
HAL Id: tel-00715649
https://theses.hal.science/tel-00715649v1

Submitted on 9 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A resource-aware embedded commucation system for
highly dynamic networks

Xunxing Diao

To cite this version:
Xunxing Diao. A resource-aware embedded commucation system for highly dynamic networks. Other
[cs.OH]. Université Blaise Pascal - Clermont-Ferrand II, 2011. English. �NNT : 2011CLF22127�. �tel-
00715649�

https://theses.hal.science/tel-00715649v1
https://hal.archives-ouvertes.fr

No d’ordre D.U : 2127
EDSPIC : 522

UNIVERSITE BLAISE PASCAL - CLERMONT II
ECOLE DOCTORALE

SCIENCES POUR L’INGENIEUR DE CLERMONT-FERRAND

THÈSE
Présentée Par

Xunxing DIAO
Master en Informatique

Pour obtenir le grade de

DOCTEUR D’UNIVERSITÉ
Spécialité : INFORMATIQUE

A Resource-aware Embedded Communication
System for Highly Dynamic Networks

Soutenue publiquement le 27 Mai 2011 devant le jury :

M. Alain QUILLIOT Président

M. Bernard TOURANCHEAU Rapporteur

Mme. Houda LABIOD Rapporteur

M. Haiying ZHOU Examinateur

M. Jean-Pierre CHANET Invité

M. Kun-Mean HOU Directeur de thèse

Mme. Jian-Jin LI Directeur de thèse

Résumé

Chaque année en Europe, 1.300.000 accidents de la route ont comme conséquence 1.700.000
blessés. Le coût financier d’accidents de la route est évalué à 160 milliards d’euros
(approximativement le même coût aux Etats-Unis). VANET (Vehicular Ad-hoc NETwork) est
une des technologies clés qui peut permettre de réduire d’une façon significative le nombre
d’accidents de la route (e.g. message d’urgence signalant la présence d’un obstacle ou d’un
véhicule en cas de brouillard). En plus de l’amélioration de la sécurité et du confort des
conducteurs et des passagers, VANET peut contribuer à beaucoup d’applications potentielles
telles que la prévision et la détection d’embouteillages, la gestion d’infrastructure de système
de transport urbain (e.g. système de transport intelligent multimodal) etc.

Dans cette thèse, je présenterai un système embarqué dédié à la communication
inter-véhicule particulièrement pour les applications sécuritaires de passagers et de conducteurs.
Nos efforts de recherche et de développement sont centrés sur deux principaux objectifs :
minimiser le temps de latence intra-nœud et le délai de communication inter-véhicule en prenant
en compte le changement dynamique du VANET. De ce fait pour atteindre ces objectifs, des
nouvelles approches (e.g. inter-couche ‘Cross-layering’) ont été explorées pour respecter les
contraintes de ressource (QoS, mémoire, CPU et énergie de la communication inter-véhicule)
d’un système embarqué à faible coût.

Le système de communication embarqué proposé comporte deux composants logiciels
principaux : un protocole de communication dénommé CIVIC (Communication Inter Véhicule
Intelligente et Coopérative) et un système d’exploitation temps réel appelé HEROS (Hybrid
Event-driven and Real-time multitasking Operating System). CIVIC est un protocole de
communication géographique à faible consommation énergétique et à faible temps de latence
(délai de communication). HEROS gère contextuellement l’ensemble du système (matériel
et logiciel) en minimisant le temps de latence et la consommation des ressources (CPU et
mémoire). En outre, le protocole de communication CIVIC est équipé d’un système de
localisation LCD-GPS (Low Cost Differential GPS). Pour tester et valider les différentes
techniques et théories, la plateforme matérielle LiveNode (LImos Versatile Embedded wireless
sensor NODE) a été utilisée. En effet, la plateforme LiveNode permet de développer
et de prototyper rapidement des applications dans différents domaines. Le protocole de
communication CIVIC est basé sur la technique de ‘broadcast’ à un saut ; de ce fait il est
indépendant de la spécificité du réseau. Pour les expérimentations, seule la norme d’IEEE
802.15.4 (ZigBee) a été choisie comme médium d’accès sans fil. Il est à noter que le médium
d’accès sans fil ZigBee a été adopté comme le médium standard pour les réseaux de capteurs
sans fil (RCSFs) et le standard 6LoWPAN ; car il est peu coûteux et peu gourmand en énergie.

Bien que le protocole de communication à l’origine soit conçu pour répondre aux exigences

de VANET, ses domaines d’application ne sont pas limités à VANET. Par exemple il a été utilisé
dans différents projets tels que MOBI+ (système de transport urbain intelligent) et NeT-ADDED
(projet européen FP6 : agriculture de précision). Les VANETs et les RCSFs sont les réseaux
fortement dynamiques, mais les causes de changement topologique de réseau sont différentes:
dans le réseau VANET, il est dû à la mobilité des véhicules, et dans le RCSF, il est dû aux pannes
des nœuds sans fil. Il est à noter que le VANET et le RCSF sont généralement considérés comme
un sous-ensemble du réseau MANET (réseau ad-hoc mobile). Cependant, ils sont réellement
tout à fait différents du MANET classique, et leurs similitudes et différences seront expliquées
en détail dans la thèse.

La contribution principale de mes travaux est le protocole CIVIC, qui échange des messages
en basant sur l’information géographique des nœuds (position). Les travaux relatifs de la thèse
se concentreront sur les techniques, les problèmes et les solutions de routage géographique,
mais d’autres techniques de routage seront également adressées. Quelques projets relatifs
au protocole de communication ont été étudiés mais leur implémentation et les aspects
d’expérimentation n’ont pas été détaillés. Enfin la thèse ne présente pas simplement les
techniques et concepts adoptés, et les résultats de simulation, mais en outre, elle expliquera
les aspects techniques importants pour la réalisation et l’expérimentation des différentes
applications ainsi que les résultats concrets obtenus.

Abstract

Each year in Europe, 1,300,000 vehicle accidents result in 1,700,000 personal injuries. The
financial cost of vehicle accidents is evaluated at 160 billion Euros (approximately the same cost
in the USA). VANET (Vehicular Ad-Hoc NETwork) is a key technology that can enable hazard
alarming applications to reduce the accident number. In addition to improve the safety for
drivers and passengers, VANET can contribute to many potential applications such as detecting
and predicting traffic jams, auto-optimizing the traffic flow, and helping disabled passengers to
access public transports.

This thesis will present an embedded communication system dedicated to VANET
especially for the safety-related applications. Our design mainly tries to achieve two
requirements: as one can imagine, the embedded communication system for VANET requires
extra effort to deal with the highly dynamic network topology caused by moving vehicles, thus to
shorten the intra-node system latency and inter-node network delay is essential requirement for
such embedded communication system. Besides, a fundamental requirement for any practical
embedded system is resource-awareness. Although the embedded communication system on
vehicles may gain better hardware supports, the characteristics of embedded hardware still have
to cope with resource constraints in terms of QoS, memory, CPU and energy.

The embedded communication system involves two major software components: a routing
protocol called CIVIC (Communication Inter Véhicule Intelligente et Coopérative) and an
embedded operating system called HEROS (Hybrid Event-driven and Real-time multitasking
Operating System). The former is a quick reaction and low resource consumption geographic
protocol for inter-vehicle message transmissions; and the latter controls the whole system and
assures intra-node resource awareness. In addition, the system can use a localization software
solution called LCD-GPS (Low Cost Differential GPS) to improve the accuracy of locations.
The hardware platform is LiveNode (LImos Versatile Embedded wireless sensor NODE), which
is a versatile wireless sensor node enabling to implement rapidly a prototype for different
application domains. The communication system is based on the one-hop broadcast, thus it
does not have a strict limitation on network specification. For the experiments only, the IEEE
802.15.4 standard is chosen as the underlying wireless access medium. The standard is well
known as a low-power consumption standard requiring low-cost devices. Notice that the IEEE
802.15.4 standard is also the wireless access medium of 6LoWPAN.

Although the embedded communication system is originally designed to meet the
requirements of VANET, but its application domains are not limited to VANET. For example,
another network which can use the embedded communication system is WSN (Wireless Sensor
Network). CIVIC was used to implement different real-world projects such MOBI+ (intelligent
urban transportation system) and EU-FP6 NeT-ADDED (precision agriculture). Both VANET

and WSN are highly dynamic networks, but the causes of changing network topology are
different: the former is because of the high-mobility feature of vehicles, and the latter is
because of the fault of wireless sensors. Note that, although VANET and WSN are both
commonly considered as the subset of MANET (Mobile Ad-hoc NETwork), they are actually
quite different from the classical MANET, and the similarities and differences will be further
explained in the thesis.

The major contribution of my works relates to the CIVIC protocol, which routes messages
based on the geographic information. The related works of the thesis will focus on the
geographic routing techniques, problems and solutions, but other related techniques will also be
addressed. Note that, although some related projects were investigated but their implementation
and experiment aspects were not detailed. Finally, the thesis will not only introduce the system
design and provide simulation results, but also explain some of the important implementation
issues, give the theoretical evaluation results and provide the real-world experiment results.

Acknowledgement

Throughout my years as a PhD student, many people have kindly provided me with their help.
I have to thank them all and I am particularly indebted to the following people.

First and foremost, I would like to express my sincere gratitude to my advisors, Prof.
Kun-Mean HOU and Dr. Jian-Jin LI, for their guidance, support and patience during my PhD
study period in the LIMOS laboratory, Blaise Pascal University. I am very fortunate to have
them as my advisors.

I am very grateful to the members of the dissertation jury for their valuable time and
feedback. My special appreciation goes to Prof. Bernard TOURANCHEAU and Dr. Houda
LABIOD.

I would also like to thank all colleagues and friends for their contribution on this
dissertation. Here I would mention Mr. Hongling SHI, Dr. Messaoud KARA and Dr. Jing WU.

Finally, a special thanks to my family. Without their understanding and encouragement I
could not have begun my graduate study and it would be much more difficult for me to finish
my PhD degree.

Contents

Résumé i

Abstract iii

Acknowledgement v

Contents vii

List of Figures xi

List of Tables xv

List of Acronyms xvii

1 Introduction 1
1.1 System Overview . 1
1.2 Network Overview . 4

1.2.1 VANET . 4
1.2.2 WSN . 5
1.2.3 MANET . 5

1.3 State Contributions . 6
1.4 Structure of Thesis . 7

2 Related Works on Geographic Routing Protocols 9
2.1 Overview . 9

2.1.1 Topological Routing . 10
2.1.1.1 Link-state or Distance-vector Strategy 10
2.1.1.2 Proactive, Reactive, or Hybrid Scheduling 11
2.1.1.3 Efficiency-based and Stability-based Purposes 12

2.1.2 Hierarchical Routing . 12
2.1.2.1 Additional Requirements for WSNs 13

2.1.3 Geographic Routing . 14
2.1.3.1 Localization . 14
2.1.3.2 Greedy Forwarding and Its Limitation 15
2.1.3.3 Alternative Geographic Strategies 15

2.2 Geographic Localization Services . 17

2.2.1 Flooding-based Localization . 18
2.2.2 Hierarchical Localization . 19
2.2.3 Home Region Localization . 20
2.2.4 Quorum-based Localization . 20

2.3 Greedy Forwarding and Recovery Mode . 22
2.3.1 Next-hop Candidates . 22
2.3.2 Beacon-based or Contention-based . 23
2.3.3 Perimeter Routing for Void Area . 24
2.3.4 Other Recovery Techniques . 27

2.4 Geocast Strategies . 29
2.4.1 Basic Methods in Flooding . 29
2.4.2 Restricted Directional Flooding . 30
2.4.3 Flooding-based Geocast for VANETs 31

2.5 Geographic DTN-based Strategies . 32
2.5.1 Last Encounter Routing . 32
2.5.2 Carry-and-forward Routing . 33

2.6 Geographic Routing in VANET Projects . 35

3 Communication System: Designs and Evaluations 37
3.1 Overview . 37
3.2 CIVIC Protocol . 38

3.2.1 Concepts and Features . 38
3.2.1.1 Infrastructure Supports . 38
3.2.1.2 Context Based Communications 39
3.2.1.3 One-hop Link Stability . 40
3.2.1.4 Multi-hop DANKAB . 40

3.2.2 Layer-based Message Delivery . 42
3.2.2.1 Transport Layer: Application Messages 44
3.2.2.2 Network Layer: Hello Messages 45
3.2.2.3 Network Layer: Routing Messages 45
3.2.2.4 Network Layer: Message Fields 49
3.2.2.5 Medium Adaptation Layer: Software/Hardware Interface . . 49

3.3 Integrating with HEROS . 53
3.3.1 Overview . 53
3.3.2 Linda Mechanisms . 53
3.3.3 Related Works on EOSs . 55
3.3.4 Linda-based Component Designs . 56

3.3.4.1 Etask . 58
3.3.4.2 Thread . 59
3.3.4.3 Tuple . 62
3.3.4.4 IN/OUT Primitives . 63

3.3.5 Hybrid Priority-based Scheduling . 65
3.3.5.1 Event-driven Scheduling 66
3.3.5.2 Real-time Scheduling . 67

3.3.6 CIVIC with HEROS . 70

3.3.7 Performance Evaluation . 72
3.3.7.1 System Latency and Memory Consumption 72
3.3.7.2 Comparison with TinyOS 73

3.4 Hardware Platform: LiveNode . 75
3.4.1 LiveNode Components . 75
3.4.2 Medium Adaptation Layer: Multiple Wireless Supports 75
3.4.3 Designs in Hardware Driver . 77
3.4.4 Low-cost GPS module and LCD-GPS solution 79

3.5 Network Specification: 802.15.4 . 81
3.6 Theoretical Evaluations . 83

3.6.1 Introduction . 83
3.6.2 Inter-module Serial Communication 83
3.6.3 Software Execution . 84
3.6.4 Channel Access by CSMA/CA . 85
3.6.5 Over-the-air RF Transmission . 87
3.6.6 Inter-frame Space . 89
3.6.7 XBee-PRO Module Operations . 90
3.6.8 Evaluation Methods . 92
3.6.9 Theoretical result . 94

3.7 LRPC Experiments . 99
3.7.1 Introduction . 99

3.7.1.1 LRPC Test Center . 99
3.7.1.2 Hardware and Software . 99
3.7.1.3 802.15.4 Network . 101
3.7.1.4 Scenarios . 102
3.7.1.5 Evaluation Metrics . 103

3.7.2 Results and Analyses . 103
3.7.2.1 Overview . 103
3.7.2.2 Transmit Power . 104
3.7.2.3 Transmit Distance . 110
3.7.2.4 Fog . 111

3.7.3 Conclusion and Limitations . 117
3.8 Simulations on Shawn . 119

3.8.1 Introduction of Shawn . 119
3.8.2 Simulation Results . 119

3.8.2.1 Beaconless 802.15.4 Network 119
3.8.2.2 CIVIC Protocol Network 121

4 Applications: Inter-vehicle Communication 125
4.1 Software Implementation . 125
4.2 Field Experiments . 131

4.2.1 Indoor Multi-sensor Experiments . 131
4.2.2 Car Park at ISIMA Campus . 132

4.2.2.1 First Experiment Scenario 133
4.2.2.2 Second Experiment Scenario 135

4.2.2.3 Third Experiment Scenario 135
4.2.3 PAVIN Platform . 136

4.3 MobiPlus Project . 140

5 Applications: WSN Precision Agriculture 141
5.1 An Additional Auto-clustering Algorithm for WSNs 141

5.1.1 Concept and Scenario . 141
5.1.2 Criteria for the Selection of Master Nodes 143

5.1.2.1 Clustering Model . 143
5.1.2.2 Criteria for the selection of master nodes 145

5.1.3 MATLAB Simulations . 145
5.1.3.1 Centralized Approach . 145
5.1.3.2 Localized Approach . 146

5.1.4 Simulation Results . 147
5.2 NeT-ADDED Project . 150

6 Conclusions and Ongoing Works 153

Bibliography 155

A The format of CIVIC message 165

B Layer-based Modules 167

List of Figures

1.1 Stack Architecture of the Communication System 2

2.1 Local minimum problem in an example of VANET 16
2.2 An example to show the distance effect . 18
2.3 An example of GLS localization services . 19
2.4 An example of DS-quorum localization services 21
2.5 Next-hop selections in greedy forwarding . 22
2.6 Optional areas in contention-based forwarding 24
2.7 Planarization areas of GG and RNG (in gray color) 25
2.8 An example of the routing path by FACE I 26
2.9 An example of the routing path by FACE II 26
2.10 Flooding areas in DREAM and LAR . 30
2.11 An example of the routing path by EASE . 33
2.12 An example of the routing path by GeOpps 34

3.1 Stack Architecture of the Communication System 37
3.2 Mixed ad-hoc and infrastructure networks . 39
3.3 DANKAB routing concept . 41
3.4 CIVIC messages on layer-based delivery . 43
3.5 The proactive tasks related to the first sending of routing requests 47
3.6 The reactive tasks related to routing requests and replies 48
3.7 A tuple-based out() and in() operation by structured name 54
3.8 Tuple-based Component Architecture in HEROS 56
3.9 Transform of etask states . 58
3.10 EPL: Indicating the priorities of etasks . 59
3.11 Transform of thread states . 60
3.12 TPL: Indicating the priorities of sub-threads in an etask 61
3.13 Processes in the OUT primitive . 64
3.14 Processes in the IN primitive . 65
3.15 Logical layers for event-driven mechanism . 66
3.16 Processes in Event-driven Scheduling . 68
3.17 Processes in Real-time Scheduling . 69
3.18 System stack and event-driven data flow . 70
3.19 The interactions between etasks and threads 71
3.20 LiveNode platform . 76
3.21 Two LiveNode sensors link together: ZigBee plus Wi-Fi 77

3.22 Driver for XBee Pro chip: An example for inputting data 78
3.23 Correct rate for an experiment for GPS accuracy 79
3.24 CIVIC and 802.15.4 standard . 81
3.25 The periodic sequence of delay factors . 84
3.26 The non-beacon unslotted CSMA/CA algorithm 86
3.27 IEEE 802.15.4 Frame Format (the unit of size is octet) 88
3.28 Communication Mechanisms of the XBee-PRO module 90
3.29 The waveforms in the sending process . 91
3.30 The waveforms in the receiving process . 91
3.31 Mechanisms of the XBee-PRO module communications 92
3.32 Delays when sending and receiving a message in five octets 93
3.33 Comparing the oscilloscope result with the theoretical result 94
3.34 The timing sequence of delay factors in sending data frames 95
3.35 The theoretical delay . 97
3.36 The percentage rates of delays . 97
3.37 The fog chamber of LRPC . 99
3.38 The environments of the night room . 100
3.39 The sender LiveNodes at the observation station 100
3.40 The receiver LiveNodes at the night room during experiment 101
3.41 Overall delays and loss rates in different transmit powers 103
3.42 Overall delays and loss rates in different transmit powers 104
3.43 The average loss rates when sending DATAs below and equal to the effective size105
3.44 Delays and loss rates in the best and worst conditions 106
3.45 The average loss rates under the different transmit powers 106
3.46 The average loss rates under the different transmit powers 107
3.47 The average loss rates under the different transmit powers 107
3.48 Effect of output powers (visibility = no fog, distance = 20 meters) 108
3.49 Effect of output powers (visibility = no fog, distance = 30 meters) 108
3.50 Effect of distance on message delay (visibility = no fog, output power = 18 dBm) 110
3.51 Effect of output powers (visibility = 5 meters, distance = 30 meters) 112
3.52 The average loss rates with fog effects . 112
3.53 The average differences of loss rates with fog effects 113
3.54 The fog effects on loss rates under 10 dBm by the Eqs. 3.21 and 3.22 114
3.55 The fog effects on loss rates under 18 dBm by the Eqs. 3.23 and 3.24 114
3.56 The average delays with fog effects . 115
3.57 The average differences of delays with fog effects 115
3.58 The fog effects on delays under 10 dBm by the Eqs. 3.25 and 3.26 116
3.59 The fog effects on delays under 18 dBm by the Eqs. 3.27 and 3.28 116
3.60 Intended application area of simulators . 119
3.61 Delay for only the connected nodes . 120
3.62 Routing request (multi-path) and reply (single-path) by CIVIC protocol 122
3.63 Full static network connections and void areas 123
3.64 A routing path created in a slowly dynamic network simulation 124
3.65 A routing path created in a highly dynamic network simulation 124

4.1 Layer-based Message Flows . 126
4.2 HEROS Communication Tasks . 127
4.3 Data sending flows to a destination node . 132
4.4 Location of the experiment in a parking area 132
4.5 Network deployment for nine sensors . 133
4.6 Routings topology by SF . 134
4.7 Routing topology by DANKAB . 134
4.8 Experiment with a mobile sensor . 136
4.9 PAVIN platform . 136
4.10 A Cycab with LiveNode in PAVIN platform 137
4.11 Location changes during experiments . 137
4.12 CIVIC protocol performing the DANKAB routing requests 138
4.13 MobiPlus project in Clermont-Ferrand (France) 140

5.1 An example result of auto-clustering algorithm 142
5.2 Auto-clustering network scenario . 143
5.3 An example of master node selection . 146
5.4 Number of master nodes/cluster vs radio radius 147
5.5 Number of master nodes/cluster vs total number of sensor nodes 147
5.6 Cluster formulation . 148
5.7 Inter-cluster network connections . 149
5.8 Intra-cluster connections . 149
5.9 LivePlatform dedicated to precision agriculture 150
5.10 Soil Moisture LiveNode . 151

List of Tables

1.1 Comparisons properties among MANET, VANET and WSN 5

3.1 CIVIC message groups, network types, and message sizes (bytes) 42
3.2 Binary masks, values and descriptions for MSG_STATUS 50
3.3 Message fields relating to the node ID in a network message 50
3.4 Message fields relating to the array of node IDs in a network message 50
3.5 Message fields relating to the location from GPS in a network message 51
3.6 Message fields for only one type of network messages 51
3.7 The data structure for ECB nodes (struct Etask{...}) 58
3.8 The data structure for TCB nodes (struct Thread{...}) 60
3.9 Stack Structure(struct Stack{...}) . 61
3.10 Tuple Structure(struct Tuple{...}) . 62
3.11 Cycle and response time for IN Primitives . 73
3.12 Cycle and response time for Thread (real-time) switch 73
3.13 Comparison between HEROS and TinyOS . 73
3.14 Corrections of standard deviations on the three directions (unit is meter) 80
3.15 The fields of DATA from sender . 102
3.16 The fields of ACK from receiver . 102
3.17 The average of differences between 18 dBm and 10 dBm without fog 109
3.18 The average densities of fog in records . 111
3.19 The average differences of loss rate relate to POMs less than 10 dBm 113
3.20 The average differences of loss rate relate to POMs less than 18 dBm 113
3.21 The average differences of delay relate to POMs 116
3.22 Beaconless IEEE 802.15.4 results on Shawn 120

4.1 Memory consumption of the communication system (unit is byte) 129
4.2 Individual sensor status in an indoor experiment 131
4.3 Comparing SF and DANKAB routing approaches 133
4.4 Comparing the efficiency with or without acknowledgement 135
4.5 Comparing the factor of mobile sensor . 135
4.6 Overall network status . 138
4.7 Overall network status . 139

List of Acronyms

6LoWPAN ipv6 over LOw power Wireless Personal Area Networks.

AODV Ad hoc On-Demand Distance Vector.

ARM Advanced Risc Machine.

BE Backoff Exponent.

BLR Beacon-less Routing.

CCA Clear Channel Assessment.

CIVIC Communication Inter Véhicule Intelligente et Coopérative.

CPI Cycles Per Instruction.

CR Compass Routing.

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance.

CTS Clear To Send.

DANKAB Directional Area Neighbour Knowledge Adaptive Broadcast.

DG Distance-based Greedy.

DLL Data Link Layer.

DREAM Distance Routing Effect Algorithm for Mobility.

DSR Dynamic Source Routing.

DSRC Dedicated Short-Range Communication.

DSSS Direct Sequence Spread Spectrum.

DTN Delay Tolerant Network.

DV Distance-Vector.

EOS Embedded Operating System.

GeOpps GEographical OPPortuniStic Routing.

GFG Greedy-Forward-Greedy.

GG Gabriel Graph.

GHLS Geographic Hashing Location Service.

GHT Geographic Hash Table.

GLS Grid’s Localization Service.

GPS Global Positioning System.

GPSR Greedy Perimeter Stateless Routing.

GSM Global System for Mobile Communications.

HEROS Hybrid Event-driven and Real-time multitasking Operating System.

IFS Inter-Frame Space.

IGF Implicit Geographic Forwarding.

IPC Inter-Process Communication.

IVC Inter-Vehicle Communication.

LAR Location-Aided Routing.

LCD-GPS Low Cost Differential GPS.

LER Last Encounter Routing.

LiveNode LImos Versatile Embedded wireless sensor NODE.

LS Link-State.

MAC Media Access Control.

MANET Mobile Ad-hoc NETwork.

MCU MicroController Unit.

MFR Most Forward progress within Radius.

MMRS Multi-support, Multi-service Routers and Servers.

MPDU Mac Protocol Data Unit.

MSDU Mac Service Data Unit.

NB Number of Backoff periods.

NFP Nearest with Forward Progress.

PAN Personal Area Network.

PHY PHYsical layer.

PPDU Phy Protocol Data Unit.

PSDU Phy Service Data Unit.

QoS Quality of Service.

RF Radio Frequency.

RNG Relative Neighborhood Graph.

RTS Request To Send.

SDREAM Super-small Distributed REAl-time Microkernel.

SF Simple Flooding.

SOS Sensor Operating System.

SPI Serial Peripheral Interface.

TS Tuple Space.

UART Universal Asynchronous Receiver/Transmitter.

USART Universal Synchronous/Asynchronous Receiver/Transmitter.

UTRA-TDD Umts Terrestrial Radio Access Time Division Duplex.

VADD Vehicle-Assisted Data Delivery.

VANET Vehicular Ad-Hoc NETwork.

VII Vehicle Infrastructure Integration.

Wi-Fi WIreless FIdelity.

WSN Wireless Sensor Network.

WSNOS Wireless Sensor Network Operating System.

ZigBee Zonal Intercommunication Global-standard, where Battery life was long, which was
Economical to deploy, and which exhibited Efficient use of resources.

Chapter 1

Introduction

1.1 System Overview

When talking about an embedded system, it normally refers to the tiny computer system
designed to cope with stringent resource constraints and perform several dedicated functions.
The hardware and software designs of embedded systems are very different from the ones
of general-purpose personal computers. The major cause is from the limited hardware
characteristics of the embedded system in terms of energy, CPU and memory. Moreover, an
embedded communication system will have to accomplish more than that if the network is
purely supported by the embedded hardware. Besides the previous hardware limitations, the
network limitations such as bandwidth and transmission distance will have to be taken into
account. Therefore, the resource-awareness is always the basic requirements for any practical
embedded communication system.

The traditional embedded communication systems are usually only needed to handle static
and lowly dynamic networks, but with the increase of vehicular safety applications such as
hazard alarming and cooperative driving, a new requirement to solve highly dynamical networks

has started to emerge for the embedded communication systems. The highly dynamical network
in the thesis refers to the network with a frequently changed network topology.

The highly dynamical network in the thesis mainly refer to VANET (Vehicular Ad-Hoc

NETwork), which uses moving vehicles as network nodes to create a MANET (Mobile Ad-hoc

NETwork). Besides, another type of highly dynamical network is WSN (Wireless Sensor

Network). However, the causes of their network topology changes are different: the former
is caused by the high-mobility feature of vehicles, and the latter is caused by the fault of
wireless sensors. Note that, the WSN in the thesis is purposed for used in the sub-domains
including smart home and greenhouse monitoring, thus it can be expected to have higher
hardware capability (e.g. equipped with GPS (Global Positioning System)).

The embedded communication system involves two major software components: a
geographic routing protocol called CIVIC (Communication Inter Véhicule Intelligente et

Coopérative) and an embedded operating system called HEROS (Hybrid Event-driven and

Real-time multitasking Operating System). The former is a quick reaction and low resource
consumption geographic routing protocol for inter-vehicle message transmissions; and the latter
controls the whole system and assures intra-node resource awareness.

Because the embedded communication system is designed for the practical use in a near

2 Chapter 1. Introduction

future, some trade-offs in the software designs have been made to solve the highly dynamic
problems with the resource constrains including the embedded hardware and network. Our
software design rationale is to provide a relatively optimal software result with the minimum
resource, instead of providing the most optimal software result with a non-practical computation
amount under the resource constrains. The examples of the software design rationale can be
found from the routing computation results in CIVIC protocol and the component flexibility in
the HEROS operating system.

The hardware component of the embedded communication system is LiveNode (LImos

Versatile Embedded wireless sensor NODE), which is a versatile wireless sensor node enabling
to implement rapidly a prototype for different application domains. The current network
component for the experiments is the IEEE 802.15.4 standard. The embedded communication
system does not have a strict limitation on network specification, and actually one of the designs
of the embedded communication system is to try to makes it adaptive to multiple wireless
network mediums. In addition, the system can use a localization software solution called
LCD-GPS (Low Cost Differential GPS) to improve the accuracy of locations.

HEROS

(Task Center)

CIVIC: Transport Layer

(Application interface, Reliable data transfer)

Application Layer

Hardware and Network

CIVIC: Medium Adapter Layer

(Multiple wireless support)

CIVIC: Network Layer

(Routing messages delivery)

Microcontroller

(ARM7)

Localization

(GPS)

Communication

(IEEE 802.15.4)

Drivers

Figure 1.1: Stack Architecture of the Communication System

The stack architecture of these components is shown in Figure 3.1 and they will be explained
in details in the later chapters.

The main focus of the thesis is the routing aspects on the software and networking side,
which are mainly relating to the CIVIC protocol, but before presenting CIVIC protocol and
the other aspects of the communication system, the following section will first introduce our
targeting networks: VANET, WSN and MANET, along with our motivation. As the full name
of CIVIC suggesting, the VANET will be explained in more details. Although VANET and

1.1. System Overview 3

WSN are both commonly considered as the subset of MANET, they are actually quite different
from the general-purpose MANET, and the similarities and differences will be further explained
the MANET section.

4 Chapter 1. Introduction

1.2 Network Overview

1.2.1 VANET

The number of vehicles on roads was continually increasing for the recent years in Europe,
but the improvement on road conditions and the training to drivers were not followed up
enough. Each year, vehicle accidents result in 1,700,000 personal injuries, and the financial
cost of vehicle accidents is evaluated at 160 billion Euros (approximately the same cost in the
USA). VANET is considered to be one of the key technologies that can enable hazard alarming
applications to reduce of the accident numbers. In addition to improve the safety for drivers
and passengers, VANET can contribute to many potential applications such as detecting and
predicting traffic jams, auto-optimizing the traffic flow, and helping disabled passengers to
access public transports.

Comparing with general-purpose MANET communications, the IVC (Inter-Vehicle

Communication) for VANETs has its unique features that have not been fully explored.

• As one can imagine, it requires extra effort to deal with real-time event and network delay
under the highly dynamic topology caused by highly mobile vehicles.

• The network size could be very large in big cities, thus it requires the ability for the
localized configuration. The traditional client/server systems are not appropriate.

• The density of vehicular network are much more variable, thus there is a requirement for
a new routing protocol to minimize the administrative overhead.

• The distribution of vehicular network is generally along roads. It provides the opportunity
for IVC to deploy the roadside infrastructure for supporting network access and
QoS (Quality of Service), but as well, it raises the expectation for the adaptability to
different wireless standards.

• The position and direction of network nodes could be obtained by GPS on vehicles.

• Last but not least, the hardware system must be in a low price to enable the broader
adaptability.

These unique IVC features have been considered for our communication system. All the
major factors that cause the message delay and loss rate of an embedded communication system
in our design have been evaluated carefully. The CIVIC protocol is a geographic routing
protocol including the configurable proactive and reactive approaches to make it suitable for
different VANETs. The possibility of using infrastructure supports is also taken into account.
The communication system is based on the one-hop broadcast, thus it does not have a strict
limitation on network specification.

The resource-awareness is not only in the design of the CIVIC protocol. In our embedded
communication system, CIVIC constitutes a quick-response inter-node communication stack
on HEROS, while HEROS provides CIVIC with intra-node mechanisms to run hybrid tasks
and manage hardware. The designs have been implemented in a low-price LiveNode sensor
board. The network for our simulations and experiments are IEEE 802.15.4 standard, which is
well known as a low-power consumption standard. Notice that IEEE 802.15.4 standard is also
adopted by 6LoWPAN (ipv6 over LOw power Wireless Personal Area Networks).

1.2. Network Overview 5

1.2.2 WSN

WSNs are usually grouped by large numbers of low-cost sensor nodes with one or more sinks.
A sink with high hardware capabilities holds the connection between sensor nodes and data
proxy. The hardware characteristics of sensor nodes have to cope with more stringent resource
constraints in terms of CPU, energy, memory, bandwidth and transmission distance.

The deployment of WSNs is hard to predict. In some applications, sensor nodes are
randomly deployed by aircraft. Faults in sensor nodes are a common fact because of
resource constraints and unanticipated environment variations. Owning to the unique features,
auto-configuration in WSN is particularly important. It is impractical to manually initialize
or reconfigure hundreds of low-cost sensor nodes. In some applications such as disaster
monitoring and battlefield surveillance, the sensor nodes are often required to operate in
dangerous environment where accessibility is highly restricted.

An auto-clustering algorithm is purposed in the lightweight management protocol of our
embedded communication system. The algorithm autonomously divides sensor nodes into a set
of single-level clusters by using only locally-available information.

1.2.3 MANET

MANET is a structureless network of mobile nodes. Nodes in general-purpose MANETs are
usually battery-operated, which makes energy efficiency one of important requirements, but it
is not as important as in WSNs. The movement pattern of MANET is different from the one
in VANET. The nodes in MANETs are considered to be randomly moving instead of moving
along the roads as in VANETs. The common feature of them is self-configuring. Table 1.1
shows the differences of three types of networks.

VANET WSN MANET
Network size Very Large Large Medium
Node’s general capability Medium or High Very Low Medium
Node’s faults Medium Very Frequently Possible
Node’s mobility Very High Static or Low Medium
Mobile pattern Along the roads Normally Static Randomly
Location usage Required Not Required Possible

Table 1.1: Comparisons properties among MANET, VANET and WSN

6 Chapter 1. Introduction

1.3 State Contributions

My major contribution and the main focus of the thesis is in the software and networking sides
of the embedded communication system. Mainly, it is about the CIVIC routing protocol, along
with the works in the HEROS operating system.

The related works of the thesis will present the state of art of routing technique researches:
the techniques, their problems and some solutions. The focus is put on the geographic routing
techniques, and there are two reasons for that: firstly, the main researches for solving the
lowly/highly dynamic routing problems are based on the geographic techniques; secondly, the
CIVIC protocol, which is a major software component of our embedded communication system,
is designed to be a geographic protocol. Note that, as for using in highly dynamic networks
under the resource constrains, none of the current routing techniques can be considered to be
exactly adaptable and reliable. Most of the solutions are not very well suitable for current
embedded hardware capabilities (e.g. CPU and memory) and/or the features of the highly
dynamic networks like VANETs (e.g. without considering the context-awareness). However,
these researches could be used for the further development of our embedded communication
system.

As previously mentioned, the embedded communication system is developed for
real-world applications. The thesis will present all the aspects needed by developing such
an embedded communication system including design concepts, algorithms, evaluations,
simulations, implementations and real-world experiments. Although some relating projects
were investigated but the implementation and experiment aspects were not detailed.

The final results from simulations and real-world experiments contained in the thesis do
not completely prove our original thoughts for using the system designs in highly dynamic
networks when considering high-density network nodes. Further improvements are required in
the future. However, since the isolated elements in our design have been carefully evaluated
and they are individually proved to be the suitable ones, it is greatly possible that the embedded
communication system can be actually adapted to real-world applications with the further
improvements. Moreover, as for the aspects of message delay, system latency and memory
consumption, the design is proved to be a very good one.

The CIVIC protocol and the HEROS operating system have been implemented as
a prototype or conceptually adapted in different types of dynamic real-world projects
such MobiPlus (intelligent urban transportation system), EU-FP6 NeT-ADDED (precision
agriculture) and LiveCare (telemedicine).

1.4. Structure of Thesis 7

1.4 Structure of Thesis

The remainder of the thesis is organized as follows:

• The next chapter, Related Works on Geographic Routing Protocols, presents the current
routing techniques.

• After that, it is a chapter, named Communication System: Designs and Evaluations, for
the detailed description of design concepts and routing algorithms. In the same chapter,
theoretical evaluations (with a fog experiment at LRPC test center) and the simulations
on Shawn will also be given.

• Then, there are two chapters are about the our specific applications, named Applications:

Inter-vehicle Communication and Applications: WSN Precision Agriculture. The
implementations and real-world experiments will be detailed in the first one, and the
MATLAB simulation results will be presented in the second one.

• The last chapter is Conclusions and Ongoing Works.

Chapter 2

Related Works on Geographic Routing
Protocols

This chapter presents the routing techniques relating to our embedded communication system.
The focus in this chapter is the geographic routing and its application for highly dynamic
networks like VANETs, but other related general routing techniques will also be addressed.
This chapter is organized as follow:

In the beginning, Section 2.1 gives an overview of the related routing techniques, problems
and solutions. Because the embedded communication system can also be adapted to WSNs,
which is also a type of high dynamic network, Section 2.1.2 briefs the routing requirement for
WSNs. The network layer of the CIVIC protocol uses the geographic routing, which is starting
to become a common routing technique for VANETs. Section 2.2, Section 2.3, Section 2.4 and
Section 2.5 explains in details about the geographic routing for VANETs. Section 2.6 introduces
the VANET projects using geographic routing.

Moreover, this chapter tries to summarize the features of these routing techniques, and
compare the routing techniques only based on the summarized features. This research field on
highly dynamic networks like VANETs is relatively new, thus few routing techniques provide
full required functions. In the latter section, the simulations for the key features will be given.

2.1 Overview

The routing in MANETs is the process for nodes themselves to discover the path for sending
network traffic. A routing protocol operates at the network layer of OSI reference model, and it
implements the specifications and mechanisms (e.g. message format and routing algorithm)
used for the auto-configured communications between nodes. A routing algorithm is for
comparing the potential routing paths and providing a routing decision. A network topology
in routing algorithms is often described as a weighted graph with metrics representing nodes
and edges representing wireless links. The metrics that can be used to calculate the edge weight
in MANETs include hop count, remaining energy, delay, received signal strength, bandwidth,
load balance, reliability, etc.

The result of the routing algorithm is a decision of routing path (route). Mostly, a single-path

routing is used. In the cases of more than one routing paths, it is called a multi-path routing.
The multi-path can also be acquired by the flooding-based techniques. Moreover, there are

10 Chapter 2. Related Works on Geographic Routing Protocols

two types of routing paths depending on the configuration methods: static and dynamic. A
static routing path is manually stored by the network administrator to nodes within a one-hop
administrative distance. The technique is not practical for dynamical or large networks, thus the
following description will not include it. A dynamic routing path is discovered and maintained
by the nodes themselves through routing protocols. The route discovery normally includes two
processes: a routing request and a route reply. The traditional routing request is implemented
by a flooding from the source node, and the routing reply is more often to be an unicast directed
from the destination node.

Routing protocols described in the thesis can be divided into three broad categories:
topological, hierarchical (clustered-based) and geographic (or position-based) routing
protocols. The topological routing protocols use the metrics in a weighted graph that mainly
relates to the link status. The hierarchical routing protocols organize nodes into clusters, thus
inter-cluster and intra-cluster can use different routing techniques. The geographic routing
protocols consider the physical position of nodes (or regions) as the principle routing parameter.
A large number of routing protocols adopt more than one type of routing techniques, but if
possible, the thesis does not consider the hybrid routing protocols as a standalone category. If
a routing protocol combines different routing techniques, its major feature determines which of
the three categories it belongs to.

2.1.1 Topological Routing

The topological routing is not the focus of this thesis, but some routing techniques that first
appear at topological routing protocols are commonly used by geographic and hierarchical
routing protocols. This section will introduce these common routing techniques. Some routing
protocols are explained in more details if they are typical ones, or they are used by the
geographic or hierarchical routing protocols introduced in the following sections.

There is one important reason why these classical topological routing techniques cannot be
adopted to highly dynamical MANETs independently: the infrastructure of topological routing
is more often based on the result of connections in a network topology (i.e. route discovery,
maintenance and deletion), thus at least one end-to-end connection (i.e. a routing path) must
be found before the data delivery. In the other words, these topological routing mainly work
in the connection-oriented principle: A basic transmission technique for the electronic data
networks including MANETs is packet switching, which is in either connection-oriented or
connectionless principle. The packet transmission in a connection-oriented principle is prefixed
with a connection setup stage, thus this mode is more reliable in static and low-mobility
networks. On the other hand, a packet in a connectionless principle is routed individually by a
network node only depending on the packet header information. Although a connectionless
principle may require additional header information, it can normally achieve a small delay
during a transmission, thus this mode has a bigger advantage in a highly dynamical MANETs.

2.1.1.1 Link-state or Distance-vector Strategy

The topological routing normally selects a next-hop forwarder by the shortest-path (or

minimum-weight path) strategy. Depending on principle algorithms, the strategy can be
categorized into two categories: LS (Link-State) and DV (Distance-Vector). Both classical LS

2.1. Overview 11

and DV routing protocols have disadvantages for the highly dynamical MANETs with a low
resource consumption requirement.

• In LS routing, nodes are informed about the neighbor links of an entire network. The
information updates is more often implemented by periodic flooding. Since a network
topology with all kinks is available for each node, a node can utilize the Dijkstra’s

algorithm as the principle algorithm independently; therefore the classical LS routing
protocols in an ideal scenario can provide an accurate result faster than DV routing
protocols. However, in a practical MANET, such centralized methods are easy to generate
a higher routing control overhead, and they normally have a slower reaction to the
outdated routing paths.

• DV routing decentralizes the shortest path strategy by restricting the vision of nodes
within neighbors. The routing information is gradually spread via neighbor broadcasts.
The principle algorithm for classical DV routing protocols is the Bellman-Ford algorithm.
Instead of requiring the information of an entire network, the algorithm advertises the
link information as a list of vectors with distance (i.e. the total edge weights to a
destination) and direction (i.e. a next-hop forwarder). Comparing with the Dijkstra’s
algorithm, it requests less memory to store the routing information, it is easier to be
implemented, and it can detect the existence of negative cycles. DV routing protocols are
more practical for regular MANETs, but because the nodes themselves control the updates
of routing information, and the vision of nodes is limited to neighbors, the classical
DV routing protocols suffer from slower routing convergence, routing loop problem and
count-to-infinity problem.

2.1.1.2 Proactive, Reactive, or Hybrid Scheduling

The topological routing protocols can be divided into proactive, reactive and hybrid categories
based on the route discovery scheduling:

• A proactive scheduling maintains up-to-date routing tables for partial or entire network.
In order to have correct routing paths, each node needs to explore network routing
periodically. The approach keeps the end-to-end delay low because data can be sent
to a destination node without an immediate routing request. However, this scheduling
technique needs to maintain the routing paths even they are not currently used, thus
it may not be suitable for the MANET nodes with low memory resource. Moreover,
to maintain correct paths only by proactive scheduling increases the routing overhead
significantly in highly dynamical MANETs. The typical proactive examples are the
LS-based protocols OLSR [1] and TBRPF [2], and the DV-based protocol DSDV [3].
The Destination-Sequenced Distance-Vector (DSDV) routing protocol uses classical
flooding-based Bellman-Ford algorithm, but it avoids the looping-related problems by
adding a destination sequence number to each entry in a routing table.

• The reactive scheduling does not maintain a full routing table at anytime. They discover
routing paths only when a demand is received. The scheduling technique is more efficient
in terms of memory utilization but along with additional end-to-end delay. Moreover,
the technique may still generate a high routing overhead in highly dynamical MANETs.

12 Chapter 2. Related Works on Geographic Routing Protocols

The typical examples are AODV [4] [5], DSR [6], TORA [7], and SSA [8]. The Ad

hoc On-Demand Distance Vector (AODV) routing protocol is based on DSDV but with
a reactive routing discovery. To avoid redundancy in the flooding-based routing request,
a node in AODV only forwards the same routing request once. The Dynamic Source

Routing (DSR) protocol is similar to AODV in the flooding-based process, but it is
a LS-based protocol. Moreover, instead of caching the routing paths in the passing
nodes (routers), the routing paths in DSR are contained directly in the messages for the
routing request and reply. The source node can select and then add the best routing path
to the data delivery packets. Because the source node specifies the routing path but not
the routers, this process is called as source routing. The Temporally-Ordered Routing

Algorithm (TORA) is neither DV nor LS, but a link-reversal algorithm, which builds and
maintains a Directed Acyclic Graph (DAG) tree which is rooted from a destination node
to all its source nodes. When a link fails, a related node traces back to the source nodes
by the DAG tree, and rebuild only a limited part of the tree. The Signal Stability-based

Adaptive (SSA or SSR) routing protocol builds and maintains both a routing table and
a signal stability (SST) table for each node. The SST classifies the states of neighbor
connections based on the signal strength of periodic beacon messages.

• The hybrid scheduling combines the advantages of the proactive and reactive scheduling
techniques. It normally divides nodes in sub-networks, and then adopts different
configuration approaches depending on regions. An typical example is Zone Routing

Protocol (ZRP) [9], which includes a proactive intra-zone routing scheduling, and a
reactive inter-zone routing scheduling. The hybrid scheduling technique can reduce
routing overhead and increase the scalability for static network, but the network division
could create an additionally high overhead if the network topology is changed too
frequently.

2.1.1.3 Efficiency-based and Stability-based Purposes

Depending on purposes, there are two subsets of shortest-path routing protocols for MANETs.
The classical subset mainly considers the efficiency of a routing path, and protocols in this
subset measure routing paths by the end-to-end metrics such as hop count or delay (DSDV [3],
AODV [4] [5], and DSR [6]).

Another newer subset focuses on the link stability, it tries to extend the network lifetime
and throughput, and they normally use the metrics such as signal strength (SSA [8], ABR [10]),
route lifetime (RABR [11]), and link reversal (TORA [7], LMR [12]). These two subsets do not
really have an opposing nature. The stability-based routing techniques can be an enhancement
to the efficiency-based ones (BSR [13]).

2.1.2 Hierarchical Routing

Usually, a node in a hierarchical network has two basic roles: cluster head and cluster member;
and an additional role: cluster gateway. The role of a cluster head or master represents for
routing, management and aggregation. A cluster gateway can belong to more than one cluster,
and this role normally only represents for routing data between clusters. Besides, all other nodes
are all in the role of cluster members. The challenge of hierarchical routing techniques is the

2.1. Overview 13

election of cluster head and cluster gateways. These two types of nodes are easy to become
the bottleneck in data transmission, because they afford the additional routing and/or managing
tasks.

The common requirement for a hierarchical routing is to increase the scalability and reduce
the routing overhead. However, depending on different application domains, some additional
requirements could be conflicting. The center attention of this thesis is in the application domain
of VANET in the next Section 2.1.3. This application domain mainly uses the hierarchy in
localization services, and VANETs are normally divided based on physical positions.

2.1.2.1 Additional Requirements for WSNs

This subsection focuses on WSN, another application domain to which the embedded system
can be adopted. The requirements of this application domain are for energy efficiency and
therefore extend the network lifetime. Therefore, all WSN techniques must consider the
maximum/limited energy-efficiency in its priority mechanism. The cluster division for WSNs
is normally based on the calculation of node energy, and in some cases it is also based on
positions (e.g. smart home and telemedicine). The process to divide a network into clusters can
be done explicitly. Or, as an implicit process in a regular routing is also possible (e.g. each node
is assigned a Home Region scope). The other requirements for hierarchical routing for WSNs
are as follows:

• There are two major communication modes in WSNs. The more often one is from
sensors to a sink, which is for aggregating monitoring data and it must be auto-configured
by nodes. Another one is from a sink to sensors, and it is mainly for managing and
querying purposes. Normally, the node-to-node communication in WSNs is not required.
A hierarchical routing protocol for WSNs must at least provide the first mode.

• The routing driven modes in WSNs can be divided into three subsets, and at least one
of them must be provided. A traditional mode is the event-driven, which normally used
for gathering the event data from regular monitoring tasks. The second mode is called
query-driven (or sink-driven), which normally requires both ways of communication
modes. This mode is normally used for tracking or controlling the specific area data.
Moreover, a timer-driven mode supports to run more complex real-time tasks (e.g. smart
environment applications [14]).

The candidate protocols that fit the aforementioned requirements are Low-Energy Adaptive

Clustering Hierarchy (LEACH) [15] (many-to-one, event-driven), Threshold sensitive Energy

Efficient sensor Network protocol (TEEN) [16] (many-to-one, timer-driven), Distributed

Aggregate Management (DAM) [17] (two ways, query-driven). Moreover, with the recent
advances in localization technologies, to use the position information in WSNs is partially
possible. Two-Tier Data Dissemination (TTDD) [18] (grid position based, event-driven) and
Clustering and Fuzzy Position based routing (CFP) [14] (fuzzy position based, timer-driven)
are considered for WSNs by this reason.

14 Chapter 2. Related Works on Geographic Routing Protocols

2.1.3 Geographic Routing

The additional geographic routing techniques can overcome some of the drawbacks of
topological ones in highly dynamic MANETs, and they have unique advantages for VANETs:

• A more adaptable forwarding strategy can be built based on the connectionless principle.
If the destination position is known, the forwarding strategy can simply use the neighbor
positions as metrics to forward packets. Because the process is mainly based on the
local geographic information, a node has no need to first discovery routing paths and to
maintain routing tables. Therefore, it can adapt to the frequent changes of the network
topology with a lower routing overhead and delay.

• Using geographic information enables a more accurate routing decision. For example,
a new type of multicast techniques, called geocast, can be used to deliver packets to a
specific location or region. A geocast can normally have a small routing overhead and a
better scalability comparing with the regular multicast.

• The infrastructure of VANETs is suitable for using geographic routing techniques.
Normally, The nodes in a VANET can obtain the additional supports from vehicle
equidment (e.g. localization and energy). The other additional supports from roadside
infrastructure can also help to get the localization information. Besides, it is easier to
control the forwarding direction because the moving vehicles are generally limited along
the road.

Although the geographic routing techniques have their advantages, they have not yet been
become broadly practical in the related civil projects because some drawbacks have to be
overcome firstly. The general geographic routing techniques and their problems in VANETs
will be introduced in this overview section.

2.1.3.1 Localization

Geographic routing techniques normally assume that a node can get the three types of positions:
its own position, the positions of neighbor nodes, and the positions of destination node (or
region). The assumption is based on the development of localization techniques, which is one
of the main challenges for using geographic routing techniques in VANETs.

Our PAVIN experiments in [19] demonstrate the difficulty in developing a localization
technique in a relative ad-hoc mode: a localization service may require a geographic routing to
transmit the reference data in the first place; but for transmitting the data, a geographic routing
may need to firstly acquires the correct geographic information from a localization service.
Even the exchange of reference data can be done by other routing techniques (e.g. at least the
flooding-based techniques in the worst case), it increase the technical complexity. The situation
may be improved if a node can gain the direct supports from the roadside localization service,
but the roadside localization system could be expensive to be implemented, and therefore it is
difficult to be broadly adopted especially for rural areas. Moreover, an additional localization
overhead will be conducted along with the routing overhead in either ad-hoc or centralized
method.

Many civil localization services and related techniques have developed to solve the
problems. While some of these localization techniques have been relatively mature (e.g.

2.1. Overview 15

GPS/DGPS), it is reasonable to accept the previous assumption and to develop the VANET
routing techniques based on geographic information. More details about localization techniques
are explained in details in Section 2.2.

2.1.3.2 Greedy Forwarding and Its Limitation

Consequently, the node in an geographic routing can forward data in the following five steps.
The process forwards data towards a destination position, and it finishes when reaching it.
The first three steps are mainly the localization steps. The next-hop forwarding strategies in
the fourth step (details in Section 2.3) is another main challenge for using geographic routing
techniques.

1. Determining the position of its own

2. Determining the destination position

3. Determining the positions of neighbors

4. Selecting a next-hop forwarding node in neighbors

5. Forwarding data to the next-hop node.

The early unicast strategies started from the late 1980s are all based on the greedy

forwarding strategy introduced in Section 2.3.1: the forwarding node choose the next forwarder
from its neighbors that are located closer to the destination position. For example, the source
node S chooses R1 to forward packets to the destination position D instead of a in Figure 2.1. If
using a contention-based greedy forwarding strategy (in Section 2.3.2), there is no need to get
the neighbor positions in the third step in advance.

However, only using greedy forwarding will meet a void area situation: there is no
other nodes, which the forwarding node can reach, closer to the destination position than the
forwarding node itself (thus it is not from b to e), and therefore the greedy forwarding will
fail even if there is an existing routing path (from R1 to F3). The situation is more serious
for VANETs because the nodes are not distributed arbitrarily and averagely, and the topology
of VANETs follows the shapes of roads. For WSNs, some nodes are frequently put into a
sleep mode to save energy, so they may not react to the other nodes temporarily. In this
case, a recovery strategy need to be adopted instead of the greedy one, which is introduced
in Section 2.3.3 and Section 2.3.4.

Section 2.3.3 describes a more advanced recovery solution by perimeter routing (from R1

to R3). The main idea of the perimeter routing is to try finding a routing path that surrounds the
border of a void area based on the right-hand rule (R1 and R2 instead of c and d). A series of
techniques including face routing and planarization are developed based on the right-hand rule.
After let a void area, the perimeter routing can be switched back to the greedy forwarding if the
greedy condition matching again (from F1 to F3).

2.1.3.3 Alternative Geographic Strategies

Implementing the full computing for the greedy and recovery strategy is sometimes not enough
for the VANET for its high mobility, thus the techniques of Geocast in Section 2.4 and Delay

Tolerant Network (DTN) in Section 2.5 are developed to overcome the drawback.

16 Chapter 2. Related Works on Geographic Routing Protocols

Figure 2.1: Local minimum problem in an example of VANET

The geocast is a multicast geographic routing strategy, which is used to deliver data to
the nodes in a specific region. The flooding-based geocast technique such as the restricted
directional flooding in Section 2.4.2 is more suitable for the highly dynamic network. With
the supports from localization services, the geocast narrows the flooding area, and it does
not require for getting a accurate destination position. Actually, the flooding is currently the
foundation technique of the geocast protocols closely related to VANETs, and Section 2.4.3
focuses on these geocast protocols.

The aforementioned geographic routing techniques are more suitable for high dense
VANETs, but it is not always the case due to the unique mobility features of VANETs. The
DTN can be considered as an extreme case of MANETs characterized by the serious or
complete lack of the end-to-end routing path because of low density and high mobility, which
is exactly the case of VANETs. The recent researches consider using the movement-based

and carry-and-forward strategies in the situation, and some of the related protocols will be
introduced in Section 2.5.1 and Section 2.5.2.

2.2. Geographic Localization Services 17

2.2 Geographic Localization Services

The mostly used localization technique in current VANETs is the satellite-based navigation
techniques such as GPS (United States), Beidou (China), and Galileo (European Union).
However, it is not practical to assume that every node can be implemented such navigation
device. Boukerche [20] summarize the civil localization services to overcome the GPS
limitations:

• DGPS: correcting the positions from GPS based on the difference from the positions of
reference stations

• Map matching: using the map knowledge to improve GPS positions

• Cellular localization: correcting positions by the mobile cellular infrastructure

• Image/video processing: providing positions through roadside security systems

• Infrastructured indoor localization: using the signal propagation characteristics for
indoor environments

• Dead reckoning: calculating the current position based on the last known GPS position

• Relative distributed ad hoc localization: estimating the distance by the known GPS
positions of other nodes

A bigger portion of them relies on the infrastructure supports, and solves the position of
single node. The DGPS, video/cam localization and infrastructured indoor localization can
provide a more accurate position than others, but they rely on centralized approaches to be
realized. The dead reckoning can be independently completed by a node, but it is not accurate
for a longer distance.

Most of the above localization services can help a node to get the position of its own, but not
to get the position of neighbors and destination. The neighbor positions are normally learned
through the periodical one-hop broadcast or the reactive neighbor knowledge querying, thus this
step is relatively simple. The main issue here is how to discover the destination position. The
destination position is normally specified in the forwarding packets from a source node (original
sender). In the best case, the destination position is fixed, and the source node gets the position
directly from the roadside infrastructure. In the worst cases, the source node uses the simple
flooding to query the destination position. Between these two cases, the following localization
services can be adopted.

There are two major processes for a localization service: location update and destination

query. The former normally sends out the position-related information to a subset of nodes
called location server, the latter searches the location servers to get a destination location. Here
we divided the protocols based on the differences in the update and query strategies including
flooding-based [21] [22], hierarchical [23], home region [24] [25] and quorum-based [26]
localization.

Note that, the localization service for a destination node is an open issue. The flooding-based
localization could generate a high localization overhead, and they are not scalable well, but
they can have a low implementation complexity, and they are relatively robust in a small
network section. The hierarchical, home region and quorum-based localizations can achieve the

18 Chapter 2. Related Works on Geographic Routing Protocols

network scalability, but these algorithms themselves may have too much impact on localization
overhead, and they are easy to affected by node failures. Moreover, when taking into account
the speed of nodes like vehicles, none of them can be said to be reliable.

2.2.1 Flooding-based Localization

Distance Routing Effect Algorithm for Mobility (DREAM) [21] represents a typical example of
using the proactive flooding-based techniques: a node maintains a position table for the nodes
that it can hear, and it tries to send its position information to the nodes that it can reach.
In order to control the localization overhead in flooding, the DREAM protocol considers two
effects between nodes: mobility and distance. The mobility effect is implemented as the flooding
frequency. The node with a faster speed floods more frequently. The distance effect refers to
the phenomena that if the distance between two nodes is greater, the relative movement to each
other appears to be slower (e.g. for the node A in Figure 2.2, the node B seems moving slower
than node C in the south direction). The packet to deliver the position information contains
node id, position, direction and age (i.e. hop number). The age represents to the result of the
distance effect. The receivers of such packet can then calculate their distance effect, and decide
whether to discard the packet based on the age in the packet. Note that, DREAM only uses
flooding in the destination discovery, not for the data delivery.

A CB

C’B’

Figure 2.2: An example to show the distance effect

Another variation of flooding-based localization technique is used in Location-Aided

Routing (LAR) [22]. When nodes do not have any knowledge about the network, LAR works
similarly to DSR [6] and AODV [5]: reactive request process, avoiding redundant requests in a
flooding, and the information about route and location is contained in the packets.

After the raw position of destination node is known, both DREAM and LAR then use the
restricted directional flooding described in Section 2.4.2 to continue the localization services to
get more accurate destination positions, or send data packets.

A common issue of flooding-based localization services is still the scheduling mechanism
as in a topological route discovery: the choice of proactive or reactive. The advantages
of flooding-based techniques are that the data distribution is mostly decentralized, and the
implementation complexity is lower than the other localization techniques. However, they are
not well scalable for large networks, thus only the subset of a VANET (e.g. the short ad-hoc
sections between cities) may adopt the technique.

2.2. Geographic Localization Services 19

2.2.2 Hierarchical Localization

The hierarchical localization (or hierarchical hashing-based quorum-based) normally explicitly
divides nodes into a hierarchical layer structure based on the node positions, and at least a node
in each layer acts as a location server that responses for updates and queries for the nodes. The
hierarchical localization services can help to reduce the localization overhead and achieve the
network scalability, but whether it is robust enough to nodes mobility like VANETs will need
more evaluations to prove. Here we only introduce a typical protocol named Grid’s Localization

Service (GLS) [23], which has some characters to be suitable for VANETs.
The GLS protocol provides a decentralized hierarchical algorithm, which can handle

low-mobility nodes with a less localization overhead. If all nodes know their GPS positions
and they agree on a global origin of the hierarchy as shown in Figure 2.3, the algorithm of
GLS can be done by the nodes themselves. The layer in GLS is referred to as an order-n
square. A number of order-n squares make up an order-n+1 square as the next layer, and so on.
The nodes in the same square must in each other’s one-hop communication distance, and the
maximum communication distance is assumed to be two hops. Note that, the location update
and destination query service does not completely rely on the rules for geographic division.

59
36 15

62
32

11

23

53

25

9

91

38

18

12

57

75

92

20

10

66

22

50

38

17

1

16

8

Order-1 Squares Order-2 Squares Order-3 Squares

12

78

Global Origin

Figure 2.3: An example of GLS localization services

For the location update (e.g. the node 8), each node periodically deliver its ID to all one-hop
neighbors in its first-order square (e.g. to node 20). Then the location is delivered to the assigned
location servers in the next layer (e.g. node 1, 11, 16; maybe delivers from 59 to 16 but it is not
important for the algorithm), and the process continues until the ID are delivered to the assigned
location servers in all layers (e.g. node 12, 18, 36, then node 9, 10, 53). For each square in the

20 Chapter 2. Related Works on Geographic Routing Protocols

next layers, only one location server will be assigned. The assigned location server is the node
with the least ID greater (or greatest ID less) than the ID of the source node; in the other word,
the node with the closest ID is chosen. For the destination query, it uses the similar process,
which tries to find the location server with the closest ID to the destination ID from its layer to
the next ones (e.g. node 62 to 12, then 10), and a location server that has stored the ID of the
destination will be found eventually.

To support larger networks, the IDs in GLS protocol are assigned by the hashing function
intuited from the consistent hashing in [27] and similar to the ones in Landmark system [28].
These hashed IDs are assumed to be mapped from IP addresses, MAC addresses or other
uniquely allocated names, thus a limited mobility for nodes is allowed. Moreover, it is possible
to further introduce the fuzzy localization in to the hashing function, thus not all nodes need to
know their accurate GPS positions.

The GLS protocol balances the localization overhead by evening the assigning of location
servers. Moreover, because the GLS protocol delivers the location update and destination query
based on layers, the localization overhead can be greatly reduced and it is predictable: if the
height of the hierarchy is O(log(N)), effectively the location update and destination query is
delivered to O(log(N)) location servers, where N is the number of nodes.

2.2.3 Home Region Localization

The home region localization (or flat hashing-based quorum-based, e.g. Stojmenovic’s [24],
GHT [25] and GHLS [29]) is more often used in data localization services instead of position

localization services [30]. These two types of localization services are similar in general, but
the data localization services generally have less sensitivity to mobility. For example, they
may depend on the nodes’ arrivals in certain regions and departures from them, or just the new
data advertisements and disposals, thus their algorithms are not necessarily to be responsive
to nodes’ accurate position changes. Although some concept of home region localization may
be used in the infrastructure design of VANETs, it is normally used in regular MANETs and
WSNs.

Similar to the aforementioned GLS protocol, location servers are used in the home region
localization, and a hash function is used by all nodes to produce the ID. One or more fixed nodes
act as location servers and inform other nodes about their existing. They together designate as
the home region of the network, and other nodes store their IDs to the location servers. For
example, each node in GHT [25] hashes keys into geographic positions, and it stores a key-value
pair at the node geographically closest to the hash of its key.

Because the number of location servers in the home region is independent of the total
number of nodes, thus effectively the location update and destination query are delivered to
O(1) location servers.

2.2.4 Quorum-based Localization

The quorum-based approach meaning is that all nodes in the network agree upon a mapping that
maps their unique identifier to one or more quorums. The quorums respond for the specified
functions of other nodes. By these definition, the hierarchical and home-zone localizations
in the two last sections can also be considered as the hierarchical and flat hashing-based

2.2. Geographic Localization Services 21

quorum-based localization [29] [30]. The hashing-based means that the quorums are chosen
by a hashing function to build a distinct hierarchy.

For quorum-based localization, it normally means that nodes sends location updates
to a subset of nodes (i.e. location servers), and location destination query to another.
These two subsets of nodes must have the intersection nodes to assure a virtual connection
backbone. In other cases, if two subsets of nodes are identical, they can also be called as
rendezvous-based [30].

Here we only introduce about the classical quorum-based localization called column-row

localization such as in DS-quorum (Dominating Set quorum) [26] or XYLS [29]. The
DS-quorum protocol proposes an algorithm that divides a network into connected dominating
sets as shown in Figure 2.4. The dominating set of a graph G = (V,E) is the subset D of
V where the set of vertices in G is either in D or adjacent to a vertex in D. The nodes
representing the location servers are arranged in a form of columns and rows, for example,
the location servers in rows may respond for the location update, and the ones in columns may
respond destination query. Then, the location update is delivered from the current location of
sender to north and south, until reaching the location servers in rows. The destination query is
delivered from the current location of sender to east and west, until crossing the location servers
in columns, and then pass to the intersection nodes with the queried location updates. Because
the DS-quorum network deliver in the column-row form, effectively the location update and
destination query are delivered to O(

√
N) location servers.

Columns

Destination query

R
o
w

s

L
o
ca

ti
o
n
 u

p
d
at

e

59

36 15

25

9

91

57

75

92

50

38

17

16

5
9

3
6

1
5

6
2

3
2

2
3

5
3

2
5

7
5

6
6

1
7

1
6

8

15

32

10

3
6

2
3

5
7

2
0

1
7

1

1
6

8

15
32

10

50

38

2
3

1
2

5
7

2
0

1
8

5
7

50

2
0

1
7

7
5

62

22

8

9

2
0

1
0

5
0

3
8

1

62

22

3
6

1
8

1
6

1

53

22
1
7

11

23

53

38

12

66

1
8

1
2

9
2

2
2

22

5
9

1
1

1
8

62

5
9

1
1

3
8

1
0

32

18

20

10

1

1
19

1

3
8

5
7

50
381

2

1
7

38

1
7 1

5
9

1
6

9

10

3
6 5

7

1

1
6

10

Figure 2.4: An example of DS-quorum localization services

As for used in VANETs, there are three advantages of the column-row quorum-based
localizations: Firstly, they adapt well to synchronous vehicle movements on roads; Secondly,
they can be used to form a network backbone for mixing ad hoc and infrastructure
communications; Thirdly, they are able to better utilize the GPS information about
longitudes (columns) and latitudes (rows).

22 Chapter 2. Related Works on Geographic Routing Protocols

2.3 Greedy Forwarding and Recovery Mode

2.3.1 Next-hop Candidates

When the positions of a node itself and destination are known from the localization service,
a geographic greedy routing will forward a packet to one or more next-hop nodes with the
maximum forwarding progress. The next-hop node can be selected based on the strategies
following the Figure 2.5.

A geographic next-hop selection algorithm is normally defined in a Cartesian coordinate
plane in two dimensions. The network model is assumed to be the unit disk graph where nodes
can communicate within radio range R. In the Figure 2.5, the node at s is the last sender and the
node at d is the destination. From point s to d, it is called progress direction. The area within the
radio range and from y-axis toward the progress direction is called progress area. A algorithm
can also select the next hop in a smaller progress area, e.g., the maximum forwarding area with
a margin in the form of an arc having the center at d.

s d

α
m

CR

MFR

DG

g
NFP

Margin of f1sf2 : Maximum Forwarding Area

n

Progress Direction

y-axis

x-axis

R

f1

f2

Figure 2.5: Next-hop selections in greedy forwarding

• Most Forward progress within Radius (MFR) [31]: This strategy select the node with
the longest projection distance in progress direction (e.g. the distance of sm). The
longer-range transmission is favorable because it may takes a packet to more hops ahead.
If there is no other node as the next hop to forward a packet, MFR sends the packet back
to the previous node.

• Nearest with Forward Progress (NFP) [32]: The node with the shortest projection
distance in the progress area is selected (e.g. the distance of sn). The strategy favors
shorter-range transmission because it may minimize transmission energy consumption (it
depends on the underlying layer functions) and it has a lower probability of packet
collisions in the contention-based forwarding (Section 2.3.2).

2.3. Greedy Forwarding and Recovery Mode 23

• Distance-based Greedy (DG) [33]: The strategy is originally proposed for wire networks.
It select a node that minimizes the distance to the destination (e.g. the distance of gd). Its
advantage is similar with MFR.

• Compass Routing (CR) [34]: It is the first proposal to using the minimum angle in the
next-hop selection. It selects the node with the minimum angle between the node and
destination (e.g. the angle of α). The nodes closer to the y-axis in the progress direction
will consume more energy under this strategy.

The original NFP and CR have the problem of routing loop, but MFR and DG are
loop-free [35]. The routing loop causes a packet circulate among certain nodes.

2.3.2 Beacon-based or Contention-based

A beacon-based forwarding requires knowing the positions of one-hop neighbor nodes, which
can be achieved by neighbor knowledge exchanges (or called beacon exchanges). After the
neighbor positions have been achieved, the selection for the next-hop node can be done by the
sender itself. The beacon-based forwarding has less implementation complexity, but it relies
on the underlying layer to provide a one-hop unicast mechanism. The neighbor knowledge
exchange causes additional routing overhead, but the probability of packet collisions can be
reduced if the frequency of exchanges is well controlled.

A contention-based forwarding does not rely on neighbor knowledge exchanges. A sender
may blindly broadcast a packet, then the nodes that receive the packet auto-configure if they can
be the next-hop forwarders. To minimize the packet collision, the number of forwarders needs
to be limited by three restrictions.

• The first restriction is that only the nodes in a progress area are selected. An
implementation for this restriction is relatively simple. A sender can add its position and
the destination position in a forwarding packet. Plus each node already knows its own
position. The nodes that receive the packet can calculate whether they are the required
forwarders independently.

• The second restriction is optional, and it is to limit nodes in the area that the nodes can
hear from each other. If a node has forwarded the packet, the other nodes can then
know that and stop the redundant forwarding. If the RTS/CTS (Request to Send/Clear to
Send) mechanism is not implemented, the restriction is required. There are three optional
forwarding areas proposed in Beacon-less Routing (BLR) [36]: a circle with the diameter
equaling to the radio range R, a Reuleaux triangle with the maximum apex angle of 60◦

on the sender position, or a sector with the same condition of the Reuleaux triangle as
shown in Figure 2.6. Comparing the size of a circle with the radius of radio range R, the
circle, Reuleaux triangle and sector limit the forwarding area to 1

4
≈ 0.25, 1

2
−

√
3

2π
≈ 0.22

and 1

6
≈ 0.17.

• If only with the previous two restrictions, the node closest to the sender will normally
receive and forward the packet firstly. In order to enable more geographic forwarding
options and to increase the time lag for other nodes to react to the first forwarding,
an additional timer delay function based on the geographic options in Section 2.3.1 is

24 Chapter 2. Related Works on Geographic Routing Protocols

s d

y-axis

x-axis
60

Margin of Circle

Margin of Reuleaux Triangle

Margin of 60
◦
Sector

Figure 2.6: Optional areas in contention-based forwarding

implemented to nodes. For example, if the direct distance d is used, the delay t can be
calculated as t = a

d
·DelayMAX , where a is the parameter to adjust the advance progress.

If this restriction is adopted to the MAC layer protocol, the DelayMAX is the maximum
delay to keep a packet before dropping it.

The typical protocols in the contention-based category use the restrictions similar to
previously mentioned ones. More of the protocols are proposed for the IEEE 802.11 MAC
layer protocols, but with different implementations and extensions of the timer delay function.
BLR only select one node with the maximum projection distance in a 60◦ sector toward the
progress direction. Implicit Geographic Forwarding (IGF) [37] is similar to BLR, but it is
implemented as the optional RTS/CTS mechanism in IEEE 802.11 standard. Both BLR and
IGF have a drawback that they do not exploit all possible forwarders in the progress area.

If a RTS/CTS mechanism is adopted, the second restrictions on forwarding areas can be
omitted, and a bigger forwarding area such as the maximum forwarding area in Section 2.3.1
can be exploited [38] [39]. In this case, it is better to use an unicast mechanism in the actual
data packet transmission after the RTS/CTS finish.

2.3.3 Perimeter Routing for Void Area

The major challenge for a greedy forwarding is an obvious one: the progress area of last sender
could be a void (the local minimum problem of graph theory), thus the forwarding packet is
blocked. The recovery solutions for this situation have been proposed to work with the greedy
forwarding.

The recovery solution of perimeter routing (also named face routing or face traversal) is an
advanced recovery solution in the state of art of geographic routing. A greedy forwarding plus a
perimeter-based recovery represents the main direction of current researches about geographic

2.3. Greedy Forwarding and Recovery Mode 25

routing. Although the performance of perimeter routing could rely too much on ideal static
network conditions, but it is the only resource-aware recovery solution that can guarantee the
packet delivery (if a routing path does exist) by requiring just the neighbor information. Besides,
it can work on both beacon-based and contention-based networks.

Perimeter routing is a recovery solution based on planar graph, which is a type of the graph
with its edges that intersect only at their endpoints. A graph representing a wireless network
does not naturally form as a planar graph, thus the graph need to be simplified by a planarization

process. A non-planar graph reduces the performance of a perimeter routing, and it may cause
the routing-loop problem [40] [41]. The challenge for the planarization process in geographic
routing is that the nodes can only know the neighborhood information, thus a full planarization
for the whole graph is not practical.

A B

x

(a) GG
–

A B

x

(b) RNG

Figure 2.7: Planarization areas of GG and RNG (in gray color)

Two notable planarization algorithms which require only the neighborhood information are
Gabriel Graph (GG) [42] and Relative Neighborhood Graph (RNG) [43]. For both algorithms,
if any node x exists within the neighborhood ranges of both A and B (the areas with gray color
as shown in Figure 2.7), the edge of (A,B) is removed to avoid the possible crossing edge. The
remaining edges after the planarization are (A, x) and (x,B). GG defines the neighborhood
range as a circle with a diameter as the line segment (A,B). RNG defines the neighborhood
range as the intersection of two circles with radius as R and the circles are centered at A and B.
GG and RNG offer different densities of remaining edges (wireless links). RNG produces the
planar subgraph with fewer edges thus it reduces the routing overhead; on the other hand, GG

produces the planar subgraph with a better connectivity thus it may reduce the hop number to a
destination.

After the localized planarization process, the nodes get a local view of a planar subgraph
without edges crossing each other. The next strategy of perimeter routing is to adopt the
right-hand rule (or left-hand rule) on traversing on the borders of the faces in the planar
subgraph. The packets are forwarded face by face, and progressively get closer to the destination
position.

The first version of the recovery solution using perimeter routing is proposed in [44],
which includes two routing algorithms named FACE-1 and FACE-2. Figure 2.8 and Figure 2.9
demonstrate them as the stand-alone routing process without returning to greedy forwarding.
The packet in both figures is assumed to be sent from the source node S to the destination node

26 Chapter 2. Related Works on Geographic Routing Protocols

D by a sequence of faces (e.g. from F1 to F3).
The key rules for FACE-1 in Figure 2.8 is to find the edges that intersects with the line

segment from the source to the destination (e.g. SD), and the founds edges (e.g. (A,B)

and (E,F)) should be closer to the destination gradually (e.g. from F1 to F3, the distances
dist(S,D) > dist(p1, D) > dist(p2, D)). Before a packet is passed to the next face in FACE-1,
the packet must do a complete traversal thought the border of a face and then return to the initial
point (e.g. S, A or F).

F1 F2 F3
S D

B
F

A
E

p1 p2

Figure 2.8: An example of the routing path by FACE I

FACE-2 in Figure 2.9 is a modified version of FACE-1. When a packet is passed to the
node with an edge intersecting with the line segment SD, the packet is delivered directly to the
adjacent face instead of returning to the initial point (e.g. from B to F , instead of back to S).

F3F1 F2
S D

B
F

A
E

p1 p2

Figure 2.9: An example of the routing path by FACE II

Both FACE-1 and FACE-2 algorithms are not very efficient on their own, but they
can guarantee the packet delivery without requiring the duplication of packets or memory.
Normally, they are used as the recovery solutions to incorporate with the greedy forwarding.
The first geographic routing algorithm named Greedy-Forward-Greedy (GFG) is proposed in

2.3. Greedy Forwarding and Recovery Mode 27

[44]. The algorithm adopts GG [42] for planarization, and it incorporates the FACE-2 and a
distance-based greedy forwarding strategy named GEographic DIstance Routing (GEDIR) [35].

A well-known beacon-based geographic routing protocol, named Greedy Perimeter

Stateless Routing (GPSR) [45], implements a recovery solution similar to FACE-2 (requiring
one-hop neighbor positions). GPSR proposes the protocol-level details for face routing and an
alternative planarization algorithm (RNG [43]). When switching faces by GPSR, the packet is
always delivered through the first edge of the next face by adopting the right hand rule. Such
first edge must be recorded in the transmitting packet until it reaches the next face in order
to avoid the routing-loop problem. Then, the next edge is searched by the counterclockwise
direction from the last edge.

Adaptive Face Routing (AFR) [46] is a variant algorithm of FACE-1. The source node in
AFR initially estimates a boundary of FACE-1 as an ellipse with foci on source and destination.
When a packet reaches the boarder of the ellipse, the packet is delivered back to the last initial
point. The packet is then sent to the initial point of next face. If the routing path is blocked
because the ellipse is too small, the packet is sent back to the source node, and the size of the
ellipse is increased. If c is the cost of the best path in FACE-1, AFR can achieve a worst case
cost of O(c2). Besides, GOAFR+ [47] combines the greedy forwarding and AFR.

The open issue of such hybrid solutions is that they rely too much on ideal wireless network
conditions, more precisely, the radio range of these solutions is assumed to be uniform as R in
an unit disk graph. However, the realistic radio range is more often to be irregular (i.e. quasi unit

disk graphs) because of the different densities of wireless medium, link errors and inaccurate
positions from localization service. Some solution is proposed for the non-ideal network
conditions, for example, CLDP [40] uses an additional proactive message for planarization, and
GDSTR [48] use the traversal of a hull spanning tree (an alternative technique of planarization).
The former increases the routing overhead significantly, and the latter loses the localizable
advantage in geographic routing. Moreover, none of these perimeter routing protocols fully
considers the mobility of nodes.

2.3.4 Other Recovery Techniques

The other solutions or suggestions for dealing with the void area problem are introduced in the
following, but note that, a part of them only consider a low mobility of nodes, thus they are only
given as the further references and they are not be completely practical for current VANETs.

• Dropping: Of course, the simplest solution is not to recovery the current packets if
meeting a void area. Dropping the blocked packets can be an option if the nodes are
generally moving and a resend mechanism is available, or a multi-path routing is adopted.
A further improvement to be suitable for static networks is by GeRaF [38]. GeRaF
is a contention-based forwarding which suggests to mark the void areas or directions
if a packet is blocked, and the marking results is reflected in a RTS/CTS mechanism.
SPEED [49] on the other hand is a beacon-based solution, which considers dropping the
blacked packet for reducing the traffic congestion, and it deals with a void area in the
similar way as a congestion area. Each node in SPEED records the average delays to
destinations in its neighbor table. When meeting a void area, the delay is marked as ∞.
The neighbors then get the notice for the void area by the so-called backpressure beacon.

28 Chapter 2. Related Works on Geographic Routing Protocols

• Backtrack-and-marking: Another suggestion is to pass the blocked packets back to the
last forwarder (MFR [31]). The failing routing path must also be marked, thus the new
greedy forwarding will look for another path and avoid routing-loop [35]. If the mobility
of nodes is considered, any node in the similar position of the last forwarder can be used
as a backtracking node. Furthermore, GDSTR [48] maintain a spanning tree where each
node has an associated convex hull that contains within it the locations of all its descendant
nodes in the tree. When a void area is found, the block packets are routed upwards in the
tree until finding a node whose convex hull contains the destination.

• Reactive Flooding: If the node density and mobility are low, an optional suggestion is
the reactive flooding-based techniques, e.g., the topological protocols with reactive route
discovery scheduling (AODV [5] and DSR [6]).

• Exploiting Two-hop: This recovery solution works better in a beacon-based network. If
two-hop geographic information such as GEDIR, DIR, and MFR is available for each
node, the void area can be predicted or avoided [35]. The trade-off for the two-hop
geographic information is an additional routing overhead, but it is not addressed in details
in [35].

• Geocasting: The geocast can not avoid the void area problem, but the multipath created
by geocast can reduce the chance for packets to be blocked by void areas. More details
about the geocast techniques are in Section 2.4.

• Carry-and-forwarding: For networks with high mobility nodes, the nodes can hold
the packets and wait until a next candidate forwarder or the destination node to
present (e.g. VADD [50], GeOpps [51], and GeoDTN+NAV [52]). More details about
the carry-and-forward techniques are in Section 2.5.

Actually, if the mobility and failure of nodes is taken into account, none of the previous
algorithms and protocols can be considered to be absolutely reliable. A part of them just assume
that the speed of packet delivery is the same as light and node failure is zero in their simulations,
thus it is difficult to say that such algorithms or protocols are really reliable in dynamic networks
like VANETs.

2.4. Geocast Strategies 29

2.4 Geocast Strategies

The geocast forwarding steps are similar to the unicast ones, but the destination in geocast is
restricted as a geographic region. If the destination is only a single node, when packets reach the
border of the destination region that contains the node, the transmitting mode can be switched
back to the unicast mode. A geocast is normally assisted with two other techniques: hierarchy

and flooding.
The hierarchical geocast forward packets region by region, thus it can reduce routing

overhead and increase network scalability. Besides, the region concept can be utilized to mark
void areas more efficiently. However, the trade-off of these advantages is a clustering overhead.
For highly dynamical networks like VANETs, considering the clusters could be too short-lived
to worth creating, the hierarchy techniques may be only suitable for the localization service
when there is the support from infrastructure Section 2.2. The current hierarchical geocast
protocols (e.g. GeoTora [53] and GeoNode [54]) are more often used for the wide-range
transmission of infrastructure networks and regular MANETs [55].

The following sections only describe the non-hierarchy flooding-based geocast techniques.
Under this context, the geocast applications in the following sections is only for distributing
emergency messages, for example delivering a collision warning to approaching vehicles and
nearby junctions. In the following, we first introduce the basic flooding options, and then two
well-known flooding-based geocast techniques. In the end of the section, the flooding-based
geocast techniques close relating to VANETs are given.

2.4.1 Basic Methods in Flooding

Due to resource constraints of embedded sensor and negative effects from radio irregularity,
flooding (i.e. global broadcasting) may be a suitable transmitting scheme for IVC routing
algorithm. However, flooding in an MANET could cause serious redundancy, contention, and
collision [56]. Therefore, it is important to determine a correct flooding technique for CIVIC
protocol. Williams [57] classifies current flooding techniques of MANET to four categories:

• Simple Flooding (SF): In SF, every node rebroadcasts a packet exactly once until all
reachable nodes have received the packet. SF is adapted to low node density and/or high
mobility networks.

• Probability Based Method (PBM): PBM is similar to SF, but every node rebroadcasts a
packet with predetermined or counter-based probability. When the probability is 100%,
this method is identical with SF.

• Area Based Method (ABM): Instead of probability, every node decides whether to
rebroadcast a packet depending on an estimation of distance or location.

• Neighbors Knowledge Method (NKM): Every node makes a decision on rebroadcast by
its one-hop or two-hop neighbor knowledge. The neighbor knowledge is achieved by the
periodic "Hello" packets.

Tseng [56] proved that the adaptive counter-based and location-based scheme could resolve
the dilemma between reachability and broadcast storm. The interval of sending "Hello" packets

30 Chapter 2. Related Works on Geographic Routing Protocols

is also important to achieve efficient broadcast. Moreover, the radio irregularity may seriously
affect directional routing especially when a packet can only be sent to one direction. Zhou [58]
proposes using the multi-round discovery technique to solve the problem.

2.4.2 Restricted Directional Flooding

DREAM [21] and LAR [22] are two broadly adopted geocast protocols. They both adopt the
restricted directional flooding in their data transmission, but their restricted areas are different.

By the steps introduced in Section 2.2.1, assuming a source node S in DREAM or LAR
has known that the destination node D is in the position of (xd, yd) at time t0, and that the
current time is t1, the node can then restricts the direction and area of the next flooding as
shown in Figure 2.10. The key scheme for both protocols is to assure that a packet is sent to
an expected region that the destination node will be there when the packet reaches the expected
region.

r = vmax(t1-t0)

L DD

α

A

B

J

KI

S (xs, ys)

C (xc, yc)

S (xs, ys)

Expected Region Expected Zone

Request Zone - Outside

D (xd, yd)

DREAM LAR

Lsd

Request Zone - Inside

Figure 2.10: Flooding areas in DREAM and LAR

Both DREAM and LAR expect the node D is in the circle area centered at (xd, yd) with
the radius of r = vmax(t1 − t0) (e.g. the expected region (zone) are the same circle area in the
north-east from node S), but the next steps are different:

• For DREAM, the nodes involved in the flooding process are the ones within the
forwarding angle α defined as α = arcsin r

Lsd

, where Lsd is the distance between nodes S
and D.

2.4. Geocast Strategies 31

• The LAR (scheme I) defines a request zone as a rectangular, where only the nodes in
the rectangular floods the data packets. If a nodes S is outside the expected zone, the
rectangular is within (xs, ys) and (xc, yc). If a nodes S is inside the expected zone,
the minimum boundary of the request zone can not be smaller than the expected zone.
The LAR (scheme II) further defines that only the nodes with the shorter distances to
destination node can be involved in the next-hop flooding process (e.g. I , J , K).

2.4.3 Flooding-based Geocast for VANETs

The early examples of flooding-based geocast protocols for VANETs are a geocast scheme
based on the IEEE 802.11 standard [59] and a protocol named Inter-Vehicle Geocast (IVG) [60].
The basic strategies of them are similar.

Firstly, when an accidence is happening, an alarm need to be sent out to all the vehicles
that will be affected by the accidence. For example, if the accidence is in a roundabout, only
the vehicles driven toward the roundabout will receive the alarm but not the vehicles that are
leaving. The destination area that contains the alarmed vehicles is called critical area. If
vehicles know their GPS information, the critical area can be defined easily. Secondly, when an
alarm is spread in the critical areas, not all the nodes need to be involved as relay nodes. The
method to limit the number of relay nodes is the same method in Section 2.3.2. The alarm will
not be sent out immediately. A distance-based timer hold the alarm in waiting, and a node only
rebroadcast the alarm when the node does not receive the same alarm from other nodes.

Besides [59] and [60], some other geocast algorithms and protocols are interesting enough
to be introduced. Their basic techniques are similar to or have been introduced in the above
sections, thus only their unique feature will be listed out as follows:

• Cached Geocast in [61] propose to include caching at the routing layer to deal with the
situation of high velocities in VANETs. The small cache can help to improve the problems
of neighbor selection and void area in the geocast forwarding.

• Urban Multi-hop Broadcast (UMB) protocol [62] redefines the RTS/CTS mechanism in
IEEE 802.11 standard to address the problems of broadcast storm, hidden node, and
reliability problems of multi-hop broadcast in urban areas. The UMB divides the road
into segments in the direction of dissemination, and only one vehicle in each segment is
on duty of forwarding and acknowledging the packets.

• Abiding Geocast is a specific geocast service considered in [63]. The abiding geocast
is a geocast to be sent to a fixed geographical area (e.g. the warning of an icy road in
winter). Besides the regular approach such as the periodical delivery, [63] provides three
more options to realize an abiding geocast: the server approach, the node election in the
destination region, and the neighbor exchange based solution.

32 Chapter 2. Related Works on Geographic Routing Protocols

2.5 Geographic DTN-based Strategies

DTN is an extreme case of MANET, and VANET can be treated as a form of DTN. Compared
with the regular MANETs, the distinguished feature of DTN is that the end-to-end connectivity
between source and destination in DTN is assumed to be broken due to frequent or constant
network partitioning. The earliest works about DTN routing mostly use the flooding-based
techniques. A direction of the recent works about DTN tries to utilize the movement feature of
nodes instead of adapting to it. The techniques in such direction are very suitable for VANETs.

There are two main options of using the movement feature in VANETs: Last Encounter

Routing (LER) and Carry-and-forward Routing. Some literatures further suggest controlling the
mobility of the mobile nodes to help message forwarding. These suggestions are not practical
for current VANETs thus it will not be mentioned in the latter sections.

2.5.1 Last Encounter Routing

A pioneering example of LER is a routing algorithm called Exponential Age
SEarch (EASE) [64] [65]. The paper [64] first proposed a movement-based localization
service, and it shows that it is possible to only use the node mobility to disseminate destination
location information without using any flooding-based method. In other word, only "free"
information about the local connectivity to neighboring nodes is adopted. Then, a simple
routing algorithm named EASE was proposed to evaluate such localization service. The
interesting conclusion about EASE is that the collections of last encounter histories at network
nodes contain enough information for a geographic routing protocol to route packets.

For the part of localization service, each node in EASE maintains a Last Encounter

Table (LET), which contains three fields including Node ID, Location and Time. If a node i

meet a node j at position Pij , node i records an entry as Node ID equaling j and Location

equaling Pij . Time for the entry is the time elapsed since the encounter at Pij .

As for the routing part, the principle is simple: when a source node tries to send a packet,
the source node search its neighbors until finding a neighbor who meets the destination in
the latest time based on the information of LET. Then the packet is routed toward the latest
encounter location. The process is continuing until the packet reaches the destination node. For
example, the vehicle S tries to send a packet to vehicle A as shown in Figure 2.11. In its current
radio range, the vehicle B uses to meet the vehicle A at the location of B1. If the location
B1 available on B is newer than any other locations information that the vehicle S can get, the
packet is sent to the location B1. The EASE made no assumptions about how to route the packet
toward a latest encounter location, and any geographic routing protocol can be used here. The
disadvantage of EASE is the delivery is easy to fail in a practical network when the network
just starts up, or where there is a limited radio range thus the number of neighbors is too small.

The recent application of LER is FleaNet [66], which is a virtual flea market over VANET.
The customers express their demands/offers by smart phones, PDAs and laptops within a
VANET, thus the flooding-based techniques are not practical. The FleaNet uses the similar
LER methods as in EASE.

2.5. Geographic DTN-based Strategies 33

B3

2B1

A1

A2

Figure 2.11: An example of the routing path by EASE

2.5.2 Carry-and-forward Routing

Carry-and-forward is a new concept proposed in [67]. The idea is as the name suggests: when
a routing path does not exist for a packet, the last receiver can carry the packet, and forward the
packet to the new receiver until some conditions meet.

The first vehicular protocol adopting the concept is Vehicle-Assisted Data Delivery

(VADD) [50]. A moving vehicle in VADD carries a packet and forwards it to the next vehicle in
the intersection of roads. In the order word, the routing paths in VADD are the exact shape
of the roads. Moreover, VADD predicts the mobility of other vehicles, which follows the
traffic pattern and road layout. A routing decision is based on the result of such prediction.
The experimented routing decisions are based on location (L-VADD), direction (D-VADD),
multipath direction (MD-VADD) and hybrid (H-VADD). The H-VADD protocol has much better
performance and it can avoid the routing-loop problem.

Geographical Opportunistic Routing (GeOpps) [51] is another carry-and-forward, where
requires navigation information of other vehicles to predicts the mobility of other vehicles. By
knowing the navigation information, the node in GeOpps knows the paths of other vehicles
when it tries to forward a packet, then a decision can be made by comparing the nearest point
of these path to the destination. For example, the vehicle S in Figure 2.12 tries to find a routing
path to the gas station at D. Two vehicles, A and B, are in the radio range of S, and they will be
driven from A1 to A3 and from B1 to B3, respectively. The nearest point of these two routing
path is A2, thus A becomes the new relay in the routing path. The GeOpps in theory may get
a better result than VADD, but the navigation information may be mostly private in current or
future VANETs.

34 Chapter 2. Related Works on Geographic Routing Protocols

B1

2

B3

A1

2A3

Figure 2.12: An example of the routing path by GeOpps

2.6. Geographic Routing in VANET Projects 35

2.6 Geographic Routing in VANET Projects

The VANET relating projects concerning inter-vehicle routing protocols have been launched in
FleetNet and CarTALK2000 (Europe), Cooperative Driving (Japan) and Vehicle Infrastructure

Integration (USA).
The IVC of FleetNet (2000-2003) [68] and CarTALK2000 (2001-2004) [69] [70] are based

on UTRA-TDD (UMTS Terrestrial Radio Access Time Division Duplex). The UTRA-TDD is
a third generation mobile telephone technology. It has about 1 km radio range, and 384 Kbps
to 2 Mbps bandwidth according to the vehicle speed. It operates in the free frequency band
from 2.010 GHz to 2.020 GHz. The IVC based on the development of UMTS technology can
minimize the cost of access medium, and guaranty the full compatibility with the 3G mobile
phone.

In Japan, the cooperative driving project (1993-2000) [71] [72] is started by JSK
(Association of Electronic Technology for Automobile Traffic and Driving). It utilizes 5.8
GHz DSRC (Dedicated Short-Range Communication) for transmitting data, and it employs
DGPS for measuring vehicle location [73]. The DSRC is adapted to the applications of
highway infrastructures management such as ETC (Electronic Toll Collection) and vehicle
counting, but it may not be appropriate for general IVC applications such as security and
Internet access. This project develops a short-range cooperative communication protocol
named DOLPHIN (Dedicated Omni-purpose inter-vehicle communication Linkage Protocol for
HIghway automatioN) [72].

In USA, the leading project is called Vehicle Infrastructure Integration (VII,
2004-2010) [74] [75]. This project is focused on improving safety and roadway management.
Its communications involve vehicle-to-infrastructure and vehicle-to-vehicle by using 5.9 GHz
DSRC. In addition to VII project, there are researches at VTTI (Virginia Tech Transportation
Institute, USA) trying to provide communication solution in high mobility scenarios by using
the low-cost WLAN (Wireless Local Area Network) technologies such as IEEE802.11b [76].

The previous projects provide cooperative IVC solutions either on the limited application
domains, or with the fixed wireless techniques. Their research efforts are more focused on
the general-purpose Internet access with lower real-time constraint, mobility and reliability.
The CIVIC protocol gives emphasis to adaptability, and it puts more effort to design robust
auto-configured routing mechanisms.

Chapter 3

Communication System: Designs and
Evaluations

3.1 Overview

The communication system is based on four layers and a task center. The stack architecture is
as shown in Figure 3.1.

HEROS

(Task Center)

CIVIC: Transport Layer

(Application interface, Reliable data transfer)

Application Layer

Hardware and Network

CIVIC: Medium Adapter Layer

(Multiple wireless support)

CIVIC: Network Layer

(Routing messages delivery)

Microcontroller

(ARM7)

Localization

(GPS)

Communication

(IEEE 802.15.4)

Drivers

Figure 3.1: Stack Architecture of the Communication System

The works of this thesis involve two major components in the communication system:
the CIVIC routing protocol and the HEROS embedded operating system. The former is a
quick reaction and low resource consumption protocol for inter-node message transmissions;
and the latter controls the system and assures intra-node resource aware IPC (Inter-Process
Communication). The functions of the CIVIC protocol handles the three communication layers

38 Chapter 3. Communication System: Designs and Evaluations

includes the transport layer, network layer, and medium adaptation layer. The HEROS locates
at the task center, and it controls the communication tasks.

The CIVIC protocol is the focus of the thesis. The motivation for designing CIVIC protocol
has been introduced in Chapter 1. This chapter will describe the concepts and features, then the
message delivery mechanisms and general implementations. The related works and real-world
implementations and experiments on IVC fields are in Chapter 4. Besides, although the CIVIC
protocol is originally designed for VANETs, its applications are not limited to it. The WSN
applications of the CIVIC protocol are introduced in Chapter 5.

Next to the section of the CIVIC protocol (Section 3.2), it will be the HEROS
section (Section 3.3). It is the only section about embedded operating system in this thesis,
thus the related works, operating mechanisms, and evaluation result will all be given inside the
section.

Then the hardware aspect (Section 3.4) and the network aspect (Section 3.5) of the
communication system follow respectively. In the end of the chapter, all the major factors that
cause the message delay and loss rate of the communication system will be evaluated. There
are two groups of factors: the factors relating to the communication system itself (Section 3.6),
and the factors from the outside disturbances (Section 3.7).

In the end, the simulation results on the Shawn simulator is given (Section 3.8).

3.2 CIVIC Protocol

3.2.1 Concepts and Features

3.2.1.1 Infrastructure Supports

The design of the CIVIC protocol is based on the scenarios of vehicular networks with dramatic
changes of topologies according to location and time. In some scenarios, for example at night
and on bad weather, the network density could get very low. In such scenarios, a communication
system purely in client/server mode or in mobile ad-hoc mode may not be appropriate.

Since the distribution of vehicular network is generally along roads. The CIVIC assumes
the roadside infrastructure MMRS (Multi-support, Multi-service Routers and Servers) can be
deployed to support network access and QoS. The main functions of the MMRS are:

• Ensure the network connection to the nearby nodes

• Send a private message to a given node

• Send an alarm message to all nodes

• Forward message(s) to other MMRS

The MMRS should be connected with wired networks; otherwise the network connectivity
cannot be assured. Each MMRS maintains at least two message queues. The first one stores
alarm messages, and the second one holds private messages. When a mobile node reaches an
MMRS, this node broadcasts a request message including its VID (Vehicle IDentifier). If an
alarm and/or private messages exist, the MMRS sends these messages back to the mobile node.
The private message for this mobile node will then be deleted from the private message queue.

3.2. CIVIC Protocol 39

The Figure 3.2 shows how a message is forwarded from one node to another through mixed
networking of ad-hoc and infrastructure.

MMRS
MMRS

MMRS

Area with MMRS
(infrastructure)

Area without MMRS
(ad hoc)

Figure 3.2: Mixed ad-hoc and infrastructure networks

3.2.1.2 Context Based Communications

The CIVIC protocol considers the communication contexts in a vehicular network, which are
quite different from the ones in general-purpose MANETs. The nodes in a vehicular network are
generally distributed along roads with directional movements, but in the MANETs with general
purposes, nodes are grouped around an access point with random movements. By considering
the contexts of distribution and direction, the CIVIC protocol can determine how to transmit
messages (ad-hoc or infrastructure, interval of sending messages, etc.). There are two major
communication contexts of a IVC:

The first one is the distribution. It can be used to estimate the bandwidth utilization and
the capacity of a vehicular network. As previously mentioned, when a mobile node passes
an MMRS, it sends a request message including its VID. The message may also contain its
position, so the MMRS can estimate the distribution of vehicular network, and then a better
knowledge concerning real-time traffic state will be obtained.

The direction of nodes is another major context of IVC. By introducing the direction, the
PDR (Packet Delivery Ratio) and delay can be improved significantly [77]. Although the
Euclidean direction is not appropriate for defining the direction of mobile node when roads
are too winding, it may be applied for a short segment of a road. The CIVIC protocol assumes
that all mobile nodes have an itinerary, and they move in a known environment. Thus, the
direction of a mobile node is updated between two MMRS based on three factors: the itinerary
and position of the mobile node, and the road map.

Moreover, since CIVIC protocol is based on the location-related context, a low-cost
localization solution is a key element of our communication system. It is well known that the
GPS is inappropriate in big city, particularly in EU where the roads are narrow and crossroads
are much closed to each other. To obtain the correct position of a node for CIVIC protocol,
mobile nodes and/or MMRS will use the LCD-GPS (Low Cost Differential GPS) implemented
road maps. The LCD-GPS is a localization solution proposed by Kara [78]. This solution is
able to improve the standard civil GPS accuracy even in dense urban area and it can be used for
mobile tracking. More details about the LCD-GPS system are given in Section 3.4.4.

40 Chapter 3. Communication System: Designs and Evaluations

3.2.1.3 One-hop Link Stability

A common way to ensure quick routing response is to keep stable connections. In a high
mobility scenario like vehicular network, the survival time of stable connections has great
impact on QoS.

The stability of connection in CIVIC protocol is maintained by the neighbor knowledge
exploration. The exploration is proactive, it is implemented by the exchange of "Hello"
messages, and it must be performed only when the link stability is out of date. The dynamic
interval of neighbor knowledge exploration is evaluated by ∆t = Min {∆tr} with Eqs. 3.1:











































.

∆tr = ∞, if vmax
r = vs

∆tr =
R + xs − xmax

r

vmax
r − vs

, if xmax
r > xs and vmax

r > vs

∆tr =
R + xmax

r − xs

vs − vmax
r

, if xmax
r < xs and vmax

r < vs

∆tr =
xmax
r − xs

vs − vmax
r

, otherwise.

(3.1)

where

R : the radio range in the worst case
xs : the location of source node
vs : the average speed
xmax
r : the location of one of its neighbor nodes

vmax
r : the speed of this neighbor node

Both xmax
r and vmax

r in Eqs. 3.1 are adjusted by the worst case of GPS error. The Eqs. 3.1
means that the interval of sending "Hello" messages depends on the distances and the relative
speeds between the source node and its neighbor nodes.

After neighbor knowledge explorations, each node stores its neighbor information for the
further multi-hop routing algorithm.

3.2.1.4 Multi-hop DANKAB

Because the CIVIC communication is based on broadcast, it is important to determine a correct
broadcasting technique. The DANKAB (Directional Area Neighbour Knowledge Adaptive
Broadcast) is therefore proposed when transmitting message by multi-hop. To use DANKAB,
every node must obtain the location knowledge of a destination node and the neighbor nodes
in the omnidirectional radio range (or, in the direction to the destination node if using an
uni-directional antenna). In case of one-hop message sending, one-hop broadcast is used.

When the destination node is not in one-hop distance, DANKAB is used in the routing
requests to find the next hop of source node. Figure 6 illustrates this process with source node
S, destination node D, and routing node R. We define the direction area as an angle α with a
default value of ±30˚. In order to reduce the number of messages in the network, only the nodes
within the direction area can broadcast the message. If there is no node within the direction area,
the angle α will be gradually increased (e.g. 45˚, 90˚ and 180˚) until the next hop is found. A

3.2. CIVIC Protocol 41

D

S

α

S: Source node
R: Neighbour node of S

D: Destination node

β
R

Figure 3.3: DANKAB routing concept

node can be a candidate in the next hop if cosα 6 cos β. The cos β is calculated by law of
cosines in Eq. 3.2:

cos β =
Dis2sd +Dis2sr −Dis2rd

2DissdDissr
(3.2)

where

Dissd : the Euclidian distances between nodes S and D
Dissr : the Euclidian distances between nodes S and R
Disrd : the Euclidian distances between nodes R and D

The destination location is a key element of CIVIC multi-hop routing approaches based on
DANKAB. There are three ways that a source node can obtain the destination location:

• In an infrastructure network, the roadside MMRS can provide the location of destination
node D.

• In an ad-hoc network, a location request will be performed by simple flooding to all
directions.

• Because CIVIC protocol uses the directional broadcast by DANKAB, the nodes in/nearby
a routing path will also receive the routing message even it is not sent to them or forwarded
by them. Thus, the nodes can record this type of routing paths.

The location of destination node may change during this process, but the DANKAB is based
on broadcast, so there is no need for a very accurate location of destination node.

When there is more than one node in the direction area, two energy-aware methods can be
adopted for selecting the next candidate node:

• The first method is competitive broadcast. When a node in area α forwards (rebroadcasts)
a routing message, it sends with a delay based on the remaining energy, thus the node
with more energy will forward a message more quickly. Other nodes with less energy
will discard the same routing message when they receive the first forward one.

• The second method is to let the source node S selecting a node from neighbor nodes to
send/forward a routing message, and the other neighbor nodes except the chosen one will
discard the routing message. It requires the additional information about the remaining
resource (e.g. energy and memory) in neighbor knowledge explorations, but it generates
much less routing data. We use the second approach for the implementation in this thesis.

42 Chapter 3. Communication System: Designs and Evaluations

After defining the next hop of source node S, the processes of DANKAB repeat hop-by-hop
until the routing message attains the destination node or reaches the preset limitation of hop
number.

If the routing path has been obtained, the data from application layer will be transmitted. If
the data rate is low, DANKAB can also be integrated to the data sending, and the routing request
can be ignored. For the implementation in this thesis, the two mechanisms are separated.

3.2.2 Layer-based Message Delivery

This section focuses on the layer-based message delivery mechanisms of the CIVIC protocol.
Some issues about implementations will also be briefly addressed. The Table 3.1 shows three
groups of essential messages in CIVIC protocol.

Message Types Message Names Network Type Size(Min.) Size(Max.)

Application DATA_SEND Unicast 15 70 *
DATA_ACK Unicast 14 20

Hello HELLO_REQ Broadcast 27 33
HELLO_RPY Multicast 39 53

Routing ROUTE_REQ_SF Broadcast 12 37
ROUTE_REQ_DNB Unicast 31 37
ROUTE_RPY_DNB Unicast 31 56
ROUTE_RPY_PATH Unicast 11 36

* The maximum size of DATA_SEND is configurable.

Table 3.1: CIVIC message groups, network types, and message sizes (bytes)

3.2.
C

IV
IC

P
rotocol

43

CIVIC: Transport Layer

Application Layer

Hardware and Network

IEEE 802.15.4

XBee Pro Module

CIVIC: Medium Adaptation Layer

CIVIC: Network Layer

DATA_ACK :

DATA_SEND :

Application DataApplication Header

Data from application tasks

DATA_ACK :

DATA_SEND :

ROUTE_REQ_DNB :

ROUTE_RPY_PATH :

ROUTE_RPY_DNB :

HELLO_RPY :

HELLO_REQ :

ROUTE_REQ_SF :

Network Header

Node ID Node ID Array GPS Location Additional GPS Info.
Serial Number

(source)

All messages from upper layers

MAC Sub-layer (MPDU):

PHY Layer (PPDU):

If a message > 100 bytes,

All messages from upper layers

the message is dividing into payloads.

DATA_LENAPP_PORT DATA_SEQ

A data section

APP_HEAD APP_DATA

APP_HEAD

APP_HEAD

DST_ID SRC_ID PATH_IDS

SRC_SN

MSG_TYPE MSG_STATUS

NW_HEAD

DST_ID SRC_ID PATH_IDSNW_HEAD

DST_ID SRC_ID PRE_IDS SRC_LOCNW_HEAD

FWD_IDDST_ID SRC_ID PRE_IDS DST_LOCNW_HEAD

FWD_IDDST_ID SRC_ID PRE_IDS SRC_LOCDST_LOCNW_HEAD

DST_ID SRC_ID PATH_IDS SRC_LOCNW_HEAD

SND_LOC GPS_TIMENW_HEAD

DST_IDS SND_LOCNW_HEAD

SND_ID

SND_ID

SND_ID

SND_ID

SND_ID

SND_ID

SND_ID

SND_ID

GPS_RMC

CRC

END_MARKSTART_MARK

SND_SN

Payload

MAC Data Unit MAC FooterMAC Header

MPDUPHY Header

Transmit Receive

For debugging only

APP_DATA

Figure 3.4: CIVIC messages on layer-based delivery

44 Chapter 3. Communication System: Designs and Evaluations

The Figure 3.4 shows how the messages pack/unpack between layers, and the main
description is in the next subsections, and the description about the XBee Pro module and
the IEEE 802.15.4 standard is in Section 3.6. Besides, another view in table format is
in Appendix A.

The sender and receiver in CIVIC protocol talk with each other based on the preset message
formats. The network header and application header are for identifying message types, and
talking the existence and size of some dynamic contents such as application data, node ID
arrays, and GPS location. The design in the message format has only one principle: the message
sizes is as short as possible.

3.2.2.1 Transport Layer: Application Messages

The data from application layer is packed into the DATA_SEND messages by the transport layer.
After at least one routing path has been found by the network layer, the data will be sending
to the destination node. The transport layer in current CIVIC protocol is a simple one, and it
performs three major tasks:

1. It transports data to and from the correct application tasks, as the basic function of a
transport layer.

2. It is implemented with the acknowledgement mechanism for minimizing the influence of
network congestion and other errors.

3. It provides an routing interface for controlling the networking actions in runtime.
The controllable actions include defining the routing direction, switching between
proactive and reactive request, setting the routing task intervals, disabling/enabling
acknowledgement mechanisms, and disabling/enabling application tasks.

The task of transporting data is done by add/identify the application header for the data of
application tasks. The application header contain three message fields as shown in Figure 3.4,
and each takes one octet to transmit. These message fields are APP_PORT, APP_SEQ and
DATA_LEN, which indicate the identity of an application task, the sequence number of a
application data from the task, and the size of the application data, respectively. The field
after the application header is the APP_DATA, which is normally a section of data content.
The APP_DATA has a changeable size from one byte to a predefined maximum size. If the
data from application tasks is larger than the maximum size, the data will be divided into
multiple messages and then sent. The predefined maximum size is configurable by users, and
the maximum size of DATA_ACK in Table 3.1 is for our experiment implementations only.

The design of the acknowledgement mechanism is for reliable communication. It is well
known that a broadcast-based communication can cause collisions, thus the CIVIC protocol
has the additional mechanism in transport layer to minimize such influences. To assure a
DATA_SEND reach the destination node, a source node can ask the destination node to send
back an acknowledgement message, named DATA_ACK, which only contains the application
header from a DATA_SEND. If the source node does not receive this acknowledgement in a
limit of time, it can thus choose further actions.

For the implementation of the routing interface of transport layer, before the sending each
DATA_SEND, the transport layer checks several key parameters representing the sub-tasks

3.2. CIVIC Protocol 45

of application interface. Here we only explain the switching of proactive/reactive routing
request as an example. In the network layer of the CIVIC protocol, a system real-time task
keeps on sending proactive routing request for all application tasks based on the configuration
of application layer and the status of destination nodes. The reactive routing request is
implemented as a proactive routing request that is sent on-demand immediately. If no routing
path is found, the routing request continues at intervals, and the repeat period is set by
application tasks through the application interface. If at least a routing path is found, the sending
of DATA_SEND follows.

3.2.2.2 Network Layer: Hello Messages

The network layer is the major component layer of the CIVIC protocol for routing messages.
There are two groups of messages implemented in the CIVIC network layer as shown
in Table 3.1.

The first group of messages is the implementation of neighbor knowledge exploration for
the one-hop link stability in Section 3.2.1.3. It is a proactive routing approach based on
the communication contexts including locations, directions and speeds. This type includes
HELLO_REQ (hello request) and HELLO_RPY (hello reply) messages. The HELLO_REQ is a
one-hop broadcast message to neighbor nodes asking to build stable links. The calculation
of sending intervals is by Eq. 3.1. The HELLO_RPY is a one-hop multicast reply to the
HELLO_REQ, which contains the information of location, direction and speed of the replier
node.

The HELLO_RPY in our experiment implementations is the only message sent by one-hop
multicast. If the neighbor nodes react to the HELLO_REQ from a source node one-to-one
immediately, all replies will reach the source node approximately at the same time, and a
message jam happens. There are some methods that can be used to prevent such issue (e.g.
random delay, priority-based reply), and our implementation has been using a real-time task to
control the HELLO_RPY. Because the replies are actually controlled by neighbors themselves
instead of the sending action of source node, the message jam is minimized. Because a
HELLO_RPY is sent out to a group of neighbors that require for building one-hop stable links,
the HELLO_RPY is multicast, and therefore the sending frequency of HELLO_RPY is reduced.

3.2.2.3 Network Layer: Routing Messages

If a destination node is in one-hop distance, there is no need to send a routing
request; if not, multi-hop routing request and reply performed by the SF or DANKAB
as the second group of messages in Section 3.2.1.4. This group contains four types
of messages: ROUTE_REQ_SF (the routing request by the simple flooding approach),
ROUTE_REQ_DNB (the routing request by the DANKAB approach), ROUTE_RPY_DNB (the
routing reply by the DANKAB approach), ROUTE_RPY_PATH (the routing reply through a
found path):

A routing request must be echoed by a routing reply if the destination node receives the
requirement. The availabilities of the destination location (DST_LOC) and the location of
source node (SRC_LOC) decide which pair of request/reply will be chosen. Figure 3.5 shows
a routing request process. The routing request process is normally driven by a real-time task at

46 Chapter 3. Communication System: Designs and Evaluations

intervals (proactive), but they can also be reactive if the application layer asks for it.
The reaction to a routing request will be: a routing reply, or a routing forward, or/and table

updates. A routing reply process is shown in Figure 3.6. It is normally driven by an event task
for the message arriving. A routing reply follows by two reactions in the next hop: a routing
forward, or/and table updates.

Because CIVIC protocol also works in ad-hoc mode, the SF technique is integrated into the
routing approaches of CIVIC. Therefore, the protocol can still perform the application tasks
when there is no location obtained by GPS. A request/reply pair of ROUTE_REQ_SF and
ROUTE_RPY_PATH is designed for this purpose, but it is called the worst request/reply pair
because a ROUTE_REQ_SF messages request all nodes to be involved into a routing request.

The ROUTE_REQ_SF message is sent when the destination location is unknown.
If a ROUTE_REQ_SF message does not contain the location of a source node, a
ROUTE_RPY_PATH message is sent back by a destination node to the source node;
otherwise, the routing reply will be performed by DANKAB approaches to the source
location (ROUTE_RPY_DNB). Both routing replies can contain the location of the destination
node if it is available, so that the next routing request from the source node can use
DANKAB (ROUTE_REQ_DNB). The ROUTE_REQ_DNB message is sent when a destination
location is known, and it is normally replied by a ROUTE_RPY_PATH message.

If an ideal network (zero delay and error rate) is working in a pure ad-hoc mode without
any location system, the worst request/reply pair will be continuing; but if the location system
is available for all network nodes, the situation is different: 1) If destination nodes are fixed
locations and source nodes are mobile, most of the routing messages in a network are sent as
the best request/reply pair of ROUTE_REQ_DNB and ROUTE_RPY_PATH, except the routing
messages in the first round. It is the best request/reply pair because both ROUTE_REQ_DNB

and ROUTE_RPY_PATH are unicast, and the latter one does not need the amount of calculations
like using ROUTE_RPY_DNB. 2) If both destination nodes and source nodes are mobile,
the best request/reply pair can still perform the routing messages if it is an ideal zero-error
network. However, if it is in a practical real-world network, the selection of request/reply
pairs is depending on the comparison of the mobility level of network nodes and the message
delay (along with loss rate). If the message delay and loss rate are lower, the network nodes
can still get a broadcasted message even they are not in the original locations; and therefore, the
best request/reply pair can be performing in most routing messages. Or, an implementation can
be fixed to use ROUTE_RPY_DNB instead of ROUTE_RPY_PATH in high-mobility networks.
However, even in the latter method, to lower the message delay and loss rate is still a key target.
Therefore, we will details these two parameters of our communication system in the Section 3.6
and 3.7.

In the following, the data structures in the Figure 3.5 and Figure 3.6 will be briefed, along
with the C modules containing the data structures. More details about the implementation for
experiments are in Section 4.1.

• NeiTable: The major module for the routing request and reply is table_neighbor.c, which
contains the NeiTable table to store the information from one-hop neighbor knowledge
exchanges. This module is also implemented with the functions to calculate the next hop
by DANKAB, and the next interval of sending a Hello request, because these calculations
are based on the information in NeiTable.

3.2. CIVIC Protocol 47

Start

NeiTable is empty?

No

A destination location is

available in DstLocTable?
Yes

Send ROUTE_REQ_DNB

(without the location of source node)

No

The location of source

node (itself) is valid?
No

Send ROUTE_REQ_SF

(with the location of source node)
Yes

Send ROUTE_REQ_SF

(without the location of source node)

End

It is time (or a demand)

to send routing request?

Yes

Yes

The destination node

is in NeiTable?

No

Yes

No

Figure 3.5: The proactive tasks related to the first sending of routing requests

48 Chapter 3. Communication System: Designs and Evaluations

Start

End

It is a routing message?

Update the RoutingTable and/or

DestLocTable (no matter whether

the node is the destination node)

The node is the destination?

Yes

Yes

No

The message is a

routing request?

No Yes

The message is a

routing reply?
No Yes

The location of source

node is in the message?

Echo ROUTE_RPY_DNB to

source node (with the location of

destination node if available)

Echo ROUTE_RPY_PATH to

source node (with the location of

destination node if available)

The message is a

ROUTE_REQ_DNB?

The message is a

ROUTE_REQ_SF?

Yes

No

Yes Yes

No

No

Forward the routing message

(update FwdSfTable if it is a

ROUTE_REQ_SF message)

Figure 3.6: The reactive tasks related to routing requests and replies

3.2. CIVIC Protocol 49

• FwdSfTable: The table_sf.c with the FwdSfTable table is for avoiding the redundant
ROUTE_REQ_SF messages, because the broadcast of ROUTE_REQ_SF messages will
not select a node from neighbors to forward a message like DANKAB. The FwdSfTable

records the serial number from source nodes (SRC_SN). If a redundant ROUTE_REQ_SF

message has the same SRC_SN, the message will be discarded.

• RoutingTable: The RoutingTable is in table_routing.c. It keeps the routing paths from
routing replies for application tasks to use. The interval to clear an outdated routing path
is depending on the level of mobility of the network nodes.

• DstLocTable: The table_dst_loc.c with DstLocTable is for two usages: storing the IDs
of destination nodes (DST_ID) if there are requests from application layer; storing the
captured locations of destination nodes (DST_LOC) from routing messages if their IDs
are in the table.

3.2.2.4 Network Layer: Message Fields

This subsection introduces the message fields which are added in the network layer as shown
in Figure 3.4. The first two fields added in the network layer are the network header. The
MSG_TYPE (one octet) indicates the type of a message. It works together with MSG_STATUS

therefore the receiver nodes can recognize a message and the contents in messages. The
MSG_STATUS (one octet) is the status of a message (e.g. whether the source location is ready,
hop number, and path length) as shown in Table 3.2. Besides, the MSG_STATUS could also
contain the debug information and the activation of testing functions.

After adding MSG_STATUS, the message fields will be attached by the network layer
depending on the network header, which include: 1) ones of four node IDs as shown
in Table 3.3; 2) one array of node IDs as shown in Table 3.4, which have dynamic sizes and the
size is indicate in MSG_STATUS; 3) one type of the node locations from GPS to calculate the
DANKAB angle and indicate the replying location (source location); 4) the application header
and data; 5) the Table 3.6 shows the message fields that are not in the previous tables.

3.2.2.5 Medium Adaptation Layer: Software/Hardware Interface

The medium adaptation layer (including hardware drivers) works between the hardware of a
sensor node (i.e. the LiveNode if it is for our experiments) and the network layer of the CIVIC
protocol (or HEROS in task center), thus this layer will also be introduced in the hardware
section (Section 3.4.2). This subsection only focuses on software aspect: the software interface
and the message delivery.

Comparing with the regular hardware drivers, the layer has two additional functions:

• From the sensor hardware to the higher layers, a major software task of the medium
adaptation layer is to convert the meaningless characters from various hardware drivers
to the meaningful information (e.g. GPS location and time, sensor data) or messages (e.g.
the messages in previous section) with unified Get()-like interfaces.

• From the higher layers to the sensor hardware, this layer provides unified Set()-like

interfaces, and take care of the rest (e.g. enabling the maximum low-level sending
intervals, handling the receiving/sending if overrunning, and maintaining the unsent data).

50 Chapter 3. Communication System: Designs and Evaluations

Masks Values Descriptions

10000000 0 or 1 For HELLO_RPY message, it equals to one if the location of sender
node (SND_LOC) is valid.

10000000 0 or 1 For all routing messages, it equals to one if the location of source node
(SRC_LOC) is valid.

10000000 0 or 1 For a DATA_SEND message, it equals to one if a (DATA_ACK) is
required. The network layer of a receiver can directly reply the
DATA_ACK message, and there is no need to really implement the
acknowledgment mechanism in transport or application layer.

01000000 0 or 1 For all routing messages, it equals to one if a routing path is discovered
by DANKAB, it equals to zero if by SF.

00001111 1 to 15 For HELLO_RPY message, it indicates the number of multicast
destination nodes in the field of DST_IDS.

00111000 1 to 7 For routing and application messages with PATH_IDS, it represents the
number of IDs in a found routing path recorded in PATH_IDS.

00000111 1 to 7 For routing messages with PRE_IDS ((ROUTE_REQ_SF,
ROUTE_REQ_DNB and ROUTE_RPY_DNB)), it records the number
of IDs in a previous passing path recorded in PRE_IDS.

Table 3.2: Binary masks, values and descriptions for MSG_STATUS

Field Names Size (octet) Descriptions

SND_ID 1 The ID of the last sender (forwarder) node.
DST_ID 1 The ID of a destination node.
FWD_ID 1 The ID of the next node that is selected by DANKAB to

forward an unicast routing message.
SRC_ID 1 The ID of source node (the first sender node).

Table 3.3: Message fields relating to the node ID in a network message

Field Names Size (octet) Descriptions
DST_IDS 1 to 15 This field is for the multicasted HELLO_RPY only. It contains

the IDs of one-hop destination nodes.
PATH_IDS 1 to 7 When a message is sent by a found routing path, it must

contain this field. It indicates the path will be used to forward
the message.

PRE_IDS 1 to 7 It is for a routing searching message (ROUTE_REQ_SF,
ROUTE_REQ_DNB or ROUTE_RPY_DNB) to attached a
found node. When this type of message is passed to a network
node, it is added with the ID of this node to the end of the ID
array.

Table 3.4: Message fields relating to the array of node IDs in a network message

3.2. CIVIC Protocol 51

Field Names Size (octet) Descriptions

SND_LOC 19 The location of sender node for one-hop HELLO_RPY only
DST_LOC 19 The location of the destination node with DST_ID.
SRC_LOC 19 The location of source node with SRC_ID.

Table 3.5: Message fields relating to the location from GPS in a network message

Field Names Size (octet) Descriptions

GPS_TIME 6 The UTC time in a six-octet HHMMSS
format (hour:minute:second) from GPS. It is only deployed in
HELLO_REQ messages, and it is for the monitoring software
to use as a time reference in debugging mode.

GPS_RMC 11 The direction and speed of a neighbor node in HELLO_RPY.
This field is from the "RMC-Recommended Minimum
Specific GNSS Data" from GPS [79].

SRC_SN 1 The message serial number of a source node. It is for
ROUTE_REQ_SF only.

Table 3.6: Message fields for only one type of network messages

For the message delivery in a sender node, when sending messages from network layer, an
additional field, named SND_SN, is attached to all messages. It is a serial number (one octet) to
indicate the place of a message in the sender’s output sequence. It is different from the SRC_SN

in the last section. The error rate in the following sections or chapters is calculated by the
missing serial number.

After attaching SND_SN (one octet), the layer will attach a CRC (Cyclic Redundancy
Check) for all messages to assure the messages sent and received correctly. In the end, this
layer adds starting mark (one octet) and ending mark (one octet), named START_MARK and
END_MARK to all messages. If a character in a message is as same as START_MARK and
END_MARK, the character will be converted to other one (by adding 0x7D like the methods in
TCP/IP protocol).

In a receiver node, these mechanisms are done backwardly. Moreover, if there are the further
functions to compress/decompress and encode/decode data, they should be implemented in the
medium adaptation layer.

Besides, except the three message groups in Table 3.1, a group of management message
is implemented to carry information between a station and network nodes for managing the
network and feedback experiment results. This message group is not an essential part of the
CIVIC protocol, thus only a brief is given: This group includes two types of messages: 1) a
MANAGE_REQ message is sent from a station to network nodes; 2) a MANAGE_ACK message
works backwardly to a station, and it will be discarded by network nodes if receive it. The
mechanism of management messages is directly implemented on the medium adaptation layer,
thus it can use the START_MARK, CRC, and END_MARK to assure the message correction.
It also has a identity field MSG_TYPE after the START_MARK as all CIVIC messages, but
there is no other limitation to the contents between MSG_TYPE and END_MARK. In our

52 Chapter 3. Communication System: Designs and Evaluations

implementation, these contents are mostly readable ASCII texts.

3.3. Integrating with HEROS 53

3.3 Integrating with HEROS

3.3.1 Overview

The simplest implementation of the CIVIC protocol is to schedule the CIVIC tasks as an infinite
loop, and activate them non-preemptively by timer interrupts. Such implementation is suitable
for some applications required to satisfy a strict memory limitation, but it cannot assure a
higher priority real-time task to be run when the system is busy, and it is difficult to achieve
the intra-node resource-awareness. Besides, the program codes implemented by this method
are hard to be maintained and updated. To overcome these shortcomings but still meeting the
low memory footprint requirement, the communication system in the thesis is integrated with
an Embedded Operating System (EOS), named HEROS (Hybrid Event-driven and Real-time
multitasking Operating System) [80]. The evaluation results of this section show that HEROS
is suitable for our targeting low-aware high-dynamic networks in terms of memory consumption
and system latency.

The design of HEROS is aimed towards a reliable lightweight EOS with good
resource-awareness, maintainability and adaptability; more importantly, these features should
be able to perform in low-cost mobile devices. To achieve these goals, the architecture of
HEROS introduces the concept of a coordination language named Linda [81] [82] to design a
two-level component-based microkernel. It is the key to assure the simplicity for implementing
resource-aware embedded applications, and to enable a reliable concurrent/parallel processing
mechanism. Based on the two-level components, the configurable hybrid microkernel
of HEROS merges the advantages from event-driven and real-time multitasking operation
mechanisms, thus HEROS requires a less resource consumption while supporting more variant
embedded applications.

The following subsections first introduce the concept of Linda coordination language, then
related works on existing event-driven and real-time multitasking EOSs. Next, we describe
the key features of HEROS including the Linda-based component design and the hybrid
microkernel. In the end, the evaluation result will be given.

3.3.2 Linda Mechanisms

This section will first brief the evolution of Linda in industry and research, then the Linda
mechanisms relate to the design of HEROS will be introduced.

Linda language was proposed by David Gelernter [81] in 1985, and the terminology
"coordination language" was introduced to Linda by Gelernter and Carriero [83] in 1992. In
a not accurate description, Linda can also be seen as a coordination extension that can be
added to nearly any programming language and platform. The Linda implementations can
be found for many major programming languages, e.g. C, Java, Smalltalk and Lisp. The
main commercial developments involve the Linda concept including Sun’s JavaSpaces [84]
and IBM’s TSpaces [85]. A list of recent Linda-related research projects can be found in [86],
and most of the projects relate to the middleware design in distributed computing, especially for
web services applications. A current trend is to introduce Linda to the middleware design for
mobile ad hoc networks, e.g. LIME [87] and TOTAM [88], which relate to HEROS distantly.
Besides, some previous works introduce Linda to the design of a parallel computing interface

54 Chapter 3. Communication System: Designs and Evaluations

for Unix or Unix-like operating system [89]. To the best of our knowledge, HEROS is the only
EOS that uses the Linda mechanisms in its design.

In a more accurate description, Linda is a machine model to coordinate the computations in
parallel and distributed systems. The mechanism separates coordination from computation by
using a logically shared memory called "tuple space" or TS. The tuple-based communication is
asynchronous and anonymous. A message cannot be sent or received between two processes
directly. Instead, a process sending a message outputs the message to TS anonymously, and
a process wanting such message seeks and inputs it from TS. A sender process and a receiver
process do not need to know the existence of each other. The design uncouples the spatial
aspect in programming because a communication is not based on the identity of processes. The
design also uncouples the temporal aspect because processes do not have to have overlapping
lifetimes. However, a full time uncoupling is added with an assumption that a tuple will remain
in TS forever until a receiver process get it or the program that generates the tuple needs to be
terminated. This assumption may be reasonable for Internet web service applications, but it is
questionable for current embedded applications.

A TS contains tuples produced by processes, and there are two types of tuples in a TS:
the passive tuple contains data values; the executable tuple contains, incorporates, or activates
program codes. The original Linda [81] defines three operation primitives to access a TS,
including out(), in() and read(). The out() operation produces a tuple, writes it into TS, and
the executing process continues immediately; in() reads and removes a tuple from TS, then the
executing process continues; read() reads a tuple but not removes it. Both in() and read() in
original Linda will be suspended until the required tuple is available.

Because tuples in a TS can be physically distributed on separate computers, the accessing
to a tuple is not refereed by any physically memory address, but by a structured name. The
structured name is a subset of the combination of contents in a tuple. Figure 3.7 demonstrates a
successful out() and in() operations using the structured name {"Temperature", "2010-08-01"}
to assign 30 to "min" and 33 to "max". The "Temperature" and "2010-08-01" are called actual
parameters in this statement, and 30 and 33 are formal parameters. After the executing, the
tuple {"Temperature", "2010-08-01", 30, 33} will be withdrawn by in().

"Temperature", "2010-08-01", 30, 33

Tuple Space

Out ("Temperature", "2010-08-01", 30, 33)

In ("Temperature", "2010-08-01", ?min, ?max)
Suspended until the tuple is existing, then...

Figure 3.7: A tuple-based out() and in() operation by structured name

3.3. Integrating with HEROS 55

The advantages of using Linda are to allow a more orthogonal separation between
coordination and computation, and a more general subsumption of various levels of processes.
Moreover, the Linda mechanisms suit highly dynamic networks. It is not likely to use a
traditional server/client model or a complex mobile ad-hoc model to coordinate the distributed
computing tasks in a highly dynamic network but still maintain low resource consumption.
Linda could offer the foundation of a better and simpler solution.

However, the original Linda mechanisms cannot be directly applied to HEROS, because:

• Some operations in original Linda concepts may require too much computation resources
for embedded applications (e.g. structured name, undirected in() and read()).

• A full time-uncoupling is not adequate for real-time computing processes.

• If all processes and tuples and are anonymous, it is difficult to direct signal/message and
build a true real-time multitasking mechanism.

Therefore, HEROS absorbs the essence of Linda, but develops its own mechanisms
that are more suitable for the mobile embedded applications (the description starting
from Section 3.3.4).

3.3.3 Related Works on EOSs

In the existing EOSs, there are two common operation mechanisms: real-time multitasking and
event-driven.

The real-time multitasking mechanism provides a solution for rapidly developing the
time-sensitive applications and it gives the full control over real-time tasks [90]. However,
this mechanism consumes high resources in terms of energy, CPU and memory. The existing
embedded OSs such as SDREAM [91], µC/OS-II, VxWorks, QNX, pSOS, WinCE.NET,
RTLinux, Lynxos, RTX, and HyperKernel are not suitable for the resource-constraint mobile
networks (e.g. WSNs) because they can only operate as this mechanism. Comparing with
HEROS, they consume more resource in terms of CPU and memory.

To minimize resource consuming, many EOSs were developed for WSN fields (called
WSNOS: WSN Operating System) such as TinyOS [92], Contiki [93], MagnetOS, MantisOS,
EYEOS and SOS (Sensor Operating System) [94]. These WSNOSs meet the resource-aware
requirement, e.g. TinyOS can perform an event-driven component-based operation with
tiny memory footprint. The rest of WSNOSs (except Contiki) are based on multitasking
mechanisms. Contiki is based on event-driven, which is similar with TinyOS, but it can be
configured to run in a multitasking mode. Note that, on one hand, a single task event-driven
system does not fit for hard real-time requirements. On the other hand, in an event-driven
mechanism (e.g. TinyOS), the task switches is normally based on a non-preemptive event-loop.
The event-driven mechanism is suitable for WSNs because of low resource consumption,
but the existing event-driven embedded WSNOSs are essentially implemented by a single
processing mechanism; therefore, they may not be suitable for the embedded applications
requiring complex hard real-time operations.

HEROS evolves from SDREAM (Super-small Distributed REAl-time Microkernel), a
real-time EOS developed by our team, but the design of HEROS integrates event-driven
mechanisms with real-time multitasking into a configurable hybrid microkernel. HEROS can

56 Chapter 3. Communication System: Designs and Evaluations

run in a pure hard real-time mode like SDREAM, or an event-driven mode like TinyOS but with
a certain level of hard real-time supports. This design is able to adapt to more various embedded
applications including intelligent transportation, health care, environment monitoring, etc.

3.3.4 Linda-based Component Designs

The architecture of HEROS introduces the essential concepts from Linda shown in Figure 3.8:
the tuple-based communication with simpler in()/out() primitives. The component-based design
and the concurrent/parallel processing mechanism build on these essential concepts.

Daemon

Thread

Thread

Daemon

Thread

Thread

Daemon

Thread

Thread

Scheduling Program

Tuple Space

IN/OUT IN/OUT IN/OUT

Etask CEtask BEtask A

Low-level Interface for External Peripherals

IN/OUTIN/OUT

Figure 3.8: Tuple-based Component Architecture in HEROS

There are two sets of components in HEROS: thread and etask. Tuple along with IN/OUT

primitives work as the component interface:
Thread is a low-level component that performs a single task in HEROS. A series of threads

can be engaged in a complex real-time task under the control of an etask. Threads run in
concurrent or in parallel, and they are preemptive based on the priority.

Etask is the high-level component that encapsulates a group of threads to complete a specific
task, which is similar to the event concept of TinyOS. Etasks are performed in a sequence
according to the priorities. Etask is not preemptive, but interruptible. It means that an etask with
the highest priority will only be running after the current etask is finished, but the continuity of
etask can be broken (e.g. an interrupt occurs) and resumed. When an etask finishes executing,
it will enter a system thread named daemon, which enables hardware to be switched to a
low-power mode (e.g. switch the ZigBee Pro module to the sleep mode for our experiments).

Tuples are contained in a mutual static TS, which will not be released until the program
is terminated. Tuples are the only pipes for communicating messages and signals to/between

3.3. Integrating with HEROS 57

threads in HEROS. A thread must be ported to at least one static tuple. The static tuple is
named thd_tuple. Besides, an optional type of tuple, named tsk_tuple, works for general etasks,
e.g. the passive tuple in Linda concept, the temporary private resource for an etask. The
thd_tuple and tsk_tuple have the same data structure. The IN/OUT primitives work similar
to the in()/out() primitives in the original Linda concept. Besides the tuple-based advantages
have been mentioned in Section 3.3.2, the unified TS in a single memory embedded system can
help to prevent the memory fragmentation.

The advantages of the two-level component-based designs are to adopt more various
applications with less computation overhead, memory footprint and implementation difficulty:

• For the computation overhead, considering an instance of HEROS as ℜ, it contains a set
of threads T =

∑n

i=1
τi = {τ1 ‖ τ2 ‖ τ3 ‖ ... ‖ τn} where "‖" represents the concurrent

or parallel operation. If ℜ is implemented by one etask with multiple threads, and the set
of n threads are given with τi = (ci, ti) where ci and ti are the worst-case computation
starting time and working period of thread τi, respectively. Let the utilization of τi be
ui = ci/ti, then the total utilization U will be given as Eq. 3.3 [95]:

U =
n

∑

i=1

(ci/ti) (3.3)

If U is greater than the feasibly utilization bound of any scheduling algorithm, there is no
guarantee for a hard real-time multitasking mode. The usage of event-driven etasks is to
divide the threads into groups as E =

∑m

i=1
εi = {ε1 ֌ ε2 ֌ ε3 ֌ ... ֌ εm} where

"֌" denotes the non-preemptive sequential operation. Because the utilization as Eq. 3.3
is limited to a subset of T within εi, the computation overhead is reduced.

• The memory footprint aspect refers to the collecting/releasing of private recourses by
etask. When an etask is activated, it allocates private resources for sub-threads including
context stacks, and optionally, additional tsk_tuples. After an etask is completed, these
private resources will be free. This design allows embedded applications to be scheduled
for more tasks with less memory footprint.

• For the implementation aspect, the two-level hybrid scheduling program can perform as
an underlying cluster mechanism. The etask in HEROS is related to the event-driven
implementation: it could be a packing widget that encapsulates a group of threads to
complete the reactions to an event like TinyOS. But there is no limitation for the user
program to do that, thus etask can just be used as a task group. Tasks can be divided into
relatively independent task groups. It easies the application developer for implementing
level-based tasks and managing program codes.

Besides, HEROS makes a trade-off between system latency and flexibility. To lower the
system latency, the application tasks in HEROS are pre-configured. The components are created
during the software initial stage, and there is no support for generating components in a runtime.

Before we start to get into the details of component designs, an overview for the activation
process is given as follows: Tuples accept the signals and messages coming from threads or
external peripherals by OUT operations. If the object of an OUT operation is a thd_tuple,
the OUT operation activates the related thread. An etask is activated if one of sub-threads

58 Chapter 3. Communication System: Designs and Evaluations

is activated, then the etask starts to collect private resources. A two-level hybrid scheduling
program executes or terminates etasks/threads, and maybe suspends threads, based on their
priority conditions (in Section 3.3.5). An executed thread uses an IN operation to withdraw
data from its relating and interesting tuples. The words "activate" and "trigger" in the following
sections implicate the previous tuple-based activation processes.

The following subsections show the structures and behaviors of component described in the
grammar of C language (by IAR C/C++ Compiler for ARM 4.40A [96]). The field names in
capital letters means the constants assigned at the initialization stage of a program. The field
names and their sequences are not the same as the ones in the actual codes of HEROS. The
changes are only for easing the descriptions. The briefs for the functions of fields are listed as
in the tables, and further descriptions are followed if necessary.

3.3.4.1 Etask

The group of etask components is called ECB (Etask Control Block). The data structure for
etasks is as shown in Table 3.7.

Field Name Data Type Description

state char Terminated, Sleep, Ready or Executing

rest_time unsigned long Residual lifetime of the etask
next_etask struct Etask * Pointer to the next etask to be run after finishing the etask
thd_rdy struct Thread * Pointer to the next thread to be run

ETASK_ID char Etask ID
ORG_PRIORITY unsigned short Original priority of the etask
MAX_LIFETIME unsigned long Original lifetime of the etask

Table 3.7: The data structure for ECB nodes (struct Etask{...})

The etask component has four states including Terminated, Sleep, Ready or Executing. The
explanation is in Figure 3.9 and the following list.

Sleep

Ready

(e2)

Executing(e4)

Terminated

(e3)

(e5)

(e1)

Figure 3.9: Transform of etask states

• Terminated: It is the initial stage of an etask. If an etask is triggered, but its sub-threads
have not yet been given enough resources (e.g. stacks and private tsk_tuples) to run, the
etask is keeping on this state. If an etask is called by the scheduling program in this state,
the processes will seek and collect private resources, instead of executing the sub-thread.

3.3. Integrating with HEROS 59

• Sleep: It is a "transitional" state. Before an etask is Ready, it will be labeled to Sleep

when the resource collections have been finished (as the edge "e1" in Figure 3.9). For the
implementations with less etask, Terminated and Sleep can be combined to an Idle state
where no resource will be released when an etask is terminated.

• Ready: An etask is switched to Ready when any of its sub-thread is triggered by
a signal/message and the resource collections are finished (edge "e2"). Etasks are
non-preemptive and scheduled by their priorities; therefore, an etask could remain Ready

if another etask is keeping on running or another etask gains a higher priority in etask
sequence. If the previous situations happen and the etask finishes its MAX_LIFETIME,
the etask will be back to Terminated (edge "e3") and wait for a new triggering action.

• Executing: This state indicates that an etask is actually run by the scheduling
program (edge "e4"). It will back to Terminated until all of its sub-threads are
terminated (edge "e5").

There is a one-way link list representing the priorities of etasks, called EPL (Etask Priority
Link), as shown in Figure 3.10. The current_etask in the head is a global pointer to identify the
executing etask. The rest of links are connected by the next_etask in ECB nodes. The initial
sequence of the link list is based on ORG_PRIORITY. The etask scheduling in the following
sections implicate the resorting action to this link list.

ECB Items : 1 2 3 … N null

current_etask

Figure 3.10: EPL: Indicating the priorities of etasks

The variables thd_rdy has the similar usage as current_etask. It provides an etask with the
first thread to run (described in the next section). The variable rest_time, along with the constant
MAX_LIFETIME, are used to calculate the priority of etasks (in Section 3.3.5). More details
about the event-driven mechanism are in Section 3.3.5.1.

3.3.4.2 Thread

The group of thread components is called TCB (Thread Control Block). Table 3.8 shows the
data structure for threads.

Thread has five states: four of them are similar to the ones in etask, including Terminated,
Sleep, Ready and Executing, plus one more state of Suspended. Figure 3.11 demonstrates the
possible transforms between states and the explanations follows:

• Terminated: A thread has this state when it is created. After the thread is triggered, this
state is continuing until finishing the private resource collection.

• Sleep: When finishing the resource collection, a thread will enter the state of Sleep (the
edge "t1" in Figure 3.11).

60 Chapter 3. Communication System: Designs and Evaluations

Sleep

Ready

(t2)

Executing(t4)

Terminated

(t3)
(t5) Suspended(t6)

(t1)

(t7)

(t8)

Figure 3.11: Transform of thread states

Field Name Data Type Description

state char Terminated, Sleep, Ready, Executing or Suspended

next_thd struct Thread * Pointer to the next thread to be run after finishing the thread
rest_time unsigned long Residual lifetime of the thread
func_addr unsigned long Memory address of a procedure function
master_etask struct Etask * Pointer to the etask to which the thread belongs
thd_stack struct Stack * Pointer to the private stack
etsk_tuple struct Tuple * Pointer to the tsk_tuple shared within etasks

THD_ID char Thread ID
THD_TUPLE struct Tuple * Pointer to the private thd_tuple

ORG_PRIORITY unsigned short Original priority of the thread
MAX_LIFETIME unsigned long Original lifetime of the thread

Table 3.8: The data structure for TCB nodes (struct Thread{...})

3.3. Integrating with HEROS 61

• Ready: After a thread is triggered and the resource collection is finished, it will enter the
state of Ready (edge "t2") and wait for executing. If it expires its lifetime but not yet
executed, is will be back to Terminated (edge "t3").

• Executing: When a thread is actually running by the scheduling program, it will be labeled
Executing (edge "t4"). It will back to Terminated until its task is finished or it uses up the
lifetime (edge "t5").

• Suspended: This label indicates a waiting state. A thread enters the state because of any
of the following conditions:

– A thread is preempted.

– If a thread seeks for its interesting content from tsk_tuples but the content is not
available.

The difference between Suspended and Ready is the entering/leaving of former is with a
context save/restore operation(edges "t6" and "t7"). If a thread uses up its lifetime, it will
also enter the state of Terminated (edges "t8").

The variable next_thd, along with the thd_rdy in its master etask component, indicate the
set of actions in the mater etask. The sequence of the one-way link list indicate the priorities
of sub-threads in an etask, called TPL (Thread Priority Link), as shown in Figure 3.12. The
thd_rdy is the head defined in an etask. The priority calculations are based on rest_time and
MAX_LIFETIME.

TCB Items : 1 2 3 … N null

Etask: thd_rdy

Figure 3.12: TPL: Indicating the priorities of sub-threads in an etask

The variables thd_stack and the etsk_tuple point to the private resources collected by etask.
The structure of thd_stack is as shown in Table 3.9:

Field Name Data Type Description

cur_sp unsigned long * For calculating the stack pointer offset
start_add unsigned long * Starting address of stack
end_add unsigned long * Ending address of stack

Table 3.9: Stack Structure(struct Stack{...})

A private stack stores the contexts information for a thread when the thread enters the state of
Suspended. The memory is collected dynamically after the thread is triggered, and the collection
of stacks in an etask will be released when the etask is terminated.

The section only describes the component design of thread. More details about the hard
real-time scheduling mechanism about thread are in Section 3.3.5.2.

62 Chapter 3. Communication System: Designs and Evaluations

3.3.4.3 Tuple

HEROS updates the tuple-based communication from the original Linda concept with the
following two mechanisms:

• Directional mechanism: As previously mentioned in Section 3.3.4, a thread must be
connected to at least one static tuple as a communication port. Instead of matching the
structured name as the original LINDA concept, the implicit numeric constant (KEY) can
be used to identify tuples and orient messages. The KEY works as a quick reference, but
whether to continue running a thread can also be depending on the content in tuple.

• Owner mechanism: An OUT primitive can write data to any tuple unless its
TUPLE_TYPE equals to true (means a tsk_tuple) and owner is not null. This situation
happens if a tsk_tuple is a locked and working as a private resource shared within an
etask; the owner here is pointed to an etask. Except this situation, there is no more owner
limitation for IN/OUT primitives. The owner in a thd_tuple only works as a reference
to the master thread of it. In addition, a passive tuple is an unoccupied tsk_tuple where
master_thd is null. A passive tuple can work as a regular buffer.

Because of the resource constraints in embedded applications, some additional mechanisms
are not designed to be implemented to the current HEROS, e.g. the read() primitive and the
garbage collections for tuples. Besides, there is no underlying mechanism for the current
HEROS to prevent the abuse of IN/OUT operations, it is depending on the user programs built
on HEROS to operate the tuple-based communications correctly.

The TS in HEROS is a table containing the items of tuple with data structure as shown
in Table 3.10:

Field Name Data Type Description

owner void * Pointer to a master thread or etask (default is null)
out_head unsigned char* Pointer for writing
in_tail unsigned char* Pointer for reading
msg_num unsigned short Message counter (Equals to 0 if the tuple is empty)

KEY char Tuple ID
TUPLE_TYPE char The type of tuple: thd_tuple or tsk_tuple (0 or 1)
START_ADD unsigned char* Starting address in memory
END_ADD unsigned char* Ending address in memory

Table 3.10: Tuple Structure(struct Tuple{...})

A tuple in memory is implemented as a ring buffer, and the ring buffer is a critical resource
operated by IN/OUT primitives. An OUT operation inserts data into a tuple, and the data
is written at the head of the ring buffer indicated by out_head. An IN operation withdraw
the data from the tuple, and it is started from the tail indicated by in_tail then directed to the
head. An OUT/IN operation causes a plus/minus one on msg_num until the tuple is full/empty,
respectively.

The constants START_ADD and END_ADD can be easily updated to a dynamic collection,
and they can be modified to indicate a local, shared or distributed memory. Because the

3.3. Integrating with HEROS 63

applications built on HEROS need only to communicate through the tuple-based component
interface by IN/OUT primitives, the further modification on low-level memory details will not
require rebuild for these higher-level applications.

3.3.4.4 IN/OUT Primitives

In the end of this section, we show the processes in the IN/OUT primitives. This section only
describes the Linda-based component designs. For both IN and OUT primitives to a thd_tuple,
the last step will be branched to the scheduling mechanism, which will be introduced in the next
section. The italic font with brackets in the following figures indicates the major variables or
constants used in the processes.

The LOCKED and UNLOCKED in the following figures represent the binary semaphores

(with the values of 0 and 1) for protecting the critical sections. If it is just for slow and
simple embedded applications, binary semaphores could be replaced by DIS_ALL_IRQ (disable
all interrupts) and ENA_ALL_IRQ (enable all interrupts). however, in practical embedded
applications with more complex interrupt services, to disable and enable all interrupt would
at least cause the loss of data.

The description starts from the processes in the OUT primitive as shown in Figure 3.13. The
major branch of an OUT primitive is based on the types of tuple:

• For the tsk_tuple, the major processes are identifying owner, writing, and return.

• For the thd_tuple, the states of related components will be updated from Terminated to
Sleep after writing. The related components include: 1) the master thread refereed by
owner; 2) the master etask referred by master_etask (in the thread component). Note that,
after the state updating, the master etask will not start to collect resources immediately.

When receiving signals and messages from interrupt services or other threads, the data will
be written to tuples by OUT primitives. There are two tasks need to be finished by an OUT
primitive: 1) writing data; 2) collecting resources and scheduling. The processes of first task
are as shown in the figure, the rest are in the Figure 3.16 of Section 3.3.5.1.

The processes of IN primitive are shown in Figure 3.14. The top branch of an IN primitive
is based on the message number leaving in a tuple. If the tuple is empty after withdrawing data,
the return happens immediately for a tsk_tuple. But for a thd_tuple, it changes the state of the
thread and get into the scheduling processes as shown in Figure 3.17 of Section 3.3.5.2.

HEROS assume that when the data has been withdrawn from a thd_tuple, the related thread
has finished the duty, and the thread should be suspended or terminated. Consequently, there
are two tasks that need to be finished by an IN primitive:

• withdrawing data

• releasing private resources (if all sub-threads has been terminated) and calling for
rescheduling

64 Chapter 3. Communication System: Designs and Evaluations

OUT

Yes

Is it a thd_tuple?

(T_TYPE)

Return

Event-driven Scheduling

No

Is it a private tsk_tuple?

(owner)

Yes
Write data into the tuple

(out_head, msg_num)

Write data into the tuple

(out_head, msg_num)

Is the current_etask same as

owner?

Yes

No

LOCKED

UNLOCKED

LOCKED

UNLOCKED

No

Change the state of the master etask

to Sleep (state, master_etask)

Change the state of the related

thread to Sleep (state, owner)

Figure 3.13: Processes in the OUT primitive

3.3. Integrating with HEROS 65

IN

Is data ready in tuple?

(msg_num)

Return

Read data from the tuple

(in_tail, msg_num)

LOCKED

UNLOCKED

Yes No

Change the state of the related thread

to Suspended (owner, state)

LOCKED

UNLOCKED

Real-time Scheduling

Figure 3.14: Processes in the IN primitive

3.3.5 Hybrid Priority-based Scheduling

Based on the two-level components, HEROS adopts a hybrid mechanism to merge both
event-driven and real-time multitasking scheduling mechanism. The HEROS application can
be configured to run in two modes:

• If the implementation contains only one etask, the preemptive threads are scheduled in a
hard real-time multitasking mode.

• In the implementation with more than one etask, a two-level scheduling is used: etasks
are run in sequence, and threads are scheduled in an event-driven soft real-time mode.
Besides, to give the event-driven mode with a certain level of hard real-time support,
there is an optional emergency mechanism in HEROS to allow the highest priority etask
taking over the executing etask.

The priority-based scheduling mechanism of HEROS adopts the EDF (Earliest Deadline
First) algorithm, which can assure the threads meet their hard real-time deadlines if U ≤ 1

in Eq. 3.3. The main idea of EDF algorithm is to search the real-time tasks closest to its
deadline and execute it. The EDF is one of the most common algorithms using in the real-time
scheduling mechanism. It has the disadvantage on the fault tolerance if U > 1, but the two-level
scheduling mechanism reduces such situation. The original EDF algorithm does not always give
the optimal result for non-preemptive scheduling, thus it is better used for the preemptive thread
scheduling. For the etask scheduling, HEROS uses static scheduling, or EDF as an optional
choice.

66 Chapter 3. Communication System: Designs and Evaluations

3.3.5.1 Event-driven Scheduling

There are four logical layers in the event-driven mechanism as shown in Figure 3.15 including
the layers of trigger, keeper, dispatcher, and handler.

Handler

Etask BEtask A

Trigger

Interrupts from peripherals: sensor outputting, packet arriving, location updating

Interrupts from timer: interval noticing

Inter-threads: message sending

Keeper

Tuple Space

Tn

(a) OUT: writing

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

(b) OUT: calling

(c) Dispatching

Dispatcher

(d) IN

Scheduling event-driven etasks and real-time threads

Figure 3.15: Logical layers for event-driven mechanism

• The trigger layer receives signals or messages from interrupt services or threads. A
trigger action implicates that there will be a further handler action. The interface function
to the next layer is the OUT primitive.

• The signals or messages are saved as the tuple-based format in the keeper layer. The Linda
tuple-based mechanism loose couples between trigger (sender) and handler (receiver)
in this layer. When the trigger layer continues sending data, the data processing in
handler layer are working in parallel. Moreover, because an incoming data implicates

3.3. Integrating with HEROS 67

a further handler action, if tuples with incoming data is thd_tuples, the last part of an
OUT primitive is to activate the scheduling mechanism in a dispatcher layer.

• The dispatcher layer has two duties: scheduling components and collecting resources.
The scheduling duty is to calculate and resort the component sequence based on the static
priorities or the EDF algorithm. After finished scheduling, only one thread in one etask
will be executed. If the component has no resource to run, the second duty in dispatcher
layer is to collect resources.

• The handler layer contains the actual event "customers": threads and etasks. For example,
the Thread 5 in Etask B in Figure 3.15 has the highest priority to be executed, thus it is
selected by the dispatcher layer to run its data processing task on Tuple Tn. Note that, if
the Tn has no incoming data, the thread will not be activated by the trigger layer.

The following detail more about the OUT primitive and the event-driven scheduling
mechanism in/between the keeper layer and the dispatcher layer. After finishing writing
data, the processes of OUT primitive is branched to scheduling processes. Moreover, if
all sub-threads in an etask finish their duties, the real-time scheduling program will call
event-driven scheduling program to reschedule the next etask.

The Figure 3.16 is the unfinished part of the Figure 3.13 for the OUT primitive.
The top branch divides the flowing to two directions. Both of them are to operate the

EPL. Because the etask is non-preemptive, if there is already an etask executing, only the
etask from the second to the last one will be resorted (if the EDF algorithm is applied). As
previously mentioned, there is an optional emergency mechanism to allow the highest priority
etask taking over the executing etask, and it happens here. The implementation is to disable the
current_etask and current_thread anyway, then move the highest priority etask to the head of
EPL and move the executing etask to the next.

If the global current_etask pointing to a terminated etask, the next etask will be move to
the first place. The rest processes are divided based on the state of current_etask. If the
current_etask is ready, execute it; if not, collect resources for it. In the end, if the all etask
are terminated, call daemon thread after return from event-driven scheduling program. Because
the state of an etask will be changed by an OUT primitive from Terminated to Sleep. In other
word, if the calling is from an OUT primitive, at least one thread and its master etask should
be activated. Normally, only the call from the real-time scheduling program in the next section
will cause the calling of the daemon thread.

3.3.5.2 Real-time Scheduling

An event-driven scheduling program will be switched to the real-time scheduling program, if
there is at least a thread in an etask that need to be executed. As previously mentioned, the
etask is designed as a packing widget containing a group of threads to complete the reactions to
an event, thus before entering the real-time scheduling program in an etask, all the sub-thread
should already have been in the state of Ready. The real-time scheduling program switches the
states between Ready and Suspend, until all threads finish their duties. After that, the real-time
scheduling program will switch back to event-driven scheduling program, which will arrange
the next etask to run.

68 Chapter 3. Communication System: Designs and Evaluations

No Yes

Yes

Is the current_etask Ready?

Yes

Event-driven Scheduling

Call the daemon thread after Return

Is the related etask Executing?

(current_etask, state)

Yes

Link current_etask to the 2
nd

node of EPL;

Move the terminated etask to the end

No

Resort nodes in EPL if 1) the nodes are not

terminated; and 2) their positions are between

2nd and Nth

Return

Is the current_etask in Sleep?

Change the state of current_etask to Ready

No

LOCKED

UNLOCKED Call Real-time Scheduling after Return

Successful in collecting private

resources?

No

Figure 3.16: Processes in Event-driven Scheduling

3.3. Integrating with HEROS 69

Real-time Scheduling

Is current_thread suspended?

(state)

Resort sub-threads in the master etask

(TPL)

Set the resorting result to be

current_thread

Warm start current_thread

from Suspended to Executing

Cold start current_thread

from Ready to Executing

NoYes

Suspend the current_thread

(thd_stack)

LOCKED

UNLOCKED

All sub-threads pass deadlines?

(rest_time)

No

Yes

ENA_ALL_IRQ

Event-driven Scheduling

Set the state of current_etask to

Terminated

Is the first time enter an etask?

(If current_thread==Null)

No

YesSet current_thread = thd_rdy

Yes

Set current_thread = Null

BA

C

Release the private resource of the

master etask (current_etask)

Figure 3.17: Processes in Real-time Scheduling

70 Chapter 3. Communication System: Designs and Evaluations

The real-time scheduling program is relatively simpler. The part A in the Figure 3.17
contains regular real-time preemptive process. In the end of part A, a warm start executes
a suspend thread and resort the context stack from it private resource. For a cold start, this
resorting action is not called. The part B tells how the real-time program switches back to
event-driven program. There are two tasks need to be done here: releasing private resources,
and changing the state of etask to Terminated. The part C is to indicate whether it is the first
time to enter the etask. If it is, the current_thread must be referred to the first priority thread.

3.3.6 CIVIC with HEROS

The embedded communication system can provide adaptive task mechanisms for different IVC
application requirements based on the hybrid mechanism in HEROS. This section gives an
example of an event-driven software design that has been tested. Because the flow of computing
process in this design is the event-driven multitasking mode, thus it can be well adapted to the
message input flow of the CIVIC protocol and it can leave low memory footprint [97].

Thread List

 Application

 Tasks

GPS

Tasks

CIVIC

Update Tables Message Out Message In

Routing Request

Hello Request Hello Reply

Routing Reply &

Forward

USART 1 (802.15.4 MAC) USART 0 (GPS) PIT (ARM7)

Signal only Message & Signal

 Etask List

 US1_RX_RDYUS1_TX_RDYTIMER_RDY US0_RX_RDY

Figure 3.18: System stack and event-driven data flow

There are four major event-driven etasks in Figure 3.18. The TIMER_RDY etask is driven
by interrupts from the PIT (Periodic Interval Timer). The rest of etasks are mainly driven
by interrupts from the USART (Universal Synchronous/ Asynchronous Receiver/Transmitter)
ports connected to GPS module (USART0) or XBee module (USART1).

Figure 3.19 shows an example of processing flow between etasks and threads. Only
the etasks and threads relating to the major system process are shown in Figure 3.18
and Figure 3.19.

The TIMER_RDY etask runs the periodic tasks, e.g. sending "Hello" messages, activating
proactive routing searches, and removing the out-date table items. The tables need to be cleared
periodically are the neighbor table and the routing table.

3.3. Integrating with HEROS 71

......

US0_RX_RDY

TIMER_RDY

Gps In

US1_TX_RDY

Clear Tables

US1_RX_RDY

Message Out

US1_TX_RDY

Message In

.......

Message Out

 Etask-to-Etask

Inter-etask OUT/IN

Update Location

Hello Request Routing Request

Push in MsgOutList

(1) (1)

(3)
(2)

Routing Reply & ForwardHello Reply

Push in MsgOutList

(1)(1)

(3)
(2)

 Etask-to-Thread

Intra-etask OUT/IN

Figure 3.19: The interactions between etasks and threads

72 Chapter 3. Communication System: Designs and Evaluations

The US1_TX_RDY etask handles the message outputs. To avoid the sending intervals
becoming too short, other etasks should not directly send out messages. Instead, they push
messages into a buffer list called MsgOutList (Step 1 in Figure 3.19). It will activate the
US1_TX_RDY etask to check whether the last transmission has been finished. If it has been
finished, a message will be sent out by the "Message Out" thread (Step 2); if not, the etask
is end, and a PIT timer will be activated to run the etask after a waiting period (Step 3). In
addition, for the time-sensitive designs, the TIMER_RDY etask can take control of the output
related to send message at a fix interval.

The etasks US0_RX_RDY and US1_RX_RDY contain threads to process incoming raw data.
The former deals with the GPS data, the latter deals with the CIVIC data. The major routing
for these two etask is similar: 1) when the input buffer is ready for data processing, a thread
translates the raw data into meaningful messages; 2) based on the message types, the etask
divide messages into the related threads for further actions.

Note that, this section only shows the overview of an event-driven design. The settings of
treads (tasks) are normally different in applications, event for the event-driven design. More
details about actual task implementations can be found from Section 4.1.

3.3.7 Performance Evaluation

HEROS has been implemented with underlying mechanisms for our targeting high-dynamic
networks including WSNs and VANETs: On one hand, the WSNs focuses on information
retrieval and the subsequent matching of the attributes of certain phenomenon, the event-driven
mode in HERO can be adopted to these applications; on the other hand, the VANET application
such as hazard alarming and cooperative driving require extra effort to deal with real-time
operations, HEROS can be configured to work in hard real-time scheduling. This section
provides the experiment results on system latency when operating even-driven and real-time
mechanisms. For using in high-dynamic networks, the system latency in HEROS has been
minimized. Moreover, HEROS is dedicated to low-cost mobile devices, thus it must have less
requirement of memory resource. The result on memory aspect is also given in the section.

3.3.7.1 System Latency and Memory Consumption

The hard real-time scheduling mechanism should provide a predictable response time. In the
mechanisms of HEROS, the major variable to affect the system latency is response time of
IN/OUT primitives, which is directly related to the message size that need to be handled by the
primitives. Because the message size is limited within the size of the pre-defined tuples, and
the maximum number of tuples is limited within a static TS, thus the response time of IN/OUT
primitives are also predictable. The following result is from the performance evaluation of
IN/OUT primitives at 48MHz.

The first part of system latency is from IN/OUT primitives. As the OUT primitive shown
in Figure 3.13, the major factors of response times are message writing and event-driven
scheduling. The equations of the number of program cycles and the response time are
104 + 32n cycles and 2.164 + 0.666n µs, respectively, where n is the size of data in the byte
unit. For the IN primitive as shown in Figure 3.14, there is a difference between whether to

3.3. Integrating with HEROS 73

call the real-time scheduling. If calling for scheduling, the maximum equation in Table 3.11 is
applied; or else, the minimum one.

Cost(cycles) Time (µs)

Maximum 149 + 46n 3.101 + 0.957n

Minimum 95 1.977

Table 3.11: Cycle and response time for IN Primitives

The second part of system latency is from the etask (event-driven) switch and the
thread (real-time) switch as in Table 3.12. The former costs 90 cycles, and it responds in
1.873 µs. For the thread switch, there is a major difference from cold start and warm start:

Cost(cycles) Time (µs)

Warm start 99 1.873

Cold start 89 1.852

Table 3.12: Cycle and response time for Thread (real-time) switch

In the memory aspect, a minimum implementation of HEROS needs only about 5 KB
memory (code: 3572 bytes; data: 1272 bytes). The required memory for HEROS is small
enough to be available for most of the existing wireless sensor boards.

3.3.7.2 Comparison with TinyOS

Table 3.13 shows the comparison between HEROS and TinyOS. HEROS is tested on
AT91SAM7S256 (48MHz), and the TinyOS results are from [98] with ATmega128 (4MHz).
The table only compares three system operations (i.e. scheduling a task, context switch and
hardware interrupt latency) and the major memory consumption between HEROS and TinyOS.
Because the tasks in HEROS are pre-configured, when the number of etasks and threads
increase, the sizes of components and TS will also increase.

HEROS (AT91SAM7S256) TinyOS (ATmega128)

Cost(cycles) Time (µs) Cost(cycles) Time (µs)

Scheduling a task 43 0.895 46 11.5
Context Switch 56 1.165 51 12.75

Hardware Interrupt (hw) 5 0.104 9 2.25
Hardware Interrupt (sw) 61 1.269 71 17.75

Size (bytes) Size (bytes)

Code 3572 1272
Data 432 48
Sum 4004 1320

Table 3.13: Comparison between HEROS and TinyOS

74 Chapter 3. Communication System: Designs and Evaluations

Note that the operation of context switching happens between the two threads in the
’warm’ mode. In order to support real-time multitasking operations, HEROS has more system
overheads than TinyOS but has similar system cycles for the basic system operations.

3.4. Hardware Platform: LiveNode 75

3.4 Hardware Platform: LiveNode

3.4.1 LiveNode Components

The hardware platform used by our real-world experiments in the thesis is the LiveNode
sensor developed by our team [99]. It is a versatile wireless sensor node, which enables
to implement rapidly a prototype for different domains of applications such as telemedicine
(wireless cardiac arrhythmias detection), inter-vehicle communication [100], and environmental
data collection (FP6 EU project NeT-ADDED).

The LiveNode sensor is a small board (70x55mm) and is powered by a 9 V standard battery.
It may be equipped with different types of components (GPS, Wi-Fi, ZigBee, GSM and different
type of sensors) to meet the requirements of an application. The major components of LiveNode
sensor used in our real-world experiments have three parts as shown as shown in Figure 3.22:

• The Atmel AT91SAM7S256 microcontroller [101] is used for data processing. It
is an ARM7TDMI based high-performance 32-bit RISC microcontroller with Thumb
extensions with USB Device Interface, 32 I/O pins, one Advanced Interrupt Controller,
one Periodic Interval Timer, two USARTs, 256 K bytes Flash and 64 K bytes SRAM.

• The MaxStream XBee Pro module [102] is to ensure the wireless communication of IEEE
802.15.4 standard (ZigBee). The module operates within the ISM 2.4 GHz frequency
band. It is low-cost, it requires low power (e.g. TX peak current is 45 mA at 3.3 V
and power-down current is less than 10 µA), and it can reach a wide range (the outdoor
line-of-sight transmission distance is up to 1600 m [102]). The ZigBee is chosen in our
new experiments instead of Wi-Fi because ZigBee has an outdoor RF line-of-sight range
up to 1.6 km and an indoor range of 100 m, which is equivalent to Wi-Fi indoor range
one. Besides, the energy consumption for ZigBee module is less than the available Wi-Fi
modules.

• The GlobalSat ET-301 GPS module [79] is for specific GPS signal processing. It is a
20-channel all-in-view tracking receiver. It communicates on the serial port with the
micro-controller at the default baud rate of 4800 bps. The receiver automatically sends
its complete message once every second. Then, the micro-controller detects and decodes
the message.

If not specified, the "sensor" in the following sections or chapters means the LiveNode with
above three components.

3.4.2 Medium Adaptation Layer: Multiple Wireless Supports

To adapt different roadside infrastructures and utilize more radio spectrum, our communication
system is designed to support multi-radio and multi-channel on network nodes. The radio
and channel should be auto-configured to minimize interference. The LiveNode sensor can
be equipped with three types of wireless access medium: Wi-Fi (IEEE802.11b), ZigBee
(IEEE802.15.4), or GSM (GPRS). Several LiveNode sensors can be connected together to
enable the multiple wireless supports by using extension connectors (SPI, I2C, and I/O

76 Chapter 3. Communication System: Designs and Evaluations

Figure 3.20: LiveNode platform

3.4. Hardware Platform: LiveNode 77

Figure 3.21: Two LiveNode sensors link together: ZigBee plus Wi-Fi

connectors). For example, two LiveNode sensors in Figure 3.21 are linked as a couple. The
couple of LiveNode sensors can then provide both ZigBee and Wi-Fi supports.

The Wi-Fi and ZigBee have been adopted by the communication system. From inter-vehicle
communication, smart home, to telemedicine, the Wi-Fi enables many applications to connect
to the Internet. With an appropriate antenna, the radio range of Wi-Fi can reach 1 Km with the
vehicle speed about 100 Km/h. A new trend of wireless standard is ZigBee, which requires
lower cost and lower power. Its maximum outdoor line-of-sight transmission distance is
1600 m [102].

3.4.3 Designs in Hardware Driver

The programming of drivers seems trivial but it is important for a reliable quick-reaction
communication system. Moreover, it must work closely along with the medium adaptation
layer. An example of the USART driver (only the part of inputting data) is given to demonstrate
the major design as shown in Figure 3.22.

As the lowest level of the communication system, it must provide simple IN/OUT interface
for upper layer. In addition, it should have certain level of self-configure functions. In the
figure Figure 3.22, Us1IrqHandler, Us1EndInput and Us1BufSwitch on duties of putting the
network data into two switchable buffers, then the Us1Prc pass the data to the upper layer. In
case of the upper layer does not have enough time to deal with the data, some interrupt services
suspended, and the overrun data will be cleared.

The functions in the figure together can be consider as one of the "inputting triggers" in the
trigger layer of HEROS logical layers (in Section 3.3.5.1). To keep the data sending and
receiving in high speed, the driver programs are driven by interrupts. The major interrupt
sources are on the left side of the figure. Each source has a standalone modular to handler,
and the modular are normally protected by flags. The interrupt services are for noticing the

78 Chapter 3. Communication System: Designs and Evaluations

Start Us1IrqHandler()

Is ENDRX

No

Is TIMEOUT Enable

Is RXRDY

Disable RXRDY

Enable ENDRX

PDC_RNPR = CurUs1InBuf

PDC_RNCR = Us1_BUF_LEN

IsUs1InputEnd = FALSE

Yes

Disable ENDRXYes

End

Yes

Run other handler functions...

IsUs1PrcEnd

Yes

No

IsUs1SwitchEnd = FALSE

IsUs1SwitchEnd = TRUE

Is RXRDY Enable

Yes

Is ENDRX Enable

yes

No

No

No

Is TIMEOUT

No

No

Call Us1EndInput() ...

Yes

Is OVRE_RUN

No

Read RHR to clear RXRDYYes

Start Us1Prc()

IsUs1InputEnd &&

IsUs1SwitchEnd &&

PrcUs1InLen!=0

IsUs1SwitchEnd

No

Yes

No

Yes

IsUs1PrcEnd = TRUE

Process Data in PrcUs1InBuf…

PrcUs1InLen = 0

End

IsUs1PrcEnd = FALSE

Start Us1EndInput()

End

Call by
 Usart

IRQ
Call by PIT task or

Us1 Event

IsUs1SwitchEnd = TRUE

IsUs1InputEnd = TRUE

IsUs1SwitchEnd

Enable ENDRX

No

Call Us1BufSwitch() ...

p_Temp_Buf = CurUs1InBuf

CurUs1InBuf = PrcUs1InBuf

PrcUs1InBuf = p_Temp_Buf

PrcUs1InLen = Us1_BUF_LEN - RCR

Enable RXRDY

Start Us1BufSwitch()

End

RCR < US_BUF_LEN

Yes

No

Disable ENDRX

Call Us1EndInput() ...

Yes

Call Us1BufSwitch() ...

AT91C_BASE_Us1->US_RCR = 0

STTTO

Figure 3.22: Driver for XBee Pro chip: An example for inputting data

3.4. Hardware Platform: LiveNode 79

happening of events. No actual data copy or move should be happen here.

3.4.4 Low-cost GPS module and LCD-GPS solution

As previously mentioned, the CIVIC protocol is based on location-related contexts, thus a
localization solution is one of key elements of our communication system. This subsection
introduce an evaluation of the low-cost GPS module that we used, and a brief of the
LCD-GPS solution developed by our team. The evaluation is a part of the evaluations of the
communication system, but since it is not directly relating to network communications, it is put
in the hardware section.

A common solution to improve the GPS accuracy is to use DGPS (Differential GPS) [103].
However, installing a reference station or receiver for DGPS is complex and very expensive. A
DGPS station costs about 30000 e, and a DGPS module (e.g. RTK-DGPS) is about 3000 e.
The costs of DGPS products make them hard to be applied to most VANETs and WSNs. The
communication system chooses a low-cost solution by using only the standard GPS (civil GPS)
module (it is about 50 e for the GPS module on LiveNodes) along with the LCD-GPS solution
to improve the accuracy of locations.

The Figure 3.23 shows an experiment for the GPS module on LiveNodes, and the result is
normally common for other low-cost GPS modules. The experiment was conducted with three
sensors in three days. The average distance of the sensors was 41 meters, and the experiment
periods were approximately between 9 AM and 12 AM.

40%

60%

80%

100%

120%

C
o

rr
ec

t
R

a
te

Day 1 (2 hrs 9 mins) Day 2 (3 hrs 20 mins) Day 3 (4 hrs 32 mins) Average of three days

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

C
o

rr
ec

t
R

a
te

Range (meter)

Day 1 (2 hrs 9 mins) Day 2 (3 hrs 20 mins) Day 3 (4 hrs 32 mins) Average of three days

Figure 3.23: Correct rate for an experiment for GPS accuracy

The ranges in the figure are the radiuses from the accurate positions got from a RTK-DGPS
module, which provides the position with a 10 cm deviation. For the GPS module on
LiveNodes, 13.71% position is correct in one meter, 64.57% in two meters, and the maximum
range is in four meters. In other word, the GPS module can get positions with a four-meter
deviation in the worst case. For many WSNs, this accuracy may be enough; moreover, for
most wireless sensors, they can normally rely on the sink node or master nodes to know their
raw positions. For VANET applications like hazard warning, the minimum accuracy is one
meter [104], thus the previous accuracy need to be improved.

80 Chapter 3. Communication System: Designs and Evaluations

The main idea of LCD-GPS solution is to use some fixed nodes as reference stations.
The other nodes are called mobile nodes. Reference stations and mobile node have the
same hardware equipments. The LCD-GPS solution assume all reference stations know their
positions with a good accuracy. The reference stations analyze the instantaneous GPS errors,
and they cooperate to deduce a global error correction. The mobile nodes apply the correction
result and get more accurate positions. There are several degrees of calculations in LCD-GPS.
The simple difference is the easiest to be applied because it can be run locally, and it does not
require the global correction results from the network server.

Back to the previous experiment, after applying the simple difference between the sensors,
we got the corrections of standard deviations as in Table 3.14 [78]. The average

Sensor 1 Sensor 2 Sensor 3

Original standard deviation East 0.7257 0.6317 0.6526
North 1.3083 1.1173 1.2356
Height 1.6904 1.6113 1.8555

When sensor 1 as the reference station East - 0.4216 0.4579
North - 0.6646 0.7772
Height - 1.1067 1.3123

When sensor 2 as the reference station East 0.4216 - 0.4458
North 0.6646 - 0.6289
Height 1.1067 - 1.1627

When sensor 3 as the reference station East 0.4579 0.4458 -
North 0.7772 0.6289 -
Height 1.3123 1.1627 -

Table 3.14: Corrections of standard deviations on the three directions (unit is meter)

By comparing with the original standard deviation, the average deviation gains 30
The integration of LCD-GPS and the communication system is still an ongoing work. some

experiments involve CIVIC and LCD-GPS is in [19]. In the design, the GPS data are carried
by CIVIC protocol between reference stations and mobile nodes. The LCD-GPS solution
calculates corrections, and then both reference stations and mobile nodes can get more accurate
positions.

3.5. Network Specification: 802.15.4 81

3.5 Network Specification: 802.15.4

The communication system does not have a strict limitation on network specification. The
CIVIC protocol can handle the addressing of network nodes, multi-hop peer-to-peer routing,
and it provides the communication interfaces for upper layers. The only requirement of
the CIVIC protocol for the underlying network medium is to provide a one-hop broadcast
mechanism.

In this case, our communication system chooses the IEEE 802.15.4 standard [105] as its
underlying layer. The standard is well known as a low-power consumption standard requiring
low-cost devices. For example, the MaxStream XBee Pro chip costs only 32 U.S. dollars, and it
requires just 63 mW transmit power [102], which is an ultra low power consumption. To keep
CIVIC protocol adaptable to other network specification, we only enabled the broadcast mode
with the unslotted CSMA/CA algorithm provided by the XBee Pro module. Actually, even if
we enabled the slotted CMSA/CA with a beacon node to control the networking, there is still a
high probability that two sensors would sense the same slot being free, and transmit data in the
same slot [106].

The IEEE 802.15.4 standard in our communication system specifies the PHYsical
layer (PHY), and the Media Access Control (MAC) portion of the Data Link Layer (DLL)
as shown in Figure 3.24.

Figure 3.24: CIVIC and 802.15.4 standard

The original standard in 2003 [105] specifies two physical layers based on Direct Sequence
Spread Spectrum (DSSS). The one we use is within the 2400 MHz frequency band. The
standard raw data rate is 250 Kbps, which may be already enough for many low data rate
network applications like WSNs. The MAC layer use CSMA/CA to avoid or reduce the

82 Chapter 3. Communication System: Designs and Evaluations

collision in the transmission process. More details and the evaluation results for 802.15.4
standard will be in Section 3.6.4, 3.6.5, and 3.6.6.

3.6. Theoretical Evaluations 83

3.6 Theoretical Evaluations

3.6.1 Introduction

This section given a general evaluation for all the elements introduced in the previous sections,
and see if these elements are suitable for our communication system. It introduces the factors
that affect the message delays, gives the calculations for each delay element, and determines
a theoretical result. The next sections will compare the theoretical result with the real-world
experiment results. The factors and their notations are listed as follows:

• DFuart : Inter-module serial communication by UARTs

• DFsw : Software execution

• DFcsma : Channel access by CSMA/CA

• DFrf : Over-the-air RF transmission

• DFifs : Inter-Frame Space (IFS)

• DFxbee : XBee-PRO module operations

The calculations of DFuart are based on [101] and [102]. The DFsw is evaluated based on
the software design in LRPC (Laboratoire Régional des Ponts et Chaussées) experiments, [107]
and [108]. The DFcsma, DFrf and DFifs are calculated according to IEEE 802.15.4
standard [105] used in XBee-PRO module. The DFxbee is estimated via the in-lab results
and [102].

The Figure 3.25 presents the periodic sequence of above factors in the experiments. From
top to bottom, there are two general processes: the output and input of a message; the output
and input of an acknowledgement. From left to right, there are three main hardware modules:
MicroController Unit (MCU), XBee-PRO Module, and RF Antenna. The labels in figure are
the notations of equations to calculate the delay factors, and they will be explains in the next
sections.

3.6.2 Inter-module Serial Communication

The DFuart from inter-module communication relates to the serial data rate and the number of
characters needs to be transmitted.

The UART (Universal Asynchronous Receiver/Transmitter) enables the serial
communications between microcontroller and XBee-PRO module. Although UARTs on
both sides were registered to get 115200 baud, the actual bit rate on the XBee-PRO module
is just 111111 bit/s [102], and the actual bit rate on the microcontroller is 111238 bit/s [101].
Therefore the former is used for the following calculations.

A character of ASCII text takes one octet (8 bits) to store, and it takes two extra bits (start
and stop bits, no parity bit) to complete a serial transmission in the settings of our experiments.
Thus the UART data rate, Ruart, is 111111/10/1000 = 11.1111 octet/ms. The transmitting period
of one character, Pchar, is 1/Ruart = 0.09 ms/octet.

Moreover, in the settings of a XBee-PRO module, the characters in a message from upper
layer are not directly transmitted over-the-air. Instead, they are kept in a DI (Data In) buffer.
The transmission will be started only if one of the following conditions is met [102]:

84 Chapter 3. Communication System: Designs and Evaluations

Sender

Receiver

MCU

Receiver

 MCU

Sender

 MCU

MCU

XBee DI Buf.
Tuart_send(x)

XBee DI Buf.
Tuart_send(5)

T sw(x)

Antenna Port
Txbee_send(x)

XBee DO Buf.
Tuart_rcv(5)

Antenna Port
Txbee_send(5)

XBee DO Buf.
Tuart_rcv(x)

Antenna Port

Tcsma+Trf(x)+Tifs(x)

DATA Out.

Txbee_rcv(x)
DATA In.

Antenna Port

Tcsma+Trf(5)+Tifs(5)

ACK Out.

Txbee_rcv(5)
ACK In.

Figure 3.25: The periodic sequence of delay factors

1. The number of characters in DI buffer reaches the maximum payload of RF packets (
Lpayload).

2. There is no incoming character for a amount of time, which is determined by a RO
(packetization timeout) parameter in XBee-PRO module. The unit of RO parameter is
the transmitting period of one character. Our experiments set the RO parameter to be one.
The period of RO delay, Pro, before an over-the-air transmission is equal to Pchar.

3. A command mode sequence is received. This mechanism was not used in the
experiments.

Therefore, the delays of the receiver and the sender in millisecond unit are calculated as
follows:

Tuart_send(x) =
x

Ruart

+ sgn(x mod Lpayload)× Pro (3.4)

Tuart_rcv(x) =
x

Ruart

(3.5)

where

x : the number of transmitted characters (octets)
Lpayload : 100 octets; the maximum payload of RF packet
Ruart : 11.1111 octet/ms; the data rate of UART
Pro : 0.09 ms/msg; the RO parameter
sgn(x) : equals 1, if x>0; equals 0, if x=0; equals -1, if x<0

3.6.3 Software Execution

The CPU execution time is used to evaluate the elapsed time of software program. Since there
are extra passing time in the accesses of memory and I/O, the DFsw in the theoretical result
should be slightly less than the actual elapsed time.

3.6. Theoretical Evaluations 85

There are two parameters need to be known before given the equation of DFsw, which are
Ccpi and Rmcu. The Ccpi is the average CPI (Cycles Per Instruction) for ARM7 family. The
Rmcu is the MCU clock frequency. The LiveNodes in the experiments are set to run in 48×106

Hz (cycles per second).
Where Numberinstr holds the instruction count in a program, the equation of DFsw is given

by:

Numberinstr × Ccpi

Rmcu

There are four major parts of instructions to be considered in a DATA/ACK software system:
in a sender, the producing of DATAs and the processing for ACKs; in a receiver, the processing
for DATAs and the producing of ACKs. But as previously mentioned, the starting point of
calculating the delay in our sender program is after a DATA has been formed, so this part of
instructions are not considered. Moreover, ACKs are fixed on the length in five octets, thus the
software operations for ACKs are considered minor in their effects on delay (less than 100 µs).

Only the instructions relating the processing for DATAs on receiver are considered in
calculations. They include the codes eliminating the 0x7D escape sequences in a DATA and
calculating CRC. All together, they are counted to be Cinstr. They are programmed in loops
to processing characters in a DATA. Therefore, the effects for running these instructions are
increased when the size of DATAs are grown.

As a result, we get the equation of DFsw(x) in millisecond unit:

Tsw(x) =
Cinstr × Ccpi × x

Rmcu

(3.6)

where

x : the number of characters in a message
Cinstr : 141 instructions/character; the number of instructions increased by

per character
Ccpi : 1.9 cycles/instruction; the average CPI for ARM7
Rmcu : 48×103 cycles/ms; the MCU clock frequency

3.6.4 Channel Access by CSMA/CA

The unslotted CSMA/CA algorithm is shown in Figure 3.26, and it works as the following
steps 1 :

1. If a device wishes to transmit a data frame, it first initializes the variables NB (Number
of Backoff periods) to 0, and BE (Backoff Exponent) to macMinBE (the minimum value
of the BE; range from 0 to 3). The macMinBE for the experiments was set to be one,
because we assumed that there would not be much network interference. If macMinBE
equals zero, the next step is disable.

1The acronyms and abbreviations in Sections 3.6.4, 3.6.5 and 3.6.6 are kept the same as in IEEE 802.15.4
standard [105].

86 Chapter 3. Communication System: Designs and Evaluations

Start

Slotted?
Slotted CSMA

 Algorithm
Yes

(1) NB = 0
BE = macMinBE

No

Failure Success

Channel Idle?

Yes

(4) NB = NB + 1
 BE = MIN(BE+1, aMaxBE)

No

NB > macMaxCSMABackoffs?

Yes

(2) Random Delay for (2^BE - 1) x aUnitBackoffPeriod

No

(3) Perform CCA

Yes

Figure 3.26: The non-beacon unslotted CSMA/CA algorithm

3.6. Theoretical Evaluations 87

2. The first step in the unslotted CSMA/CA iteration is a random backoff. For the unslotted
CSMA-CA, the backoff starts immediately. The delay of random backoff ranges from 0
to (2BE –1) × aUnitBackoffPeriod. The aUnitBackoffPeriod (or Symbf) is the time
period represented as the number of symbols, and it is a MAC sublayer constant.

3. After a random backoff, the Clear Channel Assessment (CCA) is performed to check
whether the channel is available for transmission. If the detected energy on the channel is
below the CCA threshold, the frame is transmitted; otherwise, it follows the step 4. The
duration of CCA detection is Symcca.

4. If the channel is not idle, both BE and NB are incremented by one. The value of BE
is up to aMaxBE (the maximum value of the BE; aMaxBE equals 5 and it remains
constant). The maximum value of NB is macMaxCSMABackoffs (range from 0 to 5;
default value is 4). If NB exceeds macMaxCSMABackoffs, the unslotted algorithm
terminates and a frame is lost; if not, it returns to the second step.

Based on the steps detailed above, the best-case channel access time is known as 0.128 ms.
The worst-case channel access time is 8.832 ms, and its calculation is as:

4
∑

n=1

((2n − 1)× Symbf + Symcca)× Psym

For the theoretical result, we assume the channel accesses are always successful at the first
time, and the delay in second step equals the mean delay of random backoff range. Therefore,
the timing caused by DFcsma is calculated as follows:

Tcsma = (
Symbf

2
+ Symcca)× Psym (3.7)

= 0.288 ms/frame

where

Symbf : 20 symbol periods; the number of symbols forming the basic time
period

Symcca : 8 symbol periods; the duration of CCA detection
Psym : 0.016 ms/symbol; the symbol period in 2.4 GHz band

3.6.5 Over-the-air RF Transmission

The DFrf per frame relates to the RF raw data rate and the frame overhead (or protocol
overhead). As previously mentioned, acknowledgements in 802.15.4 standard are not used
in the broadcast mode for our experiments, the timings of acknowledgement and turn-around
are omitted in the following calculations.

The raw data rate of the 802.15.4 standard in 2400 MHz band is 250 Kbps. A octet takes 8
bits to be completely RF transmitted, thus the RF raw data rate Rrf is 250000/8/1000 = 31.25
octet/ms.

88 Chapter 3. Communication System: Designs and Evaluations

If the raw data rate is fixed, the frame overhead determines the information rate, which
normally must be lower than the raw data rate. For example, the ZigBee protocols on top of
802.15.4 standard sometimes only provide a peak information rate of 120 Kbps [109]. In the
following, we will describe the frame overhead based on the settings of this experiment.

Application layer

MAC Upper-layer (Data Payload)

MAC Sub-layer (MPDU)

PHY Layer (PPDU)

Start Mark Message ID Content CRC End Mark

1 1 0 to 995 2 1

1st Payload ... Nth Payload

5 to 100 ... 1 to 100

Divided into

Frame Control Sequence Number Addressing Fields MSDU FCS

2 1 6 1 to 100 2

Passed to

Preamble Sequence Start of Frame Frame Length PSDU

4 1 1 12 to 111

Passed to

Figure 3.27: IEEE 802.15.4 Frame Format (the unit of size is octet)

The operations of 802.15.4 standard relate to the frame overhead is shown in Figure 3.27.
The number 995 in the application layer is the maximum data size set in the experiments of the
latter sections, and the data size can be configured by users.In the tables of sub-graphs, the first
row shows the names of fields, the second row shows the sizes of fields.

The frame structure of physical layer (PHY) is on the bottom of Figure 3.27. Above the
PHY, it is the Medium Access Control (MAC) sublayer. On top of this figure, the message from
application layer is divided into the data frame payloads of MAC sublayer.

The Phy Service Data Unit (PSDU) is the data frame payload of PHY. A PSDU is prefixed
a PHY frame overhead to form a Phy Protocol Data Unit (PPDU).

The data frame payload of MAC sublayer is referred to as the Mac Service Data Unit
(MSDU). The size of MSDU is named as Sizemsdu. A MSDU and a MAC frame overhead

3.6. Theoretical Evaluations 89

together form a Mac Protocol Data Unit (MPDU) that will be passed to PSDU. The size of MAC
frame overhead is a variable because it contains changeable addressing fields from 4 to 20 octets.
Our experiments use the 16-bit short addressing with intra-PAN broadcast network, therefore
the source PAN ID shall not be present in addressing fields (pp.111-pp.115 of [105]). The
addressing fields contain only three 2-octet fields including a destination PAN ID, a destination
address, and a source address. Together, the addressing fields are 6 octets. Therefore, the
LmacOH equals to 11 octets.

The maximum size of PSDU, aMaxPHY PacketSize, in [105] is 127 octets, thus the
maximum value of Sizemsdu should be aMaxPHYPacketSize - LmacOH = 127 - 11 = 116
octets. However, the Lpayload in Section 3.6.2 is only 100 octets, thus the Lpayload is used as
the maximum value of Sizemsdu.

As a result, the factor DFrf per frame in millisecond unit can be formulated as:

Trf (x) =
x+ LphyOH + LmacOH

Rrf

(3.8)

where

x : the size of MSDU (Sizemsdu), and 0 < x ≤ Lpayload

LphyOH : 6 octets; the length of PHY frame overhead
LmacOH : 11 octets; the length of MAC frame overhead
Rrf : 31.25 octet/ms; the RF raw data rate

3.6.6 Inter-frame Space

To allow MAC sublayer process data received by the PHY layer in 802.15.4 standard, the
transmission of data frame is followed by an inter-frame separation period called Inter-frame
Space (IFS). This delay is generated by the XBee-PRO module after sending a data frame.
When the size of a message is over Lpayload (a data frame unit), the DFifs needs to be
considered. This section will briefly introduce DFifs. In an actual transmission, this factor
normally overlaps by the DFxbee, which will be introduced in the next section.

The size of MPDU (Lmpdu) designate the IFS period to be either short IFS or long IFS. If
Lmpdu is smaller than or equal to aMaxSIFSFrameSize (18 octets), aMinSIFSPeriod (or Ssifs)
is used to form short IFS; otherwise, aMinLIFSPeriod (or Slifs) is used to form long IFS.

The Lmpdu can be calculated as Sizemsdu + LmacOH , thus the variable Sizemsdu is used
to compare with aMaxSIFSFrameSize − LmacOH . A new constant, Lsifs, represents this
limitation:

Lsifs = aMaxSIFSFrameSize− LmacOH = 7 octets (3.9)

The time period of DFifs is designated as follows:

If x ≤ Lsifs then,

Tifs = Tsifs = Ssifs × Psym = 0.192 ms/frame

else,

Tifs = Tlifs = Slifs × Psym = 0.64 ms/frame

90 Chapter 3. Communication System: Designs and Evaluations

Or, the following equation is in the grammar of Gnuplot:

Tifs(x) = (x <= Lsifs ? Ssifs : Slifs)× Psym (3.10)

where

x : represents Sizemsdu, and 0 < x ≤ Lpayload

Lsifs : 7 octets; the maximum size to use short IFS
Ssifs : 12 symbol periods
Slifs : 40 symbol periods

3.6.7 XBee-PRO Module Operations

Except the factors that have been described in Section 3.6.2, it can be assumed that there should
be DFxbee from the operations inside a XBee-PRO module as shown in Figure 3.28.

Sending DI pin XBee DI Buf. XBee TX Buf.
Txbee_send(x)

RF Antenna

Txbee_send(x)

Receiving

MCU

DO pin XBee RX Buf.

Txbee_rcv(x)

XBee DO Buf.
Txbee_rcv(x)

Figure 3.28: Communication Mechanisms of the XBee-PRO module

The first source, named DFxbee_send, causes the delay when sending data. When the serial
data from the MCU enters the XBee-PRO module, it enters the Data In (DI) buffer through the
DI pin (pin 3), then passes the TX buffer to the RF antenna. The second source, DFxbee_rcv,
causes the delay when receiving data. In this process, the RF data passes the RF antenna to
the RX buffer, and leaves the Data Out (DO) buffer to MCU through the DO pin (pin 2). By
detecting the signals from the RF antenna, and from the DI/DO pins on a pair of communicating
XBee-PRO modules, we can estimate DFxbee_send and DFxbee_rcv.

We used a digital serial analyzer (Tektronix DSA71604) in this experiment to estimate these
two factors. Because the XBee-PRO module works according to the data frame mechanism of
the 802.15.4 standard[105], the estimated values are based on the data frame unit.

The Figure 3.29 is captured when testing the DFxbee_send. The first waveform (the channel
one on top) is output from the DI Pin of the XBee-PRO module on a sender. The bottom
waveform (channel two) is the output of the RF antenna. The ∆t represents the time difference
of t1 and t2; in other words, the value of DFxbee_send plus DFcsma.

The value of ∆t is about 2.18 ms when Sizemsdu (see Section 3.6.5) is in the minimum size
of five octets, and it linearly increases with Sizemsdu. When Sizemsdu equals Lpayload, the value

3.6. Theoretical Evaluations 91

Figure 3.29: The waveforms in the sending process

Figure 3.30: The waveforms in the receiving process

92 Chapter 3. Communication System: Designs and Evaluations

of ∆t reaches a peak of 2.92 ms. Therefore, a linear equation is used to relate the Sizemsdu and
the DFxbee_send in millisecond unit as:

Txbee_send(x) = mx+ a = 0.0078x+ 1.853 (3.11)

where

x : represents Sizemsdu, and 0 < x ≤ Lpayload

m : (2.92− 2.18)/(100− 5) = 0.0078

a : (2.18− 5× (2.92− 2.18)/(100− 5))− Tcsma = 1.853

The method to calculate DFxbee_rcv is the similar with DFxbee_send as shown in Figure 3.30.
The first waveform in the figure shows the signals from the DO Pin of the XBee-PRO module
on a receiver. The second waveform is still the RF output. In this case, the DFxbee_rcv generally
linearly increases with Sizemsdu from 0.56 ms to 1.12 ms; therefore, a raw equation is given:

Txbee_rcv(x) = nx+ b = 0.0059x+ 0.531 (3.12)

where

x : represents Sizemsdu, and 0 < x ≤ Lpayload

When the size of data frame is greater than Lpayload, the DFifs need to be taken in account.
Because the DFxbee_rcv is overlap with DFifs, the greater value of these two delays should be
used in calculations. In the settings of LRPC experiments, the DFxbee_rcv is always the greater
one.

3.6.8 Evaluation Methods

An extra experiment was conducted to test the methods for calculating the delay in a data
frame transmission. Besides, this experiment tries to evaluate the DFxbee equations in previous
section.

Sending

Receiving

MCU

MCU

DI pin

Tuart_send(x)

XBee DI Buf.

DO pin

XBee TX Buf.
Txbee_send(x)

XBee DO Buf.

Antenna Port
Txbee_send(x)

XBee RX Buf.
Txbee_rcv(x)

Antenna Port

Tcsma+Trf(x)

Txbee_rcv(x)

Figure 3.31: Mechanisms of the XBee-PRO module communications

The experiment gives an equation to calculate the sum of delays related to Sizemsdu by
detecting the time difference of signals from two source: the DI pin and the DO pin on a pair

3.6. Theoretical Evaluations 93

of communicating XBee-PRO modules (Figure 3.31). This sum will be compared with the sum
calculated by previous theoretical equations.

Figure 3.32: Delays when sending and receiving a message in five octets

The Figure 3.32 is captured from another machine, a digital phosphor oscilloscope
(Tektronix TDS510413), during experiments. It shows a sample in the starting stage when
sending DATA/ACK in five octets. From top to bottom, the waveforms are output from four
pins on a pair of XBee-PRO modules. The ∆t on the upper-right corner is a time difference
value between:

• The first character in a message passes through the DI pin of the XBee-PRO module on a
sender.

• The same character passes through the DO pin of the XBee-PRO module on a receiver.

The ∆t can represent the sum of delays labeled in Figure 3.31:

∆t = Tuart_send(x) + Txbee_send(x) + Tcsma + Trf (x) + Txbee_rcv(x)

The value of ∆t in this experiment fluctuates around 3.9 ms when Sizemsdu is in five octets;
and basically, it linearly increases with Sizemsdu until Sizemsdu equals Lpayload. The peak value
of ∆t is 16.9 ms. Thus, a linear equation is given to calculate ∆t:

∆t = 0.137x+ 3.216

where

x : represents Sizemsdu, and 0 < x ≤ Lpayload

As shown in Figure 3.33, when the size of data frame is increased from 0 octet to 100
octets, the maximum difference between the oscilloscope result and the theoretical result is less
than 0.116 ms, and the minimum difference is 0.00021 ms. Thus, the calculation methods in
previous sections are considered to be correct in a data frame unit. The next section will extend
the methods to a message in any size.

94 Chapter 3. Communication System: Designs and Evaluations

 0

 5

 10

 15

 20

 5 10 20 30 40 50 60 70 80 90 100

D
el

ay
 (

m
s)

Message size (octet)

Theoretical result
Oscilloscope result

Figure 3.33: Comparing the oscilloscope result with the theoretical result

3.6.9 Theoretical result

The previous sections have introduced the major delay factors and their independent equations
for durations, but the analysis so far has not considered the timing sequence of these factors and
the bottleneck in transmissions. The remainder of this chapter will put the pieces together and
give the theoretical sum of delays in sending a DATA and its ACK as Tsum:

Tsum = Tdata(x) + Tack (3.13)

After data frames are divided from a message, the sending of data frames are placed in two
situations based on the message size:

Firstly, when the message size is less or equal to Lpayload, as the first situation in Figure 3.34,
the delay factors happen separately and in succession. The Tsum is the totality of Eq. 3.14
and Eq. 3.15.

Tdata(x) = Tuart_send(x) + Txbee_send(x) + Tcsma + Trf (x)

+Txbee_rcv(x) + Tuart_rcv(x) + Tsw(x) (3.14)

where

x : the size of DATAs, and 0 < x ≤ Lpayload

Tack = Tuart_send(5) + Txbee_send(5) + Tcsma + Trf (5)

+Txbee_rcv(5) + Tuart_rcv(5) (3.15)

3.6. Theoretical Evaluations 95

uart_sendD

roT

xbee_sendD

Dcsma

Drf

D ifs

uart_rcvD

Dsw

1

1

1

Transmit Frame

If the size of a message <= Lpayload

If the size of a message > L

xbee_rcvD

Output MessageStarting :

Ending : Output Message Transmit Frame

Input Message

Input Message

uart_sendD

roT

xbee_sendD

Dcsma

Drf

D ifs

uart_rcvD

Dsw

Transmit Frame

xbee_rcvD

Output MessageStarting :

Ending : Output Message Transmit Frame

Input Message

Input Message

1 2 ... N-1 N

1 2 ... N-1 N

2...N-1 N1

Sender(802.15.4)

Sender(UART)

Receiver(UART)

Sender(802.15.4)

Sender(UART)

Receiver(UART)

payload

Figure 3.34: The timing sequence of delay factors in sending data frames

96 Chapter 3. Communication System: Designs and Evaluations

Tdata(x) is for calculating the delay in sending DATAs, and its result is increased with the
size of DATAs. Tack is for calculating the delay in sending ACKs. Because ACKs are always
five octets, the delay in sending ACKs is constant despite the changes in the size of DATAs.

Secondly, when the message size is greater than Lpayload as the second situation
in Figure 3.34, the delay factors start to work in parallel with each other. Moreover, if the
data rates Ruart and Rrf are different, a transmission bottleneck will happen in the lower speed
side. The delay can be calculated as the sum of following items:

1. When messages are transmitted inside the sender, the major delay factor is DFuart. The
equation Tuart_send(x) is used for the first payload in a message.

2. Between two XBee-PRO modules, when messages are transmitted over-the-air, the delay
is comprised of DFxbee, DFcsma, and DFrf . If Ruart is greater than Rrf , the delay here
relates to the number and size of data frames. But if Rrf is greater than Ruart (as in LRPC
experiments), the equations Txbee_send(x), Tcsma, Trf (x) and Txbee_rcv(x) are only used for
calculating the first data frame (payload) from a message.

3. The delays inside a receiver are from DFuart and DFsw. The calculations relate to the
number of transmitted characters; in other words, the whole size of messages.

The Tack under the second situation is the same as the first one. The delay in sending DATAs
is calculated as Eq. 3.16:

Tdata(x) = Tuart_send(Lpayload) + Txbee_send(Lpayload) + Tcsma

+Trf (Lpayload) + Txbee_rcv(Lpayload) + Tuart_rcv(x)

+Tsw(x) (3.16)

where

x : the size of DATAs, and x > Lpayload

The last step in calculations is to take in account the software turnaround time of two
milliseconds as described in Section 3.7.1.4, thus there are about 96 milliseconds that can be
actually applied by each communication in a sub-test. After 100 milliseconds, all messages
are marked as lost ones. In 96 milliseconds, the size of DATAs that should be communicated
correctly is less than or equal to 770 octets. But when the size of DATAs is close to 770 octets,
the last ACKs begin to get collisions with the next DATAs. Therefore, between 96 and 100 ms,
the Tcsma will not be a constant and there will be a sharp rise in the loss rates. As a result, we
define the "effective" size of DATA as 760 octets.

The calculations are shown in Figure 3.35. The line "DATA" combines the results
from Eq. 3.14 and Eq. 3.16. The line "ACK" represents the constant Tack from Eq. 3.15. The
size of DATAs relates to Tsum as the line of "DATA+ACK". Moreover, the figure includes
a comparison between the theoretical result and a sample result from a sub-test in the LRPC
experiment Section 3.7. The selected sub-test is under the best communication conditions:
without fog, in the minimum transmit distance, and with the maximum transmit power. Two
lines closely match each other. It indicates the theoretical result reflect the real-world results.

3.6. Theoretical Evaluations 97

0

20

40

60

80

100

 5 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

m
s)

The size of DATAs(octet)

X=100, Y=30.80

X=5, Y=8.92

X=780, Y=95.89

DATA
ACK

DATA+ACK
Theoretical result

10m,18dbm,nofog

Figure 3.35: The theoretical delay

0

20

40

60

80

100

 5 100 200 300 400 500 600 700 800 900 1000

P
er

ce
nt

ag
es

 o
f t

he
 d

el
ay

s
in

 s
en

di
ng

 D
A

T
A

s
(%

)

The size of DATAs(octet)

Sender Uart
Sender XBee

CSMA
RF Transmit

IFS
Receiver XBee

Receiver Uart
Software

Figure 3.36: The percentage rates of delays

98 Chapter 3. Communication System: Designs and Evaluations

The Figure 3.36 shows the proportions of delays in Tdata(x) related to the size of DATAs,and
this figure can be seen as the relation between the proportions of delay factors and the size
of messages. The DFxbee and DFuart are the major delay factors respectively when the size
of DATAs increase from 0 to Lpayload. Although in general, the delay is decreased when the
message size is reduced. When the message sizes is close to the minimum size like ACK (five
octets), reducing the message size will not significantly shorten the delay because the DFxbee

exists. Other than that, the DFuart contributes the most affection in the overall delays, especially
after the message size is over Lpayload.

3.7. LRPC Experiments 99

3.7 LRPC Experiments

3.7.1 Introduction

The purpose of this experiment is to evaluate the message delay and loss rate of 802.15.4
network on the effects of fog, transmit power, and distance. The experiment results will be
used to improve the design of the CIVIC protocol. It is an experiment conducted at LRPC
(Laboratoires Régionaux des Ponts et Chaussées) in Clermont-Ferrand.

3.7.1.1 LRPC Test Center

Figure 3.37: The fog chamber of LRPC

The fog chamber at LRPC is a test center to study the factors that affect visibility in fog. The
chamber has two parts: an observation station and a night room (31m×5.5m×2.7m) as shown
in Figure 3.37 and Figure 3.38.

Half of the night room on the far side of the observation station can be set to the daytime
condition, thus it is also called as a day room. The day room in our experiments was covered
by black plastic to simulate the nighttime condition.

The fog chamber generates controllable fog by atomizing water at high pressure in diffuser.
The produced droplets have a mean diameter of 10 µm, substantially the same as natural fog.
The density of fog is measured according to visibility distance (the unit is meter). In the figures
of this thesis, the "vis" is used to represent the visibility distance in the unit of meter.

3.7.1.2 Hardware and Software

There were two pairs of LiveNode sensors used in LRPC experiment. Each pair contains
a sender and a receiver. LiveNodes are equipped with an ARM7 microcontroller and a

100 Chapter 3. Communication System: Designs and Evaluations

Figure 3.38: The environments of the night room

Figure 3.39: The sender LiveNodes at the observation station

3.7. LRPC Experiments 101

Figure 3.40: The receiver LiveNodes at the night room during experiment

MaxStream XBee-PRO module. The XBee-PRO modules on sender and receiver in the same
pair were set to the same RF (Radio Frequency) transmit power of either 10 dBm or 18 dBm.
The sleep mode in all XBee-PRO modules was disabled. Each LiveNode was powered by a 9V
battery.

The senders were in the observation station as shown in Figure 3.39. The receivers were at
night room of fog chamber as shown in Figure 3.40. Therefore, the maximum tested wireless
transmit distance in our experiment is 30 meters as shown in Figure 3.38.

In observation station, a ZigBee station was connected to a laptop computer for monitoring
network status and collecting experiment result.

The software on LiveNode is mainly written in C language. The PC serial port monitoring
software is Terminal v1.9b, which monitors the network messages from the ZigBee station by
a serial port. A C++ program is used to process original results. Gnuplot and Excel are used to
do further processing and plot figures.

3.7.1.3 802.15.4 Network

The MaxStream XBee-PRO module on LiveNode adopts IEEE 802.15.4 standard published
in October 2003 [105]. The IEEE 802.15.4 standard is a Low-Rate Wireless Personal Area
Network (LR-WPAN) standard supporting a maximum raw data rate of 250 Kbps for the 2400
MHz band.

The collision avoidance mechanism in 802.15.4 standard is CSMA/CA (Carrier Sense
Multiple Access with Collision Avoidance) protocol. Since only two XBee-PRO modules were
involved in a sub-test, we assumed that there would not be much network interference, thus the
experiment was operated in a non-beacon enabled network using unslotted CSMA/CA protocol.

102 Chapter 3. Communication System: Designs and Evaluations

We consider the results of this experiment would be used in the MAC adapter layer of
the CIVIC protocol, thus the experiment did not adopt the acknowledgement mechanism from
802.15.4 system provided by XBee-PRO module. The C program running on LiveNodes
generated an acknowledgement and turnaround time.

Besides, the network was configured to operate in the intra-PAN (Personal Area Network)
broadcast mode as the same networking mode used in the experiments of the CIVIC protocol.
A broadcast message in 802.15.4 standard is sent only once, and it cannot be acknowledged or
resent.

3.7.1.4 Scenarios

There were 24 sub-tests in our experiment. Each sub-test was done in a scenario combined the
changes of three factors including density of fog, transmit power, and transmit distance. The
experiments have tested four degrees of density of fog, including zero fog, 20 meters, 10 meters,
and the maximum 5 meters visibility distance. The transmit distance was 10 meters, 20 meters
or 30 meters. The transmit power was either 10 dBm or 18 dBm. All together, there are 24
scenario combinations 2.

In each sub-test, only one pair of LiveNodes was activated. A LiveNode acted as a sender
and it transmitted data messages (DATA) in increasing sizes from 5 bytes to 1000 bytes. The first
DATA in a sub-test was 5 bytes, the second one was 10 bytes, and then 10 bytes was increased
each time until reaching 1000 bytes. Another LiveNode acted as a receiver, and it acknowledged
DATA from sender. The size of an acknowledgement message (ACK) was always 5 bytes.

The message format of DATA is described in Table 3.15. The message format of ACK
is in Table 3.16. Both DATA and ACK have the starting mark, message ID, CRC (Cyclic
Redundancy Check), and ending mark. The body of DATA only contains the ASCII printable
characters.

Field Starting Mark ID Body CRC Ending Mark
Size(octet) 1 1 0 to 995 2 1

Table 3.15: The fields of DATA from sender

Field Starting Mark ID CRC Ending Mark
Size(octet) 1 1 2 1

Table 3.16: The fields of ACK from receiver

The interval of sending DATA was fixed to 100 ms. If a sender could not receive an ACK
in 100 milliseconds, it continue sending the rest of DATAs. In this case, the delay is counted as
100 milliseconds. In other words, if a DATA has a delay of 100 milliseconds, it may be a lost
DATA, even it can receive an ACK latter.

In addition, to assure an enough time for an ACK to be received in fog conditions, there was
a two milliseconds turnaround time in the end of every DATA transmission.

2One extra test is in the settings of 25 meters, 10 dBm, and 5 visibility distance. It is not a part of the plan, but
to confirm the effect from changing the distances and the densities of fog.

3.7. LRPC Experiments 103

In each time of changing size, a DATA was sent 25 times. There was no requirement for
resending the DATA. In the end of it, the sender calculated and stored the average values of
message delay and loss rate. After finishing a sub-test, the sender sent these average values to
the ZigBee station.

3.7.1.5 Evaluation Metrics

If not specified, the term message in this section means a DATA or an ACK with full contents.
This thesis uses octet as the basic unit to measure the size of messages.

The "delay" or "message delay" means the response time between sending a DATA and
receiving its ACK: the former is the timing when buffering the first character of a DATA to
a XBee-PRO Module; the latter is the timing when receiving the first character of a correct
ACK. In other word, the delay involves the actions of a sender and a receiver. This thesis uses
millisecond as the unit of this duration.

The "loss" means that a DATA cannot receive its corresponding ACK in 100 ms.

3.7.2 Results and Analyses

3.7.2.1 Overview

The last chapter has evaluated the factors that cause the delays in an ideal scenario without
disturbances. This chapter will examine the delay factors from transmit power, distance and
density of fog.

5

100

200

300

400

500

600

700

800

900

1000

0

10

20

30

40

50

60

70

80

90

100

D
el

a
y

 (
m

s)

Figure 3.41: Overall delays and loss rates in different transmit powers

104 Chapter 3. Communication System: Designs and Evaluations

5

100

200

300

400

500

600

700

800

900

1000

0

10

20

30

40

50

60

70

80

90

100

L
o
st

 r
a
te

 (
%

)

Figure 3.42: Overall delays and loss rates in different transmit powers

We will start the analysis with the overview results from LRPC experiments.
The Figure 3.41 and Figure 3.42 demonstrate the results of message delays and loss rates by
the vertices of surfaces. The dimension marked as "LRPC sub-tests" are ordered according
to transmit powers. The distinction is obvious between transmit powers, but it is not obvious
between the transmit distances or densities of fog.

As previously mentioned, the effective size of DATA is less than or equal to 760 octets
because the 770-octet DATAs may meet the collision problem. The oversize DATAs are not able
to receive their ACKs in 100 ms, and they will be marked as lost ones. The graph Figure 3.43
shows the loss rate of DATAs with sizes between 5 octets and 760 octets. The results from the
DATAs with sizes up to 770 octets are given as a comparison. If not specified, the message
delay and loss rate in the following sections indicates the ones less than or equal to the effective
size.

The Figure 3.44a and Figure 3.44b shows the differences between the best conditions (no
fog, the shortest transmit distance, and the maximum transmit power) and the worst conditions
(the maximum density of fog, the longest transmit distance, and the minimum transmit power).
In general, the lines indicating these two conditions overlap with others, and the differences are
only in certain short areas. Because the results in the best conditions fit the theoretical results,
the six factors in the last Section 3.6 should not cause these differences.

3.7.2.2 Transmit Power

The transmit power indicates the strength of the signal from a RF transmitter. A smaller
transmit power reduces the energy consumption and shortens the transmit distance in most

3.7.
L

R
P

C
E

xperim
ents

105

10m

10dbm

no fog

20m

10dbm

no fog

30m

10dbm

no fog

10m

10dbm

20vis

20m

10dbm

20vis

30m

10dbm

20vis

10m

10dbm

10vis

20m

10dbm

10vis

30m

10dbm

10vis

10m

10dbm

5vis

20m

10dbm

5vis

25m

10dbm

5vis

30m

10dbm

5vis

10m

18dbm

no fog

20m

18dbm

no fog

30m

18dbm

no fog

10m

18dbm

20vis

20m

18dbm

20vis

30m

18dbm

20vis

10m

18dbm

10vis

20m

18dbm

10vis

30m

18dbm

10vis

10m

18dbm

5vis

20m

18dbm

5vis

30m

18dbm

5vis

0.000%

0.500%

1.000%

1.500%

2.000%

2.500%

3.000%

3.500%

L
o
s
t
 r
a
t
e

18 dbm10 dbm

10m

10dbm

no fog

20m

10dbm

no fog

30m

10dbm

no fog

10m

10dbm

20vis

20m

10dbm

20vis

30m

10dbm

20vis

10m

10dbm

10vis

20m

10dbm

10vis

30m

10dbm

10vis

10m

10dbm

5vis

20m

10dbm

5vis

25m

10dbm

5vis

30m

10dbm

5vis

10m

18dbm

no fog

20m

18dbm

no fog

30m

18dbm

no fog

10m

18dbm

20vis

20m

18dbm

20vis

30m

18dbm

20vis

10m

18dbm

10vis

20m

18dbm

10vis

30m

18dbm

10vis

10m

18dbm

5vis

20m

18dbm

5vis

30m

18dbm

5vis

Up to 760 octets 0.831% 1.506% 0.935% 2.805% 1.610% 1.714% 1.558% 1.558% 1.195% 1.610% 1.974% 1.818% 1.662% 0.000% 0.052% 0.104% 0.052% 0.104% 0.104% 0.156% 0.104% 0.052% 0.104% 0.000% 0.000%

Up to 770 octets 0.923% 2.103% 1.436% 3.231% 2.256% 1.949% 1.949% 1.692% 1.538% 2.000% 2.256% 2.154% 2.256% 0.410% 0.256% 0.513% 0.513% 0.513% 0.513% 0.513% 0.615% 0.410% 0.615% 0.154% 0.359%

0.000%

0.500%

1.000%

1.500%

2.000%

2.500%

3.000%

3.500%

L
o
s
t
 r
a
t
e

18 dbm10 dbm

F
igure

3.43:
T

he
average

loss
rates

w
hen

sending
D

A
TA

s
below

and
equal

to
the

effective
size

106 Chapter 3. Communication System: Designs and Evaluations

0

20

40

60

80

100

 5 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

m
s)

The size of DATAs(octet)

10m,18dbm,nofog
30m,10dbm,5vis

Theoretical result

(a) Delays

0

20

40

60

80

100

 5 100 200 300 400 500 600 700 800 900 1000

Lo
ss

 r
at

e
(%

)

The size of DATAs(octet)

10m,18dbm,nofog
30m,10dbm,5vis

(b) Loss rates

Figure 3.44: Delays and loss rates in the best and worst conditions

cases. Because 802.15.4 standard operates within the free 2.4 GHz frequency band, a suitable
transmit power can reduce the interference from other technologies sharing the same frequency,
such as Wi-Fi, Bluetooth, and even microwave ovens in industrial environments.

The 802.15.4 standard specifies a minimum transmit power as 0 dBm, without specified the
maximum. When operating in Europe, the maximum transmit power of XBee-PRO modules is
at or below 10 dBm. In France, the outdoor operation within the 2.4 GHz band is limited to 10
dBm EIRP. The LRPC experiments tested two of the transmit powers provided by XBee-PRO
modules: the minimum of 10 dBm, and the maximum of 18 dBm.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

5

3
0

6
0

9
0

1
2
0

1
5
0

1
8
0

2
1
0

2
4
0

2
7
0

3
0
0

3
3
0

3
6
0

3
9
0

4
2
0

4
5
0

4
8
0

5
1
0

5
4
0

5
7
0

6
0
0

6
3
0

6
6
0

6
9
0

7
2
0

7
5
0

Lo
st

 R
a
te

The size of DATAs (octet)

10 dbm

18 dbm

Figure 3.45: The average loss rates under the different transmit powers

The Figure 3.45 shows the average loss rates relate to the size of DATAs. It sums up the
sub-test results under a transmit power of either 10 dBm or 18 dBm. If lower than 170 octets,
the average loss rates of 10 dBm and 18 dBm are 0.103% and 0.056%. From 180 to 760 octets,
the average loss rates of 10 dBm goes up to 2.055% and the increases do not relate to message
sizes. In this cases, the average loss rate of 18 dBm is still close to zero (0.073%).

The disturbances from fog and distance are removed in the Figure 3.46 and Figure 3.47.

3.7. LRPC Experiments 107

0

20

40

60

80

100

 5 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

m
s)

The size of DATAs(octet)

10m,10dbm,nofog
10m,18dbm,nofog
Theoretical result

Figure 3.46: The average loss rates under the different transmit powers

0

20

40

60

80

100

 5 100 200 300 400 500 600 700 800 900 1000

Lo
ss

 r
at

e
(%

)

The size of DATAs(octet)

10m,10dbm,nofog
10m,18dbm,nofog

Figure 3.47: The average loss rates under the different transmit powers

108 Chapter 3. Communication System: Designs and Evaluations

When no disturbance, there is no lost message under transmit power of 18 dBm until the
message size reaches 770 octets. Under the transmit powers of 10 dBm and 18 dBm, the
average of differences in message delays and loss rates are 0.286 ms and 0.831%. Exceptions
are between 440 and 570 octets, with the average of differences 1.286 ms and 3.714%.

Because the exceptions under both transmit powers are in the same data section, and the
exceptions does not increase with the size of DATAs, we can only assume the exceptions are
caused by the wireless interferences. If this assumption is correct, we should be able to see
the exceptions happen in the other data section when only the position of receiver changes.
The Figure 3.48 and Figure 3.49 indicate the changes.

0

20

40

60

80

100

 5 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

m
s)

The size of DATAs(octet)

20m,10dbm,nofog
20m,18dbm,nofog
Theoretical result

(a) Delays

0

20

40

60

80

100

 5 100 200 300 400 500 600 700 800 900 1000

Lo
ss

 r
at

e
(%

)

The size of DATAs(octet)

20m,10dbm,nofog
20m,18dbm,nofog

(b) Loss rates

Figure 3.48: Effect of output powers (visibility = no fog, distance = 20 meters)

0

20

40

60

80

100

 5 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

m
s)

The size of DATAs(octet)

30m,10dbm,nofog
30m,18dbm,nofog
Theoretical result

(a) Delays

0

20

40

60

80

100

 5 100 200 300 400 500 600 700 800 900 1000

Lo
ss

 r
at

e
(%

)

The size of DATAs(octet)

30m,10dbm,nofog
30m,18dbm,nofog

(b) Loss rates

Figure 3.49: Effect of output powers (visibility = no fog, distance = 30 meters)

The averages of difference in the distance of 20 and 30 meters are shown in Table 3.17.
The exception loss rates are not increasing with the distance. Note that, when the size of
DATAs are close to the effective size (760 octets), even without message loss, the delay will
be approximately equal to the maximum 100 ms. The loss in such data section will not has

3.7. LRPC Experiments 109

much impact on the result of delay, and the delay cannot indicate the network status effectively
(e.g. the exception data section of 690∼760 in Table 3.17).

Transmit distances (meter) 10 20 30

Message delays (ms) 0.286 0.351 0.299
Loss rates 0.831% 1.455% 0.831%

Main exceptions (octets) 440∼570 240∼310, 690∼760 420∼540
Exception message delays (ms) 1.286 2.5, 0.375 1.308

Exception loss rates 3.714% 5.000%, 7.500% 4.308%

Table 3.17: The average of differences between 18 dBm and 10 dBm without fog

An interesting phenomenon is that when the sender is in 20 meters, the averages of
difference loss rate are the highest one. The similar phenomenon can also be found in the
graph Figure 3.43 in the overview Section 3.7.2.1. When the transmit power is 10 dBm, except
the density of fog is 20 meter visibility, the loss rate in 20 meters is always the highest one.
There may be three reasons may cause the phenomenon:

• There is a wireless source near 20 meters distance sharing the same (or nearly the same)
frequency.

• The day room in the fog chamber is a semi-circle roof. When the receiver sending ACKs,
the first RF reflections may be more concentrate to the central axis where the receiver
was located. Therefore, the wireless communication may be more unstable because of
the additions and cancellations of RF-wave phases.

• When the receiver is close to the center of fog chamber, it may get the interference from
reflections approximately at the same time.

When the sender is in 10 meters and 30 meter, both of the averages of differences on loss
rates are 0.831%. We assume that the difference of 0.831% is the pure effect from transmit
power because all other factors have been excluded. Therefore, the raw TdBm and LdBm are
given to relate the reduction of transmit power (dBm) and the addition of delay (ms) and loss
rate (%) as follows:

TdBm =
0.286 + 0.299

2× (18− 10)
= 0.0366 (ms/dbm) (3.17)

LdBm =
0.831%

18− 10
= 0.1039 (%/dbm) (3.18)

In summary, the effect between different transmit powers is more obvious than fog and
distance. When the size of DATAs is below 180 octets, the average difference of transmit
powers 10 dBm and 18 dBm are both close to zero (0.103% and 0.056%). Between 180 and
760 octets, the transmit power of 18 dBm has better performance under disturbances. The
average differences of two transmit powers are small (average 1.981%), although there are some
exceptions from interference by reflections (maximum 7.500%). The raw Eq. 3.17 and Eq. 3.18
shows the factor of transmit power.

110 Chapter 3. Communication System: Designs and Evaluations

3.7.2.3 Transmit Distance

Some results to evaluate the effects of transmit distance have been shown in the
last Section 3.7.2.2 (e.g. the exceptions in 20 meters). This section focus on giving the equation
to relate the transmit distance and the loss rate. As we have known that the transmit power of
18 dBm excludes the most of disturbances, the sub-tests with 18 dBm and no fog will be used
to evaluate the effect of transmit distance. The Figure 3.50 shows the result of three related
sub-tests.

0

20

40

60

80

100

 5 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

m
s)

The size of DATAs(octet)

10m,18dbm,nofog
20m,18dbm,nofog
30m,18dbm,nofog
Theoretical result

(a) Delays

0

20

40

60

80

100

 5 100 200 300 400 500 600 700 800 900 1000

Lo
ss

 r
at

e
(%

)

The size of DATAs(octet)

10m,18dbm,nofog
20m,18dbm,nofog
30m,18dbm,nofog

(b) Loss rates

Figure 3.50: Effect of distance on message delay (visibility = no fog, output power = 18 dBm)

A longer transmit distance will normally affect the wireless performance because the loss
of transmit power over distance, but since the indoor transmit distance of XBee-PRO is about
90 meters [102], and the length of fog chamber is just 31 meters, we assume that the changes of
distance will not greatly affect delay and loss rate. The assumption is confirmed by the sub-test
results. The loss rates of 10, 20 and 30 meters increases linearly from 0%, 0.052% to 0.104%
as shown in graph Figure 3.43. Moreover, the similar pattern exists in the loss rates of 10 and
30 meter under 10 dBm without fog. The difference of loss rates after subtracting the LdBm is
0.104% (0.935%− 0.831%) as the same as under 18 dBm.

For the message delays, there are several slight losses when sent messages are close to 760
octets, but as previously mentioned, the loss in this data section will not has much impact on the
message delay. The average of differences between 10 meters and 20 meters is 0 ms; between
10 meters and 30 meters, the average of differences is 0.013 ms.

Therefore, the raw Tdis and Ldis are given to relate the increase of distance (meter), and the
addition in delay (ms) and loss rate (%):

Tdis =
0.013

30− 10
= 0.00065 (ms/meter) (3.19)

Ldis =
0.052%

10
= 0.0052 (%/meter) (3.20)

We assume that the Tdis and Ldis purely relate to the transmit distance. It is just a raw
assumption that can only be used in exactly the no fog indoor environment like the fog chamber
at LRPC.

3.7. LRPC Experiments 111

3.7.2.4 Fog

Knowing the fog effects in a wireless transmission are important for the design of an
inter-vehicle communication (IVC) protocol like CIVIC. The experiments in this sections tries
to discover the message delay and loss in 2.4 GHz band caused by the different densities of fog;
but before going into the discussion, we will firstly introduce the general fog effects, and the
experiment environments at the fog chamber of LRPC.

Two phenomenons would normally occur when an RF signal travels through a foggy
medium: Firstly, the droplets of fog can attenuate an RF signal. The 2.4 GHz signals in thick
fog may be attenuated by up to 0.02 dB/km by fog [110], but this reference does not define
which density can be considered as "thick". Secondly, the transmit conditions become more
complex because of the different densities of fog. A natural foggy medium has a different
density; it causes the problems of RF refraction and multiple paths. The combined signal by
multiple paths will often result in attenuation, amplification, or signal corruption.

The fog chamber at LRPC provides a controllable fog environment. Our experiments have
been planned to be done in three densities, which are measured by the visibility distances of 20,
10 and 5 meters. The actual densities of fog during sub-tests have little difference than the plan
as shown in Table 3.18.

Table 3.18: The average densities of fog in records

10m,10dbm 20m,10dbm 30m,10dbm

vis=20, VM 23.00 23.13 14.95
vis=20, POM 19.63 19.28 14.53

vis=10, VM 11.46 11.18 10.32
vis=10, POM 10.00 10.19 7.65

vis=5, VM 6.90 7.37 8.43
vis=5, POM 6.00 6.28 6.25

10m,18dbm 20m,18dbm 30m,18dbm

vis=20, VM 22.77 20.67 22.44
vis=20, POM 19.56 19.13 19.19

vis=10, VM 11.39 11.19 11.82
vis=10, POM 10.94 9.88 10.09

vis=5, VM 6.80 7.78 7.57
vis=5, POM 6.00 6.00 6.00

The rows marked by "POM" are the densities of the whole chamber, and the rows marked
by “VM” indicate the density of the half of chamber closing to the observation station. The
differences are normally less than the one meter of visibility distance, except two sub-tests (in
30 meters, 10 dBm), which are marked as the bold italic fonts. The actual densities of the whole
chamber (i.e. POM) are used in our analysis; therefore, if not specified, the visibility distance
(or, vis) in the thesis means the density of the whole fog chamber.

Note that, the density could be slightly changed during a sub-test. Sometimes when the
density of POM is stable, the density of VM can be changing (especially in the maximum
density close to 6 meters), thus the droplets of fog could be flowing during some sub-tests.

We start the following discussion from the longest transmit distance and the maximum
density of fog offered by the fog chamber. The Figure 3.51 shows the results relate to the

112 Chapter 3. Communication System: Designs and Evaluations

0

20

40

60

80

100

 5 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 (

m
s)

The size of DATAs(octet)

30m,10dbm,5vis
30m,18dbm,5vis

Theoretical result

(a) Delays

0

20

40

60

80

100

 5 100 200 300 400 500 600 700 800 900 1000

Lo
ss

 r
at

e
(%

)

The size of DATAs(octet)

30m,10dbm,5vis
30m,18dbm,5vis

(b) Loss rates

Figure 3.51: Effect of output powers (visibility = 5 meters, distance = 30 meters)

size of DATA. The loss rate of 18 dBm in the conditions is zero. The average differences of
message delay and loss rate between 10 dBm and 18 dBm are 0.442 ms and 1.662%.

Note that, when a vehicle driver cannot see through the fog, he or she is exposed to the
unseen hazard. This result shows that in the visibility of 6 meters, the IVC designed under the
2.4 GHz band can still work, and it can help to avoid hazard at least in 30 meters ahead. Both
10 dBm and 18 dBm have good performances under the maximum disturbances, but of course,
the 18 dBm is better.

The graph Figure 3.52 shows the fog effects under two transmit powers. The sub-test in 10
m and 10 dBm is an exception, and it will not be used in the following analysis (it is marked
by a strikethrough in the following tables). The exception may be caused by the problem from
the battery power. A sub-test of 30 meters and 10 dBm has failed for the same reason, but the
sub-test has been redone. If a sub-test fails because of the problem of power supply, it is difficult
to be found unless it is obvious or it is compared with other results after experiments.

10m, 10dbm 10m, 18dbm 20m, 10dbm 20m, 18dbm 30m, 10dbm 30m, 18dbm

no fog 0 831% 0 000% 1 506% 0 052% 0 935% 0 104%

0.000%

0.500%

1.000%

1.500%

2.000%

2.500%

3.000%

A
v
e
ra
g
e

 l
o
st

 r
a
te

10m, 10dbm 10m, 18dbm 20m, 10dbm 20m, 18dbm 30m, 10dbm 30m, 18dbm

no fog 0.831% 0.000% 1.506% 0.052% 0.935% 0.104%

vis=20 2.805% 0.052% 1.610% 0.104% 1.714% 0.104%

vis=10 1.558% 0.156% 1.558% 0.104% 1.195% 0.052%

vis=5 1.610% 0.104% 1.974% 0.000% 1.662% 0.000%

0.000%

0.500%

1.000%

1.500%

2.000%

2.500%

3.000%

A
v
e
ra
g
e

 l
o
st

 r
a
te

Figure 3.52: The average loss rates with fog effects

The graph Figure 3.52 shows the fog effects by comparing the sub-test results with fog and
the sub-test result without fog, thus the only variable is the density of fog including the visibility
distances of 20, 10, and 5 meters. The values in the graph table are average differences of loss
rates.

3.7. LRPC Experiments 113

10m, 10dbm 10m, 18dbm 20m, 10dbm 20m, 18dbm 30m, 10dbm 30m, 18dbm
!0.500%

0.000%

0.500%

1.000%

1.500%

2.000%

2.500%

3.000%
A
v
g
.
d
if
.
o
f
Lo
st

 r
a
te

10m, 10dbm 10m, 18dbm 20m, 10dbm 20m, 18dbm 30m, 10dbm 30m, 18dbm

VIS=20 1.974% 0.052% 0.104% 0.052% 0.779% 0.000%

VIS=10 0.727% 0.156% 0.052% 0.052% 0.260% !0.052%

VIS=5 0.779% 0.104% 0.468% !0.052% 0.727% !0.104%

!0.500%

0.000%

0.500%

1.000%

1.500%

2.000%

2.500%

3.000%
A
v
g
.
d
if
.
o
f
Lo
st

 r
a
te

Figure 3.53: The average differences of loss rates with fog effects

Because the disturbances have a very minor effect under the transmit power of 18 dBm,
and the result under 18 dBm fits the theoretical result, the following analysis will focus on the
transmit power of 10 dBm. The Table 3.19 and Table 3.20 combine the data from the Table 3.18
and Figure 3.52, and the data is divided into two groups of transmit powers as 10 dBm and 18
dBm.

Table 3.19: The average differences of loss rate relate to POMs less than 10 dBm

10m,10dbm 20m,10dbm 30m,10dbm

POM 19.63 19.28 14.53
Avg. Dif. of Loss Rate 1.974% 0.104% 0.779%

POM 10.00 10.19 7.65
Avg. Dif. of Loss Rate 0.727% 0.052% 0.260%

POM 6.00 6.28 6.25
Avg. Dif. of Loss Rate 0.779% 0.468% 0.727%

Table 3.20: The average differences of loss rate relate to POMs less than 18 dBm

10m,18dbm 20m,18dbm 30m,18dbm

POM 19.56 19.13 19.19
Avg. Dif. of Loss Rate 0.052% 0.052% 0.000%

POM 10.94 9.88 10.09
Avg. Dif. of Loss Rate 0.156% 0.052% -0.052%

POM 6.00 6.00 6.00
Avg. Dif. of Loss Rate 0.104% -0.052% -0.104%

By the data in first Table 3.19 under the transmit power of 10 dBm, we get a linear Eq. 3.21
with the coefficient of determination R2 = 0.135383 to relate the densities of fog with Lfog as
follows:

Lfog_10dbm(x) = −0.000242x+ 0.007293 (3.21)

where

x : the densities of fog in the fog chamber with a POM unit

114 Chapter 3. Communication System: Designs and Evaluations

The linear Eq. 3.21 shows the tendency of the increasing of Lfog when the density of fog
is increasing. A more accurate equation could be a power equation with R2 = 0.184609 as the
following:

Lfog_10dbm(x) = 0.035457x−1.047134 (3.22)

When the POM is 30.14 meters, the fog effects is zero by the linear Eq. 3.21. The
power Eq. 3.22 may be a better reflection when the density of fog is increasing after the POM
equals to 6 meters. The Figure 3.54 indicates the trend of both equations.

0.779%
0.727%

0.260%

0.779%

0.468%

0.727%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0.9%

A
v
g
. d

if
. o

f l
o
ss

 r
a
te

Vis & Loss Rate Power (Vis & Loss Rate) Linear (Vis & Loss Rate)

0.104%
0.052%

0.0%

0.1%

57.51012.51517.520

A

Vis (meter)

Figure 3.54: The fog effects on loss rates under 10 dBm by the Eqs. 3.21 and 3.22

0.052%
0.052%

0.000%

0.156%

0.052%

-0.052%

0.104%

-0.052%

-0.104%

-0.2%

-0.1%

-0.1%

0.0%

0.1%

0.1%

0.2%

0.2%

57.51012.51517.520

A
v

g
.

d
if

.
o

f
lo

ss
 r

a
te

Vis (meter)

Vis & Loss Rate Linear (Vis & Loss Rate) Poly. (Vis & Loss Rate)

Figure 3.55: The fog effects on loss rates under 18 dBm by the Eqs. 3.23 and 3.24

By the data in second Table 3.20 under the transmit power of 18 dBm, we get a
linear Eq. 3.21 with the coefficient of determination R2 = 0.056764. The linear equation
shows the tendency of the decreasing of Lfog when the density of fog is increasing. Although
the tendency of equations shows the decreasing, the maximum average difference of loss rate is
just 0.156%; therefore, the decreasing may not be caused by the fogs effects, but just the small
exceptions from wireless communications. A more accurate equation could be a polynomial

3.7. LRPC Experiments 115

equation with R2 = 0.170758 as the following Eq. 3.24. The Figure 3.55 indicates the trend of
the Eq. 3.23 and Eq. 3.24.

Lfog_18dbm(x) = 0.000033x− 0.000166 (3.23)

Lfog_18dbm(x) = −0.000015x2 + 0.000415x− 0.002170 (3.24)

The following calculations are for the fog effects on message delays under two different
transmit powers. The process is the same as the calculations of loss rate. The graph Figure 3.56
and Figure 3.57 the fog effects on delays under two transmit powers. Then we get the
following Table 3.21 as the one in the loss rate section.

10m, 10dbm 10m, 18dbm 20m, 10dbm 20m, 18dbm 30m, 10dbm 30m, 18dbm

No fog 56 974 56 688 57 039 56 688 57 000 56 701

56.000

56.500

57.000

57.500

58.000

58.500

A
v
e
ra
g
e

 d
e
la
y

 (
m
s)

10m, 10dbm 10m, 18dbm 20m, 10dbm 20m, 18dbm 30m, 10dbm 30m, 18dbm

No fog 56.974 56.688 57.039 56.688 57.000 56.701

VIS=20 57.948 56.727 57.078 56.662 57.065 56.649

VIS=10 57.039 56.662 57.143 56.701 57.182 56.675

VIS=5 57.221 56.753 57.195 56.688 57.247 57.143

56.000

56.500

57.000

57.500

58.000

58.500

A
v
e
ra
g
e

 d
e
la
y

 (
m
s)

Figure 3.56: The average delays with fog effects

10m, 10dbm 10m, 18dbm 20m, 10dbm 20m, 18dbm 30m, 10dbm 30m, 18dbm
!0.200

0.000

0.200

0.400

0.600

0.800

1.000

1.200

A
v
g
.
d
if
.
o
f
d
e
la
y

 (
m
s)

10m, 10dbm 10m, 18dbm 20m, 10dbm 20m, 18dbm 30m, 10dbm 30m, 18dbm

VIS=20 0.974 0.039 0.039 !0.026 0.065 !0.052

VIS=10 0.065 !0.026 0.104 0.013 0.182 !0.026

VIS=5 0.247 0.065 0.156 0.000 0.247 0.442

!0.200

0.000

0.200

0.400

0.600

0.800

1.000

1.200

A
v
g
.
d
if
.
o
f
d
e
la
y

 (
m
s)

Figure 3.57: The average differences of delays with fog effects

The Eq. 3.25 (R2 = 0.693577) and Eq. 3.26 (R2 = 0.888362) is given by the
graph Figure 3.57 under the transmit power of 10 dBm. The Figure 3.58 shows the trend of
these two equations.

Tfog10tp(x) = −0.014532x+ 0.283627 (3.25)

Tfog10tp(x) = 3.270625x−1.510576 (3.26)

116 Chapter 3. Communication System: Designs and Evaluations

Table 3.21: The average differences of delay relate to POMs

10m,10dbm 20m,10dbm 30m,10dbm

POM 19.63 19.28 14.53
Avg. Dif. of Delay 0.974 0.039 0.065

POM 10.00 10.19 7.65
Avg. Dif. of Delay 0.065 0.104 0.182

POM 6.00 6.28 6.25
Avg. Dif. of Delay 0.247 0.156 0.247

10m,18dbm 20m,18dbm 30m,18dbm

POM 19.56 19.13 19.19
Avg. Dif. of Delay 0.039 -0.026 -0.052

POM 10.94 9.88 10.09
Avg. Dif. of Delay -0.026 0.013 -0.026

POM 6.00 6.00 6.00
Avg. Dif. of Delay 0.065 0.000 0.442

0.039
0.065

0.065

0.104

0.182

0.247

0.156

0.247

0.00

0.05

0.10

0.15

0.20

0.25

0.30

57.51012.51517.520

A
v

g
.

d
if

.
o

f
d

e
a

ly
 (

m
s)

Vis (meter)

Vis & Delay Power (Vis & Delay) Linear (Vis & Delay)

Figure 3.58: The fog effects on delays under 10 dBm by the Eqs. 3.25 and 3.26

0.052%
0.052%

0.000%

0.156%

0.052%

-0.052%

0.104%

-0.052%

-0.104%

-0.0015

-0.0010

-0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

57.51012.51517.520

A
v

g
.

d
if

.
o

f
d

e
a

ly
 (

m
s)

Vis (meter)

Vis & Loss Rate Linear (Vis & Loss Rate) Poly. (Vis & Loss Rate)

Figure 3.59: The fog effects on delays under 18 dBm by the Eqs. 3.27 and 3.28

3.7. LRPC Experiments 117

The Eq. 3.27 (R2 = 0.1992) and Eq. 3.28 (R2 = 0.36549) are given under the transmit
power of 18 dBm with the Figure 3.59 to show the trend.

Tfog18tp(x) = −0.0115x+ 0.1846 (3.27)

Tfog18tp(x) = 0.003271x2 − 0.096410x+ 0.630394 (3.28)

3.7.3 Conclusion and Limitations

The experiments in fog environment are important for improving our communication
system. The network in 2.4 GHz band performs well in the experiments. Even with the
worst disturbance on fog (POM=6m) and distance (30m), the communication under the
transmit power of 18 dBm still gets a zero loss rate, and the loss rate under 10 dBm is
1.662% (Section 3.7.2.1). If the size of DATAs is lower than 170 octets, the loss rate under 10
dBm is close to zero in all sub-tests (Section 3.7.2.2). For all sub-tests under 18 dBm, the loss
rates are always close to zero. Note that, the delay and loss rate in this report indicate the quality
of a whole message communication including sending of DATA and ACK (Section 3.7.1.5).

This section and the last section evaluate all the possible factors that cause the message
delay and loss rate. There are two groups of these factors:

The first group of factors relates to the network technology including the UART
and RF transmissions, CSMA/CA, IFS, XBee-PRO operations and software operations in
the Section 3.6. The current bottleneck is in UART transmission. However, the 115200 baud is
already the highest standard baud provided by the XBee-PRO module. Over than the 115200
baud, more error results will be caused. The software delay in this report should be slightly
lower than the actual software delay, because we only consider the time consumption in the
major processing: the processing for DATAs on receiver. The maximum delay in CSMA/CA
is 8.832 ms. If the XBee-PRO modules in the experiments are more than two, the delay in
CSMA/CA should be much higher. Moreover, there is about three milliseconds delay from the
hardware operations of a XBee-PRO module (Section 3.6.7), but the XBee-PRO module only
provides very limited options to control the hardware operations. the delay from XBee-PRO
module is the major delay factor the short message like ACK. The percentage of these delays
in a transmission is shown as Figure 3.36. The factors in this group cause the delays in an ideal
scenario without disturbances.

The second group of factors is from the disturbances including transmit power, distance and
fog in Section 3.7.2. Although the wireless features under two transmit powers of 10 dBm and
18 dBm have many different, the delay and loss rate are normally reduced when lowering the
transmit power, adding the transmit distance, and increasing the density of fog. However, there
are two exceptions:

• When the transmit power is 10 dBm, the wireless conditions in the transmit distance of
20 meters is the worst one (Section 3.7.2.2).

• When the transmit power is 18 dBm, the loss rate and delay decrease with the increasing
of density of fog (Section 3.7.2.4), but it is not sure to be caused by the wireless
interferences or the real fog effects.

118 Chapter 3. Communication System: Designs and Evaluations

The equations to perform the theoretical calculations of all the delay factors are given
in Section 3.6 and Section 3.7.2. We assume that in an ideal scenario, when sending
message below or equal to 760 octets, the loss rate should not be zero, thus the equations to
calculate the loss rate are only given for the second group of factors from the disturbances in
chapter Section 3.7.2.

There are two possible fails in the theoretical calculations of chapter Section 3.6: Firstly,
there is a factor in the theoretical calculations that has not been fully considered. From all the
graphs indicating delay, we found that nearly each 170-180 octets, there a short pause on the
delay results. It is assumed to be caused by the CTS hardware flow control. The size of DI
buffer is 202 octets. When the DI buffer is 17 octets away from full, the XBee-PRO signals
the MCU to stop sending data by de-asserting the CTS pin. When the DI buffer has 34 octets
available in memory, the CTS pin is re-asserted. We did enable the CTS on MCU, but in the
oscilloscope experiments, there is no change on the CTS pin. Therefore, we are not sure the
CTS hardware flow control is actually enabled. However, it may be just because the period
during the change of CTS is too short. Secondly, when the size of DATAs is about to 770 octets,
the ACKs begin to compete with the next DATAs in the same channel, so the collisions happen.
In this situation, the Tcsma in Section 3.6.4 will not be correct because it assume the channel
accesses are always successful at the first time.

In the chapter Section 3.7.2, the available samples are not enough for completing the
accurate calculations. Except the experiment design, the major reasons are from the problem
of interference in Section 3.7.2.2 and battery power in Section 3.7.2.4. For the interference
problem, it is normal for indoor experiments. For the battery power problem, if there will
be another experiment at fog chamber, at least the sender in the observation station should be
using the fixed power supply. Besides, the fog densities in two of the sub-tests are lower than
the requirements (Section 3.7.2.4).

3.8. Simulations on Shawn 119

3.8 Simulations on Shawn

3.8.1 Introduction of Shawn

Shawn is a new network simulator for abstract algorithms and high-level protocols in
combination with the speed to handle large networks [111] [112].

Instead of requiring to implement full low-level protocol effects (e.g. data and message
encoding, the physical effects, processor limitations in NS-2 [113]), Shawn is initially
implemented with the abstract and exchangeable models. It is possible to begin with a
simple algorithmic sketch and extend the sketch into a completely distributed protocol. This
design allows researchers to focus on the actual research problems but not the simulation
itself. Moreover, the sacrifice of some low-level details can increase the speed of running
simulations of large wireless (sensor) networks. The Figure 3.60 is from [111] and it classifies
the application area of existing simulators along two axes, showing abstraction level and number
of simulated network nodes.

Figure 3.60: Intended application area of simulators

Shawn is licensed under the BSD license allowing for commercial applications. It is
available for download at http://www.swarmnet.de/shawn.

3.8.2 Simulation Results

3.8.2.1 Beaconless 802.15.4 Network

The first experiment was to test the basic networking performance of IEEE 802.15.4 and see its
possibility to be used in VANET or WSN applications. Moreover, because Shawn is a relatively
new simulator, it is important to firstly evaluate the simulator itself.

The experiment was done in a network with all nodes connecting with each other (width=10
height=10, radio range=100). The transmission model used the beaconless CSMA/CA in IEEE

120 Chapter 3. Communication System: Designs and Evaluations

802.15.4 as in our real world experiments in Section 4.2.
The experiment started with two nodes and finished when the connection loss

happening (losing the HELLO_RPY message). A node sends a HELLO_REQ message in the
first millisecond of an experiment "round", and the other nodes reply the HELLO_REQ message
with a HELLO_RPY message (message sizes in Table 3.1 and the details in Section 3.2.2).
The results were evaluated by the loss rate (Message Loss Rate and Node Loss Rate) and
delay (Average HELLO_RPY Delay and Last HELLO_RPY Delay). If a HELLO_RPY could
not be received in an experiment "round", it was assumed to be lost and the next round starts.
The simulations were done in a number of times, and the average values were used.

Number of Nodes 2 3 4 5 6 7

Message Loss Rate 0% 0% 8% 15% 25% 29%

Number of Loss Nodes 0 0 0 0 2 3
Node Loss Rate 0% 0% 0% 0% 40% 50%

Average HELLO_RPY Delay (sec.) 0.007 0.018 0.022 0.031 0.025 0.029
Last HELLO_RPY Delay (sec.) 0.007 0.023 0.030 0.046 0.035 0.042

Table 3.22: Beaconless IEEE 802.15.4 results on Shawn

The results in Table 3.22 show that the beaconless IEEE 802.15.4 is easy to be affected by
the packet interference, and we got the similar results in our real-world experiments. After the
number of nodes was increased to four, some Hello messages had started to be lost. When the
number of nodes was increased to six, two nodes were completely lost in the network, and the
network starts to become unstable. Therefore, there is no need to be continuing adding numbers
of nodes after seven nodes have been added.

0,020
0,030
0,040
0,050
0,060

2 3 4 5 6 7 8 9 10
Average HELLO_RPY Delay (sec.) 0,007 0,018 0,022 0,031 0,025 0,029 0,025 0,023 0,033
Last HELLO_RPY Delay (sec.) 0,007 0,023 0,030 0,046 0,035 0,042 0,044 0,031 0,049

0,000
0,010
0,020

Figure 3.61: Delay for only the connected nodes

Figure 3.61 shows only results about the message delay with up to ten nodes, and the results
do not include the ones from completely lost nodes. Note that, the results relating to delay
from a network simulator are normally not accurate enough. The basic "time unit" in Shawn

is called round, it was implemented as the unit of second for our simulations. A round can be
divided into a double variable (called "time" in Shawn), which was implemented as the unit of
millisecond. There is no real second and millisecond units in Shawn. It is the same case as in
NS-2 because they are not designed to be a network emulator. Although the delay results are not

3.8. Simulations on Shawn 121

accurate, the increasing trends of delay results are basically matching the ones from real-world
experiments.

3.8.2.2 CIVIC Protocol Network

The second experiment was to implement and test CIVIC protocol on Shawn. Based on the
result from the last simulation, we have implemented CIVIC protocol with the contention-based
forwarding as mentioned in Section 2.3.2 because the Hello messages are easy to cause
too much routing overhead in high density networks. Note that, it does not mean that the
mechanism of one-hop link stability in Section 3.2.1.3 is not necessary, it only means that the
original beaconless IEEE 802.15.4 need to be modified before it will be used for high density
networks. For the real-world experiment in the next chapter (with only nine LiveNodes), we
still implemented and tested CIVIC protocol with the link-stability mechanism.

Because there is no Hello message to get neighbor information, three new rules are set for
the contention-based greedy forwarding in CIVIC protocol:

• Only the nodes in progress direction of the last sender can be used as the next-hop nodes
to forward messages. The routing message contains the location inforamtion of the last
sender and the destination. Plus, a node can know its own position. Three locations are
enough for a node to decide whether it is in the progress direction toward the destination.

• A additional delay is set before forwarding a routing message to avoid network
interference. The value of the delay is based on the distance between the destination
node and a node that has passed the first rule and it is ready to forward a routing message.
The shorter distance gets shorter delay, thus the found routing path should be the shortest
one.

• The same routing request messages can be forwarded only once by a node. In other word,
only one routing message passing the second rule can be forwarded by the next forwarder
node, and the redundant messages are dropped.

An example of requiring a routing path in a static network is shown in Figure 3.62. The
red node is the destination node, the gray edges are the nodes receiving the routing requiring
message (a distance-based routing tree), and the blue nodes are those in the feedback routing
path (exactly the ROUTE_RPY_PATH message). For the simulation only, the limitation on the
hop number is removed.

Except reducing the routing overhead as previously mentioned, there are two more
advantages of the contention-based model which can be proved by the simulation results:
firstly, the multi-path routing request can reduce the chances to get in void areas (Figure 3.63);
secondly, it appears to be more suitable for the dynamic networks (Figure 3.64 and Figure 3.65).
The last two figures are the snapshots in dynamic networks. The gray edges in these two figures
only demonstrate the speeds of movements. The blue points exist means that a routing path was
found, but when it was drawn on these figures, the positions of the nodes in the routing path had
been changed.

Note that, the Shawn simulation in this section is one of the ongoing works. The
implementation methods and simulation results are not final.

122 Chapter 3. Communication System: Designs and Evaluations

Figure 3 Routing request (multi-path) and reply (single-path) by CIVIC protocol

Source 

Destination 

Figure 3.62: Routing request (multi-path) and reply (single-path) by CIVIC protocol

3.8. Simulations on Shawn 123

Figure 4 Full static network connections and empty areas Figure 3.63: Full static network connections and void areas

124 Chapter 3. Communication System: Designs and Evaluations

Figure 5 A routing path (blue nodes) created in a slow dynamic network simulatioFigure 3.64: A routing path created in a slowly dynamic network simulation

Figure 3.65: A routing path created in a highly dynamic network simulation

Chapter 4

Applications: Inter-vehicle
Communication

This chapter is to show the results from real-world applications by field
experiments (Section 4.2) and an IVC project named MobiPlus (Section 4.3). Before
we give the results, we will first describe the software implementations for these
applications (Section 4.1).

4.1 Software Implementation

As previously mentioned, the communication system in this thesis can be applied to the indoor
WSN applications such as smart home, telemedicine and civil structure monitoring, thus it is
important to know the indoor disturbance factors that affect the communications. For example,
in indoor environments, the multipath phenomenons caused by reflection and scattering could
be more obvious than outdoor environments; in outdoor environments, the wireless conditions
are variable and complex because there could be unexpected interference sources and more
serious wireless disturbances (e.g. absorption, refraction and diffraction).

A part of indoor experiment results are shown in "Theoretical Evaluations" (Section 3.6)
and "LRPC Experiments" (Section 3.7). The indoor experiments in this section were
conducted in the LIMOS (Laboratoire d’Informatique, de Modélisation et d’Optimisation des
Systèmes) laboratory at ISIMA (Institut Supérieur d’Informatique, de Modélisation et de leurs
Applications). This section also shows the results from two outdoor experiments. The first
experiment was carried out at the car park of ISIMA campus. The next experiment was
performed on PAVIN platform (Plate-forme d’Auvergne pour Véhicules Intelligents).

The program of our communication system is mainly written in C language, except for the
hardware-related parts in assembly language. The program can be compiled successfully by
both ARM-ELF-GCC 4.4.2 [114][115] and IAR C/C++ Compiler for ARM 4.40A [96]. All
the assembly modules, C modules and header files are listed in Appendix B. This section only
explains some modules needed by the following descriptions.

Figure 4.1 and 4.2 show the layer-based implementation of the communication system. The
former provides more details about the message flow of the CIVIC protocol, and the latter
provides more details on the task control of the HEROS operating system.

126
C

hapter
4.

A
pplications:

Inter-vehicle
C

om
m

unication

CIVIC: Transport Layer

Key Modules

Application Layer

HEROS

Hardware and Network

MicrocontrollerLocalization

CIVIC: Medium Adaptation Layer

Driver

CIVIC: Network Layer

Additional ModulesKey Modules

Communication (IEEE 802.15.4)

MAC Layer PHY Layer

bd_us1bd_us0 bd_pit

MaxStream XBee Pro

GlobalSat ET-301 GPS Atmel AT91SAM7S256

gps_lab_test

gps_to_civic

us0_to_gps

civic_to_us1

func_crc

us1_to_civic

add

check

civic_core

civic_core_incivic_core_out

civic_id table_dst_loc

civic_func_exp

table_neighbor table_routing table_sf

gps_conv
Etask

Thread 1 Thread NThread 2

......

table_hello_rpy

app_data_out app_data_in

Additional Modules

app_ack app_route_ctrl

Application Tasks

......

......

bd_dbgu bd_led

Figure 4.1: Layer-based Message Flows

4.1.
Softw

are
Im

plem
entation

127

CIVIC: Transport Layer

Application Layer

app_data_out app_data_in

Application Tasks

HEROS

EVN_TIMER_RDY

(Activate tasks by PIT notices at intervals)

Hardware and Network

CIVIC: Medium Adaptation Layer

Driver

CIVIC: Network Layer

bd_us1bd_us0 bd_pit

us0_to_gps civic_to_us1 us1_to_civic

civic_core civic_core_incivic_core_out

EVN_US1_TX_RDY

(React when USART1 ready to transmit data to XBee)

TSK_US1_OUT:

Output a message from MsgOutList to USART 1

TSK_APP : Run application tasks

EVN_US1_RX_RDY

(React when USART1 receives data from XBee)

TSK_US1_IN:

Input and process data from USART 1,

then forward data to upper layers

MicrocontrollerLocalization Communication

MaxStream XBee ProGlobalSat ET-301 GPS Atmel AT91SAM7S256

EVN_US0_RX_RDY

(React when USART0 receives data from GPS)

TSK_US0_IN:

Input and process data from GPS,

then keep the newest locations for CIVIC to use

USART 1USART 0

TSK_HELLO_REQ: Send Hello requires

TSK_HELLO_PLY: Send Hello replies

TSK_ROUTING_REQ: Send routing requires

TSK_TAB_UPDATE: Update tables

T
rig

g
erin

g
 eta

sk
s (ev

en
ts)

……

MsgOutList

Figure 4.2: HEROS Communication Tasks

128 Chapter 4. Applications: Inter-vehicle Communication

A CIVIC layer contains a stand alone group of C modules, and provides simple input/output
message interfaces in the header files. There are two type of interfaces: one is for intra-layer
usages, one is for inter-layer usages. A higher layer (or the task center) can control a lower
layer by the inter-layer interfaces (the header files in "ext" folder of Appendix B). Note that, the
layer division of the CIVIC protocol is based on the implementation of the message delivery
mechanism that is suitable for low-resource embedded system, thus it is not providing the
complete functions like OSI or TCP/IP layer models.

The key modules about the network layer that will be introduced here is civic_core,
civic_core_out, civic_core_in and civic_id: The first module contains the settings of real-time
task will be used by the HEROS. The civic_core_out handle two output functions:

• Generating and sending a new message based on the message format defined
in Section 3.2.2

• Forwarding a routing message if it is not sent to itself

The civic_core_in deliver message from the medium adaptation layer to the correct
directions:

• If it is a hello or routing message, passing it to the module in current layer.

• Is it is an application message, passing it to the transport layer.

The civic_id handles ID-related functions. Besides, the table-related C modules have been
introduced in Section 3.2.2.3.

The current medium adaptation layer has two major parts: The first part converts
information from GPS (USART 0) to the variables (in gps_to_civic) that CIVIC can directly
read. The functions for coordinate conversions are in (in gps_conv). The modules of first part
is driven by the us0_to_gps with is controlled by an event-driven task of the USART 0. The
gps_lab_test is an optional module. For the indoor experiments to simulate a mobile scenario,
the location from GPS is replaced with a random location. This module does these conversion
works.

The second part handlers the messages to/from the network layer. The civic_to_us1 handle
the sending, and it is controlled by an event-driven task of USART 1. The us1_to_civic handle
the receiving, and it is also controlled by an event-driven task of USART 1.

In the following, the etask and threads settings of HEROS are given. There are nine basic
tasks implemented as threads in the following experiments, and they belong to four etasks.

• TIMER_RDY etask:

– Application: The custom tasks for applications, for example, reactive routing path
searches and sending real-time data. For most of the following experiments, the
task controls the sending of locations from GPS. It drives the message flow to lower
layers until reaching MsgOutList.

– Hello Request: Sending Hello requests by civic_core. It drives the message flow to
lower layers until reaching MsgOutList.

– Hello Reply: Sending Hello replies by civic_core. It drives the message flow to
lower layers until reaching MsgOutList.

4.1. Software Implementation 129

– Routing Request: Proactive routing path searches by civic_core. It drives the
message flow to lower layers until reaching MsgOutList.

– Table Update: Clear the outdated nodes from the routing table and the neighbor
table at intervals. Besides, the clearing may also include the Hello reply table and
the destination table by civic_core.

• US1_TX_RDY etask:

– Message Out: When the last message output is finished, an event notice is
issued from the interrupt US1_TX_RDY, and then the functions in civic_to_us1 are
activated to output the next message from MsgOutList. This task is also controlled
by the etask TIMER_RDY to avoid a too short sending interval. It drives the message
flow to lower layers.

• US1_RX_RDY etask:

– Message In: Input raw message from XBee Pro by us1_to_civic. It drives the
message flow to upper layers.

• US0_RX_RDY etask:

– GPS In: Input raw message from GPS by us0_to_gps. It also drives the message
flow to upper layers until the network layer.

If not specified, the real-time experiments in the following sections use the above
implementations. The memory consumptions after implementing the above tasks are shown
in the Table 4.1. When it is without the optimization from compiler, all together they take about
39 KB memory to run. There are six parts in the table from the minimum to the maximum
summary memory consumption.

App. Task GPS MAL* CIVIC HEROS Misc.

Code 256 2920 1920 5708 2744 15248
Data 33 226 512 1048 5928 168
Const 1 175 1377 58 356 372

Sum 290 3321 3809 6814 9028 15788

* MAL: Medium Adaptation Layer. It is not including the GPS part.

Table 4.1: Memory consumption of the communication system (unit is byte)

The sizes of some parts could be changed depending on applications:

• The application tasks in most our following experiments are a simple one. It sends an
additional GPS data to a destination node at intervals.

• The size of GPS part includes the replacement of random locations. If requiring more
GPS information, the size of this part will be also increasing.

• The size of Heros part will grow if more threads/etasks are added.

130 Chapter 4. Applications: Inter-vehicle Communication

• In all the parts, if the sizes of tuples (or buffers) are increased, the sizes of Data will also
be increased.

• The misc part mainly includes the math and string functions which are used by the parts of
GPS and CIVIC to calculate and convert the data relating to coordinate, direction, speed,
angle and distance.

4.2. Field Experiments 131

4.2 Field Experiments

4.2.1 Indoor Multi-sensor Experiments

The first experiment is to test the embedded communication system in a simulated highly
dynamic network. Nine sensors (LiveNodes) are used. A sensor is set as the destination
node. The other sensors keep sending routing requests and application data to this destination
sensor. The maximum interval of US1_TX_RDY for message sending is set to be in 100 ms. We
implement all mechanisms of our communication system for the experiment.

The locations from GPS are replaced by random ones because it is difficult to get correct
GPS in an indoor experiment. The locations to which are replaced are the random locations
within a car park (about 80x60 meter squares) of our campus. The random mobile speed is
from 0 to 30 meters in one second to simulate a highly dynamic network.

Moreover, to simulate the radio radius in the indoor experiment, sensors only response to
messages sent from the distance less than 50 meters. Because each sensor actually receives
all messages from the network, it requires more operations by both CIVIC and HEROS. This
experiment focuses on testing the overall network performance.

The experiment contains four identical sub-tests, each runs 15 minutes, and then gets
average values. Table 4.2 indicates the network performance. The loss rate is calculated based
on the missing serial number. When a message outputs to the network by a sensor, the CIVIC
protocol attaches a serial number (one byte) to indicate its place in the message sequence of the
sensor. By monitoring the serial number, we know the message loss rate for every sensor.

Average per sensor S0 S1 S2 S3

Message Rate (msg/sec) 3.41 2.46 3.63 3.67 3.57
Loss Rate (%) 4.13 0.85 6.54 9.84 1.02

Message Number (in 15 mins) 2973 2207 3074 2995 3203

S4 S5 S6 S7 S8

Message Rate (msg/sec) 3.51 3.14 3.9 3.64 3.2
Loss Rate (%) 1.51 3.94 2.77 3.33 7.34

Message Number (in 15 mins) 3130 2734 3536 3190 2689

Table 4.2: Individual sensor status in an indoor experiment

In order to monitoring the network in a graph interface and analyze messages in a more
convenient way, a PC software is developed specially for our experiments. The network
screenshots and result analysis of this section are from the software.

In general, most of sensors are sending routing requests and application data to the accurate
direction. Figure 4.3 shows an example of CIVIC routing topology. The S0 at the corner is the
destination node.

The message loss rate in this experiment should be caused by network traffic overhead,
interferences, shading and message collisions. As previous mention, all nine nodes are actually
receiving message from the whole network, so they have the same conditions of the incoming
network traffic. Moreover, the mobile speed in the experiment is very high, so it is very easy
for a node to be running out of the radio radius (e.g. the S7 in Figure 4.3).

132 Chapter 4. Applications: Inter-vehicle Communication

Figure 4.3: Data sending flows to a destination node

4.2.2 Car Park at ISIMA Campus

This experiment was actually done in the car park of our campus as shown in Figure 4.4. The
purpose of our experiments is to implement the communication system on a outdoor sensor
network, test its feasibility and make it reliable. At the same time, the experiments serve also
to validate LCD-GPS (Section 3.2.1.2 and 3.4.4).

Figure 4.4: Location of the experiment in a parking area

All LiveNode sensors in the experiment are randomly distributed on the tops of cars. A
sensor at the corner is set as the receiver of routing request and application messages (original
GPS information). The network is monitored by four ZigBee base stations, which are also
randomly distributed. The Figure 4.5 demonstrates the network deployment when using nine
static sensors.

Because the outdoor radio range of ZigBee Pro is up to 1.6 km and the space available to
our experiments is limited, we define a filter for each sensor to remove the packet sent from the
distance longer than 40 meters. It forces some sensors to send data in multi-hops, so we can
evaluate the efficiency of packet forwarding in CIVIC protocol. Because each sensor actually

4.2. Field Experiments 133

2

1

6

4

7

8

5

3

9

Figure 4.5: Network deployment for nine sensors

receives all packets from the network, if CIVIC protocol can work under this setting, it should
perform better in applications that are more practical.

4.2.2.1 First Experiment Scenario

The first experiment is to compare the DANKAB broadcast with the SF (simple Flooding)
broadcast in the routing process of the CIVIC protocol. There are reasons to choose SF in this
experiment: SF is reliable in terms of coverage, and it has been practically used in low-density
networks. Besides, to compare with two broadcasting methods, they must be implemented
on the same hardware platform, and run under the same conditions. Resource constraints of
embedded sensor limit the choice of broadcasting methods.

This experiment is done in a static network with nine sensors. The parameters used for
evaluations are the overall packet number, the packet loss rate, and the average routing hop
distance (the maximum hop is four). In both broadcasts, at five seconds intervals, eight sensors
require routing to a single sensor at the corner. Both DANKAB and SF broadcast stop when 50
routings are found.

Message Number Message Loss Rate Average Routing Hop

SF 3453 0.0913 2.1
DANKAB 1144 0.0297 1.39

Table 4.3: Comparing SF and DANKAB routing approaches

The result of comparison is shown in Table 4.3. The DANKAB has better performance
in all three parameters. Moreover, comparing to SF routing paths as shown in Figure 4.6,
all DANKAB routing paths are on the correct direction to the destination node as shown
in Figure 4.7.

134 Chapter 4. Applications: Inter-vehicle Communication

Figure 4.6: Routings topology by SF

Figure 4.7: Routing topology by DANKAB

4.2. Field Experiments 135

4.2.2.2 Second Experiment Scenario

The second experiment is a comparison of the application packets sending with or without
acknowledgement.

The network deployment and the target sensor are the same as in the first experiment. The
experiments are run after all sensors obtain routing paths by DANKAB. At one-second intervals,
sensors send their original GPS data to the target sensor. The GPS data are wrapped in the
application messages. The experiments stop when 100 application packets are sent, thus ideally
there should be 800 application packets received by the target sensor.

In the experiment without acknowledgement, all sensors just keep sending until finished.
In the experiment with acknowledgement, if an acknowledgement has not been received, the
sender assumes that the target sensor is busy, and waits three seconds before sending the data
again.

This target sensor (S2) is connected to a laptop by its debug port. The main parameters for
comparison are message number received by debug port, and the overall packet number received
by ZigBee stations (including Hello and routing messages). The result is shown in Table 4.4.

Received Message (debug port) Receiving Rate Overall Message Number

No Ack 773 97% 1043
With Ack 851 100% 2260

Table 4.4: Comparing the efficiency with or without acknowledgement

4.2.2.3 Third Experiment Scenario

The third scenario is to evaluate the factor of mobile sensor. It is done in a network with nine
sensors. This experiment compares a static network with nine sensors and a similar network
with one mobile sensor as in Figure 4.8.

Received Number (debug port) Receiving Rate

Static Network 773 97%
Mobile Network 652 82%

Table 4.5: Comparing the factor of mobile sensor

The result in Table 4.5 shows that a part of the application data is lost because of the sensor
movements, but overall the CIVIC protocol can perform well in a non-static network. The data
analysis after experiments indicates that the packet loss is mainly caused by two reasons:

• It is caused by the radio interference.

• The interval for routing request is set to be too short, so the new routing path can not be
updated in time.

136 Chapter 4. Applications: Inter-vehicle Communication

Figure 4.8: Experiment with a mobile sensor

4.2.3 PAVIN Platform

To demonstrate the feasibility and reliability of the CIVIC protocol in real-world mobility
scenarios, we have performed new experiments on the PAVIN platform Figure 4.9, which is
an experimental site dedicated to the development of intelligent autonomous vehicles. The
purpose of our experiments on PAVIN platform is to test the feasibility and reliability of the
CIVIC protocol on in the mobility scenarios of urban contexts. The experiments in this paper
were conducted between 2pm and 4pm on April 23, 2009. The experiment duration was about
90 minutes.

Figure 4.9: PAVIN platform

4.2. Field Experiments 137

The PAVIN platform is a 4750 m2 experimental site located in the Blaise Pascal University
(France). It contains roads and buildings similar to urban areas. An electric vehicle called
Cycab Figure 4.10 was used to carry the mobile node moving along the roads in platform during
experiments.

Figure 4.10: A Cycab with LiveNode in PAVIN platform

Figure 4.11: Location changes during experiments

There were nine sensors used in PAVIN experiments. The Figure 4.11 shows the network
deployment and the position changes of sensors during experiments. A sensor at the corner
(S1) was set as the receiver of routing request and application data. A sensor as the mobile node
(S8) was put on top of the Cycab for mobile tests. The other sensors were randomly distributed

138 Chapter 4. Applications: Inter-vehicle Communication

on the platform. The position changes could be caused by actual sensor movements or just
inaccurate GPS information.

acket

ved 5016

eceived 3823

te .65%

te ec acket/sec

All S1 S2 S3 S4

mber 43823 5867 5059 779 4871

 3.97% 3.15% 2.97% 7.17% 2.81%

S5 S6 S7 S8 S9

mber 5250 5125 4795 427 4650

 2.16% 1.52% 1.64% .85% 1.5%

Figure 8. CIVIC protocol using DANKAB

B

A

E

D

C

S1 (Receiver)

Figure 4.12: CIVIC protocol performing the DANKAB routing requests

The Figure 4.12 demonstrates the typical examples of CIVIC routing processes passing
through the mobile sensor. In this scenario, the Cycab carrying sensor S8 is driven from point
A to point E. It requests routing every five seconds intervals starting at point B. The lines in this
figure indicate the routing requests or routing replies of the CIVIC protocol by using DANKAB.
From point B to C, the multi-hop routing processes are correctly performed in the right direction
to the receiver (S1). Between point D and E, sensor S8 is in one-hop distance from the receiver.

Table 4.6 summarizes the overall network status in the experiments for about 90 minutes.
The error rate for packets is evaluated by checking the CRC in packets received by the ZigBee
station, thus it is different from the ones that are calculated by the sequence number in packets.

Received Characters Received Messages

All Received 2239740 45016
Correctly Received N/A 43823
Error Rate N/A 0.0265
Data Rate 415 character/sec 8.3 message/sec

Table 4.6: Overall network status

Table 4.7 indicates the status for individual sensors. The error rate is calculated by the
missing serial number. When a sensor sends a packet in our experiments, it attaches a serial

4.2. Field Experiments 139

number (one byte) to indicate its place in the packet output sequence. In this table, the sensor
S3 gets higher error rate due to poor power supply.

Average per sensor S1 S2 S3 S4

Message Rate (msg/sec) 0.9 1.09 0.94 0.51 0.90
Loss Rate (%) 3.97 3.15 2.97 17.17 2.81
Message Number (in 90 mins) 4869 5867 5059 2779 4871

S5 S6 S7 S8 S9

Message Rate (msg/sec) 0.97 0.95 0.89 1.01 0.86
Loss Rate (%) 2.16 1.52 1.64 2.85 1.50
Message Number (in 90 mins) 5250 5125 4795 5427 4650

Table 4.7: Overall network status

140 Chapter 4. Applications: Inter-vehicle Communication

4.3 MobiPlus Project

The CIVIC protocol is used as a prototype to experiment three projects in different areas:
inter-vehicle communication (MobiPlus project), environmental data collection (Net-ADDED
European project) and telemedicine (LiveCare project). In this paper, we present only the
MobiPlus project.

MobiPlus project is supported by the SMTC (Syndicat Mixte des Transports en Commun de
l’agglomération clermontoise) of Clermont-Ferrand city in France. It focuses on improving the
public service on urban transportation system particularly to disabled passengers Figure 4.13.

Figure 4.13: MobiPlus project in Clermont-Ferrand (France)

The MobiPlus has two major components: LNB (LiveNode Bus) and LNS (LiveNode
Station). The LNS contains an RFID (Radio-Frequency IDentification) reader, which detects
the presence of the disabled passenger who has an RFID electronic ticket. The RFID electronic
ticket contains the information about the specific needs of the passenger, and this information
will be sent to the bus that he or she is waiting for. Thus, when LNB arrives at LNS, related
services according to these specific needs will be provided. For example, if a wheelchair user is
present, the wheelchair lift on LNB will be activated. If a sight-deprived passenger is present,
the voice notice from LNS will be played.

The LiveNode sensors embedded at LNB and LNS communicate with CIVIC protocol,
which adopts Wi-Fi and ZigBee. The GPS is used to localize the LNB and to estimate its arrival
time.

Chapter 5

Applications: WSN Precision Agriculture

5.1 An Additional Auto-clustering Algorithm for WSNs

5.1.1 Concept and Scenario

As previously mentioned, our embedded communication system targets two network fields:
VANET and WSN. They are both high-dynamic networks but the changes of network topologies
are by different reasons. The former is because the high-mobility features of network
nodes (vehicles); the latter is mainly because the resource constraints of network nodes cause
the faults in network nodes (wireless sensor). Besides, the faults are caused by unanticipated
environment variations. The deployment of WSNs is hard to predict, and in some cases, sensor
nodes are randomly deployed by aircraft. Owning to the features of WSNs, the communication
system is designed with an auto-clustering protocol. The auto-clustering protocol has two
usages in the communication system: it can be a part of the routing approaches of the CIVIC
protocol when it is used in WSNs; it can be implemented as a part of the management protocol
in the application layer. The thesis focuses on the first usage; for the second one we will only
be briefed in this section.

As a geographic routing protocol like CIVIC, to reduce the energy consumption on network
communications and location operations is particularly important. WSNs are usually grouped
by large numbers of low-cost sensor nodes with one or more sinks. A sink with high
hardware capabilities holds the connection between sensor nodes and data proxy. The hardware
characteristics of sensor nodes are similar to those of a tiny computer system, but they have
to cope with stringent resource constraints in terms of CPU, energy, memory, bandwidth
and transmission distance. In a cluster-based hierarchy routing scheme, most sensor nodes
in clusters only route data within a local area and respond only to local commands. As for
cross-cluster communications, only the selected sensor nodes in/between clusters are involved
to the processes. Therefore, the amount of overall network communications is reduced, and
consequently the energy consumption is decreased. Moreover, a cluster-based hierarchy scheme
does not require the availability of location system on each sensor node, or at least, not an
all time requirement. The requirement to have the locations of sensor nodes becomes the
requirement of having the locations of clusters in most of time. When a cluster of sensor nodes
is off duty, they can be switched to sleep mode to conserve more energy.

As for the management aspect of WSNs, it is impractical to manually initialize or

142 Chapter 5. Applications: WSN Precision Agriculture

reconfigure hundreds of low-cost sensor nodes. The network topology in a WSN frequently
changes because of the node faults. In some applications such as disaster monitoring and
battlefield surveillance, the sensor nodes are often required to operate in dangerous environment
where accessibility is highly restricted. The classic design approach to deal with these
problems is to divide a network into clusters to enable management functions to be undertaken
at local levels. Comparing to network management in most traditional wired and wireless
networks, which is a software service that helps human manager monitoring network status
and maintaining network performance, the network management in WSNs is the autonomous
processes of organizing, monitoring and controlling all elements and services of a WSN [116].
Other advantages of a cluster-based hierarchy scheme can be found in [117].

The auto-clustering protocol in this thesis is capable of autonomously dividing sensor
nodes into a set of single-level clusters using only locally-available information. As shown
in Figure 5.1, bridge nodes between neighboring clusters are introduced to assist with the tasks
of cluster formulation, and the tasks of routing after the clusters are formulated. Each cluster
has a master node on duty, which is responsible for routing, coordination, and aggregation.
Other sensor nodes in the cluster, which are referred to as slave nodes, are on duty for sensing
the environment.

Figure 5.1: An example result of auto-clustering algorithm

5.1. An Additional Auto-clustering Algorithm for WSNs 143

5.1.2 Criteria for the Selection of Master Nodes

In this section, clustering model and two criteria for the selection of master nodes are presented
to be followed by the centralized and localized auto-clustering approaches which are based on
these criteria.

5.1.2.1 Clustering Model

A closer look of the network scenario is in Figure 5.2. It shows an example of the network
scenario in hierarchy view. Sensor nodes A, B and C are master nodes; sensor nodes k, l, m,
and n are slave nodes; sensor node i, j is bridge node, and S is the sink.

Figure 5.2: Auto-clustering network scenario

• A Master Node is responsible for coordinating the slave nodes, aggregating and routing
data from slave nodes to the sink or other master nodes. In the hierarchical expression,
master nodes are considered as the parent nodes of slave nodes and the children nodes of
the sink.

• A Slave Node only performs data sensing operation. It periodically or responsively sends
the monitored data to a master node. In the hierarchical expression, it is the end-node.
The slave nodes communicate with the sink through their master nodes, for example the
routing n-A, m-B and k-C.

• A Bridge Node is selected from the intersection of slave nodes in two neighboring
clusters. A bridge node is a subset of slave nodes but only acts as the gateway of two
neighboring clusters. The master nodes of two neighboring clusters can communicate
with each other through their bridge nodes, for example the routing B-i-C.

144 Chapter 5. Applications: WSN Precision Agriculture

• Unlike sensor nodes, the Sink has a large memory, high processing speed and sufficient
power support. It connects master nodes and data proxy through Internet or satellite, e.g.
the routing n-A-S, k-C-S and m-B-i-C-S. In the hierarchical expression, the sink is the
root without superior. There is only one sink in the present network scenario.

The present clustering model is based on the following assumptions:

• Any sensor node can use the functions of the CIVIC protocol including:

– Having the knowledge of the one-hop neighbor nodes

– To make peer-to-peer multi-hop communications with sink and other sensor nodes

• At the initialization stage, the WSN is stationary, there is no node failures or channel
errors.

• There is no lost node; in other words, all nodes must be a clustering role among master,
slave or bridge nodes.

WSN is represented by an undirected and simple graph G = (V,E). The vertices V is the
set of sensor nodes, where each sensor node is equipped with an omnidirectional antenna. The
edges E is the set of wireless links, where each edge connects exactly two distinct vertices, thus
an edge also represents a neighbor relationship between two sensor nodes. Moreover, the set of
clusters is represented as C.

The items in the following list denote individual elements in G:

• For following all, if not specified, i and j are both positive integers and they represent the
IDs of vertices.

• A vertex is represented as vi. The number of vertices (Nodes) is N = |V |, and
⋃N

i=1
vi =

{v1, v2, v3, ..., vN} = V .

• A edge is represented as eij . It is an undirected link between vi and vj . The number of
edges (Links) is L = |E|, and

⋃L

i=1
ei = E.

• A cluster is represented as ci. It implicates vi is the master node of ci. The number of
clusters (Bunchs) is B = |V |, and

⋃B

i=1
ci = C.

• A vertex acting as a master node is shorten as a master and denoted as mi. Likewise, a
bridge is bi, and a slave is si.

Normally, a smaller value of B represents a better clustering result. If M is the maximum
number of vertices in a cluster, by considering the third assumption, the minimum and
maximum values of B is:

N

M
≤ |B| ≤ N

2
+ 1

5.1. An Additional Auto-clustering Algorithm for WSNs 145

5.1.2.2 Criteria for the selection of master nodes

Suppose a original vertex vi is selected to be a master, an other vertex vj which fulfills the
following two criteria will also qualify for selection as a master.

Criterion 1

nj /∈ ci

There is no two master nodes in a same cluster. For some applications with R is the radio
range (assuming it is a circle), the distance between two masters must be greater than R.

Criterion 2

1 ≤ |ci
⋂

cj| ≤ 2

If two vertices vi and vj are selected as masters, there must also be at least one vertex node
connecting them. Consequently, one or two vertices will be selected to act as the bridge nodes
in order to provide the link between the masters.

After these two criteria, if more than one vertex can be selected as the next master, use the
one with a higher ID number then continuing.

5.1.3 MATLAB Simulations

The clustering algorithm has been implemented in MATLAB simulation by two approaches:
the centralized approach and the localized one. The MATLAB simulation simply prove the
feasibility of the previous two criteria without considering the network capability and packet
collision, and the result has been published in [118]. The further development and simulation
on the Shawn simulator were done by Wu in [14].

5.1.3.1 Centralized Approach

The computing in centralized approach is assumed to be done by a sink, thus the neighbor
information must be sent from nodes to the sink by multi-hop transmissions.

After the network has been deployed, each node open a time window to exchange the
neighbor information. In the beginning of the time window, each node broadcasts a one-hop
HELLO messages to notice their neighbors about its existing. Nodes know their neighbors by
the HELLO messages and send out the neighbor lists to the sink in the end of the time window.
The sending of the neighbor lists can be assumed to be carried out by a geographic routing
protocol, for example, the previously mentioned CIVIC protocol.

When the collection of neighbor lists is finished, the sink then randomly starts the computing
from a sensor node, which is assumed to be the first master node, and then selects the other
master nodes based on the two criteria until all nodes are clustered. Since the sink is assumed
to have the high hardware capabilities and get the information covering the whole WSN, the
processing steps can be optimized and calculated repeatedly until the sink achieves the best
clustering results.

When the clustering process has finished, the sink broadcasts confirm messages to selected
master nodes and bridge nodes that include the topology routing information, and then the
selected master nodes notice the slave nodes.

146 Chapter 5. Applications: WSN Precision Agriculture

5.1.3.2 Localized Approach

The initial steps of the localized approach are similar to those outlined for the centralized
algorithm: a time window is opened for exchanging HELLO messages. But instead of letting
the sink to do the clustering computation, the nodes with the higher ID numbers compute the
localized clustering results in the end of the time window, e.g. nodes 6, 10, 11 in Figure 5.3(a).
These nodes have the highest ID numbers by comparing with their one-hop neighbors’ ID
numbers, and they are called the initial master nodes.

2

1
1111

3

7
8

5
6

4

2

1

11
3

7
8

5
6

4

(b)

(a)
10

9

10

9

Figure 5.3: An example of master node selection

Since these initial master nodes have known their one-hop neighbors, they can ask these
neighbors to sent back their neighbor lists. Based on the two-hop neighbor information, the
initial master nodes can decide the next round master nodes by the previous two criteria. Then,
the next round master nodes take on the clustering computation, and the clustering processes
gradually spread over the network. For instance, the node 7 is selected to be the next master
node of initial master node 11, and the clustering processes finish at node 1.

The advantage to have multiple initial master nodes is to deal with separate networks. If
all nodes are assumed to be connected with each other, only one initial master node is needed
by the localized approach. However, if multiple initial master nodes are existing, the separate
clustering processes will meet each other definitively (e.g. node 9, and nodes from 3 to 5). Our
solution for the MATLAB simulation is a simple one: the ID numbers from the initial master
nodes are assumed to be carried by the clustering relating messages. If two separate clustering
processes meet, the process carrying a higher ID number can stop the other process and reform
the clusters in the other process. For example, node 5 becomes a master node in the second
round because it passes the clustering relating message from initial master node 11, and then
node 6 becomes a slave node of the new master node 5.

5.1. An Additional Auto-clustering Algorithm for WSNs 147

5.1.4 Simulation Results

Figure 5.4 shows the variation of the number of master nodes/cluster with the radio radius based
on a total 200 nodes.

20 30 40 50 60
2

4

6

8

10

12

14

16

18
Effect of Radio Radius

N
u
m

b
e
r

o
f

m
a
s
te

r
n
o
d
e
s
/c

lu
s
te

rs

Radio radius

Centralized Approaches

Localized Approaches

Figure 5.4: Number of master nodes/cluster vs radio radius

Figure 5.5 shows the variation of the number of master nodes/cluster with the total number
of sensor nodes at a fixed 20 m radio range. Both set of results are based on a field area of
100× 100 m2.

100 150 200 250 300
5

10

15

20

25

30
Effect of Number of Nodes

N
u
m

b
e
r

o
f

m
a
s
te

r
n
o
d
e
s
/c

lu
s
te

rs

Total number of sensor nodes

Centralized Approaches

Localized Approaches

Figure 5.5: Number of master nodes/cluster vs total number of sensor nodes

The results prove both centralized and localized approaches are feasible, and the centralized
approach always get the better results. However, note that although the simulated results
on MATLAB appear to suggest that the centralized approach may be better than that of the

148 Chapter 5. Applications: WSN Precision Agriculture

localized approach, the latter is more suitable for the real world applications because it is
scalable because it is not always practical to send all neighbor lists to sink for computing. In
the Figure 5.5 the number of master nodes/cluster starts to be moderate after 200 nodes because
the coverage limitation is reached. The newly added nodes are in the coverage of the old ones.

The following Figure 5.6 Figure 5.7 Figure 5.8 shown in the end of this sub-section use
the optimal centralized auto-clustering approach in a field of 500× 500m2 populated with 400
sensor nodes. The radio range is 65 m.

Figure 5.6: Cluster formulation

5.1. An Additional Auto-clustering Algorithm for WSNs 149

Figure 5.7: Inter-cluster network connections
.

Figure 5.8: Intra-cluster connections

150 Chapter 5. Applications: WSN Precision Agriculture

5.2 NeT-ADDED Project

The works in this chapter and the CIVIC protocol are used in the environmental data collection
project NeT-ADDED (New Technologies to Avoid Digital Division in E-Divided areas). The
Net-ADDED project is a two-year European Commission (EC) programme to develop and
validate technical features improving performance of deployment and operation of hybrid
satellite-wireless technologies. There are twelve partners from different countries (France,
Morocco, Greece and Turkey).The participation of our team (UBP/Cemagref) is in the field
of precision agriculture, and our major task to use sensors (LiveNodes) to collect environmental
data (e.g. soil moisture).

Our design is to develop a VPN (Virtual Private Network) platform called LivePlatform

based on WSN technologies as shown in Figure 5.9. The design of component layers integrates
the WIN concept [119], which supports the use of intelligent network capabilities to provide
seamless terminal services, personal mobility services, and advanced network services in the
mobile environment. Thus, it enables to extend the wireless recovery from an access point and
eases the deployment of wireless network in the rural area.

Figure 5.9: LivePlatform dedicated to precision agriculture

5.2. NeT-ADDED Project 151

The LivePlatform is conceptually divided as four parts:

• Application layers (Section 3.2.2)

• Middleware: Distributed IN/OUT primitive based on LINDA concept (Section 3.3)

• Embedded software

– HEROS (Hybrid Event-driven and Real-time multitasking Operating
System) Section 3.3

– CIVIC (Communication Inter Véhicule Intelligente et Coopérative) Section 3.2

• Embedded hardware:

– MaLiveNode (Multi-access LiveNode) in Section 3.4

– SLN (Soil Moisture LiveNode)

– LN (LiveNode with WiFi or ZigBee) in Section 3.4

All these parts except the SLN have been introduced. The SLN is a LiveNode connection
with a soil moisture sensor as shown in Figure 5.10.

Figure 5.10: Soil Moisture LiveNode

Chapter 6

Conclusions and Ongoing Works

The thesis has presented the state of art of routing technique researches on dynamic networks
in Chapter 2. The routing techniques are classified into three broad categories: topological,
hierarchical and geographic routing protocols. The geographic routing protocols are the ones
more commonly adapted in the dynamic networks. But as for highly dynamic networks, none
of these techniques can be considered to be exactly suitable for an embedded communication
system. It is still an open issue for the current researches in routing techniques. The new
researches about Geocast and DTN-based protocols could be more suitable for highly dynamic
networks, and our ongoing routing solutions are more similar to the first one.

Embedded communication systems normally contain two basic software components: a
protocol stack to manage network communications and an operating system to interface with
hardware and schedule tasks or events. Based on such structure, this thesis presents a new low
cost and low memory footprint design and its implementation for embedded IVC applications
with CIVIC as protocol stack, and HEROS as embedded OS. The design, algorithms and
implementation for both software components are given in the thesis.

Under our designs, CIVIC adopts the DANKAB mechanisms to provide a
resource-awareness and rapid convergence routing algorithm, while HEROS proposes an
Etask/Thread modular architecture and adopts a tuple-based IN/OUT primitive communication
mechanism to provide both event-driven and real-time multitasking operation modes. At
present, the CIVIC protocol has been ported on HEROS to perform real-world applications.
The results from implementation and experiment show that this embedded system has a small
resource consumption (about 43 KB) and is adaptable to different applications. Moreover,
thanks to a low message sending delay (about 26 ms when sending 100 B) and a good
reliability (shown in the fog experiments), the present design may be used to implement low
cost embedded collision avoidance device by combining GPS receiver and IVC data.

Currently, the communication embedded system is still under development and evaluation,
the result of network performances is not so perfect, but it shows the adaptability of this
system to high-mobility scenarios like VANETs. The ongoing works of CIVIC are to continue
reducing memory consumption and continue improving its communication QoS. For HEROS,
its programming models are not completed, thus a hardware abstract layer or interface will be
provided in future.

My works were mainly in the CIVIC protocol, thus the theoretical evaluations, simulations
and real-world experiments are all given in details. The theoretical evaluations provide

154 Chapter 6. Conclusions and Ongoing Works

the isolated formulas for computing potential network delay and loss rate, and the LRPC
experiments prove the correction of the formulas, thus isolated formulas can be used in our
network related projects in future. The LRPC experiments also prove that our embedded
communication system can work well in different foggy environments. However, by the
limitation of experiment conditions and available duration, the available samples in LRPC
experiments are not enough for completing the accurate calculations. The ongoing works for
this part will be the experiments in the rainy environments. In the end of the chapter, the
results from Shawn simulation are presented, but it is also one of the ongoing works. The
implementation methods and simulation results are not final.

Then, the thesis present two application domains: the VANET (IVC) in Chapter 4 and
the WSN in Chapter 5. The implementations and real-world experiments are detailed in
the first one, and the MATLAB simulation results are in the second one. The real-world
experiment results prove our designs in the aspects of message delay, system latency and
memory consumption. The ongoing works are to test the embedded communication system
in a higher dynamic network with more sensor nodes.

The current shortage of our embedded communication system is from the choice of the
beaconless IEEE 802.15.4 standard. Although the 2.4 GHz frequency in the standard works
well in the fog experiments, the CSMA/CA mechanism in the beaconless mode performs badly
with the increasing number of networking nodes. Note that, to use beacon-based 802.15.4
standard is not practical for highly dynamic networks like VANETs.

Because the XBee Pro hardware model used by LiveNode does not provide the low-level
access, it is difficult to modify the 802.15.4 standard in our real-world experiments. An ongoing
work related to the improvement of network standard will be done in the Shawn simulator.

Bibliography

[1] T. Clausen and P. Jacquet, “Optimized link state routing protocol (OLSR),” RFC 3626,
Internet Engineering Task Force, October 2003.

[2] R. Ogier, F. Templin, and M. Lewis, “Topology dissemination based on reverse-path
forwarding (TBRPF),” RFC 3684, Internet Engineering Task Force, 2004.

[3] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector
routing (DSDV) for mobile computers,” SIGCOMM Comput. Commun. Rev., vol. 24,
no. 4, pp. 234–244, 1994.

[4] C. E. Perkins, “Ad hoc on-demand distance vector routing protocol,” internet-draft, IETF
MANET Working Group, November 1997. Expiration: Mai 20, 1998.

[5] C. Perkins, E. Royer, and S. Das, “Ad hoc on-demand distance vector (aodv) routing
(retrieved 2010-06-18),” RFC 3561, 2003.

[6] D. B. Johnson, D. A. Maltz, and J. Broch, “DSR: The dynamic source routing protocol
for multi-hop wireless ad hoc networks,” in In Ad Hoc Networking, edited by Charles E.

Perkins, Chapter 5, pp. 139–172, Addison-Wesley, 2001.

[7] V. D. Park and M. S. Corson, “A highly adaptive distributed routing algorithm for mobile
wireless networks,” in INFOCOM ’97. Sixteenth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings IEEE, vol. 3, pp. 1405–1413
vol.3, 1997.

[8] R. Dube, C. D. Rais, K.-Y. Wang, and S. K. Tripathi, “Signal stability-based adaptive
routing (SSA) for ad hoc mobile networks,” Personal Communications, IEEE [see also

IEEE Wireless Communications], vol. 4, no. 1, pp. 36–45, 1997.

[9] Z. J. Haas and M. R. Pearlman, “The performance of query control schemes for the zone
routing protocol,” IEEE/ACM Trans. Netw., vol. 9, no. 4, pp. 427–438, 2001.

[10] C.-K. Toh, “Long-lived ad hoc routing based on the concept of associativity,”
internet-draft, IETF MANET Working Group, March 1999. Expired.

[11] S. Agarwal, A. Ahuja, J. P. Singh, and R. Shorey, “Route-lifetime assessment based
routing (rabr) protocol for mobile ad-hoc networks,” in IEEE International Conference

on Communications, vol. 3, pp. 1697–1701 vol.3, 2000.

156 Bibliography

[12] M. S. Corson and A. Ephremides, “A distributed routing algorithm for mobile wireless
networks,” Wireless Networks, vol. 1, pp. 61–81, 1995. 10.1007/BF01196259.

[13] S. Guo, O. Yang, and Y. Shu, “Improving source routing reliability in mobile ad hoc
networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 16, pp. 362–373,
2005.

[14] J. Wu, K.-M. Hou, X. Diao, and J.-J. Li, “Clustering and fuzzy position based routing
in wireless sensor network for smart environment,” tech. rep., Laboratoire LIMOS UMR
6158 CNRS, Université Blaise Pascal Clermont-Ferrand II, France, 2010.

[15] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An application-specific
protocol architecture for wireless microsensor networks,” Wireless Communications,

IEEE Transactions on, vol. 1, no. 4, pp. 660–670, 2002.

[16] A. Manjeshwar and D. P. Agrawal, “TEEN: a routing protocol for enhanced efficiency
in wireless sensor networks,” in Parallel and Distributed Processing Symposium.,

Proceedings 15th International, pp. 2009–2015, 2001.

[17] Q. Fang, F. Zhao, and L. Guibas, “Lightweight sensing and communication protocols
for target enumeration and aggregation,” in Proceedings of the 4th ACM international

symposium on Mobile ad hoc networking & computing, MobiHoc ’03, (New York, NY,
USA), pp. 165–176, ACM, 2003.

[18] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A two-tier data dissemination model
for large-scale wireless sensor networks,” in Proceedings of the 8th annual international

conference on Mobile computing and networking, MobiCom ’02, (New York, NY, USA),
pp. 148–159, ACM, 2002.

[19] X. X. Diao, M. Kara, J.-J. Li, K. M. Hou, H. Zhou, and A. Jacquot, “Cooperative
inter-vehicle communication protocol with low cost differential gps,” Journal of

Networks, vol. 4, no. 6, pp. 445–457, 2009.

[20] A. Boukerche, H. A. B. F. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Vehicular
ad hoc networks: A new challenge for localization-based systems,” Comput. Commun.,
vol. 31, pp. 2838–2849, July 2008.

[21] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward, “A distance routing
effect algorithm for mobility (DREAM),” in Proceedings of the 4th annual ACM/IEEE

international conference on Mobile computing and networking, MobiCom ’98, (New
York, NY, USA), pp. 76–84, ACM, 1998.

[22] Y.-B. Ko and N. H. Vaidya, “Location-aided routing (lar) in mobile ad hoc networks,”
Wireless Networks, vol. 6, no. 4, pp. 307–321, 2000.

[23] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris, “A scalable location
service for geographic ad hoc routing,” in MobiCom ’00: Proceedings of the 6th annual

international conference on Mobile computing and networking, (New York, NY, USA),
pp. 120–130, ACM, 2000.

Bibliography 157

[24] I. Stojmenovic, “Home agent based location update and destination search schemes in ad
hoc wireless networks,” Tech. Rep. TR-99-10, SITE, University of Ottawa, September
1999.

[25] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker, “Ght:
a geographic hash table for data-centric storage,” in Proceedings of the 1st ACM

international workshop on Wireless sensor networks and applications, WSNA ’02, (New
York, NY, USA), pp. 78–87, ACM, 2002.

[26] D. Liu, X. Jia, and I. Stojmenović, “Quorum and connected dominating sets based
location service in wireless ad hoc, sensor and actuator networks,” Comput. Commun.,
vol. 30, pp. 3627–3643, December 2007.

[27] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin, “Consistent
hashing and random trees: distributed caching protocols for relieving hot spots on the
world wide web,” in STOC ’97: Proceedings of the twenty-ninth annual ACM symposium

on Theory of computing, (New York, NY, USA), pp. 654–663, ACM, 1997.

[28] P. F. Tsuchiya, “The landmark hierarchy: a new hierarchy for routing in very large
networks,” SIGCOMM Comput. Commun. Rev., vol. 18, pp. 35–42, August 1988.

[29] S. M. Das, H. Pucha, and Y. C. Hu, “Performance comparison of scalable location
services for geographic ad hoc routing,” vol. 2, pp. 1228–1239 vol. 2, 2005.

[30] R. Friedman and G. Kliot, “Location Services in Wireless Ad Hoc and Hybrid Networks:
A Survey,” Tech. Rep. CS-2006-10, Department of Computer Science Technion, Israel,
October 2006.

[31] H. Sui and J. R. Zeidler, “Optimal Transmission Ranges for Randomly Distributed Packet
Radio Terminals,” IEEE Transactions on Communications, vol. 32, no. 3, pp. 246–257,
1984.

[32] T.-C. Hou and V. Li, “Transmission Range Control in Multihop Packet Radio Networks,”
IEEE Transactions on Communications, vol. 34, no. 1, pp. 38–44, 1986.

[33] G. G. Finn, “Routing and Addressing Problems in Large Metropolitan-Scale
Internetworks,” Tech. Rep. ISI/RR-87-180, University Of Southern California,
Information Sciences Institute, March 1987.

[34] E. Kranakis, H. Singh, and J. Urrutia, “Compass Routing on Geometric Networks,” in 11

th Canadian Conference on Computational Geometry, (Vancouver), pp. 51–54, August
1999.

[35] I. Stojmenovic and X. Lin, “Loop-free hybrid single-path/flooding routing algorithms
with guaranteed delivery for wireless networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 12, no. 10, pp. 1023–1032, 2001.

[36] M. Heissenbüttel, T. Braun, T. Bernoulli, and M. Wälchli, “Blr: beacon-less routing
algorithm for mobile ad hoc networks,” Computer Communications, vol. 27, no. 11,
pp. 1076–1086, 2004.

158 Bibliography

[37] B. M. Blum, T. He, S. Son, and J. A. Stankovic, “Igf: A state-free robust communication
protocol for wireless sensor networks,” tech. rep., Computer Science Department,
University of Virginia, 2003.

[38] M. Zorzi and R. R. Rao, “Geographic random forwarding (GeRaF) for ad hoc and sensor
networks: multihop performance,” Mobile Computing, IEEE Transactions on, vol. 2,
no. 4, pp. 337–348, 2003.

[39] D. Chen, J. Deng, and P. K. Varshney, “Selection of a Forwarding Area for
Contention-Based Geographic Forwarding in Wireless Multi-Hop Networks,” IEEE

Transactions on Vehicular Technology, vol. 56, pp. 3111–3122, September 2007.

[40] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker, “Geographic routing made practical,”
in Proceedings of the 2nd conference on Symposium on Networked Systems Design &

Implementation - Volume 2, NSDI’05, (Berkeley, CA, USA), pp. 217–230, USENIX
Association, 2005.

[41] K. C. Lee, P.-C. Cheng, and M. Gerla, “Geocross: A geographic routing protocol in the
presence of loops in urban scenarios,” Ad Hoc Netw., vol. 8, pp. 474–488, July 2010.

[42] R. K. Gabriel and R. R. Sokal, “A New Statistical Approach to Geographic Variation
Analysis,” Systematic Zoology, vol. 18, pp. 259–278, September 1969.

[43] G. T. Toussaint, “The relative neighbourhood graph of a finite planar set,” Pattern

Recognition, vol. 12, no. 4, pp. 261 – 268, 1980.

[44] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia, “Routing with guaranteed delivery in
ad hoc wireless networks,” in Proceedings of the 3rd international workshop on Discrete

algorithms and methods for mobile computing and communications, DIALM ’99, (New
York, NY, USA), pp. 48–55, ACM, 1999.

[45] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for wireless
networks,” in MobiCom ’00: Proceedings of the 6th annual international conference

on Mobile computing and networking, (New York, NY, USA), pp. 243–254, ACM, 2000.

[46] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Asymptotically optimal geometric mobile
ad-hoc routing,” in Proceedings of the 6th international workshop on Discrete algorithms

and methods for mobile computing and communications, DIALM ’02, (New York, NY,
USA), pp. 24–33, ACM, 2002.

[47] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Worst-case optimal and average-case
efficient geometric ad-hoc routing,” in Proceedings of the 4th ACM international

symposium on Mobile ad hoc networking & computing, MobiHoc ’03, (New York, NY,
USA), pp. 267–278, ACM, 2003.

[48] B. Leong, B. Liskov, and R. Morris, “Geographic routing without planarization,” in
NSDI’06: Proceedings of the 3rd conference on 3rd Symposium on Networked Systems

Design & Implementation, (Berkeley, CA, USA), p. 25, USENIX Association, 2006.

Bibliography 159

[49] SPEED: a stateless protocol for real-time communication in sensor networks, May 2003.

[50] J. Zhao and G. Cao, “VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc
Networks,” in Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference

on Computer Communications, pp. 1–12, IEEE, April 2006.

[51] GeOpps: Geographical Opportunistic Routing for Vehicular Networks, 2007.

[52] P.-C. Cheng, K. Lee, M. Gerla, and J. Härri, “GeoDTN+Nav: Geographic DTN Routing
with Navigator Prediction for Urban Vehicular Environments,” Mobile Networks and

Applications.

[53] Y.-B. Ko and N. H. Vaidya, “Geotora: a protocol for geocasting in mobile ad hoc
networks,” in Proceedings of the 2000 International Conference on Network Protocols,
ICNP ’00, (Washington, DC, USA), pp. 240–, IEEE Computer Society, 2000.

[54] T. Imieliński and J. C. Navas, “Gps-based geographic addressing, routing, and resource
discovery,” Commun. ACM, vol. 42, pp. 86–92, April 1999.

[55] C. Maihöfer, “A survey of geocast routing protocols,” IEEE Communications Surveys

and Tutorials, vol. 6, no. 1-4, pp. 32–42, 2004.

[56] Y.-C. Tseng, S. yao Ni, and E. yu Shih, “Adaptive approaches to relieving broadcast
storms in a wireless multihop mobile ad hoc network,” IEEE Transactions on Computers,
vol. 52, pp. 545–557, 2002.

[57] B. Williams and T. Camp, “Comparison of broadcasting techniques for mobile ad hoc
networks,” in MobiHoc ’02: Proceedings of the 3rd ACM international symposium on

Mobile ad hoc networking & computing, (New York, NY, USA), pp. 194–205, ACM,
2002.

[58] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic, “Impact of radio irregularity
on wireless sensor networks,” in in MobiSYS ’04: Proceedings of the 2nd international

conference on Mobile systems, applications, and services, pp. 125–138, ACM Press,
2004.

[59] L. Briesemeister, L. Schafers, G. Hommel, and D. Ag, “Disseminating messages among
highly mobile hosts based on inter-vehicle communication,” in In IEEE Intelligent

Vehicles Symposium, pp. 522–527, 2000.

[60] A. Bachir and A. Benslimane, “A multicast protocol in ad hoc networks inter-vehicle
geocast,” in Proc. 57th IEEE Semiannual Vehicular Technology Conference, vol. 4,
pp. 2456–2460, 2003.

[61] C. Maihöfer and R. Eberhardt, “Geocast in Vehicular Environments: Caching and
Transmission Range Control for Improved Efficiency,” in IEEE Intelligent Vehicles

Symposium (IV), pp. 951–956, 2004.

160 Bibliography

[62] G. Korkmaz, E. Ekici, F. Özgüner, and U. Özgüner, “Urban multi-hop broadcast protocol
for inter-vehicle communication systems,” in VANET ’04: Proceedings of the 1st ACM

international workshop on Vehicular ad hoc networks, (New York, NY, USA), pp. 76–85,
ACM, 2004.

[63] C. Maihöfer, T. Leinmüller, and E. Schoch, “Abiding geocast: time–stable geocast for ad
hoc networks,” in VANET ’05: Proceedings of the 2nd ACM international workshop on

Vehicular ad hoc networks, (New York, NY, USA), pp. 20–29, ACM, 2005.

[64] Locating nodes with EASE: last encounter routing in ad hoc networks through mobility

diffusion, vol. 3, 2003.

[65] M. Grossglauser and M. Vetterli, “Locating Mobile Nodes with EASE: Learning Efficient
Routes from Encounter Histories Alone,” IEEE/ACM Transactions on Networking,
vol. 14, no. 3, pp. 457–469, 2006.

[66] U. Lee, J.-S. Park, E. Amir, and M. Gerla, “Fleanet: A virtual market place on vehicular
networks,” Mobile and Ubiquitous Systems, Annual International Conference on, vol. 0,
pp. 1–8, 2006.

[67] J. A. Davis, A. H. Fagg, and B. N. Levine, “Wearable computers as packet transport
mechanisms in highly-partitioned ad-hoc networks,” in Proceedings of the 5th IEEE

International Symposium on Wearable Computers, ISWC ’01, (Washington, DC, USA),
pp. 141–, IEEE Computer Society, 2001.

[68] H. Füßler, M. Mauve, H. Hartenstein, C. Lochert, D. Vollmer, D. Herrmann,
and W. Franz, “Position-based routing in ad-hoc wireless networks,” in
Inter-Vehicle-Communications Based on Ad Hoc Networking Principles —The FleetNet

Project (W. Franz, H. Hartenstein, and M. Mauve, eds.), pp. 117–143, Karlsruhe,
Germany: Universitätsverlag Göttingen, Nov 2005.

[69] “Cartalk2000 website.”

[70] P. Morsink, R. Hallouzi, I. Dagli, C. Cseh, L. Schafers, and M. Nelisse, “Cartalk2000:
Development of a co-operative adas based on vehicle-to-vehicle communication,” in 10th

World Congress and Exhibition on Intelligent Transport Systems and Services, November
2003.

[71] S. Tsugawa, “An introduction to demo 2000: The cooperative driving scenario,” IEEE

Intelligent Systems, vol. 15, pp. 78–79, 2000.

[72] Y. Shiraki, T. Ohyama, S. Nakabayashi, and K. Tokuda, “Development of an inter-vehicle
communications system,” Special Edition on ITS, vol. 68, pp. 11–13, September 2001.

[73] S. Tsugawa, “Issues and recent trends in vehicle safety communication systems,” Tech.
Rep. 29(1): 7-15, LATSS Research, 2005.

[74] P. Farradyne, “Vehicle infrastructure integration (vii) architecture and
functional requirements,” Tech. Rep. 1.1, ITS Joint Program Office,
http://www.intellidriveusa.org/documents/27-VIIARC.PDF, 2005.

Bibliography 161

[75] Y. Ma, M. Chowdhury, A. Sadek, and M. Jeihani, “Real-time highway traffic condition
assessment framework using vehicle-infrastructure integration (vii) with artificial
intelligence (ai),” Trans. Intell. Transport. Sys., vol. 10, pp. 615–627, December 2009.

[76] F. M. Aziz, “Implementation and analysis of wireless local area networks for
high-mobility telematics,” Master’s thesis, Virginia Polytechnic Institute and State
University, 2003.

[77] J. Hao, K. M. Hou, J.-J. Li, J.-P. Chanet, C. D. Vaulx, H. Zhou, and G. D. Sousa,
“Capacity and packets delivery analysis of manet on road,” in ICWN, pp. 516–522, 2005.

[78] M. Kara, Wireless Sensor Networks: Study for developing a Low Cost Differential GPS

receiver. PhD thesis, Blaise Pascal University – Clermont-Ferrand II, 11 2009.

[79] GlobalSat Technology Corporation, Product User Manual, Gps Engine Board, ET-301.

[80] X. Diao, H. Zhou, K. M. Hou, and J.-J. Li, “An embedded system dedicated to
inter-vehicle communication applications,” EURASIP Journal on Embedded Systems,
2010.

[81] D. Gelernter, “Generative communication in linda,” ACM Transactions on Programming

Languages and Systems, vol. 7, no. 1, pp. 80–112, 1985.

[82] S. Ahuja, N. Carriero, and D. Gelernter, “Linda and friends,” IEEE Computer, vol. 19,
no. 8, pp. 26–34, 1986.

[83] D. Gelernter and N. Carriero, “Coordination languages and their significance,” Commun.

ACM, vol. 35, no. 2, p. 96, 1992.

[84] Sun Microsystems, JavaSpaces Specification (V 1.0), 1999.

[85] M. Fontoura, T. Lehman, D. Nelson, and T. Truong, “Tspaces services suite: Automating
the development and management of web services,” in In Proceedings of the 12th

International World Wide Web Conference, 2003.

[86] G. Wells, “Coordination languages: Back to the future with linda,” in Proceedings of

WCAT’05, pp. 87–98, 2005.

[87] A. L. Murphy, G. P. Picco, and G. catalin Roman, “Lime: A coordination model and
middleware supporting mobility of hosts and agents,” ACM Transactions on Software

Engineering and Methodology, vol. 15, p. 2006, 2006.

[88] C. Scholliers, E. G. Boix, and W. D. Meuter, “Totam: Scoped tuples for the ambient,”
ECEASST, vol. 19, 2009.

[89] W. Leler, “Linda meets unix,” Computer, vol. 23, no. 2, pp. 43–54, 1990.

[90] K. Raatikainen, “Operating system issues in wireless ad-hoc networks (keynote speech),”
in International Workshop on Wireless Ad-hoc Networks, May 2005.

162 Bibliography

[91] H. Zhou, K. M. Hou, and C. D. Vaulx, “Sdream: A super-small distributed
real-time microkernel dedicated to wireless sensors,” International Journal of Pervasive

Computing and Communications, vol. 12(4), pp. 398–410, 2007.

[92] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler, “Tinyos: An operating system for sensor networks,” in in

Ambient Intelligence, Springer Verlag, 2004.

[93] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating
system for tiny networked sensors,” in LCN ’04: Proceedings of the 29th Annual

IEEE International Conference on Local Computer Networks, (Washington, DC, USA),
pp. 455–462, IEEE Computer Society, 2004.

[94] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dynamic operating
system for sensor nodes,” in MobiSys ’05: Proceedings of the 3rd international

conference on Mobile systems, applications, and services, (New York, NY, USA),
pp. 163–176, ACM, 2005.

[95] C. L. Liu and J. W. Layland, Readings in hardware/software co-design, ch. Scheduling
algorithms for multiprogramming in a hard-real-time environment, pp. 179–194.
Norwell, MA, USA: Kluwer Academic Publishers, 2002.

[96] I. Systems, ARM IAR C,C++ compiler, Reference guide, 2006.

[97] M. Moubarak and M. K. Watfa, “Embedded operating systems in wireless sensor
networks,” in Guide to Wireless Sensor Networks (S. C. Misra, I. Woungang, and
S. Misra, eds.), Computer Communications and Networks, pp. 323–346, Springer
London, 2009.

[98] W. Maurer, The Scientist and Engineer’s Guide to TinyOS Programming. University of
California-Berkeley, http://tinyos.org, 2004.

[99] K. Hou, G. De Sousa, H. Zhou, J. Chanet, M. Kara, A. Amamra, C. De Vaulx, J. Li, and
A. Jacquot, “Livenode: Limos versatile embedded wireless sensor node,” 2007.

[100] H.-Y. Zhou, G. de Sousa, J.-P. Chanet, K.-M. Hou, J.-J. Li, C. de Vaulx, and M. Kara,
“An intelligent wireless bus-station system dedicated to disabled, wheelchair and blind
passengers,” in Wireless, Mobile and Multimedia Networks, 2006 IET International

Conference, 2006.

[101] Atmel Corporation, AT91SAM7S Series Preliminary, 2007.

[102] Digi International Inc., XBee/XBee-Pro RF Modules, 2009.

[103] N. Samama, Global Positioning: Technologies and Performance (Wiley Survival Guides

in Engineering and Science). New York, NY, USA: Wiley-Interscience, 2008.

[104] Z. Sahinoglu, S. Gezici, and I. Güvenc, Ultra-wideband Positioning Systems: Theoretical

Limits, Ranging Algorithms, and Protocols. Cambridge University Press, October 2008.

Bibliography 163

[105] I. C. Society, IEEE Std 802.15.4-2003, Part 15.4: Wireless Medium Access Control

(MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area

Networks (LR-WPANs). IEEE Computer Society, New York, USA, October 2003.

[106] J. Tourrilhes, “Robust broadcast: Improving the reliability of broadcast transmissions
on CSMA/CA,” in The Ninth IEEE International Symposium on Personal, Indoor and

Mobile Radio Communications, vol. 3, (New York, NY, USA), pp. 1111–5, IEEE, 1998.

[107] Atmel Corporation, Application Note 93 (Benchmarking with ARMulator), March 2002.

[108] Atmel Corporation, ARM7TDMI Data Sheet (ARM DDI 0029E), August 1995.

[109] M. U. Mahfuz and K. M. Ahmed, “A review of micro-nano-scale wireless sensor
networks for environmental protection: Prospects and challenges,” Science and

Technology of Advanced Materials, vol. 6, no. 3-4, pp. 302 – 306, 2005. International
Conference on Nanotechnology in Environmental Protection and Pollution.

[110] D. D. Coleman and D. A. Westcott, CWNA: Certified Wireless Network Administrator,

Study Guide. Wiley Publishing, Inc., 2006.

[111] A. Kröller, D. Pfisterer, C. Buschmann, S. P. Fekete, and S. Fischer, “Shawn:
A new approach to simulating wireless sensor networks,” in Proceedings of the

Design, Analysis, and Simulation of Distributed Systems Symposium 2005 (DASD’ 05),
pp. 117–124, Apr. 2005.

[112] S. P. Fekete, A. Kröller, S. Fischer, and D. Pfisterer, “Shawn: The fast, highly
customizable sensor network simulator,” in Proceedings of the Fourth International

Conference on Networked Sensing Systems (INSS 2007), June 2007.

[113] S. Mccanne, S. Floyd, and K. Fall, “ns2 (network simulator 2).”
http://www-nrg.ee.lbl.gov/ns/.

[114] Arm-elf-gcc Documents. http://www.gnuarm.com/.

[115] R. S. Last, R. M. Stallman, and S. Contents, “Using the gnu compiler collection,” M.I.T.

Artificial Intelligence Laboratory, 2003.

[116] W. R. Heinzelman, A. Chandrakasan, H. Balakrishnan, W. R. Heinzelman,
A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication protocol for
wireless microsensor networks,” in HICSS ’00: Proceedings of the 33rd Hawaii

International Conference on System Sciences-Volume 8, (Washington, DC, USA), IEEE
Computer Society, 2000.

[117] N. Vlajic and D. Xia, “Wireless sensor networks: To cluster or not to cluster?,” in
WOWMOM ’06: Proceedings of the 2006 International Symposium on on World of

Wireless, Mobile and Multimedia Networks, (Washington, DC, USA), pp. 258–268, IEEE
Computer Society, 2006.

164 Bibliography

[118] X. X. Diao, E. Lai, K. M. Hou, and H. Y. Zhou, “An auto-clustering algorithm for
wireless sensor network management protocol,” in Conférence Internationale sur les

NOuvelles TEchnologies de la REpartition (NOTERE’2007), Workshop on Wireless

Sensor Networks, (Marrakech-Morocco), pp. 17–22, June 2007.

[119] I. Fayberg, L. R. Gebuzda, T. Jacobson, and H.-L. Lu, “The development of the
wireless intelligent network (win) and its relation to the international intelligent network
standards,” Bell Labs Technical Journal, pp. 57–80, 1997.

Appendix A

The format of CIVIC message

166
A

ppendix
A

.
T

he
form

at
of

C
IV

IC
m

essage

HELLO_REQ HELLO_RPY
ROUTE_REQ_

SF

ROUTE_REQ_

CIVIC

ROUTE_RPY_

CIVIC

ROUTE_RPY_

BY_PATH

DATA_SEND_B

Y_PATH

DATA_ACK_B

Y_PATH

START_MARK - 1 BYTE_T * * * * * * * *

MSG_TYPE - 1 TYPE_T * * * * * * * *

MSG_STATUS - 1 STATUS_T * * * * * * * *

SND_ID - 1 ID_T * * * * * * * *

DST_ID - 1 ID_T * * * * * *

FWD_ID - 1 ID_T * *

SRC_ID - 1 ID_T * * * * * *

DST_IDS 1 15 IDS_T *

PATH_IDS 1 7 IDS_T * * *

PRE_IDS 1 7 IDS_T * * *

SND_LOC - 19 LOC_T * *

DST_LOC - 19 LOC_T * *

SRC_LOC - 19 LOC_T *(optional) *(optional) *(optional)

GPS_RMC - 11 RMC_T *

GPS_TIME - 6 TIME_T *(optional)

APP_HEAD - 3 APP_HEAD_T * *

APP_DATA 1 50 APP_DATA_T *

SRC_SN - 1 SEQ_T *

SND_SN - 1 SEQ_T * * * * * * * *

CRC - 2 BYTE_T * * * * * * * *

END_MARK - 1 BYTE_T * * * * * * * *

Network Type - - - Broadcast Multicast Broadcast Unicast Unicast Unicast Unicast Unicast

Total Size (Min) - - - 27 39 12 31 31 11 15 14

Total Size (Max) - - - 33 53 37 37 56 36 70 20

Fields

Size(Byte)

Data Types

Messages

Min Max

(1) Hello (2) Routing (3) Application Data

Appendix B

Layer-based Modules

168 Appendix B. Layer-based Modules

Module and header files Usages

include/debug_io.h The global defines for debug information
include/glb_conf.h Global configurations used by all modules in the project
include/glb_type.h Global data type definitions
include/glb_func.h The head file of global functions
include/glb_func.c Global functions

spcl/gcc/include/gcc_func.h System configurations and functions related to GCC only
spcl/gcc/include/glb_opt.h Turn on/off global options (GCC, HEROS and Debug Info.)
spcl/gcc/include/math.h Definitions for the math floating point package
spcl/gcc/L1_board/bd_dcc.c Read and write debug information by ARM DCC for

GCC+BDI
spcl/gcc/L1_board/cstartup.s Generic CStartup for GCC (IS_REMAPPED==1, remap

vectors)
spcl/gcc/L5_ctl/heros/shell.s ASM instructions of HEROS for GCC
spcl/gcc/miss/ieee754-df.S Double-precision floating point support for ARM
spcl/gcc/miss/syscalls.c System Calls for the newlib

spcl/iar/include/iar_func.h System configurations and functions related to IAR C only
spcl/iar/include/glb_opt.h Turn on/off global options (GCC, HEROS and Debug Info.)
spcl/iar/L1_board/... Hardware register definition
...at91sam7s256_inc.h
spcl/iar/L1_board/Cstartup.s79 Generic CStartup for IAR
spcl/iar/L5_ctl/heros/shell.s79 ASM instructions of HEROS for IAR

include/ext/l1_bd_led.h The external functions and variables of bd_led.c
include/ext/l1_bd_pit.h The external functions and variables of bd_pit.c
include/ext/l1_bd_us0.h The external functions and variables of bd_us0.c
include/ext/l1_bd_us1.h The external functions and variables of bd_us1.c
include/ext/l2_mid_us0.h The external head file for modules us0_to_gps.c,

gps_to_civic.c, gps_func.c, and gps_lab_test.c
include/ext/l2_mid_us1.h The external head file for modules us1_to_civic.c and

civic_to_us1.c
include/ext/l2_us0_fm.h The message format of l2_mid_us0.h and modules of

"L2_mid/us0"
include/ext/l2_us1_fm.h The message format of l2_mid_us1.h and modules of

"L2_mid/us1"
include/ext/l3_civic.h The external head file for modules in "L3/civic"
include/ext/l3_civic_fm.h The message format of l3_civic.h and modules of "L3/civic"
include/ext/l4_app.h The external head file for module app.c and app_task.c

169

Module and header files Usages

L1_board/board.h LiveNode board features definition file (only used in L1_board
layer)

L1_board/bd_led.c LED management on LiveNode
L1_board/bd_pit.c PIT initialization and interrupt management
L1_board/bd_us0.c USART0 (GPS) initialization and interrupt management
L1_board/bd_us1.c USART1 (XBEE) initialization and interrupt management
L1_board/cstartup_sam7.c Low level initializations written in C for Tools

L2_mid/us0/mid_us0.h The internal head file for modules in us0_to_gps.c,
gps_to_civic.c, gps_func.c, and gps_lab_test.c

L2_mid/us0/gps_conv.c The GPS functions relate to coordinate convention
L2_mid/us0/gps_lab_test.c This module provides preset locations and times for in-lab

tests only
L2_mid/us0/gps_to_civic.c Provides the last valid location and time to CIVIC layer
L2_mid/us0/us0_to_gps.c Translates the raw data from USART 0 by GPS format
L2_mid/us1/civic_to_us1.c This module contain function for outputting CIVIC messages

to USART 1
L2_mid/us1/func_crc.c CRC related functions
L2_mid/us1/us1_to_civic.c Translates the raw data from USART 1 to CIVIC messages

L3_civic/civic.h The internal head file for modules in "L3_civic"
L3_civic/civic_core.c The major functions of the CIVIC protocol
L3_civic/civic_core_in.c This module processes incmoing CIVIC messages
L3_civic/civic_core_out.c This module generates output messages in CIVIC format
L3_civic/civic_id.c The functions related to CIVIC ID
L3_civic/civic_func_misc.c The extended CIVIC functions
L3_civic/civic_func_exp.c The functions used only in CIVIC experiments
L3_civic/table_dst_loc.c The table is to save the locations of destination nodes
L3_civic/table_hello_rpy.c The table is to save the IDs needed by hello reply messages
L3_civic/table_neighbor.c The table is to save the IDs and locations of one-hop

neighbour nodes
L3_civic/table_routing.c The table is to save routing paths
L3_civic/table_sf.c The table is to avoid the redundant resend by simple flooding

routing requests

L4_app/app.c Transportation Layer (Routing interface)
L4_app/app_task.c Application task examples

170 Appendix B. Layer-based Modules

Module and header files Usages

L5_ctl/main.c Starting point of program

L5_ctl/l5_ctl.h The collection of lower layers interfaces opened to "L5_ctl"
L5_ctl/rt_cntr.h The external head file for modules kern_rt_cntr.c or

loop_rt_cntr.c
L5_ctl/task_set.h The external head file for module task_set.c opened to

"L5_ctl"
L5_ctl/task_set.c Define actions of tasks
L5_ctl/manage/manage.h The external head file for module manage.c opened to

"L5_ctl"
L5_ctl/manage/manage.c The management panel
L5_ctl/heros/kern_ex.h The external head file for modules in "L5_ctl/heros" opened

to "L5_ctl"
L5_ctl/heros/kern_variable.h The definitions of data structures of HEROS
L5_ctl/heros/kern_kernel.c The system functions of HEROS managing tuple in/out,

events, and threads
L5_ctl/heros/kern_rt_cntr.c The PIT timer will active real-time task of HEROS by this

module
L5_ctl/heros/kern_software.c The system initialization and configuration of HEROS
L5_ctl/non_os/loop_ex.h The external head file for modules in "L5_ctl/non_os" opened

to "L5_ctl"
L5_ctl/non_os/loop.c If IS_HEROS_ON==0, the looping tasks in this module is run
L5_ctl/non_os/loop_rt_cntr.c If IS_HEROS_ON==0, the PIT timer will active real-time task

by this module

	Résumé
	Abstract
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 System Overview
	1.2 Network Overview
	1.2.1 VANET
	1.2.2 WSN
	1.2.3 MANET

	1.3 State Contributions
	1.4 Structure of Thesis

	2 Related Works on Geographic Routing Protocols
	2.1 Overview
	2.1.1 Topological Routing
	2.1.1.1 Link-state or Distance-vector Strategy
	2.1.1.2 Proactive, Reactive, or Hybrid Scheduling
	2.1.1.3 Efficiency-based and Stability-based Purposes

	2.1.2 Hierarchical Routing
	2.1.2.1 Additional Requirements for WSNs

	2.1.3 Geographic Routing
	2.1.3.1 Localization
	2.1.3.2 Greedy Forwarding and Its Limitation
	2.1.3.3 Alternative Geographic Strategies

	2.2 Geographic Localization Services
	2.2.1 Flooding-based Localization
	2.2.2 Hierarchical Localization
	2.2.3 Home Region Localization
	2.2.4 Quorum-based Localization

	2.3 Greedy Forwarding and Recovery Mode
	2.3.1 Next-hop Candidates
	2.3.2 Beacon-based or Contention-based
	2.3.3 Perimeter Routing for Void Area
	2.3.4 Other Recovery Techniques

	2.4 Geocast Strategies
	2.4.1 Basic Methods in Flooding
	2.4.2 Restricted Directional Flooding
	2.4.3 Flooding-based Geocast for VANETs

	2.5 Geographic DTN-based Strategies
	2.5.1 Last Encounter Routing
	2.5.2 Carry-and-forward Routing

	2.6 Geographic Routing in VANET Projects

	3 Communication System: Designs and Evaluations
	3.1 Overview
	3.2 CIVIC Protocol
	3.2.1 Concepts and Features
	3.2.1.1 Infrastructure Supports
	3.2.1.2 Context Based Communications
	3.2.1.3 One-hop Link Stability
	3.2.1.4 Multi-hop DANKAB

	3.2.2 Layer-based Message Delivery
	3.2.2.1 Transport Layer: Application Messages
	3.2.2.2 Network Layer: Hello Messages
	3.2.2.3 Network Layer: Routing Messages
	3.2.2.4 Network Layer: Message Fields
	3.2.2.5 Medium Adaptation Layer: Software/Hardware Interface

	3.3 Integrating with HEROS
	3.3.1 Overview
	3.3.2 Linda Mechanisms
	3.3.3 Related Works on EOSs
	3.3.4 Linda-based Component Designs
	3.3.4.1 Etask
	3.3.4.2 Thread
	3.3.4.3 Tuple
	3.3.4.4 IN/OUT Primitives

	3.3.5 Hybrid Priority-based Scheduling
	3.3.5.1 Event-driven Scheduling
	3.3.5.2 Real-time Scheduling

	3.3.6 CIVIC with HEROS
	3.3.7 Performance Evaluation
	3.3.7.1 System Latency and Memory Consumption
	3.3.7.2 Comparison with TinyOS

	3.4 Hardware Platform: LiveNode
	3.4.1 LiveNode Components
	3.4.2 Medium Adaptation Layer: Multiple Wireless Supports
	3.4.3 Designs in Hardware Driver
	3.4.4 Low-cost GPS module and LCD-GPS solution

	3.5 Network Specification: 802.15.4
	3.6 Theoretical Evaluations
	3.6.1 Introduction
	3.6.2 Inter-module Serial Communication
	3.6.3 Software Execution
	3.6.4 Channel Access by CSMA/CA
	3.6.5 Over-the-air RF Transmission
	3.6.6 Inter-frame Space
	3.6.7 XBee-PRO Module Operations
	3.6.8 Evaluation Methods
	3.6.9 Theoretical result

	3.7 LRPC Experiments
	3.7.1 Introduction
	3.7.1.1 LRPC Test Center
	3.7.1.2 Hardware and Software
	3.7.1.3 802.15.4 Network
	3.7.1.4 Scenarios
	3.7.1.5 Evaluation Metrics

	3.7.2 Results and Analyses
	3.7.2.1 Overview
	3.7.2.2 Transmit Power
	3.7.2.3 Transmit Distance
	3.7.2.4 Fog

	3.7.3 Conclusion and Limitations

	3.8 Simulations on Shawn
	3.8.1 Introduction of Shawn
	3.8.2 Simulation Results
	3.8.2.1 Beaconless 802.15.4 Network
	3.8.2.2 CIVIC Protocol Network

	4 Applications: Inter-vehicle Communication
	4.1 Software Implementation
	4.2 Field Experiments
	4.2.1 Indoor Multi-sensor Experiments
	4.2.2 Car Park at ISIMA Campus
	4.2.2.1 First Experiment Scenario
	4.2.2.2 Second Experiment Scenario
	4.2.2.3 Third Experiment Scenario

	4.2.3 PAVIN Platform

	4.3 MobiPlus Project

	5 Applications: WSN Precision Agriculture
	5.1 An Additional Auto-clustering Algorithm for WSNs
	5.1.1 Concept and Scenario
	5.1.2 Criteria for the Selection of Master Nodes
	5.1.2.1 Clustering Model
	5.1.2.2 Criteria for the selection of master nodes

	5.1.3 MATLAB Simulations
	5.1.3.1 Centralized Approach
	5.1.3.2 Localized Approach

	5.1.4 Simulation Results

	5.2 NeT-ADDED Project

	6 Conclusions and Ongoing Works
	Bibliography
	A The format of CIVIC message
	B Layer-based Modules

