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The anion exchange properties of Layered Double Hydroxides (LDH) described 

by the general formula [M
2+

1-xM
3+

x(OH)2]A
m-

x/m·nH2O allow for the preparation of a 

wide range of host-guest assemblies. Of particular interest are the organic-inorganic 

hybrids LDH owing to their large fields of potential applications as catalyst, adsorbent 

for pollutants, nanofiller in polymer, vector for biological molecules...
1-8

 Up to until a 

few years ago, most of the articles concerned with organic/inorganic anion exchanged 

LDH generally described the fully exchanged phases and only a few studies were 

reported on the anion-exchanged forms obtained at partial exchange rates probably 

because phase segregation was generally admitted for the exchange process in LDH 

system.  

In recent years, the technological and experimental advances in energy dispersive 

X-ray diffraction using synchrotron X-ray sources have provided new possibilities for 

studying solid-state reactions. In particular, O’Hare et al. have shown the interest of 

this technique in the intercalation chemistry of layered materials.
9-12

 In this way, these 

authors have demonstrated the ability of LiAl2(OH)6Cl·2H2O to form second-stage 

intermediates during the exchange reaction with a series of dicarboxylate anions.
12

  

Such LDH heterostructures with alternate interlayer spaces occupied by two 

different anions offer new perspectives for LDH intercalation chemistry, particularly in 

                                                             
1 D. G. Evans and R. C. T. Slade, Struct. Bond., 2006, 119, 1.  

2 B. Ballarin, M. Gazzano, R. Seeber,; D. Tonelli and A. Vaccari, J. Elect. Chem., 1998, 445, 27. 

3 L. Van der Ven, M. L. M. Van Gemert, L. F. Batenburg, L. F. Keern, L. H. Gielgens, T. P. M. Koster 

and H. R. Fischer, Appl. Clay. Sci., 2000, 17, 25. 

4 Y. J. Feng, D. Q Li., Y. Wang, D. G. Evans and X. Duan, Polym. Degrad. and Stabil., 2006, 91, 789. 

5 J. Inacio, C. Taviot-Guého, C. Forano and J. P. Besse, Appl. Clay Sci., 2001, 18, 255.  

6 F. Leroux, J. Nanosci. Nanotech., 2006, 6(2), 303. 

7 F. Leroux and C. Taviot-Gueho, J. Mater. Chem., 2005, 15 (35-36), 3628. 

8 J. H. Choy, S. Y. Kwak, Y. J. Jeong, J. Portier and J. S. Park, Angew. Chem. Int. Ed., 2000, 39, 4042. 

9 G. R. Williams and D. O’Hare, Chem. Mater., 2005, 17, 2632 

10 G. R. Williams, thesis, 2005, Oxford University 

11 G. R. Williams, A. J. Norquist and D. O’Hare, Chem. Mater., 2004, 16, 975. 

12 G. R. Williams and D. O’Hare, Chem. Mater., 2005, 17, 2632. 
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the direction of multifunctional materials. Yet, at the time the present thesis work 

started, staging had been observed only in a few cases, mainly in LiAl2 LDH system 

which constitutes a rare example of ordered LDH structure, and the reasons it took 

place were not clearly established. The objective of the present work was thus to 

further investigate staging phenomena in LDH system. By means of EDXRD technique, 

we investigated the anion-exchange process with different inorganic (Cl
-
, F

-
, CO3

2-
, 

SO4
2-

 and Fe(CN)6
3-

) and organic anions (tartrate, succinate, adipate and 

styrene-4-sulfonate anions) for two LDH compositions : Zn2Al and Zn2Cr.  

The first chapter is intended to provide a state of the art review of LDH materials, 

to describe their synthesis and characterization with emphasis on the structural aspects 

of LDH intercalation chemistry and to point out the potential applications. 

An initial series of time-resolved in situ EDXRD experiments discussed in 

Chapter two was performed to determine the conditions of formation of LDH 

second-stage compounds. In the case of [Zn2Cr(OH)6]Cl·nH2O and 

[Zn2Al(OH)6]Cl·nH2O, the exchange reactions of Cl
-
 anions by succinate and tartrate 

anions confirm the trends highlighted in a previous work,
13

 in particular the existence 

of different exchange pathways depending on the nature of the intercalated anions. The 

aim of this first study was also to determine the different factors influencing the 

observation/formation of LDH second-stage materials including experimental 

parameters such as the addition rate of the guest anion solution, the temperature and 

also more fundamental parameters like the nature of the anion-exchange reaction itself 

involving either inorganic anions or both inorganic and organic anions. 

                                                             
13  J. Pisson, C. Taviot-Gueho, Y. Israeli, F. Leroux, P. Munsch, J. P. Itie, V. Briois, N. 

Morel-Desrosiers and J. P. Besse, J. Phys. Chem. B, 2003, 107, 9243. 
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In Chapter 3, we looked at the anion-exchange properties of LDH second-stage 

compounds. The two second-stage materials [Zn2Cr(OH)6](succinate)0.25Cl0.5·nH2O 

LDH (Zn2Cr-Succ/Cl) and [Zn2Cr(OH)6](tartrate)0.25Cl0.5·nH2O LDH (Zn2Cr-Tart/Cl) 

were isolated and then separately treated with organic adipate anions and inorganic 

fluoride anions. The reactions, followed in situ by EDXRD, showed highly selective 

anion-exchange properties with new second-stage intermediates forming. 

The last chapter is devoted to the enlargement of this study towards 

multifunctional materials. Indeed, the exchange reactions with “functional” anions such 

as styrene-4-sulfonate anions and iron hexacyanoferrate anions were investigated and 

EDXRD data are briefly described.  
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I. Generalities on Layered Double Hydroxides 

1.1 Structural Considerations 

Layered double hydroxides (LDH), also called anionic clays, are host-guest 

layered materials1-3.  Yet, contrary to cationic clays, LDH materials are quite rare in 

nature.  Most of LDH are synthetic phases and their structure resembles the naturally 

occurring mineral Hydrotalcite [Mg6Al2(OH)16]CO3·4H2O, first discovered in 1842 and 

first prepared as a synthetic material in 1942 by Feitknecht4, 5. However, the detailed 

structural features of LDH were not understood until the late 1960’s by Allmann6, 

Taylor7 and their co-workers.   

LDH materials are mostly described by the general formula [M2+
1-xM3+

x 

(OH)2]Am-
x/m·nH2O, abbreviated hereafter as M2+

RM3+-A, where M2+ and M3+ are 

divalent and trivalent cations, respectively, A is an anion of valence m and R = 1-x/x  is 

the M2+/ M3+ molar ratio (x = M3+/(M3++M2+)). The structure of LDH hydroxide layers 

is derived from that of brucite, Mg(OH)2, which consists of M(OH)6 octahedral units 

sharing four edges and three vertices and thus forming infinite layers with neutral 

charge. In LDH, a partial replacement of divalent cations by trivalent cations occurs 

resulting in a net positive charge, compensated by Am- negative anions present in the 

interlayer space and surrounded by water molecules.  

The main features of Hydrotalcite-like LDH are a large chemical variation and a 

random distribution of cations within the hydroxide layers. All divalent positive metal 

ions from Mg2+ to Zn2+ with an ionic radius in the range 0.65 - 0.80 Å and all transition 

metal trivalent ions (except Ti3+) with an ionic radius in the range 0.62 – 0.69 Å (with 

the main exception of Al3+: 0.50 Å) can enter into the composition of LDH hydroxide 

layers. Divalent and trivalent cations of close radius values enable a joint replacement 

and a larger chemical variation, and therefore a highly tunable layer charge density. 
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LDH materials consisting of more than two different cations in the sheets have been 

reported such as (Cu0.4Zn0.6)6M2(OH)16CO3·4H2O (M = Al, Cr and Ga) 8, Ni-Al-M-CO3 

(M=Cr or Fe) 9 , CuxNiyMg2-x-yAl-CO3
10  and [FeⅡ

1-x-yMgyFeⅢ

x(OH)2]-(OH)x·nH2O. 11 

Note that the larger mean cation radius leads to the higher flattened degree of the  

octahedral environment of metal cations along the stacking direction compared with the 

regular polyhedron and then results to the lower layer thickness and the larger distance 

between metal cations. For example, by the comparison of Zn3Al and Zn2Cr based 

LDHs, the mean metal radius increases from 0.68 Å to 0.72 Å while the hydroxide 

layer thickness decreases from 2.071 Å to 2.020 Å and the mean cation distance from 

3.083 Å to 3.120 Å.12  

 

Figure 1-1: Comparison of trivalent metal ratio x scale and divalent versus trivalent R scale, and 
corresponding limits for LDH compositions. (see ref. 12) 

In LDH systems (M2+
RM3+-A), the R value (M2+/M3+ molar ratio) can be tuned in 

a relatively wide range without main structural change as shown in Figure 1-1.12 The 

upper limit of R value could be needed to avoid a collapse of the interlayer domains 

due to a too long distance between these interlayer anions. The lower limit of R value 

generally results from the unavoidable electrostatic repulsion between neighboring 

trivalent metal cations (if R < 2) within the main layers and also the repulsion between 

the charge-balancing anions in the interlayer region. In order to obtain pure phases of 

LDH and avoid the formation of single hydroxides i.e. MII(OH)2 and MIII(OH)3, the R 

values must be constrained in a certain range from 2 to 4, which corresponds to the x 
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value varying from 0.33 to 0.20. Yet, a wider range of R values has been reported: for 

MgRGa-CO3, 1.8 ≤ R ≤ 12.9 (0.072 ≤ x ≤ 0.357)13as well as for [FeⅡ

2FeⅢ

2(OH)8]-CO3, 

R = 1 (x = 0.5)14. While in other cases, a unique R value can only be stabilized, for 

example, R =2 for Cu2Cr15,  Zn2Cr16 and Ca2Al 17LDH and R= 1/2 in LiAl2 LDH18. 

A great number of anions including inorganic anions and organic anions as 

presented below could occupy the interlayer region of LDH. The amount of the anions 

in the interlayer spacing is directly related to the charge density of the hydroxide layers 

which can be controlled by the M2+/M3+ ratio whereas their arrangement depends on 

the interlayer packing related to the layer charge density as well as the anion size and 

the presence of water molecules; additional parameters such as the preparation route 

and the synthesis temperature may also influence the interlayer arrangement, especially 

in the case of organic intercalated molecule. The positive charge density (dcharge) of the 

hydroxide layers can be calculated as follows19: 

݀௖௛௔௥௚௘ ൌ  1 ܵ௨௡௜௧ ௖௛௔௥௚௘ ൌ ሺ݁ · ሻݔ ሺܽଶ · sin 60°ሻ⁄⁄                      Equation 1-1 

where S unit charge is the area per unit charge, e is the charge of an electron, x is the 

mole fraction of the trivalent cation in the brucite-like layer, M3+/(M2++M3+)  and a is 

the cell parameter of hexagonal unit cell. 

i) inorganic anions: halide ions (F-, Cl-, Br- and I-); small oxo anions (CO3
2-, NO3

-,  

ClO4
-, SO4

2-, S2O3
2- and CrO4

2-, etc.); inorganic coordination compounds (NiCl4
2-, CoCl4

2-, 

Fe(CN)6
3- and Fe(CN)6

4-, etc.); silicate anion (SiO(OH)3
-). 

ii) polyoxometalates: [Mo7O24]6-, [V10O28]6-, [H2W12O40]6-, [PV3W9O40]6-, 

[SiV3W9O40]7-, [BVW11O40]7- and [SiW11O39]8-, etc. 

iii) organic anions: (di)carboxylates (adipate, oxalate, succinate, benzoate, phthalate, 

terephthalate, p-methylbenzoate and p-hydroxybenzoate, etc.); anionic surfactants (alkyl 

sulfonates, alkyl sulfates, etc.); metallomacrocycles (Co(II) or Cu(II) phthalocyanine 
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tetrasulfonate, Mn(III)-meso-tetrakis-(2, 6-dichloro-3-sulfonato-phenyl)porphyrin, etc.); 

anionic polymer (polyacrylate, polyacrylonitrile, polyaniline, polyvinylsulfonate, 

polystyrenesulfonate and polyaspartate, etc.). 

 

Figure 1-2: Variation of anionic exchange capacity (meq/100g) as a function of the amount of trivalent 
cation reported per formula weight (ref. 20).  

The anionic exchange capacity (AEC, meq/100 g) of LDH is expressed in terms of 

millimoles of positive charge within the hydroxide layers per 100 gram of LDH based on 

the theoretical formula [MII
1-xMIII(OH)2]A-m

x/m·nH2O and depends on the amount of 

trivalent cations (x value in the general formula) present in the hydroxide layer. As 

reported for some LDH compositions in Figure 1-220, the values range from 200 to 450 

meq/100g corresponding to the range of x value from ca. 0.33 to 0.20.  For comparison, 

cationic clays present usually limited ionic exchange capacity close to 100 meq/100 g 

associated to average area per charge of 70 Å2/charge. In the case of LDH materials, the 

average area per charge is much smaller with values from 25 to 40 Å2/charge. This 

explains the differences observed in their intercalation and exfoliation chemistry. 
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Figure 1-3: (a) Stacking sequence in Hydrotalcite ([Mg6Al2(OH)16]CO3·4H2O) with rhombohedral 
symmetry (ref. 21). (b) position of interstitial atoms between the hydroxide layers. Gallery height can 
be calculated by subtracting the layer thickness (~4.8 Å) from the basal spacing (c’). (ref. 22) 

Synthetic LDH materials generally crystallize in the space group ܴ3ത݉ adopting the 

same structure as the Hydrotalcite mineral [Mg6Al2(OH)16]CO3·4H2O (Figure 1-3(a)). 

The hydroxide layers of Hydrotalcite are stacked with three layers per unit cell in 

rhombohedral symmetry. The parameters of the unit cell for Hydrotalcite are: a = 3.05 Å 

and c = 3c’= 22.81 Å (c’ = 7.603 Å). 21 The distribution of the metal cations in the 

hydroxide layers is disordered. The carbonate anions and interstitial water molecules are 

likewise randomly located in the interlayer region. The oxygen atoms of the water 

molecules and of the carbonate anions are distributed approximately closely around the 

symmetry axes that pass through the hydroxyl groups of adjacent brucite-like layers 

(Figure 1-3 (b)).22 Preferential location of interlayer oxygen atoms could be found at 

about 0.56 Å radial distance from the three-fold axes. 

Owing to their lamellar character and the disordered cationic distribution within the 

hydroxide layers, synthetic LDH materials are generally microcrystalline powders and 

structural studies are performed by Rietveld refinement of powder X-ray diffraction 

diagrams.  
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However, Ca2Al and LiAl2 LDH systems differentiate by an ordered distribution of 

cations in the hydroxide layers. Ca2Al LDH refers to hydrocalumite-like LDH. The 

structure of Ca2Al is based on corrugated brucite-like main layers with an ordered 

arrangement of Ca2+ and Al3+ ions, seven- and six- coordinated, respectively, in a fixed 

ratio of 2:1; the seventh apex of the Ca-polyhedron is a water molecule from the 

interlayer space (Figure 1-4).23 The general formula of this group is [Ca2M3+(OH)6]+[Am-

1/m·nH2O]- with M3+ = Al3+, Fe3+, Cr3+, Ga3+ and Sc3+; the composition of the hydroxide 

layer of this structure type is thus limited.24 It is widely assumed that the difference in size 

between Ca2+ and M3+ ions is responsible for their ordered arrangement in a fixed 

M2+/M3+ ratio of 2:1. Besides, the size of Ca2+ and the pronounced anisotropy of 

coordination spheres around Ca2+ and M3+ are also suggested as the reason for the 

structural order in hydrocalumite-like compounds. 23 These lamellar calcium hydroxides 

salts have also been studied in details for their occurrence in the hydration process of 

cement compounds, known as Friedel’s salts and AFm phase. 25,  26  

 

Figure 1-4: Crystal structure of [Ca2Al(OH)6]Cl·2H2O layered double hydroxides in R-3 group, the 
cell parameter a = 5.7487 (5) Å and c = 23.492 (1) Å. See ref. 23. 
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In the case of LiAl2 LDH, two kinds of the hydroxide layer stacking forms have been 

found and depend on the polymorph of Al(OH)3 i.e. the hexagonal form (h-LiAl2) 

produced from the gibbsite and the rhombohedral form (r-LiAl2) from the bayerite or 

nordstrandite. 27 Furthermore, the difference in layer stacking sequences is so important in 

the chemistry of the LiAl2 LDH system. For instance, the structure of h-

[LiAl2(OH)6]Cl·H2O presented in Figure 1-5, Li+ ions occupy the empty octahedral holes 

in the gibbsite-like Al(OH)3 layers whereas the interlayer species such as Cl- and H2O are 

disordered over five sites located midway between the Al(OH)3 layers. 28  The 

corresponding parameters of the unit cell are: a =b = 5.10 Å and c = 14.30 Å (c = 2c’) in 

the space group P63/mcm. The composition of this structure type is limited to LiAl2 for 

the main layers but the interlayer chloride anions are possible to be exchanged by other 

inorganic and organic anion species. 

 

Figure 1-5: The structure of h-[LiAl2(OH)6]Cl·H2O: (a) view of the unit cell and (b) view down the 
(001) direction of the unit cell. See ref. 28. 
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1.2 Synthesis Routes of LDH 

 

Figure 1-6: The five main experimental methods used for preparation of carboxylic acid intercalated 
LDH or LDO. See ref. 29. 

LDH materials are usually prepared according to two methods which are 

coprecipitation and anion-exchange reactions. The choice between these two methods 

depends generally on the host composition and the properties of the guest anions. Other 

methods of LDH preparation are known summarized in Figure 1-6 and several reviews 

on the synthesis methods of LDH have been published, 29-31 for example, S. Carlino 

describing intercalation mechanisms of a series of aliphatic and aromatic mono-and 

dicarboxylic acids into LDH and their calcined oxides (the so-called Layered Double 

Oxide, LDO). 



Chapter 1 

~ 10 ~ 

 

1.2.1 Direct coprecipitation method 

 

Figure 1-7: Experimental setup for the preparation of LDH materials by the coprecipitation method 

(see ref. 12). 

This is the most common synthesis method of LDH materials (Figure 1-7). 32, 

33The general process of this method established by Miyata34  is the simultaneous 

precipitation of the metal cations in the hydroxide form in the presence of a base 

solution (for example, NaOH) and the counter anions of the metal salts become the 

interlayer anions. The addition is often carried out at a constant pH value which 

depends on the metal cations nature and leads to the coprecipitation of the two metallic 

salts within the hydroxide layers. For the intercalation of other anions than the counter 

anions, the desired anions are initially introduced into the reacting flask in a large 

excess (an excess between 5 and 10 times over the M3+ content is commonly used). 

After complete addition of the metallic salts, the precipitate is aged in the mother 

solution for a few hours or several days and the LDH is then recovered by ca. four 

dispersion and centrifugation cycles in deionized and decarbonated water. So far, a lot 

of anion-intercalated LDH materials have been obtained by this method.  
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The mechanism of coprecipitation method relies upon the condensation of hexa-

aqua complexes in solution in order to form the brucite-like layers with a distribution 

of both metallic cations and with solvated interlayer anions. 12 In order to obtain well 

crystallized LDH phases, some of the experimental parameters should be particularly 

controlled and optimized such as the pH, the temperature, the concentration of both 

metallic salts, the concentration of alkaline solution, the addition rate of reactants as 

well as the aging time and temperature of the precipitate.  

1.2.2 Anion-exchange method 

This method is based on the anion exchanged properties of LDH. The general 

process of this method can be described as following: 

ܪܦܮ · ௠ିܣ ൅ ܺ௡ି ՚ሬሬሬԦ ܪܦܮ · ሺܺ௡ିሻ௠/௡ ൅  ௠ିܣ

Based on the mass action law, working in excess of incoming anions (ܺ௡ିሻ will favor the 

exchange reaction of outcoming anions (Am-) to generate the fully exchanged phase 

ܪܦܮ · ሺܺ௡ିሻ௠/௡. 

Anion exchange properties of LDH depend on LDH affinity towards outcoming and 

incoming anions. By comparing the equilibrium constant of exchange reactions between 

monovalent anions and divalent anions, Miyata proposed an order of anion selectivity: 

OH- > F- > Cl- >Br- > NO3
- > I- and CO3

2- > C10H4N2O8S2- (Naphthol Yellow S) > SO4
2-. 

These results suggest for example that NO3
- anions are easily displaced by OH- anions of 

higher affinity towards the metal hydroxide layers. This trend was later confirmed by 

microcalorimetric measurement. 35  Yamaoka et al. 36  also gave a comparative list for 

divalent oxoanions: HPO4
2-, HAsO4

2- > CrO4
2- > SO4

2- >MoO4
2-. Based on these 

observations, chloride and nitrate containing LDH are often used as precursors for anion-

exchange reactions, and one should avoid carbonate or hydroxyl phase. The exchange 

process may be limited by the expansion of the interlayer space to accommodate large 

size anions. In this case, spaced LDH precursors intercalated with lauryl sulfate, p-
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toluenesufonate, terephthalate, 2, 5-dihydroxy-1, 4- benzendisulfonate, 1, 5-

naphthalenedisulfonate anions can be used as reported for the preparation of oxometalates 

anions-containing LDH as reported. 37, 38 An extended use of this guest displaced method 

have recently been reported by Valim et al.39, 40, based on the formation and organic phase 

extraction of a salt dodecylsulfate anions LDH by a cationic surfactant (CTA) as 

illustrated in Figure 1-8.  

 

Figure 1-8: Scheme of anions exchange by the formation of a salt between an anionic and a cationic 
surfactant in LDH (DS = sodium dodecylsulfate, CTA- = N-cetyl-N, N, N-trimethylammonium). See 
ref. 39. 

The anion-exchange method is a straightforward way to prepare LDH containing a 

variety of organic or inorganic anions. Yet, it is subjected to the influence of some 

factors such as the pH value, the solvent and the temperature. For instance, the pH 

value plays an important role, since it determines the stability of the hydroxide layer 

and the properties of the incoming anions. Higher pH values (10.0-12.0) favor the 

intercalation of carbonate anions while lower pH values (4.5-6.0) benefits the liberation 

of initial anion as the conjugate acid and incorporation of a less basic anion from the 

reaction system.41  Note that a pH value lower than 4.0 may result into the dissolution 

of LDH hydroxide layer. A suitable solvent may also favor the anion-exchange process. 

It was found that binary solvent mixtures of alcohol and toluene prevent dissolution of 

the Mg2Al-CO3 and preserve LDH layered crystal structure during the anion-exchange 

reaction of aliphatic α, ω-dicarboxylate anions.42 Similarly, ethanol/water mixture as 

solvent can effectively reduce the dissolution of LDH host during the intercalation of 

heptamolybdate ([Mo7O24]6-) 43  and decamolybdodicobaltate (III) anions 



Chapter 1 

~ 13 ~ 

 

([H4Co2Mo10O38]6-) 44 into MgRAl-LDH (1.27 ≤ R ≤ 3.0). Finally, O’Hare et al. also 

found that the mixed ethanol/water solvent may also improve the crystallinity and 

decrease the production of Al(OH)3 as an undesired product during the exchange 

reaction involving all isomers of both pyridinecarboxylate and toluate in 

[LiAl2(OH)6]Cl·H2O.45 In the other hand, to some extent, higher reaction temperatures 

favor the exchange reaction by lowering activation energy. 

1.2.3 Other methods 

The reconstruction of the LDH phase from calcined LDH derivatives (LDO) is 

reported as an alternative method for the preparation of hybrid LDH 46 and has also been 

largely used for the incorporation of bulky anions such as polyoxometalates anions.47, 48 

This method is more complicated compared with coprecipitation and anion-exchange 

methods. The calcination temperature and the composition of the hydroxide layers are the 

key factors influencing the reconstruction process.49, 50 However, it is still difficult to 

avoid the existence of carbonate anions due to the high affinity towards the mixed oxide51 

and the production of some amorphous phases due to uncomplete reconstruction.  

The hydrothermal method carried out in an autoclave  under autogenous pressure 

is usually applied as a postsynthesis hydrothermal treatment to improve the crystallinity 

of LDH. 52 In a few occasions, this method was found effective for the intercalation of 

lower affinity anions.53  

The salt-oxide method 54 is based on the slow addition of a solution of trivalent 

metal salt (acidic species i.e. CrCl3, AlCl3) on an aqueous suspension of the divalent metal 

oxide (basic species i.e. CuO, ZnO). The LDH phase is formed along the slow dissolution 

of divalent oxide and the reaction can be written as follows: 

 MIIO ൅ MIIIClଷ ൅ ሺ݊ െ 1ሻHଶO ՜ ሾMଵି௫
II M௫

IIIሺOHሻଶCl௫ · ݊HଶO ൅   .MIIClଶݔ
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For instance, Zn2Cr-Cl, Zn2Al-Cl and Cu2Cr-Cl LDH compounds have been prepared via 

this method. 55  

1.3 Structural Characterization of LDH 

The structural characterization of LDH often suffers from the poor crystallinity of 

the powders. Hence, together with powder X-ray diffraction (PXRD) technique, 

microscopy, X-ray Absorption Spectroscopy (XAS), Infrared (IR), Raman, Nuclear 

Magnetic Resonance (NMR) spectroscopies and Molecular Dynamic (MD) simulations 

are often used as complementary techniques to get a better view of LDH structure 

(Figure 1-9).  

 

Figure 1-9: Possible structural information provided by different characterization technique.56 

1.3.1 Powder X-ray Diffraction (PXRD) 

Only a few minerals can be obtained in the form of single crystals and most of 

synthetic LDH are randomly oriented powders. Consequently, powder X-ray diffraction 

(PXRD) remains the main analytical technique for the structural characterization of 

LDH.  
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1.3.1.1 Basic structural information from PXRD patterns 

As presented in Figure 1-10,57 the typical features of PXRD patterns of all LDH 

are the presence of sharp and intense lines at low 2θ angle values corresponding to the 

basal 00l reflections, and less intense lines at higher angular values corresponding to 

01l, 10l and 11l reflections. As said before, the patterns are generally indexed on the 

basis of an hexagonal unit cell in the space group ܴ3ത݉  and then the unit cell 

parameters can be gained: a = b = 2d110 and c = 3 d003.  

 

Figure 1-10: Powder X-ray diffraction patterns of a synthetic Hydrotalcite [Mg6Al2(OH)16] 
(CO3)·4H2O (see ref. 57). 

The 003 reflection corresponds to the interlayer distance d003 i.e. d-spacing and is 

equal to the gallery height plus the host hydroxide layer thickness of approximately 4.8 

Å. Actually this value corresponds to the interlayer distance in brucite Mg(OH)2 thus 

including the hydroxide layer thickness and the hydrogen bond distance between 

successive hydroxide layers. On the other hand, the structural study by neutron 

diffraction of Zn2Al-CO3 led to an hydroxide layer thickness of 3.9 Å including 

hydrogen atoms of OH groups.58 Generally, the LDH hydroxide layer thickness is 



Chapter 1 

~ 16 ~ 

 

relatively constant, little changes are observed as a function of cation composition. On 

the contrary, the gallery height depends on the size and orientation of the anion, 59-61 as 

well as on the layer charge density i.e. x value determining the interlayer packing 

(Figure 1-11 (a))62-64 and for some anions, on the degree of hydration65-67.  

 

Figure 1-11: Variation of the hexagonal unit cell parameters of ZnAl-CO3 and MgAl-CO3 LDH with x 
value (M3+/ (M2++M3+)). (ref. 3) 

The 110 reflection can be used to estimate the a parameter of the unit cell, which 

corresponds to the distance between adjacent metallic cations within the hydroxide 

layers. It depends on the metal ionic radius (r(M2+) and r(M3+)) and the x value 

(Figure 1-11 (b)) according to the following equation68: 

ܽ ൌ √2ሾሺ1 െ ሻݔ כ ଶାሻܯሺݎ ൅ ݔ  כ  ଷାሻሿ                                      Equation 1-2ܯሺݎ

In these conditions, from the position of d110, the  x value can be determined.  
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1.3.1.2 Rietveld Refinement  

The presence of broad and asymmetric diffraction lines due to simultaneous effect of 

small particle size (coherently diffracting domains) and lattice strains in the crystallite 

(structural defects, stacking faults) often hinder the structural analysis of LDH from the 

PXRD patterns. Because of these difficulties in calculating and interpreting the X-ray data, 

some imprecise results on the chemical features and the non-stoichiometric nature of 

LDH can be obtained. 

A few structural studies based on the Rietveld refinement of PXRD patterns have 

been reported so far, for LDH intercalated with inorganic anions such as Cl-  69and 

CO3
2- 70. The crystal chemistry of LDH has been studied in details by Belloto et al. 

According to these authors, the disordered distribution of metal cations in LDH 

hydroxide layers originates from the compression of the layer. The absence of long 

range order comes from the already close OH-OH approach which prevents the layer 

distortions brought about the ordering process. In these conditions, long range ordering 

in LDH can happen only with cations of similar ionic radius as  observed for Mg2Ga-

CO3. 70 

1.3.1.3       DIFFaX simulations 

DIFFaX (Diffracted Intensities From Faulted Xtals) method intends to interpret the 

patterns resulting from randomized stacking sequences.71 In the case of LDH compounds, 

DIFFaX simulations of LDH have shown that the structural disorder contributes to the 

excessive and non-uniform broadening of diffraction lines and different types of disorder 

lead to the broadening of different sequences of reflection peaks. 72 - 74 For example, 

stacking faults broaden the h0l/0kl reflections, interstratification selectively broadens the 

00l reflections and turbostratic disorder broadens the 0kl reflections. The occurrence of 

faults can be quantified by a “fault probability” (FP) between the rhombohedral and the 

hexagonal stacking. For instance, in the case of Mg5Ga-CO3, a FP value of 0.6 was 
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reported corresponding to a random layer sequence of 60°rhombohedral stacking and 40° 

hexagonal stacking (Figure 1-12). 70  

 

Figure 1-12: Comparison of X-ray powder diffraction patterns of measured Mg5Ga-CO3 LDH and a 
DIFFAX simulated pattern with randomized 60 ° rhombohedral stacking and 40 ° hexagonal 
stacking(Ref. 70). 

1.3.1.4 The electron density distribution 

In the case of hybrid LDH materials, the relative large number of 00l reflections 

observed related to the large size of the intercalated anions, may allow to probe the 

structure of the interlayer space projected along the c-axis via Fourier transform 

analysis. 75-79 

Indeed, the one-dimensional electron density maps along the c-axis can be 

obtained from the following equation for centrosymmetric structures: 

ሻݖሺߩ ൌ ∑  ଴଴௟ܨ cosሺ
ଶగ௟௭
௖

ஶ
௟ୀ଴ ሻ                                               Equation 1-3 
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and ܨ଴଴௟ ൌ ሼ݈߮ሺ00݈ሻሽ݌ݔ݁ หඥIሺ00݈ሻห , where l, F00l, c, ߮, and I are the peak numbers (00l) 

of the diffraction order, the structure factors of the 00l reflections, the layer distance in c 

direction, the phase and peak areas, respectively. The F00l factors were derived from the 

intensities of a series corresponding 00l reflection peaks corrected for Lorentz-

polarization effects. The sign of the structure factor is obtained from the scattering 

contributions of the layers, assuming that the contribution of the intercalated anions is 

relatively small. 

 

Figure 1-13: Model of the structure of Mg2Al-PBITS and Zn2Al-PBITS LDH together with the one-
dimensional electron density projection along c axis. See ref. 80. 

Successful applications of one-dimensional electron density distribution are reported 

on the structural studies of hybrid LDH materials80-85. For example, the structural model 

(Figure 1-13) of Mg2Al-PBITS and Zn2Al-PBITS LDH (PBITS = N, N’-di(phenyl-3, 5-

disulfonic acid)perylene-3, 4, 9, 10-tetracarboxydiimide) was underpinned by the 

calculation of the one-dimensional electron density distribution along c-axis based on six 

and five 00l reflections, respectively. 80 The highest electron density at ca. z = 3.5 Å and 
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15.5 Å results from the sulfate groups containing the most electron-rich atoms and the 

lowest electron density at ca. z = 5.5 Å and 13.5 Å is assigned to the N-C single bond. 

The broad region of medium electron density in the middle gallery is caused by the 

aromatic systems.  

The one-dimensional electron density maps of Ca2Al-VBS 83 and Zn2Al-VBS 84 

(Figure 1-14) have also been reported, calculated from the powder X-ray diffraction data. 

The calculations clearly indicate that VBS molecules in Ca2Al-VBS and Zn2Al-VBS are 

vertically orientated towards the hydroxide layers and the formation of intertwinned 

single layers of VBS makes the vinyl groups more suitable for a subsequent in situ 

thermal polymerization reaction. 

 

Figure 1-14: Model of the structure of Zn2Al-VBS with the one–dimensional electron density map 
along the c axis. (ref. 84) 
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1.3.2 Microscopy 

1.3.2.1 Scanning electron microscopy (SEM) and transmission 
electron micro-scopy (TEM) 

 

Figure 1-15: SEM images of LDH obtained under different conditions: (a) Mg2Al-Cl under urea 
thermal decomposition; (b) Ni2Al-Cl under urea thermal decomposition. Inset images are the 
corresponding TEM. See ref. 88. 

SEM and TEM provide general pictures of textural and crystal morphologies of 

LDH intercalates. LDH usually shows an hexagonal platelet  morphology (Figure 1-15 

(a))86, 87 and a sand rose aggregation of the hexagonal platelets (Figure 1-15 (b))  88.  

Recently, Hu and O’Hare89 have obtained Mg2Al LDH with novel morphologies shown 

in Figure 1-16. system. A reverse micelle/ microemulsion system made of NaDDS 

(sodium dodecyl sulfate) and an organic solvent like isooctane utilized as nanoreactors 

have been used to produce these novel LDH particle morphologies. The starting 

nanoplatelet morphology evolves towards a belt-like morphology upon to the addition 

of a triblock copolymer to the above mixture while a rod-like morphology was 

observed after heating for 24 hours. Sun et al. also employed TEM and HRTEM (High 

Resolution TEM) to characterize the MgAl2O4 spinel structure as nanoplatelets and 

nanorods obtained from Mg-Al LDH after an hydrothermal and calcination treatments 
90.  
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Figure 1-16: (a) TEM image showing Mg2Al nanoplatelets; (b) SEM image showing a belt-like 
structure; (c) SEM and (d) TEM images of the rod-like structures. See ref. 89 

 

Figure 1-17: TEM images of (a) Zn2Al-PyB, (b) Zn2Cr-PyB, (c) Zn2Cr-2-TPC and (d) Zn2Al-2-TPC. 
PyB = 4-(1H-pyrrol-1-yl) benzoate anions and 2-TPC = 2-thiophenecarboxylate anions. See ref. 91 for 
(a) and (b) and ref. 92 for (c) and (d). 
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HRTEM can allow the observation of the interlayer distance as exemplified in 

Figure 1-17 with the TEM observation of PyB (4-(1H-pyrrol-1-yl) benzoate anions) and 2-

TPC (2-thiophenecarboxylate anions) intercalated into LDH. 91, 92 TEM is also extensively 

used to study the exfoliated structure of LDH93 as well as the nanoscale dispersion of 

organic modified LDH in polymer 94.  

 

Figure 1-18: Tilting TEM graphs of macroporous Hydrotalcite sample showing the (a) [100], (b) [111], 
and (c) [211] directions indexed according to a fcc lattice and (d) TEM image showing the wall 
structure. See ref. 95. 

On the other hand, Geraud et al. have synthesized three-dimensional ordered 

macroporous LDH using self-assembled colloidal crystal template and these authors 

have used tilting TEM images (Figure 1-18) to evidence the three-dimensional 

structure which may be related to planes of the original face-centered cubic (fcc) array 

of sphere 95. 

1.3.2.2 Fluorescence Microscopy 

Quite recently, the adsorption and desorption processes of a carboxylated perylene 

imide [N-(2, 6-diisopropylphenyl)-9-(4-carboxyphenyl) perylene-3, 4-dicarboximide, 

PMI-COOH] on an individual [LiAl2(OH)6]OH LDH have been investigated by means 
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of in situ fluorescence microscopy.96The results clearly indicate that the exchange 

reaction of the carboxylate anions starts at the edge of LDH crystals and then is 

followed by diffusion inside the interlayer domain as shown in Figure 1-19.  

 

Figure 1-19: Time-dependent sorption of PMI-COOH on an individual LDH particle. (a) At time zero, 
4 µL of a 0.13 mM PMI-COOH solution in MeOH are added to 996 µL of 50:50 MQ: MeOH above 
the LDH crystals, resulting in a 520 nM concentration. The fluorescence intensity is represented in 
false-color mode. (b) After 625 s, 100 µL of a saturated aqueous Na2CO3 solution are added to initiate 
PMI-COOH desorption, and the time is reset to 0 s. The transmission image is given in grey. See ref. 
96.  

1.3.2.3 Atomic Force Microscopy (AFM)  

AFM has been used to evidence the adsorption of anions on the surface of LDH. 

For instance, a two-dimensional repeat unit with a = 3.1 ± 0.2Å, b = 3.1 ± 0.2Å and α = 

58 ± 3o in Figure 1-20 has been observed on the AFM image of the crystal surface of 

[Mg6Al2(OH)16](CO3)0.5Cl·2H2O LDH contacted with an aqueous solution of 

Na2SO4.97 The use of AFM was also reported by O’Hare et al. for the characterization 

of single Mg2Al- LDH layers coated in DDS (dodecyl sulfate) anions (Figure 1-21).98  
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Figure 1-20: AFM image of a Hydrotalcite crystal [Mg6Al2(OH)16](CO3)1/2·Cl·2H2O in contact with an 
aqueous solution of 0.1 M Na2SO4 showing the unit lattice of a = 0.31 ± 0.02 nm, b = 0.31 ± 0.02 nm, 
and α = 58 ± 3°. See ref. 97. 

 

Figure 1-21: AFM image of the [Mg2Al(OH)6](DDS)·yH2O monolayers. Individual particles are 
marked A-F. See ref. 98. 
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1.3.3 X-ray Absorption Spectroscopy (XAS) 

XAS includes X-ray Absorption Near-Edge Spectroscopy (XANES) and Extended 

X-ray Absorption Fine-Structure (EXAFS) and supplies information concerning the local 

coordination and the chemical state of the absorber atom. As for NMR, this technique is 

very selective, since the absorption spectrum is directly related to the nature of the 

absorber atom. 

The technique provides fine characterizations at a local scale: atomic coordination 

(i.e. type of neighboring atoms, bond length and coordination numbers) and 

chemical/oxidation state. The back scattering intensity for a given couple 

absorber/backscatter distance of R is as follows: 

Յሺ࢑ሻ ൌ  ∑ ࢋሻ࢑ሺ࢐ࢌ࢐ࡺ
ష૛࢑૛࢐࣌

૛

࢐ࡾ࢑
૛࢐ ࢐ࡾ࢑ሾ૛ܖܑܛ ൅ ࢐ࢾ ሺ࢑ሻሿ                                  Equation 1-4 

where ݂ሺ݇ሻ  (the scattering amplitude) and ߜሺ݇ሻ  (the phase-shift) are photo-electron 

scattering properties of the neighboring atom, which depend on atomic number Z of the 

scattering atom. R (distance to neighboring atom), N (coordination number of 

neighboring atom) and ߪଶ Debye-Waller factor can be determined by refinement. 

In the case of LDH, XAS first was used to study the local order within the 

hydroxide layers as no long-range order (super-lattice) was thus evidenced for most 

compositions. Recently, this technique has been used to evaluate the distribution of 

Ni2+ and Ga3+ cations in the Ni-Ga LDH sheets for different ratios of Ni2+/Ga3+ at the 

Ni and Ga K-edges (Figure 1-22), indicating that higher Ni/Ga ratio leads to a more 

ordered environment for Ga and less ordered for Ni. 99  Another study reports the use of 

XAS at the Co and Al k-edges for CoRAl LDH (R from 2 to 5) indicated that ca. 30% 

Co2+ is oxidized to Co3+ and concomitantly some of Al3+ depart from the hydroxide 

layer for Co5Al initial composition LDH.100 The same authors studied the fine local 

structure of tetravalent cation in the systems: MgAlZr, MgAlSn and CoAlSn LDH by 

means of XAS at the Sn and Zr k-edges and proved that Zr4+ and Sn4+ cations are not 
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incorporated into LDH structure, but, in contrary to previous assumptions101,  102 form 

amorphous oxides as nanodomains103 and the phase segregation was observed directly 

by TEM 104.   

 

Figure 1-22: Schematic distribution of divalent and trivalent metals in LDH sheets for various Ni2+/Ga 
3+ ratios. Grey circles: Ga3+ cations and open circles: Ni2+ cations. See ref. 99. 

1.3.4 Infrared and Raman spectroscopy  

Infrared (IR, usually referred to the mid-infrared in the range of 4000-300 cm-

1/wavenumber) and Raman spectroscopy have been mainly employed to study the 

structural accommodation of interlayer species and hydrogen bond network in LDH, 

particularly for oxo anions such as CO3
2-, NO3

2-, SO4
2- and CrO4

2- and organic 

carboxylate anions. 105-107 A relatively detailed assignment of the IR and Raman spectra of 

(Mg, Zn)3Al-CO3 LDH at 25 ℃ and in situ temperature during heat-treatment have been 

reported.108-111 The Raman spectra show that water in LDH is hydrogen bonded to the 

interlayer anions and the hydroxyl surface thus bridging between the MOH surface to the 

carbonate anions.  
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Figure 1-23: Three Near-IR spectral regions of interest for M3Al-CO3 (M = Mg, Zn or Ni) LDH. See 
ref. 113. 

Compared to the mid-infrared, Near-IR (NIR, 12500-4000 cm-1) has the higher 

sensitivity to the OH group environment and has been widely used to study other clay 

minerals i.e. kaolinite and montmorillonite.112 On the contrary, there are only few reports 

of NIR for LDH characterization. Frost et al. consider three NIR spectral regions 

regarding MII
3Al-CO3 (M = Mg, Zn or Ni) as presented in Figure 1-23 with a net 

distribution between the hydroxyl bands of the water and those from M-OH units.113 

These authors also indicate that NIR would be a potential tool to better understand the 

interactions between the hydroxyl surface and the interlayer anions.  

1.3.5 Nuclear Magnetic Resonance (NMR) 

Nuclear magnetic resonance (NMR) spectroscopy is an effective technique in 

studying the structural environments and dynamical behavior due to its unique ability 

to simultaneously probe element-specific local structure with high resolution and to 

investigate atomic and molecular motion. 114-116 NMR has been widely used to study 

inorganic LDH interlayered anions such as 13CO3
2- 117, 118, 1, 2H2O 119, 35Cl- 119, 120, 

15NO3
- 120, 77SeO4

2- and 77SeO3
2- 121，H5B3O8

2- and  H4B4O9
2-  (11B)122 and organic 

anions such as carboxylate anions123-127 and amino acids128 as well as 27Al and 24Mg 

ions within the hydroxide layers 129. On the other hand, for organic intercalates, NMR 

spectra enable a distinction to be made between dissociated and undissociated 
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carboxylate anions by means of the accurate calculation of the chemical shifts.118 

Furthermore, F. Leroux et al. have used 13C NMR to study the in situ polymerization of 

the vinyl benzene sulfonate anions in the interlayer of Ca2Al LDH, evidenced by the 

disappearance of the vinyl bond in 200 ℃.130 

1.3.6 Molecular modeling and structure simulations 

Understanding and predicting the properties of LDH require the exact knowledge 

of their structure. However, as already said in the previous sections, LDH compounds 

are polycrystalline materials. Because of structural disorder and small particle size, X-

ray reflections tend to be broad and structural refinements from PXRD data have 

provided only limited resolutions. Consequently, interlayer arrangements are often 

postulated from the interlayer spacing determined from PXRD patterns, compared to 

the optimized minimum energy geometry of the free ion molecule. It is well known that 

interlayer arrangements depend strongly on the interlayer water content, the size of the 

intercalated guest and the charge density of the hydroxide layers influencing the 

packing of the interlayer region. Even the amount of interlayer water is difficult to 

determined since some water molecules are also on LDH particle surfaces and are 

indistinguishable from interlayer water in thermal analysis. Other techniques such as 

FT-IR, Raman, EXAF and NMR spectroscopes etc. have been widely used to 

characterize LDH (see previous sections) but these give limited information about 

arrangement of guests within the interlayer space. Therefore, for most LDH, the 

arrangement of interlayer anions and water molecules is not well understood and the 

structure of hydroxide layer is still under discussion. As a consequence, molecular 

modeling methods have been increasingly used in the past decade to simulate LDH 

structure and to better understand the interlamellar arrangement of intercalated organic 

molecules. 131-141 

The application of any computational molecular modeling techniques requires the 

use of interactomic potentials (force fields) that accurately account for the interactions 
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of all atoms in the modeled system. Yet, because of the structural disorder of most LDH, 

the force field parameterization is often not optimal and only qualitative or semi-

qualitative structural information are obtained. On the other hand, the well ordered and 

well known structures of LiAl2(OH)6Cl·H2O132 and Ca2Al(OH)6Cl·2H2O133 were 

successfully reproduced by molecular modeling providing accurate set of potentials 

then used to simulate and better understand structures which have still not been 

resolved. 

Two types of molecular dynamic (MD) simulations of LDH have been carried out 

so far. First of all energy minimization 132 and MD using generic force-field 131, 135, 136, 

139, 140,  have been applied to study LDH crystal structures and to predict the orientation 

of interlayer anions. A good agreement between experimental and calculated interlayer 

distance is obtained in all cases, allowing the orientation of the guests to be determined 

related to the hydration state and the layer charge density. 

 

Figure 1-24: Snapshot of a simulation cell, following 40 ps of molecular dynamics at 300 K, 
containing MgAl(terephthalate) LDH R(3) with (a) 16 water molecules and (b) 64 water molecules. 
See ref. 131. 
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One of these studies has retained our attention since it concerns the phenomenon 

of interstratification in MgRAl-terephthalate LDH interpreted by the authors as an 

alternation of collapsed (dehydrated) and expanded (hydrated) interlayers. 135 MD 

simulations predict a gradual expansion of the interlayer accompanied by a change in 

the orientation of terephthalate anions from almost horizontal to vertical as the number 

of interlayer water molecules included in the simulation increased as presented in 

Figure 1-24. For high water content and layer charge, an interlayer separation of 14.0 

Å is formed which corresponds to a vertical orientation of the terephthalate anions with 

respect to the hydroxide layers. For low water content and layer charge, an interlayer 

separation of 8.4 Å is obtained corresponding to a horizontal orientation of 

terephthalate. During cycles of dehydration-rehydration, PXRD indeed indicates the 

presence of the 14.0 Å and 8.4 Å units which coexist in varying proportions depending 

on the layer charge density and water content; in certain cases, a 22.4 Å interstratified 

phase is observed consisting of a regular alternation of 14.0 Å and 8.4 Å interlayers. 

Enthalpic calculations indicated that the symmetric distribution of the water molecules 

in adjacent interlayers is energetically more stable than either of the asymmetric 

distributions (Table 1-1). Assuming that interstratified phase observed experimentally 

consists of alternating hydrated and dehydrated interlayers, the authors concluded that 

this phase is enthalpically metastable. According to the authors, once the interstratified  

phase has formed, it is long-lived and separated from the equilibrium state by large 

energy barriers. 

Table 1-1: Effect of water distribution on the calculated enthalpy, H, and coulombic interaction energy, 
C, of MgAl(terephthalate) R(2) LDH with 20 water molecules per simulation cell (ref. 131). 

Water distribution per 

interlayer 

H/kcal· mol-1 C/kcal· mol-1 

10:10 (symmetric distribution) -8590 ±20 -17 950 ±20 

15:5 (asymmetric distribution) -8540 ±20 -17 900 ±20 

20:0(asymmetric distribution) -8531 ±20 -17 870 ±20 
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Figure 1-25: A snapshot of the simulation of hydrocalumite/water interface at 25 ℃. Octahedra 
portray Al layers. Small spheres are Ca; larger spheres are Cl. See ref. 133. 

Other MD studies use the CLAYFF force field approach suitable for the simulation 

of hydrated and multicomponent mineral systems and their interface with aqueous 

solution. A main difference with other MD is that all atoms are considered complete 

movable allowing a more accurate representation of the dynamics of such phenomena as 

hydrogen bonding, adsorption and surface complexation. Using CLAYFF, Kalinichev et 

al. have studied the structure of hydrocalumite Ca2Al(OH)6Cl·2H2O also known as 

Friedel’s salt in cement chemistry and determined the dynamical behavior of Cl- and H2O 

molecules in the interlayer space and on the particle surface (Figure 1-25). 133  In contrast 

to the highly ordered arrangement of the interlayer water molecules deduced from the 

single crystal structure refinement, the simulations reveal significant dynamic disorder in 

water orientations. At all temperatures between -100 and +300 ℃, the water molecules 

undergo libration around an axis perpendicular to the layers. This result in breaking and 

reformation of hydrogen bonds with the neighboring Cl- anions is in total agreement with 
35Cl NMR measurement. Besides, different coefficients of Cl- anions and water molecules 

were calculated (Table 1-2). The diffusion coefficient of Cl- anions as an outer-sphere 
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surface complex is at least 10 times that of interlayer Cl- anions but is about an order of 

magnitude less than that of Cl- in solution. 

Table 1-2: Calculated diffusion coefficients of interlayer and surface species (cm2/s). see ref. 133. 

 Cl- H2O 
Interlayer <<10-7 <<10-7 

Surface (inner sphere) 8.1 ×10-7 5.0 ×10-6 
Surface (outer sphere) 2.6 ×10-6 1.3 ×10-5 

Bulk NaCl solution 1.1 ×10-5 1.8 ×10-5 

1.4 Applications of LDH 

 

Figure 1-26: Possible applications of LDH materials. See ref. 142. 

On the basis of their structure and properties, a wide range of technologically 

important applications have been identified for LDH materials and summarized in Figure 

1-26. 142 Recently, several reviews have been devoted to the applications of LDH as 
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catalyst or catalyst supports, sorbent for pollutant, vector for biological molecules, 

electrochemical sensors and filler in polymers.143-145 

1.4.1 Catalysis 

By far, the most important potential application of LDH is in the field of heterogeous 

basic catalysis due to their basic properties and the formation of homogeneous and stable 

dispersion of metal ion. Mixed metal oxides obtained by thermal decomposition of LDH 

can promote base-catalyzed reactions such as polymerization146 , condensation147  and 

alkylation148. LDH can also be used as catalyst support for hydrogenation and stream 

reforming catalysts149, 150. On the other hand,  the catalytic activity of uncalcined LDH 

has been scarcely studied owing to the low thermal stability of the layered structure and 

to the low specific surface area. Yet, they have been found to catalyze the halide-exchange 

reaction between alkyl halide. 151 

1.4.2 Sorbent for pollutant 

The anion-exchange capacity of LDH higher than that of cationic clays makes 

them promising materials for the elimination of ecologically undesirable inorganic and 

organic anions. The removal of chromate152, 153, nitrate, phosphate, arsenate or vanadate 

anions154, 155 as well as humic substances156, 157and radioactive elements158, 159 from 

contaminated water or waste streams by LDH have been demonstrated. Also numerous 

papers have reported the use of LDH or their calcined derivatives as organic 

contaminate adsorbents such as  the adsorption of phenolic compounds160 , 161  and 

pesticides162-165.  
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1.4.3 Vector/drug release 

Hydrotalcite Mg6Al2(OH)16CO3·4H2O is known to be an effective antacids,166 but 

other bio-applications were recently reported. Many common nonsteroidal anti-

inflammatory drugs167-171 such as Diclofenac, Ibuprofen, Gemfibrozil and Naproxen 

have been incorporated in the interlayer space of LDH compounds via anion-exchange 

reaction as well as bio-related polymers and large bio-macromolecules such as 

polyaspartate172,  alginate173 and DNA174. Apart from a chemical curiosity, the drug 

intercalated LDH hybrids as a controlled drug-release system could control the point of 

release and pharmokinetic profile by tuning the desired composition in the host layers. 

Besides, the host layers improve the long-term stability and storage since these drug 

molecules are isolated from the environment by the hydroxide layers. Another 

application largely described by Choy et al. in the literature is the use of LDH as DNA 

delivery system. Indeed, these authors have shown that LDH can protect DNA from 

degradation and the charge neutralization enhances the transfer of DNA-LDH hybrid 

into mammalian cells through endocytosic.175  

1.4.4 Filler in polymer 

LDH can enhance the mechanical properties, gas permeability and be of interest in 

polymer electrolyte. The incorporation of polymer between LDH galleries proceeds via 

different pathways such as coprecipitation, exchange176, in situ polymerization177. The 

latter method presents the advantage to tune the tactility and the molecular weight of 

the generated polymer by varying the layer charge density and the particle size of the 

host structure, respectively. 20, 178, 179 A large variety of LDH/polymer systems can thus 

be obtained, thermally more stable than the pristine inorganic compound leading to 

potential applications in fire-retardant composites.180  LDH/polymer nanocomposites 

can also be served as LDH inorganic fillers dispersed into a polymer. 179 For example, 

nanoparticles of Zn3Al-dodecyl sulfate dispersed in the linear low density polyethylene 

(LLDPE) were found to enhance the thermal and mechanical properties of pure LLDPE. 
181 
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1.4.5 Nanoreactor 

LDH can also provide a confinement for the organic moiety suitable after a 

charring process to the formation of high surface area (2300 m2· g-1) carbonaceous 

materials, using the interleaved monomers and polymers between the hydroxide layers 

of LDH as carbonaceous source.182 Furthermore, a variety of nanoparticles such as Co, 

Ni, Pt, PbS, etc. have been prepared using LDH materials (Li2Al, MgRAl, Ni0.7Al and 

Co0.7Al etc.) as a nanoreactor intercalated with complex anions containing the desired 

metal: [M(EDTA)]2- (M = Co2+, Ni2+), [Pt(OH)6]2- and [Pb(S2O3)2]2-.183-185 With this 

method, it is possible to avoid the aggregation and the formation of well dispersed 

nanoparticle was indeed observed. 

II. Staging Phenomenon 

1.5 Staging Structure 

The study of multifunctional hybrid materials combining organic and inorganic 

structures is an emerging research area offering numerous scientific and technological 

benefits. Lamellar hosts are considered as promising with respect to this multifunctional 

character due to the possible synergetic effect between the host and the guest in the 

interlayer region. The functions of stabilization and protection can be viewed as  

synergetic effects as reported for the incorporation of organic chromophores with optical 

functions such as color, fluorescence, or nonlinear optical properties in inorganic hosts 

like zeolite 186 and LDH 82.  

Layered inorganic materials such as hydroxide based compounds M2(OH)3A·2H2O 

(M = Co and Cr, A = anions),187-190 bimetallic oxalate compounds [cation][MIIMIII(ox)3] 

(MII = Mn, Fe, Co and Cu; MIII = Cr and Fe),191 Zirconium phosphate,192 phosphonate 193, 

194 have been used to prepare nanoscale organic-inorganic layered complexes in efforts to 
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develop new functional materials with co-operative phenomena between the organic and 

the inorganic layers.   

Some studies on the effects of the intercalation into layered hosts of species of 

interest in the field of magnetism, non-linear optics sensing devices and molecular 

recognition, can be found in the recent reviews. 195 - 199 In this respect, the staging 

phenomenon as encountered in a few occasions in clay minerals with a stacking of two or 

more kinds of layers, is a promising way to increase the multifunctional character of 

layered materials. Staging phenomena originally refer to intercalation on graphite system 

and it is often viewed as  a way to reduce the energy barrier to an intercalation reaction. 

The literature describing graphite intercalation reactions contains numerous examples of 

staging intermediates involving the intercalation of every nth layer corresponding to the 

nth stage compound. Such a staging phenomenon has also been observed but only on a 

few occasions for transition metal dichalcogenides. In clay minerals, this phenomenon is 

referred to interstratification and represents the stacking of different kinds of layers. Only 

a few cases of staging have been reported in clay minerals and the scarcity of this 

phenomenon in other lamellar hosts than graphite has been rationalized theoretically 

mainly in terms of stiffness of the host planes.  

Theoretical models of staging typically divide the host lattices into three classes 

from single atom layers like graphite to rigid many atom thick layers as found in clays, 

transition metal dichalcogenides belonging to the intermediate class. 200 The staging 

phenomena were first studied on graphite materials and two classical models of staging 

for graphite system, proposed by Rüdorff 201, 202, and Daumas-Hérold 203, 204 are proposed 

(Figure 1-27(a) and (b), respectively).205 The former is hardly considered as it cannot 

interpret transformations from odd to even stages without a deintercalation-intercalation 

process. Owing to the scarcity of staging phenomena in lamellar materials other than 

graphite, the lack of staging observation has often been explained due to the rigidity of 

host planes206,  207. Daumas-Hérold thus imagined staging resulting from guest species 

diffusion towards the crystal center and only possible for flexible layers like the single-

carbon honeycomb sheets of graphite. The order of staging is defined as the number of 
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between negatively charged MoCl5 and positively charged K+ was responsible for the 

formation of staging compound during intercalation of K+ into stage MoCl5-GIC. 216 

Staging graphite compounds have been further investigated as microreactors for 

inorganic and organic reactions217 in the interlayer spacing of graphite. It is worth 

mentioning that the stage number of the starting GICs determines the particle size of 

fine metallic particles obtained from the reduction of intercalated metal chloride.218 For 

organic reactions, most of them were in relation with polymerization. In 1976, Beguin 

and Setton firstly thus reported the formation of biphenyl from benzene in the 

interlayer space of a staged graphite.219 

1.6.2 Layered Dichalcogenides Staging Compounds 

Layered dichalcogenides AnMX2 (A= alkali metal, M = transition metal, X = S and 

Se) materials can intercalate a wide range of guest cations and neutral species into the 

interlayer space between the negatively charged host layers.220 Staging phenomena occur 

usually at low concentrations of intercalated guest cations and higher order staged 

compounds than 2, i.e. 3rd  and 4th stage dichalcogenides intercalation compounds have 

been reported.221-224 Factors such as the lattice energy, the electrostatic interaction of 

neighboring cation layers and the energy needed for the separation of the layers upon 

intercalation, have been considered for the explanation of the occurrence of high order 

staged compounds at low guest concentrations. Besides, the influence of kinetic factors is 

suggested as the mechanism of transition from stages with odd numbers to stages with 

even numbers i.e. from 3rd stage to 2nd stage. Models involving lattice strain mediated 

interactions and thermodynamic considerations have also been put forward to explain 

staging phenomena in this system.225-227 However, these models mainly consider from the 

point of thermodynamic equilibrium. In fact, even at high temperature a second-stage 

compound may be formed as for Cu2/3(NbS2)2.228 

Moreover, higher stages are not observed if the guest species are of large size such as 

(C5H5)2Co+ and Ba2+ cryptate attributed to the strong mechanical energy needed for the 
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deformation of layers. The formation of 2nd and 3rd staging intermediates during the 

reaction process can effectively relax activation energies for the deformation of double or 

triple sheet packet units. Therefore, the flexibility properties of the sheet units in layered 

systems also play a significant role explaining the nonexistence of staging for “thick” 

layers like Ta2S2C and MoO3.229 

1.6.3 Fluorohectorite Clay Staging Compounds 

 

Figure 1-30: Three synthetic approaches to mixed ion heterostructures with regularly alternating 
galleries. Pathway І involves the addition of half a cation exchange equivalent of surfactant. Route II 
concerns the treatment of an organo clay with a concentrated NaCl solution while method III simply 
recombines the two homoionic end member clays. See ref. 230. 

Fluorohectorite clays contain examples of 2nd stage heterostructures with 

distinguishable organic and inorganic galleries stacked in a regularly alternating 

fashion. W. L. Ijdo and T. J. Pinnavaia studied such fluorohectorite staging structures 

and established three pathways for explaining their formation (Figure 1-30): pathway I 

involves the direct addition of surfactant cations of onium and sodium ions in a molar 

ratio of 0.5:1; pathway II is a reverse approach using a concentrated NaCl solution to 

treat with a homoionic organoclay; pathway III considers the reaction of equal molar 

quantities of the two end member homoionic clays in a water suspension.230 
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Figure 1-31: Summary of the reaction pathways observed during the intercalation reaction of 
CnH(2n+1)N(CmH(2m+1))3+ cations (n ≥10; m = 1-5) into Na+-fluorohectorite leading to heterostructured, 
homostructured, and phase segregated mixed ion intercalates. See ref. 230. 

In particular, the two authors focused on the effect of the onium ion 

(CnH(2n+1)N(CmH(2m+1))3
+) geometry such as chain length and head group size on the 

formation of such staging materials  as described in Figure 1-31: the alkyl chain of the 

onium ion n > 10 and the head group footprint m ≥ 3 favoring the formation of bipolar 

fluorohectorite staging materials. The formation of such heterostructure has been 

proposed as a result of the segregation of the hydrophobic organic cations and the 

hydrophilic inorganic cations on the internal and external surfaces of two-nanolayer 

tactoids during the ion exchange process.  

Further, the same authors also studied fluorohectorite materials intercalated with 

[C16H33EBu3
+] (E = N or P) onium ions (Q+)  and found that the size and charge of the 

initial metal ion located in the interlayer region do not play an important role because 
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this kind of heterostructure formation is not limited to Na+ only but also available for 

other inorganic exchange cations such as Ca2+, Ba2+, Al3+ and Ce3+ ions. 231 When the 

fraction of onium ions is in the range from 0.33 to 0.50, there is no formation of 3rd 

stage phase as expected but a 2nd stage phase with alternate interlayers occupied by Na+ 

ions and a mixture of onium ions and Na+ ions as depicted  in Figure 1-32. 

 

Figure 1-32: Schematic illustrations of gallery stacking patters in heterostructured mixed onium ion 
(Q+)-inorganic (Na+) ion fluorohectorites:  (A) regularly alternating galleries of segregated onium and 
inorganic ions at fQ = 0.50 (fQ = Q+/(Q+ + Na+), mol/mol); (B) regularly alternating galleries of 
homoionic Na+ and alloylike mixed ion (Na+, Q+) galleries at onium ion compositions in the range 
0.33 ≤  fQ ≤  0.50.  See ref. 231. 

1.6.4 Staging Layered Double Hydroxides Compounds 

The phenomenon of interstratification in anionic clays was first reported in 1987 

by Drits et al. who described the structure of a mixed carbonate and sulfate LDH, a 

mineral phase consisting of alternating carbonate and sulfate interlayers. 232,  233  

In 1998, by means of in situ energy-dispersive X-ray diffraction (EDXRD) 

technique O’Hare et al. discovered that the intercalation of a variety of dicarboxylate 

anions (succinate, adipate, fumarate, maleate, L-maleate, phthalate and terephthalate) 

into LiAl2(OH)6Cl·2H2O (hexagonal form, h-LiAl2-Cl) proceeds via the formation of a 

second-stage intermediate with alternate interlayer spaces occupied by different anions, 

the initial anions i.e. Cl- and the incoming organic anions. 209 Data for the intercalation 

of succinate anions into h-LiAl2-Cl are shown in Figure 1-33. The intermediate decay 
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of the 001 Bragg reflection due to LiAl2-Cl host (7.65 Å) following the addition of the 

succinate solution is accompanied by the growth of a reflection at 9.9 Å assigned to the 

002 reflection of the second-stage intermediate LiAl2-Succ/Cl (Figure 1-33 (a)). This 

value multiplied by two gives the position of the 001 reflection of LiAl2-Succ/Cl i.e. 

19.8 Å which exactly corresponds to the sum of the interlayer distance of Cl- anions 

(7.65 Å) and that of the fully exchanged phase LiAl2-Succ (12.1 Å). Finally, the growth 

of the fully exchanged (or first stage) product LiAl2-Succ is obtained but not until the 

intermediate has gone though its maximum and the starting phase LiAl2-Cl has 

disappeared completely. From the variation of the intensity of the Bragg reflection 

(Figure 1-33 (b)), it is possible to calculate the extent of reaction α, It /Imax (intensity at 

time t/maximum intensity), as a function of time t. The crossing of α(t) curves for 

LiAl2-Cl and LiAl2-Succ at α = 0 further indicates that the intercalation reaction is a 

two-step process involving the presence of an intermediate phase. 

 

Figure 1-33: Time-resolved, in situ, energy-dispersive X-ray powder diffraction data showing the 
course of the ion-exchange reaction between [Li2Al(OH)6]Cl·H2O and disodium succinate: (a) 3D 
stacked plot; (b) plot of integrated intensity of 001 reflection of the host (♦), 002 reflection of the 
second-stage intermediate (+) and 001 reflection of the final phase (Δ) as a function of time. See ref. 
213. 

Since this first study, these authors have performed several other studies to better 

understand the factors influencing staging during anion-exchange reactions in LiAl2 

LDH system.234For instance, they examined the intercalation of phosphonate anions 

into the hexagonal form h-LiAl2-Cl and it was shown that methyl-, ethyl- and 
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benzylphosphonate all intercalate via a two-step mechanism whereas 

phenylphosphonate intercalates directly in a one-step process. 235, 236 On the other hand, 

one-step process was observed for the intercalation of all four phosphonate anions into 

the rhombohedral form of LiAl2-Cl. The influence of the initial interlayer anions in 

LiAl2-X (X = NO3
- and Br-) was also investigated and it was observed that staging 

intercalates are not formed with X = NO3
- while X = Br- second-stage intermediates are 

formed but only with certain organic anions like methylphosphonate, fumarate and 

succinate anions. Regarding the occurrence of staging phenomena in LiAl2-LDH 

system, the conclusion is therefore that the nature of both the interlayer anions and the 

stacking sequence of  layers (rhombohedral or hexagonal forms) influence the 

exchange reaction mechanism involving or not the presence of a second-stage 

intermediate. 

 

Figure 1-34: In situ energy-dispersive X-ray powder diffraction data showing the course of the anion-
exchange reaction (a) between Zn2Cr-Cl and tartrate anions (b) between Zn2Cr-Cl and succinate anions. 
see ref. 211. 

Though not clearly specified by O’Hare et al., one might think at a first glance 

that staging in LiAl2-LDH which is a rare example of LDH presenting an ordered 

structure, stems from this structural singularity. Yet in 2003, Taviot-Gueho et al. 
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showed that Zn2Al-Cl, Zn2Cr-Cl and Cu2Cr-Cl (disordered LDH) also undergo staged 

intercalation reactions with succinate and tartrate anions. 211 Again by means of in situ 

EDXRD technique, the formation of second-stage intermediate was evidenced in all 

cases (Figure 1-34). However, depending on the nature of the organic anions, two 

exchange pathways were identified. For tartrate exchange, the mechanism resembles 

that reported by O’Hare et al. with LiAl2-LDH 209 since the fully exchanged material is 

not observed until the intermediate has gone through its maximum and the chloride 

precursor has disappeared completely. For succinate exchange, the final product of 

intercalation and the second-stage intermediate simultaneously appear. Dried under 

vacuum, Zn2Cr-Tart/Cl second-stage material undergoes a contraction of the 

interlamellar space associated with a reorientation of the tartrate anions in a flat 

position after the removal of interlayer water molecules. The contraction of the 

interlamellar distance observed ca. 2.9 Å is that expected for two different interlayer 

contents i.e. occupied by Cl- and tartrate anions alternatively thus excluding the 

formation of interstratified phases associated with two different orientations of the 

same anion as reported for terephthalate anions in Mg2Al-LDH (Figure 1-35) 208. This 

example points out the eventual difficulty in attributing 2nd stage compounds arising 

from either “conformational” or “chemical” staging.  

Regarding the occurrence of staging in LDH system, these authors suggested a 

segregation between organic and inorganic anions since staging has never been 

observed with mixed inorganic anion LDH. Therefore, second-stage intermediates 

would be a peculiarity of organic/inorganic systems resulting from a segregation 

between organic and inorganic anions. 
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Figure 1-35: Proposed model for structural changes occurring during the heat treatment and loss of the 
interlayer water of Mg2Al-Terephthalate at (a) 25 ℃, (b) 100 ℃ and (c) 200 ℃. See ref. 208. 

Based on these studies, second-stage intercalates in LDH systems have only been 

seen to occur as intermediates during intercalation reactions. However, the literature 

contains one example of second-stage intercalate obtained by direct coprecipitation 

reported by Iyi et al. 210 These authors observed the formation of mixed 

hydroxide/azobenzene intercalate for Mg2Al-LDH associated with the formation of 

bipolar two-nanolayer tactoids; the hydrophobic binding effect and the size of organic 

anions combined with the layer charge density of LDH hydroxide layers would exclude 

the inorganic anions from the interlayer space leading to the formation of bipolar two-

layer nanoparticles; staging structures are then formed upon stacking of the so-called 

tactoids during the drying steps as depicted in Figure 1-36.  
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Figure 1-36: Scheme of the formation of second-staging via tactoids for the AzAA/Mg2Al LDH 
complexes prepared by a coprecipitation. AzAA is (4-Phenylazo-phenyl)-acetic acid. See ref. 210. 

The aim of this thesis is to further investigate the formation of LDH second-stage 

materials, and to enlarge the study to other compositions than LiAl2 LDH already 

examined in detail by O’Hare’s group in Oxford. We also aim to determine the factors 

influencing the formation of such heterostructures, investigate their anion-exchange 

properties and finally look at their applications in the field of multifunctional materials. 

1.7 In Situ Energy-dispersive X-ray Diffraction 

There is detailed introduction concerning in situ EDXRD in G. R. Williams’ 

thesis237. Compared with angular-dispersive X-ray diffraction used as the standard 

characterization technique in solid state laboratories, in situ energy-dispersive X-ray 

diffraction using Synchrotron radiation has two main advantages: (i) a wide range of d-

spacings can be observed simultaneously, then it is possible to detect all the phases 

involved in an intercalation reaction i.e. the host materials, any intermediates and the 

final product at the same time; (ii) the short time of data collection down to 1 s, thus 

smaller than the average reaction time for solid state intercalation reactions. Hence, it is 

possible to obtain both qualitative and quantitative information regarding to the 

reaction mechanisms and kinetics. 
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Figure 1-37: Synthesis of long chain ammonium intercalates of MnPS3: (i) MnPS3 (150 mg) + 
C12TMABr (1 mmol) in 5 cm3 water at 120 ℃, (ii) MnPS3 (150 mg) + C16TMABr (1 mmol) in 5 cm3 
water at 120 ℃. See ref. 238. 

EDXRD has been used to perform in situ kinetic studies on the intercalation of a 

variety of guest species in host layered materials as reviewed by O’Hare et al.238. For 

example, the kinetic studies on the intercalation of cations (K+, PyH+ (Py = C5H5N), 

NMe4
+) and the long chain ammonium ions i.e. dodecyltrimethylammonium (C12TMA), 

hexadecyltrimethylammonium (C16TMA) and octadecyltrimethylammonium (C18TMA) 

into MnPS3 lamellar host (in Figure 1-37) have been investigated, as well as the 

intercalation of cobaltocene, Co(η-C5H5)2, into the layered dichalcogenides ZrS2, 2H-

SnS2, 2H-SnSe2, 2H-TaS2, 2H-NbS2, 1T-TaS2 and TiS2.239 In this latter case, it was found 

that the rate of intercalation is independent on the initial Co(η-C5H5)2 concentration over 

a wide concentration range. On the other hand, the rate of intercalation of the lithium salts 

(LiX; X = Cl, Br, NO3 and OH) into Gibbsite (γ-Al(OH)3) during the formation of LiAl2-

X LDH and LiAl2-SO4 LDH have been determined by EDXRD. Finally, the in situ 

EDXRD spectra recorded following the addition of an aqueous solution of 

hexadecyltrimethylammonium chloride (C16H33N+Me3Cl-) to kanemite (NaHSi2O5·3H2O) 

at 70 ℃ showed that a layered phase formed at the initial step later transforms into a 

silicate-organic mesophase which is a precursor to the hexagonal mesoporous silicate 

(FSM-16) as described in Figure 1-38.  
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Figure 1-38: (a) Three-dimensional stacked plot showing the energy dispersive powder X-ray 
diffraction spectra recorded following addition of 0.1 M hexadecyltrimethylammonium chloride 
(C16TMA+Cl-) to kanemite in water at 70 ℃. (b) The final in situ EDXRD spectrum taken after 
reaction completion, showing all observable diffraction features. See ref. 238. 

EDXRD experiments described in the following were performed at Daresbury 

laboratory on station 16.4 using the experimental set-up developed by O’Hare et al. 

The usable extracted X-ray flux is continuous within the energy range of 5 to 120 keV 

and the energy storage ring is operated under extremely high vacuum (pressures below 

10-10 Torr). The data collected using the energy-dispersive method can be converted to 

d-spacing via combination of Bragg’s law with the Planck relation as follows:  

ܧ ൌ  Equation 1-5                                                                   ߣ/݄ܿ

gives 

2݀  sin ߠ ൌ  Equation 1-6                                                         ܧ/݄ܿ

 ܿ ൌ 3 ൈ ݄ ,ଵିݏ 10଼݉ ൌ 6.626 ൈ 10ିଷସܬ. ݁ and ݏ ൌ 1.602 ൈ 10ିଵଽܿ then 

݀ ൌ ܧ/6.1992 · sin  Equation 1-7                                               ߠ
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In Equation 1-7, E is the energy of a photon in keV, d is the corresponding d-spacing in 

Å, and θ is the fixed detector angle used in the EDXRD experiments.  

1.7.1 Experimental Setup 

 

Figure 1-39: The experimental apparatus used to perform time-resolved in situ EDXRD experiments. 
See ref. 238. 

The experimental setup at Station 16.4 for the study of intercalation reactions by 

EDXRD is presented in Figure 1-39. 240, 241 As can be seen, there are three detectors 

and each detector is separated by approximately 2º in 2θ in order to cover a different 

range of d-spacing. 235 There is overlap between the range covered by each detector in 

order to ensure that no reflections are missed. 
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The equipment has been successfully used by O’Hare et al. for studying a number 

of intercalation reactions such as the intercalation of carboxylate and phosphonate 

anions into LiAl2-LDH and the intercalation of sulfates drugs and agrochemicals into a 

variety of materials i.e. Li2Al-Cl 242,  243and Ca2Al-NO3 
244. 

1.7.2 Data and Kinetic Analysis 

An automated Gaussian fitting routine is used to obtain the peak integrated areas of 

the Bragg reflections Ihkl.245 These values are subsequently converted into the extent of 

reaction α at time t defined as:  

ሻݐሺߙ ൌ  ሻ                                           Equation 1-8ݔ௛௞௟ሺ݉ܽܫ/ሻݐ௛௞௟ሺܫ

where ܫ௛௞௟ሺݐሻ is the area of a given hkl peak at a certain time t and ܫ௛௞௟ሺ݉ܽݔሻ is the 

maximum area of this peak. 

Information on reaction mechanism can be deduced from the shape of ߙሺݐሻ plot246. 

For solid state reaction, the kinetic equation of Avrami and Erofe’ev is the most 

commonly employed and expressed as follows:  

ሻݐሺߙ ൌ 1 െ expሾെሺ݇ݐሻ௡ሿ                                  Equation 1-9 

where ݇  is the rate constant and n is the so-called Avrami exponent. The Sharp and 

Hancock expression corresponding to the Log-linearized form of the Avrami and Erofe’ev 

equation247: 

lnሺെ lnሺ1 െ ሻሻߙ ൌ ݊ ln ݇ ൅ ݊ ln  Equation 1-10                                    ݐ

is used to calculate the values of k and n. If there is a linear relationship between 

lnሺെ lnሺ1 െ ሻሻ and lnߙ  the value of ݊ is the gradient of the line and the value of ݇ can , ݐ

be obtained from the ordinate intercept. Avrami exponent can be used to describe the 

reaction mechanisms involved and possible values for intercalation into a layered host are 

summarized in Table 1-3 248. Yet, the interpretation of these values can be difficult, and a 

given value does not unequivocally allow the determination of the reaction mechanism. 
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For a layered host, nucleation sites are the edges of the crystallite from which guest 

anions enter the interlayer space and the nuclei growth corresponds to the diffusion of 

guest molecules into the interlayer region in two dimensions (λ = 2). Consequently, 

nucleation rate (β) may be either phase boundary controlled (the rate is limited by the 

expansion of interlayer space to accommodate the guest) or diffusion controlled (the rate 

is controlled by the diffusion of guest anions in the interlayer region).  

Table 1-3: Nuclei growth models possible for intercalation into a layered double host. See ref. 248. 

Dimension of 
growth (λ) 

Nucleation rate 
 (ࢼ)

Exponent value 
Phase boundary 

controlled (n) 

 
Diffusion 

controlled (m) 
1 Deceleratory 1-2 0.5-1.5 
2 Zero 

(instantaneous) 
2 1 

2 Deceleratory 2-3 1-2 
*for phase boundary controlled process, n= ߚ ൅ 2/ߣ ; for diffusion controlled 

process, n= ߚ ൅  .ߣ

On the other hand, there is the other possibility that the guest species enter the 

interlayer regions as soon as they reach the layer edges. The whole reaction proceeds 

purely diffusion controlled process and different models exist summarized in Table 1-4 

used to describe such diffusion processes in various dimensions249. 

Table 1-4: Possible equations describing diffusion controlled reactions. See ref. 248. 

Growth Equation 

One-dimension diffusion ߙଶ ൌ  ݐ݇

Two-dimension diffusion ሺ1 െ ሻlnሺ1ߙ െ ሻߙ ൅ ߙ ൌ  ݐ݇

Three-dimension diffusion ሾ1 െ ሺ1 െ ሻߙ
ଵ
ଷሿଶ ൌ  ݐ݇
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2.1 Introduction 

Recently, the mechanism by which intercalation occurs in layered hosts acquired a 

renewed of interest with the development of multifunctional materials. In the same time, 

the technological and experimental advances in energy-dispersive powder X-ray 

diffraction (EDXRD) with synchrotron X-ray sources have provided new possibilities for 

the study of solid-state reaction kinetics.1  This technique allows the simultaneous 

observation of a wide range of d-spacings for all possible species involving the 

intercalation reaction such as the host, any intermediate phase and the product. 

Particularly, the markedly higher intensity over conventional laboratory X-ray source 

makes it possible the acquisition of good quality spectra on time scale of seconds, hence 

the kinetic study of fast intercalation reactions.2 A wide variety of intercalation reactions 

have been investigated using EDXRD (see Chapter 1). 3-9 

By means of EDXRD, in collaboration with D. O’Hare and co-workers, we intend to 

develop a better understanding of LDH anion-exchange mechanisms and to determine the 

factors influencing the formation of LDH second-stage intermediate. 1, 10-14 EDXRD 

technique allows reactions to be continuously monitored in situ and detailed structural 

data can be collected. 

The work described in this chapter builds on previous work performed by C. 

Taviot-Gueho and co-workers14, 15and seeks for the conditions that prevail for the 

formation of LDH second-stage compounds. In the first part, the exchange reactions of 

chloride (Cl-) anions by tartrate (-O2C(CHOH)2CO2
-)/succinate (-O2C(CH2)2CO2

-) anions 

in Zn2Cr-Cl and Zn2Al-Cl were investigated by means of EDXRD. The aims here are to 

further confirm the formation of the second-stage intermediates between tartrate/succinate 
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and chloride anions, examine the influence of the addition rate of the incoming anions on 

the observation/detection of the intermediate and investigate the kinetics of exchange 

reactions (partial kinetic analysis). In a second part, the study is extended to other anions. 

The exchange reactions of Cl- anions with inorganic anions including carbonate (CO3
2-), 

sulfate (SO4
2-), ferricyanide ([FeIII(CN)6]3-), and adipate (-O2C(CH2)4CO2

-) organic anions 

in Zn2Cr-Cl were investigated. We also looked at the exchange of tartrate anions by Cl- 

and CO3
2-inorganic anions in Zn2Cr-Tart. These studies will give us some clues regarding 

the occurrence of staging phenomena in LDH system. 

2.2  Experimental details 

2.2.1 Synthesis of the host materials 

Zn2Cr-Cl/Zn2Al-Cl host materials were synthesized by direct coprecipitation method 

while Zn2Cr-Tart material was prepared from Zn2Cr-Cl via anion-exchange route. 14 For 

the synthesis by coprecipitation, 40 mL of an aqueous solution containing a mixture of 

ZnCl2 (0.66 M) and CrCl3/AlCl3 (0.33 M) were added in a flask previously filled with 

150 mL of deionized and decarbonated water by a syringe pump under vigorous stirring. 

A solution of sodium hydroxide (2 M) was simultaneously added. The addition was 

carried out at room temperature under nitrogen (N2) atmosphere and monitored by a pH 

regulator via a pH electrode immersed in the reagent solution to fix the pH of 

coprecipitation at 5.5 for Zn2Cr-Cl and 8.0 for Zn2Al-Cl. The resulting slurries were aged 

for 24 h in the mother liquid, then recovered by three dispersion and centrifugation cycles 

in water and finally dried in air. 
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Table 2-1: Chemical composition of precursor compounds 

LDH M2+/M3+ Cl-/M3+ H2O/M3+ 

Zn2Cr-Cl 1.98 1.00 1.90 

Zn2Al-Cl 1.94 0.90 1.52 

 

The chemical analysis of these chloride precursors given in Table 2-1 by inductively 

coupled plasma (ICP) emission spectroscopy corresponds to a LDH composition with a 

M2+/M3+ molar ratio close to 2. The powder X-ray diffraction patterns in Figure 2-1 

further confirm the formation of pure and well crystallized LDH compounds. 

 

Figure 2-1: Powder X-ray diffraction patterns of Zn2Al-Cl and Zn2Cr-Cl prepared by coprecipitation. 

Zn2Cr-Tart was obtained by stirring about 1.5 g Zn2Cr-Cl precursor, dispersed in a 

solution of sodium tartrate containing an excess of 2.5 of tartrate anions compared to the 

anionic exchange capacity (AEC) of Zn2Cr-Cl precursor. The suspension was stirring for 



Chapter 2 

~ 67 ~ 

 

24 h at room temperature and under nitrogen atmosphere, and then the solid was 

recovered by three dispersion-centrifugation cycles in water and finally dried in air. The 

powder XRD pattern of Zn2Cr-Tart is displayed in Figure 2-2. The crystallinity of 

Zn2Cr-Tart is lower than that of Zn2Cr-Cl as often reported for tartrate containing LDH 

and attributed to the complexing power of tartrate anions reacting with metal cations from 

the hydroxide layer. 16 

 

Figure 2-2: Powder X-ray diffraction patterns of Zn2Cr-Tart from Zn2Cr-Cl via anion-exchange route. 

2.2.2 Time-resolved in situ energy-dispersive X-ray diffraction (EDXRD) 

measurements  

The experiments were performed on Station 16.4 of the U. K. Synchrotron radiation 

source (SRS) at the Daresbury Laboratory using the same experimental setup as reported 

by O’Hare et al..1, 10 A photo of this equipment is given in Figure 2-3. A wide range of 
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d-spacing from ca. 109 – 3.8 Å can be observed while our interest in the present study 

focuses on the range of 20 – 3.8 Å.  

 

Figure 2-3: EDXRD experimental setup on station 16.4 at the UK SRS, Daresbury Laboratory used 

for studying in situ the anion-exchange reaction in LDH system. 

An aqueous solution containing the incoming anions (different concentrations 

depending on the anions: 0.2 M for tartrate (–OOC(CHOH)2COO-), succinate 

(–OOC(CH2)2COO-), adipate (–OOC(CH2)4COO-), CO3
2- and SO4

2- anions, 0.15 M for 

ferricyanide ([FeIII(CN)6]3-) anions, and 1.6 M for Cl- anions) was added by a syringe 

pump system into 10 mL of a suspension (25 g· L-1) of LDH (Zn2Cr-Cl, Zn2Al-Cl, 

Zn2Cr-Tart) in water. Two addition rates of the incoming anions solution were applied: 

0.059 mL· min-1 and 1.0 mL· min-1. The EDXRD spectra were collected at a fixed 
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detector angle of 1.625 o (2θ) with an acquisition time varying from 10 s to 60 s 

depending on the crystallinity of the system. The amount of incoming anions added into 

the suspension as a function of time was converted into a theoretical exchange rate based 

on the AEC of LDH starting phase. The EDXRD data collected by the program “PINCER” 

were converted into an available format for input into the Xfit peak profiling program 

using the program DLConverter. 

2.2.3 Kinetic analysis of EDXRD data 

The Xfit program was used to obtain the peak integrated areas of the Bragg reflections 

Ihkl, considering Gaussian curves.17 These values were subsequently converted into the 

extent of reaction α at time t defined as:  

ሻݐሺߙ ൌ  ሻ                                        (1)ݔ௛௞௟ሺ݉ܽܫ/ሻݐ௛௞௟ሺܫ

where ܫ௛௞௟ሺݐሻ is the area of a given hkl peak at a certain time t and ܫ௛௞௟ሺ݉ܽݔሻ is the 

maximum area of this peak. 

Information on reaction mechanism can be deduced from the kinetic equation of 

Avrami and Erofe’ev and the corresponding parameters ݇ (the rate constant) and n 

(Avrami exponent) were calculated based on the Sharp and Hancock method18. The 

detailed analysis and kinetic models are introduced in Section 1.7.2. 

2.2.4 Powder X-ray diffraction (PXRD).  

A Philips X-Pert Pro diffractometer was used for the X-ray diffraction analysis of the 

powders. The diffractometer was equipped with a Cu X-ray tube, graphite 

monochromator and Ar-filled proportional counter. Divergence and receiving slits were 

1/16° and 1 mm, respectively. Powders were back-loaded in an aluminum sample holder 
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to produce a good sample surface and avoid preferential orientation effects. Data were 

collected in a step mode  with a step size of 0.03° (2θ) and a counting time of 10 sec/step. 

2.3 Anion-exchange Reaction of Cl- Anions by Tartrate or 

Succinate Anions in Zn2Cr-Cl and Zn2Al-Cl LDHs 

2.3.1 Formation of second-stage intermediates 

2.3.1.1 In Zn2Cr-Cl system 

The exchange reactions in LDH system occur very vapidly; in a few minutes at room 

temperature we observed the formation of the fully exchanged phase. So, in order to study 

these reactions in detail, it is necessary to slow down the reaction rate by adding the anion 

solution in a dropwise manner. However, this slow addition of guest anions prevents a full 

quantitative kinetic analysis of the data. 

Figure 2-4 shows the anion-exchange reaction of Zn2Cr-Cl with tartrate anions for a 

slow addition (0.059 mL · min-1) of the tartrate anion solution (0.2 M). Individual spectra 

were collected with an acquisition time of 60 s. The amount of guest anions added in the 

suspension of Zn2Cr-Cl is converted into a theoretical anion exchange capacity (AEC) 

given on the right scale.  
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Figure 2-4: EDXRD data showing the course of the exchange reaction of Zn2Cr-Cl with tartrate  at 

room temperature. (a) 3D stacked plot showing the evolution of Zn2Cr-Cl host 003, Zn2Cr-Tart/Cl 

intermediate 006, and Zn2Cr-Tart product 003 Bragg reflections as a function of time; (b) 2D stacked 

plot showing the same; (c) Extent of reaction (α) vs. time curves for host 003, intermediate 006 and 

product 003 Bragg reflections. 

Three successive Bragg reflections were observed with different d-spacings as a 
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function of time indicating a two-step exchange reaction process. The first peak at 7.8 Å 

corresponds to the 003 reflection of Zn2Cr-Cl host; the immediate decay of this peak 

following the addition of the tartrate solution is accompanied by the growth of a new 

reflection at 10.1 Å attributed to the 006 reflection of the second-stage intermediate 

Zn2Cr-Tart/Cl. The growth of the fully exchanged phase Zn2Cr-Tart at 12.2 Å is not 

observed until the intermediate phase has gone through its maximum and the host has 

decayed completely. However, the present experimental setup cannot allow us to observe 

the 003 reflection of Zn2Cr-Tart/Cl, only the second harmonic 006 reflection is visible at 

ca. 10.1 Å. This value multiplied by two exactly corresponds to the sum of the interlayer 

distance of the two anions, chloride and tartrate anions, as depicted in Figure 2-5. 

 

Figure 2-5: Idealized structure of Zn2Cr-Tart/Cl second-stage compound with alternate interlayers 

occupied by chloride and tartrate anions. 

From the variation of the intensity of the Bragg reflections, it is possible to calculate 

the extent of reaction noted alpha (α) as a function of time for each phase. The crossing 

for the host (Zn2Cr-Cl) and the product (Zn2Cr-Tart) at α = 0 indicates that the reaction is 

a two-step process implying the presence of an intermediate phase (Figure 2-4 (c)). 
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Besides, the crossing at α = 0.5 for the intermediate (Zn2Cr-Tart/Cl) and the product 

curves as well as for the intermediate and the product curves indicates a conversion of the 

host to the intermediate followed by the conversion of the intermediate to the product. 

 

Figure 2-6: EDXRD data showing the course of the exchange reaction of Zn2Cr-Cl with succinate at 

room temperature. (a) 3D stacked plot showing the evolution of Zn2Cr-Cl host 003, Zn2Cr-Succ/Cl 

intermediate 006, and Zn2Cr-Succ product 003 Bragg reflections as a function of time and (b) extent of 

reaction vs. time curves for host 003, intermediate 006 and product 003 Bragg reflections. The guest 

succinate anion solution (0.2 M) was added at a rate of 0.059 mL· min-1. 

Figure 2-6 shows the intercalation of succinate anions into Zn2Cr-Cl. Three Bragg 

reflections are again observed at 7.8 Å 003 Zn2Cr-Cl, 10.1 Å 006 Zn2Cr-Succ/Cl and 12.0 

Å 003 Zn2Cr-Succ. However, in this case, the fully exchanged phase is observed almost at 

the same time as the second-stage intermediate, suggesting parallel processes with a route 

probably going through the intermediate as well as a direct transformation from the host 

to the fully exchanged phase. This result is different from that observed by O’Hare et al.10 
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in the case of the intercalation of succinate anions in LiAl2(OH)6Cl·H2O, for which a 

consecutive process was observed. The simultaneous presence of the intermediate and the 

fully exchanged phases also prevents isolation of Zn2Cr-Succ/Cl second-stage compound.  

 

Figure 2-7: Ex situ powder X-ray diffraction patterns for the second-stage phases: Zn2Cr-Succ/Cl and 

Zn2Cr-Succ/Cl. Reflections marked with * correspond to the Zn2Cr-Cl host. 

In Figure 2-7 are presented the PXRD patterns of the second-stage materials isolated 

in the laboratory by repeating EDXRD experiments (i.e. 0.2 M the solution of tartrate or 

succinate anions was added dropwise into 10 mL a suspension (25 g · L-1) of Zn2Cr-Cl), 

and quenching the reaction where the concentration of the intermediate is expected to be 

the greatest,19 i.e. for Zn2Cr-Tart/Cl, at a reaction time ca. 18 min corresponding to the 

crossing point of α(t) curves of the host and the product at α = 0, and for Zn2Cr-Succ/Cl at 

a reaction time ca. 20 min corresponding to the crossing point at ca. α = 0.3. As expected, 
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Zn2Cr-Tart/Cl appears almost as a pure phase with low trace of Zn2Cl-Cl. Conversely, 

Zn2Cr-Succ/Cl sample is actually a mixture of Zn2Cr-Succ/Cl and Zn2Cr-Cl. In the case 

of Zn2Cr-Succ/Cl, the powder does not exactly reflect the composition of the reaction 

matrix at the time of quenching since we expected a mixture of Zn2Cr-Succ/Cl and 

Zn2Cr-Succ and not Zn2Cr-Cl. The equilibrium between phases must have been displaced 

during the centrifugation/washing/drying steps. 

2.3.1.2 In Zn2Al-Cl system 

 

Figure 2-8: EDXRD data showing the course of the exchange reaction of Zn2Al-Cl with tartrate 

anions at room temperature. (a) 3D stacked plot showing the evolution of Zn2Al-Cl host 003, 

Zn2Al-Tart/Cl intermediate 006 and Zn2Al-Tart product 003 Bragg reflections as a function of time. (b) 

Extent of reaction vs. time curves for host 003, intermediate 006 and product 003 Bragg reflections. 

The guest tartrate anions solution (0.2 M) was added at a rate of 0.059 mL· min-1. 

The same exchange reactions were carried out with Zn2Al-Cl. Plots showing the 

course of the exchange reactions of Zn2Al-Cl with tartrate and succinate anions are 
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present in Figure 2-8 and Figure 2-9, respectively. Compared to Zn2Cr-system, 

Zn2Al-system displays a lower crystallinity which makes detection of the second-stage 

intermediate rather difficult, particularly in the case of tartrate exchange reaction.  In the 

present conditions, the intercalation of tartrate and succinate anions appear to proceed the 

same way i.e. via parallel processes. Yet, owing to the low crystallinity of the system, we 

cannot go further in the interpretation of the data nor in the comparison with 

Zn2Cr-system. 

 

Figure 2-9: EDXRD data showing the course of the exchange reaction of Zn2Al-Cl with succinate 

anions at room temperature. (a) 3D stacked plot showing the evolution of Zn2Al-Cl host 003, 

Zn2Al-Succ/Cl intermediate 006 and Zn2Al-Succ product 003 reflections, and (b) extent of reaction vs. 

time curves for host 003, intermediate 006 and product 003 Bragg reflections. The succinate anion 

solution (0.2 M) was added at a rate of 0.059 mL· min-1. 

This results are consistent with those we previously obtained; the better quality of 

Zn2Cr data allows us to confirm the trends highlighted in this previous work, in particular 

the existence of different exchange pathways depending on the nature of the incoming 
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organic anions. 

2.3.2 Effect of the addition rate of the incoming anions on the observation 

of second-stage intermediates 

In Figure 2-10, are compared the exchange reactions of tartrate anions with 

Zn2Cr-Cl conducted at two different addition rates: 

(a) Slow addition rate of 0.059 mL · min-1 with acquisition time of 60 s; 

(b) High addition rate of 1.0 mL · min-1 with acquisition time of 10 s. 

For the high addition rate, EDXRD patterns are less resolved and the intermediate and the 

product appear almost at the same time. For the lower addition rate, the second-stage 

intermediate has reached its maximum after ca. 18 min which corresponds to a theoretical 

anion exchange level of 0.60 AEC, while the fully exchanged phase is the only phase 

present after 50 min i.e. 1.65 AEC. For the high addition rate, the maximum intensity for 

Zn2Cr-Tart/Cl is observed after ca. 1.8 min i.e. 1.03 AEC and for the product after 4 min 

i.e. 2.28 AEC. These measurements clearly show that the rate of the exchange reaction is 

dependent on the addition rate of the guest anion solution. One can say that the exchange 

reaction in LDH system occur very rapidly in a few minutes and to study these reactions 

in detail, observe and eventually isolate intermediate phases, it is necessary to add the 

incoming anion solution dropwise at a low addition rate. This experimental constraint on 

the addition rate prevents a full quantitative kinetic analysis of the data. However, 

assuming a rather negligible effect on the reaction rate for the high addition rate of 1.0 

mL · min-1, we attempted to extract kinetic information from the α(t) plots recorded in 

these conditions. 
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Figure 2-10: EDXRD data showing the course of the exchange reaction of Zn2Cr-Cl with tartrate  

(0.2 M) at room temperature. 3D stacked plots showing the evolution of Zn2Cr-Cl host 003, 

Zn2Cr-Tart/Cl intermediate 006 and Zn2Cr-Tart product 003 Bragg reflections as a function of time (a) 

at an addition rate of 0.059 mL· min-1 with an acquisition time of 60 s and (c)1.0 mL· min-1 with 10 s, 

respectively; Extent of reaction vs. time curves for host 003, intermediate 006 and product 003 Bragg 

reflections (b) at the high addition rate and (d) at the low addition rate. 



Chapter 2 

~ 79 ~ 

 

2.3.3 Kinetic analysis 

 

 

Figure 2-11: Sharp-Hancock plots of ln[-ln(1-α)] vs. ln(time) for the transformation (a) from Zn2Cr-Cl 

to Zn2Cr-Tart/Cl at the two different addition rates of tartrate anions into Zn2Cr-Cl system: at 0.059 

mL· min-1 (□) and 1.0 mL· min-1 (○); (b) from Zn2Cr-Cl to Zn2Cr-Tart/Cl (○) and from Zn2Cr-Tart/Cl 

to Zn2Cr-Tart (Δ) at the addition rate of 1.0 mL · min-1. R presents the linear correlation factor. 

From the α(t) plots, it is possible to extract kinetic data via the Sharp-Hancock 

method corresponding to the Log-linearized form of the Avrami and Erofe’ev 

equation20as follows: 

lnሺെ lnሺ1 െ ሻሻߙ ൌ ݊ ln݇ ൅ ݊ ln  Equation 2-1            ݐ

where k is the rate constant and n is the Avrami exponent as described in the Section 

1.7.2. Figure 2-11 (a) gives the Sharp-Hancock analysis for the Zn2Cr-Cl~ Zn2Cr-Tart/Cl 

transformation at the two addition rates (0.059 mL· min-1 and 1.0 mL· min-1). As expected, 
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the rate constant k increases with the addition rate of tartrate anions: 1.2(3)*10-3s-1 for 

0.059 mL· min-1 and 1.2(4)*10-2 s-1 for 1.0 mL· min-1 at 25 ℃. This latter value is 

comparable with rate constants reported elsewhere for intercalation reactions in other 

layered materials 2 and for the intercalation of phenylphosphonic (PPA) anions into 

[LiAl2(OH)6]Cl·H2O (3.5  ൈ 10ିଷ sିଵ at 26.5 ℃) 11. The n value derived from the slope 

is the same for the two addition rate and equal to 2.0, indicating the same reaction 

mechanism whatever the addition rate.  

Table 2-2: Nuclei growth models for solid state reactions. Values possible for intercalation into a 

layered host are highlighted in bold. See ref. 20. 

Dimension of 

growth (λ) 

Nucleation rate 

(β) 

Exponent value 

Phase boundary controlled (n) Diffusion controlled 

(m) 

1 Zero (instantaneous) 1 0.5 

Deceleratory 1-2 0.5-1.5 

Constant 2 1.5 

2 Zero (instantaneous) 2 1 

Deceleratory 2-3 1-2 

Constant 3 2 

3 Zero (instantaneous) 3 1.5 

Deceleratory 3-4 1.5-2.5 

Constant 4 2.5 

 

For a layered materials like LDH, it is expected that the growth is in two dimension 

(λ = 2) corresponding to the movement of the anions between LDH hydroxide layers. 21 

The intercalation sites are the edges of the layers. As the exchange reaction proceeds, 

some of the layers are filled leading to a decrease of the number of nucleation site. Thus 
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one might expect exchange reaction in LDH to be 2D process with deceleratory 

nucleation (β) as described in Table 2-2. Following nucleation, the reaction then may be 

either phase boundary or diffusion controlled. The value of n obtained from 

Sharp-Hancock analysis i.e. 2-3 (Figure 2-11 (b)) is in favor of a phase boundary 

controlled process i.e. the reaction rate is limited by the expansion of the interlayer space 

necessary to accommodate tartrate anions. 

2.3.4 Refinement of Zn2Cr-Tart/Cl second-stage intermediate 

The refinement was performed using the Fullprof program22, 23. The collected PXRD 

data were treated for profile matching in the space group R-3m using the TCH 

pseudo-Voigt-profile function according to procedures described elsewhere24. In order to 

take into account the instrumental broadening, the PXRD pattern of a silicon standard 

specimen (U = 0.064902, V= -0.369403, W= 0.095556, X= 0.042914, Y= 0.041991) was 

fitted by the convolution to the experimental TCH pseudo-Voigt function. A mathematical 

model based on linear combinations of spherical harmonics was used to treat anisotropic 

size broadening while anisotropic size effects were described by the phenomenological 

model suggested by Stephens25, 26. Size and strain parameters were refined one-by-one 

due to the small number of reflections, also because no structure constraint was applied. 

The diffraction peaks were indexed based on a hexagonal unit cell with the space 

group P3. As evidenced from the position of the reflection markers shown at the bottom 

of the XRD pattern in Figure 2-12, Zn2Cr-Tart/Cl appear as “pure” sample. In particular, 

the observation of the 003 reflection at ca. 19.5 Å makes no doubt of the formation of the 

second-stage compound. A profile refinement was attempted using the TCH pseudo-Voigt 

profile function; the poor quality of the fitting is visible on the plot but allow us to give 
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the following cell parameters: a = 3.101(1) Å and c = 19.83(1) Å. The size parameters 

derived from the profile refinement indicate a small crystallite size of ~100 Å with an 

anisotropy of ~ 30 Å in agreement with the hexagonal platelet-like morphology of LDH 

materials. Such a small size of the coherent domain which corresponds to the stacking of 

only five repeat units of Zn2Cr-Tart/Cl, may explain the fact that higher stage phases 

could not be detected by X-ray diffraction technique even if they exist. 

 

Figure 2-12: Profile matching of the X-ray powder diffraction diagram of Zn2Cr-Tart/Cl: experimental 

data (points), calculated (line) and Bragg reflections (ticks) and difference profile. 
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2.4 Effect of nature of initial interlayer anions (X) and 

incoming anions on the formation of second-stage 

intermediate 

From the previous work by Taviot-Gueho et al. 14, 15 and Iyi et al. 12, the staging in 

LDH system is a peculiarity of organic-inorganic exchange reactions since staging has 

been never observed for inorganic-inorganic exchange reaction so far, except the mineral 

in the composition of [Mg8Al4(OH)24][M+
0.5(SO4)1.25(CO3)1.0· 9H2O]27, 28. However, it is 

not all organic anions which can form staging structure with inorganic anions. Yet, the 

number of inorganic anions already investigated is quite limited (Cl-, Br- and NO3
-).1 In 

the following, we consider first the exchange of CO3
2-, SO4

2- and [FeIII(CN)6]3- inorganic 

anions with Zn2Cr-Cl, then the exchange of adipate anions with Zn2Cr-Cl and finally the 

exchange of  Cl- and CO3
2- anions with Zn2Cr-Tart. 
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2.4.1 Inorganic-inorganic exchange reactions: Cl- anions by CO3
2-, SO4

2- 

and [Fe(CN)6]3-anions in Zn2Cr-LDH 

 

Figure 2-13: EDXRD data showing the course of the exchange reaction of Zn2Cr-Cl with carbonate 

(CO3
2-) anions at room temperature. (a) Three-dimension stacked plot showing the evolution of 

Zn2Cr-Cl host 003 and Zn2Cr-CO3 product 003 Bragg reflections as a function of time, and (b) extent 

of reaction vs. time curves for host 003 and product 003 Bragg reflections. The carbonate guest anion 

solution (0.2 M) was added at a rate of 1.0 mL· min-1 and individual spectra were collected with an 

acquisition time of 10 s. 

The exchange of Cl- anions by CO3
2- and SO4

2- anions presented in Figure 2-13 and 

2-14 show only two reflection peaks corresponding to the 003 Bragg reflection of the host 

(Zn2Cr-Cl at 7.8 Å) and the 003 reflection of the final product (Zn2Cr-CO3 at 7.6 Å and 

Zn2Cr-SO4 at 11.0 Å), respectively. In the both cases, there is no intermediate peak 

observed. Although, one must say that the small difference between the interlamellar 

distance of Zn2Cr-Cl (7.8 Å) and Zn2Cr-CO3 (7.6 Å) would make it difficult to observe an 
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intermediate compound if it existed. However, the intersection of α(t) curves again occurs 

at α ≈ 0.6 in Figure 2-13 (b), thus confirming the occurrence of a one-step process. The 

d-value of Zn2Cr-SO4 at 11.0 Å is consistent with data reported elsewhere29 and observed 

at very high humidity (RH > 50%).  

 

Figure 2-14: EDXRD data showing the course of the exchange reaction of Zn2Cr-Cl with sulfate 

anions (SO4
2-) at room temperature. (a) 3D stacked plot and (b) extent of reaction vs. time curves 

showing the evolution of Zn2Cr-Cl 003 and Zn2Cr-SO4 003 Bragg reflections as a function of time. 

The sulfate anion solution (0.2 M) was added at a rate of 0.059 mL· min-1. 

Figure 2-15 shows the exchange reaction of Cl- anions by [FeIII(CN)6]3- anions in 

Zn2Cr-Cl. Only two Bragg reflection peaks were detected at 7.8 Å corresponding to 003 

Zn2Cr-Cl (the host) and at 10.88 Å assigned to 003 Zn2Cr-Fe(CN)6, a value close to 11.1 

Å generally reported for hexacyanoferrate-containing LDH.30, 31Similarly, the α(t) curves 

for Zn2Cr-Cl and Zn2Cr-Fe(CN)6 cross at α ≈ 0.5, indicating a direct conversion from the 

host to the fully exchanged phase. 
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Figure 2-15: EDXRD data showing the course of the exchange reaction of Zn2Cr-Cl with ferricyanide 

([Fe(CN)6
3-]) at 55 ℃.(a) Three-dimension stacked plot and (b) extent of reaction vs. time curves 

showing the evolution of Zn2Cr-Cl host 003 and Zn2Cr-Fe(CN)6 product 003 Bragg reflections as a 

function of time. The ferricyanide guest anion solution (0.15 M) was added at a rate of 0.118 

mL· min-1. 

These findings further indicate that inorganic-inorganic anion exchange reactions 

proceed one-step with a direct transformation from the host to the fully exchanged 

product. This supports the above assumption of inorganic/organic segregation responsible 

for staging in LDH system. Additionally, the fact that no staging was observed between 

Cl- (d003 = 7.8 Å) and [Fe(CN)6]3- (d003 = 10.9 Å) anions, of a similar size compared with 

tartrate anions (d003 = 12.2 Å), may indicate that size effect does not play a prominent role 

in staging phenomena in LDH system. 
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2.4.2 Organic-inorganic exchange reactions in Zn2Cr-LDH 

2.4.2.1 Cl- anions exchanged by adipate anions 

 

Figure 2-16: EDXRD data showing the course of the exchange reaction of adipate (-O2C(CH2)4CO2
-) 

with Zn2Cr-Cl at room temperature. (a) Three-dimensional stacked plot showing the evolution of 

Zn2Cr-Cl host 003 and Zn2Cr-Adip product 003 Bragg reflections as a function of time. and (b) extent 

of reaction vs. time curves for host 003 and product 003 Bragg reflections. The adipate guest anion 

solution (0.2 M) was added at a rate of 0.059 mL· min-1. 

Figure 2-16 shows the exchange reaction of Cl- anions by adipate anions in 

Zn2Cr-Cl. Again only two Bragg reflections are observed, at 7.8 Å assigned to the 003 

reflection of the host Zn2Cr-Cl and at 14.1 Å corresponding to the 003 reflection of the 

first stage product Zn2Cr-Adip. The crossing point of the α(t) curves for the host and the 

first stage product occurs at α ≈ 0.4 (Figure 2-16 (b)) indicating a direct transformation 

from the host to the product. However, ex situ powder X-ray diffraction patterns 
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presented in Figure 2-17 indicate the presence of a poor crystalline second-stage phase 

formed at a theoretical exchange rate of 0.6. The reflection at ca. 22.2 Å can be assigned 

with no doubt to the 003 reflection of Zn2Cr-Adip/Cl second-stage, being equal to the 

sum of the d-spacings of Zn2Cr-Cl host (7.8 Å) and Zn2Cr-Adip product (14.1 Å) and 

very close to the d-spacing reported for LiAl2-Adip/Cl (22.0 Å)10. It is noteworthy that the 

intensities of both 003 and 006 diffraction peaks of Zn2Cr-Adip/Cl are very weak, 

explained why they are not detected in solution by EDXRD. 

 

Figure 2-17: Ex situ powder X-ray diffraction patterns showing the exchange reaction of Zn2Cr-Cl 

with adipate anions at theoretical exchange rates of 0.60 and 10.00. Reflections marked with * 

correspond to the Zn2Cr-Cl host and with ♣ present the Zn2Cr-Adip product. 
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2.4.2.2 Tartrate anions exchanged by Cl- and CO3
2-anions 

 

Figure 2-18: EDXRD data showing the course of the exchange reaction of Zn2Cr-Tart with chloride 

(Cl-) at room temperature. Three-dimension stacked plot showing the evolution of Zn2Cr-Tart 003 

Bragg reflections as a function of time. The guest chloride anion solution (1.6 M) was added at a rate 

of 0.059 mL· min-1. 

In the case of chloride anion exchange (in Figure 2-18), only the 003 reflection of 

Zn2Cr-Tart host at 12.2 Å is observed even for an excess of chloride anions representing 

20 times the AEC. 

On the contrary, CO3
2- anions can exchange with tartrate anions in Zn2Cr-Tart 

(Figure 2-19 (a)) and three Bragg reflections are observed, corresponding to 003 

Zn2Cr-Tart host at 12.2 Å, 006 Zn2Cr-Tart/CO3 second-stage intermediate centered at 9.6 

Å and 003 Zn2Cr-CO3 product at ca. 7.9 Å. The immediate decay of the 003 Zn2Cr-Tart 

following the addition of carbonate anions is accompanied by the growth of the 006 

reflection of Zn2Cr-Tart/CO3. Then, the final product Zn2Cr-CO3 is not observed until the 

intermediate has disappeared completely. The gradual shift of the position of the 
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intermediate peak from 10.2 Å to 8.56 Å upon carbonate-tartrate exchange may be 

explained by a variation of the number of the layers intercalated by CO3
2- as reported for 

staged fluorohectorite clays32. In this case, we assume the existence of staging of higher 

order than 2, which has never been reported so far. In Figure 2-19 (b) are presented the 

α(t) curves for the 003 reflection of Zn2Cr-Tart host and the 003 reflection of Zn2Cr-CO3 

final product; owing to the variation of the interlayer distance for 006 the intermediate, it 

was impossible to obtain the corresponding α(t) curve. The intersection point at α = 0 

confirms the existence of Zn2Cr-Tart/CO3 intermediate. EDXRD measurements were 

repeated in the laboratory. The PXRD patterns of Zn2Cr-Tart/CO3 isolated after 15 min 

(Figure 2-20 (a)) and 25 min (Figure 2-20 (b)). They appear as pure phases but with a 

different cell parameter c. This is in total agreement with a variation of the number of 

layer intercalated by CO3
2- anions as described above. For the sample after 15 min 

(Figure 2-20 (a)), the cell parameter c is equal to 2 ൈ 9.5 ሺ݀଴଴଺ሻ = 19.0 Å ≈ 12.0 (d003, 

Tart) + 7.5 (d003, CO3
2-) in agreement with the 006 Bragg reflection of a second-stage 

phase Zn2Cr-Tart/CO3; for the sample obtained after 25 min (Figure 2-20 (b)), the cell 

parameter c can be assumed as 27 Å ൌ 3 ൈ 9.0 ሺൎ 6.6  ൈ 4ሻ = 12.0 (d003, Tart) + 7.5 

(d003, CO3
2-) + 7.5 (d003, CO3

2-) indicating a possible third stage phase Zn2Cr- 

CO3/Tart/CO3. 
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Figure 2-19: EDXRD data showing the course of the exchange reaction of carbonate anions with 

Zn2Cr-Tart at room temperature. (a) Three-dimension stacked plot showing the evolution of Zn2Cr-Tart 

host 003, Zn2Cr-Tart/CO3 intermediate 006 and Zn2Cr-CO3 product 003 Bragg reflections as a function 

of time; (b) extent of reaction vs. time curves for host 003 and product 003 Bragg reflections. The 

carbonate guest anion solution (0.2 M) was added at a rate of 0.059 mL· min-1. 

 

Figure 2-20: Ex situ powder X-ray diffraction patterns for the host Zn2Cr-Tart, the intermediate 

Zn2Cr-Tart/CO3 ((a) quenched at 15 min, (b) quenched at 25 min) and the fully exchanged product 

Zn2Cr-CO3. 
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2.5 Conclusions 

These results show that the observation of LDH second-stage intermediate during 

anion-exchange reactions by means of in situ EDXRD technique depends on the addition 

rate applied for the incoming guest anion solution. A slow addition rate of guest anions 

delays the exchange reaction making it possible to observe and isolate second-stage 

compounds. The formation of LDH second-stage is determined by the nature of both 

initial and incoming guest anions. No staging was observed for the exchange of Cl- anions 

by CO3
2-, SO4

2- and [FeIII(CN)6]3-i.e. for purely inorganic exchange reactions. These 

results provide other evidences for the previous assumption 12 we made on the occurrence  

of staging phenomena as a result of inorganic/organic separation, though not all organic 

anions can form staging with inorganic anions.  
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3.1 Introduction   

LDH second-stage materials consist of regularly stacked organic and inorganic gallery 

sequences. Combining the hydrophobic and hydrophilic properties of organic and inorganic 

LDH intercalates in a single heterostructured phase will produce amphiphilic materials, 

which may have novel anion-exchange properties. 

The aim of the study described in this chapter was thus to investigate the 

anion-exchange properties of the second-stage intermediate phases, i.e. [Zn2Cr(OH)6]Cl0.5- 

(succinate)0.25·nH2O (Zn2Cr-Succ/Cl) and [Zn2Cr(OH)6]Cl0.5(tartrate)0.25·nH2O 

(Zn2Cr-Tart/Cl), which were isolated under the conditions described in the Chapter 2. The 

two second-stage materials as starting phases were separately treated with adipate and 

fluoride anions and the reactions were monitored by time-resolved, in situ, energy-dispersive 

X-ray diffraction (EDXRD), using the same setup as presented in Chapter 2. Selective 

anion-exchange reactions were observed as a result of the difference in the polarity between 

the two successive interlayer spaces. 

3.2 Experimental Section 

3.2.1  Time-resolved in situ energy-dispersive X-ray diffraction (EDXRD) 

measurements 

EDXRD experimental setup is the same as described in Section 2.2.2. The reactions 

were conducted in glass ampules contained within a temperature-controlled block; individual 

spectra were collected at a fixed detector angle of (2θ) 1.625°, with acquisition times ranging 

from 10 s to 60 s. In a typical experiment, a solution of the guest species (at a concentration 

of 0.15 or 0.2 M for adipate/-O2C(CH2)4CO2 
-anions, and 0.4 M for fluoride anions) was 
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added dropwise to 10 mL of a suspension of the LDH (25 g· L
-1

) at a rate of 0.046 or 0.059 

mL· min
-1 

using a syringe pump. Spectra were thus recorded at different anion/LDH ratios in 

solution converted into theoretical exchange rates expressed in AEC (anionic exchange 

capacity) of the starting phase.  

In chapter 2, a better crystallinity was observed in the case of the Zn2Cr system, which 

led us to choose this composition for the present work; the synthesis and chemical 

composition of Zn2Cr-Cl are given in Section 2.2.1 close to Zn2Cr(OH)6Cl·2H2O (356.26 

g· mol-1). 

3.2.2  Data analysis 

 An automated Gaussian fitting routine was used to obtain the peak areas of the Bragg 

reflections.1 These values are then converted to the extent of reaction at time t. The latter is 

defined as α(t) = Ihkl(t)/Ihkl(max), where Ihkl(t) is the area of a given peak at time t, and 

Ihkl(max) is the maximum area of this peak.  

3.2.3  Powder X-ray diffraction 

Quenched compositions were analyzed in our laboratory by PXRD after centrifugation 

and drying in order to get more structural information. The powder X-ray diffraction patterns 

were recorded on an X’Pert Pro Philips diffractometer using Cu Kα radiation, as described in 

Section 2.2.4. 
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3.3 Formation and Isolation of Second­Stage Zn2Cr­Succ/Cl and 

Zn2Cr­Tart/Cl Materials 

 

Figure 3-1: 3D stacked plots from EDXRD data showing the course of the exchange reactions of 
Zn2Cr-Cl with: (a) succinate anions and (c) tartrate anions as a function of time and the corresponding α(t) 
curves (b) and (d) showing the best conditions for isolating the stage phases: Zn2Cr-Succ/Cl and 
Zn2Cr-Tart/Cl. 
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Figure 3-2: Powder X-ray diffraction patterns for the second-stage phases: (a) Zn2Cr-Succ/Cl and (b) 
Zn2Cr-Tart/Cl. Reflections marked with an asterisk correspond to the Zn2Cr-Cl host. 

For the in situ study of the anion-exchange properties of Zn2Cr-Succ/Cl and 

Zn2Cr-Tart/Cl, both second-stage phases were prepared in the laboratory by repeating the 

EDXRD experiments described above and quenching the reactions when solely the 

second-stage phases are present, where the concentration of the intermediate is expected to 

be greatest2 i.e. in the case of Zn2Cr-Succ/Cl when α(t) curves for the host Zn2Cr-Cl and the 

product Zn2Cr-Succ cross at α = 0.2 and for Zn2Cr-Tart/Cl when the crossing point of α(t) 

curves for the host Zn2Cr-Cl and the product Zn2Cr-Tart occurs at α = 0. The powder X-ray 

diffraction patterns of the quenched materials are shown in Figure 3-2. As can be seen, the 

Zn2Cr-Succ/Cl sample is not a pure phase but consists of a mixture with Zn2Cr-Cl. It is 

worthwhile to note that with reaction time scales on the order of 1-2 min, it is difficult to 

isolate second-stage intermediates, and products quenched after drying do not necessarily 

reflect the reaction matrix observed in situ, as diffusion process may continue to occur when 

the addition of organic molecule has been stopped. In contrast, Zn2Cr-Tart/Cl appears as a 
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pure phase. Another very important point is the detection of the 003 reflection at ca. 19.5 Å 

in each case, providing irrefutable proof that second-stage materials are really formed. 

3.4 Anion­exchange Properties of Second­stage Materials 

The as-prepared second-stage materials (Zn2Cr-Succ/Cl and Zn2Cr-Tart/Cl) were then 

resuspended in water (25 g · L-1), and EDXRD experiments were performed to follow the 

exchange reactions with adipate and fluoride anions, under the same conditions as those 

described in Chapter 2. 

In our first attempts, we successively monitored in one experiment the the formation of 

Zn2Cr-Succ/Cl or Zn2Cr-Tart/Cl intermediates followed by the exchange reactions with 

fluoride or adipate anions. Yet, under these conditions, the crystallinity of the system 

decreased dramatically and it was impossible to analyze the data. This failure can be 

attributed to a combination of factors: first, a dilution factor, which makes detection difficult, 

and second, a competition between anions in solution, which may hinder their intercalation. 

Plots showing the time evolution of the exchange reactions with adipate anions are 

presented in Figure 3-3 for Zn2Cr-Succ/Cl, Figure 3-4 ( at room temperature) and Figure 

3-5 (at 55 ℃) for Zn2Cr-Tart/Cl, respectively, and those corresponding to the exchange with 

fluoride anions are presented in Figure 3-6 and Figure 3-7. In all cases, the reactions are 

observed to proceed in two steps and new second-stage intermediate phases are identified 

that result from the selective replacement of either succinate or tartrate anions by adipate 

anions, or Cl- anions by F-anions. The exchange reactions are described in details in the 

following sections. 

3.4.1  Exchange reactions with adipate anions 

For the exchange reaction of adipate anions with Zn2Cr-Succ/Cl host (panels a and b of 

Figure 3-3), a crystalline intermediate phase was detected at ca. 12.2 Å that can be assigned 
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to a new second-stage intermediate, Zn2Cr-Adip/Cl. This phase has alternate layers occupied 

by chloride and adipate anions, and hence has a predicted basal spacing d003 =7.8 +14.1=21.9 

Å, and hence a d006 of ca. 11 Å. This latter value is slightly different from that observed (12.2 

Å), but the low crystallinity of Zn2Cr-Adip/Cl intermediate makes the determination of the 

exact position of the Bragg reflection rather difficult. Additionally, the poor crystallinity and 

the partial overlap between Bragg reflections complicate the integration of the diffraction 

intensities, thus explaining the relatively poor resolution for α-time curves.  
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Figure 3-3: EDXRD data showing the course of the exchange reaction of adipate (
-
O2C(CH2)4CO2

- 
) with 

Zn2Cr-Succ/Cl at room temperature. (a) 3D stacked plot showing the evolution of Zn2Cr-Succ/Cl host 006, 
Zn2Cr-Adip/Cl intermediate 006, and Zn2Cr-Adip product 003 Bragg reflections as a function of time, (b) 
2D stacked plot showing the same, and (c) extent of reaction vs. time curves for host 006, intermediate 006 
and product 003 Bragg reflections. The adipate anion solution (0.15 M) was added at a rate of 0.046 
mL· min

-1
. 
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For the exchange reaction of adipate anions with the Zn2Cr-Tart/Cl host, the 

intermediate was initially very hard to observe and only the fact that the extent of the reaction 

vs. time curves of the Zn2Cr-Tart/Cl host and Zn2Cr-Adip product cross at α close to 0 

suggested the presence of an intermediate in Figure 3-4. However, performing the reaction at 

55 °C allowed us to improve the detection and unequivocally observe the growth of a Bragg 

reflection at the same distance as for the Zn2Cr-Succ/Cl host, i.e., 12.2 Å (panels a and b of 

Figure 3-5). This coincidence in position strongly suggests a similar composition for the 

intermediate phase, i.e., Zn2Cr-Adip/Cl, in both cases. Yet, the effect of temperature in the 

case of the Zn2Cr-Tart/Cl host reveals differences in reactivity between Zn2Cr-Succ/Cl and 

Zn2Cr-Tart/Cl compounds, probably with higher activation energy for the exchange reaction 

of tartrate with adipate than that of succinate. Additionally, there is a difference in the 

induction time, before the reaction begins. Indeed, for the Zn2Cr-Tart/Cl host, the 

Zn2Cr-Adip/Cl intermediate is not detected until the theoretical exchange rate has reached a 

value of ca. 0.6, whereas for the Zn2Cr-Succ/Cl host, Zn2Cr-Adip/Cl is detected at the initial 

stages of adipate addition, at a theoretical exchange rate of ca. 0.15. The conditions for the 

appearance of the Zn2Cr-Adip product are also different, with the coexistence of 

Zn2Cr-Adip/Cl and Zn2Cr-Adip in the case of the Zn2Cr-Tart/Cl host, whereas Zn2Cr-Adip is 

not observed until Zn2Cr-Adip/Cl has disappeared in the case of the Zn2Cr-Succ/Cl host. The 

persistence of the Zn2Cr-Adip/Cl intermediate in the former case might indicate a random 

filling of the Cl-containing layers after alternate layers have been exchanged with adipate 

anions. Conversely, for the Zn2Cr-Succ/Cl host, the direct transformation from the 

Zn2Cr-Adip/Cl intermediate to the Zn2Cr-Adip product would arise from an ordered 

replacement of the Cl-containing layers, supported by the fact that the corresponding α vs. 

time curves cross at α ≈ 0.5 (Figure 3-3 (c)). Another explanation could be differences in the 

anion-exchange affinities, the exchange between tartrate and adipate anions being 

energetically less favorable than the exchange between succinate and adipate anions; this is 

consistent with the effect of the temperature showing that the activation energy is higher in 

the former case. 
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Figure 3-4: EDXRD data showing the course of the exchange reaction of Zn2Cr-Tart/Cl with adipate 

anions at room temperature. (a) 3D stacked plot showing the evolution of Zn2Cr-Tart/Cl host 006, 

Zn2Cr-Adip product 003 Bragg reflections as a function of time, (b) 2D plot showing the same, and (c) 

extent of reaction vs. time curves for host 006 and product 003 Bragg reflections. The adipate guest anions 

solution (0.2 M) was added at 0.059 mL · min-1.  
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Figure 3-5: EDXRD data showing the course of the exchange reaction of adipate with Zn2Cr-Tart/Cl at 
55 °C. (a) 3D stacked plot showing the evolution of Zn2Cr-Tart/Cl host 006, Zn2Cr-Adip/Cl intermediate 
006, and Zn2Cr-Adip product 003 Bragg reflections as a function of time, (b) 2D stacked plots showing the 
same, and (c) extent of reaction vs. time curves for host 006, intermediate 006 and product 003 Bragg 
reflections. The adipate solution (0.2 M) was added at a rate of 0.059 mL· min

-1
. 
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3.4.2  Exchange reactions with fluoride anions 

 

Figure 3-6: Time-resolved diffraction data showing the course of the exchange reaction of fluoride with 
Zn2Cr-Succ/Cl at room temperature. (a) 3D stacked plot showing the evolution of Zn2Cr-Succ/Cl host 006 
and intermediate Zn2Cr-Adip/F 006 Bragg reflections as a function of time and (b) extent of reaction vs. 
time curves for host and intermediate 006 Bragg reflections. The fluoride anion solution (0.4 M) was 
added at a rate of 0.046 mL· min

-1
. Inset figure gives the powder X-ray diffraction pattern of the final solid 

recovered after centrifugation and drying.  
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Figure 3-7: EDXRD data showing the course of the exchange reaction of fluoride with Zn2Cr-Tart/Cl at 
room temperature. (a) 3D stacked plot showing the evolution of Zn2Cr-Tart/Cl host 006 and Zn2Cr-Adip/F 
intermediate 006 Bragg reflections as a function of time and (b) extent of reaction vs. time curves for host 
and intermediate 006 Bragg reflections. The fluoride anion solution (0.4 M) was added at a rate of 0.059 
mL· min

-1
. 
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For the exchange reactions with fluoride anions (Figure 3-6 and Figure 3-7 for 

Zn2Cr-Succ/Cl and Zn2Cr-Tart/Cl, respectively), a gradual displacement of the 006 reflection 

of Zn2Cr-Succ/Cl and Zn2Cr-Tart/Cl hosts from 10.1 to 9.7 Å is observed in each case. This 

is in total agreement with the formation of new second-stage phases, Zn2Cr-Succ/F and 

Zn2Cr-Tart/F, both resulting from the replacement of Cl- by F- anions in Zn2Cr-Succ/Cl and 

Zn2Cr-Tart/Cl, respectively. Because of the small difference between the interlamellar 

distances for chloride (7.8 Å) and fluoride (7.4 Å) anions, only a small displacement of the 

006 Bragg reflection of the second-stage phases to lower d values is expected upon the 

exchange of chloride by fluoride. The Zn2Cr-Succ/F intermediate therefore has a predicted 

d003 =12.1 +7.4 =19.6 Å, leading to a d006 of 9.8 Å; the same calculation for Zn2Cr-Tart/F gives 

d006 = 9.9 Å. This is in excellent agreement with the EDXRD data. A deconvolution of the 

EDXRD patterns in the range 9-11 Å (by considering two contributions centered at 10.1 and 

9.7 Å, attributed to Zn2Cr-Succ/Cl and Zn2Cr-Succ/F or Zn2Cr-Tart/Cl and Zn2Cr-Tart/F), 

allows us to draw the α(t) curves presented in Figure 3-6 (b) and Figure 3-7 (b). Again, the 

crossing of these curves at α = 0.5 is consistent with a direct conversion of Zn2Cr-Succ/Cl or 

Zn2Cr-Tart/Cl hosts to Zn2Cr-Succ/F or Zn2Cr-Tart/F intermediates. In both cases, for a 

theoretical exchange rate approaching the anion-exchange capacity, the intermediate phase 

disappears. The fully exchanged phase Zn2Cr-F with d003 = 7.4 Å is not observed, probably 

because it is too poorly crystalline and cannot be resolved. Nevertheless, the powder XRD 

analysis of the final solid product recovered after centrifugation and drying unambiguously 

shows the formation of Zn2Cr-F with the 003 Bragg reflection at ca. 7.4 Å (inset of Figure 

3-6 (a)). 

3.5 Conclusions   

These results demonstrate a segregation between organic and inorganic anions, leading 

to selective exchange reactions governed by this. The reaction of the second-stage 

compounds Zn2Cr-Succ/Cl and Zn2Cr-Tart/Cl with either fluoride or adipate anions initially 

occurs with preferential replacement of the hydrophilic Cl ion with F or replacement of the 

hydrophobic succinate or tartrate anions with adipate as shown in Figure 3-8. This result has 
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major implications for the intercalation chemistry of LDH. Another important point to note is 

that attempts to prepare Zn2Cr-Tart/F second-stage materials by direct synthesis failed. 

Indeed, no staging was observed for the exchange of tartrate by fluoride in Zn2Cr-Tart, which 

suggests that the present phases can be prepared starting only from second-stage structures 

such as Zn2Cr-Tart/Cl. Possibly, this property can be used to synthesize a new kind of staging 

compounds containing desired anions with specific properties as discussed in the next 

chapter. 

 

Figure 3-8: Schematic anion-exchange reactions of the second-stage LDH materials (Zn2Cr-Succ/Cl or 
Zn2Cr-Tart/Cl) with organic adipate and inorganic fluoride anions. 
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As already said several times in this manuscript, the formation of LDH 

heterostructures is of major interest for future developments in LDH intercalation 

chemistry, particularly in the direction of multifunctional materials. 

For this purpose, the intercalation of vinyl benzene sulfonate (VBS) monomer and 

hexacyanometal complex (Fe(CN)6
3-) into Zn2Cr-Cl or Zn2Al-Cl first stage phases and 

Zn2Cr-Tart/Cl second-stage compound have been investigated using time resolved, in situ 

energy-dispersive synchrotron X-ray diffraction (EDXRD).  

I. Exchange reaction with VBS 

4.1 Introduction 

In the past two decades, a lot of attention has been devoted to the study of 

nanocomposites built from the assembly of a lamellar inorganic host structure and a 

polymer.1-6 These systems may find applications in a large number of fields such as those 

emphasizing the mechanical enhancement, gas permeably, fire-retardant or membrane. 7-9  

LDH-polymer assemblies have been largely studied in our group by F. Leroux et 

al.10, 11. The incorporation of polymer into LDH can be achieved via different synthesis 

routes. An interesting route is the in situ thermal polymerization of pre-intercalated 

monomers as reported for aspartate into Mg2Al, 12 anilimine sulfonate into Cu2Cr 13 

and more recently VBS into Zn2Al LDH 14-16.  

In this latter case, the in situ polymerization upon a thermal treatment at 200 ℃ was 

evidenced by in situ high temperature powder X-ray diffraction (HTXRD) with a 

contraction of the lamellar structure from d003 = 18.04 Å to 14.46 Å (Figure 4-1) and by 
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13C NMR with the disappearance of the resonance peak of the vinyl bond (Figure 4-2). 

 

Figure 4-1: In situ PXRD patterns of (1) LDH pristine and monomer derivatives at (2) 25 ℃ and (3) 

200 ℃ for Zn2Al-VBS. The asterisk corresponds to PSD system. The miller indexing is given.  See 

ref. 16. 
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Figure 4-2: 13C CP-MAS spectra of VBS, PSS, Zn2Al/VBS-T (after in situ thermal treatment at 

200 ℃) and Zn2Al/VBS (at 25 ℃) samples, from top to bottom. See ref. 16. 

In the following, the intercalation of VBS into Zn2Cr-Cl, Zn2Al-Cl LDH and 

Zn2Cr-Tart/Cl second-stage LDH was examined by means of EDXRD. The in situ 

thermal polymerization of VBS into PSS was then investigated using in situ HTXRD 

technique. 
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4.2 Experimental 

4.2.1 Synthesis and characterization of host materials 

 

 

Figure 4-3: Powder X-ray diffraction patterns of the first stage host materials: (a) Zn2Cr-Cl and 

Zn2Cr-VBS,  (b) Zn2Al-Cl and Zn2Al-VBS. The measurement conditions are described in Section 

2.2.4. The mark * indicates the presence of Zn2Cr-Cl precursor. 
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Zn2Cr-Cl and Zn2Al-Cl host materials were synthesized by the coprecipitation 

method while Zn2Cr-VBS and Zn2Cr-Tart/Cl as well as Zn2Al-VBS were prepared by the 

anion-exchange route using Zn2Cr-Cl and Zn2Al-Cl precursors as described in the section 

2.2.1 in detail.  

 

Figure 4-4: Powder X-ray diffraction patterns of Zn2Cr-Tart/Cl second-stage host materials. The mark 

* indicates the presence of Zn2Cr-Cl precursor. 

The powder X-ray diffraction patterns of  the first-stage host materials(a) Zn2Cr-Cl 

and Zn2Cr-VBS and (b) Zn2Al-Cl and Zn2Al-VBS are presented in Figure 4-3. The 

interlayer distances are calculated from the position of the first diffraction peak 

corresponding to the 003 Bragg reflection (in the space group R3തmሻ; the values obtained 

for VBS containing LDH are in agreement with those reported elsewhere 15. In Figure 

4-4 are presented the PXRD patterns of Zn2Cr-Tart/Cl second-stage host material. 
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4.2.2 In situ EDXRD measurements 

The same EDXRD experimental setup was used as described in Section 2.2.2. The 

solution of VBS guest anions at a concentration of 0.2 M was added dropwise to 10 mL of 

a suspension (25 g· L-1) of Zn2Cr-Cl, Zn2Al-Cl or Zn2Cr-Tart/Cl at room temperature and 

at the rate of 0.059 mL· min-1, using a syringe pump. The exchange reaction with 

Zn2Cr-Tart/Cl was also investigated but at 55 ℃ with an addition rate of 0.118 mL· min-1 

of the VBS anion solution. Similarly, 0.2 M CO3
2- anions solution was added into 10 mL 

of a suspension (25g/L) of Zn2Al-VBS at room temperature at the rate of 1.0 mL· min-1. 

The EDXRD spectra were collected at a fixed detector angle of 1.625 o (2θ) with an 

acquisition time of 60 s, except 10 s in the case of carbonate exchange. The amounts of 

guest anions added into LDH suspension as a function of time was converted into 

theoretical exchange rates expressed in anionic exchange capacity (AEC). 

4.2.3 In situ HTXRD measurement 

In situ High Temperature Powder X-ray Diffraction (HTXRD) patterns were 

recorded on X’Pert Pro Philips diffractometer using a high temperature chamber (Anton 

Paar HTK-16) and a PSD- 50m Braun detector (aperture on 2 o, 155 channels). 

Measurement were carried out in static air atmosphere at these different temperatures i.e. 

25 ℃, 100 ℃ and 200 ℃ after 30 min equilibration at each temperature and the 

heating rate was 10 ℃/min. Scans were recorded in the range from 3 to 26º (2θ) with a 

step of 0.02º and a counting time per step of 9 s. 
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4.3 Exchange of Cl­ Anions  in Zn2Cr­Cl and Zn2Al­Cl by VBS       

Anions 

 

Figure 4-5: EDXRD data showing the course of the exchange reaction of Zn2Cr-Cl with VBS at room 

temperature. (a) 3D stacked plot showing the evolution of Zn2Cr-Cl host 003 and Zn2Cr-VBS product 

006 Bragg reflections as a function of time; (b) extent of reaction vs. time curves for host 003 and 

product 006 Bragg reflections. The guest VBS anion solution (0.2 M) was added at a rate of 0.059 

mL· min-1. 
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Figure 4-6: EDXRD data showing the course of the exchange reaction of Zn2Al-Cl with VBS at room 

temperature. (a) 3D stacked plot showing the evolution of Zn2Al-Cl host 003 and Zn2Al-VBS product 

006 Bragg reflections as a function of time; (b) extent of reaction vs. time curves for host 003 and 

product 006 Bragg reflections. The VBS guest anion solution (0.2 M) was added at 0.059 mL· min-1. 

Figures 4-5 and 4-6 show the reaction of Zn2Cr-Cl and Zn2Al-Cl respectively with 

VBS anions. In both cases, the reaction was observed to proceed directly from the host 

material to the fully exchanged phase. The EDXRD data show only the 003 Bragg 

reflections of the Cl-containing hosts and two reflections for VBS- products: 003 

reflection at ca. 18.0 Å and 006 reflection at ca. 9.0 Å. The extent of reaction (α) vs. time 

curves of the Cl- hosts and the VBS-products (006 reflection) are seen to cross at α = 0.5 

in total agreement with a direct conversion of the hosts to the products in the absence of 

intermediate phase. 
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4.4 Exchange Reaction of Zn2Cr­Tart/Cl with VBS Anions 

 

Figure 4-7: EDXRD data showing the course of the exchange reaction of Zn2Cr-Tart/Cl with VBS at 

room temperature. (a) 3D stacked plot showing the evolution of Zn2Cr-Tart/Cl host 006 and 

Zn2Cr-VBS product 006 Bragg reflection as a function of time, (b) 2D stacked plot showing the same, 

(c) extent of reaction vs. time curves for host 006 and product 006 Bragg reflections. The VBS guest 

anion solution (0.2 M) was added at 0.059 mL· min-1. 



Chapter 4 

~ 119 ~ 

 

Figure 4-8: EDXRD data showing the course of the exchange reaction of Zn2Cr-Tart/Cl with VBS at 

55 ℃ . (a) 3D stacked plot showing the evolution of Zn2Cr-Tart/Cl host 006, Zn2Cr-VBS/Cl 

intermediate 006 and Zn2Cr-VBS product 006 Bragg reflection as a function of time, (b) 2D stacked 

plot showing the same, (c) extent of reaction vs. time curves for host, intermediate and product 006 

Bragg reflections. The VBS anion solution (0.2 M) was added at 0.118 mL· min-1. 

In Figures 4-7 are presented EDXRD data showing the exchange reaction of 
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Zn2Cr-Tart/Cl with VBS at room temperature. For this exchange reaction, the presence of 

an intermediate was initially difficult to established and it took painstaking analysis of the 

data to spot the shoulder at ca. 12.0 Å. Yet, performing the reaction at 55 ℃ (Figure 4-8) 

allowed us to clearly observe the growth of a reflection at 12.0 Å assigned to the 006 

Bragg reflection of Zn2Cr-VBS/Cl second-stage compound. This compound has a 

predicted d003 = 18.0 (003 VBS) + 7.8 (003 Cl) = 25.8 Å leading to a d006 of 12.9 Å. This 

value is slightly higher than that observed 12.0 Å but the low intensity of the 

corresponding peak makes the determination of its exact position rather difficult. 

One can note that α(t) curves for the host and the product do not cross at α = 0. This 

suggests parallel process with probably a route going through the intermediate and also a 

direct transformation of the host, as observed in the case of the exchange reaction of 

Zn2Cr-Tart/Cl with adipate (Chapter 3). The crossing point difference at room 

temperature α = 0.45 and at 55 ℃ α = 0.35, cannot be attributed to differences in data 

resolution. The decrease of α between room temperature and 55 ℃ is effective and may 

indicate that staging phenomenon in this case is thermally activated. 
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4.5 Exchange Reaction of Zn2Al­VBS with CO32­ Anions 

 

Figure 4-9: EDXRD data showing the course of the exchange reaction of Zn2Al-VBS with carbonate 

anions at room temperature. (a) 3D stacked plot showing the evolution of Zn2Al-VBS host 006 and 

Zn2Al-VBS/CO3 intermediate 009 Bragg reflections as a function of time, (b) extent of reaction vs. 

time curves for host and intermediate 006 Bragg reflections. Carbonate guest anions solution (0.2 M) 

was added at 1.0 mL· min-1. 

For the exchange reaction of Zn2Al-VBS with CO3
2- anions (Figure 4-9), a gradual 

decrease of the 003 (18.0 Å) and 006 (9.0 Å) reflections is first observed. This decay is 

accompanied with the growth of a new reflection at ca. 8.3 Å attributed to the 009 

reflection of Zn2Al-VBS/CO3 second-stage compound. This compound has a predicted 

d003 = 18.0 (003 VBS) + 7.5 (003 CO3
2-)= 25.5 Å leading to a d009 of 8.5 Å, in agreement 

with EDXRD data. The α(t) curves presented Figure 4-9 (b) calculated from the 006 

Bragg reflection of host Zn2Al-VBS and 009 reflection of intermediate Zn2Al-VBS/CO3 

cross at α ≈ 0.5 indicating a direct conversion from the host to the intermediate.  
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After 2 min, corresponding to a theoretical exchange rate of 1.54, the reflection of 

the intermediate becomes very weak and one can consider that it is disappearing. 

However, the fully exchanged phase was not observed probably because it is too low 

crystalline. 

 

Figure 4-10: Ex situ PXRD data showing the course of the exchange reaction of Zn2Al-VBS with 

CO3
2- for intercalation products obtained at different theoretical exchange rates. 

The same exchange reaction was repeated in the laboratory and quenched products 

obtained at different theoretical exchange rate were analyzed by PXRD; the patterns are 

given in Figure 4-10. The interlayer distance for Zn2Al-VBS as a powder sample d003 

=17.2 Å differs a little from that in solution d003 = 18.0 Å and this difference can be easily 

explained by a larger amount of interlayer water molecules for the water-suspended 

sample. 

Contrary to EDXRD experiments, the formation of the fully exchanged phase 
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Zn2Al-CO3 is detected at a theoretical exchange rate of 0.3, giving a shoulder at ca. 7.5 Å 

and corresponding to the position of the 003 reflection of Zn2Al-CO3. At the same time, 

the formation of the second-stage intermediate Zn2Al-VBS/CO3 is observed. It is first 

marked by the gradual shift of the 006 reflection of Zn2Al-VBS to higher 2θ angle from 

ca. 8.7 Å (0.3 AEC) to ca. 8.2 Å (1.0 AEC), similar to that observed by EDXRD from 9.0 

Å to 8.3 Å; this displacement is associated with the appearance of the 009 reflection of 

Zn2Al-VBS/CO3. The formation of Zn2Al-VBS/CO3 becomes more evident with the 

appearance of a broad and weak reflection at ca. 23.6 Å attributed to the 003 reflection of 

the intermediate; this value is indeed very close to the sum of the interlayer distance of 

the two anions: 17.2 (VBS) + 7.5 (CO3
2-) = 24.7 Å (within the experimental error). 

Besides, the weak shoulder centered at ca. 6.2 Å as well as the broad and weak reflection 

at ca. 4.3 Å can also be attributed to the 0012 and the 0018 reflections of the intermediate, 

respectively. For a theoretical exchange rate of 1.2 , the fully exchanged phase is the 

major phase present. Broad diffraction lines are observed indicating a poor crystallinity 

consistently with EDXRD data. 
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4.6 In  Situ  Thermal  Polymerization  of  Zn2Cr­VBS/Cl       

Second­stage Compound 

 

Figure 4-11: Powder X-ray diffraction patterns of Zn2Cr-Tart, Zn2Cr-Tart/Cl, Zn2Cr-VBS/Cl and 

Zn2Cr-VBS compounds in the HTK experiments: (a) 25 ℃; (b) 200 ℃. The mark * indicates the 

presence of Zn2Cr-Cl. 

  Based on the previous reports concerning the conditions of in situ thermal 

polymerization of Zn2Al-VBS, 15 high temperature in situ XRD experiments were carried 

out at 25 ℃ to 200 ℃ on Zn2Cr-VBS/Cl second-stage material. Zn2Cr-VBS/Cl was 

prepared in the laboratory by repeating the EDXRD experiment at 55 ℃. As can be seen 

in Figure 4-11 (a), Zn2Cr-VBS/Cl is not a pure phase but consists of a mixture of 

Zn2Cr-VBS/Cl, Zn2Cr-Tart/Cl and Zn2Cr-VBS. Therefore, the thermal behavior of 

Zn2Cr-VBS/Cl is compared to those of Zn2Cr-Tart/Cl and Zn2Cr-VBS as shown in Figure 

4- 11 (b). 
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In the case of Zn2Cr-VBS, the thermal treatment at 200 ℃ leads to a contraction of 

the interlayer distance from ca. 17.6 Å (Zn2Cr-VBS) to 13.9 Å (Zn2Cr-PSS). This 

contraction is close to that reported for the in situ thermal polymerization process of  

Zn2Al-VBS, from 18.2 Å to 14.5 Å. In the same time, the 006 reflection of Zn2Cr-VBS/Cl 

is shifted to higher 2θ angle from 12.2 Å to 9.4 Å. This contraction is a little smaller than 

that expected i.e. 10.2 Å (ൌ ଵ
ଶ
ሾ13.9 ሺd଴଴ଷ ௉ௌௌሻ ൅  7.5 ሺ݀଴଴ଷ ஼௟ሻሿÅሻ for the 006 reflection of 

Zn2Cr-PSS/Cl. Zn2Cr-Tart/Cl host also shows a contraction from 9.5 Å to 8.1 Å 

corresponding to the reorientation of the tartrate anions in a flat position after the removal 

of interlayer water molecules. 

II Exchange Reaction with [Fe(CN)6]3­ Ferricyanide Anions 

4.7 Introduction 

The intercalation of hexacyanoferrate (II) and (III) into LDH is of interest for several 

reasons. First, it has implication in electrochemistry with the formation of LDH modified 

electrodes able to perform electron transfer, energy conversion and molecular recognition 

functions.17-19 On the other hand, hexacyanoferrate intercalated LDH form rare examples 

of pillared LDH, these anions acting as pillaring species creating interlayer microporosity. 

For instance, Mg3.3Al-Fe(CN)6 LDH displays a Langmuir surface area of 499 m2· g-1 

originated from pores smaller than 0.71 nm. 20 Finally, hexacyanoferrate anions are also 

magnetic species. 21 

This wide range of properties associated with the intercalation of hexacyanoferrate 

anions into LDH can also be used as different probes to gain further insight into the 

process taking place in the interlayer space i.e. staging phenomena. In the following, are 
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described the anion-exchange reaction of Zn2Cr-Cl, Zn2Cr-Tart and Zn2Cr-Tart/Cl with 

[Fe(CN)6]3- investigated by means of EDXRD. 

4.8 In situ EDXRD measurements 

The solution of hexacyanoferrate guest anions was added dropwise to 10 mL of 

suspension (25 g· L-1) of LDH at 55 ℃ at a rate of 0.118 mL· min-1 and a concentration 

0.15 M in the case of Zn2Cr-Cl host, 0.035 mL· min-1 and 0.075 M in the case of 

Zn2Cr-Tart and Zn2Cr-Tart/Cl hosts. The EDXRD spectra were collected at a fixed 

detector angle of 1.625 º (2θ) with acquisition time of 60 s. 

4.9 Exchange  Reaction  of  Cl­  Anions  in  Zn2Cr­Cl  by 

Ferricyanide Anions 

Figure 4-12 shows the course of the exchange reaction of Zn2Cr-Cl with 

ferricyanide anions. Only two reflection peaks were observed at a d-value of 7.8 Å 

corresponding to the 003 reflection of Zn2Cr-Cl host and 10. 9 Å assigned to the 003 

reflection of the fully exchanged phase Zn2Cr-Fe(CN)6. The latter value is close to those 

reported elsewhere for Mg2Cr-LDH (10.45 Å) 22 , Mg1.5Al-LDH (11.10 Å) 22 and 

Mg2Fe(III)-LDH (10.8 Å) 23. The size of the ferricyanide anions is close to 11 Å along 

the C4 axis, 8.7 Å along the C2 axis and 6.51 Å along the C3 axis. 24 The present gallery 

height (6.1 Å) means that the ferricyanide anions are oriented with the C3 axis 

perpendicular to the hydroxide sheets. 

Furthermore, the crossing point in α(t) curves occurring at α = 0.5 (Figure 4-12 (c)) 

confirms the one-step process with a direct transformation from the host to the  product. 
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Figure 4-12: EDXRD data showing the course of the exchange reaction of Zn2Cr-Cl with ferricyanide 

anions at 55℃. (a) 3D stacked plot showing the evolution of Zn2Cr-Cl host 003 and Zn2Cr-FeCN 

product 003 Bragg reflections as a function of time, (b) 2D plots showing the same reflections, (c) 

extent of reaction vs. time curves for host 003 and product 003 Bragg reflections. 
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Figure 4-13: Ex situ PXRD data showing the course of the exchange reaction of [Fe(CN)6]3- anions 

with Zn2Cr-Cl: PXRD patterns of the intercalation products obtained at different theoretical exchange 

rate: 2.75 AEC, 0.66 AEC, 0.55 AEC, 0.44 AEC, 0.33 AEC and 0.11 AEC from top line to bottom. 

The same experiment was also performed in the laboratory and PXRD patterns of 

the products quenched at different theoretical exchange rates are shown in Figure 4-13. 

These data are in total agreement with EDXRD data. Since only one product is formed i.e. 

Zn2Cr-Fe(CN)6 and the growth of Zn2Cr-Fe(CN)6 is correlated to the decay of Zn2Cr-Cl 

host. 
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4.10 Exchange  Reaction  of  Ferricyanide  Anions  with 

Zn2Cr­Tart 

 

Figure 4-14: EDXRD data showing the course of the exchange reaction of Zn2Cr-Tart with 

ferricyanide anions at 55 ℃. (a) 3D stacked plot showing the evolution of Zn2Cr-Tart host 003 and 

Zn2Cr-FeCN product 003 Bragg reflections as a function of time. (b) extent of reaction vs. time curves 

for host 003, intermediate 006 and product 003 Bragg reflections. The guest ferricyanide anions 

solution (0.075 M) was added at a rate of 0.035 mL · min-1.  

For the exchange reaction of Zn2Cr-Tart with ferricyanide, a gradual displacement of 

the 003 reflection of Zn2Cr-Tart from 12.0 Å to 11.2 Å is observed (Figure 4-14). This 

last value is that expected for Zn2Cr-Fe(CN)6. A deconvolution of the EDXRD patterns 

was first attempted by considering two contributions centered at 12.0 Å and 11.2 Å 

(Figure 4-14 (a)). A better Figure 4-14 (b) was obtained by considering an additional 

peak at 11.6 Å corresponding to the 006 reflection of Zn2Cr-Tart/Fe(CN)6. This peak has 

a predicted d003 = 12.00 Å + 11.2 Å = 23.2 Å and hence a d006 of ca. 11.6 Å. 
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4.11 Exchange  reaction  of  Zn2Cr­Tart/Cl  with  Ferricyanide 

Anions   

 

Figure 4-15: EDXRD data showing the the course of the exchange reaction of Zn2Cr-Tart/Cl with 

ferricyanide anions at 55 ℃. (a) 3D stacked plot showing the evolution of Zn2Cr-Tart/Cl host 006 and 

Zn2Cr-Fe(CN)6 product 003 Bragg reflections as a function of time, (b) 2D plots showing the same, (c) 

extent of reaction vs. time curves for host 006 and product 003 Bragg reflections. The guest 

ferricyanide anions solution (0.075 M) was added at a rate of 0.035 mL · min-1. 

Figure 4-15 shows the EDXRD data concerning the exchange reaction of 

Zn2Cr-Tart/Cl with ferricyanide anions and only two reflections are observed: at 10.1 Å 

corresponding to the 006 reflection of Zn2Cr-Tart/Cl and at 11.1 Å assigned to the 003 

reflection of Zn2Cr-Fe(CN)6. The crossing point of the α(t) curves occurs close to α = 0.5 

indicating the absence of the intermediate phase under the present conditions. Probably, 

no formation of staging phase is resulted from a fast exchange reaction due to the high 

negative charge of the ferricyanide anions. 
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4.12 Conclusions 

The exchange reaction of VBS with Zn2Cr-Cl, Zn2Al-Cl first stage LDH and 

Zn2Cr-Tart/Cl second-stage LDH, were investigated by means of EDXRD as well as the 

exchange reaction of CO3
2- with Zn2Al-VBS. The formation of Zn2Cr-VBS/Cl and 

Zn2Al-VBS/CO3 second-stage intermediates was observed. 

Zn2Cr-VBS/Cl was obtained by reacting Zn2Cr-Tart/Cl with VBS, while it is not 

formed during the anion-exchange reaction of Zn2Cr-Cl with VBS. This may indicate that 

the present phase can only be prepared starting from a second-stage structure such as 

Zn2Cr-Tart/Cl. On the other hand, a preliminary study allowed us to observe the in situ 

thermal polymerization of VBS in Zn2Cr-VBS/Cl leading to Zn2Cr-PSS/Cl. 

The exchange reaction of ferricyanide anions with Zn2Cr-Cl, Zn2Cr-Tart and 

Zn2Cr-Tart/Cl LDH materials were investigated by means of EDXRD. The formation of 

Zn2Cr-Tart/Fe(CN)6 second-stage intermediate was observed by reacting Zn2Cr-Tart with 

ferricyanide anions.  
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This thesis work has been devoted to the study of the anion exchange reaction 

mechanism for two LDH host compositions namely Zn2Cr and Zn2Al and for a series 

of inorganic namely Cl
-
, F

-
, CO3

2-
, SO4

2-
 and Fe(CN)6

3-
 and organic anions (tartrate, 

succinate, adipate and styrene-4-sulfonate VBS anions). Monitoring the process in 

situ by means of energy dispersive X-ray diffraction reveals two reactions 

mechanisms: either anion exchange reaction occurs in a one-step direct transformation 

from the host to the fully-exchanged phase or the reaction proceeds via a second-stage 

intermediate with alternating interlayer occupied by two different anions and then 

conversion to the first stage.  

The aim of this work was first to determine the factors influencing staging. One 

important remark concerns the high rate of these reactions, typically with a half-time 

of 1-2 minutes. Therefore, in order to study these reactions in details and detect the 

presence of intermediate phases, it was necessary to slow down the reaction by adding 

the guest anion solution in a dropwise manner. 

A general trend is that inorganic-inorganic anion exchange reactions occur in a 

one-step process while inorganic-organic exchanges often proceed via a second-stage 

intermediate. This leads us to suggest that staging occurs partly as a result of 

organic-inorganic separation. Yet, one must keep in mind that staging is not observed 

for all organic anions (for instance, in the case of the exchange of chloride anions by 

VBS anions) indicating that other factors must be considered such as the anion size, 

the solvatation and the affinity for different anions. Concerning this last parameter, we 

believed in a correlation between the occurrence of a two-step process and the 

difficulty of exchange of the initial anion, as established by O’Hare et al. in the case 
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of LiAl2 system.
1
 Indeed, microcalorimetric measurements reported elsewhere

2, 3
 

clearly indicate that chloride anions are easier to replace by inorganic anions such as 

sulfate, carbonate or ferricyanide anions than by organic anions like tartrate or 

succinate anions. In these conditions, the exchange of chloride anions by inorganic 

anions occurs in one stage while staging is needed to overcome the energy barrier in 

the case of organic anions. On the other hand, the fact that the formation of second 

and first-stage products obeys either a consecutive process with the formation of 

second-stage intermediates and then conversion into fully exchanged phases or 

parallel processes with a route going through the intermediate as well as a direct 

transformation of the host, may be attributed also to differences in anion affinities. 

Indeed, a rapid and consecutive process is observed for anions relatively easy to 

replace while low and parallel processes take place for anions difficult to replace; this 

interpretation is supported by the enhancing effect of temperature on the formation of 

second-stage intermediates indicating higher activation energies in this latter case. 

However, another explanation given by O’Hare et al. might be that consecutive 

processes would arise from an ordered replacement of interlayer anions while a 

random replacement would lead to parallel processes. 
1
   

The kinetic of the exchange reaction of chloride anions in Zn2Cr-Cl with tartrate 

anions was examined. A rate constant k of 1.2(4)*10
-2 

s
-1

 at 25 ℃ was obtained for a 

addition rate 1.0 mL· min
-1 

of the tartrate anion solution. This value is comparable 

with rate constants reported elsewhere for intercalation reactions in other layered 
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materials.
4 

The anion exchange reaction in LDH system is expected to be a 2D 

processes with deceleratory nucleation. The Avrami exponent value n obtained from 

Sharp-Hancock analysis i.e. 2-3 is in favor of a phase boundary controlled process i.e. 

the reaction rate is limited by the expansion of the interlayer space necessary to 

accommodate tartrate anions. 

An important result of this study is the formation of intermediate phases of 

higher-order staging than 2 during the exchange reaction of CO3
2-

 anions with 

Zn2Cr-Tart, since only LDH second-stage intermediates have been reported so far. 

The gradual variation of the interlayer distance of the intermediate product clearly 

indicates a variation of the number of the interlayer spaces concerned with the 

exchange process. Of course this result must be further confirmed by means of 

HRTEM technique to better characterize the intermediate compositions. On the other 

hand, one may think that for the other anion-exchange reactions examined here, the 

high rate of these reactions is likely to prevent the observation of higher-staging than 

2, if existing.  

 In a second step, we went further by examining the anion exchange properties 

of these second-stage intermediates. Selective anion-exchange reactions were 

observed that were a result of the segregation between organic and inorganic anions. 

Indeed, the reaction of Zn2Cr-Succ/Cl and Zn2Cr-Tart/Cl second-stage compounds 

with either fluoride or adipate anions initially occurs with preferential replacement of 

the hydrophilic Cl ion with F, or of the organic succinate or tartrate anions with 

adipate leading to the formation of new second-stage intermediates Zn2Cr-Succ/F and 
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Zn2Cr-Tart/F or Zn2Cr-Adip/Cl. Because of this great selectivity, new heterostructures 

can be formed that may not be achieved starting from a first-stage product. Indeed, 

attempts to prepare Zn2Cr-Tart/F second stage materials from respectively the 

exchange Zn2Cr-Tart with fluoride anions failed, suggesting that the present phases 

can be obtained starting only from Zn2Cr-Tart/Cl second-stage structure. 

Such amphiphilic heterostructures should find applications in many fields as ion 

exchangers, adsorbent for environmental remediation, nanolayer reinforcements in 

hybrid organic-inorganic polymer composite. Compared to first-stage LDH, these 

LDH heterostructures may give access to multifunctional properties. Preliminary 

measurements have been reported showing the formation of VBS 

(styrene-4-sulfonate)/ Cl and tartrate/ferricyanide heterostructures. In the former case, 

the in situ thermal polymerization of VBS into PSS was evidenced by means of in situ 

high temperature powder X-ray diffraction. On the other hand, magnetic 

measurements on Zn2M-Tart/Fe(CN)6 (M: Al, Cr) sample are underway to 

characterize the effect of either the lamellar sequestration and/or the alternative 

location on the dimensionality of the properties.  
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