Skip to Main content Skip to Navigation
New interface

Recherche et caractérisation de glycosyltransférases impliquées dans la biosynthèse des polysaccharides de la paroi chez Arabidopsis thaliana

Abstract : The plant cell wall not only defines the unique biology of the plants but also have practical applications as feedstock for biomaterials and for the production of biofuels. Plant primary cell wall is mainly composed of cellulose, hemicelluloses and pectins. Significant progress has been made recently in identifying the enzymes involved in plant cell wall biosynthesis, but only a handful of those have been involved in pectin biosynthesis. With the aim of identifying new putative glycosyltransferases (GTs), in lab Hansen et al 2009 designed a bioinformatic strategy and identified a new group of 24 genes called “NGT” for (Novel Glycosyltransferase) which were considered “strong” candidates for putative glycosyltransferase activities. In order to determine the putative role of these NGT genes in plant cell wall biosynthesis, we designed a functional genomics strategy, analysing in parallel Arabidopsis T-DNA mutant lines and performing heterologous expression of candidate genes. I have characterized 15 homozygous mutant lines among the group of 24 putative NGT genes through PCR. We analysed the homozygous mutants for phenotypic alteration such as dwarfing or organ malformation and found that some of mutant lines have narrow leaves as compared to Wild type plants. In parallel I have carried out the cell wall chemical analysis of 12 homozygous mutant lines and did not get any strong difference in neutral monosaccharide composition. The detailed and complete analysis (chemical, expression and microscopic analysis) of all the above mentioned genes could have been time consuming and an overwhelming work, so I focused on At5g28910 (named NGT1) which harbours a fucosyltransferase peptide signature and on At5g14550 (named P), a gene belonging to the DUF266 gene family. Homozygous T-DNA mutant lines ngt1-1 and ngt1-2 lines were analyzed and showed a reduced growth phenotype (leaf area). Leaf area was quantified at various development stages using ImageJ, and showed a 38% reduction in mutants. Additionally, biochemical characterization of the cell wall was performed showing a reduction in neutral monosaccharide contents, like arabinose, rhamnose and galactose in mutant cell wall. Furthermore glycosyl linkage analysis of mutant lines ngt1-1 and ngt1-2 has shown that 5-Arabinofuranose (5-Araf) and 3,5-Arabinofuranose (3,5-Araf ) contents were decreased as compared to Wild type Col0 cell wall. These results were also confirmed by immunolabeling of stem cross section of mutant and wild type plants. The complementation of the mutant plants through Agrobacterium transformation resulted in the complete restoration of plant phenotype. Taken together, these data suggest that NGT1 could be an arabinosyltransferase. In order to characterize its biochemical activity, the NGT1 protein was heterologously expressed in Pichia pastoris. The recombinant protein was used to perform in vitro activity tests, but we were unable to demonstrate any neither fucosyltransferase (on the basis of peptide signature) nor arabinosyltransferase activity. In parallel to this study, I contributed to the heterologous expression and characterization of two biochemically characterized Arabidopsis GTs involved in xyloglucan synthesis: the fucosyltransferase (AtFUT1) and xylosyltransferase (AtXT1). I have successfully expressed a truncated and active form of AtFUT1, which represents an essential step for further structural studies that will be undertaken in the lab.
Document type :
Complete list of metadata
Contributor : ABES STAR :  Contact
Submitted on : Tuesday, July 10, 2012 - 1:44:39 PM
Last modification on : Friday, March 25, 2022 - 9:43:44 AM
Long-term archiving on: : Thursday, October 11, 2012 - 5:05:11 AM


Version validated by the jury (STAR)


  • HAL Id : tel-00716332, version 1



Sumaira Kousar. Recherche et caractérisation de glycosyltransférases impliquées dans la biosynthèse des polysaccharides de la paroi chez Arabidopsis thaliana. Autre [q-bio.OT]. Université de Grenoble, 2011. Français. ⟨NNT : 2011GRENV077⟩. ⟨tel-00716332⟩



Record views


Files downloads