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Introduction

On Leveraging Services

Currently, computing systems are built based on the integration of other systems in
contrast to earlier systems which were partially integrated or even isolated. This in-
tegration is motivated by the Internet along with its high-speed backbones which pro-
mote the connection of different computing platforms. As a result, current applications
are often built on top of electronic services transparent to users. In order to build
service-based applications, new paradigms have been proposed such as Internet of Ser-
vices, Cloud Computing and Web 2.0 which enable building high-level applications by
using the Internet infrastructure. Examples include Google Maps [Goo04] and Face-
book [Fac04] which bring together different kind of services through a common graphical
user interface. These platforms include a great number of functionalities whose inter-
face abstracts the complexity of the underlying environment. For instance, Google
Maps allows customers to uniformly access location services such as maps, satellite and
street photos, traffic information, and route planner.

Service providers take advantage of distributed runtime infrastructures such as
clouds and grids. Cloud Computing provides resources on-demand by leveraging virtu-
alization technologies. Thus, resources can be acquired at runtime in order to deploy
service instances according to the customer demand. For instance, Zencoder [Zen10]
provides audio and video encoding services on top of resources provided by Amazon
EC2 [Ama06a]. Grid Computing enables building services by leveraging batch jobs.
By using grids, low-level details concerning resource management are transparent to
service developers. For example, the Simple Grid API (SAGA) [GJK+05] integrates
various grid platforms by providing a uniform grid programming interface.

The functionalities provided by clouds and grids are useful but taking advantage
of them is complex and requires manual effort. Moreover, service execution should
be guided by Service-Level Agreements (SLAs) which describe the Quality of Service
(QoS) that should be delivered along with the service. In order to meet the agreed
QoS properties of an SLA, service execution should address service negotiation, in-
stantiation, provisioning and termination driven by SLA constraints. This problem is
challenging owing to the need of: (i) translating QoS metrics to system configurations;
(ii) ensuring the agreed QoS; and (iii) managing distributed resources. An orthogonal
but complementary concern with regard to managing service execution is to take into
account provider profit interests. Indeed, profit augmentation is a main concern of
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6 Introduction

service providers. However, it is hard to implement policies that aim at profit aug-
mentation since they cover various pricing aspects such as price, costs, and fines. For
instance, enforcing SLAs may require using more resources; however, profit augmenta-
tion policies may rely on reducing costs on infrastructure. Therefore, it is a challenge
to manage the service execution on top of distributed resources while addressing SLA
life-cycle and profit augmentation simultaneously.

The Gap

Current work has handled the problem of managing service execution guided by SLA
directives in various ways. Regarding pricing aspects, current approaches that rely
on pricing models do not focus on describing the penalties owing to SLA violations.
For instance, some commercial approaches [Ama06a, Sal99, Zen10] compute penalties
based on a limited definition of availability and pay fines by means of service credits.

Other approaches have addressed SLA management concerning SLA life-cycle, QoS
assurance and SLA translation. Specification of languages and protocol [ACD+07,
LKD+03] were proposed to handle the SLA life-cycle, but these efforts do not implement
underlying mechanisms that manage SLAs. The SLA@SOI project [THK+10] also
addresses SLA management, but it does not define specific realization mechanisms.
With respect to SLA translation [LTH09], approaches either rely on abstract translation
schemes [KW10, SS09, HKSW06] or do not consider the distributed nature of the
runtime environment [CIL+08]. Most approaches which deal with QoS assurance focus
on the underlying infrastructure and do not address pricing aspects. These approaches
rely on job replication [DG08], job rescheduling [LZ10, Hue04], extra resources [DFL11,
LLJ10] and priority policies [KP11b] in order to improve performance or fault tolerance.

Finally, some approaches handle resource acquisition as part of the service execution
management. In this context, resource acquisition is proposed to be decoupled from
resource utilization [TBB+08, CGP+10, LLJ10] as well as automatic virtual machine
deployment [KTKN11]. Moreover, in [GG11], the authors investigate different resource
acquisition policies and their impact on performance and infrastructure costs.

The efforts of the aforementioned approaches are incomplete in a sense that they
do not address the whole SLA life-cycle, being hence isolated solutions. Moreover,
they fail to integrate a pricing model and further economic interests, specifically the
augmentation of the service provider profit. Furthermore, current approaches are not
automated hence requiring a lot of human effort.

Objectives

The main goal of this thesis is to provide an autonomous solution for managing service
execution under SLA constraints. In addition to guiding the service execution by SLAs,
this thesis also aims at increasing the provider profit. Firstly, the autonomous service
execution should be able to negotiate contracts, deploy service instantiates, treat re-
quests, and destroy the service instance automatically. Moreover, these tasks should
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be governed by SLA guidelines which include translating QoS metrics to system con-
figuration, acquiring resources, and prevent SLA violations owing to QoS degradation.
The challenge is then to deliver the service while meeting the agreed quality properties.
Secondly, the problem of increasing the provider profit should be addressed in parallel,
which brings even more complexity to the service execution management. This leads to
investigate pricing aspects which impact the profit such as price, fines, and operational
expenses. Further, the dynamic, unpredictable and distributed runtime environment
on which services are executed brings complexity to this problem.

Organization of the Thesis

This manuscript is organized as follows. The context of this thesis lies on the service
abstraction as a means of building distributed applications. This approach is called
the Service-Centric Paradigm (SCP) and is introduced in Chapter 1. The importance
of SCP relies on the loosely-coupled way of conceiving modular applications whose
interactions are defined by Service-Level Agreements (SLAs). SLAs describe service
obligations which include the Quality of Service (QoS) that should be associated with
the service. Moreover, Chapter 2 discusses how current work addresses QoS on top of
distributed infrastructures.

This thesis deals with two problems: service execution management and service
profit augmentation. These problems are discussed in Chapter 3 which presents a solu-
tion that addresses the SLA life-cycle while aiming at increasing the provider profit. In
order to handle service execution management, this thesis relies on three contributions.
Firstly, Section 3.3 addresses how contract templates are created in order to enable
contract negotiation which includes SLA translation and pricing aspects. Secondly,
QoS assurance mechanisms are proposed in Section 3.4 which are configured based on
the translation of QoS metrics to system-level configurations. Thirdly, Section 3.5 deals
with resource acquisition and allocation by reacting to contract proposals and request
arrivals. Simultaneous to the service execution management, complementary and or-
thogonal actions are in charge of increasing the provider profit. These actions include
rescinding contracts, reduction of infrastructure costs, preventing SLA violations, and
minimizing fine payments.

In order to realize the aforementioned conceived solution, the Chapter 4 depicts
the design and implementation of the autonomous Qu4DS (Quality Assurance for Dis-
tributed Services) framework. Qu4DS transparently manages service executions by
providing a higher-level support for services which abstracts over distributed infras-
tructures. Qu4DS is in charge of automatizing SLA management tasks based on high-
level policies. Furthermore, Qu4DS relies on a modular design which enables employing
further policies.

Qu4DS is validated in Chapters 5 and 6. In Chapter 5, the experimental environ-
ment is introduced which includes the case study and configuration details. As proof
of concept, Qu4DS is used to implement the flac2ogg service provider which compress
audio files. Chapter 6 depicts Qu4DS evaluation performed on top of the Grid5000
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testbed. Different experimentation scenarios are introduced in Section 6.1 and followed
by the results in Section 6.2. The evaluation validates the solution proposed by this
thesis and allows analyzing Qu4DS efficiency under different constraints.
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State of the Art
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Chapter 1

Service-Centric Paradigm

The Service-Centric Paradigm (SCP) refers to the idea of building distributed applica-
tions by leveraging elementary software blocks abstracted as electronic services. Indeed,
SCP mostly takes advantage of two important concepts: computing utility and sepa-
ration of concerns. Computing utility dates back to the 60s when computing features
were proposed to be offered as public utilities by leveraging the time-sharing technology
as if they were conventional services, e.g., electricity and water. Following that, more
recent research has implemented technologies which allow computing utility to be con-
ceived in large scale such as early data centers, grid computing and cloud computing.
On the other hand, dating back to the 70s, the idea of separation of concerns has been
introduced [Dij82, Par72] which is the basis for conceiving modular systems. The basic
idea is to separate different concerns and tackle them separately. Technologies which
leverage such separation of concerns have been evolved whose examples include Object-
Oriented Programming, Aspect-Oriented Programming, and Web Services which rely
on hiding implementation and exposing interfaces in order to ease the development,
maintenance, and understanding of programs.

Therefore, SCP relies on loosely-coupled services which deliver computing utility
capabilities in a distributed environment. The background of this thesis focuses on
the SCP and is organized as follows. Firstly, Service-Level Agreements (SLAs) are
introduced in Section 1.1. Secondly, Section 1.2 discusses Quality of Services (QoS)
offered by SLAs. As services are provisioned under pricing constraints, Section 1.3
exposes some issues with regard to pricing models. Following that, Section 1.4 discusses
systems whose management is autonomous. In Sections 1.5, 1.7 and 1.6 three important
technologies are introduced in the context of the SCP: Web Services (WS), Cloud
Computing, and Grid Computing respectively.

1.1 Service-Level Agreements

1.1.1 Overview

The Service-Level Agreement (SLA) is used to express the relationship between elec-
tronic services whose contacts are employed in short-term and highly-dynamic business

11



12 Service-Centric Paradigm

scenarios. SLAs mimic conventional contracts where the contracted part refers to the
service provider while the consumer is represented by the service customer1. SLAs
define not only how services ought to behave, but also how they should not behave. In
addition, SLAs do not ensure any obligation; they only define the rules that may be
employed in case of non commitment of such obligations [BLM08, WB12].

1.1.2 SLA Life-Cycle

Three phases govern the SLA life-cycle. The first phase refers to the contract defi-
nition when a contract template is generated by describing which quality is offered
– commonly, models, meta-models and ontologies are usually used for representing
QoS [UTU+08]. The second phase is the contract establishment when parties negotiate
and agree on the contract terms which expose the QoS metrics and their associated
values. The third phase comprises the contract enactment when the service is exe-
cuted and both functional and non-functional aspects are monitored in order check
whether the service is properly delivered under the terms of the agreed QoS. Moreover,
monitoring the SLA should be done by a third party as [GFI05] for instance.

1.1.3 WSLA and WS-Agreement

Currently, there is no standard for specifying SLAs. In the literature, WSLA and WS-
Agreement are the main specifications being often used and referenced [BLM08] [DMRTV07].
The WSLA (Web Service Level Agreement) [LKD+03] SLA specification aims at pro-
viding means for configuring both provider and customer systems in order to provide
and supervise their services. The WSLA proposes a formal language based on XML by
allowing automatizing agreement actions. Then customer and providers are configured
by interpreting the WSLA document. The configuration structure includes: (i) the
parties, their roles and action interfaces; (ii) service-level parameters (SLA parame-
ters) which are composed of both resource and aggregate metrics; and (iii) service-level
objectives (SLOs), composed by guarantee actions that represents the parties’ obliga-
tions. The latter SLA specification is the WS-Agreement [ACD+07] specification that
proposes a language and a protocol for describing the service capabilities, for creating
agreements and for supervising agreement compliance. WS-Agreement assumes that
guarantees depend on states based on the idea of stateful Web Services; as proposed
by the WS-RF [CFF+04] which wraps resources as stateful Web Services.

WSLA and WS-Agreement provide enough details concerning high-level structures
of agreements and how they can be negotiated since they have the same goal: to define
how the service will be provide and how it will be supervised. Moreover, both speci-
fications rely on the WSDL (Web Service Description Language) in order to describe
the service functionalities. On the other hand, WSLA and WS-Agreement differ from
the fact that WS-Agreement also proposes a terminology and a protocol for agreement
management. Furthermore, WS-Agreement does not offer a robust QoS (Quality of

1Also referred as service client in the literature.
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Service) model as WSLA provides which allows combining QoS and exploiting QoS
semantics.

1.2 Quality of Service (QoS)

The SLA expresses the terms of the service which are divided in functional and non-
functional requirements of the provided service. Functional requirements define the
service essential features necessary to meet the service purpose. In contrast, non-
functional requirements define further capabilities which are not directly related to
the service main purpose such as performance, fault tolerance and data persistence.
Moreover, non-functional requirements are also referred as Quality of Services (QoS) as
they do qualify the service provider. The QoS has great importance to service providers
since service providers can be distinguished based on quality properties. Thereby,
QoS are used to offer differentiated services by enabling the service provider to be
competitive against further competitor services. For instance, QoS plays an important
role in the business model of current technologies such as the Internet of Things, Web
2.0 and clouds.

The next sections discusses fault tolerant and performance properties of services
followed by a discussion of the trade-off performance and fault tolerance.

1.2.1 Fault Tolerance

Fault tolerance is a means to ensure that services comply with their specification in the
presence of faults [Lap85]. A fault is a representation of a system malfunction which
may come from design or execution time. In order to prevent a service failure, i.e., to
not disturb the service execution, faults should be handled. In order to measure the
degree of fault tolerance, availability and reliability are often employed. Availability
measures how often a service is available for responding requests. Availability can be
expressed as a ratio of the time which the service was available by the measured time
interval. Reliability indicates how much a service is reliable with respect to responding
a request. The degree of reliability of a system can be expressed by high-level non-
functional constraints such as strong, medium and weak [RFCRJ04].

Most of commercial service providers rely on providing availability2 QoS. The avail-
ability is often represented by means of percentage, exposing the ratio between the
total time that the service could be accessed by the customer and a given time inter-
val [WB12, Zen10, Ama06a, Mic08, Goo08]. For instance, Zencoder [Zen10] provides
audio and video encoding services whose interfaces are guaranteed to be reachable
99.9% of the time in a month. Amazon EC2 [Ama06a] ensures that virtual machines
will be available 99.95% of the time in a year. If Zencoder or Amazon EC2 fail to meet
the agreed availability rate, the penalties are computed by means of service credits to
customers; while Zencoder is willing to refund customer based on the whole contract

2Also referred as service uptime.
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time, Amazon EC2 only refunds ten percent of it. With respect to the monitoring cri-
terion, Amazon EC2 defines an unavailable virtual machine as not being accessible for
more than five minutes while Zencoder monitoring interval is one minute. Moreover,
both service providers rely on ambiguous and weak definitions of availability which
exclude fundamental dependability concepts.

1.2.2 Performance

The performance characteristic of a service is related to quality properties involving
time metrics. Various measures can be used such as latency, throughput, operational
time, and response time. Latency is mostly used to express the delay of data transfer
with regard to network connections. The throughput metrics is also commonly used
in network in order to measure the transfer rate, but it may be used to express the
rate of a request treatment as MB/sec for instance. The operational time refers to the
time that the service provider takes to make the service operational. Finally, response
time typically measures the time to treat a request. While latency and throughput
are commonly related to the network-level services, operation time and response time
are mostly employed on services at application-level. Specifically, current work ad-
dresses the response time metrics by means of trying to decrease the overall response
time. Thus, customers might experience performance improvements based on non-
accurate metrics which is often expressed as the experimented response time. In this
context, examples include approaches which addresses experimented request response
time [DG08, Hue04, KP11b] as well as experimented queue waiting time [KMB+12].
Further commercial cloud providers such as [Zen10, Ama06a, Mic08, Goo08] do not
specify any performance QoS in their SLAs.

1.2.3 Trade-Off Between Performance and Fault Tolerance

The use of mechanisms which implement fault-tolerant techniques imply operational
overhead [Lap85]. For instance, error recovery and redundancy techniques require
time to be employed thus increasing the total time of the service request. Therefore,
there is a trade-off between performance and fault tolerance when designing a system
since it is not practicable to prioritize both aspects concurrently. In other words, it is
not possible to implement a system that achieves high-performance with a high fault-
tolerance degree.

Because performance QoS metrics are not accurately described by current service
provider implementations, approaches that address both fault tolerance and perfor-
mance QoS do not deal with the trade-off. On the one hand, current cloud providers
are more concerned about delivering the agreed availability thus considering the per-
formance assurance a secondary goal. On the other hand, further approaches which
implement actual fault-tolerant and performance assurance mechanisms [DG08, LZ10,
Hue04, KP11b] do not consider the stated trade-off as they are not interest in meeting
specific QoS metrics, but improving response times.
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1.3 Pricing

1.3.1 Introduction

Economic interests in software gained special attention in the 60s when software started
to be sold as software licenses. Software licenses represent perpetual rights for using
a copy of the software. In this model, the license depends on various factors as the
number of machines in which the software could be installed, the number of users that
can use the software concurrently and so forth. With the popularization of the Internet
and the great investment on high-speed networks over the world, not only software,
but computing features as virtual resources trended to be sold as a service. In order
to sell computing services, service providers propose to customers to pay according to
their usage. Perpetual licenses do not fit this business model as the delivered services
are now used from a remote client machine thus the software is not installed in the
client’s machine anymore. Thereby, customers pay for a service usage instead of buying
perpetual software licenses. The fact of trading software and resources as services leads
to define how customers pay for them as well as to redefine the price formation. These
issues are explained in Sections 1.3.2 and 1.3.3 respectively.

1.3.2 Accounting Assessment

Accounting assessment defines how the customer will be charged for using the service.
In order to enabling the accounting assessment, different accounting metrics are used
which may be related to specific provided services. For example, accounting metrics
may refer to usage time, input or output metrics (file size, video time, etc.), request
frequency, number of users per contract, number of functionalities and so forth.

Two main accounting assessments are employed by service providers. The former
accounting assessment is pay-per-use3 which has been popularized and promoted by
cloud computing by selling virtual hardware and software as a service. The pay-per-
use accounting assessment accounts the service price based on its usage, similar to the
way of how taxis and electric energy are paid. For example, the Google App Engine
(GAE) [Goo08] does the accounting based on data read/write operations (✩ per number
of operations) while Zencoder accounting is based on video output length (✩ per minute
of output video). The latter accounting assessment is called subscription which relies on
periodical payments which grants access to the service. For example, service providers
use hourly, daily, monthly subscriptions along with the specified accounting metrics.

Although the subscription accounting assessment is more profitable for service
providers, it is important to also offer the pay-per-use accounting assessment. Charging
customers in a pay-per-use fashion is attractive to customers because they pay only for
the actual service usage. In contrast, pay-per-use is not interesting for service providers
because it negatively influences the provider profit. If the accounting assessment does
not depend on the usage, customers tend to pay more than necessary thus increasing
the provider profit margin. However, the importance of pay-per-use lies on the follow-

3Also referred in the literature as pay-as-you-go.
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ing reasons: (i) for competition purpose as pay-per-use is widely assumed to be an
intrinsic characteristics of service providers; (ii) customers are used to think that this
model is fair; and (iii) service providers still have a way of overcoming the pay-per-use
disadvantages by setting a higher prices than subscription plans. As a result, most of
service providers provides both pay-per-use and subscription plans.

Lastly, subscription accounting assessment can be understood as a customization of
a pay-per-use which relies on the time metrics. If this pay-per-use is modified to rely
on periodical payments which time metrics is fixed to a minimal interval, it becomes
a subscription accounting assessment; which may also limit to a maximum amount of
service-specific accounting metrics. Thus, service providers create subscription plans
which usually offer tariff reductions as the maximum amount of specific metrics in-
creases – for example, by mimicking mobile telephony companies. For instance, Zen-
coder’s pay-per-use option accounts 0.05U✩ per minute of video output while its launch
subscription plan relies on monthly payments of 40U✩ for a maximum of one-thousand
minutes of output4. Moreover, some of these providers even do not provide the pay-
per-use option, hence only offering subscription plans such as SalesForce5 [Sal99]. In a
brief, the subscription is widely accepted by customers as it is very hard for customers
to predict the service usage. Thus, customers do not mind to rely on predefined sub-
scription plans which brings the feeling that the service is pay-per-use. More details
about these issues can be found in [LB09, LDBK10].

1.3.3 Price Formation

Price formation refers to how to define the price of a service. Basically, price formation
may be formed in three ways: cost-based, value-based and competition-oriented [LB09].
Firstly, the cost-based price formation assumes that the price is defined based on its
operational costs. These costs are represented by expenses which may include third
party services, resource providers, storage providers and software licenses for instance.
For instance, the Amazon DevPay [Ama12] provides an integrated billing tool which
takes into account the use of Amazon EC2 instances. Thus Amazon EC2 customers
can automatically define the price of the service based on the utilization of the under-
lying infrastructure in a cost-based fashion. Secondly, the value-based price formation
depends on the demand for the service, i.e., how valuable the service is in the current
market. Lastly, the price formation can be driven by the price of competitor services.
The competition-oriented price formation is then useful for allowing new providers to
be competitive or in order to dispute market share to other competitors.

Furthermore, another aspect with regard to the price formation refers to the decision
of setting the price. The price can unilaterally be defined by the service provider or it
can be set in a flexible manner which includes the price into the negotiation process
between customer and providers. However, most of service providers does not allow
changing the service price by relying on predefined prices and accounting assessment
plans.

4Further minutes cost 0.04U✩ per minute.
5Except for SalesForce Data.com service which also allows customers to pay based the stored data.
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1.4 Self-Managed Systems

1.4.1 Dynamic Adaptation

Dynamic adaptation refers to changing the behavior of a system at runtime. Adapt-
able capabilities are useful in unpredictable scenarios where environment changes or
users needs require modifying the system behavior. For instance, resource availabil-
ity should be dealt with in order to ensure that the system will be able to execute
its tasks. Similarly, faults should be handled in order to ensure that the system will
behave as specified. Further adaptation goals include optimization interests where the
system adapts itself by aiming at improving performance or reducing resource waste
for example [Bui06, UPF+08].

Most approaches that offer support for conceiving self-adaptable systems separate
the system functional and non-functional system concerns. Then adaptation interests
are dealt with as a non-functional concern which simplifies implementing and main-
taining the system as well as promoting reusability. The technologies that enable
implementing self-adaptable systems in a modular fashion include Aspect-Oriented
Programming, component-based design, Web Services and computational reflection.
Furthermore, the adaptive behavior can be implemented either in the application-level
or as a utility in the middleware-level. Further discussion about adaptation techniques
can be found in [BAP05, KC03, AC03, MSKC04, CFI+09].

1.4.2 Autonomic Computing

Autonomic Computing [Hor01] proposes the idea of developing autonomous systems in
order to ease system use and administration. Autonomous systems should then manage
themselves in an autonomous fashion, inspired in the human autonomic nervous system
which controls some functions as breath rate, pupil dilatation and heart rate. In [KC03],
the authors propose the MAPE (Monitoring, Analysis, Planning, Execution) control
loop which serves as the cornerstone of an architecture for developing self-managed
systems. The MAPE control loop decomposes adaptation in four interests as explained
next. The Dynaco adaptation model proposes a similar approach to the MAPE for
distributed application by leveraging component-based design [BAP05, Bui06].

Monitoring Monitoring is in charge of gathering information about adaptation inter-
ests. Monitoring mechanisms may rely on pull and push flows in order to either
keep the system aware about monitoring metrics periodically or to allow specific
information to be required.

Analysis During the analysis, it is decided whether an event about the monitored data
is relevant enough for triggering an adaptation action. If so, an adaptation strat-
egy should be generated in order to change the application behavior to achieve
the targeted state.

Planning The adaptation strategy is transformed in an adaptation plan in the plan-
ning phase. The plan is a set of instructions detailedly describing the actual
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changes to be executed by the system.

Execution The previous plan is then executed in the execution phase. In order to
execute the plan, the system execution flow is intercepted and the instructions
are applied.

1.5 Web Services

1.5.1 Loosely-Coupled Distributed Applications

The Service-Oriented Computing (SOC) [PG03, PTDL07] proposes a modular and
loosely-coupled design for building distributed applications. SOC takes advantage of
the service abstraction whose interactions are described by SLAs. Aiming at instan-
tiating this view, the Service-Oriented Architecture (SOA) was then proposed as a
representation of the SOC. The SOA describes an architecture which enables con-
ceiving service-based applications. In a brief, SOA architecture has three layers which
respectively address: (i) service discovery and binding; (ii) service composition in which
services are combined in order to conceive composite services; and (iii) service man-
agement features that are mainly related to service life cycle. Moreover, the SOA has
been proposed to rely on Web Services [W3C10] as a mean of integration of different
applications and platforms.

From another point of view, the SOA can be understood as a natural evolution of the
component-based design [Szy03]. In [CH04, Yan03, PAB11], the authors understand
components and SOA as complementary approaches: on the one hand, services are
loose-coupling, dynamic and business-oriented, on the other hand, components offer an
efficient development model that separates concerns and promotes re-usability. These
latter properties simplify the service development. Examples of component approaches
based on the SOA include the Service-Component Architecture (SCA) [Ope07], Declar-
ative Services [OSG07] and iPOJO [EHL07]. However, both SOC and component point
of views about SOA consider the utilization of Web Services for interoperability pur-
pose6.

1.5.2 Web Services

Two architectural styles have been used to implement Web Services: one based on WS-
* standards, another based on the concept of Representational State Transfer (REST).
The former technology relies on the SOAP (Simple Object Access Protocol) protocol as
a means for interfacing Web Services [W3C10]. SOAP leverages lower-level communi-
cation protocols such as HTTP (Hypertext Transfer Protocol) by exchanging messages
formated in XML (Extensible Markup Language) through the service descriptor rep-
resented by a WSDL (Web Service Definition Language) interface. The WSDL is an
XML file which describes the service functionalities in a RPC-based fashion. In other

6The use of Web Services by Declarative Services and iPOJO are enabled by Distributed
OSGi [ASF09]
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words, services send requests to other services by invoking their operations, then these
operations will be executed remotely and the result is sent by means of the request
response. This way of building service-based application by leveraging Web Services
in an RPC-like manner served as basis for several approaches which address service
composition by means of BPEL orchestration or choreographies. In spite of the great
advantage of not changing the way of how applications are designed, i.e., by calling
operations, it is hard to manage SOAP/WS-* service compositions.

In contrast to the WS-* based architectural style, the second approach for im-
plementing Web Services follows the REST style, which allows building service-based
applications in a simpler way. Web Services based on the REST architecture are called
RESTful Web Services and take advantage of the HTTP protocol as an application
protocol, not only a transport protocol. In the REST architecture, services are ex-
posed as resources identified by URIs that facilitate the referencing of services on a
network of distributed servers. RESTful Web Services are accessible through the use of
simple HTTP methods, e.g., GET, PUT, POST, UPDATE. In addition, RESTful Web
Services take advantage of content negotiation to provide various data formats such as
XML and JSON (JavaScript Object Notation,) which allow them to fit the data format
according to the service needs. With respect to the service provider state, the stateless
characteristics of RESTful Web Services is suitable for developing inter-domain Web
Services in large-scale. On the other hand, RESTful Web Services requires that cus-
tomer services understand the semantics of the data formats (media-types) which are
exchanged.

1.6 Grid Computing

1.6.1 Overview

Grid computing was firstly used to aggregate clusters from different domains for per-
forming high-performance computing in large-scale. Following that, grids addressed the
utilization of further heterogeneous and low-cost resources such as desktop computers
and mobile devices. In order to manage resource access policies, grids leverage the
concept of Virtual Organization (VO) to define and ensure user privileges in each set
of resources. Thereby, various organizations participating on a grid can configure the
grid usage to suit their local policies [Fos02]. In order to make grids transparent for
users and promote interoperability, grids leverage programming abstractions based on
open standards that unify the way of how grid resources are used. For instance, grid
users may develop distributed applications based on abstractions as GridRPC, batch
jobs and files [SNM+02, GJK+08].

Figure 1.1 illustrates a common grid architecture. Firstly, according to VO policies,
grid users reserve a set of resources and submit jobs through the broker. Secondly,
jobs are sent to the grid scheduler which allocates jobs on resources given job resource
requirements and according to a scheduling algorithm. Finally, when jobs are executed,
users are informed. Moreover, distributed file systems [LS90] are widely used in grids
in order to store and share data transparently.
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Figure 1.1: Applications are executed on top of grid infrastructures by submitting jobs to grid
resources.

The main programming abstraction for developing grid applications is the job ab-
straction. Jobs can either hold other jobs a parallel program or represent a sequential
program as part of a set of jobs. Moreover, jobs contain meta-information which in-
cludes their software the resource requirements. By leveraging jobs, various distributed
applications can be developed such as BoT (Bag of Tasks) applications [CBC+04] ,
complex workflows [HWS+06] as well as applications that leverage the generic Mas-
ter/Worker pattern.

1.6.2 Application Programming Interface

Grids offer complete Application Programming Interfaces (APIs) which allow grid users
to have extensive control of grid resources. However, current grid offer different and
complex APIs thus increasing the complexity of application development and mainte-
nance. In order to ease the use of grids, to standardize the grid usage and to allow
grid applications to be compliant with different grid platforms, the Simple Grid API
(SAGA) [GJK+08] proposes a standard grid programming interface. SAGA addresses
interoperability and complexity through simple grid programming abstractions and op-
erations. SAGA enables grid application development by taking into account a unique
interface while it enables the execution of such an application in different grids. For
achieving interoperability, SAGA relies on adaptors which enable implementing back-
ends for various grids as SSH, Globus, XtreemOS, Condor and so forth.

SAGA compiled the main abstractions for developing distributed applications based
on various requirements. Firstly, the file abstracts transparently over a distributed file
system an usual local file system. Secondly, the data streaming abstraction eases the uti-
lization of remote communications over sockets. Aiming at a higher-level remote com-
munications, the RPC abstraction is also provided by SAGA whose specifications are
defined based on GridRPC [SNM+02]. The task abstraction encapsulates synchronous
and asynchronous operations in order to facilitate the management of distributed calls.
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Finally, the job abstraction is supported by SAGA which allows managing jobs based
on statical and dynamic information sent through job callbacks. Additionally, jobs can
be submitted in both interactive and batch modes.

Furthermore, grid usage can also take advantage of the pilot-job abstraction. The
DIRAC (Distributed Infrastructure with Remote Agent Control) [CER04, TBB+08,
CGP+10] grid proposes pilot-jobs as an abstraction for improving resource allocation
in grids. Before submitting main jobs, meta-jobs called pilot-jobs are submitted to
available resources by launching an agent. This agent is responsible for calculating the
resource capability of execute main-jobs and send it to the scheduler. The scheduler
then matches its job queue received from grid users to available resource capabilities.
Thereby, the job scheduling is distributed among the resources by relying on updated
resource metrics. Moreover, further grid approaches also takes advantage of the idea
of pilot-jobs as SAGA big-job [LLJ10] and Condor [Uni12].

1.6.3 Grid Platforms

Globus The Globus Toolkit [Fos06] is a grid middleware as part of the Globus Al-
liance. Globus Toolkit architecture relies on Web Services in order to manage the grid
components. It uses the WS-Resource Framework (WSRF) [CFF+04] and wraps grid
resources in order to ease the management of the middleware. Globus Toolkit transfers
data through the FTP (File Transfer Protocol) protocol adapted for grids and manage
data replication to improve data availability. Moreover, Globus Toolkit also provides
an execution management environment for specific applications.

XtreemOS The XtreemOS [CFJ+08] project targets providing a transparent grid ex-
ecution environment as an usual operating system. Core components of the XtreemOS
grid operating system are built as Linux kernel modules in user-space which makes
common operating systems grid resources. Thus, the overall overhead of tasks that
require detailed information about the system is decreased. Moreover, XtreemOS sup-
ports desktop computers, clusters and mobile devices. With respect to its interface, it
not only provides an extensions of the SAGA interface, but it also provides a console
which supports POSIX-compliant commands.

Grid5000 The Grid5000 aims at offering an integrated distributed environment where
researches can deploy their prototypes in large-scale. The Grid5000 currently holds
1,594 nodes, a total of 3,064 processors and 8,700 cores over ten sites in France 7 shared
among various research institutes. In order to use Grid5000, an operating system image
is deployed on reserved nodes. Indeed, Grid5000 is a resource-oriented testbed and can
be compared with IaaS clouds in the sense since both provide resource as abstraction
for programmers. Although Grid5000 does not offer higher-level abstraction such as
jobs, its extensible and flexible tools, e.g., OAR, Kadeploy, Adage, allow grid users to
deploy further programming support as Globus Toolkit, XtreemOS, DIET, Nimbus,
Apache Hadoop and so forth.

7Two more sites from Brazil and Luxembourg will be added to Grid5000.
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DIET DIET (Distributed Interactive Engineering Tool-box) [CD06] is a grid middle-
ware which tackles the development of grid applications by using GridRPC [NMS+05,
SNM+02]. GridRPC lies on the RPC (Remote Procedure Call) paradigm with dynamic
resource scheduling in an environment composed by different administrative domains.
DIET components are in charge of allocating resources when the application remotely
calls computation operations through GridRPC calls.

DIET is based on a hierarchical distributed scheduling design. DIET users send
the operation to be computed to a DIET entry point (master agent) by means of a
GridRPC call. The master agent dispatches the call to hierarchical lower-level entities
called SeD (Server Daemon) which are in charge of executing the actual operation.
When an SeD receives the call, it checks if it is able to respond to the call by checking
dynamic information such as data availability and resource load and scores its ability.
Then the SeD forwards the call to its SeD children which also calculate their ability
based on the given call. All SeDs answer their upper SeDs which sort capability scores
of their children and store in a list. Following that. the master agent sorts the capability
lists of its SeD children in a merged list which is forwarded to the user. Finally, the
user chooses which SeD is more suitable for executing the call and sends the call to the
chosen SeD to be executed.

1.7 Cloud Computing

1.7.1 Overview

Cloud Computing does not have a common definition. At first, most definitions relied
on the idea of outsourced service providers which deliver virtual machines on-demand
in a pay-per-use accounting assessment. Later, the basic idea of outsourcing resources
was extended to a larger and generic set of computing capabilities rather than virtual
machines [MG11, Sch10, Bég08, VRMCL08, KTKN11, JMF09].

Cloud Computing targets adapting the provided services according to environment
changes dynamically. This refers to the idea of elasticity which allows clouds to modify
non-functional requirements not only according to demand changes, but also for con-
solidation purpose. In the context of IaaS clouds, elasticity may refer to either vertical
elasticity, whereby virtual machines requirements are modified, or horizontal elasticity,
which means changing the amount of virtual machines. For instance, an application
which uses a single virtual machine may become overloaded, then it may trigger a ver-
tical elasticity in order to accommodate the current load. On the other hand, the cloud
provider may suspend, migrate8 or shut down some virtual machines in order to save
energy consumption during low demand peak.

In spite of the advantage of acquiring outsourced and elastic services on-demand,
clouds main drawbacks lies on privacy, security and dependability [Vie09]. As customer
data is stored in clouds, customers do not have control on their own data anymore.
This can be used for gathering useful information about cloud customer for business

8Currently, the live migration technology enables migrating virtual machines at runtime without
shutting down the virtual machine.
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purpose. Furthermore, some applications require non-trivial security requirements such
as critical applications. The way of how availability is offered by cloud providers are
not enough for building dependable applications. For instance, the Amazon EC2 SLA
terms exclude Amazon from any availability issue caused by factors outside of Amazon’s
reasonable control9.

1.7.2 A Common Layered Architecture

Currently, a common cloud layered-architecture is found in the literature [Sch10, KTKN11,
CBP+10, MG11] where computing capabilities are exchanged between service entities.
Figure 1.2 illustrates this cloud architecture. The lowest layer refers to the Infras-
tructure as a Service (IaaS) which relies on the resource abstraction. The IaaS layer
leverages virtualization techniques in order to deliver virtual machines as resources.
These virtual resources actually are operating system images. The upper layer is called
Platform as a Service (PaaS) which provides a developing support for building final
applications. In the PaaS layer, programming tools and abstractions are offered as
external services which play the role of conventional programming libraries. In the
highest-level layer, the Software as a Service (SaaS)10 layer provides applications for
final users.

Figure 1.2: A common view of Cloud Computing as a layered architecture where layers interact with
each other by means of services. Service requests are the primitives which enable the service to be
delivered according to the SLA.

1.7.3 Infrastructure, Platform and Software as a Service

IaaS IaaS clouds rely on the virtualization technology in order to deploy virtual
machine instances on top of physical resources. Virtualization allows running guest
operating systems inside a host operating system. Thereby, virtual machine instances
actually are operating system running on a virtual resource. The hypervisors are in
charge of managing virtual machines by interacting with the physical machine operat-
ing system. Examples of current hypervisors include Xen [CS03], KVM [RH06], and
VirtualBox [Ora07]. Moreover, kernel containers can also be used to manage virtual
machines as a kernel built-in solution.

9For the full Amazon EC2 SLA terms, see [Ama08].
10Also referred as Service as a Service.
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The first IaaS cloud created was the Amazon EC2 [Ama06a] as a result of Amazon’s
data center improvement. Amazon EC2 relies on its proprietary AMI (Amazon Machine
Image) virtual machine format and its own API. Following that, open-source IaaS
clouds were developed such as Nimbus, Eucalyptus, OpenStack and OpenNebula, all of
them supporting the Amazon EC2 API. Moreover, cloud IaaS solutions are commonly
used together with storage services, e.g., Amazon S3 [Ama06b].

Aiming at standardizing IaaS cloud interfaces, the Open Grid Forum published the
OCCI (Open Cloud Computing Interface) [ME11] specification. OCCI relies on the
compute, storage and network abstractions in order to represent cloud IaaS resources.
The start, stop, restart and suspend operations govern resources through a RESTful
API. Furthermore, proprietary interfaces as Amazon EC2 also relies on these simple
operations.

Furthermore, IaaS clouds can be also classified as private, public and hybrid. In
order to tackle privacy and security issues, IaaS clouds can be used in an intra-domain
scope. This characterizes a private cloud whose virtual instances are managed by
the organization which then takes advantage of managing virtual resources instead of
physical resources. In contrast, public clouds consist of third parties which provide
virtual machines in an outsourced manner. Lastly, clouds can also be classified as
hybrid whose virtual machines are held by both private and public clouds. Hybrid
clouds is a complementary solution for private clouds in a sense that it enables handling
unpredicted resource demands in a private cloud.

PaaS and SaaS While the IaaS layer has been established on top of well defined
interfaces [Ama06a, ME11], there is a lack of agreement about PaaS and SaaS cloud
interfaces. Despite the OCCI effective description of a cloud IaaS interface, it does not
tackle neither PaaS nor SaaS cloud interfaces. Indeed, in these latter layers, a huge
number of functionalities should be provided which makes it very difficult to define a
simple and clean interface. For instance, the PaaS layer aims at providing services which
support data base access, authentication, parallelization and domain-specific libraries
as SalesForce [Sal99] and the Google Application Engine (GAE) [Goo08]. With respect
to the SaaS layer, although SaaS customers needs are more customized rather than
developer needs, SaaS interfaces similarly aim at providing specific features. As a
consequence, the lack of uniform and standardized PaaS and SaaS interfaces implies
the incompatibility of cloud providers; thus subject to vendor lock-in and integration
issues.



Chapter 2

Related Work

This chapter presents some current approaches which support the development of ser-
vice providers on top of distributed infrastructures. The main focus is on approaches
that provide quality guarantees. In order to organize related work, three main groups
were defined based on the following aspects: pricing (cf. Section 2.1), SLA man-
agement (cf. Section 2.2) and resource acquisition (cf. Section 2.3). Moreover, the
SLA management aspect was divided in three subgroups which address SLA life-cycle
(cf. Section 2.2.1), SLA translation (cf. Section 2.2.2), and QoS assurance (cf. Sec-
tion 2.2.3).

Finally, a comparison table is exposed in Section 2.4 which summarizes the main
related work here presented.

2.1 Pricing

In general, the solutions which address pricing aspects do not include in their SLA the
penalties in case that the agreed quality is not met. Some of them [Ama06a, Goo08,
Sal99, Zen10] are willing to offer service credits if a percentage of availability is not
met. However, these approaches rely on a very limited and often not clear definition
of SLA violation because service providers are not able to properly ensure the agreed
QoS. Thereby, refunding policies would seriously compromise provider profit.

In [MFG10, MG10], Maćıas et al. address the maximization of IaaS cloud providers
by means of resource over-provisioning and by dynamically setting the service price
according to resource usage. Virtual machines are then shut down based on their usage
pattern thus enabling to allocate other virtual machines. In case of resource shortage,
the approach minimizes losses by considering either violating SLAs or rescinding con-
tracts. Even though these approaches consider pricing aspects, the authors only tackles
the availability QoS. Moreover, similar to Amazon EC2, these approaches only consider
an SLA violation as a virtual machine that has been shut down after a fixed and sig-
nificant amount of time. Furthermore, these solutions tackle the IaaS layer thereby not
providing higher-level programming abstractions for building SaaS service providers.
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2.2 SLA Management

2.2.1 SLA Life-Cycle

The SLA@SOI project [THK+10] proposes a hierarchical and integrated architecture
for building service-based applications. The architecture is composed by three SLA
managers which address business, software and infrastructure SLA managements in
a layered fashion. In the highest-level, business aspects between the provider and its
customers are dealt with. The following layers address software and infrastructure
wrapped as services. By considering software and resources as service, the SLA@SOI
architecture aims at separating service management from SLA management. However,
by aiming at a generic approach for supporting arbitrary services, the architecture does
not define specific realization mechanisms; it assumes that services dependencies are
responsible for meeting service software and resource requirements.

The SOA4ALL project [KLH+10] aims at easing the conception of service-based
applications by leveraging the SOA, Web 2.0 and Semantic Web in a context-aware
environment. The SOA4ALL proposes a layered architecture which lies on a graphical
user interface, an intermediate communication channel and an underlying infrastruc-
ture. Moreover, the communication channel enables third party service to be inte-
grated. In the highest layer, business processes are conceived and then translated to
BPEL (Business Process Execution Language) compositions which are executed in the
infrastructure. Thereby, the SOA4ALL approach tackles service composition driven by
quality aspects through comprehensive service discovery and bindings based on seman-
tics. Nevertheless, the architecture does not specify how resources are acquired nor
managed and pricing aspects are not defined. The authors only explain how further
technologies might meet these needs. Moreover, actual QoS assurance mechanisms are
not proposed; QoS properties are supposed to be met by proper service compositions.

Maćıas et al. [MFG10] addresses the negotiation and provisioning of virtual ma-
chines driven by economic aspects. The architectural details of this approach is de-
scribed in [MG10]. However, it does not tackle performance, relies on a relaxed defini-
tion of SLA violation based on availability as well as it does not support higher-level
programming abstractions; as discussed in Section 2.1.

2.2.2 SLA Translation

The authors of [KW10] model the translation of SLA based to service dependency prop-
erties; however they do not tackle how services translate their SLA to infrastructure-
level configurations.

In [CIL+08], the authors profile tier applications to know the response time based.
SLAs are translated by means of CPU requirements to application servers. However,
this work does not provide fault-tolerant mechanisms and it does not tackle distributed
applications.

Stantchev and Schröpfer [SS09] service replication is used in order to improve and
ensure performance and fault-tolerance QoS. The authors translate QoS to infrastructure-
level by means of setting the service replication degree. Nevertheless, the authors do
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not explain how assurance mechanisms work nor how SLA and resources are man-
aged. Furthermore, the work does not consider economic aspects such as service price,
resource costs and fines owing to SLA violations.

The GridNEXT project [HKSW06] investigate how SLA objectives are translated
to infrastructure configurations in order to enable high-performance computing ser-
vice providers to meet the agreed QoS. The translation process relies on a knowledge
database previously filled. However, the architecture remains conceptual thus not pro-
viding enough information about how to implement actual QoS assurance mechanisms.
The authors assume that the infrastructure should support QoS assurance mechanisms.

Moreover, further work about SLA translation can be found in [LTH09].

2.2.3 QoS Assurance

The MapReduce programming model [DG10, DG08] addresses data processing in large
scale. It leverages the concept of map and reduce primitives of functional languages
and considers a data shared space such as a distributed file system. Developers who
take advantage of MapReduce should implement the application-specific operations
map and reduce and provide information about the location of input and output data.
The MapReduce Library [DG08] handles worker failures by periodically checking if
workers are reachable. If a worker fails, their task are re-scheduled to be executed
on another idle worker. Moreover, the MapReduce Library relies on a replicating
scheme for the remaining jobs since latest jobs are more susceptible to fail. In order
to improve performance, the MapReduce library also relies on replication of remaining
jobs by statically configuring the number of map and reduce operations as well as
the number of workers. Indeed, the replication of remaining jobs is a solution for
improving performance and fault-tolerance qualities. However, more efficient fault-
tolerant techniques can be conceived based on dynamic job metrics as job elapsed time
and job state. Thereby, malfunctioning jobs can be earlier identified thus triggering
repairing actions at this very moment instead of postponing them to the end of the
computation. Moreover, MapReduce does not address a complete PaaS solution, i.e.,
it misses further supports for dealing with the service negotiation and provisioning.
Therefore, MapReduce is understood to be an intermediate-level tool that ease the
development of PaaS solutions which aim at data-processing in large-scale, while further
service higher-level aspects are not tackled.

Clouds resources have been used to improve performance of distributed applications.
In [LZ10], the authors propose the RC2 job scheduling algorithm for grids which relies
on rescheduling previously queued jobs. The RC2 algorithm replaces grid resources by
cloud resources if a grid resource is identified as delaying job executions. Then, the jobs
previously assigned to the grid resource are rescheduled to a cloud resource. The argu-
ment used by the authors of the RC2 algorithm is that cloud resources are more reliable
rather than grid resources. In [DFL11], the authors introduce the SpeQuloS framework
which aims at providing QoS to desktop grids. The framework adds further resources
from clouds in order to decrease the application response time. Moreover, SpeQuloS
relies on a credit service which computes the costs of using extra resources from clouds.
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Lastly, the SAGA big-job instrumentally used clouds to ensure deadline [LLJ10]. The
main drawbacks of these solutions is that they only tackle performance aspects and
they do not tackle pricing aspects completely.

The GridWay [Hue04] project proposes an adaptive framework for job execution on
grids. Tools for monitoring and analyzing jobs are added to the Globus middleware in
order to check if job performance degrades. If so, the framework reschedules the job
in order to improve its performance. However, the scheduling policy does not consider
further queued jobs belonged to other applications. This issue can be improved by con-
sidering distributed scheduling techniques such as work stealing [TGT+10]. Moreover,
this work does not support neither SLA management functions nor pricing aspects and
exposes low-level resource details to applications.

In [KP11b], the authors propose the CooRM architecture for supporting com-
plex high-performance distributed applications with dynamic resource requirements.
In CooRM, job scheduling is distributed and employed at the application level thus
the central scheduler is in charge of resource discovery and scheduling appliance while
applications are in charge of selecting the available resources. In order to improve per-
formance, the authors propose to not delay application executions by prioritizing pre-
viously submitted applications based on their estimated execution time. Furthermore,
in [KP11a], the authors explains how CooRM tackle resource wastage. Nevertheless,
fault-tolerance, pricing and SLA management are not addressed.

In [Jos08], the authors propose SLAWs as a flexible architecture for enforcing SLAs.
Services are decoupled in order to address non-functional service concerns wrapped in
a separated service. However, specific SLA enforcement mechanisms are not described.

In [Per05], the author proposes a hierarchical SLA management for SLA enforce-
ment. The approach relies on adaptation policies guided by high-level objectives which
adjust network traffic based on current QoS values. Nevertheless, this work is limited
to low-level network traffic control thus not offering higher-level support for services
which builds on distributed infrastructures based on the job abstraction.

Zencoder [Zen10] uses Amazon EC2 virtual machines to encode video and audios.
In [Clo11], Zencoder showed to perform faster than some competitors. However, Zen-
coder does not publicly explains how the performance is improved and does not include
QoS in its public SLA description.

2.3 Resource Acquisition

Pilot-jobs [TBB+08, CGP+10] provides a solution for decoupling resource acquisition
from resource utilization in a grid environment. In order to also take advantage of IaaS
cloud resources, SAGA [GJK+05] leverages the idea of pilot-job by introducing the
big-job [LLJ10] abstraction which acquires cloud resources, deploys virtual machines
and submits grid jobs to the booked resources. With regard to fault tolerance, SAGA
big-job replaces pilot-jobs which fail to acquire resources from clouds. However, SAGA
big-job assumes that it is the developer charge to customize virtual machines and
defining their requirements. Moreover, SAGA big-job does not consider resource costs
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in its pricing model and provide no means for increasing the provider profit.
In [KTKN11], Kecskemeti et al. propose an automatic approach for acquiring and

deploying virtual machines in order to aid service developers and decrease the deploy-
ment time. The main idea lies on automatic mechanisms which split virtual images
and replicate its parts on various repositories. Moreover, the authors complement this
approach in [KMB+12] by addressing the automatic management of virtual appliances
in different clouds. Nevertheless, the drawback of these solutions is that service devel-
opers have to directly deal with the lower-level resource abstraction as well as they still
have to manage the life-cycle of virtual machines. In addition, the authors consider
virtual machine instantiation driven by customer requests in contrast to instantiating
virtual machines driven by contract establishments.

Genaud and Gossa [GG11] investigate various policies for acquiring and releasing
resources for grid batch jobs. The idea is to fit job completion time and virtual machine
booking in a pay-per-use pricing accounted hourly. Thus, the authors propose policies
for meeting the trade-off between infrastructure costs and performance. However, the
authors fail in addressing SLA management functionalities and performance is not
ensured.

2.4 Summary of Related Work

2.4.1 Comparison Table

The Table 2.11 depicts the comparison of this thesis and main work previously identified
in Section 2. The comparing criteria emphasizes the main features for enabling service
execution management as explained next.

Layer Refers to the cloud architecture layer tackled by the approach (cf. Section 1.7.2).
Approaches which provide resources as abstractions are classified as infrastructure-
level (IaaS ) while approaches which provide further higher-level abstractions such
as jobs are considered to tackle the platform-level (PaaS ).

Pricing If set yes, means that the approach addresses pricing aspects, e.g., price, costs
and fines. Otherwise, no is used.

SLA Life-Cycle This attributed defines whether the approach offer SLA functional-
ities which enable addressing the SLA life-cycle. Yes means that the approach
covers the SLA life-cycle while no means the contrary.

SLA Translation Refers to translation of SLA high-level properties or QoS metrics to
infrastructure-level configuration. If the approach describes how the translation
is employed, it is classified as yes, otherwise no is used.

QoS Aspect Expresses which kind of QoS is tackled by the approach. The referred
QoS aspects are performance (Perf.) and fault tolerance (FT ).

1Although Amazon provides the Amazon Elastic MapReduce [Ama09], MapReduce [DG08] refers
to the Google MapReduce programming model.
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QoS Assurance If the approach provides QoS assurance mechanisms, yes is used,
else it is classified as no.

Resource Acquisition Refers to whether the approach addresses resource acquisi-
tion; it may refer to either virtual or physical resources. If so, the approach is
classified as yes, otherwise no is applied.

Approach Layer Pricing SLA

Life-

Cycle

SLA

Trans-

lation

QoS

Aspect

QoS

Assur-

ance

Resource

Acqui-

sition

MapReduce
[DG08]

PaaS No No No Perf.,
FT

Yes Yes

SOA4ALL
[KLH+10]

PaaS No Yes No Perf.,
FT

No No

Maćıas et al.
[MFG10]

IaaS Yes Yes No FT No Yes

Kecskemeti et al.
[KTKN11]

IaaS No No No Perf.,
FT

Yes Yes

GridWay [Hue04] PaaS No No No Perf.,
FT

Yes NA

CooRM [KP11b] IaaS No No No Perf. Yes No

SAGA Big-Job
[LLJ10]

PaaS,
IaaS

No No No Perf. Yes Yes

SLA@SOI
[THK+10]

PaaS,
IaaS

No Yes No Perf.,
FT

NA Yes

GridNEXT
[HKSW06]

PaaS No No Yes Perf. No NA

Stantchev and
Schröpfer [SS09]

PaaS No No Yes Perf.,
FT

No No

Genaud and
Gossa [GG11]

PaaS Yes No No Perf. No Yes

This thesis PaaS Yes Yes Yes Perf.,

FT

Yes Yes

Table 2.1: Comparison of main related work according to various criteria.

2.4.2 The Gap

The general observation is that approaches that focus on the infrastructure-level pro-
vide actual mechanisms which ensure quality aspects. However, these approaches do
not consider higher-level aspects as pricing and SLA management. On the contrary, ap-
proaches that address SLA aspects do not specify how QoS properties can be enforced
since they focus on high-level SLA management tasks.

Another observation refers to the pricing criterion. Although most approaches
enable applying pricing models, they neither define the pricing model nor describe it.
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In contrast, commercial clouds provide fully information about pricing. Nevertheless,
it is not worthy to put these approaches in Table 2.1 because they rely on proprietary
solutions which do not described how further criteria are addressed.

With regard to QoS aspect, both performance and fault tolerance are satisfactorily
addressed. However, most of solutions rely either on experimented QoS metrics rather
than accurate metrics. Regarding resource acquisition, most approaches solve the prob-
lem of acquiring resources. Nevertheless, these approaches often exposes resource-level
details for final customers.

2.4.3 Filling the Gap

This thesis addresses the required features to build a complete solution for service
execution management. The last row of the Table 2.1 shows this thesis addressing all the
criteria as a solution in the platform layer. Moreover, it is important to remember that
the previous criteria were chosen by aiming at enabling service execution management
on top of distributed infrastructures. A summary of how this thesis fills the gap is
exposed next.

Pricing This thesis relies on a pricing model whose price formation is based on provider’s
costs in a pay-per-use accounting assessment. Penalties for SLA violations are
also taken into account whose penalties are computed as monetary terms. More-
over, this thesis prioritizes customers which positively contributes for increasing
the provider profit.

SLA Life-Cycle This thesis designs and implements a complete set of SLA manage-
ment functions which include service negotiation, instantiation, provisioning, and
termination. Moreover, this thesis defines how pricing aspects are integrated into
its solution.

SLA Translation Based on service profiling, this thesis translates performance and
fault-tolerance QoS metrics to lower-level system configurations in order to con-
figure the mechanisms responsible for ensuring QoS.

QoS Assurance This thesis provides mechanisms for ensuring both performance and
fault-tolerance qualities for distributed services. These mechanisms rely on re-
source requirements and dynamic job metrics which enable immediately reacting
to job malfunctions.

Resource Acquisition This thesis deals with resource acquisition by transparently
acquiring, deploying and releasing resources thus freeing service developers from
these time-consuming and error-prone tasks. Moreover, by tackling the whole
SLA life-cycle, this thesis assumes that contract negotiation triggers resource
acquisition in contrast to current approaches that acquire resources when requests
are sent.
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Chapter 3

SLA-driven Service Execution
Management

The contribution of this thesis is in the context of service providers built on top of
distributed infrastructures such as grid and clouds. It provides an autonomous support
for service execution management aiming at increasing provider profit. This challenge
is achieved by reducing costs on infrastructure usage, preventing SLA violations and
prioritizing more profitable customers. In order to address this problem, this thesis
translates high-level quality aspects to system configuration to ensure the proper service
execution by acquiring resources on-demand. Moreover, service under-provisioning is
also taken into account as a feature to increase provider profit.

The reminder of this chapter is organized as follows. Section 3.1 discusses defini-
tions, assumptions and life-cycles. The main goal of this thesis is explained in Sec-
tion 3.2. The Section 3.3 explains how contract templates are created. The following
Sections 3.4 and 3.5 address service execution management aspects related to QoS
assurance and resource acquisition and allocation respectively.

3.1 Underlying Concepts

This thesis relies on a terminology which is used by the research community but in
different contexts. In order to avoid ambiguity during the lecture of this manuscript,
the Section 3.1.1 introduces the definitions and assumptions used by this thesis. Fol-
lowing that, the Section 3.1.2 introduces the variables useful for understanding this
text. Finally, the life-cycles of contracts, requests and jobs are defined in Section 3.1.3.

3.1.1 Definitions and Assumptions

This thesis relies on the following definitions and assumptions:

Definition 3.1 An electronic service – or just service – is a high-level abstraction
that represents a way of delivering a software or a computing capability as a part of a

35
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software. The contract terms of a service is represented by a Service-Level Agreement
(SLA) which is established between the service customer and the service provider.

Definition 3.2 An electronic contract – or just contract – describes the contractual
terms of a service between the service customer and the service provider. The contract
is represented by a Service-Level Agreement (SLA).

Definition 3.3 A job is an intermediate-level software abstraction which is useful for
building services and handling customer requests.

Definition 3.4 A request is the means of how customers use the service. Customers
send requests to the service provider which should treat it in accordance to the SLA.

Assumption 3.1 Resources are acquired by the service provider from a resource provider
in an outsourcing fashion.

Assumption 3.2 Jobs may present misbehaviors which means to fail or to be delayed.
Moreover, a job misbehavior represents a fault for the service provider.

3.1.2 Variables

Jobs, contracts and requests are represented by variables as explained next.

❼ J is the set of all jobs where:

– jni is the i-th job which holds n replacements

– Jqk set of jobs belonged to the k-th request qk

– JF set of FAILED jobs

– JR set of RUNNING jobs

– JC set of CANCELED jobs

❼ Q is the set of all requests where:

– QT set of BEING TREATED requests

– qk is the k-th request

❼ C is the set of all contracts where:

– ci is the i-th contract.

3.1.3 Life-Cycles: Contract, Request and Job

The management of service execution is driven by the states of contracts, requests and
jobs. The life-cycle of these abstractions are presented next.
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Contract Life-Cycle The contract life-cycle aims at instantiating the SLA life-cycle
which comprises the definition, establishment and enactment phases (cf. Section 1.1.2).
The Contract life-cycle is depicted by Figure 3.1 which also illustrates the SLA life-cycle
phases.

Figure 3.1: Contract life-cycle.

The contract life-cycle states are described as follows.

NEW A just-arrived contract proposal implies the creation of a contract whose state
is NEW.

REJECTED If the service provider decides to not accept the contract proposal, the
contract state is set to REJECTED.

ESTABLISHED If the service provider accepts the contract proposal, the contract
state is set to ESTABLISHED.

CONCLUDED If the contract reaches its duration, the contract is successfully com-
pleted its and contract state is set to CONCLUDED.

RESCINDED The contract may me rescinded by one of the parties thus the contract
state is set to RESCINDED.

Request Life-Cycle The request life-cycle holds the following states as depicted by
Figure 3.2.

NEW A just-arrived request implies the creation of a request whose state is NEW.

BEING TREATED If the request can be treated, its state is set to BEING TREATED

thus dispatching the request for treatment.

ABORTED Requests may be aborted either just after its creation or during its treat-
ment. For both situations, the request state is set to ABORTED.
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TREATED If the request is successfully treated, its state is set to TREATED.

Figure 3.2: Request life-cycle.

Job Life-Cycle The job life-cycle is based on the SAGA [GJK+08] job state model
as depicts Figure 3.3. The job life-cycle holds the states described next.

Figure 3.3: Job life-cycle.

NEW A job has the NEW state when it is instantiated.

RUNNING When the job is submitted through to be executed, its state is set to
RUNNING.

MIGRATING Jobs can be under a migration operation which migrates a job to
another resource. This implies changing the job state to MIGRATING.
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SUSPENDED During job execution, jobs can be suspended then their state are
changed to SUSPENDED.

FAILED If the job fails, it gets the final state FAILED.

DONE If the job successfully finishes, it gets the final state DONE.

CANCELED The job execution may be interrupted; thus the job gets the final state
CANCELED.

3.2 Profit as a Goal

A common challenge in the Service-Centric Paradigm (see Chapter 1) is to manage the
execution of services. Service execution may still include distributed infrastructures
which brings complexity to service execution management. Additionally, service exe-
cution should be guided by high-level guidelines defined by SLAs while addressing to
increase the provider profit. Dealing with service execution management by taking into
account these issues is hard and requires significant effort from service developers and
administrators.

The main goal of this thesis is twofold: to provide an autonomous service
execution management while aiming at increasing the provider profit. In
order to achieve this goal, this thesis is inspired by autonomous systems (cf. Section 1.4)
which are guided by high-level guidelines. Hence it proposes a self-managed support
for service providers whose highest-level guideline is to increase their profit. Moreover,
the means for increasing the provider profit are based on heuristics owing to the high
cost optimal solutions.

In order to let clear the objective of this thesis, service execution is defined as
follows.

Definition 3.5 Service execution is a set of actions which enables the service provider
to address the contract life-cycle thus delivering the service in accordance to its agreed
terms.

The set of actions used by Definition 3.5 involves interactions between the service
customer and provider as well as further interactions between the service provider and
other entities related to the underlying infrastructure. These actions are organized in
four groups as following described:

Negotiation Enables the negotiation of contracts represented by the SLA which holds
details as the description, terms, penalties, qualities and so forth.

Instantiation Enables instantiating the service on the underlying infrastructure based
on contract resource requirements.

Provision Enables delivering the actual service by means of responding to customer
requests in agreement to quality specifications.
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Termination Enables terminating the service instance.

This thesis addresses these four aforementioned actions by means of an autonomous
support for service execution management. In order to deal with the goal of increasing
the service provider profit, this thesis enhances the previous actions with further com-
plementary actions that address economic aspects. These complementary actions are
described next.

Reducing infrastructure costs Resource acquisition relies on under-provisioning as
means for reducing costs on infrastructure. Moreover, resources are acquired and
released according to contract durations.

Preventing SLA violations Request treatment relies on fault-tolerant and perfor-
mance QoS assurance mechanisms. These mechanisms are guided by QoS metrics
in order to meet the agreed SLA.

Rescinding contracts If the infrastructure cannot provide more resources, the provider
may rescind on-going contracts if such an action implies profit augmentation.

In a brief, Figure 3.4 illustrates the actions that enable to address the service exe-
cution according to Definition 3.5. The latter complementary actions precisely aim at
economic aspects by positively contributing to increase the provider profit. Ultimately,
by preventing SLA violations on top of QoS assurance mechanisms is also useful for
improving the service provider reputation. However, reputation is beyond the scope of
this thesis which focus on increasing the service provider by the previously mentioned
means.

Figure 3.4: Actions that address the contract life-cycle along with complementary actions which aim
at increasing the provider profit.

3.3 Creation of Contract Templates

In order to enable the negotiation between service provider and customers, this thesis
leverages contract templates. It assumes that the service provider provides contract
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templates which are chosen by customers in order to initiate the negotiation process.
This section then explains how contract templates are created. In Section 3.3.1, labels
are used to customize contract templates based on their QoS metrics. Following that,
Section 3.3.2 explains how QoS metrics are translated to system configurations which
are used to configure QoS assurance mechanisms. Finally, economic aspects about
contract templates are exposed in Section 3.3.3.

3.3.1 Contract Template Labels

This thesis relies on a simple negotiation protocol: costumers choose a contract tem-
plate, set its time interval and propose it to the service provider. If the provider agrees
on the contract proposal, a contract is established. Otherwise, the contract proposal
is rejected. In order to realize such a protocol, this thesis relies on contract templates
whose QoS metrics are predefined by the service provider. Specifically, contract tem-
plates are customized based on QoS metrics related to performance and fault-tolerant
aspects as explained next.

Response Time Means the maximum amount of time that a request treatment can
take.

Reliability Refers to a degree of dependability.

In order to facilitate the identification of contract templates, this thesis names
contract templates with labels which emphasize their main quality. The main qual-
ity of a contract template is defined based on the trade-off between performance
and fault-tolerance (cf. Section 1.2.3). Based on this trade-off, labels are defined
by combining different values of response time and availability QoS metrics. More-
over, QoS metrics values are expressed by the following high-level constraints: strong,
medium,weak [RFCRJ04]. The contract templates, their labels and QoS metrics con-
straints are stored in the QoS table. The QoS table is depicted by Table 3.1 which
presents four contract templates whose labels are fast, safe, classic and standard. As a
result, the service provider is able to support differentiated contract templates which
are easily identified by labels.

QoS Aspects Performance Fault-Tolerance
❤
❤
❤
❤
❤

❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

Contract Template Labels

QoS Metrics

Response Time Reliability

Fast strong weak

Safe weak strong

Classic medium medium

Standard weak weak

Table 3.1: The QoS table stores information about contract templates and their respective QoS
metrics constraints. Labels are used to name the contract templates which are customized based on
the trade-off between performance and fault tolerance.
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3.3.2 QoS Translation

In order to build mechanisms that actually ensure the quality properties, QoS metrics
should be translated to low-level means understandable by the service execution envi-
ronment. Therefore, QoS translation means to translate QoS metrics constraint to the
right configurations which enable the system to deliver such QoS metrics constraint.
The QoS translation is represented by the generic function τ as depicts Equation 3.1
where qos means a QoS metrics constraint and sys config means a system configura-
tion. Inversely, it is possible to know which QoS metrics constraint a minimal1 system
configuration is able to meet as depicts the generic function τ ′ in Equation 3.2. Thus τ ′

represents the interpretation of a minimal system configuration to which QoS metrics
constraint it is able to ensure.

τ(qos) = sys config (3.1)

τ ′(sys config) = qos (3.2)

This thesis designs QoS assurance mechanisms that ensure response time and reli-
ability (cf. Section 3.4). Response time is ensured by acquiring resources and instan-
tiating the service provider based on the right resource requirements. On the other
hand, reliability is ensured by replacing failed and delayed jobs during request treat-
ment. Thereby, the low-level configuration required by the QoS assurance mechanisms
are resource requirements and job replacement thresholds. In order to configure the
QoS assurance mechanisms, the function τ (cf. Equation 3.1) is used based on the
QoS metrics constraints described in the QoS table (cf. Table 3.1 in Section 3.3.1).
Thus the Equations 3.3 and 3.4 represent the translation of the QoS metrics response
time and reliability respectively; where constraint ∈ {strong,medium,weak} and
failure thconstraint, delay thconstraint are the replacement thresholds.

τ(resp timeconstraint) = res reqconstraint (3.3)

τ(reliabilityconstraint) = (failure thconstraint, delay thconstraint) (3.4)

The previous translation function τ is used to quantify a given QoS metrics con-
straint. This thesis considers different methods for quantifying reliability and response
time. Reliability is quantified by defining the failure and delay thresholds statically.
On the other hand, response time is quantified by profiling the service provider with
various resource requirements. During the profiling, the actual response time and the
job execution time metrics are gathered. These metrics are following described.

actual resp timeqk Actual Response Time Means the total amount of time to treat
a request qk.

1Minimal system configuration is preferred in order to discard further configurations which achieve
the same QoS metrics constraint by implying a greater operational cost.
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exec timeji Job Execution Time Means the total amount of time to execute a job
ji belonged to request qk.

As the fault-tolerance QoS assurance mechanism adds operational overhead to the
request treatment, both profiling metrics are used to calculate the response time QoS
metrics as depicts Equation 3.5. Thereby, response time constraints (i.e., strong,
medium, weak) are represented by resp time whose whose translation is the resource
requirements used during the profiling of resp time.

resp time = actual resp timeqk+failure th·exec timeji+delay th·exec timeji (3.5)

3.3.3 Pricing

This section gives details about how the price of the service is formed, how payments
are realized and further aspects about the pricing model used by this thesis. In order to
define the service price and assesses the accounting, the operational costs are used in a
pay-per-use fashion. In addition, fines for aborting requests and rescinding contracts are
defined and considered when calculating the net general profit of the service provider.

Price Formation This thesis defines the service price in a cost-based manner, i.e.,
the service price is defined based on its operational costs (cf. Section 1.3.3). Thus the
profit actually means how much the provider wants to earn from the given contract.
The Equation 3.6 defines the formation of the price ρ for a contract proposal whose
label is l and duration is t. Hence the price is defined as a function of its expenses ǫ
plus its targeted profit Π.

ρ(l, t) = ǫ(l, t) + Π(l, t) (3.6)

Moreover, because the price fluctuates according to its expenses, setting the price
as a function of the expenses becomes interesting since it enables guaranteeing the
targeted profit margin. In addition, the resource acquisition approach proposed by this
thesis acquires resources according to customers demand (cf. Section 3.5). Thus, the
cost-based price positively influences the provider profit because operational costs only
exist if contracts are established.

Accounting Assessment This thesis leverages the pay-per-use accounting assess-
ment by charging the customer according to the contract duration given a contract
template label. The time dimension is used in order to keep the approach generic as
time is a common metric for most type of services. Although further specific metrics
such as number of requests, concurrent usage and key performance indicators are not
considered, they can perfectly be taken into account when leveraging the approach pro-
posed by this thesis. Additionally, the pay-per-use is chosen owing to the possibility of
customizing it as a subscription plan (cf. Section 1.3.2), thus covering both accounting
assessments.
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Fines In order to define the fines, this thesis relies on the following assumption.

Assumption 3.3 Penalties owing to SLA violations are payed by means of monetary
terms.

The straight advantage of Assumption 3.3 is that it allows the service provider to
positively distinguish itself from its competitors which compute fine payments based on
service credits (cf. Section 2.1). Because service execution depends on dynamic factors
both from the environment and the service behavior itself, it is very hard to ensure
any quality of service in such circumstances. This scenario does not encourage service
providers to ensure QoS mainly when the performance aspect is addressed. However,
the conception of novel approaches encourages or even requires novel metrics. As this
thesis does conceive QoS assurance mechanisms, it enables the service provider to pay
fines in currency without compromising its profit

Two types of fines are defined as following described.

Request Abortion Fine ψ : refers to the fine that should be payed owing to non-
treatment of a request. This penalty should be then applied for requests that
reach the state ABORTED.

Contract Rescission Fine Ψ : refers to the fine that should be payed in case of
contract rescission, i.e., contracts that reach the state RESCINDED.

Profit The price of the contract and the fines are used to calculate the net general
profit of the service provider. Basically, it is used Equation 3.6 to deduce that Π(l, t) =
ρ(l, t)− ǫ(l, t) and then the fines are taken into account. Thus the Equation 3.7 defines
P as the net general profit of the service provider during the time interval [t, t′] for
each contract ci the service provider held in [t, t′]. In Equation 3.7, ρi represents the
price of ci, ǫi represents the expense of ci, Ψi represents the contract rescission fine if
the contract was rescinded by the provider, Ψ′

i represents the contract rescission fine if
the contract was rescinded by the customer, and ψi,j represents the request abortion
fine of the j-th request fine of ci.

P[t,t′] =

n
∑

i=0

ρi −

n
∑

i=0

ǫi −

n
∑

i=0

Ψi +

n
∑

i=0

Ψ′

i −

n
∑

i=0

m
∑

j=0

ψi,j (3.7)

3.4 QoS Assurance

In order to enable service instantiation and the provision, this thesis relies on under-
lying mechanisms which deal with QoS assurance. Indeed, preventing SLA violations
minimizes penalties. If requests are not treated successfully, fines are payed to cus-
tomers which contributes to decrease provider profit (cf. Equation 3.7). In order to
prevent this situation, this thesis proposes QoS assurance mechanisms which handle
performance and fault-tolerance in order to ensure that service provisioning will com-
ply to the agreed SLA. On the one hand, performance response time QoS is ensured
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by executing requests with the right resource requirements that are able to achieve
the targeted performance. On the other hand, fault-tolerance qualities are ensured by
reacting to job misbehaviors which include job failures and delays. Both performance
and fault-tolerant QoS assurance mechanisms are explained in Sections 3.4.1 and 3.4.2
respectively.

3.4.1 Performance

The goal of the performance QoS assurance mechanism is to ensure that the service
instance is configured to meet a given response time. Therefore, performance is guar-
anteed by properly configuring the service instance. As instance configuration means
resource requirements, the response time is translated to resource requirements. Then,
the service instance treats customer requests based on the right resource requirements
which meet the agree response time. Thereby, performance goals are achieved through
service instance configuration at runtime.

The instance configuration can be done when the service is instantiated or each
time a request is sent to this instance. The former way is more interesting for service
instances which are based on contracts that do not have their QoS changed during the
service provisioning. On the other hand, configuring the service instance each time it
receives a request allows changing contract QoS during service provisioning. However
this adds unnecessary data overhead to request data as well as it requires configuring
the service instance for each request the instance receives. Therefore, this thesis relies
on configuring the service instance at its deployment time since no change on QoS is
considered during service provisioning.

The Figure 3.5 depicts the configuration of a service instance at deployment time.
When a customer proposes a contract, the service provider translates the QoS metrics
to its respective resource requirements based on information stored in the QoS table
(cf. Equation 3.3 in Section 3.3.2). Then the service provider acquires resources from
the infrastructure according to the previous resource requirements. These requirements
are also used by the service provider to configure and deploy a service instance for sup-
porting this customer requests. When the service instance is operational, the customer
can send requests which are forwarded to the right service instance. Thus, requests are
then treated by the service instance according to the resource requirements to which
the service instance is configured.

3.4.2 Fault Tolerance

This thesis considers that system faults mean job misbehaviors while system failures
mean request abortions. This section introduces two mechanisms which aim at over-
coming job misbehaviors in order prevent requests to be aborted. In this context, job
misbehaviors are job failures or job delays as explained next.

Job Failure A job failure is a crash fault of the job process or one of the job processes
in case of multi-process jobs. This crash may occur due to a non-successful I/O
operation for instance.
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Figure 3.5: Sequence diagram of service instance configuration at deployment time followed by a
request treatment. The service provider is able to achieve the targeted response time based on the
resource requirements to which it was configured previously.

Job Delay A job delay is identified when the job elapsed time elapsed timeji exceeds
its expected execution time exec timeji . This situation may mean that either the
job is correct and will finish eventually or the job is failed and will never finish
owing to a software malfunction for instance. This thesis discards the former
assumption and assumes that if a job is delayed, then it is failed. This pessimist
choice is assumed since it is not possible to differentiate a slow process from a
faulty process. Moreover, since the service provider relies on a time-constraint
request treatment, it is more suitable to let it assume that a delayed job is failed
for performance purpose. The drawback of this assumption is that it does not
take advantage of delayed jobs that are up to finish. However, it can be easily
circumvented by increasing the value of exec timeji for instance.

Fault-Tolerance Algorithms This thesis proposes the Algorithms 1 and 2 which
replace failed and delayed jobs respectively. Both algorithms rely on job dynamic
metrics by reacting to events that inform about job failures and delays. The variables
used by these algorithms are previously explained in Section 3.1.2. Moreover, the
variable adapt thji represents the adaptation threshold, i.e., the maximum time allowed
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until when an adaptation action can be triggered. The adapt thji is then calculated by
considering the profiled job execution as time the following equation:

adapt thji = resp timeqk − exec timeji (3.8)

Algorithm 1 Job Failure Tolerance

Require: jni ∈ Jqk ∧ j
n
i ∈ J

F

Ensure: jn+1
i ∈ Jqk ∧ j

n+1
i ∈ JR

1: if elapsed timeqk < adapt thji and n ≤ failure thji then
2: n← n+ 1
3: create and run jni
4: else
5: abort qk, j

n
i ∈ Jqk

6: end if

Algorithm 2 Job Delay Tolerance

Require: jni ∈ Jqk ∧ j
n
i is delayed

Ensure: jni ∈ J
C ∧ jn+1

i ∈ Jqk ∧ j
n+1
i ∈ JR

1: if elapsed timeji > exec timeji and elapsed timeqk < adapt thji and n ≤
delay thji then

2: cancel jni
3: n← n+ 1
4: create and run jni
5: else
6: abort qk, j

n
i ∈ Jqk

7: end if

Moreover, further fault-tolerance techniques could be used by the aforementioned
Algorithms 1 and 2 which include job replication, migration, or checkpointing. However,
replicating jobs implies more costs to the service provider, it is then preferable to rely
on mechanisms which do not require further resources. On the other hand, migration
and checkpointing are complex to be conceived in a distributed environment without
compromising performance accuracy.
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3.5 Resource Acquisition and Allocation

While the previous Sections 3.3 and 3.4 address service aspects related to contract
template labels and QoS assurance mechanisms, this section addresses how resources
are acquired and allocated aiming at decreasing the costs on infrastructure usage.

Indeed, resource acquisition is a crucial aspect of service execution management as it
defines how resources are acquired by the service provider. A trivial resource acquisition
approach is to rely on a fixed number of acquired resources to satisfy future contracts
and only accepting contracts if their resource demand does not exceed the total amount
of acquired resources. However, it is not an efficient solution since it wastes resources in
a low-demand scenario and limits the number of contracts according to the predefined
fixed number of acquired resources. In contrast, resources can be acquired on-demand,
i.e., according to customer demand at runtime. This approach is more suitable to service
providers since they can fit they resource acquisition to the actual resource demand.
Therefore, this thesis relies on a dynamic resource acquisition approach which acquires
and releases resources according to contract constraints.

Furthermore, service providers may take advantage of under-provisioning in order
to increase their profit. Under-provisioning is applied by this thesis and is useful when
customer request demand is often not the maximum allowed. Therefore there will
certainly have idle resources which can be used by other requests. However, service
under-provisioning eventually requires dealing with the lack of resources when allocat-
ing resources to requests. This implies SLA violations thus implying the payment of
fines. In order to deal with concurrent resource allocation, the approach proposed by
this thesis decides which request should be aborted aiming at minimizing fine payments.

Resource acquisition and allocation are dealt with in an event-driven fashion. While
new contract proposals trigger the acquisition of resources, new requests trigger resource
allocation. Sections 3.5.1 and 3.5.2 discuss the flowcharts of contract proposals and
request arrivals respectively.

3.5.1 Contract Proposals

Figure 3.6 depicts the flowchart of a contract proposal. When a contract establishment
is proposed, the provider should decide whether it will accept it or not. First, it tries
to acquire the needed resources to support the contract. If this operation is successful,
then it deploys the service instance on the infrastructure and accepts the contract.
Otherwise, it decides whether it is more profitable to rescind an on-going contract
in order to accept the just-arrived contract proposal. If so, it rescinds the chosen
established contract and accepts the contract proposal, else it rejects the contract
proposal.

This thesis proposes a simple, dynamic and efficient way of acquiring resources
which is driven the contract proposals. The Algorithm 3 depicts how resources are
acquired given a contract template label l, the contract duration t and the under-
provisioning factor upf which represents the percentage of resources to acquire based
on resource requirements of l. First, acquire algorithm translates the response time
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Figure 3.6: Flowchart of contract proposals.

to the resource requirements res reql by using the translation function τ (cf. Equa-
tion 3.1, Section 3.3.2). Second it applies the reduction factor through the operation
reduce. Finally, the acquire algorithm acquires resources from the resource provider
on-demand through the book operation. Thereby, the service provider is able to take
advantage of under-provisioning in order to increase its profit according to its business
model. Moreover, the acquire algorithm is configurable in such a way that its under-
provisioning characteristic can be disabled by setting upf = 100%, which means to
acquire the exact resource requirements of l.

Algorithm 3 acquire(l, t, upf)
Require: The contract template label l.
Ensure: Returns true if upf percent of l’s resource requirements is acquired.
1: res reql ← τ(resp timel)
2: res reql ← reduce(res reql, upf)
3: return book( res reql, t )

The accept operation described in Figure 3.6 relies on Algorithm 4 in order to decide
whether the contract proposal will be accept when no more resources can be acquired
from the infrastructure. This algorithm compares the amount of money to be earned
from the contract proposal with the fine to be payed owing to contract rescission. If
the total amount of money to be earned is greater, the accept operation rescinds an
ESTABLISHED contract and returns true. Otherwise, it returns false.
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Algorithm 4 accept(c)
Require: a contract proposal c
Ensure: Returns true if there is an on-going (ESTABLISHED) contract c′ whose resource requirements

are enough to accept c and the profit for accepting c is greater than the fine for rescinding c′ minus
the profit of c′.

1: c′ ← nil

2: for each ci ∈ C
E do

3: if (ci resource requirements assist c) and (Πc > Ψci −Πci) then
4: if c′ = nil then

5: c′ ← ci
6: else

7: if Ψc′ > Ψci then

8: c′ ← ci
9: end if

10: end if

11: end if

12: end for

13: if c′ = nil then

14: return false

15: else

16: rescind c′

17: return true

18: end if

3.5.2 Request Arrivals

The flowchart of a request arrival event is depicted by Figure 3.7. If the provider does
not rely on under-provisioning, the request treatment is dispatched normally since there
are enough resources to treat it. Else, the provider should check if there are available
resources to treat the request. If the resource reliability fits the request resource re-
quirements, the request is treated. Otherwise, the request is aborted implying an SLA
violation.

Figure 3.7: Flowchart of request arrivals.

Thus the problem is to decide which request will be aborted: the just-arrived re-
quest or another on-going request whose resource requirements are suitable to support
the former request. As the provider aims at decreasing fine payments, it chooses which
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request will be aborted based on request fine abortion values. Then the request to
be aborted will be chosen aiming at minimizing the payment of fines as depicts Al-
gorithm 5. The Algorithm 5 returns true if it managed to find an on-going request
(BEING TREATED state) whose resource requirements support the just-arrived request
and whose fine is the cheapest.

Algorithm 5 treat(q)
Require: the arrival of request q
Ensure: Returns true if there is an on-going (BEING TREATED) request q′ whose resource requirements

are enough to treat q and the fine for aborting q′ is the cheapest.
1: q′ ← nil

2: for each qk ∈ Q
T do

3: if (qk resource requirements assist q) and (ψq > ψqk ) then
4: if q′ = nil then

5: q′ ← qk
6: else

7: if ψ′

q > ψqk then

8: q′ ← qk
9: end if

10: end if

11: end if

12: end for

13: if q′ = nil then

14: return false

15: else

16: abort q′

17: return true

18: end if
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Chapter 4

Qu4DS

The previous chapter presented the design of a solution for automatic service execution
management which targets increasing the service provider profit. This current Chapter
introduces the Qu4DS (Quality Assurance for Distributed Services) framework which
implements this solution. Qu4DS addresses all the actions that enable addressing the
contract life-cycle and the further complementary actions that deal with economic as-
pects. Hence, Qu4DS implements an automatic support for services. The development
aspect is addressed by means of providing a PaaS (Platform-as-a-Service) support which
fills the gap between the conception of higher-level SaaS (Services-as-a-Software) and
the underlying infrastructure on which they are executed. Moreover, Qu4DS also assists
the administration of the developed service by allowing service administrators to define
high-level directions that will guide the service execution management in an automatic
and transparent fashion.

Qu4DS features include contract negotiation, deployment and management of the
service instance on the infrastructure and QoS assurance. These aforementioned fea-
tures are driven by the contract quality aspects and duration by aiming at increasing
the provider profit. Furthermore, Qu4DS supports the development of service providers
that leverage the Master/Worker pattern. Qu4DS assists the development of such ser-
vices by freeing service developers from managing workers and by ensuring their proper
execution in accordance with time constraints QoS and reacting to job failure and delays
at runtime.

The reminder of this chapter is organized as follows. Section 4.1 introduces the
context of the targeted applications supported by Qu4DS. In order to investigate how
to facilitate the development of these applications, the relationship between distributed
applications and infrastructures is explored by Section 4.2. As follows, Section 4.3
describes Qu4DS architecture as a PaaS support for easing the development of service
providers. Further details about this support are exposed in Section 4.4. Ultimately,
Qu4DS usage is explained in Section 4.5.

55
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4.1 Support for Master/Worker Applications

Some applications require great processing capacity owing to their intrinsic characteris-
tics. For instance, applications which involve geoprocessing, photogrammetry, scientific
simulations, huge data compressing take too much time to be executed in desktop com-
puters. Indeed, they require non-trivial computational power to accomplish their tasks
such as super-computers. However, super-computers are expensive infrastructures and
running these applications on a single machine increases reliability issues.

Low-cost distributed computational infrastructures may be used to circumvent this
problem. On the one hand, a set of desktop computers connected through a network
provides together enough computational power to assist the requirements of these ap-
plications. In addition, they inherently provide a distributed architecture which enables
to develop reliable applications. On the other hand, the drawback of this approach is
that it is harder to develop distributed applications as a result of the complexity of
managing distributed data and processes.

Master/Worker is a generic pattern for conceiving distributed applications. It relies
on a master abstraction that coordinates other tasks executed by workers. When work-
ers finish their tasks, the master may delegate another task to them until the end of
the application execution. The simple design of Master/Workers pattern is an advan-
tage for developers against complex distributed workflows for instance. Therefore, this
thesis targets supporting applications that are based on the Master/Worker pattern.

4.2 Foundations

This thesis proposes a framework for supporting Master/Worker service providers which
are built on top of distributed infrastructures. This requires investigating how to enable
high-level service execution aspects as negotiation and provisioning by leveraging dis-
tributed infrastructure interfaces. However, these latter interfaces provide lower-level
abstraction as jobs and resources as well as they often address job and resource concerns
in a tight-coupled manner. This section discusses how Qu4DS decouples job manage-
ment from resource acquisition and how it fills the gap between low-level underlying
infrastructure and high-level service-oriented interfaces.

4.2.1 Separating Resource Acquisition from Job Management

The dynamic way of how this thesis deals with resource acquisition requires decoupling
it from the management of distributed jobs. While resource are acquired driven by
contract arrival events, job management are mainly driven by request arrival events.
Therefore, the management of both jobs and resource acquisition should be able to be
dealt with separately. This requirement implies understanding distributed infrastruc-
ture interfaces along with their set of operations and abstractions.

On the one hand, grid interfaces define an extensive set of functionalities [JMF09,
CFJ+08, Fos06, GJK+05] by leveraging the job abstraction (cf. Section 1.6). For in-
stance, the Simple Grid API (SAGA) [GJK+05] interface proposes to ease the use of
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grids, promote interoperability and standardization while meeting grid applications re-
quirements. In spite of these achievements, grid interfaces deals with the concerns of
job management and resource acquisition together and requires static resource config-
uration and acquisition.

On the other hand, current interfaces of cloud IaaS providers rely on decoupled and
simple resource provisioning interfaces [ME11, Ama06a, Nur09, Bég08] as discussed in
Section 1.7.2. These interfaces are limited to the provisioning of bare resources, typi-
cally virtual machines, with no support for high-level programming abstractions, such
as jobs. Despite the limitation of IaaS interfaces, further cloud-oriented approaches
in the context of PaaS and SaaS take into account higher-level abstractions as sup-
port for MapReduce applications [DG08], workflows [Inf11] and application frame-
works [Goo08, Sal99]. However, while MapReduce and workflow supports are limited
to specific applications, application frameworks impose non-standard interfaces which
compromises application interoperability and portability; thus enabling applications to
vendor lock-in.

In order to take advantage of jobs by tackling resource acquisition separately, this
thesis proposes to leverage the IaaS cloud decoupled way of acquiring resources and
the grid standard interfaces which uses jobs as programming abstraction. The separa-
tion of resource acquisition from job management is similar to applying pilot-jobs for
clouds, e.g., SAGA big-job[LLJ10], which is useful for acquiring resources dynamically.
The proposed interfaces which address resource acquisition and job management are
explained next.

Infrastructure Management Interface The infrastructure management interface
addresses resource acquisition where resources mean physical or virtual resources. The
infrastructure interface exposes a set of operations on top of the resource abstraction.
These operations enable resources to be acquired, released or modified based on specific
resource requirements. Listing 4.1 describes the infrastructure management interface
where resource class is a short term for referring to a set of statical resource require-
ments.

1 pub l i c i n t e r f a c e InfrastructureManagement {
2 pub l i c L i s t<InfraResourceType> getResourceTypes ( ) ;
3 pub l i c i n t getNumberOfAvailableResources ( S t r ing r e s ou r c eC l a s s ) ;
4 pub l i c i n t r e s e r v e ( i n t nOfResources , S t r ing re sourceC la s s , S t r ing

startTime , S t r ing endTime ) ;
5 pub l i c boolean r e s i z e ( i n t r e s e rva t i on Id , S t r ing re sourceC la s s , i n t

newNumberOfResources , S t r ing endTime , Li s t<Integer> r e s ou r c e s I d ) ;
6 pub l i c L i s t<In f raResource> getReservedResources ( i n t r e s e r v a t i o n I d ) ;
7 }

Listing 4.1: Description of the infrastructure management interface in Java syntax.

Moreover, the infrastructure interface can be implemented on top of existing IaaS
clouds which leverage the OCCI [ME11] specification (cf. Section 1.7.2) for instance.
Thereby, OCCI instances can be mapped to resources in such a way that the start
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OCCI action can be implemented by as the reserve(int nOfResources, String

resourceClass,String startTime, String endTime) method where the startTime
parameter should be set to the current time. In turn, the stop OCCI action can be
mapped to the resize(int nOfResources, String resourceClass,String startTime,

String endTime) method where the nOfResources parameter should be set to zero.

Job Management Interface The job management interface leverages jobs as higher-
level abstraction. Jobs are useful for managing service instances and its distributed
tasks on top of acquired resources. This thesis defines the job management interface
based on SAGA in such a way that it is a subset of SAGA. First, this interface lever-
ages the SAGA job life-cycle in order to define the job life-cycle (cf. Figure 3.3 in
Section 3.1.3). Then, it provides some operations in the scope of SAGA job manage-
ment which includes creating, canceling, migrating as well as enabling callbacks for
monitoring purpose. Moreover, this interfaces also assumes that jobs share a common
data space which may be a distributed file system, a database, a distributed shared
memory and so forth. This decision is explained by the very fact that simplicity is pri-
oritized against complexity. However the proposed interface is by far not trivial which
allows it to meet several application development requirements.

The job management interface is described by Listing 4.2.

1 pub l i c i n t e r f a c e JobManagement {
2 pub l i c In f raJob createJob ( i n t r e s e rva t i on Id , In f r aJobDesc r i p t i on

j obDes c r i p t i on ) ;
3 pub l i c boolean runJob ( i n t r e s e rva t i on Id , In f raJob job , S t r ing

resourceAddress ) ;
4 pub l i c boolean cance lJob ( i n t r e s e rva t i on Id , In f raJob job ) ;
5 pub l i c boolean cancelAl lJobsOnResource ( i n t r e s e rva t i on Id , r e s ou r c e ) ;
6 pub l i c i n t checkpointJob ( i n t r e s e rva t i on Id , In f raJob job ) ;
7 pub l i c boolean suspendJob ( i n t r e s e rva t i on Id , In f raJob job ) ;
8 pub l i c boolean resumeJob ( i n t r e s e rva t i on Id , In f raJob job ) ;
9 pub l i c boolean resumeJob ( i n t r e s e rva t i on Id , In f raJob job , i n t

checkpo intVers ion ) ;
10 pub l i c boolean migrateJob ( i n t r e s e rva t i on Id , In f raJob job ) ;
11 pub l i c boolean migrateJob ( i n t r e s e rva t i on Id , In f raJob job , S t r ing

resourceAddress ) ;
12 pub l i c void r e g i s t e rCa l l b a c k ( i n t r e s e rva t i on Id , In f raJob job , S t r ing

metric , boolean on , Observer obse rve r ) ;
13 pub l i c L i s t<InfraJob> getAl lJobs ( i n t r e s e r v a t i o n I d ) ;
14 pub l i c L i s t<InfraJob> getJobs ( i n t r e s e rva t i on Id , S t r ing jobSta te ) ;
15 pub l i c L i s t<InfraJob> getJobsOnResource ( i n t r e s e rva t i on Id , S t r ing

resourceAddress ) ;
16 }

Listing 4.2: Description of the job management interface in Java syntax.

Service Negotiation and Provisioning The previous sections described two in-
terfaces which enable dealing with the underlying infrastructure. In turn, this section
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describes the negotiation and provisioning interface which addresses the interaction
between Qu4DS and the higher-level service-oriented layer. The negotiation and pro-
visioning interface leverages the service abstraction by enabling the service provider to
communicate with customer services. Through this interface, contracts are negotiated
and customers send requests. The idea is to enable the provider to negotiate contracts
rather than to define a complete specification or protocol for SLA negotiation, such as
WSLA [LKD+03] or WS-Agreements [ACD+07].

In order to tackle service communication and membership, Qu4DS assumes that
there exists a service registry which acts as repository of services. Then service providers
subscribe to the registry from which service customers can look for providers based
on their both functional and non-functional requirements. After selecting the service
provider that fits its needs, the customer initiates a negotiation process which may
conclude in a contract establishment if both parties agrees on the contract terms.
This interaction between service providers and customers is commonly used by service-
centric approaches owing to its simplicity. On the other hand, it has some drawbacks
such as relying on a central service registry, not natively taking into account semantic
service discovery, as well as further details that concern service communication protocols
and specifications. For the sake of implementation, Qu4DS relies on a central service
registry, however the way its architecture is designed allow Qu4DS to be easily coupled
to other solutions that tackles service registry issues.

The negotiation and provisioning interface is described by Listing 4.3. While the
List<SLA> getListOfSLATemplates() and SLA proposeContract (SLA contractTemplate)

enable negotiation, the String request(List<String> args) method addresses pro-
visioning by allowing customers to send requests. It is important to remark that further
service provisioning methods can straightly be added to this interface according to ser-
vice provider functional requirements.

1 pub l i c i n t e r f a c e Nego t i a t i onProv i s i on s i ng {
2 pub l i c L i s t<SLA> getListOfSLATemplates ( ) ;
3 pub l i c SLA proposeContract (SLA contractTemplate ) ;
4 pub l i c S t r ing reque s t ( L i s t<Str ing> args ) ;
5 }

Listing 4.3: Description of the negotiation and provisioning interface in Java syntax.

The Figure 4.1 depicts a sequence diagram of both negotiation and provisioning
processes based on the negotiation and provisioning interface. With respect to the
negotiation, Qu4DS relies on a template-based contract negotiation. It assumes that
the customer obtains contract templates from the provider, chooses the contract tem-
plate that is more suitable to its requirements, sets the contract duration and finally
proposes it to the service provider. In turn, the provider decides whether it will ac-
cepted. If the service provider accepts the contract proposal, the customer is able to
send requests which are treated by the service provider. Furthermore, in Qu4DS cur-
rent implementation, the service provider is in charge of auditing the provision and



60 Qu4DS

monitoring penalties. However service auditing could be performed by a third neutral
party.

Figure 4.1: The negotiation and provisioning interface methods exposed in a sequence diagram which
depicts the interaction between a customer and the service provider.

4.2.2 Assumptions

Qu4DS is implemented by taking into account some assumptions which concerns the
following aspects.

Resources

Assumption 4.1 Resource failures are not handled.

The explanation of relying on Assumption 4.1 is that Qu4DS aims at overcom-
ing job failures and delays instead of dealing with resource failures. Moreover, even
though the solution presented does not consider resource failures, it can be addressed
by conceiving further QoS assurance mechanisms that deals with resource failures, e.g.,
booking further resources to replace failed resources.

Assumption 4.2 Resources have the same characteristics.

The Assumption 4.2 simplifies the experimentation scenarios. Having different types
of resources, i.e., resource whose hold different requirements, increases the number of
experimentation scenarios. Moreover, this assumption does not limit Qu4DS applica-
bility as infrastructures which deliver homogeneous resources are quite simple to realize
on top of current virtualization techniques, e.g., IaaS clouds.
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Profit and Expenses

Assumption 4.3 The expenses ǫ(l, t) represent the costs spent on resource booking by
a contract whose template label is l during the contract duration t.

In order to calculate the expenses, Qu4DS relies on Assumption 4.3 and defines the
expenses as a function of the number of resources ω(l) required by the label l and the
cost ι(l) of using a single resource that meet l requirements. The following Equation 4.1
depicts how the expenses are calculated.

ǫ(l, t) = t · ω(l) · ι(l) (4.1)

Assumption 4.4 The targeted profit Π(l, t) is a function of the expenses in such a

way that Π(l, t) = π(l)
100 · ǫ(l, t), where π(l) is the percentage that represents the targeted

profit for label l.

Assumption 4.4 is useful for enabling the service provider to rely on various profit
margins for each label. Based on Assumption 4.4 and from Equation 3.6 (cf. Sec-
tion 3.3.3), the following Equation 4.2 defines how Qu4DS calculates the price ρ(l, t)
for each contract template label l whose contract duration is t.

ρ(l, t) = ǫ(l, t) ·

(

100 + π(l)

100

)

(4.2)

Fines

Assumption 4.5 The request abortion fine ψqk costs e3 times the cost that request qk
takes to be treated.

Based on Assumption 4.5, the fine cost for aborting the request qk is given by Equa-
tion 4.3 where resp timeqk is the qk response time if the request would be successfully
treated.

ψ(l, qk) = e3 · ρ(l, resp timeqk) (4.3)

Assumption 4.6 Contracts can only be rescinded by the service provider which implies
paying the customer the contract rescission fine Ψ.

Assumption 4.7 The contract rescission fine Ψi costs e4 times the price of the con-
tract i.

According to Assumption 4.7, the fine for rescinding a contract Ψi is calculated by
multiplying e4 by ρi as exposed by Equation 4.4:

Ψ(l, t) = e4 · ρ(l, t) (4.4)

Assumption 4.8 If a contract i is rescinded, the customer will be only charged based
on the contract rescission fine Ψi, request abortion fines ψi,j will not be taken into
account.
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4.2.3 Profiling

The Qu4DS monitoring system relies on sensors which periodically inform Qu4DS about
job and request dynamic metrics. Monitoring sensors are configured based on a relaxed
timeout which directly influences monitoring accuracy. It is not preferable to rely on
strong accurate metrics in order to prevent overloading Qu4DS with the arrival of
monitoring events. Furthermore, the accuracy of the Qu4DS monitoring system meets
Qu4DS requirements since the timeout can be configured by taking into account the
targeted accuracy.

Because distributed infrastructures are subject to fluctuations, the dynamism is an
inherent characteristic of such an environment. In order to tackle this issue, Qu4DS
defines new measures based on the actual measured values of the QoS metrics in or-
der to avoid that dynamic fluctuations compromise the behavior of its QoS assurance
mechanisms. Thus, the values of exec timeji and resp timeqk are relaxed as depicted
by Equations 4.5 and 4.6 respectively. In these equations, e0, e1 and e2 are constants,
mean exec timeji and mean actual resp timeqk are the respective averages of the re-
peated measured values of exec timeji and actual resp timeqk as well as sd exec timeji ,
sd actual resp timeqk are their standard deviations.

exec timeji = e0 ·mean exec timeji + e1 · sd exec timeji (4.5)

actual resp timeqk = mean actual resp timeqk + e2 · sd actual resp timeqk (4.6)

4.3 Architecture

Qu4DS serves as a framework for implementing service providers in the scope of the
Service-Centric Paradigm. Qu4DS offers a support for increasing the service provider
profit by automatically managing resources, service instances and requests according to
agreed SLAs. In order to tackle these issues, Qu4DS design abstracts over distributed
infrastructures while it assists higher-level service providers in a transparent manner.
This section depicts the Qu4DS architecture by firstly explaining how it supports service
developers and administrators, then introducing the Qu4DS architecture.

A PaaS Solution for Service Developers and Administrators The way of
how Qu4DS design is placed between infrastructures and higher-level service customers
is similar to the cloud common architecture introduced in Section 1.7.2. The cloud
computing community has relied on a layered architecture for clouds which addresses
resources (IaaS), platform (PaaS) and software (SaaS). The cloud common architecture
also deals with distributed infrastructures which aim at supporting higher-level service
providers. More specific, the PaaS layer offers a support for final service providers
(SaaS layer) on top the infrastructure (IaaS layer). Therefore, Qu4DS and the cloud
common architecture have a common interest of separating higher-level services from
infrastructures resources. Specifically, both Qu4DS and PaaS clouds are placed in an
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intermediate level which provides support for conceiving final services by abstracting
bare resources.

Thereby, from the clouds point of view, Qu4DS indeed is a PaaS solution which
tackles service execution management by including negotiating contracts, deploying
and terminating service instances on resources acquired on-demand. However, Qu4DS
objectives go beyond a PaaS approach with QoS assurance capabilities. It also ad-
dresses a support for service administrators by providing automatic service execution
management. Qu4DS leverages the idea of an autonomous system (cf. Section 1.4)
which is guided by high-level guidelines that define how the service provider behavior
is changed at runtime.

Architecture The Qu4DS architecture is based on the cloud architecture layers as
described by Figure 4.2. In the SaaS layer, contracts are negotiated between the service
provider and its customers. When leveraging Qu4DS, the provider actually delegates
negotiation, service instantiation and provision to Qu4DS. Thus when a contract is pro-
posed, Qu4DS translates the contract QoS through the QoS Translator to the resource
requirements able to ensure the contract QoS. The translated resource requirements are
forwarded to the resource management control loop which books resources through the
infrastructure management interface until the end of the contract duration. Following
that, Qu4DS configures a service instance based on the translated resource require-
ments and deploys in the infrastructure through the job management interface. When
the service instance is operational, Qu4DS commits the contract agreement to the right
customer, who is now able to send requests.

4.4 Implementation

Qu4DS is implemented in Java and contains around 15,500 lines of code. It has been
tested on Debian and Ubuntu distributions of the GNU/Linux operating system; how-
ever Qu4DS employment in further GNU/Linux distributions is also feasible. Qu4DS
requirements include the Sun Java JDK 1.6, support for SSH connections, a distributed
file system and the Bash command-line interpreter. Moreover, Qu4DS is a free-software
thus allowing the community to perform further experimentations based on customized
parameters. In addition, Qu4DS source code is open which allows researchers to directly
take advantage of it1.

This section exposes further information about Qu4DS implementation being orga-
nized as follows. Section 4.4.1 discusses the implementation of Qu4DS control loops.
Following that, the implementation of the infrastructure, job management and negoti-
ation and provisioning interfaces are described in Section 4.4.2. Ultimately, a sequence
diagram is used to explain Qu4DS behavior at runtime in Section 4.4.3.

1Qu4DS will be publicly available under the Lesser GPL license in the following web site:
http://gforge.inria.fr/projects/quads/
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Figure 4.2: Qu4DS architecture in accordance to the cloud common architecture.

4.4.1 Dynamic Adaptation

Qu4DS uses dynamic adaptation in order to change its behavior at runtime. Qu4DS im-
plements three configurable control loops (cf. Figure 4.2) based on an event-condition-
action (ECA) decision engine whose actions depend on received events. These control
loops are subscribed to communication channels to which events are published. When
an event is dispatched, the right control loop receives it and decides whether any ac-
tion will be employed. Moreover, the ECA decision engine leverages the separation of
adaptation concerns as proposed by the Autonomic Computing MAPE control loop,
thus decoupling monitoring, decision and adaptation employment.

The configuration of Qu4DS control loops are employed differently. The QoS assur-
ance control loops have their adaptation policies set at runtime, based on the translation
of the QoS metrics described in the contract template. On the other hand, the adapta-
tion policy of the resource management control loop depends on how the provider books
resources which is defined statically. Moreover, although this difference, both control
loop flows depend on the service price and fines in order to take decisions (cf. Sec-
tion 3.5.1). The resource management and QoS assurance control loops are explained
in details next.
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Resource Management Control Loop The resource management control loop ad-
dresses resource acquisition and allocation. It implements the flowcharts for both con-
tract proposals and request arrivals introduced in Section 3.5 (cf. Figures 3.6 and 3.7).
Thus the resource management control loop reacts to two kind of events: either a
contract proposal or a request arrival. When a contract is proposed, the resource
management control loop books resources to support the contract until the end of the
contract duration. When a request is sent by a customer, the resource management
control loop checks resource availability to treat this request.

Both previous actions triggered by contract proposals and request arrivals depend
on the under-provisioning configuration to which the resource acquisition control loop is
configured. The under-provisioning configuration refers to the under-provisioning factor
upf as Qu4DS implements the resource acquisition algorithm described by Algorithm 3
in Section 3.5.1. Therefore, different configurations of the under-provisioning factor
upf is used to compose different adaptation policies. Moreover, the current Qu4DS
implementation applies under-provisioning by means of exploiting horizontal elasticity,
i.e., reducing the number of booked resources and not their requirements.

QoS Assurance Control Loops The QoS assurance control loops handle job fail-
ures and delays. They are responsible for ensuring that the distributed tasks, i.e.
the workers, are successfully executed and finish before the expected execution time.
Thus, QoS assurance aspects involve performance and fault tolerance as discussed in
Section 3.4. Performance is addressed by Qu4DS by configuring the service instance
according to the right resource configuration that allows requests to be treated in the
agreed response time QoS (cf. Section 3.4.1). On the other hand, fault tolerance is
handled by Qu4DS by reacting to job failures and delays (cf. Section 3.4.2). More-
over, although performance is tackled by service instance configuration, fault tolerance
mechanisms complement performance assurance. By handling delayed jobs, the fault
tolerance mechanism ensures that delayed jobs will not compromise the request perfor-
mance.

Qu4DS QoS assurance control loops implement fault tolerant algorithms described
in Section 3.4.2. The different adaptation policies of the QoS assurance control loops
are based on different values of the replacement threshold parameters of Algorithms 1
and 2. In turn, replacement threshold values depend on the contract template label.
Therefore, QoS assurance control loops are configured at runtime by translating the
contract template fault tolerant aspects to system configurations (cf. Section 3.3.2).

4.4.2 Interfaces

Infrastructure Interface Qu4DS implements the infrastructure management inter-
face according to its description depicted by Listing 4.1, in Section 4.2.1. Such an
implementation is simply called as infrastructure for naming purpose. The infrastruc-
ture leverages Grid’5000 [CCD+05] which was used as the resource provider meeting
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the role of the IaaS layer 2 . A Grid’5000 operating system image was customized3.
In such an image, there are all required programs and libraries to execute Qu4DS in-
cluding an implementation of the job management interface. Additionally, the Qu4DS
current version 0.4.0 supports a single resource class.

As defined by the infrastructure management interface, the infrastructure does not
have start and stop operations. Thereby, the interaction between Qu4DS and the in-
frastructure saves time when booking resources and dismissing them. Importantly, this
decision does not compromise the interface, it only assumes that the time for starting
an instance is zero. The reason for doing so is owing to the necessity of deploying the
Grid’5000 images and configuring them to Qu4DS before using the grid. Since they
were previously configured and deployed, it would be useless and time consuming to
redo this very same operation. As a result, when a resource is booked, it will be au-
tomatically operational and will contain the needed programs installed. Then Qu4DS
configuration scripts are in charge of configuring the environment with dynamic in-
formation such as IP addresses in order to configure RMI and Web Service remote
connections.

Job Management Interface The implementation of the job management interface
(cf. Listing 4.2, Section 4.2.1) is called job broker and follows a layered design. Firstly,
the higher-level layer is the actual implementation of the job management interface that
deals with job life-cycle state management (Cf. Figure 3.3 in Section 3.1.3). It keeps
Qu4DS informed about job metrics following the publish-subscribe pattern which maps
job raw metrics (i.e., UNIX process metrics) to job higher-level metrics and job states.
Secondly, the middle layer is implemented by the common InfrastructureBackend

abstract class that enables the use of various underlying batch-job systems. In addition,
the job broker is able to simulate job misbehaviors. This is configurable by means of
the percentage of the jobs that will fail as well as the percentage of the jobs that
will be delayed. Moreover, these misbehaving jobs are either failed or delayed in a
exclusive fashion and they are chosen randomly. Lastly, the final third layer refers to
the actual backend implementations. Currently, Qu4DS implements two backends; one
that enables the XtreemOS grid [CFJ+08] and another more generic on top of SSH
(Secure Shell)4. The latter backend enables the utilization of the job broker by any
operating system with an SSH server and a Bash command-line interpreter.

The job broker provides a job scheduling algorithm that ensures that resources are
shared in an exclusive fashion. It means that resources may be used by any contract
but one at once. As a consequence, jobs that run request tasks and jobs run service

2The use of the Grid5000 libcloud driver [Del11] perfectly meets the infrastructure interface require-
ments, however it was not available during the development of Qu4DS.

3The details of this image can be accessed here: https://www.grid5000.fr/mediawiki/
index.php/Lenny-x64-quads

4Unfortunately, there was no SAGA SSH/FSH adaptor when Qu4DS was being implemented. More-
over, the SAGA SSH/FSH adaptor does not provide job dynamic metrics as SAGA job state nor job
elapsed time. These facts are the reasons of not using the SAGA SSH/FHS adaptor and implementing
the job broker.
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instances have dedicated resources. This way of sharing resources is necessary to ensure
performance constraints since application profiling is performed on dedicated resources.
Indeed, it is not feasible to profile applications on non-dedicated resources because
the variation of resource load compromises profiling results. Another consequence of
the exclusive sharing scheduling algorithm is that applying under-provisioning implies
sharing resources among job request tasks, and not among service instances.

Negotiation and Provisioning Interface The negotiation and provision interface
allows performing the communication between Qu4DS and customers. The goal of
this interface is two-fold: to enable the negotiation of contracts and the actual service
provisioning by means of request calls. Qu4DS implements the service negotiation and
provision interface as a SOAP Web Service whose WSDL file exposes the operations
described by Listing 4.3. Thereby, the WSDL file is used by customers to know the
service provider functionality as well as negotiation operations.

4.4.3 Sequence Diagram

In order to illustrate the runtime flow of Qu4DS behavior, the Figure 4.3 depicts a
sequence diagram of a contract enactment followed by a request treatment. The cus-
tomer is in charge of initiating the negotiation process whose first step is to get the list
of contracts templates from the service provider. Then the customer chooses a con-
tract template, sets its duration and propose the customized contract template to the
service provider. In turn, Qu4DS asks the QoS translator the resource requirements
of the proposed contract template. Based on these requirements, Qu4DS applies the
under-provisioning factor upf , creates a new contract and dispatches an event to the
resource management control loop which books the necessary resources according to
the resource requirements. If resources cannot be booked, the resource management
control loop checks if it is more profitable to rescind an on-going contract to accept the
just-proposed contract. As resources are successfully acquired, Qu4DS configures a ser-
vice instance with the right resource requirements and the contract identifier. Through
the job broker, Qu4DS creates a job and run it. Following that, the job broker gets
an idle resource from the infrastructure and run the job on this resource. This action
implies to execute a UNIX process whose process ID is used for monitoring purpose
such as the job state. Ultimately, when the job is running, Qu4DS tells the customer
that the contract was accepted and the service instance is operational which allows the
customer to send requests.
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Figure 4.3: Qu4DS general sequence diagram. A customer establishes a contract, Qu4DS instantiates
the service and then treats a request sent by the customer.
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When a customer sends a request, it is forwarded to the resource management
control loop which decides whether it can be treated. If so, Qu4DS forwards the request
to the right service instance deployed on the infrastructure. Then the service instance
prepares the distributed tasks necessary to treat the request based on its configuration
and asks Qu4DS to execute the tasks. These tasks are also deployed by Qu4DS on the
infrastructure through the job broker and monitored by the job failure and job delay
control loops. If these control loops are informed about failures or delays, they will
replaced failed or delayed jobs up to their respective replacement thresholds; which are
known by translating the reliability QoS metrics. If the job executions are successful,
Qu4DS answers to the service instance the result of the tasks which is used to finish the
request treatment. Then, the service instance tells Qu4DS that the request is treated
and Qu4DS forwards the result to the right customer. If any of the QoS assurance
control loops informs Qu4DS that the request could not be treated, Qu4DS aborts the
request, tells the customer about such SLA violation and computes the penalties.

4.5 Usage

Qu4DS provides a PaaS solution for increasing the service provider profit by providing
automatic support for service execution management and development. In order to
understand Qu4DS usage, three different roles are introduced. Firstly, the customer
interacts with Qu4DS by negotiating contracts and sending requests as an usual service
provider. Secondly, Qu4DS frees the service developer from development details involv-
ing as negotiation and worker execution. Finally, from the service administrator point
of view, Qu4DS automatically manages the service provider execution by acquiring
resources, instantiating and destroying the service instance. These roles are described
next.

Customer The customer is the service consumer. It establishes contracts with the
service provider and send requests to be treated by the service provider.

Service Developer The service developer is in charge of developing the service provider.
In addition to service provider business logics, development tasks include prepar-
ing workers, executing them on distributed resources and processing worker re-
sults.

Service Administrator The service administrator manages the service provider ex-
ecution. Management actions include dealing with resource acquisition, instance
configuration, instantiation and destruction.

Qu4DS usage is illustrated by Figure 4.4. It depicts the service provider as the
common entity among the customer, the service developer and the service adminis-
trator. During the contract negotiation (cf. arrow 1), Qu4DS books resources from
the infrastructure in order to deploy the service instance. Since the service is instan-
tiated (cf. arrow 2), the contract is established and customer requests (cf. arrow 3)
are then forwarded by Qu4DS to the service instance by calling the remote method
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treatRequest(request) (cf. arrow 4). The service instance prepares the workers and
send them through the remote method executeWorkers(workers) (cf. arrow 5) to be
executed by Qu4DS. Then Qu4DS manages worker execution according to the contract
template reliability constraints. After executing the workers, Qu4DS sends their results
to the service instance by calling the remote method workerResults(results) (cf. ar-
row 6). Following that, the service instance processes the previous results and answers
Qu4DS the request response by calling the method requestResponse(response) re-
motely (cf. arrow 7). Then the request is finally forwarded to the customer by Qu4DS
(cf. arrow 8). Moreover, when the contract duration finishes, Qu4DS destroys the
service instance (cf. arrow 9) and releases the resources booked to assist this contract.
Thereby, Qu4DS ensures the proper execution of workers by handling non-successful
worker executions transparently as well as Qu4DS deals with resource acquisition and
further runtime environment aspects also in a transparent fashion.

Figure 4.4: Qu4DS aids service developers and administrators automatically and transparently. On
the one hand, Qu4DS usage assists service provider developer by managing the execution of workers.
On the other hand, Qu4DS assists service administrators by instantiating the service provider and
dealing with resource acquisition.
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Regarding the service administration, configuring Qu4DS requires setting its con-
figuration parameters in the quas.properties file as illustrated in Figure 4.4. Firstly,
choosing the under-provisioning factor means to decide how much percent of the nec-
essary resources will be acquired (cf. under provisioning factor). Secondly, the
resource requirements and replacement thresholds should be fulfilled according to their
constraints. Then, profiling parameters refers to setting the constants that will be used
when profiling the service provider (cf. e 0, e 1, e 2). Finally, pricing parameters
are the targeted margin profit (cf. pi) and the constants e 3, e 4 are used to calculate
request abortion and contract rescission fines, ψ and Ψ respectively.

With respect to the service development, the service developer should import the a
Java library in order to take advantage of Qu4DS. This library uses distributed server-
client communications and contains an abstract class that should be extended. This
class requires implementing the treatRequest(request) and workersResults(results)
methods which allow the service instance to be called by Qu4DS as a server. In turn,
the service instance plays the role of a client by calling the executeWorkers(workers)
and requestResponse(response) methods. These latter methods are implemented
by Qu4DS library as a server. All these aforementioned methods are remotely invoked
by using Java Remote Method Invocation (RMI) whose configuration is automatically
done by the library when the service is instantiated.

Ultimately, the bold texts in the sequence diagram depicted by Figure 4.3 also rep-
resent the interaction between the service provider and Qu4DS depicted by Figure 4.4.
Moreover, in spite of this tight-coupled way of delivering a PaaS service as a Java li-
brary, the executeWorkers(workers) method can perfectly be also implemented as an
external Web Service for instance. This allows taking advantage of a dynamic binding
between the service provider and Qu4DS thus exploiting Qu4DS as service provider
completely separated from the service provider.



72 Qu4DS



Part IV

Validation

73





Chapter 5

Environment

This chapter explains the experimentation environment. Section 5.1 introduces the
flac2ogg service as a case study that involves parallel audio compression. Following
that, Section 5.2 exposes the configuration parameters which concerns the Web Service
customer generator, Qu4DS and the infrastructure. Lastly, Section 5.3 explains how
the flac2ogg service provider was profiled and details about the QoS translation.

5.1 Case Study: The Flac2Ogg Service Provider

Audio Compression Nowadays, audio is widely utilized in different digital medias
such as videos, streaming, radios, social networks and so forth. Owing to the huge
quantity of data stored by media servers, audio compression is employed in order to save
storage space. Moreover, audio contents is often compressed by applying algorithms
that imply minor audio content losses which significantly reduces the media to be
stored. For instance, the Free Lossless Audio Codec (FLAC) [The11a] is a compressed
audio format which maintains the original audio quality. Although the great advantage
of having a lossless compressed audio, FLAC is not suitable for storing a huge quantity
of audio in a audio streaming server for instance. An alternative is to this issue is to
compress even more FLAC audios to the lossy compressed OGG (Vorbis OGG) [The11b,
The11c] 1 audio format thus reducing the audio file size.

The computational requirements for compressing audio files depends on the input
file size. It can be done by a desktop computer, however its computational capability
is not enough when compressing great quantity of audio. For instance, web sites which
rely on audio streaming as Jamendo, Deezer, LastFM compress a huge quantity of audio
for streaming lossy audio over the Internet. In order to not deal with the problem of
compressing great audio data, these web sites can outsource this task by using external
services such as Zencoder, Panda, Sorenson or Encoding.com for instance.

1OGG actually is an audio container which supports the Vorbis audio format. Since the .ogg file
extension is commonly used to refer to a Vorbis audio supported by the OGG container, this thesis
will refer to it as OGG. Moreover, OGG container also support FLAC audio formats, however this
thesis will refer to the FLAC audio format simply as FLAC since it has its own container which is used
widely.

75
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Overview The flac2ogg service provider aims at providing an audio encoder 2 solu-
tion which compresses FLAC files to OGG. The flac2ogg provider relies on a distributed
Master/Worker design as depicted by Figure 5.1. The flac2ogg service provider com-
presses FLAC files in parallel in order to improve its performance. The flac2ogg service
provider splits the FLAC file given a number of workers to which it is configured and
prepares these workers by setting up their input and output files based on the split
FLAC parts. Then, the flac2ogg service provider encodes in parallel each split FLAC
file on top of distributed resources. When the encoding process is finished, the flac2ogg
provider merges the encoded OGG files to a single OGG file that represents the en-
coded FLAC file input. Moreover, the FLAC and OGG formats were chosen to be
used by this case study not only because both are patent-free formats with open-source
implementations, but also owing to their technical advantages against further formats
such as WAV and MP3 for instance.

Figure 5.1: The flac2ogg service provider compress FLAC audio files to OGG based on the Master/-
Worker pattern.

Implementation The whole process of encoding an audio file in parallel by the
flac2ogg service provider comprises splitting, submitting, encoding, and merging phases
as explained next.

Splitting Consists of splitting the input FLAC in n equal parts where n is the number
of workers by using the shnsplit Shntool [Jor09] command. The performance of
the splitting phase depends on the FLAC file size where the greater the FLAC
file is, the more time it will take to be split. The shnsplit Shntool command
does not actually split the original FLAC file, it creates n FLAC files where each
file represents a copy of a part of the original FLAC file. Moreover, the shninfo
Shntool command is used to get audio meta-information used by shnsplit.

Submitting Means to wrap the workers as jobs and submit them to be executed on
the infrastructure through the job management interface. This phase does depend
on the number of workers since the more fragmented the FLAC file is, the more
time it take to submit all split FLAC parts to be encoded. However, it does not

2The terminology encode is widely used to refer to the action of converting audio file formats where
compression is often employed. This thesis will use the verb encode to mean a compressing conversion
of FLAC audio files to OGG audio files.



Configuration Parameters 77

depend neither on the size of the FLAC size nor on the size of each FLAC split
part.

Encoding Employs the actual compression of each FLAC split part to its respective
OGG output. The more number of workers, the faster it is. In addition, the
actual compression is performed by the oggenc Vorbis Tools [Xip11] command.

Merging Means to merge all the generated OGG files to a single OGG file that rep-
resent the compressed original FLAC input. The number of workers here is in-
significant, however the FLAC file size affects the merging phase performance.
Similar to the splitting phase, the greater the FLAC input is, the more it will
take to accomplish this phase. However, because the size of the OGG output file
is is smaller than the FLAC input, the merging phase is faster than the splitting
phase since there is less data to be stored.

The Figure 5.2 depicts how the flac2ogg provider is implemented by using Qu4DS.
The Qu4DS framework aids the service developer by handling the submitting and en-
coding phases. When a request is sent the developer splits the FLAC file and prepares
the workers by setting each FLAC part as input and the /usr/bin/oggenc3 as the ex-
ecutable to process the input. Then the developer asks Qu4DS to execute the workers
which includes wrapping them as jobs and managing job submissions through the job
broker. The encoding phase is performed in parallel on distributed resources and it is
up to Qu4DS to ensure that jobs will be successfully ran. When all the FLAC parts are
encoded, Qu4DS warns the service developer who then merges the OGG parts into a
single OGG output and respond the request. Importantly, Qu4DS only requires worker
inputs and executable which enhances Qu4DS generic characteristic thus be able to
support different service providers.

5.2 Configuration Parameters

This section discusses the configuration parameters regarding to Qu4DS evaluation.
First, it exposes the customer generator and its configuration aspects in Section 5.2.1.
Then, Qu4DS configuration parameters are introduced by Section 5.2.2. The Sec-
tion 5.2.3 explains the parameters which allow configuring the infrastructure and the
job broker.

5.2.1 Customer Generator

A customer generator was designed and implemented in order to perform the experi-
ments. The customer generator implements Web Service (WS) customers which have
their own request schedule. The request schedule defines when customers will trigger
the contract negotiation and send requests if the contract is accepted. The features

3For systems which use Debian packages, the Vorbis Tools [Xip11] package places the the OGG
encoder binary at /usr/bin/oggenc.
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Figure 5.2: Qu4DS is in charge of managing worker execution in distributed resources thus letting
the service developer concentrate in specific-domain tasks.

of the customer generator include customer scheduling; loading previously created cus-
tomer schedules; launching simulation; and plotting schedules to a graphic. Moreover,
configuring, the customer generator requires setting the following parameters.

Experiment duration It sets the total time of the experimentation. The more time
the experimentation takes, the more suitable it is for creating heterogeneous sce-
narios, i.e., scenarios with greater scheduling variations.

Number of customers It sets the total amount of customers for each contract tem-
plate label. The more customers, the more contract negotiations occur. Further-
more, contract template labels which rely on high resource requirements require
more resources, while labels that prioritize fault tolerance use less resources. The
experimentation includes all labels (fast, safe, classic, standard) and set the total
number of customers to ten or twelve depending on the scenario.

Contract duration The lower contract durations are, the less requests can be sched-
uled. The experimentation relies on fixed and variable contract durations, varying
from the time to treat one request up to the whole experimentation duration.

Request load (λ′) Defines the expected request load within the contract duration.
The parameter λ′ represents a percentage of the maximum number of requests
within the contract duration (φ max). As the targeted request load λ′ is the
expected load and not the actual load, λ′ is used to generate a random number
which will be the actual number of requests sent during the contract duration.
This random number is based on the Poisson distribution since it expresses the
probability of the number of events to occur during a time interval where the
average rate is known. Therefore, Poisson’s λ = λ′ · φ max. Moreover, if the
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random number is zero, the customer generator sets it to one since it assumes
that if a customer establishes a contract, it will eventually use the service. On the
other hand, if the random number generated is greater than φ max, the customer
generator sets it to φ max since the number of requests cannot exceed φ max.
Last, the greater λ′ is, the higher is the probability of having greater number
of requests during the contract duration. Thereby, the parameter λ′ directly
influences resource usage.

Demand Profiles The customer generator is used to create diversified customer
demand profiles. The contract template labels are combined in order to qualify the tar-
geted customer demands based on differentiated QoS. Table 5.1 exposes the customer
demand profiles used by the experimentation scenarios. The former is called high-FT
and represents a customer demand which requires a high-level of fault tolerance, being
then composed by customers whose contract template label is safe. The next customer
demand profile is called hybrid and expresses a heterogeneous customer demand whose
customers hold different contract template labels by including fast, safe, classic and
standard labels. Finally, the high-RR profile addresses representing a customer de-
mand that has strong resource requirements, hence it holds customers whose contract
template label is fast.

Demand Profile high-FT hybrid high-RR

Fast 0 3 10

Safe 10 3 0

Classic 0 3 0

Standard 0 3 0

Number of resources 30 45 50

Table 5.1: The formation of customer demand profiles is based on the combination of different
contract template labels. Number of resources means the total amount of resources required by all
contracts of a demand profile.

Five request schedules were created for each demand profile which are divided in two
groups as depicted by Table 5.2. The first group is based on four values of request load
λ′ : 0.25, 0.50, 0.75, 1.00 whose contract durations were fixed to the experimentation
duration, i.e., nine-hundred seconds. The second group refers to demand profiles with
variable contract durations and request load set to λ′ = 1.00. These parameters along
with the Table 5.1 were used by the customer generator to create the request sched-
ules for each demand profile. Furthermore, request schedules with variable contract
durations assume that cheaper contracts are firstly established, then more expensive
contracts are proposed to the provider. The graphics representing all request schedules
can be found in Appendix A.

5.2.2 Qu4DS

Qu4DS configuration parameters include the under-provisioning factor and parameters
related to QoS translation constraints, profiling and pricing as discussed in Section 4.5.
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Request schedule Request load Total

fixed contract duration (exp. duration) λ′ = 1.00, 0.75, 0.50, 0.25 4

variable contract durations λ′ = 1.00 1

Table 5.2: Each customer demand profile holds five request schedules which are divided in two groups
based on the contract duration.

They are summarized next.

Resource acquisition The under provisioning factor parameter configures Qu4DS
to apply the given under-provisioning factor when booking resources. The exper-
imentation relies on the following values; upf = 100, 70, 50.

QoS translation constraints The parameters used to fill the QoS translation con-
straints refer to resource requirements and replacement thresholds constraint.
The former depends on service profiling while the latter is statically defined.

Profiling It includes the fixed e0, e1, e2 parameters which refer to setting the response
times and job execution times.

Pricing The values of π is statically defined to π = 100 which means that the provider
earns one-hundred percent from each contract. The e3 and e4 constants, which
are used to set fine costs, assume the following values: 0.5, 1.0, 2.0.

Furthermore, the Section 5.3 explains how fixed values of the QoS table, profiling
and pricing parameters are set.

Under-Provisioning Profiles In order to experiment Qu4DS with different resource
acquisition policies, three under-provisioning profiles are defined as depicted by Ta-
ble 5.3. On the one hand, the no-UP under-provisioning profile does not reduce the
resource requirements since upf = 100%. On the other hand, the UP-70 and UP-50
under-provisioning profiles imply respectively acquiring seventy and fifty percent of the
total amount of the required resources.

Under-Provisioning Profile no-UP UP-70 UP-50

Under-provisioning factor (upf) 100 70 50

Table 5.3: The under-provisioning profiles are created based on various values of the under-
provisioning factor upf = 100, 70, 50.

5.2.3 Infrastructure

This configuration parameters related to the infrastructure and job broker described as
follows.

Infrastructure capacity Sets the total amount of resources that the infrastructure
can provide. The less resources the infrastructure holds, the more contracts may



Profiling 81

be rescinded if the customer demand profile is great enough to saturate the infras-
tructure provision capacity. The experimentation sets the infrastructure capacity
based on a percentage of the total amount of resources required by a customer
demand profile whose values are 100%, 75%, 50%.

Percentage of job misbehaviors Sets the percentage of jobs which will present mis-
behaviors at runtime. The experimentation assumes that 0, 5, 10, 20, 40 percent
of the total jobs4 misbehave. For instance, when set to 20%, implies 10% of the
jobs will be failed and other 10% of them will be delayed. These jobs are chosen
randomly based on the normal distribution. In addition, the greater the per-
centage of job misbehaviors, the more SLA violations may occur thus the more
adaptation actions may be triggered.

5.3 Profiling

This section tackles profiling issues by explaining how the flac2ogg service provider was
profiled. It comprises the choice of profiling, pricing and performance constants used
to fill the QoS table.

5.3.1 Constants

Profiling: e 0, e 1, e 2 e 0 and e 1 are used to calculate the job execution threshold
(cf. Equation 4.5, Section 4.2.3) which is used to decide whether a job is delayed by
the QoS assurance mechanism presented in Section 3.4.2. These constants were set to
e 0 = 1.0 and e 1 = 3.0. With regard to the constant e 2, it is used to calculate the
response time (cf. Equation 4.6, Section 4.2.3). This constant was set to e 2 = 3.0.

Pricing: π The constant π refers to the profit that the provider wants to earn (cf.
Equation 4.2 in Section 4.2.2). The value for the constants pi (cf. Section 4.5) was set
to 100 which means that the service provider earns 100% from each contract.

5.3.2 Response Time Constraints

This section explains how the performance constraint parameters res req strong, res req medium,

res req weak were chosen by profiling the service provider. Service profiling consisted
of executing the flac2ogg provider with based on different resource requirements.

The Size of the FLAC File The request response time depends on the size of
the FLAC file. In order to rely on short experimentation durations, the size of the
FLAC file was fixed. It is important to remark that this decision does not compromise
the experimentation results since it can be easily overcome by dynamically checking
the right request response time for the given variable FLAC file size. The size of the

4Service instance jobs excluded, only jobs belonged to requests can be failed or delayed.
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FLAC file was fixed to 194MB as the benefits of the parallelization present significant
performance differences for FLAC file greater than 194MB.

The Number of Workers In order to understand the relationship between the
request response time and the number of workers, the number of workers vary from
two to nine. Figure 5.3 depicts the profiling of the flac2ogg provider whose goal is to
identify which numbers of workers are not worth to be used. With respect to the job
execution time, the job-exec-time line shows that the more the FLAC file is divided,
the faster each part is encoded since the smaller the split FLAC part is, the faster it
is encoded. In contrast, the actual-resp-time line does not follow this behavior because
the submitting phase of the encoding process increases the overall encoding time. It is
explained by the fact that the more fragmented the FLAC file is, the more time the
submitting phase takes.
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Figure 5.3: Profiling of the flac2ogg service provider based on different number of workers. The input
FLAC file has 194MB.

Finally, the actual-resp-time line shows that when the number of workers is greater
than five, the request response time starts to increase. Thus more than five workers are
not worth to be used. In order to not require a great number of resources, the chosen
number of workers to work with are two, three and four.

5.3.3 QoS Table

While the profiled data are used to enable the translation of response time, data con-
cerning the translation of reliability is set statically. The Table 5.4 depicts the QoS
table introduced in Section 3.3.1 (cf. Table 3.1) with the translation of each QoS metrics
constraints. The translation of the response time constraints represent the number of
workers and were set based on the previously chosen number of workers two, three and
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four. The translation of the availability constraints were set statically and represent
the replacement thresholds of the QoS assurance mechanisms.

QoS Aspects Performance Fault-Tolerance
❤
❤
❤
❤
❤

❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

Contract Template Labels

QoS Metrics

Response Time Reliability

Fast τ(strong) = 4 τ(weak) = (0, 0)

Safe τ(weak) = 2 τ(strong) = (1, 1)

Classic τ(medium) = 3 τ(medium) = (1, 0)

Standard τ(weak) = 2 τ(weak) = (0, 0)

Table 5.4: The QoS table used in Qu4DS evaluation whose QoS metrics are presented along with their
respective translated system configurations. The translation of the response time means the number
of workers while the translation of the reliability represents the replacement thresholds.
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Chapter 6

Evaluation

This chapter discusses the evaluation of Qu4DS through empirical experimentation.
First, the scenarios are introduced in Section 6.1 which explains how basis parameters,
under-provisioning profiles and customer demand profiles are combined in order to
create the scenarios. Section 6.2 then discusses the results. Note that this chapter
refers to the Qu4DS current version 0.4. Previous results from earlier Qu4DS versions
can be found in [FPP11] and [FPP10a].

6.1 Scenarios

The general goal of the experimentation scenarios is to analyze the impact on the
provider general profit when reducing infrastructure costs, rescinding contracts and
preventing SLA violations (cf. Section 3.2). Qu4DS configuration should be driven
by the service provider business goals, customer demand and infrastructure conditions;
thus different configurations of Qu4DS, customer demand and execution environment
are employed.

Under-provisioning is used as a capability of reducing infrastructure costs which
indeed is a mean of increasing the provider profit by compromising QoS assurance.
Hence under-provisioning involves a risk which may be worthwhile to consider in some
situations. Therefore, another goal of the evaluation is to identify these worthy situ-
ations and measure the negative impact of under-provisioning when it should not be
applied.

With respect to preventing SLA violations and rescinding contracts, two patches
were added to Qu4DS which allows disabling the fault tolerance QoS assurance mech-
anism and contract rescissions. The former patch ignores the replacement threshold
values by setting them to zero. The latter patch bypasses the accept operation described
by Algorithm 4 in the flowchart illustrated by Figure 3.6 (cf. Section 3.5.1).

In order to address the experimentation objectives, Scenarios A, B and C were
created as depicted by Table 6.1. The objectives of each scenario are described next.

Scenario A Focus on reducing infrastructure costs. The goal is to understand how
under-provisioning profiles applied to the customer schedule profiles on different
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request loads impact on the profit.

Scenario B Focus on rescinding contracts. The goal is to understand how various
infrastructure capacities impact on the profit with and without contract rescission.

Scenario C Focus on preventing SLA violations. The goal is to understand how dif-
ferent percentages of misbehaved jobs impact on the profit and analyze with and
without the fault tolerance QoS assurance.

Configuration Scenario A Scenario B Scenario C

Customer profile fixed contract

duration

variable contract

duration

fixed contract

duration

Request load 0.25, 0.50, 0.75,

1.00

1.00 1.00

Under-prov. profile no-UP, UP-70,

UP-50

no-UP no-UP

Infra. capacity 100% 100%, 75%, 50% 100%

Misbehaved jobs 0% 0% 0%, 5%, 10%, 20%,

40%

FT QoS assurance on on on,off

Contract rescission on on,off on

Table 6.1: The configurations used to create the Scenarios A. B and C.

Furthermore, fine costs have a direct impact on the provider profit, hence it is
important to let the experimentation scenarios rely on variable fine costs. Request
abortion fines (ψ) are defined based on the price requests cost to be treated while
rescission fines (Ψ) are defined based on the contract price in such a way that both
fines depend on the e3 and e4 variables respectively (cf. Equation 4.3 in Section 4.2.2).
Thus the relationship between fine costs and their commitments can be expressed based
on different values of the e3 and e4 variables as presented next.

e3 or e4 equals to 0.5 means that fines cost half the price of their commitments.

e3 or e4 equals to 1.0 means that the fine costs the same price of their commitments.

e3 or e4 equals to 2.0 means that the fine costs twice the price of their commitments.

6.2 Results

The experiments were performed in the Rennes site of the Grid5000 [CCD+05] testbed
grid. Specifically, the paradent cluster was used which holds nodes with eight 2.5GHz
processors, 32GB RAM memory connected through a Gigabit network. Moreover, all
graphics express the net general profit (cf. Equation 3.7) as a function of a given variable
in the X-axis. Each dot plotted in the graphics represents a different experiment whose
total duration is fifteen minutes.
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6.2.1 Scenario A

The evaluation results of the Scenario A are depicted by Figure 6.1. The Scenario
A assumes that the infrastructure capacity is enough to satisfy the customer demand
profiles. Moreover, it also assumes that there is no job misbehavior. On the other hand,
there are three variable parameters. The former variable parameter is the request load
λ′ which is placed in the X-axis. The second and third variable parameters are drawn
as curves: the under-provisioning profiles (no-UP, UP-70,UP-50) and the cost of the
request abortion fine ψ which depends on different values of the e3 constant.
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Figure 6.1: Scenario A: high-FT, hybrid and high-RR customer demand profiles with various values
of request abortion fine ψ.

The first general observation regarding the results of the Scenario A is that all
the no-UP curves (full lines) approximatively are horizontal lines which means that
the profit does not vary as the request load increases. This continuous profit happens
because there is neither under-provisioning, nor SLA violations which would eventually
increase or decrease the profit. Hence all the no-UP lines serve as a basis to know which
profit is reached when no under-provisioning is applied. Moreover, different customer
demand profiles have different continuous profit values as the price of the contract
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depends on resource usage which varies according to the customer demand profile.

On the other hand, the UP-70 and UP-50 curves make the profit vary given a request
load. Theoretically, the lower the under-provisioning factor is, the greater the profit is
until the request load begins to be important enough to imply lack of resources owing
to parallel request treatments. This behavior is an interesting aspect to observe in
Scenario A in order to know in which situation a given under-provisioning factor is
worth to be applied.

In general, the use of under-provisioning showed to be effective in increasing the
service provider for these experiments. Both up-50 and up-70 under-provisioning pro-
files allowed increasing the profit if compared to the no-UP under-provisioning profile.
However, the up-50 and up-70 under-provisioning profiles decrease as the fine cost in-
creases. Moreover, up-50 decreases quicker than up-70 because up-50 represents a more
aggressive under-provisioning profile which is more appropriated for low request loads.
Thereby, up-50 reached greater profit when the request load is not high while up-70
enables to increase the profit in the average case. Therefore, it is more prudent to apply
the up-70 under-provisioning profile for unknown request loads. In contrast, if a low
request loads is expected, the up-50 under-provisioning profile allows increasing even
more the profit.

The curve-crossing points indicate the request load which an under-provisioning
profile is less effective than another under-provisioning profile. In Scenario A, by dou-
bling the fine costs, i.e. e2 = 0.5, 1.0, 2.0, anticipates the curve-crossing points in a
inverse ratio approximatively, i.e., by halving the request loads of the curve-crossing
points. Therefore, in order to maximize the provider profit in a situation similar to
Scenario A, the up-50 under-provisioning profile should be used for values of e3 around
0.5 approximately. Moreover, the up-70 under-provisioning profile showed to be an
interesting configuration for the average case, i.e, it satisfactorily increased the profit
for various request loads.

6.2.2 Scenario B

Figure 6.2 depicts the evaluation results of the Scenario B. The Scenario B assumes
that there is no under-provisioning and it does not take into account job misbehaviors.
Because rescinding contracts compares contract prices and fines, the Scenario B relies
on customer demand profiles with variable contract durations by implying different
contract prices even for contracts with the same label. With regard to the variable
parameters, the first variable is the infrastructure capacity whose values are exposed in
the X-axis. The second variable is the rescission fine (Ψ) cost which varies according to
different values of the e4 constant. The last variable parameter refers to the contract
rescission patch which was enabled and disabled for each experiment of Scenario B.

The advantage of this rescinding contracts is to allow the service provider to try to
increase its profit even when the infrastructure cannot deliver no more resources. In
this sense, the results depicted by Figure 6.2 show the profit being increased for almost
all the results, cf. the full lines above the dashed lines.

Moreover, as one can note, the profit grows as the infrastructure capacity increases.
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Figure 6.2: Scenario B: high-FT, hybrid and high-RR customer demand profiles with various values
of rescission fine Ψ.

This expected behavior is explained by the fact that the more resources can be acquired,
the more contract will be established then increasing the profit.

Lastly, the greater the fine is, the less effective rescinding rescission is. Indeed, the
configurations of the Scenario B implied Qu4DS similar behaviors when the rescission
fine is the highest. Because high fine costs inhibits rescinding contracts, few contracts
are rescinded when e4 = 2.0 for instance. On the other hand, setting lower fine costs
allows the rescinding capability to increase the profit, i.e., e4 = 0.5, 1.0.

6.2.3 Scenario C

The Figure 6.3 shows the results from Scenario C. The Scenario C relies on a execu-
tion environment where the infrastructure capacity is able to deliver all the required
resources. It also assumes that the request load is λ′ = 1.0 based on a fixed con-
tract duration. Moreover, there is no under-provisioning which means that the no-UP
under-provisioning profile is applied. On the other hand, since the Scenario C evaluates
Qu4DS effectiveness in preventing SLA violations, the job misbehavior rate is variable.
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In addition, the FT QoS assurance patch is also variable; being only applied for the
hybrid and high-FT customer demand profiles as high-RR does not include contract
template labels that require fault tolerance. The last variable parameter is the request
abortion fine (ψ) whose costs are defined based on values of the e4 constant.
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Figure 6.3: Scenario C: high-FT, hybrid and high-RR customer demand profiles with various values
of request abortion fines ψ. The curves with no fault-tolerance are not present in high-RR graphics as
this customer demand profile inherently has no customers with fault-tolerant mechanisms enabled.

The first general observation is that the greater the misbehavior rate is, the lower
the profit is. This expected behavior happens because misbehaved jobs increases the
chances of implying SLA violations. Regarding the customer demand profiles, the more
it holds contract template labels which require fault tolerance capabilities, the more
moderate the profit drops. For instance, the curves of the high-RR customer demand
profile (i.e., no fault tolerance is required) decreases sharper than hybrid and high-FT
profiles. Specifically, the high-FT profile was able to keep a moderate decrease of profit
curves.

Secondly, it is remarkable the difference between the profits when the FT QoS
assurance is disabled. Qu4DS QoS assurance mechanism that addresses fault tolerance
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showed to be effective for the configuration of Scenario C. All the full line curves
are plotted above the dashed lines which means that disabling the QoS assurance
mechanism negatively influences the profit.

Finally, the greater the fine is, the sharper the profit decreases. An interesting
aspect to note in the Scenario C is that Qu4DS QoS assurance mechanism showed to
be effective even for great job misbehavior rates. For instance, when the job misbehavior
rate is 40% (cf. Figure 6.3(c)), Qu4DS prevented the profit to reach negative values.
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Conclusion

This thesis addressed the problem of managing service execution in distributed infras-
tructures while meeting SLA constraints. SLA management functionalities are pro-
posed which handle service negotiation, instantiation, provisioning and termination in
an autonomous fashion. In addition, the thesis employs further management actions in
order to increase the profit. These actions include rescinding contracts, reducing infras-
tructure costs and preventing SLA violations. This thesis also implements the Qu4DS
framework which supports the development and management of services in distributed
infrastructures. Moreover, experimental results in Grid5000 show Qu4DS effectiveness
in maintaining SLAs while increasing the provider profit. The contributions of this
thesis are explained in more detail next.

Contract Templates, SLA Translation, Pricing This thesis proposes a system-
atic approach for creating contract templates based on the combination of performance
and fault tolerance aspects. Firstly, labels are used to ease the identification of each
contract template based on its response time and reliability QoS metrics. Then, high-
level QoS metrics constraints are translated to system-level configurations which allow
enforcing specific QoS metrics values. Finally, contract templates are integrated with a
pricing model which considers aspects concerning both the service provider and its un-
derlying environment. Thereby, the way of how contract templates are created proposed
by this thesis: (i) enables contract negotiation through contract templates identified by
labels; (ii) translates SLA quality properties to system configuration; and (iii) enables
the realization of runtime environment mechanisms driven by SLA objectives.

QoS Assurance Mechanisms This thesis proposes two mechanisms which ensure
the QoS properties described in the SLA. The first QoS assurance mechanism addresses
performance by ensuring the response time QoS metrics. It relies on the translation
of the response time QoS metrics to resource requirements able to meet the given
response time. Then these resource requirements are used to acquire resources as well
as to configure and deploy the service instance. The second QoS assurance mechanism
deals with fault tolerance by ensuring the reliability QoS metrics. The fault tolerance
QoS assurance mechanism replaces failed and delayed jobs based on the translation of
the reliability QoS metrics to replacement thresholds. Therefore, this thesis proposes
QoS assurance mechanisms which guarantee that both performance and fault tolerance
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QoS are ensured at runtime. As a consequence, SLA violations are prevented which
contributes to increasing the provider profit.

Resource Acquisition and Allocation This thesis proposes algorithms for han-
dling resource acquisition and allocation which are driven by contract proposals and
request arrivals respectively. Contract proposals trigger resource acquisition which is
based on the resource requirements translated from response time QoS metrics. In
order to increase the provider profit, this thesis applies under-provisioning by reducing
the resource requirements. Moreover, if the infrastructure cannot deliver the required
resources, current established contracts may be rescinded if this positively influences
the general profit. With regard to resource allocation, upon a request arrival, re-
source availability is checked in order to decide whether the request will be carried
on or aborted. If there are not enough resources available, the request to be aborted
is chosen by aiming at minimizing the impact on the profit. As a result, this thesis
automatically handles resource acquisition and allocation while applying techniques for
profit increase in a transparent manner.

The Qu4DS Framework This thesis describes the design and implementation of
an autonomous framework which manages service execution driven by business-level
objectives. The Qu4DS framework aims at the cloud PaaS layer by aiding the develop-
ment of SaaS services on top of IaaS resource providers. On the one hand, the Qu4DS
framework eases the development of Web Services by abstracting over distributed in-
frastructures. On the other hand, Qu4DS autonomously manages the service execution
while increasing the service profit. In other words, Qu4DS deals with service nego-
tiation, instantiation, provision and termination at runtime under business-oriented
policies. These policies serve as high-level guidelines for under-provisioning, contract
rescission, QoS assurance as well as pricing parameters. Moreover, the Qu4DS design
enables extensibility in order to support further policies. In order to evaluate Qu4DS,
experiments were carried out in Grid5000 based on different configurations and cus-
tomer demands. The results confirm the effectiveness of Qu4DS in increasing the service
provider profit while meeting SLAs terms.

Future Work: Short Term

Scalability The current implementation of the Qu4DS framework does not aim at
scalability. It relies on a centralized design which makes it difficult to support increas-
ing number of requests. When the number of concurrent requests increases, the Qu4DS
workload also increases owing to the management of distributed tasks and their event
handling. In order to address this issue, request management should be delegated to
the deployed service instances in order to let Qu4DS focus on higher-level SLA manage-
ment tasks. Thereby, customers would directly send requests to service instances which
would be in charge of treating requests according to the agreed QoS. In order to im-
plement such a design change, scalable peer-to-peer techniques may be used to address
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location and communication of distributed resources. Examples of such techniques in-
clude DHTs (Distributed Hash Tables) and unstructured peer-to-peer networks based
on epidemic protocols.

Leveraging IaaS Cloud Capabilities Currently, the Qu4DS framework relies on a
single resource provider and it only considers horizontal elasticity as means for improv-
ing performance. With respect to elasticity, it profiles the service provider with various
numbers of resources whose requirements are the same. It would be interesting to
also exploit vertical elasticity features from clouds providers by also changing resource
requirements (i.e., resource class) and not only the number of resources. Exploiting
vertical elasticity allows implementing further QoS assurance mechanisms, and it eases
adapting the Qu4DS load according to customer demand.

Regarding different resource providers, future work may consider enabling Qu4DS
to support various IaaS clouds by checking prices and negotiating contracts with them.
This would allow overcoming resource shortages and the utilization of cheaper resource
providers. In order to implement this solution, different IaaS clouds can be abstracted
by using the common OCCI IaaS cloud interface [ME11] or by using the Apache Lib-
cloud API [ASF11].

On-The-Fly Profiling The profiling mechanism implemented by the Qu4DS frame-
work profiles the service provider before provisioning. However, profiling data dur-
ing provisioning is useful for calibrating Qu4DS according to unpredicted environment
changes, e.g., network throughput degradation and unusual customer demands. An
improvement to this issue is enabling Qu4DS to update the provider profiling while
treating customer requests. As a consequence, current values of job execution times
and actual request response times would be used to calculate the response time QoS
metrics. Therefore, profiling the service provider on-the-fly allows adjusting QoS met-
rics to the current customer demand load.

Enable Renegotiation The way that Qu4DS negotiates contracts can be performed
in a more flexible manner by including renegotiation of established contracts. Sup-
porting renegotiation allows adapting the service provisioning to environment changes
without violating SLAs. In case of resource fluctuations, new contract proposals or
changes on the provider business model, it may be preferable to try to renegotiate
current SLA terms instead of rescinding contracts or aborting requests in order to
increase the provider profit. In order to enable contract renegotiation, complete nego-
tiation protocols should be considered as WS-Agreement [ACD+07]. For instance, the
WSAG4J [Fra08] WS-Agreement implementation can be used by creating Agreement
Template documents along with their Guarantee Terms. In this case, the Business
Value List would express how the fines are assessed while the Service Level Objective
would express which QoS metrics should be met.
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Automatic Under-Provisioning Configuration This thesis allows configuring
service execution management based on the under-provisioning factor upf , i.e., a per-
centage of the resource requirements. The proposed solution relies on a fixed value
of upf . A future research direction is to investigate the automatic adjustment of upf
at runtime according to changes on infrastructure, service reputation, service busi-
ness model and customer demand. This may require predicting the customer demand
based on historical data which can be done by simple but effective methods such as
exponentially weighted moving average (EWMA).

Further Perspectives

Qu4DS as a Service A future work may consider to completely decouple Qu4DS
from the service provider. This requires investigating the relationship between Qu4DS
and provider SLAs and profits. Regarding the SLA, the interaction between Qu4DS and
the SaaS provider (e.g., the flac2ogg service provider) would be defined by another SLA
which describes Qu4DS as a self-contained PaaS provider. Qu4DS obligations would
include meeting QoS metrics constraints (i.e., strong, medium, weak) and applying
the PaaS provider margin of profit (π) and fine costs (ψ,Ψ). Thus Qu4DS would
be in charge of QoS translation and profiling by transparently handling lower-level
details related to the underlying infrastructure. With respect Qu4DS and provider
profits, Qu4DS profit could rely on adjusting the under-provisioning factor based on
its own business objectives. On the other hand, the under-provisioning factor could be
described in the SLA in order to let it be part of the PaaS provider business objectives.
However, this requires that Qu4DS profit come from its profit margin which would
increase the price of the final service delivered to customers.

Reputation The way that this thesis handles service profit maximization does not
consider the provider reputation. If the service provider business objectives includes
long-term provisioning, then reputation plays an important role. Nevertheless, a solu-
tion which addresses concurrently profit and reputation interests should decide which
aspect will be prioritized. Future work that addresses reputation but prioritizes profit
can take advantage of this thesis. For instance, dependability can be improved by en-
hancing its QoS assurance mechanisms, e.g., supporting availability, resource failures,
replication and so forth. Another example refers to the contract rescission policy which
may be changed to a less aggressive policy or even be disabled. Moreover, the benefits
for enhancing reputation should be quantified in order to define how reputation impacts
the profit. Although it is not trivial to coherently map reputation aspects to monetary
terms, provider business objectives should serve as guidelines for solutions that address
this challenge. For instance, opportunist and intermittent service providers should at-
tribute lower values for reputation when compared to providers which aim at long-term
service provisioning.
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Support for Composite Services Future work may consider supporting composite
services, i.e., services which are composed of other services. This extends the scope of
this thesis by enabling to address more complex service relationships in addition to
the current SLAs that address customers and the underlying infrastructure. However,
this implies dealing with multiple SLAs which increases the complexity of the SLA
management. Firstly, future work concerning composite services should add to the
negotiation phase further negotiations whose SLAs define the service provider role as
provider and consumer. In addition, service instantiation and provisioning should be
also driven by these previous SLAs. Secondly, the service provider should add to its
pricing model more pricing parameters whose complexity make it harder to increase
the provider profit. These challenges are difficult to address and are currently being
studied in the context of BPEL (Business Process Execution Language) compositions,
where services are composed according to SLA objectives.

Third-Party Insurance Services The way in which this thesis addresses QoS as-
surance may be enhanced by considering third-party insurance services. The idea is to
mimic conventional insurance companies by delegating to them fine payments. Thus,
insurance services would cover eventual provider expenses, as fine payments, which
imply losses. Insurance services can be added to the whole picture during the negotia-
tion phase. Before booking resources for supporting the proposed contract, the service
provider contacts the insurance service and tries to establish a contract which covers
the losses for the contract proposal. If the insurance service accepts the contract, then
the service provider acquires resources and deploys the service instance. Otherwise, the
service provider should decide whether it will accept the contract proposal. In [LZL10],
some issues about this subject are discussed.

Support Beyond Master/Worker Services Although the solution proposed by
this thesis relies on service instances built according to the Master/Worker style, it
can be extended to also support further kind of services. However, such a change
may require redesigning QoS assurance mechanisms as well as monitoring metrics.
For instance, in order to offer MapReduce support, the Qu4DS interface should add
both map and reduce operations and the Qu4DS configuration should include details
about the underlying distributed file system. In this context, a Qu4DS extension for
MapReduce applications may take advantage of the Apache Hadoop framework and
the Hadoop Distributed File System (HDFS). Thereby, QoS assurance would be dealt
with by Hadoop built-in capabilities on top of HDFS; on the other hand, Qu4DS would
address higher-level tasks regarding the SLA life-cycle management and pricing aspects.

Violation of Resource Requirements Resource providers may fail to meet the re-
source requirements owing to different reasons, e.g, because of applying over-provisioning
in order to increase their own profit. As a consequence, QoS assurance mechanisms
at PaaS-level will be compromised since they rely on service provider profiling. A
trivial solution for handling the violation of resource requirements consists of relying
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on relaxed QoS metrics instead of QoS metrics with strict constraints. More efficient
solutions require adding new assurance mechanisms. For instance, if any resource re-
quirement change is perceived, resources could be replaced in order to try to prevent
execution delay. Alternatively, resources could be booked from another IaaS provider,
or the contracts could be re negotiated or terminated.



Appendix A

Request Schedules

This appendix depicts the request schedules created by the customer generator for the
customer demand profiles high-FT, hybrid, high-RR as depicted by Figures A.1, A.2
and A.3 respectively.

Each customer demand profile holds five request schedules. The first four request
schedules depicted by (a), (b), (c), (d) sub-figures represent the different request loads
λ′ = 1.00, 0.75, 0.50, 0.25 whose contract durations were set to the whole experimenta-
tion duration. The last request schedule is depicted by the (e) sub-figures and represents
a fixed request load λ′ = 1.00 with variable contract durations. Moreover, the first cross
in the figures means the time in which customers start the negotiation; the second cross
means the beginning of contract durations; and the last cross means the end of contract
durations.
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(a) λ′ = 1.0 (37 requests).
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(b) λ′ = 0.75 (28 requests).
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(c) λ′ = 0.50 (19 requests).
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(d) λ′ = 0.25 (11 requests).
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(e) λ′ = 1.00 with variable contract durations.

Figure A.1: Request schedules of the high-FT customer demand profile.
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(a) λ′ = 1.0 (69 requests).
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(b) λ′ = 0.75 (51 requests).
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(c) λ′ = 0.50 (40 requests).
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(d) λ′ = 0.25 (19 requests).
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(e) λ′ = 1.00 with variable contract durations.

Figure A.2: Request schedules of the hybrid customer demand profile.
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(a) λ′ = 1.0 (78 requests).
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(b) λ′ = 0.75 (58 requests).
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(c) λ′ = 0.50 (43 requests).
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(d) λ′ = 0.25 (25 requests).
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(e) λ′ = 1.00 with variable contract durations.

Figure A.3: Request schedules of the high-RR customer demand profile.
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Publications and Research
Activities

The research activities carried out by this thesis were part of the European Commu-
nity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement 215483
(S-CUBE). During this thesis, various interactions with the scientific community were
established which includes publications and collaboration. They are summarized next.

❼ International Conferences: Full Papers

– [FPP11] André Lage Freitas, Nikos Parlavantzas, and Jean-Louis Pazat. Cost
Reduction Through SLA-driven Self-Management. In Proceedings of the 9th
IEEE European Conference on Web Services (ECOWS), September 2011

– [FPP10b] André Lage Freitas, Nikos Parlavantzas, and Jean-Louis Pazat.
A Self-Adaptable Approach for Easing the Development of Grid-Oriented
Services. In Proceedings of the IEEE International Conference on Computer
and Information Technology (CIT), Bradford, UK, 06 2010

❼ International Workshop

– [FPP10a] André Lage Freitas, Nikos Parlavantzas, and Jean-Louis Pazat. A
QoS Assurance Framework for Distributed Infrastructures. In Proceedings of
The Third International Workshop on Monitoring,Adaptation and Beyond
(MONA). ACM, 2010

❼ International Conference: Poster

– [FPP10c] André Lage Freitas, Nikos Parlavantzas, and Jean-Louis Pazat.
Ensuring QoS for Service Execution on Grids. In Proceedings of the IEEE
6th World Congress on Services (SERVICES), Miami, USA, July 2010

❼ Technical Reports
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106 Publications and Research Activities

– [IST09] INRIA – Institut National de Recherche en Informatique et Au-
tomatique, SZTAKI – The Computer and Automation Research Institute,
Hungarian Academy of Sciences, and TUW – Vienna University of Tech-
nology. Basic Requirements for Self-Healing Services and Decision Support
for Local Adaptation. Technical Report #CD-JRA-2.3.2, S-CUBE Project,
2009

– [ICF+12] INRIA – Institut National de Recherche en Informatique et Au-
tomatique, CNR – Consiglio Nazionale delle Ricerche, FBK – Center for Sci-
entific and Technological Research, UniDue – University of Duisburg-Essen,
TUW – Vienna University of Technology, and UOC – University of Crete.
Specifications of Policies and Strategies for Distributed and Multi-Level
Adaptation. Technical Report #CD-JRA-2.3.8, S-CUBE Project, 2012. (to
be published)

– [UTC+12] UniDue – University of Duisburg-Essen, Tilburg University, CITY
– City University London, INRIA – Institut National de Recherche en Infor-
matique et Automatique, Lero – The Irish Software Engineering, Polimi –
Politecnico di Milano, SZTAKI – The Computer and Automation Research
Institute, Hungarian Academy of Sciences, TUW – Vienna University of
Technology, UOC – University of Crete, UPM – Universidad Politécnica de
Madrid, USTUTT – University of Stuttgart, and VUA – Vrije University
Amsterdam. QoS and SLA Aware Service Euntime Environment. Technical
Report #CD-JRA-2.3.9, S-CUBE Project, 2012. (to be published)

❼ Internship

– Informatics Center, Federal University of Pernambuco, Brazil. Research
activities focused on the dynamic configuration of the QoS assurance mech-
anisms based on the translation of non-functional requirements.
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Abstract

Services enable building loosely-coupled and dynamic applications in distributed envi-
ronments. Service-Level Agreements (SLAs) are used to define service relationships by
describing how services should behave. Moreover, SLAs include the Quality of Service
(QoS) that should be delivered along with the service. However, managing service ex-
ecutions on top of distributed infrastructure while meeting agreed QoS is challenging.
Firstly, QoS metrics should be mapped to low-level system configurations in order to
enable building QoS assurance mechanisms. Secondly, service execution should deal
with failures and load variations. In addition to these issues, service execution should
be driven by pricing aspects since profit increase is an important concern for service
providers. Current approaches that handle service execution support neither the whole
SLA life-cycle nor profit augmentation.

This thesis proposes an autonomous solution for managing service execution in
distributed infrastructures by aiming at increasing the provider profit. In particular,
this thesis supports the full SLA life-cycle based on: (i) SLA translation under pricing
constraints; (ii) mechanisms which ensure fault-tolerant and performance QoS; and
(iii) resource acquisition and allocation driven by contract proposals and requests. In
order to realize this solution, this thesis describes the design and implementation of
the Qu4DS (Quality Assurance for Distributed Services) framework. Qu4DS includes
a rich set of SLA management functionalities that provides a higher-level support for
service developers. Moreover, Qu4DS is evaluated on top of Grid5000 and the results
show that Qu4DS is able to increase the provider profit while meeting SLAs in different
scenarios.
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