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Résumé

Résumé

Cette these est consacrée a I’étude des modules de quantification par déformation ou
DQ-modules. Elle explore dans quelle mesure certains théoremes de géométrie algébrique
s’étendent aux DQ-modules et plus généralement & un cadre non-commutatif.

Nous établissons un théoréme de type Riemann-Roch pour les algebres différentielles
graduées propres et homologiquement lisses, généralisant ainsi un résultat de Shklyarov.

Nous donnons un analogue non-commutatif d’un résultat de Bondal et Van den Bergh
affirmant que la catégorie dérivée des faisceaux quasi-cohérents d’une variété algébrique
est engendrée par un générateur compact. Il apparait que la notion d’objet quasi-cohérent
n’est pas adaptée a la théorie des DQ-modules. Nous introduisons donc, en nous appuyant
sur la notion de complétude cohomologique de Kashiwara-Schapira, la notion d’objet co-
homologiquement complet & gradué quasi-cohérent. Nous montrons que ces objets forment
une catégorie triangulée, engendrée par un générateur compact et nous en caractérisons
les objets compacts.

Nous adaptons au cas des DQ-modules une formule due a Lunts, qui calcule la trace
d’un noyau cohérent agissant sur I’homologie de Hochschild d’un DQ-algébroide. La mé-
thode de Lunts ne semble pas s’appliquer aux DQ-modules. Nous développons donc un
formalisme permettant d’obtenir un théoréme similaire a celui de Lunts puis nous I’appli-
quons aux DQ-modules.

Enfin, nous nous intéressons, dans le cadre des DQ-modules, aux transformations inté-
grales pour lesquelles nous donnons des résultats d’adjonction et démontrons une condition
nécessaire et suffisante pour qu’'une telle transformation soit une équivalence.

Mots-clefs

Homologie de Hochschild, DQ-algébroide, DQ-module, catégories triangulée, généra-
teur compact, algebre différentielle graduée.



On the triangulated category of DQ-modules

Abstract

The main subject of this thesis is the study of deformation quantization modules or
DQ-modules. This thesis investigates to which extent some theorems of algebraic geometry
can be generalized to DQ-modules. Hence, to a non-commutative setting.

We established a Riemann-Roch type theorem for proper and homologically smooth
differential graded algebras which slightly generalizes a result of Shklyarov We give a
non-commutative analogue of a result of Bondal and Van den Berg asserting that on a
quasi-compact and quasi-separated scheme, the derived category of quasi-coherent sheaves
is generated by a single compact generator. It becomes clear that the notion of a quasi-
coherent object is not suitable for the theory of DQ-modules. Therefore, relying on the
concept of cohomological completenessss of Kashiwara-Schapira, we introduce the notion of
cohomologically complete and graded quasi-coherent objects. We show that these objects
form a cocomplete triangulated category generated by a single compact generator and we
characterize its compact objects.

We adapt to the case of DQ-modules a formula of Lunts which calculates the trace
of a coherent kernel acting on the Hochschild homology of a DQ-algebroid stack. The
method of Lunts does not seems to work directly in the framework of DQ-modules. We
build an abstract formalism in which we obtain a formula similar to Lunts’ and we apply
this formalism to DQ-modules.

Finally, we study integral transforms in the framework of DQ-modules. In this setting,
we recover some adjunction results which are classical in the commutative case. We also
give a sufficient and necessary condition for such a transformation to be an equivalence.

Keywords

Hochschild homology, DQ-algebroid, DQ-module, triangulated category, compact gen-
erator, differential graded algebra.
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Introduction

Version francaise

L’objet central de cette thése est I’étude des modules de quantification par déforma-
tion ou DQ-modules. IlIs ont été introduits par Kontsevich dans [Kon01] et un travail de
fondation a été effectué par Kashiwara et Schapira dans [KS12]. Les DQ-modules sont des
modules sur un champ de DQ-algébroides. Ces champs sont localement équivalents a des
star-algebres, c’est-a-dire a des quantifications par déformation du faisceau des fonctions
holomorphes d’une variété de Poisson complexe.

Cette theése explore dans quelle mesure certains théorémes de géométrie algébrique
s’étendent aux DQ-modules et donc a un cadre non commutatif. On s’est intéressé en
particulier au théoreme de Bondal-Van den Bergh concernant les générateurs compacts
de la catégorie dérivée des faisceaux quasi-cohérents et a son corollaire affirmant qu’une
variété algébrique est dg affine (voir [BvdB03]), a un théoréme de Lefschetz d & V. Lunts
(voir [Lunll]) et finalement aux transformations intégrales.

Les notions de nature homologique ou catégorique intervenant en géométrie algébrique
peuvent en général étre transportées dans un cadre non commutatif. Notre étude s’appuie
donc sur I'analyse de certaines structures catégoriques apparaissant dans la théorie des
DQ-modules.

Un but, hors de portée a ’heure actuelle, serait d’obtenir un théoréme de reconstruction
dans D'esprit de celui de Bondal-Orlov pour les variétés symplectiques complexes, a partir
de leurs catégories dérivées de DQ-modules cohérents.

La these présentée ici comporte quatre chapitres et un appendice traitant des champs
en algébroides. A I'exception du premier chapitre, ils concernent tous de facon directe la
théorie des DQ-modules. Décrivons briévement leur contenu.

A Riemann-Roch Theorem for dg Algebras

Dans ce chapitre, motivé par la version du théoreme de Riemann-Roch pour les algebres
différentielles graduées di a Shklyarov ([Shk07a]) ainsi que par un résultat similaire obtenu
par Kashiwara-Schapira dans le cadre des DQ-modules ([KS12] ch.4, §3]), nous obtenons un
théoréeme de type Riemann-Roch pour les algebres différentielles graduées faisant intervenir
des classes a valeurs dans I’homologie de Hochschild associée a des paires (M, f) ou M est
un A-module et f un endomorphisme de M.

Le but de ce chapitre, basé sur l'article [Petl0], est d’extraire certains des aspects
algébriques de I'approche de Kashiwara-Schapira, afin d’éventuellement fournir un point
de vue plus homogene pour attaquer certains théoremes d’indice.

Nous obtenons une légere généralisation du théoreme de Shklyarov. La différence ma-
jeure entre notre approche et la sienne est que nous travaillons directement avec ’homo-
logie de Hochschild de I’algebre différentielle graduée A et non pas avec la définition de
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I’homologie de Hochschild via la catégorie des complexes parfaits. Finalement, le résultat
principal de ce chapitre est

Théoreme. Soit A une algebre différentielle graduée propre et homologiquement lisse, soit
M € Dpert(A), f € Homa(M, M) et N € Dpere(A°P), g € Hom gon (N, N).
Alors

L L
hhe(N & M, 9 & f) = hhaer (N, 9) U (M, f),

ot U est un accouplement entre groupes d’homologies de Hochschild et ot hha(M, f) est
la classe de Hochschild de la paire (M, f) da valeurs dans I’homologie de Hochschild de A.

DG Affinity of DQ-modules

Dans ce chapitre qui est extrait de larticle [Petlla], nous donnons un analogue non-
commutatif & un célebre résultat de Bondal et Van den Bergh affirmant que, sur un schéma
quasi-séparé et quasi-compact, la catégorie Dgyeon(Ox) est engendrée par un générateur
compact et que les objets compacts de Dqcon(Ox ) sont les complexes parfaits. Un corollaire
de ce résultat est que la catégorie Dqcon(Ox) est équivalente a la catégorie dérivée dune
algebre différentielle graduée convenable.

Il apparait assez rapidement que la notion d’objet quasi-cohérent n’est pas adaptée a
la théorie des DQ-modules algébriques. Une premiere difficulté consiste donc a trouver une
catégorie triangulée qui puisse remplace la catégorie Dgeon(Ox). Un ingrédient essentiel
est la notion de complétude cohomologique due a Kashiwara-Schapira. Nous introduisons
donc la notion d’objet cohomologiquement complet a gradué quasi-cohérent. Ces objets
sont appelés gcc modules et forment une catégorie triangulée Dgycc(Ax) (ot Ax est un
DQ-algébroide) qui peut étre considérée comme la déformation de Dycon(Ox ) lorsque 1'on
déforme Ox en Ax. Une seconde difficulté réside dans la cocomplétude de la catégorie
des qcc. En effet Dqec(Ax) est cocomplete non pas pour la somme directe usuelle de la
catégorie des DQ-modules mais pour la complétion cohomologique de cette somme directe.

Deux foncteurs jouent un réle fondamental dans la théorie des DQ-modules. Les fonc-
teurs

g : D(Ox) — D(Ax) gr; : D(Ax) — D(Ox)
M 5405 & M M Oxa & M.
Ox Ax

L’observation essentielle est qu'un générateur compact de la catégorie Dyeon(Ox) va
fournir un générateur compact de la catégorie des qcc. En effet, on a

Proposition. Si G est un générateur compact de Dqcon(Ox) alors 14(G) est un générateur
compact de Dyec(Ax).

L’existence d'un générateur compact de Dgeon(Ox) étant garantie par [BvdB03]. En
nous appuyant sur un résultat de Ravenel et Neeman ([Rav84] et [Nee92]), nous caracté-
risons ensuite les objets compacts de Dyec(Ax).

Théoréme. Un object M de Dycc(Ax) est compact si et seulement si M € Db, (Ax) et
Al @4 M =0.

Finalement, en utilisant un résultat di a Keller [Kel94], on déduit de tout ceci
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Théoreme. Soit X une variété complexe lisse, munie d’un DQ-algebroide Ax. Alors
Dycc(Ax) est équivalente a D(A) ou A est une algébre différentielle graduée convenable
dont la cohomologie est bornée.

Enfin, nous étudions la catégorie des qcc lorsque l'on suppose la variété affine. On
montre alors que I’équivalence de catégories triangulées entre Dércoh(OX) et DT(Ox (X))

se releve en une équivalence entre Df..(Ax) et la catégorie triangulée D.(Ax (X)) des

Ax (X)-modules cohomologiquement complets.

Théoréme. Soit X une variété algébrique affine lisse. On pose A = I'(X, Ax) et B =
I'(X,Ox).
Les foncteurs
®: D (Ax) = DZL(4), ®(M) =RI(X, M)

et
U :DL(A) = DI (Ax), ¥ (M) = (Ax @4y axy M)

qcce

sont des équivalences de catégories triangulées et sont inverses l'un de ’autre. De plus le
diagramme ci-dessous est quasi-commautatif.

[0
D;li_cc (AX) <T Dérc (A)

The Lefschetz-Lunts formula for DQ-modules

Dans ce chapitre, extrait de [Pet11b], on adapte aux cas des DQ-modules une formule,
due & V. Lunts, qui calcule la trace d’'un noyau cohérent agissant sur I’homologie de
Hochschild. La méthode de V. Lunts ne semble pas s’appliquer directement au cas des
DQ-modules. En effet, dans le cadre commutatif, si X est une variété projective lisse,
le morphisme X — pt va permettre d’intégrer une classe. Cependant, dans le cadre des
DQ-modules un tel morphisme n’existe pas et ’on doit intégrer une paire de classes.

Pour remédier a ce probléme, on s’inspire de I'idée courante en topologie algébrique
(cf. [LMSMS6]) selon laquelle les théorémes du point fixe de Lefschetz sont liés a des
structures monoidales. Dans la premiere partie du chapitre, on développe un formalisme
abstrait permettant d’obtenir un théoréme similaire & celui de Lunts a partir d’une ca-
tégorie monoidale munie d’un foncteur a valeurs dans la catégorie dérivée des k-modules
et satisfaisant un certain nombre de propriétés (voir la sous-section . On applique
ensuite ce formalisme aux DQ-modules et on obtient

Théoréeme. Soit X une variété analytique complexe lisse et compact munie d’un DQ-
algébroide Ax. Soit A € HHg(Ax xxa). Considérons le morphisme (3.3.14

®, : HH(Ayx) — HH(Ax).

alors

TI"(Ch((I)/\) = thaXX(CXa) X>L<JX“ A
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Proposition. Soit X une variété analytique complexe lisse et compacte munie d’un DQ-
algébroide Ax et K € ch)oh(AXxXa)- Alors

Teen (@) = YRT(X x X%Cxa &  K)).

Ax xxa

On donne ensuite différentes formes de ces formules en particulier lorsque la variété
est supposée symplectique. On retrouve aussi les résultats de Lunts.

Fourier-Mukai transforms for DQ-modules

Dans ce dernier chapitre, qui provient d’un travail en cours, on s’intéresse aux trans-
formations intégrales pour les DQ-modules. Ce travail est motivé par le théoreme de re-
construction de Bondal-Orlov. On commence par retrouver, avec une méthode différente
de la méthode usuelle, certains résultats d’adjonction pour les transformations intégrales.

Proposition. Soit X1 (resp. Xo) une variété complexe projective lisse équipée de la to-
pologie de Zariski et munie d'un DQ-algébroide Ay (resp. As). Soit & : Dl (Ar) —

coh

D’ . (A1) la transformation intégrale associée a K € Db, (A12q) et @i, : D2, (A1) —

coh coh coh
Db . (A2) (resp. @, : Dl (A1) — D, (As)) la transformation intégrale associée d

coh coh

Kr =D/, (K) 5 wae (resp. K = D)y, (K) c1>w1). Alors @y, (resp. Px, ) est adjoint
a droite (resp. d gauche) de Px.

a

Le résultat central du chapitre est une condition pour qu’une transformation intégrale
soit une équivalence de catégories.

Théoréme. Soit X (resp. Xa) une variété complexe projective lisse équipée de la topologie
de Zariski et munie d’'un DQ-algébroide Ay (resp. Az). Soit KK € D2} (A12a). Les conditions
susvantes sont équivalentes.

(i) Le foncteur ®x : D%, (As) — DL, (A1) est pleinement fidéle (resp. est une équiva-

coh coh
lence de catégories triangulées).

(ii) Le foncteur ®g, i : Db, (O2) — Db, (O1) est pleinement fidéle (resp. est une équi-

coh coh
valence de catégories triangulées).

La preuve de l'implication (i4) = (i) ne présente pas de difficulté et fait appel a
des arguments classiques de théorie des DQ-modules. Quant & la preuve de I'implication
(1) = (i1), elle repose essentiellement sur I'observation suivante.

Proposition. Soit X une variété algébrique complexe lisse munie d’un DQ-algebroide.

(i) Si G est un générateur compact de Dqcon(Ox) alors gry, 14sG est encore un générateur
compact de Dyeon(Ox).

(ii) On a D¢y, (Ox) = (gry1g(9))-

En effet, la preuve de 'implication (i) = (i7) revient alors a considérer la sous-catégorie
pleine de ch’oh((’)g) dont les objets sont ceux pour lesquels @, 1 est pleinement fidele. On
montre que cette catégorie est une sous-catégorie épaisse de D’ ; (Og) contenant gry, 14(G).

La proposition ci-dessus permet alors de conclure.
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English version

The main subject of this thesis is the study of deformation quantization modules
(DQ-modules for short). They have been introduced by Konstevich in [Kon0l] and a
important foundational work has been carried out by Kashiwara and Schapira in [KS12].
DQ-modules are modules over a DQ-algebroid stacks. These stacks are locally equivalent
to star-algebras that is to say to deformation quantization of the sheaf of holomorphic
functions of a complex Poisson variety.

This thesis investigates in which extents some theorems of algebraic geometry can be
generalised to DQ-modules. Hence, to a non-commutative setting. We have focus our
attention on a result of Bondal-Van den Bergh concerning the compact generators of the
derived category of quasi-coherent sheaves and on its corollary asserting that an algebraic
variety is dg affine (see [BvdB03]), on a Lefschetz theorem due to V. Lunts (see [Lunll])
and finally on integral transforms.

Notions of homological or categorical nature, appearing in algebraic geometry, may
usually be transposed to non-commutative framework. Hence, our study relies on an
analysis of certain categorical structures showing up in the theory of DQ-modules.

A goal, out of reach at the present time, would be to obtain a reconstruction theorem for
complex symplectic varieties starting from their derived category of coherent DQ-modules.
Such a result is motivated by Bondal-Orlov’s famous reconstruction result.

The present thesis is made of four chapters and one appendix concerning algebroid
stacks. With the exception of the first chapter, they all directly concern the theory of
DQ-modules. Let us briefly describe them.

A Riemann-Roch Theorem for dg Algebras

In this chapter, motivated by the Riemann-Roch theorem for differential graded al-
gebras due to Shklyarov [Shk(07a] and by a similar result of Kashiwara-Schapira for DQ-
modules ([KS12] §4.3]), we obtain a Riemann-Roch theorem for differential graded algebras
involving classes of pairs (M, f) where M is a perfect A-module and f an endomorphism
of M. These classes are with values in the Hochschild homology of the algebra A.

The aim of this chapter, based on [Pet10], is to extract some of the algebraic aspects
of this latter approach with the hope that the resulting techniques will provide a uniform
point of view for proving some index theorems.

We obtain a slightly more general version of Shklyarov’s theorem. The major differ-
ence between his approach and ours is that we are directly working with the Hochschild
homology of the differential graded algebra A and not with the definition of Hochschild
homology in terms of the category of perfect complexes. Finally, the main result of this
chapter is

Theorem. Let A be a proper, homologically smooth dg algebra, M € Dpet(A), f €
Homy (M, M) and N € Dpert(A°P), g € Homgon (N, N).
Then

L L
hhk(N§Mag§f) = hhAOP(N7g> UhhA(M7 f)7

where U is a pairing between the corresponding Hochschild homology groups and where
hh 4 (M, f) is the Hochschild class of the pair (M, f) with value in the Hochschild homology
of A.
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DG Affinity of DQ-modules

In this chapter, extracted from the [Petllal, we give a non-commutative analogue of
a famous result of Bondal-Van den Berg asserting that, on a quasi-compact and quasi-
separated scheme, the category Dgcon(Ox) is generated by a compact generator and that
the compact object of Dgeon(Ox) are the perfect complexes. This result implies that the
category Dgcon(Ox) is equivalent to the derived category of a suitable differential graded
algebra.

It becomes rapidly clear that the notion of quasi-coherent object is not suitable for
the theory of DQ-modules. A first difficulty is to find a triangulated category to replace
Dgcon(Ox). A key ingredient is Kashiwara-Schapira’s notion of cohomological complete-
ness. Therefore, we introduce the notion of cohomologically complete and graded quasi-
coherent objects. These objects are called qcc modules and form a triangulated category
Dgcc(Ax) (where Ax is a DQ-algebroid) which can be thought of as the deformation of
Dgcon(Ox ) while deforming Ox into Ax. A second difficulty lies in the cocompletness of
the category of qcc objects. Indeed, Dqcc(Ax) is not a cocomplete category for the usual
direct sum of the category of DQ-modules but for the cohomological completion of this
direct sum.

Two functors play a leading role in the theory of DQ-modules. The functors

g : D(Ox) — D(Ax) gry : D(Ax) — D(Ox)
MI—>AOX(§L§M MHOXAQ%M.
OX -AX

A key observation is that a compact generator of Dycon(Ox ) gives a compact generator of
the qcc objects. Indeed, we have

Proposition. If G is a generator of Dqcon(Ox), then 14(G) is a generator of Dyec(Ax).

The existence of a compact generator of Dqcon(Ox) is granted by [BvdB03]. Relying
on a theorem of Ravenel and Neeman (see [Rav84] and [Nee92]) we describe completely
the compact objects of Dgec(Ax).

Theorem. An object M of Dqcc(Ax) is compact if and only if M € DY, (Ax) and
A @4 M =0.

Finally, using a result of Keller [Kel94], we deduce that

Theorem. Assume X is a smooth complex algebraic variety endowed with a deformation
algebroid Ax. Then, Dgcc(Ax) is equivalent to D(A) for a suitable dg algebra A with
bounded cohomology.

Finally, we study qcc sheaves on an affine variety and prove that the equivalence

of triangulated categories between D;coh(OX) and DT (Ox (X)) lifts to an equivalence

between D{,.(Ax) and the triangulated category D.(Ax (X)) of cohomologically complete

qcc

Ax (X )-modules

Theorem. Let X be a smooth affine variety. We set A=T(X,Ax) and B=T(X,Ox).
The functors
®: D} (Ax) — DL(4), ®(M) = RT(X, M)

qce

and
W 5 DA (A) > Do (Ax ), W(M) = (Ax @4, ax M)

qcce
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are equivalences of triangulated categories, are inverses one to each other and the diagram
below is quasi-commutative

(o3}
DZI’—CC (‘AX) <T Dg;:(A)

igrh lgrh

R‘F( 7')
D Ox)=—=DT*(B).
QCoh( X)(9X®BX' ( )

The Lefschetz-Lunts formula for DQ-modules

In this chapter, extracted from [Pet11b], we adapt to the case of DQ-modules a formula
of V. Lunts which calculates the trace of a coherent kernel acting on the Hochschild
homology. The method of V. Lunts does not seems to work directly in the framework of
DQ-modules. Indeed, in the commutative case, if X is a smooth projective variety, the
morphism X — pt allows to integrate a class. However, such a map does not exist in the
theory of DQ-modules. Thus, it is not possible to integrate a single class with value in
Hochschild homology and one has to integrate a pair of classes.

To solve this problem, we follow the idea from algebraic topology (cf. [LMSMS6])
according to which Lefschetz fixed point theorems are linked to some monoidal structures.
In the first part of the chapter, we build an abstract formalism in which we can get a
formula for the trace of a class acting on a certain homology, starting from a symmetric
monoidal category endowed with some specific data (see subsection. Then, we apply
this formalism to DQ-modules and get

Theorem. Let X be a complex compact manifold endowed with a DQ-algebroid Ax. Let
A € HHo(Ax xxa). Consider the map (3.3.14

O, : HH(Ax) —» HH(Ax).

Then

Trch,((p)\) == thaXX(CXa) X;JX'I A

Proposition. Let X be a complex compact manifold endowed with a DQ-algebroid Ax
and let K € DZOh(AXXXa). Then

L
T\I'(Cn((I)]C) = X(RF(X X Xa;CXa &® /C))
Ax xxa
Finally, we give different forms of these formulas, especially when the manifolds is
assumed to be symplectic. We also recover Lunts’results.

Fourier-Mukai transforms for DQ-modules

In this last chapter, that comes from an ongoing work, we focus our attention on inte-
gral transforms for DQ-modules. This work is motivated by Bondal-Orlov’s reconstruction
theorem. We start by recovering some adjunction results for integral transforms.

Proposition. Let X1 (resp. X2) be a smooth complex projective variety endowed with the
Zariski topology and equipped with a DQ-algebroid Ay (resp. As). Let ®x : DP | (As) —

coh

Db (A1) be the Fourier-Mukai functor associated to K € DY, (A19a) and @, : Db, (A1) —
Db . (A2) (resp. @, : D2, (A1) — DL, (A2)) the Fourier-Mukai functor associated to

Kr=D/ . (K) O waa (resp. K, =Dy, (K) ?wl). Then ®i,, (resp. P, ) is right (resp.
left) adjoint to .
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The main result of the chapter is a condition for an integral transform to be an equiv-
alence of category.

Theorem. Let X (resp. X2) be a smooth complex projective variety endowed with the
Zariski topology and equipped with a DQ-algebroid Ay (resp. Asz). Let K € Db (Ajza).
The following conditions are equivalent
(i) The functor ®x : Db, (As) — D2, (A1) is fully faithful (resp. an equivalence of
triangulated categories).

(ii) The functor ®g, k : Dl . (Og) — DP . (O1) is fully faithful (resp. an equivalence of

coh coh
triangulated categories).

The proof of the implication (i7) = (i) does not present any difficulties and use classical
techniques of DQ-modules theory. The proof of the implication (i) = (i7) relies essentially
on the following observation.

Proposition. Let X be a smooth complex algebraic variety endowed with a DQ-algebroid.
(1) If G is a compact generator of Dycon(Ox) then gry 14G is still a compact generator of
choh(OX) .
(ii) One has D%, (Ox) = (gr), 14(G)).
The proof of the implication (i) = (i) comes down to study the full subcategory of

(Ox) whose objects are those for which ®g;, x is fully faithful. We show that this

b 1(Ox) containing gry, 1,(G). The above proposition

Db

coh

category is a thick subcategory of D
leads to the result.



Chapter 1

A Riemann-Roch Theorem for dg
Algebras

1.1 Introduction

An algebraic version of the Riemann-Roch formula was recently obtained by D. Shkl-
yarov [ShkOT7a] in the framework of the so-called noncommutative derived algebraic geom-
etry. More precisely, motivated by the well known result of A. Bondal and M. Van den
Bergh about "dg-affinity" of classical varieties, D. Shklyarov has obtained a formula for the
Euler characteristic of the Hom-complex between two perfect modules over a dg-algebra
in terms of the Euler classes of the modules.

On the other hand, M. Kashiwara and P. Schapira [KS12] initiated an approach to
the Riemann-Roch theorem in the framework of deformation quantization modules (DQ-
modules) with the view towards applications to various index type theorems. Their ap-
proach is based on Hochschild homology which, in this setup, admits a description in terms
of the dualizing complexes in the derived categories of coherent DQ-modules.

The present chapter, based on the paper [Petl0)], is an attempt to extract some al-
gebraic aspects of this latter approach with the hope that the resulting techniques will
provide a uniform point of view for proving Riemann-Roch type results for DQ-modules,
D-modules etc. (e.g. the Riemann-Roch-Hirzebruch formula for traces of differential
operators obtained by M. Engeli and G. Felder [EF08]). In this chapter, we obtain a
Riemann-Roch theorem in the dg setting, similarly as D. Shklyarov. However, our ap-
proach is really different of the latter one in that we avoid the categorical definition of the
Hochschild homology, and use instead the Hochschild homology of the ring A expressed
in terms of dualizing objects. Our result is slightly more general than the one obtained in
[ShkO7al. Instead of a kind of non-commutative Riemann-Roch theorem, we rather prove a
kind of non-commutative Lefschetz theorem. Indeed, it involves certain Hochschild classes
of pairs (M, f) where M is a perfect dg module over a smooth proper dg algebra and
f is an endomorphism of M in the derived category of perfect A-modules. Moreover,
our approach follows [KS12]. In particular, we have in our setting relative finiteness and
duality results (Theorem and Theorem that may be compared with [KS12,
Theorem 3.2.1] and [KS12, Theorem 3.3.3]. Notice that the idea to approach the classi-
cal Riemann-Roch theorem for smooth projective varieties via their Hochschild homology
goes back at least to the work of N. Markarian [Mar06]. This approach was developed
further by A. Caldararu [Cal03], [Cal05] and A. Caldararu, S. Willerton [CW10] where,
in particular, certain purely categorical aspects of the story were emphasized. The results
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of |Cal03] suggested that a Riemann-Roch type formula might exist for triangulated cat-
egories of quite general nature, provided they possess Serre duality. In this categorical
framework, the role of the Hochschild homology is played by the space of morphisms from
the inverse of the Serre functor to the identity endofunctor. In a sense, our result can be
viewed as a non-commutative generalization of A. Calddraru’s version of the topological
Cardy condition [Cal03]. Our original motivation was different though it also came from
the theory of DQ-modules [KS12].

Here is our main result:

Theorem. Let A be a proper, homologically smooth dg algebra, M € Dpee(A), f €
Hom (M, M) and N € Dpere(A°P), g € Homaer (N, N).
Then

L L
hhe(N & M, g & f) = hhger (N, 9) Ubha(M, f),

where U is a pairing between the corresponding Hochschild homology groups and where
hha(M, f) is the Hochschild class of the pair (M, f) with value in the Hochschild homology
of A.

The above pairing is obtained using Serre duality in the derived category of perfect
complexes and, thus, it strongly resembles analogous pairings, studied in some of the
references previously mentioned (cf. [Cal03], [KS12], [ShkO7h]). We prove that various
methods of constructing a pairing on Hochschild homology lead to the same result. Notice
that in [Ram10], A. Ramadoss studied the links between different pairing on Hochschild
homology.

To conclude, we would like to mention the recent paper by A. Polishchuk and A. Vain-
trob [PV10] where a categorical version of the Riemann-Roch theorem was applied in the
setting of the so-called Landau-Ginzburg models (the categories of matrix factorizations).
We hope that our results, in combination with some results by D. Murfet [Mur09], may
provide an alternative way to derive the Riemann-Roch formula for singularities.

1.2 Conventions

All along this chapter k is a field of characteristic zero. A k-algebra is a k-module A
equiped with an associative k-linear multiplication admitting a two sided unit 14.

All the graded modules considered in this chapter are cohomologically Z-graded. We
abreviate differential graded module (resp. algebra) by dg module (resp. dg algebra).

If A is a dg algebra and M and N are dg A-modules, we write Hom$% (M, N) for the
total Hom-complex.

If M is a dg k-module, we define M* = Hom} (M, k) where k is considered as the dg
k-module whose 0-th components is k£ and other components are zero.

We write ® for the tensor product over k. If x is an homogeneous element of a
differential graded module we denote by |z| its degree.

If A is a dg algebra we will denote by A°P the opposite dg algebra. It is the same as
a differential graded k-module but the multiplication is given by a - b = (—1)l*/lPlpa, We
denote by A€ the dg algebra A ® A°P and by ©A the algebra A°P ® A.
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By a module we understand a left module unless otherwise specified . If A and B are
dg algebras, A-B bimodules will be considered as left A ® B°P-modules via the action

a®b-m=(=1)Imgmp,

If we want to emphasize the left (resp. right) structure of an A-B bimodule we will write
AM (resp. Mp). If M is an A ® B°P-modules, then we write M°P for the corresponding
B°? @ A-module. Notice that (M°P)* ~ (M*)°? as B ® A°P-modules.

1.3 Perfect modules

1.3.1 Compact objects

We recall some classical facts concerning compact objects in triangulated categories.
We refer the reader to [Nee(1].
Let 7 be a triangulated category admitting arbitrary small coproducts.

Definition 1.3.1. An object M of T is compact if for each family (M;);cr of objects of
T the canonical morphism

P Homy (M, M;) — Homy (M, EPM;) (1.3.1)
icl iel
is an isomorphism. We denote by T¢ the full subcategory of 7 whose objects are the
compact objects of T.

Recall that a triangulated subcategory of T is called thick if it is closed under isomor-
phisms and direct summands.

Proposition 1.3.2. The category T is a thick subcategory of T .
We prove the following fact that will be of constant use.

Proposition 1.3.3. Let T and S be two triangulated categories and F' and G two functors
of triangulated categories from T to S with a natural transformation o : F = G. Then
the full subcategory To of T whose objects are the X such that ax : F(X) — G(X) is an
isomorphism is a thick subcategory of T .

Proof. The category 7 is non-empty since 0 belongs to it and it is stable by shift since
F and G are functors of triangulated categories. Moreover, the category 7, is a full
subcategory of a triangulated category. Thus, to verify that 7, is triangulated, it only
remains to check that it is stable by taking cones. Let f : X — Y be a morphism of 7,.
Consider a distinguished triangle in 7,

x Ly -z xn).

We have the following diagram
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By the five Lemma it follows that the morphism «az is an isomorphism. Therefore, Z
belongs to 7,. This implies that the category 7, is triangulated.

It is clear that 7, is closed under isomorphism. Since F' and G are functors of trian-
gulated categories they commutes with finite direct sums. Thus, 7, is stable under taking
direct summands. It follows that 7, is a thick subcategory of 7. O

Definition 1.3.4. The triangulated category 7T is compactly generated if there is a set
G of compact objects G such that an object M of T wvanishes if and only if we have
Hom7(G[n], M) ~ 0 for every G € G and n € Z.

Theorem 1.3.5 ([Nee92, Rav84]). Let G be as in Definition |1.5.4. An object of T is
compact if and only if it is isomorphic to a direct factor of an iterated triangle extension
of copies of object of G shifted in both directions.

Remark 1.3.6. The above theorem implies that the category of compact objects is the
smallest thick subcategory of 7 containing G.

1.3.2 The category of perfect modules

In this section, following [Kel06], we recall the definition of the category of perfect
modules.

Let A be a differential graded algebra. One associates to A its category of differential
graded modules, denoted C(A), whose objects are the differential graded modules and
whose morphisms are the morphisms of chain complexes.

Recall that the category C(A) has a compactly generated model structure, called the
projective structure, where the weak equivalences are the quasi-isomorphisms, the fibra-
tions are the level-wise surjections. The reader may refer to [Hov99] for model categories
and to [Ere09, ch.11] for a detailed account on the projective model stucture of C(A).

The derived category D(A) is the localisation of C(A) with respects to the class of
quasi-isomorphisms. The category D(A) is a triangulated category, it admits arbitrary co-
products and is compactly generated by the object A. Theorem leads to Proposition
which allows us to define perfect modules in terms of compact objects.

Proposition 1.3.7. An object of D(A) is compact if and only if it is isomorphic to a
direct factor of an iterated extension of copies of A shifted in both directions.

Definition 1.3.8. A differential graded module is perfect if it is a compact object of D(A).
We write Dpere(A) for the category of compact objects of D(A).

Remark 1.3.9. This definition implies immediatly that M is a perfect k-module if and
only if Y, dimy H (M) < oo.

A direct consequence of Proposition is

Proposition 1.3.10. Let A and B be two dg algebras and F : D(A) — D(B) a functor
of triangulated categories. Assume that F(A) belongs to Dpert(B). Then, for any X in
Dpert(A4) , F(X) is an object of Dpert(B).

Proposition 1.3.11. Let A and B be two dg algebras and F,G : D(A) — D(B) two
functors of triangulated categories and o : F = G a natural transformation. If ay :
F(A) — G(A) is an isomorphism then ay - F(M) — G(M) is an isomorphism for every
M e Dperf(A).
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Proof. By Proposition [1.3.3], the category 7, is thick. This category contains A by hy-
pothesis. It follows by Remark that 7o = Dpert(A). O

Definition 1.3.12. A dg A-module M is a finitely generated semi-free module if it can
be obtain by iterated extensions of copies of A shifted in both directions.

Proposition 1.3.13. (i) Finitely generated semi-free modules are cofibrant objects of
C(A) endowed with the projective structure.

(ii) A perfect module is quasi-isomorphic to a direct factor of a finitely generated semi-
free module.

Proof. (i) is a direct consequence of [Ere09, Proposition 11.2.9].

(ii) follows from Proposition and from the facts that, in the projective structure,
every object is fibrant and finitely generated semi-free modules are cofibrant.
O

Remark 1.3.14. The above statement is a special case of [TV0T7, Proposition 2.2].

1.3.3 Finiteness results for perfect modules

We summarize some finiteness results for perfect modules over a dg algebra satisfying
suitable finiteness and regularity hypothesis. The main reference for this section is [TV0T7].
Most of the statements of this subsection and their proofs can be found in greater generality
in [TVO7, §2.2]. For the sake of completeness, we give the proof of these results in our
specific framework.

Definition 1.3.15. A dg k-algebra A is said to be proper if it is perfect over k.

The next theorem, though the proof is much easier, can be thought as a dg analog to
the theorem asserting the finiteness of proper direct images for coherent O x-modules.

Theorem 1.3.16. Let A, B and C be dg algebras. Assume B is a proper dg algebra.
L
Then the functor -®@- : D(A ® B°?) x D(B ® C°?) — D(A ® C°P) induces a functor

W

L
8+t Dpert (A ® B) x Dyt (B ® CP) = Dpeat(A @ C°P).

L
Proof. According to Proposition [1.3.10, we only need to check that (A ® B°?)®(B ®
B
CP) ~ A® B® ® CP € Dpert(A ® CP). In C(k), B is homotopically equivalent to
H(B) = @,z H"(B)[n| since k is a field. Then, in C(A ® C°P), A ® B® @ CP is
homotopically equivalent to A ® H(B°P) ® C°P which is a finitely generated free A ® C°P-
module since B is proper. ]

We recall a regularity condition for dg algebra called homological smoothness, [KS09],
[TVOT].

Definition 1.3.17. A dg-algebra A is said to be homologically smooth if A € Dpe,f(A°).

Proposition 1.3.18. The tensor product of two homologically smooth dg-algebras is an
homologically smooth dg-algebra.

Proof. Obvious. 0
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There is the following characterization of perfect modules over a proper homologically
smooth dg algebra extracted from [TV07, Corollary 2.9].
Theorem 1.3.19. Let A be a proper dg algebra. Let N € D(A).
(1) If N € Dpert(A) then N is perfect over k.
(77) If A is homologically smooth and N is perfect over k then N € Dperr(A).

Proof. We follow the proof of [ShkO7h].
(i) Apply Proposition [1.3.10}

(7i) Assume that N € D(A) is perfect over k. Let us show that the triangulated functor
L L
-%N : D(A¢) — D(A) induces a triangulated functor -%N : Dperf(A®) = Dpere(A). Let
pN be a cofibrant replacement of N. Then

L
A6§N:Ae®ApN:A®pN.

In C(k), pN is homotopically equivalent to H(pN) := @,,cz H" (pN)[n]. Thus, there is an
isomorphism in D(A) between A ®; pN and A ®; H(pN). The dg A-module A ®; H(pN)

L
is perfect. Thus, by Proposition [1.3.10, the functor -éj)N preserves perfect modules.

L
Since A is homologically smooth, A belongs to Dpeys(A€). Then, A%N ~ N belongs to
Dperf(A). O
A similar argument leads to (see [IV07, Lemma 2.6])

Lemma 1.3.20. If A is a proper algebra then Dyt (A) is Ext-finite.

1.3.4 Serre duality for perfect modules

In this subsection, we recall some facts concerning Serre duality for perfect modules
over a dg algebra and give various forms of the Serre functor in this context. References
are made to [BK89], [Gin05], [Shk07a].

Let us recall the definition of a Serre functor, [BK89].

Definition 1.3.21. Let C be a k-linear Ext-finite triangulated category. A Serre functor
S : C — C is an autoequivalence of C such that there exist an isomorphism

Home (Y, X)* ~ Home (X, S(Y)) (1.3.2)

functorial with respect to X and Y where * denote the dual with respect to k. If it exists,
such a functor is unique up to natural isomorphism.

Notation 1.3.22. We set D’y = RHomy(+, A) : (D(A))°P — D(A°P).

Proposition 1.3.23. The functor D'y preserves perfect modules and induces an equiva-
lence (Dper(A))°P — Dpert(A°P). When restricted to perfect modules, Iyop o D'y >~ id.

Proof. See [Shk(O7bh, Proposition A.1]. O
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Proposition 1.3.24. Suppose N is a perfect A-module and M is an arbitrary left A® B°P-
module, where B is another dg algebra. Then there is a natural isomorphism of B-modules

(RHom (N, M))* ~ (M*)P & N (1.3.3)

N

Theorem 1.3.25. In Dpeie(A), the endofunctor RHomy (-, A)* is isomorphic to the end-

L
ofunctor (A°P)* % —.

Proof. This result is a direct corollary of Proposition by choosing M = A and
B = A. O

Lemma [1.3.26| and Theorem are probably well known results. Since we do not
know any references for them, we shall give detailed proofs.

Lemma 1.3.26. Let B be a proper dg algebra, M € Dper(A ® B°P) and N € Dperf(B ®
C°P). There are the following canonical isomorphisms respectively in Dpers(BP @ C) and
Dpert (AP @ C):

L
B* X RHOHIB@COP (N, B X COP> ~ RHomCOp (N, COp) (134)
Bop

RHomA®Bop (M, A & RHomcop (N, COP))

L
~ RHOHIA@COp(M%N,A@ COp). (135)

Proof. (i) Let us prove formula (1.3.4). Let N € C(B ® C°P). There is a morphism of
B°P @ C modules

\I’N N .B#< ®BOD Hom.B®Cop (N, B ® Cop) _> Homa’op (N, Cop)

such that ¥ (d ®gop @) = mo (§ ®idcer) 0 p where m : k@ CP — C°P and m(A®c) = A-c.
Clearly, ¥ is a natural transformation between the functor B* ® gor Homggcop (-, B ® CP)
and Homgp (-, CP).

For short, we set

F(X)= B & Riompacor(X,B®C™) and  G(X) = RHomoen (X, C)

If X is a direct factor of a finitely generated semi-free B ® C°P-module, we ob-
tain that RHompgcor (X, B ® C°P) ~ Hompgoop (X, B ® C°P) and the B°? @ C-module
Hom%gcop (X, B ® C°P) is flat over B°P since it is flat over B°? @ C'. By Lemma 3.4.2 of
[Hin97] we can use flat replacements instead of cofibrant one to compute derived tensor
products. Thus F(X) ~ B* @ gor Homggcor (X, B @ C°P).

Since B ® C°P is a cofibrant C°P-module, it follows that the forgetful functor from
C(B ® C°P) to C(C°P) preserves cofibrations. Thus, X is a cofibrant C°P- module. It
follows that G(X) ~ Homgop (X, CP). Therefore, ¥ induces a natural transformation
from F' to G when they are restricted to Dpers(B ® CP).
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Assume that X = B ® C°P. Then we have the following commutative diagram

) Y pgcop

B* ® por Homgcop (B ® C°P, B @ C°P Hom®op (B @ C°P, C°P)

) )

B* ®pop B® ® C Hom}, (B, Homgep (C°P, C°P)
lz iz
B*®C = Homp (B, C)

which proves that Wpgcor is an isomorphism. The bottom map of the diagram is an
isomorphism because B is proper. Hence, by Proposition Wy is an isomorphism
for any X in Dpe(B @ C°P) which proves the claim.

(ii) Let us prove formula (1.3.5). We first notice that there is a morphism of A ® C°P-
modules functorial in M and N

© : Hom% g, go» (M, A ® Homgop (N, C°P)) — Hom¥ g cop (M @p N, A ® CP)

defined by ¥ — (¥ : m ®@n — ¥(m)(n)).
If M = A® B°® and N = B ® C°P, then it induces an isomorphism. By applying an
argument similar to the previous one we are able to establish the isomorphism ((1.3.5). O

The next relative duality theorem can be compared to [KS12, Thm 3.3.3] in the frame-
work of DQ-modules though the proof is completely different.

Theorem 1.3.27. Assume that B is proper. Let M € Dpers(A® BP) and N € Dpert(B ®
C°P). There is a natural isomorphism in Dperf(AP @ C)

L L L
DfA@Bop (M) B(%p B B(%p ID)/B®C'op (N) ~ ]D):4®Cop (M % N).
Proof. We have
/ L * L /
(M) & B* & D'(N)
Bopr Bepr

L L
~ R,HOHlA@Bop (M, A & BOp) B® B* B® RHomB®Cop (N, B ® COP)

L
~ RHOHlA@Bop (M, A & BOp) B® RHOH]COP (N, COP)
~ RHom ggpor (M, A ® RHomcop (N, CP))

L
~ RHom ggcor (M %) N,A® CP).

One has (see for instance [Gin05])

Theorem 1.3.28. Let A be a proper homologically smooth dg algebra. The functor N +—
L

(A°P)* @ N, Dpert(A) = Dpert(A) is a Serre functor.
A
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Proof. According to Lemma|1.3.20] Dperf(A) is an Ext-finite category. By Theorem|1.3.25
L

the functor (A°P)* ® — is isomorphic to the functor RHom4 (-, A)*. Moreover using Theo-
A

rem|1.3.19/and Proposition|1.3.23one sees that RHom 4 (-, A)* is an equivalence on Dperf(A)
L

and so is the functor (A°P)* Qj) -. By applying Theorem [1.3.27| with A = C = k, B = A°

N = M and M = RHom 4 (N, A) one obtains

L
RHomy (N, (A°P)* (%) M) ~ RHom (M, N)*.
O

L
Definition 1.3.29. One sets S : Dperf(A) — Dperf(A), N — (A°P)* %N for the Serre
functor of Dpere(A).

The Serre functor can also be expressed in term of dualizing objects. They are defined
by [KS09], [vdB97], [Gin05]. Related results can also be found in [Jer04]. One sets:

wy' := RHomey (AP, A) = DL 4(AP) and wa := RHom4(wy', A) = D)y (wyh).

The structure of A®-module of wgl is clear. The object w4 inherits a structure of
A°P-module from the structure of A°°-module of A and a structure of A-module from the
structure of A°P-module of wgl. This endows w4 with a structure of A®-modules.

Since A is a smooth dg algebra, it is a perfect A°-module. Proposition [I.3:23] ensures
that wgl is a perfect A°-module. Finally, Proposition shows that w4 is a perfect
A¢-module.

L L
Proposition 1.3.30. The functor wgl % — is left adjoint to the functor wa (% —.
One also has, [Gin05]

Theorem 1.3.31. The two functors w;l %ﬁ — and Sa from Dpert(A) to Dpert(A) are quasi-
inverse.
Proof. The functor S, is an autoequivalence. Thus, it is a right adjoint of its inverse.
We prove that w;(%)— is a left adjoint to S4. On the one hand we have for every
N, M € Dpere(A) the isomorphism

HomDpcrf(A)(N, Sa(M)) ~ (HomDpcrf(A)(M, N))*.

On the other hand we have the following natural isomorphisms
-1 L * L —1 L *
RHom 4 (w), %N,M) ~(M %wA %N)

(@) G (N @ M))”
~ RHom 4¢ (RHome o (w 4o, “A), (N @ M*))*
~RHomye (A, (N @ M*))*.
Using the isomorphism
Homp__ (a¢)(A, N @ M") =~ Homp__ .(4)(M,N),

we obtain the desired result. O
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L L
Corollary 1.3.32. The functors wATl (§~ : Dperf(A) = Dpert(A) and wA%)- : Dpert(A) —

Dperf(A) are equivalences of categories.

Corollary 1.3.33. The natural morphisms in Dpers(A€)

A —RHom 4wyt wit)
A — RHomg(wa,w4)

are tsomorphisms.

L
Proof. The functor w ' (%- induces a morphism in D(A®)
1 L 1 L -1, -1
A~ RHomy(A,A) - RHomy(wy ®A,w, ®A) ~ RHoma(wy, ,wy" ).
A A
. 1 L | . .
Since wy %- is an equivalence of category, for every i € Z

Hom 4 (A, Afi]) = Homa(wy,wyt).
The results follows immediately. The proof is similar for the second morphism. O

Proposition 1.3.34. Let A be a proper homologically smooth dg algebra. We have the
isomorphisms of A®-modules

L L
w,m%wA ~ A, Wy %)wA:A.

Proof. We have

L, . L
wA%“’A ~ RHom 4 (w) ,A)(%)WA

—_
~—

~ RHom4(wy", wy
~ A.

For the second isomorphism, we remark that

L
RHom 4(wy, A) (%)wA ~ RHomy (w4, w4)
~ A,
and

L L
RHom 4 (wa, A) ~ RHom g (wa, A) %wA §)le

o~ wgl
which conclude the proof. O

Corollary 1.3.35. Let A be a proper homologically smooth dg algebra. The two objects
(A°P)* and wa of Dpert(A°) are isomorphic.
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Proof. Applying Theorem [1.3.27] with A = B = C = A, M = N = A, we get that
L L
wgl (%(AOP)* % wgl ~ wgl in Dperf(A°). Then, the result follows from Corollary|(1.3.34, [

Remark 1.3.36. Since wy and (A°P)* are isomorphic as A°-modules, we will use w4 to
denote both A* and RHom 4 (wATl, A) considered as the dualizing complexes of the category

Dpert(4).
The previous results allow us to build an "integration" morphism.

Proposition 1.3.37. There exists a natural "integration" morphism in Dpere(k)
L
W Aop [ A — k
Ae

Proof. There is a natural morphism & — RHomge(A, A). Applying (-)* and formula
L

1.3.3) with A = A° and B = k, we obtain a morphism A* ® A — k. Here, A* is endowed
Ae

with its standard structure of right A°-modules that is to say with its standard structure

L L
of left ¢ A-module. Thus, w gop 1(? A~ A* ? A— k. O

Corollary 1.3.38. There exists a canonical map wa — k in Dpe(k) induced by the

morphism of Proposition|1.53.37

1.4 Hochschild homology and Hochschild classes

1.4.1 Hochshchild homology

In this subsection we recall the definition of Hochschild homology, (see [Kel98al,
[Lod98]) and prove that it can be expressed in terms of dualizing objects, (see [Cal03],
[CW10], [KS12], [KS09]).

Definition 1.4.1. The Hochshchild homology of a dg algebra is defined by

HH(A) = AP § A

L
The Hochschild homology groups are defined by HH,,(A) = H™"(A°P g@ A).

Proposition 1.4.2. If A is a proper and homologically smooth dg algebra then there is a
natural isomorphism

HH(A) ~ RHom g (w ', A). (1.4.1)
Proof. We have

opL ~ (T / op L
A %A_(DAeoDeA(A ))S%A
/ -1 L
:De(wA)SziA

~ RHom e (w ', A).
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Remark 1.4.3. There is also a natural isomorphism
HH(A) ~ RHomye (A, wy).
It is obtain by adjunction from isomorphism ((1.4.1]).

There is the following natural isomorphism.

Proposition 1.4.4. Let A and B be a dg algebras. Let M € Dperg(A) and S € Dpert(B)
and N € D(A) and T € D(B) then

RHomagp(M @ S;N @ T) ~ RHomy (M, N) ® RHompg(S,T).
Proof. clear. O

A special case of the above proposition is

Proposition 1.4.5 (Kiinneth isomorphism). Let A and B be proper homologically smooth
dg algebras. There is a natural isomorphism

fap: HH(A) ® HH(B) S HH(A® B).

1.4.2 The Hochschild class

In this subsection, following [KS12], we construct the Hochschild class of an endomor-
phism of a perfect module and describe the Hochschild class of this endomorphism when
the Hochschild homology is expressed in term of dualizing objects.

To build the Hochschild class, we need to construct some morphism of Dpepf(A€).

Lemma 1.4.6. Let M be a perfect A-module. There is a natural isomorphism

RHom 4 (M, M) —> RHom g (w ', M @ D/, M). (1.4.2)

Proof. We have
L
RHom (M, M) ~ D'y M @ M
A

L
~ A? @ (M @ D'y M)
Ae
~ RHom g (wy*, M @ Dy M).
Thus, we get an isomorphism
RHom 4 (M, M) —> RHom ge (w ', M @ D/, M). (1.4.3)
O

Definition 1.4.7. The morphism 7 in Dpef(A€) is the image of the identity of M by
morphism ([1.4.2)) and € in Dpef(A°) is obtained from n by duality.

n:wyl = MeD,M, (1.4.4)

e: MaD,M — A (1.4.5)

The map 7 is called the coevaluation map and ¢ the evaluation map.
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Applying /. to we obtain a map
"e(M @Dy M) — A°P.
Then using the isomorphism of Proposition [I.4.4]
e (M @Dy M) = Dy (M) © Dyon (D M)
~ D) (M)® M,
we get morphism .

Let us define the Hochschild class. We have the following chain of morphisms

L
RHom A (M, M) =~ 14M<§M

L
~ A% & (M © D)y M)

e gop 6 A,
Ae
We get a map
Homp . (4)(M, M) — HHy(A). (1.4.6)

Definition 1.4.8. The image of an element f € Homp__ (4 (M, M) by the map (1.4.6)
is called the Hochschild class of f and is denoted hh4 (M, f). The Hochschild class of the
identity is denoted hh4 (M) and is called the Hochschild class of M.

Remark 1.4.9. If A =k and M € Dper(k), then
by (M, £) = S"(—1) Te(HI(f : M - M),

i
see for instance [KS12].
Lemma 1.4.10. The isomorphism sends hha(M, f) to the image of f under the
composition
RHom 4 (M, M) —~> RHom g (w ', M @ D'y M) —> RHom g (w;, A)
where the first morphism is defined in and the second morphism is induced by the

evaluation map.

Proof. This follows from the commutative diagram:

id g ®e

~

L L
RHom (M, M) A% & (M @ D/, M) AP © A
Ae Ae

| |

RHom 4 (M, M) —== RHom e (w;', M @ D'y M) —— RHom e (w ', A).
O

Remark 1.4.11. Our definition of the Hochschild class is equivalent to the definition of
the trace of a 2-cell in [PS11]. This equivalence allows us to use string diagrams to prove
some properties of the Hochschild class, see [PS11] and [Cal03], [CW10].

Proposition 1.4.12. Let M, N € Dpei¢(A), g € Homa(M, N) and h € Hom4 (N, M) then
hha(N,goh) =hha(M,hog).
Proof. See for instance [PS11) §7]. O



32 CHAPTER 1. A RIEMANN-ROCH THEOREM FOR DG ALGEBRAS

1.5 A pairing on Hochschild homology

In this section, we build a pairing on Hochschild homology. It acts as the Hochschild
class of the diagonal, (see [KS12], [Cal03], [CW10], [Shk07a]). Using this result, we prove
our Riemann-Roch type formula. We follow the approach of [KS12].

1.5.1 Hochschild homology and bimodules

In this subsection, we translate to our language the classical fact that a perfect A® B°P-
module induces a morphism from HH(B) to HH(A). We need the following technical
lemma which generalizes Lemma [T.4.6]

Lemma 1.5.1. Let K € Dpey(A ® BP). Let C = A® B°°. Then, there are natural
morphisms in Dperf(A®) which coincide with and when B = k,

w’1—>KQL9]D>’K
A B Cctyy

L L
K@wp@DpK — A. (1.5.1)
B B
Proof. By (1.4.4)), we have a morphism in Dpe(A ® BP ® B ® A°P)

we! = K @ D K.
L
Applying the functor — ® B, we obtain
Be
-1 L ) L
woe @ B—=K®DeK ® B
Be Be
and by Proposition [1.4.4
we! 2wl @wpl, ~ wyt @ D (B).
Then there is a sequence of isomorphisms
1 ~ 1 / L ~ 1L
(JJA ®RHOmB€(B,B)—>wA ®( BeB?éB)_)UJC gﬂB

and there is a natural arrow w;l 4] wgl ® RHompe (B, B). Composing these maps, we

obtain the morphism
-1 -1 ok -1 L / L
Wy 2wy O BeBgB)—m;C g@iB—>(K®DcK)§B.

For the map (1.5.1)), we have a morphism in Dpes(A ® BP @ B ® A°P) given by the
map (TL3)

K@DyK — C.

L
Then applying the functor — ® wp, we obtain
Be

L L L
(K®DICK)IG§3MB—)Cg%wB’:(A(X)BOp)EGin.
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Composing with the natural "integration" morphism of Proposition we get
L
(K@ID)’CK)g%wB — A
which proves the lemma. O

We shall show that an object in Dpe¢(A ® B°P) induces a morphism between the
Hochschild homology of A and that of B.

L
Let K € Dpei(A ® B?). We set C = A® B® and S = K ® (wB%D’C(K)) €
D(A° @ (B¢)°P).

We have
L 1 L 1 L L L L L ,
S@uwy ~Keuwg Qwp®Dc(K) S®B~KQwp®Dp(K).
Be B B B Be B B
L
~ K @Dy (K)
B
The map
Dy : HH(B) — HH(A). (1.5.2)

is defined as follow.

L L
RHomp: (wg', B) — RHom¢ (S @ wi', S @ B)
— RHom g (w} ', A).

The last arrow is associated with the morphisms in Lemma [1.5.1 This defines the

map (15.2).

1.5.2 A pairing on Hochschild homology

In this subsection, we build a pairing on the Hochschild homology of a dg algebra. It
acts as the Hochschild class of the diagonal, (see [KS12], [Cal03], [CW10], [Shk07a]). We
also relate @ to this pairing.

A natural construction to obtain a pairing on the Hochshild homology of a dg algebra
A is the following one.

Consider A as a perfect kK — A bimodule. The morphism ([1.5.2)) with K = A provides
a map

Dy HH(EA) — HH(KE).

We compose ® 4 with K400 4 and get

HH(AP) @ HH(A) — k. (1.5.3)
Taking the 0'h degree homology, we obtain
(-.+) : (B HH_,(A°P) ® HH,,(A)) — k. (1.5.4)
nez

In other words (-,-) = H(®4) o H(& 400 4).

However, it is not clear how to express ®x in term of the Hochschild class of K using
the above construction of the pairing. Thus, we propose another construction of the
pairing and shows it coincides with the previous one.
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Proposition 1.5.2. Let A, B,C be three proper homologically smooth dg algebras and K
an object of Dper(A ® BP).
There is a natural map

HH(A® B?) @ HH(B ® CP) — HH(A ® CP)
inducing, for every i € Z, an operation

Up : @D(HH_ (A ® B) @ HH, (B ® C°P)) — HH; (A ® C°P)
nez

such that for every A € HH;(B ® C°P), H!(®x ® id)()\) = hhagpor (K) Up .
Before proving Proposition [1.5.2] let us do the following remark.
Remark 1.5.3. Let M € Dpere(A). There is an isomorphism in Dpere(k)
L L
(,UA®M ~ M (9] W Aop.
A Acp
The next proof explains the construction of Up : @,,cz(HH_»(A® B°P) ® HH,, (B ®
C°P)) — HH;(A ® C°P). We also prove the equality H'(®x ® id)(A) = hhagper (K) Up A.

Proof of Proposition . (i) We identify (A ® B°P)°P and A°P ® B.
We have

HH(A® BP) ~RHom g ge p(wg gop, A © BP)
L L
~ R,HOIHAS@BB(WZI ® w,_gip B® wpor, A ® B°? & wpep)
op

Bop
~ RHOmA€®eB(w21 ® BP A® wBop).

Let Sup = le ® B and Tap = A ® wpopr. Similarly, we define Spc and Tpe.
Then, we get

HH(A ® BP)HH(B @ C°P)
~ RHOHlAe@eB(SAB, TAB) ® RH0m3e®eC(SBC, TBC)

L L
— RHOmAe®ec(SAB g% SBC’;TAB g% TBC)-

Using the morphism & — RHomep(B°P, B°P), we get
o L —1
kE— B?®wg .
BE
Thus, we get

L
wy' ® CP = (wy' ® B®) @ (wp' ® CP).

BE

We know by Proposition that there is a morphism

L
WpRop & B — k.
Be
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we deduce a morphism
L
(A &® WBOP) g%(B & WCOP) —- AR® Weop.

Therefore we get
HH(A® B°?) @ HH(B ® C°P) — HH(A @ C°P).
Finally, taking the cohomology we obtain,

P (HH_ (A ® B®) ® HH,;;(B © C°)) — HH;(A @ C*P).
neL

(ii) We follow the proof of [KS12]. We only need to prove the case where C' = k. The
general case being a consequences of Lemma (i) below. We set P = A ® B°P.
Let @ = hhagpor(K). We assume that A € HHo(B). The proof being similar if
A € HH;(B). By Proposition o can be viewed as a morphism of the form

Wasper — K @ Dp(K) — A® B®.
We consider A as a morphism wgl — B. Then, following the construction of ® g, we
observe that ®x(\) is obtained as the composition

~1 KODLK 2> K& wp®DK
7! = KGDpK =K g G — 4

We have the following commutative diagram in Dpe.s (k).

-1
Wy

l

L
(wi' ® B®) © wy'!

J J
_ _ L L 1 A _ _ L
(("-’Al @ Wng) g?p wper) ]‘?iwgl - ((‘*”A1 ® Wng) B(%)P wper) @ B

A

L
w4 ® B® ® B
BL’

PR

., L L 1 L L B KoD.K L L B
(Wass B@P WB"P)g@éWB (Wagpor B@O)P WB"")% (KeDp )B@p WBOP)g
L / L A L, L o L L
(K @wp@DpK) @ wg (K ®wp®DpK)® B (A® B°°* @ wpo) ® B
B Be B Be Bop Be
| | |
L 1 L L , A L L L , L
Kouwz' @wp@DpK K®Bowp@DpK A®@wpew @ B
B B B B B B Be
L L l
KQupRDpK A.
B B

This diagram is obtained by computing HY(®x)()\) and a U A. The left column
and the row on the bottom induces H(®x)(\) whereas the row on the top and the
right column induces o U A. This diagram commutes, consequently HO(®)()\) =
hh 45 Bor (K) UA.

O
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We now give some properties of this operation.

Lemma 1.5.4. Let A, B, C and S be proper homologically smooth dg algebras, Aapor €
HH;(A ® B°P). Then

(Z) UB o (UA ®1d) = UA (¢] (1d®UB) = UA@Bop.
(ZZ) hhA@Aop(A) UA )\ABOP = )\ABOP and )\ABOP UB th@BOP(B) = )\ABOP.

Proof. (i) is obtained by a direct computation using the definition of U

(ii) results from Proposition (i) by noticing that &4 and ®p are equal to the
identity.
O

From this natural operation we are able to deduce a pairing on Hochschild homology.
Indeed using Proposition [1.5.2| we obtain a pairing

U: @HH_,(AP) ® HH,,(A)) — HHo(k) ~ k. (1.5.5)
nel

To relate the two preceding constructions of the pairing, we introduce a third way to
construct it. Proposition [1.5.2] gives us a map

Uea : @HH_,(A°) @ HH,(°A)) — HHy (k) ~ k.
ne”

Then there is a morphism

HH_,(A%) @ HH,(A) — k
A ® o — hhAe(A) UEA ()\ & /,L)

Using Proposition [I.5.2] we get that
HY(®4)(A® ) = hhpe (A) Ueg (A p).
By Lemma we have

hhAe(A) UeA ()\@/,L) - (A UA hhA@AOP(A)) UAM
=AU pu.

This proves that these three ways of defining a pairing lead to the same pairing. It also
shows that the pairing is equivalent to the action of the Hochschild class of the diagonal.

1.5.3 Riemann-Roch formula for dg algebras

In this section we prove the Riemann-Roch formula announced in the introduction.

Proposition 1.5.5. Let M € Dpere(°A) and let f € Homa (M, M). Then

L L
hhk(AS%M,ldAgf) = hhAe(A) UhheA(M, f)
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Proof. Let A = hhe4(M, f) € HHo(°A) ~ Hom(w: {,°A). As previously, we set B = °A.
We denote by f the image of f in Hompe (wgl,M ® D)z M) by the isomorphism (1.4.2))

L L
and by id4 (E% f the image of id4 (Ea f by the isomorphism (|1.4.2)) applied with A = k and

L
M = A® M. We obtain the commutative diagram below.
B

1 L 4L L, A L L L,
Wi A®UJB ®OJB®DBOPA A®B®wB®DBOpA4>k;
B B B B B
| L , L L _,
A%(M®]D>BM) %)WB%DBOPA
T ig
ldAgf

L L
AM)QD (A M
(AG M) ® Dy(A M)

1

L L L
The map w,~ — A®w§1 Rwp ® Dgop A is obtained by applying Lemma |1.5.1] with
B B B
A=k, B=°A, K = A. Then,

L A DA = AGws! Bwp ® Do A
w op A =~ w w opA.
k B B7 B B g Bp BT
. L L L . . . .
The morphism A® B®wp @ Dzop A — k is obtained as the composition of
B B B

L L L , L L ,
A®B®WB®DBOPA§A®WB®D30PA
B B B B B

with
L L
AQwp @DgopA — k. (1.5.6)
B B
The morphism (|1.5.6)) is the map (1.5.1)) with A =k, B=°A, K = A.

The vertical isomorphism is obtained by applying Theorem with A = C' =k,
B=B®° M =M and N = A.

L L
By Lemma|1.4.10} the composition of the arrows on the bottom is hhy (A ® M,id4 ® f)
cA cA

and the composition of the arrow on the top is HY(®4(hhe (M, £))). It results from the
commutativity of the diagram that

L L
hhk(AgzM, id g g%f) = HO(®4)(hhe s (M, f)).
Then using Proposition [1.5.2| we get
L L
hhk(AgM, ida 'glf) = hhge(A) Uhhey (M, f).

O

We state and prove our main result which can be viewed as a noncommutative gener-
alization of A. Caldararu’s version of the topological Cardy condition [Cal03].
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Theorem 1.5.6. Let M € Dpe¢(A), f € Homa(M,M) and N € Dpers(A°P), g €
Hom goo (N, N). Then

L L
hhie(N & M, 9 & f) = hhaer (N, 9) U (M, f).

where U is the pairing defined by formula .

L L
Proof. Let u be the canonical isomorphism from A @ (N ® M) to N ® M. By definition
cA A

of the pairing we have

(L gor (N, g), kg (M, f)) = HO(@4) 0 HO(R400_4) (Whgen (N, g) @ hhg (M, f))
= hhAe(A) UhheA(N®M,g®f)

L L
= hhy(A @ (N ® M),ids (9 @ f))
L L
=hh(AS(N® M),u"" o (g% f)ou)
L L
=hh(N®M,g® f).
A A

The last equality is a consequence of Proposition O

Remark 1.5.7. By adapting the proof of Proposition [1.5.5, we are also able to obtain
the following result that should be compared to [KS12, Theorem 4.3.4]

Theorem 1.5.8. Let A, B, C be proper homologically smooth dg algebras. Let Ki €
Dperf(A®BOP), K5 € Dperf(B(X)COp), f1 S HomA®Bop (Kl, Kl) and f2 S HOmB®Cop (KQ, KQ).
Then

L L
hhagcor (K1 %Kz, fi %ﬁ) = hhagpor (K1, f1) Up hhpgcor (K2, fa).



Chapter 2

DG Affinity of DQ-modules

2.1 Introduction

Many classical results of complex algebraic or analytic geometry have a counterpart in
the framework of Deformation Quantization modules (see [KS12]). Let us mention a few of
them: Serre duality, convolution of coherent kernels, the construction of Hochschild classes
for coherent DQ-modules in [KS12], a GAGA type theorem in [Chel(] and Fourrier-Mukai
transforms in [ABP11], etc.

In this chapter, extracted from [Petllal, we give a non-commutative analogue of a
famous result of Bondal-Van den Bergh asserting the dg affinity of quasi-compact quasi-
separated schemes (see [BvdB03| Corollary 3.1.8]). In the framework of formal deformation
algebroid stacks, the notion of quasi-coherent object is no more suited for this purpose.
Thus, we introduce the notion of cohomologically complete and graded quasi-coherent
objects (qcc for short). The gcc objects of the derived category D(Ax), where Ax is a
formal deformation algebroid stack, form a full triangulated subcategory of D(Ax) de-
noted Dgcc(Ax). This category can be thought of as the deformation of Dyeon(Ox) while
deforming Ox into Ax (see Theorem . We prove that the image of a compact gen-
erator of Dyeon(Ox) is a compact generator of Dgec(Ax). The existence of a compact
generator in Dqeon(Ox) is granted by a result of Bondal-Van den Bergh (see loc. cit.).
Hence, the category Dqcc(Ax) is dg affine.

The study of generators in derived categories of geometric origin has been initiated by
Beilinson in [Bei78]. The results of [BvdB03] have been refined by Rouquier in [Rou08]
where he introduced a notion of dimension for triangulated categories. Recently, in [Toé]
Toén generalized the results of Bondal and Van den Bergh and reinterpreted them in the
framework of homotopical algebraic geometry.

This chapter is organised as follows. In the first part, we recall some classical material
concerning generators in a triangulated category. We review, following [KS12], the notion
of cohomological completeness and its link with the functor of A-graduation. We finally
state some results specific to deformation algebroid stacks on smooth algebraic varieties.

In the second part of the chapter, we introduce the triangulated category of qcc objects,
that is to say objects of D(Ax) that are cohomologically complete and whose associated
graded module is quasi-coherent. We prove that the category Dgcc(Ax) admits arbitrary
coproducts. The coproduct is given by the cohomological completion of the usual direct
sum (Proposition . Then we prove that Dgec(Ax) is compactly generated (see
Proposition and Lemma . Relying on a theorem of Ravenel and Neeman
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(see [Rav84] and [Nee92]) we describe completely the compact objects of Dgcc(Ax) (see
Theorem . They are objects of Db, (Ax) satisfying certain torsion conditions.
Finally, we conclude this section by proving that Dgcc(Ax) is equivalent as a triangulated
category to the derived category of a suitable dg algebra with bounded cohomology (see
Theorem .

In the last section, we study qcc sheaves on an affine variety and prove that the equiva-
lence of triangulated categories between Dércoh(O x) and DT (Ox (X)) lifts to an equivalence
between D, (Ax) and the triangulated category D.(Ax (X)) of cohomologically complete

qcc

Ax (X)-modules (see Theorem [2.4.6)).

2.2 Review

2.2.1 Generators and compactness in triangulated categories: a review

We start with some classical definitions. See [Nee0l], [BvdB03].
Recall that if T is a triangulated category, then a triangulated subcategory B of T is
called thick if it is closed under isomorphisms and direct summands.

Definition 2.2.1. Let S be a set of objects of 7. The smallest thick triangulated sub-
category of 7 containing S is called the thick envelope of S and is denoted (S). One says
that S classically generates T if (S) is equal to T.

Definition 2.2.2. Let 7 be a triangulated category. Let & = (G;);cs be a set of objects
of T. One says that & generates T if for every F' € T such that Hom7(G;[n], F) = 0 for
every G; € & and n € Z, we have F' ~ 0.

Definition 2.2.3. Assume that 7T is cocomplete.

(a) An object L in T is compact if Hom7(L,-) commutes with direct sums. We denote
by T°¢ the full subcategory of T consisting of compact objects.

(b) The category T is compactly generated if it is generated by a set of compact objects.

The following result was proved independently by Ravenel and Neeman, see [Nee92)
and [Rav84].

Theorem 2.2.4. Assume that T is compactly generated. Then a set of objects S C T¢
classically generates T€ if and only if it generates T .

We give an inductive description of the thick envelope of a subset of a triangulated
category. For that purpose, we introduce a multiplication on the set of full subcategories
of a triangulated category. We follow closely the exposition of [BvdB03].

Definition 2.2.5. Let 7 be a triangulated category. Let C and D be full subcategories
of 7. One denotes by C x D the strictly full subcategory of 7 whose objects E occur in a

triangle of the form
C—-FE—D— C[1]

where C' € C and B € D.
Proposition 2.2.6. The operation x is associative.

Let S be a set of objects of 7. We denote by add(S) the smallest full subcategory in
T which contains S and is closed under taking finite direct sums and shifts.
We denote by smd(S) the smallest full subcategory which contains S and is closed under
taking direct summands.
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Lemma 2.2.7. If C and D are closed under finite direct sums, then smd(smd(C) x D) =
smd(C x D).

Set

(8)1 = smd(add(S)),

(S) = smd((S)1 % ... % (S)1),
k factors

Then (S) is the thick envelope of S (see Definition [2.2.1)).

2.2.2 Recollections on algebraic categories

In this section, we recall some classical facts on algebraic categories, [Kel94], [Kel98b],
[KelO6]. In this section R is a commutative unital ring.

Definition 2.2.8. A Frobenius category & is an exact category (in the sense of Quillen
[Qui73]) with enough projective and injective objects such that an object is projective if
and only if it is injective.

Let o and ¢ in £ We denote by N (0,0 the subgroup of Homg (o, o) formed by the
maps that can be factorized through an injective object. We denote by £ the category with
the same objects as £ and whose morphisms spaces are the quotients Homg (o, 0/) /N (o, O'/).
The category £ is called the stable category of £. A classical result states that £ is a
triangulated category.

Definition 2.2.9. One says that an R-linear triangulated category is algebraic if it is
equivalent as a triangulated category to the stable category of an R-linear Frobenius
category.

Proposition 2.2.10. A triangulated subcategory of an algebraic triangulated category is
algebraic.

Proposition 2.2.11. The derived category of an Abelian category is algebraic.

We have the following theorem from [Kel98b] which is a consequence of [Kel94, The-
orem 4.3]. If A is a dg category, we denote by D(A) its derived category in the sense of
[Kel94] (note that D(A) is not a dg category).

Theorem 2.2.12. Let € be a Frobenius category and set T = £. Assume that T is cocom-
plete and has a compact generator G. Then, there is a dg algebra A and an equivalence of
triangulated categories F : D(A) — T with F(A) = G. In particular, we have

H"(A) = Hompay(A, A[n]) = Hom7(G, G[n]), n € Z.
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2.2.3 The case of Dy.on(Ox)

Let (X,0Ox) be a scheme. We denote by Qcoh(X) the category of quasi-coherent
Ox-modules. Its derived category is denoted by D(Qcoh(X)). We write Dgeon(Ox) for
the full triangulated subcategory of D(Ox) consisting of complexes with quasi-coherent
cohomology.

Theorem 2.2.13 ([BN93]). If X is a quasi-compact and separated scheme then the canon-
ical functor D(Qcoh(X)) = Dgeon(Ox) is an equivalence.

Definition 2.2.14. Let (X,Ox) be a scheme. A perfect complex on X is a complex
of Ox-modules which is locally quasi-isomorphic to a bounded complex of locally free
Ox-modules of finite type. We denote by Dperf(Ox) C Dgeon (Ox) the category of perfect
complexes.

In this chapter, we are interested in complex smooth algebraic varieties. We give
a few properties of perfect complexes in this setting. Since X is an algebraic vari-
ety, X is a Noetherian topological space. Thus, a perfect complex in Dgeon(Ox) is in

Dgcoh((’) x). Since Oy is Noetherian it follows that Dper(Ox) C D2, (Ox). Finally since
b

X is smooth, we have D]

Dperf(OX) = Dléoh (OX ) .

(Ox) C Dperf(Ox). Thus, on a smooth algebraic variety,

Recall the following theorem from [BvdB03].

Theorem 2.2.15. Assume that X is a quasi-compact and quasi-separated scheme. Then,
(1) the compact objects in Dqcon(Ox) are the perfect complexes,
(71) Dgcon(Ox) is generated by a single perfect complex.

As a corollary Bondal and Van den Bergh obtain
Theorem 2.2.16. Assume that X is a quasi-compact quasi-separated scheme. Then
Dycon(Ox) is equivalent to D(Ag) for a suitable dg algebra Ay with bounded cohomology.
2.2.4 h-graduation
The case of ringed space

In this section, X is a topological space and R is a Z[h]x-algebra on X without #A-
torsion. Throughout this text we assume that & is central in R. We set Rg = R/AR. We
refer the reader to [KS12] for more details.

Definition 2.2.17. We denote by gr; : D(R) — D(Rg) the left derived functor of the
right exact functor Mod(R) — Mod(Ry) given by M +— M /hM. For M € D(R) we call
gr,(M) the graded module associated to M. We have
L
gry M~ Ry M.
R
Proposition 2.2.18. (i) Let K1 € D(RP) and Ko € D(R). Then,
L L
gry (K1 @ Ka) ~ gry (K1) @ grp(Ky).
R Ro

(ii) Let K; € D(R) (i =1,2). Then
gr(RHomg (K1, K2)) ~ RHomg, (gr; K1, gry K2).
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Proposition 2.2.19. Let X and Y be two topological spaces and f : X — Y a continuous
map. The functor gr, : D(Z[h)z) — D(Z]h)z), Z = X, Y commutes with the operations of
direct images R f. and of inverse images.

The case of algebroid stacks

We write C" for the ring C[[A]]. In this section Ax denotes a C-algebroid stack
without A-torsion. As in the previous subsection we refer the reader to [KS12].

Definition 2.2.20. Let Ay be a Cl-algebroid stack without A-torsion on a topological
space X. One denotes by gr;(Ax) the C-algebroid associated with the prestack & given
by:

Ob(6&(U)) = Ob(A(U)) for an open set U of X,
Homg 1) (o, o) = Homy(o,0")/hHom (0,0 ) for 0,0 € A(U).

There is a natural functor Ay — gr;(Ax) of C-algebroid stacks. This functor induces
a functor

tg : Mod(gry Ax) — Mod(Ax).

The functor ¢4 admits a left adjoint functor M — C ®@crn M. The functor ¢4 is exact
and it induces a functor

tg : D(grp Ax) — D(Ax).
One extends the definition of gr; by

L L
grp(M) = grp(Ax) @ M =~Ce M.
Ax ch
The propositions of the preceding subsection concerning sheaves extend to the case of
algebroid stacks. Finally we have the following important proposition.

Proposition 2.2.21. The functor gr, and 4 define pairs of adjoint functors (gry, tq) and
([’ga grh[_l])‘

Proof. We refer the reader to [KS12, Proposition 2.3.6]. O

2.2.5 Cohomologically Complete Modules

In this subsection, we briefly recall some facts about cohomologically complete modules.
We closely follow [KS12] and refer the reader to it for an in depth treatment of the notion
of cohomological completeness.

In this section, X is a topological space and R is a Z[h]x-algebra without A-torsion.
We set R'¢ := Z[h, k1] ®zimR- The triangulated category D(R!¢) is equivalent to the full

N L
subcategory of D(R) consisting of objects M satisfying M = R ® M or equivalently
R

gry M =0.

The right orthogonal category D(R¢)1" to the full subcategory D(R'") of D(R) is the
full triangulated subcategory consisting of objects M € D(R) satisfying Hompg) (N, M) =~
0 for any N € D(R"®).
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Definition 2.2.22. An object M € D(R) is cohomologically complete if it belongs to
D(R!¢)L". We write Dec(R) for D(R!¢)L.

Propositions [2.2.23] [2.2.25| are proved in [KS12].

Proposition 2.2.23 ([KS12, Prop. 1.5.6]). (i) For M € D(R), the following condi-
tions are equivalent:

(a) M is cohomologically complete,
(b) RHomp (R¢, M) ~ RHomy, (Z[h, h~'], M) ~ 0,

(¢) For anyx € X, j=0,1 and any i € Z,

lim Extf, (R, H (U, M)) =~ 0.
zelU

Here, U ranges over an open neighborhood system of x.

(i) RHomg (R!¢/R, M) is cohomologically complete for any M € D(R).

(iii) For any M € D(R), there exists a distinguished triangle
M M=MH

with M' € D(R"®) and M" € Dee(R).
(iv) Conversely, if
MMM E
is a distinguished triangle with M' € D(R'¢) and M" € D¢(R), then M’ ~
RHomp (R¢, M) and M” ~ RHomg (R"¢/R[-1], M).

Lemma 2.2.24 ([KS12, Prop. 1.5.10]). Assume that M € D(R) is cohomologically com-
plete. Then RHomg (N, M) € D(Zx|h]) is cohomologically complete for any N € D(R).

Proposition 2.2.25 ([KS12, Cor. 1.5.9]). Let M € D(R) be a cohomologically complete
object. If grp, M ~ 0, then M ~ 0.

Corollary 2.2.26. Let f : M — N be a morphism of Dee(R). If gry,(f) is an isomorphism
then f is an isomorphism.

The following result is implicit in [KS12]. We make it explicit since we use it frequently.

Proposition 2.2.27. Let M € D(R) be such that there locally exists n € N with h" M ~ 0.
Then M is cohomologically complete.

Proof. The action of i on R is an isomorphism. Thus the morphism
fio : RHom(R!*¢, M) — RHom(R"¢, M)

is an isomorphism. The morphism
oh : RHom(R!*¢, M) — RHom(R"¢, M)

is locally nilpotent. Since % is central in R, fio = oh. Hence, RHom(R¢, M) = 0. O
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2.2.6 Modules over formal deformations after [KS12]

In this subsection, we recall some facts about formal deformation of ringed spaces. We
refer the reader to [KS12] for DQ-modules. We refer to [Moe02], [KS06] for stacks and
algebroid stacks. We denote by C" the ring C[[1]].

Definition 2.2.28 ([KS12]). Let (X, Ox) be a commutative ringed space. Assume that
Ox is a Noetherian sheaf of C-algebras. A formal deformation algebra Ax of Ox is a
sheaf of C"-algebras such that

(i) A is central in Ax
(ii) Ax has no h-torsion
(iii) Ax is h-complete
(iv) Ax/hAx ~ Ox as sheaves of C-algebras.
)

(v) There exists a base B of open subsets of X such that for any U € 8 and any coherent
Ox|y-module F, we have H"(U, F') = 0 for any n > 0.

Remark 2.2.29. Clearly, on a complex algebraic variety, condition (v) of the preceding
definition is satisfied.

Definition 2.2.30. A formal deformation algebroid stack Ay on X is a C"-algebroid such
that for each open set U C X and each o € Ax(U), the C'-algebra End 4, (o) is a formal
deformation algebra on U.

Remark 2.2.31. Note that formal deformation algebroid stack are called twisted defor-
mations in [Yek09].

Let Ax be a formal deformation algebroid on X. We denote by 9tod(C%) the C"-
linear stack of sheaves of C"-modules over X and by Mod(Ax) the category of functors
Fet(Ax, Mod(C%)). The category Mod(Ax) is a Grothendieck category. For a module
M over an algebroid Ax the local notions of being coherent, locally free etc. still make
sense. We denote by D(Ax) the derived category of Mod(Ax), by D?(Ax) its bounded
derived category and by D’ , (Ax) the full triangulated subcategory of D?(Ax) consisting

coh
of objects with coherent cohomologies.

Definition 2.2.32. We say that an algebroid is trivial if it is equivalent to the algebroid
stack associated to a sheaf of rings.

From now on, we assume that X is a smooth algebraic variety endowed with the
Zarisky topology. There are the following results (see Remark 2.1.17 of [KS12] due to
Prof. Joseph Oesterlé).

Proposition 2.2.33. On a smooth algebraic variety X, the group HQ(X, 0%) is zero.

Corollary 2.2.34. On a smooth algebraic variety, invertible Ox -algebroid stacks are triv-
1al.

See [KS12], Definition 2.1.14 (ii)] or the appendix for a definition of invertible algebroid
stack.

By the definition of the functor gry, it is clear that grj, Ax is an Ox invertible algebroid
and by Corollary [2.2.34] it follows that

gr, Ax ~ Ox. (2.2.1)
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Proposition 2.2.35. The functor grj, induces a functor
gry : D(Ax) — D(Ox).

which sends bounded objects to bounded objects and objects with coherent cohomology to
objects with coherents cohomology.

We have the following results from [KS12].

Proposition 2.2.36. Let d € N. Assume that any coherent Ox-module locally admits
a resolution of length < d by free Ox-modules of finite rank. Let M® be a complex of
Ax-modules concentrated in degrees [a,b] and assume that H' (M) is coherent for all i.
Then, in a neighborhood of each x € X, there exists a quasi-isomorphism L* — M?® where
L* is a complex of free Ax-modules of finite rank concentrated in degrees [a — d — 1,].

We have the following sufficient condition which is a corollary of more general results
that ensure that under certain conditions, an algebroid stack of formal deformations is
trivial (see [KonO1], [BGNTO07], [CH11], [Yek09]).

Proposition 2.2.37. Let X be a smooth algebraic variety endowed with a twisted defor-
mation algebroid Ax in the sense of [Yek(9]. If HY(X,0x) = H*(X,0x) = 0, then Ay
s equivalent to the algebroid stack associated to a formal deformation algebra of Ox.

2.3 QCC Modules

From now on, we assume that X is a smooth algebraic variety endowed with the
Zarisky topology and equipped with a formal deformation algebroid Ax.
2.3.1 Graded quasi-coherent modules and quasi-coherent Oyx-modules

We introduce the category of graded quasi-coherent modules.

Definition 2.3.1. Let M € D(Ay). We say that M is graded quasi-coherent if gr;,(M) €
Dgcon(Ox). We denote by Dggeon(Ax) the full subcategory of D(Ax) formed by graded
quasi-coherent modules.

Proposition 2.3.2. The category Dggeon(Ax) is a triangulated subcategory of D(Ax).

Proof. Obvious. 0

2.3.2 QCC objects

In this subsection, we introduce the category of qcc-modules.

Definition 2.3.3. An object M € D(Ax) is qcc if it is graded quasi-coherent and coho-
mologically complete. The full subcategory of D(Ax) formed by qcc-modules is denoted

by chc (-AX)
Since, Dgec(Ax) = Dggeon(Ax) N Dec(Ax ), we have

Proposition 2.3.4. The category Dgycc(Ax) is a Ch-linear triangulated subcategory of
D(Ax).
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Proposition 2.3.5. If M € D{..(Ax) is such that gry M € Db . (Ox), then M €
D op (Ax)-

Proof. 1t is a direct consequence of [KS12, Theorem 1.6.4]. O
Proposition 2.3.6. If M € D?, (Ax), then M € DZCC(AX).

Proof. 1t is a direct consequence of [KS12, Theorem 1.6.1]. O

We now prove that Dyec(Ax) is cocomplete. For that, we first prove that D..(Ax) is
cocomplete.

Definition 2.3.7. We denote by (-)°° the functor
RHoma, ((AR°/Ax)[~1],") : D(Ax) — D(Ax).
We call this functor the functor of cohomological completion.

By Proposition [2.2.23] the functor of cohomological completion takes its values in
Dee(Ax).

The following exact sequence
0— Ax — A — A%/ Ax — 0. (2.3.1)

induces a morphism

A/ Ax[~1] — Ax.
This morphism yields a morphism of functors
cc:id — (+). (2.3.2)

Proposition 2.3.8. The morphism of functors

cc

gry(cc) : grpoid — gryo()
is an isomorphism.
Proof. Let M € D(Ax). Applying Lemma (ii), we get the following isomorphism
gra(M®) = gry RHom 4 (AR/Ax)[-1], M)
~ RiHom, 4y (g03(A%/Ax) (1], g, M).

Applying the functor grj to l) and noticing that gr, A%%¢ ~ 0, we deduce that
gry (A Ax)[—1] ~ gry Ax. Hence, gry (M) ~ gr, M. o

Definition 2.3.9. Let (M;);cs be a family of objects of D¢.(Ax). We set
i~ (@)
i€l el
where @ denotes the direct sum in the category D(Ax).
Proposition 2.3.10. The category Dec(Ax) admits direct sums. The direct sum of the
family (M;)icr is given by @M.

i€l
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Proof. Let (M;);c be a family of elements of D.(Ax). By Proposition [2.2.23| (ii), @ M;
i€l

is cohomologically complete.
Using the natural transformation (2.3.2)) we obtain a morphism

cc: @MZ — @Mz
iel iel
It remains to shows that for all € Dcc(Ax), the morphism (2.3.2)) induces an iso-
morphism

HomAx(®Mi,}") = HomAX(@Mi,]:). (2.3.3)
icl iel
It is enough to prove the isomorphism

RHom 4, (PMi, F) — RHom 4, (P M, F). (2.3.4)
icl il
Since both terms of are cohomologically complete by Lemma it remains
to check the isomorphism on the associated graded map. Applying gr;, to and using
Lemma (74) and Proposition , we obtain an isomorphism

RHomg,, 4y (grh(@/\/li), gry F) = RHomg, 4, (grh(@ M,), gry F).
icl iel
which proves the isomorphism ([2.3.4]). O

Proposition 2.3.11. The category Dycc(Ax) admits direct sums. The direct sum of the
family (M;)ier is given by BM,;.
i€l

Proif We know by Proposition [2.3.10 that D¢.(Ax) admits direc‘L sums and it is given
by @. Let (M;)icr € Dgec(Ax). Then, by Proposition [2.3.8, gr, @M; = P,y gry M.
i€l

It follows that @ M; € Dgec(Ax)- O

i€l

2.3.3 Compact objects and generators in D.(Ax)

In this subsection, we show that Dqcc.(Ax) is generated by a compact generator and
we describe its compact objects. We start by proving some additional properties on the
functors gr, and ¢4, which are defined in subsection

Concerning ¢y, recall that there is a functor of stacks Ax — gr,(Ax) ~ Ox inducing

Ly : D(Ox) — D(Ax)

Notice that Ox can be endowed with a structure of left Ox-module and right Ax-
module. When endowed with such structures we denote it by Ox4. The module Ox 4
belongs to D*(Ox ®¢ AY). Similarly we have 4Oy € D(Ax ®c OF). When Oy is
endowed with its structure of Ax ®A§?—module we denote it by 4Ox4 € D*(Ax ®¢ .Agf).
With these notation, we have for M € D(Ax) and N' € D(Ox)

L
grp(M) = OXA/(? M and tg(N) =40x @0, N
X

L
=40x @ N.
Ox



2.3. QCC MODULES 49

Hence
L L
tgogry(M) = 40x ® Oxa ® M
Ox Ax
L
~ 40x4 @ M.
Ax
Proposition 2.3.12. For every N' € D(Ox),
Lg 0 g otg(N) = 1y(N) @ 1g(N)[1]

Proof. We have the exact sequence of Ay ® A -modules

h

0 Ax Ax 40x4 —0.

L
Thus, for every M € D(Ax), we have ¢4 o grp(M) ~ (Ax|[1] LN AX)E@ M. Hence, for
X

N € D(Ox), tgogryorg(N) = 1g(N) & 1g(N)[1]. O
Corollary 2.3.13. If N € Dqeon(Ox), then tg(N) € Dyee(Ax).
Proof. Let N in Dyeon(Ox) and consider gry, o, (N). We compute H'(gry, oty (N)).

Lg(H' (gry 014 (N))) =~ H (14 0 grj 014 (N)) (exactness of ¢4)
~ H (14(N) @ 15(N)[1]) (Proposition
~ 1, (HY(N) @ HHN)) (exactness of ¢g).

The functor ¢4 : Mod(Ox) — Mod(Ax) is fully faithful. Thus,
H' (gry otg(N) = H'(N) @ HFL (V).

It follows that ¢y(N) is in Dgqeon(Ax) and it is cohomologicaly complete by Proposition
2.2.27 ]

Proposition 2.3.14. If G is a generator of Dyeon(Ox), then 14(G) is a generator of
Dace(Ax)

Proof. By Corollary [2.3.13} 14(G) is in Dgec(Ax).
Let M € Dgee(Ax) with RHom 4, (¢4(G), M) = 0. By Proposition [2.2.21] we have

RHomy, (14(G), M) ~ RHomo (G, grp(M)[—1]).

Thus, RHomo (G, grj(M)[—1]) >~ 0 and gr,(M)[—1] is in Dgeon(Ox) thus gry(M)[—1]
0. Since M is cohomologically complete, M ~ 0.

R

coh

L

Lemma 2.3.15. If F € DY, (Ax) satisfies Al)?cf(? F =0 then F is compact in Dyec(Ax).
X

Proof. Let (M;)ier be a family of objects of Dgec(Ax). By the adjunction between

(Age/ AX)[1] & - and RHom a, (Ag/Ax)[-1], ), we have
X

HomAX(}",®Mi) ~ HomAX((Aé?C/AX)[—l]%{}",@Mi).

el i€l
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In Mod(Ax @ AY), we have the exact sequence (2.3.1)). Tensoring by F, we obtain
L
that A/ Ax[-1] ;\X) F is isomorphic to F. It follows that
X
Hom 4 (F, P M;) ~ Homu,, (F, P M;). (2.3.5)
iel iel

The module F belongs to D% , (Ax). Using Proposition [2.2.36, and the fact that X is
a Noetherian topological space of finite dimension, we have by [LH09, Corollary 3.9.3.2] !

Hom 4, (F, P M) ~ @ Homa, (F, M;) (2.3.6)
i€l i€l
which together with (2.3.5)) proves the lemma. O

Corollary 2.3.16. If F is compact in Dyeon(Ox) then ty(F) is compact in Dyec(Ax).

L
Proof. Obviously, A%° E@ tg(F) = 0. Since F is compact in Dgeon(Ox), it has coherent
X

cohomology. Thus, its image by ¢4 belongs to Deon(Ax). The result follows from Lemma
2.3.19] ]

Corollary 2.3.17. If G is a compact generator of Dgcon(Ox) then 14(G) is a compact
generator of Dycc(Ax). In particular, the category Dycc(Ax) is compactly generated.

Proof. By Theorem [2.2.15| due to Bondal and Van den Bergh, Dycon(Ox) has a compact
generator. Then, the second claim of the corollary is a direct consequence of the first
one. O

Lemma 2.3.18. Let X be a smooth complex algebraic variety endowed with a DQ-algebroid.
(1) If G is a compact generator of Dycon(Ox) then gry 14G is still a compact generator of
Dgcoh (Ox).
(ii) One has D¢y, (Ox) = (gry t4(G))-

Proof. (i) Let M € Dgcon(Ox) and assume that RHomoe, (gry, t4G, M) ~ 0. We have

RHomop, (gry, t4G, M) ~ RHom 4, (¢4G, tgM)
~ 0.

By Corollary [2.3.17|it follows that ¢4(M) ~ 0. Hence, for every i € Z, Hi(LgM) ~ 0.
Since ¢4 : Mod(Ox) — Mod(Ax) is fully faithful and exact, we have H'(M) ~ 0. It
follows that M ~ 0. Moreover, gr, 1,G is coherent which proves the claim.

(ii) On a complex smooth algebraic variety the category of compact objects is D2, (Ox).

Hence the results follows from Theorem 2.2.4
O

Theorem 2.3.19. An object M of Dycc(Ax) is compact if and only if M € Db, (Ax)
and A @4, M = 0.

1. In [LHQ9] the results is stated for a concentraded scheme map. On a Noetherian topological space X
of finite dimension, RI'(X,-) is of finite cohomological dimension on Mod(Zx). Thus the proof of [LH09,
Corollary 3.9.3.2] goes without any changes for abelian sheaves on X .
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Proof. The condition is sufficient by Lemma Let G be a compact generator of
Dgcon(Ox). By Theorem we know that the set of compact objects of Dqcc(Ax) is
equivalent to the thick envelope (14(G)) of 14(G). Let us show that if F € (14(G)) then
F e Dl (Ax) and A @4, F = 0.

Let Ker be the full subcategory of Dy..(Ax) such that
L

Ob(Ker) = {F € Dyec(Ax) | AY° © F 0}.
X

By Proposition Ker is a thick subcategory of Dyc.(Ax). Moreover, the category
Db .(Ax) is also a thick subcategory of Dycc(Ax). Then, the category Ko = D, (Ax) N
Ker is a thick subcategory of Dgcc(Ax) containing t4(G). Since (14(G)) is the smallest
thick subcategory of Dgec(Ax) containing ¢4(G), it follows that (¢4(G)) C Ko which proves

the claim. O

Remark 2.3.20. In the case of the ring C”, Theorem [2.3.19| implies that C” is not a
compact object of De.(C"). This can be checked directly as follow. Notice that

Homen (C", @DC") = Extla (CHee/Ch, @DCP).
neZ nez

Then by [KS12, §1.5] it follows that Extg,(C™o¢/C", @ C") is isomorphic to the h-adic
nez

completion of @ C". Now, assume that C" is compact in De.(C"). Then
neZ

Homen (C, @PC") ~ @PC.

nez ne’

But @ C" is not h-adically complete. Thus, C" is not compact in D¢ (C").
ne”L

2.3.4 DG Affinity of DQ-modules

In this subsection, we prove that the category of qcc DQ-modules is DG affine.

Theorem 2.3.21. Assume X is a smooth complex algebraic variety endowed with a de-
formation algebroid Ax. Then, Dycc(Ax) is equivalent to D(A) for a suitable dg algebra
A with bounded cohomology.

Proof. By Proposition Dyce(Ax) is a CP-linear triangulated subcategory of D(Ax)

which is algebraic by Proposition [2.2.11} It follows, by Proposition [2.2.10} that Dgcc(Ax)
2.3.11

is algebraic. By Proposition Dycc(Ax) is a cocomplete category. Moreover, by
Corollary [2.3.17, Dqcc(Ax) has a compact generator. It follows from Theorem [2.2.12f that
Dycc(Ax) is equivalent to the derived category of a dg algebra A such that

H"(A) ~ Homa, (14(G), 14(G)[n]), n € Z.

Using the adjunction between ¢, and gr,[—1] and [BvdB03, Lemma 3.3.8], we get that the
cohomology of A is bounded. O

Example 2.3.22. Let us compute such a dg algebra A in the case of X = pt. In this
setting, Ax = C" and we get an equivalence D¢.(C") ~ D(A). The C"module C is a
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compact generator of the category De.(C"). The complex .#*® := 0 — C" hch50isa
free resolution of C as a C"-module. Then, we can chose

A ~ RHom¢n (Z°,.7°).
It follows that
At~ AN ~CreCl A~

and that
' = (Z) d=(h -h).

2.4 QCC Sheaves on Affine Varieties

We assume that X is a smooth algebraic affine variety and that Ax is a sheaf of
formal deformations (see Proposition [2.2.37)). We set A = TI'(X, Ax), B = I'(X, Ox) and
ax : X — {pt}. As usual we denote by Ax (resp. Bx) the constant sheaf with stalk A
(resp. B).

2.4.1 Preliminary results

Lemma 2.4.1. The Ax-module Ax is flat.

Proof. 1t is a direct consequence of [KS12, Theorem 1.6.6]. O
Lemma 2.4.2. Let f : X — Y be a morphism of varieties and let M € D(f~'Ay). Then
we have

R fuM ~ (R fu M) in D(Ay).
Proof. Tt is a slight modification of [KS12, 1.5.12] O

We recall the following classical result.

Lemma 2.4.3. Let M € D(B). The canonical morphism
M — RI(X,0x ®p, ay' M) (2.4.1)
is an isomorphism.

Proof. If M is concentrated in degree zero, the result follows directly from the equivalence
of categories between Qcoh(Ox) and Mod(B). The result extends immediately to the
derived category because Ox ®p, - is an exact functor and because I'(X, ) is exact on
Qcoh(Ox) since X is affine. O

)

The functors for((:), below, are forgetful functors. We set

gry* : D(Ax) — D(Bx) gry X : D(C%) — D(Cx) gr, : D(Ax) — D(Ox)

L L L
M— Bx @ M M—Cx ® M= 0Ox ® M.
Ax Ax

ck
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Proposition 2.4.4. The diagrams below are quasi-commutative.

(i) D(Ax)™x D(Ch) (ii) D(Ax) forax D(Cl,)
foryX arPx l J/ ox
D(Ax)% D(Ch) D(Bx) Torny D(Cx).
__—
D(OX)% D(Cx)
mg’i

Proof. (i) We start by proving that forp, ogr, = gr%x ofora,. Let M € D(Ax). We
have

L
foro, ogrp(M) =0x @ M

Ax

L L
~CAx @ M
Ch Ax

L

~C® fora, (M)
Ch

~ grj; oforay (M).

The other commutation relations are similarly proved and are left to the reader.
(ii) Similar to (i).
Proposition 2.4.5. Let M € DY (Ax). There is an isomorphism in DV (B)
L L
B%RF(X,M) ~ RI'(X, (’)in) M).
X

Proof. Let M be an object of DT (Ax). The morphism of rings By — Ox gives us a
morphism in D¥(By)

L L
a:Bx @ M — O0x @ M (2.4.2)
Ax Ax
and by Proposition 2.4.4] forp,(a) =id . . Since forp, is conservative, it follows
CoM
ch

that a is an isomorphism in D™ (Bx).
For the sake of brevity, we write ax, instead of R ax, The adjunction between a}_(1
and ax, gives a morphism in DT (B)
L 4, L
pr:B(}j)aX*(M)%aX*(aXB ® M). (2.4.3)

Ax

Applying forp to the morphism pr, we obtain



54 CHAPTER 2. DG AFFINITY OF DQ-MODULES

L L
C (%Rax*./\/l — RGX*((CX Qg M) (2.4.4)

In the category D*(C%), Cx admits a free resolution given by C KA C% . Hence, by
the projection formula, we get that the morphism (2.4.4) is an isomorphism in D(Cx).
Since forp is conservative, pr is an isomorphism. The composition ax.(«) o pr gives us
the desired isomorphism.

O

2.4.2 QCC sheaves on affine varieties

We define the two functors:
® : Df..(Ax) = DZ(4), ®(M) = RI(X, M)

and
U :DL(A) = DI (Ax), U (M) = (Ax @4, ay M)

qcc

Theorem 2.4.6. Let X be a smooth affine variety. The functors ® and ¥ are equivalences
of triangulated categories, are inverses one to each other and the diagram below is quasi-
commutative

[

lgrh lgrh
F( 7')

R
(OX)O<:> D*T(B).

X®By -

D+

qcoh

Proof. Let M € D¢, (Ax). By definition,

qcce
T o B(M) = RHomAX((Al)?C/AX)[—l],AXf% a3 RT(X, M)).
X

By adjunction, we have the morphism of functors a)}l oRax, — id. It follows that we

L
have a morphism ay' RT'(X, M) — M. Tensoring by Ay /(18) - we get
X

Ax ®4, ay' RD(X, M) = Ax @4, M. (2.4.5)

Moreover,

Hom 4, (Ax RAx M, M) ~ Hom 4 (M,HOmAX (Ax, M))
~ Homu, (M, M).

Consequently the image of the identity gives a morphism Ax ®4, M — M. By
composing with (2.4.5)), one obtains a morphism

Ax ®a, ay' RD(X, M) — M.
Applying the functor (-)¢ to the preceding morphism we obtain
(.AX RAx a)_(l RF(X,M))CC — M.

Since M is cohomologically complete, M ~ M. Thus
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(Ax ®ay ax' RT(X, M))* — M. (2.4.6)

Applying gr;, to the preceding formula, and using the well known equivalence

DQCOh(OX()Q;(gTXP (B)’

we obtain the isomorphism

Ox ®py RT(X, gr, M) — gr;, M.

Since (Ax ®ay ay' RI(X, M)) and M are cohomologically complete modules, it
follows that (2.4.6) is an isomorphism.

Let M € D{(A). By definition,
o U(M)=RI(X,(Ax @4y ay M)©).
and using Lemma [2.4.2) we get that
Qo U(M)~ (RINX,Ax ®a, M))“.

We have a morphism

Rax.(Ax) @4 M — Rax.(Ax @ay ax'M).

Since X is affine we obtain Rax«Ax ~ A thus

M — RI(X, Ax @4, M).

We have a map

M — (RI'(X, Ax ®a, M)). (2.4.7)
Applying the functor gr;, we obtain

gry M — RI(X, Ox ®p, gry M). (2.4.8)

Using Lemma we deduce that the map (2.4.8]) is an isomorphism. It follows by

Corollary [2.2.26| that the morphism (2.4.7)) is an isomorphism. This proves the announced
equivalence. ]






Chapter 3

The Lefschetz-Lunts formula for
deformation quantization modules

3.1 Introduction

Inspired by the work of D. Shklyarov (see [Shk07a]), V. Lunts has established in [Lunl11]
a Lefschetz type formula which calculates the trace of a coherent kernel acting on the
Hochschild homology of a projective variety (Theorem . This result has inspired
several other works ([CT1I) [Poll1]). In [CTT1], Cisinski and Tabuada recover the result
of Lunts via the theory of non-commutative motives. In [Pol11], Polischuk proves similar
formulas and applies them to matrix factorisation. The aim of this chapter, extracted
from [Pet10], is to adapt Lunts formula to the case of deformation quantization modules
(DQ-modules) of Kashiwara-Schapira on complex Poisson manifolds. For that purpose, we
develop an abstract framework which allows one to obtain Lefschetz-Lunts type formulas
in symmetric monoidal categories endowed with some additional data.

Our proof relies essentially on two facts. The first one is that the composition operation
on the Hochschild homology is compatible in some sense with the symmetric monoidal
structures of the categories involved. The second one is the functoriality of the Hochschild
class with respect to composition of kernels. This suggest that the Lefeschtz-Lunts formula
is a 2-categorical statement and that it might be possible to build a set-up, in the spirit
of [CW10], which would encompass simultaneously these two aspects.

Let us compare briefly the different approaches and settings of [Lunll], [CT11] and
[Poll1] to ours. As already mentioned, we are working in the framework of deformation
quantization modules over complex manifolds.

The approach of Lunts is based on a certain list of properties of the Hochschild homol-
ogy of algebraic varieties (see [Lunlll §3]). These properties mainly concern the behaviour
of Hochschild homology with respect to the composition of kernels and its functoriality.
A straightforward consequence of these properties is that the morphism X — pt induces
a map from the Hochschild homology of X to the ground field k. Such a map does not
exist in the theory of DQ-modules. Thus, it is not possible to integrate a single class with
values in Hochschild homology and one has to integrate a pair of classes. Then, it seems
that the method of V. Lunts cannot be carried out in our context.

In [CT11], the authors showed that the results of V. Lunts for projective varieties can
be derived from a very general statement for additive invariants of smooth and proper
differential graded category in the sense of Kontsevich. However, it is not clear that this
approach would work for DQ-modules even in the algebraic case. Indeed, the results
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used to relate non-commutative motives to more classical geometric objects rely on the
existence of a compact generator for the derived category of quasi-coherent sheaves which
is a classical generator of the derived category of coherent sheaves. To the best of our
knowledge, there are no such results for DQ-modules. Similarly, the approach of [Poll1]
does not seem to be applicable to DQ-modules.

The chapter is organised as follow. In the first part, we sketch a formal framework in
which we can get a formula for the trace of a class acting on a certain homology, starting
from a symmetric monoidal category endowed with some specific data. In the second part,
we briefly review, following [KS12], some elements of the theory of DQ-modules. The last
part is mainly devoted to the proof of the Lefschetz-Lunts theorems for DQ-modules.
Then, we briefly explain how to recover some of Lunts’s results.

3.2 A general framework for Lefschetz type theorems

3.2.1 A few facts about symmetric monoidal categories and traces

In this subsection, we recall a few classical facts concerning dual pairs and traces
in symmetric monoidal categories. References for this subsection are [KS06, Chap.4],
[LMSMS6], [PS11].

Let & be a symmetric monoidal category with product ®, unit object 1¢ and symmetry
isomorphism o. All along this chapter, we identify (X ® V) ® Z and X @ (Y ® Z).

Definition 3.2.1. We say that X € Ob(%) is dualizable if there is Y € Ob(%¥’) and two
morphisms, 1 : 1¢ - X ®Y, e :Y ® X — 1y called coevaluation and evaluation such
that the condition (a) and (b) are satisfied:

(a) The composition X ~ 14 @ X Y X oy @ X X x o 14 ~ X is the identity of

X.
(b) The composition Y ~Y ® 14 WY e X oy LY 1, ®Y ~ Y is the identity of Y.

We call Y a dual of X and say that (X,Y) is a dual pair.

We shall prove that some diagrams commute. For that purpose recall the useful lemma
below communicated to us by Masaki Kashiwara.

Lemma 3.2.2. Let € be a monoidal category with unit. Let (X,Y) be a dual pair with
coevaluation and evaluation morphisms

1y 3XQY, Y@ X S5 14,
Let f: 1y — X ®Y be a morphism such that (idx ®e) o (f ®idx) =idx. Then f =n.

Proof. Consider the diagram

1y X®Y
fl lf@idx®idy
X®Yivdx®idy®ﬁxv®y®X®Y

ldX ®€®idy
X®Y.

By the hypothesis, (idy ®c ® idy) o (f ® idx ®idy) = idx ®idy and (idxy ®e ® idy) o
(idx ®idy ®n) = (idx ®idy). Therefore, n = f. O
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The next proposition is well known. But, we do know not the original reference. A
proof can be found in [KS06, Chap.4].

Proposition 3.2.3. If (X,Y) is a dual pair, then for every Z, W € Ob(¥), there are
natural isomorphisms

® : Homy (Z, W ®@Y) = Homg (Z @ X, W),

VU : Homy (Y ® Z,W) = Homg(Z, X @ W)
where for f € Homg(Z, W ®Y) and g € Homy (Y @ Z, W),
O(f) = (idw ®e) o (f ®idx),
U(g) = (idx ®g) o (n @ idz).

Remark 3.2.4. It follows that Y is a representative of the functor Z — Hom¢ (Z® X, 1¢)
as well as a representative of the functor W — Hom¢ (14, X @ W). Therefore, the dual
of a dualizable object is unique up to a unique isomorphism.

Definition 3.2.5. For a dualizable object X, the trace of f : X — X denoted Tr(f) is

the composition
1, XY 2 Xy 2y o x 5 14
Then, Tr(f) S HOmcg(]_cg, 1<g).

Remark 3.2.6. The trace could also by defined as the following composition
1, XoYS3vex WWyex 51,

These two definitions of the trace coincide because (id ® f)o = o(f®id) since o is a natural
transformation.

Recall the following fact.

Lemma 3.2.7. With the notation of Definition the trace is independent of the
choice of a dual for X.

Proof. Let Y and Y’ two duals of X with evaluations ¢, ¢’ and coevalution 1 and n’. By
definition of a representative of the functor Z — Hom¢(Z ® X, 14) there exist a unique
isomorphism 6 : Y — Y’ such that the diagram

Homg (Z,Y") —2'~ Homg (Z @ X, 1)
GOT /
[
Homy(Z,Y)

commutes. For Z =Y, the diagram, applied to idy, implies ¢ = ¢’ o (f ® idx). Using
Lemma we get that 7 = (idy ®0~1) on/. It follows that the diagram

id
Xov L2l xoy —2-vax

e N

1, id ®0 id ®0 o®id 1¢

! ! !
X®YWX®Y*>U Y®X

commutes which proves the claim. ]
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Example 3.2.8. (see [LMSMS86, Chap.3]) Let k be a Noetherian commutative ring of
finite weak global dimension. Let D?(k) be the bounded derived category of the category

L
of k-modules. It is a symmetric monoidal category for ®. We denote by 7 the natural
k

commutativity isomorphism of D(k) and by Dl}(k), the full subcategory of D’(k) whose

objects are the complexes with finite type cohomology. If M € Ob(Dl}(k’)), its dual is
given by RHomy (M, k). The evaluation and the coevaluation are given by

L
ev : RHomy (M, k)(%M =k
~ . L
coev : k — RHomy (M, M) %M(%)RHomk(M, k).
If we further assume that k is an integral domain, then k£ can be embedded into its field

of fraction F(k). If f is an endomorphism of M then the trace of f

ey

k%" M ® RHomy (M, k) "3 M ® RHomy, (M, k) & RHomy (M, k) @ M <5 k
coincides with 3,(—1)¢ Tr(Hi(idF(k) ®f)). If f=idp, one sets

X(M) = (—1)" dimg) (H (M)).
icZ

3.2.2 The framework

In this section, we define a general framework for Lefschetz-Lunts type theorems. Let
% be a symmetric monoidal category with product ®, unit object 14 and symmetry iso-
morphism o. Let k£ be a Noetherian commutative ring with finite cohomological dimension.
Assume we are given:

(a) a monoidal functor (-)*: 4 — ¢ such that (-) o (-)* =idy and 1 ~ 1¢
(b) a symmetric monoidal functor (L, ) : € — Db(k) where £ is the isomorphism of

L L
bifunctor from L(-) & L(-) to L(- ® -). That is L(X)® L(Y) & L(X ® Y) naturally in
X and Y and L(1¢) ~ k,
(c) for X; € Ob(%) (i = 1,2,3), a morphism

L
Y L(X; ® X5)®L(Xy® X§) — L(X; ® X3),

(d) for every X € Ob(%’), a morphism
La, : k- L(X ® X9),

these data verifying the following properties:
(P1) for X, X3 € Ob(%), the diagram

commutes,
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(P2) for X, X9, X3, X4 € Ob(%), the diagram
L U®1d
L(X; ® X§)® L(X, ®X3)®L(X3 ® X§) *)L(Xl ®X3)®L(X3 ® Xy4)
ld®Ul (@]
3 3
L 5
L(X, @ X§) & L(X2 ® X§) L(Xy ® X§)
commutes,
(P3) the diagram
L
E—X L(X ® X9
LAXa lL(O)
L(X*® X)
comimutes,
(P4) the composition
L, ®id L <
LX) 5 [(X @ X9 @ LX) S LX)
is the identity of L(X) and the composition
idy (xa)®L L co
L(x®) TMCOETAX LX) & LX © X 5 L(XY)
is the identity of L(X?),
(P5) the diagram
Xa'®X
L(X ® X% ® L(
Lay ®ﬁ
L
L(X*)® L(X
commutes,
(P6) for X; and X2 belonging to Ob(%’), the diagram
U
L X1®Xq
L((X1® X2)") @ L((X1 ® X2)) —_F k
L(U)®L(U)T /
Xo®X1
L
L((X2 ® X1)*) ® L(X2 ® X1)
comimutes.
Lemma 3.2.9. The object L(X®) is a dual of L(X) with coevalution n:= £ o La, and

L
evaluation € := U LX) ®L(X)— k.
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Proof. Consider the diagram

77®1d L L id@e
T LX) LX) LX)
s
o L
LA Layed LX @ X)) ® LX) g~
and the diagram
id ®n e®id

Xa 4>L(Xa ®L ®L(Xa)4>L Xa)

1d®LAX (Xa L X®Xa)4>L Xa .

These diagrams are made of two squares. The left squares commute by definition of 7.
The squares on the right commute because of the Property ( It follows that the two
diagrams commute. Property ( implies that the bottom line of each diagram is equal
to the identity. This proves the proposition. O

The preceding lemma shows that L(X) is a dualizable object of D*(k). We set L(X)* =
RHomy(L(X), k). By Remark we have L(X)* ~ L(X?%).
Let A: k — L(X ® X?) be a morphism of D’(k). It defines a morphism

U
A®id
D, :L(X)AL(X®XG)®L(X)*X>L(X)' (3.2.1)
Consider the diagram
LX) LX)~ L(X)® L(X)* —~ L(X)*® L(X) (3.2.2)

T A

P ®id L T L
L(X) ®L(X“) T T LX)®L(XY) T T L(XY)® LX)

k

Lemma 3.2.10. The diagram commutes.

Proof. By Lemma L(X*) is a dual of L(X) with evaluation morphism ¢ and coeval-
uation morphism 7. It follows from Lemma that the diagram (3.2.2) commutes. [

We identify A and the image of 15 by A and similarly for L, . From now on, we write
indifferently U as a morphism or as an operation, as for example in Theorem [3.2.11

Theorem 3.2.11. Assuming properties ( to (P@), we have the formula

Tl“((I))\) = LAX X‘I%)X L(U))\.
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If we further assume Property (F@ we have the formula

TI‘((I))\) = LAXa u A

X®X®
Proof. By definition of ®), the diagram
L(X)® L(X) —E L(X)® L(X®) = L(X%) & L(X) (3.2.3)
k k

A®n /
U®id
X

L(X ® X) & L(X) & L(X%) = L(X) & L(X%) = L(X%) & L(X)

commutes.

Thus, computing the trace of ®) is equivalent to compute the lower part of diagram
(13.2.3)).

We denote by ( the map

U
La Xa®X

L L ®id L
CLX*®X)~kSLX ®X) 5 LIX@XYOLX*®X) "3 k.

k
A@n w*
1

id ®KR

Consider the diagram

(3.2.4)

L(X © X%) & L(X) & L(X) L(X ® X%) & L(X ® X9)
)Lgéidi 2 N
L(X)® L(X) . L(X ® X1)
l 3 L(o)
L(X%) & L(X) . L(X*® X)
\ 4 /

N ¢
* k

This diagram is made of four sub-diagrams numbered from 1 to 4.
1. The sub-diagram 1 commutes by definition of 7,
2. notice that & = 1U by the Property ( Then the sub-diagram 2 commutes by the

€

Property (P2),
3. the sub-diagram 3 commutes because L is a symmetric monoidal functor,
4. the sub-diagram 4 is the diagram of Property (
Applying Property (, we find that the right side of the diagram (3.2.4)) is equal to
< U _L(o)A\

Xo®X
By the Property (Pﬁ), La, XG%XL(O'))\ = L(0)La, X@Lﬁxa A and by the Property (,
L(0)La, = LA ., the result follows. O

L
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3.3 A short review on DQ-modules

Deformation quantization modules have been introduced in [Kon01] and systematically
studied in [KS12]. We shall first recall here the main features of this theory, following the
notation of loc. cit.

In all this chapter, a manifold means a complex analytic manifold. We denote by C”
the ring C[[h]]. A Deformation Quantization algebroid stack (DQ-algebroid for short) on a
complex manifold X with structure sheaf Oy, is a stack of C"-algebras locally isomorphic to
a star algebra (Ox[[A]], x). If Ax is a DQ-algebroid on a manifold X then the opposite DQ-
algebroid AY is denoted by Axa. The diagonal embedding is denoted by dx : X — X x X.

If X and Y are two manifolds endowed with DQ-algebroids Ax and Ay, then X x Y
is canonically endowed with the DQ-algebroid Axxy = AxXAy (see [KS12, §2.3]).
Following [KS12| §2.3], we denote by - X - is the exterior product and by -X- the bifunctor
Ax«y y % (-X-):

x XAy

N MOd(.Ax) X MOd(.Ay) — MOd(AXXy).

L
We write -X- for the corresponding derived bifunctor.
We write Cx for the Axyx xa-module dx.Ax and wy € Modcon(Axxxa) for the dual-
izing complex of DQ-modules. We denote by ]D>:4X the duality functor of Ax-modules:

]D);\X(-) := RHomyu, (-, Ax).

Consider complex manifolds X; endowed with DQ-algebroids Ay, (i =1,2,...).

Notation 3.3.1. (i) Consider a product of manifolds X; x X5 x X3, we write it Xjo3.
We denote by p; the i-th projection and by p;; the (¢, j)-th projection (e.g., p13 is the
projection from X; x X{ x X5 to X; x X5). We use similar notation for a product
of four manifolds.

(ii) We write A; and A;je instead of Ay, and Ax, « xe and similarly with other products.
We use the same notations for C X, -

(iii) When there is no risk of confusion, we do note write the symbols pi_1 and similarly
with ¢ replaced with ij, etc.
(iv) If K1 is an object of D?(C},) and Kz is an object of D*(C},), we write Ky <2>IC2 for
1 B
R piai(p12 Ka C‘? pas Ka2).

123

L
(v) We write ® for the tensor product over C".

3.3.1 Hochschild homology

Let X be a complex manifold endowed with a DQ-algebroid Ax. Recall that its
Hochschild homology is defined by

L
HH(Ax) =05 (Cx= ® Cx) e D’(Ck).
XxXa
We denote by HH(Ax) the object RI'(X,HH(Ax)) of the category D’(C") and by
HHo(Ax) the C"-module H*(HH(Ax)). We also set the notation, for a closed subset
A of X, HHA(A)() = FAHH(A)() and HH()’A(AX) = HO(RFA(X;HH(A)())).
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Proposition 3.3.2. There is a natural isomorphism

HH(Ax) ~ RHom 4, o (wy', Cx). (3.3.1)
Proof. See [KS12, §4.1, p.103]. O

Remark 3.3.3. There is also a natural isomorphism
HH(Ax) ~ RHom 4, . (Cx,wx).
It can be obtain from the isomorphism ({3.3.1)) by adjunction.

Proposition 3.3.4 (Kiinneth isomorphism). Let X; (i = 1,2) be complexe manifolds
endowed with DQ-algebroids A;.

(i) There is a natural morphism

L
RHom4,,, (wl_l, C1) XRHom 4,,, (w;l, Co) = RHom4,,, 00 (wl_Ql, Ci2). (3.3.2)

(it) If X1 or Xg is compact, this morphism induces a natural isomorphism

£:HH(A;) Q%]H]H(/b) 5 HH(A;2). (3.3.3)

Proof. (i) is clear.
(ii) By [KS12, Proposition 1.5.10] and [KS12, Proposition 1.5.12], the modules HIH(.A;)
for (i = 1,2) and HH(A;2) are cohomologically complete. If X; is compact, then the C"-

L
module HH(.A;) belongs to D?((Ch). Thus, the C"-module HH(A;) ® HH(A) is still a
Ch

cohomologically complete module (see [KS12, Proposition 1.6.5]).

Applying the functor gr; to the morphism , we obtain the usual Kiinneth iso-
morphism for Hochschild homology of complex manifolds. Since gr; is a conservative
functor on the category of cohomologically complete modules, the morphism is an
isomorphism. O

3.3.2 Composition of Hochschild homology
Let Ajj (i =1,2,5 =i+ 1) be a closed subset of X;; and consider the hypothesis

p13 is proper on Ajg X x, Aos. (3.3.4)
We also set Ajg 0 Agz = p13(p1_21A12 N p2_31A23).
Recall Proposition 4.2.1 of [KS12].

Proposition 3.3.5. Let Aj; (1 =1,2 j =i+ 1) satisfying . There is a morphism
HH(.Aua) gHH(Agga) — HH(Alga). (3.3.5)

which induces a composition morphism for global sections

L
L2J : HHA12 (.Alga) X ]I‘I]I‘IA23 (Agga) — HHA120A23 (Alga). (3.3.6)



66 CHAPTER 3. THE LEFSCHETZ-LUNTS FORMULA FOR DQ-MODULES

Corollary 3.3.6. The morphism induces a morphism
L
Ut HH(A) R HH(A2) — HH(A12) (3.3.7)
p

which coincides with the morphism .

Proof. The result follows directly from the construction of morphism (3.3.5). We refer the
reader to [KS12, §4.2] for the construction. O

We will state a result concerning the associativity of the composition of Hochschild
homology. It is possible to compose kernels in the framework of DQ-modules. Here, we
identify X7 x X5 X X3« with the diagonal subset of X7 X Xoa X X5 X X3a.

The following definition is Defininition 3.1.2 and Definition 3.1.3 of [KS12].

Definition 3.3.7. Let K; € D’(A;ja) (i = 1,2, j =i + 1). One sets

L L L
K1 ® Ky = (Ki¥K) ® Cx,
As 220
4 L L .
=p K1 ® Az ®  pyka,
Pro Atas P;31¢1A230

L L
’Cl o} ICQ = Rp14;((/C1E’C2) oY CX2)7
Xo Assa

L L
K1 X Ko = Rpi4, (KiX¥K2) @ Cxs,).
2

220

L
It should be noticed that ®, o and * are not associative in general.

L L

Remark 3.3.8. There is a morphism Ky 39 Ko — K1 ® K2 which is an isomorphism if
2 Ay

X1 =pt or X3 = pt.

The following proposition, which corresponds to [KS12, Proposition 3.2.4], states a
result concerning the associativity of the composition of kernels in the category of DQ-
modules and will be useful for the sketch of proof of Proposition [3.3.10
Proposition 3.3.9. Let K; € DY, (Aji1y0) (i = 1,2,3) and let £ € DY (Ay). Set

coh coh

A; = Supp(K;) and assume that A; Xx,,, Aix1 is proper over X; x X;yo (i=1, 2).

L L
(i) There is a canonical isomorphism (Kq SKQ)EE 5K ° (KoKL).

(ii) There are canonical isomorphisms

L L L
(’Cl <23IC2) (?Z:Kg (: (lClﬁngBICg) 9 O N (62@63) :> ]Cl C2> (ICQ gng).

2233

The next proposition is the translation of Property ( in the framework of DQ-
modules.
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Proposition 3.3.10. (i) Assume that X; is compact for i = 2, 3. The following dia-
gram is commutative

HH(Ama) C2> HH(AQ?,G) g HH(A34a) — HH(Aua) C2> H?‘[(Ama)

| |

HH(ABa) gHH(ASM) ’H’H(.Ama)-

(i) Assume that X; is compact for i = 1, 2, 3, 4. The preceding diagram induces a
commutative diagram

L L L
]I'I]H(AlQa) & H]H(Agga) & IHIH(.A34a) - ]HH(Alga) & HH(A24Q)

|

HH(A134) QL@ HIH(Az4a) HH(A4a).

L
Sketch of Proof. (i) If M € D(Ax) and N € D(Ay), we write MN for MXN and 4

for X; x ... x X;. For the legibility, we omit the upper script (-)* when indicating
—_——
k times

the base of a composition.
L
Following the notation of [KS12} §4.2], we set S;; := w; 'KCja € DL, (Ajjaje;) and
L
K;j = CiRwja € DY, (Ajjajaj). It follows that

coh

HH(AZJG) >~ R,HOHI_A‘.G s (Sz'j, Kzg)

1192 3% 7

We deduce from Proposition m (ii), the following diagram which commutes.

HH( A1)  HH(Asge) g HH(Agse) —_ RHom(Siz g Sos. Kiz 3 Kan) o HH (o) (3.3.8)
HH( A1) o RHom (S S Ss4, Ko3 S K34) RHom((S12 S S23) 2 Sa4, (K12 o Ka3) S K34)

RHom(S12 o (S23 o S34), K12 o (K23 S K34)) — RHom((S12523534) S (Ca2aCa3a), (K12 K23K34) S (Ca2aC334)).

Following the proof of [KS12, Proposition 4.2.1], we have a morphism

K’L’j % Kjk — sz (339)
J
constructed as follows

(Cuwjo) & (Cropa) =((Ciwsa)(Cieoga)) & Cyjo

jja 334 (33)¢

~((Ciwga ) (wjaCy)) & Cjje

L
z(C,-wkawja) ® Cj

3

L ~ _
—[(Ciwr)py 165021 gap}l%f‘j & g, (Ciwr) [245).
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where D;‘l is the quantized ring of differential operator with respect to A; (see Def-
inition 2.5.1 of [KS12]) and Q;-‘l is the quantized module of differential form with
respects to A; (see Definition 2.5.5 of [KS12]). By [KS12, Lemma 2.5.5] there is an

L
isomorphism Q;“ ;8; Aj[—d;] ~ (C;jl where d; denotes the complex dimension of Xj.

J

This isomorphism gives the last arrow in the construction of morphism (3.3.9)).
By adjunction between Rp; and p}, =~ pi_kl [2d;] , we get the morphism (3.3.9).

Choosing i = 1, j = 23 and k£ = 4, we get the morphism

(C1w4aw2a3a) o 623—>61W4a.
2232

There are the isomorphisms

(K12K23K34) 24O34 (CQQanga) ~ ((61W4aw2a3a)623) 24034 (CQgQaga)
~ (Crwgawoaza) . Co3.

Thus, we get a map

(K12K23K34) S (Ca24C330) — Ki4.

By construction of the morphism (3.3.9) and of the isomorphism of Proposition [3.3.9)
(ii), the below diagram commutes

(K2 9 Ka3) o K Kz o Ksa (3.3.10)

T* |

(K12 K23 K34) 2o (C22aC330) K14

| |

Ko S (Ka3 S K3y) Ko S Koy.

Similarly, we get the following commutative diagram

S13 S Ssa_ _Sie S (S23 302 S34) (3.3.11)

I

Sy —— > (512823534) o (Ca24C330)

|

S12 S Soa — _(Si2 S S93) S S34.

It follows from the commutation of the diagrams (3.3.10) and (3.3.11)) that the dia-
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gram below commutes.

RHom(S12 g Sus. Krz o Kas) g HH(Asie) HH(Arze) 9 HH(As) (3.3.12)

R//HOIH((S]Q 2% 523) 3O2 5347 (K]Q 2O2 K23) 3O2 K34) RHOIH(S]g :;32 534,K13302 K34)

4 l

RHom((S12523534) o (C222C330), (K12K23K34) o (Ca2aC330)) HH(Awa)

l

RHom(S12 S (S23 S S34), K12 S (Koa3 S K3y))

|

’H’H(.Alz) 3RHOI’H(523 3O2 534,K23 :;32 K34)

RHom(S12 0 Say, K12 0 Koyg)
22 2

HH(A12) g HH(Az).

The commutativity of the diagram (3.3.8) and (3.3.12]) prove .
(ii) is a consequence of (i) and of Proposition [3.3.4] (ii).

O
3.3.3 Hochschild class
Let M € D?; (Ax). We have the chain of morphisms
~ L
hhy : RHom 4, (M, M) & Dy (M) @ M
X
-1 L L !
5 O B (MED, (M)
Axxxa
L
— 5_1(CXa ® Cx)
Ax x xa
We get a map
hh, : Hom g, (M, M) = Hg, o (X, HH(Ax)). (3.3.13)

Definition 3.3.11. The image of an endomorphism f of M by the map (3.3.13|) gives
an element hhx (M, f) € ngpp(M)(X’ HH(Ax)) called the Hochschild class of the pair
(M, ). If f=1idpn, we simply write hhx (M) and call it the Hochschild class of M.

Remark 3.3.12. Let M € Dl}(Cf”) and let f € Homen (M, M). Then the Hochschild class
hhen (M, f) of f is obtained by the composition

h L hy f@id . L h
C" — RHomgn (M, M) =M & RHomen (M, C") "= M & RHomes (M, C")
C C

L
— RHomgn (M, CP) M — ch.
C

Thus, it is the trace of f in D*(C").
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3.3.4 Actions of Kernels

We explain how kernels act on Hochschild homology. Let X; and X be compact
complex manifolds endowed with DQ-algebroids A; and Ag. Let A € HHy(Aj22). There
is a morphism

O, : HH(Ay) — HH(A,) (3.3.14)
given by

. V]
HI(As) ~ C" 6 HH(As) "E HH(A 90 ) © HH(As) 2 HH(A; ).

If K is an object of D% , (Aj2) then there is a morphism

coh

Oy : HH(A2) — H]H( Ap) (3.3.15)

obtained from morphism by choosing A = hhx ,, (K). In [KS12], the authors give
initially a different definition and show in [KS12, Lemma 4.3.4] that it is equivalent to the
present definition.

We denote by wie® the dualizing complex of the category D*(C%).

Proposition 3.3.13. Let X;, (i = 1, 2) be a compact complex manifold endowed with a
DQ-algebroid A;.

(i) The following diagram commutes.

U-U-
12 o
Py PHH (Ae) éHH(AHG) épz—lﬂq-((Az) — %P (3.3.16)
‘L /
L
HH(A120) @ HH(Aqa2) :
(ii) The diagram
L L Ty
HH (Ao ) ® HH(Ap20) © HH(Ay) —2 C" (3.3.17)
\L 1%32
L
HIH(Aj120) @ HH(Aja2)

commutes.

Proof. (i) In view of Remark only usual tensor products are involved. Thus, it is a
consequence of the projection formula and of the associativity of the tensor product.

(ii) follows from ().

O]
The composition
h hth a
Cxyxxe = RHome, . (Cx,Cx) — HH(X x X?)
induces a map
hh(Ay) : C" — HH(Ax x xa). (3.3.18)

The image of 1cn by hh(Ax) is hhxxxa(Cx).
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Proposition 3.3.14. The left (resp. right) actions of hhxxxa(Cx) on HH(Ax) (resp.
HH(Axa)) via the morphism are the trivial action.

Proof. See [KS12, Lemma 4.3.2]. O
We define the morphism ¢ : HH(Ax x xa) — C" as the composition

U
XaxX

i L
hh(Aﬁ)(X)d HH(Axxxe) @ HH(Axaxx) — Ct

L
HH(Ayexx) ~ C" & HH(Axax x)

Corollary 3.3.15. Let X be a compact complex manifold endowed with a DQ-algebroid
Ax. The diagram below commutes.

U

HH(Ax«) ®HH(Ax) —=C

lﬁ /
HH(Axaxx).
Proof. 1t follows from Proposition [3.3.13| with X; = Xo = X, that the triangle on the

right of the below diagram commutes. The commutativity of the square on the left is
tautological.

id ® hh(A x )®id L 34 o
—_—

HH(Axe) & C' & HH(Ax) — > HH(Axa) & HH(Ax x xa) & HH(Ay)
XaxX

WL L hh(Ax)®8K L

Finally, an important result is the Theorem 4.3.5 of [KS12]:

Theorem 3.3.16. Let A; be a closed subset of X; x X;11 (i = 1 2) and assume that
A1 X x, Ao is proper over X1 x X3. Set A= AjoAy. Let K; € Dgoh A (AxixX;grl)(i =1, 2).
Then

hhx, .. (K10 K2) = hhx,,. (K1) LQthX%a (K2) (3.3.19)

as elements of HHY (Ax, % Xsa )-

Proof. See [KS12, p. 111]. O

3.4 A Lefschetz formula for DQ-modules

3.4.1 The monoidal category of DQ-algebroid stacks

In this subsection we collect a few facts concerning the product -X- of DQ-algebroids.
Recall that if X and Y are two complex manifolds endowed with DQ-algebroids Ax and
Ay, X x Y is canonically endowed with the DQ-algebroid Ax«y := AxXAy. There is a
functorial symmetry isomorphism

oX)Y : (X XY, Axxy) =5 (Y x X, Ay« x)
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and for any triple (X, Ax), (Y, Ay) and (Z, Az) there is a natural associativity isomor-
phism
pxy,z + (AxRAy KAz = AxX(AyRAZ).

We consider the category 22 whose objects are the pairs (X, Ax) where X is a
complex manifold and Ax a DQ-algebroid stack on X and where the morphisms are
obtained by composing and tensoring the identity morphisms, the symmetry morphisms
and the associativity morphisms. The category 22 endowed with X is a symmetric

monoidal category.
We denote by

v (X XY) x (X xY)" Axxyyx(xxyys) = (Y x X) x (Y x X)% Aty xx)x (v x X))

the map defined by v := 0 X 0.
In this situation, after identifying, (X x X %) x (Y xY?) with (X xY) x (X xY)%, there

is a natural isomorphism C X%Cy ~ Cxy and the morphism v induces an isomorphism
0x(Cxxy) = Cyxx-
Proposition 3.4.1. The map oxy induce an isomorphism
ox oxy«(HH(Axxy)) = HH(Ayxx) (3.4.1)

Proof. There is the following Cartesian square of topological space.

g

X xY Y xX

inxy \L(;YXX

(X XxY)x (X xY)—=(Y x X) x (Y x X).
Then

L
o HH(Axxy) ~ 0105y (Cix xyya 12 Cxxy)

X XY

L
:(Sginy(C(XXy)a ® CXXY)

L
~ 6}7ix(c(Y><X)“ .A® CY><X)-

YxX
O]
The morphsim induces an isomorphism that we still denote o,
o - HH(Axxy) —» HH(Ay xx).
The following diagram commutes
HH(Axxy) = HH(Ay x x) (3.4.2)

| |

HH(Ayx) & HH(Ay) — HH(Ay) & HH(Ax).
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Proposition 3.4.2. There is the equality
oxhhxy xa(Cx) = hhxayx(Cxa).
Proof. Immediate by using Lemma 4.1.4 of [KS12]. O

Proposition 3.4.3. Let X and Y be compact complex manifolds endowed with DQ-
algebroids Ax and Ay . The diagram

@]
Y xX

L
HH(A(y x x)a) @ HH(Ay % x) c*

0+ Q0% @]
X XY

L
HH(A(x xy)e) @ HH(Ax xy)
commautes

Proof. 1t is sufficient to show that the below diagram is commutative.

U
Y xX

L
HH(Ayxx)a) ® HH(Ayxx) ——=wi? ¢

Cyxx
’U*T /
XXY

L
Ve (HH(A(x xv)e) & HH(Axxy))

XxXY

For that purpose, we have to go through the construction of U on page 104 of [KS12]. Let
us make some observations.

Since X and Y are compact o, = 01. By the base change formula we have 010 x«y ~
dy xx01.

The morphism v is a closed immersion. Thus, setting Z = X x Y and Z/ =Y x X,
we have the isomorphism v, RHom4,, ,(M,N) ~ RHomy,, , (v«M,v.N) for every
M, N e MOd(.AZXz).

In our case, we apply the construction of the pairing with X; = X3 = pt and X =
X x Y. Hence by Remark we can replace the completed tensor products appearing
in the construction of the pairing by usual tensor products and use the isomorphism
V(M é N) ~ v M é v N for every M, N € Mod(Azxz).

ZxZ Agiyzr

We also notice that v,.Cy; >~ Cz/, viwy >~ wy and v*wgl ~ wg,l. Similar results holds

when replacing Z by Z* and Z’' by Z%. The result follows easily from these observations.
O

xZ'

3.4.2 The Lefschetz-Lunts formula for DQ-modules

Inspired by the Lefschetz formula for Fourier-Mukai functor of V. Lunts (see [Lunli]),
we give a similar formula in the framework of DQ-modules.

Theorem 3.4.4. Let X be a compact complex manifold equiped with a DQ-algebroid Ax.
Let A € HHo(Axxxa). Consider the map (3.5.14

®y : HH(Ax) — HH(Ax).
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Then

Trch,((p)\) == thaXX(CXa) X;JX'I A

Proof. Consider the full subcategory ¢ of 22 whose objects are the pair (X, Ax) where X
is a compact manifold. By the results of Subsection the pair (HH, R) is a symmetric
monoidal functor.

The data are given by

(a) the functor (-)® which associate to a DQ-algebroid (X, . Ax) the opposite DQ-algebroid
(X, Axe),

(b) the monoidal functor on & given by the pair (HH, &),

(¢) the morphism (3.3.6),

(d) for each pair (X, Ax) the morphism hh(Ax).
We check the properties requested by of our formalism:

(i) the Property (P[I) is granted by Corollary [3.3.6}
(ii) the Property (P2) follows from Proposition
) the Property (PB)) follows from Proposition [3.4.2]
(iv) the Property (P{)) follows from Proposition
(v) the Property (P follows from Proposition

(vi) the Property (Pf6) follows from Proposition [3.4.3|
Then the formula follows from Theorem [3.2.171 O

(ii

Corollary 3.4.5. Let X be a compact complex manifold endowed with a DQ-algebroid Ax
and let K € DZOh(AXXXa). Then

Tr(cﬁ,(q)jc) = thaXX(CXa) nga thXXa (’C)

Proof. Apply Theorem to @y O

Corollary 3.4.6. Let X be a compact complex manifold endowed with a DQ-algebroid Ax
and let K € DZOh(AXxXa)- Then

Teen (@) = YRT(X x X%Cxa & K)).

Ax xxa

Proof. By Corollary we get that
Tren(®x) = hhxaxx(Cxe) U hhxyxa(K).
XxXa

Applying Theorem [3.3.16] with X; = X3 = pt and Xo = X x X we find that

L
hhxexx(Cxe) U hhxocxa(K) = hhp (RT(X x X% Cxe @ K).

XxXa

By Remark [3.3.12] it follows that

L L
hhy (RT(X x X% Cxe  ® K)=xRI(X x X%Cxe © K)).

-AX><X‘1 -AX><Xa

L
Finally, we get that Tren(®x) = x(RI'(X x X% Cxae ®@ K)). O

XxXxXa
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3.4.3 Applications

We give some consequences of Theorem and explain how to recover some of the
results of the paper [Lunll] of V. Lunts and give a special form of the formula when X is
also symplectic.

Theorem 3.4.7 ([Lunlll]). Let X be a compact complex manifold and K an object of
Dgoh(oXxX). Then,

S (1) Te(H (@) = X(RD(X x X;0x & K)).

7 Oxxx

Proof. We endow X with the trivial deformation. Then, we can apply Corollary and
forget A by applying gr,. We recover Theorem 3.9 of [Lunli]. O

Proposition 3.4.8. Let X be a compact complex manifold endowed with a DQ-algebroid
Ax and let K € Dgoh(AXXXa). Then

Tr(®x) = Tr(Pgr, )-
Proof. Remark that
X(RHom, (wy', K)) = x(RHomg,, 4y (g1, wx"), g1, K)).
Then, the result follows by Corollary and Theorem [3.4.7] O

It is possible to localize Ax with respect to h. We denote by C((%)) the field of formal
Laurent series. We set A% = C((h)) ® Ax. If M is a Ax-module we denote by M'° the
Ale-module C((h)) ® M.

Corollary 3.4.9. Let X be a compact complex manifold endowed with a DQ-algebroid Ax
and let K € DZOh(AXXXa). Then,

S(—1) Te(H (@) = /Xa* ch(gry K) Utdx (TX)

i

where ch(gry K) is the Chern class of gry K, tdx(TX) is the Todd class of the tangent
bundle TX and 0* is the pullback by the diagonal embedding.

Proof. By Corollary , we have Tr(®x) = x(RHom 4, (w)_(l, K)) and
X(RHomy, (wy', ) = x(RHom groe (wy )", K'9)).
By Corollary 5.3.5 of [KS12], we have
x(RHom Al;c((w;(l)loa K¢)) = [y x ¢h(6:0x) Uch(gr, K) U tdxxx (T(X x X)).

Applying the Grothendieck-Riemann-Roch theorem, we have

Z(—l)iTr(Hi(cb,c)):/Xch(grh;c)ua* tdx (TX)

i

- / 5* ch(gry K) U tdx (T X).
X
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We denote by dx the complex dimension of X. In the symplectic case, we have
according to [KS12, §6.3]

Theorem 3.4.10. If X is a compler symplectic manifold, the complex HH(AR®) is con-
centrated in degree —dx and there is a canonical isomorphism

T HH(AR) S il
TX
We refer the reader to section 6.2 and 6.3 of [KS12] for a precise description of 7x.
According to [KS12, Definition 6.3.2], the Euler class of a .A%%°-module is defined by

Definition 3.4.11. Let M € D’ , (A%°). We set

coh

eu(/\/l) =TX (th (M)) € Hg)u(pp

(M) (X;Cx)
and call eux (M) the Euler class of M.
Therefore, we have the following

Proposition 3.4.12. Let X be a compact complex symplectic manifold and let K €
ch’oh(.AXan). Then,

S (= 1) Te(H (@) = / eu(Cl°) U eu(KC°)

P XxX
where U is the cup product.
Proof. Tt is a direct consequence of [KS12l §6.3] and of Theorem O

Remark 3.4.13. Similarly, it is possible to apply the results of Section[3.2] to the case of
dg algebras to recover the Lefschetz-Lunts formula for dg modules.



Chapter 4

Fourier-Mukai transforms for
DQ-modules

4.1 Introduction

Fourier-Mukai transforms have been extensively studied in algebraic geometry. A key
results of Orlov (see [Orl97]) states that any equivalence of triangulated categories be-
tween the bounded derived categories of coherent sheaves on smooth projective varieties
is isomorphic to a Fourier-Mukai functor. We refer the reader to the seminal book of
Huybrechts [Huy06] for an in depth treatment of Fourier-Mukai transforms in algebraic
geometry. In [KS12], Kashiwara and Schapira have developed a framework to study inte-
gral transforms in the setting of DQ-modules. Recently, Arinkin, Block and Pantev have
proved in [ABP11] that under some condition an integral transform between complex
manifolds can be lifted to the non-commutative level.

The aim of this short chapter is to prove Theorem which says that for any two
smooth complex projective varieties Xy, Xs equipped respectively with DQ-algebroid
stacks A1, As and any kernel K € Dgoh(Alga), the integral transforms @y : Dgoh(.AQ) —
Db (A1) associated to K is is fully faithful (resp. an equivalence of triangulated categories)
if and only if ®g, k : D2 (O2) — DL, (O4) is fully faithful (resp. an equivalence of
triangulated categories).

We borrow the notation of Chapter 3, especially Notation [3.3.1]

4.2 Duality for DQ-modules

Let X; (i =1, 2, 3) be smooth projective complex varieties endowed with the Zariski
topology and let A; be a DQ-algebroid on X;. We recall some duality results for DQ-
modules from [KS12, Chap. 3].

First we need the following result.

Proposition 4.2.1 ([KS12, p. 93]). Let K; € D*(Aji41y0) (i = 1,2) and let £ be a

bi-invertible Ay ® Asa-module. Then, there is a natural isomorphism
(K1 SE)S,CQ :Klg(ﬁgng).

We denote by w; the dualizing complexe for 4;. It is a bi-invertible (A4; ® A;a )-module.
Since the category of bi-invertible (A; ® A;a)-modules is equivalent to the category of
coherent A;;«-modules simple along the diagonal, we will regard w; as an Aj;«-module
supported by the diagonal and we will still denote it by w;.
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Theorem 4.2.2 ([KS12, Theorem 3.3.3]). Let K; € D2y (A;is1)e) (i = 1, 2). There is a
natural isomorphism in DCOh(A1a3)

(]D&malcl) 2% wWaa 2% (D/,423a ]CQ) :> Di‘hsa (lCl g’Cz).

4.3 Fourier-Mukai functors in the quantized setting

Following [KS12|, we define Fourier-Mukai functors in the framework of DQ-modules.
For a closed subset A of X |, we denote by DCOh A(AX) the full triangulated subscategory

of D%, (Ax) consiting of obJects supported by A. Recall the following theorem.

Theorem 4.3.1 (Theorem 3.2.1 of [KS12]). For i = 1,2, let A; be a closed subset of
X; X Xipq and K; € Dléoh A (Ai(i1)e). Assume that Ay X x, Ag is proper over Xi x X3,
and set A = p13(p1_21A1 ﬂp2_31A2). Then the object K1 C2>’C2 belongs to DZOh A(Aiza).

From now on, all the varieties considered are smooth complex projective varieties

endowed w1th the Zariski topology. Let K € D%, (Aj20). Theorem implies that the
functor is well-defined.

P : DYy (A2) = DYy (Ay), M = K g M = Rp. (K @A Pyt M). (4.3.1)
Po 2

Proposition 4.3.2. Let K1 € Dcoh(‘A12“) and Ko € Dcoh(.Agga). The composition

[ D
D2 (As) — DYy (Az) = Diop (A1)

is isomorphic to ®ic,oxc, : D2y, (As) — D8y (A1).
2
Proof. 1t is a direct consequence of Proposition [3.3.9] O

Definition 4.3.3. For any object X € D2 ; (A124), we set

Kr =Dy, (K) g wae KL =Dy,,0 (K) 0 wn

objects of D2, (Aja2).

Proposition 4.3.4. Let Ok : Coh(Ag) — D, (A1) be the Fourier-Mukai functor as-

sociated to K and CI)ICR : COh(Al) coh "42) (T@Sp (I)’CL : coh(Al) coh(AQ)) the
Fourier-Mukai functor associated to Kr (resp. Kr,). Then ®x,, (resp. ®x, ) is right (resp.
left) adjoint to ®i.

Proof. We have

RHom 4, (’C (2) M7N) ~ RT'(X1, RHomy, (’C (2) M7N)>

Applying Theorem and the projection formula, we get
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L
RHom 4, (K 0 M, N) ~ RHomy, (K 0 M, A) @ N
L
~ (D, (K) S w2 o Dy, (M)) g@ N

, L
~ (K:R 2% DA2(M))%N

L L
ngl*(’CR ? pEIDiM(M))@N

Py Asa A1
N R SA=aYs
~ Rpl*(ICR & Ps AQ(M) ® Dy )
py ' Asza Py A

Taking the global section and applying again the projection formula, we get

Lo iy Lo 1
RF(Xl,RHOmAl(]CSM,N)) ~ RI'(X1,Rp1«(Kr _% Po DA2(M)) _@PA py N)
Py 2a Py 1

L L
~RI(X1 x Xo,(Kp ® p3 ' Dy, (M) ®@ pi'N)

py P Aga AL
~ L —1my/ L —1/\/‘
~ RI'( X2, Rpo(Kr @ py Dy,(M)) @ pi N))
Py ' Aga py AL

~ RI (X2, D3, (M) & (Kr 2 V)

~ RHom 4, (M, Kr ?./\f)

Thus, RHom 4, (K 0 M, N) ~ RHom 4,(M,Kr ?N) which proves the claim. The proof is
similar for .. O

Theorem 4.3.5. Let X (resp. X2) be a smooth complex projective variety endowed with a
DQ-algebroid Ay (resp. As). Let K € Db, (Ai12a). The following conditions are equivalent

coh
(i) The functor ®x : Db, (As) — Db, (A1) is fully faithful (resp. an equivalence of
triangulated categories).

(ii) The functor ®g, k : D2 (Oy) — D (O1) is fully faithful (resp. an equivalence of

coh coh
triangulated categories).

Proof. We recall the following fact. Let F' and G be two functors and assume that F' is
right adjoint to G. Then, there are two natural morphisms

GoF —id (4.3.2)
id — FoG. (4.3.3)

The morphism (4.3.2)) (resp. (4.3.3))) is an isomorphism if and only if F' (resp. G) is fully
faithfull. The morphism (4.3.2) and (4.3.3) are isomorphisms if and only if F' and G are

equivalences.

1. (i) = (éi). Proposition is also true for @-modules since the proof works in the
commutative case without any changes. Moreover, the functor gr; commutes with
the composition of kernels. Hence, we have gr,(Kr) ~ (gr; K)r. Therefore, the
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functor @, k,, is a right adjoint of the functor ®g, k. Thus, there are morphisms
of functors
(I)grth o (I)grh Kr — id, (4.3.4)
id — Dy, Kk © Pyr, K-

Set @ = Py, i, © Py, k- Let T be the full subcategory of DY, (O2) whose objects
are the M € D , (O3) such that

coh
M=o Vi (./\/l)
is an isomorphism. It follows from Proposition that 73 is a thick subcategory
of D!, (O2).
Let G be a compact generator of Dyeon(Q2). By Lemma [2.3.18) D%, (Os) = (G).
Since @k is a fully faithful we have the isomorphism

1g(G) = Py, © Pic(14(9))-

Applying the functor gr,, we get that gr, 14(G) belongs to T2 and by Lemma [2.3.18
gry, 14(G) is a classical generator of D%, (O2). Hence, T = D, (02). Thus, the

coh coh

morphism (4.3.5)) is an isomorphism of functors. A similar argument shows that if
®gr, k is an equivalence the morphism (4.3.4)) is also an isomorphism which proves
the claim.

Since @i and P, are adjoint functors we have natural morphisms of functors

Py o (I)ICR — id,

id — ‘1>/CR o (I)]C.

If M € D?,; (Az), then we have

M — P, 0 D (M). (4.3.6)
Applying the functor gr;, we get

gr, M — @gr, oy © Pgr, k(g1 M). (4.3.7)

If g, k is fully faithful, then the morphism (4.3.7) is an isomorphism. The objects
@, 0 Prc(M) and M are cohomologically complete since they belongs to D%, (As).
Thus the morphism (4.3.6) is an isomorphism that is to say

id = @, o Pgc.

It follows that ® is fully faithful.
Similarly, one shows that if @, x is an equivalence then in addition

(I)ICO(I)ICR :>1d

It follows that ®x is an equivalence.
O

Remark 4.3.6. The implication (ii) = (i) of Theorem and Proposition still

hold if one replaces smooth projective varieties by complex compact manifolds.



Appendix A

Algebroid stacks

The aim of this appendix is to present some notions of the theory of algebroid stacks.
They have been introduced by Kontsevich in [KonOl]. They are used in the deformation
quantization of complex Poisson varieties. We assume that the reader has some familiari-
ties with the language of stacks. Our presentation follows closely [KS12, §2.1] and [KS0G,
chapter 19].

In this appendix k is a commutative unital ring and X is a topological space.

A.1 Algebroid stacks

Stacks are roughly speaking sheaves of categories. In some sense algebroid stacks are
the counterpart in the language of stacks of the notion of sheaves of rings.

Definition A.1.1. A k-linear category is a category % such that Home¢ (X, Y') is endowed
with a k-module structure for any X, Y € Ob(%) and such that the composition map
Homg¢ (X,Y) x Homg (Y, Z) — Homy (X, Z) is a k-bilinear map for any X, Y, Z € €.

Definition A.1.2. (i) A k-linear stack & on X is a stack such that for every open
subset U of X, 6(U) is a k-linear category.

(ii) Let R be a sheaf of commutative ring on X. An R-linear stack, is a Z-linear stack
G such that the sheaf End(idg) of endomorphism of the identity functor idg from &
to itself, is a sheaf of commutative R-algebras.

Definition A.1.3. (i) A k-algebroid stack A on X is a k-linear stack which is locally
non-empty (i.e there exists a covering of X by open subsets {U;};c; such that for
every i € I, the category A(U;) is non-empty) and such that for any open subset U
of X, two objects of A(U) are locally isomorphic.

(ii) An R-algebroid stack A on X is a Z-algebroid stack endowed with a morphism of
rings R — &nd(idg).

(iii) An R-algebroid A is called an invertible R-algebroid if R|y — Enda(o) is an iso-
morphism for any open subset U of X and any o € A(U).

Example A.1.4. If A is a k-algebra, we denote by AT the k-linear category with one
object and having A as the endomorphism ring of this object. Let A be a sheaf of algebras
on X and consider the prestack which associates to an open set U the category A(U)T.
The associated stack to this prestack, denoted A, is an algebroid stack.
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For two k-linear category 4 and ¢” one defines their tensor product ¢ ® ¢” by setting
Ob(% ® €') = Ob(%) x Ob(¥”) and

HOmcg®<g/((M, M’), (N, N’)) = Homcg(M, N) & HOmgI(M,, N/).

Remark A.1.5. The tensor product of two algebroid stacks is well-defined. If A and
A’ are two algebroid stacks their tensor product is the k-linear stack associated with the
prestack U — A(U) ® A'(U) where U is an open subset of X.

An algebroid stacks can be described by what is called gluing datum. To define them,
we need to introduce the notion of bi-invertible-module.

Definition A.1.6. Let R and R’ be two sheaves of k-algebras. An R ® R’-module £
is called bi-invertible if there exists locally a section w of £ such that the morphisms
Ror—(rel)weLand R 27— (1®r")w € L give isomorphisms of R-modules and
R’-modules, respectively.

Let {U;}ier be an open covering of X, we set U;; = U; N Uj, Uyj, = U; N U; N Uy, ete.

Definition A.1.7. An algebroid datum on U = {U; };c; is the data of

e a k-algebroid A on X,

o for every U; € U, o; € A(Uj;),

e for every Uj;, an isomorphism ¢;; : 05|, = oilu,,-

Definition A.1.8. A gluing datum on U = {U,};cs is the data of

e for every U; € U a sheaf A; of k-algebras on U;

e for every U;; a bi-invertible A; ® .A?p -module £;; on Uj;.

e for every Ujj;, an isomorphism a;j;, : Lij @.4; L, 5 Lix in Mod(A; ® .Azp|Uijk).
such that the diagram below in Mod(A; ® A" |v,;,,) commutes:

Qg4
Lij® Lik ® Ly —2 Loy @ Ly

J/ajkl iaikl

Eij ® Ejl ot L

Proposition A.1.9. Consider a gluing datum on U. Then there exist an algebroid da-
tum to which this gluing datum is associated. This algebroid datum is unique up to an
equivalence of stacks, this equivalence being unique up to a unique isomorphism.

A.2 Module over an algebroid stack

We denote by kx the constant sheaf with coefficient in k, by 9od(kx) the k-linear
stack of sheaves of k-modules on X. If G; and G, are two k-linear stacks, we denote by
Fcty (61, S2) the category of k-linear functors of stacks from &1 to Go. We set

Mod(A) = Fety,(A, Mod(kx))

Proposition A.2.1. For a k-algebroid A, the k-linear prestack U — Mod(Alv) is a stack
and we denote it Mod(A).
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If G is a stack on X we denote by & the stack defined by GP(U) := S(U)P.

Remark A.2.2. An algebroid stack A is not in general an object of Mod(.A). But, it can
be canonically identified to an object of Mod(.A® A°) via its morphisms sheaf Hom (-, -)

as follows
AR AP 5 (0,7) — Homu(r,0) € Mod(kx).

Definition A.2.3. An A-module is invertible if for any open subset U of X and any
o € A(U), the End(o)-module L(0) is locally isomorphic to End(c). We denote by Inv(A)
the full subcategory of Mod(.A) consisting of invertible .A-module.

Proposition A.2.4. If Ino(A) denote the full substack of invertible modules of 9Mod(A)
then we have an equivalence of k-linear stacks

A 53 In0(AP) 3 Tno(A)°P. (A.2.1)

We give a description of modules over an algebroid stack in term of local data.

Let A be an algebroid stack on X. We can associate to A a gluing datum as follows.
Let U = {U,;}icr be an open covering of X such that for every i € I there is a o; € A(Uj;)
and choose one of these o; for every ¢ € I.

To these data, we associate

o A :=E&nd(oy),

o Lij:=Homy,, (0jlv,,0ilu,;), (Then Ly is a bi-invertible A; ® A]O-p module on Uj;),
ij

e the natural isomorphism

aijr © Lij ® A, L;j 5 L in Mod(A; ® AZp|Uijk)‘

Proposition A.2.5. To specify a module over A, it is sufficient to give a family {M;, ¢i; }i jer
with M; € Mod(A;) and the q;; are isomorphisms

qij Eij ®Aij /\/lj = M;
making the diagram commutative

ik

Lij @ Ljr @ My —— L;; @ M;

\Lai]‘k ilﬁj

Lij, @ My, ik M.

A similar description can be given for morphisms of A-modules.
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