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Abstract 

Renewable energies have the greatest potential for the reduction of 
end-use energy consumption by residential and tertiary sectors. The challenge 
for integrating renewable energies in buildings consists in designing the 
multisource system (where renewable sources cohabitate with conventional 
ones), its sizing and its control. The aim is to achieve an optimal system, both 
economically and energetically. The solutions existing today for system design 
are based exclusively on human experience supported by calculation tools. The 
problem is that the utilized aiding tools are often misused and sometimes give 
wrong results. For example, the controllers used in simulations and/or system 
control usually are not optimized, and, in certain situations, building-dedicated 
simulation tools assess wrong heating loads. These have a negative impact on 
the performance evaluation of the simulated systems and thus lead to non-
optimal choice and sizing of the multisource systems. Moreover, the use of a 
non-optimal controller affects negatively not only the system design and sizing, 
but also its operation. 

This thesis proposes methods and solutions to improve the choice and 
the optimal use of renewable energies in buildings. We propose optimal model-
based control algorithms, which assist the design of multisource systems and 
their optimal operation. 

The heating load assessment, which is necessary for system sizing, is 
transformed into a control problem where the regulator calculates the optimal 
heating load of the building. The advantage of the proposed method is that the 
controller uses realistic evolutions of the indoor temperature and not only the 
set-point, as it is the case in the currently used methods. This is very important 
in intermittently heated buildings where the set-point temperature has a 
step-like waveform. The proposed regulator for this aim is Model Predictive 
Programming (MPP), which is obtained by modifying Model Predictive Control 
(MPC). MPP is able to restart the heating system in advance in order to assure 
the thermal comfort at the beginning of the occupation period in the case of 
intermittently heated buildings. Also, it makes a trade-off between energy 
consumption and maximal requested power, making MPP a very useful tool for 
heating system sizing. The required information by MPP is a low-order building 
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model and data records of the local weather. Therefore, we propose a modelling 
method in which the detailed model of the building is projected on a reduced 
order model having its structure obtained from physical knowledge.   

For the control of the multi-source system, we proposed a Building 
Energy Management System (BEMS) which is divided in two parts: the first for 
the building temperature control and the second for the source control. For 
building thermal control, we propose to utilize MPC which uses weather 
forecast and calculates the optimal command from the minimization of a cost 
function. By using the classical cost function, MPC does not minimize the energy 
consumption. Therefore, we propose a new cost function which permits to 
maintain the thermal comfort with minimal energy consumption. We formulate 
this function such that it can be optimized by using Linear Programming (LP) 
algorithm. Because LP is defined only for linear problem formulations, we give a 
solution to linearization of the building model based on the physical knowledge. 
The proposed linearization permits to use the model on the entire operating 
range, and not just around some operating point, as in classical local 
linearization. For the source control, we propose a solution which takes into 
account the command given by MPC in order to use the energy resources more 
effectively. Nevertheless, this is not an optimal controller, which lives room for 
further improvements. 

The proposed control system is evaluated and compared with two PID 
based BEMS, against comfort and energetic criteria. The evaluation is performed 
in emulation on a reference detached house. The obtained results show that the 
proposed control system always maintains the thermal comfort in the building, 
reduces the energy consumption and the wear and tear of the hydraulic and 
heat pumps from the heating system. 

Thus, our original contributions are: (1) the formulation of the load 
assessment problem as a control problem, (2) a new cost function for MPC 
which maintains the thermal comfort with minimal energy consumption, (3) the 
formulation of the optimization problem in order to be solved by linear 
programming, (4) the idea of projecting the system model on a structure 
gathered from physical knowledge, and (5) a linearization method to obtain  
models which are valid on the entire operating range. 

 

 

Keywords: Heating load assessment, building model identification, model 
linearization, optimal building energy management, Model Predictive Control, 
multi-source multi-consumer system, control performance evaluation. 
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Résumé 

Les énergies renouvelables présentent le plus grand potentiel pour la 
réduction de la consommation de l'énergie finale utilisée dans les secteurs 
résidentiel et tertiaire. Pour une intégration efficace des énergies renouvelables 
dans les bâtiments, les verrous principales à lever sont la conception des 
systèmes multi-sources (où les sources renouvelables cohabitent avec les 
sources classiques), leur dimensionnement et leur contrôle-commande. 
L'objectif est d’obtenir un système optimal du point de vue économique et 
énergétique. Les solutions existantes aujourd'hui pour la conception de ce type 
de systèmes sont basées exclusivement sur l'expérience humaine. Le problème 
est que les outils existants sont souvent mal utilisés et parfois ils offrent des 
résultats erronés. Par exemple, les contrôleurs utilisés dans les simulations 
et/ou l’automatisme des bâtiments généralement ne sont pas optimisés, et, dans 
certaines conditions, l’estimation de la charge de chauffage est incorrecte. Ceci a 
un impact négatif sur l'évaluation de la performance des systèmes simulés et 
ainsi peut conduire au choix des configurations non optimales et/ou des 
systèmes mal dimensionnés. Par ailleurs, l'utilisation d'un contrôleur non-
optimal nuit non seulement à la conception du système, mais aussi à son 
fonctionnement. 

Par conséquent, cette thèse propose des méthodes et des solutions ayant 
pour but d’aider au bon choix des systèmes multi-sources et leur utilisation 
optimale dans les bâtiments. Nous proposons des algorithmes de 
contrôle-commande optimaux, dont l'utilisation permettra une conception et un 
fonctionnement corrects des systèmes multi-sources. 

L'estimation de la charge de chauffage, qui est nécessaire pour le 
dimensionnement, est transformée en un problème de contrôle où le régulateur 
calcule la charge de chauffage optimale du bâtiment. L'avantage de la méthode 
proposée c’est que le contrôleur utilise des évolutions réalistes de la 
température intérieure du bâtiment et non uniquement sa consigne, comme 
c'est le cas dans les méthodes actuellement utilisées. Ceci est particulièrement 
important dans les bâtiments occupés par intermittence où la température de 
consigne a une a une variation temporelle de type échelon. Le régulateur 
proposé pour ce but est de type Model Predictive Programming (MPP), qui est 
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obtenu en modifiant l’algorithme de type Model Predictive Control (MPC). Dans 
le cas de bâtiments occupés par intermittence, le MPP est capable de 
redémarrer le système de chauffage à l'avance afin d'assurer le confort 
thermique au début de la période d'occupation. Aussi, il établit un compromis 
entre la consommation d'énergie et la puissance maximale demandée, ce qui 
rend le MPP très utile pour le dimensionnement des systèmes de chauffage. Les 
informations requises par le MPP sont un modèle de bâtiment d'ordre réduit et 
des données de la météo locale. Par conséquent, nous proposons une méthode 
de modélisation par projection des paramètres du bâtiment sur une structure 
fixe obtenue à partir des connaissances physiques. 

Pour le contrôle du système multi-source, nous proposons un système de 
gestion technique du bâtiment (GTB) qui est divisé en deux parties : la première 
partie est dédiée pour le contrôle de la température dans le bâtiment et la 
seconde pour le contrôle des sources. Pour la régulation thermique, nous 
proposons le MPC qui utilise les prévisions météorologiques pour calculer la 
commande optimale à l’issu de la minimisation d'une fonction de coût. En 
utilisant la fonction de coût classique, l’algorithme MPC ne minimise pas la 
consommation d'énergie. Par conséquent, nous proposons une nouvelle 
fonction de coût qui permet de maintenir le confort thermique avec une 
consommation d'énergie minimale. Cette fonction est formulée pour qu’elle 
puisse être optimisée en utilisant la Programmation Linéaire (PL). Comme la PL 
est définie uniquement pour des problèmes linéaires, nous proposons une 
linéarisation du modèle du bâtiment en utilisant les connaissances physiques. 
Cette linéarisation permet d'utiliser le modèle sur toute la plage de 
fonctionnement, et pas seulement autour d’un certain point de fonctionnement, 
comme c’est le cas avec une linéarisation locale classique. Pour le contrôle des 
sources, nous présentons une solution qui prend en compte la commande 
donnée par le MPC afin d'utiliser les ressources d'énergie plus efficacement. 
Néanmoins, ce n'est pas un contrôleur optimal, ce qui laisse de la place pour des 
améliorations ultérieures. 

Le système de contrôle proposé est évalué et comparé avec deux GTB 
basés sur des régulateurs PID, à travers des critères de confort et énergétiques. 
L'évaluation est réalisée en émulation sur une maison individuelle de référence. 
Les résultats obtenus montrent que le système de contrôle-commande proposé 
a toujours maintenu le confort thermique dans le bâtiment, a réduit la 
consommation d'énergie et l'usure des pompes hydrauliques et de la pompe à 
chaleur présentes dans le système de chauffage. 

Ainsi, nos contributions originales sont : (1) la formulation du problème 
d’estimation de la charge thermique sous la forme d’un problème de contrôle, 
(2) une nouvelle fonction de coût pour MPC qui assure le confort thermique 
avec une consommation minimale d'énergie, (3) la formulation du problème 
d’optimisation dans le cadre de la programmation linéaire, (4) l'idée de projeter 
le modèle du système sur une structure fixe provenant de la physique, et (5) une 
méthode de linéarisation qui rende un modèle valide sur toute la plage de 
fonctionnement. 
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Rezumat 

Energiile regenerabile au cel mai mare potenţial de reducere a 
consumului de energie finală utilizată de către sectoarele rezidenţial şi terţiar. 
Dificultatea principală pentru o integrare eficientă a energiilor regenerabile în 
clădiri constă în proiectarea sistemelor multisursă (unde sursele regenerabile 
coabitează cu cele convenţionale), dimensionarea şi controlul lor. Scopul este de 
a obține un sistem optim din punct de vedere economic, precum şi energetic 
eficient. Soluţiile existente astăzi pentru proiectarea acestor sisteme sunt bazate 
exclusiv pe experienţa umană. Problema este că instrumentele disponibile 
astăzi sunt deseori utilizate incorect şi uneori oferă rezultate greşite. Și anume, 
regulatoarele utilizate în simulări de obicei nu sunt optimizate, şi, în anumite 
condiții, sarcina termică a clădiri este calculată greșit. Acestea au un impact 
negativ asupra evaluării performanţelor sistemelor simulate, şi, prin urmare, 
pot să conducă la o alegere non-optimă a configurației şi/sau sisteme 
dimensionate incorect. În plus, utilizarea unui regulator non-optimal afectează 
negativ nu doar proiectarea sistemelor, dar, de asemenea și funcţionarea 
acestora. 

În consecinţă, această teză propune metode de abordare si solutii cu 
obiectivul de a ajuta la alegerea corectă şi utilizarea optimă a energiilor 
regenerabile în clădiri. Teza propune algoritmi de control optimali, a căror 
utilizare asigură proiectarea corectă a sistemelor multisursă şi funcţionarea lor 
optimă. 

Estimarea sarcinii termice, care este necesară pentru dimensionarea 
sistemelor, este transformată într-o problemă de control unde regulatorul 
calculează sarcina termică optimă a clădirii. Avantajul metodei propuse este că 
regulatorul foloseşte evoluţiile realiste a temperaturii interioare şi nu doar 
temperatura de referință, așa cum este cazul în metodele utilizate în prezent. 
Acest lucru este foarte important în clădirile ocupate în mod intermitent, unde 
temperatura de referință are formă de undă de tip treaptă. Regulatorul propus 
pentru acest scop este de Model Predictive Programming (MPP), care este 
obţinut prin modificarea Algoritmului de Control Predictiv (ACP). MPP este 
capabil să restarteze sistemul de încălzire în avans astfel încât să asigure 
confortul termic la începutul perioadei de ocupare în cazul clădirilor ocupate 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0130/these.pdf 
© [I. Hazyuk], [2011], INSA de Lyon, tous droits réservés



 

x  

intermitent. De asemenea, MPP realizează un compromis între consumul de 
energie şi puterea maximă necesară, ceea ce îl face un instrument foarte util 
pentru dimensionarea sistemelor de încălzire. Informaţiile necesare pentru MPP 
este modelul clădire de ordin redus şi date despre condițiile meteorologice 
locale. Prin urmare, teza propune o metodă de modelare care constă în proiecţia 
parametrilor clădirii pe o structură fixă obținută utilizînd cunoştinţe fizice. 

Pentru sistemul de control a surselor, am propus un Sistem de 
Management Energetic al Clădirii (SMEC), care este constituit din două părţi: 
prima parte se ocupă de controlul temperaturii în clădire iar a doua – de 
controlul surselor. Pentru controlul termic al clădirii am propus utilizarea ACP. 
ACP foloseşte prognoza meteo şi calculează comanda optimală prin minimizarea 
unei funcţii de cost. Utilizând funcţia clasică de cost, ACP nu minimizează 
consumul de energie, deoarece această funcţie nu este corect formulată pentru 
controlul termic în clădiri. Prin urmare, în teză se propune o nouă funcţie de 
cost, care permite menţinerea confortul termic cu un consum minim de energie. 
Mai mult de atât, funcția propusă este formulată în așa fel încât acesta să poată fi 
optimizată utilizând Programarea Liniară (PL). Deoarece PL este definită doar 
pentru probleme liniare, în teză se propune o soluţie pentru liniarizarea 
modelului clădirii, utilizând cunoștințele fizice. Liniarizarea propusă permite 
utilizarea modelului pe întregul domeniu de funcţionare, şi nu doar în jurul unui 
anumit punct de funcţionare, așa cum este cazul în liniarizarea locală clasică. 
Pentru controlul surselor am propus o soluţie care să ţină cont de comanda 
calculată de ACP, cu scopul de a utiliza mai eficient resursele de energie. Cu 
toate acestea, regulatorul propus nu este unul optimal, ceea ce lasă loc pentru 
îmbunătăţiri. 

Sistemul de control propus este evaluat şi comparat cu alte două SMEC 
bazate pe regulatoare PID, prin intermediul unor criterii energetice si de 
confort. Evaluarea sistemului de control este realizată pe o locuință de referinţă 
emulată, cunoscută în Franţa sub denumirea de casă Mozart. Rezultatele 
obţinute arată că sistemul de control propus menţine întotdeauna confortul 
termic în clădire, reduce consumul de energie şi reduce în mod drastic uzura 
pompelor hidraulice şi de căldură prezente în sistemul de încălzire.  

Astfel, contribuţiile originale din această teză sunt: (1) ideea de a folosi 
controlul pentru evaluarea sarcinii termice, (2) o nouă funcție de cost pentru 
ACP care menţine confortul termic cu un consum minim de energie, (3) 
formularea problemei de optimizare în cadrul programării liniare, (4) ideea de 
proiectare a modelul sistemului pe o structură fixă obținută utilizând cunoştinţe 
fizice, şi (5) o metodă de liniarizare pentru a obţine modele valide pe întreg 
domeniul de funcţionare. 

 

 
Cuvinte cheie: estimarea sarcinii de încălzire, identificarea modelului clădirii, 
liniarizarea modelelor, managementul energetic al clădirii optimal, control 
predictiv, sistem multi-sursă multi-consumator, evaluarea performanţelor de 
control. 
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1 

Synthèse en français 

Chapitre 1. Introduction 
L’utilisation des énergies renouvelables est indispensable à la réduction 

de la consommation de l'énergie finale utilisée dans les secteurs résidentiel et 
tertiaire. Pour leur intégration efficace dans les bâtiments, les principaux 
verrous à lever sont la conception des systèmes multi-sources (où les sources 
renouvelables cohabitent avec les sources classiques), leur dimensionnement et 
leur contrôle – commande. L'objectif est d’obtenir un système optimal du point 
de vue économique et énergétique. Les solutions existantes aujourd'hui pour la 
conception de ce type de systèmes sont basées exclusivement sur l'expérience 
humaine. Le concepteur propose des configurations qui sont appropriés selon 
son point de vue, il évalue leurs performances à l’aide d’outils de simulation et 
finalement compare les performances obtenues afin de choisir la configuration 
optimale. Or, les outils de simulation existants sont souvent mal utilisés et ils 
offrent parfois des résultats erronés. Les contrôleurs utilisés dans les 
simulations ne sont généralement pas optimisés, et, dans certaines conditions, 
l’estimation de la charge de chauffage est incorrecte. Ceci a un impact négatif sur 
l'évaluation de la performance des systèmes simulés et ainsi peut conduire au 
choix de configurations non optimales et/ou de systèmes mal dimensionnés. Par 
ailleurs, l'utilisation d'un contrôleur non-optimal nuit non seulement à la 
conception du système, mais aussi à son fonctionnement. Par conséquent, cette 
thèse propose des méthodes et des solutions ayant pour but d’aider au bon 
choix des systèmes multi-sources et leur utilisation optimale dans les bâtiments. 
Nous proposons des algorithmes de contrôle – commande optimaux, dont 
l'utilisation permettra une conception correcte et un fonctionnement optimal 
des systèmes multi-sources. Etant donné que le contrôle optimal est basé sur un 
modèle du bâtiment, nous allons, dans un premier temps, caractériser ce 
modèle. 

Chapitre 2. Modélisation dynamique du bâtiment 
Un modèle robuste peut être obtenu par projection des paramètres 

du système sur une structure fixe issue de la physique du phénomène.  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0130/these.pdf 
© [I. Hazyuk], [2011], INSA de Lyon, tous droits réservés



Synthèse en français 

2 PhD thesis – Ion HAZYUK 

La difficulté pour modéliser le bâtiment est due au grand nombre d’états, 
qui peut très facilement atteindre plusieurs centaines. Trois approches se 
distinguent pour l’obtention d’un modèle d’ordre réduit: 

• identification expérimentale d’un modèle de type boîte noire à partir 
des signaux d’entrée et de sortie ; 

• obtention d’un modèle d’ordre réduit à partir d’un modèle complet 
du bâtiment en utilisant les techniques de réduction de modèle ; 

• obtention d’un modèle d’ordre réduit à partir d’une représentation 
du bâtiment par des paramètres concentrés. 

La première approche offre un modèle dans lequel les paramètres 
identifiés n’ont pas de sens physique et parfois même sont en contradiction avec 
la réalité. Si les entrées et les états du modèle restent dans le domaine de 
validité, ceci ne gêne pas le contrôle ; par contre, dès que les entrées ou les états 
ne correspondent pas au domaine de validité, la sortie des systèmes non-
linéaires peut évoluer d’une manière imprévisible, même si les non-linéarités 
sont petites. L’utilisation des techniques de réduction de modèle demande un 
modèle complet du système. Dans ce cas, le modèle réduit provient d’un modèle 
physique mais les paramètres du modèle réduit n’ont pas de signification 
physique. Comme dans le cas précédent, cette technique est adéquate 
notamment aux modèles linéaires et des précautions importantes doivent être 
prises dans le cas non-linéaire. La méthode de modélisation avec des 
paramètres concentrés estime la forme du modèle mais pas ses paramètres. On 
peut alors coupler cette méthode avec l’identification expérimentale : on estime 
la forme du modèle à partir d’une représentation avec des paramètres 
concentrés et on calcule les valeurs des paramètres du modèle à l’aide de 
l’identification expérimentale. C’est cette approche que nous avons utilisé dans 
cette thèse. 

Nous avons représenté le bâtiment par un circuit thermique qui 
représente les phénomènes physiques. En résolvant ce circuit, nous avons 
obtenu la structure du modèle sur laquelle nous projetons les paramètres du 
bâtiment, à l’aide de l’identification expérimentale. L’avantage de cette 
technique est que lorsque la structure du modèle a un sens physique, le modèle 
identifié reste valide pour des entrées différentes de celles qui ont été utilisé au 
cours de l’identification des paramètres. Ainsi l’approche proposée offre un 
modèle du bâtiment plus robuste. 

Un modèle de deuxième ordre est en mesure de reproduire fidèlement 
le comportement thermique du bâtiment, pour le but du contrôle.  

Initialement, quatre entrées ont été considérées : la température 
extérieure et celle du sol, le rayonnement solaire et les gaines internes. Ces 
entrées peuvent agir sur la sortie : température moyenne du bâtiment. 
Toutefois, après une analyse du modèle obtenu, nous avons renoncé à 
considérer la température du sol car, par rapport aux autres entrées, elle avait 
une influence négligeable sur la dynamique de la température intérieure. La 
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représentation retenue est celle de la Figure 1, pour laquelle nous avons 
obtenue un modèle de deuxième ordre dans l’espace d’états : 

wDuDxCy
wBuBxAx

21

21

++=
++=

 (1) 

où : 

T
zw ][ θθ=x – le vecteur des états ( wθ  est la température de l’enveloppe et zθ  

est la température de l’air intérieur du bâtiment) ; 

zθ=y – la sortie du système (la température de l’air intérieur) ; 
T

so Φ ][θ=w – les entrées mesurables du système ( oθ  est la température de 
l’air extérieur, sΦ  est le rayonnement solaire) ; 

gΦ=u – la commande du système (c’est le flux de chaleur interne total, qui 
inclut le flux de chauffage mais également les gains internes dus aux occupants, 
le rayonnement solaire par les fenêtres, etc.) ; 
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Figure 1. Représentation du bâtiment par un circuit thermique avec des paramètres concentrés 
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La structure du modèle obtenu convient à une large gamme de bâtiments 
réels. Les modèles de deux bâtiments différents se distinguent par les valeurs de 
leurs paramètres. Pour obtenir les valeurs des paramètres, nous avons modélisé 
sous Simbad (sous l’environnement Matlab/Simulink) une maison d’environ 
100 m² et nous avons utilisé la méthode d’identification des moindres carrés. 
Nous avons simulé le bâtiment sur une période de six mois, en appliquant à 
l’entré un signal binaire pseudo-aléatoire pour le flux de chaleur est des donnés 
statistiques pour la météo. Les donnés d’entrées/sortie ont été fragmenté en 
deux, afin d’avoir des échantillons différents pour l’identification des 
paramètres et pour leur validation.  

Dans le modèle du bâtiment, nous avons utilisé comme entrée le flux de 
chaleur intérieur. Toutefois, le système de chauffage considéré est basé sur des 
radiateurs à eau. Dans ce cas, la commande du régulateur se fait sur la 
température ou le débit d’eau chaude et non pas sur le flux de chaleur. Nous 
avons exprimé la relation non-linéaire entre le flux et la température de l’eau 
chaude à l’entrée du radiateur. 

Chapitre 3. Estimation de la charge thermique des 
bâtiments occupés par intermittence 

Les méthodes actuelles utilisées pour l’estimation de la charge de 
chauffage se basent sur une hypothèse qui contredit la physique dans le cas 
des bâtiments occupés par intermittence.  

Actuellement, les méthodes les plus précises estiment la charge de 
chauffage à l'aide de simulations dynamiques. Pour cela, elles utilisent un 
modèle dynamique qui décrit la variation de la température dans le bâtiment 
sous l'effet des flux de chaleur qui le traversent. Autrement dit, les flux de 
chaleur sont les entrées du modèle et la température est sa sortie. Ainsi, la 
charge de chauffage est calculée en inversant ce modèle et en imposant une 
température à l’air intérieur. De cette manière, on obtient la chaleur nécessaire 
à injecter dans le bâtiment pour que la température de l'air corresponde à celle 
imposée. L’hypothèse admise est que la température imposée pour le calcul est 
égale à la température de consigne du bâtiment. Cette hypothèse ne pose pas de 
problèmes quand la température de consigne est constante dans le temps. 
Cependant, elle n’est pas valable dans le cas des bâtiments occupés par 
intermittence, où la température de consigne a une évolution temporelle de 
type échelon. En effet, ces méthodes d’estimation calculent le flux de chaleur 
nécessaire à faire basculer la température du bâtiment d’un niveau à l’autre sur 
un pas de temps de la simulation. Or, lorsque la période d’échantillonnage est 
plus courte (15 min, 1 min, 30 s…), il est évident que la température de l’air 
dans le bâtiment n’atteindra pas sa valeur finale en un seul pas de temps. De 
plus, l’estimation de la charge de pointe varie en fonction de la période 
d’échantillonnage de la simulation. Par exemple, nous avons obtenue des 
variations de 22 % sur la charge de pointe lorsque la période d’échantillonnage 
a changé d’une heure à quinze minutes. 
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L’estimation de la charge de chauffage est un problème inverse qui 
peut être vue comme un problème de contrôle – commande. 

Le fait d’avoir une température de consigne variable nécessite un 
contrôleur pour piloter le système de chauffage. A chaque pas de temps, le 
régulateur calcule le flux thermique nécessaire pour assurer les performances 
thermiques requises dans le bâtiment. Dans ce cas, le flux de chaleur calculé par 
la loi de commande représente la charge réelle du bâtiment. Par conséquence, 
nous proposons de transformer le problème d'estimation de la charge dans un 
problème de contrôle. On considère le bâtiment comme un processus thermique 
perturbé par les conditions météorologiques. Le régulateur calcule la 
commande, c’est-à-dire le flux de chaleur nécessaire, en minimisant la différence 
entre la consigne et la température intérieure.  

Les meilleures performances de contrôle dans le bâtiment sont 
obtenues en utilisant une commande prédictive.  

Comme chaque régulateur calcule des commandes différentes, l’intérêt 
est de choisir la stratégie de contrôle la plus adapté au type de performances 
requises. Dans les bâtiments occupés par intermittence les performances visées 
sont : 

• la régulation : on cherche à maintenir constante la température 
intérieure (ou de limiter sa variation) malgré les variations de la 
météo et des charges internes ; 

• l’asservissement : on essaye à suivre les variations de sa consigne. Il 
est important de relancer le chauffage à l'avance afin d'assurer le 
confort thermique au début de la période d'occupation. 

C’est dans ce but que nous avons proposé d’utiliser un schéma de 
contrôle composé d’un régulateur prédictif (Model Predictive Controller, MPC) 
et un régulateur feedforward (voir Figure 2). Le MPC est en mesure de prédire 
la réaction du procédé aux commandes données. En ayant connaissance de la 
consigne future, il peut agir de manière adéquate afin d'atteindre les meilleures 
performances. Ceci permet de calculer le temps de relance optimal du chauffage, 
toute en mettant en valeur les informations détenue au préalable sur le profile 
d'occupation du bâtiment. D’autre part, la technique feedforward est 
habituellement utilisée pour la rejection des perturbations présentes dans le 
système. Pour notre cas, elle permet de neutraliser l’effet de la météo sur la 
température intérieure. Pour calculer la commande, MPC et feedforward ont 
besoin d’un modèle d’ordre réduit du bâtiment. 
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Figure 2. Structure de contrôle pour l'estimation de la charge de chauffage 

Le principe de fonctionnement du MPC est le suivant. A chaque période 
d’échantillonnage, il calcule une séquence de commande qui optimise un critère 
de performances pour un horizon de temps futur et applique au procédé la 
première valeur de cette séquence. Les erreurs de modélisation et les 
perturbations non comprises dans le modèle font que la sortie réelle du procédé 
n’évolue pas exactement comme il a été prédit par MPC. Pour cela, à l’instant de 
temps suivant, les états du système sont mis à jour et la procédure 
d’optimisation est répétée. 

Lors de la phase de conception, le même modèle de bâtiment peut être 
utilisé pour la simulation et pour le contrôle. Dans ce cas, la température prédite 
par MPC va être la même que celle du modèle de simulation. Ceci peut nous 
éviter de mettre à jour l’état du bâtiment pendant tout l’horizon de prédiction. 
Pour cela, nous avons modifié le principe de fonctionnement du MPC : on 
n’effectue plus l’optimisation à chaque pas de temps mais une seule fois pour 
tout horizon de prédiction. Cette modification peut être remarquée par 
l’absence de la rétroaction dans le schéma de contrôle proposé (Figure 2). 

Une autre différence entre le contrôle – commande et l’estimation des 
charges consiste dans les contraintes sur la commande. Dans la phase de 
conception, la taille du système de chauffage n’est pas encore définie. Pour cela, 
il n’y aura pas de contrainte sur la valeur maximale de la commande pendant 
l’optimisation. La seule contrainte est que la commande doit toujours être 
positive.  

La commande calculée par MPC est obtenue à l’issu de l’optimisation 
d’une fonctionne de coût. La fonction de coût classique a la forme suivante : 
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où les variables spy  et ŷ  sont la consigne et la prédiction de la sortie, u∆  est 
l’incrément de la commande entre deux pas de temps consécutifs, et les 
paramètres 1N  et yN  sont l’horizon minimal et maximal de prédiction, uN  et 
l’horizon de contrôle, δ  et λ  sont de fonctions de pondération pour l’erreur et 
la commande.  
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En utilisant la fonction de coût classique, MPC n’est pas capable d’assurer 
le confort thermique au début de la période d’occupation. Par conséquent, nous 
avons proposé une forme spécifique pour les fonctions de pondération qui 
permet d’assurer cette performance : une valeur constante et unitaire pour la 
fonction de pondération λ  et la forme de la Figure 3 pour la fonction de 
pondération δ . Cette forme a un paramètre de réglage : le temps de relaxation. 
En variant la valeur de ce paramètre on peut établir le temps de relance du 
chauffage et MPC calcule la charge de chauffage pour cette situation. Nous avons 
trouvé qu’un temps de relaxation plus court entraîne un pic de charge plus 
grand mais aussi une consommation d’énergie plus réduite. Ceci offre un cadre 
pour l’optimisation du coût totale (coût d’investissement plus celui de 
fonctionnement) d’un système de chauffage pour un temps de fonctionnement 
prédéfini. 

 

 
Figure 3. a) Consigne de la température b) les éléments de la fonction de pondération 

Chapitre 4. Contrôle-commande de la température 
Aujourd'hui, afin de maintenir une température de consigne, nous 

utilisons des relais ou des robinets thermostatiques sur les radiateurs, qui font 
varier le débit d'eau à l’entrée du radiateur. Ces contrôleurs ne minimisent pas 
la consommation d'énergie, parce qu'ils ne sont pas vraiment conçus pour cela. 
Par conséquent, aujourd'hui les bâtiments gaspillent de grandes quantités 
d'énergie due à un mauvais contrôle. C'est pourquoi nous nous sommes orientés 
vers une stratégie de contrôle plus avancée : le contrôle prédictif (Model 
Predictive Control, MPC). 

L’utilisation de la fonction de coût classique présent trois inconvénients 
quant elle est utilisée pour le contrôle thermique dans les bâtiments.  

1. En utilisant cette fonction, le contrôleur tente de faire un compromis 
entre le confort et la consommation d'énergie. Ainsi, si par exemple, 
l’économie d'énergie est favorisée, nous pouvons avoir des périodes 
pour lesquelles le confort n'est pas assuré. Or dans le bâtiment, les 
occupants gaspillent plus d'énergie si le système de contrôle n’assure 
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pas le confort thermique ; quand il est trop chaud, ils ouvrent les 
fenêtres au lieu d'abaisser la température de consigne ou ils utilisent 
des sources d'appoint non contrôlées quand il est systématiquement 
froid. 

2. La première partie de la fonction de coût (2) pénalise l'erreur de 
sortie du système, ce qui force la sortie à suivre, aussi bien que 
possible, sa consigne. Même si c'est une performance exigée par la 
plupart des systèmes de contrôle, ce n'est pas le cas dans la 
régulation thermique des bâtiments. La Réglementation Européenne 
(EN ISO 7730) et la Norme ASHRAE 55 définissent une ambiance 
confortable comme une zone de confort (qui corresponde à 80 % de 
l'acceptabilité des occupants, soit 20 % PPD1, ou, (-0,5 +0,5) gamme 
de PMV2) au lieu d'un environnement thermique particulier. Ainsi, en 
forçant la température intérieure à suivre une consigne particulière 
au lieu de la laisser dans une plage de température acceptable, on 
peut entraîner une consommation inutile d'énergie. 

3. La deuxième partie de la fonction de coût (2) pénalise les incréments 
de la commande entre deux pas de temps consécutifs. En minimisant 
ce critère, on peut obtenir des signaux de contrôle plus lisses. 
Toutefois, cette formulation ne fait pas apparaitre l'énergie 
thermique : en minimisant ce critère, nous ne minimisons pas la 
consommation d'énergie. 

Par conséquent, nous proposons une nouvelle fonction de coût pour 
MPC, dont la formulation est la suivante : 
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où ŷ  est la sortie prédite, u  est la commande, maxu  est la commande maximale, 

minθ la température de confort minimal, yN  et uN  les horizons de prédiction et 
de contrôle. 

Dans cette fonction, c’est l’intégrale de la commande absolue (commande 
qui représente le flux d’énergie) qui est minimisée. Cette intégrale représente 
correctement l’énergie thermique. Afin d'assurer que la température intérieure 
se trouvera dans la gamme de température de confort prédéfinie, la nouvelle 
fonction de coût est soumise à des contraintes sur la sortie du système. Ces 
contraintes correspondent aux limites minimales et maximales de la gamme de 

                                                        

1 Predicted Percentage Dissatisfied 
2 Predicted Mean Vote 
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température de confort. Comme le système de chauffage introduit de l'énergie 
dans l'espace chauffé, une stratégie de consommation minimale d’énergie 
résulte toujours dans le maintien de la température intérieure à la limite 
inférieure du confort. Cela nous permet de n'imposer que la contrainte 
inférieure de la température, car la contrainte supérieure est naturellement 
obtenue par le fait que la consommation d'énergie est minimisée. Le fait que 
l’inconfort est implémenté dans la nouvelle fonction de coût comme une 
contrainte et non pas comme un critère d'optimisation résout aussi le problème 
« du compromis ». Comme la nouvelle fonction de coût ne contient pas deux 
critères contradictoires (comme c’est le cas du critère (2)), il n'y a pas de 
compromis entre eux. Ainsi, le confort minimal est imposé et non pas négocié. 
Afin d’assurer que la valeur de la commande calculée par MPC soit atteignable 
par le système de chauffage, nous ajoutons aussi des contraintes pour la 
commande. Elle est bornée entre zéro et le flux maximal qui peut être débité par 
le système de chauffage.  

Etant donné que le problème d’optimisation dans l’équation (3) est 
linéaire, nous avons proposé de le résoudre en utilisant la Programmation 
Linéaire (PL). La formulation du problème d’optimisation (3) devient la 
suivante : 
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où c  est un vecteur unitaire et I  une matrice unitaire, les matrices : 
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et les vecteurs : 
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Même si dans le modèle du bâtiment nous avons utilisé le flux de chaleur 
pour la commande, en réalité le contrôleur doit manipuler soit le débit soit la 
température de l’eau. Pour éviter les problèmes d’instabilités hydrauliques, 
nous avons varié la température et non pas le débit. Le problème est que le 
modèle décrivant la relation entre le flux de chaleur et la température de l’eau à 
l’entrée des radiateurs est non linéaire. Pour cela nous avons proposé une 
technique de linéarisation, qui rend le modèle valide sur tout la plage de 
température et non pas seulement autour d’un point de fonctionnement, comme 
c’est le cas dans la linéarisation locale classique. 

La linéarisation proposée consiste à utiliser une fonction, qui est 
l’inverse de la non-linéarité. 

Pour utiliser cette technique, nous devrons séparer le modèle en une 
partie statique non linéaire, )(uf , et une partie dynamique linéaire, )(sH . Pour 
la conception du contrôleur on utilise seulement la partie linéaire du modèle. 
Comme dans la réalité il y a une non-linéarité qui n’est pas prise en compte ici, 
le signal de commande sera déformé et cela risque de compromettre les 
performances imposées lors de la conception du contrôleur. Par conséquent, 
afin de contrecarrer cette déformation, le signal de commande, u , est passé à 
travers la fonction inverse de la non-linéarité du système, )(1 xf − . Ainsi, la 
commande appliquée au système réel, .nonlinu , est déformée de telle sorte que 
quand elle passe à travers la non-linéarité du système, )(uf , elle retrouve la 
forme initiale calculée par le régulateur (Figure 4). De cette façon, la fonction 
inverse de la caractéristique non linéaire, introduite après le contrôleur, masque 
l'effet de la non-linéarité du système. 

 

 
Figure 4. Compensation de la non-linéarité statique dans une boucle de contrôle 

Chapitre 5. Evaluation des performances de contrôle 
Habituellement, lorsque les contrôleurs de température sont testés, il est 

considéré que l'énergie nécessaire est toujours disponible. Ainsi, le résultat 
obtenu est une performance idéale pour le contrôleur testé. Cependant, en 
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réalité, le contrôleur agit comme une vanne: il fait varier le flux d'énergie entre 
la valeur minimale technologiquement possible et le maximum d'énergie 
disponible. Si la commande calculée est en dehors de cette plage, le système 
entre en saturation et la performance obtenue est dégradée. Par conséquent, 
afin d'obtenir des performances réalistes lors de l'essai, nous avons intégré 
l’algorithme de contrôle prédictif (MPC) proposé dans le chapitre précédent 
dans un système de gestion technique du bâtiment (GTB) qui prend en charge la 
gestion du système multi-sources. Les tests ont été faits en émulation et en 
temps réel sur un banc d'essai dédié et les performances mesurées ont été le 
confort thermique, la consommation d'énergie et l'usure du système. Les indices 
de performance obtenus pour la GTB proposée ont été comparés avec les 
mêmes indices obtenus pour deux autres GTB classiques basées sur des 
régulateurs PID. Les systèmes de GTB ont été évalués par émulation, sur le 
stand expérimental du CSTB dédié aux essaies des régulateurs, pendant deux 
périodes de cinq jours, une en hiver et une en mi saison, et pour deux zones 
géographiques différentes, Paris et Marseille.  

La comparaison des indices de performance ont montrés que la GTB 
proposée a réduit l'inconfort jusqu'à 97%, a réduit la consommation d'énergie 
jusqu'à 18%, et a réduit le nombre de cycles de redémarrage de la pompe à 
chaleur jusqu'à 78% et des pompes hydrauliques auxiliaires jusqu'à 89%, par 
rapport aux GTB classiques. 

Conclusions et perspectives 
Un des problèmes principaux pour une conception optimale et gestion 

efficace des systèmes multi-sources (renouvelables et classiques) consiste dans 
l’utilisation des régulateurs non optimaux. Dans cette thèse nous proposons des 
régulateurs optimaux de type commande prédictive, dédiés à deux tâches 
différentes, qui sont l’estimation de la charge thermique et le control thermique 
des bâtiments. 

Comme les régulateurs proposés sont basés sur le modèle du processus, 
nous avons d’abord obtenu un modèle du bâtiment d’ordre réduit en deux 
étapes. Dans une première étape nous avons modélisé le bâtiment par un circuit 
linéaire avec des paramètres concentrés, dont la résolution nous a donnée la 
structure du modèle dans l’espace d’états. Dans la deuxième étape, nous avons 
identifié les paramètres du modèle en utilisant la méthode des moindres carrés. 

Le problème des méthodes d’estimation de la charge de chauffage 
consiste dans une hypothèse qui contredit la physique dans le cas des bâtiments 
occupés par intermittence, où la consigne est variable dans le temps. Pour cela 
nous avons proposé de transformer le problème d’estimation des charges dans 
un problème de contrôle où le régulateur calcule la charge thermique optimale 
du bâtiment. 

Pour la régulation thermique, nous avons utilisé le contrôle prédictif, 
pour lequel nous avons proposé une nouvelle fonction de coût qui permet 
d’assurer le confort thermique avec une consommation minimale d’énergie. La 
nouvelle fonction de coût est formulée de telle manière qu’elle puisse être 
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optimisée en utilisant la Programmation Linéaire (PL). Comme la PL n’est 
dédiée qu’aux problèmes linéaires, nous proposons une linéarisation du modèle 
du bâtiment en utilisant les connaissances physiques.  

Le système de contrôle proposé a été évalué et comparé avec deux GTB 
basées sur des régulateurs PID, à travers des critères de confort et énergétiques. 
L'évaluation est réalisée en émulation sur une maison individuelle de référence. 
Les résultats obtenus montrent que le système de contrôle – commande 
proposé a toujours maintenu le confort thermique dans le bâtiment, a réduit la 
consommation d'énergie et a réduit considérablement l'usure des pompes 
hydrauliques et de la pompe à chaleur présentes dans le système de chauffage. 

Ainsi, nos contributions originales sont : (1) la formulation du problème 
d’estimation de la charge thermique sous la forme d’un problème de contrôle, 
(2) une nouvelle fonction de coût pour MPC qui assure le confort thermique 
avec une consommation minimale d'énergie, (3) la formulation du problème 
d’optimisation dans le cadre de la programmation linéaire, (4) l'idée de projeter 
le modèle du système sur une structure fixe provenant de la physique, et (5) une 
méthode de linéarisation qui rende un modèle valide sur toute la plage de 
fonctionnement. 
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Chapter 1 

Introduction 

1.1 Global climate situation 

Today, our society is facing major climate changes. According to the 
Intergovernmental Panel on Climate Change (IPCC) report in 2007 (Core 
Writing Team, Pachauri & Reisinger, 2007), the alarming observations of 
climate change are (Figure 1-1): 

• the increase of the global average temperature at the earth's surface 
by 0.74 °C over the past 100 years and its continuous growth since 
the IPCC’s first report in 1990; 

• the rise of the sea level by 3.1 mm per year since 1993; 

• the decrease of the arctic sea ice average surface by 2.7 % per decade 
since 1978. 

The report highlights that the main cause of these changes is the increase 
by 70 % since 1970 of greenhouse gas (GHG) emissions due to human activities. 
In the absence of additional climate policies, an estimation of the GHG emissions 
evolution for the next two decades foresees an increase between 25 and 90 %. 
The effect of such a scenario could be the increase of the average terrestrial 
temperature by 0.2 °C per decade. Considering GHG emissions at the current 
rate, the average global temperature is projected to increase anywhere between 
1.1 and 6.4 °C by the end of the 21st century and the ocean level between 18 and 
59 cm. The consequences of these changes could lead to massive floods, 
droughts, heavy precipitation events, ocean acidification, increased frequency of 
heat waves and wildfires, and the list continues. A temperature increase of 2 °C 
above the pre-industrial times (1850-1899) is seen as the threshold beyond 
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which there is a much higher risk for catastrophic changes in the global 
environment. In order to have a 50 % chance of keeping the temperature within 
the 2 °C limit, we need global GHG emissions to be cut of at least 50 % below the 
1990 levels by 2050, and to continue their decline thereafter. 

 

 
Figure 1-1. Observed changes in (a) global average surface temperature; (b) global average sea 

level; and (c) Northern Hemisphere snow cover for March-April (source (Core Writing Team, et al., 
2007)) 

This situation has been intensively debated at international level. One of 
the best-known outcomes is the Kyoto Protocol (UNFCCC, 1997), whose target 
is GHG emissions average reduction of 5.2 % below 1990 levels during 
2008-2012. United Nation Framework Convention on Climate Change (UNFCCC) 
began preparing the negotiations to renewal this target for the post-2012 
agreement. The Copenhagen Accord (UNFCCC, 2009) is a step toward such an 
agreement. This time, the developed countries pledged GHG emissions 
reductions of 15-30 % below 1990 levels by 2020. Nevertheless, in order to 
keep global warming below 2 °C above the pre-industrial temperature, the 
recommendations for developed countries are emissions cuts of 25-40 % below 
1990 levels by 2020 and of 80-95 % by 2050. 
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Space heating; 
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Hot water 
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17,50%

 
Figure 1-2. The distribution of the total energy consumption in residential buildings (source 

(ADEME, 2011)) 

Most GHG emissions come from fossil fuels burning, mainly for energy 
generation. Therefore, the emission mitigation can be achieved on the one hand 
by replacing the fossil fuels based energies by non-polluting renewable 
energies, and on the other hand by reducing the energy consumption. In this 
context, several legislative instruments have been elaborated. The Directive 
2006/32/EC (EU, 2006) on energy end-use efficiency and energy services 
requires Member States of the European Community to reduce final energy 
consumption by at least 9 % over a period of nine years (2008-2016) compared 
to the average consumption of the past five years. In December 2008, the 
European Council and European Parliament approved the "energy-climate" 
package (EU, 2007) also known as the "20-20-20 plan". The targets to be met by 
2020 are a reduction, at least, by 20 % of the GHG emissions below the 1990 
level, primary energy use reduction of 20 % to be achieved by improving energy 
efficiency, and 20 % of energy consumption to come from renewable resource. 
The European Union is prepared to move to a target of 30 % by 2020 for GHG 
emissions reduction, if other developed countries commit to comparable cuts. 

1.2 Impact of residential and tertiary sectors 

Buildings are responsible for a large share of the global energy 
consumption and thus are important contributors to GHG emissions. According 
to the International Energy Agency (IEA), more than a third of the total final 
energy use is consumed by residential and tertiary sectors. In this context, the 
European Directive 2010/31/EU (EU, 2010) requires Member States to ensure 
that by 2020 all new buildings are nearly zero-energy buildings. That is to say, 
almost all the necessary energy should be covered from renewable sources.  

The distribution of the energy consumption in residential buildings 
shows that the most energy-consuming sector is space heating (Figure 1-2). 
Together with hot water preparation, it accounts for more than two thirds of the 
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total energy consumed in buildings. Nevertheless, space heating and hot water 
preparation represents the largest potential for energy savings. As far as 63 % 
of energy savings are achievable by using nothing but energy-efficient and 
low/zero-carbon heating and cooling (IEA, 2011). This implies partial 
replacement of the classical energy resources with renewable ones but in the 
same time the reduction of the building energy consumption. 

1.3 Issues for an efficient consumption reduction in 
buildings 

As building heating and domestic hot water preparation was identified as 
having the greatest potential for energy savings, here we are analyzing only 
these two tasks. 

1.3.1 Renewable energy integration in buildings 

Although there have been made significant advancements in renewable 
energies, their integration in buildings is still a challenge for scientific 
community and consultants. An effective integration of renewables in buildings 
passes through three stages: design, sizing and operation (control). Very often, 
system sizing is considered as a part of the design and therefore they are 
treated together. 

By their nature, renewable energies are characterized by intermittent 
availability. For this reason, a renewable energy source cannot be utilized as the 
single energy supplier for a building. On the same site, we can find one or a mix 
of renewable energy sources complemented by one or several classical sources. 
Very often, these systems are also equipped with one or several storage units. 
This leads to so-called multi-source systems (or multi-energy buildings), where 
traditional energy sources are mixed with renewable ones. An example of such a 
system is presented in Figure 1-3, where a classical electric water heater and a 
solar panel heat the water from the storage tank in order to be used for building 
heating and domestic hot water. Many possible multi-source configurations are 
possible, each one having advantages over the other one. Thus, the first step is 
the choice of an adequate multi-sources system configuration. 

Represented in a block diagram, the building and the multi-source 
system are illustrated in Figure 1-4. Here f  and g  are mathematical models of 
the multi-source system and the building respectively; a  and b  are sets of 
model parameters; x  and y  are energy flows ( x  is the available energy and y  
is the energy consumed by the building) and z  is the indoor environment of the 
building. 
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Figure 1-3. Example of a multi-source system 

Mathematically, the multi-source system can be characterized by: 

)(2 axfy |=  (1.1) 

The design of the system means that we must define the relation which 
connects the outputs with the inputs; that is to say we must establish the 
structure of the function f  and to assign values to its parameters. 

 

 
Figure 1-4. Block diagram of the building and the multi-source system 

The process of finding the structure of the function is totally based on 
expert experience. At our knowledge there is no a well-established procedure 
which gives the optimal system structure; this must be done by a human expert. 
Nevertheless, there are tools to aid the decision maker in evaluating the 
possible configurations. Given the large number of possible alternatives, 
simulating them all is very time consuming. Therefore, Catalina (2009) applied 
ELECTRE III method to generate a ranking of possible solutions based on 
multiple criteria evaluation such as initial investment, payback time, availability 
of the renewable resources, fraction of the energy demand covered from 
renewables and pollution reduction. Thus, the decision maker may choose 
several top-ranked solutions for more detailed comparison through dynamical 
simulations. Similar attempts have been done by Fabrizio (2008) where a 
hybrid energy hub concept is used, or by Letz, Bales, Weiss et al. (2009) where a 
FSC (fractional solar consumption) method is used to characterize solar 
combisystems. 
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Although these methods differ in their algorithms, the principle of 
choosing the optimal configuration is still the same: the best system is the one 
having the best performance when it is optimally sized. For instance, let us 
consider two different systems whose performance, p , is calculated by 

)( 1111 aufp |=  and )( 2222 aufp |=  where a  are the system parameters and u  
are the inputs. In order to say that a system is better than the other one, firstly 
they are sized to optimize the performance index: 

)(min

)(min

2222

1111

2

1

aufp

aufp

a

a

|

|

=

=
 (1.2) 

and then the obtained performances are compared. The better performance 
index determines the better system. 

However, minimizing the performance index, p , by varying only the 
system size, a , does not mean that we obtain an optimized system. Among the 
system inputs, u , some are controller commands. Thus, if a non-optimal 
controller is used, the system performance is not optimal any more. 
Consequently, we cannot say which system is better because two non-optimized 
systems are not comparable.  

The problem is that today, during the design of the system, the controller 
is rarely included in the system; this is done only when dynamic simulations are 
employed. Even then, standard parameters of the controller are used. Thus, a 
poorly tuned controller may reverse the obtained performance of the compared 
systems. A particular observation here is that different systems can have 
different controllers. Thus, for the comparison of the systems, it is important to 
use the controller that will be used in reality.  

A non-optimal controller may also affect negatively the system sizing. 
Such an example is given in Figure 1-5, where it is represented the performance 
of a system with two sets of parameter values (a1 and a2) and for which is varied 
a parameter of the controller (C). We can see that when a non-optimal 
controller is used (C3 in Figure 1-5), the optimization as it is done today finds 
that the parameter values of the set a1 are better than those of the set a2 
(because P1<P2). However, when both sets used optimal controllers, the 
obtained performances are better if the system is sized corresponding to the set 
a2. Thus the controller may affect the process of the optimal system sizing. 
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Figure 1-5. An optimal system is the one having optimal size and optimal controller 

It must be noted that the optimization of the system is not correctly 
performed if the performance index is optimized by varying firstly the size of 
the system and then the controller parameters. On the example from Figure 1-5, 
let us consider that initially the used controller corresponds to C3. For this 
controller, the optimization finds that the set a1 is optimal. Then, keeping this 
set of parameters (a1) and varying the controller, the optimization finds the 
optimal performance P1opt which corresponds to the controller C1opt. However, 
from Figure 1-5 it can be seen that the optimal performance is P2opt which 
corresponds to the set of parameters a2 and the controller C2opt. Therefore, 
during the system optimization the controller must be optimized automatically 
with the variation of the system size. 

Besides the lack of using optimal regulators during the system 
optimization, there is a second problem with system sizing. For an optimal 
sizing there is also required information about resource potential and building 
heating load ( x  and 2y  from equation (1.1)). The problem is that using today’s 
available methods for heating load estimation, in some circumstances we may 
obtain wrong calculations. 

Nowadays, we can distinguish three different ways to estimate the 
heating load of a building: load estimation by “expert rules”, steady-state heat 
balance and dynamic simulations. The most accurate method is dynamical 
simulation. Here, buildings are represented by either single-zone or multi-zone 
lumped-capacity models, which describe the rate of change of the zone 
temperature under the effect of the heat flows traversing those zones. By 
imposing a set-point temperature to a zone, we inverse the model to get the 
necessary heat to be injected into that zone for which the zone air temperature 
will follow exactly its set-point. However, the drawback of this method is that it 
supposes that the air temperature follows exactly its set-point. This hypothesis 
may be true if the temperature set-point is constant, but it contradicts basic 
physical principles when the set-point varies in time, especially in step-like 
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variations. Due to the inertia of the thermal process, the indoor temperature has 
a continuous evolution and not a discontinuous one, as the set-point usually has. 
As the simulation software generally uses discrete building models, the heating 
load estimated by this method strongly depends on the simulation sampling 
time. Thus, by using an inaccurate heating load during the evaluation of the 
multi-source configurations, we may loose a solution that potentially may be 
optimal. 

The next stage of renewables integration in buildings concerns the 
optimal management of the sources (renewable and classical) in order to match 
the energy production to users’ requirements. Referring to the system 
description from equation (1.1), we can see that the control is an inverse 
problem. We need to determine which is the optimal set of inputs x , that 
applied for the system f  with the parameters a , would give the desired output 

2y : 

),( 2
1 yafx −=  (1.3) 

We can see that the controller also needs information about the heating load, 
2y . It must be noted, however, that the heating load, 2y , during the control is 

not the same that during the system sizing. For system sizing, the heating load is 
computed as an optimization between the system size (that is initial 
investments) and corresponding energy consumption (that is operating costs). 
For the control, the heating load depends on the actual weather and the 
maximal power of the sources, which are already fixed. Therefore, for the 
control, we must include constraints in the calculation of the heating load. 

The detail that does not resort from a classical control block-diagram is 
the availability of the necessary energy or power needed to control the system. 
The weak point of this representation is that the controller is also the energy 
source (Figure 1-6 a). This is not true; controllers act like a valve, regulating the 
energy flow between the source(s) and the consumer(s). A more explicit 
representation would be that from Figure 1-6 (b). When we have a source, 
which is able to offer anytime a constant power (though limited), in classical 
block-diagram (Figure 1-6 a) this limitation is highlighted by a saturation block 
placed between the controller and the system. In our case, however, the 
available energy and power varies in time and we need a controller for the 
sources to generate it. Thus, in order to have optimal operations, there must be 
some exchange of information between the controller of the sources and the 
controller responsible for the building thermal control. That is why in Figure 
1-4 we represented separately the building and the sources and we have not 
embedded them together in the same “system” block, as in classical 
representation. 

Today, the control strategies employed for the sources are relays, usually 
based on differential control (Suter, Letz, Weiss & Inäbnit, 2000). There is a lack 
of optimal controllers for the sources, which would take into account prediction 
of the heating load, meteorological forecast and wear and tear of the equipment. 
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Figure 1-6. Control scheme representations: a) the controller seems to be the source; b) the 

controller is a valve 

1.3.2 Building energy consumption reduction 

A maximal reduction of fossil fuels energy use is not achievable only 
through optimal management of the renewable sources. The management of 
energy consumers is at least as much important. The control system of the 
sources will mainly react to the energy demand. Therefore, if the energy 
demand is not optimal, i.e. it is not controlled by an optimal regulator, the 
control system of the sources will not be able to reduce the energy consumption 
at its maximal potential. 

In order to maintain a comfortable thermal environment, today the most 
common solution is to use relays or thermostatic valves on radiators (TVR) 
(Peeters, Van der Veken, Hens, Helsen & D'Haeseleer, 2008). They vary the inlet 
water flow rate according to an on-off scenario in the case of thermostats, or 
continuously in the case of TVR. However, these controllers waste much energy 
and wear the elements. 

Obviously, the best performance can be achieved only when we 
completely understand how the system works (i.e. have its model) and know in 
advance which will be the requirements and environmental conditions (i.e. 
future set-point and weather forecast). These characteristics turn by default the 
optimal control into predictive control. Model Predictive Control (MPC) is one of 
the best solutions for building thermal control in intermittently heated 
buildings, because: 

1. It is able to use the occupancy schedule and weather forecasts for 
optimal temperature control. 

2. It optimizes both comfort and energetic criteria. 

3. It is able to handle implicitly the constraints in Multi-Input 
Multi-Output (MIMO) systems. 

4. It is able to predict the heating restart time in order to reach the 
thermal comfort just before the occupation period begins. 

In order to calculate the command, MPC minimizes a cost function, which 
is usually defined as:  
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where spy  and ŷ  are the set-point and the estimated output, respectively; u∆  is 
the variation of the input between two time steps; 1N  and 2N  are the minimum 
and the maximum prediction horizon; uN  is the control horizon; δ  and λ  are 
weighing factors for process error and command effort. 

Although in most cases this cost function is well suited, there are three 
problems when it is used for thermal control: 

1. By using the cost function (1.4), the controller tries to make a 
compromise between the comfort and energy consumption. Thus, if, 
for instance, energy saving is favored, we may have situations where 
the comfort is not assured. This is a situation we prefer to avoid 
because people waste more energy if the comfort is not assured; 
when it is too hot they open the windows instead of lowering the 
temperature set-point or use non-controlled backup heating sources 
when it is repeatedly cold. 

2. By using the cost function from relation (1.4), the first part of the 
function penalizes the system output error. This forces the output of 
the system to follow, as good as possible, its set-point. Although this 
is a performance required by most control systems, it is not the case 
in building thermal control. European thermal regulation (CEN, 2005) 
and ASHRAE Standard 55 (ASHRAE, 2004) define a comfortable 
ambiance as a comfort zone instead of a particular thermal 
environment. This zone corresponds to 80 % of occupants’ 
acceptability, i.e. 20 % PPD, or, (-0.5 +0.5) range of PMV. Thus, by 
forcing the temperature to follow a set-point instead of leaving it in 
an acceptable range may lead to unnecessary energy consumption.  

3. The second term from the objective function (1.4) penalizes the 
command increments between two consecutive time samples. By 
minimizing this criterion we can get smoother control signals. 
However, the criterion does not represent the thermal energy and by 
minimizing it, we do not minimize the energy consumption in the 
building. 

These three drawbacks make the cost function (1.4), used by MPC, 
non-adapted to thermal control in buildings. 

1.3.3 Summary 

In the following, we summarize the above-identified problems. 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0130/these.pdf 
© [I. Hazyuk], [2011], INSA de Lyon, tous droits réservés



Chapter 1. Introduction 

PhD thesis – Ion HAZYUK 23 

1. The comparison of two different multisource configurations is not 
performed correctly. The system is rarely optimally sized and the 
controller is not always included in the performance estimation. Even 
when it is included, its parameters are not optimized. Thus, the two 
systems cannot be correctly compared. 

2. In the dynamic simulation methods used nowadays, the heating load 
of the building is wrongly estimated if intermittent heating is 
employed. Its calculation is done by considering that the indoor 
temperature is equal to its set-point, which is a non-physical 
assumption. 

3. There is not an optimal control strategy for the multisource system 
control, which would consider prediction of the heating load, 
meteorological, forecast and wear and tear of the equipment. 

4. The cost function used in MPC is inadequately formulated for thermal 
control. It makes a trade-off between comfort and energy savings, it 
consumes more energy to maintain the temperature at the set-point 
instead of maintaining it in a comfort range and it does not minimize 
the energy consumption. 

1.4 The proposed approach 

In §1.3 we identified four problems for an efficient reduction of fossil 
energy consumption in buildings by optimizing the control. In this section, we 
briefly outline the proposed solutions for some of these problems. 

1.4.1 Thermal load estimation 

In buildings, heating systems are generally driven by controllers. At each 
sampling time, the controller calculates the power at which the heating system 
operates. Thus, during the operation, that power represents actually the real 
heating load of the building. Hence the idea to transform the heating load 
estimation problem into a control problem. We consider the building as a 
thermal process, disturbed by weather conditions and occupants, where we 
have to control the indoor temperature by introducing a heat flow into the 
building. By simulating a control algorithm on this process, we get the evolution 
of the necessary heat flow that will assure in the building the thermal 
performances imposed during the controller design. The resulted heat flow 
represents the heating load of the building. Thus, the problem of heating load 
estimation becomes a problem of choice of the control algorithm and finding the 
command given by this algorithm. 

Our approach is to divide the heating load estimation in two parts. First, 
we calculate the heating load that would totally neutralize the effect of the 
weather (outdoor temperature and solar radiation). For this purpose, we will 
use feed-forward algorithm; its role is to calculate when and how much heat is 
needed to be introduced in the building in order to reject the disturbance effect. 
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Then we calculate the load that would force the indoor temperature to follow as 
close as possible the set-point. For this task we will employ MPC, but without 
constraints on the maximal power. 

Besides the fact that it must be realistic, it is preferable to have an 
optimal heating load, i.e. a wise ratio between the maximal load and energy 
consumption. Thus, the employed controller has to be optimal. Given the fact 
that we are in design stage, we have in advance information about the building 
occupation schedule. This permits us to use a predictive control strategy, which 
is in fact an open loop optimisation procedure. 

Both MPC and feed-forward are model-based algorithms; therefore, we 
need the dynamic model of the process, which is the building. A rigorous 
thermal dynamic model of a building has an elevated order and depends on 
plenty of building elements. However, that complicated model can be 
significantly reduced while maintaining an accurate reproduction of the indoor 
temperature behavior. Our approach is to determine the model structure using 
a lumped capacity representation and identify the model parameters using least 
squares identification method. 

1.4.2 A new cost function for MPC  

The cost function optimized within MPC has to reflect the desired 
performances of the thermal controller. The performance we are looking for is 
to keep the indoor temperature within the comfort temperature limits and in 
the same time to minimize the energy consumption.  

Thus, for the energy consumption minimization we propose the cost 
function, J , (equation (1.5)). Here the command, u , represents the heat flux, 
and in this case the cost function, J , is a correct formulation of the consumed 
thermal energy. In order to satisfy the comfort temperature, we add constraints 
on the system output, (1.6). As the output of the system is the indoor 
temperature, the constraints means that the output temperature is forced to 
vary between the imposed bounds. However, as we are dealing only with a 
heating system, we do not take into account the upper bound of the comfort 
temperature. Therefore, the constraint from (1.6) is defined only for the lower 
temperature bound. In addition to this constraint, we impose another one on 
the command signal, equation (1.7). This constraint will limit the command to 
achievable values by the heating system. 

Thus, the proposed cost function for thermal control in buildings 
minimizes the heat flux subject to constraints on the indoor temperature and 
the heat flux itself: 

∑= uJ  (1.5) 
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minˆ θ≥y  (1.6) 

max0 uu ≤≤  (1.7) 

1.5 Outline of the thesis 

In this introductive chapter, we presented the climate change problem, 
which is related to energy consumption. Along with this, we highlighted the 
solutions proposed by scientists, which in their opinion can ameliorate the 
climate situation. We identified four issues that are impeding the path to the 
proposed solutions and, for some of them, we described briefly the proposed 
approach. 

Chapter 2 proposes a possible solution for building thermal behaviour 
modelling. This model is needed for thermal controller and heating load 
assessment. The model is obtained in two steps: first, the model structure is 
identified from a linear circuit with lumped parameters representation of the 
building and then, model parameters are identified by experimental 
identification using least squares algorithm. Some model characteristics are 
nonlinear due to convective and radiative transfer. Therefore, we show a way to 
identify and represent the model as a split of two blocks – linear and nonlinear, 
which will be used later for the control. This information, based on the physical 
knowledge, will be used to linearize the system model, which will ameliorate the 
control performance compared to classical model linearization. Here the 
building is represented by its white-box model and implemented in dedicated 
simulation software (Husaunndee, Lahrech, Vaezi-Nejad & Visier, 1997). 
Therefore the experimental identification is done for this simulated building 
and not a real one. 

In chapter 3, we present the proposed solution for heating load 
assessment. We show an example of the heating load calculation for 
intermittent building occupation and indicate the issues in the assessed load 
using actual algorithms. Then, we show that the heat load assessment can be 
treated as a control problem and split the problem in two parts. In the first part, 
we calculate the heating load that would neutralize the effect of the 
meteorological conditions, i.e. outdoor temperature and solar radiation, by 
using a feed-forward control algorithm. In the second part, we calculate the 
heating load necessary to force the indoor temperature to follow the set-point 
temperature. This is done by using Dynamic Matrix Control, which is a variation 
of the Model Predictive Control. 

Chapter 4 treats the problem of the optimal thermal control in buildings. 
Here we highlight the drawbacks of the current control algorithms and 
especially of the cost function currently used in MPC. Then we propose a new 
cost function which is adapted for thermal control and which assures the 
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minimal thermal comfort with minimal energy consumption. We show how to 
formulate the optimization problem in order to use Linear Programming for 
solving efficiently the optimization problem. Here, we also show how we can 
liniarize the building model by using the nonlinear characteristic, identified in 
chapter 2. 

In chapter 5, we propose a Building Energy Management System, based 
on the proposed MPC for temperature control. Here we present the 
multi-source heating system and two reference PID-based management 
systems, which are the most advanced control systems that can be found today 
in practice. We compare the simulation results of the three management 
systems using different comfort and consumption indicators. Another aspect 
that we are regarding is the wear and tear of some sensitive elements of the 
multisource. 

Finally, the manuscript is concluded by resuming the identified issues 
and the proposed solutions treated in the thesis, along with a critical view of the 
proposed solutions. 
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Chapter 2 

Dynamic modeling of a building 

Optimal control algorithms are model based techniques. Therefore, an 
optimal thermal controller needs the dynamic model of the building. The 
building model is of particular importance for Model Predictive Control (MPC), 
which is one of the best solutions available. MPC is able to use the occupancy 
schedule and weather forecasts for optimal temperature control. Therefore, in 
this chapter, we treat the problems related to building modeling and model 
parameters identification. In order to provide a robust model, we proceed in 
two stages. First, we use physical knowledge to determine the structure of 
low-order thermal network model of a mono-zone building. Then, we apply 
least squares method to experimental identification of the model parameters. 
During the physical analysis, we reveal some model nonlinearity and show how 
to identify experimentally the model parameters, without resorting to the 
nonlinear system theory. Later in the thesis, we use the identified model for 
MPC. 

 

2.1 Introduction 

Today, the role of the simulation in engineering is becoming increasingly 
important. Basically, before creating a new system, engineers simulate its 
behavior to assess its performance or detect possible faults in the system 
design. Therefore, on the market there are many dedicated software to simulate 
building systems, e.g. CODYBA (Noël, Roux & Schneider, 2001), TRNSYS (Klein 
et al., 2004), Comfie (Peuportier & Sommereux, 1994), ESP-R (Clarke, 2001), 
ENERGY + (EnergyPlus, 2009) or Simbad (Husaunndee, Lahrech, Vaezi-Nejad & 
Visier, 1997). 

In order to simulate the thermal behavior of a building, the software uses 
models based on first principles and constitutive laws of thermodynamics. 
These models aggregate all the physical components of a building in a system of 
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algebraic and differential equations of a very high order. Due to their high order, 
these models are not appropriate to develop control algorithms. For the 
purpose of control, it is preferable to have linear and low-order dynamic models 
that can approximate the system behavior in the frequency domain of interest. 
These low order models can be achieved by black-box identification, model 
reduction, or by lumped parameter representations. 

A way to get a low-order model of the building is to apply black-box 
identification on the real system (Ríos-Moreno, Trejo-Perea, Castañeda-
Miranda, Hernández-Guzmán & Herrera-Ruiz, 2007). This technique, which 
requires very few information about the system to be modeled, consists of 
analyzing the input-output data of the process. It finds the model structure and 
its parameter values. However, even if we get acceptable performances of the 
estimated models, the model parameters do not have any physical meaning and, 
very often, their values contradict physical phenomena; for example, we can 
have complex conjugated poles though, a physical analysis shows that they do 
not exist in thermal model of a building (Mejri, Palomo Del Barrio & Ghrab-
Morcos, 2011). Moreover, when the system has some nonlinear behavior, 
black-box identification yields a model valid only around the operating point 
where it was identified. For other operating points, the model will be invalid 
and consequently the control performances will not be as expected; this was the 
reason of using online recursive identification in conjunction with adaptive 
controllers (Boaventura Cunha, Couto & Ruano, 1997). 

Another way to obtain a low-order approximation of the building is by 
using model size reduction methods (Palomo Del Barrio, Lefebvre, Behar & 
Bailly, 2000). These techniques drastically reduce the order of a model obtained 
by spatial discretization of the heat transfer equations. It gives us the reduced 
number of equations and the parameter values by purely mathematical 
manipulations. Usually, in buildings, the initial (high-order) model can have 
hundreds or thousands of differential equations and by applying this technique, 
we can reduce their number to less than ten (Sempey, Inard, Ghiaus & Allery, 
2009). However, in order to apply this technique we need the initial detailed 
model of the system. This one is obtained by applying physical knowledge to the 
detailed description of the building, which is not a trivial task. Moreover, for 
existing buildings we do not even have all the details needed to express the 
initial model. 

A third possibility to obtain low-order models is to use lumped 
parameters, which can be seen as a combination between the two previous 
methods. Here we find directly the low order model structure by applying basic 
physical principles and the parameter values are estimated by using 
identification techniques on the defined model structure (Coley & Penman, 
1996; Jiménez, Madsen & Andersen, 2008; Madsen & Holst, 1995). In literature, 
it is also known as gray-box model. The advantage of this approach is that by 
using basic physical knowledge we can represent a class of nonlinear systems 
using only the linear system theory (Ghiaus, Chicinas & Inard, 2007) and we can 
get a robust parameter identification by bounding some parameters to keep 
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their physical insight (Chen & Athienitis, 2003). This is the method we 
employed in the present work. 

2.2 System definition 

In order to give an example of the method, we chose a typical detached 
house. It is one of the reference buildings in France, which is used by the French 
Technical Research Center CSTB for performance evaluation (Figure 2-1). Its 
living surface is 100 m2 and the volume is 252 m3. The model is obtained by a 
white-box approach by describing in detail the components of the building. This 
simulation model was experimentally validated by CSTB on real buildings. 

 

 
Figure 2-1. The blueprint of the reference building 

In order to find the reduced model of the reference building, we consider 
the following simplifying assumptions (Figure 2-2): 

• Concerning the building structure: 

o The envelope (Figure 2-2, point 1) consists of the outer walls and ceiling 
delimiting the interior environment from the exterior one including the 
attic space. The floor (Figure 2-2, point 2), delimiting the indoor 
environment from the ground is not considered as being part of the 
envelope. 

o The envelope material is uniformly distributed on the entire surface and 
its thermophysical properties are constant in time. 

o The heat conduction through the walls is one-dimensional and 
perpendicular to the wall surface. 

o Convective heat transfer (Figure 2-2, point 3) on both sides of the 
envelope is approximated by Newton law: )( airsurface TTh −=ϕ , where the 
exchange coefficient h  is constant and independent of the wind velocity. 

o The surface temperatures of all the walls are close enough to neglect the 
radiative heat transfer between the walls. 
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o Windows (Figure 2-2, point 4) do not store heat and they are not part of 
the massive wall. 

o The floor material is uniformly distributed on the entire surface and its 
thermophysical properties are constant. 

• Concerning the indoor environment: 

o Interior walls (Figure 2-2, point 5), together with the indoor air, 
constitute the internal thermal mass. 

o Indoor air temperature is homogenous in every single room and there 
are small variations between the room temperatures. Therefore, we treat 
the house as a mono-zone building, considering a single temperature. 
This is the mean temperature of the rooms, averaged by their living 
surfaces ∑∑= iii SSθθmean .  

o Air-flow due to ventilation and infiltration (Figure 2-2, point 6) is 
constant and equal to 0.5 a.c.h. 

o The heating terminal is water radiator (Figure 2-2, point 7) delivering 
heat through convection and radiation; the ratio between these two 
forms of heat transfer is not known. 

o The thermal inertia of the radiators is neglected. 

• assumptions concerning the outdoor environment:  

o The ground temperature varies depending on the outdoor temperature. 
However, the amplitude of its fluctuation decreases with the distance 
from the surface; the amplitude fluctuation of the annual air temperature 
is reduced by 90 % at a depth of approximately 3.3 m (Incropera, DeWitt, 
Bergman & Lavine, 2006). Therefore, we can consider a constant 
temperature at a depth of 3.3 m (Figure 2-2, point 8) and this value is the 
average annual temperature in the geographic area. 

o The attic space is not heated by radiators and its temperature is close to 
the outdoor air temperature. 

o The solar radiation (Figure 2-2, point 9) falling on each surface of the 
envelope varies depending on the day of the year, time of the day, surface 
orientation and latitude. However, the optical proprieties of all surfaces 
are constant. 

o The solar radiation falling on the roof has no visible impact on the 
internal thermal mass. 

o The solar radiation traverses the glazing but we do not know its amount 
and distribution because of blinds position that can be closed anytime. 
Therefore, this energy is an internal free gain and we considered it as 
being a disturbance. 
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Figure 2-2. Assumptions concerning the building modeling 

2.3 State-space modeling 

Models derived from physical relations are naturally represented in state 
space by a set of first order differential equations. Low-order building models 
used for control purpose are most often derived from the electrical network 
representations of the building with lumped parameters (Achterbosch, de Jong, 
Krist-Spit, van der Meulen & Verberne, 1985; Bénard, Guerrier & Rosset-
Louërat, 1992; Coley & Penman, 1996; García-Sanz, 1997; Ghiaus & Hazyuk, 
2010; Michaël Kummert, André & Nicolas, 2001; Liao & Dexter, 2004; Madsen & 
Holst, 1995; Wang & Xu, 2006). The idea is to apply the principle of analogy 
between two different physical domains that can be described by the same 
mathematical equations. Thus the building is represented by a linear electrical 
circuit and the state-space equations are obtained by solving that circuit. Here, 
the temperature is equivalent to voltage, the heat flux – to current, the heat 
transmission resistance is represented by electrical resistance and the thermal 
capacity by electrical capacity. The equivalent circuit of the building is obtained 
by assembling the models of the components like walls, windows, ventilation, 
internal air, floor, roof and sunspace, which are also represented by electrical 
networks. In the case of mono-zone buildings, the interior walls are considered 
as being part of the internal thermal mass and the exterior walls as forming the 
building envelope. 

The building envelope is usually represented by 2R-C (Bénard, et al., 
1992; Coley & Penman, 1996; García-Sanz, 1997) or 3R-2C (Gouda, Danaher & 
Underwood, 2002; Jiménez, et al., 2008; M. Kummert, André & Nicolas, 1996; Xu 
& Wang, 2007) networks. As the roof and the floor can also be seen as some 
kind of wall, they are modeled by the same network structure. The internal 
thermal mass is usually represented by a single capacity, although some authors 
modeled it by 2R-2C network (Wang & Xu, 2006) or even omitted it (Bénard, et 
al., 1992). Because windows do not accumulate thermal energy, they are 
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represented as simple resistances. The ventilation and infiltrations are also 
modeled by a resistance. 

In our approach, we represent the mono-zone building using its 
equivalent electrical circuit shown in Figure 2-3. The considered passive 
components are the envelope, the floor, the windows, the ventilation and 
infiltrations, and the internal thermal mass. We do not take into account the roof 
because we assume that the temperature in the attic space is close to the 
outdoor air temperature. Thus, the ceiling, delimiting the thermal zone from the 
attic is considered as being part of the envelope. It must be mentioned that for 
the floor there is a special consideration. As we supposed that the ground 
temperature is constant at a depth of nearly three meters, the floor in our 
representation also includes a layer of ground of three meters thick. 

We represented the envelope by a 2R-C network where its capacity is 
lumped in wC  and the wall insulation is represented by two halves of its 
conductive resistance 2wR . The resistances coR  and ciwR  represent the 
convective resistances between the envelope and the outdoor/indoor air, 
respectively. The convective resistances are considered to be constant. The 
same for the floor; its capacity is lumped in fC  and the insulation is represented 
by two halves of its conductive resistance 2fR . The convective resistance 
between the floor an the indoor air is represented by cifR . The thermal capacity 
of the internal mass is lumped in aC . The heat losses due to ventilation and 
infiltration are modeled by the resistance vR . 

The active elements of the thermal circuit of the building are the outdoor 
air and ground temperatures, the solar radiation falling on the building 
envelope and the internal heat flux. By internal heat flux, we mean all the free 
gains from building occupants, electrical appliances, solar radiation through 
windows, and the contributions from heating terminals i.e. radiators. The 
outdoor air and ground temperatures are modeled by ideal voltage sources oθ  
and gθ  respectively. The solar radiation and internal heat gains are represented 
by ideal current sources, sΦ and gΦ  respectively. 
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Figure 2-3. Equivalent electrical network representation of a low order thermal model of a 

buiuling 

In building modeling, we are interested in the evolution of the indoor 
temperature, so this is the output of the model. This temperature is influenced 
by four different sources: outdoor air and ground temperatures, solar radiation 
and internal sources; they are the inputs of the model. Note that the internal 
gains are separated in free gains and energy flux from heating terminal. The 
heating terminal is a controllable source, so this is a command of the system 
while the free gains are uncontrollable and we consider that they cannot be 
measured, so they are non-measurable disturbances. Also the outdoor 
temperature, oθ , ground temperature, gθ , and solar radiation, sΦ , are 
uncontrollable sources but they can be measured, so they are measurable 
disturbances. For the operating temperature range of the building, the model is 
considered to be linear. Thus, in order to find the state-space equations of the 
circuit from Figure 2-3 we can apply the superposition theorem for electrical 
circuits. This theorem states that the response in any branch of a linear circuit 
having more than one independent source equals to the algebraic sum of the 
responses given by each independent source acting alone, while all other 
independent sources are replaced by their internal impedance. The internal 
impedance of an ideal voltage source is zero and that of an ideal current source 
is infinite; therefore, all voltage sources are replaced by short circuits and all 
current sources are replaced by open circuits. 

By applying the superposition theorem, we get four separated 
single-input single-output (SISO) models between each source and the indoor 
temperature (Ghiaus & Hazyuk, 2010). However, all these models can be 
embedded in a single multi-input single-output model (MISO). Thus, considering 
the character of each source (command or disturbance), we can embed the 
obtained models in a MISO state-space representation as:  
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where: 

T
fzw ][ θθθ=x  – is the state vector where wθ  is the wall temperature, zθ  is 

the zone temperature and fθ  is the floor temperature; 

zθ=y  – the output of the system; 
T

sgo Φ ][ θθ=w  – the measurable inputs of the system where oθ  is the 
outdoor air temperature, gθ  is the ground temperature and sΦ  is the solar 
radiation on the walls; 

gΦ=u  – the command (this is the total internal heat flux, which utmost comes 
from the radiators, but it also includes internal gains from occupants, solar 
radiation through the windows, etc.); 
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B  – the input matrices; 

]010[=C , 01 =D , ]000[2 =D  – are the output and feed-through 
matrices respectively; 

with: 21 wco RRR += , 22 wciw RRR += , 23 fcif RRR += . 

2.4 Model analysis 

Once we get the model of the system, it can be represented in several 
forms, each one having its advantages. For example, the continuous state-space 
representation is a natural way to represent system models derived from 
physical knowledge. However, for model analysis it is more convenient to have 
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it in transfer function representation. The transition from state-space to 
transfer function representation is made by: 

( ) ( ) DBAICH +−= −1ss  (2.2) 

where: 

)(sH  – is the model in transfer function representation; 

s  – is the complex variable; 

I  – is an identity matrix of the same size as the state matrix A . 

Since in the model (2.1) we have four inputs and one output, we get four 
transfer functions from each input to the output. Thus, the building is 
represented by the superposition of these four transfer functions. The interest 
of doing so is the possibility to analyze each transfer function separately in 
order to figure out the relation between each input and the indoor temperature. 

Transfer function representation shows the contribution of each input to 
the output. In order to do this, we express the transfer function by: 

( ) ( )
( )

( )sUsGKsY
sH


=  (2.3) 

This means that the model )(sH  can be described by its static (steady-state) 
gain K  and its dynamic gain )(sG , which depends on the input frequency. The 
dynamic gain also introduces a phase shift. 

The most important component of the input frequencies is 
corresponding to the period of 24 hours. The outdoor temperature oθ  and solar 
radiation sΦ  are periodic by their nature. As the indoor set-point temperature 
has two levels that are periodically alternated, i.e. day and night set-point, the 
interior heat flux gΦ  resulting from control will also be periodical. In our 
considerations, the ground temperature gθ  is constant. However, if we take as 
reference the indoor temperature, the ground temperature is also periodically 
variable relative to the indoor temperature. This means that for all four inputs 
we will have a dynamic gain in the normal system operation, as it is shown in 
(2.3) . 

The comparison between the static gain of the outdoor temperature and 
that of the ground temperature shows that the former is about eight times 
larger than the later; this relation reflects the ratio between the thermal 
conductance of the walls and the floor. The variation of the ground temperature 
referred to the indoor temperature in a period of 24 hours is about five degrees. 
At the same time, the variation of the outdoor temperature referred to the 
indoor one is at least ten degrees. In addition, the inertia of the floor, which in 
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our case includes about three meters of soil, is much greater than the envelope 
inertia. This means that the cutoff frequency of the ground temperature transfer 
function is smaller than the cutoff frequency of the outdoor temperature 
transfer function. Therefore, the dynamic gain of the ground temperature is 
much smaller than the dynamic gain of the outdoor temperature. All this factors 
indicate that the ground temperature influences the indoor temperature, at 
least, sixteen times less than the outdoor temperature. Hence, we conclude that 
we can ignore the heat flux toward the ground, considering it as a disturbance, 
which will be compensated by the controller; this means that we do not take 
into account the ground source and the floor inertia. Consequently, the thermal 
model of the building will be of second order with only three inputs. Its 
equivalent electrical network representation from Figure 2-3 is transformed 
into the representation from Figure 2-4 with the following state-space model: 
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with: 
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zw ][ θθ=x  – the state vector; 

zθ=y  – the output of the system; 
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Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0130/these.pdf 
© [I. Hazyuk], [2011], INSA de Lyon, tous droits réservés



Chapter 2. Dynamic modelling of a building 

PhD thesis – Ion HAZYUK 39 

 
Figure 2-4. Equivalent electrical network representation of a low order thermal model of a 

building after the ground source omission 

2.5 Model inputs 

In our assumptions, we considered that the building thermal model is 
linear. This allowed us to model the system by a linear thermal network 
(passive elements for building structure and current/voltage sources for 
excitations). The system model was derived from equivalent thermal network 
representation of the building and its parameters can be identified, as it will be 
shown in §2.6. For the identification process, we need records of the inputs and 
the output of the system. However, in our case we can not directly measure the 
solar gains on the surfaces of the building, sΦ , and the direct solar gains, which 
are a component of the total internal gains, gΦ . 

The first defined input of the system is the outdoor temperature oθ  and it 
can be directly measured. On the contrary, the other two cannot be directly 
measured; they need to be calculated from alternative measurements. The 
second defined input – solar radiation, sΦ , is the quantity of the solar radiation 
falling on the building envelope. The problem is that we can have information 
on diffuse and direct normal or horizontal radiation, but it changes the value for 
each surface of the envelope according to the surface orientation. The third 
defined input is the heat flow from radiators, gΦ . As the building is equipped 
with water radiators, this heat flux can be calculated by measuring the water 
mass flow and the pair of inlet-outlet water temperatures, inθ  and outθ : 

)( outinwwg cmΦ θθ −=   (2.5) 

with: 

wm  – total water mass flow through all radiators; 

wc  – specific heat capacity of the water. 
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The problem with this input is not in measuring it but in controlling it. In our 
model, we consider the heat flow gΦ  as command. In practice, we can not 
control directly the heat flow but rather the water inlet temperature, inθ , which 
is the command given by the controller. 

Thus, in the following, we show how one can calculate the solar radiation 
falling on the building envelope and that the relation between the inlet water 
temperature and the corresponding heat flux is nonlinear. 

2.5.1 Solar heat flux  

One of the inputs of our model is the incident solar radiation on the 
building envelope surface, sΦ . This quantity is not measured directly; normally, 
only diffuse, dI , and beam radiations on the horizontal surface, bI , are available. 
Therefore, in order to estimate sΦ , we need to determine the solar radiation on 
each side of the envelope, multiply it by the corresponding wall surface and add 
the results for all sides. Considering an isotropic model of the sky, the incident 
solar radiation on a tilted surface, Figure 2-5, is calculated by (Duffie & 
Beckman, 2006): 

2
)cos(1)(

2
)cos(1 βρβ −

++
+

+= gdbdbbT IIIRII  (2.6) 

where the ground albedo gρ  is usually 0.2 and the ratio of beam radiation on a 
tilted surface to that on a horizontal surface is calculated by: 

)cos(
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α
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bR =  (2.7) 

The angles α  and Tα  are the incidence angles of the beam radiation on the 
horizontal and tilted surfaces, respectively, which are calculated by: 
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with: 

)365/)284(360sin(45,23 n+⋅=δ  – solar declination in the nth day of the year; 

φ  – geographical latitude of the location where the building is, positive for north 
hemisphere; 
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γ  – azimuth angle of the surface (angle between the normal to the surface and 
meridian), zero for south facing, negative for west facing and positive for east 
facing; 

)12(15 −= tω  – solar hour angle at the moment t ; 

β  – the angle between the tilted surface and the horizontal plane. 

 

 
Figure 2-5. Incident solar radiation on a tilted surface 

Considering the fact that all the surfaces of the building envelope are 
perpendicular to the horizontal plane (the roof is not a part of the envelope but 
it completely shades the ceiling so the ceiling is not exposed to solar radiation), 
the incidence angle of the beam radiation on the walls is:  

)sin()sin()cos(
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+
+−=T  (2.9) 

and the total solar radiation on a wall is: 

2
1

2
g

d
g

bbT IRII
ρρ +

+







+=  (2.10) 

After calculating the total solar radiation on the four exterior walls of the 
building envelope by (2.10) and multiplying them by the corresponding wall 
surface, we add them all to get the input of the model: 

∑
=

=Φ
4

1i
iTis SI  (2.11) 

2.5.2 Radiator heat flux  

The third input of the model is the heat flux delivered by the radiators 
into the building. We can calculate this quantity as in (2.5) by measuring the 
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inlet and outlet water temperatures. However, if we determine the model 
between the indoor air temperature, zθ , and the heat flux, gΦ , we could not use 
it for control because we cannot control directly the heat flux. This energy flow 
depends on several parameters like indoor air temperature, mean radiator 
temperature, interior walls surface temperature and water mass flow through 
radiators. In practice, we can control only the water inlet temperature or the 
water flow; acting on water flow may induce hydraulic instabilities. Thus, the 
question that naturally arises is why not to determine a model between the 
indoor air temperature and the inlet water temperature. Here we give an 
explanation why it is preferable not to do so and how to overcome this problem. 

The thermal energy coming from the radiators, gΦ , is transmitted to the 
indoor environment via convection and radiation. Generally, the ratio between 
these two is considered to be 50 %, although it may vary depending on many 
factors. The heat transferred through convection depends on the difference 
between the mean radiator temperature and indoor air temperature while the 
heat transferred through radiation depends on the difference between the mean 
radiator temperature and the temperature of the surfaces inside the building. 
However, all the indoor surfaces except the interior surfaces of the envelope are 
part of the internal mass. Therefore, for simplicity we will consider that the 
radiative heat transfer depends on the difference between the radiators surface 
temperature and the indoor heat capacity temperature. 

In most papers, the radiative heat transfer is neglected or it is 
approximated by a linear law (Liao & Dexter, 2004). If the difference between 
the temperatures of the surfaces is not too large, the radiative heat flux density 
transferred from a hot surface to the colder one is calculated by: 

)( 44
coldhotr TT −= εσϕ  (2.12) 

where:  

ε  – surface emissivity; 

σ  – Stefan-Boltzmann constant; 

T  – surface temperature in Kelvin degrees. 

The relation (2.12) can also be represented in the following form: 
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εσϕ  (2.13) 

The linearization of this relation is based on the following consideration: 
in the building, the hot surface is always the radiator and its temperature varies 
between 20 and 60 °C. The cold surfaces are all the surfaces inside the building 
and their temperature varies roughly between 15 and 20 °C. As in relation 
(2.13) the temperature is represented on the absolute scale, 
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][273][ CKT surface °+= θ , the usual temperature variations in the building are 
relatively small compared to their absolute value. Therefore they do not have a 
significant impact on the first two parentheses, which are approximated by a 
constant heat transfer coefficient, rh , by taking the mean temperature of the 
surfaces. 

Concerning the convective heat transfer, the heat flux density for a 
vertical surface, taller than 30 cm is described by the following law (Incropera, 
et al., 2006) : 

( ) ( )airsurf

h

airsurfc TTTT
c

−−= 4178.1
  

ϕ  (2.14) 

Here also the first parenthesis is considered to be approximately 
constant so together with its coefficient they form the convective heat transfer 
coefficient, ch . Thus, making the hypothesis that the radiative and convective 
heat transfer coefficients are constant, the total heat flux density is obtained by 
adding relations (2.13) and (2.14) so we get the following linear law: 

( )( )coldhot

h

rcrcT TThh
T

−+=+=


ϕϕϕ  
(2.15) 

The total heat flux delivered by the radiator is obtained by multiplying 
the total heat flux density, Tϕ , by the radiators surface radS :  

Tradg SΦ ϕ=  (2.16) 

The problem is that the temperature difference between the radiators 
and the thermal mass varies usually between zero and forty to fifty degrees. 
This variation is large enough in order to violate the hypothesis that the total 
heat transfer coefficient, Th , is constant on the entire operating temperature 
range. By using a simulation software (Husaunndee, Lahrech, Vaezi-Nejad & 
Visier, 1997), we varied the inlet water temperature of radiators and recorded 
the indoor mean temperature, zθ , and the heat flux delivered by the radiators 
using the relation (2.5). As expected, we obtained a nonlinear dependence 
between the heat flux delivered by the radiators and the temperature difference 
between inlet water and mean zone temperature, Figure 2-6 (a). The 
nonlinearity is better illustrated in Figure 2-6 (b) where the total conductance 
is: 

zin

g
Trad

Φ
hS

θθ −
=  (2.17) 
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using the measured data from Figure 2-6 (a). Notice that the radiators surface, 
radS , is a constant, so it is the total heat transfer coefficient, Th , which varies a 

lot on the operating temperature range. 

 

 
Figure 2-6. (a) Nonlinear relation between the temperature difference and the corresponding heat 

flux and (b) the variation of the total conductance depending on the temperature difference  

The heat emitted by the radiator is related to the temperature difference 
between the radiator surface mean temperature and the air temperature in the 
zone, zrad θθ −  and not to the difference between the inlet temperature of the 
radiator and the air-zone temperature, zin θθ − . However, we can not control 
directly the radiator surface mean temperature, radθ ; instead we can control the 
inlet water temperature. Therefore, we tried to find a relation between zrad θθ −  
and zin θθ −  which would allow us to justify the way we represented the results 
in Figure 2-6. To find this relation, we approximate the radiator surface 
temperature as the mean temperature between the inlet and outlet water 
temperatures: 

2
outin

rad
θθ

θ
+

=  (2.18) 

The heat balance equation of the radiator is: 

)()( zradradToutinww Shcm θθθθ −=−  (2.19) 

By eliminating the outlet temperature outθ  from relations (2.18) and (2.19) we 
get: 

radTww

zradTinww
rad Shcm

Shcm
+
+

=




2
2 θθ

θ  (2.20) 
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and by extracting from both sides of the equation (2.20) the zone temperature, 
we get: 

( )zin
radTww

ww
zrad Shcm

cm
θθθθ −

+
=−





2
2

 (2.21) 

Thus, we derived a relation between zrad θθ −  and zin θθ − . This allows us 
to use directly the inlet water temperature instead of the mean radiator 
temperature, which we cannot control directly. In order to estimate from Figure 
2-6 (b) the correlation between the total heat transfer coefficient and the 
temperature difference zin θθ − , we used a curve fitting. The best fitting was 
obtained for an exponential correlation: 

( ) 2544.085.36 zinTrad hS θθ −=  (2.22) 

Thus, the relation between the heat flux introduced by the radiators in 
the building and the inlet water temperature is given by: 

( )zinTradg hSΦ θθ −=  (2.23) 

where TradhS  is given by the equation (2.22). This relation will be used later for 
model linearization and control purpose. For model parameter identification, 
we still use the relation (2.5) with the heat flux, gΦ , as the input of the system. 

2.6 Model parameter identification 

The last information we need in order to use the low-order model of the 
building is the value of its parameters. This information can be gathered by an 
identification process. Given the abundance of system identification methods, an 
appropriated one for our application must be chosen. 

2.6.1 Identification method choice 

Grapho-analytical methods for impulse or step response cannot identify 
the zeros of the model. Since it is demonstrated that our model has zeros 
(Ghiaus & Hazyuk, 2010), the grapho-analytical methods are not suited for our 
case. Moreover, in practice it is impossible to have a step-like excitation for the 
outdoor air temperature and solar radiation. Therefore, we look for a 
parametrical identification method. The basic algorithms for searching optimal 
parameter values are iterative min-search and least squares methods. The first 
ones are used mainly for situations where we are interested in the value of each 
physical parameter represented in Figure 2-4. This is the case of building energy 
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performance assessments (Mejri, et al., 2011). However, in this case the model 
is represented as a nonlinear correlation between its parameters, so it is 
difficult to guarantee the optimality of the solution. In order to do this, initial 
values close to the optimal solution are needed or a constrained min-search 
algorithm must be applied, properly bounding the physical parameter values. In 
our case, we need rather a robust model in order to predict the building 
behavior. Therefore, we adopted the least squares method, which estimates the 
parameters of the discrete transfer function representation of the system. Thus, 
actually we identify the parameters 321121 ,,, bbaa   from the following model 
representation: 
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which is obtained by time discretization of the continuous transfer function, 
obtained by applying the transformation (2.2) on the model from the relation 
(2.4). Note that we have three discrete transfer functions, between the output 
and each of the three inputs, each one having the same characteristic 
polynomial (the same denominator). This representation of the model permits 
us to have a linear formulation of the identification problem, which guarantees 
the optimality of the solution. 

 

 
Figure 2-7. The principle of least squares identification method 

The principle of this identification method is depicted in Figure 2-7. The 
model is considered to be a one step-ahead predictor, that is to say it predicts 
the system output at time sample i based on real inputs and outputs at anterior 
time samples. The model is represented in discrete transfer function (Figure 
2-6) and the output is expressed by: 

iii euzByzA += −− )()( 11  (2.25) 
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or equivalently: 

ipipiininiii eubububyayayay ++++=+++ −−−−− ...... 1102211  (2.26) 

A  and B  are polynomials in 1−z  of order n  and p  respectively, and 1−z  is one 
sample step delay operator. The aim is to identify the parameters of the 
polynomials A  and B . For N  consecutive measurements, the expression from 
the equation (2.26) can be written nN −  times. By expressing the current 
output from equation (2.26) and arranging it in matrix form, we obtain: 
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(2.27) 

The parameters to be identified are embedded in the vector θ . The criteria 
minimized by least squares method is the square of the predicted error: 

eeTJ =  (2.28) 

Thus, the parameters’ vector that minimizes the criterion J  is deduced from the 
following derivate:  

θXXyX
θ θθ





TTJ 220 +−==
∂
∂

=

 (2.29) 

wherefrom the optimal vector of parameters is: 

yXXθ 1)( −= T

 (2.30) 

The robustness of the model in our case is given by the fact that we 
project the system model on a reduced structure, which was obtained by using 
physical knowledge. This is not a “true system model” with “true parameters” 
to. We must view the model as a best approximation of the system response. 
Therefore, we must accept that there will always be dissimilarities between the 
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model and the building response. If we searched to reduce this error by varying 
the model parameters and the system structure, we would risk over fitting: we 
get a good similarity between the model and system response in the 
identification process, but when we test the identified model on a different 
excitation signal, we get important differences between the responses. On the 
contrary, the physical phenomena will not change when the excitations are 
varying in the operating range. Thus, by remaining in the framework of this 
imposed structure, we have the certainty of identifying a robust system model. 
This is the motivation to have the structure of the model derived from basic 
physical knowledge.  

2.6.2 Parameter identification 

For the model parameters identification, we must record the inputs and 
the output of the system, and, then, apply the chosen identification method. The 
question is which kind of input signals must be applied to find good quality 
parameters. In practice, we are very limited in this choice because the 
circumstances do not allow all types of inputs. First, we cannot act in any way 
on the outdoor temperature and solar radiation. Then, even for the internal heat 
flux, we are limited in imposing a form to the input because usually the building 
is inhabited and we can not move beyond the accepted comfort norms. On the 
other hand, it costs enormous to test an uninhabited building. As the parameter 
identification on a real building is difficult, an alternative is to identify the 
parameters of a low order model that fits the white-box model of the building. 
In simulation, we can apply any input signal as well as other handy 
manipulations. Therefore we make the identification using data records 
obtained from simulation of the reference building. 

Before starting the identification, several theoretical details must be 
recalled. First, we have to choose the adequate excitation signal. Its role is to 
excite the system modes. Even if we are in simulation, we have not imposed an 
atypical form for the outdoor temperature and solar radiation; we used the 
statistical whether records offered by the simulation program. On the contrary, 
for the internal heat flux, we act on the inlet water temperature and we imposed 
a pseudo-random binary sequence (PRBS). This sequence must be long enough 
in order to generate the frequencies which would excite even the most inert 
modes of the system. 

Secondly, when we start the identification of a model in transfer function 
representation, the system must be in initial zero conditions. In our case, the 
system states are the zone and wall temperatures, it means that they all must be 
zero. In practice, it is impossible to guarantee this condition; assuring initial 
zero conditions is another benefit of using white-box simulation model. We 
switched the inlet water temperature between 20 and 60 °C according to a PRBS 
for a period of four months. Standard weather records for December, January, 
February and March in Lyon, France, were used for outdoor temperature and 
solar radiation. With these inputs, we simulated the reference building for a 
period of four months with a sampling time of one minute. We computed the 
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mean zone temperature as a weighted average of the temperatures from each 
room. This mean zone temperature is considered in the following as the 
measured output of the system. Then, this data set was divided in two halves in 
order to use different records for fitting and validation processes. The resulted 
transfer function models between each input and the output are: 
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In Figure 2-8 on top, we present the results of the fit on the first sixty 
days. The percentage of the output variations reproduced by the model is 
96.48 %. This comparison criterion is also called fit and is calculated by (Ljung, 
2007): 

%100
))((

)ˆ(1 ⋅







−

−
−=

ymeanynorm
yynormfit  (2.32) 

A higher number means a better model. In Figure 2-8 on bottom, we have the 
same comparison, but this time for the validation, with a different excitation 
signal. This time the fit is 93.05 %, which is not as good as in the fit process, but 
still, a very good reconstruction of the measured output. These results show 
that the second order model structure is well suited to describe the building 
thermal behavior, at least for control purpose. 
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Figure 2-8. Comparison between measured and simulated zone temperature; in the fit process 

(top), in the validation process (bottom) 

2.7 Conclusions 

In order to implement a MPC, a low-order model of the controlled system 
is needed. Building thermal modeling is particularly difficult because  

• there are many uncertainties on the system inputs (e.g. occupation) 
and parameters (human interaction with the building such as 
window openings, internal sources, etc.) 

• there is a great number of states (modes) in the model and such 
models are not suited for control.  

Therefore, its modeling must be viewed as the best approximation of the 
thermal behavior. In this context, our approach was to provide the model 
structure via an equivalent electric circuit and estimate the values of its 
parameters through experimental identification. We characterized the building 
by a mono-zone lumped capacity model for which the state-space 
representation was calculated. Initially, four inputs were considered (outdoor 
and ground temperatures, solar radiation and internal heat flux) but only three 
of them had a real impact on the dynamic of the building thermal behavior; 
therefore, the ground temperature was omitted. Since the building was 
described by a mono-zone model, the output of the model was defined as the 
mean temperature of the rooms, averaged by their surfaces. As the building is 
implemented in a dedicated simulation software, we could excite the building 
using any desired input and impose any initial conditions. Furthermore, there 
was no noise on the inputs, which could be an additional source of uncertainty. 
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This allowed us to use the standard least squares method for parameter 
identification. Even in these circumstances, we tried to get closer to reality: we 
excited the building using real solar radiation and outdoor temperature, whose 
data was gathered from statistical meteorological records. For the third input, 
we used the heat flux resulted by switching the radiators inlet water 
temperature between 20 and 60 °C, according to a pseudorandom binary signal. 
The simulation was carried out for a four months period and the results were 
divided in two parts. The first data sequence was used for parameter 
identification and the second one for model validation.  

As the handled input is the inlet water temperature and not the heat flux 
delivered by the radiators, we figured out that the relation between these two is 
nonlinear. Therefore, we showed how this correlation could be expressed and 
identified in order to be used for model linearization and control. 

The model structure was obtained in continuous state-space 
representation. However, the identification using least squares method requires 
a model structure in discrete transfer function representation. Therefore, we 
determined the discrete transfer-function structure that is equivalent to the 
continuous state-space structure, which in our case gave a two poles – one zero 
model structure. The model validation showed that the identified model can 
reproduce the building thermal behavior with a good fidelity (the fit between 
the results larger than 90 %). 

Nevertheless, building model parameter identification is far to be a 
solved problem. Even if the theoretical tools are very advanced, their practical 
application for buildings is still not well handled. It is not acceptable to excite 
the building as we need while it is occupied and an experimental campaign of an 
unoccupied building is expensive. Thus, the research in this direction could 
bring out some real contributions, not only to MPC but generally for all model 
based control strategies. 
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Chapter 3 

Assessing the optimal heating load 
for intermittently heated buildings 

The building is permanently in thermodynamic non-equilibrium due to 
changing weather, free gains and indoor temperature set-point. Load calculation 
in dynamic conditions is an essential goal of building energy simulation. In this 
chapter, we demonstrate that the load calculation is a control problem. 
Supposing that the thermal model of the building is linear and that the model of 
the building, the weather conditions and occupational program are known in 
the design stage, we propose an unconstrained optimal control algorithm, which 
uses feed-forward to compensate the weather conditions and model predictive 
programming, obtained by modifying the dynamic matrix control (DMC) – a 
variant of model predictive control (MPC), for set-point tracking. 

The peak load depends on the setback time of the indoor temperature: 
smaller the setback time, larger the peak load, but smaller energy consumption. 
Then, the choice of the weighting coefficients in the model predictive 
programming may be done on economical considerations. 

 

3.1 Introduction 

The instantaneous sensible load is the power needed by the building to 
obtain the desired indoor temperature in the presence of disturbances such as 
weather conditions, variable number of occupants and internal sources; the 
set-point temperature varies also in time as a function of the usage of the 
building. The calculation of the sensible load and of energy needed by the 
building, i.e. the time integral of the load, is an essential problem in any building 
energy simulation (ASHRAE, 2001a). The physical basis of heating load 
calculation is the non steady-state heat balance, although simplified approaches 
are used. Practically, empirical methods use statistical estimation of the heating 
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load. Inquiring professionals, we found out that heating sources (generally, 
boilers) are sometimes sized by so called “expert opinion”, “rule of thumb” or 
“square footage”: the contractor asks the customers the surface of the living 
space and then tells the size of the boiler they need. As expected, you may get 
different answers from different contractors who use this technique. A similar 
“expert” method is to estimate the floor area and the thermal insulation level 
and then to find the class to which the building belongs. Then, the heating load 
of the building is considered to be that of the class.  

A well-established method for estimating the heating load is to use 
steady state heat balance for normalized outdoor conditions; methods related to 
degree-day approach may be included in this category (ASHRAE, 2001b; CEN, 
2008; Grondzik, 2007; Recknagel, Sprenger & Schramek, 2007; Rutkowski, 
2002). However, these approaches do not take into account the thermal 
non-equilibrium of the building and hourly energy loads may have significant 
errors. 

Another approach uses statistical correlation methods, related to 
steady-state thermal balance. In these methods, the dynamics are taken into 
account by considering a statistical distribution around the mean values (Bauer 
& Scartezzini, 1998; Ghiaus, 2006a, 2006b; Jaffal, Inard & Ghiaus, 2009; 
Pedersen, Stang & Ulseth, 2008; Rabl & Rialhe, 1992; Yu & Chan, 2005). 

The predominant method used to estimate the heat load in dynamic 
simulation is the heat balance; an equivalent alternative is the use of the 
thermal networks. In the design stage, only the room phenomena are taken into 
account by considering that the heat is supplied directly to the room air by 
convection and/or radiation, or by the heating floor. Then, the heating load is 
estimated by assuming that the indoor air temperature is equal to its set-point 
value. When the calculated value of the zone temperature is higher than its 
set-point, the value of the load is zeroed. ESP-r, TRNSYS and Energy + 
simulation software use this approach (EnergyPlus, 2009; Hensen, 1995; Klein 
et al., 2004). 

However, supposing that the indoor temperature is equal to its set-point 
leads to non-physical results when the indoor air set-point varies in time. To 
exemplify this problem, let us consider the single zone model. A thermal balance 
is done on the zone: 

auxgainsinV
j

jW
Z

ap QQQQQ
dt

dC  ++++=∑ ,
θ  (3.1) 

where: 

apC  is the effective capacitance of room air plus any mass from the zone, 

Zθ  is the zone temperature, considered homogenous, 
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∑
j

jWQ ,
  is the sum of the heat fluxes from the interior walls to the room air, 

inV QQ  +  are the heat fluxes from ventilation and infiltration, respectively, 

auxgains QQ  +  are the free gains and the auxiliary gains, respectively, 

 The right hand side of equation (3.1) is a sum of heat fluxes. The heat flux 
from the interior walls, ∑

j
jWQ ,

 , depend on the temperature difference between 

the zone, Zθ , and the wall surfaces, js,θ . Wall surface temperatures are function 
of the outdoor air temperature, oθ , and incident solar gains, SQ , through the 
transfer function of the walls. The heat fluxes due to ventilation and air 
infiltration are proportional to the temperature difference between the zone, zθ , 
and the source of air, Vθ  and oθ  and the wind velocity, W ; the proportionality 
constants are the ventilation air mass flow (an input variable) and the 
infiltration air mass flow (which is dependent on the outdoor air wind speed 
and building permeability). The free gains, gainsQ , are generally from occupants, 
electrical devices and direct solar gains. The auxiliary gain, auxQ , is the heat flux 
that the heating system needs to supply to the zone in order to maintain the 
indoor temperature at the set-point value. Expressing the right side terms in 
equation (3.1), we obtain the thermal model of a building (Figure 3-1). 

 

 
Figure 3-1. Building thermal model 

If we assume zero initial conditions, by applying Laplace transform to 
equation (3.1) we obtain 

auxgainsinV
j

zjsajWzap QQQQHsC  ++++−=∑ )( ,, θθθ  (3.2) 

where:  
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)( ,,, zjsajWjW HQ θθ −=  is the heat flux traversing the wall j  from outdoor (at 
sol-air temperature jsa ,θ ) to air-zone (at indoor air temperature zθ ) ;  

jWH ,  is the transfer function describing the dynamics of the walls (modeled, in 
general, in a combination of one, two and three dimensions). 

Figure 3-1 and equation (3.1) show that the load calculation is in fact a 
control problem. In such a problem, the system (in our case the model of the 
building) is known, the desired value of the output is known (in our case the 
set-point of the zone temperature) and the problem is to find the command (in 
our case the auxiliary source, auxQ ) which minimizes the difference between the 
output and the set-point when: 

• the system is subject to disturbances (disturbance rejection or 
regulation problem), 

• the set-point varies (set-point tracking problem). 

Since the currently used solution to load calculation in dynamic 
simulation is to consider the zone temperature being equal to its set-point, this 
approach is applicable only if the set-point is constant. Therefore, it is suitable 
only for disturbance rejection. But in the existing methods, the problem of 
disturbance rejection is not solved optimally. In general, the load, auxQ , is set to 
zero when the zone temperature becomes larger than the set-point temperature 
in heating or lower than the set-point temperature in cooling (Klein, et al., 
2004).  

 The three problems in the current procedures for load calculation, 1) 
non-physical variation of zone temperature, 2) the dependence of the peak load 
value on sampling time and 3) the non-optimal control, are shown in Figure 3-2. 
This example shows the simulation results for two consecutive days for two 
sampling times: 1h and 15 min. The set-point of the zone temperature is 20 °C 
between 8:00 and 22:00 and 15 °C the rest of the time. The first problem is that 
the value of the indoor temperature has a step change, i.e. it changes from one 
value to another in one sampling time (zones marked with 1 in Figure 3-2). If 
the sampling time is large, this might be true. But this step change is done for 
any sampling time and it is obvious that the zone temperature will not reach its 
final value in one step when the simulation time step is small (e.g. 15 min, 1 min, 
30 s). Due to this non-physical behavior of the zone temperature, the peak load 
varies with the simulation time step (zones marked with 2 in Figure 3-2). In this 
example, the peak values for the first day are 12.7 kW at 9 h for simulation time 
step of 1 h and 15.5 kW at 8 h for simulation time step of 15 min (i.e. the peak 
load change increased by 22 % when the sampling time changed from 1 h to 
15 min). However, the difference between the estimation of energy 
consumption in the two cases is of only 0.1 % (923.7388 kWh for sampling time 
1 h and 924.7185 kWh for sampling time 15 min). This good result for overall 
energy estimation is due to the behavior as a filter of the building model 
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(Ghiaus, 2006b). Another disadvantage of the current procedure is that the load 
is not optimal: the algorithm does not anticipate the solar radiation and free 
gains in order to set the load to zero, before their effect will show up. Thus, even 
if the load is set to zero when the zone temperature becomes higher then its 
set-point, due to building inertia, there is an overheating (zone marked with 3 in 
Figure 3-2). 

 

 
Figure 3-2. Problems in the current procedure of load estimation. The zones represent: 1) “instant 

(i.e. one time step) variation of zone temperature; 2) peak load depends on simulation time step; 3) 
overheating due to non-optimal “control algorithm” 

This chapter proposes a methodology for estimating the heating load of 
buildings with variable zone temperature set-point. The methodology is 
applicable in the design stage and presumes that the model of the building and 
the time series of disturbances (weather, internal loads) are known. Thus, the 
general idea of the method is introduced; then, an example of a mathematical 
model of the building is presented (this model is just an example and other 
models may be used as well); afterwards, the basic theory of feed-forward and 
model predictive control are presented as well as the way in which they are 
applied to solve the load estimation problem; finally, examples and results show 
how this method can be applied. 
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3.2 Outline of the proposed methodology 

Variable indoor set-point temperature implies that the heating system is 
driven by a controller. In order to assure in the building the required thermal 
performances, the control algorithm “decides” the necessary heat power at each 
sample time. Therefore, the main idea of this method is to transform the heating 
load calculation into a control problem. We consider the building as a process 
having the weather conditions and the internal gains as uncontrolled inputs (or 
disturbances) and the heat flux delivered by the heat source as controlled input 
(or command). The output of the system is the indoor air temperature, zθ . The 
proposed procedure is to estimate the optimal program for the command, auxQ , 
in order to track the indoor temperature set-point, spz ,θ , when the model of the 
building as well as the outdoor conditions, given for example by the outdoor air 
temperature, oθ , solar heat flux, SQ , and the free gains, gainsQ , are known. Then, 
the heating load will be the value of the command, auxQ , and the peak load will 
be the maximum of the command. In other words, we implement an optimal 
open loop control algorithm without constraints (Figure 3-3). 

 

 
Figure 3-3. Block diagram of the load calculation as a control problem 

The building is always in thermodynamic non-equilibrium due to 
variable disturbances (weather and internal gains) and variable indoor 
temperature set-point. Considering a linear building model, we propose, first, to 
determine the optimal command needed to reject the disturbances and then to 
find out the optimal command for set-point tracking. Finally, applying the 
superposition principle, the sum of these two commands gives the total 
command. For disturbance rejection, we have chosen feed-forward algorithm 
because it neutralizes the effect of the disturbances before it occurs. The optimal 
command calculation for set-point tracking is done by model predictive 
programming, which is a modification of MPC. Thus, the adopted MPC plus 
feed-forward control structure is shown in Figure 3-4. 
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Figure 3-4. MPC + feed-forward control structure for a system 

In order to compute the optimal command we need the dynamic model 
of the “process”, i.e. of the building. In Chapter 1 we modeled the building in 
state-space representation. However, as we treat separately disturbances 
rejection and set-point tracking, we need separated models for the disturbances 
and command contributions to the system output. This can be done by passing 
from state-space representation to transfer function representation of the 
model, using relation (2.2). Thus, we can express the building model as a 
superposition of three transfer functions, represented in Figure 3-5. 

 

 
Figure 3-5. Dynamic model of the building obtained by superposition 

3.3 Compensation of weather conditions 

In this subsection, we propose a method to assess the heat load needed 
to reject the disturbance caused by the weather conditions. The main idea for 
this type of disturbance compensation is to provide to the building the right 
amount of heat at the right moment. This will totally neutralize the effect of the 
disturbances with minimum energy consumption. 

We consider that the time evolution of the outdoor temperature and that 
of the solar radiation are known in advance. This assumption is valid because 
we consider that the estimation is done in the design stage for a location for 
which the weather data are available. 
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Figure 3-6. Weather compensation with feed-forward 

The disturbance compensation may be achieved by feed-forward 
compensation (Figure 3-6). Having the transfer function of disturbance, 1H , and 
the disturbance signal, oθ , we compute the disturbance effect as: 

oHy θ11 = . (3.3) 

Equation (3.3) is a direct (or simulation) problem, i.e. having the input 
and the transfer function, we obtain the output. As we want to reject the effect 
of this disturbance, we need that the output (the indoor temperature) due to the 
disturbance (outdoor temperature variation), 1y , to be compensated by the 
output due to the command (heat flux delivered by the heating system), 3y : 

031 =+ yy  (3.4) 

 In order to find the input wcu  which gives the output 3y , we need to solve an 
inverse problem: having the model, 3H , and the desired evolution of the output, 

3y , find the input: 

3
1

3 yHuwc
−=  (3.5) 

When the transfer function is in the form of a ratio of polynomials, its 
inverse is the reciprocal ratio. However, inversing the ratio of polynomial has 
consequences on both physical significance of the model and on its numerical 
stability. All physical processes are represented by proper transfer functions, 
which have the order of the denominator greater than or equal to that of the 
numerator. Usually the functions are strictly proper, with the order of the 
denominator larger than that of the nominator; the physical significance of 
strictly proper, or proper, transfer function is the antecedence of causality: the 
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cause (i.e. the input) must be prior to, or at least simultaneous with, the effect 
(i.e. the output). The problem is that the inverse of a strictly proper function is 
an improper function. From a physical point of view, an improper transfer 
function implies that the effect on the output appears before the variation of the 
input (contrary to the causality principle). Moreover, an improper transfer 
function amplifies the high frequencies of the input signals, which are always 
present in sampled signals (Cellier, 1991). 

We may avoid the inversion of proper transfer functions by using a 
feed-forward control. It is obtained by introducing the relation (3.3) in (3.5) 
with inversed sign to get: 

owc HHu θ1
1

3
−−=  (3.6) 

Thus, the feed-forward transfer function for compensation of the outdoor 
temperature is: 

)()()( 1
1

31 sHsHsH ff
−=  (3.7) 

If we denote the denominators by 3,1),( =isPi  and the numerator by 
3,1),( =isQi , then the sufficient condition for the function from equation (3.6) 

to be proper is: 

( )( ) ( )( ) ( )( ) ( )( )sQsPsQsP 1331 degdegdegdeg +≥+  (3.8) 

where the operator ))(deg( sP  means the order or the degree of the polynomial 
)(sP . 

If the condition (3.8) is fulfilled, then the feed-forward transfer function, 
)(1 sH ff , is proper or strictly proper, so we can apply equation (3.6) in order to 

compute the evolution of the command for weather conditions compensation. 

In the model presented in Figure 3-5, there are two disturbances: 
outdoor temperature, oθ , and solar radiation, SQ . Considering these two inputs, 
the total command for weather compensation is: 

Sowc QHHHHu 

2
1

31
1

3
−− += θ  (3.9) 

Thus, as in our case the condition (3.8) is fulfilled, we can compute the 
load needed to compensate for weather conditions. 
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3.4 Set-point tracking 

Inverting the transfer function for set-point tracking results in an 
improper transfer function. To avoid the problem of improper transfer function, 
we propose a solution inspired from Model Predictive Control. This approach is 
suitable when the program (i.e. the time evolution) of the set-point is known, 
which is the case when we calculate the thermal load.  

3.4.1 Principles of Model Predictive Control (MPC) 

We give a brief description of the principles behind MPC. An exhaustive 
presentation of MPC can be found in literature (Camacho & Bordons, 2004; 
Maciejowski, 2000; Wang, 2009). A very intuitive description from a 
practitioner’s point of view is also given in (Prívara, Siroký, Ferkl & Cigler, 
2011). 

MPC control principle is graphically illustrated in Figure 3-7. There we 
can find the operations that are performed between two consecutive time steps. 
On the top graphics there are represented the system set-point and its output, 
corresponding to each operation. On the bottom graphics it is represented the 
system command, corresponding to the output from above. Thus, the MPC 
principle is illustrated in three steps, each step representing a column (a pair of 
top-bottom graphics) in Figure 3-7. 

Let us consider that we have an arbitrary set-point, whose future 
evolution is known in advance. Suppose that at a given discrete time step kt  the 
system is in a given state, )( ktx , which yields an output which does not 
correspond to the desired set-point value. By convention, the current moment 

*t  is always the initial time for the controller. The first operation of MPC is to 
calculate a command sequence that should be applied to the system in the next 

uN  steps so that the system output would be forced to follow the set-point at its 
best in the next yN  steps, while using minimal command effort. The future 
output is estimated using the system model and, if available, future 
disturbances. This operation is illustrated in Figure 3-7 (a). 

The next operation of MPC is to provide the first value of the command 
sequence computed in the previous stage. Usually, due to modeling errors and 
disturbances, the output does not follow exactly its predicted evolution. Thus, at 
time step 1+kt  there will be a one-step prediction error (Figure 3-7 b). 
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Figure 3-7. MPC control principle 

As at the next time step 1+kt  the output of the real system is not the same 
as it was predicted at kt , MPC calculates a new command sequence for the next 

uN  steps and the operations described earlier are repeated. Since the state at 

1+kt  is different from the state previously predicted, the new command 
sequence also can slightly differ from the previous one (Figure 3-7 c). 

In order to perform the described operations, the following information 
is required: 

• The future evolution of the set-point, input/output constraints, if they 
exist, and the future disturbances if available. All these information 
form usually the inputs of the controller. 

• The system model, which is obtained before the controller setup. This 
is actually the main weakness of MPC because it is the most difficult to 
obtain. 

• The system current state which is usually estimated by a Kalman filter. 

The conceptual block diagram of MPC connected to the controlled system 
is illustrated in Figure 3-10. Besides the MPC ”kernel”, we can identify the 
Kalman filter whose role is to estimate the states of the plant model that can not 
be measured.  

Roughly speaking, this is the philosophy behind MPC. The way in which 
the future command sequence is calculated makes MPC an optimal control 
strategy. The optimization process minimizes a cost function, which usually 
combines two important criteria. The first one represents the difference 
between the predicted system output and its set-point for the future yN  time 
steps. The second one represents the command effort for the future uN  time 
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steps. The classical cost function used by MPC for a specific time sample kt  has 
the following mathematical formulation: 

[ ] [ ]∑∑
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+∆++−+=
uy N

i
k

N

Ni
k

sp
kkk ituiitytityitJ
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22 )()()()(ˆ)()(
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where: 

- variables spy  and )(ˆ kty ⋅  are the set-point and the estimated output at 
the moment kt , respectively;  

- u∆  is the variation of the input between two time steps; 

- parameters 1N  and yN  are the minimum and the maximum prediction 
horizon, respectively;  

- uN  is the control horizon;  

- δ  and λ  are weighing factors for process error and command effort, 
respectively.  

An advantage of criterion (3.10) is that this quadratic cost function has 
an analytical solution. However, when constraints are involved, the solution is 
found iteratively. 

 

 
Figure 3-8. Block diagram of the MPC connected to the system (Plant). Dotted lines designate 

optional signals, only if available. 

In conclusion, at each sample time, MPC runs an open-loop optimization 
and applies the first element from the computed sequence of the future 
command. At the next time sample, in order to correct the prediction error, it 
updates the system state and repeats the open-loop optimization. Thus, we can 
see that, contrary to classical feed-back control, which calculates the command 
based on the past system evolution, MPC calculates the command based on the 
future evolution of the inputs and actual states. 
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The time variation of the desired output, )(tyr , is known in advance (it is 
related to the set-point indoor temperature as a function of the occupational 
schedule of the building). Knowing the model of the system, the aim is to find 
the input, which minimizes the criteria given by equation (3.10). Depending on 
the model representation that we chose for our system, we can adopt one of 
existing algorithms from MPC family. We opted for an algorithm, which uses a 
convolution model due to several considerations: 

1. The cost function from (3.10) uses the increment of the command in 
order to penalize control effort. Thus, to predict the output of the system, 
ŷ , one needs to include an integrator in the system model. This means 

an extra state in the system model and consequently additional 
computational time and power. On the contrary, a convolution model is 
directly defined between the input increment and system output, so we 
do not have to include the extra integrator in the process model. 

2. In order to minimize the cost function (3.10), we have to invert some 
matrices, whose size depend on the length of the control and prediction 
horizons. As we want to compute a long sequence for the control, of 
order of days at sampling time of minutes or tens of minutes, we will 
have to invert large matrices. And because we have to introduce an 
integrator in state-space and transfer function models, the conditioning 
number of these matrices becomes very large (Wang, 2009). However, 
for convolution models, the conditioning number is smaller.  

3. Convolution model can be easily obtained by simulation. Even more, 
when we do not have any mathematical model, we can obtain the 
convolution model from step or impulse response of the real system. 

A MPC algorithm that uses convolution models is the Dynamic Matrix 
Control. 

3.4.2 Principles of Dynamic Matrix Control (DMC) 

Considering the step response of the system given by the following 
sequence: 

{ }...,,,...,,,0 21 nn ssss  (3.11) 

where n is the number of time samples after which the system settles. We can 
express the system output for any input sequence by: 
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i  (3.12) 
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Thus, the sequence (3.11) actually represents the model of the system. If 
we consider zero initial conditions, we can express the predicted output of the 
system for the future yN  time horizon in matrix form as: 

uSy =ˆ  (3.13) 

where : 

( ) ( ) ( ) ( )[ ] ;ˆ...3ˆ2ˆ1ˆˆ T
yNkykykyky ++++≡y  (3.14) 

( ) ( ) ( ) ( )[ ] ;1...21 T
yNkukukuku −+∆+∆+∆∆≡u  (3.15) 
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Next, we express the cost function (3.10) in matrix form and replace the 
predicted system output by relation (3.13): 

( ) ( ) uRuuSyQuSy T
r

T
rJ +−−=  (3.17) 

In (3.17), Q  and R  are diagonal matrices containing the weighting 
elements δ  and λ  of equation (3.10), respectively; ry  is a vector whose 
elements are the set-point (or reference) values for each future time samples. As 
the cost function from (3.17) has a quadratic form and the system is linear, 
there exists a value of u  which minimizes the function; this minimum will be 
the optimal command increment. In order to find this minimum, we express the 
derivate of the cost function and equal it to zero. Thus, the optimal command 
increment is: 

( ) r
TT yQSRSQSu 1* −

+=  (3.18) 

where : 
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( ) ( ) ( ) ( )[ ]TyNkukukuku 1*...21 **** −+∆+∆+∆∆≡u  (3.19) 

Once we got the optimal incremental command, which optimizes the cost 
function (3.17), we compute the command sequence by: 

( ) ( )∑
=

∆=
k

i
iuku

1

*  (3.20) 

Thus by applying relations (3.18) and (3.20) we get the optimal 
command for uN  future time horizon which optimizes cost function (3.17). 

3.4.3 Adapting DMC for command programming 

In the two previous subsections, we presented the principles of MPC and 
the general DMC method. In this subsection, we present some considerations on 
how we can apply the DMC algorithm for load calculation and how to choose the 
tuning parameters in order to obtain desired performances of the process. 

The Dynamic Matrix Control algorithm needs measurements of the actual 
state of the system at each sampling moment, computes the predictive 
command and sends to the process the first value from the sequence. In 
addition, in almost all practical situations we have physical constraints on the 
maximal and minimal value and/or change rate of the command. These 
constrains also can be included into optimization function using Lagrange 
multipliers (Wang, 2009). Then, the computation of optimal command becomes 
an iterative algorithm (not presented in this thesis). However, our aim is the 
load calculation, not indoor temperature control. Thus, the first and most 
important difference between control application of MPC and MPC based load 
calculation is that we do not impose any constraints on the command. We 
compute the evolution of the command in order to find the maximal needed 
power for an optimal control of the heating system for a given occupational 
scenario. Another difference is the control horizon: since in control applications 
we are interested just in the first element of the computed control sequence, we 
do not consider large control horizons and retain only the first element of the 
command sequence (3.20), the rest of the sequence being neglected. On the 
contrary, for load calculation, we compute the optimal control sequence only 
once and we keep all the elements of the sequence. This open-loop approach 
(which does not use the feedback as in MPC) is applicable because for the load 
calculation we consider that the disturbances (weather conditions and 
occupancy) and the set-point of the indoor temperature are known and the 
process is the model of the building, which implies that there is no difference 
between the process and its model. Finally, in control applications the control 
horizon is usually shorter then the prediction horizon. In our case, we will 
consider the control horizon equal to the prediction horizon. 
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The last elements which have to be defined for applying the DMC 
algorithm are the weighting matrix Q  and R . Usually they are identity matrix 
multiplied by a scalar. Each element of the matrix diagonal corresponds 
respectively to the error and to the command increment weight for each time 
sample. As they are weighting matrices, we can say that the relative importance 
of the first or the second term from the cost function (3.17) is not given by 
absolute value of the matrices elements Q  and R  but by their ratio. Therefore, 
we can keep one matrix constant and handle the second matrix in order to 
obtain different effects on the system response. For simplicity, we take the 
constant matrix as identity matrix. 

Because we are interested in computing the command sequence for the 
entire prediction horizon, it is easier to set the weighting matrix of the 
command, R , to identity matrix. The elements of the weighting matrix of the 
error between the output and the set-point, Q , will be properly set in order to 
achieve the relative importance of the two objectives. Thus, if we want the 
system response to follow more precisely the reference, the weighting matrix Q  
will have larger elements. As a consequence, when the set-point temperature 
will suddenly change, the command will be larger. Since the size of the heating 
source is related to the largest value of the load, which in this method is the 
command, requiring that the indoor temperature follows closely the set-point 
will lead to a large size of the power source. At the limit, the command will be a 
Dirac impulse. Therefore, it is advisable to relax the output error in the time 
interval around the switching moment of the indoor temperature set-point. We 
can achieve this relaxation by setting to zero those elements of the weighting 
matrix Q , which correspond to this period of time; this means that we do not 
penalize the system error at all for this time interval. Thus, since in this time 
span the system response is not penalized, the command will be smoother and 
the peak of the command will have a smaller value; longer the relaxation time, 
smaller the peak value of the command.  

If we want to obtain a better precision (i.e. a smaller difference between 
the zone temperature and its set-point) during the occupation period compared 
to the unoccupied period, we can relax the constraint on the precision of the 
indoor temperature before the occupied period. If we want the precision to be 
higher at the beginning of the occupation period, we may increase the values of 
the elements of matrix Q , which correspond to this period (Figure 3-9).  
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Figure 3-9. a) Set-point (reference) of air temperature; b) elements of the weighting matrix Q 

The advantage of increasing the relaxation time is that the peak load will 
be smaller; the disadvantage is that the energy waste will be larger since the 
indoor temperature will be larger than necessary (Figure 3-11). Therefore, 
choosing the values of weighing matrix Q  is an optimization problem which 
tries to minimize the total cost by making a tradeoff between the investment 
cost (the size of the power source) and the operation cost (the energy lost due 
to a higher indoor temperature). 

 

 
Figure 3-10. Block diagram for the thermal load calculation by using model predictive 

programming 
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Figure 3-11. Illustration of the system response for different relaxation time periods 

3.5 Methodology for load calculation based on model 
predictive programming 

Thermal load calculation is a control problem. Since for load calculation 
the time series of the disturbances and the set-point are given, the control 
problem may be transformed in a feed-forward (see section 3.3) and an open 
loop control (see section 3.4). The block diagram of this controller is given in 
Figure 3-10 which is a detailed representation of Figure 3-3. As the command is 
estimated in open loop, the proposed algorithm is a programming algorithm 
rather than a control algorithm (a control algorithm implies feedback to correct 
for imprecision in modeling of the process and of the disturbances). The steps 
needed to calculate the heating load by using model predictive programming 
are given in Table 3-1.  
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Table 3-1. Procedure for load calculation by using model predictive programming 

Step Action 

1 Find the dynamic model of the building in the form of transfer functions (Figure 3-5). 

2 Chose representative weather conditions and profile of the indoor temperature 
set-point: 

 for total load estimation chose the whole heating season 

 for maximal load estimation chose the worse period 

3 Find the initial conditions by repeating the simulation for the same 24h interval until 
permanent regime is attained. 

4 Compute the evolution of needed power to compensate weather conditions using 
feed-forward (equation (3.9)). 

5 Choose the weighting matrix Q (Figure 3-9). 

6 Use model predictive programming to compute the evolution of power needed for 
tracking the set-point temperature (relations (3.18) and (3.20)). 

7 Sum the time series of heat power (i.e. command sequence) for weather compensation 
with the time series of heat power (i.e. command sequence) for set-point tracking to get 
the total power.  

8 Choose the maximal value of the command to obtain the maximum load.  

3.6 Examples and discussions 

As an example, let us consider a three-storey building having the 
footprint area of 100 m². The values of the thermal parameters estimated 
during the design of the building are given in Table 3-2. 
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Table 3-2. Characteristics of the test building  

Parameter Symbol in 
Figure 2-4 

Value 

Walls capacity [J/K] 
wC  40·106 

Indoor air capacity [J/K] 
aC  72·104 

Thermal resistance of the walls [K/W] 
wR  1.9·10-3 

Thermal resistance of the windows and 
due to losses by ventilation [K/W] vR  1.4·10-3 

Outdoor convection resistance [K/W] 
coR  0.14·10-3 

Indoor convection resistance [K/W] ciwR  0.37·10-3 

 

Introducing the values from Table 3-2 in the models given by the system 
of equations (2.4) and applying the transformation from relation (2.2) we 
obtain the transfer functions: 

( ) 832

83

1 10637.610103.2
10637.610009.1

−−

−−

⋅+⋅+
⋅+⋅

=
ss

ssH ,  (3.21) 

( ) 832

12

2 10637.610103.2
10379.3

−−

−

⋅+⋅+
⋅

=
ss

sH ,  (3.22) 

and 

( ) 832

116

3 10637.610103.2
10816.510389.1

−−

−−

⋅+⋅+
⋅+⋅

=
ss

ssH .  (3.23) 

We impose a comfort temperature of 20 °C for the occupation period 
from 9:00 to 18:00 and 8 °C for the rest of the day. In order to find the initial 
conditions (the initial values of the state variables, i.e. wθ  and zθ ), we simulated 
the same scenario until the permanent regime was attained. 

By applying the proposed methodology, we obtain the results shown in 
Figure 3-12. We simulated two cases with different relaxation time, 1 h and 3 h 
respectively. Simulated weather conditions were those from Figure 3-13. It can 
be seen that when the relaxation time is smaller, the maximal needed power is 
greater.  
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Although we said that we will not impose constraints on the command in 
MPC algorithm, however there is a limitation that we have to impose. It is about 
nonnegative command. In reality, a negative heat power is equivalent to cooling. 
And it is logical that even if from optimal command results that we have to cool, 
we won’t cool the indoor area. 

In order to evaluate the energy savings engendered by reducing the 
relaxation time, we consider the example from Figure 3-12. Here we computed 
two possibilities for command programming, which rise the indoor temperature 
from 8 °C to 20 °C with a relaxation time of 1 h and 3 h. After 18:00, the heating 
is cut off. In both cases, the command for disturbance rejection is the same. 
Therefore, in order to compare energy consumption it is enough to compute 
only the command for set-point tracking. We can notice the same trend as 
above: for a smaller relaxation time, we get a larger maximal load. As compared 
to the steady state, for 3 h relaxation time, the heating power is 1.8 times larger, 
while for 1 h relaxation time, the heating power is 2.05 times larger. However, 
the energy consumption is with 13.6 kWh larger for the relaxation time of 3 h as 
compared with the relaxation time of 1 h. This means that if the heating system 
is sized to deliver 205 % of the power needed in steady state, we can save 
13.6 kWh per day as compared to having a system sized to deliver only 180 % of 
the steady-state power.  

 

 
Figure 3-12. System response (upper) and optimal command (lower) for two different relaxation 

time spans (simulation for two days) 
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Figure 3-13. Weather conditions. Solar radiation (upper) and outdoor temperature (lower) 

3.7 Conclusions 

The buildings are systems that are never in thermodynamic equilibrium. 
Therefore, the suitable basis for load calculation is heat thermal balance or its 
alternative, the thermal network method. The load calculation is a control 
problem. The procedures based on heat balance, which are used nowadays, are 
suitable for constant set-point of the indoor temperature and for permanent 
need of heating. However, low energy buildings are characterized by variable 
value of the indoor temperature set-point and by extended periods in which 
heating is needed only partially during a time interval of one day. Therefore, the 
existing procedures are not appropriate to load calculation of low energy 
buildings. Applying the existing procedures to low energy buildings has several 
drawbacks: 

• Indoor temperature is considered to be equal to its set-point; physically, 
this can be true only if the set-point is constant in time. 

• Maximum load varies significantly with the simulation time step; smaller 
time steps give exaggerated load peaks. 

• Load is not optimal; this results in heating load even when there is 
overheating.  

In the existing methods, the solution proposed to avoid these drawbacks 
is to use a controller. Usually, it is a non-optimal feedback controller, which is 
rarely properly tuned. Due to their inherent properties, the feedback controllers 
do not provide set-back time for warm-up the building which implies 
discomfort at the beginning of the period of building occupation.  
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During the design stage, a dynamic model of the building is available as 
well as the time series of the weather conditions and of the set-point indoor 
temperature. This gives the opportunity to find out an optimal program for the 
power needed by the building in order to reject the disturbances and to track 
the set-point. The solution proposed in this section is a combination of 
feed-forward compensation of weather disturbances and model predictive 
programming which is obtained by modifying the dynamic matrix control 
(DMC), a variant of model predictive control (MPC), for set-point tracking. This 
algorithm rejects the disturbances and gives the keys to unconstrained optimal 
set-point tracking and control command effort. Solving the problem of optimal 
set-point tracking needs the specification of the weighting matrix for output 
error (i.e. the difference between the set-point and the indoor temperature) and 
for command effort. This chapter proposes to set the weight matrix of the 
command to unity and to treat only the weighting matrix of the output error. 
Then, the values of the weighting matrix of the error are obtained by defining 
the duration of a relaxation time before the set-point change (i.e. the setback 
time), in which we accept larger values of the output error, and a reinforcing 
time at the beginning of the occupation period, in which the output error is 
forced to be low. The choice of these values needs to be done by considering 
investment and operation costs. Lower output error implies higher peak load, 
thus higher power of the installed heating system, but lower energy 
consumption. The tuning of the weighting matrix of the output error, based on 
these economical considerations, is not treated in this chapter. 
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Chapter 4 

Temperature control 

The goal of optimal control is to assure thermal comfort with minimal 
energy consumption. Of particular interest is the set-point tracking in 
intermittently heated buildings, and especially the set-back time to warm-up the 
building when the heating system is shut or slowed down during the night 
periods. Model Predictive Control (MPC) is considered one of the best candidate 
for this task due to its ability to use the occupancy schedule and weather 
forecasts for optimal temperature control. However, the classical formulation of 
the MPC cost function is not adequately formulated for minimizing thermal 
energy consumption. Therefore, we introduce a new criterion, which optimizes 
the energy in thermal systems, and we propose Linear Programming (LP) for 
solving this optimization problem.  

 

4.1 Introduction 

In this chapter, we focus on the development of a Model Predictive 
Controller (MPC) for hydronic heating systems working intermittently. MPC 
needs the model of the process and in Chapter 2 we proposed a low order 
thermal model for which the parameters are obtained by identification. We also 
have shown that the input-output relation between the temperature of the inlet 
water of the radiator (controlled input of the model) and the indoor 
temperature (the output of the model) is nonlinear and we determined the 
static nonlinearity. In this chapter, we first analyze the performance 
requirements, current control practices and MPC performances reported in 
literature for thermal control of building. Then, we suggest a cost function with 
a true energy meaning for the thermal systems. We give a solution for solving 
the optimization problem by using Linear Programming (LP). We show how to 
linearize the thermal model of the building by inverting its static characteristic.  
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At this stage, we consider that the hydronic heating system can deliver 
immediately water at the temperature calculated by the MPC algorithm. If the 
heating source (such as boilers, heat pumps, etc) is taken into account, a delay 
may occur between the request and the delivery of the hot water. This case, 
where the whole heating system is considered, is treated later, in Chapter 5. 

4.2 Temperature control in buildings 

Control theory is a vast research area which gives us an important 
number of controller types to perform automatic control. The choice of a 
controller must be performed by analyzing several factors, among which is the 
type of the desired performance. In intermittent heated buildings, temperature 
stabilization and disturbance rejection is not enough; we need to assure the 
comfort, i.e. to not have temperatures below the lower accepted limit during 
heating season, and to consume minimum energy. These particular 
performances are discussed hereafter. 

4.2.1 Usual requirements in intermittently heated buildings 

Energy savings can be achieved by adopting an intermittent heating 
strategy. However, a comfortable environment for the inhabitants must be 
assured. The thermal comfort is related to occupants’ health and productivity. 
Usually, if the comfort in the building is not assured, people improvise. When it 
is too hot they open the windows instead of lowering the temperature set-point 
or they use non-controlled backup heating sources when it is repeatedly cold. 
All these actions increase the energy consumption, which contradicts the initial 
objective – that of energy savings. 

Thermal comfort in buildings is influenced by several factors like 
temperature, relative humidity and velocity of the ambient air, mean radiant 
temperature, but also by clothing, person activity and metabolic rate. Fanger 
(1972) defined comfort indexes as PMV (Predicted Mean Vote) and PPD 
(Predicted Percent of Dissatisfied People), which today are used in European 
thermal regulations (CEN, 2005). ASHRAE Standard 55 (ASHRAE, 2004) defines 
a comfortable ambiance as being rather a comfort zone instead of a particular 
thermal environment. This zone (Figure 4-1), corresponds to 80 % of occupants’ 
acceptability, i.e. 20 % PPD, or, (-0.5 +0.5) range of PMV. 
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Figure 4-1. Comfort definition on the psychometric chart  

Comfort zone is mostly affected by the operative temperature (Figure 
4-1). Moreover, the heating system can act exclusively on the indoor air 
temperature. Therefore, we consider that during the heating season the comfort 
corresponds to a temperature range. 

A heating system adds energy to the indoor space. Therefore, a minimal 
energy strategy will always result in maintaining the zone temperature at the 
lower limit of the comfort temperature range. Hence the interest to define that 
inferior limit instead of a set-point temperature. During a period of 24 hours we 
may have two or more different low temperature limits, e.g. one for the daytime 
and one for the nighttime. 

Since the indoor temperature cannot change instantly between the two 
set-points, the question is how to handle the transition between these two 
temperatures. More precisely, what is the heat flux to be supplied to the 
building in order to obtain an indoor temperature, which satisfies the comfort 
criteria and minimizes the energy consumption? Qualitatively, we can 
distinguish four temperature evolutions (Figure 4-2). An evolution similar to 
curve 1 saves more energy than the others do, but the comfort is compromised 
at the beginning of the occupied period since the temperature is lower than the 
lower comfort limit. An evolution like curve 2 is often seen as a trade-off 
between energy consumption and user comfort. However, we intend to have the 
comfort satisfied all the time and to avoid the warm-up during the occupied 
period. An evolution similar to curve 3 consumes more energy than the previous 
two, but it satisfies the comfort criteria all the time. The fact that at the end of 
the night period the temperature begins to rise will not disturb people.  
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Figure 4-2. Evolution of lower temperature limit and possible scenarios for indoor temperature  

The question is when to restart the heating in order to reach the comfort 
temperature just at the beginning of the occupation period. We can imagine 
situations when we restart the heating earlier and get an evolution similar to 
curve 4 in Figure 4-2, thus consuming more energy than necessary. On the 
contrary, if we restart heating later, we retrieve the situation corresponding to 
curve 2. The setback time can not be fixed in time because it depends on many 
variables such as outdoor and indoor temperatures, building inertia, maximal 
heat power of the heating system, weather conditions, internal loads, etc.  

The optimization can be considered in the case of a fixed or a variable 
price of energy. Mathematically, the economical criterion can be expressed as:  

dttΦtJ
t

e ∫= )()(λ  (4.1) 

where ( )tλ  is a weighting factor and ( )tΦ  is the heat flux supplied to the 
building. 

When the energy price is constant during the day, minimizing the cost is 
equivalent to minimizing the energy consumption. In this case, the weighting 
factor ( )tλ  is constant in time, so the minimum of the criterion (4.1) depends 
only on the heat flux; therefore, ( )tλ  can be taken as unity. On the contrary, 
when the energy cost varies during the day, the weighting factor ( )tλ  is 
modulated in time according to the energy price. However, we must be careful 
with the definition from (4.1) when we want to minimize the cost of the 
consumed energy. The economical criterion is correctly defined only if the 
thermal energy is produced when it is injected into the building; this is the case 
for electrical heaters. In water based heating systems, there is a shift between 
the hot water preparation and its use. Thus, the relation (4.1) is not correctly 
formulated for this type of heating systems. Here, we will focus only on the 
energy consumption minimization or, equivalently, on the minimization of the 
cost considering a constant energy price. 
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Summing up, we may retain that: 

• When people feel thermal discomfort, they improvise and this leads to 
increasing of energy consumption, even more than would be necessary 
to ensure a proper thermal comfort. The cost of discomfort is so high 
that it is advisable to avoid temperatures below the lower comfort 
limit. 

• An acceptable comfort sensation is not just a set-point temperature but 
rather a comfort zone, which corresponds to a temperature range. As 
we are focusing only on the heating season, we retain the lower limit of 
the comfort temperature. 

• The controller needs to maintain the indoor temperature above the 
lower comfort limit by consuming as less energy as possible. This 
means that, besides disturbance rejection, the controller must predict 
the restart time to attain the comfort temperature at the right moment. 

4.2.2 Current practice in building thermal control 

Our focus is on the emitter control. The strategies to control heat sources 
are presented in Chapter 5. 

Since 2005, several groups of researchers have carried out surveys on 
the current thermal control strategies in buildings (Dounis & Caraiscos, 2009; 
Liao, Swainson & Dexter, 2005; Peeters, Van der Veken, Hens, Helsen & 
D'Haeseleer, 2008). Their surveys show that usually room thermostats and/or 
thermostatic valves on radiators (TVR) are used. Both controllers act on the 
radiator inlet water flow rate; room thermostats are on-off controllers and TVR 
are basically proportional controllers. In order to avoid frequent changes, the 
thermostats have a dead band. The survey revealed that the majority of the 
occupants failed to use TVR as they were designed, so they perform very poorly 
(Meier et al., 2010). Usually the users fail to reduce the emitted heat when it is 
too hot, resulting in room overheating and thus energy wasting. To solve the 
overheating problem, PID controllers are used on the radiator valves. These 
controllers improved the situation, but, in order to perform well, they need to 
be tuned correctly, which is very rarely made in practice (less than 5 %, 
according to our personal experience). 

Analyzing these types of controllers, we realize that they are more or less 
suitable for disturbance rejection, but inadequate for set-point tracking. Or in 
the case of intermittent heating we have set-point change at least two times a 
day. Moreover, the heating problem is not a simple set-point tracking but rather 
an anticipative reacting tracking (like curve 3 in Figure 4-2). Also, these 
strategies do not guarantee minimal energy consumption because they are not 
really designed for this purpose. Consequently, these types of controllers are 
inappropriate for the performance discussed in §4.2.1. Since classical on-off and 
PID control cannot achieve these performances, we must turn toward other, 
more advanced, control strategies. 
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4.2.3 MPC in building thermal control 

The drawbacks of the currently used controllers were noticed by 
researchers, which led to alternative solutions, especially from optimal control 
field (Bénard, Guerrier & Rosset-Louërat, 1992; Michaël Kummert, André & 
Nicolas, 2001; Zhao & Visier, 1991). The main step forward was the use in the 
optimization of the set-point schedule and weather forecast, which was not 
possible by using current practices. The use of weather forecast turned, by 
default, optimal control into predictive control. MPC is able to predict building 
reaction to control “orders”, and knowing the “path to follow” it can act 
adequately in order to achieve the required performances. 

Initially used in the late ’70s in chemical and petrochemical industries 
(Morari & Lee, 1999), MPC became widely accepted in other branches of 
industry. Yet, in the building research area it did not received much attention 
mainly because of important computational requirements. Some studies were 
directed to low cost implementation of MPC (Balan, Cooper, Chao, Stan & Donca, 
2011; Zhao & Visier, 1991). 

However, the development of the computational technology fostered the 
MPC in this field, especially for its advantages over other control strategies. Its 
main benefits are the possibility to treat in the same manner SISO (single-input 
single-output) or MIMO (multi-input multi-output) systems and its ability to 
explicitly take into account constraints on the input/output signals. These two 
features are very important in practice and especially in building thermal 
control. The possibility to treat MIMO systems permit us to include the 
disturbances in the optimization, thereby benefiting of outdoor temperature 
and solar gain forecast. The ability to treat the constraints allows us to take into 
account the command potential and/or to impose indoor temperature limits 
directly in the optimization process. 

Thus, in the last decade many research groups studied different aspects 
of MPC applied to building thermal control. Simulation-based studies were 
carried out for different systems like conventional water heating (Duburcq & 
Guillerminet, 1997), floor heating (Karlsson & Hagentoft, 2011), cooling (Ma, 
Borrelli, Hencey, Packard & Bortoff, 2009) and ventilation (Yuan & Perez, 2006). 
All these studies showed that MPC can be adapted for the specific requirements 
of the studied systems and achieve desired performances. Researches showed 
through simulations that MPC performs the best, saving the largest amount of 
energy while maintaining acceptable comfort in the building (Gyalistras & 
Gwerder, 2010; M. Kummert, André & Nicolas, 1997; Paris, Eynard, Grieu, 
Talbert & Polit, 2010). These theoretical investigations have been supported by 
experimental tests on real buildings (Chen, 2001, 2002; Gruber, Gwerder & 
Tödtli, 2001; Kolokotsa, Pouliezos, Stavrakakis & Lazos, 2009; Michaël 
Kummert, et al., 2001; Prívara, Siroký, Ferkl & Cigler, 2011). Similar to 
simulation-based studies, it has been found that MPC really reduces energy 
consumption and improves thermal comfort. Compared to classical control 
strategies, MPC saved up to 30 % of energy. This quantity varies depending on 
building type and weather conditions.  
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Another aspect of MPC, which was extensively studied, is the impact of 
the trade-off factor between the environmental comfort and energy 
consumption (M. Kummert, et al., 1997; Morosan, Bourdais, Dumur & Buisson, 
2010; Paris, et al., 2010). This factor, α , is used in the minimization of the 
following objective: 

ed JJJ +=α  (4.2) 

which assembles the economical criterion, eJ , and the discomfort criterion, dJ , 
in a single cost function, J . Being a tuning parameter of the controller, 
researchers tried to put in evidence the influence of this factor on the 
performance. They showed that its effect is quite intuitive, which facilitates its 
choice. 

Usually, MPC uses the optimization objective from equation (4.2). 
However, various economical and discomfort formulations can be employed 
within that cost function. Freire, Oliveira and Mendes (2008) showed the 
expected performances obtained when using different criteria. Although they 
studied only criteria based on comfort-zone and PMV, other formulations are 
possible (Kolokotsa, et al., 2009; Morosan, et al., 2010). For the economical 
criterion, there were used formulations like the one given in equation (4.1) 
(Chen, 2001; Michaël Kummert, et al., 2001; Morosan, et al., 2010), or the sum of 
the squared command increment (Freire, et al., 2008), or the second norm of the 
command (Kolokotsa, et al., 2009). 

As the weather prediction is essential for MPC applied to building 
control, the accuracy of these data can play an important role in the quality of 
the acquired performances. Therefore, the influence of the prediction 
uncertainties was also studied; Oldewurtel, Parisio, Jones et al. (2010) have 
formulated a stochastic MPC, which can handle the nondeterministic character 
of the weather.  

A particular feature, especially useful for intermittent building 
occupation, is the controller ability to assure comfort at the beginning of the 
occupied period. It must be mentioned that the use of the standard formulation 
of the cost function, equations (4.2) and (3.10), results in a temperature 
evolution like curve 2 in Figure 4-2: the comfort is compromised at the 
beginning and at the end of the occupied periods. In order to avoid this 
situation, one must substitute the real set-point signal by an artificial one, 
calculated by smoothing the real set-point and offsetting it in time (Camacho & 
Bordons, 2004); or use some zone constraints on the system output, thus 
penalizing the output only when it is outside of that zone (Maciejowski, 2000). 
Another approach is to adopt a variable weighting in the comfort criteria 
(Ghiaus & Hazyuk, 2010; Morosan, et al., 2010). 

MPC was adopted as the most adequate control strategy in building 
thermal control research projects like OptiControl in Switzerland (Gyalistras & 
The OptiControl Team, 2010), MPC for UC Merced Campus in USA (Ma, et al., 
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2009) and Intelligent Buildings and Rational Management of Renewable Energy 
“MIGRER” in France (Ghiaus & Hazyuk, 2010). Also, MPC found applications in 
different braches of building research area, other than control. One of them is 
the peak load reduction in intermittent heating (Ghiaus & Hazyuk, 2010) and 
cooling (Lee & Braun, 2008). 

4.3 MPC formulation for intermittent heating 

MPC is not a single control algorithm, which accepts a specific system 
model and can be solved by a single method. MPC is a concept, a large variety of 
control methods having in common the same principle: find the command that 
optimizes an imposed performance criterion for a future time horizon, 
performance that is predicted by means of the system model and future inputs 
(including set-points and disturbances). The difference between predictive 
control and classical feedback control is like driving a car looking forward, in 
the case of predictive control and looking in the rear-view mirror in the case of 
feedback control (Camacho & Bordons, 2004). The system model being the 
indispensable part of MPC, its varieties have been built around different types of 
model representation. Thus we can find predictive control strategies that use 
artificial neural networks, genetic algorithms, fuzzy logic, etc. or classical 
formulations using transfer function, state space or convolution models. 

In our approach, we represent the building by a discrete state-space 
model. The state space is a natural representation of a lumped capacity model 
and discrete models can be easily implemented in numerical equipments. 
Moreover, discrete-time MPC is easier to understand than the continuous one 
(Wang, 2009). 

4.3.1 Proper energy cost function for thermal systems 

The cost function must reflect the desired performances, which are to be 
optimized by the MPC. The cost function given by equation (3.10), which is used 
generally in MPC, does not reflect exactly the desired performances for building 
thermal comfort. The first part in the objective function (3.10) penalizes the 
system output error, thus forcing the system output to follow as good as 
possible its set-point. Although this is a performance required by most control 
systems, it is not needed in this case. Previously we defined that the desired 
output performance is to keep the indoor temperature above the lower comfort 
limit. And this does not correspond to the discomfort criterion implemented in 
(3.10). The second term in the objective function (3.10) penalizes the command 
increments between two consecutive time samples. This criterion smoothes the 
control signal; it is useful when a nonaggressive command is needed to reduce 
wear and tear of actuators. However, this criterion does not minimize the 
energy consumed by the system. The error made by considering this term for 
minimizing the energy consumption in thermal systems was reported only in 
several papers (Chen, 2001; Michaël Kummert, et al., 2001; Morosan, et al., 
2010), where a proper criterion for energy is used. They proposed a cost 
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function formulation as a weighted sum between energetic criterion from 
equation (4.1), which is a correct representation of the consumed thermal 
energy in buildings, and discomfort criterion based on PPD (Michaël Kummert, 
et al., 2001) or absolute output error (Morosan, et al., 2010). Thus, they 
obtained a trade-off between the consumed energy and the comfort. Chen 
(2001) used only economical criterion subject to command and temperature 
constraints and used dynamical programming to solve the optimization 
problem.  

We propose a cost function which minimizes energy consumption (given 
by equation (4.3)) subject to constraints on the input/output (i.e. the inlet water 
temperature should be in achievable operating range and the indoor 
temperature should be higher or equal to the lower accepted limit). This 
formulation allows us to use Linear Programming (LP) for solving this problem. 

For thermal systems, the cost criterion for energy is defined like in 
equation (4.1), taking a unitary weighting factor. From equation (4.1) we can 
define a proper energy meaning criterion to be used within MPC: 

∑
=

+=
uN

i
kke itutJ

1
)()(  (4.3) 

It is not sufficient to minimize only this cost function because the 
optimization may yield negative commands. And as the command is the heat 
flux, a negative value means that the building must be cooled. However, cooling 
needs energy and we do not want to cool the building in the heating season. 
Moreover, from a mathematical point of view, this cost function is not 
positive-definite and there is no guarantee to have a robust control law. Thus, in 
order to turn the objective (4.3) in a positive-definite function, the following 
constrains on the command are added: 

uk Niuitu 1,)(0 max =∀≤+≤  (4.4) 

The lower bound inequality turns the function (4.3) into a positive-definite (it 
avoids negative commands). Then, the lower and upper bound constraints force 
the command to be in the range of acceptable values. 

In order to assure the described output performances, we set the 
following constraints on the predicted output: 

ykkk Niittity 1),()(ˆ min =∀+≥+ θ  (4.5) 

where minθ  is the temperature corresponding to the lower comfort limit. We 
assume that the maximal value of the command is high enough in order to 
assure the minimal comfort temperature. 
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Thus, a proper energy meaning objective function for MPC, which will 
also assure the output performance requirements, has the following 
mathematical formulation:  
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 (4.6) 

Note that in the classical cost function (3.10), the algorithm optimizes the 
command increment and not the command itself. Therefore, an integrator must 
be artificially included in the system model (Wang, 2009). Thus, when the 
control horizon is smaller than the prediction horizon, yu NN < , in order to 
estimate the yN  steps of the future output, it is considered that the command 
increment between ykuk NtNt ++   is zero. It means that the absolute value of 
the command remains constant between ykuk NtNt ++   steps, and its value is 
the last command from the sequence, )( uk Ntu + . On the contrary, in our case, 
with the cost function from (4.6), where the absolute value of the command is 
calculated, if we consider that the control is zero between ykuk NtNt ++   
steps, it is impossible to assure the constraints on the output within this 
interval. Therefore, in the following equations we will use yN  to denote the 
prediction horizons as well as the control horizon. 

4.3.2 Solving MPC problem by using linear programming 

Having defined a proper cost function, the next problem is how to find 
the command sequence that minimizes the defined objective. The objective 
function in equation (4.6) is linear and subject to linear constraints. These 
features permit us to use linear programming (LP). There are several algorithms 
for LP problems, each one being adapted to small, medium or large-scale 
problems.  

The problem needs to be formulated so that LP can solve it. We start with 
the model of the controlled system. As mentioned above, in our approach we 
use a discrete time model of the system in state space representation: 


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 (4.7) 

The feed-through matrices, 1D  and 2D , from (4.7) are usually null; it is also the 
case for our application. This means that the current output depends only on the 
past inputs and not on the current input. Thus, these two matrices can be 
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omitted from the model (4.7). Using this model, we can estimate the future yN  
state values, )(ˆ)1(ˆ yNkk ++ xx  , as in the following: 
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Knowing the estimations of the future state, we can deduce the estimations of 
the future yN  output values: 
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We can see that the future outputs depend only on the current state value, )(kx , 
and current and future inputs, )1()( −+ yNkk uu   and )1()( −+ yNkk ww  . If 
we define the following vectors: 
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the estimations of the future yN  output values can be written in matrix form as: 

wΨuΨxFy 21)(ˆ ++= k   (4.11) 

where : 
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The matrices 1ΨF,  and 2Ψ  are functions only of the model parameters, which 
are constant. These matrices need to be calculated only once and it can be done 
offline. Therefore, there is no need of computational and time resources to 
calculate them during the control. 

A LP problem can be expressed in the following canonical form: 

bMz
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 (4.13) 

where z  represents the vector of variables, c  (not to be confused with upper 
case C , which represents the output matrix of the system) and b  are vectors of 
known coefficients and M  is a matrix of known coefficients. Thus, in order to 
solve our optimization problem (4.6) using LP, we have to formulate it as in 
(4.13). By defining the lower limit of the temperature in vectorial form: 
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we can define our optimization problem from (4.6) in canonical form as: 
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The vector c  is a unitary vector and the matrix I  is the identity matrix of proper 
size. Note that in order to express the output constraints in (4.15) we replaced 
the estimated output by the relation (4.11). Here the variables are the elements 
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of the future command sequence, u , and the other vectors and matrices are 
those from (4.10), (4.12) and (4.14). Thus, by matching the terms between the 
formulations (4.13) and (4.15), we identify the following definitions for the 
vectors and matrices of the canonical form of LP: 
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Supplying Mc,  and b  from (4.16) to a LP solver, we get the command sequence 
that minimizes the optimization problem from (4.6). Thus, at each time step we 
update the current state of the system model, )(kx , shift in time the elements of 
the disturbance prediction, w , and the output lower limit, miny , recalculate the 
last element of the vector b  from (4.16) and launch again the LP solver for the 
optimization. 

4.4 From theoretical heat flux control toward practical inlet 
water temperature control 

We can use LP to solve our thermal energy optimization problem, 
defined in (4.6) by a linear cost function. In the previous section, we showed 
how to formulate the MPC problem in order to fit it into LP framework. 
However, the above formulation is for a general linear system model. In our 
case, the system model is not exactly linear (see §2.5). Therefore, in this section 
we show how we can easily overcome the nonlinearity in our system and keep 
using the general formulation for LP to solve the optimization problem. 

4.4.1 Solution to the static nonlinear problem using nonlinearity 
inversion 

The controllable input of the thermal model of the building is the heat 
flux. However, as the heating system is based on water radiators, the real 
controlled input is the inlet water temperature and not the heat flux. We 
showed in §2.5.2 that there is a nonlinear correlation between the heat flux, gΦ , 
delivered by the radiators and the temperature difference between the inlet 
water temperature and zone temperature, zin θθ − . This correlation is illustrated 
in Figure 4-4 and has the following mathematical form: 

( )zinTradg hSΦ θθ −=  (4.17) 

where :  
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( ) 2544.085.36 zinTrad hS θθ −=  (4.18) 

The correlation (4.18) was identified from the measured data depicted in Figure 
4-4 (b) using a curve fitting tool.  

If the relation between gΦ  and zin θθ −  would be linear, we could use the 
temperature difference zin θθ −  as the input of the system model. Then, as the 
command, u , calculated by LP represents the temperature difference zin θθ − , 
we could calculate the inlet water temperature by adding to the command the 
measured zone temperature: 

zin u θθ +=   (4.19) 

However, as the relation between gΦ  and zin θθ −  is nonlinear, we cannot do it 
like this. Therefore, we propose the following static linearization, which still 
allows us to act as it is described above. 

Suppose that we have a system, whose behavior can be modeled by a 
linear transfer function, )(sH , and a static nonlinear function, )(uf , like in 
Figure 4-3. In a block diagram representation, these two functions can be 
viewed separately, but they cannot be separated in reality, i.e. we cannot 
intervene directly at the linear part without passing through the nonlinear part. 
This situation is quite common in practice. The goal is to control this system 
using the linear control theory. Of course, we could linearize the nonlinear part 
of the system model at the operating point. However, this liniarized model 
would be accurate only when the system performs around that operating point. 
When the system gets outside that operating point, we cannot guarantee the 
performances anymore and sometimes neither the stability of the control 
system. In order to overcome this inconvenience, we can make the following 
mathematical correction. We design the controller as usual using only the linear 
part of the model, )(sH . When operating in the control loop, the controller 
calculates the control signal that would achieve the imposed performance if the 
system would be )(sH . But, the nonlinear part of the system, )(uf , will deform 
the control signal calculated by the controller. Therefore, in order to counteract 
this deformation, we pass the control signal, u , calculated by the controller, 
through the inverse of the system static nonlinearity, 1)( −uf . By doing so, the 
control signal applied to the system, .nonlinu , is deformed in such a manner that 
when it passes through the system nonlinearity, )(uf , it regains its initial form, 
u , calculated by the controller (Figure 4-3). Thus, the inverse nonlinear function 
introduced after the controller masks the effect of the system nonlinearity and 
the controller performs correctly, as if there were not any nonlinearity in the 
system. 
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Figure 4-3. Static nonlinearity compensation in a control loop 

For our case, first, we consider that the relation between gΦ  and zin θθ −  
is linear, like it is shown in Figure 4-4 by the liniarized characteristic. Thus, we 
make a change of variables in the thermal model of the building. We use the 
temperature difference instead of the heat flux for the input of the system. Thus, 
the linear part of the system is the identified model in §2.6.2 and the nonlinear 
function is the relation (4.18). When making the change of variables, we must 
multiply the identified model by a static gain in order to scale the input to the 
range of values corresponding to temperature difference zin θθ − . This gain 
represents the linear characteristic that we imposed in Figure 4-4. It allows us 
to impose constraints on the inlet water temperature, which is more natural 
than imposing constraints on the heat flux. Therefore, when we calculate the 
inverse nonlinear function to be used with the controller, we take it as the 
inverse of the system nonlinearity (4.18), multiplied by the linear characteristic 
from Figure 4-4. The obtained inverse function for our case is: 

( ) 2544.01 02714.0)( −− = uuf  (4.20) 

Here u  is the first element from the command sequence calculated by the MPC. 

 

 
Figure 4-4. (a) Measured and liniarized characteristic of the heat flux (b) measured, liniarized and 

inversed characteristic of the heat transfer coefficient  

Thus, in order to formulate the model to be used within MPC, we must 
follow the next steps: take the model identified in §2.6.2 (three discrete transfer 
functions between each input and system output), convert all the transfer 
functions in a discrete state-space representation and multiply the transfer 
function corresponding to the heat flux input by the liniarized characteristic 
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from equation (4.20). In the control loop, the optimal command, u , calculated 
by MPC, which represents the temperature difference zin θθ − , must be passed 
through the function (4.20). Then, the inlet water temperature is calculated 
using the relation (4.19). 

Since the command calculated by MPC is the temperature difference 
zin θθ −  and not the inlet water temperature, the constraints in the LP problem 

formulation, (4.15), must be changed accordingly: the lower limit constraint is 
still zero, but the upper constraint must be calculated by: 

minmax,max θθ −= inu  (4.21) 

where max,inθ  is the maximal accepted inlet water temperature (usually 60 °C) 
and minθ  is the minimal zone temperature (e.g. 16 °C). 

4.4.2 Nonlinearity effect on the control system performance 

Previously we showed how to solve the problem of the system static 
nonlinearity by placing the inverse of that nonlinearity between the controller 
and the system. We adopted this strategy in order to neutralize the nonlinearity 
between the inlet water – zone temperature difference and the heat flux 
delivered by the radiators. 

Looking at this characteristic in Figure 4-4 (a), we might think that the 
nonlinearity might be easily compensated by the feedback. Therefore we 
compare the obtained control results by using the process models obtained by 
classical local linearization (around the operating point of 40 °C for zin θθ −  
temperature difference) and with the proposed linearization (using equation 
(4.20)). The obtained results are shown in Figure 4-5. We can notice that in the 
first case, for certain days the controller performance is poor. This is related to 
the fact that during these days the operating point was outside the validity 
range of the model. In the second case, using the inverse function of the 
nonlinearity, the model remains valid on the entire operating range, and thus 
the performance was optimal for all the days. We can notice that in the second 
case the average temperature is almost always above the minimum limit 
temperature, but very close to this limit during the daytime in order not to 
consume more energy than necessary. This profile looks ideal since it meets the 
users' comfort conditions and saves the maximum amount of energy. 
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Figure 4-5. Simulation results obtained with classical and proposed linearization 

4.5 Conclusions 

This chapter provides a solution for optimal thermal control of 
intermittently heated buildings. A comfortable environment influences the user 
health, satisfaction and productivity. An uncomfortable environment leads to 
unnecessary energy wasting that would be avoided by assuring a proper 
comfort. The comfort is mostly affected by the operative temperature. However, 
usually it is more convenient to measure the indoor temperature instead of 
operative temperature. Since the comfort standards state that a comfortable 
ambiance is rather a comfort zone instead of a particular thermal environment, 
we chose to maintain the temperature within a defined range instead of a 
certain set-point. As we treat only heating, we defined only the lower 
temperature bound to be assured. This means that the indoor temperature must 
be maintained above this bound with lowest energy consumption (which limits 
in fact the upper comfort temperature level). 

Currently, temperature control is done mostly by central room 
thermostats and/or thermostatic valves on radiators. In the best case, we can 
find PID controllers on the radiator valve. These strategies cannot guarantee 
minimal energy consumption because they are not designed for this purpose. 

MPC was identified as being one of the best candidates for this task due 
to its advantages over other control algorithms: 

• the ability to use the occupancy schedule and weather forecast for 
optimal temperature control; 

• the possibility to integrate both comfort and energetic criteria in the 
optimization; 

• the ability to handle implicitly the constraints on the system and to 
operate with multi-input multi-output systems, which is very 
convenient in building thermal control. 
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MPC acts in two steps: it calculates the command sequence which would 
optimize the output during a future time horizon and then applies the first value 
of this sequence to the system. Then, at the next time step, it recalculates the 
command sequence from the new state of the system. However, the square of 
the command increment from the classical formulation of the cost function used 
by MPC is inadequately formulated for the required performances in buildings. 
First, it does not minimize the energy consumption and second, the use of a 
trade-off between energy savings and discomfort is subjective. Therefore, in 
order to overcome these inconveniences we proposed a new formulation of the 
cost function which minimizes the absolute value of the command. 

The principle of the trade-off between energy savings and comfort was 
also identified as a problem of the current practice in MPC. The drawback is that 
we can get different performance of the control system depending on what has 
been privileged – energy savings or comfort. Moreover, there is an additional 
parameter to be tuned when using trade-off. The problem was solved by 
changing the principle; we impose the minimal comfort as the lower limit in the 
optimization algorithm. Thus, MPC calculates a command that assures minimal 
comfort while using the smallest amount of energy. 

By changing the cost function, we were forced to change also the 
algorithm used to solve the optimization problem. For the cost function we 
introduced, the proposed solving algorithm is linear programming (LP). 
Therefore, we formulated the problem so that it fits into the canonical 
formulation of LP. 

The use of MPC requires a dynamical model of the building. During the 
modeling, we revealed some nonlinearity in the static characteristic of the 
model. We used this nonlinear characteristic here, in this chapter, for model 
linearization. This linearization allowed us to use the model on the entire 
operating range and not just around some operating point, like in classical 
linearization. 

As the nonlinear characteristic between the heat flux and zin θθ −  
temperature difference seemed not to be so nonlinear, one might believe that 
the controller in the closed loop can handle very well this situation, eventually 
poorly degrading the performance. In order to prove the contrary, we provided 
a simulation example where we compared the results obtained in two 
situations. In the first situation, we used a local linearized model, while in the 
second situation, we used the inverse nonlinearity between the controller and 
the process. The results showed that in the first case, for certain days the 
control system achieved very low performance, while in the second case, the 
performance was optimal for every day. Thus, by using the inverse nonlinearity 
between the controller and the process, we can guarantee the performance on 
the entire temperature range. On the contrary, we cannot have this certainty if 
we use just the model linearized around some operating point. For our case, this 
is very important because, unlike other processes, the buildings operate on the 
entire temperature range, i.e. the zin θθ −  temperature difference always varies 
between around 0 and 44 °C, and not just around some specific point. 
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Concerning the overall performance, we have shown that MPC has been 
able to achieve the expected results. The average temperature almost always 
has been above the minimum comfort temperature, but still very close to this 
limit during the daytime in order not to consume more energy than necessary.  

Although we obtained promising results, advancements in the following 
directions can be made: 

• Here, the thermal control is based on a mono-zone model, even if the 
tests were performed on a building with several rooms. It would be 
necessary to investigate multi-zone models. This change will raise 
many questions: do we develop a MPC by zone or a new distribution 
function of the heat flux in each zone; how the inter-zone coupling 
affects the performance; should we define an objective function by 
zone which takes into account the needs of the adiacent zones? Some 
investigations in this direction can be found in Morosan et al. (2010). 

• In our simulations, we considered that the weather predictions were 
100 % reliable. The fact that at each time step the controller 
re-evaluates the optimization using updated weather forecast fixes 
the problems but, probably, with a variable performance. Thus, it is 
necessary to check out weather forecast precision impacts on energy 
consumption and especially on comfort. Some investigations in this 
direction can be found in Oldewurtel et al. (2010). Also, as the 
regulation is based on a mathematical model of the building, it would 
be very useful a sensitivity analysis of the model parameters’ 
uncertainties on the control performance. 
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Chapter 5 

Performance assessment 

Usually, when temperature controllers are tested, it is considered that 
the needed energy is always available. Thus, the resulted performances are ideal 
for the tested controller. However, in reality, the controller acts like a valve: it 
regulates the energy flow between the minimal value technologically possible 
and the maximum available energy. If the calculated command is outside this 
range, it enters in saturation and the obtained performance is degraded. 
Therefore, in order to obtain realistic performances during the test, we 
integrated the Model Predictive Control (MPC) algorithm for temperature 
control of the buildings in a Building Energy Management System (BEMS) and 
tested by emulation, on a dedicated test bench, its performance concerning the 
thermal comfort, energy consumption and system wear and tear. As compared 
to two PID-based classical solutions, the proposed MPC reduces the discomfort 
up to 97 %, reduces the energy consumption up to 18 %, and reduces the 
number of on-off cycles of heat pumps up to 78 % and of auxiliary hydraulic 
pumps up to 89 %. 

 

5.1 Introduction 

In Chapter 4, we designed a Model Predictive Controller (MPC) dedicated 
to temperature control in buildings. This controller calculates the necessary 
amount of heat to be introduced into the building in order to assure the minimal 
imposed temperature with minimal energy consumption. In heating system 
based on hot water, the energy flux of the radiators is manipulated by varying 
either the inlet water temperature or the water flow. The MPC proposed in  
Chapter 4 calculates the inlet water temperature considering a constant flow 
through radiators. 

In Chapter 4, we have considered that the energy source can deliver the 
requested power when necessary, i.e. the hot water is at the temperature 
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demanded by the controller. The controller acts by reducing the flow of energy 
from the maximum available down to the technological achievable minima. 
When thermal energy is provided by a hydraulic heating system, a fully 
functional controller must handle the mass flow in the system. The difficulty is 
that the hydraulic heating systems are multipurpose systems, i.e. they are used 
for building heating but also for Domestic Hot Water (DHW) preparation. The 
coexistence in the same building of renewable and conventional energy sources 
transforms the heating hydraulic systems into multisource systems. The MPC 
proposed in Chapter 4 needs to be integrated in the Building Energy 
Management Systems (BEMS) of this multi-source multi-consumer system. 

BEMS are designed to provide comfort in buildings, to reduce energy 
consumption but also to manage wisely the hydraulic system itself. The 
hydraulic system used for our test building contains equipments like valves, 
hydraulic pumps and a heat pump. The command of most of them is on-off, 
which wears them if they are frequently switched. This is even more critical in 
the case of very expensive equipments like the heat pumps. Therefore, an 
important characteristic we must look at in a BEMS is the number of on-off 
cycles of the hydraulic heating equipment. 

The first point treated in this chapter is the design of a BEMS which 
integrates the MPC designed in Chapter 4. We present the hydraulic heating 
system itself and the way to operate it in order to assure hot water and 
comfortable thermal environment with minimal energy consumption and 
reduced solicitation of the hydraulic equipment. 

The second point treated in this chapter is the test and evaluation of the 
proposed BEMS against two classical solutions based on PID and scheduled start 
PID controllers. In order to have reproducible test conditions, we have chosen 
to test the proposed BEMS through emulation. We implemented the control 
algorithm on an industrial microcomputer and tested this controller on the test 
bench for building controllers of CSTB (French Scientific and Technical 
Construction Center). 

 The assessment of the proposed BEMS performance is made against 
several criteria concerning thermal comfort, energy consumption and number 
of on-off cycles. The results of these indices are then compared with those of the 
classical solutions in order to determine the benefits of the proposed control 
algorithm. 

5.2 Hydraulic system specification 

The analyzed hydronic heating system uses a combination of classical 
and renewable sources for indoor climate control and for domestic hot water 
(DHW) preparation (Figure 5-1). Since it has two kind of energy sources 
(classical and renewable) and two kind of consumers (building heating and 
DHW preparation), it is a multi-source multi-consumer system. 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0130/these.pdf 
© [I. Hazyuk], [2011], INSA de Lyon, tous droits réservés



Chapter 5.  Performance assessment 

PhD thesis – Ion HAZYUK 105 

The hydraulic system from Figure 5-1 has the following main 
components: 

• Two renewable energy sources, i.e. a solar panel of 20 m2 (point 1) 
and an air-water heat pump (point 7) and a classical energy source, 
i.e. a 2 kW electrical heater (point 8). The heat pump supplies water 
at 65 °C, independent of the outdoor temperature. 

• Two energy consumers, hot water consumption (point 16) and water 
radiators for building heating (point 19). Each room contains a 
radiator. 

• Two hot water storage tanks. The first one (point 4) having 300 liters 
is coupled to the solar panel and the second one (point 10) having 
100 liters is dedicated to DHW preparation. Both tanks are well 
insulated and placed in a heated space. The electrical heater is placed 
in the upper part of the DHW tank. 

• A hydraulic decoupling bottle (point 15) which creates a neutral 
hydraulic point between the primary and secondary circuits in order 
to avoid any interactive dynamic pressure induced by their pumps 
(Ghoul, 1999). 

The solar panel (point 1) heats the water from the first storage tank 
(point 4) through the heat exchanger (point 6) placed at the bottom of the tank. 
The water between the solar panel and the tank is circulated by a pump (point 
2) through a 3-way valve (point 3). 

The second storage tank (point 10) is dedicated exclusively for DHW 
preparation. The water from this tank can be heated in three different ways. 
First possibility is to heat it using the hot water from the solar tank (point 4). 
The pump (point 11) can circulate the water between these two tanks thus 
replacing the water from the DHW tank by the hot water from the solar storage 
tank. The second possibility is to heat DHW by the heat pump (point 7) through 
the heat exchanger from the bottom of the tank (point 9). The heat pump 
supplies hot water at 65 °C which is circulated by the pump (point 13) through 
the 3-way valve (point 12) directly to the heat exchanger (point 9). The third 
possibility to heat the DHW is to use the electrical heater (point 8) integrated in 
the upper part of the DHW tank (point 10). 

In each room of the building there is a water radiator (points 19); its hot 
water can be supplied by two sources: the heat pump (point 7) and the solar 
storage tank (point 4). A decoupling bottle (point 15) separates the consumer 
hydraulic circuit, to which the radiators are linked, from the supply circuits. 
Every time the building is heated, at least two pumps will operate 
simultaneously: the pump of the consumer circuit (point 18) and one of the 
pumps of the supply circuits: either the pump (point 14) circulating water 
between the decoupling bottle and the heat exchanger (point 5) from the solar 
tank or the pump (point 13) that circulates water from the heating pump to the 
decoupling bottle through the 3-way valve (point 12). The water temperature 
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for the radiators can be adjusted by a 3-way mixing valve (point 17) that mixes 
the high temperature water coming from the decoupling bottle (point 15) and 
the colder water from the radiators outlet (point 25). 

This hydraulic system is integrated in the building described in §2.2. All 
the components of the hydraulic system have been sized based on a simulation 
study of annual needs of heat and hot water. It should be noted that this 
hydraulic configuration was aimed to test the proposed BEMS. It is a 
configuration that could be found in a particular dwelling and is not intended to 
be the best configuration that can be achieved. 

 

 
Figure 5-1. Hydraulic system of the test building 

The BEMS can act on the following components (in Figure 5-1): 

• In the solar panel circuit, we can act on the pump (point 2) and the 
3-way valve (point 3) in order to store the solar energy gathered by 
the solar panel. Both equipments support bi-positional control only. 

• In the DHW circuit, we can act on the pump (point 11) to drain hot 
water from the solar tank into the DHW tank. The electrical resistance 
(point 8) and the heat pump (point 7) through the circulation pump 
(point 13) and the 3-way valve (point 12) are also used to add energy 
to the DHW tank. All these equipments have on-off control. When on, 
the heat pump provides hot water at 65 °C and the electrical 
resistance works at its nominal power. 
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• In the heating distribution circuit, the heating control system can act 
in two ways. First way is by acting on each radiator valve (points 20) 
in order to control the water flow traversing the radiators. Second 
possibility is to control the radiator inlet water temperature by the 
3-way mixing valve (point 17) on the consumer hydraulic circuit. In 
both cases the control can be either bi-positional or continuous. Also, 
in both cases the controller drains the water acting on the pump 
(point 18) from the consumer circuit and on the pumps (point 13 or 
14) from the source circuits. The heat flux from the heat pump is 
directed to the radiators by a 3-way valve (point 12). The pumps and 
the non-mixing 3-way valve support only bi-positional command. 

Several constrains on the hydraulic system operation must be taken into 
account. The solar tank (point 4) and the heat pump (point 7) cannot supply the 
radiators simultaneously. Since the 3-way valve (point 12) can direct water in a 
single direction, the heat pump cannot supply simultaneously the radiators and 
DHW tank (point 10). On the contrary, the solar tank can supply at the same 
time water to the DHW tank and to the heating system. The DHW tank can be 
heated by all three sources simultaneously, i.e. solar tank, heat pump and 
electrical resistance. It must be reminded that all the hydraulic pumps are 
constant flow pumps. 

5.3 Reference PID-based building energy management 
systems 

In order to asses the performance of the proposed BEMS, first, we define 
two reference systems based on PID and PID plus scheduled start controllers, 
which are among the most advanced systems that can be found today in 
dwellings (Dounis & Caraiscos, 2009; Liao, Swainson & Dexter, 2005; Peeters, 
Van der Veken, Hens, Helsen & D'Haeseleer, 2008). The role of the BEMS is to 
act on every pump and valve of the hydraulic system in order to assure the 
users comfort, i.e. proper indoor temperature and hot water, while using less 
possible energy. As stated in §4.2.1, proper indoor temperature means that the 
indoor air temperature must be above a minimal limit, which is defined by the 
users. In our case, the minimal temperature was set to 19 °C for the daytime, i.e. 
between 07:00am and 10:00pm, and 16 °C for the nighttime, i.e. between 
10:00pm and 07:00am.  

5.3.1 First reference control system 

The PID-base BEMS is described in Figure 5-2 by GRAFCET, which is a 
standardized language for discrete event processes (David & Alla, 1992). 
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Figure 5-2. GRAFCET description of the PID-based BEMS. (a) control of the solar circuit (b) control 
of transfer between the tanks (c) control of the heat pump circuit (d) control of the heating circuit. 

Actuator and sensor numbering corresponds to that from Figure 5-1. 

In the first solution, the solar panel circuit is controlled by a differential 
controller with hysteresis (Figure 5-2 a). Every time when the fluid temperature 
in the upper part of the solar panel (Figure 5-1, point 1) is higher than the water 
temperature in the lower part of the storage tank (point 21) plus the hysteresis 
value, the controller turns on the pump (point 2) and switches the valve (point 
3) to direct the water toward the heat exchanger from the tank. The pump is 
turned off when the fluid temperature in the upper part of the solar panel (point 
1) is lower than the water temperature in the lower par of the storage tank 
(point 21). In this case, the 3-way valve is also switched in the initial position to 
bypass the heat exchanger from the tank. 

The control of DHW production is also of differential type (Figure 5-2 b 
and c). When the temperature in the upper part of the DHW tank (point 24) 
drops below 55 °C, the heat pump (point 7) is turned on, the same as the 
hydraulic pump (point 13); the 3-way valve (point 12) is positioned to direct the 
water toward the DHW tank. When the temperature in the upper part of the 
DHW tank (point 24) exceeds 60 °C, the heat pump and the hydraulic pump are 
turned off. In order to use as much stored solar energy as possible, every time 
when the water temperature in the lower part of the DHW tank (point 23) is by 
2 °C lower than the water temperature at the upper part of the storage tank 
(point 22), the controller turns on the pump (point 11). This pump will stop 
only when the water temperature in the lower part of the DHW tank (point 23) 
gets higher than the water temperature at the upper part of the storage tank 
(point 22). In this configuration, the electrical resistance is not used because 
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DHW preparation is the priority task for the heat pump, which is able to assure 
anytime the availability of DHW. 

For the thermal environment control, a PID controller is used on each 
radiator valve (points 20). Thus, the valve positions are controlled continuously 
between wide opened and closed positions and the effect is a varying flow rate 
through the radiators. The input of the PID controller is the error between the 
indoor set-point temperature and the air temperature of the room, which is 
given by a temperature sensor from the concerned room. The set-point 
temperature considered for PID controller will be the minimal temperature 
limit given above, i.e. 19 °C between 07:00am and 10:00pm, and 16 °C between 
10:00pm and 07:00am. The controller output is the position of the valve on the 
radiator. The controller parameters were tuned using Ziegler-Nichols method 
(Ziegler & Nichols, 1942), and for our test building they are: 2=P  and sI 1600= ; 
the derivative component is not used, thus 0=D . If at least one of the PID 
controllers gives a nonzero command, i.e. a valve is being opened, the 
management system starts up the pump of the consumer circuit (point 18). The 
3-way mixing valve (point 17) is always positioned to drain hot water from the 
decoupling bottle. When there is a demand for heating, the solar storage tank is 
the priority hot water supplier (Figure 5-2 d). If the water temperature in the 
upper part of the storage tank (point 22) is higher than 30 °C, water is drained 
from the tank by turning on the pump (point 14). If the water temperature in 
the upper part of the storage tank (point 22) is lower than 30 °C, we check if the 
heat pump is not used for DHW preparation. If it is not used, we turn on the heat 
pump (point 7) and the hydraulic pump (point 13) in order to supply hot water 
for the heating (Figure 5-2 c). But, if the heat pump is already used and the 
water in the upper part of the storage tank is lower than 30 °C, we cut down the 
pump (point 18) of the consumer circuit and wait until one of the sources will 
be available. 

We can notice that this configuration gives a higher priority to DHW 
preparation then to building heating. In the simulation tests, we realized over a 
year, we practically never had intervals where there was a heating demand and 
both sources were not available. Yet, it does not mean that we are exempted of 
this situations for other occupation scenarios or/and meteorological conditions. 

5.3.2 Second reference control system 

The second configuration of the BEMS is very similar to the first one. The 
only difference between these two is the PID controller for the valves on 
radiators. As stated before, the indoor set-point temperature changes form 16 to 
19 °C at 07:00am and from 19 to 16 °C at 10:00pm. Also, in order to assure the 
comfort, it is required to maintain the indoor air mean temperature above the 
minimal limit. A PID controller, like the one used in the first BEMS configuration, 
can not satisfy this requirement. The set-point will change at 07:00am and only 
then the controller will open up the valves on the radiators. Thus, due to the 
thermal inertia, the indoor temperature will not reach immediately 19 °C so the 
comfort will be compromised at the beginning of the daytime.  
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A solution to this problem is implemented in the second reference BEMS. 
Practically, we keep the same PID controller on the terminal valves, with the 
same parameters of the controller, and shift two hours ahead the set-point 
change moment in the morning. Now the set-point will change at 05:00am 
instead of 07:00am and this set-back time allows the increasing of the indoor 
temperature. This technique is also called PID with scheduled start. The period 
of two hours ahead was obtained from trial and error by searching the 
maximum time for heating up the building in winter period. By using a PID with 
scheduled start instead of a simple PID controller, we will get better comfort. 
However, because the PID with scheduled start will start earlier, the building 
will consume more energy.  

5.4 Proposed MPC-based building energy management 
system 

The thermal control part of the proposed BEMS is principally based on 
the MPC controller that is described in Chapter 4. The control strategy of the 
sources (Figure 5-3) resembles that of the reference BEMS: it is also based on 
differential control. Thus, the solar panel circuit is controlled by a differential 
controller with hysteresis (Figure 5-3 a), exactly as in the reference BEMS. The 
hydraulic pump starts up when the fluid temperature in the upper part of the 
solar panel is higher than the water temperature in the lower part of the storage 
tank and stops down when this condition is no more satisfied. In order to avoid 
frequent pump switching, a hysteresis is used. 

The control of domestic hot water (DHW) production is also of 
differential type but slightly different from that of the reference configuration. 
Here, also as in the reference configuration, the solar storage tank and the heat 
pump are used for DHW preparation. However, if in the reference case the heat 
pump priority was to prepare DHW, in this case the priority of the heat pump is 
the building heating. Therefore, in order to assure at any time the availability of 
the hot water, we use an electrical resistance dedicated uniquely for hot water 
preparation. This resistance is placed in the upper part of the DHW tank so it 
heats almost instantly the water for use. Thus, the control strategy for the DHW 
preparation is the following: when the temperature in the upper part of the 
DHW tank drops below 55 °C and the heat pump is not used for building heating 
at that moment, the control system will turn on the heat pump and the hydraulic 
pump (Figure 5-1, points 7 and 13) and position the 3-way valve (point 12) to 
direct the water toward the DHW tank. When the temperature in the upper part 
of the DHW tank (point 24) exceeds 60 °C, the heat pump and the hydraulic 
pump are turned off (Figure 5-3 c). If the heat pump is not available, then we 
turn on the electrical resistance (point 8) at nominal power (Figure 5-3 e). 
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Figure 5-3. GRAFCET description of the MPC-based BEMS. (a) control of the solar circuit (b) control 

of the transfer between the tanks (c) control of the heat pump circuit (d) control of the heating 
circuit (e) control of the electrical heater. Actuator and sensor numbering corresponds to that from 

Figure 5-1 

On the contrary, the exchange between the solar storage tank and DHW 
tank remains the same (Figure 5-3 b). When the water temperature in the lower 
part of the DHW tank (point 23) is by 2 °C lower than the water temperature at 
the upper part of the solar storage tank (point 22), the command turns on the 
pump (point 11). This pump stops down when the water temperature in the 
lower part of the DHW tank (point 23) gets higher than the water temperature 
at the upper part of the storage tank (point 22). 

What is very different in this configuration from the reference 
configurations is the thermal control. Instead of using a PID controller on each 
valve on the radiators, we use a single MPC controller on the 3-way mixing valve 
on the consumer circuit (point 17). This is actually the “kernel” of the proposed 
BEMS that allows us to improve significantly the system performance. The MPC 
is more advanced than PID controller because it takes into account occupancy 
schedule and weather forecasts for optimal temperature control. 

In this configuration, the valves on the radiators are kept wide opened all 
the time. The MPC controller acts only on the radiators inlet water temperature 
by mixing the hot water coming from the decoupling bottle and that from the 
outlet of the radiators. MPC calculates the inlet water temperature for the 
radiators. This value is supplied to a block that calculates the 3-way mixing 
valve opening ratio based on the water temperature from the decoupling bottle 
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(point 15) and radiators outlet water temperature (point 25) measurements. 
The 3-way mixing valve opening ratio is calculated by: 

coldhot

MPChot

TT
TT

r
−
−

=  (5.1) 

where: 

r  is the 3-way mixing valve opening ratio (zero corresponds to completely pass 
the hot water from the decoupling bottle and one corresponds to inject the 
outlet water again into radiators) 

hotT  – water temperature from the decoupling bottle (point 15) 

coldT  – water temperature of the outlet water (point 25) 

MPCT  – water temperature calculated by MPC. 

The opening rate of the 3-way mixing valve must vary between zero and 
one. Therefore, in order to relation (5.1) be valid, the following constraint must 
be imposed: 

MPChot TT ≥  (5.2) 

When there is a demand for heating from MPC, the controller will 
automatically start the pump (point 18) of the consumer circuit (Figure 5-3 d). 
The solar storage tank has priority for hot water supplier for the heating. First, 
we check if the water temperature of the upper part in the tank (point 22) 
satisfies the condition (5.2), where hotT  is the water temperature of the upper 
part of the solar tank. If the condition (5.2) is satisfied, than the controller starts 
the hydraulic pump (point 14), and if not, the controller automatically starts the 
heat pump and the affiliated hydraulic pump (points 7 and 13) and turn the 
3-way valve (point 12) toward the decoupling bottle (Figure 5-3 b). When the 
heating controller decides to use the heat pump for indoor heating, the 3-way 
valve (point 12) will always be switched toward the decoupling bottle because 
heating is the priority task of the heat pump. So if the heat pump is in the middle 
of the DHW preparation, this action will be interrupted and the task is taken by 
the electrical resistance (point 8). Also when the building is heated by the heat 
pump, the constraint (5.2) will always be satisfied because the heat pump 
provides always water at 65 °C and we set a constraint in MPC for the maximal 
command, i.e. inlet water temperature, to 60 °C. Thus, the water temperature 
supplied by the heat pump will always be higher than that demanded by the 
MPC. 
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5.5 Control performance criteria 

In order to asses the performance of the proposed BEMS, we compare 
the obtained control results with those of two reference systems. In order to do 
this, we need to have performance criteria calculated for the entire test period. 
These criteria must reflect in a single value the specific performance we are 
looking for. Hereafter we present the performances that we are interested in 
and the criteria that are usually used to reflect these performances. 

As the aim of the BEMS is to assure the thermal comfort with minimal 
energy consumption, the performances we are looking for are the respect of the 
required comfort condition and the consumed energy. A particular feature of a 
control system is the aggressiveness of the calculated command. This feature 
plays a decisive role for the wear and tear of the actuators, so it becomes 
important in situations where we have expensive actuators like here, i.e. heat 
and hydraulic pumps. 

5.5.1 Comfort criteria 

As the system we treat is a multi-source multi-consumer and we have 
two consumers, i.e. building heating and DHW preparation, the comfort is 
related to both tasks. For DHW preparation, the comfort is considered as being 
assured if the water temperature at the upper part of the DHW tank is always 
higher than 55 °C. This will prevent the development of the Legionella. 

For the thermal comfort, in §5.3 we defined the lower limit temperature 
of 19 °C between 07:00am and 10:00pm, and 16 °C between 10:00pm and 
07:00am (CSTB, 2005). Thus, the comfort is assured if the indoor air 
temperature is always above this minimal limit. Here, we will use two criteria: 
one concerning only the thermal comfort, which is the excess-weighted PPD, 
and one concerning a combination between comfort and energy consumption, 
which is optimal start of the heating system. These criteria are described 
hereafter. 

5.5.1.1 Excess-weighted PPD (PPD.h) 

Fanger (1972) developed Predictive Mean Vote (PMV) and Predicted 
Percentage of Dissatisfied people (PPD) indices, which are used by numerous 
national and international regulations, and especially by the international norm 
ISO 7730 (CEN, 2005). Yet, PMV and PPD are indices describing the 
instantaneous comfort, while we need a criterion to appreciate the thermal 
comfort on the entire test period. Therefore, in our comparisons we use the 
excess-weighted PPD which is described in the European norm EN 15251 (CEN, 
2007) and applied in the following.  

Lets consider that the comfort zone (i.e. the temperature domain in 
which the comfort is satisfied) corresponds to a PMV index that varies between 
-0.5 and +0.5 (category 2 in EN 15121), which corresponds to the minimal 
temperature limit and to the maximal one, respectively. A minimal energy 
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strategy will always result in maintaining the zone temperature at the lower 
limit of the comfort temperature range. Therefore, the upper limit of the 
temperature is automatically implemented by the use of this strategy. This is 
why we do not consider de upper limit of temperature for discomfort 
evaluation.  

It is defined a weighting function, wf , for the time while the PMV 
exceeds the comfort zone, which is a function of PPD. This weighting function is 
zero when the PMV is above the inferior limit: 

5.0,0 −>= PMVwhenwf  (5.3) 

and is calculated by the following relation when PMV is below the inferior limit: 

5.0,
min

−<= PMVwhen
PPD

PPDwf  (5.4) 

where minPPD  is the PPD corresponding to 5.0−=PMV , that is %10min =PPD . 
Once we get the distribution of the weighting function, we calculate the 
excess-weighted PPD by summing up the values of the weighting function 
multiplied by the time interval for which we had each particular value of the 
weighting function: 

∑
=

⋅=
n

i
wfi i

twfhPPD
1

.  (5.5) 

where n  is the number of distinct weighting function values and 
iwft  is the time 

interval for which we had the ith value of the weighting function. Thus, we have 
an evaluation of the people dissatisfaction over a time period, integrated in a 
single value representation. In our case, we calculate this index only for the 
daytime, between 07:00am and 10:00pm, and we did not take into account the 
nighttime. 

5.5.1.2 Optimal start 

One of the crucial points of a BEMS is its ability to restart the heating at 
the right moment in order to recover the building from night setback. The lack 
of such a functionality leads to either discomfort at the beginning of the daytime 
period, if the heating is restarted too late, or energy wasted, if the heating is 
restarted too early. The procedure for the optimal start test is given in the 
European norm EN 12098-2 (CEN, 2001). The appreciation of a good 
performance according to the norm is illustrated in Figure 5-4. At the moment 
when the set-point temperature changes in the morning from 16 °C to 19 °C, we 
draw a check window around the point corresponding to 07:00am and 19 °C 
(Figure 5-4). The check window has a width of 30 minutes (15 minutes before 
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the set-point change and 15 minutes after it), and a height of 1 °C (0.5 °C under 
the minimal temperature limit and 0.5 °C above it). Thus, the controller respects 
the norm EN 12098-2 if the measured indoor air temperature passes through 
this check window, like in Figure 5-4, each day of the heating season. 

 

 
Figure 5-4. Optimal start test 

5.5.2 Criterion for energy consumption 

This criterion must reflect the total consumed energy for assuring the 
required user comfort. The hydraulic system of our test building consumes only 
electrical energy. The electrical heater from the DHW tank, the heat pump, all 
the hydraulic pumps and valves are electrical energy consumers. Thus, the 
criterion that reflects the energy consumption of the system from Figure 5-1 is 
the electrical energy consumed by the system during the entire test period. 

As the most radical change in the proposed BEMS concerns the heating 
controller, a particular interest is the consumed energy for the building heating: 

 ( )∫ −= dtttcmE outinwwheating )()( θθ  (5.6) 

where: 

wm  – water mass flow through all radiators; 

wc  – specific heat capacity of the water; 

inθ  – inlet water temperature; 

inθ  – outlet water temperature. 
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5.5.3  Number of on-off cycles criteria 

The hydraulic system from Figure 5-1 contains some equipment, like 
hydraulic and heat pumps, which are very sensitive to multiple restart cycles. 
Therefore, an additional performance that we are looking at is the number of 
on-off cycles of the hydraulic and heat pumps. A smaller number of restart 
cycles is considered as a better performance because it reduces the wear and 
tear of the actuators.  

5.6 Testing and comparison of performance 

A control system may be tested in different ways: 

• Simulation – both the process and the controller are represented by 
models implemented in the same or in different simulation tools. This 
option gives reproducible and rapid results because simulation 
usually takes much less time than real time tests. 

• Emulation – the process is represented by its model and the 
controller is a physical equipment. Since the real controller is tested, 
the test is done in real time, i.e. one simulation second is equal to one 
real second. The advantage is that the real controller is tested in 
reproducible conditions, which allows us to compare the 
performance of different controllers. 

• In-situ – both the process and the controller are real. The test is done 
in real time. The advantage here is to have all the plant uncertainties 
that cannot be modeled in the simulation software. But, in this case, 
the testing is much more expensive and usually it is almost 
impossible to have reproducible test conditions. 

Since we want to compare three different BEMS, the primordial condition 
is to have reproducible test conditions, while keeping conditions close to real 
operation. 

The building described in §2.2 and the hydraulic system from Figure 5-1 
was implemented in Simbad software (Husaunndee, Lahrech, Vaezi-Nejad & 
Visier, 1997), which is a dedicated building simulation toolbox in 
Matlab/Simulink developed by the CSTB and used to emulate buildings and 
systems in order to assess the performance of real controllers. 

As the tests were going to be done in real time, it was impossible for us to 
test all three BEMS for the entire heating season. Therefore we have chosen to 
run the test for six days periods representative for winter and mid season 
weather. The choice was motivated by the fact that in winter we have low 
outdoor temperatures but with low variation amplitudes between two days; in 
mid season the variation amplitudes between two days are large enough in 
order to have time periods when the heating system must be turned on and off 
in the same day. Also, we have chosen to do the tests for two different 
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geographical zones in order to have a shift between the outdoor mean 
temperatures and total solar radiation. This shift, especially in the outdoor 
mean temperature, may play an important role on the heating restart time and 
on the saved energy. Thus, we tested the two reference BEMS and the newly 
proposed system on a period of six days in winter and six days in mid season 
corresponding to two locations: Paris (oceanic climate) and Marseille 
(Mediterranean climate). The outdoor temperature and solar beam and diffuse 
radiations are shown in Figure 5-5 and Figure 5-6, respectively. 

 

 
Figure 5-5. Outdoor air temperature samples for test periods 

 

 
Figure 5-6. Beam and diffuse solar radiation samples for test periods 

We begin the comparison of the BEMS by thermal control performance 
analysis. In Figure 5-7, we have the results of the indoor mean temperature 
evolution for Paris in winter and mid-season, obtained by the reference and the 
proposed control systems. Here we can notice that the mean temperature 
obtained by PID or scheduled start PID controllers is generally higher than that 
resulted by MPC controller. Nevertheless, MPC do not compromise the lower 
temperature limit. This means that PID and scheduled start PID controllers have 
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used more energy than necessary to maintain the minimal comfort. Concerning 
the thermal comfort at the beginning of the daytime period, we can see that PID 
controller performs the worst. It restarts the heating at the moment of set-point 
change thus introducing an important lag between the indoor temperature and 
its set-point. In order to compare this performance for scheduled start PID and 
MPC controllers, we made the optimal start test for the entire test period. In the 
case of MPC controller, it is positive for the entire test period. However, this is 
not the case for scheduled start PID. In Figure 5-8, we can see that for the fifth 
day in winter the temperature reaches its set-point too late, thus compromising 
the comfort; and for the fourth day in mid season, the heating system was 
restarted too early, thus consuming more energy than necessary. 

 

 
Figure 5-7. Comparisons of the indoor temperature evolution obtained with PID, scheduled start 

PID and MPC controllers for (a) winter and (b) mid-season Paris weather 

 

 
Figure 5-8. Optimal start test of PID, scheduled start PID and MPC controllers for Paris weather; 

(a) fifth day of winter test sequence (b) fourth day of mid season test sequence 
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The results for all the criteria tested for Paris weather are centralized in 
Table 5-1. The first day of the test was not taken into account for calculating the 
performance criteria; it served only for primary initialization of the model and 
the controller. For the winter period, we can see that MPC consumes the lowest 
amount of thermal energy for building heating and at the same time offers the 
best thermal comfort. If the quantity of saved energy is not so big, 3.5 % in 
comparison with PID controller and 4.7 % in comparison with scheduled start 
PID, the improvement of thermal comfort is far more important; the 
excess-weighted PPD was lowered by 97 % in comparison with PID controller 
and by 65 % in comparison with scheduled start PID. Also, the optimal start test 
was passed only by MPC controller, which means that MPC is able to anticipate 
correctly the heating restart time, by adapting the command to the variable 
weather conditions and actual building state. The total electrical energy 
consumed by the proposed BEMS is insignificantly higher than that of the 
PID-based system but still lower than that of scheduled start PID based system. 
This is explained by the fact that the proposed BEMS used the heat pump when 
the weather was unfavourable in comparison with PID based system, thus 
obtaining a poorer Coefficient of Performance (COP) for the heat pump. This 
may be a direction for future improvements, which consists in taking into 
account the weather forecast also for heat pump operations. 

MPC has also drastically reduced the number of on-off cycles of the 
auxiliary pumps and heat pump. This reduces the wear and tear of these 
expensive equipments which could result in a longer lifetime.  

The results for the mid-season present the same trend as for the winter 
season. The difference is that by using the proposed BEMS, the saved energy 
rate is higher than in winter season. A particular phenomenon appears here in 
the excess-weighted PPD for scheduled start PID. As we can notice from Table 
5-1, this index is zero. The reason is that in mid-season the outdoor mean 
temperature is considerably higher than that in winter (see Figure 5-5); 
restarting the heating system two hours earlier is always more than enough to 
recover the building from setback. And as the excess-weighted PPD is penalized 
only when the indoor temperature is below the minimal imposed temperature 
(equations (5.3)-(5.5)), this index resulted to be zero. However, the problem in 
this case is that the heating is restarted too early, thus consuming more energy 
than was necessary to assure minimal comfort condition. This is reflected by an 
increase by 23 % in the consumed energy for building heating and by the fact 
that scheduled start PID has not passed the optimal start test.  
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Table 5-1. Comparison of the test criteria for Paris weather 

Performance 
criterion 

Winter  Mid-season 

PI
D 

Sc
he

du
le

d 
st

ar
t P

ID
 

M
PC

 

M
PC

 v
s. 

PI
D 

M
PC

 v
s. 

sc
he

du
le

d 
st

ar
t P

ID
 

 
PI

D 

Sc
he

du
le

d 
st

ar
t P

ID
 

M
PC

 

M
PC

 v
s. 

PI
D

 

M
PC

 v
s. 

sc
he

du
le

d 
st

ar
t P

ID
 

Total energy 
consumption 
[kWh] 

234 240 236 +0.9% 

 

-1.7%  54 56 46 -15% -18% 

Energy 
consumption 
for building 
heating [kWh] 

315 319 304 -3.5% -4.7%  87 94 72 -17% -23% 

Excess-
weighted PPD 
[h] 

168 14.3 5 -97% -65%  70 0 8 -88% – 

Optimal start Not 
OK 

Not 
OK 

OK – –  Not 
OK 

Not 
OK 

OK – – 

On-off cycles of 
auxiliary 
pumps 

89 100 11 -88% -89%  20 22 8 -60% -64% 

On-off cycles of 
the heat pump 

136 144 35 -74% -76%  58 56 34 -41% -40% 

 

The test results for Marseille (thermal control in Figure 5-9 and 
performance criteria comparison in Table 5-2), have shown the same trend as 
for Paris. The proposed BEMS has lowered the total energy consumption in 
comparison with the reference systems for both winter and mid-season 
weather. This reduction is even more accentuated than for Paris. It can be seen 
in Figure 5-9, that the mean indoor air temperature, obtained with reference 
controllers, is higher than that obtained with MPC. Still MPC do not compromise 
the lower temperature limit. This means that reference controllers consumed 
more energy than MPC to assure minimal comfort temperature. 

For scheduled start PID, we can remark the same phenomenon as for 
Paris weather: restarting the heating system in advance does not penalize the 
excess-weighted PPD but the energy consumption is higher and the optimal 
start test is not passed. 
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Figure 5-9. Comparisons of the indoor temperature evolution obtained with PID, scheduled start 

PID and MPC controllers for (a) winter and (b) mid season Marseille weather 

 
Table 5-2. Comparison of the test criteria for Marseille weather 

Performance 
criterion 

Winter  Mid-season 
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Total energy 
consumption 
[kWh] 

138 142 116 -15.9% 

 

-18.3%  22 22 18 -18.2% -18.2% 

Energy 
consumption 
for building 
heating [kWh] 

214 222 192 -10.3% -13.5%  36 36 30 -16.7% -16.7% 

Excess-
weighted PPD 
[h] 

95 0 10 -89.5% –  15 0 13 -13.3% – 

Optimal start Not 
OK 

Not 
OK 

OK – –  OK Not 
OK 

OK – – 

On-off cycles 
of auxiliary 
pumps 

90 96 10 -88.9% -89.6%  11 8 6 -45.5% -25% 

On-off cycles 
of the heat 
pump 

118 123 27 -77.1% -78%  45 42 36 -20% -14.3% 

 

The conclusion that can be drawn after analysing the test results is that 
MPC always outperforms PID and scheduled start PID controllers regarding 
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comfort versus energy consumption. If the building model, occupation schedule 
and weather forecast are correct, MPC assures the comfort with minimal energy 
consumption, i.e. it is not possible to assure the same comfort consuming less 
energy. MPC is able to adapt the command to the whether, occupation type and 
current system state, with the condition that we have in advance information 
about future evolution of the weather and the occupation. Scheduled start PID 
restarts the heating before, but this is a fix time interval; it is calculated for a 
particular situation, which can be the worst or the most frequent case. Contrary 
to MPC, it cannot adapt to the exterior conditions (e.g. weather) to calculate the 
optimal command for the entire heating season. In other words, MPC 
guarantees optimal command that assures the comfort with minimal energy 
consumption for the entire heating season, and PID or scheduled start PID 
cannot guarantee this performance. Therefore, the BEMS based on MPC can 
achieve optimal comfort with minimal energy consumption. 

5.7 Conclusions 

The designed controller in Chapter 4 calculates the radiator inlet water 
temperature that satisfies the thermal comfort and minimizes the energy 
consumption. However, the hydraulic heating system that assures the 
availability of the hot water needs a BEMS. Therefore, in order to evaluate the 
real impact of the proposed MPC controller on the building, we needed to 
integrate it in a BEMS. 

We proposed a BEMS and tested its performance for five day periods in 
winter and mid season weather for oceanic (Paris) and Mediterranean 
(Marseille) climates. The BEMS, including the proposed MPC, was implemented 
in a controller prototype and the tests were done in real time. The building and 
the hydraulic heating system were emulated and the communication with the 
controller was done via a data acquisition system. The performance assessment 
consisted in the comparison of the obtained performance with those of two 
classical solutions, against some standard performance criteria. The classical 
solutions were BEMS based on PID and scheduled start PID controllers and the 
regarded performance concerned the thermal comfort, the total energy 
consumption and the number of on-off cycles of the elements of the hydraulic 
heating system. The performance comparison has shown that MPC has 
drastically reduced the thermal discomfort, significantly reduced the number of 
on-off cycles of the hydraulic and heating pumps, and almost always reduced 
the energy consumption. For a period of five days, we managed to reduce the 
excess-weighted PPD up to 97 % compared to PID controller and up to 65 % 
compared to scheduled start PID controller while still reducing the energy 
consumption for building heating in this period by 3.5 % compared to PID 
controller and by 4.7 % compared to scheduled start PID controller. Also, by 
using the MPC, the number of on-off cycles of the heat pump was reduced from 
144 (corresponding to scheduled start PID) to 35 cycles, for winter season in 
Paris while the number of on-off cycles of the auxiliary hydraulic pumps was 
reduced from 100 (corresponding to scheduled start PID) to 11 cycles, for the 
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same period. The number of on-off cycles of heat pump and auxiliary hydraulic 
pumps was reduced for all the performed tests in comparison with both 
classical solutions. The optimal start test was passed for all the test periods only 
by the MPC controller, which means that MPC is able to adapt to the actual 
meteorological conditions, while the other two tested controllers cannot do this.  
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Conclusions and outlooks 

An effective integration of renewable energies in buildings passes 
through three essential stages. These are the system design, its sizing and 
control. Today, the design of building energetic systems is based exclusively on 
expert’s experience. The expert proposes several system configurations, which 
in his opinion fit better for the given building, and then evaluates the proposed 
alternatives through dynamic simulations. Thought dynamic simulation gives 
the most realistic results for system evaluation, the current practices of using 
this tool do not guarantee the optimal choice of the system.  

The first problem occurs in the case of intermittently occupied buildings, 
where there are at least two set-point temperatures. In order to assess the 
heating load of the building, to use it for system sizing, today it is considered 
that the indoor temperature follows exactly its set-point. This hypothesis makes 
the peak load depend on the simulation sampling time. This is not desirable 
because it may lead to ill-sized equipment.  

Another problem arises when there is a comparison of two different 
system configurations. In order to be able to say that a system performs better 
that the other one, both systems must be optimized (optimally sized and 
optimally controlled). Unfortunately, today during the simulation process, the 
controllers are not optimized; this may be the main cause of the poor 
performance of the system. When speaking of the control system, there can be 
distinguished two such systems. The first controller handles the multi-source 
system and the second one regulates the indoor temperature. Both control 
systems have an important impact on the multisource system performance. 
Concerning the control system that regulates the indoor temperature, today the 
most promising solution is Model Predictive Control. Nevertheless, the use of 
the classical cost function, actually used in temperature control, does not 
minimize the energy consumption. 

To avoid the drawbacks resulting from the assumption that the indoor 
temperature follows exactly its set-point, we proposed to transform the heating 
load assessment problem into a control problem. The building is considered as a 
thermal system disturbed by the weather, where the regulator calculates the 
necessary heat to control the indoor temperature. The heat flux, calculated by 
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the regulator, actually represents the heating load of the building. Its calculation 
is based on the real evolution of the indoor temperature and not on its set-point. 
Therefore, the simulation sampling time will not influence the resulted heating 
load, even if the set-point temperature changes in step-like waveform. 

In intermittently occupied buildings, usually there are at least two 
set-point temperatures within 24 hours. In this case, the ability of the heating 
system to recover the building from setback is very important. Therefore, for 
heating load calculation, we proposed a Model Predictive Programming (MPP) 
strategy, which is a modification of Model Predictive Control (MPC). The main 
differences between MPP and MPC is that MPP is an optimization without 
constraints (except the one of positive command) and the command is 
calculated only once, without state feedback. The proposed MPP is able to 
restart the heating system in advance in order to assure the thermal comfort at 
the very beginning of the occupation period. Used together with the 
feed-forward control technique, it is able to use weather forecast for the 
optimization of the energy consumption. We also have found, through MPP, that 
there is a trade-off between the peak load and the consumed energy for heating; 
the larger the peak load the smaller the energy consumption. The optimization 
must be done for a time horizon (ex. 10 years) for which is minimized the 
investment and the operating costs. Thus, MPP gives a framework for this 
optimization, where the user must tune a parameter, called “relaxation time”. 

The information required by MPP is the building model, the free gains, 
variation of ventilation rate and data records of the local weather. As this tool is 
intended to be used mainly in the design stage of the building, the building 
model can be identified using input/output data records obtained by simulation. 
Records of local weather are also available in dedicated simulation tools as 
Trnsys, Simbad, etc. 

The limits of our contribution consists in the choice of the optimal 
relaxation time, which would optimize the total cost of the system for a given 
time period. Thus, future developments in this direction present potential 
interest. Also, in the optimized cost function, it is minimized the square of the 
command increment (i.e. heat flux). This criterion does not represent thermal 
energy and therefore MPP does not assure minimal energy consumption.  

Concerning the control system, we proposed a thermal controller which 
assures thermal comfort with minimal energy consumption. The proposed 
controller is a MPC which uses weather forecast for optimal temperature 
control. Here, our contribution is the new proposed cost function for MPC, along 
with the suggested solving algorithm for the optimization problem. 

Unlike the classical cost function, the proposed one minimizes the future 
command subject to constraints on the heat flux and indoor temperature. The 
minimization of the command, instead of its squared increment, assures 
minimal energy consumption. The constraints on the heat flux (or equivalently 
on the radiator inlet water temperature) take into consideration the maximal 
potential of the heating system in order to assure the required performance. 
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The constraints on the indoor temperature assure the thermal comfort in the 
building. 

The proposed cost function also eliminates the drawbacks of the 
trade-off principle and of the use of the set-point temperature instead of 
temperature range, which are present when using the classical cost function. 
When trade-off principle is used, we may obtain different results, depending on 
what was preferred (comfort or energy savings). Also, there is an additional 
tuning parameter, which must be chosen. By forcing the indoor temperature to 
follow a set-point instead of letting it float in an accepted temperature range 
results in consuming more energy than it is necessary. The proposed cost 
function lets the temperature float in a predefined temperature range and does 
not sacrifice the comfort in the detriment of energy savings. By using the 
proposed cost function, the heating system will take into account the building 
inertia and weather forecast to maintain the minimal comfort with minimal 
energy consumption. 

Another contribution is the idea to use physical knowledge in order to 
improve the control performance. The first place where this technique is used is 
the parameter identification of the building model. Optimal control is a 
model-based technique and therefore a system model is required. In this thesis, 
the building model is obtained in two steps. Firstly, a low order model structure 
is obtained from physical considerations, and then, its parameters are obtained 
by least squares identification. This combination gives actually a projection of 
the complex and high-order building model on a low order structure gathered 
from physical representation of the building thermal behavior. By doing so, we 
obtain a robust model. The second place where physical knowledge is used is to 
overcome the nonlinearity in the building model. We firstly identified the 
nonlinear characteristic and then we proposed a method to use this 
characteristic for model linearization. The proposed linearization made the 
system model valid on the entire operating range, not just around some 
operating point, as in classical local linearization. 

For the multisource system, we proposed a Building Energy Management 
System (BEMS), which considers information from the MPC command. This 
permits the BEMS to use the energy resources more effectively. Yet, the 
proposed BEMS is not an optimal controller, so additional improvements are 
achievable.  

We tested the proposed MPC and compared the obtained results with 
those of well tuned PID controllers, which today are state of the art on the 
market. The comparison was done against criteria suggested by European 
regulation. In all the tests, MPC performed the best, assuring the thermal 
comfort and consuming less energy. Moreover, the command calculated by MPC 
was less aggressive, which extends the life span of expensive equipments such 
as hydraulic pumps and heat pumps. 

Nevertheless, these good results were obtained mostly because we 
owned an accurate model of the building. In real life, the building model 
identification is not as simple as for other systems. Many constraints do not 
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permit to excite the building modes as it would be necessary, so the accuracy of 
the identified model can diminish. This can degrade the obtained results of the 
control performances. Therefore, this is a direction for further researches, and 
the present thesis provides evidences for its benefits. 

Thus, the theses of this manuscript are the following: 

I) In order to control a system, we need to comprehend that system (have a 
model adapted for control). It is desirable to have a physical model 
(based on the physics of the phenomenon – white-box or grey-box 
models) 

II) The control is an inverse problem, which also can be used for system 
sizing. 

III) In the case of thermal systems, the quadratic criterion is incorrect when 
the command signal is the heat flux. A linear criterion minimizes the 
energy. 

IV) A robust model is obtained when the identification is a projection on a 
structure based on physical knowledge. 

V) Using physical knowledge for model linearization, we can obtain a 
linearized model which is valid on the entire operating range  
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