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Sylvain RAVY
Directeur de Recherche CNRS, Université Paris-Sud, Paris (France), Président

Cinzia GIANNINI
Chercheuse CNR, Bari (Italie), Rapporteur

Olivier THOMAS
Professeur IM2NP Marseille (France), Rapporteur
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Introduction

During the last decade, the interest in semiconductor nanostructures

increased enormously, mainly due to their different applications in optical

and electronic micro devices. The continuous demand of high performing

functional materials gave rise to the development of engineering techniques

aimed to the controlled fabrication of nano-objects getting rid of strain and

defects. On the other hand, experimental evidences of the improvement of

interesting physical properties was showed in the case of strained crystal

with respect to the unstrained case.

In this context, the development of characterisation methods with the

adequate resolution at the nanometre scale and high strain sensitivity was

necessary. Among them, imaging techniques were developed to obtain

surface morphology characterisation, as in the case of scanning transmis-

sion and atomic force microscopy, and internal structure investigation. In

the particular case of strain determination, scattering based techniques, as

transmission electron microscopy (TEM) and x-ray diffraction, are largely

applied. The first has the advantage of being an imaging technique with

atomic resolution and good strain sensitivity. The second provides an ex-

tremely high strain sensitivity but is based on indirect model-dependent

methods. Nevertheless, x-ray diffraction represents the method of choice

to circumvent some limitations of TEM in term of penetration depth and

radiation damage.

The wide use of x-ray-based methods to study nanostructures has been

also possible due to the development of synchrotron sources combined with

the employment of dedicated focusing optics such as Fresnel zone plate to

obtain high brilliant radiation with high coherent properties in a micro-sized

focal spot. In particular, the use of coherent x-ray beams is at the basis of

lens-less microscopy techniques as coherent diffraction imaging (CDI) that

allows the model free investigation of a crystal at the nanoscale. Phase

retrieval algorithms are used to retrieve at the sample position the complex

1
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exit wavefield from the measurement of far-field coherent intensity patterns,

collected in the forward direction (to get morphological information) or in

Bragg geometry (that gives access also to the strain fields). In the latter,

the strain fields are encoded in the phase of the reconstructed complex-

valued function at the sample position. However, this phase also brings the

information of the illumination function that needs, therefore, to be taken

into account for the correct interpretation of the strain.

The work presented in this manuscript aims to the demonstration of

the experimental feasibility of the CDI approach in Bragg condition to re-

cover the strain in single heterogeneous or highly strained homogeneous

nanowires. In addition, the characterisation of the illumination function in

the particular experimental conditions is offered in order to disentangle the

different contributions in the retrieved phase.

In Chapter 1, I discuss the scientific motivation of this work. I first recall

some theoretical concepts to describe the stress in a crystal and then, using

examples from literature, I describe how the strain can be investigated in

single nanowires using coherent diffraction techniques.

In Chapter 2, the basic principles of x-ray diffraction and the coherence

properties of x-rays produced in a synchrotron facility are reviewed in order

to introduce the coherent x-ray diffraction imaging technique. The experi-

mental set-up used for coherent experiments at the undulator beamline ID01

at the European Synchrotron Radiation Facility is also described.

In Chapter 3 the working principles of a Fresnel zone plate, a “perfect”

diffractive optic used to focus the beam during the described experiments,

are detailed. Moreover, the paraxial Fresnel free-space approximation is

discussed as an essential theoretical tool to explain the propagation of x-

rays with a small deviation from a central axis.

Chapter 4 is dedicated to the study of focused X-ray beam obtained

from the partial illumination of a Fresnel Zone Plate: as x-rays produced

in a synchrotron facility only present finite coherence lengths, the coherent

part of the beam is selected by means of an opening matching the trans-

verse coherence length of the available radiation. This partial illumination

condition affects the wavefront of the focused x-ray beam with a consequent

modification of the exit wavefield. Using both numerical (calculations) and

experimental (ab initio reconstruction) approaches, I have determined the

illumination function (phase and amplitude) at the focal point.

In Chapter 5, I discuss about the application of CDI technique on real
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systems presenting specific experimental issues. First, I present a study

of the radiation damage observed in strained silicon line, with a time-

dependent experiment allowing to recover the strain field as a function of

the radiation damage. Then, I demonstrate, through numerical calculations,

how the illumination function influences the recovered strain field. Finally,

I show that it is possible to image the strain in InSb/InP nanowires even

in the presence of stacking faults, by choosing a Bragg reflection insensitive

to such defects.

Chapter 6 shows the preliminary results obtained from the measurement

of the displacement field in single 300 nm diameter GaAs nanowires with

a single layer of InAs quantum dots or quantum well. I show that the

recorded coherent diffraction data can be used to determine the thickness

and the phase shift in the nanowire and localise the insertion smaller than

the achievable resolution.
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Chapter 1

Imaging the strain at the

nanoscale

As stated in the Introduction, the aim of this work is to study the dis-

placement field in strained nanostructures using coherent diffraction imag-

ing technique. In this chapter, I will give a short overview to understand

the structural and physical properties of materials described in this work as

object of strain determination. I will first recall some theoretical concepts

to describe the stress and the strain in a crystal. Then, I will describe typ-

ical imaging techniques used to characterize nanostructures. Finally, I will

show some interesting example from literature concerning the investigation

of the strain in single nanowires using coherent diffraction technique.

1.1 The origin of the strain

The increasing interest in semiconductor nanowires [Samuelson, 2003],

nanocrystals [Wang et al., 2005] and nanotubes [Ouyang et al., 2002], dur-

ing the last decade [Smith, 1979] can be first attributed to their attractive

potential applications [Thelander et al., 2006]. New structures are provided

to create artificial potential for charge carriers (both electrons and holes) in

semiconductors at a scale comparable to the de Broglie wavelength; quan-

tum confinement effects [Kaufmann et al., 2001] become important and the

electronic and optical properties deviate substantially from those of bulk

material. In addition, new combination of defect-free materials allows get-

ting original band gap alignment. Moreover, semiconductors are nowdays

an integral part in our practical lives. The challenging down-scaling of

electronics and optical devices paved the way to the tremendous develop-

5
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Figure 1.1: The use of bottom-up and top-down techniques in manufactur-
ing. (http://www.nanotec.org.uk/finalReport.htm)

ment of nanostructure engineering for electronic and optoelectronic nano-

semiconductors [Mokkapati and Jagadish, 2009, Thelander et al., 2006, Li

et al., 2006] that could enable new applications in the future. The demand

for ever more powerful systems has enhanced the controlled fabrication of

nanoscale systems to obtain desired performances, as in the case of het-

erostructure nanowires [Caroff et al., 2009, Tomioka et al., 2008]. Concern-

ing the growth of functional materials the main problem of crystal growers

was for many years to get rid of defects and stress. However, it has been

shown in some systems that the stress may not be detrimental to the phys-

ical properties (optical and electronic) of strained crystals when they are

carefully controlled. Consequently the device performances may sometimes

be improved with respect to the case of unstrained crystal, as shown for the

mobility in transistor heterostructures [Jain and Hayes, 1991, Sander et al.,

1998, Baudot et al., 2009].

1.1.1 Fabrication techniques

The techniques developed to create nanostructures can be divided in two

categories : “bottom-up” and “top-down”. A diagram illustrating the princi-

ple of these two approaches is shown in Fig. 1.1. Bottom-up manufacturing

involves the building of structures, atom-by-atom or molecule-by-molecule,

for example chemical synthesis, self-assembly or positional assembly. The

latter consists of the self-assembly directional growth achieved by the pres-

ence on the substrate of catalysts (metal droplets), or patterning (holes

in the substrate). An example of nanostructure grown through bottom-

up method is shown in Fig. 1.2. The depicted case is the vapor-liquid-

solid (VLS) deposition to grow Si nanowires from metallic catalysts with a
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Figure 1.2: Schematics of bottom-up process to growth Si nanowires
from metallic catalysts with a hetero-insertion (modified from
http://fillergroup.gatech.edu/research).

hetero-insertion. Bottom-up techniques are especially suitable to grow het-

erostructures with one or multi heterojunctions, to obtain complex systems.

Top-down manufacturing, also known as step-wise design, creates nanos-

tructures from a larger material through etching, milling or machining. This

approach has been highly refined by the semiconductor industry over the

past 30 years, in terms of high precision techniques, such as lithography.

Top-down methods offer reliability and device complexity, although they are

generally higher in energy usage, and produce more waste than bottom-up

methods. An example of nanostructure grown through top-down method

is shown in Fig. 1.3. In that case lithography is used to fabricate nano

Figure 1.3: Schematics illustrating top-up (lithography) process to fabricate
nano electro-mechanical systems (NEMS) (S. Afr. J. Sci. 104, 5-6, 2008).
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Figure 1.4: Action of the bulk stress σij on an elementary cube. The index
i refers to the direction Xi where the stress acts while j gives the direction
perpendicular to the three front faces.

electro-mechanical systems (NEMS).

1.2 Linear elastic theory: Bulk strain tensor

The strain in fully coherent epitaxial heterostuctures (without extended

defects) can be theoretically described through the linear elastic theory and

it will be quickly introduced in the following. Let us consider a crystalline

material A grown in a given well-defined orientation on a crystal surface

B. The lattice parameter of the contact surface of A can be accommodated

without the formation of extended defects in the case of coherent epitaxy

(as in the case of thin layer). When a 2-dimensional array of extended

defects is created (as in the case of misfit dislocations) we are in presence

of semi-coherent epitaxy. This process is at the origin of the strain.

Let us consider now a cubic elementary crystal with the elementary vol-

ume dV = dxidxjdxk centred in a stressed material. The normals xk define

the faces of the cube lying in the plane xij . These faces are submitted to a

force per unit area that is defined by the stress tensor σik, where i = 1, 2, 3.

When i = k the force is acting normally to the ith face, while it is applied

on the face surface when i 6= k. The tensor σ consists therefore of a total

of 9 elements (second order matrix) [Elsevier, 1920, Landau et al., 1986]. A

sketch of the stress tensor acting on a cubic crystal is shown in Fig. 1.4. The

trace of the σ is invariant under the rotation axis; moreover identical forces
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are applied on the opposite faces with opposite signs. This assumption is

valid in the case of homogeneous stresses. In the inhomogeneous case, to

which I will refer later in this chapter, forces on the back face are slightly

different. For mechanical equilibrium maintained under external forces fi

applied to the crystal, not inducing torsion and/or rotation, we get the

following condition
∂σij
∂xj

= fi (1.1)

is satisfied. Using the Einstein’s notation, the sum is performed on the re-

peated indices. When the stress is applied on a crystal A, the deformation

is observed. In this case, the useful notation of displacement fields is intro-

duced to quantify how much the distorted crystal differs from the unstressed

condition [Landau et al., 1986]. In the (x,y,z) frame, r is the radial vector

that localises each point in the volume of A. The displacement field u(r) is

defined as follows:

r′ = r+ u(r) (1.2)

where r is the radial vector in the case of an unstressed crystal and r
′

is

vector transformed under the deformation. Hence, the strain, ǫij can be

introduce as a 2th order symmetric tensor:

ǫij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

(1.3)

The strain defines the infinitesimal deformation related to the gradient of

the displacement ∂ui

∂xj
. As in the case of σij , ǫij can be decomposed into

normal (symmetric) and shear (asymmetric) components. The trace of ǫij

is invariant under rotation as it represents the expansion of the crystal. The

asymmetric contribution is carried by the tensor ωij, defined as:

ωij =
1

2

(

∂ui
∂xj

− ∂uj
∂xi

)

(1.4)

Strain and stress are related in the framework of the linear elasticity the-

ory with two 4th tensors Cikmn and Sikmn, that represent the stiffness and

the compliance, respectively. They are used as coefficients in the following
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transformation relationships, known as Hooke’s laws [Tsao, 1992]:







σij = Cikmnǫmn

ǫij = Sikmnσmn.
(1.5)

Cikmn and Sikmn contain a total of 81 components but, taking into account

crystal symmetries and considering that stress and strain are invariant un-

der rotation, the number of independent parameters can be reduced. The

Voigt’s notation [Hearmon, 1946] is indeed preferred, and the tensors σij

and ǫij are replaced by vectors, so that:

ǫi ≡ ǫii, ǫ4/2 ≡ ǫ23, ǫ5/2 ≡ ǫ31 and ǫ6/2 ≡ ǫ12 (1.6)

σi ≡ σii, σ4 ≡ σ23 = σ32, σ5 ≡ σ31 = σ13 and σ6 ≡ σ12 = σ21.

Equation 1.5 can be re-written as:







σi = Cikǫk

ǫi = Sikσk.
(1.7)

Cikmn and Sikmn are represented by 6× 6 matrices inverse to each other.

Let consider now the case of a cubic crystal in the reference frame

([100],[010],[001]). The quantitative description of the volumetric and dis-

tortional components of an external strain is given by the generalised Hook’s

law:


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
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















, (1.8)

where τi and ωi are the shear stresses and rotation tensors, respectively.

In the case of a isotropic biaxial strain σ = (σ, σ, 0, 0, 0, 0) and for an

epitaxial film oriented along the 〈111〉 cubic direction, the biaxial modulus

M111 is given by:

M111 =
6C44(C11 + C12)

C11 + 2C12 + 4C44

=
1

S11 + S12

(1.9)
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Figure 1.5: Sketch of the coherent accommodation in the hetero-epitaxial
deposition of a layer with an unstrained lattice parameter aunstr on a sub-
strate with lattice parameter abulk. The lattice aunstr shrinks due to the
effect of the strain.(Modified from [Malachias, 2005])

For the complete mathematical derivation of C111 and S111 see [Vaxelaire,

2011], Appendix A.

1.2.1 Elastic energy

The interface between the epitaxial layer A and the bulk B and the

total volume of the heterostructure store a certain amount of elastic energy

responsible of the origin of strain [Elsevier, 1920, Landau et al., 1986]. In

the following the growth of an epitaxial film on a substrate is discussed from

the energetic point of view.

Let the lattice parameter of the film be larger than the one of the sub-

strate. A compressive in-plane force is applied to the epitaxial layer while

an equal but opposite tensile in-plane force acts on the substrate. Hence,

the layer lattice parameter shrinks to accommodate the one of the substrate.

The epitaxial layer is joined coherently to the substrate. In a good approx-

imation, the substrate is considered much thicker than the layer and all the

lattice accommodation mainly occurs in the thin film.

In figure 1.5 a sketch of the strain for an hetero-epitaxial layer deposition

is shown. The epitaxial layer is strained in the direction parallel to the

interface; consequently, it develops a parallel (in-plane) stress but also a

perpendicular (out-of-plane) strain.

A detailed theoretical study of the elastic lattice deformation of a semi-
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Figure 1.6: Pure edge (left) and pure screw (right) dislocations. [Tsao, 1992]

conductor heterostructure grown on an arbitrarily oriented substrate sur-

face can be found in De Caro and Tapfer [1993]. The strain energy of the

epitaxial layer in the unit volume is calculated according to the following

relation:

Eel =
1

2
Cijǫiǫj (1.10)

1.2.2 Dislocations and defects

As previously discussed, the epitaxial growth of a layer on a substrate

induces the accommodation of the misfit between layer and substrate sur-

faces. In this subsection, the particular case of epitaxial films that are

semi-coherent with the substrate is discussed. In this case a misfit disloca-

tion array occurs as the coherent registry breaks. Dislocations are therefore

defects that introduce plastic deformation in a perfect crystal.

In the simplest case, a misfit dislocation consists of a vertical half missing

plane, as shown in Fig. 1.6, left. As a consequence, the adjacent planes

collapse to minimise the total energy stored in the film. This dislocation is

known as edge dislocation. When the plane is displaced horizontally in the

parallel direction we are in presence of a screw dislocation. This dislocation

comprises a structure in which a helical path is traced around the defect by

the atomic planes in the crystal lattice (see Fig. 1.6, right)

In order to define the atom plane displacement due to the dislocation and

identify its position, the Burgers vector is introduced. The Burgers vector

b is a vector that represents the magnitude and direction of the lattice
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distortion of the planes in the crystal lattice. By definition, Burgers vector

is perpendicular to the edge dislocation line while for a screw dislocation it

is parallel, as shown in Fig. 1.6.

1.3 Strain in nanowires

The development of 1-dimensional semiconductors, such as single-crystal

nanowires, is based on the impressive breadth of applications [Pauzauskie

and Yang, 2006, Thelander et al., 2006, Cui et al., 2001, Lu et al., 2006].

These semiconductor rods usually have a diameter in the range of 20-200 nm

and they can be synthesized using a wide range of semiconductor materials

by means of different growth process allowing the precise control of com-

position, doping and interface sharpness. Most of the wires, including IV,

II-VI and III-V compounds, are grown by vapour-liquid-solid mechanism

(VLS), following the pioneer work of Wagner and Ellis [1964].

Figure 1.7: Heterogeneous nanowires. (a) Growth through catalyst-
mediated axial synthesis. (b,c) Axial and radial heterojunction. (d,e) Axial
superlattice and radial heterostructure (core-shell). [Hayden et al., 2008]

As an illustration, figure 1.7a shows the metal catalyst-mediated axial

growth through the vapor-liquid-solid mechanism [Wu and Yang, 2001] is

shown. The use of a catalyst assures the control of the nanowire lateral

size, directly depending on the size of the initial metal droplet. For some

application, the use of metal as catalyst may be detrimental to the physical

properties. Catalyst-free methods are therefore under development.

Nanowires are mainly divided in two categories: homogeneous and he-

terogeneous structures. Heterogeneous nanowires are of particular interest
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due to the formation of specific defect-free heterostructures that can not be

obtained in 2D materials. The nanowire geometry takes the advantage of

free surface elastic relaxation that is enhanced for small diameters. These

structures also improve the light extraction based on guiding and polariza-

tion effects. Heterostructures can be obtained as axial or radial structures.

In axial heterostructures, the wire material is varied along the wire axis,

i.e. the growth direction; these materials can be combined via the elas-

tic relaxation at the junction. Heterostructure, both radial and axial, can

be achieved switching the source material during the growth, resulting in

a heterostructure with one or more junction (Fig. 1.7,b and c). A con-

formal deposition of different materials leads to the formation of core/shell

nanowires, consisting of single (Fig. 1.7d) or multi-shell structure (Fig. 1.7e).

When growing heterostructures, the band structures and energies may

be directly modified by the strain. The influence of strain on the band gap

has to be taken into account especially in quantum structures, where the

local band gap plays an important role. As already discussed, the strain

fields is directly related to the lattice mismatch between the two materials,

the elastic properties and the geometry [De Caro and Tapfer, 1994, Niquet,

2006, Ertekin et al., 2005, Samuelson, 2004].

1.3.1 Strain relaxation and intermixing

The strain profile of a GaN/AlN nanowire heterostructures, reported

by Camacho [2010], is discussed to highlight the strain distribution and

relaxation in these heterostructures. The AlN nanowire is oriented along

the c-axis and modelled as a 30 nm diameter and 150 nm long pillar. A

single GaN quantum dot with a thickness of 5 nm is inserted in the middle.

The strain in these nanowires can be computed with Keatings valence field

model. [Keating, 1966], but using atomistic simulations.

The hydrostatic strain dV/V = ǫxx + ǫyy + ǫzz is plotted in a plane

containing the axis of the nanowire in figure 1.8b. The hydrostatic strain is

the variation of the volume of the unit cell with respect to the unstrained

material. As expected, the GaN layer is compressed by the AlN majority

material. The strain is however very inhomogeneous, being significant at the

center of the GaN insertion, but almost completely relaxed at the surface.

The GaN insertion indeed deforms the surface of the nanowire outwards to

relieve the inner strain. This transfers tensile strain to the AlN nanowire,

which relaxes over a few nanometers on each side of the GaN insertion.
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Figure 1.8: a) AlN nanowire with a 5 nm thick GaN insertion. b) Hydro-
static deformation, c) in-plain strain ǫxx + ǫyy and d) vertical strain ǫzz in
AlN/GaN nanowires. (Modified from [Camacho, 2010])

The strain field ǫxx + ǫyy and ǫzz are also plotted separately in figures

1.8, c and d, respectively. The in-plane strain ǫxx + ǫyy shows the same

features as the hydrostatic strain. The strain ǫzz is opposite to the in-plane

strains, as the material compensates the compression along x and y by a

dilatation along z to mitigate volume variations (i.e., hydrostatic strains).

The residual in-plane strain at the center of the GaN layer, ǫxx+ ǫyy ≈2.8%

is much smaller than the lattice mismatch between GaN and AlN (≈ 4.8%),

which shows that strain relaxation is very efficient.

1.4 Imaging techniques

The knowledge of structural properties of nano-objects is important to

achieve the control of physical properties. Therefore, the investigation at the

nanoscale, with a particular interest in the determination of displacement

fields, has required the development of dedicated techniques capable of ade-

quate spatial resolution and high strain sensitivity. The usual approach for

nanostructure characterisation are imaging techniques for morphology de-

termination (scanning tunnelling and atomic force microscopy) and internal

structure investigation. The latter profits, for example, from the scattering

of electrons (transmission electron microscopy) or x-rays (x-ray diffraction)

beams. In the following these different techniques are illustrated along with

their advantages and limitations.
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1.4.1 Scanning tunnelling and atomic force mi-

croscopy

Scanning tunnelling microscopy (STM) is a technique with a high sensi-

tivity to surface electron density and morphology. It employs a conducting

probe to scan the structure. A bias voltage is applied to produce a tun-

nelling current flowing between the probe and the sample. In the standard

operating mode, the current value is maintained while the probe is raster

scanning the sample surface. If an increase or decrease of current is detected

during scanning, the voltage supplied to the piezo is adjusted, maintaining

a constant pre-set current. These changes in voltage are analysed to obtain

the electron profile across the sample surface or it can be used to kept a

contrast height, which allows accessing to the morphology. The resolution

of the image is limited by the radius of curvature of the scanning tip of

the STM. The limitations of STM are the need of electrically conducting

samples and the necessity to work under vacuum.

The successful development of atomic force microscopy (AFM) [Binnig

et al., 1986] allows the investigation of samples in both ambient air environ-

ment or in liquid. It employes a sharp probe that is positioned in proximity

to the sample surface. Such probes are constructed of a tip mounted at the

end of a short flexible cantilever or a tuning fork. The tip generally has

a radius in the range of 5-40 nm. As with the STM, the AFM probe is

raster scanned on the surface plane by means of a piezo-electric device. As

the probe is translated laterally across the sample, it interacts differently

through the atomic forces with the surface atoms [McPherson et al., 2004].

Due to these interactions the probe moves vertically and the response sig-

nal can be recorded and, consequently, analysed. This system is sensitive

enough to detect atomic-scale movement of the tip as it scans the sam-

ple [Morris et al., 1999]. Also in this case, the resolution is limited by the

radius of curvature, the aspect-ratio of the tip and the analysed structure.

1.4.2 Transmission electron microscopy

Electron-based techniques are extremely interesting as imaging tools

with atomic resolution [De Wolf et al., 2003], due to the very small wave-

length of employed electrons, that varies in the range of 4-0.3 pm.

An electron microscope usually consists of an electron source and an

assembly of magnetic lenses in vacuum. The electrons are accelerated by a
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high potential (100-500 kV). The convergence angle and, consequently, the

size of the beam impinging on the specimen can be varied by means of a

condenser lens system and field-limiting apertures and, recently, aberration

correction systems have strongly improved the resolution. The specimen is

mounted on a special holder and can be tilted, in most systems, by more

than 30◦ around two orthogonal axes to allow crystallographic analysis.

The electron beam strongly interacts with matter due to the nature

of the interaction with the atoms. In the case of crystalline specimens, the

elastically diffracted electrons (Bragg diffraction) contain information on the

crystal lattice parameter, the crystal structure, the specimen shape and the

presence of ordering effects. The emerging electrons recombine to form an

image in the plane of the objective lens. High resolution imaging [Hüe et al.,

2008] has a very good spatial resolution (<1 nm) and a strain sensitivity of

1×10−3, but its field of view is narrow (100×100nm2) and specimens need to

be very thin and homogeneous. This preparation may alter the initial strain,

which must be measured. Convergent beam electron diffraction [Armigliato

et al., 2003] is another very accurate TEM technique (strain sensitivity of

1×10−4). It uses the information of high indices diffracting planes and has a

very fine spatial resolution (2-3 nm). However, the specimen must be tilted

slightly off axis leading to structure shadowing.

As another example of TEM techniques, dark field holography [Hytch

et al., 2008] appeared as a very promising method having a good spatial

resolution combined to a high strain sensitivity (1× 10−3) and a large field

of view of 250×1000 nm2. However, its principal limitation is the need of

an unstrained reference area close to the zone of interest (within 1 µm) and

Figure 1.9: Left: Coherent electron diffraction pattern recorded from a
single, faceted, Au nanocrystal (≈3.5 nm in diameter) at the (111) reflection.
Right: The experimental (left) and simulated (lower right) high-resolution
TEM images and the Au nanocrystal model (upper right). The scale bar is
2 nm. [Huang et al., 2008]
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Figure 1.10: Surface atom displacements shown as vectors for atoms pos-
sessing a coordination number less than 9 (left, mostly are 100 atoms and
neighbouring vicinal facet atoms) and equal to 9 (right, mostly are 111 sur-
face atoms). Here, the magnitudes of the displacements are rendered using
colours. Also directions of the surface atom displacements is represented by
arrows. [Huang et al., 2008]

in a strict epitaxy. Nano beam electron diffraction (NBD or NBED) has

been also quite recently applied to strain measurement. A strain precision

of 6×10−4 using a probe size of 2.7 nm with a convergence angle of 0.5 mrad

was achieved [Béché et al., 2009].

Using a 40 nm diameter coherent electron beam, Huang et al. [2008]

demonstrated the possibility of reconstructing a single small Au particle

(≈3.5 nm in diameter) from its diffraction pattern (Fig. 1.9). The lateral

coherent length of the electron beam was about 35 nm, Moreover, they

imaged the atomic displacements of the surface atom as 3D vector maps

(both in magnitude and direction) (Fig. 1.10). The method they proposed

was recently modified by De Caro et al. [2010] to image individual TiO2

nanocrystals with a resolution of 70 pm revealing the location of light atoms

(oxygen) in the crystal lattice.

A major disadvantage of this technique is that, the higher the resolution,

the smaller is the zone of the specimen one can look at. In addition, one

single TEM image has no depth sensitivity and complementary techniques

or theoretical models are needed for a full characterization of the speci-

men. The risk of beam damage increases with the accelerating voltage and

in presence of very intense electron sources the sample can be destroyed.

Therefore, the observation conditions must be carefully tested for each ma-

terial and the possibility of sampling the specimen is reduced. Specimens

for TEM observations must be homogeneous and thin enough (<50 nm) to

be transparent to the electrons, having naturally limited penetration depth.
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1.4.3 Imaging with X-rays

The strength of x-ray based techniques aiming to the characterisation

at the nanoscale is the high penetration depth of photons that allows the

imaging of buried structures, without the need of specific sample prepa-

ration. Furthermore, the extension of x-ray wavelength, from few tens to

a small fraction of nanometers, offers the possibility to image objects at

the corresponding spatial resolution. Finally, the associated photon energy

spectrum is spread enough to make x-ray sensitivity to all elements, provid-

ing the element identification and the probing chemical bonds, simply using

energies close to a given absorption edge. A detailed review on the imaging

at the nanoscale using x-rays is given in [Sakdinawat and Attwood, 2010]

and references therein.

Among the x-ray imaging techniques, scanning transmission x-ray mi-

croscopy (STXM) and tomography are of relevant application. In the first,

the radiation is focused in a small spot on the sample and the transmitted

radiation is detected. The sample is two-dimensionally raster-scanned to

form an image. The spatial resolution is limited by the focal spot size. In

STXM, it is also possible to change the incoming photon energy and to

provide spectral information for elemental and chemical specimen.

X-ray tomographic microscopy is a projection imaging technique in

which the x-rays transmitted through a sample are imaged directly onto an

array detector. 3D images are then reconstructed from the 2D projection

datasets. This is often performed at micrometre-scale spatial resolutions

using hard x-rays, with an increasing amount of research being performed

at the sub-micrometre level. This technique is particularly used with syn-

chrotron radiation for thick and absorbing samples measured at high energy.

In this case the spatial resolution is limited by the detector pixel size.

X-ray scattering techniques that are sensitive to the displacement fields

in nanostructures [Thomas, 2008, Thomas et al., 2006] are based on the

Bragg diffraction. Being of extreme relevance for this work, they will be the

subject of a separate section.
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1.5 Coherent x-ray diffraction imaging:

from assemblies to single nano-objects

The use of x-rays for the study of nano-object has been made possible

with the development of synchrotron source, producing radiation with high

flux and brilliance and, when required, high coherent properties. This is due

to the necessity to get a meaningful signal coming from the small volume

of interesting materials in the investigated samples, assemblies as well as

single nanostructures.

1.5.1 The European Synchrotron Radiation Facility

All the experiments described in this manuscript have been per-

formed at the European synchrotron radiation facility in Grenoble (France)

(http://www.esrf.fr). Here, high energy electrons are emitted by an electron

gun and packed in bunches; then they are accelerated by a pulsed electric

field to approach the speed of light. A race-track shaped booster acceler-

ator, 300 m long, is used to make electrons reaching the final energy of 6

GeV. The booster synchrotron consists of accelerating cavities and synchro-

nising bending magnets which force the electrons to deviate from a linear to

a curved trajectory. Accelerated electrons are sent in the giant storage ring

(844 m of circumference), where a current of 200 mA can be stored; here

electrons travel in order to be used to generate synchrotron light. Since the

opening, 43 beamlines are operating using either bending magnets (BM) or

undulator/wiggler insertion devices (ID) to generate high brilliance radia-

tion with wavelength ranging from UV light to hard x-ray. The purpose

of the bending magnets is to change the direction of the beam. They are

placed at a number of locations on the ring to guide the beam along the

reference path. Undulators consist of two opposite rails, each equipped with

a large number of magnets, with alternating polarity (Fig.1.11). Such a de-

vice can create nearly sinusoidal magnetic field of up to 1 T. Undulators

can provide several orders of magnitude higher flux than a simple bending

magnet. Typical brilliance of synchrotron sources are compared in Fig. 1.12

to free electron laser facilities. Recently, efforts are made to reduce the

source size and increase the brilliance of the available radiation.
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1.5.2 X-ray focusing optics

The extensive use of available x-ray tools has been accompanied by the

development of appropriate focusing optics to improve the spatial resolution

by creating brighter and smaller probes. Focused beams act as local probes

allowing to investigate submicron parts of an extended sample and permit

to look at single nano-objects, avoiding average information from assembly.

Kirckpatrick-Baez (KB) mirrors [Kirkpatrick and Baez, 1948] are reflec-

tive optics at near-glancing angle of incidence, largely used today with hard

x-rays. They consist of crossed curved mirrors focusing in orthogonal direc-

tions (Fig. 1.13a). The resolution of reflective optics was limited to small

fraction of micrometer but recently reached the world record of 7 nm in one

direction at 20keV [Mimura et al., 2009].

The development of compound refractive lenses (CRL) [Snigirev et al.,

1998] also demonstrated that also refractive optics can be employed to focus

x-ray beams to sub-micron size (Fig. 1.13b). They are particularly suitable

in the case of hard x-rays (above 2.5 keV) as, due to their high degree of

absorption, cannot be used with soft x-rays (below 2.5 keV).

To focus both soft and hard x-rays, diffractive optics, such as Fresnel

zone plate (FZP) [Baez, 1961, Chao et al., 2005, Di Fabrizio et al., 1999], are

widely employed as their performances can be easily tuned for the specific

application. The advances in nanofabrication improved the FZP manu-

facturing using electron beam lithography and electroplating/etching of a

metal [Jefimovs et al., 2007, David et al., 2002]. Their working principle is

based on interferences between diffracted radiation along its grating struc-

ture (Fig. 1.13c). Zone plates represent high-resolution optics as source

imaging-forming objective. They are versatile as the spatial resolution and

the efficiency are set during the construction. In particular, the spatial re-

solution depends linearly on the outermost zone width and on the choice of

Figure 1.11: Tunable undulator radiation generated by the passage of rela-
tivistic electrons through a periodic magnet structure [Attwood et al., 1993]
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Figure 1.12: Average brilliance of third generation synchrotron radiation
sources. (http://hasylab.desy.de)

material. Fresnel zone plates can be considered a “perfect” diffractive ob-

ject and it has been used during the experiments performed for this work.

Moreover, this lens preserves the phase relation of the wavefront after the

focusing process as it is free from local aberrations. This is due to the

fabrication technique or small angle scattering from surface roughness or

grain structure as in the case of Beryllium compound reflective lenses and

KB mirrors preventing local curvature deformation (see Chapter 3 for more

details).

1.5.3 X-ray diffraction on assemblies of nanostruc-

tures

X-ray diffraction techniques, as specifically grazing incidence small angle

x-ray scattering (GISAXS) and grazing incidence x-ray diffraction (GIXRD)
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[Renaud et al., 2009] are useful tools to study assemblies of nanostructures

and recover average information on structural properties and strain. As

an example, we illustrate in the following how Eymery et al. [2007] deter-

mined with GIXRD the strain and the composition of an assembly of InAs

nanowires with an InP insertion (Fig. 1.14, left). As shown in Fig. 1.14

right, the fit of in-plane measurements allows the determination of the dif-

ferent contributions to the measured intensity: the substrate overgrowths,

the relaxed InAs segments at the bottom and the top of the nanowire, and

the average InAs and InP insertions in the superlattice. The wurtzite InAs

nanowire position ((200) Bragg reflection) is slightly larger than the cu-

bic InAs substrate. It corresponds to the bottom and to the top of the

nanowire. It should be relaxed due to the small diameter and the small lat-

tice mismatch. The in-plane lattice parameter is only decreased by about

0.32% ± 0.03 according to the substrate reference. For the (003) mea-

surement (see Figure 4b), the relaxed InAs NW signal is superposed to

the twinned overgrowth contribution. The fit of this composite peak gives

0.17%±0.03, suggesting that the two last phases are very close to bulk cubic

InAs. These techniques allow to separate the contributions from substrate

and wire but they can only yield ensemble averaged information about crys-

tallographic phases, epitaxial relationships (with orientation distribution)

and strain.

Figure 1.13: X-ray focusing optics: schematics of : a) Kirkpatrick-
Baez mirrors, b) compound refractive lenses and c) Fresnel zone
plate.(http://www.xradia.com/technology/basic-technology/focusing.php)
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Figure 1.14: Left: Scanning electron microscopy images of CBE grown
epitaxial InAs/InP nanowires. Right: In-plane measurements along h for
the (a) (200) and (b) (300) reflections. [Eymery et al., 2007]

X-ray diffraction data provide a reciprocal space map that have to be

treated to get information of real space. In addition, as only intensities can

be measured, the phase information is lost. This reflects into the necessity

of some model assumptions to overcome this loss.

Recently, the possibility of using highly coherent beams, combined with

focusing optics, paved the way to the development of model-free investiga-

tion of single nano-objects. The well-defined phase relation of the coherent

wavefront, which is preserved through the elastic scattering process, assures

an high sensitivity to the exact position of the single scatterers. This is

the basic principle of lens-less microscopy techniques as coherent diffraction

imaging. Coherent diffractive imaging (CDI), applied both in small angle

and Bragg geometry, is a model-free technique used to solve the classic phase

problem in imaging without the help of ab-initio knowledge of the investi-

gated sample. This is possible due to the high resolution achieved during

the experiment. This technique is based on the measurement of far-field

coherent intensity patterns; from those, numerical methods are used to re-

trieve at the sample position the complex exit wavefield. Adequate iterative

phase retrieval algorithms (discussed in Chapter 2) have been developed to

retrieve the phase of the object.
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Figure 1.15: Left: A diffraction pattern of the specimen (using a logarithmic
intensity scale). Right: The specimen image as reconstructed from the
diffraction pattern. [Miao et al., 1999]

Figure 1.16: Left: Soft x-ray diffraction pattern of a freeze-dried yeast cell.
Right: Images of the reconstructed freeze-dried yeast cell. [Shapiro et al.,
2005])

1.5.4 Coherent x-ray imaging of non-crystalline ob-

jects

A considerable interest in using CDI techniques with short wavelength

and high coherence at available synchrotron x-ray sources has been focused

on non-crystalline phase [Sayre et al., 1998], or biomolecular samples. CDI

provides an opportunity to determine the structure of proteins and other

biological samples, which cannot be phased with the standard techniques of

protein crystallography typically due to lack of crystallinity.

The first demonstration of CDI was offered by Miao et al. [1999]. They

reconstructed, using adequate iterative algorithms, a specimen consisting of

100 nm diameter and 80 nm thick gold dots deposited on a silicon nitride

membrane (Fig. 1.15). They also suggested that the extension from two

to three dimensions requires a series of diffraction patterns recorded by

rotating the specimen around an axis perpendicular to the beam.

Shapiro et al. [2005] reported the first reconstruction of the complex-
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Figure 1.17: Maximum value projections along three orthogonal directions
of the reconstructed 3D non-periodic object. Projections were performed
along (a) z, (b) x, and (c) y directions. The scale bars are 500 nm. [Chapman
et al., 2006b]

valued exit wavefront (both phase and magnitude) of a whole freeze-dried

and unstained yeast cell (Fig. 1.16, right) form its diffraction pattern

(Fig. 1.16, left). The images, at 30-nm resolution from multiple angular

orientations of the cell, required an exposure of approximately one minute

each using 750 eV x-rays. With these results, the application of 3D x-ray

diffraction microscopy with the use of a coherent beam was extended to

frozen-hydrated samples.

Another example can be found in Ref. [Chapman et al., 2006b]. Here,

the 3D image of a nonperiodic object was directly reconstructed from co-

herent x-ray diffraction, exhibiting high resolution in all three dimensions

(Fig. 1.17). The coherent x-ray diffraction comprised 140 views, at 1◦ in-

tervals, and extended to a maximum spatial frequency of 0.068 nm−1.

1.5.5 Coherent diffraction imaging of crystalline

structures

The work presented in this thesis is based on the extension of CDI tech-

nique applied to nano-objects with a crystalline structure. Far-field diffrac-

tion patterns are collected for a chosen Bragg reflection, with the aim of

reconstructing the amplitude and the phase of the exit field at the sample

position. In these conditions, the retrieved phase gives access to the strain

fields as it represents in good approximation the projection of the displace-

ment of a crystalline lattice onto the scattering vector [Takagi, 1969]. The

feasibility of CDI in Bragg geometry has been already demonstrated [Pfeif-

fer et al., 2006b, Robinson and Harder, 2009, Newton et al., 2010]. As an

example, the phase of a 200 nm gold nanocrystal reconstructed by Robin-
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Figure 1.18: Phase map of a slice through a 200 nm Au nanocrystal obtained
by hybrid inputoutput inversion of its coherent pattern measured with the
(111) Bragg peak using a focused x-ray beam. [Robinson and Harder, 2009]

son and Harder [2009] from the coherent diffraction pattern collected at the

(111) Bragg reflection is shown in Fig. 1.18. A slight curvature of the phase

within the central region of the crystal, as stated by the authors, can be

attributed to strain or be an image of the curved wavefront of the focused

illuminating x-ray beam. Indeed, it is not strictly possible to separate in a

single measurement the phase structures of both the sample and the probe,

which are superimposed.

The most recent evidence of the possibility to reconstruct from 3-

dimensional coherent diffraction patterns the strain field in single nanowires

can be found in Ref. [Newton et al., 2010]. Here, for the first time, the six

independent components of the strain field of the same nanorod were re-

constructed. ZnO rod-shaped nanocrystals, synthesized through a chemical

vapour transport and deposition, have been investigated in that work. The

hexagonal-prism-shaped crystals have lengths in the range of 2− 4 µm and

widths of 1− 2 µm. Measurements have been carried out at the Advanced

Photon Source and diffractions have been collected from six-independent

Bragg reflections. This enabled to retrieve from all three orthogonal com-

ponents of the displacement vector ui the nine components of the Eulerian

strain (ǫ) tensor and rigid-body rotation (τ). In Fig. 1.19 regions of com-

pressive (negative) strain are observed near the (100) surfaces of the crystal

and at the interface with the Si substrate. A strained layer approximately

200 nm in width near the surface and along the length of the rod (y axis)

is visible in all tensor components except the ǫyy component. This implies

that the strain is uniform along the length of the rod.



28 Chapter 1. Imaging the strain at the nanoscale

Figure 1.19: Two-dimensional slices of the six independent components of
the strain tensor.[Newton et al., 2010]

The first evidence of CDI applied to heterogeneous structure is re-

ported by Minkevich et al. [2011]. There, the strain distribution in

(Ga,Mn)As/GaAs nanowires was determined by artificially separating the

two different contributions of the coherent diffraction signal. The vertical

components µz of the reconstructed displacement field is shown in Fig. 1.20,

for the (004) Bragg reflection. As mentioned, this map is the result of

two independent reconstructions, one considering the only contribution of

(Ga,Mn)As (upper slide in Fig. 1.20a) and further isolating the signal com-

ing from GaAs part (lower slide in Fig. 1.20a) in the reciprocal space pattern.

A specific phase retrieval algorithm reported in Ref. [Minkevich et al., 2007]

was developed for this specific case. The results of the reconstruction are in

Figure 1.20: (a) Reconstructed vertical component µz of the dispacement
field in a (Ga,Mn)As/GaAs nanowire. (b) Numerical calculation of µz using
finite element methods. [Minkevich et al., 2011]
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Figure 1.21: CDI of a single Si nanowire: (a) simulated 2D scattering pat-
tern (in the plane perpendicular to the nanowire axis), (b) experimental
pattern recorded on a 95 nm silicon nanowire and (c) the corresponding
real-space reconstruction of the nanowire cross-section

perfect agreement with numerical calculations (Fig. 1.20b), demonstrating

the validity of the method.

The following two reported examples are referred to recent results ob-

tained from single nanowires investigated using CDI at the ID01 beamline at

the ESRF, where experiments described in this work have been performed.

In reference Favre-Nicolin et al. [2009], a single homogeneous silicon

nanowire was imaged using CDI. The simulated 2D scattering pattern (in

the plane perpendicular to the nanowire axis) (Fig. 1.21a), is compared

to the experimental pattern recorded on a homogeneous silicon nanowire

(Fig. 1.21b), with a diameter of 95 nm. The experimental pattern has

been used as input of an iterative phase retrieval algorithm to obtain a

real-space reconstruction of the nanowire cross-section (Fig. 1.21c). In this

specific case, the reconstructed nanowire didn’t present any internal strain;

however these results are important as a first proof of CDI feasibility on

single nanowires with diameters smaller than 100 nm and with quite low

scattering atoms (ZSi = 14).

Another example is reported in reference [Diaz et al., 2009]. Here the

cross section of an InAs nanowire of 150 nm diameter grown on an InP

111-oriented substrate were imaged, achieving a resolutions of about 8 nm

in the x direction and 16 nm in the y direction. The reconstruction were

performed using a centro-symmetrised diffraction pattern collected around

the (111) InAs peak, in order to fill the region of missing data. The obtained

reconstruction is shown in Fig. 1.22. The reconstructed phase is shown in

Fig. 1.22b. Within the wire region, the phase shows smooth variations.

Since the illuminated part of the wire was strain-free, these phase variations

were attributed by the authors to artefacts in the experimental data or to
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Figure 1.22: (a) Retrieved complex-valued electron density and (b) phase
of the wire section. Scales in both a and b are linear. The dashed square
indicates the support region used in the reconstruction algorithm. [Diaz
et al., 2009]

a distorted incident wave front onto the sample.

As shown by these examples, the knowledge of the illumination function

is a fundamental issue when using coherent x-ray imaging technique. Fur-

ther, this represents the motivation of part of the work presented in this

manuscript and developed in Chapter 4.



Chapter 2

Coherent X-ray Diffraction

Imaging

The knowledge of the atomic position is achievable by means of x-ray

diffraction techniques only in presence of ordered atomic array. In the case

of disordered systems the exact positions of scatterers can not be measured

and the accuracy relies on the goodness of theoretical models. This is due

to the so-called phase problem discuss in the following. Coherent diffrac-

tion imaging offers a model-free method to overcome the phase problem and

obtain the atomic structure. In this chapter the basic principles of x-ray

diffraction1 are reviewed in order to introduce the coherent x-ray diffrac-

tion Imaging technique. In the last section, the experimental set-up used

for coherent experiments at the undulator beamline ID01 at the European

Synchrotron Radiation Facility in Grenoble (France) is also described.

2.1 X-ray diffraction

X-rays are deeply penetrating electromagnetic radiation with wave-

lengths ranging from 0.1 to 6 Å (hard x-rays) and from 6 to 100 Å (soft

x-rays). X-rays are employed in several domains of material science, such as

crystallography, radiography and spectroscopy, to probe the electron den-

sity of studied materials through either absorption or scattering process

with the aim of determining the internal atomic structure.

For the studies of relevance to this work, a monochromatic beam is

employed, in the range of hard x-rays. Such a beam is produced by a

synchrotron radiation source with high brilliance and (partial) coherence

1The term “diffraction” is often employed in the text to indicate the x-ray scattering.

31
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Figure 2.1: Bragg scattering geometry : the incident beam is scattered by
atoms of parallel atomic planes. The length path difference between two
scattered beams can be used to determine the atomic distance d of two
atomic planes.

characteristics. Two assumptions can be used to describe the interaction of

x-rays with matter. First, the incoming wavefield, with amplitude U and

wavevector k, is considered as a monochromatic plane wave. Second, the

kinematical approximation is also assumed [Warren, 1990], i.e. the incident

beam has the same magnitude all over the specimen and it is elastically

scattered form single scatterers (Born approximation).

Let consider an x-ray beam, with wavelength λ and incident angle θ, that

impinges on a crystal. The geometry of the considered process is depicted

in Fig. 2.1, in which, for simplicity, only two parallel atomic planes are

depicted. The plane wave is elastically scattered from electrons according

to the Bragg’s law:

nλ = 2d sin θ, nǫN (2.1)

In this relation, d is the distance between the two parallel planes and 2d sin θ

represents the optical path difference between the two waves. The interfer-

ence between scattered wavefronts is constructive only if it is equal to nλ.

This simply means that constructive interference occurs when the phases

are equal, i.e. when n is an integer. Every angle 2θ at which constructive

interference can be registered is called Bragg angle.

In this discussion, phases of incident waves are considered identical.

This is generally not true as the source size and beam wavelength play an

important role on the determination of the phase. The distance over which

phases are equivalent is called coherence length and it defines the spatial

coherence of the beam. This point is of primary importance for this work

and will be discussed in details further in this chapter.
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Figure 2.2: Two-dimensional Ewald sphere: Bragg condition is satisfied for
any point of the circle, overlying point on the lattice in the reciprocal space
S(hk)=G(hk).

Moreover, assumed the kinematical approximation, the measured inten-

sity I(s) is given by the following equation:

I(s) = |A(s)|2 =
∣

∣

∣

∣

∫

V

ρ(r)e2iπs·rdV

∣

∣

∣

∣

2

= |FT [ρ(r)]|2 (2.2)

A(s) is the complex function that describes the scattering, s = sf − si

represents the scattering vector, where sf and si are the scattered and the

incident wavevectors (|sf | = |si| = 1/λ), ρ(r) the electron density in the

volume V, r is the vector indicating the electron position in the lattice and

FT denotes the Fourier Transform operator.

The three dimensional lattice of a crystal is defined using a set of vectors

Rn = xa+ yb+ zc, where (x,y,z) are integers and a, b,c the lattice param-

eters of the unit cell. The scattered amplitude of the unit cell is described

by the structure factor F (s), that represents the Fourier transform of the

electron density into the unit cell:

F (s) =

N
∑

jj=1

fjj(s)e
2πis·rjj (2.3)

that is valid for jj atoms inside a unit cell at positions rjj with atomic

form factor fjj(s), which is the Fourier transform of the electron density

of the atom. Considering that a finite crystal can be built from the lattice

and assuming a perfect crystal lattice and a perfectly coherent illuminating

beam, the scattered amplitude can be written as:

A(s) = F (s)

lattice
∑

Rn

e2πis·Rn (2.4)
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The recorded intensity is therefore proportional to

I(s) ∝ sin2(πN1s · a)
sin2(πs · a) · sin

2(πN2s · b)
sin2(πs · b) · sin

2(πN3s · c)
sin2(πs · c) (2.5)

where N1, N2 and N3 are the number of unit cells along a, b and c. The

intensity can be registered when

s ·Rn = m. (2.6)

In the reciprocal lattice unit, Eq. 2.6 is satisfied if

a · a∗ = h, b · b∗ = k, c · c∗ = l, (2.7)

where (hkl) are the so-called Miller indices of the structure and a∗, b∗ and

c∗ are the basis vector of the reciprocal space. Points in the reciprocal

space are defined by the vector G = ha∗ + kb∗ + lc∗. The Bragg reflection

occurs when K(hkl) = G(hkl). The Ewald sphere, defined in reciprocal

space, consists of a geometrical spherical shell of radius 1/λ. For sake of

simplicity in Fig 2.2 a two dimensional Ewald circle is illustrated. Using

the Ewald sphere, each reciprocal lattice point defined by G(hkl) and lying

on its surface meets the Bragg condition. All the directions (hkl) for which

the Bragg condition is met, i.e. the interference is constructive, are called

diffraction peaks (or Bragg peaks).

2.2 Coherence properties of a Synchrotron

radiation

X-ray beams available in a Synchrotron facility with (partially) coherent

characteristics and low divergence are generally obtained. The wavefront

has a precise phase relation that has to be preserved during the propagation.

High degree of coherence is achieved using small source size and increasing

the distance between source and sample position (discussed in the follow-

ing). Due to the small divergence, photons propagate at small angle with

respect to the direction of the beam at the exit of the source. This char-

acteristic, which assumes that sinθ ≈ θ, where θ is the angle subtended by

the direction of propagation and the axis of the beam, allows to use the

paraxial approximation in a theoretical treatment (for details see Chapter
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4). Moreover, a synchrotron source naturally produces polarised radiation.

The polarisation direction is along the instantaneous acceleration of the elec-

tron, i.e. in the horizontal plane, as the velocity is tangential to the orbit.

An observer in the vertical plane with respect to the sample is, therefore,

insensitive to this polarisation. For this reason, most of the experiments at

a synchrotron facility are carried out using vertical scattering plane as no

loss of intensity due to the polarization factor are observed. In this condi-

tion the degree of coherence can be estimated using a scalar formalism of

electromagnetic theory, neglecting effects due to the polarization.

2.2.1 Temporal and Spatial coherence

Instead of giving the complete theoretical description of the coherence

properties of a complex field [Born Wolf 1999], a simple geometrical argu-

ment can be offered to get a good estimation of the degree of coherence of

a radiation. From an experimental point of view, the characteristic scale

used is the so-called coherence length. Two different coherence length can

be distinguished: the “ spatial or transverse coherence length” ǫT and the

“temporal or longitudinal coherence ” ǫL.

Figure 2.3: Young’s Double slits experiment: the interference pattern from
two slits separated by a distance d. Slits are illuminated by the central part
(solid line) and the edge (dotted line) of the source a.

Spatial coherence : We consider the double slits experiment with a

one-dimensional source of transverse size a. A sketch of the experiment is

shown in Fig. 2.3. Each point of the source is completely incoherent. R

is the distance between the source a and the slits, separated by d. At a

distance L from the slits a screen is placed to collect the interference. Two
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Figure 2.4: Another representation of the transverse coherent length
ǫT . [Leake, 2010]

patterns are generated, both due to the scattering of the slits (Fig. 2.3):

one is produced by the central part of the source and another shifted by

an angle a/2R with respect to the previous given by the scattering of an

element at the edge of the source. Maxima and minima of these diffraction

patterns coincide if

λ

2d
=

a

2R
(2.8)

The analytical expression for ǫT can be derived from condition 2.8, assuming

that ǫT is represented by the distance d between the two pinhole:

ǫT = d =
λR

2a
(2.9)

Another representation of the transverse coherence length is shown in

Fig. 2.4. Two wavefronts are propagating from two points of a source,

distant d. They have the same wavelength and propagate in two different

directions coinciding at the point P. The propagation direction is depen-

dent on the source size, two points at the extent of the source will have the

largest divergence angle and set the limit on ǫT . Therefore, ǫT can also be

interpreted as the distance travelled along the wavefront A from the point

P in both directions at which destructive interference occurs .

In a more realistic case, i.e. a two dimensional source responding to

a Gaussian intensity distribution, the horizontal and vertical coherence

lengths can be defined as:

ǫh =
λR

2πσh
ǫv =

λR

2πσv
(2.10)
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σh and σv are the sigma width of the Gaussian distribution [van der Veen

and Pfeiffer, 2004]. It is worth noticing that the transverse coherence length

grows linearly with the distance from the source. It means that even a fully

incoherent source can get coherent properties if it is measured sufficiently

far. This happens in a synchrotron radiation source, consisting of incoherent

emitters confined in a small source size. The degree of coherence is enhanced

increasing the distance source-sample position or reducing the source size.

Figure 2.5: Two quasi-monochromatic waves of wavelenght λ and λ +∆λ.
The difference in phase is π at the longitudinal coherence length. [Dierolf,
2007]

Longitudinal coherence : Two wavefields start from the same point

but with two different wavelengths λ and λ + ∆λ , respectively. The lon-

gitudinal coherence length ǫL defines the distance at which the difference

in phase of two waves is π, as illustrated in Fig. 2.5 and it is equal to

ǫL = Nλ/2. We suppose that after N/2 oscillations of the first wave, the

second one has made only N/2-1 oscillations; in this condition waves are in

anti-phase. In the limit of N ⇒ ∞

N

2
λ = (

N

2
− 1)(λ+∆λ) ⇒ λ

∆λ
=
N

2
− 1 ≈ N

2
, N ≫ 1 (2.11)

and

ǫL =
λ2

2∆λ
(2.12)

The longitudinal coherence is dependent on the bandwidth of the monochro-

mator (∆λ/λ), that is attributed to the thickness of the monochromator

crystal. Contrarily to the transverse coherence length , ǫL does not depend

on the source size and neither on geometrical distances. When the optical
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path length difference through the sample is smaller than ǫL, a sample is

coherently illuminated, meeting the required conditions for CDI measure-

ments.

For a typical synchrotron source whose size is 125h × 30v µm
2 distant

50 m from the sample position, ǫh = 20 µm, ǫv = 60 µm and ǫL = 0.5 µm

for λ = 1 Å and a Si(111) bandwidth of ≈ 10−4; therefore the longitudinal

coherence length is the limiting factor for successful CDI measurements.

However, he coherence lengths are sufficient to investigate micro/nano-sized

objects with nanometre precision.

2.2.2 Mutual coherence function and degree of coher-

ence

A typical measure of the degree of coherence between two scattered x-ray

beams is the visibility ν, defined as the contrast of fringes in a interference

pattern:

ν =
Imax − Imin

Imax + Imin

(2.13)

For the coherent illumination of two point scatterers the visibility of the

interference pattern is equal to 1 for all fringes, and drop to zero as the

two fields are π out of phase. Theoretically, the degree of coherence can

be expressed through the mutual coherence function Γ. We consider an

electromagnetic radiation, with electric field U(ρ, t); here ρ defines positions

in three-dimensional space and t the time. Coherence properties at the

sample position are defined by the mutual coherence function Γ(ρ1, ρ2, τ),

where ρ1 and ρ2 are the positions at time t and t + τ , respectively :

Γ(ρ1, ρ2, τ) =
〈

U(ρ1, t)U
*(ρ2, t + τ)

〉

(2.14)

The mutual coherence function is a complex un-normalised function, treated

as an ensemble average over the field after a time τ . To date, x-ray sources

of relevance to this manuscript, have essentially a thermal, i.e. Gaussian,

character, so that the electric field U(ρ, t) is completely defined by the first

order mutual coherence function Γ(ρ1, ρ2, τ) [Lemieux and Durian, 1999,

Nugent, 2010]. The degree of coherence is, in the simplest form, the nor-
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malised mutual coherence function, defined as follows:

γ1(ρ1, ρ2, τ) =
Γ(ρ1, ρ2, τ)

√

Γ(ρ1, ρ1, 0)Γ(ρ2, ρ2, 0)
(2.15)

If we identify the self correlation function with the intensity distribution at

the detector , i.e. Γ(ρ, ρ, t) = 〈I(ρ, t)〉 and substitute in Eq. 2.15, we obtain

γ1(ρ1, ρ2, τ) =

〈

U(ρ1, t)U
*(ρ2, t+ τ)

〉

√

〈I(ρ1, 0)〉 〈I(ρ2, 0)〉
(2.16)

γ1(ρ1, ρ2, τ) is a first order complex correlation function in terms of intensi-

ties and a second order function in terms of field. Due to the fact that the

correlation function γ1(ρ1, ρ2, τ) depends on space (ρ1, ρ2) and time t, two

coherence lengths are introduced.

The concept of mutual coherence can be also explained through Young’s

two pinholes experiment [Young, 1804]. Two pinholes are placed in P1(ρ1)

and P2(ρ2); the distance between pinholes and detector is assumed to be

large compared to the wavelength of the considered radiation (c.f. Fig. 2.3).

Radiations reach the detector at t = t0 + τ , where τ the time delay simply

defined as τ = (R1 − R2)/c; c is the speed of light in vacuum and R1 and

R2 are distances between pinholes at P1 and P2 and a generic point Q on

the detector surface, respectively. The spatial intensity distribution on the

detector is given by the following expression [Lahiri and Wolf, 2010, Mandel

and Wolf, 1995]:

〈I(ρ, t)〉 = 〈I(ρ1, t)〉+ 〈I(ρ2, t)〉+ (2.17)

2
√

I(ρ1, t)
√

I(ρ2, t)R {γ(ρ1, ρ2, τ)}

The quantity R {γ(ρ1, ρ2, τ)} is the real part of the mutual coherence func-

tion defined in Eq. 2.16. If intensities in P1 and P2 are the same, considering

that electromagnetic fields obey to Gaussian statistics, the squared modulus

of the complex function γ1(ρ1, ρ2, τ) [Oliver et al., 1999]:

∣

∣γ1(ρ1, ρ2, τ)
∣

∣

2
=

〈

I(ρ1, t)I
*(ρ2, t+ τ)

〉

〈I(ρ1, t)〉 〈I(ρ2, t)〉
(2.18)

gives the degree of coherence that is directly related to the visibility of the
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interference fringes on the detector, so that

ν =
∣

∣γ1(ρ1, ρ2, τ)
∣

∣

2
(2.19)

2.3 Coherent X-ray Diffraction imaging on

strained nano-objects

The particular case of coherent X-rays focused on small objects is treated

in this section. Coherent diffraction imaging (CDI) has been developed to

be suitable in small-angle experiments, for which small values of s = sf − si

are used. The goal of CDI is therefore to allow the reconstruction of single

objects, independently on their crystallinity, as biomolecules [Beetz et al.,

2005, Miao et al., 2001, Kewish et al., 2010a] and amorphous materials

[Barty et al., 2008]. The three-dimensional (3D) reconstruction, in this

case, can be obtained from a 3D scattering data (Eq. 2.2) obtained with

a tomographic approach [Marchesini et al., 2003a, Yefanov et al., 2009].

The small angle regime is unsuitable when, in a nano-object, crystalline

structures and displacement fields have to be determined, as in this regime

one is only sensitive to the total electron density and not to the order.

To this aim the CDI technique has been developed also in Bragg conditions

[Vartanyants et al., 2005, Pfeifer et al., 2006, Williams et al., 2003, Robinson

and Harder, 2009, Robinson et al., 2001, Stadler et al., 2007]. The analytical

approach that describes scattering from nanocrystals using CDI start from

Eq. 2.3 where the position of single scatterers is made explicit. Therefore,

in this case, an atomistic formulation is preferred. The intensity recorded

during a CDI experiment for a structure is

I(s) = |A(s)|2 =
∣

∣

∣
Σifi(s)e

2iπs·r
′

i

∣

∣

∣

2

(2.20)

fi(s) and r
′

i are the scattering factor and the position of the atom i, respec-

tively. If we are in presence of strain, the position of the atom i differs from

the ideal (unstrained) one according to the following relation:

r
′

i = r0i + ui (2.21)

r0i is the position in the unstrained structure and ui the displacement from

that position. Displacement fields, if relatively small within the unit cell, can
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be calculated around a Bragg reflection using a block unit cells formalism:

rij = R0
j +Uj + ri (2.22)

where rij is the position of the atom i in the cell j and ri the position of the

atom i relative to the unit cell. R0
j and Uj denote the ideal positions and

the displacement of the unit cell j, respectively. Substituting Eq. 2.22 in

Eq. 2.21 , the scattering A(s) can be rewritten as:

A(s) = ΣiΣjfi(s)e
2iπs·(R0

j+Uj+ri) = F (s)Σje
2iπs·(R0

j+Uj) (2.23)

and

F (s) = Σifie
2iπs·(ri) (2.24)

The function F (s) is introduced to denote the structure factor of the un-

deformed crystal, assuming that the crystallographic components are the

same in all the unit cells. If the condition

‖s− s0‖ ·Uj ≪ 1 (2.25)

is satisfied, s ·Uj can be approximated to s0 ·Uj . Here s0 represents the

scattering vector of the chosen Bragg reflection and, using Eq. 2.24 and Eq.

2.25. The scattering amplitude A(s) becomes

A(s) = F (s)Σjfi(s)e
2iπs·(R0

j )e2iπs·Uj ≈ F (s)FT [e2iπs0·(Uj)] (2.26)

This last approximation is generally used for the analysis of CDI experi-

ments [Livet, 2007, Chamard et al., 2008, Labat et al., 2007] as it allows a

fast Fourier transform computation. However, its validity strongly depends

on the size of the object and the amplitude of its deformation [Favre-Nicolin

et al., 2010]. This point will be treated in details in Chapter 4. It is im-

portant to underline that the sensitivity of CDI technique to displacement

fields is limited to the direction parallel to the scattering vector; as shown in

Eq. 2.26 only the projection of the displacement onto the scattering vector

is accessible. A complete description of the 3D deformation can be achieved

if scattering data are collected at least for three linearly independent re-

flections of the same object [Leake et al., 2009, Newton et al., 2010, Beitra

et al., 2010]. With symmetry considerations, the number of independent re-



42 Chapter 2. Coherent X-ray Diffraction Imaging

flections may be reduced. In conclusion, the main innovation of CDI is that

this technique is sensitive to the displacement in a crystal and objects can

be reconstructed with a resolution even smaller than the d-spacing of the

considered reflection. Moreover, due to the penetration depth of x-rays, also

buried structure or core-shell structure, inaccessible with other techniques,

can be studied without any sample preparation, such as removing the pro-

tecting shell, and maintaining unaltered their strain state, contrarily to the

case of electron-based microscopy. So far, only small objects (< 200nm)

have been taken into account for the discussion. However, in the case of

larger materials and made of heavy material, the kinematical approxima-

tion is not valid anymore. A more appropriate description may be done

including also refraction and absorption effects [Stadler et al., 2007].

From an experimental point of view, beside the transverse coherence

length one has to consider the aberration of the wavefront which are intro-

duced by optical elements between source and sample. As an example, the

wavefield close to the focal point is not a perfect plane wave. The incident

wave has generally a characteristic curvature that have to be taken into

account when object dimensions are not comparable or even larger than the

beam size [Nugent et al., 2005, 2003, Quiney et al., 2005, Williams et al.,

2007]. The curvature [Williams et al., 2006] induces relevant variations in

both the amplitude and phase of the beam and it influences the diffraction

from the illuminated object. However, in the case of a scattering object

with a transverse dimension smaller than 200 nm, the wavefield can be ap-

proximated to a plane wave only if this object is completely contained in

the coherent focal spot which exhibits a constant phase. [Schroer et al.,

2008]. This point is discussed in details in Chapter 3.

2.3.1 Phase Retrieval Algorithm

According to Eq. 2.2 and 2.20, only scattering intensities can be recorded

during a diffraction experiment and the phase factor (that contains infor-

mation about the displacement field of the nano-crystal) is lost. CDI offers

a suitable method to recover amplitude and phase from the diffraction pat-

tern through dedicated phase retrieval algorithms. No a priori information

about the nanostructure is needed. The mechanism of phase retrieval algo-

rithms can be easily understood in the framework of iterative projections

onto constraint sets in both direct and reciprocal spaces [Elser, 2003]. Phase

retrieval algorithms provide a solution that intersects constraint sets by pro-
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jecting the estimation onto each set. The Fourier operator, used to describe

relation between an object and its diffraction, is the linear unitary transfor-

mation between bases (direct and reciprocal spaces) where constrains are

applied. We now consider in N-dimensional Euclidean vector space VN a

discrete object contained in a finite volume S . The vector f(xn) describes

objects as linear transformations in N-dimensional orthogonal bases, with

n ∈ [1, N ] . Two constraint sets can be introduced: the support CS and the

Fourier amplitude CF constraints, so that, if yn is the closest point to xn

that satisfies the given constraint, F (yn) is the Fourier transform of f(xn)

[Dierolf, 2007].

CS =







1 if xn ∈ S

0 otherwise.
(2.27)

CF = {F ∈ VN | |ỹn| = |mn| ∀n ∈ [1, N ]} (2.28)

mn are measured Fourier amplitudes. The phase retrieval problem can be

considered solved if

f ∈ CS ∩ CF (2.29)

and the intersection of CS and CF consists of one single point. A set

of constraints-operator is therefore introduced; an operator P so that

P (x) = y | ‖x− y‖ is minimized. In the considered case, two projections

operator can be defined, PS for support constraints and the PF in the Fourier

space, so that:

PS(xn) =







1 if n ∈ S

0 otherwise
(2.30)

and

P̃S(x̃n) =







mn
x̃n

|x̃n|
, if xn 6= 0;

mne
iα otherwise

(2.31)

where P̃S = F−1PS F is the projector PS in the Fourier space. For a non-

zero component x̃n = |x̃n| eiΦn the amplitude in Fourier space is replaced

while the phase is kept. For zero-valued pixels any phase α will work even
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if in practice α = 0. These projections are applied in n iterations when

using iterative phase retrieval algorithms: starting from fn the next iterated

image fn+1 is obtained applying a particular combination GPS ,PF
of PS and

PF :

fn+1 = GPS ,PF
(fn) (2.32)

The convergence is achieved when the iterate does not change anymore.

Conventional Phase retrieval algorithms are based on different choices of

GPS ,PF
.

Error-Reduction (ER) Algorithm : Presented for the first time by

Gerchberg and Saxton [1972], the algorithm was modified by Fienup into the

modern ER algorithm. Fienup proposed to use real-space constraints intro-

ducing a finite support instead of intensity measurements, allowed only in

the reciprocal space [Fienup, 1978, 1987, 1982]. The name Error-Reduction

came from the fact that at each projection the closest point satisfying the

set of constraints is found and the distance between two sets is minimized.

Equation for this algorithm can be written as follows:

fn+1 = PS(PF (fn)) (2.33)

Figure 2.6: Representation of Error-Reduction phase retrieval algorithm.
Starting with an arbitrary guess, it consists of several loop between real
and reciprocal space by means of Fourier Transformation back and forth
and applying in each spaces a set of constrained.
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The algorithm starts with an initial guess, corresponding to the measured

amplitude, and a first estimation of the real space object is obtained ap-

plying a back Fourier Transform to the initial guess to which a random

phase is added. In real space a set of constraints is applied: the support

constraint according to which all data outside S are set to zero, and, in

the case of undeformed objects, the non-negativity, that assures the pos-

itivity of the reconstructed real-space density. The constrained object is

Fourier transformed and the reconstructed amplitude is replaced by mea-

surements. These steps are repeated until the convergence of the algorithm,

that is assured introducing a metric error, usually obtained looking at the

autocorrelation of the diffraction pattern [Fienup, 1986]. The schematics of

the algorithm is shown in Fig. 2.6 Unfortunately, the ER algorithm easily

stacks into local minima and is not sufficient to reconstruction of the object

in real space due to the low convergence.

Hybrid Input-Output (HIO) Algorithm : Hybrid Input-Output

(HIO) Algorithms: The HIO algorithm, developed by Fienup [Fienup, 1978,

1987, 1982] has been introduced in order to avoid stagnation of the ER

algorithm. The schematics of the HIO algorithm is maintained the same

of that one illustrated in Fig. 2.6. The innovation is in the modification

of the real space set of constraints. The new image is not simply the best

estimation that minimized the metric error; the next input is calculated as a

combination of objects obtained from the previous (INPUT) and the current

(OUTPUT) iterations. The aim of this algorithm is therefore minimizing

the error using this combination; a large amount of variations in the next

input is produced and at the same time stagnation avoided. Still using the

formulation in Eq. 2.32, the HIO algorithm can be summarized as

fn+1(xn) = PS(PF (fn(xn))) =







PF f’n(xn), ifxn ∈ S;

fn(xn)− βPF f’n(xn), ifxn /∈ S
(2.34)

S is a support satisfying the support constraints, fn and f’n are the objects

from the previous and the current iteration, respectively, β a feedback pa-

rameter usually chosen to be slightly smaller than the unity( 0.5 < β < 1 ).

It is evident that when β = 1 HIO algorithm approaches to the case of ER

algorithm, replicating the current object with the next iteration. HIO algo-

rithms are the most used in phase retrieval problems in diffractive imaging

but other algorithms and a particular combination of them has been devel-
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oped to improve the convergence.

Charge Flipping (CF) Algorithm : The CF algorithm, also known

as Solvent-Flattening algorithm, combined to HIO and ER algorithms has

been fully developed by Oszlányi and Süto [2004] and improved by Wu et al.

[2004]. It is analogous to the ER algorithm. The difference lies in the fact

the all the density outside the support is not anymore set to zero but forced

to be negative:

fn+1(xn) = PS(PF (fn(xn))) =







PF fn(xn), ifxn ∈ S;

−PF fn(xn), ifxn /∈ S
(2.35)

Using the projectors formalism, the algorithm can be simplified as

fn+1 = RS(PF (fn)) (2.36)

With respect to the ER, the CF algorithm converges faster to the solu-

tion and it is generally used to refine an object reconstructed using a HIO

algorithm.

Shrink-Wrap Algorithm : The shrink-wrap algorithm has been in-

troduced by Marchesini [Marchesini et al., 2003b] and is now used in com-

mon phase reconstruction in coherent diffraction experiment [van Overveld

and Wyvill, 2004]. With respect to HIO and ER, the object support is not

fixed but it is updated during the reconstruction; it is therefore determined

together with the object itself. The algorithm starts with a support that

fits the first estimation of the object in real-space. The first estimate of

the support is obviously not accurate, but by selecting the intensity in real-

space with a threshold, support is updated until the reconstructed object fits

within the autocorrelation function. We state that the support “shrinks”

progressively around the object “wrapping” all its volume. This algorithm

goes faster to the solutions and only one a priori information is needed, as

well as for the other algorithms, that is the object has to be isolated to

guarantee a strong contrast between noise and signal (visibility).

Algorithm convergence : The high number of required iterations

may also be a limit for certain cases when imaging unknown objects. It is

therefore necessary to define a measure of the accuracy of the reconstruction
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when iterative algorithms are employed. The question of quantifying the ac-

curacy of reconstruction is essential in order to give meaningful conclusions

about the nanostructure that produced the measured diffracted intensities.

To this aim, two different approaches can be used: one has the choice to

compare the quality of the reconstruction in real or reciprocal space when

references in both spaces are available to be compared to the most recent

result of the iteration. As in coherent diffraction imaging method the re-

construction is done without the use of a model in real space, no reference

intensity map in that space is given and the algorithm accuracy has to

be measured in reciprocal space, comparing the latest iterate in reciprocal

space with the measured diffracted intensities. In this context, the goodness

of a solution is measured in terms of the R-value, i.e. the autocorrelation

between the observed and the iterated intensities in reciprocal space. In

the case of non-crystalline diffraction measurements, the equivalent R-value

can be defined on a two or three-dimensional grids, representative of the

number of pixels constituting the diffraction, as

R =

∑

i,j,m

( ∣

∣ARecon(i, j,m)
∣

∣−
√

IMeas(i, j,m)
)2

∑N
i=1 I

Meas(i, j,m)
(2.37)

where IMeas(i, j,m) is the observed intensity measured in a discrete array,

(i, j,m) are the counters over the pixels and ARecon(i, j,m) is the calculated

diffracted amplitude from the reconstructed structure in real space.

Hovewer, as the topic of this work is motivated by the study of crystal-

lographic objects and the measured intensities are defined at finite lattice

positions, the measure of solution quality can be also based on crystallo-

graphic parameters. The traditional definition of the R-value and widely

used in x-ray crystallography is

R =

∑

h,k,l

( ∣

∣ARecon(hkl)
∣

∣−
√

IMeas(hkl)
)2

∑N
i=1 I

Meas(hkl)
(2.38)

where h, k and l are the reciprocal lattice vectors, IMeas(hkl) are the

observed intensities at each reciprocal lattice point and ARecon(hkl) the re-

constructed amplitudes at each point of the iteration calculated from the

refined model of the sample structure.
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2.3.2 Experimental requirements

Phase retrieval algorithms allow the reconstruction of a 3D object (real

space) starting from a 3D diffraction pattern (reciprocal space) collected

with dedicated detectors. The convergence of these algorithms can be

achieved if the 3D image in the reciprocal space responds to particular

experimental requirements.

We consider a two dimensional pixels detector of N = Nx ·Ny pixels of

a certain size δxδy. Being the distance detector-sample and the wavelength

λ known, one can calculate the corresponding values of ∆sx and ∆sy. In

real space the width L along each Cartesian axis x and y

Lx = 2
π

∆sx
Ly = 2

π

∆sy
(2.39)

is therefore fixed by the detector features. The discrete Fourier Transform

relates step size ∆s in the Fourier space and ∆x in direct space by the

relationship

∆x∆s =
2π

N
(2.40)

where N is the total number of pixels. Moreover, when a discrete Fourier

Transform is applied, it is important to define intervals to be used in order

to “sample” a continuous function with a discrete grid. If N is even, spatial

frequencies (s values) are contained in the range

−(
N

2
− 1)∆s < s < (

N

2
)∆s (2.41)

and, considering Eq. 2.40 and 2.41, the maximum value of s is given by

smax =
N∆s

2
=

π

(∆x)
(2.42)

Due to the periodicity of a discrete Fourier Transform, if a function in the

direct space is sampled with an interval too large, all frequencies higher

than smax results wrapped in the Fourier space; the phenomenon according

to which a continuous function is not bandwidth limited is called “alias-

ing”. Aliasing can be avoided if a low limit, known as critical frequency, is

introduced. It means that the Fourier Transform of a bandwidth limited
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function f(x, y) satisfy the following condition:

f̃(x, y) = 0 for |s| < sNyq (2.43)

The critical frequency sNyq is called Nyquist frequency. Equation 2.40 can

be re-written as

∆x <
2π

2sNyq
(2.44)

According to Eq. 2.44, a continuous function has to be sampled at inter-

vals at least inversely proportionals to the double of the Nyquist frequency.

Condition 2.44 is also known as “the sampling theorem” [Shannon, 1998].

In an diffraction experiment, the total number of points achievable for

the reconstruction is limited by the detector. Hence, Eq.2.39 and 2.44 can

be combined and the total spatial intervals at the object plane derived

Lx = Nx∆x Ly = Ny∆y (2.45)

If we consider now that the object in the real space is defined by a finite

density function f(x, y), a support S can be introduced so that

f(x, y) = 0, for(x, y) /∈ S (2.46)

From Eq. 2.42 the maximum size S can be derived for each coordinates

∆sx ≤ π

Sx
∆sy ≤

π

Sy
(2.47)

This condition gives the limit at the detector plane not to be exceeded

to make reconstruction possible. The frequency sampling satisfying this

condition is two times higher than the Shannon condition in Eq. 2.44 (con-

dition 2.47 is known as “oversampling” condition [Sayre, 1952, Miao and

Sayre, 2000]). The oversampling ratio, used in case of X-ray diffraction

experiments, is defined in direct space as [Miao and Sayre, 2000]

σ =
N

NS
(2.48)

where NS is the number of pixels in the support S. Intensities registered

during a CDI experiment are the square modulus of the Fourier Transform

(Eq. 2.44) of the object multiplied with the probe. A unique solution f(x, y)
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which satisfies the relation

I = |FT (f(x, y))|2 (2.49)

has to be ensured and to this aim tight constraints have to be imposed.

The ambiguity of the solution lies in the fact that a set of direct space

functions f(x, y) exists having the identical Fourier modulus. The ambi-

guity includes a shift in the position of the object f(x+∆x, y +∆y) , the

complex conjugate of the electron density f *(−x,−y) and the presence of a

phase factor multiplying the function eiΦf(x, y). Different solutions can be

found in literature [Bruck and Sodin, 1979, Bates et al., 1984, Baxter and

Schmuttenmaer, 2006] to the uniqueness problem, i.e. when σ ≥ 2 [Miao

and Sayre, 2000] , so that the number of independent equations is higher

than the number N of pixels to reconstruct. As recently proposed [Shapiro

et al., 2005, Chapman et al., 2006a],the unique solution is provided by the

complex average of independent reconstructions.

2.4 Coherent Diffraction Imaging at ID01:

experimental set-up

The main goal of ID01 beamline is to study, with high resolution in

real space, deformations and strain at the nanoscale. Up to now most of

the research was focused on ensemble of nanostrutures, determining their

average properties. But, in recent years, experimental set-up was developed

and improved to use micro-focused x-ray beam for the study of individual

nanostructures [Mocuta et al., 2008, Scheler et al., 2009]. Recently [Diaz

et al., 2009, Biermanns et al., 2009, Favre-Nicolin et al., 2009, Chamard

et al., 2010, Favre-Nicolin et al., 2010], submicrofocusing has been combined

with the use of coherent beams available on ID01, reaching the ambitious

goal of employing Coherent Diffraction and coherent Diffraction Imaging

for spatial resolved measurement.

Before reaching the optics hutch, x-rays are produced by accelerated

electrons pass through three undulators, two U35 (35 mm period) and one

U42 (42 mm period) undulators. The typical bandwidth of a U35 undulator

peak is ∆E/E = 0.01 . The U35 undulators are used in series to produce a

flux 3 times higher than the one achieved with only one U42. A synchrotron

radiation between 4 and 50 keV (selecting the first harmonic) can be gen-
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erated. The undulator U42 is mainly introduced to reach energies below 3

keV. A front-end shutter separates the optics and the experimental hutches

from the storage ring, for safety.

2.4.1 Optics

Figure 2.7: Overview of the Optics and Experimental hutches
(http://www.esrf.fr)

An overview of beamline ID01 is given in figure 2.18. From the stor-

age ring the unfocused beam pass through optics huch. Here photons are

monochromatised by a double bounce Si(111) channel cut monochromator.

The channel cut allows the tuning of the desired energy with an energy

resolution of ∆E/E = 10−4. The channel cut is set to select an appropriate

Bragg reflection of the Si(111) crystal. In reference Diaz et al. [2010], a study

of the coherence and wavefront properties of a channel cut monochroma-

tor in comparison with a double-crystal monochromator is presented. They

showed that the choice of a channel cut monochromator (CCM) is justified

by the fact that it can provide a transverse coherence length twice as large

as a conventional high-flux double-crystal monochromator (DCM), while

not presenting stronger wavefront distortions. They found that the result-

ing transverse coherence length for the CCM was ǫv = 53.2 µm, a factor 2.1

larger than for the DCM, which was ǫv = 25 µm (see figure 2.8). Summa-

rizing, the available transverse coherent length on ID01 is 60v × 20h µm
2



52 Chapter 2. Coherent X-ray Diffraction Imaging

(vertical x horizontal) for an X-ray wavelength of 1 Angstrom; these values

are calculated considering a distance source to sample of 50 m and a source

size in the transverse direction of 30 × 125 µm2. The second crystal of the

CC monochromator is motorized and can be tilted with respect to the first

one with the aim of suppressing high harmonics contribution. Tilt angle is

chosen to be below the critical angle of the first harmonic but above the

one of the third harmonic.

2.4.2 Diffractometer

A heavy load 4+2-circles diffractometer is used for scattering experi-

ments in vertical and horizontal scattering planes. The conventional 4-circle

diffractometer includes 2θ , θ , Φ and χ circles, used for vertical scattering

plane geometry (Fig. 2.19 a)). Two circle γ and µ are added to rotate

detector arm and sample in the vertical axis allowing horizontal scattering

plane geometry. A heavy duty sample stage is mounted at the centre of the

diffractometer. It can hold weight up to 120 kg. Three translations along

the direction of propagation (x), perpendicular to it in the horizontal (y)

and vertical plane (z) are used to position the sample with a sub-microns

accuracy. Adjustment of sample surface is refined with the alignment cra-

dle (Fig. 2.19 b) with a precision of 0.001◦. An azimuthal angle gives the

possibility of rotating the sample around its axis in the 360◦ range. At

the bottom of the Huber Tower, a tilt angle keep the incident beam angle

constant and it is useful in particular for Grazing Incident experiment.

The station ends in a Small angle X-ray scattering (SAXS) tube.

Figure 2.8: Measured visibility of the moiré fringes pattern for the CCM
(in blue) and the DCM (in red). The envelope functions were fitted to
Gaussian curves (dashed lines) and give a measurement of the complex
coherence function in the vertical direction. [Diaz et al., 2010]
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Figure 2.9: (a) The 4+2-circles diffractometer and (b) the Huber Tower
[O. Plantevin, 2008].

2.4.3 Focusing optics and nano-positiong stage

The x-ray beam coming from the optics hutch has to be focused to

the sample position. On ID01 beamline two different focusing devices are

available: Beryllium Compound Refractive Lenses (Be-CRL) and Fresnel

Zone Plates (FZP). Be-CRLs [Snigirev et al., 1998] consists of a set of milled

Be lenses. They are parabolic shaped and concave with a refractive index

smaller than 1 for x-rays. Be lenses can be easily aligned and are often

chosen as focusing device despite their high degree of chromaticity (focal

distance scales with E2).

Fresnel Zone Plate [Jefimovs et al., 2007] is a diffractive focusing device.

FZP are also chromatic but the focal distance change linearly with photon

energy. In this case alignment is not easy but they offers a smaller spot size

with respect to Be-CRLs. All the experiments described in this manuscript

are carried on using a FZP. The aim of this chapter is not to detail working

principle and focusing properties of a FZP. This will be done in chapters 3

and 4.

In figure 2.10 (a,b) a SEM picture of gold FZPs and central stops (CS)

chips, both fabricated in the Paul Scherrer Institut (PSI) in Switzerland,

are shown. CS is used to block the central part of the direct beam and

higher harmonics. FZPs and CS are deposited on a thin SiN membrane

(Fig 2.10a); the outermost zone width is 100 nm for all the lenses and the

diameter varies from 20 to 200 µm. Stops are produced with diameters

ranging from 50 to 100 µm. A specific FZP/CS support (Fig 2.10c) has
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(a) Fresnel zone plate
chip

(b) Central stop plate chip

(c) FZP + CS holder

Figure 2.10: Silicon membrane chips with a series of (a) gold Fresnel Zone
Plates and (b) gold central stops. The outer most zone is 100 nm for all
lenses and diameters varies from 20 to 200 µm. (c) FZP and CS holder
designed for ID01.

been designed to install the chips on the diffractometer rail. Recently a

new set of FZP has been fabricated with a smaller outermost zone width of

70 nm to obtain a smaller focal spot.

The sample is positioned on the top of the Huber Tower using a special

holder designed for ID01. In Fig. 2.10 (c) a sketch of sample holder and

stage is shown. A rotating cradle is used to fix the sample holder at the top

of the Huber Tower in order to incline the whole holder to the chosen Bragg

angle. Sample is aligned with respect to the nanofocused X-ray beam with

a stack of piezo stages (Fig. 2.11). Sample stage contains three translation

stages a rotation stage, and a nano-positioning scanner. The translation

stages have a travel range of 5 mm and the encoder accuracy amounts to

10 nm. The rotation stage has an accuracy of 1 millidegree facilitating the

sample alignment in particular for studying asymmetric Bragg reflections.

In a coherent diffraction imaging experiment the detector choice is critical.

A complex object can be reconstructed according to the CDI approach only
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Figure 2.11: Schematic of holder and sample stage implemented in the
Huber Tower.

if the coherent oversampled diffraction pattern is properly recorded. The

detector dynamic counting rate has to be adapted to the intensity from

the sample that we want to measure. Moreover, an appropriate angular

resolution is required with respect to the dimension of the system (the

larger the sample, the finer the resolution on the detector) to satisfy the

oversampling condition.

A Charge-coupled device (CCD) [Boyle and Smith, 2010]

(http://princetoninstruments.com) is an indirect illumination detec-

tor, with a slow readout of about 1 µsecond/pixel, but it does not offer

the adequate dynamical range for this study. The PILATUS detector

(PIxeLapparATUs for the Swiss LightSource) [Marchal and Wagner, 2010]

(http://pilatus.web.psi.ch/pilatus.htm) is a novel type of detector, devel-

oped at the Paul Scherrer Institut (PSI) for the Swiss Light Source (SLS).

PILATUS detectors are two-dimensional hybrid pixel array detectors,

which operate in single-photon counting mode. The main features include:

no readout noise, superior signal-to-noise ratio, read-out time of 5 ms, a

dynamic range of 20 bit. These two detectors were not used during the

experiments. The Medipix (http://medipix.web.cern.ch/MEDIPIX) is a

hybrid silicon pixel detectors for tracking applications in High Energy

Physics. It has been developed because of the needs of the Large Hadron

Collider experiments at CERN. The Medipix contains 256 x 256 pixels

each with a square pixel of 55 X 55 µm. It has a very low noise background
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and a counting rate of 1 MHz. The MAXIPIX is a particular Medipix

detector developed for the ESRF and it has been employed for the work of

this thesis.



Chapter 3

X-rays Propagation and

Fresnel Zone Plate

In this chapter, an introduction of Fresnel and Fraunhofer regime in

the case of x-ray is given using an experimental approach. The working

principles of a Fresnel zone plate are also detailed as the focusing optic of

relevance for the presented work. Finally, the mathematical derivation of

the paraxial Fresnel free-space approximation is given, which is an essential

theoretical tool to explain the propagation of x-ray with a small deviation

from a central axis.

3.1 Fresnel and Fraunhofer regime

The understanding of Fresnel and Fraunhofer regime is fundamental

in the case of x-ray micro-diffraction experiments and data analysis. The

sample is generally placed in the Fresnel regime, while the diffracted beam is

detected far from the sample position, i.e. in the Fraunhofer regime. In the

following, I describe an experimental method, proposed by Jacques [2009]

and used to measure the separation of the Fresnel and Fraunhofer domain.

The experimental set-up consisted of a square slit, with lateral aperture

a, illuminated by a coherent x-ray wavefront with wavelength λ. When

an x-ray beam is diffracted from a slit, the distance dFF identifying the

separation between Fresnel and Fraunhofer regions is given by [Born and

Wolf, 1999]

|dFF | =
(a2)

λ
(3.1)

57
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Figure 3.1: Three different methods to probe the separation between Fresnel
and Fraunhofer diffraction, changing: a) the position of the detector, b) the
wavelength and c) the opening of the slit. ( [Jacques, 2009])

According to Eq. 3.1, the separation dFF between these two regimes is

proportional to the opening area of the slit and inversely proportional to the

wavelength of the incoming beam. Hence, to measure dFF , three different

measurements were carried out by Jacques [2009], varying all the parameters

involved in Eq. 3.1. The geometries of these three experiments are shown

in Fig. 3.1. When x-rays are scattered from a slit, fringes appear in the

Fraunhofer region and can be measured only if the dimensions of the slit is

comparable or even smaller than the transverse coherent lengths. In these

experiments, all parameters and typical distance were chosen with accuracy.

Moving the detector along the horizontal direction, as depicted in Fig.

3.1a, corresponds to scan the x-ray beam at different positions along the
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Figure 3.2: Vertical profiles of the calculated (blue line) and the mea-
sured (black line) wavefronts using the experimental method in Fig. 3.1c.
( [Jacques, 2009])

propagation while maintaining the other parameters unchanged. In this

case the separation was found at the theoretical limit (a2)/λ .

A second approach is shown in figure 3.1b: the position of the detector

is fixed and the wavelength is varied in order to change the value assumed

by dFF (for higher energies the distance dFF becomes larger). The detector

will be, therefore, at the limit of Fresnel and Fraunhofer regimes only for

one specific value of λ satisfying the relation ddet = dFF .

When the aperture of the slit is varied, as shown in Fig. 3.1c, the detector
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stays at the same position and, according to Eq. 3.1, it will be in near-field

regime for larger slit openings and in far-field for smaller values of a.

Using the experimental method proposed in Fig. 3.1c, the vertical pro-

files of the x-ray wavefront with a wavelength of 1Å and the detector placed

at 3 m from the slits were measured for different value of a. Measurements

are shown in Fig. 3.2 and compared to the calculations. Fringes similar to

the ones expected in the Fraunhofer regime are observed, at the detector

position, for the smallest aperture (23 µm). When the slit aperture becomes

larger, up to the upper limit of 153 µm, the Fraunhofer fringes completely

disappear and interference can be observed only on the central peak.

As expected, when the slit opening approaches the beamline transverse

coherence length, in that case 185 µm, the fringes visibility on the central

part of the measured wavefront profile becomes smaller. For smaller slit

opening we pass from Fresnel to Fraunhofer regime. It is worth noticing

that the detector resolution is not adequate to measure the profile of the

beam in the Fresnel regime and only Fraunhofer fringes can be solved.

3.2 Theory of Fresnel Zone Plates

In the frame of advanced imaging techniques using coherent beams with

the aim of measuring structure at the micro/nonoscale, the key elements are

the focusing optics. Among them Fresnel zone plates (FZP), a chromatic

diffractive focusing optics, plays an important role in focusing x-ray and ex-

treme UV radiation in several fields of science, such as astronomy [Hettrick

et al., 1985, Bowyer et al., 1981, Beuermann et al., 1978, Kastner and Wade,

1978, H. Bruninger and Mozer, 1971, Gursky and Zehnpfennig, 1966], UV

spectroscopy [Keating et al., 1972, Pfeifer et al., 1973, Wang et al., 2003],

microwave optics [Z., 1999, Hristov and Herben, 1995, Garrett and Wiltse,

1991, Guo et al., 1994, Stout-Grandy et al., 2006, Wiltse, 1999] and x-ray

microscopy using synchrotron sources [Kirz, 1974, Howells and Hastings,

1983, Pfeifer et al., 1973, Wang et al., 2003, Chao et al., 2005, Sayre et al.,

1998]. In the particular case of coherent x-ray diffraction experiments aimed

to characterize strain in single nano-objects, as discussed in Chapter 1, FZP

assures high efficiency in a small focal spot, with a transverse size compara-

ble to the illuminated object. Moreover, the phase relation of the coherent

wavefront propagating through this lens is preserved (this point will be dis-

cussed in details in Chapter 4), assuring the correct interpretation of the
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retrieved phase (cf. Chapter 2).

3.2.1 Diffraction from a grating

Figure 3.3: Sketch of a binary diffraction grating.

The working principles of a FZP can be easily explained referring to

physics of x-ray diffraction from gratings. A diffraction grating is a compo-

nent of numerous optical devices and generally consists of a surface ruled

with close, equidistant, and parallel grooves, with the purpose of resolving

light into spectra. A simple two-level binary diffraction grating is shown in

Fig. 3.3. Here A and B are used to indicate grooves and lines, respectively.

The grating period is L with equal width of grooves and lines.

A diffraction grating acts as a beam splitter, i.e. it is able to disperse a

polychromatic beam into a spectrum because of the principle of diffraction.

When a polychromatic light is incident on a diffraction grating along its

normal, diffraction and interference effects spread the various wavelengths

in discrete directions called ”orders” or ”special orders”. This concept is

schematically depicted in Fig. 3.4. Here, the normal incident monochro-

matic wavefield is split upon the passage through the grating. The angles

of the various diffraction orders, with respect to the direction of propaga-

tion, are [Paganin, 2006]:

θm = sign(m) tan−1
( (2|m| − 1)λ
√

L2 − (2|m| − 1)2λ2

)

, (3.2)

where m is the diffraction order, λ the radiation wavelength and L the

grating period. The 0th order passes straight trough the grating. As shown

in Eq. 3.2, the diffraction process is wavelength dependent and the grating

acts also as spectrometer. Also the angle of a specific diffraction order m

measured with respect to the optic axis depends on the wavelength. In this

case the diffractive grating is chromatic.
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Figure 3.4: Monochromatic plane wave diffracted in a series of diffraction
order from a grating.

The efficiency χm of such a grating is defined as the ratio of the squared

modulus of the amplitude of the diffracted order mth and the squared mod-

ulus of the amplitude of the incident beam. To calculate χm, one considers

a non- absorbing grating, called also phase grating. Specifically, x-rays pass-

ing through the thin and the thick parts of the grating, are subjected to

a phase shift of odd multiple of π. In this condition, for a monochromatic

plane wave diffracted by a grating as depicted in Fig. 3.4, the maximal

efficiency is [Paganin, 2006]:

χm =
4

π2(2|m| − 1)2
, m = ±1,±2, ..., L > (2|m| − 1)λ. (3.3)

The condition L > (2|m| − 1)λ restricts the above formula to the propa-

gating diffracted orders, i.e. to the case of a period L much longer than the

wavelength radiation. Form = ±1, the efficiency assumes the value of 4/π2.

These calculations have been done considering the case of a single material

two-level grating as sketched in Fig. 3.3.

3.2.2 Fresnel zone plate: working principles

In the simplest approximation a Fresnel zone plate (FZP) is a grat-

ing consisting of a sequence of many lines and space, placed in a parallel

[David et al., 2002, Montiel and Nevi‘ere, 1995, Pfeiffer et al., 2006a, Her-

rmannsfeldt et al., 1968] or in a circular geometry [Baez, 1961, Barrett and

Horrigan, 1973, New, 1971], as shown in Fig. 3.5. A particular example of
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Figure 3.5: Two examples of Fresnel Zone Plate: circular (left) and parallel
(right) geometry. [David et al., 2001]

circular zone plate is the Gabor zone plate, based on the concept of radial

sinusoidal transmission function in each zone [Beynon et al., 1992, Horman,

1967]. The FZP is employed to focus the x-ray radiation from a source

S and generates a positive interference in a specific point P on the FZP

axis leading to a strong scattering of the radiation (see Fig.3.6). One says

that the image of the source is obtained in P. The period of the zones be-

comes shorter at increasing radius and decreasing zone width. The nature

of this specific periodic structure and the complex refractive index, that is

responsible of absorption effects and phase shift, influence the amount of the

scattered radiation. Because of the specific periodicity of a FZP, diffraction

angles become larger for larger radii. Hence, several triangles can be drawn

in the direction of propagation (see Fig.3.6).

The radii rn, with n=1,2,3,... of each zone can easily derived [Stein,

2002, Michette, 1968] describing the Fresnel zone plate as a tool for point

to point imaging (c.f. Fig. 3.6). The optical path length from the source S

of the radiation with wavelength λ and its image P, via a generic point on

Figure 3.6: Fresnel Zone Plate lenses are used to image an x-ray source S
in the image point P; a’ and b’ are the characteristic distance to the object
and the image, respectively. [Attwood, 1999]
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the zone plate surface is, according to the Pythagoras’ theorem,

(a′2 + r2n)
(1/2) + (b′2 + r2n)

(1/2) (3.4)

where, as shown in Fig.3.6, a’ is the source distance, b’ the image distance

from the lens and rn the radius of the nth zone. Constructive interference

occurs when the difference ∆ between transmissive and opaque zone. So

that

∆ = nλ/2 = (a′2 + r2n)
(1/2) + (b′2 + r2n)

(1/2) − (a′ + b′) (3.5)

∆ is an integer multiple of λ If we impose that Z = (a′ + b′) and substitute in

the previous equation, we obtain the exact expression of the zone positions

rn for a FZP at any wavelength:

r2n =
[nλabZ + (nλ)2(Z2 + ab)/4 + (nλ)3(Z/8) + (nλ)4/4]

(Z + nλ/2)2
(3.6)

If Z ≫ nλ/2, occurring for x-ray wavelengths (0.01 to 10 nanometers), the

equation may be rewritten as follows

r2n = nλabZ + (nλ)2(a3 + b3)/4Z3 + ... (3.7)

If the FZP is considered as a thin lens, the focal length f is defined as

1

f
=

1

a
+

1

b
(3.8)

and the magnification M as

M =
b

a
. (3.9)

which leads to Z = f(1 +M)2/M . Substituting in the Eq. 3.7, one obtains

r2n = nλf + (nλ)2(M + 1)/4(M + 1)3 + ... (3.10)

In our case and for the most application with x-ray M ≫ 1, when the FZP

is used as a magnifier, or M → ∞, when it serves as focusing optics. In

both cases M/(M + 1)2 → 0 and the high order terms can be ignored, so

that

r2n ≃ nλf + (nλ)2/4 (3.11)
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The second term of Eq. 3.11 represents the spherical aberration, that is

generally significantly smaller than the first term. Therefore, equation 3.11

can be approximated to the first term as follows:

rn ≃
√

nλf (3.12)

that shows that successive zones increase in radius by
√
n to get a common

focus for first order [Rayleigh, Wave Theory]. It is worth noticing that two

successive zones are constructed so as to add λ/2 to achieve a magnification

of M, as defined in Eq. 3.9. This is valid only in case of modest numerical

aperture (NA), defined as NA = sinα ≃ rn/f , where f is the focus. In

the same approximation image and object distance are related to the focal

length as for light refractive lenses. The term n2λ2/4 is the aberration term;

in the case of x-ray wavelength it can be neglected. As Fresnel zone plates

are diffractive optics, they have multiple diffractive orders. Figure 3.7 shows

schematically the behaviour of the 1st, 3rd and 5th order foci, that are found

at

f(2m+1) =
f

2m+ 1
, m = 1, 2, 3... (3.13)

The 0th order light passes straight through the zone plate.

Figure 3.7: Fresnel Zone Plate diffracting focusing for 1st, 3rd, 5th or-
ders.(Modified from http://ast.coe.berkeley.edusxreuv/2005/)

3.2.3 Focusing properties of a FZP and Efficiency Is-

sue

The focusing properties of a FZP can be derived propagating a planar

wavefield through the zone plate and calculating the diffraction pattern at

the focal position. It has been already demonstrated [Jacobsen et al., 1992]

that, as in the case of optical refractive lenses, the focal depth δd and the
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focal size δs (known as Reyleigh resolution) are determined by the NA as

follows :

δs = 0.61
λ

NA
δd = 1.22

λ

NA2 . (3.14)

If we take into account that the width of the outermost zone ∆rn is

∆rn =
r2n − r2n−1

rn + rn−1
=
r2n − r2n−1

2rn
=
λf

2rn
(3.15)

and that for ∆rn ≪ rn, NA = sinα ≃ λ
2∆r

, we can obtain two new relations

for δs and δd

δs = 1.22∆rn δd = 4.88∆r2n/λ (3.16)

The size of the central spot, measured at the full width half maximum

(FWHM) is therefore independent on the wavelength and it depends only

on the outermost zone width. Equation 3.16 should be applied in the case

of high order foci, having shorter focal lengths, much higher resolution with

the same outermost zone width, but their intensity is much lower. A more

useful expression for the focal length can be derived from Eq. 3.15:

f =
2rn∆rn

λ
. (3.17)

The diffraction efficiency of a zone plate can be easily calculated accor-

ding to [Michette, 1968]. One considers the amplitude transmission function

of the zone plate as a Fourier series of m terms. The mth coefficient repre-

sents the complex amplitude diffracted at the mth focal position (cf. Sect

2.3.1). The efficiencies are therefore given by the square of these coefficients,

such as 1/4, 1/π2, 1/(3π)2, ..., 1/(mπ)2 are the diffraction for 0, 1, 3, ... , m

orders (Fig. 3.7). Only the 1/(mπ)2 of the total energy contributes to the

corresponding focus. Absorption from opaque zones in the X-ray region

has also to be taken into account as this effect introduces a phase shift in

the diffraction pattern as the wave front passes through both transparent

and opaques zones. It is known that for a thin film of thickness t with

a refraction index n = 1− δ − iβ the amplitude of the incoming beam, of

wavelength lambda, is attenuated by a factor of T = e−2πβt/λ and phase

shifted by φ = −2πδt/λ. According to Kirz [Kirz, 1974], the phase shift can



3.2. Theory of Fresnel Zone Plates 67

be calculated with the following equation:

η =
1

(mπ)2
(

1 + e−4πβt/λ − 2e−2πβt/λ cosφ
)

(3.18)

Equation 3.18 shows that the efficiency of themth order of a zone plate is de-

termined by material, thickness and wavelength. Due to the fact that a zone

plate is a diffractive optical element, a relevant illumination background is

created by both zeroth and higher orders.

3.2.4 A Fresnel Zone Plate with a Central Stop

In a real x-ray diffraction experiment, high harmonics are also generated

by the source and are reflected by the monochromatising optics. Therefore,

in the experimental set-up, the FZP is always coupled with a central stop,

used to eliminate a part of the background coming from the direct beam,

as well as the harmonics. Optical properties of a Fresnel zone plate with

the implementation of a central stop have been studied by Simpson and

Michette [1984] who investigated its properties based on the analogy be-

tween the lens and the zone plate with large number of zones. The point

spread function of a zone plate with a central stop is given by

U(r) =
I0

2(1− a2)

∫ R

0

[

2J1r

r
− a2

2J1(ar)

ar

]2

rdr (3.19)

where U(r) represents the electric field of the electromagnetic radiation and

J1 is the Bessel function of the first kind, order one [Watson, 1886]. The

intensity in the direction of propagation is obtained from Eq.3.19 as the

subtraction of two Airy functions [Born and Wolf, 1999]

I(r) =
I0

1− a2CS

[

2J1r

r
− a2CS

2J1(aCSr)

aCSr

]

(3.20)

where I0 is the incoming intensity, aCS is the fraction of area blocked by

the stop, r = 2πrnx/(λz) the normalized radial coordinate, x the radial dis-

tance in the focal plane, z the image distance. Note that this treatment is

valid only in the case of a zone plate with more than 100 zones, for which

the difference between its radial intensity distribution at focal plane and the

Airy pattern is negligible. The study performed by Simpson and Michette

[1984] suggests that in these experimental conditions the central maximum

is narrower as bigger is the obstructed area on the lens, leading to a better
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Figure 3.8: Radial intensity distributions for obstruction ratios aCS = 0,
0.6 and 0.9. The main plot shows each distribution normalized to its own
central peak, while the inset shows the central peaks each normalized to
that for aCS=0. (Modified from [Simpson and Michette, 1984])

resolution, while the focal depth increased by 1/(1 − a2). The amount of

focused radiation in the side-lobes increases as aCS increases and the to-

tal amount of focused energy is obviously reduced by a factor a2CS. The

behaviour of a FZP with a CS is shown in Fig. 3.8, for different obstruc-

tion ratios aCS. Therefore the overall effect of the introduction of the

central stop is partially good, due to the removal of the background inten-

sity, and partially bad, due to the modified transfer of spatial frequencies

([Michette, 1968], Chapter 8). The spot focused at the first order focus is

the one used to illuminate the nanostructure during experiments. To elim-

inate contributions from the scattering that is not focused at the 1st order

Figure 3.9: Schematic of the zone plate and order sorting aperture setup.
(Modified from [Kirz et al., 1995])
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focal position (Fig. 3.7), the use of a central stop is generally combined with

an order sorting aperture (OSA), that blocks the light diffracted into zero

and higher diffraction orders [Kirz et al., 1995]. A schematic of the zone

plate and order sorting aperture set-up is shown in Fig. 3.9.

3.3 The Paraxial Fresnel Free-Space Ap-

proximation

The free-propagation of an x-ray plane wavefield is treated using the

Paraxial Fresnel Free-Space approximation [Sudarshan et al., 1983, Pa-

poulis, 1974]. Specifically, this approximation is useful to treat the x-ray

propagation with a small deviation from a central axis of a FZP. Moreover,

it will be implemented, as I will show in Chapter 4, in a particular phase

retrieval algorithm used to reconstruct the coherent wavefront (amplitude

and phase) at the focal plane of a FZP from a single measurement of the

direct beam at the detector plane.

3.3.1 Propagation of a Plane WaveFront

One considers a plane monochromatic wavefield with wavelength λ gen-

erated at a point source and propagating through an aperture Σ. Let P1

be a generic point of coordinates (ξ, η) in the aperture Σ. The wavefront

propagates to reach a point P0, lying in the plane (x,y) and distant r01 from

P1. The axis z defines the direction of propagation and pierces both planes

(x,y) and (ξ, η) in their origins (Fig. 3.10).

According to the Huygens-Fresnel principle, each point of the wavefront

in P1 may be considered as the source of secondary spherical waves that

mutually interfere. This principle, that is derived in Appendix A (Eq. A.3)

in the specific case of a plane monochromatic wavefield (see Eq. A.3), can

be used to calculate the intensity of the wavefront in P0 resulting from the

interference. In rectangular coordinates, the amplitude U(x,y) of the prop-

agating electric field is given by the Huygens-Fresnel principle [Goodman,

2005]:

U(x, y) = −iz
λ

∫ ∫

Σ

U(η, ξ)
eikr01

r201
dξdη (3.21)
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Figure 3.10: Diffraction geometry : P1 is a generic point of coordinates
(ξ, η) and P0 the source of the wave-front. [http://fourieroptics.org.uk]

Here, the distance r01 is given by

r01 = z

√

1 +

(

x− ξ

z

)2

+

(

y − η

z

)2

(3.22)

Equation 3.21 is valid when the condition r01 ≫ λ is satisfied. In addi-

tion, if the distance r01 between P1 and P0 is assumed to tend to ∞, the

Huygens-Fresnel principle can be reduced to a simpler expression. In this

approximation, the conditions

|x− ξ

z
|, |y − η

z
| ≪ 1 (3.23)

are valid and Eq. 3.22 can be reduced, using the binomial expansion of a

square root and neglecting the terms larger than the 4th order:

r01 ≈ z

[

1 +
1

2

(

x− ξ

z

)2

+
1

2

(

y − η

z

)2
]

. (3.24)

Substituting Eq. 3.24 in Eq. 3.21, we easily obtain the expression for the

field at the point P of coordinates (x,y), that is

U(x, y) = −ie
ikz

λz

∫ ∫ −∞

∞

U(η, ξ) (3.25)

exp

{

ik

2z

[

(x− ξ)2 + (y − η)2
]

}

dξdη

the finite dimensions of the aperture being included in U(η, ξ). In Eq. 3.26
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it is possible to recognize the convolution between the function U(η, ξ) and

the kernel h(x, y)

h(x, y) = −ie
ikz

λz
exp

[

ik

2z

(

x2 + y2
)

]

(3.26)

Factorising the exponential in the kernel outside the integral sign, a new

form for Eq. 3.26 is found

U(x, y) = −ie
ikz

λz
ei

k
2z

(x2+y2) (3.27)
∫ ∫ −∞

∞

(

U(η, ξ)e
ik

2z
(ξ2+η2)

)

e
−i2π
λz

(xξ+yη)dξdη

in which we recognize the Fourier Transform of the product of two func-

tions: the complex field at the exit of the aperture and a quadratic phase

exponential. This integral is often referred to as the Paraxial Fresnel Free-

Space Propagation, which takes an important place in the treatment of

the diffraction theory in particular for focused and coherent beams [Quiney

et al., 2006, 2008, Guizar-Sicairos and Fienup, 2009, Williams et al., 2010]

that propagate with a small angle of deviation from the axis of the focusing

optics.
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Chapter 4

Imaging the X-ray beam

focused with a Fresnel Zone

Plate

Introduction

X-rays provided by a third generation synchrotron source have only par-

tial coherence properties [Vartanyants and Robinson, 2001], with typical

transverse coherence lengths in the 10-100 µm range. A lens with a radius

small enough to match these lengths can be used to ensure the coherent

illumination at the expense of reducing the focal distance, which decreases

linearly with the lens diameter. Hence, a good compromise between the

preservation of working distances and the loss of photon flux can be ob-

tained reducing the illuminated area on the lens by means of an opening

(partial illumination) matching the coherent lengths [Diaz et al., 2009]. This

approach, which is at the focus of the present chapter, is particularly inter-

esting for short synchrotron beamlines, i.g. the undulator beamline ID01

at the European synchrotron radiation facility (ESRF, Grenoble) distant

of 50 m from the source. The partial illumination necessarily affects the

wavefront of the focused x-ray beam with a consequent modification of the

exit wavefield. Consequently, the strong contribution of illumination probe

in the retrieved exit field has to be demonstrated, as a local wavefront cur-

vature or a change in the phase of the illuminating complex field affects the

sample reconstruction [Williams et al., 2006, Nugent et al., 2005, Chamard

et al., 2009]. Therefore, an accurate investigation of the sample requires a

detailed knowledge of the probe wavefront. Unfortunately, the resolution

73
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of available 2D detectors does not allow to perform direct imaging of the

focal spot. One solution to this problem is offered by the ptychography

approach, that enables the simultaneous reconstructions of the sample elec-

tron density and the illumination function [Thibault et al., 2008, Kewish

et al., 2010b]. However, the conditions to perform the experiment as well

as the convergence of the inversion process rely on good a priori knowledge

of the initial probe estimates. The approach developed in this work aims

to solve this problem with the application of iterative phase retrieval al-

gorithm and to retrieve directly from one image of the direct beam at the

detector plane, the complex wavefield at the focus of a FZP. This method

is based on the suggestion proposed in Ref. [Quiney et al., 2006]. This

approach has been adapted according to the experimental conditions used

during the experiments, i.e. the partial illumination of the lens. To support

and justify the use of the phase retrieval algorithm in partial illumination

conditions, numerical simulations of the wavefront propagation have been

performed. Most interestingly, these calculations provide very useful in-

formation about the variations of the focal spot and focal depth directly

related to the change in the lenses numerical aperture (NA) in partial il-

lumination conditions. These simulations demonstrated that the wavefront

of the coherent beam is preserved during the focusing process also in our

experimental conditions. Moreover, a set of numerical data at the detector

plane have been provided to better understand the influence of the slits po-

sition along the direction of propagation. In addition numerical calculations

have been used to test the validity of phase retrieval algorithm approach.

In this chapter, I will show in details by means of numerical simulations the

propagation of a coherent plane wave focused with both a full and a partial

illuminated zone plate. I will show the results obtained from the ab-initio

reconstruction of amplitude and phase of the x-ray beam at the focal po-

sition of a Fresnel Zone Plate. This is achieved using the intensity pattern

in the divergent part of the focused coherent beam as input of a specific

phase retrieval algorithm. The results obtained will be also compared with

the simulated complex field.
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Figure 4.1: (a) Sketch of a partially illuminated Fresnel Zone Plate. A pair
of slits defines a rectangular aperture matching the transverse coherence
lengths of the x-ray beam. (b) 2D schematic of the propagation of the
wavefield produced by a partially illuminated FZP. The slits, placed 1.15 m
upstream the lens, used to define the illuminated area, the FZP, the CS and
the OSA are represented. The effective direction of propagation is tilted
with respect to the FZP axis due to the lateral displacement of the slits.

4.1 Numerical calculations of coherent X-

ray propagation

The computational approach for the calculation of a WaveFront prop-

agation when a Fresnel Zone Plate is used as focusing tool is described in

this section.

The simulations are based on the set-up used on the ID01 beamline at the

European Synchrotron Radiation Facility (ESRF, Grenoble) for coherent

diffraction experiments. This undulator beamline has an effective source

size, measured after the monochromator, of 125h × 30v µm
2 (FWHM) in

the horizontal (h) and vertical (v) directions, respectively [Diaz et al., 2010].

At the sample position, 50 m downstream from the source, the measured

transverse coherence lengths are 60v × 20h µm
2 (FWHM).

Figure 4.1 shows the schematics of the setup. A 200 µm diameter gold

FZP with an outermost zone width of 70 nm [Gorelick et al., 2011] is used

to focus the (partially) coherent beam. The focal position is defined at

0.09 m for 8 keV energy. The thickness of the zones is equal to 1 µm.

This provides an efficiency of 15% in the 6 - 9 keV energy range [David

et al., 2001, Gorelick et al., 2011]. The zone plate efficiency measured in

Ref. [Gorelick et al., 2011] is plotted in Fig. 4.2.

As the FZP diameter is larger than the coherence lengths, a pair of slits
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Figure 4.2: Diffraction efficiencies (first order) of various FZPs with an
outermost zone width dr, diameter D and zone height H measured over a
wide range of X-ray energies and compared with the theoretical maximum
values calculated from the tabulated X-ray optical constants. [Gorelick et al.,
2011]

located 1.15 m upstream the FZP is used to provide the partial illumination.

The slit aperture is laterally shifted (Fig. 4.1a) to avoid the illumination of

the central stop (CS). A 65 µm diameter CS and an order sorting aper-

ture (OSA) with a diameter of 50 µm are introduced to avoid direct beam

contribution and to block higher diffraction orders (Fig. 4.1b). The mea-

surements of the direct beam in the forward direction are performed in the

far-field regime using a Maxipix 2D pixel detector, with 256 × 256 pixels

of 55 × 55 µm2 size [Ponchut et al., 2011]. This photon counting detector

produces zero read-out noise (Fig. 4.1b, not in scale).

Numerical values used in the calculations are tabulated in Table 4.1.

Numerical simulations have been done using the software PYTHON 2.6.5;

one and two-dimensional fast Fourier transforms (FFT) have been used.
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Fresnel Zone Plate

Number of Zones (N) 1500
Radius (RFZP ) 100e(-6) m
Outermost zone width (∆rN) 70e(-9) m
Phase (φFZP ) 1.39

X-ray Beam

Energy (E) 8 KeV
Wavelength (λ) 1.54975e(-10) m
Wave-vector (k) 4.0543e(10) m−1

Central Stop

Radius (RCS) 32.5e(-6) m

Order Selecting Aperture

Radius (ROSA) 25e(-6) m

Table 4.1: Features used for numerical calculations.

In the numerical approach I ideally assume that a monochromatic fully

coherent beam is focused by an ideal thin Fresnel Zone Plate for which the

transmission function T (r) is :

T (r) =







0, for r2n−2 < r < r2n−1

1, for r2n−1 < r < r2n
(4.1)

with n=1,...,N and N the total number of zones. In the case of a real FZP,

T (r) is smaller than 1 as the absorption diminishes the diffraction efficiency,

modifying the amplitude of the output field [Kopylov et al., 1995]. For all

calculations, I assume that the incoming beam may be approximated to a

plane wave; this approximation is valid if we consider that experimentally

the dimensions of the illuminated object are small with respect to that

of the illumination function. The energy of the incoming beam used for

calculations is 8 keV for a wavelength λ of about 1.55× 10−10m (see Table

4.1).

4.1.1 Fully illuminated Fresnel Zone Plate

The case of a fully illuminated FZP has also been computed to compare

the resulting field with the one obtained in the case of partial illumination

conditions. As the wavefront propagation in full illumination conditions

have been already discussed in Chapter 2, I use those calculations to probe
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Figure 4.3: Radii dependence on the number of zones.

the validity of the proposed approaches. The propagation of the wavefield

produced by a fully illuminated FZP can be computed using two differ-

ent approaches. The existing cylindrical symmetry of the physical process

(due to the intrinsic cylindrical symmetry of the FZP) allows to calculate

the propagation starting from a one dimensional FZP. The two-dimensional

fields can be therefore obtained at each position of the direction of propa-

gation with a rotation of all calculated profiles. Using this approach, the

pixel size used to build the zone plate can be small (i.e. 2 nm corresponding

also to the spatial resolution at the focal plane) as the interesting part of

the wavefield at the focal plane is limited to 2.6 µm of the computational

window. The second approach is to built a 2D FZP and calculate directly

the propagation of 2D complex wavefield. In this case, the pixel size is lim-

ited to 20 nm, as a compromise between the available computer memory

and the resolution required to define the outermost zone width (70 nm).

Such a choice implies the use complex matrix with 106 elements with a long

computational time (even 7 days).

In the (x , y , z ) laboratory frame, x (horizontal direction) and y (vertical

direction) define the plane perpendicular to the direction of propagation z

(FZP axis) (Fig. 4.1). The zone plate profile is built knowing that each

radius defining the zone position on the lens surface rn is given by

rn =
√

λfn, n = 1, ..., N (4.2)

where λ is the wavelength, f = d∆rn/λ the focal position that depends

on the outermost zone width ∆rn, the zone plate diameter d and the
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Figure 4.4: One-dimensional sketch of the calculation of a wavefield propa-
gating from the Fresnel zone plate to detector position.

wavelength. N is the total number of zones that can be calculated as

N = d/2∆rn. The profile radii as a function of the number of zones is

shown in Fig. 4.3

The wavefield propagation is computed in three steps:

1. the wavefield is calculated at the FZP position;

2. the wavefield is propagated to the focal plane;

3. the wavefield is propagated at the detector position.

The one-dimensional schematic of the propagation steps is depicted in

Fig. 4.4. The 2D complex field calculated at the position zi along the

propagation axis is Ψ(ρizi). ρi =
√

x2 + y2 defines positions in the plane

transverse to the z-direction. The index i = 1, 2, 3 indicates the position

corresponding to the three steps along the z-axis. This formulation in which

Ψ depends on ρi is used to underline the presence of a cylindrical symme-

try. The phase factor φFZP defines the phase shift occurring when x-rays

propagate through the zones and depends on the structural characteristics

of the FZP. In this work φFZP is equal to 1.39 (C. David, personal commu-

nication). At step 1 (Fig. 4.4), with zi = z1, Ψ(ρ1z1) is expressed as:

Ψ(ρ1z1) = exp(−iφFZPfFZP (rn)) (4.3)

Here fFZP(rn) represents a function of zones radii rn, n = 1, ..., N describing

the zone plate profile. At this point the initial complex field is multiplied

by a mask function in order to simulate the presence of a central stop (CS)

used to block the the high-order harmonics of the incoming field. The mask
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function CS(ρ1) is defined as follows:

CS(ρ1) =







0 for|ρ1| 6 RCS

1 otherwise.
(4.4)

In Eq. 4.4 RCS is the radius of the chosen central stop. For these calcula-

tions, RCS = 32.5 µm (see Table 4.1). The thickness of the beam stop is

considered infinite as it only affects the intensity and the background at the

focal plane. For a more realistic calculation, one should take into account

the real FZP thickness, the material and the absorption coefficient at the

working energy. The field Ψ(ρ1, z1)×CS(x, y) is propagated in the forward

direction according to Bunk et al. [2007]:

Ψ(ρ2, z2) = FT−1
(

Pz(q, z12)FT
(

Ψ(ρ1, z1)
)

)

(4.5)

where z12 = 0.09 is the distance between the planes 1 and 2, i.e. the focus,

and Pz(q, z) is the Fresnel propagator in the Fourier space defined by the

following expression:

Pz(q
2, z12) ∝ exp (−2πiz12q

2/2k) (4.6)

where k = 1/λ is the wavevector FT and FT−1 indicates the forth and

back Fourier operator, respectively. q represents the transferred momentum

calculated as follows:

q2 = q2x + q2y and |qx| = |qy| = 2πNpxl/dFZP (4.7)

where Npxl is the number of pixel and dFZP = 2RFZP the zone plate diame-

ter. An intermediate step is added before propagating the wavefront at the

focal plane. At z = zOSA = 0.08 m the propagated field Ψ(ρOSAzOSA) is

multiplied with a mask M2(x , y), modelling the OSA. The OSA is defined

as:

OSA(ρOSA) =







1 for |ρOSA| 6 ROSA

0 otherwise.
(4.8)

ROSA = 25 µm is the pinhole radius. The resulting field is further propa-

gated to the focal plane according to Eq. 4.6.

In figure 4.5, a and b, the phase and amplitude (expressed in logarithmic
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Figure 4.5: (a) Phase and (b) amplitude in logarithmic scale of the complex
field plotted in the plane xz. A central stop and a order sorting aperture
with a diameter of 65 µm and 50 µm, respectively, are included in the
simulations.

scale) of the calculated complex field in the xz plane in the vicinity of the

focal position, are shown respectively. A range of 1 mm along the z-axis

has been chosen to measure the focal depth and the phase variation in the

direction of propagation. The focal length in the case of a fully illuminated

FZP according to Eq. 3.17 in Chapter 3 (page 66) is proportional to the

outermost zone width ∆rn. Calculations shows an effective focal length of

0.29 mm (Fig. 4.5b) and phase measured in the focal depth is found to be

constant within approximately 0.2 mm (Fig. 4.5a).

The calculated focal spot appears as symmetric in the focal plane (Fig.

4.6), i.e. the plane transverse to the direction of propagation. The calcu-

lated phase is constant at the focal spot (Fig. 4.6a). This is also visible in

Fig. 4.6c, in which the horizontal cut of the simulated phase at the focal

plane is illustrated. In Fig.4.6 d the horizontal cut of the calculated am-

plitude, expressed in logarithmic scale, is plotted. The focal spot size is 85

nm in both horizontal and vertical directions, in perfect agreement with the

expected value (c.f. Eq. 3.16, Chapter 3).

As comparison, I show also the 1D profile of the wavefront at the focus

using the 1D FZP and the cylindrical symmetry as previously discussed (see

Fig. 4.7). This approach does not influence the calculation of the phase that

is always constant at the central peak. On the other hand, the amplitude

of the central peak is underestimated. This is because the amplitude of the

focal spot in the focal plane is given by the contribution of all the possible

1D profiles covering the FZP surface. The previous approach is therefore

preferred.
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Figure 4.6: (a) Simulated phase and (b) amplitude (logarithmic scale) at
the focus of a Fresnel Zone Plate. A central stop and an order sorting
aperture with a diameter are included in the simulations. Horizontal cuts
of (c) calculated phase and (d) amplitude (logarithmic scale)
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Figure 4.7: Profiles of (a) calculated phase and (b) amplitude (logarithmic
scale) using a 1D dimensional FZP.
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A constant phase at the sample position is fundamental when a CDI

approach is used for nanostructure characterization. The retrieved phase

includes information coming from the intrinsic phase of the studied nano-

object and the phase of the illumination function. If the latter is constant

its contribution can be easily disentangled.

The intensity of the forwarded beam at the detector position, i.e. at

step 3, has been calculated according to the paraxial Fresnel free-space

approximation [Quiney et al., 2006]:

Ψ(ρ3, z3) = − i

λz23
exp

(

2πiz23
λ

)

exp

(

πiρ3
2

λz23

)

(4.9)

×
∫ ∫

Ψ(ρ2, z2) exp

(

πiρ2
2

λz23

)

exp

(

− 2πiρ2 · ρ3
λz23

)

dρ2

Here z23 = 0.954 m is the distance between the plane 2 and the plane

3 along the propagation axis. Equation 4.9 can be expressed using the

following more practical formula introducing the Fourier Transform (FT)

operator [Quiney et al., 2006]:

Ψ(ρ3, z3) = −i exp
(

2πiz23
λ

)

exp

(

πiρ23
λz23

)

FT

[

exp

(

πiρ22
λz23

)

Ψ(ρ2, z2)

]

= A(ρ3, z23)FT [B(ρ3, z23)Ψ(ρ2, z2)] (4.10)

The two oscillatory function A(ρ3, z23) and B(ρ3, z23) and the Fourier Trans-

form are therefore involved in the propagation from a plane 2 to a plane

3. This approximation is equivalent to Eq. 4.5 and it operates in the space

of coordinates rather than in the frequencies space. The choice of using

Eq. 4.10 rather than Eq. 4.5 allows to handle smaller two-dimensional ma-

trices, reducing both computational memory and time, and to rescale the

pixel size of the matrices at each position along the propagation. For our

numerical simulations, a range of ≈ 2.6 µm, corresponding to 129 pixels of

20 nm, has been selected at the focal plane to obtain a pixel size dpxl of

57 µm at the detector plane close to the experimental value. The value of

dpxl is calculated through the formula:

dpxl ≈
λ

2N∆θ
, (4.11)

where ∆θ is the angular resolution and N the total number of pixels.

All the calculated intensities at the detector plane are used to compare
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our theoretical model to the experimental data. Simulated intensity and
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Figure 4.8: (a) Simulated two-dimensional phase (logarithmic scale) and
(b) intensity of the calculated complex field at the detector position. The
cylindrical symmetry and the constant phase are preserved along the propa-
gation. Horizontal cuts of (c) calculated phase and (d) intensity (logarithmic
scale) at the detector plane.

phase at the detector plane are illustrated in Fig. 4.8, having selected a

small range in the computational window of ≈ 2.5 mm. The 2-dimensional

intensity in Fig. 4.8a, as expected, has the same symmetry as the illumi-

nated object, the FZP. This is also visible in Fig. 4.8c, where a cut of the

horizontal axis is plotted. At the detector plane, contributions coming from

the zones of the lens are not distinguishable due to the presence of the OSA

and the lack of higher order contributions. The intensity is constant in the

area corresponding to the illuminated zone plate surface and it drops to zero

outside the lens and in the central part, due to the presence of the beam

stop. The calculated phase is constant as the FZP is a diffractive optics

that preserves the phase of the wavefront along the propagation. The 2D

numerical phase and a cut of the horizontal axis are shown in Fig. 4.8 (b)

and (d), respectively.
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Slit Opening Focal Spot Size (FWHM) Focal depth (FWHM) Phase
µm2 µm2 mm rad

200v × 200h 0.085v × 0.085h 0.29 const.
120v × 40h 0.20v × 0.58h 0.74 const.
60v × 20h 0.39v × 1.20h 2.66 const.
40v × 20h 0.60v × 1.20h 5.68 const.

Table 4.2: Values of beam size and focal depth calculated for different illu-
mination conditions. Calculated phases at the focal spot is also tabulated.
The ideal case of a fully illuminated FZP is shown for comparison.

4.1.2 Partially illuminated Fresnel Zone Plate

The propagation of a coherent wavefield produced by a partially illu-

minated zone plate is detailed in this section. The partial illumination

condition is simulated by a mask not centred in the origin and placed at

the zone plate plane as shown in Fig. 4.1. The size of the mask corresponds

to the slit opening and the lateral shift is necessary to avoid the CS illumi-

nation. The scheme of the experimental set-up is shown in figure 4.1. The

slits are considered in the following calculations placed at the FZP position

and shifted of about 42.5 µm with respect to the zone plate centre. As a

consequence of the asymmetric illumination, the direction of the beam prop-

agation is inclined with respect to the FZP axis. The calculated fields in the

vicinity of the focal position, i.e. along the FZP axis, are shown in Fig. 4.9.

Three different slit openings are used for calculations. In order to simulate

our experimental condition, a slit opening of 60v×20h µm
2 has been chosen

to match the transverse coherent lengths of the beamline. Two additional

illumination conditions have been used for comparison: 40v × 20h µm
2 as a

lower limit for the slit size and 120v × 60h µm
2, which corresponds to the

transverse coherence at a double distance from the source. This choice is

motivated by the planned upgrade program for the extended ID01 beamline.

The values of the simulated focal spot dimensions and focal length are sum-

marized in Table 4.2. The case of a fully illuminated FZP is also reported

to show the influence of slits. Both focal depth and transverse dimensions

of the focal spot are strongly influenced by the opening. Contrary to the

case of a full illuminated FZP (cf. Fig. 4.4 and 4.5), the beam size at the

focus is not anymore proportional to the outermost zone width [Jefimovs

et al., 2007], but becomes larger for smaller openings and it is defined by

the slit opening and by the number of illuminated zones. In Figs. 4.10, the
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Figure 4.9: Simulated complex field in the vicinity of the focus of a Fresnel
Zone Plate. The focal length are strongly influenced by the presence of
the slits. Calculations have been computed for three different slits opening:
(a,d) 120v × 60h, (b,e) 60v × 20h and (c,f) 40v × 20h µm

2. Cuts in (a-c) the
horizontal (xz) and (d-f) vertical (yz) planes.

simulated complex fields are shown at the focal plane, perpendicular to the

direction of propagation. The amplitude is plotted in logarithmic scale for

all three openings (Fig. 4.10, a-c). The shift of the opening also creates a

linear phase shift in the xy plane (cf. Fig.4.11) which has been corrected in

Fig.4.10(d-f) - i.e. the phase shift plotted in this figure refers to a plane wave

along the axis joining the illuminated part of the FZP and the focal spot.

The phase correction has been done according to the following formula:

Ψ(ρ2, z2)corr = Ψ(ρ2, z2) exp (2πi
∆x

fλ
x) (4.12)
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Figure 4.10: Simulated complex field at the focal plane: (a,b,c) amplitude
(in logarithm scale) and (d,e,f) phase the focal spot size for three different
slits opening: (a,d) 120v ×60h, (b,e) 60v ×20h and (c,f) 40v ×20h µm

2. For
each opening, the central peak shows a constant phase and focal spot size
are found inversely proportional to the slit openings.
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Figure 4.11: Simulated phase at the focal plane without correction for the
slit opening 40v × 20h µm

2.

where Ψ(ρ2, z2)corr and Ψ(ρ2, z2) are the corrected and uncorrected fields,

∆x the opening shift and x the axis in the direction of the shift, in this case

the horizontal one. λ is the wavelength and f the focal length.

The size of the focal spot is measured at the full width half maxi-

mum (FWHM) of the vertical (see Figs. 4.12, a-c) and the horizontal (see

Figs. 4.12, d-f) profiles. The asymmetry of the focal spot is the direct con-
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Figure 4.12: Simulated complex field at the focus of a Fresnel Zone Plate:
(a,b,c) cuts in the vertical (y) and (d,e,f) in the horizontal directions. Calcu-
lations have been computed for three different slits opening: (a,d) 120v×60h,
(b,e) 60v × 20h and (c,f) 40v × 20h µm

2.

sequence of the asymmetry of the illumination. The focal depth is also

inversely proportional to the slit opening, as shown in Fig. 4.9, and it is

found to be significantly larger than the one observed for a fully illuminated

FZP (Fig. 4.5]. This effect is attributed to the decreased numerical aper-

ture of the lens, i.e. the smaller divergence of the beam produced with a slit

smaller than the transverse FZP dimensions. The effective focal depth can

be calculated looking at the xy plane. The cuts in the yz plane (Fig.4.9(d-

f)), due to the deviation, give only a portion of the propagated beam. The

effective direction of propagation, as expected, is deviated from the Fresnel

Zone Plate axis by about 0.37 mrad (Fig.4.9, a-c), due to the lateral shift

of the illuminated area with respect to the optical axis (Fig.4.1). The angle

is calculated by pure geometrical considerations.

The most interesting result of this study is the confirmation of the con-

stant phase at the focal spot. This indicates that the partial illumination

of the FZP does not affect the phase of the focused beam, which enables

CDI experiments without complex corrections, as long as the object studied

is smaller than the focal spot. The results shown until now are of general

applicability. However, in our experimental conditions, slits are not placed

at the FZP plane, as in the case of calculations discussed unltil now, but



4.1. Numerical calculations of coherent X-ray propagation 89

�100 �50 0 50 100
x (microns)

10-4

10-3

10-2

10-1

100

A
m

p
lit

u
re

 (
a
.u

.)

(a)

 100  50 0 50 100
y (microns)

10-4

10-3

10-2

10-1

100

A
m

p
lit

u
re

 (
a
.u

.)

(b)

Figure 4.13: Amplitude (expressed in logarithmic scale) of simulated com-
plex field at the FZP plane considering the propagation from the slits distant
1.15 m: cut in the (a) horizontal and (b) vertical directions. An opening of
72v × 28hµm

2 corresponding to the experimental opening.

they are 1.15 m upstream the FZP. This has to be considered into the nu-

merical simulations of the wavefront propagation in order to check possible

influences and compare to experimental data. An additional step in the cal-

culations has been therefore added, i.e. the wavefield propagation from the

slit to the zone plate position. That corresponds to calculate the wavefront

propagation for 1.15 m in the forward direction. Using the formula given

in Eq. 4.5, for an opening of 72v × 28h µm
2 corresponding to the actual ex-

perimental conditions, the amplitude of the propagated wavefield is shown

in Fig. 4.13. Due to the huge dimension of the computational matrix, we

decided to plot the horizontal and vertical cuts in Fig. 4.13,a and b, respec-

tively. It is evidenced that for the opening of 20 µm, the distance of 1.15 m

is at the limit of the near-field domain. The lateral fringes, typical of the

Fraunhhofer regime, appear at the side of the central peak (see Fig. 4.13a).

This field is then multiplied with the plane wavefield generated at the FZP

position and propagated to the focal plane. The results of these calculations

are shown in Fig 4.14 for a slit opening of 72v × 28h µm
2, corresponding

to the experimental opening. The effective direction of propagation is obvi-

ously unchanged. An important effect is visible both in the xz plane (a) and

the focal plane (c). The X-ray beam is distorted and it becomes asymmetric

in the horizontal direction. Looking at the vertical and the horizontal cuts

at the focal plane, a spot size of 300v × 800hnm
2 can be measured at the

FWHM (Fig. 4.14, e-f). The phase of the central peak, as illustrated in

Fig. (d) for the focal plane, is still constant. Figure 4.15 shows the prop-
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Figure 4.14: Simulated complex field at the focal plane when slits are distant
1.15 m from the FZP plane: calculated amplitudes (in logarithm scale) in
the (a) xz, (b) yz and (c) xy planes are shown. (d) Calculated phase in the
xy plane is found to be constant. (e,f) Vertical and horizontal cuts of the
focal spot show a spot size of 300v × 800h nm2.
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Figure 4.15: Simulated 2D intensities at the detector plane when (a) slits
are at the FZP plane and (b) 1.15 m before the lens.

agated field at the detector position obtained by the procedure described

for the case of a full illuminated FZP. The intensity distribution at the de-

tector calculated when the opening is placed at the FZP plane is shown in

Fig. 4.15a. The case of an identically open slit located at 1.15 m before the

FZP position is shown in Fig. 4.15b as comparison. The slit scattering is

responsible of the strong background visible in Fig. 4.15a. Moreover, the

interference fringes present in the wavefront at the FZP position illuminate

also the central stop, that is partly imaged on the detector. For a sake of

completeness, in figure 4.16 the calculated phase at the detector plane is

shown for the two cases, i.e. slits close (Fig. 4.16a) and slits far (Fig. 4.16b)

for the FZP.
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Figure 4.16: Phases of simulated wavefield at the detector plane for (a)
partially illuminated FZP (b) including the propagation of the wavefield
from the slits to the lens plane.
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4.2 Imaging the focused complex wavefield

In order to reconstruct the focused complex wavefield , we have mea-

sured the direct beam produced by a partially illuminated FZP, and used

these data to retrieve the wavefield near the focal spot, following the method

proposed by Quiney et al. [2006] and Williams et al. [2010]. The experiment

was carried out on the undulator beamline ID01. A typical measurement of

the direct beam at the detector position is shown in Fig. 4.19a. The Fresnel

Zone Plate used for this experiment is made of gold and the thickness of

opaque zones is equal to 1 µm. The thickness of the gold central stop is

22 µm [C. David: Personal Communication] that yields a low transmission

coefficient, of the order of 5 × 10−4. Partial illumination is obtained by

a set of rectangular slits matching the transverse coherent lengths of the

beamline, placed at a distance of 1.15 m before the lens. Using the nu-

merical tools previously described, the x-ray propagation to the detector

plane can be simulated using different slits opening until an agreement with

experimental data is found. In this way, a model can be provided to de-
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Figure 4.17: (a) Experimental intensity in the divergent part of the focused
beam compared to (b) calculations. (c) Horizontal and (d) vertical cuts for
experimental intensity and simulated one when slits are 1.15 m distant from
the FZP.
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velop a phase retrieval algorithm to reconstruct the illumination function

at the focal position using experimental data. The slit scattering, which is

responsible of the strong background, clearly imposes to introduce in our

calculations the propagation between the slit and the FZP (equal to 1.15 m

in our set-up). The best agreement of the far-field intensity is obtained for

a slit opening of 72v × 28h µm
2 (Fig. 4.17, b-c). The discrepancy between

these values and the expected ones of 60v×20h µm
2 is attributed to an error

in the calibration of the slit. In figure 4.17a, the non-zero intensity pixels

in the center of the detector are due to direct beam photons transmitted by

the central stop (most likely higher harmonics)

In the next section I describe the modified iterative algorithm and discuss

the results obtained from the reconstruction of fully and partially illumi-

nated FZP.

4.2.1 Modified Phase Retrieval Algorithm

The iterative phase retrieval algorithm developed for the reconstruction

of the wavefront at the focal position is based on the same principle of

iterative retrieval algorithms used in coherent diffraction imaging. This al-

gorithm has been proposed for the first time in Ref. [Quiney et al., 2006].

The paraxial free-space approximation expressed in Eq. 4.9 replaces the

back and forth FT in the algorithm to retrieve phase and amplitude of the

wavefield at the focal position from the direct beam intensity at the detector

plane. According to the proposed method, the wavefront reconstruction is

done without employing any sample at the focal position, where no con-

straints can be applied. Here the wavefield has an extended extension, due

to the finite size of the FZP. To make the algorithm converging and the

reconstruction successful, the real space constraints, i.e. the support con-

straints, have to be imposed at the FZP position. The support, whose size

is defined by the illuminated area on the lens, is added at the FZP position.

Consequently, the employed algorithm consists of 4 steps cycle, from the

detector to the focus and from the focus to the FZP and viceversa rather

than one as in the typical retrieval algorithm. If we set the FZP plane at z1,

the focal plane at z2 and the detector at z3, the algorithm follow the cycle

z3-z2-z1-z2-z3. A scheme of the algorithm is shown in Fig. 4.18 to explain

the procedure of the reconstruction. In equation 4.9, zij = zj − zi = −zji .
The complete cycle can be therefore summarized in 6 steps [Quiney et al.,

2006] :
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Figure 4.18: Scheme of the two-steps phase retrieval algorithm used to
reconstruct the complex wavefield at the focal plane.

1. Propagate the wavefield from z3 to z2 multiplying the measured am-

plitude by a random phase:

Ψ(ρ2, z2) = A(ρ2, z32)FT
−1 [P (ρ3)] ;

2. Propagate the complex field from the focal plane to the lens position

defined by z1:

P (ρ1) = −i exp(2πiz21/λ)FT−1 [B(ρ2, z21)Ψ(ρ2, z2)] ;

3. Applying finite support constraint to P (ρ1):

P ′(ρ1) = P (ρ1)S(ρ1) ;

4. Propagate from z1 to z2:

Ψ(ρ2, z2) = A(ρ2, z12)FT
[

P
′

(ρ1)
]

;

5. Propagate from z2 to z3:

P (ρ3) = −i exp(2πiz23
λ

)FT [B(ρ2, z23)Ψ(ρ2, z2)];

6. Imposing constraints on P (ρ3) :

|P (ρ3)| =
√

IMeas(ρ3).

In these equations, S(ρ1) is the support function. At the position z1, cor-

responding to the lens plane, the complex field is calculated as a complex

pupil function that contains also information due to the presence of the

OSA and a central stop. The analytical expression for the pupil function at

the FZP plane is

P (ρ1) = Ψ(ρ2, z2) exp(
πiρ21
λz12

) (4.13)

and similarly for z3 at the detector plane we have

P (ρ3) = Ψ(ρ2, z2) exp(
πiρ23
λz23

) (4.14)
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The algorithm consists of error reduction (ER), hybrid input-output

(HIO) and charge flipping (CF) cycles. In addition, a shrink-wrap algo-

rithm [Marchesini et al., 2003b] has been applied as it allows to take into

account in the reconstruction the presence of features at the FZP plane

due to the propagation from the slit to the lens. At each iteration, the

reconstruction is measured by the metric error R, defined as follows:

R =

∑N
i=1

(

|Pi(ρ3)| −
√

IMeas(ρ3)
)2

∑N
i=1 I

Meas(ρ3)
(4.15)

4.2.2 Results and Discussion
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Figure 4.19: (a) Phase and (b) amplitude of the reconstructed complex
wavefield at the focus and (c) along the direction of propagation.

The iterative phase retrieval algorithm previously described has been

used to reconstruct the wavefront at the focal plane. The algorithm has

been first tested using simulated data, shown in Fig. 4.15, a-b, and a set of

random phases, varying in a range of 1 rad. The small phase range has been

chosen to facilitate the algorithm convergence for the low number of pixels



96 Chapter 4. Imaging the X-ray beam focused with a Fresnel Zone Plate

31.5 31.0 30.5 0.0 0.5 1.0 1.5
x (microns)

10-3

10-2

10-1

100

Am
pl

itu
de

 (l
og

 s
ca

le
)

Simulations
Reconstruction

(a)

41.5 41.0 40.5 0.0 0.5 1.0 1.5
y (microns)

10-3

10-2

10-1

100

Am
pl

itu
de

 (l
og

 s
ca

le
)

Simulations
Reconstruction

(b)

Figure 4.20: (a) Horizontal and (b) vertical cuts of the reconstructed com-
plex wavefield at the focus compared to the one computed considering a slit
opening of 72v × 28hµm

2.

composing the image at the detector plane. The algorithm converges to the

correct solution only for a dataset in which the propagation from the slit

is not considered. The impossibility of reconstructing the wavefield at the

focus when considering the diffraction from the slits is probably due to the

important tails and background and, obviously, the limited resolution of the

detector. To facilitate the algorithm convergence in the case of real data,

corresponding to the case shown in Fig. 4.15b, I have used the simulated

phase (cf. Fig. 4.16b) at the detector plane as initial guess in the retrieval

algorithm. The reconstruction allows to access the complex wavefield both

at the focus and at the FZP.

Results obtained from the inversion are shown in Fig. 4.19. The size

of the reconstructed focal spot is ≈ 280v × 730h nm2 (Fig. 4.19b) and

the focal depth is equal to ≈ 4 mm (Fig. 4.19c and 4.20a,b). The focal

spot is asymmetric in the horizontal direction and it compares very well

with the calculations (cf. Fig. 4.19a ). The fringes in vertical direction

are more intense and with an higher background to one side of the focal

spot. The asymmetry is highlighted in Fig.4.20b, where the horizontal cut

of the amplitude at the focal plane is shown (red color) and compared

to the simulations (blue color). This effect is attributed to the peculiar

illumination of the FZP obtained with vertical slit blades with an offset in

the longitudinal direction [Le Bolloc’h et al., 2002].

The reconstructed pupil function at the FZP plane is shown in Fig. 4.21.

As expected, both the resolution and the presence of the OSA does not

allow us to retrieve the zone profile of the illuminated area. Finally, I

present in Fig. 4.22 the evolution of the metric error R registered during



4.2. Imaging the focused complex wavefield 97

50.1 0.0 0.1
x (mm)

50.1

0.0

0.1
y 

(m
m

)

53.0
52.7
52.4
52.1
51.8
51.5
51.2
50.9
50.6
50.3
0.0

(a)

60.1 0.0 0.1
x (mm)

60.1

0.0

0.1

y 
(m

m
)

62.4

61.6

60.8

0.0

0.8

1.6

2.4

(b)

Figure 4.21: (a) Amplitude (b) and phase of the reconstructed complex
wavefield at the zone plate plane.

Figure 4.22: Part of the metric error R registered during the reconstruction.
Contributions from ER, HIO and CF algorithms are labelled.

the reconstruction process. The different contributions from the employed

algorithms (ER, HIO and CF) are labelled in the figure.

For the sake of completeness, the same algorithm described in the pre-

vious section has also been used to retrieve the focal plane produced by

a fully illuminated FZP from its image of the direct beam at the detector

plane (Fig. 4.23a). This reconstruction is similar to the case described by

Quiney et al. [2006] and for which the method has been developed. In Fig.

4.23, b and c, the reconstructed amplitude at the focal plane and the re-

trieved phase of the focal spot are shown, respectively. The reconstruction

completely agrees with the simulations in Fig. 4.6 a,b. This reconstruction

assumes a fully coherent illumination of the whole FZP. This is not true ex-

perimentally and the obtained results do not describe the actual wavefront

at the focus. It has been shown from experimental measurements that the
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Figure 4.23: (a) Experimental data used to reconstruct (b) amplitude (log-
arithmic scale) and (c) phase of the complex wavefield at the focus in the
case of a fully illuminated Fresnel zone plate with a fully coherent beam.

focus on ID01 has an asymmetric shape, which reflects directly the different

source size and beam divergence in the horizontal and vertical directions.

A more appropriate reconstruction should include information on partial

coherence effects.

4.3 Imaging the coherent beam using Bragg

Ptychography

As suggested in the introduction to this chapter, an alternative approach

to retrieve the complex-valued illumination function at the focus of a FZP in

the same illumination conditions is the ptychography [Thibault et al., 2008].

This method offers the possibility of reconstructing both the complex fields

describing the sample and the probe (i.e. the illumination function) with

the use of iterative algorithms. This can be achieved due to the redundancy

of information in the diffraction patterns collected from overlapping areas

on the sample. A sketch of a typical ptychographic approach is given in



4.3. Imaging the coherent beam using Bragg Ptychography 99

Figure 4.24: Schematic of the ptychographic approach. The beam moves
from position 1 to N to cover the surface of the chosen zone on a sample,
in that case a schematically depicted double Si lines.

Fig. 4.24.

The experiment described in the following is the first example of pty-

chography successful applied in Bragg geometry. The Bragg ptychography

experiment [Godard et al., 2011] was carried out at the ID01 beamline

(ESRF). The monochromatic beam with a wavelength of 0.154 nm was

delivered by a Si-111 monolithic channel-cut monochromator. For this ex-

periment a 200 µm diameter Au FZP, with an outermost zone width of 100

nm, was implemented into the set-up. At the working energy of 8 keV, the

focal length is 129 mm. A 60 µm diameter central stop and a 50 µm circular

order sorting aperture, placed at 10 mm from the FZP plane, complete the

set-up. The theoretical focal spot size is approximately 110 nm in both

directions. The conditions of partial illumination for this experiment were

achieved using an aperture of 80 × 20 µm2 and placed 1.15 m before the

lens. As previously discussed, the correct illumination of the zone plate was

obtained with a lateral shift of the aperture, in the horizontal direction.

The sample used for the experiment is a <110>-oriented Si double-line.

The line were produced by e-beam lithography from a continuous Si 〈001〉
layer (180 nm thick) covering a SiO2 film (25 nm thick) onto a Si 〈110〉
substrate. The structures were defined by a positive photo resist with a

thickness of 130 nm, using a SF6 reactive ion etching to transfer the pat-

tern into the Si layer. The two Si lines are about 40 nm high and 520 and

260 nm wide, respectively. The separation between the lines results in a
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Figure 4.25: Top: Electron microscopy of the <110>-oriented Si double-
line. Bottom: Atomic force microscopy of the exploited region.

edge-to-edge distance of 1.7 µm. The line length is about 30 µm, much

larger than the beam footprint. The scanning electron microscopy of the

lines patterned on the Silicon-on-insulator substrate is shown in Fig. 4.25

(bottom). The zoomed region (inset) emphasizes the area investigated dur-

ing the ptychography scan. The direction of translation tx is shown through

white ellipses indicating the two first illuminated areas. The same region

as seen by atomic force microscopy is in Fig. 4.25 (top). This experiment

allowed to investigate in Bragg condition, the (220) reflection of Si, with

the line axis lying in the scattering plane (Fig. 4.25).

The phase retrieval algorithm developed in [Godard et al., 2011] is per-

formed in the reciprocal space frame and the conjugated direct space frame.

The first step consists in the estimation of the 3D sample scattering func-

tion, ρ(r), and the 3D illumination probe, E(r). The algorithm (cPIE),

which involves a series of K iterations and N sub-iterations, is summarized

in the following:

(i) The exit-field ψk,j is calculated using the Born approximation. In
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the scalar approximation, it is simply given by:

ψk,j(r) = Ej(r)ρk,j(r). (4.16)

(ii) The far-field distribution Ek,j corresponding to the propagation

of ψk,j is obtained from

Ek,j(q) =
(

Fψk,j

)

(q) (4.17)

where F denotes the Fourier transform operator.This quantity is cor-

rected so that the calculated intensity matches the experimentally

measured data.

(ii) The last step allows to update the object estimate, taking into

account the probe function and the overlapping condition

Figure 4.26: Color rendition of the reconstructed probe at the sample posi-
tion. The retrieved illumination function is shown in the plane perpendic-
ular to the X-ray beam propagation.

In Fig. 4.26 the reconstructed probe at the sample position is shown. The

color rendition of the retrieved illumination function is shown in the plane

perpendicular to the x-ray beam propagation. On the right, the color code

is indicated as a reference: the length of the arrow and the angle correspond

to the amplitude (expressed in linear scale) and the phase of the wavefront,

respectively. In the same figure, the reference scale of 200 nm is given to

estimate the transverse dimensions of the focal spot. The reconstructed

phase measured at the focal spot is constant in perfect agreement with our

simulations and the results previously discussed. The focal spot is elongated

in the horizontal direction, as a consequence of the horizontal aperture of

20 µm and its size is found to be larger than the one expected in the case

of a full illuminated FZP. The asymmetry in the horizontal direction is

also stronger than the one observed with the CDI approach. These two

effects are not due to an ambiguity in the proposed reconstructions but they

are attributed to a wrong calibration in the lateral shift of the aperture.
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The central stop is directly illuminated by the central part of the beam

propagated from the slits position to the FZP plane (that shows an higher

intensity with respect to the lateral fringes due to the slits scattering). The

amplitude fluctuations within the focal spot are attributed to computational

artefacts arising from intensity normalization.

4.4 Conclusions

A numerical approach to characterize the coherent complex field at the

focus of a partially illuminated circular FZP has been developed. System-

atically varying the illumination conditions, we observe noteworthy changes

in the characteristic sizes of the beam at the focal plane. Namely, the fo-

cal spot size and the focal depth are found to be diffraction limited, with

size increasing by decreasing the illuminated area on the lens. By means of

the proposed calculations, the role of the different elements in our set-up,

e.g. size and position of the slits defining the illumination of the FZP, can

be understood and predicted. In particular, we learned the importance of

defining the partial illumination via an aperture placed very close to the

FZP. This helps in avoiding the effects due to the wavefront propagation

between slits and FZP which induce asymmetric intensity of the focal spot.

This has an important impact for a reliable characterization of nanoscale

objects using coherent diffraction techniques both in Bragg geometry, where

the crystal deformation is encoded in the phase of the reconstructed com-

plex function, and in forward direction. Finally, calculations of the far field

amplitude produced by a partially illuminated FZP, have been used to sup-

port the reconstruction of the complex illumination function at the focal

plane from experimental data. Even in presence of an asymmetry of the

focal spot, due to the specific setup used, the reconstructed wavefront has

been found to have a constant phase within the central spot, in agreement

with our calculations. The use of the new set-up recently developed at the

beamline ID01 (see Appendix B) will provide us with new opportunities for

a direct wavefront characterisations, through the increased resolution for the

measurement of the far field data, and a better control of the illumination

conditions of the focussing optics. The use of the ptychography approach

on a test sample, for the characterisation of the wavefield produced by FZP

in the same illumination conditions presented in this manuscript confirmed

the results obtained and presented in this chapter.



Chapter 5

Coherent diffraction imaging

on strained nanowires: beyond

the ideal case

In this chapter, I report on the application of coherent diffraction imag-

ing technique to recover the strain in nanostructures with the aim of showing

how, in reality, experimental cases are compared to the CDI ideal case. In

particular, I discuss the radiation damage which occurs when high brilliance

radiation are used to illuminate nanosized structure. In addition, through

numerical examples, I will show that the reconstructed nanostructure and,

in particular, the correct interpretation of its displacement field, requires

a precise knowledge of the illumination function. Finally, I show that the

strain in nanowires can be retrieved using CDI even in presence of stacking

faults (i.e. growth defects), choosing the adequate Bragg reflection that is

not affected by these defects.

5.1 Time-dependent analysis on the strain

evolution of sSOI lines

When x-ray diffraction techniques and, in particular, high brilliance

beams are used to investigate single nanosized objects, radiation damage

of the crystalline structure may occur. Radiation damage was already

observed when studying macromolecular compounds through multiple iso-

morphous replacement (MIR) and multiwavelength anomalous dispersion

(MAD) phasing methods by Ravelli and McSweeney [2000] and with coher-
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ent x-ray diffraction by Marchesini et al. [2003a]. In that case, the dose

estimated from the radiation characteristic was 2×107 Gy (1Gy = 1 J/kg).

As in the case of inorganic compounds there is no knowledge of a dose limit,

due to the fact that these compounds do not present specific weak bonds

(-CO2, S-S), they are less likely to break under irradiation. However, it

was observed by Favre-Nicolin et al. [2009] that nanowires can also break

when illuminated with highly intense x-ray beams. In the particular case

of the cited reference, the three-dimensional scattering from a single wire

was measured using a rocking scan by rotating the sample over a 0.8◦ an-

gular range with 0.02◦ steps. A 50 sec exposure time per image was used to

improve the signal to noise ratio. This procedure was repeated four times

in order to accumulate more statistics for a successful reconstruction. For

these measurements, the photon flux of the experimental radiation was esti-

mated to be ≈ 4 ph/s/Å2. Given that the silicon absorption cross-section at

E=10 keV is evaluated as σ= 1.5× 105Å2, this results in a absorbed power

of 0.6 eV/s per atom, or equivalently 2 × 106 Gy/s, that corresponds to a

total dose of 8 × 109 Gy/s per scan. The wire breaking in that case was

attributed to the presence of defects in the crystalline structure considered

as weak points more sensitive to the irradiation.

In this section, the radiation damage observed during a coherent diffrac-

tion experiment is detailed in the case of stressed Silicon-On-Insulator lines

(sSOI). A time-dependent analysis revealed that the damage consists in

this specific case of a relaxation of the wire structure. Calculations have

been performed in order to estimate the variation of the displacement fields

during the relaxation of the investigated nanostructure.

5.1.1 Engineered strain in sSOI: sample description

Stressed silicon-on-insulator (sSOI) [Langdo et al., 2004, Ghyselen et al.,

2004] layers are widely implemented in Metal Oxide Semiconductors Field-

Effect-Transistors (MOSFET) devices mainly because of the presence of

strain leads to an enhancement of electron mobility [Fischetti et al., 2002,

Baudot et al., 2009]. As example, for the 〈110〉 oriented channel the electron

mobility improves of 77% and 135%, with respect to the unstrained SOI,

due to an initial biaxial stress in sSOI layers of 1.55 GPa and 2.09 GPa,

respectively [Baudot et al., 2009].

The schematic of the patterned sSOI lines studied with coherent diffrac-

tion imaging is shown in Fig. 5.1. These lines are obtained by lithography
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Figure 5.1: Schematic (front view) of the patterned sSOI lines. (Modified
from [Baudot et al., 2009])

from a (001) oriented sSOI substrate. They are patterned in the [110] di-

rection, that corresponds to the usual direction of n-MOSFET channels for

which electron transport is improved. A misorientation of ≈ 1◦ is achieved

between the strained Si lines and the Si substrate. The strained silicon

lines have a width W=225 nm and a height of 70 nm and they are de-

posited on a 145 nm SiO2 box. The distance d between two consecutive

lines is ≈ 800 nm.

The strain in the SOI layers is artificially implemented using the top-

bottom approach (cf. Chapter 1, pag. 7). A relaxed SiGe layer, free

from defects and dislocations, is deposited on a Si substrate. This layer is

mechano-chemically polished and a Si layer is epitaxially grown on it. The

Si layer is therefore strained with a biaxial tension in the epitaxial planes.

The oxide SiO2 is further deposited on the strained Silicon. Hydrogen or

helium implantation in the Si substrate underneath the SiGe layer creates

defective layer in which a fracture can propagate. The multilayer structure

is reversed and bonded on a new Si layer with deposition of SiO2 and the

upper crystal is removed after an annealing. This develops the fracture in

the implemented zone. Hence, a Si-free tensile silicon on insulator (sSOI)

substrate is finally obtained after the selective etching of the top SiGe layer.

A sketch of the fabrication process of the strained silicon layer to be etched

can be found in Fig. 5.2.

The influence of size and thickness on the strain behaviour observed in

strained SOI were studied by Baudot et al. [2009] and Moutanabbir et al.

[2010]. This last paper evaluates through UV micro-Raman spectroscopy

the post-patterning strain for both thin (20 nm) and thick (60 nm) nanos-
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Figure 5.2: Schematic of the fabrication process of strained Si ultrathin
layers directly on oxide by using thin layer transfer. (a) Growth of the re-
laxed Si1xGex virtual substrate; (b) growth of the biaxially tensile strained
Si on the Si1xGex virtual substrate;(c) hydrogen ion implantation into the
grown heterostructure; (d) bonding of the hydrogen implanted heterostruc-
ture to a SiO2/Si substrate; (e) thermal annealing induced layer exfoliation
around the hydrogen implantation depth; (f) thin strained Si layer directly
on SiO2/Si obtained after the removal of the residual Si1xGex.( [Moutanab-
bir et al., 2010])

tructures with the lateral dimensions W in the range of 80-400 nm. They

found that about 40-50% of the initial strain is maintained in the 20 nm

thick nanostructures, whereas this fraction drops significantly to ≈ 2−20%

for the 60 nm thicker ones.

The average strain of the studied sSOI has been determined during graz-

ing incidence x-ray diffraction (GIXD) experiments performed at the ESRF

and reported in Ref. [Baudot et al., 2009]. The average strain calculated

along and perpendicular to the line, i.e. along the (22̄0) direction, is plotted

versus the line-width W in Fig. 5.3 for 70 nm high lines. Along the line, pat-

terned along the [110] direction, the strain is maintained for both strained

Si thickness even for the narrowest lines. Along the small line dimension,

the strain of the thicker lines (70 nm) is fully relaxed whatever the width,

but a significant strain is maintained for the thinner lines (10 nm) even for

the narrowest lines. Its value decreases from ǫ = 0.58% for W=231 nm to

ǫ = 0.36% for W=77 nm. Such results show that the stress relaxation due

to patterning is more critical for thicker strained Si layers, i.e. for smaller

aspect ratio. It can be an issue for the use in partially depleted sSOI devices.
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Figure 5.3: Strain calculated from GIXRD in-plane measurements as a func-
tion of the sSOI line width with a height of 70 nm along and perpendicular
to the lines. R2 is the planar reference before the lines etching. (Modified
from [Baudot et al., 2009])

5.1.2 Experiments

Coherent diffraction imaging experiments have been performed at the

undulator beamline ID01 at the ESRF. The experimental set-up has been

already described in Chapter 2. Due to the fact that silicon is a weak

scatterer, the aperture of the slit placed 1.15 m upstream the lens position

is set to 80v×30h µm
2, slightly larger than the transverse coherence length,

to increase the photon flux. The wavefront characteristics obtained with

the employed set-up has been studied in the Chapter 4 of this manuscript.

In figure 5.4 the schematics of the scattering geometry for a given Si

Bragg reflection is illustrated. The asymmetric (out-of plane) (11̄3)Si Bragg

reflection has been chosen. This choice is motivated by the necessity of iso-

lating the contribution of the scattering due to the Si-line from the one of

the substrate. The separation of these peaks is larger in the reciprocal space

for the chosen reflection due to the misorientation of ≈ 1◦ between lines and

substrate in the azimutal angle. The incoming radiation (at E=8 keV) is

inclined with respect to the sample surface by θi = 52.3◦ and the diffracted

beam is collected with a MAXIPIX detector (for detail see Chapter 2) at

θf = 56.48◦. This configuration is calculated considering the theoretical

Bragg angle of the (11̄3) reflection, θB = 56.48◦ and the inclination of the

corresponding planes with respect to the [110] orientation. The patterned

silicon lines are placed parallel to the direction of propagation of the co-

herent beam. In this geometry the displacement field can be probed in the

transverse section of a single strained line from a two-dimensional scattering.
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Figure 5.4: Sketch of the experimental set-up. The coherent beam is focused
with a FZP. Lines are placed at the focal position parallel to the beam. The
typical scattering registered for the (11̄3) Bragg reflection is also shown.

5.1.3 Finite element method: calculations

In figure 5.4 a typical 2D measurement of the scattered beam at the de-

tector plane is given. As expected [Gailhanou et al., 2007, Minkevich et al.,

2008], the diffraction pattern is elongated in the horizontal direction, i.e.

kx direction. The theoretical model based on the geometry of the studied

object with different amplitudes of the displacement field is introduced in

order to explain this diffraction pattern. The modelled system is a perfect

monocrystalline line, infinite in the y direction and with a constant trape-

zoidal section on the (x, z) plane. In these calculations the line is considered

isolated from the substrate and the scattering contribution from the latter

is therefore not visible.

The complete displacement fields ux, uy and uz were simulated using

finite element methods (FEM) by S. Baudot. In figure 5.5 the effect of

ux and uz is shown for the section in the (x,z) plane. Arrows are used

to depicted the direction of the displacement, both in x and z directions,

with respect to the reference positions of an unstrained object. In this

case the numerical displacements is relative to the bulk Si1−xGex lattice.

The maximum values of displacement along z and x directions are reached

at the two edges crossing the x axis of the silicon lines. The effect that

the calculated strain produced on the Si-line is a bending of the entire
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Figure 5.5: Simulated displacement field, using FEM in the trapezoidal
section of the line in the (x, z) plane. The calculated displacements is
relative to a bulk Si1−xGex lattice. (Courtesy of S. Baudot)

Figure 5.6: Left: Color rendition of the complex-valued 2D diffraction pat-
tern calculated from the displacement field depicted in Fig. 5.5 for the (11̄3)
Bragg reflection. Right: Color rendition of the complex object in the direct
space, calculated through the back Fourier transform from scattering to the
left.

crystallographic structure. This was also demonstrated by Moutanabbir

et al. [2011] by means of TEM measurements on a similar system. The

simulated displacement field was calculated using FEM (Ansys softwave)

and the resulting trapezoidal section of the line in the (x, z) plane is plotted

in Fig. 5.5. The size of the section in the same plane is 200×70 nm2. The

coherent scattering has been calculated from this model in the framework

of the kinematical approximation, i.e. using the Fourier transform. This

approximation is justified by the low value of the reflectivity and by the

fact that the angles of incidence and exit are not in grazing condition. The
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Figure 5.7: a) The measured scattering for a single line is compared to b)
the calculated 2D reciprocal space map for the (11̄3) Bragg reflection.

color rendition of the resulting field in the reciprocal space is shown in

Fig. 5.6 (left). Here the phase are represented by color and the amplitude

by saturation of colours. The vertical extension of the (1 1̄ 3) intensity

is also an indication of the maximum value of the ǫzz strain component.

The complex function describing the silicon line, calculated through a back

Fourier transform from the scattering, is given Fig. 5.6 (right). The phase

Φ in the direct space is used to calculate the displacement field, knowing

that:

Φ ≈ G11̄3 · u ≈ G11̄3 uz (5.1)

In first approximation, in the chosen Bragg reflection we are mostly

sensitive to the displacement field in z direction, even if it also contains

information on the lateral deformation ux.

In figure 5.7 the intensity of the registered scattering is shown and com-

pared to the calculated intensity (Fig. 5.7b), on a logarithmic scale. The
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Figure 5.8: a) Mapping in real space for the (11̄3) Bragg reflection around
different lines. Colours correspond to the total intensity received by the
detector at a given sample position. Intensity is expressed in logarithmic
scale. b) SEM image of the Si-lines. The irregularity of the lines is due to
the mechanical drift of the piezostage during measurements.

diffraction pattern recorded during the experiment for the (1 1̄ 3) is mainly

due to the contribution from a single silicon line. This is because the trans-

verse dimensions of the available (partially) coherent beam allows to select

the contribution of only one line from the pattern. In Fig. 5.8a a real space

map of the Si-lines array is shown to demonstrate the sensitivity to the

separation of two consecutive lines. Here intensity is plotted using a loga-

rithmic scale. Looking at this figure, lines seem to be not straight. This is

the clear effect of the positioning motor used to make the scan that shows

low movement repeatability of mechanical drift, as the SEM image of these

lines demonstrates (Fig. 5.8b).

The measured reciprocal space map and the calculated diffraction pat-

tern from a single line are compared in Fig. 5.9. They are very similar in

particular concerning the kz = L modulation. In this direction, correspond-

ing in real space to the direction normal to the surface, fringes are directly

related to the line thickness (≈ 70 nm). The signal extension observed in

the H direction is much larger. This can be explained only as an effect of
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the physical bending of the entire structure in the plane (x,z). Therefore,

the full reciprocal space image can only be understood considering the total

displacement field inside the silicon line.

<1.02 <1.00 <0.98
H=-K

2.97
2.98
2.99
3.00
3.01
3.02
3.03

L

Iobs

<1.02 <1.00 <0.98
H=-K

Icalc

Si Line=Phase and amplitude

2.97
2.98
2.99
3.00
3.01
3.02
3.03

L

Acalc=Phase and amplitude0>

Figure 5.9: Calculated complex-valued function at the sample position from
FT of complex scattering (Si line). Calculated complex-valued function at
the detector (Acalc) from a FT of the fit using the asymmetric polynomial
representation of the displacement uz. Phase is represented by colours and
intensity (expressed in logarithmic scale) by the intensity of the colours.
Two dimensional diffraction patterns collected for the chosen silicon line
at the time T=0 sec (Iobs) compared to the calculated intensity (Icalc).
Intensities are expressed using the same logarithmic scale.
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Figure 5.10: Calculated complex-valued function at the sample position
from FT of complex scattering (Si line). Calculated complex-valued function
at the detector (Acalc) from a FT of the fit using the asymmetric polynomial
representation of the displacement uz. Phase is represented by colours and
intensity (expressed in logarithmic scale) by the intensity of the colours.
Two dimensional diffraction patterns collected for the chosen silicon line at
the time T=800 sec (Iobs) compared to the calculated intensity (Icalc).
Intensities are expressed using the same logarithmic scale.

5.1.4 Data analysis

A time-dependent characterisation has been performed on a single sil-

icon line. The coherent x-ray beam, focused in a spot with a trans-

verse size of 300 × 500 nm2, carries in term of photon flux 109/1.5 × 105

ph/s/nm2 ≈ 5 × 104 ph/s/nm2. As during local strain measurements of

nano-semiconductors using monochromatic and high brilliance coherent ra-

diation and depending on the characteristic of the studied nanostructure
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Figure 5.11: Calculated complex-valued function at the sample position
from FT of complex scattering (Si line). Calculated complex-valued function
at the detector (Acalc) from a FT of the fit using the asymmetric polynomial
representation of the displacement uz. Phase is represented by colours and
intensity (expressed in logarithmic scale) by the intensity of the colours.
Two dimensional diffraction patterns collected for the chosen silicon line at
the time T=1600 sec (Iobs) compared to the calculated intensity (Icalc).
Intensities are expressed using the same logarithmic scale.

radiation damage may occur, the available x-ray beam has been, therefore,

used to illuminate the same portion of a single line with the aim of inducing

radiation damage and investigate its nature and its characteristic time of

relaxation. Several 2D diffraction patterns of the described Bragg peak,

have been collected during the experiment with an acquisition time of 100

sec. The most relevant detector images are shown in Figs. 5.9-5.12 and indi-

cated by (Iobs) at different acquisition time: T= 0 sec (Figs. 5.9a), T= 800
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Figure 5.12: Calculated complex-valued function at the sample position
from FT of complex scattering (Si line). Calculated complex-valued function
at the detector (Acalc) from a FT of the fit using the asymmetric polynomial
representation of the displacement uz. Phase is represented by colours and
intensity (expressed in logarithmic scale) by the intensity of the colours.
Two dimensional diffraction patterns collected for the chosen silicon line at
the time T=2900 sec (Iobs) compared to the calculated intensity (Icalc).
Intensities are expressed using the same logarithmic scale.

sec (Figs. 5.10a), T= 1600 sec (Figs. 5.11a) and T= 2900 sec (Figs. 5.12a).

In each image, the contribution of the Si substrate, visible at L=2.995 has

been masked for analysis.

Numerical calculations have been performed to fit these experimental

data. In the numerical approach used for this study the displacement field

uz has been approximated with a polynomial depending on both z and x

components. In this approach, ux is not introduced and its changes have



116
Chapter 5. Coherent diffraction imaging on strained nanowires: beyond

the ideal case

not been studied, as the approximation in Eq. 5.1 have been assumed. As

a starting point, we used a symmetric polynomial series in which only even

terms for the horizontal component x (11̄3) have been considered. This

choice leads to a symmetric diffraction pattern at the detector position as

the one shown in Fig. 5.7b. However, in the discussed case, the asymmetry

that is visible in the experimental 2D scatterings forces us to introduce at

least one odd term in x. The starting polynomial is then minimized us-

ing the Powell method [Mathews and Fink, 2003] to calculate the actual

displacement fields in the relaxing sSOI line, that generate the diffraction

patterns at the time T0 +∆T . The minimization process on the asymmet-

ric polynomial series is repeated until an agreement with all the selected

scatterings is found. In figures 5.9-5.12, the intensities (indicated by Icalc),

calculated from the model, are compared to the experimental data (Iobs)

using the same logarithmic scale and they are found to be in good agree-

ment. The complex scattering functions at sample position (Si line) have

been calculated through a back FT from the simulated complex-valued fields

at the detector plane (Acalc). In a coherent diffraction experiment, these

fields are used to calculate from Eq.5.1 the displacement and, consequently,

the strain of the investigated nanostructure.

The polynomial displacement fields obtained from the proposed time-

dependent study are plotted in Fig. 5.13, for different times T. uz visibly

changed from T=0 sec (Fig. 5.13a) to T=2900 sec (Fig. 5.13d), showing a

quite less curved profile. As in the polynomial approximation the displace-

ment field uz depends on the coordinates x and z, the strain fields ǫzz and

ǫzx can be easily calculated with a partial derivation of uz with respect to z

and x, respectively. In figure 5.14, ǫzz (top images) and ǫzx (bottom images)

retrieved from the time-dependent analysis of radiation damage are shown

at different times: a) T= 0 sec, b) T= 800 sec, c) T= 1600 sec and d) T=

2900 sec. Looking in particular at the evolution of the strain fields ǫzx that

contains the information concerning the bending of the structure, the silicon

line begins to relax already at T=800 sec reaching the maximum relaxation

at T= 2900 sec. Moreover, ǫzx presents a slight asymmetry in the x direction

that explains well the asymmetry in intensity distribution of the diffraction

pattern registered during the experiment. This effect is attributed to the

fact that the structure begins to relax from one side, where probably the

damage is occurring, i.e. on the side where the the silicon/oxide bond has

been broken.
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Figure 5.13: Displacement field uz obtained from the time-dependent anal-
ysis of radiation damage at different time: a) T= 0 sec, b) T= 800 sec, c)
T= 1600 sec and d) T= 2900 sec. Colours represent scale units expressed
in nanometres.

The relaxation can be also seen if referring to the strain field ǫzz. Here,

its curved shape, evident in Fig. 5.14a (top), is clearly more relaxed in

Fig. 5.14c (top) and the structure goes towards the lattice parameter of the

bulk Si reference, in this case the silicon. Unfortunately, the refinement pro-

cess seems to be not correct enough for ǫzz. The strain variation observed

in Fig. 5.14, b-c, has a no logical evolution and reconstructed strain values

are incoherent with respect to the variation observed in Fig. 5.14, a-d. This

can be attributed to the fact that the position of vertical fringes, that are

not clearly visible in the intermediate experimental data, are not correctly

reconstructed and it does not allow to solve the strain in the vertical direc-

tion. However, from the comparison between the strain retrieved at T=0

sec and T=2900 sec, a logical sequence can be found even if the algorithm

did not converge well for the intermediate images (registered at T=800 sec

and T=1600).

The mean values of ǫzz and the square root of the averaged ǫ2zx calculated

at different times are summarised in Table 5.1. 〈ǫzz〉 varies around an almost

constant value when the Si line relaxes while
√

〈ǫ2zx〉 decreases continuously
during the relaxation process.
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Figure 5.14: Strain fields ǫzz and ǫzx from time-dependent analysis of radi-
ation damage at different time: a) T= 0 sec, b) T= 800 sec, c) T= 1600 sec
and d) T= 2900 sec

Strain 0 sec 800 sec 1600 2900

〈ǫzz〉 −1.089% −1.026% −1.053% −1.053%

√

〈ǫ2zx〉 0.0436% 0.0332% 0.0283% 0.0200%

Table 5.1: Mean valued calculated for ǫzx and ǫzx at t=0, 800, 1600 and
2900 sec.

The origin of the radiation effects induced in strained or unstrained SOI

is still object of discussion. Damage in silicon layers irradiated with x-rays

also occur, as demonstrated by Polvino et al. [2008], when it is capped with

another thin film, both epitaxial or amorphous, as in the considered case.
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In the case of SOI wafer, the presence of a thin layer of SiO2, i.e. a thin

layer of a buried thermal oxide, with an amorphous character, may origi-

nate oxidation process when illuminated with an x-ray radiation. In this

case, we may have a complete mechanical relaxation of the structure. A

second possible damage mechanism that may explain changes observed in

the displacement field uz can be attributed to the formation of non radia-

tive defects. Mashkov et al. [1996] observed using an ionization radiation

(in that case x-rays) an irreversible creation of defects starting from the net-

work sites in the amorphous insulator and, later, Stevens-Kalceff [2000] re-

ported of near-infrared emission in oxygen deficient electron-irradiated SiO2

polymorphous. Specifically, they imaged the microscopic spatial distribu-

tion of interstistial molecular oxygen, to which the radiation damage was

attributed. In addition, it has been already reported by Peled [2003] that

synchrotron radiation can reduce SiO2 to form Si nanocrystals and free oxy-

gen. Thus, the damage mechanism activated by any free oxygen could start

at the Si/SiO2 interface travelling upward thought the crystalline structure.

SEM observations are in favour of this interpretation although we are not

sure to have clearly localised the beam trace on the sample.

Finally, the asymmetry observed in the experimental diffraction patterns

shown in Figs. 5.10-5.12 (a) is attributed to an asymmetric relaxation of

the silicon lines. This effect is also confirmed by the numerical analysis.

When looking at Figs. 5.14, a-d, a slight asymmetry is observed in the

calculated strain field ǫzz and ǫzx in real space. Looking at the variation

of the diffraction pattern, we can state that the elongated shape in the

reciprocal space is due to the bending of the nano-object as the diffraction

is less horizontally extended while the silicon line relaxes.

5.2 Strain imaging and illumination function

In chapter 4, the role of the illumination function has been discussed

when coherent diffraction imaging techniques are used to investigated the

strain in single nanostructures. There, the full characterisation of the coher-

ent wavefront in the case of our experimental conditions has been analysed

and will be discussed in details.

In this section, numerical calculations are used to illustrate, by means of

two examples, how the displacement fields reconstructed from the coherent

scatterings strongly depends on the character of the complex-valued illumi-
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nation function, i.e. on its phase. These examples are useful to underline

the necessity of disentangling the contributions of the illumination probe

and the investigated nanostructure in the reconstructed exit field, at the

sample position.

To this aim, we use the simulated strained silicon line, described in the

previous section, as numerical sample and we multiply it by a Gaussian

function, to simulate the coherent illumination occurring during a CDI ex-

periment. The numerical focal spot size, measured at the FWHM, is ≈ 200

nm. For simplicity only the two-dimensional section in the xz plane has

Figure 5.15: Calculated two dimensional diffraction patterns obtained
through a FFT of the wire section multiplied by the illumination function
with a constant phase within the focal spot.

Figure 5.16: Calculated two dimensional diffraction patterns obtained
through a FFT of the wire section multiplied by the illumination function
with a Gaussian phase within the focal spot.
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Figure 5.17: Calculated two dimensional a) amplitude and phase in real
space. Phases in b) and c) are obtained by Fourier transforming the complex
scattering in Figs. 5.15 and 5.16, respectively.

been considered. In the first example, the phase of the focal spot has been

chosen constant (see Fig. 5.15). The diffraction pattern, calculated as the

square modulus of the Fourier transform of sample multiplied by illumina-

tion function, is shown in Fig. 5.15 on the right. The same calculation has

been done considering in this case the same illumination function in terms

of amplitude and size (FWHM=200 nm) but showing a Gaussian phase

within the focal spot Fig. 5.16. In particular the chosen phase varies in the

range of (0, 2π) from the maximum of the central peak to the tails. Also

in this case, the resulting function is obtained multiplying the numerical

sample with the probe, is Fourier transformed to obtain the 2D scattering

in reciprocal space (Fig. 5.16 on the right).

The calculated reciprocal space complex-valued function, corresponding

in this case to the 2D scattering, has been used to calculate, through a

back Fourier transform, the real complex-valued exit field at the silicon line

position. As shown in Fig. 5.17a, the calculated amplitude is not constant

all over the 2D section in the considered plane. This effect can be easily

understood considering that the object is illuminated with a Gaussian-like

beam with the maximum intensity confined into the FWHM. The amplitude

modulations observed in the real space also explain the changes observed

in the calculated coherent scattering in Figs. 5.16 and 5.17 with respect
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Figure 5.18: Calculated displacement field from the phases shown in
Fig. 5.17 obtained for the investigated Bragg reflection (11̄3). The dis-
placement field 3uz contains the contribution of the illumination function.

to the calculation shown in Fig. 5.7 (see previous section). The two outer

lobes in the intensity distribution become smaller and less pronounced. As

discussed in the previous section, the maximum of the displacement field

in the strained SOI lines along z and x directions are reached at the lateral

edges of the silicon lines. Treating the resulting exit field calculated in real

space without disentangling the illumination probe contribution corresponds

to remove or at least underestimate the contribution of a small slab of crystal

at these edges.

The retrieved phases in real space are shown in Fig. 5.17, b and c, for

the two considered illumination conditions. They are used to calculate the

displacement field u that contains, according to Eq. 5.1, the contribution

from both ux and uz. For (11̄3) Bragg reflection, the 2D diffraction pat-

tern gives access to ux + 3uz. Results are shown in Fig. 5.18 in the case of

an illumination with a constant phase (Fig. 5.18a) and a Gaussian phase

(Fig. 5.18b) within the focal spot . To underline the influence of the illu-

mination probe to the retrieved phases and displacement fields, both are

plotted using the same scale (colorbar). Comparing Figs. 5.18, a-b, the

displacement fields retrieved from the calculated scattering using different

illumination conditions are not in agreement. The displacement assumes

different values in the line section, as shown in Fig. 5.18b, with respect to

the one obtained from a probe with a constant phase within the focal spot

and shown in Fig. 5.18a. In particular, the latter result is similar to the dis-

placement field calculated using FEM without considering the contribution
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Figure 5.19: Schematics of the contributions (amplitude and phase) of the
coherent probe along the sSOI lines. In this direction, the phase variation
of the probe has to be taken into account to study the influences of the
illumination when a CDI approach is used to investigate the nanostructure.

the wavefront at the focal plane.

This example confirms again that the wavefront at the focal position

strongly influences the investigation of the single nano-object, in particular

when coherent x-ray diffraction techniques are used to image the displace-

ment fields and consequently the strain in the probed crystalline structure.

As discussed in the case of a single strained silicon line, if the complex-valued

illumination function is unknown, its contribution cannot be disentangled

from the phase of the retrieved complex exit field at the sample position.

As result, this phase cannot be used to describe correctly the actual dis-

placement in the nanostructure. From these examples, it is evident that

the imaging of strained nano-object has to be coupled with an accurate

characterisation of the illumination function. A more precise study may

also include the third dimension, i.e. the coherent wavefield and the size

of the crystalline structure in the direction of propagation. However, this

calculation is more complicated with respect to the two dimensional cases

discussed in this section as, in a three dimensional study, the phase varia-

tion in the direction of propagation typical of the illumination probe must

be considered (see Fig. 5.19), together with the absorption effects.
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5.3 Nanowires with stacking faults

Homogeneous nanowires without any external stress only present strain

on the atomic layers that are closer to the surface due to the free-boundary

relaxation as discussed in Chapter 1. Given the limited real-space resolution

obtained by CDI (5-20 nm, see Chapter 2, section 2.3), this outer layer con-

traction cannot be measured and, in this case, coherent scattering around a

Bragg reflection will be dominated by the Fourier transform of the shape of

the nanowire. As by definition nanowires have a large aspect ratio, i.e. their

length is much larger than their diameter (that is generally smaller than the

illumination probe), the scattering signal can be considered as a quasi-2D

signal corresponding to the 2D FT of the nanowire cross-section.

In the case of an heterogeneous nanowire, CDI is sensitive to the dis-

placement and the chemical nature of all atoms. In this section, as example,

the case of a numerical [001]WZ-oriented hexagonal InAs nanowire, with an

InP insertion, is considered. Figure 5.20 shows the numerical calculations

of the strain field inside the nanowire as obtained by atomistic simulations.

The InP insertion has a lower bulk lattice parameter than InAs (aInPWZ=

0.415 nm, aInasWZ = 0.4268 nm), so that the insertion contracts the lattice. In

this calculations, the InAs part of the nanowire has a wurtzite structure.

The radius of the regular hexagon, corresponding to the wire section and

without any compression or expansion, is R = 60 nm. Several wire lengths

and insertion thicknesses were simulated to test the sensitivity of the CDI

approach. In particular the cases of two different insertion heights, 3 and

15 nm, are discussed. The relaxed atomic positions are computed using

Keating’s valence force field (VFF model) [Keating, 1966].

The amplitude of the displacement field in the nanowire due to the

presence of the insertion (computed relatively to a perfect InAs lattice) has

a maximum value of 1-2 unit cells in the horizontal direction (ux), depending

on the thickness of the insertion; in the vertical direction (uz), the maximum

displacement varies with the InP thickness t, ranging from 0.16 (t = 1.5 nm)

to 0.6 unit cells (t = 15 nm). The contraction of the InAs crystal is due

to the presence of InP. the calculated intensities are shown in Fig. 5.20,

a-d, for a 3 nm insertion and in Fig. 5.20, e-h, for a 15 nm InP insertion.

Some differences can be observed comparing the scattering calculated with

the two insertions. In particular, the scattering calculated from the larger

insertion of t = 15 nm (Fig 5.20 (g) and (h)) shows a well-separated and a

more intense peak with respect to the case of 3 nm insertion appears due to
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Figure 5.20: Atomistic simulations of an InAs wurtzite nanowire (diameter
= 60 nm, height = 100 nm) with (a)-(d) a 3 nm and (e)-(h) a 15 nm InP
insertion: (a, e) the radial displacement (along [110], expressed relatively to
the perfect InAs lattice, in unit cells), (b, f) the axial displacement (along
[001]), the calculated intensities around the (c, g) (004) and (d, h) (202)
reflections, with a logarithmic colour scale. The map coordinates are given
in reciprocal lattice units (r.l.u.) relative to InAs.

the InP contribution. Is is worth noticing that this second peak is roughly

two orders of magnitude less intense than the main InAs peak. Due to the

smaller lattice parameter, the scattering from the InP insertion occurs at

higher angles. The asymmetry in the diffraction pattern in presence of an

insertion is a clear sign of the strain field.

From these simulations it can be deduced that it should be possible to

measure a scattering signal specific to a small (a few nm) insertion, assuming

at least three or four orders of magnitude in the measured intensities of the

experimental data.

This can be experimentally achieved when using CDI technique to image

the strain at the nanoscale. However, a successful experiment in term of the

diffracted intensity is a compromise between the incoming photon flux and

the scattering power of the investigated nanowire, the latter being roughly

proportional to the electron density of the material.

The numerical calculations presented until now assume a perfect

InAs/InP nanowire, without any structural faults and demonstrate that
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during a coherent diffraction experiment, the scattering around a chosen

Bragg peak is sensitive to the displacement from a perfect periodic lattice

even if this is due to an insertion smaller than the achieved resolution. This

is possible as this insertion produces a shift of the crystalline plane into the

crystal.

In reality, nanowires without defects are difficult to achieve. It is, there-

fore, important to evaluate, via numerical calculations, the influence of

faults on the coherent scattering. In addition, calculations discussed in

the following will be used to check if stacking faults, i.e. faults occurred

during growth via bottom-up techniques, can hide the scattering signal due

to a strained lattice and, consequently affect the retrieved phase.

Stacking faults commonly occur in nanowires grown by epitaxy and

sometimes may lead to a periodic twinning structures. This is especially

true for III-V nanowires grown by VLS, as the geometry of the wire and

growth kinetics may stabilize the metastable wurtzite structure instead of

the zincblende bulk phase. In the following, I present a theoretical study

on the influence of stacking faults when a nanowire with defects is probed

with a coherent diffraction technique. In addition, an experimental example

is also offered in the case of heterogeneous InSb/InP nanowires, presenting

stacking faults in the InSb section.

In the case of a nanowire showing a wurtzite crystalline structure, a

simple stacking fault can be described according to the following sequence:

AB|AB|AB|AB|CB|CB|CB|CB|CB, (5.2)

where the first part represents the unfaulted ‘AB’ sequence. In this example,

the unfaulted series is followed by a ‘CB’ sequence, due to the fact that all

atoms are shifted by

v =
1

3
(11̄0)WZ (5.3)

from their position in the normal sequence. This abrupt shift produces a

specific interference pattern around some specific reflections; the scattering

vector corresponding to these Bragg reflection is not orthogonal to v and all

the interferences produced in the diffraction pattern generated by a faulted

structure cumulate with the contributions coming from the deformation

induced by the strain, when it is present.

To show the influence of defects in the diffraction patterns, the scatter-

ing from InAs/InP nanowires, epitaxially grown on the InP substrate, has
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Figure 5.21: Simulation of the influence of stacking faults on the coher-
ent scattering from InAs/InP nanowires (diameter = 60 nm, height = 100
nm) around a (202)WZ reflection. 2ux + 2uz for (a) the original InAs/InP
nanowire obtained using atomistic simulations, and in the case of (d) one
and (e) three stacking faults. The colour scale is expressed in unit cells
(u.c.) and is the same for (a, d, e). The resulting scattered intensity is
shown in (b) (one fault) and (c) (three faults). Complex recovered density
(see text for details) is shown in the case of one (f) and three (g) faults. In
these images the phase is given by the colour (as indicated by the colour
wheel), while the amplitude is given by the saturation of the colour.

been calculated in the presence of one and three stacking faults, around

the (202) Bragg reflection. The calculations are illustrated in Fig. 5.21. In

Figure 5.21a, the unfaulted InAs/InP nanowire is shown. The diameter is

60 nm and the height of the wire portion selected for the calculations is 100

nm. The strain relaxation at the InAs/InP interface is calculated accord-

ing the atomistic method described in Chapter 2. Along the wire height,

stacking faults are added and the diffraction pattern is directly calculated

from the faulted structure. The oscillation fringes of the scatterings are

clearly affected by the faults, when one or three stacking faults are inserted

along the wire portion (Fig. 5.21, b and c, respectively). The scattering

can be compared to the one calculated for the unfaulted case and shown in

Fig. 5.20. These calculations have been performed using the exact atomic

positions of each scatterers in real space. This corresponds in reciprocal
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space to the scatterings computed at the following reciprocal lattice unit

coordinates: hǫ[1.76, 2.4[, kǫ[−0.24, 0.24[, lǫ[1.76, 2.4[ with a step of 0.004.

Due to the presence of these stacking faults the reconstruction of the

density and the correct value of the phases shift in the wire can be achieved

only using as input the theoretical phase values.

On the other hand, from an experimental point of view, the reconstruc-

tion obtained by means of iterative phase retrieval algorithm may be inhib-

ited as the resolution achieved during CDI experiments is limited (5-20 nm

corresponds to ≈10-40 unit cells in the case of InAs) and the stacking faults

may occur, in the direct space, in a smaller number of unit cells (e.g. for the

s= (202) reflection and if v = 1
3
(a− b), the phase shift is 2πs · v = 4π/3).

In addition, iterative retrieval algorithms converge more slowly for strained

objects than in the case of unstrained objects. This is due to the fact that, in

presence of strain, the real-space constraints are limited to the finite support

and cannot include the positivity, as in the case of unstrained nano-objects.

A solution to the algorithm convergence in the discussed case is the con-

tinuity of the phase field of the reconstructed object, as recently proposed

by Minkevich et al. [2007]. However, in the case of faulted wire this strategy

is not of help. Moreover, as already pointed out by Chamard et al. [2008],

the scattering around a given reflection depends on the domains (zincblende

or wurtzite) that are illuminated with the beam along the wire height. Ob-

viously, the contribution from each domain is observed only if the chosen

reflection is allowed by its crystalline structure [Favre-Nicolin et al., 2010].

With the aim of evaluating quantitatively the influence of the stacking

faults on the reconstruction from CDI data, simulated intensities, illustrated

in Figs. 5.21, b and c, can be used as input to compute the inverse fast

Fourier transform in order to obtain the complex-valued exit field at the

sample position. The 3D diffraction patterns have been calculated from

the 3D simulated data in direct space around the (202)WZ reflections. The

results are presented in Figs. 5.21, f and g in the case of one and three growth

faults, respectively. The phase of the sample exit function is recovered

from both the scattering in Figs. 5.21, b and c, i.e. with one and three

stacking faults. The displacement fields can be therefore extracted from the

retrieved phases, knowing that, for the chosen scattering geometry, we have

2π(2ux+2uz). As expected, in each reconstructed amplitude holes are found

at the faults position. This effect is due to the fact that defects introduce

an additional sequence of layers (ABC) in the middle of the (AB|AB|AB),
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and this leads to a zero intensity for the probed reflection [Beitra et al.,

2010] as explained in the following. If the layer A is used as a reference, B

and C are shifted by

vB = v +
(

00
1

2

)

=
(1

3

1̄

3

1

2

)

, vC = 2v + (001) =
(2

3

2̄

3
1
)

(5.4)

Their scattered amplitudes around the (202)WZ reflection are then equal to

1 + e2iπs·vB + e2iπs·vC = 1 + e4iπ/3 + e8iπ/3 = 0 (5.5)

As a consequence, this sequence does not contribute to the intensity in

the reciprocal space, and it is recovered as a zero electronic density. The

correct intensity near the faults can be reconstructed only if the direct space

resolution is sufficient to resolve individual layers, i.e. half a wurtzite unit

cell along the (001) direction. As already discussed, the available resolution

is larger and it is indeed preferable to select a reflection insensitive to the

faults to overcome this problem.

5.3.1 CDI on InSb/InP nanowires with stacking faults

In this section, the experimental evidence of a CDI scattering influenced

by the presence of stacking faults is discussed in the case of a single InSb/InP

nanowire. The theoretical model of the stacking faults is offered in order to

calculate and reproduce the experimental diffraction pattern.

Sample description

InSb is one of the most promising material for application in high-

frequency and low-power electron devices. In particular, InSb, with its

large lattice parameter, is found to be under strong compressive strain

when combined with other group, such as groups III-V, due to the lat-

tice mismatch [Caroff et al., 2009]. These InSb/InP nanowires have been

grown on InP (111)B substrate, on which Au aerosols, with a diameter in

the range of 10-60 nm, have been deposited. The aerosols have been ran-

domly disposed, obtaining a mean surface coverage of 1-5 droplets/µm2.

The nanowire growth has been performed at the University of Lund (Swe-

den) using the standard metal-organic vapor phase epitaxy (MOVPE) tech-

nique. The InP section has been annealed at 420◦ using trimethylindium

(TMIn) and phosphine (PH3) as nominal precursors. Te InSb wire has
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Figure 5.22: Left: HRTEM image in the [110] direction of the InSb-InP
interface. The stacking faults is present in the InSb part close to the inter-
face. Right: X-ray energy dispersive measurements of the heterostructure.
(Modified from [Borg et al., 2009])

been obtained with the standard precursors TMIn and trimethylantimony

(TMSb) at 450◦.

Figure 5.22 (left) shows the HRTEM image of a single InSb/InP

nanowire. Multiple stacking faults are present in the InP part that has

a wurtzite structure. The investigated InSb segment of the nanowire, as

expected, has a zinc-blende crystalline structure throughout. However,

the InSb nanowire contains twin planes within a 10 nm section (Fig. 5.22,

left), changing the structure to wurtzite. This is comfirmed by the results

obtained from x-ray energy dispersive measurements [Caroff et al., 2009],

shown in Fig. 5.22 (right), performed at the interface. An indication of a

curved heterointerface has been found due to the P interdiffusion within 15

nm length.

The ensemble of nanowires has been also studied during a GIXRD ex-

periment performed on the bending magnet beamline BM32 at the ESRF

using 30.4 keV photon energy. The reciprocal space map (h0l) in shown

in Fig. 5.23 (top). Here, the contribution coming from the InP and InSb

sections, indexed on the figure, are well separated due to the different crys-

talline structures. Figure 5.23 (bottom) shows the measurements of the

(10l) crystal truncation rod (CTR) at different grazing incidence angle αc:

0.00◦, 0.05◦ and 0.10◦ for the InP, present both in the substrate and in the

wire, and InSb, whose contribution is only due to the wires sections. The

choice of αc: 0.00◦ is motivated by the fact that also in transmission the

contribution of the wires in the diffraction can be measured. In figure inten-

sities are expressed in logarithmic scale and positions in reciprocal lattice
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Figure 5.23: Top: Reciprocal space map (h0l) collected on an assembly of
InSb/InP nanowires during a GIDX experiment on BM32 (ESRF). Bottom:
(10l) truncation rods for InP and InSb. Measurements have been done on
the same beamlines at three different incident angles αc: 0.00◦, 0.05◦ and
0.10◦.

units (with respect to InP). The strain distribution in these nanowires is

directly related to the width of the measured Bragg peaks.
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Figure 5.24: CXDI set up used to probe a single InSb/InP nanowire.

Experiment and data analysis

The coherent scattering from single InSb/InP nanowires has been

recorded on the undulator beamline ID01 at the ESRF using the microd-

iffraction set-up already described in Chapter 2. During this experiment,

the beam has been focused with a FZP with an outermost zone width of

100 nm. This implies, as explained in Chapter 4, a larger focal spot size

with respect to the case of a 70 nm outermost zone width, i.e. 300v×800h

nm2 (FWHM). Slits in front of FZP were closed down to 80×30 µm2 rather

than 60×20 µm2 as a compromise between coherence and photon flux. All

data were collected using a MAXIPIX camera to ensure the best resolution

and the lowest background. Due to the particular experimental conditions

and to the very small diameter of the wires (≈60 nm), the experiment has

been limited to the measurements of 2D diffraction patterns. To analyse

the InSb section of the wire, still standing on the substrate, the detector has

been placed at the Bragg angle of (111) reflection of InSb, as no interference

between InSb (wire) and InP (substrate) are expected. The scattering from

InSb could be easily recorded taking advantage of the large difference in the

lattice parameters. The schematic of the experimental geometry is shown in

Fig. 5.24. During the experiment, due to the beam size, it has been possible

to select a single nanowire and perform a profile along the growth direction.

The 2D diffractions collected for the (111) reflection are shown in Fig. 5.25

for both the InP (left) and InSb (right) sections of the same nanowire. To

measure the InP section, wires have been detached from the substrate and

dispersed randomly on it, avoiding the substrate contribution.

The size of the available x-ray beam is small enough to select different

part of the InSb section, whose length is 0.68±0.15 µm, simply moving from
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the top to the bottom, close to the interface with the InP, by means of the

accurate nanopositiong motors of the experimental set-up. To avoid the

contribution of the stacking faults, we chose the (33̄3)ZB Bragg reflection

because it is not affected by them. In general, for a displacement vector

v, any reflection for which s · v is an integer is unaffected by these faults.

Diffractions from the top and the bottom of the InSb wire are shown in

Fig. 5.26. They have been registered translating the selected nanowire by

250 nm in the growth direction. The scattering from the top shows a small

asymmetry in the s〈111〉 direction (Fig. 5.26, left) while, surprisingly, fringes

appears at larger s〈111〉 (Fig. 5.26, right).

To reproduce the asymmetry observed in the intensity of the fringes at

larger s〈111〉, the strain of an InSb nanowire, with a height of 250 nm and a

width of 54 nm, has been simulated. The model used consists of successive

Figure 5.25: 2D coherent diffraction images of a single InSb/InP nanowire .
Scattering from (111) reflection has been collected for the InSb (right) and
the InP (left) sections of the same nanowire. The illuminated InSb section
is certainly faulted as the strong asymmetry in the intensity distribution
shows.

Figure 5.26: Experimental diffraction image from an InSb/InP nanowire at
(33̄3)ZB Bragg reflection, measured at the top (left) and bottom (right)
(near the InSb/InP interface) of the InSb section.
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Figure 5.27: Left: Simulated deformation as a function of the height near
the base of the InSb section (height = 250 nm). Right: Calculated scattering
corresponding to the deformation depicted to the left.

layers added with a different spacing, according to the following relation:

ǫzz = ǫ0zze
−z/∆ (5.6)

where ǫ0zz is the starting value of the strain 2%, z represents the vertical

direction and ∆ the unknown section along z-axis in which the strain re-

laxation occurs. In the proposed model, the strain relaxation which occurs

through more complex mechanisms (as in the case of dislocations) is not

considered. The best agreement with the experimental pattern, shown in

Fig. 5.27 right, obtained for ∆ = 10 nm (c.f. Fig. 5.27, left), reproduces

well the fringes observed during the experiment. In the horizontal direction,

fringes are due to the width of the wire while the asymmetric fringes in the

vertical direction are the direct effect of a combination of the height of the

wire and the deformation. The shorter d111−spacing at the bottom of InSb

(relatively to bulk InSb) is probably due to interdiffusion during the depo-

sition, with an InSbxP1x chemical composition varying in the first 10-20 nm

of InSb. It is evident that the combined presence of strain and defects in a

structure remains a complicated problem to be solved. However, the most

important development of this study is probably the ability to use the very

small size of the beam to study different parts of a given heterostructure.

Conclusions

The development of Bragg CDI is particularly important as it gives ac-

cess to the deformation in the volume of objects at the nanoscale, which

is essential for the understanding of their structural properties. In prac-
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tice, the experimental case does not fully correspond to the ideal one and

different issues have to be faced. Radiation damage can occur when the

nanostructure is investigated with high brilliance radiation. In the case of

sSOI line, a time-dependent analysis has been proposed to study the strain

evolution during the relaxation observed for this crystalline structure and

to obtain the strain profiles. This study has been limited to a 2D analysis,

because the acquisition time is larger than the characteristic time at which

radiation damage occurs.

The contribution of the complex illumination function is an important

issue when studying strained nanostructures with coherent imaging tech-

niques. As demonstrated through numerical examples, the retrieved phase

and, consequently, the recovered displacement field are influenced by the

phase of the experimental coherent wavefront. For a quantitative study,

these contribution have to be separated. The possibility suggested in Chap-

ter 4 is the reconstruction of the illumination probe at the sample position

can be reconstructed using a CDI approach representing the solution of the

discussed case.

The last section of this Chapter has been dedicated to the analysis

of faulted structures. As shown with numerical calculations for InAs/InP

nanowires, information about the strain state can be hindered by the pres-

ence of structural faults. However, the careful selection of measured reflec-

tions allows to be insensitive to the stacking order and recover the strain

profile. This method could be of course improved by studying several reflec-

tions on the same object, which is still difficult to perform for nanoscale ma-

terials smaller than 100 nm, as the mechanical precision (confusion sphere)

of existing goniometers is much larger than this value. A solution to this

problem has been proposed in Chapter 6, in which the feasibility of energy

scans with a FZP as focusing optics has been demonstrated.
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Chapter 6

Imaging the strain in single

GaAs nanowires with InAs

Quantum Dots and Quantum

Well

In this Chapter, I report on preliminary results obtained from single

GaAs nanowires with an insertion of either a InAs quantum well (QW) or a

monolayer of InAs QDs with the aim of locating the insertion. The lattice

displacements due to the presence of these insertions have been imaged

using coherent imaging techniques. In particular, an innovative method has

been proposed to collect the 3D diffraction pattern using the energy scan

when focusing the coherent beam with a FZP. In addition, a preliminary

2D ptychographic analysis on single GaAs nanowires with QW and QDs is

discussed in the last section of this chapter.

6.1 Introduction

The electronic and structural properties of quantum wells and dots such

as GaAs/InAs/GaAs(100) have been studied already at the beginning of the

Nineties [Giannini et al., 1993]. The information on the atomic structure of

the interface, i.e. between GaAs bulk-InAs insertion-GaAs cap, is the essen-

tial issue to fully understand the electronic properties of such heterostruc-

tures. Quantum dots can be interpreted as a model system for the realisa-

tion of a truly three-dimensionally quantum confined structure. When these

characteristic dimensions are smaller than the de Broglie wavelength of the

137
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carriers, the energy levels become discrete. With the improvement of growth

techniques, controlled assemblies of quantum dots are today fabricated and,

thus, applications based on quantum dots become more practical. Never-

theless, the optical properties of quantum dots are strongly influenced by

the shape, size, density and strain distribution determined by the growth

conditions [Schmidt, 2007].

As already discussed in Chapter 1, in the general case of thin layers

epitaxially grown on a bulk crystal, the elastic model describes well the

strain and the atomic relaxation. In the case of the structure of interest,

Brandt et al. [1992] postulated, using high-resolution transmission electron

microscopy (HRTEM), that the elastic theory, that can be used to describe

the strain relaxation, breaks down in the limit of one monolayer (ML) of

InAs. This work has been the subject of a debate and contradicted by

many other studies (see as example [Bernard and Zunger, 1994]). Other

experimental results, that were obtained using x-ray beams, indicated the

elastic behaviour of InAs QW in a GaAs structure. Among them, Lee et al.

[1996] by x-ray standing waves (XSW) technique found that the measured

perpendicular strain within the InAs layer was in good agreement with

macroscopic elasticity theory. Woicik et al. [1995] and Zheng et al. [1998]

also observed the same behaviour by XSW and extended x-ray absorption

fine structure (EXAFS) experiments and high-resolution x-ray diffraction

(HRXRD), respectively.

6.2 Numerical calculations

In this section, I present the numerical calculations performed both in

real (the complex-valued function describing the nanowire) and reciprocal

space (the diffraction pattern). For these calculations, a GaAs nanowire

with an insertion of one QW is used for simplicity to check numerically the

sensitivity of the CDI approach to the presence of the well.

In figure 6.1 the schematics of the projected side view of an InAs QW

inserted between the GaAs cap layer and buffer layer is shown. Here, Ga, In

and As atoms are represented using different colours, green, red and blue,

respectively. A phase shift occurs between the GaAs bulk and cap due to

the presence of the InAs ML. The GaAs substrate, that is considered at the

origin of the calculated phase shift, is 〈001〉 oriented. The (004) diffraction

planes of the GaAs substrate are indicated by bold lines while the dashed
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Figure 6.1: The projected side view along the [001] direction of 1 ML InAs
buried between the GaAs cap layer and buffer layer. The substrate GaAs
diffraction planes are indicated by bold lines while the dashed lines indicate
the indium position and the position for the arsenic in the cap. The dis-
placements of the In atoms and the cap As atoms are also represented with
respect to the (004) diffraction planes [Lee et al., 1996].
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Figure 6.2: a) Color rendition of the calculated 2-dimensional GaAs
nanowire with a monolayer of InAs QDs for the (004)InAs Bragg reflection.
Phase is represented by colours. b) 2-dimensional intensity in reciprocal
space calculated with a FT of the complex object in real space shown in a).

lines indicate the indium position and the arsenic position in the cap.

The theoretical values of the inter-atomic distance between Ga and As

in the bulk is d004 = 1.41 Å. Indium atoms are displaced with respect to

the Ga layer in the cap of ∆In = 0.22 Å [Lee et al., 1996]. This creates
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a shift of the Arsenic planes in the cap of approximately ∆As = 0.44 Å.

From these values, the phase of the complex scattering function in a single

GaAs/InAs nanowire can be estimated as suggested in Fig. 6.1:

φ = Q(004)×∆GaAs (6.1)

where Φ is the phase shift in real space and ∆GaAs is the planes shift in

the GaAs cap. The corresponding calculation is shown in Fig. 6.2a for the

(004)GaAs Bragg reflection. In this figure, phase is represented by colours

and amplitude by the intensity of colours (the amplitude is considered in

first approximation constant all over the wire section due to the experimen-

tal resolution). The intensity in reciprocal space has been calculated from

the complex object in Fig. 6.2a using a FT and it is shown in Fig. 6.2b.

This phase profile (corresponding to a phase shift of ≈ 1 rad) produces a

split in the central peak of the scattering, which should be measurable in

the experimental data.

6.3 Experiment

The 3D diffraction pattern of single nanowires (both QW and QDs) has

been collected at the undulator beamline ID01 of the ESRF with the aim of

determining the position of InAs monolayer. A 10 keV coherent beam has

been focused with a FZP in the partial illumination conditions (cf. Chapter

4). The (004)GaAs Bragg reflection reflection has been selected, setting the

θ angle (i.e. the angle between the sample surface and the direction of the

incoming beam) at ≈ 26◦. The four chips MAXIPIX detector, with a total

of 516×516 pixels, has been placed at the 2θ Bragg angle of the (004)GaAs

reflection at ≈ 52◦ and at approximately 1.35 m from the sample position.

Due to the small size of nanowires, generally with a 600 nm diameter and

2 µm long, and considering, as in the case of heterostructures, the presence

of strain distribution, they exhibit extended three dimensional diffraction

patterns in reciprocal space. When coherent diffraction techniques are ap-

plied in the small angle regime, the 3D intensity can be easily collected with

a rotation with respect to its vertical axis of the probed nano-object , which

is continuously illuminated by the beam. The 3D scattering in Bragg con-

dition can be collected either using a rocking scan, i.e. angular rotation of

the sample with respect to the direction of the incoming beam, or by an en-

ergy scan, i.e. changing the energy of the incoming beam (cf. section 6.3.1).
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This scan is generally performed with achromatic focusing optics, as the

KB mirrors, as it benefits from the fact that focal length is independent on

the energy. The issue of performing an energy scan with a chromatic optics,

as the FZP, has also been overcome in this work, in an elegant and original

way, exploiting the specific properties of the focused beam. As discussed in

Chapter 4, the partial illumination conditions of a FZP implies important

changes in the propagation of the coherent beam. In particular, focal depth

and focal spot size increase with decreasing the slit aperture, while the

phase remains flat within the focal spot. The outcome of the calculation of

the wavefront propagation in the partial illumination conditions, achieved

in this thesis work, has allowed to prove the feasibility of an energy scan

when using a FZP. If the displacement of the focal point is small during the

energy scan, the sample can be maintained in the focal spot even without

moving the optics. The advantage of this experimental approach is strong

as any sample movement is avoided eliminating any vibration induced by

the movement of the diffractometer.

The use of chromatic optics for the energy scan has been probed in the

ID01 group by [Cornelius et al., 2011]. In that case Beryllium compound

reflective lenses were moved at each energy value during the scan in order

to compensate the variation in the focal length and to keep the sample in

the focus during the measurements. In the case of a FZP, the energy scan

was considered until now unfeasible due to the short focal depth.

6.3.1 Collecting 3D scatterings in Bragg geometry

The three scans used to register the three dimensional coherent scatter-

ing with 2D detectors are schematically illustrated in Fig. 6.3. Each scan

corresponds to specific movements of the detector scanning the reciprocal

space. For each scan, the bold line (green) is used to indicate the initial

Bragg configuration and the the dashed (blue) and dotted (orange) lines

indicate the variation of the incident and diffracted beams, with wavevec-

tors ki and kf , respectively. The angle 2θ represents the Bragg angle of the

chosen Bragg reflection.

As depicted in Fig. 6.3a, the three-dimensional intensity distributions is

obtained by performing a rocking scan through the selected Bragg peak and

simultaneously recording two-dimensional intensity cuts (Fewster, 1997).

This corresponds to the mechanical rotation of few degrees of the sample

with respect to the direction of the beam. The 2θ Bragg angle is fixed;
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Figure 6.3: Simplified schematics in reciprocal space for (a) a rocking-curve
scan, (b) an energy scan and (c) a θ−2θ scan. The dashed and dotted lines
indicate the variation of the incident and diffracted beams. The movement
of the detector (as projected on the Ewald’s sphere) is also illustrated.

hence, the detector scans horizontally the 3D scattering in the reciprocal

space. In practice the detector doesn’t move but the 2D patterns move

along the detector. The collected data have to be orthonormalised to be

displayed in the reciprocal space.

One main issue concerning the collection of three-dimensional data is

the sphere of confusion of the existing diffractometers that could be quite
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large (typically a few tens of micrometers over a 360◦ rotation). If it is

compared to the sample and beam size (a few hundreds of nanometers), the

investigated nanostructures can easily move out of the beam, even though a

rocking curve is taken over typically 1◦. Therefore, the acquisition through

a rocking-curve scan requires the re-alignment of the structure with trans-

lations into the nanobeam for every rocking angle, resulting in an increase

of the acquisition time.

The θ − 2θ scan (Fig. 6.3c) is equivalent to the energy scan, both the

sample and the detector have to be rotated of few degree to cover all the

reciprocal space. This approach is unsuitable when very tiny nanostruc-

tures are investigated due to the vibrations produced by the detector arm

movements.

The energy scan can be used to avoid any movement of both the object

and the diffractometer (Fig. 6.3b). In this case, the energy is varied by only

few eV in order to record the 3D reciprocal space map , keeping all the

angles at the values imposed by the Bragg conditions. The undulators gaps

adjustment is required while scanning the energy to stay at the maximum of

the undulator emission peak and the incident intensity remains constant. As

a consequence, the 3D scattering in the reciprocal space is scanned vertically

by the detector. As in the case of a rocking-curve scan, data has to be

orthonormalised. The orthonormalisation process is more complex when

3D scattering is collected using the energy scan, as different crystalline

planes will diffract on the detector due to the change in energy, according

to Bragg’s law:

2dhkl =
nλ

sin θ
, nǫN. (6.2)

Here dhkl is the distance between crystalline plane expressed in reciprocal

lattice unit (hkl). Looking at Eq. 6.2, for a fixed detector position θ, different

crystalline planes defined by (hkl) will diffract while changing the energy E

values (or, equivalently the wavelength λ) of the incident radiation.

6.3.2 Sample description

The samples (GaAs nanowire with InAs QW and QDs insertions) inves-

tigated during the CDI experiment were prepared by Malik and Claudon

at the CEA/Grenoble. The GaAs wires are ≈2 µm high with a diame-

ter in the 200-600 nm range. The photonic nanowires were defined from a

planar structure grown by molecular beam epitaxy. This planar structure
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Figure 6.4: Scanning electron microscopy of the investigated array.

consisted of a Stranski-Krastanov InAs QDs array or a QW buried under

2.5 µm thick GaAs layer. The GaAs layer laid on a 500-nm-thick sacrificial

layer of Al0.8Ga0.2. A mirror structure, consisting of 11 nm of SiO2 and 250

nm of gold, was deposited on top of the epitaxial layer and further glued

in a flip-chip step on a GaAs host wafer using epoxy. A mechanical and

selective wet etching was used to remove the growth wafer and the sac-

rificial layer, creating a mirror-flat surface. Finally, after deposition of a

400-nm-thick Si3N4 hard mask, several identical arrays of aluminium disks

of various diameters were defined by electron-beam lithography. After dry

etching of the hard mask (SF6 plasma), these nanowires were etched using

optimized plasma etching on a SiCl4 and argon gas mixture.

Interesting photonic properties were obtained in the case of GaAs

nanowire with one monolayer of QDs and reported in [Claudon et al.,

2010]. The physical properties and the optical emission response of pho-

Figure 6.5: Scanning electron microscopy images of the investigated
nanowire with InAs QDs. Left: Top view. Right: Side view (with an
angle of 51◦) of the same wire.
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Figure 6.6: Scanning electron microscopy images of the investigated
nanowire with InAs QW.

tonic nanowires, similar to the one studied during the CDI experiment,

were measured and exhibit a nearly perfect radiative performance with sin-

gle photon emission. This property can be explained only considering that

a single QD is buried in the considered nanowire. This fabrication method

was demonstrated to be a promising approach for the growth of vertical

semiconductor photonic nanowires in the context of quantum communica-

tion with an electrical injection. A coherent diffraction experiment, as the

one performed in this work, would allow to locate and characterise the QDs

and QW and correlate optical properties and structure.

The GaAs nanowires are arranged on the sample surface in 5×9 rect-

angular array marked with arrows (Fig. 6.4). The exact position of each

wire is given by crossing these arrows with the x-ray beam. The diameter

of these nanowires varies and depends on the specific position in the ar-

ray, from the largest (left corner of the top side) to the smallest one (right

corner on the bottom). Due to some problems during the sample etching

or bonding, some of the wires with smaller radii (in the range of 300-100

nm) did not remain on the substrate. One of the investigated wire with

QDs insertion has been selected in the array is shown in Fig. 6.5 and the

quantum wire with the InAs QW insertion is also shown in Fig. 6.6. The

vertical profiles of these wire are different due to a different etching process

in order to enhance photonic properties.

6.3.3 Experimental data

A combination of the high magnification microscope implemented on

the diffractometer, the knowledge of the structure design of the sample

combined to x-ray microdiffraction mapping [Mocuta et al., 2008] helped
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to select a single nanowire for CDI measurements. The scanning electron

microscope images of the top and side view of the nanowire investigated

during the experiment is shown in Fig. 6.5. The wire exhibits a diameter

of ≈ 600 nm and a height of ≈2.0 µm, calculated considering the angle of

51◦ between the electron gun and the sample. Once the quantum wire, in

the diffraction conditions under the x-ray radiation, has been identified, a

vertical scan along the wire height has been performed to check the exper-

imental sensitivity to the insertion of one monolayer of QDs. A range of

3 µm has been covered in order to scan the total height of the nanowire,

from the bottom to the top, until losing the diffraction signal. In figure 6.7,

six selected diffraction pattern are shown, corresponding to the scattering

from the bottom (Fig. 6.7a) to the top of the wire (Fig. 6.7f), collected

with a step size of 200 nm. In this figure experimental data are not treated

and the images are obtained selecting 150×150 pixels on the detector. The

split of the central peak is clearly visible in Fig. 6.7c, corresponding to the

scattering registered at ≈1.2 µm from the bottom of the wire. This ef-

fect has been predicted by the numerical calculation discussed in section

6.2. This shows that the monolayer of QDs is inserted at the middle of

the wire total height as expected. Some differences can be also noticed

between the 2D diffraction patterns collected below and above the QDs po-

sition. The central peak shifts from the bottom side (Figs. 6.7,a-b) to the

top side (Figs. 6.7,d-f) of the splitting. This is therefore due to presence

of a phase shift in the complex valued object in real space (cf. Fig. 6.2a),

in this specific case between the GaAs bulk and cap. The splitting is the

direct consequence of the presence of QDs layer insertion (i.e. of the phase

shift in the complex-valued function describing the object in real space (see

Fig. 6.2a)), when illuminated with a coherent x-ray beam.

The three dimensional reciprocal space map has been registered using

both an energy scan and a rocking scan, whose feasibility has been re-

cently assured by the new diffractometer available on ID01 (see Appendix

B) having improved stability. The energy scan has been performed in a

range of ±50 eV with a step of 1 eV, around the central values of 10 keV,

with an acquisition time of 20 s/step. At each value of the scan, the three

undulator gaps have been re-adjusted to insure the maximum intensity of

the incoming radiation. Figure 6.8 shows three different views of the raw

3D coherent scattering collected around the (004)InAs Bragg reflection of

a single nanowire at the QDs position. Figure 6.8a, which corresponds to
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Figure 6.7: Vertical scan along the nanowire from a) the bottom to f) the
top. Each raw image has been collected using 200 nm motor step and
acquisition time of 20 s. The QDs are inserted at a position between the
scatterings depicted in c) and d). A selection of 150×150 pixels on the
detector is shown.

the top view, exhibit circular oscillations that are produced by the circular

finite size of the wire. The streaks of intensity are also coming from the
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(a) (b)

(c)

Figure 6.8: 3-dimensional diffraction pattern (not orthonormalised) col-
lected at the QDs position for the (004)GaAs Bragg reflection using the
energy scan in a range of ± 50 eV with a step of 1 eV and acquisition time
of 5 s. The splitting of the central peak close to 10 keV is evident in figures
b) and c).

shape of the illuminated nanowire, which may present facets due to crys-

tallographic etching. As expected, the peak splitting is clearly visible on

the 3D scattering in particular looking at the figure 6.8 b and c. A cut of

the 3D coherent scattering in the vertical plane should correspond to the

calculated diffraction in Fig. 6.2b. As comparison, the 3D scattering (not

orthonormalised) collected from the same nanowire at the insertion with a

rocking scan is shown in Fig. 6.9.

6.3.4 Data treatment

Experimental data has to be treated before starting the phasing analy-

sis. An important step required by the properties of the FFT is to centre

experimental data into the computational array. This preliminary treat-

ment helps in the convergence of phasing process. Moreover, this prevent

the introduction of an asymmetry into the reconstruction that could lead to

a gradient in the retrieved phase. Depending on the number of pixels and

the computing memory, experimental data may be binned with the aim of
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(a) (b)

Figure 6.9: 3-dimensional diffraction pattern (not orthonormalised) col-
lected at the QDs position for the (004)GaAs Bragg reflection using the
rocking scan in the angular range of 0.60◦ with a step of 0.005◦ and acqui-
sition time of 20 s/step.

saving time during data processing and analysis. This strategy is generally

used to improve the statistics but is limited by the required oversampling ra-

tio. In addition, after the collection, raw data must be checked for “aliens”,

i.e. contributions coming from overgrowth or substrate, erroneous intensity

measurements due to cosmic rays or air scattering; they must be masked as

they may introduce asymmetry into the reconstructed object. Finally, an

orthonormalisation process is required to correct the movement of the de-

tector during the collection of the 3D scattering, that depends on the chosen

scan mode (cf. Fig. 6.3). The orthonormalisation process when the energy

scan is employed to register the 3D scattering is detailed in Appendix C.

The quantitative analysis of the 3D coherent diffraction patterns col-

lected in the case of the GaAs nanowire with QW and QDs will be used to

retrieve the complex-valued object in real space and locate the QDs layer

along the wire height and determine the phase shift into the crystalline

structure. However, this analysis is still in progress and will not be detailed

in this manuscript.
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6.4 Two-dimensional Ptychography in

Bragg geometry

As discussed in Section 6.3.3, during the experiment several vertical

scans have been performed along the height of selected nanowires in order

to locate the InAs insertion. This has been possible due to the proven sen-

sitivity of CDI technique to the presence of QW and QDs. Images of the

2D scattering have been collected at different position along the wire using

a step size of 200 nm. As the 10 keV energy focal spot size obtained with

a FZP with a 70 nm outermost zone width and in partial illumination con-

ditions is ≈ 400 nm (FWHM) in the vertical direction, data collected with

the vertical scan can be analysed through a ptychographic approach (see

Chapter 4, last section). In this particular case, the registered overlapping

corresponds to approximately 50% of the illumination probe.

The vertical scan collected in the case of 1ML of QDs is shown in

Fig. 6.10 while the one registered for the InAs QW is presented in Fig. 6.11.

They consist of 11 images of the scattering collected at the (004)GaAs Bragg

reflection at different height of the wires (also labelled on the different im-

ages of Fig. 6.10), from the bottom (positive z values) to the top (negative

z values). The splitting of the central peak in the case of 1ML of QDs is

visible looking at the scattering collected at z=-6.4 nm (Fig. 6.10). This

splitting is less clearly seen in the case of the InAs QW even if a shift of the

central peak with respect to the centre of the selected computational win-

dow has been registered (comparing scatterings at z=-197 nm and z=200.8

nm) which corresponds to the phase shift in real space.

As starting guess for the illumination function, a Gaussian probe has

been used with a focal spot size of approximately 407×526 nm2, measured

at the FWHM (Figs. 6.12 and 6.13). An iterative phase retrieval algorithm,

as the one proposed by Thibault et al. [2009], has been used to reconstruct

the exit field at the sample position and, at the same time, the complex

coherent wavefront used during the experiment. With the ptychography

approach, the contribution of the illumination function in the retrieved exit

field can therefore be disentangled, allowing the correct interpretation of the

strain in the investigated nanostructure. The achieved spatial resolution for

the reconstruction in real space at the sample position is≈8 nm and depends

on the number of selected pixels at the detector plane.
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Figure 6.10: 2D scatterings (raw data) from a vertical scan along the GaAs
wire with InAs QDs insertion plane shown in Fig. 6.5 and used for ptychog-
raphy. On the horizontal and vertical axis the number of selected pixels at
the detector plane.
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Figure 6.11: 2D scatterings (raw data) from the vertical scan along the GaAs
wire with InAs QW insertion shown in Fig. 6.6 and used for ptychography.
On the horizontal and vertical axis the number of selected pixels at the
detector plane.
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Figure 6.12: Preliminary results from ptychography analysis of the diffrac-
tion patterns shown in Fig. 6.10. The phase shift occurs at z ≈ −100 nm.
Phase is expressed in radians. The reconstructed shape is in agreement with
the one shown in Fig. 6.5b.

The complex-valued function describing in real space the nanowire with

1ML of InAs QDs has been reconstructed and it is presented in Fig.6.12.

As expected, we can observe the phase shift at the z value corresponding

to the insertion position. In addition, we can notice a second phase shift

(at z≈-250) which is probably due to the strain relaxation of the crystalline

structure above the quantum dots position.

The results obtained for the QW (Fig.6.13) are in agreement with the

calculations shown in Section 6.2 (cf. Fig.6.2) even if the reconstructed

phase shift is smaller than the calculated one. As the resolution achieved in

the reconstruction is too large with respect to the width of the QW/1ML

QDs insertion, the electron density of the insertion cannot be reconstructed.

However, the technique has been demonstrated to be sensitive to the phase

shift caused at the insertion position in the nanowire structure.

The supplementary phase variations reconstructed at the bottom of the

nanowire with QW and at the top of the one with QDs are attributed

to defects induced by the fabrication process (lithography and gluing of
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Figure 6.13: Preliminary results from ptychography analysis of the diffrac-
tion patterns shown in Fig. 6.11. The phase shift occurs at z ≈ −100 nm.
Phase is expressed in radians. The reconstructed shape is in agreement with
the one shown in Fig. 6.6.

nanowires on the sample surface).

6.5 Conclusions

In this chapter I reported on the preliminary results obtained from the

application of CDI in Bragg geometry on single GaAs quantum wires with

either InAs QDs or QW insertion. As previously discussed, important con-

tributions to coherent imaging technique have been offered. First, the sen-

sitivity of coherent diffraction technique to the presence of the insertion

of one monolayer InAs quantum well or InAs quantum dots embedded in

single GaAs nanowire has been discussed, demonstrating that it was pos-

sible to locate very small lattice displacements in heterostructures. This

may open new possibilities for the application of the CDI technique for the

strain determination. In addition, we have demonstrated the possibility of

collecting the 3D reciprocal space map (RSM) from a single nanowire using

the energy scan even when chromatic optics (in the discussed case a FZP)
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are used to focus the coherent beam to the sample position. This approach

exploits specific properties of the focused beam in the case of a partially il-

luminated FZP, discussed in details in Chapter 4 of this manuscript. As the

focal depth was found to increase while decreasing the aperture of the slits,

the energy scan can be therefore performed without any re-adjustment of

the optics as the sample is kept in the focus. The phasing analysis is still in

progress and the 3D RSM registered during the experiment at the insertion

position using an energy scan will allow measuring the strain relaxation in

the wire at the insertion from the retrieved phase in the real space. As ulti-

mate goal, the possibility of localising the single QDs will be also explored.

Finally, 2D coherent scatterings collected at different positions along the

wire height have been treated and preliminarily analysed using the pty-

chographic approach. Due to the vertical size of the coherent focal spot

combined with the step size of the performed vertical scans, an overlapping

of approximately 50% has been obtained. The preliminary reconstructions

of investigated nanowires, obtained with a Gaussian probe with a focal spot

size of ≈407×526 nm2 (FWHM) as initial guess, exhibit the expected phase

shift due to the presence of the QW/QDs insertion and they are in good

agreement with calculations. This analysis will be improved in the future

and the more realistic wavefront at the focal plane, as the one obtained with

a FZP in partial illumination conditions (see Chapter 4), will be employed

as initial probe for the reconstruction.
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Conclusions and outlook

Coherent x-ray diffraction imaging is a technique used to image the

strain at the nanoscale. However, the application of CDI to real systems

often requires the proposition of ad-hoc solution to overcome specific experi-

mental issues representing intrinsic limits of the technique.

The main objective of the work presented in this manuscript has been

the exploitation of coherent x-ray diffraction imaging in Bragg condition to

recover the strain in the particular case of heterogeneous or highly strained

homogeneous nanowires. Special attention has been devoted to the detailed

strain analysis of nanowires in presence of radiation damage, stacking faults

and limited strain sensitivity. In these cases, experimental results have

been supported by numerical calculations. An important issue when strain

is imaged with the CDI approach is the influence of the wavefront on the

reconstructed phase. This has been investigated and discussed in the pre-

sented work and represents one of the most important contribution to the

CDI technique.

In the case of InSb/InP nanowires with stacking faults, the use of care-

fully selected reflections has allowed to be insensitive to the stacking order

and image the strain in the InSb section as a consequence of the InP inter-

diffusion.

We demonstrated that the imaging of strain in presence of radiation

damage can be used to understand the relaxation of a crystalline structure

and the mechanism through which the damage occurs. Specifically, a time-

dependent analysis has been performed on sSOI lines to recover the modi-

fication in the displacement field due to the effects of the induced strain

relaxation. The recovered displacements uz have been used to calculated two

components of the strain fields, ǫzz and ǫzx. In particular, ǫzx, which contains

the information about the bending of the line, exhibits a clear relaxation

effects passing from the average initial value of 0.0436% to 0.0200%.

Through numerical examples, we also showed that the wavefront at the
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focal position strongly influences the quantitative analysis of the displace-

ment in single nano-objects when coherent imaging techniques are employed.

As discussed in the case of the numerical strained silicon line, the retrieved

phase cannot be used to describe correctly the actual displacement into the

nanostructure if the complex-valued illumination function is unknown. This

has motivated, in this work, the accurate wavefront characterisation for the

ID01 experimental conditions proposed as a solution to this particular issue.

The propagation of a coherent complex field focused with a partially

illuminated circular FZP has been provided through numerical calculations

and experimental reconstructions. The focal spot size and the focal depth

are found to be diffraction limited, with size increasing by decreasing the

illuminated area on the lens. The proposed calculations has allowed to

understand and predict the role of the optical element in the experimen-

tal set-up. One of the most important results of this study is that the

reconstructed phase has been found to be flat near the focal spot centre

allowing a simple analysis for CDI experiments. These results have been

also confirmed by the first experimental evidence of ptychography in Bragg

geometry on a test sample.

The application of CDI requires the ability to study the 3D profile of

at least one reflection of the investigated object. Unfortunately, this is still

difficult when a rocking scan is employed to collect the 3D scattering in

particular for objects smaller than 100 nm. This is due to the limited me-

chanical precision of existing goniometers which does not allow to maintain

the sample in the centre of rotation during the scan. As shown in this

work, any sample movement during the 3D scattering collection can be by-

passed by using the energy scan rather than a rocking scan even when a

FZP is employed as focusing optics. This method has been applied in the

case of a single GaAs nanowire with an insertion of InAs quantum dots or

quantum well. The strain relaxation occurring in these nanowires due to

the presence of the insertion has been imaged using CDI. In addition, we

demonstrated the possibility of treating data collected at different positions

along the wire height with a ptychographic approach. The preliminary re-

sults obtained with these two approaches have demonstrated the sensitivity

of CDI to insertions smaller than the achievable resolution.

The future steps of this research project include the refinement of the

analysis of experimental data collected from the GaAs quantum wires. In

the case of 3D scatterings collected with the energy scan, a preliminary
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orthonormalisation process has been already proposed. An adequate iter-

ative phase retrieval algorithm has to be developed to recover the full 3D

phase map in real space in order to calculate the strain relaxation due to

the buried structures. The main issue of the reconstruction is the choice of

real space constraints (i.e. the support). An adequate choice may be rep-

resented by the three dimensional coherent wavefront that has been fully

characterised during this work. This would allow the improvement of the

algorithm convergence and the disentanglement of the contribution of the

probe in the retrieved phase. In addition, the two dimensional reconstruc-

tion discussed in this manuscript using the ptychographic approach needs

to be improved. The quality of the reconstructed object depends also on

the starting guess for the illumination function. In the discussed case, the

coherent wavefront corresponding to our particular experimental conditions

can be used as starting probe for a successful reconstruction.



160
Chapter 6. Imaging the strain in single GaAs nanowires with InAs

Quantum Dots and Quantum Well



Appendix A

The Huygens-Fresnel principle

According to the Huygens’ principle [Huygens, 1920], each point of a

wavefront may be considered at the initial time t0 as the source of secondary

spherical waves. At the generic time t, the wave-front may be seen as

the envelope of these waves. Later on, Fresnel extended the Huygens’s

construction postulating that the secondary waves interfere mutually. The

Huygens-Fresnel principle took a fundamental place in the theory of the

diffraction. A mathematical derivation of the Huygens-Fresnel principle is

provided for a strictly monochromatic plane wave [Born and Wolf, 1999].

Let consider a monochromatic plane wave, generated at the point source

P0, propagating through an opening A in an opaque screen of radius R. The

interference has to be determined in P. The distances r and s define the

position in A of a generic point Q with respect to P0 and P, respectively.

Supposing that the linear dimension of the opening is much smaller than the

distance between P0 and P from the screen, the amplitude UP of the waves

superposition in P (the contribution of the only electric field is considered)

is given by the Kirchhoff integral

4πUP =

∫ ∫

STOT

{

U
∂

∂n

(

eiks

(r + s)

)

− eiks

(r + s)

∂U

∂n

}

dS. (A.1)

Here STOT , as shown in Fig A.1, left, is the sum of the opening A, the

portion of non illuminated side B of the screen and a portion C of a sphere

centred in P. k is the scattering vector. Assuming that in B U and ∂U/∂n

are approximately zero [Born and Wolf, 1999], Eq. A.1 can be rewritten as

follows:

UP = −iA0

2λ

∫ ∫

A

eik(s+r)

rs
{cos(n, r)− cos(n, s)} dS (A.2)
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Figure A.1: Illustration of the Fresnel-Kirchhoff diffraction integral (geom-
etry of a single slit) using boundary values problem proposed by Kirchhoff.

In Eq. A.2 (n,r) and (n,s) are the angles between the normal n to the screen

and the directions r and s, respectively (c.f. Fig. A.1, right) and A0 is a

constant. Equation A.2 has known as the Fresnel-Kirchhoff diffraction for-

mula. The contribution from C may be neglected in the limit of R → ∞.

In reference [Marchand and Wolf, 1966], the superposition of secondary

waves has been treated using different boundary conditions that the one

proposed by Kirchhoff, avoiding in the specific the use of the screen C and

the boundary values problem on B. One considers any point Q of an aper-

ture A having generic coordinates (ξ, η). Let be r and s the distance of P0

and P, respectively, from this point in the aperture. If P0 and P are far

enough, r and s can be replaced by r′ and s′ (Fig.A.2) and the contribu-

tion of {cos(n, r)− cos(n, s)} can be neglected. Therefore, Equation A.2

Figure A.2: Schematics of the Huygens-Fresnel principle using the boundary
conditions in [Marchand and Wolf, 1966].
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becomes [Born and Wolf, 1999]:

UP = −i cos δ
2λ

A0e
ik(r′+s′)

r′s′

∫ ∫

A

eikf(ξ,η)dξdη (A.3)

where the function f(ξ, η) is

f(ξ, η) = (l0 − l)ξ + (m0 −m)η + (A.4)

+
1

2

[(

1

r′
+

1

s′

)

(ξ2 + η2)− (l0ξ +m0η)
2

r′
− (lξ +mη)2

s′

]

· · ·

In the previous equation, (x, y, z) and (x0,y0,z0) are the coordinates of the

source and the point of observation, respectively, and (l0,m0) and (l, m),

defined as

l0 = −x0
r′
, m0 = −y0

r′
(A.5)

l =
x

s′
, m = − y

s′
,

represent the two direction cosines cos(n, r) and cos(n, s). The determi-

nation of the interference in P is reduced to the evaluation of the integral

in Eq. A.3. High-order terms in η and ξ may be neglected when r′ → ∞,

s′ → ∞. These terms do not contribute to the integral if the following

condition

1

2
k

[(

1

r′
+

1

s′

)

(ξ2 + η2)− (l0ξ +m0η)
2

r′
− (lξ +mη)2

s′

]

≪ 2π (A.6)

is satisfied, that corresponds to

|r′| ≫ (ξ2 + η2)max

λ
, |s′| ≫ (ξ2 + η2)max

λ
(A.7)
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Appendix B

New diffractometer at the

undulator beamline ID01

The European synchrotron radiation facility is planning a major upgrade

that will be developed in the next 5 years. The upgrade focuses on five areas

of applied and fundamental research, among which we find nanoscience and

nanotechnology and x-ray imaging. Within this project, the upgrade of the

undulator beamline ID01 aims to offer the possibility of combining x-ray

diffraction with coherent nano-beams together with various scanning probe

microscopy methods. The beamline length will double from 50 m to 100 m

and this will improve the transverse coherence length, as well as the the de-

magnification factors for focusing optics. The transverse coherence lengths,

today equal to ≈ 20× 60 µm2, will reach the values of 40× 120 µm2. This

new beamline will deliver a high performing instrument for nano-diffraction

experiments across a wide x-ray energy range (6-30 keV). In particular co-

herent imaging techniques will be improved both in forward direction and

in Bragg condition. X-ray scattering will continue to be combined with mi-

croscopy technique to locate nanostructures under investigation, as in-situ

atomic force microscopy, already exploited today, and a scanning electron

microscope that should be integrated on a second nano endstation. To this

aim, two endstations will be mounted in different experimental hutches at

different distances from the source.

According to the upgrade program, a (3+2 circles) diffractometer specif-

ically designed for nano-beam diffraction will be placed in the first exper-

imental hutch. This diffractometer has been recently commissioned and it

can be already used for experiments. The schematic of the new diffractome-

ter is shown in Fig. B.1 and the sample stage depicted in Fig. B.2. Table B.1
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and B.2 summarise the specifications of the diffractometer. The main con-

ceptual improvements of this diffractometer are the decoupling of the sample

goniometer from the detector arm and placement of sample goniometer and

focusing optics on the same support. The first solution avoids vibrations

of the sample stage due to the heavy detector arm improvements. The use

of one unique support for optics and sample suppresses mutual vibrations

and/or drift. The stability obtained with this solution is surprisingly good

and goes ever many tens of hours.

The decoupling of goniometer and detector and the suppression of the

circle χ has as direct consequence the reduction of the sphere of confusion

of the goniometer: in a rotation of ±1◦ the value is < 0.1 µm and in the

range of a total rotation, i.e. 360◦, 15 µm.

Micrometric precision translation stages under the detector table and

the goniometer allow the precise alignment of these two parts. The nano-

positioning of the sample is assured with an HexaPOD (Symmetrie) and a

PI piezo stage (Physik Instrumente). The HexaPOD has a stroke of ± 12

mm in the horizontal plane and it has the same value for both x an y

directions. A stroke of ± 5 mm is achieved in the vertical direction. The

typical step size is 100 nm. The PI stage is generally used for particular

applications requiring high repeatability. It provides travel ranges close to

100 µm with a very small step of only 20 nm.
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Figure B.1: Schematic view of the new diffractometer.

Figure B.2: Zoom view on the sample stage.
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Stage Stroke Resolution

RSz ±100◦ < 0.001◦

RSy +5◦ − 95◦ < 0.001◦

Ty +30 − 10 mm < 2 µm

Tz +30 − 10 mm < 2 µm

Table B.1: Specifications for the new diffractometer.

Stage Stroke Resolution

Rz +95◦ − 5◦ < 0.0002◦

Ry +5◦ − 120◦ < 0.0002◦

Tx ±10 mm 0.2 µm

Ty +30 − 10 mm 0.2 µm

Tz +32 − 10 mm 0.2 µm

Table B.2: Specifications for the detector arm.
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Orthonormalisation process for

energy scan

In the following, the orthonormalisation process when the energy scan

is used during experiments is detailed. The process provided to orthonor-

malise 3D diffraction pattern collected with an energy scan is based on the

method proposed by Favre-Nicolin et al. [2000]. An integration procedure

was developed in the case of dispersive anomalous diffraction (DAD), for

the collection and analysis of the raw images, to yield data in the form I(h,

k, l, λ) for all reflections. This procedure has been adapted to the case

of a coherent diffraction experiment, assuming a low divergence of the in-

cident beam and a non-oscillating sample. The starting equations, in the

experimental conditions of relevance for this work, are defined as follows:























x∗ = 1
λD

[

− cos δ(X −X0)× pxlsize +D sin δ
]

y∗ = 1
λD

[

cos ν(sin δ(X −X0)× pxlsize +D cos δ)+

− sin ν(Y − Y0)× pxlsize
]

− 1
λ

z∗ = 1
λD

[

sin ν(sin δ(X −X0)× pxlsize +D cos δ)− cos ν(Y − Y0)× pxlsize
]

where δ, ν define positions on the detector placed at sample-detector dis-

tance D , and X0, Y0, the coordinate system on the detector. The pixel size

is indicated by pxlsize. The experimental geometry is shown in Fig. C.1.

This set of equations can be used to transform raw data in the refer-

ence frame (x∗, y∗, z∗) of the sample. Let impose that λ = β/E, where

β = 12398.4 eV Å. This relation can be substituted in the previous set of

equations to make explicit the dependence on the energy E. The equations

for x∗, y∗ and z∗ can be partially derived with respect to the three indepen-
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Figure C.1: Description of a monochromatic wavefield impinging on a sam-
ple, that is placed at the centre of the Ewald sphere, with all orientational
parameters needed to describe the experiment: δ, ν define positions on the
detector placed at the sample-detector distance D, and X0, Y0, the coordi-
nate system on the detector. The pixel size is indicated by pxlsize

dent variables X , Y and E. The total derivatives dx∗, dy∗ and dz∗ can be

easily obtained as:







































dx∗ = −E×pxlsize
Dβ

cos δdX + 1
Dβ

[

cos δ(X −X0)× pxlsize +D sin δ
]

dy∗ = E×pxlsize
Dβ

[

cos ν sin δdX + sin νdY )
]

+

+
[

cos ν(sin δ(X−X0))+sin ν(Y−Y0)×pxlsize
Dβ

− 1
β

]

dE

dz∗ = E×pxlsize
Dβ

[

sin ν sin δdX − cos νdY
]

+

+
sin ν
(

sin δ(X−X0)×pxlsize+D cos δ
)

−cos ν(Y−Y0)pxlsize

Dβ
dE

If one considers that the 3D scattering is centred in the detector plane, i.e.











ν ≃ 0

X = X0

Y = Y0

it results that:











dx∗ = −E×pxlsize
Dβ

cos δdX + sin δ
β
dE

dy∗ = −E×pxlsize
Dβ

sin δdX + cos δ
β
dE

dz∗ = E×pxlsize
Dβ

dY
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Considering the reference frame (x∗1,y
∗
1,z

∗
1) perpendicular to the final

wavevector kf (cf. Fig. C.1) and using the transformation matrix (rotation

around the z-axis of an angle δ)







cos δ − sin δ 0

sin δ cos δ 0

0 0 1






(C.1)

the following three relationships are obtained:











dx∗1 = −E×pxlsize
Dβ

dX + sin δ
β
dE

dy∗1 = (1− cos δ)dE
β

dz∗1 = E×pxlsize
Dβ

dY

These equations can be used top compensate the shift in x direction due to
the detector movement and orthonormalise experimental data.
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Coherent x-ray diffraction imaging on single nanowires

Francesca Mastropietro1,2

The coherent diffraction imaging technique (CDI) in Bragg condition can be used

to study strain in single nanowires. This is possible due to the recent development

of dedicated focusing optics, e.g. Fresnel Zone Plate (FZP), offering the possibility

of focusing x-ray beams to sub-micron sizes while preserving a coherent beam.

This technique allows to reconstruct (using phase retrieval algorithms) the studied

nanostructure as a complex-valued density map, where the amplitude corresponds to

the electronic density and the phase to the displacement of the atoms with respect

to a perfect crystalline lattice projected onto the scattering vector. The application

of CDI to image the strain into heterogeneous (GaAs nanowire with an insertion

of 1 monolayer of quantum dots and InSb nanowire with and insertion of InP) and

homogeneous highly stressed nano-structures (strained Silicon-on-Insulator lines) has

been studied in this work. When using focused X-ray beams, both the amplitude and

of the incoming wavefield must be known for a quantitative reconstruction. CDI has

been used to reconstruct the coherent wavefield used during experiments and the effects

of this illumination function for the imaging of strained nanowires have been also studied.

Keywords: Coherent x-ray diffraction imaging, strain, nanowires, wavefront, phase

retrieval algorithms

Imagerie de nanofils uniques par diffraction cohérente des rayons x

L’imagerie par diffraction des rayons X cohérents (CDI) en condition de Bragg est

utilisée pour étudier la déformation de nano-objets uniques. Ceci est possible grâce au

développement d’optiques focalisantes, comme les lentilles de Fresnel (FZP), produisant

un faisceau sub-micronique cohérent. Les nanostructure étudiées sont reconstruites avec

des algorithmes d’inversion à partir de données de diffraction, sous la forme d’un objet

complexe, où l’amplitude correspond à la densité électronique 3D et la phase correspond

à la projection de la déformation de l’objet (par rapport à un réseau cristallin parfait)

dans la direction du vecteur de diffraction. Dans ce travail, nous avons étudié la

déformation dans des nanofils hétérogènes (nanofil de GaAs avec une mono-couche

de bôıtes quantiques de InAs) et homogènes (silicium fortement contraint sur isolant

(sSOI)). Lorsqu’un faisceau focalisé de rayons X est utilisé, à la fois l’amplitude et la

phase de l’onde incidente doivent être connues pour une étude quantitative. Le faisceau

focalisé utilisé pendant les expériences a été recontruit avec la technique CDI, et les

effets de cette fonction d’illumination sur l’imagerie de nanofils contraints ont été étudiés.

Mots-clés: Imagerie par diffraction x cohérente, contrainte, nanofils, algorithms

d’inversion
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