e.

is computable with respect to ζD, ζD
′
.

Proof. Relatively easy (the details are worked out in [103, Ch. 10, Prop. 4.14]).

In particular the previous theorem states that r.e. continuous functions preserve
the r.e. elements.

The category of effective domains and continuous functions

Definition 6.2.19. ED is the category with effective domains as objects, and con-
tinuous functions as morphisms.
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ED is a full subcategory of the category of Scott domains; it is Cartesian closed
since, if D,D′ are effective domains, also D×D′ and [D → D′] are effective domains.
The reader can easily check these facts by himself or find the proofs in [48].

Remark 6.2.20. It is clear that the composition of r.e. functions is an r.e. function,
moreover it is straightforward to check that the maps Λ and ev defined in Subsec-
tion 1.1.6, and the composition operator C(f, g) = g◦f , are r.e. at all types. Hence,
by Theorem 6.2.18, their restrictions to r.e. elements are computable.

For the stable and strongly stable semantics, we take respectively: EDID, the
category having effective DI-domains as objects and stable functions as morphisms;
EDIDcoh, the category having effective DI-domains with coherences as objects and
strongly stable functions as morphisms.

Before introducing the notions of effective and weakly effective models we recall
some properties of effective domains.

6.2.3 Completely co-r.e. sets of r.e. elements

Our aim is to infer properties of weakly effective models using standard techniques
of recursion theory. For this purpose, given an effective domain D and an adequate
numeration ζD : ◆→ Dr.e., we study the properties of the completely co-r.e. subsets
of Dr.e.. The work done here could also be easily adapted to DI-domains and DI-
domains with coherences.

Definition 6.2.21. A subset A ⊆ Dr.e. is called completely r.e. if A is r.e. with
respect to ζD; it is called trivial if A = ∅ or A = Dr.e.. In a similar way we define
completely co-r.e. sets and completely decidable sets.

This terminology (i.e., the use of the adjective “completely”) is coherent with
the terminology classically used in recursion theory (see, e.g., [81]). We will see in
Corollary 6.2.24(iii) below that there exist no non-trivial completely decidable sets.

Remark 6.2.22. The set {⊥D} is a non-trivial completely co-r.e. subset of Dr.e.

(therefore it is not completely decidable).

We will use the following extension of a well known result of classical recursion
theory due to Rice, Myhill and Shepherdson [81, Thm. 10.5.2] to prove that the FIP
(finite intersection property) still holds in this framework.

Theorem 6.2.23. [103, Thm. 5.2] Let D be an effective domain and let A ⊆ Dr.e.,
then A is completely r.e. if, and only if, there is an r.e. set E ⊆ ◆ such that:

A = {v ∈ Dr.e. : ∃n ∈ E (ζDn ∈ K(D) and ζDn ⊑D v)}.

As direct consequences of this theorem we obtain that the following interesting
closure properties hold.
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Corollary 6.2.24. With respect to the partial order ⊑D:

(i) completely r.e. sets are upward closed (in Dr.e.),

(ii) completely co-r.e. sets are downward closed (in Dr.e.),

(iii) completely decidable sets are trivial.

Theorem 6.2.25. The family of all non-empty completely co-r.e. subsets of Dr.e.

has the FIP.

Proof. It follows from Corollary 6.2.24(ii) that ⊥D belongs to every non-empty com-
pletely co-r.e. subset of Dr.e..

6.2.4 Weakly effective models

In this section we will consider models living in Scott-continuous semantics; but
analogous notions can be defined for the stable and the strongly stable semantics.
The following definition of weakly effective models is completely natural in this
context; however, in order to obtain stronger results, we will need a slightly more
powerful notion. That is the reason why we only speak of “weak effectivity” here.

Definition 6.2.26. A continuous model M = (D,Ap, λ) is weakly effective if:

(i) M is a reflexive object in the category ED,

(ii) Ap ∈ [D → [D → D]] and λ ∈ [[D → D] → D] are r.e.

For the stable or strongly stable semantics we take EDID and EDIDcoh instead
of ED.

Remark 6.2.27. Let EDr.e. be the subcategory of ED with the same objects as
ED (and the same exponential objects) but r.e. continuous functions as morphisms.
Using Remark 6.2.20 it is easy to check that EDr.e. inherits the structure of ccc from
ED. The weakly effective models of Definition 6.2.26 above are exactly the reflexive
objects of EDr.e.. We prefer to use the category ED first because we think that it
is more coherent with the definition of the exponential objects to take all continuous
functions as morphisms, and second to put in major evidence the only effectiveness
conditions which are required.

We recall here a consequence of Theorem 6.2.18 that will be often used later on.

Remark 6.2.28. Let M be a weakly effective model, then:

(i) If u, v ∈ Dr.e. then uv ∈ Dr.e.,

(ii) If f ∈ [D → D]r.e., then λ(f) ∈ Dr.e..



6.2. Recursion in λ-calculus 85

In the rest of this section it is understood that we are speaking of a fixed conti-
nuous model M = (D,Ap, λ), where D = (D,⊑D, d) is an effective domain and
that T = Th(M ). Furthermore, we fix an effective bijective numeration νVar

from ◆ to the set Var of variables of λ-calculus. This gives EnvD a structure of
effective domain.

Proposition 6.2.29. If M is weakly effective, then (Dr.e., ·, |K|, |S|) is a combina-
tory subalgebra of (D, ·, |K|, |S|).

Proof. It follows from Remark 6.2.28 that |K| ∈ Dr.e. and that Dr.e. is closed under
application. The fact that |S| ∈ Dr.e. is a direct consequence of the next result.

Theorem 6.2.30. If M is weakly effective, then |M | ∈ Dr.e. for all M ∈ Λo.

Proof. From the next proposition and by Theorem 6.2.18 it follows that |M |ρ ∈ Dr.e.

for all ρ ∈ Envr.e.D . Hence it is sufficient to remark that |M | = |M |ρ⊥ since M is
closed, and that ρ⊥ ∈ K(EnvD) ⊆ Envr.e.D .

Proposition 6.2.31. If M is weakly effective then, for all M ∈ Λ⊥, the function
|M | : EnvD → D is r.e.

Proof. If M ≡ ⊥ then |⊥| is the constant function mapping ρ to ⊥D which is
obviously r.e. Otherwise, M is a λ-term and we conclude the proof by structural
induction.

If M ≡ x then |M | is the map ρ 7→ ρ(x), i.e., the evaluation of the environment
ρ on the variable x. It is easy to check that this function is r.e.

If M ≡ NP then |M | = ev ◦ 〈Ap ◦ |N |, |P |〉. By the induction hypothesis and
Remark 6.2.20, |M | is a composition of r.e. functions, hence it is r.e.

If M ≡ λx.N then |M | = λ ◦ C ◦ 〈Λ(fx), k〉, where fx is the function (ρ, d) 7→
ρ[x := d], C is the composition operator and k is the constant function mapping ρ to
|N |. We note that fx is r.e. because its restriction f ′

x to Envr.e.D ×Dr.e. is computable.
Indeed f ′

x(ρ, d) differs from the r.e. environment ρ only on x where it takes as value
the r.e. element d. Then this case follows again from the induction hypothesis and
Remark 6.2.20.

Theorem 6.2.32. If M is weakly effective, then the function f : Λ⊥ × EnvD → D
defined by f(M,ρ) = |M |ρ is r.e.

Proof. Since the function |M | is r.e. for every M ∈ Λ⊥, we have that |M |ρ ∈ Dr.e.

for all r.e. environments ρ. Moreover, whenever M ∈ Λ⊥ and ρ ∈ Envr.e.D , the proof
of Proposition 6.2.31 gives an effective algorithm to compute in a uniform way the
code of |M |ρ starting from the codes of M and ρ.

Corollary 6.2.33. If M is weakly effective and ρ ∈ Envr.e.D , then the function
| − |ρ : Λ⊥ → D is r.e. and its restriction to Λ is computable with respect to νΛ, ζ

D.
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Corollary 6.2.34. If M is weakly effective and V ⊆ Dr.e. is completely co-r.e. then
{M ∈ Λo : |M | ∈ V } is β-co-r.e.

Proof. Let ρ ∈ Envr.e.D . By Corollary 6.2.33 there exists a recursive map ϕρ tracking
the interpretation function M 7→ |M |ρ (for M ∈ Λ) with respect to νΛ, ζ

D. Since
the set E = {n : ζDn ∈ V } is co-r.e. it follows from Remark 1.1.1 that ϕ−

ρ (E), which

is equal to {ν−1
Λ (M) : |M |ρ ∈ V }, is also co-r.e. We get the conclusion because Λo

is a decidable subset of Λ.

Notation 6.2.35. Given a partially ordered model M we set:

(i) M− = {N ∈ Λo : |N | ⊑D |M |}, for all M ∈ Λo(D).

(ii) ⊥−
ω = ∪n∈◆⊥

−
n where ⊥n ≡ λx1 . . . xn.⊥D.

We will write (M)−
M

instead of M−, when the model M is not clear from the
context.

Remark 6.2.36. If M is a partially ordered model and T = Th(M ), then it is
easy to check that:

(i) M− is a union of T -classes and M ∈M− for all M ∈ Λo(D),

(ii) ⊥−
D = ⊥−

0 = {N ∈ Λo : |N | = ⊥D},

(iii) either ⊥−
D = ∅ or ⊥−

D consists of a single T -class.

Lemma 6.2.37. For all partially ordered models M , and M,N ∈ Λo we have:

(i) ⊥−
D ∪ [M ]T ⊆M−,

(ii) if M,N are non equivalent hnfs then M− ∩N− ⊆ U .

Proof. (i) Trivial.
(ii) Given Q ∈ Λo we let Qins be the set of terms P which are inseparable from
Q. Then item (ii) is immediate, once noted that no solvable λ-term belongs to
M ins ∩N ins, since an hnf in the intersection should be simultaneously equivalent to
M and N .

Note that under the hypothesis of Lemma 6.2.37 it can be true thatM−∩N− = ∅
for all M,N which are not βη-equivalent as shows the model of Di Gianantonio et
al. [46].

It is interesting to note the following related result, which holds only for graph
models and which, as the preceeding, does not need any hypothesis of effectivity.

Lemma 6.2.38. For all graph models G , if N ∈ I− then either N =λβ
I or N is

unsolvable.
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Proof. Suppose that N ∈ I− and N is solvable. Without loss of generality N is an
hnf equivalent to I, hence of the form N ≡ λx.λ~z.x ~N, with ~z and ~N of the same
length k ≥ 0. If k ≥ 1 it is easy to check that

γ = iG({iG(∅k, α)}, iG({α}, iG(∅k−1, α))) ∈ |N |G − |I|G ,

where iG(∅n, α) is a shorthand for iG(∅, iG(∅ . . . , iG(∅, α) . . .)).

Note that this lemma is false for the other classes of webbed models living in the
Scott-continuous, stable or strongly stable semantics which have been introduced in
the literature, since they all contain extensional models. Looking at the proof we
can observe that the reasons why it does not work differ according to the semantics:
γ ∈ |I| in the case of K-models, and γ /∈ |N | in the stable and strongly stable case
(because the injective function i of the web is defined via Trs).

Proposition 6.2.39. If M is weakly effective and T = Th(M ), then:

(i) ⊥−
D ⊆ U ,

(ii) ⊥−
D is T -co-r.e.

Proof. (i) is true by Lemma 6.2.37(ii) since ⊥−
D ⊆M− ∩N− for all M,N .

(ii) follows from Remark 6.2.22 and Corollary 6.2.34.

Any sensible model satisfies U = [Ω]T ⊆ Ω−. Thus, in all sensible models which
interpret Ω by ⊥D we have ⊥−

D = Ω− = U (this is the case for example of all sensible
graph models). On the other hand it is easy to build models satisfying Ω− = Λo:
for example, finding a graph model G with carrier set G such that |Ω|G = G, is an
exercise, which also appears as the simplest application of the generalized forcing
developed in [16]. Finally (usual) forcing also allows us to build, for all M ∈ Λo,
a graph model satisfying |Ω| = |M | and hence Ω− = M−, and this is still true for
M ∈ Λo(D), and beyond, using generalized forcing.

Proposition 6.2.40. If M is weakly effective and T = Th(M ) is r.e., then ⊥−
ω =

∅ = ⊥−
D.

Proof. Since ⊥−
D consists of zero or one T -class, it follows from Lemma 6.2.7 and

Proposition 6.2.39(i) that ⊥−
D = ∅. Now it follows, by easy induction on n, that

⊥−
n = ∅ for all n since, if N ∈ ⊥−

k+1, then NI ∈ ⊥−
k .

Notation 6.2.41. For all E ⊆ ◆ we set Λo
E = {N ∈ Λo : |̂N | ⊆ E}, where

|̂N | = {n : dn ⊑D |N |}.

Note that Λo
E is a union of T -classes, which depends on M (and not only on T ).

Furthermore, for all M ∈ Λo, Λo

|̂M |
= M−.

Theorem 6.2.42. Let M be weakly effective, T = Th(M ) and E ⊆ ◆.
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(i) If E is co-r.e. then Λo
E is T -co-r.e.,

(ii) If E is decidable then either Λo
E = ∅ or Λo

Ec = ∅.

Proof. (i) We first note that E ′ = {n : (∃m /∈ E) dm ⊑D ζDn } is r.e. Hence
{ζn : n /∈ E ′} is completely co-r.e. We conclude by Corollary 6.2.34.
(ii) follows from the FIP, since Λo

E ∩ Λo
Ec = ∅.

Theorem 6.2.43. Let M be weakly effective, T = Th(M ) and M1, . . . ,Mn ∈ Λo.
If |Mi| ∈ Ddec for all 1 ≤ i ≤ n, then M−

1 ∩ · · · ∩M−
n is a non-empty T -co-r.e. set.

Proof. Since, for all 1 ≤ i ≤ n, the set |̂Mi| is decidable and M−
i = Λo

|̂Mi|
, then every

M−
i is non-empty and T -co-r.e. by Theorem 6.2.42(i). Hence the theorem follows

from the FIP.

Theorem 6.2.44. Let M be weakly effective and T = Th(M ). If there exists
M ∈ Λo such that |M | ∈ Ddec and M−− [M ]T is finite modulo T , then T is not r.e.

Proof. Since |M | ∈ Dr.e. we have, by Theorem 6.2.43, that M− is T -co-r.e. If T is
r.e. then M−/T is infinite by Lemma 6.2.7.

6.2.5 Effective models

As proved in Proposition 6.2.31 weakly effective models interpret λ-terms by r.e. ele-
ments. The notion of effective model introduced below has the further key advantage
that normal terms are interpreted by decidable elements and this leads to interesting
consequences. As we will see later on, all the models introduced individually in the
literature and living in one of the main semantics are effective. Furthermore, in the
case of webbed models, easy sufficient conditions can be given at the level of the
web in order to guarantee the effectiveness of the model.

Definition 6.2.45. A weakly effective model M = (D,Ap, λ) is called effective if
it satisfies the following two conditions:

(i) if d ∈ K(D) and e1, . . . , ek ∈ Ddec, then de1 · · · ek ∈ Ddec,

(ii) if f ∈ [D → D]r.e. and f(d) ∈ Ddec for all d ∈ K(D), then λ(f) ∈ Ddec.

It is easy to check that condition (i) of Definition 6.2.45 is always verified in
every graph model and in every extensional model. We will see in Section 6.3 and
6.4 that many models are effective.

Theorem 6.2.46. If M is effective, then for all normal λ-terms M ∈ Λo we have
|M | ∈ Ddec.
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Proof. Since the interpretation of a closed λ-term is independent of the context, it
is enough to show that |M |ρ ∈ Ddec for all normal M ∈ Λ and for all ρ ∈ K(EnvD).
This proof is done by induction over the complexity of M .
If M ≡ x then |M |ρ = ρ(x) is a compact element, hence it is decidable.
Suppose M ≡ yN1 · · ·Nk with Ni normal for all 1 ≤ i ≤ k. By definition |M |ρ is
equal to |y|ρ · |N1|ρ · · · |Nk|ρ. Hence this case follows from Definition 6.2.45(i), the
fact that ρ(y) is compact and the induction hypothesis.
If M ≡ λx.N then |M |ρ = λ(d 7→ |N |ρ[x:=d]). Note that, since ρ ∈ K(EnvD), also
ρ[x := d] is compact for all d ∈ K(D). Hence the result follows from the induction
hypothesis and Definition 6.2.45(ii).

We are now able to prove that the order theory of an effective model is never r.e.
From this it follows that no effective model can have λβ or λβη as equational theory.

Corollary 6.2.47. If M is effective, then Th⊑(M ) is not r.e.

Proof. Let M ∈ Λo be normal. If Th⊑(M ) were r.e., then we could enumerate
the set M−. However, by Theorem 6.2.46 and Theorem 6.2.43, this set is co-r.e.
and it is non-empty because clearly M ∈ M−. Hence M− would be a non-empty
decidable set of λ-terms closed under β-conversion, i.e., M− = Λo. Since the model
is non-trivial and M is arbitrary this lead us to a contradiction.

Corollary 6.2.48. If M is effective and Th(M ) is r.e. then ⊑D induces a non-
trivial partial order on the interpretations of closed λ-terms.

Corollary 6.2.49. If M is effective then Th(M ) 6= λβ, λβη.

Proof. By Selinger’s result stating that in any partially ordered model whose theory
is λβ or λβη the interpretations of closed λ-terms are discretely ordered [99, Cor. 4].

Recall that in the case of graph models we know a much stronger result, since
we already know that for all graph models G we have Th(G ) 6= λβ, λβη.

6.3 Effective stable and strongly stable models

There are also many effective models in the stable and strongly stable semantics.
Indeed, the material developed in Subsections 6.4.2 and 6.4.3 below for graph models
could be adapted for G-models, even if it is more delicate to complete partial pairs
in this case (we refer the reader to [67, 70] for the details of this construction). A
free completion process could also be developed for H-models. This result has been
worked out for particular models [53, 10], but works in greater generality2, even
though working in the strongly stable semantics certainly adds technical difficulties.

2 R. Kerth and O. Bastonero, personal communication.
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Lemma 6.3.1. If M belongs to the stable or to the strongly stable semantics, then:

F− ∩ T− ⊆ {N : 1N ∈ ⊥−
2 }.

Proof. Suppose N ∈ F− ∩ T−. Let f, g, h ∈ [D →s D] (resp. [D →ss D]) be
f = Ap(|T|), g = Ap(|F|) and h = Ap(|N |). By monotonicity of Ap we have
h ≤s f, g. Now, g is the constant function taking value |I|, and f(⊥D) = |λy.⊥D|.
The first assertion forces h to be a constant function (Remark 1.4.10) and the fact
that h is pointwise smaller than f forces λ(h) = |λx.λy.⊥D|. Therefore λ(h) ∈ ⊥−

2 .
It is now enough to notice that, in all models M we have λ(Ap(u)) = |1u| for all
u ∈ D and, in particular, λ(h) = |1N |. Hence 1N ∈ ⊥−

2 .

Theorem 6.3.2. If M is effective and belongs to the stable or to the strongly stable
semantics then T = Th(M ) is not r.e.

Proof. Since M is effective and F,T are closed and normal we have that F− ∩ T−

is non-empty by Theorem 6.2.43. Now, if T is r.e. then every ⊥−
n is empty by

Proposition 6.2.40. In particular this implies, by Lemma 6.3.1, that F− ∩ T− = ∅
leading us to a contradiction.

It is easy to check that Lemma 6.3.1 is false for the Scott-continuous semantics.
We can even give a counter-example in the class of graph models. Indeed we know
from [16] that there exists a graph model G , which is built by forcing, where Ω
acts like intersection. In other words, in G we have |Ω|G = |T|G ∩ |F|G and Ω ∈
(T− ∩ F−) −⊥−

D.

6.4 Effective graph models

The aim of this section is to show that effective models are omni-present in the
Scott-continuous semantics. In Subsection 6.4.1 we will introduce a notion of weakly
effective (effective) partial pairs, and in Subsection 6.4.2 we will prove that they gen-
erate weakly effective (effective) models. An analogue of the work done in these two
subsections could clearly be developed for each of the other classes of webbed mod-
els, e.g., K-models, pcs-models, filter models (for the Scott-continuous semantics),
G-models and H-models (respectively, for the stable and strongly stable semantics).
Note that all the models which have been introduced individually in the literature,
to begin with Pω, E (graph models) and Scott’s D∞ (K-model) can easily be proved
to be effective models in our sense.

6.4.1 Weakly effective and effective pairs

Definition 6.4.1. A partial pair A is weakly effective if it is isomorphic to some
pair (E, ℓ) where E is a decidable subset of ◆ and ℓ is a partial recursive function
with decidable domain. It is effective if, moreover, rg(ℓ) is decidable.
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Lemma 6.4.2. A total pair G is weakly effective if, and only if, it is isomorphic to
a total pair (◆, ℓ) where ℓ is total recursive and it is effective if, moreover, we can
choose ℓ with a decidable range.

Proof. Straightforward.

Hence hereafter we can suppose, without loss of generality, that all effective and
weakly effective pairs have as underlying set a subset of ◆.

Example 6.4.3. Pω in its original definition (see, e.g., [8]), since ℓ is defined
by ℓ(a, n) = #〈a, n〉 (with the notation of Subsection 1.1.3); note that ℓ is also
surjective here.

Proposition 6.4.4. If G is a weakly effective (effective) total pair then G is a weakly
effective (effective) model.

Proof. By Lemma 6.4.2, it is enough to prove it for weakly effective pairs of the
form (◆, ℓ). Then it is easy to check, using Definition 1.4.5, that ApG, λG are r.e.
and that condition (i) of Definition 6.2.45 (effective models) is always satisfied. It is
also straightforward to check that condition (ii) holds when rg(ℓ) is decidable.

Next, we show that the free completion process preserves the effectivity of the
partial pairs.

6.4.2 Free completions of (weakly) effective pairs

Theorem 6.4.5. If A is weakly effective (effective) then A is weakly effective (ef-
fective).

Proof. Suppose A = (A, jA) is a weakly effective partial pair. Without loss of
generality we can suppose A = {2k : k < card(A)}. For all n ∈ ◆, we will denote by
jn the restriction iĀ↾A∗

n×An
where An has been introduced in Definition 5.1.8. We now

build θ : A→ ◆ as an increasing union of functions θn : An → ◆ which are defined by
induction on n. At each step we set En = rg(θn) and define ℓn : E∗

n×En → En such
that θn is an isomorphism between (An, jn) and (En, ℓn). We will take E = ∪n∈◆En
and ℓ = ∪n∈◆ℓn.
Case n = 0. We take for θ0 the identity on A, then E0 = A and we take ℓ0 = jA.
By hypothesis E0 is decidable and jA has a decidable domain and, if A is moreover
effective, also a decidable range.
Case n+ 1. We define

θn+1(x) =

{
θn(x) if x ∈ An,

p
#〈a,α〉
n+1 if x = (a, α) ∈ (An+1 − An).

where pn+1 denotes the (n + 1)-th prime number and #〈−,−〉 is the encoding de-
fined in Section 1.1.3. Since A and dom(jA) are decidable by hypothesis and An is
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decidable by the induction hypothesis then also An+1 = A∪ ((A∗
n×An)− dom(jA))

is decidable. θn+1 is injective, by construction and the induction hypothesis.
Moreover θn+1 is computable and En+1 = rg(θn+1) is decidable since An and An+1 −
An are decidable and θn and #〈−,−〉 are computable with decidable range.

We define ℓn+1 : E∗
n+1 × En+1 → En+1 as follows:

ℓn+1(a, α) =

{
ℓn(a, α) if q(a, α) ∈ En,
q(a, α) if q(a, α) ∈ En+1 − En,

where q = θn+1 ◦ (θ−n+1, θ
−1
n+1). The map ℓn+1 is partial recursive since ℓn is par-

tial recursive by the induction hypothesis, En and En+1 − En are decidable and
θn+1, θ

+, θ−1 are computable.
It is clear that for all (a, α) ∈ A∗

n+1 × An+1 we have

θn+1(jn+1(a, α)) ≃ ℓn+1(θ
+
n+1(a), θn+1(α)),

where the symbol ≃ denotes Kleene’s equality3. Hence θn+1 is an isomophism be-
tween (An+1, jn+1) and (En+1, ℓn+1). Note that, if ℓn has a decidable range, also ℓn+1

has a decidable range.
Then θ = ∪n∈◆θn is an isomorphism between (A, iĀ) and (E, ℓ) where E =

∪n∈◆rg(θn) and ℓ = ∪n∈◆ℓn. It is now routine to check that θ is computable,
E = rg(θ) is decidable, ℓ : E∗×E → E is partial recursive, dom(ℓ) is decidable and,
in the case of effectivity, that rg(ℓ) is decidable.

Corollary 6.4.6. If A is weakly effective (effective) then GA is a weakly effective
(effective) graph model.

Proof. By Proposition 6.4.4 and Theorem 6.4.5.

Remark 6.4.7. The above corollary implies, in particular, that GA is effective for
all finite A.

Recall that M− has been introduced in Notation 6.2.35 for all M ∈ Λo(D) and
that the reflexive object associated with a graph model G is D = P(G).

Lemma 6.4.8. If A is weakly effective then A− is T -co-r.e., where T = Th(GA).

Proof. A− = Λo
E for E = {n : dn ⊆ A}. If A is decidable then E is decidable, hence

A− is co-r.e. by Theorem 6.2.42, moreover it is obviously T -closed.

All the results of this Section would hold for G- and H-models (even though the
corresponding partial pairs and free completion process are somewhat more complex
than for graph models).

3 In other words, f(x) ≃ g(y) abbreviates “f(x) is undefined if and only if g(y) is undefined
and, if they are both defined, f(x) = g(y)”.
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6.4.3 Are there r.e. graph theories?

In this section we will prove, in particular, that Conjecture 1 holds for all graph
models freely generated by finite partial pairs.

Lemma 6.4.9. If A is a partial pair, then |Ω|GA ⊆ A, hence A− 6= ∅ for the model
GA.

Proof. It is well known, and provable in a few lines, that α ∈ |Ω|GA implies that
iĀ(a, α) ∈ a for some a ∈ A

∗
(the details are, for example, worked out in [16]).

Immediate considerations on the rank show that this is possible only if (a, α) ∈
dom(jA), which forces α ∈ A.

Corollary 6.4.10. If A is a partial pair and |U |GA ⊆ |Ω|GA, for some U ∈ Λo, then
U is unsolvable.

Proof. Solvable λ-terms have an interpretation which contains elements of any rank,
while |Ω|GA contains only elements of rank 0.

In the next theorem, which constitutes one of the main results of this section, we
provide sufficient conditions for graph models generated by weakly effective partial
pairs to have a non r.e. equational theory.

Theorem 6.4.11. Let A be a weakly effective partial pair. If there exists E ⊆ A
such that E is co-r.e., E− 6= ∅ and E/Aut(A) is finite, then T = Th(GA) is not r.e.

Proof. We first show that if card(E/Aut(A)) = k, for some k ∈ ◆, then card(E−/T ) ≤
2k.

AssumeM ∈ E− and α ∈ |M |GA ⊆ E then O(α) is included in |M |GA where O(α)
is the orbit of α in A modulo Aut(A). Indeed if θ ∈ Aut(A) then θ(α) = θ̄(α) ∈
θ̄+(|M |GA) = |M |GA since θ̄+ ∈ Aut(GA) (Lemma 5.1.15, Theorem 1.4.2(ii)). By
hypothesis the number of orbits is k; hence the number of all possible interpretations
|M |GA ⊆ E cannot overcome 2k, hence E− is a finite union of T -classes.

Since E− is co-r.e. by Theorem 6.2.42 and E− 6= ∅,Λo, it cannot be decidable;
hence T cannot be r.e.

From Theorem 6.4.11 and Lemma 6.4.9 we get the following results.

Corollary 6.4.12. If A is finite, then Th(GA) is not r.e.

Corollary 6.4.13. If A is weakly effective and A/Aut(A) is finite, then Th(GA) is
not r.e.

Corollary 6.4.14. If A is weakly effective and there is a co-r.e. set E such that
|Ω|GA ⊆ E ⊆ A and E/Aut(A) is finite, then Th(GA) is not r.e.

Corollary 6.4.15. If A is weakly effective, |Ω|GA is decidable and |Ω|GA/Aut(A) is
finite, then Th(GA) is not r.e.
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Corollary 6.4.16. If A is effective, |Ω|GA is decidable and |Ω|GA ∩ |N1|
GA ∩ . . . ∩

|Nk|
GA/Aut(A) is finite (possibly empty) for some normal terms N1, . . . , Nk ∈ Λo,

with k ∈ ◆, then Th(GA) is not r.e.

Let us now give applications of the various corollaries.

Example 6.4.17. Corollary 6.4.13 applies to all the usual graph (or webbed) models,
indeed:

(i) The Engeler’s model E is freely generated by A = (A, ∅), thus all the elements
of A play exactly the same role and any permutation of A is an automorphism
of A; hence the pair has only one orbit whatever the cardinality of A is. Of
course if A is finite, then Corollary 6.4.12 applies.

(ii) Idem for the graph-Scott models (including Pω) and the graph-Park models
introduced in Example 5.1.12. Similarly, the graph model freely generated by
({α, β}, j) where j({α}, β) = β and j({β}, α) = α only has one orbit.

(iii) Consider now the mixed-Scott-Park graph models defined in Example 5.1.12(iv).
Then, only the permutations of A which leave Q and R invariant will be au-
tomorphisms of (A, jA), and we will have two orbits.

Example 6.4.18. Corollary 6.4.15 (and hence Corollary 6.4.14) applies to the fol-
lowing effective pair A.

A = {α1, . . . , αn, . . . , β1, . . . , βn, . . .} and jA defined by:
jA({βn}, βn) = βn, for every n ∈ ◆,
jA({α1}, α2) = α2,
jA({α1, α2}, α3) = α3,
. . .
jA({α1, . . . , αn+1}, αn+2) = αn+2.

Here we have that |Ω|GA = {βn : n ∈ ◆} is decidable and that |Ω|GA/Aut(A) has
cardinality 1, since every permutation of the βn’s extends into an automorphism of
A. Note that the orbits of A are: |Ω|GA and all the singletons {αn}; in particular
A/Aut(A) is infinite.

Example 6.4.19. Corollary 6.4.15 applies to the following pair (against the appear-
ance it is an effective pair). Consider the set A = {β1, . . . , βn, . . .} and the function
jA defined as follows: jA({βn}, βn) = βn if, and only if, n belongs to a non co-r.e.
set E ⊆ ◆.

Then |Ω|GA = {βn : n ∈ E} consists of only one orbit but is not co-r.e. However
(starting for example from any bijection between E and the set of even numbers) it is
easy to find an isomorphism of pairs such that jA is partial recursive with decidable
range, and hence |Ω|GA becomes decidable.
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Example 6.4.20. Corollary 6.4.16 (and no other corollary) applies to the following
effective pair A.

A = {α1, . . . , αn, . . . , β1, . . . , βn, . . . , α
′
1, . . . , α

′
n, . . . , β

′
1, . . . , β

′
n, . . .},

and jA is defined by :
jA({α′

n}, βn) = α′
n,

jA({α1, . . . , αn}, βn) = β′
n,

for all n ∈ ◆. In this case |Ω|GA = {βn : n ∈ N} is decidable and |Ω|GA ∩ |I|GA = ∅
(note that |Ω|GA/Aut(A) is infinite).

Example 6.4.21. (Example of an effective graph model outside the scope of Theo-
rem 6.4.11) Take the total pair G = (◆, ℓ) where ℓ is defined as follows:

ℓ(#−1
∗ (n),m) =

{
2k if #−1

∗ (n) = {2k} for some k ∈ ◆,
ℓ(#−1

∗ (n),m) = 3n5m otherwise.

Recall that the effective encoding #∗ : ◆∗ → ◆ has been introduced in Section 1.1.3.
It is easy to check that G is effective and that |Ω|G = ◆. Then Ω− = Λo, hence
|Ω|G /Aut(G) is infinite.

Another example of an effective graph model to which Theorem 6.4.11 is not
applicable will be provided by Theorem 6.4.22.

6.4.4 What about the other classes of webbed models?

Theorem 6.4.11 and all its corollaries will hold for all webbed models. But for K-
models it could be the case that A− (and hence E−) is empty. To give an idea
of the power of Theorem 6.4.11, note that all the webbed models that have been
introduced individually in the literature are generated by partial webs W which are
weakly effective and such that W is finite with respect to Aut(W ). Of course, the
notion of automorphism of (partial) webs and automorphism of these webs should
be defined in a suitable way for each class of models.

Concerning Lemma 6.4.9, it holds not only for graph models but also for G- and
H-models. However, still concerning the Scott-continuous semantics, it is unclear
to us whether it holds for the wider class of K-models, and a fortiori to that of
filter models. The problem is the following: in the case of K-models the web is a
tuple (D,�, i) where � is a preorder on D and i : D∗ × D → D is an injection
such that � and i are compatible in a certain sense. The elements of the associated
reflexive domain are the downward closed subsets of D, thus, we should already ask
for |Ω| ⊆ A↓, where A↓ is the downwards closure of A. But the real problem is that
the control we have on |Ω| in K-models is much looser than in graph models. The
only thing we know (from Ying Jiang’s thesis [62]) is the following. If α ∈ |Ω| then
there are two sequences αn ∈ D and an ∈ D∗ such that α = α0 � α1 � . . . αn � . . .,
|δ| ⊇ a0↓⊇ a1↓⊇ . . . ⊇ an↓⊇ . . . and βn = i(an+1, αn+1) ∈ an for all n. This forces
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βn to be an increasing sequence, included in ∩n∈◆(an↓). Moreover, if the model is
extensional, we have that αn = α for all n ∈ ◆.

The proof of Theorem 6.4.11 holds for all webbed models, but of course to get
the conclusions one has to check whether the three hypotheses hold. For example,
for K-models, it could be the case that E− = ∅.

6.4.5 An effective graph model having the minimum graph
theory, and applications

In this section we show another main theorem of the chapter: the minimum order
graph theory is the theory of an effective graph model. This result has the following
interesting consequences: (i) no order graph theories can be r.e.; (ii) for any closed
normal term M , there exists a non-empty β-co-r.e. set V of unsolvable terms whose
interpretations are below that of M in all graph models.

Theorem 6.4.22. There exists an effective graph model whose order/equational
theory is the minimum order/equational graph theory.

Proof. It is not difficult to define an effective numeration N of all the finite partial
pairs whose carrier set is a subset of ◆. We now make the carrier sets Nk, for k ∈ ◆,
pairwise disjoint. Let pk be the k-th prime number. Then we define another finite
partial pair Ak as follows: Ak = {pn+1

k : n ∈ Nk} and jAk
({pα1+1

k , . . . , pαn+1
k }, pα+1

k ) =

p
jNk

({α1,...,αn},α)+1

k for all ({α1, . . . , αn}, α) ∈ dom(jNk
). In this way we get an effective

bijective numeration of all the finite partial pairs Ak.
Let us take A = ⊔k∈◆Ak. It is an easy matter to prove that A is a decidable subset
of ◆ and that jA is a computable map with decidable domain and range. It follows
from Theorem 6.4.5 that GA is an effective graph model.

Finally, with the same reasoning done in the proof of Theorem 5.2.4, we can
conclude that Th⊑(GA) (Th(GA)) is the minimum order (equational) graph theory.

Let T min and T min
⊑ be, respectively, the minimum equational graph theory and

the minimum order graph theory. We will denote by Gmin any effective graph model
whose order/equational graph theory is the minimum one. As shown in the next
proposition, Gmin is far from being unique, also if considered up to isomorphism.

Proposition 6.4.23.

(i) T min is an intersection of a countable set of non-r.e. equational graph theories.

(ii) T min (and T min
⊑ ) is the theory of countably many non-isomorphic effective

graph models.
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Proof. (i) By the proof of Theorem 5.2.4 T min
⊑ = ∩Th⊑(GAk

) where Ak ranges over
all finite pairs. By Corollary 6.4.12 these theories are not r.e.
(ii) Since, in the proof of Theorem 6.4.22, there exist countably many choices for
the effective numeration N which give rise to non-isomorphic graph models Gmin.
Indeed, given an effective bijective numeration N ′ of all finite pairs, we can take, for
every recursive sequence (nk)k∈◆ of natural numbers, an effective numeration which
repeats nk-times the pair N ′

k.

The following two results are consequences of Theorem 6.4.22. We remark that
here we are using the effectiveness of Gmin for proving properties of all graph models.

Theorem 6.4.24. For all graph models G , Th⊑(G ) is not r.e.

Proof. Let M be any closed normal λ-term. Since Gmin is effective, Theorem 6.2.46
implies that |M |Gmin is decidable, hence (M)−

Gmin
= {N ∈ Λo : |N |Gmin ⊆ |M |Gmin} is

β-co-r.e. by Theorem 6.2.43.
Suppose, now, that G is a graph model such that Th⊑(G ) is r.e. Then (M)−

G
=

{N ∈ Λo : |N |G ⊆ |M |G } is a β-r.e. set which contains the co-r.e. set (M)−
Gmin

. Thus,
by the FIP we get (M)−

G
= Λo.

By the arbitrariness of M , it follows that (T)−
G

= (F)−
G
. Since F ∈ (T)−

G
, and

vice versa, we get |F|G = |T|G , contradiction.

Proposition 6.4.25. For all normal M1, . . . ,Mn ∈ Λo there exists a non-empty
β-co-r.e. set V of closed unsolvable terms such that:

for all graph models G : (∀U ∈ V)|U |G ⊆ |M1|
G ∩ . . . ∩ |Mn|

G .

Proof. Since Gmin is effective and M1, . . . ,Mn are closed normal λ-terms Theo-
rem 6.2.46 implies that every |Mi|

Gmin is decidable. Thus, from Theorem 6.2.43,
it follows that |M1|

Gmin ∩ . . . ∩ |Mn|
Gmin is a non-empty β-co-r.e. set. Therefore, by

Remark 6.2.6 there exists a β-co-r.e. set V of unsolvable λ-terms such that for every
U ∈ V we have |U |Gmin ⊆ |Mi|

Gmin for all 1 ≤ i ≤ n. Then the conclusion follows
since Th⊑(Gmin) is the minimum order graph theory.

We do not know any example of unsolvable satisfying the above condition, or
even of an unsolvable U such that, for all graph model G , we have |U |G ⊆ |I|G .

6.5 Conclusions

We have investigated the question of whether the equational/order theory of a model
of λ-calculus living in one of the main semantics can be recursively enumerable. This
is a generalization of the longstanding open problem due to Honsell and Ronchi Della
Rocca of whether there exists a Scott-continuous model of λ-calculus having λβ or
λβη as equational theory.
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For this purpose, we have introduced a notion of effective model of λ-calculus,
which covers in particular all the models individually introduced in the literature.
We have proved that the order theory of an effective model is never r.e. and the
corresponding equational theory cannot be λβ, or λβη. Moreover, we have shown
that no effective model living in the stable or strongly stable semantics has an r.e.
equational theory. Concerning the Scott-continuous semantics, we have focused our
attention on the class of graph models. We have proved that no order graph theory
can be r.e., that many effective graph models do not have an r.e. equational theory,
and that there exists an effective graph model whose equational/order theory is the
minimum one.



Conclusions

Although Alonzo Church introduced the untyped λ-calculus in the thirties, the study
of its models and theories is, today, a research field which is still full of life. The
wealth of results which have been discovered in the last years allow us to understand
much better the known semantics of λ-calculus and the structure of the lattice of
λ-theories, but they also generated a lot of new interesting open questions.

In this thesis we have mainly focused our attention on the models of λ-calculus
living in the main semantics, but we have also studied two new kinds of semantics:
the relational and the indecomposable semantics.

Since the models living in the relational semantics have not enough points, and
the “enough points condition” is advocated in the literature as necessary to obtain
a λ-model, we have found it natural to reinvestigate, first, the relationship between
the categorical and algebraic definitions of model of λ-calculus. In Chapter 2 we
have given a new construction which allows us to present any categorical model as a
λ-model, and hence proved that there is a unique definition of model of λ-calculus.
Moreover, we have provided sufficient conditions for categorical models living in
arbitrary cpo-enriched Cartesian closed categories to have H∗ as equational theory.

In Chapter 3 we have built a categorical model D living in the relational seman-
tics, and we have proved that its equational theory is H∗ since it fulfills the conditions
described in Chapter 2. Then, we have applied to D our construction and shown
that the associated λ-model satisfies suitable algebraic properties for modelling a
λ-calculus extended with both non-deterministic choice and parallel composition.

Concerning the indecomposable semantics we have proved that it encompasses
the main semantics, as well as the term models of all semi-sensible λ-theories and
that, however, it is still largely incomplete. This gives a new and shorter common
proof of the (large) incompleteness of the Scott-continuous, stable, and strongly
stable semantics.

In Chapter 5 we have developed some mathematical tools for studying the frame-
work of partial webs of graph models. These tools have been fruitfully used to prove,
for example, that there exists a minimum order/equational graph theory and that
graph models enjoy a kind of Löwenheim-Skolem theorem.

Finally, in Chapter 6, we have investigated the problem of whether the equa-
tional/order theory of a non-syntactical model of λ-calculus living in one of the main
semantics can be r.e. For this reason we have introduced an appropriate notion of
effective model of λ-calculus, which covers in particular all the models individually
introduced in the literature. We have proved that the order theory of an effective
model is never r.e., and hence that its equational theory cannot be λβ or λβη. Then,
we have shown that no effective model living in the stable or in the strongly stable
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semantics has an r.e. equational theory. Concerning Scott-continuous semantics, we
have investigated the class of graph models and proved that no order graph theory
can be r.e., that many effective graph models do not have an r.e. equational theory
and that there exists an effective graph model whose equational/order theory is the
minimum one.
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