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Flexible Coordination through the Chemical Metaphor for
Service Infrastructures

Abstract

With the development of the Internet of Services, composing loosely-coupled, and au-
tonomous services dynamically has become one of the new challenges for large scale
computing. While service composition systems are now a key feature of service oriented
architectures, the coordination and execution of service compositions are still typically
conducted through heavyweight centralized architectures, leading to problems related to
scalability and reliability.

In a world where platforms are more and more dynamic and elastic as promised
by cloud computing, service infrastructures are pushed toward more decentralized and
dynamic interaction schemes. Addressing the characteristics of such platforms, nature-
inspired, and in particular chemistry-inspired, analogies have recently regained attention
in the search for flexible service coordination on top of dynamic large scale platforms.

In this thesis, we present a workflow management system able to solve a wide variety
of workflow patterns in both a centralized and a decentralized way following the chemical
model. Within this model, data and services are seen as molecules floating and inter-
acting freely in a chemical solution. The decentralized workflow execution coordination
is achieved through a set of reactions between those molecules. While its high expres-
siveness and adequacy for this context is being established, the chemical model severely
suffers from a lack of proof of concepts. To tackle this problem, a prototype has been de-
veloped. Its implementation and evaluation in actual settings are discussed, establishing
the viability of the concept, and thus opening the door to its future adoption.

Key-words: Service composition, service coordination, decentralization, workflow exe-
cution, workflow scheduling, nature-inspired models, chemical programming paradigm.

Résumé

Avec le développement de I'Internet des services, composer dynamiquement des services
distribués faiblement couplés est devenu le nouveau challenge du calcul & large échelle.
Alors que la composition de services est devenue un élément clef des plates-formes orien-
tées service, les systémes de composition de services suivent pour la plupart une approche
centralisée connaissant I’ensemble des informations de flux de contréle et de données du
workflow, posant un certain nombre de problémes, notament de passage a ’échelle et de
fiabilité.

Dans un monde ou les plates-formes sont de plus en plus dynamiques, de nouveaux
mécanismes de coordination dynamiques sont requis. Dans ce contexte, des métaphores
naturelles, et en particulier la méthapore chimique, ont gagné une attention particuliére
récemment, car elles fournissent des abstractions pour une coordination flexible d’entités.

Dans cette thése, nous présentons un systéme de gestion de workflow fondée sur la
métaphore chimique, qui fournit un modéle d’exécution haut-niveau pour l’exécution
centralisée et décentralisée de compositions (ou workflows). Selon ce modéle, les services
sont vus comme des molécules qui flottent dans une solution chimique. La coordination
de ces services est effectuée par un ensemble de réactions entre ces molécules exprimant



I’exécution décentralisée d’'un workflow. Par ailleurs, si le paradigme chimique est au-
jourd’hui considéré comme un modéle de coordination prometteur, il manque des résultats
expérimentaux. Ainsi, nous avons développé un prototype logiciel. Des expériences ont
été menées avec des workflows d’applications réelles pour montrer la viabilité de notre
modéle.

Mots-clés: Composition de services, coordination de services, décentralisation, exécu-
tion de workflows, ordonnancement de workflows, modéle inspiré par la nature, paradigme
de programmation chimique.
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Introduction

Since the emergence of computer science, the quality of applications’ design has been a
subject of considerable research. Hence, the design of applications has been constantly
evolving over time, addressing different requirements. Increasing modularity and flexi-
bility, it evolved from procedural-based to object-based (bundling together procedures
and data structures) standalone applications. With the appearance of Internet, appli-
cations became distributed. Applications started to rely on a composition of different
processes located on distinct computers connected in a network. Since then, the de-
sign of distributed applications has also evolved, in terms of reusability, dynamicity or
modularity, moving from RPC-based (Remote Procedure Call), to object-based (Re-
mote Object Invocation) to component-based applications. Applications are composed
of different components communicating together using technologies such as DCOM (Dis-
tributed Component Object Model) [41] and CORBA (Common Object Request Broker
Architecture) [119]. However, these technologies suffered from tight coupling, poor dy-
namicity and interoperability, issues at the origin of the development of a new paradigm
called service oriented computing. In this paradigm, applications are conceived as a com-
pound of modular, loosely coupled and reusable units of functionality called services. The
resulting architectures built by the combination of services are known as service oriented
architectures (SOA). SOA can be seen as a blending of the older concepts of distributing
computing and modular programming.

The success behind SOA is the interoperability, reusability and flexibility (dynamicity
and loose coupling) of the services combined.

Consequently, with the blooming of Web Services and the appearance of powerful
integrated development environments (IDE) such as Eclipse ! and MS Visual Studio 2,
and tools such as Apache Tomcat 3 and Apache Axis 4, the development of SOA ap-
plications has been made much easier than with RMI (Remote Method Invocation) [58]
and CORBA technologies. Web services are independent units of functionality that ex-
pose their capabilities to be easily accessed, used, and reused by anyone. As a result,
applications tend more and more to take the shape of compositions of independent,
network-enabled services bounded at run time.

These compositions allow to build more complex applications represented by a tem-
poral composition of distributed services, commonly called workflow. The success of the
myEzperiment 5 platform for service and workflow sharing is a clear sign of the success

"http://aws.amazon.com/eclipse/

2http:/ /www.microsoft.com /visualstudio/en-us
®http://tomcat.apache.org/
*http://axis.apache.org/axis/
Swww.myexperiment.org
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14 Introduction

of this shift. Using the myFzperiment platform, users can discover, share and reuse
workflows from other users, at the same time promoting new collaborations.

Similarly, the recently emerged platform paradigm known as cloud computing also
conceives aspects related to the infrastructure (IaaS), platform (PaaS) and other higher
level functionalities (SaaS) as services, again showing the importance of this shift of
paradigm. laaS exposes as services a variety of equipments used to support operations
such as storage, hardware, servers and networking components, like the well-known Ama-
zon EC2 6. Paa$ provides an environment for development, deployment and management
of applications during its whole life cycle, as does for instance GoogleAppEngine 7. Fi-
nally, SaaS exposes applications with diverse functionalities as services. This trend can
be experienced in every day life for instance with utilities like Gmail &, Mobile Games
and gadgets.

Motivation

The growing complexity of service-based applications gives birth to large-scale service
compositions, in which participants from different organizations collaborate in order to
achieve a common goal. The term complexity encompasses a combination of different
factors: the number of services involved, the computation/storage demand, the volatility
of services involved and the coordination structures for the most important. According
to the characteristics of the service interactions, current service coordination models do
not seem to be the most appropriate solution for handling these compositions.

The volatile nature of service interactions requires dynamic and loosely coupled ser-
vice coordination models that provide the ability to quickly adapt to changes, i.e.,
providers do not continuously supply their services. The existing workflow languages
exhibit some limitations with respect to flexibility: even though some of them support
dynamic service binding, they lack adaptation mechanism regarding changes in the com-
position structure.

Another issue of current service infrastructures is that they are built upon highly
centralized workflow engines exposing several weaknesses when processing large-scale
compositions. First, they generally suffer from poor scalability and low reliability, cen-
tral workflow engines being potential processing and communication bottlenecks as well
as single points of failure [13]. In a more societal point of view, they also raise priva-
cy/security issues, as all data and control passing through central engines and repositories
could for instance leave the door wide open for industrial espionage.

As a consequence, it becomes crucial to promote a decentralized vision of service
infrastructures, as for instance suggested in [142|. The benefits of a decentralized ap-
proach are manifold. First, as the coordination and data are distributed among a set of
nodes, there is no single point of failure. No central engine acts as a potential bottle-
neck, network traffic is reduced, and the approach is globally more scalable. Second, the
direct and asynchronous fashion of communications between two nodes involved in the
composition (without the need for central coordination) brings better throughput and
graceful degradation in case of failure [45]|. Finally, no central engine takes control over

Shttp://aws.amazon.com/ec2/
Thttps://developers.google.com/appengine/
8https://mail.google.com/



Introduction 15

data and work, each node integrating a local workflow engine, and having only a partial
view of the composition.

Nevertheless, another limitation comes up when defining workflow specifications to
be executed in a decentralized manner. The existing workflow management systems use
centric-based and low-level abstraction languages (often proprietary languages) which do
not provide adequate abstractions to express a distributed execution naturally. Among
the different solutions to decentralize the workflow execution, none of them is better
suited than others. While some works [28, 64| proposed different techniques to partition
the workflow definition prior to the execution, other approaches [19, 148 prefer to forward
the whole workflow definition along all the participants. Workflow partitioning is a
complex task, to be done statically at design time. To sum up, there is a need for
simpler and higher level abstraction models to be able to define workflows intended to
be executed in a decentralized way.

Over the decades, computing platforms evolved a lot in computing power and stor-
age capacity, facing the ever growing demand of applications. Recently, cloud computing
and its elasticity (the capacity to add and remove new computing resources on demand)
makes this platform an appealing tool for the processing of these large-scale service inter-
actions. For instance, the Magellan project [9] aims at providing a cloud-based platform
for scientists. However, the computing power demanded by some service-based applica-
tions, especially scientific related to astronomy ? and bioinformatics '°, can reach such
proportions that some resource providers alone are not able to face them. This led to
collaborations amongst different resource providers, giving birth to large resource fed-
erations, in particular for community clouds [87]. It allows different cloud providers to
share their resources, making it possible for these workflows to be deployed and exe-
cuted. The idea of sharing resources, however, carries with it new challenges such as the
interoperability between different resource providers, elasticity, security and economical
issues [44, 56]. So, our model should be able to deal with such platforms giving the
ability to 1) take resources into account in the workflow by injecting some scheduling
mechanisms, and 2) run in a fully decentralized fashion.

Contribution

To tackle the problems previously presented, this thesis explores an unconventional pro-
gramming model for the management of service coordination.

A Chemistry-Inspired Model for Service Composition

Recently, nature metaphors, and in particular chemistry-inspired analogies, have been
identified as a promising source of inspiration for developing new approaches for
autonomous service coordination [135]. Among them, the chemical programming
paradigm [21] brings some interesting features like the autonomous behavior and the
high level of abstraction. Within such a model, a computation is basically seen as a
set of reactions consuming some molecules of data interacting freely within a chemical

http://irsa.ipac.caltech.edu/
Ohttp://epigenome.usc.edu/services/nextgen/data_recovery analysis.html



16 Introduction

solution producing new ones (resulting data). Reactions take place in an implicitly par-
allel, autonomous, and decentralized manner. More recently, the Higher-Order Chemical
Language (HOCL) [22] raised the chemical model to the higher-order, providing a highly-
expressive model: every entity in the system is seen as a molecule. Moreover, rules can
apply on other reaction rules, programs dynamically modifying programs, opening doors
to dynamic adaptation.

Lately, it has been shown that such a paradigm is well-suited to express service or-
chestration [27], and describe the enactment of workflows engine [99]. Thus, to model
service interactions, we leverage the chemical analogy and extend it to molecular com-
position to model the decentralized execution of a wide variety of workflow structures,
a.k.a, workflow patterns [132]. Following this molecular composition analogy, services, as
well as their control and data dependencies, are molecules interacting in the workflow’s
chemical solution. Chemical rules (higher-order molecules) are in charge of its decentral-
ized execution, by triggering the required reactions locally and independently from each
others. These local reactions, together, realize the execution of the specified workflow.

Towards a Chemistry-Inspired Middleware

The first part of this thesis intends to show that this model is a simple and appropriate
solution to execute workflows in a decentralized way. It also establishes its expressiveness
and adequacy to service coordination. The second part of the thesis intends to address
another essential problem: the actual experimentation of the chemical model has re-
mained quite limited until now. There is a strong need of a proof of concept to show
its viability, in particular compared to current reference workflow management systems.
Based on the abstractions developed before, we present a workflow management system
able to solve a wide variety of workflow patterns both in a centralized and a decentral-
ized way. Its implementation and performance evaluation on different real workflows are
discussed, establishing the viability of the concept, and lifting a barrier on the path to
its future wider adoption.

In order to complete this chemistry-inspired system and take resources of the under-
lying platform into account, we extend our model, and finally propose a fully decentral-
ized workflow scheduling framework, which solve the current drawbacks when scheduling
workflows in a resource federation, in particular for community clouds. This framework
for just-in-time scheduling is organized in two layers. The top layer is a chemically-
coordinated shared space where workflows are decomposed into tasks, which are mapped
to resources following simple chemical rules. The bottom layer implements this shared
space in a fully decentralized way, based on a peer-to-peer overlay network allowing the
efficient storage and retrieval of molecules.

Organization of the Thesis

In Chapter 1, the principles and methodologies for the development of service-based
applications are introduced. The most used methodologies for the modelling of service
interactions, as well as their executable languages and implementations are described,
detailing the benefits and drawbacks inherited by using each methodology.

Chapter 2 introduces more flexible models to coordinate service compositions, in
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particular dealing with loose coupling and dynamicity. The purpose of this chapter
is also to give all the needed information to understand the demand for new service
coordination models, as well as to introduce its main features and the language built atop
of the chemical metaphor. Its adequacy to model service composition is also discussed.

Chapter 3 and Chapter 4 present the main contribution of this dissertation . We
describe, in Chapter 3, a decentralized system for the execution of workflows based on the
chemistry-inspired coordination model. This chapter introduces a new analogy for service
composition, namely molecular composition. This analogy will allow to model a wide va-
riety of workflow structures by composing molecules representing the service interactions.
Consequently, in Chapter 4, we focus on the architectural design, the implementation
and the experimental validation of this chemistry-inspired workflow management sys-
tem. In particular, the experimental campaign includes the validation of this system in
comparison with the more representative and used workflow management systems.

Finally, in Chapter 5 2, we focus on workflow scheduling, in particular, in the decision
making process for mapping each job of the workflow to the most appropriate resource in a
community cloud infrastructure. The scheduling framework proposed extends the concept
presented in Chapter 3 and provides a fully decentralized just-in-time workflow scheduling
system. A simulation-based evaluation of the performance and network overhead of the
framework is also discussed.

T am the main author of the work presented in Chapter 3 and Chapter 4
12T am one of the authors of the work presented in Chapter 5
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Chapter 1

Service Oriented Computing

Initially, the Web was intended for human use, however most experts agree that it has
evolved, with the proliferation of modular services, to an autonomous system. Nowadays,
this autonomous system can be called by programs instead of humans [35, 92]. A service
can be defined as a self-contained software utility that exposes a capability or information
as a reusable unit. Services provide a high level of abstraction which is required for
organizing applications at large-scale. Hence, the development of applications based on
the combination of services produces an improvement in the productivity and quality
of these systems. This trend gave birth to a new paradigm known as service oriented
computing (SOC).

In service oriented computing, developers use services as building blocks for the de-
velopment of applications. In order to operate in a SOC environment, services must
expose their functionalities and properties in a standard, machine-readable format. SOC
is required to offer three capabilities: description, discovery, and communication. Web
services represent a good SOC example: developers implement these capabilities using
Web Services Description Language (WSDL) [2] (for description), Universal Description,
Discovery, and Integration (UDDI) [5] (for discovery), and SOAP [1] or REST [65] tech-
nologies (for communication). The correct combination of these three capabilities allow
to satisfy the primary goal of SOC, i.e., the creation of collections of services accessible
on Internet via standardized protocols, and whose functionality should be automatically
discovered and integrated into applications to create more complex services. In such a
way, companies can design complicated transactions that involve multiple services from
different enterprises in a complex invocation chain [48]. Service oriented computing based
on Web services is currently considered as one of the main drivers for the software indus-
try [35, 92]. The World Wide Web Consortium (W3C) ! defined Web services as follows:

"Web service is a software system identified by o URI, whose public inter-
faces and bindings are defined and described using XML. Its definition can be
discovered by other software systems. These systems may then interact with
the Web service in a manner prescribed by its definition, using XML based
messages conveyed by Internet protocols’.

"http:/ /www.w3.org/TR/ws-arch/
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Therefore, SOC re-invents the way enterprises work together: common tasks in a
business process or supply chain can be easily outsourced to external service providers
by improving performance, enabling cost savings and increased flexibility.

In this chapter, we distinguish the main formalisms for service composition which
will help us to better understand the SOC paradigm. Section 1.1 introduces the service
composition concept and the existing approaches for modelling the service coordination.
Section 1.2 describes the most used and mature methodology for service composition
called orchestration. Section 1.3 presents the other well-known, although less, used ap-
proach for service composition called choreography. Finally, Section 1.4 draws some
conclusions.

1.1 Service Composition

There are many ways to describe service oriented architectures, however the 'LEGO’
analogy is considered as one of the most appropriated. In this analogy, each 'LEGO’
block is seen as a concrete service, whose size and shape properties allow to distinguish
it from other services. Therefore, based on the 'LEGO’ analogy, service composition
can be seen as a combination of different blocks representing every day life objects.

To create applications, developers use service composition |94, 122|, which they in-
troduce on top of SOC’s capabilities. Developers and users can solve more complex
problems by combining available services and ordering them to best suit their problem
requirements. A rapid application development is achieved using service composition,
as services can be dynamically discovered and reused to design new applications. This
allowed the service oriented computing paradigm to become one of the dominant ap-
proach to design distributed applications. However, these applications can often present
some problems, such as a poor scalability and a high dependability. In fact, there is no
well-defined specifications to determine which requirements a service composition must
satisfy. Thereby, a good service composition is sometimes an art form, building architec-
tures by using certain strategies. The success of these strategies depends on specific use
cases and a number of different factors.

The common mechanism of collaboration between a service provider and a consumer
can be defined in two steps:

1. The service provider publishes a service S4.

2. The service consumer discovers and invokes the service Sy and waits until its
execution is completed. Finally it uses the result of this execution.

In Figure 1.1, a group of services are composed to model the actions taken by the
maintenance department of a mall center after a small fire. If the 'Evaluate Damage’
service determines that the fire caused structural damage, the *Notify Fire Dept.” service
will contact the fire department. If the ’Evaluate Damage’ service also determines that
the damage exceeds 2000 euros, the 'Notify Insurance’ service will contact the insurance
company. In both cases, the ’Submit Report’ service will create a report which will be
submitted to the building manager. This example shows through the service composition,
four services with independent and well-defined functionalities can be easily combined to
build a more complex application, i.e., Fire Damage Report.
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Notify Dept.

Evaluate
Damage

Notify
Assurance
Company

Figure 1.1: Service composition example — Fire Damage Report —.

Following the SOC paradigm, services can be seen as 'black box’ since the imple-
mentation details are hidden to the consumers. Consumers only have access to their
interface descriptions. Since the services are accessible on Internet, the service compo-
sition is named Web Service Composition, and the resulting aggregation of services
is referred to as a composite Web service or workflow. A workflow is a directed acyclic
graph (DAG) that specifies the (directed) dependencies between services composed.

To sum up, service composition offers reuse possibilities and access to a variety of
complex services. In order to accomplish these benefits, we first need to define the
requirements when composing services.

1.1.1 Requirements

Service composition builds on the use of flexible services and interaction mechanisms to
compose them. To achieve that, services are decomposed into a service hierarchy based
on functionality, by abstracting the layers, and by defining compositions that can be
separated from the makeup of the services themselves, as mentioned in [113].

A composition system must therefore satisfy several requirements:

e Connectivity: every part in a composition must guarantee the connectivity. The
service connectivity can be defined as the availability of a service to interact in a
composition. With reliable connectivity, we can analyze the data and control de-
pendencies among services, what facilitates the validation of a service composition.

e Correctness: composition correctness requires verification of the properties such
as (QoS properties, i.e., dependability, timelines and security.

e Scalability: composition systems must scale with the number of involved ser-
vices in a workflow. Centralized composition systems manage data and control
dependencies among the involved services, what may produce communication and
performance bottlenecks.

However, a good composition should not only satisfy these requirements but also services
of the composition themselves should have the following characteristics:
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Modularity and granularity: Based on service oriented architectures, applica-
tions are decomposed into modular services which are self-contained. Granularity
defines the functional richness for a service, the more coarse-grained a service is,
the richer or larger the function offered by the service is. Coarse-grained services
provide a greater level of functionality within a single service operation, by reduc-
ing complexity, network overhead and reusability. In contrast, fine-grained services
exchange small amounts of information to complete a specific discrete task, by
increasing the reusability. Note that, a task is a workflow operation which can
represent the invocation of a Web service, an external command, or a database
operation. Even though the level of granularity generally depends on the purpose
of the software entity, SOA tends to build coarse-grained services.

Encapsulation: There is a strict separation from the public interface of a service
and its internal implementation details, which is seen as a ’black box’.

Loose coupling: Coupling describes the number of control and data dependencies
between two services in an interaction. Aspects such as flexibility and extensibility
of a system can be affected depending of the degree of coupling between services.
In general, we can distinguish between loosely and tightly coupled services. Tightly
coupled services have many known and, what is more importantly, hidden depen-
dencies. While loosely coupled services have few, well-known and well-managed
dependencies.

Isolation of responsibilities: Services are responsible for the execution of dis-
crete tasks or the management of specific resources. This provides one place for
each function to be performed, providing consistency and reducing redundancy.

Reuseability: Services participating in a composition can be deployed and mod-
ified independently from each other. Requirements such as modularity, encapsula-
tion, loose coupling and isolation of responsibilities enable services to be used into
multiple compositions or accessed by multiple service consumers.

Dynamic discovery and binding: Services can be discovered and invoked at
run-time through the use of a service repository [113]. The dynamic binding of
services increases the loose coupling degree of a system.

Stateless: Service operations are stateless. This means that each time a service is
invoked, a new instance will be created. Stateless services provide better flexibility,
scalability and reliability. However, they need to include additional information in
every request in comparison with stateful services. In contrast, stateful services
should be able to save their state in a persistent data source and/or maintain the
state information between invocations.

Self-describing: The service descriptor files provide a complete description of
the service interface, its operations, the input and output parameters. Similarly,
pre-conditions, post-conditions and constraints about the operations may be also
described.

Composable: Services themselves can be composed from other services, and can
be mixed and matched as needed to build more complex services.
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o Governance: Relationships between service consumers and providers establish the
contracts in a composition. A contract describes the policies to be accomplished by
participants in an interaction. This technique is sometimes referred to as Service
Level Agreements (SLAs) [128].

e Location/language/protocol-independent: Services are designed to be inde-
pendent of communication protocols, platforms and physical locations in which
they are deployed.

1.1.2 Service Interaction Protocols

In service composition, the collaboration between services or service interactions can
be defined in two different manners: orchestration and choreography. Orchestration
and choreography approaches are two methodologies, which define the control and data
dependencies, contracts and policies among involved services in a workflow. However,
orchestration and choreography focus on different aspects in a composition.

Orchestration describes a control and data flow among services from the perspective
of one participant acting as a coordinator node called the orchestrator [106, 113]. The
point of reference for orchestration is a single orchestrator. As shown by Figure 1.2 (left
side), the orchestration describes all the data and control dependencies between the tasks
(rounded rectangles) and participants (rectangles), as well as other execution details, such
as condition checking (rhombus). While choreography gives a full perspective — global
contract — of the behavior of all the involved participants [29, 91, 113|. In contrast, as
shown by Figure 1.2 (right side), the choreography describes the sequence of messages
involving the two participants, where each participant collaborates to coordinate the
whole composition (the control is decentralized).

To sum up, both methodologies describe a workflow. Orchestration defines a model
which can be directly executed, whereas choreography is purely an agreement among
services in a workflow, modelling how a given collaboration should occur.
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Figure 1.2: Orchestration vs choreography.

Over the last few years, there were passionate debates between developers to decide
which methodology to use. Orchestration and choreography are widely used for com-
posing service-based applications [91]. However, the orchestration community has the
most traction in the standards bodies and in technology adoption. In fact, the software
industry mainly uses a standard orchestration language to model the business process of
enterprises called BPEL [101]. The BPEL language is introduced in Section 1.2.2.1. In
contrast, the number of approaches executing choreography definitions are still growing
day after day without following any standard. In our work, we present a service coor-
dination system that can be defined as a trade off between the two methodologies. A
choreography model is defined among orchestration engines, to achieve a decentralized
workflow execution.

The rest of the chapter is organized as follows. Section 1.2 and Section 1.3 details the
orchestration and choreography interaction protocols respectively. Finally, Section 1.4
summarizes the concepts and ideas presented in this chapter.

1.2 Orchestration

In the following, we focus on orchestration architectures and languages due to the
widespread adoption and ripeness of this model.
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1.2.1 Centralized vs Decentralized Orchestration

The execution of a service orchestration can be coordinated using two types of architec-
tures: centralized and decentralized.

The most common approach to orchestrate services is to use a centralized engine.
This approach is simple for management and monitoring. Workflow management defines
and verifies that a set of tasks produce a certain result, and monitoring displays the
status information about completed and currently executing workflows. In centralized
approaches, a workflow is executed by a single coordinator node, the orchestrator. It
receives the client requests, makes the required data transformations and invokes the
services based on the control-logic previously defined. Hence, in Figure 1.3 (left side),
the execution of the workflow relies on the orchestrator responsible for coordinating data
and control flows between services Si, Se, Sg and S4. During the actual execution of
the workflow, the orchestrator first invokes S; by sending a message to node ’'res —
2.domain.fr’, then waits for the result of Sy (sent by 'res — 2.domain.fr’), and finally
invokes So and S3. In a centralized orchestration, all data are transferred among services
using the orchestrator instead of being transferred directly from one service to another.
However, centralization leads to some performance limitations and bottlenecks [113, 144],
what limits its reliability for the execution of computation and data intensive workflows.

On the other hand, in decentralized approaches, each participating service is respon-
sible for partial orchestration (managing its control and data dependencies), based on
its individual rules without any central coordination. The participants collaborate to
execute a workflow with every one executing a part of it, leading to the following bene-
fits [45]:

1. There is no centralized coordinator, eliminating potential bottlenecks.

2. The data is distributed among engines, what reduces network traffic and improves
transfer time.

3. The control-logic is executed in parts on several engines, which improves concur-
rency.

4. A communication mechanism based on asynchronous message exchanges between
engines, brings a better throughput and graceful degradation in case of failure.

An example of decentralized orchestration is illustrated on Figure 1.3 (right side).
The execution of the workflow relies on the collaboration between four workflow engines,
i.e., one engine per involved service. Workflow engines must be aware of the workflow
specification, when to invoke their operations, and how to interact with the other engines,
through messages. Hence, in the workflow, nodes 'res—2.domain. fr’, 'res—1.domain. fr’
and 'res — 34.domain. fr’ may communicate directly (rather than through a coordinator
node) to transfer data and control when necessary (i.e., after S; finishes).

The decentralized orchestration appears as the only way to compose large-scale work-
flows, where data move only in a given direction based on the data-flow constraints
through different environments. Similarly, the time wasted with the network latency to
communicate with the different engines is regained by reducing the workload of a central
engine. The term workload is assumed to be the amount of work that the workflow engine
has been given to do at a given time.
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Figure 1.3: Centralized and decentralized orchestration.

Nowadays, there is a wide literature about decentralized approaches to execute work-
flows [45, 88, 93, 121, 145].

In [45, 93], a hybrid model commonly uses multiple centralized engines, where tasks
are, in advanced, planned to be distributed across orchestration servers. The data and
control dependencies among services are statically analyzed, and then the workflow def-
inition is partitioned and distributed to each server. In contrast, these approaches lack
of adaptation to the changes in the environment, workflow are partitioned in parts at
build-time and then distributed to each server. Recently, more dynamic solutions have
been proposed [145]. In [145], the authors proposed a continuation-passing mechanism
where information on the remainder of the execution is carried in messages to each engine
involved in the coordination.

More recently, other approaches use a shared space as storage mechanism for con-
trol and data information, and as a communication mechanism among services [88, 121].
Using a shared space as a communication infrastructure, the control and data dependen-
cies can be exchanged among participants through this space instead of directly between
them. These approaches, which improve loose coupling, will be detailed in Chapter 2.

1.2.2 Orchestration Languages

In this section, we introduce some of the most mature and used orchestration languages
for service composition in both business and scientific domains.

1.2.2.1 WS-BPEL

WS-BPEL (Business Process Execution Language for Web Services) [101] is the defacto
standard for service orchestration in business domains. WS-BPEL (in short BPEL)
is an XML-based executable language that has emerged from the earlier proposed
XLANG [113] and Web Service Flow Language (WSFL) [3]. It enables the construc-
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YAWL SCUFL | BPEL GWorkflowDL| DAX
Conwatdaa | e | Comeob e | ot i | D212
Parallel execution Explicit Implicit Explicit Explicit Implicit
Abstract workflow | — X - X X
Platform details - - - X X
Dynamic binding - - X - -

Table 1.1: Comparison among languages.

tion of complex business processes from existing Web services, which can also represent
other business processes. Thus, this language enhances the reusability by exposing BPEL
processes as Web services.

BPEL is an imperative and control-based workflow language by including the explicit
definition of the processing order. Web services are primitive execution blocks, and ser-
vice composition is achieved using control primitives (sequences, parallels, conditionals,
and loops). The primitive execution blocks cover invoke, receive and reply operations
which enable asynchronous or synchronous service invocation. On the other hand, the
control primitives are used to build complex structures. More precisely, the sequence
primitive offers the ability to define ordered sequences of tasks, flow executes a collection
of tasks in parallel whereas the execution order is given by links between the tasks. The
switch control primitive allows branching, pick allows to execute one of several alterna-
tive branches and loops can be defined using the while primitive. In addition, there is
another set of primitives for managing events such as the wait primitive, which awaits
during some time, the terminate primitive stops the execution of the workflow instance,
the assign primitive copies data from one message to another, the throw primitive an-
nounces errors, and the empty primitive does nothing emulating an empty operation.

BPEL includes the feature of tasks scoping that enables the modelling of sub-processes
inside of an existing one forming a tree-like structure composed of BPEL processes. In
addition, it is possible to specify fault handlers and compensation handlers for scopes.
Faults handlers get executed when exceptions occur, for instance, through the execution
of the mentioned throw primitive. Compensation handlers are activated when faults
occur or when compensation primitive that force compensation of a scope are executed.

Even though originally designed for business workflows, BPEL has recently gained
a lot of attention by the scientific community, mainly because of the appeal of the Ser-
vice Oriented Architecture (SOA) paradigm in this domain. However, the modelling of
scientific data-flows using BPEL is still a tedious experience [125].

1.2.2.2 YAWL

Some contemporary workflow management systems are based on Petri Nets |74], a widely
used model of discrete systems invented in 1939 by Carl Adam Petri. However, they lack
support for expressing some workflow patterns (i.e., involving multi-instances or complex
synchronizations), or require a lot of specification effort, as pointed it out by YAWL’s
authors [131]. A workflow pattern is a formal way of describing a solution to a design
problem that appears repeatedly when defining a workflow structure. These patterns
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need to be mapped onto High Level Petri Nets (HLPN) [79], where the term HLPN is
referred to Petri Nets extended with color, time and hierarchy.

YAWL [131] is a workflow language based on Petri Nets but extended with addi-
tional features to enable a more intuitive workflow patterns identification, what reduces
the complexity of modelling workflows. These features use HLPN, and thus support
workflows with multiple instances, composite tasks, OR-joins, removal of tokens, and
direct transitions.

A workflow specification using YAWL consists of a composition of tasks (either atomic
or composite) that form nets with a tree-like structure. Each atomic task represents the
leaves of this hierarchy distribution. Composite tasks or subprocesses refer to the different
sub-nets or sub-levels in this tree, as suggested in Figure 1.4. There is one net that is not
referred by other composite tasks: it forms the root of this tree workflow. The nets are
also composed of another element called conditions, which can be interpreted as places.
Unlike Petri nets, it is possible to connect ’transition-like objects’ such as composite and
atomic tasks directly to each other without using a ’place-like object’ like conditions
between them.

An example of a YAWL workflow representation is illustrated on Figure 1.4. It
shows the different elements of a YAWL tree-like structure: the root representing the
whole workflow, atomic tasks (squares), a composite task as a subnet scoping another
subprocess, and the conditions (circles).

Root

task
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start \ End
task |—» task —*
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Figure 1.4: A YAWL composition.

1.2.2.3 SCUFL

Scufl (Simplified Conceptual United Flow Language) [125, 129] is an XML-based and
data-driven workflow language developed by the myGrid consortium?, which aims at
contributing to the development of services-based toolkits for eScience. Scufl is used by
Taverna Workflow Management System [104] to express scientific workflows, which is
detailed later, in Section 1.2.3.2. It enables the definition of data-flows between different
local and remote services provided by external applications. Similarly, the definition of

2http:/ /www.mygrid.org.uk/
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some control flow patterns can be modeled through control links between tasks. How-
ever, this coordination constraint can be only modeled when existing a data dependency
between involved tasks.

In Scufl, the tasks of a workflow are called processors. A processor receives data on
its input, execute some operations and produces data on its output. Processors represent
Web services or other executable components. Using data links, processors are composed
with each others, defining data dependencies between the output of a processor and the
input of another. In addition to these data links, Scufl allows the definition of control
links among processors that specify precedence conditions, i.e., a processor can execute
only when another one has successfully completed its execution. The inputs of a workflow
are represented as sources, and the final results are represented as sinks. The execution
of a workflow starts from the sources and finishes when all sinks have either produced
their output or failed.

An example of a Scufl representation is illustrated on Figure 1.5. It is composed of
three sources associated to two processors (T'ask; and Tasks) through data links, and
one sink representing the end of the execution. According to the data links, once the
sources are available, the processors will be invoked, transferring its final result to the
sink.

input1

Task_1 Task_2

Figure 1.5: A Scufl composition.

In Taverna, a processor definition includes information related with a fault tolerance
mechanism, that calls an alternative service if the service of first choice, after a certain
number of retries, fails. Thus, this information specifies: the implementing services, the
number of retries, the time between retries, and optionally an alternative service.

Nowadays, Scufl is one of the more mature and used workflow languages to model
and execute scientific data-driven applications.

1.2.2.4 DAX

DAX [55] is an XML-based DAG specification used by Pegasus Workflow Management
System [55] to express abstract workflows (see Section 1.2.3.4 for a description of Pega-
sus). An abstract workflow offers a global view of a workflow specification without giving
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execution details, i.e., platform independent. Nevertheless, DAG could also provide a
concrete workflow specification by explicitly specifying the data location and resource
description in the workflow specification.
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Figure 1.6: Abstract and concrete workflow.

The differences between abstract and concrete workflows are illustrated on Figure 1.6.
In a concrete workflow, the specification contains enough details to be actually executed,
such as the candidate services to invoke (A calls the service 'service. fr.2’), the resources
on which to deploy the tasks (B is deployed on the resource '102.23.2.1’) and the data
files to use (F processes the file 'dataF'ile’). Nevertheless, in an abstract workflow,
the specification contains enough details for its logic to be understood by anyone, as
suggested by Figure 1.6 (left side).

A DAX specification consists of three parts: the first part describes the input/output
data files that will be consumed and produced by tasks within the workflow; the second
part specifies the arguments of each task or jobs such as the name, the name of input and
output files that were previously defined; the third part defines the data dependencies
between the tasks. The relationships are defined as child parent relationships with no
cyclic dependencies.

1.2.2.5 GWorkflowDL

The GWorkflowDL (Grid Workflow Description Language) [15] is an XML-based lan-
guage for representing Grid workflows based on High Level Petri Nets (HLPN). This
language is currently the basis for the Java Grid platform [14] of the University of Muen-
ster in Germany and the K-Wf Grid European Project 3, which addressed the need for
a better infrastructure for the future Grid environment.

®http://cordis.europa.eu/projects/71832__en.html
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GWorkflowDL is a control and data driven language, that uses the HLPN concept
of edge expressions to assign a concrete service to a transition, and conditions as a
mechanism to define the control flow relationships. In such a way, the original HLPN
model is neither modified nor extended to describe service composition.

A workflow definition using GWorkflowDL presents two abstraction levels:

e The first level, called generic (abstract workflow), defines the structure of a work-
flow, reflecting the control and data flow of an application.

e The second level, called platform specific (concrete workflow), defines how the work-
flow should be executed on a Grid infrastructure.

Thanks to the first abstraction level, a workflow structure can be defined with no
consideration about the targeted platform on which it will run. Through the second
level, a workflow definition can be adapted to a particular Grid platform. Therefore, a
workflow definition can be used to inspect and monitor the running and finished workflows
regarding these two abstraction levels.

GWorkflowDL provides a graphical notation based on Petri Nets which is an intu-
itive and simple graphical description, what allows the users the modelling of workflows
without having to learn the notation of a specific workflow language.

1.2.3 Orchestration-based Workflow Management Systems

There are many workflow management systems being developed as centralized systems
which rely on an orchestrator responsible for the coordination of all the control and data
information among services. These systems can be deployed on local desktop computers
to help individual users to construct workflows from available services. In the following,
we review some of the popular systems: the BPEL Engine for the business domain, and
Kepler [86], Taverna [104], Pegasus [54] and MOTEUR [73] for the scientific domain.

1.2.3.1 BPEL Engine

BPEL processes are executed by a so-called BPEL engine. The Web services used in
a composition can be distributed among several partners over the network. The whole
workflow is described in a single file and executed by a BPEL engine.

Traditionally, a BPEL engine works as a broker for all message exchanges between all
the Web services participating in a workflow, in other words, the workflow logic runs on
a central server. The engine processes the workflow specification and ensures the correct
execution.

A BPEL engine offers a conceptual distinction between abstract processes that de-
scribe the global view on the process model, and executable processes that describe
workflows and can execute them using a BPEL engine. The BPEL engine exposes ev-
ery process through a Web service interface, thus allowing this process to be invoked or
composed as a simple task in other process definitions.

Nowadays, there are a wide variety of implementations for a BPEL Engine. In fact,
most of I'T enterprises have developed their own version, thus showing the widespread
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adoption of this model, e.g., Apache , ActiveBPEL 5, Intalio ¢, Oracle 7.

1.2.3.2 Taverna

Taverna [104] is an open-source scientific workflow management system initially targeted
for life science, and developed by the myGrid consortium®. The primary goal of Tav-
erna is the construction and execution of workflows accessible to scientists. A workflow
definition is a linked graph of processors, that represent Web services or other exe-
cutable components supporting various bioinformatics data analysis and transformation.
These workflows are designed using an XML-based workflow language called Scufl (see
Section 1.2.2.3), and executed according to a functional programming model. Taverna
presents a data-driven coordination model that allows the interaction among different
local and remote services provided by external applications.

Initially, Taverna was oriented to the biological domain, however due to its simplicity,
it is currently used in other domains such as bioinformatics, chemioinformatics, astron-
omy, social sciences and music. Therefore, a significant effort was put towards discovering
and organizing these Web services into a reusable set of components. Today’s Taverna is
directly integrated with the myExperiment? initiative whose aim is to collect, find, use
and share scientific workflows.

Note that, thanks to a plug-in architecture, additional components can be included
into Taverna to support secure Web Services and Grid execution.

1.2.3.3 Kepler

Kepler [86] is a Java-based open-source workflow management system developed by the
Science Environment for Ecological Knowledge (SEEK) project!'® and the Scientific Data
Management (SDM) project at the University of California Berkeley!!. Kepler is an
extension of Ptolemy II [59], a mature system for modelling, simulating and designing
concurrent, real-time applications. It also inherits, the support for multiple heterogeneous
models of computation from Ptolemy II. These models are captured by the notion of
directors providing flexible control strategies for the representation of different kinds of
systems. Moreover, each computation model is independent of the defined structure for
a workflow, which is built by composing a set of components, called actors. An actor
represents an operation, or data source, that implements a particular functionality for a
specific domain. The behavior of an actor can change in function of the execution and
communication semantics provided by the adopted director. This characteristic is known
as behavioral polymorphism.

Like Taverna, Kepler uses a data-driven model based on the actor-oriented compo-
sition model. A workflow definition is composed of actors that are linked among them

*http://ode.apache.org/

Shttp://www.activevos.com/learn/open-source
Shttp://www.intalio.com/bpm

"http://www.oracle.com/technetwork /middleware/bpel /overview /index.html
S8http://www.mygrid.org.uk/

http://myexperiment.org

Ohttp:/ /seek.ecoinformatics.org/

Hhttps://sdm.lbl.gov/
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through interfaces called ports. A port can represent an input, output or mixed param-
eter. They are connected through channels that are directed from the output port of an
actor to the input port of another actor.

In Kepler, the primary goal consists of complex models built hierarchically with the
combination of different heterogeneous models with distinct computation models.

1.2.3.4 Pegasus

Pegasus [54] is an open-source workflow system that enables users to execute workflows
on large-scale infrastructures such as Grids or Clouds. It provides a framework that maps
complex scientific workflows onto available compute resources and executes them in an
appropriate order following a workflow specification.

Pegasus supports the abstract workflow definition by allowing users to construct work-
flows using DAX (see Section 1.2.2.4), without worrying about the underlying execution
platform details. The user provides a workflow definition and then artificial intelligence
techniques are used for guiding workflow composition, in particular by the moving of
data and execution of applications on a distributed, dynamic and heterogeneous set of
computational resources.

Pegasus has been identified as the only workflow system covering the whole workflow
life cycle, which is a set of linearly connected states of a workflow’s life: creation, planning,
scheduling and reuse.

Pegasus relies on existing Grid infrastructures such as DAGMan [71] and Globus [68]
to provide the necessary information for the resource selection. In order to provide a
dynamic scheduling of tasks on resources, portions of a workflow can be mapped based on
data availability. Task clustering is also considered, where a number of small-granularity
tasks are executed on the same resource. Pegasus incorporates some static strategies for
the resource selection such as random, round-robin and so on. In addition, an adaptive
scheduling can be done thanks to the use of the MAPE functional decomposition, allowing
a just-in-time scheduling. As illustrated on Figure 1.7, Pegasus is composed of three
components:

e Mapper. This component transforms an abstract workflow definition into an
executable workflow, and finds the appropriate software, data, and computational
resources required for its execution. Performance optimization by changing the
workflow structure can be also achieved.

e Central Engine. This component executes the tasks of a workflow specification
based on the data-flow using the DAGMan workflow executor of Condor. DAGMan
relies on the resources (compute, storage and network) defined in the workflow to
perform the necessary actions.

e Task Manager. This component is responsible for the management of workflow
tasks, supervising their execution onto the distributed resources.
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Figure 1.7: Pegasus workflow management system.

Like Taverna, Pegasus is used in a wide variety of domains such as astronomy, earth-
quakes science and bioinformatics. To facilitate its adoption on additional domains, Pe-
gasus includes a key feature which is the support for the execution of scripts composing
components programs rather than Web services.

1.2.3.5 Moteur

MOTEUR [73] is a centralized workflow engine developed by the Modalis Team 2 at the
University of Nice Sophia Antipolis. The main feature of its execution model enables
data, workflow and services parallelism when processing a workflow definition. This work-
flow engine allows to define data-flows through the composition of services and executable
components. Based on the data-intensive nature of scientific workflows, MOTEUR sup-
ports some data composition strategies such as one-to-one and all-to-all. For instance,
the all-to-all strategy corresponds to the scenario in which all the inputs in one dataset
have to be processed with all inputs in the other dataset.

The authors adopted the Scufl language for the workflow definition (see Sec-
tion 1.2.2.3). As a consequence, this engine presents some expressiveness limitations when
modelling complex control structures, as we explained in Section 1.2.2.3. More recently,
a new workflow language was developed in the context of the GWENDIA project 3
to run scientific workflows in MOTEUR, called GWENDIA [6]. GWENDIA is a data-
driven workflow language that provides transparent access to Grid infrastructures for
coherently and efficiently resource usage. This language can convert Scufl specifications
into GWENDIA specifications. However, GWENDIA is still based on Scufl, so it also
includes coordination links to construct control structures, offering a poor expressiveness
when modelling complex workflow patterns.

Furthermore, MOTEUR provides supports for processing of large and dynamic
datasets, and is currently used to run workflows written in the Scufl language on en-
vironments like The Grids for e-Scienclkl (EGEE) [60] or Grid’5000 [8] .

?http://modalis.i3s.unice.fr
3http://gwendia.i3s.unice.fr /doku.php?id=gwendia
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1.3 Choreography

With the blooming of Web technologies, more and more real computations are established
through the composition of several computation units. These units have to work correctly,
but also ensure a successful collaboration with each other in order to achieve a shared
goal. These computation units can represent independent entities or organizations locally
distributed over a network.

When modelling these scenarios, orchestration approaches suffers from the following
drawbacks:

e The ever growing complexity of the interactions lead to some scalability and inter-
operability issues.

e The correctness verification of the interactions is even harder from the perspective
of one participant.

e In real-world scenarios, organizations are often unwilling to delegate control of their
business processes to their integration partners.

Choreography offers a way to clearly define and agree on the rules of participation
within a service collaboration, as mentioned in [12]. Each participant (computation
unit) may then implement its portion of the choreography as determined by the global
perspective.

The intent behind choreography is to make it easy to check the conformance of each
participant to the expression of the global system it takes part in [12, 91].

Choreography, although an established concept, has less literature and real implemen-
tations than orchestration. In practice, the design processes and execution infrastructure
for service choreography models are inherently more complex than for service orchestra-
tion: decentralized control raises a new set of challenges which are the result of message
passing between distributed asynchronous-concurrent processes. However, although more
complex, there are some benefits by adopting choreography models [29]:

e Abstraction level: As we mentioned before, to design a choreography system,
engineers need to have a global view of how the services interact with each other.
Hence, the key lies not on building individual services but rather on how sets of
services collaborate together, by identifying groups of services and analyzing and
understanding their interactions.

e Modularity: In a choreography model, each participant is an independent entity
that plays a pre-determined and pre-agreed role regardless any central orchestrator.

e Scalability: Centralized coordination through a single orchestration engine is a
valid solution for scenarios found in the business domain, where relatively small
quantities of intermediate data (when output from one service invocation is used as
input to another service) and computation are processed and transferred between
services. However, when processing computation and data intensive workflows,
there is an increment on unnecessary data transfer, wasted bandwidth and workload
for this central engine, what obviously decreases the speedup of the system when
processing this type of workflows.
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To sum up, a choreography model defines the set of message exchanges corresponding
to interrelated service interactions.

1.3.1 Choreography Languages

In this section, we introduce the main attempts at building languages for the definition
of service choreographies.

1.3.1.1 WS-CDL

The Web Service Choreography Description Language (WS-CDL) [12, 29| is an XML-
based language for describing the interactions among multiple participants in a service
composition. WS-CDL defines the control and data flow among services from a global
perspective.

In WS-CDL, each service participant has a role that represents its behavior during the
collaboration, i.e., Provider or Consumer. As well, a participant can also play different
roles depending on the interaction. Like BPEL, WS-CDL has a construct named activity
that identifies the tasks to be executed. There are three types of activities: basic, workunit
and structural. The basic activity specifies the interaction between two participants. The
workunit activity defines loops and conditional constructions, and the structural activity
builds control structures such as sequences and parallel splits. WS-CDL also supports
mechanism for exception handling during the execution, as well as the possibility to
define sub-choreographies inside of an existing one forming a tree-like structure.

WS-CDL takes its formal roots in 7-calculus [70], a formal basis for the description of
concurrent process and dynamic interconnection scenarios. However, it has been a W3C
Candidate Recommendation since November 2005. There are several reasons to explain
this status [12]. The lack of execution details could be considered as the main reason.
Others drawbacks such as no multipart support and tightly bound to WSDL interfaces
are devised in [12].

1.3.1.2 BPEL4Chor

BPEL4Chor [52, 53| is an extension of BPEL language for modelling choreographies.
While BPEL is a language for describing orchestration models, BPEL4Chor allows to
interconnect the business process from multiple patterns to achieve a common objective.

BPEL4Chor distinguishes between three artifacts types when defining a specification:

e Participant behavior descriptions (PBD). It defines the control and data dependen-
cies between the participants, in particular, between activities (tasks).

e Participant topology (PT). It provides a structural view of the composition by spec-
ifying the participants and their interconnection using message links. This artifact
is used in conjunction with PBD artifacts to obtain an abstract choreography spec-
ification.

e Participant groundings (PG). Tt defines the configuration details such as data for-
mats and port types from WSDL definitions.
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BPEL4Chor encourages reuse by only providing a specific Web service mapping in the
participant grounding. Unlike, in WS-CDL, a composition with an unknown numbers of
participants can be modeled.

Recently, in [52], authors proposed to use both BPMN (Business Process Modelling
Notation) [112] and BPEL4Chor for processing business collaboration among multiple
partners. BPMN provides a friendly graphical notation for modelling business processes,
while BPEL4Chor transforms these definitions into executable business processes.

1.3.1.3 Let’s Dance

Let’s Dance [51, 147] is a language for describing the collaboration among services from
a global and local perspective. Thanks to both perspectives, Let’s Dance supports the
modelling of interactions between a set of services from one observer’s viewpoint, and
the modelling of the interactions in which a particular service is directly involved. Using
this language, a choreography consists of a set of interrelated interactions specified by
message exchanges among services.

Like WS-CDL, each participant can have different roles in a service interaction. In
order to design a service interaction, one of three following constructs has to be selected:

1. Precedes. This construct denotes that the target interaction can only be triggered
once the source interaction has completed.

2. Inhibits. This construct denotes that the target interaction can no longer occur
once the source interaction has completed.

3. Weak precedes. This construct denotes that the target interaction can only be
triggered once source interaction has completed or it has been inhibited.

Let’s Dance also supports the construction of the service interaction patterns intro-
duced in [76]. This allows to model a wide range of collaborations by using patterns such
as send /receive, one-to-many send /receive and multi-responses, among others.

1.3.1.4 MAP

MultiAgent Protocol (MAP) [30] is an XML-based executable language that expresses
the collaboration among multiple patterns. Considering a set of peers over a network,
a choreography definition does not have to be installed in advance at design time on
each peer participating in the interaction. Instead, peers can be dynamically configured
to collaborate with others for processing a choreography specification. Therefore, MAP
provides a peer-independent and flexible solution for the execution of choreographies, in
which the definitions can be uploaded to a set of peers at runtime.

To design a choreography model, an engineer must first identify different roles, and
then extract the implicit protocol defined by the interactions among roles. Each peer is
identified by a unique name and a role. So, a protocol can be thought of as a bounded
space in which a set of peers collaborate to achieve a common goal.

MAP offers a mechanism for both asynchronous and synchronous service invocation
and also provides support for the construction of control structures such as sequences,
exclusive-choices, parallel splits and loops among others.
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1.3.2 Choreography-based Workflow Management Systems

Most of actual implementations of the models use proprietary languages for the execution
of choreographies. However, other approaches [52, 69], use more standardized languages,
like BPMN or WS-CDL, to obtain abstract choreography descriptions that will be finally
turned into BPEL definitions for the execution. In the following, we detail two of these
implementations: Maestro [51] and MagentA [30].

1.3.2.1 Maestro

Maestro [51] is an implementation of the Let’s Dance language for the analysis and
simulation of global and local service interaction models. As a part of a modular ar-
chitecture, Maestro is built upon the Maestro visual language framework developed by
SAP '*. This framework provides an editor environment for developing BPMN, BPEL
and SAM (Status-and-Action Management) specifications, what allows to design more
abstract choreography models.

The choreography model is used as an input argument for the analysis and the sim-
ulation components in Maestro. The analysis component includes a mechanism which
is able to detect any semantical error such as unreachable interaction, and also allows
to obtain how many times an interaction can occur during an execution. This mecha-
nism avoids the detection of future communication problems, as well as determines what
desirable characteristics should offer a communication channel. The simulation engine
allows to execute instances of a specification to verify the correctness of a model.

1.3.2.2 MagentA

MagentA ! is an open-source framework for the enactment of choreographies defined
using MAP language (see Section 1.3.1.4). This framework was implemented using a
combination of Java, XML and Web technologies.

As mentioned before in Section 1.3.1.4, MAP processes a choreography definition
across a set of peers in a network by using message-passing to communicate. In MagentA,
each peer is a dynamic and lightweight piece of middleware that serves as a proxy to a
service or a group of services.

In addition, peers are exposed via WSDL descriptors, what increases the flexibility
of the system, ¢.e., additional peers can be included to improve the performance during
data transfers between services. Similarly, MagentA provides a registry lookup service
to locate and configure the peers at runtime. The physical location of each peer will be
spliced in the choreography specification before it is disseminated to the participants for
the execution.

MagentA has been successfully applied to execute real choreographies on a variety of
e-Science projects [30].

Y“http://www.sap.com/france/index.epx
5 homepages.inf.ed.ac.uk/cdw/
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1.4 Conclusion

In this chapter, we presented the service oriented computing as a paradigm emerged by
the composition of services which collaborate among them to achieve a common goal.
The service composition is not a trivial endeavor. Two main composition methodologies
exist for the definition of the service interactions: orchestration and choreography. Both
methodologies define the collaborations on the use of loosely coupled services from op-
posite viewpoints. These different viewpoints have caused passionate debates between
designers to decide which form of composition to use, as mentioned in Section 1.1.2.
Nowadays, even though the orchestration has gained a lot of adoption in the software
industry, this discussion remains an open issue when considering the emerging large-scale
distributed systems. While the orchestration, it is considered as the defacto standard
for modelling workflows, which are currently managed in a centralized way. Designers
consider the choreography as an appropriate technique for modelling abstract workflows,
which are managed in a decentralized way. However, the existing choreography models
present a tight coupling interaction mechanism, what limits its adoption for the manage-
ment of workflows.

As a consequence, we explored the advantages and disadvantages of the existing
architectures for service composition suggesting a promising future to those that can
incorporate loose coupling and decentralization. Today, the majority of workflow man-
agement systems are basically managed in a centralized manner, what may provide a poor
scalability and reliability for the execution of data and computation intensive workflows.
Similarly, current workflow languages exhibit several limitations regarding dynamic adap-
tation, due to their low level of abstraction and static nature (i.e., explicit parallelism
and static binding).

Therefore, there is a demand for more flexible coordination models to process the next
generation of service composition systems, which should run at large-scale and provide
abstractions for decentralization and dynamic behavior.
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Chapter 2

Flexible Models for Service
Coordination

As we mentioned at the end of the previous chapter, the existing languages and work-
flow management systems are basically static, tightly coupled and management-centric.
The languages define workflow specifications to be processed by a central engine. In
traditional choreography models, services interact directly offering a tight coupling in-
teraction mechanism. The services collaborate through message-passing by transferring
the workflow definition across them, as proposed in [63, 146].

The volatility of services requires dynamic coordination models that provide the abil-
ity to quickly adapt to changes, as providers do not continuously supply their services.
Languages like BPEL or WS-CDL exhibit some limitations with respect to dynamic adap-
tation. Even though some of them support dynamic service binding, they lack adaptation
mechanism regarding changes in the composition structure.

Based on this constation, several authors proposed to extend these languages using
aspect-oriented programming (AOP) for supporting dynamic adaptation at runtime, as
suggested in [46, 49]. However, there are some negative points around of AOP such as
the limited modularization and reusability, difficulty of understanding and debugging.
Therefore, these approaches were not widely adopted since they increase the complexity
of the service composition systems. To solve the tight coupling of these coordination
mechanisms, the partitioning of workflow definitions seems to be a good solution to
reduce the workload of central engines. Nevertheless, partitioning is a complex task
when it has to be done statically at design time. There is a lack of generic and simple
approaches to decentralize the execution of a service composition [11, 63, 118].

These drawbacks encouraged the development of more flexible (dynamic and loosely
coupled) models for service coordination, in contrast to the pre-determined and pre-
specified properties of the classical service composition solutions.

This chapter presents different approaches injecting loose coupling and dynamicity in
service coordination, relying on rule-based systems and tuplespace-based architectures.
Then, we discuss the foundations and languages of the chemical programming model, and
its adequacy to nicely express coordination. This part is detailed in Section 2.1. Second,
loosely coupled coordination mechanisms that enables asynchronous interactions among
services, based on a tuplespace, are presented in Section 2.2. Third, the principles and
languagues of chemistry-inspired models, built on top of both rule-based systems and
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tuplespaces, as well as the existing literature about their adequacy to the expression of
service coordination, are detailed in Section 2.3. Finally, Section 2.4 summarizes the
ideas and concepts exposed in this chapter.

2.1 Rule-based Models

The concept of rewrite rules is presented in different fields of computer science, both the-
oretical and practical, e.g., to implement program transformations, to define constraint-
based algorithms, etc... Rule-based programming provides a common framework in which
computation can be seen as a set of logical statements about how a system operates.

In [47, 141, 143], the authors consider that rules can be used in the context of service
composition to determine how the composition should be structured and processed, how
the services and their providers should be selected, and how run-time service binding
should be conducted. Rule-based approaches are managed and guided by rules to support
service composition and dynamic binding of services. Furthermore, these approaches
provide a high level of abstraction for the modelling of the service interactions, as rules
allow to define the collaborations without having to interact with the individual services.

The majority of rule-based systems use a type of rules called Event-Condition-Action.
Event-Condition-Action (ECA) rule was originally suggested as a formalism for active
database capabilities [90]. An ECA rule consists of a triggering event, a list of conditions,
a performed action and an optional postcondition, which formalizes the state change after
the execution of the action. Rules define flow, constraints and control the behavior of a
system by reacting to events, what allows the construction of event-driven applications.

In the work [143], the authors have developed an ECA rule-based workflow manage-
ment system for Web service composition using rules. This system uses the high level
of abstraction to easily construct workflows models using Web services, without having
to interact with individual services composed. In [82], the authors propose semantic
and a rule based event-driven system for automation of business processes. Semantic
provides knowledge-vocabulary of domain and ECA rules are designed to generate the
composition schema automatically and dynamically according to the events.

On the other hand, in [47], the authors proposed a flexible composition framework for
Web services development, and a rule-based language for service integration. This frame-
work exploits the pattern matching mechanism of rewriting systems for XML processing,
thus allowing rule-based services to interact with other RPC-style services.

Therefore, as mentioned in these approaches, rule-based models are able to design
with a high level of abstraction service interactions supporting dynamic adaptation and
service composition life cycle management.

2.2 Tuplespace-based Models

There is a need to specify the interactions among services via the definition of the con-
trol and data flow of their interactions. Accordingly, the concept of tuplespace arose as
a suitable mechanism for modelling asynchronous interactions among services. Concep-
tually, a tuplespace is similar to an associative (possibly distributed) shared space, that
allows loosely coupled interactions between a set of processes, which can be producers or
consumers of information, Tuplespace supports advanced information exchange patterns
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such as one-to-one and one-to-many interactions. This shared space is usually thought
of as a ’blackboard’ that facilitates the coordination of distributed elements.

Therefore, the main advantage of a tuplespace for the composition of services is loose
coupling, since the interactions do not occur directly among Web services, but are now
mediated by this coordination space. In the tuplepsace, all the data exchanged among
services are stored and accessed asynchronously [85]. This coordination model improves
the reusability by simplifying the development and management of Web services. Appli-
cations do not need to be implemented based on the interfaces of the services participating
in a composition.

In the following, we introduce the first coordination model founded on the tuplespace
principles called Linda [130]. The Linda tuplespace provides a simple and elegant way
of separating communication from computation concerns. Finally, we explore the more
relevant tuplespace-based approaches for service coordination.

2.2.1 Preliminaries

Originally, the tuplespace was conceived in Linda to act as a distributed and shared-
associative memory platform on which to build applications. Thus, a tuplespace can be
seen as a shared space that provides primitives for storing and retrieving ordered data
objects under the shape of tuples. There are two types of tuples: entries and templates.
An entry consists of a tuple in which all the fields have a defined value. A template,
denoted by ¢, represents a tuple with one or more undefined fields, and its structure
defines the matching pattern to access to tuples in the tuplespace.

As illustrated in Figure 2.1, the original Linda model presents three primitives to be
performed on the tuples and the tuplespace: out(t), in(t) and read(t). The primitive
out(t) is used to insert a tuple ¢ in the tuplespace; read(t) is used to read one tuple
from the tuplespace without withdrawing it, as long as there is a tuple that matches the
template t. A tuple can be read and withdrawn using the in(t) operation. The in and
read are blocking operations respectively.
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Figure 2.1: Tuplespace operations.

There has been a wide diversity of software projects based on the tuplespace model,
such as XMLSpaces.NET !, TSpace ? and JavaSpaces ®. In particular, JavaSpaces imple-
ments a tuplespace mechanism for coordination, dynamic communication, and sharing of
Java objects between resources in common client-server networks. Thus, this mechanism
allows participants to exchange tasks, requests, and information (resources or objects)
by acting as a virtual shared space between the providers and consumers in a distributed
application. JavaSpaces is an interface which can be instantiated with the Java Jini
technology 4.

2.2.2 Existing Approaches

Today, there is a growing interest in using tuplespace-based coordination models for
service composition, or to simply coordinate the information exchanged between different
parties [31, 40, 103, 138|. In the following, we focus on Web service composition through
tuplespace.

The main attractivenesses of this model are the following:

e Asynchronous interaction: the information can be exchanged between services
instances even if they are already deployed or under deployment. Thereby, services

'http://www.ag-nbi.de/research /xmlspaces.net/
http://www.almaden.ibm.com/cs/TSpaces/
®http://java.sun.com/developer/technical Articles,/tools/JavaSpaces/
*http://java.net/projects/jini/
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instances do not necessarily have to exist during the same period of time to exchange
the information.

e Storing and searching facilities: a tuplespace provides some primitives to col-
lect and post tuples when needed.

e Advanced message exchange patterns: A tuplespace supports notifications
to service instances, which indicate, using templates, the kind of data they are
interested in. Thus, the matching pattern is based on the relevant data for a
service instance instead of being based on its location or data provider.

e Loosely coupled interaction: Traditionally, service-based applications suffer
from tight coupling interactions between services. These collaborations are pro-
grammed according to the interface of the services (if the interface change, the
application may fail). With tuplespace-based, services interface do not need to be
completely known.

Next, we make a critical review of the most relevant approaches using a tuplespace
as a coordination mechanism among services (like an orchestrator). Note that, other
approaches using a tuplespace as a coordination mechanism among workflow engines for
a decentralized execution will be discussed in Section 3.4 of Chapter 3.

Thus, this coordination model was also proposed to avoid tight coupling interac-
tions among services using the workflow engines of languages such as BPML [17] and
BPEL [38].

In [40, 103], the authors present a loosely coupled and private tuplespace as an in-
direct communication mechanism to support Web based collaboration and XML data.
Both approaches allow to store XML documents in a tuple field and retrieve them. Fur-
thermore, the authors included a mechanism to control the access between public and
private tuples. In the same vein, but more recently, a tuplespace called zSpace was pre-
sented in [31]. There, the authors focused on the efficiencies that can be wrung out of a
pure XML tuplespace rather than hybrid tuplespaces like those mentioned above.

As illustrated on Figure 2.2, a tuplespace supports the insertion of XML documents,
in particular, SOAP messages for the service coordination. Consider a service collabora-
tion between ’servicel’ and ’service2’; ’servicel’ may communicate with ’'service2’ to
continue the execution. Then, ’servicel’ inserts a tuple, a SOAP request message, in the
tuplespace referred to 'service2’. Next, 'service2’ withdraws this SOAP request and in-
serts the result of its operation as a tuple, a SOAP response message. Finally, 'service2’
withdraws the tuple representing the SOAP response and continues the execution. This
example easily illustrates how a tuplespace, with support for XML, could be used for the
service coordination.
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Figure 2.2: Service coordination using an XML tuplespace.

Therefore, the tuplespace provides to service providers and consumers asynchronous
interaction and three decoupled dimensions: destination, space, and time. The service
providers of data can publish it at any point in time (time), independent of its internal
storage (space), independent of the knowledge about potential consumers (destination).
The coordination model based on the tuplespace facilitates the dynamic binding and
service composition. However, the use of this model for Web service composition also
present some disadvantages:

e The tuplespace normally has to support XML data in order to facilitate the inter-
operability among Web services, as pointed out in [31, 40].

e These systems do not normally offer any mechanism for the control of information
being exchanged during a coordination process, as detailed in [40, 103], .

e There is a lack of autonomic behavior to solve possible conflicts into the system,
i.e., the tuplespace is not aware of any problem during the interactions.

e There are no primitives describing complex interactions among services, such as
complex synchronization patterns.

As a result, we considered the disadvantages and advantages of this coordination
model in order to design our system. In such a way, our control and data repository
system has some similarities with these tuplespace-based models in the sense that loosely
coupled and asynchronous interactions are also supported.

2.3 Chemical Metaphor-based Models

There is a growing literature on the use of the chemical metaphor to design new com-
putation models [24, 33, 105, 110]. The chemical programming model is an elegant
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implicitly parallel programming model, initially proposed to simply write highly parallel
programs. The metaphor is as follows. A chemical program can be seen as a chemical
solution where data is represented by "floating” molecules and computation by chemical
reactions. Molecules interact freely according to Brownian motion and react according to
some conditions. When some molecules match and fulfill a reaction condition, they are
consumed and replaced by the result of the reaction (producing new molecules). This
process goes on until a stable state where no more reactions are possible is reached,
referred to as inertia.

In the following of this chapter, we first introduce the chemical programming models
and their benefits for service composition.

2.3.1 Gamma

The Gamma formalism [24], proposed in 1986, is the pioneer programming model inspired
by the chemical metaphor. Using Gamma, a program consists of a reaction (condition)
that consumes some molecules and produces new ones. The unique data structure in
Gamma is the multiset (7.e., a set of possible multiple molecules) on which the reactions
are applied. Thus, the execution consists on the consumption of molecules (reactants)
satisfying the reaction condition by new molecules produced by this reaction. The end
of the execution is determined when the inertia state is reached. For example, a Gamma
program calculating the maximum element of a set of integers will be defined as following;:

max = replace x, y by yif x <y

The condition z < y represents the reaction condition to be satisfied by the molecules
z and y. If the condition is satisfied, the molecule z is removed, leaving the molecule
y in the multiset. In Gamma, the execution of a program is non-deterministic. A non-
deterministic program defines an algorithm with one or more choice points where multiple
different continuations are possible, without any specification of which one will be taken.
Molecules autonomously react according to the rules until inertia state is reached. They
are consumed without any pre-defined order. Gamma is an implicit parallel language
since several reactions can simultaneously react, as long as there are no molecules taking
part to several reactions at the same time and their reaction conditions are satisfied.
Moreover, it also supports the atomic capture of molecules. The reaction takes all the
reactants atomically, otherwise the reaction do not take places. In other words, once all
the reactants are present into the solution, none of them can participate in more than
one reaction at the same time.

Let us consider a set of integers (9, 6, 4, 2) for our maz example, the molecules 6
and 9 could react together although the molecule 9 could also react with the 2 or with
4 following a different order of capture. Indeed, the 9 and 6 molecules can also react in
parallel with the 4 and 2 to obtain the maximum value 9.

Gamma is a simple and high level programming language for parallel applications
in comparison with the existing parallel programming models. This language is able to
express parallel and non-deterministic programs without an explicit sequentiality.
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2.3.2 Similar Models

The pioneer chemical model proposed in Gamma has inspired a variety of authors to
design other chemical models such as the CHAM (CHemical Abstract Machine) [33] and
P-systems [105].

Chemical Abstract Machine. CHAM was proposed by Berry and Boudol for asyn-
chronous and concurrent computation without explicit control. This non-deterministic
model was based on Gamma and added some new features such as membranes and
airlocks mechanism. The need of these new features emerged from the description of
distributed systems using models such as Algebraic Process Calculi [95]. Membranes
are used to contain molecules and other membranes, creating a tree-like structure of
subsolutions. Airlock mechanism was introduced to describe communications between
membranes. This mechanism enables one molecule to be accessed from outside the mem-
brane and this to take part in a reaction in the root membrane.

Like Gamma, CHAM presents the state of inertia and also reactions are n-shot rewrit-
ing rules. A n-shot rule is a kind of reaction that never disappears of its enclosing solution
after reacting.

P-systems. This approach is a computational model inspired from biology and based
on a structure composed by membranes. Membranes could be considered as cells for
analogy with biology or chemical solutions with chemistry. Thus, a membrane is a
multiset containing other membranes and data, where data are the molecules “floating”
into these membranes. This model consists in nested membranes, which can be seen as a
tree-like structure, in which molecules react in. Molecules can cross and move through the
membranes independently of its level into the tree structure, what enables the modelling
of interactions (communications) among membranes.

A set of partially ordered rewrite rules is associated to each membrane describing
possible reactions and interactions among them. The execution of a rule can consume
molecules but also membranes. For instance, if a reaction dissolves a membrane, then
the molecules from that membrane will be associated to its new enclosing membrane.

2.3.3 Higher-Order Chemical Programming

In order to satisfy the requirement of dynamicity in the emerged distributed systems,
the chemical programming models needed to offer a dynamic behavior which enabled
to adapt these systems to the changes in the environment. Reaction rules cannot be
modified dynamically in Gamma. Thus, as a consequence, Bandtre, Fradet, Radenac
decided to include the higher-order as a novel feature for the new generation of chemical
models thus providing such demanded dynamicity.

The higher-order chemical programming language allows the programmer to define
reaction rules which can consume and produce reaction rules. Next, we introduce two
of the existing higher-order chemical models and present how these new extensions can
satisfy the requirements of those distributed systems.
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M = xy ..€eV ; variables
| ~v{x).M ; y-abstraction
| M;i, Mo ; composition of molecules
| (M) ; solution

Table 2.1: Syntax of y-calculus.

2.3.3.1 ~-Calculus

The 7-calculus |21, 110] is a higher-order chemical model where rules are also consid-
ered as molecules — “first class citizens” —, that float in the multiset. Like in Gamimna,
the unique data structure of the ~-calculus is the multiset. Chemical solutions contain
these molecules and work as biological membranes isolating them from others. Hence,
molecules into a solution cannot react with others outside of this solution, however they
can be extracted or added from its enclosing solution using reactions.

The syntax of «y-calculus is illustrated on Table 2.1. A ~-abstraction specifies a higher-
order rewrite rule. The reaction concept is represented by a single rewrite rule of the
form:

~-abstraction = (v ( P ).M)

When a vy-abstraction finds a molecule N that matches the pattern P, it reacts and
is replaced by the molecule M. The execution consists of v-reactions until the inertia
state is reached for the solution representing a chemical program. Note that some ~-
abstractions disappear from its enclosing solution after reacting. This kind of rules are
called one-shot. In ~-calculus, there are two types of rules: n-shot and one-shot, while
there is only n-shot rules in Gamma.

As we mentioned before, reaction rules are also considered as molecules in y-calculus,
reaction rules can then consume and produce other reaction rules. To do that, we first
have to consider an important restriction that permits to rewrite reactions following a
certain order, — A molecule can be extracted from its enclosing solution only when it
has reached an inert state —. Without this limitation, the contents of a solution could
be extracted in any state and the solution construct would lose its purpose.

The ~-calculus can be seen as a formal and minimal basis for chemical languages,
as well as the A-calculus is the formal basis of functional programming languages. In
fact, the A-calculus can be encoded withing y-calculus. Constructions such as logical,
arithmetics, integers, tuples, recursion, booleans and conditionals can be defined using
both paradigms. Nevertheless, the y-calculus is more expressive than A-calculus since
non-deterministic programs can also be expressed.

Despite the high expressiveness of the ~-calculus, it lacks two fundamental features
in comparison with other chemical models such as Gamma, CHAM and P-systems :

e Reaction condition. While in Gamma, reactions take place if a condition is sat-
isfied , inertia and termination are described syntactically giving to the conditional
reactions a semantic nature in ~-calculus. In other words, there is not any syntax
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in y-calculus to define a reaction condition. However, the termination and inertia
are inherently defined through the reaction rule syntax (left hand side).

e Atomic capture. In Gamma, any fixed number of elements can be consumed
by a reaction. While the ~-abstraction reacts with one element at a time, a n-
ary reaction takes atomically n elements which cannot be consumed by any other
reaction at the same time.

2.3.3.2 Higher-Order Chemical Language

In this section, we present a language based on the v-calculus but including the needed
features to be useful as a programming language. This language improves some syntac-
tic constructions of v-calculus such as the condition reaction and the atomic capture of
molecules as an extension like those provided by Gamma in Section 2.3.1. Based on that,
Bandtre, Fradet, Radenac designed a new chemical programming language called Higher-
Order Chemical Language (HOCL) [110]. HOCL, although based on the vy-calculus, rep-
resents an extension of Gamma that enables rules to be applied on others rules (programs
modifying other programs).

Two of the more relevant properties of HOCL are explained in the following:

e Condition Reaction. The reaction rules enable to express the atomic capture
of molecules depending of the type (dynamically checked) and structure (tuples,
sub-solutions). Similarly, conditions can be also defined as pre-conditions to trigger
a reaction. HOCL allows the programmers to use two types of rules: one-shot rule
based on the proposed by ~-calculus; and the n-shot rule based on the proposed
by Gamma, that never disappear after reacting.

e Atomic capture. A reaction rule takes all its elements (reactants) atomically.
Either all the required elements are present or no reaction takes place. If all the
required elements are present, none of them can be consumed by another reaction
at the same time.

Syntax of the Language

Next, we briefly present the different elements of HOCL syntax, as illustrated on
Table 2.2

Reaction rules. Reactions are described based on ~-reactions, and executed locally
into the enclosing solution. A rule only reacts when the molecules match the pattern
associated or when a condition reaction is satisfied:

x match M = {x = M}
(P ) match ( M ) =P match M if ( M) is inert
P, P5 match M1, My = P; match M; & Py match My
P1:P2 match M1:M2 = Pl match M1 D PQ match M2

The variable x represents any molecule M, so if z match M the variable z is associated
to the molecule M. The solution (P) represents any inert solution (M) if the content of
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solution M matches the pattern P, the variables of P will be mapped to (M) sub-solution.
This mechanism is similarly used for the other patterns: P1, Po and P1:P2. Note that
the @ operator is used to merge two sub-solutions to a unique solution. In the following,
we introduce the two types of rules: one-shot and n-shot.

HOCL adopts the non-recursive abstraction from ~-calculus for one-shot rules. Thus,
an HOCL one-shot rule in comparison with v-calculus one-shot rule has the next form:

one P by M if C = ~(P)[C].M

Similarly, HOCL adopts the Gamma notation for the n-shot rules which are equivalent
to the recursive abstractions from v-calculus in the following way:

replace P by M if C = (let recr = one P by (M,r) if Cinr)

According to the chemical metaphor, the n-shof rules are known as catalyzers since
they never disappear after reacting.

Expressions. The expressions are statically typed using standard types, as shown on
Table 2.2. HOCL supports the definition of integers, booleans, string constants and
agsociated operations. The solution may contain molecules of different types which serve
to select values through patterns. The associated pattern-matching rule is:

z::T match N= { = N } if Type (N) < T

We make use of type inference to avoid type annotations in patterns. For instance,
we may write one z by ¢ + 1 if V instead of omne z::Int by © + 1 if V since the type
of x can be statically inferred.

A molecule only reacts when it has the appropriate type. For instance, the next
solution is inert due to this rule only reacts with integers, not with pairs (X:3).

( X:3, replace x by x + 1)

Pairs. Pairs or tuples are denoted by A1:A2, is very standard. Note that the elements
of a pair are atoms. Pairs of solutions allow to isolate compound molecules from each
other. The associated pattern-matching rule for pairs is:

(P12P2) match (NliNg) = ¢1 D (]52 if P1 match N1 = ¢1 AN P2 match NQ - d)z

We can also define tuples of atoms:

Empty solutions. The notion of empty solution in HOCL comes from the pattern w
which can match any molecules even the empty solution (introduced below). This pattern
is very convenient to extract molecules from a solution. For example, the following
reaction extracts 1’s from the content of the solution defined as an input element for this
reaction.

rmunit = replace (z,w) by (w) if x = 1
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Solutions

Molecules

My, My
A

Atoms
X
[name=|replace-one P by M if V
[name=|replace P by M if V
S
v
(A1:A2)

Basic values
X ‘ 0 ’ 1 | ‘ Vi+Vy ‘ -Vy ’
true | false | Vi A Vo | ...
Vi=Vy| Vi <Vy..
"string" | V1 @ Vg | ...

Patterns
x::T
w
name = x
(P)
(P1:Py)
P1,Po

Basic types
Int | Boolean | String

: solution
- empty solution

- variable
- composition of molecules
- atom

- vartable

- one-shot rule
* n-shot rule

- solution

- basic value

: pairs

- antegers, booleans, strings

- molecule with type T

- any molecule

- naming a reaction

- inert solulion

: pair

- composition of molecules

Table 2.2: HOCL syntax.
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The pattern w matches the rest of the solution which is returned as result. If the
solution contains only a 1 then w matches the empty molecule and the empty solution is
returned:

rmunit, ( 2,1,3) — (2,3 )
rmunit, (1) — ()

The rule for pattern-matching w has the next form:
wmatthM={w= M}
The empty molecule is introduced through rules with a pattern of the form (Pw):

(P,w) match M = { (P match M;) & ( w match M) if M = M;, M, }
| { (P match M) & ( w match () else }

The empty molecule is no explicitly used in HOCL. It appears in the following reduction:
( (one Pby M if C), N, X ) — ( X ) if (P match N = ¢) A ¢C A (¢M = 0)

When the molecule X represents the empty molecule, this reaction rule produces an
empty solution. In another case, when a reaction produces a non-empty molecule, it will
be locally consumed, as we explained before. For example, the reaction ( (one x:Int, w
by w ), 3 ) = () presents the following pattern-matching {x = 3, w = 0}.

Reaction Naming. For the sake of flexibility, we decided to name the reactions rules
for enabling the matching and extraction of specific rules. As a reminder, reaction rules
are now considered as molecules, so every entity is a molecule using HOCL. It allows to
define rules that can be applied on other rules (by matching the name of such rule), in
other words, programs modifying other programs. These rules are known as higher-order
rules. The syntax to name a reaction rule is:

name = replace P by M if C .

Note that other atoms can be named using pairs i.e., (name:a), it would not be
appropriate to use pairs to tag reactions since they would not be able to react with other
molecules anymore. The reaction rules are directly named either into the solution with
the syntax:

name — M

or either using the let operator that keeps the name in the solution. In the following
example, the reaction rule incrementing the integer is named succ. After an arbitrary
number of increments, the reaction rule stop removes succ from the solution:

let succ = replace x by x + 1 in
let stop = one (succ = x), w by w in
(1, succ, stop )

This example illustrates the higher-order of HOCL since the reaction rule stop reacts
with the reaction rule suce. Similarly, the non-determinism in HOCL is also illustrated
since the resulting solution may be any integer.
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2.3.4 Chemistry-Inspired Models for Coordination

The chemical metaphor has been used as a source of inspiration for the development of
new coordination models [20, 23, 25|. The chemical programming models are good can-
didates to coordinate applications on distributed platforms 23], since they are implicitly
parallel and provide a natural way to express autonomic behavior and distribution. The
authors use the higher-order chemical language (HOCL) for describing the coordination
among different resources during the execution of a Desktop-Grid-based application. In
the same vein, the chemistry-inspired model was proposed to express the coordination
of autonomic systems in [20, 25]. Autonomic systems are described using molecules and
reaction rules for handling any change in the environment, without external intervention.

In these approaches, the high abstraction’s level of chemical rules is the main benefit
of these approaches. Chemical rules can be executed in parallel, without any central
coordinator and in a distributed way within Grid infrastructures.

Chemically Coordinated Service Interactions

In the following, we introduce some of the most important chemistry-inspired initiatives
which provide unconventional service coordination systems.

e Viroli et al [134, 135 proposed to use a biochemical metaphor for modelling the
coordination in service ecosystems. The authors justify the adoption of concepts
from biological and chemical metaphors since the chemical metaphor cannot address
the aspects of spatial distribution. Originally, the chemical computational model
is based on the idea of a single chemical solution. They decided to design a hybrid
metaphor where the biology offers the concept of colonies of simple organisms
moving from one colony to the other giving birth to a mechanism for the design of
distributed systems.

The proposed model is composed of molecules or substances floating in a given
portion of space (chemical solution) and reacting with other substances to produce
new ones. The spatial distribution is represented using the concept of compartment
meaning a space hosting molecules and chemical reactions. The compartiments
can be physically distributed (remote location) and are delimited by a membrane
that regulates and filters the transfer of substances from one compartment to the
other. Such transfer of substances cross membranes is made possible by the use of
chemical reactions. Therefore, this biochemical model enables to express services as
substances in a compartment interacting independently with others in a distributed
way.

Finally, the authors highlighted the autonomous and dynamic behavior of this
system where services can be dynamically injected in a decentralized way. However,
this approach although valid is still relatively distant to our approach. It does
not describe how the possible coordination structures generated by the interaction
among services are expressed thus remaining very abstract. Moreover, chemical
reactions are not considered as substances so this model is not higher-order.

e Caeiro et al.[43] built a coordination model inspired by the chemical computational
model for the workflow execution named Chemical Workflow Execution (CWE).
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CWE is a control-driven language that includes some constructs to describe data-
driven flows. Control structures such as AND-join, AND-split, OR-join and OR-
split are supported, as well as some data structures for the processing of data sets
like one-to-one and all-to-all.

This language presents some similarities with the Event-driven Process Chains
modelling language and has been used to describe workflows in commercial tools
such as SAP/R.3. This language is composed of five elements:

1. Functions represent the tasks participating in a workflow.

2. Connectors are in charge of the management and processing of data elements.
Moreover, control and data composition operators are implemented through
connectors.

3. Events define the pre-post conditions for Functions and Connectors.
4. Data elements represent the different data used during the execution.

5. Resources are the computation units that performs the tasks represented by
the functions.

All these elements are molecules floating into a chemical solution or moving across
different solutions. Like other chemical approaches, a sub-solution acts as a storage
space containing molecules that can react among themselves until it becomes inert.

The authors presented an inherently parallel and dynamic workflow language for
the execution of workflows in centralized engines, and highlighted the support of
dynamicity where workflow patterns can be adapted at run time. However, this
CWE model, although inspired by the chemical metaphor, it has more similarities
with event-driven process chain models than with previous chemical computational
models.

Closer to the work presented in this thesis, we discuss in the following, several service
coordination systems [26, 27, 136] in which higher-order chemical models were used as
coordination languages. These approaches shown how the HOCL language offers an ab-
stract and generic way of programming service orchestration. Note that, HOCL supports
coordination mechanism such as sequential and parallel execution, mutual exclusion,
atomic capture, rendez-vous and any pattern expressible with Kahn networks [80]. Kahn
Process Networks (KPN) are graph-based models for representing parallel programs that
are communicated through unidirectional FIFO channels.

e In [99], the authors justified the use of a chemistry-inspired model, based on the
lack support for dynamic adaptation in most of current workflow enactors. To
overcome this limitation, chemical reactions arise as an alternative way to model
this dynamic behavior, where reactions are autonomously triggered according to
actual and local conditions. In such a way, the authors used v — calculus as an
abstract and higher-level coordination model, that evolves in time according to the
changes without any a priori decision. Furthermore, they shown through examples
how the « — calculus could be also considered as an appropriate language for
describing complex workflows and advanced coordination strategies.
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e In [26, 27|, the authors suggested the utilization of HOCL as a workflow description
language where workflows can be expressed as chemical programs following two
principles: "workflow as a solution of services“ and ’services as sub-solutions®.
This model also supports the construction of some coordination structures such
as sequence, parallel execution, mutual exclusion and atomicity, what allows to
express workflows as pipelines. Based on that, the authors designed a chemical
program representing a very simple workflow through reactions and molecules. This
approach introduced an implicit parallel and autonomous coordination language for
workflow definition.

e More recently, a continuation of the works [27, 26, 99] have been presented in [136].
By applying the same principles as above, authors proposed a chemical framework
based on HOCL for service orchestration that supports most of BPEL primitives.
Thus, this HOCL framework enables to construct workflows using some primi-
tives like invoke, reply, receive, sequence, flow, thrown and fault handler originally
provided in BPEL. In this model, all the elements are considered as rules or com-
putational resources, and organized into a three-level hierarchical solution: service
level representing the workflow definition, workflow level defining the tasks execu-
tion order and operation level formally identifying each task. The dynamicity and
implicit parallelism are presented as solutions in this approach to tackle the static
nature of BPEL definitions.

As a result, despite its dynamic and autonomous behavior, all these approaches re-
main somewhat abstract, and also only conceptual regarding the specification of work-
flows. Authors do not mention how complex workflow structures can be expressed using
these approaches. Similarly, HOCL is a data-driven language, what limits the definition
of some control workflow structures. So, it is essential to provide both control and data
driven behavior to HOCL for supporting the construction of a wide variety of complex
workflow structures.

2.4 Conclusion

In this chapter, we presented the benefits that can be obtained by using dynamic and
loosely coupled coordination models for the service composition. Thus, we shown how
the rule-based models provide an event-driven coordination mechanism that supports the
dynamic adaptation, as well as allows to model service compositions with a high level of
abstraction. Similarly, we listed out the attractivenesses of the tuplespace-based models,
such as the loose coupling for service interactions. Finally, we explored and justified why a
chemical metaphor-based model, as a combination of rule-based and tuplespace-based ap-
proaches, is a good candidate to coordinate service compositions. The chemistry-inspired
model appears as a promising paradigm naturally capturing parallelism, dynamics, while
providing a high level of abstraction. However, based on the previous experience, there
are many improvements that could be incorporated to this model to solve the current
drawbacks when coordinating service compositions.

As a consequence, we decided to design a chemistry-inspired model (inspired by
these previous works) that supports the construction of complex workflow structures and
decentralizes the coordination of the service compositions. Also, a prototype has been
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implemented and experimented to establish the viability of our model, as we will detail
in Chapter 3 and Chapter 4.
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Chapter 3

Decentralized Chemistry-Inspired
Workflow Execution

This chapter ! initiates the description of our solution. Its main contribution are the
decentralization of the workflow execution and the support for the construction of com-
plex workflow structures by using a chemistry-inspired coordination model. According to
that, we built a decentralized architecture that uses the higher-order chemical language
(HOCL) as executable workflow language. As mentioned at the end of the previous chap-
ter, HOCL is a well-featured chemical language that has successfully used to coordinate
service interactions.

In the following section, we describe our decentralized architecture for workflow co-
ordination based on a chemical framework, illustrating the adequacy of the chemical
paradigm to execute workflows. Next, the adequacy expressiveness of the chemical model
and language for modelling complex workflow structures are given in Section 3.2. We
presents a comparative review of the literature related to the distributed execution of
workflows, as is detailed in Section 3.4. In Section 3.5, we focus on the comparison of
our proposed chemistry-inspired workflow language against the more used and mature
service coordination models. Finally, we draw a first conclusion about our contribution
in Section 3.6.

3.1 Architecture

As illustrated by Figure 3.1, the proposed architecture is composed by two core elements,
namely Chemical Web Services (ChWS) and the multiset. A ChWS is a chemical
encapsulation of a Web service. It is co-responsible with other ChWSes of the coordina-
tion of the execution of workflows. Physically, ChWSes are hosted by some nodes and
are logically identified by symbolic names into this multiset. Each ChWS is equipped
with three elements, namely:

1. The service caller represents the encapsulation of a Web service invocation. The
invocation to the effective possibly distant Web service, is encapsulated in a chem-

!The work presented in this chapter has been published in the International Conferences
[FPT10,FTP11,FTPW11] and in the National Conference [F11]. I am the main authors of the work
presented in this chapter.
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ical expression readable by a chemical interpreter. The implementation of the Web
service itself is not encapsulated, as shown in Figure 3.1. This element offers a late
binding mechanism to discover and bind proper Web services at run time.

2. A local storage space containing part of the multiset, i.e., molecules and reaction
rules constituting the data and control dependencies related to the coordination of
workflow execution.

3. An HOCL interpreter, acting as the chemical local engine executing the reactions
according to molecules and reaction rules stored in the multiset, responsible for ap-
plying the defined workflow patterns and transferring data and control information
to other ChWSes involved in a workflow.

The multiset acts as a space shared by all ChWSes involved in the workflow. It con-
tains the workflow definition and all information needed by ChWSes for a decentralized
execution of a workflow. This information combines molecules representing data and
ChWSes, rules representing control dependencies of the workflow, and rules for the co-
ordination of its execution, as illustrated by Figure 3.2. Data and control dependencies
of the workflow can be defined beforehand using some workflow executable languages,
like the well-known BPEL or SCUFL. For instance, a BPEL specification could be trans-
lated into a chemical program, as is detailed in Appendix A.1. Even though HOCL is
used to describe and execute workflow specifications, our purpose is to show its potential
as executable workflow language. To coordinate the execution of the workflow, we also
need some additional chemical rules, which are generic, i.e., independent of a specific
workflow. Section 3.2.4 focuses on these generic rules.

|Workflow parts |

Chws1

Multiset

Shared address space

Chemical
engine i

Figure 3.1: The proposed architecture.

The multiset shares some conceptual similarities with the Distributed Shared Memory
(DSM) paradigm [109], developed in the area of distributed operating systems. DSM
maps a globally unique logical memory address to a local physical memory slot, thus
emulating a shared global space on top of a distributed memory platform. By analogy,
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multiset mirrors DSM’s behavior by exposing molecules and reactions rules physically
scattered across a set of ChWSes in a single shared space.

Thus, from a conceptual point of view (illustrated by Figure 3.1), ChWSes commu-
nicate through a unique global multiset containing all information needed by ChWSes
to execute their part of a workflow. ChWSes exchange data and control dependencies
through this multiset. Note that, each ChWS can operate independently of the multiset.
In a classical centralized workflow architecture, the services themselves do not know these
dependencies, as an engine manages all information and executes coordinates the whole
execution.

[Workﬂnw Definition (BPEL, SCUFL, DAX, }J

translation

Chemical Rules for Workflow Definition and Execution

Chemical ' Chemical Rules for
Representations + Distributed
for Workflow Execution

Figure 3.2: Chemical workflow.

From an implementation point of view, the multiset is physically distributed. While
apparently, each ChWS only interacts with the multiset, physically, data and control
information (molecules and reaction rules of the multiset) are effectively transferred be-
tween local multisets (temporary storage spaces) of ChWSes. Put together, the molecules
stored by ChWS form the multiset. Figure 3.3 summarizes these two points of view: the
upper side shows the conceptual point of view where all ChWSes are connected through
one multiset; the lower part shows the implementation point of view where all ChWSes
are directly interconnected through the multiset, the reactions and molecules being di-
rectly transferred from one ChWS to another one using a distributed multiset as detailed
in |34|. Figure 3.3 provides a simple example where all ChWS are connected through a
sequential workflow (modeled by arrows), but any workflow pattern could be modeled, as
we will show in Section 3.2.5. More details of how to implement a decentralized multiset
are devised in Chapter 5.
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Figure 3.3: Different points of view of the architecture.

3.2 Molecular Composition

Based on the architectural framework presented in Section 3.1, we now focus on the
expression of the autonomic and decentralized execution of a wide variety of workflow
patterns by defining reaction rules, composing them, and distributing them over the set
of services involved in a workflow. Our execution relies on the molecular vision of every
entity involved in a workflow execution. In such a way, a new analogy for service compo-
sition, in comparison with the existing service composition analogy, was designed, called
Molecular Composition. In the following, molecules represent the ChWSes themselves,
the data they process, their data and control dependencies, and the rules making the
whole interact. It is then important to distinct two types of rules inside the multiset: (1)
the rules describing data and control flow of a specific workflow to be executed, and (2)
workflow-independent rules for the coordination of the execution of any workflow. The
latter are referred to as generic rules in the following.

In Figure 3.4, an abstract workflow with several services is translated into a molecular
composition. Each ChWS disposes of a library of available generic rules. Some of them
will be used during the execution, depending on the patterns specified in the workflow
definition. As we will see in Section 3.3, this composition will react in chain at runtime,
performing the execution.

This section is organized as follows. First, Section 3.2.1 explains how a workflow
definition will be later executed in a decentralized manner. Section 3.2.2 explains how to
define a workflow using the chemical model. Section 3.2.3 determines how global variables
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and data processing strategies can be defined using our model. Section 3.2.4 presents
the notion of generic rules allowing the decentralized workflow execution. Finally, the
combination and distribution of molecules for solving various workflow patterns are given
in Section 3.2.5.

. 8
%

Figure 3.4: Molecular composition from an abstract workflow.

3.2.1 Workflow Partitioning

In our model, a workflow definition is divided into partitions called self-describing work-
flows, and handled by a light weight workflow management component, called Chemical
Web Services, located somewhere over the network. Self-describing workflows are parti-
tions of a workflow that carry sufficient control and data information such that they can
be processed by a local task execution agent (ChWS) rather than a traditional centralized
workflow management system.

Based on this chemical model, the information combines molecules representing data
and ChWSes, rules representing data and control dependencies and rules for the coordi-
nation of its execution. In our architecture, a workflow specification is translated into
a chemical program that is composed of self-describing workflow partitions. Each work-
flow partition corresponds to each Web service participating in the workflow. Next, each
partition will be processed in each ChWS by using the chemical local engines that in-
terpret these self-describing fragments for distributing and executing in a decentralized
way. Figure 3.5 summarizes all this process for a workflow, as all the chemical portions
are identified and then processed into each ChWS. Once the ChWS has completed, the
chemical portion is transferred back to the multiset.
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Figure 3.5: Decentralized workflow execution.

Nevertheless, several assumptions have to be taken into account to transform a work-
flow specification using workflow languages likes BPEL or SCUFL into a chemical pro-
gram. They are further explained in Appendix A.1.

3.2.2 Chemical Workflow Representation

To express all data and control dependencies of a workflow, we use a series of chemical
abstractions inspired by the work in [99]. The general shape of such a representation
in Algorithm 1 is as follows: the main solution is composed of as many sub-solutions as
we have ChWSes in the workflow. Each sub-solution represents a ChWS with its data
and control dependencies with other ChWSes. More formally, a ChWS is one molecule
of the form ChW Si : (...) where ChWSi refers to the symbolic name given to physical
computational device that hosts the ChWSi and hidden its physical location.

Algorithm 1 Chemical workflow representation.

1.01  (// Multiset (Solution)

1.02 ChWSi:(...) // ChWS (Sub-solution)
1.03 ChWSi+1:(...)

1.04 .

1.05 ChWSn:(...)

1.06 )

Let us consider a simple workflow example illustrated by Figure 3.6. It is composed
of four services S1, S5, S3 and Sy. In this workflow, after S; completes, So and S3 can
be invoked in parallel. Once So and S3 have completed, Sy can be invoked.
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Parallel split Synchronization

Figure 3.6: Simple workflow example.

The corresponding chemical representation for this workflow is illustrated on Algo-
rithm 2. CAWS1 : (...) to ChRWS4 : (...) represent ChWSes. The links amongst
ChWSes are expressed through a molecule of the form DEST:ChWSi with ChWSi being
the destination ChWS where some information needs to be transferred. For instance,
we can see in the ChWS1 sub-solution that ChWS1 must transfer some information (the
result of the invocation of S71) to ChWS2 and ChWS3 (refer to Line 2.01). Therefore,
these links represent the distribution of information whose content is essential to realise
the execution.

Algorithm 2 Chemical workflow representation.

2.01  ChWS1:(DesT:ChWS2,DEsT:ChWS3),

2.02 ChWS2:(DesT:ChWS4, replace REsurT:ChWS1:valuel by CaLL:S2, PaAram:(valuel) ),
2.03  ChWS3:(DesT:ChWS4, replace Resurr:ChWS1:valuel by CaLL:S3, Param:(valuel) ),
2.04 ChWS4:(replace REsuLT:ChWS2:value2, REsuLT:ChWS3:value3

2.05 by CaLL:S4, Param:(value2) )

Let us focus on the details of the chemical representation of the workflow. As spec-
ified by this workflow, ChWS2 presents a data dependency, it requires a molecule RE-
suLT:ChWS1:valuel containing the result of Sy to be performed (see the second part of
Line 2.02). The two molecules produced by the reaction represent the call to Sy and
their input parameters. They are expressed using a molecule of the form CALL:S%, and
a molecule PARAM:(iny,...,in, ), where iny,...,in, represent the input parameters to call
a service Si. In Algorithm 2, that input parameter corresponds to the result of some
previous service S1. ChWS3 works similarly.

The chemical language is also able to express control/data-driven flows. Consider
ChWS4. It needs to wait until ChWS2 and ChWS3 have completed. This consti-
tutes a control dependency known as synchronization. However, as we can see in
Line 2.05, the service Sy is invoked only on walue2 which is the result of Ss. This
constitutes a data dependency. The ChWS4 sub-solution contains one reaction rule
translating those dependencies in chemical language (see Line 2.05): the presence of
molecules RESULT:ChWS2:value2 and RESULT:ChWS3:valued inside the ChWS4 sub-
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solution expresses the fulfillment of the control dependencies. The input value?2 inside
the PARAM:(value2) molecule expresses the data dependency in ChWS4. During the
execution, as soon as RESULT:ChWS2:value2 and RESULT:ChWS3:valued appear in the
ChWS4 sub-solution, the local engine of ChWS4 will be able to perform the reaction
that will produce two molecules of the form CALL:S/ and PARAM:( value2 ) to call the
effective service Sy on the input value2.

To sum up, one reaction rule can express both control and data dependencies. In
contrast with the previous synchronization pattern, the simple data dependencies are
enough to express the simple parallel split pattern of S; with S and S3. Thanks to the
implicit parallelism of the chemical execution model, the reaction rules inside ChWS2
and ChWS3 can be executed in parallel. Therefore, ChWS2 and ChWS3 will receive the
result of 57 from ChWS1 and the invocation of S9 and S3 will take place in parallel.

This fragment of HOCL code is the chemical representation of a workflow, that will
be interpreted by chemical local engines, performing the decentralized execution of this
workflow thanks to a set of generic rules we introduce in Section 3.2.4 and Section 3.2.5.

3.2.3 Data Manipulation
Global Variables

Global variables in the context of workflows represent pieces of information that need
to be read multiple times by the different services involved. In chemical programming,
this can be easily implemented through the notion of multiplets. Such a molecule can
thus be consumed as many times as specified by its multiplicity. A multiplet consists
in a specified number of identical molecules. For instance, 3* represents 4 instances of
the molecule 3. In our context, a molecule m into a main solution of a workflow with a
multiplicity n, such that m™ can be consumed in this workflow n times, n being virtually
infinite.

Algorithm 3 Variables in a chemical workflow definition.

3.01

3.02 VAr:"value...", // Global variable
3.03 .

3.04 ChWS1:(” HOLA®)

3.05 ChwWS2:(...)

3.06 ChWS3:(...)

3.07

3.08 )

In Algorithm 3, the tuple of the form VAR:"value“ defines a global variable that can
be accessed by any ChWS in this workflow (Line 3.02). Consider ChWS1. The molecule
of the form "HOLA” represents a local variable, as it will be consumed in ChWS1.
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Iteration Strategies

Most of scientific workflow management systems provide a set of iteration strategies
by defining how input data received from other services are combined together for the
computation. They specify how many times the service’s task is invoked and what precise
combination of input data is given to each of these invocations. Thus, the dot product and
cross product are the most common iteration strategies. We now detail how to support
them using our chemical model.

Dot product. A dot product scheme produces tuples of data items with the same
position in an arbitrary number of incoming branches of the service. An incoming branch
represents the control and/or data dependencies of a service with its predecessors, as
shown by Figure 3.7. The service is then launched once for each position, and produces
an output located at the same position. The number of items in all input lists or arrays
should be the same.

Chemical implementation. For the sake of readability, we here give the rules for a service
with two incoming input branches to be composed with a dot product. This can be
easily extended to an arbitrary number of incoming branches. A dot product involves
a dotProduct rule where two molecules representing two lists of atoms are consumed
to produce a unique output molecule, DOTPRODUCT:( ). Each atom of this molecule
corresponds with other atoms located at the same position for each input list. For
instance, as detailed in Algorithm 4, the molecule produced by this dot product would
be of the form DoTProDUCT:( ("a":1), ("b":2), ("c":3) ).

Algorithm 4 Dot product example.

4.01  let dotProduct = replace LisT1:( text, wi ), LisT2:( integer, wo ), DoTrPrRODUCT:( w3 )
4.02 by Listl:( wy ), L1sT2:( w2 ), DorPRrRODUCT:( (text:integer), w3 ),
4.03  in

4.04  ( dotProduct, LisT1:("a","b","c"), LisT2:(1,2,3), DoTPRODUCT:( ) )

Cross product. The cross product produces all possible data items combinations from
an arbitrary number of incoming branches, each combination being made of one item of
each incoming branch. The service task is then launched once for each if these combina-
tions, and produces an output, indexed such that all indices of all inputs are concatenated
into a multi-dimensional array.

Chemical implementation. A cross product involves four rules: crossProduct start,
crossProduct, crossProduct list2End and crossProduct_end. Again, we detail the rules
for two incoming branches. The start crossProduct rule starts the execution by con-
suming two molecules representing two lists of atoms, producing two new molecules of
the form CrossLisT1:( ) and CrossLisT2:( ) which will be used to calculate the cross
product and one more molecule of the form CROSSPRODUCT:( ), where the temporary
cross product result is stored. Then, the crossProduct rule iterates over all the atoms of
the molecule CROSSL1ST2:( ) with the current first atom of the molecule CROSSLIST1:( ).
The list2End rule is in charge to iterate over all items of the molecule CROSSLIST1:( ).
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Finally, the crossProductEnd rule determines when all the atoms from the different lists
have been consumed, introducing the final result into the solution.

Algorithm 5 Cross product example.

5.01  let crossProduct_start = replace-one LisT1:( text, wy ), LisT2:( integer, w2 )

5.02 by Listl:{ w1 ), LisT2:( w2 ), CrossProbucT:( ), CrossListl:( w1 ),

5.03 CrossLisT2:( w2 ), crossProduct, list2End, crossProductEnd

5.04 let crossProduct = replace CrossListl:( text, wi ), CrossLisT2:( integer, wa ), CrossProbuCT:( w3 )
5.05 by CrossLisTl:(text, wi ), CrossLisT2:( w2 ), CrossProbpuCT:( (text,integer), ws ),
5.06 let crossProduct list2End = replace CrossListl:( text, wi ), CrRossLisT2:( ), LisT2:(integer, wa )
5.07 by CrossLisTl:( wi ), CrossLisT2:( integer, wo ), LisT2:(integer, wa )

5.08 let crossProduct_end = replace CrossLisT1:( ), CrossLisT2:( ), CrossProbuUCT:( w3 )

5.09 by w3

5.10 in

5.11 ( crossProduct, List1:("a","b","c","d"), L1s12:(1,2,3,4) )

3.2.4 Chemical Rules for Distributed Execution

As previously mentioned, to ensure the execution of a chemical workflow, additional
chemical generic rules (i.e., independent of any workflow) must be defined. In addition,
for an efficient coordination, these rules use several specific molecules which represents
the reactants and products generated during the reactions. Specific molecules allow to
manage data related with the transfer of information, condition checking, faults detection
and in applying the workflow patterns, in other words, information about the execution.
By composing these molecules, complex workflow patterns can be executed in a decen-
tralized way among participants using the chemical paradigm. How to distribute the
workflow patterns responsibilities among participants is one of the common question that
designers of decentralized workflow management systems take in account during the de-
velopment of their systems. Next, we explain in detail some of these specific molecules,
summarized in Table 3.1.

These molecules and rules are included in the chemical local engines and are respon-
sible for the efficient execution of the workflow. We now review three of these generic
rules, illustrated in Algorithm 6. First, we have rules in charge of the effective invo-
cation of services: inwokes and preparePass. The invokes rule invokes a Web service
S;, by consuming the tuples CALL:Si and PARAM:(iny,...,in, ) representing the invo-
cation to S; and their input parameters inside the ChWSi sub-solution. The molecule
Frac INVOKE indicates whether the invocation can occur. Thus, this execution triggers
the call to service S; (i.e., the service associated with the ChWSi) and produces the result
of the service invocation within the solution. In other words, such a rule constitutes an
interface between the chemical engine and the service invoked. The preparePass rule is
used for preparing the transfer of these results to their destination, that will later trigger
the execution of the passinfo rule.

The rule passinfo transfers molecules of information between ChWSes. This rule
reacts with a molecule ChWSj:(PASS:d:(wy )) that indicates that some molecules (here



Molecules

Definition

Parameters

CALL:Si

Represent the service invocation.

Si: the url where wsdl file is located.

ParaM:( ing, ...,iny )

Represent the parameters of a service invocation

ing,...,inp: represents all the input parameters for a service
invocation.

Frac__INvOKE

Establish when the service invocation takes place.

DISCRIMINATOR

Molecule used to activate a discriminator workflow pattern.

MERGE

Molecule used to activate a simple merge workflow pattern.

Pass:ChWSi:(w )

Represent a molecule for the distribution of information.

ChWSi: destination chemical Web service.
w: all molecules to be transferred.

ConNp__Pass:value

Define the value of one condition.

value: 1 (true) | O (false).

ConNp__Pass:ChWSi:value

Define the value of one condition involving a ChWSi.

ChWSi: ChWS involved in this condition.
value: 1 (true) | 0 (false).

ERROR:message

Inform of an error.

message: information about an error.

CANCEL:( w )

Represent a molecule with the intercepted faults, aborts or
error messages.

w: contains messages about the abort or error in a ChWS.

CanceL  CuWS:ChWSi

Define the ChWS where the abort/error information should
be transferred.

ChWSi: destination chemical Web service.

DEesT:ChWSi

Define the destination ChWS for distribution of information.

ChWSi: destination chemical Web service.

SyncMe  Src:( ChWSi, w )

Establish all the ChWS from which a molecule Cowm-
PLETED:ChWSi:( w ) has to be received to start the execu-
tion of a destination ChWS. Used in Synchronization merge
pattern.

(ChWSI, w): incomming chemical Web services.

SyNc_ Srec:( ChWSi, w )

Establish all the ChWS from which a molecule Cowm-
PLETED:ChWSIi:( w ) has to be received to start the execution
of a destination ChWS. Used in Synchronization pattern.

(ChWSi, w): incomming chemical Web services.

Lockeb:value

Establish when the execution of a reaction rule will be locked
even whether it has all the required molecules.

value: 0 (unlocked) | 1 (locked).

RESET:( w )

Represent a molecule whose content restarts to initial state of
one particular solution as many times as it is necessary. Used
in Multi merge pattern.

w: all molecules to store into the solution.

RESULT:ChWSi:( w )

Contain the outcome of one service invocation for a ChWSi.

ChWSi: chemical Web service already invoked.
w: contains the result of the invocation.

ComPLETED:ChWSi:( w )

Molecule representing one ChWSi whose execution have been
completed.

ChWSi: chemical Web service already invoked.
w: contains the result of the invocation.

SyncMea _ InBOX:(
CompLETED:ChWSi:value, w )

Represent a  molecule which contains all Cowm-
PLETED:Ch WSi:value molecules already consumed. Used in
combination with the molecule SyneMa _ Src:( ChWSi, w ).

w: represent the rest of molecules CoMPLETED:ChWSi:value
within the solution.

Sync_ INBox:(
CompLETED:ChWSi:value, w )

Represent a  molecule which contains all Cowm-
PLETED:ChWSi:value molecules already consumed. Used in
combination with the molecule Sync_ Src:( ChRWSi, w ).

w: represent the rest of molecules CoMPLETED:ChWSi:value
within the solution.

Table 3.1: Specific molecules for the workflow execution.
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Algorithm 6 Basic generic rules.

6.01  let invokes = replace ChWSi:(CaLL:Si, PAraM:(iny,...,in, ), FLaG INVOKE, w ),

6.02 by ChWSi:(REsuLT:ChWSi:(value) , w )

6.03 let preparePass = replace ChWSi:(ResuLT:ChWSi:(value) , DEsT:ChWSj, w )
6.04 by ChWSi:(Pass:ChWSj:(CompPLETED:ChWSi:(value) ) )
6.05 let passinfo = replace ChWSj:(Pass:ChWSi:( wy ) , wa ), ChWSi:( w3 )

6.06 by ChWSj:( wa ), ChWSi:( w1, w3 )

denoted wy) from ChWSj needs to be transferred to d. These molecules, once inside the
sub-solution of d will trigger the next step of the execution. Therefore, the molecule wy
will be transferred from sub-solution ChWSj to sub-solution ChWSi, when reacting with
passinfo rule.

These rules are the building blocks for decentralized execution. However, they can
not, by themselves, solve how to distribute the workflow patterns responsibilities among
participants.

3.2.5 Solving Workflow Patterns

A set of generic rules for solving complex workflow patterns are now presented, defining
the control-logic of the execution. Note that, some of these rules involve every (source and
destination) ChWSes participating in a pattern. To understand the following patterns,
the meaning of some of the commonly-used terms are graphically explained on Figure 3.7.

ChWS destination

;

C’

L
Incoming branches

Figure 3.7: Terms.

Parallel split pattern. A parallel split consists of one single thread splitting into
multiple parallel threads. (See Figure 3.8).
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A: passinfo X: other rules

Figure 3.8: Parallel split.

Chemical representation: A parallel split pattern consists in the transfer of molecules
produced on one (source) ChWS sub-solution to the others (destination). These reactions
will be executed in parallel thanks to the implicit parallelism of the chemical model, so
that all the information will be transferred in parallel to ChWSes. The passinfo rule has
been explained in the Algorithm 6.

Synchronization pattern. A Synchronization pattern is a process where multiple
parallel branches converge to one single thread. (See Figure 3.9).

B: synchronize C: sync_setFlag X: other rules

e

Figure 3.9: Synchronization.

Chemical itmplementation: A synchronization pattern involves two generic rules de-
scribed in Algorithm 7. The synchronize rule allows to gather all the incoming
COMPLETED:ChWSi:(value) molecules, specified by the molecule SYNC Src:( ChWSi,
w1 ) representing all the ChWSes from which the destination ChWS needs to receive
one molecule COMPLETED:ChWSi:value within its solution to trigger its own execution.
When all molecules are gathered in the destination ChWS, another reaction, specified by
the rule sync_ setFlag, is triggered to produce the molecule FLAG INVOKE allowing the
service to be actually called through the invokes reaction (Line 7.03).
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Algorithm 7 Chemical rules - Synchronization.

7.01  let synchronize = replace Sync Src:(ChWSi, wi ), ComPLETED:ChWSi:(value), Sync_ INBOX:( w2 )
7.02 by Sync_InBox:( CoMPLETED:ChWSi:(value), we ), Sync_Src:( wy )

7.03  let sync_setFlag = replace-one Sync_ Src:( ) by FLac_ INVOKE

Molecular composition: synchronize (B) and sync_setFlag (C') rules are combined in the
destination ChWS.

Exclusive choice pattern. An exclusive choice pattern selects one branch of the work-
flow among several, based on a condition. (See Figure 3.10).

A: checkCondition B: passinfoCond X: other rules

-——

Figure 3.10: Exclusive choice.

Chemical implementation: An exclusive choice pattern involves the passinfoCond reac-
tion rule, which is enabled when a given condition has been satisfied. This rule passes
the information to the relevant destination ChWS, according to the satisfied condition.
The molecule COND _PASS:1 defines whether the condition has been satisfied. The multi
choice pattern, where one or several outgoing branches can be activated depending on a
decision process, is also supported by the chemical engines in a similar way, as we will
see in the example in Section 3.3.

Algorithm 8 Chemical rule - Exclusive Choice.

8.01  let passInfoCond = replace ChWSj:(Pass:ChWSi:( wy ), CoNnp_ Pass:1, wy ), ChWSi:( w3 )
8.02 by ChWSi:( wi, w3 ), ChWSj:( Conp  Pass:1, w2 )

Molecular composition: The passinfoCond rule (B) will be composed with the dy-
namic chemical rules in charge of checking the condition (A), transferring the molecule
CoND_PAss:I to the destination ChWSes.
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Discriminator pattern. A Discriminator pattern is a structure in the workflow where
a service will be activated by the first and only the first completed incoming branch. The
subsequent completion of incoming branches will be ignored. (See Figure 3.11).

A: discr_preparePass B: passinfo C:discr_setFlag
Ty

Figure 3.11: Discriminator.

Chemical implementation: As detailed in Algorithm 9, a discriminator pattern involves
the discr preparePass reaction rule which, on every incoming branch, adds a DISCRIMI-
NATOR molecule to the information to be passed into the destination service (Lines 9.01
and 9.02). The destination ChWS waits for this molecule and only the first DISCRIM-
INATOR molecule received will react. The FLAG INVOKE molecule, required to trigger
the service invocation, is created (Line 9.03). The following DISCRIMINATOR, molecules
received will be ignored.

Algorithm 9 Chemical rules - Discriminator.

9.01 let discr preparePass = replace DesT:ChWSj, Resurt:ChWSi:(value)
9.02 by Pass:ChWSj:(CoMPLETED:ChWSi:(value), DISCRIMINATOR)

9.03 let discr setFlag = replace-one DISCRIMINATOR by Frac INVOKE

Molecular composition: Each source ChWS has one discr_preparePass (A) and one pass-
Info (B) rules, they are composed with discr_ setFlag rule (C) in the destination ChWS.

Simple merge pattern. A simple merge pattern describes the structure where two or
more branches converge into a single service with no particular synchronization. The
destination service is launched only once. (See Figure 3.12).



74 Decentralized Chemistry-Inspired Workflow Execution

A:sm_preparePass B: passinfo C: sm_setFlag

1 XOR
N :
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Figure 3.12: Simple merge.

Chemical implementation: A simple merge pattern involves the sm_ preparePass reaction
rule which, on every source service, adds a MERGE molecule to the information to be
passed into the destination service ( Lines 10.01 and 10.03). The destination ChWS waits
for this molecule and only the first MERGE molecule received will be consumed. Next,
sm__ setFlag reaction rule takes place producing one molecule of the form FLAG INVOKE,
allowing the service invocation. Consequently, the subsequent MERGE molecules received
will be ignored.

Algorithm 10 Chemical rules - Simple merge.

10.01 let sm_ preparePass = replace DeEsT:ChWSj, REsuLt:ChW Si: (value)
10.02 by Pass:ChWSj:(REsurLT:ChWSi:(value), MERGE)

10.03 let sm_ setFlag = replace-one MERGE by FLaGc INVOKE

Molecular composition: Each source ChWS has one sm_ preparePass (A) and one passInfo
(B) rules, they are composed with sm_ setFlag rule (C) in the destination ChWS.

Synchronization merge pattern. The synchronization merge pattern allows to de-
scribe a service for which one or several of its incoming branches can be activated (through
a previous multi choice pattern). Then, the synchronization is required when several
branches are active. Moreover, a branch that has already been activated, cannot be
activated again while the merge is still waiting for other branches to complete. (See
Figure 3.13).
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A: checkCondition

B: passinfoCond
C:syncMg_preparePass
D: passinfo

E: syncMerge

F: syncMg_setFlag

Figure 3.13: Synchronization merge.

Chemical implementation: As detailed in Algorithm 11, a synchronization merge pattern
is achieved by transferring one molecule SYN¢cMa  Src:( ChWSi, w ) representing all
the ChWSes from which one molecule of the form COMPLETED:ChWSi:(value) has to be
received in the destination ChWS. Once, the destination ChWS contains all the needed
molecules, it invokes its bounded service. This molecule corresponds to all ChWSes
whose branch to the destination ChWS has to be activated, and is generated by ChWS
(by the molecule A on Figure 3.13). The multi choice pattern is then executed on service
1, actually activation of one or both services 2 and 3, through the passinfoCond rule.
The syncMerge rule then waits for the required molecules and finally the syncMg setFlag
rule is triggered, producing a new molecule FLAG INVOKE, allowing the invocation. The
SYNCMG _INBOX:( w ) molecule stores the already received COMPLETED:Ch WSi:(value)
molecules.

Algorithm 11 Chemical rules - Synchronization merge.

11.01  let syncMyg preparePass = replace DEsT:ChWSj, RESULT:ChWSi:(value), SyNeMa _ Src:(ChWSi, w )
11.02 by Pass:ChWSj:(CompLETED:ChWSi:(value), SyncMa  Src:(ChWSi, w ) ),

11.03 let syncMerge = replace SyncMa _Src:( ChWSi, wy ) , CoMPLETED:ChWSi:(value),

11.04 SyncMea  InBOx:( w2 )

11.05 by SyncMa _InBox:(CoMPLETED:ChWSi:(value), wa ), SyNcMa_ SrRc:( wy )

11.06 let syncMg setFlag = replace-one SyncMa Src:( ) by FLac  INVOKE

Molecular composition: The ChWS initiating the multi choice includes a rule to decide
on the condition satisfaction, which will be used by the passinfoCond (B) to activate
one or several of its outgoing branches. Then, each intermediate ChWS (encapsulating
services 2 and 3) in the example has a syncMg preparePass rule (C) and a passinfo
rule (D), composed with syncMerge (E) and this with syncMg setFlag rule (F') in the
destination ChWS (encapsulating service 4, on which the merge should be achieved).

Multi merge pattern. A multi merge pattern is a structure where two or more alter-
native branches converge again without synchronization into a single subsequent branch
such that each enablement of an incoming branch will activate that subsequent branch.
In particular, after a multi choice pattern that can lead to several execution scenarios,
multi merge will, whatever the number of threads triggered by the multi choice is, merge
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the threads into a single one. (See Figure 3.14). Note that this workflow pattern is not
supported by BPEL and XPDL-based engines, as devised in [115].

A: mm_reset B: passinfo C: mm_lockReset D: mm_lockReset_End X: other rules

Multi merge area

X<L ] i

Figure 3.14: Multi merge.

Chemical implementation: As detailed in Algorithm 12, a multi merge pattern involves a
set of reaction rules for re-initiating several ChWSes located in a multi merge area to their
initial state. The mm_ reset rule consumes a molecule of the form RESET:( w ) containing
the required information to re-initiate the initial state of one ChWS (all the molecules
within its solution before the execution). Once the execution of a given incoming branch
has finished and its result has been successfully transferred (through a molecule of the
form SUCCESS _PAss:ChWSi), the mm_ lockReset rule reacts and produces all required
molecules to re-initiate the processing of a new incoming request. All ChWSes involved
in this pattern include the mm_ reset and mm_ lockReset rules ( Lines 12.01 to 12.04),
except the “last” ChWS connecting the multi merge area with the rest of the workflow,
i.e., service 4 in Figure 3.14. For the “last” ChWS (service 4), the mm_reset and
lockReset_ End rules are used to re-initiated the initial state or finish the processing of this
pattern thus allowing to continue the execution of the rest of the workflow (Lines 12.01
to 12.06).
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Algorithm 12 Chemical rules - Multi merge.

12.01  let mm_reset = replace-one RESET:( w ), LoCkED:0, FLAG INVOKE

12.02 by w, RESET:( w ), LockED:1, FLAG_ INVOKE

12.03 let mm_ lockReset = replace REsuLT:ChWSi:(value), LockED:1, Success _Pass:ChWSi
12.04 by mm_ reset, LockEeD:0

12.05 let mm_ lockReset End = replace REsuLT:ChWSi:(value), LockED:1

12.06 by mm _reset, LockED:0

Molecular composition: All ChWSes participating in this pattern have one mm_ reset
(A) and passinfo (B) rules that will be composed with lockReset End rule (D) whether
this ChWS represents the exit of our multi merge area, otherwise it will be composed
with lockReset rule (C).

Cancel activity pattern. A cancel activity pattern is the action of withdrawing an
enabled task prior to its execution. If the task has started, it is disabled and, where
possible, the currently running instance is halted and removed. To do that, a cancel
activity is associated to a specific task at build time (service 2 in Figure 3.15), thus
giving the abitilty to withdraw this task whenever it is required. (See Figure 3.15).

A: passinfoCancel X: other rules

CANCEL

g

Figure 3.15: Cancel activity.

Chemical implementation: As detailed in Algorithm 13, a cancel activity pattern consists
in the transfer of molecules containing error or abort messages produced within the
solution of one ChWS, to another ChWS called CANCEL ChWS. This CANCEL ChWS
manages this information and halts the execution. A molecule of the form CANCEL:( w )
contains the error or abort messages. Similarly, the CANCEL _CHWS:ChWSj molecule
contains the symbolic name of the CANCEL ChWS.
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Algorithm 13 Chemical rules - Cancel activity.

13.01 let passInfoCancel = replace-one CANCEL:( wy ), CanceL CHWS:ChWSk, ChWSk:( w2 )
13.02 by ChWSk:( w1, w2 )

Molecular composition: To apply this pattern, one passinfoCancel (A) rule is composed
with other rules with the aim of handling the withdrawal of a ChWS’s execution.

We have shown how the most used workflow patterns can be solved using a set
of reaction rules distributed over the services. Virtually all workflow patterns (as for
instance those defined in [132]) could be similarly handled.

3.3 Execution Example

For the sake of illustration of the coordination between chemical engines, we present a
workflow example, illustrated on Figure 3.16. This figure shows on the top side seven
ChWSes applying parallel split, synchronization, multi choice and discriminator workflow
patterns. On the bottom side, we shows the molecular composition graph representing
that workflow. Following the execution, after ChWS1 completes, it distributes the result
to ChWS2 and ChWS3 in parallel. Once ChWS2 and ChWSS8 have been completed,
ChWS4 can react. Next, ChWS4 checks some conditions and transfers some molecules
to ChWS5 and/or ChWS6 if they are satisfied. In that way, ChWS5 and ChWS6 are
connected with ChWS7 so that some information will be propagated to ChWS7. The
ChWS7 will react with the first received molecule from ChWS5 or ChWS6, while the
remaining molecules will be ignored. In a composition point of view, we show how each
ChWS has a library of molecules where only some of them are composed for executing this
workflow. This composition graph omits less important molecules from the composition
point of view (data and reaction rules), however the chemical program representing this
workflow is available online 2.

http://www.irisa.fr/myriads/members/hfernand/thesisSources/executionExample7services/
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Abstract workflow

Figure 3.16: Example of coordination.

Note that, thanks to the higher-order property, reaction rules react themselves with
other molecules following the composition guidelines. The evolution of the HOCL repre-
sentation of the workflow is given step by step in Figures 3.17, 3.18 and 3.19. We refer
to these three figures all along the section.

Let us first consider the block composed by ChWS1, CRWS2, ChWS8 and ChWS/,
as illustrated on Figure 3.17. ChWS1 has completed through the invokes rule (mol.
A), producing the result molecule RESULT:ChWS1:(value). This molecule, through the
preparePass rule (mol. B), is combined with the molecules DEST:destination, preparing
the parallel split pattern. Then, the passinfo rule (mol. C') triggers it by transferring
the outcome of ChWSI in parallel.

Once the information is received by ChWS2 and ChWSS3, they launch (indepen-
dently) the invokes rule (mol. A), producing two new molecules RESULT: Ch WS2:(value)
and RESULT:ChWS3:(value). The two resulting molecules, through the preparePass rule
firstly and the passInfo rule secondly, will be transferred to ChWS/ (Lines 15.09 to 15.19),
as illustrated on Figure 3.18. Thus, ChWS/ waits until the completion of ChWS2 and
ChWS3, thanks to the rules synchronize (mol. D) and sync_ setFlag (mol. E).

Consequently, Sy is invoked producing RESULT:ChWS4:(value) (Line 15.28). ChWS4
then triggers the reaction rule (mol. F') in charge of checking the conditions of the multi
choice pattern and transfers some molecules to ChWS5 and/or ChWS6 according to the
result, thanks to the passinfoCond rule (mol. G), as shown by Figure 3.18. For this
example, we assume the conditions for ChWS5 and ChWS6 are both satisfied in order
to apply the discriminator pattern.

Let us now focus on the block composed by ChWS4, ChWS5, ChWS6, ChWS7, as
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illustrated on Figure 3.19 (Lines 16.08 to 16.26). ChWS5 and ChWS6 complete and
produce their results (Lines 16.08 to 16.21). The discr_preparePass rules (mol. H)
are triggered by the engines of ChWS5 and ChWS6. Two molecules PAsS:ChWST7:(
COMPLETED: ChWSi:(value), DISCRIMINATOR ) are produced (Lines 16.13 to 16.15).

In ChWS5 and ChWS6, the passinfo rule (mol. C) propagates the molecule
Pass:ChWST:( information ) to ChWS7 (Lines 16.13 to 16.21). As illustrated on Fig-
ure 3.18 once they are received by ChWS7, the discr_setFlag rule (mol. I) is consumed
by the first Discriminator received, achieving the discriminator pattern. Also, it triggers
the invokes for the invocation of the S7 producing the final result REsuLT:ChWS7:(value)
(Line 16.26).

This example completes the description of our solution. We have shown that local
engines within ChWSes are co-responsible for applying workflow patterns, invoking ser-
vices, and propagating the information to other ChWSes. The coordination is achieved
as reactions become possible, in an asynchronous and decentralized manner.

3.4 Comparison to Existing Decentralized Approaches

This section is intended to give a more accurate comparison of our approach with some
closest and recent works. We observed two methods of distributed coordination approach.
In the first one, nodes interact directly. In the second one, they use a shared space for
coordination.

Earlier works proposed decentralized architectures where nodes achieve the coor-
dination of a workflow through the exchange of messages [97, 139]. Recently, some
works [36, 93, 145] shown the increasing interest in this type of coordination mechanism.
In [36], the authors introduce service invocation triggers, a lightweight infrastructure that
routes messages directly from a producing service to a consuming one, where each service
invocation trigger corresponds to the invocation of a service. In [93], an engine is pro-
posed based on a peer-to-peer architecture wherein nodes (similar to local engines) are
distributed across multiple computer systems, but appear to the users as a single entity.
These nodes collaborate, in order to execute a workflow with every node executing a part
of it, as shown by Figure 3.20. Lately, a continuation-passing style, where information
on the remainder of the execution is carried in messages, has been proposed [145]. Nodes
interpret such messages and thus conduct the execution of services without consulting
a centralized engine. However, this coordination mechanism implies a tight coupling of
services in terms of spatial and temporal composition. Nodes need to know explicitly
which other nodes they will potentially interact with, and when, to be active at the same
time. Likewise, a distributed workflow system based on mobile libraries playing the role
of engines was presented in [57]. The authors, however, do not give much details about
the coordination itself, and about where the data and control dependencies are located.
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ChWS1:(DEsT:ChWS2, DEsT:ChWS3, passinfo, preparePass,invokes, * ),
ChWS2:(DEesT:ChWS4, passInfo, invokes, preparePass),
ChWS3:(DEsT:ChWS4, passInfo, invokes, preparePass),
ChWS4:(Sync _ Src:(ChWS2,ChWS3), passInfoCond, synchronize, sync _setFlag, invokes,
preparePass, (replace-one conditions param by Conp_Pass:1, DEsT:ChWS5,DEsT:ChWS6
if ( conditions )), Sync_InBOx:(w ) ),
ChWS5:(DEsT:ChWS7, invokes, passInfo, discr _preparePass),
ChWS6:(DesT:ChWS7, invokes , passInfo, discr _preparePass),
ChWST:(invokes, discr_setFlag)
+
ChWS1:(DEesT:ChWS2, DeEsT:ChWS2, REsuLT:ChWS1:(value), passInfo, preparePass),
ChWS2:(DEsT:ChWS4, passInfo, preparePass, invokes),
ChWS3:(DEesT:ChWS4, passInfo, preparePass, invokes),
ChWS4:(SyNnc_ Src:(ChWS2,ChWS3), passInfoCond, synchronize, sync_setFlag, invokes,
preparePass, (replace-one conditions param by Conp Pass:1, DesT:ChWS5,DEsT:ChWS6

if ( conditions )), Sync_InNBox:(w ) ),

1
ChWS1:(Pass:ChWS2:(CoMmpPLETED:ChWS1:(value) ),

passInfo, Pass:ChWS3:(CoMPLETED:ChWS1:(value) ) )
ChWS2:(DEsT:ChWS4, passinfo, preparePass, invokes),
ChWS3:(DesT:ChWS4, passInfo, preparePass, invokes),
ChWS4:(SyNc_ Src:(ChWS2,ChWS3), passInfoCond, synchronize, sync_setFlag, invokes,

preparePass, (replace-one conditions param by Conp Pass:1, DesT:ChWS5,DEsT:ChWS6
if ( conditions )), Sync_INBox:(w ) ),
+
Chws1:(... )
ChWS2:(DEsT:ChWS4, CoMmPLETED:ChWS1:(value), passInfo, preparePass, invokes),

ChWS3:(DesT:ChWS4, CompPLETED:ChWS1:(value), passinfo, preparePass, invokes),
ChWS4:(Sync_ Src:(ChWS2,ChWS3), passInfoCond, synchronize, sync_setFlag, invokes,
preparePass, (replace-one conditions param by CoNp_Pass:1, DEsT:ChWS5,DEsT: ChWS6

if ( conditions )), Sync_ InBOX:( w ) ),

Figure 3.17: Workflow execution, steps 0-3.
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15.01 ChWS1:(...),
15.02 ChWS2:(DesT:ChWS4, REsurLT:ChWS2:(value), passinfo, preparePass),
15.03 ChWS3:(DEesT:ChWS4, REsuLT:ChWS3:(value), passinfo, preparePass),
15.04 ChWS4:(Sync_ Src:(ChWS2,ChwWS3), passInfoCond, synchronize, sync_setFlag, invokes,
15.05 preparePass, (replace-one conditions param by Conp_Pass:1, DEsT:ChWS5,DEsT:ChWS6
15.06 if ( conditions )), Sync_ INBOX:( w ) ),
15.07
1
15.08 ChWSI1:(...),
15.00 ChWS2:(PAss:ChWS4:(ComMmPLETED:ChWS2:(value) ), passInfo),
15.10 ChWS3:(Pass:ChWS4:(CompPLETED:ChWS3:(value) ), passInfo),
15.11 ChWS4:(SyNc_ Src:(ChWS2,ChWS3), passInfoCond, synchronize, sync_setFlag, invokes,
15.12 preparePass, (replace-one conditions param by Conp Pass:1, DesT:ChWS5,DEsT:ChWS6
15.13 if ( conditions )), Sync_INBox:(w ) ),
15.14
1
15.15 ChWS1:(...),
15.16 ChWS2:(...),
15.17 ChWS3:(...),
1518 ChWS4:(Sy~nc_Src:( ), passinfoCond, synchronize, sync_setFlag, addResult,
15.19 SyNc_ INBox:(ComMPLETED:ChWS2:(value), CompPLETED:ChWS3:(value) ),
15.20 Frac INVOKE, (replace-one conditions param by Conp Pass:1,
15.21 DEesT:ChWS5, DEsT:ChWS6 if( conditions )), invokes ),
15.22
1
15.23 ChWS1:(...),
15.24 ChWS2:(...),
15.25 ChWS3:(...),
15.26 ChWS4:(Sync  Src:( ), passInfoCond, synchronize, sync _setFlag, preparePass
15.27 Sync_ INBox:(CoMPLETED:ChWS2:(value), CoMPLETED:ChWS3:(value) ),
15.28 REesuLT:ChWS4:(value), (replace-one conditions_param by Conp_Pass:1,
15.29 DEesT:ChWS5, DEsT:ChWS6 if ( conditions ))),
15.30

Figure 3.18: Workflow execution, steps 4-7
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16.01  ChWS1:(...),
16.02 ChWS2:(...),
16.03 ChWS3:(...),
16.04 ChWS4:(Pass:ChWS5:(CoMPLETED:ChW S4:(value) ),passInfoCond

16.05 Pass:ChWS6:(CompPLETED:ChWS4:(value) ),...),
16.06
1
16.07
16.08 ChWS4:(...),
16.09 ChWS5:(DEsT:ChWS7, REsuLr:ChWS4:(value), invokes, passinfo, discr _preparePass),
16.10 ChWS6:(DEsT:ChWS7, REsuLT:ChWS4:(value), invokes, passinfo, discr _preparePass),
16.11  ChWST7:(invokes, discr _setFlag)

16.12 ...

16.13 ChWS4:(...),

16.14 ChWS5:(Pass:ChWST7:(CoMPLETED:ChWS5:(value),DISCRIMINATOR), passInfo),
16.15 ChWS6:(Pass:ChWST:(CoMPLETED:ChWS6:(value), DISCRIMINATOR), passinfo),

16.16 ChWST:(invokes, discr _setFlag)

1
16.17
16.18 ChWS4:(...),
16.19 ChWS5:(...),
16.20 ChWS6:(Pass:ChWS7:(ComPLETED:ChWS6: (value), DISCRIMINATOR),passInfo),
16.21 ChWST7:(invokes, CoMPLETED:ChWS5:(value), DISCRIMINATOR, discr _setFlag)
1
16.22

16.23 ChWS4:(...),

16.24 ChWS5:(...),

16.25 ChWS6:(Pass:ChWST7:(CompPLETED:ChWS6: (value), DISCRIMINATOR), passinfo),
16.26 ChWST:(RESULT:ChWST:(value), ...)

Figure 3.19: Workflow execution, steps 8-12.
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Figure 3.20: Message passing between engines.

Our works deal with the information exchange among ChWSes by writing and reading
the multiset which act as a shared space by all ChWSes. Then, the communication can
be completely asynchronous since the multiset guarantees the persistence of data and
control dependencies. This gives an increased loose coupling to our proposal, and able
to deal with dynamic changes in the workflow.

According to this method of distributed coordination, a series of works proposed
relying on a shared space a mechanism to exchange information between nodes of a
decentralized architecture, more specifically called a tuplespace [42, 88, 121]. As detailed
in Chapter 2, a tuplespace works as a piece of memory shared by all interacting parties.
Thus, using tuplespace for coordination, the execution of a part of a workflow within
each node is triggered when tuples, matching the templates registered by the respective
nodes, are present in the tuplespace. In the same vein, works such as [100], propose
a distributed architecture based on Linda where distributed tuplespaces store data and
programs as tuples, allowing mobile computations by transferring programs from one
tuple to another. However, the chemical paradigm allows an increased abstraction level
while providing support for dynamics.

Using a tuplespace for the execution of workflows, works such as [42],[88] and [121]
replace a centralized BPEL engine by a set of distributed, loosely coupled, cooperating
nodes. In [42] and [88], the authors present a coordination mechanism where the data
is managed using a tuplespace and the control is driven by asynchronous messages ex-
changed between nodes, as shown by Figure 3.21. This message exchange pattern for
the control is derived from a Petri net expression of the workflow. In [88], the workflow
definition is transformed into a set of activities, that are distributed by passing tokens in
the Petri net. However, while in these works, the tuplespace is only used to store data
information, our coordination mechanism stores both control and data information in
the multiset, which is made possible by the use of the chemical execution model for the
coordination of all data and control dependencies.
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Figure 3.21: Tuplespace data and messages passing control.

Recently, a work [121] uses a shared tuplespace working as a communication in-
frastructure, the control and data dependencies exchange among processes to make the
different nodes interact between them. The authors transform a centralized BPEL defi-
nition into a set of coordinated processes using the tuplespace as a communication space.
In contrast, the use of BPEL as coordination language hinders from expressing dynamic
and self-adaptive behaviors.

3.5 Comparison to Existing Composition Languages

Early workflow executable languages, such as BPEL [101], YAWL [131], or other pro-
prietary languages [96], lack of means to express dynamic behaviors. More recently,
approaches were proposed providing this dynamic nature to the service composition. A
system governed and guided by rule-based mechanisms supporting dynamic binding and
a high level of abstraction for service composition was proposed in [82]. In [46], a BPEL
extension based on aspect oriented programming supports the dynamic adaptation of
composition at runtime. Other approaches, such as [138], propose coordination models
based on data-driven languages like Linda [72], to facilitate dynamic service matching
and service composition. However, these approaches rely on architectures where the
composition is still managed by a central coordinator node.

Our work share some similarities with the Linda language, as they are both based
on a shared space for communication. Nevertheless, the chemical paradigm increases the
abstraction level and allows for natural dynamic adaptation.

A more recent series of works address the need for decentralization in workflow ex-
ecution. The idea they promote is to replace a centralized BPEL engine by a set of
distributed, loosely coupled, cooperating nodes [42, 121]. These works propose a sys-
tem based on workflow management components: each workflow component contains
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sufficient information such that they can be managed by local nodes rather than one
central coordinator. Despite their architectural similarities with our approach, one key
difference is that they again use low level abstraction languages such as BPEL or other
proprietary languages. In particular, BPEL lacks means to express dynamic behaviors
and do not provide concepts for a distributed execution. Similarly, workflow partitioning
is a complex task, to be done statically at design time. In other words, there is not
any simple algorithm to decentralize the execution of a workflow using BPEL [11, 64].
Some languages have also been proposed for providing a distributed support to service
coordination (96, 126]. However, they are finally turned into BPEL for the execution,
losing accuracy and expressiveness in the translation. Note that, the scientific workflow
languages such as SCUFL, DAX and GWorkflowDL were not considered in this section,
as they do not provide support for a decentralized execution.

Our chemically inspired approach brings a natural way to express dynamic behaviors
and both control and data driven coordinations with a high level of abstraction. Distri-
bution and parallelism being implicit, it finally provide a natural way to construct and
execute decentralized workflows.

Recently, works by Viroli et al. [135] paved the way for new models of coordination
inspired by nature. Our work represents also a concrete step forward in this way, focusing
on autonomic workflow execution.

3.6 Conclusion

In this chapter, we presented our first contribution an architecture composed of a shared
multiset containing the data and control information needed for coordination, and where
several chemical local engines are co-responsible for carrying out the execution of a work-
flow. The second contribution is a new analogy for service composition, namely molecular
composition. Such an analogy was shown to be able to express the decentralized and au-
tonomous execution of a wide variety of workflow patterns. Thus, a ready-to-use HOCL
library for this purpose has been designed and used successfully.

As a result, a prototype was developed and experimented to validate our approach
in the following Chapter 4.



Chapter 4

Implementation and
Experimentation

This chapter ! explores the viability and shows the benefits by using a chemistry-inspired
system for service coordination. To do that, we developed three different architectures to
implement the concept and ideas mentioned in Chapter 3. These architectures adopt the
more representative construction models for the development of workflow management
systems. Firstly, we developed a tuplespace-based architecture following the guidelines
defined in Section 3.1 of Chapter 3. Secondly, for the sake of comparison and discussion,
we also developed two other architectures for a centralized and a fully decentralized work-
flow execution. Finally, these architectures have been prototyped having in common the
HOCL-based workflow engine and the molecular composition analogy for the modelling
of service interactions.

For the sake of validation, a series of experiments were conducted on our chemistry-
inspired workflow system at achieving the following objectives:

e To capture the behavior of our approach when processing different types of work-
flows.

e To evaluate the benefits of a decentralized coordination compared to using a cen-
tralized one when modelling and executing complex workflow structures.

e To establish the viability of a chemistry-based workflow management system in
comparison with the more mature workflow management systems (WMS).

The rest of the chapter is organized as follows. Section 4.1 presents the architec-
tural and implementation details of these three architectures. Section 4.2 analyzes the
performance results when executing diverse types of workflows. Section 4.3 shows the
good properties of the molecular composition analogy for expressing and performing some
workflow structures in a decentralized manner. Section 4.4 compares the behavior of our
system with that from the traditional workflow management systems and two of our
prototypes. Finally, Section 4.5 concludes the chapter.

!The work presented in this chapter is part of the articles published in the International Conferences
[FTP11], the International Workshop [FTPW11] and the Research Report [TRFTP12]. I am the main
author of the works presented in this chapter.
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4.1

Implementation and Experimentation

Software Prototype

To validate our approach, we designed and implemented three architectures: a centralized
referred to us as HOCL-C, a tuplespace-based referred to us as HOCL-TS and a fully
decentralized referred to us as HOCL-P2P. All of them have in common the use of
the HOCL-based engine and the molecular composition analogy to express workflow

struct

ures. The main differences between these architectures are denoted in Figure 4.1

and briefly introduced in the following:

HOCL-C. Tt is a centralized architecture composed of a unique chemical engine
playing the same role of traditional workflow engines.

HOCL-TS. This architecture follows the ideas and concepts proposed in Chapter 3.
It is composed of a set of chemical engines collaborating among them through
a multiset acting as a tuplespace. Service interactions are loosely coupled as a
property inherited by the adoption of the tuplespace model. The computation is
now decentralized while the communication remains centralized.

HOCL-P2P. This architecture can be seen as a set of chemical engines directly
collaborating among them to execute a workflow. This architecture has many
similarities with the work proposed by Micillo et al. [93], in which workflow engines
are nodes in a P2P network for enabling a fully decentralized workflow management.
This architecture is more tightly coupled and needs the distribution of the multiset
(workflow definition) prior to the execution.

L

Centralized

Decentralized
Communication

HOCL-P2P

Figure 4.1: Differences between architectures.

Tight couplig

Other design and implementation details are further discussed in the following.

4.1.1

Architectures’ Design

We now show how the chemical engine can be powered over both centralized and decen-
tralized architectures.
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4.1.1.1 HOCL-C

Following the examples of most of workflow management systems mentioned in Chapter 1,
the coordination can be managed by a single node, referred to as the chemical workflow
service, as illustrated by Figure 4.2. First, notice the S components. They represent the
interface with the actual distant Web services to be called. Then, the multiset containing
the chemical workflow definition and coordination information is accessed by the chemical
engine that will perform the reactions required.

Chemical

@ ‘Workﬂow Service”}—@
® ©

Chemical
engine

Multiset

Figure 4.2: HOCL-C WMS architecture.

4.1.1.2 HOCL-TS

Distribute the control means that each service involved will take its part in the coordi-
nation process. In this architecture, each Web service is now chemically encapsulated,
to form a Chemical Web Service (ChWS). There is also as many ChWSes as Web service
participating in a service composition. Each ChWS is now equipped with a chemical en-
gine and a local copy of part of the multiset on which its chemical interpreter will act, to
realize its part of the coordination. The multiset, containing the workflow definition and
thus all required coordination information, will now act as a space shared (tuplespace)
by all ChWSes involved in the workflow. In other words, ChWSes will communicate by
reading and writing it, as illustrated by Figure 4.3. This architecture follows a loosely
coupled interaction model, as ChWSes only keep a reference to the tuplespace, instead
of having a reference to each ChWS with which they interact. However, the communi-
cation remains centralized so that the multiset may become a bottleneck. Recall that in
Chapter 5, we will show how to decentralize the multiset itself.
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Figure 4.3: HOCL-TS WMS architecture.

4.1.1.3 HOCL-P2P

This framework is similar to the previous architecture, however there is not a multiset
working as a tuplespace, computation and communication are fully decentralized.

This architecture is the most common construction regarding the classical decentral-
ized approaches for the workflow execution. Instead of having a unique central workflow
engine, a set of engines interact together to execute a service composition in a peer-
to-peer system, as proposed in works such as [93, 145]. Accordingly, this architecture
is composed of a set of ChWSes relying on message-passing to coordinate the workflow
execution, as illustrated by Figure 4.4. This communication mechanism involves the par-
ticipants in a more tightly coupled interaction, as they have to keep a physical reference
to those participants with which they interact.

Like in HOCL-TS, there is as many ChWSes as Web services involved in the work-
flow. In comparison with HOCL-C, the multiset of each ChWS contains one portion
of the workflow definition, instead of having a unique multiset containing the whole
specification. These portions will be processed by the chemical engines of each ChWS.
Consequently, this architecture assumes that the workflow portions are distributed be-
forehand and prior to the execution.



Software Prototype 91

Chws3 @

control and data
i
f
it
]

Chws4 ,

Figure 4.4: HOCL-P2P WMS architecture.

4.1.2 Architectures’ Implementation

In this section, we discuss the implementation of three software prototypes for the pre-
viously described architectures. The low layer of our prototypes is an HOCL interpreter
based on on-the-fly compilation of HOCL specifications [110]. The whole prototypes are
written in Java.

4.1.2.1 HOCL-C

The prototype is illustrated by Figure 4.5. As mentioned in Section 3.2.2, the workflow
definition is executed as a chemical program by the chemical workflow service. The low
layer of the architecture is an HOCL interpreter. Given a workflow specification as input
(an HOCL program), it executes the workflow coordination by reading and writing the
multiset initially fed with the workflow definition. The interface between the chemical
engine and the distant services themselves is realized through the service caller. The
service caller relies on the DAIOS framework [84], which provides an abstraction layer
allowing dynamic connection to different flavors of services (SOAP or RESTFul), which
abstracting the target service’s internals. DAIOS was specially extended with a module
which automatically generates dynamic bindings, as well as input and output messages
required between the chemical engine and a Web service.
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Figure 4.5: HOCL-C implementation.

4.1.2.2 HOCL-TS

The decentralized prototype is illustrated on Figure 4.6. Basically, the difference of this
architecture with the centralized implementation is the functionality of the multiset.
It now represents a shared space playing the role of a communication mechanism and a
storage system. The multiset is initially fed with the HOCL specification of the workflow.
More precisely, as we detailed in Section 3.2.2, the workflow definition is comprised of
one sub-solution per Web service involved. The information in one sub-solution can only
be accessed by the ChWS owner of /represented by that sub-solution.

On each ChWS, a local storage space acts as a temporary container for the sub-
solution to be processed by the local HOCL interpreter. The interface between a ChWS
and a concrete Web service is realized through the service caller, which again relies on
the DAIOS framework [84], which provides an abstraction layer allowing to establish
dynamic bindings to remote services.
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Figure 4.6: HOCL-TS implementation.

ChWSes communicate with the multiset through the Java Message Service (JMS)
publisher/subscriber modules. Concretely, we use ActiveM @) (version 5.4.1) an imple-
mentation of the JMS 1.1 specification, which can be embedded in a Java application
server. This ActiveMQ server allows to register and save all the message exchanges
between subscribers and publishers. The message exchanged are stored in the server,
allowing to be used in the future if a problem arises during the transaction. The multiset
is encapsulated into a JMS server to allow concurrent reading and writing operations.
The publish /subscribe messaging model is used by the ChWSes and the multiset whereby
message producers called publishers pushing each message to each interested party called
subscribers. Initially, the Multiset PUBlisher pushes the content of each ChWSi solu-
tion to each ChWSes LIStener. On the ChWS’s side, the ChWS LiStener receives the
content of the ChWSi solution which will be copied into its local multiset. Once the
HOCL interpreter is done with its execution, the ChWS PUBlisher pushes the content
of its sub-solution into the Multiset LIStener. These operations models the data flow
previously defined in the chemical workflow definition, in particular the DEST molecules
specify this data flow among ChW Ses.

Recall that this architecture is distributed, a JMS server into the multiset is needed
to coordinate all these messages.

4.1.2.3 HOCL-P2P

This decentralized prototype can be seen as a combination of several centralized proto-
types interacting among them to execute a workflow, as shown by Figure 4.7. These
centralized prototypes are denoted as Chemical Web Services (ChWSes) corresponding
each one with each Web service involved in a workflow. As we detailed before, the work-
flow definition is comprised of one sub-solution per Web service involved. On each ChWS,
a multiset contains the information of its specific sub-solution which will be processed by
the local HOCL interpreter. Note that, this information is transferred to each ChWS at
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build-time. The service caller represents the interface between a ChWS and a concrete
Web service by relying on DAIOS.
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Figure 4.7: HOCL-P2P implementation.

ChWSes communicate among them through Java Message Service (JMS) publisher /-
subscriber modules to transfer the control and data information. To do that, a JMS
server is included into each ChWS to store the information exchanged. Once the HOCL
interpreter of a ChWS is done with its execution, the ChW.S PUBlisher pushes the out-
come into the ChWS LiStener of its successor ChWSes (references to its successors have
to be maintained). Considering a ChWS, its subscriptions to other ChWSes depends on
the data and control dependencies between them.

Note that, this prototype has also been successfully applied to the simulation of agile
service networks in the context of Global Software Engineering [TFRZ+12].

4.2 Performance Evaluation of HOCL-TS

Our objective is here to better capture the behavior of a decentralized chemistry-based
workflow system. More precisely, we analyse the behavior of our HOCL-TS prototype,
when processing workflows with different characteristics regarding the number of tasks
involved, the amount of data exchanged and the complexity of the coordination re-
quired. Experiments were conducted over the nation-wide Grid’5000 platform [8]. More
specifically, these experiments were conducted on the parapide, paramount and paradent
clusters, located in Rennes. The parapide cluster is composed of nodes equipped with
two quad-core Intel Xeon X5570, 24 GB of RAM; the paramount cluster provides nodes
with two quad-core Intel Xeon L5148 LV processors, 30 GB of RAM, and the paradent
cluster is equipped with two quad-core Intel Xeon L5420 processors. All three clusters
are furnished with 40GB InfiniBand Ethernet cards.
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Figure 4.8: 30-task workflow.

4.2.1 Workflows Considered

Three workflows, containing 30, 60 and 100 tasks, were designed inspired by the graph of
the Montage workflow [32], a classic astronomical image mosaic workflow processing large
images of the sky. Montage workflow combines sequential and parallel flows, making it
relevant for such experiments. Our variants of the Montage workflow have different rate
of parallelism (number of tasks executed in parallel) and length measured in levels. The
level of a workflow task is defined as the length of the path leading to it. These workflows
are illustrated on Figure 4.8, Figure 4.9 and Figure 4.10, and are respectively referred to
as Workflow30t, that comprises 30 tasks over 10 levels, Workflow60t, that comprises 60
tasks dispatched over 13 levels, and Workflow100t made of 100 tasks of 19 levels. Our
campaign has the following considerations:

1. Each task calls a dummy Web service that basically concatenates strings. This
dummy Web service is deployed on a Apache Tomcat 2 server mapped on one
machine of the Grid’5000 platform.

2. Tasks at the same level have the same computation cost. Each workflow definition
is composed of tasks calling the same dummy Web service.

3. Each task is run by one distinct machine on the Grid’5000 platform.

2http:/ /tomcat.apache.org/
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Figure 4.10: 100-task workflow.

Three dummy Web services were built, presenting different rates of data exchanges,
for one call of this service, namely 28 bytes for serviceA, 583 bytes for serviceB, and 3063
bytes for serviceC. The definitions used for each workflow are available online 2. The
results of these experiments are averaged over 10 runs.

4.2.2 Managing Large Workflows

Let us first focus on the leftmost bar of the results of each workflow in Figure 4.11, i.e.,
the completion time of each workflow, but always using serviceA.

®https://www.irisa.fr/myriads/members /hfernand /thesisSources /workflowHOCL TS
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A first result is that the execution times, for the Workflow30t and Workflow60t, are
quite similar. When looking at the workflows, this can be explained by the fact that
when the total number of tasks increases, the parallelism is also increased. There is a
higher number of tasks running in parallel, and the number of levels for Workflow60t (13
levels) in comparison with the Workflow30t (10 levels) is not too high.
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Figure 4.11: Performance results, complexity of workflows and services.

However, the Workflow100t shows how a substantial increase of levels ( 19 levels
— more sequentiality) and parallel operations increment the workload of the workflow
system responsible to coordinate the execution, as more patterns have to be applied.

To sum up, the length of a workflow inevitably increases the execution time. However,
its rate of parallelism does not affect too much to the execution time, as suggested by
Figure 4.11. This shows how HOCL-TS adequately deals with high parallelism.

4.2.3 Exchanging Data

For the second experiment, we have dealt with different amount of data exchange. We
processed six workflows based on the Workflow30t graph, whose tasks are bounded to the
same dummy Web service. Note that, for each workflow, we measured the performance
using a set of dummy Web services exchanging different amount of data for their execu-
tion. This set of services is composed by the three previously-mentioned services and by
three other dummy Web services. These services concatenate strings and return objects
with different size. Thus, the experiments were conducted with services requiring respec-
tively 28, 583, 3053, 5053, 9773, and 15000 bytes of data exchange. The performance
obtained according to the amount of data exchange is illustrated on Figure 4.12.
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Figure 4.12: Performance results, data exchange.

As we can see in Figure 4.12, that increase in data exchange among tasks provokes
an increase of the execution time, suggests a linear degradation of the performance when
the size of information exchanged increases. Nevertheless, no bottlenecks have been
experienced, even if it may appear with higher data rate. The degradation occurs because
the information exchanged is considered itself as a molecule in our chemical model, to
be transferred and processed in the multiset. Therefore, further experiments should be
conducted to determine how far is the bottleneck.

4.2.4 Workflow’s Complexity

This section discusses a different vision of the experiment in Section 4.2.2. We now focus
on the evaluation of the workflow complexity. Informally, we consider as a complex work-
flow, a workflow having many patterns to be applied and a high rate of data exchange.
The complexity also depends on the amount of data exchanged among tasks since these
data have to be processed in applying some patterns. The results on the complexity can
be deduced by looking at Figure 4.11.

A first observation is that the performance degradation among the three workflows
binding their tasks to the different types of services. As we mentioned before, this differ-
ence is due to the increment of the amount of data exchange among tasks of any workflow.
Thus, the Workflow30t using the serviceC' performs less well than the Workflow30t us-
ing the serviceB or serviceA. Secondly, the degree of complexity of the Workflow100t in
comparison with the Workflow30t is high and leads to an important degradation which
increases depending on the information transferred among the tasks. However, there is
only a slight improvement of the execution time for the Workflow60t against the Work-
flow30t, that is explained by the similarity of those workflows in terms of length. Despite
the number of tasks participating in the Workflow60t, there is more parallelism and only a
slight increases of sequentiality, thus reducing the execution time. Finally, Workflow100t
containing tasks with the ServiceC' presents an important increase of the execution time,
coming from the significant increase of the size and processing time of the multiset.
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4.2.5 Discussion

This series of experiments, by offering a proof of concept of the model, while showing
its viability in actual deployments, highlights the benefits of a decentralized chemistry-
based workflow system. Our workflow engine processes large workflows with a reduced
coordination overhead.

However, in our architecture, while the coordination is executed locally on each ChW§S
(here the coordination is shared among the nodes), the multiset remains a centralized
space shared by every ChWSes leading to potential scalability issues. Following this
idea, our approach may experience some performance bottleneck when the rate of data
exchange becomes very high.

4.3 HOCL-TS vs HOCL-C

To establish a proof of concept on molecular service composition explained in Chap-
ter 3, we deployed our HOCL-C and HOCL-TS prototypes over the nation-wide plat-
form Grid’5000 [8]. This experiment shows the advantages of decentralizing the workflow
coordination.

4.3.1 Results

We now present the performance of our approach with both prototypes, using synchro-
nization, parallel split, discriminator and synchronization merge patterns, that can be
extended in terms of number of services to obtain significant results regarding scalability.

The pattern tested are respectively composed of 5, 15, 30, 45 and 60 tasks, where each
task represents a dummy Web service to be executed, each node, in the decentralized
prototype, being deployed on a distinct Grid’5000 node. These dummy Web services
concatenate strings and return the same data size in contrast with the dummy services
used in Section 4.2.2. Results presented are the average results on 6 identical experiments.
The synchronization pattern consists in one service realizing the synchronization, the
others being its incoming branches. The parallel split consist in one source node, the
others being its outgoing branches. Similar vertical extensions have been done for the
discriminator and synchronization merge patterns. In Figure 4.13, n is the number of
incoming branches for the discriminator pattern and outgoing branches for the parallel
split pattern.
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Figure 4.13: Discriminator and Parallel split pattern tests.

In Figure 4.14, performance obtained with the synchronization and parallel split pat-
terns are given. A first observation is that decentralizing the process brings a non-
negligible performance improvement, especially when the number of tasks to coordinate
increases, the centralized version suffering from the concentrated workload on the unique
coordinator for all the branches.
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Figure 4.14: Performance on basic patterns.
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Figure 4.15: Performance on advanced patterns.

Next, we considered the more complex branching and merging concepts used in the
discriminator and synchronization merge patterns. Results are shown in Figure 4.15. A
first encouraging result is that the execution time for the discriminator shows similar
performance evolution for both versions. The synchronization merge pattern highlights
again the relevance of a decentralized approach, as a significant performance degradation
in a centralized environment is again experienced. Again, this can be explained by the
complexity of the pattern, composed of a multi choice and a synchronization pattern,
leading to a severe increase in the coordination’s workload (on a single node).

4.4 Performance Comparison with Standard WMS

In this section, we present and analyse our experimental results. Five engines have been
used: Taverna Workbench 2.2.0, Kepler 2.0. HOCL-C, HOCL-TS and HOCL-P2P.

Recall that our objective is not so much to compare performances, but to establish
the viability of a chemistry-based workflow engine. In other terms, Taverna and Kepler
represent validated standards we use as guidelines.

4.4.1 Workflows Considered

Three scientific workflows were executed. Ilustrated by Figure 4.16 (left), BlastReport
is a home-built bioinformatics workflow which retrieves a blast report of a protein in a
database given its protein ID. The second one, CardiacAnalysis, illustrated on Figure 4.16
(right), is a cardiovascular image analysis workflow which extracts the heart’s anatomy
from a series of image sequences by applying image processing algorithms, developed by
the CREATIS-LRMN biomedical laboratory*. The third one, Montage® [32], given in

*http: //www.creatis.insa-lyon.fr /site/
Shttp:/ /montage.ipac.caltech.edu/
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Figure 4.17, is a classic astronomical image mosaic workflow processing large images of
the sky.

In order to transform these applications into chemical workflow definitions, we first
analyzed their code, exposing their functions or executables as Web services, which will
be part of the service composition. Finally, we composed those services based on their
control and data dependencies to obtain the final outcome. For instance, the Cardiac-
Analysis application has an executable script, called Image_ Pyramid_ Decomposition, in
charge of the creation of three 3D images for a given 3D image. To construct the Cardiac-
Analysis workflow, this executable was exposed as a Web service named pyramide Decom
and composed with the other services, as suggested in Figure 4.16 (right).

These workflows present different characteristics related to the number of services
involved, the amount of data exchanged and the complexity of the coordination required
(data processing included, such as iterations of lists of objects). We attempt to charac-
terize these workflows as follows:

e The BlastReport workflow includes 5 services, and presents a medium level of data
exchange (simple objects, lists) and low coordination overhead — it is composed
mostly of sequences.

e The CardiacAnalysis workflow includes 6 services, presenting a high amount of data
exchange (complex objects, lists) and a high coordination overhead (synchroniza-
tions, loop iteration, parallelism). This overhead does not appear on Figure 4.16
(right). It is due to the re-entrant nature of the services. For each workflow in-
stances, multiple instances of tasks are created from the interpolation service to
borderDetection and gradient services (lists of lists of elements to be processed).
Indeed, some services produce lists of objects that need to be extracted one by one
by iterators, and transferred to the next service asynchronously.

e The Montage workflow includes 27 services, and exhibits a low amount of data ex-
change (simple objects) and medium coordination overhead (parallelism and syn-
chronization patterns).

BlastReport Workflow Cardiac Workflow
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Figure 4.16: BlastReport and Cardiac workflows structures.
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Figure 4.17: Montage workflow structure.

The workflow definitions used for each WMS are available online®?

pendix A.2.1, A.2.2 and A.2.3.

and in Ap-

4.4.2 Centralized Experiments

The workflows were first run using Taverna, Kepler, and HOCL-C, on a local machine
equipped with the Intel core-duo T9600 2.8 Ghz processor and 4GB of memory. Fig-
ures 4.18, 4.19 and 4.20 present the results. In Figure 4.18, a first encouraging result is
that the execution time for the Montage workflow, (i.e., a workflow with limited data
exchange and coordination overhead), on Kepler, Taverna and HOCL-C are quite similar,
and even slightly reduced on the HOCL-C WMS.

)
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Figure 4.18: Performance results, Montage.

Shttps://www.irisa.fr/myriads/members /hfernand /thesisSources /workflows
"http:/ /www.myexperiment.org/workflows/2058.html
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For the BlastReport workflow on Figure 4.19, while results are again similar for the dif-
ferent WMSes, HOCL-C takes a little more time. This can be explained by the increased
size of the multiset for the BlastReport workflow (in terms of number of molecules). How-
ever, in terms of ratio, execution times remain very close among the HOCL-* prototypes.
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Figure 4.19: Performance results, BlastReport.

Finally, we can see in Figure 4.20 the increased coordination overhead of the Cardia-
cAnalysis workflow. As mentioned before, this workflow relies on a lot of data processing
related to the coordination itself, which, in the case of HOCL-C, results in a significant
increase of the size and processing time of the multiset. Also, no support for parallel ex-
ecution has been implemented in the HOCL interpreter. These two optimization aspects
will be investigated in the future.
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Figure 4.20: Performance results, CardiacAnalysis.

4.4.3 Decentralized Experiments

The workflows were also executed following the HOCL-TS and HOCL-P2P designs. The
experiments were conducted on the Grid’5000 platform [8|, specifically, on the adonis
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and edel clusters, located in Grenoble, each node being equipped with two quad-core
Intel Xeon E5520 processors, 24 GB of RAM and 40GB InfiniBand Ethernet cards. We
now focus on the two right-most bars of Figures 4.18, 4.19 and 4.20.

A first observation is that the performance degradation using HOCL-TS and HOCL-
P2P on the Montage workflow, as illustrated on Figure 4.18. Even though the coor-
dination is executed locally on each ChWS (here the coordination is shared among 27
services in both designs), the time wasted with the network latency to coordinate the
nodes is higher than the workload using HOCL-C. On the other hand, HOCL-TS. per-
forms slightly better than HOCL-P2P, what shows how some nodes in HOCL-P2P can
lead to some bottlenecks, especially when performing synchronization operations. For
instance, when the number of incoming branches increases for a node, its workload can
become important. However, further experiments should be conducted.

On the BlastReport, a performance gain over HOCL-C is obtained with HOCL-TS and
HOCL-P2P, thanks to the distribution of the coordination over the 5 services involved,
as shown by Figure 4.19. The BlastReport workflow starts to show the benefits by
using decentralized prototypes, as an increment of the amount of data exchanged and
coordination workload provokes some degradations using centralized architectures. The
decentralized prototypes present an acceptable performance in comparison with Kepler
and Taverna, as depicted in Figure 4.19. For this workflow, HOCL-TS and HOCL-P2P
have similar performance, as there is no synchronization structures.

For the CardiacAnalysis workflow, a considerable performance gain is also obtained
using HOCL-TS and HOCL-P2P, demonstrating the benefits of a decentralized workflow
execution when workflows present a high coordination overhead like CardiacAnalysis,
which is considered as a computation and data intensive workflow, as depicted in Fig-
ure 4.20. Exploiting the processing resources of each ChWS, the list handling and adap-
tation tasks are separately managed by each ChWS. Therefore, the time wasted with the
network latency is now gained by reducing the workload of a central engine. Like Blas-
tReport, HOCL TS and HOCL-P2P perform identically due to the lack of synchronization
patterns in CardiacAnalysis.

4.4.4 Discussion

This series of experiments leads to several conclusions. They constitute a proof of the
viability of a chemistry-based workflow engine, as for some representative workflows, its
performance are similar and sometimes better to those of Kepler and Taverna. Kepler
and Taverna are broadly considered as the defacto standards.

Nevertheless, the network latency comes up as a limitation for decentralized workflow
engines when processing workflows such as Montage. Its reduced computational load
and low rate of data exchange provoke that the coordination time in a decentralized
architecture is higher than in a centralized engine, due to the communications (network
latency).

These experiments also show how HOCL-TS generally performs slightly better than
HOCL-P2P for all the workflows, even if HOCL-TS uses a multiset as communication
mechanism. Indeed, another limitation could come from the design of HOCL-TS itself,
in which the multiset can constitute a bottleneck. To deal with the decentralization of
the multiset itself, we recently formulated solutions based on peer-to-peer protocols, able
to distribute and retrieve objects (here, molecules) at large-scale [34]. One of the next
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steps of this work is to build the HOCL-TS environment on top of such approaches to
remove the bottleneck problem, and proposes a fully decentralized workflow engine.

4.5 Conclusion

Even though there is a wide literature related to decentralized workflow execution, there
is no any prototype implementation. Similarly, no proof of concepts for chemistry-based
workflow management systems were nowadays given. Therefore, this work gives one
more step towards the practicability of this formalism in SOA. We decided to prototype
the ideas and concepts defined for our chemistry-inspired workflow management system
in Chapter 3. Thus, for the sake of validation, we also prototyped a centralized and
decentralized architectures to evaluate the behavior of our approach against them. These
prototypes based on the HOCL language show how the chemical engine can be powered
over both centralized and decentralized architectures.

A series of experiments were conducted to determine the viability and capture the
behavior of our approach when processing workflows with different characteristics. Thus,
the plots highlighted the benefits when processing data and computation intensive work-
flows using decentralized workflow systems, more precisely our approach, in comparison
with the more mature and used workflow management systems.

In a more general point of view, this experimental campaign shows the viability of
the concept, lifting a barrier on the path to its actual adoption.



Chapter 5

Decentralized Workflow Scheduling
through a Chemically Coordinated
System

The computation demand of e-Science applications is growing in such proportions that
cloud providers are not able to face such required computational power. The high degree
of parallelism and the processing of large datasets explain the increasing complexity
of these applications, as mentioned in [50]. As a consequence, cloud providers start
to cooperate, giving birth to community clouds. The cloud providers, in a community
cloud, federate their resources for allowing the users to execute applications which will
be scheduled across multiple cloud sites. For instance, the Venus-C [7] project aims at
providing a cloud computing infrastructure for science. The idea of sharing resources,
however, carries with it new challenges such as the interoperability between different
cloud providers, elasticity, security, as well as economical issues [44, 56].

We have shown in the previous chapter that a chemistry-inspired workflow system is
able to decentralize the workflow execution. In this chapter !, we focus on the crucial
feature of scheduling, i.e., the decision making for mapping a job to the more appropriate
resource. Accordingly, we here extended our contribution in two ways: (1) providing
a chemically coordinated scheduling mechanism for workflows; (2) decentralizing this
mechanism via a multiset implemented through a distributed hash table (DHT).

Two primary concerns have to be considered when scheduling applications in such
platforms:

1. Decentralization. There is a demand for new decentralized coordination mecha-
nism to schedule applications in large-scale environments. Traditional centralized
schedulers ought not to be put in use, as they would inevitably suffer from signifi-
cant reliability and scalability limitations. It is thus essential to promote decentral-
ized and autonomic solutions which embrace all the participants in a community
in order to select the appropriate resource for a task. The platform should be en-
hanced with coordination mechanisms enabling efficient task-to-resource mapping.

!The work presented in this chapter correspond to the technical report [TRFOT12], and it has been
done in collaboration with Marko Obrovac and Cedric Tedeschi.
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2. Cooperation. A decentralized scheduling system offers a robust solution, however
it is not able to handle the cooperation between different resource providers. Cloud
providers have to collaborate in order to find the more appropriate resource among
the sites in the shortest period of time.

More precisely, we are proposing a fully decentralized workflow scheduling framework
including two layers. The top layer is a chemically coordinated shared space where
workflows are decomposed into tasks, which are mapped to resources following simple
chemical rules. The bottom layer implements this shared space (multiset) in a fully
decentralized way, based on a peer-to-peer overlay network allowing the efficient storage
and retrieval of molecules. Altogether, the system proposed here, and evaluated through
different simulation experiments, is a decentralized framework allowing for an efficient
dynamic multiple workflow scheduling.

The rest of the chapter is organized as follow. Section 5.1 introduces the existing
scheduling algorithms and systems for workflow scheduling. Section 5.2 describes our
decentralized workflow scheduling system and its chemistry-inspired coordination model.
Section 5.3 evaluates the performance and network overhead of the framework. Sec-
tion 5.4 presents the related works, and Section 5.5 draws some conclusions.

5.1 Workflow Scheduling

We generally distinct two types of applications that require to be processed on distributed
infrastructures: bag-of-tasks and workflows. In this section, we focus on workflows appli-
cations, in which tasks are executed following a data-control flow, i.e., resources have to
be available in a certain order. This operation of matching between available resources
and application is known as resource co-allocation. In the following, we review some of
the most used algorithms for resource co-allocation, especially those focused on workflow
scheduling, and the most relevant systems for workflow-resources matching in distributed
infrastructures.

5.1.1 Scheduling Algorithms for Workflows

Today’s resource co-allocation systems support the scheduling of workflows, by mapping
tasks to resources based on a specific heuristic. A scheduling heuristic is an algorithm
that defines which characteristics of a task and resource have to be consider to make an
efficient mapping decision.

Generally, two groups of heuristics should be considered when mapping workflows:
task-based and workflow-based [37].

5.1.1.1 Task-based Heuristics

This group of heuristics allocates each eligible task to a resource based only about the
information of this task (completion time, operative system, etc...). There are a large
variety of task-based heuristics, however we now explain those strategies that are being
used for workflow scheduling: Opportunistic Load Balancing (OLB) [39], Min-min [77],
Max-min [77], and Duplex [39].
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e Opportunistic Load Balancing (OLB). This heuristic assigns each task to the
first available resource without considering any time estimations by running this
task on that resource. The main goal of OLB is to keep all resources as busy as
possible [39].

e Min-min. This heuristic finds for each eligible task (ready to be executed), the
resource that gives the minimum completion time for this task. Next, the selected
task is assigned to that resource for scheduling. This process is repeated with the
remaining tasks of the workflow as soon as they are ready for scheduling ( when
their control-data dependencies have all been satisfied). Note that, the Min-min
heuristic is more appropriate for workflows whose tasks have a short computation
time.

e Max-min. This heuristic has some similarities with Min-min. Thus, Maz-min
finds for each eligible task, the resource that gives the minimum completion time
for this task. Next, the task with the overall mazimum completion time is assigned
to the selected resource for scheduling. Finally, this process is then repeated with
the remaining tasks as soon as they are ready for scheduling ( when their control-
data dependencies have all been satisfied). Unlike the Min-min heuristic, Maz-min
gives more priority to tasks with longer computation times, so that tasks with a
short computation time would wait while longer tasks are executed. Therefore,
we noticed that the Maz-min heuristic may be more appropriate for computation-
intense workflows.

e Duplex. This heuristic combines the Min-min and Maz-min heuristics. This
algorithm performs both heuristics, Min-min and Maz-min, and then selects that
one with the best performance. As mentioned in [39], the Duplex algorithm suffers
a negligible overhead, despite the fact that both heuristics have to be performed.

There are also some other heuristics that belongs to this group such as Minimum
Completion Time (MCT), Minimum Execution Time (MET), Tabu, A* and Genetic al-
gorithms. Nevertheless, they are usually not applicable to workflow scheduling strategies
since their low efficiency rate [39].

5.1.1.2 Workflow-based Heuristics

This group of heuristics searches for the more appropriate resource selection for the whole
workflow. Workflow-based strategies supports variations in computation and communica-
tion costs for heterogeneous environments. They assign tasks to resources by considering
the workflow structure and the pair processing-communication cost.

In this section, we briefly describe three of most used heuristics in this group: Lev-
elized Minimum Time (LMT) [78|, Heterogeneous Earliest-Finish-Time (HEFT)[127] and
Dynamic Level Scheduling (DLS) [120].

e Levelized Minimum Time (LMT). This heuristic consists in two phases: level
sorting and Min-Time. First, the LMT algorithm clusters the tasks that have to
be executed in parallel, and then order these tasks based on their data and control
dependencies, i.e., level by level. Second, each task is matched to the best available



110 Decentralized Workflow Scheduling through a Chemically Coordinated System

resource, in other words, to the resource that gives the minimum completion time
for this task. To do that, this algorithm calculates the average execution time
(processing and communication cost) of each task across all the available resources.
If the number of tasks is greater than the number of available resources, the tasks
with the smallest average time are merged until the number of tasks is equal to the
number of resources. Then, the tasks are sorted in reverse order (largest average
time) based on the average execution time. Finally, this algorithm assigns each
task to the best available resource, in other words, the resource which executes it
the fastest.

The intuition behind LMT is to assign largest tasks to the fastest resources, and
smallest tasks to slower resources.

e Heterogeneous Earliest-Finish-Time (HEFT). This is a three phase algo-
rithm. First, a priority value is associated to each task based on the computation
and communication costs to reach the exit node from the position (current level)
from this task. Second, the resulting list of tasks is sorted by decreasing order of
their values. If two tasks have the same priority values, one of them is selected
randomly. Third, the algorithm assigns each eligible task to the available resource
that gives the minimum computation time for scheduling. This heuristic is one of
most used among the workflow scheduling systems.

The objective behind HEFT is to give higher priority to task on the critical path.

e Dynamic Level Scheduling (DLS). This heuristic has some similarities with the
HEFT algorithm. This is also a three phase heuristic. First, the DLS algorithm
assigns a priority value to each task: Considering all the directed paths to the exit
nodes from a task ¢;, its priority value is defined as the largest sum of computation
times along each path. Unlike the HEFT heuristic, the communication cost is
not considered in this phase. Second, the resulting list is kept sorted according
to the decreasing order of priority values. Third, each eligible task is matched
to the available resource with the minimum communication costs and minimum
computation time. This heuristic has two different implementations for its third
phase depending of the presence of heterogeneous or homogeneous resources [120].

DLS is considered as the slowest algorithm in comparison with LMT and HEFT,
as devised in [127].

Even though HEFT, LMT and DLS are commonly used regarding the workflow
scheduling, other heuristics could be also considered such as Critical-Path-On-a-Processor
(CPOP) [127] and Mapping Heuristic (MH) [127].

5.1.1.3 Summary

Despite the wide variety of existing scheduling heuristics, none of them have been shown
to deliver an efficient scheduling algorithm for both types of scientific workflows: data and
computation intensive [37, 116]. The selection of an appropriate scheduling algorithm
depends on several parameters such as the workflow structure, communication costs and
the class of tasks in the workflow.
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In addition, all these algorithms are based on values estimated by users (task com-
pletion times and communication costs), making the schedulers easily prone to judgment
errors. Therefore, most of the times, workflow scheduling systems delegate the selection
of either heuristic to the users.

5.1.2 Workflow Scheduler Systems

Many efforts toward grid workflow management have been made over the last years. This
section details some of most used and mature workflow scheduling systems.

DAGMan [71] is a service provided by Condor 2 that allows the execution of work-
flows over a Grid platform. It contains a meta-scheduler that dynamically processes a
DAG structure definition representing tasks of a workflow. DAGMan transfers to the
Condor scheduler the tasks as soon as they are ready to be executed. In addition, the
transfer of data among tasks is not supported by DAGMan, and the resource selection
is done through basic matchmaking.

GridWay [75] is a meta-scheduler standing on top of Globus 2 services that supports
DAG workflow definitions using advanced flow structures. In GridWay, the scheduling
decisions are made just-in-time considering the requirements for each task and the in-
formation provided by the resource broker component. The scheduling strategies can
be modified providing new policies. GridWay provides a module for the task execution
management. Data transferred is supported between resources.

GridAnt [16] is a client-side workflow system that has some similarities with DAG-
Man. It is an extension of the Ant # tool for controlling the application building processes.
The scheduling is done beforehand and fault tolerance is not addressed. This static de-
cision making involves the risk that the resource selection may be made on the basis of
information about resources that quickly become outdated.

Askalon [61] is a grid workflow management system whose final goal is to provide
an abstract Grid to the application developers. Askalon provides a set of middleware
services that support the development and optimization of scientific workflows on the
Grid. The workflows are expressed through an XML-based language (AGWL) [62] and
then transformed into simple DAG definitions to be scheduled. In Askalon, performance
predictions are made considering predicted task execution times and data transfer times
among tasks. These predictions are used by different heuristics to generate most appro-
priate mappings of single or multiple workflows onto the Grid. Askalon has incorporated
three scheduling algorithms which can be used interchangeably: HEFT, a genetic algo-
rithm and a "myopic" just-in-time algorithm acting like a resource broker. Performance
optimization can be made based on monitoring and dynamic rescheduling mechanisms.

Iceni [89] is a system for workflow definition and enactment on Grids. The Iceni
system is in charge of mapping the abstract workflow definition to a concrete workflow
selecting the appropriate resources and afterwards monitor the execution on the mapped
resources. Once a workflow scheduling process has been computed, the Iceni system tries
to reserve the resources at the desired time by negotiating with the resource provider.
Iceni provides four resource selection algorithms: random, best of n-random, simulated
annealing, and game theory algorithms.

2http:/ /research.cs.wisc.edu/condor/
3http://www.globus.org/ogsa,/
“http://ant.apache.org/



112 Decentralized Workflow Scheduling through a Chemically Coordinated System

Pegasus [54] is the only one workflow system covering the workflow life cycle that
enables the execution of large-scale workflows onto Grids. It relies on existing Grid infras-
tructures such as DAGMan and Globus Toolkit to provide the necessary information for
the resource selection. In order to provide a dynamic scheduling, portions of a workflow
can be mapped at a time based on data availability. Task clustering is also considered
where a number of small-granularity tasks are destined for the same resource. Pegasus
also incorporates four static algorithms for the resource selection: random, round-robin,
Min-min and HEFT. Moreover, an adaptative scheduling can be done thanks to the use
of the MAPE functional decomposition, allowing a just-in-time scheduling. Pegasus is a
flexible framework that enables the plugging of a variety of components.

MOTEUR [73] is a workflow engine developed by the Modalis Team®. The main
feature of its execution model enables data, workflow and services parallelism when pro-
cessing a workflow definition. In addition, this system provides supports for processing
large and dynamic datasets. Recently, MOTEUR has been used to run Taverna workflows
on real environments such as Grids for E-SciencE (EGEE) [60] and Grid’5000 [8].

Other approaches. Nowadays, there is an increment of workflow management
systems such Triana and Kepler that have plugged their systems to execute workflows
onto P2P, Grids or Cloud infrastructures. In such a way, Triana supports GridLab GAT ¢
(Grid Application Toolkit) for the job scheduling, data management and security issues
when executing workflows on Grids. The mapping of tasks to resources are made at
runtime with no optimizations or performance predictions. On the other hand, Kepler
is another workflow management system that supports execution on Grids, by defining
some actors at the composition time in charge of job execution, job monitoring and
service discovery. In Kepler, the scheduling is done just-in-time with optimization based
on the monitoring information.

All these workflow scheduling systems are fully centralized, providing one workflow
scheduler that makes decisions for all tasks.

5.2 Decentralized Shared Space for Workflow Scheduling

Highly dynamic large-scale environments by definition, community clouds present cer-
tain architectural challenges when designing workflow schedulers, as we mentioned before.
Consequently, we now present a fully decentralized just-in-time multiple workflow sched-
uler whose abstract organization is depicted in Figure 5.1. The scheduling process is
shared by a set of chemical engines running on every resource machine, that constitute
the entry points for the workflows which will be locally decomposed first into levels then
into tasks for later execution.

5.2.1 Preliminaries

In this section, we briefly present the required information to understand our proposed
architecture for scheduling purposes.

In particular, peer-to-peer systems will help us to decentralize the multiset and the
scheduling itself. Thus, P2P overlay networks arose as a solution to solve these problems

Shttp://modalis.i3s.unice.fr
Shttp://www.gridlab.org/
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by building decentralized and self-organizing systems. P2P-based systems are naturally
scalable and suited for the development of applications in dynamic and large-scale plat-
forms, as pointed it out by Iaminitchi and Foster |67].

There is a wide spectrum of different communication frameworks based on P2P over-
lay network models. However, all these models are classified in two classes of networks:
Unstructured and Structured.

o Unslruclured networks are arbitrarily-shaped networks in which nodes are joining
the network in a flat or hierarchical manner, without any requirement on the topol-
ogy. This network typically uses flooding-based mechanisms to send queries across
the overlay within a given radious (number of hops) from the node initiating a
search. Hence, all nodes participate in the searching process by propagating the
query to their neighbours. Obviously, these flooding techniques increase the traffic
load in the network, as well as offer a poor scalability when handling a high rate
of queries and sudden increase in the number of nodes. There are several examples
of unstructured P2P systems such as Gnutella [124] and BitTorrent [4].

o Structured networks are tightly controlled networks that offers a consistent protocol
to ensure the uniform distribution of the data among nodes, as well as an efficient
retrieval of data. The most well-known approach for structured networks is the
distributed hash table (DHT). In the following, we focus on DHT-based systems for
allowing the construction of a decentralized and scalable communication mechanism
to connect nodes in an overlay network.

5.2.1.1 Distributed Hash Table

A DHT is a P2P infrastructure that supports the scalable storage and retrieval of data
items in a dynamic large-scale network.

DHT builds a logical communication network over a physical network. Accordingly,
every machine in the physical network represents a node in the logical one. Consequently,
the location of a node in the logical network is calculated using a hash function, usually
SHA-1, over its ip address. Nodes maintain a routing table containing the identifiers and
ip addresses of its neighbours.

In traditional hash tables, data items are stored in memory based on the
(key,value) pattern. For instance, a key-value pair with the form ("TheBigLe-
bowski.avi’,’123.26.12.2’) means that the node at the address '123.26.12.2° contains the
movie file "TheBigLebowski.avi’. Considering a P2P DHT-based system, pairs are de-
terministically spread over the nodes of a network in order to achieve a uniform data
distribution. This is made possible by using cryptographic functions. These functions
provide a mechanism for an optimal data discovery (given a key), and maintain the
integrity of the data with a negligible probability of collision.

The data discovery consists of a lookup operation in which a query is routed across
the nodes to the node whose identifier is the closest to the given key. There is a vast
variety of routing and data organization strategies for DHT-based systems. However, the
majority of these systems can guarantee that the complexity to reach any data (i.e., the
number of hops) is O(log(n)), where n is the number of nodes in the overlay.

Even though there are many different implementations of DHT-based systems, we
will focus on those implementations forming a ring-shaped overlay like Chord [123] and



114 Decentralized Workflow Scheduling through a Chemically Coordinated System

execute

Figure 5.1: Overview of the proposed architecture.

Pastry [114]. Both systems have many similarities, as they mainly differ on the routing
process they use. Pastry makes use of a routing strategy, known as Plaxton prefix
routing [107]. More precisely, Plaxton prefix consists in choosing as the next hop of a
message as the node with an identifier (nodeld) that is numerically closest to the key.

However, DHT has one drawback since they only support exact queries. In or-
der to support complex queries, earlier works proposed simple extensions of existing
lookup operation. Nevertheless, all these approaches lack efficiency when dealing with
multi-attribute queries or range queries. In such a way, more recently, several ap-
proaches [10, 18] have proposed to add and maintain one overlay per type of attribute
or dimension. In [18] authors developed a distributed data structure, as a generalization
of skip lists referred to as Skip Graphs, that provides the functionality of balanced tree
over distributed environments to support range queries. On the same vein, P-Grid [10]
is another type or data structure that provides a fully decentralized randomized proto-
col which ensures that the number of hops along the logical path is bounded by log(n)
of the number of nodes. Furthermore, another approach has been proposed to support
multi-attribute range queries called Squid [117].

All these approaches increase the complexity of the system depending of the number
of overlays per attribute, what consequently brings a number of scalability issues.

5.2.2 Proposed Architecture

As illustrated by Figure 5.2, the proposed system is a two-layer architecture. It takes its
roots in a generalized system for decentralized execution of chemical programs [102], but
is adapted here for scheduling purposes. We now detail these two layers.

Communication Layer. In order to abstract out the underlying network topology and
to deal with the potential unlimited growth of resources, chemical engines are connected
in a structured peer-to-peer overlay network [114, 123|, illustrated in the lower part of
Figure 5.2. Next, we assume that the chemical engines, referred to as nodes in the
following, communicate through a ring-shaped overlay network. However, indeed, a
DHT with a different topology could be used. Connecting the chemical engines into a
Pastry ring allows the system to cope with both the dynamicity and scalability of the
environment. The communication scheme is preserved regardless of whether the number
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Figure 5.2: Two-layer architecture.

of resources grows or shrinks due to the use of a DHT. Furthermore, because of the
symmetric conception of the system, if a resource (or the chemical engine it hosts) fails,
another chemical engine can simply resume its work related to scheduling as they all hold
the same generic scheduling rules.

Coordination Layer. Due to the use of the DHT, chemical engines can share their
local data — molecules — with other participants in a scalable fashion (DHTs provide a
distribution and retrieval mechanism the complexity of which typically grows logarithmi-
cally with the number of nodes). This way, an actual shared multiset is created on top of
the DHT, to which nodes expose their molecules — levels, tasks and resources, as shown
in the upper side of Figure 5.2. Thus, nodes are able to retrieve and consume molecules
they do not hold, giving birth to a decentralized scheduling space. Moreover, each chem-
ical engine includes workflow-independent rules in charge of workflow decomposition and
task scheduling, acting by consuming molecules within the shared multiset. These rules
are named generic scheduling rules and are explained more in depth in Section 5.2.6.

In the remainder of the section we firstly describe the structure of the molecules of the
scheduling space and their placement in the underlying DHT-layer. Then, we detail the
decentralized scheduling process carried out as reactions take place in the upper layer.

5.2.3 Scheduling Molecules

There are three types of molecules in our system: molecules representing workflow levels,
task molecules and resource molecules. When a molecule is produced, it is assigned a
unique identifier based on a cryptographic hash function (SHA1). The molecule is then
placed in the shared multiset, i.e., the DHT ring in the bottom layer, by routing it to
the appropriate node based on its hash identifier. The molecules and their placement in
the DHT are depicted in Figure 5.3.
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5.2.3.1 Level Molecules

Upon its entry in the system, a workflow is decomposed into levels by the entry node,
producing level molecules (white dots in Figure 5.3). A level of a workflow comprises
all of the tasks at the same distance from the exit task of a workflow’s graph. Level
molecules take the form LEVEL : idLevel : (taski,...,task,), where idLevel identifies
the level of the workflow, and task,...,task, are the tasks located in it. Each level
molecule is then sent to its appropriate destination node according to its hashed value.

5.2.3.2 Task Molecules

Once it is the turn of a level to be processed, the node storing its molecule cuts it into a
set of task molecules (black dots in Figure 5.3), one per task. A task molecule takes the
form TASK : idTask : (serv : res_desc) : (DEST : destTaskld,...), where idTask is the
task’s identifier, serv denotes the actual service to invoke, res desc is the description of
the resource requirements needed to execute the task, and the (DEST : destTaskld,...)
sub-solution specifies to which tasks (given their task identifiers as destTaskId) the
output of the task has to be sent. Upon a level’s decomposition, task molecules are
similarly stored in the DHT.

5.2.3.3 Resource Molecules

Physical resources are represented by molecules of the form RES : idRes
(featurey, ..., feature,), where idRes is the identifier of the resource and
featurey, ..., feature, are its characteristics, such as the number of processors, the

CPU load, or the memory usage. Since the features of a resource variate in time, ev-
ery so often nodes republish resource molecules that replace old ones (the previously
published molecule is destroyed and replaced with the new one). The discussion of the
modality and the interval of republishing are out of the scope of this work.

These features are used to rank the resources of a community cloud, so that the
system can select the appropriate resource for the execution of a task. The ranking
criteria are discussed in Section 5.2.6.

Unlike level and task molecules, resource molecules are not hashed using the DHT’s
cryptographic function. Instead, they are assigned an identifier close to the node which
produced them, i.e., where the resource is located, and are, thus, kept on the originating
node (as suggested in Figure 5.3). Doing so keeps the network cost of republishing at zero.
Moreover, it allows the system to be up-to-date, since when a resource machine crashes
the respective molecule consequently disappears from the shared multiset, preventing
other participants to try to schedule a task on this resource.

5.2.4 Chemical Nodes

Physically, chemical nodes are deployed on each resource of the community, running as a
new process into the machine. Hence, the ring-shaped network overlay itself is composed
of as chemical nodes as there are resources. Each node represents a computation unit or
coordination object on the overlay, responsible for important operations such the work-
flow decomposition in levels, the level decomposition in tasks and the scheduling decision
making. To do that, some generic rules (i.e., independent of any specific workflow, task
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or resource) must be defined. These rules are included in each engine, and are explained
in Section 5.2.6.

A chemical node is composed itself of three components (See Figure 5.4) :

e A Storage space, containing molecules and rules. The content of the storage
space is exposed and shared with the others nodes through the shared multiset.

e An HOCL interpreter, working as a chemical engine processing the reactions
according to molecules stored in the shared multiset.

e A DHT overlay, allowing to be constantly connected to the overlay network
accessing to all the information.
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5.2.5 Meta-Molecules and Resource Retrieval

For the scheduler to be as efficient as possible, resources have to be ranked in order to
match the right tasks with the right resources. Due to the fact that resource molecules
stay on their originating nodes, we introduce a second DHT layer, as illustrated on
Figure 5.5. It physically matches the original one (nodelds as well as the key space size
are preserved), but instead of containing molecules it serves for storing meta-molecules
— pointers to resource molecules, in an order-preserving manner, which means that a
meta-molecule’s hash identifier is no more cryptographically hashed but based on its
molecule’s value. Therefore, a meta-molecule testifies to the existence of a particular
resource molecule; when a node obtains a meta-molecule, it is able to consequently
obtain the original resource molecule the meta-molecule derives from.

Meta-molecules are only created for resource molecules. When a node republishes
its resource molecule, it creates a matching meta-molecule and stores it in the second
DHT layer by routing it to the appropriate node. Meta-molecules are stored in an
order-preserving manner, which means that a meta-molecule’s hash identifier is based
on its molecule’s value. As an illustration, consider two resource molecules M7 = RES :
cpu(80%) and My = RES : cpu(50%). Supposing the ordering criterion for resource
molecules is processor utilization, M;’s meta-molecule’s hash identifier would be greater
than that of Ms’s meta-molecule, since the resource represented by Mj is used more than
M>’s resource.

The second, order-preserving DHT layer is used when trying to map a task to a
resource. When a node is searching for an appropriate resource to execute its task on, it
simply consults the second DHT layer for resource meta-molecules. Moreover, the node
is able to precisely locate specific matching resources in this layer, by issuing specialized
queries such as cpu < 80%. The range queries typically require O(log?(n)) messages
to complete, as explained in Section 5.2.1.1. A meta-molecule festifies to the existence
of a particular resource molecule; when a node obtains a meta-molecule, it is able to
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consequently obtain the original resource molecule the meta-molecule derives from.

5.2.6 Workflow Scheduling Process

Despite the wide variety of existing scheduling heuristics, none of them have been shown
to deliver an efficient scheduling algorithm for both types of scientific workflows: data
intensive and computation intensive. The selection of an appropriate workflow scheduling
algorithm depends of several parameters estimated by users, such as communication
costs and task completion times, making the schedulers prone to judgment errors. To
this respect, the framework proposed in this chapter aims at providing a decentralized
and just-in-time task-to-resource mapping, on top of which any workflow scheduling
heuristic can be implemented. Hence, in our system, workflow scheduling algorithms
such as HEFT, LMT, CPOP or DLS, can be supported. A set of these algorithms (Min-
min, HEFT, LMT, OLB, and Max-Min) have been implemented using HOCL and are
available on-line ” and also in the Appendix A.3.

5.2.6.1 Inter-layer Execution Model

The execution of rules is event-driven: a rule is triggered when a node receives a molecule
or a workflow. Three entities can provoke a rule’s execution: a workflow, a level molecule
and a task molecule. Upon the receipt of a workflow or a level molecule, a node locally
triggers rules to decompose the workflow into levels or levels into tasks, respectively.
Afterwards, the levels and tasks generated are hashed and stored in the DHT.

On the other hand, when a node receives a task molecule, it has to find a resource to
map it to. Thus, the node constructs a range query in which it lists the requirements a
resource has to satisfy and then lets the DHT’s range search mechanism (second layer)
find it a match. If a matching resource meta-molecule has been found, the node proceeds
to the next step: retrieving the resource molecule itself containing information for the
actual execution of the task. Finally, the node sends its task to the resource node for
execution.

5.2.6.2 Workflow Scheduling Flow

Workflows received by nodes are described using the chemical workflow definition. The
general shape of this workflow representation is as follows: the main solution is composed
of as many task molecules as there are tasks (or services) participating in the workflow.
Each sub-solution represents a task with its own data and control dependencies with
other tasks. This chemical representation of workflows has been shown to be appropriate
to express the decentralized execution of a wide variety of workflows patterns [FTP11].

"http:/ /www.irisa.fr/myriads/members/hfernand/thesisSources /workflowScheduling



120 Decentralized Workflow Scheduling through a Chemically Coordinated System

Algorithm 14 Chemical workflow representation.

17.01 ( // Multiset (Solution)

17.02 Task : 1: (servy : res_desci) : (DesT : 2,DEST : 3,...), // Tasky definition
17.03 Task : 2: (servg : res_desca) : (DEST : 4,...),

17.04 Task : 3: (servs : res_descs) : (DEsT : 4,...),

17.05 Task : 4 : (servy : res descy) : ()

17.06 )

According to this representation, a chemical node, the entry point, receives the work-
flow and decomposes it in levels, producing level molecules. This step is based on the
first phase of algorithms such LMT or HEFT.

Figure 5.6: Workflow decomposition.

Once the workflow has been received, it triggers the workflowDecomp rule which
assigns reorganizes the task molecules into levels. This rule consumes the molecules
representing the different tasks in the workflow, and produces level molecules, one per
level. In Algorithm 15, we present a simplified version of the workflowDecomp rule for
the workflow decomposition. However, a more detailed version of the HOCL program in
charge of this operation can be depicted in Appendix A.3.1.



Decentralized Shared Space for Workflow Scheduling 121

Algorithm 15 Generic rules.

— WORKFLOW DECOMPOSITION —
18.01 let workflowDecomp = replace ( Taski:( ?wi ), Taska:( Twa ), ..., TAsKp:( Twn ) )

18.02 by LevEL:1:( Taski ), LEVEL:2:( Task2 ), LEVEL:N:( TAsKy, )

— LEVEL DECOMPOSITION —
18.03 let levelDecomp = replace-one LEVEL:num:SCHEDULED:( Tasky, ... ,Tasky )
18.04 by Tasky, ... ,Tasky,

— TASK TO RESOURCE MAPPING —

18.05 let mapTaskRes = replace Task:idTask:task res, Res:idRes:( featurey, ... ,feature, )
18.06 by system.deploy( idTask, idRes )
18.07 if (Task.isCompatibleWith(REs))

Next, we explain the way in which the system couples tasks and resources. Tasks
have to be scheduled level by level, calling for coordination between nodes involved in
scheduling a given workflow, in order to allow the system to pass from scheduling tasks
of one level to the next one, and so on until reaching the last level and delivering the
final result to the requesting user. More precisely, the system has to ensure tasks from
level ¢ are not being scheduled for execution before or during the scheduling of tasks
from level ¢ — 1. To distinguish between levels which can be scheduled and those which
have to wait on scheduling we use two types of molecules: LEVEL : num : READY and
LEVEL : num, respectively. The initial workflow decomposition through the activation
of the rule workflowDecomp produces only LEVEL : num molecules to indicate that none
of the levels can be scheduled at that time. However, as the scheduling goes on, these
molecules will, one by one, turn into LEVEL : num : READY molecules, indicating that
the tasks of the previous levels have been completed and that the tasks of the next level
can be scheduled for execution.

To extract tasks from level molecules, a node uses the levelDecomp rule. This rule
consumes a level molecule with its state set to READY, and produces as many task
molecules as there are tasks in the given level (Algorithm 15 on Line 18.03). The task
molecules are then hashed and stored in the DHT.

Upon receipt of a task molecule, a node uses the map TaskRes rule to map the task to
the best suitable resource it can find (Algorithm 15 on Line 18.05). Using the resources’
requirements indicated in the task molecule, the second DHT layer is scanned by a range
query reflecting the if-clause of the mapTaskRes rule. If a matching resource molecule
is found, the rule produces a molecule that deploys the given task onto the resource
found during molecule capture (denoted by the special system.deploy() molecule in Al-
gorithm 15). Note that, the resource molecule is consumed in the reaction, preventing
other tasks to be scheduled before it has been republished. Once a node receives the no-
tification from the system that its task has been completed, it notifies the node holding
the level molecule for this task, which, in turn, keeps track of completed tasks. When all
of its tasks have been completed, the node holding the (currently active) level molecule
retrieves the inactive molecule of the next level. It then deletes it and creates a new,
active level molecule and stores it with the same hash identifier. This act allows the next
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level to be decomposed and its tasks to be scheduled. This process carries on until the
tasks of the last level have finished their execution. At the end, its node collects all of
the results and transfers them to the entry node, which delivers them to the client which
submitted the workflow for execution.

Multiple Workflow Scheduling Example. Let us consider two workflows, A and
B, where task molecules of level L1 (in both workflows) are awaiting scheduling, as
illustrated on Figure 5.7. Task molecules A, B and C from workflowA and D and E from
workflowB are ready to be executed. There are four available resources. This leads to a
situation where not all of the tasks can be scheduled concurrently. Each of the five nodes
holding task molecules tries to grab a matching resource molecule (due to the execution
of the mapTaskRes rule). Supposing the nodes holding B, C, and D successfully grab
their respective resource molecules, they execute a reaction following the mapTaskRes
rule by deploying their tasks onto the matching resources. If the only available resource
left does not meet the needs of neither A nor F, the nodes holding them wait for a small
predefined amount of time and retry fetching a resource molecule. Each of the nodes
repeats this cycle until it is able to grab the desired resource molecule and, thus, execute
the task it holds.

WorkflowA

Figure 5.7: Multiple workflow mapping.

5.3 Evaluation

5.3.1 Simulation Set-up

To better capture the behavior and expected performance of the proposed system, a
Python-based simulator was built. It simulates a two-layered, DHT-structured network of
nodes offering storage and computing power. The nodes also store the meta-information
about available resources (the meta-molecules). Workflows sent to this network are pro-
cessed and scheduled following the decentralized coordination model described in Sec-
tion 5.2. The simulator operates in discrete time steps.

5.3.1.1 Goals and Assumptions

Our goal is to generally show the overhead, in terms of latency and network load, of the
scheduling process itself, as we do not intend to provide a new scheduling algorithm, but
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a framework for decentralized coordination for large-scale scheduling. According to that,
some assumptions were made. A workflow’s depth (the number of levels) was randomly
chosen between 3 and 10, with each level containing an arbitrarily assigned number
of tasks (between 1 and 15). Furthermore, a task’s duration was voluntarily kept low
(between 1 and 10 time steps) as it facilitates the evaluation of the framework’s overhead.
Finally, the computing power of nodes and the capacity of links in the network were
virtually unbounded. While such an assumption could sound unrealistic, our simulation
did not intend to provide real accuracy in actual settings, as only a real-world deployment
could do that. Our validation is oriented towards providing insight into the scalability
of the framework.

5.3.2 Results
5.3.2.1 Execution Time

We first tried to capture the scalability in terms of time overhead, when both the number
of nodes and workflows increase. Results are depicted in Figure 5.8. The first conclusion
is that increasing the number of nodes has an impact on the time taken to schedule
workflows. However, this overhead is limited, since the cost of the routing process grows
logarithmically with the number of nodes (except for resource retrieval which requires
log?(n) messages to deal with range queries). Another conclusion that can be drawn by
looking at all of the curves together is that when the number of workflows increases, the
time to solve them does not increase much. This is a consequence of fully decentralizing
the scheduling process, which enables a high degree of parallelism. However, one can
argue that, as Figure 5.8 suggests, having fewer nodes leads to better performance. This
anomaly is inherent to the assumption that the network links and the computing power
are unbounded. Hence, we need to have a look on the network overhead, which is depicted
in Figures 5.9 and 5.10.

5.3.2.2 Network Overhead

The series of curves on Figure 5.9 shows the total number of messages generated in the
same experiments as earlier. They first suggest that, due to the usage of logarithmic
routing, increasing the number of nodes does not impact significantly the network. The
curves also show that the number of messages increases with the number of workflows.
In fact, the number of messages is directly proportional to the number of tasks to be
scheduled, as the scheduling of a task relies on resource retrieval, which needs O(log?(n))
messages to complete. However, this is partly inevitable as each task must be scheduled
independently of others. Finally, Figure 5.10 depicts the evolution of the traffic load
perceived by each node in the same conditions. While the traffic costs per node increase
with the number of workflows, it is also drastically reduced when more nodes take part in
the scheduling process. This behavior is a highly desirable one, as we target large-scale
platforms. This reinforces the scalability of the whole platform, since the system is able
to spread the network load evenly as it increases in size.
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Figure 5.10: Traffic per node.

5.4 Related Works

To the best of our knowledge, there are no related works dealing with the coordination
of schedulers in cloud systems. We are, thus, here briefly reviewing works focused on
scheduling coordination in federated grids. Note that, due to the nature of grid systems,
these works do not address elasticity.

There is a large number of centralized approaches dealing with interoperability draw-
backs of federated Grids. Recently, a higher level brokering service was proposed to
solve this interoperability issues [81], authors build a meta-broker on top of the resource
managers from different Grids and uses the obtained meta-data information to decide
where to schedule independent jobs. This approach extracts meta-data from the different
resource management systems using technologies of the semantic Web area.

Despite the existence of these centralized approaches, we consider centralized schedul-
ing systems more appropriated to map resources for a single Grid than for scheduling
federated Grids. Thus, several models have been proposed to enable a decentralized
scheduling in federated Grids [56, 83, 108, 111, 140].

In [108, 140], a decentralized and dynamic resource allocation mechanism was pro-
posed, agents/schedulers dynamically search for the more efficient resource across Grids
through negotiation. Therefore, the searching process finishes when the scheduler of a
Grid finds the appropriate resource. This type of scheduling is known as hierarchical.
This architecture can suffer from potential single points of failure: when the scheduler
of a Grid fails, none of its resources can be used. In contrast with these works, in our
approach all the nodes in the overlay participate to the scheduling process, avoiding
possible point of failure.

More recently, in work [56], the authors motivate the need of interlinking Grid sys-
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tems through peering arrangements to enable resource sharing. A component known as
InterGrid Gateway is in charge of the management of its own Grid and the negotiation
with the others InterGrid Gateway’s from different Grids. An application requests some
resources to its Grid resource manager, if it is not able to provide them, then it forwards
part of the request to the Gateway which mediates with the other Gateways to select
the best resources. This work identifies the key problems as functionals as economical in
realizing a federation of Grids. In the same vein, a decentralized model was also proposed
in [83], where a meta-scheduler is built on top of each grid infrastructure of a federation,
implementing the appropriate scheduling algorithm. This approach uses GridWay as a
meta-scheduler which has the whole information about the entire federation. Both ap-
proaches [56, 83] present some similarities since for a request of N resources to a Grid,
it will face the request if there are N available resources, otherwise additional resources
will be requested to other Grids in the federation. Any ranked resource in our chemi-
cal overlay is available to be mapped (independently of the distributed infrastructure to
which belongs).

There are several works proposing peer-to-peer based solutions to the Grid scheduling
problems [66, 111, 133]. Ranjan, Rahman and Buyya [111] designed a P2P coordination
space where workflow schedulers cooperate among them enabling a fully decentralized
scheduling. This approach implements a DHT representing a distributed blackboard split
in regions. Each region is managed by one Grid peer. Thus, the resource providers post
their requests into this blackboard, and depending of the region in which the request
falls, the broker/agent searchs for the suitable resource in its Grid. This work provides
a fully decentralized scheduling model, each Grid in the federation has one broker en-
abling a point of failure. Our decentralized architecture shares some similarities with this
approach. However in our system any resource in the community can schedule tasks.

In works [66, 133], the authors rely on unstructured P2P overlays as communication
and coordination system to schedule computation-intensive jobs on federated Grids. Like
in our work, there are no predefined schedulers, all the nodes can schedule jobs by
propagating a request across the entire set of nodes using a Gossip-based protocol. At
the end, the node which transferred the request will select the more appropriate resource
from the candidates. Instead of propagating a request across all the neighbours, the
chemical system ranks the resources into the DHT allowing to find the best candidate in
a short period of time.

In contrast to these approaches, our framework intends not only to decentralize the
scheduling process, but also to maximize the efficiency of scheduling algorithms to be
deployed, as the coordination layer, built upon a structured network globally ranking
resources, enables a global knowledge of available resources in the platform, ensuring
that each task will be run on an adequately and accurately chosen resource.

5.5 Conclusion

The evolution of clouds towards community clouds raises the need for large-scale, coor-
dinated workflow mechanisms where the whole set of resources and jobs are associated
in a transparent way. This calls for new mechanisms for large-scale coordination mech-
anisms. This chapter proposes a fully decentralized coordination space relying on a
chemical metaphor: workflows, jobs and resources are molecules to be consumed, i.e.,
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matched. The underlying communication layer ensures a fully decentralized execution
of this matching, by relying on a DHT. Moreover, the DHT-driven coordination enables
a just-in-time scheduling technique capable of matching a task to its currently perfect
resource candidate. Simulations were conducted, establishing further the feasibility and
scalability of the approach.

This chapter has two main features in comparison with the previous work. First, the
system is here resource-aware by taking into account the selection of the more appropriate
resources when processing workflows. Secondly, the workflow scheduling process is fully
decentralized among all the nodes in the community. The multiset is now implemented
through a DHT. In such a way, it is planned to extend the HOCL-TS prototype presented
in Chapter 4 with these functionalities.
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Conclusion

With the proliferation of Web services and the emergence of new service infrastructures,
service-based applications represent an important driver for the present and future of
software design. However, even though the existing service coordination models have
shown their adequacy dealing with these service-based applications, they suffer from
centralization, lack of dynamicity and low level of abstraction, which limit their relia-
bility and adoption in emerging service platforms. Consequently, there is a demand for
more dynamic, loosely coupled and high level coordination models. In this thesis, we pro-
posed a decentralized workflow system based on an unconventional coordination model
that relies on the chemical metaphor. While the coordination is decentralized, loosely
coupled and distributed among chemical workflow engines, the chemistry-inspired model
brings dynamicity, wide expresiveness and a high level of abstraction for the execution of
service compositions. In the same idea, we take the resources into account in our system
to improve the workflow execution on distributed infrastructures. Thus, we designed
a workflow scheduling framework that ensures a just-in-time and a fully decentralized
workflow-resources matching by relying on a chemically coordinated shared space, a mul-
tiset built on top of a DHT.

In Chapter 1, we presented the main methodologies for service composition, as well
as the more mature and relevant systems for the workflow management. However, the
majority of these approaches are still mostly based on a centralized coordination model.
Their workflow executable languages are intrinsically static and do not provide concepts
for autonomous and decentralized workflow execution. As a consequence, such systems
present several drawbacks, mainly dealing with scalability, dynamicity, fault tolerance,
and security.

In order to tackle these issues, it has become crucial to propose flexible and decentral-
ized coordination mechanisms. Thus, Chapter 2 presented some of the more promising
flexible model for service coordination, which basically provide dynamic and loosely cou-
pled interaction mechanisms among services. In particular, the chemical coordination
model was shown as a promising paradigm naturally capturing parallelism, distribution,
dynamics, as well as a high level of abstraction. This model, as a conjunction of a
rule-based and a tuplespace-based model, was applied to coordinate workflows in this
thesis.

In Chapter 3 and Chapter 4, we presented the design and the implementation of a
decentralized chemically coordinated workflow management system. This system was
based on a shared multiset containing the information on both data and control de-
pendencies needed for coordination, and where chemical engines were co-responsible for
carrying out the execution of a workflow. In Chapter 3, we have proposed concepts for a
chemistry-inspired autonomic workflow execution, namely molecular composition. Such
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an analogy was shown to be able to express the decentralized and autonomous execution
of a wide variety of workflow patterns by composing reactions (reactions trigger another
reactions). Although the chemical language is naturally data-driven, the modelling of
control-driven structures is also supported, as highlighted in Chapter 3. Thus, a ready-
to-use HOCL library for this purpose has been designed and experimented, showing the
wide expressiveness of the chemical model. Consequently, in Chapter 4, the chemistry-
inspired workflow management system was prototyped based on the HOCL language,
for a centralized, tuplespace-based and fully decentralized (the multiset is statically pre-
distributed across nodes) using real workflows, providing a proof of concept and sug-
gesting promising performance in comparison to current reference workflow management
systems.

The experiments conducted using these prototypes allowed to show the benefits of
the decentralization when processing computation and data intensive workflows, as the
coordination workload was decentralized and distributed among chemical engines.

While the advantages of this model are well-established, the results presented in this
thesis open the doors to the future consideration of this unconventional model for service
coordination.

Finally, in Chapter 5, we took resources of the platform into account to complete this
chemistry-inspired workflow system. Thereby, we proposed a fully decentralized workflow
scheduling framework as a solution to the current drawbacks when scheduling workflows
in community clouds platforms. Note that, a fully decentralized implementation of the
multiset is achieved due to the use of a DHT. This two-layer framework provides support
for just-in-time multiple workflow scheduling. Based on a chemically-coordinated shared
space, all the machines of a community work as schedulers being able to map any available
resource in a chemical overlay following simple chemical rules. Consequently, a campaign
of simulations were conducted on the proposed system to evaluate its behavior showing
promising results regarding the feasibility and scalability of this approach.

Future Works

Even though our chemistry-inspired workflow management system covers an essential
part of a workflow life cycle, some open issues should be tackled in future works.

o Autonomous transformation. To facilitate the adoption of the chemical model, a
mechanism to translate traditional workflow definitions into chemical programs is
needed. Languages such as BPEL or SCUFL are commonly used in industry and
scientific domains. Their graphical and user-friendly tools facilitate the design of
workflows by end-users. Thus, a module could be plugged on top of our workflow
system to automatically transform a BPEL, SCUFL or other proprietary specifica-
tions into a chemical workflow. The resulting chemical workflow definition would
be later processed in a decentralized manner. The basis of a transformation model
have already been established in Appendix A.1, however further investigations have
to be conducted.

o Workflow partitioning. It is a technique to transform centric-based workflow defi-
nitions into self-describing portions of workflow which will be executed in a decen-
tralized manner. In the current version of our system, the workflow partitioning
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basically associates one partition per Web service involved in a workflow. However,
many other criteria may be considered when partitioning a workflow definition, as
suggested in |64]. The role of a service in a specification, its owner organization,
its physical location, the location of the data to be consumed, as well as other
QoS and distributed constraints are some of the characteristics that should be
taken into account when partitioning the service interactions of a workflow. This
could constitute an interesting topic by selecting the characteristics that improve
the performance of a specific workflow, 7.e., the data location for data-intensive
workflows.

e (JoS assurance. This technique selects one service to participate in a workflow
among a set of available services in order to accomplish a specific QoS contract.
To do that, QoS systems use dynamic binding, allowing to select at runtime the
service which better satisfies some QoS conditions. Some investigations should be
conducted to exploit the dynamic and autonomous behavior of the chemical coor-
dination model to ensure (oS constraints of a service composition, as envisioned
in [98]. Indeed, our chemistry-inspired workflow system includes the Service caller
component that enables the run time selection of services by only using its WSDL
file descriptor, as explained in Chapter 4. The Service caller component could en-
sure the accomplishment of some QoS conditions by plugging a module in charge
of this verification.

o Distributing the multiset. It is another interesting subject on which more experi-
ments should be conducted, in particular, to evaluate the fault tolerance and persis-
tence properties when processing workflows in a fully decentralized manner. Chap-
ter 5 presented a fully decentralized multiset for workflow scheduling that shows
the benefits by distributing this space. In particular, a software prototype is being
developed based on the two-layer architecture introduced in Chapter 5.

o Task or service clustering. This scheduling technique is used to minimize the com-
pletion time of a workflow in a distributed infrastructure. It increases the com-
putational granularity of workflow tasks, by grouping fine-grained tasks into the
same resource for the execution. This mechanism may be further studied and in-
cluded to our workflow system. The current version of our approach maps one
task (service) onto one resource, which may waste money and energy, in terms of a
distributed infrastructure. The task clustering improves the performance, as fine-
grained tasks are grouped and deployed on less resources instead of one per tagk.
This mechanism has been included in Pegasus showing the benefits by using this
technique [54]|. However, additional studies should be carried to determine how to
group tasks depending on the workflow structure, the target execution platform
and QoS constraints.

The contributions presented in this thesis can be applied to solve problems in many
other areas. For instance, our chemistry-inspired coordination model has been success-
fully applied as a proof of concept to show the benefits of Agile Service Networks (net-
works of services) in the context of Global Software Engineering (GSE) [TFRZ+12].

Finally, the emergence of new service infrastructures, where a high level of abstraction,
elasticity, and dynamic adaptation are mandatory requirements, led to a high demand
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for new models being able to represent both service collaborations and platforms, as
well as their inherent characteristics. In such a way, the chemical metaphor arises up
as a source of inspiration for the development of unconventional coordination models by
providing a high level of abstraction and a flexible mechanism for the execution of service
compositions.
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Appendix A

(General Concepts

A.1 Elements of a Workflow Specification

Let us consider a workflow whose data and control dependencies of the workflow were
previously defined at build-time using a traditional workflow definition language, such as
the well-known BPEL [101]. However, any workflow definition language could be used for
translating one graphical workflow representation into an executable program. We here
review several workflow languages and give the equivalences between these languages and
an HOCL-based workflow definition that will be executed by chemical engines (HOCL
Interpreter).

BPEL is an imperative and control-based workflow language. It includes the explicit
definition of the control flow that determines the execution order. Likewise, in BPEL,
the Web services are primitive execution blocks, and service composition is achieved
using control primitives such as sequence, parallel, conditionals and loops. In contrast,
workflow languages such as Scufl or HOCL are data-driven. Scufl is an XML-based
workflow description language. Scufl defines an abstract workflow from a graph of data
interactions between different services called processors, hiding the complexity of the
interoperation of the services to the users. HOCL also presents a data-driven behavior,
services are represented as chemical solutions, where data are represented as molecules
and computations as the chemical reactions among molecules. HOCL can be also used as
a hybrid language (both control and data driven). To provide a control-driven behavior,
we need to define additional chemical rules known as generic, i.e., independent of any
workflow definition. These additional rules, that are part of the HOCL workflow engine,
allowing to define the order of execution, as detailed in Section 3.2.4 and Section 3.2.5
of Chapter 3.

Among the variety of existing workflow languages for business domains, such as
XPDL [137]|, BPEL and YAWL; and for scientific domains, such as Kepler, DAX and
Scufl. We choose BPEL and Scufl how the most representative of both domains to detail
the differences between them and HOCL, as is summarized in the Table A.1.

In Table A.1, Web services definitions are represented in BPEL using <partner-
Links> primitive or in Taverna using <processor> primitive, while they are represented
as ChWSes in HOCL, a ChWS represents one service participating in the workflow.
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General Concepts

BPEL

Scufl/Taverna

HOCL

‘Web service defini-
tion

Defined wusing <part-
nerLinks>

Defined using <proces-
sor> plug-ins

Defined using
ChWS:<...> molecules

Activity definition

Basic and structure ac-
tivities

Data processing units

Chemical rules

Data definition

Explicit using variables

Implicit (input/output
in data units)

Implicit or explicit using
molecules

Semantic links

Transfer of control

Transfer of data

Transfer of data & con-
trol

Supported patterns

Sequence, parallel
split, exclusive-choice,
synchronization,
simple-merge...

Sequence, parallel split
and conditional

Sequence, parallel split,
synchronization, simple-
merge, exclusive-choice...

Parallel execution

Explicitly defined using
<flow> primitive

Implicit

Implicit

Workflow manage-
ment

Centralized (Single co-
ordinator node)

Centralized

Centralized / Decentral-
ized

Table A.1: Comparison of BPEL, Scufl and HOCL.

WS definitions. A BPEL process consists of steps, each step is an activity. Activities
are a set of primitives like invoke, reply, assign, flow among others, which are used for
common tasks. In Scufl, activities are data processing units with input/output ports that
can be executed as soon as input data are received. Unlike in the chemical paradigm, we
use chemical rules to execute these tasks, as summarized in Table A.1.

Data definition. For data definition, in Table A.1, BPEL requires the explicit defini-
tion of variables to hold data structures that are meant to be shared among activities.
This definition takes additional effort but also brings more flexibility. For example, in
BPEL you can define both g¢lobal variable concerning the whole flow and local variable
whose scope will be a specific activity. In HOCL, molecules within the main solution
can be used as global variables without the need for explicit definition thanks to its
data-driven behavior, as detailed in Section 3.2.3 of Chapter 3. M, BPEL variables of
complex type must be initialized prior to their first use. However, this initialization is
not required for the molecules in HOCL and neither in Taverna where the notion of data
is directly linked from an output to an input with no initialization.

Data transfer. In function of the information transferred through links among activ-
ities or nodes, our system distributes control and data information about the execution.
In the scientific workflow area, workflows take the shape of data processing pipelines re-
quiring to express data transfer easily. That is the reason because Taverna is data-driven
language. In contrast, in BPEL, control information is only transferred through links
representing the order of execution.

Workflow management. In the traditional orchestration model of BPEL, control de-
pendencies and data are managed through a centralized engine, which results in unneces-
sary data transfer, wasted bandwidth and performance bottleneck during the execution
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of workflows. In Taverna, although the language offers a distributed execution, its co-
ordination is still managed by a centralized engine. In contrary, the chemical execution
model supports a centralized and decentralized workflow execution. The decentralized
workflow system is based on several chemical local engines which are co-responsible of
the coordination during the execution, as detailed in [FPT10].

Workflow patterns support. Currently, most workflow languages support the basic
construct of sequence, iterations, splits and joins. However, the interpretation of even
these basic constructs is not uniform and it is often unclear how more complex workflow
patterns could be supported. For instance, both BPEL and HOCL support a wide
variety of complex workflow structures such as sequence, discriminator, synchronization-
merge, simple-merge, as detailed in Section 3.2.5. These patterns are applied using some
primitives in BPEL, and by the use of some specific chemical rules in HOCL. However,
Taverna, because of its data-driven behavior only supports few workflow patterns such
as sequence, conditional and parallel split, as the order of execution is specified by data-
dependencies with no particular primitives.

To sum up, we consider that any workflow definition can be translated into a chemical
program thanks to the data-control driven coordination what we can give to our chemical
programs based on the molecular composition analogy. HOCL integrates both the sim-
plicity of data-driven for simple patterns, while supporting complex workflow patterns
by the definition of rules for control-driven dependencies.

A.2 Chemical Engine — Generic Rules

In the following, we detail the syntax of the generic rules previously explained in Sec-
tion 3.2.4 and Section 3.2.5 of Chapter 3. These rules are independent of any workflow
definition and enable a decentralized and centralized workflow execution.

Generic Rules

import fr.inria.hocl.core.hocli.jms.*;

1/ Centralized execution

let passInfoCentralized = replace chwsSource::String:<"PASS":chwsDest::String:className::String:< ?w >, ?m >, chwsDest::String:<?1>
by chwsSource:<m>, chwsDest:<w,1>

in
1/ Decentralized execution
// This rule sends the content of PASS molecule to the destination ChWS.

let passInfo = replace '"PASS":idChWS::String:< 7w >
by "Success_Pass'":idChWS:TransferMolecule.put (idChWS,w)

in

// This rule sends the content of PASS molecule to the destination ChWS whether
// one condition is satisfied. --DEPRECATED --

let passInfoCond = replace "PASS'":idChWS::String:< ?w > , "COND_PASS":value::int
by "Success_Pass_Cond":idChWS:TransferMolecule.put(idChWS,w), "COND_PASS":value
if (value==1)

in

// This rule sends ones the content of PASS molecule to the destination ChWS
// whether one condition is satisfied, Exclusive-choice.
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let passExcluCond = replace-one "PASS":idChWS::String:< ?w > , "COND_PASS":idChWS::String:value::int
by "Success_Pass_Cond":idChWS:TransferMolecule.put(idChWS,w), "COND_PASS":value
if( (value==1) )

in

// This rule sends the content of PASS molecules to the destination ChWSes whether
// one condition is satisfied, Multi-choice.

let passInfoMultCond = replace "PASS":idChWS::String:< ?w > , "COND_PASS":idChWS::String:value::int
by ”Success_Pass_Cond":idChWS:TransferMolecule.put(idChWS,w), "COND_PASS" :idChWS:value
if( (value==1) )

in

// This rule sends the content of CANCEL molecule to the destination CANCEL_ChWS.

let passInfoCancel = replace-one (passInfo=m), "CANCEL":< 7w > , "CANCEL_ChWS":idChWS::String
by "Success_Cancel":TransferMolecule.put (idChWS,w)

in

// This rule stores the CONDITION value and the result of one invocation into
// the PASS molecule.

let preparePassCond = replace "DEST":nameRegService::String, "RESULT":idChWS::String:< ?w >, "CONDITION":value::int
by "PASS":nameRegService:<"COMPLETED":idChWS:< w >, "CONDITIQON":value>,"CONDITION":value,"RESULT":idChWS:< w >|
if (value == 1)

in

// This rule stores the result of one invocation into the PASS molecule.
let preparePass = replace "DEST":nameRegService::String, "RESULT":idChWS::String:< ?w >

by "PASS":nameRegService:<"COMPLETED":idChWS:< w > >,"RESULT":idChWS:< w >
in

// This rule stores the content of the INFORMATION molecule into the PASS molecule.
let prepareInfolnPass = replace-one '"INFORMATION":nameRegService::String:< 7w >

by "PASS":nameRegService:< w >,passInfo
in
// This rule stores the DISCRIMINATOR molecule and the result of one invocation
// into the PASS molecule.

let discr_preparePass = replace "DEST":nameRegService::String, "RESULT":idChWS::String:< ?w >
by "PASS":nameRegService:<"DISCRIMINATOR","COMPLETED":idChWS:< w > >
in
// This rule stores the MERGE molecule and the result of one invocation into the PASS molecule.
let sm_preparePass = replace "DEST":nameRegService::String, "RESULT":idChWS::String:< 7w >
by "PASS":nameRegService:<"MERGE","COMPLETED":idChWS:< w > >
in

// This rule starts the execution of one ChWS producing a INVOKE molecule when
// the MERGE molecule appears into the subsolution.

let sm_setFlag = replace-one "MERGE"
by "FLAG_INVOKE"
in

// This rule starts the execution of one ChWS producing a FLAG_INVOKE molecule when
// the DISCRIMINATOR molecule appears into the subsolution.

let discr_setFlag = replace-one "DISCRIMINATOR"
by "FLAG_INVOKE"

in

// This rule starts the execution of one ChWS when the COMPLETED molecule appears
// into the subsolution.

let setFlag = replace-one '"COMPLETED":idChWS::String:< 7w >
by "FLAG_INVOKE","COMPLETED":idChWS:< w >
in

// These rules are used to apply the Synchronization merge pattern.

let synclg_preparePass = replace "DEST":nameRegService::String, "RESULT":idChWS::String:< ?w >, "WAITFOR":number::i
by "PASS":nameRegService:<"WAITFOR":number, "COMPLETED":idChWS:< w > >, "WAITFOR":number,"RESULT":idChWS:< w >

in

// These rules wait until all COMPLETED molecules are been received, the number
// of molecules depends of the molecule WAITFOR. These rules are used to apply
// the synchrnoziation merge pattern.

let syncMerge = replace "WAITFOR":number::int, "COMPLETED":idChWS1::String:< 7p >, "SYNCMG_INBOX":< 7w >
by "SYNCMG_INBOX":<"COMPLETED":idChWS1:< p >, w>, "WAITFOR": (number-1)
if number > 0O

in
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let syncMg_setFlag = replace-one "WAITFOR":0
by "FLAG_INVOKE"
in

// These rules are used to apply the Synchronization pattern.

let synchronize = replace "IN":x::int, "COMPLETED":idChWS1::String:< ?p >, "START_INVOCATION":<?w >
by "START_INVOCATION":< "COMPLETED":idChWS1:< p >,w >, "IN":(x-1)
if x > 0
in
let sync_setFlag = replace-one "IN":0
by "FLAG_INVOKE"
in

// This rule sends the information to the destination node when the loop condition is true.

let putPassInfo = replace '"DEST'":nameRegService::String, "RESULT":idChWS::String:< 7w >, "CONDITION_LOOP":value::int
by "PASS":nameRegService:<"COMPLETED":idChWS:< w > >
if (value == 1)

in

// This rule sends the information to the first node involved in the loop when the loop condition is false.

let putPassLoop = replace "DEST_LOOP":nameRegService::String, "CONDITION_LOQOP":value:

by "PASS":nameRegService:< q >, "CONDITIQON_LOOP":value, "DEST_LOOP
if (value == 0)

:int, "INFORMATION_LQOP":< ?q >
:nameRegService

in
// This rule puts the information into the molecule PASS and it keeps the DEST molecules for the next transfers during the loop.

let loop_preparePass = replace "DEST":nameRegService::String, "RESULT":idChWS::String:< 7w >
by "PASS":nameRegService:<"COMPLETED":idChWS:< w > >,"DEST":nameRegService
in

/] ----- MULTI-MERGE Workflow Pattern -----
//These rules are used to apply the Multi merge workflow pattern.

let mm_reset = replace-one "RESET":< 7w >, "LOCKED":0, "FLAG_INVOKE"
by w,"RESET":< w >, "LOCKED":1, "FLAG_INVOKE"
in

let mm_lockReset = replace "LOCKED":1, "RESULT":idChWS::String:< ?w >, "Success_Pass':destination::String:pass::boolean
by mm_reset, "LOCKED":0
in

let mm_lockReset_End = replace "LOCKED":1, "RESULT":idChWS::String:< ?w >
by mm_reset, "LOCKED":0
in

// Two new rules for mm_reset when using a condition.

let mm_lockReset_Cond = replace "LOCKED":0, "RESULT":idChWS::String:< 7w >,
"Success_Pass_Cond'":destination::String:pass::boolean
by mm_reset, "LOCKED":0Q
in

let mm_lockReset_Condition_End = replace "LOCKED":1, "RESULT":idChWS::String:< 7w >, "CONDITION":1
by mm_reset, "LOCKED":0
in

A.2.1 BlastReport Workflow Definition

BlastReport is a home-built bioinformatics workflow which retrieves a blast report of a
protein in a database given its ID. A chemical workflow definition of this BlastReport
workflow expresses all the control and data dependencies, is illustrated on Table A.2.
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<
"ChWS_1":<
invoke_fetchBatch,"CALL":"ChWS_1":"http://www.ebi.ac.uk/ws/services/WSDbfetch?wsdl",passInfo,
"INVOKE":1,"PARAM":<"db":"emblcds","style":"default","ids":"EDL10223.1","format":"fasta">, "DEST":"ChWS_2":"MultisetBlastR",preparePass
>
s
"ChWS_2":<
invoke_run,"CALL":"chWS_2":"http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl",passInfo,
"OPERATION":"run","PARAM":<"program":"blastp","stype":"protein","title":"Proof">,
(replace-one "COMPLETED" :idChWS: :String:<"fetchBatchReturn':result::String>, "PARAM":<7w> by "PARAM":<w,'sequence':result>, "INVOKE":1),
"DEST":"ChWS_4":"MultisetBlastR","DEST":"ChWS_3":"MultisetBlastR","DEST":"ChWS_5":"MultisetBlastR",preparePass
>,
"ChWS_3":<
invoke_getStatus,"CALL":"chWS_3":"http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl",passInfo,
"OPERATION":"getStatus","PARAM":<>, "DEST":"ChWS_4":"MultisetBlastR",
(replace-one "COMPLETED":idChWS::String:<"jobId":result::String>, "PARAM":<?w> by "jobid":result, "INVOKE":1,"PARAM":<w,"jobid":result>),
(replace "RESULT":"ChWS_3":<"status":result::String>, "jobid":value::String
by preparePass, "RESULT":"ChWS_3":<'"status":result>
if (result.contains("FINISHED"))),
(replace "jobid":result::String, "RESULT":"ChWS_3":<"status":result2::String>
by "INVOKE":1,"jobid":result,"OPERATION":'"getStatus", "PARAM":<"jobid":result> if ('result2.contains ("FINISHED")))
>
"ChWS_4":<

invoke_getResultTypes,"CALL":"chWS_4":"http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl",passInfo,
"OPERATION":"getResultTypes","PARAM":<>, ,"DEST":"ChWS_5":"MultisetBlastR",preparePass,
(replace-one "COMPLETED":i1dChWS2: :String:<"status":"FINISHED">,"COMPLETED" :idChWS: : String:<"jobId":result::String>, "PARAM":<7w> by "PARAM":<w,"jobId":result>, "INVOKE":1)
>,
"ChWS_5":<
invoke_getResult,"CALL":"chWS_5":"http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl",passInfo,
"OPERATION":"getResult","PARAM": <>,
(replace-one "COMPLETED":idChWS::String:<"jobId":result::String>, "PARAM":<?w> by "PARAM":<w,"jobid":result> ),
(replace-one "COMPLETED":idChWS::String:<"ARRAY":<<"identifier":"sequence",?w>,?p>>, "PARAM":<71> by "PARAM":<1,"type":"sequence">, "INVOKE":1)

Table A.2: BlastReport chemical workflow definition
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A.2.2 Montage Workflow Definition

Montage' |32] is a classic astronomical image mosaic workflow processing large images of
the sky. The chemical workflow definition modelling the 27 ChWSes and its control and
dependencies is illustrated on Tables A.3, A.4 and A.5.

A.2.3 Cardiac Analysis Workflow Definition

CardiacAnalysis is a cardiovascular image analysis workflow which extracts the heart’s
anatomy from a series of image sequences by applying image processing algorithms, devel-
oped by the CREATIS-LRMN biomedical laboratory?. The chemical workflow definition
modelling the six ChWSes and its control and dependencies is illustrated on Table A.6.

A.3 Workflow Scheduling using HOCL

In this section, we show a set of generic rules used for scheduling workflows in our
chemically coordinated scheduling system, as detailed in Chapter 5.

A.3.1 Workflow Decomposition

As briefly introduced in Section 5.2.6.2 of Chapter 5, we here present a detailed version
of the generic rules needed for a workflow decomposition. Considering any chemical
workflow specification, the following rules decompose it in levels, producing new molecules
that represent these levels.

To do that decomposition in ascending order, we need some additional rules which
are given in Algorithm 16. Firstly, the chemical engine launchs the exitNodes and noFz-
1itNodes rules, responsible for the identification of the exit and leaf nodes in a workflow.
Once, we discovered these nodes, the initGetLevels and getLevels rules iterate over all
the nodes until the source node associating them to a specific level. Note that, the get-
NumLevels rule transforms the descendending into ascending order for the id’s (denoted
as num Line 19.11) of each level. Furthermore, some reaction rules are included into the
main solution in order to execute in sequence some of the rules previously defined.

"http://montage.ipac.caltech.edu/
2http:/ /www.creatis.insa-lyon.fr /site/
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<
"ChWS_1":<

"DEST":"ChWS_7","DEST":"ChWS_9" ,"DEST":"ChWS_12", passInfo,preparePass,"FLAG_INVDKE",“DPERATIDN":“mProjactPP",“CALL":”ChHS_l":“http://localhost:8080/ods/processes/MontageSarvice?wsdl”,
"PARAM":<"param0":"1.00638", "paraml":"/2mass-atlas-990502s-j1440186.fits", "param2":"p2mass-atlas-990502s-j1440186.fits" , "param3":'"region_20080505_143233_14944.hdr">

>,
"ChWs_2":<
"DEST

"ChWS_7","DEST":"ChWS_8", passInfo,preparePass, "FLAG_INVOKE","OPERATION":"mProjectPP","CALL":"ChWS_2":"http://localhost:8080/ode/processes/MontageService?wsdl",

"PARAM":<"param0":"1.00638", "paraml":"/2mass-atlas-990502s-j1440198.fits", "param2":"p2mass-atlas-990502s-j1440198.fits" , "param3":'"region_20080505_143233_14944.hdr">

>

"ChWs_3":<

"DEST":"ChWS_9", "DEST":"ChWS_11","DEST":"ChWS_10", passInfo,preparePass, "FLAG_INVOKE","OPERATION":"mProjectPP","CALL":"ChWS_3":"http://localhost:8080/ode/processes/MontageService?wsdl",
"PARAM":<"param0":"1.00638", "parami":"/2mass-atlas-990502s-j1430092.fits", "param2":"p2mass-atlas-990502s-j1430092.fits" , "param3":"region_20080505_143233_14944.hdr">

>
"ChWS_4":<

"DEST":"ChWS_15","DEST":"ChWS_13", passInfo,preparePass,"FLAG_INVUKE",“OPERATIUN":“mProjectPP“,"CALL":“Cth_4“:"http://localhost:8080/ode/processes/MontageService?wsdP'
"PARAM":<"param0":"1.00638", "parami":"/2mass-atlas-990502s-j1420198.fits", "param2":"p2mass-atlas-990502s-j1420198.fits" , "param3":'"region_20080505_143233_14944.hdr">

>,
"ChWS_5":<

"DEST":"ChWS_14","DEST":"ChWS_13","DEST":"ChWS_10", passInfo,preparePass,“FLAG_INVUKE“,"OPERATION“:"mProjectPP“,"CALL“:"Cth_S“:"http://localhost:8080/ode/procsssss/MontageServics?wsdl",
"PARAM":<"param0":"1.00638", "parami":"/2mass-atlas-990502s-j1420186.fits", "param2":"p2mass-atlas-990502s-j1420186.fits" , "param3":'"region_20080505_143233_14944.hdr">

>,
"ChWS_6":<

"DEST":"ChWS_8","DEST":"ChWS_11","DEST":"ChWS_12","DEST":"ChWS_14","DEST":"ChWS_15", passInfo,preparePass,"FLAG_INVOKE","OPERATION":"mProjectPP",

"PARAM":<"paramQ":
"CALL":"ChWS_6":"http://localhost:8080/ode/processes/MontageService?wsdl",
>,
"ChWs_7":<

"OPERATION":"mDiffFit",synchronize, sync_setFlag, "START_INVOCATIQN":<>,"IN":2
:String>,"COMPLETED"
:fileName2, "param3":"diff.000001.000003.fits" ,”param4":“region_20080505_143233_14944.hdr"))

(replace "START_INVOCATION":<"COMPLETED":idChWS::String:<"return":fileNamel:
by "PARAM":<"paramO":"fit.000001.000003.txt", "paraml'":fileNamel, "param2"
>
"ChWS_8":<

"1.00638", "paraml":"/2mass-atlas-990502s-j1430080.fits", "param2":'"p2mass-atlas-990502s-3j1430080.fits" , "param3":"region_20080505_143233_14944.hdr">,

"DEST":"ChWS_16",passInfo,preparePass,"CALL":"ChWS_7":"http://localhost:8080/ode/processes/MontageService?usdl",
idChWS: :String:<"return":fileName! String>>

"OPERATION":"mDiffFit",synchronize, sync_setFlag, "START_INVOCATION":<>,"IN":2, "DEST“:"Cth_16",passInfo,preparePass,“CALL":“ChHS_S":“http://localhost:8080/ode/processes/MontageService?wsdl“,
(replace "START_INVOCATION":<"COMPLETED":idChWS::String:<"return":fileNamel::String>,"COMPLETED":idChWS::String:<"return":fileName2::String>>
by "PARAM":<"param0":"fit.000001.000006.txt", "parami":fileNamel, "param2":fileName2, "param3":"diff.000001.000006.fits" ,"paramé":'"region_20080505_143233_14944.hdr">)

>,
"ChWS_9":<

"OPERATION":"mDiffFit",synchronize, sync_setFlag, "START_INVOCATION":<>,"IN":2, "DEST“:"Cth_lG",passInfo,preparePass,“CALL":“Cth_Q":“http://localhost:8080/ode/processes/MontageService?wsdl“,

(replace "START_INVOCATION":<"COMPLETED":idChWS:
by "PARAM":<"param0":"fit.000002.000003.txt", "paraml

>

"ChWS_10":<
"OPERATION":"mDiffFit",synchronize, sync_setFlag, "START_INVOCATION":<>,"IN"
(replace "START_INVOCATION":<"COMPLETED":idChWS tring:<"return":fileNamel:
by "PARAM":<"paramQ":"fit.000002.000004.txt", "paraml':fileNamel, "param2"

>,

"ChWS_11":<
"OPERATION":"mDiffFit",synchronize, sync_setFlag, "START_INVOCATION":<>,"IN"
(replace "START_INVOCATION":<"COMPLETED":idChWS::String:<"return":fileNamel:
by "PARAM":<"paramQ":"fit.000002.000006.txt", '"paraml':fileNamel, "param2"

>,

:String:<"return":fileNamel::String>, "COMPLETED"
:fileNamel, "param2":fileName2, "param3

idChWS::String:<"return":fileName2
diff.000002.000003.fits" ,"paramé

tring>>
:"region_20080505_143233_14944 .hdr">)

:2, "DEST":"ChWS_16",passInfo,preparePass,"CALL":"ChWS_10":"http://localhost:8080/0de/processes/MontageService?wsdl",
:String>,"COMPLETED" : idChWS: : String:<"return":fileName2: :String>>
:fileName2, "param3":"diff.000002.000004.fits" ,"paramé4":'"region_20080505_143233_14944.hdr">)

:2, "DEST":"ChWS_16",passInfo,preparePass,"CALL":"ChWS_11":"http://localhost:8080/ode/processes/MontageService?wsdl",
:String>,"COMPLETED" :idChWS: :String:<"return":fileName2: :String>>
:fileName2, "param3":"diff.000002.000006.fits" ,"param4":'"region_20080505_143233_14944.hdr">)

Table A.3: Montage chemical workflow definition — part.1.




"ChWS_12":<
"OPERATION":"mDiffFit",synchronize, sync_setFlag, "START_INVOCATION":<>,"IN":2, "DEST":"ChWS_16",passInfo,preparePass,"CALL":"ChWS_12":"http://localhost:8080/0de/processes/MontageService?wsdl",
(replace "START_INVOCATION":<"COMPLETED":idChWS::String:<"return":fileNamel::String>,"COMPLETED":idChWS: :String:<"return":fileName2::String>>
by "PARAM":<"paramO":"fit.000003.000006.txt", "paraml":fileNamel, "param2":fileName2, "param3":"diff.000003.000006.fits" ,"param4":'"region_20080505_143233_14944.hdr">)

>,

"ChWS_13":<
"OPERATION":"mDiffFit",synchronize, sync_setFlag, "START_INVOCATION":<>,"IN":2, “DEST":”Cth_lG“,passInfo,preparePass,"CALL”:"Cth_13“:"http://localhost:8080/ode/processes/MontageService?wsdl”,
(replace "START_INVOCATION":<"COMPLETED":idChWS::String:<"return":fileNamel::String>,"COMPLETED":idChWS: :String:<"return":fileName2::String>>
by "PARAM":<"param0":"fit.000004.000005.txt", "parami":fileNamel, "param2":fileName2, "param3":'"diff.000004.000005.fits" ,"param4":'"region_20080505_143233_14944.hdr">)
>,

"ChWS_14":<
"OPERATION":"mDiffFit",synchronize, sync_setFlag, "START_INVOCATION":<>,"IN":2, ,"DEST":"ChWS_16",passInfo,preparePass,"CALL":"ChWS_14":"http://localhost:8080/ode/processes/MontageService?wsdl",
(replace "START_INVOCATION":<"COMPLETED":idChWS::String:<"return":fileNamel::String>,"COMPLETED":idChWS::String:<"return":fileName2::String>>
by "PARAM":<"param0":"fit.000004.000006.txt", "paraml":fileNamel, "param2":fileName2, "param3":"diff.000004.000006.fits" ,"paramé4":'"region_20080505_143233_14944.hdr">)
>,
"ChWS_15":<
"OPERATION":"mDiffFit",synchronize, sync_setFlag, "START_INVOCATION":<>,"IN":2,"DEST":"ChWS_16",passInfo,preparePass,"CALL":"ChWS_15":"http://localhost:8080/ode/processes/MontageService?wsdl",
(replace "START_INVOCATION":<"COMPLETED":idChWS::String:<"return":fileNamel::String>,"COMPLETED":idChWS::String:<"return":fileName2::String>>
by "PARAM":<"param0":"fit.000005.000006.txt", "paraml":fileNamel, "param2":fileName2, "param3":'"diff.000005.000006.fits" ,"param4":'"region_20080505_143233_14944.hdr">)
>,
"ChWS_16":<
"OPERATION":"mConcatFit",synchronize, sync_setFlag, "START_INVOCATION":<>,"IN":9, ,passInfo,preparePass,“CALL":”Cth_lG":"http://localhost:8080/ode/processes/MontageService?wsdP'
"DEST":"ChWS_17","PARAM" :<"param0":"statfile_20080505_143233_14944.tbl", "paraml":"fits.tbl","param2":"/home/hector;j2f/temp/exampleProof">

>

"ChWS_17":<
"OPERATION":"mBgModel","FLAG_INVOKE", "DEST“:"Cth_22",“DEST“:"ChWS_23",passInfo,preparePass,"CALL":”Cth_17“:"http://localhost:8080/ode/procssses/MontageService?wsdl",
(replace "COMPLETED":idChWS::String:<"return":fileName::String> by "PARAM":<"param0'":"100000", "parami":'"pimages_20080505_143233_14944.tbl", "param2":fileName, '"param3":'"corrections.tbl">),
"DEST":"ChWS_18","DEST":"ChWS_19","DEST" :"ChWS_20","DEST":"ChWS_21"
>,
"ChWS_18":<
"OPERATION": "mBackground","FLAG_INVOKE","DEST":"ChWS_24",passInfo,preparePass,"CALL":"ChWS_18":"http://localhost:8080/ode/processes/MontageService?wsdl",
(replace "COMPLETED":idChWS::String:<"return":fileName::String>
by "PARAM":<"paramQ":"", "paraml":'p2mass-atlas-990502s-j1440198.fits", "param2":'"c2mass-atlas-990502s-j1440198.fits", "param3":'"pimages_20080505_143233_14944.tbl", "param4":fileName>)
>,
"ChWS_19":<
"OPERATION": "mBackground","FLAG_INVOKE", "DEST":"ChWS_24",passInfo,preparePass,"CALL":"ChWS_19":"http://localhost:8080/ode/processes/MontageService?wsdl",
(replace "COMPLETED":idChWS::String:<"return":fileName::String>
by "PARAM":<"param0":"", "paraml":'"p2mass-atlas-990502s-3j1430092.fits", "param2":'"c2mass-atlas-990502s-j1430092.fits", "param3":'"pimages_20080505_143233_14944.tbl", "param4":fileName>)
>
"ChWS_20":<
"OPERATION":"mBackground","FLAG_INVOKE", ,"DEST":"ChWS_24",passInfo,preparePass,"CALL":"ChWS_20":"http://localhost:8080/0de/processes/MontageService?usdl"
(replace "COMPLETED":idChWS::String:<"return":fileName::String>
by "PARAM":<"param0":"", "paraml':'"p2mass-atlas-990502s-3j1440186.fits", "param2":'"c2mass-atlas-990502s-j1440186.fits", "param3'":'"pimages_20080505_143233_14944.tbl", "param4":fileName>)
>
"ChWS_21":<
"OPERATION": "mBackground","FLAG_INVOKE", ,"DEST":"ChWS_24",passInfo,preparePass,"CALL":"ChWS_21":"http://localhost:8080/ode/processes/MontageService?wsdl",
(replace "COMPLETED":idChWS::String:<"return":fileName::String>
by "PARAM":<"paramQ":"", "paraml":'p2mass-atlas-990502s-3j1420186.fits", "param2":'"c2mass-atlas-990502s-j1420186.fits", "param3":'"pimages_20080505_143233_14944.tbl", "param4":fileName>)
>

Table A.4: Montage chemical workflow definition — part.2.
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"ChWs_22":<
"OPERATION": "mBackground","FLAG_INVOKE", "DEST":"ChWS_24",passInfo,preparePass,"CALL":"ChWS_22":"http://localhost:8080/ode/processes/MontageService?wsdl",

(replace "COMPLETED":idChWS::String:<"return":fileName::String>

by "PARAM":<"paramQ":"", "paraml":'p2mass-atlas-990502s-3j1420198.fits", "param2":'"c2mass-atlas-990502s-j1420198.fits", "param3":'"pimages_20080505_143233_14944.tbl", "param4":fileName>)
>,
"ChWS_23":<
"OPERATION": "mBackground","FLAG_INVOKE", ,"DEST":"ChWS_24",passInfo,preparePass,"CALL":"ChWS_23":"http://localhost:8080/ode/processes/MontageService?wsdl",
(replace "COMPLETED":idChWS::String:<"return":fileName::String>
by "PARAM":<"paramO":"", "paraml":'p2mass-atlas-990502s-3j1430080.fits", "param2":'"c2mass-atlas-990502s-j1430080.fits", "param3":'"pimages_20080505_143233_14944.tbl", "param4":fileName>)
>,
"ChWS_24":<
"OPERATION":"mImgtbl",synchronize, sync_setFlag, "START_INVOCATION":<>,"IN":6, "DEST":'"ChWS_25",passInfo,preparePass,
"PARAM":<"paramO":"", "paraml":"cimages_20080505_143233_14944.tbl","param2":'"newimages.tbl">,"CALL":"ChWS_24":"http://localhost:8080/0ode/processes/MontageService?wsdl"
>,
"ChWS_25":<
"OPERATION":"mAdd", "DEST" “ChWS_26“,passInfo,preparePass,"CALL”:"ChWS_25":“http://localhost:8080/ode/processes/MontageService?wsdl”,
(replace "COMPLETED":idChWS::String:<"return":fileName::String>
by "FLAG_INVOKE","PARAM":<"paramQ":"","paraml":fileName, "param2":'"region_20080505_143233_14944.hdr","param3": "mosaic_20080505_143233_14944.fits">)
>,
"ChWS_26":<
"OPERATION":"mShrink", "DEST":"ChWS_27",passInfo,preparePass,"CALL":"ChWS_26":"http://localhost:8080/ode/processes/MontageService?wsdl",
(replace "COMPLETED":idChWS::String:<"return":fileName::String> by "FLAG_INVOKE","PARAM":<"param0":fileName, "paraml":'"shrunken_20080505_143233_14944.fits">)
>,
"ChWS_27":<
"OPERATION": "mJpeg","CALL":"ChWS_27":"http://localhost:8080/0de/processes/MontageService?wsdl"
(replace "COMPLETED":idChWS::String:<"return":fileName::String>
by "FLAG_INVOKE","PARAM":<"param0'":1, "paraml':"-gray", "param2":fileName, "param3":"-1.5s", "param4":"60s", "param5":"montage.jpg">),
>
>

Table A.5: Montage chemical workflow definition — part.3.




<
"ChWS_1":<
"DEST":"ChWS_2",passInfo,preparePass,"CALL":"ChWS_1":"http://adonis-5:8080/0de/processes/DICOMAnalyzerService?wsdl",
"PARAM" :<"param0":"/root/MpiReg/bin/", "paraml":"/root/MpiReg/dataold", "param2":"/root/MpiReg/dataold/sorted">,"FLAG_INVOKE"

>,
"ChWS_2":<
( replace "COMPLETED":idChWS::String:<"ARRAY":<"return":dir::String, ?u>>
by "COMPLETED":idChWS:<"ARRAY":<w>>,"FLAG_INVOKE",
"PARAM" :<"param0Q":"/root/MpiReg/bin/", "paraml":dir, "param2":20 , "param3":71 ,"param4":142, "paramb":169>
),
"DEST":"ChWS_3",passInfo,loop_preparePass,"CALL":"ChWS_2":"http://adonis-5:8080/ode/processes/ImageCropService?wsdl"
>,
"ChWS_3":<
(
replace "COMPLETED":idChWS::String:<"ARRAY":<"return":dir::String, 7w>>
by "COMPLETED":idChWS:<"ARRAY":<w>>,"FLAG_INVOKE","PARAM":<"param0":"/root/MpiReg/bin/", “"parami":dir,"param2":"Heart.mhd">
),
"CALL":"ChWS_3":"http://adonis-5:8080/0de/processes/InterpolationService?wsdl", "DEST":"ChWS_4", passInfo, loop_preparePass
>,
"ChWS_4":<
( replace "COMPLETED":idChWS::String:<"return":pathImage::String>
by "DEST":"ChWS_56","DEST":"ChWS_6","FLAG_INVOKE","PARAM":<"param0":"/root/MpiReg/bin/",
"parami": (pathImage.substring(0,pathImage.lastIndex0f("/"))),
"param2": (pathImage.substring(pathImage.lastIndex0f("/")+1,pathImage.length())), "param3":"/root/MpiReg/config.init">
),
"CALL":"ChWS_4":"http://adonis-5:8080/0de/processes/ImagePyramidDecomService?wsdl", passInfo, loop_preparePass
>,
"ChWS_5":<
( replace "COMPLETED":idChWS::String:<"ARRAY":<"return":pathFileO::String,7w>>
by "COMPLETED":idChWS:<"ARRAY":<w>>, "FLAG_INVOKE","PARAM":<"param0":"/root/MpiReg/bin/", "paraml":pathFileO>
),
"CALL":"ChWS_5":"http://adonis-5:8080/0de/processes/GradientComputingService?wsdl"
>,
"ChWS_6":<
( replace "COMPLETED":idChWS::String:<"ARRAY":<"return":pathFileO::String, ?w>>
by "COMPLETED":idChWS:<"ARRAY":<w>>,"FLAG_INVOKE","PARAM":<"paramQ":"/root/MpiReg/bin/","paraml" :pathFile0,"param2":0,"param3":4,"param4":"0.1">
)
, "CALL":"ChWS_6":"http://adonis-5:8080/0de/processes/BorderDetectionService?wsdl"
>
>

Table A.6: CardiacAnalysis chemical workflow definition.
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Algorithm 16 Generic rules — Workflow Decomposition.

19.01 let ezitNodes = replace iDWS:( ?w ), IT LEvVELS:num, Nopes:( 7x )
19.02 by LeveLs:( Leven:num:( idWS ), It Levers:(num-1), Lever:(num-1):( ), Nopes:( x )

19.03 let noEzitNodes = replace iDWS:( ?p, DesT:destination ), NopEs:( 7w )

19.04 by Nobes:( IDWS:( p, DesT:destination ), w ),

19.05 let getLevels = replace IT _LEVELs:num, ExiT_ NoDE:( dest, 7m ), LEVEL:num:( 7x ),

19.06 Nobpes:( iIDWS:( ?p,Dest:destination ,?w ), 7h )

19.07 by LEVEL:num:( IDWS, x ), ExiT_ NoDE:Z dest, m ), IT _LEVELS:num, NoDEs:( h )
19.08 if (dest==destination)

19.09 let initGetLevels = replace ( Nopes:( IDWS:( 7p ), 7x ), 7w )
19.10 by ( Nopes:( IDWS:( p ), x ), getLevels, w )

19.11  let getNumlLevels = replace REsT:x, LEVELs:( LEVEL:num:( ?k ), 7g ), IT_ LEVELS:value

19.12 by ResT:x, LeveL:(num-x):( k ), LeveLs:( g ), [T Leves:(value+1)

— MAIN SOLUTION CONTENT —
19.13  (
19.14 ey
19.15 (replace-one ( noExitNodes=s,?w ) by (w, exitNodes, getLevels)),initGetLevels,
19.16 (replace-one (getLevels=s, LEveL:num:(?l), Exit  Nope:(?m),IT LeveLsmnum, Levers:(?w), ?k)
19.17 by ( k, Exit_NobpEe:( 1), LEveLs:(LEVEL:num:( 1 ), w),
19.18 It Leveus:(num-1), LeveL:(num-1):( ) )),
19.19 (replace-one initGetLevels=s, (NopEes:("END"), LEvEL:num:(?1), ?w) by w ),
19.20 (replace-one Exit_NobDE:(x, ?w), LEVELs:(LEVEL:num:(?k), 7g), IT LEVELS:value
19.21 by Rest:num, LeEvEL:0:(k), LEVELS:(g, "END"), IT LEVELS:0),
19.22 getNumLevels,
19.23 (replace-one getNumLevels=s, ResT:x, LEveLs:("END"), 71 by 1)

19.24 )

A.3.2 Opportunistic Load Balancing

The OLB heuristic assigns each task to the first available resource without considering
any time estimations by running this task on that resource.

Chemical implementation. In Algorithm 17, the mapOpploadBalancing rule associates
each task to the first available resource in the system.

Algorithm 17 Generic rules — OLB

20.01 let mapOpploadBalancing = replace Task:idT:weight, REs:idR:(cpuLoad,memUsed,numProc,?w )
20.02 by Res Task:idT:idR
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A.3.3 Max-min

The Max-min heuristic finds for each eligible task, the resource that gives the mazimum
completion time for a task.

Chemical implementation. In Algorithm 18, first, the sorted TaskMaz and sorted TaskMaz-
End rules obtain the task with the minimum weight respectively. Then, the initResList
and resetResList rules iterate task by task to associate them to each resource. Next,
the calcEstMazmin rule calculates the mazimum completion time of each ready task on
each resource. Finally, the reactions rule into the main solution selects the mapping
task-resource that gives the mazimum completion time.

Algorithm 18 Generic rules — Max-min

21.01 let resetResList = replace Task:idT:cost, SORTED _Tasks:(Task:idTX:costX, 7w ),

21.02 Res List:( Res:idR:(?m), 7n),Res Maprp_LisT:("END"),

21.03 REs_Task:idT:(idR:costRes, "END")

21.04 by Res Task:idT:(idR:costRes),REs Maprp List:(n, "END"), REs List:(n),
21.05 Task:idTX:costX, REs  Task:dTX:("END"), SorTED _Tasks:(w)
21.06 let initResList — replace-one SorRTED Tasks:(Task:idT:cost,?w ), REs List:(?p)

21.07 by SorTED _Tasks:(w), Task:idT:cost, resetResList, REs _ Task:dT:("END"),
21.08 REs_Maprp_ LisT:(p, "END"), REs_ LisT:(p)

21.09 let calcEstMazmin = replace Task:idT:cost, Res Task:idT:( 70 ),

21.10 REs _Maprp_ LisT:( REs:idR:(cpuLoad,memUsed,numProc,?w), 71
21.11 by Task:idT:cost, Res Mapp LisT:(l),

21.12 Res_ Task:idT:( idR:calculateETC _Maxmin(idT,idR,cpu,mem,nP, cost), o)
21.13  let mapMaxmin = replace Res Task:iddT:(idRX:costX, idRY:costY, 71)

21.14 by ReEs _Task:idT:(idRX:costX, 1)

21.15 if (costX >= costY)

21.16  let sortedTaskMaz = replace Tasks:(Task:idX:costX, Task:idY:costY, 7w ), SORTED _Tasks:( 7p )
21.17 by Tasks:( Task:idY:costY, w ), Sorrep Tasks:( Task:idX:costX, p)

21.18 if (costX >= costY)

21.19 let sortedTaskMaxzEnd = replace Tasks:(Task:idT:costX), SORTED _Tasks:( 7p )
21.20 by SorTED Tasks:(p, Task:idX:costX, "END“), initResList

— MAIN SOLUTION CONTENT —

21.21  (

21.22 s

21.23 mapMaxmin, calcEstMaxmin, sorted TaskMax, sortedTaskMaxEnd,

21.24 (replace-one Task:idT:cost, SOorTED Tasks:("END"), Res  Mapp_ LisT:("END"),
21.25 Res_Task:idT:(idR:costRes, "END") by Res_ Task:dT:( idR:costRes ) )
21.26 )

A.3.4 Min-min

The Min-min heuristic finds for each eligible task (ready to be executed), the resource
that gives the minimum completion time for this task.
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Chemical implementation. In Algorithm 19, first, the sorted TaskMin and sorted TaskMi-
nEnd rules obtain the task with the minimum weight respectively. Then, the initResList
and resetResList rules iterate task by task to associate them to each resouce. Next,
the calcEstMinmin rule calculates the minimum completion time of each ready task on
each resource. Finally, the reaction rule into the main solution selects the mapping
task-resource that gives the minimum completion time.

Algorithm 19 Generic rules — Min-min

22.01 let resetResList = replace Task:idT:cost, SORTED Tasks:(Task:idTX:costX, 7w ),

22.02 Res_List:( REs:idR:(?m), "n),REs  Mapp_LisT:("END"),

22.03 Res Task:dT:(idR:costRes, "END")

22.04 by REs_Task:idT:(idR:costRes),REs Mapp_LisT:(n, "END"), REs_ List:(n),
22.05 Task:idTX:costX, Res Task:ddTX:("END"), Sorrep TASks:(w)
22.06 let initResList = replace-one SORTED Tasks:(Task:idT:cost,?w ), RES LisT:(?p)

22.07 by SorTED _Tasks:(w), Task:idT:cost, resetResList, REs _ Task:dT:("END"),
22.08 Res Mapp_List:(p, "END"), Res List:(p)

22.09 let calcEstMinmin = replace Task:idT:cost, REs Task:idT:( 70 ),

22.10 Res Maprp_ List:( Res:didR:(cpuLoad,memUsed,numProc,?w), 71
22.11 by Task:idT:cost, REs_ Mapp_ LisT:(l),

22.12 Res  Task:idT:( idR:calculateETC _Minmin(idT,idR,cpu,mem,nP, cost), o)
22.13  let mapMinmin = replace REs Task:dT:(idRX:costX, idRY:costY, ?1)

22.14 by Res Task:idT:(idRX:costX, 1)

22.15 if (costX <= costY)

22.16 let sortedTaskMin — replace Tasks:(Task:idX:costX, Task:idY:costY, ?w ), SOrTED Tasks:( 7p )
22.17 by Tasks:( Task:1dX:costX, w ), SORTED Tasks:{ Task:idY:costY, p)

22.18 if (costX <= costY)

22.19 let sortedTaskMinEnd = replace Tasks:(Task:idT:costX), SORTED Tasks:( 7p )
22.20 by SorTED _Tasks:(p, Task:idX:costX, "END*), initResList

— MAIN SOLUTION CONTENT —

22.21

22.22 s

22.23 mapMinmin, calcEstMinmin, sortedTaskMin, sortedTaskMinEnd,

22.24 (replace-one Task:idT:cost, SORTED _Tasks:("END"), REs  Mapp_LisT:("END"),
22.25 Res Task:idT:(idR:costRes, "END") by Res Task:dT:( idR:costRes ) )
22.26 )

A.3.5 Levelized Minimun Time

This heuristic consists of two phases: level sorting and Min-Time. First, the LMT
algorithm clusters the tasks that have to be executed in parallel, and then order these
tasks bagsed on their data and control dependencies, i.e., level by level. Second, each task
is matched to the best available resource, in other words, to the resource that gives the
minimum completion time for this task. To do that, this algorithm calculates the average
execution time (processing and communication cost) of each task across all the available
resources. Finally, this algorithm assigns each task to the best available resource, in other
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words, each task is matched to the resource on which it executes fastest, as suggested on
Algorithm 20.

Chemical implementation. First, the getLevels rule calculates the communication cost to
reach the nodes, and produces a molecule that contains all the levels with their tasks, as
illustrated in Algorithm 20. Second, the getTaskLevel, initResList and incrementLevel
rules iterate the lists of levels, extracting one by one the tasks from each level and asso-
ciating each task to the list of available resources. Third, the scheddTask rule produces
a molecule, with the form RES TAsK:dT:( idR1:valuel, idR2:value2, ...) containing a
list that represents the different completion time of a specific task idT for each one of the
available resources (from the previous list). Finally, the mapLmt rule iterates such list of
completion times consuming all the molecules except that one with the minimun time.
This resulting molecule represents the resource on which the task idT will be executed.

Algorithm 20 Generic rules — LMT

23.01 let getLevels = replace-one EpcEes:( 7w)

23.02 by LeveLs:Level Workflow Analysis.getLevel Tasks("EDGE" ,w)

23.03 let getTaskLevel = replace-one IT LeveELs:num, LeEVELS:( LEVEL:num:( task, ?m, "END"), ?w ),
23.04 Res List:( 71)

23.05 by It LeveLs:num, Res List:( | ), LEVELs:( LEVEL:num:( m, "END" ), w),

23.06 REs_Maprp_ LisT:(1,"END"), ReEs_Task:task:("END")

23.07 let incrementLevel = replace-one IT LevELs:num, LEVELs:( LEVEL:num:("END"), ?w)

23.08 by LEVELs:( w ), IT _LEVELs:(num+1)

23.09 let initResList = replace Task:idT:cost,REs Mapp_LisT:( "END" ),

23.10 Res_List:( REs:idR:( ?w ), ?p ), REs_ Task:idT:( idR:costRes, "END")
23.11 by Res Task:idT:( idR:costRes ), incrementLevel, Res List:( p ), getTaskLevel
23.12  let scheddTask = replace Task:idT:cost, REs Task:ddT:( 7o ),

23.13 Res Marpp_List:( Res:didR( cpuLoad,memUsed,numProc,?w ), 7p )
23.14 by Task:idT:cost, Res Mapp LisT:(p)

23.15 REs_ Task:idT:( idR:calcETC_Minmin(idT,idR,cpu,mem,nP, cost), o),
23.16 let mapLmt = replace Res Task:idT:( idRX:costX, idRY:costY, 71 )

23.17 by Res_Task:idT:( idRX:costX, 1)

23.18 if (costX <= costY)

— MAIN SOLUTION CONTENT —

23.19  (

23.20 s

23.21 getLevels,get TaskLevel,initResList,schedd Task, mapLmt
23.22 )

A.3.6 Heterogeneous Earliest-Finish-Time

This is a three phase algorithm. First, a priority value is associated to each task based
on the computation and communication costs to reach the exit node from the position
(current level) of each task. Second, the resulting list of tasks is sorted by non-increasing
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order of their values. Occasionally, if two tasks have the same priority values, one of
them is selected randomly. Third, the algorithm assigns each eligible task to the available
resource that gives the minimum computation time for scheduling. This heuristic is one
of most used among the workflow scheduling systems.

Chemical implementation. First, the communicationCost rule calculates the communi-
cation cost to reach the nodes (denoted as Tasks in Algorithm 21). Second, the calcRank
and getFinalRank produces a molecule representing a list of rank values for each task.
Next, the calcMazRank, getMazRank and initMazRank rules iterate on the list of ranks
values, denoted by the molecule with the form RANKS:( #m ) where ?m is the list of
rank values, and extract in each iteration the task molecule with the maximum rank
value. Finally, the scheddTaskIni, mapHelft and initResList rules produce a molecule
that represents the mapping of a task to the available resource that gives the minimum
computation time. This new molecule has the form RES TAsK:idT:(idR:compCostRes)
where idT" and idR are the identifiers for the task and resource, respectively.
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Algorithm 21 Generic rules — HEFT

24.01

24.02

24.03

24.04

24.05

24.06

24.07

24.08

24.09

24.10

24.11

24.12

24.13

24.14

24.15

24.16

24.17

24.18

24.19

24.20

24.21

24.22

24.23

24.24

24.25

24.26

24.27

24.28

24.29

24.30

24.31

24.32

24.33

24.34

24.35

24.36

24.37

24.38

24.39

let communicationCost = replace EpcE:origen:dest:weight, Rare:value, Com_ CosT:( ?w )
by Com_ Cost:( (origen:dest:(weight /value) ), w ), RaTE:value
let calcRank = replace Com_CosT:( origen:dest:cost,?w ), RaNk:dest:value, Task:origen:compCost
by Com  Cost:( w ), Rank:origen:(compCost+(cost+value)), Task:origen:compCost,
RanNk:dest:value
let getFinalRank = replace Rank:origen:costA, RaNk:origen:costB
by RaNK:origen:costA
if (costA <= costB)
let calcMazRank = replace RaNK:a:costA, RAaNK:b:costB
by Rank:b:costB
if (costA <= costB)
let getMazRank = replace-one (calcMaxRank=s,RaNK:a:costA, 71 ),
Ranks:( Rank:a:costA, Task:a:compCost, 7m )
by RaNks:( m ), SCHEDULER:(TAsk:a:compCost, RANK:a:costA)
let initMaxzRank = replace-one Ranks:( 7m )
by ( m, calcMaxRank), Ranks:( m ) , getMaxRank
let scheddTask = replace Task:a:compCost, REs Task:a:( 70 )
Res  Mapp_ LisT:(REs:idR:(cpuLoad,memUsed,numProc,?w), 7p )
by Task:a:compCost, REs Task:a:(idR:calcETC_Minmin(a,idR,cpu,mem,nP, compCost), o),
Res Mapp_ LisT:(p)
let scheddTaskIni = replace-one SCHEDULER:(Task:idT:compCost,Rank:idT:costA), REs List:(?w)
by Task:idT:compCost, scheddTask, REs_ Mapp_LisT:(w,"END"), Res_ LisT:(w),
Res_ Task:idT:("END")
let initResList = replace Res Mapp_LisT:("END"), Task:idT:compCost, scheddTask=s,
Res_LisT:(REs:idR:(?w), ?p), REs _Task:idT:(idR:compCostRes, "END")
by scheddTaskIni, initMaxRank, Res Task:idT:(idR:compCostRes),REs LisT:(p)
let mapHelft = replace REs_ Task:idT:(idRX:compCostX, idRY:compCostY, ?1)
by Res Task:idT:(idRX:compCostX, 1)
if (compCostX <= compCostY)

— MAIN SOLUTION CONTENT —

( replace-one ( communicationCost=s,calcRank=h,getFinalRank=q, RaTE:8, Com_CosT:("END"), ?w )
by ( w, calcMaxRank), Ranks:( w, "END" ) ),

( replace-one ( calcMaxRank=s, RaNk:a:costA, 71 ), RaNks:( Rank:a:costA, Task:a:compCost, ?m )
by Ranks:( m ), SCHEDULER:( Task:a:compCost, RANK:a:costA )),

( replace-one Ranks:( "END" ), Res List:( ?1 ) by Res List:(1)),

scheddTaskIni, mapHelft, initResList

)
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