N

N

Spécification et animation de modeles de conception de
la sécurité avec Z

Muhammad Nafees Qamar

» To cite this version:

Muhammad Nafees Qamar. Spécification et animation de modeles de conception de la sécurité avec
Z. Autre [cs.OH]. Université de Grenoble, 2011. Francais. NNT: 2011GRENMO057 . tel-00716404

HAL Id: tel-00716404
https://theses.hal.science/tel-00716404
Submitted on 10 Jul 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00716404
https://hal.archives-ouvertes.fr

UNIVERSITE DE GRENOBLE

THESE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE DE GRENOBLE

Spécialité : Informatique

Arrété ministériel : 7 aolt 2006

Présentée par

Muhammad Nafees QAMAR

Thése dirigée par Prof. Yves LEDRU et
codirigée par Dr. Akram IDANI
préparée au sein du Laboratoire LIG / INRIA Rhone Alpes

dans I'Ecole Doctorale Mathématique, Science et Technologie
de I'Information, Informatique

Spécification et animation de
modeéles de conception de la
sécurité avec Z

Thése soutenue publiqguement le 02 Décembre 2011,
devant le jury composé de:
Mme, Régine, LALEAU

Professeur a I'Université Paris-Est Créteil, Rapporteur

M, Jean-Michel, BRUEL

Professeur a I'Université de Toulouse, Rapporteur

M, Jean Claude, FERNANDEZ

Professeur a I'Université Joseph Fourier, Président

Mme, Nicole, LEVY

Professeur au CNAM, Examinateur

M, Yves, LEDRU

Professeur a I'Université Joseph Fourier, Directeur de thése

M, Akram, IDANI
MCF a Grenoble INP, Co-directeur de thése

Acknowledgment

During the course of this research I benefited a lot from the expertise and guidance of
my advisor, Professor Yves Ledru. I owe my deepest gratitude to him for his regular
feedback on the scientific work. His clear research vision helped me enormously to
achieve research objectives. I thank him for all his support when I needed the most.
Without his mentorship, I would have not been able to finish this dissertation.

I am also thankful to my co-advisor, Dr. Akram Idani, for his involvement in the
work and constructive feedback. It has been a real pleasure to work with him and
learning pedagogical skills.

I consider myself fortunate to have worked with them. I hope we can continue to
collaborate in the future.

Second, I would like to express sincere thanks to my readers, Professor Régine
Laleau, Professor Jean-Michel Bruel, for this painstaking work. Special thanks go
to the examiners, Professor Nicole Lévy, and Professor Jean-Claude Fernandez. I
commend their invaluable suggestions and interesting perspectives on the work.

Next, I wish to thank all my colleagues in the VASCO team for their moral support.
I also thank all of my friends for their assistance and good friendships. I am grateful
to my Pakistani friends in Grenoble who shared some joyful moments with me in
the Cricket ground, BBQs, and during other gatherings.

Financial support for the major part of my thesis was a research fellowship from
INRIA Rhéne-Alpes, and partly by ANR TASCCC project. I am their grateful for
providing me this opportunity to reach the goal.

I would like to express my deepest gratitude to my parents whose prayers and
continuous support is my source of success. I especially wish to thank my elder
brother Idrees Zafar who played a vital role in my life and helped me everywhere.
It is because of him I have attained this position.

In particular, I would like to express heartiest gratitude to my wife, Sahar; whose
love, affection, and care played a pivotal role and gave me the strength to accomplish
this task.

The best part of my life is my world, my daughter; Aaifa, whose smiling face always
faded away the homesickness and worries, and pushed me to smile with her even
when I did not want. I dedicate this thesis to her.

Finally, T thank Allah Almighty for His divine help which enabled me to achieve
this milestone.

Specification and Animation of Security Design Models using Z

Abstract: Specifying security-critical software urges to develop techniques that
allow early bugs detection and prevention. This is aggravated by the fact that
massive cost and time are spent during product validation and verification (V&V).
There exists a multitude of formal and informal techniques striving to confront the
challenge of specifying and validating specifications. Our approach mainly concerns
validating the security specifications by animating the formal models, which adds a
new dimension to the state-of-the-art.

Secure system engineering dedicated to tackle security features offers security-
design models to sketch secure applications. Generally for these, Unified Modeling
Language (UML) is considered a de facto standard along with a few extensions
such as SecureUML and Object Constraint Language (OCL). OCL tends to add
precision in design but yet it remains far from obtaining bugs free specifications.
One reason to that is the inability of the OCL-based techniques to animate models
before proceeding to an implementation.

Combining formal languages such as Z with UML allows applying to apply an-
imation techniques enabling early validation of software design. The RoZ tool is
capable of translating UML models into the Z specifications which further can be
verified or validated. But RoZ is lacking to provide similar features for secure appli-
cations. In this thesis, we have upgraded this tool using an underlying security kernel
backed up by Role Based Access Control (RBAC). Our approach not only allows
validating the specifications but can animate the formal models. The animation also
takes into account both the static and the dynamic aspects (i.e., session manage-
ment) of RBAC-based security policies. Our unified approach and toolset involves
a systematic usage and linkage of UML, SecureUML, RBAC, RoZ, Z, and the Just
Another Z Animator (Jaza) tool. Using Jaza, the sort of validation we perform al-
lows enumerate user defined scenarios to determine if the specification describes the
intended reality. We emphasize on simultaneous consideration of functional and non-
functional properties and consider functional models as contextual constraints over
the security models. From a user viewpoint, our proposed approach can arbitrarily
be composed with any functional model to examine an RBAC-based security policy.

Spécification et animation de modéles de conception de la sécurité
avec Z

Résumé: L’écriture de spécifications pour des logiciels en général et en particulier
pour des applications sécurisées demande de développer des techniques qui facilitent
la détection et la prévention des erreurs de conception, dés les premiéres phases
du développement. Ce besoin est motivé par les cotits et délais des phases de
vérification et validation. De nombreuses méthodes de spécification, tant formelles
qu’informelles ont été proposées et, comme nous le verrons dans cette thése, les
approches formelles donnent des spécifications de meilleure qualité.

L’ingénierie des systémes sécurisés propose l'utilisation de modeéles de conception
de la sécurité pour représenter les applications sécurisées. Dans de nombreux cas,
ces modéles se basent sur les notations graphiques d’UML avec des extensions, sous
forme de profils comme SecureUML, pour exprimer la sécurité. Néanmoins, les
notations d’UML, méme étendues avec des assertions OCL, sont insuffisantes pour
garantir la correction de ces modeles. Ceci est notamment du aux limites des outils
d’animation utilisés pour valider des modéles UML étendus en OCL.

Nous proposons de combiner des langages formels comme Z avec UML pour
valider des applications en animant leurs spécifications, indépendamment de futurs
choix d’implémentation. Le but de cette thése est de présenter une approche pour
analyser par animation des modéles de conception de la sécurité. Nous utilisons un
outil pré-existant, RoZ, pour traduire les aspects fonctionnels du modéle UML en Z.
Cependant, RoZ ne couvre pas la modélisation des aspects sécuritaires. Dans cette
these, nous avons complété l'outil RoZ en l'associant & un noyau de sécurité qui
spécifie les concepts du modeéle RBAC (Role Based Access Control). Nous utilisons
I’animation pour explorer dynamiquement et ainsi valider les aspects sécuritaires de
I’application.

Notre approche et les outils qui la supportent intégrent UML, SecureUML (un
langage de modélisation de la sécurité), RBAC, RoZ, Z et Jaza, un animateur pour
le langage 7. L’animation des spécifications prend la forme de scénarios définis par
I'utilisateur qui permettent de se convaincre que la spécification décrit correcte-
ment ses besoins. Notre approche permet une validation deés la phase de spéci-
fication, qui prend en considération l'interaction entre les modeéles fonctionnel et
sécuritaire, et qui fait abstraction des choix de 'implémentation. Les éléments du
modeéle fonctionnel peuvent étre utilisés comme contexte dans la définition des per-
missions du modéle de sécurité. Notre approche ne met pas de contrainte sur ce
modéle fonctionnel ce qui permet de 'utiliser pour une vaste gamme d’applications.

Contents

1 Introduction

1.1 Research Context
1.2 Motivations and Accomplishments
1.2.1 Research Motivations
1.2.2 Research Contributions
1.2.3 Publications
1.3 Dissertation Roadmap 0.
1.3.1 Part I: Stateof the Art
1.3.2 Part II: Contributions

I STATE OF THE ART

2 7 and RoZ: An Introduction

2.1 The Z Language
2.1.1 TheZ Basics
2.1.2 Set Constructors e
2.1.3 Operationson Sets oL
2.1.4 Closure
2.1.5 State Constraints
2.1.6 Schema Calculus

2.2 RoZ Tool
2.2.1 The Meeting SCHEDULER
2.2.2 RoZ Translation Process
223 RoZ Types e
224 RoZ Classes
2.2.5 Translation of Relations
2.2.6 Generation of Elementary Operations Using RoZ

2.3 Using Jaza to Animate the Model

2.4 DISCussion

3 Access Control Mechanisms & SecureUML
3.1 Access Controls Mechanisms
3.1.1 Mandatory Access Control (MAC)
3.1.2 Discretionary Access Control (DAC)

O ~J =1 & Ut Ot Ot W =

11
11
13
14
16
16
17
18
20
22
23
24
24
25
27
31
31

viii Contents
3.1.3 Role Based Access Control (RBAC) 40
3.2 Functional Specification Packages 44
3.2.1 Summarizing Access Control Mechanisms 46
3.3 Data Security Properties L. 47
3.3.1 Availability 47
3.3.2 Confidentiality oo 47
3.3.3 Integrityo 48
3.4 Why to Choose RBAC over MAC and DAC? 48
3.5 UML-based RBAC specifications 49
3.5.1 SecureUML 49
3.6 Summary 52

4 Evaluating RBAC Supported Techniques and their Validation
and Verification 53
4.1 Introduction 54
4.2 RBAC Coverage as Evaluation Criteria 55
4.2.1 RBAC Functions 55
4.2.2 RBAC Separation of Duties (SoD) Constraints 56
4.2.3 Other RBAC Variants 56
4.2.4 Verification and Validation Tools o6
4.3 Semi-formal Techniques, 56
4.3.1 A Summary of Semi-formal Techniques. 59
4.4 Formal Languages and RBAC Constraints 99
4.4.1 Alloy-based Approaches 61
4.4.2 7-based Related Work L. 61
4.4.3 A Summary of Formal Techniques 62
4.5 Conclusion & Lessons Learned 62
II CONTRIBUTIONS 65
5 Validation of Security-Design Models Using Z 67
5.1 Introducing the Proposed Z-based Toolset 68
5.2 Mlustrative Example : Medical Information System 69
5.3 Translating the Functional Model intoZ 71
5.4 The Security Kernel 0000 73
5.4.1 Permissions 74
5.4.2 Role Hierarchy 74
5.4.3 Action Hierarchy 75
5.4.4 Roles, Users and Sessions 77
5.4.5 Putting it All Together 78
5.5 Linking Functional and Security Models 80
5.6 Validating and Animating Secure Operations 81

5.6.1 Normal Behavior 81

Contents ix

5.6.2 Analyzing a Malicious Behavior 82

5.7 Summary ... Lo 83
6 A Z-based Toolset For the Validation of Security Policies 85
6.1 Overview e 86
6.2 State of the Art Tools 87
6.2.1 RBAC and SecuretUML 87
6.2.2 USE for the Validation of Security Policies. 87
6.2.3 SecureMOVA 88

6.3 The Need for Dynamic Analyses 89
6.4 Applying Toolset to Meeting SCHEDULER Example 90
6.4.1 Input Models 90
6.4.2 Diagrams for the Security Model 91
6.4.3 Linking both Formal Models 94

6.5 Animation of the Specification 95
6.5.1 Queries on the Security Model 96
6.5.2 Dynamic Analyses : Nominal Behaviors 97
6.5.3 Further dynamic analyses 100
6.5.4 Studying an Attack Scenario 100

6.6 Conclusion L 102
7 A Set of Validation Queries 105
7.1 Formal Queries Lo 105
7.1.1 Authorized Roles for an Atomic Action 105
7.1.2 Available Actions Against Roles 107
7.1.3 Access to Resources 108
7.1.4 Permissions Against Atomic Action and Role 109
7.1.5 Finding Duplicate Roles 109
7.1.6 Atomic Action Accessed by AIl 110
7.1.7 Atomic Action Access by Nobody 111

7.2 RBAC Supporting System Functions 111
7.3 Summaryo 113
8 Conclusion and Future Outlook 115
8.1 Conclusion L 115
8.2 Suggestions for Future Work o0 116

A Appendix - Complete Formal Specification of Security Kernel 119

A.1 Abstract and atomic actions 119
A2 List of employed roles 119
A3 Resources 119
Ad Types . . . o 120

A5 Basic RBAC and other sets 120

Contents

Appendix - Formal Specifications of Health care Information Sys-

tem 125
B.1 RoZ Types o 125
B2 RoZdata 125
B.3 RoZ Operations 127
B.4 Secure Operationso 137

Appendix - Secure Operations of Meeting SCHEDULER. Examplel41

C.l Ztypes e 141
C.2 RoZ generated operations 141
C.3 Secure Operations of Meeting Scheduler Example 146
C4 RoZData 150

Bibliography 153

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

5.1
5.2
2.3

6.1
6.2
6.3
6.4
6.5

The approach of RoZ tool 21
Use cases for the meeting scheduler 23
Meeting SCHEDULER Case Study 24
Jaza tool 33
MAC mechanism applied to the meeting SCHEDULER 38
Core RBAC |[Ferraiolo et al. 2001] 40
Hierarchical RBAC [Ferraiolo et al. 2001] 43
SSD within Hierarchical RBAC |Ferraiolo et al. 2001] 44
Dynamic Separation of Duty relations [Ferraiolo et al. 2001] 44
Methodology for creating functional packages [Ferraiolo et al. 2001] . 45
SecureUML metamodel [Basin et al. 2009] 50
(Class diagram and permissions for the meeting scheduler 51
Bird’s eye view of Z-based toolset 68
Security policy model using SecureUML 69
Object diagram for the functional model produced from the output

of Jaza 70
Users, roles and separation of duty for the meeting scheduler 92
A subset of the perm_Assignment table 94
Sessions with their users and roles 97
Object diagram for the meeting scheduler 97

Another Object diagram for the meeting scheduler 101

List of Tables

3.1
3.2
3.3

4.1
4.2

5.1

DAC mechanism applied to the meeting SCHEDULER 40
RBAC Configurations 42
RBAC Configurations: [C:Create, U:Update, D:Delete: R:Read] . . . 42
Evaluation table for semi-formal techniques 57
Evaluation table for formal techniques 60

Three sessions 78

CHAPTER 1

Introduction

Contents
1.1 Research Context

1.2 Motivations and Accomplishments
1.2.1 Research Motivations
1.2.2 Research Contributions
1.2.3 Publications oo
1.3 Dissertation Roadmap 0oL
1.3.1 Part I: State of the Art
1.3.2 Part II: Contributions

o N N O ot ot ou W

Building reliable and correct information systems is inordinately hard despite of
several standardized Software Development Life Cycle (SDLC) processes, because,
software systems are often complex and mission critical [Keyes 2002]. Another qual-
ified reason is that most software projects are started by quickly moving to code and
subsequent debugging. The people do not carry out a proper requirements specifi-
cation paperwork beforehand [Boehm 1984|. Specification is defined as the process
of describing a system and its desired properties [Clarke & Wing 1996].

In spite of such a critical prerequisite, 80% of requirements specifications are
English text documents, and the rest is probably whiteboard [Barjaktarovic 1998].
They are the biggest source of system engineering problems and impact all aspects
of software development [Barker 2000]. It yet yields another bottleneck that 50%
of the total software development budget is incurred during product Validation and
Verification (V&V) [Barjaktarovic 1998]. The terms validation and verification are
defined as follows:

— Verification: is intended to answer the question: did we build our system
right? i.e., conformant to specifications. Its main purpose tends to ensure
that the software fully satisfies all the expressed requirements.

— Validation: is according to ANSI/IEEE Standard [IEEE 1982], the process of
evaluating a system or component during or at the end of the development
process to determine whether it satisfies the user needs. In other words, did we
build the right system? i.e., conformance to the actual customer requirements.

2 Chapter 1. Introduction

One important and yet challenging task is the development of secure information
systems which are intrinsically more complex than simple business applications due
to additional data security challenges, and repercussions, e.g., data loss of a bank
may result in the loss of customers. Equivalently, a tedious task can be to specify a
valid and working security policy in a complex, distributed application environment
or to verify its behavior. So the specifications may get more complex when dealing
with secure systems, since it may involve ensuring the integrity or confidentiality of
a secure software system. In this thesis, we confine ourselves to the study of such
systems.

UML being a de facto standard is often employed to model requirements of a
secure application on top of textual descriptions. But graphical models do not follow
strong semantic rules and therefore their meaning can be ambiguous and subject to
interpretation [Martin 2002]. This may end up in implementing some undesirable
functionality by the developer. Such a perception led the design of OCL, being used
to minimize the ambiguity of graphical models [Warmer & Kleppe 1998]. Alike,
formal specification languages can also be used to set up the precision in specifi-
cations. Z [Spivey 1992], B [Abrial 1996] and Alloy [Jackson 2006] are alternative
specification languages intended to be used for formal specification. Nonetheless,
their coupling with graphical models has been an interesting area of research in the
past decade.

The focal point of this dissertation is to propose an improved technique for for-
mal specification and validation of secure applications. Our approach is placed on
top of graphical models and is intended to avoid their multiple interpretations. It
also provides implementation-independent validation of a security policy. In a nut-
shell, our intention is to graphically model, formally specify, and to validate the
security properties of a system. The second distinguishing feature of our unified
approach is to specify and validate security policies before proceeding to their im-
plementations, because, implementation technology of a secure system may be by
a choice. Similarly, a secure application can be a military system, web system or
some banking system. Thus, enforcement of security rules may also vary in a wide
variety of settings. For instance, in a library system an element of trust and the
limited consequences of a security violation/breach may lead to flexible rules but
one can not afford such a risk in military systems. So it becomes of interest to tackle
security policies in an implementation-independent manner.

There are many security mechanisms available such as Mandatory Access Control
(MAC) [Bell & LaPadula 1975], Discretionary Access Control (DAC) [Latham 1983]
and Role Based Access Control (RBAC) [Ferraiolo et al. 2001] being used for secure
application. We choose RBAC due to a number of advantages over MAC and DAC
in terms of organizational productivity, enhanced systems security and integrity,
and simplified regulatory compliance |Gallaher et al. 1996].

In the past, our group developed RoZ, a tool that transforms a UML class dia-
gram, annotated with Z assertions, into a Z specification [Dupuy et al. 2000]. This
tool can alleviate the ambiguity of graphical diagrams. But the tool is only lim-
ited to specify and verify the functional properties of an application. We extend

1.1. Research Context 3

this tool to formally specify and validate security properties of an application. We
emphasize on secure system engineering that requires a simultaneous consideration
of functional and security properties. We consider elements of functional models as
contextual constraints over the security models and magnify the important connec-
tions between them. It is to be noted that designing a software with secure features
is indeed of great importance since it considered to be one of ten best practices
towards secure software development [Paul 2009].

We propose a Z-based security kernel constituting the RBAC features that can
arbitrarily be used with any functional model to examine a security policy. Using
Jaza, the sort of validation we perform allows enumerating user defined scenarios to
determine if the specification describes the intended reality. Jaza is a tool that can
execute a large number of Z constructs.

The introduction is structured as follows: Section 1.1 narrowly explains the
research context of the dissertation; Section 1.2 abstractly details motivations (and
problem statement) with our accomplishments and contributions; Section 1.3 gives
roadmap to the succeeding chapters. Overall, the approach taken in this thesis uses
existing body of work where possible and develops new concepts when necessary.

1.1 Research Context

This work is situated in the areas of software engineering and formal methods,
particularly the software design and the usage of formal specification languages to
unambiguously specify and validate security-design models. UML and extended se-
curity profiles are becoming the de facto modeling languages in software industry
[Toahchoodee et al. 2009]. UML can mainly be divided into structural and behav-
ioral diagrams corresponding to static and dynamic views, respectively. The wide
variety of diagrams includes Use Case Diagram, Class Diagram, Interaction diagrams
(further divided into Sequence and Collaboration diagrams), State and Activity Dia-
grams, and Physical Diagrams constituting Component and Deployment diagrams.
However, software practitioners do not like to have overly designed applications
[Martin 2002] and thus pick a subset of these, essentially the class diagrams. An
obvious reason to this approach is to avoid spending extra time and the money on
software design.

Class diagrams have become indispensable as they provide a sufficient amount of
detail on application classes, packages and objects, and their relationship depicted as
containment, inheritance, associations, and others. These models also help design-
teams to mutually collaborate and brainstorm [Barker 2000]. As an advantage,
Barker further recalls that requirements models reduce cost as well as probability
of overruns, in addition to help with support and sustainment of the product.

Software design is also expected to be free from bugs, and bugs should not be
proliferated in the implemented systems: yet this is not promised by class diagrams.
Research community have already devised solutions |Richters & Gogolla 2000] to
validate and verify UML models [Lilius & Paltor 1999]. Verification of UML mod-

4 Chapter 1. Introduction

els is needed to avoid behavior not expected by the designer [Lilius & Paltor 1999].
For example, vUML |Lilius & Paltor 1999] converts UML models into PROMELA
specification and invokes a model checker named SPIN to verify the models. Sim-
ilarly, UML-based Specification Environment (USE) tool validates UML models
augmented with OCL constraints [Gogolla et al. 2007].

Often, making a system entirely reliable is economically and technically imprac-
tical (except for avionics or some other safety critical systems); nonetheless one can
characterize solutions contributing reasonably toward reliable systems. One possi-
ble way of achieving such reliability is the lightweight use of formal methods since
formal methods are precise and unambiguous. Formal specification languages have
well-defined syntax and semantics which avoid having multiple interpretations of
the specification. For example, Z focuses on specifying the functional aspects of
sequential systems using mathematical structures such as sets, relations, and func-
tions; state transitions are given in terms of a predicate linking the initial and final
states. The non-functional aspects of sequential systems may include performance,
real-time constraints, security policies, and architectural design.

We particularly consider the non-functional aspects such as security policies by
the use of Z in this thesis. Using 7Z with UML design is a so-called synonym to
incorporate the precision of formal methods into intuitive graphical models. We can
denote it as a lightweight application of formal methods due to number of reasons
i.e., not having proofs but animation of models, and not having verification but
validation. Actually the Lightweight formal methods do not entail a deep application
of the technology. For example, formalism need not be applied in full depth to
all components of an entire product and through all stages of their development
[Woodcock et al. 2009].

Secure system engineering is a concept based on system and security engineer-
ing — that means functional and non-functional aspects of software systems should
not be taken orthogonally. These days, such approaches are indispensable to rig-
orously address threats and malicious attacks in secure applications. Obviously, it
seems sensible to address security right from the beginning. Recent advancements
[Jiirjens 2005] in security critical systems also show that security properties should
not be retrofitted. We will discover later in the dissertation that functional aspects
may influence non-functional aspects — which mean independent development of
these concepts may originate serious risks to the secure assets.

Formal specification languages such as Z, B, and Alloy have been used for various
industrial case studies. The essence of this use stems from the fact that specifica-
tions should be unambiguous. Hitherto, the mathematical skills required to use
these languages are a genuine reason for their large-scale inadaptability. Having
executable specifications (our Z formal specification are completely executable by
tools such as Jaza.) on top of design can be interesting solution toward achieving a
right blend of formal methods with design artifacts. Although, formal methods can
also be used at any stage of a program development suchlike requirements capture,
specification, validation test-case generation, refinement, analysis, verification, run-
time checking but their use is increasing at earlier stages such as specification and

1.2. Motivations and Accomplishments 5

design [Woodcock et al. 2009].

1.2 Motivations and Accomplishments

This section elaborates upon our research motivations, and subsequently discusses
the corresponding accomplishments made to this end in the dissertation.

1.2.1 Research Motivations

In secure software systems, specifications include functional aspects, describing how
information is processed, and security aspects, which describe who may access the
functionalities of the information system. Separation of concerns tends to separate
functional and security models. But since the security model refers to elements
of the functional one, it is necessary to integrate them to fully address security
concerns and perform more complete security analyses. Such models can adequately
support the study of malicious attacks and threats, which if left unaddressed, can
be confronted in the installed systems.

With the advent of new challenges from secure information systems several pro-
posals have been made for security-design models [Basin et al. 2009]. There are not
so many works except [Basin et al. 2009] that combinedly specify functional and se-
curity properties of an application. Our work is mainly influenced by this direction.

Further to this, till to-date V&V of security-design models based on RBAC
have only discussed the static part of the software design and paid no attention to
animate the dynamic aspects. The static aspects of RBAC-based systems include
data structures that do not change over time while dynamic aspects include session
management (Chapter 4 will describe these aspects in detail). However, it should be
extended to cover V&V of dynamic aspects of these RBAC based security-designs
models.

In addition, state of the art approaches enable querying the model but do not
offer playing a sequence of actions over an implementation-independent specification
of an application, which is definitely worth studying, because, it can simulate the
steps of an attack scenario. We are also particularly interested to study how evolving
states of a model leave behind security flaws potentially exploitable by the attackers.
This way of analyzing and reasoning over models can be helpful to avoid systems to
enter into the unauthorized states.

1.2.2 Research Contributions

The following points provide a summary of our published contributions to the spec-
ification, validation of security-design models by the animation technique:

— Specification of security-design models: As for SecureUML, we propose
to express functional and security models as UML diagrams. These diagrams
are then translated into a single formal specification, expressed in the Z lan-
guage. RoZ tool is used to generate functional specification of an application.

6 Chapter 1. Introduction

We have devised new rules to generate security specifications of an applica-
tion and link them to the functional specifications. The resulting 7 speci-
fications can be animated/executed using Jaza. Validation is performed by
asking queries about the access control rules, as done in the SecureMOVA
tool [Basin et al. 2009]. It is also achieved by playing scenarios, which lead
the system through several state changes and involve both the security and the
functional model. Such dynamic scenarios can exhibit security flaws, which
cannot be detected by static queries. Jaza is a Z animation tool based on a
combination of proof (simplification, rewriting) and search (generate and test)
techniques. It covers a wide range of Z constructs and supports some level of
non-determinism in the specifications (provided the search space is not too
large).

Application level use of Z for RBAC: As stated, Our security model
is based on RBAC [Ferraiolo et al. 2001] and SecureUML [Basin et al. 2009].
Several attempts |Abdallah & Khayat 2006, |Yuan et al. 2006] have already
been placed to specify RBAC in Z but most of them are the specifications of
RBAC meta-model. To our knowledge, none of these has been used in con-
junction with an animator in order to validate a given security policy. Our
approach ensures a feedback on the blocked operations found in the specifica-
tions, which then can be used to improve the quality of a software application.

— Validation/verification of dynamic aspects of RBAC based security
policies: Currently, several tools exploit OCL in order to validate RBAC or
SecureUML specifications. Sohr et al [Sohr ef al. 2008] have adapted the USE
OCL tool [Sohr et al. 2005] for the analysis of security policies. SecureMOVA
[Basin et al. 2009] is a tool dedicated to SecureUML, to validate RBAC based
security policies. This tool allows querying the security policy, and can also
evaluate which actions are permitted for a given role in a given context, de-
picted as an object diagram. Still, both tools only address the functional model
statically, i.e., they do not animate the operations of the functional model and
also partly cover the dynamic aspects of RBAC. We have particularly made
progress toward this type of analysis. However, Sohr does animation of the
administrative functions of RBAC. We will evaluate all such techniques in
detail in Chapter 4 including the ones using Alloy such as [Hu & Ahn 2008,
[Schaad & Moffett 2002], [Ahn & Hu 2007|, [Zao et al. 2003| that speak about
verifying and validating RBAC-base security policies.

1.2.3 Publications

— N. Qamar, Y. Ledru and A. Idani: Security Design Models: Formal Speci-
fication and Validation using 7, Formal Methods and Software Engineering -
13th International Conference on Formal Engineering Methods (ICFEM 2011),
25th-28th October 2011, Durham, United Kingdom.

1.3. Dissertation Roadmap 7

— N. Qamar, Y. Ledru and A. Idani: Evaluating RBAC Supported Techniques
and Their Validation and Verification, in the Proceedings of Fifth International
Workshop on Secure Software Engineering (SecSE’11) in conjunction with the
6th TEEE International Conference on Availability, Reliability and Security
(ARES’11), Vienna, Austria, August 22nd - 26th, 2011.

— Y. Ledru, N. Qamar, A. Idani, J. Richier and M. Labiadh: Validation of Se-
curity Policies by the Animation of Z Specifications, in Proceedings of the 16th
ACM Symposium on Access Control Models and Technologies (SACMAT'11),
Innsbruck, Austria, June 15-17, 2011.

Y. Ledru, A. Idanil, J. Milhau, N. Qamar, R. Laleau, J. Richier and M.
Labiadh: Taking into account functional models in the validation of IS secu-
rity policies, in International Workshop on Information Systems Security En-
gineering (WISSE’11), associated with CAiSE’11, London, UK, June 2011.,
Publisher: Springer (LNBIP).

1.3 Dissertation Roadmap

The thesis has the following structure (excluding the Chapter 1): Part I includes
chapters 2, 3, and 4 that actually refer to state of the art. Part II is based on
chapters 5, 6, 7. Chapter 5 will first cover the underlying security kernel with the
help of an example from medical domain, whereas a comparison of our toolset with
SecureMOVA and USE will be discussed in Chapter 6. Chapter 7 will detail our
offered set of formal queries.

1.3.1 Part I: State of the Art

— Chapter 2: mainly covers two things: it includes theoretical details on the
7 formal specification language including fundamental concepts such as sets,
relations, schema calculus besides some other important notions. It also details
the RoZ tool which is used to generate formal specifications of functional
models (modeled in UML). This chapter will also describe the Jaza tool.

— Chapter 3: The notions of access control mechanisms such as RBAC, Manda-
tory Access Control (MAC), Discretionary Access Control (DAC) are intro-
duced in Chapter 3. This chapter also explains SecureUML, a UML profile
with authorization constraints. We take an example of a meeting SCHED-
ULER to illustrate the underlying idea of these access control mechanisms.

— Chapter 4: This chapter provides an evaluation of RBAC supported verifi-
cation and validation techniques with the help of proposed criteria based on
RBAC features. It also details numerous state-of-the-art techniques by giving
an overview of each of them.

8 Chapter 1. Introduction

1.3.2 Part II: Contributions

— Chapter 5: First, we proceed to expose the underlying work of our approach
which is of formal nature using 7 specification languages. This explains the
security kernel that has been integrated with RoZ enabling a formal analysis
of security policies and helps reporting bugs to the security engineer.

— Chapter 6: This is devoted to compare our work with SecureMOVA and USE
tools and illustrates on the benefits and contributions we provide. The Z-based
toolset is explained in detail and we highlight the importance of sequencing
operations of an application to discover security flaws in them.

— Chapter 7: This chapter is actually a description of formal queries that we use
in chapter 5 to elaborate our approach.

Conclusion and Suggestions for Future Work

Chapter 8: This chapter shares some conclusions based on the work carried
out in this thesis along with future perspectives.

Part 1

STATE OF THE ART

CHAPTER 2

Z and RoZ: An Introduction

Contents
2.1 The Z Language 11
2.1.1 TheZ Basics e 13
2.1.2 Set Constructors 14
2.1.3 Operationson Setso 16
214 Closure e 16
2.1.5 State Constraints 17
2.1.6 Schema Calculus 18
2.2 RoZ Tool 20
2.2.1 The Meeting SCHEDULER 22
2.2.2 RoZ Translation Process 23
223 RoZTypes e 24
224 RoZClasses i e 24
2.2.5 Translation of Relations 25
2.2.6 Generation of Elementary Operations Using RoZ 27
2.3 Using Jaza to Animate the Model 31
2.4 Discussion e 31

This chapter combinedly presents the Z formal language, and the RoZ, essential
to understand the approach proposed in this thesis. In Section 2.1, we first discuss
the fundamental notions of Z to be used later in the dissertation. The transla-
tion (and annotation) process of RoZ from UML class diagrams to Z is introduced
subsequently in Section 2.2 using the meeting SCHEDULER example.

2.1 The Z Language

The ISO standardized (2002) formal language Z has its foundations on first-order
logic and Zermelo-Fraenkel (ZF) set theory. Z, pronounced as Zed, has abun-
dant research literature [Spivey 1992|, [Davies & Woodcock 1996] and case studies
[Bowen 1996]. The Z language offers an extensive set of concepts and constructs
from first-order logic and set theory. Several tools [Saaltink 1997, |Jia 2002] (to
mention but two) can then be used to parse and interpret these Z notations.

The Z model of computation is based on a non-deterministic state transition ma-
chine. The model itself comprises of state variables and transitions, and transitions

12 Chapter 2. Z and RoZ: An Introduction

are regarded as the changes of the variable values. The abstract Z specifications
focus to describe what a system does rather than how it does it. The language
has been successfully applied to various industrial projects for formal modeling and
development [Bowen 2003].

There are two possible descriptions with Z, i.e., State Descriptions and Operation
Descriptions:

State Descriptions State descriptions involve a set of variables that can
have basic types such as integer and more complex data types like relations and
functions. The state of variables presents the state of a system at any instant.
So a state space of an application can be modeled using state schemas. Schema
is a notation (kind of a box) that the Z notation includes for structuring
specifications.

— Operation descriptions — Operation descriptions are considered a particular
way of Z to depict affects on the state variables. The operations, similar to any
programming language, may have precondition(s), but Z does not distinguish
between pre- and postconditions. Operation schemas may or may not exert
changes to the state. A simple output operation will have no affect on the
state while an operation intended to modify some contents can update the
state.

Z is a typed language which means that every variable in Z has a specific type
(i.e., set from which it is drawn). These types allow a certain amount of machine
checking of specifications to avoid obvious’ errors using tools such as ZTC [Jia 2002].
It also helps avoid nonsense specifications [Bowen 2003]. On such given types, con-
straints or predicates can be applied. Schemas are the main structuring primitive
in Z. A schema is divided into two parts i.e., signature part including variables and
types where the second part is called predicate. Each schema is given a title in
order to be called in further schemas or representing a particular component of the
system state or an operation. Let’s consider a standard example of Z specification
borrowed from [Spivey 1992]:

__ BirthdayBook
known : P NAME
birthday : NAME + DATE

known = dom birthday

The schema BirthdayBook is simply a state schema that defines a state space of
birthday records: known is the set of names with birthdays recorded, birthday is a
function which, when applied to certain names, gives the birthdays associated with
them. The part below the line gives a predicate/assertion which is true in every
state of the system and is maintained by every operation on it. It states that the
set known is the same as the domain of the function birthday. This is an invariant
of the system.

2.1. The Z Language 13

__ FindBirthday
= BirthdayBook
name? : NAME
date! : DATE

name? € known
date! = birthday(name?)

An operation FindBirthday is used to find the date of birth of a particular person.
It is also expressed as a schema. This schema illustrates two new notations. The
declaration =BirthdayBook shows that this is an operation in which state does not
change: the values known’ and birthday’' of the observations after the operation are
same as values of known and birthday beforehand. The operators (?) and (!) denote
input/output parameters, respectively. FindBirthday operation takes a name as input
and yields the corresponding birthday as output. The precondition of the operation
illustrates that name? is one of the names known to the system. If this is the case,
the output date! is the value of the birthday function at argument name?.

2.1.1 The Z Basics

This section further explains needed background to understand Z specifications.
Let’s revisit the underlying structure (or skeleton) of BirthdayBook schema, which
is actually comprised of D (declaration(s)) and P (Predicate(s)), as follows:

_ Schema_Name
D

P

P is also sometimes referred to as body of the schema. However, schemas can
be defined in another format as convenient:

Schema_Name == [D | P|

A schema can contain a collection of variables and predicates depending upon the
system to be modeled. A few notions associated to schemas are described in the

following sections.

2.1.1.1 State Components

Constant sets represent the types in Z. As stated, the declaration part has state
components which are introduced as under:

var : Type

14 Chapter 2. Z and RoZ: An Introduction

2.1.1.2 Types in Z

Every set in Z specifications must be drawn from some basic type. This also applies
to the empty set, i.e., there is a different empty set for each type. A basic type can
be either enumerated type or given type. A given type is declared as [NAME| where
NAME is a type. These types are further used to build complicated specifications
using axiomatic definitions, state, or operation schemas. Z has a single predefined
type integers(Z), and predefined operations like subtraction and addition. An enu-
merated type is defined as follows:

Weekdays ::= Monday | Tuesday | Wednesday | Thursday |
Friday | Saturday | Sunday.

2.1.2 Set Constructors

Using Z, several set constructions are possible defining the relevant structures to
model the system. These range from set extensions, power sets, set comprehension,
Cartesian products, to relations and functions. These structures are then used to
model sophisticated aspects of the real world systems. Some of them are given here:

2.1.2.1 Set Extension

We can introduce a new typed set extension of working days as following:
Workings_Days == { Monday, Tuesday, Wednesday, Thursday, Friday}

Workings_Days is a subset of the basic type Weekdays. It means that if a subset
is sufficiently small, we can define it by an extension.

2.1.2.2 Set Comprehension

The set comprehension is a compact way to avoid cumbersome set specifications.
Set comprehension is a general way of specifying sets. Following is the general form
of this:
{z : Type | Predicate(z)} or {Signature | Predicate}
where the signature may include several variables. An example is:
{z:N|zmod2=0} — ({0,2,4,6,...}).

In Z, it takes the following form as well:

{Signature | Predicate ® Expression}

2.1. The Z Language 15

where expression is any valid expression. This notation allows us to write more
complex sets. For example, the set of squares of even numbers may be defined as:

{z:N|zmod2=0ezxz} — ({0,4,16,36,...}).

The expression z * z works as the defining term for the set.

2.1.2.3 Power Set

A defined set in the Z specification may itself be a set of sets. For this we use a
special notation, P S that denotes the set of all subsets of S. For example, power set
of a singleton is: P{b} = {@,{b}}.

2.1.2.4 Cartesian Products

In order to build more complex types, Cartesian products can be used. If M and N
are types then their Cartesian product is given as follows.

M x N denotes the type of ordered pairs (m,n) with m : M and n : N. For-
mally:

MxN-——{m:M;n:N|(m,n)}

2.1.2.5 Relations

A relation is a subset of the Cartesian product of two sets. The type of all relations
between M and N is denoted as:

(M <> N) and is the set (P(M x N))

A relation can be given a name: R : M < N. Each relation has a domain and
a co-domain, defined formally as:

domR={z: M| (Jy: N e(z,y) € R)}
ran R={y: N | (3z: Me (z,y) € R)}

2.1.2.6 Functions

Mathematical functions are a special kind of relations. The Z toolkit has defined
several function types such as partial injections, total injections, partial surjections
and so on. A frequently used type of function is partial function which is formally
specified as:

M-+ N=={f:M<N|(Vm:M; nl,n2: N e

16 Chapter 2. Z and RoZ: An Introduction

(m—=nl)efA(m—n2)ef=nl=n2)}

Informally speaking, if a function relates an element from M to two elements of
N, these two elements must be the same.

If every element of a set is related to one and only one element of another set,
then the relation between the two sets is called a total function f : M — N. For-
mally:

M—-N=={f:M<N|Vm:Me3 n:Ne(m,n)cf}

2.1.3 Operations on Sets

7 provides a number of useful operations on sets and relations. The widely known
sets operations are equality (=), membership (€), subset (C), union (U), intersection
(N), and set difference (\).

Relation operations include composition of relations, range, domain and over-
ride etc. Hereunder, we just discuss the forward composition of relations using the
standard definition from Z toolkit:

r—=z€RsS<eJy: Yer—yeRANy—2z€S85

Two relations may only be composed into one if the target type of one relation
matches the source type of the other relation.

2.1.4 Closure

Closure is a useful means of computing interesting properties from the relations
having domain and range of the same type. Based on some preliminary information
from relations, this helps adding maplets to a relation (R) until some meaningful
property is achieved. For example, the information obtained from all finite itera-
tions of R may be combined to form the relation R, where

Rt=U{n:N|n>1eR"}

This is a transitive relation. For any positive natural number n, we may write
R™ to denote the composition of n copies of R. Here, R is a homogeneous relation
and transitive closure is denoted as RT. The relation is said to be homogeneous if
its source and target have the same type. An important homogeneous relation is
the identity relation, defined by

dX =={z: X ez z}.

2.1. The Z Language 17

R is a homogeneous relation from X to X, R" is written to denote its reflexive
closure:

R" RUidX

This way, we can also consider the reflexive transitive closure of a homogeneous
relation. If R is a relation of type X — X, then we write R* to denote the smallest
relation containing R that is both reflexive and transitive.

R* = RTUidX

2.1.5 State Constraints

The components in the declaration part of a schema may be bound using constraints
or invariants. These constraints can be expressed using Propositional Calculus or
Predicate Calculus. A schema must always respect these constraints.

2.1.5.1 Propositional Calculus

Propositional logic is used to deal with alleged [Bowen 2003| facts in terms of state-
ments that should either be true or false but not both simultaneously. The operators
negation (—), conjunction (A), disjunction (V), implication (=), and equivalence
(=) are generally used to construct these propositions. Simple propositions may
be turned into complex propositions that help cleanly specifying constraints of a
system being modeled. Note that, all the notations including Propositional logic
from Z have well-versed semantics.

2.1.5.2 Predicate Calculus

Quantification is one of the desired property when specifying complex systems. Z,
with its toolkit offers these quantifying constructs. They can be summarized mainly
into two categories:

— Universal Quantifier (V): Using this notation, we can specify that a property
is true for all the objects of a particular set. For example, we can write a
predicate that every natural number is greater than -1:

Vr:Nez>—1

— Existential Quantifier (3): Such quantifications help state that a property is
true for at least one member of a particular set. For example, the following
quantified expression states that there is some natural number min such that
every natural number num must be greater than or equal to min:

18 Chapter 2. Z and RoZ: An Introduction

dmin : N eV num : N e num > min

2.1.6 Schema Calculus

7Z specifications can be organized using the schema calculus. A number of operations
are available to structure the specifications, for example, schemas can be included
in each other. Schema inclusion also facilitates the combination of predicates. We
take an example:

T1 and T2 are some types and P(x), Q(y) are the predicates of the schema A. In a
7 schema, two predicates appearing on different lines are implicitly conjuncted or
joined. Here, the predicate part of schema A is thus equivalent to P(z) A Q(y).
The schema A can also be included in schema B.

The schema inclusion allows to merge the declarations and to conjoin the pred-
icates of both schemas.

2.1. The Z Language 19

2.1.6.1 Operations and A & = Notations

In 7. an operation is also represented as a schema. An operation schema specifies
the state of components (i.e., in the declaration part) before the operation takes
place, and the state after. In fact, the Z specification describes the changes made
by the operation on the state of the abstract machine by stating a predicate that is
satisfied by this pair of states (before and after). For example:

In schema Abc, z is defined and this schema has been included to operation Xyz
(where x is incremented by 1).

Abe

TN

The operator (/) represents the variable x after the operation has taken place,

while x corresponds to the state before the operation.

— Xyz
Abc
Abc’

r=z+1

State’ stands for State where all variables have been decorated with a (z’). The
schema AState is a combination of State and State’ schemas, where State is some
schema.

AState
State
State’

The A and Z notations are used to indicate the expected change/no change in

a schema, respectively.

— Xyz2
A Abe

¥=z+1

7 provides a shortcut which comes in the form of A as a prefix operator with the
schema being included. So the schema Xyz2 is an alternate form. In schema Xyz2,
A Abc means that both states before and after of the schema Abc will be changed.

It is clear that when operations are made, a schema is added twice, with and
without dashed variables (shown examples are: AState, Xyz). The notation = works
oppositely that leaves the variables of a included schema unchanged. For example,
in schema Abc it did not occur any change thus x = x'.

20 Chapter 2. Z and RoZ: An Introduction

=X
AY

The schema Z shows that this operation schema will make no change to the

variables of schema X while the schema Y will be updated.

So far, we have familiarized with fundamental notions of the 7 formal language.
Such a formal notation can be extremely suitable to specify software systems es-
pecially security-critical applications due to the fact that specifications would be
precise enough. Also, there is less chance of occurring a misunderstanding over a
software product among the development teams.

2.2 RoZ Tool

Z is a powerful and expressive language with precise syntax and semantics that has
leveraged its benefits at different phases of software life-cycle. Z is often well-suited
to data modeling due to offering constructs for structuring and compositionally
building data-oriented specifications — with the help of schemas (state and opera-
tion), I/O parameters, and schema calculus to compose sub-specifications. In this
context, RoZ [Dupuy et al. 2000] brings the use of Z to specification phase on the
basis of UML models. This section will explain the underlying concepts of RoZ.

RoZ targets structural elements of UML such as class diagrams. For structur-
ing and composing data-oriented specifications, Z offers schemas notation which is
effectively used in RoZ. RoZ generated models can then be verified (using Z-EVES
[Saaltink 1997]) or validated using animation techniques [Boehm 1984] by tools like
Jaza |Utting 2005]. The main intuitions behind the RoZ are:

— The expressiveness of UML graphical notations is limited and it becomes dif-
ficult to express constraints on the classes attributes (unless OCL or specifi-
cation languages such as Z or Alloy is used);

— One may wish to have detailed specification of operations of a given model,
implicitly contributing to the completeness of a model;

— The RoZ translation process encourages to use graphical models since these
models are an easy way to obtain software design; yet the formal specification
is generated from those models. In this spirit, graphical models can be a
meaningful start to use formal notations, which somehow promotes the use of
formal notation in industrial applications.

2.2. RoZ Tool 21

Initial Problem

1 1

A Y
UML Class diagram Annotations in OCL or £
1 2
2
v RoZ
Z formal skeleton

Z formal specifications

Consistency checks

Z-EVES prover Jaza animation

Figure 2.1: The approach of RoZ tool

RoZ uses the Rational Rose [IBM | environment (a current evolution uses TOP-
CASED)!. Conceivably, class diagrams can range from simple associations to com-
plex constructs like specializations. RoZ has the ability to translate most constructs
of class diagrams: class, operation, association, aggregation, composition, whilst
inheritance to some degree. The underlying rules of RoZ (i.e., the prerequisites for
a model to be accepted by it) help automated generation of formal specifications
e.g., each class attribute must have a type and operations should have their pre-post
predicates.

The RoZ process (Fig. 2.1) is composed of a three-step strategy integrating UML
and Z:

— Generate Z specifications: Corresponding to the step 1, we input to RoZ
UML class diagrams and OCL/Z based annotations. In step 2, formal skele-
tons are obtained from UML class diagrams with their respective annotations.

Yhttp://www.topcased.org

22 Chapter 2. Z and RoZ: An Introduction

In step 3, we can obtain the augmented Z skeleton with the annotations, and
denoted in the figure as Z formal specifications. The generated formal spec-
ifications are of Latex style and are saved in a separate file, which is easy to
parse using Z tools;

— Generate elementary operations: It generates some generic and funda-
mental operations that concrete classes may have. For instance, operations
modifying the attributes can be common to several classes in an application.
Note that, this is included in step 3 when the formal specifications are gener-
ated. This point is thoroughly detailed in Section 2.2.6;

Generate theorems to wvalidate operation guards |Ledru 1998]: After
generating the basic operations, there can be some other constraints (missing
during translation process) on data to be respected. Actually these constraints
are implicit and included from schemas. So the tool helps to make them ex-
plicit. RoZ proposes to design guards to be evaluated before operation execu-
tion and so an operation fails if the constraints are violated when the operation
is called. This helps achieving data integrity of an application. Afterwards,
for each guard a theorem is generated. The theorems demonstration uses a
semi-automatic tool Z-EVES [Saaltink 1997].

To illustrate our work, we consider a meeting SCHEDULER example used by
Basin et al. to illustrate SecureUML and SecureMOVA tools [Basin et al. 2009].
We first elaborate upon this example which will be followed by the RoZ translation
in Section 2.2.2.

2.2.1 The Meeting SCHEDULER

The meeting SCHEDULER helps users plan a “meeting” involving several “persons”.
Basically, the information system records information about persons, meetings, and
the links between these. These links are (a) the ownership of a meeting by a person
who organizes it, and (b) the participation of a given user in a meeting. Fig. 2.2 gives
the major use cases of this system and the related actors. The major kind of actor is
the system user. System users can create and cancel meetings, modify the meeting’s
information (e.g., change the time or duration of the meeting), add participants
to a meeting, and notify the participants about the meeting (which performs some
side-effecting operation such as sending a mail to the participants). The system
administrator is another actor. Basically, he is responsible of managing information
about the persons, i.e., the potential owners of and participants to the meetings.
Supervisors are thus introduced as a specialization of system users. Another kind
of actor is the Director, who is both a user and an administrator. The Fig. 2.3 is
the class diagram used for the meeting SCHEDULER application.

2.2. RoZ Tool 23

Create a person

Create a meeting

s

SystemAdministrator

i

Modify a person

Modify a meeting

SystemUser

Cancel a meeting Delete a person

Notify meeting to
participants

Add participants

Supervisor Director

Figure 2.2: Use cases for the meeting scheduler

2.2.2 RoZ Translation Process

The translation process of RoZ is intended to generate annotated Z skeletons from
UML constructs. The RoZ translation is quite systematic that can be summed up
in the following steps:

— Specification of classes:

a. identification of the useful types for the corresponding attributes;
b. attributes of the classes;

c. extensions of the corresponding sets.

— Specification of the relations between classes;

— System specifications as a whole.

The aforementioned steps are easy to follow. We have two classes named MEET-
ING and PERSON. The first step is to list meaningful types for the attributes of
these classes.

24 Chapter 2. Z and RoZ: An Introduction

MEETING . . PERSON
start : DATE 0- MeetingOwner OWNET | name : STRING
S DR meetingsOfOwner 1.1 |-ChangeName()
-notify() -AddPerson()
-cancel() -RemovePerson()
-ChangeStart() -Linkowner()
-ChangeDuration() MeetingParticipants participants -Linkparticipants()
-AddMeeting() /

-RemoveMeeting() 0.~ 1.7
-Linkmeetings OfOwner() ~

-Linkmeetings OfP articipant() meetingsOfParticipants

-createMeeting()

Figure 2.3: Meeting SCHEDULER Case Study

2.2.3 RoZ Types

For the given application, three types are introduced by the user for the attributes
of MEETING and PERSON classes. For each attribute, a type must be chosen which
can be a given type, an enumerated type or Z, the set of integers. The chosen types
of the example are given below:

[STRING)|
DATE ==

TIME ==

STRING is a given type. DATE and TIME are a renaming of the integer type.
Dates and time are thus the amount of time or date units passed since reference
date/time.

2.2.4 RoZ Classes

RoZ generates class intension and extension for each of the classes. Considering
each class, the "intension" is the set of all possible entities of this kind, which may
often be an infinite set of elements. Contrarily, "extension" is the set of entities
stored in the information system at a given time. This is considered a variable set
and its contents may evolve with time since entities may be added/removed from
the information system. For class MEETING RoZ represents them as MEETING
(intension) and MeetingExt (extension), respectively.

MFEETING

start : DATE
duration : TIMFE

2.2. RoZ Tool 25

MEETING schema is an intension with the given attributes start and duration as
state components. MeetingExt states the extension of MEETING in the set Meeting.
In this case, MEETING schema is considered as a type to define the extension. This
extension has no constraint.

MeetingExt
Meeting : F MEETING

Similarly, PersonExt states the extension of PERSON. This extension has also no
constraint.

PERSON
Tname : STRING

PersonFExt

TPerson :F PERSON

2.2.5 Translation of Relations

At this point, we have defined the two classes (meeting, person) and their associated
attributes. Their linkage in the system specifications is as follows:

— There is a relation (MeetingOwner) one to zero/many between persons and
meetings. Informally, a person may have zero to many meetings. Conversely,
a meeting must be owned by a person.

— The relation (MeetingParticipants) specifies that at least one person must be
listed as participant of a meeting, and meetings of participants can be many
or none.

The relations between meetings and persons involve two roles which will be
translated as two functions: owner is a function from meetings to persons while
meetingsOfOwner is from persons to meetings. Both roles are translated as partial
functions, associating a set of meetings to each person. This is translated into a
schema MeetingOwnerRel in Z. In the predicate part, domain and range of owner
function are constrained. meetingsOfOwner and owner compute meetings of owner
from owner, and owner from meetings of owner. They express that one role can be
deduced from the other one. The distributed union (| J) offers a generalization to
calculate a distributed union of all the sets in the relation owner.

26 Chapter 2. Z and RoZ: An Introduction

_ MeetingOwnerRel
PersonEzxt; MeetingFErt
owner : MEETING - PERSON
meetingsOfOwner : PERSON + F MEETING

dom owner = Meeting
ran owner C Person
meetingsOfOwner = {person : ran owner e person —
{meeting : dom owner | owner(meeting) = person e meeting}}
owner = | J{person : dom meetingsOfOwner o
{meeting : meetingsOfOwner(person) e meeting — person}}

The MeetingParticipantsRel schema also includes two partial functions participants
and meetingsOfParticipant. This relation features to other roles between Meeting and
Person. The constraints specify that the domain of participants is equal to Meeting
i.e., that all meetings have at least one participant, and participants are persons from
meetings. The two partial functions participants and meetingsOfParticipant compute
the participants of meeting and meetings of participants, respectively.

_ MeetingParticipantsRel
Personkxt; MeetingFxt
participants : MEETING -+ F PERSON
meetingsOfParticipant : PERSON + F MEETING

dom participants = Meeting
(J(ran participants) C Person
participants = {meeting : | J(ran meetingsOfParticipant) e
meeting — {person : dom meetingsOfParticipant | meeting
€ meetingsOfParticipant(person) e person}}
meetings OfParticipant = {person : | J(ran participants) e
person — {meeting : dom participants | person
€ participants(meeting) ® meeting}}

These are just a few glimpses how RoZ translates the relations between the
classes from a UML class diagram. Then, the schema GlobalView groups all data
structures we have in the SCHEDULER, application. This includes a predicate
which describes that the owner of the meeting is one of the participants. This
uses Z schema inclusion to group the relevant schemas. This ends up the modeling
of the global state of the meeting SCHEDULER application. We can see that the
constraints added in GlobalView shows the possibility of adding constraints explicitly
to the formal specifications of UML models.

— GlobalView
MeetingOwnerRel
MeetingParticipantsRel

V'm : Meeting ® owner(m) € participants(m)

2.2. RoZ Tool 27

2.2.5.1 Arbitrary Queries

Operations can also be defined to perform arbitrary queries on the system speci-
fication contents. meetingnotify is an example to that. This operation returns the
participants of a meeting while meeting? should be one of the existing meetings
in the system specifications. meetingnotify describes no impact (Z) on MeetingPar-
ticipantsRel. We will experience extensive use of similar queries in Chapter 5 and
Chapter 6 of the thesis which will demonstrate its usefulness in the process of secu-
rity policy evaluation. These chapters will help understand the nature of querying
a security policy model, as here the arbitrary queries are discussed only in terms of

functional models.

___meetingnotify
= MeetingParticipantsRel
meeting? : MEETING
z!: MEETING x (F PERSON)

z! = (meeting?, participants(meeting?))
meeting? € Meeting

2.2.6 Generation of Elementary Operations Using RoZ

In information systems, elementary operations enable creation or deletion of an
object, a link, or to modify an attribute value. They often appear as regular part of
many classes in an application. RoZ works on the same principle to generate such
elementary operations of the UML class diagrams. For instance, a class meeting from
meeting SCHEDULER example contains several operations which will be translated
into Z and are demonstrated in next sections. The generation of the operations
does not consider the eventual constraints on a diagram. However, to check that
an operation is consistent with the constraints, one needs to validate its guard by
proving a theorem generated by RoZ. This process is out of scope and not being
elaborated in the dissertation. Interested readers are directed to [Ledru 1998] and
[Dupuy et al. 2000] for a detailed account.

Note that a UML class diagram groups operations on a single instance of the
class (e.g., ChangeDuration), operations which impact the extension of the class (e.g.,
RemoveMeeting), and operations (e.g., LinkmeetingsOfParticipant) on the relations
which involve the class. RoZ helps precise the scope and the semantics of these
operations since graphical notations mainly specify the syntax (i.e., the signature)
of operations but do not provide much details about their semantics except if we
use OCL. Operations which modify the system specifications content are structured
into the following categories by RoZ:

Operations on instances of classes;
Operations on the extension of a class;

Operations on relations between classes;

28 Chapter 2. Z and RoZ: An Introduction

— Operations on the global system specification.

An excerpt of RoZ generated operations of meeting SCHEDULER example are
used to describe each of above operations category. A few generated operations
will be described below in order to share a flavor of the underlying technique. The
complete set of RoZ generates operations of meeting SCHEDULER application can
be found in Appendix C.

2.2.6.1 Operations on Instances of Classes

MEETINGChangeStart is an example of an operation intended to address an instance
of the class MEETING. This operation takes a date as input (newstart?) and modifies
the start of the meeting with the new input value. The duration remains unchanged.
MEETINGChangeDuration takes into account the change of duration of a meeting.

__ MEFETINGChangeStart
AMEETING
newstart? : DATE

start’ = newstart?
duration’ = duration

_ MEETING ChangeDuration
AMEETING
newduration? : TIME

duration’ = newduration?
start’ = start

2.2.6.2 Operations on the Extension of a Class

The typical operations on the extension of the classes correspond to the addition
and deletion of an element to the set. The first schema MeetingAddMeeting adds a
meeting to the extension of the class.

MeetingAddMeeting is an operation schema to add a meeting to the extension of
meeting class. It takes a new meeting as input (meeting?) and computes the new
meeting set i.e., Meeting'.

__ MeetingAddMeeting
A MeetingFaxt
meeting? : MEETING

Meeting' = Meeting U {meeting?}

The schema MeetingRemoveMeeting is intended to remove a meeting from the
set of meetings. It takes a meeting input (meeting?) to be deleted and updates

2.2. RoZ Tool 29

the meetings. This schema will be used in another user defined operation named
meetingcancel in next section.

MeetingRemoveMeeting
A MeetingEaxt
meeting? : MEETING

‘ Meeting' = Meeting \ {meeting?}

Z provides a great degree of modularization using schema inclusion. Complex
modularization is also possible by the use of promotion or framing. Tt permits to
compose and factor specifications. This mechanism is also adapted by RoZ in the
generated Z specifications.

The basic motivation of these operation stems from the fact that operation
such as MeetingChangeStart and MeetingChangeDuration are not sufficient since their
scope is limited to one object of the meeting class. In order to perform promotion,
a general purpose schema ChangeMeeting is introduced. ChangeMeeting modifies
two kinds of variables: MeetingExt and an instance of the schema type MEETING,
corresponding to the input parameter meeting?. This instance is the one modified by
an operation such as MEETINGChangeStart. Z allows to describe the initial and final
states of Meeting, a component of MeetingExt. But it is necessary to get a control
on the instance of MEETING in order to speak about its initial and final states. This
is the intent of the operator 8 used in the predicate part of this schema. 6MEETING
is a variable of type MEETING, and MEETING’ denotes its final state e.g., after
the execution of MEETINGChangeStart. The first constraint in the predicate part is
a precondition which states that the given input meeting (meeting?) should be one
of the existing meetings. This precondition cannot be deduced from the imported
schemas so this is an additional precondition. Thus, this schema provides a link to
promote operations given as MeetingChangeStart.

__ ChangeMeeting
A MeetingFxt
AMEETING
meeting? : MEETING

meeting? € Meeting
OMEETING = meeting?
Meeting’ = Meeting \ {meeting?} U {0 MEETING'}

MeetingChangeStart is described by ChangeMeeting and MEETINGChangeStart.
We can put these two operations into another grand operation. This way, one can

significantly modularize the formal descriptions. So, MeetingChangeStart is defined
as a combination of ChangeMeeting and MEETINGCHANGEStart.

MeetingChangeStart == (ChangeMeeting N MEETING ChangeStart)
\ (start, start") \ (duration, duration’)

30 Chapter 2. Z and RoZ: An Introduction

The (\) operator is used to hide variables. However, the other interesting pa-
rameters (unhidden, here meeting? and newstart?) must be supplied with inputs.
Usually general purpose operations can be combined with other operations. A de-
tailed description on the idea of promotion can be found in [Spivey 1992].

2.2.6.3 Operations on the Relations

These operations work at the level of relations between classes. Actually, the modi-
fication of meetings also involves the modification of the components of the relation
between meeting owner and meeting participants relations.

___meetingcreateMeeting
MeetingAddMeeting
=PersonFxt
A MeetingOwnerRel
A MeetingParticipantsRel
owner? : PERSON

owner’ = owner @& {meeting? — owner?}
participants’ = participants & {meeting? — {owner?}}

The schema meetingcreateMeeting performs the promotion of MeetingAddMeeting
(one of the RoZ generated operation discussed previously). It modifies the variables
of MeetingOwnerRel and MeetingParticipantsRel schemas, and access the PersonExt
in read-only mode. In the predicate part, the definitions of two functions owner and
participants are updated.

The meetingcancel is another example of working at the relations level. It in-
cludes PersonExt in read-only mode but performs changes to the relation schemas
MeetingOwnerRel and MeetingParticipantsRel. It also promotes the schema Meet-
ingRemoveMeeting.

___meetingcancel
MeetingRemoveMeeting
=PersonFExt

A MeetingOwnerRel

A MeetingParticipantsRel

owner’ = {meeting?} < owner
participants’ = {meeting?} < participants

The operator < is used to subtract the meeting meeting? from the domain of
participants function. Note that, meetingcancel is one of the user defined operations
to conform to the particular operations of our borrowed example.

2.2.6.4 Operations on the System Specifications

A first operation that takes place at the highest level is the initialization of the
whole system specifications. It’s mandatory to specify initial state of the abstract

2.3. Using Jaza to Animate the Model 31

machine in Z. Here, InitGlobalView does the same job. The constraints express that
the extensions of the classes are empty in the initial state and so the respective
relations specified earlier.

—InitGlobal View
MeetingExt’
PersonExt’
MeetingOwnerRel’
MeetingParticipantsRel’

Meeting' = @

Person' = @

owner’ = &
meetingsOfOwner’ = @
participants’ = @
meetingsOfParticipant’ = &

2.3 Using Jaza to Animate the Model

Jaza [Utting 2005] can be used to validate functional properties of an application. It
can animate a large subset of constructs of the Z specification language. Its salient
features encompass concepts like combination of proofs (simplification, rewriting)
and search (generate and test) techniques. It determines whether an operation can
be executed on the current state. Using a current "system state", it results into a
new state with operation execution. Similarly, if the invariants fail in the initial
or final state, the tool returns "No Solutions" that can further be queried by (Why)
command in order to find out the reasons. When we initialize schema InitGlobalView,
it iterates over the constraints and applies respective invariants.

In Fig. 2.4 a screen shot of the Jaza tool has been provided. Initially the tool
requires us to load all the Z files including the types, generated operations, and
the data (besides any additional files that we may need). Based on this input
information, we can execute each of the operations given in the Z specifications.
For example a few operations such as ;PersonAddPerson, ;meetingcreateMeeting are
visible in the command prompt area of the shown figure.

2.4 Discussion

In this chapter we have tersely described the Z language, RoZ translation process,
and the Jaza tool. One may think that the RoZ annotation process is also achievable
by the use of OCL. Although it seems true, OCL tools are not sufficient to animate
a class diagram and its operations. We will come back to this point in Chapter 5
in detail. We believe that a better formal analysis of UML diagrams is possible by
the Z language with available tool support such as Z-EVES. However, Jaza is used
to animate the specifications in this thesis. The demonstration of using RoZ with

32 Chapter 2. Z and RoZ: An Introduction

Jaza has also been explained in [Ledru 2006]. The actual outcome of RoZ comes in
the form of analyzing and debugging formal specifications. It also contributes to the
understandability of some constructs such as aggregation and composition of UML
models. A detailed account of the tool can be found in [Dupuy et al. 2000].

Note that, the basic operations generated by RoZ enable an unrestricted access to
the resources of an application which is indeed not desirable in a secure information
system. This motivates us to move a step further in order to upgrade RoZ for secure
applications.

2.4. Discussion 33

:\Windows \system32\cmd.exe - Jaza

C-swztowinwMrJaza

Wlelcome to Jaza,. version 1.1. June 2885

Copyright{C)> 1999-2005 Mark Utting C(markuPcs.wvaikato.ac.nz).
Jaza comes with ABSOLUTELY NO WARRANIY <see file COPYING)>.
This is free software. and you are welcome to redistribute
it under certain conditions (see file COPYING).

Type ‘help’ to see the available commands.

JAZA> reset
Specification iz now empty.
JAZA> load ZTypes.zed
Loading 'Zlypes _zed' ...
Added 3 definitions.
JAZA> load rozdata.zed

i 'rozdata.zed’ ...

JAZA> load rozops.zed
Loading *rozops.zed’ ...
Added 27 definitions.
JAZA> do InitGlobalUiew
~1blot Meeting’==%{“}. Person’=={%2. meetingsQfQuner’ =="{\2>.
meetingsOf Participant’ ==~{ 7, ounepr’ == {%3,
participants’ ==»{»» “rhlot
; PersonfAddPerson
Input person? = “lblot name=="Alice" “rhlot
~1blot Meeting’=={“}. Person’==%{%“1lhlot name=="fAlice" “rbhlot-}.
meet ings0f Ouner' =="{">, meetingzOf Participant’=="{“F,. ouwnep’'=="{"2>,
participants’ ==%{“> “rblot
JAZA> ; PersonAddPerson
Input person? = “lblot name=="Boh" “rhlot
“1hlot Meeting’ ==“{}.,
Person’=={~1hlot name=="Alice' “rhlot, “1lhlot name b" “rhlot™F .
meet ings0f Ouwner’ =={ >, meetingzOfParticipant’=="{\2, ounepr’ =={\}.
participants’ ==%{“> “rblot
JAZA> ; meetingcreateMeeting
Input meeting? = “lbhlot start == 1, duration == 18 “rblot
Input owner? = “lhlot name=="Alice'" “rhlot
~1hlot Meeting’==%{“1blot duration==18, start==1 “rhlot:3}.
Person’ =={~1hlot name=="Alice' “prhlot, “1lhlot name=="Bobh" “rblot>}.
meet ingsO0f Owner' =="{{(\1lbhlot name=="Alice' “rhlot.
“{~1lblot duration B, start==1 “rhlot™2>>\},
meetingsOf Participant’ ==~{{~1blot name lice" “rbhlot.
“{51blot duration==18,
start==1 “rhlot>>>\}».
ouner’ ==*{{~1hlot duration==18, start==1 “rhlot.
“~1hlot name=="Alice' “phloti~},
participants’ =="\{(\lhlot duration==18, start==1 “rhlot.
“~{~1lblot name==""Alice” “rhlot:2>-} “rhlot
JAZA> ; meetingLinkmeetingsOfParticipant
Input person? = “1blot name=="Bob" “rblot
Input meeting? = %lbhlot start==1. duratio B8 “rblot
~1hlot Meeting’==%{“1lblot duration==18, staprt sphlot™g .
Person’ =={~1bhlot name=="Alice' “prhlot, “1lhlot name=="Bobh" “rblot>}.
meet ingsO0f Ouner' ==“{{(\1lhlot name=="Alice' “rhlot.
“{~1bhlot duration A, start==1 “phlot“>I\},
meetingsOf Participant’ ==~{{(~1blot name 'Alice"” “rhlot.
S{51blot duration==18,
start==1 “rblot~>>.
] 'Boh" “rhlot.
“~{~1bhlot duration==18.
start==1 “rbhlot 2>},
owner’' =={(~\1lhlot duration==18, start==1 “rhlot.
“1lblot name=="Alice' “rhlotd~>.
participants’ ==%{(%\1blot duration==18, start==1 “rblot.
“{x1lblot name Alice' “rblot.
“~1blot name Bobh" “rhlot»>>\3} “rhlot

Figure 2.4: Jaza tool

CHAPTER 3
Access Control Mechanisms &
SecureUML

Contents
3.1 Access Controls Mechanisms 36
3.1.1 Mandatory Access Control (MAC) 37
3.1.2 Discretionary Access Control (DAC) 39
3.1.3 Role Based Access Control (RBAC) 40
3.2 Functional Specification Packages 44
3.2.1 Summarizing Access Control Mechanisms 46
3.3 Data Security Properties L oL 47
3.3.1 Availability o 47
3.3.2 Confidentiality 47
3.3.3 Imtegrity 48
3.4 Why to Choose RBAC over MAC and DAC? 48
3.5 UML-based RBAC specifications 49
3.5.1 SecureUML 49
3.6 Summary 52

An enterprise which is regarded as a system consists of products or compo-
nents, operating systems, applications, IT staff, internal users and management,
customers, external users and the surrounding environment [Bishop 2003]. Enforc-
ing and managing such enterprise-wide security is often considered a complex and
tedious task. More importantly, computer systems need special security treatments
against soft attacks and threats. Several access control mechanisms (a.k.a autho-
rization mechanisms) can be used to provide a shield against these challenges. So
we can limit individual’s access to valuables. A secure system has several important
components: it should be backed up by a security policy, security mechanism, and a
security model. These notions are described below by adapting the definitions from
[Bishop 2003].

— Security policy is a statement of what is, and what is not, allowed; or it is a
statement that partitions the states of the system into a set of authorized, or
secure, states and a set of unauthorized, or non secure states.

36 Chapter 3. Access Control Mechanisms & SecureUML

— Security mechanism is a method, tool, or procedure for enforcing a security
policy.

— Security model is a model that represents a particular policy or set of policies.

Secure system is a system that starts in an authorized state and cannot enter
an unauthorized state.

Security policies are generally context-dependent or enterprise-specific which are
expressed as security models. However, to realize the implementation of security
policies, security mechanisms are utilized e.g., MAC [Bell & LaPadula 1975], DAC
[DOD 5200.28-STD 1985], RBAC [Ferraiolo et al. 2001]. The MAC and DAC pre-
date RBAC.

The principle subject of our research is RBAC access control mechanism, and
its use in graphical modeling of security policies, formal specifications and the sub-
sequent validation.

This chapter is dedicated to the description of access control mechanisms and the
SecureUML security modeling language. The first main section 3.1 introduces MAC,
DAC and RBAC. Section 3.2 discusses the logical approach of using RBAC; while
data security properties are discussed in Section 3.3 and in Section 3.4 we provide
a brief comparison of MAC, DAC, and RBAC. Section 3.5 states SecureUML that
helps specifying security design models of secure applications with an example, along
with its metamodel in Section 3.5.1.1.

3.1 Access Controls Mechanisms

The use of multi-user computer systems requires enforcing access control in a right
way so that the users could perform allowable actions, and only these actions. One
can imagine the following list of actions experienced everyday in the office:

A user can exercise program permissions such as the right to execute a program
on an application server;

— The permissions linked to a file like create, read, delete, and edit on a file
server;

— Updating and retrieving information from a database.

All the access control mechanisms (i.e., mainly MAC, DAC, and RBAC) designed
for computer security require to deal with similar issues. Their application rules are
clearly disparate from each other. We briefly discuss below their major differences
and the underlying concepts individually.

3.1. Access Controls Mechanisms 37

3.1.1 Mandatory Access Control (MAC)

Definition 1. When a system mechanism controls access to an object and
an individual user cannot alter that access, the control is a mandatory
access control (MAC), occasionally called a rule-based access control (not
to be confused with RBAC).

Bell-LaPadula’s MAC [Bell & LaPadula 1975] is an access control mechanism
and perhaps the oldest one as a standard. The administrator is in charge to define
permissions in MAC. In MAC, the operating system restricts the ability of a subject
(also known as initiator) to perform operations on an object or a target. A subject
may also be regarded as a process or a thread. Objects can be constructs, e.g.,
directories, files and segments of the shared memory. Subjects and objects have
clearance properties and security properties, respectively. An operating system’s
security kernel examines the relevant access control properties and thus access is
granted as specified by authorization rules. Authorization rules come into play to
determine if the operation is permitted. This means that MAC enforces the system
to remain in a secure state regardless of user actions. Labels are introduced on the
objects to secure. The labels help state who is authorized to access these objects.
Similarly, the security label of an object can only be changed by the administrator.
The set of classification level is ordered by a < relationship.

Unclassified < Confidential < Secret < TopSecret
There are three important notions to discuss here:

— Clearance level: indicates the level of trust given to a person with a security
clearance. It may also be a computer that processes classified information as
well as an area physically secured for storing classified information.

— Classification level: determines the level of sensitivity associated with some
information, for example, in a computer file or a document.

— Security level: indicates to a generic term for either a classification level or a
clearance level.

Nonetheless, the clearance and security labels are designed in this way:

(classification level, {categorization code(s)})

Security levels have a hierarchical and non-hierarchical component. The hierar-
chical components include unclassified (U), confidential (C), secret (S), and top-secret
(TS) whilst non-hierarchical components include NATO and NUCLEAR. The per-
missions over the documents of a user are granted by the system instead of users.
But a few exceptions include UNIX and Windows operating systems, which give

38 Chapter 3. Access Control Mechanisms & SecureUML

control to the creator of a document to specify permissions. Examples of user ob-
jects in Windows operating system include printers, services, and files. MAC has
wide applications in the real world scenarios such as database management systems.
It should be noted that MAC only deals with the confidentiality property with no
read up and no write down.

We can revisit our meeting SCHEDULER example in previous chapter (sec-
tion 2.2.1) in order to find out the feasibility of structuring it using MAC. In our
example, we have two resources i.e., Person and Meeting to secure; each of them can
have multiple instances. A meeting is owned by a person who has the authority to
delete or modify his own meeting, and others can read that of his listed meeting.
The supervisor actually inherits the permissions of a system user. The class of per-
sons is managed by the system administrator using some operations. We can create
a mapping between all these objects and perhaps tags can be associated to protect
the information. However, this looks clumsy and more implementation oriented.

We show the MAC-based design of SCHEDULER example with simple read and
write permissions. We have specified some users, their clearance level, and similarly
objects with their classification level.

Alice can write
(Secret)

> Alice’s meeting
(Secret)

can read

Bob can write
(Confidential)

> Bob’'s meeting

can read (Confidential)

Figure 3.1: MAC mechanism applied to the meeting SCHEDULER

In 3.1 a subject is permitted to have read access to an object if the subject’s
security level dominates the security level of the object. This is also called simple

3.1. Access Controls Mechanisms 39

security property [Ferraiolo et al. 2007]. Alice can both read and write to her meet-
ing, and the same is true for Bob. Their respective operations are possible since
their classification level and the corresponding clearance level are the same.

In MAC a subject is permitted write access to an object if the object’s classifica-
tion level dominates the clearance level of the subject, also named as star property
[Ferraiolo et al. 2007]. When designing our subjected example using MAC, we wit-
ness that Bob can only write to Alice’s meeting and Alice can only read Bob’s
meeting. Nonetheless, the requirement was that the users should only be able to
read each other’s meetings. Thus, we find it difficult to implement the example as
it is using MAC. We can see that Bob can write to Alice’s meeting.

MAC allows devising a mechanism for the read and writing operations, which
prevents users from being able to read information that dominates their clearance
level. But it is pertinent to state that it only deals with the confidentiality property
of a secure system.

3.1.2 Discretionary Access Control (DAC)

Definition 2. In DAC access control mechanism, an individual user has
the authority to allow or deny the access to an object. This is also called
an identity-based access control (IBAC).

Restricting dissemination of information has always been a challenging task.
DAC is another choice to secure objects in a system. Contrary to MAC, an access
control mechanism is called DAC, if an individual manages the allowing/forbidding
access control decision to an object. This scheme is also referred as Identity Based
Access Control (IBAC) [Andersson 2001]. Access to resources is based on user’s
identity. An Access Control List (ACL) of users is updated if a user is given access
to a resource, and also associated with a resource. Access Control Entry (ACE) is
called as an entry on a resource’s ACL. A user may also be a group, a set of users.
The DAC model is based on the concept of resource ownership.

It is pertinent to explain that the end users in industry and civilian organizations
don’t "own" the information to which they are allowed access as is assumed by DAC
policies [Ferraiolo et al. 2007]. In that case, the actual "owner" of system objects is
the corporation or the parent agency.

Table 3.1 shows that a user can allow access to another user on an object, for
example, Bob allows Alice to perform read operation on his meeting Meetingl. Alice
has created a meeting named Meeting2 on which Bob is revoked to read the meeting.
One can imagine millions of records granting and revoking permissions to them. This
is purely a discretionary activity. In these circumstances, Harrison, Ruzzo, Ullman
have proved that undecidability result applies to DAC ([Ferraiolo et al. 2007], page
— 27). They argue that safety is inherently undecidable in a conventional access
matrix view of security. It means that it is impossible to know whether a given con-
figuration considered safe with respect to some security requirement would remain
safe [Ferraiolo et al. 2007|. If the system is started with a set of access rights to
objects, it would be impossible to judge that the system will not eventually grant

40 Chapter 3. Access Control Mechanisms & SecureUML

Table 3.1: DAC mechanism applied to the meeting SCHEDULER

Users | Objects | Permission Status

Bob | Meetingl | to Alice (read) | Granted
Alice | Meeting2 | to Bob (read) | Revoked

access rights that are not in the original matrix.

3.1.3 Role Based Access Control (RBAC)

Definition 3. Role-based access control (RBAC) is a method of regulating
access to computer or network resources based on the roles of individual
users within an enterprise. In this context, access is the ability of an
individual user to perform a specific task, such as view, create, or modify
a file. Roles are defined according to job competency, authority, and
responsibility within the enterprise.

The NIST (National Institute of Standards and Technology) has standardized
RBAC |Ferraiolo et al. 2001]. It provides the means to define access control mecha-
nisms to inhibit unauthorized use. The notion of role is a permanent organizational
identity that has certain allowable actions associated to it. RBAC follows a generic
principle of access control policy that makes it adaptable to any organizational
structure as well as flexible wrt. the application implementation. The main distin-
guishing feature of RBAC is its assignments of roles to users and the fact that roles
have certain predetermined privileges and rights.

3.1.3.1 Core RBAC

(UA) User
Assignment

user_sessio

(PA) Permission
Assignment

PRMS

session_roles

Figure 3.2: Core RBAC [Ferraiolo et al. 2001]

The data model of RBAC (Fig. 3.2) is based on five data types: users (USERS),

3.1. Access Controls Mechanisms 41

roles (ROLES), objects (OBS), permissions (PRMS) and executable operations
(OPS) by users on objects. A sixth data type, session (SESSIONS), is used to
associate roles temporarily to users. Sessions correspond to the dynamic aspect
of RBAC. RBAC differentiates between users and roles. A role is considered as a
permanent position in an organization whereas a given user might be switched with
another user for that role. Thus, rights are offered to roles instead of users. Roles
are assigned to permissions that can later be exercised by users playing these roles.
Modeled objects (OBS) in RBAC are potential resources to protect. Operations
(OPS) are viewed as application-specific user functions. UA is user assignment, RH
is role hierarchy and PA is permission assignment. Here, we very briefly outline the
RBAC constructs:

Users: a person who uses a system or an automated agent;

— Role: is an organization entity or a permanent position in an enterprise. Each
role may have an allowable set of actions according to access the control policy.
This way, access to computational resources is made via roles;

UA C USERS x ROLES, a many-to-many mapping between users and roles;
UA specifies which roles can be played by a given user;

- PA C PRMS x ROLES, a many-to-many mapping permission-to-role; PA
expresses which roles may be granted a given permission;

— user_sessions(u : USERS) — 25F5SIONS “the mapping of user u onto a set of
sessions; it lists the current sessions of a given user;

— session_roles(s : SESSIONS) — 2OLES ' the mapping of session s onto a set
of roles; it lists the current roles of a given user in a given session;

— PRMS = 2(OPSx0BS) the set of permissions. Permissions are regarded as an
approval to perform operations on RBAC protected objects. An executable
image of a program is considered as an operation, which upon invocation
executes some function for the user. The type of the implemented system
specifies the types of operations and objects to be controlled by RBAC. For
example, within a database management system, operations might include
insert, delete, append, and update; within a file system, operations might
include read, write, and execute.

The core RBAC (Fig. 3.2) embodies only includes users, roles, permissions, op-
erations, and objects entities — and relations as types and functions. Core RBAC is
a mandatory part of any RBAC system. A user can be assigned to several roles and
a single role can have many users. The variants (e.g., SSD and DSD) are orthogo-
nally constructed and implemented in a RBAC computer system. In core RBAC,
role activation is given as part of a user’s session with a computer system. The
role activation/deactivation allows the selective exercise of some permission during
a session.

42 Chapter 3. Access Control Mechanisms & SecureUML

Table 3.2: RBAC Configurations

Users Role
Alice SystemUser
Bob SystemUser
John Supervisor
Mike | SystemAdministrator

Table 3.3: RBAC Configurations: [C:Create, U:Update, D:Delete: R:Read]

Role Permission Object | Operations
SystemUser UserMeeting Meeting | C, U, R, D
Supervisor OwnerMeeting /UserMeeting | Meeting | C, U, D, R

System Administrator UserManagement Person C,U,D

We now move to design our meeting SCHEDULER example by the use of RBAC.
This represents a general idea about its working structure. Table 3.2 shows that
first each user is assigned with a role. We assume some roles i.e., System User,
Supervisor, and System Administrator. Permissions include Owner Meeting (owner
of a meeting), User Meeting (a participant of a meeting), Supervisor Cancel (a
privilege to the supervisor to cancel the meeting), and User Management (right
of some director to add, delete persons). In table 3.3, roles have been assigned
with the corresponding permissions, objects to secure, and the operations offered
by them (e.g., C:Create, U:Update, D:Delete: R:Read). Note that, these roles and
permissions will always remain the same but users can be changed, which is a sort

of flexibility offered by RBAC.

3.1.3.2 RBAC Variants

The variants of RBAC can be used to specify a secure system in terms of simple rela-
tions (e.g., PA and UA) as well as SSD (static separation of duty) and DSD (dynamic
separation of duty) constraints (stated in sections 3.1.3.4, 3.1.3.5). A RBAC sup-
ported system need not to include all variants of RBAC but it can be customized
accordingly. RBAC standardized by NIST has several building blocks consisting
of separation of duties, roles, roles hierarchy, role activation, and constraints on
user/role membership and the activation of role set [Ferraiolo et al. 2001]. Below
we provide a brief description about the variants of RBAC.

3.1.3.3 Hierarchical Role Based Access Control

Hierarchies are used as a natural way of structuring roles to state the line of authority
and responsibility of an organization. Fig. 3.3 sketches the Hierarchical RBAC. Role

3.1. Access Controls Mechanisms 43

hierarchies reflect on inheritance relation among roles. The RH is defined as:

— RH C R x R, a partially ordered role hierarchy; a senior role may inherit the
permissions from its junior roles;

(RH)
Role Hierarchy

(UA) User
Assignment

usersession

(PA) Permission
Assignment

session_roles

Figure 3.3: Hierarchical RBAC [Ferraiolo et al. 2001]

The term inheritance refers to inheriting a permission which means r1 "inherits"
role 72 provided that all rights of 72 are also rights of r1, where r1, r2 are some
roles. For instance, in the meeting SCHEDULER example, the role supervisor can
inherit the permissions OwnerMeeting and UserMeeting from the role system user.

3.1.3.4 Role Based Access Control with SSD

SSD (Static Separation of Duty) constraint (Fig. 3.4) offers the means to address
conflict of interest among roles. For example, a user may be assigned to two roles,
let’s say a Programmer and a Tester, which are supposed to create a conflict if
exercised at once so we can use SSD constraints in order to forbid using both roles
simultaneously. For this, SSD constraints are applied on assignment of users to roles
and thus, UA is restricted during sessions. By this, if a user is assigned to a role, the
user can never take the prohibited role. SSD can be applied not only to colluding
users but to groups, which is a collection of users. Permissions can be associated
with both users and groups.

SSD constraints are specified over UA assignments as pairs of roles. Although
NIST RBAC terms it very restrictive in two aspects: the size of the set of roles in the
SSD and then combining roles in the set for which UA is restricted. This restrictive
SSD constraint is understandable since the security policy of an organization may
state that no one user may be assigned to four of the five roles representing some
accounting functions. We can see that this will result in a different type of SSD
constraint impossible to impose using SSD of RBAC, and is definitely one of the
limitations of RBAC.

44 Chapter 3. Access Control Mechanisms & SecureUML

N (RH)
_____ v Role Hierarchy

(UA) User
Assignment

(PA) Permission
Assignment
PRMS

session_roles

Figure 3.4: SSD within Hierarchical RBAC [Ferraiolo et al. 2001]

3.1.3.5 Role Based Access Control with DSD

Aside from SSD, DSD (Dynamic Separation of Duty) is the second kind of constraint
offered by RBAC (Fig. 3.5). These constraints are intended to limit the permissions
that are available to a user, whilst SSD constraints reduce the number of potential
permissions that can be made available to a user by placing constraints on the users
that can be assigned to a set of roles. The main difference between SSD and DSD
constraints lies in the context in which they are used. SSD are imposed on user’s
total permission space but DSD restricts the users to activate the roles within or
across a user’s sessions. For example, a user Bob may have been assigned with two
roles i.e., Supervisor and System User but he may not exercise the permissions of

both roles in the same session.
.F'RMs.

(RH)

(PA) Permission
Assignment

(UA) User
Assignment

user_session]:\) session_roles

Figure 3.5: Dynamic Separation of Duty relations [Ferraiolo et al. 2001]

3.2 Functional Specification Packages

The RBAC Functional specification specifies administrative review functions for
performing administrative queries; administrative operations for the creation and
maintenance of RBAC element sets and relations; and system functions for creating

3.2. Functional Specification Packages 45

Select Core RBAC
Option: Advanced
Review

Choose ‘a’ or 'b’
Option; Advanced
Review

Adhere to
dependency

Requirements
Package

Figure 3.6: Methodology for creating functional packages [Ferraiolo et al. 2001]

and managing RBAC attributes on user sessions and making access control decisions.

As is seen in the previous sections, RBAC provides a diverse set of access control
management features, compactly depicted in Fig. 3.6. This is a logical approach
for defining packages of functional components where every package may pertain to
a different threat environment and/or market segment. Ferraiolo states that each
component can optionally be selected for inclusion into a package with an exception
that Core RBAC must be introduced as a part of all packages. In a nutshell,
RBAC offers four functional components: core RBAC, Hierarchical RBAC, Static
Separation of Duty Relations, and Dynamic Separation of Duty Relations. Each
functional component embodies three sections: administrative operations for the
creation and maintenance of RBAC sets and corresponding relations, the review
functions to understand/query a access control policy, and session management
operations that involve activation of roles to a user’s session. Within Core RBAC,
advance review functions for permission-role assignment is also an optional feature,
same as in Hierarchical RBAC.

Hierarchy is realized by defining an arbitrary partial order to serve as the role
hierarchy. It’s often the case that roles have overlapping capabilities or general
permissions may exist within an organization, available to everybody. Oppositely,
limited role hierarchies are subject to certain constraints such as simple structure
trees or inverted trees.

46 Chapter 3. Access Control Mechanisms & SecureUML

Using Hierarchical RBAC, it offers the flexibility to go for multiple inheritance
of permissions and user membership among roles. A limited hierarchy is essentially
a tree (or inverted tree) structure. For a limited hierarchy, a function used by RBAC
AddlInheritance is constrained to a single ascendant (or descendant) role.

The two subcomponents of SSD relations are with or without hierarchies. If Hi-
erarchical RBAC is chosen as a security implementation scheme, then SSD relations
must adhere to the dependencies and should include the SSD with hierarchies. This
looks quite intuitive since absence of such obligation can lead to catastrophic flaws
in the security policies. For example, a role may obtain an associated permission
when inheriting another role due to some insufficient SSD constraints. The last
component of RBAC is DSD relations that is free from dependency relations except
to Core RBAC. Addressing DSD with limited role hierarchies let most of the RBAC
remain intact except that a number of supporting system functions are redefined
such as CreateSession and AddActiveRole. Also, some administrative functions of
RBAC are also modified like AddInheritance. For a detailed description of each of
the modified functions, readers are referred to [Ferraiolo et al. 2001].

3.2.1 Summarizing Access Control Mechanisms

The MAC was originally developed for military systems where the documents could
be labeled. DAC purely involves a discretionary activity to exercise access rights.
RBAC is a natural evolution of these access control mechanism that tries to address
their shortcomings. In software applications, the notion of roles has been used for
nearly 25 years [Ferraiolo et al. 2001]. RBAC offered its use as a proper model for
software security equally mature to MAC or DAC. In a decade or so, RBAC has
emerged as one of the standard practices in computer security.

Presently, it is considered as a single access control model despite its multiple
versions. It evolved in nearly a decade as a customizable, flexible, sophisticated
and practical nature in that it can easily be implemented in organizations. Osborn
|Osborn et al. 2000] have shown that RBAC can also be configured to enforce MAC
and DAC, which demonstrates its expressiveness. RBAC is a centrally administrated
access control scheme, but role permissions are not handled centrally if it needs to
manage distributed RBAC implementations, which is a kind of flexibility.

However, RBAC has some limitations. The number of roles and users can be
tens or thousands which looks a great challenge for RBAC administration. AR-
BAC97 [Sandhu et al. 1999] (happened to be decentralized administration scheme)
is a solution toward that kind of problems. However, it’s without some important
features such as organization. The concept of organization works as a context of
the roles by which they are employed. This feature has been later added by Oh et
al [Oh et al. 2006] and the new model emerged as RBAC02. RBAC02 thoroughly
explains the intricacies of ARBAC97 |Sandhu et al. 1999|. The main listed problem
was to control the scope/boundary of administrative roles. Oh et al [Oh et al. 2006]
keep the main features of ARBAC97 but add the notion of organizations to facili-
tate better administration of roles and users when the number is larger. ORBAC

3.3. Data Security Properties 47

[Abou El Kalam et al. 2003] also explored the organizational aspects of access con-
trol mechanism and discusses organization as a context. Likewise, some other pa-
pers have dealt with similar kinds of issues densely in [Strembeck & Neumann 2004],
[Li & Tripunitara 2006], [Ferraiolo et al. 1999].

3.3 Data Security Properties

Access control mechanisms are intended to yield three basic data security properties
availability, confidentiality, and integrity. Computer security is designed to cover
these basic properties. For the sake of clarity, we only give their short explanations
and definitions adapted from |Bishop 2003|. Except RBAC, MAC and DAC do not

reward us with all the three security properties upon their implementation.

3.3.1 Availability

Definition 4. Let X be a set of entities and let I be a resource. Then I
has the property of availability with respect to X if all members of X can
access 1.

The kind of availability property offered by RBAC deals with granting permis-
sions which will ensure that the resource is available to X. Utilization of a partic-
ular service is handled by the availability property. For example, at certain time a
sub-office tries to access an employee’s information from the head-office. However,
availability property, if compromised, can give rise to unpleasant situations, for ex-
ample, attacks on an information system of an organization can overload a server
and thus genuine users will no longer access to their resources. RBAC can allow
only the legitimate users to access the resources. In other words, RBAC avoids to
occur undesirable states in which an untrusted user gets access to a resource and a
state in which a user who is entitled to an access permission does not get it.

3.3.2 Confidentiality

Definition 5. Let X be a set of entities and let I be some information.
Then I has the property of confidentiality with respect to X if no member
of X can obtain information about I.

Confidentiality of the data is an equally important aspect of computer security.
In this context, data protection mechanisms often restrict the users to access only
their data. For example, medical records of an hospital are of highly confidential
nature and must be protected. Any leakage of information not only affects the
repute of an organization but can leave behind irreversible damage to the patients
whose records are unrevealed. RBAC deals with confidentiality by giving access to
confidential data only to the authorized users.

48 Chapter 3. Access Control Mechanisms & SecureUML

3.3.3 Integrity

Definition 6. Let X be a set of entities and let I be some information or
a resource. Then I has the property of integrity with respect to X if all
members of X trust I.

Security policies, mechanisms, and procedures always rest on some assumptions.
For example, a system administrator needs to install a security patch and the certain
assumption about its correctness may be such as the patch was not tampered in the
transit and the patch is thoroughly tested [Bishop 2003]. Bishop alludes to the point
that any security policy, mechanism, or procedure is based on assumption that, if
incorrect, it will destroy the superstructure on which it is built. Thus, the role of
trust is crucial to the secure system development, which plays a vital role to ensure
integrity property.

Integrity is more challenging than availability and the confidentiality. To avoid
masquerading information is one of the internal as well as external challenges enterprise-
wide. These attacks happen when an authorized user of some set of information,
may exercise unauthorized attempts. Schneier [Schneier 2000] mentions a scenario
for trading with stock. An employee from ParGain Technologies managed to post
fake announcements which looked like from Bloomberg news service. This ended up
in a worst effect since the stock went up by 30 percent before the truth was revealed.
RBAC deals with integrity by controlling who may modify the protected data.

3.4 Why to Choose RBAC over MAC and DAC?

MAC, DAC, and RBAC contribute to ensure the above data security properties in
one or another way. The feature that makes RBAC distinguishing from its counter-
parts is its ability to address enterprise-specific access control policies and to deli-
cately handle the authorization management process of an organization, as stated in
[Ferraiolo et al. 2001]. RBAC is also called non-discretionary access control mech-
anism since the owner of documents does not decide the accessibility. Another
serious advantage of using RBAC is its flexibility and details of control as compared
to the MAC and DAC standards. DAC is user oriented mechanism where a user
has the authority to allow/disallow the permission. MAC is an inverse of that and
is controlled by the system.

One of the limitations of MAC is its invisible user and administrator interactions
with the model. Using MAC, it also appears infeasible to implement practical and
cost-effective solution. Actually, this limitation applies to both MAC and DAC.
Thus, MAC and DAC can’t be fitted well in commercial business applications. Such
restrictions have motivated the researchers to design RBAC.

RBAC has definite advantages over other access control mechanisms especially
due to the concept of roles which is much conformed to the organizational structure.
Thus it provides a coherent way to lay out authorization constraints. For example,
a clinic may have the roles of doctors, nurses, surgeons and administrators. Apply-
ing RBAC will naturally enforce a mechanism in the form of roles which actually

3.5. UML-based RBAC specifications 49

addresses the needs of that organization.

A vital difference between military security policy and commercial security policy
is that the former is primarily developed to provide confidentiality and latter is
intended to ensure integrity. This determines which security mechanism be used to
meet specific requirements. For example, a general consensus about RBAC is its
applications in the domain of commercial systems while MAC is often regarded as
a solution towards military systems. Their further prioritization and feature-wise
comparison is beyond the scope of this thesis.

3.5 UML-based RBAC specifications

RBAC can also be used to model secure applications. To this end, there are a
number of RBAC representations available in the literature (detailed in Chapter 4).
One of the underlying motivations of using RBAC in designing secure applications
is its easiness and practicality. SecureUML (and its tool SecureMOVA) is one of
those techniques that adapts the principles of RBAC and offers a way to model
and specify an access control system. SecureUML is a security profile that em-
ploys UML with some extensions, and OCL to express authorization constraints
over structural diagrams. UMLSec |Jiirjens 2005|, USE |Sohr et al. 2005|, are some
of the other modeling languages capable of modeling a secure system. We have
borrowed SecureUML to model the design of secure application. By and large, Se-
cureUML appears a better choice to us since it has most of the concepts needed to
sketch a security policy using RBAC. Thus, Section 3.5.1 is dedicated to introduce
SecureUML.

3.5.1 SecureUML

SecureUML [Basin et al. 2009] offers a separation of functional and security aspects
to model systems to secure. Functional part is expressed as UML diagrams while
security part is based on RBAC basic elements such as users, roles, actions, per-
missions, objects, and the respective relations. It provides the way to declare static
structure of system by using UML profile extensions like stereotypes, tagged values,
and constraints. The semantics are then specified using set-theoretic semantics. In
SecureUML, security-design models are based on system-designs + security model,
and have concrete syntax (or notation) and abstract syntax. The goal of this lan-
guage is to automatically generate system architectures embodying access control
infrastructures from security-design models. The SecureUML can be combined with
any design language (e.g., ComponentUML) both syntactically and semantically.
SecureUML slightly extends RBAC in its proposed meta-model with fairly interest-
ing concepts like authorization constraints using OCL, atomic and composite action,
and dividing subject (user) into two categories i.e., group user and a single user.

50 Chapter 3. Access Control Mechanisms & SecureUML

3.5.1.1 SecureUML Metamodel

The SecureUML metamodel in Figure 3.7 defines actions against resources to protect
(from the right side).
Composite actions are actually applied to group lower-level operations to specify

It leaves out the exact definition of protected resources.

permissions for sets of actions. Atomic actions represent operations from the real
modeled system. As SecureUML embeds RBAC into its approach, it customizes
Core RBAC to model a system without using sessions.

RoleHierarchy

+superrole

+subrole

Permission
-default: Boolean

Role
-default: Boolean

L . +isassigned
PermissionAssignment

*

+givesaccess +haspermission

* 1
+constrains

+hasrole
UserAssignment

Constraintf\ssignment

*

+includes

User

0..1 | +isconstraintby

AuthorizationConstraints
-body: String
-language: String

. - ActionAssignment
Resource | 1 ResourceAssignment 1. * Action 1.%
+resource +action
+accesses
+subordinateactions
ActionHisrarchy
+compositeaction
CompositeAction AtomicAction

Figure 3.7: SecureUML metamodel [Basin et al. 2009]

The RBAC roles are given in the metamodel on the left side. Role inheritance
is addressed along with roles to users assignment. SecureUML supports two types
of access control decisions:

— The assignment of users and permissions to roles depending on the RBAC
configuration, that is called declarative access control decisions.

— Programmatic access control are those which takes care of authorization con-
straints in the current system. Against these authorization constraints, the
general approach for analyzing models is based on evaluating OCL expressions
on snapshots of the metamodel. A snapshot can be considered as an object
diagram from UML.

3.5. UML-based RBAC specifications 51

We have modeled two examples using SecureUML. The first is a meeting SCHED-
ULER application and second one is from the health care domain detailed in Chap-
ter 5. The metamodel of SecureUML is given in Fig. 3.7. Two important notions
which are detailed by SecureUML are the composite actions and atomic actions.
CompositeAction is of five types: EntityFullAccess, EntityUpdate, EntityRead, At-
tributeFullAccess, and AssociationEndFullAccess. Whereas, Atomic actions are Atom-
icUpdate, AtomicRead, AtomicCreate, AtomicDelete, and AtomicExecute.

The atomic actions are intended to map directly onto actual operations of the
modeled system. The composite actions are used to hierarchically group more lower-
level ones and are used to specify permissions for sets of actions.More detail about
them can be found in [Basin et al. 2009]. We now model our example using Se-
cureUML.

The center of Fig. 3.8 gives the class diagram for the meeting SCHEDULER
already given in 2.3. It includes two classes (Meeting and Person) and two associa-
tions. A meeting is characterized by its starting date and its duration; a person is
simply characterized by his/her name. Most operation specifications have been cre-
ated automatically using RoZ. They correspond to operations to create and delete
objects, update object attributes, and create links between objects. Three opera-
tions are user-defined: notify and cancel are specific to the application, createMeeting
creates of an object of class meeting and simultaneously links it to its owner and
first participant. This operation is necessary in order to satisfy the arity constraints
related to both associations: a meeting has at least one owner and one participant.

‘usen’? = (owner (meeting?)).name %

<<Permission>>
OwnerMeeting
(from SystemUserPerms)

Person <<Permission>>
User

(from SystemAdministratorPerms|

<<Role>>
SystemUser
(from Roles;

(from F
, *name : String
+ChangeName ()
+AddPerson ()
+RemovePerson ()
+Linkowner ()
+Linkparticipants ()

<<EntityAction>>-Delete ()
<<EntityAction>>-Modify ()

<<EntityAction>>Fullaccess ()

+participants
<<dataType>>
String
(from FunctionalModel)

1 | +owner

+meetingsOfParticipani

<<dataType>>

Meeting Time

(from FunctionalModel)

<<Permission>>

UserMeeting
(from SystemUserPerms)

ityAction>>-Create ()
<<EntityAction>>Read ()

<<Role>>
Supervisor

+starf : Date
+duration : Time

+notify ()

+cancel ()

(from Roles;

SupervisorCancel

(from SupervisorPerms)

<<MethodAction>>+cancel ()

<<MethodAction>>+notify ()

<<Permission>>

+ChangeStart()

+ChangeDuration ()

+AddMeeting ()

+RemoveMeeting ()

+LinkmeetingsOfOwnei ()

+LinkmeetingsOfParticipant()
ing ()

<<Permission>>

ReadMeeting
+meetingsOfOwnel

<<EntityAction>>Read ()

\

(from SystemAdministratorPerms’

(from FunctionalModel)

<<dataType>>
Date
(from FunctionalModel)

<<Role>>
SystemAdministrator
(from Roles;

Figure 3.8: Class diagram and permissions for the meeting scheduler

The basic access control rules are: users are in charge of their meetings and sys-
tem administrators manage the persons. An important security property is related
to the integrity of information about meetings. It is expressed by the following rules:
(1) a meeting may only be modified or canceled by its owner, and (2) supervisors
have the privilege to modify or cancel meetings they do not own.

In Fig. 3.8 meeting SCHEDULER model is specified using SecureUML. This

52 Chapter 3. Access Control Mechanisms & SecureUML

model contains functional features as well as access control rules. We can see that
each of the permissions is stereotyped between a role and a resource. For example,
on meeting resource, we have linked systems users and the supervisor to exercise
permissions such as OwnerMeeting, UserMeeting, and SupervisorCancel, respectively.
The role supervisor also inherits the permissions from system users. Each of the
permissions has an associated set of actions. There is another permission named
UserManagement that authorizes a system administrator to manage persons using
several operations such as ChangeName, AddPerson etc. He has full access which
means that the administrator qualifies to perform all types of operations. The
corresponding data types are given which are actually used during the translation
to Z.

We remind that the RoZ translation of the functional part of this diagram 3.8
has been shown in Section 2.2.2 of the Chapter 2. However, the security part which
involves the constructs from RBAC will be detailed in Chapter 6.

3.6 Summary

In this chapter, we detailed access control mechanisms targeted toward secure sys-
tems development. MAC and DAC are mandatory and discretionary access control
mechanisms, respectively. RBAC is role-based or non-discretionary access control
structure. RBAC variants include Hierarchical RBAC, with SSD and DSD along
with the basic Core RBAC. We also showed how SecureUML uses RBAC to model
an application. The design mechanism of SecureUML has also been exemplified
using the SCHEDULER application in this chapter. The choice of using RBAC
over MAC and DAC is also made clear when designing business applications. The
conformance between an organization structure and RBAC configurations is one of
the main reasons to that end. However, for designing military systems it may be
appropriate to employ access control mechanisms such as MAC.

CHAPTER 4

Evaluating RBAC Supported
Techniques and their Validation
and Verification

Contents
4.1 Introduction L 54
4.2 RBAC Coverage as Evaluation Criteria 55
421 RBAC Functions 55
4.2.2 RBAC Separation of Duties (SoD) Constraints 56
4.2.3 Other RBAC Variants 56
4.2.4 Verification and Validation Tools 56
4.3 Semi-formal Techniques 56
4.3.1 A Summary of Semi-formal Techniques 59
4.4 Formal Languages and RBAC Constraints 59
4.4.1 Alloy-based Approaches 61
4.42 Z-based Related Work 61
4.4.3 A Summary of Formal Techniques 62
4.5 Conclusion & Lessons Learned 62

This chapter evaluates the security specification techniques that employ RBAC
variants. The overall management of a RBAC supported system is made through
its administrative, review and supporting system functions. In this chapter, a sum-
mary of semi-formal and formal techniques employing RBAC is provided along with
their benefits and limitations. Here, semi-formal techniques refer to UML+OCL
while formal ones are based on Alloy. This chapter may guide through the process
of selecting an appropriate technique to specify security rules. This is done by ana-
lyzing the degree of coverage of RBAC including some extensions like SoD and role
hierarchy. We also investigate the use of validation and verification tools in these
techniques. We find that formal techniques are more amenable to automated anal-
ysis as compared to semi-formal ones. Semi-formal techniques are rich in specifying
RBAC variants but have prototypic tools. Session based dynamic aspects of RBAC
have been partly covered in both techniques. In this chapter, we also describe Z
based approaches covering RBAC that are mostly at metamodel level. Most of the
contents of this chapter have been reproduced from our paper [Qamar et al. 2011a]

Chapter 4. Evaluating RBAC Supported Techniques and their
54 Validation and Verification

Our surveying method is based on a search from various access control confer-
ences and journals. The main keywords used are as follows: RBAC, validation and
verification, UML, Z and Alloy languages. The rest of the chapter is structured as
follows: Section 4.2 describes the evaluation criteria; Section 4.3 discusses the semi-
formal techniques; Section 4.4 reviews the formal techniques. Section 4.4.2 details
on other 7Z based works. Section 4.5 shares the learned lessons with some future
work.

4.1 Introduction

The specifications may contain simple functional requirements as well as complex
non-functional requirements such as security requirements, expressed as access con-
trol rules. These rules not only require robust specification methods but also valida-
tion and verification techniques to protect systems against malicious attacks. To this
end, a number of such techniques have been presented in the literature. However,
their strengths and limitations need to be analyzed. This chapter reviews two types
of security specification techniques that use validation and verification approaches:

— Security Design Models are the first kind of techniques. They address access
control rules in UML diagrams. These approaches favor a combination of UML
modeling elements with OCL constraints. In turn, one can specify and validate
a (sub)set of access control rules. A few example studies are [Yu et al. 2009],
[Basin et al. 2006a|, [Kim et al. 2004], [Basin et al. 2009], [Yu et al. 2008|. In
the sequel, we call these semi-formal techniques.

— The second kind of techniques, [Schaad & Moffett 2002|, [Ahn & Hu 2007],
[Zao et al. 2003][Hu & Ahn 2008] to verify access control rules are based on
formal specification languages (e.g., Z [Spivey 1992], Alloy [Jackson 2002]).
These will be denoted as formal techniques.

As described in Chapter 3, RBAC |Ferraiolo et al. 2001] is intended to support
access control properties such as confidentiality, integrity, availability — and con-
sequently, it is mostly used as the underlying technique for the above classified
approaches. In this context, we provide a survey of two kinds of aforementioned
techniques and analyze their ability to verify or validate access control rules. The
analysis criteria are:

1 Coverage of RBAC functions and constraints;
2 Coverage of static and dynamic aspects of RBAC;
3 Use of verification and validation tools (see Section 4.2.4).

The second criterion refers to the static data structure of RBAC and SSD that
does not change over time; whereas dynamic constraint relations such as DSD are
maintained during sessions. Based on the criteria, answers to the following questions
are sought in this chapter:

4.2,

RBAC Coverage as Evaluation Criteria 55

How much in depth coverage of RBAC variants is provided by an approach?

To what extent, an approach is amenable to automated analysis for its respec-
tive validation or verification?

How does each approach scale up to address reasonable size of problems?

Does an approach entirely cover the administrative, review and supporting
system functions of RBAC?

Is an approach capable of addressing static and/or dynamic aspects of RBAC?

4.2 RBAC Coverage as Evaluation Criteria

The evaluation criteria take into account RBAC and its variants to analyze the
extent to which an approach covers it. Here, we expand the three aspects of our

evaluation criteria as follows.

4.2.1

RBAC Functions

RBAC functions have mainly three types: administrative functions, supporting sys-

tem functions and review functions. This criterion will measure how the proposed

technique covers the RBAC functions. A brief overview of each of these is given

below:

— Admanistrative Functions involve creation and maintenance of basic sets

elements. Of these sets are USERS, ROLES, OPS and OBS. Additionally, con-
structing relations among the sets is also covered by administrative functions
such as UA and PA assignments.

Supporting System Functions are useful in access control decisions and
session management. These functions concern adding and dropping of active
roles and other auxiliary functions, for instance: CreateSession, CheckAccess,
AddActiveRole, DropActiveRole. For example, a user may have a fixed set of
roles that can be used by him. The composition of this default set can be
altered by supporting system functions.

Review Functions help querying the data structures such as UA and PA
assignments. The administrator may view the contents of specified relations
through review functions. Through this feature, we can perform queries such
as knowing the assigned users to a role, permissions of a role and allowed
roles in a session. In the RBAC standard, some of the review functions are
mandatory like querying the assigned users and assigned roles while a function
such as querying permissions of a role, is an optional one. Therefore, not all
RBAC implementations provide all the review functions.

Chapter 4. Evaluating RBAC Supported Techniques and their
56 Validation and Verification

4.2.2 RBAC Separation of Duties (SoD) Constraints

These constraints are an optional construct of RBAC and are used to address conflict
of interest among roles.

— SoD constraints consist of two categories i.e., SSD and DSD. The former
takes care of conflict of interest and ensures that it forbids a user to take some
conflicting roles even in different sessions. DSD requires that a given user may
not take conflicting roles simultaneously in the same session or in the life-cycle
of a given object.

4.2.3 Other RBAC Variants

Besides RBAC functions and SoD constraints, there are additional constructs of
RBAC that are considered here as a part of the evaluation process. Their brief

overview is as follows:

Role Hierarchy is based on the typical concept of inheritance that helps
RBAC implementations to avoid repeated definitions of permissions. A hier-
archy is mathematically a partial order through which one can define seniority
relations. In RBAC senior roles acquire the permissions of juniors roles. Sim-
ilarly RH can be combined with SSD or DSD.

Sesston is a traditional way of communicating information between a user
and a computer during a given time interval. Session management in RBAC
deals with functions such as session creation for users including role activa-
tion/deactivation, enforcing constraints (e.g., DSD) on role activation. An
obligatory part of DSD constraints is the use of sessions.

4.2.4 Verification and Validation Tools

Availability of verification or validation tools may grade the usability and scalability
of an approach. In addition to the criteria listed above, we also study the availability
of verification or validation tools in the surveyed techniques. The validation tools
check the intended behavior of a system whereas verification ensures the consistency
of the specification.

4.3 Semi-formal Techniques

Semi-formal methods develop a combination of UML+OCL, that can help graphi-
cally model and validate or verify RBAC rules of a secure system. Table 4.1 provides
an assessment of RBAC supported features in each of these semi-formal techniques.
In this context, in |Basin et al. 2009], Basin et al. use UML to specify both the
functional aspects of an information system, and its security rules, using a UML
profile named SecureUML and a tool SecureMOVA. The security part is based on
RBAC concepts such as users, roles, actions, permissions, objects and relations UA

57

Ayorersrf] [0y — HY ‘A jo uworjeredsg orweudq — S ‘Am(Jo
uotyeredog o11e)g = (JQS ‘suoroung walsdg untoddng = Q'S ‘SUOTIOUN] MO1A0Y] = 'Y ‘SUOIDUN] dAljel)sTHUPY = J'V ‘[ou=1 ‘sad=£ ‘[enyred=d],

4.3. Semi-formal Techniques

TINAUINY A N N A A N N d [L00g requyeys|y]
A A A A A A d A d [200¢ nH % uqy|
N A A A A A A d | A [700z v 42 W]
N A A A A A N N | & [700z ‘0 12 Ley]
N A A A A A d d d [600z 17 #2 nx]
A A N N A A N N d 1800z v 42 1]
N N A A A A d d d [600g eonpzng 2y 311 P
asn A d A A A d A | & [c00z ‘v 42 1qog]
VAOQINOIDAG | X N A N N N A N | [600g v 42 utseq|[q900z v 4o used]
s[ooT, A/A | suoisseg | HY | ASA | ASS | A'S'S | 44 | AV sioyny

sonbruypo) [eULIO}-TLS 10] 9[qe) UOIIRN[RAY :T'F O[(R]

Chapter 4. Evaluating RBAC Supported Techniques and their
58 Validation and Verification

and RA. Inspired by RBAC review functions, SecureUML first graphically models
a policy and then it allows to check roles assigned to a permission. But SecureUML
only covers static aspects of RBAC without taking into account sessions. Although
SecureUML is designed to be combined with any modeling language, tool support
is proposed only for the combination of SecureUML+ComponentUML. The Secure-
MOVA tool [Basin et al. 2009] allows to create a functional diagram, i.e., a class
diagram, and to relate it to permission rules.

Sohr et al. [Sohr et al. 2005] take advantage of the USE tool to validate adminis-
trative, supporting system and review functions of RBAC on a given object diagram.
Constraints (invariants) are associated to classes of a diagram. Moreover, pre- and
post conditions of operations can be evaluated if the object diagram represents the
initial or final state of some operation. USE covers more RBAC constructs than
SecureMOVA. The covered elements are sessions (but supporting system functions
are partially detailed in USE), SSD, DSD in addition to basic elements such as users
and roles.

Cirit and Buzluca [C. Cirit & Buzluca 2009] propose a UML profile for the RBAC
authorization constraints. It introduces the UML profile stereotypes like user, re-
source, operation, role, permission, session for modeling a system. It also supports
to model DSD and SSD constraints. OCL based validation is proposed in order
to measure the well-formedness (syntax) and meaning (semantics) of information
models against the RBAC constraints. However, this technique relies on general
CASE-tools support and does not present any particular insight into the automa-
tion part of verification or validation.

Yu et al. [Yu et al. 2009] propose a technique to uncover violations in security
rules specified by using RBAC. Their technique implements role activation and SoD
constraints and role hierarchy using UML and OCL. In their approach, scenarios
are used to analyze security violations of a given security policy where a scenario
is a sequence of operation calls. Based on a generated tree (limited depth, limited
number of objects, and small domain) of various invocations, scenarios are generated.
Afterwards, it is possible to verify legal (intended) and illegal (unintended) scenarios
in the design. Using this technique, one can analyze role activation constraints and
SoD constraints. Yu et al., [Yu et al. 2008| also present another technique in which
a class model is transformed into a static model of behavior, called a Snapshot Model
(where a snapshot describes an application state). A snapshot model is comprised of
sequences of snapshots. A snapshot is an application state. A sequence of operation
invocations (described as scenario) is verified against the snapshot model. Both Yu’s
techniques are very closely related except that in [Yu et al. 2008] they demonstrate
the use of tools such as USE or Object Constraint Language Environment (OCLE)
for verifying structural properties of the models. Such techniques can be regarded
as visualization techniques to uncover security rules violations.

Shin and Ahn [Shin & Ahn 2000] state UML based representation of RBAC in
terms of static view, functional view and dynamic view. Static modeling provides
a structural view of RBAC base systems using class diagrams; functional view is
taken as use cases and actors of the systems; in dynamic aspects, they refine use

4.4. Formal Languages and RBAC Constraints 59

cases to show interactions among the objects participating in each use case using
collaboration diagrams. In another paper, Ahn and Shin [Ahn & Shin 2001] also
attempt the use of OCL for RBAC constraints. However, validation or verification
of the properties remains unaddressed in both of these papers.

Ray et al. [Ray et al. 2004] discuss SoD constraints by using object diagrams and
try to alleviate the complexity of OCL by using templates. The RBAC constraints
that are checked include SoD, prerequisite constraints and cardinality constraints.
Kim et al. |[Kim et al. 2004] also present UML templates to specify static structure
of RBAC along with SSD and DSD. They examine violation pattern occurrences in
a security policy.

Ahn and Hu [Ahn & Hu 2007| explain an approach using UML class diagrams,
a language for specifying role-based authorization constraints (RCL2000) and OCL
to validate SoD constraints. In this approach, it is checked whether a current state
violates authorization constraints. Snapshots based on object diagrams are used to
determine violated constraints. They cover most of the RBAC constructs with a
tool support. Alghathbar [Alghathbar 2007] describes an approach to specify access
control policies into use case diagrams. This approach tends to analyze access
control policies at early stages of secure software development. It must be noted
that UMLSec |Jiirjens 2005] is another attempt to address security in UML, but it
focuses on the security model (in particular cryptographic aspects) and does not
address its interaction with the functional model. It is also not based on RBAC so
we do not review this approach in this thesis.

4.3.1 A Summary of Semi-formal Techniques

The semi-formal techniques are recapitulated and analyzed in Table 4.1 against
the defined criteria. The values specified in evaluation against the criteria can be
interpreted as: P (Partial), Y (Yes), and N (No). Our study shows that none of
the approaches fully covers RBAC variants in terms of administrative, review and
supporting system functions except [Ahn & Hu 2007] that covers most of the RBAC
variants. It shows that almost half of the approaches do not provide automation
for their proposals. We believe that practical use of an approach may be possible
only through availability of automated tools. SecureMOVA and USE significantly
contribute towards automated coverage of RBAC variants. Tool support can aid to
improve the usability and scalability of an approach. So these two techniques have
quite sufficient implementation of their concepts. Yet, SecureMOVA does not cover
dynamic aspects in terms of sessions while USE addresses it partially.

4.4 Formal Languages and RBAC Constraints

Together with semi-formal techniques, formal languages, for instance, Z [Spivey 1992]
and the Alloy [Jackson 2002] are elegant specification methods that can be applied
to verify or validate software specifications. Alloy and Z are much adopted languages
to study RBAC variants. As compared to Z, Alloy has more mature tools such as

Chapter 4. Evaluating RBAC Supported Techniques and their

Validation and Verification

60

Table 4.2: Evaluation table for formal techniques

Authors A.F | R.F | S.S.F | SSD | DSD | RH | Sessions | Verification Tools
|Zao et al. 2003] Y N N Y N Y Y Y A-Analyzer
[Schaad & Moffett 2002] Y P N Y Y Y Y Y A-Analyzer
[Ahn & Hu 2007] Y p p Y Y Y Y p A-Analyzer
|[Hu & Ahn 2008| Y N N Y Y Y Y Y A-Analyzer
[Toahchoodee et al. 2009] | N N N Y N N N Y A-Analyzer

¢|p—partial, y—yes, n—mno|, A.F — Administrative Functions, R.F — Review Functions, S.S.F — Supporting System Functions, SSD — Static Separation

of Duty, DSD — Dynamic Separation of Duty, RH — Role Hierarchy

4.4. Formal Languages and RBAC Constraints 61

Alloy Analyzer. Moreover, Z has mostly been used to specify RBAC concepts at
the abstract level. On the contrary, Alloy is applied to specify a given security
policy, and its verification tools can be used to analyze this particular policy. An
added advantage of Alloy over other languages (e.g., OCL, Z) is that Alloy Analyzer
can search instances satisfying complex set of predicates [Power et al. 2010]. Alloy
is used to generate counterexamples against specifications that help verifying the
system.

4.4.1 Alloy-based Approaches

Simulating a system using Alloy involves individual transitions or properties of se-
quences of transitions. However, use of Alloy for dynamic modeling of security
policies has been a scant subject so far. Most of the proposed approaches merely
focus on the static analysis where Alloy is used for generating counterexamples
against specifications. As an added advantage of Alloy over other languages (e.g.,
OCL and UML), it is reported [Power et al. 2010| as more amenable to automatic
analysis. Alloy offers two kinds of automated analysis i.e., simulation and check-
ing. In simulation, operations are interpreted to compute resulting states, and check
that they conform to invariant properties. In checking, Alloy attempts to generate
instances of a data structure up to a given (small) maximum size, and can identify
counterexamples which do not satisfy a given property. The types of answers that
Alloy provides are: “this property always holds for problems up to size X” or “this
property does not always hold, and here is a counter example’.

Regarding the analysis of security models, especially RBAC with SoD con-
straints, significant amount of work has been carried out using Alloy. Zao [Zao et al. 2003|
proposes a technique to verify algebraic characteristics of RBAC schema using Al-
loy. Alloy is used as a constraint analyzer to check the inconsistencies among roles
and SSD constraints, and provide a counter-example when some inconsistency is
found. However, the authors do not report on DSD but only SSD constraints.
Schaad et al. [Schaad & Moffett 2002] and Ahn et al. [Ahn & Hu 2007] also discuss
SoD constraints. The former [Schaad & Moffett 2002] thoroughly discuss decen-
tralized administration of RBAC and arbitrary changes to a initially stated model
that may result in conflicting policies over time w.r.t SoD constraints. They ar-
gue that SoD constraints may introduce implicit security policies flaws because of
role hierarchies. Counterexamples are used to examine a specified security policy.
|[Toahchoodee et al. 2009] have discussed a translation from UML to Alloy and then
a verification is run to verify UML models. This study mainly involved the analysis
of contextual information such as location and time, for making access decisions in
real-world dengue decision support (DDS).

4.4.2 Z-based Related Work

Hall [Hall 1994] used Z to specify a formal security policy model for an industrial
project. Likewise, I[SO standardized RBAC has widely been described by researchers

Chapter 4. Evaluating RBAC Supported Techniques and their
62 Validation and Verification

using Z. A few notable propositions are [Abdallah & Khayat 2006],[Yuan et al. 2006]
that offer generic formal representation of RBAC. Yet, these works focus on abstract
model foundations of RBAC.

Various validation and verification of security properties based on RBAC are
given in [Morimoto et al. 2007|, [Boswell 1995|. Abdallah, [Abdallah & Khayat 2006|
defines a security administration using access monitor for core RBAC and distin-
guishes among various concepts of RBAC. Boswell [Boswell 1995], describes a secu-
rity policy model in Z, for NATO Air Command and Control System (ACCS). The
work targeted to develop a model for both mandatory and discretionary access con-
trols based on the Bell-LaPadula approach.The author shares learned lessons from
manual validation of this large, distributed, and multi-level-secure system. This
too questions manual versus automated validation /verification and creates room for
tools like Jaza. Morimoto et al., [Morimoto et al. 2007] chose a common-criteria
security functional requirements taken from ISO/TEC-15408 and proposed a process
to verify Z specifications by the Z/EVES theorem prover.

4.4.3 A Summary of Formal Techniques

During the recent years Z has been used to write precise software specifications of
numerous software applications. The standard RBAC has also been specified using
7 but its use at application level is not widely available.

The other formal techniques reviewed in this chapter take the full advantage
of Alloy Analyzer to verify specifications. We compare Alloy with semi-formal ap-
proaches because Alloy is relatively lightweight modeling system. Underlying short-
comings of OCL [Vaziri & Jackson 2000| have motivated the design of Alloy. One
limitation of Alloy is its response time against verifying specifications and mem-
ory crashes. These can be avoided if the specifications are rightly decomposed into
small components. The discussed formal techniques mainly cover SSD constraints
and thus, stick to static aspects of RBAC. Dynamic aspects based on DSD are
partially covered in some techniques using an unaltered set of sessions. Table 4.2
summarizes the analysis of the techniques.

Considering the fact that Alloy is a fairly expressive language with its robust
tools, it can be used to investigate the unaddressed aspects of RBAC such as sup-
porting system functions. RH combined with SSD and DSD can be interesting to
study using Alloy. Another interesting direction is the translation of UML func-
tional models to Alloy. [Anastasakis et al. 2010] discusses this direction but does
not offer translation of security profiles. An extended work of such attempts can be
helpful to exploit Alloy Analyzer for secure software development.

4.5 Conclusion & Lessons Learned

In this chapter we have surveyed and analyzed techniques that tend to validate or
verify RBAC supported security rules. The first type of reviewed approaches is
semi-formal that adopt UML+OCL to help design a security policy. The second

4.5. Conclusion & Lessons Learned 63

type uses Alloy for similar purposes. Based on this survey, we recall our raised
questions in Section I, and provide their answers:

Regarding the coverage of RBAC wvariants: Semi-formal techniques have cov-
ered more RBAC variants than formal ones. USE and SecureMOVA provide
sufficient implementations and RBAC coverage to specify and validate security
specifications.

— Amenability to automated analysis: Formal techniques are more rigorous since
Alloy Analyzer is pretty mature for design verification problems |Power et al. 2010].
Alloy, being a declarative language can help construct partial models that can
be built and analyzed easily. The 4.2 shows that all the formal techniques con-
sidered in this study use Alloy Analyzer. On part of semi-formal techniques,
USE and SecureMOVA can be of great help if the UML diagrams are aimed
to be analyzed and are of quite formal nature. In these tools, OCL is chosen
as a natural partner of UML.

— About the scalability of the techniques: We believe that the scalability of a
technique depends on the automation level it offers. Out of the studied ap-
proaches, Alloy Analyzer, USE and SecureMOVA are relatively mature tools
and have the ability to automatically handle RBAC supported systems.

— Coverage of entire RBAC functions: There is no systematic coverage in both
semi-formal and formal techniques of administrative, review and supporting
functions. However, this is not a definite shortcoming since these techniques
can be extended to cover the remaining features of RBAC.

— Coverage of static and dynamic aspects: Both semi-formal and formal tech-
niques have significantly dealt with static structure of RBAC; however, dy-
namic aspects in terms of sessions are not widely studied. Besides DSD con-
straints, Yu et al. [Yu et al. 2009], [Yu et al. 2008] study sequences of snap-
shots, where a snapshot denotes an application state. Such studies involving
states of a designed application can give further perspectives on dynamic anal-
ysis of security specifications and therefore, are worth to explore.

This chapter presented an analysis of RBAC supported techniques. Another
survey of security design techniques [Talhi et al. 2009] employs different criteria such
as expressitivity, tool support, verifiability and complexity but does not focus on
RBAC. However, a paper |Drouineaud et al. 2004] have discussed the formalisms
and methods for the validation of RBAC policies. [Sohr et al. 2005] has proposed
protecting clinical information systems to overcome risks by using first-order LTL
supported by Isabelle/HOL for formal verification of security policy for RBAC.
Our survey shows that semi-formal techniques have been applied both ways for
validation and verification on security specifications. Formal techniques focus on
a sort of verification using Alloy Analyzer that aim at finding counterexamples.
Alloy Analyzer has been continuously improved by adding new functionalities. Its

Chapter 4. Evaluating RBAC Supported Techniques and their
64 Validation and Verification

latest version can be found on its web-page !. Comparatively, other tools analyzing
graphical models have not been incrementally improved in either case graphically or
feature-wise. SoD constraints, one of the RBAC properties are commonly studied
in both of the techniques. Generally, all the semi-formal techniques have prototypic
tools. In small systems, it is relatively easy to apply prototypic tools but their large
scale use needs further industrialization.

!(http://alloy.mit.edu /community /)

Part 11

CONTRIBUTIONS

CHAPTER 5
Validation of Security-Design
Models Using Z

Contents
5.1 Introducing the Proposed Z-based Toolset 68
5.2 Illustrative Example : Medical Information System 69
5.3 Translating the Functional Model intoZ 71
5.4 The Security Kernel 000 73
5.4.1 Permissions oo 74
5.4.2 Role Hierarchy 74
5.4.3 Action Hierarchy 75
5.4.4 Roles, Users and Sessions T
5.4.5 Putting it All Together 78
5.5 Linking Functional and Security Models 80
5.6 Validating and Animating Secure Operations 81
5.6.1 Normal Behavior 81
5.6.2 Analyzing a Malicious Behavior 82
5.7 Summary e 83

This chapter presents our translation of functional security models into Z and
how these can be validated, using the Jaza animator. Our approach has the follow-
ing goals: (1) to start from an intuitive graphical specification which features both
functional and security models, 2) to systematically construct a formal specification
of the integrated system from the graphical model, and 3) to use queries and ani-
mation to validate the integrated model. It must be noted that we currently focus
on validation, i.e., confront our model to the user, and ensure that it exhibits the
expected behavior. Although we use formal methods, we do not address verification
(i.e., prove that the system is right) at this stage.

The content of this chapter is structured in the following order: in Sec. 5.1 we
outline our approach. Sect. 5.2 introduces an illustrative example. Sect. 5.3 recalls
the principles of the translation of the functional model, while Sect. 5.4 features the
specification of the security kernel. The integration of both models is described in
Sect. 5.5. Sect. 5.6 features the validation activities, based on animation. Finally,
the conclusion of this chapter will be detailed. Most of the contents of this chapter

68

Chapter 5. Validation of Security-Design Models Using Z

have been adapted from our paper [Qamar et al. 2011b]. In the first instance, we
overview our approach presented in Fig. 5.1.

5.1 Introducing the Proposed Z-based Toolset

Requirements of a secure information system

1 2
e i Modelli d
(uML+2) Modelling and odelling and secureUML+Z
specifying functional specifying s:acumy e
properties properties
3
Integration Security Kernel (RBAC+Z)

Process (Z-based) ~

l

Resulting

4 specifications

Automated generation of
—> Application scenarios initial state space from

graphical model -
\ l 5 5 State space
evolutions

<——— Validation Process o |
8 (Jaza)

Figure 5.1: Bird’s eye view of Z-based toolset

— The first step is to model an application using UML on which RoZ is applied
to have Z annotated skeleton. We can consider the example shown in Section
2.2.2 (Fig. 2.3), meeting SCHEDULER, which has been successfully trans-
formed into Z. This translation respects the rules of RoZ and generates the
data structure as well as the basic operations which can also be animated.

— The second step involves the use of SecureUML splittable into two parts: a)
A modeled application in SecureUML is translated to Z; b) An independently
developed security kernel on top of RBAC access control model specified in
Z.’a’ and ’b’ are mutually interlinked. Chapter 3 has explained RBAC and
SecureUML in detail.

5.2. Tllustrative Example : Medical Information System 69
_ patientOfMedrecord PATIENT patientsOfHo spital
| :USERID
S | 1.1 [name:NAME
A <<Permission>> . ddress : ADDRESS
ReadMedrecord MedrecofdPatient PatieniHospital

-<<entityaction>> Medrecord:read

0.1 medrecordOfPatient

hospitalOfPatient 0.1

same hospital as patient T <<kt
<<Role>> MEDRECORD SAEmilye.
Doctor] Gnb - RECORDNB HOSPITAL
! ' |-contents : STRING -name : NAME
: : +ReadMedrecord()
<<Permission>>
UpdateMedrecord ¥ () hopspitalsOfDoctor | 0--

-<<entityaction>> Medrecord: update
i o i medrecordsOfDoctor | «

DoctorHpspitalRel

! MedrecordDoctor ca <Eniyes
<<Permission>> - TR 0+
—apasiiocige doctorOfViedrecord |[name : NAME - doctorsOfHospital
-<<entityaction>> Doctor:FullAccess i o

Figure 5.2: Security policy model using SecureUML

At now, using step 1 & 2, we have obtained Z specifications of both functional
and security parts. The next step is to merge them in order to proceed with
the validation process. This covers step numbers 3, 4 & 5.

As we start from a graphical model, the graphical model is automatically
translated into an initialization state by our toolset. Nonetheless, specification
of the secure versions of the functions must be done manually.

The next step is to create application-specific scenarios which could have the
ability to investigate the security and functional properties of the modeled
system. Scenarios can be simple as well as complex. A scenario may be a
single operation or a set of operations.

Lastly, the designed scenarios are validated against the application’s initial
state. In turn, specifications may be debugged if some discrepancies are found.
The state space is explored and its evolutions are studied to determine the
loopholes in specifications.

5.2 Illustrative Example : Medical Information System

Fig. 5.2 models a simple medical information system using SecureUML. The figure

has two sides where functional features on the right, are decoupled from security

features on the left. The functional part describes four classes: patients, doctors,

hospitals and medical records. FEach medical record corresponds to exactly one
patient. Its field contents stores confidential information whose integrity must be
preserved. The functional part also records the current hospital hosting the patient,

70 Chapter 5. Validation of Security-Design Models Using Z

L BX
=

DOCTOR DOCTOR
id = '004° i =003
F 3
HOSFITAL HOSFITAL
name = 'BloeCare' name = 'RedCross'
i 71
¥ ¥ (i}
PATIENT PATIENT PATIENT PATIENT
address = 'London’ address = "London’ address = 'Parns' address = Verona'
il ='005 id ='002' il ='001' id = '00#'
name = Tlaxk' name = "Paul name = "John' name = 'haliet'
iy &I
:MEDEECCORD MEDRECORD
contents = "healthy' contents = 'sick’
recordub = ‘med datad’ recordnb = 'med datal’
b/
< (| >

Figure 5.3: Object diagram for the functional model produced from the output of
Jaza

the doctors working in this hospital, and the one responsible for the patient’s medical
record.

Fig. 5.3 gives an object diagram corresponding to this functional model. It
features 4 patients, 2 doctors (Alice and Bob), 2 medical records, and 2 hospitals.
Alice is linked to both hospitals, while Bob only works for one of them.

The left part of Fig. 5.2 describes the access control rules of the information sys-
tem. In SecureUML and RBAC, users of the system are abstracted into roles, and
permissions are granted to roles. Fig. 5.2 features two roles : Nurse and Doctor. An
inheritance relation links Doctor to Nurse, expressing that doctors inherit all permis-
sions of nurses. Confidentiality and integrity must be ensured for medical records.
Two permissions rule the access to class MEDRECORD. Permission ReadMedRecord
is granted to nurses (and inherited by doctors). It expresses that nurses and doctors
have read access to medical records. It refers to entity action: read which designates
operations accessing the class without modifying it. Although the security part of
Fig.5.2 uses the graphical syntax of UML (classes and association classes), elements
stereotyped as roles or permissions only make sense for security concerns. For ex-
ample, there will not be objects of type Nurse in our animations, but there will be
users playing this role. Similarly, the associative class ReadMedrecord is simply a
graphical notation to express the permissions associated to nurses and related to
medical records.

Permission UpdateMedrecord grants additional rights to doctors, who may update

medical records. Constraint “Same hospital as patient” restricts this permission to
the doctors linked to the same hospital as the patient. In Fig. 5.3, it means that

5.3. Translating the Functional Model into Z 71

only Alice may modify the medical record of John, numbered “med datal”, because
she is the only doctor linked to RedCross hospital. In SecureUML, such constraints
are expressed in OCL; here, they will be expressed in the Z language. In Fig. 5.2,
a third permission named UpdateDoctor grants to all doctors full access, i.e., read
and update access, to objects of class DOCTOR.

Validation studies normal and malicious behaviors. In this chapter, besides some
nominal scenarios, we study the following attack: Bob, a malicious doctor, wants
to corrupt the integrity of John’s medical record. Since Bob is not working for
RedCross hospital, the access control rules should forbid this modification.

5.3 Translating the Functional Model into Z

The following sections describe how the integrated graphical model of Fig. 5.2 is
translated into a Z specification. First, the RoZ tool automatically translates the
functional model, corresponding to the right part of Fig. 5.2. An optional feature of
the tool also generates basic operations such as setters and getters for the attributes
and the associations. These basic operations are often implicitly included in a class
diagram; so the tool avoids the analyst to manually specify each of these operations.
One may fear that, in a security context, these additional operations augment the
“attack surface” of the application. In such a case, the analyst can choose to disable
their optional generation, or to exclude them from the set of operations linked to the
access control model (Sect. 5.5). Here are some elements of the formal specification
generated from the functional diagram of the medical record information system.
First, the types of the class attributes are introduced as given types.

[NAME, USERID, STRING, RECORDNB]|

MEDRECORD
(Tecordnb : RECORDNB

contents : STRING

MedrecordExt
TMedrecord :FMEDRECORD

__DOCTOR
id : USERID
name : NAME

_ DoctorExt
Doctor : F DOCTOR

Every class is translated into two Z schemas. The first one, a schema type,
describes the type of the elements of the class. This schema corresponds to the class

72 Chapter 5. Validation of Security-Design Models Using Z

intent and lists the class attributes. Schemas MEDRECORD and DOCTOR describe
the intent of the corresponding classes. A second schema describes the extension
of the class, i.e., the set of objects belonging to the class. Schemas MedrecordExt
and DoctorExt correspond to these extensions; each of these includes a finite set of
objects corresponding to the type of the class.

During a Jaza animation, each object is represented as a list of pairs attribute
== value. The list is enclosed between (...). Here is the Jaza representation of
sets Doctor and Medrecord corresponding to the state of Fig. 5.3.

Doctor’ == {(id =="003", name == " Alice” |}, (| id == "004", name == " Bob”
Medrecord” == {(contents == " healthy”, recordnb == " meddata2” |),
(contents == "sick”, recordnb == " meddatal” |}

UML associations are translated by RoZ as a pair of functions corresponding to
both roles of the association. For example, functions hospitalsOfDoctor and doctor-
sOfHospital describe the association between doctors and hospitals. Their domain
and range are constrained by predicates of the schema. Additional predicates express
that the inverse role can be constructed from the direct one.

__DoctorHospitalRel
HospitalExt; DoctorEaxt
hospitalsOfDoctor : DOCTOR + F HOSPITAL
doctorsOfHospital : HOSPITAL — F DOCTOR

dom hospitalsOfDoctor C Doctor
(U(ran hospitalsOfDoctor) C Hospital
hospitalsOfDoctor = {doctor : | J(ran doctorsOfHospital) e doctor —
{hospital : dom doctorsOfHospital | doctor €
doctorsOfHospital(hospital) e hospital}}
doctorsOfHospital = {hospital : | J(ran hospitalsOfDoctor) e
hospital — {doctor : dom hospitalsOfDoctor | hospital
€ hospitalsOfDoctor(doctor) e doctor}}

Here is how Jaza represents role doctorsOfHospital corresponding to Fig. 5.3.

doctorsOfHospital’ ==
{({ name == " BlueCare” |), {(id == "003", name == " Alice” |),
(id ==7004", name == "Bob”))}),
(| name == "RedCross” |), {(id ==7003", name == " Alice”)})}

Finally, we give several specifications of operations. MRChangeContents is a set-
ter for field contents. This operation, which works on the type of medical records,
must be “promoted” to impact the actual contents of the class extension, and to mod-
ify the related associations. MRChangeContentsP, the promoted operation takes an
additional input x? designating the object to modify!.

'"For more information on operation promotion please refer to Wordsworth’s text
[Wordsworth 1992] page 137.

5.4. The Security Kernel 73

_ MEDRECORDChangeContents
AMEDRECORD
newcontents? : STRING

contents’ = newcontents? A recordnb’ = recordnb

MedrecordChangeContents == (ChangeMedrecord

A MEDRECORDChangeContents) \ (recordnb, recordnb’) \ (contents, contents’)

Please note that the operation MRChangeContentsP is actually MedrecordChange-
ContentsandRels given in the appendix B.

MRChangeContentsP ==

MedrecordChangeContentsandRels == (ChangeMedrecord N
MEDRECORDChangeContents N\ SubstituteMedrecordInRels)

\ (recordnb, recordnd’) \ (contents, contents’)

Operation DRLinkDoctors creates a link between a doctor and an hospital. Its pred-
icates distinguish between the case where a first doctor is linked to the hospital, and
the case where doctors were already linked to this hospital.

—_DRLinkDoctors
ZHospitalExt; ZDoctorExt; ADoctorHospitalRel
hospital? : HOSPITAL; doctor? : DOCTOR

(hospital? ¢ dom doctorsOfHospital) = (doctorsOfHospital =
doctorsOfHospital & {hospital? — {doctor?}})
(hospital? € dom doctorsOfHospital) = (doctorsOfHospital’ =
doctorsOfHospital & {hospital? —
(doctorsOfHospital (hospital?) U {doctor?})})

These operations are sufficiently detailed to animate the model with Jaza. After
several steps, one may end up with a state corresponding to Fig. 5.3. Nevertheless,
these operations don’t take into account the access control rules. In particular, they
are not aware of which user is executing them. This will be the responsibility of the
security kernel described in the next section.

5.4 The Security Kernel

The translation process proceeds with the security part of Fig. 5.2. Our approach
is based on a reusable security kernel which specifies the main concepts of RBAC
in Z. This security kernel is instantiated with the roles, permissions, resources and
operations of the SecureUML diagram.

74 Chapter 5. Validation of Security-Design Models Using Z

5.4.1 Permissions

A permission assignment links a role to an operation on a given class, also called
the protected resource. These four types are introduced in Z as given types or
as enumerated types. When considering enumerated types, the values of the type
must be extracted from the UML diagram in order to instantiate the security kernel.
Here are the type declarations corresponding to Fig. 5.2. Schema Sets includes sets
of values corresponding to each of these types.

[PERMISSION]

ROLE ::= Doctor | Nurse

RESOURCE ::= Medrecords | Patients | Doctors | Hospitals
ABS_ACTION ::= EntityRead | EntityUpdate | EntityFullAccess

Sets
role : F ROLE

resource : F RESOURCE
permission : F PERMISSION
abs_action : F ABS_ACTION

Below are the values of these variables during the Jaza animation, as they appear
after the initialisation step.

abs_action’ == {EntityFullAccess, EntityRead, EntityUpdate},

permission’ == {” ReadMedrecord”,” UpdateDoctor”,” UpdateMedrecord” },
resource’ == {Doctors, Hospitals, Medrecords, Patients},

role’ == {Doctor, Nurse},

Schema ActionAssignment links roles to a tuple made of the name of the permission,
the abstract action allowed by the permission and the kind of resource associated

to this permission.

ActionAssignment

(actz’onAssignment : ROLE

(PERMISSION x ABS_ACTION x RESOURCE)

The permissions of Fig. 5.2 are stored during a Jaza session as:

action_Assignment’ == {(Doctor, (" UpdateDoctor”, EntityFullAccess, Doctors)),
(Doctor, (” UpdateMedrecord” , EntityUpdate, Medrecords)),
(Nurse, (” ReadMedrecord” , EntityRead, Medrecords))}

5.4.2 Role Hierarchy

RBAC allows us to define hierarchical relations between roles. This is captured by
schema Rolelnherits in Fig. 3.3 of the Chapter 3. The predicates forbid circularity
in the role hierarchy, and forbid the use of roles not declared in set role.

5.4. The Security Kernel 75

_ RolelInherits
Sets
role_Inherits : ROLE <> ROLE

role_Inherits™ Nid role = @
dom role_Inherits C role A ran role_Inherits C role

Fig. 5.2 features a simple role hierarchy, where role Doctor inherits all permissions
of Nurse. This is expressed in Jaza as:

role_Inherits’ == {(Doctor, Nurse)},

Schema InheritAssignment computes comp_Assignment which is action_Assignment
combined with the inherited permissions.

__InheritAssignment
Rolelnherits
ActionAssignment
comp_Assignment : ROLE

(PERMISSION x ABS_ACTION x RESOURCE)

comp_Assignment = {r : dom action_Assignment; x : role;
a : ran action_Assignment | ((z — r) € ((role_Inherits™)
U(id role))) A ((r — a) € action_Assignment) o (z +— a)}

In our example, permission ReadMedrecord is inherited by doctors from nurses. Re-
lation comp_Assignment is initialized by Jaza as:

comp_Assignment’ == {(Doctor, (" ReadMedrecord” , EntityRead, Medrecords)),
(Doctor, (” UpdateDoctor” , EntityFullAccess, Doctors)),
(Doctor, (" UpdateMedrecord” , Entity Update, Medrecords)),
(Nurse, (” ReadMedrecord” , EntityRead, Medrecords))},

5.4.3 Action Hierarchy

The notion of abstract action is similar to composing some lower actions into one
abstract action. Atomic actions are those actions which appear on a class diagram of
an operation. Permissions of Fig. 5.2 refer to abstract actions, such asread or update.
These must be linked to their concrete counterparts. Our security kernel expresses
this link in action_Relation, as well as an action hierarchy (action_Hierarchy), defin-
ing abstract actions in terms of other abstract actions (e.g., EntityFullAccess includes
EntityUpdate and EntityRead). These relations are expressed in schema ActionsRe-
lation. We first introduce the enumerated type of atomic actions, corresponding to
the methods of PATIENT and MEDRECORD in Fig. 5.2.

76 Chapter 5. Validation of Security-Design Models Using Z

ATM_ACTION ::= MRReadMedrecordl | DRLinkDoctorsl | MRChangeContentsP1

__ ActionsRelation
Sets
action_Hierarchy : ABS_ACTION < ABS_ACTION

atm_action : F ATM_ACTION

action_Relation : ABS_ACTION <« (ATM_ACTION x RESOURCE)

action_Hierarchy™ Nid abs_action = @
dom action_Hierarchy C abs_action N\
ran action_Hierarchy C abs_action
dom action_Relation C abs_action N
ran action_Relation C (atm_action X resource)

It must be noted that the correspondence between abstract and concrete actions
takes into account the class on which the abstract action is performed. For example,
concrete operation MRReadMedrecordl only makes sense for medical records. These
relations are instantiated as follows in our example.

action_Hierarchy' == {(EntityRead, EntityFullAccess),

(EntityUpdate, EntityFullAccess)},

(EntityRead, (MRReadMedrecord1, Medrecords)),
(EntityUpdate, (MRChangeContentsP1, Medrecords)),
(EntityUpdate, (DR LinkDoctors1, Doctors))},

action_Relation’ == {

abstract_Assignment unfolds the hierarchy of abstract actions in comp_Assignment.
Then concrete_Assignment replaces abstract actions by their concrete counterparts
for the given kind of resource.

__ ComputeAssignment
InheritAssignment; ActionsRelation
abstract_Assignment : ROLE

(PERMISSION x ABS_ACTION x RESOURCE)
concrete_Assignment : ROLE +

(PERMISSION x ATM_ACTION x RESOURCE)

abstract_Assignment = {r : dom comp_Assignment; p : permission;
asup, asub : abs_action; rsrc : resource | (r +— (p, asup, rsrc))
€ comp_Assignment A ((asub — asup) € ((action_Inherits™)
U(id abs_action))) e (7 +— (p, asub, rsrc))}
concrete_Assignment = {r : dom comp_Assignment; p : permission;
aa : abs_action; atm : atm_action; rsrc : resource
| (r = (p, aa, rsrc)) € abstract_Assignment N\
(aa — (atm, rsrc)) € comp_Actions e (r +— (p, atm, rsrc))}

5.4. The Security Kernel 77

concrete_Assignment’ ==
{(Doctor, (” ReadMedrecord” , MRReadMedrecord1, Medrecords)),
(Doctor, (” UpdateDoctor” , DR LinkDoctors1, Doctors)),
(Doctor, (” UpdateMedrecord” , MRChangeContentsP1, Medrecords)),
(Nurse, (” ReadMedrecord” , MR ReadMedrecordl, Medrecords))},

For example, this table tells us that nurses may call MRReadMedrecord on class
MEDRECORD.

5.4.4 Roles, Users and Sessions

Users of the security kernel are linked to roles through sessions. Schema RoleAssign-
ment introduces a set of users and relation role_Assignment corresponding to Fig. 3.2
lists the roles a user can take. SessionRoles defines sessions and user ids. Type
USERID already appeared in the functional model and is used to make a link between
users taking a role featured in the security part of the model (e.g., Doctor), and the
classes representing these users in the functional model (e.g., DOCTOR). Injective
function accessRights links user ids to users. Function session_User links a session
to some user, who has activated a set of roles, recorded in session_Role. These roles
must correspond to roles allowed to this particular user in role_Assignment. Sev-
eral predicates, associated to these schemas, check the consistency between these
variables. Table 5.1 features several sessions with associated users, roles and ids.

[USER, SESSION]

__RoleAssignment
Sets
user : F USER

roles_SSD : ROLE <+ ROLFE
role_Assignment : USER <+ ROLFE

dom roles_SSD C role
ran roles_SSD C role
dom role_Assignment C user
ran role_Assignment C role
Vu: user @i, j:role| ((u 1)
€ role_Assignment) A ((u — 7)
€ role_Assignment) o ((i,7) & roles_SSD)

78 Chapter 5. Validation of Security-Design Models Using Z

Session | User Role User 1d
sess1 Alice Doctor 003
sess?2 Bob Doctor 004
sess3 Jeck Nurse 007

Table 5.1: Three sessions

___SessionRoles
RoleAssignment

uid : F USERID;

session : F SESSION

accessRights : USERID -~ USER
session_User : SESSION - USER
session_Role : ROLE <> SESSION

Vr:role Vs : session e (r,s) € session_Role
= (session_User(s),r) € role_Assignment
Vs : session e Vi,j : role | ((i,s) € session_Role)
A ((7,s) € session_Role) o ((i,7) & roles_DSD)

5.4.5 Putting it All Together

Schema PermissionAssignment computes an entire table of the graphical model given
in Fig. 5.2. It constructs a relation between user identity, user, role and the re-
spective permissions, atomic actions, and the resources. This is achieved using the
concrete_Assignment relation and linking roles to their users and user ids.

__ PermissionAssignment
SessionRoles; RoleAssignment; ComputeAssignment
perm_Assignment : (USERID x USER x ROLFE) <

(PERMISSION x ATM_ACTION x RESOURCE)

perm_Assignment = {uid : dom accessRights; u : dom role_Assignment;
r : ran role_Assignment; b : ran concrete_Assignment |
(uid, u) € accessRights A (u, 1) € role_Assignment
A (r,b) € concrete_Assignment o ((uid, u,r) — b)}

In our example, perm_Assignment is initialized as follows:

5.4. The Security Kernel 79

perm_Assignment’ ==

{((7003”,” Alice”, Doctor), (" ReadMedrecord” , MR ReadMedrecordl, Medrecords)),
((”003”,” Alice”, Doctor), (" UpdateDoctor” , DR LinkDoctors1, Doctors)),
((”003”,” Alice”, Doctor), (” UpdateMedrecord” , MR ChangeContentsP1, Medrecords)),
((7004”,” Bob”, Doctor), (" ReadMedrecord” , MR ReadMedrecordl, Medrecords)),
((”004”,” Bob”, Doctor), (" UpdateDoctor” , DR LinkDoctors1, Doctors)),
((”004”,” Bob”, Doctor), (” UpdateMedrecord” , MR ChangeContentsP1, Medrecords)),
((”007”,” Jeck”, Nurse), (" ReadMedrecord” , MR ReadMedrecordl, Medrecords))},

We can now use this table, and the information about sessions, to specify the basis
for secure operations. SecureOperation actually does nothing: it does neither update
the state nor computes a result. It simply states preconditions to allow user?, with
id uid?, acting in a given role?, during a given session? to perform a given action?
on a resource?, as stated by permission?.

__ SecureOperation
=SessionRoles; =PermissionAssignment
session? : SESSION; resource? : RESOURCE; atm_action? : ATM_ACTION
role? : ROLE; user? : USER; uid? : USERID; permission? : PERMISSION

(session?, user?) € session_User
(role?, session?) € session_Role
((uid?, user?, role?), (permission?, atm_action?, resource?)) € perm_Assignment

SecureOperation will be used in the next section in combination with operations
of the functional model.

Another use of tables perm_Assignment and concrete_Assignment is to perform
queries on the access control policy. In Chapter 6, we feature six such queries,
inspired by SecureMOVA [Basin et al. 2009].

Queries are a meaningful way of investigating the UML models properties and
understand conceivably subtle consequences of the security policies they define. For
example, query EvaluateActionsAgainstRoles returns a table listing all roles allowed
to perform a given action, and the corresponding permission.

_ EvaluateActionsAgainstRoles
=Sets; =ComputeAssignment
atm_action? : ATM_ACTION
z_roles! : ROLE <> (PERMISSION x ATM_ACTION x RESOURCE)

z_roles! = {r : dom comp_Assignment; p : permission; rsrc : resource |
(r +— (p, atm_action?, rsrc)) € concrete_Assignment
o (r — (p, atm_action?, rsrc))}

This can be evaluated using Jaza. For example, the following query questions
about the permissions to call MRChangeContentsP1. The answer tells us that only
role doctor is allowed to perform this action on medical records.

80 Chapter 5. Validation of Security-Design Models Using Z

i EvaluateActionsAgainstRoles[atm_action? := MRChangeContentsP1]

z_roles! == {(Doctor, (" UpdateMedrecord” , MRChangeContentsP1, Medrecords))}

5.5 Linking Functional and Security Models

SecureOperation is meant to be included, as a precondition, in the secured version
of the operations of the functional model. For example, let us consider the setter
method for contents, named MedrecordChangeContentsandRels. A secured version of
this operation includes the schema of the operation and SecureOperation. Schemas
PatientHospitalRel and DoctorHospitalRel are also included to get read access to the
associations between hospitals, patients and doctors.

__ SecureMRChangeContentsP
SecureOperation
MedrecordChangeContentsandRels
=PatientHospitalRel; ZDoctorHospitalRel

atm_action? = MRChangeContentsP1 A resource? = Medrecords
J hospital : Hospital | hospitalOfPatient(patientOfMedrecord(x?)) = hospital e
I doctor : Doctor | accessRights™ (session_User(session?))
= doctor.id e doctor € doctorsOfHospital(hospital)

The first predicate links this operation to the corresponding atomic action and
resource in the security model. It can be generated automatically. The other predi-
cate expresses constraint Same hospital as patient: “the medical record may only be
updated by a doctor working in the current hospital of the patient”. It retrieves
hospital, the hospital corresponding to the patient of medical record x?. Then it
retrieves the DOCTOR object corresponding to the id of the user of the current ses-
sion. Finally, it checks that this doctor works for hospital. This constraint, expressed
informally in Fig. 5.2 must be added manually by the analyst.

This operation inherits all input parameters of schema SecureOperation. Most of
these parameters can be deduced by Jaza once session? has been fixed. Therefore,
we define a new version of the schema hiding these parameters.

SecureMRChangeContentsP2 == Secure MR ChangeContentsP\

(uid?, user?, abs_action?, atm_action?, resource?, permission?, role?)

Secure versions of ReadMedicalRecord and LinkDoctors are defined similarly.

Constraint “Same hospital as patient” links information from the security model
(the id of the current user) to the state of the functional model (the hospital of the
patient). Its evaluation depends on the states of both models and can thus evolve
if any of these states evolves. As we will see in the following section, this makes the
analyses and validation of the security policy more complex.

5.6. Validating and Animating Secure Operations 81

5.6 Validating and Animating Secure Operations

Graphical models such as Fig. 5.2 remain rather abstract. Moreover, complex in-
teractions between functional and security models may either forbid one to play a
nominal behavior, or allow an attack to succeed. This would reveal that the detailed
specifications do not model the user’s intent. Animation can help convince the user
that the model corresponds to his intent. Our validation of security properties uses
the Jaza tool. Jaza can animate a large subset of constructs of the Z language.
It uses a combination of rewriting and constraint solving to find a final state and
outputs from a given initial state and inputs. If the initial state and inputs don’t
satisfy the precondition of the operation, the tool returns "No Solutions". The tool
can be further queried to find out which constraint could not be satisfied.

In the sequel, we start from the state of Fig. 5.3 and Table 5.1. We first show
that normal behaviors are permitted by the security model. We then investigate the
attempts of a malicious doctor to corrupt the integrity of a medical record.

5.6.1 Normal Behavior

Our first tests play nominal scenarios. Their success will show that the combination
of security and functional models allows normal behaviors to take place.

Scenario I: A doctor reads a medical record.
; Secure MR ReadMedrecord2

Input session? =" sessl”
Input r? = " meddata”
This first scenario tests whether a doctor, here Alice using sessl, may read medi-
cal record meddata2. This tests the inheritance of permission ReadMedrecord from
nurses to doctors. Jaza animation succeeds and gives the following result:
z! == {(contents == " healthy”, recordnb == "meddata2” |}

Scenario II: A doctor updates the medical record of a patient in the same hospital.
In this scenario, doctor Alice wants to update some medical record. Since Alice
belongs to the same hospital as the patient, this modification is allowed.

; SecureMRChangeContentsP2

Input 7 = (contents == " healthy” , recordnb == " meddata2” |
Input newcontents? =" severe”
Input session? =" sess1”
The output shows that the medical record’s contents have changed to "severe”.
Medrecord’ == {{ contents == "7 severe”, recordnb == " meddata2” |),
(contents == " sick”, recordnb == " meddatal” |}

These two examples show that the security kernel does not block licit operations.
They can be shown to stakeholders of the information system to validate that the
right behavior was captured.

82 Chapter 5. Validation of Security-Design Models Using Z

5.6.2 Analyzing a Malicious Behavior

Security analysis must also evaluate the system’s ability to block unauthorized be-
havior. Here, let us consider a malicious doctor, Bob, who tries to corrupt the
integrity of medical record med datal, calling operation MRChangeContentsP1.

As we have seen in Sect. 5.4.5, a query tells us that only doctors are allowed to
perform this operation. Still, animations go beyond the results of queries presented
in Sect. 5.4.5, because queries don’t take into account constraints such as Same hos-
pital as patient which may restrict the access to some operations. We will thus try
a scenario where Bob attempts to modify medical record med datal.

Scenario III.A: A doctor attempts to update the medical record of a patient of
another hospital.
; SecureMRChangeContentsP2

Input 7 = (contents == " sick”, recordnb == " meddatal” |
Input newcontents? =7 cured”
Input session? = 7 sess2”

Hopefully, Jaza answers that this execution is not allowed by the model.
No Solutions
A closer look at the constraints tells us that Bob’s hospital is not the same as the one
of the patient. The query tool told us that only doctors are allowed to change the
contents of a medical record. But Jaza animation also confirmed that a constraint
requires the doctor to work in the same hospital as the patient. Since Bob does not
work in the same hospital, there are two ways for him to change the outcome of
this constraint. Either he moves the patient to his hospital, or he joins the hospital
of the patient. Let us study the latter solution, and query the model about which
roles are allowed to change the affiliation of a doctor.

i EvaluateActionsAgainstRoles[atm_action? := DR LinkDoctors1]

z_roles! == {(Doctor, (" UpdateDoctor” , DR LinkDoctors1, Doctors))}
The query tells us that doctors are allowed to call this operation. Let us try it!

Scenario I11.B: The doctor first attempts to change his hospital association using
one of the class methods and he succeeds in his attempt.

; Secure DR LinkDoctors2

Input session? =" sess2”

Input hospital? = (name == " RedCross” |

Input doctor? = (| id =="004", name == " Bob” |

The output tells us that Bob is now working for both hospitals.
doctorsOfHospital ==
{({ name == " BlueCare” |), {{ id ==7003", name == " Alice” |,
(id ==7004", name == " Bob” |)}),
((name == " RedCross” |), {(id ==7003", name == " Alice” |),
(id =="7004", name =="Bob” | })}

Scenario II1.C: The doctor makes the malicious changes to the medical record

5.7. Summary 83

; SecureMRChangeContentsP2

Input x? = (| contents == "sick”, recordnb == " meddatal” |
Input newcontents? =7 cured”
Input session? =" sess2”
Bob did succeed and compromised the integrity of the medical record.
Medrecord’ == {{ contents == " cured” , recordnb == " meddatal”),
(contents == "7 severe”, recordnb == "meddata2”)},

It means that the current access control rules allow any doctor to join the hospital
of any patient. Constraint “Same hospital as patient” is thus useless!

Our approach supports three kinds of validation activities: (a) answering stan-
dard queries about the access rules (leaving out the constraints), (b) checking that
a given operation may be performed by a given user in a given state, (¢) sequencing
several operations for given users from a given state. Our scenarios show that the
three kinds of activities are useful. State of the art tools such as SecureMOVA or
OCL/USE only allow (a) and (b), which are mainly of static nature. Our tool cov-
ers (¢), adding a dynamic character to validation activities and allowing exploring
attack scenarios. Constructing a sufficiently complete set of scenarios is essential to
perform a suitable validation. This construction is outside the scope of the thesis
that focuses on making such scenarios animatable.

5.7 Summary

We have presented an approach to validate security design models using Z assertions.
Our proposal goes through three steps: (a) automated generation of functional
specifications using RoZ, (b) the use of a generic security kernel, instantiated by
the security model, and specified in Z, and (c) the link between the kernel and
the operations of the functional model. Animation of the specifications makes it
possible to check that normal behaviors are authorized by the security model and to
analyze potential attacks. This is based on the evaluation of standard queries about
the security policy and the animation of user-defined scenarios. Using Jaza brings
a dynamic dimension to these analyses which are not covered by state of the art
tools such as SecureMOVA and USE. In next chapter, we will thoroughly explain
the differences between our toolset when compared to SecureMOVA and USE.

CHAPTER 6

A Z-based Toolset For the

Validation of Security Policies

Contents
6.1 Overview 86
6.2 State of the Art Tools 87
6.2.1 RBAC and SecureUML 87
6.2.2 USE for the Validation of Security Policies 87
6.2.3 SecureMOVA 88
6.3 The Need for Dynamic Analyses 89
6.4 Applying Toolset to Meeting SCHEDULER. Example 90
6.4.1 Input Models 90
6.4.2 Diagrams for the Security Model 91
6.4.3 Linking both Formal Models 94
6.5 Animation of the Specification 95
6.5.1 Queries on the Security Model 96
6.5.2 Dynamic Analyses : Nominal Behaviors 97
6.5.3 Further dynamic analyses 100
6.5.4 Studying an Attack Scenario 100
6.6 Conclusion 102

In this chapter, we consider the security policy for the meeting SCHEDULER.
This case study also includes constraints for the separation of duty, as well as con-
textual constraints. Contextual constraints use information about the state of the

functional model of the application to grant permissions to users. These constraints

add flexibility to the security policy, but make its validation more difficult. We first
review two tools, USE and SecureMOVA, which can be used to analyze and vali-
date a security policy. These tools focus on analyses of static aspects of the secured

system. We use the tool presented in Chapter 5, based on the Z formal language,

which uses animation of the specification to validate the static as well as dynamic

aspects of the security policy, taking into account possible evolutions of the state of
the functional model. Most of the contents of this chapter are reproduced from our
paper [Ledru et al. 2011].

86 Chapter 6. A Z-based Toolset For the Validation of Security Policies

6.1 Overview

Constraints can be associated to access control models. They allow to express Sepa-
ration of Duty properties [Clark & Wilson 1987, and other properties on roles (e.g.
precedence, see Sect. 6.2.2). Constraints may also link permissions to contextual
information, such as the current state of the information system. This is one of the
interesting features of SecureUML which groups UML diagrams of the application
with security information describing the access control rules. In the remainder, we
will refer to the UML diagrams of the application as the functional model. The term
security model will refer to the access control model. Constraints give flexibility to
describe security policies, but result in complex descriptions which need tool sup-
port for their verification and validation. Verification checks that the description is
consistent. In particular, it must check that constraints are not contradictory, which
would result in unsatisfiable policies. Validation checks that the policy corresponds
to the user’s requirements. Qur work focuses on validation.

With such complex models, validation can become a difficult task. The sepa-
ration between the functional model and the security model is an interesting so-
lution based on separation of concerns. However, existing works [Jiirjens 2005],
[Sohr et al. 2008] are mainly interested in the security part. They propose tech-
niques to verify the consistency of an access control policy without taking into
account the impact of the functional part. Although it is definitely useful to ana-
lyze both models in isolation, interactions between these models must also be taken
into account. Such interactions result from the fact that constraints expressed in
the security model also refer to information of the functional model. Hence, evo-
lutions of the functional state influence the security behavior. Conversely, security
constraints can impact the functional behavior. For example, it is important to
consider both security and functional models in order to check liveness properties
on the information system. Indeed, it can be the case that security constraints are
too strong and block the system. Only a few tools have been proposed to support
validation of RBAC models. They focus on static analysis of the model. In this
chapter, we propose a toolset which supports both static and dynamic analyses,
allowing to study nominal and malicious behaviors of the secure system.

In Sect. 2.2.1 of Chapter 2, we present the meeting scheduler example which
will be reused here. In Sect. 6.2, we review the features of two tools, USE and
SecureMOVA | which are representative of the current state of the art. In Sect. 6.3,
we discuss the interest of leading dynamic analyses of security policies. Sect. 6.4
discusses the translation of security and functional diagrams into a Z specification.
Sect. 6.5 details the dynamic analyses that can be performed on our specification.
Finally Sect. 6.6 draws the conclusions of this chapter.

6.2. State of the Art Tools 87

6.2 State of the Art Tools

6.2.1 RBAC and SecureUML

As shown in Chapter 3, SecureUML provides a functional model of the application,
and the stereotyped elements define the security model. It includes the concepts
of RBAC and the possibility to associate permissions with contextual constraints.
These constraints involve elements of both security and functional models and re-
strict the applicability of the permission to the cases where the constraint is verified.
In the meeting SCHEDULER, such a constraint is associated to the permission of
system users to modify or cancel a meeting. The constraint restricts this permis-
sion to the owner of the meeting. Information about the owner of the meeting will
be retrieved from the functional class diagram, while information about the user
performing the action is related to the security model.

Contextual constraints give much flexibility to express a security policy, but their
validation must take into account both functional and security models. Therefore,
they require adequate tools. In the next sections, we briefly review two tools which
support the validation of role-based security policies with constraints. In both cases,
the constraints are written in OCL, a language based on first order logic predicates
over the constructs of an UML class diagram.

6.2.2 USE for the Validation of Security Policies

The USE tool |Gogolla et al. 2007| allows to evaluate OCL constraints on a given
object diagram. These constraints are usually invariants associated to the classes
of the diagram, but can also stand for pre- or post-conditions if the object diagram
represents the initial or final state of some operation. The tool also allows program-
ming a random generator for object diagrams, and to program sequences of object
diagrams.

Sohr et al [Sohr et al. 2008] have adapted this tool for the analysis of security
policies. Their work focuses on the security model, i.e., users, roles, sessions and
permissions, constrained by OCL assertions. This allows to express properties such
as:

Cardinality: a given role has at most n users.
— Precedence: u may be assigned to role 1 only if u is already member of 7.
— Separation of Duty: roles 3 and r4 are conflicting.

Separation of Duty for Colluding Users, e.g. two brothers may not take con-
flicting roles.

— Context-dependent permissions, e.g. a meeting may only be modified by its
owner.

88 Chapter 6. A Z-based Toolset For the Validation of Security Policies

The last two properties cannot be expressed on a pure security model. It must be
augmented with functional information, e.g. some attribute ownedMeetings should
be added to the users. Another possibility is to explicitly include this information
in the constraints, e.g. in [Sohr et al. 2008] all sets of colluding users are listed as
OCL rules. Both cases correspond to extensions of the RBAC + constraint model
which do not really scale up. Such information definitely belongs to the functional
model.

Sohr et al [Sohr et al. 2008 report on two kinds of validation activities. An ob-
ject diagram can be given to the tool, and the tool will check which constraints are
violated. The object diagram can be user-defined, randomly generated, or mem-
ber of a programmed sequence. This allows to detect unsatisfiable constraints, i.e.
constraints which are always false. They have also developed a tool named autho-
rization editor, which implements the administrative, system and review functions
of the RBAC standard. The tool is connected to the API of USE so that the con-
straints of the security policy are checked after each operation. It detects erroneous
dynamic behaviors of the security policy. For example, if two roles are constrained
both by a precedence and a conflict relations, it is impossible to find a sequence of
RBAC administrative and system operations which leads to create the second role.

6.2.3 SecureMOVA

SecureMOVA allows to create a functional diagram, i.e., a class diagram, and to
relate it to permission rules. Constraints can be attached to permissions and these
constraints may refer to the elements of the functional diagram.

SecureMOVA allows to evaluate queries about the security policy. The tool
provides an extensive set of queries over a given model, possibly associated with
a given initial state. In [Basin ef al. 2009], Basin et al. list the queries that are
supported by the tool. A first set of queries explores the relations between roles and
actions.

Given a role, what are the atomic actions that a user in this role can perform?
— Given an atomic action, which roles can perform this action?

— Given a role and an atomic action, under which circumstances can a user in
this role perform this action?

Other queries ask more general questions to analyze the security policy. They
help identify redundant roles or permissions.

— Are there two roles with the same set of atomic actions?

— Given an atomic action, which roles allow the least set of actions, including
the atomic action?

Do two permissions overlap?

6.3. The Need for Dynamic Analyses 89

— Are there atomic actions that every role, except the default role, may perform?

With SecureMOVA it is also possible to ask questions about a current state, i.e.,
a given object diagram. Such queries return the actions authorized for a given role,
or to a given user in the current context.

Given a functional and a security state, can a given user in a given role perform
a given action on a given resource?

— Given a user and a state, what are all actions that this user can perform?
— Given a state, which users may perform a given action on a given resource?

— Given a state, which role should take a given user to perform a given action
on a given resource?

This extensive set of supported queries is of great help to analyze and validate a
security policy. In particular, the last set of queries, which involve a given functional
state, can be very useful studying the impact of contextual constraints. Nevertheless,
all reported examples [Basin et al. 2009] are of static nature, i.e., they do not allow
to sequence actions (either administrative or functional) and check that a given
sequence is permitted by the combination of the security and functional models.

6.3 The Need for Dynamic Analyses

In the sequel, we emphasize to use animation techniques to further validate security
policies. Animation allows to play sequences of actions from a given state. USE and
SecureMOVA only report whether the first action of the sequence can be executed
from the given state. Animation of sequences of actions is useful to investigate
two kinds of behaviors: nominal behaviors, corresponding to the requirements of
the system, and malicious behaviors, corresponding to attacks against the secure
system.

In both cases, the corresponding behavior may involve several steps, and it is not
sufficient to investigate whether a given action can be performed in a given state. It
is also necessary to check that the given state can be reached from the initial state,
and when sequences of actions are considered, to compute the resulting state and
check that the next action can be performed from this resulting state. Animation
tools allow to perform a sequence of actions, starting from an initial state and to
compute all intermediate states.

Such dynamic analyses require the availability of executable models. Security
policies based on RBAC can easily be made executable, as demonstrated by Sohr in
his authorization editor [Sohr et al. 2008|. Executability of the functional model can
be achieved in two ways: either by providing an implementation of the model which
can interface with the contextual constraints of the security model, or by providing
an executable model. Providing an implementation makes sense in a context where

90 Chapter 6. A Z-based Toolset For the Validation of Security Policies

the functional system is designed first, without considering security aspects, and
where a security policy must be designed later for this application. It also makes
sense during a maintenance phase where a given implemented security policy must
evolve. Some prototypes of RBAC can be coupled with an existing implementation.
For example, the MotOrBAC tool provides an API between its security engine and
the application [Autrel et al. 2008|.

Instead of working at the implementation level, our approach favors early vali-
dation at the abstract level of a PIM (Platform-Independent Model). The other way
is to get an executable functional model. In the case of USE or SecureMOVA, the
model is expressed as a class diagram combined with OCL predicates. In order to
turn UML methods into executable ones, one needs to provide an implementation
of the methods. Actually, USE allows defining a body for each method using an
imperative language based on OCL. It seems that this feature was not explored in
[Sohr et al. 2008] and might be interesting to investigate. Another way is to ani-
mate the methods based on their pre- and post-conditions. We do not know of tools
which support this approach for OCL, but they exist for formal languages such as Z
[ISO 2002], B [Abrial 1996], or Alloy [Jackson 2006]. In [Toahchoodee et al. 2009],
functional and security models are merged into a single UML model which is trans-
lated into Alloy. Alloy can then be used to find a state which breaks a given property.
The properties described in [Toahchoodee et al. 2009] are mainly of static nature,
i.e. they focus on the search for a state which breaks a property, and don’t search
for sequences of actions leading to such a state. Nevertheless, Alloy can take into
account the behavior of the actions of the model, and we believe it has the potential
to perform such dynamic analyses.

6.4 Applying Toolset to Meeting SCHEDULER Exam-
ple

We propose to translate the functional and security models into a Z specification,
and then to use the Jaza animator to analyze this specification, using animation and
queries. Several attempts have already specified RBAC in Z [Ferraiolo et al. 2001],
but these were not aimed to be the input of an animator.

6.4.1 Input Models

Our toolset takes as input: (a) a class diagram of the functional application, possibly
annotated in Z, and (b) several security diagrams, including diagrams stating the
permissions, and a diagram assigning users to roles. Security diagrams are completed
by a description of an action hierarchy linking abstract actions to concrete ones.
From these inputs, our toolset computes a Z specification of the system which can
be animated with Jaza (see sect. 6.5).

The functional model has been described in Chapter 2 and Chapter 3. Sec-
tion 3.5.1 of Chapter 3 sketches the diagram whereas in Section 2.2 of the Chapter 2

6.4. Applying Toolset to Meeting SCHEDULER Example 91

RoZ translation has been provided which will be used as the input of functional
model in this chapter.

6.4.2 Diagrams for the Security Model

6.4.2.1 Permissions

The security model involves several diagrams. The main diagram (Fig. 3.8) expresses
the permissions related to each role. In accordance with the use cases of Fig. 2.2
of Chapter 2, users may only access meetings. A first permission, UserMeeting,
allows them to create and read objects of the class meeting. A second permission,
OwnerMeeting, details the rights to update an existing meeting, i.e., to modify it or
to delete it. This permission is associated to a constraint, written in the Z language,
which states that the user must have the same name as the owner of the meeting.

Similar permissions are expressed for Supervisor and SystemAdministrator. Per-
mission SupervisorCancel grants to supervisors the right to perform operations cancel
and notify on any meeting. UserManagement grants to administrators full access to
the class Person, and ReadMeeting grants them the right to read class Meeting.

It must be noted that these permissions refer to abstract operations (e.g. Read
or Fullaccess) and that a link must be established between these abstract operations
and their concrete counterparts. This will be explained in Sect. 6.4.2.3.

6.4.2.2 Roles and Users

An additional diagram (Fig. 6.1) declares the roles of the application, and links
them to users. In this diagram, the roles correspond to the actors of the use case
diagram: SystemUser, Supervisor, SystemAdministrator and Director. Four users are
declared and assigned to these roles through UA (User Assignment) links. These
user assignments list the roles that a user can take in a session. Yet, the user may
choose to perform the session using a subset of his possible roles. The diagram
also declares some separation of duty constraints between roles. Fig. 6.1 features
one static separation of duty (SSD) between Supervisor and Administrator, and one
dynamic separation of duty (DSD) between Director and SystemUser. It can be
visually checked that the SSD constraint is respected by the user assignments. The
DSD constraint, which will be enforced during a session, may only be violated by
Mark who may use both roles of the DSD.

92 Chapter 6. A Z-based Toolset For the Validation of Security Policies

<<User>>
John <<User>>
Alice
<<UA>> <<UA>> <<UA>> /
JohnA JohnU AliceU
/
<<Role>> \
SystemAdministrator <<Role>> <<UA>>
SystemUser BobU
N <<User>>
<<DSD_RoleMutex>> Zr Bob
DSD <UA>> |— |
<<Role>> BobS
Supervisor
<<Role>>
Director
<<UA>> <<UA>>
MarkD MarkU

<<SSD_RoleMutex>>

<<User>> SSD1

Mark

Figure 6.1: Users, roles and separation of duty for the meeting scheduler

action_Relation =

{(EntityDelete — (Cancell, Meetings)),
EntityDelete — (RemovePersonl, Persons)),
EntityRead — (Notifyl, Meetings)),
EntityCreate — (AddMeetingl, Meetings)),
EntityCreate — (CreateMeetingl, Meetings)),
EntityCreate — (AddPersonl, Persons)),
EntityUpdate — (ChangeStart1, Meetings)),
EntityUpdate — (ChangeDurationl, Meetings)),
EntityUpdate — (ChangeNamel, Persons)),
AssocEndUpdate — (Linkownerl, Persons)),
AssocEndUpdate — (Linkparticipantsl, Persons)),
AssocEndUpdate — (LinkmeetingsOfOwnerl, Meetings)),
AssocEndUpdate — (LinkmeetingsOfParticipant1, Meetings)),
NotifyEzxecute — (Notifyl, Meetings)),
CancelEzecute — (Cancell, Meetings)), }

(
(
(
(
(
(
(
(
(
(
(
(
(
(

6.4. Applying Toolset to Meeting SCHEDULER Example 93

6.4.2.3 Action Hierarchy

As mentioned earlier, the permissions of Fig. 3.8 refer to abstract actions. A link
must be established between these and the actual operations defined in the classes.
Currently, our toolset does not provide a graphical notation expressing this link. It
must be defined directly using the Z syntax. The following table, action_Relation
expresses how abstract actions are instantiated in each class. For example, action
EntityDelete corresponds to Cancel in class Meeting and to RemovePerson in class
Person. To avoid name conflicts in the Z specification, operation names are suffixed
with “1” and class names with “s”. It must be noted that the previous table does
not explain what FullAccess stands for. This is because FullAccess corresponds to
several abstract operations. This is detailed in action_Inherits. The table also
defines AssocEndUpdate as a special case of EntityUpdate.

action_Inherits = {(EntityRead — EntityFullAccess),
(EntityUpdate — EntityFullAccess),
(EntityCreate — EntityFullAccess),
(EntityDelete — EntityFullAccess),
(AssocEndUpdate — EntityUpdate)}

6.4.2.4 7 Translation of the Security Model

The security diagrams are prepared with the TopCased tool'. A meta-model and a
UML profile have been defined to support the edition of these models. The graphical
security models of figures 3.8 and 6.1 are translated into Z using Acceleo?, a MDA
based code generator. The original RoZ [Dupuy et al. 2000] was designed for the
Rational Rose tool®; a new version is currently developed for TopCased, which
integrates both security and functional models into the same environment.

The 7 specification of the security model is based on the specification of a Z
security kernel already presented in Section 5.4 of Chapter 5, independent of a spe-
cific application, which specifies the main RBAC data structures (user assignment
to roles, role hierarchy, definition of permissions, action hierarchy, session man-
agement, Static and Dynamic separation of duty) and computes a table, named
perm_Assignment which links user ids, users, roles, permissions, actions and re-
sources.

The translation of the security diagrams and the action hierarchy of Sect. 6.4.2.3
are used to instantiate these data structures, and the associated enumerated types.
Using the Jaza animator, we can compute perm_Assignment for our example. Fig. 6.2
gives a subset of this table. For example, the first line tells us that Alice, whose
user id is 001, acting as System User, may cancel a meeting due to permission
OwnerMeeting. It also tells us that Bob, acting as a supervisor, has two ways to
cancel a meeting, using either permission OwnerMeeting or permission Supervisor-

"http://www.topcased.org/
http://www.acceleo.org/pages/home/en
http:/ /www.ibm.com /software /rational /

94 Chapter 6. A Z-based Toolset For the Validation of Security Policies

perm_Assignment ==
{ ((001”,” Alice”, SystemUser), (" OwnerMeeting”, Cancell, Meetings)),
((7001”,” Alice”, SystemUser), (" OwnerMeeting” , Change Duration1, Meetings)),
((70017,” Alice”, SystemUser), (" OwnerMeeting” , ChangeStart1, Meetings)),
((70017,” Alice”, SystemUser), (" UserMeeting” , CreateMeetingl, Meetings)),
((001”,” Alice”, SystemUser), (" UserMeeting” , Notifyl, Meetings)),

((7002”,” Bob”, Supervisor), (” OwnerMeeting” , Cancell, Meetings)),
((7002”,” Bob”, Supervisor), (” SupervisorCancel” , Cancell, Meetings)),
((7002”,” Bob”, Supervisor), (" UserMeeting” , Notifyl, Meetings)),

((7003”,” John” , SystemAdministrator), (” UserManagement” , AddPersonl, Persons)),
((7003”,” John” , SystemAdministrator), (" UserManagement”, Linkownerl, Persons)),

Figure 6.2: A subset of the perm_Assignment table

Cancel. It must be noted that this table does not refer to contextual constraints.
Its information is thus partial.

The security kernel defines a generic operation, named SecureOperation, which
takes as arguments a user, its user id, a role, a session, a permission, an atomic
action and a resource and checks that (a) the user is logged in the session with the
given role, and (b) that table perm_Assignment authorizes this action for the user
in the given role. This definition of SecureOperation is actually a precondition that
must be satisfied for the action to take place.

__SecureOperation
=SessionRoles; =PermissionAssignment

role? : ROLE; user? : USER; uid? : USERID; permission? : PERMISSION

(session?, user?) € session_User
(role?, session?) € session_Role

6.4.3 Linking both Formal Models

The last step in the preparation of the Z specification links the Z specifications of
both models. First, one must relate the types appearing in both models. Here, the
constraint on OwnerMeeting compares the name of the owner to the user performing
the cancel operation. This requires that name and user have compatible types. In
our example, this is done by redefining type USER as a STRING.

USER == STRING

session? : SESSION; resource? : RESOURCE; atm_action? : ATM_ACTION

((uid?, user?, role?), (permission?, atm_action?, resource?)) € perm_Assignment

6.5. Animation of the Specification 95

At this point, secure versions of the functional operations can be defined. For exam-
ple, the secure version of meetingcancel includes SecureOperation and meetingcancel
(given in Sect. 2.2.6.3). What the operation actually does is completely defined
in the functional operation (i.e., meetingcancel). So the secure operation simply
adds several checks to allow the operation to take place. These checks take the
form of additional preconditions. These require the atomic action to be Cancell
and the resource to be Meetings. They also require that input parameter meeting?
corresponds to an existing meeting, which allows to retrieve its owner. The last
condition includes the contextual constraint (user is owner). Since this constraint
only applies for OwnerMeeting and not for SupervisorCancel, it only applies if the
role is not Supervisor.

__ Securemeetingcancel
SecureOperation
meetingcancel

atm_action? = Cancell

resource? = Meetings

meeting? € Meeting

role? # Supervisor = (user? = (owner(meeting?)).name)

Securemeetingcancel has a large number of input parameters. Many of these
parameters can be deduced from a subset of the input parameters (here session? and
meeting?) and the preconditions of the operation. Operation Securemeetingcancel2
actually hides the useless parameters. In Z, the hide operation (\) existentially
quantifies the hidden variables. This means that the Z animator will have to find a
value for each of the hidden parameters.

Securemeetingcancel2 == Securemeetingcancel \ (userid?,
user?, atm_action?, resource?, permission?, role?)

Currently, secure operations are defined manually. Still this definition is completely
systematic and a significant part can be automated, using additional Acceleo trans-
formations of the diagram of Fig. 3.8.

6.5 Animation of the Specification

Based on the resulting Z specification, we can use the Jaza animator to perform
static (queries) and dynamic analyses (animations) of the security policy.

Jaza can execute an operation whose input parameters are fully instantiated. It
checks the preconditions, computes the resulting state and checks that the resulting
state is in accordance with all postconditions of the operation and with the state
invariants. The user may also omit some input parameters, using the hiding oper-
ator. In that case, Jaza searches for values which will satisfy the pre-conditions of
the operation and chooses one of these. This requires the search space to be finite,

96 Chapter 6. A Z-based Toolset For the Validation of Security Policies

and small enough. In the sequel we will exploit both features of Jaza to analyze the
7, specification.

6.5.1 Queries on the Security Model

We start our analysis by asking some queries, inspired by the ones of Secure-
MOVA |Basin et al. 2009]|(see Sect. 6.2.3). These queries are mainly based on the
perm_Assignment table (Fig. 6.2).

— What are the atomic actions associated to a given role?
— Which roles can perform a given atomic action?

For each of these queries, a corresponding Z operation has been defined. Since the
queries don’t depend on the application, the Z operations are also reusable. For
example, let us query which roles may perform the cancel operation using schema
EvaluateActionsAgainstRole which was presented in Section 5.4.5. Jaza answers that
three roles can perform this action and reports on the associated permissions. A
closer look at the diagrams reveals that one of these permissions is associated to a
constraint.

i Evaluate ActionsAgainstRoles|atm_action? := Cancell]

z_roleAction! ==
{ (Director, (” OwnerMeeting”, Cancell, Meetings)),
(Supervisor, (” OwnerMeeting”, Cancell, Meetings)),
(Supervisor, (” SupervisorCancel” , Cancell, Meetings)),
(SystemUser, (" OwnerMeeting”, Cancell, Meetings))}

A second series of queries consider the whole set of rules. They help identify
generic flaws in the security policy.

— Are there duplicate roles, i.e., two roles with the same set of atomic actions?
Do two permissions overlap?
Is there an atomic action that every role may perform?

Is there an atomic action that nobody may perform?

For example, the following query reports that Supervisor and SystemUser are dupli-
cate roles. It means that they have the same privileges in table perm_Assignment.
Still a closer look at the diagrams shows that a contextual constraint restricts the
rights of SystemUser, which justifies the existence of both roles.

; FindDuplicateRoles

z_rolel! == Supervisor, z_role2! == SystemUser

6.5. Animation of the Specification 97

The schema FindDuplicateRoles will be presented in Section 7.1.5 of Chapter 7.
The following query looks for operations that are always blocked by the security
policy. It reveals that RemoveMeeting is not accessible. Actually, RemoveMeeting
is meant to be used as a part of meetingcancel. So it is normal that no role has
access to this operation.

; AccessNobody

z_action! == RemoveMeetingl

It must be noted that the same queries are supported by SecureMOVA, but that
it only answers “yes” or “no”. We found it useful to provide witnesses when the
answer is positive, because it speeds up the debugging process.

6.5.2 Dynamic Analyses : Nominal Behaviors

The queries of the previous section are of static nature and do not take into account
the contextual constraints associated to permissions. So they don’t benefit from our
integration of the functional and security models. In this section, we will perform
dynamic queries, animating sequences of actions which correspond either to nominal
behaviors or to possible attacks.

All animations of this section rely on an initial state where some sessions are
predefined. Fig. 6.3 gives information about these sessions.

Session ‘ User ‘ Roles

sessl Alice | SystemUser

sess2 Bob | Supervisor, SystemUser

sess3 John | SystemAdministrator, SystemUser
sess4 Mark | Director

Figure 6.3: Sessions with their users and roles

) Alice : Person
Owner link

]

-~ - name = 'Alice’

MeetingOfAlice : Meeting

start =1
duration =10

| Bob : Person

name = 'Bob’

Figure 6.4: Object diagram for the meeting scheduler

First, we explore nominal behaviors. Our first goal is to find a sequence of ac-

98 Chapter 6. A Z-based Toolset For the Validation of Security Policies

tions which will lead us to the functional state depicted in Fig. 6.4. This requires to
create two persons, one meeting, and three links. Persons must be created by the
system administrator (i.e., John in session 3), then the meeting and its links will be
created by Alice (session 1). This corresponds to the following Jaza animation.

; SecurePersonAddPerson2[session? ;=" sess3”,
person? := | name == " Alice”)]
; SecurePersonAddPerson2|session? :=" sess3”,
person? := | name == " Bob” |)]
; SecuremeetingcreateMeeting2[session? := " sess1”,
meeting? = (start == 1, duration == 10 |),
owner? := (name == " Alice” |)]
; SecuremeetingLinkmeetingsOfParticipant2] session? := "sess1",
meeting? = (start == 1, duration == 10 |),
person? := (| name == " Bob” |)]

This animation proceeds with success. Actually it covers a nominal behavior
which includes several use cases of Fig. 2.2: create a person, create a meeting, add
participants.

We proceed by trying to cancel the meeting. This will validate the contextual
constraint. First, we use the session of John to perform this attempt. Since John is
neither supervisor nor the owner of the meeting, this attempt should fail. And this
is exactly what happens.

; Securemeetingcancel2[session? := " sess3”,
meeting? = (start == 1, duration == 10 |)]

No solutions

We then try the same operation, using the session of Alice, the owner of the
meeting. This time, the operation succeeds and the set of meetings is empty after
the operation.

; Securemeetingcancel2[session? := " sess1”,
meeting? = (start == 1, duration == 10 |)]

Meeting' == {}, ...

These animations increase our confidence that we expressed the right rule and
the right constraint. Another nominal behavior is to delete some person. Let us
consider that Alice has left the company and that we must delete object Alice, start-
ing from the state of Fig. 6.4. Only system administrators are allowed to remove a
person, so this will be performed by John in session 3.

; SecurePersonRemovePerson2|session? := " sess3”,
person? := (| name == " Alice”)]

No solutions

6.5. Animation of the Specification 99

Jaza reports that the operation failed. Actually, this is due to the fact that
deleting Alice leads to have a meeting without owner, which is forbidden by the
class diagram (every meeting has one and only one owner). So the functional model
requires to first cancel Alice’s meeting and then remove Alice. Since John is admin-
istrator, he has no right to cancel Alice’s meeting. Since Alice has left the company,
we need the help of a supervisor, here Bob in session 2. Now the following sequence
of operations will succeed.

; Securemeetingcancel2[session? := " sess2”,
meeting? = (start == 1, duration == 10 |)]

; SecurePersonRemovePerson2[session? := " sess3”,
person? := (| name == " Alice”)]

This animation convinces us that it was useful to create role Supervisor in our
security policy, otherwise, the security rule would make it impossible to remove a
user who has left the company. One may wonder whether role Director could be
used to cancel the meeting and then remove the person. But the animator reports
that the Director, who is neither supervisor nor the meeting owner, may not cancel
Alice’s meeting. This may suggest to modify the definition of Director and make
him inherit from Supervisor (but this will conflict with the SSD constraint).

Other analyses of nominal behaviors can test SSD and DSD constraints. For
example, the following animation shows that the SSD constraint works as expected

; AddRole[user? :=" Mark”, role? := SystemAdministrator]
; AddRole[user? :=” Mark”, role? := Supervisor]

No solutions

and the following one gives a similar result for DSD

; NewSession[session? := 7 sessb”,
user? :=" Mark”, role? := Director]

; AddSessionRole[session? :=" sess5”,
user? :=" Mark”, role? := SystemUser|

No solutions

The current tool supports an elementary definition of DSD which forbids simul-
taneous use of conflicting roles in the same session. More elaborate versions of DSD,
which consider non-simultaneous use during the same session or during the life-cycle
of an object will be studied in future work.

Please note that we will come back to the schemas AddRole, NewSession, and
AddSessionRole in Chapter 7 to provide their underlying details.

10@hapter 6. A Z-based Toolset For the Validation of Security Policies

6.5.3 Further dynamic analyses

In [Basin et al. 2009], SecureMOVA is used evaluating queries which depend on a
given context. “Given a state, which role should take a given user to perform a
given action on a given resource?” For example, which role should take Bob to
cancel Alice’s meeting?

This result does not only depend on perm_Assignment, but also on the current
state of the data. We can ask a similar query in Z, by defining the following opera-
tion.

RoleNeededForMeetingCancel == (NewSession \ (role?))
s(Securemeetingcancel2)

RoleNeededForMeetingCancel first creates a new session, and then uses this session
to cancel the meeting. Tt hides input parameter role? so that Jaza must find a role
which satisfies the preconditions of both operations. When we call this operation,
acting as user Bob, it actually leads to a resulting state where the set of meetings is
empty. A closer look at the state shows that session 6 was created with Bob as user,
and in the role of Supervisor. This answers our question: Bob may cancel Alice’s
meeting if he logs in as a supervisor.

; RoleNeededForMeetingCancel|session? :=" sess6”,
user? ;=" Bob”,
meeting? = (start == 1, duration == 10 |)]

Meeting' == {},...
session_Role' == {..., (Supervisor,” sess6”)},
session_User’ == {..., (" sess6”,” Bob”)},

6.5.4 Studying an Attack Scenario

Integrity of meetings is an important security property we want to enforce on our
information system. Let us now focus on user John, who may play the role of Sys-
temAdministrator and SystemUser. For some malicious reason, John wants to cancel
the meeting of Alice. Since John may play two different roles, we can ask which role
he should use to cancel the meeting (as we did for Bob in the previous section).

; RoleNeededForMeetingCancel|session? :=" sessT",
user? ;=" John”,
meeting? = (start == 1, duration == 10 |)]

No solutions

As expected, the system answers that John is not allowed, in any of his roles to
perform this action. In Sect. 6.5.1, we already queried which roles allow to perform
action Cancell (using EvaluateActionsAgainstRoles), and found that it requires roles

SystemUser, Supervisor, or Director. John may only use role SystemUser to cancel

6.5. Animation of the Specification 101

the meeting, but a closer look at Fig. 3.8 tells us that permission “OwnerMeeting”
requires John to be the owner of the meeting. This explains why he is not allowed to
cancel the meeting. This also suggests that John may get this permission if he be-
comes owner of the meeting. This requires a more elaborate attack where John first
becomes owner of the meeting and then cancels it. The functional model provides
two methods to change the owner of the meeting (see Fig. 3.8): LinkmeetingsOfOwner
in class Meeting and Linkowner in class Person.
Let us check which roles may use these operations:

i EvaluateActionsAgainstRoles|
atm_action? := LinkmeetingsOfOwnerl]

z_roleAction! ==
{ (Director,
(" OwnerMeeting” , LinkmeetingsOfOwnerl, Meetings)),
(Supervisor,
(” OwnerMeeting” , LinkmeetingsOfOwnerl, Meetings)),
(SystemUser,
(" OwnerMeeting” , LinkmeetingsOfOwnerl, Meetings))}

None of these permissions apply for John, because he may only take the role
SystemUser in this list, and in that case, he must be the owner of the meeting. Op-
eration Linkowner corresponds to the other end of the association. A similar query
may be performed.

; EvaluateActionsAgainstRoles[atm_action? := Linkownerl]

z_roleAction! ==
{ (Director, (" UserManagement”, Linkownerl, Persons)),
(SystemAdministrator,
(" UserManagement”, Linkownerl, Persons))}

Alice : Person

/ name = 'Alice’
MeetingOfAlice : Meeting

Bob : Person
start =1

duration =10 name = '‘Bob
Owner link % John : Person
name = 'John'

Figure 6.5: Another Object diagram for the meeting scheduler

10T hapter 6. A Z-based Toolset For the Validation of Security Policies

So John may perform action Linkowner as SystemAdministrator. This action re-
quires to first create an object of class Person corresponding to John. John being
system administrator, he may create this object, using session sess3. Note that the
constraint owner is a participant was not included in our Z specifications. The cur-
rent Fig. 6.5 does not fulfill the constraint "owner is a participant” given in Chapter 2.

; SecurePersonAddPerson2[session? := "7 sess3”,
person? := (| name =="John” |)]

; SecurepersonLinkowner2[session? := "7 sess3”,
person? := (name =="John”),
meeting? = (start == 1, duration == 10 |)]

John is now the owner of the meeting, as shown in Fig. 6.5. Being the owner,
he may now cancel the meeting.

; Securemeetingcancel2[session? := " sess3”,
meeting? := (start == 1, duration == 10 |)]

Meeting' == {} ...

The attack of John has succeeded! This may be considered as a flaw of the
security policy. The meeting scheduler example was discussed in several articles,
and defined independently of our research team. To the best of our knowledge, this
problem was never reported before. We foresee that similar problems will happen
in SecureUML descriptions which use contextual constraints.

The problem is that SystemAdministrator has full access to class Person, which
includes the right to modify association ends. One solution is to add a SSD con-
straint between SystemAdministrator and SystemUser. Hence, John will still be able
to become owner of the meeting, but will not be able to log in as SystemUser in
order to delete it.

Currently, finding out attack scenarios relies on the analyst’s skills. Regarding
contextual constraints, we believe that this study can become quite systematic us-
ing our query tools to review how, and by which role, the functional state can be
modified to change the outcome of these constraints.

6.6 Conclusion

This chapter has addressed the validation of security policies expressed as RBAC
rules with contextual constraints based on a new case study. Such constraints refer
to elements of both security and functional models, using the state of the functional
model as a context to grant access rights. Separation of concerns suggests treating
the functional and security models in isolation. Unfortunately, when constraints es-
tablish a link between these models, validation must take both models into account.

Also we presented our formal queries similar to SecureMOVA tool. One feature
of SecureMOVA remains difficult to support. SecureMOVA is able to report the text

6.6. Conclusion 103

of the conditions that are associated to a permission, due to the reflexive character
of the UML model. Our Z specification does not allow such reflexivity mechanisms,
and can only evaluate the condition in a given state. Our toolset includes a large
number of the queries supported by USE and SecureMOVA; it can be extended to
support most of the remaining ones.

The animation techniques for the validation of models is not new, it has been
applied to B, event B, and Z formal models. [Barden et al. 1996 have cited several
benefits of animating formal models:

Errors in formal specifications can take two forms, either owing to the math-
ematics, or to errors in the requirements capture process. Such errors can be
revealed using animation techniques.

Animating specifications ensures more confidence that the requirements have
been captured well. This is beneficial for both the specifiers and for customers
who experiment with the animation.

— Generally the customers do not know their own requirements. Animation
techniques can play a vital role to help them know what they want. In this
way, one can also differentiate between the undesired and the desired properties
of a system from a user perspective.

More examples of animation include [Ait-Sadoune & Ameur 2008| that offers an
animation of event B formal models. Similarly another tool to animate a subset of
Z specifications named ZANS approach is proposed in [Jia 1995|. In their approach
a proof activity is carried out using animation technique. Not surprisingly, there are
several other papers studying the animation of formal specifications adding several
benefits to the use of formal methods. For example, to animate a model, it requires
us to execute the model which implicitly contributes to the large scale applicability
of formal languages. Our shown approach is a sequel of such endeavors aimed at
integrating formal notations at design phase of software development.

CHAPTER 7

A Set of Validation Queries

Contents
7.1 Formal Queries 105
7.1.1 Authorized Roles for an Atomic Action 105
7.1.2 Available Actions Against Roles 107
7.1.3 Access to Resources L. 108
7.1.4 Permissions Against Atomic Action and Role 109
7.1.5 Finding Duplicate Roles 109
7.1.6 Atomic Action Accessed by Al 110
7.1.7 Atomic Action Access by Nobody 111
7.2 RBAC Supporting System Functions 111
7.3 Summary L 113

The use of formalized validation queries has been demonstrated in Chapter 5
and Chapter 6. In this chapter, we present the formalization of the queries that
contributed to the validation of security design models in previous two chapters.
Subsequently, we will explain a subset of session management functions of RBAC
that we have used before.

7.1 Formal Queries

7.1.1 Awuthorized Roles for an Atomic Action

The first query is EvaluateRoleAuthorizedAtomicAction that computes the set of
atomic actions against a given role. For example, we want to know the set of
atomic actions assigned to a role in a security policy.

__ FEwvaluateRoleAuthorized AtomicAction

=Sets

role? : ROLE

ZComputeAssignment

z_atomicActions! : ROLE <
(PERMISSION x ATOMIC_ACTION x RESOURCE)

role? € dom concrete_Assignment
z_atomicActions! = {prm : ran concrete_Assignment |
(role?, prm) € concrete_Assignment e (role? — prm)}

106 Chapter 7. A Set of Validation Queries

The declaration part of EvaluateRoleAuthorizedAtomicAction includes the state
schema Sets and an input variable role? of type ROLE. The set being computed
z_atomicActions! is a relation which has a type of cross product of role with associ-
ated permissions, atomic actions, and resources. The predicate part of the operation
schema checks that the input role (role?) is actually from the domain of relation
concrete_Assignment, defined in ComputeAssignment. The relation z_atomicActions!
is a cross product of role with permission, atomic action and resource. Thus the
output (z_atomicActions!) would be the set of all possible values associated to a
particular role (i.e.,role?) within the system specification. Below is an example of
executing this schema where against the role Supervisor: Jaza has detailed all the
atomic actions authorized to it.

JAZA >; EvaluateActionsAgainstRoles
Input atm_action? = Supervisor
z_atomicActions! == {(Supervisor,

(" OwnerMeeting” , Cancell, Meetings)),
(Supervisor,
(" OwnerMeeting” , ChangeDurationl, Meetings)),

(Supervisor, (" OwnerMeeting” , ChangeStart1, Meetings)),
(Supervisor, (” OwnerMeeting” , Linkmeetings OfOwner1l, Meetings)),
(Supervisor,

(" OwnerMeeting” , Linkmeetings Of Participant1, Meetings)),
(Supervisor,

(" SupervisorCancel” , Cancell, Meetings)),

(Supervisor, (” SupervisorCancel” , Notifyl, Meetings)),
(Supervisor, (” UserMeeting” , AddMeetingl, Meetings)),
(Supervisor, (" UserMeeting” , CreateMeetingl, Meetings)),

((

Supervisor, (" UserMeeting” , Notifyl, Meetings))}

___ Sets
role : F ROLE
user : F USER
userid : F USERID
session : F SESSION
resource : F RESOURCE
permission : F PERMISSION
atm_action : F ATOMIC_ACTION
abs_action : F ABSTRACT_ACTION

Since the state schema Sets and ComputeAssignment are being repeatedly in-
cluded in every operation schema of this chapter, we just reproduced them here.
Note that the schema Sets has several components. In Chapter 5 it has been de-
composed into several state schemas just for the sake of clarity.

7.1. Formal Queries 107

__ ComputeAssignment
Sets
Rolelnherits
ComputeActions
ActionsRelation
ActionAssignment
comp_Assignment : ROLE <+

(PERMISSION x ABSTRACT_ACTION x RESOURCE)
abstract_Assignment : ROLE <«

(PERMISSION x ABSTRACT_ACTION x RESOURCE)
concrete_Assignment : ROLE <+

(PERMISSION x ATOMIC_ACTION x RESOURCE)

comp_Assignment = {r : dom action_Assignment; x : role;
a : ran action_Assignment | ((z — r) € ((role_Inherits™)
U(id role))) A ((r — a) € action_Assignment)
° (x — a)}
abstract_Assignment = {r : dom comp_Assignment; p : permission;
asup, asub : abs_action; rsrc : resource | (r — (p, asup, rsrc))
€ comp_Assignment A ((asub — asup) € ((action_Inherits™)
U(id abs_action))) e (r +— (p, asub, rsrc))}
concrete_Assignment = {r : dom comp_Assignment; p : permission;
aa : abs_action; atm : atm_action; rsrc : resource
| (r — (p, aa, rsrc)) € abstract_Assignment A
(aa — (atm, rsrc)) € comp_Actions e (r +— (p, atm, rsrc))}

7.1.2 Available Actions Against Roles

The operation schema EvaluateActionsAgainstRoles works exactly opposite to the
operation schema EvaluateRoleAuthorizedAtomicAction and against a given atomic
action, it returns the list of all associated roles (along with resources name and
permissions) to perform that action.

__ BvaluateActionsAgainstRoles
=Sets
ZComputeAssignment
atm_action? : ATOMIC_ACTION
z_roleAction! : ROLE <

(PERMISSION x ATOMIC_ACTION x RESOURCE)

z_roleAction! = {r : dom comp_Assignment; p : permission; rsrc : resource |
(r — (p, atm_action?, rsrc)) € concrete_Assignment e
(r — (p, atm_action?, rsrc))}

The input (atm_action?) is of the set type ATOMIC_ACTION. The output z_roleAction!
has the same type as given in the previous schema.

108 Chapter 7. A Set of Validation Queries

The set z_roleAction! retrieves the allowed roles to perform an atomic action.
Note that, we also keep the linked permissions and resources with each obtained
role since it’s pretty useful to analyze them together. Here is an example to this
schema query. We provided an atomic action named Cancell and it has returned
the corresponding information.

JAZA >; FEvaluateActionsAgainstRoles

Input atm_action? = Cancell

z_roleAction! == {(Director, (” OwnerMeeting”, Cancell, Meetings)),
(Director, (” UserManagement”, Cancell, Persons)),

Supervisor, (" OwnerMeeting” , Cancell, Meetings)),

Superuvisor,

9

SupervisorCancel”, Cancell, Meetings)),
” UserManagement” , Cancell, Persons)),
SystemUser,

(
(
(
(SystemAdministrator,
(
(
(" OwnerMeeting” , Cancell, Meetings))}

7.1.3 Access to Resources

It’s equally important to know of the resources within the system that can be ac-
cessed by some roles. EvaluateResourcesAccess is used for this purpose. Against a
given resource? it returns the pairs of atomic actions associated to that particular
resource.

__ FEwvaluateResourcesAccess
=Sets
ZComputeAssignment
resource? : RESOURCE
resourcesAccess! : ROLE <

(PERMISSION x (ATOMIC_ACTION x RESOURCE))
z_action_resource_set! : F(ATOMIC_ACTION x RESOURCE)

resourcesAccess! = {r : dom comp_Assignment; p : permission;
atm : atm_action | (r — (p, atm, resource?))
€ concrete_Assignment o (r — (p, (atm, resource?)))}
z_action_resource_set! = {x : ran resourcesAccess! ® second(x)}

This operation also takes an input resource? of the type RESOURCE and com-
putes the related roles and atomic actions of that resource. z_action_resource_set!
ensures that only the atomic actions corresponding to the resources are retrieved.
This schema is exemplified below where the input is resource Meetings and the result
produced by Jaza is followed by it.

7.1.

Formal Queries 109

JAZA >; EvaluateResourcesAccess

Input resource? = Meetings

z_action_resource_set! == {(AddMeetingl, Meetings),
(Cancell, Meetings),

ChangeDurationl, Meetings),

ChangeStart1, Meetings),

CreateMeetingl, Meetings),

Linkmeetings OfOwnerl, Meetings),

Linkmeetings Of Participant1, Meetings),

Notifyl, Meetings)}

e R e N N N

7.1.4 Permissions Against Atomic Action and Role

The operation schema FindPermissions is intended to query the permissions for both

a given atomic action and a role.

__ FindPermissions
=Sets
ZComputeAssignment
atm_action? : ATOMIC_ACTION
role? : ROLE
z_perms! : ROLE

(PERMISSION x ATOMIC_ACTION x RESOURCE)

z_perms! = {p : permission; rsrc : resource |
(role? — (p, atm_action?, rsrc)) € concrete_Assignment e
(role? — (p, atm_action?, rsrc))}

This schema has two input parameters i.e., atm_action? and role? of the types

ATOMIC_ACTION and ROLE, respectively. The predicate computes the set of per-
missions for the input role and the atomic action. As a result, z_perms! will return
the set of all associated permissions against the input values. We need to give as
input the atomic action along with role, and it will return the permissions linked to

them as follows.

JAZA >; FindPermissions

Input atm_action? = AddPersonl

Inputrole? = SystemAdministrator

z_perms! == {(SystemAdministrator,

(" UserManagement”, AddPersonl, Persons))}

7.1.5 Finding Duplicate Roles

The schema FindDuplicateRoles allows to search for duplicate roles. This query is
useful to determine whether two roles have same privileges in a secure system.

110 Chapter 7. A Set of Validation Queries

__ FindDuplicateRoles
=Sets
ZComputeAssignment

z_rolel! : ROLE

z_role2! : ROLE

z_aSetl!, z_aSet2! : F ATOMIC_ACTION

z_rolel! € role

z_role2! € role

z_rolel! £ z_role2!

z_aSetl! = {p : permission; a : ATOMIC_ACTION; rsrc : resource |
(z_rolel! — (p, a, rsrc)) € concrete_Assignment o a}

z_aSet2! = {p : permission; a : ATOMIC_ACTION; rsrc : resource |
(z_role2! — (p, a, rsrc)) € concrete_Assignment o a}

z_aSetl! = z_aSet2!

The predicate of this schema specifies that for any two unique roles, it will it-
erate over the available actions of the system. It then performs an equality check
to determine if the resulted sets for two different roles are the same. If it is the
case, Jaza will return those roles which have the same rights in the system. The
following query reports that Supervisor and SystemUser are duplicate roles, more
precisely they have the permissions to perform the same actions.

; FindDuplicateRoles

z_rolel! == Supervisor, z_role2! == SystemUser

But a closer look reveals that constraints are linked to some of the associated
permissions (given in Chapter 6.

7.1.6 Atomic Action Accessed by All

The operation schema AccessAll returns the accessible atomic operations by all the
roles of a system.

_ AccessAll
=Sets
ZComputeAssignment

z_action! : ATOMIC_ACTION

Y r:role e dp : permission; rsrc : resource e
(r = (p, z_action!, rsrc)) € concrete_Assignment

The declaration part includes an output component z_action!. The given predi-
cate returns the atomic action accessible by all the roles in the system.

JAZA >; AccessAll
NoSolution

7.2. RBAC Supporting System Functions 111

7.1.7 Atomic Action Access by Nobody

The operation schema AccessNobody returns the atomic action which is completely
inaccessible by all the roles.

__ AccessNobody
=Sets
=ComputeAssignment
z_action! : ATOMIC_ACTION

= (37 : role « Ip : permission; rsrc : resource o
(r +— (p, z_action!, rsrc)) € concrete_Assignment)

It includes an output variable z_action! as a type of atomic actions. The pred-
icate part checks for the atomic actions accessible by all and applies a negation,
which reveals the inaccessible atomic action.

JAZA >; AccessNobody
z_action! == RemoveMeeting1

7.2 RBAC Supporting System Functions

RBAC has numerous session management functions, we only implement a limited
number of functions as required. Using these functions we analyze DSD and DSD
constraints in our security policies.

___AddSessionRole
=Sets

role? : ROLE
session? : SESSION
ZAccessRights
ASessionRoles

role? € role

session? € session

accessRights’ = accessRights

session_User’ = session_user

session_Role' = session_Role U {role? — session?}

roles_DSD’ = roles_DSD

roles_SSD'" = roles_SSD N role_Assignment’ = role_Assignment

The declaration part includes the schemas Sets and SessionRoles and includes
two input parameters session? and role? of the types SESSTON, and ROLE, respec-
tively. The first precondition states that role is one of the existing roles and second
illustrates that session is also one of the existing sessions. accessRights, session_User,

112 Chapter 7. A Set of Validation Queries

roles_SSD, and role_Assignment remain unchanged. However, both session_Role’ have
been updated with the new given values.

__AddRole
=Sets
A RoleAssignment
user? : USER
role? : ROLE

user? € USER,
role? € role
roles_SSD' = roles_SSD

role_Assignment’ = role_Assignment U {user? — role?}

The schema AddRole adds a new role to the existing against a specific user. The
two inputs are the role? and user? for which the role_Assignment’ is updated in the
predicate part while roles_.SSD remains unchanged. In other words, it means this
does not impact static SSD constraint in the specifications.

__NewSession
ASets
ASessionRoles
session? : SESSION
user? : USER
role? : ROLE

user? € user

session? & session

session’ = session U {session?}

session_User’ = session_User U {session? — user?}
session_Role' = session_Role U {role? — session?}
roles_DSD" = roles_DSD

role’ = role

user’ = user

userid’ = userid

resource’ = resource

permission’ = permission

accessRights’ = accessRights

atm_action’ = atm_action

abs_action’ = abs_action

roles_SSD’" = roles_SSD A role_Assignment’ = role_Assignment

The operation schema NewSession adds a new session to the set of existing ses-
sions. The declaration and the predicate are much of the same as given in previous
schema; however, we need to specify that the set of roles, user, resources, permis-
sions, atomic, and abstract actions, are unchanged.

7.3. Summary 113

__DropSessionRole
=Sets
ASessionRoles
session? : SESSION
role? : ROLE

session? € session

accessRights’ = accessRights

session_User' = session_User

session_Role' = session_Role \ {role? — session?}

roles_DSD' = roles_DSD

roles_SSD’" = roles_SSD A role_Assignment’ = role_Assignment

One of the session management functions of RBAC is to drop a session role. The
operation schema DropSessionRole serves this purpose. It alters the set of session
roles based on two taken inputs session? and role?. In the predicate part, we ensure
that the session being modified is one of the existing sessions and thus, session_Role’
is changed by deleting the pair role? — session?.

7.3 Summary

This chapter presented the underlying formalism of validation queries. These queries
were executed using Jaza that has similarity with the RBAC review functions as also
done by SecureMOVA tool. Such queries are a useful means of evaluating security
policies from customers as well as from security engineers viewpoint.

CHAPTER 8

Conclusion and Future Outlook

Contents
81 Conclusion 115
8.2 Suggestions for Future Work 0oL 116

8.1 Conclusion

This thesis is mainly composed of two parts i.e., state-of-the-art and the contribu-
tions. Part-I of the thesis presented the essential theoretical foundations to compre-
hend our work given in Part-1I. We recapitulate them hereunder:

Chapter 2 detailed the Z formal notation briefly, and RoZ tool that also employs
Z to formally specify and validate (or possibly verify) functional properties of an
application, purely in an implementation-independent manner. Chapter 3 presented
various access control mechanisms consisting of MAC, DAC, and RBAC and the data
security properties. SecureUML borrowed as a modeling notation in our approach is
also detailed in this chapter using an example. The next chapter 4 establishes RBAC
based criteria in order to evaluate existing works. Our proposed criteria evaluate
each of the techniques addressing the specification, verification, and validation of
RBAC-based security policies.

Chapter 5 begins the contribution part by exposing the underlying security ker-
nel with a case study from health care domain. We have presented an approach to
validate security design models using Z assertions. In Chapter 6, we compared our Z
based toolset for specification and validation of security policies with SecureMOVA
and USE. We particularly highlighted our contributions from a user viewpoint. This
chapter has addressed the validation of security policies expressed as RBAC rules
with contextual constraints. This chapter mentions another case study named meet-
ing SCHEDULER to share our insights comparing to the state-of-the-art tools. A
number of queries have been used to this end. Chapter 7 elaborated upon the for-
malized validation queries set used in Chapter 5 & Chapter 6. The formal queries
presented in this chapter bring our proposed security kernel to use for the validation
of a security policies.

In this dissertation, we have presented a toolset based on a variant of Se-
cureUML, RBAC, RoZ, and the Z specification language. It allows to perform
static analyses, as done by the SecureMOVA tool, and dynamic analyses, playing

116 Chapter 8. Conclusion and Future Outlook

sequences of actions. Such sequences of actions correspond to expected behaviors,
and to attacks against the secure system. We presented these tools on a classical
example, the meeting SCHEDULER, addressed in the presentation of SecureMOVA.
We identified a potential attack against the integrity of the information system that
requires a sequence of actions to allow evolutions of the functional state. We believe
that it is easier to analyze this sequence of actions with animation tools, than with
static analyses only. We also have validated our approach on another case study
taken from health care domain.

As stated, several works attempt to specify RBAC in Z. Most of them specify the
RBAC meta-model. As far as we know, none of these has been used in conjunction
with an animator in order to validate a given security policy. So our goal was not to
model or validate RBAC itself, but to validate security policies expressed as RBAC
rules in the context of a functional specification. Several tools exploit OCL in order
to validate RBAC rules. Sohr et al., [Sohr et al. 2008] have adapted the USE OCL
tool for the analysis of security policies. SecureMOVA [Basin et al. 2009|, a tool
dedicated to SecureUML, allows one to query the security policy, and to evaluate
which actions are permitted for a given role in a given context, depicted as an
object diagram. Still, both tools don’t animate the operations of the functional
model, making it difficult to evaluate how evolutions of the functional state can
impact authorization rules.

Contextual constraints have been introduced in this thesis. These constraints
refer to elements of both security and functional models, using the state of the
functional model as a context to grant access rights. We find that separation of
concerns suggests treating the functional and security models in isolation. Unfortu-
nately, when constraints establish a link between these models, validation must take
both models into account. Our work tries to incorporate the precision of formal lan-
guages into intuitive graphical models which leads the system through several state
changes and involve both security and functional models. Such dynamic scenarios
can exhibit security flaws, which cannot be detected by static queries.

8.2 Suggestions for Future Work

There are a number of possible research directions which can be followed as a sequel
of this thesis. As we have seen that there reside several techniques to capture the
design of an RBAC base system; yet there is no systematic support for all RBAC
features as given by NIST.

A limited part of our translation from diagrammatic models to Z specifications
is currently performed manually. Still, this manual translation is systematic. Our
short term goal can be to integrate the translation of both security and functional
parts into the Topcased tool. Finally, we did not evaluate the capability of our tool
to scale up, and only used it on small models, with acceptable response times (a
few seconds). Further work is needed to experiment it on real-size models and, if
needed, to optimize its calculations. Also, the security kernel can be improved to

8.2. Suggestions for Future Work 117

take into account additional concepts such as delegation or organization.

An adequate choice of nominal and attack scenarios is essential to guarantee the
quality of the validation activities. Perspectives include the definition of metrics
for the coverage of the model by these scenarios, and the automated generation of
scenarios that systematically explore the model. This could benefit from the use of
verification techniques like model-checking.

Animation is not the only way performing dynamic analysis. Model-checking
provides an interesting alternative. In this chapter, we showed a sequence of actions
which compromises the integrity of the information system. Our tools help identify
such sequences, but model-checking could help find a sequence of actions which
leads from a given initial state to some unwanted state. Model-checking tools are
not available for the Z language, but Pro-B [Leuschel & Butler 2008| provides such
a tool for the B language, which is close to Z. This gives an interesting perspective
for future work.

There are numerous approaches discussing RBAC but one of another lacking
areas is the unavailability of tool support to perform an early validation and verifi-
cation. If one wishes to experience a formal language other than 7, Alloy can be a
good option since it comes with sufficient technical and implementation details to
perform specification and V&V of security policies. Alloy has emerged in the recent
years as a simplification of OCL or Z which offers compact tool support essential to
manage large scale systems.

SecureUML is a security profile that has formally specified a number of RBAC
constructs both syntactically and semantically. Yet, some constraints such as SSD
and DSD do not appear on its metamodel and its subsequent dialect named Com-
ponentUML. Hence, it would be interesting to provide an extension of SecureUML
for the remaining constructs of RBAC both syntactically as well as semantically.

APPENDIX A
Appendix - Complete Formal
Specification of Security Kernel

Contents
A1 Abstract and atomic actionso 119
A2 List of employedroles 119
A3 Resources 119
Ad Types o e 120
A5 Basic RBAC and othersets, 120

A.1 Abstract and atomic actions

ABSTRACT_ACTION ::= EntityFullAccess | AssociationEndUpdate
| EntityCreate | EntityRead | EntityUpdate | EntityDelete
| CancelExecute | NotifyExecute

ATOMIC_ACTION ::= Notifyl | Cancell | ChangeStartl | ChangeDurationl |
AddMeetingl | RemoveMeetingl | LinkmeetingsOfOwnerl |

LinkmeetingsOfParticipantl | CreateMeetingl | ChangeNamel | AddPerson]l |
RemovePersonl | Linkownerl | Linkparticipants1

A.2 List of employed roles
ROLE ::= SystemUser | Supervisor | SystemAdministrator | Director
A.3 Resources

RESOURCE ::= Meetings | Persons

Appendix A. Appendix - Complete Formal Specification of Security
120 Kernel

A.4 Types

USER == STRING

[USERID, SESSION, PERMISSION |

A.5 Basic RBAC and other sets

___Sets
role : F ROLE

user : F USER

userid : F USERID

session : F SESSION

resource : F RESOURCE

permission : F PERMISSION
atm_action : F ATOMIC_ACTION
abs_action : F ABSTRACT_ACTION

__ AccessRights
Sets
accessRights : USERID -~ USER

dom accessRights C userid
ran accessRights C user

__ RoleAssignment
Sets

roles_SSD : ROLE < ROLE
role_Assignment : USER <+ ROLFE

role # &
dom roles_SSD C role
ran roles_SSD C role
dom role_Assignment C user
ran role_Assignment C role
Vu: user Vi, j:role| ((uw 1)

€ role_Assignment) A ((u — 7)

€ role_Assignment) o ((i,7) & roles_SSD)

A.5. Basic RBAC and other sets 121

__AddSSD
=Sets
A RoleAssignment
rolel? : ROLE
role2? : ROLE

roles_SSD’ = roles_SSD U {rolel? — role2?}
role_Assignment’ = role_Assignment

___SessionRoles
Sets
RoleAssignment

session_User : SESSION + USER
session_Role : ROLE <> SESSION
roles_DSD : ROLE <+ ROLE

dom roles_DSD C role
ran roles_DSD C role
dom session_User C session
ran session_User C user
dom session_Role C role
ran sesston_Role C session
Vr:role Vs : session e (r,s) € session_Role
= (session_User(s), r) € role_Assignment
Vs : session @ Y i,j : role | ((i,s) € session_Role)
A ((4,s) € session_Role) o ((i,7) & roles_DSD)

___ActionAssignment
Sets
action_Assignment : ROLE <

(PERMISSION x ABSTRACT_ACTION x RESOURCE)

dom action_Assignment C role
ran action_Assignment C
(permission X abs_action X resource)

_ RolelInherits
Sets
role_Inherits : ROLE <> ROLE

role_Inheritst Nid role = @
dom role_Inherits C role
ran role_Inherits C role

Appendix A. Appendix - Complete Formal Specification of Security

122 Kernel

_ ActionsRelation

Sets
action_Relation : ABSTRACT_ACTION <« (ATOMIC_ACTION x RESOURCE)

dom action_Relation C abs_action
ran action_Relation C (atm_action X resource)

_ ActionInherits

Sets
action_Inherits : ABSTRACT_ACTION < ABSTRACT_ACTION

action_Inherits™ Nid abs_action = @
dom action_Inherits C abs_action
ran action_Inherits C abs_action

_ ComputeActions
Sets
ActionInherits

ActionsRelation
comp_Actions : ABSTRACT_ACTION <« (ATOMIC_ACTION x RESOURCE)

comp_Actions = {i : dom action_Relation; j : abs_action;
k : ran action_Relation | ((i — j) €
((action_Inherits™) U (id abs_action)))
A ((i — k) € action_Relation)

°(j—k)}

A.5. Basic RBAC and other sets 123

__ ComputeAssignment

Sets
Rolelnherits
ComputeActions
ActionsRelation
ActionAssignment
comp_Assignment : ROLE <+

(PERMISSION x ABSTRACT_ACTION x RESOURCE)
abstract_Assignment : ROLE <«

(PERMISSION x ABSTRACT_ACTION x RESOURCE)
concrete_Assignment : ROLE <+

(PERMISSION x ATOMIC_ACTION x RESOURCE)

comp_Assignment = {r : dom action_Assignment; x : role;
a : ran action_Assignment | ((r — z) € ((role_Inherits™)
U(id role))) A ((r + a) € action_Assignment)
° (x — a)}
abstract_Assignment = {r : dom comp_Assignment; p : permission;
asup, asub : abs_action; rsrc : resource | (r — (p, asup, rsrc))
€ comp_Assignment A ((asub — asup) € ((action_Inherits™)
U(id abs_action))) e (r +— (p, asub, rsrc))}
concrete_Assignment = {r : dom comp_Assignment; p : permission;
aa : abs_action; atm : atm_action; rsrc : resource
| (r = (p, aa, rsrc)) € abstract_Assignment N\
(aa — (atm, rsrc)) € comp_Actions e (r +— (p, atm, rsrc))}

__ PermissionAssignment
Sets
AccessRights
RoleAssignment
ComputeAssignment
perm_Assignment : (USERID x USER x ROLFE)
(PERMISSION x ATOMIC_ACTION x RESOURCE)

perm_Assignment = {uid : dom accessRights; u : dom role_Assignment;
r : ran role_Assignment; b : ran concrete_Assignment
| (uid, u) € accessRights A (u,r) € role_Assignment
A (r,b) € concrete_Assignment
o ((uid,u,r)+ b)}

124

Appendix A. Appendix - Complete Formal Specification of Security
Kernel

__SecureOperation
=Sets; =SessionRoles; ZActionsRelation
ZAccessRights; ZRoleAssignment;
ZPermissionAssignment
role? : ROLE
user? : USER
userid? : USERID
session? : SESSION
resource? : RESOURCE
permission? : PERMISSION
atm_action? : ATOMIC_ACTION
abs_action? : ABSTRACT_ACTION

permission? € permission
(userid?, user?) € accessRights
user?, role?) € role_Assignment
session?, user?) € session_User
role?, session?) € session_Role
userid?, user?, role?) € dom perm_Assignment
bs_action?, (atm action?, resource?)) € action_Relation
(userid?, user?, role?), (permission?, atm_action?, resource?)) € perm_Assignment

(
(
(o
(
(a
(

APPENDIX B
Appendix - Formal Specifications
of Health care Information System

Contents
B.1 RoZ Types« o o o e 125
B2 RoZdatao 125
B.3 RoZ Operations 127
B.4 Secure Operations 137

B.1 RoZ Types
[NAME, USERID, STRING, RECORDNB, ADDRESS, SPECIALTY]
B.2 RoZ data

MEDRECORD
(V’ecordnb : RECORDNB

contents : STRING

_ MedrecordExt
Medrecord : F MEDRECORD

true

PATIENT
id : USERID

name : NAME
address : ADDRESS

Appendix B. Appendix - Formal Specifications of Health care
126 Information System

_ PatientExt
Patient : F PATIENT

true

HOSPITAL
Tname : NAME

Hospital Ext
Hospital : F HOSPITAL

__DOCTOR
id : USERID
name : NAME

__ DoctorExt
Doctor : F DOCTOR

__ MedrecordPatientRel
PatientExt; MedrecordExt

patientOfMedrecord : MEDRECORD —+ PATIENT
medrecordOfPatient : PATIENT + MEDRECORD

dom patientOfMedrecord = Medrecord
ran patientOfMedrecord C Patient
medrecordOfPatient = {patient : ran patientOfMedrecord; medrecord :
dom patientOfMedrecord | (medrecord, patient)
€ patientOfMedrecord e patient — medrecord }
patientOfMedrecord = {patient : ran medrecord OfPatient;
medrecord : dom medrecordOfPatient | (medrecord, patient)
€ medrecordOfPatient e patient — medrecord }

__ MedrecordDoctorRel
MedrecordExt; DoctorEaxt

medrecordsOfDoctor : DOCTOR +~ F MEDRECORD
doctorOfMedrecord : MEDRECORD -+ DOCTOR

dom doctorOfMedrecord = Medrecord
ran doctorOfMedrecord C Doctor
medrecordsOfDoctor = {doctor : ran doctorOfMedrecord e doctor
{medrecord : dom doctorOfMedrecord |
doctorOfMedrecord(medrecord) = doctor e medrecord}}
doctorOfMedrecord = | J{ doctor : dom medrecordsOfDoctor e
{medrecord : medrecordsOfDoctor(doctor) e medrecord — doctor}}

B.3. RoZ Operations 127

__ PatientHospitalRel
HospitalExt; PatientExt

hospitalOfPatient : PATIENT - HOSPITAL
patientsOfHospital : HOSPITAL -+ F PATIENT

dom hospitalOf Patient C Patient
ran hospital OfPatient C Hospital
patientsOfHospital = {hospital : ran hospitalOfPatient e hospital —
{patient : dom hospitalOfPatient |
hospital OfPatient (patient) = hospital e patient}}
hospitalOfPatient = | J{hospital : dom patientsOfHospital e
{patient : patientsOfHospital(hospital) e patient — hospital}}

__DoctorHospitalRelRel
HospitalExt; DoctorExt

hospitalsOfDoctor : DOCTOR + F HOSPITAL
doctorsOfHospital : HOSPITAL - F DOCTOR

dom hospitalsOfDoctor C Doctor
U(ran hospitalsOfDoctor) C Hospital
hospitalsOfDoctor = {doctor : | J(ran doctorsOfHospital) e doctor —
{hospital : dom doctorsOfHospital | doctor €
doctorsOfHospital(hospital) e hospital}}
doctorsOfHospital = {doctor : | J(ran hospitalsOfDoctor) e
doctor — {hospital : dom hospitalsOfDoctor | doctor
€ hospitalsOfDoctor(hospital) e hospital}}

GlobalView
MedrecordPatientRel
MedrecordDoctorRel
PatientHospital Rel
DoctorHospital RelRel

B.3 RoZ Operations

__ ChangeMedrecord
A MedrecordExt

AMEDRECORD
z?: MEDRECORD

x? € Medrecord
OMEDRECORD = z?
Medrecord’ = Medrecord \ {x?} U{0 MEDRECORD'}

Appendix B. Appendix - Formal Specifications of Health care
128 Information System

__ SubstituteMedrecordInRels
A MedrecordPatientRel

A MedrecordDoctorRel
=PatientExt

=DoctorExt
AMEDRECORD

patientOfMedrecord’ = ({z : Medrecord \ {d MEDRECORD}
oz — 2} U{OMEDRECORD' >
OMEDRECORDY) g patientOfMedrecord
doctorOfMedrecord’ = ({x : Medrecord \ {§ MEDRECORD}
oz 2} U{0MEDRECORD'
OMEDRECORDY}) g doctorOfMedrecord

___MEDRECORDChangeRecordnb
AMEDRECORD
newrecordnb? : RECORDNB

recordnb’ = newrecordnb?
contents’ = contents

MedrecordChangeRecordnb == (ChangeMedrecord N MEDRECORDChangeRecordnb)
\ (recordnb, recordnd’) \ (contents, contents’)

MedrecordChangeRecordnbandRels == (ChangeMedrecord N
MEDRECORDChangeRecordnb N\ SubstituteMedrecordInRels)
\ (recordnb, recordnb’) \ (contents, contents’)

_ MEDRECORDChangeContents
AMEDRECORD
newcontents? : STRING

contents’ = newcontents?
recordnb’ = recordnb

MedrecordChangeContents == (ChangeMedrecord N
MEDRECORDChangeContents) \ (recordnb, recordnb’)
\ (contents, contents’)

MedrecordChangeContentsandRels == (ChangeMedrecord N
MEDRECORDChangeContents N\ SubstituteMedrecordInRels)

\ (recordnb, recordnd’) \ (contents, contents’)

B.3. RoZ Operations 129

_ MedrecordAddMedrecord
A Medrecord Ext
medrecord? : MEDRECORD

Medrecord” = Medrecord U {medrecord?}

_ Medrecord RemoveMedrecord
AMedrecord Ext
medrecord? : MEDRECORD

Medrecord’ = Medrecord \ {medrecord?}

__medrecordLinkmedrecord Of Patient
= PatientExt; ZMedrecordExt
A MedrecordPatientRel
patient? : PATIENT
medrecord? : MEDRECORD

patientOfMedrecord’ = patientOfMedrecord & {medrecord? — patient?}

—medrecordLinkmedrecordsOfDoctor
=MedrecordExt; ZDoctorExt
A MedrecordDoctorRel
medrecord? : MEDRECORD
doctor? : DOCTOR

doctorOfMedrecord’ = doctorOfMedrecord & {medrecord? — doctor?}

__medrecordAddMedical Record
A MedrecordPatientRel
A MedrecordDoctorRel
= PatientFExt
=DoctorExt
m?: MEDRECORD
p?: PATIENT
d?: DOCTOR

Medrecord” = Medrecord U {m?}

patientOfMedrecord’ = patientOfMedrecord U {m? — p?}
doctorOfMedrecord’ = doctorOfMedrecord U {m? — d?}
m? & Medrecord

130

Appendix B. Appendix - Formal Specifications of Health care
Information System

___medrecordReadMedrecord
=MedrecordExt
r?: RECORDNB
2! : F MEDRECORD

z! = {m : Medrecord | m.recordnb = r?}

__medrecordRemoveMedical Record AndLinks
A MedrecordPatientRel
A MedrecordDoctorRel
=DoctorExt
= PatientExt
m?: MEDRECORD

Medrecord’ = Medrecord \ {m?}

patientOfMedrecord’” = patientOfMedrecord\
{m? — patientOfMedrecord(m?)}

doctorOfMedrecord’ = doctorOfMedrecord \
{m? — doctorOfMedrecord(m?)}

__ ChangePatient
A PatientExt
APATIENT
x?: PATIENT

x? € Patient
OPATIENT = z?
Patient’ = Patient \ {z?} U{0PATIENT'}

__ SubstitutePatientInRels
A MedrecordPatientRel
A PatientHospitalRel
=MedrecordEaxt
=Hospital Fxt
APATIENT

medrecordOfPatient’ = ({x : Patient \ {§ PATIENT}
ez 2} U{QPATIENT'
OPATIENT'Y}) g medrecordOfPatient
hospitalOfPatient’ = ({z : Patient \ {) PATIENT}
oz 3 2} U{OPATIENT' s QPATIENT})
shospital OfPatient

B.3. RoZ Operations 131

__ PATIENTChangeld
APATIENT
newid? : USERID

id' = newid?
name’ = name
address’ = address

PatientChangeld == (ChangePatient N PATIENTChangeld)
\(id, id") \ (name, name’) \ (address, address’)

PatientChangeldandRels == (ChangePatient N PATIENT Changeld

A SubstitutePatientInRels) \ (id, id")
\ (name, name’) \ (address, address’)

_ PATIENTChangeName

APATIENT
newname? : NAME

name’ = newname?
id = id
address’ = address

PatientChangeName == (ChangePatient N PATIENTChangeName)
\(id, id") \ (name, name’) \ (address, address’)

PatientChangeNameandRels == (ChangePatient N
PATIENTChangeName A Substitute PatientInRels)
\(id, id") \ (name, name’) \ (address, address’)

__ PATIENTChangeAddress
APATIENT
newaddress? : ADDRESS

address’ = newaddress?
id = id

name’ = name

PatientChangeAddress == (ChangePatient N PATIENTChangeAddress)
\(id, id") \ (name, name’) \ (address, address’)

PatientChangeAddressandRels == (ChangePatient N
PATIENTChangeAddress N SubstitutePatientInRels)
\(id, id") \ (name, name’) \ (address, address’)

132

Appendix B. Appendix - Formal Specifications of Health care
Information System

__ PatientAddPatient
APatientExt
patient? : PATIENT

Patient’ = Patient U {patient?}

_ PatientRemovePatient
APatientExt
patient? : PATIENT

Patient’ = Patient \ {patient?}

— patientLinkpatient OfMedrecord
= PatientExt; ZMedrecordExt
A MedrecordPatientRel

patient? : PATIENT
medrecord? : MEDRECORD

patientOfMedrecord’ = patientOfMedrecord & {medrecord? — patient?}

—patientLinkpatients OfHospital
=HospitalFxt; ZPatientErt

A PatientHospitalRel

hospital? : HOSPITAL
patient? : PATIENT

hospitalOfPatient’ = hospitalOfPatient & {patient? — hospital?}

__patientReadPatient
ZGlobal View
name? : NAME

! : FPATIENT

z! = {p : Patient | p.name = name? e p}

__patientUnlinkpatientsOfHospital
ZHospitalExt; ZPatientEt

A PatientHospitalRel

hospital? : HOSPITAL

patient? : PATIENT

hospitalOfPatient’ = hospitalOfPatient \ {patient? — hospital?}

B.3. RoZ Operations 133

patientClosePatientAndRecord == medrecordRemoveMedicalRecord AndLinks
spatient Unlinkpatients OfHospital § PatientRemovePatient

— ChangeHospital
A HospitalExt
AHOSPITAL
x?: HOSPITAL

x? € Hospital
OHOSPITAL = z?
Hospital' = Hospital \ {z?} U{0HOSPITAL'}

__SubstituteHospitallnRels
A PatientHospitalRel

A DoctorHospitalRelRel
= PatientExt

=DoctorFExt
AHOSPITAL

patientsOfHospital' = ({z : Hospital \ { HOSPITAL}
ez — 2} U{QHOSPITAL
OHOSPITALY}) g patientsOfHospital
doctorsOfHospital’ = ({x : Hospital \ {§ HOSPITAL}
oz o} U{OHOSPITAL v
OHOSPITALY}) g doctorsOfHospital

__ HOSPITALChangeName
AHOSPITAL
newname? : NAMFE

name’ = newname?

HospitalChangeName == (ChangeHospital N
HOSPITALChangeName) \ (name, name’)

HospitalChangeNameandRels == (ChangeHospital N HOSPITALChangeName
A SubstituteHospitallnRels) \ (name, name’)

__ HospitalAddHospital
A HospitalExt
hospital? : HOSPITAL

Hospital' = Hospital U {hospital?}

Appendix B. Appendix - Formal Specifications of Health care
134 Information System

___HospitalRemoveHospital
A HospitalExt
hospital? : HOSPITAL

Hospital' = Hospital \ {hospital?}

__hospitalLinkhospital Of Patient
=HospitalFxt; ZPatientExt
A PatientHospitalRel
hospital? : HOSPITAL
patient? : PATIENT

hospital OfPatient’ = hospital OfPatient & {patient? — hospital?}

__hospitalLinkhospitalsOfDoctor
ZHospitalExt; ZDoctorExt
A DoctorHospitalRelRel
hospital? : HOSPITAL
doctor? : DOCTOR

(hospital? € dom doctorsOfHospital) =
(doctorsOfHospital' = doctorsOfHospital®
{hospital? — (doctorsOfHospital(hospital?)
U{doctor?})})
(hospital? ¢ dom doctorsOfHospital) =
(doctorsOfHospital’ = doctorsOfHospital®
{hospital? — {doctor?}})

— ChangeDoctor
A DoctorExt
ADOCTOR
x?: DOCTOR

z? € Doctor
O0DOCTOR = z?
Doctor’ = Doctor \ {z?} U{0DOCTOR'}

B.3. RoZ Operations 135

__SubstituteDoctorInRels
A MedrecordDoctorRel
A DoctorHospitalRelRel
=MedrecordExt
=HospitalExt
ADOCTOR

medrecordsOfDoctor’ = ({x : Doctor \ {#DOCTOR}
o2+ 2} U{0DOCTOR s
ODOCTORY}) g medrecordsOfDoctor
hospitalsOfDoctor’” = ({x : Doctor \ {§ DOCTOR}
ez — z}U{#DOCTOR —
0DOCTORY}) § hospitalsOfDoctor

__DOCTORChangeld
ADOCTOR
newid? : USERID

id' = newid?
name’ = name

DoctorChangeld == (ChangeDoctor N DOCTORChangeld)
\(id, id") \ (name, name’)

DoctorChangeldandRels == (ChangeDoctor N DOCTORChangeld
A SubstituteDoctorInRels) \ (id,id") \ (name, name’)

— DOCTORChangeName
ADOCTOR
newname? : NAME

name’ = newname?

id' =id

DoctorChangeName == (ChangeDoctor AN DOCTORChangeName)
\(id, id") \ (name, name’)

DoctorChangeNameandRels == (ChangeDoctor A DOCTORChangeName
A SubstituteDoctorInRels) \ (id, id') \ (name, name’)

_ DoctorAddDoctor
ADoctorExt
doctor? : DOCTOR

Doctor’ = Doctor U {doctor?}

Appendix B. Appendix - Formal Specifications of Health care
136 Information System

_ DoctorRemowveDoctor
ADoctorExt
doctor? : DOCTOR

Doctor’ = Doctor \ {doctor?}

__doctorLinkdoctorOfMedrecord
=MedrecordExt; ZDoctorExt
A MedrecordDoctorRel
medrecord? : MEDRECORD
doctor? : DOCTOR

doctorOfMedrecord’ = doctorOfMedrecorde®
{medrecord? — doctor?}

__doctorLinkdoctorsOfHospital
=HospitalExt; =ZDoctorExt
A DoctorHospitalRelRel
hospital? : HOSPITAL
doctor? : DOCTOR

(hospital? € dom doctorsOfHospital) =
(doctorsOfHospital’ = doctorsOfHospital®
{hospital? — (doctorsOfHospital(hospital?)
U{doctor?})})
(hospital? ¢ dom doctorsOfHospital) =
(doctorsOfHospital’ = doctorsOfHospital®
{hospital? — {doctor?}})

B.4. Secure Operations 137

__InitGlobal View
Hospital Ext’
PatientExt’
DoctorEzt’
MedrecordExt’
MedrecordPatientRel’
MedrecordDoctorRel’
PatientHospitalRel
DoctorHospitalRelRel

Hospital' = @

Patient’ = &

Doctor' = &

Medrecord’ = &
patientOfMedrecord’ = &
medrecordOfPatient’ = @
medrecordsOfDoctor’ = &
doctorOfMedrecord’ = &
hospitalOfPatient’ = @
patientsOfHospital = &
hospitalsOfDoctor’ = &
doctorsOfHospital' = &

CheckGloballnvariant
TE GlobalView

B.4 Secure Operations

__SecurePatientAddPatient
SecureOperation
PatientAddPatient

atm_action? = AddPatientl
resource? = Patients

SecurePatientAddPatient2 == SecurePatientAddPatient\
(uid?, user?, abs_action?, atm_action?, resource?,
permission?, role?)

_SecureDoctorAddDoctor
SecureOperation
DoctorAddDoctor

atm_action? = AddDoctorl
resource? = Doctors

Appendix B. Appendix - Formal Specifications of Health care
138 Information System

SecureDoctorAddDoctor2 == SecureDoctorAddDoctor\
(uid?, user?, abs_action?, atm_action?, resource?,
permission?, role?)

__SecuremedrecordAddMedical Record
SecureOperation
medrecordAddMedical Record

atm_action? = AddMedical Recordl
resource? = Medrecord

SecuremedrecordAddMedicalRecord2 == Securemedrecord AddMedical Record
\ (uid?, user?, abs_action?, atm_action?,
resource?, permission?, role?)

_ Securemedrecord ReadMedrecord
SecureOperation
medrecordReadMedrecord

atm_action? = ReadMedrecordl
resource? = Medrecord
role? = Patient = (user? = (owner’(meeting?)).name)

SecuremedrecordReadMedrecord2 == SecuremedrecordReadMedrecord
\ (uid?, user?, abs_action?, atm_action?,
resource?, permission?, role?)

__SecureMedrecord Change ContentsandRels
SecureOperation
MedrecordChangeContentsandRels

atm_action? = MedrecordChange ContentsandRels1

SecureMedrecord ChangeContentsandRels2 ==
SecureMedrecord ChangeContentsandRels \ (uid?, user?,
abs_action?, atm_action?, resource?, permission?, role?)

_SecurepatientReadPatient
SecureOperation
patientReadPatient

atm_action? = ReadPatientl
resource? = Patients

B.4. Secure Operations 139

SecurepatientReadPatient2 == SecurepatientReadPatient
\ (uid?, user?, abs_action?, atm_action?,
resource?, permission?, role?)

_ SecurePatientChangeAddressandRels
SecureOperation
PatientChangeAddressandRels

atm_action? = PatientChangeAddressandRels1

SecurePatientChangeAddressandRels2 ==
SecurePatientChangeAddressandRels \ (uwid?, user?,
abs_action?, atm_action?, resource?, permission?, role?)

__ SecuremedrecordRemoveMedical Record AndLinks
SecureOperation
medrecordRemoveMedical Record AndLinks

atm_action? = medrecordRemoveMedicalRecordAndLinks1

Securemedrecord RemoveMedical Record AndLinks2 ==
SecuremedrecordRemoveMedicalRecordAndLinks \ (uid?,
user?, abs_action?, atm_action?, resource?, permission?, role?)

__ SecurePatientRemovePatient
SecureOperation
PatientRemovePatient

atm_action? = RemovePatientl
resource? = Patients

SecurePatientRemovePatient2 == SecurePatientRemovePatient
\ (uid?, user?, abs_action?, atm_action?,
resource?, permission?, role?)

__SecurepatientClosePatientAndRecord
SecureOperation
patientClosePatient AndRecord

atm_action? = patientClosePatientAndRecordl

SecurepatientClosePatientAndRecord2 ==
SecurepatientClosePatientAndRecord \ (uid?, user?,
abs_action?, atm_action?, resource?, permission?, role?)

Appendix B. Appendix - Formal Specifications of Health care
140 Information System

__Init
Sets’; MedrecordExt'; PatientExt’; DoctorExt’;
SessionRoles’; MedrecordPatientRel’; MedrecordDoctorRel’;
AccessRights'; RoleAssignment’; ActionAssignment’;
Rolelnherits’; ComputeAssignment’; PermissionAssignment’

Patients’ = {}

Doctor’ = {}

Medrecord’ = {}
patientOfMedrecord’ = {}
medrecord OfPatient’ = {}
medrecordsOfDoctor’ = {}
doctorOfMedrecord’ = {}

APPENDIX C

Appendix - Secure Operations of
Meeting SCHEDULER Example

Contents

C.l Ztypes . . o o e e 141
C.2 RoOZ generated operations 141
C.3 Secure Operations of Meeting Scheduler Example 146
C4 RoZData. 150

C.1 7Z types

[STRING]

DATE ==7

TIME ==

C.2 RoZ generated operations

__ ChangeMeeting
A MeetingEaxt
AMEETING
meeting? : MEETING

meeting? € Meeting
OMEETING = meeting?
Meeting' = Meeting \ {meeting?} U {6 MEETING'}

Appendix C. Appendix - Secure Operations of Meeting SCHEDULER
142 Example

__ SubstituteMeetingInRels
A MeetingOuwnerRel

A MeetingParticipantsRel
=PersonFExt

ZPersonkxt
AMEETING

owner’ = ({x : Meeting \ {§ MEETING} — x}
U{0MEETING' — OMEETING}) § owner

participants’ = ({x : Meeting \ {§ MEETING} o z — 1}
U{0MEETING' — OMEETING}) § participants

MEETINGChangeStart
AMEETING
newstart? : DATE

start’ = newstart?
duration’ = duration

MeetingChangeStart == (ChangeMeeting AN MEETING ChangeStart)
\ (start, start’) \ (duration, duration’)

MeetingChangeStartandRels == (ChangeMeeting N MEETING ChangeStart
A SubstituteMeetingInRels) \ (start, start’) \ (duration, duration’)

_ MEETING ChangeDuration
AMEETING
newduration? : TIME

duration’ = newduration?
start’ = start

MeetingChangeDuration == (ChangeMeeting AN MEETING ChangeDuration)
\ (start, start’) \ (duration, duration’)

MeetingChangeDurationandRels == (ChangeMeeting N MEETING ChangeDuration
A SubstituteMeetingInRels) \ (start, start’) \ (duration, duration’)

__ MeetingAddMeeting
A MeetingEaxt
meeting? : MEETING

Meeting’ = Meeting U {meeting?}

C.2. RoZ generated operations 143

—_ MeetingRemoveMeeting
A MeetingExt
meeting? : MEETING

Meeting’ = Meeting \ {meeting?}

__meetingLinkmeetingsOfOwner
=Personkxt; ZMeetingFxt
A MeetingOwnerRel
person? : PERSON
meeting? : MEETING

owner’ = owner & {meeting? — person?}

_meetingLinkmeetingsOf Participant
=PersonFxt; =ZMeetingFxt

A MeetingParticipantsRel

person? : PERSON

meeting? : MEETING

(person? € dom meetingsOfParticipant) =
(meetingsOfParticipant’ = meetingsOfParticipant®
{person? — (meetingsOfParticipant(person?) U {meeting?})})
(person? ¢ dom meetingsOfParticipant) =
(meetingsOfParticipant’ = meetingsOfParticipant®
{person? — {meeting?}})

___meetingnotify
Z=MeetingParticipantsRel
meeting? : MEETING
z!: MEETING x (F PERSON)

z! = (meeting?, participants(meeting?))
meeting? € Meeting

__meetingcancel
MeetingRemoveMeeting
=PersonFExt

A MeetingOwnerRel

A MeetingParticipantsRel

owner’ = {meeting?} <9 owner
participants’ = {meeting?} < participants

Appendix C. Appendix - Secure Operations of Meeting SCHEDULER
144 Example

__meetingcreateMeeting
MeetingAddMeeting
=Personkxt
A MeetingOwnerRel
A MeetingParticipantsRel
owner? : PERSON

owner’ = owner @& {meeting? — owner?}
participants’ = participants & {meeting? — {owner?}}

— ChangePerson
A PersonEuxt
APERSON
person? : PERSON

person? € Person
OPERSON = person?
Person’ = Person \ {person?} U{0PERSON'}

__ SubstitutePersonInRels
A MeetingOwnerRel
A MeetingParticipantsRel
=MeetingExt
=MeetingEuxt
APERSON

meetingsOfOwner’ = ({z : Person \ {§ PERSON} @ z +— 1z}
U{0PERSON' — 6 PERSON }) g meetingsOfOwner

meetingsOfParticipant’ = ({z : Person \ {{ PERSON} e z — z}
U{0PERSON' — O PERSON }) g meetingsOfParticipant

— PERSONChangeName
APERSON
newname? : STRING

name’ = newname?

PersonChangeName == (ChangePerson A PERSONChangeName) \ (name, name’)

PersonChangeNameandRels == (ChangePerson AN PERSONChangeName
A SubstitutePersonInRels) \ (name, name’)

C.2. RoZ generated operations 145

__ PersonAddPerson
APersonBExt
person? : PERSON

Person’ = Person U {person?}

_ PersonRemowvePerson
APersonEuxt
person? : PERSON

Person’ = Person \ {person?}

__ PersonRemovePersonAndLinks
A PersonEuxt

A MeetingOwnerRel

A MeetingParticipantsRel
=MeetingExt

person? : PERSON

Person’ = Person \ {person?}
meetingsOfParticipant’ = if person? € dom meetingsOfParticipant
then (meetingsOfParticipant \ {person?
— meetingsOfParticipant(person?)}) else meetingsOfParticipant
meetingsOfOwner’ = if person? € dom meetingsOfOwner then
meetingsOfOwner \ {person? — meetingsOfOwner(person?)}
else meetingsOfOwner

___personLinkowner
=PersonFExt; Z=MeetingFExt
A MeetingOwnerRel
person? : PERSON
meeting? : MEETING

owner’ = owner & {meeting? — person?}

___personLinkparticipants
=PersonFzxt; =MeetingFxt
A MeetingParticipantsRel
person? : PERSON
meeting? : MEETING

(person? € dom meetingsOfParticipant) =
(meetingsOfParticipant’ = meetings OfParticipant®
{person? — (meetingsOfParticipant(person?) U {meeting?})})
(person? ¢ dom meetingsOfParticipant) =
(meetingsOfParticipant’ = meetingsOfParticipant®
{person? — {meeting?}})

Appendix C. Appendix - Secure Operations of Meeting SCHEDULER
146 Example

__ InitGlobal View
MeetingExt’
PersonExt’
MeetingOwnerRel’
MeetingParticipantsRel’

Meeting' = &

Person’ = @

owner' = &
meetingsOfOuwner’ = @
participants’ = &
meetingsOfParticipant’ = &

_ CheckGloballnvariant
=Global View

C.3 Secure Operations of Meeting Scheduler Example

__SecurePersonAddPerson
SecureOperation
PersonAddPerson

atm_action? = AddPersonl
resource? = Persons

SecurePersonAddPerson2 == SecurePersonAddPerson \ (userid?, user?,
abs_action?, atm_action?, resource?, permission?, role?)

_ SecurePersonRemovePerson
SecureOperation
PersonRemovePersonAndLinks

atm_action? = RemovePersonl
resource? = Persons

SecurePersonRemovePerson2 == SecurePersonRemovePerson \ (userid?,
user?, abs_action?, atm_action?, resource?, permission?, role?)

__ SecuremeetingcreateMeeting
SecureOperation
meetingcreateMeeting

atm_action? = CreateMeeting1
resource? = Meetings
role? = SystemUser = (user? = (owner’(meeting?)).name)

C.3. Secure Operations of Meeting Scheduler Example 147

Securemeetingcreate Meeting2 == Securemeetingcreate Meeting \ (userid?,
user?, abs_action?, atm_action?, resource?, permission?, role?)

__Secure MEETINGChangeDuration
SecureOperation
MeetingChangeDurationandRels

atm_action? = ChangeDurationl
resource? = Meetings
user? = (owner(meeting?)).name

SecuremeetingChangeDuration2 == Secure MEETINGChangeDuration \ (userid?,
user?, abs_action?, atm_action?, resource?, permission?, role?)

__Secure MEETING ChangeStart
SecureOperation
MeetingChangeStartandRels

atm_action? = ChangeStart1
resource? = Meetings
user? = (owner(meeting?)).name

SecuremeetingChangeStart2 == Secure MEETINGChangeStart \ (userid?,
user?, abs_action?, atm_action?, resource?, permission?, role?)

__SecurepersonLinkowner
SecureOperation
personLinkowner

atm_action? = Linkownerl
resource? = Persons

SecurepersonLinkowner2 == SecurepersonLinkowner \ (userid?,
user?, abs_action?, atm_action?, resource?, permission?, role?)

Secure MEETINGChangeDuration2 == Secure MEETIN G ChangeDuration\
(userid?, user?, abs_action?, atm_action?, resource?, permission?, role?)

___SecurepersonLinkparticipants
SecureOperation
personLinkparticipants
= MeetingOwnerRel

atm_action? = Linkparticipantsl
resource? = Persons
user? = (owner(meeting?)).name

Appendix C. Appendix - Secure Operations of Meeting SCHEDULER
148 Example

SecurepersonLinkparticipants2 == SecurepersonLinkparticipants\
(userid?, user?, abs_action?, atm_action?, resource?, permission?, role?)

__ Securemeetingnotify
SecureOperation
meetingnotify

atm_action? = Notifyl
resource? = Meetings

__ SecuremeetingLinkmeetings OfOwner
SecureOperation
meetingLinkmeetings OfOwner

atm_action? = Linkmeetings OfOwnerl
resource? = Meetings
user? = (owner(meeting?)).name

SecuremeetingLinkmeetingsOfOwner2 == SecuremeetingLinkmeetings OfOwner
\ (userid?, user?, abs_action?, atm_action?, resource?, permission?, role?)

__ SecuremeetingLinkmeetingsOfParticipant
SecureOperation

meetingLinkmeetings Of Participant
=ZMeetingOwnerRel

atm_action? = LinkmeetingsOfParticipantl
resource? = Meetings
user? = (owner(meeting?)).name

SecuremeetingLinkmeetingsOfParticipant2 == SecuremeetingLinkmeetings Of Participant
\ (userid?, user?, abs_action?, atm_action?, resource?, permission?, role?)

Securemeetingnotify2 == Securemeetingnotify \ (userid?, user?,
abs_action?, atm_action?, resource?, permission?, role?)

__ Securemeetingcancel
SecureOperation
meetingcancel

atm_action? = Cancell

resource? = Meetings

meeting? € Meeting

role?! = Supervisor = (user? = (owner(meeting?)).name)

C.3. Secure Operations of Meeting Scheduler Example 149

Securemeetingcancel2 == Securemeetingcancel
(userid?, user?, abs_action?, atm_action?, resource?, permission?, role?)

__SecureTransaction
SecurePersonAddPerson
Securemeetingcreate Meeting
SecurepersonLinkparticipants

__ TransactionRoleNeededToPlayAction
DisplayRole
AddSessionRole
Securemeetingcancel2

RoleNeededForMeetingCancel == (NewSession \ (role?))
s(Securemeetingcancel?)

UserAndRoleNeededForMeetingCancel == (NewSession
\ (user?, role?)) g (Securemeetingcancel2)

UserNeededForMeetingCancel == (NewSession \ (user?))
s(Securemeetingcancel2)

RoleNeededForMeetingChangeStart == (NewSession
\(role?)) g (SecuremeetingChangeStart2)

TransactionRoleNeededToPlayAction2 == (AddSessionRole
\(role?, user?)) g (Securemeetingcancel2)

SecureTransaction2 == (SecurePersonAddPerson|role2? /role?,
action2?/abs_action?, action3?/atm_action,
permission2?/ permission?, resource2? [resource?))
s(SecuremeetingcreateMeeting|role3? /role?,
actiond?/abs_action?, action5?/atm_action?,
permission3? / permission?, resource3? /resource?))
sSecurepersonLinkparticipants

Secure Transaction3 == (SecurePersonAddPerson|role2?/role?,
action2?/abs_action?, action3?/atm_action,
permission2? / permission?, resource2? [resource?))
s(SecuremeetingcreateMeeting|role3? /role?,
actiond?/abs_action?, action5?/atm_action?, permission3? / permission?,
resource3? /resource?])

Appendix C. Appendix - Secure Operations of Meeting SCHEDULER
150 Example

C.4 RoZ Data

_ MEETING
start : DATE
duration : TIME

— MeetingEuxt
Meeting : F MEETING

PERSON
Tname : STRING

PersonFExt

TPerson :F PERSON

— MeetingOwnerRel
PersonExt; MeetingFExt
owner : MEETING - PERSON
meetingsOfOwner : PERSON -+ F MEETING

dom owner = Meeting
ran owner C Person
meetingsOfOwner = {person : ran owner e person —»
{meeting : dom owner | owner(meeting) = person e meeting}}
owner = | J{person : dom meetingsOfOwner o
{meeting : meetingsOfOwner(person) e meeting — person}}

__ MeetingParticipantsRell
PersonExt; MeetingFxt
participants : MEETING + F PERSON
meetingsOfParticipant : PERSON + F MEETING

dom participants = Meeting
(J(ran participants) C Person
participants = {meeting : | J(ran meetingsOfParticipant)
e meeting — {person : dom meetings Of Participant
| meeting € meetings Of Participant(person) e person}}
meetings OfParticipant = {meeting : | J(ran participants) e meeting
{person : dom participants | meeting
€ participants(person) e person}}

C.4.

RoZ Data

151

_ MeetingParticipantsRel

MeetingParticipantsRell

true

_ GlobalView

MeetingOwnerRel
MeetingParticipantsRel

V'm : Meeting ® owner(m) € participants(m)

Bibliography

[Abdallah & Khayat 2006] A. E. Abdallah and E. J. Khayat. Formal Z Specifica-
tions of Several Flat Role-Based Access Control Models. In Proceedings of
the 30th Annual IEEE/NASA Software Engineering Workshop (SEW’06),
pages 282-292, 2006. (Cited on pages 6 and 62.)

[Abou El Kalam et al. 2003] A. Abou El Kalam, R. El Baida, P. Balbiani, S. Ben-
ferhat, F. Cuppens, Y. Deswarte, A. Miége, C. Saurel and G. Trouessin.
Organization Based Access Control. In 4th TEEE International Workshop
on Policies for Distributed Systems and Networks (Policy’03), June 2003.
(Cited on page 47.)

[Abrial 1996] J.R. Abrial. The B-Book. Cambridge Univ. Press, 1996. (Cited on
pages 2 and 90.)

[Ahn & Hu 2007] G. Ahn and H. Hu. Towards Realizing a Formal RBAC Model
in Real Systems. In Proceedings of the 12th ACM symposium on Access
control models and technologies (SACMAT’07). ACM Press, 2007. (Cited
on pages 6, 54, 57, 59, 60 and 61.)

[Ahn & Shin 2001| Gail-Joon Ahn and Michael E. Shin. Role-Based Authorization
Constraints Specification Using Object Constraint Language. In WETICE,
pages 157 162, 2001. (Cited on page 59.)

[Ait-Sadoune & Ameur 2008] Idir Ait-Sadoune and Yamine A1t Ameur. Animating
Event B Models by Formal Data Models. In ISoL A, pages 37-55, 2008. (Cited
on page 103.)

[Alghathbar 2007 Khaled Alghathbar. Validating the enforcement of access control
policies and separation of duty principle in requirement engineering. Infor-
mation & Software Technology, vol. 49, no. 2, pages 142 157, 2007. (Cited
on pages 57 and 59.)

[Anastasakis et al. 2010] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg and
Indrakshi Ray. On challenges of model transformation from UML to Alloy.
Software and System Modeling, vol. 9, no. 1, pages 69-86, 2010. (Cited on
page 62.)

[Andersson 2001] R. Andersson. Security Engineering - A Guide to Building De-
pendable Distribution Systems. John Wiley & Sons, Inc., 2001. (Cited on
page 39.)

[Autrel et al. 2008] Fabien Autrel, Frédéric Cuppens, Nora Cuppens-Boulahia and
Céline Coma-Brebel. MotOrBAC 2: a security policy tool. In SARSST’08 :
3e conf. Sécurité des Architectures Réseaux et des Systémes d’Information,
2008. (Cited on page 90.)

154 Bibliography

[Barden et al. 1996] Rosalind Barden, Susan Stepney and David Cooper. Z in
Practice. BCS Practitioner Series. Prentice-Hall, ISBN 0-13-124934-7, 1996.
(Cited on page 103.)

[Barjaktarovic 1998] M. Barjaktarovic. The state-of-the-art in formal methods.
AFOSR Summer Research Technical Report for Rome Research Site, Formal
Methods Framework-Monthly Status Report, F30602-99-C-0166, WetStone
Technologies, 1998. (Cited on page 1.)

[Barker 2000] D. Barker. Requirements Modeling Technology, A Vision for Better,
Faster and Cheaper Systems. In Proceedings of the VHDL International
Users Forum Fall Workshop, pages 3-7, 2000. (Cited on pages 1 and 3.)

[Basin et al. 2006a] D. Basin, J. Doser and T. Lodderstedt. Model Driven Security:
From UML Models to Access Control Infrastructures. Proceedings of the
ACM Transactions on Software Engineering and Methodology (TOSEM’06),
vol. 15, no. 1, pages 39-91, 2006. (Cited on page 54.)

[Basin et al. 2006b] David A. Basin, Jiirgen Doser and Torsten Lodderstedt. Model
driven security: From UML models to access control infrastructures. ACM
Trans. Softw. Eng. Methodol., vol. 15, no. 1, pages 39-91, 2006. (Cited on
page 57.)

[Basin et al. 2009] David A. Basin, Manuel Clavel, Jiirgen Doser and Marina Egea.
Automated analysis of security-design models. Information & Software Tech-
nology, vol. 51, no. 5, pages 815-831, 2009. (Cited on pages 1, 5, 6, 22, 49,
50, 51, 54, 56, 57, 58, 79, 88, 89, 96, 100 and 116.)

[Bell & LaPadula 1975] D. Bell and L. LaPadula. Secure Computer System: Unified
Exposition and Multics Interpretation. 1975. (Cited on pages 2, 36 and 37.)

[Bishop 2003] M. Bishop. Computer Security, Art and Science. Addison Wesley,
2003. (Cited on pages 35, 47 and 48.)

[Boehm 1984] Barry W. Boehm. Verifying and Validating Software Requirements
and Design Specifications. IEEE Software, vol. 1, no. 1, pages 75-88, 1984.
(Cited on pages 1 and 20.)

[Boswell 1995 A. Boswell. Specification and Validation of a Security Policy Model.
Proceedings of the IEEE Transactions on Software Engineering, (TSE’06),
vol. 21, no. 2, pages 63 68, 1995. (Cited on page 62.)

[Bowen 1996] Jonathan P. Bowen. Formal Specification and Documentation using
Z: A Case Study Approach. 1996. (Cited on page 11.)

[Bowen 2003] J. Bowen. Formal Specification and Documentation using Z: A Case
Study Approach. Thomson Publishing, 2003. (Cited on pages 12 and 17.)

Bibliography 155

[C. Cirit & Buzluca 2009] C. Cirit and Feza Buzluca. A UML profile for role-based
access control. In SIN, pages 83-92, 2009. (Cited on pages 57 and 58.)

[Clark & Wilson 1987] D. D. Clark and D. R. Wilson. A Comparison of Commercial
and Military Computer Security Policies. In IEEE Symp. on Security and
Privacy, 1987. (Cited on page 86.)

[Clarke & Wing 1996] Edmund M. Clarke and Jeannette M. Wing. Formal Methods:
State of the Art and Future Directions. ACM Computing Surveys, vol. 28,
pages 626-643, 1996. (Cited on page 1.)

[Davies & Woodcock 1996] J. Davies and J. Woodcock. Using Z: Specification, Re-
finement, and Proof. Prentice Hall, ISBN 0-13-948472-8, 1996. (Cited on

page 11.)

[DOD 5200.28-STD 1985] DOD 5200.28-STD. Trusted Computer System Evalua-
tion Criteria. Rapport technique, United States Department of Defense,
1985. (Cited on page 36.)

[Drouineaud et al. 2004] M. Drouineaud, M. Bortin, P. Torrini and K. Sohr. A First
Step Towards Formal Verification of Security Policy Properties for RBAC.

In Proceedings of the International Conference on Quality Software (QSIC-
2004), pages 60—-67. IEEE, 2004. (Cited on page 63.)

[Dupuy et al. 2000] S. Dupuy, Y. Ledru and M. Chabre-Peccoud. An Overview
of RoZ: A Tool for Integrating UML and 7 Specifications. In Proc. 12th
Conf. on Advanced information Systems Engineering (CAiSE’2000), pages
417 430. LNCS, Vol. 1789, 2000. (Cited on pages 2, 20, 27, 32 and 93.)

[Ferraiolo et al. 1999] D. F. Ferraiolo, J. F. Barkley and D. R. Kuhn. A Role-Based
Access Control Model and Reference Implementation within a Corporate In-
tranet. ACM Trans. Inf. Syst. Secur., vol. 2, no. 1, pages 34-64, 1999. (Cited
on page 47.)

[Ferraiolo et al. 2001] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard
Kuhn and Ramaswamy Chandramouli. Proposed NIST Standard for Role-
Based Access Control, 2001. (Cited on pages 1, 2, 6, 36, 40, 42, 43, 44, 45,
46, 48, 54 and 90.)

|[Ferraiolo et al. 2007] D. A. Ferraiolo, D. R. Kuhn and R. Chandramouli. Role-
Based Access Control (2nd edition). Artech House Publishers, 2007. (Cited
on page 39.)

|Gallaher et al. 1996] M. P. Gallaher, A.C. OSConnor and B. Kropp. The economic
impact of role-based access control. National Institute of Standards & Tech-
nology, Planning Report 02-1, 1996. (Cited on page 2.)

156 Bibliography

[Gogolla et al. 2007] M. Gogolla, F. Biittner and M. Richters. USE: A UML-based
Specification Environment for Validating UML and OCL. Science of Com-
puter Programming, vol. 69, pages 27-34, 2007. (Cited on pages 4 and 87.)

[Hall 1994] A. Hall. Specifying and Interpreting Class Hierarchies in Z. In Proceed-
ings of the Z User Workshop, (Cambridge’94), ed. J. P. Bowen and J. A.
Hall, pages 120 138. Springer, 1994. (Cited on page 61.)

Hu & Ahn 2008 Hongxin Hu and Gail-Joon Ahn. Enabling verification and con-
g
formance testing for access control model. In SACMAT, pages 195-204, 2008.
(Cited on pages 6, 54 and 60.)

[IBM | IBM. Rational Rose. (Cited on page 21.)

[IEEE 1982| IEEE. Glossary of Software Engineering Terminology, September
23,1982. (Cited on page 1.)

[ISO 2002] ISO. Information technology — Z formal specification notation — Syntaz,
type system and semantics, 2002. (Cited on page 90.)

[Jackson 2002] D. Jackson. Alloy: A Lightweight Object Modelling Notation. ACM
Trans. Softw. Eng. Methodol., vol. 11, no. 2, pages 256-290, 2002. (Cited on
pages 54 and 59.)

[Jackson 2006] Daniel Jackson. Software abstractions: logic, language and analysis.
MIT Press, 2006. (Cited on pages 2 and 90.)

[Jia 1995| Xiaoping Jia. An Approach to Animating Z Specifications. In In Proc.
19th Annual IEEE International Computer Software and Applications Con-
ference (COMPSACS95, pages 108-113, 1995. (Cited on page 103.)

[Jia 2002| Xiaoping Jia. ZTC: Z Type Checker. 2002. (Cited on pages 11 and 12.)

[Jiirjens 2005] Jan Jiirjens. Secure systems development with uml. Springer Aca-
demic Publishers, ISBN: 978-3-540-00701-2, 2005. (Cited on pages 4, 49, 59
and 86.)

[Keyes 2002] J. Keyes. Software Engineering Handbook. Auerbach Publications,
ISBN 978-0849314797, 2002. (Cited on page 1.)

[Kim et al. 2004] D. Kim, I. Ray, R. B. France and N. Li. Modeling Role-based
Access Control Using Parameterized UML Models. In Proceedings of the
Fundamental Approaches to Software Engineering (FASE’04), pages 180-
193. LNCS 2984, Springer, 2004. (Cited on pages 54, 57 and 59.)

[Latham 1983] Donald C. Latham. Department of Defense Trusted Computer Sys-
tem Evaluation Criteria, 1983. (Cited on page 2.)

Bibliography 157

[Ledru et al. 2011] Y. Ledru, N. Qamar, A. Idani, Jean-luc and M. Labiadh. Valida-
tion of Security Policies by the Animation of Z Specifications. In SACMAT
2011, 16th ACM Symp. on Access Control Models and Technologies. ACM,
2011. (Cited on page 85.)

[Ledru 1998| Yves Ledru. Identifying Pre-Conditions with the Z/EVES Theorem
Prover. In ASE, pages 32—, 1998. (Cited on pages 22 and 27.)

[Ledru 2006] Y. Ledru. Using Jaza to Animate RoZ Specifications of UML Class
Diagrams. In Proceedings of the 30th Annual IEEE/NASA Software Engi-
neering Workshop (SEW-30 2006), pages 253-262. IEEE Computer Society,
2006. (Cited on page 32.)

[Leuschel & Butler 2008] Michael Leuschel and Michael J. Butler. ProB: an au-
tomated analysis toolset for the B method. Software Tools for Technology
Transfer, vol. 10, no. 2, pages 185-203, 2008. (Cited on page 117.)

[Li & Tripunitara 2006] N. Liand M. V. Tripunitara. Security analysis in role-based
access control. ACM Trans. Inf. Syst. Secur., vol. 9, no. 4, pages 391-420,
2006. (Cited on page 47.)

[Lilius & Paltor 1999| Johan Lilius and Ivan Paltor. vUML: A Tool for Verifying
UML Models. In ASE, pages 255 258, 1999. (Cited on pages 3 and 4.)

[Martin 2002] Robert Cecil Martin. Uml for java programmers. Prentice Hall,
Englewood Cliffs, New Jersey 07632, 2002. (Cited on pages 2 and 3.)

[Morimoto et al. 2007] S. Morimoto, S. Shigematsu, Y. Goto and J. Cheng. Formal
verification of security specifications with common criteria. In Proceedings of
the 22nd Annual ACM Symposium on Applied Computing (SAC’07), pages
1506 1512, 2007. (Cited on page 62.)

[Oh et al. 2006] S. Oh, R. S. Sandhu and X. Zhang. An effective role administration
model using organization structure. ACM Trans. Inf. Syst. Secur., vol. 9,
no. 2, pages 113-137, 2006. (Cited on page 46.)

[Osborn et al. 2000] S. L. Osborn, R. S. Sandhu and Q. Munawer. Configuring role-
based access control to enforce mandatory and discretionary access control
policies. ACM Trans. Inf. Syst. Secur., vol. 3, no. 2, pages 85 106, 2000.
(Cited on page 46.)

[Paul 2009] Mano Paul. The Ten Best Practices for Secure Software Development.
White paper, December 2009. Available online (8 pages). (Cited on page 3.)

[Power et al. 2010] D. Power, M. Slaymaker and A. Simpson. On the modelling
and analysis of Amazon Web Services access policies. In Proceedings of
Abstract State Machines, Alloy, B and Z (ABZ 2010), page 394. Springer-
Verlag LNCS, volume 5977, 2010. (Cited on pages 61 and 63.)

158 Bibliography

[Qamar et al. 2011a] Nafees Qamar, Yves Ledru and Akram Idani. Ewaluating
RBAC Supported Techniques and their Validation and Verification. In ARES,
pages 734-739, 2011. (Cited on page 53.)

[Qamar et al. 2011b] Nafees Qamar, Yves Ledru and Akram Idani. Validation of
Security-Design Models Using Z. In ICFEM, pages 259-274, 2011. (Cited on
page 68.)

[Ray et al. 2004] 1. Ray, N. Li and R. France. Using UML to visualize role-based
access-control constraints. In Proceedings of the 9th ACM symposium on
Access control models and technologies (SACMAT’04), pages 115-124. ACM
Press, 2004. (Cited on pages 57 and 59.)

[Richters & Gogolla 2000] Mark Richters and Martin Gogolla. Validating UML
Models and OCL Constraints. In UML, pages 265-277, 2000. (Cited on

page 3.)

|Saaltink 1997| Mark Saaltink. The Z/EVES System. In ZUMS97: Z Formal Spec-
ification Notation, pages 72-85. Springer-Verlag, 1997. (Cited on pages 11,
20 and 22.)

[Sandhu et al. 1999] R. S. Sandhu, V. Bhamidipati and Q. Munawer. The AR-
BAC97 Model for Role-Based Administration of Roles. ACM Trans. Inf.
Syst. Secur., vol. 2, no. 1, pages 105-135, 1999. (Cited on page 46.)

[Schaad & Moffett 2002] A. Schaad and J. D. Moffett. A Lightweight Approach to
Specification and Analysis of Role-based Access Control Ezxtensions. In In
Proc. of 7th SACMAT, pages 13-22. ACM Press, 2002. (Cited on pages 6
54, 60 and 61.)

[Schneier 2000] B. Schneier. Secrets and Lies. John Wiley & Sons, Inc., 2000.
(Cited on page 48.)

[Shin & Ahn 2000] Michael E. Shin and Gail-Joon Ahn. UML-based Representation
of Role-Based Access Control. In WETICE, pages 195-200, 2000. (Cited on
page 58.)

[Sohr et al. 2005] Karsten Sohr, Gail-Joon Ahn, Martin Gogolla and Lars Migge.
Specification and Validation of Authorisation Constraints Using UML and
OCL. In Sabrina De Capitani di Vimercati, Paul F. Syverson and Dieter
Gollmann, editeurs, Computer Security - ESORICS 2005, 10th European
Symposium on Research in Computer Security, Milan, Italy, September 12-
14, 2005, Proceedings, volume 3679 of Lecture Notes in Computer Science,
pages 64 79. Springer, 2005. (Cited on pages 6, 49, 57, 58 and 63.)

[Sohr et al. 2008] Karsten Sohr, Michael Drouineaud, Gail-Joon Ahn and Martin
Gogolla. Analyzing and Managing Role-Based Access Control Policies. IEEE

Bibliography 159

Trans. Knowl. Data Eng., vol. 20, no. 7, pages 924-939, 2008. (Cited on
pages 6, 86, 87, 88, 89, 90 and 116.)

[Spivey 1992| J. M. Spivey. The Z Notation: A reference manual (2nd edition ed.).
Prentice Hall International (UK) Ltd., 1992. (Cited on pages 2, 11, 12, 30,
54 and 59.)

[Strembeck & Neumann 2004] M. Strembeck and G. Neumann. An integrated ap-
proach to engineer and enforce context constraints in RBAC environments.
ACM Trans. Inf. Syst. Secur., vol. 7, no. 3, pages 392-427, 2004. (Cited on
page 47.)

[Talhi et al. 2009] Chamseddine Talhi, Djedjiga Mouheb, Vitor Lima, Mourad Deb-
babi, Lingyu Wang and Makan Pourzandi. Usability of Security Specification

Approaches for UML Design: A Survey. Journal of Object Technology, vol. 8,
no. 6, pages 102-122, 2009. (Cited on page 63.)

[Toahchoodee et al. 2009] Manachai Toahchoodee, Indrakshi Ray, Kyriakos Anas-
tasakis, Geri Georg and Behzad Bordbar. FEnsuring spatio-temporal access
control for real-world applications. In SACMAT, pages 13-22, 2009. (Cited
on pages 3, 60, 61 and 90.)

[Utting 2005] M. Utting. JAZA: Just Another Z Animator. 2005. (Cited on pages 20
and 31.)

[Vaziri & Jackson 2000] Mandana Vaziri and Daniel Jackson. Some Shortcomings
of OCL, the Object Constraint Language of UML. In TOOLS (34), pages
555-562, 2000. (Cited on page 62.)

[Warmer & Kleppe 1998| Jos B. Warmer and Anneke G. Kleppe. The object con-
straint language: Precise modeling with UML. Addison-Wesley, October
1998. (Cited on page 2.)

[Woodcock et al. 2009] J. Woodcock, P. G. Larsen, J. Bicarregui and J. S. Fitzger-
aldt. Formal methods: Practice and experience. ACM Computing Surveys,
vol. 41, no. 4, pages 39-91, 2009. (Cited on pages 4 and 5.)

[Wordsworth 1992] J. Wordsworth. Software development with z : a practical ap-
proach to formal methods. Addison-Wesley (1992), 1992. (Cited on page 72.)

[Yu et al. 2008] Lijun Yu, Robert B. France and Indrakshi Ray. Scenario-Based
Static Analysis of UML Class Models. In MoDELS, pages 234-248, 2008.
(Cited on pages 54, 57, 58 and 63.)

[Yu et al. 2009] L. Yu, R. France, I. Ray and S. Ghosh. A Rigorous Approach to
Uncovering Security Policy Violations in UML Designs. In Proceedings of
the International Conference on Engineering Complex Computer Systems

(ICECCS’09). IEEE, 2009. (Cited on pages 54, 57, 58 and 63.)

160 Bibliography

[Yuan et al. 2006] Chunyang Yuan, Yeping He, Jianbo He and Zhouyi Zhou. A Ver-
ifiable Formal Specification for RBAC Model with Constraints of Separation
of Duty. In Inscrypt, pages 196-210, 2006. (Cited on pages 6 and 62.)

[Zao et al. 2003] J. Zao, H. Wee, J. Chu and D. Jackson. RBAC Schema Verification
Using Lightweight Formal Model and Constraint Analysis. 2003. (Cited on
pages 6, 54, 60 and 61.)

